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Abstract

Since the introduction of Data Warehouse (DW) and Online Analytical Processing

(OLAP) technologies, efficient computation of data cubes has become one of the most

relevant and pervasive problems in the DW area. The data cube operator has exponential

complexity; therefore, the materialization of a data cube involves both huge amount of

memory and substantial amount of time for its generation. Reducing the size of data

cubes, without loss of generality, thus becomes one of the essential aspects for achieving

effective OLAP services. Previous approaches reduce substantially the cube size using

graph representations. A data cube can be viewed as a set of sub-graphs. In general,

the approaches eliminate prefix redundancy and part of suffix redundancy of a data cube.

In this work, we propose three major contributions to reduce the data cube size: MDAG,

MCG and p-Cube Approaches. The MDAG approach eliminates the wildcard all (*), which

represents an entire aggregation, from the cube representation, using the dimensional ID.

It also uses the internal nodes to reduce the cube representation height, number of branches

and number of common suffixed nodes. Unfortunately, the MDAG approach just reduces

the data cube suffix redundacy, so in order to complete eliminate prefix/suffix redundacies

we propose the MCG approach. The MCG approach produces a full cube with a reduction

ratio of 70-90% when compared to a Star full cube representation. In the same scenarios,

the new Star approach, proposed in 2007, reduces only 10-30%, Dwarf 30-50% and MDAG



vii

40-60% of memory consumption when compared to Star approach. Our approaches are, on

average, 20-50% faster than Dwarf and Star approaches. In this work, we also propose a

parallel cube approach, named p-Cube. The p-Cube approach improves the runtime of Star,

MDAG and MCG approaches, while keeping their low memory consumption benefits. The

p-Cube approach uses an attribute-based data cube decomposition strategy which combines

both task and data parallelism. It uses the dimensions attribute values to partition the

data cube into a set of disjoint sub-cubes with similar size. The p-Cube approach provides

similar memory consumption among its threads. Its logical design can be implemented in

shared-memory, distributed-memory and hybrid architectures with minimal adaptation.
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1 Introduction

Data generalization is a process that abstracts a large set of task-relevant data from a

relatively low conceptual level to higher conceptual levels. Users need summarized data,

since they can perform analysis at different levels of granularity and from different per-

spectives. From data analysis perspective, data generalization is a form of descriptive data

mining, which presents both data in a concise and summarative manner and interesting

general properties of the data (HAN; KAMER, 2006).

Users also need to predict behaviors. There are two scientific alternatives to predict

the behavior of an abstraction. The first alternative is using theories that describe the

abstraction behavior. In general, these theories describe some physical phenomena, using

mathematics. The first alternative is represented by Theory-Driven Approaches. The

second alternative uses past behavior, described by a huge amount of data, to predict

behavior. The second alternative is represented by Data-Driven Approaches. They are

used when no theory exists.

The Data-Driven Approaches are divided in Hypothesis-Driven Approaches and Discover-

Driven Approaches. In a Hypothesis-Driven Approach, a business analyst typically starts

the data exploration manually, i.e., he/she tries to find anomalies, but the search space

is often very large, so the exploration task can become hard (SARAWAGI; AGRAWAL;
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MEGIDDO, 1998). In a Discover-Driven Approach, a business analyst data exploration is

guided by precomputed indicators of exceptions at various levels of detail, so the chances of

user noticing abnormal patterns can increase (SARAWAGI; AGRAWAL; MEGIDDO, 1998). In

general, the Data-Driven Approaches enable discovering non-trivial, implicit, previously

unknown and potentially useful patterns from data (HAN; KAMER, 2006).

The Data Warehouse (DW) and Online Analytical Processing (OLAP) technologies

perform data generalization by summarizing huge amount of data at various levels of ab-

straction. The DW technology becomes one of the essential elements of decision support

and hence attracts attention from both industry and research communities. Powerful

analysis tools, based on Hypothesis-Driven or Discover-Driven Approaches, are well de-

veloped, and consequently reinforce the prevalent trend towards DW systems. OLAP

systems, which are typically dominated by stylized queries that involve group-by and

aggregates operators, are representative applications among these tools.

OLAP systems are based on a multidimensional model. The multidimensional model

views the stored data as a data cube. A data cube was introduced in (GRAY et al., 1997).

It is a generalization of the group-by operator over all possible combinations of dimensions

with various granularity aggregates. Each group-by, named cuboid, corresponds to a set of

cells, described as tuples over the cuboid dimensions. A data cube is basically composed

by dimensions and facts. Dimensions are perspectives of the analytical process and facts

are what is to be measured in such analytical process. The group-bys form a lattice of

cuboids, resulting in a data cube.

An important feature of OLAP systems is its ability to efficiently answer decision sup-

port queries. To improve query performance, an optimized approach is to materialize the

data cube instead of computing it on the fly, but the inherent problem with this approach
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is its exponential complexity with respect to the number of dimensions; therefore, the

materialization of a cube involves both a huge number of cells and a substantial amount

of time for its generation. For example, even without any hierarchy in any dimension, a

10-dimension data cube with a cardinality of 100 in each dimension leads to a lattice with

10110 ≈ 1020 cells. Reducing the size of data cubes, without any loss of generality, thus

becomes one of the essential aspects for achieving effective OLAP services.

A second alternative for dealing with the data cube size is to introduce parallel process-

ing which can increase the computational power through multiple processors. Moreover,

the parallel processing can increase the IO bandwidth through multiple parallel disks,

used to store the base relations and, in some approaches, partitions or regions of a data

cube.

In this work, we address two efficient approaches to reduce the cube size and one

approach to compute a data cube in parallel. These approaches adopt the strategy of

reducing the data cube size to improve both runtime and memory consumption. The par-

allelization improves even more the runtime of sequential cube approaches, while keeping

their low memory consumption benefits.

Our three major contributions reduce the cube size in 70-90%, when compared to a

classic cube representation named star-tree. Our sequential approaches are, on average,

25-50% faster than two of the most promising approaches of the literature (Dwarf and

Star approaches) and our parallel approach is three times faster than our best sequential

approach in a machine with eight processors and a shared memory system.
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1.1 Problem Definition, Hypothesis and Solution

The materialization of a full cube involves both a huge number of cells and a substantial

amount of time for its generation, so there is a problem in computing medium or high

dimensional full data cubes, with high cardinality and high number of tuples.

We start from the hypothesis that if the cube size is reduced, without any loss of

generality, both memory consumption and runtime for its computation are also reduced.

If we also introduce parallel processing, we can improve even more the sequential cube

approaches runtimes, while keeping their low memory consumption benefits.

The hypothesis, thus motivate the development of some sequential/parallel approaches

to reduce the cube size, without any loss of generality, enabling these approaches to

efficiently compute full, medium or high dimensional data cubes (i.e., 10−102 dimensions)

with high cardinality (i.e., 104 − 107 distinct values on each dimension) and high number

of tuples (i.e., 108 − 109 tuples).

This work is restricted to: (i) a background in the multidimensional modeling area,

describing its main concepts, (ii) a detailed description of the related work, including their

benefits and limitations, (iii) the design and development of two new sequential approaches

to compute and represent a full data cube, (iv) the design and development of a new

parallel approach to compute and represent a full data cube, (v) an extensive performance

study, including the utilization of synthetic and real datasets, and (vi) discussions on the

potential extensions and limitations of our proposed approaches.

Therefore, it is out of scope of this work the computation of partial data cubes, in-

cluding closed, quotient, iceberg, and fragmented data cubes; the data cube maintenance,

i.e., update strategies; the data cube query and the utilization of secondary storage to
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efficient compute a data cube.

1.2 Outline

The rest of the thesis is organized as follows.

In Chapter 2, we emphasize the research background. We describe some concepts such

as DW, Data Cube, Cube Cell, Multidimensional Schemas, Measures, Concept Hierar-

chies, OLAP, OLAP Operations, the Cube Computation Operator, and parallel architec-

tures to enable a better understanding of the remaining chapters of the thesis.

In Chapter 3, we describe the related work. We describe Star (XIN et al., 2007) and

Dwarf (SISMANIS et al., 2002) approaches. These approaches represent two of the most

well-known cube approaches in the literature. They adopt a top-down cube computation,

a graph based cube representation, and several optimizations to reduce the cube size. In

Chapter 3, we detail both approaches, their benefits and limitations. There are many

other approaches to compute and represent a data cube, but they are out of the scope of

this work, since they do not reduce the cube size or their reduction is lossy, i.e., does not

preserve the data cube integrity. In Chapter 3, we also detail these approaches limitations.

In Chapters 4, 5 and 6 we detail the three major contributions of our work. We

present MDAG, MCG and p-Cube approaches, including their full cube representations

and computation methods. Besides their cube computation methods key features, we

present the algorithms and performance studies. All the improvements are described

in details in order to enable a better understanding of the contributions and also to

give the basis for understanding the potential extensions and limitations of the proposed

approaches in Chapter 7.
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In Chapter 7, we discuss the potential extensions and limitations of the proposed ap-

proaches. We describe some hard problems such as the maintenance of our cube represen-

tations, the dimensional curse problem that occurs even in a reduced cube representation,

the creation of temporary nodes during the aggregations generation, the computation of

complex measures, the integration with some sophisticated query methods, the utilization

of secondary storage to compute a data cube, the limitation of p-Cube in computing Dwarf

approach in parallel, the iceberg cube extensions needed to our approaches, the p-Cube

implementation in a distributed-memory or hybrid architecture and the importance of

implementing different sampling/grouping methods to integrate p-Cube approach.

In Chapter 8, we synthesize the main conclusions and contributions of our work, and

point out some directions for future improvements.



2 Background

In this chapter, we describe the basic concepts related to the thesis, which include

DW, Data Cube, Cube Cell, Multidimensional Schemas, Measures, Concept Hierarchies,

OLAP, OLAP Operations, the Cube Computation Operator, and two of the most popular

parallel architectures.

2.1 Data Warehouse

A Data Warehouse is a subject-oriented, integrated, time-variant, and nonvolatile col-

lection of data in support of management’s decision making process (INMON; HACKATHORN,

1994). The four keywords, subject-oriented, integrated, time-variant, and nonvolatile, dif-

ferentiate DW from other repository systems, such as relational database systems, trans-

action processing systems, and file systems.

A DW models, in an integrate manner, important subjects, such as customer, supplier,

product and sales, for decision makers and not for the day-to-day operations. Hence, DWs

typically exclude data that are not useful in the decision support process.

Normally, a DW integrates heterogeneous data sources, such as relational tables, flat-

files, serialized objects, and XML files, into a unique analytical data source. Data cleaning
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and data integration techniques are applied to ensure consistency in naming conventions,

dimension structures, attribute measures, and so on.

Typically, the DW is maintained separately from the organization‘s operational databases.

There are many reasons for doing this. The DW supports on-line analytical processing

(OLAP), the functional and performance requirements of which are quite different from

those of the on-line transaction processing (OLTP) applications traditionally supported

by the operational databases. (CHAUDHURI; DAYAL, 1997)

In (WU; BUCHMANN, 1997), the authors propose a logical architecture for a DW. Fig-

ure 2.1 illustrates such an architecture. Each layer provides services for the next higher

layer, or for the intralayer process. The Data Store Layer provides the Data Manage-

ment Layer the services for storing the data, building indexes (Bitmap indexes, or special

join indexes), data clustering, etc. The Data Management Layer, in turn, provides ser-

vices for higher level management of the warehouse data, e.g., load utilities, data model

transformation between external sources and the logical schema, data cleansing, query

processing, query optimization, etc. Next, the Application Interface Layer provides data

access facilities suitable for specific applications, including data model transformation be-

tween the conceptual multidimensional schema and the logical schema. The Presentation

Layer includes graphical presentation and reporting tools. It typically runs on a desktop

environment whereas the other three layers typically exist on the server side. The pre-

sentation layer therefore also includes the desktop resident processes needed for extract

generation. (WU; BUCHMANN, 1997)
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FIGURE 2.1 – The logical DW architecture.

2.2 Data Cube

DWs and OLAP tools are based on a multidimensional model. The multidimensional

model views the stored data as a data cube. A data cube allows data to be modeled

and viewed in multiple dimensions. It is defined by dimensions and facts. (HAN; KAMER,

2006)

In general terms, dimensions are perspectives of the decision making process. They

are modeled as an entity or a set of entities that encapsulate a concept. For example, ITA

may create a grade DW in order to keep records of the institute grades with respect to the

dimensions time, student, professor, department, and discipline. The dimensions

allow grade analysis from different perspectives. We can obtain the grades of each semester

of the last ten years in the institute or the grades of a specific student in 2008 or the grades

of a specific department or discipline.

Each dimension has a set of attributes that describes it. For example, the dimension

student may contain the attributes first-name, middle-name, last-name, sex, and birth-

date. As mentioned before, each dimension is modeled as a single entity or a set of entities,
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so the set of attributes must be organized in such entity(ies).

A multidimensional data model is typically organized around a central theme, such

as grade. The theme is represented by facts. A fact is the minimum amount of informa-

tion to be analyzed, i.e., the quantity by which we want to analyze relationships among

dimensions.

Although we usually think of cubes as 3-D geometric structures, in a DW the data

cube is n-dimensional. We start explaining the n-dimensional characteristic of a data

cube looking at a simple 2-D data cube. We consider ITA grade data cube using only

dimensions time and discipline. The data cube is shown in Table 2.1. In the 2-D

representation, the grades are shown with respect to the time dimension (organized in

quarters) and the discipline dimension (organized according to the disciplines offered at

ITA). The fact or measure displayed is grade (the average grade, for instance).

TABLE 2.1 – 2D data cube.

Now, we extend the initial idea, adding a third dimension to ITA grade data cube.

We add the dimension department, forming a new data cube with dimensions time,

discipline, and department. The 3-D data cube, presented in Table 2.2, is represented

as a series of 2-D tables. Conceptually, we may also represent the same data as a 3-D

data cube, presented in Figure 2.2.

Extending the 3-D ITA grade data cube, we can add a fourth dimension, such as

professor. It is possible to think of a 4-D data cube as being a series of 3-D data cubes,
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TABLE 2.2 – 3D data cube.

FIGURE 2.2 – Geometric 3D data cube.

as shown in Figure 2.3. It is possible to continue in this way, so it is possible to display

any n-D data cube as a series of (n-1 )-D data cubes. In Figure 2.3, the symbol Ø is an

empty cube cell, indicating that a professor does not teach the discipline.

The described tables (2-D and 3-D) show the data at different degrees of summa-

rization. Each summarized table is a cuboid. Given a set of dimensions, it is possible

to generate a cuboid for each of the possible subsets of the given dimensions. The re-

sult forms a lattice of cuboids, each showing the data at different level of summarization,
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FIGURE 2.3 – Geometric 4D data cube.

or group-by. The lattice of cuboids is then referred to as a data cube. In Figure 2.4,

is presented a 4-D data cube as a lattice of cuboids formed from the dimensions time,

professor, department, and discipline.

The cuboid that holds the lowest level of summarization is called the base cuboid.

For example, the 4-D cuboid in Figure 2.4 is the base cuboid for the given dimensions

time, professor, department, and discipline. The 0-D cuboid, which holds the highest

summarization, is called the apex cuboid. In the ITA grade DW, this is the average grade,

summarized over all four dimensions. The apex cuboid is typically denoted by all.

2.3 Cube Cell

A data cube has base cells and aggregate cells. A cell in a base cuboid is a base cell.

A cell in a non-base cuboid is an aggregate cell. An aggregate cell aggregates over one or

more dimensions, where each aggregated dimension is indicated by a wildcard all (”*”) in

the cell notation.
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FIGURE 2.4 – 4D data cube lattice.

Suppose there is an n-dimensional data cube. Let a = (a1, a2, a3, ,an, measures) be

a cell from one of the cuboids making up the data cube. Cell a is an m-dimensional cell

(that is, from an m-dimensional cuboid) if exactly m (m = n) values among {a1, a2, a3,

,an} are not ”*”. If m = n, then a is a base cell; otherwise, it is an aggregate cell (i.e.,

where m < n).

Consider a data cube with dimensions time, department and discipline, and the

measure grade. Cells (Q1, *, *, 78.9) and (*, comp. science, *, 81.3) are 1-D cells, (Q1,

*, Math1, 76.3) is a 2-D cell, and (Q1, comp. science, Math1, 78.8) is a 3-D cell. Here,

all base cells are 3-D, whereas 1-D and 2-D cells are aggregate cells.

An ancestor-descendant relationship may exist between cells. In an n-dimensional

data cube, an i -D cell a = (a1, a2, a3, ,an, measuresa) is an ancestor of a j -D cell b = (b1,

b2, b3, ,bn, measuresb), and b is a descendant of a, iff (1) i < j, and (2) for 1 ≤ m ≤ n, am

= bm whenever am 6= ∗. In particular, cell a is called a parent of cell b, and b is a child

of a, iff j = i +1 and b is a descendant of a.
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Referring to the previous example, 1-D cell a = (Q1, *, *, 78.9), and 2-D cell b = (Q1,

*, Math1, 76.3), are ancestors of 3-D cell c = (Q1, comp. science, Math1, 78.8); c is a

descendant of both a and b; b is a parent of c; and c is a child of b.

The definition of cell and the ancestor-descendant relationship used in this thesis can

be found in (HAN; KAMER, 2006). The same definitions can be found in (HARINARAYAN;

RAJARAMAN; ULLMAN, 1996), using the operator �.

2.4 Multidimensional Schemas

The multidimensional model can exist in the form of a star schema, a snowflake schema,

or a fact constellation schema. The star schema is the most common modeling schema.

The star schema contains one large central table (fact table) containing most of the data,

with no redundancy, and a set of smaller tables (dimension tables). The star schema

presents the dimension tables in a radial pattern around the central fact table.

A star schema for ITA grade DW is shown in Figure 2.5. The schema contains four

dimension tables: time, professor, department, and discipline. The schema also

contains a central table with keys to each of the four dimensions and a measure grade. In

the star schema, each dimension is represented by one table, and each table contains a

set of attributes.

The snowflake schema is a variant of the star schema, where some dimension tables are

normalized, thereby further splitting the data into additional tables. The normalized form

reduces redundancies, so the normalized dimensions become easy to maintain and save

storage space, but the saving of space is negligible in comparison to the typical magnitude

of the fact table. Furthermore, the snowflake structure can reduce the effectiveness of
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FIGURE 2.5 – Star schema example.

browsing, since more joins will be needed to execute a query. Consequently, the system

performance may degrade.

A snowflake schema for ITA grade DW is presented in Figure 2.6. A new dimension

student is introduced and it is modeled using the first, second and third normal forms,

which produces extra tables to represent such a dimension. The dimension professor

adopts the same student address idea, which increases its complexity. The tables Student

and Professor have some attributes and a foreign key to join Professor/Student and Ad-

dress tables. The Address table has some attributes and a foreign key to join Address and

ZipCode tables. The ZipCode table has some attributes and a foreign key to join ZipCode

and Neighborhood tables. The normalized student/professor dimensions continue the

address modeling strategy until reaches the country table.

Sophisticated applications may require multiple fact tables to share dimension tables.

This kind of schema can be viewed as a collection of stars, and hence is called a galaxy

schema or a fact constellation schema. A fact constellation schema for ITA grade DW is

presented in Figure 2.7. We introduce one fact table to analyze presence. The measure

class-count is also introduced to enable measure comparisons. The new presence fact table

shares the same set of dimensions of the grade fact table. One new dimension, named
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FIGURE 2.6 – Snowflake schema example.

class, is introduced in the presence star schema to enable class perspective to the analysis

process.

FIGURE 2.7 – Fact constellation schema example.

2.5 Measures

A data cube is composed by several cuboids and each cuboid is composed by several

cube cells. Each cube cell can be defined as a pair <{d1, d2, ,dn}, measures>, where {d1,
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d2, ,dn} represents a possible combination of attribute values over the dimensions. A data

cube measure is a numerical function that can be evaluated at each cell in the lattice. A

measure value is computed for a given cell by aggregating the data corresponding to the

attribute values defining the given cell.

Measures can be organized into three categories, based on the kind of aggregate func-

tions used. The categories are: distributive, algebraic and holistic.

Suppose the data are partitioned into n sets. The function is applied to each partition,

resulting in n aggregate values. If the result derived by applying the function to the n

aggregate values is the same as that derived by applying the function to the entire data

set (without partitioning), the function can be computed in a distributive manner. For

example, count() can be computed for a data cube by first partitioning the cube into a

set of subcubes, computing count() for each subcube, and then summing up the counts

obtained for each subcube. Hence, count() is a distributive aggregate function. For the

same reason, sum(), min(), and max () are distributive aggregate functions. Distributive

measures can be computed efficiently because they can be computed in a distributive

manner.

An aggregate function is algebraic if it can be computed by an algebraic function with

M arguments (where M is a bounded positive integer), each of argument is obtained by

applying a distributive aggregate function. For example, avg() (average) can be computed

by sum()/count(), where both sum() and count() are distributive aggregate functions.

Similarly, it can be shown that min-N () and max-N () (which find the N minimum and

N maximum values, respectively, in a given set) and standart-deviation() are algebraic

aggregate functions. A measure is algebraic if it is obtained by applying an algebraic

aggregate function.
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An aggregate function is holistic if there is no constant bound on the storage size needed

to describe a sub-aggregate, i.e., there is not an algebraic function with M arguments

(where M is a constant) that characterizes the computation. Common examples of holistic

function include median(), mode(), and rank(). A measure is holistic if it is obtained by

applying a holistic aggregate function.

Distributive and algebraic measures can be efficiently computed in a data cube, but

holistic measures degrade the cube computation response time, so instead of comput-

ing the exact holistic measure, some approximation techniques are used. For example,

rather than computing the exact median(), the equation 2.1 is computed, where L1 is the

lower boundary of a median interval, N is the number of intervals in the entire data set,

(
∑

freq)l is the sum of frequencies of all of the intervals that are lower than the median

interval, freqmedian is the frequency of the median interval, and width is the width of the

median interval. Assume that data are grouped in intervals and that the frequency (i.e.,

number of data values) of each interval is known.

median = (L1 + (
N
2
− (

∑
freq)l

freqmedian

)width). (2.1)

For example, professors may be grouped according to their salary in intervals such as

10-20K, 20-30K, and so on. Let the interval that contains the median frequency be the

median interval.

Most of the current data cube technology confines the measures of multidimensional

databases to numerical data. However, measures can also be applied to other kinds of

data, such as spatial, multimedia, or text data.
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2.6 Concept Hierarchies

A concept hierarchy defines a sequence of mapping from a set of low-level concepts

to higher-level concepts. Month values for time dimension include January, February,

March, ..., December. Each month, additionally, can be mapped to the quarter to which

it belongs. For example, January, February and March can be mapped to quarter one

(Q1). Quarters can in turn be mapped to the semester to which they belong. The maps

form a concept hierarchy for the dimension time, mapping a set of Months to Quarters

and a set of Quarters to Semesters.

Many concept hierarchies are implicit within the database schema. For example,

suppose that ITA is composed by several divisions, located at different regions of Brazil.

A new dimension named division location may be required. The new dimension can be

described by the attributes: street, city, state, and region. The attributes are related by

a total order, forming a concept hierarchy such as ”region � state � city � street”.

The hierarchy is shown in Figure 2.8-a. Alternatively, the attributes of a dimension may

be organized as a partial order, forming a lattice. An example of a partial order for the

time dimension based on the attributes: day, week, month, quarter, semester, and year

is ”year � semester � quarter � month � day”, ”year � week � day”. This lattice

structure is shown in Figure 2.8-b. The operator � is introduced in (HARINARAYAN;

RAJARAMAN; ULLMAN, 1996). It imposes a partial ordering on the cube views.

A concept hierarchy that is a total or a partial order among attributes in a database

schema is called a schema hierarchy. There may be more than one concept hierarchy for

a given attribute or dimension, based on different user perspectives. Concept hierarchies

may be provided manually by system users, domain experts, or knowledge engineers, or
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FIGURE 2.8 – Hierarchy for ITA division location (a) and a lattice for time (b).

may be automatically generated based on statistical analysis of the data distribution.

2.7 OLAP

OLAP is a term created by E.F. Codd & Associates in 1994 with the paper ”Providing

OLAP to User-Analysts: An IT Mandate”. This term describes a set of tools that offers

methods to access, visualize, and analyze huge amount of data with high flexibility and

performance. The OLAP tools use consolidated data, normally stored in a DW.

OLAP tools present multidimensional data from DWs, regardless of how or where the

data are stored. Each OLAP tool must handle a new abstract data type, named data

cube, so it must consider data storage issues. OLAP tools use one of the following stor-

age strategies: Relational OLAP (ROLAP), Multidimensional OLAP (MOLAP), Hybrid

OLAP (HOLAP).

ROLAP tools use a relational or extended-relational Database Management System
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(DBMS) to store and management data cubes. They include optimizations for each

DBMS back-end, implementation of aggregation navigation logic, and additional tools

and services.

MOLAP tools implement multidimensional data structures to store data cubes effi-

ciently, since they allow fast indexing to cube cells. With multidimensional data stores, the

storage utilization may be low if the dataset is sparse. In such cases, reduction techniques

should be explored.

HOLAP tools combine ROLAP and MOLAP. Normally, the detailed data are stored

in relational database (ROLAP) and the aggregations are stored in multidimensional data

structures (MOLAP).

2.8 OLAP Operations

In the multidimensional model, data are organized into multiple dimensions, and each

dimension contains multiple levels of abstractions defined by concept hierarchies. This

organization provides users/systems with the flexibility to view data from different per-

spectives. A number of OLAP data cube operations exist to materialize these different

views, allowing interactive querying and analysis of the data at hand (HAN; KAMER, 2006).

Figure 2.9 illustrates some typical OLAP operations for multidimensional data. At

the center of the figure is a data cube for ITA grade DW. The cube contains the di-

mensions time, department, and discipline, where time is aggregated with respect to

quarters, department is aggregated with respect to department names and discipline

is aggregated with respect to the discipline names. The measure displayed is grade.

The roll-up operation (also called drill-up operation by some DW vendors) performs
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FIGURE 2.9 – Common OLAP operations.

aggregation on a data cube, either by climbing up a concept hierarchy for a dimension or

by dimension reduction. Figure 2.9 shows the result of a roll-up operation performed on

the central cube by climbing up the concept hierarchy for time. This hierarchy is defined

by a partial order ”year � semester � quarter � month � day”, ”year � week � day”.

The roll-up operation shows data aggregations by ascending the time hierarchy from the

level of quarter (Q1, Q2, Q3 and Q4) to semester (S1 and S2).

When roll-up is performed by dimension reduction, one or more dimensions are logi-

cally removed from the given cube. For example, consider a grade data cube containing

only the two dimensions department and discipline. Roll-up may be performed by

removing time dimension, resulting in an aggregation of the grade by a department

and discipline, rather than by department, discipline and time.
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Drill-down is the reverse of roll-up. It navigates from less detailed data to more

detailed data. Drill-down can be realized either by stepping down a concept hierarchy

for a dimension or introducing additional dimensions. Figure 2.9 shows the result of a

drill-down operation performed on the central cube by stepping down a concept hierarchy

for time. Drill-down occurs by descending the time hierarchy from the level of quarter

to the more detailed level of month. The resulting data cube details the grade per month

rather than summarizing them by quarter.

Because drill-down adds more details to the given data, it can also be performed by

adding new dimensions to a cube. For example, a drill-down on the central cube of Figure

2.9 can occur by introducing an additional dimension, such as professor or student.

The slice operation performs a selection on one dimension of the given cube, resulting

in a subcube. Figure 2.9 shows a slice operation where the grade data are selected from

the central cube using the criterion time=”Q1”. The dice operation defines a subcube by

performing a selection on two or more dimensions. Figure 2.9 shows a dice operation on

the central cube based on the following selection criteria that include three dimensions:

(department=”Aeronautical Eng.”) and (time=”Q1” or ”Q2”) and (discipline =”Math1” or

”Math2”).

The pivot (rotate) operation rotates the data axes in order to provide an alternative

presentation of the data. Figure 2.9 shows a pivot operation where the department and

discipline axes in a 2-D slice are rotated.

There are other OLAP operations. For example, drill-across executes queries involving

two or more fact tables of a fact constellation schema. The drill-through operation uses

relational SQL facilities to drill through the bottom level of a data cube down to its lower

level. Other OLAP operations may include ranking the top N or bottom N items in lists,
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as well as computing growth rates, interests, internal rates of return, depreciation, and

statistical functions.

2.9 Cube Computation Operator

Data cube computation is an essential task, since the pre-computation of all or part of

a data cube can significantly reduce the runtime and enhance the performance of OLAP

systems. However, such computation has become one of the most relevant and pervasive

problems in the DW area. The problem is of exponential complexity with respect to the

number of dimensions; therefore, the full materialization of a cube involves both a huge

number of cells and a substantial amount of time for its generation.

The data cube computation operator was first proposed and studied by (GRAY et al.,

1997). The cube computation operator computes aggregates over all subsets of the dimen-

sions specified in the operation. Suppose three attributes, discipline-name, department-

name and year, as the dimensions for the data cube, and grade (average grade, for in-

stance) as the measure. The total number of cuboids, or group-by’s, that can be computed

for this data cube is 23=8. The possible cuboids are the following: {(discipline-name,

department-name, year), (discipline-name, department-name), (discipline-name, year),

(department-name, year), (discipline-name), (department-name), (year), ()}, where ()

means that the group-by is empty (i.e., the dimensions are not grouped). The group-by’s

form a lattice of cuboids for the data cube, as shown in Figure 2.10.

If we extrapolate the number of dimensions in a data cube to n dimensions, where each

dimension has no associated hierarchies, then the total number of cuboids is 2n. However,

in practice many dimensions do have hierarchies. For example, the dimension time is



CHAPTER 2. BACKGROUND 43

FIGURE 2.10 – Lattice of cuboids for a 3-D data cube.

usually not explored at only one conceptual level, such as year, but rather at multiple

conceptual levels, such as in the hierarchy ”day<month<quarter<semester<year”. For

an n-dimensional data cube with dimensions with multiple levels, the total number of

cuboids is presented in equation 2.2

cuboids =
n∏

i=1

(Li + 1), (2.2)

where Li is the number of levels associated with dimension i. One is added to Li to

include the virtual top level all. The formula 2.2 is described in (HAN; KAMER, 2006). It

is based on the fact that, at most, one abstraction level in each dimension appears in a

cuboid. For example, if the dimension time has just one conceptual level, or two if it is

included the virtual level all (*), the number of cuboids is 2n. The number of cells in a

cuboid depends on the cardinality (i.e., the number of distinct values) of each dimension.

In summary, the cube computation problem is of exponential complexity with respect to

the number of dimensions, as mentioned before.
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Given a base cuboid, there are three choices to generate the remaining cuboids : no-

materialization, full-materialization and partial-materialization.

The no-materialization choice do not pre-compute non-base cuboids (i.e., the aggregate

cuboids). This leads to an on the fly expensive cube computation, which can be extremely

slow.

The full-materialization choice pre-computes all of the cuboids. The resulting lattice

of computed cuboids is also referred as full cube. This has a extremely fast query response

time, since all cuboids are previously pre-computed, but it may requires huge amounts of

memory space.

Finally, the partial-materialized choice selective compute a proper subset of the whole

set of possible cuboids. Alternatively, it is possible to compute a subset of a data cube,

which contains only those cells that satisfy some user-specified criterion, such as where the

tuple count of each cell is above some threshold. This kind of data cube is called iceberg

cube (BEYER; RAMAKRISHNAN, 1999). There is another technique, named shell fragment,

where small cubes (with 3-5 dimensions) are computed to form the full cube. The gaps

(joins of two or more small cubes) are computed on the fly. This kind of data cube is called

shell cube (LI; HAN; GONZALEZ, 2004). Finally, we have the semantic summarization of

cubes, named closed cubes (XIN et al., 2006) or quotient cubes (LAKSHMANAN; PEI; HAN,

2002), where a set of cube cells with identical measures are collapsed in one abstraction,

named closed cell or class of cells.

Partial materialization represents an interesting trade-off between storage space and

response time, but full cube computation is still important. Individual cuboids may be

stored on secondary memory and accessed when necessary. Alternatively, it is possi-

ble to use such algorithms to compute smaller cubes, as iceberg cubes, shell cubes or
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closed/quotient cubes.

A complete understanding of full cube computation methods helps the development

of efficient methods for computing partial cubes. Hence, it is important to explore scal-

able methods for computing all of the cuboids making up a data cube, that is, for full

materialization. The methods must take into consideration the limited amount of main

memory available for cuboid computation (work memory), the total size of the computed

data cube, as well as the time required for such a computation.

The data cube operator update is a second important problem, since each update can

require partial or complete cube re-computations. Furthermore, some aggregate measures

are difficult to mantain when an update occur. In this work, we deal with the full cube

computation problem, so the data cube operator update complexity is out of the scope of

this work.

Given a base cuboid, the cube computation operator can use a top-down or a bottom-

up order to generate the remaining cuboids. In our work, it is used the lattice convention

proposed in (XIN et al., 2003), so the top-down order starts the cube computation from

the base cuboid to the apex cuboid and the bottom-up adopts the opposite order, i.e., it

starts the cube computation from the apex cuboid to the base cuboid.

Figure 2.11 illustrates a 4-D data cube (ABCD) generation using the top-down order.

Taking ABCD as the base cuboid, Figure 2.11 shows that the cuboids ABC, ABD, ACD,

and BCD (3-D cuboids) can use the base cuboid results to compute themselves. The

results of computing cuboid ACD can be used to compute AD, which in turn can be used

to compute A. This shared computation allows the top-down order to perform aggregations

simultaneously on multiple dimensions. The intermediate aggregate values can be reused

for the computation of successive descendant cuboids.
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FIGURE 2.11 – Top-down cube computation strategy.

Figure 2.12 illustrates a 4-D data cube (ABCD) generation using the bottom-up order.

Cuboids with fewer dimensions now become parents of cuboids with more dimensions.

Unfortunately, the shared computation, used in the top-down order, cannot be applied to

the bottom-up order, so each specialized/descendant cuboid must be computed from the

scratch.

FIGURE 2.12 – Bottom-up cube computation strategy.
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2.10 Parallel Architectures

About 40 years ago, Flynn (FLYNN, 1966) propose a simple model of categorizing

all computers that are still useful today. He places all computers into one of four cat-

egories: single instruction stream, single data stream (SISD); single instruction stream,

multiple data streams (SIMD); multiple instruction streams, single data stream (MISD);

and multiple instruction streams, multiple data streams (MIMD).

The SISD category is the uniprocessor. In the SIMD category the same instruction

is executed by multiple processors using different data streams. SIMD computers exploit

data-level parallelism by applying the same operations to multiple items of data in parallel.

No commercial multiprocessor of MISD has been built to date. Finally, in the MIMD

category each processor fetches its own instructions and operates on its own data. MIMD

computers exploit thread-level parallelism, since multiple threads operate in parallel.

Because the MIMD model can exploit thread-level parallelism, it is the architecture of

choice for general-purpose multiprocessors (HENNESSY; PATTERSON, 1990) and our focus

in this thesis. Existing MIMD multiprocessors fall into two main classes, depending on

the number of processors involved, which in turn dictates a memory organization and

interconnect strategy.

The first class, named centralized shared-memory architectures, has at most a few

dozen processor chips. For multiprocessors with small processors counts, it is possible

for the processors to share a single centralized memory (HENNESSY; PATTERSON, 1990).

With large caches, a single memory, possibly with multiple banks, can satisfy the memory

demands of a small number of processors (HENNESSY; PATTERSON, 1990).

Because there is a single main memory that has a symmetric relationship to all proces-
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sors and a uniform access time from any processor, these multiprocessors are most often

called symmetric (shared memory) multiprocessors (SMPs), and this style of architecture

is sometimes called uniform memory access (UMA), arising from the fact that all proces-

sors have a uniform latency from memory, even if the memory is organized into multiple

banks (HENNESSY; PATTERSON, 1990).

Figure 2.13 illustrates the shared-memory multiprocessor architecture logical design.

In a symmetric multiprocessor, each processor can access all locations in global memory

using standard load operations. The hardware eansures that the caches are ”coherent” by

watching the system bus and invalidating cached copies of any block that is written into.

This mechanism is generally invisible to the user, except when different processors are

simultaneously attempting to write into the same cache line. To avoid this problem, the

programmer and the programming system must be careful with shared data structures

and nonshared data structures that can be located on the same cache block.

FIGURE 2.13 – Logical design of a shared-memory architecture.

The main problem with the shared-memory architectures is that they do not scale

well to large number of processors. Most bus-based systems do not scale well because
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of contention on the bus (DONGARRA et al., 2003). If the bus is replaced by a crossbar

switch the system can scale better, but the cost of the switch can make this organization

impractical for large number of processors.

The second class consists of multiprocessors with physically distributed memory. To

support larger processors counts, memory must be distributed among the processors rather

than centralized; otherwise the memory system would not be able to support the band-

width demands of a larger number of processors without incurring excessively long access

latency (caused by the bus contention mentioned before).

Figure 2.14 illustrates the distributed-memory multiprocessor architecture logical de-

sign. The global shared memory has been replaced by a smaller local memory attached

to each processor. Comunication among the processor-memory configurations is over an

interconnection network. These systems can be made scalable if a scalable interconnection

network is used.

FIGURE 2.14 – Logical design of a distributed-memory architecture.

The advantage of a distributed-memory architecture is that access to local data can be

quite fast. On the other hand, access to remote memories requires much more effort. Most
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distribute-memory systems support a message-passing programming model, in which the

processor owning a datum must send it to any processor that needs it.

The principal programming problem for distributed-memory systems is management of

communication between processors. Usually this means consolidation of messages between

the same pair of processors and overlapping communication and computation so that

long latencies are hidden. In addition, data placement is important so that as few data

references as possible require communication. (DONGARRA et al., 2003)

There is a third MIMD multiprocessor class, named hybrid architecture. The hybrid

architecture adopts the distributed-memory architecture with uniprocessor and shared-

memory multiprocessor processing nodes and not only uniprocessor processing nodes as

Figure 2.14 illustrates. The benefits and limitations of both shared and distributed mem-

ories architectures must be considered in a hybrid architecture.

2.11 Summary

In Chapter 2 it is presented the main concepts and the theoretical foundation of our

research. It describes the main techniques that perform data generalization by summa-

rizing data at different levels of abstraction. Furthermore, it describes the abstract data

type, named data cube, which is handle by OLAP tools. Each data cube is composed by

several cube cells, so a formal definition of both cube cells types are described.

A DW represents a multidimensional data model and such a model can exist in the form

of a star schema, snowflake schema, or a fact constellation schema. The characteristics

of each schema are describe and illustrated. The measure types that a data cube can

handle, including non conventional measures, and the concept of hierarchies, obtained
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from dimensions manually or automatically, are also detailed.

Finally, it is described some common OLAP operations that enable flexibility to the

analysis process, the cube computation operator, which is the basis of our work, and two

of the most popular parallel architectures.

In the next chapter, we describe the related work. The Star (XIN et al., 2007) and Dwarf

(SISMANIS et al., 2002) approaches are described in details and some limitations of other

approaches, such as Condensed Cube (WANG et al., 2002), BUC (BEYER; RAMAKRISHNAN,

1999), Multiway (ZHAO; DESHPANDE; NAUGHTON, 1997), C-cube (XIN et al., 2006) and

Quotient-cube (LAKSHMANAN; PEI; HAN, 2002), are highlighted.



3 Related Work

In this chapter, we describe the related work. We start explaining the top-down

method proposed in Dwarf approach and its graph based cube representation, which

eliminates prefix and part of the suffix redundancies. After Dwarf approach, we explain

Star approach, a top-down approach with bottom-up pruning facilities. The Star approach

uses a tree based cube representation, which eliminates prefix and single paths. Both

approaches are the basis of our work.

In the second part of Chapter 3, we describe the classic approaches, such as BUC and

Multiway. They compute a data cube using different methods, but they do not reduce

the cube size. In the third part of Chapter 3, we describe the non graph based approach,

named Condensed-cube.

3.1 Dwarf Approach

In (SISMANIS et al., 2002), the authors proposed a compact data structure, named

Dwarf, to efficiently represent a full cube . Dwarf eliminates both prefixed nodes and part

of the suffix redundancy. It uses a top-down computation method to produce the Dwarf

data structure.
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The Dwarf data structure has the following properties: (i) It is a Direct Acyclic Graph

(DAG) with one root node and has exactly D levels, where D is the number of dimensions

in a data cube; (ii) Nodes at the D-th level, i.e., leaf nodes, contains cells of the form [key,

aggregateValues]; (iii) Nodes in the levels other than the D-th level, i.e., non leaf nodes,

contain cells of the form [key, pointer]; (iv) A cell c in a non leaf node of level i points to

a node at level i+1, which it dominates; (v) Each node also contains a special cell, which

corresponds to the cell with the wildcard all as its key. The cell all contains a pointer to

either a non leaf node or the aggregate values of a leaf node; (vi) Cells belonging to nodes

at level i of the structure contain keys that are values of the i-th dimension, and no two

cells within the same node contain the same key value; (vii) Each cell ci at the i-th level

of the structure, corresponds to the sequence seqi of i keys found in a path from root to

the cell’s key. The sequence seqi corresponds to a group-by with (D-i) dimensions. All

group-by’s having sequence seqi as their prefix correspond to cells that are descendants

of cell ci.

In Figure 3.1, we present a Dwarf cube generated from a base relation R. It is a full

cube using the aggregate function sum. The nodes are numbered according to the order

of their creation. The height of Dwarf is equal to the number of dimensions, each of which

is mapped onto one of the levels shown in Figure 3.1. The root node contains cells of the

form [key, pointer], one for each distinct value of the first dimension. The node pointed

by a cell c and all the cells inside it are dominated by c. For example, the cell a1 of the

root dominates the node containing the keys b2, and b3. Each non leaf node has a special

all cell (*), holding a pointer and corresponding to all the values of the node.

A path from the root to a leaf node, such as a1b3c1, corresponds to an instance of

the base group-by ABC and leads to a cell [c1 U$40], which stores the aggregate of the
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FIGURE 3.1 – Dwarf full cube representation.

instance. Some of the path cells can be open using the all cell. For example, a2*c2 leads

to a cell [c2 U$50], and corresponds to an instance of the AC cuboid. At the leaf level,

each cell is of the form [key, aggregate] and holds the aggregate of all tuples that match

a path from the root to it. Each leaf node also has an all cell that stores the aggregates

for all the cells in the entire node.

In Figure 3.2, we illustrate the two types of suffix redundancies identified by Dwarf.

Sparse base relations produce many single tuples, as (BEYER; RAMAKRISHNAN, 1999)

demonstrates. Single tuples have a nice property that can be used for optimization. Single

tuples form single paths in the graphs, as Figure 3.2 illustrates. Single paths indicate that

no new nodes are necessary to represent the aggregations derived from them. In Figure

3.2, the base cell c = (a1, b1, c1, d1, m) form the single path a1b1c1d1, so the aggregated

cells beginning with a1 do not demand extra nodes, since they share the same measure

value m. The same single path optimization occurs with the base cell c’ = (a3, b1, c1, d1,
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m‘) in Figure 3.2.

FIGURE 3.2 – Dwarf suffix redundancies types.

The second type of suffix redundancy is identified by the left/implication coalescing

method. In Dwarf, an attribute value bj of dimension B that appears in the base relation

with only an attribute value ai of dimension A is identified. The group-bys (ai, bj, x)

and (bj, x) have the same measure values, so Dwarf can collapse such group-bys for any

attribute value x of any dimension. Since x can be a root of a sub-graph G, G duplication

is avoided, as Figure 3.2 illustrates in the sub-graphs rooted by b2, c2 and c3.

Based on Dwarf model, (SISMANIS; ROUSSOPOULOS, 2003) presented that the size and

computation complexity of a uniform coalesced Dwarf cube is O(d.T
1+ 1

logdC ), where T is

the number of tuples in a base relation, d is the number of dimensions, and C is the car-

dinality of each dimension. This result shows that, unlike the case of non-coalesced cube

which grows, in terms of size and computational time, exponentially with the dimensional-

ity, the 100% accurate and complete (in the sense that it contains all possible aggregates)

coalesced representation only grows polynomially (SISMANIS; ROUSSOPOULOS, 2003).

Unfortunately, there can be redundant sub-graphs where an attribute value bj of di-

mension B appears in the base relation with many other attribute values ai, ai+1, an of



CHAPTER 3. RELATED WORK 56

dimension A, so Dwarf cube does not guarantee the complete elimination of suffix redun-

dancy, i.e., Dwarf cannot guarantee that the sub-graph G is unique in the entire lattice

of cuboids.

Another weakness of Dwarf approach is related to its cube computation strategy.

Dwarf approach identifies tail and left/implication coalescing redundancies using a sorted

base relation. First, the original base relation is scanned and sorted and then it starts

the cube computation. If we consider a base relation with 107-109 tuples, the anticipated

sorting method can compromise the Dwarf’s performance.

3.2 Star Approach

The Star approach, initially proposed in (XIN et al., 2003), integrates bottom-up and

top-down cube computation, exploring both simultaneous multidimensional aggregation

and bottom-up pruning. It operates on a data structure, named star-tree, which performs

lossless data reduction, thereby reducing the runtime and the memory consumption.

Figure 3.3 shows a fragment of the cuboid tree of a base cuboid ABCD. Each level in

the tree represents a dimension, and each node represents an attribute. Each node has

four fields: the attribute value, aggregate value, pointer(s) to possible descendant(s), and

pointer to possible sibling. Tuples in the cuboid are inserted one by one into the tree. A

path from the root to a leaf node represents a tuple. For example, node c2 in the tree

has an aggregate value of 3, which indicates that there are three cells of value (a1, b1,

c2, *). The star-tree representation collapses common prefixes to save memory usage and

allows Star approach to aggregate the values at internal nodes. With aggregate values at

internal nodes, it is possible to prune infrequent cells of an iceberg cube.
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FIGURE 3.3 – A fragment of the base cuboid tree.

The Star approach scans the base relation once if a full cube is to be computed. The

output is a base cuboid tree, as shown in Figure 3.4-a. The remaining Star execution

proceed as follows: the algorithm starts the process of aggregation by traversing the base

cuboid tree in a top-down fashion. Traversal is depth-first. We omit the sibling pointers

in Figures 3.4 and 3.5 to facilitate the explanation.

The first node to be traversed is node a1, with root node as its ancestor node. At this

step, the algorithm copies a1 descendants and insert them as root descendants (Figure

3.4-b). All the aggregate paths in a star-tree requires one or more all node, denoted as *.

Next, the algorithm computes node b1, descendant of node a1, copying b1 descendants and

inserting them as a1 descendants (Figure 3.4-c). The algorithm continues the depth-first

search and computes node c1, descendant of node b1. A similar execution occurs at this

step, i.e., c1 descendants (d1 and d2) are copied and inserted as b1 descendants (Figure 3.4-

d). Finally the algorithm reaches the leaf node d1 and backtracks. Node d2 is computed,

but d2 is also a leaf node, so the algorithm backtracks to node c1, but all c1 descendants

have been computed, so another backtrack occurs to node b1. At this point, the algorithm

computes node * descendants (d1 and d2), but they are leaf nodes, so another backtrack

occurs to node a1. Node a1 has two descendants to be computed (b2 and *), so first node

b2 is computed, i.e., its descendants are copied and inserted as a1 descendants (Figure
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3.4-e). Another depth-first scan is executed from node b2 to its descendant c2, producing

the subtree presented in Figures 3.4-f. The next nodes to be traversed are nodes c2 and

d1, but they do not affect the lattice. Then, node *, descendant of node a1, is computed.

The computation of both * node descendants (c1 and c2) produces the subtree presented

in Figure 3.5-g.

At this point, all a1 subtree has been computed, so the second root descendant (a2)

is computed. First, node a2 descendant is copied and inserted as root descendant (Figure

3.5-h). Similarly to node a1, node a2 is computed, producing at each algorithm execution

step subtrees as presented in Figures 3.5-i, j, and k. Finally, the algorithm needs to

compute the * node, descendant of root node, but due to the similarity to the previous

computed node we omit the detailed execution in this thesis.

An important optimization occur during the depth-first star-tree scan. If a node

has a unique descendant, the star-tree can be reduced even more, avoiding unnecessary

traversals. The single path optimization, proposed in (XIN et al., 2007), eliminates single

paths from all the subtrees, since a unique descendant has the same measure values of

its ancestor. Instead of storing both nodes, only the ancestor node must be stored in the

lattice. An array of attribute values is used to store the eliminated unique descendants.

In Figure 3.4-a, we can observe that node b1, descendant of node a1, has a single

descendant c1, forming a single path b1c1. Using the previous described single path opti-

mization, node c1 can be removed from the lattice, after the aggregation of node b1. The

optimization avoids the aggregation of node c1, so the subtree presented in Figure 3.4-d

becomes unnecessary. The single path optimization can also be applied to nodes c2 and

d1, descendants of nodes b2 and c2, respectively, and to nodes b1 and c1, descendants of

nodes a2 and b1, respectively. The single path optimization is applied only during the
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generation of the aggregate cuboids, reducing both base cuboid and aggregate cuboids size

and traversals.

FIGURE 3.4 – Star top-down aggregations of the first branch.

The Star approach, with the single path optimization, is considered one of the most

promising approaches, since it outperforms other approaches, as presented in (ZHAO;

DESHPANDE; NAUGHTON, 1997), (BEYER; RAMAKRISHNAN, 1999) and (HAN et al., 2001),

in dense, skewed and sparse scenarios, computing full or iceberg cubes.

Unfortunately, the Star approach considers the presence of single paths in the base

cuboid during its construction. The existence of single paths in a base cuboid increases

both memory consumption and runtime during its construction. Furthermore, the star-

tree stores unnecessary suffixed nodes, such as the wildcard node all (*), and the suffixed

nodes with identical measure values. The star-tree redundancy causes additional traver-
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FIGURE 3.5 – Star top-down aggregations of the remaining branches.

sals. The presence of such redundant nodes in a star-tree also consumes extra memory

unnecessarily, so they may pose a serious problem to the Star approach and may even

render it useless when computing very sparse relations.

3.3 BUC Approach

The BUC approach, proposed in (BEYER; RAMAKRISHNAN, 1999), is useful to compute

full or iceberg sparse cubes. It computes the cube from the apex cuboid towards the

base cuboid. BUC computation method is named bottom-up computation. The bottom-

up computation method allows BUC to both share data partitioning costs and prune

infrequent cube cells.



CHAPTER 3. RELATED WORK 61

In Figure 3.6, we illustrate a 4-D data cube with dimensions A, B, C, and D. The apex

(0-D) cuboid, representing the cube cell (*, *, *, *), is at the bottom of the lattice. The

4-D base cuboid, ABCD, is at the top of the lattice. Figure 3.6 shows how BUC works in

general, i.e., how BUC generates the aggregate cuboids from a base cuboid. To detail BUC

bottom-up method, we use the following example: given a 4-D data cube ABCD, where

dimension A is composed by attribute values a1, a2, a3, a4; dimension B is composed by

attribute values b1, b2, b3, b4; dimension C is composed by attribute values c1, c2; and

dimension D is composed by attribute values d1, d2. If we consider each group-by to be

partitioned, then we must compute every combination of the grouping attributes that

satisfy a minimum support or all grouping attributes if no such a condition exists.

FIGURE 3.6 – BUC Bottom-up cube computation.

Figure 3.7 illustrates how the input is partitioned. First, BUC partitions according to

the different attribute values of dimension A, and then B, C, and D. To do so, BUC scans

the input, i.e., the base relation or the fact table, aggregating the tuples to obtain a count

for all, corresponding to the cell (*, *, *, *). Dimension A is used to split the input into

four partitions, one for each distinct value of A. The number of tuples (counts) for each

distinct value of A is recorded in a list, named DataCount of dimension A.
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FIGURE 3.7 – Snapshot of BUC partitioning given an example 4-D dataset.

Starting with A dimension value a1, the a1 partition is aggregated, creating one tuple

for the A group-by, corresponding to the cell (a1, *, *, *). Then a recursive call is made

on the partition for a1. BUC partitions a1 on the dimension B. Then it outputs the

aggregated tuple to the AB group-by and recurses on (a1, b1, *, *) to partition on C,

starting with c1. The same occur to dimension D. After computing d1, BUC backtracks

to the a1, b1, c1 partition and recurses on (a1, b1, c1, d2), and so on.

The partition process is facilitated by a linear sorting method, named CountingSort

(SEDGEWICK, 1990). Furthermore, the counts computed during the sort can be reused to

compute some group-by’s in BUC. If a partition have count 1 (Ex. partition a1, b2, with

count 1), the count is also written to each of the tuple´s descendant group-by’s. In our
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example, partitions (a1, b2, C), and (a1, b2, C, D) with count 1 are generated directly,

avoiding extra sorting. Consider C and D any attribute value of dimensions C and D,

respectively.

The performance of BUC is sensitive to both order of dimensions and skew in the data.

Ideally, dimensions should be processed in order of decreasing cardinality. The higher the

cardinality is, the smaller the partitions are, providing BUC with greater opportunity for

pruning and reusing the counts computed during the sort.

BUC major contribution is the idea of sharing partitioning costs, since both partition-

ing and aggregation are costly. However, it does not share the computation of aggregates

between parent and child group-by’s. For example, the computation of cuboid AB cannot

be used to compute cuboid ABC. The latter needs to be computed from the scratch. Fur-

thermore, BUC approach does not consider important optimizations to reduce the cube

size.

3.4 Multiway Approach

The Multiway approach, proposed in (ZHAO; DESHPANDE; NAUGHTON, 1997), com-

putes a full cube by using a multidimensional array as its basic data structure. It uses

directly array addressing, where dimension values are accessed via the position or the

index of their corresponding array locations.

Multiway partitions the array into chunks. A chunk is a subcube that is small enough

to fit into the memory. Chunking is a method for dividing an n-dimensional array into

small n-dimensional chunks, where each chunk is stored as an object on disk. The chunks

are compressed so as to remove wasted space that are resulted from empty array cells,
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i.e., cells that do not contain any valid data, whose cell count is zero.

The Multiway cube computation method aggregates by accessing the values of the

cube cells. The order in which the cells are visited can be optimized so as to minimize

the number of times that each cell must be revisited, thereby reducing memory access

and storage cost. The trick is to exploit the ordering, so that partial aggregates can be

computed simultaneously, and any unnecessary revisit of cells is avoided.

We explain the Multiway execution with a simple example. Given a 3-D data cube

ABC, where A, B and C have cardinalities 40, 400 and 4000, respectively. The 3-D array

is partitioned into small, memory based, chunks. In the example, the array is partitioned

into 64 chunks, as shown in Figure 3.8. Dimension A is organized into four equal-sized

partitions, x1, x2, x3, and x4. Dimensions B and C are similarly organized into four

partitions each. Chunks 1, 2, ..., 64 corresponds to the subcubes x1y1z1, x2y1z1, ...,

x4y4z4, respectively. In this scenario, the size of the array for each dimension A, B, and C

is 40, 400 and 4000, respectively. The size of each partition in A, B, and C is, therefore,

10, 100, and 1000, respectively. Full materialization of the corresponding cube involves

the computation of all of the cuboids defining the cube.

The base cuboid, denoted by ABC, is already computed and corresponds to the given

3-D array. The 2-D cuboids (AB, AC, and BC), the 1-D cuboids (A, B, and C) and the

apex cuboid must be computed.

There are many possible orderings with which chunks can be read into memory to be

used in the cube computation. We consider the ordering labeled from 1 to 64, shown in

Figure 3.8. We start the aggregation by computing the y1z1 chunk of the BC cuboid. By

scanning chunks 1 to 4 of ABC, the y1z1 chunk is computed. That is, the cells for y1z1

are aggregated over x1 to x4. The memory can then be assigned to the next chunk, y2z1,
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which completes its aggregation after the scanning of the next four chunks of ABC (5 to

8). Continuing in this way, the entire BC cuboid can be computed. Therefore, only one

chunk of BC needs to be in memory, at a time, for the computation of all of the chunks

of BC.

FIGURE 3.8 – A 3-D array for dimensions A, B, and C, organized into 64 chunks.

In computing the BC cuboid, we have scanned each of the 64 chunks, but there is a

way to avoid having to rescan all of these chunks for the computation of other cuboids,

such as AC and AB. The Multiway simultaneous aggregation idea proceeds as follows:

when chunk 1, i.e., x1y1z1, is being scanned for the computation of the 2-D chunk y1z1

of BC, as described above, all of the other 2-D chunks related to x1y1z1 chunk can be

simultaneously computed. That is, when x1y1z1 chunk is being scanned, each of the three

chunks, y1z1, x1z1, and x1y1, on the three aggregation planes BC, AC, and AB, can also

be computed. In other words, Multiway computation simultaneously aggregates to each

of the 2-D planes while a 3-D chunk is in memory.

The Multiway approach is effective when the product of the cardinalities of the di-
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mensions are moderate. If the dimensionality is high and the data is too sparse, the

computation method becomes infeasible because the arrays and the intermediate results

become too large to fit in memory. Moreover, Multiway cannot compute iceberg cubes

efficiently. The Apriori property states that if a given cell does not satisfy a minimum

support, then neither will any of its descendants. Unfortunately, Multiway computa-

tion starts from the base cuboid and progress upward towards more generalized, ancestor

cuboids. It cannot take the advantage of Apriori pruning, which requires a parent cell to

be computed before its child cells. For example, if a cell c in cuboid AB does not satisfy

a minimum support, then we cannot prune the computation of c´s ancestors in A and B

cuboids, since the count of these cells may be greater than that of c. Finally, Multiway

approach does not consider important optimizations to reduce the cube size.

3.5 Condensed Cube Approach

The Condensed Cube, proposed in (WANG et al., 2002), is another cube approach that

adopts the single tuples properties to reduce the data cube. Tuples in a data cube are

grouped and aggregated from tuples in the base relation. For the cube Q, illustrated in

Figure 3.9-b, and the base relation R, illustrated in Figure 3.9-a, the cube tuples Q3, Q26,

and Q28 are aggregations from the partitions {R1}, {R1, R2}, and {R1, R2, R3, R4},

where Qi and Ri are tuples in Q and R with TID = i, respectively. In general, there are a

large number of base relation tuples in each of such partitions, especially in cuboids with

small number of attributes. However, there exist such partitions that contain only one

tuple. In the Condensed Cube approach such special base relation tuple is named base

single tuple (BST).
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Based on the definition, tuple R1 (0, 1, 1, U$50) in Figure 3.9-a is a base single tuple

on {A}, since it is the only tuple in the partition of A-value 0, when R is partitioned on

A. On the other hand, R1 is not a base single tuple on {B}, because both R1 and R2 are

in the same partition of B-value 1, when R is partitioned on B. A tuple can be a single

tuple on more than one single dimension set. For example, R3 is a BST on {A} and is

also a BST on {B}. R1 and R2 are BST on {A}, but are not on {B}, since two tuples are

in the same partition when R is partitioned on B.

FIGURE 3.9 – Complete cube with redundancies.

If a tuple r is a base single tuple on a single dimension, then r is also a single tuple on
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any superset formed from the respective single dimension. For example, the tuple R1 (0,

1, 1, U$50) is a base single tuple on {A}, what means that it is also a base single tuple

on {AB}, {AC}, {ABC}. To represent the fact that a tuple can be a base single tuple on

different dimensions, the Condensed Cube approach associates each base single tuple a set

of single dimensions, named SDSET. If r is a base single tuple on SDSET, it is the only

tuple on its partition when the relation R is partitioned on any set of attributes, single

dimension of i∈ SDSET . Therefore, the aggregation function is applied to tuple r only,

hence all cube tuples have the same aggregation value.

Tuples that can be generated from the base single tuples are not included in the

Condensed Cube. They are obtained by an expansion operator. The expand operator

requires copying the original tuple and replacing certain attribute values with the wildcard

all (*). No aggregation or other computation is required.

In Figure 3.10-b, we present the full Condensed Cube, computed from R. We also

present the complete cube in Figure 3.10-a to enable comparisons. We use the curly

brackets and arrows to denote the set of cube tuples in Figure 3.10-a that are condensed

into one tuple in the BST-Condensed Cube in Figure 3.10-b. For example, tuples Q3 (0,

*, *, U$50), Q4 (0, 1, *, U$50) and Q5 (0, *, 1, U$50) are condensed into one tuple QC1

(0, 1, 1, U$50).

The BST-Condensed Cube is computed from the base cuboid with no redundancy

elimination, so the condensed approach requires the complete computation of all base

cells before pruning both redundant base cells and aggregate cells from the lattice. The

approach does not need to compute the full cube before reducing it, but it continues being

costly in terms of runtime and memory consumption.

In Figure 3.10-c, the minimal BST-Condensed Cube is illustrated. The BST-Condensed
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Cube must make use of all base single tuples and their single dimensions to condense the

cube until no further condensing is possible. The BST-Condensed Cube, shown in Figure

3.10-b, is not a minimal one, since some of single properties are not explored. For ex-

ample, base relation R3 and R5 are base single tuples not only on {A}, as Figure 3.10-b

illustrates, but also on {B} and {C}, respectively. Applying the BST-Condensed Cube re-

duce properties completely, we obtain a minimal BST-Condensed Cube, shown in Figure

3.10-c.

FIGURE 3.10 – BST-Condensed Cube and Minimal BST-Condensed Cube.

In (WANG et al., 2002), the authors use bitmap indexes to represent both the base single

tuples and the SDSETs. Three algorithms are described in (WANG et al., 2002): MinCube

that guarantees the complete identification of all base single tuples, but it is very costly
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computationally; BU-BST and RBU-BST that are faster, but discover only part of base

single tuples, producing extra cells unnecessarily.

The Condensed Cube identifies only single tuples redundancies, similar to Star and one

of a coalesced tuple of Dwarf. Moreover, when compared to Condensed Cube approach,

Dwarf provides a much more efficient method not only for the automatic discover of the

coalesced tuples, but also for indexing the produced cube (SISMANIS et al., 2002). Since

Dwarf reduces the cube size more than Condensed Cube and is faster than it, we do not

consider the Condensed Cube approach in our comparisons. We just consider Star and

Dwarf approaches in our comparisons.

3.6 Lossy Approaches

Star, Dwarf and Condensed Cube approaches reduce the cube size without loss of

generality. In (LAKSHMANAN; PEI; HAN, 2002) (XIN et al., 2006), different approaches,

based on semantic summarization of cubes, are proposed. Those approaches store different

data. Star-tree, Dwarf and Condensed Cube store the complete data cube (albeit in a

highly reduced form) while Quotient-cube and Closed-cube store only classes of cells or

closed cells. A class of cells or a closed cell represent a set of cube cells with identical

measure values, so instead of storing all the cube cells they store only classes of cells or

closed cells in a lossy cube representation.

The problem is orthogonal to our work in this thesis. In fact, classes or closed cells can

be identified in any previously described cube representations and also in our proposed

representations, as it is demonstrated using Star and MM approaches in (XIN et al., 2006).
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3.7 Summary

In this chapter, we present the related work. We present full cube approaches that do

not reduce the cube size and cube approaches that reduce the cube size. There are graph

based and non graph based cube representations that reduce the cube size. We consider

just graph based cube representations in our comparisons.

The Star approach proves to be one of the most promising full cube computation

approaches in the literature. On the other hand, Dwarf proves to prune more cells than

Star or even Condensed Cube, but it requires a sorted base relation. All the described

Star, Dwarf and Condensed Cube approaches optimizations are used to reduce the cube

size, but they also provide benefits in cube computation, since in general a cube with

fewer cells demands less number of traversals and aggregations.

In Table 3.1, we summarize the main features of the related approaches. We empha-

size the cube size reduction aspect, the sorted base relation limitation, the computation

method, the graph based cube representation style, the prefix/suffix redundancies elimi-

nation and possible parallel extensions. Star and Dwarf approaches have the best features,

but they also have some weakness, so there are many opportunities to investigate new

approaches to outperform Star and Dwarf approaches.

For example, the suffix redundancy problem cannot be solved by Star and Dwarf

approaches. In this thesis, we present two extensions of Star approach. One of our

approaches efficiently eliminates all possible redundancies of a full data cube. Our ap-

proaches have also extended parallel versions. Such approaches are presented in Chapters

4, 5 and 6.
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TABLE 3.1 – Related Work Main Features.



4 MDAG Approach

In this chapter, we present the Multidimensional Acyclic Graph approach (MDAG

approach) to reduce both cube size and cube computation runtime. The MDAG approach

computes full cubes efficiently by using two novel ideas: first, it eliminates the wildcard

all (*) from the lattice and second it adopts the notion of internal nodes in the main data

structure to represent a data cube. Both ideas reduce the MDAG data structure height,

number of branches and nodes.

The MDAG approach represents a data cube using a DAG. We use DAG to represent

individual cuboids. Each level in the DAG represents any dimension, and each node

represents an attribute value. Tuples in cuboid are inserted into the MDAG in the same

way they are inserted into the star-tree, i.e., the tuples in the cuboid are inserted one by

one into the DAG.

A path from the root to a node, associated or not to an internal node, represents a

cube cell. Each MDAG node has 4 fields: (i) set of measure values; (ii) pointer(s) to

possible internal node(s); (iii) pointer(s) to possible descendant(s); and (iv) pointer to

possible sibling. Each internal node has two fields: (i) an associated ID; and (ii) set of

measure values.

MDAG approach uses the associated ID to indicate if an internal node has been used in
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the lattice more than once. The set of measure values permits simultaneous computation

of measures. Each measure value is associated to one or more column(s) of the base

relation and to a statistic function (MIN, MAX, AVG, etc.).

In Figure 4.1, we present a MDAG base cuboid fragment. The node c1-10 indicates

that the cube cell (*, b1, c1) has ten occurrences in the lattice. The node c1 with an

internal node a2-8 indicates that a cube cell (a2, b1, c1) has eight occurrences in the

lattice. In summary, we can search for a cube cell in MDAG in the same way we search

in the star-tree. The unique difference is the utilization of internal nodes in conjunction

with the traditional nodes when some cube cells are searched.

FIGURE 4.1 – MDAG base cuboid fragment.

The remaining of this chapter is organized as follows: Section 4.1 describes the wildcard

elimination and its impact in the cube representation. In Section 4.2, we describe the

internal node idea, including the new DAG formed by such nodes. In Sections 4.3 and

4.4, we present the base cuboid and aggregation algorithms, respectively. In Section

4.5, we explain the MDAG memory management. In Section 4.6, we present the detailed

performance study, including the computation of synthetic and real datasets with different

dimensions, tuples, cardinality, and skew. Finally, in Section 4.7 we summarize the main
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benefits and limitations of the MDAG approach.

4.1 Wildcard Elimination

Wildcards are used to represent the entire aggregation all (*) or infrequent attribute

values. The computation of wildcards is unnecessary if we concatenate a new property,

named dimensional ID, to each MDAG attribute value. This property indicates which

dimension the attribute value represents. For example, the dimensional ID 1 indicates

the first dimension being computed, the dimensional ID 2 indicates the second dimension,

and so on. The new attribute value permits each level in the MDAG data structure to

represent any dimension and not just a unique dimension, as the star-tree representation

does. Another interesting observation is that the new attribute value does not increase

the length of the original attribute value, proposed in (XIN et al., 2003). We can use 32 bit

or 64 bit attribute value.

The dimensional ID is used because multiple dimensions may share common attribute

values and when we eliminate the wildcard all (*) the common attribute values cannot be

distinguished from their dimensions. Suppose a data cube with 3 dimensions ABC and

one measure value COUNT. The data cube is used to measure the frequency of some first,

middle and last names in Brazil. The dimension A stores the first names, the dimension

B the middle names and the dimension C the last names. In this scenario, dimensions

A, B and C may share common names and the utilization of the dimensional ID avoids

the computation of wrong names frequencies. For example, Maria is commonly used as

first and middle names in Brazil, so without the dimensional ID the COUNT of Maria

name could not be distinguished between first or middle Maria names, so the data cube
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integrity could be compromised.

In Figure 4.2, we illustrate a 3D data cube ABC using the new attribute value (we

use the sign ’+’ to indicate the concatenation between the attribute value and the dimen-

sional ID) and the original attribute value of the star-tree representation. We also map the

original star-tree representation to the MDAG representation to both facilitate compar-

isons between the data structures and demonstrate that the MDAG cube representation

is lossless.

In Figure 4.2, we do not concentrate in presenting the attribute values of A, B, and

C, so consider dimension A={a1, a2, ...}, B={b1, b2, ...}, C={c1, c2, ...}, and cardinality

of A=CA, B=CB, and C=CC . In Figure 4.2-a, we have the classical star-tree full cube

representation with wildcards. To find a cube cell we just need to follow the data structure

path from root to leaf node. For example, cube cells of type (*,*,c1), (*,*,c2), (*,*,cn) are

found in the fourth branch of the star-tree, precisely at the leaf nodes of such a branch

(see Figure 4.2-a). In MDAG cube representation, the same cells are also found in the

fourth branch, below the root node (see Figure 4.2-b).

FIGURE 4.2 – Dimensional ID utilization in MDAG cube representation.

Note that, the cube representations, presented in Figure 4.2, have different heights.

The data structure height is calculated using the following expression: sum−all−branch−sizes
number−branches

.

The Star representation has four branches with size four, i.e., each branch has four nodes,
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including the root node, so its height is four. The star-tree height, without single suffixed

paths compression, is constant and equal to D+1, where D is the number of dimensions

in a data cube. The MDAG height for the same data cube is three. The exact MDAG

cube representation height depends on both attribute values association and number of

suffixed paths that can be compressed. We use the worst scenario where a complete data

cube is to be computed, i.e., where all attribute values of dimension A are associated to

all attributes values of dimension B and so on.

In Table 4.1, we present the wildcard elimination impact in the cube representation

height, so as the number of dimension increases, the MDAG height reduction also in-

creases, when compared to Star cube representation height. Similar to Star approach, the

MDAG approach traverses the proposed data structure multiple times to generate the ag-

gregations, so decreasing the a data structure height becomes an interesting optimization

to reduce the full cube computation runtime. In Table 4.1, the height reduction will vary

from 25-50%, even when we consider data cubes with high number of dimensions (i.e.,

>8).

TABLE 4.1 – Wildcard impact in a cube representation height.

The second positive impact in eliminating the wildcards is the reduction of the num-

ber of unnecessary nodes used to represent them. With fewer nodes, the MDAG cube
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representation consumes less memory. Unfortunately, the number of wildcard nodes that

are eliminated from the lattice is not high. In Figure 4.3, we present a 3D data cube ABC

with cardinalities CA=CB=CC=2 and skew=0. The skew=0 indicates that the data is

uniform, i.e., the dimensions attribute values frequencies are similar. In Figure 4.3-a, we

have the star-tree full cube representation with wildcards and in Figure 4.3-b we have the

MDAG tree without wildcards.

FIGURE 4.3 – Number of nodes in Star and MDAG cube representations.

At level 0 of the star-tree we have just one node, i.e., the root node. At level 1 we have

CA+1 nodes, i.e., the cardinality of A plus the wildcard. At level 2 we have (CA+1)(CB+1)

nodes and at level 3, the last level of the 3D data cube, we have (CA+1)(CB+1)(CC) nodes.

Note that, at the last level we do not use the wildcard, since the penultimate star-tree level

wildcards are sufficient to guarantee the Star cube representation integrity. Summing all

four levels of the star-tree, illustrated in Figure 4.3-a, we have 1+(
∑D−1

i=1

∏i
j=1(Cj +1))+
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[(
∏D−1

i=1 (Ci + 1))(CD)] nodes. Consider D the number of dimensions and C the dimension

cardinality.

At level 0 of the MDAG tree we have just the root node, similar to the star-tree. At

level 1 we have CA+CB+CC nodes. At level 2 we have (CACB)+(CACC)+(CBCC) nodes

and at level 3, the last level of the 3D data cube, we have (CACBCC) nodes. Summing all

four levels of the MDAG tree, illustrated in Figure 4.3-b, we have [1+CA+CB+CC+(CACB)+(CACC)+

(CBCC)+(CACBCC)] nodes, i.e., (CA+1)(CB+1)(CC+1) nodes. In general, the MDAG

full cube representation without wildcards produces
∏D

i=1(Ci + 1) nodes.

In Figure 4.4, we present the cube size reduction caused by the wildcard elimination.

The cube size reduction is calculated using the expression: (1-MDAG/Star). We use

the cardinalities 5, 10, 50 and 100 and skew=0 to verify the wildcard impact. We can

observe that as the cardinality increases the cube size reduction, caused by the wildcard

elimination, decreases, independently from the number of dimensions in a data cube. The

cube size reduction caused by wildcard elimination seems to be insignificantly, but we

are talking about millions or billions of cells and a set of secondary data structures with

costly operations, such as comparisons, insertions, node rotations, and deletions, so any

percentage of reduction is significant.

In this section, we argue that the presence of wildcards is not justified, since its

elimination requires just the concatenation of the dimensional ID which does not consume

memory space and computation effort. Its utilization, on the other hand, increases the

number of new nodes and the data structure height.
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FIGURE 4.4 – Wildcard elimination reduction ratio of MDAG cube representation.

4.2 Internal Node

In MDAG approach, we introduce the notion of internal nodes. We can represent a

data cube using only ancestral, sibling and descendant nodes, but we can extend this

representation if we eliminate one dimension of the main lattice and associate it to all the

remaining dimensions directly, forming a DAG. The eliminated dimension produces the

internal nodes. In Figure 4.5, we illustrate a 3D data cube ABC using the new MDAG

representation without wildcards and with internal nodes (Figure 4.5-b) and the MDAG

representation without wildcards (Figure 4.5-a), presented in the last section. We also

map the previous MDAG representation to the new MDAG representation, with internal

nodes, to both facilitate comparisons between the data structures and demonstrate that

the new MDAG cube representation is also lossless.

As mentioned before, a path from the root to a node, associated or not to an internal

node, represents a cube cell. Any cube cell can be found in such a representation using the

following rule: (i) cube cells that aggregate the eliminated dimension, i.e., cube cells of the

form (*,*,*), (*,B,*), (*,*,C), and (*,B,C), are found in the main data structure, composed

by only nodes (similar to the star-tree); and (ii) cube cells that do not aggregate the
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FIGURE 4.5 – MDAG cube representation with internal nodes.

eliminated dimension, i.e., cube cells of the form (A,*,*), (A,B,*), (A,*,C), and (A,B,C)

are found in the data structure composed by both nodes and internal nodes. To find

a cube cell, using the MDAG representation illustrated in Figure 4.5-b, we just need to

temporarily omit the dimension A from the search and follow the data structure path from

root to leaf and, finally, use or not the dimension A attribute value to find the respective

internal node.

The MDAG nodes are computed according to their cardinalities, in a descending order,

similar to other approaches, since the descending order permits earlier cell pruning (XIN et

al., 2003) and efficient internal node reutilization. Similar to the previous section, we con-

sider A={a1, a2, ...}, B={b1, b2, ...}, C={c1, c2, ...}, and CA, CB and CC the cardinalities

of dimensions A, B and C, respectively. In Figure 4.5, we consider the following condition:

CA ≥ CB ≥ CC . In MDAG approach, we select the highest cardinality dimension, i.e.,

dimension A, to form the internal nodes. The highest cardinality dimension is selected,

since it produces a cube representation with more internal nodes than any other dimension

and this is a fundamental strategy to efficient eliminate internal node redundancies. The

higher is the number of internal nodes, the higher is the probability of identical measure
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values among them.

To complete eliminate the internal node redundancy; we use an internal node pool,

enabling internal node sharing among the non-internal nodes of the lattice, as Figure

4.5-c illustrates. In MDAG approach, we guarantee that an internal node with a specific

measure value (Ex. COUNT=1) occurs once in the cube representation, so the cube size

can be significantly reduced, as our experiments demonstrate. The proposed MDAG cube

size reduction, based on internal nodes, also produces positive impacts in both number of

DAG branches and MDAG cube representation height.

The internal node idea reduces the number of branches to be traversed in a base cuboid

in 50% or more. Suppose that CA ≥ 2. According to the dimension order, CB ≥ CC and

CC ≤ 2. The traditional star base cuboid demands CACBCC branches to represent a

complete base cuboid, i.e., a cuboid where all attribute values of A are associated with

all attribute values of B and so on. The base cuboid with internal nodes demands CBCC

branches to represent the same uniform base relation, i.e., 50% less branches if CA=2,

66% less branches if CA=3, and so on. Similar to Star approach, the MDAG approach

traverses the base cuboid multiple times to generate the aggregations, so decreasing the

number of branches to be traversed becomes an interesting optimization to reduce the

full cube computation response time. The new MDAG node has a set of internal nodes,

so they are more complex to be copied and/or updated during each traversal, but our

experiments demonstrate that the complexity introduced by the internal nodes has less

impact than the number of paths eliminated by using them.

The last positive impact in adopting internal nodes in our approaches is the reduction

of our cube representations height, since the data structure, composed by internal nodes,

eliminates one dimension of the main structure, so the new MDAG cube representation
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height must be decreased by one, as Table 4.2 illustrates.

TABLE 4.2 – Internal node impact in the Star cube representation height.

In this section, we argued that the adoption of internal node abstraction in our cube

representations is an efficient and simple solution to reduce both the cube size and cube

computation response time. Our MDAG data structure represents a fully pre-computed

cube without compression, and, hence, it requires neither decompression nor further ag-

gregation when satisfying queries. In the next sections, we describe the detailed two phase

MDAG algorithm and the experiments of our first proposed approach.

4.3 MDAG Base Cuboid Algorithm

In this section, we describe the MDAG base cuboid algorithm. This algorithm rep-

resents the first phase of the MDAG approach. It uses a base relation as its input and

outputs a base cuboid without common internal nodes at leaf nodes. Basically, the algo-

rithm scans a base relation once, without the need of tuples rearrangement, to generate

a base cuboid. The detailed description of the algorithm is presented in Figure 4.6.

We use Figure 4.7 to illustrate what happens during a base cuboid computation. We

simulate the computation of base relation R, also presented in Figure 4.7. Initially, each
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FIGURE 4.6 – MDAG base cuboid algorithm.

tuple is transformed in a MDAG tuple in line 1 of Figure 4.6. For example, the tuple a1b1c1-

1 is transformed in tuple a1+1b1+2c1+3-1 before its insertion in the lattice. We omit the

illustration of such a transformation in this research work to facilitate the explanation,

but we consider each proposed cube representation (MDAG and MCG approaches) with

the dimensional ID included.

The first tuple a1b1c1-1 demands the creation of two new nodes, i.e., b1 and c1 nodes

must be created in line 2. Moreover, node c1 has no internal nodes and the internal node

pool is empty, so lines 12 and 13 are executed, which creates the internal node a1, as
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FIGURE 4.7 – MDAG base cuboid algorithm execution.

Figure 4.7-a illustrates. Note that, the procedure verifyInternalNodePool is called in

line 13, but the internal node pool is empty, as mentioned before, so lines 5-8 are executed.

The second tuple a3b3c2-1 is inserted in the lattice, demanding two new nodes for its

insertion. Node c2 has no internal nodes, so lines 12 and 13 are executed. The main differ-

ence from previous tuple insertion occur because the internal node pool has one internal

node with the same measure value, so lines 2 and 3 of procedure verifyInternalNode-

Pool are executed. The second tuple insertion is illustrated in Figure 4.7-b.

The third tuple a2b3c2-1 insertion shares the same b3c2 nodes of the first tuple, so no

new nodes are created. Node c2 has one internal node, but it is not a2, so a new internal

node must be created or reused. Lines 12 and 13 of procedure MDAGBaseCuboid

and lines 2 and 3 of procedure verifyInternalNodePool are executed, since the internal

node pool has an internal node with the same measure value (COUNT=1). The third

tuple insertion is illustrated in Figure 4.7-c.
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The remaining eight tuples are presented in Figures 4.7-d, ..., k. The insertions produce

one of the previous described scenarios, so due to the similarity and simplicity, we omit

the details in this thesis.

Note that, during the base cuboid construction, the MDAG approach avoids the cre-

ation of internal nodes for non leaf nodes, i.e., nodes root, b1, b2, and b3 have no internal

nodes. This optimization avoids costly DAG operations, such as internal nodes updates,

insertions and deletions, during each tuple insertion. Both measure value and internal

node(s) creations for the non leaf nodes occur in the second phase of the algorithm, ex-

plained in the next section.

The MDAG base cuboid has fewer nodes, smaller number of branches and smaller

height than the Star base cuboid. In Figure 4.8, we present the base cuboids generated

from the base relation R. In Figure 4.8-a, we illustrate the Star base cuboid that consumes

22 nodes, 11 branches and height=4 to represent the base relation R. In Figure 4.8-b, we

illustrate the MDAG base cuboid that consumes 10 nodes (54,6% reduction), 5 branches

(54,6% reduction) and height=3 (25% reduction) to represent the same base relation R. In

Section 4.6, we present a detailed performance study of the MDAG base cuboid algorithm

using different base relations.

4.4 MDAG Aggregation Algorithm

The MDAG aggregation algorithm scans the MDAG base cuboid multiple times to

both generate the aggregations and compute measure values and internal nodes of the

non leaf nodes. It outputs a full data cube without common internal nodes. Instead of

generating aggregations derived from single paths, it compresses such paths, as (XIN et al.,
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FIGURE 4.8 – MDAG base cuboid size reduction.

2007) proposes. The result is a reduced full data cube that represents the same Star full

cube with fewer nodes, smaller height and number of branches. The detailed description

of the algorithm is presented in Figure 4.9.

We use Figure 4.10 to illustrate the MDAG aggregation algorithm execution. We

use the base cuboid, presented in Figure 4.7-k, as its input. The MDAG aggregation

algorithm adopts multiple depth-first scans, starting from the root node. In lines 1, 2 and

3 of Figure 4.9 the algorithm checks if root node has not been visited before, if it has

descendants and if its ancestral is null . One of the conditions is not satisfied, since the

root ancestral is null. Next, in line 5 the algorithm tries to compress a single path derived

from root node, but there is no such a path. The condition described in line 6 is satisfied,

so for each descendant of root node (line 7) the algorithm calls recursively the procedure

MDAGAggr. Figure 4.10-a is used to illustrate the first step of the MDAG aggregation
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FIGURE 4.9 – MDAG aggregation algorithm.

algorithm execution.

In the second step, the algorithm computes node b1. Node b1 satisfies the conditions

described in lines 1, 2 and 3, so the algorithm copies all b1 descendants (nodes c1 and c2),

including their internal nodes, to b1 ancestor node, i.e., root node. This step is illustrated

in Figure 4.10-b. Note that, an aggregated node creation or update also demands internal

nodes creations or reuses, so a similar verifyInternalNodePool base cuboid procedure,

presented in Section 4.3, is used, but due to the similarity, we omit its description in the

MDAG aggregation algorithm.

Next, the algorithm tries to compress a single path derived from node b1, but there is

no such a path. Another recursive call is made for each b1 descendant, but b1 has only leaf

nodes descendants, so each recursive call does not increase the number of nodes in the

lattice. After computing nodes c1 and c2, descendants of node b1, node b1 measure value

and internal nodes are computed (lines 8 and 9, respectively). Node b1 with its measure
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value and internal nodes is illustrated in Figure 4.10-c. Line 10 is not executed for node

b1, since it does not have aggregated descendant nodes.

The algorithm backtracks and computes node b2, also descendant of root node. First,

node b2 descendants are copied to root descendants, since node b2 satisfies all conditions

imposed in lines 1, 2 and 3. The result is illustrated in Figure 4.10-d. Note that, a new

internal node with measure value COUNT=2 is created and associated to the attribute

values a1 and a2. Next, the algorithm tries to compress a single path derived from node

b2, but there is no such a path. Next, the algorithm makes a recursive call for each b2

descendants, but they are leaf nodes, so no changes in the lattice occur. After computing

c1 and c2, descendants of node b2, node b2 measure value and internal nodes are computed

(lines 8 and 9, respectively). Node b2 with its measure value and internal nodes is illus-

trated in Figure 4.10-e. Similar to node b1, node b2 has no aggregated descendant nodes,

so line 10 is not executed.

The algorithm backtracks and computes the last root descendant, i.e., node b3. Node

b3 satisfies the conditions imposed in lines 1, 2 and 3, so its descendant c2 is copied to

root descendants, but root node has a c2 descendant, so its measure value is updated, as

illustrated in Figure 4.10-f. Next, the algorithm compresses the single path derived from

node b3, i.e., it eliminates node c2 from the lattice and also associates c2 measure value

and internal nodes to node b3 to guarantee the cube representation integrity. After the

single path compression, node b3 becomes a leaf node, so lines 7-10 are not executed. The

single path compression result is presented in Figure 4.10-g.

Finally, the algorithm backtracks, but there is no more root descendants to be com-

puted, so lines 8-10 must be executed for root node. First, root node measure value and

internal nodes are computed (lines 8 and 9, respectively), as illustrated in Figure 4.10-h.
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Next, the algorithm makes a recursive call for each root aggregated descendant node, i.e.,

it calls MDAGAggr using nodes c1 and c2 as the current node, but they are leaf nodes,

so they produce no impact in the lattice.

FIGURE 4.10 – MDAG aggregation algorithm execution.

The MDAG full cube representation, computed from base relation R, is presented in

Figure 4.10-h. It has 14 nodes, 7 branches and height=2,58. In comparison with a Star

full cube representation, we reduce the number of nodes in 60%, the number of branches in

68,2%, and the cube representation height in 31,8%. In Figure 4.11, we illustrate MDAG

and Star main differences in representing a full cube. In Figure 4.11-a, we present the

Star full cube representation, computed from R, and in Figure 4.11-b, we present the

MDAG full cube representation for the same base relation R. In Section 4.6, we test the
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MDAG two phase algorithm using different relations, with different cardinalities, number

of tuples, dimensions and skew, to demonstrate its efficiency in terms of response time

and memory consumption.

FIGURE 4.11 – MDAG full cube size reduction.

4.5 Memory Management

Due to the numerous construction and destruction of sub-graphs in MDAG approach,

memory management becomes an important issue. Instead of creating new nodes, MDAG

reuses the deleted nodes as much as possible. The two algorithms described in Sections

4.3 and 4.4 share a node pool. During the construction of a sub-graph, whenever a node

or an internal node is needed, the algorithms just request a node from the node pool.

When deallocating a node, the algorithms just add the node back to the node pool.

The node pool starts empty and during the cube computation the node pool size varies.
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When the node pool is empty and a new node is needed, more nodes are acquired from

the system memory.

The memory management strategy proves to be an effective optimization, since with

the node pool, memory allocation commands are replaced by pointer operations, which

are much faster. Star and MDAG approaches remove some nodes during the aggregation

phase, so they use the same memory management strategy.

4.6 Performance Analysis

A comprehensive performance study is conducted to check the efficiency and the scal-

ability of the proposed algorithm. We test MDAG algorithm against the best implemen-

tation we could achieve for the Star algorithm (XIN et al., 2007) and Dwarf algorithm

(SISMANIS et al., 2002). All the algorithms are coded in Java 64 bits (JRE 6.0 update 7).

We run the algorithms in an Intel Xeon E5405 with 2.0GHz and 8GB of RAM. The system

runs Windows Server 2003 R2 64 bits. All times recorded include both computation and

I/O time, and all relations can fit in the main memory. Furthermore, all data cubes can

fit in the main memory.

For the remaining of this section, D is the number of dimensions, C the cardinality of

each dimension, T the number of tuples in a base relation, and S the skew of the data.

When S is equal to 0, the data is uniform; as S increases, the data is more skewed. The

synthetic base relations are created using the data generator provided by the IlliMine

project. The IlliMine project is an open-source project to provide various approaches for

data mining and machine learning. The Star approach (XIN et al., 2007) is part of IlliMine

project.
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We have implemented an in-memory Dwarf version. The Dwarf sorting method is the

mergesort algorithm. The mergesort algorithm offers guaranteed nlog(n) performance,

where n is the input size. This sort is guaranteed to be stable, i.e., equal elements are

not reordered as a result of the sort. In our runtime experiments, we consider Dwarf and

Dwarf II algorithms. The Dwarf II algorithm considers a sorted base relation, i.e., its

runtime does not consider the sorting time.

To verify the reduction impact in memory consumption, we define a new metric named

memory size ratio r = GA/st, where GA is the memory size of the cube representation

of a given approach and st is the memory size of the star-tree representation. We use the

star-tree, since it considers suffix redundancy. We store all cube representations to disk

in order to obtain the real memory consumption, avoiding incorrect estimations of nodes

and pointers.

In MDAG experiments we did not use more dimensions and greater cardinality because

in high dimension and high cardinality base relations the output of full cube computa-

tion gets extremely large, resulting in swap, i.e., utilization of secondary storage. The

utilization of secondary storage invalidade the experiments, since our approaches work

only with main memory. This phenomenon is also observed in (BEYER; RAMAKRISHNAN,

1999) (SISMANIS et al., 2002) (ZHAO; DESHPANDE; NAUGHTON, 1997) (XIN et al., 2007) .

Moreover, the existing curves have clearly demonstrate the trends of the MDAG algorithm

runtime and memory consumption with the increase of dimensions and cardinality.
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4.6.1 Full Cube Results

The first set of experiments compares MDAG full cube computation against Dwarf

and Star full cube computation runtime. The runtime and memory consumption are

compared with respect to the cardinality (Figure 4.12), number of tuples (Figure 4.13),

dimension (Figure 4.14) and skew (Figure 4.15).

FIGURE 4.12 – MDAG Runtime and Memory: D=5, T=1M, S=0.

The Dwarf, Dwarf II and Star approaches are slower than MDAG in all scenarios. The

Dwarf approach performs worst in all scenarios, since it has a costly sorting phase before

starting the cube computation. Star and MDAG require no sorted base relation.

The internal node sharing enables MDAG approach to reduce 40-60% of memory
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FIGURE 4.13 – MDAG Runtime and Memory: D=5, C=30, S=0.

consumption when compared to the original star-tree. In the same scenarios, the new Star

approach, proposed in (XIN et al., 2007), reduces only 10-30% and Dwarf 30-50% of memory

consumption when compared to the original star-tree. The low memory consumption of

MDAG turns it an interesting solution to compute medium/high dimensional data cubes,

since it has similar Dwarf memory consumption, but it requires no sorted base relation.

In the second set of experiments, we present the results of computing huge datasets.

In Figure 4.16, we present the runtime and memory consumption of Dwarf and MDAG

approaches when we compute base relations with 1000-10000 distinct values on each di-
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FIGURE 4.14 – MDAG Runtime and Memory: T=1M, C=10, S=0.

mension. We omit the Star approaches, since they produce huge outputs that require

swap. It is not fair to compare Star against Dwarf and MDAG in such scenarios. The

results demonstrate that Dwarf and MDAG are not sensitive to the increase of the cardi-

nality. Dwarf consumes less memory than MDAG in such scenarios, but we must always

consider the costly base relation sorting of Dwarf approach.

The third set of experiments illustrate the second MDAG weakness. Figure 4.17

illustrates the computation of a base relation with 6, 7, 8 and 9 dimensions, each dimension

with cardinality 1000. These base relations represent huge datasets. As the number of

dimensions increases, both MDAG runtime and memory consumption deteriorate. The
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FIGURE 4.15 – MDAG Runtime and Memory: T=1M, D=6, C=100.

same phenomenon is observed with Dwarf and Star approaches.

Distributive and algebraic measures, such as COUNT, MIN, MAX, SUM, AVG, can be

efficiently computed in a data cube, but the holistic measures, such as MEDIAN, MODE,

RANK, degrade the cube computation runtime (HAN; KAMER, 2006).

The fourth set of experiments show how Dwarf, Star and MDAG approaches compute

complex and multiple measures. We use the AVG to illustrate a complex function and the

computation of multiple measures, since AVG = SUM/COUNT. The results are presented

in Figure 4.18.

In general, the runtime and memory consumption are not substantially affected by
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FIGURE 4.16 – MDAG Runtime and Memory: C=1000-10000, D=5, T=1M, S=0.

the computation of complex measures. As the number of multiple measures and the

measure complexity increase, the runtime also increases, but the memory consumption is

independent of such criteria. The MDAG cube size reduction strategy is affected only by

the number of different measure values in a data cube.

4.6.2 Real World Results

The dataset used in the experiment is derived from the HYDRO1k Elevation Deriva-

tive Database. It is a geographic database developed to provide hydrologic information on
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FIGURE 4.17 – MDAG Runtime and Memory: T=1M, C=1000, S=0.

a continental scale. We use the dataset of South America. In the hydrologic information

base relation, there are five dimensions: slope, compound topographic index, flow direc-

tions, latitude and longitude. The cardinalities for the dimensions are 300, 180, 160, 78

and 53, respectively. The base relation includes one measure: Flow Accumulations (FA).

The total number of rows in the base relation is 7,845,529. For a full description of the

original dataset see http://edcdaac.usgs.gov/gtopo30/hydro/.

In Figure 4.19, we see a similar behaviour to the syntactic datasets, i.e., the MDAG

algorithm runtime is faster than Dwarf, Dwarf II and Star, and MDAG cube representation
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FIGURE 4.18 – MDAG Runtime and Memory: Measure = AVG, T=1M, D=6, C=100.

consumes about 30% of memory when compared with a star-tree representation.

4.6.3 Work Memory during an Experiment

In this section, we test the memory consumption of algorithms Star, Dwarf and MDAG

during an experiment. We analyze the results to verify the usage of temporary work

memory for each algorithm. The results give us an idea of the supported workload, so we

can specify a base relation that can be computed using only the main memory.

We use the log files generated by the Java garbage collector to verify the memory
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FIGURE 4.19 – MDAG Runtime and Memory: Real Dataset.

consumption in the experiments. We test the algorithms with respect to the cardinality

(Figure 4.20), dimension (Figure 4.21) and skew (Figure 4.22). The results show that

the MDAG algorithm consumes less memory (temporary or not) to compute a full cube

when compared to Star algorithm. In general, MDAG consumes 60% of the memory used

by the Star approach to compute the same data cube. Dwarf and MDAG have similar

memory consumption.

The MDAG and Star memory consumption difference increases at the end of the

experiment, when the number of new aggregated nodes is high. The MDAG proposed
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FIGURE 4.20 – MDAG experiment where D=5, T=1M, S=0, C=100.

FIGURE 4.21 – MDAG experiment where D=8, T=1M, S=0, C=10.

optimizations reduce the number of such nodes, since most of them are internal nodes

that have an efficient redundancy elimination method.

4.7 Summary

The MDAG approach computes full cubes efficiently by using two novel ideas: first, it

eliminates the wildcard all (*) from the lattice and second it adopts the notion of internal

nodes to represent a data cube. Both ideas reduce the MDAG data structure height, the
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FIGURE 4.22 – MDAG experiment where D=6, T=1M, S=0.5, C=100.

number of branches and nodes in the data structure.

Based on all results of Section 4.6, we can conclude that MDAG approach can compute

a full cube faster than Star approach, consuming less memory to represent the same

cube and using less memory during the computation, independently if the base relation

is skewed, with high number of tuples, high cardinality or high number of dimensions.

When compared to Dwarf, MDAG approach is faster, but consumes more memory when

computing huge datasets.

With the MDAG approach, we demonstrate that is possible to reduce the response

time when we efficiently reduce the cube size. The MDAG approach proves that our

hypothesis can be successfully achieved. The MDAG approach has been published in

Brazilian Symposium on Database (full research paper) (LIMA; HIRATA, 2007).

Unfortunately, the MDAG approach does not eliminate the suffix redundancy problem.

The prefix redundancy elimination, suffixed wildcard elimination, single suffixed path

compression, and the internal node sharing, reduce the cube size, as our previous sections
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demonstrate, but we have common suffixed nodes that form non single paths in the

data structure. The Star, Dwarf, MDAG and all previous approaches do not eliminate

them. In Chapter 5, we present a novel approach, named MCG, to completely eliminate

prefix/suffix redundancies.

Another important limitation of the proposed MDAG approach is that it cannot be

efficiently executed in a multiprocessor or a cluster of single/multi processor machines.

Normally, when we use a parallel/distributed architecture we speed-up the system run-

time, so the actual MDAG cube representation and computation method must be re-

designed to be efficiently executed in such architectures. In Chapter 6, we present how to

efficient encapsulate the MDAG approach to be executed in a multiprocessor or a cluster

of single/multi processor machines.



5 MCG Approach

In MDAG (LIMA; HIRATA, 2007), Dwarf (SISMANIS et al., 2002) and Star (XIN et al.,

2007), there are different approaches to reduce the cube size. All of them eliminate the

prefix redundancy, but none can completely eliminate the suffix redundancy. All the

cube representations have common sub-graphs, formed from one or more nodes, in their

representations.

Motivated by the suffix redundancy problem, we present a novel full cube approach,

named Multidimensional Cyclic Graph (MCG) approach. In MCG approach, we have

three novel contributions: (i) MCG eliminates common sub-graphs from a cube represen-

tation, i.e., it eliminates prefix/suffix redundancies from the entire data cube representa-

tion; (ii) It reduces the base cuboid size during its construction; and (iii) It prunes more

aggregations generation than Dwarf, Star and MDAG approaches.

In MCG approach, each cuboid is seen as set of sub-graphs. The MCG approach

represents a data cube without loss of generality, using a graph with no common pre-

fixed/suffixed nodes, i.e., no common sub-graphs.

Figure 5.1 illustrates the cube size reduction we propose. The base relation R has

eleven tuples and three dimensions A, B and C, with cardinalities 3, 3 and 2, respectively.

We use a measure COUNT and only the base cuboid to facilitate the explanation. In
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Figure 5.1-a, we have a classic base cuboid representation, proposed in (XIN et al., 2003).

We just need to follow the data structure path from root to leaf to find a base relation

R tuple. All base cuboid representations in Figure 5.1 are prefixed data structures, so in

all examples we save around 10-20% of memory using the idea introduced in (HAN et al.,

2001).

Note that, in Figure 5.1-a there are sixteen unnecessary suffixed nodes (≈ 73% of

redundancy). First, all leaf nodes have the same measure value, so instead of eleven leaf

nodes we need only two leaf nodes (c1 and c2 with COUNT=1) to represent the same base

cuboid. Second, Figure 5.1-a has common sub-graphs, forming single paths. Consider a

single path a branch of a data structure where no forks exist. Using the single path

definition, we can conclude that branch b3c2 is a common single path that is replicated

twice, so the replications can be collapsed. These two observations result in a new base

cuboid representation, presented in Figure 5.1-b.

Besides common leaf nodes and single paths, there are common sub-graphs formed by

non single paths. In our representation, each graph node can be seen as a root node of

its sub-graph, so the root node b1, which has descendant nodes c1 and c2 and ancestor

nodes a1, a2 and a3, is replicated twice and can be collapsed. The common sub-graph

elimination produces a new base cuboid representation, presented in Figure 5.1-c.

Figure 5.1-c illustrates a base cuboid representation without common sub-graphs, but

the MCG cube size reduction strategy goes further. In Figure 5.1-c, there are common

sub-graphs if we consider the possibility of 1-N attribute values per graph node. The

representations in Figure 5.1-a, b and c consider one attribute value per node in the

graph.

Using the possibility of multiple attribute values per node, we can identify that nodes



CHAPTER 5. MCG APPROACH 107

c1 and c2 have the same measure values, so they can be collapsed into one node with two

different attribute values. Nodes b1 and b2 have common descendants (c1 and c2), so they

can be collapsed into one node with two different attribute values. In the same direction,

nodes a1 and a3 are root nodes of common sub-graphs, so they can be collapsed into one

node with two different attribute values. The new base cuboid representation is presented

in Figure 5.1-d. A base cuboid with only 6 nodes (consider a1|a3, c1|c2, and b1|b2 as three

nodes), as the illustrated in Figure 5.1-d, is always achieved when R is computed using

the MCG approach, regardless R tuple order.

FIGURE 5.1 – Different Representations of a Base Cuboid.

The cube size reduction, based on exact sub-graph matching, opens different oppor-

tunities to investigate new approaches to efficiently compute full cubes using different

matching functions, since a matching function may produce different reduction impacts
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on both cube size and cube computation. The MCG is the first approach that uses an

exact sub-graph matching function to reduce the cube size avoiding unnecessary aggrega-

tions generation, i.e., improving cube computation runtime.

MCG approach represents a data cube using graphs. We use graphs to represent

individual cuboids. Each level in the graph represents any dimension, and each node

represents an attribute value. Tuples in the base relation are inserted one by one into the

MCG base cuboid. A path from the root to a node represents a cube cell. Each node has

five fields: pointer(s) to possible descendant(s), pointer(s) to possible ancestor(s), set of

measure values, an associated ID, and a matching value.

MCG approach uses the associated ID to indicate if a node has been used in the

lattice more than once. A sibling node can be obtained indirectly, using an ancestor node

plus its descendants. The set of measure values permits simultaneous computation of

measures. The matching value identifies uniquely a node in the lattice, enabling nodes

fusion. The matching value is calculated with a graph-path exact sub-graph matching

function, explained in the next section.

Note that, a MCG node does not store its attribute value. Instead, we use a map with

key-value to encapsulate a node, where the key is the attribute value and the value is the

node. The map utilization enables each MCG node to be associated with 1-N attribute

values in the lattice.

Formally defined, given a graph G = (N, A) and a node n∈ N , where N is the set of

nodes, A is the set of arcs, each MCG node n is defined as a quintuple (Desc, Anc, M,

AID, mv), where Desc is n set of descendants, Anc is n set of ancestrals, M is n measure

value(s), AID is a number representing n associated ID and mv is a number representing

n matching value. Each n descendant d∈ Desc is defined as a pair (key, n’ ), where key
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is an attribute value of a dimension and n’ is a descendant node of n. Each n ancestral

a∈ Anc is defined as a pair (key, n”), where n” is an ancestral node of n. Nodes n’ and n”

have the same n definition.

MCG approach uses the dimensional ID property, proposed in MDAG approach to

eliminate the wildcard all (*) from its cube representation. Each attribute value is con-

catenated with a dimensional ID. The dimensional ID indicates which dimension the at-

tribute value represents. For example, the dimensional ID 1 indicates the first dimension

is being computed, the ID 2 indicates the second dimension, and so on. The dimensional

ID is used because multiple dimensions may share common attribute values and when we

eliminate the wildcard all (*) the common attribute values cannot be distinguished from

their dimensions, compromising the data cube integrity. Details of dimensional ID are

found in Section 4.1.

Some sub-graphs in the MCG cube representation form cycles. That is why each MCG

has a set of descendants and ancestors. Such cycles exist to enable root to leaf and also

leaf to root traversals. In graph theory, a cycle graph is a graph that consists of a single

cycle, or in other words, some number of nodes connected in a closed chain. The cycle

graph with n nodes is called Gn. The number of nodes in a Gn equals the number of arcs,

and every node has degree 2; that is, every node has exactly two arcs incident with it.

MCG approach computes a full cube in three phases: First, it scans the original base

relation, without the need of tuples rearrangement, to generate a base cuboid. Second,

it reduces the base cuboid, using the graph-path function. Third, it generates all the

remaining aggregated cells, in a top-down fashion, with a unique reduced-base-MCG scan.

All the steps in the third phase include the utilization of the graph-path function to

maintain the lattice with no common sub-graphs.
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The matching value is costly computationally, so we must avoid its calculus as much

as we can. During the aggregations generation (phase three), we must prune unnecessary

aggregated cells generation, as Dwarf, Star and MDAG do. Unnecessary cube cells demand

unnecessary matching value calculus. In MCG approach, we identify a new property in

the lattice of cuboids, named MCG pruning property, to anticipate the identification of

unnecessary aggregations. The MCG pruning property is explained in Section 5.2.

The remaining of this chapter is organized as follows: Section 5.1 describes the graph-

path function, used to eliminate common sub-graphs from the lattice. Section 5.2 describes

the MCG pruning property in details. In Sections 5.3, 5.4 and 5.5, we present the base

cuboid, base cuboid reduction and aggregation algorithms, respectively. In Sections 5.6

and 5.7, we explain the MCG memory managment and dimension ordering, respectively.

In Section 5.8, we present the detailed performance study, including the computation

of synthetic and real datasets with different dimensions, tuples, cardinality, and skew.

Finally, in Section 5.9 we summarize the main benefits and limitations of the MCG ap-

proach.

5.1 Graph-Path Function

The graph-path function addresses a solution to the exact graph matching problem.

We can state the graph matching problem as follows: given two graphs GM = (NM , AM)

and GD = (ND, AD), where N is the set of nodes, A is the set of arcs and |NM | = |ND|,

the problem is to find a one-to-one mapping f : ND => NM such that (u, v)∈ AD iff

(f(u), f(v))∈ AM . When such a mapping f exists, it is called an isomorphism, and GD is

said to be isomorphic to GM . This type of problem is said to be exact graph matching.
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Given a graph G=(N, A), a node n ∈ N and a set of nodes N ′ ⊂ N , where n is the

ancestor node of N’, N’={n′1,n′2, ,n′D} and |N’|=D, the graph-path function h is calculated

as follows:

h(n) =
∑D

i=1(attr(n′i) + (h(n′i))), if n is a non leaf node

h(n)= n measure values, otherwise

Consider attr(n): attribute value of n

´+´ represents a concatenation of strings

The graph-path function h generates unique values for intermediate nodes and leaf

nodes using different variables. If n is an intermediate node, h(n) must concatenate all

n descendant nodes attribute values with their h values. If n is a leaf node, h(n) must

concatenate all n measure values.

In Figure 5.2, we illustrate h calculus. Note that, h is recursive, so h calculus occurs

firstly from root to leaf nodes. When it reaches a leaf node it backtracks and starts

a leaf to root calculus. In our example, first h(c1) and h(c2) are calculated from c1,

c2 measure values concatenation, since they are leaf nodes. Second, h(b1), h(b2) and

h(b3) are calculated using their descendant nodes attribute values concatenated with their

descendant nodes h values. Finally, node h(a2) is calculated using b1, b2 and b3 attribute

values concatenated with h(b1), h(b2) and h(b3) values.

Note that, h(n) does not consider n attribute value. This consideration reduces the

cube representation even more, since a set of nodes can be reduced to n, regardless their

own attribute values. If n is a non leaf node, h(n) does not consider n measure values

either, so we guarantee that less information is required to produce unique intermediate

nodes h values. We just use measure values when n is a leaf node. This simplification is
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FIGURE 5.2 – Graph-path Calculus.

justified since a data cube is a partial order of attribute values that calculates its measure

values hierarchically, so we just need to consider the measure values of the last level of

the hierarchy. All the levels above are aggregations of the last level.

5.2 MCG Pruning Property

During the generation of the aggregations, MCG prunes more aggregated cells com-

putation and representation than Dwarf, Star and MDAG approaches. The third phase

of the MCG approach, represented by the aggregation algorithm, uses the MCG pruning

property to avoid unnecessary aggregated cells.

The MCG pruning property states as follows: Given three attributes a, b and c of

three different dimensions A, B and C, respectively, if c appears in a sub-graph rooted by

a with only attribute b and b is a descendant of a, then the group-bys (a, b, c, x) and (a,

c, x) have the same measure values for any attribute value x of any dimension. Since x

can be a root of a sub-graph G, G duplication is avoided.

The proof is trivial, since the sub-graph rooted by a can have 1-N descendants, defined

as b, b1, ..., bN descendants. Each a descendant can be a root of a sub-graph Gb, Gb1, ...,
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GbN , respectively. If an attribute value c appears uniquely in one sub-graph, e.g. sub-

graph Gb, it will always be uniquely as a descendant of a, since no other sub-graph (Gb1,

..., GbN ) has an attribute value c.

The MCG pruning property identifies Dwarf, Star and MDAG suffix redundancies

types, but none of them can identify the MCG suffix redundancy type.

Proof : Given a set of paths represented by abcG, where G represents a sub-graph with

many possible paths. If a path abc is a single path in a graph, the path acG does not

demand extra nodes to be created, since in a single path c appears in a sub-graph rooted

by a with only attribute b. If G has no node, we have a single tuple represented by abc

path. The single tuple is a particularity case where the MCG pruning property is also

valid, so we can affirm that the MCG pruning property avoids single path aggregations,

as Star and MDAG do, and single tuples aggregations, as Dwarf, Star and MDAG do.

The Dwarf approach identifies unique relations among attribute values. If c is associated

uniquely to b in a base relation, Dwarf avoids the creation of the group-by (c, x), since the

group-bys (b, c, x) and (c, x) share the same measure values for any attribute value x of

any dimension. If c is associated uniquely to b in a base relation and if b is a descendant

of a, c is always associated with only attribute a in a sub-graph rooted by a, so the

Dwarf left/implication suffix redundancy type is a particular situation identified by MCG

pruning property.

Figure 5.3 illustrates a situation that is common in sparse cubes, but none of cube

approaches can identify it. Note that, in Figure 5.3 we do not consider the matching

value utilization. We are interested to present the MCG pruning property benefits only.

In Figure 5.3-a, there is a base cuboid with no single paths, so no single path optimization

is possible. Consequently, Star and MDAG improvements in pruning aggregated cells
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computation and representation cannot be achieved.

FIGURE 5.3 – MCG pruning property benefits.

In Figure 5.3-a, node c1 is associated with nodes b1 and b2, so Dwarf pruning strategy

cannot be applied. The same associations occur to node c2. In general, the association

between attribute values is not unique. Even in sparse and skewed relations, multiple

attribute value associations are common, as our experiments in Section 5.8 demonstrate.

The MCG pruning property consider multiple attribute value associations, so some

aggregated cells do not demand extra suffixed nodes to be created. In Figure 5.3-a, we

can observe that nodes c1 and c2 are associated uniquely to node b1 in the sub-graph

rooted by a1, so the group-bys (a1, c1) and (a1, c2) do not demand extra nodes to be

created, as Figure 5.3-b illustrates. A similar attribute value association occurs to nodes

c3 and c4, descendants of only b2 in the sub-graph rooted by a1.

The MCG pruning property is valid regardless the measure used in the data cube. We

can use distributive, algebraic or holistic measures, so we omit their illustration in Figure

5.3.

The second branch of the base cuboid, illustrated in Figure 5.3-a, has a similar attribute

value association. Nodes c3 and c4 are associated uniquely to node b1 in the sub-graph

rooted by a2, so the group-bys (a2, c3) and (a2, c4) do not demand extra nodes to be
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created, as Figure 5.3-b illustrates. A similar attribute value association occurs to nodes

c1 and c2, descendants of only b2 in the sub-graph rooted by a2.

Since nodes b1 and b2 are associated with a1 and a2 in the graph rooted by root, the

MCG pruning property cannot be applied, so two new sub-graphs rooted by b1 and b2

must be created under the root node. A similar attribute value association occurs to

nodes c1, c2, c3 and c4. They are associated to nodes a1 and a2 in a sub-graph rooted by

root, so new nodes c1, c2, c3 and c4 must be created under the root node. We omit such

creations in Figure 5.3-b, since they do not illustrate the benefits of the MCG pruning

property.

5.3 MCG Base Cuboid Algorithm

The MCG base cuboid algorithm corresponds to the first phase of the MCG approach.

It uses a base relation as its input and outputs a base cuboid without common single

paths.

It scans the base relation tuple by tuple, inserting them into the graph. Given a base

relation R with DxT attribute values, where D represents the number of dimensions and

T the number of tuples in R, the MCG base cuboid algorithm demands DxT operations to

produce a base cuboid, i.e., it has a complexity O(DxT). The detailed description of the

algorithm is presented in Figure 5.4. Figure 5.5 illustrates an example of the algorithm

execution.

The MCG base cuboid algorithm adopts a double insertion method, which inserts from

root to leaf and, if it is necessary, it also inserts from leaf to root the base relation tuples.

The MCG approach is the first approach that maintains the base cuboid without both
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FIGURE 5.4 – MCG Base Cuboid Algorithm.

common prefixes and common single paths after each tuple insertion or update. Star

and Dwarf approaches do not reduce the base cuboid size during its construction and

MDAG approach achieves just a shallow reduction of the base cuboid with the internal

node representation, since it shares the measure values of just the dimension represented

by the internal nodes.

The MCG base cuboid algorithm executes as follows: the double insertion method first

converts the original tuple array to a MCG tuple array in line 1 of Figure 5.4, similar to

the MDAG base cuboid algorithm.

For each input tuple, the algorithm traverses the base cuboid to collect the last found

node (LFN) and the last single-used node (LSUN) in line 2. Intuitively, for a given tuple

to be inserted in a cuboid, considering the path from the root to the leaf of the cuboid,
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which has common attributes to the tuple, LFN is the deepest node. LSUN is LFN when

LFN has only one ancestor. AP is the sub-path from leaf to root in the cuboid, which

has common attributes to the tuple. Formally, LFN and LSUN can be defined as: given

a graph G=(N, A), a N subset of nodes P={n1, n2, ,np} forming a graph path [n1=>n2

... =>np], an input tuple T={t1, t2, , tD, m} and a simplified node notation n=(attr, m,

Desc, Anc), where attr is an attribute value, m is a measure value, D is the number of

dimensions, |T|=D+1, |P | ≤ D, Desc is a set of n descendant nodes and Anc is a set of

n ancestor nodes, a LFN is np iff (∀ni ∈ P | (1 ≤ i ≤ p), attr(ni) = ti). A LSUN satisfies

all LFN conditions plus |Anc (np)|=1 condition.

Figure 5.5 illustrates what happens during a base cuboid computation. We simulate

the computation of base relation R, presented in Figure 5.1. The first two tuples (a1b1c1-

1 and a3b3c2-1) are inserted straight in the lattice, basically using lines 4, 5, 6 and 10,

since they do not share any attribute value (Figures 5.5-a and b, respectively). For both

insertions, we have LFN=LSUN=root.

For the tuple a2b3c2-1, we have LFN=LSUN=root, so line 5 is executed. The algo-

rithm traverses from leaf (c2) to LFN level (root level), identifying b3c2 as the AP. When

traversing from leaf to root, arcs from descendant to ancestor nodes are required, so the

arcs have double direction. The algorithm appends an extra node (a2) to the AP (line 6)

and then it puts the first node of the AP (node a2) as a LFN descendant, since LFN is a

single-used node (line 10). The third tuple insertion is illustrated in Figure 5.5-c.

The next three tuples (a3b1c1-1, a2b1c1-1 and a2b2c2-1) insertions are similar to the

previous one. The new insertions produce the base cuboids illustrated in Figure 5.5-d, e

and f, respectively.

The next tuple a1b1c2-1 produces LFN=b1, but b1 is a reused node, so lines 8 and 9
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are executed. First, c2 is identified as the AP (line 5) and no new nodes are added (line

6), since the AP c2 achieved LFN level. Second, line 8 is executed, so new nodes are

appended until LSUN is achieved. In this insertion LSUN=a1, so a new b1 node is created

and the old b1 descendants are copied to the new one. We build the new path b1c1 so

that it does not form a cycle c1b1 as the old path does. This cycle elimination guarantees

that c1 has just one b1 ancestor node. MCG extends such a condition to the entire lattice

when it avoids nodes with multiple descendants to be ancestor nodes. Finally, when line

9 is executed the new node b1 substitutes the old node b1, descendant of a1. The current

insertion produces a base cuboid that is presented in Figure 5.5-g.

The remaining tuples insertions are presented in Figure 5.5-h, i, j and k. These inser-

tions produce one of the previous described scenarios, so due to the similarity, we omit

the details in this thesis. If an update occurs, the unique difference from previous expla-

nations is that we first need to copy or reference LFN node (line 12 or 13), depending on

the existence of reused nodes, then update an auxNode (line 14) and then traverse from

leaf, using the auxNode plus the attribute values of the MCGTuple array, to the LSUN

level. The remaining execution is similar to an insertion.

The double insertion method can be considered a promising alternative to generate

the base cuboid, as our experiments demonstrate. When computing sparse relations, the

number of single tuples which produce single paths is high, as (BEYER; RAMAKRISHNAN,

1999) describes, so the number of common single paths that can be collapsed can also be

high. The MCG base cuboid algorithm improves the traditional root to leaf graph scan,

implemented by Dwarf, Star and MDAG approaches to generate the base cuboid.
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FIGURE 5.5 – MCG Base Cuboid Algorithm Execution.

5.4 MCG Base Cuboid Reduction Algorithm

The MCG base cuboid reduction algorithm corresponds to the second phase of the

MCG approach. The MCG approach can directly generate all the aggregated cells in one

base cuboid scan or it can first reduce the base cuboid even more, using the graph-path

function, and then generate the remaining aggregations.

The second alternative minimizes the number of graph traversals, enables removed

base cuboid nodes reutilization, and appeases the temporary nodes memory consumption,

as our example in Figure 5.7 illustrates and our experiments in Section 5.8 demonstrate.

Due to these observations, we implement an anticipated reduction in the base cuboid that

is presented in Figure 5.7.

Given a base cuboid represented by a graph G = (N, A), where N is the set of nodes

and A is the set of arcs, the MCG base cuboid reduction algorithm demands N operations
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to completely eliminate G common sub-graphs, i.e., it has complexity O(N). Since the

graph-path function is computed incrementally, from leaf to root node, a single G depth-

first traversal is sufficient to eliminate all common sub-graphs. Figure 5.7 illustrates an

example of the algorithm execution. The detailed description of the algorithm is presented

in Figure 5.6.

FIGURE 5.6 – MCG Base Cuboid Reduction Algorithm.

We use the base cuboid, presented in Figure 5.5-k, as the MCG base cuboid algorithm

input. First, the path a1b1c1 is traversed (line 2) and then c1 graph-path value is calculated.

A backtrack occurs and the second descendant node of b1 is computed, i.e., c2 is computed.

Similar to c1, c2 graph-path value is calculated. Nodes c1 and c2 have identical graph-path

values, so they are fused into one node with two attribute values. The new base cuboid is

presented in Figure 5.7-b. After c2 computation, a backtrack occurs and b1 is computed,

since it does not have any other descendant to be computed. The computation of node b1

updates its measure values (line 3) and calculates its graph-path value (line 4), resulting

in a new base cuboid representation presented in Figure 5.7-c.

A backtrack occurs to compute a1, but it has descendant b3 to be computed first, so

another depth-first scan occurs (b3c2). Node c2 is the first node to be computed in the new

scan. Note that, c2 graph-path value is identical to previous leaf node (c1|c2) graph-path

value, so node b3 is linked to the existing node, as Figure 5.7-d illustrates. A backtrack
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occurs and node b3 is computed (lines 3 and 4), resulting in a new base cuboid presented

in Figure 5.7-e.

Finally, a1 is computed (lines 3 and 4), since all its descendants have been computed

(Figure 5.7-f). A backtrack occurs to compute root, but there are two more descendants

(a2 and a3) to be computed first. Nodes a2 and a3 computations are similar to a1, so

due to the similarity, we omit the computation description in this thesis. The final base

cuboid is presented in Figure 5.7-g.

FIGURE 5.7 – MCG Base Cuboid Reduction Algorithm Execution.

The base cuboid reduction eliminates five nodes, illustrated by the difference between

Figures 5.7-a and g, but those nodes are always reused during the MCG aggregation

algorithm execution, presented in the next section. Normally, we need more new nodes

than the eliminated ones, so we can affirm that the base cuboid redundant nodes do not

consume unnecessary memory.
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5.5 MCG Aggregation Algorithm

The MCG aggregation algorithm corresponds to the last phase of the MCG approach.

It generates the aggregations. The aggregated cells plus the base cells, computed earlier,

form a full data cube. The algorithm uses a base cuboid without common sub-graphs as

its input and outputs the full cube without prefix/suffix redundancies.

The MCG aggregation algorithm can be costly computationally. For an input with

size D, where D is the number of dimensions, it can produce an output with size 2D.

The MCG pruning property and the MCG matching value are used to prune as much as

possible unnecessary outputs, reducing the exponential complexity.

There is a scenarios where the MCG pruning strategies cannot be applied. Given a sub-

graph G = (N, A), where N is the set of nodes and A is the set of arcs, if the MCG pruning

property cannot be identified in any sub-graph of G and if G leaf nodes have different

measure values, the MCG aggregation algorithm demands 2N operations to produce all

aggregations from G. Such a situation is rare, as our experiments with synthetic and

real datasets demonstrate. On the other hand, if at least one MCG aggregation pruning

is identified on each node of G, the MCG aggregation algorithm demands N operations

to produce all aggregations from G, since no new nodes are needed to represent such

aggregations. An example of the best case can occur if G is composed by a unique single

path P. All the aggregations demand P operations, since all P nodes satisfy the MCG

pruning property.

Figure 5.9 illustrates the MCG aggregation algorithm execution. We use the base

cuboid presented in Figure 5.7-g as its input. During the remaining cuboids generation,

the algorithm scans the base cuboid for the second time. The detailed description of the
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algorithm is presented in Figure 5.8.

FIGURE 5.8 – MCG Aggregation Algorithm.

The algorithm starts computing the root node. For each descendant of the current node

(line 1), the algorithm starts another depth first traversal (line 2). If a node descendant

has no descendants, a backtrack starts (lines 3-6).

In our example, the path a1b1c1 is scanned (Figure 5.9-a), but c1 has no descendant,

so a backtrack occurs and the second b1 descendant (c2) is computed, but c2 is identical

to c1. At this point all b1 descendants have been visited, so a backtrack occurs and b1 is

computed, but b1 descendants (c1 and c2) have no descendants, so line 5 is not executed.

Line 6 must be executed for b1, but their descendants matching values have been created

during the base cuboid reduction. A backtrack occurs and the path a1b3c2 is scanned.

Similar to path a1b1c1, nodes c2 and b3 of path a1b3c2 cause no change in the lattice.

After computing b3 a backtrack occurs and a1 is computed, since all its descendants

(b1 and b3) have been visited. Line 5 is executed, so first, b1 descendants are copied to a1

descendants. Note that, a1 has no c1 and c2 descendants, so line 5 directly references c1

and c2 to a1 (similar to line 4), as illustrated in Figure 5.9-b. The last a1 descendant (b3)

must copy its descendant c2 to a1 descendant, but a1 has a reused descendant node c2, so
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FIGURE 5.9 – MCG Aggregation Algorithm Execution.

instead of updating c2, a new node c2 must be created. The new changes are presented

in Figure 5.9-c. Next, line 6 is executed, c2 matching value is created, but no reduction is

achieved, since a1 descendants (b1, b3, c1 and c2) form unique sub-graphs in the lattice.

The direct association between a1 and c1 represents the implementation of the MCG

pruning property, since c1 is associated uniquely to b1 in the sub-graph rooted by a1.

Node a1 has been computed, but it has siblings (a2 and a3), so path a2b1c1 is scanned.

Similar to previous paths, only a2 causes changes in the lattice. First, all a2 descendants



CHAPTER 5. MCG APPROACH 125

must copy their descendants (line 5). Node b1 descendants are copied, but b1 is identical

to b2, so instead of copying b1 and then b2 descendants, we copy b1 descendants once and

multiply its measure values by the number of identical nodes. This strategy explains one

of the benefits of an earlier base cuboid reduction. The temporary full cube is presented

in Figure 5.9-d.

Node a2 has a third descendant b3, so b3 descendant, c2, must be copied. Node a2 has

a descendant node c2, but it is a single-used node, so it can be updated. The new lattice

is presented in Figure 5.9-e. Finally, line 6 is executed, c1 and c2 matching values are

created and a reduction occurs, as Figure 5.9-f illustrates.

Node a3 must be computed (including all paths generated from it), but a3 is identical

to a1, so no new computation is necessary, illustrating the anticipated matching value

calculus benefit. Next, the algorithm starts the computation of root node. Descendant

nodes a1, a2 and a3 must be copied to finalize the MCG cube representation, so the

algorithm creates a temporary cube representation (line 5), as presented in Figure 5.9-g,

and then it reduces this cube representation (line 6), as presented in Figure 5.9-h.

The full reduced MCG cube has no common sub-graphs and it uses 6 extra nodes to

produce such a cube, so the MCG approach demonstrates that base cuboid redundancies

do not consume extra memory and the anticipated base cuboid reduction is fundamental

to achieve efficient aggregated cells generation.

In Figure 5.10, we illustrate MCG, MDAG and Star main differences in representing the

full cube computed from R that is illustrated in Figure 5.1. MCG full cube representation

has 12 nodes. In comparison with a Star full cube representation, MCG reduces the

number of nodes in 69,3%. In comparison with MDAG full cube representation, MCG

reduces the number of nodes in 20%. In Figure 5.10-a, we present the Star full cube
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representation and in Figures 5.10-b and c, we present the MDAG and MCG full cube

representations for the same base relation R, respectively.

FIGURE 5.10 – MCG full cube size reduction.

In Section 5.8, we test the MCG three phase algorithm using different relations, with

different cardinalities, number of tuples, dimensions and skew, to demonstrate its efficiency

in terms of runtime and memory consumption.

5.6 Memory Management

Due to the numerous construction and destruction of sub-graphs in MCG approach,

memory management becomes an important issue. Instead of creating new nodes, MCG

reuses the deleted nodes as much as possible. The three algorithms described in Sec-
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tions 5.3, 5.4 and 5.5 share a node pool. The MCG approach uses the same memory

management strategy described in Section 4.5.

5.7 Dimension Ordering

The MCG dimensions can be computed according to their cardinalities, in a descending

order, since this order permits both earlier cell pruning (XIN et al., 2003) and efficient single

path redundancies elimination. In a full cube with this dimension order, we produce the

sparsest representation, consequently, with many single paths and infrequent nodes.

However, sometimes the cardinality descending ordering may be too coarse to catch the

different distribution of each dimension. For example, given two dimensions with different

cardinalities. If the first dimension, with higher cardinality, is skewed (almost all tuples

lie on small number values) and the second dimension follow a uniform distribution, the

adequate dimension order is the second dimension before the first dimension. Motivated

by the dimension distribution problem, in (XIN et al., 2007) the authors propose a different

ordering strategy, called Entropy. The Entropy of a dimension A is defined as:

Entropy(A) = −
Card(A)∑

i=1

|ai|.lg(|ai|), (5.1)

where ai is the number of tuples whose value on dimension A is ai, and Card(ai) is the

cardinality of dimension A. The more uniform the value distribution on the dimension is,

the larger the entropy value is. The dimensions are computed according to their entropies,

in a descending order.

The original Entropy ordering strategy requires a full base relation scan to identify ai,
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so we improve the Entropy calculus by using a sample method to collect only part of the

base relation tuples to calculate the Entropy. Star and MCG approaches use the sample

Entropy ordering strategy. Dwarf and MDAG approaches use the cardinality ordering

strategy.

5.8 Performance Analysis

The MCG performance analysis finalizes the set of experiments that we conduct to

our sequential approaches. In Section 4.6, we present part of the experiments, including

only Dwarf, Star and MDAG approaches. In this section, we conclude the results with

MCG approach. In this section, we consider the same Dwarf, Star and MDAG runtime

and memory consumption that are presented in Section 4.6.

5.8.1 Full Cube Results

The first set of experiments compares MCG full cube computation runtime against

Dwarf, Star and MDAG full cube computation runtime. The runtimes are compared with

respect to the cardinality (Figure 5.11), number of tuples (Figure 5.12), dimension (Figure

5.13) and skew (Figure 5.14).

In all scenarios, the runtimes of MDAG and MCG approaches are similar to each

other. The MCG runtimes are 10-15% faster than MDAG when computing very sparse

relations. The Dwarf, Dwarf II and Star approaches are slower than MDAG and MCG

in all scenarios. The Dwarf approach performs worst in all scenarios, since it has a costly

sorting phase before starting the cube computation. Star, MDAG and MCG require no

sorted base relation.
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FIGURE 5.11 – MCG Runtime and Memory: D=5, T=1M, S=0.

In general, the MCG results can be explained by the optimizations proposed in MCG

base and aggregation phases. The optimizations not only reduce the number of temporary

nodes, but also decrease the graph-path computation cost and the number of extra CG

traversals, so MCG drastically reduces a cube size, maintaining an efficient runtime.

The compact representation of a data cube enables MCG approach to reduce 70-90% of

memory consumption when compared to the original star-tree. In the same scenarios, the

new Star approach, proposed in (XIN et al., 2007), reduces only 10-30%, Dwarf 30-50% and

MDAG 40-60% of memory consumption when compared to the original star-tree. The low

memory consumption of MCG turns it an interesting solution to compute medium/high
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FIGURE 5.12 – MCG Runtime and Memory: D=5, C=30, S=0.

dimensional data cubes.

In the second set of experiments, we present the results of computing huge datasets.

In Figure 5.15, we present the runtime and memory consumption of Dwarf, MDAG and

MCG approaches when we compute base relations with 1000-10000 distinct values on each

dimension. We omit the Star approaches, since they produce huge outputs that require

swap. It is not fair to compare Star against Dwarf, MDAG and MCG in such scenarios.

The results demonstrate that Dwarf, MDAG and MCG are not sensitive to the increase

of the cardinality.
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FIGURE 5.13 – MCG Runtime and Memory: T=1M, C=10, S=0.

The third set of experiments illustrate the MCG weakness. Figure 5.16 illustrates the

computation of a base relation with 6, 7, 8 and 9 dimensions, each dimension with cardi-

nality 1000. These base relations represent huge datasets. As the number of dimensions

increases, both MCG runtime and memory consumption deteriorate. The unique positive

aspect observed in Figure 5.16 is that MCG deteriorates slower than the other approaches,

but it still suffers from the dimensional curse problem.

The fourth set of experiments show how Dwarf, Star, MDAG and MCG approaches

compute complex and multiple measures. We use the AVG to illustrate a complex function

and the computation of multiple measures, since AVG = SUM/COUNT. The results are
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FIGURE 5.14 – MCG Runtime and Memory: T=1M, D=6, C=100.

presented in Figure 5.17. In general, the runtime and memory consumption are not

substantially affected by the computation of complex measures.

The MCG cube size is reduced drastically with different measures, including multiple

measures. As the number of multiple measures and the measure complexity increase, the

runtime also increases, but the memory consumption is independent of such criteria. The

MCG cube size reduction strategy is affected only by the number of different measure

values in a data cube.
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FIGURE 5.15 – MCG Runtime and Memory: C=1000-10000, D=5, T=1M, S=0.

5.8.2 Real World Results

We also test MCG using a real dataset. The dataset is derived from the same HY-

DRO1k Elevation Derivative Database (http://edcdaac.usgs.gov/gtopo30/hydro/). In

Figure 5.18, we see a similar behavior to the syntactic datasets, i.e., the MCG algo-

rithm runtime is similar to the MDAG, MCG is faster than Dwarf, Dwarf II and Star,

and MCG cube representation consumes about 20% of memory when compared with a

star-tree representation.

We can observe that MCG runtime is slightly slower than MDAG. This behavior is
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FIGURE 5.16 – MCG Runtime and Memory: T=1M, C=1000, S=0.

caused by the number of dimensions and the cardinality of each dimension of the real

dataset. One dimension has cardinality 300 and the others 180, 160, 78 and 53, so

MDAG use the first dimension with cardinality 300 to produce the internal nodes and

the remaining dimensions to produce a dense data cube with only four dimensions. The

MCG data cube must consider all five dimensions which produces initially a sparse data

cube, so MCG becomes slower than MDAG. This behavior is not observed as the dataset

becomes more sparse.
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FIGURE 5.17 – MCG Runtime and Memory: Measure = AVG, T=1M, D=6, C=100.

5.8.3 Work Memory during an Experiment

Finally, we evaluate the memory consumption of Dwarf, Star, MDAG and MCG al-

gorithms during an experiment. We test the algorithms with respect to the cardinality

(Figure 5.19), dimension (Figure 5.20) and skew (Figure 5.21).

The results show that the Star algorithm uses two or three times more memory (tem-

porary or not) to compute a full cube when compared to MCG algorithm. When compared

to MDAG and Dwarf, MCG approach consumes, on average, half of memory to compute

the same data cube.
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FIGURE 5.18 – MCG Runtime and Memory: Real Dataset.

5.9 Summary

For efficient cube computation in various data distributions, we propose a new ap-

proach named MCG. The MCG approach addresses an efficient solution for the cube size

problem based on sub-graph matching solution. We use a new matching function, named

graph-path, which enables a cube representation without loss of generality, but with no

prefix/suffix redundancies. The matching value is calculated incrementally, using a mini-

mal amount of information to guarantee its uniqueness. Due to the cost of computing a
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FIGURE 5.19 – MCG experiment where D=5, T=1M, S=0, C=100.

base cuboid using the graph-path function, we develop a new double insertion method that

produces a base cuboid with no prefix and also no single graph path redundancies. We also

reduce the base cuboid before generating the remaining aggregated cells. The strategy

reduces CG traversals, enables nodes reutilization and appeases temporary nodes memory

consumption impact. During the aggregations generation, the MCG pruning property is

used to avoid costly node creations and matching values calculus. The MCG pruning

property prunes more unnecessary aggregations than Dwarf, Star and MDAG.

Our performance studies demonstrate that MCG is a promising approach. In general,

MCG is faster than Dwarf, Star and MDAG when computing sparse relations. MCG is

slower than MDAG only when computing dense relations, as Figure 5.18 illustrates. The

MCG memory consumption decreases drastically, i.e., it uses 70-90% less memory when

compared to star-tree cube representation. Dwarf, Star and MDAG achieve just 10-60%

of memory consumption reduction in their best scenarios. The results enable MCG to

compute larger and sparser relations using the same memory.
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FIGURE 5.20 – MCG experiment where D=8, T=1M, S=0, C=10.

Some MCG improvements in reducing the cube size has been published in Brazilian

Symposium on Database (full research paper) (LIMA; HIRATA, 2008). The complete pre-

fix/suffix redundancy elimination has been published in ACM Symposium on Applied

Computing (full research paper) (LIMA; HIRATA, 2009). We have been invited to submit

an extended version of (LIMA; HIRATA, 2008) paper to the Information Sciences Journal.

Such a paper is under the second review stage of the journal.

Unfortunately, MCG sequential approach cannot be efficiently executed in a multi-

processor or a cluster of single/multi processor machines. The actual MCG cube repre-

sentation and computation method must be redesigned to be efficiently executed in such

parallel/distributed architectures. In Chapter 6, we present how to efficient encapsu-

late the MCG approach to be executed in a multiprocessor or a cluster of single/multi

processor machines.
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FIGURE 5.21 – MCG experiment where D=6, T=1M, S=0.5, C=100.



6 p-Cube Approach

In this chapter, we present a novel parallel approach to compute full data cube named

Parallel Cube Approach (p-Cube). The p-Cube approach combines both data and task

parallelism. It is designed to be executed in shared-memory, distributed-memory or hybrid

architectures. Details of each architecture type can be found in Section 2.10.

The p-Cube approach can easily encapsulate several sequential full cube approaches,

such as Star, MDAG and MCG approaches. It uses the dimensions attribute values to

partition the data cube into a set of similar sized sub-cubes. It also redesigns the Star,

MDAG and MCG sequential tasks to run in parallel efficiently.

6.1 Motivation for a Parallel Cube Approach

One alternative for dealing with the data cube size is to allow partial cube computation.

Instead of computing the full cube, a subset of a given set of dimensions or a smaller range

of possible values for some of the dimensions is computed. Some proposals include iceberg-

cubes (BEYER; RAMAKRISHNAN, 1999) (HAN et al., 2001) (LIMA; HIRATA, 2007) (XIN et

al., 2007), closed-cubes (XIN et al., 2006), quotient-cubes (LAKSHMANAN; PEI; HAN, 2002)

and frag-cubes (LI; HAN; GONZALEZ, 2004), which address different solutions to compute

partial data cubes.
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A second alternative maintains the full data cube representation, but in a highly

reduced form. In this class two approaches can be considered: graph-based approaches

(LIMA; HIRATA, 2007) (LIMA; HIRATA, 2008) (LIMA; HIRATA, 2009) (SISMANIS et al., 2002)

(XIN et al., 2007) and non graph-based approaches (WANG et al., 2002). In general, the

approaches identify both cube cells with identical measure values and common sub-graphs

in a data cube. The redundancies are eliminated, but differently from partial cubes, the

approaches represent a fully pre-computed cube without compression, and, hence, they

require neither decompression nor further aggregations when satisfying queries.

A third alternative for dealing with the data cube size is to introduce parallel processing

which can increase the computational power through multiple processors. Moreover, the

parallel processing can increase the IO bandwidth through multiple parallel disks, which

are used to store the base relations and, in some approaches, partitions or regions of a

data cube. There are several parallel cube computation and query approaches in the

literature (CHEN, 2004) (CHEN, 2008) (DEHNE et al., 2002) (DEHNE et al., 2006) (GOIL et

al., 1997) (GOIL; CHOUDHARY, 1999) (LU; HUANG; LI, 1997) (MUTO, 1999) (NG; WAGNER;

YIN, 2001) (YANG; JIN; AGRAWAL, 2002). In general, previous parallel approaches require

costly synchronizations to maintain the cuboids integrity. Some approaches replicate the

cuboids and none of them consider possible optimizations to reduce the cube size without

loss of generality.

6.2 The p-Cube Strategy

The p-Cube approach uses pipelining, a software strategy analogous to the hardware

method, in which each processor is assigned to a different stage of a multi-step sequential
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computation. If many independent datasets are passed through the pipeline, each stage

can perform its computation on a different dataset at the same time.

The p-Cube approach considers three phases/stages to compute a data cube: the IO

phase, where base relations tuples are loaded from multiple disks; the base cuboid phase,

where the loaded tuples are inserted/updated into independent base cuboids partitions,

forming a base cuboid ; and the aggregation phase, where the aggregations derived from

such base cuboids partitions are created. These three phases to compute a data cube

are also found in Star, MDAG and MCG approaches, so due to the similarity it is easy

to encapsulate such approaches in p-Cube approach. In general, the same sequential

algorithms are used by different stages of p-Cube approach.

The p-Cube approach uses the same cube representation whereby it encapsulates a

sequential approach. Star, MDAG and MCG approaches represent a data cube using

graphs. Each level in the graph represents a dimension, and each node represents an

attribute value. A path from the root to a node represents a cube cell. By using the same

cube representations, p-Cube can improve the runtime using multiple disks and processors

while keeping the low memory consumption benefit of each encapsulated approach.

Figure 6.1 illustrates the IO and base cuboid phases computation for different tuples

at the same time. As the tuples are loaded from secondary storage, they are inserted

in a base cuboid graph representation with no synchronization, since different tuples are

manipulated at the same time.

Unfortunately, there is a limitation in the strategy illustrated in Figure 6.1, since only

two degrees of parallelism can be achieved. If there are more than two processors the

strategy does not use the computational power, i.e., the strategy does not scale well. An

alternative to solve the problem is to introduce data parallelism. Figure 6.2 illustrates an
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FIGURE 6.1 – Strategy of a non scalable parallel base cuboid computation.

example of a scalable parallel base cuboid computation. First, the original base relation R

can be partitioned according to the number of disks and processors. R can be partitioned

into R1, R2, ..., Rn, where R= R1∪R2...∪Rn. Each R1, R2, ..., Rn, base relation represents

a subset of R without any arrangement, i.e., the original R tuples order is maintained in

R1, R2, ..., Rn base relations. Simultaneous IO threads can perform their computation

on different base relations with no synchronization.

In the same direction, the graph based base cuboid representation of Star, MDAG and

MCG approaches can be partitioned into a set of independent sub-graphs. i.e., a set of

independent base cuboids partitions represented as sub-graphs. We can use a dimension

attribute values to label a set of independent base cuboids partitions. Each base cuboid

thread is assigned to a base cuboid partition and each base cuboid partition is assigned to

a different set of attribute values of a specific dimension. Furthermore, each base cuboid

thread is assigned to a processor, similar to an IO thread.
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FIGURE 6.2 – Example of a scalable parallel base cuboid computation.

Figure 6.2 illustrates p-Cube approach computation of four dimension data cube (A,

B, C and D) with cardinalities CA, CB, CC and CD, respectively. We consider A={a1;

a2; . . .}, B={ b1; b2; . . .}, C={ c1; c2; . . .} and D={ d1; d2; . . .}. We illustrate p-

Cube approach using dimension A attribute values to label a set of base cuboid partitions.

The IO threads load the tuples from multiple disks and identify, using the dimension A

attribute values, which base cuboid partition and, consequently, which base cuboid thread

must be used to compute the current loaded tuple.

Since each base cuboid thread manipulates its own base cuboid partition, no synchro-

nization is needed to compute the complete base cuboid in parallel. Furthermore, the

number of IO threads and base cuboid threads can vary according to the number of disks

and processors, respectively.

In the example illustrated in Figure 6.2, each attribute value of dimension A is assigned
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to an independent base cuboid partition, but there are many other possible configurations.

For example, tuples beginning with a1 and a2 can be assigned to an independent base

cuboid partition and tuples beginning with a3, a4, a9 and a21 can be assigned to another

base cuboid partition and so on.

In general, the number of attribute values that each base cuboid partition is assigned

depends on the frequency of each attribute value in the base relation. Sampling techniques

can be used to identify the attribute values frequencies without a full base relation scan.

In (OLKEN; ROTEM, 1990), we have different techniques to random sample database files.

When we put together the correct attribute values we achieve similar sized base cuboid

partitions, resulting in good load balance among the base cuboid threads.

After all IO threads have finished their computation, each base cuboid thread computes

its last tuples and the third p-Cube phase, named aggregation phase, can start. The

aggregation task must be parallelized and the remaining aggregated cuboids must be

partitioned, similar to the base cuboid. Until the base cuboid phase, only base cells are

computed, i.e., only cells of the form c = (A, B, C, D, m) are computed, where m is the

measure value of c and A, B, C, D can be any of { a1; a2; . . .; b1; b2; . . .; c1; c2; . . .;

d1; d2; . . .} attribute values.

Aggregate cells, such as (A, m1), (B, m2), (C, m3), (D, m4), (A, B, m5), (A, C, m6),

(A, D, m7), (B, C, m8), (B, D, m9), ... (all, m10), must be computed. There are two

strategies in p-Cube approach to compute the aggregate cells. The first strategy, named

FD (First Dimension) aggregation strategy, generates the aggregations beginning with

A, using the same cuboids partitions illustrated in Figure 6.2 to store them, and then

the aggregations beginning with B, C and D are generated, using new cuboids partitions

to store them. The second strategy, named RDs (Remaining Dimensions) aggregation
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strategy, generates the aggregations (B, C, D, m‘), (C, D,m“) and (D, m“‘) first, using

new cuboids partitions to store them, and then it generates the aggregations beginning

with A and the remaining aggregations beginning with B, C and D, using the cuboids

partitions created before to store the new aggregations. m1 ... m10 ,m‘, m“, m“‘ represent

different measure values.

Figures 6.3 and 6.4 illustrate both aggregation generation strategies. Figure 6.3 illus-

trates FD strategy, where aggregations beginning with A are generated first and Figure

6.4 illustrates RDs strategy, where aggregations (B, C, D, m‘), (C, D,m“) and (D, m“‘)

are generated first.

FIGURE 6.3 – FD aggregation strategy.

The p-Cube approach has two strategies to compute the aggregations since there are

two strategies in Star, MDAG and MCG to compute the aggregations. Star and MDAG

approaches adopt a single path optimization to avoid unnecessary aggregations computa-

tion. After computing the base cuboid, Star and MDAG approaches start generating the
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FIGURE 6.4 – RDs aggregation strategy.

aggregations and, simultaneously, they start eliminating single paths from the cuboids.

The single paths are stored in separated data structures and their aggregations are not

computed, so runtime and memory consumption are improved.

A single path in a base cuboid can be a non single path in the remaining cuboids,

so to avoid incorrect aggregations computation p-Cube approach first copy sub-graphs

beginning with B, C and D to new cuboids partitions and then it starts generating the

aggregations and removing single paths, as illustrated in Figure 6.4. Due to the single

path optimization, Star and MDAG approaches use the RDs p-Cube aggregation strategy.

The MCG approach preserves the single paths during its aggregation phase. The

MCG approach adopts a more efficient solution. It uses the exact sub-graph matching

idea to eliminate common sub-graphs from the lattice of cuboids, including all common

single paths. Due to this characteristic, the aggregations beginning with dimension A can

be computed first and then a copy of sub-graphs beginning with B, C and D can occur

without loss of integrity, as Figure 6.3 illustrates. Due to MCG characteristic, it uses the

FD p-Cube aggregation strategy.
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In general, FD aggregation strategy is more efficient than RDs aggregation strategy,

since RDs scans the cuboids partitions beginning with dimensions B, C, D, and so on, two

times, one to copy the partitions and two to generate the remaining aggregations of such

partitions. In the same scenario, FD aggregation strategy just copy the cuboids partitions

beginning with dimensions B, C, D once, since they are complete during the copy.

Each aggregation thread is assigned to an existent base cuboid partition, since it must

generate aggregations beginning with dimension A. Furthermore, each aggregation thread

is assigned to a new cuboid partition to store the remaining aggregations, i.e., aggregations

not beginning with A. In summary, each aggregation thread is assigned to two cuboids

partitions.

The number of aggregation threads is proportional to the number of processors. In

Figures 6.3 and 6.4, each aggregation thread is assigned to a cuboid partition beginning

with one attribute value of each dimension of a data cube, i.e., there are n cuboids parti-

tions to n aggregation threads, each cuboid partition labeled with {b1, c1, d1}, {b2, c2, d2},

... {bn, cn, dn}, respectively. Of course there are many other configurations to the aggre-

gation threads. The aggregation threads cuboids partitions can be assigned to different

attribute values, depending on their frequencies in the base relation. Frequent attribute

values are put together with infrequent attribute values to achieve a good load balance

among the aggregate threads. The same occur to the base cuboid threads.

The aggregation phase can scale well and no synchronization is necessary to com-

pute the aggregations in parallel, since each aggregation thread manipulates different

cuboids partitions at the same time. The attribute-based decomposition strategy, adopted

by p-Cube approach, is flexible and can adequate to different architectures, with differ-

ent number of disks and processors, such as shared-memory multiprocessor architecture,
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distributed-memory architecture or even hybrid architecture. We explain how to adequate

p-Cube approach to these architectures in Section 6.4.

6.3 p-Cube Example

We use Figure 6.5 to illustrate a complete execution of p-Cube approach. We use a

tuple t :a1b1c1d1 in our execution. First, t must be stored in one file. Suppose it is stored

in R1. The IO thread associated to R1 loads t and decides which resource t must be

inserted. In our example, t is inserted in resourcea1. After t insertion, one thread of base

cuboid group is notified, indicating that there is a resource to be consumed. The threads

of base cuboid group implement the consumer of the producer/consumer model. The IO

threads implement the producer.

In our example, thread Ta1 is notified. It inserts t on its base cuboid partition. After

t insertion, Ta1 tries to obtain more tuples from its resource. If there is no tuple, the

thread waits until a notification occurs. This step continues until there is no more tuples

to be loaded from the disks. The IO threads indicate the resources when such a condition

occurs.

To complete the explanation, we consider t as the last tuple to be inserted. After

Ta1 inserts t on its partition, it verifies that there is no more tuples to be inserted in the

resource, indicating that Tb1c1d1all can start generating the aggregations derived from t

which begins with a1. In our example, a1b1c1, a1b1d1, a1c1d1, a1b1, a1c1, a1d1 and a1 cells

are created.

Note that, we are exemplifying the FD aggregation strategy illustrated in Figure 6.3,

where the aggregations beginning with A are computed first. Due to the similarity between
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FIGURE 6.5 – p-Cube logical design.

the aggregation strategies of p-Cube approach we omit the explanation of RDs strategy,

where aggregations (B, C, D, m‘), (C, D,m“) and (D,m“‘) are generated first.

After the aggregation thread group finishes the generation of aggregations beginning

with A, it starts generating the remaining aggregations. To continue the explanation, we

consider that the thread Tb1c1d1all is the last thread that finishes the generation of the

aggregations beginning with A. After Tb1c1d1all execution, the threads Tb1c1d1all, Tb2c2d2,

... Tbncndn can continue their execution. The thread Tb1c1d1all scans the cube partitions

generated previously by base cuboid thread group, identifying sub-graphs that begin with

b1, c1 and d1. These sub-graphs are copied to a new cuboid partition, maintained by

Tb1c1d1all. The all node are updated with the measure values of nodes a1 ... an during the
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same scan. The result is another part of a data cube, composed by cells b1, c1, d1, b1c1,

b1d1, c1d1 and all.

Assuming that thread Tb1c1d1all is the last thread that completes the generation of the

remaining aggregations, after its execution the full data cube is complete, as Figure 6.5

illustrates.

The p-Cube approach minimizes regions of the algorithms that must be run sequen-

tially. These regions are limited to the thread groups configuration, start-up and join. No

synchronization is required to generate the base and aggregated cuboids. The unique syn-

chronization point of the entire solution is the resource, i.e., the resource access methods

putTuple and getTuple.

The remaining of this chapter is organized as follows: Section 6.4 describes possible p-

Cube configurations for several architectures. In Sections 6.5, 6.6 and 6.7, we detail some

useful adaptations of Star, MDAG and MCG approaches to run in parallel. In Section

6.8, we explain the p-Cube memory management and dimension ordering. In Section 6.9,

we present the detailed performance study, including the computation of synthetic and

real datasets. Finally, in Section 6.10 we summarize the main benefits and limitations of

the p-Cube approach.

6.4 p-Cube Approach Possible Configurations

The abstractions, such as IO, resource, threads of base cuboid and aggregation groups

can be configured in any architecture described in Section 2.10. The unique synchroniza-

tion point of p-Cube approach is one of the most important improvements, since p-Cube

clean logical design can be implemented in a shared-memory, distributed-memory and
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hybrid architectures with minimal adaptation.

Suppose a shared-memory multiprocessor architecture with multiple disks. In such

architecture, we instantiate IO threads according to the number of disks and threads

of base cuboid group according to the total number of processors minus the used to IO

(suppose there are sufficient processors for IO and base cuboid group). Since the threads

of aggregation group run after IO and base cuboid group threads, the number of threads

of aggregation group can be equal the total number of processors. Each thread of base

cuboid and aggregation groups can be assigned to different number of attribute values, but

there is no restriction to this configuration. If the attribute values are combined according

to their frequencies, the system scales well.

In a shared-memory architecture, we must consider the hardware limitations described

in (DONGARRA et al., 2003). In general, the p-Cube approach scales very well in a shared-

memory multiprocessor machine, where a linear speedup is not reachable to a memory-

bound application, since the intensive memory access increases the bus system contention.

Most bus-based systems do not scale well because of contention on the bus (DONGARRA

et al., 2003).

If a distributed-memory architecture is selected, each processing node can store a

partition of the base relation, one IO thread, one resource, one thread of base cuboid

group, one of aggregation group and two cuboids partitions. Each thread of base cuboid

group shares a resource with one IO thread and the aggregation group threads must scan

all partitions manipulated by base cuboid group threads. Due to these observations, in

a distributed implementation both resources and cuboid partitions manipulated by base

cuboid group must enable remote access. The remaining producer/consumer ideas can be

used without change.
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If each processing node is a multiprocessor machine with multiple disks, a similar

shared-memory solution can be proposed to each processing node. The producer/consumer

model modifications also occur to enable remote access to some abstractions of p-Cube

approach.

6.5 p-Cube Computing Star Approach in Parallel

To efficient encapsulate the Star approach into p-Cube approach we must execute the

original star base cuboid algorithm, proposed in (XIN et al., 2003), as multiple base cuboid

threads. The original simultaneous aggregation algorithm, proposed in (XIN et al., 2007),

must be extended to be executed in p-Cube approach. First, the extended algorithm

must create a new cuboid partition to store the aggregations derived from the base cuboid

partitions, as Figure 6.4 illustrates. Then the simultaneous aggregation algorithm is

executed on both cuboid partitions manipulated by each aggregation thread. The result

is a set of sub-cubes, each of them composed by two cuboids partitions with all possible

aggregations and without single paths, regardless the number of attribute values assigned

to each aggregate and base cuboid threads.

6.6 p-Cube Computing MDAG Approach in Parallel

Due to the similarity between MDAG and Star, the p-Cube approach can encapsulate

the MDAG approach in a similar way, i.e., by using the original MDAG base cuboid

algorithm and extending the MDAG aggregation algorithm to both create new cuboids

partitions and generate the aggregations. The result is a set of sub-cubes, each of them
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composed by two cuboids partitions with all possible aggregations and without both single

paths and common internal nodes, regardless the number of attribute values assigned to

each aggregate and base cuboid threads.

The p-Cube approach implements a local internal node redundancy elimination to

avoid synchronization. Instead of a unique pool of internal nodes shared among all base

cuboid and aggregation threads, each cuboid partition has its own internal node pool. Our

experiments demonstrate that the memory consumption of MDAG and p-Cube approaches

is similar, since the number of internal nodes is insignificant when compared with the

number of non internal nodes.

MDAG approach uses the highest cardinality dimension to produce the internal nodes.

Due to this particularity, p-Cube uses the remaining dimensions attribute values to im-

plement the attribute-based decomposition strategy.

6.7 p-Cube Computing MCG Approach in Parallel

To efficient encapsulate MCG approach into p-Cube approach we must implement the

original MCG base cuboid algorithm and MCG base cuboid reduction algorithm as p-Cube

base cuboid threads. After each base cuboid partition computation it must be reduced

using the MCG graph-path function. Furthermore, we must extend the MCG aggregation

algorithm to first generate the aggregations beginning with the first dimension and then

create new cuboids partitions to store the aggregations beginning with the remaining

dimensions of a data cube.

The p-Cube approach implements a local sub-graph redundancy elimination to avoid

synchronization. Instead of a unique cube representation without common sub-graphs,
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i.e., without prefixes and suffixes redundancies, p-Cube guarantees a set of sub-cubes, each

of them composed by two cuboids partitions without common sub-graphs. In summary,

p-Cube with MCG approach does not eliminate the suffix redundancies globally, but only

locally. Our experiments demonstrate that the memory consumption of sequential MCG

and p-Cube (with MCG) approaches are different, but due to the MCG memory con-

sumption improvements both sequential and parallel MCG versions consume less memory

than all previous sequential or parallel approaches.

6.8 p-Cube Memory Management and Dimension Or-

dering

The p-Cube approach adopts the memory management used by the encapsulated ap-

proach. Details about how to efficient manage the memory consumption is found in

Section 4.5. The same strategy is adopted to dimension ordering, i.e., p-Cube uses the

encapsulated approach dimension ordering. Details about each dimension ordering strat-

egy can be found in Section 5.7.

6.9 Performance Analysis

A comprehensive performance study is conducted to check the efficiency and the scal-

ability of the proposed algorithms. All the algorithms are coded in Java 64 bits (JRE

6.0 update 7). We run the algorithms in a dual Intel Xeon E5405 with 16GB of RAM.

Each Intel Xeon E5405 is a quad-core processor, so we have a total of 8 processors (2 GHz

each) in the machine. The 16GB of RAM is shared among the 8 processors. There are
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4 SATAII disks (7200rpm). The system runs Windows Server 2003 R2 64 bits. All base

relations can fit in the main memory. All full cubes can also fit in the main memory.

Similar to MDAG and MCG performance analysis, D is the number of dimensions, C

the cardinality of each dimension, T the number of tuples in a base relation, and S the

skew of the data. When S is equal to 0, the data is uniform; as S increases, the data is

more skewed.

In p-Cube experiments we did not use more dimensions and greater cardinality because

in high dimension and high cardinality base relations the output of full cube computation

gets extremely large, resulting in swap, i.e., the utilization of secondary storage. The

utilization of secondary storage invalidade the experiments, since our approaches work

only with main memory. Moreover, the existing curves have clearly demonstrate the

trends of the p-Cube algorithms runtime and memory consumption when computing base

relations with high cardinality and high number of dimensions.

We test p-Cube approach using two synthetic base relations and one real base relation.

We verify p-Cube behavior when computing uniform and skewed base relations. The first

synthetic base relation R has T=1M, S=0, C=10000 and D=6. The second synthetic

base relation R‘ has T=1M, S=2, C=1000 and D=9. Both base relations represent huge

datasets.

Figures 6.6 and 6.7 illustrate p-Cube runtimes when computing R and R‘, respec-

tively. pCStar, pCMDAG and pCMCG represent p-Cube with Star, MDAG and MCG

approaches, respectively. Figures 6.8 and 6.9 illustrate p-Cube memory consumption when

computing R and R‘, respectively. We use threads instead of processors in our graphics,

since p-Cube approach is executed in a shared-memory architecture. In such an archi-

tecture, the operating system schedules the CPU. The user applications have no control
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FIGURE 6.6 – p-Cube runtimes when computing R.

FIGURE 6.7 – p-Cube runtimes when computing R‘.

over the CPU, so it is more adequate to use threads instead of processors. Normally,

the operating systems assign one thread per processor, but we cannot guarantee such a

condition.

Figures 6.6, 6.7, 6.8 and 6.9 illustrate experiments without the IO threads, i.e., we

assume the resources with all tuples of the base relation. We accomplish an experiment

only with IO threads forward in this section. The IO threads are not measured together

with the base cuboid and aggregation threads, since we want identical number of base and

aggregation threads and, consequently, identical number of cube partitions. In Figures
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FIGURE 6.8 – p-Cube memory consumption when computing R.

6.6, 6.7, 6.8 and 6.9, we increase the number of threads from one to eight, which means

that we start one-eight base cuboid thread(s) and one-eight aggregation thread(s). It is

important to stress that the base aggregation threads run after the base cuboid threads,

so we always have an idle processor.

FIGURE 6.9 – p-Cube memory consumption when computing R‘.

The memory consumption of p-Cube is similar, regardless the number of threads and,

consequently, the number of cube partitions used in the experiment. This is an impor-

tant result, since p-Cube with MDAG and MCG adopts local redundancies elimination,

explained in Sections 6.6 and 6.7, respectively. These local redundancies elimination do
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not seriously affect the global memory consumption.

FIGURE 6.10 – p-Cube speedup when computing R.

The runtimes of p-Cube decrease significantly from experiments with one thread (one

thread of base cuboid group and one of aggregation group) to two threads (two threads

of base cuboid group and two of aggregation group). After two threads, the runtime

decreases slowly, almost stopping after five threads running simultaneously.

FIGURE 6.11 – p-Cube speedup when computing R‘.

The speedup, illustrated in Figures 6.10 and 6.11, is one of the key metrics for the

evaluation of parallel database systems (DEWITT; GRAY, 1992). It indicates the degree to

which adding processors decreases the runtime. In our context, the relative speedup for n
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threads is defined as Sn=RT1/RTn, where RT1 is the runtime with one thread and RTn

is the runtime with n threads. An ideal Sn is equal to n.

When computing R and R‘ (Figures 6.10 and 6.11, respectively), p-Cube achieves

a maximum speedup of three, i.e., it is at most three times faster than a sequential

approach in a machine with eight processors and a shared memory system. There are

several justifications for this behavior. First, in a shared-memory architecture, as the

number of memory accesses increases, the contention on the bus system also increases.

The p-Cube approach is a memory bound application, so if the memory latency increases

the application runtime deteriorates. Second, we cannot schedule the CPU. The oper-

ating system does it, so we cannot guarantee that each thread is assigned to a different

processor. Third, the cube partitions may have different sizes, which can cause a bad load

balancing. Fourth, the p-Cube approach is not completely parallel, i.e., p-Cube main

application starts the threads, waits until the base cuboid threads finish their tasks, starts

the aggregation threads and waits until they are finished, so there is a fraction of the

original computation that is sequential. No application can achieve 100% of parallelism,

as (HENNESSY; PATTERSON, 1990) demonstrates.

Figures 6.12 and 6.13 illustrate the runtimes of each thread when computing R and

R‘, respectively. On both graphics, we have experiments where one or two threads run-

times differenciate from the remaining threads runtimes. We collect the size of each cube

partition computed by each thread (consider each cube partition two cuboids partitions

manipulated by both base and aggregation threads) to verify the size differences. Figures

6.14 and 6.15 illustrate the sizes of the cube partition that each base cuboid and aggre-

gation threads handle. The full data cube is divided into one-eight partitions, according

to the number of threads started in an experiment. Note that, there are partitions with
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FIGURE 6.12 – p-Cube threads runtimes when computing R.

different sizes in an experiment, so we can affirm that part of the threads runtimes differ-

ences, illustrated in Figures 6.12 and 6.13, is caused by the cube partitions size difference.

The other shared-memory architecture limitations must also be considered in such results.

In the second set of experiments we test p-Cube approach computing a real dataset.

The dataset is derived from the HYDRO Elevation Derivative Database (http://edcdaac.usgs.gov/gtopo30/hydro/).

It is the same real database used in MDAG and MCG experiments. Figures 6.16 and 6.17

illustrate the p-Cube runtimes and speedup, respectively. Due to the similarity to the

synthetic results, we omit the remaining graphics.

Finally, we test the IO thread scalability. Figure 6.18 illustrates simultaneous IO

computation. We simulate a base relation with 5 dimensions, skew 0, cardinality 30 on



CHAPTER 6. P-CUBE APPROACH 162

FIGURE 6.13 – p-Cube threads runtimes when computing R‘.

each dimension and 5M tuples. The base relation is partitioned into 2, 3 and 4 equal

size files. Each IO thread reads its file and inserts the tuples in the resources according

to the attribute values of one dimension. In general, the IO threads scale rather well,

since we have to consider a synchronized block of code in the resources and the same

shared-memory architecture limitations described before.
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FIGURE 6.14 – p-Cube cube partitions size when computing R.

6.10 Summary

The p-Cube approach proposes an attribute-based data cube decomposition strategy,

which combines both task and data parallelism. The p-Cube approach uses the dimensions

attribute values to partition the data cube. It is a redesign of the two phase (base and

aggregation phases) Star and MDAG sequential algorithms to run in parallel. It is also a

redesign of the three phase (base, base reduction and aggregation phases) MCG sequential

algorithms to run in parallel.

The p-Cube approach is sensitive to the output of the sampling method, used to

identify the combination of attribute values assigned to each cube partition. The results

demonstrate that some cube partitions are bigger than others, but the difference is not
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FIGURE 6.15 – p-Cube cube partitions size when computing R‘.

so big, so the cube partitions size difference is not the unique cause for the low p-Cube

speedup. We must also consider the shared-memory architecture limitations.

The cube partitions size difference can be reduced if we adopt a more sophisticated

sampling method. In this thesis, we implement a version of the simple random sampling,

proposed in (OLKEN; ROTEM, 1990). There are many other sampling methods that can be

used, but none of them will improve the speedup significantly, since there are architecture

limitations to be considered.
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FIGURE 6.16 – p-Cube real dataset runtime.

FIGURE 6.17 – p-Cube real dataset speedup.

FIGURE 6.18 – p-Cube IO threads scalability.



7 Discussion

In this section, we discuss a few issues related to MDAG, MCG and p-Cube approaches

and point out some research directions.

7.1 Iceberg Data Cubes

The Star approach can compute full or iceberg data cubes efficiently. Due to similarity

among Star, MDAG and MCG cube approaches, we state that all Star iceberg strategies,

including the computation of shared dimensions and the utilization of star-tables to prune

infrequent nodes creation, can be easily embodied in the MDAG or MCG approaches.

Basically, the actual MDAG and MCG cube representations enable the computation

of shared dimensions during the base cuboid generation. Infrequent base cells can also

be pruned if we scan the base relation twice, one to generate the 1D cuboids and the

second to produce the iceberg base cuboid. During the aggregation phase, both MDAG

and MCG can adopt the utilization of star-tables. Such star-tables demand extra data

structure traversals, but they prove to be an interesting optimization, as (XIN et al., 2003)

demonstrates.

The p-Cube approach can also be extended to compute iceberg cubes. Basically, the
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second aggregation strategy, where aggregations (B, C, D, m‘), (C, D,m“) and (D, m“‘)

of a 4-D data cube (ABCD) are generated first, must be used to compute Star, MDAG

and also MCG approaches. The other possible p-Cube aggregation strategy cannot be

used, since it will prune infrequent cells before their aggregations, so incorrect iceberg

cube computation may occur.

Unfortunately, the iceberg approaches suffer from several weaknesses. First, it is diffi-

cult to set up an appropriate iceberg threshold. A low threshold may generate huge cubes,

and a high one may invalidate many useful applications. Second and more importantly,

an iceberg cube cannot be incrementally updated. Once an aggregated cell falls below

the iceberg threshold and it is pruned, incremental updates are not able to recover the

original measure value. This restriction is the main justification for not implementing

iceberg MDAG, MCG and p-Cube approaches in this thesis.

7.2 Data Cube Updates

An update is caused by: (i) new base cell in the lattice, (ii) base cell measure value

update, (iii) adding dimension, (iv) dimension suppression, (v) adding measure value, and

(vi) measure value suppression.

The first two update types may demand the creation of new nodes if there is no

occurrence of such nodes in the lattice (situation i) or if a node is an associated node

(situation ii). If a node points to a compressed single path, i.e., has a unique descendant,

and the tuple insertion demands the creation of a second descendant, new node(s) must

be created to represent the compressed node(s). We believe that the described scenarios

are not CPU bound, since they may affect specific regions of the lattice. Note that,



CHAPTER 7. DISCUSSION 168

after an update or insertion we must maintain the representation without single paths

and common internal nodes on both MDAG and MCG approaches, and without common

sub-graphs in the MCG approach. These requirements involve the compression of single

paths, the maintenance of the internal node pool with unique nodes and the recalculation

of the updated sub-graph graph-path values, including all ancestor nodes derived from

the updated/inserted node. Optimizations to avoid some graph-path recalculations are

required to turn this type of update acceptable for the MCG approach.

The third and fourth update types are easily achieved in MDAG and MCG approaches.

If we need to suppress a dimension, we just remove the nodes related to that dimension

and link their descendants to their ancestors. If the removed dimension is the one used

to form the internal nodes, we just remove the internal nodes. This arrangement can

be considered a simple and costly operation, but it seems to be more efficient than re-

compute the entire cube. The graph-path recalculation is not necessary when we remove

a dimension.

A dimension addition demands a new base relation scan and the computation of a

set of new sub-graphs rooted by the new dimension attribute values. The existing sub-

graphs are considered aggregations of the new set of sub-graphs. We illustrate a situation

where a base relation was first scanned with D dimensions and then with D+1 dimensions,

preserving the number of tuples. The new set of sub-graphs is computed in the same way,

i.e., first the algorithm generates the base cuboid rooted by the new dimension attribute

values, then it reduces such a base cuboid using the graph-path function, and finally it

generates all aggregations rooted by the same set of new attribute values. The MDAG

approach demands only the generation of the aggregations, maintaining the internal nodes

uniqueness.
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Finally, we have updates related to measure values. These types of updates represent

the worst scenario, since the graph-path function and the internal node pool uses the

measure values of some nodes to preserve the data cube integrity. If a measure value is

added or suppressed we must redo the cube computation from the scratch.

In summary, the Star, MDAG and MCG approaches require partial or complete full

cube scans, and substantial node updates, deletions and creations, so updates can be very

costly computationally. Optimized methods, which include batch updates, are required

to Star, MDAG and MCG approaches. The p-Cube approach suffers from the same

problems, since it encapsulates such sequential approaches to run in parallel.

7.3 Data Cube Query

The MDAG and MCG approaches use graphs to represent the data cube. Each node

has a set of descendants, siblings, ancestors and internal nodes. Each set can be efficiently

implemented using a binary search tree, including heap, red-black tree and AVL tree, or

a hash table. The search complexity of a binary search tree is O(lg n), where n is the

number of nodes in the tree. The search complexity of a hash table is constant, i.e., O(1).

Assuming that a MDAG or MCG cube representation has height equal D, where D is

the number of dimensions in a data cube, a base cell, with D attribute values, search

complexity is O(D), if hash tables are used, or O(D lg n), if binary search trees are used

as secondary data structures. Note that, a hash table has a constant access, but its

utilization can waste memory if we define the hash table size too large, or it can suffer

from successive costly resize method executions if we define the hash table size too small.

In general, the binary search trees are used, since they represent the best choice in terms
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of response time and memory consumption.

In general, users or discover driven methods are interested in cube regions, querying

set of cube cells and not just a single cell. New methods to optimize the navigation in the

lattice to return specific cube regions are required, since any unnecessary traversal will

compromise the query response time. Moreover, the implementation of efficient parallel

query methods can speedup the response time, so they are also required. For example, if

we submit a query of the type (a1, b1, C), indicating that we want all cube cells beginning

with a1b1 and having any attribute value in C, including the wildcard all (*). In such a

situation, we can easily parallelize the query, starting one thread for each distinct value

of dimension C. If the cardinality of C is too high, we can also adopt some heuristics to

group the attribute values.

Sophisticated queries are also required. The top-k queries or ranking queries must be

integrated with our approaches. For example, a product manager who is analyzing a sales

database which stores the nationwide sales history organized by location and time. The

user may pose the following queries: ”What are the top-10 (state, year) cells having the

largest total product sales?” and the user may further drill-down and ask ”What are the

top-10 (city, month) cells?”. Moreover, an organization donation database, where donators

are grouped by age, income, and other attributes. Interesting questions include: ”Which

age and income groups have made the top-k average amount of donation (per-donor)?”

and ”Which income group of donators has the largest standard deviation in the amount of

donation?”. In (LI et al., 2007) (XIN; HAN, 2008) (WU; XIN; HAN, 2008), the authors present

interesting top-k queries methods. We believe that, the integration of the top-k methods

with our proposed approaches can produce interesting results and further optimizations

to our cube representations can occur to speedup this type of queries response time.
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7.4 Computing Complex Measures

In this thesis, each MDAG and MCG node has a set of aggregate values, each of

them associated to one or more column(s) of the base relation and to a statistic function.

Computing full MDAG, MCG and p-Cube cubes with complex measures, such as AVG,

can be easily included, as our experiments demonstrate. If an iceberg cube is to be

computed, the technique proposed in (HAN et al., 2001) can be adopted.

7.5 Handling Large Databases and the Curse of Di-

mensionality

In this section, we separate the problem of low/medium dimension relations, which

generates a huge amount of cells that cannot fit in main memory, from high dimension

relations that cannot be efficiently computed by the current Star, MDAG and MCG

approaches.

For the first problem, we can achieve an initial solution if we use a dimension to segment

the MDAG or MCG cube representation. The idea is proposed in (XIN et al., 2007). First,

the algorithm scans the whole base relation, loads the tuples with one specified value on a

dimension, and partitions the remaining tuples in separated small data files. For example,

tuples with attribute value 1 on the first dimension are loaded and tuples with attribute

value i (i 6= 1) are saved in data filesi. When the first branch finishes, i.e., when the base

cells and aggregated cells of the graph rooted by 1 are computed, the released memory

can be used to load the second branch from data2.

The graph rooted by the all value (graph*) must be computed. We have two alter-
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natives for its computation. First, after each branch computation, the graph* is loaded

in memory (swapped in) and the cells derived from the computed branch are stored in

graph*. This alternative demands two graphs in memory, which can be impractical. The

second alternative consumes a second scan of each data file, one to produce the graph

rooted by 1, for example, and the second to produce the aggregations rooted by all (*).

The second alternative is slower than the first one.

One may also consider the case that even the specific sub-graph may not fit in memory.

For this situation, the projection-based preprocessing proposed in (HAN et al., 2001) can

be an interesting solution.

We have many approaches that address solutions to the curse of dimensionality prob-

lem, but none of them can solve the fundamental problem of number of cells and runtime.

In (LI; HAN; GONZALEZ, 2004), the authors propose one of the most efficient approaches to

compute high dimension datasets with medium number of tuples (around 106-108 tuples).

The Frag-Cubing approach adopts a partial materialization of the data cube. We believe

that the adoption of cube shell fragments, proposed in (LI; HAN; GONZALEZ, 2004), in

conjunction with our idea can produce efficient MDAG, MCG and p-Cube approaches for

high dimensional data cube computation, but the row-based idea needs to be reformulated

to guarantee the computation of data cubes with high number of tuples.

7.6 Temporary Nodes

The temporary nodes generated by the MDAG, MCG and, consequently, p-Cube ag-

gregation algorithms can be considered a hard problem. We suggest a MCG pruning

method based on the presence of different descendant nodes in the sibling nodes. This



CHAPTER 7. DISCUSSION 173

solution appeases the creation of new temporary nodes, but in some special scenarios it

continues generating a huge number of nodes.

We need to develop some alternatives to minimize the number of temporary nodes.

The double insertion method, proposed to compute the MCG base cuboid, can be an

interesting solution to be used to compute the aggregated cells, but it must be improved

to avoid extra graph traversals.

7.7 p-Cube with Dwarf Approach

The p-Cube approach adopts a producer/consumer model. It uses an attribute-based

data cube decomposition strategy which combines both task and data parallelism. The

base relation can be partitioned into a set of independent files, which can be stored in

multiple disks. Multiple IO threads can read such files simultaneously with no synchro-

nization. Since a tuple has been stored in one resource, the base cuboid thread can

consume it.

The online tuple consumption of p-Cube is one of its key concepts, but Dwarf approach

requires a sorted resource, so p-Cube must wait until the last tuple is inserted in a resource

to start consuming them. The waiting deteriorates p-Cube runtime, so we decide not to

implement p-Cube with Dwarf approach.
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7.8 p-Cube Approach in a Distributed-Memory or

Hybrid Architectures

In this thesis, p-Cube approach is executed in a shared-memory architecture. The

shared-memory architecture is currently by far the most popular organization (HENNESSY;

PATTERSON, 1990). That is the main reason to start the development of p-Cube in such an

architecture. However, p-Cube approach must be extended to be executed in a distributed-

memory architecture and, mainly, in a hybrid architecture, since the actual PCs clusters

consider increasing the use of multicore processing nodes.

Several small extensions must be implemented in p-Cube to run in a distributed envi-

ronment, but as (DONGARRA et al., 2003) reinforces : ”the principal programming problem

for distributed-memory systems is management of communication between processors.

Data placement is important so that as few data references as possible require communi-

cation.”

7.9 p-Cube Sampling Methods

The p-Cube approach implements a version of the simple random sampling, proposed

in (OLKEN; ROTEM, 1990). There are many other sampling methods that can be used.

Sampling methods are classified as either probability or nonprobability. In probability

samples, each member of the population has a known non-zero probability of being se-

lected. Probability methods include random sampling, systematic sampling, and stratified

sampling. In nonprobability sampling, members are selected from the population in some

nonrandom manner. These include convenience sampling, judgment sampling, quota sam-
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pling, and snowball sampling.

Each method must be integrated into p-Cube approach. Each method accuracy and

runtime must be considered in our analysis. This study is essential to verify how much

the speedup can be improved when similar sized cube partitions are computed.

It is important to stress that, sometimes such an uniformity in the partition size is

not reachable. For example, considering the following situation: a base relation R with

three dimensions A,B and C, 1M tuples, cardinality of A equal 3 and R skew equal 0,

i.e., a dataset with uniform distribution. A data cube must be computed in a shared-

memory architecture with just two processors. In this case, two base cuboid partitions

are computed, and one base cuboid partition must be assigned to two attribute values of

A and the second partition to one attribute value of A. Regardless the sampling method

used, the result will be identical. This result will produce base cuboids partitions with

different sizes. Assuming a uniform distribution in the dataset, one cube partition will

have 1/3 of the full cube size and the second 2/3 of the cube size. A cube partition is

represented by two cuboids partitions, manipulated by each base cuboid and aggregation

threads.

An alternative to solve the problem is to consider more than one dimension assigned

to each base cuboid partition. A base cuboid partition can be assigned to dimensions

A and B attribute values, instead of only dimension A atribute values. The same can

be done to the remaning cuboids partitions. Such an idea demonstrates how complex a

sampling techinique can be to output balanced results. We consider the investigation of

new sampling methods the first big challenge to p-Cube approach.
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7.10 p-Cube Grouping Method

The p-Cube approach implements a simple grouping method. We first collect the

dimensions attribute values frequencies and then multiply their frequencies according to

their dimensions. For example, dimension 1 attribute values frequencies are multiplied by

1, dimension 2 attribute values frequencies are multiplied by 2, and so on.

FIGURE 7.1 – p-Cube grouping method.

Figure 7.1 illustrates our grouping method results and the ideal or theorical grouping

method results when partitioning R into 2 sub-cubes. Note that, our grouping method

produces unbalanced cube partitions, so it must be improved. The sampling and grouping

methods are the big challenges of p-Cube approach.

7.11 Computing Different Measure Values

Our MDAG and MCG approaches reduce the data cube size fusing graph nodes with

identical measure values. If the measure values are partially/totally different in a base
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relation our approaches do not reduce substantially the cube size.

Figure 7.2 illustrates a base relation with eleven tuples and eleven different measure

values. We illustrate only the MCG approach, but the MDAG suffers from the same

problem. The MCG base cuboid has no suffix reduction, since all base cells have different

measure values. The full MCG data cube eliminates some suffix redundancies, i.e., some

suffixed graph nodes. In general, a base relation with only distinct measure values is

rare. If such a base relation occurs, our approaches prove to indentify all prefix/suffix

redundancies of a data cube.

FIGURE 7.2 – MCG computing different measure values.

In the worst case, MCG uses cube size similar to Dwarf, but without wildcards and

without sorting. In general, MCG reduces the cube size more than Dwarf, Star and

MDAG, even if the measure values are partially/totally different.
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7.12 Summary

In this chapter, we point out some problems and research directions, including the

update topic, the possibility of MDAG, MCG and p-Cube extensions to compute iceberg

cubes, the need of some different query methods including parallel and top-k methods, the

easy extensions to MDAG, MCG and p-Cube to compute complex measures, the possible

integration between our approaches and Frag-Cubing, enabling the computation of high

dimensional data cubes, and finally the problem of using huge number of temporary

nodes during the aggregation phase. We also include the reason to not implement p-Cube

with Dwarf approach, the p-Cube extensions to execute in distributed-memory or hybrid

architectures and the different sampling/grouping methods that can be integrated into

p-Cube approach.

In the next chapter we synthesize the main conclusions and contributions of our work,

and point out some directions of future improvements.



8 Conclusions

In this thesis, we present three approaches to both compute and represent full data

cubes.

In Chapter 2, we emphasize the research background. We describe some concepts such

as DW, Data Cube, Cube Cell, Multidimensional Schemas, Measures, Concept Hierar-

chies, OLAP, OLAP Operations, the Cube Computation Operator and the most popular

parallel architectures to enable a better understanding of the remaining chapters of the

thesis.

In Chapter 3, we describe the related work. We include the description of the main

contributions in computing a data cube and the methods to reduce the cube size. Some

approaches focus on finding efficient methods to generate all possible aggregations that

form a data cube. The following methods are described: bottom-up proposed in Bottom-

Up Computation (BUC) approach and top-down proposed in Multiway approach. The

chapter highlights some proposals to reduce the cube size. Such proposals normally pro-

duce positive impacts on the cube computation, reducing its runtime. The proposals are

Star approach that eliminates the presence of both single paths and prefix nodes in a data

cube, Dwarf approach that eliminates the prefix redundancy and part of the cube suffix

redundancy, and Condensed Cube approach that also eliminates part of the cube suffix
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redundancy, creating some extra data structures for such a task. In Chapter 3, we detail

each approach, its benefits and limitations.

In Chapters 4, 5 and 6, we detail the contribution of our work. We present the se-

quential approaches, including their reduced full cube representations and computation

methods. Besides each cube computation method key features, including the internal

node, dimensional ID, double insertion method, MCG pruning method, and the graph-

path function, we present the algorithms and performance studies. The performance

studies show the reduction ratio of our full cube representations when compared to a

Star cube representation. The performance studies also compare the runtime of our cube

computation methods with Dwarf and Star cube computation methods. The results show

that both MDAG and MCG approaches are faster than Dwarf and Star approaches and

consume less memory to represent the same full cube. The MCG approach implements

the complete elimination of prefix/suffix redundancies, which drastically reduce the cube

size, producing a reduction ratio of 70-90% when compared to a Star full cube representa-

tion. The p-Cube approach, described in Chapter 6, is a scalable design to compute Star,

MDAG and MCG approaches in parallel. The p-Cube combines both task and data par-

allelism to achieve both satisfactory performance results in terms of runtime and memory

consumption.

Discussion on potential extensions and limitations of MDAG, MCG and p-Cube ap-

proaches are presented in Chapter 7. In Chapter 7, we point out some problems and re-

search directions, including the update topic, the possibility of MDAG, MCG and p-Cube

extensions to compute iceberg cubes, the need of some different query methods including

parallel and top-k methods, the easy extensions to MDAG, MCG and p-Cube to compute

complex measures, the possible integration between our approaches and Frag-Cubing, en-
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abling the computation of high dimensional data cubes, and finally the problem of using

huge number of temporary nodes during the aggregation phase. We also include the rea-

son to not implement p-Cube with Dwarf approach, the p-Cube in a distributed-memory

or a hybrid architecture and the different sampling methods that can be integrated in

p-Cube approach.

This work produced three full research papers ((LIMA; HIRATA, 2007) (LIMA; HIRATA,

2008) (LIMA; HIRATA, 2009)), two IBM Ph.D. Fellowship Awards (2007 and 2008), an

internship at IBM Centers for Advanced Studies (CAS - Canada) and an invitation to

submit an extended version of (LIMA; HIRATA, 2008) paper to a Journal Qualis A1. Fi-

nally, we are producing two more papers, one describing the p-Cube approach and the

second describing some new MCG improvements for reducing the graph-path function

computation.

In Table 8.1, we summarize the main features of our approaches. We emphasize the

cube size reduction aspect, the sorted base relation limitation, the computation method,

the graph based cube representation style, the prefix/suffix redundancies elimination and

possible parallel extensions, similar to Table 3.1. MCG eliminates the prefix/suffix redun-

dacies, prunes more unnecessary aggregations than MDAG, Star or Dwarf approaches and

preserves the the main features of Star approach. The p-Cube approach can encapsulate

MCG, providing parallel capabilities to such an approach. In summary, MCG and p-Cube

achieve the best results in our comparison table.

There are some interesting open issues to further extend MDAG, MCG and p-Cube

approaches. Most of them are emphasized in Chapter 7, but we must highlight the need of

efficient methods to both update MDAG and MCG data structures and enable MDAG and

MCG to compute high dimension relations. Discover-Driven methods, such as (DONG et
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TABLE 8.1 – MDAG, MCG and p-Cube Approaches Main Features.

al., 2004) (LEONID; KHACHIYAN; ABDULGHANI, 2002) (SARAWAGI; AGRAWAL; MEGIDDO,

1998), can be implemented using our cube approaches. Some sophisticated query meth-

ods, such as (WU; XIN; HAN, 2008) (XIN; HAN, 2008), must also be integrated to our

approaches. The implementation of our parallel approach in a distributed-memory archi-

tecture, composed by single and multiprocessor machines, will demand some extensions

to achieve efficient cube representation partitioning. The utilization of secondary storage

to compute a data cube is another important topic.

Recently, two new approaches were proposed: one to compute data cubes from graph

or networked data sources (CHEN et al., 2008) and a second to compute data cubes from

text databases (ZHANG; ZHAI; HAN, 2009). They represent new research directions that

must be addressed by MDAG, MCG and p-Cube approaches.
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Glossary

bottom-up computation

The top-down order starts the cube computation from the base cuboid

to the apex cuboid.

closed cell A cube cell which summarizes a set of cube cells with identical measure

values.

closed cube Semantic data cubes, where a set of cube cells with identical measures

are collapsed in one abstraction, named closed cell.

cube cell It is a generalization of the group-by operator over all possible combina-

tions of dimensions with various granularity aggregates. Each group-by,

named cuboid, corresponds to a set of cells, described as tuples over the

cuboid dimensions. A data cube is basically composed by dimensions

and facts. Dimensions are perspectives of the analytical process and

facts are what must be measured in such analytical process.

cuboid Each summarized table in a data warehouse is a cuboid. Given a set of

dimensions, it is possible to generate a cuboid for each of the possible

subsets of the given dimensions. The result forms a lattice of cuboids,

each showing the data at different level of summarization, or group-by.
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The lattice of cuboids is then referred to as a data cube.

cyclic graph There are many synonyms for ”cyclic graph”. These include simple

cycle graph and cyclic graph, although the latter term is less often

used, because it can also refer to graphs which are merely not acyclic.

In graph theory, a cycle graph is a graph that consists of a single cycle,

or in other words, some number of vertices connected in a closed chain.

The cycle graph with n vertices is called Cn. The number of vertices in

a Cn equals the number of edges, and every vertex has degree 2; that

is, every vertex has exactly two edges incident with it.

data cube An OLAP cube is a data structure that allows fast analysis of data.

The arrangement of data into cubes overcomes a limitation of relational

databases. Relational databases are not well suited for near instanta-

neous analysis and display of large amounts of data. Instead, they are

better suited for creating records from a series of transactions known

as OLTP or On-Line Transaction Processing. Although many report-

writing tools exist for relational databases, these are slow when the

whole database must be summarized.

data warehouse

A data warehouse is a repository of an organization’s electronically

stored data. Data warehouses are designed to facilitate reporting and

analysis

dimension Is a data element that categorizes each item in a data set into non-

overlapping regions.
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directed acyclic graph

In computer science and mathematics, a directed acyclic graph, also

called a DAG, is a directed graph with no directed cycles; that is, for

any vertex v, there is no nonempty directed path that starts and ends

on v.

fact table In data warehousing, a fact table consists of the measurements, metrics

or facts of a business process. It is often located at the centre of a

star schema, surrounded by dimension tables. Fact tables provide the

(usually) additive values which act as independent variables by which

dimensional attributes are analyzed. Fact tables are often defined by

their grain. The grain of a fact table represents the most atomic level

by which the facts may be defined.

fragmented cube

Small data cubes (with 3-5 dimensions) are computed to form the full

cube. The gaps (joins of two or more small cubes) are computed on the

fly. This kind of data cube is called shell cube or fragmented cube.

full cube Pre-computes all of the cuboids. The resulting lattice of computed

cuboids is also referred as full cube. This has a extremely fast query

response time, since all cuboids are previously pre-computed, but it may

requires huge amounts of memory space.

graph In computer science, a graph is a kind of data structure, specifically an

abstract data type (ADT), that consists of a set of nodes (also called

vertices) and a set of edges that establish relationships (connections)

between the nodes. The graph ADT follows directly from the graph
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concept from mathematics. Informally, G=(V,E) consists of vertices,

the elements of V, which are connected by edges, the elements of E.

Formally, a graph, G, is defined as an ordered pair, G=(V,E), where V

is a set (usually finite) and E is a set consisting of two element subsets

of V.

HOLAP There is no clear agreement across the industry as to what constitutes

”Hybrid OLAP”, except that a database will divide data between rela-

tional and specialized storage. For example, for some vendors, a HO-

LAP database will use relational tables to hold the larger quantities of

detailed data, and use specialized storage for at least some aspects of

the smaller quantities of more-aggregate or less-detailed data.

iceberg cube Contains only those cells of the data cube that meet an aggregate con-

dition. It is called an Iceberg-Cube because it contains only some of the

cells of the full cube, like the tip of an iceberg. The aggregate condition

could be, for example, minimum support or a lower bound on average,

min or max. The purpose of the Iceberg-Cube is to identify and compute

only those values that will most likely be required for decision support

queries. The aggregate condition specifies which cube values are more

meaningful and should therefore be stored. This is one solution to the

problem of computing versus storing data cubes.

measure In a data warehouse, a measure is a property that can be calculated

(summed or averaged, for isntance) using precomputed aggregates.

MOLAP Is the ’classic’ form of OLAP and is sometimes referred to as just OLAP.
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MOLAP uses database structures that are generally optimal for at-

tributes such as time period, location, product or account code. The

way that each dimension will be aggregated is defined in advance by one

or more hierarchies.

OLAP Online Analytical Processing, or OLAP, is an approach to quickly pro-

vide answers to analytical queries that are multi-dimensional in nature.

OLAP is part of the broader category business intelligence, which also

encompasses relational reporting and data mining. The typical applica-

tions of OLAP are in business reporting for sales, marketing, manage-

ment reporting, business process management (BPM), budgeting and

forecasting, financial reporting and similar areas. The term OLAP was

created as a slight modification of the traditional database term OLTP

(Online Transaction Processing).

partial cube Selective compute a proper subset of the whole set of possible cuboids.

Alternatively, it is possible to compute a subset of a data cube, which

contains only those cells that satisfy some user-specified criterion, such

as where the tuple count of each cell is above some threshold.

quotient cube Semantic data cubes, where a set of cube cells with identical measures

are collapsed in one abstraction, named class of cells.

ROLAP Works directly with relational databases. The base data and the dimen-

sion tables are stored as relational tables and new tables are created to

hold the aggregated information. Depends on a specialized schema de-

sign.
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