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Abstract.

The purpose of this work is the study of the well-posedness of the initial value problem
(IVP) associated to the dispersive Kuramoto-Velarde equation. In the dissipative case, we
prove local well-posedness in Sobolev spaces H*(R) for s > —1, and ill-posedness in H*(R)
for s < —1. In the purely dispersive case, we first prove an ill-posedness result, which
states that the flow map data-solution cannot be of class C? in any Sobolev space H*(R),
for s € R. Then, we prove a well-posedness result in weighted Besov spaces for small initial
data.
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Introduction.

The question of the well-posedness for the Cauchy problem associated with a partial
differential equation was first raised by Hadamard in [11]. He provided in the case of the
Laplace equation, an example of initial data for which the continuous dependence of the
map solution of the associated Cauchy problem failed. Later this notion was refined in the
case of an initial value problem (IVP) (see for example the work of Kato in [15]). We will
say that an initial value problem is locally well-posed in some functional space X, if for all
initial datum ¢ in X, there exists a time 7" > 0 and a unique solution u of the integral
equation associated to the IVP (existence and uniqueness), such that v € C([0,T]; X)
(persistence) and the flow map data-solution is (at least) continuous from a neighborhood
of ¢ in X into C([0,T]; X) (continuous dependence). If T' can be taken arbitrarily large,

we say the well-posedness is global.

Then a well-posed initial value problem generates an infinite dimensional dynamical
system on the functional space X. Moreover, because of uniqueness and continuous de-

"well-posed” solutions, even if there are only solutions of the

pendence properties, the
original equation in a weak sense, can be approximated by classical solutions in the topol-
ogy of C([0,T]; X). This allows them to enjoy some conservation laws and other formal

identities of the equation, a priori reserved to classical solutions.
Which functional space X will be considered is of fundamental importance: if X is
too large, well-posedness fails, if it is too small, the problem lacks physical relevance. The

most common choice is the Sobolev space, however in some cases, physical considerations



impose more complicated spaces, such as weighted Sobolev or Besov spaces for example.
Therefore, when studying an IVP, the first step is to investigate in which spaces X well-

pOSGdl’lGSS occurs.

The purpose of of this work is the study of the well-posedness of the IVP associated to
the dispersive Kuramoto-Velarde equation (KdV-KV)

Oy + 603u + p(0du + 0%u) + a(dpu)? + yud?u = 0,

where x € R, t € R, , u is a real-valued function and p, J, @ and v are constants such that
> 0and 0 # 0. When p > 0, this equation combines in its linear part dispersive and

dissipative effects. It is a generalization of the Kuramoto-Velarde equation (KV)
Oru + p(0pu + 92u) + a(0yu)? + yudiu = 0, (2)

which corresponds to § = 0, and of the dispersive Kuramoto-Sivashinsky equation (KdV-
KS)
Opu + 802u + p(dpu + 92u) + a(d,u)* = 0, (3)

which corresponds to v = 0. The KdV-KS equation arises in interesting physical situations,
for example as a model for long waves on a viscous fluid flowing down an inclined plane (see
[33]) and for deriving drift waves in a plasma (see [9]). The KV equation describes slow
space-time variations of disturbances at interfaces, diffusion-reaction fronts and plasma
instability fronts (see [6], [7]).

In the limit case p = 0, the linear part of the equation in (1) becomes purely dispersive.
The IVP obtained is a particular case of the family of IVPs

O + 0%y + P(u, Opu, ..., 0%u), x, teR, jEN (4)
u(0) = ¢,

where

P:R¥™ LR (or P:C%™ = () (5)



is a polynomial having no constant or linear terms. The class of equations (4) contains the
KdV hierarchy as well as higher-order models in water waves problems (see [18] for the

references).

In the first chapter, we present some basic results and define the functional spaces to
be used along this work.

In the second part, we will prove that the Cauchy problem (1) is locally well-posed
in the Sobolev space H*(R) for every s > —1, in the dissipative case, i.e. when p > 0.
The main idea is to use a fixed point argument in Bourgain’s type spaces adapted to both
linear parts, dispersive and dissipative, of the equation, as did Molinet and Ribaud for
the KdV-Burgers equation in [25]. We also prove that these results are sharp in the sense
that when s < —1, the IVP (1) cannot be solved in H*(R) using a fixed point theorem.
These results imply in particular that the Cauchy problem associated to (3) is globally
well-posed in H*(R) when s > —1, which improves a former result of Biagoni, Bona, lorio
and Scialom [3], who proved the well-posedness of (3) in H*(R) when s > 1.

Next, in the third chapter we turn out to the limit case p = 0 that we will also call the
non-dissipative case. The first result we get is a negative one: we prove that the associated
IVP problem is ill-posed in every space H*(R), s € R, in the sense that the flow map
data-solution, when existing, cannot be C? at the origin. This means roughly speaking
that without the dissipation, the dispersion of the linear part of (1) does not have enough
regularizing effect to balance the nonlinearity ud?u. Furthermore, we extend this result to
other higher-order nonlinear dispersive equations, as for example a higher-order Benjamin-
Ono equation derived recently by Craig, Guyenne and Kalisch in [10] using a Hamiltonian
perturbation theory. These results are inspired by those from Molinet, Saut and Tzvetkov
for the KPI equation [29] and for the Benjamin-Ono equation [28].

Finally, if we want to obtain some well-posedness results for the non-dissipative equa-



tion, we have to restrict the functions spaces. For example, Kenig, Ponce and Vega proved
the well-posedness of the IVP (1) with p = 0, in weighted Sobolev spaces [18]. In the
fourth part, we improve these results introducing weighted Besov spaces. In particular,
these spaces can be considered with fractional derivative exponents, which seems to be
difficult for weighted Sobolev spaces. Nevertheless, we only proved well-posedness in these

spaces for small initial data.



Chapter 1

Preliminaries.

Notation. For any positive numbers a and b, the notation a < b means that there exists
a positive constant ¢ (independent of the data of the problem) such that a < ¢b. We also

denote a ~ b when a < b and b < a.

1.1 Littlewood-Paley multipliers.

Fix a cutoff function y such that

XE€CFR), 0<x<1, x_,,=1 and supp(x) C[-2,2] (1.1)
Define
P(€) = x(€) = x(2¢) and  ;(€) = »(277€), (1.2)
so that
D i(€) =1, VE#0 and supp(yy) C {27! < ¢ <2071 (1.3)
JET

Next define the Littlewood-Paley multipliers by

Af = () =)V« f Vi eS®), Vier, (1.4)
and
Sif=>_Af VfeS(R), VjeL (1.5)
k<j
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More precisely we have that

NV

Sof = (xF)  vfeS®) (16)

This means that Sy is the operator of restriction in the low frequencies. Note also that
since (¢;)Y = 27(¢;)V(27+), ||(¥;)V]lzx = C and then, by Young’s inequality we have that
for all j € Z

1A fllze < Cllfllze, ¥V f € LP, Vp € [1, 400]. (1.7)

We will need to commute Sy and A; with the operator of multiplication by x.

Lemma 1.1. Let f € S(R), then

Socalf =i where 07 = 51 (007 (18)

Apualf = Af where 87 = 5 (295207 ) (19)

Proof. Let f € S(R), then we compute using the properties of the Fourier transform

1 d n
e 2 i E
2_j d —5eN P

which leads to (1.9) and (1.8) follows by a similar way. O

([, 211)" (&) = () (@f)E) —

Finally let ¢ be another smooth function supported in {1/4 < |¢| < 4} such that
Y =1on supp(¢)). We define Aj like A; with ¢ instead of ¢ which yields in particular the

following identity
A; = A (1.10)

1.2 Functional spaces.

Let 1 < p,q < oo, T >0, the mixed "space-time” Lebesgue spaces are defined by

LALT = {u: R x [-T,T] — R measurable : [Juzpz2 < oo},
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and
LELE = {u: R x [-T,T] — R measurable : |[u|pe» < oo},
where
follzsy o= | Tote. e ) , (111)
and
T 1/q
filigse = ([ BuColertt) 112

We will also use the fractional Sobolev spaces. Let s € R, then

~

H*R):={f € S'(R) : (1+&)3f(¢) € L*(R)}

with the norm

£l = 111+ 272 F(E)]| e (1.13)

and its homogeneous version
H'(R):={f € SR) : [¢°f() € L*(R)}

with the norm

io = 16 ()22 (1.14)

Consider H*(R) = (.2, H*(R) with the induced metric. We recall the following of ho-

mogeneity identity

LF O e = A1 ]

g YA> 0,V f € H(R). (1.15)
When s = k € N, it is well known (see for example [32]) that

H¥R) ={f € L*R) : &’f € L*(R), V0 < j <k},
with the equivalent norm

k
£z = 00 f e ~ (1 ae- (1.16)
j=0
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Similarly, it is possible to define weighted Sobolev spaces. Let k € N, then
H*(R; 22dx) == {f € L*(R;2%dx) : 0 f € L*(R;2%dx), VO < j < k},

with the norm

k
1 v azany = D 1202 f | 2o (1.17)
j=0

Finally, we recall the definition of the Besov spaces and define weighted Besov spaces.
Let s € R, p,¢ > 1, the non homogeneous Besov space B;(R) is the completion of the

Schwartz space S(R) under the norm

I/

gyt = 1Sof [l + {21185 f Il 2o Y20 lia gy - (1.18)

This definition naturally extends (even if s € R) for weighted spaces. Let s € R, p,q > 1,

then By?(R; 27dx) is the completion of the Schwartz space S(R) under the norm

I/

sei(rar) = [2Sof e + {272 A fll e Fizollo ). (1.19)

It is well known (see [34]) that for all s € R

H*(R) = B5*(R) and that || f]lms ~ [[f]l52- (1.20)
Next we derive a similar result for weighted spaces in the case s = k € N.
Lemma 1.2. Let k€ N, k> 1 and f € S(R), then

1f 1z o2az) + W mn=r ~ W Nl gp 2 gy + 1 irimr (1.21)

Proof. We have using (1.8), (1.9), (1.20), the Plancherel theorem and the fact that the



10 1. Preliminaries.

supports of digw)(Q*j €) are almost disjoint

1/2
11t gy = IS0 122 + (Z‘lkj!\xAij%Q)

320

1/2
< [So(xH)lle2 + 155 f 22 + (Z (A )= + HAQ-fHLz)2>

320

1/2
d ~ - d P
< k.2 - 24 AF=D71( ) (277 24
S llef g + ( [ lggo©Rords + > [ icgneoFol 5)
SN fllae + 11057 f ] e
Then we use (1.16) and the identity

P (xf) =P f+adif, Vj>1

to obtain that
1188 202awy S Il me@2dey + ([ F [ me-r. (1.22)

The other inequality of (1.21) follows exactly by the same way. O

1.3 Strongly continuous group.

Let U(t) = e '% be the unitary group in H*(R) associated to the Airy equation, i.e.
5\ V
Ut)f = (aﬁ tf) , VteR. (1.23)

We also denote by V (t) = e—t(@ﬁ—i—&ﬁ—&-aﬁ)’ t > 0 the semigroup associated to the linear part

of the equation (1) with 6 = p = 1, that we extend to a group on R by
. %
V) f = (elfg’t—@“—@)“\ f) , VteR. (1.24)

Moreover, we can generalize the definition of U: for all j > 1, denote by U; the unitary

group in H*(R), U;(t) = et e,

ir1e2i41, 2 VY
Uj(t)f:(eHV* i€ *tf) , VteR, Vfe HR). (1.25)
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This means that U = U;. We will need the following lemma to commute U with the

operator of multiplication by z.
Lemma 1.3. Let f € S(R), then we have
cU)f =Ut)(zf) +3tU[)If Y teR. (1.26)
Proof. We define the following operators
L:=0,+0® and T(x,t) =2 — 3td>.
Then, a straightforward calculation leads to I'(z,t)L = LI'(z,t) so that
LT (z,)U(t)f =T(x,t)LU(t)f = 0.

Thus, we deduce that
D(z,)Ut)f = U(t)(zf)
which yields (1.26). O
Finally, let us talk about the properties of continuity of the groups U and V: we know

that U and V are strongly continuous group in H*(R), for all s € R (se for example [14]).

The same property holds for U in Besov and weighted Besov spaces.

Lemma 1.4. Let ¢ > 1, s € R and ¢ € ByY(R) N By >(R; 22dx), define G(t) := U(t)¢,
then

G € C(R; ByY(R) N By *(R; 22dx)). (1.27)

Proof. Since U is a strongly continuous unitary group in H*(R) and U commute with the

operators A;, we deduce that U is a strongly continuous unitary group in B5%(R), so that

G € O(R; BY(R)).
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To prove the continuity of G in BS_Q’q(R;xde), it is enough to verify the continuity at

t = 0. In this direction, we use (1.26) to compute

1006 — dllisy-2as2ay < 3IEIT (D)

1/q
+ (Z 275=29) (U (¢) — 1)(xAj¢)Hqu) :

>0

syt + [(U(H) = D (zSod) | 2

Thus, we deduce, using the Lebesgue dominated convergence theorem, that




Chapter 2

The dissipative problem.

2.1 Introduction and statement of the results.

We begin to investigate the well-posedness of the IVP (1) in the dissipative case, i.e.
when g > 0. This equation combines in its linear part dispersive and dissipative effects, as
the KdV-Burgers equation which was studied by Molinet and Ribaud (see [24], [25]). It is
a generalization of the KAV-KS equation (3). We refer to the introduction for the physical

motivations.

In [3], using the dissipative effect of the linear part, Biagioni, Bona, lorio and Scialom
showed that the Cauchy problem associated to (3) is globally well-posed in H® for s > 1.

In [2], Argento used the same techniques to show that (1) is well-posed in H* when s > 1.

In these works, no use of the dispersive character of these equations was done. We know
for example that the Cauchy problem associated to the equation (3) without dissipation
(i.e. with p = 0) is well-posed in H* for s > 1/4. In fact, the derivative of this equation is
the KdV equation which was showed in [20], by Kenig, Ponce and Vega to be well-posed
in H® for s > —3/4. In [5], Carvajal used this fact to prove that the Cauchy associated
to the KdV-KS equation is well-posed for s > 1/4. In order to do this he applied a fixed

point argument in the Bourgain spaces associated to the KdV equation.

Here, we follow the ideas of Molinet and Ribaud [25] to prove that the Cauchy problem

13
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(1) is locally well-posed in H® for s > —1 which improves the results of Argento [2] for the
KdV-KYV equation and the results of Biagioni, Bona, Iorio and Scialom [3] and Carvajal [5]
for the KAV-KS equation. The main idea is again to use a fixed point argument, but this
time in Bourgain’s type spaces adapted to both linear parts (dispersive and dissipative) of
the equation. We also prove an ill-posedness result for the Cauchy problem (1) in H*(R)
when s < —1 which implies that (1) cannot be solved in H*(R) using a fixed point ar-

gument when s < —1. Then, in some sense, our well-posedness result turns out to be sharp.

Let us introduce some definitions and notations. We denote by 6 a cutoff function
satisfying

0€C°(R), 0 <6 <1, supp(f) C [-2,2], and 0, 1 (2.1)

—11]
and

Or =0(-/T), VT >0

Next, we define the Bourgain spaces which are "well adapted” to the linear part of the

equation. Since > 0 and § # 0, we will suppose that 1 = § = 1 in the rest of this chapter.

Definition 2.1. We define the space X** as the completion of the Schwartz space S(R?)

under the norm

xow = ([T =€) + (6" = €))(€) U, )| 2z (2.2)

|

where (&) == 1+ |]|. And, for all T > 0, we define the localized space associated X;’b as

the set of all functions u: R x [0,T] — R such that HuHX%b < 00, where

||l xs0 /U RXR =R, 4y, =u}. (2.3)

o = inf{ |

Remark 2.1. Since

U(—t))" (6,7) = / UG (¢ 1)t = A(E, 7+ €)
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note that

xoo = [[(iT + (€4 = €))(€) (U(=t)w)" (€, 7) | L2 z2)- (2.4)

[l

Remark 2.2. || - “X;,b really defines a norm.

Proof. The only point to verify is the triangular inequality. Let u, v € X;’b, we know by

the definition of the || - |

= norm, that for all € > 0, there exists two extensions u and v
T

of u and v such that [|u]| ys» < [Jul| =0 + € and ||V]| xs» < ||v|| g5 + €. Then, since u + v is
T T

an extension of u + v, we can deduce that ||u+v|

xab < ||ul Xt v b 126, which leads

to the results sending € to zero. U

We are now able to state our results of local and global well-posedness as well as regu-

larity ad-hoc of the solution (which comes from the dissipative character of the equation).

Theorem 2.1 (Local well-posedness.). Let s > —1, then for all ¢ € H*(R), there exists

T="(¢l

m=) (with T'(p) — oo as p — 0) and a unique solution u of the Cauchy problem

(1), with p > 0, in the space X;JI/Q. Moreover, u satisfies the additional reqularity
ue C([0,T); H*(R)) n C((0,T); H*(R)) (2.5)
and the map solution
S HYR) — X322 nC((0,T); H(R)), ¢ u, (2.6)

is smooth. In addition, if ¢ € H*(R) with s’ > s, the result holds with s' instead of s in

the same time interval [0, T] with T = T(||¢ ms)-
Theorem 2.2 (Global well-posedness.). Let s > —1 and ¢ € H*(R).

o Ifv=«/2, then the local solution u of the Cauchy problem (1), with p > 0, extends

globally in time.
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o [f~v =0, then the local solution u of the Cauchy problem (3), with p > 0, extends

globally in time.
These results are sharp in the following sense

Theorem 2.3 (Ill-posedness.). We assume that o # v in (??). Let s < —1, if there exists
some T > 0 such that the problem (1) is locally well-posed in H*(R), then, the flow-map

data solution

S H(R) — C(0,T]: H'R), ¢ u(t) (2.7)
is not C? at zero.

In section 2.2, we prove the linear estimates, in section 2.3 the bilinear ones, in section
2.4, we give the proofs of Theorems 2.1 and 2.2. Finally we take care of the ill-posedness

in section 2.5.

2.2 Linear estimates

The proofs of the linear estimates follow closely the proofs given by Molinet and Ribaud

(see [25]) for the KdV-Burgers equation, replacing &2 by & — €2,

Proposition 2.1 (Homogeneous linear estimate.). Let s € R, then

16V (£)¢|

Xs,1/2 S |‘¢‘|Hs, V¢ € H5<R) (28)
Proof. Let ¢ € H*(R), using (1.23), (1.24) and (2.4) we have that

16V (1)¢]

s = i + (€ = )26 (600 15(6)) ™ | 2qee)
= €Ol + (6" — )2 (B € M) ™ |

ST+1I (2.9)

where

I=|(&)*(¢* - 52)1/2¢A5(§)||9§(t)||L$||L§’
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T = |1(€)°$(E)llge(t)ll 2]l 224
and
gelt) = B(t)e M (210

Contribution of I. When |£| > v/2, we have that £* — ¢ > 2, then we can use (1.15) to see

that
loellze < e = e S s
GellLz > L R L ~ (er—g2y12
When €| < v/2, then, —1/4 < £* — ¢2 < 2 and (2.1) imply that
2 1/2 1
It]/2 <1< -
lgellzz < (/_26 dt) SIS (et —e2)1/2
Then, we deduce that
IS (|9 - (2.11)

Contribution of II. When |£| > v/2 we use the triangle inequality, Young’s inequality and

(1.15) to see that

~ _ YEPCINRAY:
Iell e = 1) /20 (7€) () s

-~ (A2 -~ (e 2
S 20 zalle™ Mz + 100z lle™ M2
1

5—

R

When |¢| < V/2, since [¢€* — €2| < 2, we have

2"
gl < D OO 22 S 1,
n>0
Since for n > 1, [[[t["0(t)| ;12 < [|[t["0(t)|| < - Then, we also have in this case
t

11 < |l ms- (2.12)

Then (2.9), (2.11) and (2.12) lead to (2.8). O
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Proposition 2.2 (non homogeneous linear estimate.). Let s € R, then

||€(t)/0 V(t —tot)dl || sz

1/2
o [ LU0 (€7 )
< s,—1/2 2

~ HU’ Xxs-1/2 + (\/R<£> (/]R <ZT+ (54 _gg)) dr dg) )

(2.13)
for all v € S(R?). Moreover for any 0 < § < 1/2,
¢

10 /0 Vit — )0(E)dt | xene S 0]l xossars, (2.14)

for all v € S(R?).

The inequality (2.14) follows directly from (2.13) and the Cauchy-Schwarz inequality.

In order to prove (2.13), we will use the following lemma

Lemma 2.1. Let w € S(R?), define ke on R by

itr _ o= [t](€*—€?)
ke(t) = o) | e (2.15)

Then, it holds that for all £ € R
G + (" = €NV he(T)] 22

—~ 9 . ) 1/2
(et ) f ) e

Proof of Lemma 2.1. We decompose k¢ into

ke(t) = 6(1) ( / _ L e+ / 1) e

<1 4T+ (E = &2) irj<1 07 + (€2 = &2)

e . G I
“rEmet e [ e T)‘”)
= [+ I+ IIT+1V, o)

and then we examine the different contributions of (2.17) on the left hand side of (2.16).
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Contribution of IV . Since |7| > 1, notice that

(i + (&' = &)V (7)]17
< (/R (i + (€1 = €)) [(ge ()™ (1) dT) (/R (it F((g;?|§2)>d7) ;

where g is defined in (2.10). Exactly the same computations as in Proposition 2.1 lead to

(/R“T =) |<gs<t>>~<f>|2d7) <1

We conclude then that

I+ (€ = e ravy ol s ([ e D) . 2y

P Y
Contribution of II1. Since 1] = 0 (%X{ITIZI}) , we use Young’s inequality to

obtain the following estimate

(7 + (6} = €NV (7)1
= G+ € = €DV o (e e ) (Dl

|w(&, )]

ST ) o (i s )

HIBE w0 (e i)

S PR R PR P (L L S w1
|ﬁ7(f>7)| |ﬁ7( ’ )|2 1/2
S /IR (iT + (&' — 52)>dT * (/R (it + (64 — 52)>d7) ' (2.19)

Contribution of I1. First, notice that

i+ (€ = e eany e < ([ G

7|<1 |Z7— + (
x || (i + (&% — €2))1/2 (9 )(1 — e 1HE =€)y ) 2 (2.20)
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Since

[ i+ (€1 =€)
|

i<t i+ (§0 = €2) 2

= / dr +/ dr
i<t [iT+ (E4 =) Jip<a im + (61 = €2))

! dr 1
<
N/O 72+(§4_§2)2 + |§4_§2|
< 1 ! 1 d( T )+ 1 < 1 '
~Et =2 Jo 1+( r >2 £ — &2 §4 — &2 ™ 1§t — &2

g4 =€

We deduce from (2.20) and the Cauchy-Schwarz inequality that

w(€,T)|? 1/2
I+ (€ = €Dy e 5 ([ ey

(-
1 . _ 4 ¢2 /\t
><—|€4 BT | (ir + (&* — §2)>1/2 (0(25)(1 _ el ))) 2. (2.21)
Next, as in the proof of Proposition 2.1, we consider two different cases. When [£] > v/2,

we have that £* — £2 > 2, so that

i+ (64— €72 (01 — e =) (1)

S0z + (€1 = €2 21001 22 + llgell e + (€' = €2l gell e

5 |§4 - €2|1/2a

which implies together with (2.21) that

w(€, 1)) 1/2
(i + (€ = ENV2UD M ()2 S (/R (it ’+ ((?4 2| 52)>d7> : (2.22)

When |¢| < v/2, then [¢* — ¢2| < 2 and we have

i+ (€ = €)' (00)1 - e =) ()

S0()(1 — e ME=ED) (2.23)

||Htl/2'
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Then arguing again as in Proposition 2.1, we compute

— 4_ |£4 - £2|n n

n>1

4 _ ¢2In
sie-ey Bt g gy

n>0
which together with (2.21) and (2.23) also implies (2.22) in this case.

Contribution of I. Since I can be rewritten as

B (itT)™
=00 |3 e

we deduce from the Cauchy-Schwarz inequality that

w(&, T)dT

Ior + (€ = €20 ()i
S 2 (00 + (€ - eraoly) [ ATHET)

o1 v i<t lim + (€4 — §2)]

aEenP \" T+ (et — ) V2
st ([ e ey ™) (/| )

B, 7) 2 /2
: (/]R (z’7|+ <(§§4 z‘52)>d7) ’ (2.24)

where we have used that

[ R, o
<1 T+ (E = &2))2 (e —-€2)
Then, (2.17), (2.18), (2.19), (2.22) and (2.24) lead to (2.16) which concludes the proof

dr

of Lemma 2.1. 0

Proof of Proposition 2.2. We only have to prove (2.13). Define
w(-,t) =U(-t)v(-,t) € S(R). (2.25)
We obtain from Fubini’s theorem and the Fourier inverse formula, that

0(t) /0 V(t— #)o(t)dt' = Ut) (ke(£))"e | (2.26)
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where k¢ is defined in (2.15). Then, using (2.25), (2.26) and Lemma 2.1, we deduce that

H@(t)/0 V(= )o()dt || xuae = [ I1GT + (* — NV 2RET) |2l 2
1/2

S ( [ e ([ <Z.Tf((§f_)'§2)>df)z> Iz

A 2 1/2
xo + ( e ([ M0 ) d£) ,

which concludes the proof of (2.13). O

S [l

Proposition 2.3 (regularity.). Let s € R and 0 < § < 1/2. Then, for all f € X571/2%9,
we have

Nt / tV(t—t’) f(#)dt € ORy; H), (2.27)
0

Moreover

t
I [ vie= )@t e S 1]
0

Xs,—1/2+6. (228)

Proof. Define g(z,t) := U(—t)f(-,t)(x). Since U is a strongly continuous unitary group

in H°(R) and remembering (1.13), (1.23) and (1.24), it is enough to prove that

F(&):teRyr— <€>5+45/ eI (g (- 1)) (€t
0

is continuous in LZ(R) when (€)* (it + (£ — €2))7/27g(¢, 7) € L (R?). As in (2.26), we

can compute, using the Fourier inverse transform in time and Fubini’s theorem, that

itr __ —t(£*—£€2)
P& =107 [ 5en—gir

Fix tp € R and define for all t € R

H(év t) = F(f,t) - F(£7 tO)

— <§>s+46/ %((em . ez‘tor) o (e_t(54_§2) _ 6_t0(§4_£2)))d7,
R —
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We will use the Lebesgue dominated convergence theorem to show that
Lim |HC, 8] 2y = 0. (2.29)
First step.
tliI? H(t)=0 ae £€R. (2.30)
—tlo
Let
_ g(&,7) itr itor —t(gt—¢? —to (¢t —¢2
h(§,7,t) —m(( — 7)) — (e7ME ) — eThEmE), (2.31)
then clearly,
tlir? h(&,7,t) =0 for almost every (£,7) € R? (2.32)
—1lo
Moreover, since t — tg, we can suppose that 0 <t < T', and then,
h Hl < 9 t/4 to/4 |/g\(§77—>| < |/g\(£77-)| ) 233
hE DI < @+ e T S e (2.33)
We deduce from the Cauchy-Schwarz inequality that
/ &l
R [T+ & — &2
_ / (ir 16— ey \'2 / genr o\
T T .
T \Jr i+ &€ R (T4 =)
By the hypotheses on g, we know that
2 98, 7)I?
dr ) d¢ <
Jrom ([ e T <
so that we deduce
37| / g, )P 1
—=2 —dr < d 2.34
Lrears (L arotamr) <= .

for almost every £ € R. We use (2.31), (2.32), (2.33), (2.34) and the Lebesgue dominated

convergence theorem to conclude the proof of (2.30).

Second step. There exists G € L*(R) such that

|H(&, )] <|G(E)| forall { € R, and t € R,.

(2.35)
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When [£] > /2, we get from the Cauchy-Schwarz inequality and (2.33) that

T e A g(&, 7)1 v
|H(£7t)| 51 <£> i (/]R |i7' +§4 o 52’2 d7—> </]R <i7’ _|_§4 _ §2>1—26d7) ’
Since [ — £2] > 2,

<i7'+§4—£2>1_25 1/2 1 1/2 1
(/ irr e P dT) < </ \w+s4—52\1+26d7> S e

then using the hypotheses on g, we conclude that for all t € R,

Se )2 1/2
a0l © ([ i ) € 2®)

which proves (2.35) in the case |¢| > v/2. When |¢| < /2, then we have [¢* — €2 < 2 so

that

‘/9\(577—)’ —p(er—g2 o (£4—g2
\H(f,t)IS ,—‘e (€ 5)—6 o(§ 5)‘d7.
R |17 + &1 — &2
R %’em —eMTldr =T+ 11.

We first evaluate 11, using the Cauchy-Schwarz inequality

I7]|9(&, 7)| / [9(&,7)]
IT < |t—t —2 2 L dr 42 — dr
| o Ir|<1 liT 4+ &4 — &2| Ir|>1 it 4 & — &2|

[g(&, 7)1 2
S (/R (iT+ &1 — )% dT)
1/2 1/2
1—25d —1—26d )
X [(/ﬂgl | 7] 7‘) + (/T21<7'> T ]
[g(&,7)I? 2
S (/R (it + &4 — £2)1-25 dT) € L¢(R).

We next turn to I and again use the Cauchy-Schwarz inequality to see that

G, )2 1/2 4 (€1 — ¢2))1-2 1/2
1< [t —to (/R i +|9£(4 _T?Qy—%dT) €t — g2 (/R %ﬁf B _5)2))|2 dT)




2.2. Linear estimates 25

and we compute
(i + (6 — &) )”2
(/ irr@—ep
1 1/2 1 1/2
- (/ [ir + (€1 — 52>r2d7) i (/ [ir + (€1 — 52>rl+26d7)
1 1

e g —ep

Then, since |£* — £2| < 2, we conclude that

~ 9 1/2
1< (/R = Jigg(ff?%l%w) € I2(R).

Thus (2.35) still remains true in the case |¢] < v/2.

We use (2.30), (2.35) and the dominated convergence theorem to prove (2.29) which
concludes the proof of Proposition 2.3. The estimate (2.28) follows exactly by the same

computations. [l

Then, we will derive a linear estimate to obtain a contraction factor T* in the proof of

existence in Theorem 2.1 (see for example [23], Lemma (7.31)).

Proposition 2.4. For all s € R, for all T > 0 and for all 0 < § < 1/2, we have that

107w || xorm1/215 S TO||w]| xom1/osos,  Vw € X524, (2.36)
Proof. Assume that
1070 x—suaso—2s S T 0| x—sajos, Vv € X520 (2.37)
Then, by duality, we have
[0rwl| xs-1/2405 = sup |(v, Orw) 12|

vl ¢ —s,1/2—5=1

< sup {H@TU||X—S,1/2—25HUJ| Xs,—1/2+25}

vl ¢ —s,1/2-5=1

5 T5||w||Xs,_1/2+25.
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Therefore to prove (2.36) it is sufficient to show that (2.37) is true. We will proceed by
interpolation.
First, we use the definition of the X*? space (see (2.2)), the fact that U is a unitary

group, Holder’s inequality and the Sobolev embedding theorem to compute

1070 x50 = [[T7(0rv)l 12, = 02U (=t)v|z2,

S TYET U (=t)vll s
z ™t

STV T U (=t 1o yrre-s,
which leads, using (2.4), to
HQTUHX—S,O S T1/275H1)HX75,1/275, Yv € st,1/276. (238)
Then, we will prove that
H@TU||X—S,1/2—5 5 ||UHX—S,1/2—5, Yv € X_S’1/2_6. (239)
By the definition of the X** space

1670 x-s12- = [1(i(T = %) + (6" = €))/*72(E)*(0rv)" (&, )22,
S Mm = 127246 7 (0r0) (&, 7)1z
HI(E = €2 T (Or0) (€, 7)1z

=1 + II.
First, we estimate I[ using Plancherel’s identity

IT = (€' = €)V22e) (10 ()0 (&, )l pz l g < NI4€" — €2)1/272(€)~0(E, 7) |2 -

To estimate I, it is enough to show that

/ |5; % 0(T) |7 — a|2(1/2_5)d7' < / [o(7) |7 — a|2(1/2_5)d7, VaelR.
R R
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In this direction, we have using again Plancherel’s identity
[ s ) Bl = a0 D = DY )l

and then, we use the Leibniz rule for fractional derivative derived in [17], recalling that

0 < § < 1/2, and obtain

1D (e 07 0)|| 2

< Nle®vDy 0] 2 + 107l | D20 (67 ) | 2

t

1/2
< ||eiatUDtl/2—59T||L% + (/ |@\|2|7_ . a|2(1/2—5)d7-|) )
R

It remains then to estimate ||emtthl/ 2700 2, we use the Holder inequality and the

Hardy-Littlewood-Sobolev theorem

le v D> 0zl 2 < [le™ ]l 1/s ]| Dy °Or | j2r0-29
t t

S D (e o) 12| Dy 0r | 20—

Finally we use the Hausdorff-Young theorem (which tells that the inverse Fourier transform

is bounded from L% (+20) in [,2/(1=29)) t0 obtain

~Y

R 1/2+6
< ([arpepmpean) 51
R

N 1/2+6
DY %6rlzamsn 5 ([ (2o ieoar)
R

which ends with the proof of (2.39).

Since 1/2 26 = a(1/2—9), with a = Y/ /2212; , we interpolate (2.38) and (2.39) to obtain

1070 ]| x—s/2-25 < N0V §—rso-sllOTv]3 50 S TP N0l x-s3/2-5,

which proves (2.37) and (2.36). O
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2.3 Bilinear estimates.

Proposition 2.5. Let s’ > s > —1, then there exists § > 0 such that

[(w)z(v)a|

o172 (2.40)

Xs,—1/2+6 ,S Hu! Xs,1/2H’0|

and

[(@)a (V)all xsrm1/245 S Ml xsnalloll xorrse + lullxorarzlvl xsrrz. (2.41)

Proof. We only treat the case s = —1+4¢ and 0 < € < 1/2. The other cases can be proved
using the same argument. Choose  such that 0 < § < ¢. By duality to prove (2.40) is

equivalent to show that

I § Hh||L2(R2)HflHL2(R2)Hf2HL2(R2)7 (2-42)
where
_ AEPEE) (6, Tl {E) o6, 7)
= T e S T gy 04
and

dv =dédrd&dr, m=17-7, &L=(-&

027—537 0127'1—ff, and 0227'2—53-

To estimate I, we divide the integral in the following regions

A={&,mm) eRY 6| >V2A |6 > V2) (2.44)
B = {(§7€177—7 7—1) € R4 : |£1| S \/§V |€2| S \/5} (245)

We denote by I4 and Ig the integral I restricted to the regions A and B, respectively.

Estimate for 1,. We estimate I4 using the Cauchy-Schwarz inequality

I4 S( Su)p Q{JA(&,H)”Q} X ||l 22y 1 f1ll 22y | foll 2 2y (2.46)
&1,m1)ER

where

&)t

Ja(§1, 1) = (ioy + (& — £2))

) / (&) dedr
Ay (10 + (€ — €))7 (6) (i + (6 — &)
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and
A&, m) ={(&7) eR*: ((,1.&,m) € A}V (&1,711) R
Then, to obtain (2.46), it is enough to prove that J4 (&, 71) <1 for all (&1, 71) € R?. Since

€11 > V2, we have [¢] — £F| 2 [&1]* so that

(ion + (& — &) 2 (&)

If we define |G| = min{|c]|, |o2|}, then

(io + (€' = €)' (ion + (& — &) = (6) (&)™),

The change of variable § = & yields the following estimate of J4(&1,71)

nem e [ S s ([ ) ([ o) 51 ean

since 0 < ¢ < ¢ and 0 < e < 1/2. Using (2.46) and (2.47) we conclude that

Ia 5 ||h||L2(R2)||f1||L2(R2) ||f2HL2(R2)' (2-48)

FEstimate for Igz. By symmetry we suppose that [£;] < V2. We use again the Cauchy-
Schwarz inequality to get
Ip < sup Q{JB(&T)W} X [l 22y | fill 22y 1 f2ll L2 2y (2.49)
(&7)€ER

where

1

JB(5>T) = <§>2*2€(i0 + (54 _ 52))1725

y / / (&2)**d&rdm
[&11<1 JmeR <’i0’1 + (fil - 5%)><10—2 + (63 - 522»
We want to show that Jg(&,7) < 1. It is clear when |&;| < 2. Then we can suppose that

|&2] > 2, and so

(ioy + (& — &) ioa + (& — ) > (6)' (&) 07,
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where |6| = min{|o1[, |o2|}. Then

Jp(€,7) S / / —@85726 déidr <1, (2.50)
l&11<1 Jrier (a)t+o
From (2.49) and (2.50), we conclude that
Ip 5 HhHL2(R2)||f1||L2(R2)||f2HL2(R2)- (2-51)

We use the estimates (2.48), (2.51) and the fact that [ = I4 + I to prove (2.42). This
ends the proof of (2.40).

To prove (2.41), we combine (2.40) and the fact that by the triangular inequality
(€)* < (€)*(€1)" ™ +(€)*(&)"~*, so that

1(@)a(©)allxor 1208 < NI w)a(0)e | xnr20s + 1 (@)a (T 0)allx0 17205
S el lvllxsws + llullxsazllvl o
This concludes the proof of Proposition 2.5. U
Proposition 2.6. Let s’ > s > —1, then, there exists § > 0 such that,
[(wv)aa | xs-1/240 S Nlullxoarel|v]lxere (2.52)
and
[(uv)ae|| xor. 17245 S Nlull o0l xsnre + lJull sz f[oll oz (2.53)

Proof. We follow the same strategy as in the proof of Proposition 2.5. By duality, (2.52)

is equivalent to prove that for all s > —1, there exists § > 0 such that

I < Il ey L fill 2wy 1 f2ll L2 gme)s (2.54)

where

[:/ |€’2<£>Sh(€7T)fl(€177—1>f2(£2;7-2)
Rt (104 (€0 = E)V20(&)*(ior + (&1 — &)1/ (&)  (ioa + (& — &)1/

dv  (2.55)
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and

dv = dédrd&dry, 027—53, 01:7'1—55’, and 02:7'2—55’.

Case s > 0. By the triangle inequality we know that (£)® < (£1)°(&)® for all s > 0. Then,
it is enough to prove (2.55) for s = 0. We choose 0 < § < 1/4. By symmetry, one can
suppose that |o1| > |o9|. We can also suppose that we always have |£| > 4, otherwise

(2.54) is trivial. We use the Cauchy-Schwarz inequality to estimate [

1< sup {J(E)?} < |Ihll 2@ | fill oy foll ey (2.56)
(&7)eR?
where
[k
J —
R

% / d§1d7'1
w2 (101 + (§ — &) (ioy + (& — &3))

Since |£] > 4, we have |€* — €2| > |€]*, so that

(io+ (€8 = €))7 2 (7.

In the case 2|&| > [¢], we have |£;] > 2, then

(ion + (&1 = &) (ioa + (& — ) 2 {o2) (% (€)™,

which yields

déd
HeN 5 [, apiosi o 5 (257)

since 0 < 0 < 1/4. In the case 2|&;| < [€], we have |&] > |£], so that

(ioy + (&8 — &) ioa + (& — &) = (o2) ()P (&)

We conclude that

dé,d
JE, 7)< /R 7 §2>4§5 <:2>1+5 <1, (2.58)
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We combine (2.56), (2.57) and (2.58) to obtain the estimate (2.54). This concludes the
proof of Proposition 2.6 in the case s > 0.

Case —1 < s < 0. Let —1 < s < 0, we can write s = —1 4+ ¢, where 0 < € < 1. We
choose 0 < § < ¢/6. We will show that (2.54) still remains true in this case, where I can

be rewritten as

[:/ [EPR(E 7)) fi(&, 1) (€)' falE2, T2)
Rt ()17 (o + (62 = E2))1/270(ioy + (& — &)/ (ion + (§ — €2))1/2

dv,  (2.59)

where

dv = dédrdédr, o=7-¢&, oy=7 -6, and oy=1 — &

By symmetry we can assume |o1| > |o2|. Once again we divide the domain of integration

R* in the three regions A = A; U Ay, B and C where

A ={(&&,mm) eRY ¢ > 4N ¢ <214}
Ay = {(&,&,mm) ER €] > 4N €] > 2G| Aloy| > |of}
B={(&& r,mn)eR  [g] >4 [¢]>2/G]Alo] > |o1]}

C={(&&,7,m)eR :[¢] <4}

and denote by I4, Ip and Io the restriction of I to each one of these regions. Then, we
estimate [ 4, Ig and I respectively.
Estimate for I4. In the region A, we estimate I4 using the Cauchy-Schwarz inequality
Ia < ( su)p Q{JA(thl)l/Q} X ||h||L2(]R2)||f1||L2(]R2)||f2||L2(]R2)7 (2.60)
&1,71)€ER

where

<€1>2—25

Tabom) = G a— ey

o 14 (62)*>dgdr
A (10 1+ (€= )T {ioy + (€] — )
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and
121(5177'1) ={(& 1) eR*: ((,7,61,m) € A} V (&1,m1) € R

Once again, we denote by Ja, (&1, 71), for ¢ = 1 or 2, the restriction of the integral J4 (&1, 1)

in the two regions
1212'(5177_1> = {(577_) € R2 : (577_7 5177—1) € A2}7 = 172

FEstimate for Ja,(&1,m). Since [&1] > [€]/2 > 2 in Ay, we have that

(& — &) = &

Then we get the following estimates in this region

(io1+ (& = €)) Z (01)*(&)*

2 (02) (1) 2079 () 2079 () )

and
(io+ (€' = €)' 7 2 (.
This yields
déd
Ja,(§1,m) S /]R2 <§>2+2e—1257<02>1+5 S (2.61)

Estimate for Ja,(§1, 7). In Ag, we have [£| ~ [&] 2 |€1] and €] > 2, then we deduce

(ioy + (&5 — &)) 2 (&) 2 (£)2179(&)* (€)™

Moreover since |oy| > |o] ,

(i + (€' — €)' ion + (€ — €1)) Z (o) (€)20+9 )21

Thus

déd
Ja,(61,11) S /}R2 <£>2+2e€12§<0>1+5 Sl (2.62)
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Therefore the estimates (2.60), (2.61) and (2.62) imply that

Ia 5 ||h||L2(R2)||f1||L2(R2) ||f2||L2(R2)' (2-63)

Estimate for Ig. We estimate Ip using the Cauchy-Schwarz inequality

In < sup {420} % Ihllpsqun |l fill ey | ol e (264)
(5,7)€R2
where
<£>2(1+e)
JB(&T) = <ia T (54 _ €2>>1—26
« / (&1)*7 (&) P 2 d&dmy
Ben (ior 4 (& = &) (ioa + (& — £3))

and

B(&T) = {(5177—1) € R2 : (§7T7 5177—1> S B} v (£7T> S RQ'

In B, we have |{| ~ |&] 2 |&1], then

(ioa + (& — &) 2 (&)* 2 (&) &) &)™,

Moreover since |o| > |01/,

(i + (€' = €)' i + (] - ) 2 00) X1+ (g2 1202

Then, we get
dfldTl
JB(&,7) S /]R{2 (6,)22-123 (7 V153 S (2.65)
We conclude from (2.64) and (2.65) that
Ip < HhHL2(R2)||f1||L2(R2)||f2”L2(R2)- (2-66)

Estimate for Io. We remember that by symmetry we can suppose that |o1| > |og| in C.

Moreover, if |&] < V2 and €] < V2, it is clear that

e S Al e [ 1l 2y [ 2l poge2)- (2.67)
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Then, since & + & + & = 0, we can suppose that |£;| > v/2 and |&] > v/2 in C and we use

again the Cauchy-Schwarz inequality to deduce that

Ie < sup {Jo(&, 7)Y X bl g2 | fill o | 2l 2 ey, (2.68)
(€1,71)€R?
where
2(1—¢)
Jo(en,m) = — S0

. / (&2)20-9dedr
i1 Jrer G0+ (€ — E)2io, + (& — 8))

In the region C', we have

(ion + (€4 — €0)) 2 (o) {60) 107 2 (o) ()20 ()29,

Then, we obtain

26-9 g dr
J- < 2(66)/ / ()" dEdr <1 2 69
Clm) ~ &) l€|<1 Jrer ()11 ~ ( )

which together with (2.68) implies (2.67).

A combination of (2.63), (2.66) and (2.67) conclude the proof of the proposition in the

case —1 < s < 0.

The proof of (2.53) follows exactly the same argument as in Proposition 2.5. U
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2.4 Proofs of Theorems 2.1 and 2.2.

Proof of Theorem 2.1. Since we are in the case ;> 0, we can suppose without loss of

generality, that the equation (1) has the form

1. Existence and persistence. Let s > —1 and ¢ € H*(R). By Duhamel’s principle, solving

(2.5) is equivalent to solve the following integral equation

u(t) = V(t)p — /0 t V(t—t)f(u)(t)dt, (2.71)

where
Fu)(t) = (ue)*(t) + (4?)za(t). (2.72)

In fact, we will solve a weaker version of (2.71), let 0 < 7' < 1, 6 and 07 as in (2.1), define
Fa(a)(6) =00 (Vo - [ Vie—t)0rse) ). 27)

We want to use the Picard fixed point theorem to find a solution of
v = Fr(v) (2.74)

in the space X*/2 for some 0 < T' < 1. If we define u = v}, the solution of (2.74)

0,T]’
restricted to the interval [0, T, u will be a solution of (2.71) in [0, 7] and, by the definition
of X3* in (2.3), we will have that u € X3'/?.

Since s > —1 is fixed, we choose, using Propositions 2.5 and 2.6, 0 < § < 1/2 such that

2 oi/2: (2.75)

1F @)1 xsi-172425 < [1(va) [l xsr-172425 + [(0%)aallxs-172026 S (0]

Then, using (2.8), (2.14) and (2.36), joint with (2.75), we deduce that, there exists a

constant C > 0 such that

1 Fr(v)|| xon2 < C (||l smy + T°|v]

Sesz) - (2.76)
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Since
f) = flw) =0+ w)s(v—w)+ ((v+w)(v-—w)),,

the same computation leads to

| Fr(v) — Fr(w)]| xsaz < CT?||v 4w

Xs,1/2- (277)

xa1/2||v — w

We define X*/2(a) = {v € X*% ¢ ||v||xsn2 < a} with a = 2C]|¢|

us. Then, if we choose

1 1
0<T < 2Ca) 7~ GCap ) (2.78)

(2.76) and (2.77) imply that Fr is a contraction on the Banach space X*2(a). Thus,
we deduce by the fixed point theorem that there exists a unique solution v € X*'/2(a) of
(2.74).

Using the bilinear estimates as above, we deduce that there exists 0 < § < 1/2 such
that f(v) € X* /2% Therefore applying Proposition 2.3 and using the fact that V is a
strongly continuous group in H*(R), we deduce that v € C(R; H*(R)). As noticed above,
we conclude that
e X321 ([0, T), HS(R))

U= Yo7

is a solution of the integral equation (2.71).

2. If & > s > —1, the result holds in the same time interval [0,T] with T = T(||¢|

Hs). Let
¢ € H¥, in order to show that the time existence of the solution of the integral equation

(2.71) only depends on ||¢||gs, we have to modify a little bit the argument above. We will

again apply the fixed point theorem to solve the equation (2.74) but this time in a closed

ball of the Banach space Z = {v € X*"V/2/ : |v|lz = ||v|

v = 1
'

We deduce from (2.76) that there exists 0 < § < 1/2 and C' > 0 such that

xs12 + V||| 12 < 00}, where

1Er ()| o2 < Cl10ll= + T°[[0]12).
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Using the linear estimates (2.8), (2.14), (2.36) and the bilinear ones (2.41) and (2.53)), we

also have

[Fr(v)] e +T°|vl

xoaz < C([|¢]

C
—(lellm + T°ll0]2),

xsaz||v] xe/2)

IN

so that

1Fr(0)llz < CJI6] =+ T°||v]Z))-

The same argument gives
1Fr(v) = Fr(w)|lz < CT°|lv + w|z]v = w] 2.

Then if we define Z(a) the closed ball of Z centered at the origin with radius a = 4C'||¢|| g

and if we choose

0<T<1/(8C%|9|

HS(R)>7

we are able to apply the fixed point theorem in the Banach space Z(a) and then we conclude

easily that the result holds in the time interval [0, 7], T' depending only on ||¢|

H5(R)-
3. Uniqueness. Note that the fixed point theorem argument imply the uniqueness of the
solution of the truncated integral equation (2.74) in the ball X*'/?(a). But, we want to
have the uniqueness of the integral equation (2.71) in the whole space X;’l/ 2,

Let T > 0 and u € X{;’l/Q another solution of the integral equation (2.71). Fix an
extension ¥ of @ defined on R x R. Using the above existence argument and (2.78), we can

choose 0 < T} < T such that the equation (2.74) (with the time 7} instead of 7') admits a

unique solution in the ball X*/2(@), where a = |||

ys1/2. oince we used the Picard fixed

point theorem to solve (2.74), we deduce in particular that

FL(D) —popoo v in X512, (2.79)
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Moreover, we know, from the definition of Fr (see (2.73)) and the fact that @ is a solution
of (2.71) in X2'/?, that

Fr, (9)) ., = @ (2.80)

Therefore, we can conclude combining (2.79) and (2.80) that

1@ = ull sz < FF (0) = vllxer2 —ntoo 0,
1

so that u = @ on [0,7;]. Since Tj only depends on the extension © of @, we can reapply
this process a finite number of times to extend the uniqueness result in the whole interval
[0,T7.

4. Regularity. We will show that the solution v € X;JI/Q of the integral equation (2.71)

that we know to be in C'([0,T]; H*(R)) also belongs to C'((0,7"); H*(R)).

First we know that

L:t—V(t)p e C(0,T]; H°(R))

(see for example [14] Theorem 4.18). Since our solution u belongs to X;’l/ ? we also know

using Proposition 2.3 and the bilinear estimates that there exists o > 0 such that
t
Nt / V(=) f(u)(@)dt € C(0,T]; H*(R)).
0

Thus, we deduce that u € C'((0, T]; H***(R)). Now, fix an arbitrary time ¢, in (0, 7). Then,

e = 0 we can find 0 < t, < t; such that T = T(||u(to)|

since lim;_,q ||u(t) — ¢| Hs) > 1.

Thus, if we reapply the existence result with the initial data u(ty) in the space H***(R),

use the fact that the time existence only depends on ||u(t)|| g and the uniqueness result,

we are able to conclude that u € C((to, to + T); H**?*(R)). Therefore, since the time t; is

arbitrary, we conclude iterating the argument that

u € C°(0,T); H*(R)).
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5. Smoothness of the map solution. Combining an identical argument to the one use in the

existence proof with the estimate (2.28), one can easily show that the map solution

S HS(R) — X2*nC([0,T): H*(R))

¢ = ue(t) =S(t)¢ (2.81)

is locally Lipschitz.

In order to prove the smoothness of 5, let define

H: H°(R) x X2 no([0,T); H (R)) — X321 C(]0,T); HY(R))

(p,u) —u(t) —V(t)o + /Ot V(t—t)f(u)(t)dt'.

We define the norm ||[u||z := ||u|| ys.1/2+||ull¢(jo,7;15) on the space XQSJI/QOC([O, T); H*(R)).
T

Note that H is well defined, H is smooth and that from the existence result, we have
H(p,S(t)p) = 0. Moreover, we fix ¢ € H*(R) and we compute for all v € X;’lﬂ N
C([0,T]; H*(R)),

9y H (¢, S(t)¢)u(t) = v(t) + 2/0 V(=) ((St)¢)svs + (S(t)Pv))(t)dL".

Then, we deduce using the estimates (2.14), (2.28), (2.40) and (2.52) that there exists

C >0 and § > 0 such that for all v € X3 N C([0, T]; H*(R)),

(id — D, H (¢, u))o(t) |7 < AC*T°| 9|

Hs UHT

This imply that, if we choose T small enough such that 4C*T°| ¢|

gs < 1, the linear
map 0, H(p,u) € E(X:Sp’l/2 N C([0,T]; H*(R)) is an isomorphism. Thus, by the implicit
function theorem, there exists a neighborhood V' of ¢ in H*(R) and a smooth application
h:V — stil/Q N C([0,7]; H*(R) such that H(¢,h(y)) = 0, Vib € V. This means that
S

v = h is smooth and since smoothness is a local property, we conclude that the flow map

data-solution S is smooth. ]
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Proof of Theorem 2.2. We first deal with the case v = a/2. Let s > —1, ¢ € H*(R).
Define T* = T*(|| 9|

ms) by
T* = sup{T >0 : 3 solution of (1) in C([0,T]; H*(R)) N X3"/*}. (2.82)

Let w € C([0,7%); H*(R)) N C((0,7*); H*(R)) the local solution of the integral equation
associated to (1) in the maximal time interval [0,7%). We will make the assumption
T < oo and obtain a contradiction.

Since u is smooth, we deduce that u solves the Cauchy problem (1) in a classical sense,
this allows us to take the L? scalar product of (1) with u and integrate by parts (recalling

that u is a real function), to obtain

1d
2dt

(8%
HUH%Q = _N[(uwmzu U)L2 + (me u)LQ] - O‘(uiv u)L2 - §(uu$$7U)L2
= _U[HUIIH%? + (um:au)LQ]

i
< plltgole llull 2 — plluss 7 < llullzs,

where we used the Cauchy-Schwarz inequality and the identity ab — b? < %. Thus, by

Gronwall’s inequality, we deduce the following a prior: estimate

t T
[u()lz2 < [@llr2es < [|@llr2es = M, Vite(0,T%). (2.83)

Since the time existence T'(||¢|| g+) is a decreasing function of the norm of the initial data

|19]| g5, we know that there exists a time T} > 0 such that for all ¢ € L*(R), with |||z <

M, there exists a unique solution v of (1) satisfying v(0) = ¢ and v € C([0,T3]; L*(R)) N

C((0,T1]; H*(R)). Now, choose 0 < ¢ < Tj, apply this result with ¢y = u(T* — €) and
define
(2.84)

<t <T*—
ﬂ(t):{u(t) when 0 <t <T* —¢

vt —(T*—¢€)) when T* —e <t <T*—e+ T}
Then @ is a solution of (1) in the time interval [0, 7* — € 4+ T3], which contradicts (2.82),

since T* — e+ T7 > T™.
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In the case v = 0, we only need to prove an a priori estimate in L?(R) (for example)
for the solutions of (3), the rest of the proof follows exactly by the same argument as in

the case v = /2.
Let u a solution of (3) in the time interval [0,7]. Then following [3], we differentiate

(3) to get

Wy + 0Wesz + (Wizze + Wez) + 200w, =0,  with w = u,. (2.85)

so that, by Gronwall’s inequality

lue @2 = w(®)llzz < [|gall 2 (2.86)

Then, we take the inner product in L?(R) of (3) with u, integrate by parts, use (2.86),

Holder’s, Gagliardo-Nieremberg’s and Young’s inequalities to obtain

=S ulle = —pthnras + tpas )12 — At )2
< lalfull e e 122 + pllitallZe — polltge 122
< lollfullZa e 2 + pllue 122
< lal(lull2z + luall ) + pllea 122

10
< (lalllall 22 + pllpellz2)e™ + |alfJull72,

where ¢ is a positive constant. This leads, using Gronwall’s inequality, to the following a

priori estimate

lu()llze < (162 + (sl 32 + (ﬁ)lﬂll%\lm)ecﬂ)ew? (2.87)

which ends with the proof of Theorem 2.2. O
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2.5 Ill-posedness result.

Without loss of generality, we suppose 6 = p = 1 in (1). We will first prove that the
Cauchy problem (1) cannot be solved in H*(R) using the fixed point theorem when s < —1.

Then we will show that this fact implies Theorem 2.3.

Theorem 2.4. Let s < —1 and T > 0. Then, there does not exist any space X such that
Xr is continuously embedded in C([0,T]; H*(R)), i.e.

lulleqoryms S llullxr, ¥V ueXe (2.88)

and such that

IV()ollxr S 9llmss Vo€ H(R) (2.89)
and
t
||/ V(t = )b(w, 0)(#)dt || xp S ullxellvllxe YV u, veXr, (2.90)
0
where b(u,v) is the nonlinearity defined by
b(u,v) = (@ — y)uzv, + %(uv)m, with o # 7. (2.91)

Proof. Let s < —1, T > 0. Suppose that there exists a space X as in Theorem 2.4. Take
o, € H*(R), u(t) = V(t)p, v(t) = V(t)Y, and fix 0 < t < T, then, we use (2.88), (2.89)

and (2.90) to see that

e S ||

W

e\ s (2.92)

|| / V(t— )bV (), V(#))dt |

We will show that (2.92) fails for an appropriate choice of ¢ and 1, which would lead to a

contradiction. Define ¢ and ! by

¢ =r2N"(xp)Y, =r"N"(x1)", (2.93)

"'We can also take Re ¢ and Re instead of ¢ and v if we want to deal with real solutions.
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where

N>»1 r~1 I =[-N,—N+r]and I =[N +r, N +2r|.

Note first that

[@llms ~ 1 and |[4)]lms ~ 1. (2.94)

Then we use the definition of the group V and Fubini’s theorem to obtain

Nz

st = ([ ve-npvervine)
= [0 0 ) ()0,
H(V()02)"(€) + 2 (V1)) * (V(¢)) ™ (§)]dr
= ¢ [ (0= )6+ 236t & )i,

eit§3

- TN2S

Y
/ ((a=7)&& + 552)h(t, &, &)d& (2.95)
Ke
where, & = € — & and, by a straightforward computation
t
h(t,€, &) = e € / o (Et—Ei i (e it (] +E3-€%) gy
0

o~ (EA—EHEA—ED)t Lit(E3+E3—£) _ o~ (64 £t

—2616(&7 — €61 + 262 — 1) — 3i&61&,
_ Cl(t, éa 61) + Zb(ta 57 61)

C(ta 5, 61) + Zd(t? 57 61) 7

and
Ke={& /& e, &e b}

When & € I1 and & € [, we have that
&1 ~ [&a] ~ N, r <& <3r andthen |(a—7)6&+ %§2| ~ N2,

since o # v. We use the mean value theorem to deduce that there exists ¢ € K¢ such that

1
9(6.6)] > 5 Re ( [ o =ae+ g52>h<t,§,&>d&) |

2

>

2 mes(Ke)[Reh(t, €, o).
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Then we calculate

a(t, & &)t § &) +b(t, & 6)d(E, € €

Reh(t..6)| = |28 800 & ) H IS E)AEE.8),
C(t7 57 51) + d(t7 57 fl)
and since & € K¢, we have that
C(t7 ga §1)2 + d(ta 57 51)2 ~ Nsa |b(t> ga fl)d(tv 57 61)| < 17
and
a(t,€,€0)e(t, €, &)] ~ N*|em € — em @ GTE-G cos (36,6t

> NA(e= =t o (E -G-8y > Nt

so that
1
Reh(t,&,6)| 2 57
when §; € K¢. Thus
lg(&t)] 2 N7
and
t
H/ V(t =)V ("), V({E))dl || = 2 N2 (2.96)
0

We conclude from (2.92), (2.94) and (2.96) that

N272<1 VN>, (2.97)
which is in contradiction with the assumption s < —1. O

Proof of Theorem2.3. Assume that a # §. Let s < —1, suppose that there exists T" > 0

such that the Cauchy problem (1) is locally well-posed in H*(IR) in the time interval [0, T]]

and that the flow map solution S : H*(R) — C([0,T]; H*(R)) is C? at the origin. When
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¢ € H*(R), we will denote ug(t) = S(t)¢ the solution of the Cauchy problem (1) with

initial datum ¢. This means that ug4 is a solution of the integral equation

us(t) = 500 = V(o = [ Vit = Obust).ul0))at. (2.98)

where the nonlinearity b is defined in (2.91).
When ¢ and ¢ are in H*(R), we use the fact that b is a bilinear symmetric application

to compute the Fréchet derivative of S(¢) at ¢ in the direction ¢

dyS(t)p = V(1) — 2 /0 t V(t — t)b(uy ('), dpS(t)o)dt. (2.99)

Since the Cauchy problem (1) is supposed to be well-posed, we know using the uniqueness

that S(£)0 = uo(t) = 0 so that we deduce from (2.99) that
doS(1)é = V(1)o. (2.100)
Using (2.99), we compute the second Fréchet derivative at the origin in the direction (¢, )
BS(0(6.0) = dofd SW0) = 5(5 = (B0,
= =2 [ V(= OSSO0,
2 [ Vit = bl 0. )6 ),
so that we deduce using (2.100) that
daS(t) (¢, ) = —2 /Ot V(t—to(V (), V(t)e)dt. (2.101)

The assumption of C? regularity of S(t) at the origin would imply that d2S(t) € B(H*(R) x

H*(R), H*(R)), which would lead to the following inequality

1deS @) (6, )l < 19

w@lYlee, V¢, ¥ €H(R). (2.102)

But (2.102) is equivalent to (2.92) which has been shown to fail in the proof of Theorem

2.4. U



Chapter 3

The non-dissipative problem:
ill-posedness results.

3.1 Introduction and statements of the results.

We now turn our attention to the limit case of the IVP (1) when the dissipation x tends
to zero. In this case, we can suppose d = 1, so that (1) can be rewritten on the following
form

3 2 2 _
{ Oy + Oju + a(0yu)® + yudiu = 0, (3.1)

u(0) = ¢
In fact, we will consider a more general class of higher-order dispersive equations which

generalizes (3.1) as well as the KdV equation:

{ Opu + OF 1y = Zogllglzgm‘ a, p0pudiu, @, tER, (3.2)

u(0) = ¢,
where w is a real- (or complex-) valued function and a;, ;, are constants in R or C. This class
of equation, which was studied by Kenig, Ponce and Vega ([18] and [19]), is a particular
case of the family (4), the polynomial considered here being only quadratic. We refer to
the introduction for physical aplications.

As mentioned in the introduction, our first result is a negative one: if there exists k > j
such that ag # 0, then the IVP (3.2) cannot be solved in any space continuously embedded

in C([-T,T], H*(R)), s € R, using a fixed point theorem on the corresponding integral

47
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equation. We also deduce, as a consequence of this result, that in this case, the flow map
data-solution associated to (3.2) cannot be C? at the origin from H*(R) to H*(R), for any
s € R. Note that these results are valid in particular for our limit IVP (3.1).

These ideas can also be used for systems. For example, consider the following higher-

order nonlinear dispersive system:

Opuy + Ouy + %ax@ﬁ) + %62(1;3) =0
atUQ + 8§uQ + am(UﬂLg) =0 z, tE R, (33)
u1(0) = ¢1,  ua(0) = o,

where u; and uy are real-valued functions. This system appears in [22] as a model to
particle-like behavior of nonlinear fields and was proved by Angulo and Barros [1] to be
well-posed in some weighted Sobolev spaces. We prove here that the flow map of (3.3)
cannot be C? at the origin from H*(R) x H*(R) to H*(R) x H*(R) for any s € R.

The same kind of argument leads to similar results for other higher-order nonlinear

dispersive equations. We consider first an higher order Benjamin-Ono equation.

{ Oy + ad?u — bHO*u = cudyu — dd,(uHO,u + H(ud,u)) (3.4)

u(0) = ¢,
where H is the Hilbert transform, u is a real-valued solution,and a € R, b, ¢ and d are
positive constants. This equation was derived by Craig, Guyenne and Kalisch [10], using
an Hamiltonian perturbation theory. It describes, as the Benjamin-Ono equation, the
evolution of weakly nonlinear dispersive internal long waves at the interface of a two-layer
system, one being infinitely deep.

In the same paper, Craig, Guyenne and Kalisch (always using an Hamiltonian pertur-

bation theory) also derived an higher order intermediate long wave equation.

{ Ou + (a1 FE + a2)02u — bFp0%u = cudpu — Oy (uFp0pu + Fp(udyu)) (3.5)

u(0) = ¢,
where Fy, is the Fourier multiplier —i coth(h€), u is a real-valued solution, and ay, as, b, ¢, d

and h are positive constants. The same ill-posedness results also apply for these equations.
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These results are inspired by those from Molinet, Saut and Tzvetkov for the KPI
equation [28] and the Benjamin-Ono (and the ILW) equation [29], (see also Bourgain [4]
and Tzvetkov [35] for the KdV equation). It is interesting to notice that the equation (3.4)
and the BO equation (as well as the equation (3.5) and the ILW equation) share the same

property of ill-posedness of the flow in any Sobolev space H*(R).

This analogy is interesting: however the flow map solution associated to the BO equa-
tion cannot be C?, the BO equation was shown by Iorio [13] to be well-posed in H*(R), for
s > 3/2, using parabolic regularization and energy estimates, the flow map solution being
only continuous. Later, this result was improved by many authors. The best, as far we
know, was obtained recently by Ionescu and Kenig [12] and states the local well-posedness

of the BO equation in H*(R) for s > 0.

Then one is naturally let to ask if a similar result could also hold for the higher-order
BO equation, i.e., do we have well-posedness for the higher-order BO equation in some
Sobolev space H*(R), the flow map remaining of course only continuous? We can also
ask the same question for the other higher-order dispersive equations studied here. Un-
fortunately, we were not able to answer these questions, the difficulty residing here in the
energy estimates. We tried to modify the Kato-Ponce commutator estimates (see [16]) to

higher-order non-linearities, but without success.

Statement of the results.

Theorem 3.1. Let s € R and T > 0, suppose that there exists k > j such that aoy #

0, then, there does not exist any space Xp such that Xp is continuously embedded in

C([-T,T); H*(R)), i.e.,

lulleq-rmme) S Jullxy, ¥V ue Xr, (3.6)
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and such that

1U; ()0l xr S M10llms ¥V ¢ € H*(R), (3.7)

and
t
II/ Uit—t) Y ann,0iu)02o(t)dt||x, < lullxllvllx,, VuveXr. (38)
0

0<l1<i2<2j

Theorem 3.2. Let s € R, suppose that there exists k > j such that agy # 0. Then, if the
Cauchy problem (3.2) is locally well-posed in H*(R), the flow map data-solution

S(t): H*(R) — H*(R), ¢ — u(t) (3.9)
is not C? at zero.

Theorem 3.3. Let s € R. If the Cauchy problem (3.3) is locally well-posed in H*(R) x
H*(R), then the flow-map data solution

SSKAV (1) . H¥(R) x H*(R) — H%(R) x H*(R)

(¢1,¢2) s (ug (1), ua(t)), (3.10)

is not C? at zero.

Theorem 3.4. Let s € R. If the Cauchy problem (3.4) and (3.5) are locally well-posed in

H*(R), then the flow maps data-solution
SheBO) . H¥(R) — H*(R), ¢ +— u(t), (3.11)

and
SheIW (1) . HS(R) — H*(R), ¢ — u(t) (3.12)

are not C? at zero.

3.2 Proof of Theorems 3.1, 3.2 and 3.3.

In the proofs of Theorems 3.1 and 3.2, we will suppose, for more simplicity, that the
nonlinearity » o< <, <o ay, 1,04 ud2u has the form 0F(u?) with k > j.

Proof of Theorem 3.1. The key point of the proof is the following algebraic relation
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Lemma 3.1. Let 5 € N such that j > 1 and £,& € R, then

P (€= &)Y — U = (€ - 6)Q9(8,&), (3.13)
where
27
Q2(6,6) = Y ((—1)'Cy; — gV 'g (3.14)
=0
and C* = #lk),

Note that Q2;(&, &) and € — & are prime.

Let s € R, k,j € N such that £k > j and T' > 0. Suppose that there exists a space X
such as in Theorem 3.1. Take ¢, ¢ € H*(R), and define u(t) = U;(t)¢ and v(t) = U;(t)v,
where U; was defined in (1.25). Then, we use (3.6), (3.7) and (3.8) to deduce that

H/O U;(t = )0 [(U;()o)(U; ()]t |+ S N6l sl - (3.15)

We will show that (3.15) fails for an appropriate pair of ¢, ¢, which would lead to a
contradiction.

Define ¢ and v by

¢ = (a™xp,)" (3.16)
and
= (a PN xy,)" (3.17)
where
N>1, O<a<xl, I=][a/2,a] and I, =[N,N + qf (3.18)
Note first that
[0llms ~ [[¢]|ms ~ 1. (3.19)

Then, we use the algebraic relation (3.13) the definition of the unitary group U; and the
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definition of ¢ and 1 to estimate the Fourier transform of the left-hand side of (3.15)

(/ Uj(t — t) 0 [(U; (¢ )aﬁ)(Uj(t’)w)]dt’)A(f)

1)7+14(¢—¢!)e2i+1 (Zé_)k<e(,1)j+1it(.)2j+l (/g) « (e(fl)j"'lit(')zj_‘—l{b\) (f)dt,

0
e( )J+llt(£ él)QZJ(f 61) — ]_

-
= [ e Bie — ) [ el vaesssatag
/

J+1Zt§2]+1 n B
()" 001 ~ &) e —enam .6
]+1lt§2j+1£k e(_l)jJrth(g gl)QQ](E 51) _ 1
~ d&;. 3.20
aN* /{?_6526 I (€ —&)Q2(&,61) “ (320)

When & — & € I and & € I, we have that || ~ N, [(§ — &)Q2;(§,61)| ~ aN% . We

choose o« = N=%/7¢_ with 0 < € < 1 so that

(€ = &1)Q2;(&, &) ~ N7 <1 (3.21)

and
e(*l)jﬂit(f*&)@% (&€ _ 1

(€ = &1)Q2;(&: &)
where ¢ € C. We are now able to give a lower bound for the left-hand side of (3.15)

= ct + o(N) (3.22)

| [ Ut = RO e 2 N (3.23)

Thus we conclude from (3.15), (3.19) and (3.23) that
NkQl/2 = NF=I=¢/2 <1 ¥ N> 1, (3.24)
which is a contradiction since k& > j. U

Remark 3.1. Since the class of equation (3.2) often appears in physical situations where
the function u is needed to be real-valued, it is interesting to notice that Theorems 3.1 and

3.2 are also valid if we ask the functions to be real.
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Proof. Actually take ¢; = Re ¢ and 1)y = Re) instead of ¢ and 9, then

a2

a—1/2N—s
¢ = 5

X{a/2<|¢|<a} and ¢y :TX{NSK\SN-W% (3.25)

and so we can conclude the proof as above. O

Proof of Theorem 3.2. Let s € R and k,j7 € N such that £ > j. Suppose that there
exists T' > 0 such that the IVP (3.2), with the nonlinearity 0¥ (u?), is locally well-posed in
H*(R) in the time interval [0, 7] and that the associated flow map solution S** : H*(R) —
C([0,T]; H*(R)) is C? at the origin. When ¢ € H*(R), we will denote uy(t) = S?*(t)¢ the
solution of the Cauchy problem (3.2) with initial data ¢. This means that u, is a solution

of the associated integral equation

u(t) = U;(t)é + /0 t Ui(t — )9 (u?) ()t (3.26)

When ¢ and ¢ are in H*(R), we use the fact that the nonlinearity 0% (uv) is a bilinear

symmetric application to compute the Fréchet derivative of S7*(¢) at 1 in the direction ¢
t

dyp ST () = U;(t)p + 2 / Uj(t — )05 (wy (t)dy ST (¢ p)dt'. (3.27)
0

Since the Cauchy problem (3.2) is supposed to be well-posed, we know using the uniqueness

that S7*(¢)0 = up(t) = 0 and then we deduce from (3.27) that
do ST (t)p = Uy (t) . (3.28)
Using (3.27), we compute the second Fréchet derivative at the origin in the direction (¢, ¢)
2 ik _ 3,k _ 9 g,k
dgS™" ()(¢, ) = do(d ST (t)p)yp = 8_5<ﬁ = dgpS" ()9,
t
=2 [ Uyt~ 000 MO S ()N,

0

+2/0 Uj(t = )05 (ugy ()5, S™ () (¢, )t ,_,.
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Thus we deduce using (3.28) that

5 () (6,1) = 2 / Uyt — YU (U ) (3.29)

The assumption of C? regularity of S7*(t) at the origin would imply that d3S7*(t) €
B(H*(R) x H*(R), H*(R)), which would lead to the following inequality

157 () (¢, )]

we®) S 0]

w@ ||V aw), V&, e H(R). (3.30)

But (3.30) is equivalent to (3.15) which has been shown to fail in the proof of Theorem

3.1. U

Proof of Theorem 3.3. Let s € R. Suppose that there exists T > 0 such that the
Cauchy problem (3.3) is locally well-posed in H*(R) x H*(R) in the time interval [0, 7]
and that the flow map solution S5 is C? at the origin. When (¢;, ¢2) € H*(R) x H*(R),

we will denote

(u17(¢1,¢2)(t)7 u27(¢17¢2)(t)) - (SdeV (t) (¢17 ¢2)7 SSKdV(t) (¢17 ¢2>>

the solution of the Cauchy problem (3.3) with initial data(¢q, ¢2). Then, we get, performing

the same kind of computations as in the proof of Theorem 3.2, that

o0y S5 (O)(D1, d2), (Y1, 92)]
=~ [ - OB ) + B )

The assumption of C? regularity of S*¥4V at the origin would imply in particular that

ld{0.0)S5* " (O)[(0, ), (¥, )|

) S [¢]

@) [¥]] = (r). (3.31)

for all ¢ and ¢ in H*(R). But exactly the same choice of ¢ and ¢ as in the proof of Theorem

3.1 (with 7 = 1) shows that (3.31) fails. O
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3.3 The higher-order Benjamin-Ono and intermedi-
ate long wave equations.

In order to study the Cauchy problems (3.4) (respectively (3.5)), we define V; (re-

spectively V3) the unitary group in H*(R) associated to the linear part of the equations,

ie.
Vi(t) o = (apk@t&ﬁ)v, k=12, VteR, Voec H(R), (3.32)
where
pi(€) = a&’® + DIEJE,
and

p2(€) = (a1 coth?(h€) + a)&” + beoth(h€)€>.

We denote by f; (respectively f;) the nonlinearity of the equations (3.4) (respectively
(3.5)), i.e.
fi(u) = cud,u — do,(uHO,u + H(udyu)),

and

fa(u) = cud,u — do,(uFn0.u + Fp(ud,u)).

Then, we have the analogous of Theorem 3.1 for the equations (3.4) and (3.5).

Theorem 3.5. Let s € R, T'> 0 and k € {1,2}. Then, there does not exist any space Xr
such that Xt is continuously embedded in C([—T,T]; H*(R)), i.e.,

lullcq-rrims S Jullxy, YV u€ Xp, (3.33)

and such that

V()0 xr S |6

we, ¥ o€ HY(R), (3.34)

and

t
II/ Vi(t =) fu(w) () | x, < lullk,, ¥ u€ Xr. (3.35)
0



56 3. The non-dissipative problem: ill-posedness results.

Theorem 3.4 is a consequence of Theorem 3.5 (see the proof of Theorem 3.2).

Proof of Theorem 3.5. Let s € R, T"> 0 and k € {1,2}. Suppose that there exists a
space Xp such as in Theorem 3.5. Take ¢ € H*(R), and define u(t) = Vj(t)¢. Then, we
use (3.33), (3.34) and (3.35) to see that
t
I [ ite = ) fviteNosar|
0

We will show that (3.36) fails for an appropriate choice of ¢, which would lead to a con-

2. (3.36)

e S |9

tradiction.
Define ¢ by !
6= (a2x, +a PN x,,)” (3.37)
where
N>1, O<a<xl, L =a/2,a] and I, =[N,N +q] (3.38)
Note first that
il ~ 1. (3.30)

Then, the same computation as for (3.20) leads to
A

(/Ot Vie(t — t’)fk((Vk(t')@dt') (&) ~ 91(&, 1) + g2(&, 1) + gs(&, 1), (3.40)

where,
citp(€) et (p(&)+p(E—&1)—p(§)) _ 1

= d
a(6H == / R E ey
citp(€) eit(p(&)+p(E—&1)—p(§)) _ 1

S / I8 e T 6 = 2]

§—&1 €12
eitp(§)
t) =
93(57 ) aN$

eit(p(€1)+p(E—&1)—p(&)) _ 1 p
foon, Mo e m
eit(p(€)+p(E—&1)—p(9) _ 1
d
+/§165sz1 Fel&:6); i(p(&) +p(§ — &) — p(E)) 51)’

'We can also take Re ¢ instead of ¢ (see the remark after the proof of Theorem 3.1).

92<€,t) = dgla
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and

f1(§, &) = & — d(E]&| + [€]&1),

or

f2(§,&) = & — d(€ coth(§1)€1 + coth(§)E&).

Since the supports of ¢1(,t), g2(-,t) and g3(-,t) are disjoint, we use (3.40) to bound by
below the left-hand side of (3.36)

t
I Vilt = O Sl VA )0)dt - = [55) (€. 1) - (3.41)
0
We notice that the function p; is smooth and that
() S 1+ €[ (3.42)

Thus, when § € [} and £ — & € I, or £ — & € I and & € I, we have that |£| ~ N, and

we use (3.42) and the mean value theorem to get the estimate

Ip(&) + p(€ — &) — p(§)] S aN?. (3.43)

Hence we choose o = N727¢, with 0 < € < 1, to get

et (p(€1)+p(E=&1)—p(9) _ 1

@) TP =) =0

| = [t| + o(N7°). (3.44)

We are now able to give a lower bound for ||(g3)¥ (&, )]

HS
v 5 N 2 1/2 12, > n2,1/2
1(g3)" (&, ) ||ms 2 Voo (N a’*a — Nao a) 2 N<a'/=. (3.45)
Thus, we conclude from (3.36), (3.39) and (3.45) that
N2a?2 = N'=2 <1 V¥V N>1, (3.46)

which is a contradiction. O



Chapter 4

The non-dissipative problem:
well-posedness results.

4.1 Introduction and statements of the results.

In this chapter, we continue investigating the IVP (3.1), associated to the non-dissipative
Kuramoto-Velarde equation. Since we showed, in the previous chapter, that this IVP was
(in some sense) ill-posed in H*(R), for any s € R, we will have to consider smaller func-
tional spaces to obtain well-posedness results.

This IVP was proved (as a particular case of (4)), by Kenig, Ponce and Vega, to be
well-posed in some weighted Sobolev spaces for small initial data [19], and for arbitrary
initial data [18]. We also refer to Argento’s work [2], for more precision on the best
exponents of the weighted Sobolev spaces obtained with this technic, in the particular
case (3.1): actually, she proved that the IVP (3.1) is well-posed for small initial data in
HY(R) N H3(R; 2%dx) for k € N, k > 5.

The method used, in the case of small initial data, is an application of a fixed point
theorem to the associated integral equation, taking advantage of the smoothing effects
associated to the unitary group U of the Airy equation, (see (1.23) for the definition of U).
In particular, a maximal (in time) function estimate for U(t)¢ is needed in L!. Actually,

as observed in [17], the L!-maximal function estimate fails without weight, and this could

o8
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be another reason to explain why the problem is ill-posed in the Sobolev spaces H*(R),
for s € R.

In the case of arbitrary initial data, Kenig, Ponce and Vega performed a gauge trans-
formation on the equation (4) to obtain a dispersive system whose nonlinear terms are
independent of the higher-order derivative. This allows to apply the techniques already
used in the case of small initial data.

Here, we improved these results for the IVP (3.1), in the case of small initial data,
using the weighted Besov spaces defined in the section 1.2. The use of Besov spaces is
inspired by the works of Molinet and Ribaud on the Benjamin-Ono equation [27] and on
the Korteweg-de Vries equation [26], and Planchon on the nonlinear Schrédinger equation
[30]. It permits to refine the L!-maximal function estimate, using the L?-maximal function
estimate derived by Kenig and Ruiz [21], and to obtain well-posedness results in fractional
weighted Besov spaces (which seems to be difficult with weighted Sobolev spaces).

Unfortunately, we did not achieve to apply this technic in the case of arbitrary initial
data. Actually, when performing the gauge transform as in [18], an exponential nonlinear-

ity appears in the new system, which seems difficult to estimate in the Besov spaces.

Statements of the results.
Theorem 4.1. There exists § > 0 such that for all uy € 33/4’1(]R) N 85/4’1(]1%; x2dx) with
p= HUOHBg/“’l + ||u0||B;/4’l(x2dx) <9, (41)
there exists T = T(B) such that T(3) /" +oo when  — 0, a space X such that
Xr — C([-T,T); BY**(R) N BY* (R; 22dz)) (4.2)

and a unique solution u of (3.1) in Xp. Moreover, the flow map is smooth from 83/4’1(R) N

By *N(R; 22dz) to Xr near the origin.
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Theorem 4.2. Let s > 9/4, then there exists § > 0 such that for all uy € H*(R) N
By **(R; 2dx) with

8= luollgarns + olgyas oy < (43)

there exists T = T(3) such that T(3) /" +o0o when  — 0, a space Yrs such that
Y, — C([=T,T]; H*(R) N B >*(R; %dx)) (4.4)

and a unique solution u of (3.1) in Yr 5. Moreover, the flow map is smooth from H*(R) N

By **(R; a%dx) to Yo, near the origin.

Since we have using Lemma 1.2, that H3(R) N By*(R; 22dz) = H3(R) N H'(R; x%dx),
we deduce as an application of Theorem 4.2 with s = 3, that the Cauchy problem (3.1) is

well-posed in H3(R) N H'(R; x?dz). This improves previous results in [2].

In order to simplify the proof of Theorems 4.1 and 4.2, we will assume that the nonlin-
earity in (3.1) has the form 9%(u?) in the rest of this chapter. However, the proof with the
general nonlinearity follows exactly by the same way, rewriting the correspondent nonlinear

estimates.

4.2 Linear estimate.
1. Linear estimates for the free and the nonhomogeneous evolutions.

Proposition 4.1 (Kato type smoothing effect.). If ug € L*(R), then
10:U ()uol| e rz S Nluollz2- (4.5)
Let T >0, then if f € LLLA

t
||/ OU(t =) f(t)dt | gerz S I f ez (4.6)
0
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and

I [ 020t = )56 O N, S 151z T
Proof. See [17].
Proposition 4.2 (Maximal function estimate.). If ug € S(R), then

U (t)uol|zaree S 11DY uo|re, (4.8)

and

U@ uollzrzge < 1Dy uollze + 1D/ (wuo) |2 + T Dy 0 uol| 2. (4.9)

Proof. The estimate (4.8) is due to Kenig and Ruiz (see [21]). We will prove the estimate

(4.9) using (1.26), (4.8) and Holder’s inequality

1
VOl = [ sup [UOuw@lds+ [ sup U (Ou(e)de
lz|<1 [-T.T] |z|>1 || [-T,T)
S U @uollazee + 1U ) (zuo) ||z + TNU(1)02uo| 4 s

< 1D ol r2 + || Dy/*(zuo) |22 + T|| DL *02uo|| e
(]

Remark 4.1. [t is interesting to observe that the restriction on the s in Theorem 4.2

(s > 9/4) appears in the estimate (4.9).

2. Linear estimates for phase localized functions.
Following the ideas in [27], we will derive linear estimates for the phase localized free

and nonhomogeneous evolutions.

Proposition 4.3. Let ug € S(R), then
[1A;U(t)uol| e rz = [|Ajuol L2, (4.10)

and

AU (t)uollerz < llxdjuollez + T2% [ Ajuo| 2. (4.11)
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If f:R x [0,T] — R is smooth, then we have for all j > 0
I [ 800 - RO g1 218 s, (112)
and
| /Ot e DUt = )R f (1) | pgorz S 2w fllpera, + (1 +T)2Y1A; fllprra.  (413)

Proof. The identity (4.10) follows directly from the fact that U is a unitary group in

L*(R). To prove the estimate (4.11), we will use (1.26), (4.10) and Plancherel’s theorem
l28;U (t)uoll ez < U ) (28 5u0)l| Lo 12 + 3T U (124 juo|| oo 12
S Nwdjugll gz + T2% (| AU (t)uo || e 12

The estimate (4.12) follows from (4.6), Plancherel’s theorem and the fact that A; localize
the frequency near |¢] ~ 27. Next, we will prove the estimate (4.13). The identity (1.26)

imply that
I [ #AU =R i
SI [ Ut 00,1 )il s
4 / AUt = 1) F () . (414)
We use again (4.6) to estimate the second term on the right-hand side of (4.14)
ull AU — O a2 S TPIA Fyss. (4.15)
To estimate the first term, we need the following identity
20 A f = (2, f) — 205(Af) (4.16)

Then, we use (4.6) and the fact that the operator A, still localizes the frequency near

€] ~ 27 (see the commutator identity (1.9)).

H / (@D F (AN iz S PNl flys + 18 Iy (417)

We deduce (4.13) from (4.14), (4.15), (4.17) and the fact that j > 0. O
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Proposition 4.4. Let ug € S(R), then
||AjU(t)UO||L;OL2T S 2_j||AjU0||L§., (4.18)

and

[2A;U ()uol| ooz S 27l juollz + T27]| Ajuolls.- (4.19)
If f:R x[0,T] — R is smooth, then we have for all j > 0
t
I [ AU = 037 N, S 185 s (4.20
0
and
t .
I / e AUt =R f (1) | oz SN fllzz + A+ T2 A fll oz (4.21)
0

Proof. The proof is the same as for the Proposition 4.3 where we use (4.5) and (4.7)
instead of (4.6). O

In order to derive a non homogeneous estimate for the localized maximal function, we
need the following lemma due to Molinet and Ribaud (see [27]) and inspired by a previous

result of Christ and Kiselev (see [8]).
Lemma 4.1. Let L be a linear operator defined on space-time functions f(x,t) by
T
Lf(t) :/ K(t,t) f(¢"dt,
0
where K : S(R?*) — C(R?) and such that
HLJC“L?L%O < C||f||L§2LqT27
with ps, qa < 0o. Then,

t
w/mwwwwmwsmww#.
0
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Proposition 4.5. Let ug € S(R), then
12U (Buoll s S 28 (1 + 1)1 Ajuoll 2 + 257 [|l2Ajuo| 2. (4.22)
If f:R x [0,T] — R is smooth, then we have for all j > 0
I [ 8,00 = 20O
S 290 fllaarg + (L T2 f s (4.23)

Proof. To obtain the estimate (4.22), we apply (4.9) with Aju, instead of ug, then we use
Plancherel’s theorem and the fact that the operators A; and xA; localize the frequency
near [£] ~ 2.

In order to prove the estimate (4.23), we first need to derive a "nonretarded” L*-

maximal function estimate. Note first that duality and (4.8) imply that

H/ A0tz S 291 fll g (4.24)

Then, we deduce combining (4.12), (4.24) and the Cauchy-Schwarz inequality that for all
4/3
g€ L*LL

T
/ (/ AUt — t’)agf(-,t’)dt’) g(x, t)dxdt
Rx[0,T7] 0

T T
:/ </ U(— /)8§Ajf<'7t/)dt/) (/ U(_t>Aj§(‘,t)dt) dzx
0
<UL [ vetEas el [ U-0Age s
< V14, sz 2¥ gl .
so that by duality
T .
I [ A= 035 0t sse S 2908 usag (4.25)
0

Then, we use Lemma 4.1 to obtain the corresponding "retarded” estimate

t
I [ A= 0210 nsaze S 20185 s (4.26)
0
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We are now able to derive the L1 L3 estimate for the non homogeneous term. We have

by Holder’s inequality

t
|| A= 0.0t
0

= / sup
|z|<1 te[-T,T]

1
+/ —  sup
|z|>1 |z te[~T,T)

t
/ AUt =2 f(-,t)dt | dx
0

t
/ e AUt — )02 f (-, )t | dx
0

t t
5w/Aﬂ@—ﬂ%ﬂwww%w+n/xAﬂu—w%ﬂwwm%g
0 0

Thus, we deduce from (1.26), (4.16), (4.26) and (4.27) that

t
|| A= 0.0
0

< 29 + 7257 4+ 20) | A fll sz, + 28 w2 fllare,

which leads to (4.23), since j > 0.

(4.27)

(4.28)

Remark 4.2. All the results in Propositions 4.3, 4.4 and 4.5 are still valid with Sy instead

of Aj and j = 0.
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4.3 Proof of Theorems 4.1 and 4.2.

Proof of Theorem 4.1.

1. Ezistence. Consider the integral equation associated to (3.1)
t
u(t) = F(u)(t) := U(t)ug +/ Ut — )02 (u®)(t)dt'.
0
Let T' > 0, define the following semi norms:

o0
9.
N (w) = [1Soullgrz + Y 29 [ Ajull s 2,

Jj=0

oo
l.
Ny (u) = [JaSoul| L1z + ZQNHxAjuHL%OL%,
=0

oo
E.
P (u) = [[Soull ez + Y 2471 Azull ez

J=0

o0
5
Py (u) = ||$SOU||L;OL2T + Z 24J||$Aju||LgoL2T,
j=0

M*(u) = [ Soullrrse + Z 1Aull g

§=0
Then, we define the Banach space

Xr = {ue O(~T,T}; By (R) N BY "' (R; 2%dx)) = [Jullx, < o0},

where

Jul|x, = N{ (u) + N3 () + P/ (u) + Py (u) + M (u).

We deduce from (4.10), (4.11), (4.18), (4.19) and (4.22) that

10 @l S (1 +T) (ol gpras + lttollgyras gy )

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)
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and from (4.12), (4.13), (4.20), (4.21) and (4.23) that

|| / Ut — )02 (wo)(t')dt | x,

[e%s) s
S(A+T) <I|So(uv)|lL;L2T +> 25| A (o) |z,

J=0

+|@So(wv)|l a2 + Z 2‘5*j||xAj(UU)HL;L2T> : (4.38)

=0
In order to estimate the nonlinear term ) 7 21T3j||Aj (wv)||z12, we perform the fol-
lowing calculation

Aj(uv) = Aj(lim S,uS,v)

r—00

= A] <S()USO'U + Z(Sr+luST+lv - STUSTU)> (439)

r=0

1 o
= A <S()USOU + 5 Z (Ayu(Syv + Sppqv) + Apo(S,u + Sr+1u))> _
r=0

First, since A;(SpuSov) = 0 for j > 3 and since the operators A; are uniformly bounded

(in j) in L', we have by Holder’s inequality

> 259 As(SouSov)llzazz. S I1Soullzzrs 1Sovllsnge S lullxe ollx (4.40)

7>0

In order to estimate the second term on the right-hand side of (4.39), we notice, since the
term A,u(S,v + S,41v) is localized in frequency in the set |£| < 2" and the operator A

only see the frequency in the set 2771 < [£] < 27F1 that

Aj <Z(A7~U(STU + Sr+1U) —+ ATU(STU —+ Sr—i—l“)))

r=0

= A ( ST (AvulSev + Spa1v) + Ajo(Spu+ Sr+1u))> . (4.41)
r>j—3
A,uS,v). By Fubini’s theorem,

Then, we only have to estimate terms of the form Aj(zr>j
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we get

> 294,007 AuS) sz

>0 r>j
13
<25 A ez S0l
7>0 r>j
<o Y (T2 12 s
r>0 7=0
S M ()P (u) < flullxp vl x,» (4.42)
where we used the fact that
[Srvllzizee < [[Sovl|pinge + Z 1201 < M7 (). (4.43)
=0

Thus, we obtain, gathering (4.39), (4.40), (4.41) and (4.42) that

[e.o]

13
D208 (W) pass S Nullxellollx, (4.44)

=0
We apply exactly the same strategy to estimate the other bilinear term Z;io 214 |lzA;(uv) HL%LQT'

Then, we have only to estimate terms of the form ) 7% 2%j||xAj(Z AruS0)|| g1z, and

r>]

we use the commutator identity (1.9) and the fact that the operators A’ are also uniformly

bounded (in j) in L' to deduce that

> 20 |lw A (w) | a2,

320

5, 1,
<> (24J D eS| ez 23 |]ATUSTUHL20L2T>

J=0 r2j r2j

S M) (P (u) + Py () < Jullxe [[v]lx,- (4.45)
Thus, we deduce from (4.38), (4.44) and(4.45) that
H/ t)0; (wo) ()t ||, < (1 + T)lullxp o] x,- (4.46)
Then, we use (4.37) and (4.46) to deduce that there exists a constant C' > 0 such that

IF@)lxe < COU+T) (luoll s + ol gye oy + Iuli%e, ), ¥ we Xr,  (447)
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and
[ F(u) = F(v)|[x, < O+ T)([Jullx, + [[v][x:)lw = vlxp, ¥V u,ve Xy (4.48)

Let Xr(a) == {u € Xz : ||lu|lx, < a} the closed ball of X7 with radius a. Xr(a)

equipped with the metric induced by the norm || - ||x, is a complete metric space. If we
choose
_ 1
0= ||UO||Bg/4,1 + ||u0||l3;/4’1(a:2dx) <6< mln{(E)27 1}, (449)
1
a=+/pB, and T=-—— (4.50)

we have that

20(1+T)a < 1. (4.51)

Then, we deduce from (4.47) and (4.48) that the operator F' is a contraction in Xr(a)
(up to the persistence property) and so, by the Picard fixed point theorem, there exists a
unique solution of (4.29) in Xr(a).

2. Persistence. We want to show that the solution u of the integral equation (4.29) is in

C([-T,T7; 83/4’1(]R) N 85/4’1(]1%; x?dr)). By Lemma 1.4, we only need to prove that

t
lim | / Ut — )02(u®) ()| goren = O, (4.52)
— 0 2
and
t
: N2/, .2 / / _
lim | /0 Ut = #)02(0) (#)de | 353 gy = O (4.53)

Let 0 <t <ty < T, then we obtain, using the same computation as for (4.46) that

I [ U= 000 ) g < N[ Ul = )220 @it

< C(1+to)aP(u). (4.54)
Since Pl'(u) < ||u|xr < a, we deduce by the monotone convergence theorem that

lim P (u) = 0. (4.55)

to—0
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We deduce (4.52) combining (4.54) and (4.55). The identity (4.53) follows by a similar
argument.

3. Uniqueness. In order to prove the uniqueness of the solution in the whole space X7,
suppose that there exists another solution @ of the integral equation (4.29) such that @
also belongs to X7. then, we deduce from (4.37), (4.38), (4.49) and (4.50) that for all
0<Ty <T,

] x,, <a/2+ OTl(/O Ut — )02 (u?)(t)dt") (4.56)

where

oo o0
13 5;
O"(u) = ||Soullzyre + D 2071 Agullyrz + lwSoullyzs + D 28 wdull 1z

=0 =0
Since by the estimate (4.46),

o ([ Uit~ Oy ea) < oo+ alk, < o
we deduce by the monotone convergence theorem that
t
TlimO(OTl(/ Ut —t)o2(a®)(t)dt') = 0. (4.57)
1= 0

Hence, by (4.56) and (4.57), we can fix a 0 < T} < T such that @ € Xr,(a), and conse-
quently u = u for (x,t) € R x [=17,T1]. We observe that 77 only depends on @ and then,
we can reapply this process (a finite number of times) to extend the uniqueness result in
the whole interval [T, T].
4. Smoothness of the flow map data-solution. We denote by S the flow map of the equation
(3.1). By the existence and uniqueness part of Theorem 4.1, S is well defined in the ball
B(0,6) of C(|=T,T); BY**(R) N BY*" (R; 22dx)),

S:B(0,0) — XT(a), wuo+—— S(t)uo. (4.58)

Then, using (4.37), (4.46) and (4.49), we deduce that

1o — SEeollx, < CU+T) (o = vollgys + 1o = vl gy 2

+2al|S()uo = S(t)vollx,) , (4.59)
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so that (4.51) imply that S is Lipschitz.

To prove the smoothness of S, let define

H : B(0,8) x Xy N C°([0,T], H*(R)) — Xr

(¢, v) = o(t) = U(t)o — /O Ut — "0 (v?)()dt'.

Note that H is well defined, H is smooth and H (¢, S(t)¢) = 0. Moreover, we fix ¢ € B(0,6)

and we compute for all w € X7
0uH (o, S(t)p)w(t) = w(t) — 2 /Ot U(t —t")05(S(t)gw)(t')dt'.
Then, we deduce using (4.46), that
I(id — 0, H (¢, S(t)$))w(t)||x, < 2C(1 + T)alwlxy,

so that, by the choice of T in (4.51), 0,H (¢, S(t)¢) € L(Xr) is an isomorphism. Thus,
we conclude by the implicit function theorem that there exists a neighborhood V' of ¢ in
B(0,9) and a smooth application h : V' — X such that H(¢, h(y0)) = 0, for all ¢ € V.
This means that S|, = h is smooth, and since smoothness is a local property, we conclude

that the flow map S is smooth in B(0,0). O

Proof of Theorem 4.2. We will need the following lemma:

Lemma 4.2. Let s > 9/4, then the injection
H*(R) N By **(R; 22dz) — BY*'(R) N BY " (R; 2%dx) (4.60)

18 continuous.
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Proof. Let s > 9/4 and f € H*(R). We obtain using the Cauchy-Schwarz inequality that

| Fllgoras = [1Sof 1z + > 2514 ] 2274

Jj=0
1/2 1/2
< S0 fllz2 + <Z4j(9/45)> <Z 4jSHAjf||%2>
320 J=0
S I llsgz ~ LW e (4.61)
Similarly, we get
HfHB;/A‘vl(ﬂdx) 5 Hf’ By~ 2% (a2dx)> (462)
when s > 9/4 and then, (4.61) and (4.62) yield (4.60). O

Now, let s > 9/4. Exactly as in the proof of Theorem 4.1, we want to apply a fixed
point theorem to solve the integral equation (4.29) in some good function space. In this

way, define the following semi-norm

lull s, = Nio(w) + Ny (u) + Piy(u) + Py (u), (4.63)
where

o 1/2

N{(u) = [[Soullzzerz + (Z‘VSHAWIQM) : (4.64)
]::o 1/2

Ng:s(u) = HxSOuHL%oL% + ( 4j(8_2)||xAjU||%$Lg) ) (4.65)
OJ: 1/2

Pl (u) = [|Soul| g1z + (Z 4j(s“’|!AjUHigoL2T> : (4.66)
j:oo 1/2

Py (u) = [loSoull ez + (Z 4j(5‘1)II$AjUIIi;OL2T> : (4.67)
j=0

If uy € H*(R) N BS **(R; 2%dx), by Lemma 4.2, it makes sense to define

R
Ay = —2 B (4D (4.68)

|wollzs + ||luo B3~ %2 (22dx)
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Then, let Y7, be the Banach space
Vi = {u € C([-T,T); H*(R) N By **(R; 2%dz)) such that ul|y, . < oo}, (4.69)

where

[ellvr,, = lullxr +Asllullxr.. (4.70)
We deduce from (4.10), (4.11), (4.18), (4.19), (4.22), (4.68) and (4.70) that

10 @ollvr,, S (1 +T) (Il gpras + Nuoll s ags) ) - (4.71)

In order to estimate the nonlinear term of (4.29) in the norm || - ||y, ., we remember (4.46),

and then it only remains to derive an estimate of the form

H/ Ut =)0, (uo)(t)dt || x,,, S 1+ D)llullys,

ol (4.72)

In this way, we use (4.12), (4.13), (4.20), (4.21) and (4.23) to deduce that
| [ V=)@,

- 1/2
ST | 1Souw)llsss + (Z 4“5*”||Aj<uv>||%wT>

=0

~ 1/2
+llzSo(wv)| 1Lz + (Z 4j($_1)|]xAj(uv)||%iL2T> . (4.73)

=0
And arguing as in the proof of Theorem 4.1, we estimate the right-hand side of (4.73) by

some terms of the form

1/2
= <Z4] HD]A ZA uS,v ||L1L2> : (4.74)

j>0

1/2
- (Zzﬂ U ||lzA( ZA uS,v HLng) : (4.75)

7>0



74 4. The non-dissipative problem: well-posedness results.

and some others harmless terms. We next estimate A, we get from (1.7), Holder’s inequality

and (4.43), the inequality

1/2

~ 2
A<M (v) | Y4t (Z 1Az u]| oo 2, ) : (4.76)
Jj=0 r=j
Then, define
Y = 27(5+1)HATu||LgOL% and note that || {v}, /e < Pl (u). (4.77)

We deduce by (4.76), a change of index and Minkowski’s inequality that

A< MT)I{Y 2977 Y lleen = MT @)D 27 g}l

r=j >0
< MT(0) ) 27 il ey < MT@)I{ e Y270,
>0 >0

and then, (4.77) imply that
A S Pl (u)M™(v). (4.78)

Analogously, we obtain a similar estimate for B
B < Py (u)M"(v). (4.79)

Thus, (4.73)-(4.79) yield (4.72) and we conclude the proof of Theorem 4.2 as for Theorem
4.1 using (4.71) and (4.72) instead of (4.37) and (4.46). 0



Conclusion.

In conclusion, we point out some open problems connected with this work:

- In the second chapter, we proved that the IVP (1) associated to the dispersive
Kuramoto-Velarde equation was well-posed in H*(R) for s > —1, and ill-posed (in

some sense) for s < —1. What does happen in in the case s = —17

- In the third chapter, when studying the non-dissipative limit case (3.1), we derived
some ill-posedness results ! for higher-order nonlinear dispersive equations, as for ex-
ample a higher-order Benjamin-Ono equation. Doing an analogy with the Benjamin-
Ono equation, one can ask if these equations still could be well-posed in some Sobolev

spaces, admitting in this case a flow map data-solution only continuous.

- Another interesting problem would be to investigate the existence of solitary waves

for the higher-order Benjamin-Ono equation (3.4).

- Finally, the results of well-posedness in weighted Besov spaces for the IVP (3.1),
derived in the fourth chapter, were only obtained for small initial data. Is it possible

to generalize the well-posedness in weighted Besov spaces for arbitrary initial data?

'the flow map data-solution, when existing in H*(R), s € R, fails to be C2.
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