
Raphael de Oliveira Santos

A Comprehensive Environment for
Collaborative Web Browsing – Pragmatic
Specification and Development Approach

Vitória - ES, Brasil

22 de Maio 2009

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Raphael de Oliveira Santos

A Comprehensive Environment for
Collaborative Web Browsing – Pragmatic
Specification and Development Approach

Dissertação apresentada ao Programa
de Pós-Graduação em Informática da
Universidade Federal do Espírito Santo para
obtenção do título de Mestre em Informática.

Orientador:

Magnos Martinello

Orientadora:
Roberta Lima Gomes

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

DEPARTAMENTO DE INFORMÁTICA

CENTRO TECNOLÓGICO

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Vitória - ES, Brasil

22 de Maio 2009

Dados Internacionais de Catalogação-na-publicação (CIP)
(Biblioteca Central da Universidade Federal do Espírito Santo, ES, Brasil)

Santos, Raphael, 1984-
S24o A Comprehensive Environment for Collaborative Web Browsing
– Pragmatic Specification and Development Approach / Raphael Santos. – 2009.

79 f. : il.

Orientador: Magnos Martinello.
Orientadora: Roberta Lima Gomes.
Dissertação (mestrado) – Universidade Federal do Espírito Santo,

Centro Tecnológico.

1. Sistemas Colaborativos. 2. Modelagem Conceitual. 3. Arquiteturas
Distribuídas. 4. Avaliação de Desempenho.
I. Martinello, Magnos. II. Gomes, Roberta Lima.
III. Universidade Federal do Espírito Santo, Centro Tecnológico.
IV. Título.

CDU: 004

Dissertação de Mestrado sob o título “A Comprehensive Environment for Collaborative

Web Browsing – Pragmatic Specification and Development Approach”, defendida por Raphael

de Oliveira Santos e aprovada em 22 de Maio 2009, em Vitória, Estado do Espírito Santo, pela

banca examinadora constituída pelos doutores:

Prof. Dr. Magnos Martinello
Orientador

Profa. Dra. Roberta Lima Gomes
Orientadora

Profa. Dra. Patrícia Dockhorn Costa
Examinador Interno

Prof. Dr. Daniel Ratton Figueiredo
Examinador Externo

Abstract

The variety ways that people may interact have been dramatically changed in the recent
years. The conception of new teamwork paradigms has encouraged the creation of innovative
collaboration technologies. This fact has led to the dynamic collaboration scenarios faced
nowadays. Amongst these recent paradigms, there is one called collaborative web browsing
(co-browsing) paradigm. Collaborative systems that implement such paradigm provide a useful
way for virtual groups to share information through the web.

However, the common set of features of these tools is not enough to offer a more
face-to-face-like browsing experience. To fill this gap, this work presents a novel collaborative
web browsing proposal, which aims at integrating notably three important characteristics.
Firstly a flexible management of sessions, consisting of allowing the involved participants (i) to
contribute freely or hierarchically for the teamwork, but also (ii) to prevent confusion or loose
of work. The second characteristic refers to the maintenance of a shared production spaces for
co-browsing sessions. At last, providing efficient communication facilities. In this case, such
efficient communication are accomplished by annotations (i.e.: draw and text note elements
over the co-browsed contents) and privileges negotiation facilities.

Additionally, the proposed environment analysis relies on a collaboration ontology as a
reference model, which provides a well defined conceptualization and a common vocabulary
about the collaboration domain. Another characteristic explored in this work involves an
architectural solution for supporting suitable performance, regarding the system response time
perceived by participants and how effective is the maintenance of awareness in the co-browsing
sessions. Such concerns are achieved by the design of a lightweight distributed architecture and
communication protocol. In order to demonstrate the feasibility of our approach, a prototype is
developed and then it is evaluated considering performance issues.

Dedicatory

To Rosangela I.O. Santos and Olair J. Santos,

for being the best parents, ever.

Acknowledgements

During all this work long I have received such a valuable support from many partners, that I

am absolutely certain that it would be impossible to obtain all these results without their help.

Therefore this is a way the way I can say: "thank you so much, this work is also yours".

First of all, my advisors Magnos Martinello and Roberta Gomes. You have so much credit

on all this, for guiding my steps and more important facing the problems that have appeared

to me, without imposing any hierarchical condition or politics. This way, more than just

coordinating this work and all the others we have conducted during my Master, we have became

friends.

Great contributions have been provided by Felipe Oliveira and Julio Antunes to this work.

These great friends have worked hard on LiCoB (the first version of OCEAN), since its

conception. In this matter, Stanley Sperandio have helped a lot on producing the interface

design for LiCoB and earlier for OCEAN too. In addition to that, special thanks to Felipe

Oliveira and Bernardo Gonçalves, who also supported this work with several discussions and

reviews about the collaboration ontology usage.

I’d like to thank professors Cesar Marcondes, Renata Guizzardi and Guillermo Hoyos-Rivera

for the great help on discussing research questions and producing papers. In the same way,

special thanks to Ramon Schwartz, who not only "pushed me"to the academic area but also

worked a lot as a partner during the beginning of my Master, contributing a lot for my formation.

Another partners have contributed in punctual aspects of this work, in particular, Frederico

Franzozi on managing reports, Aline Martins on providing references and Gondiberto Carvalho

for English tips. Also, I would like to thank all volunteers that have participated on our

experiments.

Last but not least, I have personal thanks to my family, my girlfriend Bruna Bertoldi, and

my friends. These people have not participated actively in this work, however contributed a lot

for my formation.

It’s worth to mention that this work has been partially funded by FAPES/MCT/CNPq/CT-INFRA

#36316008/2007, and Raphael O. Santos was supported by a master scholarship from CAPES/Brazil.

Contents

List of Figures

List of Tables

1 Introduction p. 13

1.1 Motivation . p. 13

1.2 Goals and Scope . p. 15

1.3 Approach . p. 16

1.4 Thesis Outline . p. 17

2 Background and Related Work p. 18

2.1 Computer-Supported Cooperative Work . p. 18

2.1.1 Common Groupware Classification Models p. 19

2.1.2 The 3C-model . p. 22

2.2 The Co-Browsing Paradigm . p. 24

2.2.1 Recommendation Method . p. 25

2.2.2 Interaction Synchronism . p. 25

2.2.3 Users’ Location Requirements . p. 26

2.2.4 Co-browsing Purpose . p. 26

2.2.5 Coupling Level . p. 26

2.3 Related Work . p. 27

2.3.1 Synchronous Guided Co-browsing p. 27

2.3.2 Domain Embedded Co-browsing . p. 29

2.3.3 Co-located Environments . p. 30

2.3.4 Loosely-coupled Browsing Recommendations p. 31

2.4 Positioning our Proposal . p. 32

3 The Proposal: characterizing main features p. 34

3.1 Proposal General Description . p. 34

3.1.1 Coordination Aspect . p. 34

3.1.2 Cooperation Aspect . p. 40

3.1.3 Communication Aspect . p. 42

3.2 Conceptual Formalization . p. 46

3.2.1 The Collaboration Ontology . p. 47

3.2.2 OCEAN Conceptual Models . p. 49

3.3 Conclusions . p. 54

4 Design Issues: how it works p. 56

4.1 Distributed Architectures . p. 57

4.1.1 Commonly Adopted Approaches . p. 57

4.1.2 Our Approach . p. 61

4.2 Notification Protocol . p. 64

4.2.1 Definition . p. 65

4.2.2 Privileges Management Policy . p. 68

4.2.3 The Notification Process . p. 70

4.2.4 Acknowledgement Messages . p. 73

4.3 Conclusions . p. 76

5 The Implemented Prototype p. 78

5.1 Interaction Mechanisms . p. 80

5.1.1 Session Scope Toolbar . p. 80

5.1.2 Thread Scope Toolbar . p. 82

5.2 Browser Extension . p. 86

5.3 Conclusions . p. 87

6 Performance Evaluation p. 89

6.1 Notification Protocol Delay . p. 90

6.1.1 Number of Users Effect . p. 92

6.1.2 Web Pages Effect . p. 95

6.2 Application Server Scalability . p. 98

6.2.1 Knowing the Environment . p. 98

6.2.2 Workload Model . p. 99

6.2.3 Performance Model . p. 101

6.2.4 Analytical Model Results . p. 103

6.3 Conclusions . p. 106

7 General Conclusions and Outlooks p. 108

7.1 Revisiting our Goals . p. 108

7.2 Contributions . p. 110

7.3 Open Questions and Future Work . p. 112

7.4 Final Considerations . p. 113

Appendix A -- Experimentation Practices p. 114

A.1 Client Instrumentation . p. 114

A.2 Server Instrumentation . p. 115

A.3 Remote Test Agents . p. 117

References p. 119

List of Figures

2.1 3C-model Usages . p. 23

3.1 Coordination Levels . p. 37

3.2 Comparison of OCEAN and CoLab coordination mechanisms p. 39

3.3 Co-Browsing History Example . p. 41

3.4 Annotations Example . p. 45

3.5 3C aspects inter-relations inside OCEAN p. 46

3.6 Collaboration Ontology Fragments . p. 49

3.7 OCEAN Ontology-based Coordination Model p. 51

3.8 OCEAN Ontology-based Cooperation Model p. 52

3.9 OCEAN Ontology-based Communication Model p. 53

4.1 Distributed Architecture Components . p. 63

4.2 Notification Protocol Design Concepts . p. 66

4.3 URL Broadcasting Scenario . p. 75

4.4 Design Introduced Concepts . p. 77

5.1 Login Screen . p. 78

5.2 User Interface Overview . p. 79

5.3 Session Scope Toolbar . p. 80

5.4 Co-browsing Session History . p. 81

5.5 Thread Scope Toolbar . p. 82

5.6 Address Bar . p. 82

5.7 Thread Awareness Panel . p. 83

5.8 Annotations Tools . p. 84

5.9 Some Annotated Objects . p. 84

5.10 Interaction Mode Switcher . p. 85

6.1 Notification Protocol Delay . p. 91

6.2 Proportional Delay - Number of Users Parameter p. 93

6.3 Proportional Delay - Web Pages Parameter p. 95

6.4 Delay Comparison - Web Pages Parameter p. 97

6.5 Performance Model . p. 102

6.6 MVA Equations . p. 104

6.7 Analytical Model Results - Throughput . p. 105

6.8 Analytical Model Results - Response Time p. 105

6.9 Validating the Performance Model . p. 106

A.1 Server Measurements Structure . p. 116

List of Tables

2.1 Time/Space Taxonomy . p. 19

3.1 Part of Terms Dictionary of Collaboration Ontology p. 50

4.1 Session Scope Privileges . p. 69

4.2 Thread Scope Privileges . p. 69

4.3 Comparative of Download Ack Distribution Approaches p. 75

6.1 Experiments Data - Number of User Parameter p. 94

6.2 Experiments Data - Web Pages Parameter p. 96

6.3 Service Demands Matrix . p. 101

6.4 Dependency Between Numbers of Requests and Participants p. 103

13

1 Introduction

The term "collaboration", according to Merriam-Webster1 online dictionary is defined as the

act of working jointly with others or together especially in an intellectual endeavor. This term

has gained increasing attention in computer systems, especially due to the Internet growing over

the past years. In this scenario, new services denominated collaborative have been developed

every day, becoming important tools for supporting groups and organization to work together,

in particular intermediated by the huge Internet infrastructure.

Considering this context, the focus of this work is oriented to collaborative web browsing

paradigm, a subset of that collaborative services. The main issues concerning the development

process of an environment in this field are addressed. Amongst the most relevant contributions

of this work, there are a well-founded conceptualization of this collaboration paradigm, and a

lightweight and flexible distributed system architecture. Moreover such proposed environment

is implemented and evaluated by means of a proof-of-concept prototype.

In the following, this chapter introduces our motivation for the research in Section 1.1.

After that, Section 1.2 defines our specific objectives, situating the scope of this work. The

proposed approach for dealing with collaborative web browsing is described in 1.3. Finally, the

thesis structure is depicted in Section 1.4.

1.1 Motivation

A research field denominated Computer-Supported Cooperative Work (CSCW), has been

recently created with the objective of gathering scientific and technological knowledge about

computational solutions dedicated on fostering collaboration among people. The evolution

of web technologies and Internet infrastructure has been considered an important enabler for

CSCW, favoring the sprouting of new collaborative services. Such services have introduced

innovative interaction ways between users, providing better quality results in team work, either

1Merriam-Webster Online Dictionary, available at: www.merriam-webster.com/dictionary.

http://www.merriam-webster.com/dictionary

1.1 Motivation 14

for personal or professional purposes (1).

Human beings have always worked and socialized in face-to-face groups, however, people

no longer need to be in the same place to work together, especially in organizational context,

virtual groups transcend distances, time zones, and organizational boundaries. As a result, the

face-to-face nature of working relationships is changing dramatically, and a new business model

gives rise to a novel organizational configuration, challenging the classical competitive market

(2). Such emerging ubiquitous nature of business, organizations and even personal relations

have attracted millions of users, demanding a computational support for their newborn pervasive

activities (3). In this matter, many applications aim to support such online collaborative work,

for instance, email, conferencing (chat, audio or video), virtual workspaces and collaborative

documents edition. Among these collaborative solutions, we have the collaborative web

browsing paradigm.

The collaborative web browsing paradigm consists of enabling web users to collaborate

along their most common web usage, that is, browsing web pages. The web (or www, from

world wide web), is a publishing medium used to quickly disseminate information through

the Internet (4), which basically represents a huge set of linked hypertext documents. In a

traditional usage of the web, users make solo tours through these documents, following the

hyperlinks between them. The collaborative web browsing paradigm is, therefore, a proposal

for embedding collaboration on this web tours, allowing users to jointly browse2 throughout

web documents.

Several application areas can take advantage of the collaborative web browsing paradigm.

For example, web search, which is one of the most common online activities, is often undertaken

in shared-computer context (5). Educators have also verified the added benefit of co-browsing

for teaching as it fits nicely into the theory of constructivism, allowing students to learn

by exploring and sharing their own ideas and knowledge (6). In fact, in different domains

co-browsing systems have been commonly used as: (i) e-learning systems, to handle online

lectures and presentations (1)(7)(8); (ii) helpdesk applications, to support users in guiding

others through desired tasks (9); (iii) e-commerce environments, enabling users to recommend

products or to negotiate purchases (10)(8); (iv) lightweight alternative for desktop sharing tools,

to enable sharing of web-based content, avoiding bandwidth overhead (11)(12); and recently (v)

feeding social networks with browsing recommendations (13)(14).

2According to the Merriam-Webster online dictionary (www.merriam-webster.com/dictionary) the term
"browse"refers to access a network by means of a browser. Considering the web context, "web browsing"is related
to the act of accessing web published documents, and moreover, the terms "web surfing"and "web navigating"are
commonly used synonyms for that.

http://www.merriam-webster.com/dictionary/

1.2 Goals and Scope 15

1.2 Goals and Scope

Our main objective in this work can be summarized as follows: "Propose an environment that

fits users needs of collaboratively browsing the web with arbitrary purposes".

This main goal led us to develop OCEAN, the result of our investigation in order to

understand (i) the intrinsic characteristics of the collaborative web browsing paradigm, and

(ii) how the current Internet infrastructure can support such pervasive collaborative activities.

This work addresses more than one research issue and in each phase of OCEAN development,

leads to concentrate on specific problems. Due to that, our main goal can be refined into some

specific goals, described as follows.

1. Provide flexibility, a property that we pursuit during all this work. It refers to design the

collaboration environment adaptable to users usage needs, as well as to the environment

conditions.

2. Keep our work in accordance with well-founded collaboration theories, in an effort

to produce broader and consistent results while avoiding mistakes during the whole

development process.

3. Design an architecture capable to maintain a high synchronization perception for users,

while they collaboratively browse the web.

4. Adapt common features of traditional web browsing to this collaborative context. This

way, users could feel more comfortable on using such environment.

Through these general objectives, we expect to contribute to the CSCW field. However, it is

worth to clarify some issues that do not compose the objectives of this work. Such non-goals

are described in the following:

• We do not intent to propose a general web collaboration environment, that would be used

for any collaboration scenario. Environments like that usually integrate a broad number of

specific collaborative functionalities. For instance, solutions like web-conference systems

are in this category, providing, instant messaging, audio/video calls, document editing,

shared agenda, and etc. Our scope in this work is strictly focused on the collaborative

web browsing paradigm, since we believe that there are still many relevant issues to be

investigated in this field. Even though, our decision do not exclude the possibility of

further integration of OCEAN in a broader collaboration environment.

1.3 Approach 16

• It is not our intention to develop a product or to offer a commercial solution. Our focus

lies on performing a study documenting the major problems proposing feasible solutions

to overcome them.

• A common practice in CSCW is to evaluate developed solutions regarding some complex

variables likewise usability issues for individuals and groups (ease of use, effectiveness,

efficiency, satisfaction) and the social and organizational impact of using OCEAN (15).

Such qualitative evaluations could be obtained by formative studies(16), similar to the

adopted on (5)(15)(11) and (6). However, at this state we are just interested on more basic

questions about our proposal, for instance validating its specification and architectural

design. Those other evaluation aspects are also relevant and will be considered in the

perspectives of future work.

• This work is not intended to be just an implementation guide of OCEAN, for instance,

presenting a system development process in all terms of software engineering practices

and models. Conversely, we intend to discuss relevant issues concerning the collaborative

web browsing and the challenges faced by their developers, presenting justifies about our

choices.

1.3 Approach

Along this work, we have adopted a pragmatical approach, organizing the most relevant

issues through each phase of OCEAN’s development process, in an effort to becoming easier

for the reader to understand them. This approach basically consists of standing a set of

characteristics in the collaborative web browsing perspective. More specifically, our approach

starts at a higher level of abstraction on the development process concerning the specification or

conceptualization phase. The specification phase deals with what is the proposed environment.

Thus we proceed to the design phase in which the focus is devoted to how a distributed

architecture is able to support a set of required features. Following that in the implementation

phase, we concentrate our attention to demonstrate the feasibility of the proposed collaborative

web browsing system, developing a prototype used as proof-of-concept. At last, a performance

evaluation is executed taking the implemented prototype as a testbed for experiments. The aim

of evaluation phase is to quantify some measures of interest. Usually the response time is a key

metric, given that a collaborative web browsing is essentially an interactive system.

1.4 Thesis Outline 17

1.4 Thesis Outline

The core of this work deals with specification, design, implementation and performance

evaluation issues as long as the development process of OCEANadvances. It is structured in

five chapters.

In Chapter 2, we present a background related to the collaborative browsing paradigm,

discussing some definitions and classifications. Besides, we show some comparisons with

similar collaboration approaches and some related work.

Chapter 3 starts presenting OCEAN, focusing on the general features covered by our

specification proposal. Such specification is built upon a well-known collaboration theory, the

3C model (17)(18). Once informally specified, OCEAN is formally conceptualized using a

more expressive collaboration theory, the Collaboration Ontology(2)(19).

Having formalized all the proposed features, Chapter 4 presents the OCEAN main design

issues, regarding how its features could be implemented. The first aspect in this chapter

is to define the distributed architecture of our environment, discussing commonly adopted

approaches and presenting the components of OCEAN’s architecture. Subsequently, this

chapter details the protocol proposed for communicating distributed entities of the architecture.

Finally in Chapter 5, a proof-of-concept prototype is depicted, gathering the most relevant

contributions in the previous chapters. This implemented prototype is also used as a testbed

for a performance evaluation study, presented in Chapter 6. Such study evaluated the

proposal regarding its design in accordance with different evaluation perspectives, including

experimentations and analytical models.

18

2 Background and Related Work

The main point on collaborative browsing paradigm is allowing collaboration in a traditionally

solo task. Concerning that, this chapter is focused on summarizing the basic concepts

behind such collaboration itself, in an effort to reach a better understanding of the proper

collaborative browsing paradigm. Thus, Section 2.1 briefly describes the research area

concerning collaboration at a computational perspective. After that, Section 2.2 explores the

collaborative browsing, detailing intrinsic properties of this collaboration paradigm. Section 2.3

presents some related work. Finally, we conclude this chapter in Section 2.4, positioning our

proposal in accordance with collaborative browsing specified classifications and some related

work.

2.1 Computer-Supported Cooperative Work

The constant growth and evolution of the Internet favor the sprouting of new services and

interaction paradigms. Amongst them, there are the collaborative one, that have introduced

innovative interaction ways between users, providing better quality results of the collaborative

work, either for personal or professional purposes. Such services, also called groupwares,

are the focus of a great research area, denominated CSCW (Computer-Supported Cooperative

Work) (1). In other words, while CSCW includes the universal scientific research field,

groupware deals with the respective practical system solutions of collaborative work (20). A

classical and well-accepted definition of groupwares was proposed by Ellis, Gibbs & Rein(17):

Groupwares are computer-based systems that support groups of people en-
gaged in a common task (or goal) and that provide an interface to a shared
environment.

Someone could misinterpret groupware definitions, saying that "groupware" would be just

a fancy name for multiuser systems. However, as opposed to common multiuser systems,

such as distributed database systems or time-sharing operating systems, groupware systems

send a notification whenever something is altered. This facilitates users’ awareness of each

2.1 Computer-Supported Cooperative Work 19

other’s existence and concurrent actions. The notification informs all users involved in a group

session of modifications in their shared environment. If we take a look at conventional multiuser

systems with respect to these notifications, the difference becomes obvious. If a user executes a

certain task, such as inserting a new record into a distributed database system or generating

a new process in a time-sharing operating system, then other users will not be informed.

Instead they must initiate an explicit system query (database query or process listing) in order

to be informed of the aforementioned activities (20). Therefore, groupwares are multiuser

systems too, but more than that are designed for supporting teamwork, which mainly includes

maintaining team’s members aware of the supported activities.

2.1.1 Common Groupware Classification Models

We know that groupwares are multiuser system (software or hardware) that support collaboration.

However, there are many different ways to collaborate. People usually collaborate exchanging

information, dividing work effort or even sharing tools and experiences. So, in order to

classify these groupwares concerning collaboration perspective, some works have proposed

classification models. The most commonly used are taxonomies, a way of dividing groupwares

into of sets (or classes), based on some properties of these systems. These taxonomies

are useful, for instance, on discerning the variety of existent groupwares and on identifying

similarities among some of them. Two wide referred taxonomies are the Time/Space and the

Application Level. Another groupwares’ taxonomies can be encountered in (20)(21).

The time/space taxonomy classifies groupwares into four basic categories, considering the

provided interaction mechanisms. These categories are defined by combining two dimensions,

time and space, depicted in Table 2.1.

Table 2.1: Time/Space Taxonomy: the four basic groupware classes originated on combining
the time and space classification dimensions (17)(21).

TIME
Same Moment Different Moments

SPACE

Same synchronous local asynchronous local

Place interactions (face-to-face) interactions

Different synchronous asynchronous

Places distributed interactions distributed interactions

On one hand, the time dimension regards the synchronization of users interactions. It

means, where users are interacting in the "same" time, likewise a meeting or a phone call, these

interactions are denominates synchronous. On the opposite, where these interactions happen

2.1 Computer-Supported Cooperative Work 20

distributed over different periods of time, are denominated asynchronous. Groupwares are

thus classified by means of its interactions. Therefore an e-mail system is usually classified

as an asynchronous groupware, while a chat tool as synchronous. On the other hand, the space

dimension reflects users closeness requirements for collaborating through the groupware. For

example, a collaborative presentation room (22) demands users to be in the same place, whereas

an audio conference tool usually does not.

Over the years, a number of different groupware systems were developed to support a

specific work situation or a specific range of situations. The range of groupware systems

available nowadays reflects the diversity of cooperative work tasks, duration, group size, group

location and organizational context (21). Such diversity of groupware characteristics is the basis

of second taxonomy presented in this section, the application level taxonomy. This taxonomy

classifies groupware according to their most relevant characteristics, due to that does not provide

a fixed number of categories , and furthermore many of them overlap. Even so, in spite of

being less accurate, this taxonomy is quite useful for grouping similar collaboration systems,

for instance, in accordance with their goals and what team work support they offer.

Some of application level classes frequently found on the literature are described in the

subsequence. However, in the same way that Farias(21) we do not intent to be complete

neither in terms of the classes of systems covered nor in terms of the representativeness of

each class of applications. Rather, we aim at giving the reader a rough idea of the diversity of

the existing groupware applications and the functionality provided by them for its users. For a

more comprehensive description of groupware systems and their application classes, we refer

to (21)(17) and (20).

Message Systems: Textual messages can be exchanged asynchronously between team members.

Modern systems can handle graphics, images, and even sound and video. The message

management is facilitated by additional structural information, such as field for "topic" or

"group" (20). Some examples of these message systems are: e-mail, instant messaging

and audio/video calls.

Group Editors: also called co-authoring systems or multi-user editors, are used to improve

the efficiency and quality of group writing as well as to support the cooperation

between authors collaborating during the development of a document. Most of the

features frequently found in group editors are related to concurrency control and data

sharing, multi-user interfaces, auxiliary communication channels, information storage

and retrieval, and the provision of awareness and notification services (21).

2.1 Computer-Supported Cooperative Work 21

Group Decision Support Systems (GDSS): provide computer-based facilities for exploring

unstructured problems in a group setting. The goal is to improve the productivity

of decision-making meetings, either by speeding up decision-making process or by

improving the quality of resulting decisions (17).

Coordination/Workflow Systems: coordination problems mainly arise with asynchronous

activities (20), and can be seen as the integration and harmonious adjustment of individual

work effort towards the accomplishment of a larger goal (17). To coordinate the

activities of team members necessary to archive the common goal, there are four

types of coordination systems, depending on the information to be modeled: (i) form-

oriented systems, models the data flow within an organization; (ii) procedure-oriented

systems, models functions and procedures within an organization, like the phases of a

formal development process; (iii) conversation-oriented systems, models the interactions

between team members and the resulting actions; and finally (iv) communication

structure-oriented systems, that models complex communication structures within an

organization (20). More details about coordination systems, and these four types can

be found in (20) and (17).

Conference Systems: are among the most popular groupware systems in use nowadays.

Conferencing systems can be roughly split into two categories, computer conferencing

and multimedia conferencing. Computer conferencing systems are a variant of electronic

mail systems, which allows one to send messages to a uniquely identified place

dedicated to the discussion of a particular subject. Messages posted there can be

then retrieved and responded asynchronously over time, by any participant. Whereas

multimedia conferencing systems provide at least real-time (synchronous) audio and

video conferencing support for remotely distributed participants (21).

Web Conferencing: some multimedia conferencing systems have also integrated support for

the exchange of other types of media, such as messages and still images, and also

provide a shared workspace (21). Recently proposals in this field have been built using

Web technologies, gathering many common web tools into one unique collaboration

environment. Such environments have integrated a lot of other minor groupware aiming

at provide a complete solution for collaboration through the web, for instance, (i)

co-authoring of documents, schedules and workflows; (ii) presentation and discussion

of contents using web meetings, web seminars and audio/video conferences; and also

(iii) manageable and flexible shared spaces for storing and controlling the collaborative

production of this group. Examples of such environments are Cisco WebEx (23) and

2.1 Computer-Supported Cooperative Work 22

Adobe Acrobat Connect Pro (24).

2.1.2 The 3C-model

Instead of simply organizing groupwares into sets, the 3C-model(17) appears as a complementary

approach for classifying these systems in accordance with the intensity of supported collaboration

within a team (20). Despite presented taxonomies, which classifies considering system

properties, the 3C-model is based on intrinsic characteristics of the proper collaboration

concept, being somehow independent of implementation issues.

Generally, groupwares are considered "C-oriented" applications (20). This is due to even

varying their goals, interaction mechanisms, potential users and collaboration intensity, it is

usually possible to distinguish between coordination, cooperation and communication, the three

"C’s". Indeed, these three concepts are the collaboration intrinsic characteristics that compose

the 3C-model.

It is difficult to imagine a collaboration scenario without any communication, this way we

can see the communication aspect as the basis to any collaborative system. Communication

is related to the exchange of information among people (18) focusing on their mutual

understanding (20), for instance in conversations between friends, negotiating decisions during

meetings or publishing some news to a group. To transmit content, the sender expresses his

intentions or goals, defined by symbols in a language that must be understood by all receivers.

Moreover, information transmission needs to be accomplished by a communication media (2).

In its turn, coordination is related to the management of people, their activities and resources

(18). In other words, it aims at finding the best way in which to arrange task-oriented activities

and the allocation of resources in the best possible order (20). According to Farias(21),

typical examples of coordination problems are the identification of goals, the mapping of

goals to activities, the ordering of activities, the selection of actors to perform an activity,

the management of interdependencies between activities and the allocation of resources for

an activity.

At last, cooperation is a joint effort in a shared space to achieve some goal (2), being

represented by the production taking place in such space (18). In other words, the cooperation

aspect is related to the resources dealt with the collaborative work, demanding communication

for handling through different people and coordination for organizing how such resources

should or could be handled.

Figure 2.1 shows common usages of the 3C-model on classifying groupwares in accordance

2.1 Computer-Supported Cooperative Work 23

(a) Different Groupwares (20) (b) Groupware Internal Characteristics (25)

Figure 2.1: 3C-model Usages: common usages of the 3C-model on classifying groupwares.

the three collaboration aspects. One first approach (Figure 2.1(a)) is focused on classifying

different groupwares, in the same way that the presented taxonomies do. This type of

classification do not organize groupware into specific well-defined classes, however distinguish

them by an intuitive measurement about the intensity with these systems support each one

of the collaboration aspects. Thus, they are classified through a similarity on support to the

collaborative work.

The second common usage of the 3C-model is on classifying the internal characteristics

of a groupware. In this matter, Figure 2.1(b) presents the internal aspects present in a

arbitrary adaptive workflow management system. Especially, this figure also introduces the

awareness concept as a relevant concept in the model. In short, awareness remains to

groupware users being aware of other users intentions, actions and resources. More important,

awareness in collaboration sessions is important for providing coordination and promoting

usability (26). Much of the effort faced by groupware developers, especially in synchronous

groupware, is related to the provision of awareness. Group collaboration relies not only on

explicit communication among the members of the group, but also on implicit availability of

information of each other’s presence and actions. In this way, awareness can be defined as the

ability of the application to expose the activities of the people engaged in a common task (21).

As a remark, the 3C-model was originally proposed by Ellis, Gibbs & Rein(17), however in

the same way that Fuks et al.(25)(18) and (2), we have adopted some terminological differences.

In this work, we consider the term "cooperation" representing what Ellis, Gibbs & Rein(17)

denominate "collaboration".

2.2 The Co-Browsing Paradigm 24

2.2 The Co-Browsing Paradigm

Web browsing is traditionally an individual activity, where a person uses a web browser (e.g.

Mozilla Firefox, Microsoft Internet Explorer) for accessing published hypertext documents.

However, this browsing can actually be seen as a social event (8), where users share their

browsing activity (11).

In this scenario raises the collaborative web browsing paradigm, also known as collaborative

browsing (co-browsing) or collaborative navigation (co-navigation). In this browsing paradigm,

besides retrieving web documents, a person is able to recommend browsed contents to other

people, sharing their preferences or intentions, so making web browsing a collaborative activity.

In fact, considering co-browsing a sort of recommendation paradigm figures out a great

advantage of this paradigm, that is its applicability on many collaboration scenarios through

the web. Illustrating such scenarios, we can see co-browsing on promoting products or contents

by their popularity (13), or even in guided content visiting (1) like web seminars activities

(24). These examples are basically composed by web pages recommendations, in other words,

collaborative browsing. However these examples also indicates that the co-browsing paradigm

is itself such a broader concept, that could not be precisely classified by presented models.

Indeed, the way of performing recommendations is the most relevant decision on defining

a co-browsing groupware. The chosen recommendation method may define the main goal of

this groupware, imposing the most basic constraints or features available to its users. In other

words, this recommendation method refines the co-browsing paradigm into an specific scope,

thus enabling a more precise classification.

There are distinct ways of performing co-browsing recommendations. The simplest is

through a standard communication action, where for instance, a person recommends a URL

(Uniform Resource Locator) to a friend or a co-worker in order to ask an opinion. However such

approach may impose a great overhead to the team work, especially on recommending many

web documents for many people. Avoiding such ad-hoc approach, an specialized groupware

can support the co-browsing paradigm, regarding some general characteristics described in

the following subsections. Moreover, these characteristics are independent of design or

implementation issues, being intrinsically related to the co-browsing paradigm itself. Design

and implementation issues are discusses on next chapters.

2.2 The Co-Browsing Paradigm 25

2.2.1 Recommendation Method

We consider two basic modes for transmitting a web browsing recommendation, active

and passive. In the active mode, a person intentionally sends the recommendation to a

known destination, that could be another person or a group. Conversely, at the passive, the

recommender is observed while browsing, and after that this observer entity automatically

generates recommendations for other users.

For example, Amazon.com uses this passive recommendation concept for suggesting books

to buy according to the behavior of other users having similar interests (8). Another example is

the GoogleAds, which dynamically inserts advertisement links in web pages related to the web

page matter and also the reader’s profile.

2.2.2 Interaction Synchronism

This characteristic regards about how synchronous users’ interactions are. In other words, if

they establish a synchronous collaboration session, in terms of the time/space taxonomy.

Usually, co-browsing systems that are based on synchronous session offer a common

method for handling recommendations, where they get synchronized through browsing fol-

lowing relations. In this method, when one user browses to some web page, whereas all

other users that are synchronized with him automatically follow such browsing action, thus

being moved the same web page. This following mechanism is commonly implemented by the

propagation the URLs (1)(11) or propagating the browsed web page content itself (12).

In particular, browsing following relations are commonly called as master/slaves (12)(11)(8),

being the user who navigates denominated master, while the followers are the slaves.

However, such terminology has been overused in the literature with so many different

meanings. Especially, inside the proper co-browsing domain some works have proposed

different meanings for master/slaves. For instance, Gerosa et al.(8) has supposed "master"

as a role with exclusive privileges, whereas Esenther(12) has not, letting "master" just as a

momentary position of a user, without any coordination behind. In face of that and in an effort

to not confuse the reader, we have decided to not use master/slaves terminology.

Therefore we have set three gradual definitions concerning the synchronous co-browsing

recommendation methods: (i) browsing following relations, the aforementioned automatic

browsing propagation method; (ii) rigid presenter-attendees, the specification of roles on

following relations, defining one and only one user with rights to browse by their own, while

2.2 The Co-Browsing Paradigm 26

the others synchronized with him or her are meant to be followers; and finally (iii) flexible

presenter-attendees1 , which enables users synchronized in a presenter-attendees method to

exchange their roles, so giving to all users chances to contribute to the co-browsing session.

2.2.3 Users’ Location Requirements

Co-browsing systems can be designed for supporting specific users proximity (time/space

taxonomy) requirements during co-browsing activities. This way, there are the ubiquitous

co-browsing systems, which allow distant users to co-browse. In particular, this ubiquitous

paradigm is the most easily encountered, for instance, on (11)(6)(27)(28) and (14).

On the opposite, there are the co-located co-browsing systems, which are based on

supporting near users, for instance in the same room. Such co-browsing approach is very useful

on improving lectures and meetings, providing more ways for participants contribute in the

event. In particular, ubiquitous systems naturally can be used in co-located mode, the point

is that generally, co-located systems provide specialized features, usually regarding hardware

integration. For instance, Amershi & Morris(5) have integrated cellphones as telepointers, while

Malcher & Endler(22) have integrated projectors and handhelds.

2.2.4 Co-browsing Purpose

Users can use the co-browsing paradigm for supporting different tasks. Even though,

co-browsing tools can be specialized or not. Some of these tools are general enough, allowing

users to co-browse through arbitrary domains, not mattering their goal, for instance (1)(29)(6)

and (30). Despite that, some system are dedicated on performing specific co-browsing

tasks, for instance, collaboratively presenting slides (22) or searching content on the web (5).

Additionally, another sort of purpose specialization is about embedding co-browsing features in

specific web applications, which is the approach adopted by (12)(10) and (31).

2.2.5 Coupling Level

Despite the aforementioned interaction synchronism concept which is based on time relations,

this concept regards how tight users collaborate. In other words, the coupling level refers

how much awareness and collaboration facilities are available in the co-browsing session, so

indicating the closeness experienced by users, even in a distributed (ubiquitous) scenario.

1The flexible presenter-attendees method has been proposed by Gerosa et al.(8) with the name of symmetric
co-navigation.

2.3 Related Work 27

At the lowest (or loosest) levels of co-browsing coupling, there are systems which only

provide, for instance, URL sharing, without any kind of users tight relations (e.g. (6)). At higher

levels, systems which provide browsing synchronization methods of shared web pages (relaxed-

WYSIWIS). Examples of these systems are (1)(11). On even higher coupling levels, specialized

features permit users to get even more close (strict-WYSIWIS). On such environments users

could, for instance, focus on the same content parts (co-scrolling, highlighting), fill forms (co-

filling) and update shared content (co-editing, annotations). More details on coupling levels can

be found on (21).

In particular, WYSIWIS is an acronym for "What You See Is What I See", that aims at

a consistent presentation of shared information to all participants. In its most strict form,

WYSIWIS means that all participants have exactly the same context. Thus the screens of all

session participants display the identical information (20). Whereas on relaxed forms, session

participants could be, in a given moment, browsed to the same web page, but each of them could

be reading some totally different piece of this same content.

2.3 Related Work

Many works have proposed solutions in the collaborative browsing area, and some of them

are quite relevant to this work. These solutions are grouped through a kind of application

level classification and listed below. We do not intend to cover all possible (or existent)

co-browsing applications with these classes, they are just an effort for reinforcing relevant

systems similarities.

2.3.1 Synchronous Guided Co-browsing

This class consists of groups of users synchronously and actively co-browsing arbitrary web

contents using browsing following relations. Indeed, this subset is usually referred as the

proper definition of co-browsing (8). Amongst the advantages of such applications, the most

relevant is allowing distributed users to collaborate through the web, being organized in virtual

presentations, also known as web seminars.

• LiCoB (1) – This is the precursor of OCEAN, and most of facilities proposed by LiCoB

persist in this work. LiCoB aims at integrating important features of a lightweight

distributed architecture, awareness, session state sharing and annotations (e.g. draw

and comment elements over the shared web content). Also, the approach relies

2.3 Related Work 28

on a collaboration ontology that provides a well defined conceptualization and a

common vocabulary. Regarding co-browsing characteristics, LiCoB supports ubiquitous

and synchronous co-browsing paradigm with active recommendation method, getting

synchronized in a flexible presenter-attendees way.

• CoLab (11)(30) – This work proposes CoLab, a new paradigm and tool for collaboratively

browsing the web, and it is the most similar to our work. CoLab also supports the

synchronous co-browsing paradigm with active recommendation method. Also, it is

prepared for allowing its users to co-browse arbitrary web contents being wherever they

want.

This work mainly proposes a new browsing paradigm, which provides coordination

flexibility to the collaboration session. In other words, CoLab’s users are not necessarily

forced to co-browse in a presenter-attendees method. Actually it proposes a workgroup

based coordination mechanism for turning co-browsing synchronization even more

flexible. Such mechanism allows the configuration of different collaboration scenarios,

from rigid presenter-attendees browsing to completely free individual browsing. Another

important contribution is that it supports the synchronization of continuous media

embedded into co-browsed web pages (e.g., when a user pauses a video, the other users

who are following him will also get their video paused).

CoLab’s major shortcomings are the great overhead it imposes on renegotiating workgroups

coordination state, and the missing of collaboration artifacts when using flexible co-browsing

sessions. Exchanging the privilege on conducting the browsing of a workgroup illustrates

the coordination problem, whereas revisiting previously co-browsed web pages and

collaborate through different workgroups are examples of the artifacts problem.

• IMMEX Collaborative (8) – The IMMEX is a collaboration environment that also has

co-browsing capabilities. Such co-browsing module provides synchronous sessions

with a common presenter-attendees organization. In this case, this system imposes

coordination rules where only one user has browsing rights (the presenter), while the

others are only allowed to observe (or to "follow") his/her actions.

In addition to that, IMMEX has improved its coordination mechanism using a flexible

presenter-attendees based on a token-passing-based mechanism, thus enabling users to

change their roles. The authors denominate this mechanism as symmetric co-browsing,

since all users have chances to be masters, presenting whatever they want. However, any

user can decide to take the token, no token retention mechanism is provided (11).

• PageShare (31) – A commercial tool for providing co-browsing capabilities. Basically

2.3 Related Work 29

provides basic communication tools, such as simple annotations and collaborative objects

manipulation, as filling forms.

• Browzmi (14) – Social network browsing recommendations is the Browzmi focus. The

major advantage of this system is that it allows users to co-browse though different

paradigms. It could be active or passive, and synchronous or asynchronous. In other

words, the users can get together in a same session in the same time, following a

presenter-attendees approach, or not.

During a Browzmi session, being alone or not, users are able to browse and recommend

favorite content, by using Browzmi collaboration tools. For instance, this system offers

(i) clipping, for recommending specific pictures or other embedded medias; (ii) rating, for

classifying the recommendation; and (iii) personal comments, for publishing a statement.

Such recommendations feed participant’s profile on Browzmi social network. In doing

so, even that a person uses this system alone in a session, he or she can still co-browse

with other people, based on the recommendations made all over the session.

2.3.2 Domain Embedded Co-browsing

In fact, co-browsing is a widely applicable collaboration paradigm. However some multi-user

systems may want to offer a kind of co-browsing feature for supporting some specific activities.

For instance, helpdesk portal allowing their users to co-browsing an enterprise web application,

in a tutoring session. The most important is that systems like this helpdesk portal, may want a

co-browsing feature specialized to their needs. So, general co-browsing tools could not achieve

all these applications’ requirements.

In this matter, this class gather systems developed with the intention to offer co-browsing

capabilities to specific domains. It means that they usually need to be somehow integrated

to the target systems, for example, in a source code level integration or through application

programming interfaces (API).

• CWB - Collaborative Web Browsing (12) – This proposal is focused on the basic features

for providing synchronous and active co-browsing. The great advantage of this proposal

is that it replicates whatever one user does for the others. These interactions can be,

selecting a piece of text, filling HTML forms and even where the mouse pointer is in the

web page.

However, CWB has many disadvantages. For instance, it is restricted to an specific

domain, and has to be installed in the same domain that a web service which is desired to

2.3 Related Work 30

co-browse. Besides, it does not provide any coordination mechanism for organizing the

browsing following relation. In other words, CWB does not prevent two different users

browsing different web pages, at the same time. In this case, users cannot forecast what

could happen, since CWB will accept the browsing action which firstly arrives in the

server. Thus, the slowest browsing action will be just dropped, and how more users make

simultaneous actions more confuse the whole session would become. Another restriction

concerns its user interface, which is quite confusing, not making users aware of what is

happening in the session, and moreover, who is doing what in the session.

• Clavardon (10) – This is a commercial tool specialized on embedding co-browsing

synchronous sessions into web services, in particular, e-commerce applications. Besides,

Clavardon also provides an online co-browsing service for browsing through arbitrary

domains, using a rigid presenter-attendees approach.

In addition, the most relevant features on Clavardon is the ability of highlighting

content parts, synchronizing participants scrolls, and also, allowing users to jointly filling

forms. This way, Clavardon provides a higher coupling level towards a strict-WYSIWIS

collaboration session.

2.3.3 Co-located Environments

As aforementioned, co-located co-browsing systems are designed for supporting participants

in a closeness scenario, for instance inside the same classroom. Systems like these are usually

augmented with integration to this shared physical environment, in order to take advantage of

this participants proximity, and thus fostering a richer collaboration experience.

• CoSearch (5) – This work proposes a system for collaboratively search content on the

Internet. However, its particularity is that it was designed to support users gathered

around a single computer to work together in collaborative searching tasks. Such

collaboration is supported by offering multiple inputs to the same environment. In this

case, users that are not controlling the computer, can also contribute to the group task

using his/her cellphone as an additional input mechanism (telepointing).

• iPH (22) – The Interactive Presenter for Handhelds (iPH) is a groupware for supporting

slides presentation in a classroom. Besides having integration with a projector, in this

environment attendees can use personal handhelds for contributing with the presentations,

for instance making annotations over presented slides. However, all users in the same

2.3 Related Work 31

session still follows a rigid presenter-attendees synchronization method, where the

presenter has the browsing rights, in this case, the privileges for choosing slides.

Especially, a disadvantage of iPH is its too restrictive system requirements. For instance,

it is completely designed for working on Microsoft Windows platform, even in mobile

devices. Thus, it becomes almost impossible that all attendees have such an equipment

with such specific system requirements.

2.3.4 Loosely-coupled Browsing Recommendations

As defined, people can collaboratively browse independent of browsing following relations,

just sharing their browsing recommendations, even through synchronous or asynchronous

interactions. Groupwares that support these interactions, usually provide a collaborative

production shared space where users can feed with browsing recommendations, and thus

sharing with other participants. It characterizes a great cooperation degree, regarding the

3C-model.

In particular, such loosely-coupled browsing recommendation approach is not often

considered co-browsing, however its similarities with all mentioned co-browsing characteristics

made us to consider these applications as a co-browsing class too.

• GUH - Group Unified Histories(6) – This work also presents a system which allows

users to get together in a session and synchronously co-browse the web. Especially,

such sessions are augmented with different collaboration tools, allowing users to express

their opinions through many different ways, for instance, through a chat room, or rating

browsed contents.

Contrary to common co-browsing approaches, in GUH there is no predefined browsing

synchronization relation, like the presenter-attendees synchronization method or at least

browsing following relation. Instead, every users are free to browse the web by their

own. Even though, this system presents an important cooperation advantage, as users’

browsing activities feed GUH’s session shared history. From this shared history, every

participant can check out all browsing activities of all session members.

Thus, even not offering any browsing following mechanisms, this system allows users

to make browsing recommendations, and moreover, to discuss such recommendations.

However, such unconstrained co-browsing approach can damage the quality of collaboration

when the session grows up. Coordination mechanisms could prevent lost of information

in such scenarios.

2.4 Positioning our Proposal 32

• Kiobo (28) – social navigation is based on a totally passive recommendation paradigm (9).

This system observes users individual browsing activity, composing a unique repository.

All these information combined, can provide social browsing recommendations. For

instance, a user can see what subject have been more browsed recently, without

necessarily knowing who have browsed such a content.

• Blocool (13) – such system passively observes which blogs2, in particular blog posts,

have been read by users. Such observations feed a reading history in the user’s profile.

These histories are commonly useful for bloggers (blog owners), who wish to publish

an automatically generated blogroll3, containing his/her recent readings. In other words,

Blocool tries to answer a simple question: "What blogs am I reading?".

In a blog maintained by a Blocool user, readers can see which material this blogger

is using as reference for his posts. In addition, Blocool also offers an asynchronous

loosely-coupled following mechanism, where users pre-define other users to be followed,

after that he/she can automatically receive blog recommendations of his friends (followed

users’ readings) that are more related to his profile.

Due to its characteristics, Blocool approach can also be classified as collaborative

browsing, as blog owners can use Blocool for recommending other blogs to their readers.

Moreover, the co-browsing mechanism applied here has characteristics of passivity,

asynchrony, ubiquity and presents the specific purpose of recommending blog readings.

Another similar but less expressive applications are proposed in (32) and (33)

2.4 Positioning our Proposal

In this work, we focus on a subset of collaborative browsing, where distributed users get

together in a synchronous session for actively browsing through shared web content. Indeed,

this subset is also referred as the proper definition of co-browsing (8). Thus, in this work, we

refer to this subset as co-browsing. Considering specific characteristics, OCEAN relies on some

related work solutions structured in accordance with the 3C-model (Section 2.1.2):

• Regarding coordination, OCEAN’s approach is based on flexible presenter-attendees.

Such coordination approach is designed by means of users’ roles and privileges which
2A blog (a contraction of the term weblog) is a type of web site, usually maintained by an individual with

regular entries of commentary, descriptions of events, or other material such as graphics or videos. Entries are
commonly displayed in reverse-chronological order. <en.wikipedia.org/wiki/Blog>

3A blogroll is a list of links to other blogs or web sites that the author of the blog regularly likes to
read. The blogroll generally resides in one of the side columns of the blog. <The Blogosphere’s Dictionary:
www.blogossary.com/define/blogroll>

http://en.wikipedia.org/wiki/Blog
http://www.blogossary.com/define/blogroll/

2.4 Positioning our Proposal 33

provides simple session management, regarding both system’s designer and final users

points of view. Similarly to CoLab (11), OCEAN presents even more flexibility with the

addendum of independent and synchronized groups, where a large variety of coordination

scenarios can be performed, as opposed to over-constrained approaches like in (1) and (8).

• Considering cooperation aspects, OCEAN inherits collaborative production shared space

concepts defined by GUH’s shared histories (6), Kiobo’s repository (28) and Blocool’s

blogrolls (13). In other words, our proposal takes in consideration a shared space for

aggregating the many productions of a co-browsing session, in an effort to maintain the

participants tight related even when working independently.

• Finally on communication, OCEAN allows users to make annotations (draws and

text notes) over shared web pages. For example, such annotations are useful for

expressing thoughts and, getting the focus of attendees on what the presenter wants to

highlight. Similar annotations concepts can be found in Clavardon(10), PageShare(31)

and CWB(12), however, the way it is implemented in such tools is not expressive enough

since users are just allowed to highlight parts of texts.

Recall that the main objective of this work is to propose a general co-browsing system

that supports properly the three collaboration aspects. However, we are not interested on

attending every distributed workgroups’ needs, proposing a general collaboration solution like

web conferencing systems.

In the sequence, next chapter specifies and formally conceptualizes OCEAN, describing all

features that compose this proposal through the prism of the 3C-model aspects.

34

3 The Proposal: characterizing
main features

The objective of this chapter is twofold: (i) presenting the characteristics and features of

OCEAN, (ii) formalizing conceptual models of the previous informally proposed system. In

an effort to keep our work in accordance with what has been produced in the CSCW field, we

follow the widely adopted 3C Model (17)(20), trying to divide our discussion, specifications

and models into three main aspects: cooperation, coordination and communication. This

approach allows us to deeply discuss each collaboration aspect, favoring the understanding

and validation of the identified concepts (25). Moreover, this distinguished view can support

parallel comparisons with other groupwares, in particular another co-browsing systems.

3.1 Proposal General Description

This section figures out an informal specification of OCEAN. This specification considers which

features our co-browsing service offers without showing how such features internally works.

Such design and implementation concerns are discussed on further chapters. In the following

the specification is presented in terms of three distinguished points of view. Each perspective

is guided by one of the 3C-aspects, and contains a discussion of the collaborative browsing

paradigm intrinsic characteristics, and the OCEAN proposal.

3.1.1 Coordination Aspect

In the context of collaboration sessions, coordination appears to be a major aspect for keeping

controlling or management. Commonly, this management is made by imposing constraints in

order to control participants’ activity. This way, we could suppose that, the more restrictions

our groupware impose, the more coordinated it might be, and, accordingly, more collaborative.

The answer for this question can be visualized making a comparison with an example out

3.1 Proposal General Description 35

of the computational context: an arbitrary Brazilian public service. In this case, the service’s

workers, the client and also the government are the participants of a collaboration session, which

has the objective to solve the client’s problem (or should have). But this session is coordinated

by a lot of rules. For instance, the client should deliver a lot of documents, each of them must

be reviewed by a different worker from different sectors on different days. This massive set

of coordination rules turns the service bureaucratic, making the collaboration a daunting task.

Based on such example, the answer might be "No", because an excess of coordination could

"over constrain" users’ contributions, turning the collaboration almost impossible. Conversely,

not imposing any coordination could also be harmful for the quality of the session. Therefore,

the point is to find an equilibrium, allowing users to collaborate in a certain manageable freedom

state (34)(35).

Focusing on collaborative web browsing, the coordination aspect is commonly implemented

based on offering or not browsing synchronization facilities. In other words, such coordination

usually has one of two opposite approaches: unmanaged, found in (12)(6)(28) and (36); and

presenter-attendees, adopted in (11)(5)(8)(27) and (22).

In the unmanaged approach, users can do whatever they want during the session long. So,

co-browsing session participants rely on informal coordination, in which there is no predefined

flow of work or privileges hierarchy, and coordination is handled by actions initiated by

people themselves on an ad-hoc basis. Such informal coordination is supported mainly by

computer-mediated communication systems (34), like conferencing systems. However, this

lack of a formal control can generate a participation chaos in the session.

Such chaos problem becomes evident considering synchronization methods (browsing

following relations) adopted by many approaches (11)(14)(22), including our proposal. In these

cases, when one user browses to a different web page, this browsing action is propagated to all

synchronized users, and after that these participants automatically browse to the same web page.

Note that, if every participant were allowed to browse, then concurrent browsing actions may

occur, generating confusion and damaging the quality of the session.

Proposed by Esenther(12), CWB1 is an example of a co-browsing system that is based on

the unmanaged coordination approach and also offers browsing following relations. Due to that,

its users can experience confusion on executing concurrent browsing actions. In a contingency

effort, when a concurrent browsing action occurs, CWB is designed to propagate just only the

action which first reaches its central server, dropping out other concurrent actions. Such solution

maintains the co-browsing session in a consistent state, however may confuse users a lot. For

1This system has been discussed in Section 2.3.2.

3.1 Proposal General Description 36

instance, when two users are synchronized in CWB, and both concurrently browse to different

web pages, the user who had unsuccessfully browsed (last reaches the central server) is moved

to a web page different that the one he had chosen.

Despite unmanaged approach, the second commonly adopted coordination model is

presenter-attendees. At any moment, only one user performs the presenter role, while all

the others perform the attendee role (rigid presenter-attendees). A presenter is responsible for

guiding the session, being the only one allowed to choose the contents to visit, whereas the

attendees are just allowed to see what the presenter has chosen. In other words, the presenter

and attendee roles stands for interaction constraints, avoiding concurrent browsing confusion in

the session, and thus managing the browsing following relations. Hence, imposing rigid rules to

the session, this approach avoids concurrent browsing. Conversely such rules are too restrictive,

blocking attendees to also contribute for the session, and as previously discussed in this chapter,

constraining users’ contributions may damage the collaboration.

Some works, as the one proposed by Gerosa et al.(8), have evolved the presenter-attendees

approach, allowing users to dynamically exchange their roles (flexible presenter-attendees).

In other words, the current presenter could assign his/her presentation rights to one of the

attendees. This role exchange protocol increases the flexibility of a co-browsing session, giving

to users equals opportunities to participate. Even so, such improvement still is too restrictive,

since it keeps users locked into tight browsing following relations, restricting their contributions

by only one user by turn.

A co-browsing session should be even more flexible in order to allow its participants to

independently contribute to the shared goal. It means that the users should be able to browse

documents by their own, without stopping to contribute to the session. It could be useful for a

divide-and-conquer strategy, where for instance, the participants want to collaboratively search

for some information on the Internet. In such scenario, each participant search through distinct

paths, collecting and sharing interesting data with the rest of session members. This strategy

is commonly present in co-searching tools (5), but also appears in some co-browsing tools

(6). However, the presenter-attendees model still is very useful, whenever a guiding behavior

is necessary. For instance, during lectures, online tutoring or any other kind of presentation

tasks (1). Hence, an hybrid coordination mechanism enabling these two distinct strategies,

divide-and-conquer and presenter-attendees2 becomes necessary. Such a mechanism should be

flexible, in order to allow the participants to migrate between both co-browsing strategies at any

time, without affecting the continuity of the collaboration session.

2From now on, when mentioning "presenter-attendees" we are referring to the "flexible presenter-attendees"
coordination model, considering presentation roles exchanging mechanisms.

3.1 Proposal General Description 37

For this reason we propose a coordination mechanism designed to provide flexibility for

dynamic co-browsing sessions. This mechanism is divided in two coordination levels. The first

deals with subgroups of participants, supporting them to work following the divide-and-conquer

strategy. In other words, session members could get organized into subgroups where each

of these subgroups is independent to browse. Following, the second coordination level deals

with subgroups’ internal coordination rules. Internally, each subgroup plays the role of

presenter-attendees strategy. So, at any moment, there is only one participant with browsing

privileges in the same subgroup, while all the others in the subgroup are attendees. In

particular, the presenter role can be assigned to any other subgroup’s participant (flexible

presenter-attendees).

As a consequence, such division of users into sub-groups leads to the formation of

collaboration sub-sessions inside the co-browsing session. Note that, when co-browsing,

the participants of a sub-group share information and characteristics that are specific of this

sub-group, likewise a goal, a common production space, awareness information and etc. In

fact, it characterizes that these people (sub-group members) are participating in a proper

collaboration session. Therefore, OCEAN coordination mechanism enables the formation

of specialized collaboration sub-session in order to groups of users could work on their

specific goals, but still participating of a great co-browsing session, for a major shared goal.

Additionally, in the scope of this work we have denominated such collaboration sub-sessions as

co-browsing threads.

Figure 3.1: Coordination Levels

Figure 3.1 depicts an arbitrary scenario of a collaborative browsing session, focusing on

the coordination levels. Regarding Level 1, this session presents four independent co-browsing

threads. Regarding Level 2, the internal organization of threads two and four can be noted.

Especially, thread four presents an special case, when there is only one participant. This

3.1 Proposal General Description 38

particularity allows users to navigate alone, but still contributing for the co-browsing session

as a whole.

As a result, this 2-level coordination mechanism provides a high degree of flexibility to

the session, without losing of control. It can be noticed that this mechanism also supports

the original coordination approaches, unmanaged and presenter-attendees. For instance, if

every session member wants to navigate as in the unmanaged approach, then they just should

create individual sub-groups (co-browsing threads). But now, this unmanaged use does not

cause the aforementioned confusion, since there are no browsing following relations between

participants of different threads. On the other side, if they want to stay all together in the same

presenter-attendees approach, participating of a web seminar or a virtual lecture, they just need

to join the same thread.

Moreover, the OCEAN’s coordination mechanism is quite simple to manage. OCEAN

provides coordination primitives in order to easily re-configure the session, without overcharging

the user with too many commands or workflows for example. The primitives are the specific

coordination actions supported by the mechanism, and are associated with the related task level.

Considering the groups management, on coordination level 1, the primitives are: create thread,

join thread and leave thread. Using these primitives, any user can respectively, create a new

co-browsing thread, join an existing co-browsing thread or leave the co-browsing thread he/she

is currently participating in. Likewise, the coordination level 2 provides: privilege grant and

privilege revoke, used for managing privileges for users action and information access. For

instance, these primitives are used for exchanging the presenter role between two participants,

reconfiguring their browsing privileges. More details on coordination primitives usage are

presented on chapter 4.

Hoyos-Rivera(30) proposed an elegant coordination mechanisms for his co-browsing

system called CoLab, which is based on session workgroups too. This division into workgroups

provide coordination flexibility for CoLab. Even so, CoLab’s coordination is centered on formal

synchronization relations between pair of users. Such relations can be viewed as "browsing

following agreements", where one user follow the other to whatever site this last navigates to.

The basic restriction in this schema is that it is not possible to simultaneously follow different

users. However, a user can be followed by more than one. Besides, while following a user,

you can simultaneously be followed by other users. Accordingly, a hierarchical structure can be

formed during a session. Such hierarchical organization is denominated SDT (Synchronization

Dependency Tree). Whereas the root user is the only one with navigation privileges while

the other nodes transitively follow the root user. So, each SDT formed in a CoLab’s session

3.1 Proposal General Description 39

remains a workgroup. Despite the great flexibility provided by this model, changes of the

coordination scenario can demand to much effort from the participants, on re-establishing

following agreements.

(a) OCEAN (b) CoLab

Figure 3.2: Comparison of OCEAN and CoLab coordination mechanisms

Figure 3.2 depicts a coordination scenario example, where the user C moves from group G1

to group G2. Looking at OCEAN’s approach (Figure 3.2(a)), this operation is made on C calling

the join thread primitive for group G2. In fact, the leave thread primitive is automatically called

by the system, since in OCEAN’s coordination model a user cannot participate in more than one

co-browsing thread at the same time.

Now regarding the CoLab’s approach (Figure 3.2(b)), users A, C and D are directly affected

by two relation dissolve and two creation. Particularly, for each synchronization relation

establishment it is mandatory an authorization of concerned participants. A remark is that for

any relation re-establishment internal to a workgroup structure (for example, in order to carry

on a group privileges exchange between two users), the same operational overload will occur.

Hence, OCEAN provides a flexible and simple manageable coordination mechanism.

In this model, users can create specific collaboration sub-sessions committed to a specific

goal, all inside the same co-browsing session. This way, when a single person leaves this

sub-session, this goal commitment can persist. Such behavior is similar to the division into

departments of an arbitrary company, where event that an employee leaves one department, this

department usually maintains its identity and objectives. By the other side, CoLab just supports

commitments between users’ pairs, not allowing the attendees to explicitly indicate interest in

following a certain shared goal in the session.

3.1 Proposal General Description 40

Nevertheless, having such user based coordination in a co-browsing session would be

interesting to complement the OCEAN model, increasing thus its flexibility and expressivity.

However, we decided not to handle this at this moment, since just porting CoLab’s model to

our system would not be a priority contribution. In the future we intend to study how such user

based coordination could contribute to OCEAN’s co-browsing sessions.

3.1.2 Cooperation Aspect

According to the 3C-model, cooperation is the production resulting from the collaboration

activity that occurs inside shared workspace (25)(18), either for real or virtual spaces. Taking

the Google Docs3 as example, the cooperation is mainly represented by the documents that are

produced in such system. Considering that Google Docs also offers additional communication

features, the messages exchanged in the sessions are also part of the cooperation. Actually, the

cooperation can be materialized by the set of collaboration artifacts produced in a collaboration

session. In addition to that, according to Nguyen, Rekik & Gillet(37), the purpose of the concept

of collaboration artifact is to serve as a bridge that connects agents and software, providing a

shared workspace for the participants.

So, what means "to cooperate" within collaborative web browsing? Remaining to

previously adopted definition, collaborative browsing aims at allowing groups of users to

actively share their browsing activity, recommending web contents and following received

recommendations. In face of that, cooperation in the collaborative web browsing paradigm lies

on the participants’ browsing activity. This way, the main artifacts produced in a co-browsing

session are the web contents browsed by the group, where the cooperation can be materialized

through a Co-Browsing History.

Standard browsers usually create browsing histories only recording the visited URLs.

This approach is not enough to express cooperation in a co-browsing session. In fact, there

are other relevant information produced during each content visualization, for instance, the

established coordination agreements. Particularly, it is very important to know who was the

presenter that has chosen each browsed content. This authorship awareness promotes user ideas

contextualization, and can be applied to measure the relevance of the created information based

on its source (38). Moreover, messages exchanged through provided communication features

should also compose this co-browsing history, since they are part of cooperation too.

Therefore, the co-browsing history proposed here is a registry that stores all events occurred

3Google Docs, an online collaborative editor for documents, spreadsheets, forms and presentations. Available
at: <http://docs.google.com> Release: 02/2009

http://docs.google.com

3.1 Proposal General Description 41

in a co-browsing session. Such registry is a structure composed of minor independent registries,

where each of them concerns a co-browsing thread in the co-browsing session, being composed

by the events occurred strictly in this sub-session. These events could be users’ participations

(e.g.: co-browsing action) or even system’s management actions (e.g.: determining a participant

logout because of some network communication unavailability).

Especially, browsing participations (the act of choosing and loading a URL) are classified

as checkpoint events. This is due to the fact that each co-browsing action takes the group to a

different collaboration context, possibly changing the group discussion focus. All other events

occur over one of these contexts. We understand that a simple change of URL could sometimes

not change the collaboration context of a group, for example, when this URL access means

a page changing of a same document. In this matter, we intend in the future to make this

checkpoint definition flexible, allowing for instance that users or an specialized agent could

dynamically determine which events are checkpoints and which are not.

Figure 3.3: Co-Browsing History Example: a schedule diagram representing the co-browsing
history of an example co-browsing session.

Following the example depicted on Figure 3.1, which was focused on coordination, Figure

3.3 shows its cooperation perspective, presenting a co-browsing history. In this case, only two

threads are depicted, containing events and also the associated awareness information, likewise:

authorship, context and occurrence time.

Besides that, the proposed co-browsing history may motivate and increase collaboration,

since it provides extra control information for supporting co-browsing threads, if compared,

for example, with CoLab (11). In the CoLab’s coordination model, users are able to make

independent groups and so on. However, CoLab does not provide any cooperation advantage

3.1 Proposal General Description 42

for using such division strategy, since its sub-group (SDT) does not explicitly share any specific

collaboration artifact (such as a sub-group history).

In CoLab, if a user wants to independently browse, he would need to leave the current

SDT, browse to wherever he wants, and after that re-join that same SDT, in order to share

his experiences. But, such specific sharing activity is not supported by CoLab. So this user

faced the overhead of leaving and re-joining an SDT without any advantage of using CoLab

browsing interface. It would be easier for this user, to just open a new browser window, using

it in traditional single browsing paradigm, and concurrently, commenting his experiences in the

SDT’s group. This shortcoming is due to CoLab’s SDT works as completely disjoint sessions,

not sharing any information.

Conversely, our approach is based on sub-session which shares every produced artifact

with the entire co-browsing session containing this sub-session, since all events feed the same

registry structure. By the way, a collaboration session is considered an event that represents a

period of time in which participants are engaged to collaborate with each other for a common

purpose (2). Note that OCEAN allows users to keep cooperating, even when they are working

individually, since they keep contributing to the session’s browsing history. This motivates

users to keep using the system, even for performing independent tasks that could be helpful to

the co-browsing session as a whole.

3.1.3 Communication Aspect

According to Fuks et al.(25), the communication aspect is related to messages exchanging

and negotiations by participants. In collaboration sessions, senders transmit messages which

expresses their opinions, intentions and goals, in order to exchange knowledge with other

participants (2). Besides, shared communication channels are often used to coordinate

interaction with other collaborative functionalities (39) In particular, some communication can

be used to negotiate some common goal or to solve some conflict. For instance, participants

usually negotiate coordination scenario changes through communication (34).

Regarding co-browsing scope, the collaboration essentially lies on the web content

recommendations. Communication can be really relevant for supporting this co-browsing

activity, for example for promoting knowledge dissemination or for providing means of

negotiating content relevance and leadership privileges during presentations. This way, general

purpose communication features like the ones supported by chat and audio/videoconference

applications are interesting solutions to be used during co-browsing sessions, since they enable

users to freely communicate.

3.1 Proposal General Description 43

In fact, in order to work collaboratively, people need to communicate (40), and moreover,

good communication encourages collaboration. However, considering some co-browsing

scenario, just offering a general communication feature, like a chat, can cause overheads during

conversations and loss of communication efforts. Imagine a virtual lecture containing large web

pages presentation though a co-browsing system. In such a scenario, the presenter usually needs

to call the attendees’ attention for an specific content piece. In this case, if the only available

communication tool were a standard chat room, then the presenter would need to write down all

the directions to inform attendees about the content piece localization, before starting the real

relevant discussion. By the way, this problem also happens for other general communication

medias, such as audio conferences. This overhead is due to the fact these general purpose

communication features are not tightly related to co-browsing contexts and artifacts.

As the focus of the OCEAN is providing efficient co-browsing mechanisms , providing

general communication functionalities might not contribute to the system’s specification. By

the other side, general communication tools are still valuable for the freely collaboration,

and should not be ignored. Accordingly, instead of defining them as part of the OCEAN’s

specification and re-implementing them, a good strategy for using such features is to provide

means for integrating existent communication tools to the co-browsing system. Such strategy

was adopted by Lima et al.(41), showing the integration of a co-browser with an audio

conference system.

However, systems integration is not that simple and trivial task, since there are many issues

to take in consideration. One example is the integration level, that is about how coupled the

integrated systems could and should be, considering for instance integration of user interfaces,

stored data or happening events. Another important issue to consider is the adopted integration

method. Some commonly adopted methods are: (i) the ad-hoc approach, based on applications’

source code modification; (ii) using API (application programming interface); or even (iii)

relying on integration frameworks, like OpenSocial(42) or LEICA(43). We intend on further

works to investigate what would be interesting applications to integrate with OCEAN, and also,

how such integration should be conceived.

While it is interesting to support general communication functionalities through external

tools, considering OCEAN’s built-in features, the specification of specialized communication

features could improve the communication quality, favoring collaboration effectiveness in the

co-browsing context. Therefore, as we are focused on co-browsing paradigm specific problems,

we specify the communication aspect only considering a specialized view. Considering that the

most relevant resources handled in collaborative browsing are the shared web pages, specific

3.1 Proposal General Description 44

communication features should be aware of them. Some co-browsing systems already offer

specialized communication features, such as: content commenting (14)(6), text highlighting

(31)(10)(44), objects clipping (14) and voting or rating dissemination(6)(33).

All the aforementioned specialized communication features are very helpful for improving

the usability of any co-browsing system. However, only re-implementing such features in our

proposal would not be a relevant contribution. Besides, these features may be too specific, been

useful only for some scenario. For example, a voting feature will probably not be useful in

a lecture scenario, where the presenter is just passing information to the attendees. In order

to chose a communication feature we tried to find a good relation between generality and

specificity, so as to support communications that could be, somehow, (i) explicitly associated to

the collaboration artifacts, and (ii) useful for almost any co-browsing scenario.

The choice was for the Annotation feature, a subset of the digital ink concept(45), to mainly

represent the communication aspect of our proposal. Generally, an annotation feature stands for

giving to a system user the ability to make notes and marks over a visualized content, with the

intention of pointing some specific part of this content, so calling other viewers’ attention. Such

facility is quite useful on reviewing tasks, for instance. It can be seen as a person reviewing

a printed text, making notes with a pen. This feature is usually encountered on collaborative

document manipulation systems, for instance, Microsoft Word, Microsoft Visio and Adobe

Acrobat. Contrary to traditional browsing paradigm, where users are isolated document readers,

in the collaborative browsing, they are just sharing the act of reading these documents. In such

scenario, an annotation feature provides the ability to dynamically review the shared document.

For example, while accessing online lecture materials, such annotations can help students to

focus on the key points of a lecture. Also, it can enable students to engage in discussion (46).

Annotation feature is supported in Clavardon(10), PageShare(31) and WebAn(44). This is

an important resource, allowing the participant to share information. However, the way it is

implemented in such tools is not expressive enough since users are just allowed to highlight

parts of texts only. In OCEAN, annotations are allowed over all the shared content, including

images and other embedded media (1). This feature makes the collaborative browsing more

powerful as it reduces the need for additional collaboration tools, enabling participants to share

contextualized comments on each other’s content. Besides that, annotations help on preventing

information loss, thus being very important to track and reproduce the collaboration session.

OCEAN’s annotation feature comprises the ability to make geometric draws and text notes,

similar to a white-board system, however these strokes are painted over the shared web page.

Additionally, the produced annotations are tightly related with a web page, as an ink mark. So,

3.1 Proposal General Description 45

when a presenter moves to another web page, this new page appears clean. The annotations

keeps in the co-browsing context where were painted. For instance, Figure 3.4 shows an

example of an annotated web page (www.ufes.br). More details about supported stroke types

and implementation issues are presented on next chapters.

(a) Original Web Page (b) Annotated Web page

Figure 3.4: Annotations Example: in this example, a user have painted an ellipse, a rectangle,
two arrows and have written one text note.

Another important aspect to consider in communication scope, is supporting negotiation.

Actually, negotiation can be viewed as a specific case of communication in collaborative

systems, mainly related with the communication process necessary to take decisions in group.

Considering an ordinary collaborative browsing session, coordination decisions could require

some negotiation, either for redefining groups or for internal groups policy changes. Thus, we

propose two communication primitives in order to facilitate coordination negotiation. They are:

• Join Invitation - through this communication primitive, users participating in a co-browsing

thread T can invite other users to also become members of T. The invited users just receive

this message, but he or she is not obligated to formally reject or accept such invitation.

The group join invitation just works as predefined message or suggestion. Its receiver

can just ignore it, in the case of not considering such invitation interesting. So, this

communication primitive can facilitate threads constitutions negotiation.

• Privilege Request - according to the OCEAN coordination mechanism, inside a group,

the current presenter could give the Presentation Privilege to any other group member

at any time, characterizing the flexible presenter-attendees synchronization method. The

privilege request communication primitive, allows the attendees to expose to the group,

especially to the current presenter, his/her intention to be a presenter. In the same way,

the current presenter can accept such request or not. Moreover, the acceptance has not

to be at the right request moment. The current presenter becomes aware of the requester

intention, and can give the privilege at the moment he/she considers better.

http://www.ufes.br

3.2 Conceptual Formalization 46

Hence, OCEAN provides communication facilities specialized on characteristics of the

collaborative browsing paradigm, but still is general enough, that are useful in almost any

co-browsing scenario. Also, these facilities are inter-related with the other two collaboration

aspects. Considering coordination, the negotiation primitives provide means of discussing

and suggesting new session arrangement scenarios. Whereas, the annotations feature permits

enhancing the cooperation, aggregating value to the session’s shared production space.

3.2 Conceptual Formalization

On the previous session, OCEAN was informally specified, distinguishing its main characteristics

on three collaboration views. Aiming at a correct and consistent development of our

co-browsing system proposal, this section evolves previous specification, formalizing relevant4

concepts and relations.

At first, in order to summarize the informal specification into a single view, Figure 3.5

depicts the inter-relations among the described 3C aspects (25). Especially, all the aspects are

inter-related with the Awareness concept, which stands for collaborative state of consciousness

of session participants and is relevant, for instance, for promoting groupwares usability (26).

Additionally, this figure is a specialization of Figure 2.1(b).

Figure 3.5: 3C aspects inter-relations inside OCEAN

The 3C-model, originally proposed by Ellis, Gibbs & Rein(17), has been usually applied

4We do not intend to provide complete analysis models in all terms of software engineering. Also, the
formalization treated here focus exclusively on the co-browsing concepts, omitting system general concepts, for
instance, users names.

3.2 Conceptual Formalization 47

on collaborative systems classification tasks (20), likewise presented in Section 2.1.2. Even

though, it is also important to use the 3C-model during the development process of groupwares

(25). Considering this new approach, in the same way that (18), we explore this model as

means to represent a co-browsing application domain and also to serve as a basis for groupware

development.

Works that defend such groupware development approach, however, do not offer any

formal methodologies for supporting the entire development process of groupwares. Fuks

et al.(18) propose a component-framework-based architecture for being used as skeleton for

developing 3C-based collaborative services, thus helping on implementation of groupwares

providing reusable components and architecture. But this proposal do not cover the whole

process of developing a groupware. In fact, many other works as (21)(47) and (48), have

proposed groupware development methodologies, based or not on the 3C-model, however

the great majority have only focused on design and implementation issues, usually viewing

groupwares as sets of plugged components.

In face of that, we propose a first step towards a comprehensive methodology for

groupwares development. Such a step consists of providing support for initial stages of

the software development process (prior than design and implementation stages), that are

extremely valuable to the whole development (49). In this case, we are specifically focused on

conceptualization tasks, being supported by a well-defined collaboration domain knowledge.

Such conceptual modeling task followed an ontology-based approach, similar to the ones used

on (50) and (49).

3.2.1 The Collaboration Ontology

The discipline of Formal Ontology has been employed in Computer Science noteworthy in three

fields, namely, Knowledge Representation (within Artificial Intelligence), Database Systems

and Software Engineering (51). In the later, ontology development has been taken as a means

for domain modeling. This is meant to promote reusable conceptual models capable of facing

the increase of size and complexity of software.

In this thesis we apply an ontology of the collaboration domain in this sense. The

Collaboration Ontology (2) has been a source for the analysis development phase of the OCEAN

system. This ontology has been proposed preliminary in (2), and is elaborated further in (19).

We build the OCEAN conceptual models upon it, by extending concepts and relations that are

present in particular within the collaborative web browsing application domain (52)(53).

3.2 Conceptual Formalization 48

The main benefits of such ontology-based domain modeling5 are organized in what follows:

1. A domain ontology is supposed to be a strongly-axiomatized domain specification. As

such, it is capable of restricting what can be said in specific applications within the

ontology’s universe of discourse. Consequently, if one takes such an ontology as a

reference model for the analysis development phase of a given application (54), the

conceptualization underlying the latter can hardly be subject of mistaken modeling

decisions - the so-called ontological adequacy of the information system (54).

2. Domain (ontology) modeling can be an effective means for enabling the rapid prototyping

of applications (54). Under this principle the latter no longer require an application-specific

conceptual modeling effort from scratch. We have benefited from that in the development

process of OCEAN as we take the Collaboration Ontology as a reference model.

3. As implicit in items 1 and 2 above, a domain ontology is supposed to be developed

not to cover the scope of a single application, but rather to represent a subject domain

in its essence (50). This broader perspective happens to be less biased, if at all, from

technological issues which often restrict application-specific conceptual models. The

reason is that it is grounded not in the symbolic world of information systems, but actually

in the anchoring real world as we experience it. Such a deep-modeling effort can thus

provide insight and input specially for (henceforth ontology-based) applications meant

to interoperate with two or more other applications. This way we could, for instance,

use such inputs for integrating OCEAN with general purpose communication tools, as

discussed in Section 3.1.3.

Another point in favor of choosing the Collaboration Ontology, is that it has already been

defined in accordance with the 3C-model. Thus, in an effort to a future 3C-model-based

development methodology for groupwares, we propose the use of the Collaboration Ontology

as a groupware conceptual modeling framework. As a consequence, groupware designers can

have a well-defined start point for such development.

Fragments of the Collaboration Ontology, containing concepts related to the OCEAN

context, are shown on Figure 3.6. Since this ontology is based on the 3C-model, it is

also distinguished on coordination, cooperation and communication sub-ontologies, and its

fragments are respectively presented on Figures 3.6(a), 3.6(b) and 3.6(c). The meaning of the

most relevant concepts for OCEAN, in accordance with (19), are described on Table 3.1.

5It is not the purpose of this thesis to elaborate on those assumptions since it goes beyond our scope. For a
further reading, we refer the reader to (54).

3.2 Conceptual Formalization 49

(a) Coordination (b) Cooperation

(c) Communication

Figure 3.6: Collaboration Ontology Fragments: fragments of each collaboration sub-ontology
proposed by Oliveira(19)

.

3.2.2 OCEAN Conceptual Models

The Collaboration Ontology provides a conceptualization in an effort to cover the whole

collaboration domain. Due to that, concepts, relations and attributes of the OCEAN conceptual

models are mapped from concepts of this ontology. These concepts in the most of cases are

specialized in order to achieve the specific application sub-domain needs. Such mappings are

depicted by the concepts in gray - Figures 3.7, 3.8 and 3.9. The remain concepts (in white)

remains to specialized characteristics of OCEAN’s conceptualization.

First of all, the co-browsing session concept is the direct specialization from ontology’s

collaboration session and represents all sessions in OCEAN. co-browsing session is the heart

of OCEAN, holding all users interactions.

Regarding coordination aspect, the conceptual model depicted by Figure 3.7 organizes

concepts related to groups establishment control and internal groups presenter-attendees

protocol. The specific concepts introduced by this model (in white) are described in the

following:

CobrowsingThread: as described in the previous session, every OCEAN’s co-browsing

3.2 Conceptual Formalization 50

Table 3.1: Part of Terms Dictionary of Collaboration Ontology: the concepts present in the
Collaboration Ontology (19) that are the most relevant to the OCEAN’s conceptualization.

Concept Definition
CollaborationSession denotes an event in which participants interact for

the purpose of collaboration.

ParticipantContributor an agent that can contribute in a meaningful way to
achieve the objectives of the collaboration session.

CollaborativeContribution denotes an atomic event that one participant
contributor executes in a collaboration session.

InformativeContribution carry the information that is exchanged during a
collaboration session.

CommunicationAction denotes an act of communication between two or
more agents.

Message denotes the content of a participation of an agent.

Protocol designates a set of rules which establish coordination
for the harmony of the collaboration session.

Objective denotes the motivation of the collaboration session,
in others words, a reason that motivates its
occurrence.

CollaborativeResourceParticipation represents the participation of an object that has no
expressed intention to participate, he participates in
inanimate way (being used).

CollaborationResource designates the object that can be either generated or
consumed by the collaboration session.

Group denotes a collection of agents, with a single identity
criterion.

sessions are divided into sub-sessions, in an effort to provide coordination flexibility

(see Section 3.1.1). Such sub-sessions are represented here by the co-browsing thread

concept;

SessionGroup: remaining the Time/Space taxonomy(17), our proposal is a synchronous

collaborative application. Due to that, knowing who are the online users is an important

awareness information (26);

In this matter, session group represents the group formed by all participant contributor

online in a same co-browsing session. Its main objective is to maintain session

participants connected, even when they are divided into different sub-sessions (co-

3.2 Conceptual Formalization 51

Figure 3.7: OCEAN Ontology-based Coordination Model: this model comprises concepts
regarding coordination flexibility (sub-sessions) and simple management (participants’
privileges and coordination primitives).

browsing threads);

ThreadGroup: by the same token, a thread group tracks online users also, however considering

specific co-browsing thread instances;

PrivilegePolicy: it is a specialization of protocol, and is responsible for all coordination actions

inside OCEAN, managing the coordination primitives and participants privileges in the

co-browsing session. More details about this concept can be found in section 4.2.2.

From now on we dissociate the co-browsing sub-session (CobrowsingThread) and the

coordination subgroup (ThreadGroup) concepts, that were present as the same, during the

previous section informal specification.

Regarding now the cooperation aspect, Figure 3.8 introduces OCEAN concepts which

formalize the previously specified co-browsing history. In the sequence, such concepts are

3.2 Conceptual Formalization 52

Figure 3.8: OCEAN Ontology-based Cooperation Model: this model comprises concepts
regarding the management of the co-browsing history, either for its construction or revisiting
activities.

described.

CobrowsingResourceHistory: a general registry of co-browsing resource participation instances,

not providing any specific organization structure.

CobrowsingSessionHistory: it represents the OCEAN cooperation proposal, i.e., a shared

registry of the whole production of a co-browsing session. In other words, it is a

specialization of co-browsing resource history, which stores a history of all contributions

made in a co-browsing session, organizing this information in a multi-threaded timeline

registry.

CobrowsingThreadHistory: following the cooperation proposal, instances of this concept

comprises a linear registry of all co-browsing resource participation elements, that were

produced by contributions inside the scope of one specific co-browsing thread. As a

consequence, the co-browsing session history aggregates the particular sub-sessions’

histories (co-browsing thread history) in order to have a complete registry of what

happened everywhere in the session, at any time.

CobrowsingResourceParticipation: it is a specialization of collaborative resource partici-

pation which represents each atomic part of a co-browsing resource history. It can be

compared to a "log entry"6, recording an informative contribution.

6A single record involving details from one or more events and incidents. A log entry is sometimes referred to
as an event log, event record, alert, alarm, log message, log record, or audit record. <Common Event Expression:
cee.mitre.org/terminology.html>

http://cee.mitre.org/terminology.html

3.2 Conceptual Formalization 53

Additionally, this concept can be classified as general or checkpoint. In short, a

checkpoint is a kind of co-browsing resource participation that marks a change of

co-browsing context, for instance, a browsing to a different web site. While general

ones store all other type of contributions, for instance, a painted annotation.

Figure 3.9: OCEAN Ontology-based Communication Model: this model comprises concepts
regarding all communication actions between two or more participants of a co-browsing session.
It includes pure communication as annotations and negotiations, and also the communication
demanded for achieving coordination or cooperation tasks, e.g.: privileges exchanges and
history revisiting.

Finally, Figure 3.9 presents the last part of OCEAN conceptualization, introducing

communication related concepts, that are specializations of informative contribution ontology

concept. They are used not only to classify what is being transmitted, but also to determine the

nature of the transmission. For instance, who is transmitting is a relevant information available

for these concepts, since there is the executes relation linking the participant contributor to the

informative contribution.

Cobrowse: it is the specific type of informative contribution that handles collaborative

browsing actions. In other words, co-browse contributions transmit what content the

presenter wants to show to attendees. In particular, there are two types of co-browse

contributions in OCEANconceptualization. Where web browse is the action of browsing

3.3 Conclusions 54

to an Internet web page, while history revisit occurs when the presenter retrieves a co-

browsing resource participation for showing some past co-browsing context to attendees.

Annotation: this concept represents annotation contributions. As defined, the annotations

supported by OCEAN are geometrical strokes and small text notes, which are respectively

formalized as draw and text note concepts.

Negotiation: it represents the negotiation facilities, which provide means of users suggesting

new coordination scenarios. This concept’s specializations stands for the two different

negotiation primitives supported by OCEAN, join invitation and privilege request.

Management: the last informative contribution specialization represents the communication

actions demanded to transmit session coordination decisions and state awareness. They

are: (i) session management, which concerns any session state changes (e.g., the

login/logout of session participants); (ii) group management, which transmits group

formation primitives; and finally, (iii) privilege management, which transmits privileges

grants and revokes for participants.

However, these classifications do not describe what data is specifically being transmitted.

In this matter, we have specialized the ontology’s Message concept onto two distinct message

types. The annotation message is a structured definition of a painted annotation, specified in

order to provide an easy transmission, storage and reproducibility. Whereas text message is a

general purpose textual message type used for transmitting arbitrary information of the other

contribution types, for instance, the URL transmitted by a web browse contribution.

3.3 Conclusions

This chapter have presented a comprehensive coverage of the proposal of this work, detailing

what OCEAN intends to provide. In summary, the OCEAN’s proposal becomes as a novel

approach for collaboratively browsing the web, comprising characteristics of: (i) flexibility and

manageability, with the advent of co-browsing threads and their coordination primitives; (ii)

expressivity and dynamics, through the specialized communication features; and (iii) promoting

a greater engagement on the teamwork through the use and reuse of artifacts collaboratively

produced during the co-browsing sessions.

Such proposal characterization was entirely guided by the 3C-model (17), a relatively

simple model originally proposed for classifying groupware (20). Even so, following works like

3.3 Conclusions 55

(18), we have adopted this model during this first phase of the OCEAN development process.

This decision have contributed a lot during this task, since having the distinction between

cooperation, coordination and communication, we could exploit each aspect independently,

thus getting a precise focus on proposing co-browsing solutions for each of them. After that,

connecting each of these independent views rendered a complete and concise proposal for

OCEAN.

Once our intentions were presented with OCEAN, this proposal has been formalized

allowing to proceed to the development process with a consistent conceptualization of such

intentions. In the same way, this formalization task followed the 3C-model, maintaining

adequacy with the previous informal specification. However, the 3C-model itself is not

enough for support this formalization, due to its extreme generality and lack of expressiveness.

This way, we have adopted the Collaboration Ontology (2)(19), as pre-developed knowledge

of the collaboration domain, built upon the 3C-model. Especially, this ontology-based

conceptualization appears as an important contribution for the development of any groupware,

since mirroring the Collaboration Ontology these systems could benefit of, for instance:

avoiding mistaken modeling decisions, rapid prototyping and easier interoperability with

another collaborative systems. In face of that, we propose a first step towards a methodology

for supporting the entire development process of groupwares, where the first phase is using the

Collaboration Ontology for conceptualization.

Details about how each feature composing this proposal is designed and implemented are

presented on next chapters.

56

4 Design Issues: how it works

The previous chapter discussed about what is the main proposal of this thesis, presenting a

characterization and conceptual formalization of main features composing OCEAN. In this

chapter, we are interested on how these features internally work. In doing so, the main concern

to discuss now is about what must be done to make this co-browsing system "idea" feasible in

a real scenario, in this case the Internet. Such discussion includes mainly, understanding the

challenges involved for providing those features, especially co-browsing facilities, as well as on

the required infra-structure for supporting these features. As a result, we aim to compose here

the design1 of OCEAN, one more step towards the realization of this work proposal.

Two requirements, in particular, have taken our attention during all this designing task,

flexibility and performance. Firstly, we aim at proposing a design that could be flexible

enough for easily supporting reorganizations on the collaborative work. In addition, such

flexibility comprises an extensibility aspect, regarding a support of this design for some further

improvements on the proposal. At last, we also have a great concern on providing a good

performance for our co-browsing service, considering mainly responsiveness and scalability.

This way, the remaining of this chapter is structured according to the following organization.

Section 4.1 positions our proposal among common distributed architectures adopted by other

co-browsing systems, presenting the involved entities distributed over the Internet and its main

components. Section 4.2 shows an application level network protocol, proposed for providing

communication among such distributed entities. At last, Section 4.3 gathers some conclusions

about OCEAN’s design.

1We do not intend to provide a complete software design description and modeling in terms of software
engineering. We focus on describing what we consider relevant contributions to the collaborative web browsing
field.

4.1 Distributed Architectures 57

4.1 Distributed Architectures

The major advantage of using a co-browsing system is that it allows distant users to jointly

navigate the web, instead of just supporting web sites recommendations and discussions

through standard communication tools. Such co-browsing system’s conception must rely

on a distributed architecture that offers as less overhead as possible in order to not disturb

users’ collaboration. Thus, we have designed a distributed architecture based on a lightweight

infra-structure for supporting co-browsing sessions. Here we present such architecture, which

comprises independent entities distributed over the Internet. Also, each entity is detailed,

showing its internal functional components.

However, before presenting the OCEAN architectural proposal, we discuss about architectures

commonly adopted by other co-browsing services, and the problems faced by them, due to their

architectural choices.

4.1.1 Commonly Adopted Approaches

Other co-browsing works have proposed particular solutions for providing their features to

distributed users. Even so, there are too much similarities among them, probably due to the

fact of having faced the same specific challenges on such development. In a first glance, the

most basic entities involved in any distributed co-browsing session certainly are:

• Users: the people that have met intending to co-browse. In other words, the participants

of the co-browsing session.

• Co-browsing User Application: considering that users are located at different places, they

need an computational interface in order to interact each other through the co-browsing

session. Such interface usually is referred as co-browsing clients, implemented software

running in computational device (client host) in pose of users. In fact, this client

represents the proper user in the co-browsing sessions.

• Shared Contents: this entity represents everything that is shared in a co-browsing session,

where the most relevant are the co-browsed web pages.

• Web Servers: in most of cases, those shared web pages are published somewhere in the

Internet. This web pages’ sources are the web servers, hosts dedicated to serve pages,

thus composing the proper Web.

4.1 Distributed Architectures 58

The client application is an entity that acts producing and consuming information from

the co-browsing session. Usually, co-browsing systems implement this entity following one of

two basic approaches: (i) implementing a specific collaborative browser application for clients

(22)(5); and (ii) using standard browsers to access an implemented co-browsing service (1)(12).

When following the first approach, co-browser designers are free to implement whatever

they want. For instance, they are able to choose any network communication protocol since

they have direct access to the clients’ operating system. The main drawbacks are, however, that

building a fully fledged browser is a gigantic task, and moreover having to use a special browser

in some context, and a standard browser in others, can be very inconvenient for the users (8).

On the opposite, when using a standard browser, the designers take advantage for instance

of, security updates and already implemented content rendering mechanisms. Besides, the

greatest advantage of using a standard browser is that users are already familiar with its

interface, and so, feel comfortable on using this browser for a co-browsing activity. In particular,

some works follow a hybrid approach, extending a standard browser in order to cope with a

co-browsing service. An example is the CoBrowse(29), which extends the Mozilla Firefox,

adding collaborative browsing capabilities to this standard browser.

Considering arbitrary users collaboratively browsing with arbitrary goals, the standard

browser usage approach is preferable for designing an adequate co-browsing system. Actually,

it is the most adopted by other co-browsing systems, for instance, (30)(14)(10)(6) and (12).

Usually, co-browsing systems like these are designed as dynamic web pages2 which somehow

act as co-browsing client applications, managing access to the co-browsed web pages and all

shared content. However, all co-browsing services that were designed to use a standard browser

this way, have faced at least a common problem, the native security issues. These standard

browsers usually restrict any dynamic code (quite often represented by scripts) of accessing

information from different web domains. In other words, a co-browsing management script

running in the co-browsing client (dynamic page) cannot access information from the shared

content (co-browsed web pages), when these two web pages (co-browsing client and shared

content) are from distinct domains (usually different web servers).

Note that, when both web sites are from the same domain, the browser does not impose

any restriction. Thus, there is no problem to add co-browsing capabilities to a web portal,

or to provide a co-browsing service inside an Intranet, that is the case of the co-browsing
2Classical hypertext navigation occurs among static documents, and, for web users, this experience is

reproduced using static web pages. However, web navigation can also provide an interactive experience that is
termed dynamic. Content (text, images, form fields, etc.) on a web page can change, in response to different
contexts or conditions. There are two ways to create this kind of interactivity: client-side scripting and server-side
scripting. <en.wikipedia.org/wiki/Dynamic_web_page>

http://en.wikipedia.org/wiki/Dynamic_web_page

4.1 Distributed Architectures 59

systems presented in Section 2.3.2. For instance, if a news portal (hosted on: http://DOMAIN/)

would wish to offer an specialized co-browsing system, its maintainers just need to publish the

co-browsing dynamic page at the same domain (http://DOMAIN/cobrowse_news). However,

such solutions restrict too much the usages of co-browsing, since in this scenario users cannot

leave this single domain (in this case DOMAIN), for collaboratively checking more information

at the huge source that is the Web.

Thus, avoiding domain-specific co-browsing applications, standard web browsers impose

restrictions on different domains, since this "cross access" is considered a security breach. In

order to overcome such a problem, thus allowing users to freely co-browse thorough arbitrary

domains, some co-browsing systems have proposed mechanisms for circumventing browsers

security restrictions. The most commonly adopted of these mechanisms are subsequently

described.

Content Manipulation: Most co-browsing systems in the literature are based on a specialized

proxy-server, that intermediates the transmission of web pages for the referred web

servers to all session members, e.g.: (55)(31)(14) and (56).

This proxy translates every accessed web page, modifying its original content, in an effort

to overcome browser security. This can be made basically by two ways. One is changing

the domain of the shared content to the same domain of the co-browsing service (a kind

of domain spoofing or faking). Therefore, the browser would allow the co-browsing client

scripts to access shared web page information(10). The second way is embedding event

listeners in the shared web page, so this events aware web page can detect its own events

and cope with the co-browsing system (30). However, these translation techniques can

negatively affect the proper shared web page, for instance interrupting original scripts’

behavior. Such scripts might not expect that the containing document has been "moved"

to a new domain, or that a new listener are modifying a normal web site behavior.(12).

Also, the proxy architecture leads to potential performance problem, since the proxy

server can become a bottleneck (11). Indeed, proxy-based co-browsing architectures

cause overhead on the server side, due to the translation and redistribution of the whole

shared web pages for all clients.

Browser Manipulation: This mechanism consists to overpass the browser security from the

inside. It can be made running security authorized embedded applications in the standard

browser during co-browsing sessions. Common alternatives are using Java applets or

specific browser extensions (29). Once inside the browser, these codes are free to grab

whatever information they want, from any opened web page.

4.1 Distributed Architectures 60

Because of the insecurity or unreliability of these codes, some browser’s users do not

like to install browser extensions or to run authorized Java applets. However, there are

certification mechanisms, for instance, provided by the Mozilla Co. that aggregates a

reliability degree to an browser extension. Even so, some statistics indicate that users

usually don’t care about it. Statistics regarding the Mozilla Firefox browser can be found

at the official blog of Mozilla Add-ons3, blog of metrics4 and at Mozilla Add-ons statistics

dashboard5. As an example, at November 19th in 2008 the Mozilla.org have served their

billionth add-on download since 2005, and only in one day (April 27th, 2009) this same

web site have registered 1,919,221 downloads, where a great amount of them are not

signed.

Finally, this approach avoids synchronization problems in the co-browsing sessions,

since users are independent to download shared web pages directly from its source (web

servers). Therefore, users can leverage their own bandwidth, no longer depending on the

connection to a specific intermediary proxy server. Another benefit of this approach is

that it does not affect web sites’ internal scripts, unlike proxy-based co-browsers, which

usually change web sites’ URLs and internal script listeners.

Another point worth to consider is how the co-browsing clients communicate. It is

necessary that these applications frequently exchange messages in order to keep users aware

of everything that happens in the co-browsing session. Considering that these clients are

dynamic web pages running in a standard browser, the naturally available communication

mechanism is only HTTP (Hypertext Transfer Protocol) connections6 . This way becomes

necessary an HTTP server (web server) for intermediating such communications. Especially,

proxy-based systems reuse this same proxy for also intermediating client communications.

Besides convenient, such approach overloads even more this server, that have already has to

achieve with web pages translations and distributions. In particular, another network protocols

can be used when the co-browsing client copes with a Java applet or a embedded Flash. In this

case, these mini-applications are able to manipulate sockets for instance, thus being capable

of using another application level protocols rather than HTTP. In doing so, such co-browsing

clients could communicate though more elaborated mechanisms, for instance in a peer-to-peer

network or using multicast channels.

3Official Blog of Mozilla Add-ons: blog.mozilla.com/addons
4Blog of Metrics: blog.mozilla.com/metrics
5Mozilla Add-ons Statistics Dashboard: addons.mozilla.org/en-US/statistics
6Web browsers are essentially HTTP clients, applications designed for retrieving and rendering web pages from

HTTP servers. This way, the communication mechanism that these browsers usually offer for such dynamic web
pages’ scripts are generally all HTTP based.

http://blog.mozilla.com/addons/
http://blog.mozilla.com/metrics/
https://addons.mozilla.org/en-US/statistics/

4.1 Distributed Architectures 61

4.1.2 Our Approach

Due to the presented advantages, we have also chosen to use a standard browser as the OCEAN

client. Similar to other co-browsing approaches(14)(10), this standard browser accesses our

co-browsing service, which provides a dynamic web page that is our client application. This

client manages every contributions made by its user, as well as maintaining session awareness.

Looking for an architecture that could provide better performance, concerning for instance,

scalability and responsiveness, we have designed OCEAN following a browser manipulation

approach. Thus, one of OCEAN’s requirements is that clients use a browser extension instead

of being connected to a web proxy.

The additional entity composing our architecture is responsible for keeping the client

applications in touch, broadcasting contributions to session participants. In order to make it

simple, it is designed as a centralized service built upon an HTTP server, which acts as a

mediator for client communications. Due to its centralized nature, the OCEAN application

server could also become a bottleneck for the whole system. However, despite proxy-server

solutions that handles the shared web pages’ content, our server must handle only small pieces

of data, representing participants’ informative contributions (see Section 3.2), where great part

of the data is treated only in the client application. It means that our server works basically

like a multicast router, receiving and re-transmitting small data packets. It can be seen by the

proper web browse informative contribution (a co-browsing action). In OCEAN a co-browsing

action is supported by the sharing of the URL which identifies the co-browsed web page, being

the clients responsible for retrieving the related content from its original web server. Whereas,

besides handling URLs, proxy-based architectures also handle the contents of all co-browsed

web pages in server-side.

So, in summary, comparing the performance insights of OCEAN application server with

a common proxy-server, OCEAN has two main advantages. The first is server resources

saving, as it must process a much smaller amount of data not having to translate any web

content. Secondly, network connections might will consume less bandwidth, since OCEAN

server only handles small session events transmission . In the same way that a browse

contribution which transmits a URL message for archiving a co-browsing action, the other

types of informative contributions defined at OCEAN conceptualization also are based on small

message transmissions Such small messages do not demand to much effort to be transmitted,

not overcharging the server connectivity. On the contrary, proxy-servers usually have to

download the web page content from its web server and then redistribute it to all interested

session members. This mechanism could quickly overcharge the proxy-server connectivity

4.1 Distributed Architectures 62

when the number of interested members (session participants) or simultaneous sessions grows

up, consequently compromising its scalability, and thus the whole co-browser application

performance.

Another point is concerning server geographical position. Such positioning may

considerably affect shared web content download time. As an example, imagine a scenario

where a co-browsing server is located in an arbitrary European country, and all participants of a

session are located in Brazil, and they are co-browsing Brazilian web pages. If the application

server acts as a common proxy-server, for every browsing, the European proxy downloads the

web page content from Brazilian web servers and , after that, the Brazilian users download this

content from the European proxy. Note that, proxy-server solutions thus impose propagation

delays to every web page download. Conversely, on OCEAN, the client application performs

web page downloads by their own, not depending from the application server for this task.

We know that in OCEAN, such propagation delays also affect the distribution of informative

contributions, however we demonstrate in Chapter 6 that these delays are irrelevant in the

context of the whole session.

As a result of previous discussions, OCEAN was designed to be a lightweight system,

dealing with three distributed entities, the application server, the client standard browser

and the web servers which hold the co-browsed web pages. The application server acts as a

synchronization point, dealing with a minimal workload to accomplish its task. On the other

side, the client has greater responsibilities, in order to save server resources. Figure 4.1 depicts

an architectural overview of OCEAN, presenting the distributed entities and their main internal

components.

The application server is essentially composed by the notification service. This service

is responsible for handling all the created contributions, forwarding them to the concerned

participants. Such contribution routing process is coordinated by the notification protocol,

explained on the next section. In addition, the application server is composed by the session

manager, that controls all co-browsing sessions in the system, managing for instance, the

participants privileges. At last, the co-browsing history repository is used for storing all the

information about all co-browsing sessions, composing the co-browsing histories. As described

on Chapter 3, such histories are a persistent registry of the session contributions, important

for maintaining a common workspace for all participants, even when working on separated

co-browsing threads.

At the client side, the participant uses a standard browser accessing the OCEAN client ap-

plication, that in its turn, encapsulates the shared contents (web pages and other contributions).

4.1 Distributed Architectures 63

Figure 4.1: Distributed Architecture Components: presents the distributed entities involved on
the OCEAN co-browsing activity, detailing its main components.

Due to standard browsers security constraints, this architecture rely on the browser extension

component, working as a access bridge to shared content relevant information. Nevertheless,

the browser extension is not a mandatory requirement for using OCEAN. For example, if a user

does not want to install it, thus he simply could not act as a presenter. Even though, he/she still

would be able to participate of a group as an attendee.

In particular, OCEAN client application is composed by three main components. The

service manager is the core module. Its main responsibilities are: observing user actions,

restricting the unprivileged ones; handling created and received contributions; manipulating

session awareness state; and organizing user’s interface events. The shared content interface

is responsible for observing and restricting user actions inside the encapsulated shared content,

in accordance with the service manager. While the OCEAN user interface is in charge of

presenting all the related information to the user, and providing system interaction features, for

instance creating annotations or defining co-browsing threads.

It is important to mention that, with the use of the browser extension, OCEAN could also

4.2 Notification Protocol 64

share HTTP cookies. Cookies are parcels of text sent by a web server to a client (usually a

browser) and then sent back unchanged by the client each time it accesses that server. They are

usually used for authenticating, session tracking (state maintenance), and maintaining specific

information about users, such as site preferences or the contents of their electronic shopping

carts7. In a co-browsing session such cookie sharing feature is valuable for maintaining all

clients in the same state with the shared content’s web server, as they were only one user.

However, sharing cookies implies on a privacy discussion(57). In this matter, OCEAN actually

only warns the group presenter every time the application client is sharing his or her cookies.

In future works we intend to offer some interactivity or manageability for this cookie sharing

mechanism.

4.2 Notification Protocol

We have defined in OCEAN’s conceptualization that, all user interactions in a co-browsing

session implies on informative contribution transmissions. Each transmission is represented

by a user sending a message and, after that, at least one different user receiving it. In

order to avoid lost of information and to keep sessions consistency OCEAN provides a

standardized communication protocol for supporting such transmissions. This protocol also

embeds processes related with each informative contribution act, for instance, disallowing

unprivileged users to send messages.

The messages handled by our system consist of small amount of data describing the

supported informative contributions, which regards to browsing, annotation, negotiation and

management actions. For example, a web browse contribution is described by a message

containing only the URL of browsed content. Hence, in a nutshell, the communication

protocol consists of small messages distribution over the participants of a session. As the

notification protocol is responsible for notifying, or publishing, some eligible consumers about

produced contributions, it has been specified as a specialization of the Message Queues (58)

and Publish/Subscribe (58) communication paradigms .

According to Eugster et al.(58), message queues provide global spaces, which are fed

with messages from producers, being concurrently pulled by consumers afterwards. The

main characteristic is that message queuing systems usually provide transactional timing and

messages’ ordering guarantee. On the other hand, in publish/subscribe paradigm, messages

(or events) are published by the producer, and after that, these messages are pushed to the

7Wikipedia - HTTP Cookies. <en.wikipedia.org/wiki/HTTP_cookie>

http://en.wikipedia.org/wiki/HTTP_cookie

4.2 Notification Protocol 65

consumers who have previously subscribed to referred message’s class. The different ways

of specifying the events of interest have led to several subscription schemes, where the most

widely used are: topic-based, content-based and type-based. Although, message queuing and

publish/subscribe are tightly intertwined: message queuing systems usually integrate some of

publish/subscribe-like interaction.

Our protocol inherits from message queues the notion of a shared and global ordered

messages/events space for the session. This characteristic allow us to maintain the cooperation

history scheme proposed on Section 3.1.2. Considering topic-based publish/subscribe paradigm,

our protocol inherits the decoupling interactions and events interest matching on subscribe

action. However, there is a great difference if compared with traditional publish/subscribe

approaches. In our case, the subscribers are not free to explicit determine which events

interest them. These interests are automatically determined by OCEAN, in accordance with

the session’s coordination scenario (see Section 3.1.1). In addition to that, the rights to publish

any event are also coordinated by this same scenario.

By definition, in the topic-based publish/subscribe scheme, participants can publish events

and subscribe to individual topics, which are traditionally identified by keywords. Although,

topics are strongly similar to the notion of groups, where groups represent disconnected event

spaces. Consequently, subscribing to a topic T can be viewed as becoming a member of a group

T, and publishing an event on topic T translates accordingly into broadcasting that event among

T members (58).

Therefore, considering minor adaptations, this paradigm fits nicely our communication

needs. In this case, for each collaboration session (co-browsing session or co-browsing thread)

in OCEAN, a new publish/subscribe topic is established, where the associated keyword is the

sessions’ unique ID. As a consequence, whenever a participant for instance joins a co-browsing

thread, he or she automatically becomes publisher and subscriber of that topic. Consequently

when leaving this thread, the participant ceases to be publisher and subscriber of such topic.

Also, when a presenter, for instance, publishes an informative contribution, all the attendees

(subscribers of such topic) would automatically receive this contribution.

4.2.1 Definition

This section describes the main concepts composing the Notification Protocol, figuring out

their main characteristics. Figure 4.2 depicts such concepts and the relations between them,

extending OCEAN conceptual models. The concepts and relations introduced here are

described in the following, while the others are presented in Section 3.2.2.

4.2 Notification Protocol 66

Figure 4.2: Notification Protocol Design Concepts: a model extending OCEAN conceptual
models (Section 3.2). It introduces concepts related to how the informative contribution are
handled by the system.

NotificationSharedSpace This concept represents the shared and global ordered space of

messages/events for the session. This message queue like structure maintains all the

published informative contributions instances, while there are participants meant to

receive them. Meanwhile, these contributions produces their respective history artifacts,

which are stored at the co-browsing history repository. After being correctly distributed

and stored, the informative contribution instance is destroyed, discharging the notification

shared space.

Moreover, this structure is designed as an unique queue of contributions per co-browsing

session. Every queued contribution are labeled with the destiny scope. Thus, during the

notification process delivering phase, the notification service can determine who would

be the eligible subscribers for such information, based on the privileges policy.

Scope Relations These relations (session scope and thread scope) represent topics in terms

of the publish/subscribe topic-based paradigm. In this matter, the participants can

publish and subscribe for specific topics. So each collaboration session in OCEAN is

a publish/subscribe topic in the notification protocol, either co-browsing sessions or co-

browsing threads.

The session scope provides a communication channel for session’s participants to

exchange information, no mattering what specific thread group8 they belong to. Such

8Thread group is the group of online users participating in the same co-browsing thread. (see Section 3.2.2)

4.2 Notification Protocol 67

topic is used to keep participants aware of any modification on the hole session state or

configuration. For instance, informing users’ login and logout, and also informing group

reconfiguration. More important, providing groups configuration awareness is a valuable

social navigation (9) feature. For example, while observing that many users are migrating

to a specific group, a observer may conclude that something interesting is happening in

such group, without the need of any formal invitation from other users.

By its turn, the thread scope permits message exchanging in the context of a specific

co-browsing thread, supports interest matching considering the threads formation. This

way, messages exclusively from a thread do not annoy with unnecessary notifications

other threads’ participants, who might not be interested on the referred information that

time. Even though, if these other participants would be interested, they still could access

that information at the co-browsing history.

PublishPrivilege Every action that a user can perform in OCEAN is controlled by privileges.

So, for every participant, privileges are granted and revoked in order to coordinate "who

can do what" in the session. This way, publish privilege is a specialization of privilege

policy concept, and represents the privileges for determining if a user can or cannot

publish some information on a specific topic.

SubscribePrivilege In the same way, the subscribe privilege represents the privileges for

determining if a user can or cannot receive some information from an specific topic.

Note that, this concept is actually the definition of OCEAN’s automatic subscribe action.

In other words, if a user has granted, for instance, the subscribe privilege for receiving

annotations from an arbitrary co-browsing thread T, he/she is automatically a subscriber

of annotations events on topic T. Therefore, this concept is what most differ OCEAN

notification protocol from traditional publish/subscribe communication paradigm.

These concepts present the nature of our notification protocol. They figure out the

inherited characteristics from traditional protocols, and what we have introduced for our

specific context, on publish privilege and subscribe privilege. It is worth to mention that our

protocol inherits another characteristic from modern topic-based publish/subscribe approaches,

the hierarchical addressing. Such feature permits programmers to organize topics according

to containing relationships (58). In this matter, OCEAN also organizes its publish/subscribe

topic hierarchically, where on session scope comprises a set of thread scopes. Especially,

such hierarchy mirrors the proper OCEAN conceptualization, considering that one co-browsing

session can be composed by many co-browsing threads as sub-sessions.

4.2 Notification Protocol 68

4.2.2 Privileges Management Policy

In an effort to maintain the coordination inside OCEAN, privileges were designed for allowing

or disallowing users to perform collaborative actions, in other words to coordinate sending and

receiving of informative contributions. These privileges associations are determined combining

3 (three) different parameters, subsequently described.

• Scope - the scope parameter defines how wide is the interaction in the session and is

defined by the notification protocol scope relations, i.e.: session scope and thread scope.

By definition the most widely available scope for users is the session scope, since two

different co-browsing sessions are considered independent and isolated. In other words,

participants from one session are not allowed to directly contribute to other sessions’

participants. Such collaboration scenario could only be possible through the retrieving

of other session’s history. Following the topics hierarchy, the thread scope provides a

specific interaction scope;

• Function - this parameter remains to the informative contribution concept specializations

denominated send and receive. Such concepts represent the two main phases of the

notification process, linking who are the publisher and subscribers of such interaction;

• Type - at last, this parameter denotes the all possible message types handled by the

notification protocol. These messages are classified as follows: (i) Session Management,

including login and logout messages; (ii) Coordination Messages, which includes create

thread, join thread, leave thread, token passing; (iii) Communication Messages, with web

browse, annotation, privilege request and join invitation; and finally (iv) Cooperation

Messages, that contains only history revisit.

In order to illustrate the OCEAN privileges management policy, we have fixed the scope

and varied the other two parameters. In doing so, Table 4.1 shows the most relevant privilege

grants for the session scope. All other contribution types not present in this table are considered

revoked on both functions. In particular, this privileges configuration for the session scope are

invariable during all session long. Moreover, the login contribution is the only one revoked,

because this contribution is automatically published by the system, and not by the user.

In the same way, Table 4.2 presents the thread scope privileges policy. Despite static

configuration of session scope privileges, thread scope privileges can be dynamically changed.

The first change cause are coordination primitives (i.e.: create thread, join thread and leave

thread). The create thread primitive starts a co-browsing thread, demanding the initialization

4.2 Notification Protocol 69

Table 4.1: Session Scope Privileges

Contribution Types Publish Privilege Subscribe Privilege
Login revoked granted

Logout granted granted

Create Thread granted granted

Join Thread granted granted

Leave Thread granted granted

Join Invitation granted granted

of privilege policy structures. On the other hand, join thread and leave thread primitives cause

respectively the inclusion and exclusion of a participant from a thread group. Inclusion actions

leads to the re-configuration of included participant’s privileges, whereas an exclusions leads to

two possible consequences. At first, if the user who leaves was an attendee, this action only

affects this specific user, revoking his/her privileges for the related thread scope. However, if

this user was the current co-browsing thread presenter, besides revoking his/her privileges for

that thread scope, another user inside this thread must be elected the new presenter. In this

case, OCEAN just automatically grant presenter privileges to the first available participant in

the thread group, after that, participants can re-negotiate in order to choose a new presenter by

their own.

Table 4.2: Thread Scope Privileges

Presenter Role Privileges Attendee Role Privileges
Contribution Types Publish Subscribe Publish Subscribe

- Browse granted revoked revoked granted

- Annotation granted revoked revoked granted

- Cookie granted revoked revoked granted

- Presenter Privilege Request revoked granted granted granted∗

- Download Ack ∗∗ revoked granted granted revoked

- Presenter Token Pass granted revoked revoked granted

- History Revisit granted revoked revoked granted

∗ Useful for maintaining the whole thread group aware of someone’s intention to be a
presenter.
∗∗ Introduced in Section 4.2.4.

Another cause of change in a thread scope privilege grants is when the presenter ceases the

presentation privileges to an attendee, exchanging their roles in the session. Such agreement is

supported by the coordination basic primitives: privilege grant and privilege revoke. Note that

operation of exchanging the presenter-attendees roles leads to a set of these basic primitives

calls. Considering that presenter-attendees role exchange is a very common operation, OCEAN

defines a composition of the primitives calls in order to provide role exchange as a unique action,

4.2 Notification Protocol 70

denominated presenter token pass. Such shortcut operation creates the idea of "material" and

unique token per group, where only the user who hold this token, has full rights to present.

Such token based coordination mechanisms are usually referred as floor control policies (59).

Following a pseudo-code format, the Algorithm 4.1 describes presenter token pass operation,

showing the calls of privilege grants and revokes, demanded to exchange two users roles.

As a consequence of such tokens, becomes necessary to specialize the privilege request

contribution into presenter privilege request and annotation privilege request, where the first

has already been presented in Table 4.2. The second follows the same logic. In this case

the annotation token holder has his/her privileges set as revoked and granted for the publish

and subscribe functions respectively, while the others have granted and revoked for the same

respective functions.

A remark is that currently OCEAN do not support two participants of a same group creating

annotations at same time. This restriction was imposed in order to simplify the consistency

management of this feature. However, considering flexibility objectives of our proposal, we

have extended the privileges policy, creating the annotation token. In the same way that with

presenter token, the annotation token is a shortcut for exchanging privileges. In this case,

only privileges regarding the annotation contribution type are handled. Accordingly, one user

can keep presenting the web content while ceases the annotations ability to an attendee. The

annotation token pass operation is described in Algorithm 4.2.

4.2.3 The Notification Process

Up till now we have described a general view of OCEAN’s Notification Protocol, focusing on

related concepts and rules. Now we focus on the notification process, considering what happens

to completely transmit an informative contribution from its producer to all the concerned

consumers.

According to the protocol definition, every informative contribution inside OCEAN’s

environment is transmitted through the Notification Protocol. This protocol relies on a central

notification service for intermediating such interactions, maintaining producers and consumers

loosely coupled. With this in mind, the implied notification process is composed mainly by

two independent phases. The first phase regards the producer publishing a contribution to the

mediator (notification service), while the second phase regards the mediator delivering this

contribution to the privileged consumers. Also, these transmission phases incorporate session

coordination and system management activities, in order to maintaining the consistency of the

ongoing co-browsing session.

4.2 Notification Protocol 71

Algorithm 4.1 Presenter Token Pass Operation
Require: user1 6= user2
Require: user1 ∈ G1∧user2 ∈ G1
Require: isPresenter(user1)∧ isAttendee(user2)
Ensure: isPresenter(user2)∧ isAttendee(user1)

{Turning user1 into an attendee}
PrivilegeRevoke(user1,G1.topic, publish,webBrowse)
PrivilegeRevoke(user1,G1.topic, publish,cookie)
PrivilegeGrant(user1,G1.topic, publish, presenterPrivilegeRequest)
PrivilegeRevoke(user1,G1.topic, publish, presenterTokenPass)
PrivilegeRevoke(user1,G1.topic, publish,historyRevisit)
PrivilegeGrant(user1,G1.topic, publish,downloadAck)

PrivilegeGrant(user1,G1.topic,subscribe,webBrowse)
PrivilegeGrant(user1,G1.topic,subscribe,cookie)
PrivilegeGrant(user1,G1.topic,subscribe, presenterPrivilegeRequest)
PrivilegeGrant(user1,G1.topic,subscribe, presenterTokenPass)
PrivilegeGrant(user1,G1.topic,subscribe,historyRevisit)
PrivilegeRevoke(user1,G1.topic,subscribe,downloadAck)

{Turning user2 into a presenter}
PrivilegeGrant(user2,G1.topic, publish,webBrowse)
PrivilegeGrant(user2,G1.topic, publish,cookie)
PrivilegeRevoke(user2,G1.topic, publish, presenterPrivilegeRequest)
PrivilegeGrant(user2,G1.topic, publish, presenterTokenPass)
PrivilegeGrant(user2,G1.topic, publish,historyRevisit)
PrivilegeRevoke(user2,G1.topic, publish,downloadAck)

PrivilegeRevoke(user2,G1.topic,subscribe,webBrowse)
PrivilegeRevoke(user2,G1.topic,subscribe,cookie)
PrivilegeGrant(user2,G1.topic,subscribe, presenterPrivilegeRequest)
PrivilegeRevoke(user2,G1.topic,subscribe, presenterTokenPass)
PrivilegeRevoke(user2,G1.topic,subscribe,historyRevisit)
PrivilegeGrant(user2,G1.topic,subscribe,downloadAck)

Algorithm 4.2 Annotation Token Pass Operation
Require: user1 6= user2
Require: user1 ∈ G1∧user2 ∈ G1
Require: hasAnnotationToken(user1)∧¬hasAnnotationToken(user2)
Ensure: ¬hasAnnotationToken(user2)∧hasAnnotationToken(user1)

PrivilegeGrant(user1,G1.topic, publish,annotation)
PrivilegeGrant(user1,G1.topic,subscribe,annotation)

PrivilegeGrant(user2,G1.topic, publish,annotation)
PrivilegeGrant(user2,G1.topic,subscribe,annotation)

4.2 Notification Protocol 72

The publish phase is basically composed by the following steps:

1. The publishing phase starts when a participant wants to somehow contribute to the

session. Thus an informative contribution is created containing the message that this

participant wants to send.

2. Still in the OCEAN client, this participant’s privileges are checked in order to determine

if he or she is allowed to publish such contribution type to the associated scope. If

not conceded, the system nullifies this publication, avoiding unnecessary communication

with the notification service.

3. Once conceded, the participant sends through an asynchronous RPC (Remote Procedure

Call) the related contribution to the notification service, which is in charge of correctly

delivering this message. At this point, the publisher is no more involved in the notification

process.

4. The service starts handling the contribution through a consistency test. Such test aims

at determining whether the publisher is duly registered as a participant, and whether

the referred contribution is in a valid scope. If any inconsistency was detected, the

system nullifies the contribution, notifying the publisher through the RPC callback. Such

verification is necessary for maintaining users aware of any error occurrence.

5. Thus, the notification service catalogues the contribution, associating to it a unique

identifier used for global ordering. With this identification, OCEAN stores this contribution

in the co-browsing history.

6. If the contribution contains a coordination decision, then the service updates its structures.

For instance, updating participants’ privileges, or creating new co-browsing threads.

7. After that, the service appends the contribution in the notification shared space, making

it available for further delivering to the assigned subscribers.

8. Finally, the service uses the RPC callback to inform the publisher that the contribution

was successfully processed. This callback also contains the contribution’s unique

identification. Hence, the publisher can maintain a local copy of a notification shared

space subset, which works as a cache for further history revisits.

Completing the notification process, there is the delivering phase. Any contribution arrival

at the notification shared space triggers this phase, which has the objective of routing this

4.2 Notification Protocol 73

contribution only for the assigned subscribers. Hence, for each user duly registered in the

co-browsing session, the following process is followed:

1. The notification service checks the participant’s privileges, in order to determine if he or

she is granted to receive the contribution from the associated scope. If denied, the service

abort the delivery for this participant, just marking the contribution as already treated for

him or her. Especially, the join thread negotiation messages are considered particular

communications. Due to that, the service only notifies the contribution recipient.

2. If allowed, the service pushes9 the message out to the participant. This server-push is

emulated by an asynchronous RPC connection previously established by the receiver.

Thus, the contribution is sent through this RPC callback.

3. After correctly transmitted, the notification service sets the contribution as already sent

for this participant.

4. On the client side, the received contribution is handled, in order to update management

structures and present the contained message on the user interface. Moreover, the received

contribution is already uniquely identified, and it is in the same way stored as a local copy

of a notification shared space subset.

In particular, each type of received contribution has an specific handling. For instance,

a web browse contribution causes the receiver to download and render a new web page. A

received annotation triggers its painting over the shared content, while both negotiation types

alert the participant with its message. The coordination and session management contributions

affect the local privileges filter and make the user aware of the new session scenario. Especially,

the cookie contribution holds HTTP cookies of presenter and are set in attendees with the

browser extension support10.

4.2.4 Acknowledgement Messages

Certainly, the shared web page download time is what mostly affect the continuity and

the synchronism of a co-browsing thread. This is due to the fact that participants are

usually geographically distributed, where computers may present different Internet connection

9According to Hanson & Tacy(60), server-push is a mechanism where the server pushes data out to the client
without it being requested. This is often used in applications like chat, where the server needs to push messages
out to its clients. This server-push mechanism can be emulated, for example, along polling techniques.

10This cookies setting needs browser extension support because standard browsers do not allow that an
application sets or gets cookies from another domains.

4.2 Notification Protocol 74

capacity(61). Such heterogeneity leads to different download times for each user, inducing

an asynchrony state until the user presenting the slower connection has finished. This

asynchrony period is detrimental to the quality of the co-browsing thread, since favors stillborn

contributions. For instance, when using an audio communication tool, a presenter could need

to re-explain something after all get synchronized again, because during the asynchrony period

some users did still not have the discussed web page totally displayed in their client interfaces.

Thereby, it is important for a co-browsing system to maintain users aware of the asynchrony

period, thus they can naturally coordinate themselves before starting contributing . Also, this

awareness mechanism prevents users from often asking "is everybody ready?", for example.

However, such facility is not usually available on most co-browsing systems, or it is not easily

accessible (e.g. (12)).

OCEAN provides such asynchrony awareness facility as a download acknowledgement

contribution, represented by the concept download ack, a new specialization of the co-browse

informative contribution (Section 3.2). So, every time that a participant finishes downloading a

web page, he or she publishes a download ack. This contribution has a message containing

just the unique identification of the received co-browse contribution that have caused the

web page download. When every users in the co-browsing thread has published their

respective download acks, it means that the asynchrony period is over and more important,

that the participants became aware of such information. Especially, at this moment, the client

application could in some especial way inform the user about the end of the asynchrony period,

since this information is great valuable itself. Additionally, setting download awareness at a

participant granularity, allow participants to identify who are the slower users. Such connection

quality information is useful, for instance, for allowing the presenter to request the slower

attendees to look for possible problems in their private networks.

Since the download ack is an informative contribution, its usage is also coordinated by the

privileges policy. At the policy’s scope parameter, this contribution is affiliated with the thread

scope, because this contribution works as an answer to the other co-browsing specializations,

which are in the same scope. As Table 4.2 shows, in the function parameter it is defined that

attendees can only send download acks, while the presenter can only receive them.

Note that, with this privileges configuration, only the presenter have access to the

asynchrony awareness information. We could have set all privileges as granted, allowing all

group participants to become aware of such download acknowledgement information. However

we have taken this design decision in an effort to save the notification service from a contribution

flooding (mainly considering great thread groups). Table 4.3 shows the number of exchanged

4.2 Notification Protocol 75

messages in both approaches.

Table 4.3: Comparative of Download Ack Distribution Approaches: considering n the number
of thread group members, this table presents how many accesses to the notification service are
necessary for providing asynchrony awareness, on each browsing action.

Distribution Approach Sent Acks Received Acks SUM
All Participants n n2−n n2

Only Presenter n−1 n−1 2n−2
Saving 1 n−1 n

Even if asynchrony awareness is an important facility for any participant, the presenter

is certainly the better candidate to receive this information, since he is the one who "guides"

the browsing activity and might probably have the control of the annotation and other external

communication tools. Although, in further works we intend to evolve this facility, in order

to provide synchronism awareness for attendees too. For instance, it would be possible to

provide such awareness in a higher granularity, informing only when the asynchrony period

over, leaving the participants granularity only for the presenter.

Figure 4.3: URL Broadcasting Scenario

Illustrating the asynchrony awareness facility, Figure 4.3 presents a thread group with three

members, where the presenter is publishing a web browse contribution to the attendees. The

arrows represent the network interactions made in this scenario, and following their labels, the

interaction process is detailed:

1. The presenter wants to navigate and publish a new URL to the notification service;

2. The presenter simultaneously starts to download the desired content directly from the web

content server;

3. After processing the published contribution (containing the URL), the notification service

notifies all the attendees;

4.3 Conclusions 76

4. After receiving the notification, each attendee downloads the web content from the

aforementioned web content server;

5. As soon as each attendee has finished the content download, the client acknowledge the

notification service that it is synchronized;

6. Finally, this service individually redirects the acknowledgment messages from attendees

to the leader, as they reach the server, thus keeping him/her aware of the attendees’

synchronization state.

It is important to understand why only co-browsing actions are acknowledged. According to

OCEAN design all other types of contribution does not demand great amount of data or external

system access (e.g.: external web servers), thus not generating great asynchrony periods. An

annotation contribution, for example, can be compared to a message in an ordinary chat tool,

which simply do not notify the writers about every message correctly delivered. However, it

would be interesting an NACK awareness facility. Such a feature consists of the contribution

receiver notifying back the publisher on errors occurrence. Actually in OCEAN, the notification

service only handles errors inside a specific notification process phase. So, when an error occurs

on the receiving phase, the related publisher is not warned. However, we also intend to design

a NACK awareness facility as soon as possible.

4.3 Conclusions

The OCEAN was designed in terms of the distributed architecture and the notification protocol,

both aiming to provide performance and flexibility for co-browsing sessions. Comparing with

the most adopted proxy-based approach, OCEAN’s architecture was conceived in an effort to

avoid bottlenecks on the server-side, taking advantage of each participant’s bandwidth, in order

to promote a better synchronous collaborative experience for distributed users.

Considering the notification protocol, it extends a well-founded communication paradigm

(publish/subscribe), essentially aggregating flexibility and transparency through the privileges

policy. Amongst the inherited characteristics, certainly the most relevant is the loosely-coupling

between producers and consumers (58), which favors the management of dynamic co-browsing

sessions and threads. Also, the system became easily configurable by privileges changing, and

extensible by easily support the adding of new contribution types. Furthermore, according to

Dyck et al.(62), event-driven protocols based on TCP (Transmission Control Protocol), likewise

the notification protocol, are relatively simple to implement, and perform well when events are

4.3 Conclusions 77

rare and guaranteed delivery is required, both characteristics of our supported contributions.

In fact, the design of OCEAN presented in this chapter have already extended the

conceptualization formalized in the previous chapter. Firstly introducing the notification

protocol concepts (Figure 4.2) and in the sequence, introducing specializations of the infor-

mative contribution concept. These latter are summarized in Figure 4.4.

Figure 4.4: Design Introduced Concepts: concepts’ specializations introduced by the OCEAN
design. The concepts in gray composes the OCEAN conceptualization (Chapter 3), while the
others in white, have been introduced by this chapter.

Describing the introduced concepts, the presenter privilege request and annotation privilege

request (Section 4.2.2) remain to negotiation primitives of presentation and annotation tokens

respectively. In the sequence, the download ack (Section 4.2.4) fosters a synchronism awareness

facility, while cookie (Section 4.1.2) is useful for sharing HTTP cookies. Especially, this cookie

concept has an operation attribute, used by the OCEAN client application (more precisely, the

browser extension) to correctly handle such contribution. Its possible values are: "set", for

setting a new HTTP in the browser, and "del", for removing a cookie previously shared by this

mechanism. At last, besides have been defined at the OCEAN conceptualization, the annotation

concept is modified at the design level, being augmented with the attribute operation. Similarly

in cookies, this attribute is used as input for the application client procedures. In the case of

annotations, the possible operation values are: "create", defines a new painted object; "change",

update an existing object, for instance moving in for another position; and "remove", that erases

a previously painted annotation from the user interface.

We are aware that the proposed design could also presents dependability problems, for

instance single failure points and some performance bottlenecks. This is mainly due to its

centralized entities: the application server, and also the notification shared space structure.

In fact, some of these might be minimized depending on how these elements would be

implemented. In this regard, Chapter 5 describes an implemented prototype of OCEAN.

78

5 The Implemented Prototype

Aiming to demonstrate the feasibility of our proposal, a proof-of-concept software prototype

for OCEAN was developed. This implementation was built on top of the GWT (Google Web

Toolkit), an open source framework for web applications development (63). GWT provides

a number of features, such as (i) cross-browser JavaScript compiler, allowing developers to

program the client-side in Java; (ii) a set of reusable user interface widgets; and also (iii) a

simple and powerful RPC framework (GWT-RPC) for communicating client and server, which

is used for supporting the Notification Protocol.

Figure 5.1: Login Screen: this form allows a user to create or join co-browsing sessions.

In this chapter, we describe the overall developed prototype. We start by showing the

two main ways that a user can get in a co-browsing session. The user can start from scratch,

creating a new session, or, he can join an existing one, informing the respective session id

during the login process. Both features are supported by the login screen, depicted in Figure 5.1.

Besides providing login facilities, this screen also provides links for downloading and installing

respective browser extensions1. It is important to mention that, at this prototype version we

are not interested on users’ account management and information security issues. Due to

1Actually we have only developed an extension for Mozilla Firefox browser.

5 The Implemented Prototype 79

that, the login screen does not provide any authentication mechanism, for instance, a password

verification.

Right after a successful user registration, a login informative contribution is published (see

Section 4.2.2) and the main co-browsing window (illustrated in Figure 5.2) is presented. From

this window the user can access all the main features that he/she can perform in a co-browsing

session. As mentioned on the previous chapter, OCEAN client application consists of a dynamic

web page served by the application server. This page’s frontend is thus the main co-browsing

window which is divided into two areas . On the top, there is the OCEAN Toolbar, which

contains a set of user interaction panels. In the sequence, in the middle of the co-browsing

window, there is the Content Panel, where the shared web contents are presented, through an

enclosed inline frame2.

Figure 5.2: User Interface Overview: this is the OCEAN client application GUI, used for
participating in an ongoing co-browsing session.

In what follows we present, in Section 5.1, a detailed description of all interaction panels,

explaining how the designed mechanisms for contributing in the sessions are supported by

them. Section 5.2 describes the implemented Mozilla Firefox browser extension, designed

to allow our application to access shared web pages information. We finalize this chapter,

2Inline frames, defined by the HTML tag iframe, makes it possible to embed an HTML document inside another
HTML document. <Wikipedia web site: en.wikipedia.org/wiki/IFrame>

http://en.wikipedia.org/wiki/IFrame

5.1 Interaction Mechanisms 80

in Section 5.3, discussing some proposal restrictions and specializations adopted in this

implementation, and also, outlining some conclusions and future work.

5.1 Interaction Mechanisms

The OCEAN Toolbar (Figure 5.2) gathers the data and mechanisms for enabling users to

participate in a co-browsing session. This toolbar is composed by some interaction panels,

specialized on each possible user activity. These panels are visually organized in accordance

with the acting scope3 of their related contributions, that means for which scope (i.e.: session

scope or thread scope) this contribution has granted privileges. Such visual organization

was assumed in an effort to provide for users some little distinction about where they are

participating. This way, the Toolbar is itself divided into two scope related sections, that are the

Session Scope Toolbar on the top, and the Thread Scope Toolbar next on the bottom .

5.1.1 Session Scope Toolbar

The Session Scope Toolbar is focused in Figure 5.3, and holds the interaction mechanisms

used for publishing contributions on the whole session scope. In the figure we can notice the

co-browsing session identifier at the center of toolbar’s first line. This identifier is generated

by the Session Manager at the session creation, in order to uniquely identify a session in the

whole system. It is used as a key allowing other participants to join this session, through the

Login Screen. In the sequence, there are the Session History, Invite Contacts, Logout and

Help buttons . These controls triggers respectively the activities of accessing the co-browsing

history, inviting participants to get in the same co-browsing thread (group join invitation, see

Section 4.2), leaving the co-browsing session (logout) and accessing help information about

OCEAN usage.

Figure 5.3: Session Scope Toolbar

In particular, the Session History triggers the opening of a popup panel containing the

history of the whole session. Actually, such history is presented through a 3-level tree structure,

as presented in Figure 5.4. In this tree, the highest level represents the different scopes. In

3A parameter used for determine the distribution range of an informative contribution. More details in
Section 4.2.2

5.1 Interaction Mechanisms 81

other words, the session scope and each specific group. In the second level, the checkpoint

co-browsing resource participations are organized (see Section 3.2), for instance, navigation

contributions. Finally, the remaining general contributions are the leafs. In particular, download

ack messages are omitted in this tree in order to not overload this view with such pure awareness

information.

Figure 5.4: Co-browsing Session History

Still in the Session Scope Toolbar (Figure 5.3), the group coordination primitives are

available through the tab panel controls, located in the toolbar’s second line. In this approach,

the selected tab stands for the thread group that the user is member at a given time. Whereas,

the other unselected tabs stand for the remaining thread groups, available in the session. Thus,

the act of selecting a different tab is interpreted as: the users is leaving the current thread group

(leave thread primitive) and joining the thread group related to the selected tab (join thread

primitive). This situation has been illustrated by Figure 3.2. At last, the create thread primitive

is accessible through the "plus" button, located next the last tab.

This tab-based implementation approach was chosen due to two main reasons. Firstly,

there was an effort to provide an environment as most similar to a standard browser as possible.

These standard browsers usually implements a browser tabs facility4 aiming at offering for
4The Mozilla Firefox web site (www.mozilla.com/en-US/firefox/features/#tabs) argues that this browser tabs

facility, at first glance, look like little labels living above the site users are currently visiting. But they are a brilliant
way to browse multiple sites at once. Simple and easy, users can think of these tabs as the electronic version of
a well kept filing cabinet, with the tabs as the dividers and the sites as the content kept in folders. Each new site
appears as a new tab (not a new window) and can be accessed in one click.

http://www.mozilla.com/en-US/firefox/features/#tabs

5.1 Interaction Mechanisms 82

their users a nice way for organizing their parallel navigation contexts. In doing so, we hope

that OCEAN users feel more comfortable when using our application. The second reason is

related to provide an easier mechanism for coordinating users while they are participating in

different co-browsing threads. Once a user has granted a privilege to join a thread group, any

extra authorization request for performing this task is unnecessary. Hence, users can easily

check out what other groups are doing, without being annoyed with authorization requests and

responses. As a remark, CoLab (11), the OCEAN’s most similar co-browsing system, is based

on authorization messages for coordinating such groups. However, the CoLab coordination

mechanism focuses on social commitments between participants pairs, having groups just as a

consequence of such commitments (see Section 3.1.1).

5.1.2 Thread Scope Toolbar

The Thread Scope Toolbar (Figure 5.5) gathers the interaction panels that are tightly related to

the specific co-browsing thread the user is participation. Certainly, the most important is the

Address Bar, that is illustrated in Figure 5.6. Similar to any standard browser, this panel allows

the presenter to input the URL he wants to navigate to. Also, it displays to all participants the

URL of the current shared web page, in order to promote awareness. Moreover, this component

is a combo box5, and stores in its drop-down list, a history of all browsed URLs in this thread.

Such history enables the presenter to easily revisit any co-browsed page.

Figure 5.5: Thread Scope Toolbar

Figure 5.6: Address Bar

With respect to the co-browsing history, this feature is important for allowing users to

review any generated information during the session, not only the browsed URLs. In order

5A combo box is a commonly-used graphical user interface widget. It is a combination of a drop-down list or
list box and a single-line textbox, allowing the user to either type a value directly into the control or choose from
the list of existing options. An example of this use is the address bar of graphical web browsers. <Wikipedia web
site: en.wikipedia.org/wiki/Combobox>

http://en.wikipedia.org/wiki/Combobox

5.1 Interaction Mechanisms 83

to facilitate the access to this feature, a subset of the co-browsing history, containing the

contributions published in the co-browsing thread is directly available in the History Panel

(Figure 5.7(b)). This panel is always visible on the interface, not depending on any secondary

screen (as it is the case for the complete session history). This component is important to

provide awareness concerning users’ contributions to the hole group, for instance informing on

the fly, the type of an annotation, when it was painted and by who. In addition to that, the

History Panel also provides a shortcut for erasing annotations objects.

(a) Members List (b) Contributions History

Figure 5.7: Thread Awareness Panel

Figure 5.7(a) presents the Users Panel, which is responsible for showing the group members

and their current privileges depicted with token icons. Besides, this panel allows token holders

to pass them to other users, and also, allows attendees to request tokens. At last, it also shows a

loading icon informing the presenter about everyone’s synchronization state (see Section 4.2.4).

At last, the Thread Scope Toolbar contains interaction panels related to the annotation

feature. Annotations provide the capability of highlighting some specific shared content area.

This feature is very useful, for instance, to synchronously drive participants’ attention on parts

of the presented content. OCEAN supports annotations using comments, ellipses, rectangles,

arrows and lines, with different colors and backgrounds. In particular, draw elements are

rendered using small colored points, geometrically organized (64), while the comment notes are

made using GWT text boxes (63). Thus, the annotation token holder can point, mark, highlight,

and comment passages of the presented content, easily choosing a tool in the Annotation Panel

(illustrated in Figure 5.8).

An annotation scenario is depicted in Figure 5.9, where strokes and comments were added

over the shared content (URL: www.ufes.br). Moreover, all annotation objects are removable

and movable (drag and drop) by the annotation token holder, and these actions are reflected for

all attendees. In other words, all attendees view an annotation element with the same color, size

and position as added by the annotation token holder.

http://www.ufes.br

5.1 Interaction Mechanisms 84

Figure 5.8: Annotations Tools

Figure 5.9: Some Annotated Objects

Still regarding annotations, the toolbar presents a panel implementing the Interaction Mode

Switcher. This panel (Figure 5.10) is useful for determining the semantic of clicks over the

shared content. For example, when the same user is the presenter and also holds the annotation

token, he or she can use this panel for choosing between drawing or navigating. So, when

drawing any stroke, this users does not need to concern about clicking on shared web pages

hyperlinks, accidentally moving the whole group to another web site. Therefore, this panel

specifies whether the user is interacting directly on the shared web page or on a "transparent"

annotations board placed over this web page.

Such layered distinction between the shared web page and a transparent annotations board

overlaying it provides a simple management of these elements. For instance, we do not need

to modify the web page, painting the annotation. Actually, when an annotation is created, it is

5.1 Interaction Mechanisms 85

(a) has both tokens (b) has presentation token

(c) has annotation token (d) has no tokens

Figure 5.10: Interaction Mode Switcher: possible interaction modes considering annotation and
presentation privileges

just presented on the overlaying transparent board, and after that, OCEAN notifies the others

with the annotation’s coordinates, type and color. Thus, once this notification is received, each

attendee’s client just need to re-paint on its respective annotations board an identical annotation

on the informed coordinates. This annotation synchronization mechanism allows OCEAN to

save network and server resources, since it only sends a small description of the stroke, instead

of the full painted image . Indeed, such (x,y) coordinates mechanism has also been adopted as

an efficient message encoding for whiteboard systems, for instance in (62).

However, this annotations transmission approach could not work properly when the creator

and the receiver are using different screen resolution and/or browser window sizes. For

instance, the user S intends to highlight an image by using a circle. In this matter, he creates

such annotation object, and his client application sends its coordinates to the thread group

members. This way, the user R receives this contribution, and re-paints it. But, users R have

opened his browser in a small size, and due to that, the image that should be highlighted

was rendered elsewhere, and the re-painted circle is highlighting a wrong content. In an

effort to solve this problem, without losing transmission performance, we have extended the

OCEAN conceptualization and Notification Protocol, adding a new information contribution

type: content width broadcast. At the session creation, the client application observes the

width (in pixels) of the session creator Content Panel. After that, this client automatically

publishes this information to the session scope. So, for every participant that logs in this session,

this contribution will be received, and the respective client will set its content panel with this

received fixed width. This way, if a participant uses a minor resolution or browser window size,

his browser will automatically present a scroll bar, but the content rendering positioning will be

not affected.

5.2 Browser Extension 86

5.2 Browser Extension

In accordance with the OCEAN architectural design, the system relies on a browser extension

in order to allow OCEAN’s scripts to access relevant information from the shared content,

when such content comes from a different domain. Due to the vast documentation support and

available open source extensions, we have chosen to implement an extension for the Mozilla

Firefox standard browser.

This implemented extension is essentially composed by a set of scripts running in

background, not demanding any interference of the user. Additionally, the only provided user

interface object is an icon, that appears on the browser’s status bar when a co-browsing session is

active. So, the extension is meant to accomplish two main tasks: observing events and managing

shared cookies.

Events Observer: This task is the most important requirement for the extension, since the

purpose of its development is accessing shared content information. The current

implementation , we have focused on observing when a user clicks a hyperlink. Such

event must be observed in order to notify the group attendees about the new shared web

site.

Also, these navigation events are observed on attendees’ browsers. However, in this case,

these events are canceled before browser following the clicked hyperlink. This is assumed

because the attendees do not have navigation privileges.

Shared Cookies Management: This is an important feature that allows the collaboration

session to share cookies created by web sites. Cookies are usually used for maintaining

authenticated user’s session and storing user’s preferences. Thus, OCEAN allows its users

to have the same view of the web site.

At the presenter’s side, the extension observes any new received cookie from the shared

content domain, and notifies the OCEAN client application, which publishes a cookie

(with a "set" operation) contribution. In the same way, when the shared content

removes these cookies or the presenter navigates to another domain, the client application

publishes another cookie (with a "del" operation) contributions.

Conversely, at the attendees point of view, when one of these cookie contributions are

received, the respective action is requested to the browser extension. After accomplished,

the current URL is reloaded in order to download information regarding the same state.

5.3 Conclusions 87

5.3 Conclusions

This chapter described the prototype implementation as a proof-of-concept that allows users

to collaborate in a co-browsing session, through a standard browser. The developed software

covers most of the requirements presented in the specification and design of OCEAN, for that

reason, we consider that it reaches its proposed objectives.

In the current version of this prototype, some features have been restricted either because

they would demand too much development effort or because they would not be really relevant

when evaluating the application behavior . For instance, making co-browsing session histories

available when the session is over. We are aware about the importance of this feature, but it is

more related to a knowledge repositories management than to the co-browsing collaboration

sessions management itself. Due to that, we have classified this feature as an improvement to

be developed as future work.

Considering all implemented features, we recognize that there are many points to be

improved and we present some points hereafter. If we want to transform it in a public

usable co-browsing suite, users accounts management and a more flexible content panel (with

negotiation mechanism) must be provided. Another important improvement is the management

of group tabs. In this matter, it is important to design how the group tab panel should behave

with a great number of groups in the session. We intend, in the future, to develop some

organization based, for instance, on group’s contribution rate or user interest matching. This

way, only the most relevant groups would be presented on tabs, and other ones would be

available in a secondary list container. Additionally, it would be interesting to add some group

context awareness for not members, for example, using the shared web page title as the tab

label (as do standard browsers), or even implementing any mechanism allowing to indicate

group activity/inactivity.

Regarding the browser extension, it would be valuable to develop extensions for others

browsers, for instance, Microsoft Internet Explorer and Apple Safari, aiming at reaching a

greater number of users. Even though, Mozilla Firefox has been more adopted lately, according

to some statistics presented in (65) and (66). Also in the browser extension, there are many

desired improvements. Amongst them, the most relevant is to extend the number of observed

navigation events. For instance, a form-filling or a scrolling. For such task, we intend to

investigate, browser macro recording tools as (67)(68). Such tools are capable of capturing

a large number of different user interactions on a web site , not only a URL browsing. These

interactions are registered in a simple macro language, in order to be further reproduced or

5.3 Conclusions 88

personalized. Using such technology, we intend to increase co-browsing capabilities, for

instance, enabling users to co-browse on dynamic web sites, that uses AJAX6 components

for example.

In summary, this software prototype is the straight result of our proposal. It’s data

models are implemented exactly following the ontology-based conceptual models (Chapter 3),

and based on our development experience, we could confirm that this domain modeling was

an effective means for enabling the rapid prototyping of applications (see Section 3.2.1).

Whereas its distributed architecture, service logic and business rules follow design level specific

definitions (Chapter 4) , which have favor a lot our development effort through the use of the

same standardized notification protocol as the basis of all prototype procedures.

Last but not least, we see the resulting prototype as a potential good alternative for the

revised related work, providing innovative features on the co-browsing paradigm. In order to a

preliminary evaluation of our proposal, based on this specific implementation, the next chapter

evaluates performance aspects of OCEAN.

6an acronym for Asynchronous JavaScript And XML that represents a group of interrelated web
development techniques used to create interactive web applications or rich Internet applications. <Wikipedia:
en.wikipedia.org/wiki/Ajax_(programming)>

http://en.wikipedia.org/wiki/Ajax_(programming)

89

6 Performance Evaluation

This chapter describes a set of performance evaluations of OCEAN. The main objective is to

quantify some measures of interest relevant to our co-browsing service using the implemented

prototype as a testbed for experiments. In order to provide a platform that allows users

to participate of collaboration sessions, a collaborative system has a special requirement of

responsiveness for supporting suitable users interactions. Thus, given that these systems are

essentially interactive, the response time of interactions is a key metric.

In fact, according to Dyck et al.(62) such metric is an important characteristic that differs

synchronous groupwares from another network-based applications. In particular, these authors

argue that the performance of synchronous groupware is typically measured in terms of

feedback and feedthrough times, and are characterized by workloads involving frequent small

bursts of information. Feedback and feedthrough are concepts related to response time, being

respectively defined as the time from a user performing an action to seeing the results of that

action, and the time from a user performing an action to other users’ seeing its consequences

(62). In particular, we focus on the OCEAN’s responsiveness in general, either in terms of

feedback, feedthrough or the whole time needed to users get synchronized.

In this regard, we have focused on evaluating two specific characteristics of OCEAN, both

affect directly the responsiveness perceived by users and clearly the quality of service. On one

hand, there is an delay imposed by the notification protocol . If this delay were too long, then it

could be better to navigate individually instead of using our collaborative system. This issue is

widely discussed in section 6.1. On the other hand, as the number of users increases, it is crucial

to evaluate the OCEAN system capacity. In our approach, the application server has the role

of mediating every communication, so there is a risk of it becomes a bottleneck for the whole

system. In this matter, we are specifically interested on the scalability of the application server,

i.e., to determine the workload this server supports without degrading the quality of service of

co-browsing sessions. Such issue is studied in section 6.2.

6.1 Notification Protocol Delay 90

6.1 Notification Protocol Delay

Introduced by section 4.2, the notification protocol supports and manages every users’

contributions in OCEAN. Its goal is to act basically as a transparent multicast transmission

protocol, automatically publishing participants’ contributions for the appropriate destinations.

Due to that, it is very important that this protocol does not impose long delays affecting

the whole service responsiveness. In particular, if our protocol delays to deliver a web

browse contribution, then the relative asynchrony period1 will be too long, leading the

co-browsing thread to be too slow. Since co-browsing interactions obviously are the most

relevant interactions in a co-browsing system, the web browse and the respective download

ack contributions are the main focus of our analysis in this chapter.

In an effort to demonstrate that the proposed notification protocol achieves OCEAN’s

transmission requirements, we have performed a set of experiments intending to determine

the extra cost of using this protocol for collaborative web browsing. After that, these observed

costs were compared with a traditional single mode browsing activity, aiming at understanding

how significant they are. So, the notification protocol delay can be defined as the extra time

required for transforming a traditional single browsing action into a co-browsing action, through

the notification protocol. In other words, having the time a user spent downloading a web page

through a standard browser, how long is for OCEAN allowing a group of users to synchronously

browse at the same web page.

Given a co-browsing thread (Section 3.2.2), the asynchrony period starts when the presenter

publishes a web browse contribution, and finishes when he/she receives the last download

acknowledgement. For this reason, the delay imposed by the protocol can be measured by

the difference between the asynchrony period and the web page download time. It is interesting

to note that the download time2 is a local measure obtained in all thread group members. It

represents the time taken to download the web page in a traditional solo browsing paradigm.

Figure 6.1 illustrates the relation among the asynchrony period, the notification protocol delay

and web page download times, through an example of a thread group with three members3.

In the proposed architecture, recall that the clients download web pages by their own,

accessing directly the respective target web servers not going through the co-browsing server to

1The time taken to get all participants synchronized in the same shared web page. See section 4.2.4.
2The download time measures the entire web page download, for example, including the time spent

downloading the HTML file and its embedded images. This period starts by the browsing request, and finishes
when the inline frame (OCEAN Content Panel) triggers a load event. More details about this event can be found
at W3Schools.com <www.w3schools.com>

3This example follows the same scenario presented by Figure 4.3, however in a clients perspective of the
asynchrony period.

http://www.w3schools.com/

6.1 Notification Protocol Delay 91

Figure 6.1: Notification Protocol Delay: an out of scale illustrative example of how the
notification protocol delay measure is obtained, from the observation of events occurred during
the asynchrony period of a co-browsing thread.

get the web page content. Clearly, their download times depend on their network connection as

in a single mode browsing. Thus, to compute the delay of the protocol, we consider the longest

download time of the co-browsing cycle4, which is experienced by the slowest client. Note that

this client has probably the narrowest network bandwidth, or packets have experienced long

queues and-or even retransmissions because of network congestion along the path.

Therefore, the formal way of obtaining the notification protocol delay is defined in

Equation 6.1, which considers a thread group of size n, where the presenter (pres) sends web

browse contributions (browse) and receives respective download acks (ack) from each member

i of this group.

delay =

asynchrony period︷ ︸︸ ︷
maxi,n

(
timestamprcv,i,ack

)
− timestampsnd,pres,browse−

longest download time︷ ︸︸ ︷
maxi,n (downloadi) (6.1)

This assumption of considering the longest download time, is justified by the fact that if a

group of people decided to collaboratively browse, as a consequence they are willing to wait at

least such slower participants. Therefore, that protocol delay measure captures only the extra

time imposed by the notification protocol, not counting time periods inherent to the proper

4Co-browsing cycle is the sequence of interactions that happen in an asynchrony period, depicted by figure 4.3

6.1 Notification Protocol Delay 92

collaboration paradigm.

In order to quantify such a measure, determining its order of magnitude in comparison with

the whole asynchrony period, we have performed several experiments with the implemented

prototype. The adopted evaluation methodology consists of obtaining quantitative measures of

prototype’s components as co-browsing sessions proceed, varying the following parameters: (i)

the number of online users (organized in the same thread group); (ii) the set of co-browsed web

pages; and finally (iii) the environment, which comprises experiments in a laboratory (dense

and few distributed scenario) and comparing to field experiments (sparse and well distributed

scenario), where users are distributed over distinct Internet locations (16).

Note that in the Internet scenario, the messages of the system can be mainly delayed by

the following components: (i) an inherent propagation (physical distance from participants to

OCEAN’s application server) (ii) a packet transmission (depending on users’ bandwidth and

capacity of the end-to-end path) and (iii) a network congestion (long queues at the routers).

Therefore, using this evaluation methodology we aim to demonstrate that the notification

protocol delay is quite acceptable for a co-browsing paradigm, not damaging the quality of this

service. Also, a second objective is to observe that this delay variation tends to be smooth,

either as the number of thread group members increases or the co-browsed web pages’ content

sizes vary, showing the effect of these parameters. So, the obtained results are subsequently

presented, focusing on specific parameters effect over delay measures on laboratory and Internet

scenarios.

6.1.1 Number of Users Effect

In a try to discover if the notification protocol delay were significantly sensible to the number of

users, a set of experiments were conducted varying this number from 2 to 22 participants using

the OCEAN prototype in one co-browsing thread. Each of these experiments was composed of

co-browsing having 10 web sites located at distinct domains (e.g. ".org", ".com").

A first bulk of experiments was conducted in a local network of 10Mbps connecting all

the participants to the OCEAN application server, and a link of 5Mbps5 connecting this LAN

(Local Area Network) to the Internet, where are the contents’ web servers.

Figure 6.2(a) presents a proportional comparison between the observed downloading and

delay. In this scenario, the delay had an average of 262± 219msec. Although we can observe

a variability of the delay, it tends to be proportionally lower as the number of users increases

5This link was under a rate limit policy, due to network administration.

6.1 Notification Protocol Delay 93

especially if compared to the whole asynchrony period.

Following the methodology, a second bulk of experiments was conducted in an heterogeneous

Internet scenario, with users distributed through worldwide locations (e.g. Brazil, USA and

Germany). In this scenario, the users’ Internet connection bandwidth varies from 100Kbps to

10Mbps. Additionally, the user’s network path to the OCEAN server has around 15±10hops,

with an average network delay to the OCEAN server of 230±150msec6. Figure 6.2(b) depicts

the results for this distributed scenario, in which the notification protocol delay had an average

value of 559± 163msec. Additionally, the observed proportional values of the notification

protocol delay are presented in Table 6.1;

(a) LAN - from: 09/10/2008 08:40 PM , to: 09/11/2008 01:03 AM

(b) Internet - from: 09/13/2008 06:34 PM , to: 09/13/2008 10:20 PM

Figure 6.2: Proportional Delay - Number of Users Parameter: a report of medium notification
protocol delay and longest download times observed in experiments, that have focused on the
effect of number of users raising over such measures.

As expected, there is a significant increase on the asynchrony period from the laboratory

to the Internet scenario, besides the conducted experiments for both scenarios have been based

on the same set of web sites. For instance, taking 9 users, we observe 19,014msec (Internet)

6The network delay values are estimated using the command ping.

6.1 Notification Protocol Delay 94

Table 6.1: Experiments Data - Number of User Parameter: the observed notification protocol
delay values proportional to the total asynchrony period.

Number of Users LAN Delays (%) Internet Delays (%)
2 2.0±1.0 3.2±1.3

3 2.1±1.7 2.0±0.5

4 – 2.8±0.7

5 4.4±2.2 2.6±1.1

7 3.7±3.5 3.2±1.7

9 2.4±1.4 2.2±1.0

10 2.7±1.9 –

12 – 2.8±1.0

15 – 3.5±1.1

16 8.7±8.2 –

19 3.5±2.7 –

20 – 2.1±0.8

22 4.8±3.7 –

compared to 6,170msec (local network). This fact can be explained by the heterogeneity of the

users’ connection to the Internet and their geographical distance to the co-browsed web servers.

Still in the case with 9 users, comparing only the notification protocol delay obtained in both

scenarios (Internet = 419±183msec and LAN = 149±87msec), the difference between them

(270±270) is essentially due to the users’ network delay (270±270≈ 230±150) to reach our

server. In other words, the delay added by OCEAN is affected mainly by the physical distance

to the OCEAN application server and the network conditions, a common effect in distributed

systems.

The traditional navigation (single mode) paradigm is naturally affected by the conditions

of a heterogeneous environment. Due to the design of OCEAN’s architecture, users perform

web content download as if they were in single mode, thus being identically affected. The only

difference between OCEAN’s navigation and single navigation is due to the protocol delay.

However, as the results discussed above have shown, considering the total asynchrony period,

this delay is short enough keeping its value around 3.8% for the LAN scenario, and 2.7% for

the Internet. Thus, the OCEAN system keeps its lightweight performance in both scenarios.

6.1 Notification Protocol Delay 95

6.1.2 Web Pages Effect

Someone could ask: If I co-browse to a huge web page, then notification protocol delay would

proportionally increase becoming significant? In order to investigate such delay from this new

perspective, similar experiments were conducted, focusing now on how this delay varies as the

web page size increases. These new experiments consist on performing measurements from

local and distributed scenarios, but considering more web sites (20) and less users (from 1 to

6). The obtained results are summarized on Figure 6.3.

(a) LAN - from: 03/19/2009 05:30 PM , to: 03/19/2009 09:00 PM

(b) Internet - from: 03/29/2009 00:10 AM , to: 03/29/2009 03:30 AM

Figure 6.3: Proportional Delay - Web Pages Parameter: a report of medium notification
protocol delay and longest download times observed in experiments, that have focused on the
effect of web pages different sizes over such measures.

Similarly to the previous experiments, these column charts show the short delay imposed by

the notification protocol, against the total asynchrony period. Moreover, these web sites (WS-*)

are ordered by their sizes, as detailed in Table 6.2. It is important to note that besides ordered

6.1 Notification Protocol Delay 96

by web page size, the obtained results do not present a regular growing behavior regarding

the download time. Such results’ behavior is due to the download time is also affected by

other factors than the web page size, where some relevant are the time for preparing dynamic

web pages7, and the limitations at the web server, for instance, due to server capacity or some

network congestion.

Table 6.2: Experiments Data - Web Pages Parameter: details about each experimented web site.

Index URL Size (KB) Proportional Delays (%)

LAN Internet
WS-01 http://ppgi.inf.ufes.br 44 6.4±2.2 5.0±1.6

WS-02 http://gwt-widget.sourceforge.net/ 44 1.9±4.3 8.3±3.3

WS-03 http://www.pageshare.com 98 16.6±1.0 25.8±3.0

WS-04 http://code.google.com 99 1.9±1.0 4.1±1.8

WS-05 http://ieeexplore.ieee.org/search 112 1.3±1.7 2.1±1.6
/wrapper.jsp?arnumber=4575153

WS-06 http://www.cookiecentral.com/ 149 1.5±2.8 5.4±2.0

WS-07 http://sahi.co.in/w/ 180 2.8±2.8 7.2±2.1

WS-08 http://www.uv.mx 183 1.0±1.0 1.8±1.3

WS-09 http://www.ewi.utwente.nl/en/ 190 1.0±1.3 2.3±0.9

WS-10 http://www.technologyreview.it 215 1.3±0.9 3.6±2.9

WS-11 http://www.mercadolivre.com.br 218 1.9±0.4 2.6±0.8

WS-12 http://www.eclipse.org 232 2.3±0.6 3.2±2.6

WS-13 http://www.kiobo.com/ 296 1.7±11.2 3.8±16.7

WS-14 http://www.laas.fr/laas 299 1.0±1.3 2.8±5.7

WS-15 http://www.w3schools.com 317 1.9±1.0 3.5±2.3
/browsers/browsers_stats.asp

WS-16 http://www.informatik.uni-erlangen.de/ 374 1.7±1.6 1.2±4.8

WS-17 http://www2.ufscar.br/home/index.php 441 6.0±0.3 2.3±3.8

WS-18 http://slashdot.org 445 0.5±1.0 1.2±2.6

WS-19 http://www.yahoo.com.br 566 4.1±0.9 2.1±2.3

WS-20 http://www.g1.com.br 684 1.8±0.4 2.2±1.5

7Web pages built dynamically in accordance with requests or users’ sessions parameters. However, it demands
a process time in the web server before delivering its content to the client.

6.1 Notification Protocol Delay 97

These charts suggest us a smoothness of the delay measured values, not mattering the

size of co-browsed web-site. Such smoothness can be better observed in Figure 6.4, where

only the delay measured values are depicted. Indeed, this relative stable behavior of the

notification protocol delay measures was expected because the OCEAN’s Notification Protocol

does not handle the web pages’ content, but only their URLs composes the exchanged messages.

Consequently, assuming a low probability of network congestion, then the protocol delay is only

affected by the length of such URL strings which has usually few bytes. Therefore, the actions

of co-browsing for huge or tiny web pages do not affect the designed notification process, thus

this design characteristic holds the respective notification protocol delays.

Figure 6.4: Delay Comparison - Web Pages Parameter: a comparison of the observed delay
measures from both evaluation distribution scenarios (laboratory and Internet).

In particular, the average gap between the delay observed in both scenarios is 153.46±
62.40msec. As aforementioned, this differences should be mainly due to network delays,

including propagation, transmissions and queues delays. The distributed users have presented

and average network delay of 53.65± 4.26 while in the local network we have observed

0.29± 0.08. Thus, we can see that the observed gap is basically the difference between the

scenarios’ specific propagation delays. As a consequence, this network delay is the mainly

component of the network distribution which affects our system. However, even being affected

by users distance to our application server, the experiments showed that the Notification

Protocol still provides an acceptable performance, since it imposes a protocol delay which tends

to be imperceptible to users.

6.2 Application Server Scalability 98

6.2 Application Server Scalability

As mentioned on the beginning of this chapter, the OCEAN Application Server intermediates

every users’ interactions in our system. However due to its centralized design, this server

could become a bottleneck considering OCEAN performance. This way, this section focuses on

evaluating this server, in order to determine if this architectural component is scalable, which

means, how much workload this server is able to support without damaging the responsiveness.

Apart from previous section, the adopted experiment-centered evaluation approach is not

enough for supporting this scalability evaluation task now. That is because our experiments

were limited by a very relevant constraint, the number of available client machines.

In an effort to overcome this problem, this section relies on a more elaborated evaluation

methodology. Here, data collected in experiments with few real clients feed an analytical

model, as the ones treated in (69). Such modeling is adopted in an effort to predict the server

performance with a large number of users, without using a large number of real clients.

Menasce & Almeida(69) have proposed a simple methodology for evaluating web services’

capacity. A subset of this methodology is used in the scope of this work, and can be

summarized on three main phases. The first is related to knowing the environment, that consists

of discovering what kind of hardware (clients and servers), software (operating systems,

middleware and applications), network connectivity and communication protocols are present in

the environment. Next two phases are related to constructing models for the evaluation task. The

workload model captures the resources demands and the characteristics of workload intensity

for each component of a global workload, inside a relevant time interval. While the performance

model is used for forecasting or predicting if the target system will offer performance measures

that would satisfy established service level agreements.

6.2.1 Knowing the Environment

Before describing the environment used in this study, it important to make some remarks. In

this evaluation study of OCEAN’s performance, we are interested on discovering limitations of

our proposal. With this in mind, we have turned our attention to worst possible configurations

that involve server performance. Due to that, our analysis is restricted by two main parameters.

Firstly, we consider all users participating in only one co-browsing thread. We believe that

this constraint forces clients to make more requests at the same time, for instance, download

acknowledgement messages. At last, we evaluate the server scalability especially in a LAN

6.2 Application Server Scalability 99

scenario. This decision favors simultaneous requests arrivals at the server.

Regarding systems’ environment, we have adopted the same components used on LAN

scenario of notification protocol delay experiments. Such scenario consists of:

Hardware: The OCEAN Application Server is held is a non-dedicated platform, which

comprises a Intel Xeon QuadCore X3220 2.40GHz 64bits and 4GB of RAM (random

access memory). Likewise, the client application runs on non-dedicated machines,

generally composed by Intel Celeron, Pentium 3 and Pentium 4 processors and containing

from 128MB to 1GB of RAM.

Software: Even that OCEAN does not impose operating system preference requirements, both

server and clients are evaluated on Linux 2.6.* platforms. In particular, the application

server is deployed on an Apache Tomcat 6.0.18, running on a Sun Java 1.5.0_12 platform.

Our service also relies on a database management system for storing co-browsing

resources. For performing such storage task we have chosen a PostgreSQL 8.3, using

Hibernate4GWT framework as an abstraction layer.

Network Connectivity: The local network is organized in a way that the server machine acts

as OCEAN application server as well as the LAN router, connecting this LAN to the

university’s network (5Mbps) and therefore to the Internet. Inside the LAN, all client

machines are connected to a switch 10Mbps, which is connected to the network router.

Communication Protocol: The great majority of network communications in OCEAN is

supported by the same basic protocol stack: Notification Protocol, GWT-RPC (60)(63),

HTTP, TCP and others overlaid in the specific networks.

6.2.2 Workload Model

The workload of a system can be defined as the set of all input information received by this

system during an specific time period. However, it is a daunting task to handle real workloads

with great number of elements. So, on working with practical problems, usually becomes

necessary to reduce and summarize such workload information. In other words, it is needed

to create a workload model that captures the most relevant characteristics of the real workload

(69).

Considering the investigated environment and our main objective, that is to evaluate the

OCEAN Application Server, we need to identify the basic components of the workload and

all the related information that are relevant to our objective. For instance, understanding how

6.2 Application Server Scalability 100

the service in focus handles contribution messages and, obtaining quantitative measures about

clients’ requests to this service.

The first step towards the workload model is the workload characterization. Such

characterization is the process of accurately describing the global workload of the system, in

terms of its components. In this matter, the OCEAN’s workload is characterized regarding two

basic perspectives: (i) kind of client-server interactions, referred as request classes; and (ii)

basic components compounding the server.

Considering that the most relevant client-server interactions in OCEAN are supported by

the Notification Protocol, the request classes for this workload model are the two phases of such

protocol, send and receive. These two interaction modes clearly have distinct server demands

(see section 4.2.3), due to that, are a good choice to distinguish the workload. Moreover, another

point that worth to consider is participant roles. These roles, presenter and attendee, defined

by the Privilege Management Policy (section 4.2.2) affect all communications. For example,

depending on the publisher role, a published contribution can have greater server resources

demands, for delivering to the right subscribers. Roles also distinguish, especially, what kind

of contributions an interaction could contain. Summarizing, considering protocol’s phases

and privilege roles, we have defined four request classes: presenter-send, presenter-receive,

attendee-send and attendee-receive. These request classes were distinguished from the global

workload, in an effort to understand their specific needs, and how well they have been satisfied.

The specified request classes distinguish types of inputs received by the server. However,

the server itself also must be distinguished by means of its basic components or resources. This

approach is useful, for instance, for determining which of these components is a bottleneck,

that damages the server scalability. This way, we could have a indication of where the service

must be improved in order to provide a better scalability. In this workload model, the two server

basic components are hardware-based. They are the cpu, representing the processing demands,

and the i/o component, representing input and output demands, for instance, database accesses.

Besides these two basic resources, due to implementation issues we have included a third one,

the sleep component.

As aforementioned, in the publish-subscribe paradigm, the distribution service delivers

new messages to subscribers through server-push mechanisms (58). However, such strategy

is difficult to implement as a pure server-push without the server being able to reach all the

clients. In this matter, a server-push is usually emulated along polling techniques (60). By

the same reason, OCEAN contribution receive phase is implemented using a polling technique.

For this prototype, such feature was implemented as a client infinite loop procedure, where on

6.2 Application Server Scalability 101

each loop step this client makes a request (protocol receive phase) to the server looking for

new published contributions. On the server side, if there is not any novelty, such requests are

put on a sleep condition, waiting until a new contribution arrives or until this request reaches

a timeout. Concerning this implementation issue, we decide distinguish this time spent in the

sleep condition, in order to identify the true demands of receive requests.

Therefore, the OCEAN workload model constructed for this study is based on three

basic components (cpu, i/o and sleep), and is partitioned on four request classes (presenter-

send, presenter-receive, attendee-send and attendee-receive). So, to complete this model it

is necessary to determine some characterization parameters. The workload intensity refers to

the number of users participating simultaneously in the same co-browsing thread. While, the

last parameters to consider are the components’ specific demands, in other words, the average

resource demands for each request class (69).

These parameters are defined and validated using collected data during the same LAN

experiments conducted for determining the protocol delay. During such experiments, we have

collected the time each request spent on each component. Through these observations, we could

determine the OCEAN service demands, presented in Table 6.3. In particular, details about how

these data were collected, can be found in Section A.2.

Table 6.3: Service Demands Matrix: this table represents the OCEAN’s workload model used
in this performance study, containing the service demands of components by each request class.

Basic Components Request Classes
presenter-send presenter-receive attendee-send attendee-receive

CPU 3.92 msec 1.07 msec 0.01 msec 0.95 msec
I/O (database) 5.69 msec 0.00 msec∗ 2.26 msec 0.00 msec∗

Polling Sleep 0.00 msec∗ 6,632.90 msec 0.00 msec∗ 10,440.57 msec
∗ Requests of the related class do not use the referred server resource.

The service demand matrix summarizes the workload model, containing a reduced set of

representative elements. Such model now represents the whole real workload of OCEAN, and

can be used for predicting its performance.

6.2.3 Performance Model

Performance forecasting is the process of estimating the performance measures of a computer

system for a given set of parameters. Examples of these parameters are network protocols,

load balancing disciplines, resources limitations, workload intensity and service demands (69).

Moreover, this forecasting task needs the use of models, that are essentially distinguished on

6.2 Application Server Scalability 102

two main modeling techniques: simulation and analytical modeling. Both are abstractions of

the reality, representing the systems in study by their most relevant elements. Basically, the

simulation modeling technique comprises implementing a software that simulates the behavior

of the target systems’ main components. Conversely, analytical modeling concerns a set of

mathematical equations built to capture such behavior.

Considering that analytical models can be a cost-effective alternative to provide relatively

quick answers to "what-if" questions giving more insights for the system being studied (4),

we have chosen to use an analytical modeling technique based on queuing networks for

representing the competition for resources on the OCEAN application server. This modeling

activity starts by finding an analytical model that well represents the system, and if necessary

modifying it.

The model illustrated in Figure 6.5 is designed to approximately fit OCEAN architecture

and workload characteristics using a closed queuing network containing the main resources of

the server(69), more precisely the OCEAN application server. In particular, a queuing network

is considered closed, where all the request classes can be considered closed classes, in which

there are always a known number of instances of each request class existing in the system. In

our case, these numbers are functions of the number of participants joined in the co-browsing

thread.

Figure 6.5: Performance Model: a closed queuing network representing the most relevant
concepts for this analytical modeling study.

The dependency relations between the number of requests in the system (closed queuing

network) and the number of thread group members are expressed in table 6.4. We mainly

consider browsing related contributions (web browse and download ack) in this evaluation

study, as a consequence these dependency values are derived from the privilege grants of such

contributions. In other words, since one and only one of the thread group members (n) is a

presenter while the others (n−1) are attendees, and considering the fact that each user maintain

two independent requests in the system (send and receive), therefore the presenter maintains

6.2 Application Server Scalability 103

one presenter-send and one presenter-receive requests in the system, whereas the body of all

attendees (n−1 users) maintain, in the same way, n−1 attendee-send and n−1 attendee-receive

requests in the system.

Table 6.4: Dependency Between Numbers of Requests and Participants: request class specific
relation considering that all session participants (n) joined the same co-browsing thread.

Request Class presenter-send presenter-receive attendee-send attendee-receive
Requests in the
System 1 1 n−1 n−1

Having chosen that analytical model, it must be solved in order to provide some performance

forecasting results. The technique adopted for solving this closed queue network is MVA (Mean

Value Analysis)(70). This MVA technique is essentially an iterative algorithm that combines

the model equations and the workload service demands, in order to reach values of residence

time, throughput and queuing lengths. At each iteration, the MVA algorithm decreases the error

on the values, until becomes lower then a specified tolerance value. The MVA equations for

the OCEAN component level model are listed in figure 6.6. Additionally, in order to avoid

the complexity of an deterministic solution of a multi-class closed queuing networks, we have

adopted an MVA approximation proposed by Schwitzer (71). More details about the MVA

technique and the derivation of those equations can be found on (69).

Therefore, the listed equations can be used to solve the analytical model, for instance: (i)

service demands (table 6.3); (ii) number of simultaneous requests in the system (table 6.4); and

(iii) the error tolerance value, used for stopping algorithm iterations8. Thus, for completing the

model solution, it is just necessary to reevaluate the MVA for each number of participants in the

co-browsing thread, since the other two algorithm parameters are constants or functions of the

number of users.

6.2.4 Analytical Model Results

Figure 6.7 depicts a throughput perspective of the analytical model results. In this case, we

have an indication for predicting how many simultaneous contributions the server supports as

the number of participants increases. A typical throughput curve presents a rapid growing of

the throughput value, until the system reaches the saturation point. This is the case of attendee-

send class (Figure 6.7(b)) that reaches the saturation point handling 434.3t ps , around 50users

participating in the co-browsing thread.

8In this work, we have set this error tolerance to 10−5, for solving the model.

6.2 Application Server Scalability 104

Residence time equation for request class r at queue i:

R′i,r(
−→
N) =

{
Di,r delay resource;
Di,r[1+ni(

−→
N −−→1r)] queuing resource.

(6.2)

Throughput equation for request class r:

X0,r(
−→
N) =

Nr

∑
K
i=1 R′i,r(

−→
N)

(6.3)

Queue length equation for request class r at queue i:

ni,r(
−→
N) = X0,r(

−→
N)×R′i,r(

−→
N) (6.4)

Queue length equation for queue i:

ni(
−→
N) =

R

∑
i=1

ni,r(
−→
N) (6.5)

Schweitzer’s approximation:

ni(
−→
N −−→1r) =

Nr−1
Nr

ni,r(
−→
N)+

R

∑
t=1&t 6=r

ni,t(
−→
N) (6.6)

Iteration error:

ε = maxi,r

∣∣∣∣∣ne
i,r(
−→
N)−ni,r(

−→
N)

ne
i,r(
−→
N)

∣∣∣∣∣ (6.7)

Figure 6.6: MVA Equations: equations that guide the MVA algorithm on solving the component
level model (69).

However, the presenter-send class (Figure 6.7(a)) presents such an uncommon throughput

curve. In this case, the saturation point is already with 1 user. It is due to growth dependency

between the number of requests and the number of users (Table 6.4), since there is always

just one request of this class in the system, not mattering the number of participants in the

co-browsing thread. Considering now 100users, the application server still could handle 1.7t ps.

As the web browse is the only informative contribution composing this request class, such

throughput value is acceptable, since the relative response time for supporting 100users is

around 588msec.

Another analysis perspective of the obtained results is concerning the expected response

times. It is worth to remember that this metric is the main focus of the chapter. As expected for

any system, as simultaneous requests in the system increases, the average response time tends

to increase too. This behavior is shown by figure 6.8, which presents a forecast of response

6.2 Application Server Scalability 105

(a) Request Class: presenter-send (b) Request Class: attendee-send

Figure 6.7: Analytical Model Results - Throughput

times.

(a) Request Class: presenter-send (b) Request Class: attendee-send

Figure 6.8: Analytical Model Results - Response Time

Assuming that the infra-structure for supporting a co-browse service is composed by only

one server, we consider that the system provides an acceptable level of scalability. As it can be

seen, even in such a impracticable case, having 500 users participating in the same co-browsing

session, the application server still is able to handle requests in an acceptable time, where the

presenter-send requests would be handled in 2.8 seconds, while the attendee-send in 1.1 second.

As a final remark, comparing the results obtained from the performance model and the

practical experiments, we have observed that the performance model has not only overestimated

the responsiveness of OCEAN, but also it has had an inaccurate behavior (Figure 6.9). A

possible explanation for that is because of adopted instrumentation method (see Appendix A),

used for conducting the experiments. Recall that the parameters (service demands) used as

entries to the analytical model were collected using an instrumentation method executed at the

6.3 Conclusions 106

application level. At the application level, some measurement points are inserted at the server

to take the instant a request arrives, goes through the server resources (CPU, disk and sleep)

and leaves. However, we recognize that there can be some imprecision on estimating service

demand. Even though, considering this inaccuracy the obtained results still are valuable and the

performance model tends to be an upper bound for response time.

(a) Request Class: presenter-send (b) Request Class: attendee-send

Figure 6.9: Validating the Performance Model: these graphs compare the results about server
response time, obtained from experiments and from solved performance model.

6.3 Conclusions

This chapter has shown us that OCEAN’s design provides acceptable responsiveness to users.

The delay imposed by the co-browsing mechanism has a low cost allowing users to experience

a high level of synchronization in co-browsing sessions. Following, the application server

evaluation suggests that the co-browsing system scales suited to users which is a very important

characteristic for turning OCEAN’s prototype into a usable release candidate.

The adopted methodologies during such performance evaluation task involved two of

the three basic disciplines of performance analysis: experimentation an analytical modeling.

The first included a great effort on making repetitive experiments with the variation of some

parameters (number of users, size of web sites and type of distributed users: dense or

sparse). Coordinating such experiments was a huge task, that was also constrained by an

inconvenient, the number of available computer for performing tests. Even so, the obtained

results of notification protocol delay has demonstrated its high performance proportionated by

our prototype.

The second study has had a poor accuracy of the chosen model, and also the unexpected

effect of the sleep component which has led to less relevant results than we expected. However,

6.3 Conclusions 107

these results still were useful for providing us a better indication of the server scalability, rather

than intuitive insights. Therefore, such study can be very helpful for guiding further attempts

of evaluation OCEAN.

For future work, there are others characteristics that should be evaluated and if necessary

improved in OCEAN. Still considering performance, there are relevant issues to evaluate, for

example, the effect of simultaneous co-browsing threads, or even simultaneous sessions in the

system. On the other side, it will be interesting to extend the assumption that the application

server does not fail, then we could investigate for instance: (i) system dependability (4); (ii)

usability, regarding the quality of system usage perceived by individuals and groups(15); and

(iii) the impact of such usage on organizations.

108

7 General Conclusions and
Outlooks

This work presented a deep study regarding collaborative web browsing, taking into account

especially the intrinsic characteristics of this collaboration paradigm, its main issues usually

faced on building processes of groupwares dedicated to it. As a result, we have proposed

OCEAN, a comprehensive groupware specification and implementation, developed for addressing

the main requirements involved in a common co-browsing scenario.

Therefore, this chapter is dedicated to conclude this work providing a review of the obtained

results, highlighting its main contributions, as well as presenting relevant topics to be considered

in future work.

7.1 Revisiting our Goals

The main goal of this thesis has been defined (Section 1.2) as: "Propose an environment that

fits users needs of collaboratively browsing the web with arbitrary purposes".

We expect to have fulfilled this objective proposing OCEAN. Its features were specified in

an effort to cover all the collaboration aspects (cooperation, coordination and communication)

in order to offer solutions for the main different activities related to a general co-browsing

teamwork. In addition to that, the OCEAN’s design and implementation have considered

performance (responsiveness and scalability) and usability (user interface) requirements. As

a consequence, the obtained results deal suitable with "users needs", given that it provides

adequate tools (proposed features) with an efficient usage (design and implementation) for

"collaboratively browsing the web with arbitrary purposes".

Furthermore, the subsequent specific goals that have been addressed:

• Goal 1: "Provide flexibility, a property that we pursuit during all this work. It refers to

design the collaboration environment adaptable to users usage needs, as well as to the

7.1 Revisiting our Goals 109

environment conditions".

The proposed OCEAN’s has taken into account flexibility in different aspects. The first is

on the coordination mechanism, which allows users to freely contribute to co-browsing

sessions, browsing web pages independently, or synchronized in groups (thread groups).

This mechanism allows users to use co-browsing facilities for many purposes. For

instance, in a rigid virtual lecture or on collaboratively searching information on the web.

Secondly, the notification protocol is completely managed by the privileges policy, and

because of that behavior, it can be specialized by simple modifications at the privilege

grants.

Another characteristic relevant is the extensibility of OCEAN, increasing the flexibility

of the proposal itself. This characteristic is particularly present at the definition of an

informative contribution. In other words, all communications in the system is made

through notification of informative contributions. So, if someone could add a new feature

(with similar QoS requirements) on OCEAN, he or she just needs to specialize this

concept, extending the privileges table.

• Goal 2: "Keep our work in accordance with well-founded collaboration theories, in an

effort to produce broader and consistent results while avoiding mistakes during the whole

development process".

At this point, we have based this work on the 3C model (17) and the Collaboration

Ontology (19). These complementary theories mainly helped us on understanding "what"

was the problem that we were dealing with. Especially, the Collaboration Ontology

offered an expressive knowledge about the collaboration domain. Thus, OCEAN could

be defined inline with general collaboration characteristics.

• Goal 3: "Design an architecture capable to maintain a high synchronization perception

for users, while they collaboratively browse the web".

The proposed architecture (Chapter 4) includes the application server, performing the

minimal actions for maintaining synchronized sessions; the clients, taking advantage

of standard browsers; and the notification protocol allows to maintain the last two

elements loosely-coupled. Such architecture was defined aiming at providing acceptable

response time perceived by users and system scalability, supporting a lightweight system

performance. Indeed, the performed evaluations (Chapter 6) have shown that this

architectural design provides a satisfactory response time, since the imposed delays are

usually negligible. In addition, the performance analysis of the prototype indicates the

acceptable level of scalability with respect to the application server, which is the most

7.2 Contributions 110

critical element of the whole architecture. All these results and the awareness features

included in the proposal, suggest to a "high synchronization perception for users".

• Goal 4: "Adapt common features of traditional web browsing to this collaborative

context. This way, users could feel more comfortable on using such environment".

The implemented prototype (Chapter 5) was modeled organizing the proposed co-browsing

features, in a similar way of a standard browser. Amongst them there are: (i)

address bar, providing a way for choosing web sites to co-browse, besides accessing

co-browsing thread URL histories; (ii) browser tabs, organizing different browsing

contexts (co-browsing threads); and (iii) co-browsing history, containing all the artifacts

produced in the session.

Another important characteristic of OCEAN is the annotations feature. Although not

related to standard browsers, this feature turns the co-browsing sessions more efficient,

providing a simple mechanism for users getting involved in the teamwork.

7.2 Contributions

The main contributions of the work presented in the thesis are summarized in the following:

1. Co-browsing Paradigm Review - Most of works in this area (e.g.: (11)(8)(12)(41)) just

define co-browsing through simples variations of the same extremely general statement:

"jointly browsing the web". However, they propose solutions focusing on specific

interpretations or subsets of this definition.

In this matter, the first contribution of this work is on reviewing many works that deals

with co-browsing, and as a result composing a more precise specification of this paradigm

and its main variations (Section 2.2). The co-browsing definition proposed in this work

considers co-browsing an act of recommending web contents, and many variations of

this paradigm can be summarized by five main characteristics: recommendation method,

interaction synchronism, users location requirements, co-browsing purpose and coupling

level.

2. The Proposed Features - The features proposed in OCEAN covered the three collaboration

aspects, turning a very expressive system, but without loosing the focus on the collaborative

web browsing paradigm.

Regarding coordination, the specified co-browsing threads permit users co-browsing on

the desired "manageable freedom" state, in other words, freely contributing without

7.2 Contributions 111

damaging the session. So, this mechanism provides an equilibrate coordination for

OCEAN. Additionally, its primitives and also the way they were implemented (browser

tabs and privilege tokens) allow efficient and simple management of co-browsing

sessions.

At the cooperation perspective, the proposed co-browsing history represents the shared

production space which really maintain users together, even working from different

physical places. A similar feature were only encountered in (6), however, this solution is

sensible to session growth, generating confusion. In OCEAN, such problem is minimized

by contextualizing history artifacts according to nested scopes (session, thread and

checkpoint).

Finally, considering communication, the annotation feature appears as a good choice for

a co-browsing specialized feature, since it is tightly related to the most important handled

artifacts (the web pages). This characteristic is especially important for the efficiency of

communication actions, avoiding for instance misinterpretations. But, is spite of such

high specialization degree, the annotations feature is general enough for being useful on

almost any co-browsing scenario.

3. Towards a Methodology for Groupwares Development - The Collaboration Ontology can

be seen as an specialization of the 3C model, providing a more detailed and accurate

view about the collaboration domain. Thus, we propose the usage of this theory during

the development process of groupware. More important, such framework could be used

also in the initial phases of this process, despite others proposals which only provides

reusable architectural components. Amongst the main benefits of such domain ontology

modeling, there are: avoiding mistaken modeling decisions, rapid prototyping and easier

interoperability with another collaborative systems.

4. Comparison of Design Approaches - The architectural issues discussed in Section 4.1

provide a detailed comparison about the most commonly adopted solutions, the content

and browser manipulation techniques. In particular, it considers technical information

that was rarely discussed in other references.

5. An Well-defined and Extensible Protocol - The notification protocol has been an advantage

of OCEAN, providing an unique and relatively simple way of maintaining distributed

users synchronized. The publish/subscribe paradigm fitted suitably with the communication

requirements (i.e.: responsiveness and loosely-coupling) and with the nature of supported

contributions characteristics (e.g.: rare and delivery guaranteed). More important, the

7.3 Open Questions and Future Work 112

privilege policy turns this protocol extremely extensible and configurable, thus providing

even more flexibility for co-browsing sessions.

6. Insights on Performance Evaluation - Although not providing the most satisfactory

results, the employed evaluation process is itself a contribution, especially in the CSCW

research area, where these kind of evaluation is not frequently performed. This work has

provided different methodologies for evaluating performance characteristics, and more

important showing how to proceed in such evaluation tasks (see Appendix A). This

knowledge could be valuable for improving another groupware proposals.

7.3 Open Questions and Future Work

Several directions can be explored for future research to extend the contributions presented in

this work, either overcoming imposed constraints during OCEAN’s development process, or

extending its proposal and goals themselves.

Considering the characterization of the proposal (Chapter 3), the most relevant limitation

was the supported features. It could be interesting to support more features in the future. This

could be made implementing from the scratch, extending OCEAN’s model, or even integrating

external applications, taking advantage of the collaboration domain ontology.

Concerning systems’ design (Chapter 4), new features and contributions can be easily

embed in the notification protocol. However, we are aware that this protocol is not a general

solution for every type of communication in a groupware. For instance, and audio call certainly

would lose quality if were transmitted using the notification protocol. In this matter becomes

necessary to investigate the QoS (Quality of Service) requirements of each proposed feature,

and when a new one would be inserted, it one must be investigated too. The first step

of such possible evolution should lies on offering different service levels at the notification

protocol itself, in the same way as in (62), distinguishing communication channels by priority

transmissions. Such options could preserve the benefits of notification protocol and the privilege

grants.

On the sequence, considered that OCEAN’s implementation (Chapter 5) still is a prototype,

there are a lot of work to get it complete. Amongst the most relevant, there are porting the

browser extension for another standard browsers instead of the Mozilla Firefox, and turning

the browser tabs usage even more intuitive and practical. Additionally, in a short-term would

be valuable allow a better reuse of co-browsing histories, especially after the session over. A

feature like that could promote for instance: asynchronous co-browsing sessions, distribution

7.4 Final Considerations 113

of virtual lecture notes, meeting reports and etc. Therefore, such reuse of an already stored

information (co-browsing history) would significantly expand the scope of OCEAN usages and

capabilities.

At last, the evaluation process (Chapter6) has faced inconvenient problems, which leads to

some limitations at the obtained results. The most affected was the scalability study. Even so,

the obtained results, mainly at the notification protocol delay study have shown the performance

quality of OCEAN. Thus, for mid-term research and development, it should be valuable to refine

the evaluation instruments and methods, in an effort to obtain more accurate and relevant results.

7.4 Final Considerations

In face of all obtained results we consider OCEAN a successful attempt on producing a

comprehensive and objective collaborative web browsing environment. More important, the

process involved in such attempt has produced scientific and technological contributions for the

CSCW research field.

114

APPENDIX A -- Experimentation Practices

Chapter 6 presented the evaluation of OCEAN, which was totally based on repeatedly

conducting experiments in order to quantify the performance proportionated by the proposed

design. However, this chapter does not detail the experimentation process. In this appendix,

we intend to provide a more detailed view about how the experiments have been conducted,

especially showing the OCEAN prototype instrumentations, developed for capturing measures

relevant for the performance evaluation task.

In the following, Section A.1 details how the application client was instrumented for

capturing the necessary information for determining the delay imposed by the notification

protocol. In the sequence, Section A.2 presents the instrumentations in the application server,

made for collecting input to the analytical model. Finally, Section A.3 describes a simple

automatic test agent implemented for helping on the experiments.

A.1 Client Instrumentation

The OCEAN application client has been instrumented aiming at quantifying the notification

protocol delay. Remaining to the equation for calculating such a value (Equation 6.1), the

required parameters are the asynchrony period and the highest download time. Considering

a thread group, only the presenter participant, more precisely his/her client application, is the

only entity that has the exact notion of how long is an asynchrony period. This is because the

presenter is responsible for browsing, in other words, he/she starts the asynchrony periods.

Also, since this period ends at the arrival of the last download ack, thus all these client

instrumentations are focused on providing information to this presenter participant.

At first, every thread group member (their clients) measures the time spent downloading the

web page. Such time starts when the client application sets the content panel’s iframe source

attribute with the published URL, and finishes when this iframe triggers a load event. In doing

so, this measured time includes the time spent downloading, for instance, the HTML file and

other embedded files as images or scripts.

A.2 Server Instrumentation 115

In the sequence, the attendees’ client applications append this information as a message of

the download ack. This way, at the end of the co-browsing cycle1 the presenter’s client gathers

the measured download time of all thread group members, since it knows its own download

time. In addition to that, the presenter’s client also stores the moment that have start publishing

the web browse contribution, and also the moment that it receives each download ack. Having

all this information, the presenter’s client is able to calculate the notification protocol delay

value. This process is illustrated by Figure 6.1.

In order to maintain an organized repository of experiments, the presenter sends all the

calculated delays and the related parameters for an additional servlet2 in the OCEAN application

server, at the end of the session.

A.2 Server Instrumentation

Following the performance evaluation approach, the OCEAN application server has been

instrumented aiming at providing input for the adopted analytical model, and thus quantifying

the server scalability. In other words, at every request to this server, we get measures about the

demands of such requests on the server components (CPU, Disk, Sleep).

All the HTTP requests regarding the notification protocol are directed to the same servlet

published at the OCEAN application server, which runs in the Apache Tomcat. This servlet

implements the Notification Service, a component of the OCEAN architecture presented in

Section 4.1.2. Thus, for determining the demands of our service, we have instrumented this

specific servlet, observing every request it handles.

The server instrumentation is composed by a two level observation method. At the first

level, we have developed the Measurements Filter, a servlet filter3 responsible for observing

the requests as they were atomic operations, obtaining data related to their response times and

content lengths. These observed data feed a log denominated the Request Level Report. More

important, this servlet filter intercepts the requests at the right moment they arrive at the Apache

Tomcat, before they being decoded and handled by the Notification Service, and thus link with

the respective response just before it leaves the server towards the client.

1Co-browsing cycle is the sequence of interactions that happen in an asynchrony period, depicted by figure 4.3
2A Java class that dynamically handle requests in a HTTP server. In our case this server is an Apache Tomcat

(tomcat.apache.org).
3The Java Servlet specification version 2.3 introduces a new component type, called a filter. A filter dynamically

intercepts requests and responses to transform or use the information contained in the requests or responses. Filters
typically do not themselves create responses, but instead provide universal functions that can be "attached" to any
type of servlet or JSP page (72).

http://tomcat.apache.org/

A.2 Server Instrumentation 116

At the second level, we focus on measuring the specific demands of server components,

due to that, we have augmented the OCEAN Notification Service source code (servlet) with

measurement points. In doing so, at each handled request the notification service feeds

another log (Application Level Report) with the observed demands for each server component.

Moreover, at this level, we are able to know what is the related request class, since it is possible

to access the content of the request decoded by the GWT-RPC layer 4.

Figure A.1: Server Measurements Structure

Figure A.1 depicts this two-level observation method. Note that, the Measurements Filter

has been created aiming at having more accurate measures of response times, that would

consider the whole time spent in the server, including transparent processes for managing

GWT-RPC connections. This way, using servlet filters our measures could turn our results

more realistic. However, the servlet filter itself do not achieve all measurements goals,

since its necessary to classify measurements according to request classes and performance

components, information only available inside our notification service implementation, after

request decoding by the GWT-RPC layer. In this matter we make that two parallel observation

efforts, and after the end of the co-browsing session we merge the two produced reports into the

Experiment Report, which contains a detailed evaluation of each request combining information

of both previous reports. This Experiment Report provides therefore, the necessary input for the

performance model and thus the scalability study presented in Section 6.2.

4Since we have implemented OCEAN prototype based on the GWT framework (63), the RPC communication
are encoded in accordance with the GWT-RPC specification. This way, this framework offers a transparent layer
in the client and server implementations for automatically managing the RPC connections and transmitted data.

A.3 Remote Test Agents 117

A.3 Remote Test Agents

On performing experiments with real applications it is a hard task to mobilize too many people

for helping on all necessary tests. This way it is usual to implement automatic agents for

acting as simple clients performing the most basic tasks necessary for the experiment. As a

consequence, it becomes easy to perform high scale tests, not depending of too many volunteers.

In our experiments we have followed the same approach, implementing an automatic agent

for performing two basic tasks, joining a default thread group and act as a regular attendee,

which includes receiving web browse contributions, downloading referred web pages and

thus publishing download acks. This way it is just necessary one real user conducting the

experiments, acting as the presenter of the co-browsing thread.

Our first intention was to develop a java stand-alone application that would reuse the

client-side libraries provided by the GWT framework, adapting the implementation of the

notification protocol send and receive functions (see Section 4.2.3). However, at the used

version of GWT framework (version 1.4) we do not encountered a feasible way for reusing

such libraries out of a browser JavaScript engine. However, the cost of re-implementing the

entire GWT-RPC specification only for this test purpose would not worthwhile. Due to that,

instead of re-implementing too many processes for building automatic agent as a simple java

stand-alone application, we have made it dependent of a browser. In other words, we have

augmented the OCEAN application client with characteristics of the desired automatic agent,

to be used whether we need to perform experiments.

When accessing the prototype login web page (Figure 5.1), it is possible to inform HTTP

parameters that will make this client in particular to behave as an automatic agent, only

performing the aforementioned basic tasks. Illustrating this agent initialization procedure, let’s

suppose that the address of OCEAN application were http://ocean/. In this case, for turning

a client into an automatic agent, it would just be necessary to append parameters to the address,

like: http://ocean/?agentName=A1&agentEmail=A1@lab.ufes&sessionID=e815512d5.

Doing that, the application client automatically joins the first available thread group in the

session e815512d5, becoming a regular attendee in it. Therefore, for performing tests it is just

necessary to have one real user which creates the thread group and participate as a presenter,

and also triggers all other attendees as automatic agents.

Such agent triggering process is made by an implemented script5 which establish SSH

(Secure Shell) connections with all target machines. Through this connections, this script

5This agent management script is implemented in Python, combining Linux shell scripts.

A.3 Remote Test Agents 118

sends a complete Mozilla Firefox installation already containing the OCEAN browser extension

installed. After decompressing this browser, the script run it remotely accessing the OCEAN

login web page with the respective agent parameters. Illustrating this process, the shell script

command executed for starting an arbitrary agent A1 is depicted in the following.

expect -c "set timeout -1;spawn ssh <AGENT_HOST> -l <SSH_USERNAME> \"

cd /tmp/ocean_experiments/;

tar -zxf firefox_ocean_pack.tar.gz;

export MOZ_CRASHREPORTER_DISABLE ;

firefox/firefox -no-remote --display=:0 -CreateProfile Ocean_Agent;

firefox/firefox -no-remote --display=:0 -P Ocean_Agent

http://ocean/?agentName=A1&agentEmail=A1@lab.ufes&sessionID=e815512d5;

\";match_max 100000;expect *assword:*;send -- <SSH_PASSWORD>\r;interact;"

In addition to that, the experiments were usually composed by repeated tests accessing the

same set of web sites. This way, the OCEAN application client was also augmented with and

automatic browse list. In other words, the presenter has access to a special button capable of

automatically publishing web browse contributions, following a pre-defined list. And more

important, waiting until the last download ack of a co-browsing cycle arrives, before iterating

to the next web site of such list.

A last modification made for automating test was the finalization of the test sessions. In

accordance with OCEAN specification and design, the users have the right to log out of the

session whenever they want. However the automatic agents are not supposed to know when

would be the better moment for logging out. In this matter, the notification protocol has been

extended in terms of adding a new contribution type, the force agent logout contribution. This

contribution can be published by a presenter at any time (using another special button), and are

propagated to all attendees joined in the same thread group. On receiving this contribution, the

attendees’ clients automatically log out the co-browsing session, without require any approval

of the user. This contribution is quite useful for properly finalizing the co-browsing session at

the OCEAN application server. Moreover, it would be useful in the future on defining features

like kick user or ban user, well-known coordination facilities at group environments.

119

References

1 SANTOS, R. O.; OLIVEIRA, F. F.; ANTUNES, J. C. P.; MARTINELLO, M.;
GUIZZARDI, R. S. S.; GOMES, R. L. Licob: Lightweight collaborative browsing. In:
Workshop Web2Touch. Milan, Italy: [s.n.], 2009. [submitted].

2 OLIVEIRA, F. F.; ANTUNES, J. C. P.; GUIZZARDI, R. S. S. Towards a collaboration
ontology. In: GUIZZARDI, G.; FARIAS, C. (Ed.). Proceedings of the 2nd Workshop on
Ontologies and Metamodels in Software and Data Engineering (WOMSDE’07). [S.l.:
s.n.], 2007. João Pessoa, Brazil.

3 SANTOS, R. O.; MARTINELLO, M.; MARCONDES, C.; FABRIS, F. Joinus:
Management of mobile social networks for pervasive collaboration. In: SBC. Proceedings
of the 5th Simpósio Brasileiro de Sistemas Colaborativos (SBSC’08). [S.l.]: IEEE
Computer Society, 2008. p. 224–234. ISBN 978-0-7695-3500-5. Vila Velha, Brazil. [doi:
10.1109/SBSC.2008.14].

4 MARTINELLO, M. Availability Modeling and Evaluation of Web-based Services -
A Pragmatic Approach. PhD Thesis — Institut National Polytechnique de Toulouse,
Toulouse, France, 2005. Available at: <www2.laas.fr/laas/1-4266-Publications.php>.

5 AMERSHI, S.; MORRIS, M. R. Cosearch: a system for co-located collaborative web
search. In: Proceeding of the twenty-sixth annual SIGCHI conference on Human factors
in computing systems (CHI’08). New York, NY, USA: ACM, 2008. p. 1647–1656. ISBN
9781605580111. [doi: 10.1145/1357054.1357311].

6 ANEIROS, M.; ESTIVILL-CASTRO, V. Usability of real-time unconstrained
www-co-browsing for educational settings. In: Proceedings of the 2005 IEEE/WIC/ACM
International Conference on Web Intelligence (WI’05). Washington, DC, USA: IEEE
Computer Society, 2005. p. 105–111. ISBN 0-7695-2415-X. [doi: 10.1109/WI.2005.154].

7 BROOKS, C.; HANSEN, C.; GREER, J. Social awareness in the ihelp courses learning
content management system. In: Workshop on the Social Navigation and Community
based Adaptation Technologies. [S.l.: s.n.], 2006.

8 GEROSA, L.; GIORDANI, A.; RONCHETTI, M.; SOLLER, A.; STEVENS, R.
Symmetric synchronous collaborative navigation. In: IADIS International Conference
WWW/Internet. [S.l.: s.n.], 2004. p. 748–754.

9 DIEBERGER, A.; DOURISH, P.; HööK, K.; RESNICK, P.; WEXELBLAT, A. Social
navigation: techniques for building more usable systems. Interactions, ACM, New York,
NY, USA, v. 7, n. 6, p. 36–45, 2000. ISSN 1072-5520. [doi: 10.1145/352580.352587].

10 Sosign Interactif. Clavardon: A co-browsing tool for e-commerce. 2008. Project website:
<www.clavardon.com>. Release September 2008.

http://doi.ieeecomputersociety.org/10.1109/SBSC.2008.14
http://www2.laas.fr/laas/1-4266-Publications.php
http://dx.doi.org/10.1145/1357054.1357311
http://dx.doi.org/10.1109/WI.2005.154
http://doi.acm.org/10.1145/352580.352587
http://www.clavardon.com

References 120

11 HOYOS-RIVERA, G. J.; GOMES, R. L.; WILLRICH, R. C.; COURTIAT, J. P. Colab
a new paradigm and tool for browsing collaboratively the web. IEEE Transactions
on Systems, Man, and Cybernetics - Part A, v. 36, n. 6, p. 1074–1085, 2006. [doi:
10.1109/TSMCA.2006.883173].

12 ESENTHER, A. Instant co-browsing: Lightweight real-time collaborative web browsing.
In: The Eleventh International World Wide Web Conference. Honolulu, Hawaii: [s.n.],
2002.

13 SANTOS, R. O.; SANA, D. M.; OLIVEIRA, F. F. Blocool: Share your blog reading,
discover new blogs. March 2009. Project website: <www.blocool.com>. Release: 0.4.

14 MAINTAINERS. Browzmi: Web Together. 2008. Project website: <www.browzmi.com>.
Release September 2008.

15 NEALE, D. C.; CARROLL, J. M.; ROSSON, M. B. Evaluating computer-supported
cooperative work: models and frameworks. In: Proceedings of the 2004 ACM
conference on Computer-Supported Cooperative Work (CSCW’04). New York, NY,
USA: ACM, 2004. p. 112–121. ISBN 1-58113-810-5. Chicago, Illinois, USA. [doi:
10.1145/1031607.1031626].

16 PINELLE, D.; GUTWIN, C. A review of groupware evaluations. In: Proceedings of the
9th IEEE International Workshops on Enabling Technologies (WETICE’00). Washington,
DC, USA: IEEE Computer Society, 2000. p. 86–91. ISBN 0-7695-0798-0.

17 ELLIS, C. A.; GIBBS, S. J.; REIN, G. Groupware: some issues and experiences.
Communications ACM, ACM, New York, NY, USA, v. 34, n. 1, p. 39–58, 1991. ISSN
0001-0782. [doi: 10.1145/99977.99987].

18 FUKS, H.; RAPOSO, A.; GEROSA, M. A.; LUCENA, C. J. P. Applying the 3c-model
to groupware engineering. International Journal of Cooperative Information Systems
(IJCIS), v. 14, n. 2-3, p. 299–328, Jun-Sep 2005.

19 OLIVEIRA, F. F. de. Uma Teoria Ontólogica de Colaboração e suas Aplicações no
Domínio de Colaboração. Master Thesis — Universidade Federal do Espírito Santo,
Vitória, Brazil, 2009. [to appear].

20 BORGHOFF, U. M.; SCHLICHTER, J. H. Computer-Supported Cooperative Work:
Introduction to Distributed Applications. Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2000. ISBN 3540669841.

21 FARIAS, C. R. G. de. Architectural Design of Groupware Systems: a Component-Based
Approach. PhD Thesis — University of Twente, The Netherlands, 2002. Available at:
<http://purl.org/utwente/37999>.

22 MALCHER, M. A. da G.; ENDLER, M. A context-aware collaborative presentation
system for handhelds. In: SBC. Proceedings of the 5th Simpósio Brasileiro de Sistemas
Colaborativos (SBSC’08). [S.l.]: IEEE Computer Society, 2008. p. 1–11. Vila Velha,
Brazil. [doi: 10.1109/SBSC.2008.13].

23 CISCO. WebEx - Web Conferencing and Collaboration Solutions. 1992. Project website:
webex.com.br. Release March 2009.

http://dx.doi.org/10.1109/TSMCA.2006.883173
http://www.blocool.com/
http://www.browzmi.com
http://doi.acm.org/10.1145/1031607.1031626
http://doi.acm.org/10.1145/99977.99987
http://purl.org/utwente/37999
http://doi.ieeecomputersociety.org/10.1109/SBSC.2008.13
http://webex.com.br/

References 121

24 ADOBE. Acrobat Connect Pro. 2009. Project website:
www.adobe.com/products/acrobatconnectpro. Release April 2009.

25 FUKS, H.; RAPOSO, A.; GEROSA, M. A.; PIMENTEL, M.; FILIPPO, D.; LUCENA, C.
J. P. Inter- e intra-relações entre comunicação, coordenação e cooperação. In: Proceeding
of th 4th Simpósio Brasileiro de Sistemas Colaborativos. Rio de Janeiro, RJ, Brazil: SBC,
2007. p. 83–96. ISBN 978-85-7669-126-6.

26 GUTWIN, C.; GREENBERG, S. Effects of awareness support on groupware usability.
In: Proceedings of the SIGCHI conference on Human Factors in Computing Systems
(CHI’98). New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 1998. p.
511–518. ISBN 0-201-30987-4. [doi: 10.1145/274644.274713].

27 CABRI, G.; LEONARDI, L.; ZAMBONELLI, F. A proxy-based framework to support
synchronous cooperation on the web. Software Practice Experience, John Wiley & Sons,
Inc., New York, NY, USA, v. 29, n. 14, p. 1241–1263, 1999. ISSN 0038-0644. [doi:
10.1002/(SICI)1097-024X(19991210)29:14<1241::AID-SPE277>3.0.CO;2-V].

28 Kiobo. Kiobo Social Browsing. 2008. Project website: <www.kiobo.com>. Release
September 2008.

29 CHANG, M. L. CoBrowse. 2006. Project website: <cobrowse.mozdev.org>. Release
August 2008.

30 HOYOS-RIVERA, G. de J. CoLab - Conception et Mise Ňuvre d’un Outil pour la
Navigation Coopérative sur le Web. PhD Thesis — Université Paul Sabatier, Toulouse,
France, 2005. Available at: <www2.laas.fr/laas/1-4266-Publications.php>.

31 PageShare Technologies Inc. PageShare. 2008. Project website: <www.pageshare.com>.
Release September 2008.

32 MAINTAINERS. BlogRollr: What blog posts have you been reading? 2009. Project
website: blogrollr.com. Release March 2009.

33 MAINTAINERS. Blog Scrobbler. 2009. Project website:
code.google.com/p/blogscrobbler. Release March 2009.

34 WANG, W.; HAAKE, J. M. Flexible coordination with cooperative hypermedia. In:
Proceedings of the ninth ACM conference on Hypertext and hypermedia: links, objects,
time and space—structure in hypermedia systems (HYPERTEXT’98). New York, NY,
USA: ACM, 1998. p. 245–255.

35 SCHMIDT, K.; SIMONE, C. Coordination mechanisms: towards a conceptual foundation
of cscw systems design. Computer Supported Cooperative Work, Kluwer Academic
Publishers, Norwell, MA, USA, v. 5, n. 2-3, p. 155–200, 1996. ISSN 0925-9724. [doi:
10.1007/BF00133655].

36 MALY, K.; ZUBAIR, M.; LI, L. CoBrowser: Surfing the Web Using A Standard Browser.
Norfolk, VA, USA, 2000.

http://www.adobe.com/products/acrobatconnectpro/
http://doi.acm.org/10.1145/274644.274713
http://dx.doi.org/10.1002/(SICI)1097-024X(19991210)29:14<1241::AID-SPE277>3.0.CO;2-V
http://www.kiobo.com
http://cobrowse.mozdev.org/
http://www2.laas.fr/laas/1-4266-Publications.php
http://www.pageshare.com
http://blogrollr.com/
http://code.google.com/p/blogscrobbler/
http://dx.doi.org/10.1007/BF00133655

References 122

37 NGUYEN, A. V.; REKIK, Y.; GILLET, D. A framework for sustaining the continuity
of interaction in Web-based learning environment for engineering education. In: World
Conference on Educational Multimedia, Hypermedia & Telecommunications (ED-MEDIA
2005). Montreal, Canada: [s.n.], 2005.

38 SCHMIDT, K.; BANNON, L. Taking cscw seriously: Supporting articulation work.
Computer Supported Cooperative Work, v. 1, p. 7–40, 1992.

39 KHEZAMI, N.; OTMANE, S.; MALLERR, M. An approach to modelling collaborative
teleoperation. In: Proceedings of the 12th International Conference on Advanced Robotics
(ICAR’05). [S.l.: s.n.], 2005. p. 788–795. [doi: 10.1109/ICAR.2005.1507498].

40 RAPOSO, A.; FUKS, H. Defining task interdependencies and coordination mechanisms
for collaborative systems. Frontiers in Artificial Intelligence and Applications, IOS Press,
Amsterdam, NL, v. 74, p. 88–173, 2002.

41 LIMA, C. V.; WILLRICH, R.; GOMES, R. L.; HOYOS-RIVERA, G. de J.; COURTIAT,
J.-P. A co-browsing system with conference support. Scientia - Interdiciplinary Studies in
Computer Science, v. 18, n. 2, p. 79–96, July/December 2007.

42 Google Inc. OpenSocial. 2008. Available at: <code.google.com/apis/opensocial>.

43 GOMES, R. L. LEICA - Un environnement faiblement couplé pour l’intégration
d’applications collaboratives. PhD Thesis — Université Paul Sabatier, Toulouse, France,
2006. Available at: <http://tel.archives-ouvertes.fr/tel-00088729>.

44 MARSHALL, C. C.; BRUSH, A. J. B. Exploring the relationship between personal and
public annotations. In: Proceedings of the 4th ACM/IEEE-CS joint conference on Digital
libraries (JCDL’04). New York, NY, USA: ACM, 2004. p. 349–357. ISBN 1-58113-832-6.
[doi: 10.1145/996350.996432].

45 PROVENSI, L. L.; COSTA, F. M.; SACRAMENTO, V. Tinta digital em aplicações
multimídia para ambientes móveis. In: SBC. Proceedings of the XIV Simpósio Brasileiro
de Sistemas Multimídia e Web (WebMedia’08). Vila Velha, ES, Brazil: IEEE Computer
Society, 2008. p. 49–52.

46 CHONG, N. S. T.; SAKAUCHI, M. Creating and sharing web notes via a standard
browser. SIGCUE Outlook, ACM, New York, NY, USA, v. 27, n. 3, p. 4–15, 2001. ISSN
0163-5735. [doi: 10.1145/504546.504547].

47 LAURILLAU, Y.; NIGAY, L. Clover architecture for groupware. In: Proceedings of the
2002 ACM conference on Computer supported cooperative work (CSCW’02). New York,
NY, USA: ACM, 2002. p. 236–245. ISBN 1-58113-560-2. [doi: 10.1145/587078.587112].

48 RICARDO, J. M. Um Framework Para Construção Cooperativa de Ambientes do tipo
CSCW/CSCL. PhD Thesis — Universidade Federal do Espírito Santo, Vitória, Brazil,
2004.

49 NARDI, J. C. Apoio de Gerência de Conhecimento à Engenharia de Requisitos em um
Ambiente de Desenvolvimento de Software. Master Thesis — Universidade Federal do
Espírito Santo, Vitória, Brazil, 2006.

http://dx.doi.org/10.1109/ICAR.2005.1507498
http://code.google.com/apis/opensocial/
http://tel.archives-ouvertes.fr/tel-00088729
http://doi.acm.org/10.1145/996350.996432
http://doi.acm.org/10.1145/504546.504547
http://doi.acm.org/10.1145/587078.587112

References 123

50 GUARINO, N. Understanding, building and using ontologies. Int. J. of Human-Computer
Studies, v. 46, n. 2-3, p. 293–310, 1997. [doi: 10.1006/ijhc.1996.0091].

51 SMITH, B.; WELTY, C. Ontology: Towards a new synthesis. In: SMITH, B.; WELTY, C.
(Ed.). Proc. of the 2nd International Conf. on Formal ontology in information systems.
New York: ACM Press, 2001. p. 3–9.

52 GAAEVIC, D.; DJURIC, D.; DEVEDZIC, V.; SELIC, B. Model Driven Architecture and
Ontology Development. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006. ISBN
3540321802.

53 WANG, X.; CHAN, C. W.; HAMILTON, H. J. Design of knowledge-based systems
with the ontology-domain-system approach. In: SEKE ’02: Proceedings of the 14th
international conference on Software engineering and knowledge engineering. New York,
NY, USA: ACM, 2002. p. 233–236. ISBN 1-58113-556-4.

54 GUARINO, N. Formal ontology and information systems. In: GUARINO, N. (Ed.). Proc.
of the 1st Formal Ontology and Information Systems. Trento, Italy: IOS Press, 1998. (1st),
p. 3–15.

55 MAINTAINERS. CoBrowser.net. 2008. Project website: <www.cobrowser.net>. Release
July 2008.

56 MALY, K.; ZUBAIR, M.; LI, L. Cobrowser: Surfing the web using a standard browser.
In: Proceedings of World Conference on Educational Multimedia, Hypermedia and
Telecommunications. Chesapeake, VA: AACE, 2001. p. 1220–1225.

57 MAINTAINERS. Cookie Central. Available at: <www.cookiecentral.com/>. Last Access:
January 2009.

58 EUGSTER, P. T.; FELBER, P. A.; GUERRAOUI, R.; KERMARREC, A.-M. The many
faces of publish/subscribe. ACM Computing Surveys, ACM, New York, NY, USA, v. 35,
n. 2, p. 114–131, June 2003. ISSN 0360-0300. [doi: 10.1145/857076.857078].

59 DOMMEL, H.-P.; GARCIA-LUNA-ACEVES, J. J. Floor control for multimedia
conferencing and collaboration. Multimedia Systems, Springer-Verlag New York,
Inc., Secaucus, NJ, USA, v. 5, n. 1, p. 23–38, 1997. ISSN 0942-4962. [doi:
10.1007/s005300050040].

60 HANSON, R.; TACY, A. GWT in Action: Easy Ajax with the Google Web Toolkit.
Greenwich, CT, USA: Manning Publications Co., 2007. ISBN 1933988231.

61 MARCONDES, C.; MARTINELLO, M.; SCHWARTZ, R. S.; SANTOS, R. O.;
SANADIDI, M.; GERLA, M. Pathcrawler: Automatic harvesting web infra-structure.
In: Proceedings of the IEEE/IFIP Network Operations and Management Symposium
(NOMS’08). [S.l.]: IEEE Computer Society, 2008. p. 339–346. ISBN 978-1-4244-2065-0.
ISSN 1542-1201. Salvador, Brazil. [doi: 10.1109/NOMS.2008.4575153].

62 DYCK, J.; GUTWIN, C.; GRAHAM, T. C. N.; PINELLE, D. Beyond the lan:
techniques from network games for improving groupware performance. In: Proceedings
of the 2007 international ACM conference on Supporting group work (GROUP’07).
New York, NY, USA: ACM, 2007. p. 291–300. ISBN 978-1-59593-845-9. [doi:
10.1145/1316624.1316669].

http://dx.doi.org/10.1006/ijhc.1996.0091
http://www.cobrowser.net
http://www.cookiecentral.com/
http://doi.acm.org/10.1145/857076.857078
http://dx.doi.org/10.1007/s005300050040
http://dx.doi.org/10.1109/NOMS.2008.4575153
http://doi.acm.org/10.1145/1316624.1316669

References 124

63 Google Inc. GWT: Google Web Toolkit. 2008. Available at:
<code.google.com/webtoolkit/>. Release: 1.4.

64 HANSON, R. GWT Widget Library. 2006. Available at: <gwt-widget.sourceforge.net>.

65 W3Schools.com. Browser Statistics. 2009. Available at:
<www.w3schools.com/browsers/browsers_stats.asp>. Last Access: March 2009.

66 AT Internet Institute. Browsers Barometer. 2009. Available at:
<www.atinternet-institute.com/en-us/browsers-barometer/index-1-2-3-0.html>. Last
Access: April 2009.

67 MAINTAINERS. Sahi -Web Automation and Test Tool. 2005. Available at: <sahi.co.in/w/>.
Last Access: March 2009.

68 MAINTAINERS. iMacros. 2000. <www.iopus.com/imacros>. Last Access: March 2009.

69 MENASCE, D. A.; ALMEIDA, V. A. F. Capacity Planning for Web Services: metrics,
models, and methods. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001. ISBN
0130659037.

70 REISER, M.; LAVENBERG, S. S. Mean-value analysis of closed multichain queuing
networks. J. ACM, ACM, New York, NY, USA, v. 27, n. 2, p. 313–322, 1980. ISSN
0004-5411. [doi: 10.1145/322186.322195].

71 SCHWEITZER, P. Approximate analysis of multiclass closed networks of queues. In:
Proceddings of the Internation Conference on Stochastic Control and Optimization. [S.l.:
s.n.], 1979.

72 Sun Microsystems Inc. The Essentials of Filters. 2009. Available at:
java.sun.com/products/servlet/Filters.html. Last Access: April 2009.

http://code.google.com/webtoolkit/
http://gwt-widget.sourceforge.net/
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.atinternet-institute.com/en-us/browsers-barometer/index-1-2-3-0.html
http://sahi.co.in/w/
http://www.iopus.com/imacros/
http://doi.acm.org/10.1145/322186.322195
http://java.sun.com/products/servlet/Filters.html

Livros Grátis
(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas

http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1

Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo

http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1

