UNI VERSIDADE FEDERAL DE GOIÁS PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA MULTIDISCIPLINAR DE DOUTORADO EM CIÊNCIAS AMBIENTAIS

MARIA SOCORRO DUARTE DA SILVA COUTO

MODELAGEM MATEMÁTICA PARA SELEÇÃO DE ÁREAS PRIORITÁRIAS PARA CONSERVAÇÃO: MÉTODOS, CENÁRIOS E CONTRIBUIÇÕES PARA A GESTÃO TERRITORIAL EM GOIÁS

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

MARIA SOCORRO DUARTE DA SILVA COUTO

MODELAGEM MATEMÁTICA PARA SELEÇÃO DE ÁREAS PRIORITÁRIAS PARA CONSERVAÇÃO: MÉTODOS, CENÁRIOS E CONTRIBUIÇÕES PARA A GESTÃO TERRITORIAL EM GOIÁS

Tese apresentada Programa Multidisciplinar de Doutorado em Ciências (CIAMB) Ambientais da Universidade Federal de Goiás, como pré-requisito para a obtenção do título de Doutor em Ciências Ambientais.

ORIENTADOR:

PROFESSOR DR. LAERTE GUIMARÃES FERREIRA JR.

CO-ORIENTADORES:

PROFESSOR DR. BRYON RICHARD HALL PROFESSOR DR. GECI JOSÉ PERREIRA DA SILVA

> Goiânia Março de 2009

Dados Internacionais de Catalogação-na-Publicação (CIP) (GPT/BC/UFG)

Couto, Maria Socorro Duarte da Silva.

C871m Modelagem matemática para seleção de áreas prioritárias para conservação [manuscrito]: métodos, cenários e contribuições para a gestão territorial em Goiás / Maria Socorro Duarte da Silva Couto . – 2009.

xiv,154 f.: il., color., figs., tabs.

Orientador: Prof. Dr. Laerte Guimarães Ferreira Jr.; Co-Orientadores: Prof. Dr. Bryon Richard Hall e Prof. Dr. Geci José Pereira da Silva.

Tese (Doutorado) – Universidade Federal de Goiás. Pró-Reitoria de Pesquisa e Pós-Graduação. Programa Multidisciplinar de Doutorado em Ciências Ambientais, 2009.

Bibliografia: f. 90-96 Inclui lista de ilustrações, tabelas, abreviaturas e siglas. Anexos e apêndices.

1. Biodiversidade – Conservação – Áreas prioritárias 2. Bioma Cerrado – Conservação 3. Digrafo 4. Otimização Matemática 5. Programação Não-linear I. Ferreira Jr., Laerte Guimarães II. Hall, Bryon Richard III. Silva, Geci José Pereira da III. Universidade Federal de Goiás. Pró-Reitoria de Pesquisa e Pós-Graduação. **Programa Multidisciplinar de Doutorado em Ciências Ambientais** IV. Título.

CDU: 504.06:519.863(251.3:817.3)

Termo de Ciência e de Autorização para Disponibilizar as Teses e Dissertações Eletrônicas (TEDE) na Biblioteca Digital da UFG

Na qualidade de titular dos direitos de autor, autorizo a Universidade Federal de Goiás-UFG a disponibilizar gratuitamente através da Biblioteca Digital de Teses e Dissertações - BDTD/UFG, sem ressarcimento dos direitos autorais, de acordo com a <u>Lei nº 9610/98</u>, o documento conforme permissões assinaladas abaixo, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.

	1. Ident	ificação	do ma	iterial I	bibliográ	fico:	[]	Dissert	ação	[X] Tese	!
	2. Ident	ificação	da Tes	se ou D) issertaç	ão						
	Autor(a):	Maria	Socorro	o Duart	e da Silva	Couto						
	CPF:			E	E-mail:	socorro	_dsc@	hotmail.	.com			
					ado na pá				[] Nâ			
	Vínculo E gatício de	•		uto Fed us Inhu		ducação	, Ciênd	cias e Te	ecnologia	a de	Goiás (II	F-Goiás) -
	Agência (us IIIIu	IIIIas						Ciala	1
		<u>de romer</u> Brasil	ito.		UF:	<u> </u>		CNPJ:			Sigla:	
				+ +		GO	- 6maa		rice non			
	Título:				ca para se ontribuiçõ):
	Palavras-	-chave:			ade – Cor 3. Digrafo							
	Título em outra língua: Mathematical molding to selection of priority areas to conservation: methods, scenarios and contributions to a territorial management in Goiás											
					 							
	Palavras-	-chave er	n outra	lingua								2. Biome al optimi:
								Program			· · · · · · · · · · · · · · · · · · ·	аг орини
	Área de o	concentra	ação:	Estrut	ura e Dina	âmica A	mbient	al				
	Data def	esa: (20 .	/03/200	09)								
	Programa	a de Pós-	Gradua	ıção:	Program tais	a Multic	disciplir	nar de D	outorad	o em	n Ciências	s Ambien-
	Orientad	or(a): F	Prof. Dr	Laerte	Guimarãe	es Ferre	ira Jr.					
	CPF:					E-m						
	Co-orien	tador(a):	Prof	. Dr. Br	yon Richa							
		` ,			eci José Pe		la Silva	a				
	CPF:					E-m	nail:	laerte@	iesa.ufg	.br		
,	<u>'</u>						ı			- "		
	3. Informações de acesso ao documento: Liberação para disponibilização? ¹ [X] total [] parcial											
	Em caso de disponibilização parcial, assinale as permissões:											
	i i Canit	[] Capítulos. Especifique:										

¹ Em caso de restrição, esta poderá ser mantida por até um ano a partir da data de defesa. A extensão deste prazo suscita justificativa junto à coordenação do curso. Todo resumo e metadados ficarão sempre disponibilizados.

[] Outras restrições:	OC da tese ou dissertação ações garante aos autore: ertações, antes de sua o a (para não permitir cópi	o. s, que os arqui- disponibilização,
Assinatura do(a) autor(a)	Data:	14/04/2009

FOLHA DE APROVAÇÃO

Miembros da Banca Examinadora de Detesa Pública de Tese de Doutorado em Ciencias Ambientais, realizada em 20 de março de 2008, às 14 horas.

Prof. Dr. Laerte Guimarães Ferreira Júnior - UFG

boerte Guns

Prof. Dr. Edson/Eijy Sano - UFG

Prof. Dr. Fausto Miziara – UFG

Prof. Dr. Mário Barroso Ramos Neto – CIPC/DF

Prof. Dr. Nilson Clementino Ferreira - IFET - Goiás

DEDICATÓRIA

À minha mãe Divina pelo amor e apoio durante toda minha vida.

Ao meu esposo Marco Antônio e aos meus filhos, Mara Rúbia e Marcos Natan, pelo carinho, incentivo, suporte, companheirismo, compreensão e paciência durante a realização deste curso de Doutorado.

À minha grande amiga Suelene Vaz da Silva pelo seu grande apoio.

AGRADECIMENTOS

Esta Tese de Doutorado só foi possível em virtude do apoio que recebi de pessoas em meu convívio acadêmico, profissional e pessoal. Dentre todas elas, eu gostaria de agradecer, em especial ao meu orientador, Dr. Laerte Guimarães Ferreira Jr., por acreditar neste trabalho e pelo aprendizado que acompanhará minha vida acadêmica e profissional por longos anos, e principalmente pela confiança, compreensão, disponibilidade e paciência incondicionais.

Aos meus co-orientadores, Dr. Bryon Richard Hall e Dr. Geci José Pereira da Silva, pelo aprendizado e paciência que muito contribuíram desde o início na elaboração desta tese de doutorado.

Ao Laboratório de Processamento de Imagens e Geoprocessamento (LAPIG/UFG), e toda sua equipe, em particular, o Fanuel Nogueira Garcia, que como uma família me acolheu e contribuiu direto e indiretamente com este trabalho.

RESUMO

Os esforços para amenizar a crescente perda da biodiversidade e de habitats estão sendo baseados, cada vez mais, na adoção de critérios objetivos, os quais permitem priorizar áreas e/ou espécies a serem preservadas, levando em consideração a limitação de recursos naturais e econômicos. Estes critérios são fundamentais para a seleção de reservas, principalmente para as regiões onde ocorre maior intensificação do uso do solo. Em particular, o uso de modelagem matemática, ao possibilitar a identificação de alternativas mais eficazes, constituise em importante subsídio aos problemas de conservação. Especificamente, nesta tese, apresentamos um modelo matemático não-linear de seleção de áreas prioritárias para conservação, que considerou tanto a qualidade e viabilidade ecológica das áreas de vegetação remanescente do Cerrado goiano a partir do uso de dados e critérios ambientais por meio da paisagem, quanto à praticidade e a legalidade do uso de bacias hidrográficas para gestão. Este modelo permite variar parâmetros de acordo com os interesses sócio-econômicos e ambientais, gerando distintas soluções e cenários. Entre estas soluções, destacamos uma solução ótima que prioriza as áreas de vegetação remanescente com elevada porcentagem de ambientes ripários, valorizando a vizinhança e a conectividade entre elas, formando corredores naturais ou viabilizando sua formação. O modelo proposto pode contribuir tanto para valorização das áreas de vegetação remanescente em propostas de conservação, quanto otimizar a restauração de áreas degradadas, principalmente de ambientes ripários, que favorecem a sua interligação.

Palavras-chave: Áreas Prioritárias; Conservação no Bioma Cerrado; Digrafo; Otimização; Programação Não-linear.

ABSTRACT

The efforts to minimize the growing loss of habitats and threatens to biodiversity are increasingly based on objective criteria, which allow prioritize areas and species in need of preservation, taking into account the limitations in both natural and economic resources. These criteria are fundamental for the reserve selection and design, mainly at regions severely affected by land use intensification. In particular, the use of mathematical modeling, enabling the identification of more efficient alternatives, is an important subsidy to conservation challenge. Specifically, in this dissertation we present a new approach for the selection of priority areas for conservation, which considers both the quality and ecological feasibility of the remnant vegetation in the Cerrado areas of the State of Goiás, as well as the practical and legal aspects regarding the use of watersheds for territorial management. This proposal, based on a non-linear mathematical model, allows the parameters to vary according to the socialeconomical and environmental interests, thus generating distinct solutions and scenarios. Among the possible outcomes, we highlight as an "optimum" solution, the one with a large number remnant vegetation areas within riparian environments, which serves the purpose of strengthening spatial connectivity and natural corridors. In fact, this model can be used either to promote the conservation of large remnant vegetation patches, as well as to optimize the restoration of degraded areas, mainly in riparian environments, through the generation of alternative spatial patterns aiming at a more efficient connectivity in highly converted areas.

Keywords: Priority Areas, Conservation in the Cerrado Biome, Digraph, Optimization, Non-Linear Programming.

LISTA DE ILUSTRAÇÕES

Figura 1.	Implementação do método RAPPAM em 246 unidades de conservação federais	20
Figura 2.	Mapa de distribuição da cobertura e uso da terra do bioma Cerrado	22
Figura 3.	Localização das unidades de conservação de proteção integral no bioma Cerrado e no Estado de Goiás.	23
Figura 4.	Mapa indicativo das 40 áreas prioritárias para a conservação da biodiversidade em Goiás com as áreas de remanescentes de Cerrado	24
Figura 5.	Representação geométrica das iterações do algoritmo proposto e aplicado ao exemplo acima.	36
Figura 6.	Mapa do Brasil, destacando a região do bioma Cerrado, dividida em 181 células de 1° latitude por 1° de longitude	37
Figura 7.	Solução do modelo não-linear proposto com α = 1000	39
Figura 8.	Solução do modelo linear proposto por Diniz-Filho et al. (2006) via Simulated Annealing Algorithm.	39
Figura 9.	Aplicação de grafo em um conjunto de bacias hidrográficas	41
Figura 10.	Aplicação de digrafo em um conjunto de bacias hidrográficas	42
Figura 11.	Localização e distribuição das classes de cobertura e uso da terra para o Estado de Goiás.	44
Figura 12.	Mapa de distribuição de vegetação remanescente do Estado de Goiás para as bacias hidrográficas segundo o Código Florestal Brasileiro	45
Figura 13.	Distribuição dos desmatamentos no Estado de Goiás ocorridos no período de 2003 a 2007, conforme as bacias hidrográficas com área mínima 9500 ha.	46
Figura 14.	Localização do bioma Cerrado e estado de Goiás, o qual foi subdividido em 1511 bacias hidrográficas com área mínima de 9.500 ha	47
Figura 15.	Conjunto de dados primários e procedimentos metodológicos aplicados à área de estudo para identificação de áreas prioritárias.	49
Figura 16.	Distribuição do preço da terra normalizado no Estado de Goiás conforme bacias hidrográficas maiores que 9.500 ha.	52

Figura 17.	Distribuição espacial da vegetação remanescente e das principais rodovias federais e estaduais em bacias hidrográfica maiores que 9.500ha	53
Figura 18.	Mapa indicativo de biodiversidade no Estado de Goiás.	55
Figura 19.	Três regiões hídricas do Estado de Goiás, conforme as Ottobacias de Nível Dois (ANA).	56
Figura 20.	Mapa do Estado de Goiás dividido em seis regiões de análise	56
Figura 21.	Exemplo de quatro sub-regiões hídricas.	59
Figura 22.	Mapa de 12 bacias pertencentes à Região Noroeste do Estado de Goiás	65
Figura 23.	Primeira Iteração: Mapa do fragmento remanescente incluso na solução e de seus adjacentes correspondentes.	68
Figura 24.	Segunda Iteração: Mapa do fragmento remanescente incluso na solução e de seus adjacentes correspondentes.	69
Figura 25.	Terceira Iteração: Mapa dos fragmentos remanescentes inclusos na solução e de seus adjacentes correspondentes.	70
Figura 26.	Quarta Iteração: Mapa dos fragmentos remanescentes inclusos na solução e de seus fragmentos adjacentes correspondentes.	72
Figura 27.	Mapa dos índices de importância da inclusão dos fragmentos remanescentes em proposta de conservação.	73
Figura 28.	Mapa dos índices de importância da inclusão das bacias hidrográficas em proposta de conservação.	7 4
Figura 29.	Solução 1 - nível de importância dos fragmentos de vegetação remanescente sem dados de biodiversidade.	77
Figura 30.	Solução 1 - nível de importância dos fragmentos de vegetação remanescente com dados de biodiversidade.	77
Figura 31.	Solução Diferença 1 - nível de importância dos fragmentos de vegetação remanescentes.	78
Figura 32.	Solução 1 - nível de importância das bacias sem dados de biodiversidade	79
Figura 33.	Solução 1 - nível de importância das bacias com dados de biodiversidade	79
Figura 34.	Solução Diferença 1 - nível de importância das bacias	79
Figura 35.	Solução 2 - nível de importância das bacias sem dados de biodiversidade	80
Figura 36.	Solução 2 - nível de importância das bacias com dados de biodiversidade.	80

Figura 37.	Solução Diferença 2 - nível de importância das bacias	81
Figura 38.	Solução 3 - nível de importância das bacias sem dados de biodiversidade	82
Figura 39.	Solução 3 - nível de importância das bacias com dados de biodiversidade	82
Figura 40.	Solução Diferença 3 - nível de importância das bacias	82
Figura 41.	Distribuição das áreas selecionadas em função do nível de importância da bacia na Solução 1.	83
Figura 42.	Distribuição das áreas selecionadas em função do nível de importância da bacia na Solução 2.	83
Figura 43.	Distribuição das áreas selecionadas em função do nível de importância da bacia na Solução 3.	83
Figura 44.	Comparação das três soluções (sem dados de biodiversidade)	84
Figura 45.	Área das bacias (Solução 1 - sem dados de biodiversidade), com maior nível de importância que correspondem aproximadamente 82.000 km²	85
Figura 46.	Solução Ótima - nível de importância das bacias sem dados de biodiversidade.	87
Figura 47.	Solução Ótima - nível de importância das bacias com dados de biodiversidade.	87
Figura 48.	Mapa da diferença entre a solução ótima com e sem dados de biodiversidade.	88

LISTA DE TABELAS

Tabela 1.	Resultado do algoritmo para sete valores de α e a solução via <i>Simulated Annealing Algorithm</i> (SAA).	38
Tabela 2.	Banco de dados para Região Noroeste do Estado de Goiás.	66

LISTA DE ABREVIATURAS E SIGLAS

APPs – Áreas de Preservação Permanente

CISD - Conservation International Species Database

IBAMA – Instituto Brasileiro do Meio Ambiente e Recursos Naturais Renováveis.

IBGE – Instituto Brasileiro de Geografia e Estatística

IDH – Índice de Desenvolvimento Humano

MMA – Ministério do Meio Ambiente

PDIAP – Projeto de Identificação de Áreas Prioritárias para Conservação da Biodiversidade.

PIB – Produto Interno Bruto

PL – Programação Linear

PLI – Programação Não-Linear

PROBIO - Projeto de Conservação e Utilização Sustentável da Diversidade Biológica

Brasileira

RAPPAM - Rapid Assessment and Priorization of Protected Area Management

SAA – Simuated Annealing Algorithm

SEFAZ - Secretaria da Fazenda do Estado de Goiás

SEMA – Secretaria Especial do Meio Ambiente

SNUC – Sistema Nacional de Unidades de Conservação

SRTM – Shuttle Radar Topography Mission

SUMÁRIO

INTRODUÇÃO		15
CAPÍTULO 1	Fundamentação Teórica Matemática	27
CAPÍTULO 2	Desenho Experimental: Dados e Metodologia	44
CAPÍTULO 3	Formulação do Problema e Algoritmo	58
CAPÍTULO 4	Resultados e Conclusões	76
CAPÍTULO 5	Considerações Finais	86
REFERÊNCIAS I	BIBLIOGRÁFICAS	90
APÊNDICES:	A. Solução 1 - nível de importância dos fragmentos de vegetação remanescente sem dados de biodiversidade	97
	B. Solução 1 - nível de importância dos fragmentos de vegetação remanescente com dados de biodiversidade	99
	C. Solução Ótima - nível de importância das bacias sem dados de biodiversidade.	101
ANEXOS:	A. Dados de Biodiversidade	103

INTRODUÇÃO

A preocupação com a criação de áreas de conservação remonta ao surgimento do primeiro parque no mundo, em 1872, o Parque Nacional de *Yellowstone*, nos Estados Unidos. Este parque foi criado por possuir grande beleza cênica, o que revela a utilização de critérios subjetivos para o estabelecimento de áreas de preservação, os quais, além de considerar o conceito de beleza, também englobam a seleção de áreas devolutas ou de baixo valor econômico, de entretenimento, para finalidade turística e, em menor grau, por pressão de grupos de interesse, para a realização de pesquisas científicas, para a proteção de recursos hídricos e, a proteção de espécies raras e ameaçadas (FRANKLIN, 1993; GOTMARK & NILSSON, 1992; HUNTER & YONZON, 1993; POSSINGHAM et al., 2000).

A opção por uma abordagem subjetiva leva à constituição de um sistema de unidades de conservação com baixa eficiência e com pouca representatividade dos padrões e dos processos da biodiversidade regional, pois super-valoriza alguns componentes em detrimento de outros relacionados, por exemplo, com espécies, *habitats*, paisagens e processos ecológicos (SCARAMUZZA et al., 2008). Argumenta-se também que a seleção dessas áreas ocorre de maneira oportunista (PRESSEY et al., 1993) e sem a definição prévia de objetivos claros (PRESSEY, 1994).

Em fato, a adoção de critérios subjetivos não é eficiente para evitar as enormes perdas de biodiversidade e de *habitats* ocorridas nas últimas décadas, em função, principalmente, do crescimento e dos modos de consumo da população humana (KINGSLAND, 2002). Assim, torna-se cada vez mais necessário a adoção de critérios objetivos, os quais favorecem a priorização mais coerente de áreas e/ou espécies a serem preservadas (CABEZA, 2003; MARGULES & PRESSEY, 2000; MARGULES et al., 2002), levando em conta fatores como

a limitação de recursos naturais e econômicos (ARPONEN et al., 2005; MARGULES & PRESSEY, 2000).

Em busca destes critérios, Margules e Pressey (2000) elaboraram uma abordagem sistemática dividida em seis passos: 1) mensuração e mapeamento da biodiversidade; 2) identificação dos objetivos de conservação da região; 3) revisão das áreas de conservação existentes; 4) seleção de áreas de conservação adicionais; 5) implementação das atividades de conservação e; 6) manejo e monitoramentos das reservas. Esta abordagem é relevante por identificar configurações de áreas complementares de forma explícita, objetiva e geralmente quantitativa (PRESSEY et al., 2007), além de constituir-se em uma ferramenta poderosa (PRESSEY et al., 2007) para preservar a biodiversidade (KATI et al., 2004) e os *habitats* ameaçados (CLEMENS et al., 1999).

Contudo, as abordagens de planejamento sistemático somente receberam maior atenção durante as duas últimas décadas (CABEZA & MOILANEN, 2001; PRESSEY & TAFFS, 2001; WILLIAMS et al., 2004), quando passou-se a reconhecer o potencial destes para lidar com variáveis biológicas e antrópicas (KNIGHT et al., 2006; PRESSEY et al., 2007). Esta constatação levou ao desenvolvimento de uma variedade de métodos matemáticos e computacionais, para subsidiarem a identificação de áreas prioritárias para conservação, ou seja, locais ou regiões que possuem atributos naturais bastante expressivos e, por vezes, únicos, objetivando, desta forma, otimizar a representação da biodiversidade regional (LAWLER et al., 2003; POSSIGHAM et al., 2000).

Nesta perspectiva, pôde-se definir o problema de seleção de áreas prioritárias para conservação como sendo um problema de otimização, cujo objetivo é proteger todos os alvos de conservação com o menor custo/área possível (medido, na maioria das vezes, como o número mínimo de áreas; LAWLER et al., 2003). Atualmente, a seleção de áreas tem sido feita utilizando-se algoritmos baseados no conceito de complementaridade (ARAÚJO &

WILLIAMS, 2000; HOWARD et al., 1998), o qual mede o quanto uma área é diferente de outras em termos de composição de espécies (CSUTI et al., 1997; MARGULES & PRESSEY, 2000), ou seja, pela importância de uma área para representação de espécies que não tenha sido previamente representadas (PRESSEY et al., 1993). Desta forma, as áreas de conservação possuem maiores possibilidades de desempenhar um papel fundamental na conservação da biodiversidade, caso façam parte de um sistema representativo, i.e. de um sistema que contenha o maior número possível de cada elemento típico da biodiversidade.

Esta abordagem sistemática considera não apenas uma área, onde eventualmente seria alocada uma unidade de conservação, mas a combinação entre diversas áreas, visando assegurar um conjunto representativo de reservas (BENSUSAN, 2006). Como exemplos desta abordagem, destacam-se o parque *New South Wales* na Grã-Bretanha, o parque *Papua* na Nova Guiné e o parque *Cape Floristic Region* na África do Sul (MARGULES et al., 2002).

Segundo Myers et al. (2000), a mensuração de uma área prioritária geralmente se faz pelo registro de espécies ou de ecossistemas ameaçados pela ocupação humana. A nível global, foram delimitadas, inicialmente, vinte e cinco áreas prioritárias para a conservação da biodiversidade, denominadas de *hotspots*¹. Dentre os *hotspots* temos, no Brasil, alguns dos biomas mais ameaçados do planeta: a Mata Atlântica e o Cerrado. (CAVALCANTI & JOLY, 2002; MYERS et al., 2000). Outra delimitação importante relacionada às áreas prioritárias para a conservação é a dos dezessete países megadiversos, os quais foram selecionados com base na riqueza de espécies e no grau de endemismo de plantas e vertebrados, contendo 70% de toda a biodiversidade do mundo (MITTERMEIER et al., 1997).

Jha et al. (2005) delimitaram mais nove importantes regiões biogeográficas prioritárias, somando-se 34 *hotspots* em todo o mundo. Nesta delimitação, além de considerarem a diversidade biológica (endemismo de espécies e grau de urgência de preservação) e os

^{1.} *Hotspots* são áreas que apresentam alto endemismo de espécies de plantas e têm 75% ou mais de sua vegetação nativa convertida, indicando um alto grau de ameaça ao ecossistema (MYERS et al., 2000).

grandes impactos antrópicos da região, os autores também consideraram a viabilidade ecológica das mesmas. Em fato, Jha et al. (2005) afirmaram que a viabilidade ecológica é um dos maiores desafios para a conservação de áreas prioritárias, a qual está diretamente relacionada ao grau de fragmentação e à capacidade de regeneração da cobertura vegetal remanescente, sendo o desmatamento e as queimadas as principais atividades responsáveis por esta fragmentação.

No Brasil, o estabelecimento das primeiras unidades de conservação, em particular os parques nacionais, foi feita de forma subjetiva. Somente mais tarde, critérios supostamente mais técnicos foram adotados.

A criação do primeiro parque brasileiro, o Parque Nacional de Itatiaia, em 1937, representou a materialização de longos anos de debates e mobilizações que só se efetivaram após a introdução da figura da unidade de conservação na legislação brasileira pelo antigo Código Florestal (Decreto nº 23.793, 1934). Este código foi posteriormente aperfeiçoado com a criação do novo Código Florestal (Lei nº 4771, 1965) (MEDEIROS, R., 2003).

A partir de 1964, os sinais da crise ambiental em nível mundial agravaram-se, levando vários governos a um consenso sobre a necessidade premente de reverter este quadro. As décadas que se seguiram foram fortemente marcadas por encontros internacionais em prol do meio ambiente, dentre eles, as Conferências da Biosfera (1968) e a de Estocolmo (1972). Dos debates decorrentes da Conferência de Estocolmo, o Brasil foi pressionado a criar a Secretaria Especial do Meio Ambiente (SEMA), para lidar com os projetos ambientais em nível nacional e internacional. Posteriormente, esta secretaria foi extinta e suas atribuições foram assumidas pelo Instituto Brasileiro do Meio Ambiente e Recursos Naturais Renováveis (IBAMA), criado em 1989, o qual concentrou toda a gestão das áreas protegidas federais (BENSUSAN, 2006).

Porém, somente a partir da Constituição Federal de 1988, o Brasil concebeu um Sistema Nacional de Unidades de Conservação (SNUC), cujo processo de elaboração e negociação

durou mais de 10 anos e gerou uma grande polêmica entre os ambientalistas. A partir do SNUC, que definiu critérios mais objetivos para a criação e gestão de áreas protegidas, ocorreu o reconhecimento de áreas prioritárias em vários momentos e instâncias: na Amazônia, em 1990, na Mata Atlântica do Nordeste, em 1993, e no Projeto de Conservação e Utilização Sustentável da Diversidade Biológica Brasileira (PROBIO) entre 1998 e 2000. No âmbito do PROBIO, foram realizados cinco seminários em busca de critérios mais técnicos, com vistas a definir áreas e ações prioritárias para a conservação. Desta forma, foi possível não só identificar as áreas prioritárias, como também avaliar os condicionantes sócioeconômicos e as tendências de ocupação humana do território brasileiro e, assim, listar as principais ações para a gestão dos recursos biológicos.

A partir de 2001, o governo federal começou a criar novas unidades de conservação conforme as sugestões do PROBIO, dentre as quais destacam-se a Estação Ecológica da Serra Geral do Tocantins, criada em 2001, no estado do Tocantins e parte da Bahia, com aproximadamente 716 mil hectares e o Parque Nacional das Nascentes do Rio Parnaíba, criado em 2002. Este parque é a maior unidade de proteção integral do Cerrado e também a maior área extra-amazônica, com aproximadamente 733 mil hectares, que estão distribuídos nos estados da Bahia, Maranhão, Tocantins e Piauí (AGUIAR & CAMARGO, 2004; BENSUSAN, 2006; SANO et al., 2008a).

É importante ressaltar que a utilização de critérios mais técnicos, como os sugeridos pelo PROBIO, não tem ocorrido somente para a identificação mais eficiente de novas unidades de conservação, mas também para a melhoraria da eficiência das unidades já existentes, uma vez que a avaliação rápida e a priorização do manejo de cada unidade levam ao desenvolvimento de políticas adequadas à proteção de florestas e à formação de uma rede viável de unidades de conservação. Um exemplo neste sentido é a implementação do método RAPPAM (*Rapid Assessment and Priorization of Protected Area Management*) (ERVIN,

2003) para fazer uma avaliação rápida e priorização do manejo em 246 unidades de conservação federais, durante outubro de 2005 a dezembro de 2006 (Figura 1) (IBAMA, 2007).

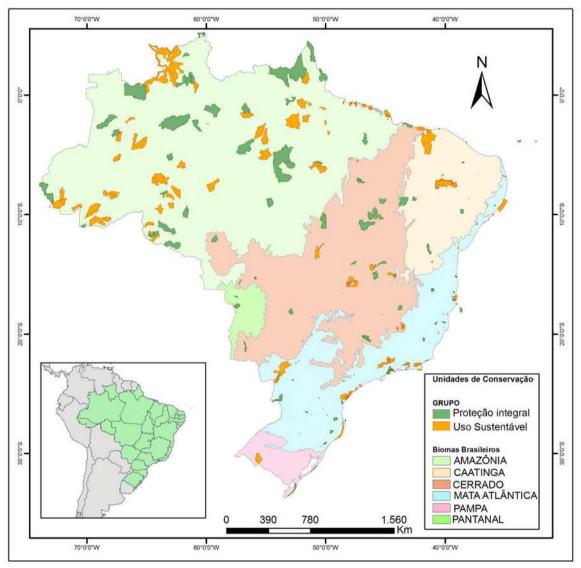


Figura 1. Implementação do método RAPPAM em 246 unidades de conservação federais. Fonte: IBAMA (2007).

A utilização de critérios mais técnicos é importante na manutenção da biodiversidade, bem como no estabelecimento e manejo das unidades de conservação, principalmente nos biomas onde a cobertura vegetal se encontra bastante fragmentada. Esta fragmentação implica em três consequências básicas: a perda de *habitats* na paisagem como um todo, a redução do tamanho dos fragmentos remanescentes e o seu crescente isolamento por novas formas de uso

(BENNETT, 1999). Em fato, as áreas nativas, muito fragmentadas, são mais suscetíveis aos riscos demográficos e genéticos associados ao pequeno tamanho da população, com o efeito das bordas do *habitat* e com o perigo de locomoção das espécies entre os fragmentos, sendo que a magnitude de tais efeitos depende da extensão e forma do fragmento, de seu número, da distância entre eles e do ambiente do entorno. Assim, estas áreas são muito mais propícias à total conversão antrópica (FERREIRA, M. et al., 2008a).

Um exemplo que retrata esta situação é o bioma Cerrado, que nas últimas quatro décadas, em função dos avanços tecnológicos e baixo custo da terra, sofreu grande ação antrópica, no qual grande parte foi transformada em áreas de pastagem e agricultura (Figura 2) (KLINK & MACHADO, 2005; KLINK & MOREIRA, 2002; MIZIARA & FERREIRA, 2008).

Estudos recentes, com base em dados de sensoriamento remoto, estimaram uma perda de 39,5% a 55% da cobertura vegetal nativa do Cerrado (MACHADO et al., 2004; SANO et al., 2008b). Porém, o índice de perda de cobertura vegetal nativa depende da metodologia, propósitos e limites geográficos adotados. Por exemplo, Mittermeier et al. (2004) estimaram que restam menos de 22% do Cerrado, pois dos aproximadamente 205 milhões de hectares originais, 57% já foram completamente destruídos e a metade das áreas remanescentes está bastante alterada, podendo não mais servir aos propósitos de conservação da biodiversidade, haja vista tratar-se de áreas muito reduzidas do ponto de vista da viabilidade ecológica.

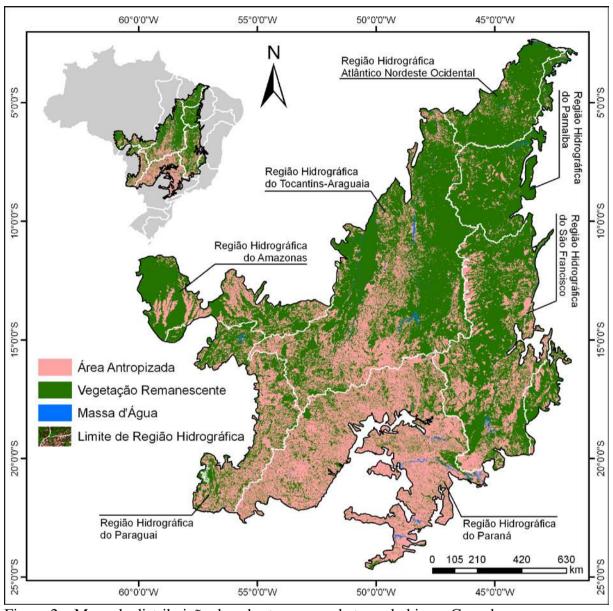


Figura 2 – Mapa de distribuição da cobertura e uso da terra do bioma Cerrado.

Até o momento, existem apenas 82 unidades de conservação integral do bioma Cerrado (Figura 3), as quais correspondem a menos de 3% de sua área total. Este percentual está muito abaixo da meta mundial de conservação ecológica (10%), segundo provisões da Convenção sobre Diversidade Biológica, da qual o Brasil é signatário (MMA, 2006; SANO et al., 2008a).

Especificamente em relação a Goiás, o único estado brasileiro quase integralmente inserido na região *core* do bioma Cerrado, o percentual de unidades de conservação é ainda mais reduzido, com aproximadamente 0,9% de sua área em unidades de conservação integral e 3,5% em unidades de uso sustentável (Figura 3).

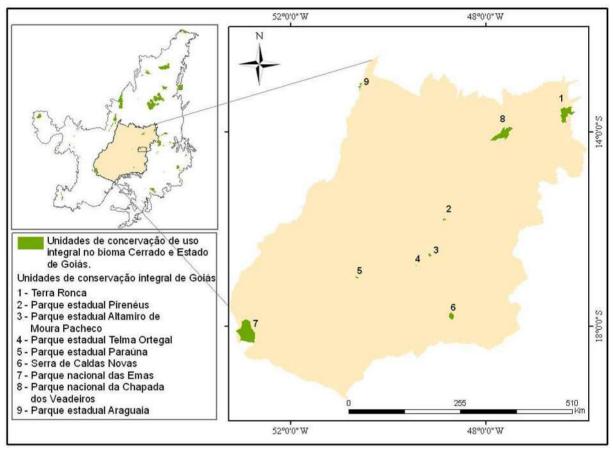


Figura 3. Localização das unidades de conservação de proteção integral no bioma Cerrado e no Estado de Goiás.

Fonte: MMA (2008).

Com o intuito de aumentar este percentual, foi realizado o Projeto de Identificação de Áreas Prioritárias para Conservação da Biodiversidade (PDIAP) (NOVAES et al., 2003; SCARAMUZZA et al., 2008), pioneiro no Brasil em uso de técnicas de planejamento sistemático e sistemas de suporte à decisão com vistas à proteção de diferentes objetos de conservação (i.e. espécies, habitats, paisagens e processos ecológicos).

No âmbito do PDIAP, que teve por base uma malha formada por 3666 hexágonos de 10.000 ha, foi possível identificar ao todo 40 áreas prioritárias (Figura 4), compreendendo uma área total de 82.297 km², das quais aproximadamente 36.296 km² são constituídas de vegetação remanescente (LOBO & FERREIRA, 2008; SCARAMUZZA et al., 2008).

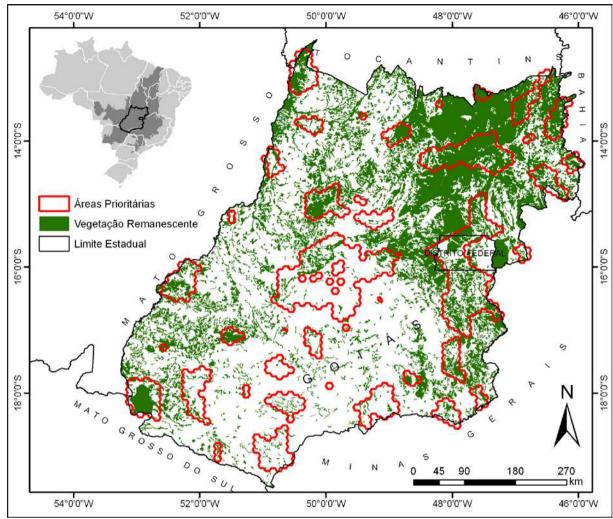


Figura 4. Mapa indicativo das 40 áreas prioritárias para a conservação da biodiversidade em Goiás com as áreas de remanescentes de Cerrado.

Fonte: Scaramuzza et al. (2008).

Apesar de seu caráter pioneiro e rigor técnico científico, o uso de métodos de programação linear não permite a incorporação de critérios potencialmente úteis à tomada de decisão como, por exemplo, em relação à distância e a conectividade entre os remanescentes, aos processos ecológicos e à fragmentação do *habitat*, os quais são baseados nos princípios da dinâmica e de outros processos não-lineares (CABEZA, 2003; EISWERH & HANEY, 2001).

Outra limitação dos métodos de programação linear diz respeito à definição da funçãoobjetivo do modelo, a qual não permite fazer uma análise de sensibilidade a partir da variação dos parâmetros dos objetos de conservação, de tal forma a encontrar soluções alternativas, por meio da geração de vários cenários. Especificamente, o modelo que será apresentado neste trabalho busca responder às seguintes perguntas de pesquisa:

- 1. A seleção de áreas prioritárias para conservação do Cerrado goiano envolvendo interações não-lineares é um método alternativo eficiente de seleção?
- 2. O uso de dados biológicos, juntamente com dados ambientais, gera soluções mais viáveis que àquelas baseadas apenas em indicadores ambientais?
- 3. As unidades de análise "naturais" são mais adequadas para a seleção de áreas prioritárias?
- 4. É possível fazer a conectividade entre diferentes áreas prioritárias com vistas à formação de mosaicos e/ou corredores que maximizam o potencial de conservação?

Assim, será formulado um problema de seleção de áreas prioritárias para conservação como um problema de programação não-linear (ver Capítulo 3), onde a função-objetivo consiste em minimizar o número de áreas prioritárias, minimizando a soma das distâncias entre as áreas selecionadas, ao mesmo tempo em que maximiza a qualidade total. Em seguida, será implementado um algoritmo computacional heurístico para determinar soluções deste problema, uma vez que, com áreas mais aglomeradas, tem-se uma melhora na viabilidade ecológica, no custo de conservação e na redução dos atritos entre a conservação da biodiversidade e o desenvolvimento sócio-econômico regional (CABEZA & MOILANEN, 2001). A expectativa neste caso é de que, ao anexar a não-linearidade na estrutura do problema, seja possível obter um modelo matemático de seleção de áreas prioritárias para o Estado de Goiás com soluções mais viáveis dentro dos critérios ecológicos, econômicos e políticos envolvidos.

Para determinar a conectividade das bacias selecionadas na escolha de áreas prioritárias, será utilizado a Teoria dos Grafos (AGNARSSON & GREENLAW, 2007) (ver Capítulo 1), em busca de uma solução ótima de bacias conectadas, isto é, de um conjunto mínimo de

bacias que, além de fazer a cobertura dos objetos de conservação propostos, gere corredores ecológicos com a finalidade de maximizar o potencial de conservação.

Em função da limitação dos recursos naturais para a conservação da biodiversidade, somados a uma deficiência de dados acerca das riquezas naturais do bioma Cerrado (MACHADO et al., 2008), haja vista que os dados de distribuição das espécies muitas vezes são inadequados e pouco representativos de toda biodiversidade, restrito à apenas algumas espécies (TOGNELLI, 2005), defende-se neste trabalho, estratégias de conservação para o Cerrado goiano, baseadas tanto em indicadores ambientais, quanto em dados de espécies (fauna e flora) (COWLING et al., 2004; HIGGINS et al., 2004; PRESSEY, 2004). Estes dados são detalhados no Capítulo 2.

A implementação do modelo de seleção de áreas prioritárias para conservação da biodiversidade proposto terá como unidade de análise a bacia hidrográfica, cujas características e estratégias de delimitação são discutidas no Capítulo 2.

A sensibilidade da solução ótima às variações dos parâmetros obtidos a partir de dados biológicos e de indicadores/dados ambientais, com vista a se avaliar o quanto a adição de novos dados ou as mudanças no nível de conhecimento regional afetam a solução e respectivos cenários, é discutido no Capítulo 4. O uso de critérios estatísticos, que permitam uma melhor avaliação das bacias selecionadas, quanto à sua prioridade de conservação, é também discutido no Capítulo 4. Por fim, no Capítulo 5, são apresentadas algumas alternativas de soluções e cenários voltados à gestão territorial no que diz respeito à aplicação e consolidação da conservação da biodiversidade e paisagens no Estado de Goiás.

CAPÍTULO 1

Fundamentação Teórica Matemática

A Programação Linear (PL) está relacionada à solução de um problema que representa a maximização ou minimização de uma função-objetivo sujeita a restrições, na qual todas as relações entre as variáveis são lineares, tanto nas restrições, como na função-objetivo (CHVÁTAL, 1983; HADLEY, 1982). O modelo matemático que descreve um problema geral de PL é dado como:

O
$$tZ \stackrel{.}{=} \sum_{j=1}^{N} \mathbf{m}_{j} l_{j}$$
 i z a r
S $ua : \sum_{j=1}^{N} j l_{i} l_{j} \{ \geq , \stackrel{.}{=} , \leq \} r_{i} q, l_{j} \geq 0 ; i = ...1, 2, ..., M ; j = 1, 2, ..., N$ (1.1)

Neste modelo temos que:

- a) l_j é a *j*-ésima variável;
- b) $A = \{a_{ij}\}$ é uma matriz de M restrições por N variáveis, onde a_{ij} é o coeficiente da *j*-ésima variável na *i*-ésima restrição;
- c) c_j é o coeficiente de margem de contribuição para a j-ésima variável;
- d) r_i é a limitação da i-ésima restrição;
- e) para cada restrição, um e somente um dos sinais {≥,=,≤} ocorre. Contudo, este pode variar de uma restrição para outra.

As restrições lineares descrevem um politopo linear (se ilimitado) ou poliedro (se limitado), que é sempre convexo.

Resolver um problema de PL (1.1) consiste em determinar uma solução possível e ótima. Teoricamente, o número de iterações poderia ser extremamente grande, pelo algoritmo ser de complexidade exponencial, requerendo um grande esforço computacional. Porém, isso pode ser evitado com o auxílio do método Simplex, um dos métodos mais utilizados para resolver problemas de PL, e que consiste, a partir de uma solução inicial (básica), gerar uma seqüência de pontos cada vez mais próximos à solução ótima, normalmente obtida em um número relativamente pequeno de iterações (CHVÁTAL, 1983).

Atualmente, outros métodos de resolução, usando pontos interiores, têm sido bastante utilizados, os quais, por serem de complexidade polinomial, mostram-se mais eficientes que o Simplex para problemas de grande porte (KARMARKAR, 1984).

Um problema de PL, no qual se exige que uma ou mais variáveis de decisão assumam um valor inteiro na solução final é denominado Problema de Programação Linear Inteira (PLI). Isso significa que o conjunto de soluções possíveis para um problema de PLI é um subconjunto das soluções identificadas para o problema de PL correspondente.

Um caso particular de PLI refere-se ao problema que consiste em minimizar o número de áreas necessárias para representar, pelo menos, uma espécie de interesse, denominado problema de área mínima (CABEZA & MOILANEN, 2001; PRESSEY & TAFFS, 2001; WILLIAMS et al., 2004). Tem-se $l_j \in \{0,1\}$; isto significa que se for $l_j = 1$, indica que a área j está no sistema de reservas e $l_j = 0$, caso contrário. E o modelo matemático que descreve este problema é dado pela seguinte expressão:

Minimizar
$$Z = \sum_{j=1}^{N} l_{j}$$

Sujeito a: $\sum_{j=1}^{N} l_{j} \ge 1$; $l_{j} \in \{0,1\}$; $i = ...1, 2, ..., M$; $j = 1, 2, ..., N$ (1.2)

Para determinar a solução de problema PLI (1.2), foram desenvolvidas várias técnicas, dentre elas, o método de *Branch-and-Bound* (ou método Simplex com limites sobre as variáveis), que consiste na idéia de desenvolver uma enumeração inteligente dos pontos candidatos à solução ótima inteira de um problema, dividindo o conjunto de soluções viáveis em subconjuntos sem interseções entre si, calculando os limites superiores e inferiores para cada subconjunto e eliminando certos subconjuntos de acordo com regras preestabelecidas.

Apesar do algoritmo de Branch-and-Bound ser um método de PLI exato, que garante encontrar a melhor solução, ele requer um número de interações exponencialmente crescente, igual a 2^n (n número de restrições), em função do número de variáveis. Assim, sua aplicação em problemas com grande número de variáveis torna-se inviável.

Esta inviabilidade levou biólogos e ecólogos da conservação a usarem métodos heurísticos para a seleção de áreas prioritárias, os quais utilizam algoritmos que aplicam regras explícitas para identificar conjuntos de áreas (MARGULES & PRESSEY, 2000). O uso dessas ferramentas (e.g. algoritmos *greedy* e *simulated annealing*), baseadas no conceito de complementaridade (PRESSEY et al., 1993), está presente em vários trabalhos sobre seleção de áreas prioritárias (CABEZA & MOILANEN, 2001; WILLIAMS et al., 2004). Esses métodos podem ser aplicados a conjuntos de dados sobre espécies ou a qualquer outro nível de organização escolhido, como tipo de uso da terra e de disponibilidade de *habitat*.

Uma ilustração do uso da PLI para identificação de áreas prioritárias foi proposta por Scaramuzza et al. (2008), cuja idéia básica consistiu em adotar métodos quantitativos de modelagem multi-objetivo para gerar um sistema dinâmico de informações, capaz de criar diferentes cenários espaço-temporais de uso de terras, integrando dados de diferentes naturezas (biológicas, ambientais, sócio-econômicas), facilitando, desta forma, a assimilação da agenda de conservação da biodiversidade e de seus serviços ambientais por diferentes setores da sociedade (PIERCE et al., 2005).

O modelo de PLI usado para a identificação das 40 áreas prioritárias em Goiás possui a seguinte formulação matemática:

$$F_{objetivo} = \sum_{UP} C + PCB \sum_{UP} CB + \sum_{OC} (POC * PEN) + PLC$$
s. a.
$$\sum_{i=1}^{m} a_{ij} x_i \ge 1 \quad \text{para} \quad j = 1, \dots, n,$$

$$(1.3)$$

onde:

m = número de unidades de conservação (UP); $x_i \in \{0,1\}$

n = número de objetos de conservação (OC);

A – matriz $(m \times n)$, cujos elementos são definidos por $a_{ij} \in \{0,1\}$

onde 1 representa a ocorrência do OC_i na UP_i e 0 a sua ausência;

C = custo de cada UP definida pela seguinte expressão:

$$C = \log[(5*U) + (4*A) + (3*E) + (2*P) - (3*UPI) - (3*RE) - (1*UUS) - (1*TI)]$$

onde: E = área de estradas; U = áreas urbanas; A = áreas agrícolas;

P = áreas de pastagem; RE = áreas de remanescentes;

TI = áreas de Terras Indígenas;

UPI = áreas de Unidades de Conservação de Proteção Integral;

USS = áreas de Unidades de Conservação de Uso Sustentável;

PCB = peso atribuído ao comprimento de borda;

CB = comprimento de borda da*i*-ésima UP;

POC = peso atribuído ao *j*-ésimo objeto de conservação;

PEN = penalidade pela não representação do *j*-ésimo objeto de conservação;

PLC = penalidade por exceder um custo mínimo pretendido (não foi utilizada esta parcela, pois ela está associada ao uso do preço da terra como variável de custo).

A identificação das 40 áreas prioritárias foi obtida por meio de um algoritmo de minimização aproximativo, o método têmpera simulada, que tem como base o algoritmo simulated annealing (KIRKPATRICK et al., 1983). Foram consideradas as soluções do PLI (1.3) encontradas pelo programa Marxan em 2.500 execuções deste algoritmo (SCARAMUZZA et al., 2008). A Figura 4 da introdução deste trabalho mostra a melhor solução espacial entre todas estas execuções.

A maioria dos modelos que tratam de problemas reais apresenta algum grau de nãolinearidade. Entretanto, devido ao grande nível de dificuldades para entendimento e/ou de cálculos, na maioria das vezes a não-linearidade é desprezada (EISWERTH & HANEY, 2001). Além disso, a não-linearidade exclui o uso de métodos básicos de programação linear, que são tipicamente usados para resolver problemas de programação linear inteira. Isso justifica o fato de, geralmente, os problemas de representação serem formulados como modelos de programação linear inteira.

Segundo Cabeza (2003), para adotar critérios mais precisos de planos de conservação, é necessário considerar a viabilidade de proteger populações, bem como padrões espaciais, tais como fragmentação do *habitat*, conectividade e distribuição geográfica de todas as espécies envolvidas, o que implica na necessidade de considerar os princípios da dinâmica e de outros processos não-lineares na estrutura do sistema e da função que modela os atributos ecológicos mais realísticos do ecossistema (EISWERH & HANEY, 2001).

Neste contexto, vê-se a necessidade de estudar alguns conceitos referentes à Programação Não-Linear e também de outros métodos de modelagem matemática, como a Teoria dos Grafos, para lidar com informações geo-espaciais.

Problemas de Programação Não-Linear são problemas de otimização em que a funçãoobjetivo e/ou pelo menos uma das restrições envolvidas, não são funções lineares das variáveis de decisão. Um problema de Programação Não-Linear (PNL) pode ser genericamente representado da seguinte forma:

O tim izza=
$$rf(x_1, x_2, ..., x_n)$$

$$g_1(x_1, x_2, ..., x_n) = \begin{cases} b_1 \\ b_2 \\ \vdots \\ g_m(x_1, x_2, ..., x_n) \end{cases} \ge \begin{cases} b_1 \\ b_2 \\ \vdots \\ b_m \end{cases}$$
(1.4)

onde, $f \in g_i$ são funções de n variáveis e b_i é a limitação da i-ésima restrição, i=1,2...,m.

Para encontrar a solução ótima de problemas de PNL (1.4), existem métodos exatos para problemas de complexidade não excessiva. Contudo, os métodos heurísticos podem ser uma opção devido à complexidade dos problemas envolvidos, cuja solução exata é analiticamente inviável (WILLIAMS, 2004).

Existem vários algoritmos heurísticos desenvolvidos para solucionar os problemas de programação não-linear. Todavia, nenhum é considerado ideal, devido às suas limitações. A principal delas ocorre quando a não-convexidade das restrições ou função-objetivo implica em soluções múltiplas, ou seja, quando a "área" de soluções possíveis apresenta vários pontos de máximo ou de mínimo locais, não garantindo soluções ótimas globais.

A solução ótima, no caso quadrático, não é difícil de ser encontrada, pois é única e o conjunto de restrições é formado apenas por funções lineares. Já não se pode dizer a mesma coisa quando se trata de um problema de Programação Quadrática Inteira, pois o grau de dificuldade aumenta muito (EISWERTH & HANEY, 2001), devido, principalmente, à necessidade do uso de algoritmos mais complexos.

Um exemplo de programação não-linear inteira quadrática, o problema de seleção de áreas prioritárias para conservação, cuja função-objetivo consiste, ao mesmo tempo, em obter

um conjunto mínimo de áreas a preservar e simultaneamente reduzir a soma das distâncias entre as áreas escolhidas, as quais devem ter qualidade total maximizada. Em linguagem matemática:

$$\begin{cases}
\text{minimizar} \quad \mathbf{F}(\mathbf{x}) = \frac{1}{2} x^T D x + \alpha Q^T x \\
\text{sujeito a} \qquad Px \ge T \\
x_j \in \{0, 1\}, \qquad j = 1, 2, ..., m
\end{cases} \tag{1.5}$$

onde: x é o vetor de m componentes x_j ($x_j = 1$ significa que decidimos preservar a área j e $x_j = 0$ significa que optamos pela não-conservação da área j); $D = (d_{kl})$ é a matriz $m \times m$ das distâncias entre as áreas, $Q = 1 - q_j$ é o vetor de qualidades, $P = (p_{ij})$ é a matriz $n \times m$ das observações, $T = (t_j)$ é o vetor das exigências mínimas enquanto número de áreas para cada espécie e α é um parâmetro de peso para o fator de qualidade. Assim, conforme o valor do parâmetro α escolhido, toda uma gama de soluções é obtida, atribuindo maior ou menor importância à proximidade e adjacência das áreas escolhidas em relação ao valor da qualidade do terreno.

A forma de calcular a distância entre duas áreas, ou seja, o número d_{kl} , pode variar de um caso para outro. Considerando a distância como sendo a distância medida em graus de latitude e longitude entre os centros geométricos das unidades amostrais menos um, foi desenvolvido um algoritmo exato, no qual a função-objetivo, além de minimizar o número de áreas a serem preservadas, determina uma solução em que as áreas sejam mais aglomeradas e de melhor qualidade.

O algoritmo consiste de alguns passos. Inicialmente, é tomado o ponto de partida $x^0 = (1, 1, ..., 1)$, calculado o gradiente $\nabla F(x^0)$ e feito uma busca ao longo da reta

parametrizada $x^0 - \beta \nabla F(x^0)$ a procura do maior valor de ε para o qual as restrições $Px \ge T$, $0 \le x_i \le 1$ não são violadas. Isso leva a um novo ponto, designado x^I , na qual uma ou mais das n restrições $P_jx \ge T_j$ é satisfeita, com $P_jx = T_j$, ou uma ou mais das restrições $0 \le x_i \le 1$ é satisfeita, com $x_j = 0$ ou $x_j = 1$. Na próxima iteração, o cumprimento da restrição satisfeita é mantido mediante projeção do gradiente no ou nos hiperplanos em questão $(P_jx = T_j, x_j = 0)$ ou $x_j = 1$ e, novamente, é procurado ao longo da reta $x^k - \beta \Pr(\nabla F(x^k))$ o maior valor possível de β até nova restrição $P_jx \ge T_j$, $0 \le x_i \le 1$ ser violada. Repete-se este processo, gerando uma seqüência de pontos $x^0, x^1, x^2, \dots, x^k, \dots$, até ocorrer convergência do algoritmo num ponto x^k , onde cada componente será ou igual a 0 ou a 1. Esta é a solução do problema de minimização de F(x) sujeita às restrições consideradas (1.5). O número de iterações deste algoritmo é menor ou igual a n + m.

Para melhor entendimento do algoritmo, apresenta-se, abaixo, um exemplo ilustrativo e, em seguida, a utilização deste algoritmo para uma proposta de conservação no bioma Cerrado.

Dado as matrizes P, T, Q, D, o vetor X^0 e o valor do parâmetro α , tais como:

$$P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \quad T = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ Q = \begin{bmatrix} 0.3 \\ 0.5 \\ 0.7 \end{bmatrix}, \ D = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 0.8 \\ 0.8 & 2 & 0 \end{bmatrix}, \quad X^{0}(1, 1, 1), \quad \alpha = 1$$

Logo, temos a seguinte problema de minimização:

minimizar
$$F = \frac{1}{2} \begin{bmatrix} x_1, x_2, x_3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 0.8 \\ 0.8 & 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0.3 & 0.5 & 0.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

s.a
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \ge \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\Rightarrow \text{minimizar} \quad F = x_1 x_2 + 2x_1 x_3 + 0.8x_2 x_3 + 0.3x_1 + 0.5x_2 + 0.7x_3$$

$$s.a \begin{cases} x_1 + x_2 \ge 1 \\ x_2 + x_3 \ge 1 \end{cases}$$

$$\Rightarrow \nabla F = (x_2 + 2x_3 + 0.3, x_1 + 0.8x_3 + 0.5, 2x_1 + 0.8x_2 + 0.7)$$

Para encontrar a solução do problema, o algoritmo apresenta as seguintes interações:

$$-\nabla F_{Y^0} = (-3.3, -2.3, -3.5)$$

$$\Rightarrow$$
 Reta Parametrizada : $X^0 - \beta \nabla F_{v^0} = (1, 1, 1) - \beta(3.3, 2.3, 3.5)$

Como
$$x_1 + x_2 \ge 1$$
 e $x_2 + x_3 \ge 1 \Rightarrow \beta = 0.17241$ e o valor de $X^1 = (0.43103, 0.60346, 0.39657)$

2ª Iteração:

$$-\nabla F_{X^{1}} = (-1.6966, -1.24829, -2.04483)$$

$$-\nabla F_{X^{1}}|_{p} = -\nabla F_{X^{1}} + \alpha(0, 1, 1) \quad \Rightarrow -\nabla F_{X^{1}}|_{p} = (-1.6966, 0.39827, -0.39827)$$

Reta Parametrizada:

$$X^{1} - \beta \nabla F_{X^{1}}|_{P} = (0.43103, 0.60343, 0.39657) - \beta(1.6966, -0.39827, 0.39827)$$

Como $x_{1} + x_{2} \ge 1 \Rightarrow \beta = 0.02656$ e o valor de $X^{2} = (0.38597, 0.61404, 0.38597)$

3ª Iteração:

$$\begin{split} &-\nabla F_{\chi^2} = (-1.38598, -1.19475, -1.96317) \quad \Rightarrow -\nabla F_{\chi^2}\Big|_P = -\nabla F_{\chi^2} + \alpha(1, 1, 0) + \beta(0, 1, 1) \\ &\Rightarrow -\nabla F_{\chi^2}\Big|_P = -(-1.38598, -1.19475, -1.96317) + \alpha(1, 1, 0) + \beta(0, 1, 1) \\ &\Rightarrow -\nabla F_{\chi^2}\Big|_P = (-0.71814, 0.71814, -0.71814) \end{split}$$

Reta Parametrizada:

$$X^{2} - \beta \nabla F_{X^{2}}|_{p} = (0.38597, 0.61404, 0.38597) - \beta(0.71814, -0.71814, 0.71814)$$

Como $x_{1} \ge 0 \implies X^{3} = (0, 1, 0).$

Portanto, a solução deste problema é o vetor $X^3 = (0, 1, 0)$.

Veja a representação geométrica deste exemplo na Figura 5.

A seta azul que sai do ponto (1, 1, 1) representa a direção da reta parametrizada da 1^a iteração, que intercepta o plano $x_2 + x_3 = 1$ no ponto X^1 .

A seta preta representa a direção da reta parametrizada da 2^a iteração, que intercepta o plano $x_1 + x_2 = 1$ no ponto X^2 .

A seta vermelha representa a direção da reta parametrizada da 3^a iteração, que foi gerada pela interseção do plano $x_2 + x_3 = 1$ com o plano $x_1 + x_2 = 1$, e vai para o ponto X^3 , o qual é a solução ótima do problema.

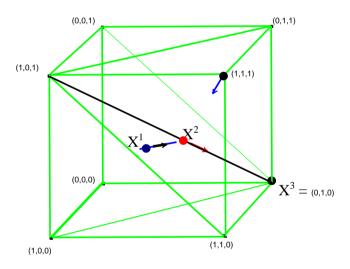


Figura 5 – Representação geométrica das iterações do algoritmo proposto e aplicado ao exemplo acima.

Agora, considere a área de estudo sendo o Bioma Cerrado, definido em 181 células de 1° de latitude por 1° de longitude (DINIZ-FILHO et al., 2004a,b), logo m=181 (Figura 6). Também considere que a função de ocorrência $p_{ik} \in \{0,1\}$, e que a distância entre os centros das células i e j, é dada por $d_{kl} = \|z_k - z_l\| - 1$, onde z_k e z_l são os centros das células k e l respectivamente. Assim, neste caso, a distância entre as células 1 e 10 é $d_{1,10} = \sqrt{17} - 1$, a

distância entre as células 59 e 76 é $d_{59,76} = \sqrt{2} - 1$ e a distância entre as células 101 e 102 é $d_{101,102} = 0$. Observe que, segundo a nossa definição, a distância entre células vizinhas pode ser zero, se elas forem adjacentes e $\sqrt{2} - 1$ se tivessem apenas um ponto em comum. Observe que todas as células têm áreas quase idênticas, e que neste caso a minimização do número de células corresponde à minimização da área a ser protegida.

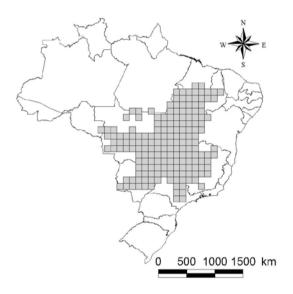


Figura 6- Mapa do Brasil, destacando a região do bioma Cerrado, dividida em 181 células de 1° latitude por 1° de longitude.

Neste exemplo, o vetor Q é o parâmetro de ocupação humana, que foi determinado por 23 variáveis sócio-econômicas que indicam os conflitos entre os interesses sócio-econômicos e de conservação da biodiversidade. Estas variáveis socioeconômicas foram obtidas através de um banco de dados, consistindo de 1.056 sedes municipais dentro dos limites do Cerrado brasileiro, compilados pelo IBGE². Este banco de dados gerou uma matriz de dados de 23 variáveis sócio-econômicas para as 181 células, que foi utilizada para determinar o parâmetro de ocupação humana (q_i) (RANGEL et al., 2006).

^{2.} Censo agropecuário de 1995-1996 e censo demográfico de 2000. Disponível em: www.ibge.gov.br.

Assim, para maximizar a conservação de células com alto índice q_i define-se o vetor $Q = (1 - q_i)$ e formula-se a função F(x) a ser minimizada como:

$$F(x) = \frac{1}{2}x^T D x + \alpha Q^T x. \tag{1.6}$$

Na avaliação deste algoritmo, foram executados testes para a conservação de 131 espécies de anuros. Encontraram-se cinco soluções distintas, com no máximo 172 iterações e sete pesos diferentes ao fator de qualidade (α). Estas soluções são apresentadas na Tabela 1 juntamente com a solução proposta por Diniz-Filho et al. (2004a,b) usando o *Simulated Annealing Algorithm*.

Tabela 1. Resultado do algoritmo para sete valores de α e a solução via *Simulated Annealing Algorithm* (SAA).

	$\frac{1}{2}x^TDx$	$Q^T x$	Número de Iterações
$\alpha = 1$	893.3047	6.639	170
$\alpha = 3$	893.3047	6.639	172
$\alpha = 10$	893.3047	6.639	172
$\alpha = 30$	903.0103	6.272	170
$\alpha = 100$	916.0767	6.136	172
$\alpha = 300$	936.9568	5.971	169
$\alpha = 1000$	961.4318	5.874	169
SAA	950.2009	6.392	

Verifica-se que a solução obtida por este modelo não-linear (α = 1.000) com a obtida pelo modelo linear de Diniz-Filho et al. (2006), a qual usa o algoritmo *Simulated Annealing*, ambas apresentam dezessete células, com pequenas diferenças que estão circuladas em vermelho e verde nas Figuras 7 e 8. Contudo, nestas circuladas a solução não-linear (α = 1.000) encontrada neste estudo apresentou melhor qualidade de preservação.

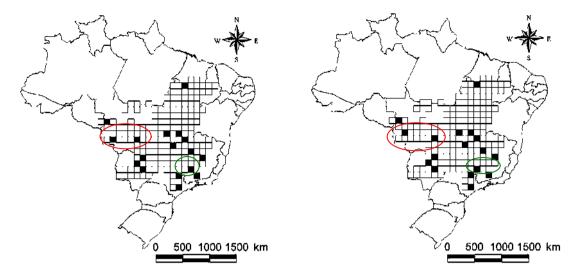


Figura 7. Solução do modelo não-linear proposto com $\alpha = 1000$.

Figura 8. Solução do modelo linear proposto por Diniz-Filho et al. (2006) via *Simulated Annealing Algorithm*.

Com este exemplo, verifica-se que o algoritmo desenvolvido, para o problema de conservação não-linear de tamanho considerável, converge em um espaço de tempo bastante curto. Observe que o valor do parâmetimostra uma infincia considerável na determinação da solução (Tabela 1). Assim, para valores grandes de α, as células são menos aglomeradas, mas de melhor qualidade. Neste caso, como se trata de células grandes, a aglutinação tem efeito reduzido na obtenção de uma solução. Ou seja, o método baseado na linearização rende solução quase idêntica à obtida por minimização da função F(x) (1.6) exposta acima. Na prática, neste modelo não-linear, os dados mais refinados (i.e. em células menores) e detalhados (i.e. mais que a simples presença ou não de cada espécie) visam aumentar o grau de aglutinação de áreas para conservação.

Geralmente, a solução de um problema de seleção de áreas para conservação da biodiversidade resulta tipicamente na identificação de redes de locais altamente espalhados (por exemplo, DINIZ-FILHO et al, 2006; SCARAMUZZA et al., 2008). Embora, o problema fosse reconhecido há muito tempo, foi dada pouca atenção às áreas não selecionadas, que explicitamente fazem parte dos caminhos de conectividade.

De fato, inúmeros modelos de conservação ignoram a conectividade, principalmente no contexto de cobertura de espécies (CERDEIRA et al., 2005). Isto ocorre porque o processo de identificação de um conjunto de áreas prioritárias fica muito mais complexo e, as soluções para a estruturação espacial das redes de áreas protegidas não são óbvias (EISWERTH & HANEY, 2001), devido ao aumento do uso de outras ferramentas matemáticas, como a programação não-linear e a Teoria de Grafos.

A Teoria de Grafos é usada para traduzir dados geográficos como posição relativa de pontos e ordenamento espacial da informação (AGNARSSON & GREENLAW, 2007; BANG-JENSEN & GUTIN, 2001). Um grafo consiste de um conjunto de *n* nós ou vértices vinculados entre si por um total de *m* arestas.

Os nós normalmente representam locais distintos e as arestas a existência de conexões entre os locais ou adjacência dos mesmos. Cada nó e cada aresta podem ser associados a um conjunto de dados numéricos ou nominais e todas as informações geográficas contidas numa região se representam, assim, por meio de um grafo. Veja na Figura 9, um exemplo de grafo, onde os nós representam os centróides da vegetação remanescente dentro das bacias e as arestas as linhas de drenagem.

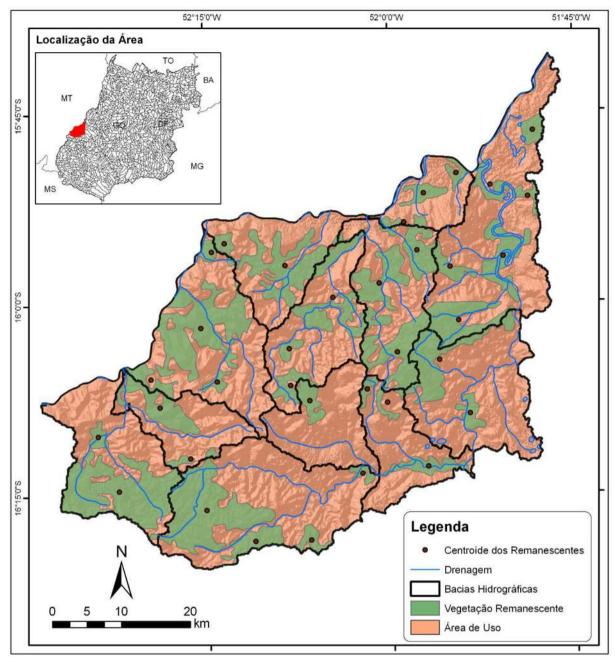


Figura 9 – Aplicação de grafo em um conjunto de bacias hidrográficas.

Um grafo é dito direcional, ou digrafo, quando é necessário ser estabelecido um sentido (orientação) para as arestas. O sentido da aresta é indicado através de uma seta. Nesta situação, a aresta passa a ser denominada de arco.

Um motivo simples de usar um digrafo, como neste trabalho, é o fato das arestas representarem ligações hídricas entre regiões, com a direção correspondendo à direção do fluxo de água, as quais são importantes para a formação de corredores ecológicos (Figura 10).

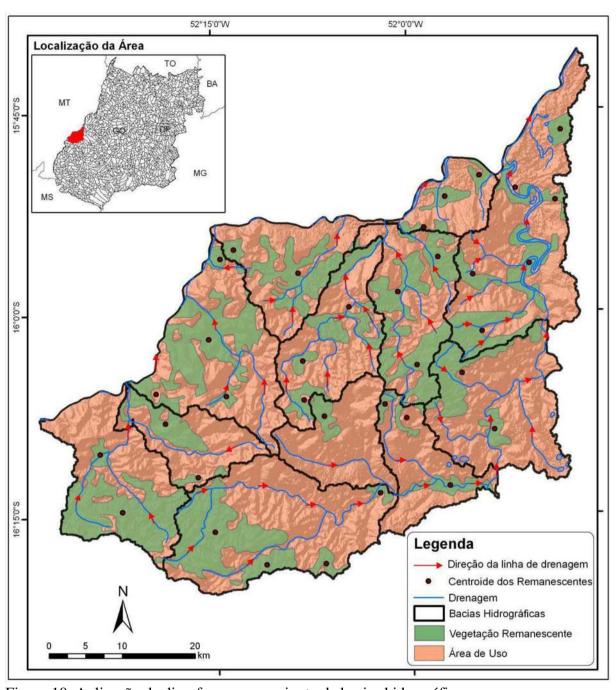


Figura 10. Aplicação de digrafo em um conjunto de bacias hidrográficas.

O problema de seleção de áreas prioritárias para conservação que trata este trabalho é bastante complexo por dois motivos. Primeiro, o número de variáveis é muito grande, tanto em número de espécies para proteção, quanto em número de áreas candidatas à conservação. Segundo, os dados não são de precisão exata, pois resultam de estimativas de inúmeros valores e muitas variáveis são temporais e se alteram ao longo do ano e de um ano para outro.

Por isso, o problema de conservação gera uma família de soluções com um espectro de prováveis valores. Neste caso, uma análise de sensibilidade, na qual os parâmetros envolvidos no modelo são avaliados segundo diferentes valores, é imprescindível para se entender o conjunto e a importância das soluções geradas, de tal forma que uma solução ótima, conforme um determinado contexto, possa ser definida.

CAPÍTULO 2

Desenho Experimental: Dados e Metodologia

Este trabalho tem como área de estudo o Estado de Goiás, marcado por esta intensa ocupação antrópica. Mapeamento recente, no âmbito do PDIAP indica, de forma bastante precisa, que 45% e 18% da cobertura vegetal nativa já foram convertidas em pastagens cultivadas e áreas agrícolas, respectivamente (Figura 11) (SANO et al., 2008b)

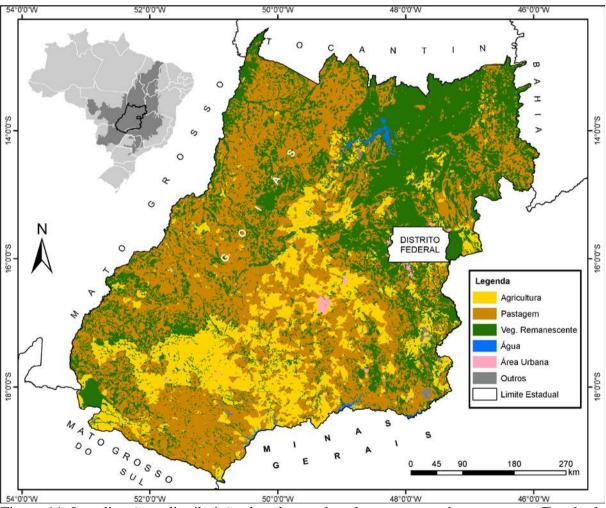


Figura 11. Localização e distribuição das classes de cobertura e uso da terra para o Estado de Goiás

Fonte: PDIAP (2004).

No âmbito das bacias hidrográficas, o cenário é igualmente preocupante. Em fato, aproximadamente 50% das bacias hidrográficas com área superior a 9.500 hectares apresentam menos que 30% de cobertura vegetal remanescente, i.e. inferior ao estimado por por Bonnet et al. (2006) para atender aos requerimentos do Código Florestal (Figura 12). Portanto, um indicador ambiental biofísico importante que deve ser considerado neste estudo, é a porcentagem de vegetação remanescente dentro de cada bacia.

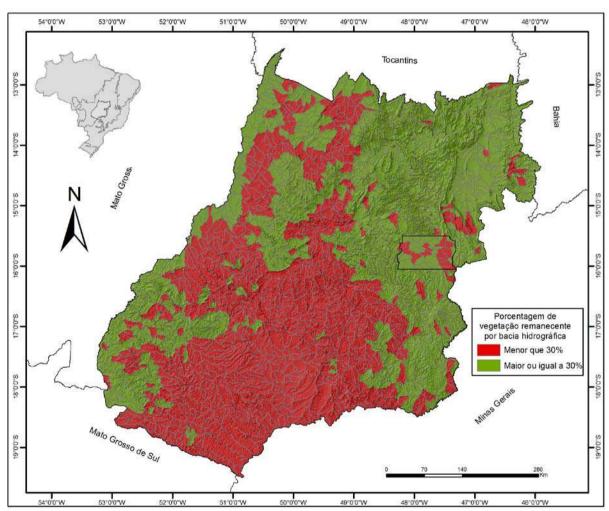


Figura 12 – Mapa de distribuição de vegetação remanescente do Estado de Goiás para as bacias hidrográficas segundo o Código Florestal Brasileiro.

O elevado antropismo no Estado é favorecido, entre outros, pelo preço da terra, pela proximidade de mercados consumidores e pelos incentivos governamentais (MIZIARA &

FERREIRA, 2008; PIRES, 2000), além da topografia relativamente plana, ideal para grandes monoculturas (FERREIRA, M. et al., 2007).

Por outro lado, a expectativa é de que os desmatamentos no Cerrado goiano, que continuam ocorrendo a taxas que variam de 0,21% a 0,86% ao ano (SILVA et al., 2008), sejam ainda mais intensificados, principalmente em função da crescente demanda por biocombustíveis (FERREIRA, L. et al., 2008; ROCHA et al., 2008), alcançando regiões do Estado ainda relativamente preservadas, como, por exemplo, o nordeste goiano (Figura 13).

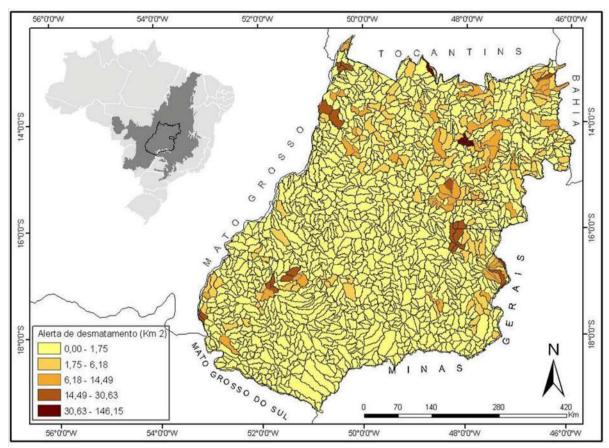


Figura 13: Distribuição dos desmatamentos no Estado de Goiás ocorridos no período de 2003 a 2007, conforme as bacias hidrográficas com área mínima 9500 ha.

Em fato, dos quase 114 mil hectares de alertas de desmatamentos detectados no Estado de Goiás para o período de 2003 a 2004, 88% ocorreram em áreas de preservação permanente (FERREIRA, M. et al., 2008a). Por isso, a preservação deste bioma demanda ações eficientes e urgentes para assegurar, em longo prazo, a conservação da biodiversidade e de

seus serviços ambientais, dentre eles, a proteção e a recuperação dos mananciais de água (BONNET et al., 2008).

O modelo de seleção de áreas prioritárias para conservação no Estado de Goiás, proposto nesta tese, tem como unidade de aplicação a bacia hidrográfica. O motivo desta escolha se dá tanto pelo aparato legal (Lei 9433, 1997), quanto pelo fato da bacia hidrográfica agregar sistemicamente um conjunto ambiental de elementos físicos, bióticos e socioeconômicos inter-relacionados, bem como ser uma unidade territorial hierarquizável pelo número de nascentes e cursos d'água (SANTOS, 2004).

Especificamente para este trabalho, utiliza-se 1511 bacias hidrográficas com área mínima de 9.500 hectares (Figura 14).

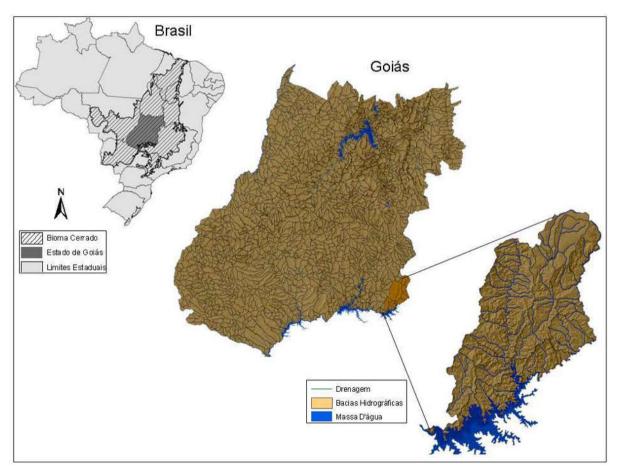


Figura 14: Localização do bioma Cerrado e estado de Goiás, o qual foi subdividido em 1511 bacias hidrográficas com área mínima de 9.500 ha.

A área mínima da bacia de 9.500 ha foi escolhida por três motivos. O primeiro, por ser uma área compatível com a área de vida de algumas espécies de mamíferos ameaçados de extinção no Cerrado brasileiro (RODRIGUES, 2002). O segundo, por haver uma grande concentração de bacias entre 9.500 e 10.000 ha. O terceiro, por ser uma área que oferece facilidades e viabilidades de gerenciamento sob o aspecto governamental (BERTRAND, 2004; BONNET et al., 2008). Ressalta-se que uma das dificuldades encontradas em trabalhar com este tipo de unidade é que esta não é constante, i.e. cada bacia possui uma forma e um tamanho diferente.

A subdivisão do Estado de Goiás (e Distrito Federal) em bacias hidrográficas (Figura 14) foi obtida a partir de dados SRTM (*Shuttle Radar Topography Mission*), por meio do *download* de 72 imagens geradas em 2000, com *tile* de 1 grau geográfico e resolução espacial de 91,63 m. Através destas imagens foram gerados os limites das bacias hidrográficas e indicados seus cursos d'água componentes e delimitadas os ambientes ripários (*buffers* de 100 m em torno das linhas de drenagem) (BONNET, 2006; MEDEIROS, L. et al., 2008). Neste caso, usando o *software* ArcGis 9.3, as bacias hidrográficas geradas com área menor que 9.500 ha foram acopladas a outras bacias que fazem parte de uma mesma bacia de nível superior.

O conjunto de dados primários (cartográficos, temáticos, censitários, orbitais e biológicos), os procedimentos e os dados derivados (produtos) envolvidos, neste trabalho, são detalhados através do diagrama da Figura 15.

Os dados cartográficos e temáticos incluíram limites geográficos, o mapa rodoviário e o mapa de cobertura e uso da terra para o Estado de Goiás (SANO et al., 2008b), obtido à escala de 1:250.000, a partir de interpretação, de imagens de Landsat ETM⁺ dos anos de 2001 e 2002 e de levantamentos em campo.

Quanto à variável ambiental "ambientes ripários" (*buffer* de 100 m), esta se constitui em importantes corredores ecológicos, os quais favorecem a fluidez dos fluxos genéticos entre os seres vivos dos *habitats* fragmentados, bem como fonte de alimentos para a fauna aquática e avifauna, propiciando, igualmente, a conservação da biodiversidade.

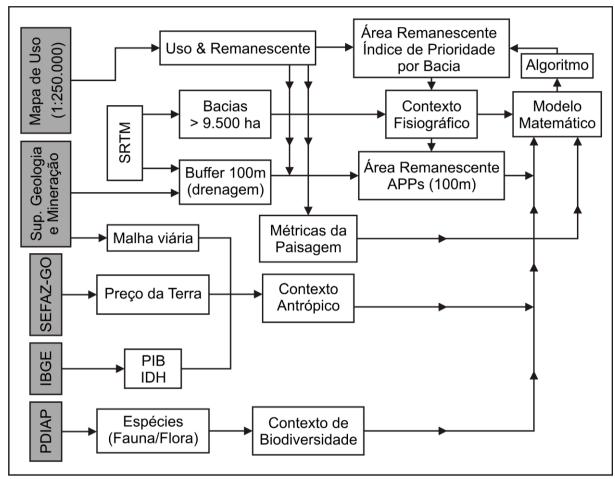


Figura 15. Conjunto de dados primários e procedimentos metodológicos aplicados à área de estudo para identificação de áreas prioritárias.

No Estado de Goiás, aproximadamente 24.000 km² de ambientes ripários encontram-se desprotegidos, com implicação direta na qualidade dos recursos hídricos (BONNET et al., 2007). Isto ocorre, principalmente, nas bacias onde há o maior número e/ou menor tamanho de fragmentos remanescentes (e.g. Micro-região Sudoeste)³.

^{3.} Tendo em vista a escala do mapa de cobertura e uso da terra usado neste trabalho (i.e. 1:250.000), foram considerados nas análises do modelo matemático, apenas os fragmentos remanescentes com área mínima de 1.000 ha dentro da bacia.

Em relação ao preço da terra, um importante indicador de pressão antrópica (MIZIARA & FERREIRA, 2008; PIRES, 2000), utilizou-se um conjunto de dados dividido em 5 categorias de preços: *Cerrado Agrícola* (198 amostras), *Terra Agrícola de Alta Produtividade de Grãos* – (161 amostras), *Terra Agrícola de Baixa Produtividade de Grãos* (158 amostras), *Pastagem Formada de Alto Suporte* (219 amostras) e *Pastagem Formada de Baixo Suporte* (210 amostras). Estas informações, correspondentes ao ano de 2006, foram cedidas pela Secretaria da Fazenda do Estado de Goiás (SEFAZ)⁴.

O Cerrado Agrícola refere-se às áreas ainda cobertas por remanescentes de Cerrado (segundo a percepção do mercado), cujo valor se dá em função do uso que a mesma propiciará (e.g. área de pastagem). A categoria Terra Agrícola (alta ou baixa produtividade) se refere às regiões com maior potencial agrícola, o qual varia em função da cultura agrícola e de fatores como fertilidade do solo, irrigação e topografia. A categoria Pastagem Formada (alto ou baixo suporte) são áreas de pastagens cultivadas, com uma capacidade de suporte que varia de acordo com a taxa de lotação (número de animais por unidade de área). A distribuição destes preços, entre os municípios goianos, para todas as categorias analisadas, segue um padrão espacial consistente, baseado na proximidade de mercados consumidores/produtores, na topografia relativamente plana e na infra-estrutura rodoviária (FERREIRA, M. et al., 2008b).

Assim, neste estudo, o indicador de pressão antrópica "preço da terra" é definido como sendo a média proporcional do valor do hectare do preço da terra dos municípios envolvidos, no âmbito de cada bacia, conforme a média proporcional do valor do hectare das cinco categorias de preço da terra obtidas, a partir das amostras de cada município (p_l) (l=1,2,...,247, i.e. 246 municípios e o Distrito Federal), segundo a fórmula:

4. Disponível em: http://www.sefaz.go.gov.br

$$p_{l} = CA_{l} \times R_{l} + M\acute{e}dia(AA_{l}, AB_{l}, PA_{l}, PB_{l}) \times (1 - R_{l})$$

$$(2.1)$$

onde.

 CA_l = Cerrado Agrícola;

 R_l = Porcentagem de área Remanescente;

 AA_l = Terra Agrícola de Alta Produtividade de Grãos;

 AB_l = Terra Agrícola de Baixa Produtividade de Grãos;

 PA_l = Pastagem Formada de Alto Suporte;

 PB_l = Pastagem Formada de Baixo Suporte.

O valor do hectare das áreas remanescentes para os municípios que não tinham informações sobre nenhuma categoria de preço, foi obtido por uma média proporcional do valor do hectare das áreas remanescentes dos municípios envolvidos no domínio de cada microrregião.

Apesar do preço da terra ser obtido por meio de levantamentos mercadológicos *in loco*, é divulgado sem a respectiva referência geográfica (latitude e longitude). Neste caso, a opção foi referenciá-lo aos municípios (e respectivas bacias), o que ocasiona, em parte, uma perda de precisão quanto aos aspectos locacionais (e respectivos aspectos físicos da área). Entretanto, este conjunto de informações continua representativo e válido para o estudo em questão, principalmente, por seu levantamento homogêneo em relação ao Estado de Goiás. O padrão espacial da distribuição do valor da terra normalizado⁵ nas bacias hidrográficas, conforme a fórmula (2.1) é mostrada na Figura 16.

^{5.} Preço da terra normalizado é obtido pela fórmula: $p_N = \frac{p_l - p_m}{p_M - p_m}$, onde p_m é o valor mínimo de p_l e p_M é o valor máximo de p_l .

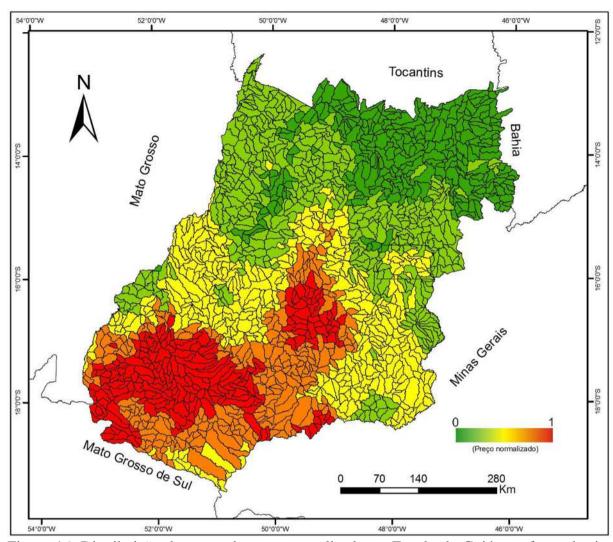


Figura 16. Distribuição do preço da terra normalizado no Estado de Goiás conforme bacias hidrográficas maiores que 9.500 ha.

As rodovias federais e estaduais constituem outro indicador ambiental de pressão antrópica, haja vista estarem diretamente relacionados ao grau de antropismo (Figura 17).

Observa-se que as bacias que possuem menores áreas de vegetação remanescentes e maiores fragmentações, em geral, possuem uma malha viária bem mais estruturada para o escoamento da produção agrícola, além de estarem mais próximas dos centros urbanos (BLEYER et al., 2008).

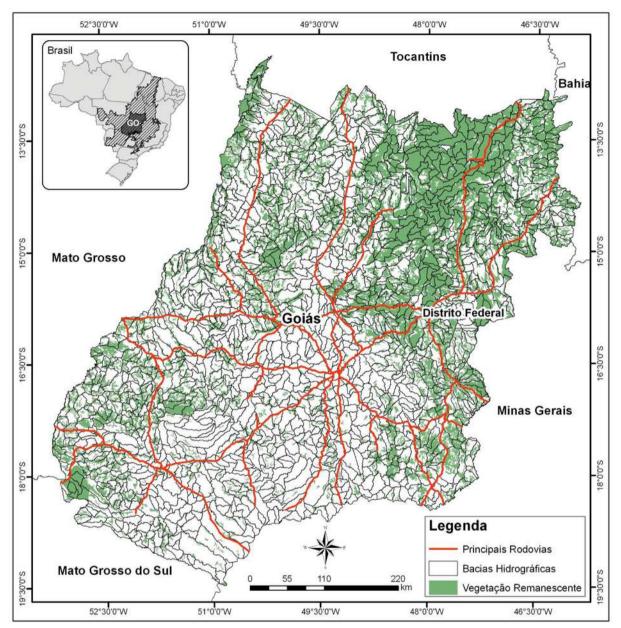


Figura 17. Distribuição espacial da vegetação remanescente e das principais rodovias federais e estaduais em bacias hidrográfica maiores que 9.500 ha.

Os indicadores ambientais de pressão antrópica, PIB⁶ e IDH⁷ dos municípios goianos são aqueles disponibilizados através do Atlas de Desenvolvimento Humano (IBGE, 2002), os

^{6.} Índice de Desenvolvimento Humano: É dado pela média aritmética simples de três sub-índices, longevidade (IDH longevidade), educação (IDH educação) e renda (IDH renda). Essas três dimensões têm a mesma importância no índice, que varia de zero a um; quanto mais próximo de 1, maior o IDH (PNUD, 2007; IPEA, 2007).

^{7.} Produto Interno Bruto: Considerado um dos principais indicadores da economia de um país, corresponde ao valor final total de todos os bens e serviços produzidos internamente numa economia ao longo de um determinado período de tempo. A fonte original dos dados (1999-2001) é o Antigo Sistema de Contas Regionais. O PIB Total é dado pela soma dos setores agropecuária, indústria e serviços (IPEA, 2007).

quais foram interceptados para as bacias hidrográficas. Nas bacias que apresentaram mais de um valor para o PIB e IDH, foi calculado um valor médio destes valores. Nas bacias que não apresentassem nenhum valor foram designadas um valor médio geral do PIB e do IDH. Neste estudo, o PIB e o IDH apresentam maiores valores nas bacias que possuem intensa produção agropecuária e os maiores centros urbanos, localizadas principalmente no Centro e Sul do Estado de Goiás, onde há uma maior deficiência de cobertura vegetal nativa, conforme se pode averiguar na Figura 17.

Observa-se que as bacias com maior proporção de remanescentes de Cerrado, onde predominam a pecuária extensiva e atividades extrativistas (i.e. mineração e produção de carvão vegetal), apresentam menores valores de PIB e IDH. Assim, de certa forma, o PIB e o IDH estão diretamente relacionados com as bacias que possuem elevada antropização (BLEYER et al., 2008) e maior valor do preço da terra, levando a concluir que em Goiás as variáveis PIB, IDH e preço da terra, em geral, são altamente correlacionadas.

Em relação à biodiversidade, os dados pontuais de espécies (fauna e flora) utilizados neste trabalho foram provenientes de um sub-projeto de compilação e organização de bases de dados sobre biodiversidade do PDIAP, conduzido pela Dra Anamaria Achtschin Ferreira, e de registros do banco de dados "Conservation International Species Database" (CISD) relativos ao Estado de Goiás em 2004 (Anexo A).

Estes dados foram espacializados e cruzados com as áreas nativas remanescentes e as unidades de planejamento (bacias hidrográficas) (Figura 8).

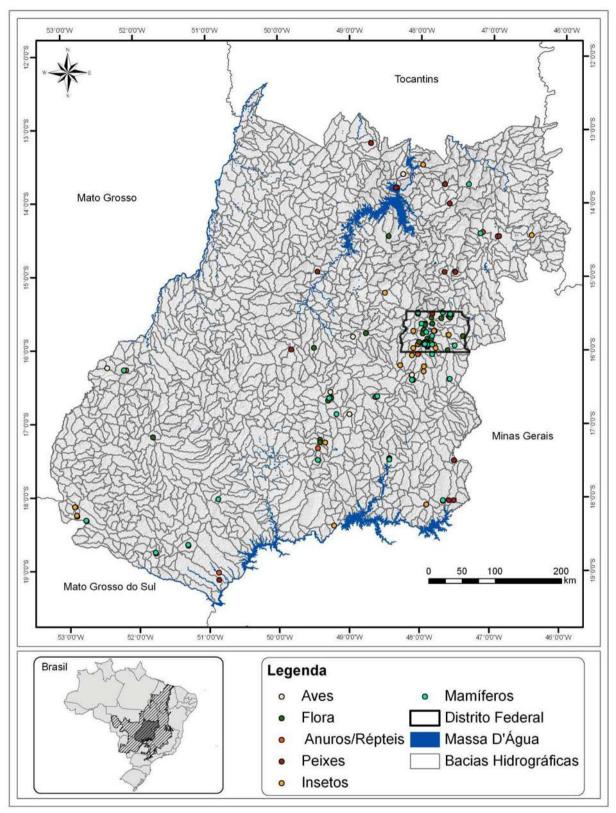


Figura 18. Mapa indicativo de biodiversidade no Estado de Goiás.

A partir deste cruzamento, foram gerados seis vetores, cada um representando uma categoria de espécies (Aves, Mamíferos, Anuros/Répteis, Peixes, Insetos e Flora). Assim,

para cada categoria, a sua presença na bacia indicaria que ela estaria numa área de vegetação remanescente. Por sua vez, a presença destas categorias na bacia atribui um peso maior de insubstituibilidade do que em bacias que consideram apenas dados ambientais, aumentando, assim, a probabilidade desta bacia ser necessária na rede de reservas.

Para fins de processamento, a área de estudo (Estado de Goiás) foi dividida, primeiramente, em três grandes regiões hídricas, conforme as Ottobacias de Nível Dois da Agência Nacional de Águas (ANA) (ANA, 2006) (Figura 19), as quais estão inseridas no conjunto de Ottobacias Nivel Um (Araguaia-Tocantins, Paraná e São Francisco). Por sua vez, estas foram divididas em mais duas, totalizando seis regiões de análise (Figura 20).

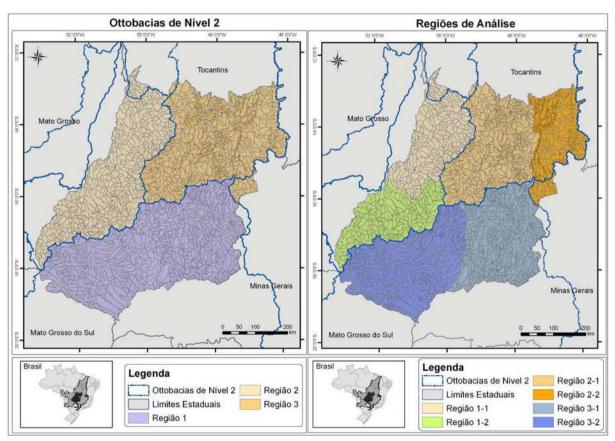


Figura 19. Três regiões hídricas do Estado de Goiás, conforme as Ottobacias de Nível Dois (ANA).

Figura 20. Mapa do Estado de Goiás dividido em seis regiões de análise.

Esta divisão foi motivada pela necessidade de se obter áreas prioritárias para conservação em várias localidades do Estado, em particular, para aquelas bastante degradadas, como por exemplo, a Região 3-2 (Figura 20).

Depois de encontrada a solução para cada uma das seis regiões, tanto ao nível de importância de remanescente, quanto ao nível de importância de bacia, obteve-se um mapa que representa a solução integrada para todo o Estado, priorizando igualmente todas as regiões de análise.

CAPÍTULO 3

Formulação do Problema e Algoritmo

Neste capítulo, formulou-se um modelo de programação não-linear (PNL), que seleciona um conjunto de bacias hidrográficas com índice de importância $B(l) \in [0, 1]$, o qual indica a importância de inclusão da bacia l com propósito de preservação, dentre as 1511 bacias hidrográficas maiores ou iguais a 9.500 ha situadas no Estado de Goiás.

A importância de inclusão de uma bacia l depende dos fragmentos remanescentes que nela estejam. Ou seja, a inclusão de uma bacia está associada à qualidade ou importância de inserção de seus fragmentos de vegetação remanescentes (ou simplesmente fragmentos remanescentes) na proposta de conservação. Desta forma, associa-se a cada fragmento de remanescente i um parâmetro de qualidade/importância $\alpha(i) \in [0, 1]$. O valor de $\alpha(i)$ varia de acordo com os seguintes indicadores/dados ambientais e dados de espécies:

- 1. áreas grandes de remanescentes próximas às nascentes dos rios;
- 2. maior número de remanescentes em ambientes ripários (*buffer* de 100m ao longo da linha de drenagem);
- 3. compacidade dos remanescentes (mínimo de perímetro externo/área);
- 4. preço da terra, valor do PIB e do IDH (associados ao fragmento remanescente dentro da bacia);
- 5. conectividade e adjacência das áreas dos remanescentes i;
- 6. áreas remanescentes sem interseção de rodovia;
- 7. afastamento do fragmento do ponto final da sub-região hídrica;
- 8. observação de espécies (presença ou ausência).

Consideramos como sendo sub-região hídrica o conjunto de bacias que tem em comum uma linha de drenagem principal. Na Figura 21 foram definidas quatro sub-regiões hídricas, onde os números de vermelho identificam as bacias e os de preto os fragmentos de vegetação remanescente.

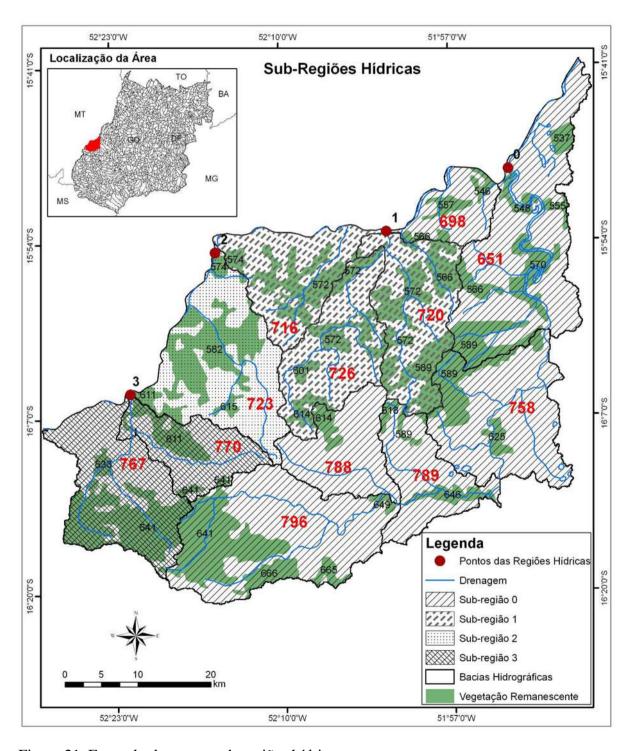


Figura 21. Exemplo de quatro sub-regiões hídricas.

A seleção de áreas prioritárias para conservação consiste, em princípio, do processo de escolher o nó de digrafo, que corresponde ao centróide de cada fragmento remanescente i dentro da bacia, e associar a ele um valor $\alpha(i) \in [0, 1]$, atribuindo-lhe um valor de importância relativa ao objetivo de conservação.

Cada nó do digrafo está associado a uma matriz que contém as seguintes informações a respeito do fragmento de remanescente associado:

nf = identificação do fragmento remanescente;

nb = identificação da bacia;

 a_i = área do fragmento remanescente i;

 b_i = área do *buffer* do fragmento remanescente i dentro da bacia;

 e_{ij} = vetor de presença ou ausência de espécie j dentro do fragmento remanescente i;

 P_i = preço da terra correspondente ao município que contém o fragmento i;

 Q_i = PIB correspondente ao município que contém o fragmento i;

 I_i = IDH correspondente ao município que contém o fragmento i;

 p_i/a_i = razão entre o perímetro e a área do fragmento remanescente i;

 r_i = índice de interseção (0, ½ ou 1) do fragmento remanescente *i* com a rodovia;

R = sub-região hídrica a qual pertence o fragmento remanescente;

 d_i = distância de saída da sub-região hídrica, isto é, o número de fragmentos remanescentes que estão rio abaixo do fragmento i até o ponto final da linha de drenagem. Esta variável está relacionada com a posição dos remanescentes dentro da sub-região que o contém;

 m_i = identificação do fragmento remanescente i mais próximo rio abaixo;

 M_i = identificação do fragmento remanescente i mais próximo rio acima;

 $\alpha(i)$ = variável de qualidade/importância de inclusão do fragmento remanescente i em proposta de conservação. Esta variável tem valor inicial de zero e varia ao longo do algoritmo.

A determinação de seu valor é a finalidade do algoritmo;

 $\beta(i)$ = variável que reflete a existência de fragmentos remanescentes adjacentes ao fragmento i na proposta de conservação. Esta variável reflete a importância da vizinhança na solução do problema, que favorece a conectividade entre os fragmentos remanescentes.

Deseja-se minimizar uma função não-linear de variáveis a_i , b_i , P_i , Q_i , I_i , p_i/a_i , r_i , d_i , e_i , $\alpha(i)$ e $\beta(i)$ e de parâmetros de peso c_1 , c_2 , c_3 , c_4 , c_5 , c_6 , c_7 , c_8 , c_9 , e c_{10} .

Estes parâmetros poderão ser alterados para atribuir importância maior ou menor aos diversos fatores envolvidos na função-objetivo.

Portanto, propõe-se o seguinte modelo de PNL:

$$Min \sum \left[-\left(\frac{c_{1}}{P_{i}} + \frac{c_{2}}{Q_{i}} + \frac{c_{3}}{I_{i}}\right) \cdot (1 - \alpha(i))a_{i} - c_{4}(1 - \alpha(i))b_{i} + c_{5} \cdot \left(\frac{p_{i}}{a_{i}}\right) - c_{6} \cdot \beta(i) + c_{7} \cdot r_{i} - c_{8} \cdot d_{i} + \frac{c_{9}b_{i}^{T}Db_{i}}{\left(g^{2}(i) - g(i)\right)} - c_{10} \cdot e_{i} \right]$$

$$(3.1)$$

s.a.
$$\sum \alpha(i) \cdot a_i \geq K$$

A função-objetivo do modelo (3.1) minimiza as variáveis: preço de terra, PIB, IDH, interseção com rodovia, razão do perímetro/área e a distância entre as áreas a serem preservadas; ao mesmo tempo, maximiza as variáveis: área de *buffer* e de remanescente e, a distância de saída da sub-região. A distância minimizada se refere aos fragmentos remanescentes da mesma sub-região. A função g(i) conta o número de fragmentos de vegetação remanescente em cada região que foi incluído na solução. A minimização de distância entre remanescentes ocorre somente quando há pelo menos dois remanescentes na

sub-região, i.e. quando g(i) > 1. O parâmetro K indica o valor absoluto de áreas remanescentes de um conjunto de regiões que se pretende preservar. D é a matriz de distância entre os centróides dos fragmentos remanescentes em um conjunto de regiões, tal que se os centróides forem de regiões distintas, a distância entre eles é igual a zero. Os parâmetros c_i são determinados pelo peso de diversos fatores (ex. presença de rodovia, de buffer, etc.), com sinal conforme interesse em minimizar ou maximizar.

A variação dos valores de c_i determina soluções distintas. A discussão sobre a natureza e a sensibilidade destas soluções depende dos valores dos c_i atribuídos ao problema. Os valores usados inicialmente no problema dão peso aproximadamente igualitário a cada fator da função-objetivo, os quais são obtidos por meio do estudo de cada parcela desta função. Por exemplo, na parcela que envolve as variáveis de ação antrópica (Preço da terra, PIB e IDH) foi obtido um valor inicial para cada parâmetro de forma que se exerça um peso sobre o valor médio de cada uma destas variáveis, tal que a soma do quociente de cada parâmetro com sua variável correspondente seja menor e próximo de um. Já para as outras variáveis, foi determinado o peso do parâmetro de forma que a soma do produto de cada um deles com sua variável correspondente exerça um peso aproximadamente igualitário ao das outras parcelas, tal que quanto maior o peso, maior é a probabilidade, por um lado, de inclusão das áreas de maior viabilidade ecológica, e por outro lado, de exclusão das áreas de maior ação antrópica.

Deseja-se um conjunto de nós, associado a um parâmetro, de digrafo que minimiza a função-objetivo. Note que se certo remanescente faz parte da solução, isto afeta a probabilidade de outro remanescente fazer parte também. Por este motivo o algoritmo não é a simples minimização de uma função (não-linear), mas da construção gradativa de uma solução final do problema (3.1).

Inicia-se o algoritmo com $\alpha(i) = 0$ e $\beta(i)=0$ para qualquer fragmento remanescente i. Enquanto o somatório Σ $\alpha(i)a_i$ for menor que K, o algoritmo é executado. O valor inicial deste somatório é zero, visto que nenhum fragmento remanescente foi incluído na solução.

A função-objetivo é avaliada em cada fragmento remanescente i e é escolhido um nó do digrafo em que o fragmento remanescente i minimiza a função-objetivo, o qual é o mais apto à inclusão numa proposta de solução. Neste momento, o fragmento remanescente i, isto é, o nó escolhido, tem valor de $\alpha(i) > 0$ e os demais tem $\alpha(i) = 0$.

Se $\alpha(i) = 0$, a inclusão põe $\alpha(i) = 0.25$. Se $\alpha(i) = 0.25$, a inclusão põe $\alpha(i) = 0.5$. Se $\alpha(i) = 0.5$, a inclusão põe $\alpha(i) = 0.75$. Se $\alpha(i) = 0.75$, a inclusão põe $\alpha(i) = 1$.

Estes valores de α foram atribuídos de forma que, a princípio, 0 corresponda à não inclusão do fragmento remanescente, 0,25 à inclusão de um fragmento remanescente para conservação reduzida, 0,5 à inclusão de um fragmento remanescente para conservação maior, 0,75 à inclusão de um fragmento remanescente para conservação ainda maior e 1 para a inclusão de um fragmento remanescente para conservação total.

A inclusão do fragmento remanescente i na solução faz com que $\beta(k)$ assuma valor maior que zero, ao longo do algoritmo, o que reflete a vantagem relativa de existência de fragmentos adjacentes em proposta de conservação. Ou seja, $\alpha(i)$ incrementado faz com que os valores de $\beta(k)$ em nós adjacentes sejam aumentados em cada iteração por um valor fixo pré-definido, no momento do aumento de $\alpha(i)$. Define-se este valor como sendo o mesmo do valor acrescido $\alpha(i)$, de 0,25.

Cada vez que um fragmento de mesma região é incluído na solução, g aumenta uma unidade para todo fragmento remanescente da sub-região x.

Em seguida, repete-se o processo de escolha do nó do digrafo e associa-se a ele um valor $\alpha(i) \in [0, 1]$, com intuito de satisfazer as condições iniciais para todo fragmento

remanescente i. Logo, temos um subconjunto de fragmentos remanescentes de valores $\alpha(i) > 0$.

Os valores dos fragmentos sobre cada bacia permitem o cálculo de um parâmetro para a bacia entre 0 e 1, que será calculado por meio da seguinte fórmula:

$$B(l) = \frac{\sum \alpha(i) \cdot a(i)}{\sum a(i)}$$
(3.2)

Os valores de B(l) dado por (3.2) correspondem à prioridade de preservação das bacias l em relação à paisagem como um todo. O valor específico de B(l) pode dizer algo quanto à forma de se efetivar a conservação naquela bacia.

Tome como exemplo ilustrativo do algoritmo, 12 bacias hidrográficas pertencentes à Região Noroeste do Estado de Goiás. Estas bacias são constituídas por 19 conjuntos conexos de vegetação remanescentes, que são divididos em 35 fragmentos de vegetação remanescente com área maior ou igual a 1.000 ha (Figura 22).

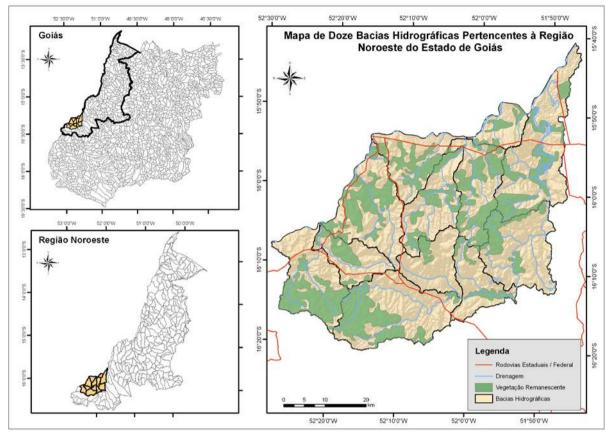


Figura 22. Mapa de 12 bacias pertencentes à Região Noroeste do Estado de Goiás.

Para efeito de simplificação, o banco de dados deste exemplo (Tabela 2), inclui identificação da bacia (nb), identificação do fragmento remanescente (nf), área do fragmento remanescente dentro da bacia (a_i) , área do buffer dentro da bacia (b_i) , razão entre o perímetro e a área do fragmento remanescente (p_i/a_i) , preço da terra (P_i) , índice de interseção do fragmento remanescente com rodovia (r_i) , distância de saída da sub-região (d_i) , sub-região hídrica a qual pertence o fragmento remanescente (R), identificação do fragmento remanescente mais próximo rio abaixo (m_i) e identificação do fragmento remanescente mais próximo rio acima (M_i) .

Neste caso, como não foram incluídas as variáveis PIB, IDH e espécies, o valor dos parâmetros c_2 , c_3 e c_{10} são nulos.

Tabela 2. Banco de dados para Região Noroeste do Estado de Goiás.

nb	nf	P_i	a_i	\boldsymbol{b}_i	r_i	d_i	R	m_i	$M1_i$	$M2_i$	$M3_i$	p_i/a_i
651	537	2728	1062	0	0.5	-1	0	0	0	0	0	0.013983
651	548	1946	1145	225	0.0	0	0	546	555	0	0	0.021417
651	555	1946	652	37	0.5	1	0	548	570	0	0	0.032257
651	566	1570	1274	54	0.0	3	0	570	0	0	0	0.019079
651	570	1956	3492	783	0.0	2	0	555	566	589	625	0.012572
651	589	1976	4068	285	0.0	3	0	570	0	0	0	0.013922
698	546	1164	694	43	0.0	0	0	0	564	0	0	0.028336
698	557	1164	1107	54	0.0	1	0	546	0	0	0	0.018972
698	566	1164	667	29	0.0	1	0	546	0	0	0	0.032054
716	572	1164	6002	190	0.5	0	1	0	582	0	0	0.016951
716	574	1164	726	1	1.0	-1	1	0	0	0	0	0.020272
720	566	1570	2769	153	1.0	0	1	0	0	0	0	0.016673
720	572	1570	4241	195	0.0	0	1	0	589	0	0	0.018066
720	589	1976	4619	93	0.0	1	1	572	618	0	0	0.015250
723	574	1164	740	105	0.0	0	2	0	582	0	0	0.022940
723	582	1570	9728	228	0.5	1	2	574	615	0	0	0.012711
723	611	1330	1228	7	1.0	2	2	582	0	0	0	0.025867
723	615	1570	582	70	0.0	2	2	582	0	0	0	0.025530
726	572	1570	4236	333	0.5	0	1	0	601	589	0	0.020291
726	601	1976	632	21	0.0	1	1	572	0	0	0	0.018510
726	614	1976	1352	56	0.0	2	1	601	0	0	0	0.022584
758	589	1976	4937	206	0.0	3	0	570	0	0	0	0.016052
758	625	2306	1140	70	0.0	4	0	570	646	0	0	0.018095
767	633	1495	724	86	0.0	1	3	611	641	0	0	0.017787
767	641	1736	11328	335	0.0	2	3	633	0	0	0	0.010139
770	611	1545	3303	32	0.5	0	3	0	0	0	0	0.015374
770	641	1736	559	0	0.5	-1	3	0	0	0	0	0.033796
788	614	1976	1416	0	0.0	-1	0	0	0	0	0	0.017282
789	589	1976	657	16	0.0	3	0	570	0	0	0	0.037852
789	618	1976	553	35	0.0	6	0	646	0	0	0	0.026777
789	646	2143	1800	307	0.0	5	0	625	649	0	0	0.020392
796	641	1736	10490	452	0.0	7	0	666	0	0	0	0.007345
796	649	1976	554	47	0.0	6	0	646	666	641	0	0.028756
796	665	1976	946	0	0.0	-1	0	0	0	0	0	0.022544
796	666	1736	2092	53	0.0	7	0	649	641	0	0	0.016322

Atribuindo valores aos parâmetros de peso $c_1 = 2000$, $c_4 = 60$, $c_5 = 40000$, $c_6 = 5000$, $c_7 = 16000$, $c_8 = 1000$, e $c_9 = 5$ que foram obtidos por meio de estudos sobre a função-objetivo, de forma que cada fator desta função tenha peso de acordo com a seguinte meta de conservação, i.e. priorização dos ambientes ripários, dos maiores remanescentes e da maior conectividade entre as áreas. Temos o seguinte problema de PNL:

$$Min \sum \left[-\left(\frac{2000}{P_{i}}\right) \cdot (1 - \alpha(i))a_{i} - 60 \cdot (1 - \alpha(i))b_{i} + 100000 \cdot \left(\frac{p_{i}}{a_{i}}\right) - 3000 \cdot \beta(i) + 12000 \cdot r_{i} - 1000 \cdot d_{i} + \frac{0.25b_{i}^{T}Db_{i}}{\left(g^{2}(i) - g(i)\right)} \right]$$

$$(3.3)$$

s.a.
$$\sum \alpha(i) \cdot a_i \ge 58600$$

Denote o nó do digrafo referente ao fragmento de vegetação remanescente i da bacia l pelo par ordenado (nf, nb).

Inicialmente $\alpha(i) = 0$ e $\beta(i)=0$ para qualquer fragmento remanescente i. O valor inicial do somatório Σ $\alpha(i)a_i$ é zero.

Na primeira iteração, depois de avaliar a função-objetivo de (3.3) em cada fragmento remanescente i, entra na solução o fragmento remanescente (570, 651) com índice de importância igual a 0,25, cuja função-objetivo possui o valor mínimo. Assim, $\alpha(570, 651) = 0,25$ e $\beta(555, 651) = \beta(566, 651) = \beta(589, 651) = \beta(566, 698) = \beta(566, 720) = \beta(589, 720) = \beta(589, 758) = \beta(625, 758) = \beta(589, 789) = 0,25$ (Figura 23). Como foi incluído um fragmento remanescente da sub-região hídrica 0 na solução, então g(x) = 1 para todos os fragmentos desta sub-região. Com $\alpha(570, 651) = 0,25$, o somatório $\Sigma \alpha(i)a_i$, ou seja a área selecionada para a solução é igual a 873 ha.

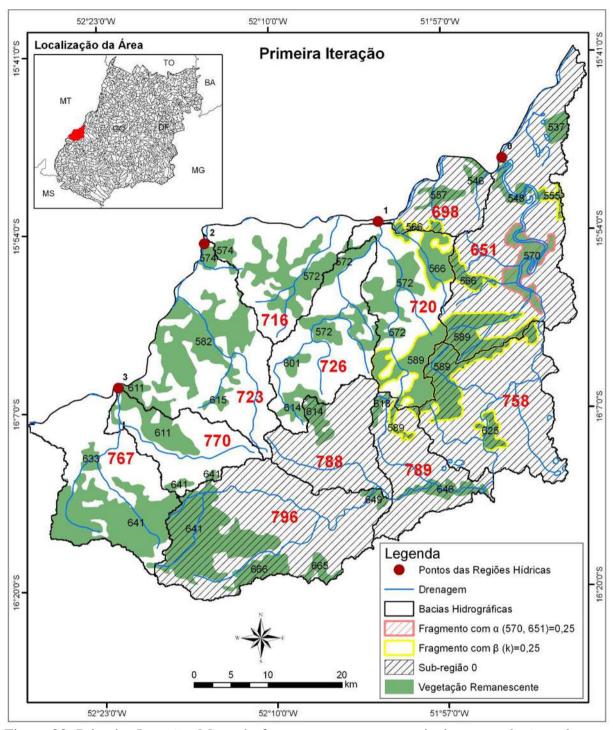


Figura 23. Primeira Iteração: Mapa do fragmento remanescente incluso na solução e de seus adjacentes correspondentes.

Na segunda iteração é incluído o fragmento (641,796) na solução. Logo, o valor de $\alpha(570, 651) = \alpha(641, 796) = 0.25$ e de $\beta(555, 651) = \beta(566, 651) = \beta(589, 651) = \beta(566, 698)$ = $\beta(566, 720) = \beta(589, 720) = \beta(589, 758) = \beta(625, 758) = \beta(589, 789) = \beta(666, 796) = 0.25$ (Figura 24). Como os fragmentos (570, 651) e (641,796) pertencem à mesma sub-região

hídrica, então g(x) passa ser 2 para todo fragmento da sub-região hídrica 0. Agora com (570, 651) = $\alpha(570, 651) = 0.25$, o valor do somatório $\Sigma \alpha(i)a_i$ é 3.495,5 ha.

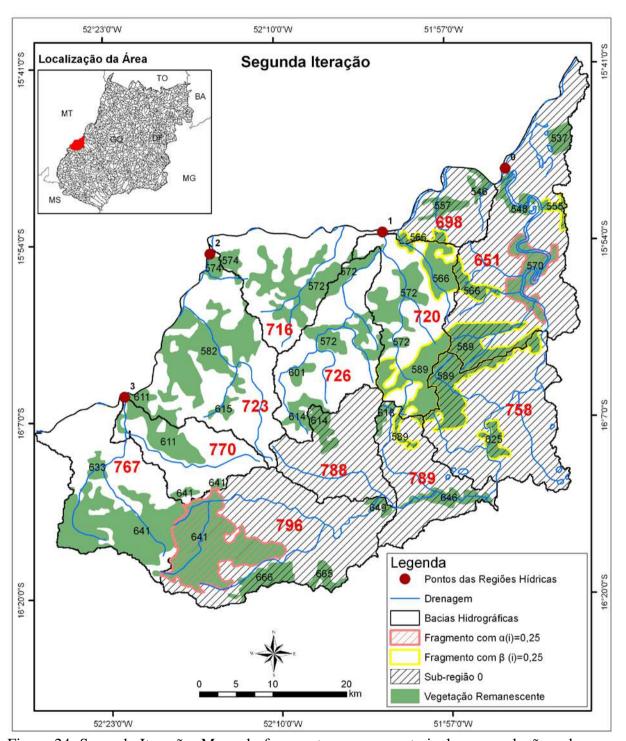


Figura 24. Segunda Iteração: Mapa do fragmento remanescente incluso na solução e de seus adjacentes correspondentes.

Na terceira iteração não há inclusão de outro fragmento na solução, mas o valor de $\alpha(570,\ 651)$ passa ser 0,5 e conseqüentemente $\beta(555,\ 651)=\beta(566,\ 651)=\beta(589,\ 651)$ = $\beta(566,\ 698)=\beta(566,\ 720)=\beta(589,\ 720)=\beta(589,\ 758)=\beta(625,\ 758)=\beta(589,\ 789)$ passam ser 0,5 e $\alpha(641,\ 796)$ permanece sendo 0,25, o que implica $\beta(666,\ 796)$ também permanecendo 0,25 (Figura 25).

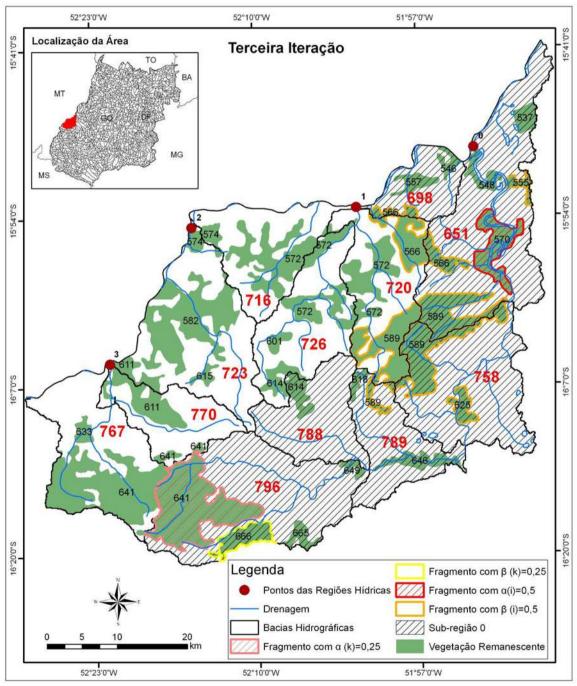


Figura 25. Terceira Iteração: Mapa dos fragmentos remanescentes inclusos na solução e de seus adjacentes correspondentes.

Nesta iteração, como não foi incluso nenhum outro fragmento remanescente na subregião 0, g(x) permanece sendo 2. No final desta iteração, com $\alpha(641, 796)=0.25$ e $\alpha(570, 651)=0.5$, o valor do somatório Σ $\alpha(i)a_i$ aumentou para 4.368,5 ha.

A quarta iteração incluiu outro fragmento de vegetação remanescente (641, 767) na solução (Figura 26). Logo, tem-se $\alpha(570, 651) = 0.5$, $\alpha(641, 767) = \alpha(641, 796) = 0.25$, $\beta(555, 651) = \beta(566, 651) = \beta(589, 651) = \beta(566, 698) = \beta(566, 720) = \beta(589, 720) = \beta(589, 758) = \beta(625, 758) = \beta(589, 789) = 0.5$ e $\beta(666, 796) = \beta(633, 767) = 0.25$.

Observe que nesta iteração o índice de importância dos fragmentos remanescentes (641, 767) e (641, 796) são iguais, e que g(x) é igual a 2 para todos os fragmentos da sub-região 0 e 1 para todos os fragmentos da sub-região 3. Logo, o valor do somatório Σ $\alpha(i)a_i$ passa ser 7.200,5 ha.

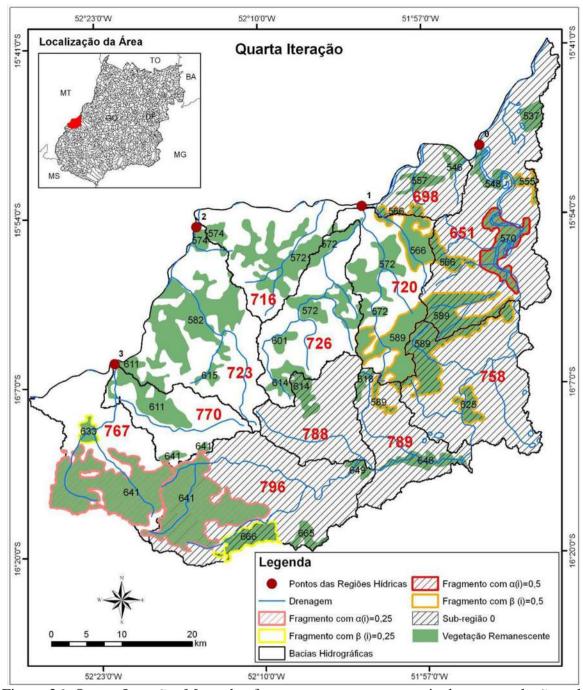


Figura 26. Quarta Iteração: Mapa dos fragmentos remanescentes inclusos na solução e de seus fragmentos adjacentes correspondentes.

Executando o algoritmo sucessivamente, chega-se, na 69ª iteração, ao somatório $\Sigma \alpha(i)a_i$ igual a 58.671 ha. Sob esta condição, o algoritmo terminou com a seguinte solução em termos de importância na inclusão dos fragmentos remanescentes em proposta de conservação (Figura 27): $\alpha(548, 651) = \alpha(574, 723) = \alpha(633, 767) = 0,25; \alpha(572, 716) = \alpha(572, 726) = \alpha(625, 758) = 0,5; \alpha(572, 720) = \alpha(582, 723) = \alpha(646, 789) = \alpha(666, 796) = 0,75; \alpha(570, 720) = \alpha(582, 723) = \alpha(646, 789) = \alpha(666, 796) = 0,75; \alpha(570, 720) = \alpha(582, 723) = \alpha(646, 789) = \alpha(666, 796) = 0,75; \alpha(570, 720) = \alpha(582, 723) = \alpha(646, 789) = \alpha(666, 796) = 0,75; \alpha(570, 720) = \alpha(582, 723) = \alpha(646, 789) = \alpha(666, 796) = 0,75; \alpha(570, 720) = \alpha(582, 723) = \alpha(646, 789) = \alpha(666, 796) = 0,75; \alpha(570, 720) = \alpha(582, 723) = \alpha(646, 789) = \alpha(666, 796) = 0,75; \alpha(570, 720) = \alpha(582, 723) = \alpha(646, 789) = \alpha(666, 796) = 0,75; \alpha(570, 720) = \alpha(582, 723) = \alpha(646, 789) = \alpha(666, 796) = 0,75; \alpha(570, 720) = \alpha(582, 723) = \alpha(646, 789) = \alpha(666, 796) = 0,75; \alpha(570, 720) = \alpha(582, 723) = \alpha(646, 789) = \alpha(666, 796) = 0,75; \alpha(570, 720) = \alpha(582, 723) = \alpha(646, 789) = \alpha(666, 796) = 0,75; \alpha(570, 720) = \alpha(582, 723) = \alpha(646, 789) = \alpha(666, 796) = 0,75; \alpha(570, 720) = \alpha(582, 723) = \alpha(646, 789) = \alpha(666, 796) = 0,75; \alpha(570, 720) = \alpha(582, 723) = \alpha(646, 789) = \alpha(666, 796) = 0,75; \alpha(570, 720) = \alpha(582, 723) = \alpha(646, 789) = \alpha(666, 796) = 0,75; \alpha(570, 720) = \alpha(646, 789) = \alpha(646,$

)= $\alpha(589, 651)$ = $\alpha(589, 720)$ = $\alpha(589, 758)$ = $\alpha(641, 767)$ = $\alpha(641, 796)$ = 1. Note que os fragmentos remanescentes cujo α é igual a 1 possuem o maior índice de importância para inclusão em proposta de conservação e estão destacados na Figura 27 na cor vermelha.

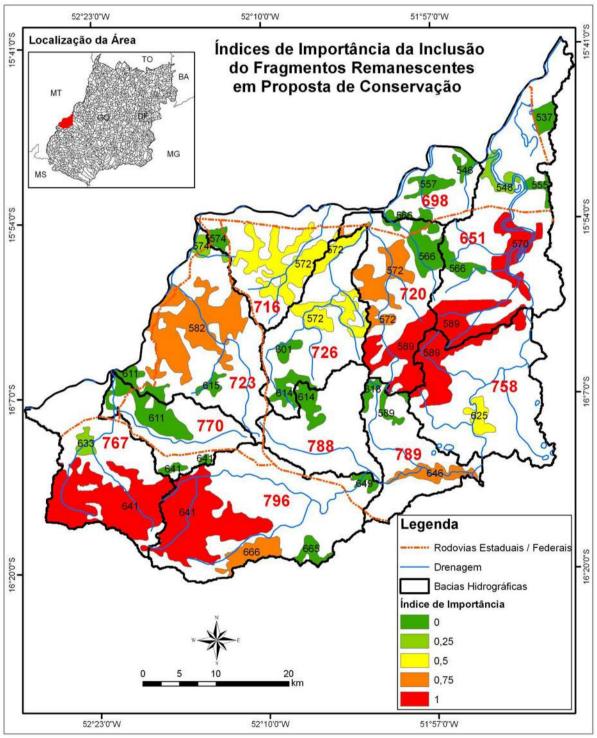


Figura 27. Mapa dos índices de importância da inclusão dos fragmentos remanescentes em proposta de conservação.

Através da solução encontrada para os fragmentos remanescentes, obtém-se também a solução em termos de bacia (Figura 28). Para isto, basta fazer o quociente entre o produto da soma dos $\alpha(i)$ com as respectivas áreas de seus fragmentos remanescentes e a soma das áreas de seus fragmentos remanescentes dentro de cada bacia.

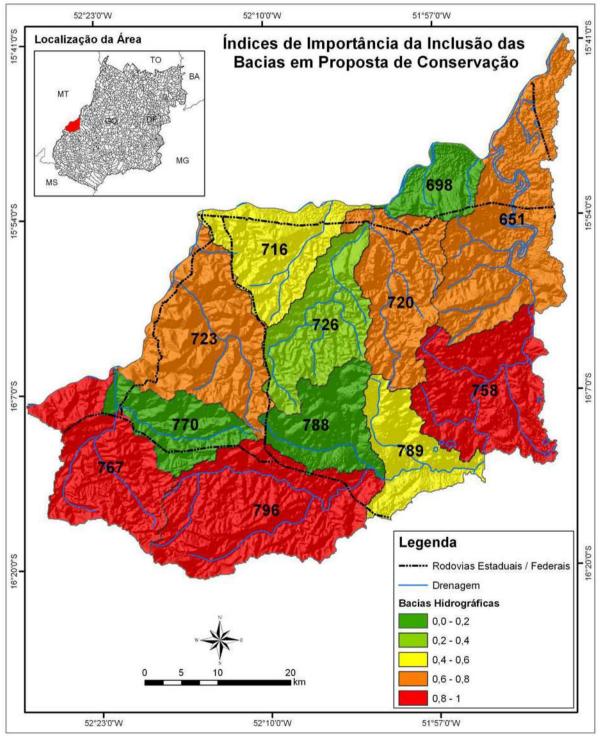


Figura 28. Mapa dos índices de importância da inclusão das bacias hidrográficas em proposta de conservação.

Logo, temos um índice que indica a importância de inclusão de cada bacia na solução com os seguintes valores: B(651) = 0,67; B(716) = 0,45; B(720) = 0,67; B(723) = 0,61; B(726) = 0,34; B(758) = 0,91; B(767) = 0,96; B(789) = 0,45; B(796) = 0,86.

Observe na Figura 28 que o índice de importância de inclusão das bacias hidrográficas é um valor contínuo que varia de 0 a 1 que, neste exemplo, foi dividido em cinco intervalos iguais para gerar um mapa com cinco cores, onde cada cor representa um intervalo de importância. Neste exemplo, a solução apresenta quatro bacias de alta importância na proposta de conservação, que são as bacias de número 758, 767 e 796.

Para a implementação deste algoritmo foi utilizado o *software* Scilab 4.1.2. por ser um software gratuito, possuir uma boa referência, ser usado internacionalmente em linguagem de programação matemática e de fácil implementação. Quanto ao tratamento e análise cartográfica dos dados, utilizou-se a plataforma ArcGis 9.3. É importante ressaltar que o tempo de execução deste algoritmo para a seleção de áreas prioritárias para conservação em Goiás e no Distrito Federal foi em média de trinta minutos.

CAPÍTULO 4

Resultados e Conclusões

Considerando a acentuada dinâmica espaço-temporal do uso e ocupação da terra no Cerrado goiano, o modelo matemático de seleção de áreas prioritárias para conservação apresentado no Capítulo 3, é de utilidade maior do que outros que aparecem na literatura (veja Capítulo 1), fornece informações mais rápidas, simplificadas e melhor aplicadas, possibilitando, da forma mais automatizada quanto possível, a mudança de cenários, conforme a análise dos dados de conservação em relação às variáveis sociais, econômicas e biológicas envolvidas.

Aplicando o modelo para todo estado de Goiás, apresentamos três soluções com e sem dados de biodiversidade, onde avaliamos a sensibilidade da solução quanto à variação dos seus parâmetros, o que poderá auxiliar os gestores com vistas à elaboração e/ou aperfeiçoamento de políticas públicas para priorização de áreas para conservação.

Para a primeira solução (Solução 1) temos como parâmetros básicos: $c_1 = 2.000$, $c_2 = 20.000$, $c_3 = 0.2$, $c_4 = 20$, $c_5 = 100.000$, $c_6 = 1.000$, $c_7 = 12.000$, $c_8 = 1.000$ e $c_9 = 0.25$, onde consideramos dois enfoques: um sem dados de biodiversidade ($c_{10} = 0$) e outro com dados de biodiversidade ($c_{10} = 2000$).

Atribuímos um valor absoluto para o parâmetro K correspondente ao produto de um peso de valor aproximado a 0,7 e a área das regiões mais conservadas, e de outro peso de valor aproximado 0,5 e a área das menos conservadas, estabelecendo assim, uma meta de priorização das áreas. Averiguamos que para uma meta de priorização baixa, ou seja, para valores pequenos de K, a solução do problema sofre maior influência na variação dos outros

parâmetros, do que para uma meta de priorização alta, i.e. para valores de K grande. Além disso, observamos que para valores grandes de K o tempo de execução do algoritmo proposto para encontrar a solução foi maior.

Nesta solução, em que pouco peso foi dado aos parâmetros referentes aos ambientes ripários e a conectividade (vizinhança) entre os remanescentes não se observam, no que diz respeito à importância dos fragmentos remanescentes na proposta de conservação, diferenças significativas, quanto a inclusão ou não da biodiversidade, o que pode ser atribuído principalmente, a pouca representatividade espacial dos dados de biodiversidade (BINI et al., 2006) e à elevada proporção de vegetação remanescente nas áreas de coleta. A observação da Solução 1 sem e com biodiversidade (Figuras 29 e 30 e Apêndices A e B). A Figura 31 corrobora a diferença mínima entre estas soluções.

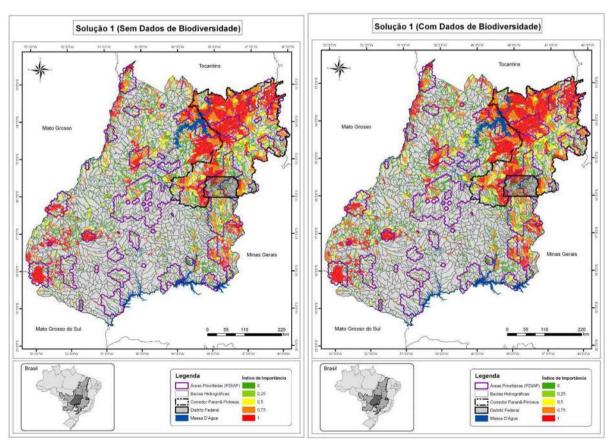


Figura 29. Solução 1 - nível de importância dos fragmentos de vegetação remanescente sem dados de biodiversidade.

Figura 30. Solução 1 - nível de importância dos fragmentos de vegetação remanescente com dados de biodiversidade.

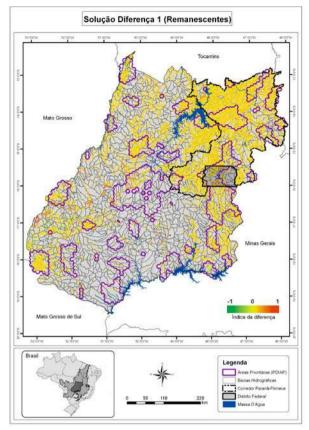


Figura 31. Solução Diferença 1 - nível de importância dos fragmentos de vegetação remanescentes.

Ao considerarmos a Solução 1, referente ao nível de importância das bacias na proposta de conservação, sem e com dados de biodiversidade (Figuras 32 e 33, respectivamente), podemos concluir que a solução diferença (Figura 34) se dá devido a existência de espécies em vegetação remanescentes em áreas mais degradadas, o que influencia diretamente na solução em termos de bacias. Portanto, esta diferença é mais significativa em termos de bacia (Figura 34) do que a solução diferença em termos de vegetação remanescente (Figura 31).

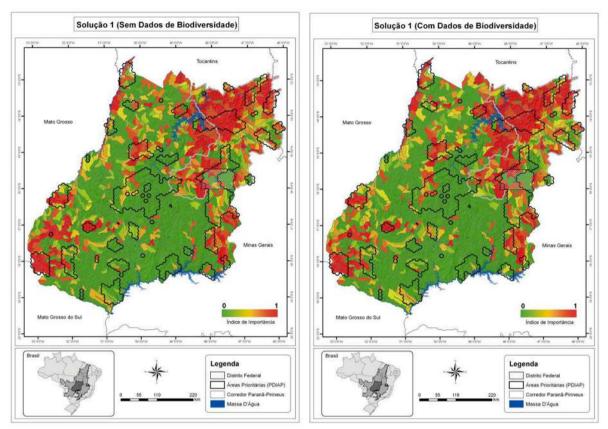


Figura 32. Solução 1 - nível de importância das bacias sem dados de biodiversidade.

Figura 33. Solução 1 - nível de importância das bacias com dados de biodiversidade.

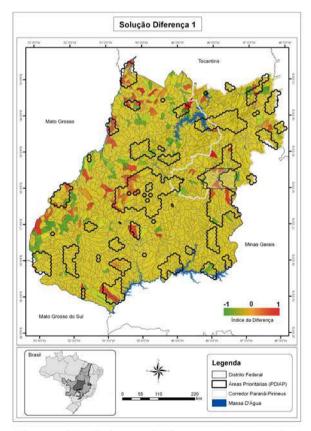


Figura 34. Solução Diferença 1 - nível de importância das bacias.

Quanto à variação dos parâmetros, verificamos que as soluções encontradas apresentam maior sensibilidade quando variamos principalmente os parâmetros que multiplicam as variáveis: b_i (buffer) e o $\beta(i)$ (vizinhança e conectividade).

As Figuras 35 e 36 representam a solução com e sem dados de biodiversidade, respectivamente (Solução 2), nas quais é variado o parâmetro do *buffer* (c_4 = 60). Neste caso, o aumento deste parâmetro resulta em mudanças na solução, tanto para o nível de importância dos remanescentes, quanto para o nível de importância das bacias, priorizando os ambientes ripários mais intactos.

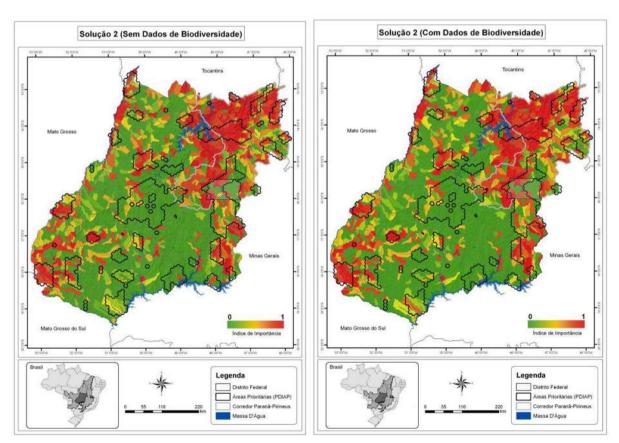


Figura 35. Solução 2 - nível de importância das bacias sem dados de biodiversidade.

Figura 36. Solução 2 - nível de importância das bacias com dados de biodiversidade.

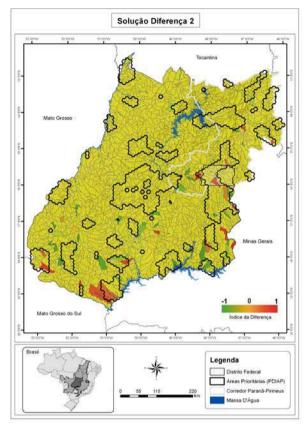


Figura 37. Solução Diferença 2 - nível de importância das bacias.

Conforme sugere a Figura 37, existe uma relação entre espécies, principalmente da fauna, e os ambientes ripários. Assim, com a valorização destes ambientes, há uma diminuição da diferença entre a solução sem e com dados de biodiversidade.

As Figuras 38 e 39, respectivamente representam a Solução 3, com e sem dados de biodiversidade, para quando se omite o parâmetro β ($c_6 = 0$), que está relacionado com vizinhança e conectividade entre áreas. Constatamos que, tanto no nível de importância dos remanescentes quanto no nível de importância das bacias, houve uma maior fragmentação das áreas selecionadas, principalmente na Região Sudeste, região de maior degradação ambiental. Neste caso, a diferença da Solução 3 (Figura 40) sem e com biodiversidade torna-se mais significativas do que na Solução 2 (Figura 37).

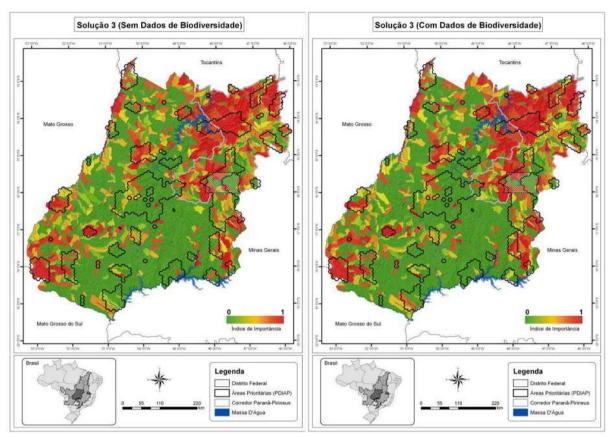


Figura 38. Solução 3 - nível de importância das bacias sem dados de biodiversidade.

Figura 39. Solução 3 - nível de importância das bacias com dados de biodiversidade.

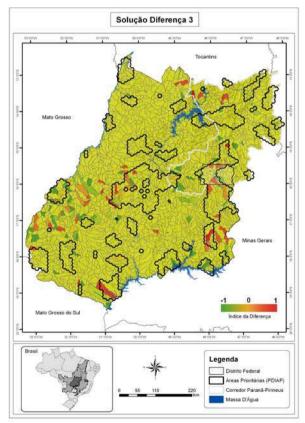


Figura 40. Solução Diferença 3 - nível de importância das bacias.

Em termos de distribuição das áreas selecionadas, em relação ao nível de importância das bacias, nas três soluções apresentadas acima, sem considerar os dados de biodiversidade, verifica-se que a área das bacias com nível de importância maior que 70% correspondem aproximadamente a 50% da área de todas bacias com algum nível de importância, ou seja maior que zero (Figuras 41 a 43). Além disso, em qualquer uma das três soluções, estas áreas possuem mais de 67,1% de vegetação remanescente.

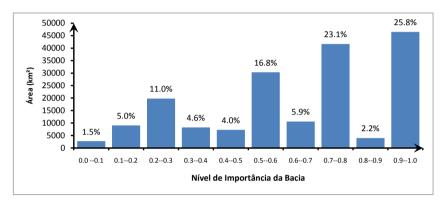


Figura 41. Distribuição das áreas selecionadas em função do nível de importância da bacia na Solução 1.

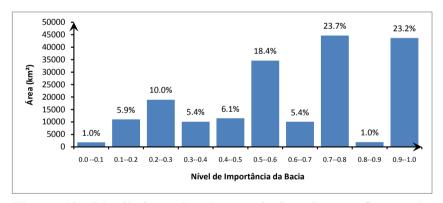


Figura 42. Distribuição das áreas selecionadas em função do nível de importância da bacia na Solução 2.

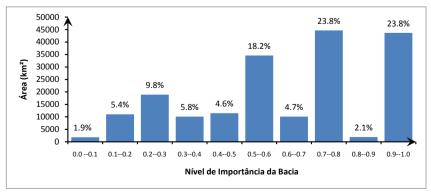


Figura 43. Distribuição das áreas selecionadas em função do nível de importância da bacia na Solução 3.

Comparando-se diretamente as três soluções (sem dados de biodiversidade) (Figura 44), concluímos que não há diferenças significativas entre a área total selecionada para cada classe de importância.

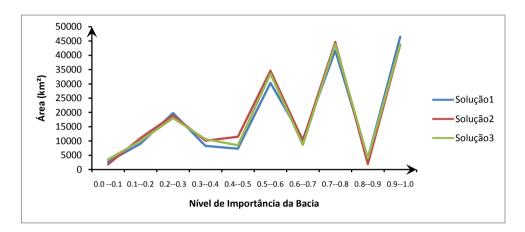


Figura 44. Comparação das três soluções (sem dados de biodiversidade).

Da mesma forma, também é importante ressaltar que a solução sem os dados de biodiversidade é bastante próxima da solução com dados de biodiversidade (para um mesmo parâmetro) (ver Figuras 34, 37 e 40). Isto sugere, que na área de estudo (Estado de Goiás e Distrito Federal) a biodiversidade influencia pouco na seleção de paisagens, pois grande parte destas se encontram em grandes áreas remanescentes com elevada porcentagem de ambientes ripários, priorizados pelo nosso modelo. Verificamos também que, em ambas as soluções (sem e com biodiversidade), as regiões altamente fragmentadas não são selecionadas.

Por outro lado, verificamos que o nosso modelo proporcionou a formação de corredores naturais ou a sua viabilidade (econômica e ecológica) nas três soluções, com e sem dados de biodiversidade.

Os resultados destas três soluções são algumas alternativas de novos cenários, haja vista que até no momento existia apenas o cenário das 40 áreas prioritárias definidas por Scaramuzza et al. (2008) para Goiás, no qual observamos uma boa concordância entre as áreas de maior importância selecionadas pelo modelo proposto nesta tese e as áreas prioritárias com elevada proporção de vegetação remanescente indicadas por eles.

É interessante destacar que os aproximadamente 82.279 km² destas 40 áreas prioritárias (das quais, apenas 42% são de vegetação remanescente – LOBO & FERREIRA, 2008), equivalem, para qualquer uma das nossas três soluções, as áreas das bacias com nível de importância igual ou superior a 70%, (Figura 45).

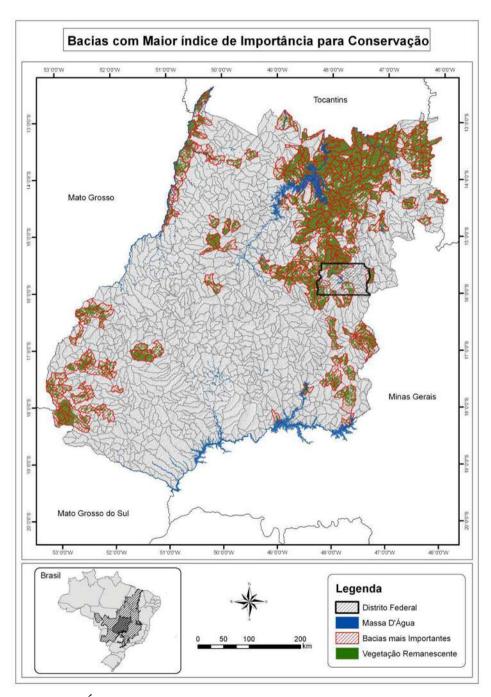


Figura 45. Área das bacias (Solução 1 - sem dados de biodiversidade), com maior nível de importância que correspondem aproximadamente 82.000 km².

CAPÍTULO 5

Considerações Finais

O uso de métodos e técnicas de planejamento sistemático para a seleção de áreas prioritárias para conservação é bastante recente e ainda bastante restrito ao uso de modelos matemáticos de programação linear, definição de objeto de conservação (e.g. paisagem e espécies), forte enfoque na distribuição potencial da biodiversidade e unidades de aplicação imaginárias (e.g. células hexagonais).

Buscando contribuir com a ecologia da conservação, bem como com a efetiva gestão territorial e ambiental do Estado de Goiás, este trabalho se desenvolve em torno de novas abordagens, conceituais e de dados, entre os quais destacamos:

- 1. Uso de um modelo de Programação Não-Linear e Teoria de Grafos;
- 2. Uso de uma abordagem não-determinística;
- Uso de uma unidade de análise natural, coerente com os aspectos fisiográficos da paisagem;
- 4. Valorização dos ambientes ripários;
- 5. Hierarquização de remanescentes e bacias hidrográficas.

Entre as várias soluções encontradas, definimos como sendo uma solução ótima, a solução que possui elevado índice de ambientes ripários e de vegetação remanescente, e que valoriza a vizinhança e a conectividade entre as áreas remanescente, ao mesmo tempo, minimiza os efeitos das variáveis antrópicas sobre a conservação destas áreas.

Assim, consideramos a solução ótima do problema com e sem dados de biodiversidade, tomando os parâmetros $c_4 = 60$ e $c_6 = 3.000$ (Figuras 46 e 47 respectivamente), pois

valorizando estes parâmetros, estamos priorizando os ambientes ripários e a conectividade entre as áreas.

Para facilitar a visualização das diferenças entre a solução com e sem dados de biodiversidade (Figuras 46 e 47, respectivamente) em termos de nível de importância das bacias, a Figura 48 mostra a diferença entre estas soluções. A pequena diferença das soluções com e sem a inclusão dos dados de biodiversidade sugere, acima de tudo, uma premente necessidade de coletas mais sistemáticas e espacialmente representativas, que ressaltem, ao invés de mascarar, as intrínsecas peculiaridades e inter-dependências entre paisagem e biota.

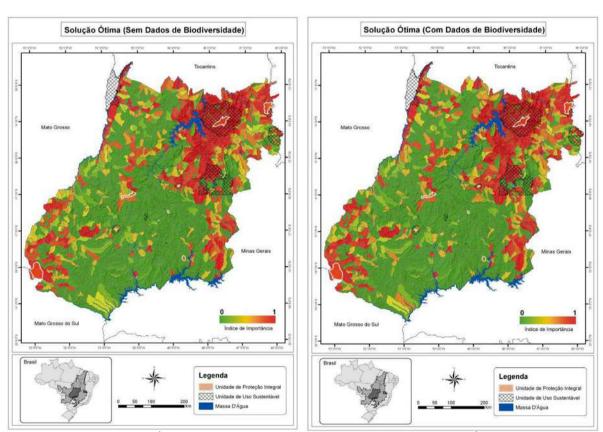


Figura 46. Solução Ótima - nível de importância das bacias sem dados de biodiversidade.

Figura 47. Solução Ótima - nível de importância das bacias com dados de biodiversidade.

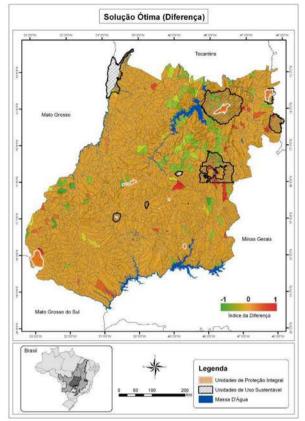


Figura 48. Mapa da diferença entre a solução ótima com e sem dados de biodiversidade.

A solução ótima (Figura 47) mostra a existência de grandes corredores naturais, tais como, na Região Nordeste, o corredor Paranã-Pirineus, e na Região Sudoeste, o corredor que contém o Parque Nacional das Emas e a nascente do Rio Araguaia (ver Figura 47 e Apêndice C). Além disso, esta solução viabiliza a implantação de corredores, tanto no aspecto biológico, como econômico, em algumas regiões do Estado. Por exemplo, a conexão da Região Noroeste com a Região Nordeste, e o adensamento das unidades de proteção existentes, haja vista que a maioria das unidades de conservação integral e das unidades de conservação de uso sustentável existentes coincide com as áreas de maior nível de importância desta solução (Figura 47).

Assim, o modelo matemático proposto pode contribuir tanto para valorização das áreas de vegetação remanescente para proposta de conservação, como para otimizar a restauração de áreas degradadas, principalmente de ambientes ripários, que favorecem a sua interligação.

Os dois enfoques de aplicação do modelo matemático não são mutuamente excludentes. Pelo contrário, podem ser complementares. Assim, uma próxima etapa da pesquisa prevê o aprimoramento do modelo matemático, com a introdução de novas variáveis antrópicas (e.g. agricultura e pecuária) e a maior valorização de parâmetros relacionados com os ambientes ripários e os fragmentos de vegetação remanescentes ainda existentes, tendo como intuito otimizar a restauração de áreas degradadas no Estado de Goiás.

Sugere-se também a aplicação deste modelo para todo o Cerrado, com vistas à otimização das principais áreas prioritárias para conservação e da restauração de áreas degradadas, que são importantes para manutenção de serviços ambientais.

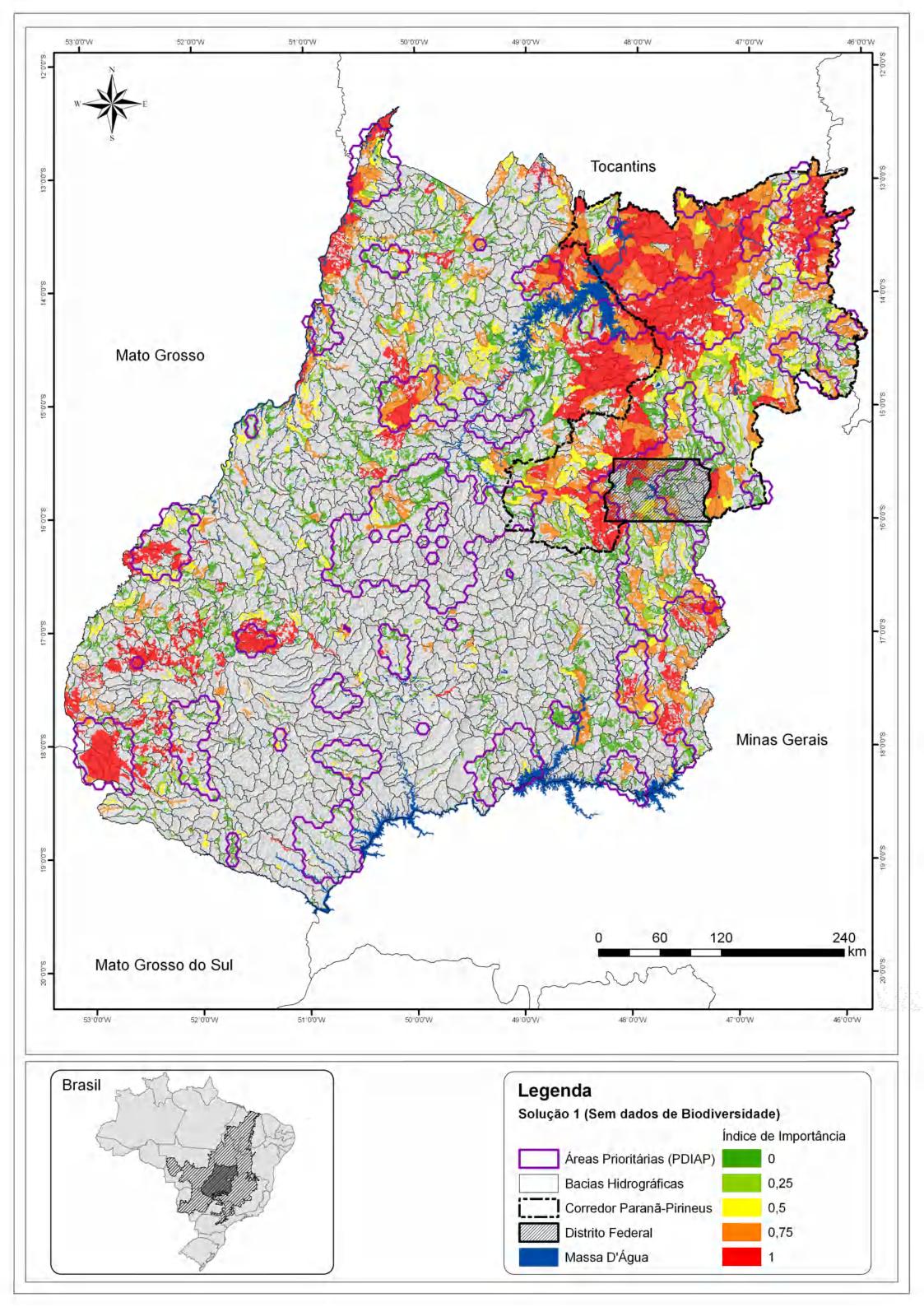
REFERÊNCIAS BIBLIOGRÁFICAS

- AGNARSSON, G.; GREENLAW, R. *Graph Theory*: Modeling, Applications, and Algorithms. Person Prentice Hall. New Jersey, 2007.
- AGUIAR, L. M. S.; CAMARGO, A. J. A. (Org.) *Cerrado*: ecologia e caracterização. Planaltina, DF: Embrapa Cerrados; Brasília: Embrapa Informação Tecnológica, 2004.
- ANA. Agência Nacional De Águas (Brasil). *Topologia hídrica*: método de construção e modelagem da base hidrográfica para suporte à gestão de recursos hídricos. Versão 1.11. Agência Nacional de Águas, Superintendência de Gestão da Informação. Brasília, 2006.
- ARAÚJO, M. B.; WILLIAMS, P. H. Selecting areas for species persistence using occurrence data. Biological Conservation 96: 331-345, 2000.
- ARPONEN, A.; HEIKKINEN, R. K.; THOMAS, C. D.; MOILANEM, A. *The Value of Biodiversity in Reserve Selection*: Representation, Species Weighting, and Benefit Functions. Conservation Biology 19: 2009-2014, 2005.
- BANG-JENSEN, J.; GUTIN, G. *Digraphs:* Theory, Algorithms and Applications. Springer Verlag, London, 2001.
- BENNETT, A. F. *Linkges im the landscape*: the role of corridors and connectivity in wildlife conservation. Cambridge: UCCN The World Conservation Union, 1999.
- BENSUSAN, N. Conservação da biodiversidade em áreas protegidas. Reimpressão Rio de Janeiro: Editora FGV, 2006.
- BERTRAND, G. *Paisagem e geografia física global*: Esboço metodológico. (Trad.: Olga Cruz). Trabalho publicado, originalmente, na "Revue Geógraphique des Pyrénées et du Sud-Ouest", Toulouse, v. 39 n. 3 (249-272), 1968, sob título: Paysage et geographie physique globale. Revista RA E GA O espaço geográfico em análise, n. 8 (141-152), 2004.
- BINI, L. M.; DINIZ-FILHO, J. A. F.; RANGEL, T. F. L. V. B.; BASTOS, R. P.; PINTO, M. P. *Challenging Wallacean and Linnean shortfalls*: knowledge gradients and conservation planning in a biodiversity hotspot. Diversity and Distributions, n. 12 (475–482), 2006.
- BLEYER, N.; FERREIRA, L. G.; FERREIRA, N. C. *Arranjo Espacial de Indicadores Socioeconômicos e Dados Ambientais para os Municípios do Cerrado*. Estudos Geográficos Revista Eletrônica, 2008. (Submetido).
- BONNET, B. R. P.; FERREIRA JR., L. G.; LOBO, F. C. *Sistema de Reserva Legal Extra-Propriedade no Bioma Cerrado*: uma análise preliminar no Contexto da bacia hidrográfica. Revista Brasileira de Cartografia, v. 58, n.2. p.129-137 (edição eletrônica), 2006.
- BONNET, B. R. P.; FERREIRA, N. C.; FERREIRA JR., L. G. *Ampliação de ambientes ripários como alternativa às Reservas Legais:* conciliando política florestal e conservação dos recursos hídricos no bioma Cerrado. Boletim Goiano de Geografia, v. 27, n.1, p.83-96. Edição Especial, 2007.

- BONNET, B. R. P., FERREIRA, L. G., LOBO, F. C. *Relações entre qualidade da água e uso do solo em Goiás*: uma análise à escala da bacia hidrográfica. Árvore, v. 32, n. 2 (311-322), 2008.
- CABEZA, M.; MOILANEN, A. Design of reserve network and the persistence of biodiversity. Trend in Ecology and Evolution 16:242-248, 2001.
- CABEZA, M. Habitat loss and connectivity of reserve networks in probability approaches to reserve to reserve design. Ecology Letters 6: 665-672, 2003.
- CAVALCANTI, R. B.; JOLY, C. A. *Biodiversity and Conservation:* Priorities in the Cerrado Region. In: The Cerrados of Brazil: ecology and natural history of a neotropical savanna. Oliveira, P. S.; Marquis, R. J. (Eds). Columbia University Press. New York, 2002.
- CERDEIRA, J. O; GASTON, K. J.; PINTO, L. S. Connectivity in priority area selection for conservation. Environmental Modeling and Assessment, 10: 183-192, 2005
- CHVÁTAL, V. *Linear Programming*. W. H. Freeman and Company. New York p. 5-6, 1983.
- CLEMENS, M. A.; REVELLE, C. S.; WILLIAMS, J. C. Reserve design for species preservation. European Journal of Operational Research 112: 273-283, 1999.
- COWLING, R. M.; KNIGHT, A. T.; FAITH, D. P.; FERRIER, S.; LOMBARD, A. T.; DRIVER, A.; ROUGET, M.; MAZE, K.; DESMET, P. G. *Nature conservation requires more than a passion for species*. Conservation Biology 18: 1674-1676, 2004.
- CSUTI, B.; POLASKY, S.; WILLIAMS, P. H.; PRESSEY, R. L.; CAMM, J. D.; KERSHAW, M.; KIESTER, A. R.; DOWNS, B.; HAMILTON, R.; HUSO, M.; SAHR, K. *A comparison of reserve selection algorithms using data on terrestrial vertebrates in Oregon*. Biological Conservation 80: 83-97, 1997.
- DINIZ-FILHO, J. A. F.; BINI; L. M.; VIEIRA, C. M.; SOUZA, M. C.; BASTOS, R. P.; BRANDÃO, D.; OLIVEIRA, L. G. Spatial patterns in species richness and priority areas for conservation of anurans in the Cerrado region, Central Brazil. Amphibia-Reptilia 25: 63-75, 2004a.
- DINIZ-FILHO, J. A. F.; BINI, L. M.; BASTOS, R. P.; VIEIRA, C. M.; SOUZA, M. C.; MOTTA, J. A. O.; POMBAL, J. P. Jr.; PEIXOTO, J. C. *Anurans from a local assemblage in central Brazil*: linking local processes with macroecological patterns. Brazilian Journal of Biology 64: 1-12, 2004b.
- DINIZ-FILHO, J. A. F.; BINI, L. M.; PINTO MP, T. F., CARVALHO P., BASTOS, R. P. *Anuran species richness, complementarity and conservation conflicts in Brazilian Cerrado*. Acta Oecologica, 29: 9-15, 2006.
- EISWERTH, M. E.; HANEY, J. C. *Analysis Maximizing conserved biodiversity*: Why ecosystem indicators and thresholds matter. Ecological Economics 38: 259-274, 2001.
- ERVIN, J. Rapid Assessment of Protected Area Management Effectiveness in Four Countries. BioSience, 53(9): 833-841, 2003.

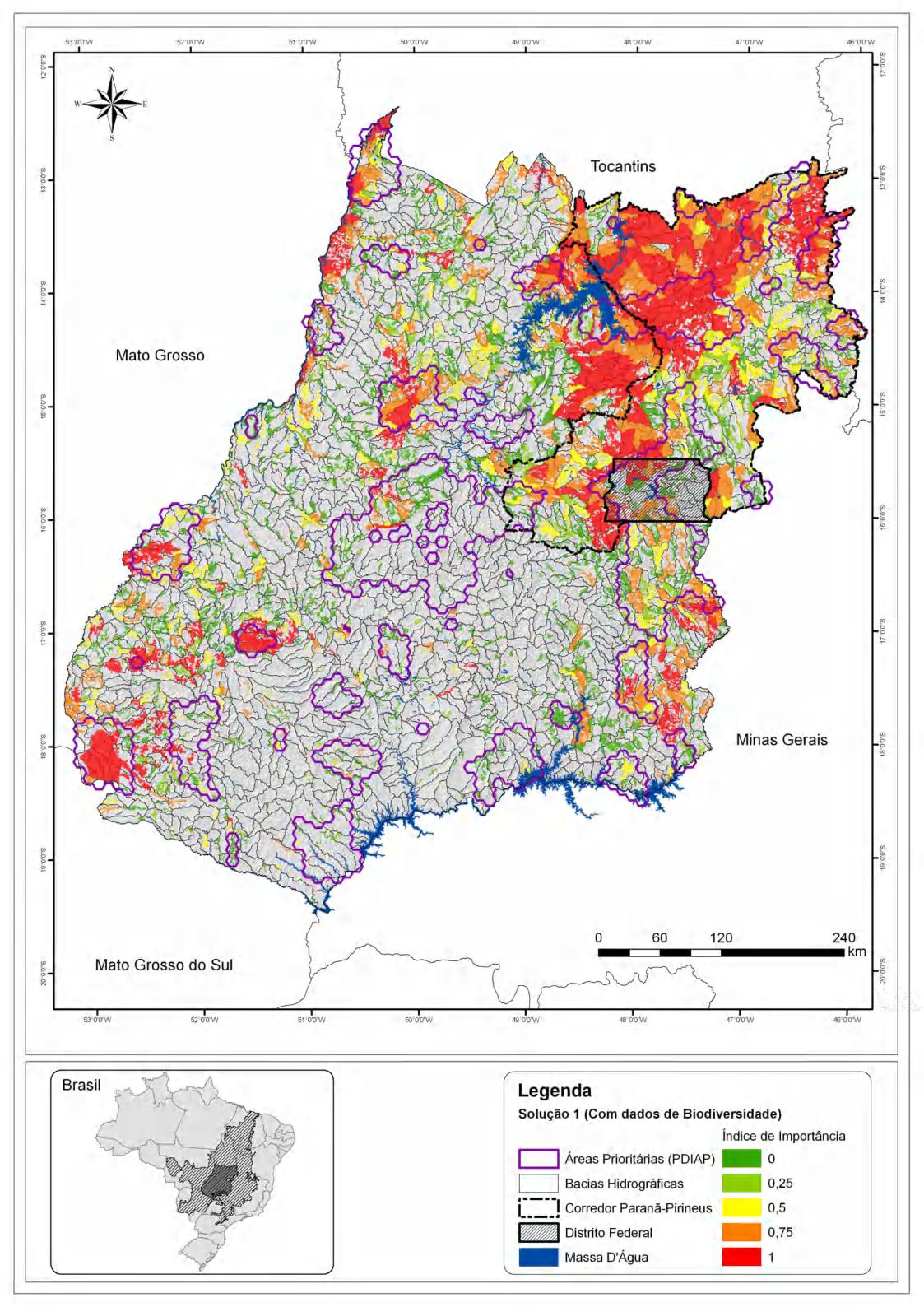
- FERREIRA, M. E.; FERREIRA, L. G.; LATRUBESSE, E. M. *Current Land Use and Conversion Trends in the Savanna Environments of Central Brazil*: a Preliminary Assessment from a Landscape Perspective. Applied Geography, 2007.
- FERREIRA, L. G.; FERREIRA, M. E.; ROCHA, G. F.; NEMAYER, M.; FERREIRA, N. C. *Dinâmica agrícola e desmatamentos em áreas de cerrado*: uma analise a partir de dados censitários e imagens de resolução moderada. Revista Brasileira de Cartografia, 2008. (submetido).
- FERREIRA, M. E.; FERREIRA JR., L. G.; FERREIRA, N. C. *Cobertura vegetal remanescente em Goiás*: distribuição, viabilidade ecológica e monitoramento. In: FERREIRA Jr., L. G. (Org.). A encruzilhada socioambiental: biodiversidade, economia e sustentabilidade no cerrado (p. 169-185). Goiânia, Editora UFG, 2008a.
- FERREIRA, M. E.; MIZIARA, F.; FERREIRA, L. G.; RIBEIRO, F. L.; FERREIRA, N. C. *Ativos Ambientais do Bioma Cerrado*: Uma Análise da Cobertura Vegetal Nativa e sua Relação com o Preço da Terra no Estado de Goiás. Revista Brasileira de Cartografia, 2008b.
- FRANKLIN, J. F. *Preserving biodiversity: species, ecosystems, or landscapes?* Ecological Applications 3(2): 202-205, 1993.
- GOTMARK, F.; NILSSON, C. Criteria used for protection of natural areas in Sweden 1909-1986. Conservation Biology 6(2): 220-231, 1992.
- HADLEY, G. Programação Linear. Editora Guanabara Dois S.A. Rio de Janeiro, p. 4, 1982.
- HIGGINS, J. V.; RICKETTS, T. H.; PARRISH, J. D.; DINERSTEIN, E.; POWELL, G.; PALMINTERI, S.; HOEKSTRA, J. M.; MORRISON, J.; TOMASEK, A.; ADAMS, J. *Beyond Noah*: saving species is not enough. Conservation Biology 18: 1672-1673, 2004.
- HOWARD, P. C.; VISKANIC, P.; DAVENPORT, T. R. B.; KIGENYI, F. W.; BALTZER, M.; DICKINSON, C. J.; LWANGA, J. S.; MATTHEWS, R. A.; BALMFORD, A. *Complementarity and the use of indicator groups for reserve selection in Uganda*. Nature 394: 472-475, 1998.
- HUNTER, M. L. Jr.; YONZON, P. Altitudinal distributions of birds, mammals, people, forests, and parks in Nepal. Conservation Biology 7(2): 420-423, 1993.
- IBAMA. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis *Efetividade de gestão das unidades de conservação federais do Brasil*. Ibama, WWF-Brasil. Brasília: Ibama, 96 p., 2007. Disponível em: http://www.wwf.org.br/natureza_brasileira/meio_ambiente_brasil/mata_atlantica/m_atl_pub/index.cfm?uNewsID=8080. Acesso em 10/11/2008.
- IBGE. Instituto Brasileiro de Geografia e Estatística. Censo demográfico, 2000. Disponível em: http://www.ibge.br . Acesso em 15/04/2007.
- IPEA. Instituto de Pesquisa Estatística Aplicada. IPEA DATA. Disponível em: http://www.ipeadata.gov.br/ipeaweb.dll/ipeadata. Acesso em 15/04/2007.

- JHA, C. S.; GOPARAJU, L.; TRIPATHI, A.; GUARAI, B.; RAGHUBANSHI, A. S.; SINGH, J. S. *Forest fragmentation and its impact on species diversity:* an analysis using remote sensing and GIS. Biodiversity and Conservation 14: 1681-1698, 2005.
- KARMARKAR, N. A new polynomial time algorithm for linear programming. Combinatorica 4, p. 373-395, 1984.
- KATI, V.; DEVILLERS, P.; DUFRÊNE, M.; LEGAKIS, A.; VOKOU, D.; LEBRUN, P. *Hotspots, complementarity or representativeness?* Designing optimal small-scale reserves for biodiversity conservation. Biological Conservation 120: 471-480, 2004.
- KLINK, C. A.; MACHADO, R. B. *Conservation of the Brazilian Cerrado*. Conservation Biology, v. 19 (3): 707–713, 2005.
- KLINK, C. A.; MOREIRA, A. G. *Past and current human occupation, and land use.* Pages 69-88. In: P. S. Oliveira, and R. J. Marques, editors. The Cerrado of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press, New York, USA, 2002.
- KNIGHT, A.T.; DRIVER, A; COWLING, R. M.; MAZE, K.; DESMET, P. G.; LOMBARD, A. T.; ROUGET, M.; BOTHA, M. A.; BOSHOFF, A. F.; CASTHEY, J. G.; GOODMAN, P. S.; MACKINNON, K.; PIERCE, S. M.; SIMS-CASTLEY, R; STEWART, W.; VON HASE, A. *Designing systematic conservation assessments that promote effective implementation*: best practice from South Africa. Conservation Biology 20 (3): 739–750, 2006.
- KINGSLAND, S. E. *Creating a science of nature reserve design*: perspectives from history. Environ Model Assess 7: 61-69, 2002.
- KIRKPATRICK, S.; GELATT, C. D.; VECCHI, M. P. *Optimization by simulated annealing*. Science, v. 220, p. 671-680, 1983.
- LAWLER, J. J.; WHITE, D.; MASTER, L. L. Integrating representation and vulnerability: two approaches for prioritizing areas for conservation. Ecological Applications, 13: 1762-1772, 2003.
- LOBO, F.; FERREIRA, L. G. Vegetação Remanescente nas Áreas Prioritárias para Conservação da Biodiversidade em Goiás: Padrões de Distribuição e Características. Boletim Goiano de Geografia, 2008 (no prelo).
- MACHADO, R. B.; NETO, M. B. R.; PEREIRA, P. G.; CALDAS E. F.; GONÇALVES D. A.; SANTOS N. S.; TABOR K.; STEININGER, M. *Estimativas de perda do cerrado brasileiro*. Conservação Internacional. Brasília, 2004. Disponível em http://www.conservation.org.br/arquivos/RelatDesmatamCerrado.pdf>. Acesso em 10/02/2007.
- MACHADO, R. B.; AGUIAR, L. M. S.; CASTRO, A. A. J. F.; NOGUEIRA, C. C.; NETO, M. B. R. *Caracterização da Fauna e Flora do Cerrado*. In: FALEIRO, F. G.; FARIAS NETO, A. L. (Org.) Savanas: Desafios e estratégias para o equilíbrio entre sociedade, agronegócio e recursos naturais. Planaltina, DF: Embrapa Cerrados, 2008.
- MARGULES, C.R.; PRESSEY, R. L. Systematic conservation planning. Nature 405: 243-253, 2000.

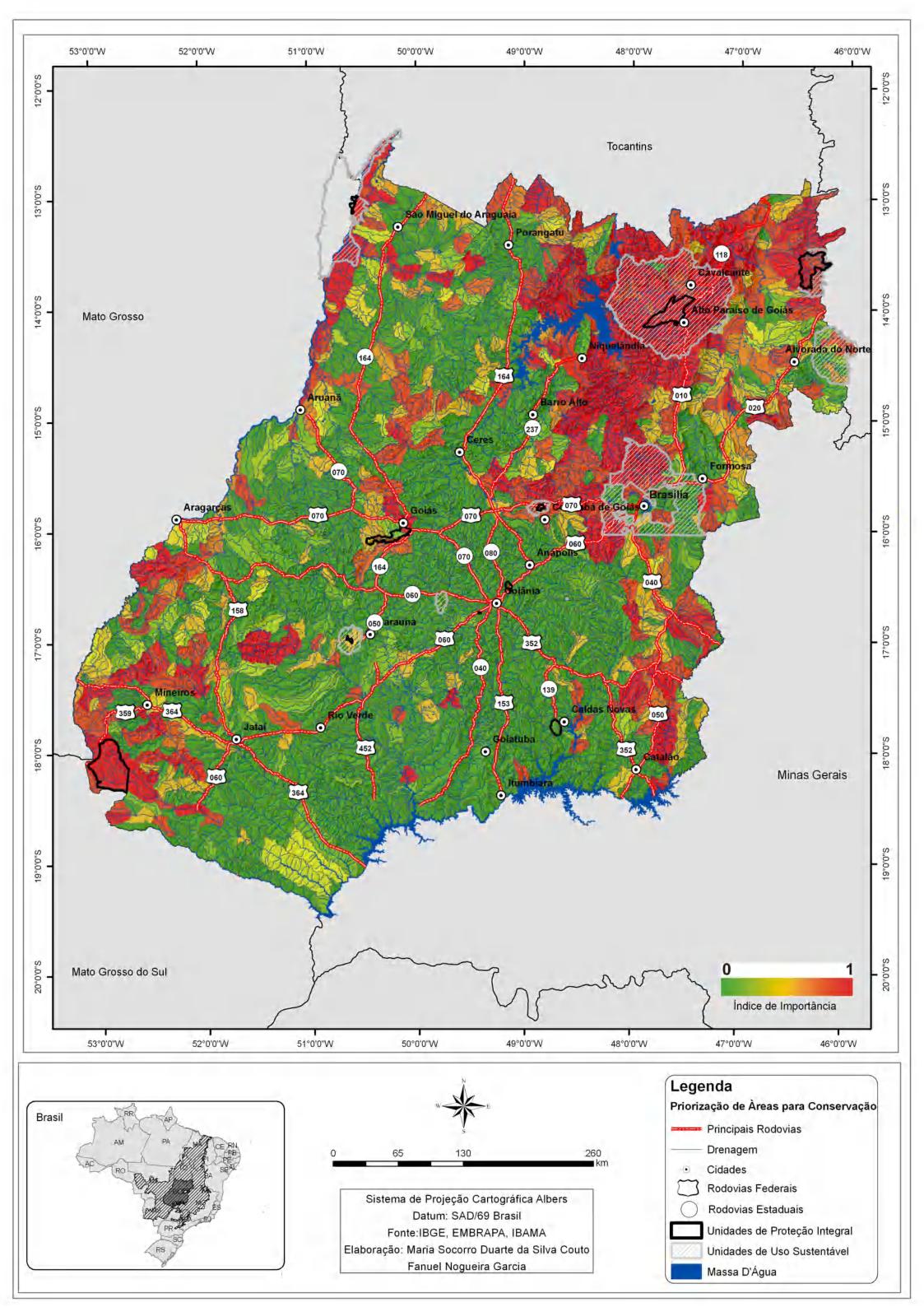

- MARGULES, C.R.; PRESSEY, R. L., WILLIAMS, P. H. *Representing biodiversity*: data and procedures for identifying priority areas for conservation. J. Bioscience 27(Suppl. 2): 309-326, 2002.
- MEDEIROS, R. *A Proteção da Natureza:* das Estratégias Internacionais e Nacionais às demandas Locais. Tese (Doutorado em Geografia). Rio de Janeiro: UFRJ/PPG, 2003.
- MEDEIROS, L. C.; FERREIRA, N. C.; FERREIRA, L. G. Avaliação de Modelos Digitais de Elevação para Delimitação Automática de Bacias Hidrográficas. Revista Brasileira de Cartografia, 2008 (no prelo).
- MITTERMEIER, R.A.; MITTERMEIER, C. G. GIL, P. R. Megadiversidad, los países biológicamente más ricos del mundo. CEMEX, México. 501 p., 1997.
- MITTERMEIER, R. A.; GIL, P. R.; HOFFMANN, M.; PILGRIM, J.; BROOKS, T.; MITTERMEIER, C. G.; LAMOREUX, J.; A.B. DA FONSECA., G. *Hotspots Revisited:* Earth's Biologically Richest and Most Endangered Terrestrial Ecoregions. CEMEX Books on Nature Agrupación Sierra Madre, 2004. Disponível em: http://www.biodiversityscience.org/publications/hotspots/cover.html. Acesso em 20/10/2008.
- MIZIARA, F.; FERREIRA, N. C. *Expansão da fronteira agrícola e evolução da ocupação e uso do espaço no estado de Goiás*: subsídios à política ambiental. In: FERREIRA, L. G. (Org.). A encruzilhada socioambiental: biodiversidade, economia e sustentabilidade no cerrado (p. 107-125). Goiânia, Editora UFG, 223p, 2008.
- MMA, Ministério do Meio Ambiente. Secretaria de Biodiversidade e Florestas: Portal Áreas Protegidas. Disponível em: http://www.mma.gov.br/sitio/index.php?ido=conteudo. monta&idEstrutura=119&idConteudo=6000&idMenu=5693>. Acesso em 05/11/2008.
- _____. Programa Nacional de Conservação e Uso Sustentável do Bioma Cerrado: Programa Cerrado Sustentável 2006. Disponível em: http://www.mma.gov.br/estruturas/sbf/_arquivos/programa_bioma_cerrado.pdf>. Acesso em 05/11/2008.
- MYERS, N.; MITTERMEIER, R. A.; MITTERMEIER, C. G.; FONSECA, G. A. B.; KENT, J. *Biodiversity hotspots for conservation priorities*. Nature 403: 853-858, 2000.
- NOVAES, P.C., FERREIRA, L.G.; DIAS, R. *Identificação de áreas prioritárias para conservação da bio-geodiversidade no Estado de Goiás*. Boletim Goiano de Geografia 23 (1): 41-54, 2003.
- PIERCE, S. M.; COWLING, R. M.; KNIGHT, A. T.; LOMBARD, A. T.; ROUGET, M.; WOLF, T. *Systematic conservation planning products for land-use planning*: interpretation for implementation. Biological Conservation, 125: 441-458, 2005.
- PIRES, M. O. *Programas agrícolas na ocupação do Cerrado*. Sociedade e Cultura, v. 3, n. 1-2:111-131, 2000.
- PNUD. Programa das Nações Unidas para o Desenvolvimento. *Indicadores*. Disponível em: http://www.pnud.org.br/indicadores. Acesso em 15/04/2007.

- POSSINGHAM, H.; BALL, I.; ANDELMAN, S. *Mathematical methods for identifying representative reserve networks*. In: Quantitative methods for conservation biology. Ferson, S., Burgman, M (Eds.). Springer-Verlag, New York, p.291-306, 2000.
- PRESSEY, R. L. *Ad hoc* reservations: Foward or backward steps in developing representative reserves systems? Conservation Biology 8: 662-668, 1994.
- PRESSEY, R. L. Conservation planning and biodiversity: assembling the best data for the job. Conservation Biology 18; 1677-1681, 2004.
- PRESSEY, R. L.; HUMPHRIES, C. J.; MARGULES, C. R.; VANE-WRIGHT, R. I.; WILLIAMS, P. H. *Beyond opportunism: key principles for systematic reserve selection.* Trends in Ecology and Evolution, 8: 124-128, 1993.
- PRESSEY, R. L.; TAFFS, K. H. *Scheduling conservation action in production landscapes*: priority areas in western. New South Wales defined by irreplaceability and vulnerability loss. Biological Conservation 100: 155- 376, 2001.
- PRESSEY, R. L.; CABEZA, M.; WATTS, M. E.; COWLING, R. M.; WILSON, K. A. *Conservation planning in a changing world.* Ecology and Evolution 22 (11): 583–592, 2007.
- RANGEL, T. F. L. V. B.; BINI, L. M.; DINIZ FILHO, J. A. F.; PINTO, M. P.; CARVALHO, P.; BASTOS, R. P. *Human development and biodiversity conservation in brazilian Cerrado*. Applied Geography, 27: 14-27, 2007.
- ROCHA, G. F.; FERREIRA, L. G.; FERREIRA, N. C.; FERREIRA, M. E.; ROCHA, J. C. *Mapeamento e Análise dos Desmatamentos no Bioma Cerrado para o Período 2004-2005.* IX Simpósio Nacional do Cerrado e II Simpósio Internacional de Savanas Tropicais. Anais. Embrapa. Brasília DF, 2008.
- RODRIGUES, F. H. G. *Biologia e conservação do lobo-guará na Estação Ecológica de Águas Emendadas*. (Tese de Doutorado). Universidade Estadual de Campinas, Campinas, 2002.
- SANO, S. M.; ALMEIDA, S. P.; RIBEIRO, J. F. (editores técnicos). *Cerrado*: ecologia e flora. Embrapa Cerrados. Brasília, DF. Embrapa Informação Tecnológica, v. 1, 2008a.
- SANO, E. E.; ROSA, R.; BRITO J. L.; FERREIRA, L. G. Mapeamento semidetalhado (escala de 1:250.000) da cobertura vegetal antrópica do bioma Cerrado. Pesquisa Agropecuária Brasileira, 43 (1): 153-156, 2008b.
- SANTOS, R. F. *Planejamento ambiental*: teoria e prática. São Paulo, Oficina de Textos, 2004.
- SCARAMUZZA, C. A. de M.; MACHADO, R. B.; RODRIGUES, S. T.; RAMOS NETO, M. B.; PINAGÉ, E. R.; DINIZ-FILHO, J. A. F. *Áreas prioritárias para conservação da biodiversidade em Goiás*. In: FERREIRA Jr., L. G. (Org.). A encruzilhada socioambiental: biodiversidade, economia e sustentabilidade no cerrado (p. 13-66). Goiânia, Editora UFG, 2008.

- SILVA, E. B.; FERREIRA, L. G.; COUTO, M. S. D.; ROCHA, G. F. *Taxas de Desmatamento do Cerrado Goiano e do Distrito Federal nos Períodos de 2003 a 2004 e de 2004 a 2005.* IX Simpósio Nacional do Cerrado e II Simpósio Internacional de Savanas Tropicais. Anais. Embrapa. Brasília DF, 2008.
- TOGNELLI, M. F. Assessing the utility of indicators groups for the conservation of South American terrestrial mammals. Biological Conservation 121: 409-417, 2005.
- WILLIAMS, C. J.; VELLE, S. R.; LEVIN, S. A. *Using mathematical optimization models to design nature reserves*. Front Ecol Environ, 2(2): 98 105, 2004.


APÊNDICE A

Solução 1 - nível de importância dos fragmentos de vegetação remanescente sem dados de biodiversidade


APÊNDICE B

Solução 1 - nível de importância dos fragmentos de vegetação remanescente com dados de biodiversidade

APÊNDICE C

Solução Ótima - nível de importância das bacias sem dados de biodiversidade

ANEXO A

Dados de Biodiversidade

Avifauna	Espécie	Nome Vulgar	Endêmico	Raro	Ameaçado
Família					
Accipitridae	Buteogallus urubitinga	Gavião-preto	Não	Não	Sim
Accipitridae	Gampsonyx swainsonii	Gaviãozinho	Não	Não	Sim
Accipitridae	Harpagus diodon		Não	Não	Sim
Accipitridae	Ictinia plumbea	Gavião-pombo	Não	Não	Sim
Accipitridae	Leptodon cayanensis		Não	Não	Sim
Accipitridae	Rostrhamus ociabilis	Gavião-caramujeiro	Não	Não	Sim
Accipitridae	Rostrhamus sociabilis		Não	Não	Sim
Accipitridae	Rupornis magnirostris		Não	Não	Sim
Accipitridae	Spizaetus ornatus	Gavião-de-penacho	Não	Não	Sim
Anatidae	Amazonetta brasiliensis	Marreca-ananaí	Não	Não	Não
Anatidae	Dendrocygna autumnalis	Asa-branca	Não	Não	Não
Anatidae	Dendrocygna bicolor	Marreca-caneleira	Não	Não	Não
Anatidae	Neochen jubata	Pato-corredor	Não	Não	Sim
Anatidae	Netta erythrophthalma	Paturi-preta	Não	Não	Não
Anatidae	Oxyura dominica	Bico-roxo	Não	Não	Não
Apodidae	Reinarda squamata	Tesourinha	Não	Não	Não
Apodidae	Streptoprocne zonaris	Andorinha-de-coleira	Não	Não	Não
Ardeidae	Butorides striatus	Socozinho	Não	Não	Não
Ardeidae	Casmerodius albus	Garça-grande	Não	Não	Não
Ardeidae	Egretta thula	Garça, garça-branca-pequena	Não	Não	Não
Ardeidae	Nycticorax nycticorax	Savacu	Não	Não	Não
Ardeidae	Pilherodius pileatus	Garça-real	Não	Não	Não
Ardeidae	Tigrisoma lineatum	Socó-boi	Não	Não	Não

Bucconidae	Monasa nigrifrons	Bico-de-brasa	Não	Não	Não
Bucconidae	Nonnula rubecula		Não	Não	Não
Bucconidae	Nystalus chacuru	João-bobo, Capitão-do-mato	Não	Não	Não
Caprimulgidae	Chordeiles acutipennis	Bacurau-de-asa-fina	Não	Não	Não
Caprimulgidae	Hydropsalis brasiliana	Curiango-tesoura	Não	Não	Não
Caprimulgidae	Podager nacunda	Corução	Não	Não	Não
Cathartidae	Cathartes aura	Urubu-da-cabeça-vermelha	Não	Não	Não
Cathartidae	Sarcoramphus papa	Urubu-rei	Não	Não	Não
Charadriidae	Hoploxypterus cayanus	Batuíra-de-esporão	Não	Não	Não
Charadriidae	Pluvialis dominica	Batuiruçu	Não	Não	Não
Charadriidae	Vanellus chilensis	Quero-quero	Não	Não	Não
Ciconiidae	Jabiru mycteria	Jaburu, tuiuiu	Não	Não	Sim
Cochleariidae	Cochlearius cochlearius	Arapapá	Não	Não	Não
Columbidae	Leptotila rufaxilla	Gemedeira	Não	Não	Não
Columbidae	Leptotila verreauxi	Juriti	Não	Não	Não
Columbidae	Scardafella squammata	Fogo-apagou	Não	Não	Não
Columbidae	Zenaida auriculata	Avoante	Não	Não	Não
Corvidae	Cyanocorax chrysops	Gralha-picaça	Não	Não	Não
Corvidae	Cyanocorax cristatellus	Gralha-do-campo	Não	Não	Não
Corvidae	Cyanocorax cyanopogon	Cã-cã. quem-quem	Sim	Não	Não
Cotingidae	Phibalura flavirostris	Tesourinha-da-mata	Não	Não	Sim
Cotingidae	Platypsaris rufus	Caneleira	Não	Não	Não
Cracidae	Ortalis canicollis	Aracuã-do-Pantanal	Não	Não	Não
Cracidae	Ortalis motmot	Aracuã-pequeno	Não	Não	Não
Cracidae	Penelope jacucaca	Jacucaca	Sim	Não	Sim
Cracidae	Penelope superciliaris	Jacucaca	Sim	Não	Sim

Cuculidae	Coccyzus cinereus	Papa-lagarta-cinzento	Não	Não	Não
Cuculidae	Coccyzus melacoryphus	Papa-lagarta	Não	Não	Não
Cuculidae	Piaya minuta	Chincoã-pequeno	Não	Não	Não
Cuculidae	Tapera naevia	Saci	Não	Não	Não
Dendrocolaptidae	Dendrocolaptes platyrostris	Arapaçu-grande	Não	Não	Não
Dendrocolaptidae	Lepidocolaptes angustirostris	Arapaçu-do-cerrado	Não	Não	Não
Dendrocolaptidae	Lepidocolaptes fuscus	Arapaçu-rajado	Não	Não	Não
Emberezidae	Nemosia pileata	Saíra-de-chapéu-preto	Não	Não	Não
Emberizidae	Agelaius ruficapillus	Casaca-de-couro	Não	Não	Não
Emberizidae	Arremon flavirostris	Tico-tico-da-mata-de-bico-amarelo	Não	Não	Não
Emberizidae	Arremon taciturnus	Tico-tico-da-mata-de-bico-preto	Não	Não	Não
Emberizidae	Cacicus haemorrhous	Guaxe-do-coqueiro	Não	Não	Não
Emberizidae	Cyanerpes cyaneus	Saí-azul-de-pernas-vermelhas	Não	Não	Não
Emberizidae	Eucometis penicillata	Pipira-da-taoca	Não	Não	Não
Emberizidae	Euphonia violacea	Gaturano-Sim	Não	Não	Não
Emberizidae	Gnorimopsar chopi	Pássaro-preto	Não	Não	Não
Emberizidae	Haplospiza unicolor		Não	Não	Não
Emberizidae	Hemithraupis guira	Saíra-de-papo-preto	Não	Não	Não
Emberizidae	Icterus jamacaii	Corrupião	Não	Não	Não
Emberizidae	Molothrus badius	Asa-de-telha	Não	Não	Não
Emberizidae	Molothrus bonariensis	Chopim. Gaudério	Não	Não	Não
Emberizidae	Neothraupis fasciata	Tié-do-cerrado	Não	Não	Sim
Emberizidae	Oryzoborus angolensis	Curió	Não	Não	Não
Emberizidae	Paroaria baeri	Cardeal-de-Goiás	Sim	Não	Não
Emberizidae	Parula pitiayumi	Mariquita	Não	Não	Não
Emberizidae	Passerina brissonii	Azulão	Não	Não	Não

Emberizidae	Piranga flava	Sanhaço-de-fogo	Não	Não	Não
Emberizidae	Poospiza cinerea	Capacetinho-do-ôco-do-pau	Sim	Não	Sim
Emberizidae	Porphyrospiza caerulescens	Campainha-azul	Não	Não	Sim
Emberizidae	Psarocolius decumanus	Japu	Não	Não	Não
Emberizidae	Pseudoleistes guirahuro	Chopim-do-brejo	Não	Não	Não
Emberizidae	Pyrrhocoma ruficeps	Cabecinha-castanha	Não	Não	Não
Emberizidae	Ramphocelus carbo	Pipira-vermelha	Não	Não	Não
Emberizidae	Saltator atricollis	Bico-de-pimenta	Não	Não	Não
Emberizidae	Saltator maximus	Tempera-viola	Não	Não	Não
Emberizidae	Saltator similis	Trinca-ferro-Sim	Não	Não	Não
Emberizidae	Scaphidura oryzivora	Chico-preto	Não	Não	Não
Emberizidae	Schistochlamys melanopis	Sanhaço-de-coleira	Não	Não	Não
Emberizidae	Schistochlamys ruficapillus	Sanhaço-de-coleira	Não	Não	Não
Emberizidae	Sicalis columbiana	Canário-do-Amazonas	Não	Não	Não
Emberizidae	Sicalis flaveola	Canário-da-terra-Sim	Não	Não	Não
Emberizidae	Sicalis luteola	Tipio	Não	Não	Não
Emberizidae	Sporophila bouvreuil	Caboclinho	Não	Não	Não
Emberizidae	Sporophila caerulescens	Coleirinho	Não	Não	Não
Emberizidae	Sporophila collaris	Celeiro-do-brejo	Não	Não	Não
Emberizidae	Sporophila hypoxantha	Caboclinho-de-barriga-vermelha	Não	Não	Não
Emberizidae	Sturnella militaris	Peito-vermelho-grande.	Não	Não	Não
Emberizidae	Tachyphonus rufus	Pipira-preta	Não	Não	Não
Emberizidae	Tangara cayana	Saíra-amarela	Não	Não	Não
Emberizidae	Thlypopsis sordida	Canário-sapé	Não	Não	Não
Emberizidae	Thraupis palmarum	Sanhaço-do-coqueiro	Não	Não	Não
Emberizidae	Thraupis sayaca	Sanhaço-cinzento	Não	Não	Não

Emberizidae	Tiaris fuliginosa	Cigarra-do-coqueiro	Não	Não	Não
Emberizidae	Trichothraupis melanops	Tiê-de-topete	Não	Não	Não
Emberizidae	Volatinia jacarina	Tiziu	Não	Não	Não
Emberizidae	Zonotrichia capensis	Tico-tico	Não	Não	Não
Falconidae	Falco deiroleucus	Falcão-de-peito-vermelho	Não	Sim	Sim
Falconidae	Falco peregrinus	Falcão-peregrino	Não	Não	Sim
Falconidae	Falco rufigularis	Cauré	Não	Não	Sim
Falconidae	Falco sparverius	Quiri-quiri	Não	Não	Sim
Falconidae	Herpetotheres cachinnans	Acauã	Não	Não	Sim
Falconidae	Micrastur ruficollis	Gavião-caburé	Não	Não	Sim
Falconidae	Milvago chimachima	Gavião-carrapateiro	Não	Não	Não
Formicariidae	Formicivora grisea	Papa-formigas-pardo	Não	Não	Não
Formicariidae	Herpsilochmus longirostris	Chororozinho-de-bico-comprido	Não	Não	Não
Formicariidae	Hypocnemoides maculicauda	Solta-asa	Não	Não	Não
Formicariidae	Taraba major	Choró-boi	Não	Não	Não
Formicariidae	Thamnophilus doliatus	Choca-barrada	Não	Não	Não
Formicariidae	Thamnophilus punctatus	Choca-pintada	Não	Não	Não
Formicariidae	Thamnophilus torquatus	Choca-de-asa-vermelha	Não	Não	Não
Furnariidae	Hylocryptus rectirostris		Não	Não	Não
Furnariidae	Lochmias nematura	Macuquinho	Não	Não	Não
Furnariidae	Phacellodomus ruber	Graveteiro	Não	Não	Não
Furnariidae	Phacellodomus rufifrons	João-de-pau	Não	Não	Não
Furnariidae	Philydor dimidiatus	Limpa-folhas-do-brejo	Não	Não	Não
Furnariidae	Philydor lichtensteini	Limpa-folhas-ocráceo	Não	Não	Não
Furnariidae	Poecilurus scutatus	Estrelinha-preta	Não	Não	Não
Furnariidae	Sclerurus scansor	Vira-folhas	Não	Não	Não

Furnariidae	Synallaxis frontalis	Casaca-de-couro	Não	Não	Não
Galbulidae	Brachygalba lugubris	Ariramba-preta	Não	Não	Não
Galbulidae	Galbula ruficauda	Bico-de-agulha-de-rabo-vermelho	Não	Não	Não
haradriidae	Vanellus chilensis	Quero-quero	Não	Não	Não
Hirundinidae	Atticora melanoleuca	Peitoril	Não	Não	Não
Hirundinidae	Hirundo pyrrhonota	Andorinha-de-dorso-acanelado	Não	Não	Não
Hirundinidae	Hirundo rustica	Andorinha-de-bando	Não	Não	Não
Hirundinidae	Notiochelidon cyanoleuca	Andorinha-pequena-de-casa	Não	Não	Não
Hirundinidae	Phaeoprogne tapera	Andorinha-do-campo	Não	Não	Não
Hirundinidae	Progne chalybea	Andorinha-doméstica-grande	Não	Não	Não
Hirundinidae	Riparia riparia		Não	Não	Não
Hirundinidae	Tachycineta albiventer	Andorinha-do-rio	Não	Não	Não
Hirundinidae	Tachycineta leucorrhoa	Andorinha-de-sobre-branco	Não	Não	Não
Jacanidae	Jacana jacana	Jaçanã	Não	Não	Não
Laridae	Phaetusa simplex	Trinta-reis-grande	Não	Não	Não
Laridae	Sterna superciliaris		Não	Não	Não
Mimidae	Mimus saturninus	Sabiá-do-campo. arrebita-rabo	Não	Não	Não
Momotidae	Momotus momota	Udu-de-coroa-azul	Não	Não	Não
Motacillidae	Anthus lutescens	Caminheiro-zumbidor, cotovia	Não	Não	Não
Muscicapidae	Polioptila dumicola	Balança-rabo-de-chapéu-preto	Não	Não	Não
Muscicapidae	Turdus amaurochalinus	Sabiá-poca	Não	Não	Não
Muscicapidae	Turdus leucomelas	Sabiá-barranco	Não	Não	Não
Muscicapidae	Turdus rufiventris	Sabiá-laranjeira	Não	Não	Não
Nyctibiidae	Nyctibius griseus	Urutau	Não	Não	Não
Opisthocomidae	Opisthocomus hoazin	Cigana	Não	Não	Não
Passeridae	Passer domesticus	Pardal	Não	Não	Não

Phalacrocoracidae	Phalacrocorax brasilianus	Biguá	Não	Não	Não
Phasianidae	Odontophorus capueira	Capueira	Não	Não	Não
Picidae	Melanerpes candidus	Bilro	Não	Não	Não
Picidae	Picoides mixtus	Pica-pau-xorão	Não	Não	Não
Picidae	Picumnus albosquamatus	Pica-pau-anão-escamado	Não	Não	Não
Picidae	Picumnus minutissimus		Não	Não	Não
Pipridae	Neopelma aurifrons	Fruxu-baiano	Não	Não	Não
Pipridae	Neopelma pallescens	Fruxu-do-cerradão	Não	Não	Não
Pipridae	Pipra fasciicauda	Uirapuru-laranja	Não	Não	Não
Pipridae	Schiffornis virescens	Flautim	Não	Não	Não
Podicipedidae	Podilymbus podiceps	Mergulhão-caçador, Mergulhão	Não	Não	Não
Psittacidae	Amazona aestiva	Papagaio-Verdadeiro	Não	Não	Não
Psittacidae	Amazona amazonica	Papagaio-do-mangue	Não	Não	Sim
Psittacidae	Amazona xanthops	Papagaio-galego	Não	Não	Sim
Psittacidae	Brotogeris chiriri	Periquito-do-encontro-amarelo	Não	Não	Sim
Psittacidae	Diopsittaca nobilis	Maracanã-nobre	Não	Não	Sim
Psittacidae	Orthopsittaca manilata	Maracanã-de-cara-amarela	Não	Não	Sim
Psittacidae	Pionus maximiliani	Maitaca-de-Maximiliano	Não	Não	Sim
Psittacidae	Pionus menstruus	Maitaca-da-cabeça-azul	Não	Não	Sim
Psittacidae	Propyrrhura maracana	Maracaã-do-buriti	Não	Não	Sim
Rallidae	Amaurolimnas concolor	Saracurinha-da-mata	Não	Não	Não
Rallidae	Gallinula chloropus	Frango-d'água-comum	Não	Não	Não
Rallidae	Laterallus viridis	Siricora-mirim	Não	Não	Não
Rallidae	Laterallus xenopterus	Sanã-de-cara-ruiva	Não	Não	Não
Rallidae	Micropygia schomburgkii	Maxalalagá	Não	Não	Não
Rallidae	Porphyrula martinica	Frango-d'água-azul	Não	Não	Não

Rallidae	Porzana albicollis	Sanã-carijó	Não	Não	Não
Rallidae	Rallus maculatus	Saracura-carijó	Não	Não	Não
Rallidae	Rallus nigricans	Saracura-sanã	Não	Não	Não
Ramphastidae	Pteroglossus castanotis	Araçari-castanho	Não	Não	Não
Ramphastidae	Ramphastos toco	Tucanuçu	Não	Não	Sim
Ramphastidae	Ramphastosdicolorus	Tucano-de-bico-verde	Não	Não	Não
Recurvirostridae	Himantopus himantopu	Pernilongo	Não	Não	Não
Rheidae	Rhea americana	Ema	Não	Não	Sim
Rhynchopidae	Rhynchops niger	Corta-água	Não	Não	Não
Scolopacidae	Actitis macularia	Maçariquinho	Não	Não	Não
Scolopacidae	Gallinago paraguaiae	Narceja	Não	Não	Não
Scolopacidae	Tringa flavipes	Maçarico de-perna-amarela	Não	Não	Não
Strigidae	Aegolius harrisii	Caburé-acanelado	Não	Não	Sim
Strigidae	Glaucidium brasilianum	Caburé	Não	Não	Sim
Strigidae	Otus choliba	Corujinha-do-mato	Não	Não	Sim
Strigidae	Pulsatrix perspicillata	Murucututu	Não	Não	Sim
Strigidae	Rhinoptynx clamator	Coruja-orelhuda	Não	Não	Sim
Strigidae	Speotyto cunicularia	Buraqueira	Não	Não	Sim
Threskiornithidae	Mesembrinibis cayennensis	Corocoró	Não	Não	Não
Threskiornithidae	Phimosus infuscatus	Tapicuru-de-cara-pelada	Não	Não	Não
Threskiornithidae	Platalea ajaia	Colhereiro	Não	Não	Não
Threskiornithidae	Theristicus caudatus	Curicaca	Não	Não	Não
Tinamidae	Nothura boraquira	Codorma-comum	Não	Não	Não
Tinamidae	Nothura maculosa	Codorma-comum, Perdizinha.	Não	Não	Não
Tinamidae	Nothura minor	Codorna-mineira.	Sim	Não	Sim
Tinamidae	Rhynchotus rufescens	Perdiz	Não	Não	Não

Trochilidae	Amazilia fimbriata	Beija-flor-da-garganta-verde	Não	Não	Sim
Trochilidae	Amazilia lactea	Beijo-flor-de-peito-de-safira	Não	Não	Sim
Trochilidae	Amazilia versicolor	Beija-flor-de-banda-branca	Não	Não	Sim
Trochilidae	Clytolaema rubricauda	Beija-flor-rubi	Não	Não	Sim
Trochilidae	Glaucis hirsuta	Balança-rabo-de-bico-torto,	Não	Não	Sim
Trochilidae	Heliactin cornuta	Chifre-de-ouro	Não	Não	Sim
Trochilidae	Heliomaster furcifer	Bico-reto-azul	Não	Não	Sim
Trochilidae	Heliothryx aurita	Beija-flor-de-bochecha-azul	Não	Sim	Sim
Trochilidae	Lophornis magnifica	Topetinho-vermelho	Sim	Não	Sim
Trochilidae	Phaethornis pretrei	Rabo-branco-de-sobre-amarelo	Não	Não	Sim
Trochilidae	Phaethornis ruber	Besourinho-da-mata	Não	Não	Sim
Trochilidae	Polytmus guainumbi	Beija-flor-dourado-de-bico-curvo	Não	Não	Sim
Trochilidae	Thalurania furcata	Beija-flor-tesoura-verde	Não	Não	Sim
Trochilidae	Thalurania glaucopis	Tesoura-da-fronte-violeta	Não	Não	Sim
Troglodytidae	Donacobius atricapillus	Japacanim, assovia-cachorro	Não	Não	Não
Troglodytidae	Thryothorus genibarbis	Garrinchão-pai-avô	Não	Não	Não
Troglodytidae	Thryothorus leucotis	Garrinchão-de-barriga-vermelha	Não	Não	Não
Troglodytidae	Troglodytes musculus	Corruíra	Não	Não	Não
Tyrannidae	amaurocephalus	Cabeçudo	Não	Não	Não
Tyrannidae	Cnemotriccus fuscatus	Guracavuçu	Não	Não	Não
Tyrannidae	Elaenia cristata	Guaracava-de-topete	Não	Não	Não
Tyrannidae	Elaenia flavogaster	Maria-já-é-dia	Não	Não	Não
Tyrannidae	Elaenia mesoleuca	Tuque	Não	Não	Não
Tyrannidae	Empidonomus varius	Peitica	Não	Não	Não
Tyrannidae	Gubernetes yetapa	Tesoura-do-brejo	Não	Não	Não
Tyrannidae	Hemitriccus magaritaceiventer	Sebinho-do-olho-de-ouro	Não	Não	Não

Tyrannidae	Hemitriccus striaticollis	Sebinho-de-olho-de-ouro	Não	Não	Não
Tyrannidae	Hirundinea ferruginea	Gibão-de-couro	Não	Não	Não
Tyrannidae	Lathrotriccus euleri	Enferrujado	Não	Não	Não
Tyrannidae	Legatus leucophaius		Não	Não	Não
Tyrannidae	Leptopogon aurantioatrocristatus	Peitica-de-chapéu-preto	Não	Não	Não
Tyrannidae	Machetornis rixosus	Bem-te-vi-do-gado	Não	Não	Não
Tyrannidae	Megarynchus pitangua	Bem-te-vi-do-bico-chato	Não	Não	Não
Tyrannidae	Myiarchus ferox	Maria-cavaleira	Não	Não	Não
Tyrannidae	Myiarchus tyrannulus	Maria-cavaleira-de-rabo-enferrujado	Não	Não	Não
Tyrannidae	Myiopagis caniceps	Maria-da-copa	Não	Não	Não
Tyrannidae	Myiopagis viridicata	Guaracava-de-olheiras	Não	Não	Não
Tyrannidae	Myiornis auricularis	Miudinho	Não	Não	Não
Tyrannidae	Phyllomyias reiseri	Poiaeiro-do-grotão	Não	Não	Não
Tyrannidae	Platyrinchus mystaceus	Patinho	Não	Não	Não
Tyrannidae	Pyrocephalus rubinus	Príncipe, verão, mãe-do-sol	Não	Não	Não
Tyrannidae	Satrapa icterophrys	Suiriri-pequeno	Não	Não	Não
Tyrannidae	Serpophaga subcristata	Alegrinho	Não	Não	Não
Tyrannidae	Pitangus sulphuratus	Bem-te-vi	Não	Não	Não
Tyrannidae	Tityra inquisitor	Anambé-branco-de-bochecha-parda	Não	Não	Não
Tyrannidae	Todirostrum cinereum	Relógio	Não	Não	Não
Tyrannidae	Todirostrum latirostri	Ferreirinho-de-cara-parda	Não	Não	Não
Tyrannidae	Todirostrum sylvia	Ferreirinho-da-capoeira	Não	Não	Não
Tyrannidae	Tyrannus melancholicus	Suiriri	Não	Não	Não
Tyrannidae	Tyrannus savana	Tesoura	Não	Não	Não
Tyrannidae	Xolmis cinerea	Maria-branca	Não	Não	Não
Tyrannidae	Xolmis velata	Noivinha-branca	Não	Não	Não

Tytonidae	Tyto alba	Suindara	Não	Não	Sim
Anfíbios					
Família	Espécie	Nome vulgar	Endemismo	Raro	Ameaçado
Bufonidae	Bufo paracnemis	Sapo	Não	Não	Não
Dendrobatidae	Epidedobates flavopictus		Não	Não	Sim
Hylidae	Scinax aff. Nebulosus		Não	Não	Não
Hylidae	Hyla albopunctata		Não	Não	Não
Hylidae	Hyla biobeba		Sim	Não	Não
Hylidae	Hyla crepitans		Não	Não	Não
Hylidae	Phyllomedusa centralis		Sim	Não	Não
Hylidae	Phyllomedusa crombiei		Não	Não	Não
Hylidae	Hyla cruzi		Não	Não	Não
Hylidae	Phyllomedusa cuvieri		Não	Não	Não
Hylidae	Scinax fuscomarginatus		Não	Não	Não
Hylidae	Scinax fuscovarius		Não	Não	Não
Hylidae	Hyla goiana		Não	Não	Não
Hylidae	Phyllomedusa hypochondrialis		Não	Não	Não
Hylidae	Hyla minuta		Não	Não	Não
Hylidae	Hyla multifasciata		Não	Não	Não
Hylidae	Hyla nana		Não	Não	Não
Hylidae	Phyllomedusa nattereri		Não	Não	Não
Hylidae	Hyla raniceps		Não	Não	Não
Hylidae	Hyla rubicundula		Sim	Não	Não
Hylidae	Hyla soaresi		Não	Não	Não
Hylidae	Hyla tractorax		Não	Não	Não

Hylidae	Phrynohyas venulosa		Não	Não	Não
Leptodactylidae	Pseudopaludicola ameghini		Não	Não	Não
Leptodactylidae	Proceratophrys boiei		Não	Não	Não
Leptodactylidae	Physalaemus centralis		Não	Não	Não
Leptodactylidae	Physalaemus cuvieri		Não	Não	Não
Leptodactylidae	Leptodactylus fuscus		Não	Não	Não
Leptodactylidae	Proceratophrys goyana		Sim	Não	Não
Leptodactylidae	Leptodactylus labyrinthicus		Não	Não	Não
Leptodactylidae	Adenomera martinezi		Não	Não	Não
Leptodactylidae	Physalaemus nattereri		Não	Não	Não
Leptodactylidae	Leptodactylus ocellatus		Não	Não	Não
Leptodactylidae	Leptodactylus petersii		Não	Não	Não
Leptodactylidae	Leptodactylus podicipinus		Não	Não	Não
Leptodactylidae	Leptodactylus pustulatus		Não	Não	Não
Leptodactylidae	Pseudopaludicola saltica		Não	Não	Não
Leptodactylidae	Odontophrynus salvatori		Sim	Não	Não
Leptodactylidae	Leptodactylus syphax		Não	Não	Não
Leptodactylidae	Barycholos ternetzi		Não	Não	Não
Microhylidae	Elachistocleis bicolor		Não	Não	Não
Microhylidae	Dermatonotus muelleri		Não	Não	Não
Pseudidae	Pseudis bolbodactyla		Não	Não	Não
Répteis					
Família	Espécie	Nome vulgar	Endemismo	Raro	Ameaçado
Alligatoridae	Paleosuchus palpebrosus		Não	Não	Sim
Amphisbaenidae	Amphisbaena alba	Cobra-cega	Não	Não	Não

Anguidae	Ophiodes striatus		Não	Não	Não
Anomalepididae	Liotyphlops beui		Não	Não	Não
Chelidae	Phrynops geoffroanus		Não	Não	Sim
Colubridae	Oxybelis aeneus	Cobra-cipó-bronzeada-claro	Não	Não	Não
Colubridae	Liophis almadensis		Não	Não	Não
Colubridae	Leptodeira annulata		Não	Não	Não
Colubridae	Mastigodryas bifossatus		Não	Não	Não
Colubridae	Drymarchon corais	Cascavel	Não	Não	Não
Colubridae	Phimophis guerini		Não	Não	Não
Colubridae	Helicops leopardinus	Piraguara, Cobra-d'Água	Não	Não	Não
Colubridae	Philodryas matogrossensis		Não	Não	Não
Colubridae	Waglerophis merremi		Não	Não	Não
Colubridae	Sibynomorphus mikanii		Não	Não	Não
Colubridae	Liophis miliaris		Não	Não	Não
Colubridae	Philodryas nattereri		Não	Não	Não
Colubridae	Pseudoboa nigra		Não	Não	Não
Colubridae	Philodryas olfersi		Não	Não	Não
Colubridae	Philodryas olfersii		Não	Não	Não
Colubridae	Philodryas patagoniensis		Não	Não	Não
Colubridae	Liophis paucidens		Não	Não	Não
Colubridae	Liophis poecilogyrus		Não	Não	Não
Colubridae	Spilotes pullatus		Não	Não	Não
Colubridae	Liophis reginae		Não	Não	Não
Colubridae	Simophis rhinostoma		Não	Não	Não
Colubridae	Clelia rustica		Não	Não	Não
Colubridae	Oxyrhopus trigeminus	Cobra-coral-falsa	Não	Não	Não

Elapidae	Micrurus frontalis	Coral verdadeira	Não	Não	Não
Elapidae	Micrurus lemniscatus	Coral verdadeira	Não	Não	Não
Gekkonidae	Hemidactylus mabouia		Não	Não	Não
Gekkonidae	Thecadactylus rapicauda	Lagartixa	Não	Não	Não
Gymnophthalmidae	Pantodactylus albostrigatus		Não	Não	Não
Gymnophthalmidae	Micrablepharus maximiliani		Não	Não	Não
Gymnophthalmidae	Pantodactylus schreirbersi		Não	Não	Não
Iguanidae	Iguana iguana		Não	Não	Sim
Leptotyphlopidae	Leptotyphlops koppesi		Não	Não	Não
Polychrotitidae	Polychrus acutirostris		Não	Não	Não
Scincidae	Mabuya dorsivitata		Não	Não	Não
Scincidae	Mabuya nigropunctata		Não	Não	Não
Teiidae	Ameiva ameiva	Lagarto-verde, Calango	Não	Não	Não
Teiidae	Cnemidophorus lemniscatus			Não	Não
Teiidae	Tupinambis nigropunctatus		Não	Não	Sim
Teiidae	Cnemidophorus ocellifer	Lagarto, Calango	Não	Não	Não
Teiidae	Tupinambis teguixin	Lagarto	Não	Não	Sim
Tropiduridae	Tropidurus torquatus		Não	Não	Não
Ictiofauna					
Família	Espécie	Nome vulgar	Endemismo	Raro	Ameaçado
Acestrorhynchidae	Acestrorynchus lacustris		Não	Não	Não
Anastomidae	Anostomoides laticeps		Não	Não	Não
Anastomidae	Leporinus elongatus		Não	Não	Não
Anastomidae	Anostomoides laticeps		Não	Não	Não
Anostomidae	Leporinus octofasciatus		Não	Não	Não

Anostomidae	Leporellus vittatus		Não	Não	Não
Anostoneidae	Leporinus trifasciatus		Não	Não	Não
Anostoneidae	Leporinus friderici		Não	Não	Não
Characidae	Piabina argentea		Não	Não	Não
Characidae	Salminus hilarii		Não	Não	Não
Characidae	Galeocharax knerii		Não	Não	Não
Characidae	Salminus maxillosus		Não	Não	Não
Cynodontidae	Rhaphiodon vulpinus		Não	Não	Não
Erythrinidae	Hoplias a. off. Malabari		Não	Não	Não
Erythrinidae	Hoplias malabaicus		Não	Não	Não
Heptapteridae	Pimelodella brasiliensis		Não	Não	Não
Pimelodidae	Pimelodina flavipinnis		Não	Não	Não
Pimelodidae	Paulicea lutkeni		Não	Não	Não
Potamotrygonidae	Potamotrygon motoro	Arraia	Não	Não	Não
Prochilodontidae	Prochilodus cf. lineatus		Não	Não	Não
Prochilodontidae	Prochilodus scroffa		Não	Não	Não
Sciaenidae	Pachypops furcraeus		Não	Não	Não
Mamífero					
Família	Espécie	Nome vulgar	Endemismo	Raro	Ameaçado
Mormoopidae	Pteronotus parnellii	Morcego	Não	Não	Não
Muridae	Oecomys bicolor		Não	Sim	Não
Agoutidae	Agouti paca		Não	Sim	Não
Cervidae	Ozotoceros bezoarticus		Não	Sim	Sim
Didelphidae	Didelphis albiventris		Não	Não	Não
Didelphidae	Monodelphis americana		Não	Não	Sim
Didelphidae	Philander opossum		Não	Sim	Não

Echimyidae	Mesomys didelphoides		Não	Não	Não
Echimyidae	Proechimys longicaudatus		Não	Não	Não
Felidae	Panthera onca		Não	Sim	Sim
Hydrochaeridae	Hydrochaeris hydrochaeris		Não	Não	Não
Leporidae	Sylvilagus brasiliensis		Não	Não	Não
Mimercophagidae	Mymercophaga tridactyla		Não	Sim	Não
Muridae	Akodon cursor		Não	Não	Não
Muridae	Nectomys squamipes	Rato-d'água	Não	Não	Não
Muridae	Oryzomys capito		Não	Não	Não
Muridae	Oryzomys megacephalus		Sim	Sim	Não
Muridae	Oryzomys subflavus		Não	Não	Não
Mustelidae	Lontra longicauda		Não	Sim	Não
Phyllostomidae	Phyllostomus hastatus		Não	Não	Não
Procyonidae	Nasua nasua		Não	Não	Não
Tayassuidae	Tayassu pecari		Não	Sim	Não
Didelphidae	Monodelphis domestica		Não	Não	Não
Muridae	Rhipidomys mastacalis	Rato-da-árvore	Não	Não	Não
Caviidae	Galea spixii	Preá	Não	Não	Não
Muridae	Kunsia tomentosus		Não	Sim	Não
Mustelidae	Eira barbara		Não	Sim	Não
Canidae	Chrysocyon brachyurus		Não	Sim	Sim
Dasypodidae	Euphractus sexcinctus	Tatu-peba	Não	Não	Não
Echimyidae	Clyomys apereoides		Não	Não	Não
Echimyidae	Thrichomys apereoides	Rato-silvestre	Não	Não	Não
Phyllostomidae	Artibeus lituratus	Morcego	Não	Não	Não
Phyllostomidae	Glossophaga soricina		Não	Não	Não
Phyllostomidae	Vampyrops lineatus		Não	Não	Não

Tayassuidae	Pecari tajacu		Não	Sim	Sim
Muridae	Calomys expulsus		Não	Não	Não
Didelphidae	Philander opossum		Não	Sim	Não
Didelphidae	Didelphis albiventris	Gambá	Não	Não	Não
Mustelidae	Eira barbara		Não	Sim	Não
Phyllostomidae	Desmodus rotundus	Vampiro-verdadeiro	Não	Não	Não
Muridae	Nectomys squamipes		Não	Não	Não
Cervidae	Mazama americana		Não	Sim	Sim
Cervidae	Mazama gouazoubira		Não	Sim	Sim
Cervidae	Ozotocerus bezoarticus	Veado campeiro	Não	Sim	Sim
Didelphidae	Gracilinanus emiliae		Não	Não	Sim
Didelphidae	Monodelphis americana		Não	Não	Sim
Didelphidae	Monodelphis domestica	Mucura	Não	Não	Não
Felidae	Herpailurus yaguaroundi	Gato-mourisco	Não	Sim	Sim
Felidae	Panthera onca	Onça-pintada	Não	Sim	Sim
Hydrochaeridae	Hydrochaeris hydrochaeris		Não	Não	Não
Mimercophagidae	Tamandua tetradactyla		Não	Não	Não
Molossidae	Molossops temminckii		Não	Não	Não
Muridae	Oecomys cleberi		Sim	Sim	Sim
Muridae	Oligoryzomys nigripes		Não	Não	Não
Muridae	Oryzomis subflavus	Rato-silvestre	Sim	Não	Não
Muridae	Oryzomys capito		Não	Não	Não
Muridae	Oryzomys maracajuensis		Não	Não	Não
Muridae	Oryzomys megacephalus		Sim	Sim	Não
Muridae	Oryzomys subflavus		Não	Não	Não
Mustelidae	Lontra longicauda		Não	Sim	Não
Noctilionidae	Noctilio leporinus		Não	Não	Não

Phyllostomidae	Glossophaga soricina		Não	Não	Não
Procyonidae	Nasua nasua		Não	Não	Não
Procyonidae	Procyon cancrivorus	Mão-pelada	Não	Não	Não
Vespertilionidae	Lasiurus cinereus		Não	Sim	Não
Echimyidae	Proechimys roberti		Não	Não	Não
Didelphidae	Didelphis albiventris	Gambá	Não	Não	Não
Echimyidae	Proechimys roberti		Não	Não	Não
Dasypodidae	Priodontes maximus		Não	Sim	Sim
Echimyidae	Proechimys roberti		Não	Não	Não
Tapiridae	Tapirus terrestris		Não	Sim	Sim
Echimyidae	Proechimys roberti		Não	Não	Não
Didelphidae	Didelphis albiventris		Não	Não	Não
Phyllostomidae	Desmodus rotundus		Não	Não	Não
Phyllostomidae	Artibeus jamaicensis		Não	Não	Não
Erethizontidae	Coendou coendou		Não	Não	Não
Erethizontidae	Coendou prehensilis		Não	Sim	Não
Mustelidae	Eira barbara		Não	Sim	Não
Muridae	Oryzomys megacephalus		Sim	Sim	Não
Muridae	Rhipidomys mastacalis		Não	Não	Não
Insetifauna					
Família	Espécie	Nome vulgar	Endemismo	Raro	Ameaçado
Colletidae	Colletes petropolitanus	Abelha	Não	Não	Não
Colletidae	Ptiloglossa pretiosa	Abelha	Não	Não	Não
Colletidae	Colletes rufipes	Abelha	Não	Não	Não
Culicidae	Psorophora ferox		Não	Não	Não
Culicidae	Anopheles fluminensis		Não	Não	Não

Culicidae	Anopheles strodei	Não	Não	Não
Cuterebridae	Metacuterebra apicalis	Não	Não	Não
Cyclopidae	Homocyclops ater	Não	Não	Não
Cyclopidae	Acanthocyclops robustos	Não	Não	Não
Dalceridae	Dalcera abrasa	Não	Não	Não
Dalceridae	Acraga ochracea	Não	Não	Não
Dalceridae	Dalcerina tijucana	Não	Não	Não
Difflugiidae	Difflugia corona	Não	Não	Não
Difflugiidae	Difflugia pyriformis	Não	Não	Não
Difflugiidae	Difflugia urceolata	Não	Não	Não
Dreissenidae	Mytilopsis lopesi	Não	Não	Não
Drosophilidae	Drosophila ananassae	Não	Não	Não
Drosophilidae	Drosophila ararama	Não	Não	Não
Drosophilidae	Drosophila atalaia	Não	Não	Não
Drosophilidae	Drosophila atrata	Não	Não	Não
Drosophilidae	Drosophila austrosaltans	Não	Não	Não
Drosophilidae	Drosophila bandeirantorum	Não	Não	Não
Drosophilidae	Drosophila bocainensis	Não	Não	Não
Drosophilidae	Drosophila busckii	Não	Não	Não
Drosophilidae	Drosophila buzzatii	Não	Não	Não
Drosophilidae	Drosophila camargoi	Não	Não	Não
Drosophilidae	Drosophila canalinea	Não	Não	Não
Drosophilidae	Drosophila capricorni	Não	Não	Não
Drosophilidae	Drosophila cardini	Não	Não	Não
Drosophilidae	Drosophila cardinoides	Não	Não	Não
Drosophilidae	Drosophila coroica	Não	Não	Não

Drosophilidae	Drosophila fumipennis	Não	Não	Não
Drosophilidae	Drosophila griseolineata	Não	Não	Não
Drosophilidae	Drosophila guaru	Não	Não	Não
Drosophilidae	Drosophila hydei	Não	Não	Não
Drosophilidae	Drosophila immigrans	Não	Não	Não
Drosophilidae	Drosophila kikkawai	Não	Não	Não
Drosophilidae	Drosophila latifasciaefor	Não	Não	Não
Drosophilidae	Drosophila maculifrons	Não	Não	Não
Drosophilidae	Drosophila malerkotliana	Não	Não	Não
Drosophilidae	Drosophila medioimpressa	Não	Não	Não
Drosophilidae	Drosophila mediopunctata	Não	Não	Não
Drosophilidae	Drosophila mediostriata	Não	Não	Não
Drosophilidae	Drosophila melanogaster	Não	Não	Não
Drosophilidae	Drosophila mercatorum	Não	Não	Não
Drosophilidae	Drosophila nebulosa	Não	Não	Não
Drosophilidae	Drosophila neocordata	Não	Não	Não
Drosophilidae	Drosophila neoelliptica	Não	Não	Não
Drosophilidae	Drosophila nigricruria	Não	Não	Não
Drosophilidae	Drosophila ornatifrons	Não	Não	Não
Drosophilidae	Drosophila pallidipennis	Não	Não	Não
Drosophilidae	Drosophila para	Não	Não	Não
Drosophilidae	Drosophila paranaensis	Não	Não	Não
Drosophilidae	Drosophila paulistorum	Não	Não	Não
Drosophilidae	Drosophila polymorpha	Não	Não	Não
Drosophilidae	Drosophila prosaltans	Não	Não	Não
Drosophilidae	Drosophila repleta	Não	Não	Não

Drosophilidae	Drosophila serido		Não	Não	Não
Drosophilidae	Drosophila simulans		Não	Não	Não
Drosophilidae	Drosophila sturtevanti		Não	Não	Não
Drosophilidae	Drosophila tropicalis		Não	Não	Não
Drosophilidae	Drosophila willistoni		Não	Não	Não
Figitidae	Lopheucoila anastrephae		Não	Não	Não
Figitidae	Aganaspis pelleranoi		Não	Não	Não
Geometridae	Glena demissaria		Não	Não	Não
Geometridae	Cyclomia mopsaria		Não	Não	Não
Geometridae	Cyclomia ocana	Lagarta	Não	Não	Não
Geometridae	Oxydia saturniata		Não	Não	Não
Geometridae	Pyrinia sterrhata		Não	Não	Não
Halictidae	Augochlora alaris	Abelha	Não	Não	Não
Halictidae	Pseudoagaposte anasimus	Abelha	Não	Não	Não
Halictidae	Neocorynura atromarginata	Abelha	Não	Não	Não
Halictidae	Augochloropsis cleopatra	Abelha	Não	Não	Não
Halictidae	Augochloropsis cupreola	Abelha	Não	Não	Não
Halictidae	Pseudoaugochlo graminea	Abelha	Não	Não	Não
Halictidae	Augochloropsis heterochroa	Abelha	Não	Não	Não
Halictidae	Augochloropsis laeta	Abelha	Não	Não	Não
Halictidae	Augochlora morrae	Abelha	Não	Não	Não
Halictidae	Augochloropsis notoplus	Abelha	Não	Não	Não
Halictidae	Pseudoagaposte paulista	Abelha	Não	Não	Não
Halictidae	Dialictus picadensis	Abelha	Não	Não	Não
Halictidae	Rhynchalictus rostratus	Abelha	Não	Não	Não
Halictidae	Augochloropsis smithiana	Abelha	Não	Não	Não

Halictidae	Augochloropsis wallcei	Abelha	Não	Não	Não
Hedylidae	Macrosoma paularia		Não	Não	Não
Hesperiidae	Chiomara asychis		Não	Não	Não
Hesperiidae	Gesta heteroptens		Não	Não	Não
Hesperiidae	Pyrrhopige pelota		Não	Não	Não
Hesperiidae	Chiomara punctum	Lagarta	Não	Não	Não
Hesperiidae	Erynnis zarucco		Não	Não	Não
Lasiocampidae	Tolype innocens		Não	Não	Não
Limacodidae	Phobetron hipparchia		Não	Não	Não
Limacodidae	Semira incisa		Não	Não	Não
Limacodidae	Platyprosterna pernambuconis		Não	Não	Não
Limacodidae	Platyprosterna perpectinata		Não	Não	Não
Limacodidae	Natada pucara		Não	Não	Não
Limacodidae	Talima rufoflava		Não	Não	Não
Lycaenidae	Tmolus bagrada		Não	Não	Não
Lycaenidae	Thecla ergina		Não	Não	Não
Lycaenidae	Anteros lectabilis		Não	Não	Não
Lycaenidae	Emesis russula		Não	Não	Não
Lycaenidae	Thecla socia		Não	Não	Não
Lycaenidae	Lyropteryx tersichore		Não	Não	Não
Lymantriidae	Eloria subapicalis		Não	Não	Não
Megachilidae	Megachile assumptionis	Abelha	Não	Não	Não
Megachilidae	Epanthidium aureocinctum	Abelha	Não	Não	Não
Megachilidae	Megachile aurieventris	Abelha	Não	Não	Não
Megachilidae	Megachile brethesi	Abelha	Não	Não	Não
Megachilidae	Megachile cf affabilis	Abelha	Não	Não	Não

Megachilidae	Megachile cf diversa	Abelha	Não	Não	Não
Megachilidae	Megachile curvipes	Abelha	Não	Não	Não
Megachilidae	Megachile eisneri	Abelha	Não	Não	Não
Megachilidae	Megachile friesei	Abelha	Não	Não	Não
Megachilidae	Megachile gigas	Abelha	Não	Não	Não
Megachilidae	Megachile guaranitica	Abelha	Não	Não	Não
Megachilidae	Lithurgus huberi	Abelha	Não	Não	Não
Megachilidae	Megachile laeta	Abelha	Não	Não	Não
Megachilidae	Anthodoictes megachiloides	Abelha	Não	Não	Não
Megachilidae	Megachile orba	Abelha	Não	Não	Não
Megachilidae	Ceolioxys pampeana	Abelha	Não	Não	Não
Megachilidae	Megachile rubricata	Abelha	Não	Não	Não
Megachilidae	Megachile terrestris	Abelha	Não	Não	Não
Megachilidae	Epanthidium tigrinum	Abelha	Não	Não	Não
Megachilidae	Megachile trigonapsis	Abelha	Não	Não	Não
Megalopygidae	Podalia albescens		Não	Não	Não
Megalopygidae	Megalopyge albicolis		Não	Não	Não
Megalopygidae	Podalia annulipes		Não	Não	Não
Megalopygidae	Trosia dimas	Lagarta	Não	Não	Não
Megalopygidae	Megalopyge lanata		Não	Não	Não

Flora						
Classe	Família	Espécie	Nome vulgar	Endemismo	Raro	Ameaçado
Bryopsida	Bartramiaceae	Philonotis uncinata		Não	Não	Não
Bryopsida	Bryaceae	Brachymenium globosum		Não	Não	Não

Bryopsida	Bryaceae	Bryum apiculatum	Não	Não	Não
Bryopsida	Bryaceae	Bryum argenteum	Não	Não	Não
Bryopsida	Bryaceae	Bryum cappilare	Não	Não	Não
Bryopsida	Bryaceae	Bryum coronatum	Não	Não	Não
Bryopsida	Bryaceae	Bryum densifolium	Não	Não	Não
Bryopsida	Bryaceae	Brachymenium globosum	Não	Não	Não
Bryopsida	Calymperaceae	Syrrhopodon gaudichaudii	Não	Não	Não
Bryopsida	Calymperaceae	Syrrhopodon ligulatus	Não	Não	Não
Bryopsida	Calymperaceae	Syrrhopodon parasiticus	Não	Não	Não
Bryopsida	Calymperaceae	Syrrhopodon prolifer	Não	Não	Não
Bryopsida	Cryphaeaceae	Schoenobryum concavifolium	Não	Não	Não
Bryopsida	Dicranaceae	Campylopus controversus	Não	Não	Não
Bryopsida	Dicranaceae	Leucobryum martianum	Não	Não	Não
Bryopsida	Dicranaceae	Campylopus occultus	Não	Não	Não
Bryopsida	Dicranaceae	Octoblepharum albidum	Não	Não	Não
Bryopsida	Dicranaceae	Ochrobryum subulatum	Não	Não	Não
Bryopsida	Entodontaceae	Mesonodon regnellianus	Não	Não	Não
Bryopsida	Entodontaceae	Erythrodontium squarrosum	Não	Não	Não
Bryopsida	Fabroniaceae	Fabronia ciliaris	Não	Não	Não
Bryopsida	Fissidentaceae	Fissidens submerginatus	Não	Não	Não
Bryopsida	Funariaceae	Funaria hygrometrica	Não	Não	Não
Bryopsida	Нурпасеае	Cryso-hypnum diminutivum	Não	Não	Não
Bryopsida	Нурпасеае	Cryso-hypnum elegantulum	Não	Não	Não
Bryopsida	Нурпасеае	Isopterygium tenerum	Não	Não	Não
Bryopsida	Meteoriaceae	Pappilaria nigescens	Não	Não	Não
Bryopsida	Orthotrichaceae	Macromitrium guatemalense	Não	Não	Não

Bryopsida	Orthotrichaceae	Schlotheimia rugifolia	Não	Não	Não
Bryopsida	Polytrichaceae	Pogonatum pensilvanicum	Não	Não	Não
Bryopsida	Pottiaceae	Hyophilla involuta	Não	Não	Não
Bryopsida	Pterobryaceae	Jaegerina scariosa	Não	Não	Não
Bryopsida	Rhachitheciaceae	Tisserantiella minutissima	Não	Não	Não
Bryopsida	Sematophyllaceae	Acroporium estrellae	Não	Não	Não
Bryopsida	Sematophyllaceae	Donnellia commutata	Não	Não	Não
Bryopsida	Sematophyllaceae	Sematophyllum subpinnatum	Não	Não	Não
Bryopsida	Sematophyllaceae	Sematophyllum subsimplex	Não	Não	Não
Bryopsida	Sphagnaceae	Sphagnum perichaetiale	Não	Não	Não
Bryopsida	Thuidiaceae	Cyrto-hypnum minutulum	Não	Não	Não
Chlorophyceae	Hydrodictyaceae	Pediastrum simplex	Não	Não	Não
Chlorophyceae	Micractiniaceae	Micractinium pulsillum	Não	Não	Não
Chlorophyceae	Scenedesmaceae	Scenedesmus dimorphus	Não	Não	Não
Chlorophyceae	Scenedesmaceae	Scenedesmus quadricauda	Não	Não	Não
Chlorophyceae	Scenedesmaceae	Coelastrum reticulatum	Não	Não	Não
Filicopsida	Cyatheaceae	Cyathea delgadii	Não	Não	Não
Filicopsida	Dennstaedtiaceae	Pteridium aquilinum	Não	Não	Não
Hepatopsida	Aneuraceae	Riccardia chamedryfolia	Não	Não	Não
Hepatopsida	Calypogejaceae	Calypogeja peruviana	Não	Não	Não
Hepatopsida	Fossombroniaceae	Fossombronia porphyrorhyza	Não	Não	Não
Hepatopsida	Jubulaceae	Frullania arecae	Não	Não	Não
Hepatopsida	Jubulaceae	Frullania ecklonii	Não	Não	Não
Hepatopsida	Jubulaceae	Frullania ericoides	Não	Não	Não
Hepatopsida	Jubulaceae	Frullania exilis	Não	Não	Não
Hepatopsida	Jubulaceae	Frullania gibbosa	Não	Não	Não

Hepatopsida	Lejeuneaceae	Cheilolejeunea acutangula	Não	Não	Não
Hepatopsida	Lejeuneaceae	Microlejeunea bullata	Não	Não	Não
Hepatopsida	Lejeuneaceae	Lejeunea flava	Não	Não	Não
Hepatopsida	Lejeuneaceae	Lejeunea minutiloba	Não	Não	Não
Hepatopsida	Lejeuneaceae	Lopholejeunea muelleriana	Não	Não	Não
Hepatopsida	Lejeuneaceae	Lejeunea phyllobola	Não	Não	Não
Hepatopsida	Lejeuneaceae	Lejeunea ruthii	Não	Não	Não
Hepatopsida	Lejeuneaceae	Aphanolejeunea truncatifolia	Não	Não	Não
Hepatopsida	Lepidoziaceae	Arachniopsis diacantha	Não	Não	Não
Hepatopsida	Lepidoziaceae	Telaranea nematodes	Não	Não	Não
Hepatopsida	Metzgeriaceae	Metzgeria dichotoma	Não	Não	Não
Hepatopsida	Metzgeriaceae	Metzgeria myriopoda	Não	Não	Não
Hepatopsida	Pallaviciniaceae	Pallavicinia lyellii	Não	Não	Não
Hepatopsida	Plagiochilaceae	Plagiochila corrugata	Não	Não	Não
Hepatopsida	Plagiochilaceae	Plagiochila martiana	Não	Não	Não
Hepatopsida	Plagiochilaceae	Plagiochila disticha	Não	Não	Não
Liliopsida	Araceae	Philodendron selloum	Não	Não	Não
Liliopsida	Arecaceae	Geonoma brevispatha	Não	Não	Não
Liliopsida	Arecaceae	Astrocaryum chambira	Não	Não	Não
Liliopsida	Arecaceae	Euterpe edulis	Não	Não	Não
Liliopsida	Arecaceae	Iriartea exorrhiza	Não	Não	Não
Liliopsida	Arecaceae	Syagrus flexuosa	Não	Não	Não
Liliopsida	Arecaceae	Mauritia flexuosa	Não	Não	Não
Liliopsida	Arecaceae	Syagrus inajai	Não	Não	Não
Liliopsida	Arecaceae	Allagoptera leucocalyx	Não	Não	Não
Liliopsida	Arecaceae	Maximiliana maripa	Não	Não	Não

Liliopsida	Arecaceae	Attalea phalerata		Não	Não	Não
Liliopsida	Arecaceae	Jessenis polycarpa		Não	Não	Não
Liliopsida	Arecaceae	Syagrus romanzoffianum		Não	Não	Não
Liliopsida	Arecaceae	Geonoma schottiana		Não	Não	Não
Liliopsida	Broméliaceae	Bromelia balansae	Bromélia	Não	Não	Não
Liliopsida	Dioscoreaceae	Dioscorea marginata		Não	Não	Não
Liliopsida	Orchidaceae	Cattleya bicolor	Orquídea	Não	Não	Não
Liliopsida	Orchidaceae	Cattleya nobilior	Orquídea	Não	Não	Não
Liliopsida	Orchidaceae	Cattleya walkeriana	Orquídea	Não	Não	Não
Liliopsida	Poaceae	Axonopus argentinus	Gramínea	Não	Não	Não
Liliopsida	Poaceae	Axonopus barbigerus	Gramínea	Não	Não	Não
Liliopsida	Poaceae	Sorghum bicolor		Não	Não	Não
Liliopsida	Poaceae	Hyparrhenia bracteata		Não	Não	Não
Liliopsida	Poaceae	Imperata brasiliensis		Não	Não	Não
Liliopsida	Poaceae	Andropogon condensatus		Não	Não	Não
Liliopsida	Poaceae	Brachiaria decumbens	Gramínea	Não	Não	Não
Liliopsida	Poaceae	Trachypogon filifolius	Gramínea	Não	Não	Não
Liliopsida	Poaceae	Andropogon gayanus	Gramínea	Não	Não	Não
Liliopsida	Poaceae	Agenium goyasense		Não	Não	Não
Liliopsida	Poaceae	Brachiaria humidicola	Gramínea	Não	Não	Não
Liliopsida	Poaceae	Echinolaena inflexa	Gramínea	Não	Não	Não
Liliopsida	Poaceae	Mesosetum loliiforme	Gramínea	Não	Não	Não
Liliopsida	Poaceae	Axonopus marginatus	Gramínea	Não	Não	Não
Liliopsida	Poaceae	Panicum maximum	Gramínea	Não	Não	Não
Liliopsida	Poaceae	Zea mays		Não	Não	Não
Liliopsida	Poaceae	Melinis minutiflora		Não	Não	Não

Liliopsida	Poaceae	Elionurus muticus	Gramínea	Não	Não	Não
Liliopsida	Poaceae	Panicum ovulliferum		Não	Não	Não
Liliopsida	Poaceae	Axonopus pressus	Gramínea	Não	Não	Não
Liliopsida	Poaceae	Brachiaria ruziziensis	Gramínea	Não	Não	Não
Liliopsida	Poaceae	Actinocladum verticillatum	Bambú	Não	Não	Não
Liliopsida	Velloziaceae	Vellozia glauca		Não	Não	Não
Liliopsida	Velloziaceae	Vellozia squamata	Gramínea	Não	Não	Não
Magnoliopsida	Aizoaceae	Tetragonia expansa		Não	Não	Não
Magnoliopsida	Anacardiaceae	Astronium fraxinifollium	Gonçalo-alves	Não	Não	Sim
Magnoliopsida	Anacardiaceae	Tapirira guianensis		Não	Não	Não
Magnoliopsida	Anacardiaceae	Anacardium humile		Não	Não	Não
Magnoliopsida	Anacardiaceae	Lithrea molleoides		Não	Não	Não
Magnoliopsida	Anacardiaceae	Spondias mombin		Não	Não	Não
Magnoliopsida	Anacardiaceae	Tapirira obtusa		Não	Não	Não
Magnoliopsida	Anacardiaceae	Anacardium othonianum	Cajú arbóreo	Não	Não	Não
Magnoliopsida	Annonaceae	Xylopia aromatica		Não	Não	Não
Magnoliopsida	Annonaceae	Xylopia brasiliensis		Não	Não	Não
Magnoliopsida	Annonaceae	Annona cacans		Não	Não	Não
Magnoliopsida	Annonaceae	Cardiopetalum calophyllum		Não	Não	Não
Magnoliopsida	Annonaceae	Guatteria conspicua		Não	Não	Não
Magnoliopsida	Annonaceae	Annona crassiflora	Araticum	Não	Não	Não
Magnoliopsida	Annonaceae	Xylopia emarginata		Não	Não	Não
Magnoliopsida	Annonaceae	Guatteria ferruginea		Não	Não	Não
Magnoliopsida	Annonaceae	Duguetia furfuracea		Não	Não	Não
Magnoliopsida	Annonaceae	Annona monticula	Araticum-pequeno	Não	Não	Não
Magnoliopsida	Annonaceae	Guatteria sellowiana		Não	Não	Não

Magnoliopsida	Annonaceae	Rollinia sericea		Não	Não	Não
Magnoliopsida	Annonaceae	Rollinia sericea		Não	Não	Não
Magnoliopsida	Apiaceae	Apium graveolens		Não	Não	Não
Magnoliopsida	Apocynaceae	Aspidosperma cylindrocarpon		Não	Não	Não
Magnoliopsida	Apocynaceae	Aspidosperma cylindrocarpum		Não	Não	Não
Magnoliopsida	Apocynaceae	Aspidosperma discolor		Não	Não	Não
Magnoliopsida	Apocynaceae	Phoebe erythropus		Não	Não	Não
Magnoliopsida	Apocynaceae	Aspidosperma macrocarpon		Não	Não	Não
Magnoliopsida	Apocynaceae	Himatanthus obovatus		Não	Não	Não
Magnoliopsida	Apocynaceae	Aspidosperma olivaceum		Não	Não	Não
Magnoliopsida	Apocynaceae	Aspidosperma parvifolium		Não	Não	Não
Magnoliopsida	Apocynaceae	Aspidosperma polyneuron		Não	Não	Não
Magnoliopsida	Apocynaceae	Aspidosperma pruinosum		Não	Não	Não
Magnoliopsida	Apocynaceae	Hancornia speciosa	Mangaba	Não	Não	Não
Magnoliopsida	Apocynaceae	Aspidosperma spruceanum		Não	Não	Sim
Magnoliopsida	Apocynaceae	Aspidosperma subincanum		Não	Não	Não
Magnoliopsida	Apocynaceae	Aspidosperma tomentosum		Não	Não	Não
Magnoliopsida	Aquifoliaceae	Ilex affinis		Não	Não	Não
Magnoliopsida	Aquifoliaceae	Ilex conocarpa		Não	Não	Não
Magnoliopsida	Aquifoliaceae	Ilex divaricata		Não	Não	Não
Magnoliopsida	Aquifoliaceae	Ilex integrifolia		Não	Não	Não
Magnoliopsida	Aquifoliaceae	Ilex pseudotheezans		Não	Não	Não
Magnoliopsida	Araliaceae	Dendropanax cuneatum		Não	Não	Não
Magnoliopsida	Araliaceae	Didymopanax macrocarpum		Não	Não	Não
Magnoliopsida	Araliaceae	Schefflera morototonii		Não	Não	Não
Magnoliopsida	Araliaceae	Didymopanax morotoyoni	Mandiocão	Não	Não	Não

Magnoliopsida	Asclepiadaceae	Bardaxima donatia	Não	Não	Não
Magnoliopsida	Asteraceae	Helianthus annuus	Não	Não	Não
Magnoliopsida	Asteraceae	Clibadium armanii	Não	Não	Não
Magnoliopsida	Asteraceae	Eremanthus glomerulatus	Não	Não	Não
Magnoliopsida	Asteraceae	Piptocarpha macropoda	Não	Não	Não
Magnoliopsida	Asteraceae	Eremanthus matogrossensis	Não	Não	Não
Magnoliopsida	Asteraceae	Mikania officinalis	Não	Não	Não
Magnoliopsida	Asteraceae	Sonchus oleraceus	Não	Não	Não
Magnoliopsida	Asteraceae	Bidens pilosa	Não	Não	Não
Magnoliopsida	Asteraceae	Piptocarpha rotundifolia	Não	Não	Não
Magnoliopsida	Asteraceae	Vernonia ruficoma	Não	Não	Não
Magnoliopsida	Asteraceae	Achyrocline satureioides	Não	Não	Não
Magnoliopsida	Asteraceae	Emilia sonchifolia	Não	Não	Não
Magnoliopsida	Asteraceae	Eupatorium vauthierianum	Não	Não	Não
Magnoliopsida	Bignoneaceae	Mansoa difficilis	Não	Não	Não
Magnoliopsida	Bignoneaceae	Stizophyllum perforatum	Não	Não	Não
Magnoliopsida	Bignoniaceae	Cybistax antisiphilitica	Não	Não	Não
Magnoliopsida	Bignoniaceae	Arrabidaea brachypoda	Não	Não	Não
Magnoliopsida	Bignoniaceae	Jacaranda brasiliana	Não	Não	Não
Magnoliopsida	Bignoniaceae	Tabebuia caraiba	Não	Não	Não
Magnoliopsida	Bignoniaceae	Jacaranda caroba	Não	Não	Não
Magnoliopsida	Bignoniaceae	Jacaranda copaia	Não	Não	Não
Magnoliopsida	Bignoniaceae	Pithecoctenium crucigerum	Não	Não	Não
Magnoliopsida	Bignoniaceae	Zeyheria digitalis	Não	Não	Não
Magnoliopsida	Bignoniaceae	Tabebuia impetiginosa	Não	Não	Não
Magnoliopsida	Bignoniaceae	Jacaranda macrantha	Não	Não	Não

Magnoliopsida	Bignoniaceae	Tabebuia ochracea	Não	Não	Não
Magnoliopsida	Bignoniaceae	Jacaranda puberula	Não	Não	Não
Magnoliopsida	Bignoniaceae	Tabebuia roseo-alba	Não	Não	Não
Magnoliopsida	Bignoniaceae	Arrabidaea sceptrum	Não	Não	Não
Magnoliopsida	Bignoniaceae	Tabebuia serratifolia	Não	Não	Não
Magnoliopsida	Bignoniaceae	Arrabidaea triplinervia	Não	Não	Não
Magnoliopsida	Bignoniaceae	Zeyheria tuberculosa	Não	Não	Sim
Magnoliopsida	Bignoniaceae	Tabebuia umbellata	Não	Não	Não
Magnoliopsida	Bignoniaceae	Jacaranda ulei	Não	Não	Não
Magnoliopsida	Bombacaceae	Pseudobombax grandiflorum	Não	Não	Não
Magnoliopsida	Bombacaceae	Pseudobombax longiflorum	Não	Não	Não
Magnoliopsida	Bombacaceae	Pseudobombax tomentosum	Não	Não	Não
Magnoliopsida	Bombacaceae	Eriotheca pubescens	Não	Não	Não
Magnoliopsida	Bombacaceae	Chorisia pubiflora	Não	Não	Não
Magnoliopsida	Bombacaceae	Cordia sellowiana	Não	Não	Não
Magnoliopsida	Boraginaceae	Cordia trichotoma	Não	Não	Não
Magnoliopsida	Brassicaceae	Brassica alba	Não	Não	Não
Magnoliopsida	Brassicaceae	Brassica chinensis	Não	Não	Não
Magnoliopsida	Brassicaceae	Brassica rapa	Não	Não	Não
Magnoliopsida	Brassicaceae	Raphanus sativus	Não	Não	Não
Magnoliopsida	Burseraceae	Protium almecega	Não	Não	Não
Magnoliopsida	Burseraceae	Tetragastris balsamifera	Não	Não	Não
Magnoliopsida	Burseraceae	Protium brasiliense	Não	Não	Não
Magnoliopsida	Burseraceae	Tetragastris balsamifera	Não	Não	Não
Magnoliopsida	Burseraceae	Protium dawsonii	Não	Não	Não
Magnoliopsida	Burseraceae	Protium heptaphyllum	Não	Não	Não

Magnoliopsida	Burseraceae	Protium ovatum	Não	Não	Não
Magnoliopsida	Burseraceae	Protium pilosissimum	Não	Não	Não
Magnoliopsida	Burseraceae	Protium spruceanum	Não	Não	Não
Magnoliopsida	Burseraceae	Tetragastris unifoliolata	Não	Não	Não
Magnoliopsida	Cactaceae	Pereskia aculeata	Não	Não	Não
Magnoliopsida	Campanulaceae	Centropogon cornutus	Não	Não	Não
Magnoliopsida	Caryocaraceae	Caryocar brasiliense	Não	Não	Não
Magnoliopsida	Cecropiaceae	Cecropia hololeuca	Não	Não	Não
Magnoliopsida	Cecropiaceae	Cecropia lyratiloba	Não	Não	Não
Magnoliopsida	Cecropiaceae	Cecropia pachystachia	Não	Não	Não
Magnoliopsida	Celastraceae	Maytenus alaternoides	Não	Não	Não
Magnoliopsida	Celastraceae	Maytenus floribunda	Não	Não	Não
Magnoliopsida	Celastraceae	Austroplenckia populnea	Não	Não	Não
Magnoliopsida	Celastraceae	Maytenus salicifolia	Não	Não	Não
Magnoliopsida	Chenopodiaceae	Chenopodium amaranticolor	Não	Não	Não
Magnoliopsida	Chenopodiaceae	Chenopodium murale	Não	Não	Não
Magnoliopsida	Chenopodiaceae	Chenopodium quinoa	Não	Não	Não
Magnoliopsida	Chenopodiaceae	Kochia scoparia	Não	Não	Não
Magnoliopsida	Chlorantaceae	Hedyosmum brasiliense	Não	Não	Não
Magnoliopsida	Chrysobalanaceae	Licania apetala	Não	Não	Não
Magnoliopsida	Chrysobalanaceae	Couepia grandiflora	Não	Não	Não
Magnoliopsida	Chrysobalanaceae	Licania octandra	Não	Não	Não
Magnoliopsida	Chrysobalanaceae	Licania sclerophylla	Não	Não	Não
Magnoliopsida	Chrysobalanaceae	Licania utilis	Não	Não	Não
Magnoliopsida	Clethraceae	Clethra scabra	Não	Não	Não
Magnoliopsida	Clusiaceae	Kielmeyera abdita	Não	Não	Não

Magnoliopsida	Clusiaceae	Calophyllum brasiliense		Não	Não	Não
Magnoliopsida	Clusiaceae	Rheedia brasiliense		Não	Não	Não
Magnoliopsida	Clusiaceae	Kielmeyera coriacea		Não	Não	Não
Magnoliopsida	Clusiaceae	Kielmeyera speciosa		Não	Não	Não
Magnoliopsida	Clusiaceae	Kielmeyera variabilis		Não	Não	Não
Magnoliopsida	Clusiaceae	Clusia cruiva		Não	Não	Não
Magnoliopsida	Clusiaceae	Vismia decipiens		Não	Não	Não
Magnoliopsida	Clusiaceae	Vismia glaziovii		Não	Não	Não
Magnoliopsida	Clusiaceae	Kielmeyera lathrophyton		Não	Não	Não
Magnoliopsida	Clusiaceae	Rheedia macrophylla		Não	Não	Não
Magnoliopsida	Clusiaceae	Clusia pernanbucensis		Não	Não	Não
Magnoliopsida	Combretaceae	Terminalia argentea		Não	Não	Não
Magnoliopsida	Combretaceae	Terminalia fagifolia		Não	Não	Não
Magnoliopsida	Combretaceae	Terminalia glabrescens		Não	Não	Não
Magnoliopsida	Combretaceae	Terminalia phaeocarpa		Não	Não	Não
Magnoliopsida	Connaraceae	Rourea induta		Não	Não	Não
Magnoliopsida	Connaraceae	Connarus regnellii		Não	Não	Não
Magnoliopsida	Connaraceae	Connarus suberosus		Não	Não	Não
Magnoliopsida	Cucurbitaceae	Luffa acutamgula		Não	Não	Não
Magnoliopsida	Cucurbitaceae	Melancium campestris	Melancia-do-campo	Não	Não	Não
Magnoliopsida	Cucurbitaceae	Citrullus lanatus		Não	Não	Não
Magnoliopsida	Cucurbitaceae	Cucumis melo		Não	Não	Não
Magnoliopsida	Cucurbitaceae	Cucumis metuliferus		Não	Não	Não
Magnoliopsida	Cucurbitaceae	Cucurbita pepo		Não	Não	Não
Magnoliopsida	Cucurbitaceae	Cucumis sativus		Não	Não	Não
Magnoliopsida	Cucurbitaceae	Lamanonia tomentosa		Não	Não	Não

Magnoliopsida	Cucurbitaceae	Belangera ternata	Não	Não	Não
Magnoliopsida	Cunnoniaceae	Lamanonia tomentosa	Não	Não	Não
Magnoliopsida	Dichapetalaceae	Tapura amazonica	Não	Não	Não
Magnoliopsida	Dilleniaceae	Curatella americana	Não	Não	Não
Magnoliopsida	Dilleniaceae	Davilla elliptica	Não	Não	Não
Magnoliopsida	Ebenaceae	Diospyros burchellii	Não	Não	Não
Magnoliopsida	Ebenaceae	Diospyros guianensis	Não	Não	Não
Magnoliopsida	Ebenaceae	Diospyros hispida	Não	Não	Não
Magnoliopsida	Ebenaceae	Diospyros sericea	Não	Não	Não
Magnoliopsida	Elaeocarpaceae	Sloanea guianensis	Não	Não	Não
Magnoliopsida	Elaeocarpaceae	Sloanea monosperma	Não	Não	Não
Magnoliopsida	Elaeocarpaceae	Sloanea robusta	Não	Não	Não
Magnoliopsida	Ericaceae	Gaylussacia brasiliensis	Não	Não	Não
Magnoliopsida	Erythroxylaceae	Erythroxylum amplifolium	Não	Não	Não
Magnoliopsida	Erythroxylaceae	Erythroxylum campestre	Não	Não	Não
Magnoliopsida	Erythroxylaceae	Erythroxylum dalphnites	Não	Não	Não
Magnoliopsida	Erythroxylaceae	Erythroxylum deciduum	Não	Não	Não
Magnoliopsida	Erythroxylaceae	Erythroxylum engleri	Não	Não	Não
Magnoliopsida	Erythroxylaceae	Erythroxylum suberosum	Não	Não	Não
Magnoliopsida	Erythroxylaceae	Erythroxylum tortuosum	Não	Não	Não
Magnoliopsida	Erythroxylaceae	Erythroxylum vacciniifolium	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Hieronyma alchorneoides	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Sebastiana brasiliensis	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Dalechampia caperonioides	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Actinostemon communis	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Croton comosus	Não	Não	Não

Magnoliopsida	Euphorbiaceae	Manihot esculenta	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Hyeronima ferruginea	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Alchornea glandulosa	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Pera glabrata	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Richeria grandis	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Maprounea guianensis	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Alchornea irucurana	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Margaritaria nobilis	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Pera obovata	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Sapium obovatum	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Euphorbia pruniflora	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Sebastiana scandens	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Manihot tripartita	Não	Não	Não
Magnoliopsida	Euphorbiaceae	Croton urucurana	Não	Não	Não
Magnoliopsida	Fabaceae	Machaerium aculeatum	Não	Não	Não
Magnoliopsida	Fabaceae	Machaerium acutifolium	Não	Não	Não
Magnoliopsida	Fabaceae	Stryphnodendron adstringens	Não	Não	Não
Magnoliopsida	Fabaceae	Inga alba	Não	Não	Não
Magnoliopsida	Fabaceae	Lupinus albus	Não	Não	Não
Magnoliopsida	Fabaceae	Machaerium amplum	Não	Não	Não
Magnoliopsida	Fabaceae	Lupinus angustifolius	Não	Não	Não
Magnoliopsida	Fabaceae	Swartzia apetala	Não	Não	Não
Magnoliopsida	Fabaceae	Diptychandra aurantiaca	Não	Não	Não
Magnoliopsida	Fabaceae	Sclerolobium aureum	Não	Não	Não
Magnoliopsida	Fabaceae	Prunus braziliensis	Não	Não	Não
Magnoliopsida	Fabaceae	Prunus chamissoana	Não	Não	Não

Magnoliopsida	Fabaceae	Mimosa clausennii		Não	Não	Não
Magnoliopsida	Fabaceae	Anadenanthera colubrina		Não	Não	Não
Magnoliopsida	Fabaceae	Enterolobium contortisiliquum		Não	Não	Não
Magnoliopsida	Fabaceae	Hymenaea courbaril	Jatobá	Não	Não	Não
Magnoliopsida	Fabaceae	Inga cylindrica		Não	Não	Não
Magnoliopsida	Fabaceae	Acosmium dasycarpum		Não	Não	Não
Magnoliopsida	Fabaceae	Dalbergia densiflora		Não	Não	Não
Magnoliopsida	Fabaceae	Calliandra dysantha		Não	Não	Não
Magnoliopsida	Fabaceae	Platypodium elegans		Não	Não	Não
Magnoliopsida	Fabaceae	Enterolobium ellipticum		Não	Não	Não
Magnoliopsida	Fabaceae	Pterodon emarginatus		Não	Não	Não
Magnoliopsida	Fabaceae	Inga encamina		Não	Não	Não
Magnoliopsida	Fabaceae	Anadenanthera falcata		Não	Não	Não
Magnoliopsida	Fabaceae	Erythrina falcata		Não	Não	Não
Magnoliopsida	Fabaceae	Cassia ferruginea		Não	Não	Não
Magnoliopsida	Fabaceae	Platymiscium floribundum		Não	Não	Não
Magnoliopsida	Fabaceae	Dalbergia foliolosa		Não	Não	Não
Magnoliopsida	Fabaceae	Bauhinia forficata		Não	Não	Não
Magnoliopsida	Fabaceae	Andira fraxinifolia		Não	Não	Não
Magnoliopsida	Fabaceae	Dalbergia frutescens		Não	Não	Não
Magnoliopsida	Fabaceae	Hirtella glandulosa		Não	Não	Não
Magnoliopsida	Fabaceae	Acacia glomerosa		Não	Não	Não
Magnoliopsida	Fabaceae	Piptadenia gonoacantha		Não	Não	Não
Magnoliopsida	Fabaceae	Hirtella gracilipes		Não	Não	Não
Magnoliopsida	Fabaceae	Periandra gracilis		Não	Não	Não
Magnoliopsida	Fabaceae	Stylosanthes guianensis	Leguminosa	Não	Não	Não

Magnoliopsida	Fabaceae	Dioclea grandiflora		Não	Não	Não
Magnoliopsida	Fabaceae	Lonchocarpus guillemineanus		Não	Não	Não
Magnoliopsida	Fabaceae	Enterolobium gummiferum		Não	Não	Não
Magnoliopsida	Fabaceae	Inga haemataula		Não	Não	Não
Magnoliopsida	Fabaceae	Hymenolobium heringeranum		Não	Não	Não
Magnoliopsida	Fabaceae	Arachis hypogaea		Não	Não	Não
Magnoliopsida	Fabaceae	Mimosa imbricata		Não	Não	Não
Magnoliopsida	Fabaceae	Inga ingoides		Não	Não	Não
Magnoliopsida	Fabaceae	Copaifera langsdorffii		Não	Não	Não
Magnoliopsida	Fabaceae	Apuleia leiocarpa		Não	Não	Não
Magnoliopsida	Fabaceae	Bauhinia longifolia		Não	Não	Não
Magnoliopsida	Fabaceae	Anadenanthera macrocarpa		Não	Não	Não
Magnoliopsida	Fabaceae	Vatairea macrocarpa		Não	Não	Não
Magnoliopsida	Fabaceae	Inga marginata		Não	Não	Não
Magnoliopsida	Fabaceae	Hirtella martiana		Não	Não	Não
Magnoliopsida	Fabaceae	Glycine max		Não	Não	Não
Magnoliopsida	Fabaceae	Dalbergia miscolobium		Não	Não	Não
Magnoliopsida	Fabaceae	Apuleia molaris	Garapa	Não	Não	Não
Magnoliopsida	Fabaceae	Dimorphandra mollis		Não	Não	Não
Magnoliopsida	Fabaceae	Inga nobilis		Não	Não	Não
Magnoliopsida	Fabaceae	Ormosia nobilis		Não	Não	Não
Magnoliopsida	Fabaceae	Machaerium opacum		Não	Não	Não
Magnoliopsida	Fabaceae	Sclerolobium paniculatum		Não	Não	Não
Magnoliopsida	Fabaceae	Crotalaria paulina		Não	Não	Não
Magnoliopsida	Fabaceae	Anadenanthera peregrina		Não	Não	Não
Magnoliopsida	Fabaceae	Piptadenia peregrina	Angico	Não	Não	Não

Magnoliopsida	Fabaceae	Myroxylom peruiferum		Não	Não	Não
Magnoliopsida	Fabaceae	Inga phaeocrossa		Não	Não	Não
Magnoliopsida	Fabaceae	Albizia polycephala		Não	Não	Não
Magnoliopsida	Fabaceae	Acacia polyphyla		Não	Não	Não
Magnoliopsida	Fabaceae	Mimosa pteridifolia		Não	Não	Não
Magnoliopsida	Fabaceae	Pterodon pubescens		Não	Não	Não
Magnoliopsida	Fabaceae	Pterandra pyroidea		Não	Não	Não
Magnoliopsida	Fabaceae	Platycyamus regnellii		Não	Não	Não
Magnoliopsida	Fabaceae	Plathymenia reticulata		Não	Não	Não
Magnoliopsida	Fabaceae	Fagara rhoifolia		Não	Não	Não
Magnoliopsida	Fabaceae	Pterocarpus rohrii		Não	Não	Não
Magnoliopsida	Fabaceae	Bauhinia rufa		Não	Não	Não
Magnoliopsida	Fabaceae	Eriosema rufum		Não	Não	Não
Magnoliopsida	Fabaceae	Senna rugosa		Não	Não	Não
Magnoliopsida	Fabaceae	Medicago sativa		Não	Não	Não
Magnoliopsida	Fabaceae	Pisum sativum		Não	Não	Não
Magnoliopsida	Fabaceae	Prunus sellowii		Não	Não	Não
Magnoliopsida	Fabaceae	Collaea speciosa		Não	Não	Não
Magnoliopsida	Fabaceae	Hymenaea stigonocarpa		Não	Não	Não
Magnoliopsida	Fabaceae	Hymenaea stilbocarpa	Jatobá	Não	Não	Não
Magnoliopsida	Fabaceae	Acosmium subelegans		Não	Não	Não
Magnoliopsida	Fabaceae	Indigofera suffruticosa		Não	Não	Não
Magnoliopsida	Fabaceae	Centrolobium tomentosum		Não	Não	Não
Magnoliopsida	Fabaceae	Vigna unguiculata		Não	Não	Não
Magnoliopsida	Fabaceae	Rubus urticaefolius		Não	Não	Não
Magnoliopsida	Fabaceae	Inga vera		Não	Não	Não

Magnoliopsida	Fabaceae	Andira vermifuga	Não	Não	Não
Magnoliopsida	Fabaceae	Machaerium villosum	Não	Não	Sim
Magnoliopsida	Fabaceae	Dalbergia violacea	Não	Não	Não
Magnoliopsida	Fabaceae	Calliandra virgata	Não	Não	Não
Magnoliopsida	Fabaceae	Bowdichia virgilioides	Não	Não	Não
Magnoliopsida	Fabaceae	Phaseolus vulgaris	Não	Não	Não
Magnoliopsida	Flacourtiaceae	Xylosma benthamii	Não	Não	Não
Magnoliopsida	Flacourtiaceae	Casearia gossypiosperma	Não	Não	Não
Magnoliopsida	Flacourtiaceae	Xylosma pseudosalzmannii	Não	Não	Não
Magnoliopsida	Flacourtiaceae	Casearia rupestris	Não	Não	Não
Magnoliopsida	Hippocrateaceae	Salacia amygdalina	Não	Não	Não
Magnoliopsida	Hippocrateaceae	Cheiloclinium cognatum	Não	Não	Não
Magnoliopsida	Hippocrateaceae	Salacia crassifolia	Não	Não	Não
Magnoliopsida	Hippocrateaceae	Salacia elliptica	Não	Não	Não
Magnoliopsida	Humiriaceae	Sacoglottis guianensis	Não	Não	Não
Magnoliopsida	Humiriaceae	Sacoglottis mattogrossensis	Não	Não	Não
Magnoliopsida	Icacinaceae	Citronella gongonha	Não	Não	Não
Magnoliopsida	Icacinaceae	Emmotum nitens	Não	Não	Não
Magnoliopsida	Lacistemaceae	Lacistema hasslerianum	Não	Não	Não
Magnoliopsida	Lamiaceae	Hyptis cana	Não	Não	Não
Magnoliopsida	Lamiaceae	Hyptidendron canum	Não	Não	Não
Magnoliopsida	Lauraceae	Ocotea aciphylla	Não	Não	Não
Magnoliopsida	Lauraceae	Licaria armeniaca	Não	Não	Não
Magnoliopsida	Lauraceae	Cryptocaria aschersoniana	Não	Não	Não
Magnoliopsida	Lauraceae	Nectandra cissiflora	Não	Não	Não
Magnoliopsida	Lauraceae	Endlicheria cocuirey	Não	Não	Não

Magnoliopsida	Lauraceae	Ocotea corymbosa	Não	Não	Não
Magnoliopsida	Lauraceae	Persea fusca	Não	Não	Não
Magnoliopsida	Lauraceae	Nectandra gardnerii	Não	Não	Não
Magnoliopsida	Lauraceae	Aniba heringerii	Não	Não	Não
Magnoliopsida	Lauraceae	Nectandra lanceolata	Não	Não	Não
Magnoliopsida	Lauraceae	Ocotea macropoda	Não	Não	Não
Magnoliopsida	Lauraceae	Cryptocaria moschata	Não	Não	Não
Magnoliopsida	Lauraceae	Nectandra myriantha	Não	Não	Não
Magnoliopsida	Lauraceae	Ocotea pulchella	Não	Não	Não
Magnoliopsida	Lauraceae	Nectandra reticulata	Não	Não	Não
Magnoliopsida	Lauraceae	Ocotea spixiana	Não	Não	Não
Magnoliopsida	Lauraceae	Ocotea velloziana	Não	Não	Não
Magnoliopsida	Lecythidaceae	Cariniana estrellensis	Não	Não	Não
Magnoliopsida	Lecythidaceae	Cariniana legalis	Não	Não	Sim
Magnoliopsida	Loganiaceae	Strychnos pseudoquina	Não	Não	Não
Magnoliopsida	Lythraceae	Lafoensia densiflora	Não	Não	Não
Magnoliopsida	Lythraceae	Diplusodon humilis	Não	Não	Não
Magnoliopsida	Lythraceae	Lafoensia pacari	Não	Não	Não
Magnoliopsida	Magnoliaceae	Talauma ovata	Não	Não	Não
Magnoliopsida	Malpighiaceae	Heteropterys acutifolia	Não	Não	Não
Magnoliopsida	Malpighiaceae	Byrsonima basiloba	Não	Não	Não
Magnoliopsida	Malpighiaceae	Dicella bracteosa	Não	Não	Não
Magnoliopsida	Malpighiaceae	Heteropterys byrsonimifolia	Não	Não	Não
Magnoliopsida	Malpighiaceae	Byrsonima coccolobifolia	Não	Não	Não
Magnoliopsida	Malpighiaceae	Byrsonima crassa	Não	Não	Não
Magnoliopsida	Malpighiaceae	Byrsonima intermedia	Não	Não	Não

Magnoliopsida	Malpighiaceae	Byrsonima laxiflora	Não	Não	Não
Magnoliopsida	Malpighiaceae	lByrsonima igustrifolia	Não	Não	Não
Magnoliopsida	Malpighiaceae	Banisteriopsis malifolia	Não	Não	Não
Magnoliopsida	Malpighiaceae	Banisteriopsis muricata	Não	Não	Não
Magnoliopsida	Malpighiaceae	Byrsonima sericea	Não	Não	Não
Magnoliopsida	Malpighiaceae	Byrsonima verbascifolia	Não	Não	Não
Magnoliopsida	Malpighiaceae	Byrsonima viminifolia	Não	Não	Não
Magnoliopsida	Melastomataceae	Tibouchina candolleana	Não	Não	Não
Magnoliopsida	Melastomataceae	Clidemia capitellata	Não	Não	Não
Magnoliopsida	Melastomataceae	Miconia chamissois	Não	Não	Não
Magnoliopsida	Melastomataceae	Miconia chartacea	Não	Não	Não
Magnoliopsida	Melastomataceae	Miconia cubatanensis	Não	Não	Não
Magnoliopsida	Melastomataceae	Miconia cuspidata	Não	Não	Não
Magnoliopsida	Melastomataceae	Miconia dodecandra	Não	Não	Não
Magnoliopsida	Melastomataceae	Miconia elegans	Não	Não	Não
Magnoliopsida	Melastomataceae	Miconia ferruginata	Não	Não	Não
Magnoliopsida	Melastomataceae	Miconia formicaria	Não	Não	Não
Magnoliopsida	Melastomataceae	Mouriri glazioviana	Não	Não	Não
Magnoliopsida	Melastomataceae	Clidemia hirta	Não	Não	Não
Magnoliopsida	Melastomataceae	Miconia hirtella	Não	Não	Não
Magnoliopsida	Melastomataceae	Miconia inaequidans	Não	Não	Não
Magnoliopsida	Melastomataceae	Leandra lacunosa	Não	Não	Não
Magnoliopsida	Melastomataceae	Macairea macedoi	Não	Não	Não
Magnoliopsida	Melastomataceae	Leandra melastomoides	Não	Não	Não
Magnoliopsida	Melastomataceae	Miconia nervosa	Não	Não	Não
Magnoliopsida	Melastomataceae	Miconia pepericarpa	Não	Não	Não

Magnoliopsida	Melastomataceae	Miconia prasina		Não	Não	Não
Magnoliopsida	Melastomataceae	Miconia pseudonervosa		Não	Não	Não
Magnoliopsida	Melastomataceae	Miconia punctata		Não	Não	Não
Magnoliopsida	Melastomataceae	Tibouchina stenocarpa		Não	Não	Não
Magnoliopsida	Meliaceae	Cabralea canjerana		Não	Não	Não
Magnoliopsida	Meliaceae	Trichilia catigua		Não	Não	Não
Magnoliopsida	Meliaceae	Cedrela fissilis	Cedro	Não	Não	Sim
Magnoliopsida	Meliaceae	Guarea guidonia		Não	Não	Não
Magnoliopsida	Meliaceae	Guarea kunthiana		Não	Não	Não
Magnoliopsida	Meliaceae	Cedrela odorata		Não	Não	Sim
Magnoliopsida	Meliaceae	Trichilia pallida		Não	Não	Não
Magnoliopsida	Menispermaceae	Cissampelos ovalifolia		Não	Não	Não
Magnoliopsida	Monimiaceae	Siparuna cujabana		Não	Não	Não
Magnoliopsida	Monimiaceae	Siparuna guianenensis		Não	Não	Não
Magnoliopsida	Monimiaceae	Macropeplus ligustrinus		Não	Não	Não
Magnoliopsida	Monimiaceae	Mollinedia oligantha		Não	Não	Não
Magnoliopsida	Moraceae	Ficus abtusiuscula		Não	Não	Não
Magnoliopsida	Moraceae	Ficus adhatodaefolia		Não	Não	Não
Magnoliopsida	Moraceae	Sorocea bonplandii		Não	Não	Sim
Magnoliopsida	Moraceae	Ficus citrifolia		Não	Não	Não
Magnoliopsida	Moraceae	Ficus enormis		Não	Não	Não
Magnoliopsida	Moraceae	Ficus eximia		Não	Não	Não
Magnoliopsida	Moraceae	Brosimum gaudichaudii		Não	Não	Não
Magnoliopsida	Moraceae	Pseudolmedia guaranitica		Não	Não	Não
Magnoliopsida	Moraceae	Sorocea guillerminiana		Não	Não	Sim
Magnoliopsida	Moraceae	Sorocea ilicifolia		Não	Não	Não

Magnoliopsida	Moraceae	Ficus insipida	Não	Não	Não
Magnoliopsida	Moraceae	Pseudolmedia laevigata	Não	Não	Não
Magnoliopsida	Moraceae	Ficus laterifolia	Não	Não	Não
Magnoliopsida	Moraceae	Ficus pertusa	Não	Não	Não
Magnoliopsida	Moraceae	Chlorophora tinctoria	Não	Não	Não
Magnoliopsida	Moraceae	Ficus trigona	Não	Não	Não
Magnoliopsida	Myristicaceae	Virola sebifera	Não	Não	Não
Magnoliopsida	Myristicaceae	Virola urbaniana	Não	Não	Não
Magnoliopsida	Myrsinaceae	Stylogyne ambigua	Não	Não	Não
Magnoliopsida	Myrsinaceae	Myrsine coriacea	Não	Não	Não
Magnoliopsida	Myrsinaceae	Cybianthus detergens	Não	Não	Não
Magnoliopsida	Myrsinaceae	Cybianthus gardneri	Não	Não	Não
Magnoliopsida	Myrsinaceae	Myrsine ferruginea	Não	Não	Não
Magnoliopsida	Myrsinaceae	Myrsine gardneriana	Não	Não	Não
Magnoliopsida	Myrsinaceae	Cybianthus glaber	Não	Não	Não
Magnoliopsida	Myrsinaceae	Cybianthus goyazensis	Não	Não	Não
Magnoliopsida	Myrsinaceae	Myrsine guianensis	Não	Não	Não
Magnoliopsida	Myrsinaceae	Rapanea guianensis	Não	Não	Não
Magnoliopsida	Myrsinaceae	Rapanea lancifolia	Não	Não	Não
Magnoliopsida	Myrsinaceae	Rapanea leuconeura	Não	Não	Não
Magnoliopsida	Myrsinaceae	Myrsine umbellata	Não	Não	Não
Magnoliopsida	Myrtaceae	Myrcia acuminata	Não	Não	Não
Magnoliopsida	Myrtaceae	Gomidesia affinis	Não	Não	Não
Magnoliopsida	Myrtaceae	Campomanesia aromatica	Não	Não	Sim
Magnoliopsida	Myrtaceae	Myrcia angustissima	Não	Não	Não
Magnoliopsida	Myrtaceae	Eugenia bimarginata	Não	Não	Não

Magnoliopsida	Myrtaceae	Marlierea bipennis	Não	Não	Não
Magnoliopsida	Myrtaceae	Eugenia bracteata	Não	Não	Não
Magnoliopsida	Myrtaceae	Myrcia canescens	Não	Não	Não
Magnoliopsida	Myrtaceae	Myrcia castrensis	Não	Não	Não
Magnoliopsida	Myrtaceae	Calyptranthes clusiaefolia	Não	Não	Não
Magnoliopsida	Myrtaceae	Myrcia deflexa	Não	Não	Não
Magnoliopsida	Myrtaceae	Siphoneugena densiflora	Não	Não	Sim
Magnoliopsida	Myrtaceae	Myrcia dictiophylla	Não	Não	Não
Magnoliopsida	Myrtaceae	Eugenia dysenterica	Não	Não	Não
Magnoliopsida	Myrtaceae	Myrcia eriopus	Não	Não	Não
Magnoliopsida	Myrtaceae	Campomanesia eugenioides	Não	Não	Não
Magnoliopsida	Myrtaceae	Myrcia fallax	Não	Não	Não
Magnoliopsida	Myrtaceae	Eugenia florida	Não	Não	Não
Magnoliopsida	Myrtaceae	Eugenia geminiflora	Não	Não	Não
Magnoliopsida	Myrtaceae	Myrciaria glanduliflora	Não	Não	Não
Magnoliopsida	Myrtaceae	Psidium guajava	Não	Não	Não
Magnoliopsida	Myrtaceae	Eugenia involucrata	Não	Não	Não
Magnoliopsida	Myrtaceae	Myrciaria jaboticaba	Não	Não	Não
Magnoliopsida	Myrtaceae	Myrcia laroutteana	Não	Não	Não
Magnoliopsida	Myrtaceae	Gomidesia lindeniana	Não	Não	Não
Magnoliopsida	Myrtaceae	Myrcia linearifolia	Não	Não	Não
Magnoliopsida	Myrtaceae	Myrcia lingua	Não	Não	Não
Magnoliopsida	Myrtaceae	Psidium longipetiolatum	Não	Não	Não
Magnoliopsida	Myrtaceae	Calyptranthes lucida	Não	Não	Não
Magnoliopsida	Myrtaceae	Eugenia mutabilis	Não	Não	Não
Magnoliopsida	Myrtaceae	Psidium myrsinoides	Não	Não	Não

Magnoliopsida	Myrtaceae	Myrcia pallens	Não	Não	Não
Magnoliopsida	Myrtaceae	Psidium pohlianum	Não	Não	Não
Magnoliopsida	Myrtaceae	Myrcia pubipetala	Não	Não	Não
Magnoliopsida	Myrtaceae	Eugenia punicifolia	Não	Não	Não
Magnoliopsida	Myrtaceae	Gomidesia regeliana	Não	Não	Não
Magnoliopsida	Myrtaceae	Myrcia regnelliana	Não	Não	Não
Magnoliopsida	Myrtaceae	Myrcia rostrata	Não	Não	Não
Magnoliopsida	Myrtaceae	Blepharocalyx salicifolius	Não	Não	Não
Magnoliopsida	Myrtaceae	Psidium sartorianum	Não	Não	Não
Magnoliopsida	Myrtaceae	Myrcia tomentosa	Não	Não	Não
Magnoliopsida	Myrtaceae	Eugenia uruguayensis	Não	Não	Não
Magnoliopsida	Myrtaceae	Campomanesia velutina	Não	Não	Não
Magnoliopsida	Myrtaceae	Psidium warmingianum	Não	Não	Não
Magnoliopsida	Nyctaginacae	Guapira areolata	Não	Não	Não
Magnoliopsida	Nyctaginacae	Guapira graciliflora	Não	Não	Não
Magnoliopsida	Nyctaginacae	Guapira noxia	Não	Não	Não
Magnoliopsida	Nyctaginacae	Guapira psammophila	Não	Não	Não
Magnoliopsida	Nyctaginaceae	Neea oppositifolia	Não	Não	Não
Magnoliopsida	Nyctaginaceae	Neea spruceana	Não	Não	Não
Magnoliopsida	Nyctaginaceae	Neea theifera	Não	Não	Não
Magnoliopsida	Ochnaceae	Ouratea castaneaefolia	Não	Não	Não
Magnoliopsida	Ochnaceae	Ouratea hexasperma	Não	Não	Não
Magnoliopsida	Ochnaceae	Ouratea spectabilis	Não	Não	Não
Magnoliopsida	Olacaceae	Heisteria guyanensis	Não	Não	Não
Magnoliopsida	Oleaceae	Linociera arborea	Não	Não	Não
Magnoliopsida	Oleaceae	Chionanthus arboreus	Não	Não	Não

Magnoliopsida	Oleaceae	Linociera glomerata		Não	Não	Não
Magnoliopsida	Oleaceae	Chionanthus trichotomus		Não	Não	Não
Magnoliopsida	Opiliaceae	Agonandra englerii		Não	Não	Não
Magnoliopsida	Phytolaccaceae	Phytolacca dioica		Não	Não	Não
Magnoliopsida	Piperaceae	Piper aduncum		Não	Não	Não
Magnoliopsida	Piperaceae	Piper arboreum		Não	Não	Não
Magnoliopsida	Piperaceae	Piper coccoloboides		Não	Não	Não
Magnoliopsida	Piperaceae	Piper corcovadense		Não	Não	Não
Magnoliopsida	Piperaceae	Piper crassinervium		Não	Não	Não
Magnoliopsida	Piperaceae	Piper hispidum		Não	Não	Não
Magnoliopsida	Piperaceae	Piper tectonifolium		Não	Não	Não
Magnoliopsida	Piperaceae	Piper tucumanum		Não	Não	Não
Magnoliopsida	Plantaginaceae	Plantago ximenia		Não	Não	Não
Magnoliopsida	Poaceae	Paspalum carinatum	Gramínea	Não	Não	Não
Magnoliopsida	Poaceae	Paspalum erianthum	Gramínea	Não	Não	Não
Magnoliopsida	Poaceae	Paspalum lineare		Não	Não	Não
Magnoliopsida	Polygalaceae	Didlidanthera laurifolia		Não	Não	Não
Magnoliopsida	Polygonaceae	Coccoloba uvifera		Não	Não	Não
Magnoliopsida	Portulacaceae	Portulaca oleracea		Não	Não	Não
Magnoliopsida	Proteaceae	Euplassa inaequalis		Não	Não	Não
Magnoliopsida	Proteaceae	Roupala montana		Não	Não	Não
Magnoliopsida	Rhamnaceae	Rhaminidium elaeocarpum		Não	Não	Não
Magnoliopsida	Rhamnaceae	Rhamnus sphaerosperma		Não	Não	Não
Magnoliopsida	Rubiacea	Faramea cyanea		Não	Não	Não
Magnoliopsida	Rubiaceae	Genipa americana		Não	Não	Não
Magnoliopsida	Rubiaceae	Psychotria carthagenensis		Não	Não	Não

Magnoliopsida	Rubiaceae	Psychotria colorata	Não	Não	Não
Magnoliopsida	Rubiaceae	Alibertia concolor	Não	Não	Não
Magnoliopsida	Rubiaceae	Rustia formosa	Não	Não	Não
Magnoliopsida	Rubiaceae	Tocoyena formosa	Não	Não	Não
Magnoliopsida	Rubiaceae	Psychotria glabrescens	Não	Não	Não
Magnoliopsida	Rubiaceae	Amaioua guianensis	Não	Não	Não
Magnoliopsida	Rubiaceae	Coutarea hexandra	Não	Não	Não
Magnoliopsida	Rubiaceae	Coussarea hydrangeaefolia	Não	Não	Não
Magnoliopsida	Rubiaceae	Posoqueria latifolia	Não	Não	Não
Magnoliopsida	Rubiaceae	Alibertia macrophylla	Não	Não	Não
Magnoliopsida	Rubiaceae	Malanea macropphylla	Não	Não	Não
Magnoliopsida	Rubiaceae	Psychotria mapourioides	Não	Não	Não
Magnoliopsida	Rubiaceae	Palicourea marcgravii	Não	Não	Não
Magnoliopsida	Rubiaceae	Chomelia pohliana	Não	Não	Não
Magnoliopsida	Rubiaceae	Psychotria prunifolia	Não	Não	Não
Magnoliopsida	Rubiaceae	Palicourea rigida	Não	Não	Não
Magnoliopsida	Rubiaceae	Alibertia sessilis	Não	Não	Não
Magnoliopsida	Rubiaceae	Ferdinandusa speciosa	Não	Não	Não
Magnoliopsida	Rubiaceae	Guettarda viburnoides	Não	Não	Não
Magnoliopsida	Rubiaceae	Rudgea virbunoides	Não	Não	Não
Magnoliopsida	Rubiaceae	Ixora warmingii	Não	Não	Não
Magnoliopsida	Rubiaceae	Amaioua ýntermedia	Não	Não	Não
Magnoliopsida	Rutaceae	Zanthoxyllum cinerium	Não	Não	Não
Magnoliopsida	Rutaceae	Spiranthera odoratissima	Não	Não	Não
Magnoliopsida	Rutaceae	Zanthoxyllum rhoifolium	Não	Não	Não
Magnoliopsida	Rutaceae	Metrodorea stipularis	Não	Não	Não

Magnoliopsida	Sapindaceae	Talisia angustifolia	Não	Não	Não
Magnoliopsida	Sapindaceae	Allophylus edulis	Não	Não	Não
Magnoliopsida	Sapindaceae	Matayba elaeagnoides	Não	Não	Não
Magnoliopsida	Sapindaceae	Matayba guianensis	Não	Não	Não
Magnoliopsida	Sapindaceae	Serjania erecta	Não	Não	Não
Magnoliopsida	Sapindaceae	Paullinia pinnata	Não	Não	Não
Magnoliopsida	Sapindaceae	Magonia pubescens	Não	Não	Não
Magnoliopsida	Sapindaceae	Allophylus sericeus	Não	Não	Não
Magnoliopsida	Sapindaceae	Cupania vernalis	Não	Não	Não
Magnoliopsida	Sapotaceae	Chrysophyllum lucentifolium	Não	Não	Não
Magnoliopsida	Sapotaceae	Chrysophyllum marginatum	Não	Não	Não
Magnoliopsida	Sapotaceae	Pouteria ramiflora	Não	Não	Não
Magnoliopsida	Sapotaceae	Micropholis rigida	Não	Não	Não
Magnoliopsida	Sapotaceae	Pouteria torta	Não	Não	Não
Magnoliopsida	Sapotaceae	Micropholis venulosa	Não	Não	Não
Magnoliopsida	Sapotaceae	Sideroxylum venulosum	Não	Não	Não
Magnoliopsida	Simaroubaceae	Simarouba amara	Não	Não	Não
Magnoliopsida	Simaroubaceae	Picramnia sellowii	Não	Não	Não
Magnoliopsida	Simaroubaceae	Simarouba versicolor	Não	Não	Não
Magnoliopsida	Solanaceae	Capsicum annuum	Não	Não	Não
Magnoliopsida	Solanaceae	Solanum argenteum	Não	Não	Não
Magnoliopsida	Solanaceae	Brunfelsia brasiliensis	Não	Não	Sim
Magnoliopsida	Solanaceae	Cestrum calycinum	Não	Não	Não
Magnoliopsida	Solanaceae	Nicotiana debneyi	Não	Não	Não
Magnoliopsida	Solanaceae	Lycopersicon esculentum	Não	Não	Não
Magnoliopsida	Solanaceae	Physalis floridana	Não	Não	Não

Magnoliopsida	Solanaceae	Solanum gemellum		Não	Não	Não
Magnoliopsida	Solanaceae	Nicotiana glutinosa		Não	Não	Não
Magnoliopsida	Solanaceae	Solanum granuloso-leprosum		Não	Não	Sim
Magnoliopsida	Solanaceae	Solanum guianense		Não	Não	Não
Magnoliopsida	Solanaceae	Solanum lycocarpum		Não	Não	Não
Magnoliopsida	Solanaceae	Cestrum megalophyllum		Não	Não	Não
Magnoliopsida	Solanaceae	Solanum melongena		Não	Não	Não
Magnoliopsida	Solanaceae	Solanum nigrum		Não	Não	Não
Magnoliopsida	Solanaceae	Cestrum pedicellatum		Não	Não	Não
Magnoliopsida	Solanaceae	Nicandra physalodes		Não	Não	Não
Magnoliopsida	Solanaceae	Datura stramonium		Não	Não	Não
Magnoliopsida	Solanaceae	Nicotiana sylvestris		Não	Não	Não
Magnoliopsida	Solanaceae	Nicotiana tabacum		Não	Não	Não
Magnoliopsida	Solanaceae	Solanum tuberosum		Não	Não	Não
Magnoliopsida	Solanaceae	Solanum verbascifolium		Não	Não	Não
Magnoliopsida	Sterculiaceae	Helicteres brevispira		Não	Não	Não
Magnoliopsida	Sterculiaceae	Theobroma cacao		Não	Não	Não
Magnoliopsida	Sterculiaceae	Guazuma ulmifolia	Mutamba	Não	Não	Não
Magnoliopsida	Styracaceae	Styrax camporum		Não	Não	Não
Magnoliopsida	Styracaceae	Styrax ferrugineus		Não	Não	Não
Magnoliopsida	Styracaceae	Styrax leprosum		Não	Não	Não
Magnoliopsida	Styracaceae	Styrax pohlii		Não	Não	Não
Magnoliopsida	Symplocaceae	Symplocos frondosa		Não	Não	Não
Magnoliopsida	Symplocaceae	Symplocos mosenii		Não	Não	Não
Magnoliopsida	Symplocaceae	Symplocos rhamnifolia		Não	Não	Não
Magnoliopsida	Symplocaceae	Symplocos trachycarpus		Não	Não	Não

Magnoliopsida	Symplocaceae	Symplocos variabilis		Não	Não	Não
Magnoliopsida	Theaceae	Laplacea fruticosa		Não	Não	Não
Magnoliopsida	Thymelaeaceae	Daphnopsis fasciculata		Não	Não	Não
Magnoliopsida	Tiliaceae	Luehea candicans		Não	Não	Não
Magnoliopsida	Tiliaceae	Luehea paniculata		Não	Não	Não
Magnoliopsida	Tiliaceae	Triumfetta semitriloba		Não	Não	Não
Magnoliopsida	Tiliaceae	Apeiba tibourbou		Não	Não	Não
Magnoliopsida	Trigoniaceae	Trigonia nivea		Não	Não	Não
Magnoliopsida	Ulmaceae	Celtis iguanaea		Não	Não	Não
Magnoliopsida	Ulmaceae	Trema micrantha		Não	Não	Não
Magnoliopsida	Ulmaceae	Celtis tala		Não	Não	Não
Magnoliopsida	Urticaceae	Urera baccifera		Não	Não	Não
Magnoliopsida	Verbenaceae	Lantana camara		Não	Não	Não
Magnoliopsida	Verbenaceae	Aegiphila lhotzkiana		Não	Não	Não
Magnoliopsida	Verbenaceae	Vitex polygama		Não	Não	Não
Magnoliopsida	Verbenaceae	Aegiphila selowiana		Não	Não	Não
Magnoliopsida	Vochysiaceae	Salvertia convallariaeodora		Não	Não	Não
Magnoliopsida	Vochysiaceae	Qualea dichotoma		Não	Não	Não
Magnoliopsida	Vochysiaceae	Vochysia elliptica		Não	Não	Não
Magnoliopsida	Vochysiaceae	Qualea grandiflora		Não	Não	Não
Magnoliopsida	Vochysiaceae	Vochysia haenkeana	Escorrega-macaco	Não	Não	Não
Magnoliopsida	Vochysiaceae	Callisthene major		Não	Não	Não
Magnoliopsida	Vochysiaceae	Qualea multiflora		Não	Não	Não
Magnoliopsida	Vochysiaceae	Qualea parviflora		Não	Não	Não
Magnoliopsida	Vochysiaceae	Vochysia pruinosa		Não	Não	Não
Magnoliopsida	Vochysiaceae	Vochysia pyramidalis		Não	Não	Não

Magnoliopsida	Vochysiaceae	Vochysia rufa	Não	Não	Não
Magnoliopsida	Vochysiaceae	Vochysia thyrsoidea	Não	Não	Não
Magnoliopsida	Vochysiaceae	Vochysia tucanorum	Não	Não	Não
Magnoliopsida	Winteraceae	Drimys brasiliensis	Não	Não	Não

Livros Grátis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

<u>Baixar</u>	livros	de	Adm	<u>iinis</u>	tra	ção

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciência da Computação

Baixar livros de Ciência da Informação

Baixar livros de Ciência Política

Baixar livros de Ciências da Saúde

Baixar livros de Comunicação

Baixar livros do Conselho Nacional de Educação - CNE

Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos

Baixar livros de Economia

Baixar livros de Economia Doméstica

Baixar livros de Educação

Baixar livros de Educação - Trânsito

Baixar livros de Educação Física

Baixar livros de Engenharia Aeroespacial

Baixar livros de Farmácia

Baixar livros de Filosofia

Baixar livros de Física

Baixar livros de Geociências

Baixar livros de Geografia

Baixar livros de História

Baixar livros de Línguas

Baixar livros de Literatura

Baixar livros de Literatura de Cordel

Baixar livros de Literatura Infantil

Baixar livros de Matemática

Baixar livros de Medicina

Baixar livros de Medicina Veterinária

Baixar livros de Meio Ambiente

Baixar livros de Meteorologia

Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Música

Baixar livros de Psicologia

Baixar livros de Química

Baixar livros de Saúde Coletiva

Baixar livros de Serviço Social

Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo