UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA QUÍMICA E ENGENHARIA DE ALIMENTOS PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ALIMENTOS

PRODUÇÃO DE PIGMENTO VERMELHO A PARTIR DE PIG-MENTO LARANJA PRODUZIDO POR *Monascus ruber* CCT 3802

Francielo Vendruscolo

Florianópolis – SC 2009

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

FRANCIELO VENDRUSCOLO

PRODUÇÃO DE PIGMENTO VERMELHO A PARTIR DE PIG-MENTO LARANJA PRODUZIDO POR *Monascus ruber* CCT 3802

Tese de Doutorado apresentado ao Programa de Pós-Graduação em Engenharia de Alimentos da Universidade Federal de Santa Catarina como parte dos requisitos para obtenção do título de Doutor em Engenharia de Alimentos.

Orientador: Prof. Dr. Jorge Luiz Ninow Co-orientador: Prof. Dr. Willibaldo Schmidell

Ficha catalográfica elaborada na DECTI da BU/UFSC

V453 Vendruscolo, Francielo

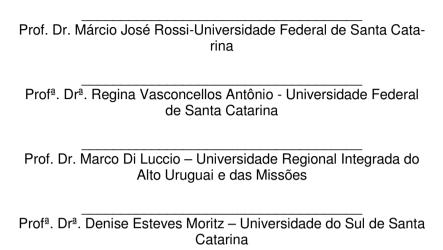
Produção de pigmento vermelho a partir de pigmento laranja produzido por *Monascus ruber* CCT 3802 [tese] / Francielo Vendruscolo; orientador, Jorge Luiz Ninow. - Florianopolis, SC, 2009. 272 f.: il., grafs., tabs.

Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia de Alimentos.

Inclui bibliografia

1. Engenharia de alimentos. 2. Pigmentos. 3. Água - Oxigênio dissolvido. 4. Reologia. I.Ninow, Jorge Luiz. I-I.Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Engenharia de Alimentos. III. Título.

CDU 663


FRANCIELO VENDRUSCOLO

PRODUÇÃO DE PIGMENTO VERMELHO A PARTIR DE PIG-MENTO LARANJA PRODUZIDO POR *Monascus ruber* CCT 3802

Esta Tese foi julgada adequada à obtenção do Título de Doutor em Engenharia de Alimentos e aprovada em sua forma final pelo Curso de Pós-Graduação em Engenharia de Alimentos da Universidade Federal de Santa Catarina.

	de		de	<u>_</u> .
Orientador: Prof. Dr. Jo	rge Luiz Nin Santa Cata		dade Federa	al de
Co-orientador: Prof. Dr.	Willibaldo S	chmidell-Uni	versidade F	ede-

ral de Santa Catarina

Aos meus pais Ademir e Adélia, meus irmãos Rafael e Daniele e minha noiva Cristina com todo amor e carinho.

AGRADECIMENTOS

Ao professor Jorge Luiz Ninow, pela orientação, incentivo, companheirismo e acima de tudo pela amizade.

Ao professor Willibaldo Schmidell pela co-orientação, pelas dicas e principalmente pelos conhecimentos transmitidos durante esta jornada.

À Denise, por ter iniciado esta maravilhosa linha de pesquisa no laboratório e também por ter auxiliado na realização de todo o trabalho, inclusive participando da banca de avaliação.

À professora Iraci Tosin pela disponibilidade e pela ajuda prestada nas determinações da atividade antimicrobiana dos pigmentos.

Ao professor João Borges Laurindo pela disponibilidade de utilização do reômetro Rheotest alocado em seu laboratório (PROFI) e aos amigos Bruno e Carmen pela convivência do diaa-dia.

Ao Francisco de Paula M. Moreira pela ajuda na interpretação das análises de FTIR.

Às queridas bolsistas Luana de Oliveira Pitol e Bruna Luise Müller, pela dedicação, compreensão, convivência e amizade. A participação de vocês foi muito importante para a realização deste trabalho.

Aos professores do Laboratório de Engenharia Bioquímica, Agenor Furigo Jr., Gláucia Maria Falcão de Aragão, José Miguel Muller, e a todos os amigos e colegas do laboratório pelo companheirismo e participação no trabalho.

Ao grande irmão e amigo Rafael por ter auxiliado no andamento do Doutorado e nas realizações de vários costelões no decorrer destes quatro anos.

Aos companheiros de futebol por ter levado um momento de distração e liberação de energias acumuladas durante estes 4 anos de doutorado.

Aos companheiros de moradia Leandro e Julio, pois estiveram todos os dias participando desta etapa em minha vida, além dos vários momentos de alegrias e tristezas.

Ao meu pai Ademir, minha mãe Adélia e meus irmãos Rafael e Daniele, por demonstrarem muito carinho, amor e acima de tudo compreensão. A vocês, muito obrigado.

À minha noiva Cristina pelo amor, apoio, carinho, companheirismo e acima de tudo pela compreensão. Cris, a você o meu muito obrigado.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) pela concessão da bolsa de Doutorado.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico pelo apoio financeiro e pela concessão das bolsas de Iniciação Científica da Bruna e da Luana.

À NOVOZYMES pela doação da enzima TERMINOX ULTRA 50L.

"Em tempo de paz convêm ao homem serenidade e humildade; mas quando estoura a guerra deve agir como um tigre" (William Shakespeare)

RESUMO

A produção de pigmentos por microrganismos é uma alternativa ao aumento da produção destes compostos naturais frente aos sintéticos. Fungos do gênero *Monascus* podem produzir pigmentos amarelo, laranja e vermelho. A utilização destes fungos é muito difundida em países como Japão, China, Indonésia, Índia e Coréia na coloração de arroz, peixes, vinhos e bebidas. Logo, o descobrimento de novas tecnologias e o estudo de condições para produção destes pigmentos merece grande atenção. O pigmento de major interesse comercial é o vermelho, geralmente produzido pelo processo de fermentação em estado sólido. Este método gera alguns problemas operacionais, dentre eles, a dificuldade de separar o pigmento da matriz sólida. A aplicação da fermentação submersa para a produção de pigmento laranja e posterior conversão para o vermelho, pode ser uma alternativa frente a estes problemas. Ante isto, o presente trabalho teve como objetivos: determinar o efeito do pH na produção de pigmentos; investigar a transformação do pigmento laranja em pigmento vermelho pela adição de compostos aminados, determinar parâmetros relacionados à transferência de oxigênio e a reologia do caldo de fermentação, e avaliar as propriedades, estabilidade térmica e atividade antimicrobiana dos pigmentos produzidos. Os principais resultados demonstraram que a variação do pH proporcionou a produção dos diferentes pigmentos. Pigmentos amarelos foram produzidos em pH 2, pigmentos laranja foram produzidos em pH 3 e 4; e, pigmentos vermelhos foram produzidos em pH 5 e 6. Foi possível produzir o pigmento vermelho a partir do pigmento laranja pela adição de aminoácidos, indicando que o ponto isoelétrico é essencial para a transformação. O caldo de fermentação apresentou comportamento pseudoplástico, determinado através de um sistema vane, alternativo ao sistema de cilindros concêntricos. Os valores do índice de consistência estiveram na faixa de 0.375 a 11.002 Pa sⁿ. Foi obtida a relação do índice de consistência em função da concentração de biomassa. A agitação de 300 rpm favoreceu a produção de pigmentos resultando em menor dano ao micélio fúngico, enquanto que maiores freqüências de agitação aumentaram a tensão de cisalhamento, danificando o microrganismo. O pigmento laranja apresentou maior estabilidade na menor faixa de pH. Ao contrário, os pigmentos vermelhos aminados e produzidos no cultivo do *M. ruber* apresentaram maior estabilidade em maiores valores de pH. Todos os pigmentos e a toxina citrinina apresentaram inibição do crescimento de *Staphylococcus aureus* ATCC 25922, mas não sobre *Salmonella enteritidis* ATCC 13076, enquanto que somente os pigmentos vermelhos aminados apresentaram atividade antimicrobiana sobre o crescimento de *Escherichia coli* ATCC 25923.

Palavras-chave: *Monascus ruber*, pigmentos, pH, oxigênio dissolvido, reologia, estabilidade térmica.

ABSTRACT

The production of pigments by microorganisms is an alternative to the increase in production of these natural compounds against synthetic versions. Monascus can produce vellow, orange and red pigments. Use of this fungus is widespread in Japan, China, Indonesia, India and Korea for the colouring of rice, fish, wines and drinks, consequently the discovery of new technologies and the study of production conditions for these piaments merits greater attention. The pigment of greatest commercial interest is the red one, generally produced by the process of solid state fermentation. This method causes some operational problems, including the difficulty in separating the pigment from the solid matrix. The application of submerged fermentation to the production of orange pigment and after transformation in red pigments may represent a solution. To this end, the objectives of the present study were: to determine the effect of pH on the production of pigments: to investigate the transformation of the orange pigment into the red pigment by the addition of aminated compounds, to determine parameters related to oxygen transfer and the rheology of the fermentation broth and to investigate the properties of thermal stability and antimicrobial activity of the pigments produced. The main results show that the variation in pH brought about production of the different pigments. Yellow pigments were produced at pH 2, orange pigments were produced at pH 3 and 4 and red pigments were produced at pH 5 and 6. It was possible to produce the red pigment from the orange pigment by the addition of amino acids, indicating that the isoelectric point was essential for the transformation. The fermentation broth exhibited pseudoplastic behaviour, as determined by means of a vane system, an alternative to the system of concentric cylinders. The values for the consistency index ranged from 0.375 to 11.002 Pa sⁿ. The consistency index was obtained as a function of the biomass concentration. Stirring at 300 rpm favoured the production of pigments resulting in less micelial damage, while higher stirring speeds increased the yield stress, damaging the microorganism. The orange pigment presented greater stability in the smallest pH range. By contrast, the red pigments aminated and produced by culture of M. ruber exhibited greater stability at higher pH values. All of the pigments as well as citrinin inhibited the growth of Staphylococcus aureus ATCC 25922 and did not present antimicrobial activity against Salmonella enteritidis ATCC 13076, while only the red pigments aminated and produced in the *M. ruber* culture presented antimicrobial activity against the growth of *Escherichia coli* ATCC 25923.

Keywords: pigments; *Monascus ruber*; rheology; oxygen transfer; thermal stability; antimicrobial activity.

LISTA DE FIGURAS

Ciaura O 1.	(a) Caraa primárias a sasundárias (b) Caardanadas
	(a) Cores primárias e secundárias (b) Coordenadas tridimensionais para medidas de cores (Adaptado de
	Morales, 1994)37
Figura 2.2:	Morales, 1994)37 Culturas de <i>Monascus ruber</i> CCT 3802 em meio
9	PDA41
Figura 2.3:	Biossíntese da citrinina e pigmento vermelho em
	Monascus ruber (Hajjaj et al., 1999a)45
Figura 2.4:	Estruturas dos principais pigmentos produzidos por
	espécies de Monascus46
	Transferência de massa da fase gasosa para a fase
	líquida para diferentes microrganismos (modificado
	de Reuss, 1991)50
	nterface gás-líquido com as películas estagnadas. 51
	Efeito da agitação sobre a espessura da película
	estagnada da fase líquida55
	Efeito da viscosidade sobre a transferência de
F: 0 0 - F	oxigênio56
	Reogramas de fluidos57
Figura 3.1: F	Fluxograma das macro etapas realizadas no trabalho.
	62
Figura 3.2:	Fluxograma dos principais passos realizados nesta
	etapa63
	Raias no fundo da placa de Petri para medição do
	crescimento radial64
Figura 3.4:	Fluxograma dos principais passos realizados nesta
	etapa69
Figura 3.5: I	Principais passos realizados nesta etapa do trabalho.
J	72
Figura 3.6:	Ilustração do sistema vane utilizado no reômetro
	rotacional ($d = 0.037 \text{ m}$; $HL = 0.040 \text{ m}$; $I = 0.010 \text{ m}$, E
	= 0,002 m e Ht = 0,18 m)74
	Fluxograma das principais etapas realizadas78
	Esquema do biorreator Bioflo III utilizado nos
	experimentos. (1) controlador de pressão; (2)
	fluxômetro de massa; (3) filtro asséptico; (4)
	dispersor de ar; (5) impelidores; (6) controle da
	temperatura; (7) eletrodo de pH; (8) eletrodo de O ₂
	dissolvido; (9) motor; (10) condensador; (11)

receptor/conversor de sinal; (12) computador; (13)
aquisição de dados e (14) exaustão dos gases79 Figura 3.9: Tela do sistema de aquisição de dados utilizados no
biorreator Bioflo III
Figura 3.11: Determinação da C _{CRIT} de oxigênio dissolvido 84 Figura 3.12: Concentração de O ₂ dissolvido durante a execução do método dinâmico
Figura 3.13: Fluxograma das principais etapas realizadas92 Figura 3.14: Aparato utilizado no tratamento térmico (1) solução de pigmento (2) circulação de água; (3) termômetro;
(4) agitador magnético e (5) banho termostatizado.94 Figura 3.15: Culturas de <i>Salmonella enteritidis</i> e <i>Escherichia coli</i> em meio McConkey e <i>Staphylococcus aureus</i> em
ágar sangue
CCT 3802 cultivado a 30 °C em PDA sob diferentes condições de pH (2,0 a 6,0)
condições de pH (6,5 a 10,0)
diferentes condições de pH
Figura 4.5: Espectro de varredura dos pigmentos produzidos por <i>Monascus ruber</i> CCT 3802 na faixa de pH de 6 a 10.
Figura 4.6: Cultivo de <i>Monascus ruber</i> CCT 3802 sob diferentes valores de pH
Figura 4.7: Frascos e papel filtro com biomassa de <i>Monascus ruber</i> CCT 3802 nos diferentes pHs cultivados 107
Figura 4.8: Cristais do pigmento laranja produzidos no cultivo de <i>Monascus ruber</i> CCT 3802 sob pH 3 (aumento de 40 X)

Figura 4.9: Pigmento laranja na ausência de glicina sob diferentes valores de pH (ordem de pH: 2; 4; 6; 8 e 10)109
Figura 4.10: Pigmento laranja na presença de glicina sob diferentes valores de pH (ordem de pH: 2; 4; 6; 8 e 10)
Figura 4.11: Concentração de pigmento laranja necessária para promover 1 UA _{470nm} 110
Figura 4.12: Aspecto visual da adição de diferentes aminoácidos ao pigmento laranja sob pH 5,0 (ordem: controle, tirosina, histidina, asparagina, metionina,
monoglutamato de sódio, cloreto de amônio e glicina)111
Figura 4.13: Efeito da adição de diferentes fontes aminoácidos
ao pigmento laranja a 30 °C sob pH 5,0 (a) UA _{470nm} e (b) UA _{510nm} 112
Figura 4.14: Aspecto visual da adição de diferentes compostos ao pigmento laranja sob pH 5,0 utilizando a mesma concentração de glicina (ordem: controle, tirosina,
histidina, asparagina, cloreto de amônio,
monoglutamato de sódio, metionina e glicina)113 Figura 4.15: Efeito dos diferentes compostos sobre as
absorbâncias, mantendo-se constante a
concentração de NH ₂ . (a) UA _{470nm} e (b) UA _{510nm} 114 Figura 4.16: Concentração mínima de glicina a pH 5,0. (a)
absorbância a 470 e 510nm (b) imagens das
amostras (as etiquetas indicam a massa de glicina em 25 mL)117
Figura 4.17: Espectroscopia de infravermelho (FTIR) do
pigmento laranja119
Figura 4.18: Espectroscopia de infravermelho (FTIR) do pigmento vermelho produzido pela aminação do
pigmento laranja com glicina119
Figura 4.19: Efeito do pH sobre a solução de pigmento laranja
produzido pelo <i>Monascus ruber</i> CCT 3802 na ausência de aminoácido121
Figura 4.20: Efeito do pH sobre a transformação do pigmento
laranja produzido pelo <i>Monascus ruber</i> CCT 3802 para vermelho a partir da adição de glicina 0,1 M.121
Figura 4.21: Efeito do pH sobre a transformação do pigmento
laranja produzido pelo Monascus ruber CCT 3802

para vermelho a partir da adição de monoglutamato 0,1 M
Figura 4.22: Efeito do pH sobre a transformação do pigmento laranja produzido pelo <i>Monascus ruber</i> CCT 3802 para vermelho a partir da adição de tirosina 0,025 M
Figura 4.23: Efeito do pH sobre a transformação do pigmento laranja produzido pelo <i>Monascus ruber</i> CCT 3802 para vermelho a partir da adição de metionina 0,025 M
Figura 4.24: Efeito do pH sobre a transformação do pigmento laranja produzido pelo <i>Monascus ruber</i> CCT 3802 para vermelho a partir da adição de histidina 0,025 M
Figura 4.25: Curva teórica da titulação de uma solução de glicina 0,1 M a 25 °C. Os retângulos sombreados centrados ao redor de pk ₁ = 2,34 e pk ₂ = 9,60 indicam as regiões de grande capacidade tamponante (Lehninger et al., 1995)
Figura 4.26: Biomassa de <i>Monascus ruber</i> CCT 3802, após separação do pigmento laranja, cultivada em pH 3,0.
Figura 4.27: Obtenção da percentagem de torque (α) em função da diferença de potencial128
Figura 4.28: Reograma do óleo padrão IPT 86 a 30 °C no sistema S/S_2 129
Figura 4.29: <i>N_P vs. 1/Re</i> do óleo IPT 86 a 30 °C no sistema vane na região de escoamento laminar130
Figura 4.30: Reograma da solução de goma guar 1% (p/v) no sistema S/S_2 a 30 °C131
Figura 4.31: Resultados de γ vs. N da goma guar a 30 °C no sistema vane
Figura 4.32: Freqüência acumulada do diâmetro dos pellets de Monascus ruber CCT 3802
Figura 4.33: Reogramas de diferentes concentrações celulares de <i>M. ruber</i> CCT 3802 determinados no sistema vane a 30 °C
Figura 4.34: Viscosidade aparente a 30 °C do caldo de

Figura	4.35: Parâmetros reológicos k e n em função da concentração de biomassa (X) de Monascus ruber
Figura	CCT 3802135 4.36: Comparações entre vários modelos do comportamento do índice de consistência (k) em função da concentração de biomassa (X)136
Figura	4.37: Determinação de k_P a 30 °C com a membrana nova
Figura	4.38: Determinação de k_P a 30 °C com a membrana utilizada em cinco cultivos
Figura	4.39: Correção do $k_L a$ pela consideração de k_P
Figura	4.40: Evolução da percentagem de saturação em função da concentração de oxigênio a 30 °C141
Figura	4.41: Comportamento do $k_L a$ sob diferentes freqüências de agitação e vazão específica de aeração142
Figura	4.42: Cultivo de <i>Monascus ruber</i> CCT 3802 a 30 °C sob a freqüência de agitação de 300 rpm144
Figura	4.43: Velocidade específica de crescimento e velocidade específica de respiração do <i>Monascus ruber</i> CCT 3802 a 30 °C sob a freqüência de agitação de 300 rpm
Figura	4.44: Cultivo de <i>Monascus ruber</i> CCT 3802 a 30 °C sob a freqüência de agitação de 600 rpm145
Figura	4.45: Velocidade específica de crescimento e velocidade específica de respiração do <i>Monascus ruber</i> CCT 3802 a 30 °C sob a freqüência de agitação de 600 rpm
Figura	4.46: Cultivo de <i>Monascus ruber</i> CCT 3802 a 30 °C sob a freqüência de agitação de 900 rpm146
Figura	4.47: Velocidades específicas de crescimento e velocidades específicas de respiração do <i>Monascus ruber</i> CCT 3802 a 30 °C sob a freqüência de agitação de 900 rpm
Figura	4.48: Resultados do k _L a obtidos durante os cultivos de <i>Monascus ruber</i> CCT 3802 a 30 °C sob as diferentes freqüências de agitação148
Figura	4.49: Imagens dos pellets de <i>Monascus ruber</i> CCT 3802 sob a freqüência de agitação de 300 rpm149
Figura	4.50: Imagens dos pellets de <i>Monascus ruber</i> CCT 3802 sob a fregüência de agitação de 600 rpm149

Figura 4.51: Imagens dos pellets de <i>Monascus ruber</i> CCT 3802 sob a freqüência de agitação de 900 rpm150
Figura 4.52: Evolução da concentração de biomassa, glicose e pigmentos ao longo do cultivo do <i>M. ruber</i> a 30 °C
sob agitação de 300 rpm e pH 3,0151 Figura 4.53: Velocidades específicas de produção de biomassa e pigmentos em função do tempo de cultivo152
Figura 4.54: μ_P vs. μ_X da produção de pigmento laranja pelo <i>Monascus ruber</i> CCT 3802152
Figura 4.55: Determinação de m_O e Y_O para <i>Monascus rube</i> . CCT 3802153
Figura 4.56: Determinação de C _{CRIT} de O2 no cultivo do <i>Monascus ruber</i> CCT 3802154
Figura 4.57: Cultivo do <i>Monascus ruber</i> CCT 3802 a 30 °C sob concentração de O ₂ acima de 3,386 mgO ₂ L ⁻¹ 155
Figura 4.58: Cultivo do <i>Monascus ruber</i> CCT 3802 a 30°C sob concentração de O ₂ na faixa de 2,032 a 2,370 mgO ₂ L ⁻¹ 155
Figura 4.59: Cultivo do <i>Monascus ruber</i> CCT 3802 a 30 °C sob
Figura 4.60: Pigmento laranja produzido pelo <i>Monascus rubel</i> CCT 3802 sob concentração de O ₂ acima de 50% da saturação
Figura 4.61: <i>Monascus ruber</i> em PDA após sete dias de cultivo (a) garrafa de Roux fechada com tampão de algodão e (b) garrafa de Roux fechada com tampão de
algodão e filme de PVC
Figura 4.63: Fluxograma sugerido para separação e purificação do pigmento laranja produzido pelo <i>M. ruber</i> em cultivo submerso161
Figura 4.64: Estimativa da concentração de biomassa de M ruber CCT 3802 cultivada em diferentes concentrações de O_2 pela utilização dos parâmetros m_O e Y_O
Figura 4.65: Determinação da <i>Ea</i> dos pigmentos produzidos. 165

Figura 4.66: Degradação do pigmento laranja sob diferentes tratamentos térmicos produzidos pelo <i>Monascus</i>
ruber CCT 3802166
Figura 4.67: Degradação do pigmento vermelho aminado com glicina sob diferentes tratamentos térmicos167
Figura 4.68: Degradação do pigmento vermelho sob diferentes tratamentos térmicos produzido no cultivo do
Monascus ruber CCT 3802167
Figura 4.69: Superfície de resposta de D_C do pigmento laranja em função da temperatura e pH171
Figura 4.70: Superfície de resposta de e $t_{1/2}$ do pigmento laranja
em função da temperatura e pH172
Figura 4.71: Diagrama de Pareto do efeito da temperatura e do
pH sobre a estabilidade térmica do pigmento laranja.
(a) D_C (b) $t_{1/2}$ 173
Figura 4.72: Superfície de resposta de D_C pigmento vermelho
aminado em função da temperatura e pH174
Figura 4.73: Superfície de resposta do $t_{1/2}$ do pigmento vermelho
aminado em função da temperatura e pH175
Figura 4.74: Diagrama de Pareto do efeito da temperatura e do
pH sobre a estabilidade térmica do pigmento
yermelbe eminede (e) D (b) t
vermelho aminado. (a) D_C (b) $t_{1/2}$
Figura 4.75: Superfície de resposta de D_C do pigmento vermelho aminado em função da temperatura e pH177
Figura 4.76: Superfície de resposta de $t_{1/2}$ do pigmento vermelho
(controle) produzido no cultivo em função das
variáveis temperatura e pH177
Figura 4.77: Diagrama de Pareto do efeito da temperatura e do
pH sobre a estabilidade térmica do pigmento
vermelho produzido no cultivo. (a) D_C (b) $t_{1/2}$ 179
Figura 4.78: Difusão do pigmento em diferentes concentrações
(mg mL-1) pelo ágar na ausência do microrganismo
alvo181
Figura 4.79: Atividade antimicrobiana do pigmento vermelho
aminado em diferentes concentrações (mg mL-1)
sobre Staphylococcus aureus ATCC 25922. As setas
indicam o halo de inibição181
Figura AN1: Dados que auxiliaram na interpretação das Figuras
4.17 e 4.18. Fonte: http://en.wikipedia.org235
Figura AN.2: Dados que auxiliaram na interpretação do FTIR do
pigmento vermelho (Lian et al., 2007)236

Figura	AN.3:	Dados	que	auxiliara	am n	а	interpretação	da	Figura
	4.	.18 (Bar	ret e	Elmore,	2004	1).			236

LISTA DE TABELAS

Tabela 2.1: Principais espécies de <i>Monascus</i> utilizados par produzir pigmentos
Tabela 2.2: Atividade antimicrobiana de extratos de pigmento produzidos por cepas de <i>Monascus</i> induzidas por
nêutrons e por raios X (Wong e Bau, 1977)43 Tabela 2.3: índice de consistência inicial e final de caldos d
fermentação
microrganismos
Tabela 3.2: Variáveis codificadas e variáveis reais utilizadas no determinação da estabilidade térmica do pigmentos
Tabela 4.1: Velocidade de crescimento radial, equação do rai em função do tempo e aspecto visual das colônia de <i>M. ruber</i> CCT 2802 cultivadas a 30 °C sol
diferentes condições de pH
Tabela 4.3: Análise de variância da adição dos compostos sobre a variável UA _{510nm} 11
Tabela 4.4: Teste "t" das respostas UA _{470nm} e UA _{510nm}
Tabela 4.6: Análise de variância para a concentração de glicina
Tabela 4.7: Teste t sobre a resposta absorbância a 510nm118 Tabela 4.8: Solubilidade de oxigênio na água destilada e no mei de cultivo na ausência do microrganismo e no cald
filtrado colhido durante o cultivo do <i>M. ruber</i> 14 Tabela 4.9: Valores do $k_L a$ sob diferentes freqüências de agitação e vazões de aeração superficial14
Tabela 4.10: D_C sob differentes tratamentos térmicos e Ea do pigmentos a pH 4,516

Tabela 4.11: D_C e $t_{1/2}$ dos pigmentos sob diferentes tratam térmicos	
Tabela 4.12: Análise de variância das variáveis independ sobre a resposta constante de degradação té do pigmento laranja.	entes rmica
Tabela 4.13: Análise de variância das variáveis independ sobre a resposta constante de degradação té do pigmento vermelho aminado	entes rmica
Tabela 4.14: Análise de variância das variáveis independ sobre a resposta constante de degradação té do pigmento vermelho produzido no cultivo cruber CCT 3802.	entes rmica do <i>M</i>
Tabela 4.15: Resultados qualitativos da inibição microrganismos alvo pelos pigmentos produz	dos zidos
Tabela A.1: Dados que geraram as Figuras 4.1 e 4.2	204 or Zai 208
Tabela A.3: Dados que geraram a Tabela 4.2	
Tabela A.4: Dados que geraram a Tabela 4.2	
Tabela A.5: Dados da absorbância que geraram as Figuras 4.5.	
Tabela A.6: Determinação do comprimento de onda quantificação dos pigmentos produzidos pel ruber	para lo <i>M</i> 212
Tabela B.1: Dados que geraram a Figura 4.19	
Tabela B.2: Dados que geraram a Figura 4.20	214
Tabela B.3: Dados que geraram a Figura 4.21	216
Tabela B.4: Dados que geraram a Figura 4.22	
Tabela B.5: Dados que geraram a Figura 23	
Tabela B.6: Dados que geraram a Figura 4.24	
Tabela C.1: Dados que geraram a Figura 4.29	224
Tabela C.2: Dados que geraram a Figura 4.30	
Tabela C.3: Dados que geraram a Figura 4.31	
Tabela C.4: Dados que geraram a Figura 4.32	225
Tabela C.5: Dados que geraram a Figura 4.33	226
Tabela D.1: Dados que geraram as Figuras 4.38 e 4.39	227
Tabela D.2: Dados que geraram a Figura 4.39	229
Tabela D.3: Dados que geraram a Figura 4.40 e a Tabela 4.8	
Tabela D.4: Dados que geraram as Figuras 4.42 e 4.43	
Tabela D.5: Dados que geraram as Figuras 4.44 e 4.45	230

abela D.6: Dados que geraram as Figuras 4.46 e 4.47230
abela E1: Dados que geraram a Tabela 4.12 e a Figura 4.80.
231
abela E.2: Dados que geraram a Tabela 4.12 e as Figuras 4.81
e 4.82232
abela E.3: Dados que geraram a Tabela 4.12 e as Figuras 4.83
e 4.84233
abela E.4: Dados que geraram a Tabela 4.12 e a Figura 4.85.
234

LISTA DE ABREVIATURAS E SIGLAS

FTIR Fourier Transform Infrared Spectroscopy

μg Micrograma; μL Microlitro; μm Micrometro;

3.5-DNS Ácido 3.5-dinitrosalicílico:

ALTEM Empresa desenvolvedora dos *softwares*; ANVISA Agência Nacional de Vigilância Sanitária;

atm Atmosfera;

CCT Coleção de Culturas Tropicais;

cm Centímetro;

CMYK Cyan, Magenta, Yellow, Black;

CNNPA Comissão Nacional de Normas e Padrões para

Alimentos;

ddp Diferença de potencial (mV);

DMSO Dimetilsulfóxido;

DTC Diferença total de cor;

FES Fermentação em estado sólido;

FSm Fermentação submersa;

g Grama; h Hora;

HLS Hue, Lightness, Saturation; HSB Hue, Saturation, Brightness; HSV Hue, Saturation, Value;

INPR The Institute for Natural Products Research;

IPT Instituto de Pesquisas Tecnológicas;

kg Kilograma;

L Litro;

Lab Sistema tridimensional de cores;

mg Miligrama;

MH Ågar Mueller Hinton;

mL Mililitro; mm Milímetro; NB Nutriente broth;

NCCLS National Committee for Clinical Laboratory Stan-

dard;

nm Nanômetro;

°GL Grau Gay-Lussac;

p/v Peso por volume; PDA Potato dextrose agar;

pg. Página;

R₁ Resistência à difusão pela película estagnada da

fase gasosa até a interface;

Resistência à passagem pela interface gás-

líquido;

Resistência à difusão pela película estagnada do

líquido até o seio do caldo;

Resistência ao transporte convectivo através do

caldo;

R₅ Resistência à difusão pela película estagnada

externa ao agregado celular;

Resistência à difusão no agregado celular e pas-

sagem p/ membrana celular;

R₇ Resistência à difusão no citoplasma e reação

bioquímica;

RGB Red, Green, Blue; rpm Rotações por minuto;

s segundo

TLC Thin Layer Chromatography;

UA_{400nm} Unidades de absorbância a 400 nm;

UA_{470nm} Unidades de absorbância a 480 nm; UA_{510nm} Unidade de absorbância a 510 nm;

UFSC Universidade Federal de Santa Catarina;

v/v Volume por volume;

vs. versus

vvm Volume de ar por volume de meio por minuto;

LISTA DE SÍMBOLOS

ε	Rotação da superfície de resposta (corresponde a
0	√2);
heta	Constante empírica que descreve a dependência da produção de pigmentos associada ao crescimento
	celular;
β	Constante empírica que descreve a independência
ρ	da produção de pigmentos associada ao crescimen-
	to celular;
μ	Viscosidade (mPa s);
γ	Gradiente de velocidade (s ⁻¹);
τ	Tensão de cisalhamento (kg m ⁻¹ s ⁻² ou Pa);
ρ	Massa específica (g cm ⁻³);
ά	Percentagem de torque (skt: unidade apresentada
	pelo manual do Rheotest)
δ	Espessura da película estagnada da fase líquida
	(m);
A_C	Somatório do tempo ao quadrado (h²);
C_C	Somatório do tempo multiplicado pelo raio (h mm);
B_C	Somatório do raio ao quadrado (mm²);
eta_0	Constante polinomial independente dos fatores tem-
	peratura e pH; Viscosidade aparente (mPa s ⁿ);
μ_{ap}	Coeficiente linear do efeito da temperatura e do pH;
β_i	Coeficiente quadrático do efeito da temperatura e do
$eta_{\!\scriptscriptstyle ii}$	pH;
eta_{ij}	Coeficiente do produto dos coeficientes X ₁ e X ₂ ;
μ_P	Velocidade específica de formação de produto (UA
μΓ	$g_{X}^{-1} h^{-1}$);
$\mu_{\mathcal{S}}$	Velocidade específica de consumo de substrato (gs
	$g_{X}^{-1} h^{-1}$);
$(S^2_{YX})_P$	Soma do quadrado dos resíduos;
Δt	Intervalo de tempo entre t_n e t_{n-1} (h);
μ_X	Velocidade específica de crescimento (h ⁻¹);
Α	Absorbância lida (UA);
a	Área (m²);
A_0	Absorbância inicial (UA);
b	Coeficiente linear das regressões;

b_A b_B	Declividade da regressão <i>A;</i> Declividade da regressão <i>B</i> ;						
c C	Constante de proporcionalidade de <i>Np vs. 1/Re;</i>						
C_o	Concentração de oxigênio no líquido (mgO ₂ L ⁻¹);						
C_0	Concentração de oxigênio dissolvido para $t = \infty$						
C_{01}	$(mgO_2 L^{-1});$ Concentração de oxigênio dissolvido para $t = 0$						
0	$(mgO_2 L^{-1});$						
C _{CRIT} Ci	Concentração crítica de O ₂ dissolvido (mgO ₂ L ⁻¹);						
C_p	Concentração de oxigênio na interface (mgO ₂ L ⁻¹); Concentração informada pelo eletrodo de oxigênio						
O_p	dissolvido (mgO ₂ L ⁻¹);						
C_s	Concentração de saturação de oxigênio dissolvido						
$\mathcal{O}_{\mathcal{S}}$	no líquido (mgO ₂ L ⁻¹);						
d	Diâmetro do impelidor (m);						
D_C	Constante de degradação térmica (h ⁻¹);						
dČ/dt	Diferença de oxigênio que se consegue dissolver						
	$(gO_2 m^{-3} h^{-1});$						
DF_A	graus liberdade da regressão A;						
DF_B	graus liberdade da regressão <i>B</i> ;						
DF_P	graus liberdade da regressão ponderada;						
D_{O2}	difusividade do oxigênio através da película estag-						
	nada da fase líquida;						
dv/dr	gradiente de velocidade na direção radial (s ⁻¹);						
E	Espessura das palhetas do impelidor;						
Ea	Energia de ativação (kcal mol ⁻¹);						
F_1	Constante de proporcionalidade de $\gamma = f(N)$;						
F_2	Constante de proporcionalidade de $\tau = f(T)$;						
g s	Grama de substrato;						
g_X	Grama de células;						
H HL	Constante de Henry (mgO ₂ L ⁻¹ atm ⁻¹); Altura das palhetas do impelidor (m);						
⊓∟ Ht	Altura total do impelidor (m);						
I II	Diâmetro do eixo do impelidor (m);						
k	Índice de consistência (Pa s ⁿ);						
K_0	Índice de consistencia obtido para cada concentra-						
• •0	ção de biomassa (Pa s ⁿ);						
K_{f}	Indice de consistência ao final do cultivo (Pa s ⁿ);						
k_g	Coeficiente de transferência de massa da película						
9	gasosa (cm h ⁻¹);						

Índice de consistência no início do cultivo (Pa sⁿ); k_i Coeficiente de transferência de massa da película k_{l} líquida (cm h⁻¹); Coeficiente volumétrico de transferência de oxigênio k₁a (h⁻¹); Constante de atraso do eletrodo (h⁻¹); k_P Coeficiente de manutenção celular para o oxigênio m_{Ω} $(mgO_2 g_X^{-1} h^{-1});$ Frequência de agitação (rpm); Ν Índice de comportamento de escoamento (adimenn sional); Fluxo de oxigênio por unidade de área interfacial n_{02} $(qO_2 m^{-2} h^{-1});$ Diferença de oxigênio que se consegue dissolver NO₂ $(qO_2 m^{-3} h^{-1});$ Velocidade de transferência de oxigênio (gO₂ m⁻³ h nO₂a ¹); Np Número de potência (adimensional); ${}^{\circ}\!C$ Graus Centígrados; pressão parcial de O₂ na fase gasosa em equilíbrio p 02 com a concentração de O2 dissolvido da fase líquida (atm); p 02.i Pressão parcial de oxigênio na interface gás-líquido Pressão parcial de O2 em um gás que estaria em p_1 equilíbrio com a concentração de oxigênio C no líquido, segundo a Lei de Henry (atm); Pressão parcial do gás na fase gasosa (atm); p_g Pressão parcial do gás na interface (atm); p_i Consumo de potência na agitação do fluido (W); Po Pressão parcial de oxigênio dissolvido na fase gap₀₂ sosa (atm); Q Vazão de ar (m³); Q_{O2} Velocidade específica de respiração (mgO₂ gX⁻¹ h⁻¹); Demanda de oxigênio no tempo t_n (mmolO₂ L⁻¹ h⁻¹); Constante universal dos gases (cal mol⁻¹ K⁻¹); $Q_{O2}X_n$ R Raio da colônia (mm); r Número de Reynolds (adimensional); Re Fator de retenção; Rf Expoente da concentração de biomassa; W

SE

Erro padrão;

```
SS_A
          Resíduo da regressão A;
SS_B
          Resíduo da regressão B;
SS_C
          Resíduo para cada regressão;
SS_C
          Resíduo para cada regressão;
SS_P
          Resíduo da regressão ponderada;
          Tempo (h);
          Ponto isoelétrico do aminoácido
Ιq
pka
          Ponto de tamponamento do aminoácido
Τ
          Torque (N m);
t-t_1
          Tempo de duração da determinação do k_L a (h);
          Temperatura (ºC);
T_e
IJ
          Número de regressões;
U$
          Dólar;
          Velocidade de crescimento radial (mm h<sup>-1</sup>);
V_{CR}
          Concentração celular (g L-1);
Χ
X_1
          Variável temperatura codificada;
X_2
          Variável pH codificada;
X_i e X_i
          Variáveis independentes;
          Concentração de biomassa no tempo t_n (g L<sup>-1</sup>);
X_n
          Número da amostra para cada regressão;
y
Y
          Resposta predita pelo polinômio empírico de segun-
          da ordem;
          Fator de conversão de oxigênio em biomassa (g_X gO_2^{-1});
Yo
Y_{X/S}
          Fator de conversão de substrato em biomassa (gx
          g_{S}^{-1});
          Constante do sistema de medida S/S_1; S/S_2; S/S_3;
Ζ
          S/N; S/H (10<sup>-1</sup> Pa skt<sup>-1</sup>);
```

Demanda de oxigênio no tempo t_{n-1} (mmolO₂ L⁻¹ h⁻¹);

Concentração de biomassa no tempo t_{n-1} (q L⁻¹);

 $Q_{02}X_{n-1}$

 X_{n-1}

SUMÁRIO

1. INTRODUÇAO	31
2. REVISÃO BIBLIOGRÁFICA	37
2.1 Cor	37
2.2 Mercado e Legislação de Pigmentos	38
2.3 Cultivo do Gênero <i>Monascus</i>	40
2.4 Demanda e Transferência de Oxigênio	
2.5 Reologia de Caldos de Fermentação	55
3. MATERIAL E MÉTODOS	62
3.1 Microrganismo	62
3.2 Efeito do pH na Produção de Pigmentos	63 66 67 67 68 68 nto
3.3.1 Testes com Diferentes Aminoácidos3.3.2 Determinação da Relação Pigmento vs. Absorbân	cia
3.3.2 Titulação dos Aminoácidos	71
3.4 Medidas Reológicas 3.4.1 Calibração do Reômetro 3.4.2 Construção e Calibração do Sistema Vane 3.4.3 Reologia do Caldo de Fermentação	71 72 74
3.5 Cultivo Submerso em Biorreator	77

3.5.3 Biorreator7 3.5.4 Experimentos Realizados no Biorreator8	
3.6 Metodologia Analítica	30 31 or 31 32
3.7 Transferência de Oxigênio	32 io 34 io 34 le a 36 le a 38
3.8 Propriedades dos Pigmentos	2233360445566778

4.1 Influência do pH na Produção de Pigmentos por Monascus ruber CCT 3802 100 4.1.1 Determinação da Velocidade de Crescimento Radial
(V_{or}) 1()()
4.1.2 Cultivo Submerso 106
4.2 Produção de Pigmento Vermelho a Partir do PigmentoLaranja
4.3 Construção, Calibração e Determinação do Comportamento Reológico do Caldo de Fermentação de Monascus ruber Através do Sistema Vane
4.4 Efeito da Transferência de Oxigênio na Produção de Pigmento Laranja por <i>Monascus ruber</i> CCT 3802 138 4.4.1 Determinação do Tempo de Resposta do Eletrodo (k_P)
de Cultivo
Utilização de m_O e Y_O
4.5.1 Estabilidade Térmica

4.5.1.3 Aplicação da superfície de resposta sobre a
estabilidade dos pigmentos submetidos a diferentes
tratamentos térmicos em diferentes pHs 171
4.5.1.3.1 Pigmento laranja 171
4.5.1.3.2 Pigmento vermelho aminado 174
4.5.1.3.3 Pigmento vermelho produzido no cultivo
(controle) 176
4.5.2 Atividade Antimicrobiana 180
5. CONCLUSÕES 186
5.1 Sugestões para Trabalhos Futuros 187
6 REFERÊNCIAS BIBLIOGRÁFICAS 188
APÊNDICE A 204
APÊNDICE B 213
APÊNDICE C 224
APÊNDICE D 227
APÊNDICE E 231
ANEXO A 235

1. INTRODUÇÃO

A cor é o primeiro atributo sensorial utilizado para a escolha e aquisição de um produto alimentício. Muito usada em indústrias produtoras de alimentos para atrair a atenção dos consumidores, principalmente de crianças, cada vez mais vem se tornando um apelo comercial pelas diversas modificações produzidas nestes produtos.

Em alguns alimentos, como frutas, vegetais e hortaliças, a cor serve como indicador de qualidade. São cores naturais e, através delas, torna-se difícil iludir o consumidor na escolha do produto. Já no caso de produtos industrializados, a cor é danificada pelo processamento (redução de tamanho, adição de produtos químicos, tratamento térmico, utilização de pressão e reações bioquímicas). Nestes casos, a correção da cor pela adição de corantes naturais ou sintéticos, torna-se inevitável e, muitas vezes, acaba iludindo o consumidor.

Atualmente muito se fala na utilização de produtos naturais. A produção de pigmentos orgânicos por microrganismos dentre eles, microalgas, leveduras e fungos filamentosos (Dufossé et al., 2005), são alternativos ao aumento da produção destes compostos naturais frente aos sintéticos.

Espécies de *Monascus* podem produzir pigmento amarelo, laranja e vermelho. A utilização deste fungo é muito difundida no Japão, China, Indonésia, Índia e Coréia. Estes corantes são utilizados nestes países na coloração de arroz, peixes, vinhos, bebidas (Hajjaj et al., 2000a) e, ainda, uma promissora utilização na coloração de produtos cárneos em substituição aos sais de nitrito que conferem coloração vermelha e, ao mesmo tempo, a produção de nitrosaminas, compostos que possuem efeitos cancerígenos (Fink-Gremmels et al., 1991; Kilikian et al., 2003; Moritz, 2005).

A produção de pigmentos por espécies de *Monascus*, geralmente é realizada pelo processo de fermentação em estado sólido (FES). Fungos filamentosos possuem capacidades extremas de adaptação. Colonizam substratos sólidos com facilidade pela penetração das hifas no suporte sólido, crescem em baixo conteúdo de umidade, além da obtenção de produtos concentrados (Pandey et al., 2001). Com relação à condução da FES, os

fatores temperatura, pH, fornecimento de oxigênio e homogeneização do meio de cultivo são difíceis de serem controlados, quando comparados à fermentação submersa (FSm), já que este processo possibilita o controle destes fatores com maior exatidão.

Alguns trabalhos são encontrados na literatura comparando as vantagens e desvantagens da FES frente à FSm (Pandey et al., 2001; Pandey et al., 2008). São considerações importantes, mas o principal ponto a ser abordado, está relacionado à maneira da obtenção do produto final. Algumas perguntas são essenciais: Qual a principal utilização do produto? Será com o substrato sólido? O produto requer extração e purificação? A extração arrasta substâncias indesejáveis? Como será o tratamento dos resíduos gerados no processo? Estas são perguntas importantes que devem ser respondidas antes da escolha do processo fermentativo.

O pigmento de maior interesse comercial é o vermelho. Quando produzido pelo processo de fermentação em estado sólido, o pigmento requer extração para ser utilizado purificado, ou o pigmento e a biomassa podem ser, em determinados casos, utilizados juntamente com a matriz sólida. Sabe-se que o pigmento vermelho produzido pelo *Monascus ruber* é solúvel em água e, consequentemente, solúvel no meio de cultivo, composto por níveis superiores a 95% de água. Logo, a produção de pigmentos vermelhos, em cultivo submerso, para que seja viável economicamente, deve atingir concentrações relativamente altas, devido aos custos das operações de *downstream*.

O presente trabalho, em seu princípio, tinha como objetivo a produção do pigmento vermelho através do cultivo submerso do fungo *Monascus ruber* CCT 3802. Todavia, através da realização de estudos preliminares no Laboratório de Engenharia Bioquímica, foi verificado que um dos cultivos apresentou comportamento diferenciado aos rotineiramente obtidos. Este cultivo produziu três tipos de pigmentos: amarelo, laranja e vermelho. O pigmento amarelo apresentou-se solúvel no meio de cultivo e o pigmento vermelho apresentou-se intracelularmente. Já o pigmento laranja apresentou-se na forma de partículas insolúveis ou, com baixa solubilidade no meio de cultivo, despertando a curiosidade do grupo de pesquisa.

A biomassa, contendo o pigmento vermelho intracelular, foi separada do meio de cultivo pela filtração em gaze. O líquido foi

submetido à filtração em papel filtro quantitativo, possibilitando a passagem do pigmento amarelo e retendo as partículas do pigmento laranja, sendo este, posteriormente, solubilizado em álcool etílico e armazenado em refrigerador a 4 °C. Após certo tempo, o pigmento laranja, gradualmente, foi atingindo a coloração vermelha. Diante do ocorrido, procedeu-se à investigação sobre o comportamento da produção dos diferentes pigmentos e sobre a mudança da coloração de laranja para vermelho.

Autores relatam que a produção de pigmentos vermelhos está relacionada a uma série de condições operacionais, dentre elas, a natureza e a espécie do microrganismo, fonte de carbono e nutrientes, aeração e freqüência de agitação (Hajjaj et al., 2000b; Dufossé et al., 2005). Já a respeito da produção de pigmentos laranja, pouquíssimo material tem sido encontrado na literatura. Estudos das condições de cultivo como o pH e a transferência e o consumo de oxigênio pelo microrganismo podem determinar níveis ótimos para a produção deste pigmento.

Os cultivos de microrganismos filamentosos apresentam diversos comportamentos reológicos devido à morfologia (micélio disperso, grumos ou *pellets*). O crescimento de fungos em forma de *pellets* proporciona menor viscosidade, enquanto que o crescimento de micélio disperso aumenta a viscosidade (Doran, 1995). Alguns caldos de fermentação apresentam comportamento Newtoniano quando caracterizados na ausência de biomassa. Este comportamento acontece devido à produção de compostos de natureza intracelular ou compostos que não afetam a viscosidade do meio de cultivo. Já a maioria dos caldos de fermentação apresenta comportamento não-Newtoniano, do tipo pseudoplástico, devido à produção de biomassa, excreção de proteínas, polissacarídeos, metabólitos e outros compostos produzidos durante o crescimento do microrganismo (Badino Jr. 1994; Schmidell, 2001).

A produção do pigmento vermelho através do pigmento laranja pode proporcionar a redução na concentração de citrinina ou, até mesmo, a sua ausência, com possibilidades de obtenção de pigmentos altamente concentrados pela solubilização em água ou álcool etílico, substâncias legalizadas como solvente ou veículo para solubilização dos pigmentos. Primeiramente, com a produção do pigmento laranja, algumas etapas de *downstream* podem ser eliminadas, pois o pigmento pode ser lavado inúmeras vezes para remoção de compostos indesejáveis. Estas são

algumas vantagens sobre a produção tradicional do pigmento vermelho.

Estes pigmentos, uma vez produzidos, devem ser submetidos à determinação de propriedades como, estabilidade térmica e atividade antimicrobiana nas condições que serão utilizados. Conhecer o comportamento frente a condições que serão impostas durante o processamento como, temperatura e pH são fatores essenciais para a escolha e obtenção de informações a respeito destes compostos.

Diante destas abordagens, o presente trabalho teve como objetivo geral a produção de pigmento vermelho a partir do pigmento laranja produzido pelo *Monascus ruber* CCT 3802 em cultivo submerso.

Dentre os objetivos específicos, destacam-se as principais etapas da pesquisa de Doutorado:

- Determinar o efeito do pH sobre a produção de pigmentos pelo Monascus ruber CCT 3802 através do cultivo sob diferentes condições de pH, tendo como respostas a velocidade de crescimento radial e a produção de pigmentos;
- Verificar a possibilidade de produção de pigmento vermelho através do pigmento laranja produzido pelo Monascus ruber; através da adição de compostos capazes de formar a coloração vermelha e do estabelecimento de condições favoráveis à formação dos pigmentos bem como a investigação do fenômeno da transformação da coloração.
- Determinar o comportamento reológico e os parâmetros índice de consistência (k) e índice de comportamento de escoamento (n) do caldo de fermentação do Monascus ruber CCT 3802, através da construção e calibração de um sistema alternativo de quatro palhetas acoplado ao reômetro Rheotest 2.1 de cilindros concêntricos;
- Investigar o papel do oxigênio dissolvido na produção de pigmentos laranja pelo *Monascus ruber* CCT 3802 bem como a determinar parâmetros relacionados à transferência de O₂ no cultivo do microrganismo;
- Determinar a estabilidade térmica dos pigmentos laranja e vermelho produzido a partir do pigmento laranja frente a diferentes condições de temperatura e pH através da metodologia da superfície de resposta;

 Determinar a atividade antimicrobiana dos pigmentos laranja e vermelho produzido a partir do pigmento laranja, e compará-los aos resultados do pigmento vermelho produzido tradicionalmente em cultivos submersos, utilizado como referência.

2. REVISÃO BIBLIOGRÁFICA

2.1 Cor

A cor é um fenômeno óptico provocado pela ação de um feixe de fótons sobre células especializadas da retina, que transmitem, através de informação pré-processada no nervo ótico, impressões para o sistema nervoso. É determinada pelas médias de frequência dos pacotes de onda que as suas moléculas constituintes refletem. Um objeto terá determinada cor se não absorver justamente os raios correspondentes à freqüência daquela cor. Assim, um objeto é vermelho se absorve preferencialmente as frequências fora do vermelho (Bodner e Pardue, 1995).

As cores primárias subtrativas são o amarelo, o ciano e o magenta. Assim, se da luz branca for absorvido o componente amarelo, percebe-se a cor azul; de forma análoga, quando a cor de um composto é amarela, esse composto deve absorver luz no comprimento de onda correspondente ao azul (Figura 2.1a). Considerando as cores como luz, a cor branca resulta da superposição de todas as cores, enquanto o preto é a ausência de luz. Uma luz branca pode ser decomposta em todas as cores (o espectro) por meio de um prisma (Bodner e Pardue, 1995).

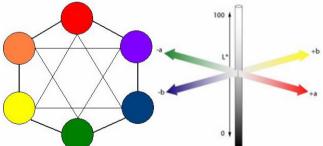


Figura 2.1: (a) Cores primárias e secundárias (b) Coordenadas tridimensionais para medidas de cores (Adaptado de Morales, 1994).

Qualquer profissional da área química quando era estudante teve problemas para encontrar o "ponto de viragem" durante uma titulação volumétrica, ao passo que, quando realizada com espectrofotômetro, o equipamento não apresenta equívocos na mudança da cor (Morales, 1994). Está relacionada com os

diferentes comprimento de onda do espectro eletromagnético. São percebidas pelas pessoas, em faixa específica (zona do visível), e por alguns animais através dos órgaos de visão, como uma sensação que nos permite diferenciar os objetos do espaço com maior precisão (Bodner e Pardue, 1995; Bridle e Timberlake, 1997).

A cor está associada com vários atributos sensoriais detectados pelos sentidos, tais como a aparência, a forma, a superfície, o tamanho e o brilho. É uma propriedade sensorial que pode fazer o alimento ser aceitado ou rejeitado imediatamente pelo consumidor, sem haver provado (Morales, 1994). É considerada uma propriedade física fundamental em alimentos por estar correlacionada a outras propriedades químicas, físicas e sensoriais, indicadoras da qualidade de um produto alimentício (Bridle e Timberlake, 1997; Valadez-Blanco et al., 2007; Mendoza et al., 2006).

Existem diversos sistemas utilizados para representar as cores, dentre eles, podemos citar CMYK (*Cyan, Magenta, Yellow, Black*), HLS (*Hue, Lightness, Saturation*), HSB (*Hue, Saturation, Brightness*), HSV (*Hue, Saturation, Value*), RGB (*Red, Green, Blue*) e o Lab. Este último (Figura 2.1b) apresenta um canal *a,* um canal *b* e um terceiro canal *L* designado por brilho. Este sistema, possui coordenadas tridimensionais e determina a diferença total de cor (DTC), correspondente a maior diagonal formada entre as três coordenadas do sistema. Geralmente é utilizado para quantificação de cores em produtos alimentícios através da aplicação de colorímetros ou fotocolorímetros que possam quantificar a quantidade de cor (Morales, 1994; Bodner e Pardue, 1995).

2.2 Mercado e Legislação de Pigmentos

O mercado de pigmentos naturais produzidos pela via biotecnológica é difícil de estimar. Existe uma preferência cada vez maior por aditivos naturais em alimentos e cosméticos; embora, a via de produção natural possa ser, em alguns casos, 10 vezes mais cara que a via sintética (Jacobson e Wasileski, 1994). O caso mais bem sucedido é o do β-caroteno produzido por microalgas, que tem um custo de cerca de U\$ 1000/kg contra U\$ 500/kg por via sintética; apesar do preço maior, o β-caroteno produzido por via biotecnológica pode competir em nichos onde é

importante que todos os ingredientes sejam "naturais"; além disso, o pigmento microbiano é uma mistura de isômeros cis e trans, com efeitos terapêuticos contra o câncer enquanto o β -caroteno sintético, predominantemente cis, não apresenta (Downham e Collins, 2000).

Estima-se que o consumo brasileiro de pigmentos naturais seja da ordem de 200 toneladas por ano, os quais movimentam cerca de R\$ 80 milhões de reais. Este consumo pode ser aumentado, considerando-se o amplo uso de carmim de cochonilha e sais de nitrito e nitrato na coloração de alimentos cárneos, além das demais aplicações na indústria farmacêutica (Fink-Gremmels et al., 1991; Kilikian et al., 2003; Moritz, 2005).

A Legislação Brasileira que rege a utilização de corantes na elaboração de alimentos definida pela Comissão Nacional de Normas e Padrões para Alimentos (CNNPA) é a Resolução CNNPA nº. 44 de 1977, Publicada no Dário Oficial da União, Seção I de 01/02/78 e 24/04/78 (ANVISA, 2008). Esta resolução define corante como "substância ou mistura de substâncias que possuem a propriedade de conferir ou intensificar a coloração de alimentos e bebidas. Excluem-se da definição, os sucos e/ou os extratos de vegetais e outros ingredientes utilizados na elaboração de alimentos e bebidas que possuem coloração própria, salvo se adicionados com a finalidade de conferir ou intensificar a coloração própria do produto".

A mesma resolução classifica os corantes da seguinte maneira:

- corante orgânico natural: aquele obtido a partir de vegetal, ou eventualmente, de animal, cujo princípio corante tenha sido isolado com o emprego de processo tecnológico adequado;
- corante orgânico sintético: aquele obtido por síntese orgânica mediante o emprego de processo tecnológico adeguado;
- corante artificial: é o corante orgânico sintético não encontrado em produtos naturais;
- corante orgânico sintético idêntico ao natural: é o corante orgânico sintético cuja estrutura química é semelhante à do princípio ativo isolado de corante orgânico natural;
- corante inorgânico: aquele obtido a partir de substâncias minerais e submetido a processos de elaboração e purificação adequados a seu emprego em alimento.

- caramelo: o corante natural obtido pelo aquecimento de açúcares à temperatura superior ao ponto de fusão;
- Caramelo (processo amônia): é o corante orgânico sintético idêntico ao natural obtido pelo processo amônia, desde que o teor de 4-metil, imidazol não exceda no mesmo a 200 mg kg⁻¹.

Os corantes poderão apresentar-se isolados ou sob a forma de mistura de pó, em solução ou associados a solventes e veículos (conforme especificação dos Anexos I e II da presente Resolução) ou sob a forma de sal de alumínio, amônio, potássio ou sódio ou suas placas de alumínio ou cálcio, respeitadas as respectivas especificações.

Os corantes podem ser designados da seguinte maneira:

- pelo nome do respectivo princípio ativo, quando o mesmo tiver sido isolado de vegetal ou, eventualmente, de animal
- por designação que descreva o tipo de tratamento e que tenha sido submetido ou o tipo de veículo a que tenha sido incorporado, seguido do nome do vegetal que lhe tenha dado origem, quando extraído de vegetal.
- por seu nome químico, comum ou científico, quando se tratar de corante orgânico sintético ou de corante inorgânico.
- os seguintes códigos de rotulagem serão adotados: corante orgânico natural, corante orgânico sintético artificial, corante orgânico sintético idêntico ao natural e corante inorgânico.

Esta resolução também regulamenta os solventes e veículos autorizados na elaboração e processamento dos corantes: água, açúcares, álcool etílico, amidos, dextrinas, cloreto de sódio, gelatinas, glicerol, óleos e gorduras comestíveis. Estas informações são importantes, haja vista que o pigmento laranja é solúvel em álcool etílico e o pigmento vermelho é solúvel em água e álcool etílico.

2.3 Cultivo do Gênero Monascus

Fungos do gênero *Monascus* possuem capacidade de formar colônias de 20 a 30 mm de diâmetro após sete dias de cultivo em ágar dextrose de batata (PDA). As colônias são planas, eventualmente com pequeno desenvolvimento aéreo, com textu-

ra superficial floculenta, micélio inicialmente branco entre 1 a 2 dias de cultivo, passando para laranja a vermelho pardo à medida que a cultura se desenvolve, com a formação de cleistotécios e aleurioconídias. Geralmente há formação de pigmentos que se difundem pelo ágar, como apresentado na Figura 2.2 (Pitt e Hocking, 1997).

Os cleistotécios são esféricos, de 30 a 60 µm de diâmetro, formados como um nó de hifas a partir de um pedúnculo bem definido, com paredes celulares, tornando-se marrons com a maturação. Pode haver formação de aleurioconídias em pedúnculos laterais às hifas, mais comumente terminais, às vezes nascendo isolados, mas comumente em cadeias de até 10 células de comprimento, esféricas a piriformes, freqüentemente arredondadas na maturação. As colônias do *Monascus ruber* são de crescimento mais rápido que outras espécies (Pitt e Hocking, 1997).

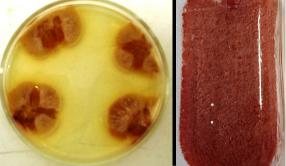


Figura 2.2: Culturas de *Monascus ruber* CCT 3802 em meio PDA.

A Tabela 2.1 apresenta as principais espécies de *Monascus* utilizadas para produzir pigmentos através do processo de fermentação em estado sólido (FES) e fermentação submersa (FSm).

Tabela 2.1: Principais espécies de *Monascus* utilizados para produzir pigmentos.

duzii piginentos.				
Cultivo	Microrganismo	Referência		
	<i>M. ruber</i> ATCC 96218	Hajjaj et al. (1997); Hajjaj et al. (2000a)		
	M. ruber LEB A 1-3,	Hamano et al. (2005)		
FES	M. purpureus	Tseng et al. (2000); Hamdi et al. (1996)		
	<i>Monascus</i> sp. ATCC 16436	Carels e Shepherd (1975)		
	Monascus sp. J101	Suh e Shin (2000)		
	<i>Monascus</i> sp. KCCM 10093	Jung et al. (2003)		
	Monascus kaoliang	Lin e lizuka (1982)		
	Monascus ruber 102w	Lian et al. (2007)		
	Monascus sp. B683	Lee et al. (1995)		
FSm	Monascus purpureus CCM8152	Juzlová et al. (1996); Juzlová et al. (1994)		
	Monascus ruber ATCC	Hajjaj et al. (1999a);		
	96218	Hajjaj et al. (1999b)		
	Monascus ruber	Wang et al. (2000)		
	Monascus ruber	Moritz (2005); Meinic-		
	CCT3802	ke (2008)		
	<i>Monascus ruber</i> LEB A4-9	Kilikian et al. (2003)		
		"		

Além dos pigmentos, estes microrganismos produzem outras substâncias como, terpenos, lipídeos, proteínas, aminoácidos, fitoesteróis e isoflavonas (INPR, 2006), compostos antimicrobianos (Wang et al., 2002; Wong e Bau, 1977; Wong e Koehler, 1981; Fink-gremmels et al., 1991), amilase (Moritz, 2005), glicoamilase (Yongsmith et al., 1997), antioxidantes (Yang et al., 2006; Tseng et al., 2006), álcoois, ácidos orgânicos e ácidos graxos, cetonas e vitaminas (Yongsmith, 1999). Aplicações cardiovasculares, antiinflamatórias, digestivas e gastrintestinais, combate ao câncer e disfunções orgânicas têm sido citadas na literatura (INPR, 2006).

Wong e Bau (1977), Wong e Koehler (1981), Fink-Gremmels et al. (1991) e Blanc et al. (1995a) demonstraram a

ocorrência da atividade antibacteriana de pigmentos vermelhos brutos, produzidos por espécies de *Monascus*. A observação do efeito bacteriostático dos pigmentos produzidos por espécies de *Monascus* pode conduzir à utilização parcial destes pigmentos como substituto do nitrito no processamento de carnes.

Fink-Gremmels et al. (1991) fizeram um estudo sobre o efeito bacteriostático do pigmento monascus em diferentes microrganismos. Concluíram que bactérias Gram-positivas são inibidas mais fortemente que as Gram-negativas, não havendo inibição de *Lactobacillus*. Blanc et al. (1995a) encontraram resultados similares, com exceção de *Escherichia coli*, que não sofreu inibição. Maior inibição foi verificada sobre o crescimento de *Bacillus subtilis*. Wong e Bau (1977) avaliaram a atividade antibacteriana de extratos produzidos por *Monascus purpureus* submetidos ao tratamento por nêutrons e raios X. Através da Tabela 2.2, verifica-se que houve inibição do crescimento de isolados de *Bacillus*, *Streptococcus* e *Pseudomonas*, mas não foi encontrada inibição para *Alcaligenes*, *Sarcina*, *Staphylococcus*, *Aerobacter*, *Escherichia coli*, *Salmonella* e *Shigella*.

Tabela 2.2: Atividade antimicrobiana de extratos de pigmentos produzidos por cepas de *Monascus* induzidas por nêutrons e por raios X (Wong e Bau 1977)

Taios X (VVolig C Bad, 1977).				
Microrganismo	Gram	Halo de Inibição (mm)		
Bacillus sp.	+	2,36 ± 0,18		
B. subitilis	+	1,51 + 0,09		
B. sphaericus	+	1,23 ± 0,10		
B. cereus	+	1,24 + 0,08		
B. megaterium	+	2,27 + 0,13		
Streptococcus aureus	+	1,16 ± 0,09		
P. fluorescens	-	$1,00 \pm 0,00$		
Alcaligenes viscolact	-	ni		
Sarcina lutea	+	ni		
Staphylococcus aureus	+	ni		
Aerobacter aerogenes	-	ni		
Escherichia coli B	-	ni		
E. coli poly Al	-	ni		
Salmonella typhi	-	ni		
Shigella sonnei	-	ni		

ni: não houve inibição.

2.3.1 Produção de Pigmentos por *Monascus* spp.

Pigmentos produzidos por microrganismos e microalgas são comuns na natureza. Entre as moléculas produzidas estão os carotenóides, melaninas, flavinas, quinonas e mais especificamente, monascinas, violaceínas, ficocianinas ou índigo (Dufossé et al., 2005). Fungos filamentosos possuem importantes propriedades e significante papel humano e ambiental pela participação na produção de alimentos, na saúde e ainda, reciclando compostos orgânicos na biosfera. Seus potenciais bioquímicos e de condições extremas de adaptação, como cultivo submerso, têm sido utilizados na produção de antibióticos, enzimas, ácidos orgânicos e corantes para alimentos (Raimbault 1998; Hajjaj et al., 2000a; Pandey et al., 2001; Kavanagh 2005).

Dentre estes fungos destacam-se os do gênero *Monascus*. Este microrganismo é uma fonte de pigmentos naturais e comumente utilizados na China, Indonésia, Taiwan, Coréia e Japão para colorir arroz, vinho de arroz, peixes e carnes vermelhas (Hajjaj et al., 2000a; Hajjaj et al., 2000b; Kilikian, 2002; Moritz, 2005; Dufossé et al., 2005). Tradicionalmente, estes pigmentos são produzidos pelo processo de fermentação em estado sólido do arroz, farelo de arroz, miolo de pão e outros substratos amiláceos. Estudos revelaram que, junto com a produção de pigmentos, o fungo excreta uma micotoxina denominada citrinina, que possui propriedades antibióticas contra bactérias gram-positivas. porém as propriedades nefrotóxicas e hepatotóxicas desta micotoxina, muitas vezes, inviabilizam a produção de pigmentos naturais e sua utilização em produtos alimentícios (Blanc et al., 1995a, Blanc et al., 1995b; Hajjaj et al., 1999; Hajjaj et al., 2000b; Xu et al., 2006).

Estudos bioquímicos e genéticos podem ser empregados para prevenir ou minimizar a quantidade de citrinina produzida. O primeiro passo foi demonstrado por Hajjaj et al. (1999) (Figura 2.3) que a biossíntese da citrinina é originada a partir de um tetracetídeo ao invés de um pentacetídeo como foi encontrado em estudos realizados em *Aspergillus terreus* e *Penicillium citrinum*.

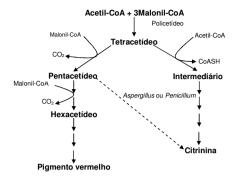


Figura 2.3: Biossíntese da citrinina e pigmento vermelho em *Monascus ruber* (Hajjaj et al., 1999a).

Desde que os pigmentos são produzidos a partir dos hexacetídeos, isso sugere a existência de uma etapa que poderia produzir diferentes quantidades de pigmentos e citrinina durante o crescimento do fungo *Monascus ruber*. Porém as enzimas que catalisam estas reações, ainda não foram caracterizadas (Hajjaj et al., 2000b).

Espécies de *Monascus* podem produzir pigmento amarelo. laranja e vermelho (Figura 2.4). A condensação de um mol de acetato com cinco moles de malonato leva à formação, no citosol, do cromóforo hexacetídeo através do complexo multienzimático policetídeo sintase. Os ácidos graxos de cadeia média como. por exemplo, o ácido octanóico, são sintetizados pela via metabólica dos ácidos graxos e ligam-se à estrutura do cromóforo através de uma reação de trans-esterificação gerando o pigmento Iaranja (monascorubrina - C₂₃H₂₆O₅ ou rubropunctatina -C₂₁H₂₂O₅ em trans-esterificação com o ácido octanóico). A oxidação do pigmento laranja monascorubramina dá origem ao pigmento amarelo (ankaflavina - C₂₃H₃₀O₅ ou monascina - C₂₁H₂₆O₅ para a rubropunctatina). Os pigmentos vermelhos (monascorubramina - C₂₃H₂₇NO₄ e rubropunctamina - C₂₁H₂₃NO₄) são produzidos pela reação do pigmento laranja com compostos que contenham NH3 e NH2 na molécula. Esses pigmentos são instáveis a pH extremos, luminosidade e temperatura e permanecem intracelularmente devido à alta hidrofobicidade, sendo eventualmente excretados para o meio de cultivo após a reação (Hajjaj et al., 2000b).

$$\begin{array}{c} \text{Amarelo} \\ \text{R=}C_5\text{H}_{11} - \text{monascina} \\ \text{R=}C_7\text{H}_{15} - \text{ankaflavina} \\ \\ \text{Laranja} \\ \text{R=}C_5\text{H}_{11} - \text{rubropunctatina} \\ \text{R=}C_7\text{H}_{15} - \text{monascorubrina} \\ \\ \text{Vermelho} \\ \text{R=}C_5\text{H}_{11} - \text{rubropunctamina} \\ \text{R=}C_7\text{H}_{15} - \text{monascorubramina} \\ \\ \text{R=}C_7\text{H}_{15} - \text{monascorubramina} \\$$

Figura 2.4: Estruturas dos principais pigmentos produzidos por espécies de *Monascus*.

Devido à afinidade por grupos amino, os pigmentos de *Monascus* estão associados freqüentemente a proteínas (Wong e Koehler, 1981) ou à parede celular, formando um complexo que pode ser de difícil extração. Outros autores consideram que pode haver fixação dos pigmentos a lipídios da biomassa fúngica, de forma que a extração envolveria rompimento celular e dissolução em solvente orgânico (St. Martin et al., 1991).

Hajjaj et al. (2000a) avaliaram a adição de glicina, alanina, valina, leucina, serina, prolina, tirosina, glutamina, lisina, arginina, triptofano e histidina no meio de cultivo e quantificaram a produção de pigmentos e citrinina. Com a adição de histidina, maiores quantidades de pigmentos vermelhos foram produzidas e a presença de citrinina não foi verificada. Estes resultados podem ser explicados devido à biotransformação da histidina através da enzima histidina descarboxilase levando à formação de peróxido de hidrogênio (H_2O_2) o qual reage com a citrinina eliminando sua toxicidade, conforme sugerido por Blanc et al. (1995).

Estratégias para extrair o pigmento do interior das células fúngicas e a descoberta de novos metabólitos bioativos de interesse comercial, são atrativos que favorecem investimentos nesta área de conhecimento. Além disso, é sabido que moléculas tóxicas, como o caso da citrinina, são produzidas concomitantemente com os pigmentos vermelhos produzidos durante os cultivos em meio sólido ou submerso. Estudos realizados por Moritz

(2005) demonstraram que o pigmento vermelho é produzido parcialmente associado ao crescimento celular, enquanto que a citrinina é produzida de maneira não associada, apresentando comportamento característico de metabólitos secundários. Estes resultados são importantes, uma vez que a utilização dos pigmentos vermelhos foi proibida em alguns países devido à presença de citrinina. Tal avaliação ainda é polêmica na atualidade, pois, segundo vários autores, o potencial tóxico do extrato de espécies de *Monascus* é menor que das nitrosaminas, compostos que são formados em carnes curadas pela adição de sais de nitrito e nitrato (Blanc et al., 1995a; Blanc et al., 1999; Bakosova, 2001; Moritz, 2005).

O efeito da temperatura sobre a produção de pigmentos por *Monascus* foi estudado por Rasheva et al. (1998). Descobriram que o fungo *Monascus* possui faixa ótima de crescimento na faixa de 28 a 32 °C, em acordo com os registros de cada espécie em bancos de cepas. No caso de *M. purpureus* CBS 109.7, por exemplo, a temperatura ótima de crescimento foi a 34 °C, enquanto que a temperatura mínima foi de 18 °C e a máxima de 46 °C.

Fontes de carbono também foram alvos de pesquisas na produção de pigmentos. Lee et al. (1995) estudaram o efeito da concentração (50, 200 e 400 g L⁻¹) de amido de tapioca em cultivos batelada e batelada alimentada na produção de pigmentos por *Monascus* sp. Nos estudos realizados em sistema batelada com 50 g L⁻¹ de amido de tapioca observaram a formação de biomassa de aproximadamente 8 g L⁻¹ e 30 UA_{480nm}. Altas concentrações de amido resultaram em pequena quantidade de biomassa e pigmento, podendo estar relacionada ao aumento da viscosidade do meio de cultivo, dificultando o suprimento de oxigênio dissolvido, o qual é essencial para a biosíntese dos policetídeos.

Moritz (2005) utilizou farelo de arroz na produção de pigmentos vermelhos por *Monascus ruber* CCT 3802. Os resultados indicaram que a utilização de amido como fonte de carbono, deve ser utilizada em cepas que possuem uma atividade enzimática relativamente alta para hidrolisar o amido. Meinicke (2008) utilizou o glicerol, resíduo da produção de biodiesel, como fonte de carbono para a produção de pigmentos vermelhos por *Monascus ruber*. Esta aplicação é promissora devido a crescente corrida energética em busca do biodiesel.

O fornecimento de diferentes fontes de nitrogênio leva à formação de diferentes quantidades de pigmentos produzidos pelo Monascus. Lee et al. (1995) avaliaram guatro meios de cultivo para a produção de pigmento. A máxima produção de pigmentos (amarelo, laranja e vermelho) foi obtida guando utilizado cloreto de amônio (NH₄CI) como fonte de nitrogênio. Hajiaj et al. (2000a) avaliaram a adição de 12 aminoácidos ao meio de cultivo. Com a adição de histidina, maiores quantidades de pigmentos foram obtidas e a presenca de citrinina não foi verificada. Jung et al. (2003) avaliaram a produção de pigmentos vermelhos pela adição de 20 aminoácidos ao meio de cultivo. As adições de glicina e histidina resultaram na proporção de aproximadamente 80% de pigmentos vermelhos. Quando utilizados os aminoácidos serina, glutamina, glicina, alanina e histidina a proporção de pigmentos vermelhos esteve acima de 50% do total. Com as informações apresentadas por Lee et al. (1995), Hajiaj et al. (2000a) e Jung et al. (2003) foi elaborada a hipótese de produção do pigmento laranja, como precursor do pigmento vermelho, durante os cultivos do Monascus ruber CCT 3802.

A agitação e aeração também foram alvos de pesquisas. Kim et al. (2002) realizaram cultivos sob fregüências de agitação de 200; 350; 500; 600 e 700 rpm sob vazão específica de 1,5 vym. Verificaram que as freqüências de agitação de 600 e 700 provocaram grande ruptura micelial e redução no crescimento celular, aumentando a excreção de proteínas no meio de cultivo. As fregüências de agitação de 200, 350 e 500 rpm apresentaram menores danos ao micélio. Maiores quantidades de pigmentos (220 UA_{510nm}) foram produzidas sob freqüências de agitação de 500 rpm. Hajjaj et al. (1999) avaliaram a produção de pigmento por Monascus ruber em meio sólido sob as vazões específicas de aeração de 0,04, 0,4 e 2 vvm e diferentes fregüências de agitação 100, 250 e 400 rpm. Maiores quantidades de pigmentos (5,47 mg g_s⁻¹) foram produzidas sob aeração de 2 vvm e agitação de 250 rpm, embora grandes quantidades de citrinina (6.83 mg g_s⁻¹) tenham sido produzidas.

Poucas informações se têm a respeito da importância do oxigênio dissolvido na produção de pigmentos por *Monascus ruber*. Avaliar e determinar parâmetros operacionais relativos a condições de produção de pigmentos pode esclarecer e resultar em conclusões importantes. Avaliar a transferência de oxigênio, parâmetros relacionados à respiração do microrganismo e de-

terminar a concentração de oxigênio dissolvido no meio de cultivo podem ser interessantes para a produção de pigmentos.

Os fungos do gênero *Monascus* são incapazes de crescer em anaerobiose, mas podem crescer em condições de limitação de oxigênio. Segundo Pastrana et al. (1995), nestas condições ocorre o aumento da produção de etanol e CO₂ e redução na produção de pigmentos. Em condições de maiores níveis de aeração haverá maior disponibilidade de oxigênio dissolvido ocorrendo o aumento na produção de pigmentos e redução na produção de etanol. Chen e Johns (1994) verificaram que sob concentrações de glicose superiores a 50 g L⁻¹ ocorre o efeito similar ao Crabtree, que pode ser entendido como a inibição do consumo de oxigênio pela adição de glicose, resultando no desvio do metabolismo predominantemente oxidativo para o metabolismo fermentativo, mesmo em condicões de boa aeração.

Hamdi et al. (1996), destacaram que sob baixas concentrações de substrato, é possível dividir a produção em duas fases. Inicialmente a glicose sendo convertida a etanol e biomassa, e em seguida, o etanol sendo convertido em biomassa e pigmento. Hajjaj et al. (2000a) verificaram em meio sintético que em condições limitantes de oxigênio dissolvido, a produção de pigmentos vermelhos está associada ao crescimento celular, enquanto que em excesso de oxigênio a produção de pigmentos pode ser inibida pelo efeito de um produto desconhecido. Lee et al. (1995) verificaram que baixas concentrações de oxigênio inibem a formação do pigmento tanto em cultivos em meio sólido quanto em cultivos submersos. Hamdi et al. (1996) verificaram que o microrganismo produziu grandes quantidades de pigmento utilizando o etanol produzido durante o processo fermentativo como substrato.

Através destas informações é possível verificar que os fatores agitação, aeração e oxigênio dissolvido devem ser investigados para determinar condições e parâmetros operacionais favoráveis à produção do pigmento laranja pelo *Monascus ruber*.

2.4 Demanda e Transferência de Oxigênio

Anteriormente, foi comentado sobre a importância e as contradições encontradas na literatura sobre o papel do oxigênio na produção de pigmentos por *Monascus*. Com base nos ensaios preliminares, foi verificado que o fungo *Monascus ruber* CCT

3802 não produziu pigmentos sob condições limitantes de oxigênio. Sendo assim, surgiu a necessidade de avaliar o papel do oxigênio dissolvido na produção de pigmento laranja pelo fungo. A seguir, está apresentada uma breve revisão bibliográfica englobando conceitos-chave sobre a transferência de oxigênio em bioprocessos para aplicação nos cultivos de *Monascus ruber*.

O objetivo central de um sistema de agitação é o fornecimento de oxigênio para a manutenção da atividade respiratória de certo conjunto de células. Assim, o que se visa é transferir o oxigênio da fase gasosa para a fase líquida e fazer com que este oxigênio dissolvido, chegue às células suspensas, penetre nestas células e, finalmente, seja consumido na reação (Schmidell, 2001).

Este processo, desde o fornecimento até o consumo de oxigênio pelo microrganismo, pode ser dividido em três etapas (Figura 2.5). A primeira, diz respeito à dissolução do oxigênio do gás para o líquido, a segunda à eventual difusão do oxigênio até a célula e a terceira o consumo do oxigênio pelo microrganismo através do processo respiratório (Blanch e Clark, 1997).

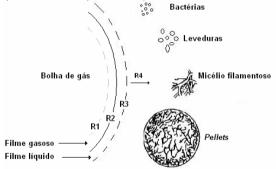


Figura 2.5: Transferência de massa da fase gasosa para a fase líquida para diferentes microrganismos (modificado de Reuss, 1991).

No caso de células eucarióticas, poderia existir uma dificuldade para o oxigênio atingir membranas internas das mitocôndrias, onde estão localizados os sistemas enzimáticos e as proteínas responsáveis pela respiração. No caso de bactérias, a localização desses sistemas é na membrana citoplasmática, motivo pelo qual não há realmente razão para considerar essa resistência. No caso de fungos filamentosos onde muitas vezes é identificado o crescimento na forma de *pellets*, poderia existir uma resistência em termos da difusão do oxigênio para as células mais internas do aglomerado. Neste caso, ao mesmo tempo em que o oxigênio esta sendo transportado pelo interior do *pellet*, o mesmo está sendo consumido pelos microrganismos, resultando na morte de células no centro do *pellet* (Blanch e Clark, 1997; Schmidell, 2001).

Dentre as várias teorias que permitem o equacionamento da transferência de oxigênio, a de maior utilidade para a presente questão é exatamente aquela que considera a existência de duas películas estagnadas. Na Figura 2.6 busca-se ilustrar, com maiores detalhes, a interface líquido-gás com as mencionadas películas.

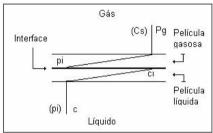


Figura 2.6: Interface gás-líquido com as películas estagnadas.

Ao imaginar uma bolha de ar suspensa em um meio líquido, pode-se também supor a existência de uma película gasosa estagnada, entre o seio gasoso (homogêneo com pressão parcial de O_2 constante) e a interface gás-líquido, película na qual se localizaria a resistência ao transporte do oxigênio, caracterizada pelo inverso do coeficiente de transferência da película gasosa (k_g) , coeficiente este definido pela relação entre a difusividade do oxigênio e a espessura da película estagnada. A transferência ocorreria apenas por efeito difusional e, portanto, depende da existência de um gradiente entre a pressão parcial de O_2 na interface (p_i) .

Igualmente na fase líquida pode-se supor a existência de uma película estagnada ao redor da bolha, na qual se localizaria a resistência ao transporte do oxigênio, caracterizada pelo inverso do coeficiente de transporte na película líquida (k_L). Aqui também o fluxo de oxigênio depende, além do coeficiente de transferência, da existência de um gradiente entre a concentração de O_2 na interface (C_i) e a concentração de O_2 no seio líquido (C) (Schmidell, 2001).

Para soluções diluídas envolvendo espécies químicas pouco solúveis, como é o caso do oxigênio em caldos fermentativos, a Lei de Henry define as relações apresentadas nas equações 2.1, 2.2 e 2.3 (Blanch e Clark, 1997).

$$C_i = H.p_{O_2i} \tag{2.1}$$

$$C = H.p^*_{O_2} \tag{2.2}$$

$$C_S = H.p_{O_2} \tag{2.3}$$

onde C_i é a concentração de oxigênio dissolvido na interface gáslíquido, C é a concentração de oxigênio dissolvido na fase líquida, C_S é a concentração de oxigênio dissolvido na fase líquida em equilíbrio com a pressão parcial de oxigênio da fase gasosa, $p_{O2,i}$ é a pressão parcial de oxigênio na interface gás-líquido, p_{O2} é a pressão parcial de oxigênio na fase gasosa em equilíbrio com a concentração de oxigênio dissolvido da fase líquida (C), p_{O2} é a pressão parcial de oxigênio dissolvido na fase gasosa e H é a constante de Henry;

Uma das grandes dificuldades enfrentadas quando se trabalha com a transferência e o consumo de oxigênio dissolvido é a determinação da constante de Henry (*H*) que servirá de referência para o cálculo da concentração de saturação. Eletrodos de oxigênio dissolvido informam a pressão parcial do gás no líquido através da percentagem de saturação e não o valor absoluto da concentração de oxigênio no líquido. Observando a equação 2.3 percebe-se que a concentração de saturação de oxigênio no meio líquido é proporcional a pressão parcial do oxigênio no gás. Esta proporcionalidade é dada pela constante de Henry.

A concentração de saturação de oxigênio dissolvido no líquido pode ser determinada pelo método de Winkler (1888) que consiste na determinação da clorosidade do líquido. Através de uma relação da constante de Henry em função da clorosidade pode-se estimar a constante *H*. Outro método foi sugerido por Käppeli e Fiechter (1981). Este método consiste em adicionar quantidades conhecidas de oxigênio (equação 2.4), através da "quebra" de peróxido de hidrogênio (H₂O₂) em oxigênio e água por uma catalase. Neste trabalho, pela facilidade de adaptação às condições do laboratório, a constante *H* foi determinada pelo método proposto por Käppeli e Fiechter (1981).

$$H_2O_2 + catalase \rightarrow \frac{1}{2}O_2 + H_2O$$
 (2.4)

Muitos trabalhos encontrados na literatura consideram a concentração de saturação de oxigênio na água destilada (valores tabelados). Esta consideração leva, muitas vezes, a conclusões errôneas, pois a constante de Henry é função de alguns parâmetros, dentre eles, a temperatura e a concentração de nutrientes. Em bioprocessos, o que se fermenta são meios de cultura sintéticos geralmente complexos. Em alguns casos, a concentração de saturação do meio de cultivo pode chegar a ser de 80 a 85% do valor da concentração de saturação da água destilada a uma mesma temperatura (Blanch e Clark, 1997; Schmidell, 2001).

Sabe-se, que durante o cultivo de microrganismos em um dado meio existe uma estequiometria geral do processo. O consumo de nutrientes, com conseqüente formação de biomassa, produtos finais e intermediários do metabolismo. Como a constante H é função da concentração de nutrientes deve existir a variação de H no decorrer de um cultivo. Conhecendo esta variação, torna-se possível aumentar a rigorosidade da análise do consumo de oxigênio em determinado bioprocesso.

Admitindo que o sistema de transferência de oxigênio esteja em estado estacionário, assim como a existência de um perfil linear da concentração de oxigênio no interior das películas, podem-se escrever as equações 2.5 e 2.6:

$$n_{O_2} = \frac{gradiente}{Re \, sist \hat{e}ncia} \tag{2.5}$$

onde n_{O2} é o fluxo de oxigênio por unidade de área interfacial (gO₂ m⁻² h⁻¹) e a *Resistência* é o inverso do coeficiente de transferência, levando a equação 2.6.

$$n_{O_2} = k_g H(p_g - p_i) = k_g (C_s - C_i) = k_L (C_i - C)$$
 (2.6)

onde k_g é o coeficiente de transferência da película gasosa (m h⁻¹), k_L é o coeficiente de transferência da película líquida (m h⁻¹), p_g é a pressão parcial de O_2 no seio gasoso (atm), p_i é a pressão parcial de O_2 na interface (atm), p_1 é a pressão parcial de O_2 em um gás que estaria em equilíbrio com a concentração de oxigênio C no líquido, segundo a Lei de Henry (atm), H é a constante de Henry (g O_2 m⁻³ atm⁻¹), C_S é a concentração de O_2 dissolvido no líquido em equilíbrio com p_g segundo a Lei de Henry (g O_2 m⁻³), C_i é a concentração de O_2 dissolvido em equilíbrio com p_i (g O_2 m⁻³) e C é a concentração de oxigênio no seio líquido (g O_2 m⁻³).

No entanto não há condições de se conhecer valores relativos à interface gás-líquido, podendo-se determinar valores de concentração no seio do líquido, trabalhando-se com um coeficiente global de transferência de oxigênio (soma de todas as resistências), ou ainda, tendo em vista a resistência do filme líquido, pode-se considerar $p_g = p_i$ e, como decorrência, $C_i = C_S$, a equação 2.6 pode ser representada pela equação 2.7.

$$n_{O_2} = k_L H(p_a - p_1) = k_L (C_s - C)$$
 (2.7)

Em virtude da intensa movimentação das moléculas de gás, a resistência à transferência de massa na fase gasosa (R_1) pode ser considerada desprezível e, portanto, toda a resistência à transferência de oxigênio deve-se à película estagnada da fase líquida, onde $k_g >> k_L$ e $k_L \cong k_L$, logo, pode-se escrever a equação 2.8.

$$n_{O_2} = k_L(C_s - C) \tag{2.8}$$

Multiplicando-se o fluxo de oxigênio (nO_2) pela área interfacial de troca de massa (a), dada pela área superficial das bolhas por unidade de volume de líquido, define-se a velocidade de transferência de oxigênio (NO_2) apresentada pelas equações 2.9 e 2.10.

$$n_{O_2} \cdot a = N_{O_2} = k_L a(C_s - C)$$
 (2.9)

ดม

$$\frac{dC}{dt} = k_{L}a(C_{s} - C) \tag{2.10}$$

onde nO_2a é a velocidade de transferência de oxigênio (gO_2 m⁻³ h⁻¹), NO_2 é a diferença de oxigênio que se consegue dissolver (gO_2 m⁻³ h⁻¹), k_La é o coeficiente volumétrico de transferência de oxigênio (h⁻¹) e dC/dt é a diferença de oxigênio que se consegue dissolver (gO_2 m⁻³ h⁻¹);

Badino (1997) destaca que a agitação e a aeração em caldos fermentativos influenciam o produto $k_L a$ de duas formas. Primeiramente, sabendo-se que o coeficiente de transferência de massa da fase líquida (k_L), pode ser escrito pela equação 2.11.

$$k_{L}\alpha \frac{D_{O_{2}}}{\delta} \tag{2.11}$$

onde D_{O2} é a difusividade do oxigênio através da película estagnada da fase líquida (m² h⁻¹) e δ é a espessura da película estagnada da fase líquida (m).

Logo, a agitação e aeração atuam diminuindo a espessura da película estagnada (δ) da fase líquida (Figura 2.7) e, de acordo com a equação 2.11, aumenta o coeficiente de transferência de massa da fase líquida (k_L). A segunda forma de ação é a redução do diâmetro das bolhas de gás através da fragmentação, aumentando consideravelmente a área interfacial de transferência (a) e, por conseqüência, o produto $k_L a$ (Badino 1997).

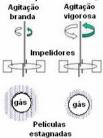


Figura 2.7: Efeito da agitação sobre a espessura da película estagnada da fase líquida.

2.5 Reologia de Caldos de Fermentação

Muitos processos fermentativos industriais envolvem cultivos de microrganismos filamentosos, gerando caldos de fermentação heterogêneos e viscosos com características reológicas de fluidos não-Newtonianos. O comportamento reológico destes caldos pode ser afetado por muitos fatores, dentre eles, a natureza do microrganismo (Doran, 1995) e da fonte de carbono (Cho et al., 2002), concentração inicial da fonte de carbono (Queiroz et al., 1997), concentração de biomassa (Cho et al., 2002), concentração de sais (Bueno e Garcia-Cruz, 2001), produção de exopolissacarídeos, produção de enzimas, morfologia, temperatura, pH e atividade de água (Pollard et al., 2002).

O aumento da concentração celular, a excreção de polímeros e até mesmo a fragmentação do micelio devido à tensão de cisalhamento impostas pelos impelidores contribuem para o aumento da viscosidade. À medida que a viscosidade aumenta, o fluxo de oxigênio da fase gasosa para a fase líquida diminui, devido à redução do número de Reynolds e pela presença de sujidades (sais e biomassa) na camada estagnada, aumentando a resistência da difusão do oxigênio molecular, como pode ser verificado na Figura 2.8.

Figura 2.8: Efeito da viscosidade sobre a transferência de oxigênio.

A Lei de Newton da Viscosidade (Eq. 2.12) mostra que a relação entre a tensão de cisalhamento (força de cisalhamento versus área) e o gradiente local de velocidade é definida através de uma relação linear, sendo a constante de proporcionalidade, a viscosidade do fluido. Portanto, todo fluido que, em escoamento laminar, apresentar relação linear entre a tensão de cisalhamento e o gradiente de velocidade, são denominados fluidos Newtonianos. Para esses fluidos, a viscosidade depende somente da temperatura e da pressão as quais o fluido é exposto, sendo independente do gradiente de velocidade (Rao, 1999).

$$\tau = \mu \frac{dv}{dr} \tag{2.12}$$

onde τ é a tensão de cisalhamento (kg m⁻¹ s⁻² ou Pa), μ é a viscosidade (kg m⁻¹ s⁻¹ ou mPa s) e dv/dr é o gradiente de velocidade na direção radial (s⁻¹).

No entanto, nem todos os fluidos apresentam comportamento Newtoniano. De maneira geral, todos os fluidos que não seguem a Lei de Newton são denominados fluidos não-Newtonianos. A reologia, ciência que estuda a deformação e o escoamento da matéria reserva dentro do seu amplo espectro de enfoque, uma fatia considerável para o estudo do comportamento reológico dos chamados fluidos não-Newtonianos (Badino Jr., 1997). Uma prática comum tem sido a aplicação da lei de potência para representar a tensão de cisalhamento em função do gradiente de velocidade, conforme a equação 2.13 (Schmidell, 2001).

$$\tau = k \left(\frac{dv}{dr}\right)^n \tag{2.13}$$

onde k é o índice de consistência (Pa sⁿ) e n é o índice de comportamento de escoamento (adimensional).

Diferentemente dos Newtonianos, a relação entre a tensão de cisalhamento (τ) e o gradiente de velocidade (γ) para fluidos não-Newtonianos não é linear, sendo a natureza dessa relação o critério utilizado para a classificação dos diversos tipos de fluidos. A Figura 2.9 apresenta os reogramas de τ em função de γ característicos para vários fluidos, incluindo os Newtonianos.

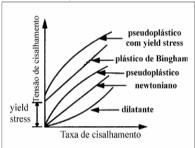


Figura 2.9: Reogramas de fluidos.

O modelo da lei da potência prediz o comportamento reológico da maioria dos fluidos ilustrados na Figura 2.8. Este modelo pode ser reescrito na forma da equação 2.14.

$$\tau = k \cdot \gamma^n \tag{2.14}$$

onde γ é o gradiente de velocidade (s⁻¹)

Definida como sendo a relação entre a tensão de cisalhamento (τ) e o gradiente de velocidade (γ). A viscosidade aparente (μ_{ap}), definida para fluidos não-Newtonianos que seguem a lei da potência, é dada pela equação 2.15.

$$\mu_{ap} = \frac{\tau}{\gamma} = k \gamma^{n-1} \tag{2.15}$$

onde μ_{ap} é a viscosidade aparente (kg m $^{\text{-}1}$ s $^{\text{-}1}$).

Quando n < 1, o fluido é caracterizado como pseudoplástico. A maioria dos fluidos não-Newtonianos encontra-se nessa categoria. Soluções poliméricas de alto peso molecular e grande parte das suspensões, entre as quais se incluem caldos de fermentação com microrganismos filamentosos, são exemplos de fluidos pseudoplásticos (Badino Jr., 1997).

Para estes fluidos, de acordo com a equação 2.15, a viscosidade aparente (μ_{ap}) diminui com o aumento do gradiente de velocidade. Quando n > 1, o fluido é denominado dilatante. Sus-

pensões de amido, de silicato de potássio e de areia são exemplos de fluidos dilatantes. Ao contrário dos fluidos pseudoplásticos, a viscosidade aparente (μ_{ap}) aumenta com o aumento do gradiente de velocidade (γ) para os fluidos dilatantes. Quando n=1, o fluido é caracterizado como Newtoniano e, nesse caso, o índice de consistência (k) é a própria viscosidade (μ) do fluido.

Conhecer o comportamento reológico de caldos de fermentação é de fundamental importância, pois as características reológicas desse tipo de fluido variam, principalmente, em função da concentração de seus componentes, de sua temperatura e, em certas fermentações (fúngicas, por exemplo), em função das condições de cisalhamento (agitação/aeração) a que são submetidos. Devido à grande complexidade da reologia de caldos de fermentação não—Newtonianos, faz-se necessário conhecer e acompanhar o comportamento reológico durante tais processos fermentativos.

A reologia desses caldos de fermentação tem sido amplamente estudada, sendo essas suspensões caracterizadas como fluidos de Bingham, de Casson ou, mais usualmente, como fluidos pseudoplásticos, utilizando-se reômetros convencionais de bancada como o de cilindros concêntricos (Doran, 1995; Warren et al., 1995).

Os principais problemas quanto à utilização deste tipo de reômetro, estão relacionados ao fato do tamanho dos *pellets* ser da mesma ordem de grandeza do espaço anular entre os cilindros concêntricos, comprometendo as medidas, além do risco de danificar os *pellets* ou grumos de microrganismos. Ocorre também, a tendência da biomassa ser centrifugada ou sedimentada, resultando em gradientes de concentração. Estes problemas, muitas vezes podem ser contornados através da construção de sistemas que distribuam homogeneamente os *pellets*, evitando gradientes de concentração (Doran, 1995; Badino Jr., 1997).

Uma vez caracterizados reologicamente os caldos de fermentação, uma prática comum tem sido relacionar propriedades reológicas, como o índice de consistência (k) do modelo da Lei da Potência, com a concentração celular (X) com o objetivo de obter correlações úteis para o monitoramento e controle de bioprocessos.

A Tabela 2.3 apresenta alguns valores do índice de consistência no início e ao final dos cultivos realizados com diferentes microrganismos e a Tabela 2.4 apresenta algumas relações do índice de consistência em função da concentração de biomassa obtidas na caracterização de diferentes caldos de fermentação.

Cho et al. (2002) investigaram o efeito da glicose e do amido, utilizados como substratos na produção de pigmentos por *Paecilomyces sinclairii*, na reologia do caldo de fermentação submetido a diferentes vazões específicas de aeração em biorreator de 5 litros sob agitação de 150 rpm. O caldo de fermentação apresentou comportamento pseudoplástico. Maiores índices de consistência e pseudoplasticidade foram obtidos no meio de cultivo contendo glicose como fonte de carbono.

Tabela 2.3: índice de consistência inicial e final de caldos de fermentação.

Microrganismo	K_i (Pa s ⁿ)	K_f (Pa s ⁿ)	Referência
Aspergillus awamori	<0,02	>37,000	Queiroz et al. (1997)
Aspergillus awamori	0,010	19,941	Wang e Webb (1995)
Aspergilus niger	0,018	2,375	Berovic et al. (1993)
Aspergilus niger	<0,02	1,230	Berovic et al. (1993)
Aspergilus niger	0,011	1,263	Berovic et al. (1993)
Aspergilus niger	0,023	1,146	Berovic et al. (1993)
Aspergilus niger	0,003	5,042	Berovic et al. (1993)
Glarea lozoyensis	<0,02	>10,500	Pollard et al. (2002)
Penicillium chrysogenum	0,034	6,549	Goudar et al. (1999)

K_i: índice de consistência inicial e k_f: índice de consistência ao final d cultivo.

Tabela 2.4: Relações do índice de consistência (*k*) em função da concentração de biomassa para diferentes microrganismos.

Microrganismo	Relação	Referência
Aspergillus awamori	$k = 5.1 \cdot 10^{-2} \mathrm{e}^{0.31X}$	Schimidell et al. (1994)
Aspergillus awamori	$k = 8.9 \cdot 10^{-2} X^{1.48}$	Queiroz et al. (1997)
Aspergillus awamori	$k = 0.32 X^{3.29} N^{-4.33} Q^{-0.39}$	Badino et al. (1999)
Aspergillus niger	$k = 3.0 \cdot 10^{-2} X^{2.48}$	Reuss et al. (1982)
Aspergillus niger	$k = 4.3 \cdot 10^{-4} X^{3.3}$	Allen e Robinson (1990)
Aerobasidium pullulans	$k = 12 \cdot 10^{-2} X^{2,43}$	Li et al. (1995)
Penicillium chrysogenum	$k = 3.6 \cdot 10^{-3} X^{2.5}$	Allen e Robinson (1990)
Penicilium chrysogenum	$k = 0,22 X^{1,02}$	Badino Jr et al.
Cephalosporium acremonium	$k = 6.7 \cdot 10^{-3} X^{2.00}$	(1994)
Penicillium chrysogenum	$k = \frac{0.034e^{0.461X}}{1 - \frac{0.034(1 - e^{0.461X})}{6.549}}$	Goudar et al. (1999)

Fonte: Modificado de Badino Jr. (1997).

Badino Jr. et al. (1999) avaliaram a influência da concentração celular e das condições de cisalhamento na reologia de caldos de fermentação de *Aspergillus awamori* NRRL 3112. Foram realizados nove ensaios em diferentes freqüências de agitação, vazão de aeração e concentração inicial de substrato. Os resultados experimentais foram descritos em termos do modelo da lei da potência, sendo os caldos caracterizados como pseudoplásticos ao longo de todos os ensaios. Os autores propuseram uma correlação relacionando o índice de consistência (k) em função da concentração de biomassa (X) e da influência da condição de cisalhamento, produzidas pela agitação (N) e aeração (Q).

Queiroz et al. (1997) avaliaram as mudanças reológicas do caldo de fermentação de *Aspergillus awamori* na produção de amiloglicosidase. Os experimentos foram realizados em diferentes concentrações iniciais de substrato (20, 40, 80, 120, 150 e 180 g L⁻¹) em biorreator de 10 litros com aeração específica de 1 vvm e agitação de 700 rpm. No início do processo fermentativo, o meio de cultivo apresentou comportamento Newtoniano. No decorrer do processo, o caldo de fermentação apresentou comportamento pseudoplástico devido ao aumento da concentração celular, apresentando uma queda brusca no índice de comportamento de escoamento do início até o tempo de 12 horas de cultivo. Já o índice de consistência aumentou partir de 4 g L⁻¹ de biomassa.

Conhecer as propriedades reológicas do caldo de fermentação pela determinação dos parâmetros índice de consistência (k) e índice de comportamento de escoamento (n) em função da concentração de biomassa do *Monascus ruber* CCT 3802 possibilita maior controle no decorrer de um bioprocesso.

3. MATERIAL E MÉTODOS

A seguir estão apresentados os materiais e métodos utilizados no decorrer do trabalho. A Figura 3.1 apresenta as principais etapas realizadas. Os resultados estão apresentados no Capítulo 4 (pg. 100).

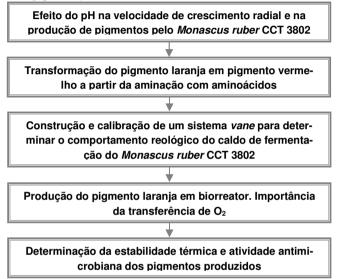


Figura 3.1: Fluxograma das macro etapas realizadas no trabalho.

3.1 Microrganismo

O microrganismo utilizado neste trabalho foi o fungo filamentoso *Monascus ruber* CCT 3802, obtido da Coleção de Culturas Tropicais da Fundação André Tosello (Campinas, SP), mantido em ágar dextrose batata (PDA) (39 g L⁻¹) e ágar bacteriológico (5 g L⁻¹).

A manutenção do isolado foi realizada em tubos de ensaio contendo ágar dextrose de batata inclinado, esterilizados a 121 °C durante 15 minutos. Após resfriados, os tubos foram inoculados conforme metodologia proposta por Nagel et al. (1999), onde uma alçada do fungo, mantido em meio PDA, foi transferida para os tubos e incubados a 30 °C por 7 dias. Este material foi utilizado para inocular as garrafas de Roux contendo 150 mL do meio

de cultura PDA, previamente autoclavadas a 121 °C por 15 minutos e incubadas a 30 °C por 7 dias. Após este período as garrafas foram armazenadas a 4 °C.

3.2 Efeito do pH na Produção de Pigmentos

Nesta etapa do trabalho foi determinado o efeito do pH na velocidade de crescimento radial e na produção de pigmentos em meio sólido (PDA) e submerso sob diferentes condições de pH. A Figura 3.2 apresenta os principais passos realizados nesta etapa do trabalho e os resultados estão apresentados no item 4.1 (pg. 100). Os principais resultados experimentais podem ser verificados no Apêndice A (pg. 205).

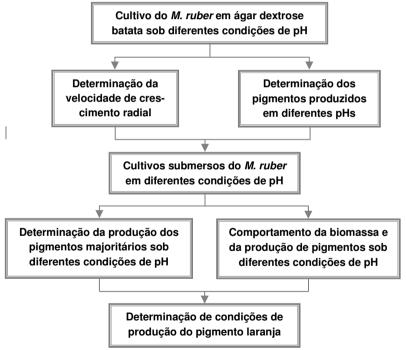


Figura 3.2: Fluxograma dos principais passos realizados nesta etapa.

3.2.1 Velocidade de Crescimento Radial (V_{CR})

A determinação da velocidade de crescimento radial foi realizada em meio PDA sob diferentes condições de pH (2 a 10),

conforme metodologia proposta por Gabiatti et al. (2006). Esta metodologia consiste no preparo de uma suspensão de esporos, onde três alçadas do microrganismo, cultivados em tubos de ensaio com meio inclinado, foram transferidos para tubos de ensaio contendo 1 mL de ágar bacteriológico 0,2% (p/v) previamente autoclavados a 121 °C por 15 minutos.

O ágar dextrose batata foi autoclavado a 121 °C durante 15 minutos. Após resfriado, o pH foi ajustado na faixa de 2 a 10 com NaOH ou HCI, enquanto líquido, e vertido em placas de Petri de 100 mm. Depois de solidificados, com auxílio de ponteira estéril de micropipeta com diâmetro de 1,0 mm, os meios de cultivo foram inoculados através da imersão da ponteira na suspensão de esporos e posteriormente toque no centro de cada placa em ambiente asséptico (bancadas desinfetadas com álcool etílico 70% v/v e incidência ultravioleta por 30 minutos).

Após inoculação, foram traçadas três raias no fundo de cada placa, passando pelo ponto de inoculação (Figura 3.3). Posteriormente, foram incubadas em estufa a 30 °C. A cada 24 horas, foram medidos os diâmetros das colônias do *Monascus ruber* CCT 3802. Cada experimento foi composto por 5 repetições acompanhado por um controle sem a inoculação do microrganismo.

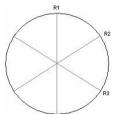


Figura 3.3: Raias no fundo da placa de Petri para medição do crescimento radial.

A velocidade de crescimento radial das colônias pode ser obtida pela declividade da regressão linear do raio das colônias em função do tempo de cultivo, como apresentado na equação 3.1.

$$r(t) = V_{CB}.t + b \tag{3.1}$$

onde V_{cr} é a velocidade de crescimento radial (mm h^{-1}), r é o raio (mm) e t é o tempo (h).

Neste trabalho foi considerado o raio inicial da colônia de 0,5 mm, correspondente ao raio do objeto inoculador. Logo, a equação 3.1 resulta na equação 3.2.

$$r(t) = V_{CB}.t + 0.5 (3.2)$$

A partir das regressões lineares do raio das colônias em função do tempo de cultivo, foi aplicada a análise estatística proposta por Zar (1984) que consiste na comparação entre as declividades (V_{CR}) obtidas através de uma regressão ponderada. Neste teste é verificado se existem diferenças significativas entre as declividades das curvas de regressão. Para isto, é empregado o procedimento da análise de covariância. A base de cálculo necessária para comparar as regressões para os tratamentos requer os valores de Σx^2 ; Σy^2 , Σxy e os valores de S e S

O teste para comparação de declividades das regressões do raio em função do tempo nos cultivos de *Monascus ruber* CCT 3802 sob diferentes condições de crescimento compreendeu no cálculo do valor *F*, dado pela equação 3.3.

$$F = \frac{\frac{(SS_C - SS_P)}{(k-1)}}{\frac{SS_P}{DF_P}}$$
(3.3)

Os valores de SS_C , SS_P e DF são dados pelas equações 3.4, 3.5 e 3.6.

$$SS_P = \sum_{i=1}^k SS_C \tag{3.4}$$

$$SS_{C} = C_{C} - \frac{B_{C}^{2}}{A_{C}}$$
 (3.5)

$$DF_{P} = \sum_{i=1}^{k} y - 2U \tag{3.6}$$

onde y é o número da amostra para cada regressão, U é o número de regressões, $A_{\mathcal{C}}$ é a soma dos quadrados da variável dependente da regressão linear, $C_{\mathcal{C}}$ é a soma dos quadrados da variável independente da regressão linear, $B_{\mathcal{C}}$ é a soma do produto da variável dependente e independente, $SS_{\mathcal{C}}$ é o resíduo para cada regressão, $SS_{\mathcal{P}}$ é o resíduo da regressão ponderada e $DF_{\mathcal{P}}$ é o número de graus liberdade da regressão ponderada.

Se a hipótese de igualdade entre as declividades das regressões lineares for nula, procede-se para o teste de comparação múltipla para determinar onde existem diferenças significativas. Apresentando diferenças significativas entre as declividades (V_{CR}) , foi aplicado um teste de Tuckey ao nível de 0,01, onde o teste estatístico q é dado pela equação 3.7.

$$q = \frac{(b_A - b_B)}{SE} \tag{3.7}$$

Os valores de SE e $(S^2_{YX})_P$ são dados pelas equações 3.8 e 3.9.

$$SE = \sqrt{\frac{(S^2_{YX})P}{2} \left[\left(\frac{1}{\left(\sum x^2 \right)_A} \right) + \left(\frac{1}{\left(\sum x^2 \right)_B} \right) \right]}$$
(3.8)

$$\left(S^{2}_{YX}\right)_{P} = \frac{SS_{A} + SS_{B}}{DF_{A} + DF_{B}} \tag{3.9}$$

onde b_A é a declividade da regressão A, b_B é a declividade da regressão B, SS_A é o resíduo da regressão A, SS_B é o resíduo da regressão B, DF_A é o número de graus liberdade da regressão A, DF_B é o número de graus liberdade da regressão B, SE é o erro padrão e $(S^2_{YX})_P$ é a soma do quadrado dos resíduos (pooled).

3.2.2 Determinação dos Pigmentos Produzidos

As placas contendo as colônias do *Monascus ruber*, após quantificação da V_{CR} , foram utilizadas na determinação dos pigmentos produzidos. As colônias foram raspadas da superfície do ágar dextrose de batata e adicionadas em frascos de Erlenmeyer contendo 100 mL de álcool etílico 95 °GL. As amostras foram colocadas em *shaker* a 30 °C por 2 horas sob agitação de 100 rpm.

Após isso, a biomassa foi quantificada por gravimetria em papel filtro quantitativo Whatman n°. 1 (Madiston, Inglaterra), previamente seco e pesado. O material retido foi submetido à secagem em forno microondas durante 15 minutos sob potência de 180 W (Kilikian et al., 2003). O conjunto foi resfriado em dessecador por 15 minutos e depois pesado em balança analítica Bel Engineering (Monza, Itália, precisão = 0,1 mg). O filtrado foi submetido a análises de varredura em espectrofotômetro Spetronic Unicam Genesys *10vis* na faixa de 350 a 550 nm.

Diferentes comprimentos de onda são encontrados na literatura para quantificar os pigmentos produzidos pelo *Monascus*. Hajjaj et al. (1999a) determinaram que 1 unidade de absorbância a 480 nm corresponde a 15 mg de pigmento vermelho por litro de solução. Wang et al. (2005) quantificaram pigmentos vermelhos a 480 nm, enquanto Kim et al. (2002) determinaram pigmentos vermelhos a 510 nm. Já Lee et al. (1995) realizaram a leitura da absorbância em três comprimentos. O pigmento amarelo foi quantificado a 400 nm, o laranja a 470nm e o vermelho a 500 nm.

Neste trabalho, foi realizada uma varredura dos pigmentos e definiram-se os comprimentos de onda de 400 nm para o pigmento amarelo, 470 nm para o laranja e 510 para o vermelho, estando de acordo com os trabalhos encontrados na literatura.

3.2.3 Cultivos em Frascos de Erlenmeyer

A partir dos resultados da velocidade de crescimento radial e da varredura dos pigmentos produzidos, foram realizados cultivos submersos em frascos de Erlenmeyer aletados de 1000 mL com volume útil de 400 mL sob agitação de 120 rpm a 30 °C sob diferentes valores de pH (2,0; 3,0; 4,0; 5,0; 6,0; 7,0; 8,0 e 9,0). Apenas os cultivos que apresentarem crescimento celular e produção de pigmentos foram apresentados nos resultados.

3.2.3.1 Preparo do inóculo

A partir das garrafas de Roux contendo o *Monascus ruber* cultivado em meio PDA, foi preparada uma suspensão de esporos pela da raspagem destes com água destilada. Esta suspensão foi filtrada para eliminar resíduos de PDA e grumos de microrganismos, ambos indesejáveis para o início do cultivo. A partir desta suspensão, os frascos de Erlenmeyer aletados de 1000 mL, contendo 360 mL do meio de cultivo, cuja composição é apresentada na Tabela 3.1, foram inoculados com 10% (v/v), atingindo cerca de 4 x 10⁵ esporos mL⁻¹ e incubados a temperatura de 30 °C sob a fregüência de agitação de 120 rpm.

3.2.3.2 Meio de cultivo

O meio de cultivo utilizado nos experimentos submersos está apresentado na Tabela 3.1.

Tabela 3.1: Composição do meio de cultivo.

Componente	Concentração (g L ⁻¹)
Glicose	20
Glicina	5
KH₂PO₄	2,5
K ₂ HPO ₄	2,5
MgSO ₄ .7H ₂ O	0,5
ZnSO4	0,01
MnSO4	0,03
FeSO ₄ .7H ₂ O	0,01
CaCl ₂	0,10

A glicina foi utilizada como fonte de nitrogênio para o microrganismo, pois além de reduzir significativamente as quantidades de toxina produzidas (Moritz, 2005) promove efeito tamponante no meio de cultivo (Lehninger et al., 2000).

3.2.3.3 Determinação de biomassa

A biomassa foi quantificada por gravimetria. Amostras de 10 mL do cultivo foram filtradas em papel filtro Whatman n.º 1 (Madiston, Inglaterra) previamente seco e pesado. O material retido foi submetido à secagem em forno microondas durante 15 minutos sob potência de 180 W (Kilikian et al., 2003). O conjunto foi resfriado em dessecador por 15 minutos e depois pesado em balança analítica Bel Engineering (Monza, Itália, precisão = 0,1 mg) para a determinação da biomassa seca, obtendo-se a quantidade de biomassa retida em um volume conhecido. O filtrado foi submetido às determinações de glicose e pigmento.

3.2.3.4 Determinação de pigmento

Os pigmentos foram determinados, a partir do filtrado obtido na determinação da concentração de biomassa, em espectrofotômetro Spetronic Unicam Genesys *10vis* (New York, USA) nos seguintes comprimentos de onda: amarelo 400 nm, laranja 470 nm e vermelho 510 nm, conforme varredura realizada para cada pigmento. Todas as análises de varredura realizadas neste trabalho foram determinadas no mesmo equipamento.

3.3 Transformação do Pigmento Laranja em Pigmento Vermelho

Nesta etapa do trabalho, a partir dos resultados obtidos nos experimentos sob diferentes condições de pH, surgiu a hipótese da identificação do fenômeno que estaria ligado à transformação do pigmento laranja em pigmento vermelho. Toda a seqüência da realização desta etapa do trabalho está apresentada na Figura 3.4 e os resultados estão apresentados no item 4.2 (pg. 109). Os principais resultados experimentais podem ser verificados no Apêndice B (pg. 214).

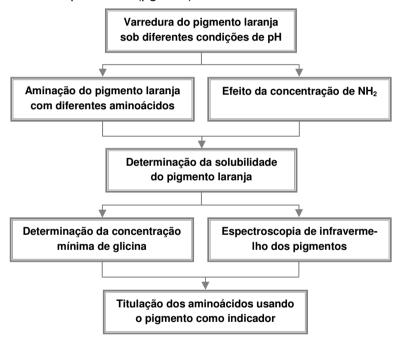


Figura 3.4: Fluxograma dos principais passos realizados nesta etapa.

3.3.1 Testes com Diferentes Aminoácidos

O pigmento laranja, produzido nos cultivos submersos, foi submetido a reações com aminoácidos. Estes experimentos foram realizados com asparagina (aminoácido contendo grupamento amida), tirosina (aminoácido com anel aromático), metionina (aminoácido sulfurado), glicina (aminoácido com grupamen-

to alifático), histidina (aminoácido básico), monoglutamato de sódio e cloreto de amônio. Aproximadamente 15 mg de cada composto foram adicionadas em 25 mL de pigmento laranja com absorbância próxima a 1 UA_{470nm}. Após agitação em *shaker* a 100 rpm durante 24 horas a temperatura de 30 °C, as amostras foram submetidas a leituras da absorbância a 510 nm em espectrofotômetro e comparadas ao padrão sem adição de aminoácidos.

Verificando-se diferentes comportamentos frente à adição dos compostos, novos experimentos foram realizados, padronizando-se a quantidade de NH₂. Nestes experimentos, foram adicionados 15 mg de NH₂ de cada aminoácido em 25 mL de pigmento laranja com absorbância próximo a 1 UA_{470nm}. Após agitação a 100 rpm durante 24 horas a temperatura de 30 °C, as amostras foram submetidas a leituras da absorbância em espectrofotômetro a 510 nm.

3.3.2 Determinação da Relação Pigmento vs. Absorbância

A concentração de pigmento laranja necessária para a promoção de 1 UA_{470nm} foi determinada a partir do pigmento produzido nos cultivos submersos. Em 10 tubos *eppendorf*, previamente secos e tarados, foram adicionados 2 mL do meio de cultivo com pigmento laranja, na ausência de biomassa. Após centrifugação a 9000 rpm durante 3 minutos, o sobrenadante foi descartado e, novamente, foram adicionados 2 mL do meio de cultivo, exceto para o primeiro tubo que foi armazenado. A cada centrifugação, um tubo *eppendorf* foi armazenado, obtendo-se diferentes quantidades de pigmento em cada tubo. Todos os tubos foram secos a temperatura de 60 °C durante 24 horas e, após resfriamento em dessecador, foram pesados em balança analítica Bel Engineering.

Cada tubo foi mergulhado em frasco de Erlenmeyer contendo 25 mL de álcool etílico 95 °GL e incubados em *shaker* a 30 °C durante 2 horas sob agitação de 100 rpm. Após este período, as amostras foram submetidas à leitura da absorbância a 470 nm. Os tubos *eppendorf* foram novamente secos e pesados para determinar a massa solubilizada. A partir dos resultados experimentais, foi construída uma curva da absorbância em função da concentração de pigmento laranja.

3.3.2 Titulação dos Aminoácidos

Com o intuito de entender a reação de aminação do pigmento laranja, foram realizados experimentos de titulação dos aminoácidos utilizando o pigmento laranja como espécie de indicador do ponto de "viragem", momento onde ocorre o início da aminação do pigmento laranja. Esta metodologia consiste na titulação de aminoácidos com uma solução alcalina para determinação dos valores do *pka* e do ponto isoelétrico (*pl*) (Lehninger et al., 2000).

Em frascos de Erlenmeyer foram adicionados 60 mL de álcool etílico, 240 mL de água destilada, 3% (p/v) de nitrato de sódio e 3 mL de pigmento laranja solúvel em álcool etílico 95 °GL. O pH de todos os frascos foi ajustado para 2,0 e os aminoácidos foram adicionados. As soluções de aminoácidos tituladas foram glicina 0,1 M, monoglutamato 0,1 M, tirosina 0,025 M, metionina 0,025 M e histidina 0,025 M. A titulação das soluções foi realizada com NaOH 1 M. A cada volume de NaOH adicionado foram medidos os valores de pH e absorbâncias a 510 nm.

3.4 Medidas Reológicas

As medidas reológicas do caldo de fermentação compreenderam as seguintes etapas: calibração do reômetro com óleo mineral padrão para elaboração de um *software* de aquisição de dados, construção e calibração de um sistema *vane* de quatro palhetas (Figura 3.6) e a determinação do comportamento reológico do caldo de fermentação de *Monascus ruber* cultivado em biorreator Bioflo III. Os principais passos estão apresentados na Figura 3.5 e os resultados encontram-se apresentados no item 4.3 (pg. 128). Os principais dados experimentais podem ser verificados no Apêndice C (pg. 225).

Figura 3.5: Principais passos realizados nesta etapa do trabalho.

3.4.1 Calibração do Reômetro

Para determinação do comportamento reológico do caldo de fermentação do *Monascus ruber* CCT 3802 foi utilizado um reômetro de cilindros concêntricos Rheotest 2.1 da MLW (Prüfgeräte - Werk, Alemanha). Este equipamento foi calibrado com um óleo mineral padrão (IPT 86) adquirido junto ao Instituto de Pesquisas Tecnológicas - SP (IPT) com viscosidades (μ) e massas específicas (ρ) conhecidas a diferentes temperaturas.

Este fluido foi colocado no reômetro para determinação da percentagem de torque (α) em função da diferença de potencial (ddp) através do acoplamento de um multímetro ao Rheotest 2.1 sob as diferentes geometrias do sistema de cilindros concêntricos, S/S_1 ; S/S_2 ; S/S_3 ; S/N; S/H (maiores detalhes, ver manual do equipamento), para todas as freqüências de rotação N (variando de 0,5 a 243 rpm) e para as faixas de torque máximo de 98,1 x 10^{-4} e 981,0 x 10^{-4} N m, resultando em mais de 500 medidas, possibilitando a construção do *software* pela obtenção de $\alpha = f(ddp)$.

O equipamento em seu estado natural, sem inserção do programa, informa o valor de α em um indicador analógico, sendo necessário multiplicar pelo valor da constante z do sistema (cada sistema S/S_1 ; S/S_2 ; S/S_3 ; S/N; S/H possui um valor de z fornecido pelo fabricante) obtendo-se o valor da tensão de deformação (τ), conforme apresentado na equação 3.10.

$$\tau = z.\alpha \tag{3.10}$$

onde τ é a tensão de deformação (10⁻¹ Pa), z é a constante do sistema (10⁻¹ Pa skt ⁻¹) e α é a percentagem de torque (skt: unidade apresentada pelo manual do Rheotest).

O software construído é uma alternativa para a obtenção direta da viscosidade e do comportamento da viscosidade através da visualização gráfica da tensão de deformação (t) versus o gradiente de velocidade (t) possibilitando a verificação rápida sobre o tipo de comportamento de escoamento (n) do fluido que está sendo analisado. Permite também, a aquisição de dados com intervalo de amostragem de 1 segundo, auxiliando na análise de fluidos tixotrópicos (fluidos que apresentam variação da viscosidade em função do tempo).

Através do manual do equipamento, a viscosidade é calculada através da equação 3.11:

$$\mu = \frac{\tau}{\gamma}.100\tag{3.11}$$

onde γ é o gradiente de velocidade (s⁻¹).

Substituindo-se a equação 3.10 em 3.11 obtém-se a equação 3.12

$$\mu = \frac{z.\alpha}{\gamma}.100\tag{3.12}$$

Com os valores de α e da tensão informada pelo multímetro, foi obtida a regressão linear para obtenção de α = f(ddp), que substituída na equação 3.12, resulta na equação 3.13.

$$\mu = \frac{z.(ax+b)}{\gamma}.100$$
 (3.13)

Com a obtenção da equação 3.13 foi possível construir o *software* de aquisição de dados para determinação instantânea da viscosidade (μ) , determinação do comportamento de escoamento (n), índice de consistência (k) e análise de fluidos tixotrópicos.

3.4.2 Construção e Calibração do Sistema Vane

Para determinação das propriedades reológicas do caldo de fermentação do *Monascus ruber* CCT 3802 foi construído, em aço inox, o sistema *vane* de quatro palhetas ao redor de um eixo (Figura 3.6). Este sistema, adequado para determinação do comportamento reológico de suspensões com *pellets*, como o caso durante o crescimento do *M. ruber*, foi acoplado ao reômetro rotacional Rheotest 2.1. Uma vez calibrado, vários materiais que contenham partículas suspensas podem ser analisados como extrato de tomate, pastas, doces, geléias entre outros.

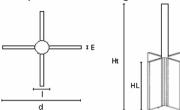


Figura 3.6: Ilustração do sistema vane utilizado no reômetro rotacional (d = 0.037 m; HL = 0.040 m; I = 0.010 m, E = 0.002 m e Ht = 0.18 m).

A calibração deste sistema foi baseada na metodologia utilizada por Badino Jr. (1997) que objetiva a determinação das constantes de proporcionalidade F_1 e F_2 que relacionam os valores do gradiente de velocidade (γ) com a freqüência de rotação (N) e da tensão de cisalhamento (τ) com o torque consumido na agitação (T), conforme apresentado pelas equações 3.14 e 3.15, na região de escoamento laminar (Calderbank e Moo-Young, 1957 apud Badino Jr.,1997).

$$\gamma = F_{t}.N \tag{3.14}$$

$$\tau = F_2.T \tag{3.15}$$

A metodologia de calibração empregada consistiu na utilização de um fluido Newtoniano (óleo mineral padrão IPT 86) com viscosidades e massas específicas conhecidas e um fluido não-Newtoniano (goma guar 1% p/v). O óleo IPT 86 foi transferido para o reômetro de cilindros concêntricos no sistema S/S_1 e a temperatura de 30 °C foi mantida por um banho termostatizado.

Foram realizadas medidas de torque (T) a diferentes frequências de rotação (N). Este procedimento possibilitou a determinação da constante c pela regressão linear, dada pela equa-

cão 3.16, do número de Reynolds (Re), determinado através da equação 3.17, em função do número de potência (Np), determinado pela equação 3.18, que se relacionam da seguinte maneira na região de escoamento laminar (Rhushton et al., 1950).

$$Np = \frac{c}{Re} \tag{3.16}$$

sendo:

$$Re = \frac{\rho N d_i^2}{\mu}$$
 (3.17)

$$Re = \frac{\rho N d_i^2}{\mu}$$

$$Np = \frac{P_0}{\rho N^3 d_i^5}$$
(3.17)

onde c é a constante de proporcionalidade que depende do tipo de impelidor e das relações geométricas do sistema, P_0 é o consumo de potência na agitação do fluido, tal como em tangues agitados (W), N é a frequência de rotação (s⁻¹), d_i é o diâmetro do impelidor (m), ρ é a massa específica do fluido (g cm⁻³) e μ é a viscosidade do fluido (mPa s).

O consumo de potência para agitar um fluido sem aeração pode ser calculado pela equação 3.19.

$$P_0 = 2\pi TN \tag{3.19}$$

onde Té o torque consumido na agitação (N m).

De acordo com a Lei de Newton, no caso de fluidos não-Newtonianos pseudoplásticos, para os quais a reologia segue a Lei da Potência, a viscosidade aparente (μ_{ap}) é definida pela equação 3.20 (Rao, 2000).

$$\mu_{ap} = \frac{\tau}{\gamma} = k\gamma^{n-1} \tag{3.20}$$

onde μ_{ap} é a viscosidade aparente (Pa sⁿ), k é o índice de consistência (Pa sⁿ) e n é o índice de comportamento de escoamento (adimensional).

Para a obtenção das constantes de calibração F_1 e F_2 , durante a agitação de um fluido não-Newtoniano que segue a Lei da Potência, no regime de escoamento laminar, a combinação das equações 3.16, 3.17, 3.18 e 3.19 levam à obtenção da equação 3.21 que possibilita a determinação da viscosidade aparente do fluido (percebe-se a utilização da constante c determinada pela equação 3.16).

$$\mu_{ap} = \frac{2\pi T}{cd^3 N} \tag{3.21}$$

Igualando-se as equações 3.20 e 3.21, obtém-se a equação 3.22 que relaciona o gradiente de velocidade (γ) com a freqüência de rotação (N) e o torque consumido (T) na agitação do fluido não-Newtoniano.

$$\gamma = \left(\frac{cd_i^3 k}{2\pi}\right)^{\frac{1}{1-n}} \left(\frac{N}{T}\right)^{\frac{1}{1-n}} \tag{3.22}$$

Para estimar os valores de γ foi utilizada uma suspensão de goma guar 1% (p/v) (fluido que apresenta comportamento pseudoplástico). Primeiramente, foram determinados os parâmetros reológicos índice de consistência (k) e índice de escoamento (n) da suspensão de goma guar no reômetro de cilindros concêntricos utilizando o sistema de medida S/S_2 a temperatura de 30 $^{\circ}$ C. Após determinados os parâmetros reológicos k e n da goma, a suspensão foi agitada no sistema vane, onde os valores de torque (T) correspondentes às diferentes freqüências de rotação (N) foram utilizados para estimar os valores de γ apresentados na equação 3.22. Com os valores de N e γ a constante de calibração F_1 foi determinada pela regressão linear apresentada pela equação 3.14.

A constante F_2 , que relaciona a tensão de cisalhamento (τ) com o torque consumido na agitação (T), foi determinada pela equação 3.23, resultante da combinação das equações 3.14, 3.15, 3.20 e 3.21.

$$F_2 = \frac{2\pi}{cd_i^3} F_i \tag{3.23}$$

Com estas constantes conhecidas, pode-se obter reogramas de τ em função de γ , a partir de valores de N e T.

3.4.3 Reologia do Caldo de Fermentação

O objetivo inicial compreendia a determinação do comportamento reológico do caldo de fermentação de *M. ruber* cultivado em biorreator Bioflo III a 30 °C sob agitação de 300 rpm, embora, a concentração de biomassa presente na faixa de 1 a 6 g L⁻¹ não tenha proporcionado tensão de deformação suficiente para determinação dos parâmetros reológicos índice de consistência (*k*) e índice de comportamento de escoamento (*n*). Diante do ocorri-

do, o caldo de fermentação foi filtrado em gaze para concentrar a suspensão microbiana. A partir da suspensão obtida com concentração celular de 63,20 g L⁻¹, diferentes quantidades do filtrado foram adicionadas resultando em concentrações celulares de 56,20; 50,80; 46,07; 37,02; 30,32 e 25,67 g L⁻¹, determinadas conforme apresentado no item 3.2.3.3. O diâmetro dos *pellets* foi medido através de um microscópio Bioval (Warszawa, Holanda) e um gráfico de frequência acumulada foi confeccionado.

Estas concentrações de biomassa são relativamente altas e dificilmente obtidas em cultivos de fungos filamentosos, mas pode-se obter uma relação considerável para a obtenção do índice de consistência em função da concentração de biomassa.

Cerca de 60 mL de cada suspensão foram submetidos às determinações dos parâmetros reológicos k e n, no sistema vane a temperatura de 30 $^{\circ}$ C controlada através de um banho termostatizado. Aplicando o modelo da Lei da Potência, conforme apresentado na equação 3.24, foi possível determinar os parâmetros k e n para cada concentração celular.

$$\tau = k\gamma^n \tag{3.24}$$

Com os valores de k e n determinados para as diferentes concentrações de biomassa, foi utilizada a equação 3.25 para estabelecer uma relação do índice de consistência (k) em função da concentração de biomassa.

$$k = k_0 X^w \tag{3.25}$$

onde k é o índice de consistência (Pa sⁿ), k_0 é o índice de consistência obtido para cada concentração de biomassa (Pa sⁿ), X é a concentração de biomassa (g L⁻¹) e w é o expoente da concentração de biomassa.

3.5 Cultivo Submerso em Biorreator

A Figura 3.7 apresenta as principais etapas realizadas nesta etapa do trabalho. Os resultados encontram-se apresentados no item 4.4 (pg. 138).

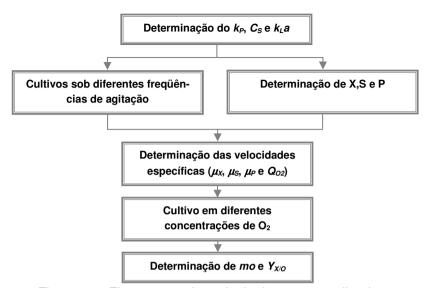


Figura 3.7: Fluxograma das principais etapas realizadas.

3.5.1 Meio de Cultivo

O meio utilizado nos cultivos submersos está apresentado na Tabela 3.1 (pg. 68).

3.5.2 Preparo do Inóculo para os Cultivos Submersos

O inóculo dos cultivos realizados em biorreator foi preparado em frasco de Erlenmeyer aletado de 1000 mL contendo 360 mL do meio de cultivo apresentado na Tabela 3.1. A partir do *M. ruber* cultivado em meio PDA nas garrafas de Roux, foi preparada uma suspensão de esporos através da raspagem com água destilada e, conseqüente filtração em funil com gaze de algodão, previamente esterilizados, para eliminar resíduos de PDA e grumos de microrganismos. A partir desta suspensão, os frascos foram inoculados com 10% (v/v), atingindo cerca de 4 *x* 10⁵ esporos mL⁻¹. O pH foi ajustado para 4,0 e incubou-se a temperatura de 30 °C sob a freqüência de agitação de 120 rpm durante 60 horas de cultivo. Após este período, o meio de cultivo contido no biorreator foi inoculado.

3.5.3 Biorreator

Para realização dos cultivos foi utilizado um biorreator Bioflo III, de 6 litros, fabricado pela *New Brunswick Scientific Co. INC* (New Jersey, USA), em regime descontínuo, com volume útil de 4 litros, conforme apresentado na Figura 3.8. Este biorreator possui um *software* de aquisição de dados (Figura 3.9), construído pela empresa ALTEM, localizada no município de Florianópolis, SC. Este software faz a coleta de dados da freqüência de agitação, pH, temperatura e oxigênio dissolvido com intervalo de amostragem variável de 1 a 600 segundos.

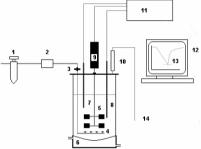


Figura 3.8: Esquema do biorreator Bioflo III utilizado nos experimentos. (1) controlador de pressão; (2) fluxômetro de massa; (3) filtro asséptico; (4) dispersor de ar; (5) impelidores; (6) controle da temperatura; (7) eletrodo de pH; (8) eletrodo de O₂ dissolvido; (9) motor; (10) condensador; (11) receptor/conversor de sinal; (12) computador; (13) aquisição de dados e (14) exaustão dos

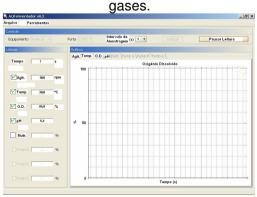


Figura 3.9: Tela do sistema de aquisição de dados utilizados no biorreator Bioflo III.

3.5.4 Experimentos Realizados no Biorreator

Após a determinação do pH ideal para a produção do pigmento laranja, foi dada seqüência aos cultivos em biorreator Bioflo III. A primeira etapa dos cultivos em biorreator consistiu na realização de cultivos sob as freqüências de agitação de 300, 600 e 900 rpm para verificar o comportamento dos *pellets* de biomassa e da produção de pigmentos. Determinada a freqüência de agitação, foi dado prosseguimento aos experimentos para quantificar os parâmetros referentes ao coeficiente de manutenção de oxigênio (m_O) e os fatores de conversão de oxigênio em biomassa (Y_O).

A próxima etapa consistiu na realização de experimentos com 10 g L^{-1} de glicose sob as seguintes concentrações de oxigênio dissolvido: acima de 50% de saturação (excesso de O_2), 35% de saturação (cerca de 5% acima da concentração crítica) e abaixo de 16% de oxigênio dissolvido (condições de limitação de O_2) para verificar, em primeiro momento, o comportamento do microrganismo e da produção de pigmentos nestes cultivos. O controle do oxigênio dissolvido foi realizado através do ajuste manual da vazão de aeração (0,125 a 0,75 vvm) e da freqüência de agitação (75 a 300 rpm).

As determinações da concentração crítica e da concentração de saturação de oxigênio no meio de cultivo estão apresentadas nos itens 3.7.2 e 3.7.3, respectivamente.

3.6 Metodologia Analítica

3.6.1 Determinação de Biomassa

A biomassa foi quantificada por gravimetria conforme apresentado no item 3.2.3.3 (pg. 68).

3.6.2 Determinação de Pigmento

Os pigmentos foram determinados, a partir do filtrado obtido na determinação da concentração de biomassa, em espectrofotômetro Spetronic Unicam Genesys *10vis* (New York, USA) nos seguintes comprimentos de onda: laranja 470 nm e vermelho 510 nm.

3.6.3 Determinação da Concentração de Glicose

A concentração de glicose no meio de cultivo foi determinada, a partir do filtrado obtido na determinação da concentração de biomassa, através do método do ácido 3,5-dinitrosalicílico (3,5-DNS), conforme descrito por Miller (1959).

Em tubo de ensaio contendo 400 μ L de amostra previamente diluída, foi adicionado 400 μ L do reativo 3,5-DNS. A mistura foi incubada em banho-maria a 100 °C por 5 minutos, sendo em seguida resfriada em banho de gelo até a temperatura ambiente. Foi adicionado um volume de 4,0 mL de água destilada e, após 15 minutos, a absorbância foi lida em espectrofotômetro Spectronic Unicam Gênesis *10vis* a 540 nm e comparada a curva padrão de glicose na faixa de zero a 3 g L⁻¹.

3.6.4 Determinação Qualitativa de Citrinina por Cromatografia em Camada Delgada (TLC)

A determinação qualitativa de citrinina (4,6 dihidro-8-hidroxi-3,4,5-trimetil-6-oxo-3H-2-benzopirano) foi realizada pela técnica de cromatografia em camada delgada (TLC) utilizando-se placas de gel agarose da marca Merck (Darmstadt, Alemanha) com dimensões de 20 X 20 cm, usando acetona/acetato de etila/água (10:10:4) como fase móvel, conforme metodologia apresentada por Pepeljnjak et al. (2002).

A validação do teste foi realizada da seguinte maneira: diluições sucessivas de 0,9; 1,8; 3,6; 9; 18 e 36 mg L⁻¹ foram preparadas a partir do padrão citrinina SIGMA 180 μg mL⁻¹ para servirem como parâmetros de referência. A presença de citrinina foi determinada pela incidência da luz ultravioleta com comprimento de onda de 366 nm em câmara escura, com fator de retenção (*Rf*) de 0,5 sobre a placa de gel agarose, após corrida com o gradiente de separação. A presença de uma banda fluorescente (amarelo intenso) comparada ao padrão de citrinina adicionado à mesma placa de gel agarose caracterizou a presença desta molécula.

A presença e a estimativa de citrinina foi realizada pela coleta de 5 mL do meio de cultivo, centrifugadas, filtradas e tratadas com 5 mL de uma mistura de acetonitrila e água (9:1) por 10 minutos. Foram adicionados às amostras 5 mL de n-hexano (para remoção dos lipídeos), 2,5 mL de carbonato de sódio hidrogenado e 2,5 mL de água (pH 8,9) e extraídas com 2,5 mL de cloro-

fórmio. A fração de clorofórmio foi filtrada com sulfato de sódio, evaporada, seca e redissolvida em 0,2 mL de clorofórmio para análise em cromatografia de camada delgada.

3.6.5 Análise de Imagem

Para caracterizar a biomassa presente nas amostras, foi utilizado um microscópio Bioval (Warszawa, Holanda) com câmera de TV ALDER CCTV (Phillipinas, Taiwan) acoplada. O mesmo equipamento foi utilizado para acompanhar a morfologia e o comportamento do *Monascus ruber* CCT 3802 cultivado sob diferentes freqüências de agitação e aquisição de imagens dos cristais de pigmento laranja produzidos no decorrer do cultivo.

3.7 Transferência de Oxigênio

A seguir está apresentada a metodologia referente à determinação da constante de atraso do eletrodo de oxigênio dissolvido (k_P) , a determinação da concentração de saturação de oxigênio dissolvido no meio de cultivo (C_S) , a determinação do coeficiente volumétrico de transferência de oxigênio sob aeração em profundidade e aeração superficial no meio de cultivo, a determinação do coeficiente volumétrico de transferência de oxigênio (k_La) e a velocidade específica de respiração (Q_{O2}) do fungo nos diferentes cultivos realizados.

3.7.1 Tempo de Resposta do Eletrodo (k_P)

Eletrodos galvânicos produzem um fluxo de elétrons proporcional a quantidade de oxigênio que está sendo difundida pela membrana do eletrodo. Quando o oxigênio entra em contato com o eletrólito, gera uma corrente que é transmitida para um conversor que informa o sinal proporcional referente à calibração realizada. Esta corrente é proporcional à pressão parcial do gás (p_g) e, consequentemente, à concentração de oxigênio dissolvido (Leigh, 1987). Logo, este processo requer certo tempo para que o oxigênio difunda-se pela membrana e seja informado o valor lido, função da determinação de k_P que corrige este atraso na resposta do eletrodo (Figura 3.10).

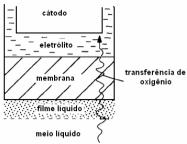


Figura 3.10: Difusão do O₂ do líquido para o cátodo do eletrodo (Doran, 1995).

Para determinação do tempo de resposta do eletrodo de oxigênio dissolvido foi utilizada a metodologia do ensaio degrau proposta por Schmidell (2001). Este ensaio consiste em submeter o eletrodo, previamente polarizado e calibrado, a uma atmosfera inerte contendo apenas nitrogênio gasoso ($p_{O2} = 0$ atm) até que o valor informado pelo eletrodo estivesse abaixo de 1%. Atingido este valor o eletrodo é subitamente colocado em atmosfera saturada com ar atmosférico ($p_{O2} = 0,209$ atm) coletando os valores informados pelo sensor através do software de aquisição de dados do biorreator Bioflo III com intervalo de amostragem de 1 segundo.

Através da equação 3.26 é possível determinar o valor da constante de atraso do eletrodo de oxigênio dissolvido (k_P).

$$\frac{dC_P}{dt} = k_P (C - C_P) \tag{3.26}$$

onde C_P é o sinal do eletrodo (C_P = 0 para t = 0 e C_P = C_S para t = ∞) e K_P é a constante de atraso do eletrodo (K_P).

No ensaio degrau, tem-se desde o instante inicial t=0 a concentração $C=C_S$, logo a equação 3.26 resulta na equação 3.27.

$$\frac{dC_P}{dt} = k_P (C_S - C_P) \tag{3.27}$$

Que integrada nos limites utilizados fornece a equação 3.28.

$$ln\left(1 - \frac{C_P}{C_S}\right) = -k_P.t \tag{3.28}$$

Analisando-se os valores de $ln(1-C_p/C_S)$ em função do tempo, pode-se obter o valor de k_P pelo coeficiente angular da regressão linear obtida.

A correção dos valores do $k_L a$, considerando-se os valores de k_p , podem ser corrigidos através da equação 3.29 (Schimidell, 2001)

$$\frac{C_P}{C_S} = 1 + \frac{k_L a}{k_P - k_L a} e^{-k_P \cdot t} - \frac{k_P}{k_P - k_L a} e^{-k_L a \cdot t}$$
(3.29)

Através desta equação pode-se corrigir valor do coeficiente volumétrico de transferência de oxigênio, levando em conta o tempo de resposta do eletrodo.

3.7.2 Determinação da Concentração Crítica de Oxigênio Dissolvido (C_{CRIT})

A concentração crítica de oxigênio dissolvido (C_{CRIT}) determinada através do método dinâmico conforme ilustração apresentada na Figura 3.11 (Schmidell, 2001).

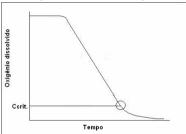


Figura 3.11: Determinação da C_{CRIT} de oxigênio dissolvido.

È uma determinação simples que consiste na interrupção da aeração, ocorrendo redução gradual e constante (dC/dt = constante) da concentração de oxigênio dissolvido até uma dada concentração. A concentração onde a variação da concentração de oxigênio deixa de ser constante (dC/dt = variável) é conhecida como $C_{CB/T}$.

3.7.3 Determinação da Solubilidade de Oxigênio no Meio de Cultivo (*C*_S)

A equação que descreve a solubilidade de um gás em um líquido, para soluções diluídas, é a Lei de Henry. Através desta lei podemos determinar a concentração de saturação de oxigênio

dissolvido (C_S) em um líquido, conforme apresentado na equação 3.30.

$$C_{\mathcal{S}} = H.p_{a} \tag{3.30}$$

onde C_S é a concentração de saturação do oxigênio no líquido (mgO₂ L⁻¹), H é a constante de Henry (mgO₂ L⁻¹ atm⁻¹) e p_G é a pressão parcial de oxigênio no gás (atm).

A determinação da C_S de oxigênio no meio de cultivo, apresentado na Tabela 3.1 (pg. 68) e na água destilada foi realizada pelo método proposto por Käppeli e Fiechter (1981) adaptada às condições do laboratório por Rossi (2006).

Como a constante de Henry (*H*) é dependente de vários parâmetros físico-químicos, como temperatura, pressão e concentração de soluto, torna-se impossível obter uma medida direta da concentração de oxigênio dissolvido a partir de um sensor. Entretanto, é possível calibrar o sensor através da liberação de uma quantidade conhecida de oxigênio em uma solução, desde que o oxigênio tenha sido previamente removido pela injeção de N₂. Desenvolvido por Kappeli e Fiechter (1981), este método é uma alternativa prática e precisa em relação ao método titulométrico de Winkler (1888).

O método de Kappeli e Fiechter (1981) consiste em adicionar uma quantidade de oxigênio e medir a percentagem de saturação correspondente a esta adição, descrita pela estequiometria da reação apresentada pela equação 3.31.

$$H_2O_2 + catalase \rightarrow \frac{1}{2}O_2 + H_2O$$
 (3.31)

Para determinação da concentração de saturação foi utilizado um balão de fundo chato com três aberturas. Uma abertura foi utilizada para colocar o eletrodo de oxigênio dissolvido, previamente polarizado e calibrado, outra para adição de nitrogênio gasoso na superfície (para evitar a transferência de oxigênio da superfície para o líquido) e a terceira foi utilizada para adição de 360 mL do meio de cultivo ou água destilada, peróxido de hidrogênio (H₂O₂) e a enzima catalase TERMINOX ULTRA 50L fornecida pela empresa NOVOZYMES. A temperatura foi mantida a 30 °C através de um banho termostatizado sobre um agitador magnético para garantir a homogeneidade do líquido.

Com o aparato montado, foi iniciada a retirada do oxigênio dissolvido no líquido pela injeção de N_2 . Quando o eletrodo informou valor igual ou inferior a 1%, foi adicionado H_2O_2 (0,9576)

M padronizado com permanganato de potássio e tendo como padrão primário o oxalato de sódio, segundo metodologia apresentada por Morita, 1999) e em seguida adicionada, em excesso, uma quantidade da enzima catalase. A leitura da percentagem de saturação foi feita quando o valor foi mantido constante. O procedimento foi realizado para diferentes volumes de H_2O_2 , obtendo-se diferentes respostas do eletrodo. Com as respostas obtidas em função da quantidade de oxigênio adicionada foi possível determinar a concentração de saturação do líquido e a constante de Henry através da equação 3.30.

Este procedimento foi realizado na água destilada e no meio de cultivo no tempo 0; 24; 48 e 72 horas de cultivo. Para isto, foi realizado um cultivo de *M. ruber* em biorreator Bioflo III e a cada tempo foi retirada uma amostra de 500 mL, filtrada em papel filtro quantitativo Whatman n.º 1 (Madiston, Inglaterra) para separação da biomassa, que foi descartada, e o filtrado foi submetido à determinação da concentração de saturação.

3.7.4 Determinação do Coeficiente Volumétrico de Transferência de Oxigênio ($k_L a$) e da Velocidade Específica de Respiração (Q_{O2})

Neste trabalho o coeficiente volumétrico de transferência de oxigênio ($k_L a$) e a velocidade específica de respiração (Q_{O2}) foram determinadas pelo método dinâmico conforme descrito por Schmidell (2001).

Os processos fermentativos que envolvem o fornecimento e o consumo de oxigênio pelos microrganismos, geralmente são avaliados por uma análise conjunta através do balanço de oxigênio no líquido, conforme a equação 3.32.

$$\frac{dC}{dt} = k_L a(C_S - C) - Q_{O_2} X \tag{3.32}$$

onde C_S é a concentração de saturação de oxigênio dissolvido no líquido (mgO₂ L⁻¹), C é a concentração de oxigênio no líquido (mgO₂ L⁻¹), Q_{O2} é a velocidade específica de respiração (mgO₂ g_X⁻¹ h⁻¹), X é a concentração de biomassa (g L⁻¹) e t é o tempo (h).

A equação 3.32 pode ser desmembrada em duas equações que representam o fornecimento e o consumo de O_2 dissolvido, conforme as equações 3.33 e 3.34, respectivamente.

$$\frac{dC}{dt} = Q_{O_2}X\tag{3.33}$$

$$\frac{dC}{dt} = Q_{O_2} X \tag{3.33}$$

$$\frac{dC}{dt} = k_L a(C_S - C) \tag{3.34}$$

A Figura 3.12 ilustra o comportamento característico da concentração de oxigênio dissolvido durante a aplicação do método dinâmico realizado nos cultivos do M. ruber CCT 3802.

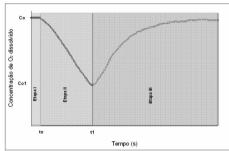


Figura 3.12: Concentração de O₂ dissolvido durante a execução do método dinâmico.

Na Figura 3.11, verifica-se três etapas: a etapa I é o momento que antecede a execução do método dinâmico. Não existem variações significativas na concentração de O2 dissolvido. logo, o fornecimento é igual ao consumo. Na etapa II a aeração é interrompida, resultando na redução gradativa da concentração de O₂ dissolvido, devido ao consumo pelo microrganismo. Neste caso, o fornecimento de O₂ é menor que o consumo. Este consumo é determinado pela eliminação do termo do fornecimento de O₂. Determinando-se a variação da concentração de oxigênio em função do tempo e sabendo-se a concentração de biomassa, determina-se a velocidade específica de respiração através da eguação 3.33 levando em conta, a redução da agitação, mas também, assegurando níveis que possam garantir a homogeneidade do biorreator. A medida do ponto final da Etapa II deve ser mantida acima da concentração crítica de oxigênio dissolvido (C_{CRIT}) para garantir que o microrganismo não fique limitado em O2. Na etapa III, retoma-se a agitação e a aeração, nas condições que estavam sendo praticadas, observando-se então, o aumento da concentração de O2 dissolvido, até atingir novamente a concentração inicial. Esta etapa é corresponde ao fornecimento de oxigênio do gás para o líquido, representado pela equação 3.34.

$$\frac{dC}{dt} = k_L a(C_S - C) \tag{3.34}$$

Que integrada pode ser escrita como a equação 3.35.

$$\frac{C}{C_s} = \left(1 - e^{-k_L a.t}\right) \tag{3.35}$$

Todos os valores de $k_L a$ foram estimados pelo Software Statistica 6.0 através da regressão não linear da concentração de O_2 em função do tempo, conforme apresentado pela equação 3.36. Os valores das concentrações podem ser visualizados na Figura 3.11.

$$C = C_0 - (C_0 - C_{01}) e^{(-k_L a \cdot (t - t_1))}$$
(3.36)

onde C é a concentração de oxigênio dissolvido informada pelo eletrodo (mgO₂ L⁻¹), C_0 é a concentração de oxigênio dissolvido para $t = \infty$ (mgO₂ L⁻¹), C_{01} é a concentração de oxigênio dissolvido para t = 0 (mgO₂ L⁻¹) e $t - t_1$ é o tempo de duração da determinação do $k_L a$ (h);

3.7.5 Determinação do Coeficiente Volumétrico de Transferência de Oxigênio no Meio de Cultivo sob Aeração em Profundidade e Aeração Superficial

Com o objetivo de caracterizar a hidrodinâmica do biorreator, foram determinados os valores do coeficiente volumétrico de transferência de massa sob as freqüências de agitação de 250; 500; 750 e 1000 rpm sob as vazões de aeração específicas de 0,25; 0,50; 0,75 e 1 vvm. Todas as determinações foram realizadas a 30 °C e foi utilizado N_2 para eliminar o oxigênio dissolvido no líquido.

As mesmas determinações foram realizadas sob aeração superficial, para determinação do coeficiente volumétrico de transferência de massa, pois na determinação da velocidade específica de respiração deve-se interromper a aeração do sistema. A única variação da concentração de oxigênio deve ser relativa ao consumo pelo microrganismo, embora, exista uma parcela de oxigênio que continua a ser transferida para o líquido que deve ser quantificada para determinar os níveis máximos de agitação para correta determinação da velocidade específica de respiração.

A estimativa dos valores de $k_L a$ foram realizadas pelo *software* Statistica 6.0 através de uma estimativa não linear, conforme apresentado na equação 3.36.

3.7.6 Determinação dos Parâmetros Cinéticos

Para avaliação cinética dos cultivos de *Monascus ruber*, foram determinados os parâmetros fator de conversão de substrato em biomassa ($Y_{X/S}$), velocidade específica de crescimento (μ_X), velocidade específica de consumo de substrato (μ_S), velocidade específica de produção de pigmento (μ_P). As relações utilizadas nos cálculos destes parâmetros estão baseadas nas apresentadas por Hiss (2001). As velocidades específicas foram determinadas pelas equações 3.37, 3.38 e 3.39.

$$\mu_X = \frac{1}{X} \frac{dX}{dt} \tag{3.37}$$

$$\mu_{\rm S} = -\frac{1}{X} \frac{dS}{dt} \tag{3.38}$$

$$\mu_P = \frac{1}{X} \frac{dA}{dt} \tag{3.39}$$

onde μ_X é a velocidade específica de crescimento (h⁻¹), μ_S é a velocidade específica de consumo de substrato (g_S g_X⁻¹ h⁻¹), μ_P é a velocidade específica de formação de produto (UA g_X⁻¹ h⁻¹), X é a concentração de biomassa (g L⁻¹), S é a concentração de substrato (g L⁻¹), A é o número de unidades de absorbância (UA) e t é o tempo (h).

No cálculo das velocidades específicas foi utilizado o *soft-ware* Lissage. Este software permite a obtenção de um polinômio das concentrações de cada componente em função do tempo a partir dos dados experimentais. Todos os polinômios foram derivados e divididos pela concentração de biomassa pontual, obtendo-se assim, os valores de μ_X , μ_S e μ_P .

O fator de conversão de substrato em biomassa foi determinado através da equação 3.40.

$$Y_{X/S} = -\frac{dX}{dS} \tag{3.40}$$

onde $Y_{X/S}$ é o fator de conversão de substrato em biomassa $(g_X g_S^{-1})$.

Através da equação apresentada por Luedeking e Piret (1959) apud Hiss (2001) que relaciona a dependência de μ_P em

função de μ_X , conforme a equação 3.41, foi confeccionada uma figura para verificar a dependência destas respostas no cultivo do *Monascus ruber*.

$$\mu_P = \theta . \mu_X + \beta \tag{3.41}$$

onde θ é a constante empírica que descreve a dependência da produção de pigmentos associada ao crescimento celular e β é a constante empírica que descreve a não dependência da produção de pigmentos associada ao crescimento celular.

A equação 3.42 apresentada por Pirt (1975) apud Hiss (2001) possibilita a determinação do coeficiente de manutenção (m_O) e do fator de conversão de O_2 em células pela relação de Q_{O2} em função da velocidade específica de crescimento (μ_X) .

$$QO_2 = \frac{1}{Y_O} \mu_X + m_O \tag{3.42}$$

onde m_O é o coeficiente de manutenção para o O_2 (mg O_2 g $_X^{-1}$ h $^{-1}$) e Y_O é o fator de conversão de O_2 para células (g $_X$ g O_2^{-1}).

A partir da determinação dos parâmetros m_O e Y_O , realizada através da equação 3.42, foi estimada a concentração celular do *Monascus ruber* pela utilização do modelo matemático desenvolvido por Zabriskie e Humphrey (1978) *apud* Silveira e Molina (2005), aplicado no cultivo aeróbico de *Bacillus thuringiensis* var. *israelensis*. Multiplicando-se a equação 3.42 pela concentração de biomassa (X) e substituindo-se a equação 3.37, obtém-se a equação 3.43.

$$QO_2X = \frac{1}{Y_O}\frac{dX}{dt} + m_OX \tag{3.43}$$

Integrando pelo método dos trapezóides, conforme sugerido por Zabriskie e Humphrey (1978), obtém-se a equação 3.44.

$$\int_{t_{n-1}}^{t_{n}} QO_{2}Xdt = \int_{X_{n-1}}^{X_{n}} \frac{1}{Y_{O}}dX + \int_{t_{n-1}}^{t_{n}} m_{O}Xdt$$
 (3.44)

Substituindo-se os intervalos e isolando-se X_n , que representa o valor cumulativo da concentração de biomassa, obtém-se a equação 3.45.

$$X_{n} = \frac{Y_{O}\left(\frac{\Delta t}{2}\right)\left[\left(QO_{2}X\right)_{n} + \left(QO_{2}X\right)_{n-1}\right] + \left[1 - m_{O}Y_{O}\left(\frac{\Delta t}{2}\right)\right]X_{n-1}}{1 + m_{O}Y_{O}\left(\frac{\Delta t}{2}\right)}$$
(3.45)

onde X_n é a concentração de biomassa no tempo t_n (g L⁻¹), X_{n-1} é a concentração de biomassa no tempo t_{n-1} (g L⁻¹), Δt é o intervalo de tempo entre t_n e t_{n-1} (h), $Q_{O2}X_n$ é a demanda de oxigênio no tempo t_n (mmolO₂ L⁻¹ h⁻¹), $Q_{O2}X_{n-1}$ é a demanda de oxigênio no tempo t_{n-1} (mmolO₂ L⁻¹ h⁻¹), m_O é o coeficiente de manutenção para o O₂ (mmolO₂ g_X⁻¹ h⁻¹) e Y_O é o fator de conversão de oxigênio em biomassa (g_X mmolO₂⁻¹).

Nesta equação, o primeiro valor de X_{n-1} deve-se ser estimado a partir da concentração celular do inóculo de cada cultivo. Lembrando que os valores de $Q_{O2}X$, obtidos a partir da equação 3.33, devem estar em mmol Q_2 L⁻¹ h⁻¹.

3.8 Propriedades dos Pigmentos

Após todas as etapas anteriores realizadas, surgiu a necessidade de determinar e quantificar algumas propriedades destes pigmentos produzidos. As propriedades estudadas foram a estabilidade térmica através da metodologia da superfície de resposta e a atividade antimicrobiana do pigmento laranja, vermelho aminado a partir do laranja e do vermelho produzido durante o cultivo. Os principais passos desta etapa estão apresentados na Figura 3.13 e os resultados estão apresentados no item 4.5 (pg. 163).

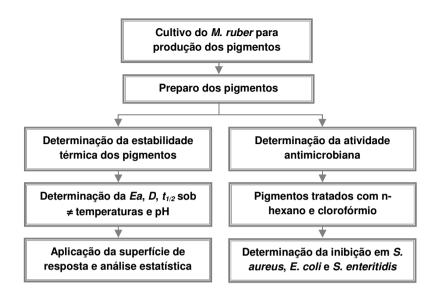


Figura 3.13: Fluxograma das principais etapas realizadas.

3.8.1 Preparo dos Pigmentos

3.8.1.1 Pigmento laranja

O pigmento laranja produzido nos cultivos foi obtido pela filtração do meio de cultivo em gaze para eliminar a biomassa, que foi descartada. O filtrado, contendo os cristais de pigmento, foi colocado em proveta de 1000 mL para separação por sedimentação. O pigmento sedimentado no fundo da proveta foi coletado com pipeta de 25 mL e filtrado em papel filtro quantitativo Whatman nº 1. O filtrado foi descartado e o material remanescente foi lavado diversas vezes com água destilada. Após lavagem, o pigmento foi solubilizado em álcool etílico 95 °GL, obtendo-se uma solução concentrada de pigmento. Esta solução foi armazenada em freezer a -20 °C.

A estabilidade térmica foi realizada com esta solução de pigmento enquanto que a determinação da atividade antimicrobiana foi realizada a partir desta solução com um processo de purificação. A solução de pigmento laranja mantida a -20 °C em refrigerador foi submetida ao processo de recristalização do pigmento pela adição de duas partes de água destilada para cada parte da solução de pigmento, mantida a -20 °C durante 2 horas

e filtrado em papel filtro quantitativo Whatman nº 1. O pigmento retido foi lavado com n-hexano e clorofórmio. Após lavagem, o pigmento foi solubilizado em álcool etílico 95 °GL.

O pigmento purificado foi submetido ao processo de evaporação total do solvente sob vácuo. O pigmento sólido foi dissolvido em dimetilsulfóxido (DMSO) e submetido aos experimentos da atividade antimicrobiana.

3.8.1.2 Pigmento vermelho aminado

O pigmento vermelho foi obtido a partir da adição de 0,5 g de glicina em 100 mL da solução alcoólica de pigmento laranja solúvel em etanol 95 °GL armazenada a -20 °C. O pH foi ajustado para 6,0 e colocou-se em shaker a 30 °C sob agitação de 100 rpm durante 2 horas.

A estabilidade térmica foi realizada com esta solução enquanto que o pigmento vermelho sofreu um processo de lavagem com n-hexano e clorofórmio. Após lavagem, o pigmento foi submetido à evaporação do solvente sob vácuo. O pigmento vermelho sólido foi solubilizado em DMSO para determinar a atividade antimicrobiana.

3.8.1.3 Pigmento vermelho

O pigmento vermelho produzido nos cultivos foi obtido por filtração em gaze para eliminar a biomassa. O filtrado foi coletado e armazenado a -20 °C.

A estabilidade térmica foi realizada com este pigmento, enquanto que para a determinação da atividade antimicrobiana, o pigmento sofreu um processo de lavagem com n-hexano e clorofórmio. Após lavagem, o pigmento foi submetido à evaporação do solvente sob vácuo. O pigmento vermelho sólido foi solubilizado em DMSO e submetido à determinação da atividade antimicrobiana.

3.8.2 Estabilidade Térmica dos Pigmentos

Os experimentos para avaliar a estabilidade térmica foram realizados em frasco de vidro encamisado de 300 mL contendo 200 mL da solução de pigmento. A absorbância inicial foi ajustada para 1 UA_{470nm} para o pigmento laranja e para 1 UA_{510nm} para o pigmento vermelho. O aparato utilizado encontra-se ilustrado na Figura 3.14.

O controle da temperatura foi realizado a partir de um banho termostatizado da marca MicroQuímica de 9 litros. A cada intervalo de tempo pré-determinado, amostras de 3 mL foram coletadas, imediatamente resfriadas a temperatura ambiente em tubo de ensaio com rosca e submetidas a leituras da absorbância em espectrofotômetro a 470 ou 510 nm.

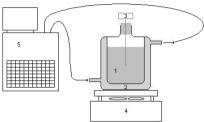


Figura 3.14: Aparato utilizado no tratamento térmico (1) solução de pigmento (2) circulação de água; (3) termômetro; (4) agitador magnético e (5) banho termostatizado.

3.8.2.1 Determinação da constante de degradação térmica (D_c)

A constante de degradação térmica (D_C) dos pigmentos foi determinada através de um modelo cinético de primeira ordem expresso pela equação 3.46.

$$\frac{dA}{dt} = -D_C t \tag{3.46}$$

onde A é a absorbância (UA_{470nm} ou UA_{510nm}), t é o tempo (h) e D_C é a constante de degradação térmica (h⁻¹).

A equação 3.46 pode ser linearizada utilizando as condições de contorno: $A = A_0$ quando t = 0 e A = A quando t = t; resultando na equação 3.47.

$$In\left(\frac{A}{A_0}\right) = -D_C t \tag{3.47}$$

onde A é a absorbância no tempo t (UA_{470nm} ou UA_{510nm}) e A_0 é a absorbância inicial (UA_{470nm} ou UA_{510nm}).

3.8.2.2 Determinação do tempo de meia vida

O tempo de meia vida ($t_{1/2}$) para cada condição estudada foi calculado a partir dos valores de D_C através da equação 3.48 onde A/A_0 é igual a 2.

$$t_{1/2} = \frac{\ln 2}{D_C} \tag{3.48}$$

onde $t_{1/2}$: tempo de meia vida (h).

3.8.2.3 Determinação da energia de ativação (Ea)

A energia de ativação (*Ea*) dos três pigmentos foi determinada através do modelo de Arrhenius conforme apresentado na equação 3.49 (Levenspiel, 1986).

$$D_C = D_0 e^{\frac{-E_a}{RT_e}} \tag{3.49}$$

onde Ea é a energia de ativação (kcal mol⁻¹), D_0 é o fator préexponencial (h⁻¹), R é a constante universal dos gases (cal mol⁻¹ K⁻¹) e T_e é a temperatura (K).

Linearizando o modelo de Arrhenius, obtém-se a equação 3.50.

$$\ln D_C = -\frac{E_a}{R} \left(\frac{1}{T}\right) + \ln D_0 \tag{3.50}$$

O coeficiente angular da regressão linear dos valores do logaritmo neperiano de D_C em função do inverso da temperatura absoluta (em Kelvin) multiplicado pela constante ideal dos gases (1,987 cal mol⁻¹ K⁻¹) representa o valor da energia de ativação (*Ea*).

3.8.2.4 Ensaios realizados

Primeiramente, a energia de ativação dos três pigmentos produzidos foi determinada na faixa de temperatura de 50 a 96 °C a pH 4,5. Aos dados experimentais obtidos, foi aplicado o modelo de Arrhenius, apresentado na equação 3.49, para determinar o valor da *Ea*.

Os três pigmentos foram submetidos à avaliação da estabilidade térmica frente a variações da temperatura e do pH pela aplicação da metodologia da superfície de resposta, para predição da constante de degradação térmica (D_C) e do tempo de meia vida ($t_{1/2}$) em função das variáveis estudadas. A matriz com as variáveis codificadas e as variáveis reais encontra-se apresentada na Tabela 3.2.

determinação da estabilidade termica dos pigmentos.				
Variáveis Codificadas		Variáveis Reais		
(X_1)	(X_2)	Temperatura (ºC)	рН	
3-	- 8	53,8	4,08	
-1	-1	60,0	4,50	
0	0	75,0	5,50	
+1	+1	90,0	6,50	
3+	3+	96,2	6,91	

Tabela 3.2: Variáveis codificadas e variáveis reais utilizadas na determinação da estabilidade térmica dos pigmentos.

 X_1 : temperatura; X_2 : pH; ε : corresponde a $\sqrt{2}$.

A partir dos dados experimentais foi obtido um polinômio de segunda ordem, conforme apresentado pela equação 3.51, da constante de degradação térmica e do tempo de meia vida em função da temperatura e do pH através da análise da metodologia da superfície de resposta pelo *software* Statistica 6.0. O polinômio gerado pela análise da superfície de resposta está apresentado na equação 3.51.

$$Y = \beta_0 + \sum_{i=1}^{2} \beta_i X_i + \sum_{i=1}^{2} \beta_{ii} X_i^2 + \sum_{i} \sum_{j=i+1} \beta_{ij} X_i X_j$$
 (3.51)

onde Y é a resposta predita, β_0 é constante, β_i : coeficiente linear, β_{ii} é o coeficiente quadrático, β_{ij} é o produto dos coeficientes X_i e X_i e X_j são as variáveis independentes.

3.8.3 Atividade Antimicrobiana

A atividade antimicrobiana dos pigmentos laranja, vermelho aminado a partir do pigmento laranja e pigmento vermelho produzido diretamente no meio de cultivo foi realizada através do método de difusão em ágar com base na técnica do poço em camada dupla, conforme descrito por Goove e Randall (1955), seguindo as recomendações do *National Committee for Clinical Laboratory Standard*, (NCCLS, 2002). Estes experimentos foram realizados no Laboratório de Meios no Departamento de Microbiologia e Parasitologia (MIP) da Universidade Federal de Santa Catarina (UFSC) sob a orientação da professora Iraci Tosin.

3.8.3.1 Microrganismos alvo

A atividade antimicrobiana foi determinada sobre os microrganismos *Staphylococcus aureus* ATCC 25922, *Escherichia coli* ATCC 25923 e *Salmonella enteritidis* ATCC 13076. *S. aureus* e *E. coli* foram fornecidos pelo Laboratório de Microbiologia de Alimentos do Departamento de Ciência e Tecnologia de Alimentos da Universidade Federal de Santa Catarina e a *S. enteritidis* foi obtida junto a Coleção de Culturas Tropicais da Fundação André Tosello (Campinas, SP). A manutenção das culturas foi realizada em caldo nutriente (NB) incubado a 37 °C durante 24 horas e posteriormente mantidos a 4 °C.

3.8.3.2 Preparo do meio de cultura

Foram preparados 150 mL de ágar Mueller Hinton (MH) (38 g L⁻¹), divididos em 15 tubos de ensaio medindo 20 x 200 mm com rosca e autoclavados a 121 °C durante 20 minutos, resfriados até atingir a temperatura entre 45 e 50 °C e vertidos em placas de Petri (100 mm) esterilizadas para formação da primeira camada de ágar.

Posteriormente, foram preparados 5 tubos de ensaio medindo 20 x 200 mm contendo 15 mL de ágar MH e 5 tubos medindo 10 x 100 mm contendo 3 mL de caldo MH, todos com tampa rosqueada para o preparo dos inóculos de *S. enteritidis*, *E. coli* e *S. aureus*. Este material foi autoclavado a 122 °C durante 20 minutos. Os tubos foram resfriados até a temperatura de aproximadamente 50 °C e, em seguida, acondicionados em banho-maria à temperatura de 50 °C para manter-se líquido até o momento de serem utilizados.

3.8.4 Preparo do Inóculo

A padronização do inóculo das culturas de *Salmonella enteritidis* e *Escherichia coli* foi feita mediante a inoculação em meio McConkey e a cultura de *Staphylococcus aureus* em ágar sanque, todas incubadas a 37 °C durante 24 horas.

Para atestar a pureza das culturas (ausência de contaminação) foram feitas análises tintoriais para *S. enteritidis* (não fermentadoras de lactose) e *E. coli* (fermentadoras de lactose) e a ocorrência de hemólise das hemácias para *S. aureus*, conforme apresentado na Figura 3.15. Em seguida, foram selecionadas colônias isoladas para serem inoculadas em placas de Petri contendo ágar nutriente, incubadas a 37 °C por 24 horas. Destas placas, foram coletadas de 3 a 5 colônias dos microrganismos para inocular os tubos de ensaio, previamente esterilizados, contendo 3 mL de caldo MH. A concentração celular foi ajustada para obter uma turvação equivalente a 0,5 na escala de McFarland.

Figura 3.15: Culturas de *Salmonella enteritidis* e *Escherichia coli* em meio McConkey e *Staphylococcus aureus* em ágar sangue.

A escala 0,5 de McFarland foi preparada através de uma alíquota de 0,5 mL de uma solução 0,048 mol L-1 de BaCl₂ (1,175% p/v BaCl₂.2H₂O) adicionada a 99,5 mL de H₂SO₄ 0,18 mol L-1 (1% v/v) com agitação constante. A turbidez desta solução deve estar entre 0,008 a 0,100 unidades de absorbância a 625 nm. As medidas da turbidez foram realizadas em espectrofotômetro da Marca Tecnal modelo *Spectrophotometer* SP 1105. Alíquotas de 3 mL desta solução foram transferidas para tubos de ensaio medindo 10 x 100 mm com tampa rosqueada, fechados hermeticamente e armazenados a temperatura ambiente ao abrigo da luz. A Figura 3.16 mostra a padronização dos inóculos segundo a escala 0,5 de McFarland.

Figura 3.16: Escala 0,5 de McFarland e inóculo preparado.

3.8.5 Determinação da Atividade Antimicrobiana

Aos tubos contendo 15 mL de ágar MH, mantidos a 50 °C, foram adicionados 3 mL da suspensão dos microrganismos alvo (padronizados com a escala 0,5 de McFarland). Com auxílio de uma pipeta estéril foram vertidos 5 mL em cada placa, formando a segunda camada.

Após solidificação do ágar MH, foram realizadas quatro perfurações de 6 mm de diâmetro em cada placa, com canudos

de plástico esterilizados em álcool 70% (v/v), fazendo com que os poços fossem distribuídos uniformemente, ficando no mínimo a 24 mm de distância de centro a centro, conforme apresentado na Figura 3.17. Em cada poço, foram dispensados 40 μL dos pigmentos, em diferentes concentrações, sendo o último utilizado como controle negativo onde foi adicionado somente DMSO. Após duas horas à temperatura ambiente, as placas foram incubadas em estufa a 37 °C por 24 horas. Após o período de incubação, o halo de inibição visível a olho nu, incluindo o diâmetro do poço, foi medido com auxílio de uma régua milimetrada. Todos os experimentos foram realizados em triplicata.

Figura 3.17: Perfuração e preenchimento dos poços. A determinação da concentração mínima inibitória foi realizada através da construção de uma curva do diâmetro do halo de inibição em função do log da concentração de pigmento.

4. RESULTADOS E DISCUSSÃO

4.1 Influência do pH na Produção de Pigmentos por *Monascus ruber* CCT 3802

Neste tópico estão apresentados os resultados da influência do pH na produção de pigmentos por *Monascus ruber* CCT 3802. Primeiramente foram determinadas as velocidades de crescimento radial em ágar dextrose de batata (PDA) sob diferentes condições de pH, seguida pela varredura, dos principais pigmentos produzidos, em espectrofotômetro na faixa de 360 a 535 nm. Após a interpretação dos resultados, foram realizados cultivos submersos sob diferentes condições de pH para determinar o comportamento do fungo e da produção de pigmentos nestas condições.

4.1.1 Determinação da Velocidade de Crescimento Radial (*V_{cr}*)

As Figuras 4.1 e 4.2 apresentam a evolução do raio das colônias do *Monascus ruber* CCT 3802 em ágar dextrose de batata sob diferentes condições de pH durante 192 horas de cultivo. As imagens das colônias ao final dos cultivos podem ser visualizadas na Figura 4.3.

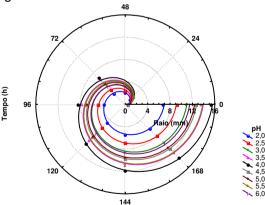


Figura 4.1: Evolução do raio das colônias de *Monascus ruber* CCT 3802 cultivado a 30 °C em PDA sob diferentes condições de pH (2,0 a 6,0).

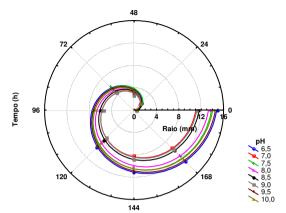


Figura 4.2: Evolução do raio das colônias de *Monascus ruber* CCT 3802 cultivado a 30 °C em PDA sob diferentes condições de pH (6,5 a 10,0).

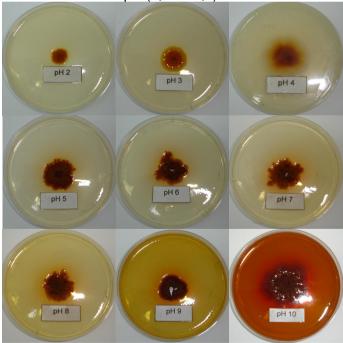


Figura 4.3: Imagens das colônias de *Monascus ruber* CCT 3802 cultivadas a 30 °C durante 192 h em PDA sob diferentes condições de pH.

Através das Figuras 4.1 e 4.2 verificam-se as diferenças entre a evolução do raio das colônias em função do tempo de cultivo para cada condição de pH. Analisando a Figura 4.3 é notório que os cultivos realizados a pH 2 e 3 favoreceram a formação de pigmentos amarelos, enquanto que o cultivo realizado a pH 4,0 apresentou coloração amarela e laranja, enquanto que os cultivos realizados entre pH 4 e 7 favorecem a formação de pigmentos laranja. pH superiores a 7 favorecem a formação dos pigmentos vermelhos.

Pandey et al. (2001) destaca que fungos filamentosos apresentam maiores velocidades de crescimento na faixa de pH entre 4 e 5. Logo, ao serem submetidos às condições adversas de pH (Figura 4.3) deve existir a formação e excreção de metabólitos para tornar o meio de cultivo propício ao crescimento da colônia. De qualquer forma, estes resultados serviram como indicadores da importância do pH no crescimento e na produção de pigmentos.

A partir dos resultados experimentais foi aplicada a equação 3.2 (pg. 65) para determinar a velocidade de crescimento radial. Os resultados encontram-se apresentados na 4.1.

A maior velocidade de crescimento radial foi obtida no cultivo realizado em pH 4 (0,0789 mm h^{-1}), seguida pela obtida no cultivo sob pH 6,5 (0,0762 mm h^{-1}), enquanto que a menor velocidade de crescimento radial (0,0355 mm h^{-1}) foi obtida quando o microrganismo foi cultivado em pH 2. Todas as regressões apresentaram boa linearidade do raio da colônia em função do tempo de cultivo ($R^2 > 0.99$).

Gabiatti et al. (2006) utilizaram a velocidade de crescimento radial para selecionar microrganismos produtores de biossurfactantes enquanto Lopez-Malo et al. (1995) estudaram a composição do meio de cultivo sobre a velocidade de crescimento radial no crescimento de fungos filamentosos. Ambos os trabalhos, relataram que a evolução do raio em função do tempo de cultivo possui comportamento linear e destacaram que esta medida é uma ferramenta auxiliar na seleção de meios de cultivos e microrganismos.

Tabela 4.1: Velocidade de crescimento radial, equação do raio em função do tempo e aspecto visual das colônias de *M. ruber* CCT 2802 cultivadas a 30 °C sob diferentes condições de pH.

рН	V_{CR} (mm h ⁻¹)	Equação	R^2	Aspecto Visual
2,0	0,0339	r=0,0339t+0,5	0,9969	Amarelo
2,5	0,0456	<i>r</i> =0,0456 <i>t</i> +0,5	0,9992	Amarelo
	•		•	
3,0	0,0542	<i>r</i> =0,0542 <i>t</i> +0,5	0,9998	Amarelo
3,5	0,0702	<i>r</i> =0,0702 <i>t</i> +0,5	0,9924	Amarelo
4,0	0,0789	<i>r</i> =0,0789 <i>t</i> +0,5	0,9952	Amarelo/Laranja
4,5	0,0640	<i>r</i> =0,0640 <i>t</i> +0,5	0,9967	Laranja
5,0	0,0619	<i>r</i> =0,0619 <i>t</i> +0,5	0,9956	Laranja
5,5	0,0701	<i>r</i> =0,0701 <i>t</i> +0,5	0,9967	Laranja
6,0	0,0587	<i>r</i> =0,0587 <i>t</i> +0,5	0,9985	Laranja
6,5	0,0762	<i>r</i> =0,0762 <i>t</i> +0,5	0,9986	Laranja
7,0	0,0554	<i>r</i> =0,0554 <i>t</i> +0,5	0,9958	Laranja/Vermelho
7,5	0,0691	<i>r</i> =0,0691 <i>t</i> +0,5	0,9955	Vermelho
8,0	0,0699	<i>r</i> =0,0699 <i>t</i> +0,5	0,9949	Vermelho
8,5	0,0581	<i>r</i> =0,0581 <i>t</i> +0,5	0,9989	Vermelho
9,0	0,0573	<i>r</i> =0,0573 <i>t</i> +0,5	0,9962	Vermelho
9,5	0,0760	<i>r</i> =0,0760 <i>t</i> +0,5	0,9961	Vermelho
10,0	0,0737	<i>r</i> =0,0737 <i>t</i> +0,5	0,9956	Vermelho

 V_{CR} : Velocidade de crescimento radial; r: raio da colônia (mm); t: tempo (h).

Com objetivo de avaliar se existem diferenças significativas entre as velocidades de crescimento radial, foi utilizada a metodologia estatística proposta por Zar (1984) que verifica se existem diferenças significativas entre as declividades (V_{cr}) do raio da colônia em função do tempo de cultivo. Os resultados desta análise estatística estão apresentados na Tabela 4.2.

Tabela 4.2: Resultados da análise estatística entre as V _{CR} do A	1.
ruber CCT 3802 cultivado sob diferentes condições de pH.	_

	3 1
рН	V_{CR} que apresentaram igualdade ao nível de 0,01
3,0	6,0 / 7,0 / 8,5 / 9,0
3,5	4,5 / 5,5 / 6,5 / 7,5 / 8,0 / 9,5 / 10,0
4,0	6,5
4,5	3,5 / 5,0 / 5,5 / 7,5 / 8,5 / 10,0
5,0	4,5 / 8,5
5,5	3,5 / 4,5 / 6,5 / 7,5 / 8,0 / 9,5 / 10,0
6,0	3,0 / 7,0 / 8,5
6,5	3,5 / 5,5 / 7,5 / 9,5 / 10,0
7,0	3,0 / 8,5
7,5	3,5 / 4,5 / 5,5 / 6,5 / 9,5 / 10,0
8,0	3,5 / 4,5 / 5,5 / 7,5 / 10,0
8,5	3,0 / 4,5
9,0	3,0 / 8,5
9,5	3,5 / 5,5 / 6,5 / 7,5
10	3,5 / 4,5 / 5,5 / 6,5 / 7,5 / 9,5

Os cultivos realizados no intervalo de pH de 2 a 3 apresentaram diferenças estatisticamente significativas com as demais velocidades obtidas ao nível de 0,01. A máxima velocidade de crescimento radial obtida no cultivo realizado em pH 4,0 diferenciou-se estatisticamente das demais velocidades, exceto quando comparada à obtida no pH 6,5.

Babitha et al. (2007) utilizaram sementes de jaca na produção de pigmentos por *Monascus purpureus* LPB97, através do processo de fermentação em estado sólido, verificando que o fungo não apresentou crescimento nos cultivos realizados em pH 2,0 e 2,5. O máximo crescimento foi obtido quando foi cultivado em pH 4.

Carvalho et al. (2005) determinaram a velocidade de crescimento radial de quatro cepas de *Monascus* cultivadas em PDA. As velocidades de crescimento radial obtidas foram: 0,120; 0,125; 0,095 e 0,129 mm h⁻¹. Gabiatti et al. (2006), na seleção de fungos filamentosos para a produção de biossurfactantes, verificaram que a cepa EFB1 apresentou maiores velocidades de crescimento radial no ágar nutriente (0,481 mm h⁻¹) e no ágar glicerina (0,432 mm h⁻¹). Já no ágar óleo diesel e no ágar azeite de oliva, apresentou velocidade de 0,431 e 0,420 mm h⁻¹, respec-

tivamente, indicando que esta metodologia, apesar de pouco utilizada, é uma resposta rápida e precisa que pode ser utilizada em diversas pesquisas, tanto na seleção de microrganismos quanto na seleção de meios de cultivo.

Os pigmentos produzidos nas diferentes condições de pH (Figura 4.3) foram submetidos a análises de varredura em espectrofotômetro na faixa de 360 a 535 nm e a biomassa retida foi quantificada por gravimetria. Os resultados destas varreduras encontram-se apresentados nas Figuras 4.4 e 4.5.

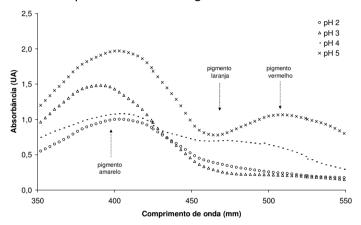


Figura 4.4: Espectro de varredura dos pigmentos produzidos por *Monascus ruber* CCT 3802 na faixa de pH de 2 a 5.

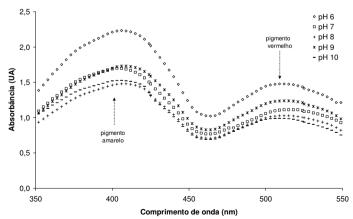


Figura 4.5: Espectro de varredura dos pigmentos produzidos por *Monascus ruber* CCT 3802 na faixa de pH de 6 a 10.

Analisando as Figuras 4.4 e 4.5, percebe-se que todas as varreduras apresentaram pico de absorbância a 400 nm. As cores laranja e vermelho, nos cultivos realizados a pH superiores a 3, sobrepõe-se ao amarelo, tornando a coloração predominante de acordo com o pigmento de maior poder colorífico.

As varreduras dos pigmentos extraídos das colônias cultivadas em pH 2,0 e 3,0 apresentaram somente o aparecimento de um pico no comprimento de onda de 400 nm, característico dos pigmentos amarelos. A varredura dos pigmentos extraídos da biomassa cultivada em pH 4,0 além do pico apresentado a 400 nm, apresentou a formação de um pico na região de 470 nm, indicando a produção de pigmentos laranja. Já os pigmentos produzidos na faixa de pH de 5 a 10 apresentaram o aparecimento de um pico a 510 nm, característico do pigmento vermelho, demonstrando que o pH exerce influência sobre a produção de pigmentos por *Monascus ruber* CCT 3802.

4.1.2 Cultivo Submerso

Diante do comportamento da produção de pigmentos sob as diferentes condições de pH, surgiu a necessidade de realizar cultivos submersos, pois durante os cultivos em meio sólido (PDA) o microrganismo poderia alterar o pH na redondeza da colônia pela produção de compostos originários de seu metabolismo, promovendo condições variáveis de pH.

As curvas do crescimento e da produção de pigmentos do *Monascus ruber* CCT 3802 foram realizadas sob diferentes condições de pH, variando de 2,0 a 8,0. Como os cultivos realizados com pH superior a 6,0 apresentaram baixas quantidades de biomassa (< 0,5 g L⁻¹) e pigmentos, os dados não foram apresentados. Os resultados (Figura 4.6 e 4.7) concordam com os experimentos realizados em PDA. O cultivo realizado a pH 2 apresentou maior fase lag (72 horas) com a produção de pigmento amarelo (UA_{400nm}), solúvel no meio de cultivo. O cultivo realizado a pH 5,0 apresentou a produção de pigmento vermelho (UA_{510nm}). Já os cultivos realizados a pH 3 e 4 produziram pigmento laranja (UA_{470nm}) com baixa solubilidade no meio de cultivo, apresentados na Figura 4.8.

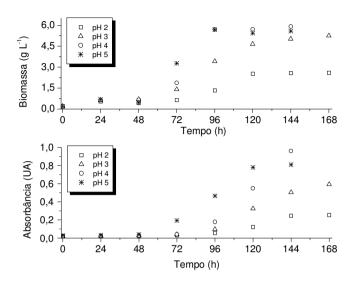


Figura 4.6: Cultivo de *Monascus ruber* CCT 3802 sob diferentes valores de pH.

Figura 4.7: Frascos e papel filtro com biomassa de *Monascus* ruber CCT 3802 nos diferentes pHs cultivados.

Verifica-se, através da Figura 4.6, a existência de diferenças na evolução da concentração de biomassa e de pigmentos de acordo com cada condição de pH. Ao mesmo tempo, a variação na absorbância é visível. Através da Figura 4.7 verificam-se as diferentes colorações dos cultivos. Claramente, percebe-se que, valores de alta acidez (pH 2) propiciaram a produção de pigmento amarelo, valores intermediários (pH 3 e 4) a produção de pigmento laranja e pH acima de 5 ocorreram a produção de pigmentos vermelhos.

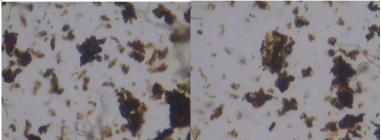


Figura 4.8: Cristais do pigmento laranja produzidos no cultivo de *Monascus ruber* CCT 3802 sob pH 3 (aumento de 40 X).

Através da Figura 4.8 verificam-se os cristais formados no cultivo do microrganismo a pH 3, apresentando baixa solubilidade no meio de cultivo. Estes resultados devem ser mais bem investigados, pois caso se comprove esta hipótese, pode-se produzir um pigmento vermelho concentrado com alto grau de pureza, além de evitar a presença da citrinina junto ao pigmento, uma vez que o pigmento laranja é insolúvel em água e a citrinina apresenta solubilidade e/ou possibilidade de ser arrastada mediante lavagem do pigmento laranja.

4.2 Produção de Pigmento Vermelho a Partir do Pigmento Laranja

Como houve diferença na produção dos pigmentos pelo *Monascus*, de acordo com o pH do meio de cultivo (item 4.1, pg. 100), provavelmente poderia existir este efeito sobre a transformação do pigmento laranja em pigmento vermelho. Para reforçar estas afirmações foram realizados experimentos, a partir de uma solução de pigmento laranja na ausência e na presença de glicina, após a fermentação (Figuras 4.9 e 4.10).

Figura 4.9: Pigmento laranja na ausência de glicina sob diferentes valores de pH (ordem de pH: 2; 4; 6; 8 e 10).

Figura 4.10: Pigmento laranja na presença de glicina sob diferentes valores de pH (ordem de pH: 2; 4; 6; 8 e 10).

Comparando as Figuras 4.9 e 4.10 percebe-se a diferença da coloração entre os experimentos. A adição de glicina resultou na formação da cor vermelha para todos os valores de pH com pequena variação na coloração vermelha. Estes resultados sugerem a possibilidade de produzir o pigmento vermelho a partir do pigmento laranja após a fermentação pela adição de glicina.

Hajjaj et al. (2000b) e Jung et al. (2003) produziram diferentes pigmentos vermelhos através da adição de aminoácidos ao meio de cultivo. Como comentado no decorrer do trabalho, a produção de pigmentos vermelhos possui maior interesse comercial, embora apresente vários problemas, dentre eles, a separação do pigmento vermelho do meio de cultivo, aumentando o número de operações de *downstream*. A produção de pigmento laranja torna-se um atrativo, pois além de ser um material sólido de fácil separação, possibilita a obtenção dos pigmentos vermelhos pós-cultivo do.

Diante deste indício, surgiu a necessidade de estabelecer uma possível estequiometria para determinar o fenômeno da mudança da coloração, semelhante ao determinado por Hajjaj et al. (1999a) para o pigmento vermelho, em que 15 mg de pigmento vermelho por litro de solução correspondia a 1 UA_{480nm}. Como não foi encontrada esta relação para o pigmento laranja, foi realizada uma estimativa com o pigmento laranja purificado, adicionando-se diferentes quantidades em álcool etílico e medindo-se a absorbância (Figura 4.11).

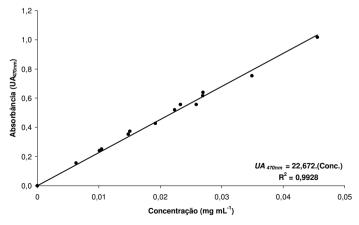


Figura 4.11: Concentração de pigmento laranja necessária para promover 1 UA_{470nm}.

Através da regressão linear da concentração de pigmento laranja *versus* absorbância a 470 nm foi possível determinar que 44 mg de pigmento laranja adicionadas em 1 litro de etanol são necessárias para promover 1 UA_{470nm}. Através desta relação é possível determinar a concentração de pigmento durante os cultivos, devido à dificuldade de separação sólido-sólido do pigmento e da biomassa do meio de cultivo. Esta relação possibilita a solubilização em um dado volume de etanol e determinação da concentração de pigmento pela curva de calibração.

4.2.1 Testes com Diferentes Fontes de NH₂

Tentando esclarecer o fenômeno da transformação da coloração laranja para vermelha foram assumidas as teorias apresentadas nos trabalhos de Hajjaj et al. (2000b) e Jung et al. (2003) que adicionaram aminoácidos ao meio de cultivo, verificando a produção de diferentes pigmentos vermelhos.

Os experimentos foram realizados com 15 mg de asparagina (aminoácido contendo grupamento amida), tirosina (aminoácido com anel aromático), metionina (aminoácido sulfurado), glicina (aminoácido com grupamento alifático), histidina (aminoácido básico), monoglutamato de sódio e cloreto de amônio. Os resultados estão apresentados nas Figuras 4.12 e 4.13.

Figura 4.12: Aspecto visual da adição de diferentes aminoácidos ao pigmento laranja sob pH 5,0 (ordem: controle, tirosina, histidina, asparagina, metionina, monoglutamato de sódio, cloreto de amônio e glicina).

Através da Figura 4.12 verifica-se, claramente, que as quantidades de pigmento laranja e vermelho foram alteradas em relação ao controle. A adição de glicina proporcionou maior coloração vermelha. Verifica-se que a adição de cloreto de amônio resultou na formação da coloração vermelha, embora menos intensa quando comparada à adição de glicina e monoglutamato de sódio.

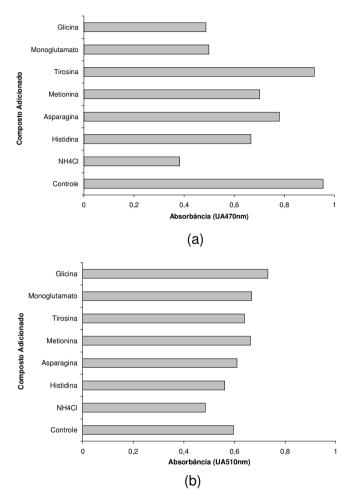


Figura 4.13: Efeito da adição de diferentes fontes aminoácidos ao pigmento laranja a 30 °C sob pH 5,0 (a) UA_{470nm} e (b) UA_{510nm}.

Pela análise da Figura 4.13, verifica-se que a adição de glicina proporcionou maior produção de pigmento vermelho, atingindo 0,732 UA_{510nm}, acompanhado pelo monoglutamato de sódio com 0,668 UA_{510nm} quando comparado ao experimento controle (sem adição) que não apresentou variação na coloração. Verifica-se também a redução da quantidade de pigmento laranja, partindo-se de uma leitura inicial de absorbância de 0,955 UA_{470nm} resultando em 0,487 e 0,499 UA_{470nm} quando utilizada a

glicina e o monoglutamato de sódio, respectivamente, demonstrando que houve transformação do pigmento laranja em pigmento vermelho.

Estes resultados indicaram que a glicina possui maior poder de formar o pigmento vermelho que os demais compostos testados. Para melhor conclusão desta parte do trabalho, foram realizados testes semelhantes com cada composto estudado (asparagina, metionina, glicina, histidina, tirosina, monoglutamato de sódio e cloreto de amônio), padronizando a quantidade de NH₂ adicionada. Mesmo que os aminoácidos adicionados promovam a mesma coloração vermelha, vale lembrar que a glicina possui aproximadamente 21% de NH₂ em sua massa molar, enquanto que a metionina, asparagina, histidina, tirosina e monoglutamato de sódio possuem de 9 a 12% de NH₂, além do que a glicina apresenta menor custo relativo aos demais aminoácidos, podendo ser utilizada industrialmente na obtenção do pigmento.

A Figura 4.14 apresenta o aspecto visual da coloração ao final de cada experimento e a Figura 4.15 apresenta as leituras da absorbância realizadas a 470 e 510 nm.

Figura 4.14: Aspecto visual da adição de diferentes compostos ao pigmento laranja sob pH 5,0 utilizando a mesma concentração de glicina (ordem: controle, tirosina, histidina, asparagina, cloreto de amônio, monoglutamato de sódio, metionina e glicina).

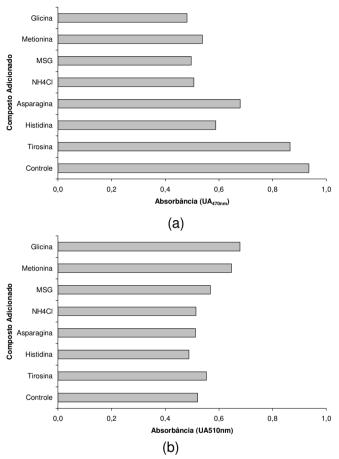


Figura 4.15: Efeito dos diferentes compostos sobre as absorbâncias, mantendo-se constante a concentração de NH_2 . (a) UA_{470nm} e (b) UA_{510nm} .

Verifica-se que a quantidade de NH₂ adicionada nos experimentos realizados anteriormente não influenciou nos resultados, exceto para metionina. Através da Figura 4.15 verifica-se que os experimentos onde foram adicionados glicina, NH₄Cl, monoglutamato de sódio e metionina apresentaram maiores reduções na absorbância a 470 nm quando comparado ao controle. Com relação ao pigmento vermelho, o mesmo comportamento foi verificado. Ocorreu aumento da absorbância de 0,522 UA_{510nm} do experimento controle para 0,578 quando utilizado o monoglu-

tamato de sódio, 0,652 para a metionina e 0,672 UA_{510nm} para a glicina, indicando transformação do pigmento laranja em vermelho.

Para identificar se a adição dos compostos proporcionou efeito significativo sobre a produção de pigmento vermelho foi realizada a análise de variância ao nível de significância de 0,05, conforme apresentado na Tabela 4.3.

Tabela 4.3: Análise de variância da adição dos compostos sobre a variável UA_{510nm}.

			0.0			_
Variação	S.Q.	G. L.	Q.M.	F	р	
Média	10,071	1	10,071	167618	<0,001	-
NH_2	0,129	7	0,018	307,5	<0,001	
Erro	0,001	24	0,000			

S.Q.: soma dos quadrados; G.L.: graus liberdade, Q.M.: quadrado médio.

Através da Tabela 4.3 verifica-se que a adição de NH_2 provocou efeito significativo sobre a absorbância a 510 nm (p < 0.05). Como a análise de variância indicou efeito significativo foi realizado um teste "t" para identificar se existem diferenças significativas entre os compostos adicionados que proporcionaram a formação da coloração vermelha. O teste "t" foi aplicado ao monoglutamato de sódio, a metionina e a glicina e os resultados estão apresentados na Tabela 4.4.

Tabela 4.4: Teste "t" das respostas UA_{470nm} e UA_{510nm}.

Composto	UA _{470nm}	UA _{510nm}
Monoglutamato de sódio	0,496 ^a	0,570 ^a
Metionina	0,538 ^b	0,648 ^b
Glicina	0,480 ^c	0,677 ^c

a, b e c identificam diferenças estatisticamente significativas ao nível de 0,05.

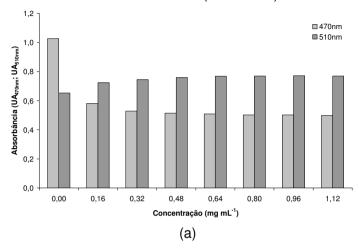
Através da Tabela 4.4 pode-se verificar que todas as fontes de $\mathrm{NH_2}$ comparadas estatisticamente, apresentaram diferenças entre si ao nível de 0,05, sendo a glicina o melhor composto para ser utilizado na transformação do pigmento laranja em vermelho.

A partir dos resultados obtidos nesta etapa do trabalho, foi escolhida a glicina como componente para a formação dos pigmentos vermelhos por apresentar maior transformação de pigmento laranja em pigmento vermelho e, ao mesmo tempo, por apresentar aproximadamente 21% de NH₂ em sua molécula, comparando-se à metionina e ao monoglutamato de sódio que possuem cerca de 10%.

A glicina é um cristal branco ou pó cristalino, sem odor e de sabor adocicado, prontamente solúvel em água e ácido fórmico e praticamente insolúvel em etanol (Ajinomoto, 2008). Esta é uma informação importante, pois a baixa solubilidade da glicina em soluções alcoólicas torna-se aplicável à reação de aminação. A glicina que não reagiu com o pigmento laranja pode ser recuperada e reutilizada para as próximas reações devido à baixa solubilidade, comportamento visualizado durante o trabalho.

Definida a glicina como o composto que apresentou melhor produção de pigmentos vermelhos, foi realizada a determinação da concentração mínima de glicina necessária para reagir com o pigmento laranja em solução aquosa (glicina totalmente solúvel). Os resultados da absorbância inicial e final estão apresentados na Tabela 4.5. Já na Figura 4.16, são apresentadas as curvas da absorbância em função da concentração de glicina.

Tabela 4.5: Absorbância inicial e final da solução de pigmentos sob diferentes quantidades de glicina adicionadas.


sob diferentes quantidades de gilonia adioionadas.				
	Instante de reação [*]			
Glicina** (mg mL-1)	Inicial		Final	
	UA _{470nm}	UA _{510nm}	UA _{470nm}	UA _{510nm}
0,00	1,084	0,679	1,026	0,653
0,16	1,069	0,667	0,581	0,723
0,32	1,089	0,678	0,528	0,745
0,48	1,083	0,682	0,514	0,759
0,64	1,075	0,684	0,508	0,768
0,80	1,080	0,676	0,502	0,769
0,96	1,079	0,679	0,502	0,771
1,12	1,082	0,683	0,499	0,768

*Inicial: 0 hora de reação; Final: 30 horas de reação. ** Solubilidade em água: 29.7 g por 100 g de água a 0 °C.

Através da Tabela 4.5 verifica-se que ocorreram mudanças nas quantidades dos pigmentos laranja e vermelho. Todos os experimentos, exceto o controle, apresentaram aumento na absorbância a 510 nm e redução a 470 nm.

Através da Figura 4.16a verifica-se que a absorbância a 510 nm aumentou gradativamente até a concentração de 0,64 mg mL⁻¹, permanecendo constante a partir deste valor, indicando o valor mínimo para que a coloração vermelha seja máxima. A estes dados, foi aplicada a análise de variância para identificar se

as concentrações resultaram em efeito significativo ao nível de 0,05 sobre a absorbância a 510 nm (Tabela 4.6).

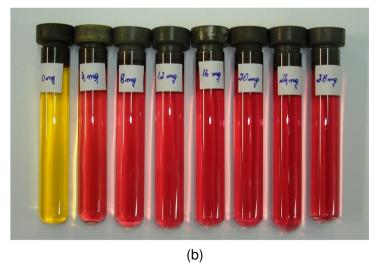


Figura 4.16: Concentração mínima de glicina a pH 5,0. (a) absorbância a 470 e 510nm (b) imagens das amostras (as etiquetas indicam a massa de glicina em 25 mL).

Tabela 4.6: Análise de variância para a concentração de glicina.

Variação	S. Q.	G. L.	Q. M.	F	р
Média	13,3101	1	13,3101	1288081	<0,001
Glicina	0,0343	7	0,00491	475	<0,001
Erro	0,0001	16	0,00001		

S.Q.: soma dos guadrados; G.L.: graus liberdade, Q.M.: guadrado médio.

Através da Tabela 4.6 pode-se verificar que a concentração de glicina apresentou efeito significativo ao nível de 0,05 sobre a absorbância a 510 nm, logo foi aplicado um teste *t* para identificar as concentrações que diferem entre si (Tabela 4.7).

Tabela 4.7: Teste t sobre a resposta absorbância a 510nm.

Concentração (mg mL ⁻¹)	UA _{510nm}
0,00	0,653 ^a
0,16	0,723 ^b
0,32	0,745 ^c 0,759 ^d
0,48	0,759 ^d
0,64	0,768 ^e
0,80	0,769 ^e
0,96	0,771 ^e
1,12	0,768 ^e

a, b e c identificam a existência de desigualdades ao nível de 0.05.

Através da Tabela 4.7 verifica-se que a concentração mínima de glicina a ser adicionada é de 0,64 mg mL⁻¹ para uma solução que apresente uma absorbância inicial de 1,084 UA_{470nm}, que multiplicada pela concentração determinada na Figura 4.11 (1 UA_{470nm} corresponde a 44 mg de pigmento por litro), equivale a 47,70 mg de pigmento laranja por litro de solução. Logo, podese estimar uma possível estequiometria da reação de aminação do pigmento laranja pela glicina. Para reagir com uma solução de 1 UA_{470nm} são necessárias aproximadamente 0,59 mg de glicina por mililitro de solução nestas condições estudadas.

A partir da Figura 2.5 (pg. 50), verifica-se que a diferença do pigmento laranja para o vermelho está relacionada ao fato da substituição de um oxigênio pela incorporação do grupamento NH₂. Sendo assim, os pigmentos laranja e vermelho produzidos pela aminação do pigmento laranja foram submetidos à análise de espectroscopia de infravermelho (*FTIR* – *Fourier Transform Infrared Spectroscopy*). Os resultados encontram-se apresentados nas Figuras 4.17 e 4.18. As informações que auxiliaram na interpretação destas Figuras podem ser verificadas no Anexo A.

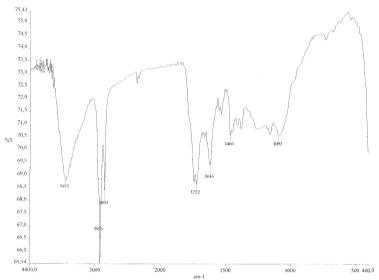


Figura 4.17: Espectroscopia de infravermelho (FTIR) do pigmento laranja.

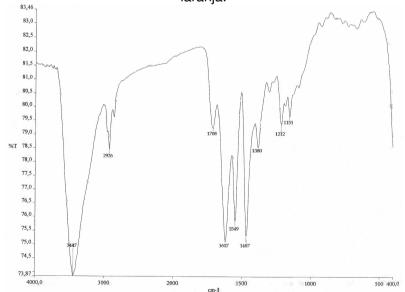


Figura 4.18: Espectroscopia de infravermelho (FTIR) do pigmento vermelho produzido pela aminação do pigmento laranja com glicina.

Verifica-se nas Figuras 4.17 e 4.18 a formação de estiramentos na faixa de 2923 a 2853 cm $^{-1}$ indicando a presença de um estiramento simétrico e anti-simétrico C-H de composto alifático, podendo estar relacionado aos radicais C_5H_7 ou C_7H_{11} . Na região de 1732 cm $^{-1}$ ocorre o aparecimento de um pico, correspondente à presença de um estiramento anti-simétrico de carbonila (C=O) de anidrido, indicando a presença do "esqueleto dos pigmentos produzidos pelo *Monascus*".

Barret e Elmore (2004) destacam que os grupamentos R-NH₂ na configuração *trans* podem apresentar estiramento a 1550 cm⁻¹, o que pode ser verificado na Figura 4.18 o aparecimento de um estiramento de R-NH₂ a 1549 cm⁻¹, indicando a aminação do pigmento laranja, transformando-o em pigmento vermelho. Estes resultados estão de acordo com os apresentados por Lian et al. (2007) que identificaram, em suas análises de espectroscopia de infravermelho, a aminação do pigmento produzido pelo *Monascus* a partir de um estiramento apresentado a 1569,89 cm⁻¹, indicando aminação do pigmento. As informações utilizadas podem ser verificadas no Anexo A (pg. 236).

Estes resultados são indicativos da aminação do pigmento laranja. Com certeza outras análises são necessárias para a determinação da estrutura do pigmento laranja e vermelho produzidos. A utilização de técnicas de espectroscopia de massa e ressonância magnética nuclear de próton e carbono pode ser realizada em trabalhos futuros para identificação da molécula produzida.

4.2.2 Titulação dos Aminoácidos

Para esclarecer o fenômeno da mudança da coloração frente às variações do pH, foram planejados experimentos de titulação de soluções de aminoácidos (glicina, tirosina, metionina, monoglutamato de sódio, tirosina) contendo o pigmento laranja em solução, para servir como espécie de "indicador do ponto de viragem". Os resultados foram comparados ao controle (ausência de aminoácido), apresentado na Figura 4.19.

A cada volume de NaOH 0,1 M adicionado foram medidos o pH e a absorbância a 510 nm. As curvas de titulação dos aminoácidos encontram-se apresentadas nas Figuras 4.20 a 4.24.

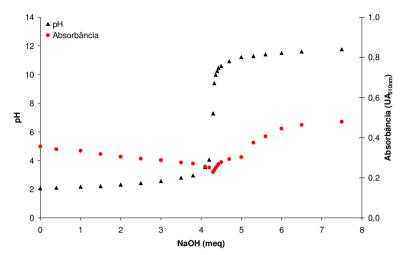


Figura 4.19: Efeito do pH sobre a solução de pigmento laranja produzido pelo *Monascus ruber* CCT 3802 na ausência de aminoácido.

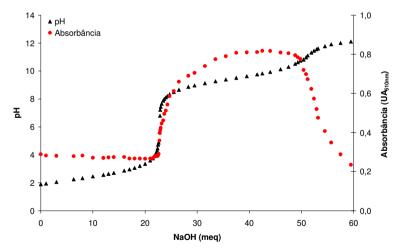


Figura 4.20: Efeito do pH sobre a transformação do pigmento laranja produzido pelo *Monascus ruber* CCT 3802 para vermelho a partir da adição de glicina 0,1 M.

Figura 4.21: Efeito do pH sobre a transformação do pigmento laranja produzido pelo *Monascus ruber* CCT 3802 para vermelho a partir da adição de monoglutamato 0,1 M.

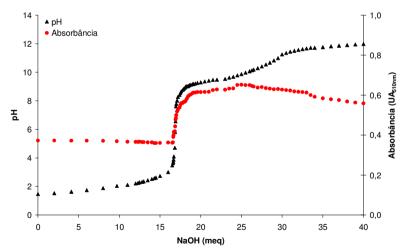


Figura 4.22: Efeito do pH sobre a transformação do pigmento laranja produzido pelo *Monascus ruber* CCT 3802 para vermelho a partir da adição de tirosina 0,025 M.

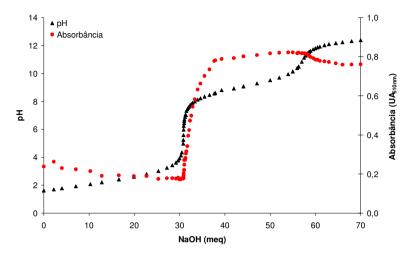


Figura 4.23: Efeito do pH sobre a transformação do pigmento laranja produzido pelo *Monascus ruber* CCT 3802 para vermelho a partir da adição de metionina 0,025 M.

Figura 4.24: Efeito do pH sobre a transformação do pigmento laranja produzido pelo *Monascus ruber* CCT 3802 para vermelho a partir da adição de histidina 0,025 M.

Analisando a Figura 4.19, verifica-se que existe um aumento da absorbância a partir do pH 7, embora não tenha ocorrido a formação do pigmento vermelho, verificado através da análise

visual. Esta curva apresenta o ponto de inflexão justamente a pH 7 (neutralidade), ponto onde a solução ácida torna-se alcalina.

Analisando as Figuras 4.20; 4.21, 4.22, 4.23 e 4.24 percebe-se que existe uma região, no início da titulação, onde o pH aumenta gradativamente sem que ocorra variação considerável na absorbância. A partir da adição de um dado volume de NaOH ocorre um aumento considerável no pH (tendência a atingir o ponto isoelétrico - pl) onde se inicia a formação do pigmento vermelho, caracterizado pelo aumento da absorbância a 510 nm, indicando que ocorreu o início da aminação. Na Figura 4.24 foi verificada a formação da coloração vermelha, embora a baixa solubilidade da histidina na solução, resultou na presença de partículas suspensas, dificultando a quantificação da absorbância via espectrofotômetro.

De acordo com os resultados apresentados no item 4.1 (pg. 100) e no decorrer deste tópico, acreditava-se, em um primeiro momento, que o pH baixo inibia a produção de pigmento vermelho. Na verdade, ocorre inibição a formação do pigmento, devido à atuação sobre os aminoácidos.

Analisando a curva teórica da titulação da glicina com a equação que rege o equilíbrio das formas protonadas, doadora e receptora de prótons (Figura 4.25) pode-se entender o fenômeno da alteração da coloração frente às variações do pH.

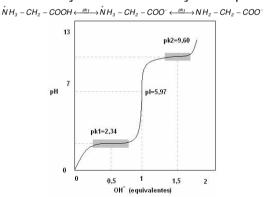


Figura 4.25: Curva teórica da titulação de uma solução de glicina 0,1 M a 25 °C. Os retângulos sombreados centrados ao redor de pk₁ = 2,34 e pk₂ = 9,60 indicam as regiões de grande capacidade tamponante (Lehninger et al., 1995).

Na Figura 4.25 verificam-se duas regiões de tamponamentos representados pelo pk_1 e pk_2 e o ponto isoelétrico representado por pl. Através desta Figura e da equação 4.1 que apresenta as espécies iônicas predominantes nos pontos críticos da titulação, pode-se destacar alguns pontos importantes na reação de aminação do pigmento laranja.

$$\stackrel{+}{N}H_3 - CH_2 - COOH \xleftarrow{pk_1}{N}H_3 - CH_2 - COO^- \xleftarrow{pk_1}{N}NH_2 - CH_2 - COO^-$$
 (4.1)

Sob pH muito baixo, a espécie iônica predominante da glicina é NH₃⁺-CH₂-COOH, a sua forma totalmente protonada. No ponto médio do primeiro estágio da titulação no qual o grupo -COOH da glicina perde o seu próton, estão presentes concentracões equimolares da forma doadora de NH₃⁺-CH₂-COOH da е forma receptora de prótons NH₃⁺-CH₂-COO⁻. No ponto médio da titulação, o pH é igual ao pka do grupo protonado que está sendo titulado. Para a glicina, o pH no ponto médio é 2,34, assim o seu grupo -COOH tem um pka de 2.34.

À medida que a titulação prossegue, outro ponto importante é atingido quando o pH assume o valor 5,97. Ali há um ponto de inflexão, no qual a remoção do primeiro próton da glicina está essencialmente completa e a remoção do segundo próton apenas começou. Neste pH a glicina está presente principalmente como o íon dipolar NH₃⁺-CH₂-COO. O segundo estágio da titulação corresponde à remoção de um próton do grupo -NH₃⁺ da glicina. O pH no ponto médio deste estágio é 9,60, igual ao *pka* para o grupo -NH₃⁺. A titulação está completa em um pH perto de 12, neste ponto, a forma predominante da glicina é NH₂-CH₂-COO (Lehninger et al., 1995).

Os valores dos *pka* e do *pl* variam entre os aminoácidos, porém apresentam algumas características em comum. No início de cada curva observa-se que os grupos dos aminoácidos carboxílico e amino estão completamente protonados. Com a titulação, o grupo carboxílico vai liberar prótons. Durante essa liberação é evidenciado um ponto onde a concentração desse doador de prótons é igual à concentração do íon dipolar desse aminoácido, ponto de inflexão, correspondente a pH igual a pka (medidor da tendência de ceder prótons) do grupo protonado que não está sendo titulado (Lehninger et al., 1995).

O ponto onde se observa o fim da liberação de prótons por parte do carboxilo é o ponto isoelétrico pl. Esse ponto possui um

pH característico, onde se observa todo o aminoácido como íon dipolar, ou seja, a carga total é igual a zero. Com a continuação da titulação, o próton do grupo NH_3^+ será liberado.

A formação do pigmento vermelho a partir do pigmento laranja foi verificada a partir do momento que a titulação se aproxima ou atinge o ponto isoelétrico do aminoácido titulado, ponto onde ocorre a inflexão da curva de titulação, explicando o efeito do pH sobre a produção dos pigmentos pelo *Monascus ruber*.

Estes resultados esclarecem o fenômeno dos diferentes pigmentos produzidos pelo cultivo do *Monascus* em meio sólido (PDA) e submerso (item 4.1, pg. 100). Como os cultivos submersos foram realizados com a glicina como fonte de nitrogênio sob diferentes condições de pH, houve um efeito tamponante nos cultivos realizados a pH abaixo de 4, impedindo a formação do pigmento vermelho. Já para os cultivos realizados a pH 5,0 foi verificada a produção do pigmento vermelho (Figuras 4.3 e 4.7).

Para corroboração dos resultados, verifica-se na Figura 4.26 que a biomassa do *Monascus ruber*, após a produção e separação do pigmento laranja, apresentou a coloração vermelha de difícil extração com água, álcool etílico e álcool metílico. Este fenômeno pode ser explicado pela ausência de grupamentos NH₂ sob as condições ácidas da fermentação (pH 3,0), logo, o pigmento laranja tende a ligar-se com proteínas intracelulares contendo grupamentos NH₂, tornando a biomassa vermelha, enquanto que a biomassa do *Monascus* quando cultivada em valores de pH > 5,5, apresenta a coloração esbranquiçada, levemente rosa.

Figura 4.26: Biomassa de *Monascus ruber* CCT 3802, após separação do pigmento laranja, cultivada em pH 3,0.

O efeito tamponante da glicina (*pk*₁) indicada na Figura 4.25 faz com que o pH, de variável, passe para constante duran-

te o processo de produção do pigmento laranja, comportamento verificado nos cultivos realizados no item 4.4 (pg. 138). O extraordinário está relacionado ao fato da glicina atuar como fonte de nitrogênio nos cultivos realizados a pH baixo para a produção do pigmento laranja e, ao mesmo tempo, ser utilizada para a produção do pigmento vermelho, reforçando os resultados obtidos.

Os pigmentos laranja e vermelho produzido a partir da reação de aminação com glicina foram submetidos à determinação de citrinina em cromatografia em camada delgada (item 3.6.4, pg. 81). Ambos os pigmentos não apresentaram a presença de citrinina, indicando que a produção do pigmento laranja e/ou a purificação deste, possibilita a obtenção de pigmentos na ausência desta toxina.

4.3 Construção, Calibração e Determinação do Comportamento Reológico do Caldo de Fermentação de *Monascus ruber* Através do Sistema *Vane*

Esta etapa do trabalho consistiu na calibração do reômetro Rheotest 2.1 com óleo padrão, construção e calibração de um sistema *vane* de 4 palhetas e aplicação deste sistema na determinação do comportamento reológico do caldo de fermentação de *Monascus ruber* CCT 3802 cultivado em biorreator Bioflo III.

4.3.1 Calibração do Reômetro

A calibração do reômetro com óleo padrão (IPT 86) permitiu a construção de um software de aquisição de dados e o acompanhamento dos experimentos realizados no reômetro. O óleo padrão, com viscosidade (μ) e massa específica (ρ) conhecidas a uma dada temperatura, foi agitado nos diferentes sistemas de cilindros concêntricos (S/S_1 , S/S_2 , S/S_3 , S/N) e nas diferentes faixas de torque, à temperatura constante de 30 °C, para obtenção dos valores da percentagem de torque (α) em função da diferença de potencial lida no multímetro acoplado. Estes resultados encontram-se apresentados na Figura 4.27.

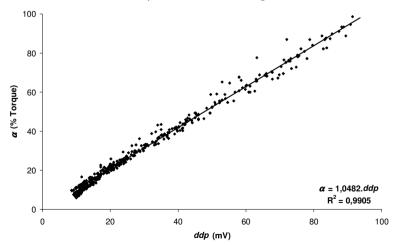


Figura 4.27: Obtenção da percentagem de torque (α) em função da diferença de potencial.

Através da Figura 4.27 verifica-se que os valores de α em função da diferença de potencial apresentaram boa linearidade

(R^2 =0,9905), demonstrando a qualidade dos dados experimentais coletados para toda a faixa de torque utilizada. Sendo assim, a equação α =1,0482.ddp, apresentada na Figura 4.27, foi inserida no *software* utilizado para acompanhamento das determinações reológicas no Rheotest 2.1.

4.3.2 Construção e Calibração do Sistema Vane

A Figura 4.28 apresenta o reograma do óleo padrão IPT 86 realizado no sistema de cilindros concêntricos (S/S_2) para determinação da viscosidade do óleo padrão IPT 86.

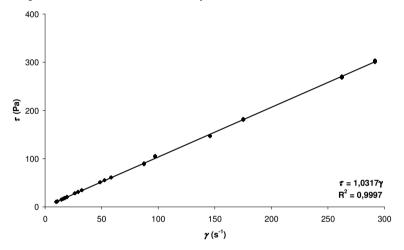


Figura 4.28: Reograma do óleo padrão IPT 86 a 30 °C no sistema S/S_2 .

Através da Figura 4.28 verifica-se o comportamento reológico do óleo mineral IPT 86 à temperatura de 30 °C, apresentando uma viscosidade de 1,031 Pa s (Eq. 2.12), 1,4% menor quando comparada à viscosidade fornecida pelo fabricante de 1,047 Pa s.

O óleo IPT 86 com viscosidade e massa específica conhecida, foi agitado pelo sistema *vane*. A partir dos valores de torque obtidos a diferentes freqüências de rotação durante a agitação do fluido Newtoniano, foram calculados o número de Reynolds (*Re*) e o número de potência (*Np*) correspondente, utilizando-se as equações 3.17 e 3.18 (pg. 75). A regressão linear dos dados experimentais de *Np versus 1/Re* resulta na determinação da constante de proporcionalidade *c* (Eq. 3.16, pg. 75), válido so-

mente para a região de regime laminar de escoamento, conforme apresentado na Figura 4.29.

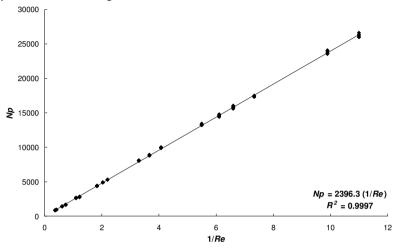


Figura 4.29: *N_P vs.* 1/*Re* do óleo IPT 86 a 30 °C no sistema vane na região de escoamento laminar.

Verifica-se através da regressão linear de Np em função de 1/Re (Eq. 3.16, pg. 75) que o valor da constante c = 2396,3 é representado pelo coeficiente angular desta regressão, com um valor de R^2 de 0,9997. Badino Jr. (1997) calibrando três sistemas alternativos aos de cilindros concêntricos para determinação do comportamento reológico de caldos de fermentação obteve valores de c variando de 267,59 a 566,18 com boa linearidade em seus resultados ($R^2 > 0,999$).

Determinado o valor da constante c, foi preparada uma solução de goma guar 1% (p/v) e submetida à determinação dos parâmetros reológicos índice de consistência (k) e índice de comportamento de escoamento (n) no sistema de cilindros concêntricos (S/S_2), conforme apresentado na Figura 4.30.

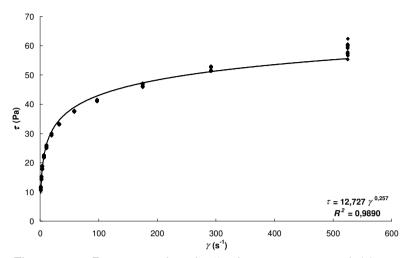


Figura 4.30: Reograma da solução de goma guar 1% (p/v) no sistema S/S_2 a 30 °C.

A partir dos resultados da tensão de cisalhamento (τ) vs. o gradiente de velocidade (γ) , os dados foram ajustados através da Lei da Potência (Eq. 3.20, pg. 75), fornecendo as constantes reológicas índice de consistência (k) e o índice de comportamento de escoamento (n) para o fluido não-Newtoniano, sendo: k=12,727 Pa sⁿ e n=0,257. Obtidos os valores de k e n da solução de goma guar, procedeu-se a agitação desta solução no sistema vane, onde a cada freqüência de rotação (N) mediram-se os torques (T) correspondentes. A partir das constantes c, k e n, e com os valores do torque (T) e freqüência de rotação (N) para o sistema vane, podem-se calcular os valores de velocidade de cisalhamento (γ) correspondentes, utilizando-se a equação 3.22 (pg. 76).

A partir dos resultados experimentais de freqüência de rotação (N) e de velocidade de cisalhamento (γ) foi obtida uma regressão linear (Eq. 3.14, pg. 74), forçando a passagem pela origem ($\gamma = 0$ para N = 0), que possibilitou a determinação da constante de calibração F_1 , representada pelo coeficiente angular da regressão, conforme apresentado na Figura 4.31.

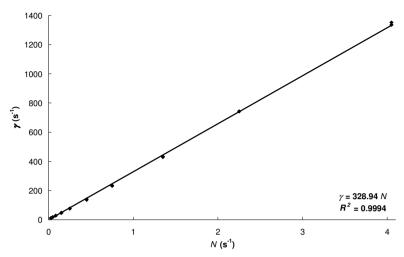


Figura 4.31: Resultados de γ vs. N da goma guar a 30 °C no sistema vane.

Verifica-se, através da Figura 4.31 a boa linearidade ($R^2 > 0.999$) entre γ e N para o sistema *vane*. Através do coeficiente angular da regressão linear, pode-se obter o valor da constante F_1 de 328,89.

Conhecido o valor de F_1 , utilizando-se a equação 3.23 (pg. 76), foi determinado o valor da segunda constante de calibração (F_2) que relaciona o torque (T) com a tensão de cisalhamento (τ), para o sistema *vane*. As substituições das constantes F_1 e F_2 nas equações 3.14 e 3.15 (pg. 74) fornecem as equações 4.2 e 4.3, resultados da calibração do sistema *vane*.

$$\gamma = 328,89.N$$
 (4.2)

$$\tau = 18826.40.T \tag{4.3}$$

Com as equações 4.2 e 4.3 que relacionam a proporcionalidade entre o gradiente de velocidade (γ) em função da freqüência de rotação (N) e da tensão de cisalhamento (τ) em função do torque (T) podemos aplicar este sistema na obtenção de reogramas de fluidos, principalmente os que apresentam material particulado em suspensão. Este sistema foi utilizado para determinar o comportamento reológico do caldo de fermentação do *Monascus ruber* CCT 3802.

A seguir são apresentados os resultados referentes às determinações do comportamento reológico de suspensões com diferentes concentrações de biomassa de *M. ruber* CCT 3802.

4.3.3 Determinação do Comportamento Reológico do Caldo de Fermentação

A Figura 4.32 apresenta as medidas dos diâmetros dos *pellets*, através de um gráfico de freqüência acumulada, presentes na biomassa utilizada na determinação dos parâmetros reológicos $k \in n$

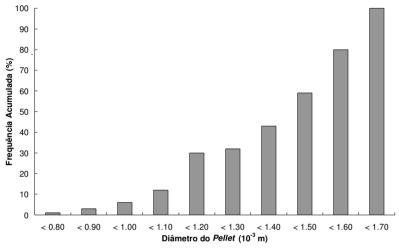


Figura 4.32: Freqüência acumulada do diâmetro dos pellets de Monascus ruber CCT 3802.

Através da Figura 4.32 verifica-se que os diâmetros estiveram compreendidos na faixa de 0,79 a 1,69 mm. Cerca de 60% dos pellets estiveram na faixa de 1,4 a 1,7 mm.

A partir do sistema *vane* construído e calibrado, foi determinado o comportamento reológico do caldo de fermentação do *M. ruber* sob diferentes concentrações celulares para determinar os parâmetros reológicos índice de consistência (*k*) e índice de comportamento de escoamento (*n*) na produção de pigmentos por *Monascus ruber*, conforme descrito no item 3.4.3 (pg. 76).

Cada suspensão foi colocada no sistema *vane* e as curvas de τ em função de γ foram obtidas, conforme apresentadas na Figura 4.33. Os dados experimentais foram ajustados através da equação 3.24 (pg. 77), possibilitando a determinação dos parâmetros k e n para cada concentração celular.

Todos os reogramas mostrados na Figura 4.33 apresentaram comportamento pseudoplástico (n < 1). Os valores do índice de comportamento estiveram na faixa de 0,157 a 0,254 e do índi-

ce de consistência estiverem compreendidos entre 0,375 e 11,002 Pa sⁿ. A partir dos valores de k e n, obtidos para as diferentes concentrações de biomassa, foi determinada a viscosidade aparente (μ_{ap}) através da equação 3.20 (pg. 75), conforme apresentado na Figura 4.34.

Figura 4.33: Reogramas de diferentes concentrações celulares de *M. ruber* CCT 3802 determinados no sistema vane a 30 °C.

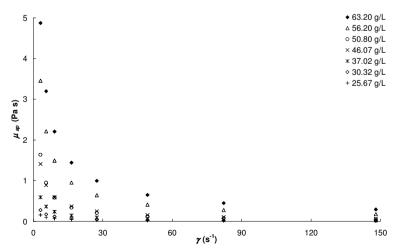


Figura 4.34: Viscosidade aparente a 30 °C do caldo de fermentação de *M. ruber* CCT 3802.

Em bioprocessos, uma prática comum tem sido relacionar os parâmetros reológicos com a biomassa. Neste trabalho, os valores de *k* foram ajustados em função da concentração de biomassa, utilizando a relação apresentada na Equação 3.25 (pg. 77). Os resultados do índice de consistência e do índice de comportamento de escoamento encontram-se apresentados na Figura 4.35.

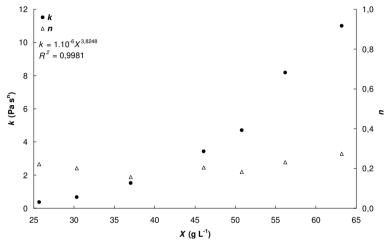


Figura 4.35: Parâmetros reológicos k e n em função da concentração de biomassa (X) de *Monascus ruber* CCT 3802.

Através da Figura 4.35 verifica-se a pseudoplasticidade (*n* < 1) do caldo de fermentação para cada concentração de biomassa. Os valores do índice de comportamento de escoamento estiveram na faixa de 0,15 a 0,26. Verifica-se também o comportamento do índice de consistência (*k*) em função da concentração de biomassa do *Monascus ruber*. Verifica-se o comportamento na forma de potência cujo valor do índice de consistência possui dependência da concentração de biomassa.

Trabalhos realizados com outros microrganismos demonstram que o índice de consistência (k) possui comportamento segundo a equação $k = k_0 X^b$. Neste trabalho, identificou-se a mesma dependência com os valores da equação de $k = 1.10^{-6} X^{3,8448}$ Pa sⁿ. Estes resultados podem ser comparados aos resultados obtidos por Allen e Robinson (1990) trabalhando

com Aspergillus niger ($K = 4,3.10^{-4} \, X^{3,3}$), Penicillium chrysogenum ($K = 3,6.10^{-3} \, X^{2,5}$) Streptomyces levoris ($K = 0,27.X^{0,7}$), aos obtidos por Schmidell et al. (1994) trabalhando com Aspergillus awamori ($K = 5,1.10^{-2} \, e^{0,31X}$). Estes resultados demonstram a variação do índice de consistência em função da concentração de biomassa. Podem-se verificar os diferentes valores de K_0 e da dependência da concentração de biomassa. Os diferentes valores podem ser explicados pelo comportamento morfológico predominante apresentado por cada tipo de microrganismo, dentre eles, pellets, micélio disperso e até mesmo grumos de microrganismos. A Figura 4.36 apresenta comparações entre alguns modelos encontrados na literatura para diferentes tipos de microrganismos.

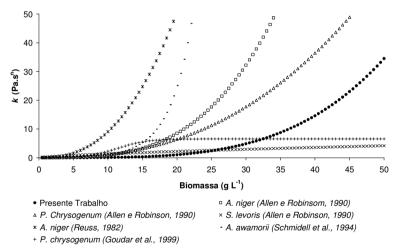


Figura 4.36: Comparações entre vários modelos do comportamento do índice de consistência (k) em função da concentração de biomassa (X).

As diferenças entre as curvas apresentadas na Figura 4.36 estão relacionadas ao tipo de microrganismo, à predominância morfológica do crescimento e à excreção de substâncias no meio de cultivo. Outro fator que pode estar relacionado é a maneira da condução do processo fermentativo, através da agitação, tempo de cultivo e outros fatores como o pH que podem fornecer cargas eletrostáticas "abrindo" o pellet do microrganismo.

Porcel et al. (2005) avaliaram o efeito da morfologia de *Aspergillus terreus* na reologia do meio de cultivo através de um reômetro rotacional de cilindros concêntricos. O caldo de fermentação apresentou comportamento pseudoplástico e verificaram que o diâmetro do *pellet* e o *ratio* (razão entre a área superficial com hifas e a área do *pellet*) apresentaram efeito significativo sobre o índice de consistência e sobre o índice de comportamento de escoamento.

Monroy et al. (2004) avaliaram as propriedades morfológicas e reológicas de culturas de *Solanum chrysotrichum* em frascos agitados e em biorreator. Verificaram que o meio de cultivo apresentou comportamento pseudoplástico. Para as culturas realizadas em biorreator, o aumento da concentração de biomassa de 50 para 75 g L⁻¹ aumentou o índice de consistência (*k*) em 3,9 vezes e o índice de comportamento passou de 0,67 para 0,54. Já para as culturas realizadas em frascos agitados, na mesma faixa de concentração celular, foi obtido um aumento de 7,1 vezes no índice de consistência (*k*) e o índice de comportamento passou de 0,77 para 0,85.

Goudar et al. (1999) estudaram a influência da concentração de biomassa na reologia de caldos de fermentação não-Newtonianos. Os resultados foram avaliados segundo a Lei da Potência para três concentrações de biomassa de 5,07; 10,55 e 17,71 g L⁻¹. No início do cultivo a viscosidade aparente foi de 1,1 mPa s na presença de 0,1 g L⁻¹ de biomassa, correspondente a quantidade de inóculo adicionada. O comportamento do caldo de fermentação foi caracterizado como pseudoplástico. Os autores verificaram que a concentração celular apresentou efeito sobre o índice de consistência (*k*) e o índice de escoamento (*n*). O índice de consistência variou de 0,002 Pa sⁿ para a concentração de biomassa de 0,1 g L⁻¹ até 6,14 Pa sⁿ para a concentração de biomassa de 17,71 g L⁻¹. O índice de comportamento diminuiu do valor inicial de 1 até o valor final de 0.17.

Os resultados obtidos nesta etapa do trabalho destacam a importância da determinação da influência da concentração de biomassa na viscosidade de meios de cultivo. A obtenção do comportamento do índice de consistência em função da concentração de biomassa contribui para um melhor controle dos bioprocessos, pois a transferência de oxigênio em cultivos de microrganismos é de extrema importância quando se trata de um processo em aerobiose.

4.4 Efeito da Transferência de Oxigênio na Produção de Pigmento Laranja por *Monascus ruber* CCT 3802

Neste tópico estão apresentados os resultados referentes à transferência de oxigênio na produção de pigmentos laranja pelo *Monascus ruber* CCT 3802. São apresentados os resultados referentes à determinação da constante de atraso de resposta do eletrodo de oxigênio dissolvido, determinação da concentração de saturação de oxigênio dissolvido no meio de cultivo e valores de $k_L a$ e Q_{O2} durante o cultivo do microrganismo sob as freqüências de agitação de 300, 600 e 900 rpm. Após determinação da freqüência de agitação para a produção do pigmento, foram realizados três cultivos sob diferentes concentrações de O_2 no meio de cultivo.

4.4.1 Determinação do Tempo de Resposta do Eletrodo (k_P)

A determinação do tempo de resposta do eletrodo de oxigênio dissolvido (k_P) com membrana nova e membrana utilizada em cinco cultivos foi realizada para verificar a necessidade de correção da concentração de O_2 lida pelo eletrodo. As Figuras 4.37 e 4.38 apresentam os valores de k_P , obtidos a partir da utilização da equação 3.28 (pg. 83), onde o coeficiente angular da regressão representa o valor de k_P . A concentração de oxigênio dissolvido foi tomada a cada segundo e os três valores de k_P (k_{P1} , k_{P2} e k_{P3}) indicam repetições para a mesma condição.

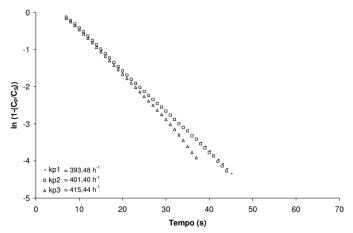


Figura 4.37: Determinação de k_P a 30 °C com a membrana nova.

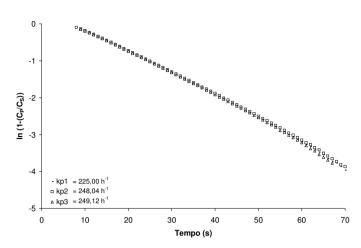


Figura 4.38: Determinação de k_P a 30 °C com a membrana utilizada em cinco cultivos.

Verificam-se, através das Figuras 4.37 e 4.38, os diferentes valores obtidos para a constante de atraso de resposta do eletrodo de oxigênio dissolvido. A constante de atraso do eletrodo com a membrana utilizada em cinco cultivos variou de 225,0 a 249,1 h⁻¹. Já para a membrana nova, houve variação de 393,5 a 415,5 h⁻¹. Isto demonstra a importância da substituição da membrana do eletrodo de medida da concentração de oxigênio dissolvido. Uma membrana utilizada várias vezes pode apresentar sujidades, aumentando a resistência ao fluxo do oxigênio e, consequentemente, comprometendo os resultados experimentais.

Segundo Schmidell (2001) não é necessário realizar a correção da concentração de oxigênio informada pelo eletrodo pela consideração de k_P para valores de $k_L a$ inferiores a 200 h⁻¹. Mesmo assim, para demonstração dos valores corrigidos pela equação 3.29 (pg. 84), foi montada a Figura 4.39 que apresenta a variação (em percentagem) do $k_L a$ pela consideração de k_P , determinados nas Figuras 4.37 e 4.38. Os valores do $k_L a$ foram obtidos no meio de cultivo durante a caracterização hidrodinâmica do biorreator com vazões específicas de aeração de 0,25; 0,50; 0,75 e 1 vvm sob as freqüências de agitação de 250, 500, 750 e 1000 rpm, apresentados na Figura 4.41 (pg. 142).

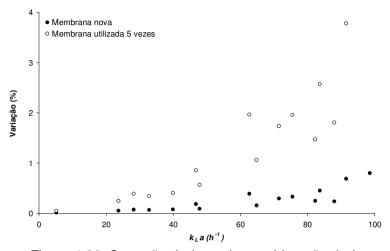


Figura 4.39: Correção do $k_L a$ pela consideração de k_P .

Através da Figura 4.39, verifica-se que existe uma pequena variação entre os valores de $k_L a$ corrigidos pelo k_P . Os valores do $k_L a$ corrigidos pelo k_P da membrana nova, apresentaram variações menores que 1% aos valores originais, enquanto que os corrigidos pelo k_P da membrana utilizada em cinco cultivos apresentaram variação máxima de 4,2%. Estes resultados demonstraram que não há necessidade da correção da concentração de oxigênio informada pelo eletrodo, estando de acordo com o apresentado por Schmidell (2001).

4.4.2 Determinação da Solubilidade do Oxigênio no Meio de Cultivo

A solubilidade do oxigênio no meio de cultivo a 30 °C, apresentada na Figura 4.40 e na Tabela 4.8, foi realizada para corrigir o valor da concentração de saturação utilizado nos cálculos da velocidade específica de respiração.

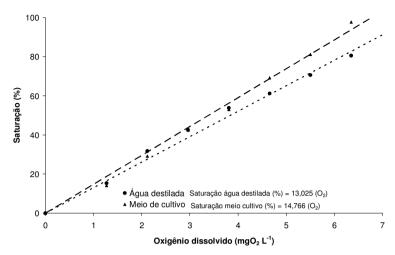


Figura 4.40: Evolução da percentagem de saturação em função da concentração de oxigênio a 30 °C.

Tabela 4.8: Solubilidade de oxigênio na água destilada e no meio de cultivo na ausência do microrganismo e no caldo filtrado colhido durante o cultivo do *M. ruber*.

Respostas*	Água	Meio de Cultivo				
nesposias	Destilada	0 h**	24 h	48 h	72 h	
$C_S \text{ (mgO}_2 \text{ L}^{-1}\text{)}$	7,677	6,772	6,393	7,580	7,743	
$H (mgO_2 L^{-1} atm^{-1})$	36,559	32,249	30,442	36,096	36,873	
R^2	0,993	0,996	0,999	0,986	0,992	
Variação (%)***		-11,8	-16,7	-1,27	+0,86	

^{*}Respostas obtidas a 30 °C.** Determinação realizada na ausência do microrganismo; *** Variação em relação à água destilada (pO₂ = 0,21 atm).

Percebe-se a diferença entre a concentração de saturação de oxigênio dissolvido na água destilada e no meio de cultivo (Figura 4.40). Através da Lei de Henry (Eq. 3.30, pg. 85) foi possível determinar os valores da constante de Henry (*H*) em cada ensaio realizado.

A solubilidade do oxigênio (C_S) no meio de cultivo antes da inoculação do microrganismo foi de 6,772 mgO₂ L⁻¹, aproximadamente 12% menor quando comparada à água destilada (7,677 mgO₂ L⁻¹). Já no meio de cultivo após 48 e 72 horas, a solubilidade do oxigênio foi idêntica a da água, podendo ser explicada pelo consumo de nutrientes do meio de cultivo pelo microrganis-

mo. Desta maneira, verifica-se que os produtos não afetam com a mesma magnitude a solubilidade de oxigênio quando comparado aos nutrientes iniciais presentes no meio de cultivo.

Schmidell (2001) relata que na maioria dos casos, a não correção da concentração de oxigênio dissolvido pode resultar em erros de 10 a 15%. Rossi (2006) trabalhando com a produção de fungos ectomicorrízicos demonstrou a variação de 8% na concentração de saturação entre a água destilada e o meio de cultivo. Henzler e Kauling (1993) verificaram, em meio sintético, redução de 9% da solubilidade do oxigênio quando comparada à água destilada.

Estes resultados demonstraram a importância da determinação da solubilidade de oxigênio em meios de cultivo quando o objetivo é trabalhar com a transferência e o consumo de oxigênio e enriquecem a bibliografia, pois não tem sido comum esta determinação na literatura consultada.

4.4.3 Determinação do $k_L a$ sob Aeração em Profundidade e Aeração Superficial

A Figura 4.41 apresenta os valores do $k_L a$ no meio de cultivo, na ausência do microrganismo, sob diferentes valores de freqüência de agitação e vazão específica de aeração com intuito de caracterizar a hidrodinâmica do biorreator Bioflo III.

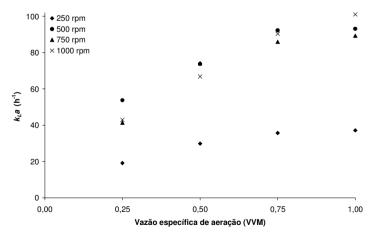


Figura 4.41: Comportamento do $k_L a$ sob diferentes freqüências de agitação e vazão específica de aeração.

Através da Figura 4.41 verifica-se a dependência do $k_L a$ com a vazão específica de aeração e a freqüência de agitação. Como esperado, maiores frequências de agitação e vazão específica de aeração proporcionaram maiores valores de $k_L a$. Através dos resultados experimentais verifica-se a importância das duas variáveis de acordo com a geometria e as configurações do biorreator. Estes resultados são importantes para termos os valores máximos e mínimos de $k_L a$ para cada ensaio realizado, demonstrando a dependência de cada variável no comportamento do $k_L a$.

A Tabela 4.9 apresenta os resultados do coeficiente volumétrico de transferência de oxigênio sob diferentes freqüências de agitação e vazão de aeração superficial. Esta aeração foi realizada no espaço de cabeça (head space), cerca de 100 mm acima da superfície do líquido. Através destes valores, pode-se verificar a interferência da transferência de oxigênio durante a determinação da velocidade específica de respiração (Q_{O2}).

Tabela 4.9: Valores do *k_La* sob diferentes frequências de agita-

ção e vazoes de deração superficial.						
	<i>k⊾a</i> (h ⁻¹)					
Agitação (rpm)	1 NL	2 NL	3 NL	4 NL		
	min ⁻¹	min ⁻¹	min ⁻¹	min ⁻¹		
250	1,08	1,08	1,08	1,08		
500	2,16	2,16	1,80	2,88		
750	1,44	2,60	5,04	7,56		
1000	1,44	2,16	1,44	2,88		

NL: normal litro (0°C e pressão absoluta de 1 atm).

Pode-se verificar através da Tabela 4.9 que os valores de $k_L a$ foram relativamente baixos e semelhantes. Através destes resultados pode-se determinar uma agitação mínima de 250 a 300 rpm para determinação de Q_{O2} , sem que haja transferência de oxigênio considerável do topo do biorreator para o líquido. Sendo assim, nas determinações de Q_{O2} , a freqüência de agitação foi mantida abaixo de 250 rpm, garantindo a homogeneidade e evitando a transferência de Q_2 .

4.4.4 Cultivos Realizados sob Diferentes Freqüências de Agitação

Determinados e suprimidos alguns problemas relativos à transferência de oxigênio (k_P , C_S , freqüência de agitação para

mínima transferência superficial de O₂) procedeu-se a realização dos cultivos sob as freqüências de agitação de 300, 600 e 900 rpm com uma vazão específica de 0,6 vvm para verificar, através de respostas quantitativas (cinéticas de crescimento) e qualitativas (acompanhamento morfológico), o comportamento do *Monascus ruber* nas diferentes condições de cultivo impostas.

As Figuras 4.42, 4.44 e 4.46 apresentam os resultados da evolução da concentração de biomassa e pigmentos laranja e o consumo de glicose. Já nas Figuras 4.43, 4.45 e 4.47 verifica-se o comportamento da velocidade específica de crescimento (μ_X) e da velocidade específica de consumo de oxigênio (Q_{O2}) e a Figura 4.48 apresenta os valores do $k_L a$ durante os cultivos realizados sob as freqüências de agitação de 300, 600 e 900 rpm. Os valores do $k_L a$ e Q_{O2} foram determinados de acordo com a Figura 3.12 (pg. 87).

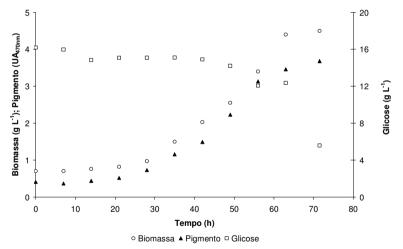


Figura 4.42: Cultivo de *Monascus ruber* CCT 3802 a 30 °C sob a freqüência de agitação de 300 rpm.

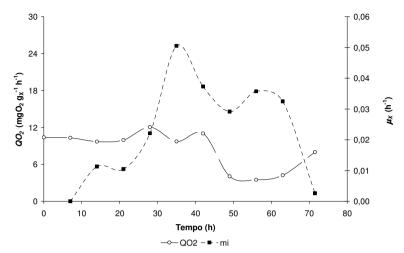


Figura 4.43: Velocidade específica de crescimento e velocidade específica de respiração do *Monascus ruber* CCT 3802 a 30 °C sob a freqüência de agitação de 300 rpm.

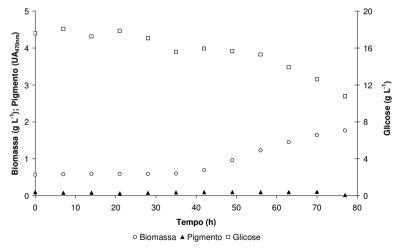


Figura 4.44: Cultivo de *Monascus ruber* CCT 3802 a 30 °C sob a freqüência de agitação de 600 rpm.

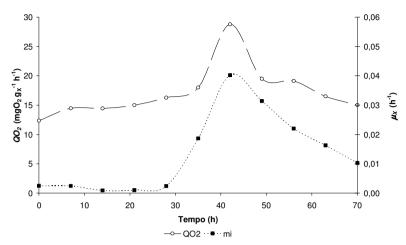


Figura 4.45: Velocidade específica de crescimento e velocidade específica de respiração do *Monascus ruber* CCT 3802 a 30 °C sob a freqüência de agitação de 600 rpm.

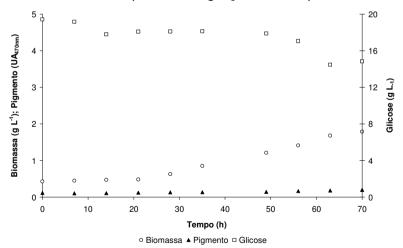


Figura 4.46: Cultivo de *Monascus ruber* CCT 3802 a 30 °C sob a freqüência de agitação de 900 rpm.

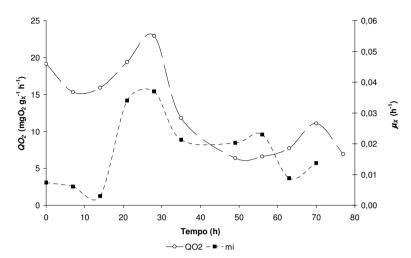


Figura 4.47: Velocidades específicas de crescimento e velocidades específicas de respiração do *Monascus ruber* CCT 3802 a 30 °C sob a freqüência de agitação de 900 rpm.

Analisando as Figuras 4.42 e 4.43, verifica-se que a biomassa apresentou fase lag de aproximadamente 10 horas, atingindo concentração máxima de 4,5 g L $^{-1}$ no tempo de 63 horas, com a produção máxima de pigmentos de 3,5 UA $_{470\mathrm{nm}}$. A biomassa apresentou velocidade específica máxima de crescimento de 0,05 h $^{-1}$ e a velocidade de respiração atingiu valor máximo de 12 mgO $_2$ gx $^{-1}$ h $^{-1}$, coincidindo com a etapa em que foi obtida $\mu_{máx}$. O fator de conversão global de substrato em células ($Y_{X/S}$) foi de 0,37 gx gs $^{-1}$.

Já no cultivo realizado a 600 rpm (Figuras 4.44 e 4.45) percebe-se que a concentração de biomassa foi de aproximadamente 1,8 g L⁻¹ ao final do cultivo. A produção de pigmento foi baixa (0,170 UA_{470nm}) quando comparado ao cultivo anterior. A velocidade específica máxima de crescimento foi de 0,04 h⁻¹ e a velocidade específica de respiração máxima foi de 28,7 mgO₂ g_X h⁻¹, coincidindo com a fase exponencial. Nesta condição de cultivo o microrganismo apresentou fator de conversão de substrato em biomassa de aproximadamente 0,20 g_X g_S⁻¹.

Ao examinar as Figuras 4.46 e 4.47, nota-se que menores quantidades de biomassa e pigmentos foram produzidas quando comparado aos demais cultivos. Neste cultivo, foi verificada produção intensa de espuma, indicando danos ao microrganismo.

Foi atingida a concentração celular máxima de 1,70 g L $^{-1}$, enquanto que a produção de pigmentos (0,150 UA $_{470\text{nm}}$) e o fator de conversão (0,29 gx gs $^{-1}$) apresentaram comportamentos similares ao cultivo realizado a 600 rpm. A biomassa apresentou velocidade específica de crescimento de 0,036 h $^{-1}$ e velocidade específica de respiração máxima de 22,9 mgO $_2$ g $^{-1}$ h $^{-1}$, consumindo duas vezes mais oxigênio quando comparado ao cultivo realizado a 300 rpm.

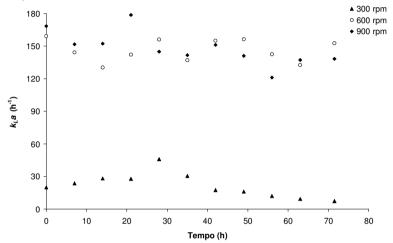


Figura 4.48: Resultados do k_La obtidos durante os cultivos de Monascus ruber CCT 3802 a 30 °C sob as diferentes freqüências de agitação.

O cultivo realizado sob a freqüência de agitação de 300 rpm apresentou valores de $k_L a$ variando de 7,3 a 46 h⁻¹, enquanto que os cultivos realizados a 600 e 900 rpm, apresentaram variação de 130 a 160 h⁻¹ e 120 a 169 h⁻¹, respectivamente.

Estes valores são de extrema importância, pois quando comparados aos valores apresentados na Figura 4.41, verifica-se que os valores obtidos durante o cultivo são cerca de 60% superiores quando determinados na presença do microrganismo.

Este fenômeno pode ter duas explicações. O aumento do $k_L a$ pode estar relacionado ao aumento da turbulência do meio de cultivo pela presença dos *pellets* em suspensão. O contato dos *pellets* com os impelidores promove o fornecimento de energia que será dissipada pelo deslocamento através do líquido. O caminho percorrido pelo *pellet*, promove maior agitação do meio

de cultivo, atuando a favor do fornecimento de oxigênio. Outra explicação pode estar relacionada ao tamanho do pellet. À medida que o diâmetro do pellet aumenta, ocorre o aumento da absorção do meio de cultivo no *pellet* resultando em menor volume de meio líquido para dissolução do O₂, aumentando a transferência. As Figuras 4.49, 4.50 e 4.51 apresentam as imagens dos *pellets*, ampliados 40 vezes, em diferentes tempos de cultivo sob as freqüências de agitação de 300, 600 e 900 rpm.

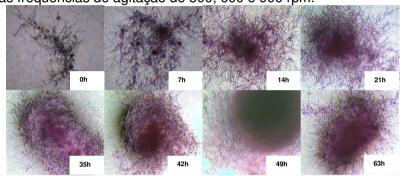


Figura 4.49: Imagens dos pellets de *Monascus ruber* CCT 3802 sob a freqüência de agitação de 300 rpm.

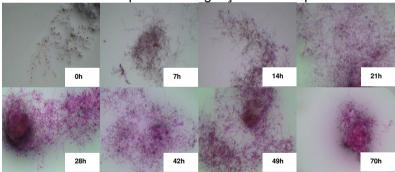


Figura 4.50: Imagens dos pellets de *Monascus ruber* CCT 3802 sob a freqüência de agitação de 600 rpm.

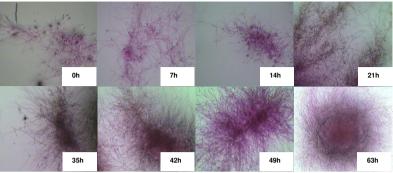


Figura 4.51: Imagens dos pellets de *Monascus ruber* CCT 3802 sob a freqüência de agitação de 900 rpm.

Pode-se verificar que a morfologia do microrganismo apresentou diferenças em relação às diferentes freqüências de agitação. A biomassa cultivada a 300 rpm apresentou em sua maioria a formação de *pellets* mais densos e com maiores diâmetros que os formados nos cultivos a 600 e 900 rpm. Confrontando estes resultados aos obtidos nas cinéticas de produção de pigmentos (Figuras 4.42 a 4.48) verifica-se que a predominância morfológica na forma de *pellet* favoreceu a produção de pigmentos.

A maior velocidade específica de respiração verificada a 600 rpm, quando comparado aos cultivos realizados a 300 e 900 rpm, pode ser explicada pela morfologia do fungo filamentoso apresentar-se com grande formação de filamentos (Figura 4.50).

Kim et al. (2002) realizaram o aumento de escala na produção de pigmentos vermelhos. Estudos foram realizados sob diferentes freqüências de agitação (200, 350, 500, 600 e 700 rpm) verificando qual o comportamento e danos na estrutura do micélio. As freqüências de agitação de 600 e 700 rpm provocaram danos à estrutura e ao crescimento celular com aumento na quantidade de proteínas excretadas, indicando grande ruptura micelial. Menores velocidades de agitação (200, 300 e 500 rpm) demonstraram não danificar a estrutura morfológica do microrganismo. Maiores quantidades de pigmentos foram produzidas utilizando a agitação de 500 rpm.

A partir destes resultados, foi adotada a freqüência de agitação de 300 rpm na produção de pigmentos e a concentração inicial de glicose foi reduzida de 20 para 10 g L⁻¹ para facilitar as determinações das respostas e reduzir a quantidade de biomassa produzida e a aderência nas superfícies do biorreator.

4.4.5 Determinação de mo e Yo

Com o objetivo da verificação da produção de pigmento associada ao crescimento celular, foi realizado um cultivo contendo a concentração inicial de glicose de aproximadamente 10 g L⁻¹ e realizou-se um estudo cinético da produção de pigmentos. A redução da concentração inicial de glicose de 20 para 10 g L⁻¹ foi uma alternativa frente à produção intensa de células, com conseqüente aderência da mesma na superfície e nos sensores e acessórios do biorreator.

Os resultados da evolução da biomassa, pigmentos e o consumo de glicose pelo *Monascus ruber* CCT 3802 estão apresentados na Figura 4.52. Na Figura 4.53 são apresentadas as curvas das velocidades específicas de produção de biomassa e de pigmentos.

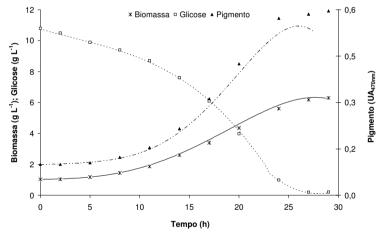


Figura 4.52: Evolução da concentração de biomassa, glicose e pigmentos ao longo do cultivo do *M. ruber* a 30 °C sob agitação de 300 rpm e pH 3.0.

Verifica-se na Figura 4.52 que o microrganismo consumiu toda a glicose, atingindo a concentração celular máxima de 6,3 g L^{-1} e 0,596 UA_{470nm} . O fator de conversão de substrato em biomassa foi de 0,49 g_X g_S^{-1} , consideravelmente maior quando comparado aos cultivos realizados a 600 e 900 rpm.

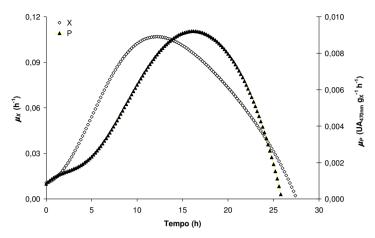


Figura 4.53: Velocidades específicas de produção de biomassa e pigmentos em função do tempo de cultivo.

Analisando a Figura 4.53, verifica-se que existe semelhança entre as curvas, identificando comportamento de produção de pigmentos parcialmente associada ao crescimento celular. A curva da velocidade específica de produção de pigmentos tende a se aproximar da produção associada ao crescimento celular. Através da equação 3.41 (pg. 90) foi construída a Figura 4.54 que apresenta a velocidade específica de produção de pigmento (μ_P) em função da velocidade específica de crescimento (μ_X) .

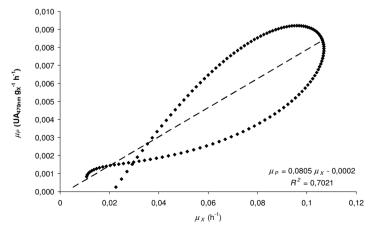


Figura 4.54: μ_P vs. μ_X da produção de pigmento laranja pelo *Monascus ruber* CCT 3802.

Através da Figura 4.54 verifica-se a dependência de μ_P em função de μ_X . A primeira parcela $(\alpha.\mu_X)$ representa a produção de pigmentos associada ao crescimento celular e a segunda parcela (β) é independente ao crescimento celular (Luedeking e Piret, 1959 apud Hiss, 2001). Através das diferenças entre as constantes θ e β verifica-se que a produção de pigmentos está associada ao crescimento celular, classificando-se nos processos fermentativos como parcialmente associada ao crescimento celular, indicado pelo valor de R^2 =0,7021.

A Figura 4.55 apresenta a determinação do coeficiente de manutenção (m_O) e o fator de conversão de oxigênio em biomassa (Y_O).

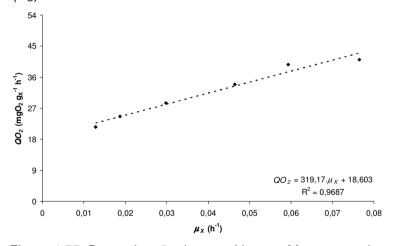


Figura 4.55: Determinação de m_O e Y_O para *Monascus ruber* CCT 3802.

Através da Figura 4.55 e da equação 3.42 (pg. 90) foi possível determinar m_O e Y_O que apresentaram os valores de 18,603 mgO₂ g_X^{-1} h⁻¹ e 3,133 g_X gO_2^{-1} , respectivamente. Estes valores foram utilizados nos cultivos sob diferentes concentrações de O_2 para estimar a produção de biomassa utilizando os dados do balanço de oxigênio.

A Figura 4.56 apresenta as curvas da concentração de O_2 vs. Tempo, após a interrupção da aeração, em 3 momentos do cultivo, realizada para determinar a concentração crítica de oxigênio (C_{CRIT}) do fungo $Monascus\ ruber\ CCT\ 3802$, elaboradas de acordo com a Figura 3.11 (pg. 84).

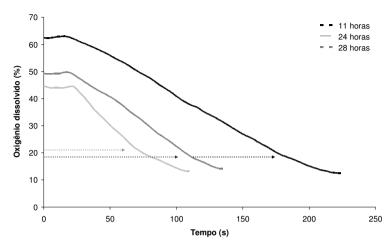


Figura 4.56: Determinação de *C_{CRIT}* de O2 no cultivo do *Monas-cus ruber* CCT 3802.

4.4.6 Cultivos sob Diferentes Concentrações de O₂

Após determinação de C_{CRIT} , foram realizados três cultivos sob diferentes concentrações de O_2 , através do controle manual da vazão de aeração e freqüência de agitação. O primeiro cultivo foi realizado com O_2 acima de 3,386 mg O_2 L⁻¹ (50% da saturação) (Figura 4.57), o segundo sob condição de oxigênio dissolvido na faixa de 2,032 a 2,370 mg O_2 L⁻¹ (30 a 35% da saturação) (Figura 4.58) e o terceiro sob condições de limitação em O_2 . Neste cultivo a concentração de O_2 foi mantida abaixo de 1,083 mg O_2 L⁻¹ (16% da saturação) (Figura 4.59), estando abaixo da concentração crítica de 1,286 mg O_2 L⁻¹ (19%), determinada na Figura 4.56.

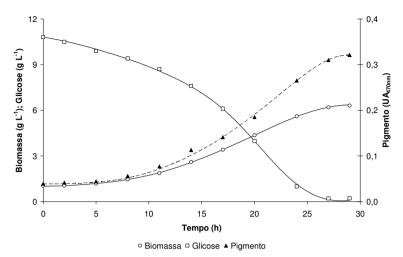


Figura 4.57: Cultivo do *Monascus ruber* CCT 3802 a 30 °C sob concentração de O_2 acima de 3,386 mg O_2 L⁻¹.

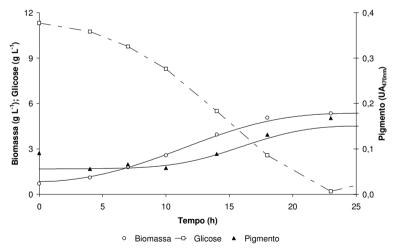


Figura 4.58: Cultivo do *Monascus ruber* CCT 3802 a 30°C sob concentração de O_2 na faixa de 2,032 a 2,370 mg O_2 L⁻¹.

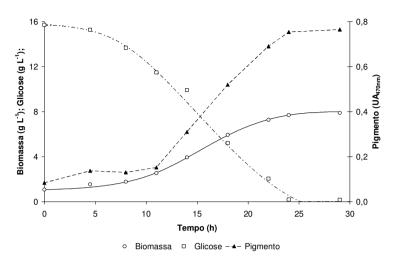


Figura 4.59: Cultivo do *Monascus ruber* CCT 3802 a 30 °C sob O₂ abaixo de 1,083 mgO₂ L⁻¹.

Verifica-se pela análise da Figura 4.57 que a produção de pigmentos apresentou aumento gradativo, acompanhando a produção de biomassa. A máxima concentração de biomassa (6,30 g L^{-1}) e pigmentos (0,330 UA_{470nm}) foi atingida no tempo de 29 horas de cultivo. As imagens do cultivo realizado sob concentração de O_2 superior a 50% podem ser verificadas na Figura 4.60. Já o cultivo realizado na faixa de 30 a 35% de O_2 (Figura 4.58) apresentou comportamento similar com a máxima concentração celular de 5,30 g L^{-1} , embora a produção de pigmentos tenha sido a metade (0,170 UA_{470nm}). Apesar desta redução, os dados diferenciaram-se principalmente na produção de pigmentos quando comparado ao experimento sob limitação de O_2 (Figura 4.59).

Neste experimento verificou-se a produção de biomassa de 8 g L⁻¹, embora a produção de pigmento não tenha sido verificada. O caldo de fermentação apresentou coloração esbranquiçada, diferentemente das fermentações anteriores onde o caldo apresentava-se com a coloração laranja, característica do pigmento. Os dados da absorbância a 470 nm apresentada na Figura 4.59 são referentes à turbidez do meio e não à produção de pigmentos laranja.

Este fenômeno pode ser visualizado na Figura 4.61 que apresenta a diferenca entre a coloração do *Monascus ruber* CCT

3802, após sete dias de cultivo em garrafas de Roux. Na garrafa com oxigenação (Figura 4.61a) foi verificada a produção de pigmentos, enquanto que a garrafa com filme de PVC para impedir a entrada de oxigênio (Figura 4.61b), houve somente o crescimento esbranquiçado do micélio. Estes resultados estão de acordo aos apresentados por Lee et al. (1995), os quais verificaram que baixas concentrações de oxigênio ou altas de CO₂ inibem a formação do pigmento tanto em cultivos em meio sólido quanto em cultivos submersos.

Figura 4.60: Pigmento laranja produzido pelo *Monascus ruber* CCT 3802 sob concentração de O₂ acima de 50% da saturação.

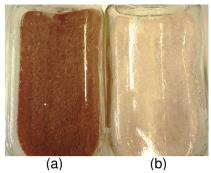


Figura 4.61: *Monascus ruber* em PDA após sete dias de cultivo (a) garrafa de Roux fechada com tampão de algodão e (b) garrafa de Roux fechada com tampão de algodão e filme de PVC.

Com certeza, a maioria dos resultados da produção de pigmentos, expressos em unidades de absorbâncias a 470nm (UA_{470nm}), foram subestimados. Isto pode ser explicado pelo pigmento laranja apresentar-se como partículas sólidas e, no decorrer da aeração/agitação, os cristais foram arrastados pelas bolhas e pela espuma para a superfície do biorreator. Outro ponto importante está relacionado à quantificação do pigmento, pois quando é feita a coleta da amostra, existe uma parcela de pigmento solúvel no meio de cultivo e uma parcela insolúvel, além da biomassa.

Tendo em vista a dificuldade de determinar a concentração de pigmentos laranja no decorrer do cultivo, foi feita uma estimativa grosseira, ao final do cultivo, da quantidade de pigmentos laranja produzida. Para isto, o material aderido na superfície do biorreator foi raspado e homogeneizado, sendo coletada uma amostra de 200 mL do caldo de fermentação. Após filtração em papel filtro quantitativo (para coleta da biomassa e do pigmento) foi feita a remoção do pigmento pela lavagem com álcool etílico. Através da relação apresentada na Figura 4.11 (pg. 110), onde 44 mg L⁻¹ de pigmento correspondem a 1 UA_{470nm}, estimou-se a concentração de 1,2 g de pigmento por litro de meio de cultivo.

Estes resultados podem ser comparados aos obtidos por Pastrana et al. (1995). Trabalhando com a produção de pigmentos vermelhos, destacaram que espécies de *Monascus* são incapazes de crescer em anaerobiose, mas podem crescer em condições de limitação de oxigênio. Nestas condições, ocorre o aumento da produção de etanol e CO₂ e redução na produção de

pigmentos. Em condições de maiores níveis de aeração, verificaram o aumento na produção de pigmentos e redução na produção de etanol.

Chen e Johns (1994) verificaram que sob concentrações de glicose superiores a 50 g L⁻¹ ocorre o efeito similar ao Crabtree, que pode ser entendido como a inibição do consumo de oxigênio pela adição de glicose, resultando no desvio do metabolismo predominantemente oxidativo para o metabolismo fermentativo, mesmo em condições de boa aeração.

4.4.7 Determinação de Citrinina

Através da curva padrão de citrinina (Figura 4.62) foram realizadas estimativas da concentração de citrinina no extrato final do cultivo, por comparação visual, em câmara escura sob incidência de luz UV 256 nm.

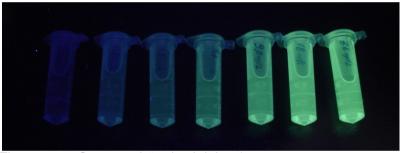


Figura 4.62: Curva padrão de citrinina (0; 0,9; 1,8; 3,6; 9; 18 e 36 mg L⁻¹) visualizada sob a incidência de luz ultravioleta 256 nm.

Pela análise comparativa, foi verificado que o cultivo realizado com concentração de oxigênio na faixa de 30 a 35% da saturação apresentou a maior produção de citrinina (entre 0,9 e 1,8 mg L⁻¹). Já o cultivo realizado com concentração de oxigênio superior a 50% de saturação, a citrinina não foi detectada. Estes resultados são indicativos da presença de citrinina e não conclusivos. Para determinação da concentração real, estas amostras devem ser submetidas a análises de HPLC, pois vale lembrar que este método (cromatografia em camada delgada), não é adequado para quantificar, mas para identificar a presença ou ausência de citrinina.

Nos cultivos realizados em biorreator verificou-se a presença de citrinina, enquanto que os nos pigmentos laranja e vermelho produzido a partir do pigmento laranja, a presença de citrinina não foi verificada (item 4.2, pg. 109). Isto indica que o processo de produção e purificação do pigmento laranja possibilitou a retirada de toxina. Sendo assim, foi elaborado um fluxograma, apresentado na Figura 4.63, contendo as principais etapas realizadas na separação e purificação do pigmento laranja do meio de cultivo.

Este fluxograma mostra a possibilidade de obtenção do pigmento com alto grau de pureza. Uma vez obtido o pigmento laranja, pode-se obter o pigmento vermelho pelo processo de aminação. Percebe-se que a maioria das etapas é simples, embora algumas possam ser essenciais. A concentração de pigmento laranja no meio de cultivo é a principal variável que pode inviabilizar os processos de *downstream*, como em qualquer bioprocesso. Outra etapa, considerada como "gargalo" é a filtração em papel filtro quantitativo que demanda certo tempo para que o pigmento seja separado, mas de modo geral, é uma primeira aproximação do processo de separação e purificação do pigmento laranja, até então não encontrado na literatura.

Isto indica a necessidade de novas pesquisas sobre a separação e purificação destes compostos. A utilização de membranas poderia auxiliar a separação do pigmento. Outro ponto a ser abordado é a possibilidade de produção de pigmento laranja a partir do cultivo do *Monascus ruber* CCT 3802 imobilizado.

Moritz (2005) trabalhou com farelo de arroz e obteve concentrações de citrinina de 8,3 e 7,9 mg L⁻¹, que comparados aos resultados apresentados por Blanc et al. (1995) de 54 mg L⁻¹, são considerados baixos. Destaca ainda, que a utilização de glicose e farelo de arroz em cultivos submersos pode ser uma alternativa para a produção de pigmentos, reduzindo a quantidade de citrinina produzida.

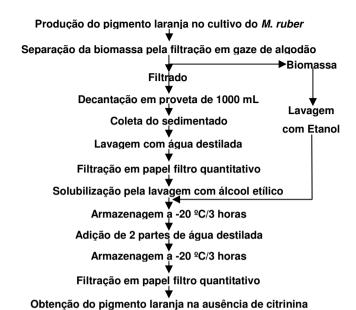


Figura 4.63: Fluxograma sugerido para separação e purificação do pigmento laranja produzido pelo *M. ruber* em cultivo submerso.

4.4.8 Estimativa da Concentração de Biomassa pela Utilização de m_O e Y_O

A partir dos resultados do coeficiente de manutenção (m_O) e do fator de conversão de oxigênio em biomassa (Y_O) , determinados na Figura 4.55, foram realizadas estimativas, conforme apresentadas na Figura 4.64, da concentração de biomassa dos cultivos sob diferentes concentrações de oxigênio dissolvido através da equação 3.45 (pg. 91).

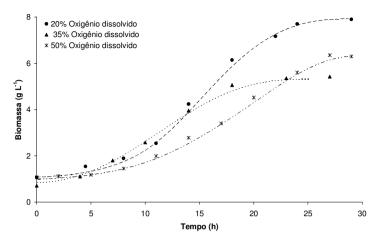


Figura 4.64: Estimativa da concentração de biomassa de M. ru-ber CCT 3802 cultivada em diferentes concentrações de O_2 pela utilização dos parâmetros m_O e Y_O .

Verifica-se, através da Figura 4.64, o bom ajuste da equação 3.45, utilizando os parâmetros estimados m_O e Y_O , aos dados experimentais. Uma simulação, com aumento de m_O e Y_O na equação, reduz a estimativa da concentração de biomassa, o que pode ser verificado no cultivo com concentração superior a 50% de oxigênio dissolvido. Este fenômeno pode ser comparado aos resultados obtidos por Fachini (1988) *apud* Schmidell (2001) o qual verificou que maiores valores de m_O foram observados em condições intensas de transferência de O_2 . O mesmo fenômeno foi verificado neste trabalho.

Hajjaj et al. (1999a) avaliaram a produção de pigmentos vermelhos por *Monascus ruber* sob diferentes freqüências de agitação (100, 250 e 400) e vazão de aeração (0,04; 0,4 e 2 vvm). Maiores quantidades de pigmentos foram produzidas quando utilizada a aeração de 2 vvm e agitação de 250 rpm, embora com grandes quantidades de citrinina (6,83 mg g_s⁻¹).

Hamdi et al. (1996) destaca que em baixas concentrações de substrato, é possível dividir a produção em duas fases. Înicialmente a glicose sendo convertida a etanol e biomassa e, em seguida, o etanol sendo convertido em biomassa e pigmento. Os mesmos autores realizaram duas fermentações e avaliaram o efeito da pressão parcial de oxigênio na produção de pigmentos vermelhos por *Monascus purpureus*.

4.5 Estabilidade Térmica e Atividade Antimicrobiana dos Pigmentos

Os pigmentos laranja, vermelho produzido a partir da aminação do pigmento laranja com glicina e vermelho produzido durante o cultivo do *Monascus ruber* CCT 3802 foram submetidos a testes de estabilidade térmica e atividade antimicrobiana.

A estabilidade térmica consistiu na determinação da constante de degradação térmica (D_C) e tempo de meia vida ($t_{1/2}$) sob diferentes condições de temperatura e pH através da metodologia da superfície de resposta, enquanto que a determinação da atividade antimicrobiana foi realizada através da metodologia dos poços, pela medida do halo de inibição dos pigmentos sobre o crescimento dos microrganismos alvos *Staphylococcus aureus* ATCC 25922, *Escherichia coli* ATCC 25923 e *Salmonella enteritidis* ATCC 13076.

4.5.1 Estabilidade Térmica

A estabilidade térmica consistiu na determinação da constante de degradação térmica (D_C), obtida a partir da regressão linear de $\ln A/A_0$ em função do tempo de tratamento térmico. O coeficiente angular desta regressão (Eq. 3.50, pg. 95) representa os valores de D_C . A partir dos valores de D_C , foi determinado o tempo de meia vida dos pigmentos para cada condição estudada (Eq. 3.48, pg. 95).

4.5.1.1 Determinação da energia de ativação (Ea)

Nesta etapa do trabalho, primeiramente, determinou-se a energia de ativação (Ea) dos pigmentos a pH 4,5. A partir dos resultados de D_C obtidos nas temperaturas de 56; 60; 70; 80; 90 e 95 $^{\circ}$ C (Tabela 4.10), e utilizando o modelo empírico de Arrhenius (Eq. 3.49, pg. 95), foi determinada a Ea de cada pigmento, através da regressão linear do logaritmo natural da constante de degradação térmica *versus* o inverso da temperatura absoluta (1/T) (Figura 4.65).

Tabela 4.10: D_C sob diferentes tratamentos térmicos e Ea dos pigmentos a pH 4,5.

Piamento Ea Temp. $D_C \pm d. p.$ (kcal mol-1) (h⁻¹) (°C) 50 0.028±0.007 60 0,048±0,009 70 0.100±0.008 P. laranja 12,657 0.9943 80 0,169±0,024 90 0.254±0.027 95 0.301±0.012 50 0.112±0.011 60 0.160±0.004 Р verme-70 0,289±0,021 Iho amina-11,496 0,9941 80 0.445±0.031 do 90 0.775±0.098 95 0.941±0.124 50 0.124±0.003 60 0.213±0.006 Р 70 0.357±0.011 verme-12.742 0.9980 Iho cultivoa 80 0,631±0,009 90 1,124±0,157

Média ± desvio padrão para três replicatas. (a): Pigmento vermelho produzido no cultivo do *Monascus ruber* CCT 3802 utilizado como controle.

1,342±0,025

95

Analisando a Tabela 4.10 verifica-se que a constante de degradação térmica do pigmento laranja aumentou de 0,028 \pm 0,007 h $^{\text{-}1}$ à temperatura de 50 $^{\text{o}}$ C para 0,301 \pm 0,012 h $^{\text{-}1}$ na temperatura de 95 $^{\text{o}}$ C, resultando no aumento de aproximadamente 11 vezes. Já para os pigmentos vermelhos, tanto aminado quanto produzido no cultivo do microrganismo, verificou-se o aumento de 8 e 11 vezes, respectivamente, indicando que a produção do pigmento vermelho a partir da aminação do pigmento laranja pode aumentar a estabilidade térmica.

Este fenômeno pode ser explicado pela produção do pigmento vermelho aminado em um composto seletivo, ao contrário da produção do pigmento vermelho no cultivo do *Monascus* que pode apresentar misturas destes pigmentos, originários da aminação com glicina, peptídeos e resíduos de proteínas (Jung et al., 2003).

Através da Figura 4.65 verifica-se que os dados experimentais ajustaram-se ao modelo de Arrhenius. Quando o coeficiente angular (-Ea/R) da regressão linear (Eq. 3.50, pg. 95) é multiplicado por 1,987 (constante dos gases ideais em cal mol⁻¹ k⁻¹), obtém-se a Ea de 12,657; 11,496 e 12,742 kcal mol⁻¹ (Tabela 4.10).

Levenspiel (1986) destaca que reações com alta energia de ativação são muito mais sensíveis à temperatura e que o modelo de Arrhenius é a primeira aproximação adequada para determinar o efeito da temperatura sobre a equação cinética, além de ajustar bem os resultados experimentais em um amplo intervalo de temperaturas, comportamento verificado neste trabalho.

Estes resultados demonstraram que o pigmento vermelho produzido no cultivo degrada-se com maior rapidez quando comparado ao pigmento vermelho produzido a partir da aminação do pigmento laranja com glicina.

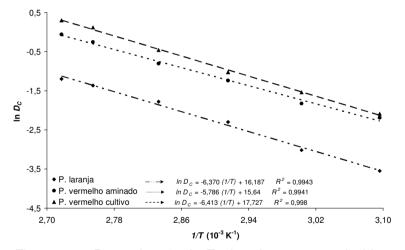


Figura 4.65: Determinação da *Ea* dos pigmentos produzidos.

4.5.1.2 Efeito da temperatura e do pH na estabilidade térmica dos pigmentos

Todo pigmento, seja de natureza artificial ou natural, apresenta propriedades distintas frente a fenômenos naturais e de processamentos que são submetidos, logo, é categórico determinar o comportamento das propriedades e características destas substâncias para obtenção de dados e informações úteis para aplicação e controle da utilização destes compostos em alimentos.

Durante todo o trabalho, ficou evidente a importância do pH na produção dos pigmentos pelo *Monascus*. Perante isto, foi determinado o efeito da temperatura e do pH através da aplicação da superfície de resposta para predição de D_C e $t_{1/2}$ dos pigmentos em função das variáveis estudadas. Ao empregar a superfície de resposta, sabe-se que o aumento da temperatura irá aumentar a constante de degradação térmica, embora esta ferramenta estatística permita verificar o comportamento e predizer as respostas D_C e $t_{1/2}$ com redução do número de experimentos.

Através da regressão linear de $In~(A/A_0)~vs.$ o tempo de tratamento térmico (Figuras 4.66, 4.67 e 4.68) utilizando as equações 3.47 (pg. 94) e 3.48 (pg. 95), foi possível determinar D_C e $t_{1/2}$ para cada condição de temperatura e pH estudada, apresentadas na Tabela 3.2 (pg. 96). Todos os resultados de D_C e $t_{1/2}$ encontram-se apresentados na Tabela 4.11.

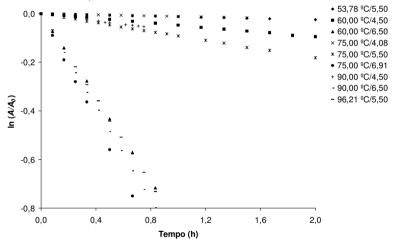


Figura 4.66: Degradação do pigmento laranja sob diferentes tratamentos térmicos produzidos pelo *Monascus ruber* CCT 3802.

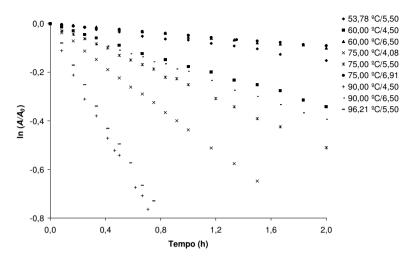


Figura 4.67: Degradação do pigmento vermelho aminado com glicina sob diferentes tratamentos térmicos.

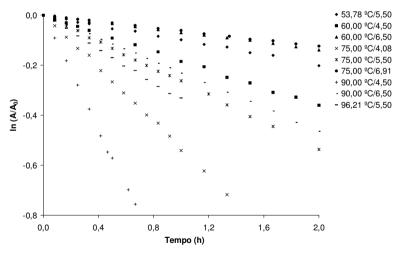


Figura 4.68: Degradação do pigmento vermelho sob diferentes tratamentos térmicos produzido no cultivo do *Monascus ruber* CCT 3802.

Observou-se a maior degradação do pigmento laranja (Figura 4.66) quando submetido aos tratamentos térmicos a 75 $^{\circ}$ C e pH 6,91 e a 90 $^{\circ}$ C e pH 6,5, indicando que maiores valores de pH aumentam a degradação da coloração (D_c). Maior estabilidade

do pigmento foi verificada a baixos valores de pH, explicado pelo pigmento laranja ser produzido nos cultivos com pH inferiores a 4.

Já nas Figuras 4.67 e 4.68 verifica-se que o comportamento do pigmento vermelho foi distinto ao pigmento laranja. A degradação térmica sofreu redução gradativa, pois os valores de ln (A/A_0) vs. tempo encontram-se distribuídos. Neste caso, maiores valores de pH reduziram a degradação, enquanto que menores valores de pH aumentaram a degradação do pigmento vermelho.

Verificam-se, a partir da Tabela 4.11, que os valores de D_C do pigmento laranja aumentaram de 0,012 \pm 0,001 para 1,123 \pm 0,019 h⁻¹ com o aumento do pH de 4,08 para 6,91 a 75 $^{\circ}$ C, representando o aumento de 51 vezes. As constantes de degradação do pigmento vermelho aminado aumentaram de 0,048 \pm 0,002 para 0,433 \pm 0,007 h⁻¹ quando o pH foi reduzido de 6,91 para 4,08 a temperatura de 75 $^{\circ}$ C. Estes resultados demonstraram que o pigmento laranja apresenta maior estabilidade a baixos valores pH, enquanto que, os vermelhos apresentam maior estabilidade sob maiores valores de pH.

A partir dos resultados apresentados na Tabela 4.11, originários da matriz contendo a variável temperatura e pH e seus respectivos níveis de variação (Tabela 3.2, pg. 96), foram construídas as superfícies de respostas, as curvas de contorno e os diagramas de Pareto do efeito da temperatura e do pH sobre as respostas constante de degradação térmica (D_C) e tempo de meia vida ($t_{1/2}$) dos pigmentos laranja e vermelho aminado e comparados aos resultados do pigmento vermelho produzido no cultivo do M. ruber, utilizado como controle.

A variação de D_C e do $t_{1/2}$ em função das variáveis temperatura e pH foi obtida pelo modelo empírico (polinômio) gerado pela superfície de resposta contendo todos os efeitos, independente dos valores de p. Para obtenção do modelo simplificado, excluem-se os efeitos onde p > 0.05.

As Tabelas 4.12, 4.13 e 4.14 apresentam a análise de variância dos diferentes tratamentos térmicos sobre a resposta constante de degradação térmica dos pigmentos laranja, vermelho aminado e vermelho produzido pelo cultivo do *Monascus ruber* CCT 3802.

Tabela 4.11: D_C e $t_{1/2}$ dos pigmentos sob diferentes tratamentos térmicos.

Pigmento	Temp.	pH	$D_{\mathcal{C}}$ ±d.p.	<i>t</i> _{1/2} ±d.p.
9	(°C)	1-	(h ⁻¹)	(h)
	53,8	5,50	0,022±0,001	55,931±5,823
	60,0	4,50	0,046±0,003	14,856±0,999
	60,0	6,50	0,805±0,021	0,861±0,023
	75,0	4,08	0,012±0,001	58,509±6,470
P. laranja	75,0	5,50	0,089±0,002	7,749±0,217
r. Ididija	75,0 ^a	5,50	0,092±0,001	7,515±0,155
	75,0	6,91	1,123±0,019	0,617±0,010
	90,0	4,50	0,065±0,008	10,695±1,305
	90,0	6,50	0,965±0,020	0,718±0,015
	96,2	5,50	0,862±0,025	0,804±0,022
	53,8	5,50	0,073±0,001	9,429±0,243
	60,0	4,50	0,154±0,015	4,524±0,457
	60,0	6,50	0,054±0,004	12,686±1,021
D	75,0	4,08	0,435±0,004	1,592±0,016
P. verme- lho amina-	75,0	5,50	0,145±0,043	5,140±1,527
do	75,0 ^a	5,50	0,244±0,012	2,845±0,151
do	75,0	6,91	0,048±0,002	14,455±0,714
	90,0	4,50	0,947±0,103	0,739±0,081
	90,0	6,50	0,171±0,022	4,104±0,546
	96,2	5,50	0,992±0,015	0,698±0,010
	53,8	5,50	0,102±0,008	6,821±0,531
	60,0	4,50	0,183±0,007	3,784±0,158
	60,0	6,50	$0,069\pm0,003$	10,034±0,554
	75,0	4,08	0,545±0,016	1,272±0,037
P. verme-	75,0	5,50	0,278±0,016	2,499±0,154
lho cultivo ^b	75,0 ^a	5,50	0,277±0,013	2,500±0,120
	75,0	6,91	0,063±0,002	10,873±0,345
	90,0	4,50	1,163±0,047	0,596±0,024
	90,0	6,50	0,235±0,009	2,954±0,117
	96,2	5,50	0,347±0,015	1,996±0,087

Média \pm desvio padrão para três replicatas. (a) Repetição do ponto central (b): Pigmento vermelho produzido no cultivo do *M. ruber* utilizado como controle.

Tabela 4.12: Análise de variância das variáveis independentes sobre a resposta constante de degradação térmica do pigmento larania.

		J			
Fator	S.Q.	G. L.	Q.M.	F	р
T (ºC)(L)	1,429	1	1,429	95,021	<0,001
T (^o C)(Q)	0,749	1	0,749	49,831	<0,001
pH (L)	7,825	1	7,825	520,314	<0,001
pH (Q)	1,456	1	1,456	96,874	<0,001
T (^o C)(L) X pH (L)	0,029	1	0,02	1,989	0,164
Erro	0,812	54	0,015		
Total S.Q.	11,702	59	•		

S.Q.: soma dos quadrados, G.L.: graus liberdade, Q.M.: quadrado médio, T: temperatura, L: linear, Q: quadrático.

Tabela 4.13: Análise de variância das variáveis independentes sobre a resposta constante de degradação térmica do pigmento vermelho aminado.

Fator	S.Q.	G. L.	Q.M.	F	g
T (°C)(L)	3,659	1	3,659	598,048	<0,001
T (°C)(Q)	0,660	1	0,660	108,029	<0.001
pH (L)	1,518	1	1,518	248,232	<0,001
pH (Q)	0,002	1	0.002	0.408	0,525
T (°C)(L) X pH (L)	0,686	1	0,686	112,120	<0,001
Erro	0,330	54	0,006	, 0	10,001
Total S.Q.	6,964	59	-,,,,,,,		

S.Q.: soma dos quadrados, G.L.: graus liberdade, Q.M.: quadrado médio, T: temperatura, L: linear, Q: quadrático.

Tabela 4.14: Análise de variância das variáveis independentes sobre a resposta constante de degradação térmica do pigmento vermelho produzido no cultivo do *M. ruber* CCT 3802.

Fator	S.Q.	G.L.	Q.M.	F	р
T (ºC)(L)	1,672	1	1,672	105,360	<0,001
T (^o C)(Q)	0,003	1	0,003	0,191	0,663
pH (L)	2,227	1	2,227	140,305	<0,001
pH (Q)	0,069	1	0,069	4,360	0,041
T (°C)(L) X pH(L)	0,995	1	0,995	62,685	<0,001
Erro	0,857	54	0,015		
Total S.Q.	5,825	59			

S.Q.: soma dos quadrados, G.L.: graus liberdade, Q.M.: quadrado médio, T: temperatura, L: linear, Q: quadrático.

A partir das análises de variâncias realizadas das variáveis independentes sobre a constante de degradação térmica (D_C)

foram construídas as superfícies de respostas da constante de degradação térmica em função das variáveis temperatura e pH.

4.5.1.3 Aplicação da superfície de resposta sobre a estabilidade dos pigmentos submetidos a diferentes tratamentos térmicos em diferentes pHs

4.5.1.3.1 Pigmento laranja

As Figuras 4.69 e 4.70 apresentam a constante de degradação térmica e o tempo de meia vida do pigmento laranja em função das variáveis temperatura e pH.

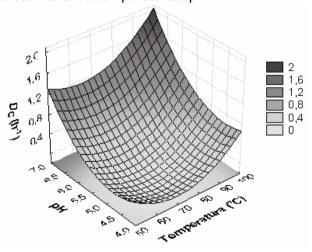


Figura 4.69: Superfície de resposta de D_C do pigmento laranja em função da temperatura e pH.

Através das Figuras 4.69 e 4.70 verifica-se que a menores valores da constante de degradação térmica e, consequentemente, maiores valores do tempo de meia vida foram verificados na região de menores temperaturas e menores pHs. O efeito da temperatura nestas respostas era esperado, haja vista que quanto maior a temperatura maior será a degradação da coloração. Mesmo sabendo-se deste efeito, é necessário mensurá-lo para obtenção de dados que representam fenômenos naturais e de processamento sobre a estabilidade destes pigmentos.

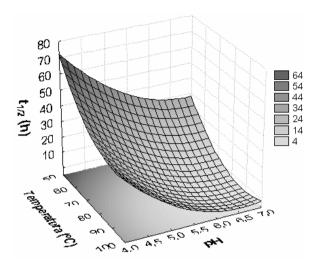


Figura 4.70: Superfície de resposta de e $t_{1/2}$ do pigmento laranja em função da temperatura e pH.

As equações empíricas 4.4 e 4.5, que descrevem o comportamento das respostas D_C e $t_{1/2}$ em função das variáveis estudadas.

 $D_{C. lar.}(h^{-1})$ =9,082-0,111 X_1 +0,0007 X_1^2 -2,308 X_2 +0,230 X_2^2 +0,002 X_1X_2 (4.4) $t_{1/2 lar.}(h)$ =443,940-4,268 X_1 +0,021 X_1^2 -77,871 X_2 +5,419 X_2^2 +0,066 X_1X_2 (4.5) onde D_C representa a constante de degradação térmica (h^{-1}); $t_{1/2}$ o tempo de meia vida (h); X_1 a variável temperatura (°C) e X_2 a variável pH.

O modelo apresentado na equação 4.4 apresentou 93% de explicação dos resultados. Os efeitos individuais das variáveis temperatura e pH sobre as respostas D_C e $t_{1/2}$ do pigmento laranja podem ser verificados através dos diagramas de Pareto, apresentados na Figura 4.71.

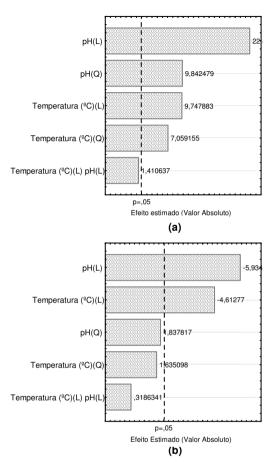


Figura 4.71: Diagrama de Pareto do efeito da temperatura e do pH sobre a estabilidade térmica do pigmento laranja. (a) D_C (b) $t_{1/2}$.

O comprimento de cada barra é proporcional ao valor absoluto associado aos efeitos estimados pela regressão realizada pelo *software* Statistica 6.0. Os efeitos isolados bem como as interações quadráticas são padronizados (cada efeito é dividido por seu erro padrão). A linha vertical pontilhada corresponde ao intervalo de confiança de 95% que indicam o limite de significância. Um efeito para ser significativo, deve ultrapassar a linha pontilhada (Rezzoug e Capart, 2003).

Pela análise da Figura 4.71 verifica-se que a variável temperatura e pH apresentaram efeito significativo na estabilidade térmica do pigmento. As variáveis que apresentaram efeitos sobre a estabilidade térmica do pigmento laranja foram o pH (X_2) em seu efeito linear seguido pelo efeito quadrático (X_2^2) . O simples efeito da temperatura (X_1) e seu efeito quadrático são significantes, mas com menores importâncias. A interação entre a temperatura e o pH não apresentou efeito significativo (p > 0.05).

4.5.1.3.2 Pigmento vermelho aminado

As Figuras 4.72 e 4.73 apresentam a constante de degradação térmica e o tempo de meia vida do pigmento vermelho aminado (produzido pela aminação do pigmento laranja com glicina) em função das variáveis temperatura e pH.

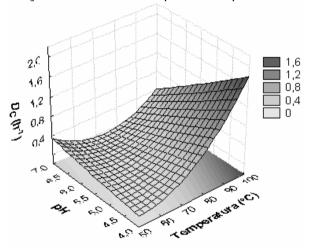


Figura 4.72: Superfície de resposta de D_C pigmento vermelho aminado em função da temperatura e pH.

Através da análise das Figuras 4.72 e 4.73 verifica-se que maior degradação da coloração foi verificada a maiores temperaturas sob menores valores de pH. Percebe-se que maiores valores de pH favoreceram o aumento do tempo de meia vida.

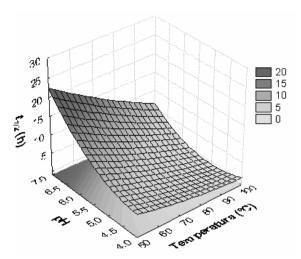


Figura 4.73: Superfície de resposta do $t_{1/2}$ do pigmento vermelho aminado em função da temperatura e pH.

As equações empíricas 4.6 e 4.7, tomando como base a equação 3.51 (pg. 96), que descrevem o comportamento das respostas D_C e $t_{1/2}$ em função das variáveis estudadas.

 $D_{C.\ ver\ amin..}(h^{-1}) = -0.687 - 0.023X_1 + 0.0007X_1^2 + 0.56X_2 + 0.009X_2^2 - 0.01X_1X_2$ (4.6) $t_{1/2\text{verm.}\ amin.}(h) = 26,152 + 0.048X_1 + 0.001X_1^2 - 9.62X_2 + 1.75X_2^2 - 0.079X_1X_2$ (4.7) onde D_C representa a constante de degradação térmica (h⁻¹); $t_{1/2}$ o tempo de meia vida (h); X_1 a variável temperatura (°C) e X_2 a variável pH.

A equação 4.6 apresentou explicação de aproximadamente 96% dos resultados. Os efeitos individuais das variáveis temperatura e pH sobre as respostas D_C e $t_{1/2}$ do pigmento vermelho aminado podem ser verificados através dos diagramas de Pareto apresentados na Figura 4.74.

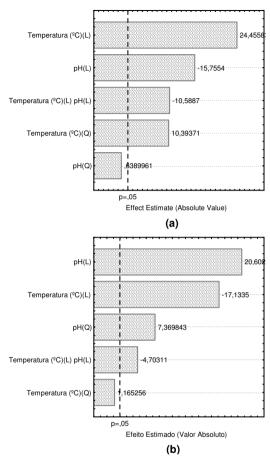


Figura 4.74: Diagrama de Pareto do efeito da temperatura e do pH sobre a estabilidade térmica do pigmento vermelho aminado. (a) D_C (b) $t_{1/2}$.

Pela análise da Figura 4.74a verifica-se que a variável temperatura e pH apresentaram efeito significativo na estabilidade térmica do pigmento. Todos os efeitos foram verificados sobre D_C , exceto o simples efeito do pH (p > 0.05).

4.5.1.3.3 Pigmento vermelho produzido no cultivo (controle)

As Figuras 4.75 e 4.76 apresentam a constante de degradação térmica e o tempo de meia vida do pigmento vermelho produzido no cultivo do *M. ruber*, utilizado como referência comparativa dos resultados, em função das variáveis temperatura e pH.

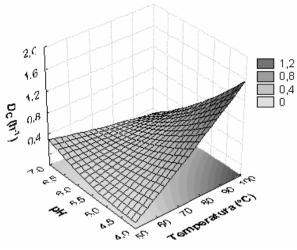


Figura 4.75: Superfície de resposta de D_C do pigmento vermelho aminado em função da temperatura e pH.

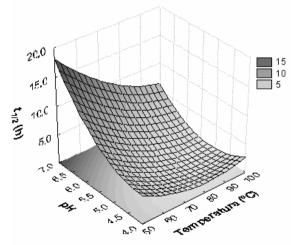


Figura 4.76: Superfície de resposta de $t_{1/2}$ do pigmento vermelho (controle) produzido no cultivo em função das variáveis temperatura e pH.

Pela análise das Figuras 4.75 e 4.76 verifica-se o comportamento diferenciado ao pigmento laranja, mas similar ao pig-

mento vermelho produzido a partir da aminação do pigmento laranja com glicina. Apesar do comportamento análogo, foi verificado que o pigmento produzido no cultivo apresentou maiores constantes de degradação térmica para a mesma condição estudada quando comparado ao pigmento vermelho aminado.

Isto pode ser reflexo da mistura de pigmentos vermelhos formados no decorrer do cultivo, pois o pigmento laranja poderá ligar-se a diferentes compostos (aminoácidos, peptídeos, proteínas) formando uma mistura de pigmentos vermelho com diferentes estabilidades térmicas, enquanto que o pigmento vermelho produzido a partir da aminação do pigmento laranja é produzido com certo grau de pureza, de maneira seletiva, podendo aumentar a estabilidade.

As equações empíricas 4.8 e 4.9, a partir da equação 3.51 (pg. 96), do comportamento das respostas D_C e $t_{1/2}$ em função das variáveis estudadas.

 $D_{C.\ ver\ cult...}(h^1)$ =-3,287+0,08 X_1 +0,00004 X_1^2 +0,25 X_2 +0,05 X_2^2 -0,013 X_1 X $_2$ (4.8) $t_{1/2\ ver.\ cult.}(h)$ =36,668-0,272 X_1 +0,003 X_1^2 -9,543 X_2 +1,56 X_2^2 -0,068 X_1 X $_2$ (4.9) onde D_C representa a constante de degradação térmica (h^{-1}); $t_{1/2}$ o tempo de meia vida (h); X_1 a variável temperatura (${}^{\circ}$ C) e X_2 a variável pH.

A equação 4.8 explica aproximadamente 86% dos resultados. Os efeitos individuais dos parâmetros temperatura e pH sobre as respostas D_C e $t_{1/2}$ do pigmento vermelho (controle) produzido no cultivo podem ser verificados através do diagrama de Pareto apresentado na Figura 4.77.

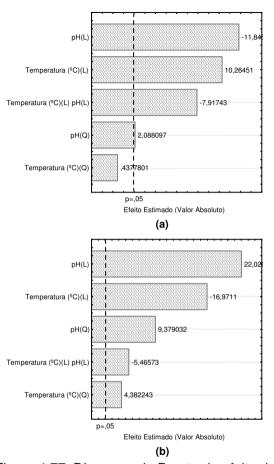


Figura 4.77: Diagrama de Pareto do efeito da temperatura e do pH sobre a estabilidade térmica do pigmento vermelho produzido no cultivo. (a) D_C (b) $t_{1/2}$.

Analisando a Figura 4.77a verifica-se que o pH apresentou maior efeito sobre a estabilidade térmica. Todos os efeitos foram significativos sobre D_C , exceto o efeito quadrático da temperatura.

Jung et al. (2005) avaliaram o efeito da temperatura, do pH e da luz solar no tempo de meia vida dos pigmentos vermelhos derivados da adição de vários aminoácidos na fermentação. Os pigmentos derivados apresentaram aumento no tempo de meia vida de 1,45 para 5,58 h, correspondendo ao aumento de 6 a 25

vezes o tempo de meia vida quando comparado ao pigmento controle. Verificaram que o pigmento apresentou comportamento cinético de primeira ordem e que a estabilidade do pigmento foi favorecida pelo efeito da concentração.

Carvalho et al. (2005) determinaram a estabilidade térmica do pigmento vermelho produzido pelo processo de fermentação em estado sólido. Os resultados experimentais não apresentaram comportamento cinético de primeira ordem. Maiores valores de pH (7,3 e 7,9) aumentaram a estabilidade térmica quando comparados aos pH de 4,1 e 4,3.

Todos os resultados apresentados nesta etapa são de extrema importância na produção destes compostos que devem ser inseridos em formulações e colorações de produtos alimentícios. O conhecimento de propriedades como a estabilidade térmica promove a obtenção de dados importantes sobre o comportamento de propriedades e condições onde estes pigmentos devem ser incorporados.

4.5.2 Atividade Antimicrobiana

Alguns autores (Wong e Bau, 1977; Wong e Koehler, 1981; Fink-Gremmels et al., 1991) demonstraram a ocorrência de atividade antibacteriana de pigmentos brutos produzidos por *Monascus*, enquanto outros como Ober e Kunz (1989) argumentam que algumas linhagens são incapazes de produzir compostos antibacterianos. Para Fink-Gremmels et al. (1991) a observação do efeito bacteriostático dos pigmentos monascus pode conduzir à utilização destes compostos pelo menos parcialmente como substituto para o nitrito em carnes.

A partir dos ensaios preliminares, foi verificado que o pigmento vermelho produzido pela aminação do pigmento laranja inibiu o crescimento de alguns microrganismos alvo. Sendo assim, foi dado prosseguimento aos experimentos com os pigmentos laranja, pigmento vermelho aminado e pigmento vermelho produzido no cultivo do *Monascus ruber* CCT 3802, além da determinação da atividade antimicrobiana da citrinina padrão (Sigma - Aldrich). Todos os experimentos foram realizados sobre os microrganismos alvos *Staphylococcus aureus* ATCC 25922, *Escherichia coli* ATCC 25923 e *Salmonella enteritidis* ATCC 13076.

A Figura 4.78 apresenta o ensaio controle, contendo o pigmento em diferentes concentrações, na ausência do micror-

ganismo alvo para auxiliar na determinação do halo de inibição através da observação da aparência da difusão do pigmento pelo ágar, enquanto que a Figura 4.79 apresenta a ilustração do experimento da atividade antimicrobiana do pigmento vermelho aminado em diferentes concentrações sobre *S. aureus*. Comparando as Figuras 4.78 e 4.79, percebe-se a presença do halo transparente de inibição nas concentrações superiores a 2,6 mg mL⁻¹ sobre *S. aureus*.

Figura 4.78: Difusão do pigmento em diferentes concentrações (mg mL⁻¹) pelo ágar na ausência do microrganismo alvo.

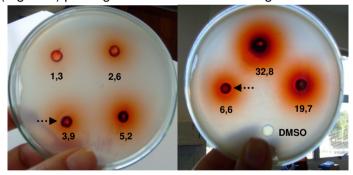


Figura 4.79: Atividade antimicrobiana do pigmento vermelho aminado em diferentes concentrações (mg mL⁻¹) sobre *Staphylococcus aureus* ATCC 25922. As setas indicam o halo de inibicão.

A Tabela 4.15 apresenta os resultados qualitativos da atividade antimicrobiana dos pigmentos e da citrinina padrão sobre os três microrganismos alvo.

Tilotilos aivo p	beios pig	inenios pro	duzidos.	
Microrganismo alvo	P.L.	P.V.A.	P.V.C.	C.
Staphylococcus aureus ATCC 25922 a	+	+	+	+
Escherichia coli ATCC 25923 ^b	-	+	+	-
Salmonella enteritidis ATCC 13076 ^b	-	-	-	-

Tabela 4.15: Resultados qualitativos da inibição dos microrganismos alvo pelos pigmentos produzidos.

P.L.: pigmento laranja; P.V.A.: pigmento vermelho produzido pela aminação do pigmento laranja; P.V.C.: pigmento vermelho produzido no cultivo; C.: citrinina; (a): Gram-positivo; (b) Gram-negativo; (+) houve inibição; (-) não houve inibição.

Verifica-se que todos os pigmentos e a citrinina apresentaram atividade antimicrobiana sobre *Staphylococcus aureus*, bactéria Gram-positiva, enquanto que a inibição no crescimento de *Salmonella enteritidis* não foi verificada. Já a *Escherichia coli* foi inibida somente pelo pigmento vermelho aminado e pelo pigmento vermelho produzido no cultivo do *Monascus ruber* CCT 3802. A atividade do pigmento vermelho pode estar relacionada à conformação (*trans* ou *cis*) da glicina ao reagir com o pigmento laranja tornando-o vermelho.

De fato, os resultados apresentados na Figura 4.18 (pg. 119) apresentam indicativo da presença de R-NH₂ em sua forma *trans* (estiramento a 1550 cm⁻¹, ver Figura AN.3, pg. 237), logo este comportamento do efeito sobre bactérias Gram-negativa e Gram-positiva pode estar relacionado ao fato da conformação *trans* da glicina ao reagir com o pigmento laranja.

Barret e Elmore (2004) destacaram que o antibiótico $Gramicidin S^{\otimes}$ possui efeito antimicrobiano sobre bactérias Grampositivas e Gram-negativas quando o oligopeptídeo que compõe o fármaco está na forma trans. A mudança na conformação do oligopeptídeo de trans para cis provoca grande alteração no efeito antimicrobiano, atuando somente sobre bactérias Gramnegativas.

Desphande (2002) apresenta uma relação crescente de compostos provenientes de proteínas que possuem efeito antimicrobiano: R-S⁻ > R-SH; R-NH₂ > R-NH₃⁺; R-COO⁻ > R-COOH; R-O⁻ > R-COOH; R-O+OH; R-O+OH = H-OH e finalmente R-S⁻ > R-NH₂ > R-COO⁻ = R-O⁻.

Logo, a inibição da *Escherichia coli* pode ser explicada pela presença de R-NH₂ no pigmento vermelho, aumentando o po-

der antimicrobiano quando comparado ao pigmento laranja. A aminação, por ser realizada diretamente com glicina, pode aumentar a conversão de pigmento laranja em pigmento vermelho enquanto que os pigmentos vermelhos produzidos nos cultivos podem ser formados a partir da glicina adicionada como fonte de nitrogênio bem como pelas proteínas que reagem com o pigmento laranja, que possivelmente resulta em compostos com menor poder antimicrobiano.

Wong e Bau (1977) não verificaram atividade antimicrobiana dos pigmentos sobre *Staphylococcus aureus*, *Escherichia coli* B e *Salmonella*. Neste trabalho, o crescimento de *Salmonella* também não foi inibido, embora tenha sido verificada inibição do crescimento de *Staphylococcus aureus* ATCC 25922 e *Escherichia coli* ATCC 25923.

A inibição do *Staphylococcus aureus* ATCC 25922 pelos três pigmentos e pela citrinina, indica que estes compostos são mais eficazes sobre microrganismos Gram-positivos. Estes resultados estão de acordo com o apresentado por Desphande (2002), pois ao aminar o pigmento laranja, ocorre o fornecimento de grupamentos NH₂, aumentando consideravelmente a capacidade inibidora do pigmento vermelho quando comparado ao pigmento laranja.

O mecanismo de ação do efeito antimicrobiano dos pigmentos ainda não está claro, mas estima-se que ocorre através de várias maneiras como a reação com enzimas de células vegetativas e esporos germinados, restrição à utilização do ferro (nutriente essencial para função enzimática e transporte de elétrons) pelas bactérias e interferência na permeabilidade da membrana celular, resultando em redução no transporte de nutrientes e metabólitos (Ray, 2005; Desphande, 2002).

Fink-Gremmels et al., (1991) fizeram um estudo mais aprofundado sobre o efeito bacteriostático do pigmento monascus, mostrando que bactérias Gram-positivas são inibidas mais fortemente do que Gram-negativas, não havendo inibição contra *Lactobacillus*.

Blanc (1995a) encontrou resultados similares ao de Fink-Gremmels et al., (1991) com exceção para *Escherichia coli*, que não apresentou inibição pelo pigmento. Para *Bacillus subtilis*, o diâmetro da zona de inibição foi diretamente proporcional ao logaritmo da quantidade de Monascidina A, e a quantidade inibitória mínima de 10 μg.

Wang et al. (2002) testaram a atividade antifúngica do sobrenadante do meio de cultura de cinco cepas de *Monascus* obtidos em cultivos com resíduos de camarões e caranguejos adicionados ao meio de cultivo, obtendo-se uma atividade antifúngica contra *Fusarium oxysporum*. Esta atividade manteve-se estável em pH variando de 6 a 8, mas desapareceu completamente após ter sido aquecido a 100 °C por 5 minutos.

Martínková (1995), em seus estudos sobre a toxicidade das frações purificadas de pigmentos produzidos por *Monascus*, verificou que houve efetivamente uma atividade antibiótica dos pigmentos sobre os microrganismos alvo, especialmente pelo laranja e em menor grau para o vermelho.

Através da comparação da inibição do pigmento vermelho aminado e do pigmento vermelho produzido no cultivo do *M. ruber* sobre os microrganismos *Staphylococcus aureus* ATCC 25922 *e Escherichia coli* ATCC 25923, percebe-se que a concentração inibitória mínima do pigmento vermelho aminado é menor quando comparada a do pigmento vermelho produzido no cultivo. Este fenômeno está relacionado à reação de aminação, por produzir o pigmento vermelho aminado com glicina e não com peptídeos e proteínas. A aminação com peptídeos e proteínas, além de reduzir a estabilidade térmica, pode levar à formação de um composto com menor poder antimicrobiano.

Estes resultados obtidos são satisfatórios e indicam que o pigmento possui atividade antimicrobiana sobre o crescimento de microrganismos. A partir disto, surgem novos caminhos que podem ser investigados, dentre eles: investigação da atividade antimicrobiana sobre outros microrganismos, tanto para células vegetativas quanto sobre suas formas esporuladas.

Um composto para ser utilizado como antimicrobiano não deve alterar as propriedades sensoriais de um produto alimentício, embora, a utilização do pigmento na coloração de alimentos possa provocar um duplo efeito (Ray, 2005). A utilização do pigmento vermelho frente à substituição aos sais de nitritos é uma perspectiva interessante, pois além de conferir cor poderá atuar como agente antimicrobiano sobre o crescimento de microrganismos indesejáveis.

Segundo Ray (2005), o poder antimicrobiano deverá respeitar alguns fenômenos de processo, dentre eles temperatura de armazenamento, pH, atividade de água, potencial redox e custo. O conhecimento das propriedades destes compostos fren-

te a estes fatores, torna-se de extrema importância para a utilização em alimentos.

É evidente que os pigmentos devem ser adicionados para conferir cor, auxiliar na correção da coloração em produtos que possam sofrer alterações sensoriais do atributo cor e não adicionados como objetivo principal de agente antimicrobiano. Claro que a atividade antimicrobiana contribui para a vida útil do produto alimentício, mas estes compostos são adicionados em pequenas quantidades e, se comparados a compostos antimicrobianos utilizados em alimentos, estes pigmentos possuem atividade antimicrobiana reduzida.

Para trabalhos futuros, estudos da concentração inibitória mínima, através da adição de pigmento em culturas líquidas contendo os microrganismos alvo, poderiam ser realizados pela técnica do plaqueamento com subseqüente contagem das unidades formadoras de colônias.

Este estudo apresentou alguns potenciais destes pigmentos produzidos naturalmente através de um processo fermentativo. Sendo assim, o fato de os pigmentos possuírem atividade antibacteriana é uma importante característica para sua aplicação como aditivo em alimentos, pois, desde que utilizado seguramente, este pigmento possui grandes potencialidades de uso.

5. CONCLUSÕES

Conclui-se que o pH exerce influência na produção de pigmentos pelo *Monascus ruber* CCT 3802. A maior velocidade de crescimento radial 0,0789 mm h⁻¹ foi obtida em pH 4, enquanto que menores velocidades foram obtidas em pH 2. Verificou-se que em valores de pH abaixo de 3,0 ocorre a produção dos pigmentos amarelos, na faixa de pH de 3 a 4 a produção dos pigmentos laranja com baixa solubilidade no meio de cultivo, e acima de 5,0 a produção dos pigmentos vermelhos.

Foi possível produzir o pigmento vermelho a partir do pigmento laranja pela adição de aminoácidos. A glicina apresentou maior formação do pigmento vermelho quando comparados aos demais aminoácidos. A citrinina não foi detectada nos pigmentos laranja e no pigmento vermelho produzido a partir da aminação do pigmento laranja com glicina. O ponto isoelétrico de cada aminoácido foi essencial para a transformação do pigmento laranja em pigmento vermelho. Em todos os casos, quando comparado à titulação controle, sem adição de aminoácido, houve a formação do pigmento vermelho, demonstrando que se pode produzir o pigmento vermelho através do pigmento laranja mediante reações com compostos aminados.

O sistema *vane* foi calibrado com sucesso, demonstrando que pode ser aplicado na determinação dos parâmetros reológicos de suspensões microbianas que contenham materiais particulados em suspensão. O caldo de fermentação apresentou comportamento pseudoplástico devido à presença da biomassa. A relação $k = 1.10^{-6} X^{3,8448} Pa s^n$ descreveu o comportamento do índice de consistência em função da concentração de biomassa com R^2 superior a 0,99. Os valores do índice de consistência estiveram na faixa de 0,375 a 11,002 Pa sⁿ e os valores do índice de comportamento estiveram na faixa de 0.157 a 0.274.

A solubilidade de oxigênio no meio de cultivo esteve 11,8% abaixo da concentração de saturação de O₂ na água destilada. Menores freqüências de agitação favoreceram a produção de pigmentos, enquanto que maiores freqüências

aumentaram a tensão de cisalhamento, danificando o microrganismo. Maiores níveis de oxigênio favoreceram a produção de pigmentos laranja, enquanto que em condições abaixo da concentração crítica de O₂ não houve a produção de pigmentos. A utilização dos dados do balanço de oxigênio auxiliou na estimativa da concentração de biomassa nos cultivos do *M. ruber*.

Os pigmentos apresentaram diferentes comportamentos frente às variações da temperatura e do pH. O pigmento laranja apresentou maior estabilidade na menor faixa de pH, enquanto que os pigmentos vermelhos aminado e produzido no cultivo do M. ruber apresentaram maiores estabilidades na maior faixa de pH estudada. A superfície de resposta e os modelos empíricos obtidos descreveram o comportamento das respostas D_C e $t_{1/2}$ dos pigmentos. Todos os pigmentos e a citrinina apresentaram inibição no crescimento de Staphylococcus aureus ATCC 25922, enquanto que somente os pigmentos vermelhos aminados e produzidos no cultivo do M. ruber apresentaram atividade antimicrobiana sobre o crescimento de $Escherichia\ coli\ ATCC\ 25923$. Todos os compostos testados não apresentaram inibição no crescimento de $Salmonella\ enteritidis\ ATCC\ 13076$. Parei aqui.

5.1 Sugestões para Trabalhos Futuros

- Estudar sistemas de imobilização de células para facilitar a separação das fases biomas-sa/pigmento/meio de cultivo;
- Estudar métodos de separação das frações de pigmentos;
- Estudar a produção de citrinina durante a produção do pigmento laranja nos cultivos e a presença da mesma nos processos de aminação;
- Determinar a estrutura dos pigmentos laranja e vermelho produzido pela aminação com aminoácidos:
- Determinar a concentração inibitória mínima dos pigmentos sobre o crescimento de microrganismos de interesse no processamento de alimentos:

6 REFERÊNCIAS BIBLIOGRÁFICAS

- AJINOMOTO. Acessada em 11 de novembro de 2008 sob o endereço:
 - http://www.ajinomoto.com.br/2008/index.php?area=pindustria&sub=alimentosebebidas&item=glicina.
- ALLEN. D. G.; ROBINSON, C. W. Measurements of rheological properties of filamentous fermentation broths. **Chemical Engineering Science.** v.45, p.37-48. 1990.
- ANVISA Agência Nacional de Vigilância Sanitária. Acessada em 10 de setembro de 2008 sob o endereço: http://www.anvisa.gov.br/legis/resol/44 77.htm
- BABITHA, S.; SOCCOL, C. R.; PANDEY, A. Solid-state fermentation for the production of monascus pigments from jackfruit seed. **Bioresource Technology.** v.98, p.1154-1560. 2007.
- BADINO JR., A. C. Reologia, consumo de potência e transferência de oxigênio em cultivos descontínuos de *Aspergillus awamori* NRRL 3112. Tese de Doutorado. USP, São Paulo, 1997.
- BADINO JR., A. C.; BARBOZA, M.; BELLUZO, R. P. E.; HOK-KA, C. O. Caracterização reológica e verificação da influência da massa celular na reologia de caldos de fermentação com *Penicillium chrysogenum* e *Cephalosporium acremonium*. **Revista Brasileira de Engenharia.** v. 11, n.1, p.43-60.1994.
- BADINO JR.; A. C.; FACCIOTTI, M. C. R.; SCHMIDELL, W. Estimation of the rheology of glucoamylase fermentation

- broth from the biomass concentration and shear conditions. **Biotechnology Techniques.** v.13, p.723-726. 1999.
- BAKOSOVA, A. M. D.; LACIAKOVA, A.; PIPOVA, M. Utilization of *Monascus purpureus* in the production of food animal origin. **Bull Yet Institute Pulawy.** v.45, p.111-116. 2001.
- BARRET, G. C.; ELMORE, D. T. **Amino Acids and Peptides.** Cambridge University Press. New York. 2004. 242p.
- BEROVIC, M.; KOLOINI, T.; OLSVIK, E. S.; KRISTIANSEN, B. Rheological and morphological properties of submerged citric acid fermentation broth in stirred-tank and buble column reactors. **Journal of Chemical Engineering.** v.53, p.B35-B40, 1993.
- BLANC P. J., LORET M. O., GOMA G. Production of citrinin by various species of *Monascus*. **Biotechnology Letters.** v.7, n.3, p.291-294. 1995b.
- BLANC, P. J.; J. P. LAUSSAC, J.; LE BARS, et al. Characterization of monascidin A from *Monascus* as citrinin. **Journal Food Microbiology.** v.27, n.2-3, p.201-213. 1995a.
- BLANC, P. J.; LAUSSAC, J. P.; LE BARS, J.; LE BARS, P.; LORET, M. O.; PARELLEUX, A.; PROME, D.; PROME, J. C.; SANTERRE, A. L.; GOMA, G. Characterization of monascidin A from *Monascus* as citrinin. **Food Microbiology.** v.27, p.201-213. 1999.
- BLANCH, H. W.; CLARK, D. S. **Biochemical Engineering.** Ed. Marcel Dekker, Inc. New York. p.702. 1997.

- BODNER G. M., PARDUE H. L. Chemistry An Experimental Science. 2nd ed. New York: John Wiley & Sons, 1995.
- BRIDLE, P.; TIMBERLAKE, C. F. Anthocyanins as natural food colours-selected aspects. **Food Chemistry.** v.58, n.1-2, p.103-109. 1997.
- BUENO, S. M.; GARCIA-CRUZ, C. H. The influence of fermentation time and the presence of salts in the rheology of the fermentation broth of polysaccharide-producing bacteria free of soil. **Journal of Food Engineering.** v.50, p.41-46. 2001.
- CALDERBANK, P. H.; MOO-YOUNG, M. B. The prediction of power consumption in the agitation of non-Newtonian fluids. **Transactions of the Institution of Chemical Engineers.** v. 37, p.26-33, 1959.
- CARELS, M.; SHEPHERD, D. Sexual reproductive cycle of *Monascus* in submerged shaken culture. **Journal of Bacteriology.** v.122, n.1. p.288-294. 1975.
- CARVALHO, J. C. Desenvolvimento de bioprocesso para a produção de pigmentos a partir de *Monascus* por fermentação em substrato sólido. Tese de Doutorado em Processos Biotecnológicos. Universidade Federal do Paraná UFPR. Curitiba, PR. 2004.
- CARVALHO, J. C.; OISHI, B. O.; PANDEY, A.; SOCCOL, C. R. Biopigments from *Monascus*: Strains selection, citrinin production and color stability. **Brazilian Archives of Biology and Technology.** v.48, n.6, p.885-894. 2005.

- CHEFTEL, J. C.; CHEFTEL, H.; BESANÇON, P. Introduccion a la bioquimica y tecnologia de los alimentos. Zaragoza: ACRIBIA, 1980- v 2.
- CHEN, M. H.; JOHNS, M. R. Effect of carbon source on ethanol and pigment production by *Monascus purpureus*. **Enzyme Microbiology and Technology.** v.16, p.584-590. 1994.
- CHO, Y. J.; HWANG, H. J.; KIM, S. W.; SONG, C. H.; YUN, J. W. Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by *Paecilomyces sinclairii* in a batch bioreactor. **Journal of Biotechnology.** v.95, p.13-23. 2002.
- DESPHANDE, S. S. **Handbook of food toxicology.** Ed. Marcel Dekker, INC, New York. 2002. 705p.
- DORAN, P. **Bioprocess Engineering Principles.** Publisher Elsevier Science & Technology Books. Austrália. 1995. 430p.
- DOWNHAM, A.; COLLINS P. Colouring our foods in the last and next millennium. **International Journal of Food Science and Technology.** v.35, p.5-22. 2000.
- DUFOSSÉ, L.; GALAUP, P.; YARON, A.; ARAD, S. M.; BLANC, P.; MURTHY, K. N. C.; RAVISHANKAR. Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? **Trends in Food Science & Technology.** v.16, n.9, p.389-406. 2005.
- DUTTA, R. **Fundamentals of Biochemical Engineering.** New York. Ed. Springer Berlin Heidelberg. 2008. 292p.

- FACHINI, E. R. Síntese de amiloglicosidase por Aspergillus awamori NRRL 3112 em cultura submersa: influência das condições de transferência de oxigênio e da velocidade de respiração. Dissertação de Mestrado Escola Politécnica, Universidade de São Paulo USP. São Paulo, SP. 1988.
- FINK-GREMMELS, J.; DRESEL, J.; LEISTNER, L. Use of monascus extracts as an alternative to nitrite in meat products. **Fleischwirtsch**, v.71:1184-1186, p.1184-1186. 1991.
- GABIATTI JR., C.; VENDRUSCOLO, F.; PIAIA, J. C. Z.; RODRIGUES, R. C.; DURRANT, L. R.; COSTA, J. A. V. Radial growth rate as a tool for the selection of filamentous fungi for use in bioremediations. **Brazilian Archives of Biology and Technology.** v.49, p.29-34. 2006.
- GOOVE, D. C.; RANDALL, W. Assay methods on antibiotic A laboratory manual. New York: Medical Encyclopedia, Antibiotic Monographs. 1995.
- GOUDAR, C. T.; STREVETT, K. A.; SHAH, S. N. Influence of microbial concentration on the rheology of non-Newtonian fermentation broths. **Applied Microbiology and Biotechnology.** v.51, p. 310-315. 1999.
- HAJJAJ, H.; BLANC, P. J.; GROUSSAC, E.; GOMA, G.; URIBELARREA; LOUBIERE, P. Improvement of red pigment/citrinin production ratio as a function of environmental conditions by *Monascus ruber*. **Biotechnology and Bioengineering**. v.64, n.4, p.497-501. 1999a.
- HAJJAJ, H.; BLANC, P. J.; GROUSSAC, E.; URIBELARREA, J. L.; GOMA, G.; LOUBIERE, P. Kinetics analysis of red pigment and citrinina production by *Monascus ruber* as a

- function of organic acid accumulation. **Enzyme Microbial Technology.** v.27, p.619-625. 2000a.
- HAJJAJ, H.; KLAEBE, A.; GOMA, G.; BLANC, P. J.; BAR-BIER, E.; FRANCOIS, J. Medium-chain fatty acids affect citrinin production in the filamentous fungus *Monascus ruber*. **Applied and Environmental Microbiology.** v.66, n.3, p.1120-1125. 2000b.
- HAJJAJ, H.; KLAÉBE, A.; LORET, M. O.; TZÉDAKIS, T.; GOMA, G.; BLANC, P. J. Production and identification of N-Glucosylrubropunctamine and N-Glucosylmonascorubramine from *Monascus ruber* and occurrence of electron donor-acceptor complexes in these red pigments. **Applied and Environmental Microbiology.** v.63, n.7, p. 2671-2678. 1997.
- HAJJAJ, H.; LAÉBÉ, A.; LORET, M. O.; GOMA, G.; BLANC, P. J.; FRANÇOIS, J. Biosynthetic patway of citrinin in the filamentous fungus *Monascus rubber* as revealed by ¹³C nuclear magnetic resonance. **Applies and Environmental Microbiology.** v.65, n.1, p.311-314. 1999b.
- HAMANO, P. S.; OROZCO, S. F. B.; KILIKIAN, B. V. Concentration determination of extracellular and intracellular red pigments produced by a *Monascus* sp. **Brazilian Archives of Biology and Technology.** v.48, Special issue, p.43-49. 2005.
- HAMDI, M.; BLANC, P. J.; GOMA, G. Effect of aeration conditions on the production of red pigments by *Monascus purpureus* growth on prickly pear juice. **Process Biochemistry.** v.31, n.6, p.543-547. 1996.

- HENZLER, H. J.; KAULING, J. Oxygen supply to cell cultures. **Bioprocess Engineering.** v.9, p.61-75. 1993.
- HISS, H. Cinética dos processos fermentativos. In: SCHMIDELL, W. Et al. Coords. Biotecnologia industrial: volume 2. São Paulo: Edgard Blücher. 2001. 541p.
- INPR The Institute for Natural Products Research. Acessado em 4 de dezembro de 2006 no endereço: http://www.jenshvass.com/pharmanex/pdf/inpr_monascus.p df.
- JACOBSON G., WASILESKI J. in Bioprocess production of flavor, fragrance, and color ingredients. 1st ed New York: John Wiley & Sons, 1994.
- JUNG, H.; KIM, C.; KIM, K.; SHIN, C. S. Color characteristics of monascus pigments derived by fermentation with various amino acids. **Journal of Agricultural and Food Chemistry.** v.51, p.1302-1306. 2003.
- JUNG, H.; KIM, C.; SHIN, C. S. Enhanced photostability of monascus pigments derived with various amino acids via fermentation. Journal of Agricultural and Food Chemistry. v.53, p.7108-7114. 2005.
- JUZLOVÁ, P.; REZANKA, T.; MARTÍNKOVÁ, L.; KREN, V. Long-chain fatty acids from *Monascus purpureus*. **Phyto-chemistry**. v.43, n.1, p.151-153. 1996.
- JUZLOVÁ, P.; REZANKA, T.; MARTÍNKOVÁ, L.; LOZINSKI, J.; MACHEK, F. Ethanol as substrate for pigment production by the fungus *Monascus purpureus*. **Enzyme Microbial Technology**. v.16, p.996-101. 1994.

- KÄPPELI, O.; FIECHTER, A. A convenient method for the determination of oxygen solubility in different solutions. **Biotechnology and Bioengineering.** v.23, p.1897-1901. 1981.
- KAVANAGH, K. Fungi: Biology and Applications. Ed. John Willey & Sons, Ltd. England. 293p.
- KILIKIAN, B. V.; OROZCO, S. F. B.; PEREIRA, D. G. Influência do pH na produção de pigmentos vermelhos e na morfologia de *Monascus purpureus* CCT 3802 em cultivo submerso. In: Simpósio Nacional de Fermentações, 4, 2003, Florianópolis. **Anais.** Florianópolis: UFSC, 2003.
- KIM, H. J.; KIM, J. H.; OH, H. J.; SHIN, C. S. Morphology control of *Monascus* cells and scale-up of pigment fermentation. **Process Biochemistry.** v.38, p.649-655. 2002.
- LEE, Y. K.; CHEN, D. C.; CHAUVATCHARIN, S.; SEKI, T.; YOSHIDA, T. Production of monascus pigments by a solid-liquid state culture method. **Journal of Fermentation and Bioengineering.** v.79, n.5, p.516-518. 1995.
- LEHNINGER, A. L; NELSON, D. L.; COX, M. M. Lehninger principles of biochemistry. 3rd. ed. New York: Worth Publishers, 2000. 1152p.
- LEIGH, J. R. Modeling and control of fermentation processes. London: P. Peregrinus. p.316. 1987.
- LEVENSPIEL, O. **Ingenieria de las Reacciones Químicas.** Editorial Reverté S. A., Barcelona, España. 2 edicion. 1986. 634p.

- LI, G. Q.; QIU, H. W.; ZHENG, Z. M.; CAI, Z. L.; YANG, S. Z. Effect of fluid rheological properties on mass transfer in a biorreactor. **Journal of Chemical Techniques in Biotechnology.** v.62, p.385-391. 1995.
- LIAN, X.; WANG, C.; GUO, K. Identification of new red pigments produced by *Monascus rubber*. **Dyes and Pigments.** v.73, p.121-125. 2007.
- LIN, C. F.; IIZUKA, H. Production of extracellular pigment by a mutant of *Monascus kaoliang* sp. nov. **Applied and Environmental Microbiology.** v.43, n.3, p.671-676. 1982.
- LOPEZ-MALO, A.; ALZAMORA, S. M.; ARGAIZ, A. Effect of vanillin concentration, pH and incubation temperature on *Aspergillus flavus*, *Aspergillus niger*, *Aspergillus ochraceus* and *Aspergillus parasiticus* growth. **Food Microbiology.** v.14, p.117-124. 1997.
- LUEDEKING, R.; PIRET, E. L. A kinetic study of the lactic acid fermentation. Batch process at controlled pH. **Journal of Biochemistry, Microbiology and Technology Engineering.** v.1, n.4, p.393-411. 1959.
- MEINICKE, R. M. Estudo da produção de pigmentos por Monascus ruber CCT 3802 utilizando glicerol como substrato em cultivo submerso. Dissertação de Mestrado em Engenharia de Alimentos. Centro Tecnológico. Universidade Federal de Santa Catarina – UFSC. Florianópolis, SC. 2008.
- MENDOZA, F.; DEJMEK, P.; AGUILERA, J. M. Calibrated color measurements of agricultural foods using image analysis. **Postharvest Biology and Technology**. v.41, p.285-295. 2006.

- MILLER, G. L. Use of dinitrosalicilic acid reagent for determination of reducing sugar. **Analytical Chemistry.** v.31, n.9, p.426-428. 1959.
- MONROY, M. R.; ESPINO, J. L. T.; APARICIO, A. J.; MORANTE, M. L.; VILLARREAL, M. L.; TAPIA, G. T. Evaluation of morphological properties of *Solanum chrysotrichum* cell cultures in a shake flask and fermentor and rheological properties of broths. **Food Technology and Biotechnology.** v.42, n.3, p.153-158. 2004.
- MORALES, A. A. La evaluación sensorial de los alimentos em la teoria y la práctica. Editorial Acribia, S. A. Zaragoza, Espanha. 1994.198p.
- MORITA, T.; ASSUMPÇÃO, R. M. V. Manual de soluções, reagentes e solventes: padronização preparação purificação. 2.ed. São Paulo: Edgard Blücher. 1972. 627p.
- MORITZ, D. E. Estudo da produção de pigmentos alimentares por *Monascus ruber* CCT3802 em cultivo submerso. Tese de Doutorado em Engenharia Química. Centro Tecnológico. Universidade Federal de Santa Catarina UFSC. Florianópolis, SC. 2005.
- NAGEL, F. J.; OOSTRA, J.; TRAMPER, J.; RINZEMA, A. Improved model system for solid-substrate fermentation: effects on pH, nutrients and buffer on fungal growth rate. **Process Biochemistry.** v.35, n.1, p.69-75. 1999.
- NCCLS National Committee for Laboratory Standards. Performance Standards for Antimicrobial Susceptibility testing. Twelth information supplements document M100-S12, v.22, n.1, 2002.

- OBER, P.; KUNZ, B. Wirkung von Stoffwechselprodukten des *Monascus purpureus* auf Bakterien. **Fleischwirtschaft.** v.69, p.123-125. 1989.
- PANDEY, A.; SOCCOL, C. R.; LARROCHE, C. Current Developments in Solid-state Fermentation. New Delhi. Hardcover. 2008. 517p.
- PANDEY, A.; SOCCOL, C. R.; RODRIGUEZ-LEON, J. A.; NIGAM, P. Solid-State Fermentation in Biotechnology: fundamentals and applications. New Delhi: Asiatech, 2001. 221p.
- PASTRANA, L.; BLANC, P. J.; SANTERRE, L. A.; LORET, M. O.; GOMA, G. Production of red pigments by *Monascus ruber* in synthetic media with a strictly controlled nitrogen source. **Process Biochemistry.** v.30, n.4, p.333-341. 1995.
- PASTRANA, L.; GOMA, G. Estimation of bioprocess variables from *Monascus ruber* cultures by means of stoichiometric models. **Process Biochemistry.** v.30, n.7, p.607-613 1995
- PEPELJNJAK, S., M. SEGVIC e L. OZEGOVIC. Citrininotoxinogenicity of *Penicillium* spp. isolated from decaying apples. **Brazilian Journal of Microbiology.** v.33, n.2, p.1-8. 2002.
- PEREIRA, D. G.; KILIKIAN, B. V. Effect of yeast extract on growth kinetics of *Monascus purpureus*. **Applied Biochemistry and Biotechnology.** v.91-93, p. 311-316. 2000.

- PIRT, S. J. **Principles of microbe and cell cultivation**. 1 ed. Nova York, A Halted Press Book, John Willey & Sons, 1975.
- PITT J. I., HOCKING A. D. **Fungi and food spoilage.** 2nd ed. London: Chapman & Hall, 1997.
- POLLARD, D. J.; HUNT, G.; KIRSCHNER, T. K.; SALMON, P. M. Rheological characterization of a fungal fermentation for the production of pneumocandins. **Bioprocess Biosystems Engineering.** v.24, p. 373-383. 2002.
- PORCEL, E. M. R.; LÓPEZ, J. L. C.; PÉREZ, J. A. S.; SEVILLA, J. M. F.; CHISTI, Y. Effects of pellet morphology on broth rheology in fermentations of *Aspergillus terreus*. **Biochemical Engineering Journal.** v.26, p.139-144. 2005.
- QUEIROZ, M. C. R.; FACCIOTTI, M. C. R.; SCHMIDELL, W. Rheological changes of *Aspergillus awamori* broth during amyloglucosidase production. **Biotechnology Letters.** v.19, n.2, p.167-170. 1997.
- RAIMBAULT, M. General and microbiological aspects of solid substrate fermentation. **Electronic Journal of Biotechnology.** v.1, n.3, p.1-6. 1998.
- RAO, M. A. **Rheology of fluid and semisolid foods:** principles and applications. Gaithersburg: Aspen, 1999. 433p.
- RASHEVA, T.; HALLET, J. N.; KUJUMDZIEVA, A. Taxonomic investigation of *Monascus purpureus* 94-25 strain. **Journal of Culture Collections.** v.2, p.51-59. 1998.

- RAY, B. **Fundamental food microbiology.** Third Edition. Ed. CRC Press, Washington, USA, 2005. 608p.
- REUSS, M. Oxygen Transfer and Mixing: Scale-Up Implications. In: REHM, H. J.; REED, G.; STEPHANOPOULOS, G. **Biotechnology**. 2nd. Ed. Weinheim: VCH, 1991. 816p.
- REUSS, M.; DEBUS, D.; ZOLL, G. Rheological properties of fermentation fluids. **Journal of Chemical Engineering.** v.183, p.233-236.1982.
- REZZOUG, S. A.; CAPART, R. Assessment of wood liquefaction in acidified ethylene glycol using experimental design methodology. **Energy Conversion & Management.** v.44, p.781-792. 2003.
- ROSSI, M. Tecnologia para produção de inoculantes de fungos ectomicorrízicos utilizando cultivo submerso em biorreator Airlift. Tese de Doutorado em Engenharia Química. Universidade Federal de Santa Catarina UFSC. Florianópolis, SC. 2006.
- RUSHTON, J. H.; COSTICH, E. W.; EVERETT, H. J. Power characteristics of mixing impellers Part 1. **Chemical Engineering Progress.** v.48, n.8, p.395-404. 1950.
- SCHMIDELL, W.; FACHINI, E. R.; FACCIOTTI, M. C. R., KILIKIAN, B. V. Rheological behavior studies on *Aspergillus sp.* Submerged cultures. **Revista de Microbiologia.** v. 25, n.2, p.126-128. 1994.
- SCHMIDELL, W; Transferência de oxigênio em biorreatores. In: SCHMIDELL, W.; BORZANI, W; LIMA, U. A;

- AQUARONE, E. Biotecnologia industrial: volume 2. São Paulo: Edgard Blücher, 2001. 541p.
- SILVEIRA, M. M.; MOLINA, M. A. B. Indirect estimation of *Bacillus thuringiensis* var. *israelensis* biomass concentration using oxygen balance data. **Brazilian Journal of Chemical Engineering.** v.22, n.4, p.495-500. 2005.
- St. MARTIN, E. J.; KUREK, P. R.; SCHUMACHER, E. F. Eater-soluble red pigments from monascorubrin and rubro-punctatin as food colorants. US PAT. 5,013,565. 1991.
- SUH, J. H.; SHIN, C. S. Physiological analysis on novel coculture of *Monascus* sp. J101 with *Saccharomyces cerevesiae*. **FEMS Microbiology Letters.** v.190, p.241-245. 2000.
- TSENG, Y. H.; YANG, J. H.; CHANG, H. L.; LEE, Y. L.; MAU, J. L. Antioxidant properties of methanolic extracts from monascal adlay. **Food Chemistry.** v.97, n.3, p.375-381. 2006.
- TSENG, Y. Y.; CHEN, M. T.; LIN, C. F. Growth, pigment production and protease activity of *Monascus purpureus* as affected by salt, sodium nitrate, polyphosphate and various sugars. **Journal of Applied Microbiology.** v.88, p.31-37. 2000.
- VALADEZ-BLANCO, R.; VIRDI, A. I. S.; BALKE, S. T.; DIO-SADY, L. L. In-line colour monitoring during food extrusion: Sensitivity and correlation with product colour. **Food Research International.** v.40, n.9, p.1129-1139. 2007.
- WANG, R.; WEBB, C. Effect of cell concentration on the rheology of glucoamylase fermentation broth. In: I ChemE Research Event. Institution of Chemical Engineers, Rugby, UK, p. 968-970. 1995.

- WANG, S.; YEN, Y.; TSIAO, W.; CHANG, W.; WANG, C. Production of antimicrobial compounds by *Monascus purpureus* CCRC31499 using shrimp and crab shell powder as a carbon source. **Enzyme and Microbial Technology.** v.31, p.337–344, 2002.
- WANG, Y. Z.; JU, X. L.; ZHOU, G. Y. The variability of citrinin production in *Monascus* types cultures. **Food Microbiology.** v.22, p.145-148. 2000.
- WANG, Y. Z.; JU, X. L.; ZHOU, Y. G. The variability of citrinin production in *Monascus* type cultures. **Food Microbiology.** v.22, p.145-148. 2005.
- WARREN, S. J.; KESHAVARZ-MOORE, E.; SHAMLOU, P. A.; LILLY, M. D.; THOMAS, C. R.; DIXON, K. Rheologies and morphologies of three actinomycetes in submerged culture. **Journal of Biotechnology and Bioengineering.** v.45, p.80-85. 1995.
- WINKLER, L. W. Die Bestimmung des im Wasser gelösten Sauerstoffes. Berichte der Deutschen Chemischen Gesellschaft. v.21, p.2843-2855. 1888.
- WONG, H. C.; BAU, Y. S. Pigmentation and antibacterial activity of fast neutron-and X-Ray-induced strains of *Monascus purpureus* Went. **Plant Physiology**. v.60, p.578–581, 1977.
- WONG, H. C.; KOEHLER, P. Production and isolation of an antibiotic from *Monascus purpureus* and its relationship to pigment production. **Journal of Food Science.** v.46, p.589-592, 1981.

- XU, B. J.; JIA, X. Q.; GU, L. J.; SUNG, C. K. Review on the qualitative and quantitative analysis of the mycoitoxin citrinin. **Food Control.** v.17, n.4, p.271-285. 2006.
- YANG, J. H.; TSENG, Y. H.; LEE, Y. L.; MAU, J. L. Antioxidants properties of methanolic extracts from monascal rice. LWT – Food Science and Technology. v.39, n.7, p.740-747, 2006.
- YONGSMITH B., TABLOKA W., YONGMANITCHAI W., BA-VAVODA R. Culture conditions for yellow pigment formation by *Monascus* sp. KB 10 grown on cassava medium. **World Journal of Microbiology and Biotechnology.** v.9, p.85-90. 1993.
- YONGSMITH, B. Fermentative microbiology of vitamins and pigments. Ed. Kasetsart University Press, Bangkok. 1999.
- YONGSMITH, B., KITPRECHAVANICH, V.; CHITRADON, L. Color mutants of *Monascus* sp. KB9 and their comparative glucoamylases on rice solid culture. **Journal of Molecular Catalysis B: Enzymatic.** v.10, p.263-272.1997.
- ZABRISKIE, D. W.; HUMPHREY, D. W. Real-time estimation of aerobic batch fermentation biomass concentration by component balancing. **AlChe Journal.** v.24, p.138-146. 1978.
- ZAR, J. **Biostatistical analysis**. 2ª Ed. Englewood Cliffs: Prentice Hall. 1984.

APÊNDICE A

Tabela A.1: Dados que geraram as Figuras 4.1 e 4.2.

Placa1 Placa1 1					-	pH 2					
Placat 1						p	Tempo (h	1)			
Placa 2		Raia	0	24	48	72			144	168	192
Placa 2	Placa1							9.5			
Placa 2											
Placa 3	DI O						8.3				
Placa 3	Placa 2										
Placa 3											
Placa 4	Placa 3										
Placa 4											
Placa5 1											
Placa S	Placa 4										
Placa5											
	Placa5										
Dm mm Raio (mm) Dp (mm) Dq (ma) Dq (ma) (ma) (ma) (ma) (ma) (ma) (ma) (ma)		2	1.0	3.1	4.2					12.0	
		3									
Picar Pica											
Placa1	Raio (mm)					2.78			5.42		
Placa1	DP (IIIII)		0.00	0.41	0.30		0.40	0.40	0.07	0.33	0.59
Placa1						рп 2,3	Tampa /h	,)			
Placa1		Raia	n	24	48	72			144	168	192
Placa 2	Placa1										
Placa 2											
Placa 3		3	1.0	3.0	5.5	7.6	10.0	12.5	14.4	16.5	19.0
Placa 3	Placa 2										
Placa 3											
Placa 4	Placa 3										
Placa 4	i idea o										
Placaf 1											
Placa 1	Placa 4		1.0			8.0		12.0		16.0	
Placa5											
Dm (mm)	Disease										
Dm (mm) raio (mm) Dm (Piacas										
Dn (mm)											
Piaca Piac	Dm (mm)			2.79	4.95	7.27		11.72			
Placa1 Placa Placa	raio (mm)										
Placa1	Dp (mm)		0.00	0.40	0.69		0.66	0.86	0.74	0.73	0.61
Paica Table Paica Paic						рн 3,0	T	,			
Placa1		D-:-		0.4	40	70			111	100	100
Placa 2	Discot										
Placa 2	Flacai										
Placa 2							11.5			19.5	22.5
Placa 3	Placa 2										
Placa 3		1	1.0 1.0	3.7 3.5	6.4 6.0	9.0 9.2	11.0 12.1	14.5 15.0	17.0 16.5	20.0 19.5	21.0 21.0
Placa 4 1 1 0 3.8 6.5 9.5 11.8 14.0 17.0 19.5 21.5 Placa 4 1 1 0 3.7 6.3 9.5 11.8 14.0 17.5 19.0 22.0 Placa 4 1 1 0 3.7 6.3 9.5 11.8 14.0 17.5 19.0 22.0 Day (mm) 3.8 6.5 9.4 12.0 14.5 17.0 19.5 21.5 Day (mm) 0.50 1.79 3.11 4.67 5.89 7.21 8.48 9.64 10.82 Day (mm) 0.00 0.15 0.30 0.22 0.32 0.47 0.33 0.34 0.52 Day (mm) 0.00 0.15 0.30 0.22 0.32 0.47 0.33 0.34 0.52 Day (mm) 0.00 0.15 0.30 0.22 0.32 0.47 0.33 0.34 0.52 Day (mm) 0.00 0.15 0.30 0.22 0.32 0.47 0.33 0.34 0.52 Day (mm) 0.00 0.15 0.30 0.52 0.32 0.47 0.33 0.34 0.52 Day (mm) 0.00 0.15 0.30 0.52 0.32 0.47 0.33 0.34 0.52 Placa 1 1 1.0 3.5 7.0 13.5 16.5 19.2 22.0 25.5 28.0 Placa 2 1 1.0 3.0 6.5 13.2 16.8 18.5 22.0 24.5 30.0 Placa 3 1 1.0 3.0 7.0 11.9 14.5 17.0 20.0 22.0 25.0 Placa 3 1 1.0 3.5 7.0 14.0 15.0 19.5 24.0 28.0 29.0 Placa 3 1 1.0 3.5 7.0 14.0 15.0 19.5 24.0 28.0 29.0 Placa 4 1 1.0 3.5 7.0 11.5 15.5 19.0 23.0 26.0 29.0 Placa 4 1 1.0 3.5 7.0 11.5 15.5 19.0 23.0 26.0 29.0 Placa 4 1 1.0 3.5 7.0 11.5 15.5 19.0 23.0 28.5 31.0 Placa 4 1 1.0 3.5 7.0 11.5 15.5 19.0 23.0 28.5 31.0 Placa 4 1 1.0 3.5 7.0 12.0 15.0 17.5 19.0 22.0 26.0 26.0 Placa 4 1 1.0 3.5 7.0 12.0 15.0 17.5 19.0 22.0 26.0 Placa 4 1 1.0 3.5 7.0 12.0 15.0 17.5 19.0 22.0 26.0 Placa 5 1 1.0 3.5 7.0 12.0 15.0 17.5 19.0 22.0 26.0 Placa 6 1 1.0 3.5 7.0 12.0 15.0 17.5 19.0 22.0 26.0 Placa 6 1 1.0 3.5 7.0 12.0 15.0 17.5 19.0 22.0 26.0 Placa 7 1 1 1 1 1 1 1 1 1		1 2	1.0 1.0 1.0	3.7 3.5 3.5	6.4 6.0 6.0	9.0 9.2 9.0	11.0 12.1 12.0	14.5 15.0 15.0	17.0 16.5 16.5	20.0 19.5 19.0	21.0 21.0 21.5
Placa 4	DI 0	1 2 3	1.0 1.0 1.0 1.0	3.7 3.5 3.5 3.3	6.4 6.0 6.0 5.5	9.0 9.2 9.0 9.5	11.0 12.1 12.0 12.0	14.5 15.0 15.0 14.5	17.0 16.5 16.5 17.0	20.0 19.5 19.0 19.0	21.0 21.0 21.5 22.0
Placa 4	Placa 3	1 2 3 1	1.0 1.0 1.0 1.0	3.7 3.5 3.5 3.3 3.5	6.4 6.0 6.0 5.5 6.2	9.0 9.2 9.0 9.5 9.5	11.0 12.1 12.0 12.0 11.5	14.5 15.0 15.0 14.5 13.5	17.0 16.5 16.5 17.0 17.0	20.0 19.5 19.0 19.0 19.5	21.0 21.0 21.5 22.0 22.3
Dm (mm)	Placa 3	1 2 3 1 2	1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.5 3.3 3.5 3.8	6.4 6.0 6.0 5.5 6.2 6.5	9.0 9.2 9.0 9.5 9.5 9.5	11.0 12.1 12.0 12.0 11.5 11.8	14.5 15.0 15.0 14.5 13.5 14.0	17.0 16.5 16.5 17.0 17.0 17.0	20.0 19.5 19.0 19.0 19.5 19.5	21.0 21.0 21.5 22.0 22.3 21.5
Dm (mm)		1 2 3 1 2 3 1	1.0 1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.5 3.3 3.5 3.8 3.7	6.4 6.0 6.0 5.5 6.2 6.5 6.3 6.3	9.0 9.2 9.0 9.5 9.5 9.5	11.0 12.1 12.0 12.0 11.5 11.8 12.0	14.5 15.0 15.0 14.5 13.5 14.0 14.5	17.0 16.5 16.5 17.0 17.0 17.0 16.5	20.0 19.5 19.0 19.0 19.5 19.5	21.0 21.0 21.5 22.0 22.3 21.5 20.9
raio (mm) Dp (mm) 0.50 1.79 3.11 4.67 5.89 7.21 8.48 9.64 10.82 Dp (mm) 0.00 0.179 3.11 4.67 5.89 7.21 8.48 9.64 10.82 pH 3,5 Tempo (h) Tempo (h) Tempo (h) Placa1 1 1.0 3.5 7.0 13.5 16.5 19.2 22.0 25.5 28.0 2 1.0 3.0 6.5 12.0 16.8 19.5 23.0 26.0 29.0 Placa 2 1 1.0 3.0 6.5 12.0 16.8 19.5 23.0 26.0 29.0 Placa 3 1 1.0 3.0 5.0 12.3 14.0 16.5 19.0 22.0 25.0 Placa 3 1 1.0 3.0 7.5 12.0 15.5 17.5 19.5 22.2 26.0 Placa 3		1 2 3 1 2 3 1 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.5 3.3 3.5 3.8 3.7 3.7 3.5	6.4 6.0 6.0 5.5 6.2 6.5 6.3 6.3 6.5	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.5	11.0 12.1 12.0 12.0 11.5 11.8 12.0 11.8 12.0	14.5 15.0 15.0 14.5 13.5 14.0 14.5 14.0	17.0 16.5 16.5 17.0 17.0 17.0 16.5 17.5	20.0 19.5 19.0 19.0 19.5 19.5 18.9 19.0 19.5	21.0 21.0 21.5 22.0 22.3 21.5 20.9 22.0 21.5
Description	Placa 4	1 2 3 1 2 3 1 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.5 3.3 3.5 3.8 3.7 3.7 3.5 3.8	6.4 6.0 6.0 5.5 6.2 6.5 6.3 6.3 6.5 6.5	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.5 9.5	11.0 12.1 12.0 12.0 11.5 11.8 12.0 11.8 12.0 11.8	14.5 15.0 15.0 14.5 13.5 14.0 14.5 14.0 14.5 15.0	17.0 16.5 16.5 17.0 17.0 17.0 16.5 17.5 17.5	20.0 19.5 19.0 19.0 19.5 19.5 18.9 19.0 19.5	21.0 21.0 21.5 22.0 22.3 21.5 20.9 22.0 21.5 21.5
Placa 1 1 1.0 3.5 7.0 11.0 15.0 17.5 19.0 22.0 25.0 26.0 29.0 2 1.0 3.0 7.0 11.0 15.5 17.5 19.5 22.5 26.0 26.0 29.0 26.0 29.0 27.0 17.5 19.0 29.0 22.0 25.5 26.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29	Placa 4 Dm (mm)	1 2 3 1 2 3 1 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.5 3.3 3.5 3.8 3.7 3.7 3.5 3.8 3.5	6.4 6.0 6.0 5.5 6.2 6.5 6.3 6.3 6.5 6.5	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.4 9.5 9.34	11.0 12.1 12.0 12.0 11.5 11.8 12.0 11.8 12.0 11.8	14.5 15.0 15.0 14.5 13.5 14.0 14.5 14.0 14.5 15.0	17.0 16.5 16.5 17.0 17.0 17.0 16.5 17.5 17.0 17.5	20.0 19.5 19.0 19.0 19.5 19.5 19.0 19.5 19.0	21.0 21.0 21.5 22.0 22.3 21.5 20.9 22.0 21.5 21.5 21.5
Placa 1 1 1.0 3.5 7.0 11.9 14.0 15.0 22.0 25.0 26.0 29.0 2 1.0 3.0 7.0 11.5 15.5 19.0 22.0 26.0 29.0 21.0 3.0 7.0 11.5 15.5 19.0 22.0 26.0 29.0 26.0 26.0 29.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26	Placa 4 Dm (mm) raio (mm)	1 2 3 1 2 3 1 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.5 3.3 3.5 3.8 3.7 3.7 3.5 3.8 3.5 3.8	6.4 6.0 6.0 5.5 6.2 6.5 6.3 6.3 6.5 6.5 6.5	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.5 9.4 9.5	11.0 12.1 12.0 12.0 11.5 11.8 12.0 11.8 12.0 11.8 12.0 11.8	14.5 15.0 15.0 14.5 13.5 14.0 14.5 14.0 14.5 15.0 14.42 7.21	17.0 16.5 16.5 17.0 17.0 17.0 16.5 17.5 17.5 17.6 17.5	20.0 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.0 19.5 19.0	21.0 21.5 22.0 22.3 21.5 20.9 22.0 21.5 21.5 21.5 21.64 10.82
Placa1 0 24 48 72 96 120 144 168 192 Placa1 1 1.0 3.5 7.0 13.5 16.5 19.2 22.0 25.5 28.0 2 1.0 3.0 6.5 12.0 16.8 19.5 23.0 26.0 29.0 2 1 1.0 3.0 5.0 12.3 16.8 18.5 22.0 24.5 30.0 2 1.0 3.0 7.0 11.9 14.5 17.0 20.0 22.0 25.0 3 1.0 3.0 7.0 11.9 14.5 17.0 20.0 22.0 26.0 Placa 3 1 1.0 3.5 7.0 14.0 15.0 20.0 22.0 26.0 30.0 2 1.0 3.0 7.0 11.0 15.0 20.0 22.0 26.0 30.0 3 1.0 3.0 7.0 11.0	Placa 4 Dm (mm) raio (mm)	1 2 3 1 2 3 1 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.5 3.3 3.5 3.8 3.7 3.7 3.5 3.8 3.5 3.8	6.4 6.0 6.0 5.5 6.2 6.5 6.3 6.3 6.5 6.5 6.5	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.4 9.5 9.34 4.67 0.22	11.0 12.1 12.0 12.0 11.5 11.8 12.0 11.8 12.0 11.8 12.0 11.8	14.5 15.0 15.0 14.5 13.5 14.0 14.5 14.0 14.5 15.0 14.42 7.21	17.0 16.5 16.5 17.0 17.0 17.0 16.5 17.5 17.5 17.6 17.5	20.0 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.0 19.5 19.0	21.0 21.5 22.0 22.3 21.5 20.9 22.0 21.5 21.5 21.5 21.64 10.82
Placa1 1 1.0 3.5 7.0 13.5 16.5 19.2 22.0 25.5 28.0 2 1.0 3.0 6.5 12.0 16.8 19.5 23.0 26.0 29.0 21.0 10.0 3.0 6.5 13.2 16.8 18.5 22.0 24.5 30.0 21.0 3.0 5.0 13.2 16.8 18.5 22.0 24.5 30.0 21.0 10.0 3.0 5.0 12.3 14.0 16.5 19.0 22.0 25.0 25.0 10.0 3.0 7.0 11.9 14.5 17.0 20.0 22.0 26.0 21.0 3.0 7.5 12.0 15.5 17.5 19.5 22.5 26.0 21.0 3.0 7.0 11.9 14.5 17.0 20.0 22.0 26.0 30.0 21.0 21.0 3.0 7.0 14.0 15.0 20.0 22.0 26.0 30.0 21.0 26.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21	Placa 4 Dm (mm) raio (mm)	1 2 3 1 2 3 1 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.5 3.3 3.5 3.8 3.7 3.7 3.5 3.8 3.5 3.8	6.4 6.0 6.0 5.5 6.2 6.5 6.3 6.3 6.5 6.5 6.5	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.4 9.5 9.34 4.67 0.22	11.0 12.1 12.0 12.0 11.5 11.8 12.0 11.8 12.0 11.8 12.0 11.8	14.5 15.0 15.0 14.5 13.5 14.0 14.5 15.0 14.2 7.21 0.47	17.0 16.5 16.5 17.0 17.0 17.0 16.5 17.5 17.5 17.6 17.5	20.0 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.0 19.5 19.0	21.0 21.5 22.0 22.3 21.5 20.9 22.0 21.5 21.5 21.64 10.82
Placa 2	Placa 4 Dm (mm) raio (mm)	1 2 3 1 2 3 1 2 3 1 2 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.50 0.00	3.7 3.5 3.5 3.3 3.5 3.8 3.7 3.7 3.5 3.8 3.5 3.8 1.79 0.15	6.4 6.0 6.0 5.5 6.2 6.5 6.3 6.5 6.5 6.5 6.2	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.4 9.5 9.34 4.67 0.22 pH 3,5	11.0 12.1 12.0 12.0 11.5 11.8 12.0 11.8 12.0 11.8 5.89 0.32	14.5 15.0 15.0 14.5 13.5 14.0 14.5 14.0 14.5 15.0 14.42 7.21 0.47	17.0 16.5 16.5 17.0 17.0 17.0 17.5 17.5 17.5 18.96 8.48 0.33	20.0 19.5 19.0 19.0 19.5 19.5 19.0 19.5 19.0 19.28 9.64 0.34	21.0 21.0 21.5 22.0 22.3 21.5 20.9 22.0 21.5 21.5 21.5 21.64 10.82 0.52
Placa 2 1 1.0 3.0 6.5 13.2 16.8 18.5 22.0 24.5 30.0 25.0 25.0 1.0 3.0 5.0 12.3 14.0 16.5 19.0 22.0 25.0 25.0 12.3 14.0 16.5 19.0 22.0 25.0 12.3 14.0 16.5 19.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12	Placa 4 Dm (mm) raio (mm) Dp (mm)	1 2 3 1 2 3 1 2 3 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.5 3.3 3.5 3.8 3.7 3.7 3.5 3.8 3.58 1.79 0.15	6.4 6.0 6.0 5.5 6.2 6.5 6.3 6.5 6.5 6.5 6.23 3.11 0.30	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.5 9.4 9.5 9.34 4.67 0.22 pH 3,5	11.0 12.1 12.0 12.0 11.5 11.8 12.0 11.8 12.0 11.8 12.0 11.8 11.78 5.89 0.32	14.5 15.0 15.0 14.5 13.5 14.0 14.5 14.0 14.5 15.0 14.42 7.21 0.47	17.0 16.5 16.5 17.0 17.0 17.0 16.5 17.5 17.5 17.5 16.96 8.48 0.33	20.0 19.5 19.0 19.0 19.5 19.5 18.9 19.0 19.5 19.0 19.28 9.64 0.34	21.0 21.0 21.5 22.0 22.3 21.5 20.9 22.0 21.5 21.5 21.64 10.82 0.52
2 1.0 3.0 7.0 11.9 14.5 17.0 20.0 22.0 26.0 2 1.0 3.0 7.5 12.0 15.5 17.5 19.5 22.5 26.0 2 1.0 3.5 7.0 14.0 15.0 20.0 22.0 26.0 30.0 2 1.0 3.0 7.0 11.0 15.0 19.5 24.0 28.0 29.0 3 1.0 3.0 7.0 11.5 15.5 19.0 23.0 28.5 31.0 2 1.0 3.5 7.0 12.0 15.0 17.0 20.0 26.0 26.0 2 2 2 2 2 2 2 2 2	Placa 4 Dm (mm) raio (mm) Dp (mm)	1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 1 2 2 1 2 2 2 3 3 1 2 2 2 3 3 1 2 2 2 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.5 3.3 3.5 3.7 3.7 3.7 3.5 3.8 3.58 1.79 0.15	6.4 6.0 6.0 5.5 6.2 6.5 6.3 6.5 6.5 6.2 3.11 0.30	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.5 9.4 4.67 0.22 pH 3,5	11.0 12.1 12.0 12.0 11.5 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.8 12.0 11.8 12.0 11.5 12.0 11.5 12.0 12.0 13.0 14.0 14.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	14.5 15.0 15.0 14.5 13.5 14.0 14.5 14.0 14.5 14.0 14.5 10.47	17.0 16.5 16.5 17.0 17.0 16.5 17.0 16.5 17.5 17.5 16.96 8.48 0.33	20.0 19.5 19.0 19.0 19.5 19.5 19.0 19.5 19.0 19.0 19.28 9.64 0.34	21.0 21.0 21.5 22.0 22.3 21.5 20.9 22.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 22.0 29.0
Placa 3 1.0 3.0 7.5 12.0 15.5 17.5 19.5 22.5 26.0 30.0 2 10.0 3.0 7.0 11.0 15.0 19.5 22.0 28.0 30.0 2 10.0 3.0 7.0 11.0 15.0 19.5 24.0 28.0 29.0 3 1.0 3.0 7.0 11.5 15.5 19.5 23.0 28.5 31.0 Placa 4 1 1.0 3.5 7.0 12.0 15.0 17.0 20.0 26.0 26.0 26.0 2 1.0 3.5 7.0 12.0 15.0 17.5 19.0 22.0 22.0 26.0	Placa 4 Dm (mm) raio (mm) Dp (mm)	1 2 3 1 2 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.3 3.5 3.8 3.7 3.7 3.7 3.8 3.8 4.79 0.15	6.4 6.0 5.5 6.2 6.5 6.3 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.4 9.5 9.4 9.5 9.4 7.2 PH 3.5	11.0 12.1 12.0 12.0 11.5 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.5 12.0 11.5 12.0 11.5 12.0 11.5 12.0 11.5 12.0 11.5 12.0 11.5 12.0 11.5 12.0 11.5 12.0 11.5 12.0 11.5 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	14.5 15.0 14.5 13.5 14.0 14.5 14.0 14.5 15.0 14.42 7.21 0.47	17.0 16.5 16.5 17.0 17.0 17.0 16.5 17.5 17.5 16.96 8.48 0.33	20.0 19.5 19.0 19.0 19.5 18.9 19.0 19.5 19.0 19.5 19.0 19.28 9.64 0.34	21.0 21.5 22.0 22.3 21.5 20.9 22.0 21.5 21.5 21.5 21.64 10.82 0.52
Placa 3 1 1.0 3.5 7.0 14.0 15.0 20.0 22.0 26.0 30.0 30.0 7.0 11.0 15.0 19.5 24.0 28.0 29.0 3 1.0 3.0 7.0 11.5 15.5 19.0 23.0 28.5 31.0 Placa 4 1 1.0 3.5 7.0 12.0 15.0 17.0 20.0 26.0 26.0 2 1.0 3.5 7.0 12.0 15.0 17.5 19.0 22.0 26.0 26.0	Placa 4 Dm (mm) raio (mm) Dp (mm)	1 2 3 1 2 2 3 1 2 2 3 3 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 1 2 2 3 3 1 1 1 1	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.3 3.5 3.8 3.7 3.7 3.7 3.5 3.8 3.5 3.8 4.79 0.15	6.4 6.0 5.5 6.2 6.5 6.3 6.5 6.5 6.5 6.2 3.11 0.30 48 7.0 6.5 6.5 6.5	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.4 9.5 9.34 9.2 PH 3,5 72 13.5 12.0 13.2 12.3	11.0 12.1 12.0 12.0 11.5 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 16.8 16.8 16.8 16.8 16.8	14.5 15.0 14.5 13.5 14.0 14.5 14.0 14.5 14.0 14.5 15.0 14.45 15.0 14.45 15.0 19.2 19.5 19.5 18.5 18.5	17.0 16.5 17.0 17.0 17.0 16.5 17.5 17.0 17.5 17.0 17.5 16.96 8.48 0.33	20.0 19.5 19.0 19.0 19.5 18.9 19.5 19.5 19.0 19.28 9.64 0.34	21.0 21.0 21.5 22.0 22.3 21.5 20.9 22.0 21.5 21.5 21.5 21.64 10.82 0.52
Placa 4 1 1.0 3.0 7.0 11.0 15.0 19.5 24.0 28.0 29.0 3 1.0 3.0 7.0 11.5 15.5 19.0 23.0 28.5 31.0 10.0 3.5 7.0 12.0 15.0 17.0 20.0 26.0 26.0 2 1.0 3.5 7.0 12.0 15.0 17.5 19.0 22.0 26.0	Placa 4 Dm (mm) raio (mm) Dp (mm)	1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.3 3.5 3.8 3.7 3.7 3.7 3.5 3.8 3.7 3.5 3.8 3.5 3.8 3.5 3.8 3.5 3.8 3.5 3.5 3.0 3.5 3.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	6.4 6.0 5.5 6.2 6.5 6.3 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.4 9.5 9.4 9.5 9.4 9.5 13.5 12.0 13.2 12.1 13.2 11.9	11.0 12.1 12.0 12.0 11.5 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.5 11.0 11.0 11.0 11.0 11.0 11.0 11	14.5 15.0 15.0 14.5 13.5 14.0 14.5 14.0 14.5 15.0 14.42 7.21 0.47	17.0 16.5 16.5 17.0 17.0 17.0 16.5 17.5 17.5 17.5 17.5 2.0 14.4 22.0 23.0 22.0 19.0 20.0	20.0 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.0 19.5 19.0 26.4 0.34	21.0 21.5 22.0 22.3 21.5 20.9 22.0 21.5 21.5 21.64 10.82 0.52
3 1.0 3.0 7.0 11.5 15.5 19.0 23.0 28.5 31.0 Placa 4 1 1.0 3.5 7.0 12.0 15.0 17.0 20.0 26.0 26.0 2 1.0 3.5 7.0 12.0 15.0 17.5 19.0 22.0 26.0	Placa 4 Dm (mm) raio (mm) Dp (mm) Placa 1 Placa 2	1 2 3 1 1 2 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 3 1 3 3 3 3 1 3 3 3 3 1 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.3 3.5 3.8 3.7 3.7 3.5 3.8 3.7 3.5 3.8 3.7 3.5 3.8 3.7 3.5 3.8 3.7 3.5 3.8 3.7 3.5 3.8 3.7 3.5 3.8 3.7 3.5 3.8 3.7 3.5 3.8 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	6.4 6.0 5.5 6.5 6.5 6.3 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.4 9.5 9.4 4.67 0.22 pH 3,5 72 13.5 12.0 13.2 12.3 11.9 12.0	11.0 12.1 12.0 12.0 11.5 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 11.78 5.89 0.32 Tempo (t 96 16.5 16.8 16.8 14.0 14.5 15.5	14.5 15.0 15.0 14.5 13.5 14.0 14.5 14.0 14.5 15.0 14.42 7.21 0.47	17.0 16.5 16.5 17.0 17.0 17.0 16.5 17.5 17.5 17.5 17.5 16.96 8.48 0.33	20.0 19.5 19.0 19.0 19.5 19.5 19.5 19.0 19.5 19.0 19.0 19.28 9.64 0.34	21.0 21.5 22.0 22.3 21.5 20.9 22.0 21.5 21.5 21.64 10.82 0.52
2 1.0 3.5 7.0 12.0 15.0 17.5 19.0 22.0 26.0	Placa 4 Dm (mm) raio (mm) Dp (mm) Placa 1 Placa 2	1 2 3 1 2 3 3 1 2 3 3 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 1 2 3 3 1 1 1 2 3 3 1 1 1 2 3 3 1 1 1 2 3 3 1 1 1 1	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.5 3.5 3.8 3.7 3.5 3.8 3.7 3.5 3.8 1.79 0.15	6.4 6.0 5.5 6.2 6.5 6.3 6.5 6.5 6.23 3.11 0.30 48 7.0 6.5 6.5 6.5 7.0 7.5	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.5 9.4 4.67 0.22 pH 3,5 72 13.5 12.0 13.2 12.0 14.0	11.0 12.1 12.0 12.0 11.5 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 12.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	14.5 15.0 15.0 14.5 13.5 14.0 14.5 14.0 14.5 15.0 14.2 7.21 19.2 19.2 19.2 19.5 18.5 16.5 17.0 17.5 17.0	17.0 16.5 16.5 17.0 17.0 17.0 16.5 17.5 17.5 17.5 17.5 16.96 8.48 22.0 23.0 22.0 19.0 20.0 19.5 22.0	20.0 19.5 19.0 19.5 19.5 19.5 18.9 19.0 19.5 19.0 19.0 19.28 9.64 0.34	21.0 21.0 21.5 22.0 22.3 21.5 20.9 22.0 21.5 21.5 21.64 10.82 25.0 25.0 26.0 26.0 26.0 26.0 26.0
	Placa 4 Dm (mm) raio (mm) Dp (mm) Placa 1 Placa 2	1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.50 0.00 1.0 1.0 1.0 1.0 1.0 0.50 0.00	3.7 3.5 3.3 3.5 3.8 3.7 3.7 3.5 3.8 3.7 3.5 3.8 3.7 3.5 3.8 3.7 3.5 3.8 3.7 3.5 3.8 3.7 3.5 3.8 3.7 3.7 3.5 3.5 3.5 3.5 3.5 3.5 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	6.4 6.0 5.5 6.2 6.5 6.3 6.5 6.5 6.23 3.11 0.30 48 7.0 6.5 6.5 6.5 7.0 7.5	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	11.0 12.1 12.0 12.0 11.5 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 11.5 11.8 12.0 12.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	14.5 15.0 15.0 14.5 13.5 14.0 14.5 15.0 14.42 7.21 0.47	17.0 16.5 16.5 17.0 17.0 17.0 16.5 17.5 17.5 17.5 17.5 16.96 8.48 0.33	20.0 19.5 19.0 19.5 19.5 19.5 19.5 19.0 19.5 19.0 19.28 9.64 0.34 25.5 26.0 24.5 22.0 22.0 22.5 26.0 28.0	21.0 21.0 21.5 22.0 22.3 21.5 20.9 22.0 21.5 21.5 21.64 10.82 28.0 29.0 26.0 26.0 30.0 26.0 30.0 29.0
3 1.0 4.0 6.6 12.0 15.2 17.5 21.0 23.0 27.0	Placa 4 Dm (mm) raio (mm) Dp (mm) Placa 1 Placa 2 Placa 3	1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 3 3 1 3 3 3 1 3 3 3 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.3 3.5 3.8 3.7 3.7 3.7 3.8 3.8 3.7 3.8 3.7 3.8 3.8 3.7 3.8 3.8 3.7 3.8 3.8 3.7 3.8 3.8 3.7 3.8 3.8 3.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	6.4 6.0 5.5 6.2 6.5 6.3 6.5 6.5 6.5 6.5 6.5 7.0 7.5 7.0 7.0 7.0	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.4 9.5 9.4 9.5 9.34 4.67 0.22 pH 3.5 12.0 13.2 12.0 14.0 11.0 11.0 11.0 11.0	11.0 12.1 12.0 12.0 11.5 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 11.8 12.0 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.5 16.8 16.5 16.8 16.5 15.5 15.0 15.5 15.0	14.5 15.0 15.0 14.5 13.5 14.0 14.5 14.0 14.5 15.0 14.42 7.21 0.47 120 19.2 19.5 18.5 16.5 17.0 17.5 20.0 19.5 19.5 19.0 19.5	17.0 16.5 16.5 17.0 17.0 17.0 17.5 16.5 17.5 17.5 17.5 16.96 8.48 0.33 144 22.0 23.0 22.0 19.0 20.0 19.5 22.0 24.0 23.0	20.0 19.5 19.0 19.0 19.5 19.5 19.5 19.5 19.0 19.5 19.0 19.28 9.64 0.34 168 25.5 26.0 22.0 22.0 22.0 22.5 28.0 28.5 28.0 28.5 26.0	21.0 21.0 21.5 22.3 22.3 21.5 20.9 22.0 21.5 21.5 21.6 410.82 0.52 192 28.0 29.0 30.0 26.0 26.0 30.0 26.0 30.0 29.0 31.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29
	Placa 4 Dm (mm) raio (mm) Dp (mm) Placa 1 Placa 2 Placa 3	1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 2 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.7 3.5 3.5 3.5 3.5 3.7 3.7 3.7 3.7 3.5 3.8 3.5 4.79 0.15 24 3.0 3.0 3.0 3.0 3.0 3.0 3.5 3.5 3.8 3.5 3.8 3.5 3.8 3.5 3.8 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	6.4 6.0 6.0 5.5 6.2 6.3 6.3 6.5 6.5 6.5 6.5 7.0 7.0 7.0 7.0 7.0	9.0 9.2 9.0 9.5 9.5 9.5 9.5 9.4 9.5 9.34 4.67 0.22 PH 3,5 72 13.5 12.0 14.0 11.0 11.5 12.0	11.0 12.1 12.0 12.0 12.0 11.5 11.8 12.0 12.0 11.8 12.0 12.0 12.0 16.5 16.8 16.8 14.0 14.5 15.5 15.0 15.5 15.0	14.5 15.0 15.0 14.5 13.5 14.0 14.5 14.0 14.5 15.0 14.42 7.21 0.47	17.0 16.5 16.5 17.0 17.0 17.0 17.5 17.5 17.5 17.5 16.96 8.48 0.33 144 22.0 23.0 22.0 19.0 20.0 19.5 22.0 24.0 23.0 24.0 23.0 20.0 19.0 20.0 19.0 20.0 19.0 20.0 19.0 20.0 19.0 20.0 19.0 20.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	20.0 19.5 19.0 19.0 19.5 19.5 18.9 19.0 19.5 19.0 19.28 9.64 0.34	21.0 21.0 21.5 22.0 22.3 21.5 20.9 22.0 21.5 21.5 21.64 10.82 0.52 192 28.0 29.0 30.0 25.0 26.0 26.0 29.0 31.0 26.0

Placa5	1	1.0	4.0	7.0	12.0	16.0	18.5	21.0	23.5	23.5
	2	1.0	4.0	7.2	12.0	16.0	18.0	21.0	25.0	24.0
	3	1.0	4.0	7.4	12.9	15.5	18.0	21.0	24.5	24.0
Dm (mm)		1.00	3.40	6.85	12.29	15.49	18.21	21.17	24.60	26.97
raio (mm)		0.50	1.70	3.42	6.14	7.74	9.11	10.58	12.30	13.48
Dp (mm)		0.00	0.43	0.58	0.78	0.81	1.06	1.51	2.11	2.41
					pH 4,0					
						Tempo (h	1)			
	Raia	0	24	48	72	96	120	144	168	192
Placa1	1	1.0	3.4	6.0	13.0	16.2	20.0	24.0	28.0	31.0
	2	1.0	3.8	6.5	12.8	16.0	20.0	23.0	26.5	32.0
	3	1.0	3.5	7.0	13.0	16.4	20.0	23.0	29.0	31.0
Placa 2	1	1.0	4.0	7.0	13.2	16.8	20.0	23.0	26.0	30.0
	2	1.0	3.3	7.0	13.0	16.9	20.0	23.0	26.5	30.0
Placa 3	3 1	1.0 1.0	4.0 3.2	7.0 8.0	13.6 13.8	16.4 17.0	19.7 21.0	23.0 23.0	26.5 26.0	30.5 30.0
i iaca o	2	1.0	4.5	8.0	13.8	17.5	20.0	24.0	27.0	31.0
	3	1.0	4.5	8.0	14.2	17.5	19.5	24.0	28.0	31.5
Placa 4	1	1.0	4.1	7.2	13.1	17.5	19.0	24.0	25.0	29.0
	2	1.0	4.5	7.9	14.1	16.4	20.0	24.5	27.0	30.0
	3	1.0	4.5	8.0	13.5	17.0	21.0	23.5	28.5	32.5
Placa5	1	1.0	4.3	7.5	13.2	16.5	20.0	24.0	27.0	30.0
	2	1.0	4.4	7.8	13.5	17.2	20.5	24.5	26.0	31.0
	3	1.0	4.4	7.8	13.8	17.6	20.5	24.5	28.0	31.5
Dm (mm)		1.00	4.02	7.38	13.44	16.86	20.08	23.67	27.00	30.73
raio (mm)		0.50	2.01	3.69	6.72	8.43	10.04	11.83	13.50	15.37
Dp (mm)		0.00	0.47	0.62	0.44 pH 4,5	0.53	0.52	0.62	1.10	0.92
					рн 4,5	- "				
				- 40	70	Tempo (h			100	100
Placa1	Raia 1	1.0	24 3.5	48 6.5	72 11.0	96 13.5	120 16.0	144 19.0	168 20.0	192 24.0
FidCal	2	1.0	4.0	6.5	11.0	13.5	16.0	19.0 20.5	20.0 25.0	26.0
	3	1.0	4.0	7.0	12.0	14.5	17.5	21.0	25.0	26.0
Placa 2	1	1.0	4.0	7.5	11.3	15.5	17.5	21.0	25.0	24.0
i idod 2	2	1.0	3.5	8.0	12.2	15.0	17.5	22.0	30.0	24.0
	3	1.0	3.5	8.0	13.0	16.0	17.0	23.0	23.0	26.0
Placa 3	1	1.0	4.0	7.0	10.4	13.2	15.0	18.5	21.5	24.0
	2	1.0	4.0	7.2	10.5	13.5	15.5	18.5	22.0	25.0
	3	1.0	3.5	7.3	10.5	13.0	15.5	18.5	20.5	26.0
Placa 4	1	1.0	4.0	7.5	9.4	12.0	14.0	17.0	17.0	24.0
	2	1.0	4.0	7.0	9.8	12.8	15.0	16.0	21.0	25.0
Disease	3 1	1.0	3.5	7.0	11.0	13.5	16.0	20.0	19.0	26.0
Placa5	2	1.0 1.0	3.5 3.8	8.0 8.0	11.6 10.6	15.0 15.0	17.0 16.5	21.0 19.0	23.5 22.0	25.0 26.0
	3	1.0	3.5	7.5	11.3	15.0	16.5	18.5	20.0	25.0
Dm (mm)		1.00	3.75	7.33	11.04	14.10	16.27	19.57	22.30	25.07
raio (mm)			1.88	3.67	5.52	7.05	8.13	9.78	11.15	12.53
Dn (mm)		0.50								
Dp (mm)		0.50 0.00	0.25	0.52	0.92	1.14	1.10	1.88	3.14	0.88
Dp (mm)		0.50 0.00	0.25	0.52	0.92 pH 5,0		1.10	1.88		0.88
Dp (mm)		0.00	0.25		pH 5,0	1.14 Tempo (h	1)		3.14	
	Raia	0.00	0.25 24	48	pH 5,0	1.14 Tempo (h	120	144	3.14 168	192
Placa1	1	0.00 0 1.0	24 3.0	48 7.0	72 11.0	7.14 Tempo (h 96 15.0	120 18.0	144 18.5	168 27.0	192 21.0
	1 2	0.00 0 1.0 1.0	24 3.0 3.5	48 7.0 6.5	72 11.0 10.5	7.14 Tempo (h 96 15.0 14.0	120 18.0 17.0	144 18.5 19.0	168 27.0 27.0	192 21.0 22.0
Placa1	1 2 3	0.00 0 1.0 1.0 1.0	24 3.0 3.5 3.0	48 7.0 6.5 6.5	72 11.0 10.5 11.0	7.14 Tempo (h 96 15.0 14.0 14.5	120 18.0 17.0 17.5	144 18.5 19.0 19.0	168 27.0 27.0 28.0	192 21.0 22.0 22.0
	1 2 3 1	0.00 0 1.0 1.0 1.0 1.0	24 3.0 3.5 3.0 3.2	48 7.0 6.5 6.5 6.5	72 11.0 10.5 11.0 10.0	7.14 Tempo (h 96 15.0 14.0 14.5 13.5	120 18.0 17.0 17.5 17.0	144 18.5 19.0 19.0 19.5	168 27.0 27.0 28.0 18.0	192 21.0 22.0 22.0 27.0
Placa1	1 2 3 1 2	0.00 0 1.0 1.0 1.0 1.0	24 3.0 3.5 3.0 3.2 3.6	48 7.0 6.5 6.5 6.5 6.5	72 11.0 10.5 11.0 10.0 11.5	7.14 Tempo (F 96 15.0 14.0 14.5 13.5 15.0	120 18.0 17.0 17.5 17.0 17.0	144 18.5 19.0 19.0 19.5 18.5	168 27.0 27.0 28.0 18.0 20.0	192 21.0 22.0 22.0 27.0 25.0
Placa1	1 2 3 1	0.00 1.0 1.0 1.0 1.0 1.0	24 3.0 3.5 3.0 3.2 3.6 3.7	48 7.0 6.5 6.5 6.5 6.5 6.0	72 11.0 10.5 11.0 10.0 11.5 10.0	7.14 Tempo (h 96 15.0 14.0 14.5 13.5 15.0 13.0	120 18.0 17.0 17.5 17.0 17.0 16.5	144 18.5 19.0 19.0 19.5 18.5	168 27.0 27.0 28.0 18.0 20.0 18.0	192 21.0 22.0 22.0 27.0 25.0 25.0
Placa1 Placa 2	1 2 3 1 2 3 1	0.00 1.0 1.0 1.0 1.0 1.0 1.0	24 3.0 3.5 3.0 3.2 3.6 3.7 4.0	48 7.0 6.5 6.5 6.5 6.5 6.0 7.0	72 11.0 10.5 11.0 10.0 11.5 10.0 9.5	7.14 Tempo (h 96 15.0 14.0 14.5 13.5 15.0 13.0 12.0	120 18.0 17.0 17.5 17.0 16.5 15.0	144 18.5 19.0 19.0 19.5 18.5	168 27.0 27.0 28.0 18.0 20.0	192 21.0 22.0 22.0 27.0 25.0
Placa1 Placa 2	1 2 3 1 2 3	0.00 1.0 1.0 1.0 1.0 1.0	24 3.0 3.5 3.0 3.2 3.6 3.7	48 7.0 6.5 6.5 6.5 6.5 6.0	72 11.0 10.5 11.0 10.0 11.5 10.0 9.5 9.0 9.5	7.14 Tempo (h 96 15.0 14.0 14.5 13.5 15.0 13.0 12.0 12.0	120 18.0 17.0 17.5 17.0 17.0 16.5 15.0 14.5	144 18.5 19.0 19.0 19.5 18.5 18.0	168 27.0 27.0 28.0 18.0 20.0 18.0 22.0 21.0	192 21.0 22.0 22.0 27.0 25.0 25.0 24.0 24.0
Placa1 Placa 2	1 2 3 1 2 3 1 2 3 1 2 3	0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	24 3.0 3.5 3.0 3.2 3.6 3.7 4.0 3.5 3.5 4.0	48 7.0 6.5 6.5 6.5 6.0 7.0 6.5 6.5 6.0	72 11.0 10.5 11.0 10.0 11.5 10.0 9.5 9.0 9.5 10.5	Tempo (h 96 15.0 14.0 14.5 13.5 15.0 12.0 12.0 14.0	120 18.0 17.0 17.5 17.0 16.5 15.0 14.5 15.5 16.5	144 18.5 19.0 19.0 19.5 18.5 18.0 18.5 19.0 20.0 21.0	168 27.0 27.0 28.0 18.0 20.0 18.0 22.0 21.0 21.0 19.0	192 21.0 22.0 22.0 27.0 25.0 25.0 24.0 24.0 24.0 25.0
Placa 2 Placa 3	1 2 3 1 2 3 1 2 3 1 2 3	0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0	24 3.0 3.5 3.0 3.2 3.6 3.7 4.0 3.5 3.5 4.0 3.5	48 7.0 6.5 6.5 6.5 6.0 7.0 6.5 6.0 6.5 6.0	72 11.0 10.5 11.0 10.0 11.5 10.0 9.5 9.0 9.5 10.5	Tempo (h 96 15.0 14.0 14.5 13.5 15.0 12.0 12.0 12.0 14.0	120 18.0 17.0 17.5 17.0 17.0 15.0 14.5 15.5 16.5 17.5	144 18.5 19.0 19.0 19.5 18.5 18.0 18.5 19.0 20.0 21.0	168 27.0 27.0 28.0 18.0 20.0 18.0 22.0 21.0 21.0 21.0 20.0	192 21.0 22.0 22.0 27.0 25.0 24.0 24.0 24.0 25.0 25.0
Placa 2 Placa 3 Placa 4	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1	24 3.0 3.5 3.0 3.2 3.6 3.7 4.0 3.5 3.5 4.0 3.5 4.0	48 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	72 11.0 10.5 11.0 10.0 11.5 10.0 9.5 9.0 9.5 10.5 11.0	Tempo (h 96 15.0 14.0 14.5 13.5 15.0 12.0 12.0 14.0 14.0 15.0	120 18.0 17.0 17.5 17.0 16.5 15.0 14.5 15.5 16.5 17.5	144 18.5 19.0 19.5 18.5 18.0 18.5 19.0 20.0 21.0 20.0 18.5	168 27.0 27.0 28.0 18.0 20.0 18.0 21.0 21.0 21.0 20.0 20.0	192 21.0 22.0 22.0 27.0 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0
Placa 1 Placa 2 Placa 3	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1	0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1	24 3.0 3.5 3.0 3.2 3.6 3.7 4.0 3.5 4.0 3.5 4.0 3.5	48 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	72 11.0 10.5 11.0 10.0 11.5 10.0 9.5 9.0 9.5 10.5 11.0 10.0	7.14 Tempo (h 96 15.0 14.0 14.5 13.5 15.0 12.0 12.0 14.0 14.0 15.0 14.0	120 18.0 17.0 17.5 17.0 17.5 15.0 14.5 15.5 16.5 17.5 17.5 17.0	144 18.5 19.0 19.0 19.5 18.5 18.0 18.5 19.0 20.0 21.0 20.0 18.5 19.0	168 27.0 27.0 28.0 18.0 20.0 18.0 22.0 21.0 21.0 20.0 20.0 20.0	192 21.0 22.0 22.0 27.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 25.0 24.0 24.0
Placa 2 Placa 3 Placa 4	1 2 3 2 3	0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0	24 3.0 3.5 3.0 3.2 3.6 3.7 4.0 3.5 4.0 3.5 4.0 3.7 3.2	48 7.0 6.5 6.5 6.5 6.5 6.0 7.0 6.5 6.5 6.5 6.5 6.5	PH 5,0 72 11.0 10.5 11.0 10.0 11.5 10.0 9.5 9.0 9.5 11.0 10.0 10.0 10.0	7.14 Tempo († 96 15.0 14.0 14.5 13.5 15.0 12.0 12.0 12.0 14.0 14.0 14.0 14.0	120 18.0 17.0 17.5 17.0 17.0 16.5 15.0 14.5 15.5 17.5 17.0 16.5	144 18.5 19.0 19.0 19.5 18.5 18.0 18.5 20.0 21.0 20.0 18.5 19.0	3.14 27.0 27.0 28.0 18.0 20.0 18.0 22.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0	192 21.0 22.0 22.0 27.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0
Placa 2 Placa 3 Placa 4 Placa5	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1	0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1	24 3.0 3.5 3.0 3.2 3.6 3.7 4.0 3.5 4.0 3.7 3.2 3.3 4.0 3.7 3.2 3.3	48 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	PH 5,0 72 11.0 10.5 11.0 10.0 9.5 11.0 9.5 10.0 9.5 11.0 10.0 10.0 10.0 9.5	1.14 Tempo (t) 96 15.0 14.0 14.5 13.5 15.0 12.0 12.0 12.0 14.0 14.0 14.0 14.0 14.0 13.5	120 18.0 17.0 17.5 17.0 16.5 15.5 15.5 16.5 17.5 17.0 15.0 16.0	144 18.5 19.0 19.0 19.5 18.5 18.0 18.5 19.0 20.0 21.0 21.0 18.5 19.0 19.0 19.5 19.0	168 27.0 27.0 28.0 18.0 20.0 21.0 21.0 21.0 20.0 20.0 20.0 20	192 21.0 22.0 22.0 27.0 25.0 25.0 24.0 24.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm)	1 2 3 2 3	0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0	24 3.0 3.5 3.0 3.2 3.6 3.7 4.0 3.5 4.0 3.5 4.0 3.7 3.5 4.0 3.7 3.5 4.0 3.5 3.5 4.0 3.5 3.5 4.0 3.5 3.5 4.0 3.5 3.5 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	48 7.0 6.5 6.5 6.5 6.5 6.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	72 11.0 10.5 11.0 10.5 11.0 10.0 11.5 10.0 9.5 9.0 9.5 10.5 11.0 10.0 10.0 10.0 10.0 10.0 10	7.14 Tempo († 96 15.0 14.5 14.5 13.5 15.0 12.0 12.0 12.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	120 18.0 17.0 17.5 17.0 16.5 15.5 15.5 16.5 17.5 17.5 17.0 16.0 16.0	144 18.5 19.0 19.0 19.5 18.5 18.5 19.0 20.0 21.0 21.0 21.0 21.0 21.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	168 27.0 27.0 28.0 18.0 20.0 21.0 21.0 21.0 21.0 20.0 20.0 20	192 21.0 22.0 22.0 25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0
Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio (mm)	1 2 3 2 3	0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0	24 3.0 3.5 3.0 3.2 3.6 3.7 4.0 3.5 4.0 3.7 3.2 3.3 4.0 3.7 3.2 3.3	48 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	72 11.0 10.5 11.0 10.0 11.5 10.0 9.5 9.5 10.0 11.0 10.0 10.0 10.0 10.0 10.0 10	7 Tempo (F 96 15.0 14.0 13.5 13.0 12.0 12.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 13.5 13.67 6.83	120 18.0 17.0 17.5 17.0 16.5 15.5 15.5 16.5 17.5 17.0 15.0 16.0	144 18.5 19.0 19.5 18.5 18.5 18.5 19.0 20.0 21.0 20.0 21.0 18.5 19.0 18.5 19.0 19.0 18.5	168 27.0 27.0 28.0 18.0 20.0 21.0 21.0 21.0 20.0 20.0 20.0 20	192 21.0 22.0 22.0 25.0 25.0 24.0 24.0 24.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm)	1 2 3 2 3	0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.25 24 3.0 3.5 3.0 3.2 3.6 3.7 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	48 7.0 6.5 6.5 6.5 6.5 6.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	72 11.0 10.5 11.0 10.5 11.0 10.0 11.5 10.0 9.5 9.0 9.5 10.5 11.0 10.0 10.0 10.0 10.0 10.0 10	7.14 Tempo († 96 15.0 14.5 14.5 13.5 15.0 12.0 12.0 12.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	120 18.0 17.0 17.5 17.0 16.5 15.5 15.5 16.5 17.0 16.0 16.0 16.0 16.58 8.29	144 18.5 19.0 19.0 19.5 18.5 18.5 19.0 20.0 21.0 21.0 21.0 21.0 21.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	168 27.0 27.0 28.0 18.0 20.0 21.0 21.0 19.0 20.0 20.0 20.0 20.0 20.0 21.75 10.88	192 21.0 22.0 22.0 25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0
Placa 2 Placa 3 Placa 4 Placa5 Dm (mm) raio (mm)	1 2 3 2 3	0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.25 24 3.0 3.5 3.0 3.2 3.6 3.7 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	48 7.0 6.5 6.5 6.5 6.5 6.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	72 11.0 10.5 11.0 10.0 11.5 10.0 9.5 9.5 10.0 11.0 10.0 10.0 10.0 10.0 10.0 10	1.14 Tempo († 96 15.0 14.0 14.5 13.5 15.0 12.0 12.0 12.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 15.0 13.5 13.67 6.83 1.05	120 18.0 17.0 17.0 17.0 17.0 16.5 15.0 14.5 15.5 16.5 17.5 17.0 16.0 16.0 16.0	144 18.5 19.0 19.5 18.5 18.5 18.5 19.0 20.0 21.0 20.0 21.0 18.5 19.0 18.5 19.0 19.0 18.5	168 27.0 27.0 28.0 18.0 20.0 21.0 21.0 19.0 20.0 20.0 20.0 20.0 20.0 21.75 10.88	192 21.0 22.0 22.0 25.0 25.0 25.0 24.0 24.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24
Placa 2 Placa 3 Placa 4 Placa5 Dm (mm) raio (mm)	1 2 3 2 3	0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.25 24 3.0 3.5 3.0 3.2 3.6 3.7 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	48 7.0 6.5 6.5 6.5 6.5 6.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	72 11.0 10.5 11.0 10.5 11.0 10.0 11.5 10.0 9.5 9.0 9.5 10.5 11.0 10.0 10.0 10.0 10.0 10.0 10	7 Tempo (F 96 15.0 14.0 13.5 13.0 12.0 12.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 13.5 13.67 6.83	120 18.0 17.0 17.0 17.0 17.0 16.5 15.0 14.5 15.5 16.5 17.5 17.0 16.0 16.0 16.0	144 18.5 19.0 19.5 18.5 18.5 18.5 19.0 20.0 21.0 20.0 21.0 18.5 19.0 18.5 19.0 19.0 18.5	168 27.0 27.0 28.0 18.0 20.0 21.0 21.0 19.0 20.0 20.0 20.0 20.0 20.0 21.75 10.88	192 21.0 22.0 22.0 25.0 25.0 25.0 24.0 24.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24
Placa 2 Placa 3 Placa 4 Placa5 Dm (mm) raio (mm)	1 2 3 1 2 3 1 2 2 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 3	0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1	24 3.0 3.5 3.0 3.2 3.6 3.7 4.0 3.5 4.0 4.0 3.5 4.0 4.0 4.0 4.0 4.0 5 4.0 5 5 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	48 7.0 6.5 6.5 6.5 6.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	72 11.0 10.5 11.0 10.5 11.0 10.0 10.0 9.5 9.0 9.5 11.0 10.0 10.0 10.0 9.5 10.5 11.0 10.0 10.0 9.5 10.5 10.5 10.0 10.0 10.0 10.0 10.0 10	Tempo (t 96 15.0 14.0 14.5 13.5 15.0 12.0 12.0 12.0 14.0	120 18.0 17.5 17.5 17.0 16.5 15.0 14.5 15.5 17.5 16.5 17.5 16.5 17.5 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0	144 18.5 19.0 19.0 19.5 18.5 18.0 21.0 21.0 21.0 21.0 21.0 20.0 18.5 19.0 19.0 19.0 19.0 19.5 19.0 19.5 19.0 19.5 19.0 19.5 19.0 19.5 19.0 19.5 19.0 19.5 19.0 19.5 19.0 19.5 19.0 19.5 19.0 19.5 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	168 27.0 27.0 28.0 18.0 20.0 20.0 21.0 21.0 21.0 20.0 20.0 20	192 21.0 22.0 22.0 27.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio (mm) Dp (mm)	1 2 3 1 1 2 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 3	0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	24 3.0 3.5 3.0 3.2 3.6 3.7 4.0 3.5 4.0 3.5 4.0 3.7 3.2 3.2 3.2 3.2 3.2 4.0 3.4 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	48 7.0 6.5 6.5 6.5 6.5 6.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	72 11.0 10.5 11.0 10.0 11.5 10.0 9.5 10.0 9.5 11.0 10.0 10.0 10.0 10.0 10.0 10.0 10	Tempo (t 96 15.0 14.0 14.0 13.5 15.0 14.0 14.0 14.0 15.0 14.0 14.0 15.0 16.67 16.68 1.05 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.68 16.67 16.67 16.68 16.67 1	120 18.0 17.5 17.5 17.0 16.5 15.0 14.5 15.5 17.5 17.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	144 18.5 19.0 19.0 19.5 18.5 18.0 18.5 19.0 20.0 21.0 20.0 18.5 19.0 19.0 19.0 19.0 18.5 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	168 27.0 27.0 28.0 18.0 18.0 22.0 21.0 21.0 21.0 20.0 20.0 20.0 20	192 21.0 22.0 22.0 27.0 25.0 25.0 24.0 24.0 25.0 24.0 24.0 24.0 24.0 24.0 12.00 1.46
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio (mm) Dp (mm)	1 2 3 1 1 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 3 3 3 1 1 3 3 3 1 1 3 3 3 1 1 3 3 3 1 1 3 3 3 3 1 3	0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	24 3.0 3.5 3.0 3.6 3.7 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	48 7.0 6.5 6.5 6.5 6.5 6.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	PH 5,0 72 11.0 10.5 11.0 10.0 11.5 10.0 9.5 9.0 9.5 10.5 11.0 10.0 10.0 9.5 10.5 11.0 10.0 10.0 9.5 72 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	Tempo (t 96 15.0 14.0 14.5 13.5 15.0 12.0 12.0 12.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 14.0 15.0 14.0 15.0 14.0 14.0 15.0 14.0 15.0 14.0 14.0 15.0 14.0 15.0 14.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	120 18.0 17.5 17.5 17.0 16.5 15.0 16.5 15.5 17.5 16.5 17.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	144 18.5 19.0 19.0 19.5 18.5 18.0 20.0 21.0 20.0 21.0 20.0 18.5 19.0 19.0 19.0 19.5 19.0 19.5 19.0 19.5 19.0 20.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 20	168 27.0 27.0 28.0 18.0 20.0 21.0 22.0 21.0 21.0 20.0 20.0 20	192 21.0 22.0 22.0 27.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (nm) raio (nm) Dp (mm)	1 2 3 1 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 1	0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	24 3.0 3.5 3.0 3.2 3.6 3.7 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 4.5	48 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	72 11.0 10.5 11.0 10.0 11.5 11.0 10.0 9.5 10.5 10.0 10.0 10.0 10.0 10.0 10.0 10	Tempo (t 96 15.0 14.0 14.5 13.5 15.0 12.0 12.0 12.0 14.0 15.0 14.0 15.0 14.0 14.0 15.0 16.83 1.05 Tempo (t 96 14.8 14.8 15.2 13.0 13.0 13.0 14.8 15.2 13.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	120 18.0 17.5 17.5 17.0 16.5 15.0 14.5 15.5 16.5 17.5 17.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	144 18.5 19.0 19.0 19.5 18.5 18.0 18.5 19.0 20.0 21.0 20.0 21.0 21.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 1	168 27.0 27.0 28.0 18.0 18.0 22.0 21.0 21.0 21.0 20.0 20.0 20.0 20	192 21.0 22.0 22.0 27.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 1.200 1.46
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio (mm) Dp (mm)	1 2 3 1 1 2 3 1 1 2 3 3 1 2 2 3 3 1	0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	24 3.0 3.5 3.0 3.6 3.7 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	48 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	PH 5,0 72 11.0 10.5 11.0 10.0 9.5 9.0 9.5 10.5 11.0 10.0 10.0 9.5 11.0 10.0 9.5 11.0 10.0 9.5 11.0 10.0 10.0 9.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	Tempo (t 96 15.0 14.5 13.5 15.0 12.0 12.0 12.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 14.0 14.0 15.0 14.0 14.0 15.0 14.0 15.0 14.0 14.0 15.0 14.0 14.0 15.0 14.0 14.0 15.0 14.0 14.0 14.0 15.0 14.0 14.0 14.0 14.0 15.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	120 18.0 17.5 17.0 17.5 17.0 16.5 15.5 16.5 17.0 15.0 16.0 1	144 18.5 19.0 19.0 19.5 18.5 18.0 20.0 21.0 20.0 21.0 18.5 19.0 18.5 19.0 18.5 19.0 18.5 20.0 18.5 20.0 22.0 22.0 22.0	3.14 168 27.0 27.0 28.0 18.0 20.0 21.0 21.0 21.0 20.0 20.0 20.0 20	192 21.0 22.0 22.0 27.0 25.0 25.0 24.0 24.0 24.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio (mm) Dp (mm) Placa 1 Placa 2	1 2 3 1 1 2 3 1 1 2 3 3 1 2 3 3 1 2 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 3	0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	24 3.0 3.5 3.2 3.6 3.7 4.0 3.5 3.5 4.0 3.5 4.0 3.7 3.2 3.5 4.0 4.0 4.5 4.0 4.5	48 7.0 6.5 6.5 6.5 6.5 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	72 11.0 10.5 11.0 10.0 11.5 11.0 10.0 9.5 9.0 9.5 11.0 10.0 10.0 9.5 10.5 11.0 10.0 10.0 10.0 10.0 10.0 10	Tempo (r 96 15.0 14.0 14.5 13.5 15.0 12.0 12.0 12.0 14.0 14.0 15.0 14.0 14.0 15.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	120 18.0 17.5 17.0 16.5 15.0 16.5 15.0 16.5 17.5 17.0 16.0 16.0 16.0 16.0 16.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	144 18.5 19.0 19.0 19.5 18.5 18.0 20.0 21.0 21.0 21.0 21.0 21.0 21.0 21	3.14 168 27.0 28.0 18.0 18.0 18.0 22.0 21.0 21.0 21.0 20.0 20.0 20.0 20	192 21.0 22.0 22.0 27.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio (mm) Dp (mm)	1 2 3 1 1 2 3 1 1 2 3 3 1 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 1 3 3 3 3 1 3	0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	24 3.5 3.5 3.6 3.7 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 4.0 4.0 4.0 4.0	48 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	PH 5,0 72 11.0 10.5 11.0 10.0 9.5 9.0 9.5 10.0 11.0 10.0 10.0 9.5 11.0 10.0 9.5 11.0 10.0 10.0 9.5 11.0 10.0 10.0 10.0 10.0 10.0 10.0 10	Tempo (t 96 15.0 14.5 13.5 15.0 12.0 12.0 12.0 14.0 15.0 14.0 15.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	120 18.0 17.5 17.5 17.0 16.5 15.5 16.5 17.5 16.5 17.5 16.5 17.5 16.0 17.0 18.0 18.0 17.0 18.0 18.0 17.0 18.0 18.0 17.0 18.0 1	144 18.5 19.0 19.0 19.5 18.5 18.0 18.5 19.0 20.0 21.0 20.0 18.5 19.0 19.0 18.5 19.0 22.0 22.0 23.0 22.0 22.0 22.5 22.0 22.0 21.5 22.0 22.0	168 27.0 27.0 28.0 18.0 20.0 20.0 21.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	192 21.0 22.0 22.0 27.0 25.0 25.0 24.0 24.0 25.0 25.0 24.0 24.0 25.0 24.0 24.0 25.0 24.0 24.0 25.0 25.0 24.0 25.0 25.0 26.5 26.5 26.5 26.5
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio (mm) Dp (mm)	Raia Raia 1 2 3 2 3	0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	24 3.0 3.5 3.0 3.6 3.7 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.7 2.2 3.2 3.5 4.0 4.5 4.0 4.5 4.0 4.5	48 7.0 6.5 6.5 6.5 6.5 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	72 11.0 10.5 11.0 10.5 11.0 10.0 11.5 10.0 9.5 9.0 9.5 10.5 11.0 10.0 10.0 9.5 10.5 11.0 10.0 10.0 10.0 10.0 10.0 10	Tempo (t 96 15.0 14.0 14.5 13.5 15.0 12.0 12.0 12.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	120 18.0 17.5 17.0 16.5 15.0 14.5 15.5 17.5 16.5 17.5 16.5 17.5 16.5 17.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	144 18.5 19.0 19.0 19.5 18.5 18.0 20.0 20.0 21.0 21.0 21.0 21.0 21.0 21	168 27.0 27.0 28.0 18.0 20.0 11.0 22.0 21.0 21.0 20.0 20.0 20	192 21.0 22.0 22.0 27.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio (mm) Dp (mm)	1 2 3 1 1 2 3 1 1 2 3 3 1 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 1 3 3 3 3 1 3	0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	24 3.5 3.5 3.6 3.7 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 4.0 4.0 4.0 4.0	48 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	PH 5,0 72 11.0 10.5 11.0 10.0 9.5 9.0 9.5 10.0 11.0 10.0 10.0 9.5 11.0 10.0 9.5 11.0 10.0 10.0 9.5 11.0 10.0 10.0 10.0 10.0 10.0 10.0 10	Tempo (t 96 15.0 14.5 13.5 15.0 12.0 12.0 12.0 14.0 15.0 14.0 15.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	120 18.0 17.5 17.5 17.0 16.5 15.5 16.5 17.5 16.5 17.5 16.5 17.5 16.0 17.0 18.0 18.0 17.0 18.0 18.0 17.0 18.0 18.0 17.0 18.0 1	144 18.5 19.0 19.0 19.5 18.5 18.0 18.5 19.0 20.0 21.0 20.0 18.5 19.0 19.0 18.5 19.0 22.0 22.0 23.0 22.0 22.0 22.5 22.0 22.0 21.5 22.0 22.0	168 27.0 27.0 28.0 18.0 20.0 20.0 21.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	192 21.0 22.0 22.0 27.0 25.0 25.0 24.0 24.0 25.0 25.0 24.0 24.0 25.0 24.0 24.0 25.0 24.0 24.0 25.0 25.0 24.0 25.0 25.0 26.5 26.5 26.5 26.5

	2	1.0	4.5	7.0	10.5	15.0	16.0	22.0	25.0	28.0
DI	3	1.0	4.5	7.5	11.0	15.5	16.0	21.0	26.0	28.0
Placa5	1 2	1.0 1.0	4.5 4.5	7.0 7.2	11.0 12.0	15.5 15.5	17.0 16.0	21.0 21.0	24.0 24.0	29.0 29.0
	3	1.0	4.0	7.3	11.2	16.0	16.5	21.0	23.2	29.0
Dm (mm)		1.00	4.20	6.93	10.69	14.57	16.90	21.80	24.75	27.10
raio (mm)		0.50	2.10	3.46	5.34	7.28	8.45	10.90	12.37	13.55
Dp (mm)		0.00	0.32	0.47	0.57	1.04	0.83	0.59	0.86	1.26
					pH 6,0	T	`			
	Raia	0	24	48	72	Tempo (h 96	120	144	168	192
Placa1	1	1.0	3.0	5.0	10.0	12.0	14.5	17.0	19.5	22.0
1 14041	2	1.0	3.5	5.0	10.0	11.5	14.5	18.0	21.0	19.0
	3	1.0	3.3	5.0	9.0	12.0	15.5	17.5	19.5	20.0
Placa 2	1 2	1.0 1.0	3.2 3.5	6.0 6.0	8.5 8.0	11.0 11.0	15.5 14.0	18.5 17.0	18.5 23.0	24.0 23.0
	3	1.0	2.8	6.0	8.0	11.2	15.2	16.5	22.0	23.0
Placa 3	1	1.0	2.5	6.0	9.5	12.0	14.5	17.0	20.0	24.0
	2	1.0	2.5	6.0	9.5	12.0	14.5	17.5	19.0	23.0
Placa 4	3 1	1.0 1.0	3.5 2.5	6.5 6.0	10.0 8.5	11.5 11.5	15.5 15.5	18.0 18.0	19.0 21.0	25.0 26.0
Flaca 4	2	1.0	3.5	5.0	8.5	11.5	15.5	18.5	21.0	25.0
	3	1.0	3.5	5.5	7.5	11.0	14.0	18.0	19.0	22.0
Placa5	1	1.0	2.5	5.5	8.7	11.0	14.5	15.5	20.0	25.0
	2	1.0	2.5 3.2	5.0	9.0	11.5	14.3	18.0	19.5	23.0
Dm (mm)		1.00	3.11	6.2 5.67	10.0 8.92	11.0 11.52	14.5 14.89	17.5 17.63	19.0 20.21	24.0 23.00
raio (mm)		0.50	1.55	2.83	4.46	5.76	7.45	8.81	10.10	11.50
Dp (mm)		0.00	0.44	0.53	0.83	0.41	0.58	0.80	1.28	1.90
					pH 6,5					
	D-:-		0.4	40	70	Tempo (h		144	100	100
Placa1	Raia 1	1.0	24 3.5	48 7.0	72 10.8	96 14.0	120 17.5	21.0	168 26.5	192 29.0
i idod i	2	1.0	4.0	7.0	10.3	15.0	18.0	22.0	25.0	30.0
	3	1.0	4.0	7.0	11.0	14.5	19.0	21.0	26.5	31.0
Placa 2	1 2	1.0 1.0	4.0 4.5	6.5 7.0	11.2 12.0	16.0 17.0	21.0 21.5	21.5 22.0	26.5 26.5	31.0 30.0
	3	1.0	3.5	7.5	11.2	17.0	22.0	21.5	26.5	29.0
Placa 3	1	1.0	4.0	7.5	10.5	13.5	17.0	21.0	25.0	29.5
	2	1.0	4.0	7.5	10.3	14.0	18.0	23.0	26.5	30.0
Placa 4	3 1	1.0 1.0	4.0 4.0	7.5 6.0	10.2 11.0	15.0 13.5	18.5 16.0	24.0 23.0	25.5 26.0	30.0 30.0
i iaca 4	2	1.0	4.0	6.5	11.0	14.0	17.0	22.0	25.0	30.0
	3	1.0	4.0	6.5	11.0	15.5	18.0	22.0	26.0	30.0
Placa5	1	1.0	3.5	7.0	10.8	15.0	19.0	22.0	26.0	30.0
	2	1.0 1.0	3.5 3.5	7.5 7.5	11.0 11.0	15.0 15.0	19.0 21.0	23.0 24.0	25.0 25.0	29.0 29.0
Dm (mm)							18.83			
raio (mm)		1.00	3.87	7.03	10.89	14.93		22.20	25.84	29.83
		0.50	1.93	3.52	5.44	7.47	9.42	11.10	12.92	14.92
Dp (mm)					5.44 0.45					
Dp (mm)		0.50	1.93	3.52	5.44	7.47 1.10	9.42 1.80	11.10	12.92	14.92
Dp (mm)	Raia	0.50 0.00	1.93 0.30	3.52 0.48	5.44 0.45 pH 7,0	7.47 1.10	9.42	11.10 1.00	12.92 0.68	14.92 0.65
Dp (mm)	Raia	0.50 0.00	1.93	3.52 0.48	5.44 0.45	7.47 1.10 Tempo (h	9.42 1.80	11.10 1.00	12.92	14.92 0.65
Dp (mm)	1 2	0.50 0.00 0 1.0 1.0	1.93 0.30 24 2.5 3.2	3.52 0.48 48 6.0 5.0	72 9.2 8.8	7.47 1.10 Tempo (h 96 11.5 11.0	9.42 1.80 1) 120 15.0 15.0	11.10 1.00 144 15.5 16.0	12.92 0.68 168 19.0 19.0	14.92 0.65 192 17.0 20.0
Dp (mm)	1 2 3	0 0 1.0 1.0 1.0	1.93 0.30 24 2.5 3.2 3.2	3.52 0.48 48 6.0 5.0 6.0	72 9.2 8.8 9.1	7.47 1.10 Tempo (h 96 11.5 11.0 12.0	9.42 1.80 1) 120 15.0 15.0 14.0	11.10 1.00 144 15.5 16.0 16.0	12.92 0.68 168 19.0 19.0 18.0	14.92 0.65 192 17.0 20.0 18.0
Dp (mm)	1 2	0.50 0.00 0 1.0 1.0 1.0 1.0	1.93 0.30 24 2.5 3.2	3.52 0.48 48 6.0 5.0	72 9.2 8.8	7.47 1.10 Tempo (h 96 11.5 11.0	9.42 1.80 1) 120 15.0 15.0	11.10 1.00 144 15.5 16.0	12.92 0.68 168 19.0 19.0	14.92 0.65 192 17.0 20.0
Placa1	1 2 3 1	0 0 1.0 1.0 1.0	24 2.5 3.2 3.2 3.5 3.3 3.0	48 6.0 5.0 6.0 5.5 6.0	5.44 0.45 pH 7,0 72 9.2 8.8 9.1 8.5	7.47 1.10 Tempo (h 96 11.5 11.0 12.0 12.0 12.5 12.5	9.42 1.80 1) 120 15.0 15.0 14.0 16.0	11.10 1.00 144 15.5 16.0 16.0 16.5	12.92 0.68 168 19.0 19.0 18.0 21.0	14.92 0.65 192 17.0 20.0 18.0 20.0
Dp (mm)	1 2 3 1 2 3 1	0.50 0.00 0 1.0 1.0 1.0 1.0 1.0 1.0	24 2.5 3.2 3.2 3.5 3.3 3.0 3.5	3.52 0.48 48 6.0 5.0 6.0 5.5 5.5 6.0 5.5	72 9.2 8.8 9.1 8.5 9.5 10.0 9.5	7.47 1.10 Tempo (h 96 11.5 11.0 12.0 12.5 12.5 11.5	9.42 1.80 1) 120 15.0 15.0 14.0 16.0 16.0 15.0	11.10 1.00 144 15.5 16.0 16.5 16.3 16.2 16.0	12.92 0.68 168 19.0 19.0 18.0 21.0 19.0 22.0 18.0	14.92 0.65 192 17.0 20.0 18.0 20.0 24.0 22.0 26.0
Placa1	1 2 3 1 2 3 1 2	0.50 0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	24 2.5 3.2 3.5 3.3 3.0 3.5 3.0	48 6.0 5.0 6.0 5.5 5.5 6.0 5.5 5.5	72 9.2 8.8 9.1 8.5 9.5 10.0 9.5 9.0	7.47 1.10 Tempo (h 96 11.5 12.0 12.0 12.5 12.5 11.5 12.0	9.42 1.80 15.0 15.0 16.0 16.0 16.0 16.0 16.0	11.10 1.00 1.00 144 15.5 16.0 16.5 16.3 16.2 16.0 16.0	12.92 0.68 168 19.0 19.0 18.0 21.0 19.0 22.0 18.0 20.0	14.92 0.65 192 17.0 20.0 18.0 20.0 24.0 22.0 26.0 27.0
Placa1	1 2 3 1 2 3 1 2 3	0.50 0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0	24 2.5 3.2 3.2 3.5 3.3 3.0 3.5	48 6.0 5.0 6.0 5.5 5.5 6.0 5.5 6.0	72 9.2 8.8 9.1 8.5 9.5 10.0 9.5	7.47 1.10 Tempo (h 96 11.5 11.0 12.0 12.5 12.5 12.5 12.5 12.0	9.42 1.80 1) 120 15.0 15.0 14.0 16.0 16.0 15.0	11.10 1.00 144 15.5 16.0 16.5 16.3 16.2 16.0 16.0 16.0	12.92 0.68 168 19.0 19.0 18.0 21.0 19.0 22.0 18.0 20.0 18.0	14.92 0.65 192 17.0 20.0 18.0 20.0 24.0 22.0 26.0
Placa 1 Placa 2 Placa 3	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	0.50 0.00 0 1.0 1.0 1.0 1.0 1.0 1.0	1.93 0.30 24 2.5 3.2 3.2 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0	48 6.0 5.0 6.0 5.5 5.5 6.0 5.5 6.0 5.5 5.5	5.44 0.45 pH 7,0 72 9.2 8.8 9.1 8.5 9.5 10.0 9.5 9.0 9.5 8.0 9.0	7.47 1.10 Tempo (h 96 11.5 11.0 12.0 12.5 12.5 12.5 12.0 12.0 12.0 12.0	9.42 1.80 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 13.0	11.10 1.00 144 15.5 16.0 16.5 16.3 16.2 16.0 16.2 16.3 16.2	12.92 0.68 168 19.0 19.0 19.0 21.0 19.0 22.0 18.0 20.0 18.0 17.0 18.0	192 17.0 20.0 18.0 20.0 24.0 22.0 26.0 27.0 30.0 22.0 22.0 22.0 21.0
Placa 1 Placa 2 Placa 3 Placa 4	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	0.50 0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	1.93 0.30 24 2.5 3.2 3.5 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0	3.52 0.48 48 6.0 5.0 6.0 5.5 5.5 6.0 5.5 6.0 5.5 6.0	72 9.2 8.8 9.1 8.5 9.5 10.0 9.5 9.0 9.5 8.0 9.0 8.0	7.47 1.10 Tempo (h 96 11.5 11.0 12.0 12.5 12.5 11.5 12.0 12.0 12.0 12.0	9.42 1.80 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 14.0 12.5	11.10 1.00 1.00 144 15.5 16.0 16.5 16.3 16.2 16.0 16.2 16.3 16.0 16.2	168 19.0 19.0 19.0 22.0 18.0 22.0 18.0 17.0 18.0 17.0 18.0	14.92 0.65 192 17.0 20.0 18.0 22.0 24.0 22.0 27.0 30.0 22.0 21.0 22.0
Placa 1 Placa 2 Placa 3	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2	0.50 0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	1.93 0.30 24 2.5 3.2 3.2 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0	3.52 0.48 48 6.0 5.0 6.0 5.5 5.5 6.0 5.5 6.0 5.0 6.0 6.0	72 9.2 8.8 9.1 8.5 9.5 9.0 9.5 9.0 9.0 8.0	7.47 1.10 Tempo (t 96 11.5 11.0 12.0 12.0 12.5 11.5 12.0 12.0 12.0 12.0 12.5 11.5 12.0 12.0 13.0 14.0 15.0 16.0 17.0	9.42 1.80 15.0 15.0 14.0 16.0 16.0 16.0 16.0 16.0 16.0 15.0 16.0 15.0 16.0 15.0 15.0	144 15.5 16.0 16.5 16.3 16.2 16.0 16.3 16.0 16.3 16.0 16.5 16.3	168 19.0 19.0 19.0 21.0 19.0 22.0 18.0 20.0 18.0 20.0 18.0 21.0 17.0 18.0 21.0	14.92 0.65 192 17.0 20.0 24.0 22.0 26.0 27.0 30.0 22.0 21.0 22.0 22.0 22.0
Placa 1 Placa 2 Placa 3 Placa 4	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	0.50 0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	1.93 0.30 24 2.5 3.2 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.52 0.48 48 6.0 5.0 6.0 5.5 5.5 6.0 5.5 6.0 5.5 6.0	5.44 0.45 pH 7,0 72 9.2 8.8 9.1 8.5 10.0 9.5 9.0 9.0 8.0 9.0 8.0 9.0 8.5 9.5	7.47 1.10 Tempo (t 96 11.5 11.0 12.0 12.5 12.5 12.5 12.0 10.0 10.0 10.5 13.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	9.42 1.80 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 14.0 12.5	11.10 1.00 1.00 144 15.5 16.0 16.5 16.3 16.2 16.0 16.2 16.3 16.0 16.2	168 19.0 19.0 19.0 21.0 19.0 22.0 22.0 18.0 17.0 18.0 17.0 18.0 21.0 21.0 21.0	14.92 0.65 192 17.0 20.0 24.0 22.0 22.0 22.0 22.0 22.0 22
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm)	1 2 3 2 3	0.50 0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.93 0.30 24 2.5 3.2 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.52 0.48 6.0 5.0 5.5 5.5 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.5	5.44 0.45 pH 7,0 72 9.2 8.8 9.1 8.5 10.0 9.5 9.0 9.0 8.0 9.0 8.5 9.0 8.5 9.0 8.5 9.0 9.0 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	7.47 1.10 Tempo (t 96 11.5 11.0 12.0 12.5 12.5 11.5 11.5 11.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.42 1.80 120 15.0 15.0 14.0 16.0 16.0 16.0 16.0 15.0 15.0 15.0 15.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	11.10 1.00 144 15.5 16.0 16.0 16.3 16.2 16.0 16.2 16.0 16.5 16.5 16.5 16.5 16.5	168 19.0 19.0 19.0 19.0 22.0 18.0 20.0 18.0 20.0 18.0 21.0 21.0 21.0 21.0 21.0	14.92 0.65 192 17.0 20.0 18.0 20.0 24.0 22.0 26.0 27.0 30.0 22.0 21.0 22.0 22.0 21.0 22.0 21.0 22.0 22
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio mm)	1 2 3 2 3	0.50 0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.93 0.30 24 2.5 3.2 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	3.52 0.48 6.0 5.0 6.0 5.5 6.0 5.5 6.0 5.5 6.0 6.0 6.0 6.0 6.0 5.5 6.0 6.0 5.5 6.0 6.0 5.5 6.0 6.0 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	5.44 0.45 pH 7,0 72 9.2 8.8 9.1 8.5 9.5 10.0 9.5 9.0 9.5 8.0 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	7.47 1.10 Tempo (t 96 11.5 11.0 12.0 12.0 12.5 12.5 12.5 12.0 10.0 12.0	9.42 1.80 115.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 14.0 13.0 12.5 15.0 15.0 14.0 13.0 14.0 13.0 14.0 14.0 14.0 14.0 15.0 15.0 14.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	11.10 1.00 144 15.5 16.0 16.5 16.3 16.2 16.0 16.0 16.5 16.3 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5	168 19.0 19.0 19.0 19.0 19.0 21.0 21.0 22.0 20.0 18.0 17.0 18.0 17.0 18.0 21.0 21.0 21.0 21.0 21.0 29.0	14.92 0.65 192 17.0 20.0 18.0 22.0 24.0 22.0 27.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm)	1 2 3 2 3	0.50 0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.93 0.30 24 2.5 3.2 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.52 0.48 6.0 5.0 5.5 5.5 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.5	5.44 0.45 pH 7.0 72 9.2 8.8 9.1 8.5 9.5 9.0 9.0 9.0 9.0 8.0 9.0 9.0 8.0 9.0 8.0 9.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	7.47 1.10 Tempo (t 96 11.5 11.0 12.0 12.5 12.5 11.5 11.5 11.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.42 1.80 120 15.0 15.0 14.0 16.0 16.0 16.0 16.0 15.0 15.0 15.0 15.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	11.10 1.00 144 15.5 16.0 16.5 16.3 16.2 16.0 16.2 16.0 16.2 16.0 16.5 16.5 16.5 16.5	168 19.0 19.0 19.0 19.0 22.0 18.0 20.0 18.0 20.0 18.0 21.0 21.0 21.0 21.0 21.0	14.92 0.65 192 17.0 20.0 18.0 20.0 24.0 22.0 26.0 27.0 30.0 22.0 21.0 22.0 22.0 21.0 22.0 21.0 22.0 22
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio mm)	1 2 3 2 3	0.50 0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.93 0.30 24 2.5 3.2 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	3.52 0.48 6.0 5.0 6.0 5.5 6.0 5.5 6.0 5.5 6.0 6.0 6.0 6.0 6.0 5.5 6.0 6.0 5.5 6.0 6.0 5.5 6.0 6.0 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	5.44 0.45 pH 7,0 72 9.2 8.8 9.1 8.5 9.5 10.0 9.5 9.0 9.5 8.0 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	7.47 1.10 Tempo (the second se	9.42 1.80 15.0 15.0 15.0 14.0 16.0 16.0 16.0 16.0 11.0 11.0 12.5 15.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	11.10 1.00 144 15.5 16.0 16.5 16.3 16.2 16.0 16.0 16.5 16.3 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5	168 19.0 19.0 19.0 19.0 19.0 21.0 21.0 22.0 20.0 18.0 17.0 18.0 17.0 18.0 21.0 21.0 21.0 21.0 21.0 29.0	14.92 0.65 192 17.0 20.0 18.0 22.0 24.0 22.0 27.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio mm) Dp (mm)	1 2 3 2 3	0.50 0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.93 0.30 24 2.5 3.2 3.2 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.52 0.48 6.0 5.0 6.0 5.5 6.0 5.5 6.0 5.5 6.0 6.0 6.0 6.0 6.0 5.5 6.0 6.0 5.5 6.0 6.0 5.5 6.0 6.0 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	5.44 0.45 pH 7.0 72 9.2 8.8 9.1 8.5 9.5 9.0 9.0 9.0 9.0 8.0 9.0 9.0 8.0 9.0 8.0 9.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	7.47 1.10 Tempo (t 96 11.5 11.0 12.0 12.0 12.5 12.5 12.5 12.0 10.0 12.0	9.42 1.80 15.0 15.0 15.0 14.0 16.0 16.0 16.0 16.0 11.0 11.0 12.5 15.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	11.10 1.00 144 15.5 16.0 16.5 16.3 16.2 16.0 16.0 16.5 16.3 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5	168 19.0 19.0 19.0 19.0 19.0 21.0 21.0 22.0 20.0 18.0 17.0 18.0 17.0 18.0 21.0 21.0 21.0 21.0 21.0 29.0	14.92 0.65 192 17.0 20.0 18.0 22.0 24.0 22.0 27.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio mm)	1 2 3 1 1 2 3 1 1 2 3 3 1 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 1 2 3 3 3 3	0.50 0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.93 0.30 24 2.5 3.2 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.52 0.48 48 6.0 5.0 6.0 5.5 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 8.2 81 0.37	5.44 0.45 PH 7.0 72 9.2 8.8 9.1 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	7.47 1.10 Tempo (t) 96 11.5 11.0 12.0 12.0 12.5 11.5 12.0 12.0 12.0 12.0 12.0 12.0 10.0 12.5 13.0 12.5 11.53 5.81 0.82 Tempo (t) 96	9,42 1,80 15.0 15.0 14.0 16.0 16.0 16.0 16.0 15.0 14.0 13.0 15.0 14.0 13.0 15.0 14.0 14.0 14.0 14.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	11.10 1.00 1.00 144 15.5 16.0 16.5 16.3 16.0 16.2 16.0 16.3 16.5 16.5 16.5 16.5 16.5 16.5 16.5 14.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16	12.92 0.68 168 19.0 19.0 18.0 21.0 22.0 18.0 20.0 18.0 21.0	14.92 0.65 192 17.0 20.0 18.0 24.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 21.0 22.0 22.0 22.0 21.0 22.0 23.0 24.0 25.0 26.0
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio mm) Dp (mm)	1 2 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 3 3 3 3	0.50 0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.93 0.30 24 2.5 3.2 3.5 3.3 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.0 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.52 0.48 48 6.0 5.0 5.5 5.5 6.0 5.5 6.0 6.0 6.0 6.0 6.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	5.44 0.45 PH 7.0 72 9.2 8.8 9.1 8.5 9.5 9.0 9.0 9.0 9.0 9.0 9.0 9	7.47 1.10 Tempo (t) 96 11.5 11.0 12.0 12.0 12.5 11.5 12.0 12.0 12.0 12.0 12.0 12.0 12.5 11.63 12.5 11.63 12.5 11.63 12.5 11.63 12.5 11.63 12.5 11.63 12.5 11.63 12.5 11.63 12.5 11.63 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 13.5 13.5 13.63 13.63 14.5 15.0	9,42 1,80 15.0 15.0 15.0 14.0 16.0 16.0 16.0 16.0 15.0 14.0 13.0 12.5 15.0 14.0 12.5 15.0 14.0 15.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	11.10 1.00 144 15.5 16.0 16.5 16.3 16.2 16.0 16.2 16.0 16.5 16.3 16.0 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5	168 168 19.0 19.0 19.0 18.0 21.0 19.0 22.0 18.0 22.0 18.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21	14.92 0.65 192 17.0 20.0 18.0 24.0 24.0 25.0 27.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 26.0 27.0 27.0 27.0 28.0 29.0 20.0
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio mm) Dp (mm)	1 2 3 1 1 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 3 1	0.50 0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	1.93 0.30 24 2.5 3.2 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.1 4 3.5 3.0 3.0 3.2 2 4 3.2 3.2 3.3 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.52 0.48 6.0 5.0 6.0 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 8.2 81 0.37	5.44 0.45 pH 7.0 PH 7.0 9.2 8.8 9.1 8.5 9.5 9.0 9.5 8.0 9.0 9.5 9.0 4.50 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	7.47 1.10 Tempo (t 96 11.5 11.0 12.0 12.0 12.5 12.5 11.5 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9,42 1,80 15.0 15.0 14.0 16.0 16.0 16.0 16.0 15.0 14.0 13.0 12.5 15.0 14.0 13.0 14.0 13.0 15.0 15.0 14.0 13.0 15.0 15.0 15.0 14.0 13.0 14.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	11.10 1.00 1.00 144 15.5 16.0 16.5 16.3 16.0 16.3 16.0 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5	12.92 0.68 19.0 19.0 19.0 18.0 21.0 22.0 18.0 20.0 18.0 21.0 24.0 24.0 24.0 24.0 24.0	14.92 0.65 192 17.0 20.0 18.0 24.0 22.0 26.0 27.0 30.0 22.0 26.0
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio mm) Dp (mm)	1 2 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 3 3 3 3	0.50 0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.93 0.30 24 2.5 3.2 3.5 3.3 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.0 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.52 0.48 48 6.0 5.0 5.5 5.5 6.0 5.5 6.0 6.0 6.0 6.0 6.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	5.44 0.45 PH 7.0 72 9.2 8.8 9.1 8.5 9.5 9.0 9.0 9.0 9.0 9.0 9.0 9	7.47 1.10 Tempo (t) 96 11.5 11.0 12.0 12.0 12.5 11.5 12.0 12.0 12.0 12.0 12.0 12.0 12.5 11.63 12.5 11.63 12.5 11.63 12.5 11.63 12.5 11.63 12.5 11.63 12.5 11.63 12.5 11.63 12.5 11.63 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	9,42 1,80 15.0 15.0 15.0 14.0 16.0 16.0 16.0 16.0 15.0 14.0 13.0 12.5 15.0 14.0 12.5 15.0 14.0 15.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	11.10 1.00 144 15.5 16.0 16.5 16.3 16.2 16.0 16.2 16.0 16.5 16.3 16.0 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5	168 168 19.0 19.0 19.0 18.0 21.0 19.0 22.0 18.0 22.0 18.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21	14.92 0.65 192 17.0 20.0 18.0 24.0 24.0 25.0 27.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 26.0 27.0 27.0 27.0 28.0 29.0 20.0
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio mm) Dp (mm) Placa 1 Placa 2	1 2 3 1 1 2 3 3 3 1 1 3 3 1 3 1	0.50 0.00 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.93 0.30 24 2.5 3.2 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.52 0.48 48 6.0 5.0 6.0 5.5 6.0 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 7.5 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.44 0.45 PH 7.0 PH 7.0 PH 7.0 9.2 8.8 9.1 8.5 9.5 10.0 9.5 8.0 9.0 8.0 9.0 9.5 9.5 10.0 9.5 PH 7.5 PH 7.5 12.0 12.0 11.0 11.5 11.5 11.5 11.5 11.5 11.5 11	7.47 1.10 96 11.5 11.0 12.0 12.0 12.5 12.5 12.5 12.0 12.0 12.0 12.0 12.0 10.0 12.5 13.0 12.5 11.63 5.81 0.82 Tempo (t	9,42 1,80 15.0 15.0 14.0 16.0 16.0 16.0 16.0 11.0 11.0 12.5 15.0 14.0 12.5 15.0 14.0 12.5 15.0 15.0 14.0 17.0 15.0 17.0 18.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	11.10 1.00 144 15.5 16.0 16.5 16.3 16.2 16.0 16.2 16.0 16.2 16.0 16.5 16.5 16.5 16.5 16.5 12.0 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5	168 168 19.0 19.0 18.0 21.0 22.0 18.0 22.0 18.0 21.0 22.0 18.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21	14.92 0.65 192 17.0 20.0 18.0 24.0 24.0 22.0 26.0 27.0 30.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 21.0 22.0 21.0 21.0 22.0 21.0
Placa 1 Placa 2 Placa 3 Placa 4 Placa 5 Dm (mm) raio mm) Dp (mm)	1 2 3 1 2 3 1 2 2 3 1 2 2 3 3 1 3 1	0.50 0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	1.93 0.30 24 2.5 3.2 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.52 0.48 6.0 5.0 6.0 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 8.2 81 0.37	5.44 0.45 PH 7.0 72 9.2 8.8 9.1 8.5 9.5 9.0 9.0 9.0 8.0 9.0 8.0 9.0 9.5 9.1 1.5 12.0 11.0	7.47 1.10 Tempo (t 96 11.5 11.0 12.0 12.0 12.5 11.5 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9,42 1,80 15.0 15.0 14.0 16.0 16.0 16.0 16.0 16.0 16.0 11.0 16.0 14.0 12.5 15.0 14.0 12.5 15.0 15.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	11.10 1.00 11.00 144 15.5 16.0 16.5 16.3 16.2 16.0 16.2 16.0 16.5 16.5 16.5 16.5 16.5 16.5 16.5 12.0 16.5 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9	12.92 0.68 19.0 19.0 19.0 18.0 21.0 22.0 18.0 20.0 18.0 21.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0	14.92 0.65 192 17.0 20.0 18.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 21.0 22.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 22.0 21.0 22.0 21.0 22.0 22.0 21.0 22.0 26.0 26.0 27.0 27.0 27.0 27.0 28.0 28.0 28.0 29.0 29.0 20.0

	3	1.0	3.5	8.0	11.7	15.0	17.0	20.0	23.0	28.0
Placa 4	1	1.0	3.0	7.0	11.5	15.0	20.0	24.0	23.0	27.0
	2	1.0	3.5	7.0	11.5	15.0	21.0	23.0	24.0	27.5
Placa5	3	1.0	4.0 4.0	7.0 8.1	12.0 12.0	16.0 14.5	21.5 20.0	21.0 22.0	23.5 26.0	28.0 28.0
Fiduas	1 2	1.0 1.0	4.0	8.0	12.5	15.0	18.0	22.0	24.5	29.0
	3	1.0	4.0	8.2	12.5	16.5	20.5	22.0	25.0	29.0
Dm (mm)		1.00	3.67	7.67	11.71	14.67	18.70	21.33	23.53	27.30
raio (mm)		0.50	1.83	3.83	5.86	7.33	9.35	10.67	11.77	13.65
Dp (mm)		0.00	0.45	0.66	0.45	0.90	1.51	1.45	1.56	1.16
					pH 8,0					
						Tempo (h				
	Raia	0	24	48	72	96	120	144	168	192
Placa1	1	1.0	3.0	5.0	9.0	11.0	17.0	20.0	23.5	27.8
	2	1.0 1.0	3.1 2.8	7.5 6.0	8.5 11.0	14.0 12.0	17.0 15.0	20.5 20.0	23.5 23.5	27.0 25.0
Placa 2	1	1.0	2.9	6.0	9.0	12.0	15.0	21.0	23.9	28.0
1 1404 2	2	1.0	3.0	6.0	9.0	11.5	14.5	20.5	23.5	28.5
	3	1.0	3.0	6.0	9.0	10.5	14.0	21.0	22.0	27.5
Placa 3	1	1.0	3.1	5.5	8.0	14.0	17.0	19.0	22.5	26.5
	2	1.0	3.2	5.5	10.0	13.5	17.0	21.0	23.5	27.0
Diagram 4	3	1.0	3.3	6.0	10.0	13.5	17.0	19.5	23.5	27.5
Placa 4	1 2	1.0 1.0	3.1 3.0	5.5 6.0	8.5 8.5	11.5 11.0	14.5 14.0	21.0 19.5	23.0 23.2	27.0 26.5
	3	1.0	3.0	6.0	10.0	11.0	14.0	20.5	23.0	28.5
Placa5	1	1.0	3.0	6.0	9.5	13.0	20.0	19.5	23.5	28.5
	2	1.0	3.0	5.5	10.0	13.0	19.0	19.5	23.0	28.0
	3	1.0	3.0	6.5	9.5	15.0	19.0	19.0	22.5	28.0
Dm (mm)		1.00	3.04	5.93	9.30	12.43	16.27	20.10	23.17	27.42
raio (mm)		0.50 0.00	1.52 0.12	2.97 0.56	4.65 0.80	6.22 1.37	8.13 2.01	10.05 0.74	11.59 0.51	13.71 0.95
Dp (mm)		0.00	0.12	0.56	pH 8,5	1.3/	2.01	0.74	0.51	0.93
					рп о,э	Tompo /h				
	Raia	0	24	48	72	Tempo (h 96	120	144	168	192
Placa1	1	1.0	3.5	7.0	10.5	11.0	13.5	17.0	24.0	27.0
i iaca i	2	1.0	3.5	7.5	9.5	11.5	13.5	17.0	25.0	30.0
	3	1.0	3.5	8.2	10.0	11.8	13.0	17.5	19.0	29.0
Placa 2	1	1.0	3.5	6.0	9.5	12.5	15.0	17.0	18.0	20.0
	2	1.0	3.5	6.0	9.8	12.8	14.5	16.5	18.0	20.5
DI O	3	1.0	4.0	6.0	10.0	13.0	13.5	17.5	17.5	19.5
Placa 3	1 2	1.0 1.0	4.0 3.5	6.0 6.5	10.0 9.3	13.5 14.0	16.0 16.0	18.0 18.0	18.0 18.5	22.0 21.0
	3	1.0	3.5	7.0	9.0	11.0	15.5	18.0	20.0	19.8
Placa 4	1	1.0	3.0	7.0	9.0	11.5	15.2	16.0	22.0	23.0
	2	1.0	3.5	7.0	9.5	11.0	16.5	19.0	22.5	23.0
	3	1.0	4.0	8.0	9.5	11.0	16.5	20.0	21.0	24.0
Placa5	1 2	1.0	4.0	7.0	9.0	11.0	17.0	17.0	24.0	21.0
	3	1.0 1.0	3.5 3.5	7.5 7.8	9.0 9.0	11.0 11.0	17.0 15.0	18.0 20.0	18.5 21.0	23.5 23.5
Dm (mm)		1.00	3.60	6.97	9.51	11.84	15.18	17.77	20.47	23.12
raio (mm)		0.50	1.80	3.48	4.75	5.92	7.59	8.88	10.23	11.56
Dp (mm)		0.00	0.28	0.75	0.47	1.05	1.34	1.16	2.53	3.26
					pH 9,0					
						Tempo (h	1)			
	Raia	0	24	48	72					
Placa1	1					96	120	144	168	192
		1.0	3.0	6.0	10.0	11.0	16.0	17.0	20.5	20.0
	2	1.0	2.5	5.0	10.0 11.0	11.0 11.5	16.0 18.0	17.0 16.5	20.5 20.5	20.0 22.0
Place 2	2	1.0 1.0	2.5 3.5	5.0 6.0	10.0 11.0 9.0	11.0 11.5 10.5	16.0 18.0 13.0	17.0 16.5 17.0	20.5 20.5 21.0	20.0 22.0 22.5
Placa 2	2 3 1	1.0 1.0 1.0	2.5 3.5 3.5	5.0 6.0 4.5	10.0 11.0	11.0 11.5 10.5 10.5	16.0 18.0 13.0 12.5	17.0 16.5 17.0 17.5	20.5 20.5	20.0 22.0 22.5 23.0
Placa 2	2	1.0 1.0	2.5 3.5	5.0 6.0	10.0 11.0 9.0 7.5	11.0 11.5 10.5	16.0 18.0 13.0	17.0 16.5 17.0	20.5 20.5 21.0 19.0	20.0 22.0 22.5
Placa 2	2 3 1 2 3 1	1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.5 3.0 2.5	5.0 6.0 4.5 5.0 5.0	10.0 11.0 9.0 7.5 8.5 8.0 8.0	11.0 11.5 10.5 10.5 11.0 10.5 12.0	16.0 18.0 13.0 12.5 13.0 13.0	17.0 16.5 17.0 17.5 17.0 18.0 18.0	20.5 20.5 21.0 19.0 19.5 19.0 19.5	20.0 22.0 22.5 23.0 22.5 23.0 24.5
	2 3 1 2 3 1 2	1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.5 3.0 2.5 3.0	5.0 6.0 4.5 5.0 5.0 5.0 5.5	10.0 11.0 9.0 7.5 8.5 8.0 8.0	11.0 11.5 10.5 10.5 11.0 10.5 12.0 11.0	16.0 18.0 13.0 12.5 13.0 13.0 13.0 14.0	17.0 16.5 17.0 17.5 17.0 18.0 18.0 17.5	20.5 20.5 21.0 19.0 19.5 19.0 19.5	20.0 22.0 22.5 23.0 22.5 23.0 24.5 24.3
Placa 3	2 3 1 2 3 1 2 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.0 2.5 3.0 3.5	5.0 6.0 4.5 5.0 5.0 5.0 5.5	10.0 11.0 9.0 7.5 8.5 8.0 8.0 8.0	11.0 11.5 10.5 10.5 11.0 10.5 12.0 11.0	16.0 18.0 13.0 12.5 13.0 13.0 14.0 13.5	17.0 16.5 17.0 17.5 17.0 18.0 18.0 17.5 18.0	20.5 20.5 21.0 19.0 19.5 19.0 19.5 19.0 20.0	20.0 22.0 22.5 23.0 22.5 23.0 24.5 24.3 20.0
	2 3 1 2 3 1 2 3 1	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.0 2.5 3.0 3.5 3.5	5.0 6.0 4.5 5.0 5.0 5.0 5.5 5.0	10.0 11.0 9.0 7.5 8.5 8.0 8.0 8.0 8.5 8.5	11.0 11.5 10.5 10.5 11.0 10.5 12.0 11.0 11.0	16.0 18.0 13.0 12.5 13.0 13.0 14.0 13.5 13.0	17.0 16.5 17.0 17.5 17.0 18.0 18.0 17.5 18.0 18.5	20.5 20.5 21.0 19.0 19.5 19.0 19.5 19.0 20.0 20.5	20.0 22.0 22.5 23.0 22.5 23.0 24.5 24.3 20.0 21.5
Placa 3	2 3 1 2 3 1 2 3 1 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.0 2.5 3.0 3.5	5.0 6.0 4.5 5.0 5.0 5.5 5.0 5.5 5.0 5.2	10.0 11.0 9.0 7.5 8.5 8.0 8.0 8.0	11.0 11.5 10.5 10.5 11.0 10.5 12.0 11.0	16.0 18.0 13.0 12.5 13.0 13.0 13.0 14.0 13.5 13.0	17.0 16.5 17.0 17.5 17.0 18.0 18.0 17.5 18.0	20.5 20.5 21.0 19.0 19.5 19.0 19.5 19.0 20.0	20.0 22.0 22.5 23.0 22.5 23.0 24.5 24.3 20.0 21.5 22.0
Placa 3	2 3 1 2 3 1 2 3 1	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.0 2.5 3.0 3.5 3.6	5.0 6.0 4.5 5.0 5.0 5.5 5.0 5.5 5.0 5.5 5.5	10.0 11.0 9.0 7.5 8.5 8.0 8.0 8.0 8.5 8.5 8.5	11.0 11.5 10.5 10.5 11.0 10.5 12.0 11.0 11.0 11.0	16.0 18.0 13.0 12.5 13.0 13.0 14.0 13.5 13.0	17.0 16.5 17.0 17.5 17.0 18.0 18.0 17.5 18.0 18.5 19.0 18.5	20.5 20.5 21.0 19.0 19.5 19.0 19.5 19.0 20.0 20.5 20.0	20.0 22.0 22.5 23.0 22.5 23.0 24.5 24.3 20.0 21.5
Placa 3	2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.5 3.0 2.5 3.0 3.5 3.6 3.4 3.5	5.0 6.0 4.5 5.0 5.0 5.5 5.0 5.2 5.0 5.5 5.5 5.5	10.0 11.0 9.0 7.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5	11.0 11.5 10.5 10.5 11.0 10.5 12.0 11.0 11.0 11.0 12.0 11.0	16.0 18.0 13.0 12.5 13.0 13.0 14.0 13.5 13.5 14.0 13.5 14.0	17.0 16.5 17.0 17.5 17.0 18.0 18.0 17.5 18.0 18.5 19.0 18.5 18.3 18.5	20.5 20.5 21.0 19.0 19.5 19.0 20.0 20.5 20.0 20.4 18.5 20.5	20.0 22.0 22.5 23.0 22.5 23.0 24.5 24.3 20.0 21.5 22.0 21.0 19.0
Placa 3 Placa 4 Placa5	2 3 1 2 3 1 2 3 1 2 3 1 2 3 1	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.5 3.0 2.5 3.0 3.5 3.5 3.6 3.4 3.4 3.5	5.0 6.0 4.5 5.0 5.0 5.5 5.0 5.2 5.0 5.5 5.5 5.5 5.2	10.0 11.0 9.0 7.5 8.5 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5	11.0 11.5 10.5 10.5 11.0 10.5 12.0 11.0 11.0 11.0 12.0 11.0 11.0	16.0 18.0 13.0 12.5 13.0 13.0 13.0 14.0 13.5 14.0 13.5 14.0 13.5 14.0	17.0 16.5 17.0 17.5 17.0 18.0 18.0 17.5 18.0 18.5 19.0 18.5 18.3 18.5	20.5 20.5 21.0 19.0 19.5 19.0 19.5 19.0 20.0 20.5 20.0 20.4 18.5 20.5 20.6	20.0 22.0 22.5 23.0 22.5 23.0 24.5 24.3 20.0 21.5 22.0 21.0 19.0 18.0
Placa 3 Placa 4 Placa5 Dm (mm)	2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.0 2.5 3.0 3.5 3.6 3.4 3.5 3.4 2.8	5.0 6.0 4.5 5.0 5.0 5.5 5.2 5.5 5.5 5.5 5.2 5.0	10.0 11.0 9.0 7.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5	11.0 11.5 10.5 10.5 11.0 10.5 12.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	16.0 18.0 13.0 12.5 13.0 13.0 14.0 13.5 13.0 13.5 14.0 13.5 14.0 13.88	17.0 16.5 17.0 17.5 17.0 18.0 18.0 17.5 18.0 18.5 19.0 18.5 18.3 18.5 18.0	20.5 20.5 21.0 19.0 19.5 19.0 20.0 20.5 20.0 20.4 18.5 20.5 20.6 19.90	20.0 22.0 22.5 23.0 22.5 23.0 24.5 24.3 20.0 21.5 22.0 21.0 19.0 18.0 22.19
Placa 3 Placa 4 Placa5 Dm (mm) raio (mm)	2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.0 2.5 3.0 3.5 3.6 3.4 3.5 3.4 3.5 3.4 3.5 3.4 3.5	5.0 6.0 4.5 5.0 5.0 5.5 5.0 5.5 5.2 5.5 5.5 5.5 5.2 5.2 5.2 5.2 5.2	10.0 11.0 9.0 7.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	11.0 11.5 10.5 10.5 11.0 10.5 12.0 11.0 11.0 11.0 11.0 11.0 11.5 10.5 11.0 11.0	16.0 18.0 12.5 13.0 13.0 13.0 14.0 13.5 13.5 14.0 13.5 14.0 13.5 14.0 13.5 14.0	17.0 16.5 17.0 17.5 17.0 18.0 18.0 17.5 18.0 18.5 19.0 18.5 19.0 18.5 18.3 18.5 18.3	20.5 20.5 21.0 19.0 19.5 19.0 20.0 20.5 20.0 20.4 18.5 20.5 20.5 20.5 20.9 20.5 20.9 20.5 20.9 20.5 20.9 20.5 20.9 20.5 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	20.0 22.0 22.5 23.0 22.5 23.0 24.5 24.3 20.0 21.5 22.0 21.0 18.0 18.0 22.19
Placa 3 Placa 4 Placa5 Dm (mm)	2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.0 2.5 3.0 3.5 3.6 3.4 3.5 3.4 2.8	5.0 6.0 4.5 5.0 5.0 5.5 5.2 5.5 5.5 5.5 5.2 5.0	10.0 11.0 9.0 7.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.6 9.0 8.5 8.6 4.33 0.88	11.0 11.5 10.5 10.5 11.0 10.5 12.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	16.0 18.0 13.0 12.5 13.0 13.0 14.0 13.5 13.0 13.5 14.0 13.5 14.0 13.88	17.0 16.5 17.0 17.5 17.0 18.0 18.0 17.5 18.0 18.5 19.0 18.5 18.3 18.5 18.0	20.5 20.5 21.0 19.0 19.5 19.0 20.0 20.5 20.0 20.4 18.5 20.5 20.6 19.90	20.0 22.0 22.5 23.0 22.5 23.0 24.5 24.3 20.0 21.5 22.0 21.0 19.0 18.0 22.19
Placa 3 Placa 4 Placa5 Dm (mm) raio (mm)	2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.0 2.5 3.0 3.5 3.6 3.4 3.5 3.4 3.5 3.4 3.5 3.4 3.5	5.0 6.0 4.5 5.0 5.0 5.5 5.0 5.5 5.2 5.5 5.5 5.5 5.2 5.2 5.2 5.2 5.2	10.0 11.0 9.0 7.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	11.0 11.5 10.5 10.5 11.0 11.0 11.0 11.0	16.0 18.0 13.0 12.5 13.0 13.0 13.0 13.5 13.0 13.5 13.0 13.5 14.0 13.5 14.0 13.8 6.94 1.42	17.0 16.5 17.0 17.5 17.0 18.0 18.0 17.5 18.0 18.5 19.0 18.5 19.0 18.5 18.3 18.5 18.3	20.5 20.5 21.0 19.0 19.5 19.0 20.0 20.5 20.0 20.4 18.5 20.5 20.5 20.5 20.9 20.5 20.9 20.5 20.9 20.5 20.9 20.5 20.9 20.5 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	20.0 22.0 22.5 23.0 22.5 23.0 24.5 24.3 20.0 21.5 22.0 21.0 18.0 18.0 22.19
Placa 3 Placa 4 Placa5 Dm (mm) raio (mm)	2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.0 2.5 3.0 3.5 3.6 3.4 2.8 3.21 1.60 0.38	5.0 6.0 4.5 5.0 5.0 5.5 5.0 5.5 5.5 5.5 5.5 5.2 5.0 5.2 2.61 0.41	10.0 11.0 9.0 7.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.6 9.0 8.6 7 4.33 0.88 pH 9,5	11.0 11.5 10.5 10.5 11.0 10.5 12.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	16.0 18.0 13.0 12.5 13.0 13.0 13.0 14.0 13.5 13.5 14.0 13.5 14.0 13.5 14.0 13.5 14.0 14.0 13.5 14.0	17.0 16.5 17.0 17.5 17.0 18.0 18.0 18.0 18.5 19.0 18.5 19.0 18.5 18.3 18.5 18.0 17.71 8.85 0.71	20.5 20.5 21.0 19.0 19.5 19.0 20.0 20.0 20.5 20.0 20.4 18.5 20.6 19.90 9.95 0.76	20.0 22.0 22.5 23.0 22.5 23.0 24.5 24.3 20.0 21.5 22.0 19.0 18.0 22.19 11.10 2.06
Placa 3 Placa 4 Placa5 Dm (mm) raio (mm) Dp (mm)	2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 3 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.0 3.5 3.0 3.5 3.6 3.4 2.8 3.21 1.60 0.38	5.0 6.0 4.5 5.0 5.0 5.5 5.2 5.0 5.5 5.2 5.2 5.0 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2	10.0 11.0 9.0 7.5 8.5 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.7 4.33 0.88 pH 9.5	11.0 11.5 10.5 10.5 11.0 10.5 12.0 11.0 11.0 11.0 11.0 11.0 11.5 10.9 11.08 5.54 0.47	16.0 18.0 13.0 12.5 13.0 13.0 13.0 14.0 13.5 13.0 14.0 13.5 13.0 14.0 13.5 14.0 13.5 14.0 13.5 14.0 14.0 13.5 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	17.0 16.5 17.0 17.5 17.0 18.0 18.0 18.5 18.0 18.5 18.5 18.0 18.5 18.0 18.5 18.0 18.5 18.0 18.5	20.5 20.5 21.0 19.0 19.5 19.0 20.0 20.0 20.0 20.4 18.5 20.6 20.5 20.6 19.90 9.95 0.76	20.0 22.0 22.5 23.0 22.5 23.0 24.5 24.3 20.0 21.0 19.0 18.0 18.0 18.0 22.19 11.10 2.06
Placa 3 Placa 4 Placa5 Dm (mm) raio (mm)	2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.0 2.5 3.0 3.5 3.6 3.4 2.8 3.21 1.60 0.38	5.0 6.0 4.5 5.0 5.0 5.5 5.0 5.5 5.5 5.5 5.5 5.2 5.0 5.2 2.61 0.41	10.0 11.0 9.0 7.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.6 9.0 8.6 7 4.33 0.88 pH 9,5	11.0 11.5 10.5 10.5 11.0 10.5 12.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	16.0 18.0 13.0 12.5 13.0 13.0 13.0 14.0 13.5 13.5 14.0 13.5 14.0 13.5 14.0 13.5 14.0 14.0 13.5 14.0	17.0 16.5 17.0 17.5 17.0 18.0 18.0 18.0 18.5 19.0 18.5 19.0 18.5 18.3 18.5 18.0 17.71 8.85 0.71	20.5 20.5 21.0 19.0 19.5 19.0 20.0 20.0 20.5 20.0 20.4 18.5 20.6 19.90 9.95 0.76	20.0 22.0 22.5 23.0 22.5 23.0 24.5 24.3 20.0 21.5 22.0 19.0 18.0 22.19 11.10 2.06
Placa 3 Placa 4 Placa5 Dm (mm) raio (mm) Dp (mm)	2 3 1 2 3 1 2 2 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.5 3.0 2.5 3.0 3.5 3.5 3.4 3.5 3.4 2.8 3.1 1.60 0.38	5.0 6.0 5.0 5.0 5.5 5.5 5.5 5.5 5.5 5.2 5.5 5.2 5.2 48 5.0 6.0	10.0 11.0 9.0 7.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	11.0 11.5 10.5 10.5 11.0 11.0 11.0 11.0	16.0 18.0 13.0 12.5 13.0 13.0 13.0 13.0 13.5 14.0 13.5 14.0 13.5 14.0 13.5 14.0 14.0 14.0 14.0 15.5 14.0 15.5 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	17.0 16.5 17.0 17.5 17.0 18.0 18.0 18.5 19.0 18.5 19.0 18.5 18.3 18.5 18.3 18.5 17.71 8.85 0.71	20.5 20.5 21.0 19.0 19.5 19.0 19.5 19.0 20.0 20.5 20.0 20.4 18.5 20.6 19.90 9.95 0.76	20.0 22.0 22.5 23.0 24.5 24.3 20.0 21.5 22.0 21.0 18.0 22.19 11.10 2.06
Placa 3 Placa 4 Placa5 Dm (mm) raio (mm) Dp (mm)	2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 1 2 2 3 1 1	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.5 3.0 2.5 3.0 3.5 3.5 3.4 3.5 3.4 2.8 3.21 1.60 0.38	5.0 6.0 4.5 5.0 5.0 5.5 5.2 5.5 5.5 5.5 5.2 5.0 5.2 5.0 5.2 5.5 5.5 5.5 6.0 4.8	10.0 11.0 9.0 7.5 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.6 9.0 8.5 8.5 8.5 9.0 8.5 7 2 9.0 8.0 8.0 10.0 10.0 10.0 10.0 10.0 10.0	11.0 11.5 10.5 10.5 11.0 11.0 11.0 11.0	16.0 18.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13	17.0 16.5 17.0 17.5 17.0 18.0 18.0 17.5 18.0 18.5 19.0 18.5 18.3 18.5 18.3 18.5 18.0 17.71 8.85 0.71	20.5 20.5 21.0 19.0 19.5 19.0 20.0 20.5 20.0 20.4 18.5 20.5 20.6 19.90 9.95 0.76	20.0 22.0 22.5 23.0 22.5 23.0 24.5 24.3 20.0 11.5 22.0 18.0 18.0 18.0 22.19 11.10 2.06
Placa 3 Placa 4 Placa5 Dm (mm) raio (mm) Dp (mm)	2 3 1 2 3 1 2 2 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 3.5 3.5 3.5 3.0 2.5 3.0 3.5 3.5 3.4 3.5 3.4 2.8 3.1 1.60 0.38	5.0 6.0 5.0 5.0 5.5 5.5 5.5 5.5 5.5 5.2 5.5 5.2 5.2 48 5.0 6.0	10.0 11.0 9.0 7.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	11.0 11.5 10.5 10.5 11.0 11.0 11.0 11.0	16.0 18.0 13.0 12.5 13.0 13.0 13.0 13.0 13.5 14.0 13.5 14.0 13.5 14.0 13.5 14.0 14.0 14.0 14.0 15.5 14.0 15.5 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	17.0 16.5 17.0 17.5 17.0 18.0 18.0 18.5 19.0 18.5 19.0 18.5 18.3 18.5 18.3 18.5 17.71 8.85 0.71	20.5 20.5 21.0 19.0 19.5 19.0 19.5 19.0 20.0 20.5 20.0 20.4 18.5 20.6 19.90 9.95 0.76	20.0 22.0 22.5 23.0 24.5 24.3 20.0 21.5 22.0 21.0 18.0 22.19 11.10 2.06

Placa 3	1	1.0	3.0	6.5	10.0	14.5	19.5	22.0	26.0	28.0
	2	1.0	3.5	6.5	11.0	14.9	18.0	22.0	26.5	28.0
	3	1.0	3.0	6.5	11.0	15.2	18.5	23.0	26.5	29.0
Placa 4	1	1.0	3.5	6.5	11.0	15.0	18.0	23.0	26.0	28.0
	2	1.0	3.0	6.5	11.0	14.5	18.5	23.0	25.0	29.0
	3	1.0	3.5	6.0	11.0	14.5	18.5	23.0	24.0	30.0
Placa5	1	1.0	4.0	6.5	11.5	12.5	18.5	22.0	24.0	30.0
	2	1.0	3.5	6.5	10.5	13.0	17.0	22.0	24.0	30.0
	3	1.0	3.0	4.5	10.0	13.0	18.5	21.0	25.0	30.0
Dm (mm)		1.00	3.30	6.10	10.70	14.05	18.40	22.27	25.70	28.89
raio (mm)		0.50	1.65	3.05	5.35	7.02	9.20	11.13	12.85	14.44
Dp (mm)		0.00	0.32	0.63	0.65	0.94	0.63	0.70	1.21	0.85
					pH 10,0					
						Tempo (h	1)			
	Raia	0	24	48	72	96	120	144	168	192
Placa1	1	1.0	3.0	6.5	9.0	14.0	17.0	20.5	24.0	27.5
	2	1.0	3.5	6.0	9.5	13.0	17.0	20.5	24.0	28.0
	3	1.0	3.3	6.5	9.5	14.5	17.5	21.0	24.5	29.0
Placa 2	1	1.0	3.3	6.0	10.0	13.0	17.5	20.5	23.5	29.0
	2	1.0	3.8	6.5	10.5	14.5	17.0	21.5	26.0	27.5
	3	1.0	4.0	6.0	9.5	14.0	17.0	21.1	25.1	31.0
Placa 3	1	1.0	4.5	6.5	9.5	13.0	17.0	21.5	26.0	29.5
	2	1.0	3.5	7.0	8.5	14.0	16.5	20.8	25.0	31.0
	3	1.0	3.0	4.5	10.5	13.5	17.5	20.8	24.0	28.5
Placa 4	1	1.0	3.5	6.0	10.3	13.0	17.0	22.0	27.0	28.0
	2	1.0	3.0	6.5	9.5	13.0	17.0	20.5	24.0	28.0
	3	1.0	3.5	6.0	9.5	13.5	17.0	21.1	25.2	28.5
Placa5	1	1.0	4.0	6.0	9.5	14.5	17.5	20.8	24.0	28.5
	2	1.0	3.5	6.5	10.5	14.0	17.5	21.8	26.0	28.0
	3	1.0	3.7	7.0	10.5	13.5	18.0	21.8	25.5	28.5
Dm (mm)		1.00	3.49	6.17	9.65	13.58	17.08	20.97	24.92	28.70
raio (mm)		0.50	1.75	3.08	4.83	6.79	8.54	10.49	12.46	14.35
p (mm)		0.00	0.42	0.59	0.61	0.59	0.37	0.52	1.02	1.08

Dm: média do diâmetro das colônias; Dp: desvio padrão do diâmetro;

Tabela A.2: Resultados da análise estatística proposta por Zar (1984).

рН	Σ(x)	Σ (y)	$\Sigma(x^2)$	Σ(xy)	$\Sigma (y^2)$	N	Вс	SSc	DF	F _{CALC}	F _{TAB}
2,0	864	33,37	117504	4373,68	163,47	9	0,037	0,676	7		
2,5	864	42,79	117504	5682,64	275,26	9	0,048	0,439	7		
3,0	864	52,11	117504	6877,50	403,56	9	0,059	1,021	7		
3,5	864	64,98	117504	8662,80	640,59	9	0,074	1,936	7		
4,0	864	72,09	117504	9645,64	793,34	9	0,082	1,548	7		
4,5	864	60,21	117504	7959,68	540,66	9	0,068	1,475	7		
5,0	864	58,23	117504	7728,00	509,58	9	0,066	1,326	7		
5,5	864	63,96	117504	8564,48	625,17	9	0,073	0,930	7		
6,0	864	52,97	117504	7115,10	431,17	9	0,061	0,340	7		
6,5	864	67,21	117504	9086,54	703,00	9	0,077	0,342	7		
7,0	864	51,40	117504	6850,40	400,23	9	0,058	0,853	7		
7,5	864	64,79	117504	8609,28	632,36	9	0,073	1,577	7		
8,0	864	59,33	117504	8112,58	561,00	9	0,069	0,902	7		
8,5	864	54,72	117504	7249,68	448,14	9	0,062	0,855	7		
9,0	864	51,43	117504	6917,40	407,78	9	0,059	0,558	7		
9,5	864	65,20	117504	8884,56	672,55	9	0,076	0,780	7		
10,0	864	62,78	117504	8572,68	626,29	9	0,073	0,858	7		
R _P	14688	977,60	199756 8	130892,64	8834,1 5	153	1,114	16,415	119		
Rc								257,276	135	109,131	1,709

x: Tempo (h); y: raio (mm), N: número de pontos por regressão; Bc: ; SSc: ; DF; F_{CALC} : ; F_{TAB} : ; R_P : e R_C : Hipótese nula rejeitada, pois $F_{CALC} > F_{TAB}$.

Tabela A.3: Dados que geraram a Tabela 4.2

	0.a /	,. <u>D</u> uu	90 940	<i>,</i> 90. a.	a a	. 0001		
2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0
	-13,53	-20,98	-28,96	-38,59	-26,69	-25,87	-36,09	-29,69
-13,53		-10,79	-21,10	-30,68	-17,96	-16,80	-26,87	-17,71
-20,98	-10,79		-11,33	-18,85	-7,47	-6,06	-13,18	-2,22
-28,96	-21,10	-11,33		-5,74	4,15	5,64	0,63	11,19
-38,59	-30,68	-18,85	-5,74		10,58	12,34	7,49	20,10
-26,69	-17,96	-7,478	4,15	10,58		1,51	-4,25	6,84
-25,87	-16,80	-6,060	5,64	12,34	1,51		-6,07	5,18
-36,09	-26,87	-13,18	0,63	7,49	-4,25	-6,07		14,03
-29,69	-17,71	-2,22	11,19	20,10	6,84	5,18	14,03	
	2,0 -13,53 -20,98 -28,96 -38,59 -26,69 -25,87 -36,09	2,0 2,5 -13,53 -20,98 -10,79 -28,96 -21,10 -38,59 -30,68 -26,69 -17,96 -25,87 -16,80 -36,09 -26,87	2,0 2,5 3,0 -13,53 -20,98 -13,53 -10,79 -20,98 -10,79 -28,96 -21,10 -11,33 -38,59 -30,68 -18,85 -26,69 -17,96 -7,478 -25,87 -16,80 -6,060 -36,09 -26,87 -13,18	2,0 2,5 3,0 3,5 -13,53 -20,98 -28,96 -13,53 -10,79 -21,10 -20,98 -10,79 -11,33 -28,96 -21,10 -11,33 -38,59 -30,68 -18,85 -5,74 -26,69 -17,96 -7,478 4,15 -25,87 -16,80 -6,060 5,64 -36,09 -26,87 -13,18 0,63	2,0 2,5 3,0 3,5 4,0 -13,53 -20,98 -28,96 -38,59 -13,53 -10,79 -21,10 -30,68 -20,98 -10,79 -11,33 -18,85 -28,96 -21,10 -11,33 -5,74 -38,59 -30,68 -18,85 -5,74 -26,69 -17,96 -7,478 4,15 10,58 -25,87 -16,80 -6,060 5,64 12,34 -36,09 -26,87 -13,18 0,63 7,49	2,0 2,5 3,0 3,5 4,0 4,5 -13,53 -20,98 -28,96 -38,59 -26,69 -13,53 -10,79 -21,10 -30,68 -17,96 -20,98 -10,79 -11,33 -18,85 -7,47 -28,96 -21,10 -11,33 -18,85 -7,47 -38,59 -30,68 -18,85 -5,74 10,58 -26,69 -17,96 -7,478 4,15 10,58 -25,87 -16,80 -6,060 5,64 12,34 1,51 -36,09 -26,87 -13,18 0,63 7,49 -4,25	2,0 2,5 3,0 3,5 4,0 4,5 5,0 -13,53 -20,98 -28,96 -38,59 -26,69 -25,87 -13,53 -10,79 -21,10 -30,68 -17,96 -16,80 -20,98 -10,79 -11,33 -18,85 -7,47 -6,06 -28,96 -21,10 -11,33 -5,74 4,15 5,64 -38,59 -30,68 -18,85 -5,74 10,58 12,34 -26,69 -17,96 -7,478 4,15 10,58 1,51 -25,87 -16,80 -6,060 5,64 12,34 1,51 -36,09 -26,87 -13,18 0,63 7,49 -4,25 -6,07	2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 -13,53 -20,98 -28,96 -38,59 -26,69 -25,87 -36,09 -13,53 -10,79 -21,10 -30,68 -17,96 -16,80 -26,87 -20,98 -10,79 -11,33 -18,85 -7,47 -6,06 -13,18 -28,96 -21,10 -11,33 -5,74 4,15 5,64 0,63 -38,59 -30,68 -18,85 -5,74 10,58 12,34 7,49 -26,69 -17,96 -7,478 4,15 10,58 1,51 -4,25 -25,87 -16,80 -6,060 5,64 12,34 1,51 -6,07 -36,09 -26,87 -13,18 0,63 7,49 -4,25 -6,07

Comparações grifadas em cinza apresentam igualdades na velocidade de crescimento radial.

Tabela A.4: Dados que geraram a Tabela 4.2

				9 9 9 9			• • • • • • • •	
pН	6,5	7,0	7,5	8,0	8,5	9,0	9,5	10,0
6,5		22,32	3,76	9,53	18,32	24,96	2,08	5,12
7,0	22,32		-12,31	-10,39	-3,33	-0,61	-17,37	-14,37
7,5	3,76	-12,31		3,44	9,51	12,64	-1,95	0,25
8,0	9,53	-10,39	3,44		7,10	10,79	-6,49	-3,78
8,5	18,32	-3,33	9,51	7,10		3,05	-13,95	-11,03
9,0	24,96	-0,61	12,64	10,79	3,05		-18,56	-15,18
9,5	2,08	-17,37	-1,95	-6,49	-13,95	-18,56		2,66
10	5,12	-14,37	0,25	-3,78	-11,03	-15,18	2,66	

Comparações grifadas em cinza apresentam igualdades na velocidade de crescimento radial.

Tabela A.5: Dados da absorbância que geraram as Figuras 4.4 e 4.5.

				7.5	pН				
λ (nm)	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0
361	0,648	0,771	0,771	0,716	0,725	0,745	0,725	0,710	0,772
364	0,678	0,792	0,804	0,745	0,753	0,772	0,752	0,736	0,795
367	0,712	0,814	0,841	0,778	0,784	0,802	0,781	0,765	0,820
370	0,748	0,835	0,878	0,814	0,815	0,832	0,811	0,796	0,846
373	0,790	0,857	0,916	0,850	0,846	0,862	0,840	0,825	0,872
376	0,828	0,880	0,945	0,879	0,870	0,886	0,865	0,852	0,894
379	0,862	0,903	0,967	0,905	0,891	0,908	0,886	0,874	0,912
382	0,891	0,922	0,982	0,923	0,908	0,925	0,903	0,893	0,927
385	0,913	0,938	0,992	0,940	0,921	0,938	0,918	0,909	0,939
388	0,934	0,953	0,998	0,955	0,937	0,951	0,932	0,925	0,951
391	0,953	0,967	1,000	0,970	0,950	0,963	0,946	0,939	0,962
394	0,971	0,978	0,997	0,983	0,964	0,975	0,960	0,954	0,974
397	0,987	0,989	0,986	0,993	0,979	0,986	0,974	0,964	0,987
400	0,997	0,996	0,965	0,999	0,989	0,995	0,987	0,984	0,995
403	1,000	1,000	0,935	1,000	0,997	1,000	0,997	0,995	0,999
406	0,996	0,999	0,906	0,995	1,000	0,999	1,000	1,000	1,000
409	0,988	0,993	0,875	0,988	0,997	0,993	0,999	1,000	0,997
412	0,977	0,982	0,844	0,978	0,991	0,982	0,995	0,996	0,991
415	0,962	0,963	0,809	0,964	0,981	0,967	0,986	0,988	0,982
418	0,945	0,940	0,771	0,945	0,967	0,947	0,972	0,976	0,967
421	0,918	0,911	0,720	0,916	0,945	0,920	0,951	0,957	0,946
424	0,884	0,881	0,666	0,880	0,917	0,886	0,922	0,931	0,917
425	0,861	0,825	0,647	0,854	0,904	0,869	0,885	0,917	0,846
428	0,820	0,795	0,590	0,814	0,866	0,828	0,851	0,881	0,810
431	0,776	0,772	0,543	0,774	0,829	0,790	0,817	0,846	0,775
434	0,737	0,754	0,500	0,734	0,790	0,751	0,780	0,807	0,738
437	0,695	0,736	0,463	0,693	0,750	0,713	0,743	0,766	0,702
440	0,658	0,721	0,426	0,652	0,708	0,673	0,704	0,724	0,663
443	0,614	0,705	0,388	0,606	0,659	0,628	0,659	0,676	0,620
446	0,572	0,689	0,348	0,552	0,606	0,579	0,609	0,622	0,572
449	0,524	0,671	0,309	0,503	0,557	0,535	0,563	0,573	0,530
452	0,484	0,656	0,273	0,460	0,513	0,496	0,523	0,529	0,493
455	0,450	0,647	0,245	0,430	0,484	0,472	0,499	0,501	0,470
458	0,425	0,643	0,226	0,412	0,468	0,459	0,487	0,487	0,457
461	0,407	0,642	0,209	0,401	0,460	0,453	0,481	0,479	0,452
464	0,391	0,643	0,196	0,396	0,458	0,453	0,479	0,479	0,452
467	0,376	0,644	0,184	0,395	0,461	0,458	0,483	0,484	0,457
470	0,362	0,647	0,173	0,401	0,472	0,469	0,496	0,497	0,470
473	0,347	0,648	0,164	0,412	0,489	0,485	0,515	0,517	0,487
476	0,333	0,645	0,158	0,426	0,508	0,503	0,534	0,538	0,507
479	0,321	0,641	0,154	0,440	0,528	0,503	0,554	0,560	0,527

482	0,310	0,635	0,152	0,455	0,547	0,521	0,573	0,581	0,546
485	0,301	0,629	0,150	0,467	0,563	0,539	0,589	0,599	0,561
488	0,292	0,621	0,150	0,481	0,581	0,554	0,606	0,618	0,579
491	0,283	0,614	0,149	0,494	0,598	0,571	0,624	0,636	0,594
494	0,274	0,605	0,148	0,508	0,616	0,587	0,642	0,656	0,611
497	0,265	0,614	0,148	0,522	0,633	0,605	0,660	0,676	0,629
500	0,256	0,594	0,146	0,531	0,647	0,622	0,674	0,693	0,639
503	0,249	0,581	0,144	0,537	0,655	0,636	0,684	0,704	0,645
506	0,243	0,565	0,143	0,540	0,659	0,645	0,690	0,711	0,648
509	0,238	0,549	0,141	0,541	0,661	0,651	0,694	0,714	0,649
512	0,232	0,532	0,139	0,538	0,661	0,654	0,694	0,716	0,647
515	0,225	0,513	0,137	0,535	0,660	0,655	0,694	0,716	0,645
518	0,218	0,492	0,136	0,529	0,657	0,655	0,692	0,714	0,640
521	0,210	0,468	0,133	0,522	0,650	0,654	0,686	0,708	0,631
524	0,201	0,438	0,129	0,517	0,642	0,648	0,679	0,700	0,622
525	0,200	0,406	0,127	0,509	0,634	0,640	0,676	0,690	0,614
528	0,194	0,396	0,125	0,501	0,624	0,638	0,666	0,680	0,602
531	0,189	0,369	0,122	0,493	0,614	0,628	0,656	0,670	0,592
534	0,185	0,348	0,119	0,484	0,604	0,619	0,644	0,659	0,580
537	0,183	0,331	0,117	0,473	0,593	0,608	0,633	0,647	0,569

Tabela A.6: Determinação do comprimento de onda para quantificação dos pigmentos produzidos pelo *M. ruber*.

Pigmen	Pigmento amarelo		to laranja	Pigmento	vermelho
λ (nm)	UA	λ (nm)	UA	λ (nm)	UA
325	0,377	395	0,462	447	0,536
328	0,387	398	0,474	450	0,537
331	0,399	401	0,491	453	0,545
334	0,411	404	0,507	456	0,552
337	0,426	407	0,525	459	0,563
340	0,442	410	0,543	462	0,580
343	0,462	413	0,568	465	0,601
346	0,486	416	0,596	468	0,631
349	0,515	419	0,630	471	0,664
352	0,549	422	0,665	474	0,695
355	0,581	425	0,698	477	0,726
358	0,613	428	0,726	480	0,764
361	0,648	431	0,759	483	0,793
364	0,678	434	0,784	486	0,823
367	0,712	437	0,810	489	0,854
370	0,748	440	0,836	492	0,887
373	0,790	443	0,865	495	0,918
376	0,828	446	0,893	498	0,947
379	0,862	449	0,920	501	0,971
382	0,891	452	0,941	504	0,985
385	0,913	455	0,957	507	0,996
388	0,934	458	0,969	510	1,000
391	0,953	461	0,979	513	1,000
394	0,971	464	0,988	516	0,998
397	0,987	467	0,994	519	0,996
400	0,997	470	1,000	522	0,991
403	1,000	473	1,000	525	0,978
406	0,996	476	0,993	528	0,952
409	0,988	479	0,975	531	0,918
412	0,977	482	0,952	534	0,876
415	0,962	485	0,921	537	0,824
418	0,945	488	0,886	540	0,764
421	0,918	491	0,843	543	0,698
424	0,884	494	0,799	546	0,680
425	0,861	497	0,810	549	0,645
428	0,820	500	0,767	552	0,612
431	0,776	503	0,740	555	0,585
434	0,737	506	0,717	558	0,565
437	0,695	509	0,701	561	0,548
440	0,658	512	0,686	564	0,530
443	0,614	515	0,670	567	0,512
446	0,572	518	0,654	570	0,497
449	0,524	521	0,638	573	0,484

UA: Unidades de absorbância.

APÊNDICE B

Tabela B.1: Dados que geraram a Figura 4.19.

	· -	ranco					
NaOH (mL)	NaOH (meq)	рН	Abs 470	Abs 510			
0,00	0,00	2,046	0,380	0,356			
0,40	0,40	2,088	0,375	0,342			
1,00	1,00	2,158	0,372	0,334			
1,50	1,50	2,200	0,370	0,318			
2,00	2,00	2,312	0,368	0,305			
2,50	2,50	2,414	0,363	0,295			
3,00	3,00	2,556	0,357	0,287			
3,50	3,50	2,796	0,339	0,276			
3,80	3,80	2,957	0,333	0,270			
4,10	4,10	3,538	0,318	0,255			
4,20	4,20	4,054	0,316	0,251			
4,30	4,30	7,281	0,256	0,228			
4,33	4,33	9,394	0,268	0,237			
4,36	4,36	9,977	0,285	0,249			
4,40	4,40	10,257	0,299	0,258			
4,43	4,43	10,446	0,309	0,268			
4,50	4,50	10,597	0,312	0,278			
4,70	4,70	10,927	0,322	0,292			
5,00	5,00	11,209	0,332	0,303			
5,30	5,30	11,280	0,398	0,375			
5,60	5,60	11,402	0,426	0,406			
6,00	6,00	11,503	0,460	0,445			
6,50	6,50	11,606	0,470	0,463			
7,50	7,50	11,759	0,492	0,479			

Tabela B.2: Dados que geraram a Figura 4.20.

		Glicina		
NaOH (mL)	NaOH (meq)	рН	Abs 470	Abs 510
0,00	0,00	1,900	0,269	0,289
1,00	1,00	1,952	0,267	0,282
3,00	3,00	2,059	0,266	0,281
6,30	6,30	2,246	0,266	0,279
8,00	8,00	2,338	0,255	0,282
10,00	10,00	2,453	0,256	0,271
12,00	12,00	2,571	0,250	0,270
13,00	13,00	2,641	0,258	0,273
14,00	14,00	2,709	0,258	0,274
16,00	16,00	2,870	0,253	0,275
17,00	17,00	2,962	0,252	0,267
18,00	18,00	3,068	0,250	0,267
19,00	19,00	3,205	0,248	0,267
20,00	20,00	3,360	0,245	0,266
21,00	21,00	3,596	0,249	0,267
21,50	21,50	3,755	0,249	0,269
21,80	21,80	3,922	0,251	0,276
22,00	22,00	4,033	0,253	0,278
22,10	22,10	4,123	0,254	0,279
22,30	22,30	4,305	0,260	0,281
22,40	22,40	4,473	0,260	0,280
22,50	22,50	4,728	0,264	0,284
22,60	22,60	4,887	0,270	0,291
22,75	22,75	5,658	0,354	0,359
22,85	22,85	6,807	0,368	0,397
22,90	22,90	7,222	0,401	0,412
23,00	23,00	7,446	0,411	0,424
23,20	23,20	7,655	0,413	0,446
23,50	23,50	7,881	0,419	0,462
23,70	23,70	8,006	0,413	0,495
24,00	24,00	8,117	0,416	0,512
24,30	24,30	8,210	0,416	0,543
24,70	24,70	8,338	0,440	0,586
25,50	25,50	8,493	0,427	0,612
26,50	26,50	8,654	0,463	0,660
28,30	28,30	8,868	0,475	0,690
29,50	29,50	8,968	0,494	0,705
31,50	31,50	9,130	0,515	0,740
33,50	33,50	9,266	0,545	0,775
35,50	35,50	9,390	0,555	0,790
37,50	37,50	9,510	0,579	0,808
39,50	39,50	9,630	0,595	0,810
41,50	41,50	9,761	0,603	0,811
42,50	42,50	9,832	0,609	0,818
44,00	44,00	9,938	0,609	0,817
	44,00 46,00			
46,00 47,50	46,00 47,50	10,123 10,305	0,627	0,809
			0,652	0,805
48,80	48,80	10,522	0,653	0,795
49,30	49,30	10,633	0,648	0,785
49,80	49,80	10,747	0,690	0,776
50,40	50,40	10,822	0,674	0,720

50,90	50,90	10,981	0,688	0,698
51,20	51,20	11,114	0,717	0,673
51,90	51,90	11,322	0,726	0,623
52,40	52,40	11,462	0,764	0,573
52,90	52,90	11,566	0,750	0,520
53,20	53,20	11,622	0,741	0,475
54,50	54,50	11,778	0,745	0,407
55,70	55,70	11,907	0,725	0,349
57,50	57,50	12,010	0,681	0,288
59,50	59,50	12,106	0,621	0,235
63,00	63,00	12,234	0,553	0,192
66,50	66,50	12,323	0,455	0,151
71,50	71,50	12,413	0,349	0,118
76,00	76,00	12,477	0,265	0,102
85,00	85,00	12,567	0,217	0,095
100,00	100,00	12,672	0,176	0,086

Tabela B.3: Dados que geraram a Figura 4.21.

	monoglutamato							
NaOH (mL)	NaOH (meg)	pH	Abs 470	Abs 510				
0,00	0,00	2,113	0,332	0,279				
0,20	0,20	2,132	0,333	0,276				
0,50	0,50	2,147	0,328	0,270				
0,80	0,80	2,163	0,321	0,266				
1,80	1,80	2,205	0,322	0,265				
2,80	2,80	2,249	0,316	0,260				
3,60	3,60	2,286	0,318	0,260				
4,60	4,60	2,333	0,314	0,257				
5,50	5,50	2,365	0,308	0,254				
6,20	6,20	2,400	0,302	0,248				
7,30	7,30	2,452	0,296	0,242				
8,30	8,30	2,502	0,295	0,243				
9,20	9,20	2,552	0,300	0,250				
10,40	10,40	2,613	0,289	0,238				
11,50	11,50	2,676	0,287	0,233				
12,50	12,50	2,738	0,288	0,239				
13,50	13,50	2,735	0,288	0,239				
14,70	14,70	2,793	0,266	0,222				
16,00	16,00	2,964	0,267	0,224				
17,30	17,30	3,054	0,287	0,236				
18,90	18,90	3,174	0,277	0,235				
20,20	20,20	3,279	0,264	0,219				
21,60	21,60	3,394	0,278	0,238				
23,00	23,00	3,501	0,278	0,237				
24,30	24,30	3,608	0,274	0,225				
25,70	25,70	3,703	0,278	0,227				
27,40	27,40	3,822	0,285	0,233				
29,20	29,20	3,941	0,276	0,230				
30,50	30,50	4,012	0,267	0,222				
32,50	32,50	4,127	0,254	0,217				
34,50	34,50	4,248	0,259	0,218				
36,20	36,20	4,357	0,249	0,216				
37,50	37,50	4,444	0,235	0,215				
39,20	39,20	4,565	0,240	0,215				
40,90	40,90	4,705	0,235	0,216				
42,40	42,40	4,854	0,236	0,214				
43,70	43,70	5,019	0,236	0,214				
44,70	44,70	5,175	0,247	0,223				
45,40	45,40	5,325	0,255	0,233				
46,00	46,00	5,497	0,267	0,244				
46,30	46,30	5,613	0,281	0,259				
46,60	46,60	5,757	0,397	0,366				
46,70	46,70	5,824	0,299	0,277				
46,80	46,80	5,953	0,333	0,303				
46,90	46,90	6,054	0,315	0,291				
47,10	47,10	6,201	0,312	0,298				
47,20	47,20	6,416	0,339	0,320				
47,25	47,25	6,499	0,343	0,322				
47,30	47,30	6,588	0,361	0,340				
47,33	47,33	6,685	0,355	0,338				

47,36	47,36	6,786	0,366	0,343
47,40	47,40	6,882	0,370	0,356
47,43	47,43	6,976	0,379	0,363
47,46	47,46	7,067	0,383	0,372
47,50	47,50	7,142	0,401	0,392
47,60	47,60	7,284	0,413	0,414
47,65	47,65	7,399	0,429	0,429
47,75	47,75	7,549	0,420	0,443
47,90	47,90	7,690	0,438	0,467
48,10	48,10	7,810	0,445	0,486
48,20	48,20	7,905	0,446	0,499
48,55	48,55	8,042	0,454	0,519
48,90	48,90	8,162	0,469	0,542
49,30	49,30	8,283	0,461	0,566
50,00	50,00	8,426	0,464	0,577
50,70	50,70	8,542	0,484	0,630
51,35	51,35	8,632	0,504	0,663
52,50	52,50	8,770	0,527	0,697
53,70	53,70	8,885	0,548	0,725
55,00	55,00	8,993	0,592	0,785
57,00	57,00	9,145	0,590	0,798
59,70	59,70	9,273	0,631	0,859
63,00	63,00	9,532	0,649	0,881
66,00	66,00	9,660	0,667	0,899
71,00	71,00	10,152	0,738	0,950

Tabela B.4: Dados que geraram a Figura 4.22.

	tirosina							
NaOH (mL)	NaOH (meq)	pН	Abs 470	Abs 510				
0,00	0,00	1,460	0,297	0,373				
2,00	2,00	1,532	0,296	0,373				
4,10	4,10	1,629	0,295	0,372				
6,00	6,00	1,737	0,294	0,372				
8,00	8,00	1,880	0,292	0,371				
9,70	9,70	2,034	0,290	0,369				
11,00	11,00	2,106	0,289	0,367				
12,00	12,00	2,214	0,289	0,366				
12,30	12,30	2,249	0,288	0,366				
12,50	12,50	2,281	0,282	0,367				
12,80	12,80	2,317	0,283	0,365				
13,00	13,00	2,348	0,281	0,364				
13,50	13,50	2,433	0,281	0,363				
14,00	14,00	2,522	0,280	0,363				
14,30	14,30	2,577	0,279	0,360				
14,50	14,50	2,618	0,279	0,360				
15,00	15,00	2,737	0,276	0,361				
16,00	16,00	3,005	0,275	0,363				
16,50	16,50	3,468	0,276	0,361				
16,60	16,60	3,641	0,274	0,363				
16,63	16,63	3,740	0,274	0,363				
16,66	16,66	3,740	0,275	,				
16,70	16,70	4,096	0,274	0,399 0,415				
,		,		,				
16,83	16,83	4,702	0,282	0,419				
16,86	16,86	5,812	0,295	0,443				
16,90	16,90	6,570	0,306	0,477				
16,96	16,96	7,611	0,311	0,484				
17,00	17,00	7,787	0,312	0,500				
17,10	17,10	8,017	0,316	0,518				
17,20	17,20	8,273	0,320	0,526				
17,40	17,40	8,417	0,326	0,538				
17,50	17,50	8,544	0,332	0,550				
17,60	17,60	8,669	0,336	0,559				
17,80	17,80	8,761	0,337	0,561				
17,90	17,90	8,845	0,339	0,566				
18,05	18,05	8,920	0,345	0,567				
18,15	18,15	8,985	0,347	0,571				
18,30	18,30	9,030	0,349	0,582				
18,45	18,45	9,039	0,353	0,593				
18,60	18,60	9,087	0,355	0,599				
18,80	18,80	9,126	0,358	0,603				
19,00	19,00	9,165	0,357	0,610				
19,10	19,10	9,180	0,358	0,612				
19,35	19,35	9,214	0,359	0,613				
19,60	19,60	9,254	0,360	0,615				
20,00	20,00	9,296	0,364	0,615				
20,50	20,50	9,354	0,366	0,616				
21,00	21,00	9,414	0,366	0,617				
21,50	21,50	9,470	0,367	0,625				
22,00	22,00	9,480	0,367	0,628				

23,00 23,00 9,530 0,367 0,627 23,50 23,50 9,628 0,366 0,633 24,00 24,00 9,681 0,363 0,633 24,50 24,50 9,780 0,364 0,651 25,00 25,00 9,877 0,363 0,652 25,50 25,50 9,974 0,359 0,650 26,00 26,00 10,066 0,356 0,650 26,30 26,30 10,138 0,353 0,646 26,50 26,50 10,184 0,350 0,643 27,00 27,00 10,290 0,351 0,638 27,50 27,50 10,409 0,346 0,640 28,00 28,00 10,542 0,344 0,635 28,50 28,50 10,676 0,338 0,633 29,50 29,50 10,999 0,326 0,630 30,50 30,50 11,355 0,319 0,625 31,5					
24,00 24,00 9,681 0,363 0,633 24,50 24,50 9,780 0,364 0,651 25,00 25,00 9,877 0,363 0,652 25,50 25,50 9,974 0,359 0,650 26,00 26,00 10,066 0,356 0,650 26,30 26,30 10,138 0,353 0,646 26,50 26,50 10,184 0,350 0,643 27,00 27,00 10,290 0,351 0,638 27,50 27,50 10,409 0,346 0,640 28,00 28,00 10,542 0,344 0,635 28,50 28,50 10,676 0,338 0,633 29,00 29,00 10,825 0,331 0,629 29,50 29,50 10,999 0,326 0,630 30,50 30,50 11,355 0,319 0,625 31,00 31,50 11,567 0,307 0,618 32	23,00	23,00	9,530	0,367	0,627
24,50 24,50 9,780 0,364 0,651 25,00 25,00 9,877 0,363 0,652 25,50 25,50 9,974 0,359 0,650 26,00 26,00 10,066 0,356 0,650 26,30 26,30 10,138 0,353 0,646 26,50 26,50 10,184 0,350 0,643 27,00 27,00 10,290 0,351 0,638 27,50 27,50 10,409 0,346 0,640 28,00 28,00 10,542 0,344 0,635 28,50 28,50 10,676 0,338 0,633 29,00 29,00 10,825 0,331 0,629 29,50 29,50 10,999 0,326 0,630 30,50 30,50 11,254 0,322 0,628 30,50 31,00 31,00 31,00 31,60 0,613 32,50 32,50 11,567 0,307 0,617	23,50	23,50	9,628	0,366	0,633
25,00 25,00 9,877 0,363 0,652 25,50 25,50 9,974 0,359 0,650 26,00 26,00 10,066 0,356 0,650 26,30 26,30 10,138 0,353 0,646 26,50 26,50 10,184 0,350 0,643 27,00 27,00 10,290 0,351 0,638 27,50 27,50 10,409 0,346 0,640 28,00 28,00 10,542 0,344 0,635 28,50 28,50 10,676 0,338 0,633 29,00 29,00 10,825 0,331 0,629 29,50 29,50 10,999 0,326 0,630 30,50 31,00 31,00 31,00 31,062 31,00 31,00 11,437 0,319 0,625 31,50 31,50 11,507 0,313 0,618 32,00 32,50 11,625 0,301 0,615	24,00	24,00	9,681	0,363	0,633
25,50 25,50 9,974 0,359 0,650 26,00 26,00 10,066 0,356 0,650 26,30 26,30 10,138 0,353 0,646 26,50 26,50 10,184 0,350 0,643 27,00 27,00 10,290 0,351 0,638 27,50 27,50 10,409 0,346 0,640 28,00 28,00 10,542 0,344 0,635 28,50 28,50 10,676 0,338 0,633 29,00 29,00 10,825 0,331 0,629 29,50 29,50 10,999 0,326 0,630 30,00 30,00 11,254 0,322 0,628 30,50 30,50 11,355 0,319 0,625 31,00 31,00 11,437 0,316 0,623 31,50 31,50 11,567 0,307 0,617 32,50 32,50 11,625 0,301 0,615 <td< td=""><td>24,50</td><td>24,50</td><td>9,780</td><td>0,364</td><td>0,651</td></td<>	24,50	24,50	9,780	0,364	0,651
26,00 26,00 10,066 0,356 0,650 26,30 26,30 10,138 0,353 0,646 26,50 26,50 10,184 0,350 0,643 27,00 27,00 10,290 0,351 0,638 27,50 27,50 10,409 0,346 0,640 28,00 28,00 10,542 0,344 0,635 28,50 28,50 10,676 0,338 0,633 29,00 29,00 10,825 0,331 0,629 29,50 29,50 10,999 0,326 0,630 30,00 30,00 11,254 0,322 0,628 30,50 30,50 11,355 0,319 0,625 31,00 31,00 11,437 0,316 0,623 31,50 31,50 11,507 0,313 0,618 32,50 32,50 11,625 0,301 0,615 33,00 33,00 11,625 0,301 0,615 <t< td=""><td>25,00</td><td>25,00</td><td>9,877</td><td>0,363</td><td>0,652</td></t<>	25,00	25,00	9,877	0,363	0,652
26,30 26,30 10,138 0,353 0,646 26,50 26,50 10,184 0,350 0,643 27,00 27,00 10,290 0,351 0,638 27,50 27,50 10,409 0,346 0,640 28,00 28,00 10,542 0,344 0,635 28,50 28,50 10,676 0,338 0,633 29,00 29,00 10,825 0,331 0,629 29,50 29,50 10,999 0,326 0,630 30,00 30,00 11,254 0,322 0,628 30,50 30,50 11,355 0,319 0,625 31,00 31,00 11,437 0,316 0,623 31,50 31,50 11,507 0,313 0,618 32,00 32,00 11,567 0,307 0,617 32,50 32,50 11,625 0,301 0,615 33,00 33,50 11,716 0,294 0,600 <t< td=""><td>25,50</td><td>25,50</td><td>9,974</td><td>0,359</td><td>0,650</td></t<>	25,50	25,50	9,974	0,359	0,650
26,50 26,50 10,184 0,350 0,643 27,00 27,00 10,290 0,351 0,638 27,50 27,50 10,409 0,346 0,640 28,00 28,00 10,542 0,344 0,635 28,50 28,50 10,676 0,338 0,633 29,00 29,00 10,825 0,331 0,629 29,50 29,50 10,999 0,326 0,630 30,00 30,00 11,254 0,322 0,628 30,50 30,50 11,355 0,319 0,625 31,00 31,00 11,437 0,316 0,623 31,50 31,50 11,507 0,313 0,618 32,00 32,00 11,567 0,307 0,617 32,50 32,50 11,625 0,301 0,615 33,00 33,50 11,716 0,294 0,600 34,00 34,00 11,716 0,294 0,502 <t< td=""><td>26,00</td><td>26,00</td><td>10,066</td><td>0,356</td><td>0,650</td></t<>	26,00	26,00	10,066	0,356	0,650
27,00 27,00 10,290 0,351 0,638 27,50 27,50 10,409 0,346 0,640 28,00 28,00 10,542 0,344 0,635 28,50 28,50 10,676 0,338 0,633 29,00 29,00 10,825 0,331 0,629 29,50 29,50 10,999 0,326 0,630 30,00 30,00 11,254 0,322 0,628 30,50 30,50 11,355 0,319 0,625 31,00 31,00 11,437 0,316 0,623 31,50 31,50 11,507 0,313 0,618 32,00 32,00 11,567 0,307 0,617 32,50 32,50 11,625 0,301 0,615 33,00 33,50 11,716 0,294 0,600 34,00 34,00 11,716 0,294 0,600 34,00 34,00 11,764 0,290 0,583 <t< td=""><td>26,30</td><td>26,30</td><td>10,138</td><td>0,353</td><td>0,646</td></t<>	26,30	26,30	10,138	0,353	0,646
27,50 27,50 10,409 0,346 0,640 28,00 28,00 10,542 0,344 0,635 28,50 28,50 10,676 0,338 0,633 29,00 29,00 10,825 0,331 0,629 29,50 29,50 10,999 0,326 0,630 30,00 30,00 11,254 0,322 0,628 30,50 30,50 11,355 0,319 0,625 31,00 31,00 11,437 0,316 0,623 31,50 31,50 11,507 0,313 0,618 32,00 32,00 11,567 0,307 0,617 32,50 32,50 11,625 0,301 0,615 33,00 33,00 11,674 0,299 0,613 33,50 33,50 11,716 0,294 0,600 34,00 34,00 11,716 0,294 0,592 35,00 35,00 11,764 0,290 0,583 <t< td=""><td>26,50</td><td>26,50</td><td>10,184</td><td>0,350</td><td>0,643</td></t<>	26,50	26,50	10,184	0,350	0,643
28,00 28,00 10,542 0,344 0,635 28,50 28,50 10,676 0,338 0,633 29,00 29,00 10,825 0,331 0,629 29,50 29,50 10,999 0,326 0,630 30,00 30,00 11,254 0,322 0,628 30,50 30,50 11,355 0,319 0,625 31,00 31,00 11,437 0,316 0,623 31,50 31,50 11,507 0,313 0,618 32,00 32,00 11,567 0,307 0,617 32,50 32,50 11,625 0,301 0,615 33,00 33,00 11,674 0,299 0,613 33,50 33,50 11,716 0,294 0,600 34,00 34,00 11,764 0,299 0,583 36,00 36,00 11,764 0,290 0,583 36,00 36,00 11,816 0,291 0,575 <t< td=""><td>27,00</td><td>27,00</td><td>10,290</td><td>0,351</td><td>0,638</td></t<>	27,00	27,00	10,290	0,351	0,638
28,50 28,50 10,676 0,338 0,633 29,00 29,00 10,825 0,331 0,629 29,50 29,50 10,999 0,326 0,630 30,00 30,00 11,254 0,322 0,628 30,50 30,50 11,355 0,319 0,625 31,00 31,00 11,437 0,316 0,623 31,50 31,50 11,507 0,313 0,618 32,00 32,00 11,567 0,307 0,617 32,50 32,50 11,625 0,301 0,615 33,00 33,00 11,674 0,299 0,613 33,50 33,50 11,716 0,294 0,600 34,00 34,00 11,716 0,294 0,592 35,00 35,00 11,764 0,290 0,583 36,00 36,00 11,816 0,291 0,579 37,00 37,00 11,867 0,289 0,575 <t< td=""><td>27,50</td><td>27,50</td><td>10,409</td><td>0,346</td><td>0,640</td></t<>	27,50	27,50	10,409	0,346	0,640
29,00 29,00 10,825 0,331 0,629 29,50 29,50 10,999 0,326 0,630 30,00 30,00 11,254 0,322 0,628 30,50 30,50 11,355 0,319 0,625 31,00 31,00 11,437 0,316 0,623 31,50 31,50 11,507 0,313 0,618 32,00 32,50 11,567 0,307 0,617 32,50 32,50 11,625 0,301 0,615 33,00 33,00 11,674 0,299 0,613 33,50 33,50 11,716 0,294 0,600 34,00 34,00 11,716 0,294 0,592 35,00 35,00 11,764 0,290 0,583 36,00 36,00 11,816 0,291 0,579 37,00 37,00 11,867 0,289 0,575 38,00 38,00 11,910 0,288 0,568 <t< td=""><td>28,00</td><td>28,00</td><td>10,542</td><td>0,344</td><td>0,635</td></t<>	28,00	28,00	10,542	0,344	0,635
29,50 29,50 10,999 0,326 0,630 30,00 30,00 11,254 0,322 0,628 30,50 30,50 11,355 0,319 0,625 31,00 31,00 11,437 0,316 0,623 31,50 31,50 11,507 0,313 0,618 32,00 32,50 11,567 0,307 0,617 32,50 32,50 11,625 0,301 0,615 33,00 33,00 11,674 0,299 0,613 33,50 33,50 11,716 0,294 0,592 35,00 34,00 11,716 0,294 0,592 35,00 35,00 11,764 0,290 0,583 36,00 36,00 11,816 0,291 0,579 37,00 37,00 11,867 0,289 0,575 38,00 38,00 11,910 0,288 0,568 39,00 39,00 11,947 0,288 0,568 <t< td=""><td>28,50</td><td>28,50</td><td>10,676</td><td>0,338</td><td>0,633</td></t<>	28,50	28,50	10,676	0,338	0,633
30,00 30,00 11,254 0,322 0,628 30,50 30,50 11,355 0,319 0,625 31,00 31,00 11,437 0,316 0,623 31,50 31,50 11,507 0,313 0,618 32,00 32,00 11,567 0,307 0,617 32,50 32,50 11,625 0,301 0,615 33,00 33,00 11,674 0,299 0,613 33,50 33,50 11,716 0,294 0,592 35,00 34,00 11,716 0,294 0,592 35,00 35,00 11,764 0,290 0,583 36,00 36,00 11,816 0,291 0,579 37,00 37,00 11,867 0,289 0,575 38,00 38,00 11,910 0,288 0,568 39,00 39,00 11,947 0,288 0,568 39,00 39,00 11,947 0,288 0,5663 <	29,00	29,00	10,825	0,331	0,629
30,50 30,50 11,355 0,319 0,625 31,00 31,00 11,437 0,316 0,623 31,50 31,50 11,507 0,313 0,618 32,00 32,00 11,567 0,307 0,617 32,50 32,50 11,625 0,301 0,615 33,00 33,00 11,674 0,299 0,613 33,50 33,50 11,716 0,294 0,600 34,00 34,00 11,716 0,294 0,592 35,00 35,00 11,764 0,290 0,583 36,00 36,00 11,816 0,291 0,579 37,00 37,00 11,867 0,289 0,575 38,00 38,00 11,910 0,288 0,568 39,00 39,00 11,947 0,288 0,563 40,00 40,00 11,981 0,283 0,558 42,00 42,00 12,039 0,275 0,545 <t< td=""><td>29,50</td><td>29,50</td><td>10,999</td><td>0,326</td><td>0,630</td></t<>	29,50	29,50	10,999	0,326	0,630
31,00 31,00 11,437 0,316 0,623 31,50 31,50 11,507 0,313 0,618 32,00 32,00 11,567 0,307 0,617 32,50 32,50 11,625 0,301 0,615 33,00 33,00 11,674 0,299 0,613 33,50 33,50 11,716 0,294 0,600 34,00 34,00 11,716 0,294 0,592 35,00 35,00 11,764 0,290 0,583 36,00 36,00 11,816 0,291 0,579 37,00 37,00 11,867 0,289 0,575 38,00 38,00 11,910 0,288 0,568 39,00 39,00 11,947 0,288 0,563 40,00 40,00 11,981 0,283 0,558 42,00 42,00 12,039 0,275 0,545 44,00 44,00 12,087 0,269 0,535 <t< td=""><td>30,00</td><td>30,00</td><td>11,254</td><td>0,322</td><td>0,628</td></t<>	30,00	30,00	11,254	0,322	0,628
31,50 31,50 11,507 0,313 0,618 32,00 32,00 11,567 0,307 0,617 32,50 32,50 11,625 0,301 0,615 33,00 33,00 11,674 0,299 0,613 33,50 33,50 11,716 0,294 0,600 34,00 34,00 11,716 0,294 0,592 35,00 35,00 11,764 0,290 0,583 36,00 36,00 11,816 0,291 0,579 37,00 37,00 11,867 0,289 0,575 38,00 38,00 11,910 0,288 0,568 39,00 39,00 11,947 0,288 0,568 40,00 40,00 11,981 0,283 0,558 42,00 42,00 12,039 0,275 0,545 44,00 44,00 12,087 0,269 0,535 46,00 46,00 12,130 0,256 0,527 <t< td=""><td>30,50</td><td>30,50</td><td>11,355</td><td>0,319</td><td>0,625</td></t<>	30,50	30,50	11,355	0,319	0,625
32,00 32,00 11,567 0,307 0,617 32,50 32,50 11,625 0,301 0,615 33,00 33,00 11,674 0,299 0,613 33,50 33,50 11,716 0,294 0,600 34,00 34,00 11,716 0,294 0,592 35,00 35,00 11,764 0,290 0,583 36,00 36,00 11,816 0,291 0,579 37,00 37,00 11,867 0,289 0,575 38,00 38,00 11,910 0,288 0,568 39,00 39,00 11,947 0,288 0,568 40,00 40,00 11,981 0,283 0,558 42,00 42,00 12,039 0,275 0,545 44,00 44,00 12,087 0,269 0,535 46,00 46,00 12,130 0,256 0,527 48,00 48,00 12,166 0,198 0,517	31,00	31,00	11,437	0,316	0,623
32,50 32,50 11,625 0,301 0,615 33,00 33,00 11,674 0,299 0,613 33,50 33,50 11,716 0,294 0,600 34,00 34,00 11,716 0,294 0,592 35,00 35,00 11,764 0,290 0,583 36,00 36,00 11,816 0,291 0,579 37,00 37,00 11,867 0,289 0,575 38,00 38,00 11,910 0,288 0,568 39,00 39,00 11,947 0,288 0,568 40,00 40,00 11,981 0,283 0,558 42,00 42,00 12,039 0,275 0,545 44,00 44,00 12,087 0,269 0,535 46,00 46,00 12,130 0,256 0,527 48,00 48,00 12,166 0,198 0,517	31,50	31,50	11,507	0,313	0,618
33,00 33,00 11,674 0,299 0,613 33,50 33,50 11,716 0,294 0,600 34,00 34,00 11,716 0,294 0,592 35,00 35,00 11,764 0,290 0,583 36,00 36,00 11,816 0,291 0,579 37,00 37,00 11,867 0,289 0,575 38,00 38,00 11,910 0,288 0,568 39,00 39,00 11,947 0,288 0,568 40,00 40,00 11,981 0,283 0,558 42,00 42,00 12,039 0,275 0,545 44,00 44,00 12,087 0,269 0,535 46,00 46,00 12,130 0,256 0,527 48,00 48,00 12,166 0,198 0,517	32,00	32,00	11,567	0,307	0,617
33,50 33,50 11,716 0,294 0,600 34,00 34,00 11,716 0,294 0,592 35,00 35,00 11,764 0,290 0,583 36,00 36,00 11,816 0,291 0,579 37,00 37,00 11,867 0,289 0,575 38,00 38,00 11,910 0,288 0,568 39,00 39,00 11,947 0,288 0,563 40,00 40,00 11,981 0,283 0,558 42,00 42,00 12,039 0,275 0,545 44,00 44,00 12,087 0,269 0,535 46,00 46,00 12,130 0,256 0,527 48,00 48,00 12,166 0,198 0,517	32,50	32,50	11,625	0,301	0,615
34,00 34,00 11,716 0,294 0,592 35,00 35,00 11,764 0,290 0,583 36,00 36,00 11,816 0,291 0,579 37,00 37,00 11,867 0,289 0,575 38,00 38,00 11,910 0,288 0,568 39,00 39,00 11,947 0,288 0,563 40,00 40,00 11,981 0,283 0,558 42,00 42,00 12,039 0,275 0,545 44,00 44,00 12,087 0,269 0,535 46,00 46,00 12,130 0,256 0,527 48,00 48,00 12,166 0,198 0,517	33,00	33,00	11,674	0,299	0,613
35,00 35,00 11,764 0,290 0,583 36,00 36,00 11,816 0,291 0,579 37,00 37,00 11,867 0,289 0,575 38,00 38,00 11,910 0,288 0,568 39,00 39,00 11,947 0,288 0,563 40,00 40,00 11,981 0,283 0,558 42,00 42,00 12,039 0,275 0,545 44,00 44,00 12,087 0,269 0,535 46,00 46,00 12,130 0,256 0,527 48,00 48,00 12,166 0,198 0,517	33,50	33,50	11,716	0,294	0,600
36,00 36,00 11,816 0,291 0,579 37,00 37,00 11,867 0,289 0,575 38,00 38,00 11,910 0,288 0,568 39,00 39,00 11,947 0,288 0,563 40,00 40,00 11,981 0,283 0,558 42,00 42,00 12,039 0,275 0,545 44,00 44,00 12,087 0,269 0,535 46,00 46,00 12,130 0,256 0,527 48,00 48,00 12,166 0,198 0,517	34,00	34,00	11,716	0,294	0,592
37,00 37,00 11,867 0,289 0,575 38,00 38,00 11,910 0,288 0,568 39,00 39,00 11,947 0,288 0,563 40,00 40,00 11,981 0,283 0,558 42,00 42,00 12,039 0,275 0,545 44,00 44,00 12,087 0,269 0,535 46,00 46,00 12,130 0,256 0,527 48,00 48,00 12,166 0,198 0,517	35,00	35,00	11,764	0,290	0,583
38,00 38,00 11,910 0,288 0,568 39,00 39,00 11,947 0,288 0,563 40,00 40,00 11,981 0,283 0,558 42,00 42,00 12,039 0,275 0,545 44,00 44,00 12,087 0,269 0,535 46,00 46,00 12,130 0,256 0,527 48,00 48,00 12,166 0,198 0,517	36,00	36,00	11,816	0,291	0,579
39,00 39,00 11,947 0,288 0,563 40,00 40,00 11,981 0,283 0,558 42,00 42,00 12,039 0,275 0,545 44,00 44,00 12,087 0,269 0,535 46,00 46,00 12,130 0,256 0,527 48,00 48,00 12,166 0,198 0,517	37,00	37,00	11,867	0,289	0,575
40,00 40,00 11,981 0,283 0,558 42,00 42,00 12,039 0,275 0,545 44,00 44,00 12,087 0,269 0,535 46,00 46,00 12,130 0,256 0,527 48,00 48,00 12,166 0,198 0,517	38,00	38,00	11,910	0,288	0,568
42,00 42,00 12,039 0,275 0,545 44,00 44,00 12,087 0,269 0,535 46,00 46,00 12,130 0,256 0,527 48,00 48,00 12,166 0,198 0,517	39,00	39,00	11,947	0,288	0,563
44,00 44,00 12,087 0,269 0,535 46,00 46,00 12,130 0,256 0,527 48,00 48,00 12,166 0,198 0,517	40,00	40,00	11,981	0,283	0,558
46,00 46,00 12,130 0,256 0,527 48,00 48,00 12,166 0,198 0,517	42,00	42,00	12,039	0,275	0,545
46,00 46,00 12,130 0,256 0,527 48,00 48,00 12,166 0,198 0,517	44,00	44,00	12,087	0,269	0,535
	46,00	46,00		0,256	0,527
50,00 50,00 12,198	48,00	48,00	12,166	0,198	0,517
	50,00	50,00	12,198		

Tabela B.5: Dados que geraram a Figura 23.

metionina							
NaOH (mL)	NaOH (meg)	рН	Abs 470	Abs 510			
0,00	0,00	1,625	0,200	0,238			
2,20	2,20	1,707	0,217	0,264			
4,00	4,00	1,781	0,189	0,231			
7,10	7,10	1,925	0,184	0,225			
10,30	10,30	2,082	0,176	0,215			
12,80	12,80	2,208	0,158	0,191			
16,60	16,60	2,417	0,157	0,194			
19,90	19,90	2,609	0,153	0,190			
22,70	22,70	2,800	0,152	0,190			
25,30	25,30	3,022	0,142	0,175			
27,20	27,20	3,247	0,145	0,179			
28,40	28,40	3,436	0,144	0,179			
29,20	29,20	3,625	0,141	0,177			
29,70	29,70	3,783	0,143	0,181			
30,00	30,00	3,922	0,136	0,173			
30,30	30,30	4,131	0,138	0,174			
30,50	30,50	4,356	0,142	0,178			
30,80	30,80	4,982	0,140	0,177			
30,83	30,83	5,238	0,141	0,178			
30,86	30,86	5,586	0,139	0,183			
30,90	30,90	5,972	0,150	0,194			
30,93	30,93	6,246	0,160	0,205			
31,00	31,00	6,440	0,169	0,221			
31,03	31,03	6,600	0,214	0,271			
31,06	31,06	6,720	0,189	0,248			
31,20	31,20	6,900	0,210	0,272			
31,30	31,30	7,043	0,211	0,282			
31,40	31,40	7,020	0,220	0,305			
31,50	31,50	7,316	0,224	0,316			
31,70	31,70	7,439	0,240	0,343			
31,90	31,90	7,554	0,261	0,396			
32,10	32,10	7,635	0,271	0,425			
32,30	32,30	7,735	0,285	0,473			
32,60	32,60	7,820	0,296	0.499			
32,90	32,90	7,907	0,309	0,544			
33,35	33,35	8,001	0,319	0,582			
34,00	34,00	8,129	0,332	0,632			
34,60	34,60	8,223	0,345	0,662			
35,50	35,50	8,346	0,359	0,701			
36,60	36,60	8,464	0,362	0,735			
37,65	37,65	8,572	0,380	0,778			
37,90	37,90	8,607	0,383	0,782			
39,30	39,30	8,807	0,387	0,788			
42,00	42,00	8,929	0,389	0,793			
44,10	44,10	9,077	0,391	0,802			
47,10	47,10	9,289	0,392	0,808			
50,00	50,00	9,519	0,394	0,818			
52,00	52,00	9,703	0,395	0,821			
54,00	54,00	9,957	0,396	0,822			
55,00	55,00	10,141	0,397	0,823			

56,00	56,00	10,399	0,398	0,818
56,30	56,30	10,503	0,399	0,821
57,00	57,00	10,835	0,400	0,818
57,50	57,50	11,121	0,400	0,817
57,80	57,80	11,274	0,400	0,816
58,00	58,00	11,360	0,396	0,815
58,30	58,30	11,454	0,395	0,812
58,60	58,60	11,543	0,392	0,806
58,90	58,90	11,616	0,387	0,799
59,50	59,50	11,730	0,387	0,793
60,00	60,00	11,809	0,384	0,786
60,50	60,50	11,872	0,382	0,784
61,00	61,00	11,928	0,381	0,779
62,00	62,00	12,022	0,380	0,776
63,00	63,00	12,100	0,378	0,773
64,50	64,50	12,174	0,374	0,766
66,00	66,00	12,242	0,374	0,760
68,00	68,00	12,320	0,374	0,760
70,00	70,00	12,382	0,371	0,762
73,00	73,00	12,458	0,370	0,756
76,00	76,00	12,520	0,368	0,740

Tabela B.6: Dados que geraram a Figura 4.24.

	ŀ	nistidina		
NaOH (mL)	NaOH (meq)	рН	Abs 470	Abs 510
0,00	0,00	1,654	0,284	0,245
1,00	1,00	1,707	0,284	0,247
2,00	2,00	1,770	0,283	0,240
3,00	3,00	1,843	0,284	0,248
4,00	4,00	1,930	0,283	0,240
5,50	5,50	2,089	0,282	0,247
7,00	7,00	2,325	0,283	0,247
7,50 7,50	7,50	2,323	0,280	0,243
8,00	8,00	2,570	0,282	0,240
		2,780		
8,50 9,00	8,50 9,00	3,139	0,283 0,281	0,238 0,243
		3,325		
9,10	9,10		0,280	0,241
9,20	9,20	3,451	0,279	0,240
9,30	9,30	3,833	0,280	0,237
9,40	9,40	3,988	0,279	0,242
9,43	9,43	4,138	0,282	0,237
9,50	9,50	4,399	0,279	0,238
9,60	9,60	4,570	0,280	0,240
9,70	9,70	4,711	0,279	0,235
9,80	9,80	4,817	0,278	0,248
9,90	9,90	4,909	0,277	0,240
10,00	10,00	4,985	0,263	0,242
10,10	10,10	5,074	0,269	0,243
10,20	10,20	5,134	0,267	0,246
10,30	10,30	5,182	0,276	0,246
10,50	10,50	5,282	0,272	0,244
10,70	10,70	5,373	0,277	0,250
11,00	11,00	5,506	0,275	0,250
11,20	11,20	5,590	0,279	0,256
11,50	11,50	5,700	0,286	0,264
11,90	11,90	5,850	0,290	0,273
12,50	12,50	6,096	0,303	0,286
12,80	12,80	6,245	0,305	0,298
13,00	13,00	6,341	0,309	0,306
13,20	13,20	6,471	0,323	0,316
13,40	13,40	6,606	0,324	0,326
13,70	13,70	7,000	0,336	0,348
14,00	14,00	7,448	0,345	0,372
14,10	14,10	7,555	0,353	0,379
14,20	14,20	7,649	0,351	0,391
14,30	14,30	7,730	0,364	0,411
14,50	14,50	7,912	0,369	0,423
14,70	14,70	8,056	0,372	0,433
15,00	15,00	8,205	0,380	0,451
15,50	15,50	8,424	0,385	0,458
16,00	16,00	8,629	0,390	0,472
16,50	16,50	8,814	0,390	0,486
17,00	17,00	9,031	0,416	0,541
17,50	17,50	9,279	0,424	0,558
18,00	18,00	9,651	0,432	0,581
18,50	18,50	10,343	0,452	0,602

18,60	18,60	10,447	0,466	0,621
18,80	18,80	10,605	0,491	0,633
19,00	19,00	10,750	0,512	0,642
19,20	19,20	10,831	0,531	0,643
19,50	19,50	10,952	0,560	0,647
20,00	20,00	11,099	0,599	0,647
21,00	21,00	11,272	0,659	0,641
22,00	22,00	11,395	0,700	0,617
24,00	24,00	11,542	0,763	0,592
27,00	27,00	11,692	0,815	0,548

APÊNDICE C

Tabela C.1: Dados que geraram a Figura 4.29

		u 0 2	aaoo	90.	a.a a	9	0	
γ (s ⁻¹)	τ (10 ⁻¹ Pa)	μ (mPa s)	N (rpm)	Torque (N m)	Po (N m s ⁻¹)	Np	Re	1/Re
10.812	113.354	1048.396	5	0.001796	0.000941	23821.39	0.1011	9.8947
19.447	204.971	1054.008	9	0.003248	0.003062	13294.73	0.1819	5.4970
32.421	346.562	1068.952	15	0.005492	0.008627	8092.264	0.3032	3.2982
58.363	608.327	1042.317	27	0.009641	0.027259	4384.104	0.5457	1.8323
97.206	1035.860	1065.632	45	0.016079	0.075769	2632.213	0.9096	1.0994
175.156	1801.202	1028.341	81	0.027959	0.237153	1412.659	1.6372	0.6108
291.591	3016.030	1034.337	135	0.046815	0.661835	851.5556	2.7287	0.3665
17.507	182.364	1041.653	8.1	0.002890	0.002452	14602.97	0.1637	6.1078
29.187	306.108	1048.778	13.5	0.004851	0.006858	8824.254	0.2729	3.6647
52.529	548.835	1044.829	24.3	0.008698	0.022134	4883.155	0.4912	2.0359
14.588	151.429	1038.040	6.75	0.002400	0.001696	17461.1	0.1364	7.3294
26.249	278.741	1061.903	12.15	0.004418	0.005621	9920.195	0.2456	4.0719
9.723	102.645	1055.648	4.5	0.001627	0.000767	26630.83	0.0910	10.9941
16.203	168.086	1037.404	7.5	0.002664	0.002092	15699.33	0.1516	6.5964
29.181	307.298	1053.057	13.5	0.004870	0.006885	8858.554	0.2729	3.6647
48.603	510.760	1050.879	22.5	0.008095	0.019072	5300.578	0.4548	2.1988
87.460	877.933	1003.806	40.5	0.013627	0.057796	2754.204	0.8186	1.2216
145.809	1461.050	1002.028	67.5	0.022679	0.160306	1650.07	1.3644	0.7329
262.381	2688.026	1024.474	121.5	0.041724	0.530873	936.9704	2.4559	0.4072

Tabela C.2: Dados que geraram a Figura 4.30.

	rabela 0.2. Dados que geraram a rigura 4.00.								
τ (Pa)	γ (s ⁻¹)	μ _{ap} (mPa s)	τ (Pa)	γ (s ⁻¹)	μ _{ap} (mPa s)				
11.692	1.200	9742.04	10.927	1.200	9103.20				
11.573	1.201	9640.13	11.061	1.200	9215.22				
15.024	2.160	6955.72	14.422	2.161	6675.32				
15.381	2.161	7117.56	14.288	2.160	6615.00				
18.712	3.601	5196.05	17.784	3.601	4939.12				
18.831	3.601	5229.09	17.784	3.601	4938.65				
22.639	6.480	3493.76	21.952	6.481	3387.07				
22.401	6.480	3457.04	21.817	6.481	3366.32				
25.851	10.803	2393.04	25.179	10.801	2331.20				
25.851	10.804	2392.81	25.313	10.800	2343.87				
29.778	19.443	1531.54	29.481	19.451	1515.69				
30.016	19.447	1543.48	29.347	19.451	1508.77				
33.109	32.415	1021.44	33.111	32.411	1021.59				
33.228	32.411	1025.21	33.111	32.411	1021.59				
37.393	58.318	641.19	37.683	58.346	645.84				
37.512	58.335	643.04	37.683	58.329	646.03				
41.081	97.244	422.46	41.447	97.281	426.06				
41.081	97.234	422.50	41.313	97.272	424.72				
46.079	175.055	263.22	46.825	174.971	267.62				
46.079	175.089	263.17	46.825	174.954	267.64				
51.314	291.591	175.98	52.607	291.591	180.41				
51.433	291.535	176.42	52.876	291.591	181.34				
57.263	524.964	109.08	60.270	525.166	114.76				
55.359	525.014	105.44	60.136	525.065	114.53				
56.668	525.115	107.92	60.136	525.065	114.53				

Tabela C.3: Dados que geraram a Figura 4.31.

		3.00 qa.0 go.a.a		
α (skt)	N (s ⁻¹)	Torque (N m)	γ (s ⁻¹)	τ (Pa)
10.047	0.028	0.000986	11.822	18.555
13.315	0.050	0.001306	17.851	24.591
13.122	0.050	0.001287	18.203	24.236
16.006	0.083	0.001570	27.710	29.561
19.658	0.150	0.001928	46.353	36.306
22.541	0.250	0.002211	76.676	41.631
26.001	0.450	0.002551	139.561	48.021
33.882	1.350	0.003324	428.716	62.576
33.690	1.350	0.003305	432.011	62.221
37.534	2.250	0.003682	742.881	69.321
43.685	4.050	0.004286	1335.934	80.681
10.047	0.028	0.000986	11.822	18.555
13.315	0.050	0.001306	17.851	24.591
16.006	0.083	0.001570	27.710	29.561
19.273	0.150	0.001891	47.601	35.596
22.349	0.250	0.002192	77.565	41.276
26.578	0.450	0.002607	135.501	49.086
29.653	0.750	0.002909	232.554	54.766
33.306	1.350	0.003267	438.736	61.511
37.534	2.250	0.003682	742.881	69.321
43.685	4.050	0.004286	1335.934	80.681

Tabela C.4: Dados que geraram a Figura 4.32.

						J				_	
Pel- let	D ₁	D_2	D_m	Pel- let	D ₁	D_2	D_m	Pel- let	D ₁	D_2	D_m
1	1.70	1.63	1.66	35	1.50	1.38	1.44	69	1.25	1.13	1.19
2	1.63	1.63	1.63	36	1.75	1.63	1.69	70	1.38	1.00	1.19
3	1.73	1.63	1.68	37	1.75	1.50	1.63	71	1.38	1.00	1.19
4	1.38	1.25	1.31	38	1.50	1.38	1.44	72	1.38	1.25	1.31
5	1.50	1.50	1.50	39	1.75	1.25	1.50	73	1.63	1.55	1.59
6	1.70	1.50	1.60	40	1.75	1.38	1.56	74	1.75	1.25	1.50
7	1.50	1.50	1.50	41	1.38	1.38	1.38	75	1.25	1.00	1.13
8	1.68	1.63	1.65	42	1.50	1.38	1.44	76	1.88	1.13	1.50
9	1.70	1.63	1.66	43	1.83	1.25	1.54	77	1.00	1.00	1.00
10	1.50	1.50	1.50	44	1.25	1.13	1.19	78	0.88	0.75	0.81
11	1.63	1.58	1.60	45	1.25	1.13	1.19	79	1.00	0.88	0.94
12	1.38	1.38	1.38	46	0.93	0.88	0.90	80	1.88	1.50	1.69
13	1.50	1.38	1.44	47	0.88	0.75	0.81	81	1.13	1.13	1.13
14	1.50	1.45	1.48	48	1.00	0.88	0.94	82	1.50	1.13	1.31
15	1.75	1.63	1.69	49	1.88	1.50	1.69	83	1.50	1.38	1.44
16	1.50	1.38	1.44	50	1.75	1.25	1.50	84	1.75	1.63	1.69
17	1.25	1.25	1.25	51	1.13	1.13	1.13	85	1.75	1.50	1.63
18	1.25	1.13	1.19	52	1.13	1.13	1.13	86	1.38	1.00	1.19
19	1.38	1.33	1.35	53	0.75	0.75	0.75	87	1.25	1.00	1.13
20	1.63	1.50	1.56	54	1.50	1.13	1.31	88	1.88	1.13	1.50
21	1.13	1.00	1.06	55	1.63	1.25	1.44	89	1.00	1.00	1.00
22	1.63	1.50	1.56	56	1.75	1.13	1.44	90	1.13	1.00	1.06
23	1.43	1.38	1.40	57	1.38	1.00	1.19	91	1.50	1.63	1.56
24	1.50	1.48	1.49	58	1.63	1.50	1.56	92	1.68	1.63	1.65
25	1.50	1.13	1.31	59	1.13	1.13	1.13	93	1.70	1.63	1.66
26	1.50	1.38	1.44	60	1.75	1.13	1.44	94	1.50	1.50	1.50
27	1.63	1.50	1.56	61	1.13	1.13	1.13	95	1.63	1.58	1.60
28	1.50	1.50	1.50	62	1.38	1.00	1.19	96	1.38	1.38	1.38
29	1.63	1.50	1.56	63	1.25	1.00	1.13	97	1.50	1.38	1.44

30	1.75	1.50	1.63	64	1.88	1.13	1.50	98	1.50	1.45	1.48
31	1.75	1.63	1.69	65	1.00	1.00	1.00	99	1.75	1.63	1.69
32	1.38	1.25	1.31	66	1.13	1.00	1.06	100	1.50	1.38	1.44
33	1.13	1.13	1.13	67	1.50	1.63	1.56				
34	1.50	1.13	1.31	68	1.38	1.13	1.25				

Medidas realizadas em microscópio com ampliação de 40X. D_1 e D_2 significam os raios dos pellets em milímetros e D_m é a média em milímetros.

Tabela C.5: Dados que geraram a Figura 4.33.

			Concentra	ção de Biom	assa (g L ⁻¹)		
	25.67	30.32	37.02	46.07	50.80	56.20	63.20
γ (s ⁻¹)	τ (mPa)	τ (mPa)	τ (mPa)	τ (mPa)	τ (mPa)	τ (mPa)	τ (mPa)
3.070	4.554	8.324	17.870	40.072	57.891	104.199	149.067
5.482	5.785	9.658	20.021	49.531	62.919	120.458	179.622
9.154	5.865	10.410	21.967	56.170	74.605	139.538	198.217
9.154	5.865	10.410	21.967	56.170	74.605	139.538	198.217
16.445	6.678	11.910	22.964	61.629	76.408	150.287	236.935
27.408	7.952	13.422	25.454	70.546	86.156	176.012	236.935
49.334	8.969	14.465	28.839	79.331	96.655	198.600	269.269
82.223	9.744	16.145	30.706	81.715	119.723	228.726	366.316
148.001	11.273	18.658	34.070	91.473	119.723	264.334	366.316
246.668	12.471	20.817	35.938			293.993	124.668
444.002	14.398	23.123	40.326			330.096	124.668
740.003	16.174	25.424	42.482			90.926	171.159
1332.005	18.445	28.376	46.715			102.749	171.159
3.070	4.845					137.541	232.591
5.482	5.454					137.541	259.071
9.154	6.050					155.867	316.040
16.445	6.959					171.809	146.471
27.408	8.109						165.962
49.334	9.104						198.250
82.223	9.945						225.550
148.001	11.261						269.645
246.668	12.497						300.434
444.002	14.369						359.240
740.003	15.961						
1332.005	18.464						

APÊNDICE D

Tabela D.1: Dados que geraram as Figuras 4.38 e 4.39.

		rana no		Dauc	s que	gen	Memb		rigu ilizada 5		.30 E	4.39
T (s)	C _{P1}	C _{P2}	C _{P3}	In	In	In	C _{P4}	C _{P5}	C _{P6}	In	In	In
	(%)	(%)	(%)	0.04	0.01	0.05	(%)	(%)	(%)	0.10	0.00	0.10
8	21,3	18,8	22,2	-0,24	-0,21	-0,25	9,1	8,6	9,9	-0,10	-0,09	-0,10
9	28,8	26,8	29,8	-0,34	-0,31	-0,35	12,7	12,4	13,4	-0,14	-0,13	-0,14
10	36,0	33,8	37,2	-0,45	-0,41	-0,47	16,5	16,4	17,4	-0,18	-0,18	-0,19
11	42,8	40,7	43,9	-0,56	-0,52	-0,58	20,6	20,5	21,5	-0,23	-0,23	-0,24
12	49,1	47,1	50,2	-0,68	-0,64	-0,70	24,6	24,5	25,6	-0,28	-0,28	-0,30
13	54,8	53,0	55,8	-0,79	-0,76	-0,82	28,5	28,4	29,4	-0,34	-0,33	-0,35
14	59,9	58,2	60,9	-0,91	-0,87	-0,94	32,3	32,1	32,9	-0,39	-0,39	-0,40
15	64,4	62,9	65,4	-1,03	-0,99	-1,06	35,9	35,8	36,5	-0,44	-0,44	-0,45
16	67,9	67,0	69,3	-1,14	-1,11	-1,18	39,4	39,2	40,0	-0,50	-0,50	-0,51
17	71,2	70,7	72,8	-1,24	-1,23	-1,30	42,7	42,5	43,3	-0,56	-0,55	-0,57
18	74,7	73,9	75,9	-1,37	-1,34	-1,42	45,8	45,6	46,4	-0,61	-0,61	-0,62
19	77,7	76,7	78,6	-1,50	-1,46	-1,54	48,8	48,6	49,4	-0,67	-0,67	-0,68
20	79,9	79,3	81,0	-1,60	-1,58	-1,66	51,6	51,5	52,3	-0,73	-0,72	-0,74
21	82,0	81,5	83,1	-1,71	-1,69	-1,78	54,3	54,1	55,0	-0,78	-0,78	-0,80
22	83,9	83,4	85,0	-1,83	-1,80	-1,90	56,8	56,7	57,4	-0,84	-0,84	-0,85
23	85,5	85,1	86,7	-1,93	-1,90	-2,02	59,3	59,1	59,7	-0,90	-0,89	-0,91
24	87,0	86,7	88,2	-2,04	-2,02	-2,14	61,5	61,4	61,9	-0,95	-0,95	-0,96
25	88,4	88,1	89,6	-2,15	-2,13	-2,26	63,7	63,5	64,1	-1,01	-1,01	-1,02
26	89,5	89,3	90,8	-2,25	-2,23	-2,39	65,7	65,6	66,2	-1,07	-1,07	-1,08
27	90,6	90,4	91,8	-2,36	-2,34	-2,50	67,6	67,5	68,1	-1,13	-1,12	-1,14
28	91,5	91,4	92,8	-2,47	-2,45	-2,63	69,5	69,3	69,9	-1,19	-1,18	-1,20
29	92,4	92,2	93,6	-2,58	-2,55	-2,75	71,2	71,0	71,6	-1,24	-1,24	-1,26
30	93,1	93,0	94,4	-2,67	-2,66	-2,88	72,8	72,7	73,2	-1,30	-1,30	-1,32
31	93,8	93,7	95,1	-2,78	-2,76	-3,02	74,4	74,2	74,7	-1,36	-1,35	-1,37
32	94,4	94,4	95,7	-2,88	-2,88	-3,15	75,9	75,7	76,2	-1,42	-1,41	-1,44
33	95,0	95,0	96,3	-3,00	-3,00	-3,30	77,2	77,1	77,6	-1,48	-1,47	-1,50
34	95,5	95,5	96,8	-3,10	-3,10	-3,44	78,5	78,4	78,9	-1,54	-1,53	-1,56
35	96,0	95,9	97,3	-3,22	-3,19	-3,61	79,8	79,6	80,1	-1,60	-1,59	-1,61
36	96,3	96,4	97,7	-3,30	-3,32	-3,77	81,0	80,8	81,2	-1,66	-1,65	-1,67
37	96,7	96,7	98,0	-3,41	-3,41	-3,91	82,0	81,9	82,3	-1,71	-1,71	-1,73
38	97,0	97,1	98,4	-3,51	-3,54	-4,14	83,1	82,9	83,4	-1,78	-1,77	-1,80
39	97,3	97,4	98,7	-3,61	-3,65	-4,34	84,1	83,9	84,3	-1,84	-1,83	-1,85
40	97,6	97,7	99,0	-3,73	-3,77	-4,61	85,0	84,8	85,3	-1,90	-1,88	-1,92
41	97,9	97,9	99,2	-3,86	-3,86	-4,83	85,9	85,7	86,2	-1,96	-1,94	-1,98
42	98,1	98,2	99,5	-3,96	-4,02	-5,30	86,7	86,6	87,0	-2,02	-2,01	-2,04
43	98,3	98,4	99,7	-4,07	-4,14	-5,81	87,5	87,3	87,8	-2,08	-2,06	-2,10
44	98,5	98,6	99,8	-4,20	-4,27	-6,21	88,3	88,1	88,5	-2,15	-2,13	-2,16
45	98,7	98,7	100, 0	-4,34	-4,34		89,0	88,8	89,2	-2,21	-2,19	-2,23
46	98,8	98,9	U	-4,42	-4,51		89,7	89,5	89,8	-2,27	-2,25	-2,28

47	99,0	99,0	-4,61	-4,61	90,3	90,1	90,5	-2,33	-2,31	-2,35
48	99,1	99,2	-4,71	-4,83	90,9	90,7	91,0	-2,40	-2,38	-2,41
49	99,2	99,3	-4,83	-4,96	91,4	91,2	91,6	-2,45	-2,43	-2,48
50	99,3	99,4	-4,96	-5,12	92,0	91,8	92,1	-2,53	-2,50	-2,54
51	99,4	99,5	-5,12	-5,30	92,5	92,3	92,6	-2,59	-2,56	-2,60
52	99,5	99,6	-5,30	-5,52	92,9	92,7	93,1	-2,65	-2,62	-2,67
53	99,6	99,7	-5,52	-5,81	93,4	93,2	93,5	-2,72	-2,69	-2,73
54	99,7	99,8	-5,81	-6,21	93,8	93,6	93,9	-2,78	-2,75	-2,80
55	99,7	99,9	-5,81	-6,91	94,2	94,0	94,4	-2,85	-2,81	-2,88
56	99,8	99,9	-6,21	-6,91	94,6	94,4	94,7	-2,92	-2,88	-2,94
57	99,9	100, 0	-6,91		95,0	94,8	95,1	-3,00	-2,96	-3,02
58	99,9	·	-6,91		95,3	95,1	95,4	-3,06	-3,02	-3,08
59	99,9		-6,91		95,6	95,4	95,7	-3,12	-3,08	-3,15

Tabela D.2: Dados que geraram a Figura 4.39.

	Tabola D.	Daaoc	, qao goi	arann a r	igara 1.0	0.
Agitação (rpm)	Aeração (NL min ⁻¹)	<i>k_La</i> Exp. (h ⁻¹)	<i>k_La</i> Corrig. (h-1)*	<i>k_La</i> Corrig. (h-1)**	% Varia- ção <i>k_La***</i>	% Varia- ção <i>k_La****</i>
200	1	5,187	5,184	5,186	0,05	0,01
250	2	23,641	23,582	23,628	0,25	0,05
250	3	28,220	28,110	28,199	0,39	0,07
250	4	32,767	32,653	32,744	0,34	0,07
500	1	47,815	47,543	47,770	0,56	0,09
500	2	64,800	64,111	64,697	1,06	0,15
500	3	87,948	86,358	87,736	1,80	0,24
500	4	82,249	81,039	82,043	1,47	0,25
750	1	39,866	39,704	39,834	0,40	0,08
750	2	71,445	70,205	71,233	1,73	0,29
750	3	83,646	81,497	83,265	2,56	0,45
750	4	75,463	73,985	75,211	1,95	0,33
1000	1	46,728	46,326	46,640	0,86	0,18
1000	2	62,647	61,417	62,401	1,96	0,39
1000	3	91,458	88,002	90,827	3,77	0,68
1000	4	98,503	94,279	97,714	4,28	0,80

 $^{^*}k_La$ corrigido pelo valor de k_P da membrana utilizada em 5 cultivos; *** k_La corrigido pelo k_P da membrana nova; **** Percentegem de variação do k_La corrigido pelo k_P da membrana utilizada em 5 cultivos; ***** Percentagem de variação do k_La corrigido pelo k_P da membrana nova.

Tabela D.3: Dados que geraram a Figura 4.40 e a Tabela 4.8.

		Percentage	m de Saturaçã	io (%)		
H_2O_2 (μ L)	Oxigênio Dissolvido (mgO ₂ .L ⁻¹)	Água	Meio 0h	Meio 24h	Meio 48h	Meio 72h
0	0,000	0,0	0,0	0,0	0,0	0,0
15	0,635			8,4	8,9	5,3
30	1,270	15,3	14,1	19,2	15,9	12,2
45	1,905			27,5		
50	2,117	31,8	29,2			
60	2,540			39,1	31,7	31,2
70	2,963	42,6	42,4			
90	3,810	53,8	53,0	60,4	47,2	45,9
110	4,657	61,2	69,2			
120	5,080			80,4	61,7	63,3
130	5,503	70,6	81,2			
150	6,350	80,6	97,7	100,6	90,7	87,6
170	7,197	91,2				
R ²		0,9931	0,9960	0,9994	0,9862	0,9926
Cs		7,6775	6,7723	6,3930	7,5803	7,7435
Henry		36,5595	32,2490	30,4429	36,0967	36,8738
Diferença (%)			11,7903	16,7307	1,2660	-0,8597

Tabela D.4: Dados que geraram as Figuras 4.42 e 4.43.

			3			
Tempo (h)	Biomassa (g L ⁻¹)	Glicose (g L ⁻¹)	рН	Pig. Laranja (UA _{470nm})	μ_X (h ⁻¹)	Q _{O2} (mgO2 g _X ⁻¹ h ⁻¹)
0	0,7	16,190	3,21	0,408		10,377
7	0,7	15,971	3,19	0,366	0,000	10,305
14	0,76	14,835	3,21	0,438	0,011	9,688
21	0,82	15,073	3,19	0,515	0,010	9,953
28	0,97	15,092	3,14	0,729	0,022	12,043
35	1,5	15,110	3,15	1,155	0,050	9,721
42	2,03	14,908	3,14	1,490	0,037	11,027
49	2,55	14,212	3,12	2,230	0,029	4,067
56	3,4	12,051	3,05	3,130	0,036	3,509
63	4,4	12,363	3,02	3,460	0,032	4,220
71,5	4,5	5,586	3,04	3,680	0,003	7,976

Tabela D.5: Dados que geraram as Figuras 4.44 e 4.45.

Tempo (h)	Biomassa	Glicose	рН	Pig. Laranja	μ_X (h ⁻¹)	Q ₀₂
	(g L ⁻¹)	(g L ⁻¹)		(UA _{470nm})		(mgO2 g _X ⁻¹ h ⁻¹)
0	0,57	17,594	6,5	0,094		12,348
7	0,58	18,079	6,5	0,076	0,002	14,455
14	0,59	17,270	6,51	0,078	0,002	14,437
21	0,59	17,860	6,47	0,063	0,001	15,000
28	0,59	17,063	6,43	0,076	0,001	16,260
35	0,60	15,580	6,5	0,086	0,002	17,980
42	0,69	15,935	6,41	0,095	0,019	28,772
49	0,96	15,657	6,34	0,096	0,040	19,486
56	1,23	15,297	6,34	0,095	0,031	19,110
63	1,45	13,921	6,21	0,097	0,022	16,491
70	1,64	12,604	6,25	0,102	0,016	15,018
77	1,77	10,778	6,39	0,014	0,010	0,000

Tabela D.6: Dados que geraram as Figuras 4.46 e 4.47.

Tempo (h)	Biomassa	Glicoșe	рН	Pig. Laranja	μ_X (h ⁻¹)	Q ₀₂
	(g L ⁻¹)	(g L ⁻¹)		(UA _{470nm})		(mgO2 g _X ⁻¹ h ⁻¹)
0	0,43	19,43	6,45	0,114		19,165
7	0,45	19,16	6,48	0,105	0,007	15,342
14	0,47	17,80	6,41	0,106	0,006	15,932
21	0,48	18,09	6,49	0,121	0,003	19,412
28	0,63	18,11	6,34	0,128	0,034	22,941
35	0,85	18,13		0,134	0,037	11,809
49	1,21	17,89	6,24	0,142	0,021	6,388
56	1,41	17,05	6,21	0,164	0,020	6,596
63	1,68	14,46	6,50	0,178	0,023	7,718
70	1,79	14,84	7,28	0,198	0,009	11,080
77	1,98	13,97	8,09	0,191	0,014	6,931

APÊNDICE E

Tabela E	Tabela E1: Dados que geraram a Tabela 4.12 e a Figura 4.80.						
		hylococcus aureus					
Concentração	Halo de inibição	Média Halo	D. padrão	Log	Inibição		
90 90	9,0 8,0	8,3	0,58	1,95 1,95	+		
90	8,0			1,95	+		
180	9,0	9,0	0,00	2,26	+		
180	9,0	9,0	0,00	2,26	+		
180	9,0			2,26	+		
360	10,0	10,3	0,58	2,56	+		
360	11,0	10,3	0,36	2,56	+		
360	10,0			2,56	+		
720	11,0	11,0	1,00	2,86	+		
720	12,0	11,0	1,00	2,86	+		
720	10,0			2,86	Ţ		
DMSO	6,0	6,0	0,00	2,00	Ĭ.		
DMSO	6,0	0,0	0,00		_		
DMSO	6,0				_		
DIVIOO		Tanhariahia aali AT	CC 05000				
Concentração	Halo de inibição	Escherichia coli AT Média Halo	D. padrão	Log	Inibição		
90	6,0	6,0	0,00	1,95	iiibição		
90	6,0	0,0	0,00	1,95			
90	6,0			1,95			
180	6,0	6,0	0,00	2,26			
180	6,0	-,-	5,55	2,26	-		
180	6,0			2,26			
360	6,0	6,0	0,00	2,56	-		
360	6,0	-,-	-,	2,56	-		
360	6,0			2,56	-		
720	6,0	6,0	0,00	2,86	-		
720	6,0	-,-	5,55	2,86	-		
720	6,0			2,86	-		
DMSO	6,0	6,0	0.00	_,-,-	-		
DMSO	6,0	-,-	5,55		-		
DMSO	6,0						
		monella enteritidis	ATCC 13076				
Concentração	Halo de inibição	Média Halo	D. padrão	Log	Inibição		
90	6,0	6,0	0,00	1,95	•		
90	6,0			1,95	-		
90	6,0			1,95	-		
180	6,0	6,0	0,00	2,26	-		
180	6,0			2,26	-		
180	6,0			2,26	-		
360	6,0	6,0	0,00	2,56	-		
360	6,0			2,56	-		
360	6,0			2,56	-		
720	6,0	6,0	0,00	2,86	-		
720	6,0			2,86	-		

6,0

0,00

2,86

6,0

6,0

6,0

720

DMSO

DMSO

DMSO

^{+:} Inibiu o crescimento do microrganismo; -: não inibiu o crescimento do microrganismo.

Tabela E.2: Dados que geraram a Tabela 4.12 e as Figuras 4.81 e 4.82.

Staphylococcus aureus ATCC 25922								
Concentração (mg mL ⁻¹)	Halo de inibição (mm)	Média Halo (mm)	D. padrão (mm)	Log Concentração	Inibição (+-)			
10	6,0	6,0	0,00	1,00	-			
10	6,0				-			
20	6,0	6,0	0,00	1,30	-			
20	6,0				-			
20	6,0				-			
30	7,0	7,0	0,00	1,48	+			
30	7,0				+			
40	7,0	7,0	0,00	1,60	+			
40	7,0				+			
40	7,0				+			
50	8,0	7,3	0,58	1,70	+			
50	7,0				+			
50	7,0				+			
150	8,0	8,7	1,15	2,18	+			
150	10,0	,	•	•	+			
250	9,0	9,3	0,58	2,40	+			
250	10,0				+			
250	9,0				-			
DMSO	6,0	6,0	0.00		-			

	Escherichia coli ATCC 25923							
Concentração (mg mL ⁻¹)	Halo de inibição (mm)	Média Halo (mm)	D. padrão (mm)	Log Concentração	Inibição (+-)			
50	6,0	6,0	0,00	1,70	-			
50	6,0			1,70	-			
50	6,0			1,70	-			
75	7,0			1,88	+			
75	8,0			1,88	+			
100	8,0	8,0	0,00	2,00	+			
100	8,0			2,00	+			
100	8,0			2,00	+			
125	8,0	8,3	0,58	2,10	+			
125	9,0			2,10	+			
150	11,0	10,7	0,58	2,18	+			
150	10,0			2,18	+			
150	11,0			2,18	+			
250	13,0	10,3	2,79	2,40	+			
250	9,0			2,40	+			
250	9,0			2,40	+			
DMSO	6,0	6,0	0,00		-			

Salmonella enteritidis ATCC 13076							
Concentração	Halo de inibição	Média Halo	D. padrão	Log	Inibição		
(mg mL ⁻¹)	(mm)	(mm)	(mm)	Concentração	(+-)		
50	6,0	6,0	0,00	1,70	-		
50	6,0			1,70	-		
50	6,0			1,88	-		
75	6,0	6,0	0,00	1,88	-		
75	6,0			2,00	-		
100	6,0	6,0	0,00	2,00	-		
100	6,0			2,00	-		
100	6,0			2,10	-		
125	6,0	6,0	0,00	2,10	-		
125	6,0			2,10	-		
125	6,0			2,18	-		
150	6,0	6,0	0,00	2,18	-		
150	6,0			2,40	-		
250	6,0	6,0	0,00	2,40	-		
250	6,0			2,40	-		
250	6,0			,	-		
DMSO	6,0	6,0	0.00		-		

^{+:} Inibiu o crescimento do microrganismo; -: não inibiu o crescimento do microrganismo.

Tabela E.3: Dados que geraram a Tabela 4.12 e as Figuras 4.83 e 4.84.

Staphylococcus aureus ATCC 25922							
Concentração (mg mL ⁻¹)	Halo de inibição (mm)	Média Halo (mm)	D. padrão (mm)	Log Concentração	Inibição (+-)		
27,7	6,0	6,0	0,00	1,44	-		
27,7	6,0				-		
27,7	6,0				-		
55,4	7,0	7,7	0,58	1,74	+		
55,4	8,0				+		
55,4	8,0				+		
110,7	8,0	8,7	0,58	2,04	+		
110,7	9,0				+		
110,7	9,0				+		
221,4	8,0	9,3	1,15	2,35	+		
221,4	10,0				+		
221,4	10,0				+		
DMSO	6,0				_		

Escherichia coli ATCC 25923						
Concentração (mg mL ⁻¹)	Halo de inibição (mm)	Média Halo (mm)	D. padrão (mm)	Log Concentração	Inibição (+-)	
27,7	9,0	9,00	0,00	1,44	+	
27,7	9,0			1,44	+	
27,7	9,0			1,44	+	
55,4	10,0	10,67	0,58	1,74	+	
55,4	11,0			1,74	+	
55,4	11,0			1,74	+	
110,7	12,0	12,00	0,00	2,04	+	
110,7	12,0			2,04	+	
110,7	12,0			2,04	+	
221,4	n.d.			2,35	+	
221,4	n.d.			2,35	+	
221,4	n.d.			2,35	+	
DMSO	6,0				-	

	Salmonella enteritidis ATCC 13076								
Concentração (mg mL ⁻¹)	Halo de inibição (mm)	Média Halo (mm)	D. padrão (mm)	Log Concentração	Inibição (+-)				
27,7	6,0	6,00	0,00	1,44	-				
27,7	6,0			1,44	-				
27,7	6,0			1,44	-				
55,4	6,0	6,00	0,00	1,74	-				
55,4	6,0			1,74	-				
55,4	6,0			1,74	-				
110,7	6,0	6,00	0,00	2,04	-				
110,7	6,0			2,04	-				
110,7	6,0			2,04	-				
221,4	6,0	6.00	0.00	2,35	-				
221,4	6,0	,	,	2,35	-				
221,4	6,0			2,35	-				
DMSO	6,0			,	-				

^{+:} Inibiu o crescimento do microrganismo; -: não inibiu o crescimento do microrganismo.

Tabela E.4: Dados que geraram a Tabela 4.12 e a Figura 4.85.

Staphylococcus aureus ATCC 25922 Log Concentração Halo de inibição Concentração (mg mL⁻¹) Média Halo D. padrão Inibição (mm) . (mm) (mm) (+-) 0,0156 6,0 6,0 0,0 -1,81 0.0156 6,0 -1,81 0,0313 -1,51 6,0 0,0313 6,0 -1,51 6,0 0,0 -1,20 0,0625 6,0 0,0625 6,0 -1.20 0.0625 6,0 -1.20 0,1250 6,0 6,0 0,0 -0,90 0,1250 6,0 -0.90 0,2500 6,0 6,0 0,0 -0,60 0,2500 6,0 -0,60 0,2500 6,0 -0,60 0,5000 9,0 8,7 0,6 -0,30 0,5000 9,0 -0,30 0,5000 8,0 -0,30 1,0000 10,0 11,0 1,0 0,00 1,0000 11,0 0,00 DMSO 6,0

	E	scherichia coli AT	CC 25923		
Concentração (mg mL ⁻¹)	Halo de inibição (mm)	Média Halo (mm)	D. padrão (mm)	Log Concentração	Inibição (+-)
0,0156	6,0	6,0	0,0	-1,81	-
0,0156	6,0			-1,81	-
0,0313	6,0	6,0	0,0	-1,51	-
0,0313	6,0			-1,51	-
0,0625	6,0	6,0	0,0	-1,20	-
0,0625	6,0			-1,20	-
0,0625	6,0			-1,20	-
0,1250	6,0	6,0	0,0	-0,90	-
0,1250	6,0			-0,90	-
0,1250	6,0			-0,90	-
0,2500	6,0	6,0	0,0	-0,60	-
0,2500	6,0			-0,60	-
0,2500	6,0			-0,60	-
0,5000	6,0	6,0	0,0	-0,30	-
0,5000	6,0			-0,30	-
0,5000	6,0			-0,30	-
1,0000	6,0	6,0	0,0	0,00	-
1,0000	6,0			0,00	-
DMSO	6,0				-

Salmonella enteritidis ATCC 13076							
Concentração (mg mL ⁻¹)	Halo de inibição (mm)	Média Halo (mm)	D. padrão (mm)	Log Concentração	Inibição (+-)		
0,0156	6,0	6,0	0,0	-1,81	-		
0,0156	6,0			-1,81	-		
0,0156	6,0			-1,81	-		
0,0313	6,0	6,0	0,0	-1,51	-		
0,0313	6,0			-1,51	-		
0,0625	6,0	6,0	0,0	-1,20	-		
0,0625	6,0			-1,20	-		
0,0625	6,0			-1,20	-		
0,1250	6,0	6,0	0,0	-0,90	-		
0,1250	6,0			-0,90	-		
0,2500	6,0	6,0	0,0	-0,60	-		
0,2500	6,0			-0,60	-		
0,5000	6,0			-0,30	-		
0,5000	6,0			-0,30	-		
1,0000	6,0			0,00	-		
1,0000	6,0			0,00	-		
DMSO	6,0	6,0	6,0		-		

^{+:} Inibiu o crescimento do microrganismo; -: não inibiu o crescimento do microrganismo.

ANEXO A Infrared spectroscopy correlation table cm⁻¹ 3300 cm⁻¹ 2720 cm⁻¹ Bond Type of hond Specific type of hond Absorption peak 1720 cm⁻¹ 1680-1600 cm⁻¹ 750-----cm⁻¹ 860-900 cm⁻¹ 800-860 3200-3400 becode em⁻¹ 3500-3560 em⁻¹ 3000 cm⁻¹ becod 3400-3500 strong em⁻¹ 1560-1640 strong "http://en.wikipedis.org/wiki/Infrared_spectroscopy_comrumon_____ red spectroscopy | Chemistry lists es: Articles lacking sources from March 2008 | All articles lacking sour cm⁻¹ 1040-1060 strong, broad cm⁻¹ 1100-1300 two bands (clistinet from ketone) cm⁻¹ which do not possess a C=O bo 1020-1220 often overlapped cm⁻¹ 2140-1990 cm⁻¹ 1000-1100 cm⁻¹ 1100-1200 two strong, broad bands cm⁻¹ 540-760 weak to medium

Figura AN1: Dados que auxiliaram na interpretação das Figuras 4.17 e 4.18. Fonte: http://en.wikipedia.org.

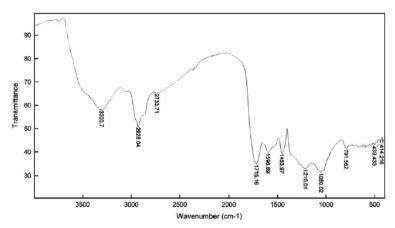


Figura AN.2: Dados que auxiliaram na interpretação do FTIR do pigmento vermelho (Lian et al., 2007).

Table 3.1. Spectroscopic parameters

v=3360–3260 for the N—H stretching frequency of the —CO—NH— grouping

v=1250, 1550 cm⁻¹ for trans-amides

v=1350, 1500 cm⁻¹ for *cis*-amides (the amide II band at 1500–1575 cm⁻¹ is absent for *N*-alkyl amides —CO—NR—)

v=620, 1650 cm⁻¹ for the hydrogen-bonded amide bond of the α -helix conformation

v=700, 1630 (strong) and 1690 (weak) for the β -sheet conformation

v=650, 1660 cm⁻¹ for the peptide bond in random (disordered) conformations

Figura AN.3: Dados que auxiliaram na interpretação da Figura 4.18 (Barret e Elmore, 2004).

Livros Grátis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

Baixar	livros	de A	Δdm	inis	tracão
Duinui	11 4 1 0 0	ac_{I}	MILL	11 110	uquo

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciência da Computação

Baixar livros de Ciência da Informação

Baixar livros de Ciência Política

Baixar livros de Ciências da Saúde

Baixar livros de Comunicação

Baixar livros do Conselho Nacional de Educação - CNE

Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos

Baixar livros de Economia

Baixar livros de Economia Doméstica

Baixar livros de Educação

Baixar livros de Educação - Trânsito

Baixar livros de Educação Física

Baixar livros de Engenharia Aeroespacial

Baixar livros de Farmácia

Baixar livros de Filosofia

Baixar livros de Física

Baixar livros de Geociências

Baixar livros de Geografia

Baixar livros de História

Baixar livros de Línguas

Baixar livros de Literatura

Baixar livros de Literatura de Cordel

Baixar livros de Literatura Infantil

Baixar livros de Matemática

Baixar livros de Medicina

Baixar livros de Medicina Veterinária

Baixar livros de Meio Ambiente

Baixar livros de Meteorologia

Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Música

Baixar livros de Psicologia

Baixar livros de Química

Baixar livros de Saúde Coletiva

Baixar livros de Serviço Social

Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo