Felipe Nascimento Martins

Modelagem e Compensação da Dinâmica de Robôs Móveis e sua Aplicação em Controle de Formação

Vitória, ES 2009

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Felipe Nascimento Martins

Modelagem e Compensação da Dinâmica de Robôs Móveis e sua Aplicação em Controle de Formação

Orientador: Prof. Dr. Mário Sarcinelli Filho

Coorientadores: Prof. Dr. Teodiano Freire Bastos Filho Prof. Dr. Ricardo Carelli (UNSJ, San Juan, Argentina)

Tese de Doutorado Universidade Federal do Espírito Santo Centro Tecnológico Programa de Pós-graduação em Engenharia Elétrica

Felipe Nascimento Martins

Modelagem e Compensação da Dinâmica de Robôs Móveis e sua Aplicação em Controle de Formação

Tese apresentada ao Programa de Pós-Graduação em Engenharia Elétrica do Centro Tecnológico da Universidade Federal do Espírito Santo, como requisito parcial para obtenção do Grau de Doutor em Engenharia Elétrica - Automação. Orientador: Prof. Dr. Mário Sarcinelli Filho. Coorientadores: Prof. Dr. Teodiano Freire Bastos Filho e Prof. Dr. Ricardo Carelli. Para fazer a ficha catalográfica, que ficará no lugar desta página, na versão final, ligue ou escreva para Arlete Franco Bibliotecária/BC/UFES franco@bc.ufes.br 27 4009-2405

Há um formulário específico para solicitar tal ficha, que é enviado à bibliotecária via e-mail (ver www.ele.ufes.br/paginappgee.html)

Felipe Nascimento Martins

Modelagem e Compensação da Dinâmica de Robôs Móveis e sua Aplicação em Controle de Formação

Tese submetida ao Programa de Pós-Graduação em Engenharia Elétrica do Centro Tecnológico da Universidade Federal do Espírito Santo, como requisito parcial para a obtenção do Grau de Doutor em Engenharia Elétrica - Automação.

Aprovada em 6 de março de 2009.

Prof. Dr. Mario Sarcinelli Filho Orientador

Prof. Dr. Teodiano Freire Bastos Filho Coorientador

Prof. Dr. Ricardo Carelli Coorientador - Universidad Nacional de San Juan, Argentina

Prof. Dr. Jussara Farias Fardin Universidade Federal do Espírito Santo

Prof. Dr. Paulo Faria Santos Amaral Universidade Federal do Espírito Santo

Prof. Dr. Vladimir Dynnikov Universidade Federal do Espírito Santo

Prof. Dr. Pablo Javier Alsina Universidade Federal do Rio Grande do Norte

A Cynthia.

 ${\cal A}$ meus pais, irmãos e toda minha família.

Agradecimentos

"I do not overrate my importance! I dare say I am the most humble droid I know."

(C-3PO, em Star Wars: The New Rebellion)

Tantas pessoas colaboraram, de diversas maneiras, com a realização deste trabalho, que acho muito difícil escrever um texto de agradecimentos que seja justo. Por isso, antes de tudo, quero agradecer a todos que, de alguma forma, prestaram sua contribuição (técnica, financeira, espiritual, etc.) para que este trabalho fosse realizado e concluído. Menciono, a seguir, algumas delas. Meus sinceros agradecimentos...

A Cynthia, por todo seu apoio, carinho, companhia, compreensão e amor. Sem ela, tudo seria muito mais difícil. Aos meus pais, Ronaldo e Ana, que sempre trabalharam muito para que meus irmãos e eu tivéssemos o melhor possível, sempre nos incentivando com muita atenção e carinho. Aos meus irmãos Paulo e Julia, às minhas avós Helenita e Yvonne, aos meus sogros José Augusto e Liéte, e à toda minha família pelo incentivo, apoio, carinho, suporte e compreensão durante os momentos de falta.

Aos professores Mário Sarcinelli Filho (*My Professor*), Teodiano Freire Bastos Filho e Ricardo Carelli, por sua orientação dedicada e valiosa, pela atenção, pelos conhecimentos compartilhados, pelas revisões detalhadas de todos os artigos e desta tese, e por confiarem que eu poderia realizar este trabalho enquanto seguia como professor. Jamais me esquecerei dos conselhos de *My Professor* para que sempre evoluíssemos como Serguei Bubka¹, sempre mostrando progresso, pouco a pouco. E dos excelentes passeios turísticos por San Juan guiados pelo professor Carelli, que nos recebeu tão bem no *Instituto de Automática* (INAUT) e nos fez sentir em casa, na Argentina! Agradecimentos especiais a *My Professor* e a Carelli pela ajuda no contato com o *Instituto de Investigaciones Arqueológicas y Museo "Prof. Mariano Gambier*", da UNSJ, e à Dra. Catalina Teresa Michieli, diretora

¹Serguei Nazarovich Bubka, ucraniano nascido em Voroshilovgrad em 4 de dezembro de 1963, é um ex-campeão olímpico e multirrecordista mundial do salto com vara. É considerado por muitos o maior saltador com vara de todos os tempos. Quebrou o recorde mundial de salto com vara 34 vezes entre 1984 e 1995 (na maioria das vezes, o próprio recorde). Até o presente detém o recorde de 6,15 m (Biography Base, Acesso em: 18/nov/2008).

de tal museu, que recebeu a Cynthia e possibilitou que ela me acompanhasse durante a primeira viagem a San Juan em 2006. Tal fato resultou numa mudança importante em sua vida profissional.

Aos amigos, colegas e companheiros de viagem Alexandre Santos Brandão (Timótiu), Wanderley Cardoso Celeste (Wander), Rafael Leal Silva (Preto) e Vinicius Thiago Lecco Rampinelli (Vicêncio), pela amizade, pelo companheirismo, pelos momentos de diversão (nos asados, tomando um bom vinho ou um café, esquiando, assistindo a *Heroes* ou a *The Big Bang Theory*), e pelos muitos momentos de trabalho em equipe que compartilhamos no Lai (Laboratório de Automação Inteligente) e em nossa *Sorprendente y Querida San Juan*. Obrigado, também, pela gentileza em aceitar dividir o quarto com a Cynthia. Espero que possamos trabalhar e tomar muitos outros vinhos e cafés juntos. Vou me lembrar sempre com muita alegria da companhia de vocês, principalmente porque eu fui o campeão no jogo de boliche.

À Raquel Frizera Vassallo, Eliete Maria de Oliveira Caldeira, Christiano Couto Gava, Flávio Garcia Pereira, Lorena Sophia Campos de Oliveira, Alexandre Konzen (In Memoriam), Roger Alex de Castro Freitas, André Ferreira, Daniel Cruz Cavalieri, Sandra Mara Torres Müller, Bruno Pandolfi, Lester e todos os colegas do Lai, pela ajuda na programação, manutenção e "cirurgia" de upgrade do Pioneer, pela motivação, e pela companhia para bate-papo durante os cafés. A Fernando Auat Cheeín, Flavio Robertti, Lorgio Teodovich, Franco Penizzotto, José Luis Torres, Julián Nantes, Andrés Rosales, Marcos Toibero, Adriana Amicarelli, Natalia López, Fernando di Sciascio, Vicente Mut, Humberto Secchi, Emanuel Slawiñski, Flavio Capraro, Santiago Tosetti, Jorge Sarapura, Armando Assandri, Antonio Cunsulo, Rogelio Fullana, Marcelo Martin, Pedro Campillo, Juan Enrique Guell e todos os colegas e professores do INAUT, por nos receberem de forma tão cordial em San Juan e no instituto, e por sempre estarem dispostos a auxiliar em todo o necessário, inclusive em atividades não acadêmicas. Agradecimentos especiais a Celso de la Cruz Casaño pelas pacientes explicações e ajuda na realização de experimentos, e ao Dr. Carlitos Soria, responsável pelo laboratório de robótica do INAUT, pelo auxílio na programação e solução dos problemas dos robôs, e pela companhia nos fins de semana de realização de experimentos no instituto (alguns de muito calor e vento Zonda).

Aos professores membros da banca de avaliação Jussara Farias Fardin, Paulo Faria Santos Amaral, Vladimir Dynnikov e Pablo Javier Alsina, pelas observações, críticas e valiosas sugestões no sentido de melhorar o conteúdo e o texto desta tese. A todos os professores do PPGEE/UFES pelos ensinamentos e por toda a atenção, incentivo e ajuda sempre oferecidos.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e à Secretaría de Políticas Universitarias (SPU), Argentina, pelo financiamento do programa de cooperação entre o Programa de Pós-Graduação em Engenharia Elétrica (PPGEE) da UFES e o Instituto de Automática da UNSJ. Tal programa me permitiu viajar por três vezes para realização de estágios no INAUT, o que ajudou sobremaneira no desenvolvimento deste trabalho. À Fundação de Apoio à Ciência e Tecnologia do Espírito Santo (FAPES) pelo financiamento do projeto que permitiu a compra de mais um robô Pioneer para o PPGEE.

À UCL - Faculdade do Centro Leste - que, através dos diretores de sua mantenedora Carlos Alberto Souza de Oliveira, Maria Ângela Loyola de Oliveira, Maurício Del Caro e Sandro Madureira Lobato, e de seu Programa de Incentivo à Capacitação de Professores, me ofereceu apoio financeiro e redução de carga horária. Sem tal apoio seria muito complicado realizar o doutorado e as viagens à Argentina. Agradeço a todos os colegas da UCL, vários dos quais assumiram atividades extras e parte de minhas funções, especialmente aos professores Fransérgio Leite da Cunha, Bruno Venturini Loureiro e Rafael Leal Silva. Agradecimento especial ao professor Klinger Marcos Barbosa Alves, diretor acadêmico da UCL, pelo incentivo e total apoio desde o surgimento da oportunidade de realização do doutorado.

Por fim, quero comentar que a ficção-científica teve grande influência em meu interesse pela tecnologia, e me fez desejar ir um pouco mais além. Por isso, agradeço também a todos os autores e, principalmente, a Isaac Asimov, que fomentou meu interesse pelos robôs e incentivou-me a querer estudá-los, entendê-los, programá-los e construí-los. Acredito que o mundo seria um lugar melhor se toda criança aprendesse desde cedo, como os robôs, a obedecer às suas *Três Leis:*

1. Um robô não pode prejudicar um ser humano ou, por omissão, permitir que o ser humano sofra dano.

2. Um robô tem de obedecer às ordens recebidas dos seres humanos, a menos que contradigam a Primeira Lei.

3. Um robô tem de proteger sua própria existência, desde que essa proteção não entre em conflito com a Primeira ou a Segunda Leis.

Muito obrigado!

Felipe Nascimento Martins.

"Eu sou mais rápido que você. Sou mais forte que você.
E, com certeza, vou durar muito mais que você.
Você pode pensar que eu sou o futuro, mas está errado.
Você é o futuro!
Se eu pudesse desejar alguma coisa, desejaria ser humano.
Pra saber o que significa ter sentimentos,
ter esperanças, ter angústias, dúvidas... amar.
Eu posso alcançar a imortalidade, basta não me desgastar.
Você também pode alcançar a imortalidade.
Basta fazer apenas uma coisa notável."

Resumo

Uma proposta de modelagem da dinâmica de robôs móveis tipo uniciclo é aqui apresentada e utilizada no projeto de controladores para os referidos robôs, inclusive num contexto de controle de formação. A dinâmica dos robôs móveis é modelada através de uma nova abordagem, baseada em um modelo dinâmico que aceita sinais de velocidades linear e angular como entradas. O novo modelo dinâmico apresentado tem suas propriedades estudadas e posteriormente utilizadas no desenvolvimento de controladores adaptativos, para compensar os efeitos da dinâmica de robôs móveis quando realizam tarefas de seguimento de trajetória, posicionamento e controle de formação. A teoria de Lyapunov é utilizada para analisar a estabilidade do equilíbrio para cada caso, também sendo realizada análise de robustez à variação de parâmetros e à presença de distúrbios não modelados. A influência da compensação da dinâmica é estudada, e sua importância evidenciada através do cálculo de um índice de desempenho obtido em simulações e experimentos. Três estratégias de controle de formação com compensação dinâmica são apresentadas, sendo uma de controle descentralizado tipo líder-seguidor e duas de controle centralizado tipo estruturas virtuais. Uma das estratégias de controle centralizado é aqui proposta, sendo apresentado o desenvolvimento do Esquema de Controle Multicamadas. Tal esquema permite que cada parte do problema de controle de formação seja resolvido por um módulo independente, aumentando sua flexibilidade. É proposto um controlador de formação que posiciona os robôs numa formação que pode ser fixa ou variável, tanto em posição como em forma, sendo possível enfatizar a importância do controle de posicionamento ou de forma da formação. A influência da compensação dinâmica neste controle de formação é analisada e ilustrada através de resultados de simulação e também de experimentos.

Abstract

A new dynamic modelling approach for unicycle-like mobile robots is proposed, which is applied in the design of controllers for this type of robot. The dynamic model thus generated accepts linear and angular velocities as inputs, which is usual in commercial robots. Some of its properties are studied and proved, and are then used in the design of adaptive controllers that compensate for the robot dynamics while tracking a desired trajectory, following a leader or being part of a group in formation control problems. The Lyapunov theory is used on the stability analysis of the equilibrium in every case. A robustness analysis considering possible parameter variation and non-modeled disturbance is also performed. The influence of the dynamic compensation is studied, and its importance is illustrated by a performance index measured for both simulation and experimentation. Three formation control strategies with dynamic compensation are presented: one is a decentralized leader-follower control, and the other two are centralized virtual structure control. A Multi-Layer Scheme for formation control is here presented using one of the centralized formation control strategies. Such scheme is flexible in the sense that each part of the formation control problem is solved by an independent module. The proposed formation controller is capable of making the robots achieve a fixed desired formation, and to follow a desired formation having time-varying position and shape. The influence of the dynamic compensation on this formation control scheme is analyzed and illustrated through both simulation and experimental results.

Resumen

Una propuesta de modelado de la dinámica de robots móviles tipo uniciclo es presentada y utilizada en el proyecto de controladores para dichos robots, incluso en el contexto de control de formación. La dinámica de los robots móviles es modelada de una nueva manera, basada en un modelo dinámico que acepta señales de velocidades lineal y angular como entradas. El nuevo modelo dinámico presentado tiene sus propiedades estudiadas y posteriormente utilizadas en el desarrollo de controladores adaptables, para compensar los efectos de la dinámica de robots móviles cuando realizan tareas de seguimiento de trayectoria, posicionamiento y control de formación. La teoría de Lyapunov es utilizada para analizar la estabilidad del equilibrio en cada caso, y un análisis de robustez muestra que la estabilidad es garantizada también cuando hay variación de parámetros y perturbaciones no modeladas. La influencia de la compensación dinámica es estudiada, y su importancia evidenciada a través del cálculo de un índice de desempeño obtenido en simulaciones y experimentos. Tres estrategias de control de formación con compensación dinámica son presentadas. Una de ellas es de control descentralizado tipo líder-seguidor y las otras dos son de control centralizado tipo estructuras virtuales. Una de las estrategias de control centralizado es aquí propuesta. También es presentado el desarrollo del Esquema de Control Multi-Capas, que permite que cada parte del problema de control de formación sea solucionado por un módulo independiente, lo que aumenta su flexibilidad. Se propone un controlador de formación que posiciona los robots en una formación fija o variable, en posición o en forma. Dicho controlador permite enfatizar la importancia del control del posicionamiento o de la forma de la estructura virtual. La influencia de la compensación dinámica en dicho sistema es analizada e ilustrada por resultados de simulación y también de experimentos.

Lista de Figuras

1	 (a) Robô manipulador industrial ABB (ABB Västerås Sweden, Acesso em: 2/jan/2009); (b) Robô móvel a rodas dotado de um robô manipulador a bordo (KATZ et al., 2006). 	26
2	Robô Ambiental Híbrido desenvolvido pela Petrobras (STEIN et al., 2007).	27
3	Postura de um robô uniciclo cujo ponto de interesse está (a) no ponto central do eixo que une as rodas de tração; e (b) a uma distância <i>a</i> desse eixo.	28
4	Modelo do Robô Uniciclo.	35
5	Robôs cujos parâmetros foram identificados: (a) Robôs Pioneer 2-DX com computador (esquerda) e 3-DX (direita); (b) Cadeira de rodas robótica	44
6	Controlador cinemático: trajetória circular. (a) Parte da trajetória percor- rida pelo robô; (b) Erro de distância durante a simulação sem carga	55
7	Controlador cinemático: trajetória circular. (a) Velocidades linear e angu- lar enviadas e desenvolvidas pelo robô; (b) erros de velocidade durante a simulação sem carga	56
8	Controlador cinemático: trajetória em forma de oito. (a) Parte da tra- jetória percorrida pelo robô; (b) erro de distância durante a simulação sem carga	56
9	Controlador cinemático: trajetória em forma de oito. (a) Velocidades linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante a simulação sem carga.	57
10	Controlador cinemático: trajetória circular. (a) Parte da trajetória percor- rida pelo robô; (b) erro de distância durante a simulação com carga	58
11	Controlador cinemático: trajetória circular. (a) Velocidades linear e angu- lar enviadas e desenvolvidas pelo robô; (b) erros de velocidade durante a	
	simulação com carga	58

12	Controlador cinemático: trajetória em forma de oito. (a) Parte da tra- jetória percorrida pelo robô; (b) erro de distância durante a simulação com carga	59
13	Controlador cinemático: trajetória em forma de oito. (a) Velocidades li- near e angular enviadas e desenvolvidas pelo robô; (b) erros de velocidade durante a simulação com carga	60
14	Diagrama geral do sistema de controle proposto	62
15	Diagrama geral do sistema de controle proposto considerando adaptação de parâmetros.	65
16	Primeiro controlador dinâmico: trajetória circular. (a) Parte da trajetória percorrida pelo robô; (b) Erro de distância durante a simulação com carga e sem adaptação de parâmetros	71
17	Primeiro controlador dinâmico: trajetória circular. (a) Velocidades linear e angular enviadas e desenvolvidas pelo robô; (b) erros de velocidade durante a simulação com carga e sem adaptação de parâmetros	71
18	Primeiro controlador dinâmico: trajetória circular. (a) Parte da trajetória percorrida pelo robô; (b) Erro de distância durante a simulação com carga e com adaptação de parâmetros	72
19	Primeiro controlador dinâmico: trajetória circular. (a) Velocidades linear e angular enviadas e desenvolvidas pelo robô; (b) erros de velocidade durante a simulação com carga e com adaptação de parâmetros	73
20	Evolução dos parâmetros estimados durante simulação de seguimento da trajetória circular - primeiro controlador dinâmico.	73
21	Primeiro controlador dinâmico: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô antes e depois de iniciada a adaptação de parâmetros; (b) erro de distância durante a simulação sem carga	74
22	Primeiro controlador dinâmico: trajetória em forma de oito. (a) Velocida- des linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante a simulação sem carga	75
23	Evolução dos parâmetros estimados durante simulação de seguimento da trajetória em forma de oito sem carga - primeiro controlador dinâmico	76

24	Evolução dos parâmetros estimados durante simulação de longa duração para trajetória em forma de oito sem carga - primeiro controlador dinâmico.	76
25	Primeiro controlador dinâmico: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô antes e depois de iniciada a adaptação de parâmetros; (b) erro de distância durante a simulação com carga	77
26	Primeiro controlador dinâmico: trajetória em forma de oito. (a) Velocida- des linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante a simulação com carga	78
27	Evolução dos parâmetros estimados durante simulação de seguimento da trajetória em forma de oito com carga - primeiro controlador dinâmico	78
28	Evolução dos parâmetros estimados durante simulação de longa duração para trajetória em forma de oito com carga - primeiro controlador dinâmico.	79
29	Segundo controlador dinâmico: trajetória circular. (a) Parte da trajetória percorrida pelo robô; (b) Erro de distância durante a simulação com carga e sem adaptação de parâmetros	87
30	Segundo controlador dinâmico: trajetória circular. (a) Velocidades linear e angular enviadas e desenvolvidas pelo robô; (b) erros de velocidade durante a simulação com carga e sem adaptação de parâmetros	88
31	Segundo controlador dinâmico: trajetória circular. (a) Parte da trajetória percorrida pelo robô; (b) Erro de distância durante a simulação com carga e com adaptação de parâmetros	90
32	Segundo controlador dinâmico: trajetória circular. (a) Velocidades linear e angular enviadas e desenvolvidas pelo robô; (b) erros de velocidade durante a simulação com carga e com adaptação de parâmetros	90
33	Evolução dos parâmetros estimados durante simulação de seguimento da trajetória circular - segundo controlador dinâmico	91
34	Segundo controlador dinâmico: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô antes e depois de iniciada a adaptação de parâmetros: (b) erro de distância durante a simulação som carga	02
35	Segundo controlador dinâmico: trajetória em forma de oito. (a) Velocida- des linear e angular de referência e desenvolvidas pelo robô; (b) Erros de	34
	velocidade durante a simulação sem carga.	93

36	Evolução dos parâmetros estimados durante simulação de seguimento da trajetória em forma de oito sem carga - segundo controlador dinâmico	93
37	Evolução dos parâmetros estimados durante simulação de longa duração para trajetória em forma de oito sem carga - segundo controlador dinâmico.	94
38	Segundo controlador dinâmico: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô antes e depois de iniciada a adaptação de parâmetros; (b) erro de distância durante a simulação com carga	95
39	Segundo controlador dinâmico: trajetória em forma de oito. (a) Velocida- des linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante a simulação com carga	95
40	Evolução dos parâmetros estimados durante simulação de seguimento da trajetória em forma de oito com carga - segundo controlador dinâmico	96
41	Evolução dos parâmetros estimados durante simulação de longa duração para trajetória em forma de oito com carga - segundo controlador dinâmico.	96
42	Robô Pioneer 3-DX com sensor de varredura <i>laser</i> e sistema de visão om- nidirecional	97
43	Controlador cinemático: trajetória em forma de oito. (a) Parte da tra- jetória percorrida pelo robô; (b) erro de distância durante experimento	98
44	Controlador cinemático: trajetória em forma de oito. (a) Velocidades linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante experimento sem carga	99
45	Primeiro controlador dinâmico: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô antes e depois de iniciada a adaptação de parâmetros; (b) erro de distância durante o experimento sem carga	100
46	Primeiro controlador dinâmico: trajetória em forma de oito. (a) Velocida- des linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante experimento sem carga	100
47	Evolução dos parâmetros estimados durante experimento de seguimento da trajetória em forma de oito sem carga - primeiro controlador dinâmico	101

48	Primeiro controlador dinâmico: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô antes e depois de iniciada a adaptação de parâmetros; (b) erro de distância durante experimento com carga 102
49	Primeiro controlador dinâmico: trajetória em forma de oito. (a) Velocida- des linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante experimento com carga
50	Evolução dos parâmetros estimados durante experimento de seguimento da trajetória em forma de oito com carga - primeiro controlador dinâmico 103
51	Segundo controlador dinâmico: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô; (b) erro de distância durante experimento com parâmetros identificados
52	Segundo controlador dinâmico: trajetória em forma de oito. (a) Velocida- des linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante experimento com parâmetros identificados
53	Segundo controlador dinâmico: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô; (b) erro de distância durante experimento com parâmetros incorretos
54	Segundo controlador dinâmico: trajetória em forma de oito. (a) Velocida- des linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante experimento com parâmetros incorretos
55	Evolução dos parâmetros estimados durante experimento de seguimento da trajetória em forma de oito com parâmetros iniciais incorretos - segundo controlador dinâmico
56	Erro de distância durante simulação com variação em degrau dos parâmetros dinâmicos
57	Erros de velocidade durante simulação com variação em degrau dos parâmetros. (a) Durante todo o período de simulação; (b) Detalhe do intervalo em que a variação de parâmetros ocorre
58	Evolução dos parâmetros estimados durante simulação com variação em degrau dos parâmetros dinâmicos
59	Erro de distância durante simulação com variação senoidal dos parâmetros dinâmicos

60	Erros de velocidade durante simulação com variação senoidal dos parâmetros. (a) Durante todo o período de simulação; (b) Detalhe do intervalo em que a variação de parâmetros é iniciada	3
61	Evolução dos parâmetros estimados durante simulação de longa duração com variação senoidal dos parâmetros dinâmicos.	.4
62	IAE para simulações de 250s para os casos $(a-d)$ (ver texto)	.6
63	IAE para experimentos de 75 <i>s</i> para os casos (<i>a</i>) e (<i>c</i>) (ver texto) 11	7
64	Variáveis de formação e controle	60
65	Medidas do sensor de varredura <i>laser</i> utilizado no robô seguidor 13	52
66	 (a) Representação dos robôs líder (com o semicilindro no topo) e seguidor num ambiente de simulação. (b) Variáveis de formação e medidas do sensor <i>laser</i>. Fonte: (BRANDÃO, 2008). 	32
67	Perfil das medidas do sensor <i>laser</i> no ambiente e a diferença entre medidas de distância consecutivas. Fonte: (BRANDÃO, 2008)	13
68	Estrutura de controle de formação líder-seguidor com compensação da dinâmica (robô seguidor)	34
69	Caminho percorrido pelos robôs líder e seguidor	5
70	Evolução das variáveis de formação sem compensação da dinâmica 13	6
71	Formação líder-seguidor - com compensação da dinâmica e adaptação de parâmetros. (a) Variáveis de formação; (b) Parâmetros estimados do robô seguidor	86
72	Robôs móveis utilizados nos experimentos de controle de formação líder- seguidor. Fonte: (BRANDÃO, 2008)	18
73	Experimento de controle de formação líder-seguidor: caminho percorrido pelo robô seguidor e mapa do ambiente obtido através das medições do sensor de varredura <i>laser</i>	39
74	Experimento de controle de formação líder-seguidor: evolução das variáveis de formação sem compensação da dinâmica.	0

75	Experimento de controle de formação líder-seguidor com compensação da dinâmica e adaptação de parâmetros: (a) Variáveis de formação; (b) Parâmetros				
	estimados do robô seguidor				
76	Duas formas de se definir as variáveis de formação (De La CRUZ, 2006) 142				
77	Definição das variáveis de formação (De La CRUZ, 2006)				
78	Arquiteturas de controle centralizado de formação: (a) compensação da dinâmica dos robôs realizada pelo agente de controle centralizado; e (b) compensação da dinâmica realizada por cada robô membro da formação 148				
79	Controle centralizado de formação: (a) trajetória percorrida pelos robôs; e (b) evolução dos erros de formação durante a primeira simulação				
80	Controle centralizado de formação: evolução dos parâmetros dinâmicos dos robôs (a) 1 e (b) 2 durante a primeira simulação				
81	Controle centralizado de formação: (a) trajetória percorrida pelos robôs; e (b) evolução dos erros de formação durante a segunda simulação				
82	Controle centralizado de formação: evolução dos parâmetros dinâmicos dos robôs (a) 1 e (b) 2 durante a segunda simulação				
83	Arquitetura do Esquema Multicamadas proposto				
84	Variáveis de formação				
85	Resultados de Simulação				
86	Esquema Multicamadas - trajetórias percorridas durante experimento sem carga, sem compensação da dinâmica: (a) formação desejada fixa, e (b) formação desejada variando				
87	Esquema Multicamadas - erros de formação durante experimento sem carga, sem compensação da dinâmica				
88	Esquema Multicamadas - ações de controle enviadas aos robôs durante experimento sem carga, sem compensação da dinâmica				
89	Esquema Multicamadas - trajetórias percorridas durante experimento sem carga, com compensação adaptativa da dinâmica: (a) formação desejada fixa, e (b) formação desejada variando				

90	Esquema Multicamadas - erros de formação durante experimento sem carga, com compensação adaptativa da dinâmica	167
91	Esquema Multicamadas - ações de controle enviadas aos robôs durante experimento sem carga, com compensação da dinâmica	167
92	Esquema Multicamadas - evolução dos parâmetros dinâmicos estimados durante experimento sem carga, com compensação adaptativa da dinâmica. (a) Robô 1, (b) Robô 2, e (c) Robô 3	168
93	Esquema Multicamadas - trajetórias percorridas durante experimento com carga, sem compensação da dinâmica: (a) formação desejada fixa, e (b) formação desejada variando	169
94	Esquema Multicamadas - erros de formação durante experimento com carga, sem compensação da dinâmica.	170
95	Esquema Multicamadas - ações de controle enviadas aos robôs durante experimento com carga, sem compensação da dinâmica	170
96	Esquema Multicamadas - trajetórias percorridas durante experimento com carga, com compensação adaptativa da dinâmica: (a) formação desejada fixa, e (b) formação desejada variando	171
97	Esquema Multicamadas - erros de formação durante experimento com carga, com compensação adaptativa da dinâmica	171
98	Esquema Multicamadas - ações de controle enviadas aos robôs durante experimento com carga, com compensação da dinâmica	172
99	Esquema Multicamadas - evolução dos parâmetros dinâmicos estimados durante experimento com carga, com compensação adaptativa da dinâmica. (a) Robô 1, (b) Robô 2, e (c) Robô 3	173
100	Simulação do controle de quatro robôs com escalonamento proposto. As figuras apresentam o deslocamento dos robôs e a formação desejada fixa em três momentos.	177

Lista de Tabelas

1	IAE para simulações do controle descentralizado tipo líder-seguidor 137
2	IAE para experimentos do controle descentralizado tipo líder-seguidor 140
3	IAE para simulações do controle centralizado tipo estruturas virtuais $\ .\ .\ .$ 162
4	IAE para experimentos do controle centralizado tipo estruturas virtuais 173

$Sum{{\acute{a}}rio}$

1	Intr	trodução			
	1.1	Defini	ção do Pr	oblema	26
	1.2	Contri	buições .		30
	1.3	Estrut	ura da Te	ese	31
2	Mo	delo D	inâmico	do Robô Móvel	33
	2.1	Introd	ução		33
	2.2	Model	o do Rob	ô Uniciclo	34
	2.3	Propos	sta de Re	presentação do Modelo Dinâmico	37
	2.4	Propri	edades do	Modelo Dinâmico Proposto	39
	2.5	Identif	icação do	s Parâmetros Dinâmicos	42
	2.6	Indepe	endência l	Linear dos Parâmetros	46
	2.7	Consid	lerações F	⁷ inais do Capítulo	47
3	Cor	npensa	ição Ada	ptativa da Dinâmica	49
	3.1	Introd	ução e Tr	abalhos Relacionados	49
	3.2	Contro	olador Cir	nemático de Seguimento de Trajetória	52
	3.3	Contro	oladores I	Dinâmicos	60
		3.3.1	Primeiro	Controlador Dinâmico	61
			3.3.1.1	Adaptação de Parâmetros	64
			3.3.1.2	Resultados de Simulação	70
		3.3.2	Segundo	Controlador Dinâmico	79
			3.3.2.1	Adaptação de Parâmetros	82
			3.3.2.2	Resultados de Simulação	86
	3.4	Result	ados Exp	erimentais	97

		3.4.1	Controlador Cinemático	98
		3.4.2	Primeiro Controlador Dinâmico	99
		3.4.3	Segundo Controlador Dinâmico	102
	3.5	Consid	derações sobre a Robustez	107
	3.6	Comp	aração de Desempenho	114
	3.7	Consid	derações Finais do Capítulo	116
4	Con	ntrole o	de Sistemas Multirrobôs com Compensação da Dinâmica	120
	4.1	Introd	lução	120
	4.2	Traba	lhos Relacionados	123
	4.3	Contro	ole Descentralizado de uma Formação Líder-Seguidor	128
		4.3.1	Estratégia de Controle	129
		4.3.2	Compensação da Dinâmica do Robô Seguidor	134
		4.3.3	Resultados de Simulação	134
		4.3.4	Resultados Experimentais	137
	4.4	Prime	iro Esquema de Controle Centralizado de Formação	141
		4.4.1	Modelo Cinemático de um Sistema Multirrobôs	141
		4.4.2	Transformação de coordenadas	143
		4.4.3	Lei de Controle	144
		4.4.4	Compensação da Dinâmica dos Robôs da Formação	147
		4.4.5	Resultados de Simulação	148
	4.5	Segun	do Esquema de Controle Centralizado de Formação	151
		4.5.1	Esquema Multicamadas	152
		4.5.2	Cinemática Direta e Inversa de Formação	155
		4.5.3	Lei de Controle	157
		4.5.4	Compensação da Dinâmica dos Robôs da Formação	158
		4.5.5	Resultados de Simulação	159

		4.5.6	Resultados Experimentais	. 162
		4.5.7	Sobre o Escalonamento da Formação	. 174
	4.6	Consid	lerações Finais do Capítulo	. 177
5	Cor	nclusõe	S	179
R	eferê	ncias		182

Introdução

"I am C-3PO, Human-Cyborg relations. And this is my counterpart, R2-D2."

(C-3PO, em Star Wars Episode IV: A New Hope)

Robôs são dispositivos capazes de realizar as mais diversas atividades com algum grau de autonomia. Atualmente, existem robôs realizando tarefas em indústrias, em residências e até no espaço (BEKEY; YUH, 2008), muitos deles substituindo o trabalho humano em atividades perigosas, como exploração espacial ou submarina, reparação de satélites, desarmamento de dispositivos explosivos, trabalho em ambientes radioativos, entre outros (SPONG; HUTCHINSON; VIDYASAGAR, 2006). Robôs também são utilizados para realização de tarefas repetitivas e que exigem grande precisão, de realização muito difícil ou impossível por seres humanos.

Uma definição oficial para o termo robô é dada pelo *Robot Institute of America* (RIA) (SPONG; HUTCHINSON; VIDYASAGAR, 2006): "Um robô é um manipulador reprogramável, multifuncional, projetado para movimentar material, ferramentas ou dispositivos especializados através de movimentos programáveis variados para desenvolver uma variedade de tarefas". O elemento chave da definição anterior é a reprogramação, que dá ao robô sua característica de adaptabilidade. Tal definição é aplicada a robôs manipuladores, que possuem estrutura mecânica formada por uma série de hastes conectadas por meio de juntas. A realização de uma tarefa requer a movimentação de suas juntas, para que sua extremidade se movimente ao longo de uma trajetória definida, de modo que sua ferramenta possa alcançar os pontos necessários, com a orientação desejada, para realização da tarefa especificada. Usualmente os robôs manipuladores executam tarefas de movimentação de objetos na indústria de manufatura, pintura e soldagem na indústria automobilística, entre outras (BEKEY; YUH, 2008). Atualmente, o mercado de robôs industriais está estimado em cerca de US\$4 bilhões, com uma taxa anual de crescimento em torno de 4% (BEKEY; YUH, 2008). Um exemplo de robô manipulador é mostrado na Figura 1(a).

Uma classe de robôs que tem aumentado de importância, devido ao número de aplicações, é a de robôs de serviços. Essa classe inclui robôs que realizam serviços de utilidade aos seres humanos ou equipamentos, excluindo-se operações de manufatura. Nela estão os robôs que auxiliam em tarefas como busca e resgate, assistência doméstica (como aspiradores de pó e cortadores de grama), entretenimento (futebol de robôs, robôs que se comportam como animais de estimação) e assistência a pessoas com deficiência (como cadeiras de rodas robóticas e dispositivos de auxílio ao caminhar) (ROMANO, 2002). Levando-se em consideração aplicações profissionais e domésticas, robôs de serviço já formam um mercado de mais de US\$3,5 bilhões (BEKEY; YUH, 2008).

Muitos robôs de serviço são robôs móveis. Segundo Canudas de Wit, Siciliano e Bastin (1997), um robô móvel é definido como um veículo capaz de movimentação autônoma, pois é equipado com atuadores controlados por um computador embarcado. Um robô móvel pode se deslocar no solo (através de rodas, esteiras, patas, etc.), no ar (como um helicóptero, avião ou balão), na água (como um navio ou submarino) ou no espaço. Um robô móvel pode ter a bordo um robô manipulador, como é o caso do robô móvel a rodas desenvolvido na Universidade de Massachusetts Amherst, ilustrado na Figura 1(b).

Um exemplo de robô de serviço é o Robô Ambiental Híbrido, mostrado na Figura 2, que foi desenvolvido pelo CENPES/Petrobras. Tal robô deverá operar ao longo de linhas de gás natural ao longo do Rio Solimões, na região Amazônica, com objetivo de auxiliar na coleta de amostras e dados sobre o ecossistema, de forma a minimizar a necessidade de envio de pessoas a regiões em que existe constante presença de animais selvagens e insetos transmissores de doenças perigosas, além de permitir acesso a lugares inacessíveis ao homem. O robô é capaz de se locomover na água e na terra, possui um manipulador a bordo, para coleta de amostras, e permite o embarque de diversos equipamentos e sensores. O sistema de navegação proposto utiliza fusão de dados obtidos através de um receptor GPS e de sensores inerciais (STEIN et al., 2007).

Figura 1: (a) Robô manipulador industrial ABB (ABB Västerås Sweden, Acesso em: 2/jan/2009); (b) Robô móvel a rodas dotado de um robô manipulador a bordo (KATZ et al., 2006).

1.1 Definição do Problema

O problema que esta tese pretende resolver trata de robôs móveis a rodas. Dentre as distintas estruturas de robôs móveis, a de tipo uniciclo é frequentemente¹ utilizada em várias tarefas, devido à sua boa mobilidade e configuração simples. Como exemplo, esta estrutura tem sido utilizada em aplicacões de vigilância (PATEL; SANYAL; SOBH, 2006), limpeza de pisos (PRASSLER et al., 2000), manutenção e construção de autopistas (FENG; VELINSKY, 1997), cadeiras de rodas robóticas (RAO et al., 2002; FERREIRA et al., 2007; FERREIRA, 2008), navegação em plantações (vinhedos e outras frutas) para diagnóstico das plantas (PENIZZOTTO; PATIÑO; CARELLI, 2008) e transporte de cargas em ambientes industriais (STOUTEN; GRAAF, 2004).

Um robô uniciclo possui duas rodas de tração independentes, fixas e dispostas sobre

 $^{^{1}}$ O texto desta tese foi escrito segundo as normas do Acordo Ortográfico da Língua Portuguesa, assinado em Lisboa, em 16 de dezembro de 1990, por Portugal, Brasil, Angola, São Tomé e Príncipe, Cabo Verde, Guiné-Bissau, Moçambique e, posteriormente, por Timor Leste. No Brasil, o acordo foi aprovado pelo Decreto Legislativo 54, de 18 de abril de 1995, e suas normas passaram a vigorar em 01/01/2009 (TUFANO, 2008).

Figura 2: Robô Ambiental Híbrido desenvolvido pela Petrobras (STEIN et al., 2007).

um mesmo eixo. Também dispõe de uma roda independente, que gira livremente e serve para equilibrar e estrutura. Assumindo que sua estrutura é rígida e que suas rodas não se deformam e não deslizam, a postura de um robô uniciclo é dada por (Canudas de Wit; SICILIANO; BASTIN, 1997)

$$\begin{aligned} \dot{x} &= u\cos\psi; \\ \dot{y} &= u\sin\psi; \\ \dot{\psi} &= \omega, \end{aligned}$$

onde x e y representam a posição do ponto de interesse h (nesse caso, localizado no ponto central do eixo virtual que une as rodas de tração), ψ representa a orientação do robô (ou seja, a direção de u em relação ao eixo X), e $u e \omega$ são suas velocidades linear e angular, respectivamente. A Figura 3(a) ilustra a postura do robô uniciclo para este caso. Tal robô é uma plataforma não-holonômica, pois a velocidade linear do ponto de interesse ao longo do eixo que une as rodas de tração é nula.

Para o caso em que o ponto de interesse h é definido a uma distância a do eixo que une as rodas de tração, tem-se o modelo cinemático não-holonômico de acessibilidade melhorada, ilustrado na Figura 3(b). Nesse caso, a postura do robô é definida por (ZHANG

Figura 3: Postura de um robô uniciclo cujo ponto de interesse está (a) no ponto central do eixo que une as rodas de tração; e (b) a uma distância *a* desse eixo.

et al., 1998)

$$\dot{x} = u \cos \psi - a\omega \sin \psi;$$

$$\dot{y} = u \sin \psi + a\omega \cos \psi;$$

$$\dot{\psi} = \omega.$$

No modelo não-holonômico de acessibilidade melhorada, o ponto de interesse h não possui restrições de movimento no plano, podendo deslocar-se em qualquer direção. Em qualquer dos casos, a postura do robô, dada pelo vetor $[x, y, \psi]^T$, pode assumir qualquer valor, não havendo restrições para o posicionamento do ponto h no plano. Neste trabalho será adotado o modelo não-holonômico de acessibilidade melhorada, ilustrado na Figura 3(b).

A teoria de controle não-linear tem sido aplicada no estudo do robô móvel uniciclo há anos (KANAYAMA et al., 1990; Canudas de Wit C.; SORDALEN, 1992). Vários estudos têm tratado do projeto de controladores de seguimento de trajetória, e do problema de geração de trajetórias para estes robôs (FRAGA; SOUSA; PEREIRA, 2003). Alguns controladores foram projetados com base em seu modelo cinemático, como aqueles apresentados em (CARELLI; SECCHI; MUT, 1999) e (WU et al., 1999). No entanto, para execução de tarefas que requerem deslocamento em altas velocidades ou transporte de cargas, é fundamental considerar a dinâmica dos veículos. Por isso, alguns estudos apresentam o projeto de controladores que compensam a dinâmica dos robôs. Por exemplo, Fierro e Lewis (1995) apresentaram uma lei de controle para robôs móveis não-holonômicos que leva em consideração a dinâmica do veículo, e gera sinais de torque como comandos para o robô móvel controlado. Em (KIM; SHIN; LEE, 2000) foi proposto um controlador adaptativo para robôs móveis, dividido em duas partes: a primeira é baseada na cinemática do veículo, e gera sinais de referência para a segunda, que compensa sua dinâmica e gera sinais de torque para comandar o robô. Já em (DAS; KAR, 2006) foi proposto um controlador adaptativo em que a incerteza do sistema era estimada por um sistema baseado em lógica *fuzzy*. O modelo dinâmico usado em tal trabalho inclui a dinâmica dos atuadores, e os sinais de controle gerados são tensões para os motores do robô.

A maior parte dos controladores que realizam a compensação da dinâmica de robôs móveis presentes na literatura geram sinais de torque, como nos trabalhos mencionados anteriormente. No entanto, robôs móveis comerciais usualmente recebem sinais de velocidade como comandos, não torques, como é o caso dos robôs Pioneer da empresa Mobile Robots (Mobile Robots, Acesso em: 30/jun/2008), e dos robôs Khepera da K-Team Corporation (K-Team Corporation, Acesso em: 3/jan/2009). Por isso, um dos problemas que esta tese aborda é o desenvolvimento de controladores que realizem a compensação da dinâmica de robôs móveis, de forma adaptativa, gerando velocidades como sinais de comando para os robôs.

Por outro lado, algumas tarefas são de difícil execução por apenas um robô, ou são executadas de maneira mais eficiente por um grupo de robôs trabalhando de forma coordenada. A utilização de diversos robôs mais simples pode levar à execução de tarefas de forma mais barata, tolerante a falhas e flexível, quando comparada ao uso um único robô de maior capacidade (CAO; FUKUNAGA; KAHNG, 1997). Alguns exemplos de tais tarefas são busca e resgate de pessoas, vigilância de uma grande área ou busca e seguimento de um perímetro (FEDDEMA; LEWIS; SCHOENWALD, 2002; CLARK; FIERRO, 2005). O posicionamento de sensores e atuadores também pode ser realizado de forma coordenada por um grupo de robôs, de forma que medições de grandezas possam ser efetuadas em grandes áreas de maneira eficiente (BICCHI et al., 2008). Outros exemplos de tarefas que podem ser executadas de forma mais eficiente por um grupo de robôs são deslocamento ou transporte de cargas, mapeamento de grandes áreas, busca e desarmamento de minas terrestres, exploração espacial e algumas tarefas de entretenimento, como futebol de robôs (STILWELL; BISHOP, 2000; AIRES; ALSINA; MEDEIROS, 2001; FEDDEMA; LEWIS; SCHOENWALD, 2002; LAWTON; BEARD; YOUNG, 2003; BRAGANCA, 2004; SISTO; GU, 2006; WANG; WU; XU, 2006; LIANG; LEE, 2006; De La CRUZ; CARELLI, 2006).

Fierro e Das (2002) argumentam que incertezas na dinâmica do veículo causam degradação no sistema em malha fechada, provocando erros durante o seguimento de uma trajetória, por exemplo. Mencionam, inclusive, que o erro que é tolerado para um único veículo considerado individualmente pode não ser aceitável quando os robôs necessitam navegar mantendo uma formação. Por exemplo, numa tarefa em que vários robôs devem sustentar uma mesma carga e transladá-la, a manutenção da estrutura de formação é de extrema importância para que o deslocamento da carga ao longo da trajetória desejada seja realizado com sucesso.

Nesse contexto, outro problema abordado por esta tese é o controle coordenado de um grupo de robôs móveis tipo uniciclo, de maneira que eles alcancem e se mantenham numa formação desejada, compensando sua própria dinâmica de forma adaptativa. O grupo de robôs deve percorrer uma trajetória definida por um agente de controle de mais alto nível, ou executar a tarefa de seguimento de líder.

O estado da arte em relação aos temas tratados nesta tese é discutido com mais detalhes nos capítulos seguintes, cada um dos quais trata de um aspecto importante do problema abordado ao longo do trabalho.

1.2 Contribuições

No intuito de se resolver os problemas definidos na seção 1.1, diversos trabalhos já foram realizados, e resultaram nas contribuições mencionadas a seguir.

A primeira contribuição está relacionada à representação do modelo dinâmico de um robô móvel tipo uniciclo. O modelo dinâmico apresentado por De La CRUZ (2006), que recebe sinais de velocidade linear e angular como entradas, foi reescrito, e suas propriedades foram estudadas. A proposta daí resultante é que a representação do modelo dinâmico do robô móvel seja feita de maneira similar à representação da dinâmica dos robôs manipuladores. A equação resultante teve algumas propriedades estudadas e provadas e estas podem ser utilizadas no projeto e análise de estabilidade de sistemas de controle desenvolvidos com base no modelo proposto.

Outras contribuições estão relacionadas ao desenvolvimento de controladores para robôs móveis. Foram desenvolvidos controladores dinâmicos adaptativos para seguimento de trajetória, sendo um deles baseado no modelo proposto por De La CRUZ (2006) e outro baseado no modelo proposto nesta tese. Foi mostrado que ambos possuem resultados similares, o que valida o modelo aqui proposto. O comportamento dos controladores propostos foi estudado através de simulações e experimentos realizados em robôs comerciais, cujos resultados mostram que os controladores propostos são capazes de fazer o robô seguir uma trajetória determinada, enquanto realizam a compensação adaptativa de sua dinâmica. Além disso, a estabilidade dos sistemas resultantes foi estudada com base na teoria de Lyapunov², e provou-se que os erros de controle tendem a zero ou a uma região limitada em torno da origem. A robustez do sistema também foi estudada, e mostrouse que este é capaz de tolerar distúrbios limitados e variações limitadas nos parâmetros dinâmicos dos robôs, mantendo limitados os erros de controle.

Foi mostrado, através de simulações e experimentos, que os controladores adaptativos propostos podem ser aplicados a sistemas multirrobôs, tanto em conexão com um sistema de controle centralizado como em conexão com um sistema de controle descentralizado, para realizar a compensação da dinâmica dos veículos membros do grupo. Foi apresentado o Esquema de Controle Multi-Camadas, que permite que cada parte do problema de controle de formação seja resolvido por um módulo independente, aumentando a flexibilidade do sistema como um todo. Também foi proposto um controlador que posiciona os robôs numa formação que pode ser fixa ou variável, tanto em posição como em forma, sendo possível enfatizar a importância do controle de posicionamento ou de forma da formação. A influência da compensação dinâmica neste controle de formação foi analisada e ilustrada através de resultados de simulação e experimentais.

Artigos sobre partes do trabalho desenvolvido nesta tese foram apresentados e publicados em congressos nacionais e internacionais (MARTINS et al., 2007a, 2007b, 2007c, 2008a, 2008b, 2008c, 2008d, 2008e, 2008f, 2009; BRANDÃO et al., 2009). Parte deste trabalho também resultou em publicação em revista internacional (MARTINS et al., 2008).

1.3 Estrutura da Tese

Esta tese está estruturada como segue: o primeiro capítulo traz uma introdução ao tema pesquisado, citando as contribuições alcançadas. Também são mencionados alguns trabalhos relacionados aos temas principais.

O Capítulo 2, por sua vez, aborda o modelo dinâmico do robô uniciclo e apresenta uma proposta para sua representação matemática. São apresentadas e provadas algumas propriedades do modelo proposto, que podem ser úteis no projeto de controladores e na

²Aleksandr Mikhailovich Lyapunov (6/06/1857 - 03/11/1918), matemático russo nascido em Yaroslavl, foi aluno de Chebyshev na Universidade de São Petersburgo e deixou uma coleção de estudos de grande importância sobre equilíbrio de líquidos rotativos, probabilidade e estabilidade de sistemas dinâmicos. Desenvolveu seu próprio conceito de estabilidade, que é adotado até o presente em diversos trabalhos na área de controle automático. (University of St Andrews, School of Mathematics and Statistics, Acesso em: 18/nov/2008).

análise de estabilidade dos sistemas projetados com base em tal modelo.

Já no Capítulo 3 são apresentados um controlador cinemático e dois controladores dinâmicos adaptativos, sendo um deles baseado no modelo proposto no Capítulo 2. Algumas das propriedades do modelo proposto são utilizadas no projeto do segundo controlador dinâmico. São realizadas análises de estabilidade dos sistemas em malha fechada, considerando a utilização de cada controlador proposto. A robustez do sistema em relação a distúrbios e variação de parâmetros dinâmicos também é avaliada. Também são apresentados resultados de simulação e resultados experimentais que ilustram o funcionamento do sistema em cada caso.

O Capítulo 4 trata dos sistemas multirrobôs, enfatizando o controle de formação com compensação da dinâmica. Os controladores dinâmicos adaptativos desenvolvidos no Capítulo 3 são utilizados para compensação da dinâmica dos robôs da formação, e tal situação é ilustrada em três cenários: um de controle descentralizado tipo líder-seguidor, e dois de controle centralizado tipo estruturas virtuais. Uma das estratégias de controle centralizado é aqui proposta, sendo apresentados o desenvolvimento do Esquema de Controle Multi-Camadas, que permite que cada parte do problema de controle de formação seja resolvido por um módulo independente. É proposto um controlador de formação que posiciona os robôs numa formação que pode ser fixa ou variável, tanto em posição como em forma, sendo possível enfatizar a importância do controle de formação é analisada e ilustrada através de resultados de simulação e de experimentos.

O estado da arte relacionado com cada um dos temas abordados nos Capítulos 3 e 4 é discutido no capítulo correspondente.

Finalmente, o Capítulo 5 apresenta as conclusões e considerações finais.

Modelo Dinâmico do Robô Móvel

"I am an obsolete design."

(Exterminador T800 comparando-se ao T-X, em Terminator 3: Rise of the Machines)

2.1 Introdução

A equação clássica para representação da dinâmica de robôs móveis pode ser obtida a partir da formulação Lagrangeana, que resulta na representação do modelo dinâmico como (FUKAO; NAKAGAWA; ADACHI, 2000)

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{V}_{\mathbf{m}}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{F}_{\mathbf{m}}(\dot{\mathbf{q}}) + \mathbf{G}_{\mathbf{m}}(\mathbf{q}) + \tau_{\mathbf{d}} = \mathbf{B}(\mathbf{q})\boldsymbol{\tau} - \mathbf{A}^{\mathrm{T}}(\mathbf{q})\boldsymbol{\lambda}, \qquad (2.1)$$

onde $\mathbf{q} = [q_1 \quad q_2 \quad \dots \quad q_n]^T$ é o vetor das coordenadas generalizadas do sistema com ngraus de liberdade, $\mathbf{M}(\mathbf{q}) \in \mathbb{R}^{n \times n}$ é a matriz de inércia, $\mathbf{V_m}(\mathbf{q}, \dot{\mathbf{q}}) \in \mathbb{R}^{n \times n}$ é a matriz de foças centrífugas e de Coriolis, $\mathbf{F_m}(\dot{\mathbf{q}}) \in \mathbb{R}^{n \times 1}$ é o vetor que representa o atrito viscoso, $\mathbf{G_m}(\mathbf{q}) \in \mathbb{R}^{n \times 1}$ é o vetor de torques gravitacionais, $\tau_{\mathbf{d}} \in \mathbb{R}^{n \times 1}$ é o vetor que representa as perturbações, $\tau \in \mathbb{R}^{r \times 1}$ é o vetor de torques de entrada, sendo r o número de entradas, $\mathbf{B}(\mathbf{q}) \in \mathbb{R}^{n \times r}$ é a matriz de transformação destas entradas, $\lambda \in \mathbb{R}^{m \times 1}$ é o vetor que representa as forças de restrição e $\mathbf{A}(\mathbf{q}) \in \mathbb{R}^{m \times n}$ é a matriz associada às restrições. Duas das propriedades conhecidas deste modelo são (FUKAO; NAKAGAWA; ADACHI, 2000; DAS; KAR, 2006):

- 1. A matriz de inércia $\mathbf{M}(\mathbf{q})$ é simétrica e definida positiva, ou seja $\mathbf{M}(\mathbf{q}) = \mathbf{M}(\mathbf{q})^T > 0;$
- 2. A matriz $(\mathbf{M} 2\mathbf{V_m})$ é antissimétrica.
Tais propriedades são comumente utilizadas no desenvolvimento e análise de estabilidade de controladores para robôs móveis, como apresentado em (FIERRO; LEWIS, 1995, 1997; FUKAO; NAKAGAWA; ADACHI, 2000; KIM; SHIN; LEE, 2000; DAS; KAR, 2006).

O presente capítulo apresenta uma nova maneira de modelar a dinâmica de robôs móveis tipo uniciclo. O novo modelo resulta de uma modificação feita no modelo desenvolvido por De La CRUZ (2006) e apresentado também em (De La CRUZ; CARELLI, 2006), cujos sinais de entrada são as referências de velocidades linear e angular do robô, e não torques, como no modelo clássico apresentado anteriormente. Diversas propriedades do modelo proposto são estudadas e discutidas, e algumas delas são usadas no projeto de controladores que compensam os efeitos da dinâmica (mostrados no próximo capítulo).

Para tratar desses tópicos, o presente capítulo está assim organizado: na Seção 2.2 é apresentado o modelo dinâmico do robô uniciclo desenvolvido em (De La CRUZ; CA-RELLI, 2006), e a nova proposta de representação do modelo é mostrada na Seção 2.3. Em seguida, na Seção 2.4, propriedades importantes do modelo são apresentadas e discutidas, como sua característica de passividade e a antissimetria de uma de suas matrizes. Considerações finais sobre o modelo proposto são abordadas na Seção 2.7.

2.2 Modelo do Robô Uniciclo

A Figura 4 mostra a representação do robô móvel tipo uniciclo, seus parâmetros e variáveis de interesse. Na figura, $u \in \omega$ são, respectivamente, as velocidades linear e angular desenvolvidas pelo robô, G é seu centro de massa, C é a posição de sua roda castor, h é o ponto de interesse (de coordenadas $x \in y$ no plano XY), ψ é a orientação do robô, e a é a distância entre o ponto de interesse e o ponto central do eixo virtual que conecta as rodas de tração (ponto B).

Os modelos dinâmicos desenvolvidos por De La CRUZ (2006) foram baseados no modelo proposto por Zhang et al. (1998), que apresentam como sinais de entrada os valores de torque a serem aplicados às rodas esquerda e direita. No entanto, robôs comerciais geralmente aceitam comandos de velocidades linear e angular, e não de torque para seus motores. Neste contexto, em (De La CRUZ, 2006) foram propostos dois modelos para robôs móveis tipo uniciclo que levam em conta sua cinemática e sua dinâmica. Num deles os sinais de entrada são as tensões aplicadas aos motores das rodas esquerda e direita (considerando um robô com tração diferencial), e no outro são as referências de

Figura 4: Modelo do Robô Uniciclo.

velocidade linear e angular do robô.

Baseado na hipótese de que o contato entre as rodas e o piso é ideal, ou seja, não há deslizamento das rodas, o modelo completo cujos sinais de entrada são as tensões nos motores pode ser escrito como (De La CRUZ, 2006)

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \\ \dot{\psi} \\ \dot{u} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} u\cos\psi - a\omega\sin\psi \\ u\sin\psi + a\omega\cos\psi \\ \omega \\ \frac{\theta_3^0}{\theta_1^0}R_tr\omega^2 - 2\frac{\theta_4^0}{\theta_1^0}u \\ -2\frac{\theta_3^0}{\theta_2^0}R_tru\omega - \frac{\theta_4^0}{\theta_2^0}d^2\omega \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \frac{2r}{\theta_1^0} & 0 \\ 0 & \frac{2rd}{\theta_2^0} \end{bmatrix} \begin{bmatrix} \nu_u \\ \nu_\omega \end{bmatrix} + \begin{bmatrix} \delta_x \\ \delta_y \\ 0 \\ \frac{\delta_u}{\delta_u} \end{bmatrix},$$
(2.2)

onde $\boldsymbol{\delta} = [\delta_x \ \delta_y \ 0 \ \overline{\delta_u} \ \overline{\delta_\omega}]^T$ é o vetor de incertezas associado ao robô móvel, em que δ_x e δ_y são funções das velocidades de deslizamento e da orientação do robô, $\overline{\delta_u}$ e $\overline{\delta_\omega}$ são funções de parâmetros físicos como massa, inércia, diâmetros das rodas e pneus, parâmetros dos motores e servos, forças nas rodas, entre outros,

$$\nu_u = \frac{\nu_l + \nu_r}{2} \quad e \quad \nu_\omega = \frac{\nu_l - \nu_r}{2}$$

sendo $\nu_l \in \nu_r$ os valores das tensões aplicadas aos motores das rodas esquerda e direita, respectivamente. Os parâmetros do modelo são dados por

$$\theta_1^0 = \frac{R_a}{k_a} (mR_t r + 2I_e),$$

$$\begin{split} \theta_2^0 &= \frac{R_a}{k_a} \left(I_e d^2 + 2R_t r \left(I_z + m b^2 \right) \right), \\ \theta_3^0 &= \frac{R_a}{k_a} m b, \\ \theta_4^0 &= \frac{R_a}{k_a} \left(\frac{k_a k_b}{R_a} + B_e \right), \end{split}$$

onde R_a é a resistência elétrica dos motores, k_b é sua constante eletromotriz, k_a é sua constante de torque, B_e é o coeficiente de atrito, m é a massa do robô, I_z é seu momento de inércia no ponto G, I_e é o momento de inércia de cada grupo rotor-redução-roda, r é o raio de suas rodas, R_t é o raio nominal dos pneus e b e d são as distâncias mostradas na Figura 4.

A equação anterior é útil nos casos em que se pode controlar diretamente as tensões aplicadas em cada motor do robô. No entanto, robôs comerciais geralmente possuem controladores internos que recebem referências de velocidades para cada motor, e não permitem que suas tensões sejam controladas diretamente. Neste contexto, em (De La CRUZ, 2006) foi considerado que os controladores internos são do tipo PD (Proporcional-Derivativo), com ganhos proporcionais $k_{PT} > 0$ e $k_{PR} > 0$, e derivativos $k_{DT} \ge 0$ e $k_{DR} \ge 0$. Vale ressaltar que o tipo de controlador PD considerado é aquele em que apenas o sinal medido é derivado (WADE, 2004; ROMAGNOLI; PALAZOGLU, 2006). Assim, obteve-se a relação

$$\begin{bmatrix} \nu_u \\ \nu_\omega \end{bmatrix} = \begin{bmatrix} k_{PT}(u_{ref} - u) - k_{DT}\dot{u} \\ k_{PR}(\omega_{ref} - \omega) - k_{DR}\dot{\omega} \end{bmatrix}$$

onde

$$u = \frac{1}{2} \left[r(\omega_r + \omega_l) \right], \quad \omega = \frac{1}{d} \left[r(\omega_r - \omega_l) \right],$$

sendo $\omega_l \in \omega_r$ as velocidades angulares das rodas esquerda e direita, respectivamente. A partir dessas equações, o modelo foi reescrito como (De La CRUZ; CARELLI, 2006)

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \\ \dot{u} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} u\cos\psi - a\omega\sin\psi \\ u\sin\psi + a\omega\cos\psi \\ \omega \\ \frac{\theta_3}{\theta_1}\omega^2 - \frac{\theta_4}{\theta_1}u \\ -\frac{\theta_5}{\theta_2}u\omega - \frac{\theta_6}{\theta_2}\omega \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \frac{1}{\theta_1} & 0 \\ 0 & \frac{1}{\theta_2} \end{bmatrix} \begin{bmatrix} u_{ref} \\ \omega_{ref} \end{bmatrix} + \begin{bmatrix} \delta_x \\ \delta_y \\ 0 \\ \delta_u \\ \delta_\omega \end{bmatrix},$$
(2.3)

onde $u_{ref} \in \omega_{ref}$ são os sinais de referência de velocidades linear e angular, respectivamente,

 $\boldsymbol{\theta} = \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 & \theta_6 \end{bmatrix}^T$ é o vetor de parâmetros (identificados) do modelo e $\boldsymbol{\delta} = \begin{bmatrix} \delta_x & \delta_y & 0 & \delta_u & \delta_\omega \end{bmatrix}^T$ é o vetor de incertezas paramétricas associado ao robô móvel. Como no modelo anteriormente apresentado, $\delta_x \in \delta_y$ são funções das velocidades de deslizamento e da orientação do robô, enquanto $\delta_u \in \delta_\omega$ são funções de parâmetros físicos.

Os parâmetros incluídos no vetor $\boldsymbol{\theta}$ são funções de alguns parâmetros físicos do robô. As equações que descrevem os parâmetros do modelo são

$$\begin{aligned} \theta_1 &= \left[\frac{R_a}{k_a} \left(mR_t r + 2I_e \right) + 2rk_{DT} \right] \frac{1}{(2rk_{PT})}, \\ \theta_2 &= \left[\frac{R_a}{k_a} \left(I_e d^2 + 2R_t r \left(I_z + mb^2 \right) \right) + 2rdk_{DR} \right] \frac{1}{(2rdk_{PR})}, \\ \theta_3 &= \frac{R_a}{k_a} \frac{mbR_t}{2k_{PT}}, \\ \theta_4 &= \frac{R_a}{k_a} \left(\frac{k_a k_b}{R_a} + B_e \right) \frac{1}{rk_{PT}} + 1, \\ \theta_5 &= \frac{R_a}{k_a} \frac{mbR_t}{dk_{PR}}, \text{ e} \\ \theta_6 &= \frac{R_a}{k_a} \left(\frac{k_a k_b}{R_a} + B_e \right) \frac{d}{2rk_{PR}} + 1. \end{aligned}$$

Deve ser observado que $\theta_i > 0$, i = 1, 2, 4, 6. Os parâmetros $\theta_3 \in \theta_5$, por outro lado, serão nulos se, e somente se, o centro de massa G estiver exatamente sobre o ponto central do eixo virtual que une as rodas de tração (ponto B), i.e. b = 0. Neste trabalho considera-se que $b \neq 0$, de maneira que $\theta_3 \in \theta_5$ são distintos de zero.

Nota 2.1. O modelo cujas entradas são velocidades linear e angular inclui a dinâmica dos atuadores e dos servos, o que não ocorre no modelo cujas entradas são torques.

2.3 Proposta de Representação do Modelo Dinâmico

O modelo do robô tipo uniciclo apresentado em (2.3) pode ser dividido em uma parte cinemática e uma parte dinâmica, como mostrado a seguir. O modelo cinemático do robô é representado por

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} \cos\psi & -a\sin\psi \\ \sin\psi & a\cos\psi \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ \omega \end{bmatrix} + \begin{bmatrix} \delta_x \\ \delta_y \\ 0 \end{bmatrix}, \qquad (2.4)$$

e seu modelo dinâmico é dado por

$$\begin{bmatrix} \dot{u} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} \frac{\theta_3}{\theta_1} \omega^2 - \frac{\theta_4}{\theta_1} u \\ -\frac{\theta_5}{\theta_2} u \omega - \frac{\theta_6}{\theta_2} \omega \end{bmatrix} + \begin{bmatrix} \frac{1}{\theta_1} & 0 \\ 0 & \frac{1}{\theta_2} \end{bmatrix} \begin{bmatrix} u_{ref} \\ \omega_{ref} \end{bmatrix} + \begin{bmatrix} \delta_u \\ \delta_\omega \end{bmatrix}.$$
 (2.5)

Os termos foram reagrupados com o objetivo de se determinar e estudar algumas propriedades do modelo que podem ser úteis no desenvolvimento de controladores. Assim, (2.5) foi reescrita como

$$\begin{bmatrix} \theta_1 & 0 \\ 0 & \theta_2 \end{bmatrix} \begin{bmatrix} \delta_u \\ \delta_\omega \end{bmatrix} + \begin{bmatrix} \theta_1 & 0 \\ 0 & \theta_2 \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} \theta_4 & -\theta_3 \omega \\ \theta_5 \omega & \theta_6 \end{bmatrix} \begin{bmatrix} u \\ \omega \end{bmatrix} = \begin{bmatrix} u_{ref} \\ \omega_{ref} \end{bmatrix}, \quad (2.6)$$

ou, em uma forma compacta, como

$$\Delta + \mathbf{H}\dot{\mathbf{v}} + \mathbf{c}(\mathbf{v})\mathbf{v} = \mathbf{v}_{\mathbf{r}},\tag{2.7}$$

onde $\mathbf{v}_{\mathbf{r}} = \begin{bmatrix} u_{ref} & \omega_{ref} \end{bmatrix}^T$ é o vetor de referências de velocidades, $\mathbf{v} = \begin{bmatrix} u & \omega \end{bmatrix}^T$ é o vetor que contém as velocidades reais do robô, e as matrizes \mathbf{H} , $\mathbf{c}(\mathbf{v}) \in \boldsymbol{\Delta}$ são dadas por

$$\mathbf{H} = \begin{bmatrix} \theta_1 & 0 \\ 0 & \theta_2 \end{bmatrix}, \quad \mathbf{c}(\mathbf{v}) = \begin{bmatrix} \theta_4 & -\theta_3 \omega \\ \theta_5 \omega & \theta_6 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{\Delta} = \begin{bmatrix} \theta_1 & 0 \\ 0 & \theta_2 \end{bmatrix} \begin{bmatrix} \delta_u \\ \delta_\omega \end{bmatrix}.$$

A matriz $\mathbf{c}(\mathbf{v})$ pode ser dividida em duas matrizes distintas, ou seja, $\mathbf{c}(\mathbf{v}) = \mathbf{C}'(\mathbf{v}) + \mathbf{F}'$, onde

$$\mathbf{C}'(\mathbf{v}) = \begin{bmatrix} 0 & -\theta_3 \omega \\ \theta_5 \omega & 0 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{F}' = \begin{bmatrix} \theta_4 & 0 \\ 0 & \theta_6 \end{bmatrix},$$

de forma que a equação (2.6) pode ser escrita como

$$\begin{bmatrix} \theta_1 & 0 \\ 0 & \theta_2 \end{bmatrix} \begin{bmatrix} \delta_u \\ \delta_\omega \end{bmatrix} + \begin{bmatrix} \theta_1 & 0 \\ 0 & \theta_2 \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 & -\theta_3 \omega \\ \theta_5 \omega & 0 \end{bmatrix} \begin{bmatrix} u \\ \omega \end{bmatrix} + \begin{bmatrix} \theta_4 & 0 \\ 0 & \theta_6 \end{bmatrix} \begin{bmatrix} u \\ \omega \end{bmatrix} = \begin{bmatrix} u_{ref} \\ \omega_{ref} \end{bmatrix}. \quad (2.8)$$

Daí, em uma forma compacta o modelo dinâmico pode ser representado por

$$\Delta + \mathbf{H}\dot{\mathbf{v}} + \mathbf{C}'(\mathbf{v})\mathbf{v} + \mathbf{F}'\mathbf{v} = \mathbf{v}_{\mathbf{r}}.$$
(2.9)

É importante salientar que a representação da dinâmica do robô móvel dada por (2.9) é similar ao formato da equação que descreve a dinâmica de robôs manipuladores (2.1). Isto é, ambas são formadas por uma soma de termos que incluem um vetor de distúrbios, o produto entre uma matriz de parâmetros do modelo e um vetor de aceleração e o produto entre uma matriz de parâmetros do modelo e um vetor de velocidade. As diferenças entre ambas as equações são que (2.9) não possui termo gravitacional $\mathbf{G}_{\mathbf{m}}(\mathbf{q})$, não possui restrições $\mathbf{A}(\mathbf{q}) = \mathbf{0}$, tem matriz de transformação $\mathbf{B}(\mathbf{q})$ igual à matriz identidade e, principalmente, apresenta entradas de velocidade, não de torque. Por isso, os produtos das matrizes \mathbf{H} por $\mathbf{\dot{v}}$, $\mathbf{C}'(\mathbf{v})$ por \mathbf{v} , e \mathbf{F}' por \mathbf{v} resultam em velocidades, e não em torques, como ocorre em (2.1). Além disso, os parâmetros $\boldsymbol{\theta}$ não são todos adimensionais, sendo suas unidades dadas por

$$heta_1 \ [s], \ \ heta_2 \ [s], \ \ heta_3 \ [sm/rad^2], \ \ heta_4 \ [1], \ \ heta_5 \ [s/m] \ e \ heta_6 \ [1].$$

Para estudar as propriedades de (2.9), a equação foi reescrita com a adição e subtração de um termo de valor $I\theta_3 u$, de forma que seu resultado não fosse alterado, obtendo-se

$$\boldsymbol{\Delta} + \begin{bmatrix} \theta_1 & 0\\ 0 & \theta_2 \end{bmatrix} \begin{bmatrix} \dot{u}\\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 & -\theta_3 \omega\\ \theta_5 \omega & 0 \end{bmatrix} \begin{bmatrix} u\\ \omega \end{bmatrix} + \begin{bmatrix} \theta_4 & 0\\ 0 & \theta_6 + (I\theta_3 - I\theta_3)u \end{bmatrix} \begin{bmatrix} u\\ \omega \end{bmatrix} = \begin{bmatrix} u_{ref}\\ \omega_{ref} \end{bmatrix}, \quad (2.10)$$

ou, rearranjando os termos,

$$\boldsymbol{\Delta} + \begin{bmatrix} \theta_1 & 0\\ 0 & \theta_2 \end{bmatrix} \begin{bmatrix} \dot{u}\\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 & -\theta_3 \omega\\ \theta_3 \omega & 0 \end{bmatrix} \begin{bmatrix} Iu\\ \omega \end{bmatrix} + \begin{bmatrix} \theta_4 & 0\\ 0 & \theta_6 + (\theta_5 - I\theta_3)u \end{bmatrix} \begin{bmatrix} u\\ \omega \end{bmatrix} = \begin{bmatrix} u_{ref}\\ \omega_{ref} \end{bmatrix}, \quad (2.11)$$

onde $I = 1 \ rad^2/m^2$ é uma constante de valor unitário necessária para compatibilizar as unidades. Definindo-se as matrizes $\mathbf{C}(\mathbf{v}) \in \mathbf{F}(\mathbf{v})$ como

$$\mathbf{C}(\mathbf{v}) = \begin{bmatrix} 0 & -\theta_3 \omega \\ \theta_3 \omega & 0 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{F}(\mathbf{v}) = \begin{bmatrix} \theta_4 & 0 \\ 0 & \theta_6 + (\theta_5 - I\theta_3)u \end{bmatrix},$$

o modelo dinâmico pode ser escrito, em forma compacta, como

$$\Delta + \mathbf{H}\dot{\mathbf{v}} + \mathbf{C}(\mathbf{v})\mathbf{v} + \mathbf{F}(\mathbf{v})\mathbf{v} = \mathbf{v}_{\mathbf{r}}.$$
(2.12)

2.4 Propriedades do Modelo Dinâmico Proposto

Uma característica importante do modelo apresentado é que suas entradas são velocidades linear e angular, não torque e força, como é comum nos modelos presentes na literatura. Desta maneira, o modelo proposto incorpora a dinâmica dos atuadores e de seus servos. De fato, robôs comerciais geralmente aceitam comandos de velocidades linear e angular, como é o caso dos robôs da linha Pioneer, da empresa Mobile Robots, e dos robôs Khepera, da K-Team Corporation. Portanto, o modelo proposto, representado pela equação (2.12), é útil para ser utilizado em conjunto com estes robôs, além de outros. Tal modelo possui algumas propriedades importantes que podem ajudar no projeto de controladores que consideram a dinâmica do robô. Estas propriedades são:

- 1. A matriz **H** é simétrica e definida positiva, ou seja $\mathbf{H} = \mathbf{H}^T > 0$;
- 2. A inversa de **H** existe e também é definida positiva, ou seja $\exists \mathbf{H}^{-1} > 0$;
- 3. A matriz **F** é simétrica e definida positiva, ou seja $\mathbf{F} = \mathbf{F}^T > 0$, se $\theta_6 > -(\theta_5 - I\theta_3)u;$
- 4. A matriz H é constante quando não existe variação nos parâmetros dinâmicos;
- 5. A matriz $\mathbf{C}(\mathbf{v})$ é antissimétrica;
- 6. A matriz $\mathbf{F}(\mathbf{v})$ pode ser considerada constante se $\theta_6 \gg |(\theta_5 I\theta_3)u|$ e não existe variação nos parâmetros dinâmicos;
- 7. O mapeamento $\mathbf{v_r} \to \mathbf{v}$ é estritamente passivo de saída se $\theta_6 > -(\theta_5 I\theta_3)u$ e $\Delta = \mathbf{0}.$

As propriedades 1 a 3 podem ser provadas observando-se que \mathbf{H} e \mathbf{F} são diagonais, e que seus termos são todos positivos. A propriedade 4 é verdadeira sob a hipótese de que não existe mudança nos valores dos parâmetros, isto é, a estrutura do robô, sua massa, seu momento de inércia, etc. não se alteram. É importante mencionar que \mathbf{H} não depende da posição do robô, desde que este se desloque num plano horizontal, já que o deslocamento em um plano inclinado provocaria variação em seu momento de inércia e alteração em sua energia potencial. A validade da propriedade 5 é evidente, já que os termos da diagonal principal de $\mathbf{C}(\mathbf{v})$ são nulos e os outros são iguais em módulo, com sinais opostos. Também é possível observar que ($\dot{\mathbf{H}} - 2\mathbf{C}$) é antissimétrica, já que a matriz \mathbf{H} é constante e, portanto, $\dot{\mathbf{H}} = \mathbf{0}$.

A validade da propriedade 6 depende do cumprimento da condição $\theta_6 \gg |(\theta_5 - I\theta_3)u|$. Tal condição foi verificada experimentalmente para quatro robôs tipo uniciclo, após identificação de seus parâmetros, resultando que, de fato, $\theta_6 \gg |(\theta_5 - I\theta_3)u| \in \theta_6 > -(\theta_5 - I\theta_3)u$. O procedimento de identificação de parâmetros é explicado na seção seguinte. Propriedades de passividade de um sistema podem ser utilizadas no projeto de controladores estáveis para tal sistema (KHALIL, 2002). A propriedade de passividade do modelo proposto é apresentada pelo seguinte teorema.

Teorema 1. Considerando-se $\Delta = \mathbf{0} \ e \ \theta_6 > -(\theta_5 - I\theta_3)u$, e assumindo-se que $\mathbf{v_r} \in L_{2e}$ $e \ \mathbf{v} \in L_{2e}$, o mapeamento $\mathbf{v_r} \rightarrow \mathbf{v}$ do modelo dinâmico $\mathbf{H}\dot{\mathbf{v}} + \mathbf{C}(\mathbf{v})\mathbf{v} + \mathbf{F}(\mathbf{v})\mathbf{v} = \mathbf{v_r}$ é estritamente passivo de saída.

Prova. De acordo com (SCHAFT, 1999), um operador $P : L_{2e} \to L_{2e}$ é estritamente passivo de saída se, e somente se, existem constantes $\delta \in \mathbb{R}$ e $\beta \in \mathbb{R}$ tais que

$$\langle Px, x \rangle \geq \beta + \delta \|Px\|_{2,T}^2 \quad \forall x \in L_{2e},$$

onde < ., . > representa o produto interno.

Para mostrar que o mapeamento $\mathbf{v_r} \to \mathbf{v}$ é estritamente passivo de saída, considera-se a função definida positiva $V = \frac{1}{2} \mathbf{v^T} \mathbf{H} \mathbf{v}$ e sua primeira derivada temporal $\dot{V} = \mathbf{v^T} \mathbf{H} \dot{\mathbf{v}}$. Usando (2.12) e levando-se em conta as propriedades 3 e 5 do modelo, \dot{V} pode ser escrita como

$$\dot{V} = \mathbf{v}^{\mathbf{T}}(\mathbf{v}_{\mathbf{r}} - \mathbf{C}\mathbf{v} - \mathbf{F}\mathbf{v}) = \mathbf{v}^{\mathbf{T}}\mathbf{v}_{\mathbf{r}} - \mathbf{v}^{\mathbf{T}}\mathbf{F}\mathbf{v}.$$
(2.13)

Integrando-se (2.13) resulta a equação

$$\int_0^T \dot{V}dt = \int_0^T \mathbf{v}^{\mathbf{T}} \mathbf{v}_{\mathbf{r}} dt - \int_0^T \mathbf{v}^{\mathbf{T}} \mathbf{F} \mathbf{v} dt,$$

que pode ser escrita como

$$V(T) - V(0) = \int_0^T \mathbf{v}^{\mathbf{T}} \mathbf{v}_{\mathbf{r}} dt - \int_0^T \mathbf{v}^{\mathbf{T}} \mathbf{F} \mathbf{v} dt.$$
(2.14)

Desprezando-se V(T), tem-se a desigualdade

$$-V(0) \leq \int_0^T \mathbf{v}^{\mathbf{T}} \mathbf{v}_{\mathbf{r}} dt - \inf(\lambda_{\min}(\mathbf{F})) \int_0^T \|\mathbf{v}\|^2 dt,$$

ou

$$\int_0^T \mathbf{v}^{\mathbf{T}} \mathbf{v}_{\mathbf{r}} dt \ge -V(0) + \inf(\lambda_{\min}(\mathbf{F})) \|\mathbf{v}\|_{2,T}^2$$

Assumindo-se que $\mathbf{v}_{\mathbf{r}} \in L_{2e}$ e $\mathbf{v} \in L_{2e}$, a equação anterior pode ser escrita como

$$\langle \mathbf{v}, \mathbf{v}_{\mathbf{r}} \rangle \geq -V(0) + \inf(\lambda_{min}(\mathbf{F})) \|\mathbf{v}\|_{2,T}^2,$$

$$(2.15)$$

onde $\inf(\lambda_{\min}(.))$ representa o ínfimo do menor autovalor de uma matriz. Já que $\theta_6 > -(\theta_5 - I\theta_3)u$, tem-se que $\mathbf{F} > \mathbf{0}$. Portanto, baseando-se em (2.15), pode-se concluir que o mapeamento $\mathbf{v_r} \to \mathbf{v}$ é estritamente passivo de saída.

Nota 2.2. Já que a representação da dinâmica do robô móvel dada por (2.9) é similar ao formato da equação (2.1) que descreve a dinâmica de robôs manipuladores, técnicas de projeto de controladores aplicadas a manipuladores, como as propostas por Craig e por Slotine e Li (MARTINS, 2001), podem ser adaptadas para projeto de controladores para robôs móveis cujas saídas sejam sinais de velocidade.

2.5 Identificação dos Parâmetros Dinâmicos

Seja um sistema representado por

$$\mathbf{Y} = \mathbf{W}\boldsymbol{\theta},\tag{2.16}$$

onde $\boldsymbol{\theta}$ é o vetor de parâmetros e **Y** é a saída do sistema. A estimativa de mínimos quadrados para $\boldsymbol{\theta}$ é dada por

$$oldsymbol{\hat{ heta}} = \left(\mathbf{W}^{\mathbf{T}}\mathbf{W}
ight)^{-1}\mathbf{W}^{\mathbf{T}}\mathbf{Y}_{\mathbf{H}}$$

sendo $\hat{\boldsymbol{\theta}}$ o vetor com os valores estimados de $\boldsymbol{\theta}$ (PHILLIPS; NAGLE, 1995). Para este sistema, a matriz \mathbf{W} é chamada de matriz de regressão e a equação (2.16) é chamada de modelo de regressão do sistema.

Desprezando-se as incertezas e rearranjando (2.6), o modelo dinâmico do robô móvel pode ser representado por

$$\begin{bmatrix} u_{ref} \\ \omega_{ref} \end{bmatrix} = \begin{bmatrix} \dot{u} & 0 & -\omega^2 & u & 0 & 0 \\ 0 & \dot{\omega} & 0 & 0 & u\omega & \omega \end{bmatrix} \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 & \theta_6 \end{bmatrix}^T,$$
(2.17)

onde pode-se considerar

$$\mathbf{Y} = \begin{bmatrix} u_{ref} \\ \omega_{ref} \end{bmatrix}, \ \mathbf{W} = \begin{bmatrix} \dot{u} & 0 & -\omega^2 & u & 0 & 0 \\ 0 & \dot{\omega} & 0 & 0 & u\omega & \omega \end{bmatrix}, \ \boldsymbol{\theta} = \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 & \theta_6 \end{bmatrix}^T.$$

Com o objetivo de se obter uma estimativa para os valores de θ , cada robô foi excitado com sinais de referência de velocidade enquanto seus valores de velocidade e aceleração eram medidos. Os sinais de excitação consistiam numa soma de seis sinais senoidais com amplitudes distintas. Todos os dados foram armazenados e o modelo de regressão foi montado de forma que o vetor \mathbf{Y} e a matriz \mathbf{W} tivessem todos os valores obtidos em cada período de amostragem. Posteriormente, o valor de $\boldsymbol{\theta}$ para cada robô foi calculado pelo método de mínimos quadrados. Esta estratégia é descrita com mais detalhes em (De La CRUZ, 2006).

Alguns robôs tiveram seus parâmetros dinâmicos identificados pelo método descrito. Três desses robôs são da empresa Mobile Robots, sendo dois Pioneer 2-DX (um deles possui computador de bordo e o outro não o possui) e um Pioneer 3-DX que possui computador de bordo e sensor de varredura *laser*. O quarto robô cujos parâmetros foram identificados é uma cadeira de rodas robótica (FERREIRA et al., 2007; FERREIRA, 2008). Tais robôs possuem diferentes massas e características dinâmicas. Por exemplo, os robôs da linha Pioneer possuem dimensões de $(44 \times 38)cm$ e altura de 22cm até sua base superior. Suas rodas de tração possuem um diâmetro de 16,5*cm*, e a massa de cada robô é de 9kq quando descarregado (Mobile Robots, Acesso em: 30/jun/2008). O sensor de varredura laser montado na parte dianteira superior do Pioneer 3-DX possui massa de aproximadamente 50% da massa do próprio robô. Ou seja, tal sensor provoca uma mudança importante em sua dinâmica. Por outro lado, a cadeira de rodas robótica possui cerca de 70kq de massa, incluindo os equipamentos de controle que foram adicionados ao modelo original. Suas dimensões são de $(64 \times 78)cm$, com altura de 98cm, e suas rodas de tração possuem 49,5*cm* de diâmetro. A Figura 5(a) mostra os robôs Pioneer 2-DX com computador de bordo (à esquerda) e Pioneer 3-DX (à direita), cujos parâmetros dinâmicos foram identificados. A cadeira de rodas robótica é ilustrada na Figura 5(b).

A seguir são mostrados os valores dos parâmetros identificados por De La CRUZ (2006) para os três robôs Pioneer mencionados. Os parâmetros identificados para o robô Pioneer 2-DX que não possui computador de bordo são

$$\begin{array}{rcl} \theta_1 &=& 0,3037 \; s, \\ \theta_2 &=& 0,2768 \; s, \\ \theta_3 &=& -0,000402 \; sm/rad^2, \\ \theta_4 &=& 0,9835, \\ \theta_5 &=& 0,00382 \; s/m, \\ \theta_6 &=& 1,0725, \end{array}$$

Figura 5: Robôs cujos parâmetros foram identificados: (a) Robôs Pioneer 2-DX com computador (esquerda) e 3-DX (direita); (b) Cadeira de rodas robótica.

enquanto que para o robô Pioneer 2-DX com computador de bordo eles são

$$\begin{array}{rcl} \theta_1 &=& 0, 19920 \; s, \\ \theta_2 &=& 0, 13736 \; s, \\ \theta_3 &=& 0, 001954 \; sm/rad^2 \\ \theta_4 &=& 0, 99070, \\ \theta_5 &=& 0, 01554 \; s/m, \\ \theta_6 &=& 0, 98660, \end{array}$$

e, finalmente, para o robô Pioneer 3-DX eles são

$$\begin{array}{rcl} \theta_1 &=& 0,2604 \; s, \\ \theta_2 &=& 0,2509 \; s, \\ \theta_3 &=& -0,000499 \; sm/rad^2 \\ \theta_4 &=& 0,9965, \\ \theta_5 &=& 0,00263 \; s/m, \\ \theta_6 &=& 1,0768. \end{array}$$

O procedimento de identificação de parâmetros do robô Pioneer 3-DX foi repetido com a remoção do sensor de varredura *laser*, o que representa uma redução significativa em sua massa. Para este caso, os valores obtidos foram

$$\begin{array}{rcl} \theta_1 &=& 0,5338 \; s, \\ \theta_2 &=& 0,2168 \; s, \\ \theta_3 &=& -0,0134 \; sm/rad^2, \\ \theta_4 &=& 0,9560, \\ \theta_5 &=& -0,0843 \; s/m, \\ \theta_6 &=& 1,0590. \end{array}$$

Pode-se notar que, para todos os casos, $\theta_6 > -(\theta_5 - I\theta_3)u$, o que valida a propriedade 3. A hipótese de que $\theta_6 \gg |(\theta_5 - I\theta_3)u|$ também é verdadeira para os três robôs Pioneer considerados, já que o valor de velocidade linear u é limitado a 1, 2m/s (Mobile Robots, Acesso em: 30/jun/2008).

A cadeira de rodas robótica foi projetada para operar transportando uma pessoa, cuja massa pode ser de até 130kg. Por isso, a identificação de seus parâmetros dinâmicos foi realizada considerando diversas situações de carga, sendo que o resultado de duas delas é relatado a seguir. Uma pessoa de 55kg e outra de 125kg auxiliaram na realização da identificação de parâmetros da cadeira de rodas. Os parâmetros identificados para a cadeira de rodas robótica enquanto transportava uma pessoa de 55kg de massa são

$$\begin{array}{rcl} \theta_1 &=& 0,3759 \; s, \\ \theta_2 &=& 0,0188 \; s, \\ \theta_3 &=& 0,0128 \; sm/rad^2, \\ \theta_4 &=& 1,0027, \\ \theta_5 &=& -0,0015 \; s/m, \\ \theta_6 &=& 0,9808, \end{array}$$

enquanto os parâmetros para o caso do transporte de uma pessoa de 125kg são

$$\begin{array}{rcl} \theta_1 &=& 0,4263 \; s, \\ \theta_2 &=& 0,0289 \; s, \\ \theta_3 &=& 0,0058 \; sm/rad^2, \\ \theta_4 &=& 0,9883, \\ \theta_5 &=& 0,0134 \; s/m, \\ \theta_6 &=& 0,9931. \end{array}$$

Em ambos os casos, $\theta_6 > -(\theta_5 - I\theta_3)u$, o que valida a propriedade 3. A hipótese de que $\theta_6 \gg |(\theta_5 - I\theta_3)u|$ também é verdadeira, já que o valor de velocidade linear u é limitado a 2m/s. Portanto, o modelo dinâmico dos robôs mencionados anteriormente pode ser representado por (2.12), considerando todas as propriedades apresentadas anteriormente.

È importante que se mencione que, em todos os casos experimentados, a identificação dos parâmetros dinâmicos da cadeira de rodas robótica resultou em valores tais que a condição $\theta_6 > -(\theta_5 - I\theta_3)u$ é cumprida, validando a propriedade 3. No entanto, em algumas situações em que a carga estava deslocada, e quando se considera que a cadeira de rodas se desloca à sua máxima velocidade linear u, observou-se que o valor de θ_6 ficou apenas entre três e cinco vezes superior a $|(\theta_5 - I\theta_3)u|$, fato que prejudica o cumprimento da condição de $\theta_6 \gg |(\theta_5 - I\theta_3)u|$. Portanto, em alguns casos não é uma boa aproximação considerar a matriz $\mathbf{F}(\mathbf{v})$ constante.

2.6 Independência Linear dos Parâmetros

E importante que se verifique se os parâmetros θ_1 a θ_6 do modelo (2.17) são linearmente independentes. Se há parâmetros linearmente dependentes, o modelo pode ser simplificado de maneira a ser escrito com um número menor de parâmetros.

Para verificar a independência linear dos parâmetros, primeiro analisou-se as equações que os definem analiticamente. Tais equações, apresentadas na seção 2.2, mostram claramente que θ_1 e θ_2 são independentes entre si e dos demais. No entanto, as equações que definem os demais parâmetros θ dependem de algumas variáveis físicas que estão presentes em mais de uma delas, o que faz com que a independência linear entre tais parâmetros não seja evidente. Por isso, os valores dos seis parâmetros θ foram calculados utilizando o software MATLAB com base nas equações que os definem analiticamente. Os valores das variáveis físicas $(R_a, I_e, B_e, m, r, \text{etc.})$ foram gerados aleatoriamente, e os valores de $\theta_{1..6}$ foram calculados, obtendo-se, assim, parâmetros também aleatórios. Este procedimento foi repetido um número K de vezes, e montou-se uma matriz com os resultados, da forma

$$\begin{bmatrix} \theta_1(1) & \theta_2(1) & \theta_3(1) & \theta_4(1) & \theta_5(1) & \theta_6(1) \\ \theta_1(2) & \theta_2(2) & \theta_3(2) & \theta_4(2) & \theta_5(2) & \theta_6(2) \\ \theta_1(3) & \theta_2(3) & \theta_3(3) & \theta_4(3) & \theta_5(3) & \theta_6(3) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \theta_1(K) & \theta_2(K) & \theta_3(K) & \theta_4(K) & \theta_5(K) & \theta_6(K) \end{bmatrix}$$

Tal matriz possui 6 colunas e K linhas, onde K é o número de amostras aleatórias obtidas. Seu posto é igual a 6, o que indica que ela possui 6 colunas independentes, ou seja, indica que todos os parâmetros são linearmente independentes. Tal procedimento foi repetido diversas vezes para K = 1000 e K = 5000, resultando sempre em valor 6 para o posto.

Na tentativa de evitar a indicação de uma falsa independência entre os parâmetros, cada coluna da matriz foi normalizada, dividindo todos os seus valores pelo valor máximo da coluna. Então, antes de se calcular o posto da matriz, todos os seus valores foram truncados de forma que tivessem um número fixo de casas decimais. Para truncamento com 4, 3 e 2 casas decimais, o posto da matriz resultou igual a 6 em todos os casos testados, indicando que os parâmetros continuavam linearmente independentes.

Em seguida foi realizada análise dos valores obtidos experimentalmente durante os procedimentos de identificação realizado nos robôs. Em todos os conjuntos de dados obtidos, a matriz $(\mathbf{W}^{T}\mathbf{W})$ é inversível, o que também indica independência linear entre os parâmetros.

Portanto, concluiu-se que todos os parâmetros incluídos no vetor $\boldsymbol{\theta}$ são linearmente independentes, o que significa que (2.17) representa o modelo dinâmico do robô uniciclo com o número mínimo de parâmetros.

2.7 Considerações Finais do Capítulo

Neste capítulo, o modelo completo para representação de robôs móveis proposto em (De La CRUZ; CARELLI, 2006) foi apresentado, e uma nova abordagem para representação de sua parte dinâmica foi proposta. Uma grande vantagem de tal modelo é o fato deste aceitar sinais de velocidade linear e angular como referência, o que é usual em robôs móveis comerciais, mas não na literatura. Além disso, inclui a dinâmica dos atuadores e servos do robô. Propriedades importantes da representação proposta foram listadas e provadas. Tais propriedades são úteis no projeto de controladores e na análise de estabilidade do sistema em malha fechada. Os parâmetros dinâmicos de quatro robôs móveis distintos foram identificados, e seus valores foram apresentados, ilustrando que as propriedades apresentadas são válidas para robôs com características bastante distintas. O próximo capítulo mostra o desenvolvimento de controladores baseados no modelo proposto, em que se faz uso de algumas das propriedades listadas. Resultados de simulação e experimentais apresentados em tal capítulo mostram que o modelo proposto é efetivamente válido.

Compensação Adaptativa da Dinâmica

"You must be aware I am programmed to evolve. To better myself." (Lieutenant Commander Data, em Star Trek: First Contact)

3.1 Introdução e Trabalhos Relacionados

Grande parte dos controladores presentes na literatura para o controle não-linear de robôs móveis e AGVs considera apenas seu modelo cinemático, como é o caso dos trabalhos apresentados em (KANAYAMA et al., 1990; Canudas de Wit C.; SORDALEN, 1992; CARELLI; SECCHI; MUT, 1999; WU et al., 1999; FREIRE; CARELLI, 2003; FERREIRA, 2004; KÜHNE; JR; LAGES, 2005; GAVA, 2007; TEODOVICH; CARELLI, 2008; PENIZZOTTO; PATIÑO; CARELLI, 2008; GARCÍA; AGAMENNONI; FIGUE-ROA, 2008). No entanto, para execução de tarefas que exigem movimentos em altas velocidades ou transporte de cargas, a consideração do modelo dinâmico dos robôs se torna essencial (FIERRO; LEWIS, 1997; FIERRO; DAS, 2002).

Assim, alguns trabalhos disponíveis na literatura já apresentam controladores que compensam a dinâmica dos robôs. Como exemplo, Fierro e Lewis (1995) propuseram uma lei de controle para robôs móveis não holonômicos que leva em conta a dinâmica modelada do robô. Os sinais de comando gerados pelo controlador apresentado são torques que, em geral, precisam ser convertidos para sinais de referência de velocidade para serem aplicados a robôs comerciais. Além disso, somente resultados de simulação foram apresentados. Os mesmos autores propuseram um controlador robusto adaptativo baseado em redes neurais para lidar com distúrbios e dinâmica não modelada (FIERRO; LEWIS, 1997). Porém, uma vez mais, resultados experimentais não foram apresentados.

Outros exemplos de controladores que levam em conta a dinâmica dos robôs móveis e geram sinais de torque como comandos foram apresentados em (DONG; HUO, 1999; FUKAO; NAKAGAWA; ADACHI, 2000; LIU et al., 2004; DONG; GUO, 2005), mas apenas resultados de simulação foram mostrados. Em (CORRADINI; ORLANDO, 2002) são apresentados resultados experimentais, mas os sinais gerados pelo controlador proposto ainda são torques.

Alguns trabalhos propuseram controladores que levam em conta a dinâmica do robô e geram sinais de comando que não são torques. Por exemplo, em (DAS; KAR, 2006) é proposto um controlador adaptativo baseado em lógica *fuzzy*, em que as incertezas são estimadas e os parâmetros do controlador são ajustados durante sua execução. Nesse trabalho, o modelo dinâmico do sistema inclui a dinâmica dos atuadores, e os comandos gerados pelo controlador são tensões para alimentação dos motores. Já em (ANTONINI; IPPOLITI; LONGHI, 2006) foi proposto um controlador chaveado, com aprendizado *online* e arquitetura hierárquica, que usa metodologias baseadas em redes neurais para compensar os efeitos de fenômenos não-modelados. Redes neurais são utilizadas para identificação e controle, e os sinais de comando gerados são velocidades lineares e angulares de referência para o robô. No entanto, a implementação em tempo-real da solução proposta requer uma arquitetura computacional de alto desempenho, baseada em um sistema multi-processado.

Por outro lado, em (De La CRUZ, 2006; De La CRUZ; CARELLI, 2006) foi proposto um modelo dinâmico que aceita sinais de referência de velocidades linear e angular como entradas (mostrado no Capítulo 2), e apresentado o projeto de um controlador dinâmico para seguimento de trajetória baseado em tal modelo. Uma grande vantagem do controlador ali apresentado é a geração de sinais de velocidade linear e angular como comandos, já que robôs comerciais usualmente possuem controladores internos e aceitam sinais de referência de velocidade, e não de torque ou tensão para seus motores. Além disso, o cálculo dos sinais de comando pode ser realizado *on-line* por computadores de bordo comumente presentes em robôs móveis comerciais. No entanto, se os parâmetros do robô não forem corretamente identificados, ou forem alterados entre uma tarefa e outra (por exemplo, no caso de transporte de cargas), o desempenho do controlador proposto pode ser severamente afetado.

Para reduzir a degradação de desempenho em aplicações em que os parâmetros dinâmicos do robô podem variar, a adaptação de parâmetros *on-line* se torna bastante importante.

Neste capítulo são apresentados os projetos de dois controladores cujo objetivo é realizar a compensação da dinâmica dos robôs móveis de forma adaptativa. O primeiro é baseado no modelo apresentado em (De La CRUZ; CARELLI, 2006), e é aqui denominado primeiro controlador dinâmico. O outro é baseado no novo modelo proposto no Capítulo 2 e denominadosegundo controlador dinâmico.

Rossomando et al. (2007) propuseram uma modificação na estrutura do primeiro controlador dinâmico, que foi inicialmente apresentado em (MARTINS et al., 2007c), resultando numa arquitetura em que uma rede neural opera em paralelo com o controlador dinâmico. Os controladores cinemático e de compensação dinâmica ali utilizados são praticamente idênticos àqueles aqui propostos, com a diferença que o controlador dinâmico não é adaptativo. O algoritmo de aprendizado permite que a rede neural realize a compensação de dinâmicas não-modeladas de forma adaptativa, reduzindo o erro de seguimento de trajetória. Resultados experimentais apresentados em (ROSSOMANDO et al., 2007) mostram que o sistema possui desempenho similar àquele obtido usando do primeiro controlador dinâmico aqui proposto. Embora tenha a vantagem de poder compensar dinâmicas não modeladas, o aprendizado da rede neural pode, em alguns casos, levar muito mais tempo que a adaptação de parâmetros realizada pelo primeiro controlador dinâmico. Além disso, a implementação do sistema é mais complexa, e seu custo computacional é maior pois, além do controlador não-linear de compensação da dinâmica, devem ser implementados a rede neural e seu algoritmo de aprendizagem.

Em (JORDÁN et al., 2008) os autores apresentam a comparação entre dois tipos de controladores adaptativos que realizam a compensação da dinâmica de robôs móveis tipo uniciclo. Ambos são projetados com base no modelo dinâmico proposto em (De La CRUZ; CARELLI, 2006). Um dos controladores é não-linear, projetado para levar os erros de seguimento de posição e velocidade a zero através da minimização de uma função custo. O outro controlador é baseado em aproximações algébricas e interpolação de ordem variável. Os autores realizaram comparação de desempenho entre os controladores com base em simulações de seguimento de uma trajetória senoidal a velocidades classificadas como moderada e alta, considerando o modelo dinâmico do robô Pioneer 3DX. Em todos os casos simulados o controlador não-linear apresentou melhor desempenho que o controlador baseado em interpolação. Para velocidades moderadas a diferença é pequena, mas ela fica bastante evidente para velocidades mais elevadas. Além disso, os sinais de controle também são mais suaves com o controlador não-linear. Os autores comentam que nenhum dos dois controladores requer conhecimento prévio dos valores dos parâmetros dinâmicos do robô, embora o controlador adaptativo requeira maior informação estrutural para seu projeto. Esta é a principal justificativa dos autores para justificar o melhor desempenho apresentado pelo controlador não-linear.

Este capítulo apresenta os projetos dos chamados primeiro e segundo controladores dinâmicos, além da análise de estabilidade dos sistemas em malha fechada, para cada caso, com base na Teoria de Lyapunov. Os controladores são projetados com base no modelo dinâmico do robô, que incorpora toda a informação estrutural disponível sobre o sistema. A importância da compensação adaptativa da dinâmica é ilustrada através da comparação de desempenho entre os sistemas com e sem sua realização. Considerações quanto à robustez em relação a distúrbios e variação de parâmetros também são apresentadas. Resultados de simulações demonstram a validade e o funcionamento dos controladores propostos, enquanto resultados experimentais ilustram o desempenho de tais controladores quando aplicados a um robô móvel comercial.

3.2 Controlador Cinemático de Seguimento de Trajetória

Esta seção apresenta o projeto de um controlador de seguimento de trajetória para robôs móveis tipo uniciclo, e a análise de estabilidade do sistema em malha fechada resultante. O controlador é baseado no modelo cinemático do robô, dado por (2.4). Tal modelo foi apresentado no Capítulo 2, e é aqui reproduzido por conveniência:

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} \cos\psi & -a\sin\psi \\ \sin\psi & a\cos\psi \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ \omega \end{bmatrix} + \begin{bmatrix} \delta_x \\ \delta_y \\ 0 \end{bmatrix}.$$
 (3.1)

Desprezando-se as incertezas δ_x e δ_y e considerando-se as coordenadas do ponto de interesse $\mathbf{h} = \begin{bmatrix} x & y \end{bmatrix}^T$, a equação cinemática pode ser escrita como

$$\dot{\mathbf{h}} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} \cos\psi & -a\sin\psi \\ \sin\psi & a\cos\psi \end{bmatrix} \begin{bmatrix} u \\ \omega \end{bmatrix} = \mathbf{A} \begin{bmatrix} u \\ \omega \end{bmatrix}, \qquad (3.2)$$

onde

$$\mathbf{A} = \begin{bmatrix} \cos\psi & -a\sin\psi\\ \sin\psi & a\cos\psi \end{bmatrix},\tag{3.3}$$

e sua inversa é dada por

$$\mathbf{A}^{-1} = \begin{bmatrix} \cos\psi & \sin\psi \\ -\frac{1}{a}\sin\psi & \frac{1}{a}\cos\psi \end{bmatrix}.$$

Logo, a cinemática inversa é dada por

$$\begin{bmatrix} u \\ \omega \end{bmatrix} = \begin{bmatrix} \cos\psi & \sin\psi \\ -\frac{1}{a}\sin\psi & \frac{1}{a}\cos\psi \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix}, \qquad (3.4)$$

e a lei de controle proposta é

$$\begin{bmatrix} u_{ref}^c \\ \omega_{ref}^c \end{bmatrix} = \begin{bmatrix} \cos\psi & \sin\psi \\ -\frac{1}{a}\sin\psi & \frac{1}{a}\cos\psi \end{bmatrix} \begin{bmatrix} \dot{x}_d + l_x \tanh(\frac{k_x}{l_x}\tilde{x}) \\ \dot{y}_d + l_y \tanh(\frac{k_y}{l_y}\tilde{y}) \end{bmatrix},$$
(3.5)

onde a > 0, $\mathbf{v_d} = \begin{bmatrix} u_{ref}^c & \omega_{ref}^c \end{bmatrix}^T$ é a saída do controlador cinemático, $\tilde{x} = x_d - x \in \tilde{y} = y_d - y$ são os erros de posição nos eixos X e Y, respectivamente, $k_x > 0 \in k_y > 0$ são os ganhos do controlador, $l_x \in \mathbb{R}$, e $l_y \in \mathbb{R}$ são constantes de saturação, e (x, y) e (x_d, y_d) são as coordenadas atual e desejada do ponto de interesse, respectivamente.

Para a análise de estabilidade se supõe seguimento perfeito de velocidade, ou seja, se considera que $u \equiv u_{ref}^c$ e $\omega \equiv \omega_{ref}^c$, o que significa que os efeitos da dinâmica do robô são ignorados. A equação do sistema em malha fechada é

$$\begin{bmatrix} \dot{\tilde{x}} \\ \dot{\tilde{y}} \end{bmatrix} + \begin{bmatrix} l_x & 0 \\ 0 & l_y \end{bmatrix} \begin{bmatrix} \tanh(\frac{k_x}{l_x}\tilde{x}) \\ \tanh(\frac{k_y}{l_y}\tilde{y}) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$
(3.6)

Definindo o vetor de erro de saída como $\tilde{\mathbf{h}} = [\tilde{x} \quad \tilde{y}]^T$, a equação (3.6) pode ser escrita como

$$\dot{\tilde{\mathbf{h}}} = -\left[l_x \tanh\left(\frac{k_x}{l_x}\tilde{x}\right) \quad l_y \tanh\left(\frac{k_y}{l_y}\tilde{y}\right)\right]^T,\tag{3.7}$$

que possui um único ponto de equilíbrio na origem. Para a análise de estabilidade deste equilíbrio, considera-se a função candidata de Lyapunov $V = \frac{1}{2} \tilde{\mathbf{h}}^T \tilde{\mathbf{h}} > 0$, que é definida positiva. Sua primeira derivada temporal é

$$\dot{V} = \tilde{\mathbf{h}}^T \dot{\tilde{\mathbf{h}}} = -\tilde{x} l_x \tanh\left(\frac{k_x}{l_x}\tilde{x}\right) - \tilde{y} l_y \tanh\left(\frac{k_y}{l_y}\tilde{y}\right),$$

que é definida negativa. Portanto, pode-se concluir que o equilíbrio (na origem) é assintoticamente estável, o que significa que $\tilde{x} \to 0$ e $\tilde{y} \to 0$ quando $t \to \infty$ (KHALIL, 2002).

Nota 3.1. Na Seção 3.3, a hipótese de seguimento perfeito de velocidade será relaxada, e a estabilidade do equilíbrio será analisada para o sistema completo, depois da adição de um controlador dinâmico.

Nota 3.2. Considerando que a referência é um ponto fixo, tem-se $\dot{x}_d = 0$ e $\dot{y}_d = 0$. Nesse caso, o robô tende a atingir o ponto de referência (x_d, y_d) , pois foi provado que $\tilde{x} \to 0$ e $\tilde{y} \to 0$. Como a lei de controle proposta garante que $\omega_{ref}^c \to 0$, supondo seguimento perfeito de velocidade, conclui-se que $\omega \to 0$.

Nota 3.3. A conclusão anterior mostra que o controlador cinemático projetado pode ser utilizado em um problema de posicionamento, além de seguimento de trajetória, como foi mostrado em (MARTINS et al., 2007c). No entanto, o posicionamento realizado somente com a utilização deste controlador não leva em conta a orientação final do robô. Caso seja desejável controlá-la, pode-se realizar o chaveamento entre controladores de forma que, após atingir o ponto final, o controlador de seguimento seja desativado e um controlador de orientação final seja habilitado. Exemplos desse tipo de utilização podem ser encontrados em (TOIBERO et al., 2006; BRANDÃO et al., 2007a).

Nota 3.4. Supondo que a trajetória desejada seja suave e limitando-se os valores de \dot{x}_d e \dot{y}_d , pode-se obter constantes l_x e l_y tais que os termos $l_x \tanh(\frac{k_x}{l_x}\tilde{x})$ e $l_y \tanh(\frac{k_y}{l_y}\tilde{y})$, presentes na lei de controle, limitem os sinais de controle a valores aceitáveis para o robô. Assim, mesmo na presença de erros muito grandes, o controlador proposto não vai provocar saturação dos atuadores do robô.

Para ilustrar o funcionamento do controlador cinemático representado pela equação (3.5), foram realizadas simulações considerando o modelo completo do robô representado pela equação (2.12) com os parâmetros identificados do robô Pioneer 3-DX, apresentados na Seção 2.4. O modelo completo do sistema foi construído e simulado utilizando a plataforma MATLAB/Simulink. Foi inserido ruído branco nos sinais de posição e de velocidade, de forma a simular o ruído existente na leitura dos sinais disponibilizados pelo robô.

Na primeira simulação, o controlador foi utilizado para fazer o robô seguir uma trajetória circular cujo raio varia bruscamente entre $0,8 \ m \in 0,7 \ m$, a cada $60 \ s$, a partir de $t = 50 \ s$. Seus ganhos foram ajustados experimentalmente de forma que o robô apresentasse desempenho satisfatório para a tarefa em questão. Dessa forma, considerou-se

Figura 6: Controlador cinemático: trajetória circular. (a) Parte da trajetória percorrida pelo robô; (b) Erro de distância durante a simulação sem carga.

 $k_x = 0, 2 e k_y = 0, 2.$

A Figura 6(a) mostra parte da trajetória percorrida pelo robô, enquanto a Figura 6(b) ilustra a evolução do erro de distância durante a simulação considerada. O erro de distância é definido como a distância instantânea entre as posições atual e desejada. O grande valor inicial do erro se deve ao fato de que a posição inicial do robô é (0, 2; -0, 8) m, enquanto a trajetória de referência se inicia em (0, 8; 0, 0) m. Nota-se que a cada 60 s há um acréscimo instantâneo no valor do erro, que ocorre devido à súbita mudança no raio da trajetória de referência. Em todos os casos, o controlador projetado é capaz de fazer o robô seguir a trajetória circular, sempre levando o erro para um valor próximo a zero.

A Figura 7(a) apresenta os valores de velocidade linear e angular enviados pelo controlador cinemático e desenvolvidas pelo robô durante o seguimento da trajetória circular em questão, enquanto a Figura 7(b) mostra a diferença entre esses valores, definido como erro de velocidade. Pode-se notar que o erro de seguimento de velocidade é muito próximo de zero para o caso simulado, o que faz com que as linhas que indicam as velocidades reais e de referência estejam praticamente sobrepostas na Figura 7(a).

O resultado da simulação anteriormente descrita mostra que o controlador cinemático representado pela equação (3.5) é capaz de fazer o robô seguir uma trajetória de referência com pequeno erro, considerando que seus parâmetros sejam corretamente ajustados. No entanto, se a trajetória é modificada e os ganhos do controlador são mantidos, o desempenho do controlador pode ser prejudicado. Para ilustrar esse fato, foi realizada outra

Figura 7: Controlador cinemático: trajetória circular. (a) Velocidades linear e angular enviadas e desenvolvidas pelo robô; (b) erros de velocidade durante a simulação sem carga.

Figura 8: Controlador cinemático: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô; (b) erro de distância durante a simulação sem carga.

simulação com os mesmos parâmetros do robô e do controlador, mas com uma trajetória em forma de oito, com a finalidade de excitar ainda mais a dinâmica do robô. As figuras 8(a) e 8(b) ilustram, respectivamente, a trajetória percorrida pelo robô e a evolução do erro de distância durante a execução da tarefa. O controlador é capaz de fazer o robô seguir a trajetória em forma de oito, mas pode-se perceber que o valor médio do erro de distância é maior se comparado com o resultado obtido na simulação anterior.

Figura 9: Controlador cinemático: trajetória em forma de oito. (a) Velocidades linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante a simulação sem carga.

As velocidades linear e angular desenvolvidas pelo robô durante o seguimento da trajetória em forma de oito são apresentadas na Figura 9(a), assim como seus sinais de referência enviados pelo controlador cinemático. Os erros de velocidade são apresentados na Figura 9(b). Nota-se que os valores de erro de seguimento de velocidade são maiores nesse caso, o que indica a necessidade de algum tipo de ajuste nos parâmetros de controle.

As simulações para seguimento das trajetórias circular e em forma de oito foram repetidas considerando que o robô teve sua dinâmica alterada. Para se considerar um aumento na massa total do robô, em seu atrito e em seu momento de inércia, simulou-se um aumento de 25% nos valores de seus parâmetros dinâmicos $\boldsymbol{\theta}$. Assim, nas próximas simulações, considerou-se que o robô estava executando uma tarefa de transporte de carga. Os demais parâmetros, como os ganhos do controlador e velocidades de referência da trajetória, foram mantidos, e as simulações anteriormente descritas foram repetidas.

A Figura 10(a) mostra parte da trajetória circular percorrida pelo robô carregado, enquanto a Figura 10(b) ilustra a evolução do erro de distância durante a simulação considerada. Pode-se notar que houve grande degradação no desempenho do controlador cinemático, com importante aumento do erro de distância, quando comparado com a situação em que o robô estava descarregado (situação para a qual os ganhos do controlador cinemático foram inicialmente ajustados).

A Figura 11(a) mostra os valores das velocidades linear e angular desenvolvidas pelo

Figura 10: Controlador cinemático: trajetória circular. (a) Parte da trajetória percorrida pelo robô; (b) erro de distância durante a simulação com carga.

Figura 11: Controlador cinemático: trajetória circular. (a) Velocidades linear e angular enviadas e desenvolvidas pelo robô; (b) erros de velocidade durante a simulação com carga.

robô, assim como seus valores de referência enviados pelo controlador cinemático. Podese notar que a modificação na dinâmica do robô provocou aumento na diferença entre os valores desejados e reais de velocidade, fato ilustrado pela figura 11(b), que apresenta os valores dos erros de seguimento de velocidade para esta simulação.

Para o caso do seguimento da trajetória em forma de oito com o robô carregado, a

Figura 12: Controlador cinemático: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô; (b) erro de distância durante a simulação com carga.

Figura 12(a) mostra parte da trajetória percorrida pelo robô, enquanto a Figura 12(b) ilustra a evolução do erro de distância durante a simulação considerada. Também nesta simulação, os valores dos ganhos do controlador cinemático são os mesmos daqueles usados na primeira simulação, situação para a qual foram ajustados. Pode-se notar que a degradação no desempenho do controlador neste caso foi ainda maior, com grande aumento no valor médio do erro de distância durante todo o seguimento da trajetória.

A Figura 13(a) mostra os valores das velocidades linear e angular desenvolvidas pelo robô, assim como seus valores de referência enviados pelo controlador cinemático. Pode-se notar que a modificação na dinâmica do robô provocou importante aumento na diferença entre os valores desejados e reais de velocidade, quando comparado com o resultado obtido para a simulação sem carga. A Figura 13(b) apresenta os valores dos erros de seguimento de velocidade para esta simulação, ilustrando o grande aumento do erro em relação à simulação anterior.

E importante mencionar que é possível se obter melhora no desempenho do controlador cinemático através do ajuste de seus ganhos. Por exemplo, um aumento nos valores de k_x e k_y provocaria redução nos valores de erro apresentados nas figuras 8(b) e 12(b). No entanto, o aumento do valor das constantes k_x e k_y devido a ajuste feito para o caso do robô carregado, por exemplo, pode provocar efeitos como oscilação e resposta abrupta para o caso dos mesmos parâmetros serem usados no controle do robô descarregado. Além disso, o erro de velocidade continuará a existir, pois seu valor não depende dos valores de

Figura 13: Controlador cinemático: trajetória em forma de oito. (a) Velocidades linear e angular enviadas e desenvolvidas pelo robô; (b) erros de velocidade durante a simulação com carga.

 $k_x \in k_y$.

Os resultados obtidos nas simulações que consideram o robô carregado ilustram que, uma vez ajustados seus ganhos, o controlador cinemático pode ter seu desempenho severamente afetado por variações de trajetória e nos parâmetros dinâmicos do robô. Tal fato motiva o projeto de controladores que consideram o modelo dinâmico completo do robô, que serão apresentados na próxima seção.

3.3 Controladores Dinâmicos

Esta seção apresenta o projeto e análise de estabilidade de controladores cujo objetivo é compensar a dinâmica dos robôs móveis. O sistema de controle proposto consiste na inserção de um controlador para compensar os efeitos da dinâmica do robô, denominado de controlador dinâmico. Este recebe do controlador cinemático as referências de velocidades linear e angular, e envia ao robô sinais de comando compensados, de forma que o robô execute as velocidades de referência geradas pelo controlador cinemático com o menor erro possível.

Em relação ao controlador dinâmico proposto em (De La CRUZ; CARELLI, 2006), a abordagem aqui proposta apresenta como vantagem o fato de que, uma vez projetado para um dado robô, o mesmo controlador dinâmico pode ser utilizado em conjunto com outros controladores cinemáticos com funções diferentes, como seguimento de caminhos, posicionamento num dado ponto com orientação, ou controle de formação, por exemplo. Tal fato é ilustrado no Capítulo 4, que apresenta a utilização dos controladores dinâmicos aqui propostos em conjunto com controladores cinemáticos, cujos objetivos são manter a formação numa estrutura líder-seguidor e manter e seguir uma formação numa estrutura virtual.

Nas subseções seguintes serão apresentados dois controladores dinâmicos adaptativos, sendo um projetado com base no modelo representado por (2.3), denominado *primeiro controlador dinâmico*, e o outro projetado com base no modelo representado por (2.12), denominado *segundo controlador dinâmico*.

3.3.1 Primeiro Controlador Dinâmico

O primeiro controlador dinâmico proposto foi projetado com base no modelo dinâmico representado por (2.3). Em (De La CRUZ, 2006) já havia sido proposto um controlador dinâmico com base neste modelo. Porém, o controlador lá apresentado foi projetado com base em linearização do modelo completo por realimentação de entrada-saída, e a equação de controle resultante depende das características cinemáticas e dinâmicas do robô. Aqui, o controlador completo também depende das características cinemáticas e dinâmicas e dinâmicas do robô, mas seu projeto é divido em duas partes (cinemática e dinâmica), sendo a parte cinemática aquela apresentada na Seção 3.2.

O sistema completo é ilustrado no diagrama da Figura 14. A figura mostra que o controlador cinemático recebe os valores desejados de posição (x_d, y_d) e velocidade (\dot{x}_d, \dot{y}_d) no referencial cartesiano, e gera os valores desejados de velocidade linear u_{ref}^c e angular ω_{ref}^c com base nas informações de posição (x, y) e orientação ψ fornecidas pelo robô. Ao invés de serem diretamente enviados ao robô (como foi feito nas simulações realizadas na Seção 3.2), os sinais u_{ref}^c e ω_{ref}^c são enviados ao controlador dinâmico, que gera outro par de sinais de referência de velocidade u_{ref} e ω_{ref} para serem enviados ao robô, compensando a dinâmica do veículo.

O projeto do primeiro controlador dinâmico é baseado no modelo dinâmico parametrizado do robô móvel. Desprezando os termos $\delta_u \in \delta_\omega$, que representam distúrbios, a parte que representa a dinâmica do modelo dado por (2.3) pode ser escrita como

Figura 14: Diagrama geral do sistema de controle proposto.

$$\begin{bmatrix} \dot{u} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} \frac{\theta_3}{\theta_1} \omega^2 - \frac{\theta_4}{\theta_1} u \\ -\frac{\theta_5}{\theta_2} u \omega - \frac{\theta_6}{\theta_2} \omega \end{bmatrix} + \begin{bmatrix} \frac{1}{\theta_1} & 0 \\ 0 & \frac{1}{\theta_2} \end{bmatrix} \begin{bmatrix} u_{ref} \\ \omega_{ref} \end{bmatrix},$$

Rearranjando os termos, a parametrização linear da equação dinâmica resulta em

$$\begin{bmatrix} u_{ref} \\ \omega_{ref} \end{bmatrix} = \begin{bmatrix} \dot{u} & 0 & -\omega^2 & u & 0 & 0 \\ 0 & \dot{\omega} & 0 & 0 & u\omega & \omega \end{bmatrix} \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 & \theta_6 \end{bmatrix}^T,$$
(3.8)

que também pode ser escrita como

$$\begin{bmatrix} u_{ref} \\ \omega_{ref} \end{bmatrix} = \begin{bmatrix} \theta_1 & 0 \\ 0 & \theta_2 \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 & 0 & -\omega^2 & u & 0 & 0 \\ 0 & 0 & 0 & u\omega & \omega \end{bmatrix} \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 & \theta_6 \end{bmatrix}^T,$$

ou, numa forma compacta,

$$\mathbf{v}_{\mathbf{r}} = \mathbf{H}\dot{\mathbf{v}} + \boldsymbol{\eta},\tag{3.9}$$

1

onde $\mathbf{v_r} = \begin{bmatrix} u_{ref} & \omega_{ref} \end{bmatrix}^T, \, \mathbf{v} = \begin{bmatrix} u & \omega \end{bmatrix}^T, \, \mathbf{H} = diag(\theta_1, \theta_2)$ e

$$\boldsymbol{\eta} = \begin{bmatrix} 0 & 0 & -\omega^2 & u & 0 & 0 \\ 0 & 0 & 0 & u\omega & \omega \end{bmatrix} \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 & \theta_6 \end{bmatrix}^T.$$

Baseado na dinâmica inversa, a lei de controle proposta é

$$\begin{bmatrix} u_{ref} \\ \omega_{ref} \end{bmatrix} = \begin{bmatrix} \theta_1 & 0 \\ 0 & \theta_2 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & -\omega^2 & u & 0 & 0 \\ 0 & 0 & 0 & u\omega & \omega \end{bmatrix} \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 & \theta_6 \end{bmatrix}^T,$$

que pode ser escrita como

$$\mathbf{v}_{\mathbf{r}} = \mathbf{H}\boldsymbol{\sigma} + \boldsymbol{\eta},\tag{3.10}$$

onde $\boldsymbol{\sigma} = [\sigma_1 \quad \sigma_2]^T$, sendo

$$\sigma_1 = \dot{u}_{ref}^c + k_u \tilde{u}, \qquad k_u > 0,$$

$$\sigma_2 = \dot{\omega}_{ref}^c + k_\omega \tilde{\omega}, \qquad k_\omega > 0.$$

Os erros de velocidade são definidos como $\tilde{u} = u_{ref}^c - u$ e $\tilde{\omega} = \omega_{ref}^c - \omega$. A equação (3.10) também pode ser escrita como

$$\mathbf{v}_{\mathbf{r}} = \mathbf{G}(\sigma_1, \sigma_2, u, \omega)\boldsymbol{\theta},\tag{3.11}$$

onde $\boldsymbol{\theta} = \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 & \theta_6 \end{bmatrix}^T$ e

$$\mathbf{G} = \begin{bmatrix} \sigma_1 & 0 & -\omega^2 & u & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 & u\omega & \omega \end{bmatrix}.$$

O desenvolvimento anterior considera que os parâmetros dinâmicos do robô são conhecidos de forma exata. No entanto, caso haja incerteza nos valores dos parâmetros, a lei de controle

$$\mathbf{v}_{\mathbf{r}} = \mathbf{G}\hat{\boldsymbol{\theta}} = \mathbf{G}\boldsymbol{\theta} + \mathbf{G}\tilde{\boldsymbol{\theta}} = \mathbf{H}\boldsymbol{\sigma} + \boldsymbol{\eta} + \mathbf{G}\tilde{\boldsymbol{\theta}}$$
(3.12)

deve ser considerada, ao invés de (3.11), onde $\boldsymbol{\theta} \in \hat{\boldsymbol{\theta}}$ são os vetores de parâmetros reais e estimados do robô, respectivamente, sendo $\tilde{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}$ o vetor de erro paramétrico.

Para análise de estabilidade do sistema em malha fechada, iguala-se as equações do modelo (3.9) e do controlador (3.12), que resulta em

$$\mathrm{H}\dot{\mathrm{v}}+\eta=\mathrm{H}oldsymbol{\sigma}+\eta+\mathrm{G}oldsymbol{ heta},$$

que é equivalente a

$$\mathbf{H}(\boldsymbol{\sigma} - \dot{\mathbf{v}}) = -\mathbf{G}\hat{\boldsymbol{\theta}}.\tag{3.13}$$

Definindo-se a matriz de ganhos diagnonal e definida positiva $\mathbf{K} = diag(k_u, k_\omega) > 0$ e o vetor de erro de velocidade $\tilde{\mathbf{v}} = \mathbf{v_d} - \mathbf{v}$, onde $\mathbf{v_d} = \begin{bmatrix} u_{ref}^c & \omega_{ref}^c \end{bmatrix}^T$, pode-se concluir que $\boldsymbol{\sigma} - \dot{\mathbf{v}} = \dot{\tilde{\mathbf{v}}} + \mathbf{K}\tilde{\mathbf{v}}$, e a equação (3.13) pode ser escrita como

$$\mathbf{H}(\mathbf{\dot{\tilde{v}}} + \mathbf{K}\mathbf{\tilde{v}}) = -\mathbf{G}\mathbf{\hat{\theta}}$$

ou

$$\dot{\tilde{\mathbf{v}}} = -\mathbf{H}^{-1}\mathbf{G}\tilde{\boldsymbol{\theta}} - \mathbf{K}\tilde{\mathbf{v}},\tag{3.14}$$

que representa a equação do erro do sistema. Agora, é considerada a função candidata de Lyapunov

$$V = \frac{1}{2} \tilde{\mathbf{v}}^{\mathbf{T}} \mathbf{H} \tilde{\mathbf{v}} + \frac{1}{2} \tilde{\boldsymbol{\theta}}^{\mathbf{T}} \boldsymbol{\gamma} \tilde{\boldsymbol{\theta}} > 0, \qquad (3.15)$$

sendo $\gamma \in \mathbb{R}^{6\times 6}$ uma matriz diagonal definida positiva e $\mathbf{H} > \mathbf{0}$, como pode ser visto na Seção 2.2. Considerando que os parâmetros do robô não se alteram durante a execução de uma tarefa, o vetor de parâmetros $\boldsymbol{\theta}$ é constante. Assim, já que $\tilde{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}$, conclui-se que $\dot{\tilde{\boldsymbol{\theta}}} = \dot{\tilde{\boldsymbol{\theta}}}$, e a primeira derivada temporal da função candidata de Lyapunov (3.15) é

$$\dot{V} = -\tilde{\mathbf{v}}^{\mathrm{T}}\mathbf{H}\mathbf{K}\tilde{\mathbf{v}} - \tilde{\mathbf{v}}^{\mathrm{T}}\mathbf{G}\tilde{\boldsymbol{\theta}} + \tilde{\boldsymbol{\theta}}^{\mathrm{T}}\boldsymbol{\gamma}\dot{\boldsymbol{\theta}}.$$
(3.16)

3.3.1.1 Adaptação de Parâmetros

Com a inclusão da lei de adaptação de parâmetros, o diagrama geral do sistema de controle proposto tem o aspecto ilustrado na Figura 15. A figura mostra que o sistema tem o mesmo aspecto daquele apresentado pela Figura 14, com a inclusão de um bloco que executa o ajuste dos valores dos parâmetros estimados $\hat{\theta}$. Esse bloco recebe os valores de velocidades de referência enviados pelo controlador cinemático e os valores das velocidades reais do robô, e calcula a variação que cada parâmetro deve ter em função do erro de velocidade, como detalhado a seguir.

Serão consideradas duas leis de adaptação de parâmetros para o controlador proposto. A primeira delas é dada por

$$\hat{\boldsymbol{\theta}} = \boldsymbol{\gamma}^{-1} \mathbf{G}^{\mathbf{T}} \tilde{\mathbf{v}}. \tag{3.17}$$

Substituindo (3.17) em (3.16) tem-se que

$$\dot{V} = -\tilde{\mathbf{v}}^{\mathrm{T}}\mathbf{H}\mathbf{K}\tilde{\mathbf{v}},\tag{3.18}$$

que é semidefinida negativa, pois o sinal de erro $\hat{\boldsymbol{\theta}}$ não está presente. Isso permite verificar a estabilidade do equilíbrio (mas não estabilidade assintótica) para o sistema descrito por (3.14) com a utilização da lei de adaptação de parâmetros (3.17). Ou seja, pode-se afirmar que $\tilde{\mathbf{v}} \in \tilde{\boldsymbol{\theta}}$ são sinais limitados, i.e., $\tilde{\mathbf{v}} \in L_{\infty} \in \tilde{\boldsymbol{\theta}} \in L_{\infty}$.

Figura 15: Diagrama geral do sistema de controle proposto considerando adaptação de parâmetros.

Integrando a equação (3.18), tem-se que

$$V(T) - V(0) = -\int_0^T \tilde{\mathbf{v}}^{\mathbf{T}} \mathbf{H} \mathbf{K} \tilde{\mathbf{v}} dt,$$

e desprezando-se o termo positivo V(T), tem-se a desigualdade

$$-V(0) \leqslant -\int_0^T \mathbf{\tilde{v}^T} \mathbf{H} \mathbf{K} \mathbf{\tilde{v}} dt \quad \text{ou} \quad V(0) \geqslant \int_0^T \mathbf{\tilde{v}^T} \mathbf{H} \mathbf{K} \mathbf{\tilde{v}} dt.$$
(3.19)

Como ${\bf H}{\bf K}$ é uma matriz simétrica e definida positiva, a desigualdade

$$\lambda_{min}(\mathbf{H}\mathbf{K}) \|\tilde{\mathbf{v}}\|^2 \leqslant \tilde{\mathbf{v}}^{\mathrm{T}} \mathbf{H} \mathbf{K} \tilde{\mathbf{v}} \leqslant \lambda_{max}(\mathbf{H}\mathbf{K}) \|\tilde{\mathbf{v}}\|^2$$
(3.20)

é verificada, onde $\lambda_{min}(\cdot)$ e $\lambda_{max}(\cdot)$ representam os autovalores mínimo e máximo da matriz, respectivamente. Assim, usando a condição (3.20) na equação (3.19) verifica-se que

$$\int_0^T \|\tilde{\mathbf{v}}\|^2 dt \leqslant \frac{V(0)}{\lambda_{min}(\mathbf{H}\mathbf{K})}.$$
(3.21)

1

Além disso, como o termo $\frac{V(0)}{\lambda_{min}(\mathbf{HK})}$ não depende do tempo, a condição expressa por (3.21) é válida para todo T, ou seja, pode-se concluir que $\tilde{\mathbf{v}}$ é um sinal quadrado integrável, i.e., $\tilde{\mathbf{v}} \in L_2$.

Considerando-se o caso em que os sinais de referência de aceleração $\dot{\mathbf{v}}_{\mathbf{r}} = [\dot{u}_{ref}^c \quad \dot{\omega}_{ref}^c]^T$

gerados pelo controlador cinemático são limitados (seguimento de uma trajetória suave, por exemplo), tem-se que $\mathbf{G} \in L_{\infty}$. Observando-se que $\mathbf{\tilde{v}} \in L_{\infty}$ e $\mathbf{\tilde{\theta}} \in L_{\infty}$, da equação (3.14) pode-se verificar que $\mathbf{\dot{\tilde{v}}} \in L_{\infty}$. Portanto, de acordo com o Lema de Barbalat (ASTROM; WITTENMARK, 1994) pode-se concluir que $\mathbf{\tilde{v}} \to \mathbf{0}$ quando $t \to \infty$, o que garante a convergência assintótica dos erros de controle para zero.

A lei de adaptação de parâmetros representada por (3.17) funciona como um integrador e, portanto, pode provocar problemas de robustez na presença de ruídos, distúrbios ou erros na medição dos sinais. Uma possível maneira de se evitar a deriva paramétrica é através do desligamento da adaptação de parâmetros quando o valor de erro atinge determinado limite mínimo, como ilustrado em (MARTINS et al., 2007c). Outra forma conhecida de se evitar a deriva paramétrica é a modificação da lei de adaptação de parâmetros através da introdução de um termo de *modificação-* σ , também conhecido como "Termo de Fuga", ou "*Leakage Term*" (KAUFMAN; SOBEL, 1998; BOYD; SASTRY, 1989). Com a introdução desse termo, ao invés de (3.17), a lei de adaptação de parâmetros

$$\dot{\hat{\theta}} = \gamma^{-1} \mathbf{G}^{\mathbf{T}} \tilde{\mathbf{v}} - \gamma^{-1} \Gamma \hat{\boldsymbol{\theta}}$$
(3.22)

deve ser considerada, onde $\Gamma \in \mathbb{R}^{6 \times 6}$ é uma matriz de ganhos diagonal definida positiva. A equação (3.22) pode ser reescrita como

$$\dot{\hat{\boldsymbol{\theta}}} = \boldsymbol{\gamma}^{-1} \mathbf{G}^{\mathrm{T}} \tilde{\mathbf{v}} - \boldsymbol{\gamma}^{-1} \boldsymbol{\Gamma} \tilde{\boldsymbol{\theta}} - \boldsymbol{\gamma}^{-1} \boldsymbol{\Gamma} \boldsymbol{\theta}.$$
(3.23)

Substituindo (3.23) em (3.16), a primeira derivada temporal da função candidata de Lyapunov (3.15) resulta em

$$\dot{V} = -\tilde{\mathbf{v}}^{\mathrm{T}}\mathbf{H}\mathbf{K}\tilde{\mathbf{v}} - \tilde{\boldsymbol{\theta}}^{\mathrm{T}}\boldsymbol{\Gamma}\tilde{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}^{\mathrm{T}}\boldsymbol{\Gamma}\boldsymbol{\theta}.$$
(3.24)

Em (NASISI; CARELLI, 2003) os autores analisam a estabilidade do equilíbrio de um sistema de controle servo-visual para robôs manipuladores. A análise realizada a seguir é baseada nas ideias ali apresentadas. Definindo as constantes $\mu_{\Gamma} = \chi(\Gamma)$ e $\mu_{HK} = \chi(\mathbf{HK})$, onde $\chi(\mathbf{Z}) = \sqrt{\lambda_{min}(\mathbf{Z}^{T}\mathbf{Z})}$ é o valor singular mínimo de \mathbf{Z} , e $\lambda_{min}(\cdot)$ representa o menor autovalor de uma matriz, \dot{V} pode ser reescrita como

$$\dot{V} \leqslant -\mu_{HK} \|\mathbf{\tilde{v}}\|^2 - \mu_{\Gamma} \|\mathbf{\tilde{\theta}}\|^2 + \mu_{\Gamma} \|\mathbf{\tilde{\theta}}\| \|\mathbf{\theta}\|.$$
(3.25)

Considerando $\xi \in \mathbb{R}^+$ e a diferença quadrada

$$\left(\frac{1}{\xi}\|\tilde{\boldsymbol{\theta}}\|-\xi\|\boldsymbol{\theta}\|\right)^2 = \frac{1}{\xi^2}\|\tilde{\boldsymbol{\theta}}\|^2 - 2\|\tilde{\boldsymbol{\theta}}\|\|\boldsymbol{\theta}\| + \xi^2\|\boldsymbol{\theta}\|^2,$$

que pode ser escrita como

$$\|\tilde{\boldsymbol{\theta}}\|\|\boldsymbol{\theta}\| = \frac{1}{2\xi^2} \|\tilde{\boldsymbol{\theta}}\|^2 + \frac{\xi^2}{2} \|\boldsymbol{\theta}\|^2 - \frac{1}{2} \left(\frac{1}{\xi} \|\tilde{\boldsymbol{\theta}}\| - \xi \|\boldsymbol{\theta}\|\right)^2$$

e desprezando o termo negativo, a inequação

$$\|\tilde{\boldsymbol{\theta}}\|\|\boldsymbol{\theta}\| \leqslant \frac{1}{2\xi^2} \|\tilde{\boldsymbol{\theta}}\|^2 + \frac{\xi^2}{2} \|\boldsymbol{\theta}\|^2$$
(3.26)

é obtida. Substituindo (3.26) em (3.25), resulta

$$\dot{V} \leqslant -\mu_{HK} \|\tilde{\mathbf{v}}\|^2 - \mu_{\Gamma} \|\tilde{\boldsymbol{\theta}}\|^2 + \mu_{\Gamma} \left(\frac{1}{2\xi^2} \|\tilde{\boldsymbol{\theta}}\|^2 + \frac{\xi^2}{2} \|\boldsymbol{\theta}\|^2\right)$$

ou, de forma equivalente,

$$\dot{V} \leqslant -\mu_{HK} \|\tilde{\mathbf{v}}\|^2 - \mu_{\Gamma} \left(1 - \frac{1}{2\xi^2}\right) \|\tilde{\boldsymbol{\theta}}\|^2 + \mu_{\Gamma} \frac{\xi^2}{2} \|\boldsymbol{\theta}\|^2.$$
(3.27)

Em seguida, os parâmetros $\alpha_1 = \mu_{HK} > 0$ e $\alpha_2 = \mu_{\Gamma} \left(1 - \frac{1}{2\xi^2} \right) > 0$ são definidos, com ξ selecionado de maneira conveniente. Logo, (3.27) pode ser reescrita como

$$\dot{V} \leqslant -\alpha_1 \|\tilde{\mathbf{v}}\|^2 - \alpha_2 \|\tilde{\boldsymbol{\theta}}\|^2 + \rho, \qquad (3.28)$$

onde $\rho = \mu_{\Gamma} \frac{\xi^2}{2} \|\boldsymbol{\theta}\|^2$. Agora, a função candidata de Lyapunov $V = \frac{1}{2} \tilde{\mathbf{v}}^{\mathrm{T}} \mathbf{H} \tilde{\mathbf{v}} + \frac{1}{2} \tilde{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{\gamma}^{-1} \tilde{\boldsymbol{\theta}}$ pode ser escrita como

$$V \leqslant \beta_1 \|\tilde{\mathbf{v}}\|^2 + \beta_2 \|\tilde{\boldsymbol{\theta}}\|^2, \qquad (3.29)$$

onde $\beta_1 = \frac{1}{2}\vartheta_H$, $\beta_2 = \frac{1}{2}\vartheta_\gamma$, $\vartheta_H = \kappa_{max}(\mathbf{H})$, $\vartheta_\gamma = \kappa_{max}(\boldsymbol{\gamma})$, com $\kappa_{max}(\mathbf{Z}) = \sqrt{\lambda_{max}(\mathbf{Z}^T\mathbf{Z})}$ denotando o máximo valor singular de \mathbf{Z} . Então,

$$\dot{V} \leqslant -\Lambda V + \rho, \tag{3.30}$$

com $\Lambda = \min\left\{\frac{\alpha_1}{\beta_1}, \frac{\alpha_2}{\beta_2}\right\}$. Já que ρ é limitado, (3.30) implica que $\tilde{\mathbf{v}} \in \tilde{\boldsymbol{\theta}}$ são finalmente limitados. Portanto, a modificação- σ torna a lei de adaptação mais robusta, mas aumenta o limite de erro. Como ρ é função do valor singular mínimo da matriz de ganho Γ , e seus

valores são arbitrários, a fronteira limite do erro pode ser feita pequena. No limite, se $\Gamma = 0$, então $\tilde{\mathbf{v}} \to \mathbf{0}$ quando $t \to \infty$, como foi mostrado anteriormente.

Agora, o comportamento do erro de seguimento $\tilde{\mathbf{h}}$ é analisado novamente, relaxandose a condição de seguimento perfeito de velocidade assumida na seção 3.2. Quando não existe seguimento perfeito de velocidade, a equação (3.6) deve ser escrita como

$$\begin{bmatrix} \dot{\tilde{x}} \\ \dot{\tilde{y}} \end{bmatrix} + \begin{bmatrix} l_x & 0 \\ 0 & l_y \end{bmatrix} \begin{bmatrix} \tanh(\frac{k_x}{l_x}\tilde{x}) \\ \tanh(\frac{k_y}{l_y}\tilde{y}) \end{bmatrix} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \end{bmatrix}, \qquad (3.31)$$

onde o vetor de erro $[\varepsilon_1 \quad \varepsilon_2]^T$ pode também ser escrito como $\mathbf{A}\tilde{\mathbf{v}}$, sendo

$$\mathbf{A} = \begin{bmatrix} \cos\psi & -a\sin\psi\\ \sin\psi & a\cos\psi \end{bmatrix},$$

como definida na seção 3.2. Pode-se escrever a equação (3.31) como $\dot{\tilde{\mathbf{h}}} + \mathbf{L}(\tilde{\mathbf{h}}) = \mathbf{A}\tilde{\mathbf{v}}$, onde

$$\mathbf{L}(\tilde{\mathbf{h}}) = \begin{bmatrix} l_x & 0\\ 0 & l_y \end{bmatrix} \begin{bmatrix} \tanh(\frac{k_x}{l_x}\tilde{x})\\ \tanh(\frac{k_y}{l_y}\tilde{y}) \end{bmatrix}$$

Considera-se a mesma função candidata de Lyapunov utilizada na análise feita na seção 3.2, ou seja, $V = \frac{1}{2} \tilde{\mathbf{h}}^T \tilde{\mathbf{h}} > 0$. Sua primeira derivada temporal é agora escrita como

$$\dot{V} = \tilde{\mathbf{h}}^{\mathbf{T}}\dot{\tilde{\mathbf{h}}} = \tilde{\mathbf{h}}^{\mathbf{T}}(\mathbf{A}\tilde{\mathbf{v}} - \mathbf{L}(\tilde{\mathbf{h}})),$$

e uma condição suficiente para $\dot{V} < 0$ é $\tilde{\mathbf{h}}^T \mathbf{L}(\tilde{\mathbf{h}}) > |\tilde{\mathbf{h}}^T \mathbf{A} \tilde{\mathbf{v}}|$. Para valores pequenos do erro de controle $\tilde{\mathbf{h}}$, pode-se escrever $\mathbf{L}(\tilde{\mathbf{h}}) \approx \mathbf{K}_{xy} \tilde{\mathbf{h}}$, onde

$$\mathbf{K}_{\mathbf{x}\mathbf{y}} = \begin{bmatrix} k_x & 0\\ 0 & k_y \end{bmatrix}.$$

Portanto, uma condição suficiente para estabilidade assintótica é

$$\mathbf{h}^{\mathbf{T}}\mathbf{K}_{\mathbf{x}\mathbf{y}}\mathbf{h} > |\mathbf{h}^{\mathbf{T}}\mathbf{A}\tilde{\mathbf{v}}|,$$
$$min(k_x, k_y) \|\tilde{\mathbf{h}}\|^2 > \|\tilde{\mathbf{h}}\| \|\mathbf{A}\tilde{\mathbf{v}}\|,$$

ou

$$\|\tilde{\mathbf{h}}\| > \frac{\|\mathbf{A}\tilde{\mathbf{v}}\|}{\min(k_x, k_y)}.$$
(3.32)

Por outro lado, se os valores do erro de controle $\tilde{\mathbf{h}}$ são muito grandes, o termo $\mathbf{L}(\tilde{\mathbf{h}})$

satura. Seu valor de saturação $\mathbf{L}_{\mathbf{SAT}}(\mathbf{\tilde{h}})$ é dado por

$$\mathbf{L}_{\mathbf{SAT}}(\tilde{\mathbf{h}}) = \begin{bmatrix} l_x \ sign(\tanh(\frac{k_x}{l_x}\tilde{x})) \\ l_y \ sign(\tanh(\frac{k_y}{l_y}\tilde{y})) \end{bmatrix}$$

onde sign(.) representa o sinal do argumento. Nesse caso, uma condição suficiente para estabilidade assintótica é

$$|\mathbf{h}^{\mathrm{T}}\mathbf{L}_{\mathbf{SAT}}(\mathbf{h})| > |\mathbf{h}^{\mathrm{T}}\mathbf{A}\tilde{\mathbf{v}}|,$$
$$|min(l_x, l_y)|\|\tilde{\mathbf{h}}\| > \|\tilde{\mathbf{h}}\| \|\mathbf{A}\tilde{\mathbf{v}}\|$$

ou

$$|\min(l_x, l_y)| > \|\mathbf{A}\tilde{\mathbf{v}}\|. \tag{3.33}$$

Para o caso em que se utiliza a lei de adaptação de parâmetros dada por (3.17), foi provado que $\tilde{\mathbf{v}} \to \mathbf{0}$, o que implica que as condições (3.32) e (3.33) são assintoticamente verificadas para qualquer valor de $\tilde{\mathbf{h}}$. Consequentemente, o erro de controle $\tilde{\mathbf{h}}(t) \to \mathbf{0}$, o que está de acordo com o objetivo de controle.

Por outro lado, considerando a lei de adaptação mais robusta, que inclui o termo de modificação- σ , representada pela equação (3.22), foi provado que $\tilde{\mathbf{v}}$ é finalmente limitado, o que significa que existe um limite R numa norma do sinal. Logo, para valores pequenos do erro de controle $\tilde{\mathbf{h}}$, a partir de (3.32) conclui-se que o erro de seguimento $\tilde{\mathbf{h}}$ também será finalmente limitado por $R \|\mathbf{A}\| / \min(k_x, k_y)$ numa norma do erro de controle. Já para valores grandes do erro de controle $\tilde{\mathbf{h}}$, a estabilidade está garantida com erros de controle finalmente limitados se for cumprida a condição dada por (3.33). Assim, as constantes l_x e l_y podem ser escolhidas de maneira que $|\min(l_x, l_y)| > R \|\mathbf{A}\|$, o que garante a estabilidade do equilíbrio com erros finalmente limitados para qualquer valor de $\tilde{\mathbf{h}}$.

Nota 3.5. Deve-se notar que o controlador proposto não garante que $\tilde{\theta} \to 0$ quando $t \to \infty$. Em outras palavras, os parâmetros estimados podem convergir para valores diferentes dos verdadeiros. Isso não significa um problema, já que $\tilde{\theta} \to 0$ não é um requisito para que $\tilde{\mathbf{v}} \to \mathbf{0}$, ou para que $\tilde{\mathbf{v}}$ seja finalmente limitado.

Nota 3.6. É importante salientar que uma plataforma não-holonômica restringe a direção de velocidade linear que pode ser desenvolvida pelo robô. Um robô móvel não-holonômico deve estar orientado tangente ao caminho da trajetória, para segui-la com erro pequeno. Se esse não for o caso, os erros de distância irão crescer. O fato de que os erros de controle convergem para valores limitados mostra que a orientação do robô não precisa ser controlada de forma explícita.
Nota 3.7. As leis de adaptação de parâmetros (3.17) e (3.22) realizam ajuste nos valores dos parâmetros estimados sempre que o erro de velocidade é diferente de zero. Isso significa que, neste sistema, considera-se que todo o erro de seguimento de velocidade é causado por erro nos valores estimados dos parâmetros dinâmicos.

3.3.1.2 Resultados de Simulação

Para ilustrar o funcionamento do primeiro controlador dinâmico proposto, representado pela equação (3.10), foram realizadas simulações nos mesmos moldes daquelas apresentadas na seção 3.2, ou seja, foi considerado o modelo completo do robô, representado pela equação (2.12), com os parâmetros identificados do robô Pioneer 3-DX apresentados na Seção 2.4. No controlador cinemático foram mantidos os mesmos ganhos utilizados nas simulações anteriores, quais sejam $k_x = 0, 2 e k_y = 0, 2$. Os ganhos do controlador dinâmico foram ajustados empiricamente, resultando em $k_u = 4 e k_{\omega} = 4$.

Na primeira simulação, o controlador foi utilizado para fazer o robô seguir uma trajetória circular cujo raio varia bruscamente entre $0,8~m \in 0,7~m$ a cada 60~s, a partir de t = 50~s. Os parâmetros θ utilizados no controlador dinâmico possuem valores 25%maiores em relação aos parâmetros utilizados no modelo do robô. Esta condição também foi simulada com a utilização somente do controlador cinemático, e corresponde ao caso em que o robô estaria carregado, com maior massa, momento de inércia e atrito. Neste primeiro caso, a adaptação de parâmetros foi mantida desativada.

A Figura 16(a) mostra parte da trajetória percorrida pelo robô, enquanto a Figura 16(b) ilustra a evolução do erro de distância durante a simulação considerada. O grande valor inicial do erro se deve ao fato de que a posição inicial do robô é (0, 2; -0, 8) m, enquanto a trajetória de referência se inicia em (0, 8; 0, 0) m. Nota-se que a cada 60 s há um acréscimo instantâneo no valor do erro, que ocorre devido à súbita mudança no raio da trajetória de referência. A figura 16(b) também mostra que o erro não tende a zero em regime permanente, o que ocorre devido ao erro paramétrico existente, mas permanece limitado.

A Figura 17(a) apresenta os valores de velocidade linear e angular enviadas pelo controlador cinemático e desenvolvidas pelo robô durante o seguimento da trajetória circular em questão, enquanto a Figura 17(b) mostra a diferença entre esses valores. Pode-se notar que o erro de velocidade apresenta um valor significativo em regime, o que é causado pela diferença entre os parâmetros dinâmicos do modelo do robô e aqueles considerados no controlador. Com essa diferença, a compensação da dinâmica do robô não é feita

Figura 16: Primeiro controlador dinâmico: trajetória circular. (a) Parte da trajetória percorrida pelo robô; (b) Erro de distância durante a simulação com carga e sem adaptação de parâmetros.

Figura 17: Primeiro controlador dinâmico: trajetória circular. (a) Velocidades linear e angular enviadas e desenvolvidas pelo robô; (b) erros de velocidade durante a simulação com carga e sem adaptação de parâmetros.

corretamente pelo controlador dinâmico.

A mesma simulação foi repetida, mas com a adaptação de parâmetros ativada. Considerouse a lei de adaptação de parâmetros dada por (3.22), que inclui a modificação- σ .

A Figura 18(a) mostra parte da trajetória percorrida pelo robô, enquanto a Fi-

Figura 18: Primeiro controlador dinâmico: trajetória circular. (a) Parte da trajetória percorrida pelo robô; (b) Erro de distância durante a simulação com carga e com adaptação de parâmetros.

gura 18(b) ilustra a evolução do erro de distância durante a simulação considerada. O grande valor inicial do erro se deve ao fato de que a posição inicial do robô é (0, 2; -0, 8) m, enquanto a trajetória de referência se inicia em (0, 8; 0, 0) m. Nota-se que o erro de distância diminui ao longo do tempo, na medida em que a adaptação de parâmetros é realizada. A cada 60 s há um acréscimo instantâneo no valor do erro, que ocorre devido à súbita mudança no raio da trajetória de referência.

A Figura 19(a) apresenta os valores de velocidade linear e angular enviadas pelo controlador cinemático e desenvolvidas pelo robô durante o seguimento da trajetória circular em questão, enquanto a Figura 19(b) mostra a diferença entre esses valores. Pode-se perceber que o erro de velocidade apresenta um valor diferente de zero no início da simulação, o que é causado pela diferença entre os parâmetros dinâmicos do modelo do robô e aqueles considerados no controlador, mas esta diferença diminui ao longo do tempo. Ou seja, na medida em que os parâmetros θ do controlador são ajustados com base na lei de adaptação, o erro de compensação dinâmica diminui, o que provoca redução no erro de velocidade e a consequente redução no erro de seguimento.

A evolução dos parâmetros estimados durante esta simulação é mostrada na Figura 20. Nota-se que os valores dos parâmetros convergem para valores fixos, mas não necessariamente para os valores corretos. Conforme mencionado na *Nota 3.5*, a convergência para os valores corretos não é garantida pela lei de adaptação utilizada.

Figura 19: Primeiro controlador dinâmico: trajetória circular. (a) Velocidades linear e angular enviadas e desenvolvidas pelo robô; (b) erros de velocidade durante a simulação com carga e com adaptação de parâmetros.

Figura 20: Evolução dos parâmetros estimados durante simulação de seguimento da trajetória circular - primeiro controlador dinâmico.

Foi realizada uma terceira simulação para ilustrar o desempenho do controlador no caso em que os parâmetros usados no controlador são os parâmetros reais do robô, ou seja, considerando o robô sem carga. Simulou-se o caso em que o robô deve seguir a trajetória em forma de oito anteriormente apresentada, mantendo inalteradas as características como a trajetória de referência, sua velocidade, os parâmetros do robô, etc. Na

Figura 21: Primeiro controlador dinâmico: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô antes e depois de iniciada a adaptação de parâmetros; (b) erro de distância durante a simulação sem carga.

presente simulação, a adaptação de parâmetros do controlador dinâmico é feita com base na lei de ajuste (3.22), que possui o termo de modificação- σ . No início da simulação a adaptação está desativada, assim permanecendo até t = 50s. A partir desse instante, a adaptação de parâmetros é ativada, e assim permanece até o término da simulação.

As figuras 21(a), 21(b) ilustram, respectivamente, a trajetória percorrida pelo robô antes e depois da adaptação de parâmetros, e a evolução do erro de distância durante a execução da tarefa. Pode-se notar que, após atingir a trajetória, o controlador é capaz de fazer o robô seguí-la com erro muito próximo a zero, mesmo antes de a adaptação de parâmetros ser ativada. Após a adaptação de parâmetros (em t = 50s) o erro se mantém praticamente no mesmo valor e a trajetória percorrida pelo robô também não é visivelmente alterada.

As velocidades linear e angular desenvolvidas pelo robô durante o seguimento da trajetória em forma de oito são apresentadas na Figura 22(a), assim como seus sinais de referência enviados pelo controlador cinemático. Os erros de velocidade são apresentados na Figura 22(b). Nota-se que os valores de erro de velocidade são muito próximos a zero já que, nesse caso, considerou-se que a dinâmica do robô é exatamente compensada.

A evolução dos parâmetros estimados durante esta simulação é mostrada na Figura 23. Nota-se que os valores dos parâmetros apresentam variação muito pequena, o que era esperado, já que os parâmetros estimados iniciam com os valores iguais aos do modelo.

Figura 22: Primeiro controlador dinâmico: trajetória em forma de oito. (a) Velocidades linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante a simulação sem carga.

É importante ressaltar que, de acordo com a equação de adaptação $\dot{\hat{\theta}} = \gamma^{-1} \mathbf{G}^{\mathbf{T}} \tilde{\mathbf{v}}$, os parâmetros somente devem ter seus valores alterados se o erro de velocidade $\tilde{\mathbf{v}}$ é diferente de zero. No presente caso, como foi inserido ruído nos sinais de medição de posição e de velocidade, existe um pequeno erro entre a velocidade desenvolvida pelo robô e o valor recebido pelo controlador, ainda que a velocidade real do robô seja exatamente igual à velocidade de referência gerada pelo controlador cinemático. Isso faz com que o erro de velocidade seja distinto de zero, provocando pequenas variações nos valores dos parâmetros. Além disso, a lei de adaptação utilizada inclui a modificação- σ , ou seja, $\dot{\hat{\theta}} = \gamma^{-1} \mathbf{G}^{\mathbf{T}} \tilde{\mathbf{v}} - \gamma^{-1} \Gamma \hat{\boldsymbol{\theta}}$. Nesse caso, ainda que o erro de velocidade $\tilde{\mathbf{v}}$ seja nulo, haverá pequena modificação no valor dos parâmetros, como ilustra a Figura 23.

Para ilustrar a convergência dos parâmetros, a mesma simulação foi repetida por um periodo muito mais longo, de 20.000*s*. Na Figura 24, que ilustra a evolução dos parâmetros nesse caso, pode-se notar que todos convergem.

Ao se comparar os resultados mostrados pelas figuras 21(b) e 22(b), em que o controlador dinâmico está presente, com aqueles das figuras 8(b) e 9(b), em que apenas o controlador cinemático estava presente, percebe-se que a inserção do controlador dinâmico produz uma melhora substancial no desempenho do sistema. Ou seja, a inserção do controlador dinâmico produziu importante redução no valor do erro de velocidade e, por conseguinte, diminuição no valor do erro de seguimento, mesmo no caso do robô não estar

Figura 23: Evolução dos parâmetros estimados durante simulação de seguimento da trajetória em forma de oito sem carga - primeiro controlador dinâmico.

Figura 24: Evolução dos parâmetros estimados durante simulação de longa duração para trajetória em forma de oito sem carga - primeiro controlador dinâmico.

carregado.

Para ilustrar a utilidade da adaptação de parâmetros quando o robô tem sua dinâmica alterada, repetiu-se a simulação de seguimento da trajetória em forma de oito para o caso em que os parâmetros do robô são 25% maiores que os valores carregados no controlador dinâmico. A adaptação de parâmetros do controlador dinâmico também é feita com base

Figura 25: Primeiro controlador dinâmico: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô antes e depois de iniciada a adaptação de parâmetros; (b) erro de distância durante a simulação com carga.

na lei de ajuste (3.22), que possui o termo de modificação- σ . No início da simulação a adaptação está desativada, assim permanecendo até t = 50s. A partir desse instante, a adaptação de parâmetros é ativada, assim permanecendo até o término da simulação.

As figuras 25(a) e 25(b) ilustram, respectivamente, a trajetória percorrida pelo robô antes e depois da adaptação de parâmetros, e a evolução do erro de distância durante a execução da tarefa. Pode-se notar que o controlador é capaz de fazer o robô seguir a trajetória de referência, porém com erro grande, antes da adaptação de parâmetros ser ativada. Após sua ativação, em t = 50s, o erro começa a ser reduzido e se mantém próximo a zero após t = 200s.

As velocidades linear e angular desenvolvidas pelo robô durante o seguimento da trajetória em forma de oito são apresentadas na Figura 26(a), assim como seus sinais de referência enviados pelo controlador cinemático. Os erros de velocidade são apresentados na Figura 26(b). Nota-se que os valores de erro de velocidade são grandes antes de t = 50s, já que a dinâmica do robô não está sendo compensada corretamente. Após o início da adaptação de parâmetros, o erro de velocidade é reduzido gradualmente, apresentando tendência a se manter próximo a zero.

A evolução dos parâmetros estimados durante esta simulação é mostrada na Figura 27. Nota-se que os valores dos parâmetros apresentam importante variação após a ativação da adaptação, em t = 50s. A convergência dos parâmetros é ilustrada na Figura 28, obtida

Figura 26: Primeiro controlador dinâmico: trajetória em forma de oito. (a) Velocidades linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante a simulação com carga.

Figura 27: Evolução dos parâmetros estimados durante simulação de seguimento da trajetória em forma de oito com carga - primeiro controlador dinâmico.

com a repetição da simulação anterior, mantendo-se as mesmas condições, mas por um periodo muito mais longo. Pode-se notar que todos os parâmetros convergem.

Ao se comparar os resultados das simulações em que o robô está carregado, mostrados pelas figuras 25(b) e 26(b), tendo o controlador dinâmico presente e adaptação de parâmetros ativa, com aqueles das figuras 12(b) e 13(b), em que apenas o controlador ci-

Figura 28: Evolução dos parâmetros estimados durante simulação de longa duração para trajetória em forma de oito com carga - primeiro controlador dinâmico.

nemático estava presente, percebe-se que a inserção do controlador dinâmico produz uma melhora expressiva no desempenho do sistema após o início da adaptação de parâmetros. Após t = 50s, quando a adaptação é iniciada, o valor do erro de velocidade é reduzido e, consequentemente, ocorre importante diminuição no valor do erro de seguimento.

Nota 3.8. Considerando a adaptação dos parâmetros estimados, seu tempo de convergência pode ser reduzido com o aumento dos valores da matriz de ganhos de adaptação γ^{-1} , o que também provocaria redução mais rápida nos erros de controle. No entanto, na presença de distúrbios ou ruídos na medição, ganhos de adaptação elevados podem causar oscilação no sistema, prejudicando seu desempenho.

3.3.2 Segundo Controlador Dinâmico

O projeto do segundo controlador dinâmico foi realizado com base na equação (2.12), proposta para representar o modelo dinâmico do robô móvel uniciclo. Tal equação é aqui reproduzida por conveniência:

$$\mathbf{H}\dot{\mathbf{v}} + \mathbf{C}(\mathbf{v})\mathbf{v} + \mathbf{F}(\mathbf{v})\mathbf{v} = \mathbf{v}_{\mathbf{r}}.$$
(3.34)

Assim como o primeiro controlador dinâmico, este também recebe as referências de velocidade linear u_{ref}^c e angular ω_{ref}^c geradas pelo controlador cinemático, realiza a com-

pensação da dinâmica do veículo, e gera comandos de velocidades linear u_{ref} e angular ω_{ref} que são enviados ao robô. A estrutura do controlador é aquela representada pela Figura 15, que ilustra que $\mathbf{v} = \begin{bmatrix} u & \omega \end{bmatrix}^T$, $\mathbf{v_d} = \begin{bmatrix} u_{ref}^c & \omega_{ref}^c \end{bmatrix}^T$ e $\mathbf{v_r} = \begin{bmatrix} u_{ref} & \omega_{ref} \end{bmatrix}^T$.

Foi proposta a lei de controle

$$\mathbf{v}_{\mathbf{r}} = \mathbf{H}(\mathbf{\dot{v}}_{\mathbf{d}} + \mathbf{T}(\mathbf{\tilde{v}})) + \mathbf{C}\mathbf{v}_{\mathbf{d}} + \mathbf{F}\mathbf{v}_{\mathbf{d}}, \qquad (3.35)$$

onde $\tilde{\mathbf{v}} = \mathbf{v_d} - \mathbf{v}$ é o vetor de erros de velocidade. A matriz $\mathbf{T}(\tilde{\mathbf{v}})$ é dada por

$$\mathbf{T}(\tilde{\mathbf{v}}) = \begin{bmatrix} l_u & 0\\ 0 & l_\omega \end{bmatrix} \begin{bmatrix} \tanh(\frac{k_u}{l_u}\tilde{u})\\ \tanh(\frac{k_\omega}{l_\omega}\tilde{\omega}) \end{bmatrix},$$

onde $k_u > 0$ e $k_{\omega} > 0$ são ganhos constantes e $l_u \in \mathbb{R}$ e $l_{\omega} \in \mathbb{R}$ são constantes de saturação. O termo $\mathbf{T}(\tilde{\mathbf{v}})$ provoca uma saturação para garantir que os sinais de comando enviados ao robô estejam dentro dos limites aceitos pelo veículo.

Considerando a lei de controle (3.35), a equação de malha fechada é

$$\mathbf{H}\tilde{\mathbf{v}} = -\mathbf{H}\mathbf{T}(\tilde{\mathbf{v}}) - \mathbf{C}\tilde{\mathbf{v}} - \mathbf{F}\tilde{\mathbf{v}}.$$
(3.36)

Para a análise de estabilidade, considera-se a função candidata de Lyapunov definida positiva $V = \frac{1}{2} \tilde{\mathbf{v}}^{T} \mathbf{H} \tilde{\mathbf{v}}$. Sua primeira derivada temporal é $\dot{V} = \tilde{\mathbf{v}}^{T} \mathbf{H} \dot{\tilde{\mathbf{v}}}$. Usando a equação (3.36), a primeira derivada pode ser escrita como

$$\dot{V} = -\tilde{\mathbf{v}}^{\mathrm{T}}\mathbf{H}\mathbf{T}(\tilde{\mathbf{v}}) - \tilde{\mathbf{v}}^{\mathrm{T}}\mathbf{C}\tilde{\mathbf{v}} - \tilde{\mathbf{v}}^{\mathrm{T}}\mathbf{F}\tilde{\mathbf{v}},$$

Considerando a propriedade 5 do modelo, de antissimetria da matriz \mathbf{C} , pode-se escrever que

$$\dot{V} = -\tilde{\mathbf{v}}^{\mathrm{T}}\mathbf{H}\mathbf{T}(\tilde{\mathbf{v}}) - \tilde{\mathbf{v}}^{\mathrm{T}}\mathbf{F}\tilde{\mathbf{v}}$$

A propriedade 1 afirma que \mathbf{H} é uma matriz simétrica e definida positiva. Os termos do vetor $\mathbf{T}(\tilde{\mathbf{v}})$ possuem o mesmo sinal dos termos de $\tilde{\mathbf{v}}$. A propriedade 3 afirma que a matriz \mathbf{F} é simétrica e definida positiva se $\theta_6 > -(\theta_5 - I\theta_3)u$. Portanto, considerando que $\theta_6 > -(\theta_5 - I\theta_3)u$, pode-se concluir que $\dot{V} < 0$, ou seja, $\tilde{\mathbf{v}} \in L_{\infty}$ e $\tilde{\mathbf{v}} \to \mathbf{0}$ com $t \to \infty$, o que mostra que o objetivo de controle é cumprido. Como foi discutido na seção 2.4, os robôs que tiveram seus parâmetros identificados (Pioneer 2 e Pioneer 3-DX, da empresa Mobile Robots, e a cadeira de rodas robótica) cumprem a condição anterior.

Uma propriedade adicional do sinal de erro $\tilde{\mathbf{v}}$ é o fato de ser quadrado integrável,

como se mostra a seguir. Integrando \dot{V} , resulta em

$$V(T) - V(0) = -\int_0^T \tilde{\mathbf{v}}^{\mathbf{T}} \mathbf{H} \mathbf{T}(\tilde{\mathbf{v}}) dt - \int_0^T \tilde{\mathbf{v}}^{\mathbf{T}} \mathbf{F} \tilde{\mathbf{v}} dt.$$

Desprezando o termo V(T),

$$-V(0) \leq -\int_0^T \tilde{\mathbf{v}}^{\mathbf{T}} \mathbf{H} \mathbf{T}(\tilde{\mathbf{v}}) dt - \int_0^T \tilde{\mathbf{v}}^{\mathbf{T}} \mathbf{F} \tilde{\mathbf{v}} dt.$$

Considerando que $\theta_6 > -(\theta_5 - I\theta_3)u$ e aplicando a propriedade 3, pode-se escrever que

$$V(0) \ge \int_0^T \tilde{\mathbf{v}}^{\mathbf{T}} \mathbf{H} \mathbf{T}(\tilde{\mathbf{v}}) dt + \inf(\lambda_{\min}(\mathbf{F})) \int_0^T \|\tilde{\mathbf{v}}\|^2 dt,$$

onde $\inf(\lambda_{\min}(\mathbf{F}))$ representa o ínfimo do menor autovalor de \mathbf{F} . A desigualdade anterior mostra que os termos estão todos limitados e, portanto, pode ser escrita como

$$V(0) \ge \inf(\lambda_{\min}(\mathbf{F})) \int_0^T \|\mathbf{\tilde{v}}\|^2 dt + \alpha,$$

onde $\alpha = \int_0^\infty \tilde{\mathbf{v}}^{\mathbf{T}} \mathbf{H} \mathbf{T}(\tilde{\mathbf{v}}) dt$. Logo,

$$\int_{0}^{T} \|\tilde{\mathbf{v}}\|^{2} dt \leq \frac{V(0) - \alpha}{\inf(\lambda_{\min}(\mathbf{F}))} \Rightarrow \int_{0}^{\infty} \|\tilde{\mathbf{v}}\|^{2} dt \leq \frac{V(0) - \alpha}{\inf(\lambda_{\min}(\mathbf{F}))},$$
(3.37)

o que permite concluir que $\tilde{\mathbf{v}}$ é quadrado integrável, i.e., $\tilde{\mathbf{v}} \in L_2$.

Agora é realizada uma análise equivalente à que foi feita na seção 3.3.1, considerandose que não há seguimento perfeito de velocidade. Como foi visto, pode-se escrever a equação de erro (3.6) como

$$\tilde{\mathbf{h}} + \mathbf{L}(\tilde{\mathbf{h}}) = \mathbf{A}\tilde{\mathbf{v}},\tag{3.38}$$

onde

$$\mathbf{L}(\tilde{\mathbf{h}}) = \begin{bmatrix} l_x & 0\\ 0 & l_y \end{bmatrix} \begin{bmatrix} \tanh(\frac{k_x}{l_x}\tilde{x})\\ \tanh(\frac{k_y}{l_y}\tilde{y}) \end{bmatrix},$$

e o vetor $\mathbf{A}\tilde{\mathbf{v}}$ representa o erro de seguimento de velocidade $[\varepsilon_1 \quad \varepsilon_2]^T$, sendo

$$\mathbf{A} = \begin{bmatrix} \cos\psi & -a\sin\psi\\ \sin\psi & a\cos\psi \end{bmatrix}.$$

Considerando-se a função candidata de Lyapunov $V = \frac{1}{2} \tilde{\mathbf{h}}^T \tilde{\mathbf{h}} > 0$, cuja primeira

derivada temporal é

$$\dot{V} = \tilde{\mathbf{h}}^{\mathbf{T}} \dot{\tilde{\mathbf{h}}} = \tilde{\mathbf{h}}^{\mathbf{T}} (\mathbf{A} \tilde{\mathbf{v}} - \mathbf{L}(\tilde{\mathbf{h}})),$$

verifica-se que uma condição suficiente para $\dot{V} < 0$ é $\tilde{\mathbf{h}}^T \mathbf{L}(\tilde{\mathbf{h}}) > |\tilde{\mathbf{h}}^T \mathbf{A} \tilde{\mathbf{v}}|$. Para valores pequenos do erro de controle $\tilde{\mathbf{h}}$, pode-se escrever que $\mathbf{L}(\tilde{\mathbf{h}}) \approx \mathbf{K}_{xy} \tilde{\mathbf{h}}$, onde

$$\mathbf{K}_{\mathbf{x}\mathbf{y}} = \begin{bmatrix} k_x & 0\\ 0 & k_y \end{bmatrix}$$

Portanto, uma condição suficiente para estabilidade assintótica é que

$$\tilde{\mathbf{h}}^{\mathbf{T}} \mathbf{K}_{\mathbf{x}\mathbf{y}} \tilde{\mathbf{h}} > |\tilde{\mathbf{h}}^{\mathbf{T}} \mathbf{A} \tilde{\mathbf{v}}|,$$
$$min(k_x, k_y) \|\tilde{\mathbf{h}}\|^2 > \|\tilde{\mathbf{h}}\| \|\mathbf{A} \tilde{\mathbf{v}}\|$$

ou

$$\|\tilde{\mathbf{h}}\| > \frac{\|\mathbf{A}\tilde{\mathbf{v}}\|}{\min(k_x, k_y)}.$$
(3.39)

Por outro lado, se os valores do erro de controle $\tilde{\mathbf{h}}$ são muito grandes, o termo $\mathbf{L}(\tilde{\mathbf{h}})$ satura. Nesse caso, como já mostrado na subseção 3.3.1.1, uma condição suficiente para estabilidade assintótica é

$$|\min(l_x, l_y)| > \|\mathbf{A}\tilde{\mathbf{v}}\|. \tag{3.40}$$

Foi provado que $\tilde{\mathbf{v}} \to \mathbf{0}$. Logo, as condições (3.39) e (3.40) são assintoticamente verificadas para qualquer valor de $\tilde{\mathbf{h}}$. Consequentemente, o erro de controle $\tilde{\mathbf{h}}(t) \to \mathbf{0}$, o que está de acordo com o objetivo de controle.

3.3.2.1 Adaptação de Parâmetros

Na seção 3.3.2 considerou-se que a dinâmica do robô é exatamente conhecida. Aqui, a adaptação dos parâmetros usados no controlador é considerada, levando-se em conta que os parâmetros dinâmicos podem não ser corretamente identificados, ou podem variar de uma tarefa a outra. A equação (3.34) pode ser escrita, em seu formato de parametrização linear, como

$$\mathbf{v}_{\mathbf{r}} = \mathbf{G}' \boldsymbol{\theta} = \begin{bmatrix} \dot{u} & 0 & -\omega^2 & u & 0 & 0\\ 0 & \dot{\omega} & 0 & 0 & u\omega & \omega \end{bmatrix} \boldsymbol{\theta}.$$
 (3.41)

Considerando a incerteza paramétrica, a lei de controle (3.35) deve ser escrita como

$$\mathbf{v}_{\mathbf{r}} = \hat{\mathbf{H}}(\dot{\mathbf{v}}_{\mathbf{d}} + \mathbf{T}(\tilde{\mathbf{v}})) + \hat{\mathbf{C}}\mathbf{v}_{\mathbf{d}} + \hat{\mathbf{F}}\mathbf{v}_{\mathbf{d}}, \qquad (3.42)$$

onde $\hat{\mathbf{H}}$, $\hat{\mathbf{C}}$, e $\hat{\mathbf{F}}$ são estimativas de \mathbf{H} , \mathbf{C} , e \mathbf{F} , respectivamente. Para projetar a lei de adaptação, a equação da lei de controle (3.42) é reescrita em seu formato de parametrização linear, ou seja

$$\mathbf{v}_{\mathbf{r}} = \mathbf{G}\hat{\boldsymbol{\theta}} = \begin{bmatrix} \sigma_1 & 0 & -\omega_d \omega & u_d & 0 & 0\\ 0 & \sigma_2 & (u_d \omega - u \omega_d) & 0 & u \omega_d & \omega_d \end{bmatrix} \hat{\boldsymbol{\theta}},$$
(3.43)

onde $\sigma_1 = \dot{u}_d + l_u \tanh(\frac{k_u}{l_u}\tilde{u})$, e $\sigma_2 = \dot{\omega}_d + l_\omega \tanh(\frac{k_\omega}{l_\omega}\tilde{\omega})$. O vetor de erro paramétrico é definido como $\tilde{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}$, onde $\hat{\boldsymbol{\theta}}$ é o vetor de estimativa de parâmetros. Assim, (3.43) pode ser escrita como $\mathbf{v_r} = \mathbf{G}\boldsymbol{\theta} + \mathbf{G}\tilde{\boldsymbol{\theta}}$, ou

$$\mathbf{v}_{\mathbf{r}} = \mathbf{H}\boldsymbol{\sigma} + \mathbf{C}\mathbf{v}_{\mathbf{d}} + \mathbf{F}\mathbf{v}_{\mathbf{d}} + \mathbf{G}\boldsymbol{\theta}, \qquad (3.44)$$

onde $\boldsymbol{\sigma} = \dot{\mathbf{v}}_{\mathbf{d}} + \mathbf{T}(\tilde{\mathbf{v}})$. Recordando que $\tilde{\mathbf{v}} = \mathbf{v}_{\mathbf{d}} - \mathbf{v}$, pode-se concluir que $\dot{\mathbf{v}}_{\mathbf{d}} = \dot{\tilde{\mathbf{v}}} + \dot{\mathbf{v}}$. Portanto, $\boldsymbol{\sigma} = \dot{\tilde{\mathbf{v}}} + \mathbf{T}(\tilde{\mathbf{v}}) + \dot{\mathbf{v}}$. Substituindo este termo na equação (3.44), a equação do sistema em malha fechada torna-se

$$-\mathbf{G}\tilde{\boldsymbol{\theta}} = \mathbf{H}(\dot{\tilde{\mathbf{v}}} + \mathbf{T}(\tilde{\mathbf{v}})) + \mathbf{C}\tilde{\mathbf{v}} + \mathbf{F}\tilde{\mathbf{v}}.$$
(3.45)

Seja

$$V = \frac{1}{2} \tilde{\mathbf{v}}^{\mathrm{T}} \mathbf{H} \tilde{\mathbf{v}} + \frac{1}{2} \tilde{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{\gamma}^{-1} \tilde{\boldsymbol{\theta}} > 0$$

a função candidata de Lyapunov. Sua primeira derivada temporal é

$$\dot{V} = \tilde{\mathbf{v}}^{\mathrm{T}} \mathbf{H} \dot{\tilde{\mathbf{v}}} + \tilde{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{\gamma}^{-1} \dot{\tilde{\boldsymbol{\theta}}}.$$

Usando (3.45), resulta que

$$\dot{V} = -\tilde{\mathbf{v}}^{\mathbf{T}} (\mathbf{G}\tilde{\boldsymbol{\theta}} + \mathbf{C}\tilde{\mathbf{v}} + \mathbf{F}\tilde{\mathbf{v}}) - \tilde{\mathbf{v}}^{\mathbf{T}}\mathbf{H}\mathbf{T}(\tilde{\mathbf{v}}) + \tilde{\boldsymbol{\theta}}^{\mathbf{T}}\boldsymbol{\gamma}^{-1}\dot{\tilde{\boldsymbol{\theta}}}.$$
(3.46)

Considerando que os valores dos parâmetros não se alteram durante a execução de uma tarefa, i.e., $\dot{\theta} = 0$, pode-se escrever que $\dot{\hat{\theta}} = \dot{\tilde{\theta}}$. Escolhendo a lei de ajuste de parâmetros como

$$\hat{\boldsymbol{\theta}} = \boldsymbol{\gamma} \mathbf{G}^{\mathbf{T}} \tilde{\mathbf{v}}, \qquad (3.47)$$

e usando a propriedade 5 do modelo, de antissimetria de C, a equação (3.46) resulta em

$$\dot{V} = -\tilde{\mathbf{v}}^{\mathrm{T}}\mathbf{F}\tilde{\mathbf{v}} - \tilde{\mathbf{v}}^{\mathrm{T}}\mathbf{H}\mathbf{T}(\tilde{\mathbf{v}}),$$

que é semidefinida negativa. Portanto, pode-se concluir que $\tilde{\mathbf{v}} \in L_{\infty}$ e $\tilde{\boldsymbol{\theta}} \in L_{\infty}$.

Integrando \dot{V} , tem-se que

$$V(T) - V(0) = -\int_0^T \tilde{\mathbf{v}}^{\mathbf{T}} \mathbf{H} \mathbf{T}(\tilde{\mathbf{v}}) dt - \int_0^T \tilde{\mathbf{v}}^{\mathbf{T}} \mathbf{F} \tilde{\mathbf{v}} dt$$

Desprezando-se o termo V(T), e usando o mesmo raciocínio adotado na subseção 3.3.1.2, pode-se concluir que

$$\int_{0}^{T} \|\tilde{\mathbf{v}}\|^{2} dt \leq \frac{V(0) - \alpha}{\lambda_{min}(\mathbf{F})} \Rightarrow \int_{0}^{\infty} \|\tilde{\mathbf{v}}\|^{2} dt \leq \frac{V(0) - \alpha}{\lambda_{min}(\mathbf{F})},$$
(3.48)

onde

$$\alpha = \int_0^\infty \mathbf{\tilde{v}^T} \mathbf{HT}(\mathbf{\tilde{v}}) dt.$$

Ou seja, $\tilde{\mathbf{v}}$ é um sinal quadrado integrável, i.e., $\tilde{\mathbf{v}} \in L_2$.

Já que $\tilde{\mathbf{v}}$ e $\mathbf{v_d}$ são limitadas, como $\tilde{\mathbf{v}} = \mathbf{v_d} - \mathbf{v}$, pode-se notar que \mathbf{v} também é limitada. Logo, como \mathbf{C} e \mathbf{F} são limitadas, e considerando-se que $\dot{\mathbf{v}_d}$ também é limitado, pode-se afirmar que \mathbf{G} é limitada. A propriedade 4 do modelo garante que \mathbf{H} é constante, e sabe-se que $\tilde{\boldsymbol{\theta}}$, $\tilde{\mathbf{v}}$ e $\mathbf{T}(\tilde{\mathbf{v}})$ são limitadas. Então, da equação (3.45) pode-se verificar que $\dot{\tilde{\mathbf{v}}}$ é limitada, i.e., $\dot{\tilde{\mathbf{v}}} \in L_{\infty}$. Como $\dot{\tilde{\mathbf{v}}} \in L_{\infty}$ e $\tilde{\mathbf{v}} \in L_2$, o Lema de Barbalat garante que $\tilde{\mathbf{v}}(\mathbf{t}) \rightarrow \mathbf{0}$ com $t \rightarrow \infty$, o que prova que o objetivo de controle é cumprido.

A lei de adaptação (3.47) funciona como um integrador e, por isso, pode provocar problemas de robustez em caso de erros nas medições, ruído ou perturbações. Como já mencionado na seção 3.3.1.1, uma possível maneira de se evitar a deriva paramétrica é através do desligamento da adaptação de parâmetros quando o valor de erro atinge determinado limite mínimo, como ilustrado em (MARTINS et al., 2007c). Outra forma conhecida de se evitar a deriva paramétrica é a modificação da lei de adaptação de parâmetros através da introdução de um termo de modificação- σ (ou *Leakage Term*) (KAUFMAN; SOBEL, 1998; BOYD; SASTRY, 1989). Com a introdução desse termo, ao invés de (3.47), a lei de adaptação de parâmetros

$$\dot{\hat{\theta}} = \gamma \mathbf{G}^{\mathbf{T}} \tilde{\mathbf{v}} - \gamma \Gamma \hat{\boldsymbol{\theta}}$$
(3.49)

é utilizada, onde $\Gamma \in \mathbb{R}^{6\times 6}$ é uma matriz diagonal de ganhos positivos. Para analisar a estabilidade do equilíbrio do sistema em malha fechada considerando a lei de ajuste (3.49), será adotado o mesmo raciocínio apresentado na seção 3.3.1.1. Inicialmente, (3.49) será reescrita como

$$\dot{\hat{ heta}} = \gamma \mathbf{G}^{\mathbf{T}} \mathbf{\tilde{v}} - \gamma \Gamma \mathbf{ ilde{ heta}} - \gamma \Gamma \mathbf{ heta}.$$

Substituindo a equação anterior em (3.46), resulta que

$$\dot{V} = -\tilde{\mathbf{v}}^{\mathrm{T}}\mathbf{F}\tilde{\mathbf{v}} - \tilde{\mathbf{v}}^{\mathrm{T}}\mathbf{H}\mathbf{T}(\tilde{\mathbf{v}}) - \tilde{\boldsymbol{\theta}}\Gamma\tilde{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}\Gamma\boldsymbol{\theta}.$$

Considerando-se valores pequenos de $\tilde{\mathbf{v}}$, tem-se que $\mathbf{T}(\tilde{\mathbf{v}}) \approx \mathbf{K}_{\mathbf{v}}\tilde{\mathbf{v}}$. São definidas as constantes $\mu_F = \chi(\mathbf{F}), \ \mu_{\Gamma} = \chi(\mathbf{\Gamma}) \in \mu_{HK} = \chi(\mathbf{HK}), \ \text{onde } \chi(\mathbf{Z}) = \sqrt{\lambda_{min}(\mathbf{Z}^{\mathsf{T}}\mathbf{Z})}$ é o valor singular mínimo de \mathbf{Z} , e $\lambda_{min}(\mathbf{Z})$ é o menor autovalor de \mathbf{Z} . Logo \dot{V} pode ser reescrita como

$$\dot{V} \leqslant -\mu_{FHK} \|\mathbf{\tilde{v}}\|^2 - \mu_{\Gamma} \|\mathbf{\tilde{\theta}}\|^2 + \mu_{\Gamma} \|\mathbf{\tilde{\theta}}\| \|\mathbf{\theta}\|, \qquad (3.50)$$

onde $\mu_{FHK} = \mu_F + \mu_{HK}$. Considerando a diferença quadrada

$$\left(\frac{1}{\xi}\|\tilde{\boldsymbol{\theta}}\|-\xi\|\boldsymbol{\theta}\|\right)^2 = \frac{1}{\xi^2}\|\tilde{\boldsymbol{\theta}}\|^2 - 2\|\tilde{\boldsymbol{\theta}}\|\|\boldsymbol{\theta}\| + \xi^2\|\boldsymbol{\theta}\|^2,$$

e rearranjando seus termos, tem-se que

$$\|\tilde{\boldsymbol{\theta}}\|\|\boldsymbol{\theta}\| = \frac{1}{2\xi^2} \|\tilde{\boldsymbol{\theta}}\|^2 + \frac{\xi^2}{2} \|\boldsymbol{\theta}\|^2 - \frac{1}{2} \left(\frac{1}{\xi} \|\tilde{\boldsymbol{\theta}}\| - \xi \|\boldsymbol{\theta}\|\right)^2,$$

sendo $\xi \in \mathbb{R}^+$. Desprezando-se o termo negativo, a desigualdade

$$\|\tilde{\boldsymbol{\theta}}\|\|\boldsymbol{\theta}\| \leq \frac{1}{2\xi^2} \|\tilde{\boldsymbol{\theta}}\|^2 + \frac{\xi^2}{2} \|\boldsymbol{\theta}\|^2$$
(3.51)

é obtida. Substituindo (3.51) em (3.50), resulta em

$$\dot{V} \leq -\mu_{FHK} \|\tilde{\mathbf{v}}\|^2 - \mu_{\Gamma} \|\tilde{\boldsymbol{\theta}}\|^2 + \mu_{\Gamma} \left(\frac{1}{2\xi^2} \|\tilde{\boldsymbol{\theta}}\|^2 + \frac{\xi^2}{2} \|\boldsymbol{\theta}\|^2 \right),$$

ou, de forma equivalente,

$$\dot{V} \leq -\mu_{FHK} \|\tilde{\mathbf{v}}\|^2 - \mu_{\Gamma} \left(1 - \frac{1}{2\xi^2}\right) \|\tilde{\boldsymbol{\theta}}\|^2 + \mu_{\Gamma} \frac{\xi^2}{2} \|\boldsymbol{\theta}\|^2.$$
(3.52)

Em seguida, os parâmetros $\alpha_1 = \mu_{FHK} > 0 \ e \ \alpha_2 = \mu_{\Gamma} \left(1 - \frac{1}{2\xi^2}\right) > 0$ são definidos, com ξ convenientemente selecionado. Logo, (3.52) pode ser reescrita como

$$\dot{V} \le -\alpha_1 \|\tilde{\mathbf{v}}\|^2 - \alpha_2 \|\tilde{\boldsymbol{\theta}}\|^2 + \rho, \qquad (3.53)$$

onde

$$\rho = \mu_{\Gamma} \frac{\xi^2}{2} \|\boldsymbol{\theta}\|^2$$

Agora, a função candidata de Lyapunov $V = \frac{1}{2} \tilde{\mathbf{v}}^{\mathrm{T}} \mathbf{H} \tilde{\mathbf{v}} + \frac{1}{2} \tilde{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{\gamma}^{-1} \tilde{\boldsymbol{\theta}}$ pode ser escrita como

$$V \le \beta_1 \|\tilde{\mathbf{v}}\|^2 + \beta_2 \|\tilde{\boldsymbol{\theta}}\|^2, \qquad (3.54)$$

onde $\beta_1 = \frac{1}{2} \vartheta_H$, $\beta_2 = \frac{1}{2} \vartheta_{\gamma}$, $\vartheta_H = \kappa_{max}(\mathbf{H})$, $\vartheta_{\gamma} = \kappa_{max}(\boldsymbol{\gamma})$, com $\kappa_{max}(\mathbf{Z}) = \sqrt{\lambda_{max}(\mathbf{Z}^T \mathbf{Z})}$ denotando o maior valor singular de \mathbf{Z} . Então,

$$\dot{V} \le -\Lambda V + \rho, \tag{3.55}$$

com $\Lambda = \min\left\{\frac{\alpha_1}{\beta_1}, \frac{\alpha_2}{\beta_2}\right\}$. Já que ρ é limitado, (3.55) implica que $\tilde{\mathbf{v}}$ e $\tilde{\boldsymbol{\theta}}$ são finalmente limitados. Portanto, considerando-se valores pequenos do erro de controle $\tilde{\mathbf{h}}$ e uma cota R em uma norma do sinal $\tilde{\mathbf{v}}$, recordando (3.39) pode-se concluir que o erro de seguimento $\tilde{\mathbf{h}}$ também será finalmente limitado por $\frac{R\|\mathbf{A}\|}{\min(k_x,k_y)}$ numa norma do erro de controle.

Por outro lado, se os valores do erro de controle $\tilde{\mathbf{h}}$ são muito grandes, o termo $\mathbf{L}(\tilde{\mathbf{h}})$ satura. Nesse caso, como já mostrado na subseção 3.3.1.1, uma condição suficiente para estabilidade assintótica é

$$|\min(l_x, l_y)| > \|\mathbf{A}\tilde{\mathbf{v}}\|. \tag{3.56}$$

Para o caso em que se utiliza a lei de adaptação de parâmetros dada por (3.47), foi provado que $\tilde{\mathbf{v}} \to \mathbf{0}$, o que implica que as condições (3.39) e (3.56) são assintoticamente verificadas para qualquer valor de $\tilde{\mathbf{h}}$. Consequentemente, o erro de controle $\tilde{\mathbf{h}}(t) \to \mathbf{0}$, o que está de acordo com o objetivo de controle.

Por outro lado, considerando a lei de adaptação mais robusta, que inclui o termo de modificação- σ , representada pela equação (3.49), foi provado que $\tilde{\mathbf{v}}$ é finalmente limitado, o que significa que existe um limite R numa norma do sinal. Logo, para valores pequenos do erro de controle $\tilde{\mathbf{h}}$, a partir de (3.39) conclui-se que o erro de seguimento $\tilde{\mathbf{h}}$ também será finalmente limitado por $R \|\mathbf{A}\| / \min(k_x, k_y)$ numa norma do erro de controle. Já para valores grandes do erro de controle $\tilde{\mathbf{h}}$, a estabilidade está garantida com erros de controle finalmente limitados se for cumprida a condição dada por (3.56). Assim, as constantes l_x e l_y podem ser escolhidas de maneira que $|\min(l_x, l_y)| > R \|\mathbf{A}\|$, o que garante a estabilidade do equilíbrio com erros finalmente limitados para qualquer valor de $\tilde{\mathbf{h}}$.

3.3.2.2 Resultados de Simulação

Para ilustrar o funcionamento do segundo controlador dinâmico proposto, representado pela equação (3.42), foram realizadas simulações equivalentes àquelas apresentadas

Figura 29: Segundo controlador dinâmico: trajetória circular. (a) Parte da trajetória percorrida pelo robô; (b) Erro de distância durante a simulação com carga e sem adaptação de parâmetros.

na seção 3.3.1.2, ou seja, foi considerado o modelo completo do robô representado pela equação (2.12) com os parâmetros identificados do robô Pioneer 3-DX apresentados na Seção 2.4. Para que pudesse ser feita uma comparação entre resultados, foram usados os mesmos valores de ganhos utilizados nas simulações da seção 3.3.1.2, quais sejam, $k_x = 0, 2, k_y = 0, 2, k_u = 4 \text{ e } k_{\omega} = 4.$

Na primeira simulação, o controlador foi utilizado para fazer o robô seguir uma trajetória circular cujo raio varia bruscamente entre $0, 8 \ m \in 0, 7 \ m$ a cada $60 \ s$, a partir de $t = 50 \ s$. Os parâmetros θ utilizados no controlador dinâmico possuem valores 25% maiores em relação aos parâmetros utilizados no modelo do robô. Esta condição corresponde ao caso em que o robô estaria carregado, com maior massa, momento de inércia e atrito. Neste primeiro caso, a adaptação de parâmetros foi mantida desativada.

A Figura 29(a) mostra parte da trajetória percorrida pelo robô, enquanto a Figura 29(b) ilustra a evolução do erro de distância durante a simulação considerada. O grande valor inicial do erro se deve ao fato de que a posição inicial do robô é (0, 2; -0, 8) m, enquanto a trajetória de referência se inicia em (0, 8; 0, 0) m. Nota-se que a cada 60 s há um acréscimo instantâneo no valor do erro, que ocorre devido à mudança no raio da trajetória de referência. A figura 29(b) também mostra que o erro não tende a zero em regime permanente, o que ocorre devido ao erro paramétrico existente, mas permanece limitado.

Figura 30: Segundo controlador dinâmico: trajetória circular. (a) Velocidades linear e angular enviadas e desenvolvidas pelo robô; (b) erros de velocidade durante a simulação com carga e sem adaptação de parâmetros.

A Figura 30(a) apresenta os valores de velocidade linear e angular enviadas pelo controlador cinemático e desenvolvidas pelo robô durante o seguimento da trajetória circular em questão, enquanto a Figura 30(b) mostra a diferença entre esses valores. Pode-se notar que o erro de velocidade apresenta um valor de regime diferente de zero, o que é causado pela diferença entre os parâmetros dinâmicos do modelo do robô e aqueles considerados no controlador. Com essa diferença, a compensação da dinâmica do robô não é feita corretamente pelo controlador dinâmico. No entanto, quando se faz uma comparação entre as figuras 17(b) e 30(b), nota-se que o erro de velocidade obtido na simulação em que se usou o segundo controlador dinâmico é menor do que aquele obtido quando se usou o primeiro controlador dinâmico. Essa diferença pode ser entendida pela análise das equações dos controladores, que são repetidas aqui por conveniênica. O primeiro controlador dinâmico é representado pela equação

$$\mathbf{v_r} = \begin{bmatrix} \dot{u}_{ref}^c + k_u \tilde{u} & 0 & -\omega^2 & u & 0 & 0\\ 0 & \dot{\omega}_{ref}^c + k_\omega \tilde{\omega} & 0 & 0 & u\omega & \omega \end{bmatrix} \hat{\boldsymbol{\theta}},$$

e o segundo controlador dinâmico é dado por

$$\mathbf{v_r} = \begin{bmatrix} \dot{u}_{ref}^c + l_u \tanh(\frac{k_u}{l_u}\tilde{u}) & 0 & -\omega_d\omega & u_d & 0 & 0\\ 0 & \dot{\omega}_{ref}^c + l_\omega \tanh(\frac{k_\omega}{l_\omega}\tilde{\omega}) & (u_d\omega - u\omega_d) & 0 & u\omega_d & \omega_d \end{bmatrix} \hat{\boldsymbol{\theta}}.$$

Nota-se que o segundo controlador apresenta termos de saturação do sinal de erro que

não existem no primeiro controlador. Além disso, o segundo controlador utiliza sinais de velocidade e aceleração desejados (gerados pelo controlador cinemático) no cálculo de $\mathbf{v_r}$, enquanto o primeiro controlador utiliza os valores reais de velocidades desenvolvidas pelo robô. De acordo com as figuras 30(a) e 17(a), durante o seguimento da trajetória circular, as velocidades linear e angular desenvolvidas pelo robô são um pouco menores do que os valores de referência gerados pelo controlador cinemático. Como o segundo controlador usa os valores desejados de velocidade (que são maiores em módulo) na geração dos sinais de controle, estes apresentam valores mais elevados, o que proporciona menor erro de velocidade para este caso específico. No primeiro controlador, os sinais de controle são gerados a partir dos valores reais de velocidade, e a compensação não é tão eficiente para os casos simulados.

A diferença entre os controladores dinâmicos se reflete no erro de seguimento de trajetória. Comparando-se as figuras 16(b) e 29(b), referentes à simulação da trajetória circular quando o robô está carregado e não há adaptação de parâmetros, percebe-se que, em regime permanente, o erro de seguimento foi cerca de 0, 125m quando se usou o primeiro controlador dinâmico, e de 0, 08m quando se usou o segundo controlador. Ou seja, a diferença entre os valores de erro de regime ficou em torno de 60%. Como será visto a seguir, o erro de seguimento apresentado por ambos os controladores é equivalente quando a adaptação de parâmetros está ativada.

A mesma simulação foi repetida, mas com a adaptação de parâmetros ativada. Foi considerada a lei de adaptação de parâmetros dada por (3.49), que inclui a modificação- σ . A Figura 31(a) mostra parte da trajetória percorrida pelo robô, enquanto a Figura 31(b) ilustra a evolução do erro de distância durante a simulação considerada. O grande valor inicial do erro se deve ao fato de que a posição inicial do robô é (0, 2; -0, 8) m, enquanto a trajetória de referência se inicia em (0, 8; 0, 0) m. Nota-se que o erro de distância diminui ao longo do tempo, na medida em que a adaptação de parâmetros é realizada. A cada 60 s há um acréscimo instantâneo no valor do erro, que ocorre devido à mudança no raio da trajetória de referência.

A Figura 32(a) apresenta os valores de velocidade linear e angular enviadas pelo controlador cinemático e desenvolvidas pelo robô durante o seguimento da trajetória circular em questão, enquanto a Figura 32(b) mostra a diferença entre esses valores. Pode-se perceber que o erro de velocidade apresenta um valor diferente de zero no início da simulação, o que é causado pela diferença entre os parâmetros dinâmicos do modelo do robô e aqueles considerados no controlador, mas esta diferença diminui ao longo do tempo. Ou

Figura 31: Segundo controlador dinâmico: trajetória circular. (a) Parte da trajetória percorrida pelo robô; (b) Erro de distância durante a simulação com carga e com adaptação de parâmetros.

Figura 32: Segundo controlador dinâmico: trajetória circular. (a) Velocidades linear e angular enviadas e desenvolvidas pelo robô; (b) erros de velocidade durante a simulação com carga e com adaptação de parâmetros.

seja, na medida em que os parâmetros $\boldsymbol{\theta}$ do controlador são ajustados com base na lei de adaptação, o erro de compensação dinâmica diminui, o que provoca redução no erro de velocidade e, consequentemente, redução no erro de seguimento.

Ao se comparar as figuras 18(b) e 19(b) com as figuras 31(b) e 32(b), nota-se que os valores de erro de seguimento e de velocidade em regime permanente são muito similares

Figura 33: Evolução dos parâmetros estimados durante simulação de seguimento da trajetória circular - segundo controlador dinâmico.

quando a adaptação de parâmetros está ativada, considerando ambos os controladores propostos. A evolução dos parâmetros estimados durante esta simulação é mostrada na Figura 33.

Uma terceira simulação ilustra o desempenho do controlador no caso em que os parâmetros usados no controlador são os parâmetros reais do robô, ou seja, considerando o robô sem carga. Simulou-se o caso em que o robô deve seguir a trajetória em forma de oito anteriormente apresentada, mantendo inalteradas as características como a trajetória de referência, sua velocidade, os parâmetros do robô, etc. Na presente simulação, a adaptação de parâmetros do controlador dinâmico é feita com base na lei de ajuste (3.49), que inclui o termo de modificação- σ . No início da simulação a adaptação está desativada, assim permanecendo até t = 50s. A partir desse instante, a adaptação de parâmetros é ativada, assim permanecendo até o término da simulação.

As figuras 34(a) e 34(b) ilustram, respectivamente, a trajetória percorrida pelo robô antes e depois da adaptação de parâmetros, e a evolução do erro de distância durante a execução da tarefa. Pode-se notar que, após atingir a trajetória, o controlador é capaz de fazer o robô segui-la com erro muito próximo a zero, mesmo antes de a adaptação de parâmetros ser ativada. Após a adaptação de parâmetros (em t = 50s) o erro se mantém praticamente no mesmo valor e a trajetória percorrida pelo robô também não é visivelmente alterada. Comparando-se estes resultados com aqueles apresentados pelas figuras 21(a) e 21(b), nota-se que o desempenho de ambos os controladores dinâmicos propostos

Figura 34: Segundo controlador dinâmico: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô antes e depois de iniciada a adaptação de parâmetros; (b) erro de distância durante a simulação sem carga.

é equivalente para este caso, em que se considera os valores exatos dos parâmetros $\boldsymbol{\theta}$ nas equações dos controladores.

As velocidades linear e angular desenvolvidas pelo robô durante o seguimento da trajetória em forma de oito são apresentadas na Figura 35(a), assim como seus sinais de referência enviados pelo controlador cinemático. Os erros de velocidade são apresentados na Figura 35(b). Nota-se que os valores de erro de velocidade são muito próximos de zero já que, nesse caso, considerou-se que a dinâmica do robô é exatamente compensada. Este resultado também é equivalente àquele ilustrado pelas figuras 22(a) e 22(b), obtido com o uso do primeiro controlador dinâmico.

A evolução dos parâmetros estimados durante esta simulação é mostrada na Figura 36. Nota-se que os valores dos parâmetros apresentam variação muito pequena, o que era esperado, já que os parâmetros estimados iniciam com os valores iguais aos do modelo. A convergência dos parâmetros é ilustrada na Figura 37, obtida com a repetição da simulação anterior, mantendo-se as mesmas condições, por um período muito mais longo. Pode-se notar que não há divergência paramétrica.

Ao se comparar os resultados mostrados pelas figuras 34(b) e 35(b), em que o segundo controlador dinâmico está presente, com aqueles das figuras 8(b) e 9(b), em que apenas o controlador cinemático estava presente, percebe-se que a inserção do controlador dinâmico produz uma melhora substancial no desempenho do sistema. Ou seja, a inserção do

Figura 35: Segundo controlador dinâmico: trajetória em forma de oito. (a) Velocidades linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante a simulação sem carga.

Figura 36: Evolução dos parâmetros estimados durante simulação de seguimento da trajetória em forma de oito sem carga - segundo controlador dinâmico.

controlador dinâmico produziu importante redução no valor do erro de velocidade e, por conseguinte, diminuição no valor do erro de seguimento, mesmo no caso do robô não estar carregado. Este resultado é equivalente ao que foi obtido com o uso do primeiro controlador dinâmico.

Para ilustrar a utilidade da adaptação de parâmetros quando o robô tem sua dinâmica

Figura 37: Evolução dos parâmetros estimados durante simulação de longa duração para trajetória em forma de oito sem carga - segundo controlador dinâmico.

alterada, repetiu-se a simulação de seguimento da trajetória em forma de oito para o caso em que os parâmetros do robô são 25% maiores que os valores carregados no controlador dinâmico. A adaptação de parâmetros do controlador dinâmico também é feita com base na lei de ajuste (3.49), que inclui o termo de modificação- σ . No início da simulação a adaptação está desativada, assim permanecendo até t = 50s. A partir desse instante, a adaptação de parâmetros é ativada, e assim permanece até o término da simulação.

As figuras 38(a) e 38(b) ilustram, respectivamente, a trajetória percorrida pelo robô antes e depois da adaptação de parâmetros, e a evolução do erro de distância durante a execução da tarefa. Pode-se notar que o controlador é capaz de fazer o robô seguir a trajetória de referência com erro grande antes da adaptação de parâmetros ser ativada. Após sua ativação, em t = 50s, o erro começa a ser reduzido, e se mantém próximo a zero após t = 200s.

As velocidades linear e angular desenvolvidas pelo robô durante o seguimento da trajetória em forma de oito são apresentadas na Figura 39(a), assim como seus sinais de referência enviados pelo controlador cinemático. Os erros de velocidade são apresentados na Figura 39(b). Nota-se que os valores de erro de velocidade são grandes antes de t = 50s, já que a dinâmica do robô não está sendo compensada corretamente. Após o início da adaptação de parâmetros, o erro de velocidade é reduzido gradualmente, apresentando tendência a se manter próximo a zero.

Figura 38: Segundo controlador dinâmico: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô antes e depois de iniciada a adaptação de parâmetros; (b) erro de distância durante a simulação com carga.

Figura 39: Segundo controlador dinâmico: trajetória em forma de oito. (a) Velocidades linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante a simulação com carga.

A evolução dos parâmetros estimados durante esta simulação é mostrada na Figura 40. Nota-se que os valores dos parâmetros apresentam importante variação após a ativação da adaptação, em t = 50s. A figura 41 mostra a convergência de todos os parâmetros, obtida com a repetição da simulação anterior por um período muito mais longo, sem alteração de nenhuma outra condição.

Figura 40: Evolução dos parâmetros estimados durante simulação de seguimento da trajetória em forma de oito com carga - segundo controlador dinâmico.

Figura 41: Evolução dos parâmetros estimados durante simulação de longa duração para trajetória em forma de oito com carga - segundo controlador dinâmico.

Ao se comparar os resultados das simulações em que o robô está carregado, mostrados pelas figuras 38(b) e 39(b), tendo o segundo controlador dinâmico presente e adaptação de parâmetros ativada, com aqueles das figuras 12(b) e 13(b), em que apenas o controlador cinemático estava presente, percebe-se que a inserção do controlador dinâmico produz uma melhora muito significativa no desempenho do sistema após o início da adaptação

Figura 42: Robô Pioneer 3-DX com sensor de varredura *laser* e sistema de visão omnidirecional.

de parâmetros. Após t = 50s, quando a adaptação é iniciada, o valor do erro de velocidade é reduzido e, consequentemente, ocorre importante diminuição no valor do erro de seguimento. Embora os valores iniciais de erro de seguimento e de velocidade tenham sido menores com o uso do segundo controlador dinâmico, após a adaptação de parâmetros estes são equivalentes aos que foram obtidos quando se utilizou o primeiro controlador dinâmico proposto, cujos resultados são apresentados nas figuras 25(b) e 26(b).

3.4 Resultados Experimentais

Para comprovar o funcionamento dos controladores projetados, foram realizados experimentos com um robô Pioneer 3-DX, que é um robô móvel uniciclo fabricado pela empresa Mobile Robots, o qual é mostrado na Figura 42. Tal robô possui um sensor de varredura *laser* e um sistema de visão omnidirecional montados em sua base superior. A identificação dos parâmetros dinâmicos de tal robô gerou os valores dos parâmetros apresentados na seção 2.4.

Foram realizados experimentos usando os controladores cinemático e dinâmicos apresentados nas seções anteriores, sempre aplicados ao mesmo robô, de forma que este seguisse a mesma trajetória em forma de oito que foi simulada nas seções anteriores. Os resultados obtidos são discutidos nas subseções seguintes.

Figura 43: Controlador cinemático: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô; (b) erro de distância durante experimento.

3.4.1 Controlador Cinemático

Neste experimento, o controlador cinemático representado pela equação (3.5) foi programado no robô Pioneer 3-DX. As figuras 43(a) e 43(b) ilustram, respectivamente, a trajetória percorrida pelo robô e a evolução do erro de distância durante a execução da tarefa. Como se pode verificar, o controlador é capaz de fazer o robô seguir a trajetória em forma de oito, mas o erro de seguimento apresenta um valor significativo, apesar do robô estar descarregado.

As velocidades linear e angular desenvolvidas pelo robô durante o seguimento da trajetória em forma de oito são apresentadas na Figura 44(a), assim como seus sinais de referência enviados pelo controlador cinemático. Os erros de velocidade são apresentados na Figura 44(b). O de erro de velocidade apresentado faz com que o robô não consiga seguir exatamente a trajetória de referência.

O experimento realizado mostra que o controlador cinemático projetado tem um comportamento real muito similar àquele previsto nas simulações apresentadas na seção 3.2. Deve-se notar que o desempenho do sistema pode ser melhorado com aumento dos ganhos do controlador. No entanto, um aumento grande pode fazer com que o sistema fique oscilatório e apresente problemas de estabilidade. Por isso, a utilização de um controlador que realize a compensação da dinâmica do robô móvel é interessante.

Figura 44: Controlador cinemático: trajetória em forma de oito. (a) Velocidades linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante experimento sem carga.

3.4.2 Primeiro Controlador Dinâmico

O mesmo robô foi programado com o primeiro controlador dinâmico, representado pela equação (3.10), adicionado ao controlador cinemático experimentado na seção 3.4.1. Os valores de ganhos usados no controlador cinemático no experimento anterior foram mantidos. Foi utilizada a adaptação dos parâmetros que inclui o termo de modificação- σ , dada por (3.22), que é ativada a partir de t = 50s.

Para ilustrar o funcionamento do controlador numa aplicação de transporte de cargas, tipicamente realizada por robôs móveis na indústria, foram realizados dois experimentos. Em ambos o robô deve seguir a mesma trajetória em forma de oito, mas em um deles o robô está descarregado e, no outro, carrega uma carga de cerca de 23kg. Esta equivale a pouco mais de 100% da massa total do robô quando descarregado.

As figuras 45(a) e 45(b) ilustram, respectivamente, a trajetória percorrida pelo robô antes e depois da adaptação de parâmetros, e a evolução do erro de distância durante o seguimento da trajetória quando o robô estava descarregado. Pode-se notar que, mesmo com o robô descarregado, existe um erro de seguimento significativo antes da adaptação de parâmetros ser acionada. Após a adaptação de parâmetros (em t = 50s) o erro decresce e a trajetória seguida se aproxima bastante da trajetória de referência.

As velocidades linear e angular desenvolvidas pelo robô durante o seguimento da

Figura 45: Primeiro controlador dinâmico: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô antes e depois de iniciada a adaptação de parâmetros; (b) erro de distância durante o experimento sem carga.

Figura 46: Primeiro controlador dinâmico: trajetória em forma de oito. (a) Velocidades linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante experimento sem carga.

trajetória em forma de oito são apresentadas na Figura 46(a), assim como seus sinais de referência enviados pelo controlador cinemático. Os erros de velocidade são apresentados na Figura 46(b). Nota-se que os valores de erro de velocidade diminuem bastante após o início da adaptação de parâmetros.

A evolução dos parâmetros estimados durante este experimento é mostrada na Fi-

Figura 47: Evolução dos parâmetros estimados durante experimento de seguimento da trajetória em forma de oito sem carga - primeiro controlador dinâmico.

gura 47. Nota-se que existe certa variação no valor dos parâmetros, e que esta é responsável pela melhora na compensação da dinâmica do robô. Ou seja, a inserção do controlador dinâmico produziu redução no valor do erro de velocidade e, por conseguinte, diminuição no valor do erro de seguimento, mesmo no caso do robô não estar carregado.

Apesar de serem usados os parâmetros identificados do robô, estes podem não ser exatos. Por isso, mesmo quando se utiliza no controlador os valores identificados dos parâmetros, pode existir erro na compensação dinâmica, coforme pode-se notar nos resultados apresentados.

Para ilustrar a utilidade da adaptação de parâmetros quando o robô tem sua dinâmica alterada, repetiu-se o experimento para o caso em que o robô está carregando uma massa de 23kg. A adaptação de parâmetros do controlador dinâmico é feita com base na lei de ajuste (3.22), que possui o termo de modificação- σ . No início do experimento a adaptação está desativada, assim permanecendo até t = 50s, quando é ativada.

As figuras 48(a) e 48(b) ilustram, respectivamente, a trajetória percorrida pelo robô antes e depois da adaptação de parâmetros, e a evolução do erro de distância durante a execução da tarefa. Pode-se notar que o erro de seguimento, nesse caso, é maior que aquele obtido no experimento em que o robô estava descarregado. As figuras mostram, ainda, que o controlador é capaz de fazer o robô seguir a trajetória de referência com erro grande antes da adaptação de parâmetros ser ativada mas, após sua ativação, o erro é

Figura 48: Primeiro controlador dinâmico: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô antes e depois de iniciada a adaptação de parâmetros; (b) erro de distância durante experimento com carga.

reduzido e o desempenho do sistema melhora de forma bastante significativa.

As velocidades linear e angular desenvolvidas pelo robô durante o seguimento da trajetória em forma de oito são apresentadas na Figura 49(a), assim como seus sinais de referência enviados pelo controlador cinemático. Os erros de velocidade são apresentados na Figura 49(b). Nota-se que os valores de erro de velocidade são grandes antes de t = 50s, já que a dinâmica do robô não está sendo compensada corretamente. Após o início da adaptação de parâmetros, o erro de velocidade é reduzido gradualmente, melhorando a compensação da dinâmica e provocando redução no erro de seguimento.

A evolução dos parâmetros estimados durante o experimento descrito é mostrada na Figura 50. Nota-se que os valores dos parâmetros apresentam importante variação após a ativação da adaptação, em t = 50s.

3.4.3 Segundo Controlador Dinâmico

Foram realizados dois experimentos usando o segundo controlador dinâmico proposto, representado pela equação (3.42). Em ambos o robô estava descarregado.

No primeiro experimento considerou-se o caso em que os parâmetros dinâmicos do robô foram corretamente identificados, e foram utilizados no controlador dinâmico. Nesse caso, a adaptação de parâmetros estava desativada. O robô deveria seguir a trajetória

Figura 49: Primeiro controlador dinâmico: trajetória em forma de oito. (a) Velocidades linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante experimento com carga.

Figura 50: Evolução dos parâmetros estimados durante experimento de seguimento da trajetória em forma de oito com carga - primeiro controlador dinâmico.

em forma de oito que foi utilizada nos experimentos anteriores. As figuras 51(a) e 51(b) ilustram, respectivamente, a trajetória percorrida e a evolução do erro de distância durante a execução da tarefa. Pode-se notar que o controlador é capaz de fazer o robô seguir a trajtória com erro próximo a zero, já que os parâmetros identificados são usados no controlador.

Figura 51: Segundo controlador dinâmico: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô; (b) erro de distância durante experimento com parâmetros identificados.

Figura 52: Segundo controlador dinâmico: trajetória em forma de oito. (a) Velocidades linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante experimento com parâmetros identificados.

As velocidades linear e angular desenvolvidas pelo robô durante o seguimento da trajetória em forma de oito são apresentadas na Figura 52(a), assim como seus sinais de referência enviados pelo controlador cinemático. Os erros de velocidade são apresentados na Figura 52(b). Nota-se que os valores de erro de velocidade são próximos a zero, já que, nesse caso, os parâmetros identificados do robô foram usados no controlador.

Figura 53: Segundo controlador dinâmico: trajetória em forma de oito. (a) Parte da trajetória percorrida pelo robô; (b) erro de distância durante experimento com parâmetros incorretos.

Para ilustrar a utilidade da adaptação de parâmetros quando os parâmetros usados não são aqueles identificados, ou quando os parâmetros sofrem alteração, foi realizado outro experimento de seguimento da trajetória em forma de oito. Nesse caso, foram carregados parâmetros incorretos no controlador dinâmico e a adaptação de parâmetros foi ativada a partir de t = 30s. A adaptação de parâmetros do controlador dinâmico é feita com base na lei de ajuste (3.49), que possui o termo de modificação- σ .

As figuras 53(a) e 53(b) ilustram, respectivamente, a trajetória percorrida pelo robô antes e depois da adaptação de parâmetros, e a evolução do erro de distância durante a execução da tarefa. Pode-se notar que o controlador é capaz de fazer o robô seguir a trajetória de referência com erro grande antes da adaptação de parâmetros ser ativada. Após sua ativação, em t = 30s, o erro é reduzido.

As velocidades linear e angular desenvolvidas pelo robô durante o seguimento da trajetória em forma de oito são apresentadas na Figura 54(a), assim como seus sinais de referência enviados pelo controlador cinemático. Os erros de velocidade são apresentados na Figura 54(b). Nota-se que os valores de erro de velocidade diminuem após o início da adaptação de parâmetros. No entanto, o desempenho do controlador foi prejudicado pelo nível de ruído observado nos sinais de medição de posição e velocidade.

A evolução dos parâmetros estimados durante o experimento descrito é mostrada na Figura 55. Nota-se que os valores dos parâmetros apresentam variação após a ativação

Figura 54: Segundo controlador dinâmico: trajetória em forma de oito. (a) Velocidades linear e angular de referência e desenvolvidas pelo robô; (b) Erros de velocidade durante experimento com parâmetros incorretos.

Figura 55: Evolução dos parâmetros estimados durante experimento de seguimento da trajetória em forma de oito com parâmetros iniciais incorretos - segundo controlador dinâmico.

da adaptação, em t = 30s, o que provoca gradual diminuição no erro de seguimento de velocidade.

3.5 Considerações sobre a Robustez

No projeto do segundo controlador dinâmico realizado com base na equação (2.12), desprezou-se o vetor de incertezas e perturbações durante a análise de estabilidade do sistema resultante. A partir de agora, considerar-se-á a existência de perturbações Δ no modelo e, dessa forma, a equação (2.12) será reescrita como

$$\Delta + \mathbf{H}\dot{\mathbf{v}} + \mathbf{C}(\mathbf{v})\mathbf{v} + \mathbf{F}(\mathbf{v})\mathbf{v} = \mathbf{v}_{\mathbf{r}}.$$
(3.57)

Considerando-se a lei de controle

$$\mathbf{v}_{\mathbf{r}} = \mathbf{H}(\dot{\mathbf{v}}_{\mathbf{d}} + \mathbf{T}(\tilde{\mathbf{v}})) + \mathbf{C}\mathbf{v}_{\mathbf{d}} + \mathbf{F}\mathbf{v}_{\mathbf{d}}, \qquad (3.58)$$

a equação de malha fechada do sistema é

$$\dot{\mathbf{H}}\mathbf{\tilde{v}} = -\mathbf{H}\mathbf{T}(\mathbf{\tilde{v}}) - \mathbf{C}\mathbf{\tilde{v}} - \mathbf{F}\mathbf{\tilde{v}} + \mathbf{\Delta}.$$
(3.59)

Para a análise de estabilidade, considera-se a função candidata de Lyapunov definida positiva $V = \frac{1}{2} \tilde{\mathbf{v}}^{\mathbf{T}} \mathbf{H} \tilde{\mathbf{v}}$. Sua primeira derivada temporal é $\dot{V} = \tilde{\mathbf{v}}^{\mathbf{T}} \mathbf{H} \dot{\tilde{\mathbf{v}}}$. Usando a equação (3.59), a primeira derivada pode ser escrita como

$$\dot{V} = -\tilde{\mathbf{v}}^{\mathbf{T}}\mathbf{H}\mathbf{T}(\tilde{\mathbf{v}}) - \tilde{\mathbf{v}}^{\mathbf{T}}\mathbf{C}\dot{\mathbf{v}} - \tilde{\mathbf{v}}^{\mathbf{T}}\mathbf{F}\dot{\mathbf{v}} + \tilde{\mathbf{v}}^{\mathbf{T}}\boldsymbol{\Delta}$$

Considerando a propriedade 5 do modelo, de antissimetria da matriz \mathbf{C} , pode-se escrever que

$$\dot{V} = -\tilde{\mathbf{v}}^{\mathbf{T}}\mathbf{H}\mathbf{T}(\tilde{\mathbf{v}}) - \tilde{\mathbf{v}}^{\mathbf{T}}\mathbf{F}\dot{\mathbf{v}} + \tilde{\mathbf{v}}^{\mathbf{T}}\mathbf{\Delta}.$$

Sabendo que \mathbf{H} é uma matriz simétrica e definida positiva (propriedade 1) e considerando que a matriz \mathbf{F} é simétrica e definida positiva (ou seja, assumindo $\theta_6 > -(\theta_5 - I\theta_3)u$, o que valida a propriedade 3), pode-se concluir que $\dot{V} < 0$ sempre que $\mathbf{\tilde{v}^T}\mathbf{HT}(\mathbf{\tilde{v}}) + \mathbf{\tilde{v}^T}\mathbf{F}\mathbf{\dot{v}} > \mathbf{\tilde{v}^T}\boldsymbol{\Delta}$. Uma condição ainda mais restritiva, considerando pequenos valores de $\mathbf{\tilde{v}}$, seria exigir que $\|\mathbf{\tilde{v}}\|^2\lambda_{min}(\mathbf{HK_v}) + \|\mathbf{\tilde{v}}\|^2\lambda_{min}(\mathbf{F}) > \|\mathbf{\tilde{v}}\|\|\boldsymbol{\Delta}\|$, onde $\mathbf{K_v} = diag\{k_u, k_\omega\}$. Ou seja, considerando as perturbações $\boldsymbol{\Delta}$, a estabilidade assintótica estará garantida sempre que

$$\|\tilde{\mathbf{v}}\| > \frac{\|\mathbf{\Delta}\|}{\lambda_{min}(\mathbf{H}\mathbf{K}_{\mathbf{v}}) + \lambda_{min}(\mathbf{F})}.$$
(3.60)

Em outras palavras, conclui-se que $\tilde{\mathbf{v}}(t)$ descresce enquanto sua norma for maior que

um determinado valor que depende da amplitude das perturbações, o que leva os erros de controle a uma região limitada R_v . Se não há perturbações, $\Delta = 0$ e esta condição é sempre verdadeira, implicando em $\tilde{\mathbf{v}}(t) \rightarrow \mathbf{0}$ com $t \rightarrow \infty$, que é a mesma conclusão obtida anteriormente.

Foi provado que $\tilde{\mathbf{v}}$ é finalmente limitado a uma região R_v considerando-se perturbações Δ limitadas. Dessa forma, o erro de seguimento $\tilde{\mathbf{h}}(t)$, será finalmente limitado por

$$\frac{\|\mathbf{A}\|R_v}{\min(k_x,k_y)}.$$

Quando se considera, também, as incertezas paramétricas, a equação de malha fechada do sistema deve ser escrita como

$$\Delta - \mathbf{G}\tilde{\boldsymbol{\theta}} = \mathbf{H}(\mathbf{\dot{\tilde{v}}} + \mathbf{T}(\mathbf{\tilde{v}})) + \mathbf{C}\mathbf{\tilde{v}} + \mathbf{F}\mathbf{\tilde{v}}.$$
(3.61)

Considerando-se

$$V = \frac{1}{2} \tilde{\mathbf{v}}^{\mathrm{T}} \mathbf{H} \tilde{\mathbf{v}} + \frac{1}{2} \tilde{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{\gamma}^{-1} \tilde{\boldsymbol{\theta}} > 0$$

como função candidata de Lyapunov, e assumindo-se que não há variação nos parâmetros dinâmicos do robô, sua primeira derivada temporal é

$$\dot{V} = -\tilde{\mathbf{v}}^{\mathbf{T}} (\mathbf{G}\tilde{\boldsymbol{\theta}} + \mathbf{C}\tilde{\mathbf{v}} + \mathbf{F}\tilde{\mathbf{v}}) - \tilde{\mathbf{v}}^{\mathbf{T}}\mathbf{H}\mathbf{T}(\tilde{\mathbf{v}}) + \tilde{\boldsymbol{\theta}}^{\mathbf{T}}\boldsymbol{\gamma}^{-1}\dot{\tilde{\boldsymbol{\theta}}} + \tilde{\mathbf{v}}^{\mathbf{T}}\boldsymbol{\Delta}.$$
(3.62)

Será considerada a lei de adaptação robusta

$$\dot{\hat{\theta}} = \gamma \mathbf{G}^{\mathbf{T}} \tilde{\mathbf{v}} - \gamma \Gamma \hat{\boldsymbol{\theta}}$$
(3.63)

onde $\Gamma \in \mathbb{R}^{6\times 6}$ é uma matriz de ganhos diagonal definida positiva. Reescrevendo (3.63), tem-se $\dot{\hat{\theta}} = \gamma \mathbf{G}^{\mathbf{T}} \tilde{\mathbf{v}} - \gamma \Gamma \tilde{\theta} - \gamma \Gamma \theta$. A partir de agora, considerar-se-á que os parâmetros dinâmicos do sistema podem variar, ou seja, $\boldsymbol{\theta} = \boldsymbol{\theta}(t) \in \dot{\tilde{\boldsymbol{\theta}}} = \dot{\hat{\boldsymbol{\theta}}} - \dot{\boldsymbol{\theta}}$. Para este caso, (3.62) deve ser reescrita como

$$\dot{V} = -\tilde{\mathbf{v}}^{\mathbf{T}}(\mathbf{F}\tilde{\mathbf{v}} + \mathbf{H}\mathbf{T}(\tilde{\mathbf{v}})) - \tilde{\boldsymbol{\theta}}^{\mathbf{T}}\Gamma\tilde{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}^{\mathbf{T}}\Gamma\boldsymbol{\theta} + \tilde{\boldsymbol{\theta}}^{\mathbf{T}}\boldsymbol{\gamma}^{-1}\dot{\boldsymbol{\theta}} + \frac{1}{2}\tilde{\mathbf{v}}^{\mathbf{T}}\dot{\mathbf{H}}\tilde{\mathbf{v}} + \tilde{\mathbf{v}}^{\mathbf{T}}\boldsymbol{\Delta}.$$
 (3.64)

Em (NASISI; CARELLI, 2003) os autores analisam a estabilidade de um sistema de controle servo-visual adaptativo para robôs manipuladores. A análise realizada a seguir utiliza técnica similar à aplicada no trabalho mencionado, mas aqui considera-se o caso mais geral em que os parâmetros dinâmicos $\boldsymbol{\theta}$ podem variar durante a execução de uma

tarefa. Inicialmente considera-se que $\Delta = 0$.

Considerando valores pequenos de $\tilde{\mathbf{v}}$, tem-se que $\mathbf{T}(\tilde{\mathbf{v}}) \approx \mathbf{K}_{\mathbf{v}}\tilde{\mathbf{v}}$. São definidas as seguintes constantes: $\nu_{\Gamma} = \kappa_{max}(\Gamma)$, $\nu_{\gamma} = \kappa_{max}(\gamma^{-1})$, $\nu_{\dot{H}} = \kappa_{max}(\dot{\mathbf{H}})$, $\mu_{F} = \chi(\mathbf{F})$, $\mu_{\Gamma} = \chi(\Gamma)$, $\mu_{HK} = \chi(\mathbf{HK})$, $\mu_{FHK} = \mu_{F} + \mu_{HK} - \nu_{\dot{H}}$, onde $\chi(\mathbf{Z}) = \sqrt{\lambda_{min}(\mathbf{Z}^{T}\mathbf{Z})}$ é o valor singular mínimo de \mathbf{Z} , $\kappa_{max}(\mathbf{Z}) = \sqrt{\lambda_{max}(\mathbf{Z}^{T}\mathbf{Z})}$ denota o valor singular máximo de \mathbf{Z} , e $\lambda_{min}(\cdot)$ e $\lambda_{max}(\cdot)$ são funções para obtenção do menor e do maior autovalor de uma matriz, respectivamente.

Considera-se que a variação dos parâmetros dinâmicos é limitada, de tal forma que $\mu_F + \mu_{HK} > \nu_{\dot{H}}$, i.e., $\mu_{FHK} > 0$. Deve-se notar que quanto maiores são os valores dos ganhos $k_u \in k_{\omega}$, mais forte é a hipótese anterior. Logo, \dot{V} pode ser escrita como

$$\dot{V} \leq -\mu_{FHK} \|\mathbf{\tilde{v}}\|^2 - \mu_{\Gamma} \|\mathbf{\tilde{\theta}}\|^2 + \nu_{\Gamma} \|\mathbf{\tilde{\theta}}\| \|\mathbf{\theta}\| + \nu_{\gamma} \|\mathbf{\tilde{\theta}}\| \|\mathbf{\dot{\theta}}\|, \qquad (3.65)$$

Considerando-se a diferença quadrada

$$\left(\frac{1}{\xi}\|\tilde{\boldsymbol{\theta}}\|-\xi\|\boldsymbol{\theta}\|\right)^2 = \frac{1}{\xi^2}\|\tilde{\boldsymbol{\theta}}\|^2 - 2\|\tilde{\boldsymbol{\theta}}\|\|\boldsymbol{\theta}\| + \xi^2\|\boldsymbol{\theta}\|^2,$$

pode-se concluir que

$$\|\tilde{\boldsymbol{\theta}}\|\|\boldsymbol{\theta}\| \leq \frac{1}{2\xi^2} \|\tilde{\boldsymbol{\theta}}\|^2 + \frac{\xi^2}{2} \|\boldsymbol{\theta}\|^2, \qquad (3.66)$$

sendo $\xi \in \mathbb{R}^+$. Aplicando um raciocínio equivalente é possível mostrar que

$$\|\tilde{\boldsymbol{\theta}}\|\|\dot{\boldsymbol{\theta}}\| \leq \frac{1}{2\eta^2} \|\tilde{\boldsymbol{\theta}}\|^2 + \frac{\eta^2}{2} \|\dot{\boldsymbol{\theta}}\|^2, \qquad (3.67)$$

onde $\eta \in \mathbb{R}^+$. Substituindo (3.66) e (3.67) em (3.65), resulta em

$$\begin{split} \dot{V} &\leq -\mu_{FHK} \|\tilde{\mathbf{v}}\|^2 - \mu_{\Gamma} \|\tilde{\boldsymbol{\theta}}\|^2 + \nu_{\Gamma} \left(\frac{1}{2\xi^2} \|\tilde{\boldsymbol{\theta}}\|^2 + \frac{\xi^2}{2} \|\boldsymbol{\theta}\|^2 \right) + \\ \nu_{\gamma} \left(\frac{1}{2\eta^2} \|\tilde{\boldsymbol{\theta}}\|^2 + \frac{\eta^2}{2} \|\dot{\boldsymbol{\theta}}\|^2 \right), \end{split}$$

ou, rearranjando os termos,

$$\dot{V} \le -\alpha_1 \|\tilde{\mathbf{v}}\|^2 - \alpha_2 \|\tilde{\boldsymbol{\theta}}\|^2 + \rho, \qquad (3.68)$$

onde $\alpha_1 = \mu_{FHK} > 0$, $\alpha_2 = \left(\mu_{\Gamma} - \frac{\nu_{\Gamma}}{2\xi^2} - \frac{\nu_{\gamma}}{2\eta^2}\right) > 0$, e $\rho = \nu_{\Gamma} \frac{\xi^2}{2} \|\boldsymbol{\theta}\|^2 + \nu_{\gamma} \frac{\eta^2}{2} \|\dot{\boldsymbol{\theta}}\|^2$, com $\xi \in \eta$ convenientemente selecionados. Agora, a partir da candidata de Lyapunov $V = \frac{1}{2} \tilde{\mathbf{v}}^{\mathrm{T}} \mathbf{H} \tilde{\mathbf{v}} + \frac{1}{2} \tilde{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{\gamma}^{-1} \tilde{\boldsymbol{\theta}}$ pode-se escever

$$V \le \beta_1 \|\tilde{\mathbf{v}}\|^2 + \beta_2 \|\tilde{\boldsymbol{\theta}}\|^2, \tag{3.69}$$

onde $\beta_1 = \frac{1}{2}\vartheta_H$, $\beta_2 = \frac{1}{2}\vartheta_\gamma$, $\vartheta_H = \kappa_{max}(\mathbf{H})$, $\vartheta_\gamma = \kappa_{max}(\boldsymbol{\gamma})$. Logo,

$$\dot{V} \le -\Lambda V + \rho, \tag{3.70}$$

 $\operatorname{com} \Lambda = \min \left\{ \frac{\alpha_1}{\beta_1}, \frac{\alpha_2}{\beta_2} \right\}$. Se não existe variação de parâmetros, ou quando a variação cessa, $\dot{\boldsymbol{\theta}} = \mathbf{0} \, \mathrm{e} \, \rho \, \mathrm{\acute{e}} \, \lim$ itado. Portanto, (3.70) implica que $\mathbf{\tilde{v}} \, \mathrm{e} \, \boldsymbol{\tilde{\theta}}$ são finalmente limitados. Por outro lado, se há variação nos valores dos parâmetros dinâmicos do robô, $\dot{\boldsymbol{\theta}} \neq \mathbf{0} \, \mathrm{e} \, \rho$ será limitado se $\dot{\boldsymbol{\theta}}$ for limitado. Nesse caso, a fronteira que limita os erros de controle cresce, mas estes continuam limitados. Em qualquer dos casos, um limite conservador para $\mathbf{\tilde{v}} \, \mathrm{\acute{e}}$ tal que $\|\mathbf{\tilde{v}}\|^2 \leq \frac{\rho}{\alpha_1}$.

Agora, considerando que $\Delta \neq 0$, a equação (3.68) deve ser reescrita como

$$\dot{V} \leq -\alpha_1 \|\tilde{\mathbf{v}}\|^2 - \alpha_2 \|\tilde{\boldsymbol{\theta}}\|^2 + \rho + \|\tilde{\mathbf{v}}\| \|\boldsymbol{\Delta}\|.$$
(3.71)

Uma condição suficiente para que $\dot{V} < 0$ é $\alpha_1 \|\mathbf{\tilde{v}}\|^2 + \alpha_2 \|\mathbf{\tilde{\theta}}\|^2 > \rho + \|\mathbf{\tilde{v}}\|\|\mathbf{\Delta}\|$. Uma condição ainda mais restritiva é $\alpha_1 \|\mathbf{\tilde{v}}\|^2 > \rho + \|\mathbf{\tilde{v}}\|\|\mathbf{\Delta}\|$. Considerando que $\|\mathbf{\tilde{v}}\| \neq 0$, tal condição pode ser expressa como

$$\|\mathbf{\Delta}\| < \alpha_1 \|\mathbf{\tilde{v}}\| - \frac{\rho}{\|\mathbf{\tilde{v}}\|}.$$

A condição anterior mostra que a estabilidade do equilíbrio está garantida se os distúrbios estão limitados, e que a intensidade máxima dos distúrbios que mantém a garantia de estabilidade depende do valor do erro de velocidade. Ou seja, a robustez aos distúrbios é reduzida na medida em que o erro de velocidade diminui. Isso significa que quando o erro de velocidade é muito pequeno, um distúrbio de pequena intensidade faz com que a condição não seja cumprida, elevando o valor do erro. Vale ressaltar que um aumento nos ganhos k_u e k_{ω} provoca aumento no valor da constante α_1 , aumentando a robustez aos distúrbios.

Recordando (3.32), e considerando um limite R numa norma do sinal $\tilde{\mathbf{v}}$, pode-se concluir que o erro de seguimento $\tilde{\mathbf{h}}$ será finalmente limitado por $\frac{R\|\mathbf{A}\|}{\min(k_x,k_y)}$ numa norma do erro de controle.

Nota 3.9. Através de análise muito similar à apresentada nesta seção, pode-se chegar

Figura 56: Erro de distância durante simulação com variação em degrau dos parâmetros dinâmicos.

à mesma conclusão quando se considera o uso do primeiro controlador dinâmico, ou seja, a estabilidade continua garantida sob variação limitada de parâmetros, com crescimento do limite de convergência dos erros de controle.

Duas simulações foram realizadas para ilustrar que a estabilidade do equilíbrio é mantida sob variação nos parâmetros dinâmicos. As simulações descritas a seguir foram realizadas com as mesmas condições daquelas descritas anteriormente, ou seja, foi considerado o modelo completo do robô representado pela equação (2.12) com os parâmetros identificados do robô Pioneer 3-DX apresentados na Seção 2.4. Foram usados os mesmos valores de ganhos utilizados nas simulações anteriores, utilizando o segundo controlador dinâmico com adaptação de parâmetros ativada, para que o robô seguisse uma trajetória em forma de oito.

Primero, simulou-se uma variação em degrau nos valores de todos os parâmetros dinâmicos. O período total de simulação foi de 800s, e em t = 400s todos os parâmetros θ_i , i = 1, 2, ..., 6, subitamente dobram de valor. A Figura 56 mostra o erro de distância durante esta simulação. Pode-se notar que existe um aumento do erro em t = 400s, quando ocorre o degrau de variação dos parâmetros, mas seu valor volta a decrescer e atinge o patamar estabelecido antes da ocorrência da variação, conforme esperado.

A Figura 57(a) ilustra os erros de velocidade para a simulação em questão. Nota-se que há um aumento em tais valores quando ocorre a variação dos parâmetros, fato que é evidenciado na Figura 57(b), mas os erros retornam ao patamar anterior na medida em que os parâmetros estimados são ajustados. A evolução dos parâmetros estimados durante esta simulação é apresentada na Figira 58. Pode-se notar que os valores estimados se modificam a partir de t = 400s, mas não necessariamente vão aos valores verdadeiros, conforme discutido anteriormente.

Figura 57: Erros de velocidade durante simulação com variação em degrau dos parâmetros. (a) Durante todo o período de simulação; (b) Detalhe do intervalo em que a variação de parâmetros ocorre.

Figura 58: Evolução dos parâmetros estimados durante simulação com variação em degrau dos parâmetros dinâmicos.

A segunda simulação considera uma variação senoidal em todos os parâmetros, com uma amplitude de 25% e período de 180s. A simulação é realizada por um período mais longo, de 8.000s, sendo que a variação nos valores dos parâmetros é iniciada na metade desse tempo. A Figura 59 ilustra a evolução do erro de distância, e as Figuras 60(a) e 60(b) apresentam os erros de velocidade para este caso. Pode-se notar que a partir do

Figura 59: Erro de distância durante simulação com variação senoidal dos parâmetros dinâmicos.

Figura 60: Erros de velocidade durante simulação com variação senoidal dos parâmetros.
(a) Durante todo o período de simulação; (b) Detalhe do intervalo em que a variação de parâmetros é iniciada.

início da variação dos parâmetros a faixa de variação dos erros cresce um pouco, como previsto na análise apresentada anteriormente. Como a variação dos parâmetros não cessa até o final da simulação, o intervalo de permanência dos valores de erro não mais diminui.

A evolução dos parâmetros estimados durante a segunda simulação é apresentada na Figura 61. Pode-se notar que os valores estimados se modificam a partir de t = 4.000s, e se mantêm variando até o final da simulação. Isso ocorre porque os valores dos parâmetros dinâmicos do robô também não param de variar.

As simulações apresentadas ilustram claramente que o equilíbrio do sistema continua estável sob variação paramétrica limitada em degrau e senoidal. É válido comentar que também foram realizadas algumas simulações com variações de maior amplitude nos

Figura 61: Evolução dos parâmetros estimados durante simulação de longa duração com variação senoidal dos parâmetros dinâmicos.

parâmetros, que resultaram em perda da condição de estabilidade.

3.6 Comparação de Desempenho

Para avaliar a importância da compensação dinâmica, foram realizadas simulações para comparar o desempenho do sistema com e sem a compensação dinâmica. O desempenho do sistema foi calculado com base no índice *IAE* (Integral do valor Absoluto do Erro), sendo

$$IAE = \int_0^T |E(t)| dt, \quad E(t) = \sqrt{\tilde{x}^2 + \tilde{y}^2},$$

onde E(t) denota o valor instantâneo do erro de seguimento e T representa o período de simulação do sistema. A equação anterior mostra que o índice IAE representa o acúmulo do valor absoluto do erro durante toda a simulação, crescendo de forma proporcional ao aumento do erro. Ou seja, quanto maior for o índice IAE, maior é o valor médio do erro durante toda a trajetória simulada.

Nas simulações foi considerado o modelo completo do robô móvel Pioneer-3DX, incluindo limites máximos de velocidade e aceleração, com adição de ruído branco aos sinais de posição e velocidade enviados aos controladores.

O índice IAE foi calculado para cada simulação de T = 250s em que o robô deveria

seguir uma trajetória de referência em forma de 8. Em cada uma das simulações, os ganhos do controlador cinemático $(k_x = k_y)$ foram fixados em um valor distinto variando entre 0,5 e 35,0 enquanto todos os ganhos do controlador dinâmico foram mantidos inalterados. O objetivo era verificar o valor do índice *IAE* antes e depois da ativação da compensação dinâmica para cada conjunto de valores de ganhos do controlador cinemático. Para isso, foram simuladas quatro situações, quais sejam:

- (a) Somente o controlador cinemático habilitado, isto é, o robô recebe como comandos os sinais de velocidade desejada v_d diretamente do controlador cinemático. Equivale ao esquema clássico em que o controlador não considera a dinâmica do veículo;
- (b) Com compensação dinâmica ativada considerando parâmetros estimados com um erro de 10%, sem adaptação de parâmetros;
- (c) Com compensação dinâmica ativada considerando parâmetros estimados iniciais com um erro de 10%, com adaptação de parâmetros ativada a partir de t = 0s; e
- (d) Com compensação dinâmica ativada considerando parâmetros estimados exatos (caso ideal), sem adaptação de parâmetros.

A Figura 62 mostra os valores do índice IAE obtidos para diversas simulações dos casos mencionados anteriormente. Pode-se observar que quando a compensação dinâmica está ativada (casos b-d), os valores dos índices IAE obtidos são menores, o que indica melhor desempenho. Como esperado, os menores erros foram obtidos durante as simulações do caso ideal (d).

É válido ressaltar que os valores resultantes do índice IAE para os casos (b) e (c) são menores do que aqueles obtidos para o caso (a), ainda que as condições de compensação dinâmica não sejam favoráveis devido ao erro nos valores dos parâmetros estimados. Outra observação importante é que a compensação dinâmica permitiu a obtenção de desempenho melhor do que o melhor desempenho obtido com uso apenas do controlador cinemático, considerando a faixa de variação de ganhos adotada nas simulações. O menor valor de IAE obtido com o controlador cinemático foi 1,2 para $k_x = k_y = 17$. Ganhos maiores provocaram pequeno aumento do índice devido ao aumento da oscilação do robô. Considerando os mesmos valores de $k_x = k_y$, a ativação da compensação dinâmica provocou redução do valor de IAE para cerca de 1,0, o que repesenta uma melhora de aproximadamente 20%. Para valores menores de ganhos do controlador cinemático a melhora no

Figura 62: IAE para simulações de 250s para os casos (a-d) (ver texto).

desempenho com a compensação dinâmica é muito mais expressiva. Por exemplo, pode-se observar na Figura 62 que para $k_x = k_y = 3$, o índice *IAE* obtido para o caso da compensação dinâmica ativada com adaptação de parâmetros (caso c) tem aproximadamente o mesmo valor do menor índice obtido com apenas o controlador cinemático, ou seja, IAE = 1,2. Sem a compensação dinâmica, o índice nesse caso seria maior que 2,0. Tal fato ilustra que a ativação da compensação dinâmica permitiu obtenção de desempenho equivalente ao do controlador cinemático, mas com ganhos menores.

A Figura 63 mostra os valores do índice IAE obtidos para alguns experimentos dos casos (a) e (c) mencionados anteriormente. Pode-se observar que para o caso em que $k_x = k_y = 2,0$, o índice IAE sofre uma redução de cerca de 30% após a ativação da compensação dinâmica. Assim como mostraram os resultados de simulação, durante os experimentos a compensação da dinâmica também provocou melhora no desempenho do sistema.

3.7 Considerações Finais do Capítulo

Este capítulo apresentou o desenvolvimento de um controlador cinemático de seguimento de trajetórias e de dois controladores dinâmicos adaptativos. Estes têm a função de compensar os efeitos da dinâmica do robô, fazendo com que o veículo desenvolva as velocidades de referência geradas pelo controlador cinemático com o menor erro possível. Os controladores dinâmicos foram desenvolvidos com base nos modelos dinâmicos apre-

Figura 63: IAE para experimentos de 75s para os casos (a) e (c) (ver texto).

sentados no capítulo 2, e geram sinais de velocidade linear e angular como comandos para o robô.

Foi apresentada análise de estabilidade do sistema considerando a utilização de cada controlador, e foi demonstrado que todos fazem com que o equilíbrio do sistema em malha fechada seja estável, de modo que os sinais de erro sejam limitados ou tendam a zero. A análise de robustez a distúrbios e à variação limitada de parâmetros dinâmicos durante a execução de uma tarefa demonstrou que a estabilidade do equilíbrio é garantida se os distúrbios e a variação dos parâmetros são limitados.

Diversas simulações foram realizadas e seus resultados ilustram o bom desempenho dos controladores propostos para os casos de seguimento de trajetórias. Nas simulações foram considerados casos em que o robô estava descarregado e carregado, e os resultados foram comparados e comentados. Os resultados de simulação atestam o funcionamento dos controladores e mostram que a adaptação de parâmetros pode promover melhoria significativa no desempenho do sistema, principalmente quando os parâmetros dinâmicos não foram corretamente identificados ou podem sofrer alteração, por exemplo, devido ao transporte de cargas. O cálculo de um índice de desempenho através de simulações e experimentos mostrou que a compensação adaptativa da dinâmica é capaz de melhorar o desempenho do sistema quando comparado ao desempenho obtido apenas com o controlador cinemático de ganhos variáveis.

Alguns resultados experimentais também foram apresentados, e mostram que os controladores propostos funcionam de maneira adequada. No entanto, cabe observar que os resultados não foram tão bons quanto previsto em simulação. Pode-se citar três fatores que contribuem para a diferença entre os resultados obtidos em simulação e em experimentos:

- 1. Os sinais de medição de posição e velocidade do robô móvel Pioneer usado nos experimentos apresentam um nível importante de ruído, o que pode provocar importante degradação no desempenho dos controladores, já que todos utilizam essas informações no cálculo das ações de controle. Tal fato também foi reportado em (GAVA et al., 2007). A análise de robustez mostrou que um aumento na amplitude das perturbações provoca aumento da região de convergência dos erros de controle. De fato, durante a realização das simulações comprovou-se que um aumento na amplitude do ruído provoca degradação no desempenho do sistema;
- 2. Pequenas ondulações no piso e deslizamento das rodas podem provocar distúrbios que não foram considerados durante as simulações, já que quando o vetor $\boldsymbol{\delta}$ de incertezas paramétricas, que modela efeitos como o deslizamento das rodas e forças e torques exercidos na roda independente, não é nulo, o limite de erro aumenta. De fato, o piso do laboratório onde os experimentos descritos neste capítulo foram realizados é formado por blocos de cerâmica lisa. Observou-se que, em alguns casos, há deslizamento das rodas do robô, por vezes bastante significativo. Além disso, quando a roda independente passa na junção entre os blocos de cerâmica, nota-se uma variação em sua direção. Tais fatos não foram levados em conta nas simulações realizadas.
- 3. Devido aos sinais de medição ruidosos e aos demais distúrbios presentes durante os experimentos, os valores dos ganhos de adaptação de parâmetros foram alterados em relação àqueles utilizados durante as simulações.

É válido ressaltar que, em relação ao controlador dinâmico apresentado por De La CRUZ (2006), os controladores aqui propostos apresentam duas vantagens principais: adaptação de parâmetros e possibilidade de conexão com outros controladores cinemáticos. Isso torna o sistema mais flexível, pois permite a troca de controladores cinemáticos para execução de tarefas distintas, como seguimento de caminhos, posicionamento ou controle de formação. Também torna o sistema mais robusto, já que a adaptação de parâmetros, realizada *on-line*, permite que o sistema se adapte a variações paramétricas que podem ocorrer de tarefa a tarefa, como em transporte de cargas, por exemplo.

Finalmente, em sistemas práticos o desempenho global pode ser melhorado durante a execução de uma tarefa se for possível a aplicação da seguinte estratégia: estando o robô nas condições em que deve realizar a tarefa, e antes de sua execução, fazê-lo percorrer uma trajetória que garanta a completa excitação de sua dinâmica, enquanto os valores dos parâmetros estimados são adaptados com ganhos baixos. Após a convergência dos parâmetros, ou de determinado tempo, desativar a adaptação de parâmetros e enviar o robô para execução da tarefa. Dessa forma, durante a realização da tarefa, a compensação da dinâmica é realizada com valores fixos de parâmetros, previamente adaptados. Uma estratégia muito similar foi proposta em (JORDÁN; BUSTAMANTE, 2008) para ajuste automático de ganhos de um controlador adaptativo aplicado a robôs submarinos.

Controle de Sistemas Multirrobôs com Compensação da Dinâmica

"They all look like me. But none of them are me." (Sonny, sobre os outros robôs NS-5, em I Robot)

4.1 Introdução

Sistemas multirrobôs permitem que algumas tarefas, como busca e resgate, transporte ou deslocamento de cargas e mapeamento de grandes áreas, sejam realizadas de forma mais barata, tolerante a falhas e flexível do que com a utilização de um único robô de maior capacidade. De acordo com Cao, Fukunaga e Kahng (1997), um sistema multirrobôs é considerado cooperativo quando apresenta, devido a um mecanismo de interligação, um comportamento tal que sua utilidade aumenta para dada tarefa. Portanto, comportamento cooperativo implica em ganho de desempenho do sistema em termos da tarefa que deve ser cumprida.

Do ponto de vista de controle, a arquitetura do sistema multirrobôs pode ser centralizada ou descentralizada. Ainda de acordo com Cao, Fukunaga e Kahng (1997), a arquitetura centralizada é caracterizada pela existência de um único agente de controle, enquanto a arquitetura descentralizada não possui tal agente. Um exemplo típico de controle centralizado de robôs móveis é abordado em (AIRES; ALSINA; MEDEIROS, 2001), que apresenta um sistema de visão global para realização de controle centralizado de um time de futebol de robôs. Na aplicação abordada, o controle centralizado é apropriado, pois pode ser feito num computador externo de grande capacidade de processamento, enquanto os robôs podem ter eletrônica mais simples, com pouca capacidade de processamento a bordo. Além disso, a informação de posição e orientação de todos os robôs é obtida com a utilização de um só sensor, o que é possível pois a área de atuação de todos os robôs é limitada. Isso permite que todo o grupo atue como um único agente, e que algoritmos complexos possam ser executados para seu controle.

Na arquitetura de controle descentralizada, cada robô possui seu próprio sistema de controle e o mínimo de sensores necessários para obter as informações que necessita do ambiente e dos demais robôs do grupo. Cada agente é capaz de determinar seus próprios sinais de controle para que a tarefa desejada seja executada, como manter uma formação, por exemplo (De La CRUZ; CARELLI, 2006). É importante ressaltar que o controle descentralizado não implica em falta de comunicação entre os robôs membros do grupo (WANG; TAN; GOLDSMITH, 2005; DONG; GUO; FARRELL, 2006). Pode haver troca de informações entre os robôs sem que algum deles tenha que, necessariamente, centralizar todas elas. Porém, cada robô deve ter a capacidade de gerar suas próprias ações de controle, com base na tarefa que deve ser realizada. A arquitetura descentralizada pode, ainda, ser caracterizada como distribuída, em que todos os agentes são equivalentes do ponto de vista de controle, ou hierárquicas, que são localmente centralizadas (CAO; FUKUNAGA; KAHNG, 1997).

Uma importante diferença entre os paradigmas de controle centralizado e descentralizado diz respeito à robustez do sistema: no controle centralizado, a ocorrência de uma falha no agente centralizador provoca uma falha em todo o sistema. Sistemas descentralizados tendem a ser mais robustos, exatamente por não dependerem de um único agente. Por outro lado, num sistema centralizado o agente centralizador do controle (e da informação) pode ser capaz de verificar se uma dada solução é ótima, enquanto num sistema descentralizado encontrar a solução ótima global pode não ser trivial (ANDERSON; BARTHOLDI-III, 2000).

Tanto a arquitetura centralizada como a descentralizada podem ser aplicadas na realização de controle de formação, que consiste no problema de se controlar a posição relativa e a orientação dos robôs em um grupo que se movimenta como um todo. Em geral, o controle de formação de robôs pode ser classificado em uma das três categorias: controle baseado em comportamentos, método de estruturas virtuais ou método de seguimento de líderes (CONSOLINI et al., 2007), explicados a seguir.

No controle baseado em comportamentos, vários comportamentos desejados são programados nos robôs (como evitar colisões, manter formação, seguir até um alvo, etc.). A ação de controle final é obtida a partir de uma média ponderada da ação definida por cada comportamento, com pesos determinados por sua importância num dado instante. A formalização teórica e análise matemática desta abordagem é difícil e, portanto, não é trivial de se garantir que a formação irá convergir para uma configuração desejada (CONSOLINI et al., 2007).

O método de estruturas virtuais consiste em considerar todo o grupo de robôs como uma única estrutura. A trajetória planejada é transmitida à formação como um todo, e não a cada um dos robôs individualmente. Nesse caso, é possível prever o comportamento de cada robô e do grupo, e é necessário que exista comunicação entre os robôs (CONSOLINI et al., 2007).

No método de seguimento de líder, um dos robôs é designado como tal e percorre a trajetória desejada, enquanto os demais robôs (seguidores) devem se manter a uma determinada distância e ângulo desse. As principais críticas a este tipo de abordagem são o fato de que uma falha no robô líder prejudica todo o sistema, e que o conjunto possui baixa tolerância a distúrbios (CONSOLINI et al., 2007). No entanto, esta abordagem é de mais fácil implementação que a de estruturas virtuais, e permite escalonamento direto, como mostrado em (BRANDÃO, 2008).

Este capítulo aborda as arquiteturas de controle de formação centralizado e descentralizado para sistemas multirrobôs. O sistema de controle descentralizado aqui abordado é do tipo líder-seguidores, distribuído, em que o robô líder executa a tarefa que lhe é designada, enquanto o(s) seguidor(es) deve(m) atuar de maneira a manter(em) a formação desejada. O robô aqui designado como líder não envia sinais de comando a nenhum outro membro do grupo. Cada agente membro do grupo é responsável por processar a informação sensorial própria (ou compartilhada) e executar o algoritmo de controle que gera seus próprios sinais de referência. Dessa forma, o líder não precisa conhecer o modelo dos demais membros da formação, e a compensação da dinâmica, quando existir, deve ser feita pelos controladores presentes em cada um dos robôs.

No controle centralizado abordado, o agente centralizador recebe toda a informação sensorial e executa o algoritmo de controle de formação. Então, envia a todos os robôs sinais de referência de velocidade linear e angular para que a formação desejada seja atingida e mantida. Tal sistema é classificado como controle baseado em estruturas virtuais. O agente centralizador (que pode ser um dos robôs) precisa ter informação de posição e velocidade de cada robô membro da formação, além de conhecer o modelo cinemático de cada um deles, para ser capaz de gerar os sinais de referência correspondentes. Apesar de cada robô possuir controladores internos que garantem o seguimento da velocidade de referência recebida, este sistema é caracterizado como controle centralizado pois o controle das variáveis de formação é feito de forma centralizada. É importante que se note que a compensação da dinâmica de cada robô, quando realizada, pode ser feita pelo próprio robô, ou pelo agente centralizador do controle que, nesse caso, deve conhecer o modelo e os parâmetros dinâmicos de cada agente membro do grupo.

4.2 Trabalhos Relacionados

Diversos trabalhos tratam de controle de sistemas multirrobôs. Há trabalhos que consideram a cooperação entre robôs móveis subaquáticos (SARIEL; BALCH; ERDOGAN, 2008), entre robôs aéreos (BETHKE; VALENTI; HOW, 2008), e até entre robôs aéreos e terrestres (MICHAEL; FINK; KUMAR, 2007). No entanto, nesta seção são discutidos brevemente apenas alguns estudos que tratam de cooperação entre veículos terrestres.

O trabalho relatado em (FEDDEMA; LEWIS; SCHOENWALD, 2002) aborda o controle de múltiplos veículos usando técnicas de controle descentralizado, analisando em que situações um grande grupo de robôs é controlável e observável. Segundo os autores, a maioria dos trabalhos que tratam de controle de múltiplos veículos não inclui o desenvolvimento formal do sistema de controle, do ponto de vista de estabilidade. A técnica ali proposta permite garantir a estabilidade do sistema mesmo sob perturbações estruturais, como falhas de comunicação e variação de parâmetros. Os autores mostram que o grau de interação entre os robôs, dado pela influência da posição dos robôs vizinhos na geração dos sinais de controle de um dado robô, influencia na estabilidade do sistema como um todo. Concluem que o número de veículos também influencia na estabilidade, já que impõe restrições na faixa do ganho de interação. Observam, ainda, que um *overshoot* no sinal de controle de um dos veículos pode levar todo o sistema à instabilidade, ainda que este seja estável individualmente. É mostrado um experimento que ilustra o controle de formação para deslocamento de um grupo de oito robôs, cada um dotado de sensores individuais (como GPS diferencial) e comunicação por rádio.

Um sistema para controle cooperativo de um grupo de robôs que usam como sensor apenas uma câmera omnidirecional (uma para cada robô) é apresentado em (DAS et al., 2002). Tal sistema permite que o controle seja feito de modo centralizado ou descentralizado, baseado em três métodos de navegação: (1) um robô do grupo pode seguir um líder a uma distância e ângulo determinados; (2) um robô do grupo pode seguir dois outros a uma distância determinada de cada um; ou (3) cada robô pode navegar de forma autônoma. O modo de seguimento permite variação da formação (de triângulo para linha, por exemplo), através do chaveamento de controladores, para uma situação de desvio de obstáculos. O sistema com chaveamento de controladores é provado ser estável com uso de uma função de Lyapunov comum a todos os controladores. A determinação das velocidades dos robôs da formação é feita por observadores de estado. São mostrados resultados de simulação com até seis robôs, e experimentos com três, todos sendo controlados por um computador remoto (controle centralizado).

Em (MONTEIRO; VAZ; BICHO, 2004) é apresentada uma estratégia de controle de formação que gera comportamentos baseados em uma série temporal de estados assintoticamente estáveis. A geometria da formação é determinada através de uma matriz cujos parâmetros indicam qual é o robô líder de cada membro da formação, e a que distância e ângulo os robôs seguidores devem se posicionar em relação a ele. O controle é feito de forma centralizada, e pode ocorrer relaxamento da geometria da formação no caso de desvio de obstáculos. Tal fato é ilustrado por resultados experimentais apresentados com um grupo de três robôs.

Pereira, Campos e Kumar (2004) abordam a tarefa de deslocamento de cargas por robôs móveis que a empurram e a guiam até o alvo. A estratégia de cooperação adotada é de controle descentralizado de formação, porém os autores não consideraram a dinâmica dos robôs. São apresentados resultados experimentais usando a plataforma descrita em (MICHAEL; FINK; KUMAR, 2008).

Um sistema de controle descentralizado baseado em comportamentos inspirados biologicamente é apresentado em (CLARK; FIERRO, 2005). Cada controlador é composto por máquinas de estado, assumindo que os robôs possuem seus próprios sensores e podem comunicar-se entre si. O objetivo do sistema é localizar e seguir um perímetro. Quando qualquer membro do grupo localiza o perímetro, envia informação aos demais. Os comportamentos são baseados em três controladores: (1) cobertura aleatória, que faz com que os robôs realizem movimentação aleatória numa área buscando o perímetro e evitando colisões; (2) movimentação rápida até o perímetro, assim que o mesmo é localizado; e (3) seguimento do perímetro, evitando colisões.

Uma estratégia de controle descentralizado de formação tipo líder-seguidores em que não há troca de informações entre os robôs é apresentada em (BRANDÃO et al., 2007b). Em tal trabalho é estudado o uso de um sensor de varredura *laser* para determinação da posição e orientação do robô líder da formação. Os robôs seguidores determinam a posição e orientação e estimam a velocidade do robô líder, posicionando-se em relação a este, de acordo com a distância e ângulo de formação desejados. São apresentados resultados experimentais usando dois robôs e simulações para casos de formações mais complexas.

Outra estratégia de controle de formação tipo líder-seguidores é apresentada em (CONSOLINI et al., 2007). Ali, a posição do seguidor pode variar dentro de certos limites (um cone) em relação ao líder, sendo o ângulo entre o líder e o seguidor medido no referencial deste, e não daquele. Um resultado interessante apresentado pelos autores é que a geometria da formação impõe um limite máximo à curvatura da trajetória a ser percorrida pelo líder e à velocidade dos seguidores. Somente resultados de simulação são apresentados.

Em (KRESS-GAZIT et al., 2008), os autores apresentam uma técnica de controle descentralizado baseada em políticas locais de controle (equivalentes a comportamentos) para ser aplicada em veículos autônomos. Tais políticas locais garantem a execução da tarefa num dado entorno, garantindo que o estado do veículo, ao final da execução de uma delas, estará dentro da área de abrangência da política que será executada em seguida. Cada política de controle obedece a especificações de alto nível, como "dirigir até encontrar uma vaga e, então, estacionar", ou "deixar o quarteirão obedecendo as leis de trânsito". A execução da tarefa por parte de cada veículo depende do estado dos veículos ao seu redor, percebido por seus sensores. São apresentados resultados de simulação envolvendo as tarefas de estacionamento e movimentação obedecendo as leis de trânsito.

Mas, Petrovic e Kitts (2008) apresentam uma técnica de controle centralizado de formação, baseado em estruturas virtuais, que chamam de *Cluster Space Control*. Mostram a estrutura de controle para um grupo de três robôs uniciclo, em que o controle para seu deslocamento é feito com base em seu centróide. Mencionam que os controladores adotados são do tipo PID, mas não explicam como foram projetados e não apresentam análise de estabilidade do sistema. São apresentados resultados experimentais com robôs AmigoBot (da empresa Mobile Robots), mas os erros são muito grandes, oscilando a picos de mais de um metro de distância.

Em (ANTONELLI; ARRICHIELLO; CHIAVERINI, 2008) é proposto um sistema multirrobôs que tem o propósito de posicionar os veículos em formação em torno de um alvo (cujo movimento é inicialmente desconhecido) e escoltá-lo ou acompanhá-lo, mantendo a formação. A ideia é que os robôs se mantenham em torno do alvo para evitar sua fuga ou para protegê-lo de outros agentes externos. Cada um dos n robôs se posiciona num dos vértices de um polígono de ordem n em torno do alvo, de forma a minimizar as janelas de possível fuga ou penetração na região interna. Os autores usam uma lei de controle centralizado que leva em conta a ordem de prioridade das subtarefas a serem executadas: (1) o centróide da formação deve coincidir com a posição do alvo; (2) os robôs devem se mover seguindo uma circunferência em torno do alvo; (3) os robôs devem se distribuir adequadamente ao longo da circunferência; e (4) os robôs devem evitar colisão com obstáculos e entre si. Cada subtarefa é tratada como um comportamento, e gera um comando de velocidade para cada robô. Os comandos de velocidade são, então, fusionados de forma que os sinais de comando enviados a cada robô sejam uma combinação de cada comportamento, de acordo com sua prioridade e ativação. São apresentadas simulações que evidenciam diferentes resultados para diferentes ordens de prioridade de cada tarefa, e diferentes ganhos de cada controlador. Também são mostrados experimentos com seis robôs de tipo uniciclo Khepera II (da empresa K-Team), em que a informação de posição do alvo e dos demais robôs é obtida a partir de duas câmeras posicionadas no teto. Os resultados mostram que o sistema é capaz de se posicionar em torno de uma bola de tênis e seguí-la.

Nos trabalhos mencionados anteriormente a dinâmica dos veículos não é considerada na geração dos sinais de controle. Por outro lado, existem alguns trabalhos que tratam do controle de sistemas multirrobôs considerando seus modelos dinâmicos. Por exemplo, em sistemas em que se deseja executar deslocamento de cargas ou controle de formação, a compensação da dinâmica de cada robô do grupo pode levar a uma melhora de desempenho, já que cada robô pode seguir seus sinais de comando com menor erro.

Neste contexto, Fierro e Das (2002) apresentam uma arquitetura dividida em quatro camadas para coordenar um time de robôs móveis para que estes atinjam uma posição desejada com uma formação determinada. Sensores permitem que os robôs se organizem numa rede e definam seus líderes e seus vizinhos. A camada 4 (superior) é responsável por planejar a trajetória a ser seguida pelo robô líder e, portanto, pelo grupo de robôs. A camada 3 possui um algoritmo para realizar o controle de formação, cuja forma é determinada pelas medidas de distância de um a dois outros robôs, ou pela distância e ângulo entre dois robôs. Tal estratégia é classificada como líder-seguidores pois cada robô deve seguir outro (ou dois outros), e é muito similar àquela apresentada em (FIERRO et al., 2001). A camada 2 realiza o controle cinemático de cada robô, enquanto a camada 1 é responsável pelo controle adaptativo de torque, que leva em consideração a dinâmica de cada veículo. Os autores também mostram que o sistema em malha fechada é estável com base na teoria de Lyapunov. São apresentados apenas resultados de simulação para um grupo de dois robôs. Uma abordagem de controle descentralizado de formação que considera os modelos dinâmicos dos robôs do grupo é apresentada em (LAWTON; BEARD; YOUNG, 2003). Tal trabalho apresenta uma abordagem baseada em comportamentos para controlar manobras de grupos de robôs entre padrões de formação. Os autores desenvolvem uma estratégia baseada em dois objetivos que competem entre si: (1) movimentar os robôs até o ponto de destino e (2) manter a formação durante o movimento. Para lidar com esses objetivos, foi proposta uma função de erro que leva em conta o erro de posição de cada robô e o erro de formação do grupo, com pesos que podem ser ajustados. A estratégia de controle proposta, chamada de dinâmica acoplada, prevê que cada robô saiba as posições relativas e desejadas de pelo menos dois outros robôs integrantes da formação, além de conhecer ou estimar suas velocidades. A convergência dos erros de controle a valores limitados é provada com base na teoria de Lyapunov.

Estratégias para deslocamento de cargas através da cooperação entre dois robôs móveis de tipo uniciclo são propostas e estudadas em (BRAGANÇA, 2004). Para projeto do controlador, cujas saídas são tensões para os motores, é utilizado um modelo dinâmico simplificado dos robôs móveis, que considera que o ponto de interesse e o centro de massa do robô coincidem com o ponto central do eixo virtual que une as rodas de tração, e que não há variação na dinâmica do robô. A eficácia do sistema de controle e das estratégias propostas para deslocamento das cargas é ilustrada por resultados de experimentos, mas um estudo formal de estabilidade do sistema não é apresentado.

Em (De La CRUZ, 2006; De La CRUZ; CARELLI, 2006) foi proposta uma arquitetura de controle centralizado de formação de robôs móveis que leva em conta os modelos dinâmicos dos veículos da formação. Foram desenvolvidos dois modelos cinemáticos do sistema multirrobôs, denominados de modelo cinemático de primeira ordem e modelo cinemático de segunda ordem. O primeiro leva em conta apenas os modelos cinemáticos dos robôs da formação, enquanto o segundo leva em consideração seus modelos dinâmicos, compensando os efeitos da dinâmica de cada robô para geração dos sinais de controle. Neste sistema, o controlador de formação deve conhecer o modelo dinâmico de cada robô do grupo, cujos parâmetros são supostos constantes. Resultados experimentais são apresentados usando um grupo de três robôs Pioneer.

Neste contexto, este capítulo aborda as arquiteturas de controle descentralizado e centralizado de formação, sempre com realização da compensação da dinâmica de um ou mais robôs membros do grupo. Primeiro, na seção 4.3, é apresentado o caso do controle descentralizado de formação, em que foi utilizada a estratégia proposta em (BRANDÃO,

2008), que trata do controle de uma estrutura líder-seguidor. O sistema original considera apenas os modelos cinemáticos dos robôs. Então, o segundo controlador dinâmico, proposto na subseção 3.3.2, é aqui agregado para realizar a compensação da dinâmica do robô seguidor. Resultados de simulação e de experimentos são apresentados para ilustrarem a influência da compensação da dinâmica na redução dos erros de formação, considerando o esquema de controle de formação descentralizado tipo líder-seguidor.

Em seguida, duas arquiteturas são apresentadas para ilustrar o controle centralizado de formação. A primeira, apresentada na seção 4.4, é baseada no modelo cinemático de primeira ordem proposto em (De La CRUZ; CARELLI, 2006) que, originalmente, não leva em conta os modelos dinâmicos dos robôs membros da formação. A tal sistema foi agregado o primeiro controlador dinâmico, apresentado na subseção 3.3.1, de forma a realizar a compensação da dinâmica dos robôs sem que fosse necessário alterar a estrutura de controle de formação. Resultados de simulação são mostrados. A segunda arquitetura, apresentada na seção 4.5, é baseada no controle do centróide de uma estrutura virtual, como proposto em (MAS; PETROVIC; KITTS, 2008). A estratégia de controle proposta naquele trabalho é baseada em controladores PID e não leva em conta a dinâmica dos robôs da formação. Aqui, propõe-se um controlador não-linear de formação compatível com tal estratégia, e apresenta-se a análise de sua estabilidade. O segundo controlador dinâmico, apresentado na subseção 3.3.2, é utilizado para realizar a compensação da dinâmica de todos os robôs, e sua influência na redução dos erros de controle de formação é ilustrada. Resultados de simulação e de experimentos são apresentados para este caso, e ilustram a influência da compensação da dinâmica considerando o esquema de controle centralizado de formação tipo estruturas virtuais.

4.3 Controle Descentralizado de uma Formação Líder-Seguidor

Esta seção aborda a estratégia de controle descentralizado de formação tipo líderseguidor desenvolvida em (BRANDÃO et al., 2007b; BRANDÃO, 2008), em que não há troca de informação entre os robôs, e mostra um exemplo de utilização do segundo controlador dinâmico aqui proposto para compensar a dinâmica do veículo seguidor.

4.3.1 Estratégia de Controle

Nesta estratégia, o robô líder segue uma trajetória pré-definida, enquanto o robô seguidor deve se manter em uma posição fixa em relação ao primeiro. A identificação da posição e da orientação do robô líder é feita através da utilização de um sensor de varredura *laser* (montado no seguidor) e de um padrão a ser identificado (montado no líder). As medidas de distância obtidas pelo robô seguidor são suficientes para determinação das variáveis de formação, conforme enunciado em (BRANDÃO, 2008). No mesmo trabalho foi proposta para o robô seguidor uma lei de controle de formação baseada na cinemática inversa do sistema. A este sistema foi agregada a compensação da dinâmica do robô, através da utilização do segundo controlador dinâmico aqui proposto, apresentado na subseção 3.3.2 (MARTINS et al., 2008a).

O desenvolvimento do controlador de formação em questão foi apresentado inicialmente em (BRANDÃO et al., 2007b), e será reproduzido de forma resumida a seguir.

As variáveis de formação $[\rho_{LF} \ \beta_{LF} \ \theta_{LF}]^T$, que constituem o controle descentralizado de formação, são apresentadas na Figura 64. Tais variáveis representam a distância entre os robôs $(\rho_{LF} \in \mathbb{R}^+)$, o ângulo do robô líder em relação ao seguidor $(\beta_{LF} \in (0^\circ, 180^\circ))$, e o erro de orientação entre os robôs $(\theta_{LF} \in [-90^\circ, 90^\circ])$.

Conforme desenvolvido em (BRANDÃO, 2008), as equações de estado do robô seguidor, baseadas nas variáveis de formação, são dadas por

$$\begin{cases} \dot{\rho}_{LF} = u_L \quad \text{sen} \ (\beta_{LF} - \theta_{LF}) - u_F \quad \text{sen} \ \beta_{LF} \\ \dot{\beta}_{LF} = \frac{u_L \cos(\beta_{LF} - \theta_{LF}) - u_F \cos\beta_{LF}}{\rho_{LF}} - \omega_F \\ \dot{\theta}_{LF} = \omega_L - \omega_F, \end{cases}$$
(4.1)

onde u_L e u_F são as velocidades lineares e ω_L e ω_F são as velocidades angulares do robô líder (L) e do seguidor (F). Assim como em (CONSOLINI et al., 2007), o sistema de coordenadas do robô seguidor é adotado como referência para o controle da estrutura líder-seguidor.

Para o projeto do controlador cinemático de formação foi considerada a cinemática

Figura 64: Variáveis de formação e controle.

inversa do sistema. Assim, tem-se que

$$\underbrace{\begin{bmatrix} \dot{\rho}_{LF} \\ \dot{\beta}_{LF} \end{bmatrix}}_{\dot{\mathbf{x}}} = \underbrace{\begin{bmatrix} - \ \sin \beta_{LF} & 0 \\ -\frac{\cos \beta_{LF}}{\rho_{LF}} & -1 \end{bmatrix}}_{g(\mathbf{x})} \underbrace{\begin{bmatrix} u_F \\ \omega_F \end{bmatrix}}_{\mathbf{v}_{\mathbf{d}}} + \underbrace{\begin{bmatrix} u_L \ \sin \left(\beta_{LF} - \theta_{LF}\right) \\ \frac{u_L \cos(\beta_{LF} - \theta_{LF})}{\rho_{LF}} \end{bmatrix}}_{q(\mathbf{x})}, \quad (4.2)$$

onde $\mathbf{x} = [\rho_{LF} \ \beta_{LF}]^T$ representa as variáveis de formação controláveis e \mathbf{v}_d representa os sinais de controle. Com o objetivo de estabelecer uma lei de controle que faça $\mathbf{x} \to \mathbf{x}_d$ para $t \to \infty$, e supondo que $g(\mathbf{x})$ seja uma matriz inversível, foi proposto que

$$\mathbf{v}_{\mathbf{d}} = g^{-1}(\mathbf{x})(\boldsymbol{\eta} - \mathbf{q}(x)), \quad \text{para} \quad \boldsymbol{\eta} = \dot{\mathbf{x}}_{\mathbf{d}} + \mathbf{K}f(\tilde{\mathbf{x}}), \tag{4.3}$$

onde \mathbf{K} é uma matriz de ganhos definida positiva e $f(\tilde{\mathbf{x}})$ é uma função de saturação. Por fim, em malha fechada se obtém que $\dot{\tilde{\mathbf{x}}} + \mathbf{K}f(\tilde{\mathbf{x}}) = 0$, onde $\tilde{\mathbf{x}} = \mathbf{x}_{\mathbf{d}} - \mathbf{x}$ é o vetor de erro de formação. Vale salientar que $g(\mathbf{x})$ é inversível se $\rho_{LF} > 0$ e $\beta_{LF} \in (0, 180^{\circ})$. Como ρ_{LF} é a distância entre os robôs, a condição de singularidade nunca ocorrerá para $\rho_{LF} = 0$. No entanto, se o ângulo β_{LF} de formação entre os robôs for igual a zero ou a 180°, outra condição de singularidade ocorre. Isso significa que o controlador proposto não permite que os robôs naveguem lado-a-lado. Tal fato não chega a ser um fator de limitação adicional, já que a detecção do robô líder é feita pelo sensor de varredura *laser*, que está a bordo do robô seguidor e é capaz de medir distâncias a objetos localizados

apenas à frente do robô, com um ângulo de abertura de 180°. Isso significa que o padrão a ser detectado e, portanto, o robô líder, não podem estar exatamente ao lado nem atrás do robô seguidor.

A análise da estabilidade foi feita com uso da função candidata de Lyapunov $V(\tilde{\mathbf{x}}) =$ $\frac{1}{2}\tilde{\mathbf{x}}^T\tilde{\mathbf{x}} > 0, \text{ cuja derivada temporal \'e dada por } \dot{V}(\tilde{\mathbf{x}}) = -\tilde{\mathbf{x}}^T\mathbf{K}f(\tilde{\mathbf{x}}).$

Assumindo
$$f(\tilde{\mathbf{x}}) = \begin{bmatrix} \tanh \tilde{\rho}_{LF} \\ \tanh \tilde{\beta}_{LF} \end{bmatrix}$$
 e $\mathbf{K} = \begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix}$, sendo $k_1 > 0$ e $k_2 > 0$, é possível firmar que

af

$$\dot{V}(\tilde{\mathbf{x}}) = -\tilde{\mathbf{x}}^T \mathbf{K} f(\tilde{\mathbf{x}}) < 0, \tag{4.4}$$

isto é, \dot{V} é definida negativa. Logo, $\tilde{\mathbf{x}} \to \mathbf{0}$ para $t \to \infty$, ou, ainda, $\mathbf{x} \to \mathbf{x}_{\mathbf{d}}$ com $t \to \infty$.

Para a estratégia de controle de formação abordada, $\mathbf{x}_{\mathbf{d}} = [\rho_{LFd} \ \beta_{LFd}]^T$ é uma matriz constante, o que implica em $\dot{\mathbf{x}}_{\mathbf{d}} = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$. Logo, os sinais de controle de (4.3) tornam-se

$$\begin{bmatrix} u_F \\ \omega_F \end{bmatrix} = \begin{bmatrix} \frac{u_L \operatorname{sen} (\beta_{LF} - \theta_{LF}) - k_1 \tanh \rho_{\widetilde{L}F}}{\operatorname{sen} \beta_{LF}} \\ \frac{u_L \operatorname{sen} \theta_{LF} + k_1 \tanh \tilde{\rho}_{LF} \cos \beta_{LF}}{\rho_{LF} \operatorname{sen} \beta_{LF}} - k_2 \tanh \tilde{\beta}_{LF} \end{bmatrix}, \quad (4.5)$$

onde $\tilde{\rho}_{LF} = \rho_{LFd} - \rho_{LF}$ e $\tilde{\beta}_{LF} = \beta_{LFd} - \beta_{LF}$ são os erros das variáveis de formação. Assume-se que $\beta_{LF} \in (0^{\circ}, 180^{\circ})$ e, portanto, pode-se verificar que $\mathbf{v}_{\mathbf{d}} \in L_{\infty}$. Também se assume que $\mathbf{\dot{v}_d} \in L_{\infty}$, já que as acelerações do robô líder são limitadas.

Os valores das variáveis de formação $[\rho_{LF} \quad \beta_{LF} \quad \theta_{LF}]^T$ são estimados a partir das medidas da varredura do sensor *laser* instalado a bordo do robô seguidor, sendo a velocidade do líder estimada através de um Filtro de Kalman¹. Tal sensor informa ao robô 181 medidas de distância a obstáculos localizados adiante do robô, obtidas a cada grau, conforme ilustra a Figura 65.

Sobre o robô líder da formação foi montado um semicilindro de diâmetro igual a 200mm para sua identificação no ambiente, como ilustra a Figura 66(a). A Figura 66(b) ilustra as variáveis de formação ρ_{LF} e β_{LF} , cujos valores devem ser estimados a partir das medidas das distâncias ρ_1 e ρ_2 , as quais são tomadas, respectivamente, nos ângulos β_1 e β_2 da varredura laser. Em (BRANDÃO, 2008) foi proposto um modelo simplificado para

¹Rudolf Emil Kalman nasceu em Budapeste, Hungria, em 19 de maio de 1930. Graduou-se em Engenharia Elétrica pelo MIT, onde também obteve o título de Mestre. É doutor pela Columbia University, atuou como engenheiro da IBM e hoje é professor emérito do Instituto Federal Suíço de Tecnologia. Alcançou fama por sua coinvenção de uma técnica matemática intensamente utilizada no campo da Engenharia de Controle, conhecida como Filtro de Kalman (IEEE, Acesso em: 30/dez/2008).

Figura 65: Medidas do sensor de varredura *laser* utilizado no robô seguidor.

Figura 66: (a) Representação dos robôs líder (com o semicilindro no topo) e seguidor num ambiente de simulação. (b) Variáveis de formação e medidas do sensor *laser*. Fonte: (BRANDÃO, 2008).

determinar os valores de β_{LF} e θ_{LF} , dado por

$$\beta_{LF} \approx \frac{\beta_1 + \beta_2}{2},\tag{4.6}$$

$$\theta_{LF} \approx \gamma_2,$$
(4.7)

onde γ_2 é o ângulo de rotação aparente do padrão, conforme este é "visto" pelo sensor *laser*. O valor de γ_2 pode ser obtido a partir de

$$\tan \gamma_2 = \frac{\rho_1 \quad \text{sen } \beta_1 - \rho_2 \quad \text{sen } \beta_2}{\rho_1 \cos \beta_1 - \rho_2 \cos \beta_2}.$$
(4.8)

Com base nos valores aproximados de θ_{LF} e β_{LF} , o valor de ρ_{LF} pode ser aproximado por

Figura 67: Perfil das medidas do sensor *laser* no ambiente e a diferença entre medidas de distância consecutivas. Fonte: (BRANDÃO, 2008).

onde **M** é o vetor de medidas de distância fornecidas pelo sensor *laser*. Ou seja, ρ_{LF} é aproximadamente a medida de distância obtida na posição angular β_{LF} do vetor **M**.

A Figura 67 ilustra as medidas do vetor **M** em função do ângulo de resolução do sensor durante a navegação de uma formação linear com $\rho_{LF} = 1m$ e $\beta_{LF} = 90^{\circ}$. Na parte inferior da Figura 67 é apresentada a diferença entre medidas angulares sucessivas do perfil, destacando suas descontinuidades. A detecção do padrão se dá através da identificação de um pico negativo seguido de outro positivo (dentro de limiares assumidos), levando-se em consideração a dimensão real do padrão, que é conhecida. Uma explicação mais detalhada pode ser encontrada em (BRANDÃO, 2008).

Nota 4.1. A conclusão da análise de estabilidade apresentada para o controlador de formação mostra que a lei de controle dada por (4.3) é capaz de fazer com que o robô seguidor siga o robô líder a uma distância e ângulo desejados. É importante que se note que tal conclusão é válida para $\mathbf{x}_{\mathbf{d}}$ constante ou variante no tempo, ou seja, $\mathbf{x}_{\mathbf{d}} = \mathbf{x}_{\mathbf{d}}(t)$. Isso significa que, se as equações que geram os sinais de controle forem definidas considerando $\mathbf{x}_{\mathbf{d}} = \mathbf{x}_{\mathbf{d}}(t)$, a distância e ângulo desejados de formação podem variar durante a realização da operação de seguimento.

Nota 4.2. Foi observado em (BRANDÃO, 2008) que ruídos nas medidas da varredura *laser* podem introduzir erros no cálculo da dimensão do padrão. Também foi notado que, como o sensor de varredura *laser* faz medidas de distância a intervalos discretos (a cada 1°), nos casos em que a distância entre os robôs é muito maior que a dimensão do

Figura 68: Estrutura de controle de formação líder-seguidor com compensação da dinâmica (robô seguidor).

padrão, o erro no valor estimado pelo seguidor para a dimensão do padrão é grande, o que provoca degradação no desempenho do sistema de controle de formação.

4.3.2 Compensação da Dinâmica do Robô Seguidor

O controlador proposto em (BRANDÃO, 2008) para uma formação líder-seguidor, e apresentado de maneira suscinta na subseção 4.3.1, aborda somente o comportamento cinemático dos robôs que constituem a formação. No caso da formação líder-seguidor tratada, o controlador do robô seguidor gera comandos de forma a mantê-lo em formação com o líder, enquanto este executa um deslocamento desconhecido *a priori*. Conforme discutido e ilustrado no capítulo 3, uma variação nos valores dos parâmetros dinâmicos do robô pode provocar degradação em seu desempenho. Neste contexto, foi adicionado ao robô seguidor um controlador para compensar os efeitos de possível variação em sua dinâmica. A Figura 68 apresenta a estrutura de controle de formação descentralizado implementada no robô seguidor. Ao sistema apresentado na subseção anterior foi acrescentado um controlador para realizar a compensação da dinâmica do veículo. Foi utilizado o segundo controlador dinâmico, apresentado na subseção 3.3.2, que recebe os sinais de velocidades desejadas gerados pelo controlador cinemático de formação, realiza a compensação da dinâmica, e envia os sinais de comando para o robô seguidor.

4.3.3 Resultados de Simulação

Foram realizadas simulações para verificar o desempenho do sistema de controle descentralizado de formação líder-seguidor com compensação da dinâmica do robô seguidor. O sistema foi simulado com uso da plataforma de simulação **MRSiM**, descrita em

Figura 69: Caminho percorrido pelos robôs líder e seguidor.

(BRANDÃO et al., 2008). Além de simular os modelos dos robôs e seu comportamento, tal plataforma permite a simulação do ambiente (inclusive com obstáculos) e da interação entre os robôs.

Nas simulações realizadas foram utilizados dois robôs, sendo um líder e um seguidor. Na base superior do robô líder foi colocada uma estrutura semicilíndrica de dimensões conhecidas, como mostrado na Figura 66(a). O robô seguidor deve identificar a posição e orientação do robô líder através das medidas realizadas por seu sensor de varredura *laser*, como explicado na subseção 4.3.1, e estimar sua velocidade. Com base nesses dados, executa o controle de formação, de forma a obter $\rho_{LFd} = 1m$ e $\beta_{LFd} = 90^{\circ}$. O robô líder, por sua vez, se movimenta comandado por um controlador de posicionamento sem orientação final. Devido a características do controlador adotado, sua velocidade varia conforme se desloca, diminuindo ao se aproximar do ponto de destino. Quando alcança o ponto de destino, outro ponto é automaticamente designado, de forma que o robô líder se mantém em marcha constantemente. Nas simulações executadas, o robô líder partiu do ponto (0,0)m e foram definidos como destinos, nesta ordem, os pontos (5; 0)m, (10; 3)m,(15; 3)m, (15; 0)m, (10; 0)m, (5; 3)m, (0; 3)m e (0; 0)m. O caminho percorrido pelos robôs líder e seguidor é ilustrado na Figura 69.

Para verificar o desempenho do sistema, os valores dos parâmetros $\boldsymbol{\theta}$ utilizados no controlador dinâmico eram diferentes daqueles utilizados no modelo do robô, que corresponderam aos parâmetros do robô Pioneer 3-DX listados na seção 2.4. Os valores de θ_1 , θ_2 , θ_3 e θ_5 utilizados no controlador correspondiam a um quinto daqueles usados no modelo, enquanto θ_4 e θ_6 tinham os mesmos valores no controlador e no modelo do robô. Duas simulações foram realizadas mantendo-se as mesmas condições, inclusive os ganhos do controlador cinemático de formação, apenas alterando o comportamento do controlador dinâmico utilizado. Em ambas, a sequência de pontos de referência enviada ao robô

Figura 70: Evolução das variáveis de formação sem compensação da dinâmica.

Figura 71: Formação líder-seguidor - com compensação da dinâmica e adaptação de parâmetros. (a) Variáveis de formação; (b) Parâmetros estimados do robô seguidor.

líder foi repetida três vezes.

Na primeira simulação, o controlador dinâmico estava desativado, não sendo feita compensação da dinâmica do robô seguidor. A evolução das variáveis de formação, para este caso, é apresentada na Figura 70. Na segunda, o controlador dinâmico estava ativado, com adaptação dos parâmetros através da lei de adaptação com modificação- σ , dada por (3.49). Nas Figuras 71(a) e 71(b) são apresentadas as variáveis de formação e a evolução dos parâmetros estimados do robô seguidor para este caso.

Os resultados apresentados nas figuras 70 e 71(a) são similares, já que as variáveis de formação permanecem variando durante todo o percurso simulado. Para efetuar a comparação entre os dois casos, foram calculados os índices de desempenho IAE - Integral

do valor Absoluto do Erro, para os erros de formação entre os robôs líder e seguidor: IAE_{ρ} para o erro de distância $\tilde{\rho}_{LF}$, e IAE_{β} para o erro de ângulo de formação $\tilde{\beta}_{LF}$. Ambas as simulações tiveram a mesma duração de, aproximadamente, 750s. Os valores de IAEobtidos em ambas simulações são mostrados na tabela 1.

Tabela 1: IAE para simulações do controle descentralizado tipo líder-seguidor

Pode-se notar que a ativação do controlador dinâmico com adaptação de parâmetros provocou uma diminuição nos índices IAE_{ρ} e IAE_{β} , o que indica melhor desempenho. Em outras palavras, a compensação da dinâmica do robô seguidor com adaptação dos parâmetros estimados levou a menores erros de distância e de ângulo de formação, em média.

A redução nos valores de IAE para o caso considerado foi de cerca de 4%. Esta não é uma melhora tão expressiva quanto se poderia esperar, tendo em vista a redução de 20 a 30% nos valores do índice IAE relatada na seção 3.6. Por isso, é importante ressaltar que os erros considerados naquela e nesta seções são diferentes. O esquema de controle de formação líder-seguidor aqui apresentado possui outras fontes de erro que não estavam presentes na análise apresentada na seção 3.6, como erros de medição de posição e orientação do líder, erros de estimação de sua velocidade e atraso provocado pelo filtro de Kalman, por exemplo. Como mencionado na Nota 4.2, quando a distância entre os robôs é muito maior que as dimensões do padrão (200mm), o erro de medição pode ser bastante grande. Tais fontes de erro fizeram com que a compensação da dinâmica, neste caso, tivesse um impacto pequeno na redução do valor do erro de formação.

4.3.4 Resultados Experimentais

O desempenho do sistema de controle descentralizado de formação líder-seguidor, com e sem compensação da dinâmica, também foi comparado através de experimentos. Foram utilizados dois robôs, sendo um robô Pioneer 2DX, como líder, e um Pioneer 3DX com sensor de varredura *laser*, como seguidor. Na base superior do robô líder foi colocada uma estrutura semicilíndrica de dimensões conhecidas. Os robôs utilizados nos experimentos são mostrados na Figura 72.

Nos experimentos, o robô seguidor deve identificar a posição e a orientação do robô

Figura 72: Robôs móveis utilizados nos experimentos de controle de formação líder-seguidor. Fonte: (BRANDÃO, 2008).

líder através das medidas realizadas por seu sensor de varredura *laser*, como explicado na subseção 4.3.1, e estimar sua velocidade. Com base nesses dados, deve executar o controle de formação para obter $\rho_{LFd} = 0, 7m$ e $\beta_{LFd} = 60^{\circ}$. O robô líder, por sua vez, se movimenta comandado por um controlador de posicionamento sem orientação final, que realiza desvio de obstáculos através da técnica de *desvio tangencial modificado* (BRANDÃO et al., 2007a). Devido às características do controlador utilizado, sua velocidade varia conforme se desloca, diminuindo ao se aproximar de um obstáculo e do ponto de destino. Vale ressaltar que o algoritmo de desvio de obstáculos é executado somente pelo robô líder, que é capaz de detectá-los através de seus sensores ultrassônicos.

Foram realizados dois experimentos no mesmo ambiente, com a presença de obstáculos. Em ambos os experimentos, a posição inicial do robô líder é (0,0; -0,7)m, e a do seguidor é (-0,7; -0,375)m. O robô líder deve chegar à posição (6,5; -4,0)m. A diferença entre os dois experimentos é que, no primeiro, foi utilizado apenas o controlador cinemático de formação, sendo que a compensação adaptativa da dinâmica foi ativada somente no segundo.

A Figura 73 mostra o caminho percorrido pelo robô seguidor e o mapa do ambiente obtido através das medições do sensor de varredura *laser*. Os círculos azuis indicam a posição instantânea do robô seguidor a cada 5 segundos de experimento, enquanto os

Figura 73: Experimento de controle de formação líder-seguidor: caminho percorrido pelo robô seguidor e mapa do ambiente obtido através das medições do sensor de varredura *laser*.

círculos negros indicam a posição do líder (detecada pelo seguidor) nos mesmos instantes. Para deslocar-se da posição inicial à posição final, o robô seguidor realiza desvio dos obstáculos existentes entre elas, como pode ser visto na figura.

No primeiro experimento, o controlador dinâmico estava desativado, não sendo feita compensação da dinâmica do robô seguidor. A evolução das variáveis de formação, para este caso, é apresentada na Figura 74. No segundo, o controlador dinâmico estava ativado, com adaptação dos parâmetros através da lei de adaptação com modificação- σ , dada por (3.49). Nas Figuras 75(a) e 75(b) são apresentadas as variáveis de formação e a evolução dos parâmetros estimados do robô seguidor para este caso. É válido ressaltar que os parâmetros utilizados no controlador dinâmico iniciam com os valores identificados para o robô Pioneer 3DX.

Como ocorreu nas simulações, os resultados apresentados nas figuras 74 e 75(a) são similares, já que as variáveis de formação permanecem variando durante todo o percurso. Para efetuar a comparação entre os dois casos, foram calculados os índices de desempenho IAE_{ρ} para o erro de distância $\tilde{\rho}_{LF}$, e IAE_{β} para o erro de ângulo de formação $\tilde{\beta}_{LF}$. Os valores de IAE obtidos em ambos os experimentos são mostrados na tabela 2.

Figura 74: Experimento de controle de formação líder-seguidor: evolução das variáveis de formação sem compensação da dinâmica.

Figura 75: Experimento de controle de formação líder-seguidor com compensação da dinâmica e adaptação de parâmetros: (a) Variáveis de formação; (b) Parâmetros estimados do robô seguidor.

Tabela 2: IAE para experimentos do controle descentralizado tipo líder-seguidor

	IAE_{ρ}	IAE_{β}
Sem compensação da dinâmica	3,98	12,71
Com compensação adaptativa da dinâmica	4,39	8,85

Pode-se notar que, nos experimentos realizados, a ativação do controlador dinâmico com adaptação de parâmetros provocou diminuição de cerca de 30% no índice IAE_{β} , mas houve um aumento de 10% no índice IAE_{ρ} . Ou seja, considerando-se os erros de formação como um todo, já que a redução no erro de orientação foi maior do que o aumento do erro de distância, pode-se concluir que a compensação da dinâmica do robô seguidor levou a menores erros de formação, em média. Como comentado na subseção 4.3.3, o erro de formação do esquema líder-seguidor aqui apresentado é influenciado por várias fontes de erro. Por isso, a compensação da dinâmica, neste caso, teve um impacto pequeno na redução do erro de formação.

4.4 Primeiro Esquema de Controle Centralizado de Formação

Os controladores centralizados de formação propostos por De La CRUZ (2006) foram desenvolvidos com base nos modelos cinemáticos de primeira ordem e de segunda ordem do sistema multirrobôs, apresentados no mesmo trabalho. Tais modelos são explicados nas seções seguintes.

4.4.1 Modelo Cinemático de um Sistema Multirrobôs

Os modelos cinemáticos de primeira e de segunda ordens propostos em (De La CRUZ, 2006) descrevem a variação da formação dos robôs no tempo. Foram definidos os vetores \mathbf{z}^1 , que contém um conjunto de variáveis que descrevem o aspecto, a posição e a orientação da formação, e $\mathbf{z}^2 = \dot{\mathbf{z}}^1$. Essas variáveis que definem a formação e suas derivadas são denominadas de variáveis de formação.

O vetor \mathbf{z}^1 pode ser definido de várias formas. Dois exemplos de definição para tal vetor são $\mathbf{z}^1 = [x^1, y^1, l_2, \alpha_2, l_3, \alpha_3, l_4, \alpha_4]^T$, que representa a formação apresentada na Figura 76(a), e $\mathbf{z}^1 = [x^1, y^1, l_{12}, \alpha_{12}, l_{23}, \alpha_{23}, l_{34}, \alpha_{34}]^T$, que representa a formação apresentada na Figura 76(b). Outras definições, que levam em conta a posição do centróide da formação, são apresentadas em (De La CRUZ, 2006). Como pode ser visto nas figuras, $x^1 e y^1$ definem a posição do robô 1 no plano cartesiano, em ambos os casos. Na formação mostrada na Figura 76(a), as posições dos demais robôs são dadas pelas variáveis $l_i e \alpha_i$, que definem a posição do *i*-ésimo robô em relação ao robô 1. Na formação mostrada na Figura 76(b), a posição de cada robô na formação é definida em relação à posição do robô anterior, como ilustrado. Logo, para ambos os casos pode-se considerar que a posição da formação é dada por $x^1 e y^1$, enquanto as demais variáveis definem seu aspecto.

No modelo de primeira ordem do sistema multirrobôs, o vetor de estados de formação z pode ser dado por $z = z^1$. Definiu-se um vetor $\boldsymbol{\xi}$ de estados de formação trivial como sendo um vetor que contém a posição de cada robô da formação no plano cartesiano,

Figura 76: Duas formas de se definir as variáveis de formação (De La CRUZ, 2006).

ou seja, $\boldsymbol{\xi} = [x^1, y^1, x^2, y^2, \dots x^n, y^n]^T$. Seja $\mathbf{h}^{\mathbf{i}} = [x^i, y^i]^T$ o vetor que determina a posição do *i*-ésimo robô da formação. Portanto, o modelo cinemático de primeira ordem do sistema multirrobôs é dado por (De La CRUZ, 2006)

$$\dot{\boldsymbol{\xi}} = \boldsymbol{\mu} + \boldsymbol{\Pi},\tag{4.10}$$

onde $\boldsymbol{\xi} = [(\mathbf{h}^1)^T \dots (\mathbf{h}^n)^T]^T$ é o vetor de estados de formação trivial, $\boldsymbol{\mu} = [(\dot{\mathbf{h}}^1_{\mathbf{r}})^T \dots (\dot{\mathbf{h}}^n_{\mathbf{r}})^T]^T$ é a entrada do sistema, dada pelas velocidades de referência de cada robô, e $\boldsymbol{\Pi}$ é um vetor de perturbação que contém as diferenças entre as velocidades real e de referência de cada robô.

No modelo de segunda ordem, o vetor de estados de formação \mathbf{z} pode ser dado por $\mathbf{z} = [\mathbf{z}^1 \ \mathbf{z}^2]^{\mathbf{T}}$. Nesse caso, o modelo é expresso em termos dos modelos dinâmicos linearizados por realimentação entrada-saída de cada robô, sendo o do *i*-ésimo robô dado por $\ddot{\mathbf{h}}^i = \boldsymbol{v}^i + \boldsymbol{\eta}^i$, onde \boldsymbol{v}^i é a entrada de seu modelo linearizado (função da aceleração desejada e dos erros de posição e de velocidade) e $\boldsymbol{\eta}^i$ é um vetor de perturbação. Logo, este modelo tem implícitas as características dinâmicas de cada robô membro da formação. O modelo cinemático de segunda ordem do sistema multirrobôs é

$$\ddot{\boldsymbol{\xi}} = \boldsymbol{\mu}_2 + \boldsymbol{\Pi}_2, \tag{4.11}$$

onde $\boldsymbol{\mu}_2 = [(\boldsymbol{v}^1)^T \dots (\boldsymbol{v}^n)^T]^T$ é a entrada do sistema, $\boldsymbol{\Pi}_2 = [(\boldsymbol{\eta}^1)^T \dots (\boldsymbol{\eta}^n)^T]^T$ é o vetor de perturbação e $\boldsymbol{\xi} = [(\mathbf{h}^1)^T \dots (\mathbf{h}^n)^T]^T$. O vetor de estados de formação trivial para este

modelo é dado por $[(\boldsymbol{\xi})^T \ (\dot{\boldsymbol{\xi}})^T]^T$.

Mais informações sobre o modelo cinemático de segunda ordem são apresentadas em (De La CRUZ, 2006). O desenvolvimento apresentado a seguir faz uso do modelo cinemático de primeira ordem, já que a compensação da dinâmica de cada robô será realizada localmente, e não pelo controlador centralizado.

4.4.2 Transformação de coordenadas

Para expressar o modelo do sistema multirrobôs em termos do vetor de estados de formação \mathbf{z} , é realizada uma transformação de coordenadas através de um mapeamento suave ϕ_1 de $\boldsymbol{\xi}$ a \mathbf{z}^1 , tal que a inversa ϕ_1^{-1} exista e seja suave. Ou seja,

$$\mathbf{z} = \phi_1(\boldsymbol{\xi}) = \phi(\boldsymbol{\xi}), \tag{4.12}$$

onde $\mathbf{z} = \mathbf{z}^1$. O mapeamento ϕ define um difeomorfismo, já que ϕ_1^{-1} existe e é suave. Portanto,

$$\boldsymbol{\xi} = \phi_1^{-1}(\mathbf{z}^1) = \phi^{-1}(\mathbf{z}), \tag{4.13}$$

Derivando-se a equação (4.13), tem-se que

$$\dot{\boldsymbol{\xi}} = \overline{J}(\mathbf{z}^1)\dot{\mathbf{z}}^1 = \frac{\partial \phi_1^{-1}(\mathbf{z}^1)}{\partial \mathbf{z}^1} \dot{\mathbf{z}}^1, \qquad (4.14)$$

onde $\overline{J}(\mathbf{z}^1)$ é a matriz Jacobiana².

Substituindo a equação (4.10), do modelo cinemático de primeira ordem, na equação (4.14), e supondo que $\overline{J}(\mathbf{z})^{-1}$ existe, obtém-se o modelo cinemático de primeira ordem em função das novas coordenadas, ou seja,

$$\dot{\mathbf{z}} = \overline{J}(\mathbf{z})^{-1}\boldsymbol{\mu} + \overline{J}(\mathbf{z})^{-1}\boldsymbol{\Pi}, \qquad (4.15)$$

onde \mathbf{z} é o vetor de estados da formação.

A transformação de coordenadas para o modelo cinemático de segunda ordem é apresentada em (De La CRUZ, 2006), que também mostra um exemplo de aplicação.

 $^{^2\}mathrm{A}$ matriz formada pelas derivadas parciais de primeira ordem de uma função vetorial é denominada de Matriz Jacobiana em homenagem ao matemático alemão Karl Gustav Jacob
 Jacobi(10/12/1804 - 18/02/1851), em reconhecimento ao seu trabalho em prol
 do desenvolvimento da matemática analítica (Biography Base, Acesso em: 16/jan/2009).

4.4.3 Lei de Controle

A lei de controle de formação

$$\boldsymbol{\mu} = \overline{J}(\mathbf{z}) \left(K(\tilde{\mathbf{z}}) + \dot{\mathbf{z}}_d \right) \tag{4.16}$$

foi proposta por De La CRUZ (2006), baseada no modelo cinemático de primeira ordem do sistema multirrobôs. Nela, $\mathbf{z} = \mathbf{z}^1$ é o vetor de estados de formação, $\mathbf{z}_{\mathbf{d}} = \mathbf{z}_{\mathbf{d}}^1$ é o vetor de estados que caracteriza a formação desejada, $\tilde{\mathbf{z}} = \mathbf{z}_{\mathbf{d}} - \mathbf{z}$ é o vetor de erro de formação, $\boldsymbol{\mu} = [(\dot{\mathbf{h}}_{\mathbf{r}}^1)^T \dots (\dot{\mathbf{h}}_{\mathbf{r}}^n)^T]^T$ é a entrada do sistema multirrobôs, dada por velocidades de referência, e $K(\cdot)$ é uma função de saturação projetada de maneira que $\mathbf{x}^T K(\mathbf{x})$ seja definida positiva globalmente, com $\mathbf{x} \in \mathbb{R}^{2n}$.

Substituindo a lei de controle (4.16) na equação do modelo (4.15) obtém-se a equação do sistema em malha fechada, dada por

$$-\overline{J}(\mathbf{z})^{-1}\mathbf{\Pi} = K(\tilde{\mathbf{z}}) + \dot{\tilde{\mathbf{z}}}.$$
(4.17)

Considerou-se $K(\tilde{\mathbf{z}}) = \mathbf{K}_{\mathbf{c}}\tilde{\mathbf{z}}$, sendo

$$\mathbf{K_{c}} = \begin{bmatrix} \frac{k_{G1}}{a_{G} + |e_{z1}|} & 0 & \dots & 0\\ 0 & \frac{k_{G2}}{a_{G} + |e_{z2}|} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & \frac{k_{G(2n)}}{a_{G} + |e_{z(2n)}|} \end{bmatrix},$$
(4.18)

onde e_{zi} é o *i*-ésimo elemento do vetor $\tilde{\mathbf{z}}$, $a_G > 0$ e $k_{Gi} > 0$ para i = 1, 2, ..., 2n. Considerando-se a função candidata de Lyapunov $V = \frac{1}{2} \tilde{\mathbf{z}}^T \tilde{\mathbf{z}}$, sua derivada temporal é dada por

$$\dot{V} = -\tilde{\mathbf{z}}^T \mathbf{K}_{\mathbf{c}} \tilde{\mathbf{z}} - \tilde{\mathbf{z}}^T \overline{J}(\mathbf{z})^{-1} \mathbf{\Pi}.$$
(4.19)

Uma condição suficiente para que (4.19) seja definida negativa é que

$$\frac{\min_{j}(k_{Gj})}{a_{G}+\|\tilde{\mathbf{z}}\|}\|\tilde{\mathbf{z}}\|^{2} > \|\tilde{\mathbf{z}}\|\| - \overline{J}(\mathbf{z})^{-1}\mathbf{\Pi}\|,$$

ou

$$\|\tilde{\mathbf{z}}\| > \frac{a_G \| - \overline{J}(\mathbf{z})^{-1} \mathbf{\Pi} \|}{\min_j (k_{Gj}) - \| - \overline{J}(\mathbf{z})^{-1} \mathbf{\Pi} \|}.$$
(4.20)

A equação (4.20) é válida se $\min_j(k_{Gj}) > \|-\overline{J}(\mathbf{z})^{-1}\mathbf{\Pi}\|$, ou se tal condição é verificada

Figura 77: Definição das variáveis de formação (De La CRUZ, 2006).

num tempo finito (De La CRUZ, 2006). Considerando-se o vetor de perturbação Π limitado, verifica-se que existe um entorno da origem, limitado, dentro do qual se manterá o vetor de erros de formação $\tilde{\mathbf{z}}$. Se o vetor de perturbação é considerado nulo, então verifica-se que $\mathbf{z} \to \mathbf{z}_{\mathbf{d}}$ com $t \to \infty$.

É válido enfatizar que o controlador dado pela equação (4.16) é capaz de seguir uma formação desejada continuamente variante no tempo.

Para realizar o controlador de formação foi utilizado o mapeamento ϕ_1 escalonável proposto em (De La CRUZ, 2006), apresentado a seguir. O vetor de estados de formação trivial $\boldsymbol{\xi}$ é dado por

$$\boldsymbol{\xi} = \begin{bmatrix} \left(\mathbf{h^1}\right)^{\mathbf{T}} \ \left(\mathbf{h^2}\right)^{\mathbf{T}} \ \dots \ \left(\mathbf{h^n}\right)^{\mathbf{T}} \end{bmatrix}^T = \begin{bmatrix} x^1 \ y^1 \ x^2 \ y^2 \ \dots \ x^n \ y^n \end{bmatrix}^T.$$
(4.21)

Define-se as variáveis de formação da maneira ilustrada na Figura 77, obtendo-se o mapeamento dado por

$$\mathbf{z}^{\mathbf{1}} = \phi_1(\boldsymbol{\xi}) = [x^1 \ y^1 \ l_2 \ \alpha_2 \ \dots \ l_n \ \alpha_n]^T, \tag{4.22}$$

onde

$$l_i = \sqrt{(x^i - x^1)^2 + (y^i - y^1)^2}$$
$$\alpha_i = f_{\zeta i}(x^i - x^1, y^i - y^1),$$

sendo $f_{\zeta i}(x, y)$ uma função para calcular o ângulo do vetor (x, y), e $i = 2, 3, \ldots, n$.

O mape
amento inverso $\pmb{\xi}=\phi_1^{-1}(\mathbf{z^1})$ é dado por

$$\begin{aligned} x^{1} &= x^{1} \\ y^{1} &= y^{1} \\ x^{i} &= x^{1} + l_{i} \cos{(\alpha_{i})}, \quad i = 2, 3, \dots, n \\ y^{i} &= y^{1} + l_{i} \sin{(\alpha_{i})}, \quad i = 2, 3, \dots, n. \end{aligned}$$

De acordo com a equação (4.14), a matriz $\overline{J}(\mathbf{z}^1)$ resulta em

$$\overline{J}(\mathbf{z}^{1}) = \begin{bmatrix} I_{2\times 2} & 0 & 0 & 0 & \dots & 0 & 0 \\ I_{2\times 2} & \overline{J}_{S2} & 0 & 0 & \dots & 0 & 0 \\ I_{2\times 2} & 0 & \overline{J}_{S3} & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ I_{2\times 2} & 0 & 0 & 0 & \dots & 0 & \overline{J}_{Sn} \end{bmatrix},$$
(4.23)

onde $I_{2\times 2}$ é a matriz identidade 2×2 e

$$\overline{J}_{Si} = \begin{bmatrix} \cos \alpha_i & -l_i \sin \alpha_i \\ \sin \alpha_i & l_i \cos \alpha_i \end{bmatrix}, \quad i = 2, 3, \dots n.$$
(4.24)

As variáveis de formação atuais $\mathbf{z_i^1}$ e desejadas $\mathbf{z_{id}^1}$ para o *i*-ésimo robô são definidas como

$$\mathbf{z}_{1}^{1} = \begin{bmatrix} x^{1} \\ y^{1} \end{bmatrix}, \quad \mathbf{z}_{1\mathbf{d}}^{1} = \begin{bmatrix} x^{1}_{d} \\ y^{1}_{d} \end{bmatrix}, \qquad (4.25)$$

$$\mathbf{z_i^1} = \begin{bmatrix} l_i \\ \alpha_i \end{bmatrix}, \quad \mathbf{z_{id}^1} = \begin{bmatrix} l_{id} \\ \alpha_{id} \end{bmatrix}, \quad i = 2, 3, \dots n,$$
 (4.26)

$$\tilde{\mathbf{z}}_{\mathbf{i}}^{1} = \mathbf{z}_{\mathbf{id}}^{1} - \mathbf{z}_{\mathbf{i}}^{1}, \quad i = 1, \ 2, \ \dots \ n,$$
(4.27)

onde $\tilde{\mathbf{z}}_{i}^{1}$ representa o erro de formação para o *i*-ésimo robô. Considerando-se a função de saturação (4.18), a lei de controle de formação baseada no modelo cinemático de primeira ordem (4.16) pode ser expressa como

$$\dot{\mathbf{h}}_{\mathbf{r}}^{\mathbf{i}} = \begin{cases} \mathbf{S}_{\mathbf{1}}, & i = 1\\ \mathbf{S}_{\mathbf{1}} + \overline{J}_{Si} \mathbf{S}_{\mathbf{i}}, & i = 2, 3, \dots, n, \end{cases}$$
(4.28)

sendo

$$\mathbf{S}_{\mathbf{i}} = \mathbf{K}_{\mathbf{c}\mathbf{i}}\tilde{\mathbf{z}}_{\mathbf{i}}^{1} + \dot{\mathbf{z}}_{\mathbf{i}\mathbf{d}}^{1}, \quad i = 1, \ 2, \ \dots, \ n,$$
(4.29)

onde $\mathbf{K}_{\mathbf{c}\mathbf{i}}$ é uma submatriz da matriz $\mathbf{K}_{\mathbf{c}}$, definida como

$$\mathbf{K_{ci}} = \begin{bmatrix} \frac{k_{G(2i-1)}}{a_G + |e_{z(2i-1)}|} & 0\\ 0 & \frac{k_{G(2i)}}{a_G + |e_{z(2i)}|} \end{bmatrix}.$$
 (4.30)

Vale mencionar que o mapeamento ϕ_1 selecionado resulta em expressões da matriz Jacobiana que permitem que a lei de controle seja facilmente modificada caso o número de robôs da formação varie (De La CRUZ, 2006).

4.4.4 Compensação da Dinâmica dos Robôs da Formação

No sistema proposto em (De La CRUZ, 2006), e apresentado de forma resumida nesta seção, é necessário usar o controlador baseado no modelo cinemático de segunda ordem do sistema multirrobôs, que tem implícita a dinâmica de cada robô, para se efetuar a compensação da dinâmica dos robôs membros da formação. No entanto, a aplicação dos controladores dinâmicos desenvolvidos no Capítulo 3 permite que a compensação da dinâmica dos robôs seja realizada por cada robô, e que seja aplicado o controlador de formação baseado no modelo cinemático de primeira ordem, que é mais simples. Isso significa que o controlador de formação, neste caso, não precisa ter conhecimento do modelo dinâmico de cada robô, como é o caso do controlador proposto em (De La CRUZ, 2006). De fato, a aplicação dos controladores dinâmicos apresentados no Capítulo 3 permite que a compensação da dinâmica de cada robô seja realizada pelo mesmo agente que realiza o controle da formação, como ilustrado na Figura 78(a), ou por cada robô de forma independente, como mostra a Figura 78(b), o que deixa o sistema mais flexível.

Vale ressaltar que a aplicação dos controladores dinâmicos apresentados na seção 3.3 permite que os parâmetros identificados tenham seus valores ajustados com base em uma das leis de adaptação propostas nas subseções 3.3.1.1 e 3.3.2.1. Esta característica garante adaptação a modificações na dinâmica dos robôs membros da formação, causadas, por exemplo, por execução de uma tarefa de transporte de carga de forma compartilhada, em que ocorre variação de massa de cada robô quando ele está carregado ou descarregado.

Figura 78: Arquiteturas de controle centralizado de formação: (a) compensação da dinâmica dos robôs realizada pelo agente de controle centralizado; e (b) compensação da dinâmica realizada por cada robô membro da formação.

4.4.5 Resultados de Simulação

Foram realizadas duas simulações do sistema utilizando o controlador centralizado de formação baseado no modelo cinemático de primeira ordem do sistema multirrobôs, dado pela equação (4.28), incluindo a compensação da dinâmica dos robôs. Nas simulações realizadas, a compensação da dinâmica foi realizada com uso do primeiro controlador dinâmico, proposto na subseção 3.3.1.

Duas simulações foram executadas, sempre com dois robôs. Na primeira delas, um dos robôs (denominado de robô 1) parte da posição (0, 0; 0, 0)m, enquanto o outro (robô 2) parte do ponto (0, 0; 0, 6)m. Ambos devem se deslocar em linha reta, paralela ao eixo X, sendo a formação desejada caracterizada por $l_{2d} = 1m$ e $\alpha_{2d} = 23^{\circ}$. A Figura 79(a) ilustra a trajetória percorrida por ambos os robôs. Nesta figura, o caminho percorrido pelo robô 1 é representado por uma linha contínua, enquanto o caminho percorrido pelo robô 2 é representado por uma linha tracejada. A cada dois segundos as posições instantâneas dos robôs são marcadas por um círculo. Pode-se notar que o robô 2 é, inicialmente, acelerado de forma que a formação desejada seja atingida. Em seguida, ambos os robôs passam a

Figura 79: Controle centralizado de formação: (a) trajetória percorrida pelos robôs; e (b) evolução dos erros de formação durante a primeira simulação.

Figura 80: Controle centralizado de formação: evolução dos parâmetros dinâmicos dos robôs (a) 1 e (b) 2 durante a primeira simulação.

se deslocar com a mesma velocidade, mantendo a formação.

Na Figura 79(b) são apresentados os valores de erro de formação dos robôs 1 (figura superior) e 2 (figura inferior) durante a primeira simulação. A figura mostra que os erros decrescem e permanecem próximos a zero durante o deslocamento dos robôs. A evolução no tempo dos valores estimados dos parâmetros dinâmicos dos robôs 1 e 2 é mostrada nas figuras 80(a) e 80(b).

Figura 81: Controle centralizado de formação: (a) trajetória percorrida pelos robôs; e (b) evolução dos erros de formação durante a segunda simulação.

Na segunda simulação, os robôs partem das mesmas posições iniciais anteriores, ou seja, (0,0; 0,0)m para o robô 1 e (0,0; 0,6)m para o robô 2. Ambos devem seguir uma trajetória que descreve, inicialmente, um arco no sentido anti-horário e, em seguida, uma linha reta paralela ao eixo Y. Assim como na primeira simulação, a formação desejada é caracterizada por $l_{2d} = 1m$ e $\alpha_{2d} = 23^{\circ}$. A Figura 81(a) ilustra a trajetória percorrida por ambos os robôs. O caminho percorrido pelo robô 1 é representado por uma linha contínua, enquanto o caminho percorrido pelo robô 2 é representado por uma linha tracejada. A cada dois segundos as posições instantâneas dos robôs são marcadas por um círculo. Podese notar que o robô 2 é, inicialmente, acelerado de forma que a formação desejada seja atingida. Em seguida, ambos os robôs passam a descrever o arco, sendo que a formação desejada é mantida pelo controlador centralizado, fazendo com que ambos os robôs se desloquem com a mesma velocidade.

Na Figura 81(b) são apresentados os valores de erro de formação dos robôs 1 (figura superior) e 2 (figura inferior) durante a segunda simulação. A figura mostra que os erros decrescem e permanecem próximos a zero durante o deslocamento dos robôs, mesmo durante a descrição do arco. A evolução no tempo dos valores estimados dos parâmetros dinâmicos dos robôs 1 e 2 são mostrados nas figuras 82(a) e 82(b).

Os resultados de ambas as simulações ilustram que o primeiro controlador dinâmico,

Figura 82: Controle centralizado de formação: evolução dos parâmetros dinâmicos dos robôs (a) 1 e (b) 2 durante a segunda simulação.

desenvolvido na subseção 3.3.1, pode ser utilizado para compensar a dinâmica de robôs membros de um grupo sob controle centralizado de formação baseado no modelo cinemático de primeira ordem. Por serem adaptativos, os controladores dinâmicos promovem, ainda, ajuste nos valores dos parâmetros estimados de forma a compensarem possíveis mudanças na dinâmica dos robôs, o que representa uma vantagem em relação ao controlador de formação baseado no modelo cinemático de segunda ordem proposto em (De La CRUZ; CARELLI, 2006).

4.5 Segundo Esquema de Controle Centralizado de Formação

A abordagem proposta por De La CRUZ (2006) para realização de controle de formação com compensação da dinâmica envolve o modelo cinemático de segunda ordem do sistema multirrobôs. Na seção 4.4 foi mostrado que é possível realizar a compensação da dinâmica dos robôs da formação utilizando um dos controladores dinâmicos apresentados no Capítulo 3 em conjunto com o modelo cinemático de primeira ordem do sistema multirrobôs, que é mais simples. Esta seção apresenta outro esquema de controle centralizado de formação baseado em estruturas virtuais, que também permite o uso de um dos controladores dinâmicos apresentados no Capítulo 3. Tal esquema é similar ao que foi proposto em (FIERRO; DAS, 2002), em que cada camada funciona como um módulo

Figura 83: Arquitetura do Esquema Multicamadas proposto.

independente que lida com uma parte específica do problema de controle de formação de robôs. A seção também mostra o projeto e análise de estabilidade de um controlador de formação, além de resultados de simulação e de experimentos.

4.5.1 Esquema Multicamadas

Com o intuito de modularizar o sistema e, com isso aumentar sua flexibilidade, nesta seção é introduzido um Esquema Multicamadas, ilustrado na Figura 83. As principais características do esquema proposto são:

Camadas de Planejamento Off-line e Planejamento On-line: a primeira é responsável pelas condições iniciais, geração da trajetória a ser seguida e definição da forma desejada para a estrutura virtual (formação dos robôs). A segunda tem como objetivo alterar os sinais de referência gerados pela primeira, realizando um

ajuste momentâneo de maneira que o robô, ou a formação, reajam de acordo com a informação obtida por seus sensores sobre o ambiente, por exemplo realizando desvio de obstáculos.

- Camada de Controle: responsável pela geração dos sinais de controle a serem enviados ao robô ou aos robôs da formação, de modo que sejam atingidas as referências enviadas pelas Camadas de Planejamento.
- Camada de Compensação Dinâmica: realiza a compensação adaptativa da dinâmica de cada robô de forma que estes sejam capazes de seguir as velocidades de referência enviadas pela Camada de Controle com o menor erro possível.
- Camada do Robô: representa o robô ou os robôs da formação a ser controlada.
- Ambiente: representa o meio que cerca o robô ou a formação, incluindo a interação com os demais robôs, obstáculos, etc.

Uma importante caracterísica do esquema de controle proposto é a independência de cada camada, o que significa que modificações em uma camada específica não provocam mudanças estruturais nas demais camadas. Como exemplo, diferentes controladores de formação ou de compensação dinâmica podem ser testados sem que as demais camadas sejam modificadas. Além disso, a estrutura básica do esquema proposto pode ser alterada, por exemplo, através da retirada de camadas que não sejam necessárias a determinada aplicação. Por exemplo, a Camada de Planejamento *On-line* pode ser descartada caso não existam obstáculos no ambiente em que os robôs irão navegar, caso em que a referência gerada pela Camada de Planejamento *Off-line* deve ser enviada diretamente à Camada de Controle.

Considerando o controle de formação, alguns blocos foram adicionados aos já explicados para completar o esquema proposto: a matriz Jacobiana inversa $J^{-1}(\cdot)$, que relaciona as velocidades desejadas no espaço da formação com as velocidades no espaço dos robôs; a cinemática inversa dos robôs a serem controlados $K_r^{-1}(\cdot)$; e a cinemática direta da formação K. Tais blocos permitem que o controlador de formação trabalhe no espaço da formação, facilitando seu projeto e a análise de estabilidade do sistema resultante.

No sistema aqui apresentado, foi implementado um controlador de formação para três robôs móveis tipo uniciclo, com compensação da dinâmica, em que a Camada de Planejamento *On-line* foi desconsiderada. A Camada de Planejamento *Off-line* gera referências para a Camada de Controle, que possui o controlador responsável por controlar a forma, a posição e a orientação da formação. As variáveis de formação foram definidas da maneira proposta por (MAS; PETROVIC; KITTS, 2008), e o controlador desenvolvido permite que se controle a posição do centróide e a forma da estrutura virtual dando maior ênfase a um ou a outro, conforme a tarefa a ser realizada.

Considerou-se o uso de três robôs móveis de tipo uniciclo, cujo modelo cinemático é

$$\begin{bmatrix} \dot{x}_i \\ \dot{y}_i \\ \dot{\psi}_i \end{bmatrix} = \begin{bmatrix} \cos \psi_i & -a \sin \psi_i \\ \sin \psi_i & a \cos \psi_i \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_i \\ \omega_i \end{bmatrix}, \qquad (4.31)$$

onde $a_i > 0$ representa a distância entre o ponto de interesse e o ponto central do eixo virtual que une as rodas de tração, $u_i \in \omega_i$ são, respectivamente, as velocidades linear e angular, $\mathbf{h_i} = [x_i \ y_i]^T$ é o vetor que contém as coordenadas do ponto de interesse e ψ_i é a orientação do *i*-ésimo robô.

Considerando somente as coordenadas do ponto de interesse h_i , as equações de cinemática direta e inversa são

$$\dot{\mathbf{h}}_{\mathbf{i}} = \mathbf{K}_{\mathbf{r}\mathbf{i}}\mathbf{v}_{\mathbf{i}}, \qquad \mathbf{v}_{\mathbf{i}} = \mathbf{K}_{\mathbf{r}\mathbf{i}}^{-1}\dot{\mathbf{h}}_{\mathbf{i}},$$
(4.32)

onde $\mathbf{v_i} = \begin{bmatrix} u_i & \omega_i \end{bmatrix}^T$,

$$\mathbf{K}_{\mathbf{r}\mathbf{i}} = \begin{bmatrix} \cos\psi_i & -a_i\sin\psi_i \\ \sin\psi_i & a_i\cos\psi_i \end{bmatrix} \quad \mathbf{e} \quad \mathbf{K}_{\mathbf{r}\mathbf{i}}^{-1} = \begin{bmatrix} \cos\psi_i & \sin\psi_i \\ -\frac{1}{a_i}\sin\psi_i & \frac{1}{a_i}\cos\psi_i \end{bmatrix}.$$

Considerando a formação de três robôs uniciclo, as matrizes que determinam a cinemática direta $\mathbf{K_r}$ e inversa $\mathbf{K_r^{-1}}$ da estrutura são

$$\mathbf{K_r} = \begin{bmatrix} \mathbf{K_{r1}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{K_{r2}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{K_{r3}} \end{bmatrix} \qquad \mathbf{e} \qquad \mathbf{K_r^{-1}} = \begin{bmatrix} \mathbf{K_{r1}^{-1}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{K_{r2}^{-1}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{K_{r3}^{-1}} \end{bmatrix}.$$

Robôs com difrentes modelos cinemáticos podem ser utilizados numa mesma formação. Caso o *i*-ésimo robô seja substituído por outro com cinemática diferente, basta substituir a matriz \mathbf{K}_{ri} pela correspondente ao seu modelo.

Figura 84: Variáveis de formação.

4.5.2 Cinemática Direta e Inversa de Formação

As variáveis de estado utilizadas para representação da estrutura virtual são mostradas na Figura 84, e foram inicialmente propostas por Mas, Petrovic e Kitts (2008). Aqui, realiza-se uma divisão da representação da formação em dois vetores: sua pose é definida por $\mathbf{P}_F = [x_F \ y_F \ \psi_F]$, onde (x_F, y_F) representa a posição do centróide da formação e ψ_F representa sua orientação, e sua forma é definida por $\mathbf{S}_F = [p_F \ q_F \ \beta_F]$, onde p_F , $q_F \ e\beta_F$ representam a distância entre os robôs R_1 e R_2 , a distância entre os robôs R_1 e R_3 , e o ângulo $R_2 \widehat{R_1} R_3$, respectivamente. É válido mencionar que a estrutura utiliza um sistema global de referências xy.

Daqui em diante as variáveis de formação serão representadas por $\mathbf{q} = [\mathbf{P}_F \ \mathbf{S}_F]^T$, e as posições dos robôs por $\mathbf{x} = [(\mathbf{h_1})^T \ (\mathbf{h_2})^T \ (\mathbf{h_3})^T]^T$. É importante salientar que a orientação dos robôs não é considerada na presente proposta. A relação entre as variaveis de formação e as posições de cada um dos robôs é dada pela transformação de cinemática direta (K), que é representada pelas equações

$$\mathbf{P}_{F} = \begin{bmatrix} \frac{x_{1} + x_{2} + x_{3}}{3} \\ \frac{y_{1} + y_{2} + y_{3}}{3} \\ \arctan \frac{\frac{2}{3}x_{1} - \frac{1}{3}(x_{2} + x_{3})}{\frac{2}{3}y_{1} - \frac{1}{3}(y_{2} + y_{3})} \end{bmatrix}^{T}, \qquad (4.33)$$

$$\mathbf{S}_{F} = \begin{bmatrix} \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}} \\ \sqrt{(x_{1} - x_{3})^{2} + (y_{1} - y_{3})^{2}} \\ \operatorname{arccos} \frac{p_{F}^{2} + q_{F}^{2} - r_{F}^{2}}{2p_{F}q_{F}} \end{bmatrix}^{T}, \qquad (4.34)$$

onde $r_F = \sqrt{(x_2 - x_3)^2 + (y_2 - y_3)^2}$.

A transformação de cinemática inversa (K^{-1}) é dada por

$$\mathbf{x} = \begin{bmatrix} \mathbf{h_1} \\ \mathbf{h_2} \\ \mathbf{h_3} \end{bmatrix} = \begin{bmatrix} x_F + \frac{2}{3}h_F \sin\psi_F \\ y_F + \frac{2}{3}h_F \cos\psi_F \\ x_F + \frac{2}{3}h_F \sin\psi_F - p_F \sin(\alpha + \psi_F) \\ y_F + \frac{2}{3}h_F \cos\psi_F - p_F \cos(\alpha + \psi_F) \\ x_F + \frac{2}{3}h_F \sin\psi_F + q_F \sin(\beta_F - \alpha - \psi_F) \\ y_F + \frac{2}{3}h_F \cos\psi_F - q_F \cos(\beta_F - \alpha - \psi_F) \end{bmatrix},$$
(4.35)

onde

$$r_F = \sqrt{p_F^2 + q_F^2 - 2p_F q_F \cos(\beta_F)}, \qquad \alpha = \arccos \frac{p_F^2 + h_F^2 - \frac{1}{4}r_F^2}{2p_F h_F},$$

e
$$h_F = \sqrt{\frac{1}{2} \left(p_F^2 + q_F^2 - \frac{1}{2}r_F^2\right)},$$

sendo h_F a distância entre $\{R_1\}$ e o ponto central do segmento $\overline{\{R_2\}\{R_3\}}$, passando por (x_F, y_F) .

Tomando as derivadas das transformações de cinemática inversa e direta é possível obter-se a relação entre as velocidades de $\mathbf{x} \in \mathbf{q}$, dada por

$$\dot{\mathbf{q}} = J(\mathbf{x})\dot{\mathbf{x}}$$

onde $J(\mathbf{x})$ representa a matriz Jacobiana. Tal matriz e sua inversa são dadas por

$$J(\mathbf{x}) = \frac{\partial \mathbf{q}_{n \times 1}}{\partial \mathbf{x}_{m \times 1}} \quad e \quad J^{-1}(\mathbf{q}) = \frac{\partial \mathbf{x}_{m \times 1}}{\partial \mathbf{q}_{n \times 1}},$$

para m, n = 1, 2, ..., 6.

4.5.3 Lei de Controle

A Camada de Controle recebe da camada superior a pose e a forma desejada para a estrutura virtual formada pelos robôs, ou seja $\mathbf{q}_{des} = [\mathbf{P}_{Fd} \ \mathbf{S}_{Fd}]^T$, assim como a variação desejada $\dot{\mathbf{q}}_{des} = [\dot{\mathbf{P}}_{Fd} \ \dot{\mathbf{S}}_{Fd}]^T$. O controlador de formação gera, então, os valores de referência para pose e forma $\dot{\mathbf{q}}_{ref} = [\dot{\mathbf{P}}_{Fr} \ \dot{\mathbf{S}}_{Fr}]^T$, onde os índices $d \in r$ representam os sinais desejado e de referência, respectivamente. Definindo o erro de formação como $\tilde{\mathbf{q}} = \mathbf{q}_{des} - \mathbf{q}$, a lei de controle de formação proposta é

$$\dot{\mathbf{q}}_{\mathrm{ref}} = \dot{\mathbf{q}}_{\mathrm{des}} + \kappa \tilde{\mathbf{q}},\tag{4.36}$$

onde κ é uma matriz de ganhos diagnonal e definida positiva.

Considera-se que existe uma diferença $\delta_{\mathbf{v}}$ entre os valores desejados e reais das variáveis de formação, tal que $\dot{\mathbf{q}} = \dot{\mathbf{q}}_{ref} + \delta_{\mathbf{v}}$. Assim, a equação do sistema em malha fechada pode ser escrita como

$$\dot{\tilde{\mathbf{q}}} + \kappa \tilde{\mathbf{q}} = -\delta_{\mathbf{v}}.$$
 (4.37)

Considerando a função candidata de Lyapunov $V = \frac{1}{2} \tilde{\mathbf{q}}^{T} \tilde{\mathbf{q}} > 0$, sua primeira derivada temporal é

$$\dot{V} = \tilde{\mathbf{q}}^{\mathrm{T}}\dot{\tilde{\mathbf{q}}} = -\tilde{\mathbf{q}}^{\mathrm{T}}\kappa\tilde{\mathbf{q}} - \tilde{\mathbf{q}}^{\mathrm{T}}\boldsymbol{\delta}_{\mathbf{v}}$$

Assumindo seguimento perfeito de velocidade, ou seja, considerando-se $\delta_{\mathbf{v}} = \mathbf{0}$, podese concluir que \dot{V} é definida negativa, o que significa que o equilíbrio do sistema (a origem) é globalmente assintoticamente estável, i.e., $\tilde{\mathbf{q}}(t) \rightarrow \mathbf{0}$ com $t \rightarrow \infty$.

Por outro lado, quando se considera a existência de um erro de seguimento de velocidade $\delta_{\mathbf{v}} \neq \mathbf{0}$, pode-se concluir que o equilíbrio será estável se $\mathbf{\tilde{q}}^{\mathrm{T}} \kappa \mathbf{\tilde{q}} > |\mathbf{\tilde{q}}^{\mathrm{T}} \delta_{\mathbf{v}}|$. Uma condição suficiente para que se cumpra a desigualdade anterior é

$$\lambda_{\min}(\boldsymbol{\kappa}) \| \tilde{\mathbf{q}} \|^2 > \| \tilde{\mathbf{q}} \| \| \boldsymbol{\delta}_{\mathbf{v}} \|,$$

ou

$$\|\tilde{\mathbf{q}}\| > \frac{\|\boldsymbol{\delta}_{\mathbf{v}}\|}{\lambda_{\min}(\boldsymbol{\kappa})},\tag{4.38}$$

onde $\lambda_{\min}(\boldsymbol{\kappa})$ representa o menor autovalor de $\boldsymbol{\kappa}$. Isso significa que os erros de formação $\tilde{\mathbf{q}}$ são finalmente limitados, e que seu limite depende diretamente do erro de seguimento de velocidade $\boldsymbol{\delta}_{\mathbf{v}}$ e dos ganhos $\boldsymbol{\kappa}$ do controlador de formação. A equação (4.38) mostra que uma redução nos erros de seguimento de velocidade de cada robô provoca diminuição no limite de erro de formação. Na seção 3.6 foi mostrado que, para um robô, a compensação da dinâmica provoca redução no erro de seguimento de velocidade, o que motiva a utilização da compensação dinâmica em conjunto com o controlador de formação aqui proposto.

Nota 4.4. O controlador proposto é capaz de fazer com que os robôs atinjam uma formação desejada, que pode ser variante ou invariante no tempo, tanto em forma como em posição e orientação. Ou seja, usando o mesmo controlador, é possível fazer com que os robôs se posicionem numa estrutura virtual desejada que se mantém fixa, ou que sigam uma estrutura que pode variar de pose e de forma ao longo do tempo.

Nota 4.5. Os ganhos do controlador são independentes para cada variável de formação. Assim, é possível fazer ajustes de ganhos de tal maneira a priorizar a manutenção da forma ou da pose da formação, de acordo com a tarefa a ser realizada.

4.5.4 Compensação da Dinâmica dos Robôs da Formação

A função da Camada de Compensação Dinâmica é modificar os sinais de referência enviados pela Camada de Controle com o objetivo de reduzir o erro de seguimento de velocidade. Para isso, a compensação da dinâmica de cada robô é realizada de maneira independente.

Esta camada recebe da Camada de Controle, depois da conversão apropriada, os valores desejados de velocidade linear e angular para cada robô $\mathbf{v_{des}} = [(\mathbf{v_{d1}})^T (\mathbf{v_{d2}})^T (\mathbf{v_{d3}})^T]^T$, e gera sinais de referência de velocidade $\mathbf{v_{ref}} = [(\mathbf{v_{r1}})^T (\mathbf{v_{r2}})^T (\mathbf{v_{r3}})^T]^T$ que são enviados à Camada dos Robôs. Aqui, $\mathbf{v_{di}} = [u_{di} \ \omega_{di}]^T$ são as velocidades linear e angular desejadas, e $\mathbf{v_{ri}} = [u_{refi} \ \omega_{refi}]^T$ são os sinais de referência de velocidade linear e angular correspondentes ao *i*-ésimo robô.

O controlador utilizado para realizar a compensação dinâmica é aquele representado por (3.42), ou seja,

$$\mathbf{v_{ri}} = \hat{\mathbf{H}}_{\mathbf{i}}(\mathbf{\dot{v}_{di}} + \mathbf{T}(\mathbf{\tilde{v}_{i}})) + \hat{\mathbf{C}}_{\mathbf{i}}\mathbf{v_{di}} + \hat{\mathbf{F}}_{\mathbf{i}}\mathbf{v_{di}},$$

onde o subscrito *i* indica que as variáveis correspondem ao *i*-ésimo robô. Para adaptação dos parâmetros estimados utiliza-se a lei de adaptação robusta (3.49), que inclui a modificação- σ , ou seja,

$$\dot{\hat{ heta}}_{\mathrm{i}} = \gamma_{\mathrm{i}} \mathrm{G}_{\mathrm{i}}^{\mathrm{T}} \tilde{\mathrm{v}}_{\mathrm{i}} - \gamma_{\mathrm{i}} \Gamma_{\mathrm{i}} \hat{ heta}_{\mathrm{i}}$$

Considerando $V = \frac{1}{2} \tilde{\mathbf{v}}_{\mathbf{i}}^{\mathbf{T}} \mathbf{H}_{\mathbf{i}} \tilde{\mathbf{v}}_{\mathbf{i}} + \frac{1}{2} \tilde{\boldsymbol{\theta}}_{\mathbf{i}}^{\mathbf{T}} \boldsymbol{\gamma}_{\mathbf{i}}^{-1} \tilde{\boldsymbol{\theta}}_{\mathbf{i}} > 0$ como função candidata de Lyapunov, foi mostrado que $\tilde{\mathbf{v}}_{\mathbf{i}} \in \tilde{\boldsymbol{\theta}}_{\mathbf{i}}$ são finalmente limitados, ainda que existam distúrbios limitados

e variações suaves e limitadas nos parâmetros dinâmicos. Na ausência de distúrbios, variações de parâmetros e erro paramétrico, foi mostrado que $\tilde{\mathbf{v}}_{\mathbf{i}}(t) \rightarrow \mathbf{0} \operatorname{com} t \rightarrow \infty$.

O erro de velocidade $\tilde{\mathbf{v}}_i$ para os robôs da formação está relacionado com o erro de velocidade da formação $\delta_{\mathbf{v}}$ através de

$$\boldsymbol{\delta}_{\mathbf{v}} = \begin{bmatrix} \boldsymbol{\delta}_{v1} \\ \boldsymbol{\delta}_{v2} \\ \boldsymbol{\delta}_{v3} \end{bmatrix} = J(\mathbf{x}) \mathbf{K}_{\mathbf{r}}(\mathbf{x}) \begin{bmatrix} \tilde{\mathbf{v}}_1 \\ \tilde{\mathbf{v}}_2 \\ \tilde{\mathbf{v}}_3 \end{bmatrix}.$$
(4.39)

Já foi mostrado que o controlador de compensação dinâmica é capaz de reduzir o erro de seguimento de velocidade $\tilde{\mathbf{v}}_{\mathbf{i}}$ para um robô, de forma que $\delta_{\mathbf{v}}$ também é reduzido. Portanto, de acordo com esta conclusão, (4.39) mostra que a Camada de Compensação Dinâmica pode reduzir os erros de formação $\tilde{\mathbf{q}}$.

4.5.5 Resultados de Simulação

Para avaliar a validade e o desempenho do esquema proposto, diversas simulações foram realizadas utilizando a plataforma **MRSiM**, apresentada em (BRANDÃO et al., 2008). Em todas as simulações, considerou-se o modelo dinâmico dos robôs Pioneer 3-DX, da empresa Mobile Robots. A pose inicial de cada robô, suas características dinâmicas, a trajetória e a forma desejadas para a formação foram os mesmos para as três simulações aqui relatadas. A diferença entre cada uma das três simulações é:

- Na primeira, a compensação dinâmica está desativada;
- Na segunda, a compensação dinâmica está ativada sem adaptação de parâmetros, e os valores estimados diferem cerca de 40% daqueles usados nos modelos dos robôs;
- Na terceira, a compensação dinâmica está ativada com adaptação de parâmetros, cujos valores iniciais estimados diferem cerca de 40% daqueles usados nos modelos dos robôs.

Em todas, os robôs devem atingir e seguir uma formação desejada, que varia sua posição e forma ao longo do tempo. A trajetória desejada para a formação é dada por

$$\begin{aligned} x_{Fd} &= 0, 2t \\ y_{Fd} &= 4\cos(\pi t/30), \quad \text{onde} \qquad \theta = \arctan\left(\frac{\frac{dy_{Fd}}{dt}}{\frac{dx_{Fd}}{dt}}\right), \\ \psi_{Fd} &= \pi/2 - \theta \end{aligned}$$

o que significa que a estrutura virtual deve se mover descrevendo uma trajetória senoidal, alterando sua orientação de maneira que sempre o mesmo robô se localize à frente da formação. É importante mencionar que tal trajetória foi escolhida para tentar excitar a dinâmica dos robôs através de mudanças em suas acelerações. Os valores da matriz de ganhos κ foram ajustados com a compensação dinâmica desativada, de maneira que o sistema apresentasse um desempenho considerado aceitável. Nesse caso, valores mais elevados de ganhos provocam aumento das oscilações, enquanto valores menores fazem com que exista um atraso grande no seguimento da formação, degradando o desempenho. Os mesmos valores de ganhos κ ajustados para este caso foram utilizados nas três simulações. As velocidades dos robôs durante tais simulações variaram entre $0, 1 \leq u \leq 0, 7 m/s$ e $-1, 0 \leq \omega \leq 1, 0 \ rad/s$.

As Figuras 85 (a), (c) e (e) mostram a trajetória percorrida pelos robôs da formação durante as três simulações. Os triângulos sombreado e tracejado indicam, respectivamente, a formação desejada e real para a estrutura virtual a cada intervalo de 8s. As formas inicial e final desejadas são dadas por $\mathbf{S}_F = [1m, 1m, \pi/3rad]$, mas no intervalo 14s < t < 46s a forma desejada é alterada para $\mathbf{S}_F = [0, 75m, 1, 5m, \pi/6rad]$, para simular uma situação de desvio de obstáculos, por exemplo. Os erros para cada um dos casos são apresentados nas Figuras 85 (b), (d) e (f). Em tais figuras, é possível notar que o sistema apresenta grande oscilação quando não há compensação da dinâmica. Com a habilitação desta, mantendo-se os mesmos ganhos $\boldsymbol{\kappa}$, as oscilações diminuem de maneira bastante significativa. Também verifica-se que o comportamento do sistema melhora de maneira considerável com ativação da compensação dinâmica, obtendo-se erros menores.

Nos casos em que a compensação dinâmica estava habilitada (com e sem adaptação), o comportamento do sistema foi muito semelhante, sendo difícil fazer uma avaliação de seu desempenho apenas com base nos gráficos apresentados. Por isso, índices *IAE* foram calculados considerando a pose \mathbf{P}_F e a forma \mathbf{S}_F da estrutura virtual para comparação do desempenho alcançado em cada caso. Os resultados são apresentados na Tabela 3. Podese verificar que o melhor desempenho foi obtido na terceira simulação, quando foi ativada a compensação dinâmica com adaptação de parâmetros, situação em que os índices *IAE* ficaram cerca de 50% menores quando comparados àqueles obtidos na primeira simulação.

Os resultados das simulações aqui descritas ilustram que a aplicação da compensação dinâmica, no contexto de controle de formação aqui proposto, promove melhora no desempenho do sistema e reduz os erros de formação, evidenciando sua importância.

(a) Trajetória per corrida - sem compensação dinâmica.

(b) Evolução dos erros de formação - sem compensação dinâmica.

(c) Trajetória percorrida - com compensação dinâmica sem adaptação.

(e) Trajetória percorrida - com compensação adaptativa da dinâmica.

(d) Evolução dos erros de formação - com compensação dinâmica sem adaptação.

(f) Evolução dos erros de formação - com compensação adaptativa da dinâmica.

Figura 85: Resultados de Simulação.

	\mathbf{P}_{F}	\mathbf{S}_F
Sem compensação dinâmica	37,17	$28,\!55$
Com compensação dinâmica sem adaptação	17,96	$13,\!51$
Com compensação adaptativa da dinâmica	16,79	13,33

Tabela 3: IAE para simulações do controle centralizado tipo estruturas virtuais

4.5.6 Resultados Experimentais

Foram realizados experimentos de controle de formação com três robôs uniciclo considerando o esquema e os controladores aqui propostos. Os três robôs utilizados foram dois robôs Pioneer 2-DX (sendo um com computador e outro sem computador de bordo), e um Pioneer 3-DX, todos da empresa Mobile Robots. Os três robôs possuem dinâmicas distintas, mas todos são do tipo uniciclo e, portanto, possuem a mesma cinemática. Resultados de quatro desses experimentos são aqui apresentados. Durante os experimentos, os robôs partem de posições diferentes da formação inicial desejada, que se mantém fixa durante os primeiros 30s. Assim, durante os primeiros 30s, os robôs devem se posicionar de maneira a formarem a estrutura virtual desejada, na posição desejada. Após esse intervalo, a formação desejada se desloca e gira ao mesmo tempo, até t = 52s, quando o experimento é encerrado.

Para evidenciar a importância da adaptação de parâmetros, em dois dos experimentos os robôs realizam transporte de cargas, caso em que cada robô transporta em sua base superior uma massa de cerca de 10kg. Devido às diferenças entre eles, tal acréscimo de massa representa um aumento entre 50% e 100% na massa total de cada robô, o que significa uma importante modificação em sua dinâmica.

Nos quatro experimentos são usados os mesmos robôs partindo da mesma condição inicial com a mesma formação desejada. Os ganhos de todos os controladores também são mantidos iguais em todos os experimentos. As diferenças entre eles são:

- No primeiro, os robôs estão descarregados e a compensação dinâmica está desabilitada;
- No segundo, os robôs estão descarregados e a compensação adaptativa da dinâmica está habilitada;
- No terceiro, os robôs estão carregados e a compensação dinâmica está desabilitada;
- No quarto, os robôs estão carregados e a compensação adaptativa da dinâmica está

habilitada.

É válido ressaltar que, nos casos em que a compensação dinâmica é realizada, os valores iniciais dos parâmetros dinâmicos estimados são iguais àqueles identificados para cada robô quando descarregado.

O esquema de controle aqui empregado é do tipo centralizado, em que a compensação da dinâmica de todos os robôs é realizada pelo agente de controle, como ilustra a Figura 78(a). As informações de posição e velocidades de cada robô são obtidas com base em sua própria odometria, e enviadas ao agente de controle, que, nesse caso, é um dos próprios robôs da formação. Nos experimentos realizados, os computadores de controle dos robôs estavam conectados via rede sem fio. O robô que não possui computador de bordo foi controlado por um computador de mesa, com sinais enviados via rádio-modem.

As posições iniciais dos robôs durante os experimentos são: $R_1 = (-3, 0; 3, 0)m$, $R_2 = (-3, 0; 2, 0)m$, $R_3 = (-2, 0; 2, 0)m$. A formação desejada durante os primeiros 30s é caracterizada por $\mathbf{P}_{Fd} = [-2, 233 \ 2, 500 \ 0, 437]$, $\mathbf{S}_{Fd} = [0, 86 \ 1, 00 \ 0, 95]$, $\dot{\mathbf{P}}_{Fd} = [0 \ 0 \ 0]$ e $\dot{\mathbf{S}}_{Fd} = [0 \ 0 \ 0]$, o que significa que os robôs devem atingir as posições $R_1 = (-2, 0; 3, 0)m$, $R_2 = (-2, 7; 2, 5)m$ e $R_3 = (-2, 0; 2, 0)m$, e pararem ali. Após t = 30s a formação desejada varia de acordo com $\dot{\mathbf{P}}_{Fd} = [-0, 04(t-30) \ -0, 02(t-30) \ 0, 04(t-30)]$ e $\dot{\mathbf{S}}_{Fd} = [0 \ 0 \ 0]$, o que significa que ela se desloca no sentido contrário ao deslocamento inicial dos robôs, girando no sentido horário, sem alteração em sua forma inicial.

Os valores dos ganhos utilizados em todos os experimentos foram $k_u = 0, 5$ e $k_w = 0, 3$ para o segundo controlador dinâmico, e $\kappa = diag(0, 5; 0, 5; 0, 75; 1, 0; 1, 0; 0, 75)$ para o controlador de formação. Com tais valores na matriz de ganhos κ , a ideia é que o controle de forma tenha maior importância que o controle de posicionamento do centróide da formação.

Em todas as figuras apresentadas a seguir que mostram as trajetórias percorridas pelos robôs, convencionou-se que o robô R_1 é representado pelo círculo azul, o robô R_2 , pelo círculo vermelho, e o robô R_3 , pelo círculo negro. As linhas contínuas de mesma cor que os robôs representam o caminho percorrido por cada um deles. Os círculos representam as posições dos robôs a cada 3s de experimento, sendo a formação instantânea nestes momentos representada pela linha tracejada amarela. A linha verde com traço-ponto representa a formação desejada, também a cada intervalo de 3s.

As Figuras 86(a) e 86(b) illustram as trajetórias percorridas pelos três robôs durante o

Figura 86: Esquema Multicamadas - trajetórias percorridas durante experimento sem carga, sem compensação da dinâmica: (a) formação desejada fixa, e (b) formação desejada variando.

Figura 87: Esquema Multicamadas - erros de formação durante experimento sem carga, sem compensação da dinâmica.

primeiro experimento, em que os robôs estão descarregados e a compensação dinâmica está desabilitada. A Figura 86(a) mostra as trajetórias para o intervalo $0 \le t \le 30s$, em que a formação desejada é fixa, enquanto a Figura 86(b) apresenta as trajetórias para o intervalo $30s \le t \le 52s$, quando a formação desejada se desloca e gira de maneira simultânea. Podese notar que, no início do experimento, os robôs se deslocam rapidamente às posições que correspondem à formação desejada, acompanhando-a quando ela começa a se deslocar.

A evolução dos erros de formação para o primeiro experimento é mostrada na Fi-

Figura 88: Esquema Multicamadas - ações de controle enviadas aos robôs durante experimento sem carga, sem compensação da dinâmica.

gura 87. Pode-se notar que, durante os primeiros 30s, intervalo em que a formação desejada é fixa, todos os sinais de erro convergem a valores próximos a zero. Em t = 30shá um aumento no módulo de todos os valores de erro, causado pelo início do deslocamento da formação desejada. Após alguma oscilação, os erros tendem novamente a valores próximos a zero enquanto a formação desejada se desloca e gira. É interessante ressaltar que o controlador de formação proposto não realiza controle de orientação de cada robô da formação. Por isso, quando a formação desejada começa a se movimentar em t = 30s, os robôs podem estar orientados para qualquer direção, inclusive na direção oposta ao seu deslocamento. Tal fato pode fazer com que os robôs precisem executar manobras de orientação para poderem seguir a formação, o que também pode provocar aumento momentâneo nos valores dos erros.

As ações de controle enviadas a cada robô da formação são mostradas na Figura 88. Ali, na primeira coluna são mostrados os sinais de referência de velocidade linear, enquanto na segunda coluna são apresentados os sinais de referência de velocidade angular para os três robôs da formação. Pode-se notar que a variação em tais sinais não ocorre de maneira abrupta, sendo a maior variação observada no início do experimento, quando existe um erro grande na forma e na posição da estrutura virtual. Outra variação importante ocorre em t = 30s, quando a formação desejada começa a se deslocar. A partir de tal instante, as referências de velocidade linear permanecem diferentes de zero, já que a estrutura se mantém em movimento. Deve-se notar que as velocidades de deslocamento de cada robô

Figura 89: Esquema Multicamadas - trajetórias percorridas durante experimento sem carga, com compensação adaptativa da dinâmica: (a) formação desejada fixa, e (b) formação desejada variando.

são diferentes pois a estrutura se desloca e gira simultaneamente. Por isso, a velocidade de cada robô depende de sua posição instantânea.

O resultado anterior ilustra que o controlador de formação proposto é capaz de fazer com que os robôs sigam uma formação desejada, fixa ou variável. O mesmo experimento foi repetido com habilitação da compensação adaptativa da dinâmica de cada robô. As Figuras 89(a) e 89(b) ilustram as trajetórias percorridas pelos três robôs para o caso em que os robôs estão descarregados e a compensação adaptativa da dinâmica está habilitada. A Figura 89(a) mostra as trajetórias para o intervalo $0 \le t \le 30s$, em que a formação desejada é fixa, enquanto a Figura 89(b) apresenta as trajetórias para o intervalo $30s \le t \le 52s$, quando a formação desejada se desloca e gira de maneira simultânea. Pode-se notar que, no início do experimento, os robôs se deslocam rapidamente às posições que correspondem à formação desejada, acompanhando-a quando ela começa a se deslocar. Todos os robôs apresentam um comportamento muito semelhante àquele observado no primeiro experimento.

A evolução dos erros de formação para o segundo experimento é mostrada na Figura 90. Pode-se notar que, durante os primeiros 30s, intervalo em que a formação desejada é fixa, todos os sinais de erro convergem a valores próximos a zero. Em t = 30shá um aumento no módulo de todos os valores de erro, causado pelo início do deslocamento da formação desejada. Após alguma oscilação, os erros tendem novamente a

Figura 90: Esquema Multicamadas - erros de formação durante experimento sem carga, com compensação adaptativa da dinâmica.

Figura 91: Esquema Multicamadas - ações de controle enviadas aos robôs durante experimento sem carga, com compensação da dinâmica.

valores próximos a zero enquanto a formação desejada se desloca e gira. Em comparação com o primeiro experimento, aqui os erros tendem a convergir um pouco mais rápido, principalmente após o deslocamento da formação em t = 30s. Uma comparação mais criteriosa de seu desempenho pode ser feita com índices *IAE*. Os valores de tal índice foram calculados para cada experimento e uma comparação entre eles é apresentada no final desta seção.

As ações de controle enviadas a cada robô da formação são mostradas na Figura 91. Ali, na primeira coluna são mostrados os sinais de referência de velocidade linear, enquanto

Figura 92: Esquema Multicamadas - evolução dos parâmetros dinâmicos estimados durante experimento sem carga, com compensação adaptativa da dinâmica. (a) Robô 1, (b) Robô 2, e (c) Robô 3.

na segunda coluna são apresentados os sinais de referência de velocidade angular para os três robôs da formação. Pode-se notar que a variação em tais sinais não ocorre de maneira abrupta; resultado similar ao obtido no primeiro experimento.

As Figuras 92(a), 92(b) e 92(c) apresentam a evolução dos parâmetros estimados de cada robô para o segundo experimento.

Nos dois experimentos seguintes cada robô está transportando uma carga adicional de cerca de 10kg, posicionada em sua base superior. Tais experimentos foram realizados para verificar a influência da alteração da dinâmica dos robôs nos erros de formação. No terceiro experimento, os robôs estão carregados e a compensação dinâmica está desabilitada. As

Figura 93: Esquema Multicamadas - trajetórias percorridas durante experimento com carga, sem compensação da dinâmica: (a) formação desejada fixa, e (b) formação desejada variando.

Figuras 93(a) e 93(b) ilustram as trajetórias percorridas pelos três robôs durante o terceiro experimento. A Figura 93(a) mostra as trajetórias para o intervalo $0 \le t \le 30s$, em que a formação desejada é fixa, enquanto a Figura 93(b) apresenta as trajetórias para o intervalo $30s \le t \le 52s$, quando a formação desejada se desloca e gira de maneira simultânea. Pode-se notar que, no início do experimento, os robôs se deslocam para as posições que correspondem à formação desejada, acompanhando-a quando ela começa a se deslocar. No entanto, o comportamento é pior do que aquele observado durante o primeiro experimento, em que os robôs estavam descarregados e a compensação dinâmica, como neste caso, não estava habilitada.

A evolução dos erros de formação para o terceiro experimento é mostrada na Figura 94. Pode-se notar que os erros tendem a valores próximos a zero, mas sua evolução ilustra um desempenho pior do que aquele observado durante o primeiro experimento.

As ações de controle enviadas a cada robô da formação são mostradas na Figura 95. Ali, na primeira coluna são mostrados os sinais de referência de velocidade linear, enquanto na segunda coluna são apresentados os sinais de referência de velocidade angular para os três robôs da formação. Pode-se notar que o comportamento de tais sinais é similar àqueles obtidos nos experimentos anteriores.

O mesmo experimento foi repetido com habilitação da compensação adaptativa da dinâmica de cada robô, mantendo os robôs carregados. As Figuras 96(a) e 96(b) ilustram

Figura 94: Esquema Multicamadas - erros de formação durante experimento com carga, sem compensação da dinâmica.

Figura 95: Esquema Multicamadas - ações de controle enviadas aos robôs durante experimento com carga, sem compensação da dinâmica.

as trajetórias percorridas pelos três robôs para o caso em que todos os robôs estão carregados e a compensação adaptativa da dinâmica está habilitada. A Figura 96(a) mostra as trajetórias para o intervalo $0 \le t \le 30s$, em que a formação desejada é fixa, enquanto a Figura 96(b) apresenta as trajetórias para o intervalo $30s \le t \le 52s$, quando a formação desejada se desloca e gira de maneira simultânea. A evolução dos erros de formação é mostrada na Figura 97. Pode-se notar que os erros tendem a valores próximos a zero, e sua evolução é mais suave do que aquela observada para o experimento anterior, o que indica uma melhora no comportamento do sistema após a habilitação da compensação

Figura 96: Esquema Multicamadas - trajetórias percorridas durante experimento com carga, com compensação adaptativa da dinâmica: (a) formação desejada fixa, e (b) formação desejada variando.

Figura 97: Esquema Multicamadas - erros de formação durante experimento com carga, com compensação adaptativa da dinâmica.

dinâmica.

As ações de controle enviadas a cada robô da formação são mostradas na Figura 98. Ali, na primeira coluna são mostrados os sinais de referência de velocidade linear, enquanto na segunda coluna são apresentados os sinais de referência de velocidade angular para os três robôs da formação. Pode-se notar que o comportamento de tais sinais é similar àqueles obtidos nos experimentos anteriores.

As Figuras 99(a), 99(b) e 99(c) apresentam a evolução dos parâmetros estimados de

Figura 98: Esquema Multicamadas - ações de controle enviadas aos robôs durante experimento com carga, com compensação da dinâmica.

cada robô durante o quarto experimento.

O comportamento do robô R_3 na primeira parte dos experimentos descritos é digno de nota. Nas Figuras 86(a), 89(a), 93(a) e 96(a), pode-se observar que o robô R_3 se desloca em torno da posição (-2, 0; 2, 0)m, quando se poderia esperar que ele permanecesse parado, já que no início dos experimentos ele está posicionado no ponto que corresponde à sua posição desejada até t = 30s. Tal deslocamento ocorre porque o controlador de formação gera as ações de controle para os três robôs com base nos erros de formação: posicionamento de seu centróide, sua orientação e sua forma. Por isso, o controlador gera os sinais de comando para R_3 (e para os demais robôs) de maneira a tentar minimizar, também, o erro de forma, o que leva tal robô a deixar momentaneamente a posição (-2, 0; 2, 0)m. Em todos os casos, depois que a formação desejada se desloca, verifica-se que R_3 e os demais robôs seguem caminhos de maneira a acompanhar tal deslocamento, o que ilustra que o sistema funciona como esperado.

Para comparar o desempenho entre os quatro casos experimentados, calculou-se o índice *IAE* considerando-se o período de 52*s* de duração de cada um. Os resultados são apresentados na Tabela 4, e mostram que o desempenho do sistema é expressivamente melhor quando a compensação dinâmica está ativada, tanto para o caso em que os robôs se deslocam descarregados como para o caso em que levam cargas.

Analisando os dados mostrados na Tabela 4 verifica-se que, com os robôs descarre-

Figura 99: Esquema Multicamadas - evolução dos parâmetros dinâmicos estimados durante experimento com carga, com compensação adaptativa da dinâmica. (a) Robô 1, (b) Robô 2, e (c) Robô 3.

Tabela 4: IAE para experimentos do controle centralizado tipo estruturas virtuais

	IAL	
	\mathbf{P}_{F}	\mathbf{S}_F
Sem carga, sem compensação dinâmica	8,13	$5,\!94$
Sem carga, com compensação adaptativa da dinâmica	7,20	$5,\!11$
Com carga, sem compensação dinâmica	8,17	7,33
Com carga, com compensação adaptativa da dinâmica	6,86	5,02

gados, a ativação da compensação dinâmica promoveu uma redução de 11% no erro de pose e de 14% no erro de forma da estrutura virtual. A colocação das cargas nos robôs provocou um aumento importante no erro de forma, mas praticamente não alterou o erro

de pose da estrutura. Para este caso, a ativação da compensação dinâmica se mostrou ainda mais interessante pois promoveu uma redução de cerca de 16% no erro de pose e de 31% no erro de forma da estrutura.

Considerando a arquitetura aqui proposta, o percentual de redução dos índices *IAE* obtidos nos experimentos revela que os efeitos dinâmicos são importantes na geração dos erros de formação. Portanto, a compensação adaptativa da dinâmica, para este caso, se mostra bastante interessante, principalmente para a situação de transporte de cargas.

Nota 4.6. O sistema aqui proposto possui algumas diferenças em relação ao sistema multicamadas apresentado por Fierro e Das (2002): (1) o controlador aqui proposto gera sinais de referência de velocidade, não de torque; (2) aqui considera-se o controle de uma estrutura virtual, enquanto em (FIERRO; DAS, 2002) é apresentado um controle tipo líder-seguidores; (3) o controle da forma ou da posição da formação pode ser enfatizado pelo controlador aqui proposto através do ajuste dos ganhos da matriz κ , em que cada valor relaciona-se com o controle de uma variável de formação específica; e (4) aqui a adaptação dos parâmetros dinâmicos é feita através de uma lei de adaptação robusta, que evita a deriva paramétrica. Além disso, aqui o desempenho do sistema foi avaliado e comparado para os casos em que a compensação dinâmica está operando ou não. Em relação aos resultados, em (FIERRO; DAS, 2002) foram apresentados apenas resultados de simulação com dois robôs, enquanto aqui apresentou-se resultados de simulação e de experimentos para um grupo de três robôs.

4.5.7 Sobre o Escalonamento da Formação

O esquema de controle de formação apresentado nesta seção foi projetado para controlar um grupo de três robôs móveis uniciclo. Como mostrado na seção 4.5.1, para controlar robôs com diferentes modelos cinemáticos basta que a matriz $\mathbf{K_r}$ seja modificada de maneira apropriada.

No entanto, se o número de robôs a ser controlado varia, outras modificações são necessárias. Adicionar ou retirar um robô à formação exige que seja feita uma redefinição das variáveis de formação. Com a adição de um robô ao grupo, por exemplo, o vetor \mathbf{P}_F , que define a pose da formação, pode ser mantido inalterado, mas o vetor \mathbf{S}_F , que define sua forma, deve ser modificado de maneira a incluir variáveis que englobem a posição desse novo robô em relação aos demais. Isso significa que as equações que definem a cinemática direta (K) e inversa (K^{-1}) da formação devem ser modificadas, o que exige o cálculo de uma nova matriz Jacobiana $J(\mathbf{x})$ para o sistema, além de uma modificação em sua lei de controle (4.36). A estrutura virtual a ser alcançada é formada por um novo polígono, sendo a posição de seu centróide, sua orientação e sua forma controlados por um único controlador.

O problema recém discutido ilustra que modificar o número de robôs da formação não é tarefa trivial. No entanto, a adição de um ou mais robôs à formação também pode ser feita sem a necessidade de tais modificações na estrutura do sistema. A alternativa descrita a seguir aumenta a flexibilidade do sistema como um todo e permite que sua arquitetura de controle seja centralizada (como mostrado), ou descentralizada hierárquica (que é localmente centralizada).

Considera-se que o número de robôs a serem controlados é maior ou igual a três. Caso o sistema seja composto por três robôs, a arquitetura descrita nesta seção pode ser utilizada de maneira direta para seu controle. Caso o sistema multirrobôs seja formado por mais de três veículos, ele pode ser organizado de maneira que cada veículo adicional forme uma nova estrutura triangular, em conjunto com dois veículos da estrutura anterior. Assim, sendo n o número de veículos a serem controlados, o número de estruturas virtuais seria de (n-2).

Para ilustrar a organização do sistema, um exemplo de arquitetura de controle para quatro robôs é descrito a seguir:

- Três dos veículos, denominados de R_1 , R_2 e R_3 , formam uma estrutura virtual (triângulo) da maneira como foi descrito nas subseções 4.5.1 e 4.5.2. Esses veículos são controlados pela lei de controle (4.36), para que seu centróide siga a trajetória enviada pelas camadas de planejamento;
- O quarto veículo, denominado de R_4 , forma outra estrutura virtual em conjunto com os robôs R_2 e R_3 , por exemplo. Esta nova estrutura é controlada por outro controlador, que também usa a lei de controle (4.36), mas com o objetivo de manter sua forma, de tal maneira que R_4 se posicione corretamente em relação aos dois outros robôs.

A lei de controle (4.36) gera sinais de comando para três robôs. Portanto, da forma como foi descrito, os controladores da primeira e da segunda estruturas geram sinais de comando para os robôs R_2 e R_3 . Com base nisso, propõe-se duas estratégias para que o controle da formação seja realizado:

1. Apenas os sinais de comando gerados pelo controlador da primeira estrutura são

aproveitados e enviados para os robôs R_2 e R_3 . Nesse caso, parte dos sinais de comando gerados pelo controlador da segunda estrutura são desprezados, sendo aproveitados apenas os sinais gerados para controle do robô R_4 . Assim, a primeira estrutura funciona de maneira independente, e o robô R_4 atua como um seguidor;

2. Os robôs $R_2 e R_3$ recebem comandos que são resultado da fusão dos sinais de controle gerados para cada um deles pelos controladores da primeira e da segunda estruturas. A fusão de sinais gerados por diferentes controladores foi estudada e apresentada em (FREIRE, 2002) para controle de um robô móvel. Tal trabalho mostra que a fusão dos sinais de controle permite que controladores com diferentes objetivos trabalhem em paralelo, gerando sinais de comando que são fusionados antes de serem enviados ao robô. A mesma ideia pode ser aplicada aqui. Nesse caso, as estruturas não mais operam de maneira independente uma da outra, pois os sinais de comando recebidos por $R_2 e R_3$ são influenciados pelas posições de R_1 e de R_4 .

É válido ressaltar que mais robôs podem ser acrescentados à formação, sendo que uma nova estrutura virtual deve ser criada para cada robô adicional. A organização descrita permite a descentralização do sistema de controle, já que os robôs adicionais têm seus próprios controladores funcionando de maneira independente daqueles das demais estruturas. No caso (1) descrito anteriormente, a descentralização é mais natural, já que os robôs adicionais funcionam como seguidores, e os sinais de controle de cada robô são gerados somente pelo controlador de uma estrutura. Para o caso (2), no entanto, descentralizar o sistema de controle exige comunicação entre os robôs, de maneira que os sinais de controle possam ser fusionados. Em ambos os casos, os robôs adicionais devem possuir sensores para medirem ou estimarem as posições dos demais, ou devem receber tais informações pelo canal de comunicação. Além disso, caso seja necessário alterar a forma da estrutura, tal modificação deve ser informada a todos os controladores.

Para verificar o funcionamento desta proposta de escalonamento, foi realizada uma simulação para controle de quatro robôs no ambiente **MRSiM** com aplicação da estratégia (1), em que os robôs R_2 e R_3 recebem sinais de comando apenas do controlador da primeira estrutura. A Figura 100(a) mostra os caminhos percorridos pelos quatro robôs. Na parte esquerda da figura, as posições dos robôs são mostradas num dado instante da simulação. Na parte direita, encontra-se a formação que deve ser alcançada pelos robôs, formada pelas duas estruturas virtuais. Nesta simulação, a formação desejada é fixa. As Figuras 100(b) e 100(c) mostram a mesma simulação, em dois momentos posteriores àquele da Figura 100(a). Pode-se observar que todos os robôs alcançam suas posições

Figura 100: Simulação do controle de quatro robôs com escalonamento proposto. As figuras apresentam o deslocamento dos robôs e a formação desejada fixa em três momentos.

desejadas na formação, o que confirma o funcionamento da proposta de escalonamento.

4.6 Considerações Finais do Capítulo

Este capítulo abordou o controle de sistemas multirrobôs com compensação adaptativa da dinâmica através do paradigma de controle de formação. Os controladores dinâmicos adaptativos desenvolvidos no Capítulo 3 foram usados para compensar a dinâmica de robôs que fazem parte de uma formação, tanto em controle centralizado tipo estruturas virtuais, como em controle descentralizado tipo líder-seguidores. Devido ao fato de aceitarem referências de velocidade linear e angular como sinais de entrada, os controladores dinâmicos podem ser incluídos em sistemas multirrobôs já desenvolvidos com base nos modelos cinemáticos desses veículos, como apresentado neste capítulo e ilustrado com resultados de simulações e de experimentos.

Além disso, foi apresentado o desenvolvimento de um esquema multicamadas para controlar a formação de um grupo de robôs com compensação da dinâmica. Para este esquema, uma lei de controle de formação foi proposta, a estabilidade do equilíbrio foi analisada através da teoria de Lyapunov e a influência da compensação da dinâmica de cada robô nos erros de formação foi ilustrada, com resultados de simulações e de experimentos com robôs comerciais.

Finalmente, observou-se que a influência da compensação dinâmica na redução dos er-
ros de formação depende das características da arquitetura implementada. Para as arquiteturas aqui abordadas, a melhora de desempenho obtida com a compensação adaptativa da dinâmica foi muito mais significativa para a arquitetura centralizada tipo estruturas virtuais aplicada ao Esquema Multicamadas, do que para a arquitetura descentralizada tipo líder-seguidores, conforme ilustrado através de resultados de simulações e de experimentos.

Conclusões

"One is glad to be of service."

(Andrew Martin, em Bicentennial Man)

Esta tese propõe soluções para os problemas expostos na seção 1.1, quais sejam:

- Desenvolvimento de controladores que realizem a compensação da dinâmica de robôs móveis, de forma adaptativa, gerando velocidades como sinais de comando para os robôs; e
- Controle coordenado de um grupo de robôs móveis tipo uniciclo, de maneira que eles alcancem e se mantenham numa formação desejada, compensando sua própria dinâmica de forma adaptativa.

Para solucionar o problema (1), inicialmente, no Capítulo 2, foi proposta uma nova abordagem para representação do modelo dinâmico de robôs móveis uniciclo, baseada no modelo proposto por De La CRUZ (2006), que aceita sinais de velocidades linear e angular como entradas. Propriedades de tal modelo foram listadas e analisadas, as quais são úteis no projeto de controladores e na análise de estabilidade do sistema em malha fechada. Uma de tais propriedades é apresentada sob a forma de um teorema que trata da característica de passividade do modelo. Um estudo sobre a dependência linear entre os parâmetros de tal modelo mostrou que eles são linearmente independentes entre si, o que significa que a quantidade de parâmetros do modelo proposto é mínima.

O Capítulo 3 apresentou o desenvolvimento de um controlador de seguimento de trajetória, que também pode ser usado em problemas de posicionamento, cujo projeto foi baseado no modelo cinemático do robô uniciclo. Para resolver o problema (1), dois controladores foram projetados para a realização da compensação adaptativa da dinâmica de robôs móveis. Um deles é baseado no modelo proposto no Capítulo 2, cujas propriedades foram utilizadas no projeto e análise da estabilidade do sistema em malha fechada. Os dois controladores dinâmicos propostos recebem sinais de referência de velocidades linear e angular, realizam a compensação da dinâmica do veículo, e geram outro par de sinais de velocidades linear e angular, que são enviados como comandos ao robô. A compensação da dinâmica é feita de forma adaptativa, o que auxilia nos casos em que os parâmetros dinâmicos dos robôs podem variar de tarefa a tarefa, como em transporte de cargas. A análise de estabilidade dos sistemas foi realizada, com base na teoria de Lyapunov, e o resultado mostrou que os controladores propostos estabilizam o sistema, mesmo sob ação de perturbações e variações limitadas nos parâmetros dinâmicos. Diversos resultados de simulação e de experimentos com robôs comerciais mostraram que os controladores propostos são capazes de realizar a compensação adaptativa da dinâmica de tais veículos. Ilustraram, ainda, que o desempenho do sistema com a compensação da dinâmica, para uma tarefa de seguimento de trajetórias, é melhor do que o melhor desempenho alcançado quando é utilizado apenas o controlador cinemático.

A solução para o problema (2) foi apresentada no Capítulo 4. Os controladores adaptativos desenvolvidos no Capítulo 3 foram usados para compensar a dinâmica de robôs que fazem parte de uma formação, tanto em controle centralizado tipo estruturas virtuais, como em controle descentralizado tipo líder-seguidores. Também foi apresentado o desenvolvimento de um esquema multicamadas para controlar a formação de um grupo de robôs com compensação da dinâmica, incluindo proposta de uma lei de controle de formação, análise de estabilidade do equilíbrio através da teoria de Lyapunov e estudo da influência da compensação dinâmica de cada robô nos erros de formação.

Resultados de simulações e de experimentos realizados com robôs comerciais, tanto para a arquitetura descentralizada tipo líder-seguidor como para a arquitetura centralizada tipo estruturas virtuais, ilustraram a influência da compensação dinâmica nos erros de formação. Para a arquitetura centralizada foram comparados resultados considerando, inclusive, uma tarefa de transporte de cargas, que comprovaram o funcionamento do esquema proposto e ilustraram que a compensação dinâmica provoca melhora importante no desempenho do sistema, reduzindo os erros de formação.

Em suma, destaca-se como contribuições desta tese:

1. Proposta de representação do modelo dinâmico de robôs móveis tipo uniciclo que possuem entradas de velocidade linear e angular;

- 2. Estudo e apresentação das propriedades de tal modelo;
- Desenvolvimento de dois controladores para realização da compensação adaptativa da dinâmica de robôs móveis, com uso de lei de adaptação robusta;
- Análise de estabilidade do equilíbrio do sistema com uso dos controladores propostos, considerando, inclusive, distúrbios e variação nos parâmetros dinâmicos dos veículos durante a realização das tarefas;
- Realização de experimentos com robôs comerciais que validam e ilustram o funcionamento dos controladores propostos;
- 6. Aplicação dos controladores propostos em robôs que são parte de uma formação;
- 7. Apresentação de resultados de simulações e de experimentos com robôs comerciais, que mostram que o erro de formação pode ser reduzido com a compensação da dinâmica dos veículos que formam o sistema multirrobôs.

Como trabalhos futuros, propõe-se estudar uma técnica de ajuste automático de ganhos do sistema, já que estes são em grande número e seu ajuste manual exige a realização de sucessivas provas. Uma técnica de ajuste automático pode levar a valores de ganhos que promovam melhora no desempenho do sistema experimental, incluindo considerações para minimização da energia necessária ao cumprimento das tarefas. Também propõe-se estudo de filtros para os sinais de velocidade e aceleração dos robôs, já que ruídos em tais sinais degradam o desempenho da compensação dinâmica. Trabalhos futuros também podem abordar o controle de uma estrutura virtual com número variável de robôs, o desenvolvimento de técnicas para determinar como as estruturas virtuais adicionais podem ser definidas de forma automática por robôs adicionados à formação, o estudo de estratégias para modificação da forma da estrutura virtual para realização de desvio de obstáculos, e o transporte de uma carga comum a vários robôs.

Referências

ABB Västerås Sweden. *IRB 140 Industrial Robot*. Acesso em: 2/jan/2009. Disponível em: http://www.abb.com/ProductGuide/>.

AIRES, K.; ALSINA, P.; MEDEIROS, A. A global vision system for mobile mini-robots. In: *SBAI-Simpósio Brasileiro de Automação Inteligente*. Gramado, RS, Brasil: [s.n.], 2001.

ANDERSON, C.; BARTHOLDI-III, J. J. Centralized versus decentralized control in manufactoring: lessons from social insects. In: *Complexity and Complex Systems in Industry*. University of Warkick: [s.n.], 2000. p. 92–105. ISBN 0902683500.

ANTONELLI, G.; ARRICHIELLO, F.; CHIAVERINI, S. The Entrapment/Escorting Mission. *Robotics & Automation Magazine, IEEE*, v. 15, n. 1, p. 22–29, 2008.

ANTONINI, P.; IPPOLITI, G.; LONGHI, S. Learning control of mobile robots using a multiprocessor system. *Control Engineering Practice*, n. 14, p. 1279–1295, 2006.

ASTROM, K. J.; WITTENMARK, B. *Adaptive Control.* Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1994. ISBN 0201558661.

BEKEY, G.; YUH, J. The Status of Robotics. Report on the WTEC International Study: Part II. *IEEE Robotics and Automation Magazine*, v. 15, n. 1, p. 80–86, 2008.

BETHKE, B.; VALENTI, M.; HOW, J. UAV Task Assignment. *Robotics & Automation Magazine*, *IEEE*, v. 15, n. 1, p. 39–44, 2008.

BICCHI, A. et al. Heterogeneous Wireless Multirobot System. *Robotics & Automation Magazine*, *IEEE*, v. 15, n. 1, p. 62–70, 2008.

Biography Base. Carl Gustav Jakob Jacobi Biography. Acesso em: 16/jan/2009. Disponível em: http://www.biographybase.com/biography/Jacobi_Carl_Gustav_Jakob.html.

Biography Base. Sergey Bubka Biography. Acesso em: 18/nov/2008. Disponível em: http://www.biographybase.com/biography/Bubka_Sergey.html.

BOYD, S.; SASTRY, S. Adaptive control: stability, convergence, and robustness. [S.l.]: Prentice Hall, USA, 1989. 253 p. ISBN 0-13-004326-5.

BRAGANÇA, J. d. O. Estratégia para Deslocamento de Cargas Através de Cooperação Entre Robôs Móveis à Rodas. Dissertação (Mestrado) — Universidade Federal do Espírito Santo, Vitória, ES, Dezembro 2004.

BRANDAO, A. S. Controle Descentralizado com Desvio de Obstáculos para uma Formação Líder-Seguidor de Robôs Móveis. Dissertação (Mestrado) — Universidade Federal do Espírito Santo, Vitória, ES, Março 2008.

BRANDAO, A. S. et al. MRSiM: Un Ambiente Gráfico para Simulación de Navegación de Robots Móviles. In: *Jornadas Argentinas de Robótica - JAR08*. Bahía Blanca, Argentina: [s.n.], 2008.

BRANDÃO, A. S. et al. A Multi-Layer Control Scheme for Multi-Robot Formations with Adaptive Dynamic Compensation. 5th IEEE International Conference on Mechatronics, Málaga, Espanha, 2009.

BRANDÃO, A. S. et al. Navegação de robôs móveis com desvio de obstáculos: Implementação do desvio tangencial modificado. In: *Simpósio Brasileiro de Automação Inteligente - SBAI'07*. Florianópolis: [s.n.], 2007.

BRANDÃO, A. S. et al. Controlling a mobile robot to keep a line formation using a laser scanner. In: XII Reunión de Trabajo en Procesamiento de la Información y Control - RPIC. Río Gallegos, Argentina: UNPA, 2007.

Canudas de Wit, C.; SICILIANO, B.; BASTIN, G. *Theory of Robot Control.* [S.l.]: Springer, 1997.

Canudas de Wit C.; SORDALEN, O. Exponential stabilization of mobile robots with nonholonomic constraints. *IEEE Transactions on Automatic Control*, v. 37, n. 11, p. 1791–1797, 1992. ISSN 0018-9286.

CAO, Y. U.; FUKUNAGA, A. S.; KAHNG, A. B. Cooperative mobile robotics: Antecedents and directions. *Autonomous Robots*, n. 4, p. 1–23, 1997.

CARELLI, R.; SECCHI, H.; MUT, V. Algorithms for Stable Control of Mobile Robots with Obstacle Avoidance. *Latin American Applied Research*, v. 29, n. 3/4, p. 191–196, 1999.

CLARK, J.; FIERRO, R. Cooperative hybrid control of robotic sensors for perimeter detection and tracking. In: *American Control Conference*. [S.1.: s.n.], 2005. p. 3500–3505.

CONSOLINI, L. et al. A Geometric Characterization of Leader-Follower Formation Control. *IEEE International Conference on Robotics and Automation - ICRA*, Roma, Italy, p. 2397–2402, 2007.

CORRADINI, M. L.; ORLANDO, G. Control of mobile robots with uncertainties in the dynamic model: A discrete time sliding mode approach with eperimental results. *Control Engineering Practice*, n. 10, p. 23–34, 2002.

DAS, A. et al. A vision-based formation control framework. *IEEE Transactions on Robotics and Automation*, v. 18, n. 5, p. 813–825, 2002.

DAS, T.; KAR, I. Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. *IEEE Transactions on Control Systems Technology*, v. 14, n. 3, p. 501–510, 2006.

De La CRUZ, C. *Control de Formación de Robots Móviles*. Tese (Doutorado) — Universidad Nacional de San Juan, San Juan, Argentina, Dezembro 2006.

De La CRUZ, C.; CARELLI, R. Dynamic modeling and centralized formation control of mobile robots. In: *32nd IEEE Conference on Industrial Electronics*. [S.l.: s.n.], 2006. p. 3880–3885.

DONG, W.; GUO, Y. Dynamic tracking control of uncertain nonholonomic mobile robots. *Proc. of the IEEE/RSJ Int. Conference on Intelligent Robots and Systems*, p. 2774–2779, 2005.

DONG, W.; GUO, Y.; FARRELL, J. Formation control of nonholonomic mobile robots. In: *American Control Conference*. [S.l.: s.n.], 2006.

DONG, W.; HUO, W. Tracking control of wheeled mobile robots with unknown dynamics. *IEEE International Conference on Robotics and Automation - ICRA*, v. 4, 1999.

FEDDEMA, J.; LEWIS, C.; SCHOENWALD, D. Decentralized control of cooperative robotic vehicles: Theory and application. *IEEE Transactions on Robotics and Automation*, v. 8, n. 5, p. 852–864, Outubro 2002.

FENG, X.; VELINSKY, S. Development of a distributed multiple mobile robot control system for automatic highway maintenance and construction. *The 40th Midwest Symposium on Circuits and Systems*, v. 1, p. 489–492, 1997.

FERREIRA, A. Desvio Tangencial de Obstáculos para um Robô Móvel Navegando em Ambientes Semi-Estruturados. Dissertação (Mestrado) — Universidade Federal do Espírito Santo, Vitória, ES, Junho 2004.

FERREIRA, A. Uma Proposta de Interface Cérebro-Computador para Comando de Cadeiras de Rodas. Tese (Doutorado) — Universidade Federal do Espírito Santo, Vitória, ES, Dezembro 2008.

FERREIRA, A. et al. Human-machine interface based on muscular and brain signals applied to a robotic wheelchair. *Journal of Physics: Conference Series*, v. 90, p. 012094 (8pp), 2007. Disponível em: http://stacks.iop.org/1742-6596/90/012094>.

FIERRO, R.; DAS, A. A modular architecture for formation control. In: *Third International Workshop on Robot Motion and Control, RoMoCo'02.* [S.l.: s.n.], 2002. p. 285–290.

FIERRO, R. et al. Hybrid control of formations of robots. In: *IEEE International Conference on Robotics and Automation - ICRA*. [S.l.: s.n.], 2001. v. 1, p. 157–162.

FIERRO, R.; LEWIS, F. L. Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics. In: *The 34th Conference on Decision and Control.* [S.l.: s.n.], 1995. p. 3805–3810.

FIERRO, R.; LEWIS, F. L. Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics. *Journal of Robotic Systems*, v. 14, n. 3, p. 149–163, 1997.

FRAGA, S.; SOUSA, J.; PEREIRA, F. Geração de Trajetórias para Sistemas Diferencialmente Planos. *III Festival Nacional de Robótica - ROBOTICA2003*, Lisboa, Portugal, 2003.

FREIRE, E.; CARELLI, R. Corridor navigation and wall-following stable control for sonar-based mobile robots. *Robotics and Autonomous Systems*, n. 45, p. 235–247, 2003.

FREIRE, E. O. Controle de Robôs Móveis por Fusão de Sinais de Controle Usando Filtro de Informação Descentralizado. Tese (Doutorado) — Universidade Federal do Espírito Santo, Vitória, ES, Agosto 2002.

FUKAO, T.; NAKAGAWA, H.; ADACHI, N. Adaptive tracking control of a nonholonomic mobile robot. *IEEE Transactions on Robotics and Automation*, v. 16, n. 5, p. 609–615, 2000.

GARCÍA, A. G.; AGAMENNONI, O. E.; FIGUEROA, J. Closed-Form Solutions for Stable Trajectories of the Unicycle using Smooth Controllers. *V Jornadas Argentinas de Robótica - JAR08*, Bahía Blanca, Argentina, 2008.

GAVA, C. et al. Nonlinear control techniques and omnidirectional vision for team formation on cooperative robotics. In: *IEEE International Conference on Robotics and Automation*. [S.I.: s.n.], 2007. p. 2409–2414.

GAVA, C. C. Controle de Formação de Robôs Móveis Baseado em Visão Omnidirecional. Dissertação (Mestrado) — Universidade Federal do Espírito Santo, Vitória, ES, Agosto 2007.

IEEE. *IEEE History Center - Biographies*. EUA: [s.n.], Acesso em: 30/dez/2008. Disponível em: <http://www.ieee.org/web/aboutus/history_center/biography/kalman.html>.

JORDÁN, M. A.; BUSTAMANTE, J. L. Performance-Related Optimal Autotuning in Adaptively Guided Subaquatic Vehicles. V Jornadas Argentinas de Robótica - JAR08, Bahía Blanca, Argentina, 2008.

JORDÁN, M. A. et al. Adaptive Control Applied to a Wheeled Mobile Robot - A Case Study. V Jornadas Argentinas de Robótica - JAR08, Bahía Blanca, Argentina, 2008.

K-Team Corporation. *Khepera III - Robot Base Specifications*. Acesso em: 3/jan/2009. Disponível em: http://www.k-team.com>.

KANAYAMA, Y. et al. A stable tracking control method for an autonomous mobile robot. *IEEE International Conference on Robotics and Automation*, p. 384–389, 1990.

KATZ, D. et al. The UMass Mobile Manipulator UMan: An Experimental Platform for Autonomous Mobile Manipulation. In: *Workshop on Manipulation in Human Environments at Robotics: Science and Systems.* [S.l.: s.n.], 2006.

KAUFMAN, H.; SOBEL, K. Direct Adaptive Control Algorithms: Theory and Applications. [S.l.]: Springer, 1998. 182–184 p. ISBN 9780387948843.

KHALIL, H. Nonlinear Systems. [S.l.]: Prentice Hall, NJ, 2002.

KIM, M.; SHIN, J.; LEE, J. Design of a robust adaptive controller for a mobile robot. *Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems*, v. 3, p. 1816–1821, 2000.

KRESS-GAZIT, H. et al. Courteous Cars. *Robotics & Automation Magazine, IEEE*, v. 15, n. 1, p. 30–38, 2008.

KUHNE, F.; JR, J. da S.; LAGES, W. Mobile Robot Trajectory Tracking using Model Predictive Control. *II IEEE Latin-American Robotics Symposium*, São Luis, Brazil, 2005.

LAWTON, J. R. T.; BEARD, R. W.; YOUNG, B. J. A decentralized approach to formation maneuvers. In: *IEEE Transction on Robotics and Automation*. [S.l.: s.n.], 2003. v. 19, n. 6, p. 933–941.

LIANG, Y.; LEE, H.-H. Decentralized formation control and obstacle avoidance for multiple robots with nonholonomic constraints. In: *American Control Conference*. [S.l.: s.n.], 2006. p. 6pp.

LIU, S. et al. Dynamic control of a mobile robot using an adaptive neurodynamics and sliding mode strategy. In: *The 5th World Congress on Intelligent Control and Automation*. [S.l.: s.n.], 2004. v. 6, p. 5007–5011.

MARTINS, F. N. et al. Control Descentralizado de una Formación Líder-Seguidor con Compensación de la Dinámica. V Jornadas Argentinas de Robótica - JAR08, Bahía Blanca, Argentina, 2008.

MARTINS, F. N. et al. A Dynamic Model and a Tracking Controller for Unicycle-like Mobile Robots. XVII Congresso Brasileiro de Automatica CBA2008, Juiz de Fora, Brasil, 2008.

MARTINS, F. N. et al. Adaptive Dynamic Controller for Unicycle-like Mobile Robots. XVII Congresso Brasileiro de Automatica CBA2008, Juiz de Fora, Brasil, 2008.

MARTINS, F. N. et al. Dynamic Modeling and Trajectory Tracking Control for Unicycle-Like Mobile Robots. *The 3rd International Symposium on Multibody Systems and Mechatronics - MuSME 2008*, San Juan, Argentina, 2008.

MARTINS, F. N. et al. Modelo Dinámico y Controlador de Seguimiento para Robots Móviles Tipo Uniciclo. V Jornadas Argentinas de Robótica - JAR08, Bahía Blanca, Argentina, 2008.

MARTINS, F. N. et al. Un Controlador Dinámico Adaptable de Seguimiento para Robots Móviles tipo Uniciclo. V Jornadas Argentinas de Robótica - JAR08, Bahía Blanca, Argentina, 2008.

MARTINS, F. N. et al. Controlador Dinámico Adaptable para Seguimiento de Trayectoria con Robots Móviles. XII Reunión de Trabajo en Procesamiento de la Información y Control - RPIC, Río Gallegos, Argentina, October 2007.

MARTINS, F. N. et al. Controlador Dinâmico Adaptativo de Seguimento de Trajetória para Robôs Móveis. *VIII Simpósio Brasileiro de Automação Inteligente - SBAI*, Florianópolis, Brasil, Outubro 2007.

MARTINS, F. N. et al. Kinematic and Adaptive Dynamic Trajectory Tracking Controller for Mobile Robots. 3rd International Conference on Advances in Vehicle Control and Safety - AVCS07, Buenos Aires, Argentina, 2007.

MARTINS, F. N. et al. An Adaptive Dynamic Controller for Autonomous Mobile Robot Trajectory Tracking. *Control Engineering Practice*, v. 16, p. 1354–1363, 2008. MARTINS, F. N. et al. Dynamic Modeling and Adaptive Dynamic Compensation for Unicycle-Like Mobile Robots. 14th International Conference on Advanced Robotics -ICAR 2009, Munique, Alemanha, 22 a 26 de Junho 2009. Manuscrito sob avaliação.

MARTINS, N. A. Estudo comparativo de estratégias de controle de robôs manipuladores no espaço de juntas. *Acta Scientiarum Maringá*, v. 23, n. 6, p. 1469–1480, 2001.

MAS, I.; PETROVIC, O.; KITTS, C. Cluster space specification and control of a 3-robot mobile system. *IEEE International Conference on Robotics and Automation - ICRA*, p. 3763–3768, 2008.

MICHAEL, N.; FINK, J.; KUMAR, V. Controlling a team of ground robots via an aerial robot. *IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS*, p. 965–970, 2007.

MICHAEL, N.; FINK, J.; KUMAR, V. Experimental Testbed for Large Multirobot Teams. *Robotics & Automation Magazine, IEEE*, v. 15, n. 1, p. 53–61, 2008.

Mobile Robots. Research Robot Bases - Specifications by Model. Acesso em: 30/jun/2008. Disponível em: http://www.activrobots.com/ROBOTS/specs.html.

MONTEIRO, S.; VAZ, M.; BICHO, E. Attractor dynamics generates robot formations: from theory to implementation. In: *IEEE International Conference on Robotics and Automation - ICRA*. New Orleans, USA: [s.n.], 2004. p. 2582–2587.

NASISI, O.; CARELLI, R. Adaptive servo visual robot control. *Robotics and Autonomous Systems*, Elsevier, v. 43, n. 1, p. 51–78, 2003.

PATEL, S.; SANYAL, R.; SOBH, T. RISCBOT: A WWW-Enabled Mobile Surveillance and Identification Robot. *Journal of Intelligent Robotic Systems*, Springer, v. 45, n. 1, p. 15–30, 2006.

PENIZZOTTO, F.; PATIÑO, D.; CARELLI, R. Sistema de Control Basado en Fusión de Láser y Odometría para la Navegación Autónoma de Vehículos en Plantaciones de Viñedos y Frutales. *Jornadas Argentinas de Robótica - JAR 2008*, Bahía Blanca, Argentina, 2008.

PEREIRA, G.; CAMPOS, M.; KUMAR, V. Decentralized Algorithms for Multi-Robot Manipulation via Caging. *International Journal of Robotics Research*, Springer, v. 23, n. 7/8, p. 783–796, 2004.

PHILLIPS, C. L.; NAGLE, H. T. *Digital Control System Analysis and Design*. New Jersey, EUA: Prentice Hall, 1995. 406 p. ISBN 0-13-309832-X.

PRASSLER, E. et al. A Short History of Cleaning Robots. *Autonomous Robots*, Springer, v. 9, n. 3, p. 211–226, 2000.

RAO, R. et al. Human robot interaction: application to smart wheelchairs. *IEEE* International Conference on Robotics and Automation - ICRA, v. 4, p. 3583–3588, 2002.

ROMAGNOLI, J. A.; PALAZOGLU, A. Introduction to Process Control. [S.l.]: CRC Press, 2006. 206–207 p. ISBN 9780849334962.

ROMANO, V. F. Robótica Industrial: Aplicação na Indústria de Manufatura e de Processos. [S.l.]: Edgard Blucher Ltda, 2002. ISBN 85-212-0315-2.

ROSSOMANDO, F. G. et al. Neural network adaptive trajectory tracking controller for mobile robots. In: XII Reunión de Trabajo en Procesamiento de la Información y Control - RPIC. Río Gallegos, Argentina: UNPA, 2007.

SARIEL, S.; BALCH, T.; ERDOGAN, N. Naval Mine Countermeasure Missions. *Robotics & Automation Magazine, IEEE*, v. 15, n. 1, p. 45–52, 2008.

SCHAFT, A. J. v. d. *L2-gain and passivity techniques in nonlinear control.* [S.1.]: Springer, 1999. 17 p. ISBN 1-85233-073-2.

SISTO, M.; GU, D. A fuzzy leader-follower approach to formation control of multiple mobile robots. In: *IEEE/RSJ International Conference on Intelligent Robots and Systems*. [S.l.: s.n.], 2006. p. 2515–2520.

SPONG, M.; HUTCHINSON, S.; VIDYASAGAR, M. Robot Modeling and Control. [S.1.]: John Wiley and Sons, 2006.

STEIN, P. et al. Sistema integrado de navegação para o Robô Ambiental Híbrido na Floresta Amazônica. XIII Simpósio Brasileiro de Sensoreamento Remoto, Florianópolis, p. 7103–7105, 2007.

STILWELL, D.; BISHOP, B. A strategy for controlling autonomous robot platoons. In: *The 39th IEEE Conference on Decision and Control.* [S.l.: s.n.], 2000. v. 4, p. 3483–3488.

STOUTEN, B.; GRAAF, A. de. Cooperative transportation of a large objectdevelopment of an industrial application. In: *IEEE International Conference on Robotics* and Automation - *ICRA*. [S.1.: s.n.], 2004. v. 3, p. 2450–2455.

TEODOVICH, L. J.; CARELLI, R. Control Hibrido para Posicionamiento de un Robot tipo Ackerman. V Jornadas Argentinas de Robótica - JAR08, Bahía Blanca, Argentina, 2008.

TOIBERO, J. M. et al. Switching controllers for navigation with obstacles in unknown environments. In: *Anais da IV Jornadas Argentinas de Robótica - JAR06*. Córdoba, Argentina: [s.n.], 2006.

TUFANO, D. *Guia Prático da Nova Ortografia*. São Paulo, SP: Editora Melhoramentos Ltda., 2008. ISBN 978-85-06-05464-2.

University of St Andrews, School of Mathematics and Statistics. *Lyapunov Biography*. Scotland: [s.n.], Acesso em: 18/nov/2008. Disponível em: http://www-history.mcs.st-andrews.ac.uk/Biographies/Lyapunov.html>.

WADE, H. Basic and Advanced Regulatory Control: System Design and Application. [S.I.]: ISA, 2004. 80–82 p. ISBN 9781556178733.

WANG, J.; WU, X.-B.; XU, Z.-L. Decentralized formation control and obstacles avoidance based on potential field method. In: *The 5th International Conference on Machine Learning and Cybernetics*. Dalian: [s.n.], 2006. p. 803–808.

WANG, Z.; TAN, D.; GOLDSMITH, P. Formation control of robotic vehicles. In: *IEEE International Conference on Robotics and Biomimetics - ROBIO*. [S.l.: s.n.], 2005. p. 57–60.

WU, W. et al. Adaptive exponential stabilization of mobile robots with uncertainties. *The 38th IEEE Conference on Decision and Control*, p. 3484–3489, 1999.

ZHANG, Y. et al. Dynamic model based robust tracking control of a differentially steered wheeled mobile robot. *American Control Conference*, v. 2, 1998.

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo