Download PDF
ads:
JÚLIA GIORA
ANÁLISE COMPARADA DE CARACTERES REPRODUTIVOS E
DIVERSIDADE DO GÊNERO Brachyhypopomus Mago-Leccia, 1994 NO RIO
GRANDE DO SUL.
Tese apresentada ao Programa de Pós-Graduação
em Biologia Animal, Instituto de Biociências,
Universidade Federal do Rio Grande do Sul, como
requisito parcial à obtenção do título de Doutora em
Biologia Animal.
Área de Concentração: Biologia Comparada
Orientadora: Profa. Dra. Clarice Bernhardt Fialho
Co-orientador: Prof. Dr. Luiz Roberto Malabarba
Co-orientador PDEE: Prof. Dr. John Robert Burns
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
PORTO ALEGRE
2008
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
ANÁLISE COMPARADA DE CARACTERES REPRODUTIVOS E
DIVERSIDADE DO GÊNERO Brachyhypopomus Mago-Leccia, 1994 NO RIO
GRANDE DO SUL.
JÚLIA GIORA
___________________________________
Prof. Dr. José Alves Gomes
___________________________________
Prof. Dr. Roberto Esser dos Reis
___________________________________
Prof. Dr. Nelson Fontoura
___________________________________
Prof. Dra. Clarice Bernhardt Fialho
ii
ads:
“As coisas estão no mundo, só que eu preciso aprender”
Paulinho da Viola.
iii
Agradecimentos
A CAPES, pela bolsa propiciada e ao CNPq pelos auxílios concedidos
(processo 476821/2003-7; 478002/2006-8).
À Profª. Dra. Clarice Bernhardt Fialho, pela orientação, confiança e
vários pelos anos de bom convívio.
Ao Prof. Dr. Luiz Roberto Malabarba, pela orientação, incentivo, pelos
grandes ensinamentos em sistemática e por sua amizade.
Ao Prof. Dr. John Robert Burns por ter aceitado orientar meu estagio de
doutorado na George Washington University e por seus ensinamentos em
histologia e microscopia eletrônica.
Aos Drs. Richard Vari e Stanley Weitzman pela gentil recepção e
suporte ao meu trabalho no National Museum of Natural History.
Aos Drs. John Lundberg e John Sullivan da Academy of Natural
Sciences of Philadelphia e ao Dr. Marcelo Loureiro do Museo Nacional de
Ciencias Naturales de Montevideo por me receberem e auxiliarem minha
pesquisa na coleção científica de suas instituições.
Ao Suresh Benjamim, pelo auxilio na operação do microscópio
eletrônico de varredura da GWU.
A todos aqueles que me auxiliaram nos dois anos de trabalho de
campo: Daniel de Borba Rocha, Adriana Saccol Pereira, Andréa Brandreli
Schaan, Ana Paula S. Dufech, Ariane Ribeiro, Carlos Eduardo Machado, Diego
Cognato, Giovanni Neves, Juan A. Anza, Juliano Ferrer, Paulo Roberto
iv
Werlang, Renata Bocorny de Azevedo, Renata Bornholdt, Rodrigo Hirano,
Rodrigo Quevedo, Tiago Giora e Ítalo Giora.
A todos os colegas que trabalham ou trabalharam no Laboratório de
Ictiologia durante estes quatro anos, pelas pequenas e grandes ajudas no dia-
a-dia e pela sempre agradável companhia.
Ao Juliano Ferrer pelo auxilio com os dados e lotes da coleção científica
do Laboratório de Ictiologia UFRGS.
A Andréa Brandreli Schaan e Hellen Tarrasconi de Moraes por seus
trabalhos com Brachyhypopomus e por aceitarem minha parceria nos mesmos.
A Fabi Ferraz pela amizade e por toda sua incansável ajuda no
progresso do meu inglês.
A toda minha família e em especial a meu pai, Ítalo, minha mãe,
Jamaira, pelo apoio incondicional, carinho, compreensão, e ajuda nos
momentos de maior correria e nervosismo.
Ao meu amor, Daniel, por sua participação ativa em todas as etapas
deste trabalho. Por ser meu maior e mais freqüente ajudante de campo, por ter
viajado comigo para Washington DC, por discutir minhas idéias e ouvir minhas
dúvidas... Por ser meu maravilhoso companheiro.
v
Sumário
Agradecimentos iv
Resumo 1
Abstract 3
Introdução Geral 5
Capítulo I: 22
Brachyhypopomus draco, a new sexually dimorphic species of Neotropical
electric fish from southern South America (Gymnotiformes: Hypopomidae)
Capítulo II: 55
A new species of the Neotropical electric fish genera Brachyhypopomus from
southern South America (Gymnotiformes: Hypopomidae).
Capítulo III: 78
Reproduction of two species of the Neotropical electric fish Brachyhypopomus
(Teleostei: Hypopomidae) from southern Brazil.
Capítulo IV: 114
Oogenesis and spermatogenesis in two species of Brachyhypopomus
(Gymnotiformes: Hypopomidae) from Southern Brazil.
Capítulo V: 149
Sperm ultrastructure in three different families of weakly electric fishes
(Teleostei: Gymnotiformes).
vi
Capítulo VI: 170
Reproductive characters and spermatozoa structure in Gymnotiformes species
(Teleostei: Ostariophysi) with phylogenetic considerations.
Síntese dos Resultados 196
vii
Resumo
A Ordem Gymnotiformes compreende os peixes popularmente
conhecidos como “peixes elétricos”, os quais têm sua distribuição geográfica
restrita a região Neotropical. Os Gymnotiformes podem ser encontrados na
grande maioria dos ambientes aquáticos existentes em sua área de ocorrência,
sendo especialmente diversos e abundantes em áreas alagadas com grandes
quantidades de macrófitas aquáticas e no fundo dos canais de grandes rios. A
família Hypopomidae está distribuída do rio la Plata, na Argentina (35°S) ao rio
Tuira, no Panamá (8°N). A ecologia e história de vida da maioria das espécies
de Hypopomidae permanecem praticamente desconhecidas, sendo talvez o
gênero Brachyhypopomus o grupo mais estudado dentro da família. No Rio
Grande do Sul, não existem estudos a respeito da diversidade de espécies
pertencentes ao gênero Brachyhypopomus exceto por menções ocasionais em
revisões e listas de espécies. Este trabalho visa contribuir para o conhecimento
da diversidade do gênero Brachyhypopomus na região sul do Brasil, bem como
para uma melhor compreensão da biologia reprodutiva e ecologia das espécies
do gênero. O estudo visa ainda apresentar informações a respeito da morfologia
das gônadas e da célula espermática das espécies de Brachyhypopomus
ocorrentes no Estado. Os dois primeiros capítulos apresentam descrições de
duas novas espécies pertencentes ao gênero Brachyhypopomus com ocorrência
registrada para as bacias da laguna dos Patos, rio Tramandaí e rio Uruguai, no
Rio Grande do Sul, além de localidades nos países do Paraguai e Uruguai. O
terceiro capítulo aborda características da biologia reprodutiva das espécies B.
1
bombilla e Brachyhypopomus “G” n. sp. do Rio Grande do Sul tais como período
reprodutivo e suas relações com fatores ambientais, fecundidade, tipo de
desova, tamanho de primeira maturação gonadal, proporção sexual e
dimorfismo sexual. O capítulo IV apresenta uma descrição histológica das
gônadas de machos e fêmeas das espécies B. bombilla e Brachyhypopomus “G”
n. sp. ao longo do ciclo reprodutivo das mesmas. O quinto capítulo contém a
descrição da ultraestrutura dos espermatozóides das três espécies de
Brachyhypopomus registradas para o sul do Brasil e das espécies Eigenmannia
trilineata e Gymnotus aff. carapo, visando a observação das variações entre
espécies de um mesmo gênero e a comparação dos caracteres descritos entre
diferentes famílias de Gymnotiformes. Por fim, o capítulo VI reúne os resultados
obtidos nos demais capítulos da tese juntamente com dados disponíveis na
literatura com respeito à história de vida e morfologia do espermatozóide das
espécies já estudadas da ordem Gymnotiformes, visando à construção de
hipóteses sobre a existência de padrões reprodutivos e suas possíveis
explicações filogenéticas.
2
Abstract
The order Gymnotiformes comprise the fishes popularly known as “electric
fishes”, which have geographic distribution restricted to the Neotropical region.
Gymnotiformes can be found in most aquatic habitats of their area of occurrence
and are especially diverse and abundant in floodplains with great amounts of
aquatic macrophytes and in deep river channels. The family Hypopomidae is
distributed from rio la Plata, in Argentina (35°S) to rio Tuira, in Panamá (8°N).
Ecology and life-history of the majority of Hypopomidae species remain mostly
unknown. Brachyhypopomus is the most extensively studied genera of this
family. In Rio Grande do Sul state, there have been no previous studies on
Brachyhypopomus species diversity except for the occasional mention of the
genus in checklists and reviews. This study aims to contribute for the increase on
knowledge of Brachyhypopomus genus diversity in southern Brazil, as well as,
for a better understanding of the reproductive biology and ecology of its species.
The study also intends to present information concerning morphology of gonads
and sperm cells of the species occurring in the state area. The first two chapters
have descriptions of two new species included in the Brachyhypopomus genus
distributed in the laguna dos Patos, rio Tramandaí and rio Uruguay river basins
and also in localities from Uruguay and Paraguay. The third chapter regards
features of reproductive biology of the species B. bombilla and
Brachyhypopomus “G” n. sp. from Rio Grande do Sul, such as the reproductive
period and its relations with environmental factors, fecundity, spawning type, first
3
gonadal maturation size, sex proportion and sexual dimorphism. Chapter IV
presents a histological description of male and female gonads of the species B.
bombilla and Brachyhypopomus “G” n. sp. throughout their reproductive cycles.
The fifth chapter contains a description of the sperm ultrastructure of the three
Brachyhypopomus species recorded for the southern Brazil and of the species
Eigenmannia trilineata and Gymnotus aff. carapo. This chapter aim is to observe
the variations among species from the same genus and to compare the
described characters among different Gymnotiformes species. At last, chapter VI
brings together the results obtained in the remaining chapters, as well as, data
available in literature concerning life-history and spermatozoa morphology of the
Gymnotiformes species currently studied, hypothesizing the existence of
reproductive patterns and its possible phylogenetic explanations.
4
Introdução Geral
5
Introdução Geral
A Ordem Gymnotiformes compreende os peixes popularmente
conhecidos como “peixes elétricos” assim chamados por serem capazes de
gerar uma corrente elétrica, através de tecidos especializados, os quais formam
o órgão elétrico. A partir das descargas do órgão elétrico (EODs) e de um
sistema complementar de órgãos eletroreceptores distribuídos por quase toda
superfície do corpo, o peixe pode perceber o ambiente utilizando estas
informações para navegar, forragear e se orientar em águas de pouca
visibilidade. As EODs também são determinantes na escolha do habitat por
parte dos peixes (Crampton, 1998), em comportamentos predatórios (Westby,
1988), e interações intraespecíficas em geral (Kramer, 1983), especialmente no
comportamento reprodutivo (Kramer, 1985), sendo atualmente usadas como
base para análise das relações filogenéticas dentro do grupo (Alves-Gomes et
al. 1995; Alves-Gomes, 2001), identificação de espécies morfologicamente
crípticas e para muitas descrições de novas espécies. Sendo as EODs usadas
em ambos navegação e reconhecimento de parceiros reprodutivos (isto é,
isolamento reprodutivo pre-zigótico), elas possuem um papel central na
diversificação evolutiva e especialização ecológica das espécies (Albert &
Crampton, 2005).
Os gimnotiformes têm sua distribuição geográfica restrita a região
Neotropical, ocorrendo do sul do México ao norte da Argentina (Mago-Leccia,
1994), sendo possível encontrá-los emrregos, pequenos canais e lagoas
6
isoladas, onde podem suportar condições muito baixas de oxigênio durante os
períodos de seca. Também são encontrados em lagunas, áreas inundadas nos
períodos chuvosos e, principalmente, no fundo dos canais principais dos
grandes rios, onde encontram alimento abundante durante todo o ano. A ordem
é constituida por 117 espécies, 30 gêneros e 5 famílias (Reis et al., 2003) e,
segundo Albert & Crampton (2005), a mesma é consideravelmente mais diversa
do que o anteriormente reconhecido, sendo que cerca de apenas 78% das
espécies foram formalmente descritas e talvez metade delas permaneça ainda
não descoberta na natureza. Os peixes elétricos atingem seu mais alto grau de
diversidade nas bacias Amazônica e do Orinoco, formando um componente
abundante e rico de espécies com amplo alcance de habitats (Crampton, 1996).
Na ultima década, têm sido realizados enormes avanços no
conhecimento da diversidade e filogenia dos peixes gimnotiformes, novos
campos sendo abertos para a pesquisa em ecologia e etologia dos sinais
elétricos, bem como em evolução das diversas assembléias de espécies
tropicais (Albert & Crampton, 2005).
Hypopomidae
A família Hypopomidae, a qual pertence o gênero em questão, foi
proposta por Mago-Leccia (1978) e posteriormente revisada por Mago-Leccia
(1994), Sullivan (1997), Albert & Campos-da-Paz (1998) e Albert (2001), o qual
propôs como novo táxon, a tribo Brachyhypopominae. Albert & Crampton (2003)
em recente lista de espécies da família, consideraram válidos um total de 6
7
gêneros e 25 espécies de hipopomideos, além de citarem a existência de 10
manuscritos em preparação sugerindo nomes de novas espécies.
Esta família está distribuída do rio la Plata, na Argentina (35°S) ao rio
Tuira, no Panamá (8°N), estando presente em todos os países da América do
Sul exceto o Chile (Albert, 2001). A ecologia e história de vida da maioria das
espécies de Hypopomidae são praticamente desconhecidas, sendo talvez o
gênero Brachyhypopomus o grupo mais estudado dentro da família (Albert &
Crampton, 2003).
O gênero Brachyhypopomus foi descrito por Mago-Leccia (1994), tendo
como espécie tipo Rhamphichthys brevirostris Steindachner, 1868 e
compreendendo as seis espécies previamente incluídas no gênero Hypopomus.
Atualmente o gênero é constituído por oito espécies sendo elas B. brevirostris
(Steindachner, 1868), B. occidentalis (Regan, 1914), B. beebei (Schultz, 1944),
B. diazi (Fernández-Yépez, 1972), B. pinnicaudatus (Hopkins, 1991), B.
janeiroensis (Costa & Campos-da-Paz, 1992), B. jureiae Triques & Khamis,
2003, and B. bombilla Loureiro & Silva, 2006. As espécies do gênero
Brachyhypopomus ocorrem em todas as maiores bacias hidrográficas
Neotropicais e habitam uma grande variedade de ambientes aquáticos (Albert &
Crampton, 2005). O gênero prefere águas relativamente rasas, onde exista
vegetação mais ou menos densa que possa servir de abrigo ou locais com
folhiço no fundo, sendo típico de águas calmas (Alves-Gomes, 1997). As
espécies de Brachyhypopomus são altamente diversas e abundantes nas
8
planícies de inundação amazônicas, onde constituem uma fração significativa da
biomassa, apresentando-se ecologicamente importantes (Crampton, 1996).
No Rio Grande do Sul, não existem estudos a respeito da diversidade de
espécies pertencentes ao gênero Brachyhypopomus exceto por menções
ocasionais em revisões e listas de espécies. A citação mais antiga para o Estado
foi feita por Ellis (1913) baseada em espécimes identificados como Hypopomus
brevirostris (=Brachyhypopomus brevirostris) coletados por Herman von Ihering
na bacia da laguna dos Patos (Malabarba, 1989). Brachyhypopomus
pinnicaudatus, B. beebei e uma espécie não descrita do gênero foram citadas
por Sullivan (1997) como amplamente distribuídas nas bacias hidrográficas da
América do Sul cis-Andina, incluindo análise de material proveniente do Rio
Grande do Sul. Brachyhypopomus brevirostris e B. pinnicaudatus foram citadas
como ocorrendo na drenagem do rio de la Plata (Campos-da-Paz, 1997; Albert &
Crampton, 2003) e B. beebei como ocorrendo na drenagem da laguna dos Patos
(Campos-da-Paz, 1997). Após coletas exploratórias realizadas pela equipe do
Laboratório de Ictiologia da UFRGS, esta identificou para o estado do Rio
Grande do Sul a presença de três espécies do gênero Brachyhypopomus:
Brachyhypopomus bombilla, uma segunda espécies não identificada, e uma
terceira espécie que tem sido largamente identificada na literatura como B.
pinnicaudatus, as duas últimas sendo distribuídas no sul do Brasil e Uruguai nas
bacias do rio Uruguai, laguna dos Patos e rio Tramandaí.
9
Reprodução
A história de vida de um organismo foi conceituada por Begon et al.
(1987) como sendo o padrão de seu crescimento, diferenciação e,
especialmente, reprodução, ao longo de sua vida. De acordo com Nikolskii
(1969), os problemas básicos para o estudo de peixes se apóiam entre outros
fatores na dinâmica de populações, esta se relacionando com a solução de
problemas ligados aos fatores que governam o desenvolvimento individual de
peixes como o crescimento, a reprodução e a mortalidade. A reprodução é o
processo que assegura a preservação e abundância de uma espécie. O
conhecimento de sua biologia reprodutiva é de fundamental importância para a
manutenção e proteção de seus estoques naturais, cultivo para fins econômicos
e repovoamento de áreas (Agostinho & Júlio Jr, 1999).
Segundo Vazzoler (1996), praticamente todas as estratégias reprodutivas
conhecidas podem ser encontradas em espécies de peixes. Diante disto, é
possível afirmar que a definição das estratégias reprodutivas e padrões
ecológicos apresentados pelos grupos de espécies fornece importantes
informações não somente sobre a adaptação dos mesmos ao ambiente em
curso, mas também sobre sua evolução.
Morfologia gonadal em nível anatômico e histológico tem sido estudada
principalmente em espécies de peixes de interesse econômico com o intuito de
identificar ciclos reprodutivos anuais, duração da estação reprodutiva, início da
maturidade reprodutiva, ritmos de desova, fecundidade e vários outros aspectos
da biologia reprodutiva que podem ser aplicados a questões ligadas a pesca
10
(Parenti & Grier, 2004). Ainda que existam alguns resultados disponíveis a
respeito do desenvolvimento gonadal de gimnotiformes (Barbieri & Barbieri,
1984a, 1984b, 1985; Cognato & Fialho, 2006; Quintana et al., 2004; Giora and
Fialho, in press), o número de espécies estudadas e o nível de conhecimento
atingido continua extremamente limitado.
Estudos a respeito da estrutura de espermatozóides de peixes teleósteos
têm fornecido valiosas informações sobre modificações celulares associadas
aos hábitos reprodutivos, sendo realizados principalmente para espécies com
inseminação (Jamieson, 1991; Mattei, 1991; Burns et al., 1998). Além disto,
pesquisas em ultraestrutura do esperma têm revelado caracteres morfológicos
utilizáveis na formação de hipóteses filogenéticas (Jamieson, 1991; Mattei,
1991). Ultraestrutura do espermatozóide de espécies da ordem Gymnotiformes
foram realizados para Apteronotus albifrons (= Sternarchus albifrons) por
Jamieson (1991), para Gymnotus cf. anguilaris e Brachyhypopomus cf.
pinnicaudatus por França et al. (2007), e para Rhamphichthys cf. hahni,
Eigenmannia cf. virescens e Apteronotus cf. albifrons por França (2006).
Entretanto, muitas questões ainda permanecem e mais estudos são necessários
para um melhor entendimento da evolução do espermatozóide em
gimnotiformes (França, 2006).
Aspectos da biologia reprodutiva, ecologia e dinâmica populacional de
espécies de gimnotiformes ainda têm sido relativamente pouco estudados
(Hopkins, 1974a, 1974 b; Kirschbaum, 1975, 1979, 1984, 2000; Schwassmann,
1976; Barbieri & Barbieri, 1982, 1983a, 1983b, 1984a, 1984b, 1985; Provenzano,
11
1984; Hagedorn, 1988; Kirschbaum & Schugardt, 2002; Cognato & Fialho, 2006;
Giora & Fialho in press), a falta de informações básicas a esse respeito,
especialmente para espécies ocorrentes no limite sul da distribuição da ordem
(sul do Brasil, Uruguai e Argentina) sendo um obstáculo para o melhor
conhecimento destes peixes.
No estado do Rio Grande do Sul a ausência total de estudos a respeito do
gênero Brachyhypopomus tem levado a subestimativa da diversidade do mesmo
e a falta de subsídios para sua conservação e de seus habitats.
Objetivos
Este trabalho tem como objetivos:
- definir a diversidade de espécies do gênero Brachyhypopomus no Rio
Grande do Sul através da descrição de novas espécies;
- estudar a reprodução das espécies B. bombilla e Brachyhypopomus
“G” n. sp., analisando o período reprodutivo, fecundidade, proporção
sexual, tamanho de primeira maturação gonadal e tipo de desova,
além de estabelecer possíveis relações entre o ciclo reprodutivo das
mesmas e aspectos abióticos e alimentares;
- descrever, através de análises histológicas, o desenvolvimento
gonadal de machos e fêmeas das espécies B. bombilla e
12
Brachyhypopomus “G” n. sp. ao longo das diversas fases do período
reprodutivo;
- descrever a ultraestrutura e a morfologia de espermatozóides das três
espécies de Brachyhypopomus ocorrentes no Estado, além das
espécies Eigenmannia trilineata e Gymnotus aff. carapo utilizando os
métodos de microscopia eletrônica de transmissão (MET) e
microscopia eletrônica de varredura (MEV);
- comparar a ultraestrutura e a morfologia dos espermatozóides das
espécies de Brachyhypopomus, família Hypopomidae, com a das
espécies E. trilineata, família Sternopygidae, e G. aff. carapo, família
Gymnotidae, verificando possíveis padrões e/ou variações
morfológicas;
- reunir estas informações com as já disponíveis para outras espécies, a
fim de avaliar a evolução das características reprodutivas em um
contexto filogenético e de fornecer subsídios para estudos
sistemáticos em gimnotiformes.
13
Literatura Citada
Agostinho, A. A. & H. F. Júlio Jr. 1999. Peixes da bacia do alto Rio Paraná. Pp.
374-400. In: Lowe-McConnell, R. H. (Ed.). Estudos ecológicos de
comunidades de peixes tropicais. São Paulo, Edusp, 535p.
Albert, J. S. 2001. Species diversity and phylogenetic systematics of American
knifefishes (Gymnotiformes, Teleostei). Miscellaneous Publications of the
Museum of Zoology, University of Michigan, 190: 1-127.
Albert, J. S & R. Campos-da-Paz. 1998. Phylogenetic sistematics of
Gymnotiformes with diagnosis of 58 clades: a review of available data. Pp.
419-446 In: Malabarba L. R., R. E. Reis, R. P. Vari, Z. M. Lucena & C. A. S.
Lucena (Eds). Phylogeny and classifacation of Neotropical fishes. Porto
Alegre, Edipucrs, 603p.
Albert, J. S. & W. G. R. Crampton. 2003. Seven new species of the neotropical
electric fish Gymnotus (Teleostei, Gymnotiformes) with a redescription of G.
carapo (Linnaeus). Zootaxa, 287: 1-54.
Albert, J. S. & W. G. R. Crampton. 2005. Diversity and Phylogeny of Neotropical
eletric fishes (Gymnotiformes). Pp.360-409. In: Bullock, T. E., C. D. Hopkins,
A. N. Popper & F. R. Fay (Eds.). Electroreception. Ithaca, Cornell University
Press, 472p.
Alves-Gomes, J. A. 1997. Informações preliminares sobre a bio-ecologia de
peixes elétricos (Ordem Gymnotiformes) em Roraima. Pp. 509-555. In:
14
Barbosa, R. I., E. J. G. Ferreira & E. G. Castellón (Eds.). Homem, Ambiente e
Ecologia no Estado de Roraima. Manaus, INPA, 613p.
Alves-Gomes, J. A. 2001. The evolution of electroreception and
bioelectrogenesis in teleost fish: a phylogenetic perspective. Journal of Fish
Biology, 58: 1489-1511.
Alves-Gomes, J. A., G. Ortí, M. Haygood, W. Heiligenberg & A. Meyer. 1995.
Phylogenetic analysis of the evolution of the south american electric fishes
(order Gymnotiformes) and the evolution of their electrogenic system: a
sinthesis based on morphology, electrophysiology, and mitochondrial
sequence data. Molecular Biology and Evolution, 12(2): 298-318.
Barbieri, G. & M. C. Barbieri. 1982. Fecundidade e tipo de desova de Gymnotus
carapo (Linnaeus, 1758), na represa do Lobo, Estado de São Paulo (Pisces,
Gymnotidae). Spectrum: Jornal Brasileiro de Ciência, 2(7): 25-29.
Barbieri, G. & M. C. Barbieri. 1983a. Dinâmica da reprodução de Gymnotus
carapo na represa do Lobo, Estado de São Paulo. Influência de fatores
abióticos. (Pisces, Gymnotidae). Tropical Ecology, 24(2): 244-259.
Barbieri, G. & M. C. Barbieri. 1983b. Growth and first sexual maturation size of
Gymnotus carapo (Linnaeus, 1758) in the Lobo reservoir (state of São Paulo,
Brazil) (pisces, gymnotidae). Revue d’Hydrobiologie Tropicale, 16(2): 195-
201.
Barbieri, M. C. & G. Barbieri. 1984a. Reprodução de Gymnotus carapo
(Linnaeus, 1758) na represa do Lobo (SP.). Morfologia e histologia de
15
testículo. Variação sazonal. (Pisces, Gymnotidae). Revista Brasileira de
Biologia, 44(2): 141-148.
Barbieri, G. & M. C. Barbieri. 1984b. Crescimento de Gymnotus carapo
(Linnaeus, 1758) na represa do Lobo, Estado de São Paulo, pelo método da
distribuição da freqüência de comprimento (Pisces, gymnotidae). Revista
Brasileira de Biologia, 44(3): 239-246.
Barbieri, M. C. & G. Barbieri. 1985. Reprodução de Gymnotus carapo (Linnaeus,
1758) na represa do Lobo (SP.). Morfologia e histologia de ovário. Variação
sazonal. (Teleostei, Gymnotidae). Revista Brasileira de Biologia, 45(1/2): 3-
12.
Begon, M., J. Harper & C. R. Townsend. 1987. Ecologia: individuos, poblaciones
y comunidades. Barcelona, Ediciones Omega, 886p.
Burns, J. R., S. H. Weitzman, K.R. Lange & L. R. Malabarba. 1998. Sperm
ultrastructurein characid fishes (Teleostei, Ostariophysi). Pp.235-244. In:
Malabarba L. R., R. E. Reis, R. P. Vari, Z. M. Lucena & C. ª S. Lucena (Eds).
Phylogeny and classifacation of Neotropical fishes. Porto Alegre, Edipucrs,
603p.
Campos-da-Paz, R. 1997. Sistemática e taxonomia dos peixes elétricos das
bacias dos rios Paraguai, Paraná e São Francisco, com notas sobre espécies
presentes em rios costeiros do leste do Brasil (Teleostei: Ostariophysi:
Gymnotiformes). Unpublished Ph. D. Thesis, Universidade de São Paulo,
São Paulo, 314p.
16
Cognato, D. De P. & C. B. Fialho. 2006. Reproductive biology of a population of
Gymnotus aff. carapo (Teleostei: Gymnotidae) from southern Brazil.
Neotropical Ichthyology, 4(3): 339-348.
Costa, W. J. E. M. & R. Campos-da-Paz. 1992. Description d’une novelle espèce
de poisson eléctrique du genre néotropical Hypopomus (Siluriformes:
Gymnotodei: Hypopomidae) du sudest du Brésil. Revue Française
d’Aquariologie, 18(4): 117-120.
Crampton, W. G. R. 1996. Gymnotiform fish: an important component of
Amazonian floodplain fish communities. Journal of Fish Biology, 48: 298-301.
Crampton, W. G. R. 1998. Electric signal design and habit preferences in a
species rich assemblage of Gymnotiform fishes from the upper Amazon basin.
Anais da Academia Brasileira de Ciências, 70(4): 805-847.
Fernández-Yépez, A. 1972. Análisis ictiológico del complejo hidrográfico (04)
“Río Yaracuy”. Direccion de Obras Hidraulicas, Ministerio de Obras,
Republica de Venezuela. 25 p., 41pl.
Ellis, M. M. 1913. The gymnotid eels of tropical America. Memoirs of the
Carnegie Museum. 6(3): 109-195.
França, G. F. 2006. Ultraestrutura da espermiogênese e dos espermatozóides
da ordem Gymnotiformes (Teleostei, Ostariophysi) com considerações
filogenéticas. Unpublished MsC. Thesis, Universidade Estadual de Campinas,
Campinas. 89p.
França, G. F., C. Oliveira & I. Quagio-Grassiotto. 2007. Ultrastructure of
spermiogenesis and spermatozoa of Gymnotus cf. Anguillaris and
17
Brachyhypopomus cf.pinnicaudatus (Teleostei: Gymnotiformes). Tissue &
Cell, 39 (2): 131-139.
Giora, J. & C. B. Fialho. (in press). Reproductive biology of weakly electric fish
Eigenmannia trilineata López & Castello, 1966 (TELEOSTEI, Sternopygidae).
Brazilian Archives of Biology and Technology.
Hagedorn, M. 1988. Ecology and behavior of a pulse-type electric fish,
Hypopomus occidentalis (Gymnotiformes, Hypopomidae), in a fresh-water
stream in Panama. Copeia, 1988(2): 324-335.
Hopkins, C. D. 1974a. Electric communication: functions in the social behavior of
Eigenmannia virescens. Behaviour, 50: 270-305.
Hopkins, C. D. 1974b. Electric communication in the reproductive behavior of
Sternopygus macrurus (Gymnotoidei). Zeitschrift fur Tierpsychologie, 35: 518-
535.
Hopkins, C. D. 1991. Hypopomus pinnicaudatus (Hypopomidae), a new species
of gymnotiforme fish from French Guiana. Copeia, 1991(1): 151-161.
Jamieson, B. G. M. 1991. Fish Evolution and Systematics: Evidence from
Spermatozoa. Cambridge, Cambridge University Press, 319p.
Kirschbaum, F. 1975. Environmental factors control the periodical reproduction of
tropical electric fish. Experientia, 31: 1159-1160.
Kirschbaum, F. 1979. Reproduction of the weakly electric fish Eigenmannia
virescens (Rhamphichtyidae, Teleostei) in captivity. Behavioral Ecology and
Sociobiology, 4: 331-355.
18
Kirschbaum, F. 1984. Reproduction of weakly electric teleosts: just another
example of convergent development? Environmental Biology of Fishes,
10(1/2): 3-14.
Kirschbaum, F. 1995. Taxonomy, Zoogeography and general ecology of South
American knifefishes (Gymnotiformes). Pp. 446-464. In: Moller, P. (Ed.).
Electric Fishes. History and Behavior. London, Chapman & Hall, 584 p.
Kirschbaum, F. 2000. The breeding of tropical freshwater fishes through
experimental variation of exogenous parameters. Breedin through simulation
of high and low water conditions. Aquageografia, 20: 95-105.
Kirschbaum, F. & C. Schugardt. 2002. Reproductive strategies and
developmental aspects in mormyrid and gymnotiform fishes. Journal of
Physiology - Paris, 96: 557-566.
Kramer, B. 1983. Electrocommunication in fish: stimulus waveform-dependent
responses in Eigenmannia (Gymnotiformes, Teleostei) – a model for
intraspecific communication?. Verhandlungen der Deutschen Zoologischen
Gesellschaft, 170.
Kramer, B. 1985. Jamming avoidance in the electric fish Eigenmannia: harmonic
analysis of sexually dimorphic waves. Journal of Experimental Biology, 119:
41-69.
Loureiro, M. & A. Silva. 2006. A new species of Brachyhypopomus
(Gymnotiformes: Hypopomidae) from Northeast Uruguay. Copeia, 2006(4):
665-673.
19
Mago-Leccia, F. 1978. Los peces de la familia Sternopygidae de Venezuela.
Acta Cientifica Venezolana, 29 (suppl. 1): 1-89.
Mago-Leccia, F. 1994. Electric fishes of the continental waters of America.
Caracas, Fundacion para el Desarrollo de las Ciencias Fisicas, Matematicas
y Naturales. Electric Fishes: 1-206.
Malabarba, L. R. 1989. Histórico sistemático e lista comentada das espécies de
peixes de água doce do sistema da laguna dos Patos, Rio Grande do Sul,
Brasil. Comunicações do Museu de Ciências da PUCRS (Sér. Zool.), 2(8):
107-179.
Mattei, X. 1991. Spermatozoon ultrastructure and its systematic implication in
fishes. Canadian Journal of Zoology, 69: 3038-3055.
Nikolsky, G. V. 1969. Theory of fish population dynamics. Edinburg,Oliver &
Boyd Ltda, 323p.
Parenti, L. & Grier, H. 2004. Evolution and Phylogeny of Gonad Morphology in
Bony Fishes. Integrative & Comparative Biology, 44: 333-348.
Provenzano, R. F. 1984. Aspectos de la reproduccion en peces Gymnotiformes
del Bajo Llano de Venezuela. Unpublished PhD. Thesis, Universidade Central
de Venezuela, Caracas. 68p.
Quintana, L., A. Silva, N. Berois & O. Macadar. 2004. Temperature induces
gonadal maturation and affects electrophysiological sexual maturity indicators
in Brachyhypopomus pinnicaudatus from a temperate climate. The Journal of
Experimental Biology, 207: 1843-1853.
20
Regan, C. T. 1914. Fishes from Condoto River, Colômbia, collected by Dr. H. G.
F. Spurrel. Annals and Magazine of Natural History, 14(79): 31-33.
Reis, R. E., S. O. Kullander & C. J. Ferraris, Jr. 2003. Check list of the freshwater
fishes of south and central america. Porto Alegre, Edipucrs, 742p.
Schultz, L. P. 1944. Two new species of fishes (Gymnotidae, Loricariidae) from
Caripito, Venezuela. Zoologica, 29(1): 39-44.
Schwassmann, H. O. 1976. Ecology and taxonomic status of different geographic
populations of Gymnorhamphichthys hypostomus, Ellis (Pisces,
Cypriniformes, Gymnotoidei). Biotropica, 8: 25-40.
Steindachner, F. 1868. Abhandlung über die Gymnotiden des Wiener Museums.
Anzeiger der Akademie der Wissenschaften in Wien, 5(20): 176-177.
Sullivan, J. P. 1997. A phylogenetic study of the Neotropical hypopomid electric
fishes (Gymnotiformes: Rhamphichthyoidea). Unpublished Ph. D.
Dissertation. Duke University, Durham, North Carolina, 336p.
Triques, M. L. & D. K. Khamis. 2003. Brachyhypopomus jureiae, a new species
of freshwater Neotropical electric fish (Teleostei: Gymnotiformes:
Hypopomidae) from a coastal stream of southeastern Brazil. Lundiana, 4(1):
61-64.
Vazzoler, A. E. A. de M. 1996. Biologia da reprodução de peixes teleósteos:
teoria e prática. Maringá, Editora da Universidade, 169p.
Westby, G. W. M. 1988. The ecology, discharge diversity and predatory
behaviour of gymnotiforme electric fish in the coastal stream of French
Guiana. Behavioral Ecology and Sociobiology, 22: 341-354.
21
Capítulo I
Brachyhypopomus draco, a new sexually dimorphic species
of Neotropical electric fish from southern South America
(Gymnotiformes: Hypopomidae)
22
Brachyhypopomus draco, a new sexually dimorphic species of Neotropical
electric fish from southern South America (Gymnotiformes: Hypopomidae)
Julia Giora*, Luiz R. Malabarba*, ** and William Crampton***
* Universidade Federal do Rio Grande do Sul, IB, Departamento de Zoologia, Av.
Bento Gonçalves, 9500, bloco IV, prédio 43435, 91501-970 Porto Alegre, RS,
Brazil.
** Museu de Ciências e Tecnologia, PUCRS, Av. Ipiranga, 6681, P. O. Box.
1429, 90619-900 Porto Alegre, RS, Brazil.
*** Department of Biology, University of Central Florida, Orlando, 32816-2368,
Brachyhypopomus draco, new species, is described from central, southern and
coastal regions of Rio Grande do Sul state, Brazil, and Uruguay. It is diagnosed
from congeners by, among other characters, the shape of the distal portion of the
caudal filament in mature males, which during the reproductive period forms a
distinct paddle shape structure.
Brachyhypopomus draco, espécie nova, é descrita para as regiões central, sul e
costeira do estado do Rio Grande do Sul, Brasil, e Uruguai. Ela é diagnosticada
de seus congêneres, entre outros caracteres, pelo formato da porção final do
23
filamento caudal de machos maduros durante o período reprodutivo, que forma
uma estrutura distinta em forma de remo.
Key words: Electric Organ Discharge, EOD, rio Uruguay, laguna dos Patos, rio
Tramandaí.
Introduction
The family Hypopomidae, proposed by Mago-Leccia (1978), is widespread
in South American countries, except Chile, and distributed from the río de la
Plata in Argentina (35°S) to northern Panama (8°N) (Albert, 2001). The genus
Brachyhypopomus was described by Mago-Leccia (1994) to comprise six
species that previously belonged to Hypopomus and that share the characters:
short snout, absence of mesocoracoid bridge, short and crescent-shaped
maxillary bone, and posterior nares closer to eyes than to snout tip. Later, Albert
(2001) redefined the genus based on four synapomorphies: premaxilla gracile
with a curved anterior margin and forming a distinct angle with the maxilla in
lateral view, dentary gracile, body cavity with 16-17 precaudal vertebrae, single
transitional vertebra. Albert (2001) maintained the same six species cited by
Mago-Leccia (1994) in the genus. Additionally he listed seven undescribed
species and recognized five clades within Brachyhypopomus that were
previously proposed by Sulivan (1997).
24
The six Brachyhypopomus species recognized as valid by Mago-Leccia
(1994) and Albert (2001) are: B. brevirostris (Steindachner, 1868), which occurs
in Eastern South America from the Orinoco to la Plata drainages; B. occidentalis
(Regan, 1914), which occurs in Panama, and in several trans-Andean drainages
of north eastern South America, including the Magdalena, Atrato, Catatumbo and
Pacific slope rivers; B. beebei (Schultz, 1944), which is widespread through
tropical areas east of Andes; B. diazi (Fernández-Yépez, 1972), which is
restricted to the Caribbean littoral of Northwest Venezuela, from the río Tocuyo to
río Alpargaton and also the northern Llanos in the Orinoco basin; B.
pinnicaudatus (Hopkins, 1991), which is widespread through cis-Andean South
America, including the Guianas, the Orinoco and Amazon basins, and much of
the rio Paraná-Paraguay-Uruguay drainage as far south as the río de la Plata;
and B. janeiroensis (Costa & Campos-da-Paz, 1992), which is known only from
the São João and Paraíba do Sul river basins in Rio de Janeiro state (Albert &
Crampton, 2003).
Subsequently, Triques & Khamis (2003) described B. jureiae, which is
known to occur in the Una do Prelado river system in southern Brazil, and also
from Ribeira de Iguape drainage, near Iguape, São Paulo (Triques & Khamis,
2003; F. Lima & W. Crampton pers. obs.). Loureiro & Silva (2006) described B.
bombilla, which is distributed throughout the middle rio Uruguay tributaries and
the laguna dos Patos and lagoa Mirim systems in eastern Uruguay.
In Rio Grande do Sul state, southern Brazil, there have been no previous
studies of the species diversity of Brachyhypopomus, excepting the occasional
25
mention of the genus in checklists and reviews. The oldest citation was by Ellis
(1913), based on specimens identified as Hypopomus brevirostris
(=Brachyhypopomus brevirostris) collected by Herman von Ihering in the laguna
dos Patos drainage (Malabarba, 1989). Brachyhypopomus pinnicaudatus, B.
beebei and an undescribed species have been quoted as widely distributed in
cis-Andean South American basins by Sullivan (1997), including material from
Rio Grande do Sul state. Brachyhypopomus brevirostris and B. pinnicaudatus
have been cited to occur in the rio de la Plata drainage (Campos-da-Paz, 1997;
Albert & Crampton, 2003), and B. beebei from laguna dos Patos drainage
(Campos-da-Paz, 1997).
Based upon extensive sampling in Rio Grande do Sul, our studies
revealed the presence of three Brachyhypopomus species in this region: B.
bombilla; a second species that has been largely identified as B. pinnicaudatus in
the literature; and a third and new species that is widespread in the rio Uruguay,
laguna dos Patos and rio Tramandaí drainages in southern Brazil and Uruguay.
This latter species is described herein.
Materials and Methods
Comparative data from B. pinnicaudatus, B. bombilla and B. jureiae were
taken directly from the type specimens (see Comparative Material). Data from B.
brevirostris, B. occidentalis, B. beebei, B. diazi and B. janeiroensis were
26
compiled from original descriptions. Morphometric data were taken as point-to-
point linear distances using digital calipers to the nearest 0.1 mm.
Measurements were analyzed as percentage of length to the end of the anal fin
(LEA), measured as the distance from tip of the snout to posterior end of anal fin
base, or as percentage of head length (HL), measured from tip of snout to
posterior margin of bony operculum. Total length was not used as a numerator in
morphometric body relationships because of the high number of specimens with
a damaged and/or regenerated caudal filament. Regenerated parts of the body
were not measured and their meristic data were not recorded. The other
measurements used were: caudal filament length, measured from the end of
anal fin base to the tip of caudal filament; snout to anal-fin origin, from tip of
snout to origin of anal-fin base; depth of caudal filament, measured at the
posterior end of anal-fin base; longest anal-fin ray, from base to tip of the longest
ray; pectoral-fin length, from the dorsal border of the fin base where it contacts
the cleithrum to tip of the longest ray; body depth, measured at anal-fin origin;
snout length, from tip of snout to anterior margin of orbit; gape width, between
lateral margins of mouth gape; orbital diameter, between anterior and posterior
margins of the orbit; interorbital distance, shortest distance between margins of
orbits; posterior nare to eye, from posterior margin of posterior nare to anterior
margin of orbit; branchial aperture, from posterodorsal to anteroventral extent of
branchial fold; head width at operculum, largest width measured at bony
operculum; head width at eyes, head width measured at center of eyes. Pectoral
and anal-fin ray counts were taken directly from ethanol preserved specimens
27
under a stereo-microscope. Vertebrae were counted from radiographed
specimens including the four vertebrae of the Weberian Apparatus. Apparently,
Albert (2001) did not include the vertebrae of the Weberian Apparatus in the
precaudal counts; therefore, four vertebrae were added to Albert’s (2001) counts
for comparison. Osteological data were taken from cleared-and-stained
specimens following Taylor & Van Dyke (1985). Sex and the stage of sexual
maturity were determined by dissection, following Cognato & Fialho (2006).
Fish specimens belong to the collections of Departamento de Zoologia,
Universidade Federal do Rio Grande do Sul, Porto Alegre (UFRGS), Museu de
Ciências e Tecnologia, Pontifícia Universidade Católica do Rio Grande do Sul,
Porto Alegre (MCP), Universidade Federal de Minas Gerais, Belo Horizonte
(DZUFMG), Museu de Zoologia, Universidade de São Paulo, São Paulo
(MZUSP), Museu Nacional, Rio de Janeiro (MNRJ), Faculdad de Ciências
Naturales, Montevideo (ZVC-P), Academy of Natural Sciences of Philadelphia,
Philadelphia (ANSP), National Museum of Natural History, Washington D.C.
(USNM), California Academy of Sciences, San Francisco (CAS), University of
Michigan Museum of Zoology, Ann Arbor (UMMZ).
Electric Organ Discharge (EOD) recordings were taken from fishes
obtained from rio Uruguay, rio Tramandaí and laguna dos Patos drainages.
Specimens were held in water from the capture locality at 27ºC +/- 0.5 ºC for at
least 12 hours before the recording. All recordings were made in an aquarium
maintained at 27ºC +/- 0.1 ºC, containing water from the capture locality (or
nearby). Each specimen was allowed 10 minutes to acclimate before recording.
28
Signals were picked up from silver/silver-chloride electrodes placed posterior
and anterior to the fish and with a ground contact in the center. Individual fish
were placed within a nylon-mesh sock. The electrodes were connected to a
custom-built AC-coupled differential amplifier with a frequency response of +/- 3
dB from 0.2 Hz-110 kHz (Wells & Crampton, 2006). EODs were digitized using
an Edirol UA5 A-D converter at a sampling rate of 96 kHz and resolution of 24
bits. Recordings of resting repetition rate were taken during daylight hours
between 1000 and 1400 from fish held in nylon-mesh socks under subdued
lighting. Recordings of nocturnal activity were taken from 1-3 hrs after sunset
from single specimens held in 10 l buckets containing water from the source
locality, and water hyacinths. An electrode was placed in the center of this tank
and the fish was allowed unrestricted movement before and during the
recording. All signal analyses were conducted using custom-written MATLAB or
Java software designed by W. Crampton. EOD durations were calculated with
the beginning and end of the EOD taken at a 1% threshold of the amplitude of
the dominant positive phase (P1) following normalization to the P1 amplitude.
EODs recorded from specimens with more than 10% damage to the caudal
filament were not included for waveform analyses.
Calculations of EOD repetition rate were taken by measuring all
successive inter-pulse intervals over one minute recordings. The EOD rate for
each fish was characterized by three parameters. 1. The mean pulse rate in Hz
calculated as the reciprocal of the mean of all IPIs (in seconds). 2. The standard
deviation (SD) around the mean pulse rate in Hz. This measure of variance
29
indicates the stability of the EOD repetition rate. 3. The coefficient of variance
(CV) calculated as a percentage (mean/SD*100). Because the CV is weighted
by the mean, it is used for standardized comparisons of the relative stability of
the pulse rate over a wide range of rates. The mean and SD of these three
measures were then calculated among all recorded adult or post-larval
specimens, and are presented here to summarize diurnal and nocturnal EOD
activity.
Results
Brachyhypopomus draco, new species
(Figs. 1, 2)
Holotype. MCP 41540, 1 (male, 137.39 mm LEA), Brazil, Rio Grande do Sul,
Parque Estadual de Itapuã, lagoa Verde (30°22’52.4”S - 51°01’25”W), 12 Jan
2004, D. Cognato, L. R. Malabarba, C. E. Machado, R. Q. Carvalho.
Paratypes. All from Brazil, Rio Grande do Sul. Laguna dos Patos drainage:
MCP 41539, 1 (male, 147.12 mm LEA), collected with the holotype. UFRGS
8888, 1 (male, 126.43 mm LEA), same locality of the holotype, 18 Jan 2006, J.
Giora, A. P. Dufech & J. Ferrer. MNRJ 30916, 2 (1 male, 151.87 mm LEA, 1
female, 128.42 mm LEA), same locality of the holotype, 9 Feb 2004, D. Cognato,
M. Azevedo, A. Schaan & C. Hiroshi. MCP 41538, 2 (1 male, 88.49 mm LEA, 1
30
female, 91.76 mm LEA), same locality of the holotype, 30 Jun 2004, D. Cognato
& A. Schaan. MNRJ 30917, 1 (male, 150.27 mm LEA), MZUSP 94429, 1 (male,
139.13 mm LEA), same locality of the holotype, 9 Sep 2004, D. Cognato, M.
Schossler & A. Schaan. MCP 41537, 1 (female, 108.40 mm LEA), same locality
of the holotype, 10 Oct 2003, D. Cognato & A. Schaan. MNRJ 30918, 1 (male,
138.20 mm LEA), same locality of the holotype, 11 Nov 2003, D. Cognato, J.
Giora, J. Anza & A. P. Dufech. UFRGS 732, 1 (female, 78.02 mm LEA), Viamão,
arroio Alexandrina (30°06’00”S - 50°57’00”W), 7 Sep 1980, L. R. Malabarba.
UFRGS 820, 1 (male, 93.77 mm LEA), Guaíba, açude near BR290 highway
(30°07’00”S - 51°20’00”W), 4 Nov 1979, L. R. Malabarba, C. F. M. Santos & P. A.
Buckup. UFRGS 822, 1 (male, 92.56 mm LEA), Guaíba, açude in BR290
highway, near junction with BR116 highway (30°03’00”S - 51°21’00”W), 18 Jan
1980, P. A. Buckup & C. Souto. UFRGS 6526, 1 (male, 102.21 mm LEA),
UFRGS 6525, 1 (male, 100.69 mm LEA), Eldorado do Sul, artificial canal near
BR290 highway (30°02’55”S - 51°23’34”W), 10 Dec 2003, W. Crampton & L. R.
Malabarba. UFRGS 4317, 1 (male, 50.01 mm LEA), Viamão, arroio Itapuã
(30°15’00”S - 51°02’00”W), 01 Mar 1988, F. Becker & L. R. Malabarba. Rio
Tramandaí drainage: UFRGS 6486, 1 (male, 85.37 mm LEA), UFRGS 6488, 1
(male, 98.12 mm LEA), UFRGS 6489, 1 (male, 100.80 mm LEA), UFRGS 6490,
1 (female, 95.54 mm LEA), UFRGS 6491, 1 (male, 80.94 mm LEA), Capão da
Canoa, creek parallel to Estrada do Mar road (29°43’09”S - 50°56’00”W), 20 Nov
2003, L. R. Malabarba, J. Giora, J. Anza & D. Cognato. MNRJ 30915, 2 (1 male,
69.93 mm LEA, 1 female, 85.29 mm LEA), Cidreira, lagoa Fortaleza (30°08’58”S
31
- 50°14’30”W), 11 Jul 2003, L. R. Malabarba. UFRGS 6671, 3 (2 males, 85.75-
107.03 mm LEA, 1 female, 96.37 mm LEA), Terra de Areia, creek into rio Três
Forquilhas, along the road RS486 (29°33’22”S - 50°04’19”W), 20 Nov 2003, L. R.
Malabarba, J. Giora, J. Anza & D. Cognato. Rio Uruguay drainage: UFRGS
6748, 1 (male, 90.84 mm LEA), Rosário do Sul, Sanga do Jacaré, BR290
(30°12’04”S - 55°03’17”W), 18 Jun 2004, D. Cognato, W. Crampton, J. Giora &
D. Rocha. MZUSP 94428, 8 (2 males, 95.64-126.77 mm LEA, 6 females, 51.97-
103.94 mm LEA), UFRGS 6753, 1 (male, 88.35 mm LEA), Rosário do Sul,
stream tributary of arroio Gueromana, BR290 (30°01’00”S - 55°23’18”W), 19 Jun
2004, D. Cognato, W. Crampton, J. Giora & D. Rocha. UFRGS 6785, 4 (2 males,
79.31-105.13 mm LEA, 2 females, 84.54-85.32 mm LEA), UFRGS 6494, 1 (male,
92.56 mm LEA), UFRGS 6497, 1 (male, 90.12 mm LEA), Rosário do Sul, sanga
do Jacaré, BR290 (30°12’42”S - 55°03’17”W), 26 Nov 2003, L. R. Malabarba, J.
Giora, D. Cognato, G. Neves & J. Ferrer. UFRGS 6789, 4 (2 males, 106.52-
126.36 mm LEA, 2 females, 71.58-80-06 mm LEA), Rosário do Sul, stream
tributary of arroio Gueromana, BR290 (30°01’00”S - 55°23’18”W), 26 Nov 2003,
L. R. Malabarba, J. Giora, D. Cognato, G. Neves & J. Ferrer. UFRGS 6507, 1
(male, 92.94 mm LEA), UFRGS 6509, 1 (male, 92.56 mm LEA), UFRGS 6511, 1
(male, 98.32 mm LEA), São Gabriel, stream tributary of arroio Piraí, BR290
(30°18’56”S - 54°24’22”W), 26 Nov 2003, L. R. Malabarba, J. Giora, D. Cognato,
G. Neves & J. Ferrer.
Non-type material. The following specimens were used to record the distribution
32
of the new species, but are not used in the species description and are not part
of the type series. However, they do not differ in morphometric or meristic
characteristics from the type specimens. Brazil, Rio Grande do Sul: MCP
20215, 5, and MCP 20217, 3, Eldorado do Sul; MCP 20711, 1, Osório; UFRGS
7686, 30, Viamão, and UFRGS 7707, 3, Viamão; UFRGS 8475, 4, Pantano
Grande - Rio Pardo; UFRGS 8938, 1, rio Tramandaí; UFRGS 6780, 11, São
Gabriel; UFRGS 6750, 14, Rosário do Sul - Alegrete; UFRGS 8263, 28,
Charqueadas. Paraguay: USNM 181483, 5, Pueblo Ybytymi, Departamiento
Paraguarí; ANSP 170412, 1, Deparatamiento Missiones; ANSP 175180, 1,
Departamiento Missiones. Uruguay: ZVC-P 2727, 1, Departamiento Artigas,
lagoa Redonda.
Diagnosis. Brachyhypopomus draco can be distinguished from all described
congeners by the extreme broadening of the distal portion of the caudal filament
in males during the reproductive period to form a distinct paddle shaped structure
(vs. moderately broadened distally in B. pinnicaudatus and B. brevirostris into
paddle-shaped structures, and versus broadened along most of the length of the
caudal filament in B. occidentalis, B. diazi, B. beebei, B. janeiroensis, and in
several undescribed species of the genus). Brachyhypopomus draco can be
further diagnosed from other species of the genus by the following characters:
caudal filament length 17.3-35.2% of LEA (vs. 36.5-50.0% in B. jureiae; 33.0-
50.0% in B. janeiroensis, and 13.3-20.0% in B. bombilla); pectoral fin ray length
4.1-5.8% of LEA (vs. 6.7-7.9% in B. pinnicaudatus); body depth 8.8-12.2% of
33
LEA (vs. 12.1-16.2% in B. pinnicaudatus); snout length 20.7-30.0% of HL (vs.
31.7-32.2% in B. jureiae); gape width 9.5-16.5% of HL (vs. 17.8-23.1% in B.
pinnicaudatus); interorbital distance 22.7-35% of HL (vs. 14.9-20.5% in B.
bombilla); branchial aperture 16.5-26% of HL (vs. 24.9-31.0% in B.
pinnicaudatus); head width at operculum 48.4-65% of HL (vs. 60.0-73.0% in B.
pinnicaudatus); head width at eyes 31.3-45.6% of HL (vs. 24.7-31.7% in B.
bombilla); number of anal fin rays 155-198 (vs. 188-211 in B. jureiae; 251-295 in
B. brevirostris; 214-228 in B. beebei, and 200-240 in B occidentalis); upper jaw
equal to lower jaw (vs. upper jaw slightly longer than lower jaw in B. bombilla, B.
occidentalis, B. diazi, B. brevirostris and B. jureiae).
Description. Morphometric data are presented in Table 1. Head conical, nearly
triangular in lateral view, snout short, eyes small, mouth terminal with upper jaw
equal to lower jaw, no teeth in both jaws. Body slender, slightly laterally
compressed. Dorsal profile straight from snout to supraoccipital, slightly convex
posteriorly to caudal filament. Ventral profile gently convex from lower jaw to
anal-fin origin, slightly convex to nearly straight along anal-fin base. Highest body
depth located posterior to anal-fin origin. Body depth increasing smoothly from
head to body region near the 30th anal-fin ray, clearly gradually decreasing from
that point to caudal filament. Caudal filament moderately short, slender and
laterally compressed in females, juveniles and males in non-reproductive period;
caudal filament paddle-shaped in sexually mature males (see sexual
dimorphism, below). Cycloid scales covering uniformly the body, except head
34
and fins. Scales smaller on all anterior quarter portion of body; posterior scales at
dorsal and medial body regions two to four times larger in diameter than anterior
ones; smallest scales covering region of anal-fin pterygiophores. First anterior
perforated scale of lateral line above pectoral fin origin and lateral line extending
to caudal filament tip, hardly discernible. Branchial aperture small and slightly
anterior to pectoral fin origin. Anus with the presence of urogenital papilla in
males and females, although less developed in juveniles. Pectoral fins rounded
with pigmented rays and perpendicular insertion; pectoral-fin rays i-ii + 13-15 (15-
17 total pectoral-fin rays, n = 47, median = 16). Anal fin relatively long with vii-xii
+ 148-186 rays (155-198 total anal-fin rays, n = 41, mean = 181.3) which are
pigmented. Anal-fin origin located posterior to posterior edge of pectoral fin.
Precaudal vertebrae 21-23 (20-22 anterior, 1-2 transitional; n= 6).
Coloration in life. General body color brownish varying from dark brown to
yellowish brown, dark brown near dorsal midline and clearing ventrally. A highly
variable number of dark brown bands, well delineated or not, nearly
perpendicular or oblique to longitudinal body axis, running posterodorsally from
base of anal-fin rays to nearby lateral line and occurring from head to tip of
caudal filament. Anal and pectoral-fin rays speckled brown, with hyaline inter-
radial membranes. Adults and juveniles exhibit the same coloration pattern.
Secondary sexual dimorphism. During reproductive period, established
through monthly variation analysis of male and female gonads in a B. draco
35
population, males undergo hypertrophy of the distal portion of caudal filament.
This has been observed between August and December in a population studied
from the type-locality (A. Schaan, J. Giora and C. Fialho, in preparation).
Extremely vertical broadening and lateral compression give the caudal filament a
paddle-like shape. After the reproductive period, this structure regresses until the
caudal filament resembles those of females and juveniles. In addition, adult
males are significantly larger than females.
Electric organ discharge. Brachyhypopomus draco generates a continuous
train of pulse-type EODs. Adult specimens (with developing or fully developed
gonads) (72.6-105 mm LEA) exhibited the following EOD parameters. The mean
EOD repetition rate (per individual) during the day ranged from 15.7-24.6 Hz
(mean among all specimens, 19.6 Hz, SD 2.5, n = 11 individuals fishes), with a
standard deviation (SD) of 0.4-1.2 Hz (mean 0.7, SD 0.3, n = 11), and coefficient
of variance of 1.8-7.0 % (mean 3.9 %, SD 1.88, n = 11). The lowest and highest
absolute pulse rates recorded from all diurnal recordings were 13.7 and 29.2 Hz
respectively. During the hours of peak foraging activity, 1-3 hours after sunset,
the mean EOD repetition rate (per individual) ranged from 34.2-45.8 Hz (mean
among all specimens 38.6 Hz, SD 5.2, n = 6) with a standard deviation of 2.8-
10.8 Hz (mean 2.9, SD 1.1, n = 6) and a coefficient of variation of 8.3-27.3 %
(mean 20.7 %, n = 6). The lowest and highest absolute pulse rates recorded from
all nocturnal recordings were 8.4 and 80.2 Hz respectively.
36
In sum, adult specimens of B. draco exhibited a distinct increase in pulse
rate from the resting day-time state (mean 19.6 Hz) to the nocturnal active state
(mean 38.6 Hz). The coefficient of variation of pulse rate during nocturnal activity
(mean 20.7 %) was considerably higher than during the day (mean 3.9%)
reflecting the greater variability in pulse rate during foraging. Disturbances such
as minor vibrations provoked novelty responses, sudden increases in the resting
pulse rate from the baseline rate (Fig. 3). The approximately stable resting
diurnal EOD punctuated by novelty responses results in a right-skewed
distribution of inter-pulse intervals in a histogram (Fig. 3). Some specimens of B.
draco displayed spontaneous complete cessations of the EOD for periods of up
to 1 minute. Normal EOD activity was resumed after these interruptions.
The EODs waveforms of adult specimens of B. draco comprised two
components of alternating polarity (P1 and P2) sensu Crampton & Albert (2006),
and varied in duration from 1.172-1.992 ms (mean 1.578, SD 0.147, n = 23) (Fig.
4). The Peak Power Frequency (PPF) (see Fig. 4) of these EODs varied from
0.6958-0.8942 kHz (mean 0.7707, SD 0.0534, n = 23).
We did not encounter evidence for obvious sexual differences in the EOD
waveforms of B. draco, despite evidence for this phenomenon in other species of
Brachyhypopomus (e.g. B. occidentalis, Hagedorn, 1985, Shumway & Zelick,
1988; B. pinnicaudatus Stoddard et al., 2003; B. brevirostris, Kawasaki &
Heiligenberg, 1989, Crampton, 1996). Where a sexual difference exists, this is
manifest as an elongation of the second negative waveform phase, P2 and a
corresponding reduction in the PPF of the EOD. We observed no consistent EOD
37
waveform shape differences. Likewise, we observed no significant difference
between the PPF of five sexually mature males (0.7504-0.8942 kHz, mean
0.8178, SD 0.0675) and 2 sexually mature females (0.7385-0.7949 kHz, mean
0.7667, SD 0.0399) (2-sample T-test, df = 5, n = 7, P = 0.38). The observation of
a lower PPF in mature females than males contrasts with cases of sexual EOD
differences in Brachyhypopomus, where sexually mature males invariably display
lower PPFs. Nonetheless, we did note that the Spectral Power Densities of the
two sexually mature females exhibited a more rapid decline from the PPF than in
the five sexually mature males (Fig. 4). Males and females with developing
gonads also exhibited no obvious difference in waveform shape, and no
significant difference in the PPF (males: 0.6958-0.8362 Hz, mean 0.7518, SD
0.0460, n = 10; females: 0.7111-0.8194 kHz, mean 0.7642, SD 0.0422, n = 6) (2-
sample T-test, df = 14, n = 16, P = 0.59). All recorded specimens had been held
in social isolation for several days before they were recorded. This is known to
minimize the hormonally-induced modulation of the P2 phase in sexually mature
males (Stoddard et al., 2003). Further investigation is required to explore whether
EOD differences emerge in males that are exposed to normal social stimuli (i.e.
the presence of sexually mature conspecifics).
All recordings presented here were made during the southern summer
(December) when ambient water temperature is typically in the range 24 – 30º C.
During the winter, water temperatures in Rio Grande do Sul decline to as low as
10º C. We noted that these seasonal temperature changes have a significant
impact on the waveform duration and shape of the EODs of B. draco. The PPF of
38
the EOD declines substantially, and the P2 phase becomes diminished in relative
amplitude. We will present detailed observations on this phenomenon elsewhere.
Loureiro & Silva (2006) discuss the effect of temperature on the EODs of B.
bombilla.
Distribution. Brachyhypopomus draco is widely known from central, southern
and coastal regions of Rio Grande do Sul state, Brazil, and Uruguay. It is known
from three drainages: laguna dos Patos, rio Uruguay and rio Tramandaí, and was
also found at two localities in Paraguay (USNM 181483; ANSP 170412; ANSP
175180).
Habitat. Brachyhypopomus draco inhabits river edges, slow-moving creeks,
lagoons and flooded areas with muddy or sandy bottom and abundant emergent
or floating vegetation. The species was particularly abundant in the type locality,
a lagoon (30°22’52, 4”S e 51°01’25”W) inside a state preserved area, Parque
Estadual de Itapuã in Rio Grande do Sul, Brazil. The lagoon is approximately 4
hectares in area and reaches 1 meter in depth. It has a muddy bottom, abundant
macrophytes and vegetal material in various stages of decomposition, and is
surrounded by psammophilous forest with strong vegetational influence from
Atlantic forest formations (Fig. 6). At the type locality, B. draco was found
occurring together with Gymnotus aff. carapo. At other collecting sites throughout
Rio Grande do Sul state the species was collected along with the gymnotiforms
39
Eigenmannia trilineata, B. bombilla and another undescribed Brachyhypopomus
species (see Comparative Material).
Etymology. Name “draco”, from the Greek “drakon” meaning dragon, in
reference to the shape of distal portion of caudal filament in mature males,
similar to that illustrated in these imaginary creatures.
Discussion
The new species is referred to the genus Brachyhypopomus, since it
conforms to diagnoses of the genus proposed by Mago-Leccia (1994) and Albert
(2001). The new species lacks a mesocoracoid bridge, presents a short snout, a
short and crescent-shaped maxillary bone, and posterior nares closer to eyes
than to snout tip, as proposed in Mago-Leccia’s (1994) diagnosis.
Albert (2001) considered the characters used by Mago-Leccia (1994)
ambiguous in his analysis, and proposed four other characters to diagnose the
genus. Brachyhypopomus draco possesses two of these: the premaxilla gracile
with a curved anterior margin and forming a distinct angle with the maxilla in
lateral view, and the dentary gracile. The two other characters used by Albert
(2001) were the presence of a single transitional vertebra and body cavity with
16-17 precaudal vertebrae (20-21, with the addition of C1-C4).
40
We observed 21-23 precaudal vertebrae in B. draco (20-22 anterior, 1-2
transitional; n= 6). The number of transitional vertebrae exhibited variability, with
three of six specimens bearing one transitional vertebra; two bearing one
transitional vertebra, and one vertebra associated to a rib (but not completely
developed, and not attached to the vertebra); and one bearing two transitional
vertebrae. Variability in the number of precaudal and transitional vertebrae has
also been observed in B. bombilla (Loureiro & Silva, 2006).
From a study of both morphological and molecular sequence data,
Sullivan (1997) diagnosed five species groups within Brachyhypopomus,
discussed later by Albert (2001): the B. brevirostris group, consisting of B.
brevirostris and one undescribed species; the B. beebei group, including B.
beebei, B. pinnicaudatus, B. janeiroensis, and two undescribed species, and the
B. occidentalis group, including B. occidentalis and B. diazi. Within the B. beebei
species group, two subgroups were established: one clade consisting of two
undescribed species, and another consisting of B. beebei and B. pinnicaudatus.
Brachyhypopomus draco can be included in the B. beebei species group, sharing
all the group characteristics: lower jaw equal to upper jaw; ventral ethmoid
reduced; fourth supraorbital lateral line pore close to vertical through posterior
nares; and supraorbital lateral line canal not attached to frontal rostral to the
orbit. Nevertheless, B. draco cannot be included in any of the B. beebei
subgroups because it does not share any of their characteristics.
Although B. draco is more closely related to B. beebei, B. pinnicaudatus,
and B. janeiroensis, included in the B. beebei group, it can be easily
41
distinguished from these species. In addition to the presence of the paddle-
shaped tail in mature males and the morphometric and meristc characters
presented in diagnosis, the coloration pattern of B. draco also differs from these
Brachyhypopomus species. According to the diagnoses presented by Sullivan
(1997), B. beebei has a narrow depigmented stripe running along the posterior
half of upper dorsum, B. pinnicaudatus has a nearly solid dark brown pigment
over the dorsum broken by fine unpigmented reticulations, and B. janeiroensis
lacks lateral bands along sides of the body in mature individuals. All these color
patterns diverge from B. draco that presents a dark brown dorsal surface with a
variable number of darker bands, nearly perpendicular or oblique to the
longitudinal body axis. Moreover, the clade consisted of B. beebei and B.
pinnicaudatus is diagnosed by the presence of a tiny hook-like ossification medial
to first branchiostegal ray (Sullivan, 1997; Albert, 2001), which is absent in B.
draco.
The undescribed species referred herein as occurring in Rio Grande do
Sul can also be diagnosed from B. draco by the lack of a paddle-shaped distal
portion of caudal filament in mature males, and by the coloration pattern,
showing dorsal surface of the body with chocolate-brown stains that form a
reticulated drawing contrasting with a yellow background. Furthermore, B. draco
has the anal-fin origin located posterior to posterior edge of the pectoral fin
(versus anal-fin origin located at the same line of posterior edge of the pectoral
fin in the undescribed species).
42
Comparative material. Brachyhypopomus jureiae: DZUFMG 011, 2,
Paratype, Brazil, São Paulo, rio do Descavado, Juréia Ecological Station;
Brachyhypopomus bombilla: ZVC-P 6287, 1, Holotype, Uruguay, Rocha
Departamiento, rio Cuatro Palmas; ZVC-P 5688, 1, Paratype, Uruguay, rio
Quebracho; ZVC-P 5686, 10, 3 CS, Uruguay, Rocha Departamiento, rio San
Luiz; ZVC-P 5685, 1, Uruguay, Tacuarembo Departamiento, rio Batovi; MNHN
3210, 1, Paratype, Uruguay, Rocha Departamiento, rio San Luiz; UFRGS 9282,
15, UFRGS 9273, 18, UFRGS 9284, 17, UFRGS 6741, 1, UFRGS 6742, 1,
UFRGS 6745, 1, UFRGS 6496, 1, UFRGS 6495, 1, Brazil, Rio Grande do Sul,
Rosário do Sul; Brachyhypopomus pinnicaudatus: ANSP 163463, Holotype, 1,
French Guiana; ANSP 163464, Paratype, 1, French Guiana; USNM 301966,
Paratype, 1, French Guiana; USNM 301967, Paratype, 1, French Guiana; USNM
301968, 1, French Guiana; UMMZ 216032, Paratype, 3, French Guiana;
Brachyhypopomus sp.: UFRGS 6520, 1, UFRGS 6524, 1, UFRGS 8932, 1,
Brazil, Rio Grande do Sul, Viamão, Parque Estadual de Itapuã, lagoa Negra;
UFRGS 2219, 2, Brazil, Rio Grande do Sul, Santo Antônio da Patrulha; UFRGS
3844, 2, Brazil, Rio Grande do Sul, Capão da Canoa, lagoa dos Quadros;
UFRGS 6499, 1, UFRGS 6503, 1, UFRGS 6504, 1, UFRGS 6505, 1, Brazil, Rio
Grande do Sul, São Gabriel.
43
Acknowledgements
We are grateful to David Catania (CAS), John Lundberg and John Sullivan
(ANSP), Marcelo Loureiro (ZVC-P), Zilda Margarete Lucena (MCP), Mauro
Triques (DZUFMG), and Richard Vari and Stanley Weitzman (USNM) for the
loan of specimens. The first author was funded by CAS, ANSP and CAPES to
travel and visit museum collections. This project was supported by CNPq
(process 476821/2003-7; 478002/2006-8). WGRC was funded by National
Science Foundation grant DEB–0614334.
Literature Cited
Albert, J. S. 2001. Species diversity and phylogenetic systematics of American
knifefishes (Gymnotiformes, Teleostei). Miscellaneous Publications of the
Museum of Zoology, University of Michigan, 190: 1-127.
Albert, J. S. & W. G. R. Crampton. 2003. Seven new species of the neotropical
electric fish Gymnotus (Teleostei, Gymnotiformes) with a redescription of G.
carapo (Linnaeus). Zootaxa, 287: 1-54.
Campos-da-Paz, R. 1997. Sistemática e taxonomia dos peixes elétricos das
bacias dos rios Paraguai, Paraná e São Francisco, com notas sobre espécies
presentes em rios costeiros do leste do Brasil (Teleostei: Ostariophysi:
44
Gymnotiformes). Unpublished Ph. D. Thesis, Universidade de São Paulo,
São Paulo, Brazil.
Cognato, D. De P. & C. B. Fialho. 2006. Reproductive biology of a population of
Gymnotus aff. carapo (Teleostei: Gymnotidae) from Southern Brazil.
Neotropical Ichthyology, 4(3): 339-348.
Costa, W. J. E. M. & R. Campos-da-Paz. 1992. Description d’une novelle espèce
de poisson eléctrique du genre néotropical Hypopomus (Siluriformes:
Gymnotodei: Hypopomidae) du sudest du Brésil. Revue Française
d’Aquariologie, 18(4): 117-120.
Crampton, W. G. R. 1996. The electric fish of the Upper Amazon: ecology and
signal diversity. Unpublished Ph. D Thesis, The University of Oxford, Oxford.
223p.
Ellis, M. M. 1913. The gymnotid eels of tropical America. Memoirs of the
Carnegie Museum. 6(3): 109-195.
Fernández-Yépez, A. 1972. Análisis ictiológico del complejo hidrográfico (04)
“Río Yaracuy”. Direccion de Obras Hidraulicas, Ministerio de Obras,
Republica de Venezuela. 25 p., 41pl.
Hagedorn, M. 1985. Ecology and behaviour of a pulse-type electric fish,
Hypopomus occidentalis (Gymnotiformes, Hypopomidae), in a fresh-water
stream in Panama. Copeia, 1985(2): 324-335.
Hopkins, C. D. 1991. Hypopomus pinnicaudatus (Hypopomidae), a new species
of gymnotiforme fish from French Guiana. Copeia, 1991(1): 151-161.
45
Kawasaki, M. & W. Heiligenberg. 1989. Distinct mechanisms of modulation in a
neuronal oscillator generate different social signals in the electric fish
Hypopomus. Journal of Comparative Physiology A., 165: 731-741.
Loureiro, M. & A. Silva. 2006. A new species of Brachyhypopomus
(Gymnotiformes: Hypopomidae) from Northeast Uruguay. Copeia, 2006(4):
665-673.
Mago-Leccia, F. 1978. Los peces de la familia Sternopygidae de Venezuela.
Acta Cientifica Venezolana, 29 (suppl. 1): 1-89.
Mago-Leccia, F. 1994. Electric fishes of the continental waters of America.
Caracas, Fundacion para el Desarrollo de las Ciencias Fisicas, Matematicas
y Naturales. Electric Fishes: 1-206.
Malabarba, L. R. 1989. Histórico sistemático e lista comentada das espécies de
peixes de água doce do sistema da laguna dos Patos, Rio Grande do Sul,
Brasil. Comunicações do Museu de Ciências da PUCRS (Sér. Zool.), 2(8):
107-179.
Regan, C. T. 1914. Fishes from Condoto River, Colômbia, collected by Dr. H. G.
F. Spurrel. Annals and Magazine of Natural History, 14(79): 31-33.
Schultz, L. P. 1944. Two new species of fishes (Gymnotidae, Loricariidae) from
Caripito, Venezuela. Zoologica, 29(1): 39-44.
Shumway, C. A. & R. D. Zelick. 1988. Sex recognition and neuronal coding of
electric organ discharge waveform in the pulse-type weakly electric fish,
Hypopomus occidentalis. Journal of Comparative Physiology A., 163: 465-
478.
46
Steindachner, F. 1868. Abhandlung über die Gymnotiden des Wiener Museums.
Anzeiger der Akademie der Wissenschaften in Wien, 5(20): 176-177.
Stoddard, P. K., M. R. Markham & V. L. Salazar. 2003. Serotonin modulates the
electric waveform of the gymnotiform electric fish Brachyhypopomus
pinnicaudatus.
Journal of Experimental Biology, 206: 1353-1362.
Sullivan, J. P. 1997. A phylogenetic study of the Neotropical hypopomid electric
fishes (Gymnotiformes: Rhamphichthyoidea). Unpublished Ph. D.
Dissertation. Duke University, Durham, North Carolina.
Taylor, W. R. & G. C. Van Dyke. 1985. Revised procedures for staining and
clearing small fishes and other vertebrates for bone and cartilage study.
Cybium, 9:107-119.
Triques, M. L. & D. K. Khamis. 2003. Brachyhypopomus jureiae, a new species
of freshwater Neotropical electric fish (Teleostei: Gymnotiformes:
Hypopomidae) from a coastal stream of southeastern Brazil. Lundiana, 4(1):
61-64.
Wells, K. & W. G. R. Crampton. 2006. A portable bio-amplifier for electric fish
research: design and construction. Neotropical Ichthyology, 4 (2): 295-299.
47
Table 1. Morphometric data for Brachyhypopomus draco. Length to the end of
anal fin (LEA); Head length (HL).
Character Holotype n Minimum Maximum Mean L1 L2 S.D.
LEA (mm) 137.39 44 50 151.9 96.9 24.559
HL 10.1 44 9.4 14.2 11.4 11.084 11.694 1.004
Caudal filament length 29.1 34 17.3 35.2 25.1 23.324 26.863 5.152
Snout to anal fin origin 18.3 44 17.9 23 20.3 19.93 20.703 1.272
Depth of caudal filament 2.7 44 1.4 3.1 2.1 2.01 2.244 0.386
Longest anal fin ray 3.7 43 2.9 4.4 3.6 3.528 3.739 0.347
Longest pectoral fin ray 4.1 41 4.1 5.8 5 4.852 5.168 0.507
Body depth 9.4 44 8.8 12.2 10.8 10.521 11.085 0.926
Snout length 26.5 50 20.7 30 25.6 25.128 26.086 1.686
Gape width 14.5 50 9.5 16.5 13.7 13.322 14.148 1.454
Orbital diameter 9.5 50 9.4 14.4 12.3 11.903 12.641 1.3
Interorbital distance 23.4 50 22.7 35 28.4 27.602 29.257 2.913
Posterior nare to eye 3.4 49 2.9 5.4 4.2 4.044 4.343 0.526
Branchial aperture 23.3 50 16.5 26 19.9 19.312 20.448 1.999
Head width at operculum 54.1 50 48.4 65 57 55.969 57.962 3.507
Head width at eyes 37.2 50 31.3 45.6 39.9 39.091 40.636 2.718
95% confidence limit
Percents of LEA
Percents of HL
48
Fig. 1. Holotype (MCP 41540, male, 137.39 mm LEA) (above) and paratype
(MCP 41537, female, 108.40 mm LEA) (below) of Brachyhypopomus draco, from
Parque Estadual de Itapuã, Rio Grande do Sul, Brazil.
49
Fig. 2. Brachyhypopomus draco, MCP 41540, male, 137.39 mm LEA; a, head; b,
tail.
50
Fig. 3. a. Resting diurnal Electric Organ Discharge (EOD) repetition rate of a
single specimen of Brachyhypopomus draco (UFRGS 6487). Repetition rate in
Hz (pulses per second) is plotted for a 60 s recording. Each point represents the
distance from an EOD to the preceding one (Inter-Pulse Interval, IPI). Note the
intermittent upward modulations of repetition rate (arrows) in response to
disturbances such as minute vibrations. These ‘novelty responses’ are a normal
part of EOD activity in the wild. b. Histogram of 1218 IPIs for the 60 s recording,
exhibiting a typical right-skewed distribution due to the novelty responses.
Repetition rate (Hz) is the reciprocal of Inter-pulse interval (e.g. 1/20 Hz = 0.05 s)
51
Fig. 4. Electric Organ Discharge (EOD) waveform (left) and Spectral Power
Density (right) of adult specimens of Brachyhypopomus draco from Rio Grande
do Sul state, Brazil. a: All 23 recorded specimens with developing or fully
developed gonads (86-135 mm). b: 7 adult specimens with fully mature gonads;
5 male (blue) 2 female (red). c: 16 adult specimens with developing gonads; 10
males (blue), 6 females (red). EODs plotted with head positivity upwards,
normalized to the amplitude of the dominant positive phase (P1), and aligned at
the P1 peak. Scale bar = 1 ms. Spectral Power Densities (SPDs) were computed
from a 65, 536-point Fast Fourier Transform and the Peak Power Frequency
(PPF) scaled to 0 dB. Upper and lower ranges of the PPF are marked with
arrows. Note the more rapid decline of the SPDs of the two sexually mature
females versus males (labeled with asterisk in c) but no obvious sexual
difference in EOD waveform shape or PPF.
52
Fig. 5. Map of Southern Brazil, Uruguay, Argentina and Paraguay with the
distribution of Brachyhypopomus draco. Squares represent non-type specimens.
Empty circle represents the type locality.
53
Fig. 6. Typical habitat of Brachyhypopomus draco; marshland in the Parque
Estadual de Itapuã, Rio Grande do Sul, Brazil.
54
Capítulo II
A new species of the Neotropical electric fish genera
Brachyhypopomus from southern South America
(Gymnotiformes: Hypopomidae).
55
A new species of the Neotropical electric fish genera Brachyhypopomus
from southern South America (Gymnotiformes: Hypopomidae).
Julia Giora*, Luiz R. Malabarba*, **
* Universidade Federal do Rio Grande do Sul, IB, Departamento de Zoologia, Av.
Bento Gonçalves, 9500, bloco IV, prédio 43435, 91501-970 Porto Alegre, RS,
** Museu de Ciências e Tecnologia, PUCRS, Av. Ipiranga, 6681, P. O. Box.
1429, 90619-900 Porto Alegre, RS, Brazil.
A new species of Brachyhypopomus, from central, southern and coastal regions
of Rio Grande do Sul state, Brazil, Uruguay, and Paraguay is described. It is
diagnosed from the congeners on the basis of body coloration, meristic and
morphometric characters, such as the number of anal-fin rays, position of anal-fin
origin in relation to pectoral-fin, distal portion of caudal filament of mature males,
and body proportions. The new species has been formerly identified as B.
pinnicaudatus and is herein distinguished from it.
Uma nova espécie de Brachyhypopomus das regiões central, sul e costeira do
estado do Rio Grande do Sul, Brasil, Uruguai e Paraguai é descrita. Ela é
diagnosticada de seus congêneres baseado em coloração do corpo, caracteres
merísticos e morfológicos tais como número de raios da nadadeira anal, posição
56
da origem da nadadeira anal em relação à nadadeira peitoral, porção distal do
filamento caudal de machos maduros e proporções corporais. A espécie nova
tem sido identificada como B. pinnicaudatus e é aqui distinguida da mesma.
Key words: Brachyhypopomus, rio Uruguay, laguna dos Patos, rio Tramandaí.
Introduction
The genus Brachyhypopomus was described by Mago-Leccia (1994) to
comprise six species that previously belonged to Hypopomus: B. occidentalis
(Regan, 1914), B. beebei (Schultz, 1944), B. brevirostris (Steindachner, 1868), B.
diazi (Fernández-Yépez, 1972), B. pinnicaudatus (Hopkins, 1991), and B.
janeiroensis (Costa & Campos-da-Paz, 1992). All these quoted species were
described for the northern area of Neotropical region, except for B. janeiroensis,
which occurs in São João and Paraíba do Sul river basins in Rio de Janeiro state
(Albert & Crampton, 2003). Recently, with the increase of studies especially on
southern Brazil and Uruguay, additional species have been described.
Brachyhypopomus jureiae Triques & Khamis, 2003 was described as occurring
only in rio Una do Prelado system in southern Brazil, B. bombilla Loureiro &
Silva, 2006 as distributed throughout middle rio Uruguay tributaries and the
laguna dos Patos and lagoa Mirim systems in eastern Uruguay, and B. draco
Giora, Malabarba & Crampton, in press as widely distributed in Rio Grande do
57
Sul state, southern Brazil, Uruguay, and also in Paraguay. Nevertheless, the low
number of studies on Gymnotiformes from southern South America still resulting
in the underestimation of the species diversity in this area.
The species B. pinnicaudatus was described by Hopkins (1991) on the
basis of one population from French Guiana; however, the author has considered
the species to be widespread throughout tropical South America. Sullivan (1997),
in an unpublished review, considered B. pinnicaudatus widely distributed in the
Amazon and Paraná/Paraguay drainage basins as well as coastal drainages of
southern Brazil and Uruguay, including material from Rio Grande do Sul state.
Campos-da-Paz (1997) and Albert & Crampton (2003) referred B. pinnicaudatus
as distributed throughout eastern South America from rio Catumbo basin,
Orinoco and Guianas to rio de la Plata basin.
Based upon extensive sampling in Rio Grande do Sul state, our studies
revealed the presence of three Brachyhypopomus species in this region: B.
bombilla, B. draco, and a third species, widespread in rio Uruguay, laguna dos
Patos and rio Tramandaí drainages in southern Brazil and Uruguay, which has
been largely identified as B. pinnicaudatus in the literature. We have compared
this population identified as B. pinnicaudatus with the type series and found it to
be a new species. The misapplication of names and the existence of groups of
species concealed under a unique specific name has been a problem for a better
understanding of the real diversity of species in almost all gymnotiform genera.
The present study aims to describe this new Brachyhypopomus species from
southern Brazil.
58
Materials and Methods
Comparative data from B. pinnicaudatus, B. bombilla, B. draco and B.
jureiae were taken directly from the type specimens (see Comparative Material).
Data from B. brevirostris, B. occidentalis, B. beebei, B. diazi and B. janeiroensis
were compiled from original descriptions. Morphometric data were taken as
point-to-point linear distances using digital calipers to the nearest 0.1mm.
Measurements were analyzed as percents of length to the end of the anal-fin
(LEA), measured as the distance from tip of the snout to posterior end of anal-fin
base, or as percents of head length (HL), measured from tip of snout to posterior
margin of bony operculum. The total length was not used as a numerator in
morphometric body relationships because of the high number of specimens with
a damaged and/or regenerated caudal filament. Regenerated parts of the body
were not measured and their meristic data were not recorded. The other
measurements used were taken following Giora et al. (in press). Pectoral and
anal-fin ray counts were taken directly from ethanol preserved specimens under
a stereo-microscope. Vertebrae were counted from radiographed specimens
including the four vertebrae of the Weberian Apparatus. Apparently, Albert
(2001) did not include the vertebrae of the Weberian Apparatus in the precaudal
counts; therefore, four vertebrae were added to Albert’s (2001) counts for
comparison. Osteologic data were taken from cleared-and-stained specimens
59
following Taylor & Van Dyke (1985). Sex and the stage of sexual maturity were
determined by dissection, following Cognato & Fialho (2006).
Fish specimens belong to the collections of the Departamento de
Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre (UFRGS),
Museu de Ciências e Tecnologia, Pontifícia Universidade Católica do Rio Grande
do Sul, Porto Alegre (MCP), Universidade Federal de Minas Gerais, Belo
Horizonte (DZUFMG), Museu de Zoologia, Universidade de São Paulo, São
Paulo (MZUSP), Museu Nacional, Rio de Janeiro (MNRJ), Faculdad de Ciências
Naturales, Montevideo (ZVC-P), Academy of Natural Sciences of Philadelphia,
Philadelphia (ANSP), National Museum of Natural History, Washington D.C.
(USNM), California Academy of Sciences, San Francisco (CAS), University of
Michigan Museum of Zoology, Ann Arbor (UMMZ).
Results
Brachyhypopomus “G” n. sp., new species
(Fig. 1)
Brachyhypopomus pinnicaudatus [in part]. Sullivan (1997: 243-248) [specimens
of Brachyhypopomus “G” n. sp. listed under B. pinnicaudatus].
Brachyhypopomus sp. Giora et al. (in press) [listed in comparative material of B.
draco].
60
Holotype: UFRGS 9229 (male, 149.03 mm LEA), Palmares do Sul,
chanel connecting lagoa do Casamento and lagoa dos Gateados (aprox.
30°28’S, 50°40’W), 28 Sep 2006, F. Becker.
Paratypes: All from Brazil, Rio Grande do Sul. Laguna dos Patos
drainage: UFRGS 9580, 1 (male, 139.62 mm LEA), Charqueadas, floaded area
near arroio dos Ratos creek (29°57’31.9”S, 51°33’10.1”W), 28 Nov 2005, J.
Giora, D. Roca, A. Ribeiro. UFRGS 9581, 2 (1 male, 128.68 mm LEA, 1 female,
126.36 mm LEA), Charqueadas, floaded area near arroio dos Ratos creek
(29°57’31.9”S, 51°33’10.1”W), 22 Sep 2005, J. Giora, D. Rocha, R. Hirano.
UFRGS 6520, 1 (female, 124.32 mm LEA), UFRGS 6524, 1 (male, 125,82 mm
LEA), Viamão, Parque Estadual de Itapuã, lagoa Negra (30°21’35”S,
50°58’34”W), 11 Nov 2003, J. Anza, D. Cognato, A. Dufech & J. Giora. UFRGS
8932, 1 (female, 133.35 mm LEA), Viamão, Parque Estadual de Itapuã, Lagoa
Negra (30°21’35”S, 50°58’34”W), 6 Jan 2003, D. Cognato, T. Dias & J. Giora.
UFRGS 4240, 5 (3 males, 74.40-97.24 mm LEA, 2 females, 75.04-78.09 mm
LEA), Barra do Ribeiro, along the road between BR 116 and Barra do Ribeiro city
(30°17’00”S, 51°21’00”W), 21 Oct 1987, L. Malabarba, F. Becker & M.
Schneider. UFRGS 5641, 2 (males, 81.73-126.29 mm LEA), Viamão, Parque
Estadual de Itapuã, lagoa do Palácio (30°24’10”S, 50°57’25”W), 26 Nov 2002, J.
Anza, L. Malabarba, T. Gonçalves & T. Hasper. UFRGS 2219, 2 (1 male, 120.87
mm LEA, 1 female, 80.03 mm LEA), Santo Antônio da Patrulha, creek between
BR 290 and Santo Antônio da Patrulha city (29°52’00”S, 50°35’00”W), 3 Mar
1983, L. Malabarba, C. M. Malabarba & R. Reis. Rio Tramandaí drainage:
61
UFRGS 8933, 1 (female, 101.64 mm LEA), Arroio do Sal, creek parallel to
Estrada do Mar road (29°30’33”S, 49°53’34”W), 11 Mar 2005, J. Anza, J. Giora,
L. R. Malabarba. UFRGS 3844, 2 (1 male, 91.62 mm LEA, 1 female, 83.11 mm
LEA), Capão da Canoa, lagoa dos Quadros (29°42’00”S, 50°06’00”W), 14 Nov
1988, L. Malabarba. Rio Uruguay drainage: UFRGS 6499, 1 (male, 102.13 mm
LEA), UFRGS 6503, 1 (female, 84.12 mm LEA), UFRGS 6504, 1 (male, 123.16
mm LEA), UFRGS 6505, 1 (male, 135.79 mm LEA), UFRGS 6781, 15 (8 males,
59.83-127.17 mm LEA, 7 females, 78.09-127.17 mm LEA), São Gabriel, stream
tributary of arroio Piraí, BR290 (30°18’56”S, 54°24’22”W), 26 Nov 2003, L.
Malabarba, J. Giora, D. Cognato, G. Neves & J. Ferrer.
Non-type material: The following specimens were used to record the
distribution of the new species, but are not used in the species description and
are not part of the type series. However, they do not differ in morphometric or
meristic characteristics from the type specimens. Brazil, Rio Grande do Sul:
MCP 9710, 1, Porto Alegre, Foz do Arroio da Faxina; MCP 14177, 1, Eldorado
do Sul; MCP 14459, 2, Eldorado do Sul; MCP 14606, 2, Guaíba; MCP 15326, 2,
Eldorado do Sul; MCP 11135, 1, Santo Ângelo; USNM 191645, 1, Porto Alegre.
Uruguay: ZVC – P 5002, 1, Paso Manzagano, Rio Negro; ZVC – P 1992, 1,
Paso del Sauce. Paraguay: ANSP 185112, 1, Departamiento Cordillera; ANSP
185116, 5, Departamiento Boqueron; ANSP 185114, 1, Presidente Haynes;
UMMZ 207817, 1, Concepcion; USNM 232235, 3, Presidente Haynes.
62
Diagnosis: Brachyhypopomus “G” n. sp. is diagnosed from all congeners
by the following combination of features: body depth 11.0-14.1% of LEA (vs.
10.9-11.0% in B. jureiae, 10.1-10.9% in B. janeiroensis); branchial aperture 20.4-
28.1% of LEA (vs. 19.0-19.8% in B. jureiae); caudal filament length 19.6-32.2%
of LEA (vs. 42.3-45.8% in B. jureiae, 34.0-39.6% in B. janeiroensis); anal-fin ray
length 3.6-5.1% of LEA (vs. 3.3-3.4% in B. jureiae); pectoral-fin length 4.9-6.4%
of LEA (vs. 4.3-4.6% in B. jureiae); snout to anal-fin origin 17.0-21.2% of LEA
(vs. 16.1-17.4% in B. beebei); number of anal-fin rays 180-216 (vs. 214-228 in B.
beebei, 200-240 in B. occidentalis, 251-295 in B. brevirostris); upper jaw equal to
lower jaw (vs. upper jaw slightly longer than lower jaw B occidentalis, B. diazi, B.
brevirostris and B. jureiae).
Brachyhypopomus “G” n. sp. is diagnosed from B. pinnicaudatus by the
following characters: caudal filament length 19.6-32.2% of LEA (vs. 32.3-42.3%);
pectoral-fin length 4.9-6.4% of LEA (vs. 6.7-7.9%); head length 10.0-12.7% of
LEA (vs. 12.4-15.6%); number of anal fin rays 180-216 (vs. 176-185).
Brachyhypopomus “G” n. sp. is diagnosed from the syntopic species B.
draco and B. bombilla by the following characters: dorsal surface of the body with
chocolate-brown stains that are connected forming a reticulated drawing
contrasting with the yellow background, vs. dark brown dorsal surface with a
variable number darker bands, nearly perpendicular or oblique to longitudinal
body axis, never being interconnected in B. draco, and body background light
brown with an irregularly scattered darker brown pigmentation more dense in
dorsal half of body in B. bombilla; anal-fin origin located at same line of posterior
63
edge of pectoral-fin, vs. anal-fin origin located posterior to posterior edge of
pectoral-fin in B. draco; distal portion of caudal filament moderately broadened
vertically and laterally compressed in sexually mature males, vs. extreme
broadened and forming a distinct paddle shaped structure in B. draco, and not
broadened in B. bombilla; body depth 11.0-14.1% of LEA (vs. 8.8-12.2% in B.
draco, 9.4-11.0% in B. bombilla); branchial aperture 20.4-28.1% of LEA (vs. 13.8-
18.3% in B. bombilla); gape 14.4-18.5% of HL (vs. 9.5-16.5% in B. draco); head
width at operculum 52.4-73.2% of HL (vs. 48.4-65.0% in B. draco, 43.6-51% in B.
bombilla); head width at center of eyes 31.1-48.1% of HL (vs. 24.7-31.7% in B.
bombilla); interorbital distance 23.3-30.4% of HL (vs. 14.9-20.5% in B. bombilla);
number of anal-fin rays 180-216 (vs. 155-198 in B. draco); upper jaw equal to
lower jaw (vs. upper jaw slightly longer than lower jaw in B. bombilla); precaudal
vertebrae 20-21, 18-19 anterior and 1-2 transitional (vs. 21-23, 20-22 anterior
and 1-2 transitional in B. draco).
Description: Morphometric data are presented in Table 1. Head conical,
nearly triangular in lateral view, snout short and blunt, eyes small, mouth terminal
with upper jaw length equal to lower jaw, no teeth in both jaws. Body laterally
compressed. Dorsal profile convex from snout to caudal filament, most notably at
anterior half of body. Ventral profile convex from lower jaw to anterior anal-fin
base; nearly straight from that point to caudal filament. Highest body depth
located at anal-fin origin. Body depth increasing from head to anal-fin origin,
remaining nearly same depth to close to the 40th anal-fin ray, sharply decreasing
64
from that point to caudal filament. Caudal filament moderately short, slender and
nearly cylindrical in females, juveniles and males in non-reproductive period;
caudal filament vertically broadened and laterally compressed in sexually mature
males (see sexual dimorphism, below). Cycloid scales covering body, except
head and fins. Scales smaller on anterior portion of body; five to seven series of
large scales along mid-lateral portion of body, reducing to two or three series
posteriorly. Mid-lateral scales nearly twice larger than dorso-lateral and dorsal
scale and four times larger in diameter than anterior ones; smallest scales
covering region of anal-fin pterygiophores. First anterior perforated scale of
lateral line above pectoral-fin origin; lateral line irregular, not extending to caudal
filament. Branchial aperture small and slightly anterior to pectoral-fin origin. Anus
with the presence of urogenital papilla in males and females, although less
developed in juveniles. Pectoral fins rounded and with perpendicular insertion;
pectoral-fin rays i-ii + 13-15 (15-17 total pectoral-fin rays, n = 38, mean = 15.9).
Anal-fin relatively long with vi-x + 173-206 rays (180-216 total anal-fin rays, n =
38, mean = 196.2). Anal-fin origin located at same line of posterior edge of
pectoral-fin. Precaudal vertebrae 20-21 (18 -19 anterior, 1-2 transitional; n= 5).
Color in Life: General body color varying from light brown to yellow. Head
darker than rest of body. Dorsal surface with chocolate-brown stains that are
connected forming reticulated drawing contrasting with yellow background.
Variable number of brown stripes running from dorsal stains to base of anal fin,
roughly defined in middle of body and occurring from head to tip of caudal
65
filament. Anal and pectoral fins speckled with dark brown pigment, with hyaline
inter-radial membranes.
Secondary Sexual Dimorphism: The caudal filament of dominant mature
males is laterally compressed, especially on its distal portion, differing from that
of females, juveniles and non-dominant males, which is usually cylindrical (J.
Giora and C. Fialho, in preparation).
Distribution: Brachyhypopomus “G” n. sp. is known from laguna dos
Patos, rio Uruguay and rio Tramandaí drainages in Rio Grande do Sul state,
Brazil, being widely distributed from central, southern and coastal regions of the
state. It also occurs in rio Uruguay basin in Uruguay (ZVC–P 5002; ZVC–P 1992)
and in rio Paraguay basin in Paraguay (ANSP 185112; ANSP 185116; ANSP
185114; UMMZ 207817; USNM 232235).
Habitat: Brachyhypopomus “G” n. sp. inhabits river banks, slow-moving
creeks, lagoons, and flooded areas with muddy or sandy bottom; the occurrence
of the species is always associated with abundant emergent or floating
vegetation. Brachyhypopomus “G” n. sp. is sympatric and commonly syntopic
with B. draco, and more rarely syntopic with B. bombilla. Throughout Rio Grande
do Sul state the species was also collected along with the gymnotiforms
Eigenmannia trilineata and Gymnotus aff. carapo.
66
Discussion
Brachyhypopomus “G” n. sp. is included in the genus Brachyhypopomus
by sharing the synapomorphies proposed by Mago-Leccia (1994): lack of
mesocoracoid bridge, short snout, short and crescent-shaped maxillary bone,
and posterior nares closer to eyes than to snout tip. Moreover, the new species
shares two of the four diagnostic features defined by Albert (2001) for
Brachyhypopomus: the premaxilla gracile with a curved anterior margin and
forming a distinct angle with the maxilla in lateral view, and the dentary gracile.
Regarding the species-group established by Sullivan (1997) and latter
discussed by Albert (2001), Brachyhypopomus “G” n. sp. can be included in the
B. beebei species group by the presence of lower jaw equal to upper jaw, fourth
supraorbital lateral-line pore close to vertical through posterior nares, and
supraorbital lateral-line canal not attached to frontal rostral to the orbit. The
authors have also described the presence of ventral ethmoid reduced as a
diagnostic character for this group of species; although there is no clear definition
of what “reduced” means, we found the ventral ethmoid small and possibly
comparable to that described condition. The new species cannot be included in
any of the B. beebei subgroups because it does not share any of their
characteristics. Brachyhypopomus pinnicaudatus and B. beebei were quoted by
Sullivan (1997) and Albert (2001) as integrating a clade within B. beebei species
group diagnosed by the presence of a tiny hook-like ossification medial to first
67
branchiostegal ray (homologous to second brachiostegal ray in species with five
rays). Brachyhypopomus “G” n. sp. does not show this hook-like ossification and
possesses fifth branchiostegal ray differing from the two species mentioned.
Moreover, Albert (2001) states that this character is polymorphic in B.
pinnicaudatus, which can indicate the presence of more than one species
referred to this one.
Sullivan (1997) diagnosed B. pinnicaudatus by the nearly solid dark
brown pigment over dorsum, broken by fine depigmented reticulations, with
narrow yellow streak threaded through reticulated pattern, and by the
posttemporal completely fused to supracleithrum. Brachyhypopomus “G” n. sp.
differs from this diagnosis by presenting the posttemporal completely
independent from the supracleithrum. From the specimens referred by Sullivan
(1997) as B. pinnicaudatus from southern South America, at least two lots of
specimens belong to Brachyhypopomus G” n. sp. species (UMMZ 207818;
USNM 232235, see non-type material), both from Paraguaian locations.
Brachyhypopomus “G” n. sp. has also been identified as B. pinnicaudatus by
Albert & Crampton (2003), Campos-da-Paz (1997) and many lists of species
from Rio Grande do Sul state river basins (pers. obs.). Nevertheless, the new
species herein described can be easily distinguished from B. pinnicaudatus by
four characters: caudal filament length, pectoral fin length, head length, and
number of anal-fin rays. Through analysis of specimens from Peru, French
Guiana, Guyana, Bolivia, Paraguay, Uruguay, and Brazil – especially southern
and northern Brazilian regions – we have identified a great number of
68
recognizable morphotypes referred as B. pinnicaudatus. The results point to a
necessity of a review of the species considered to be widespread throughout the
Neotropical region as a matter of avoiding misapplied names and
underestimation of species diversity. Moreover, the description of a new species
with distribution restricted to southern South America reinforces the importance
of continuing taxonomic work on Gymnotiformes species from this region, and
demonstrates that low latitude areas may be more diverse than previously
supposed.
Comparative material: Brachyhypopomus jureiae: DZUFMG 011, 2, Paratype,
Brazil, São Paulo, rio do Descavado, Jureia Ecological Station;
Brachyhypopomus bombilla: ZVC-P 6287, 1, Holotype, Uruguay, Rocha
Departamiento, rio Cuatro Palmas; ZVC-P 5688, 1, Paratype, Uruguay, rio
Quebracho; ZVC-P 5686, 10, 3 CS, Uruguay, Rocha Departamiento, rio San
Luiz; ZVC-P 5685, 1, Uruguay, Tacuarembo Departamiento, rio Batovi; MNHN
3210, 1, Paratype, Uruguay, Rocha Departamiento, rio San Luiz; UFRGS 9282,
15, UFRGS 9273, 18, UFRGS 9284, 17, UFRGS 6741, 1, UFRGS 6742, 1,
UFRGS 6745, 1, UFRGS 6496, 1, UFRGS 6495, 1, Brazil, Rio Grande do Sul,
Rosário do Sul; Brachyhypopomus pinnicaudatus: ANSP 163463, Holotype, 1,
French Guiana; ANSP 163464, Paratype, 1, French Guiana; USNM 301966,
Paratype, 1, French Guiana; USNM 301967, Paratype, 1, French Guiana; USNM
301968, 1, French Guiana; UMMZ 216032, Paratype, 3, French Guiana;
Brachyhypopomus draco: MCP 41540, Holotype; 1, MCP 41539, Paratype, 1,
69
MNRJ 30916, Paratype, 2, UFRGS 8888, Paratype, 1, MCP 41538, Paratype, 2,
MNRJ 30917, Paratype, 1, MZUSP 94429, Paratype, 1, MCP 41537, Paratype,
1, MNRJ 30918, Paratype, 1, Brazil, Rio Grande do Sul, Parque Estadual de
Itapuã; UFRGS 732, Paratype, 1, Brazil, Rio Grande do Sul, Viamão; UFRGS
820, Paratype, 1, UFRGS 822, Paratype, 1, Brazil, Rio Grande do Sul, Guaíba;
UFRGS 6526, Paratype, 1, UFRGS 6525, Paratype, 1, Brazil, Rio Grande do
Sul, Eldorado do Sul; UFRGS 4317, Paratype, 1, Brazil, Rio Grande do Sul,
Viamão; UFRGS 6486, Paratype, 1, UFRGS 6488, Paratype, 1, UFRGS 6489,
Paratype, 1, UFRGS 6490, Paratype, 1, UFRGS 6491, Paratype, 1, Brazil, Rio
Grande do Sul, Capão da Canoa; MNRJ 30915, Paratype, 2, Brazil, Rio Grande
do Sul, Cidreira; UFRGS 6671, Paratype, 3, Brazil, Rio Grande do Sul, Terra de
Areia; UFRGS 6748, Paratype, 1, MZUSP 94428, Paratype, 8, UFRGS 6753,
Paratype, 1, UFRGS 6785, Paratype, 4, UFRGS 6494, Paratype, 1, UFRGS
6497, Paratype, 1, Brazil, Rio Grande do Sul, Rosário do Sul; UFRGS 6507,
Paratype, 1, UFRGS 6509, Paratype, 1, UFRGS 6511, Paratype, Brazil, Rio
Grande do Sul, São Gabriel.
Acknowledgements
70
We are grateful to David Catania (CAS), John Lundberg and John Sullivan
(ANSP), Marcelo Loureiro (ZVC-P), Zilda Margarete Lucena (MCP), Mauro
Triques (DZUFMG), and Richard Vari and Stanley Weitzman (USNM) for the
loan of specimens. The first author was funded by CAS, ANSP and CAPES to
travel and visit museum collections. This project was supported by CNPq
(process 476821/2003-7; 478002/2006-8).
Literature Cited
Albert, J. S. 2001. Species diversity and phylogenetic systematics of American
knifefishes (Gymnotiformes, Teleostei). Miscellaneous Publications of the
Museum Zoology University of Michigan, 190: 1-129.
Albert, J. S. & W. G. R. Crampton. 2003. Seven new species of the neotropical
electric fish Gymnotus (Teleostei, Gymnotiformes) with a redescription of G.
carapo (Linnaeus). Zootaxa, 287: 1-54.
Campos-da-Paz, R. 1997. Sistemática e taxonomia dos peixes elétricos das
bacias dos rios Paraguai, Paraná e São Francisco, com notas sobre espécies
presentes em rios costeiros do leste do Brasil (Teleostei: Ostariophysi:
Gymnotiformes). Unpublished Ph. D. Thesis, Universidade de São Paulo,
São Paulo, 314p.
71
Cognato, D. De P. & C. B. Fialho. 2006. Reproductive biology of a population of
Gymnotus aff. carapo (Teleostei: Gymnotidae) from Southern Brazil.
Neotropical Ichthyology, 4(3): 339-348.
Costa, W. J. E. M. & R. Campos-da-Paz. 1992. Description d’une novelle espèce
de poisson eléctrique du genre néotropical Hypopomus (Siluriformes:
Gymnotodei: Hypopomidae) du sudest du Brésil. Revue Française
d’Aquariologie, 18(4): 117-120.
Fernández-Yépez, A. 1972. Análisis ictiológico del complejo hidrográfico (04)
“Río Yaracuy”. Direccion de Obras Hidraulicas, Ministerio de Obras,
Republica de Venezuela. 25 p., 41pl.
Giora, J., L. R. Malabarba & W. G. R. Crampton. (in press). Brachyhypopomus
draco, a new sexually species of Neotropical electric fish from southern South
America (Gymnotiformes: Hypopomidae). Neotropical Ichthyology.
Hopkins, C. D. 1991. Hypopomus pinnicaudatus (Hypopomidae), a new species
of gymnotiforme fish from French Guiana. Copeia, 1991(1): 151-161.
Loureiro, M. & A. Silva. 2006. A new species of Brachyhypopomus
(Gymnotiformes: Hypopomidae) from Northeast Uruguay. Copeia, 2006(4):
665-673.
Mago-Leccia, F. 1994. Electric fishes of the continental waters of America. Cracas,
Clemente Editores, 207p.
Regan, C. T. 1914. Fishes from Condoto River, Colômbia, collected by Dr. H. G. F.
Spurrel. Annals and Magazine of Natural History, 14(79): 31-33.
72
Schultz, L. P. 1944. Two new species of fishes (Gymnotidae, Loricariidae) from
Caripito, Venezuela. Zoologica, 29(1): 39-44.
Steindachner, F. 1868. Abhandlung über die Gymnotiden des Wiener Museums.
Anzeiger der Akademie der Wissenschaften in Wien, 5(20): 176-177.
Sullivan, J. P. 1997. A phylogenetic study of the Neotropical hypopomid electric
fishes (Gymnotiformes: Rhamphichthyoidea). Unpublished Ph. D.
Dissertation. Duke University, Durham, North Carolina, 336p.
Taylor, W. R. & G. C. Van Dyke. 1985. Revised procedures for staining and
clearing small fishes and other vertebrates for bone and cartilage study.
Cybium, 9: 107-119.
Triques, M. L. & D. K. Khamis. 2003. Brachyhypopomus jureiae, a new species of
freshwater Neotropical electric fish (Teleostei: Gymnotiformes: Hypopomidae)
from a coastal stream of southeastern Brazil. Lundiana, 4(1): 61-64.
73
Table 1. Morphometric data for Brachyhypopomus “G” n. sp. Length to the end of
anal fin (LEA); Head length (HL).
Character Holotype n Minimum Maximum Mean L1 L2 S.D.
LEA (mm) 149.03 38 50 151.9 96.9 24.559
HL 10.57 38 10.0 12.7 11.3 11.100 11.568 0.713
Caudal filament length 20.15 36 19.6 32.2 24.7 23.644 25.770 3.142
Snout to anal fin origin 17.64 38 17.0 21.2 18.9 18.589 19.263 1.026
Depth of caudal filament 2.31 38 1.6 2.4 2.0 1.966 2.114 0.224
Longest anal fin ray 4.10 38 3.6 5.1 4.5 4.385 4.585 0.304
Longest pectoral fin ray 5.07 38 4.9 6.4 5.6 5.488 5.685 0.300
Body depth 13.12 38 11.0 14.1 12.9 12.593 13.158 0.859
Snout length 25.02 38 23.3 28.2 26.4 25.99 26.724 1.117
Gape width 18.35 38 14.4 18.5 16.2 15.838 16.585 1.138
Orbital diameter 9.65 38 9.0 12.1 10.8 10.496 11.005 0.774
Interorbital distance 30.38 38 23.3 30.4 26.4 25.868 26.902 1.574
Posterior nare to eye 6.30 37 3.4 6.3 5.0 4.755 5.217 0.693
Branchial aperture 27.85 38 20.4 28.1 25.5 24.796 26.246 2.206
Head width at operculum 67.24 38 52.4 73.2 64.9 63.233 66.653 5.202
Head width at eyes 46.22 38 31.1 48.1 41.2 38.899 42.404 3.811
95% confidence limit
Percents of LEA
Percents of HL
74
Fig. 1. Holotype (UFRGS 9229, male, 149.03 mm LEA) of Brachyhypopomus “G”
n. sp., from Palmares do Sul, Rio Grande do Sul, Brazil.
Fig. 2. Sexually dimorphic caudal filament of Brachyhypopomus “G” n. sp.
(CHAR 0805, male, 139.62 mm LEA, caudal filament length 44.89 mm).
75
Fig. 3. Map of Southern Brazil, Uruguay, Argentina and Paraguay with the
distribution of Brachyhypopomus “G” n. sp. Squares represent non-type
specimens. Empty circle represents the type locality.
76
Fig. 4. Typical habitat of Brachyhypopomus “G” n. sp.; floaded area near arroio
dos Ratos creek, Charqueadas, Rio Grande do Sul, Brazil.
77
Capítulo III
Reproduction of two species of the Neotropical electric fish
Brachyhypopomus (Teleostei: Hypopomidae) from southern
Brazil.
78
Reproduction of two species of the Neotropical electric fish
Brachyhypopomus (Teleostei: Hypopomidae) from southern Brazil.
Júlia Giora* & Clarice B. Fialho*
* Universidade Federal do Rio Grande do Sul, IB, Departamento de Zoologia, Av.
Bento Gonçalves, 9500, bloco IV, prédio 43435, 91501-970 Porto Alegre, RS,
Brazil.
This study describes the reproductive biology of the electric fishes
Brachyhypopomus bombilla and Brachyhypopomus “G” from southern Brazil.
The reproductive period of B. bombilla lasted from October/2004 to January/2005
being related to the increase in photoperiod, whereas male GSI is also related to
the oxygen variation. Brachyhypopomus “G” reproductive period has occurred
from October/2005 to February/2006 being also related to the increase in
photoperiod. The relative fecundity was established as 0.21 oocytes per mg total
weight for B. bombilla and 0.20 oocytes for Brachyhypopomus “G”. Both species
have shown fractioned spawning. First maturation size estimated as 97.6 mm for
females and 93.7 mm for males of B. bombilla, and as 104.5 mm for females and
108.0 mm for males of Brachyhypopomus “G”. Sex ratio did not differ from 1:1
under an χ
2
test (α= 0.01) in the two species. No sexual dimorphism related to
total length was observed; however, a modification on caudal filament was
verified in males of Brachyhypopomus “G”.
79
Este estudo descreve a biologia reprodutiva dos peixes elétricos
Brachyhypopomus bombilla e Brachyhypopomus “G” do sul do Brasil. O período
reprodutivo da espécie B. bombilla se estendeu de Outubro/2004 a
Janeiro/2005, sendo relacionado ao aumento do fotoperíodo, tendo o IGS dos
machos também sido relacionado às variações de oxigênio. O período
reprodutivo de Brachyhypopomus “G” ocorreu de Outubro/2005 a
Fevereiro/2006, sendo também relacionado ao aumento do fotoperíodo. A
fecundidade relativa foi estabelecida como 0.21 ovócitos por mg de peso para B.
bombilla e 0.20 ovócitos para Brachyhypopomus “G”. Ambas espécies
apresentaram desova parcelada. O tamanho de primeira maturação gonadal de
B. bombilla foi estimado como 97.6 mm para fêmeas e 93.7 mm para machos,
sendo estimado como 104.5 mm para fêmeas e 108.0 mm para machos de
Brachyhypopomus “G”. A proporção sexual não diferiu de 1:1 em nenhuma das
espécies de acordo com a análise do teste χ
2
(α= 0.01). Não foi observado
dimorfismo sexual relacionado ao comprimento total, entretanto foi verificada
uma modificação no filamento caudal de machos de Brachyhypopomus “G”.
Key words: Reproductive biology, Gymnotiformes, Hypopomidae,
Brachyhypopomus, environmental factors.
Introduction
80
Gymnotiformes have a wide geographical range throughout South and
Central America, occurring in an incredible diversity of aquatic habitats including
river channels, flood-plains, flooded forests, forest streams, cataracts, swamps,
coastal creeks, and estuarine reaches (Albert & Crampton, 2003). Of the three
South American ostariophysan orders, the Gymnotiformes comprises the
smallest number of species and is also the least investigated group as far as
systematics and ecology are concerned (Kirschbaum, 1995).
The genus Brachyhypopomus is included in the family Hypopomidae,
which is widespread from río de la Plata in Argentina (35°S) to northern Panama
(8°N) (Albert, 2001). The specimens of the genus prefer slow-moving and
shallow waters with dense floating vegetation that can be used as shelter, as well
as, sites with leaf mats on the bottom (Alves-Gomes, 1997). Brachyhypopomus
species are highly diverse and abundant in the Amazon flood-plains, where they
constitute a significant biomass portion (Crampton, 1996).
Few studies have brought gymnotiform reproductive aspects (Hopkins,
1974a e b; Kirschbaum, 1975, 1979, 1984, 2000; Schwassmann, 1976; Barbieri
& Barbieri, 1982, 1983a, 1983b, 1984a, 1984b, 1985; Provenzano, 1984;
Hagedorn, 1988; Kirschbaum & Schugardt, 2002; Cognato & Fialho, 2006; Giora
& Fialho in press). The lack of basic information about species distribution,
natural history, behavior, ecology and population dynamics, especially on the
extreme southern boundary of the Neotropical electric fishes distribution
(southern Brazil, Uruguay, and Argentina), is still an obstacle for a better
81
understanding of this order of fishes. With this mind, the present study aims to
establish characteristics of the reproductive period, spawning type and fecundity
of Brachyhypopomus bombilla and Brachyhypopomus “G” populations from
southern Brazil. Moreover, it aims to test the reproductive period relationships
with environmental and alimentary factors, as well as, characteristics of the
species population structure such as sex ratio, sexual dimorphism, individual
recruitment time and first gonadal maturation size.
Material and Methods
Brachyhypopomus bombilla specimens were sampled monthly from
July/2004 to June/2005 in the arroio do Jacaré (30°12’42.8”S 55°03’17.5”W) in
Rosário do Sul Municipality, which is inserted in the rio Uruguai drainage. The
creek shows muddy bottom and dark water with constant flow and goes through
a considerable depth variation during rainy and dry periods. The site has a great
number of floating vegetation mainly composed by Pistia stratiotis, and edge
vegetation mostly composed by reeds and grass. The gymnotiforms
Eigenmannia trilineata, Brachyhypopomus draco and Gymnotus aff. carapo could
be sampled along with B. bombilla at this collect place.
Brachyhypopomus “G” specimens were sampled monthly from April/ 2005
to March/2006 in a flooded area near arroio dos Ratos creek (29°57’31.9”S
51°33’10.1”W) in Charqueadas Municipality, which is inserted in the laguna dos
82
Patos drainage. The site shows dark and slow-moving water, with hardly any
flow, muddy bottom, and depth ranging from 1 to 1.5 meters without great depth
variation along the rainy and dry periods. The collect place also possesses
substantial amounts of aquatic vegetation such as Pistia stratiotis, Salvinia
auriculata, and Polygonum sp. The marginal vegetation is formed by reeds and
bushes. At this sample location, Brachyhypopomus “G”. could be collected along
with the gymnotiforms Eigenmannia trilineata, Brachyhypopomus draco and
Gymnotus aff. carapo.
In both sites, the collection was executed under floating vegetation using a
dip net and an electric fish finder (Crampton et al., 2007). The specimens were
fixed in the field in 10% formalin solution. Water temperature, water conductivity,
pH and dissolved O
2
were recorded at the time of collection. Rainfall data were
obtained from the Meteorology District of Porto Alegre. Photoperiod was obtained
with the Skymap software correlating dates of collection with collecting place
coordinates.
In the laboratory, fishes were transferred to 70% ethanol and total length
(Lt) in millimetres and total weight (Wt) in grams were measured. Individuals
were dissected to record stomach (Ws) and gonad (Wg) weight and to establish
the gonadal maturation stage of males and females. Voucher specimens were
catalogued in the fish collection of the Departamento de Zoologia, Universidade
Federal do Rio Grande do Sul, Porto Alegre, Brazil (Brachyhypopomus bombilla
– UFRGS 9284; Brachyhypopomus “G” – UFRGS 9200).
83
Stomach repletion index (RI) and gonadossomatic index (GSI) were
estimated following the formula adapted from Santos (1978). These indexes
represent the percentile organ weight related to fish total weight: RI = Ws x
100/Wt, and GSI= Wg x 100/Wt. Ws corresponds to stomach weight, Wg to
gonad weight and Wt to total weight.
The reproductive period for males and females of both
Brachhyhypopomus species was established through the analyses of monthly
variation of the mean GSI values. The multiple regression with analysis of
variance (ANOVA) was applied to verify possible dependence between abiotic
(rainfall, photoperiod, temperature, conductivity, pH and dissolved O
2
) and the
reproductive period as well as alimentary factor (RI) and the reproductive period
(Zar, 1999).
The absolute fecundity was estimated counting all vitellogenic oocytes
present in the ovaries of females of both species with the highest GSI values.
The relative fecundity was determined by the number of counted oocytes per
female milligram of weight (Adebisi, 1987). For the determination of the spawning
type, the same gonads selected for fecundity analysis were used. A sub-sample
of 150 oocytes was removed from each selected gonad and the largest possible
oocyte diameter was obtained with observation on a stereomicroscope with a
millimetred ocular (Vazzoler, 1996).
The sex ratio was determined by the distribution of male and female
frequency during the sampled period. The χ
2
test (p = 0.05) was applied to verify
the existence of significant differences between the number of males and
84
females of the studied species. The first gonadal maturation size of both
Brachyhypopomus species males and females was estimated from the
distribution of juvenile and adult relative frequencies for total length classes
(Vazzoler, 1996). The curve obtained was adjusted according to the expression:
Rf = 1- (e
–aLtb
). Rf corresponds to the relative frequency of adults, e to the natural
logarithm base, Lt to total length (mm), and a and b to estimated constants
related to curve adjustment. The first gonadal maturation size is considered as
corresponding to a frequency of 0.5 (50%) of the adult individuals.
For determination of new individual breeding period, months when larvae
were sampled have been recorded. The distribution of relative frequencies of
males and females in different total length classes was analysed and tested
under χ
2
test (p = 0.05) to observe possible sexual dimorphism related to
specimen lengths. Relative frequency of Brachyhypopomus “G” specimens with
vertically broadened and laterally compressed distal portion of the caudal
filament was calculated to observe the development of this sexually dimorphic
feature along the reproductive period.
Results
Overall 241 specimens of B. bombilla were collected: 128 males with total
length ranging from 42.08 mm to 146.04 mm, 113 females ranging from 40.21
mm to 132.68 mm, and three larvae ranging from 22.86 mm to 36.94 mm.
85
Additionally, a total of 211 Brachyhypopomus “G” specimens were sampled: 108
males with total length ranging from 42.96 mm to 188.80 mm, 102 females
ranging from 45.65 mm to 175.36 mm, and one larva with 24.23 mm of total
length.
The reproductive period estimated for B. bombilla lasted from
October/2004 to January/2005, with the GSI peak occurring in October and
November/2004 for males and in November/2004 for females (Fig. 1). For the
species Brachyhypopomus “G”, the reproductive period was estimated as lasting
from October/2005 to February/2006, with male GSI peak occurring in
November/2005 and female GSI peak occurring in October/2005 (Fig. 2).
The GSI of B. bombilla and Brachyhypopomus “G” males and females did
not exhibited significant relation to the repletion index (RI). Monthly variation of RI
are summarised in Table 1 for B. bombilla and in Table 2 for Brachyhypopomus
G”. Among the tested abiotic factors, the GSI of B. bombilla males has
presented significant relation to photoperiod and dissolved oxygen variations
(photoperiod: F= 11.417, t= 4.437, p = 0.002; dissolved oxygen: F= 13.069, t=
2.722, p = 0.024), while for females it has been significantly related only to
photoperiod (F= 12.144, t= 3.485, p = 0.006). The photoperiod variation was also
related to Brachyhypopomus “G” male and female GSI (males: F= 114.970, t=
10.722, p = 0.000; females: F= 27.006, t= 5.197, p = 0.000). Monthly data of
water temperature, pH, conductivity, dissolved oxygen, rainfall, and photoperiod
are summarised in Table 3 for B. bombilla collecting site and in Table 4 for
Brachyhypopomus “G” collecting site.
86
The absolute fecundity had an average value of 587.33 oocytes for the
species B. bombilla (ranging from 369 to 773 oocytes) for females with total
length ranging from 101.13 to 137.41 mm (Table 5). The average relative
fecundity of this species was estimated as 0.21 oocytes per mg total weight
(Table 5). For Brachyhypopomus “G”, average absolute fecundity was
established as 589.44 oocytes (ranging from 299 to 799 oocytes) for females
with total length from 85.42 a 149.0 mm (Table 6). The average relative fecundity
of Brachyhypopomus “G” was estimated as 0.20 oocytes per mg total weight
(Table 6).
In the two Brachyhypopomus species studied herein, analysis of the
absolute frequency distribution of vitellogenic oocyte diameter conforms to that of
species with oocyte development synchronic in more than two groups, and with a
fractional spawning (B. bombilla Fig. 3; Brachyhypopomus “G” Fig. 4). In both
analyses there is a high frequency of store oocytes that will only mature in the
next reproductive period, followed by oocyte shares in successive maturation
stages, which are eliminated at different times in the reproductive period. The
first gonadal maturation size was estimated for B. bombilla males as 93.7 mm
and for females as 97.6 mm (Fig. 5); and for Brachyhypopomus “G” males as
108.0 mm and for females as 104.5 mm (Fig. 6).
The χ
2
test results (p<0.05) demonstrate for B. bombilla a sex ratio of 1:1
during all sampled months except July/2004, when males were found in higher
number than females. Analysing the total number of male and female sampled of
this species, the sex ratio was determined as 1:1. Brachyhypopomus “G” studied
87
population has shown a sex ratio of 1:1 during all sampled months, as well as in
the analyses of total number of males and females. The time of new individual
breeding was estimated for the species B. bombilla as beginning in
December/2004 and lasting until March/2005, these being the months when
larvae (December/2004 and March/2005) and male and female included in the
lowest length classes were collected. The time of new specimens breeding of
Brachyhypopomus “G” was established as occurring from December/2005 to
March/2006, since one larva was collected in February/2006 and male and
female included in the lowest length classes were collected during all these
quoted months.
Significant differences in total length related to sexual dimorphism were
not observed for any of the studied species. The total length class represented
by the 85-mm mean point has been the only class that has differed from 1:1 male
and female proportion in B. bombilla analyses, females being more abundant
than males at this length class (Fig. 7). None of the length classes defined for
Brachyhypopomus “G” has exhibited significant differences in male and female
proportion according to χ
2
test results (p<0.05) (Fig. 8).
Males of Brachyhypopomus “G” with hypertrophy of the distal portion of
caudal filament – vertical broadening and lateral compression of the distal portion
of caudal filament – were sampled during all year months except February and
March/2006 when no males larger than 130 mm were collected. The highest
relative frequencies of males with broadened caudal filament occurred in October
and November/2005 (Fig. 9). Total length of specimens with caudal filament
88
hypertrophy ranged from 145.38 mm to 188.8 mm. In spite of it, males with total
length included in this range and without hypertrophied caudal filament could be
collected along with males with hypertrophy of this structure. No females were
observed with caudal filament modification.
Discussion
Determination of the reproductive period is fundamental to the
establishment of all other aspects of the biology of the species and population
dynamics. According to Provenzano (1984), reproduction in gymnotiforms is
controlled by periodic gonadal maturation and regression. Brachyhypopomus
bombilla and Brachyhypopomus “G” have shown cyclical reproductive periods
lasting for four and five months respectively, and both periods corresponding to
the Southern Hemisphere spring and summer.
Successful reproduction requires an organism to synchronize its
reproductive physiology and behavior with events in its environment (Moore &
Marler, 1988). Gymnotiformes reproductive cycles have been related to seasonal
environment variations typical of the tropical zone of Neotropical area, most
species breeding during the rainy season, in which the increase of rainfalls
determines high water levels and low water conductivities (Hopkins, 1974a,
1974b; Kirschbaum, 1975, 1979, 1984, 2000; Schwassmann, 1976; Hagedorn,
1988; Kirschbaum & Schugardt, 2002). However, when Gymnotiformes are
89
studied as inhabitants of the temperate zone, close to the southern boundary of
their continental distribution, different biogeographical and ecological conditions
must be taken into account to understand their natural history (Silva et al., 2007).
The reproductive seasonality in fishes of temperate environments, where longer
rainfall periods are not defined, is mainly related to temperature, photoperiod and
food availability (McKayne, 1984; Payne, 1986). For Brachyhypopomus
pinnicaudatus and Gymnotus carapo from Uruguay, gonad recrudescence can
be observed in natural populations coinciding with high temperature means and
extreme photoperiod (Silva et al., 2003). In captivity experiments with both
species quoted above (Silva et al., 1999; Silva et al., 2002; Ardanaz et al., 2001),
as well as, with B. pinnicaudatus only (Quintana et al., 2004) also from Uruguay,
the gonadal maturation could be achieved through high water temperature
aclimatation. Male and female reproductive period of both Brachyhypopomus
species studied herein have been related to photoperiod variations of the
collecting site agreeing with results obtained for other gymnotiform species from
Rio Grande do Sul state (Giora & Fialho in press; Cognato & Fialho, 2006).
Moreover, reproductive period of Characiformes species from southern Brazil
have also been associated with photoperiod increase (Azevedo et al., 2000;
Oliveira, 2003; Lampert, 2003; Gonçalves et al., 2005). Even though there is a
coincidence between both Brachyhypopomus reproductive seasons and the year
period with the highest temperature means, there was no significant relation
between the species GSI variations and water temperatures. According to
Köppen system, Brazilian southern region exhibits Cfa climate (humid
90
subtropical) without a well defined rain season – with rains slightly more
abundant during winter months - hot summers, and mild winters. For these
reasons, circannual patterns of species distributed on this region seem to be
more properly comparable with those of temperate climate regions. However, the
differences between this two climate zones must be considered to avoid
generalizations and waste of important information concerning ecological
diversity.
Dissolved oxygen availability is a very important factor for Neotropical
electric fishes, being recognized as the principal environmental element that
influences the distribution and migration of these fishes (Kramer et al., 1978,
Crampton, 1998). For males of B. bombilla the GSI was positively related with
variation of dissolved oxygen, although it does not appear to be as important for
the reproductive period establishment as the photoperiod variations.
Despite the fact that no statistically significant relation between the
gonadossomatic and replection indexes was found for both species, B. bombilla
males and females have shown extremely low values for RI within the months
before and after the established reproductive period (July, August, September,
May, and June), which are the coldest months of the sampled year. In a study
about feeding habits of the same B. bombilla population (J. Giora, H. T. Moraes
& C. Fialho, in preparation), it was reported that the fishes starve during the
months quoted above, since not only extremely low RI indexes were determined
but also no alimentary items were found in the specimen stomachs along this
period. Moreover, throughout these starving months specimens were found
91
embedded in the creek muddy bottom. For all that, B. bombilla can be
considered a very seasonal species, which presents hardly any feeding and
reproductive activity during winter months.
The absolute and relative fecundities established for both species were
quite similar. For Brachyhypopomus draco, a relative fecundity of 0.17 oocytes
per mg of female weight has been determined (A. Schaan, J. Giora and C.
Fialho, in preparation), which is slightly lower than those of the species studied
here. According to two other studies with gymnotiforms from southern Brazil,
Gymnotus aff. carapo has shown relative fecundity of 0.20 oocytes (Cognato &
Fialho, 2006), which is the same as Brachyhypopomus “G”, and Eigenmannia
trilineata has shown the highest relative fecundity of 0.27 oocytes per mg of
female weight (Giora & Fialho, in press). Among several other factors, fecundity
depends on the coelomatic cavity capacity of lodge ripe oocytes and of oocytes
size (Vazzoler, 1996). Since absolute fecundity only considers the total number
of oocytes in the fish gonads, it cannot be used for comparisons among different
size species. The great majority of studies regarding reproduction of
Gymnotiformes species presents data about absolut fecundity only (Barbieri &
Barbieri, 1982; Assunção e Schwassmann, 1995; Kirschbaum & Schugardt,
2002) Due to that, more results concerning relative fecundity of Gymnotiformes
are needed for a better discussion and comparison of the results.
Multiple spawning in the same reproductive period can result in a much
higher annual reproductive effort than is possible with single spawning (Burt et
al., 1988). Besides that, species with fractional spawning are better adapted to
92
unfavourable environmental conditions and could solve problems of competition
for spawning sites among females of the same population (Nikolsky, 1969). At
the present time, all studied gymnotiform species are considered to be fractional
spawners (Barbieri & Barbieri, 1982; Assunção & Schuwasmann, 1995;
Kirschbaum & Schugardt, 2002; Quintana et al., 2004; Cognato & Fialho, 2006;
A. Schaan, J. Giora and C. Fialho, in preparation; Giora & Fialho, in press). The
present work is in agreement with that statement, since B. bombilla and
Brachyhypopomus “G” were also defined as fractional spawners.
According to Kirschbaum & Schugardt (2002), B. pinnicaudatus has a
quick growth, growing one mm per day over the first months of its life, obtaining
minimum size of 10-12 cm for first reproduction after four-five months. The
relatively high sizes of first gonadal maturation also explicit a quick growth for
males and females of the two studied species, which can be defined as a
reproductive strategy of the genus. For a population of E. trilineata, in which
males reach a total of length of 247.8 mm and females 170.0 mm, the first
gonadal maturation sizes were defined as 63.5 mm and 80.5 mm respectively
(Giora & Fialho, in press). This fact leads to a much lower growth rate for E.
trilineata population in comparison with Brachyhypopomus species.
Both Brachyhypopomus species did not show a predominance of one of
the sexes and had 1:1 sex ratio along almost all sampled months and on total
number of collected specimens. The same result has been obtained for B. draco
(A. Schaan, J. Giora and C. Fialho, in preparation) pointing to a possible pattern
for the genus. No sexual dimorphism related to the fish total length has been
93
documented; however, Brachyhypopomus “G” has exhibited a sexually dimorphic
shape of the caudal filament distal portion. The majority of the Brachyhypopomus
species – such as B. pinnicaudatus, B. beebei, B. brevirostris, B. occidentalis,
and B. draco - possesses some kind of broadening, compression, and/or
elongation of the mature male caudal filaments (Hagedorn & Carr, 1985;
Hagedorn, 1988; Hopkins et al., 1990; Rapp-Py-Daniel & Cox-Fernandes, 2005;
A. Schaan, J. Giora and C. Fialho, in preparation). These morphological
modifications of caudal filament can permit the males to have greater eletrocytes
than the females (Hagedorn & Carr, 1985) and to accrue more matings
(Hagedorn, 1988). It has been reported for a B. draco population that males
undergo hypertrophy of the distal portion of caudal filament during the
reproductive period, after that regressing this structure until the caudal filament
resembles those of females and juveniles (A. Schaan, J. Giora and C. Fialho, in
preparation). The existence of similar caudal filament regression cannot be
established for Brachyhypopomus “G”, since males with hypertrophy of this
structure could be found during all months in which large males were sampled.
The highest frequency of specimens with broadened filament along the
reproductive period months shows that the development of this structure
probably occurs concomitantly with male gonadal maturation. However, the
presence of males with the highest total lengths exhibiting caudal filaments
identical to those of females and juveniles suggests a possible dominance
system among males, only dominant males undergoing caudal filament
hypertrophy. Dominance among males of a same breeding group has been also
94
observed for the species B. brevisrostris during agnostic behavior observed in
captivity (Kirschbaum & Schugardt, 2002).
The presented data indicate that some reproductive patterns for the order
Gymnotiformes and more particularly for the genus Brachyhypopomus can be
established, although there is great diversity of reproductive strategies among
the different genera and species of Neotropical electric fishes. Thus far, more
data on additional species mainly from the southern boundary of gymnotiform
distribution are needed for a more complete understanding of the reproductive
biology of this order of fishes.
Acknowledgements
We are grateful to CAPES and CNPq (process 476821/2003-7;
478002/2006-8) for the project support.
Literature Cited
Adebisi, A. A. 1987. The relationships between fecundities, gonadossomatics
indices and egg sizes of some fishes of Ogun River, Nigéria. Archiv fuer
Hydrobiology, 111(1): 151-156.
95
Albert, J. S. 2001. Species diversity and phylogenetic systematics of American
knifefishes (Gymnotiformes, Teleostei). Miscellaneous Publishing of Museum
Zoology University of Michigan, 190: 1-129.
Albert, J. S. & W. G. R. Crampton. 2003. Seven new species of the Neotropical
electric fish Gymnotus (Teleostei: Gymnotiformes) with redescription of G.
carapo (Linnaeus). Zootaxa, 287: 1-54.
Alves-Gomes, J. A. 1997. Informações preliminares sobre a bio-ecologia de
peixes elétricos (Ordem Gymnotiformes) em Roraima. Pp. 509-555. In:
Barbosa, R. I., E. J. G. Ferreira & E. G. Castellón (Eds.). Homem, Ambiente e
Ecologia no Estado de Roraima. Manaus, INPA, 613p.
Ardanaz, J. L., A. Silva & O. Macadar. 2001. Temperature sensitivity of the
electric organ discharge waveform in Gymnotus carapo. Journal of
Comparative Physiology A, 187: 853-864.
Assunção, M. I. S. & H. O. Schwassmann. 1995. Reproduction and larval
development of Electrophorus electricus on Marajó Island (Pará, Brazil).
Ichthyology Exploration Freshwaters, 6(2): 175-184.
Azevedo, M. A., L. R. Malabarba & C. B. Fialho. 2000. Reproductive biology of
the inseminated Glandulocaudine Diapoma speculiferum Cope
(Actinopterygii: Characidae). Copeia, 2000(4): 983-989.
Barbieri, G. & M. C. Barbieri. 1982. Fecundidade e tipo de desova de Gymnotus
carapo (Linnaeus, 1758), na represa do Lobo, Estado de São Paulo (Pisces,
Gymnotidae). Spectrum: Jornal Brasileiro de Ciência, 2(7): 25-29.
96
Barbieri, G. & M. C. Barbieri. 1983a. Dinâmica da reprodução de Gymnotus
carapo na represa do Lobo, Estado de São Paulo. Influência de fatores
abióticos. (Pisces, Gymnotidae). Tropical Ecology, 24(2): 244-259.
Barbieri, G. & M. C. Barbieri. 1983b. Growth and first sexual maturation size of
Gymnotus carapo (Linnaeus, 1758) in the Lobo reservoir (state of São Paulo,
Brazil) (pisces, gymnotidae). Revue d’Hydrobiologie Tropicale, 16(2): 195-
201.
Barbieri, M. C. & G. Barbieri. 1984a. Reprodução de Gymnotus carapo
(Linnaeus, 1758) na represa do Lobo (SP.). Morfologia e histologia de
testículo. Variação sazonal. (Pisces, Gymnotidae). Revista Brasileira de
Biologia, 44(2): 141-148.
Barbieri, G. & M. C. Barbieri. 1984b. Crescimento de Gymnotus carapo
(Linnaeus, 1758) na represa do Lobo, Estado de São Paulo, pelo método da
distribuição da freqüência de comprimento (Pisces, gymnotidae). Revista
Brasileira de Biologia, 44(3): 239-246.
Barbieri, M. C. & G. Barbieri. 1985. Reprodução de Gymnotus carapo (Linnaeus,
1758) na represa do Lobo (SP.). Morfologia e histologia de ovário. Variação
sazonal. (Teleostei, Gymnotidae). Revista Brasileira de Biologia, 45(1/2): 3-
12.
Burt, A., D. L. Kramer, K. Nakatsuru & C. Spry. 1988. The tempo of reproduction
in Hyphessobrycon pulchripinnis (Characidae), with a discussion on the
biology of ‘multiple spawning’ in fishes. Environmental Biology of Fishes,
22(1): 15-27.
97
Cognato, D. De P. & C. B. Fialho. 2006. Reproductive biology of a population of
Gymnotus aff. carapo (Teleostei: Gymnotidae) from southern Brazil.
Neotropical Ichthyology, 4(3): 339-348.
Crampton, W. G. R. 1996. Gymnotiform fish: an important component of
Amazonian floodplain fish communities. Journal of Fish Biology, 48: 298-301.
Crampton, W. G. R. 1998. Efects of anoxia on the distribution, respiratory
strategies and electric diversity of gymnotiform fishes. Journal of Fish Biology,
53(A): 307-330.
Crampton, W. G. R., J. K. Wells, C. Smyth & S. A. Walz. 2007. Design and
construction of an Electric Fish Finder. Neotropical Ichthyology, 5(3): 425-428.
Giora, J. & C. B. Fialho. (in press). Reproductive biology of weakly electric fish
Eigenmannia trilineata López & Castello, 1966 (TELEOSTEI, Sternopygidae).
Brazilian Archives of Biology and Technology.
Gonçalves, T. K., M. A. Azevedo, L. R. Malabarba & C. B. Fialho. 2005.
Reproductive biology and development of sexually dimorphic structures in
Aphyocarax anisitsi (Ostariophysi: Characidae). Neotropical Ichthyology, 3(3):
433-438.
Hagedorn, M. 1988. Ecology and behavior of a pulse-type electric fish,
Hypopomus occidentalis (Gymnotiformes, Hypopomidae), in a fresh-water
stream in Panama. Copeia, 1988(2): 324-335.
Hagedorn, M., E. Carr. 1985. Single eletrocytes produce a sexually dimorphic
signal in South American electric fish. Journal of Comparative Physiology,
156: 511-523.
98
Hopkins, C. D. 1974a. Electric communication: functions in the social behavior of
Eigenmannia virescens. Behaviour, 50: 270-305.
Hopkins, C. D. 1974b. Electric communication in the reproductive behavior of
Sternopygus macrurus (Gymnotoidei). Zeitschrift fur Tierpsychologie, 35: 518-
535.
Hopkins, C. D., N. C. Comfort, J. Bastian & A. H. Bass. 1990. Functional analysis
of sexual dimorphism in an electric fish, Hypopomus pinnicaudatus, Order
Gymnotiformes. Brain Behavior and Evolution, 35: 350-367.
Kirschbaum, F. 1975. Environmental factors control the periodical reproduction of
tropical electric fish. Experientia, 31: 1159-1160.
Kirschbaum, F. 1979. Reproduction of the weakly electric fish Eigenmannia
virescens (Rhamphichtyidae, Teleostei) in captivity. Behavioral Ecology and
Sociobiology, 4: 331-355.
Kirschbaum, F. 1984. Reproduction of weakly electric teleosts: just another
example of convergent development? Environmental Biology of Fishes,
10(1/2): 3-14.
Kirschbaum, F. 1995. Taxonomy, Zoogeography and general ecology of South
American knifefishes (Gymnotiformes). Pp. 446-464. In: Moller, P. (Ed.).
Electric Fishes. History and Behavior. London, Chapman & Hall, 584 p.
Kirschbaum, F. 2000. The breeding of tropical freshwater fishes through
experimental variation of exogenous parameters. Breedin through simulation
of high and low water conditions. Aquageografia, 20: 95-105.
99
Kirschbaum, F. & C. Schugardt. 2002. Reproductive strategies and
developmental aspects in mormyrid and gymnotiform fishes. Journal of
Physiology - Paris, 96(2002): 557-566.
Kramer, D. L., C. C. Lindsey, G. E. E. Moodie & E. D. Stevens. 1978. The fishes
and the aquatic environment of the Central Amazonian basin with particular
referenceti respiratory patterns. Canadian Journal of Zoology. 56: 717-729.
Lampert, V. R. 2003. Biologia reprodutiva de duas espécies do gênero
Bryconamericus (Characidae: Tetragonopterinae) dos sistemas dos rios
Jacuí e Uruguai, RS. Unpublished MsC. Thesis, Universidade Federal do Rio
Grande do Sul, Porto Alegre. 73p.
McKaye, K. R. 1984. Behavioral aspects of ciclids reproductive strategies:
patterns of territoriality and brood defense in Central American substratum
spawners and African mouth brooders. Pp. 245-273. In: Potts, G. W. & R. J.
Wooton (Eds). Fish reproduction: strategies and tatics. London, Academic
Press, 410p.
Moore, M. C. & C. A. Marler. 1988. Hormones, behavior, and the environment:
an evolutionary perspective. Pp. 71-84. In: Stetson, M. H. (Ed.). Processing of
Environmental Information in Vertebrates. New York, Springer, 261p.
Nikolsky, G. V. 1969. Theory of fish population dynamics. Edinburg, Oliver &
Boyd Ltda, 323p.
Oliveira, C. L. C. 2003. Análise comparada de caracteres reprodutivos e da
glândula branquial de duas espécies de Cheirodontinae (Teleostei:
100
Characidae). Unpublished MsC. Thesis, Universidade Federal do Rio Grande
do Sul, Porto Alegre. 80p.
Payne, A. I. 1986. The ecology of tropical lakes and rivers. New York, John
Wiley, 310p.
Provenzano, R. F. 1984. Aspectos de la reproduccion en peces Gymnotiformes
del Bajo Llano de Venezuela. Unpublished PhD.Thesis, Universidade Central
de Venezuela, Caracas. 68p.
Quintana, L., A. Silva, N. Berois & O. Macadar. 2004. Temperature induces
gonadal maturation and affects electrophysiological sexual maturity indicators
in Brachyhypopomus pinnicaudatus from a temperate climate. The Journal of
Experimental Biology, 207: 1843-1853.
Rapp-Py-Daniel, L. H. & C. Cox-Fernandes. 2005. Dimorfismo sexual em
Siluriformes e Gymnotiformes (Ostariophysi) da Amazônia. Acta Amazonica,
35(1): 97-110.
Schwassmann, H. O. 1976. Ecology and taxonomic status of different geographic
populations of Gymnorhamphichthys hypostomus, Ellis (Pisces,
Cypriniformes, Gymnotoidei). Biotropica, 8: 25-40.
Santos, E. P. Dos. 1978. Dinâmica de populações aplicada à pesca e
piscicultura. São Paulo, Edusp, 129p.
Silva, A., L. Quintana, M. Galeano, P. Errandonea & O. Macadar. 1999. Water
temperature sensitivity of EOD waveform in Brachyhypopomus
pinnicaudatus. Journal of Comparative Physiology A, 185: 187-197.
101
Silva, A., L. Quintana, J. L. Ardanaz & O. Macadar. 2002. Environmental and
hormonal influences upon EOD waveform in gymnotiform pulse fish. Journal
of Physiology - Paris, 96: 473-484.
Silva, A., L. Quintana, M. Galeano & P. Errandonea. 2003. Biogeography and
breeding in Gymnotiformes from Uruguay. Environmental Biology of Fishes,
66: 329-338.
Silva, A., R. Perrone, O. Macadar. 2007. Environmental, seasonal, and social
modulations of basal activity in a weakly electric fish. Physiology & Behavior,
90: 525-536.
Vazzoler, A. E. A. de M. 1996. Biologia da reprodução de peixes teleósteos:
teoria e prática. Maringá, Editora da Universidade, 169p.
Zar, J. H. 1999. Biostatistical analisis. New Jersey, Prentice-Hall, 663p.
102
GSI - Males
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
GSI - Females
0
1
2
3
4
5
6
7
8
9
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
Fig. 1. Monthly variation of mean gonadossomatic index (GSI) for
Brachyhypopomus bombilla males and females from July/2004 to June/2005.
Vertical bars represent the standard deviation.
103
GSI - Males
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
GSI - Females
0
1
2
3
4
5
6
7
8
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
Fig. 2. Monthly variation of mean gonadossomatic index (GSI) for
Brachyhypopomus “G” males and females from Apryl/2005 to Marh/2006.
Vertical bars represent the standard deviation.
104
0
5
10
15
20
25
0.12
0.36
0.6
0.84
1.08
1.32
1.56
1.8
Oocyte Diameter (mm)
Relative Frequency (%)
Fig. 3. Relative frequency distribution of oocyte diameters of Brachyhypopomus
bombilla.
0
2
4
6
8
10
12
0.12
0.24
0.36
0.48
0.6
0.72
0.84
0.96
1.08
1.2
1.32
1.44
1.56
1.68
1.8
Oocyte Diamneter (mm)
Relative Frequency (%)
Fig. 4. Relative frequency distribution of oocyte diameters of Brachyhypopomus
“G”.
105
Males
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Total Length (mm)
Relative Frequency (%)
Fem ales
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Total Length (mm)
Relative Frequency (%)
Fig. 5. Distribution of Brachyhypopomus bombilla male and female relative
frequencies for total length classes. The lines show the point at which 50% of the
individuals are considered adults.
106
Males
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Total Length (mm)
Relative Frequency (%)
Females
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Total Length (mm)
Relative Frequency (%)
Fig. 6. Distribution of Brachyhypopomus “G” male and female relative
frequencies for total length classes. The lines show the point at which 50% of the
individuals are considered adults.
107
0
5
9
16
10
14
28
15
6
8
3
2
3
13
23
22
10
15
16
15
7
2
0
5
10
15
20
25
45 55 65 75 85 95 105 115 125 135 145
Total Length Classes (mm)
Relative Frequency (%)
Females
Males
Fig. 7: Relative frequency distribution of Brachyhypopomus bombilla males and
females for total length classes. Numbers above the columns represent the
absolut values.
108
0
2
4
12
13
20
14
8
6
6
5
4
3
4
1
3
6
8
11
12
13
13
8
13
6
33
6
1
2
0
2
4
6
8
10
12
14
16
18
20
45 55 65 75 85 95 105 115 125 135 145 155 165 175 185
Total Length Classes (mm)
Relative Frequency (%)
Females
Males
Fig. 8. Relative frequency distribution of Brachyhypopomus “G” males and
females for total length classes. Numbers above the columns represent the
absolut values.
109
00
2
2
5
6
1
1
3
1
2
1
0
10
20
30
40
50
60
70
Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar
Relative Frequency (%)
Fig 9. Relative frequency of Brachyhypopomus “G” males with hypertrophy of
caudal filament distal portion. Numbers above the columns represent the absolut
values.
110
Table 1. Monthly variation of Brachyhypopomus bombilla male and female
replection indexes (RI).
RI - Males RI - Females
Apr 3.26 2.42
May 0.91 0.83
Jun 0.48 0.45
Jul 0.67 0.68
Aug 0.63 0.66
Sep 0.83 0.8
Oct 1.72 1.7
Nov 1.91 2.24
Dec 1.21 1.6
Jan 1.71 2.32
Feb 2.06 1.92
Mar 1.4 1.82
Table 2. Monthly variation of Brachyhypopomus “G” male and female replection
indexes (RI).
RI - Males RI - Females
Apr 1.82 1.47
May 1.92 2.55
Jun 1.72 1.85
Jul 1.24 2.07
Aug 1.07 1.05
Sep 1.98 1.85
Oct 2.01 2.46
Nov 1.11 1.64
Dec 2.24 2.14
Jan 2.37 2.58
Feb 3.14 3.21
Mar 3.3 3.19
111
Table 3. Monthly variation of the water temperature (ºC), pH, conductivity
(µs/cm), dissolved oxygen (mg/l), rainfall (mm), and photoperiod (min) values in
the Brachyhypopomus bombilla collect site (arroio do Jacaré, Rosário do Sul
Municipality).
Temperature pH Conductivity Diss. Oxygen Rainfall Photoperiod
Jul 12.6 7.07 44.1 7.94 66.8 628
Aug 16.9 7.17 42.5 7.77 14.1 663
Sep 17.3 7.18 38.4 7.69 151.5 713
Oct 20.9 7.25 34.3 7.6 117.1 767
Nov 23.1 7.31 53 6.51 155.7 816
Dec 26.7 7.33 51.8 5.03 91.9 845
Jan 24.9 7.29 13.1 1.22 67.3 829
Feb 25.1 7.34 10.32 2.12 22.8 784
Mar 22.8 7.24 22.8 1.67 76.9 736
Apr 20.4 7.03 14.87 4.11 167.9 686
May 18.1 7.07 11.62 1.74 161.9 649
Jun 20.4 7.07 11.24 1.03 93.1 615
Table 4. Monthly variation of the water temperature (ºC), pH, conductivity
(µs/cm), dissolved oxygen (mg/l), rainfall (mm), and photoperiod (min) values in
the Brachyhypopomus “G” collect site (flooded area near arroio dos Ratos creak,
Charqueadas Municipality).
Temperature pH Conductivity Diss. Oxygen Rainfall Photoperiod
Apr 145.8 700
May 19.2 7.22 13.53 0.95 153.7 650
Jun 18.7 7.08 13.34 0.89 34.7 615
Jul 15.3 7.16 13.02 0.89 57.7 619
Aug 17 7.08 12.08 0.9 155.9 668
Sep 18.5 7.22 10.01 1 164.3 727
Oct 20.9 7.17 8 0.8 271.1 784
Nov 24.8 7.25 48.6 1.7 79.3 833
Dec 29.7 7.32 52.7 0.6 56 845
Jan 26 7.29 57.2 0.44 174.2 818
Feb 26 7.29 55.8 0.25 88.9 775
Mar 27 7.27 13.7 0.7 81.2 720
112
Table 5. Total length (TL), total weight (TW), gonadossomatic index (GSI),
absolute fecundity (AF) and relative fecundity (RF) of Brachyhypopomus bombilla
females.
TL (mm) TW (g) GSI AF RF
101.13 2.02 7.01 443 0.22
105.86 1.97 7.67 497 0.25
114.03 2.42 7.77 546 0.23
116.5 2.14 6.43 369 0.17
120.37 3.17 7.96 528 0.17
121.33 2.90 6.61 619 0.21
130.11 3.44 6.89 773 0.22
130.47 3.46 7.52 762 0.22
137.41 3.11 11.30 749 0.24
Mean 119.69 2.74 7.68 587.33 0.21
Table 6. Total length (TL), total weight (TW), gonadossomatic index (GSI),
absolute fecundity (AF) and relative fecundity (RF) of Brachyhypopomus “G”
females.
TL (mm) TW (g) GSI AF RF
85.42 1.12 6.29 299 0.27
112.72 1.57 6.62 466 0.29
131.05 2.90 6.40 540 0.19
133.08 3.19 5.84 574 0.18
133.15 4.23 5.01 734 0.17
135.13 3.86 4.65 616 0.16
135.59 3.79 8.93 637 0.17
145.57 4.65 5.84 799 0.17
149.1 4.10 5.50 640 0.16
Mean 128.98 3.27 6.12 589.44 0.20
113
Capítulo IV
Oogenesis and spermatogenesis in two species of
Brachyhypopomus (Gymnotiformes: Hypopomidae) from
Southern Brazil.
114
Oogenesis and spermatogenesis in two species of Brachyhypopomus
(Gymnotiformes: Hypopomidae) from Southern Brazil.
Júlia Giora*, John R. Burns** & Clarice B. Fialho*
* Universidade Federal do Rio Grande do Sul, IB, Departamento de Zoologia, Av.
Bento Gonçalves, 9500, bloco IV, prédio 43435, 91501-970, Porto Alegre, RS,
Brazil.
** Department of Biological Sciences, George Washington University,
Washington, DC, USA, 20052.
The process of oogenesis and spermatogenesis in the species
Brachyhypopomus bombilla and Brachyhypopomus “G” from Southern Brazil is
described through the establishment of gonadal maturation stages. The
development of germ cells was classified in five growth phases for females and
in six for males of both species. The gonadal maturation stages defined for
females were: early maturation, late maturation, mature, spawning and spent.
The maturation stages defined for males were: early maturation, mid maturation,
late maturation, regression and regressed. As opposed to the homogeneity on
cell types and stages of gonad maturation, the two studied Brachyhypopomus
species have shown differences in the frequencies of maturation stages along
the year, B. bombilla possessing a more seasonal gonadal development than
Brachyhypopomus “G”.
115
O processo da oogênese e da espermatogênese foi descrito para as espécies
Brachyhypopomus bombilla e Brachyhypopomus “G” através do estabelecimento
de estádios de maturação gonadal. O desenvolvimento das células germinativas
foi classificado in cinco estágios de desenvolvimento para fêmeas e seis para
machos de ambas as espécies. Os estádios de maturação gonadal definidos
para fêmeas foram: maturação inicial, maturação final, desovando e esgotado.
Os estádios de maturação gonadal definidos para machos foram: maturação
inicial, maturação intermediaria, maturação final, regredindo e regredido.
Contrariamente a homogeneidade apresentada com relação aos tipos celulares
e estádios de maturação gonadal, as duas espécies de Brachyhypopomus
estudadas demonstraram diferenças nas freqüências dos estádios de maturação
ao longo do ano, B. bombilla possuindo um desenvolvimento gonadal mais
sazonal do que Brachyhypopomus “G”.
Key words: Oogenesis, spermatogenesis, Brachyhypopomus, southern Brazil.
Introduction
The South American electric fishes (Gymnotiformes) are a very successful
group found in all types of aquatic habitats, including river channels, flood-plains,
flooded forests, forest streams, waterfalls, swamps, coastal creeks and estuaries
(Crampton, 1998). The family Hypopomidae, first proposed by Mago-Leccia
116
(1978), is widespread in South American countries, with the exception of Chile,
and distributed from the río de la Plata in Argentina (35°S) to Northern Panama
(8°N) (Albert, 2001). The genus Brachyhypopomus was described by Mago-
Leccia (1994) to comprise six species that previously belonged to Hypopomus.
Species of Brachyhypopomus are especially diverse and abundant in Amazon
flood-plains, where they constitute a significant part of the biomass, thus being
ecologically important (Crampton, 1996).
Teleost fishes are predominantly dioecious and with cyclic reproductive
processes, during which their gonads undergo a series of morphological and
physiological modifications (Nagahama, 1983). In its broadest sense, oogenesis
is the process by which primordial germ cells become ova that are ready to be
fertilized (Patino & Sullivan, 2002). Spermatogenesis, the formation of sperm, is
a complex process in which spermatogonia divide and differentiate into
spermatozoa (Chaves-Pozo et al., 2005). According to Garcia et al. (2001), in
order to preserve aquatic ecosystems it is necessary, among other things, to
understand the reproductive cycles of their ichthyofauna, and one of the initial
steps in this process is the study of gametogenesis.
In spite of the results presented by Barbieri & Barbieri (1984, 1985) and
Cognato & Fialho (2006) for Gymnotus aff. carapo, by Quintana et al. (2004) for
Brachyhypopomus pinnicaudatus, and by Giora and Fialho (in press) for
Eigenmannia trilineata, data on gametogenesis of gymnotiform fishes are still
very limited. Therefore, this work aims to study the process of oogenesis and
117
spermatogenesis in two species of Brachyhypopomus from southern Brazil
through descriptions of gonadal maturation stages.
Material and Methods
Specimens of both species were collected monthly during the period of
one year. Fishes were located using an electric fish finder (Crampton et al.,
2007) and captured under floating vegetation by means of a dip net. Specimens
of Brachyhypopomus bombilla were collected from July/2004 to June/2005 at a
creek that is part of rio Uruguay drainage (30°12’42.8”S 55°03’17.5”W), near to
the Municipality of Rosário do Sul. Specimens of Brachyhypopomus “G” were
collected from April/2005 to March/2006 at a flooded area near the arroio dos
Ratos (29°57’31.9”S 51°33’10.1”W), Municipality of Charqueadas, laguna dos
Patos drainage.
Fishes were fixed in 10% formalin throughout the period of field work. In
the laboratory, the specimens were transferred to 70% ethanol, their total lengths
measured, and gonads removed. Gonads were dehydrated in an ethanol series
and infiltrated and embedded in glycol methacrylate. Tissues were sectioned at
3.5 µm on a Sorvall Type JB-4 microtome and stained with toluidine blue. The
slides were photographed under a Nikon E200 microscope. Voucher specimens
were catalogued in the fish collection of the Departamento de Zoologia,
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
118
(Brachyhypopomus “G” – UFRGS 9200; Brachyhypopomus bombilla – UFRGS
9284).
Results
A total of 29 Brachyhypopomus “G” females were analyzed, with total
lengths ranging from 55.63 mm to 167.85 mm; 31 males of this species were
analyzed, total lengths ranging from 60.96 mm to 146.04 mm. A total of 37
females of B. bombilla were analyzed, ranging in total length from 54.04 mm to
132.68 mm; 30 males of this species were analyzed, total lengths ranging from
49.42 mm to 176.80 mm.
As it is typical for Gymnotiformes, both Brachyhypopomus species have
two ovaries or testes located in an extremely ventral position, with gonoducts
from each ovary or testis joining in a common gonoduct anterior to the cloaca.
The two ovaries are anteriorly united forming a common structure especially after
early maturation stage; mature ovaries occupy a great part of the body cavity and
their volume is noticeable in live fish observations. Testes are elongate, varying
from translucent to yellowish organs of nearly equal length; the proximal portion
of the testis is slender and connected to the gonoduct, while the distal portion is
broader mainly during reproductive period. Both species showed cyclical
gonadal development with distinct, recognizable maturation stages that are
herein described for females as: early maturation, late maturation, mature,
119
spawning and spent; and for males as: early maturation, mid maturation, late
maturation, regression, and regressed.
Female gonadal maturation stages
The germ cells and structures observed in the ovaries during oogenesis
are characterized henceforth. Oogonia are rounded cells, each with a large
central nucleus containing a single nucleolus, and located clumped within the
ovarian lamellae (Fig 1 A, B; Fig 2 A, B). Near the oogonia, there are other cells,
alone or forming nests, with oogonia-like aspect that can be identified as oocytes
that have not begun primary growth (Fig 1 A, B; Fig 2 A, B). Primary growth
phase oocytes are surrounded by squamous follicle cells, and contain a large
central nucleus with multiple nucleoli. As the oocyte in primary growth phase
enlarges, these nucleoli increase in number and size and migrate to the
periphery of the nucleus (Fig 1 A, C; Fig 2 A, C). Throughout this oocyte growth
phase it is possible to see “Balbiani bodies” or “yolk nuclei” that are a circular
portions of coarse-granulated cytoplasm, lightly stained, and located adjacent to
the nucleus (Fig 1 A; Fig 2 A). Previtellogenic oocytes exhibit an increase in
cytoplasmic volume, which becomes more granular in appearance, with clear
lipid vesicles at the periphery (Fig 1 D, E F; Fig 2 C, D, E, I). The nuclear outline
is less defined and the number of nucleoli increases. Surrounding the
previtellogenic oocytes, a distinct zona radiata becomes evident. This consists of
a thin, continuous acellular layer located between the oocyte membrane and the
layer of squamous follicle cells surrounding it. Vitellogenic oocytes exhibit a great
120
increase in the number of lipid vesicles, as well as the beginning of yolk
deposition (Fig 1 E; Fig 2 D). Moreover, vitellogenic oocytes have a contracted
nucleus with a very irregular outline and a thicker zona radiata (Fig 1 E; Fig 2 D).
Mature oocytes show rapid enlargement and a complete change in the character
of the cytoplasm due to the massive increase of yolk granules, which are
spherical on the periphery of the oocyte and fused in the interior (Fig 1 G, H; Fig
2 E, F, G). The nuclei of oocytes at this maturation stage remain contracted and
lose the spherical shape (Fig 1 H; Fig 2 G), while the zona radiata and cuboidal
follicle cells show an occasional undulation pattern. Post-ovulatory follicles are
collapsed structures formed by rows of cuboidal cells that originally surrounded
the mature oocyte before its liberation. Atretic follicles are oocytes that undergo
degenerative processes because of non-ovulation or another physiological
reason and are reabsorbed by the ovaries (Fig 1 I; Fig 2 H, I). Oocytes
undergoing atresia lose their tumescence, yolk granules start to fuse with one
another and the zona radiata shows invaginations that result in its eventual
rupture.
The early maturation stage of both species is characterized by the
presence of cells that represent oogonia and oocytes that have not begun
primary growth (oogonia-like oocytes). Clumps of these cells are located within
the ovarian lamellae among the abundant primary growth phase oocytes (Fig 1
A, B; Fig 2 A, B). For both Brachyhypopomus species, specimens whose ovaries
were in the early maturation stage included those with the smallest total lengths
representing fishes maturing for the first time, as well as larger fishes whose
121
ovaries are undergoing recrudescence and having been active during the
previous reproductive period. In the smaller specimens, gonads are compact with
very little space between oocytes and the ovarian lamellae (Fig 1 A, B; Fig 2 A,
B). In the larger specimens, on the other hand, gonads are less compact with
distended ovarian lamellae, as well as post-ovulatory follicles indicative of a prior
reproductive season (Fig 1 C).
The late maturation stage of both species studied is characterized by the
presence of fewer oogonia/oogonia-like oocytes, abundant oocytes in primary
growth phase, and the appearance of previtellogenic oocytes (Fig 1 D, E, F; Fig 2
C, D). At the end of this stage, the ovary also contains vitellogenic oocytes (Fig 1
E; Fig 2 D). As with the previous gonadal stage, specimens of B. bombilla and
Brachyhypopomus “G” maturing for the first time may have ovaries in the late
maturation characterized by small, compact gonads. Specimens that had already
spawned during a prior reproductive season and are currently maturing anew
have more flaccid gonads containing some post-ovulatory follicles. These post-
ovulatory follicles are rare in late maturation gonads at the beginning of this
maturation stage and cannot be found later on.
Gonads in the mature stage are characterized by the presence of very
scarce oogonia/oogonia-like oocytes, few oocytes in primary growth phase, and
a substantial number of vitellogenic and mature oocytes that occupy a major part
of the gonad (Fig 2 E). At this stage, atretic follicles are rarely observed. Fishes
with the greatest total lengths can be found in the maturation stage. No
specimens of B. bombilla at the mature stage were identified during this analysis.
122
The spawning maturation stage of B bombilla and Brachyhypopomus “G”
is similar to the mature stage, being characterized by the presence of very scarce
oogonia/oogonia-like oocytes, few previtellogenic oocytes and oocytes in primary
growth phase and a high number of vitellogenic and mature oocytes. The
appearance of post-ovulatory follicles at this stage indicates the beginning of
release of mature oocytes (Fig 1 G, H; Fig 2 F, G). Some ovaries in the spawning
stage also contain atretic follicles. At the beginning of this stage the gonads are
large and compact and contain few post-ovulatory follicles. As spawning
proceeds, the ovaries become more flaccid with a lower number of mature
oocytes and a higher number of post-ovulatory follicles.
The spent stage of both B. bombilla and Brachyhypopomus “G” is
characterized by the presence of large numbers of post-ovulatory follicles and
oocytes in primary growth phase, few oogonia/oogonia-like oocytes, and quite
often atretic follicles (Fig 1 I; Fig 2 H, I). Gonads in the spent stage are small,
flaccid, and show extremely distended ovarian lamellae (Fig 2 H, I). At the end of
this stage the ovaries begin to become reorganized, with an increase in the
number of oogonia/ oogonia-like oocytes and the complete degeneration and
reabsorption of atretic follicles, characterizing the reentry into the early
maturation stage.
Although the two Brachyhypopomus species herein analyzed show the
same female gonadal maturation stages, they do not have the same relative
frequencies during the observed months. During most months,
Brachyhypopomus bombilla exhibited the early maturation stage at high
123
frequencies; the late maturation stage occurs during six months of the year;
spawning and spent stages occur during fewer months within a limited period of
the year; the mature stage was not observed (Fig. 3). Brachyhypopomus “G”
exhibited the late maturation and spawning stages at high frequencies during six
months of the year; early maturation and spent stages occur at lower frequencies
during fewer months; the mature stage occurs in September only (Fig. 3).
Male gonadal maturation stages
The germ cells observed in the testis during spermatogenesis are
characterized henceforth. Spermatogonia are the largest cells found in the testes
and they exist either single or in small groups. Primary spermatogonia are pale-
staining spherical cells with a large central nucleus which contains one or two
nucleoli (Fig 4 A, H, I; Fig 5 A, I). As spermatogenesis develops, primary
spermatogonia undergo mitotic divisions originating the secondary
spermatogonia increasing in number forming cysts, and becoming smaller, with
smaller nucleus and not so evident nucleoli (Fig 4 C, F; Fig 5 A, B, C, F, I).
Primary spermatocytes are slightly smaller than spermatogonia and have smaller
coarser nucleus without the presence of nucleolus. These spermatocytes are
arranged in cysts of a great number of cells and are located adjacent to the
spermatogonia (Fig 4 C, F, G, I; Fig 5 A, B, C, E, F, I). Secondary spermatocytes
exist in cysts with approximately twice the number of germ cells than primary
spermatocytes cysts. They differ from their immediate precursors by the much
smaller size and condensed nucleus with clumped chromatin (Fig 4 C, F, G; Fig
124
5 B, C, E, I). Spermatids are nearly half the size of secondary spermatocytes and
have condensed and strongly-staining nucleus. These cells generally occupy the
peripheral zone of the seminiferous lobule lumen (Fig 4 C, F, G; Fig 5 B, C, F).
Spermatozoa are the smallest germ cell in the testis. They have condensed
strongly-staining spherical nucleus, and are found in the central region of the
seminiferous lobule and throughout the elaborate duct system (Fig 4 C, D, F, G,
I; Fig 5 B, C, E, F, G, I).
The early maturation stage is defined by the massive presence of
spermatogonia in the testes (Fig 4 a; Fig 5 A). Initially, primary and secondary
spermatogonia are the only germ cells in the gonad, and are presented
compacted occupying the entire testes area. Subsequently, scattered cysts of
primary and later secondary spermatocytes begin to appear, whereas
spermatogonia still is the most abundant germ cell of the testis. Macroscopically,
gonads in early maturation stage are thin, nearly translucent to whitish, and,
mainly for B. bombilla species, associated to fine layers of lipid cells.
Brachyhypopomus bombilla was found in high relative frequencies on this
maturation class during five months of the year, before and after the reproductive
period (Fig 6). Brachyhypopomus “G” was also found on this class during five
months of the year, although in much lower relative frequencies and always in a
more advanced phase with the continuous presence of spermatocyte cysts
dispersed between spermatogonia (Fig 6). For both Brachyhypopomus species
on early maturation stage, there has been found the smallest total length fishes
125
maturing for the first time as well as larger fishes, which have participated on the
last reproductive period and are restarting the gonad maturation process.
The mid maturation stage is characterized by the existence of
spermatogonia and spermatocytes at nearly the same proportion in the testes
(Fig 4 B, C; Fig 5 B, C). Spermatids are also found in the gonads on this stage
but in lower number, and as maturation progresses and the spermatogonia
number decreases, groups of spermatozoa start to emerge. Lobules near the
distal portion of the testis tend to be at an earlier period of development than
those in the proximal portion of the gonad nearer the gonoduct. For this reason,
during mid maturation spermatids and spermatozoa are more frequent in the
testicular proximal part (Fig 4 D), spermatogonia and spertocytes being always
more abundant in the opposite side. During this stage, the gonads increase in
size and volume starting to look more turgid. Both Brachyhypopomus species
were found in mid maturation stage during seven months of the sampled year
(Fig 6). However, Brachyhypopomus “G” has shown much higher relative
frequencies of fishes on this maturation class, reaching 100% of the analyzed
fishes in four of the months, and has been the most constant gonad developing
stage for this species (Fig 6). Fishes of all sizes can be found on this gonad
maturation class, except the ones included in the lowest length class analyzed
(lower than 70 mm).
The late maturation stage is distinguished by a steady decline of
spermatogonia number and a remarkable increase of spermatozoa (Fig 4 E; Fig
5 D). Initially, in the distal testicular portion there is a considerable amount of
126
primary and secondary spermatogonia together with primary and secondary
spermatocytes cysts. Whereas in the testis proximal portion the seminiferous
lobule function starts to switch from sperm production to sperm storage with a
massive presence of spermatozoa between small cysts of secondary
spermatocytes and spermatids. As late maturation progresses, the totality of
testicular lobule lumens is fully filled with spermatozoa and spermatogonia
become scarcely scattered or absent among spermatocyte cysts (Fig 5 E). At the
end of this maturation stage, primary spermatogonia still exist only on the
periphery of extreme distal testis portion. Late maturation gonads can be
observed in fishes with the highest total lengths, and can be macroscopically
described as turgid enlarged and white to yellowish colored organs.
Brachyhypopomus “G” and B. bombilla were found in this testicular maturation
class during two of the sampled months, which are corresponding to the
beginning of the reproductive period for both species (Fig 6).
The regression maturation stage is characterized by a great
spermatogenesis reduction and by the presence of an increasing amount of
spermatogonia, which were rare or absent during late maturation stage (Fig 4 F,
G; Fig 5 F, H). In the proximal portion of the testes, the lobule lumens are
completely filled with spermatozoa and outlined by clusters of spermatogonia and
few spermatocyte and spermatid cysts. The testicular ducts are always filled up
with spermatozoa (Fig 4 G). In the distal testis portion there are greater primary
spermatogonia amounts that start to take spermatozoa place in the lobules.
Primary and mainly secondary spermatocytes are much more frequent during
127
this maturation class in Brachyhypopomus “G” than in B. bombilla species (Fig 4
F, G; Fig 5 H). Macroscopically, gonads in regression stage are pretty similar to
those in late maturation, as well as the total length of fishes on this stage that
have the same range of fishes on previous maturation stage. Brachyhypopomus
“G” and B. bombilla can be observed in regression class during three and four of
the analyzed months respectively (Fig 6).
The regressed stage is defined by the return of primary spermatogonia as
the principal germ cells in the testes (Fig 4 H, I; Fig 5 I). Residual spermatozoa
produced during the former reproductive period are observed in small groups
spread among the spermatogonia (Fig 4 H, I; Fig 5 I). In B. bombilla regressed
gonads, primary spermatocytes and secondary spermatocytes are very
infrequent and found as residual clusters (Fig 4 I). As it was observed on early
maturation and regression stages, Brachyhypopomus “G” testes on the
regressed class have shown a much higher frequency of spermatocytes than that
exhibited for B. bombilla. Although primary spermatocytes have been hardly
found, cysts of secondary spermatocytes are pretty numerous in
Brachyhypopomus G” regressed testes (Fig 5 I). At macroscopic analyzes,
testes on this maturation stage are flaccid whitish and much smaller than those
on previous development class. Both analyzed species were found on this
maturation class during three of the sampled months, which are at the end of
reproductive season (Fig 6).
128
Discussion
Gonadal maturation in fishes is a continuous process, even though it can
be classified in stages that vary according to the criteria used (Chini et al., 2001).
Because the establishment of gonad maturation stages results in stagnant
maturation scales, the histological analysis has been recommended as a reliable
method to avoid misclassification (Dias et al., 1998). Although macroscopic
features are quite important for gonad’s morphological characterization, the
definition of maturation classes based only on this sort of features can lead to
mistakes and misclassification. Gonadal maturation stages in female and male B.
bombilla and Brachyhypopomus “G” were defined based upon changes in germ
cell development classes and gonadal cycles through individual reproductive
events.
According to female gonad evaluations, it is possible to affirm that both
Brachyhypopomus species show successive spawning events during one
reproductive period, which is validated by the definition of the spawning
maturation stage. The presence of post-ovulatory follicles in the gonads and the
definition of a spawning maturation class have been identified as an indication of
fractional spawning - where more than one oocyte lot is liberated during one
reproductive period - for teleosts (Vazzoler, 1996) and, more specifically, for
Gymnotiformes (Barbieri & Barbieri, 1985; Cognato & Fialho, 2006; Giora &
Fialho, in press). From the analysis of both ovary and testis development cycles,
it is also evident that the studied species have life period longer than a year,
129
since adult fishes presenting gonads matured in a later period were found in
early and late maturation stages of females and in early and mid maturation of
males being prepared for a new reproductive season.
Based on ultrastructural studies (Wallace & Selman, 1981), the “Balbiani
body”, herein described as present in primary growth stage oocytes, was
considered as a complex composed of cytoplasmic organelles including
mitochondria, Golgi elements, multivesicular bodies, and lipid granules,
depending on the species. Moreover, the “Balbiani body” has been proposed to
function as an mRNA transport organizer that organizes and mediates the
delivery of RNAs and germinal granules to the vegetal pole of the egg (Kloc, et
al., 1998).
The origin of the new spermatogonia that restart spermatogenesis during
the following reproductive cycle has been widely discussed and is still a matter of
controversy (Chaves-Pozo et al., 2005). Two hypotheses have been suggested
to explain this germ cells renewal: some authors affirm that primary
spermatogonia arise from an extra-testicular source and they annually migrate
into the seminiferous tubules and lobules (van den Hurk et al., 1978); other
studies suggested that there is a residual population of spermatogonia within
testis after breading season that serve to repopulate the gonad (Burke &
Leatherland, 1983; Ruby & McMillan, 1970; Grier & Taylor, 1998; Chaves-Pozo
et al., 2005). In the two studied Brachyhypopomus species due to the presence
of spermatogonia in the testes throughout the year – although in low frequency
during late maturation stage – it is probable that the new generation of germ cells
130
derive from mitotic division of spermatogonia that already exist in the
seminiferous lobules.
Although the wide range of gonadal morphologies reflects the complexity
of teleost reproduction, basic features (i.e. the structure of germ cells and
different somatic cell elements constituting the gonadal tissue) are similar
(Nagahama, 1983). In relation to the cell types described herein, there is no
significant difference in comparison with the female (Wallace & Selman, 1981;
Nagahama, 1983; Vazzoler, 1996; Garcia et al., 2001) and male germ cells
(Burke & Leatherland, 1983; Selman & Wallace, 1986; Grier & Taylor, 1998;
Reygadas & Escorcia, 1998; Brown-Peterson et al., 2002) exhibited for the
majority of teleosts. The maturation stages described for Brachyhypopomus
female gonads are similar to those described previously by Barbieri & Barbieri
(1985) and Cognato & Fialho (2006) for Gymnotus aff. carapo, and by Giora &
Fialho (in press) for Eigenmannia trilineata. The same occurred with
Brachyhypopomus male gonad maturation stages, which were quite similar to
those described previously for two Perciform species by Grier & Taylor (1998)
and Lo Nostro et al. (2000), for Synbranchus marmoratus by Brown-Peterson et
al. (2002), and also for Gymnotus aff. carapo by Barbieri & Barbieri (1984) and
Cognato & Fialho (2006). These statements are suggesting that gonad
development classification based on changes in the testicular and ovarian germ
cells may be applicable to a great range of Gymnotiformes species, even though
many interspecific differences can be observed.
131
As opposed to the homogeneity on cell types and stages of gonad
maturation, the two studied Brachyhypopomus species have shown differences
in the frequencies of maturation stages along the year. From the ovaries
analyzes it can be observed that B. bombilla remains in early maturation stage
during great part of the year and exhibits gonads in spawning stage during a
short and well defined period. This information leads to a fast gonad
development just before reproductive period - which proved to be relatively brief -
and to a low gonad development rate during the months between two
reproductive seasons. The lack of analyzed B. bombilla female specimens in the
mature stage is in agreement with this statement, since a very fast preparation
for spawning would reduce the possibilities of fully matured female capture in
monthly samples. Concerning Brachyhypopomus “G” females, the gonad
development appeared to be more continuous and regular with uninterrupted
gonad growth before, during, and after the reproductive season. The major
differences between Brachyhypopomus “G” and B. bombilla testis maturation
classes concern the frequencies of fishes on early and mid maturation classes. In
spite of occurring during the same number of months along the studied year, the
frequency of Brachyhypopomus “G” on mid maturation was higher than B.
bombilla, whereas, on early maturation, the opposite was true for B. bombilla.
The explanation for these divergences may be associated to the higher number
of spermatocytes in testes of Brachyhypopomus “G” during the majority of
maturation stages, which shows a more constant spermatogenesis than B.
bombilla along the reproductive cycle.
132
These divergences between the two Brachyhypopomus species ovaries
and testes development are evidencing the establishment of distinct reproductive
strategies. Life-history strategy is defined as a complex pattern of co-evolved life-
history traits designed for a particular environment (Rochet, 2000), where as
reproductive strategy is the whole of characteristics assumed for a species with
the aim of reproductive success and population balance (Wootton, 1984). The
changes on a species resource allocation from reproductive to competitive
activities can only occur in habitats where it may increase the future generation
survival (Lowe-McConnell, 1999). Studies on feeding habits of B. bombilla (J.
Giora, H. T. Moraes & C. Fialho, in preparation) have demonstrated that the
species fasts during the six months between the end of a reproductive period and
the beginning of the next one. Therefore, these results are indicating that feeding
dynamics may be interfering on gonad development of this species, which has
proved to possess a more seasonal gonadal development than
Brachyhypopomus “G”. After all, the quoted imbalance between frequencies of
maturation classes and the establishment of different reproductive strategies for
the species are evidencing the elevated gonad development diversity that can be
found even among the same genus species.
133
Acknowledgements
We are grateful to CAPES and CNPq (process 476821/2003-7;
478002/2006-8) for the project support.
Literature Cited
Albert, J. S. 2001. Species diversity and phylogenetic systematics of American
knifefishes (Gymnotiformes, Teleostei). Miscellaneous Publishing of Museum
Zoology University of Michigan, 190: 1-129.
Barbieri, M. C. & G. Barbieri. 1984. Reprodução de Gymnotus carapo (Linnaeus,
1758) na represa do Lobo (SP.). Morfologia e histologia de testículo.
Variação sazonal. (Pisces, Gymnotidae). Revista Brasileira de Biologia,
44(2): 141-148.
Barbieri, M. C. & G. Barbieri. 1985. Reprodução de Gymnotus carapo (Linnaeus,
1758) na represa do Lobo (SP.). Morfologia e histologia de ovário. Variação
sazonal. (Teleostei, Gymnotidae). Revista Brasileira de Biologia, 45(1/2): 3-
12.
Brown-Peterson, N. J., H. J. Grier & R. M. Overstreet. 2002. Annual changes in
germinal epithelium determine male reproductive classes of the cobia.
Journal of Fish Biology, 60: 178-202.
134
Burke, M. G. & J. F. Leatherland. 1983. Seasonal changes in testicular histology
of brown bullheads, Ictalurus nebulosus Lesueur. Canadian Journal of
Zoology, 62: 1185-1194.
Chaves-Pozo, E., V. Mulero, J. Meseguer & A. G. Ayala. 2005. An overview of
cell renewal in the testis throughout the reproductive cycle of a seasonal
breeding teleost, the gilthead seabream (Sparus aurata L.). Biology of
Reproduction, 72: 593-601.
Chini, H. A. S., J. A. D. Garcia, E. L. Maistro & I. Quagio-Grassiotto. 2001.
Dynamics and cytochemistry of oogenesis in Leporinus striatus Kner
(Teleostei, Characiformes, Anostomidae) from Rio Sapucaí, Minas Gerais
State, Brazil. Revista Brasileira de Zoologia, 18(4): 1065-1072.
Cognato, D. De P. & C. B. Fialho. 2006. Reproductive biology of a population of
Gymnotus aff. carapo (Teleostei: Gymnotidae) from southern Brazil.
Neotropical Ichthyology, 4(3): 339-348.
Crampton, W. G. R. 1996. Gymnotiform fish: an important component of
Amazonian floodplain fish communities. Journal of Fish Biology, 48: 298-301.
Crampton, W. G. R. 1998. Electric signal design and habit preferences in a
species rich assemblage of Gymnotiform fishes from the upper Amazon
basin. Anais da Academia Brasileira de Ciências, 70(4): 805-847.
Crampton, W. G. R., J. K. Wells, C. Smyth & S. A. Walz. 2007. Design and
construction of an Electric Fish Finder. Neotropical Ichthyology, 5(3): 425-428.
Dias, J. F., E. Peres-Rios, P. T. C. Chaves & C. L. B. Rossi-Wongtschowski.
1998. Análise macroscópica dos ovários de teleósteos: problemas de
135
classificação e recomendações de procedimentos. Revista Brasileira de
Zoologia, 58(1): 55-69.
Garcia, J. A. D., H. A. S. Chini, E. L. Maistro & I. Quagio-Grassiotto. 2001.
Dynamics and cytochemistry of oogenesis in Astyanax fasciatus (Cuvier)
(Teleostei, Characiformes, Characidae) from Rio Sapucaí, Minas Gerais
State, Brazil. Revista Brasileira de Zoologia, 18(4): 1057-1064.
Giora, J. & C. B. Fialho. (in press). Reproductive biology of weakly electric fish
Eigenmannia trilineata López & Castello, 1966 (TELEOSTEI, Sternopygidae).
Brazilian Archives of Biology and Technology.
Grier, H. J. & R. G. Taylor. 1998. Testicular maturation and regression in
common snook. Journal of Fish Biology, 53: 521-542.
Kloc, M. & L. D. Etkin. 1998. Apparent continuity between the messenger
transport organizer and late RNA localization pathways during oogenesis in
Xenopus. Mechanisms of Development, 73: 95–106.
Lo Nostro, F., L. Andreone, G. A. Guerreiro & H. J. Grier. 2000. Annual cycle of
the testis in the swamp eel, Synbranchus marmoratus
(Teleostei,Synbranchidae), a protogynic, diandric fish. Pp. 254. In: Norberg,
B., O. S. Kjesbu, G. L. Taranger, E. Anderson & S. O. Stefansson (Eds.).
Proceedings of the Sixth International Symposium on the Reproductive
Physiology of Fish. Bergen, University of Bergen Press, 254p.
Lowe-McConnell R. H. 1999. Estudos ecológicos de comunidades de peixes
tropicais. São Paulo, Edusp, 553p.
136
Mago-Leccia, F. 1978. Los peces de la família Sternopygidae de Venezuela.
Acta Cientifica de Venezuela, 29(1): 1-89.
Mago-Leccia, F. 1994. Electric fishes of the continental waters of America.
Cracas, Clemente Editores, 207p.
Nagahama, Y. 1983. The functional morphology of teleost gonads. Pp. 223-276.
In: Hoar, W. S., D. J. Randall & E. M. Donaldson (Eds.). Fish Physiology.
New York, Academis Press, Vol. 9, 338p.
Patino, R. & C. V. Sullivan. 2002. Ovarian follicle growth, maturation, and
ovulation in teleost fish. Fish Physiology and Biochemistry, 26:57-70.
Quintana, L., A. Silva, N. Berois & O. Macadar. 2004. Temperature induces
gonadal maturation and affects electrophysiological sexual maturity indicators
in Brachyhypopomus pinnicaudatus from a temperate climate. The Journal of
Experimental Biology, 207: 1843-1853.
Reygadas, R. C. & H. B. Escorcia. 1998. Histologia y ultraestructura del testículo
del charal Chirostoma jordani (Osteichthyes: Atherinidae). Revista de Biologia
Tropical, 46(4): 943-949.
Rochet, M. J. 2000. A comparative approach to life-history strategies and tatics
among four orders of teleost fish. Journal of Marine Science, 57: 228-239.
Ruby, S. M. & D. McMillan. 1970. Cyclical changes in the testes of the brook
stickleback Eucalia inconstans. Journal of Morphology, 131: 447-465.
Selman, K. & R. A. Wallace. 1986. Gametogenesis in Fundulus heteroclitus.
American Zoology, 26: 173-192.
137
Van den Hurk, R., J. Peute & J. A. Vermeij. 1978. Morphological and enzyme
cytochemical aspects of the testis and vas deferens of the rainbow trout,
Salmo gairdneri. Cell and Tissue Research 186: 309-325.
Vazzoler, A. E. A. de M. 1996. Biologia da reprodução de peixes teleósteos:
teoria e prática. Maringá, Editora da Universidade, 169p.
Wallace, R. A. & K. Selman. 1981. Cellular and dynamic aspects of oocyte
growth in teleosts. American Zoologist, 21: 325-343.
Wooton, R. J. 1984. Introduction: strategies and tatics in fish reproduction. Pp.1-
12. In: Potts, G. W. & R. J. Wooton (Eds.). Fish Reproduction: Strategies and
tactics. London, Academic Press, 410 p.
138
Fig. 1. Female gonads of Brachyhypopomus bombilla. A, B, C - early maturation
stage; D, E, F – late maturation stage; G, H – spawning stage; I – spent stage.
139
oo = oogonia/oogonia-like oocytes; po = primary growth phase oocyte; pv =
previtellogenic oocyte; vo = vitellogenic oocyte; mo = mature oocyte; pf = post-
ovulatory follicle; af = atretic follicle; n = nucleus; nu = nucleolus; y = yolk; zr =
zona radiata; fc = follicle cells; ol = ovarian lamellae; bb = balbiani body.
140
Fig. 2. Female gonads of Brachyhypopomus “G”. A, B - early maturation stage;
C, D – late maturation stage; E – mature stage; F, G – spawning stage; H, I -
spent stage oo = oogonia/oogonia-like oocytes; po = primary growth phase
141
oocyte; pv = previtellogenic oocyte; vo = vitellogenic oocyte; mo = mature oocyte;
pf = post-ovulatory follicle; af = atretic follicle; n = nucleus; nu = nucleolus; y =
yolk; zr = zona radiata; fc = follicle cells; ol = ovarian lamellae; bb = balbiani
body.
142
Fig. 3. Monthly variation of Brachyhypopomus bombilla and Brachyhypopomus
“G” female gonadal stage frequencies. Spent = spent stage; Spawn = spawning
stage; Mat = mature stage; L-Mat = late maturation stage; E-Mat = early
maturation stage.
Brachyhypopomus bombilla
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Spent
Spawn
Mat
L-Mat
E-Mat
Brachyhypopomus "G"
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Spent
Spawn
Mat
L-Mat
E-Mat
143
Fig. 4. Male gonads of Brachyhypopomus bombilla. A - early maturation stage;
B, C, D – mid maturation stage; E – late maturation stage; F, G – regression
maturation stage; H, I – regressed maturation stage. sg1 = primary
144
spermatogonia; sg2 = secondary spermatogonia; sc1 = primary spermatocyte;
sc2 = secondary spermatocyte; st = spermatid; sz = spermatozoa; n = nucleus;
nu = nucleolus.
145
Fig. 5. Male gonads of Brachyhypopomus “G”. A - early maturation stage; B, C –
mid maturation stage; D, E – late maturation stage; F, G, H – regression
maturation stage; I – regressed maturation stage. sg1 = primary spermatogonia;
146
sg2 secondary spermatogonia; sc1 = primary spermatocyte; sc2 = secondary
spermatocyte; st = spermatid; sz = spermatozoa; n = nucleus; nu = nucleolus; d
= testicular ducts.
147
Brachyhypopomus bombilla
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Regressed
Regression
L-Mat
M-Mat
E-Mat
Brachyhypopomus "G"
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Regressed
Regression
L-Mat
M-Mat
E-Mat
Fig. 6. Monthly variation of Brachyhypopomus bombilla and Brachyhypopomus
“G” male gonadal maturation stage frequencies. Regressed = regressed
maturation stage; Regression = regression maturation stage; L-Mat = late
maturation stage; M-Mat = mid maturation stage; E-Mat = early maturation stage.
148
Capítulo V
Sperm ultrastructure in three different families of weakly
electric fishes (Teleostei: Gymnotiformes).
149
Sperm ultrastructure in three different families of weakly electric fishes
(Teleostei: Gymnotiformes).
Júlia Giora*, John R. Burns** & Clarice B. Fialho*
* Universidade Federal do Rio Grande do Sul, IB, Departamento de Zoologia, Av.
Bento Gonçalves, 9500, bloco IV, prédio 43435, 91501-970, Porto Alegre, RS,
Brazil.
** Department of Biological Sciences, George Washington University,
Washington, DC, USA, 20052.
This study presents details of the spermatozoa ultrastructure of Gymnotus aff.
carapo (family Gymnotidae), Eigenmannia trilineata (family Sternopygidae), and
three Brachyhypopomus species (B. draco, B. bombilla, and Brachyhypopomus
“G” – family Hypopomidae) from southern Brazil. Some differences were found
between the representatives of the different families, such as the presence of
nuclear rotation, observed in E. trilineata and in the Brachyhypopomus species,
or its absence, observed in Gymnotus aff. carapo, and the presence of
axonemal-fins, only observed in E. trilineata. Some intraspecific variations could
also be noticed among the analyzed Brachyhypopomus species, such as nuclear
density and vacuoles number and organization level. Most of the characters
150
found in the spermatozoa of the species studied herein are shared with species
of Gymnotiformes previously analyzed.
Este estudo apresenta detalhes sobre a ultraestrutura do espermatozóide de
Gymnotus aff. carapo (família Gymnotidae), Eigenmannia trilineata (família
Sternopygidae), e três espécies de Brachyhypopomus (B. draco, B. bombilla, e
Brachyhypopomus “G” – família Hypopomidae) do sul do Brasil. Algumas
diferenças foram encontradas entre os representantes das diferentes famílias,
tais como a presença de rotação nuclear, observada em E. trilineata e nas três
espécies de Brachyhypopomus, e a presença de aletas laterais no flagelo,
observadas somente em E. trilineata. Algumas variações intraespecíficas
também puderam ser registradas entre as espécies de Brachyhypopomus
analisadas, tais como a densidade nuclear e o número e nível de organização
dos vacúolos. A maioria das características encontradas nos espermatozóides
das espécies aqui analisadas são compartilhadas com as demais espécies de
Gymnotifomes previamente analisadas.
Key words: Spermatozoa, Hypopomidae, Sternopygidae, Gymnotidae.
151
Introduction
The order Gymnotiformes is restricted to Neotropical freshwaters
occurring from Guatemala to Argentina, and also in the Caribbean island of
Trinidad (Mago-Leccia, 1978). The order is constituted by 117 species, 30
genera, and five families (Reis et al., 2003) and, although, there are many
hypotheses on the relationships among its families (Triques, 1993; Mago-Leccia,
1994; Alves-Gomes et al., 1995, Albert and Crampton, 2005), they are still
unsolved.
According to Mattei (1991), since the fishes have demonstrated great
structural diversity at all taxonomic levels, it is not possible to construct spermatic
models, even for monophyletic groups as Actinopterygii or Teleostei. For this
reason, results on ultrastructure of sperm cell have provided valuable information
on cellular modifications associated with reproductive habits and uncovered
morphological characters useful in hypothesizing phylogenetic relationships
(Baccetti, 1987; Burns et al., 1998; Burns et al., 2002).
Ultrastructural studies on Gymnotiformes spermatozoa were done for the
species Apteronotus albifrons (cited as Sternarchus albifrons) by Jamieson
(1991), for Gymnotus cf. anguilaris and Brachyhypopomus cf. pinnicaudatus by
França et al. (2007), and for Rhamphichthys cf. hahni, Eigenmannia cf. virescens
and Apteronotus cf. albifrons by França (2006). However, there are many
remaining questions and more studies are needed for a better understanding of
the spermatozoa evolution in the Gymnotiformes order (França, 2006). The
152
purpose of the present study is to provide details of spermatozoa ultrastructure in
Gymnotus aff. carapo, Eigenmannia trilineata, and three Brachyhypopomus
species (B. draco, B. bombilla, and Brachyhypopomus “G”) from southern Brazil.
Material and Methods
The present study was conducted on adult males of Brachyhypopomus
bombilla, Brachyhypopomus draco, Brachyhypopomus “G”, and Eigenmannia
trilineata and Gymnotus aff. carapo collected in Rio Grande do Sul State,
southern Brazil. Brachyhypopomus draco, Brachyhypopomus “G”, and G. aff.
carapo were collected at a flooded area near the arroio dos Ratos creek
(29°57’31.9”S 51°33’10.1”W), Charqueadas Municipality, laguna dos Patos
drainage. Brachyhypopomus bombilla and E. trilineata were collected at a creek
inserted on rio Uruguay drainage (30°12’42.8”S 55°03’17.5”W), near Rosario do
Sul Municipality. The fishes were sacrificed by severing the spinal cord.
Immediately afterwards, small pieces of testes were placed in modified
Karnovsky's fixative (Ito and Karnosvsky, 1968) and kept under refrigeration until
the start of further processing. The fishes were deposited on fish collection of the
Universidade Federal do Rio Grande do Sul (Brachyhypopomus “G” – UFRGS
9200; Brachyhypopomus bombilla – UFRGS 9284, Brachyhypopomus draco
UFRGS 6750, Eigenmannia trilineata – UFRGS 6635, Gymnotus aff. carapo
UFRGS 6859).
153
Testes were dehydrated in an ethanol series towards the critical-point
dried for scanning electron microscopy (SEM). The dried tissue was then
attached to stubs with carbon double-stick tape and teared apart with needles.
The sample was sputter-coated with carbon and gold and viewed in a LEO
1430VP scanning electron microscope. For transmition electron microscopy
(TEM), testes were cut in small pieces (±1 mm
3
), rinsed in phosphate buffer and
post-fixed in 1% osmium tetroxide in phosphate buffer. After that testes were
rinsed in phosphate buffer, dehydrated in an ethanol series, infiltrated, and
embedded in Araldite 502. Ultrathin sections were cut on a Sorvall MT5000
ultramicrotome, mounted on grids, and stained with aqueous uranyl acetate and
lead citrate. Sections were examined with a JEOL JEM 1200 transmission
electron microscope.
Results
Spermatozoa of Brachyhypopomus draco, Brachyhypopomus
bombilla and Brachyhypopomus “G”.
The spermatozoa of the three analyzed species are constituted by well
defined head, midpiece, and flagellum, with spherical nucleus. They have
electron-dense nucleus, B. bombilla showing more flocular chromatin with some
lighter spots scattered, while B. draco and Brachyhypopomus “G” show
154
peripheral electro-density with less condensed chromatin in the center of the
nucleus. All these Brachyhypopomus species have nuclear rotation. The
centrioles are in a perpendicular orientation and are completely contained within
the nuclear fossa. Brachyhypopomus draco possesses a very deep fossa, which
is the deepest between these three species. The midpiece contains a great
number of vacuoles and elongated mitochondria, which are irregularly
distributed. The midpiece of the three species also possesses a cytoplamic
channel. The species B. draco has many ramified vacuoles forming a
membranous structure differing from the other Brachyhypopomus herein
analyzed. The flagellum has the classical 9 + 2 microtubular pattern and it does
not show intratubular differentiation, both tubules of each peripheral doublet
being not electron-dense. The flagellar membrane does not have lateral
projections or fins, however, B. bombilla possesses an enlarged membrane in
comparison with the other two studied species.
Spermatozoa of Gymnotus aff. carapo.
The spermatozoa of Gymnotus aff. carapo are constituted by head, with
spherical nucleus, well defined midpiece and a single flagellum. The nucleus is
peripherally electron-dense, with less condensed chromatin in its center and
does not show nuclear rotation, the flagellum remaining lateral in relation to the
nucleus. The spermatozoa have a very deep nuclear fossa and the centrioles are
arranged in perpendicular orientation. Although the centrioles are located very
near the nucleus, they are not contained within the nuclear fossa. The midpiece
155
has rounded mitochondria, which have an irregular distribution, and a great
number of vacuoles mostly concentrated at last portion of midpiece. The
midpiece also possesses a cytoplasmic channel. The flagellum has a 9 + 2
microtubular arrangement and it does not show intratubular differentiation, the
entire flagellum being not electron-dense. The flagellar membrane does not have
lateral projections or fins.
Spermatozoa of Eigenmannia trilineata
The spermatozoa of E. trilineata are constituted by well defined head,
midpiece, and flagellum with spherical nucleus slightly flattened. The nucleus is
electron-dense with dense masses of chromatin in a flocular matrix. The E.
trilineata spermatozoa also show nuclear rotation. The centrioles are in a
perpendicular orientation and are contained within the nuclear fossa that is lower
than in the other analyzed species. In the midpiece the spermatozoa has a
cytoplasmic collar attached along most of the nucleus, small number of vacuoles
and large mitochondria irregularly distributed. The flagellum has the usual 9 + 2
microtubular arrangement with no intratubular differentiation. The flagellar
membrane has lateral projections that constitute long axonemal-fins along the
entire flagellum length.
156
Discussion
The shape, length, and width of the sperm cell nucleus show great
variation between species, and these characteristics are frequently associated
with the fertilizing type. The basic structure of the spermatozoon of species that
are externally fertilizing is an anacrosomal aquasperm defined as having a
spherical to ovoid nucleus and a short midpiece (Jamieson, 1991). The species
herein analyzed, as all studied Gymnotiformes species (Jamieson, 1991; França
et al., 2007; França, 2006), have shown the aquasperm structure suggesting the
external fertilization of the species. Although the representatives of the three
studied families possess the same spermatozoon basic structure, there are some
differences, especially on nuclear position related to the flagellum, centriolar
complex position, nuclear density, vacuoles conformation, and the presence of
axonemal fins.
According to Mattei (1970), there are two basic types of Teleostei
spermatozoa due to the process of nuclear rotation during the spermiogenesis. In
type I the nucleus has a 90° rotation in relation to the flagellar axis with the
flagellum located perpendicularly to the nucleus whereas the centrioles are
placed inside the nuclear fossa. In type II the nuclear rotation does not occur with
the flagellum located laterally to the nucleus whereas the centrioles are placed
outside the nuclear fossa. Eigenmannia trilineata and the three
Brachyhypopomus species analyzed have shown type I spermatozoa, the most
common type of spermiogenesis and spermatozoa between the Teleostei
157
(Mattei, 1970), which is observed in almost all Characiformes species (Quagio-
Grassiotto et al., 2003), as well as, in Cypriniformes (Bacceti et al., 1984) and
Siluriformes (Poirer & Nicholson, 1982) and it is presumed to be a primitive
condition within Teleostei (Peccio, 2003). Gymnotus cf. carapo has shown the
type II spermatozoa, exhibiting not only the nucleus without rotation, but also the
centriolar complex outside the nuclear fossa. Type II spermiogenesis has only
been described in the characiform family Acestrorhynchidae (Matos et al., 2000)
and in the inseminated species of the subfamily Gladulocaudinae (Burns &
Weitzman, 2005). More recently, the type II spermiogenesis has been also
described for another Gymnotus species (França et al., 2007).
The spermatozoa nucleus of E. trilineata possesses dense masses of
chromatin in a flocular matrix being similar in density to the nucleus described for
Rhamphichthys cf. hahni, Eigenmannia cf. virescens, and Apteronotus cf.
albifrons (França, 2006), and for Apteronotus albifrons (cited as Sternarchus
albifrons) (Jamieson, 1991). The species B. draco, Brachyhypopomus “G” and G.
aff. carapo have shown spermatozoa nucleus very similar in density to those
described for Gymnotus cf. anguilaris and Brachyhypopomus cf. pinnicaudatus
(França et al., 2007), while B. bombilla has a more flocular chromatin, being
more similar to the nucleus of species of the families Sternopygidae,
Rhamphichthyidae and Apteronotidae than to those of Hypopomidae or even
Gymnotidae.
The vacuoles are located in midpiece and exhibit great variation of
position, number, distribution, and connection between them (Spadella, 2004). All
158
the species analyzed herein have demonstrated the presence of vacuoles in the
midpiece, even though the number, organization level, and distribution around
the midpiece have shown variation between the different families, as well as
within the genus Brachyhypopomus.
Up to the present, the presence of axonemal-fins have not been reported
for any Ostariophysi taxon, being its absence interpreted as a secondary
reduction and an apomorphic character for this group of Teleostei (Jamieson,
1991). Most recently, Quagio-Grassioto et al. (2001) have described similar fins
on the flagellar membrane of the species Diplomystes mesembrinus which is
considered a Siluriformes primitive representative, and Pecio (2003) has reported
for the first time for a Characiformes species the presence of this structure. In
Gymnotiformes, the presence of axonemal-fins has been described for
representatives of the families Rhamphichthyidae and Sternopygidae (França,
2006) and their absence for Apteronotidae (França, 2006; Jamieson, 1991),
Hypopomidae and Gymnotidae (França et al., 2007). The results obtained for E.
trilineata, G. aff. carapo, B. draco, B. bombilla and Brachyhypopomus “G” about
the presence of axonemal-fins corroborate these studies; although, the
enlargement of the flagellar membrane in B. bombilla had represented a differing
character between all the Brachyhypopomus species analyzed until today.
This study exemplifies the diversity of sperm ultrastructure characters not
only between the families of Gymnotiformes, but also within its genera, indicating
that this information can be useful to define phylogenetic relationships at all
taxonomic levels.
159
Acknowledgements
We are grateful to CAPES and CNPq (process 476821/2003-7;
478002/2006-8) for the project support.
Literature Cited
Albert, J. S. & W. G. R. Crampton. 2005. Diversity and Phylogeny of Neotropical
eletric fishes (Gymnotiformes). Pp. 360-409. In: Bullock, T. E., C. D. Hopkins,
A. N. Popper & F. R. Fay (Eds.). Electroreception. Ithaca, Cornell University
Press, 472p.
Alves-Gomes, J. A., G. Ortí, M. Haygood, W. Heiligenberg & A. Meyer. 1995.
Phylogenetic analysis of the evolution of the south american electric fishes
(order Gymnotiformes) and the evolution of their electrogenic system: a
sinthesis based on morphology, electrophysiology, and mitochondrial
sequence data. Molecular Biology and Evolution, 12(2): 298-318.
Baccetti, B. 1987. News on Phylogenetic and Taxonomical Spermatology. Pp.
333-348. In: Mohri, H. (Ed.). New Horizons in Sperm Cell Research. Tokyo,
Japan Scientific Societies Press/ New York, Gordon and Breach Science
Publishers. 516p.
160
Baccetti, B., A. G. Burrini, G. Callaini, G. Gilbertini, M. Mazzinu & S. Zerunian.
1984. Fish germinal cells. I. Comparative spermatology of seven cyprinid
species. Gamete Research, 10: 373-396.
Burns, J. R., S. H. Weitzman, K.R. Lange & L. R. Malabarba. 1998. Sperm
ultrastructure in characid fishes (Teleostei, Ostariophysi). Pp. 235-244. In:
Malabarba L. R., R. E. Reis, R. P. Vari, Z. M. Lucena & C. A. S. Lucena
(Eds). Phylogeny and classification of Neotropical fishes. Porto Alegre,
Edipucrs, 603p.
Burns, J. R., A. D. Meisner, S. H. Weitzman & L. R. Malabarba. 2002. Sperm and
spermatozeugma ultrastructure in the inseminating catfish, Trachelyopterus
lucenai (Ostariophysi: Siluriformes, Auchenipteridae). Copeia, 1:173-179.
Burns J. R., S. H. Weitzman. 2005. Insemination in ostariophysan fishes. Pp.
107-134. In: Uribe M. C. & H. J. Grier (Eds.). Viviparous Fishes. Homestead,
FL, New Life Publications. 603p.
França, G. F. 2006. Ultraestrutura da espermiogênese e dos espermatozóides
da ordem Gymnotiformes (Teleostei, Ostariophysi) com considerações
filogenéticas. Unpublished MsC. Thesis, Universidade Estadual de Campinas,
Campinas. 89p.
França, G. F., C. Oliveira & I. Quagio-Grassiotto. 2007. Ultrastructure of
spermiogenesis and spermatozoa of Gymnotus cf. anguillaris and
Brachyhypopomus cf. pinnicaudatus (Teleostei: Gymnotiformes). Tissue &
Cell, 39 (2): 131-139.
161
Ito, S. & M. J. Karnovsky. 1968. Formaldehyde glutaraldehyde fixatives
containing trinitrus compounds. Journal of Cellular Biology, 36: 168.
Jamieson, B. G. M. 1991. Fish Evolution and Systematics: Evidence from
Spermatozoa. Cambridge, Cambridge University Press, 319p.
Mago-Leccia, F. 1978. Los peces de la familia Sternopygidae de Venezuela.
Acta Cientifica Venezolana, 29 (suppl. 1): 1-89.
Mago-Leccia, F. 1994. Electric fishes of the continental waters of America.
Cracas, Clemente Editores, 207p.
Matos, E. P., L. Corral & C. Azevedo. 2000. Estrutura fina do espermatozóide de
Acestrorhyncus falcatus Bloch (Teleostei, Characidae) da região norte do
Brasil. Revista Brasileira de Zoologia, 17: 747-52.
Mattei, X. 1970. Spermiogenése comparé des poisson. Pp. 57-72. In: Baccetti, B.
(Ed.). Comparative Spermatology, New York, Academic Press, 169p.
Mattei, X. 1991. Spermatozoon ultrastructure and its systematic implication in
fishes. Canadian Journal of Zoology, 69: 3038-3055.
Pecio, A. 2003. Spermiogenesis and fine structure of the spermatozoon in a
headstander, Chilodus punctatus (Teleostei, Characiformes, Anostomidae).
Folia Biologica, 51: 55-62.
Poirer, G. R. & N. Nicholson. 1982. Fine structure of the testicular spermatozoa
from the channel catfish, Ictalurus punctatus. Journal of Ultrastructure
Research, 80: 104-110.
162
Quagio-Grassiotto, I.; C. Oliveira, & A. E. Gosztonyi. 2001. The ultrastructure of
spermiogenesis and spermatozoa in Diplomystes mesembrinus. Journal of
Fish Biology. 58: 1623-1632.
Quagio-Grassiotto, I.; M. C. Gameiro, T. Schneider, L. R. Malabarba, & C.
Oliveira. 2003. Spermiogenesis and spermatozoa ultrastructure in five species
of the Curimatidae with some considerations on spermatozoal ultrastructure in
the Characiformes. Neotropical Ichthyology, 1(1): 35-45.
Reis, R. E., S. O. Kullander, C. J. Ferraris Jr. 2003. Check List of the Freshwater
Fishes of South and Central America. Porto Alegre, EDIPUCRS, 742p.
Spadella M.
A. 2004. Estudo filogenético na Superfamília Loricarioidea
(Teleostei: Siluriformes) com base na ultraestrutura dos espermatozóides.
Unpublished MsC. Thesis, Universidade Estadual de Campinas. 175p.
Triques, M. L. 1993. Filogenia dos gêneros de Gymnotiformes (Actinopteryigii,
Ostariophysi), com base em caracteres esqueléticos. Comunicações do
Museu de Ciências PUCRS, série zoologia, 6: 85-130.
163
Fig. 1. A, B, C, D, F, G Transmition electron microscopy of
Brachyhypopomus draco spermatozoa; E – Scanning electron microscopy of
B. draco spermatozoa. n= nucleus; c= centriole; pc= proximal centriole; dc=
distal centriole, cc= citoplasmic chanel; v= vacuole; m= mitochondria; nf=
nuclear fossa; f= flagellum. A and B scale bar= 500 nm; C-G scale bar= 1µm.
164
Fig. 2. A, B, C, D, F - Transmition electron microscopy of Brachyhypopomus
“G” spermatozoa; E – Scanning electron microscopy of Brachyhypopomus “G”
spermatozoa. n= nucleus; c= centriole; pc= proximal centriole; dc= distal
centriole, cc= citoplasmic chanel; v= vacuole; m= mitochondria; a= axoneme;
nf= nuclear fossa; f= flagellum. A and B scale bar= 500 nm; C-G scale bar=
1µm.
165
Fig. 3. A, B, C, D, E, F - Transmition electron microscopy of
Brachyhypopomus bombilla spermatozoa; G – Scanning electron microscopy
of B. bombilla spermatozoa. n= nucleus; c= centriole; pc= proximal centriole;
dc= distal centriole; v= vacuole; m= mitochondria; a= axoneme; nf= nuclear
166
fossa; f= flagellum; asterisk= flagellar membrane. A-F scale bar= 1µm; G scale
bar= 2 µm.
167
Fig. 4. A, B, C, E, F - Transmition electron microscopy of Gymnotus aff.
carapo spermatozoa; D – Scanning electron microscopy of G. aff. carapo
spermatozoa. n= nucleus; c= centriole; pc= proximal centriole; dc= distal
centriole; v= vacuole; m= mitochondria; a= axoneme; nf= nuclear fossa;
cc=citoplasmic chanel f= flagellum. A-F scale bar= 1µm.
168
Fig. 5. A, B, C, E, G - Transmition electron microscopy of Eigenmannia
trilineata spermatozoa; F – Scanning electron microscopy of E. trilineata
spermatozoa. n= nucleus; c= centriole; pc= proximal centriole; dc= distal
centriole; v= vacuole; m= mitochondria; af= axonemal fin; nf= nuclear fossa. A-
F scale bar= 1µm.
169
Capítulo VI
Reproductive characters and spermatozoa structure in
Gymnotiformes species (Teleostei: Ostariophysi) with
phylogenetic considerations.
170
Reproductive characters and spermatozoa structure in Gymnotiformes
species (Teleostei: Ostariophysi) with phylogenetic considerations.
The organism evolutionary history is associated with climate and
geography changes occurred throughout the planet history; as a consequence,
the elucidation of phylogenetic relationships among the organisms allow the
study of their evolution and are the base for biogeographic and ecological studies
(Futuyma, 1992). The knowledge concerning biological diversity is the starting
point for all studies related to biological sciences, ecology, behavior, evolution,
and species recognition and description (Savage, 1995).
Fishes represent the oldest and most diverse group among all vertebrates.
About 24% of the fish species occurs in Neotropical freshwaters (Vari &
Malabarba, 1998). As amazing as the diversity of Neotropical fishes is, also is
their huge diversity of forms, behaviors, and life-histories, which allow them to
occupy a great variety of habitats.
From all this diversity, representing only a small percentage of all fish
species (about 1.3%) there are the species endowed with the ability to generate
electricity through specialized electric organs (Moller, 1995). The ability to
generate electricity from such organs evolved several times independently in the
marine electric rays, in several Siluriformes, in a few species of marine
stargazers, in the African Mormyriformes, and in the South American
171
Gymnotiformes. The last two correspond to the so-called weakly electric teleosts,
the appearance of electric organs in these two distantly related groups being a
good example of convergent evolution (Kirschbaum, 1984). Both Gymnotiformes
and Mormyriformes species emit continuously electric organ discharges that can
be either pulse or wave-type and that are monitored by electroreceptors,
modified lateral line organs. These impressive electrosensory similarities are in
many species also followed by similarities in morphology (Lissmann, 1958),
maybe arising as adaptations to similar feeding behaviors (Roberts, 1972,
Marrero & Winemiller, 1993).
Gymnotiformes is a clade of ostariophysan fishes most closely related to
catfishes (Siluriformes), with which they share the presence of a passive
electrosensory system (Fink and Fink, 1981, 1996; Finger, 1986). The
Neotropical electric fishes constitute a group of rather specialized fishes. They
exhibited a peculiar external morphology: in most species the body is very
elongated, compressed laterally, without dorsal and pelvic-fins, and with a long
anal fin that is responsible for the fish swimming. The caudal-fin is replaced by
the caudal filament except for the families Apteronotidae and early stages of
Sternopygidae, which possesses a reduced caudal-fin (Mago-Leccia, 1994). All
gymnotiforms possess an extremely well-developed ability to regenerate the
caudal parts of their body when damaged or injured (Ellis, 1913, Cognato et al.,
2007).
The order is constituted by 117 species, 30 genera, and five families (Reis
et al., 2003); however, according to Albert & Crampton (2005) just about 78% of
172
the known gymnotiform species have been formally described, and perhaps half
again as many species remain undiscovered in the wild. Although there are many
hypotheses on the relationships between gymnotiform families (Triques, 1993;
Mago-Leccia, 1994; Alves-Gomes et al., 1995, Albert and Crampton, 2005),
these relationships are still unsolved.
Life-history x phylogeny classification
Continuous adaptation of organisms to long term environmental change
remains to be one of the basic concepts of evolution (Futuyma, 1998; Pigliucci,
1996; Rose & Lauder, 1996) involving genetic change and speciation. On the
other hand, individuals also must cope with short term variation of the same
parameters (temperature, pressure, O
2
levels, etc.) within and/or between
alternative habitats. In both cases, functional response involves metabolic and
physiological processes which depend on the genetic make-up and may result in
anatomical and morphological variation (Almeida-Val et al., 1999).
The organisms can present life-history features owing either to ecological
adaptations or to its historical legacy (phylogeny). For this reason, some
organism life-history characteristics may not be representing an environmental
adaptation, but a legacy of an ancestral taxa or population (Coddington, 1988).
Relations among life-history and phylogeny have been studied by some
authors (Kramer, 1978; Wooton, 1984; Winemiller, 1989; Rochet, 2000; Becker
et al., 2003; Charnov & Gillooly, 2004). In these studies the main biological
characteristics discussed are length of the breeding season, fecundity, parental
173
care, and first maturation size, all features concerning the species reproduction.
According to Winemiller (1989), traits associated with reproduction should be
subjected to intense natural selection as these directly affect the individual’s
selection. The great majority of the studies about fish life-history with an
evolutionary aim analyzes the possible ancestry of the reproductive features
exhibited for the studied group. However, due to the lack of knowledge on most
part of the groups of fishes, hardly any of these studies actually use the
established patterns as a systematic analysis tool (Azevedo, 2004).
Phylogenetic hypotheses deliver an indispensable perspective to
comparative studies, not only by permitting the study of character evolution within
a proper evolutionary framework of sister and outgroup relationships, but also by
bringing into the study the concept of relative time of how such changes occur
(Alves-Gomes, 1999). According to Kochmer & Handel (1986), phylogeny can be
used as the “null hypothesis” for ecological model tests. With this mind, the
interpretation of life-history patterns in a phylogenetic perspective can be not just
a new source of systematic characters, but also a way to provide better
understanding of the taxa life-history and behavior evolution.
Gonadal and germ cell morphology x phylogeny classification
Despite a few efforts aimed at using reproductive characters in
comprehensive classifications of bony fishes, these areas of research remain
relatively independent (Parenti & Grier, 2004). The wide range of gonadal
morphologies reflects the complexity of teleost reproduction; however, basic
174
features (i.e. the structure of germ cells and different somatic cell elements
constituting the gonadal tissue) are similar (Nagahama, 1983).
Fish female gonads have been far more studied than male gonads. It can
be explained due to females determine the spawning period and the number of
descendants in the population and for the fact that oogenesis show cellular
modifications more evidently than spermatogenesis (Silveira et al., 1995). As
opposed to it, the testes, and more specifically the sperm cell morphology, can
also provide important information regarding reproductive and evolutionary
aspects.
According to Mattei (1991), since the fishes have demonstrated great
structural diversity at all taxonomic levels, it is not possible to construct spermatic
models even for monophyletic groups as Actinopterygii or Teleostei.
Notwithstanding, spermatozoa structure has been reported to be quite constant
among same family species (Baccetti, 1987; Jamieson, 1991). For all these
reasons, results on ultrastructure of sperm cell have provided valuable
information on cellular modifications associated with reproductive habits and
uncovered morphological characters useful in hypothesizing phylogenetic
relationships (Baccetti, 1987; Jamieson, 1991; Burns et al., 1998, 2002).
In spite of the studies realized by Jamieson (1991) and Mattei (1988,
1991), which provide data on sperm ultrastructure of species representing all
major groups of fishes, sperm morphology of freshwater Neotropical Ostariophysi
are still poorly known. Concerning gymnotiform species, the current low number
of studies (Jamieson,1991; França et al., 2007; França, 2006) and analyzed
175
species do not allow the arising of phylogenetic hypothesis based just on
spermatozoa ultrastructure.
Life-history and sperm ultrastructure of gymnotiform fishes
Investigations into phylogenetic, biogeographic, and ecological aspects of
gymnotiform diversity are accelerating and the actual dimensions of the fauna
now coming to be more fully appreciated (Albert & Crampton, 2005). The data
available in literature concerning life-history and reproductive aspects of
Gymnotiformes species are compiled in Table 1. Data concerning spermatozoa
ultrastructure features of Gymnotiformes are compiled in Table 2.
Based on the presented results, it is possible to suggest that the fractional
spawning type and the seasonal reproductive cycle are a constant strategy
assumed by all Gymnotiformes species throughout all their geographical
distribution. According to Nikolsky (1969), species with fractional spawning are
better adapted to unfavourable environmental conditions and could solve
problems of competition for spawning sites among females of the same
population. In accordance with this statement and with the fact that gymnotiform
species are known to mostly inhabit unstable habitats, the quoted reproductive
strategies have been probably assumed as a matter of adaptation.
Among several other factors, fecundity depends on the coelomatic cavity
capacity of lodge ripe oocytes and on the oocytes size (Vazzoler, 1996). The
relative fecundity is obtained by the total number of oocytes per female milligram
of weight. Relative fecundity is a quite relevant information that allows
comparisons among the fecundity of different species and estimations on the
176
energetic effort applied on oocyte production. Since absolute fecundity only
considers the total number of oocytes in the fish gonads, it cannot be used for
comparisons among different size species. Due to that, and considering the great
range of body size achieved by gymnotiform species, only a low percentage of
the studies presented here are meaningful for fecundity comparisons.
Patterns of diversity in Gymnotiformes suggest that the evolution of body
size is influenced by EOD type, species with pulsetype EODs tending to be
smaller on average than species with wave-type EODs, and exhibiting more size
and habitat diversity (Albert & Crampton, 2005). Adult total length in
Gymnotiformes ranges over an order of magnitude from as small as 50 mm in
mature specimens of an undescribed Hypopygus from the Venezuelan Amazon
(Albert & Crampton, 2005) to more than 2235.2 mm in Electrophorus electricus
(Elis, 1913). The species included in Table 1 have ranged from 129 mm
(Brachyhypopomus occidentalis) to 1870 mm (Electrophorus electricus) in total
length, but in contrast with this great size variation, the number of analyzed
species is evidencing that just an increase on the number of studies would make
possible the verification of relations between size and reproductive strategies.
According to the compiled data, parental care is reported only for three
gymnotiform genera: Gymnotus, Electrophorus and Sternopygus. From these
three genera, Gymnotus and Electrophorus are integrating the same family,
Gymnotidae (Albert, 2001), which can be indicating the establishment of this
behavior as a pattern for all species of the family. Despite of that, up until now
Sternopygus macrurus is an exception among the Sternopygidae species.
177
Moreover, parental care has been studied in several families of Siluriformes – the
sister group of Gymnotiformes (Fink & Fink, 1996) – being undocumented among
extant basal groups and sporadic documented in derived groups (Crampton &
Hopkins, 2005).
Gymnotiform reproductive cycles have been related to environmental
factors associated with the rainy and dry seasons, which are seasonal variations
typical of the tropical zone of Neotropical area (Hopkins, 1974; Kirschbaum,
1975, 1979, 1984, 2000; Hagedorn, 1988; Assunção & Schwassmann, 1995;
Kirschbaum & Schugardt, 2002; Crampton & Hopkins, 2005). However, the
reproductive seasonality in fishes of temperate environments, where longer
rainfall periods are not defined, is mainly related to temperature, photoperiod and
food availability (McKayne, 1984; Payne, 1986). Studies with species from the
genus Brachyhypopomus, Gymnotus, and Eigenmannia from southern South
America have defined photoperiod and temperature as the environmental clues
that trigger the breeding period (Silva et al., 2002; 2003; Quintana et al., 2004;
Cognato & Fialho, 2006; Giora & Fialho, in press; A. Schaan, J. Giora and C.
Fialho, in preparation; Giora & Fialho, Chapter III). As a consequence of this
discrepancy, the environmental factors related with the trigger of reproductive
cycle seem to be a life-history feature owing more to ecological adaptations than
to the phylogeny of genus and families.
The characters of sperm cell ultrastructure have appeared to be highly
informative since patterns can be observed as well as differences and
exceptions. The Gymnotiformes species currently analyzed (Jamieson, 1991;
178
França et al., 2007; França, 2006; Giora & Fialho, Chapter V) have shown the
aquasperm structure of the spermatozoa as it was defined by Jamieson (1991),
proving the external fertilization of the species.
Until recently, the presence of axonemal-fins had not been reported for
any Ostariophysi taxon, the absence of these structures being interpreted as a
secondary reduction and apomorphic character of this group of teleost
(Jamieson, 1991). Quagio-Grassioto et al. (2001) reported the presence of
similar fins for Diplomystes mesembrinus, believed to be a primitive
representative of Siluriformes, and Pecio (2003) documented the existence of
these structures for the first time in a representative of the Characiformes.
Nowadays, the axonemal-fins are also known to be present in spermatozoa of
fishes from the gymnotiform families Ramphichthyidae and Sternopygidae
(França, 2006; Giora et al., Chapter V).
According to the presence (type I) or absence (type II) of nuclear rotation,
two types of spermiogenesis have been described in teleostei (Mattei, 1970).
Type I is the most common type of spermiogenesis and spermatozoa among the
teleostei (Mattei, 1970), which is observed in almost all Characiformes species
(Quagio-Grassiotto et al., 2003), as well as, in Cypriniformes (Bacceti et al.,
1984) and Siluriformes (Poirer & Nicholson, 1982) and it is presumed to be a
primitive condition within teleostei (Peccio, 2003). Type II has only been
described in the characiform family Acestrorhynchidae (Matos et al., 2000) and in
the inseminated species from the subfamily Gladulocaudinae (Burns &
Weitzman, 2005). From the gymnotiform species currently studied, type II
179
spermatozoa have been reported just for species of the genus Gymnotus. The
centriolar complex location is associated with the presence or absence of nuclear
rotation. Because of that, these two characters can be analyzed together.
Additionally, through this data compilation, it is possible to define the
presence and organization of the cytoplasmatic vacuoles as a character that can
be phylogenetically informative.
Besides the low number of analyzed species concerning reproductive
strategies and germ cell morphology, the great number of gymnotiform species
that remain undescribed or is said to have extremely wide distributions across
multiple river basins in South America is also a problem for the establishment of
patterns and tests of phylogenetic hypotheses. The reproductive patterns and
morphological aspects of gonads and germ cells are not necessarily representing
characters that are useful in analyzing systematics, although they are showing
that this information is potentially meaningful for the understanding of the
relationships among the groups.
Literature Cited
Albert, J. S. 2001. Species diversity and phylogenetic systematics of American
knifefishes (Gymnotiformes, Teleostei). Miscellaneous Publishing of Museum
Zoology University of Michigan, 190: 1-129.
180
Albert, J. S. & W. G. R. Crampton. 2005. Diversity and Phylogeny of Neotropical
eletric fishes (Gymnotiformes). Pp.360-409. In: Bullock, T. E., C. D. Hopkins,
A. N. Popper & F. R. Fay (Eds.). Electroreception. Ithaca, Cornell University
Press, 472p.
Almeida-Val, V. M. F., A. L. Val, & I. Walker. 1999. Long-and short-term
adaptation of amazon fishes to varying O
2
-level: intraspecific phenotypic
plasticity and interspecific variation. Pp. 185-206. In: Val, L. A. & V. M. F.
Almeida-Val (Eds). Biology of tropical fishes. INPA, Manaus, 460 p.
Alves-Gomes, J. A. 1999. Systematic biology of gymnotiform and mormyriform
electric fishes: Phylogenetic relationships, molecular clocks and rates of
evolution in the mitochondrial rRNA genes. Journal of Experimental Biology,
10: 1167-1183.
Alves-Gomes, J. A., G. Ortí, M. Haygood, W. Heiligenberg & A. Meyer. 1995.
Phylogenetic analysis of the evolution of the south american electric fishes
(order Gymnotiformes) and the evolution of their electrogenic system: a
sinthesis based on morphology, electrophysiology, and mitochondrial
sequence data. Molecular Biology and Evolution, 12(2): 298-318.
Assunção, M. I. S. & H. O. Schwassmann. 1995. Reproduction and larval
development of Electrophorus electricus on Marajó Island (Pará, Brazil).
Ichthyology Exploration Freshwaters, 6(2): 175-184.
Azevedo, M. A. 2004. Análise comparada de caracteres reprodutivos em três
linhagens de Characidae (Teleostei: Ostariophysi) com inseminação.
181
Unpublished PhD. Dissertation, Universidade Federal do Rio Grande do Sul,
Porto Alegre, 238p.
Baccetti, B. 1987. News on Phylogenetic and Taxonomical Spermatology. Pp.
333-348. In: Mohri, H. (Ed.). New Horizons in Sperm Cell Research. Tokyo,
Japan Scientific Societies Press/ New York, Gordon and Breach Science
Publishers, 516p.
Baccetti, B., A. G. Burrini, G. Callaini, G. Gilbertini, M. Mazzinu & S. Zerunian.
1984. Fish germinal cells. I. Comparative spermatology of seven cyprinid
species. Gamete Research, 10: 373-396.
Barbieri, G. & M. C. Barbieri. 1982. Fecundidade e tipo de desova de Gymnotus
carapo (Linnaeus, 1758), na represa do Lobo, Estado de São Paulo (Pisces,
Gymnotidae). Spectrum: Jornal Brasileiro de Ciência, 2(7): 25-29.
Barbieri, G. & M. C. Barbieri. 1983a. Dinâmica da reprodução de Gymnotus
carapo na represa do Lobo, Estado de São Paulo. Influência de fatores
abióticos. (Pisces, Gymnotidae). Tropical Ecology, 24(2): 244-259.
Barbieri, G. & M. C. Barbieri. 1983b. Growth and first sexual maturation size of
Gymnotus carapo (Linnaeus, 1758) in the Lobo reservoir (state of São Paulo,
Brazil) (pisces, gymnotidae). Revue d’Hydrobiologie Tropicale, 16(2): 195-
201.
Barbieri, M. C. & G. Barbieri. 1984a. Reprodução de Gymnotus carapo
(Linnaeus, 1758) na represa do Lobo (SP.). Morfologia e histologia de
testículo. Variação sazonal. (Pisces, Gymnotidae). Revista Brasileira de
Biologia, 44(2): 141-148.
182
Barbieri, G. & M. C. Barbieri. 1984b. Crescimento de Gymnotus carapo
(Linnaeus, 1758) na represa do Lobo, Estado de São Paulo, pelo método da
distribuição da freqüência de comprimento (Pisces, gymnotidae). Revista
Brasileira de Biologia, 44(3): 239-246.
Barbieri, M. C. & G. Barbieri. 1985. Reprodução de Gymnotus carapo (Linnaeus,
1758) na represa do Lobo (SP.). Morfologia e histologia de ovário. Variação
sazonal. (Teleostei, Gymnotidae). Revista Brasileira de Biologia, 45(1/2): 3-
12.
Becker, F. G., W. Bruschi Jr. & A. C. Peret. 2003. Age and growth of three
Odontesthes species from Southern Brazil, (Atherinopsidae), with reference
to phylogenetic constraints in the life-history. Brazilian Journal of Biology,
63(4): 567-578.
Burns, J. R., S. H. Weitzman, K. R. Lange & L. R. Malabarba. 1998. Sperm
ultrastructure in characid fishes (Teleostei, Ostariophysi). Pp. 235/244. In:
Malabarba L. R., R. E. Reis, R. P. Vari, Z. M. Lucena & C. ª S. Lucena (Eds).
Phylogeny and classification of Neotropical fishes. Porto Alegre, Edipucrs,
603p.
Burns, J. R., A. D. Meisner, S. H. Weitzman & L. R. Malabarba. 2002. Sperm and
spermatozeugma ultrastructure in the inseminating catfish, Trachelyopterus
lucenai (Ostariophysi: Siluriformes, Auchenipteridae). Copeia, 1:173-179.
Burns J. R., S. H. Weitzman. 2005. Insemination in ostariophysan fishes. Pp.
107-134. In: Uribe M. C. & H. J. Grier (Eds.). Viviparous Fishes. Homestead,
FL, New Life Publications, 603p.
183
Charnov, L. & J. F. Gillooly. 2004. Size and temperature in the evolution of fish
life histories. Integr. Comp. Biol., 4: 494-497.
Coddington, J. A. 1988. Cladistic tests of adaptational hypotesis. Cladistics, 4: 3-
22.
Crampton, W. G. R. & C. D. Hopkins. 2005. Nesting and paternal care in the
weakly electric fish Gymnotus (Gymnotiformes: Gymnotidae) with
descriptions of larval and adult electric organ discharges of two species.
Copeia, 2005(1): 48-60.
Cognato, D. De P. & C. B. Fialho. 2006. Reproductive biology of a population of
Gymnotus aff. carapo (Teleostei: Gymnotidae) from southern Brazil.
Neotropical Ichthyology, 4(3): 339-348.
Cognato, D. De P., J. Giora & C. B. Fialho. 2007. Análise da ocorrência de
lesões corporais em três espécies de peixe elétrico (Pisces: Gymnotiformes)
do sul do Brasil. Pan-American Journal of Aquatic Sciences, 2(3): 242-246.
Ellis, M. M. 1913. The gymnotid eels of tropical America. Memoirs of the
Carnegie Museum. 6(3): 109-195.
Finger, T. E. 1986. Electroreception in catfish: behavior, anatomy and
electrophysiology. Pp.287-317. In: Bullock, T. H. & W. Heiligenberg (Eds.).
Electroreception. New York, Wiley, 722p.
Fink, S. V. & Fink, W. L. 1981. Interrelationships of the ostariophysan fishes
(Teleostei). Zoologial Journal of the Linnean Society, 72: 297-353.
184
Fink, S. V. & Fink, W. L. 1996. Interrelationships of the Ostariophysian Fishes.
Pp. 209-249. In: Stiassny, M. L. J., L. R. Parenti, & G. D. Johnson (Eds.).
Interrelationships of Fishes. San Diego, Academic Press, 496p.
França, G. F. 2006. Ultraestrutura da espermiogênese e dos espermatozóides
da ordem Gymnotiformes (Teleostei, Ostariophysi) com considerações
filogenéticas. Unpublished MsC. Thesis, Universidade Estadual de Campinas,
Campinas. 89p.
França, G. F., C. Oliveira & I. Quagio-Grassiotto. 2007. Ultrastructure of
spermiogenesis and spermatozoa of Gymnotus cf. anguillaris and
Brachyhypopomus cf. pinnicaudatus (Teleostei: Gymnotiformes). Tissue &
Cell, 39(2): 131-139.
Futuyma, D. J. 1992. Biologia Evolutiva. Ribeirão Preto, Sociedade Brasileira de
Genética, 631p.
Futuyma, D. J. 1998. Evolutionary biology. New York, SUNY Stony Brook, 751p.
Giora, J. & C. B. Fialho. (in press). Reproductive biology of weakly electric fish
Eigenmannia trilineata López & Castello, 1966 (TELEOSTEI, Sternopygidae).
Brazilian Archives of Biology and Technology.
Hagedorn, M. 1988. Ecology and behavior of a pulse-type electric fish,
Hypopomus occidentalis (Gymnotiformes, Hypopomidae), in a fresh-water
stream in Panama. Copeia, 1988(2): 324-335.
Hopkins, C. D. 1974. Electric communication in the reproductive behavior of
Sternopygus macrurus (Gymnotoidei). Zeitschrift fur Tierpsychologie, 35: 518-
535.
185
Jamieson, B. G. M. 1991. Fish Evolution and Systematics: Evidence from
Spermatozoa. Cambridge, Cambridge University Press, 319p.
Kirschbaum, F. 1975. Environmental factors control the periodical reproduction of
tropical electric fish. Experientia, 31: 1159-1160.
Kirschbaum, F. 1979. Reproduction of the weakly electric fish Eigenmannia
virescens (Rhamphichtyidae, Teleostei) in captivity. Behavioral Ecology and
Sociobiology, 4: 331-355.
Kirschbaum, F. 1984. Reproduction of weakly electric teleosts: just another
example of convergent development? Environmental Biology of Fishes,
10(1/2): 3-14.
Kirschbaum, F. 2000. The breeding of tropical freshwater fishes through
experimental variation of exogenous parameters. Breedin through simulation
of high and low water conditions. Aquageografia, 20: 95-105.
Kirschbaum, F. & C. Schugardt. 2002. Reproductive strategies and
developmental aspects in mormyrid and gymnotiform fishes. Journal of
Physiology - Paris, 96(2002): 557-566.
Kochmer, J. P. & S. M. Handel. 1986. Constraints and competition in the
evolution of flowering phenology. Ecological Monographs, 56: 303-325.
Kramer, D. L. 1978. Reproductive seasonality in the fishes of a tropical stream.
Ecology, 59(5): 976-985.
Lissmann, H. W. 1958. On the function and evolution of electric organ in fishes.
Journal of Experimental Biology, 35: 156-191.
186
Mago-Leccia, F. 1994. Electric fishes of the continental waters of America.
Cracas, Clemente Editores, 207p.
Marrero, C. & K. O. Winemiller. 1993. Tube-snouted gymnotiform and
mormyriform fishes: convergence of a specialized foraging mode in teleosts.
Environmental Biology of Fishes, 38: 299-309.
Matos, E. P., L. Corral & C. Azevedo. 2000. Estrutura fina do espermatozóide de
Acestrorhyncus falcatus Bloch (Teleostei, Characidae) da região norte do
Brasil. Revista Brasileira de Zoologia, 17: 747-52.
Mattei, X. 1970. Spermiogenése comparé des poisson. Pp. 57-72. In: Baccetti, B.
(Ed.). Comparative Spermatology, New York, Academic Press, 169p.
Mattei, X. 1988. The flagellar apparatus of spermatozoa in fish. Ultrastructure
and evolution. Biology of the Cell, 63: 151-158.
Mattei, X. 1991. Spermatozoon ultrastructure and its systematic implication in
fishes. Canadian Journal of Zoology, 69:3038-3055.
McKaye, K. R. 1984. Behavioral aspects of ciclids reproductive strategies:
patterns of territoriality and brood defense in Central American substratum
spawners and African mouth brooders. Pp. 245-273. In: Potts, G. W. & R. J.
Wooton (Eds). Fish reproduction: strategies and tatics. London, Academic
Press, 410p.
Moller, P. 1995. Electric Fishes. History and Behavior. London, Chapman & Hall,
584 p.
187
Nagahama, Y. 1983. The functional morphology of teleost gonads. Pp. 223-276.
In: Hoar, W. S., D. J. Randall & E. M. Donaldson (Eds.). Fish Physiology.
New York, Academis Press, Vol. 9, 338p.
Nikolsky, G. V. 1969. Theory of fish population dynamics. Edinburg, Oliver &
Boyd Ltda, 323p.
Parenti, L. & H. Grier. 2004. Evolution and Phylogeny of Gonad Morphology in
Bony Fishes. Integrative & Comparative Biology, 44: 333-348.
Payne, A. I. 1986. The ecology of tropical lakes and rivers. New York, John
Wiley. 310p.
Pecio, A. 2003. Spermiogenesis and fine structure of the spermatozoon in a
headstander, Chilodus punctatus (Teleostei, Characiformes, Anostomidae).
Folia Biologica, 51: 55-62.
Pigliucci, M. 1996. How organisms respond to environmental changes: from
phenotypes to molecules (and vice versa). Trends in Evolution and Ecology,
11: 168-173.
Poirer, G. R. & N. Nicholson. 1982. Fine structure of the testicular spermatozoa
from the channel catfish, Ictalurus punctatus. Journal of Ultrastructure
Research, 80: 104-110.
Quagio-Grassiotto, I.; C. Oliveira, & A. E. Gosztonyi. 2001. The ultrastructure of
spermiogenesis and spermatozoa in Diplomystes mesembrinus. Journal of
Fish Biology. 58: 1623-1632.
Quagio-Grassiotto, I.; M. C. Gameiro, T. Schneider, L. R. Malabarba, & C.
Oliveira. 2003. Spermiogenesis and spermatozoa ultrastructure in five species
188
of the Curimatidae with some considerations on spermatozoal ultrastructure in
the Characiformes. Neotropical Ichthyology, 1(1): 35-45.
Quintana, L., A. Silva, N. Berois & O. Macadar. 2004. Temperature induces
gonadal maturation and affects electrophysiological sexual maturity indicators
in Brachyhypopomus pinnicaudatus from a temperate climate. The Journal of
Experimental Biology, 207: 1843-1853.
Reis, R. E., S. O. Kullander & C. J. Ferraris, Jr. 2003. Check list of the freshwater
fishes of south and central américa. Porto Alegre, Edipucrs, 742p.
Roberts, T. 1973. Interrelacionships of ostariophysian. Pp. 373-395. In:
Greenwood, P. H., R. S. Miles & C. Patterson (Eds.). Interrelationships of
Fishes. San Diego, Academic Press, 496p.
Rochet, M. J. 2000. A comparative approach to life-history strategies and tatics
among four orders of teleost fish. Journal of Marine Science, 57: 228-239.
Rose, M. R. & G. V. Lauder. 1996. Adaptation. San Diego, Academic Press.
575p.
Savage, J. M. 1995. Systematics and the biodiversity crisis. BioScience, 45: 673-
679.
Silva, A., L. Quintana, J. L. Ardanaz & O. Macadar. 2002. Environmental and
hormonal influences upon EOD waveform in gymnotiform pulse fish. Journal
of Physiology - Paris, 96: 473-484.
Silva, A., L. Quintana, M. Galeano & P. Errandonea. 2003. Biogeography and
breeding in Gymnotiformes from Uruguay. Environmental Biology of Fishes,
66: 329-338.
189
Silveira, M. P., J. C. B. Cousin & M. Haimovici. 1995. Estrutura ovárica e
testicular do linguado Paralichthys orbignyanus (Valenciennes, 1839).
Atlântica, 17: 135-152.
Triques, M. L. 1993. Filogenia dos gêneros de Gymnotiformes (Actinopterigii,
Ostariophysi), com base em caracteres esqueléticos. Comunicações do
Museu de Ciências PUCRS, série zoologia, 6: 85-130.
Vari, R. P. & L. R. Malabarba. 1998. Neotropical Ichthyology: An Overview. Pp.
1-11 In: Malabarba, L. R., R. E. Reis, R. P. Vari, Z. M. S. Lucena & C. A. S.
Lucena (Eds.). Phylogeny and Classification of Neotropical Fishes. Porto
Alegre, Edipucrs, 603p.
Vazzoler, A. E. A. de M. 1996. Biologia da reprodução de peixes teleósteos:
teoria e prática. Maringá, Editora da Universidade, 169p.
Winemiller, K. O. 1989. Patterns of variation in life history among South
American fishes in seasonal environments. Oecologia, 81:225-241.
Wooton, R. J. 1984. Introduction: strategies and tatics in fish reproduction. Pp.1-
12. In: Potts, G. W. & R. J. Wooton (Eds.). Fish Reproduction: Strategies and
tactics. London, Academic Press, 410 p.
190
Table 1. Data available in literature concerning life-history and reproductive aspects of Gymnotiformes species.
Highest
Total
Length
Absolute
Fecundity
Relative
Fecundity
Spawning
Type
First
Maruration
Size
Sexual
Dimorphism -
Size
Reproductive
Sazonality
Months of
Reproductive
Period
Environmental
Factor Related to
Reproductive
Period
Parental Care Reference
Family Gymnotidae
Gymnotus
aff.
carapo
males =
280.7 mm
females =
281.8 mm
915.3 ± 202 0.2 fractional
male = 146
mm
female = 141
mm
no yes
November to
March
male = incresing
O
2
, decreasing
conductivity
female =
increasing
temperature and
photoperiod,
decreasing O2
Cognato &
Fialho (2006);
Giora
et al
.
(Chapter V)
Gymnotus carapo
I
about 200-
247 eggs
per
spawning
–fractional
about 1 year
of age or
slightly earlier
–yes
male and female =
decreasing
conductivity
yes, male presenting
mouth breeding
Kirschbaum &
Schugardt
(2002)
Gymnotus carapo
II
male = 335
mm
–– yes
yes, male presenting
nesting construction
and parental care
Crampton &
Hopkins
(2005)
Gymnotus carapo
III
–– yes
increasing
temperature and
photoperiod
Silva
et al.
(2002; 2003)
Gymnotus carapo
IV
male = 520
mm
female =
480 mm
2192 -
1791
–fractional
248 mm -
between 1
and 2 years
of age
–yes
October to
December
increasing
photoperiod, O2
and conductivity
Barbieri &
Barbieri (1982,
1983a, 1983b,
1984a, 1984b,
1985)
Gymnotus mamiraua
male = 270
mm
fractional yes
Februart to
August
rising and high-
water perriod
yes, male presenting
nesting construction
and parental care
Crampton &
Hopkins
(2005)
Electrophorus eletricus
male = 1870
mm
female =
1150 mm
17000 fractional
female = 68.5
cm, about 3.5
years of age
yes, males
assuming the
highest lengths
yes
September to
December
beginning of dry
season
yes, male presenting
nesting construction
and parental care
Assunção &
Schwassmann
(1995)
191
Family Ramphichthyidae
Rhamphichthys
sp.
about 500
to 1000
eggs per
spawning
–fractional yes
male and female =
increasing water
level, decreasing
conductivity
no
Kirschbaum &
Schugardt
(2002)
Family Hypopomidae
Brachyhypopomus draco
male =
212.34
female =
176.79 mm
935.8 (576-
1391)
0.173 fractional
yes, males
assuming the
highest lengths
yes
August to
December
male = increasing
O2 and deepth,
decreasing
conductivity
female =
increasing deepth
A. Schaan, J.
Giora and C.
Fialho (in
prep); Giora
et
al
. (Chapter
V)
Brachyhypopomus bombilla
male =
146.04 mm
female =
132.68
587.33
(369-773)
0.21 fractional
male = 93.7
mm female
= 97.6 mm
no yes
October to
January
male = increasing
O2 and
photoperiod
female =
increasing
photoperiod
Giora & Fialho
(Chapter III);
Giora
et al
.
(Chapter V)
Brachyhypopomus
"G" new sp
male =
188.8 mm
female =
175.36 mm
589.44
(299-799)
0.20 fractional
male = 108.0
mm female =
104.5 mm
no yes
October to
February
male and female =
increasing
photoperiod
Giora & Fialho
(Chapter III);
Giora
et al
.
(Chapter V)
Brachyhypopomus occidentalis
(cited as
Hypopomus occidentalis
)
male =
150.9 mm
female =129
mm
––
yes, males
assuming the
highest lengths
yes
December to
April
transition of the
wet-dry season
no
Hagedorn
(1988)
Brachyhypopomus pinnicaudatus
I
about 70
eggs per
spawning
–fractional
10-12 cm (4-
5 months)
–yes
male and female =
decreasing
conductivity
Kirschbaum &
Schugardt
(2002)
Brachyhypopomus pinnicaudatus
II
180 mm fractional
male and
female = 90
mm
–yes
November to
January
increasing
temperature and
photoperiod
Quintana
et
al.
(2004);
Silva
et al.
(2002; 2003)
Brachyhypopomus brevirostris
about 50
eggs per
spawning
–fractional yes
male and female =
decreasing
conductivity
Kirschbaum &
Schugardt
(2002)
192
Family Sternopygidae
Eigenmannia trilineata
male =
247.79 mm
female =
170 mm
1196.06
(744-2217)
0.27 fractional
male = 6.35
female = 8.05
yes, males
assuming the
highest lengths
yes
October to
February
male and female =
increasing
photoperiod,
decreasing
conductivity
Giora & Fialho
(in press);
Giora
et al.
(Chapter V)
Eigenmannia virescens
male = 330
mm
female =
200 mm
100 to 200
eggs per
spawning
–fractional
female = 15
cm
yes, males
assuming the
highest lengths
yes
male and female =
increasing water
level and rain
imitation,
decreasing
conductivity and
pH
Kirschbaum
(1975, 1979,
1984, 2000)
Eigenmannia lineata
about 65-
162 eggs
per
spawning
–fractional no
Kirschbaum &
Schugardt
(2002)
Sternopygus macrurus
male =
546.5 mm
female =
460 mm
about 300
eggs per
spawning
–fractional
about 1 year
of age or
slightly earlier
–yes
male and female =
decreasing
conductivity
(before the first
flood of the
season)
yes, male guarding
the eggs deposited on
substract
Hopkins
(1974);
Kirschbaum &
Schugardt
(2002)
Family Apteronotidae
Apteronotus leptorhynchus
1 to 105
eggs per
spawning
–fractional
about 1 year
of age or
slightly earlier
–yes
male and female =
increasing water
level, decreasing
conductivity
Kirschbaum &
Schugardt
(2002)
193
Table 2. Data available in literature concerning spermatozoa ultrastructures of Gymnotiformes spescies.
Sperm
Nucleus
Nuclear
Shape
Centriole
Orientation
Nuclear
Rotation
Axonemal
Fins
Extensive
Cytoplasmatic
Vacuoles
Cytoplasmatic
Collar Attached
to the Nucleus
Centriolar
Complex
Location
Citoplasmatic
Chanel
Reference
Family Gymnotidae
Gymnotus
aff.
carapo
dense masses
of chromatin -
peripherically
electron dense
spherical perpendicular no absent
yes - mainly on
midpiece
posterior portion
no
outside
nuclear
fossa
present
Cognato &
Fialho (2006);
Giora
et al
.
(Chapter V)
Gymnotus
cf.
anguillaris
condensed
chromatin in
juxtaposed
filament
semi-arch no absent
yes - mainly on
midpiece
perifery
outside
nuclear
fossa
present
França
et al
.
(2007)
Family Ramphichthyidae
Rhamphichthys
cf.
hahni
condensed
chromatin in
filamentous
axis
semi-arch
slightly
eccentric
yes present
yes - throughout
the entire
midpiece
within
nuclear
fossa
França (2006)
Family Hypopomidae
Brachyhypopomus draco
dense masses
of chromatin -
spherical perpendicular yes absent
yes - forming a
membranous no
within
nuclear present
A. Schaan, J.
Giora and C.
Fialho (in
peripherically
electron dense
structure fossa
prep); Giora
et
al
. (Chapter V)
Brachyhypopomus bombilla
dense masses
of chromatin in
a granular
matrix
spherical perpendicular yes absent yes no
within
nuclear
fossa
present
Giora & Fialho
(Chapter III);
Giora
et al
.
(Chapter V)
Brachyhypopomus
"G" new sp
dense masses
of chromatin -
peripherically
electron dense
spherical perpendicular yes absent yes no
within
nuclear
fossa
present
Giora & Fialho
(Chapter III);
Giora
et al
.
(Chapter V)
194
Brachyhypopomus
cf.
pinnicaudatus
chromatin in
juxtaposed
filament
spherical
slightly
eccentric
yes absent midpiece
perifery
nuclear
fossa
absent
França
et al
.
(2007)
Family Sternopygidae
Eigenmannia trilineata
dense masses
of chromatin in
a granular
matrix
sub-
spheroidal
perpendicular yes present yes yes
within
nuclear
fossa
present
Giora & Fialho
(in press);
Giora
et al.
(Chapter V)
Eigenmannia
cf.
virescens
condensed
chromatin in
filamentous
axis
semi-arch
slightly
eccentric
yes present
yes - mainly on
midpiece
perifery
within
nuclear
fossa
present França (2006)
Family Apteronotidae
Apteronotus albiforns
(
cited as
Sternarchus albifrons)
dense masses
of chromatin in
a granular
matrix
sub-
spheroidal
perpendicular yes absent yes
within
nuclear
fossa
present
Jamieson
(1991)
Apteronotus
cf.
albiforns
condensed
chromatin in
filamentous
axis
semi-arch perpendicular yes absent
yes - throughout
the entire
midpiece
within
nuclear
fossa
present França (2006)
condensed
yes - mainly on within
195
Síntese dos Resultados
196
Síntese dos Resultados
- Duas novas espécies do gênero Bracyhypopomus são descritas para as
regiões central, sul e costeira do estado do Rio Grande do Sul, Brasil, e Uruguai,
Bracyhypopomus “G” também tendo ocorrência registrada para o Paraguai.
- Bracyhypopomus draco é diagnosticada de seus congêneres, entre
outros caracteres, pelo formato da porção final do filamento caudal de machos
maduros durante o período reprodutivo, que forma uma estrutura distinta em
forma de remo.
- Bracyhypopomus “G” é diagnosticada de seus congêneres baseado em
coloração do corpo, caracteres merísticos e morfológicos tais como número de
raios da nadadeira anal, posição da origem da nadadeira anal em relação à
nadadeira peitoral, porção distal do filamento caudal de machos maduros e
proporções corporais.
- Bracyhypopomus “G” tem sido identificada como B. pinnicaudatus e é
agora distinguida da mesma.
- O período reprodutivo da espécie B. bombilla se estendeu de
Outubro/2004 a Janeiro/2005, sendo relacionado ao aumento do fotoperíodo,
tendo o IGS dos machos também sido relacionado às variações de oxigênio. O
período reprodutivo de Brachyhypopomus “G” ocorreu de Outubro/2005 a
Fevereiro/2006, sendo também relacionado ao aumento do fotoperíodo.
- A fecundidade relativa foi estabelecida como 0.21 ovócitos por mg de
peso para B. bombilla e 0.20 ovocitos para Brachyhypopomus “G”.
197
- B. bombilla e Brachyhypopomus “G” apresentaram desova parcelada.
- O tamanho de primeira maturação gonadal de B. bombilla foi estimado
como 97.6 mm para fêmeas e 93.7 mm para machos, sendo estimado como
104.5 mm para fêmeas e 108.0 mm para machos de Brachyhypopomus “G”.
- A proporção sexual não diferiu de 1:1 nas populações estudadas de B.
bombilla e Brachyhypopomus “G” de acordo com a analise do teste χ
2
(p= 0.01).
- Não foi observado dimorfismo sexual relacionado ao comprimento total,
para B. bombilla e Brachyhypopomus “G”, entretanto foi verificada uma
modificação no filamento caudal de machos de Brachyhypopomus “G”.
- O desenvolvimento das células germinativas de B. bombilla e
Brachyhypopomus “G” foi classificado in cinco estágios de desenvolvimento para
fêmeas e seis para machos.
- Os estádios de maturação gonadal definidos para fêmeas de B. bombilla
e Brachyhypopomus “G” foram: maturação inicial, maturação final, desovando e
esgotado.
- Os estádios de maturação gonadal definidos para machos de B.
bombilla e Brachyhypopomus “G” foram: maturação inicial, maturação
intermediaria, maturação final, regredindo e regredido.
- Contrariamente a homogeneidade apresentada com relação aos tipos
celulares e estádios de maturação gonadal, as duas espécies de
Brachyhypopomus estudadas demonstraram diferenças nas freqüências dos
estádios de maturação ao longo do ano, B. bombilla possuindo um
desenvolvimento gonadal mais sazonal do que Brachyhypopomus “G”.
198
- Algumas diferenças foram encontradas entre a ultraestrutura do
espermatozóide das espécies analisadas representando as famílias Gymnotidae,
Setrnopygidae e Hypopomidae: presença de rotação nuclear, observada em E.
trilineata e nas três espécies de Brachyhypopomus; presença de aletas laterais
no flagelo, observadas somente em E. trilineata.
- Algumas variações intraespecificas com respeito a ultraestrutura do
espermatozóide das espécies de Brachyhypopomus analisadas foram
registradas, tais como a densidade nuclear e o número e nível de organização
dos vacúolos.
- A maioria das características encontradas nos espermatozóides de
Gymnotus aff. carapo, Eigenmannia trilineata, B. draco, B. bombilla, e
Brachyhypopomus “G” são compartilhadas com as demais espécies de
Gymnotifomes atualmente analisadas.
- Através da compilação dos dados atualmente disponíveis na literatura a
respeito da reprodução e história de vida de espécies de Gymnotiformes é
possível estabelecer padrões utilizáveis em análises evolutivas e filogenéticas.
- Alguns aspectos potencialmente utilizáveis em análises comparativas
baseadas nos dados já existentes para a reprodução espécies de
Gymnotiformes são: tipo de desova, fecundidade, tamanho corporal, cuidado
parental.
- Aspectos da ultraestrutura do espermatozóide tem se mostrado
informativo para a formação de hipóteses filogenéticas.
199
- Alguns aspectos potencialmente utilizáveis em análises comparativas
baseadas nos dados já existentes de ultraestrutura do espermatozóide para
espécies de Gymnotiformes são: presença ou ausência de aletas laterais no
flagelo, rotação nuclear, localização do complexo centriolar, numero e
organização dos vacúolos celulares.
- O pequeno número de espécies ainda analisadas com relação a
aspectos reprodutivos e de morfologia do espermatozóide, e o grande número
de espécies ainda não descritas ou identificadas como possuindo uma
distribuição extremamente ampla entre muitas bacias hidrográficas da América
do Sul, tem sido um problema para o estabelecimento de padrões utilizáveis em
análises comparativas e filogenéticas.
200
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo