INVESTIGAÇÃO DA RESISTÊNCIA NÃO DRENADA IN SITU ATRAVÉS DE ENSAIOS DE PENETRAÇÃO DE CILINDRO

Eduardo de Oliveira Macedo

TESE SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS PROGRAMAS DE PÓS GRADUAÇÃO DE ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA CIVIL.

Aprovado por:	
	Prof. Márcio de Souza Soares de Almeida, Ph.D.
	Prof. Fernando Artur Brasil Danziger, D.Sc.
	Prof. Ian Schumann Marques Martins, D.Sc.
	Prof. Fernando Schnaid, Ph.D.
	Prof. Sandro Salvador Sandroni, Ph.D.

RIO DE JANEIRO, RJ – BRASIL AGOSTO DE 2004

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

MACEDO, EDUARDO DE OLIVEIRA

Investigação da resistência não drenada in situ através de ensaios de penetração de cilindro.

Penetração de cilindro [Rio de Janeiro] 2004 XV, 105p. 29,7 cm (COPPE/UFRJ, M.Sc., Engenhara Civil, 2004).

Tese – Universidade Federal do Rio de janeiro, COPPE.

- 1. Ensaio de penetração de cilindro
- 2. Argila mole
- 3. Resistência não drenada
 - I. COPPE/UFRJ II. Título (série)

Esta tese é dedicada aos meus pais, João e Rita, e à minha namorada Fernanda.

AGRADECIMENTOS

A Deus por me ajudar a conquistar esta etapa importante em minha vida.

Aos meus pais João e Rita pelo apoio, amor e pela dedicação a mim.

À Geoprojetos, que contribuiu com esta pesquisa fornecendo dados de ensaios de piezocone e adensamento.

À Agenco Engenharia pela liberação da área de ensaios e pelo apoio.

Ao prof. Ian Schumann, que executou os ensaios de adensamento.

Aos professores Márcio Almeida e Fernando Danziger pelo apoio, incentivo e orientação na pesquisa.

À minha namorada Fernanda pelo carinho, apoio e compreensão.

Aos meus amigos Luciano, Francisco, Petrônio e José Antônio pelos momentos de descontração, pela amizade e companheirismo.

Ao pesquisador Tom Lunne, do NGI, pela realização da campanha de ensaios triaxiais.

Aos engenheiros Ricardo Gil, Sérgio Iório, Hélcio Souza, técnicos Toninho, Carlinhos, França e Luiz Mário pelo fundamental apoio nas campanhas dos ensaios de T-Bar, piezocone e palheta.

A Doutora Esther Marques e ao Doutorando José Renato pelo esclarecimento de algumas dúvidas e por fornecer artigos para pesquisa.

Aos colegas de Mestrado Francisco, Cinconegui, Sidiclei, Nicolle, Viviane, André, Adriana, Verônica, Fernando, Maurício, Saulo e Rafael.

A todos os professores e funcionários da área de Geotecnia

A todos que contribuíram direta ou indiretamente para a realização desta tese.

Resumo da tese apresentada à COPPE/UFRJ como parte dos requisitos necessários ^v para a obtenção do grau de Mestre em Ciências (M.Sc.)

INVESTIGAÇÃO DA RESISTÊNCIA NÃO DRENADA IN SITU ATRAVÉS DE ENSAIOS DE PENETRAÇÃO DE CILINDRO

Eduardo de Oliveira Macedo

Agosto/2004

Orientadores: Márcio de Souza Soares de Almeida Fernando Artur Brasil Danziger

Programa de Engenharia Civil

O ensaio de penetração de cilindro (T-Bar) foi desenvolvido originalmente na Universidade do Oeste da Austrália. O equipamento mede a resistência não drenada de solos moles. Seis ensaios de penetração de cilindro in situ foram realizados na Barra da Tijuca, incluindo, dentre estes, ensaios cíclicos. Uma boa repetibilidade foi obtida em quase todos os ensaios. Ensaios de palheta, de piezocone e triaxiais também foram realizados. Os valores de Su obtidos com o ensaio de penetração de cilindro – usando fator barra N_b igual a 10,5 – mostraram boa concordância com valores de S_{u} dos ensaios de palheta, para uma camada homogênea entre 2,5 e 6,5 m de profundidade. Para outras camadas, os valores de S_{u} deste ensaio apresentaram-se 40 a 85% dos valores de S_u do palheta. O valor N_{KT} igual a 7 foi obtido usando-se os valores de S_u dos ensaios de palheta, tidos como referência. Este valor é muito menor que os encontrados em outras regiões brasileiras de solo mole. Usando este valor de N_{KT}, uma boa concordância foi encontrada entre os valores de S_u obtidos com o ensaio de penetração de cilindro e os obtidos com piezocone. Foi observado que o ensaio de penetração de cilindro é menos dependente da variação do fator N_b do que o piezocone o é do N_{KT}. Em outras palavras, o uso de N_b igual a 10,5 - conforme sugerido para qualquer depósito – apresentou bons resultados de S_u, sem correções de leituras de ensaio.

Summary of Thesis presented to the COPPE/UFRJ as a partial fulfillment of the vi requeriments for the degree of Master in Sciences (M.Sc.)

THE UNDRAINED SHEAR STRENGH FROM T-BAR TESTS

Eduardo de Oliveira Macedo

Augst/2004

Advisers: Márcio de Souza Soares de Almeida Fernando Artur Brazil Danziger

Departament of Civil Engineering

A T-Bar originally developed at the University of Western Australia has been produced. The device aimed at the evaluation of the undrained shear strength of soft soils. Six T-Bar tests have been performed at a site in Barra da Tijuca, including both penetration and cyclic tests. Good repeatability has been obtained in all but one test. Vane tests, piezocone tests and triaxial tests have also been performed. S_u values from the T-Bar – using N_b equal to 10.5 - have shown good agreement with the S_u values from the vane test for the homogeneous layer between 3.5 and 6.5 m. A value of 7 has been obtained for the average cone factor N_{KT}, using the S_u from the vane test as the reference. This value is smaller than the average found in other Brazilian soft clays. Using N_{KT} equal to 7, a good agreement was found between S_u from the piezocone and the T-Bar, as expected. The small amount of triaxial tests performed did not allow a proper comparison between laboratory and T-bar tests. It was found that the T-bar is less dependent on the N_b variation than the piezocone in respect to N_{KT} variation. In other words, the use of N_b equal to 10.5 – as suggested to be used in any deposit – has produced good S_u values, while a local correlation was needed in order to produce proper S_u values from the piezocone. The T-Bar was found to be a promising tool to evaluate the undrained shear strength of soft soils. It was found that the T-bar is less dependent on the N_b variation than the piezocone in respect to N_{KT} variation.

ÍNDICE

LISTA DE FIGURAS	xii
LISTA DE TABELAS	xvii
CAPÍTULO 1 – INTRODUÇÃO	
1.1. Apresentação	01
1.2. Objetivo da tese	02
1.3. Organização da tese	02
CAPÍTULO 2 – ENSAIOS DE PENETRAÇÃO DE CILINDRO	
2.1. Introdução.	03
2.2. Solução analítica	07
2.3. Vantagens do ensaio de penetração de cilindro em relação aos ensaios de	
piezocone e palheta	11
2.3.1. Vantagens	11
2.3.1. Desvantagens	12
2.4. Simplificações associadas à interpretação	12
2.5. Aplicações dos ensaios de penetração de cilindro	14
2.6. Resultados de ensaios já realizados	15
2.7. Comentários finais.	24
CAPÍTULO 3 – CARACTERÍSTICAS GEOTÉCNICAS DA ÁREA DE	
ENSAIOS	
3.1. Localização da área de ensaio.	25
3.2. Perfil geotécnico obtido a partir de sondagem à percussão	26
3.3. Amostragem	28
3.4. Ensaios de caracterização, determinação da umidade e peso específico	
especifico	30
3.5. Ensaios edométricos	31

3.5.1. Metodologia empregada	31
3.5.2. Resultados	32
3.6. Ensaios de piezocone	34
3.6.1. Generalidades	34
3.6.2. Breve descrição do equipamento	34
3.6.3. Calibração	35
3.6.4. Resultados obtidos.	37
3.6.5. Coeficiente de Adensamento Horizontal (ch)	40
3.6.6. Razão de Pré-adensamento (OCR), ângulo de atrito (¢') e coeficiente de	
empuxo no repouso (K _o)	44
3.6.7. Fator N _{KT} do piezocone	47
3.7. Ensaios de palheta	47
3.7.1. Objetivo dos ensaios	47
3.7.2. Breve descrição do equipamento e do ensaio	48
3.7.3. Sistema de calibração	50
3.7.4. Resistência não drenada.	51
3.7.5. Perfil N _{KT}	58
3.8. Ensaios triaxiais.	59
3.8.1. Ensaios triaxiais realizados pelo NGI	59
3.8.1.1. Tipos de ensaios realizados	59
3.8.1.2. Saturação e tensão confinante	59
3.8.1.3. Descrição dos resultados	59
3.8.2. Ensaios triaxiais realizados na COPPE/UFRJ	61
CAPÍTULO 4 – ENSAIOS DE PENETRAÇÃO DE CILINDRO	
REALIZADOS	
4.1. Introdução.	64
4.2. Equipamento utilizado	64
4.3. Calibrações das células de carga: Campanhas 1 e 2	65
4.4. Metodologia dos ensaios	68
4.5 Resultados	70

4.5.1. Resistência de ponta q _{in} da campanha 1	70
4.5.2. Resistência de ponta q _{in} da campanha 2	72
4.5.3. Resistência de ponta q _{out} da campanha 1	73
4.5.4. Resistência de ponta q _{in} do ensaio cíclico da campanha 2	75
4.5.5. Resistência de atrito f _{in} e f _{out}	77
4.5.6. Observações feitas nas campanhas de penetração de cilindro	78
CAPÍTULO 5 – ANÁLISE DOS RESULTADOS	
5.1. Apresentação	82
5.2. Resultados dos ensaios de penetração de cilindro	82
5.2.1. Razão de resistência de ponta q _{out} /q _{in}	82
5.2.2. Razão de atrito f_{out}/f_{in}	85
$5.2.3$. Relação entre atrito f_{in} do ensaio de penetração de cilindro e o atrito f_{s} do	
piezocone	86
5.2.4 Relação entre a resistências de ponta q _{in} do ensaio de penetração de cilindro	
e resistência q _T do piezocone	87
$5.2.5$ Relação entre os valores de S_u dos ensaios de penetração de cilindro e do	
palheta	88
$5.2.6$ Relação entre os valores de S_u dos ensaios de penetração de cilindro e do	
piezocone	90
$5.2.7.$ Relação entre os valores de S_u dos ensaios de penetração de cilindro e dos	
ensaios triaxiais	92
5.3. Resumo dos ensaios.	93
,	
CAPÍTULO 6 – CONCLUSÕES E SUGESTÕES PARA NOVAS	
PESQUISAS	96
REFEREÊNCIAS BIBLIOGRÁFICAS	98

LISTA DE FIGURAS

Figura 2.1 – Esquema do penetrômetro cilíndrico (STEWART e RANDOLPH, 1991)	
	03
Figura 2.2. – Penetrômetro cilíndrico desenvolvido para utilização em campo	
(STEWART e RANDOLPH, 1994a, 1994b)	04
Figura 2.3 – Esquema do penetrômetro cilíndrico utilizado por RANDOLPH et alii	
(1998) para investigações off-shore	05
Figura 2.4 – Mecanismo de cravação do penetrômetro cilíndrico empregado no mar do	
Timor (HEFER e NEUBECKER, 1999)	06
Figura 2.5 – Esquema que representa o penetrômetro cilíndrico utilizado por CHUNG e	
RANDOLPH (2001)	06
Figura 2.6 – Penetrômetro cilíndrico utilizado pelo NGI (2001)	
	07
Figura 2.7 – Fator barra N _b versus fator de aderência α (adaptado de RANDOLPH e	
HOULSBY, 1984)	09
Figura 2.8 – Fator barra N _b versus fator de aderência α (STEWART e RANDOLPH,	
1991)	10
Figura 2.9 – Tensões atuantes na base do penetrômetro cilíndrico (HEFER e	
NEUBECKER, 1999)	14
Figura 2.10 - Resultados dos ensaios de penetração de cilindro (STEWART e	
RANDOLPH, 1994a, 1994b)	
	16
Figura 2.11 – Resultados dos ensaios de penetração de cilindro (RANDOLPH et alii,	
1998)	16
Eigene 2.12 Descrite des des angeles de nonctue 2 de 2011 du (DANDOLDII (1''	
Figura 2.12 – Resultados dos ensaios de penetração de cilindro (RANDOLPH et alii,	1 7
1998)	17

Figura 2.13 – Resistência de ponta dos ensaios de penetração de cilindro e do piezocone	
(HEFER e NEUBECKER, 1999)	18
Figura 2.14 – Resultados dos ensaios de penetração de cilindro cíclicos (HEFER e	
NEUBECKER, 1999)	18
Figura 2.15 – Resistências de ponta q _{in} do ensaio de penetração de cilindro e do ensaio	
de piezocone (CHUNG e RANDOLPH, 2001)	19
Figura 2.16 – Resistências de ponta q _{in} dos ensaios de penetração de cilindro liso e	
rugoso (CHUNG e RANDOLPH, 2001)	20
Figura 2.17 – Resistências de ponta q _{in} dos ensaios de penetração de cilindro pequeno e	
padrão (CHUNG e RANDOLPH, 2001)	21
Figura 2.18 – Resistências de ponta q _{out} dos ensaios de penetração de cilindro pequeno e	
padrão (CHUNG e RANDOLPH, 2001)	22
Figura 2.19 – Resultados de poro-pressão obtidos com ensaios de penetração de cilindro	
(NGI, 2001)	22
Figura 2.20 – Resultados de resistência ao atrito obtidos com ensaios de penetração de cilindro (NGI, 2001)	23
Figura 2.21 – Resultados de resistência de ponta obtidos com ensaios de penetração de cilindro (NGI, 2001)	23
Figura 3.1 – Foto aérea da região de ensaios na Barra da Tijuca	25
Figura 3.2 – Foto da área de ensaio	26
Figura – 3.3 – Locação dos ensaios	26
Figura 3.4 – Perfil do solo, segundo boletim de sondagem	27
Figura 3.5 – Retirada do amostrador, segunda campanha	29
Figura 3.6 – Amostra sem parafina (à esquerda) e com parafina (à direita), segunda	
campanha	29
Figura 3.7 – Curva granulométrica	31
Figura 3.8 – Esquema da amostra destacada da parede do tubo, após quatro voltas do fio	
pela interface solo-parede do amostrador (LADD, 2003)	32
Figura 3.9 – Resultado dos ensaios edométricos	33

::	
XII	

Figura 3.10 – Esquema da máquina de cravação do piezocone (SOARES et alii, 1986)	35
Figura 3.11. Dimensões do piezocone IV utilizado no ensaio (BEZERRA, 1996)	35
Figura 3.12 – Ensaios de piezocone, resistência de ponta x profundidade	37
Figura 3.13 – Ensaios de piezocone, atrito lateral x profundiade	38
Figura 3.14 – Ensaios de piezocone, poro-pressão u ₁ versus profundidade	38
Figura 3.15– Ensaios de piezocone, poro-pressão u ₂ versus profundidade	39
Figura 3.16 – Dissipação na profundidade 2.02 m	42
Figura 3.17 – Dissipação na profundidade 5.00 m	42
Figura 3.18 – Dissipação na profundidade 8.04 m	43
Figura 3.19 – Dissipação na profundidade 12.34 m	43
Figura 3.20 Curva gabarito, HOULSBY e TEH (1988)	44
Figura 3.21 – Perfil de OCR obtido com o piezocone	45
Figura 3.22 – Estimativa de K _o , MAYNE e KULHAWY (1982)	46
Figura 3.23 – Equipamento que aplica torque à palheta, apresentado por NAVARRO	40
(2004)	49
Figura 3.24 – Foto da Palheta e sua proteção	49
Figura 3.25. – Calibração do equipamento de palheta	50
Figura 3.26 - Resistência não drenada versus profundidade	52
Figura 3.27 - Resistência não drenada versus profundidade	53
Figura 3.28 – Sensibilidade versus profundidade	54
Figura 3.29 – Torque versus rotação, profundidade 2,5 m	54
Figura 3.30 – Torque versus rotação, profundidade 3,5 m	55
Figura 3.31 – Torque versus rotação, profundidade 4,5 m	55

	xiii
Figura 3.32 – Torque versus rotação, profundidade 5,5 m	56
Figura 3.33 – Torque versus rotação, profundidade 6,5 m	56
Figura 3.34 – Torque versus rotação, profundidade 7,5 m	57
Figura 3.35 – Torque versus rotação, profundidade 8,5 m	57
Figura 3.36 – Perfil do fator de cone N _{KT}	58
Figura 3.37 – Resultado do ensaio triaxial CAUc na profundidade 3,35 m	60
Figura 3.38– Resultado do ensaio triaxial CAUe na profundidade 3,45 m	60
Figura 3.39– Resultado do ensaio triaxial CAUc na profundidade 7,35 m	61
Figura 3.40– Resultado do ensaio triaxial CAU _e na profundidade 7,35 m	61
Figura 3.41 – Resultado do triaxial CAU _c – COPPE/UFRJ	62
Figura 3.42 – Resultado do triaxial CAU _e – COPPE/UFRJ	63
Figura 4.1 – Penetrômetro cilíndrico produzido a partir do piezocone COPPE III	65
Figura 4.2 – Calibração da ponta do penetrômetro cilíndrico	67
Figura 4.3 – Máquina de cravação do penetrômetro cilíndrico/piezocone utilizada pela	
COPPE/UFRJ	69
Figura 4.4 –Penetrômetro cilíndrico em fase inicial de ensaio	69
Figura 4.5 – Resistência de ponta q _{in} na cravação, obtida na campanha 1	71
Figura 4.6 – Observação de raízes no local de ensaios	72
Figura 4.7 – Resistência de ponta q _{in} entre 0 e 8 m de profundidade na campanha 2	73
Figura 4.8 – Resistência de ponta q _{out} na extração, obtida na campanha 1	74
Figura 4.9. – Resistência q _{in} do ensaio cíclico entre 3,0 e 4,0 m de profundidade,	
campanha 2	76
Figura 4.10 – Resistência q _{in} do ensaio cíclico entre 5,0 e 6,0 m de profundidade,	
campanha 2	76

Figura 4.11 - Resistência q _{in} do ensaio cíclico entre 6,0 e 7,0 m de profundidade, campanha 2	77
Figura 4.12 - Resistência q _{in} do ensaio cíclico entre 7,0 e 8,0 m de profundidade,	
campanha 2	77
Figura 4.13 – Resistência ao atrito na cravação $f_{\rm in}$, campanha 1	78
Figura 4.14 – Resistência ao atrito na cravação f _{in} , campanha1	79
Figura 4.15 – Resistência ao atrito na extração f _{out} , campanha1	80
Figura 5.1 – Resistência de ponta na cravação e na extração do penetrômetro cilíndrico	84
Figura $5.2 - Razão \mid q_{out}/q_{in} \mid$ dos ensaios de penetração de cilindro na campanha 1	85
Figura 5.3 – Resistência ao atrito na cravação e na extração	86
Figura 5.4 – Comparação entre resistências de ponta do penetrômetro cilíndrico e do	
piezocone	87
Figura 5.5 – Resultados de S_u penetrômetro cilíndrico e do palheta	89
Figura 5.6 Resultados de S_{ur} de penetração cilíndrica e de Palheta	90
Figura 5.7 – Valores de S _u do penetrômetro cilíndrico e do piezocone	91
Figura 5.8 – Valores de S_u obtidos com penetração cilíndrica e com triaxial	92
Figura 5.9 – Valores de S_u do penetrômetro cilíndrico, piezocone, palheta e triaxial	94
Figura 5.10 – Resistência S_u obtida com penetrômetro cilíndrico e com expressão de	
JAMIOLKOWSKI et alii (1985)	95

LISTA DE TABELAS

Tabela 3.1 – Critério de avaliação de qualidade da amostra (LUNNE et alii, 1997)	30
Tabela 3.2 – Resultados dos ensaios de adensamento	33
Tabela 3.3 - Resultado da calibração da célula de carga de ponta	36
Tabela 3.4 - Resultado da calibração da célula de carga de atrito	36
Tabela 3.5 - Resultado da calibração do transdutor de pressão poro-ponta u ₁	36
Tabela 3.6 - Resultado da calibração do transdutor de pressão poro-base u ₂	37
Tabela 3.7 - Valores de T* a utilizar na análise de ensaios de dissipação (HOULSBY E TEH, 1988)	40
Tabela 3.8 – Resultados dos ensaios de dissipação na vertical PZ 163	41
Tabela 3. 9 – Valores de OCR obtido com piezocone PZ 163	46
Tabela 3.10– Resultado da calibração do equipamento de palheta	51
Tabela 3.11 – Valores de S _u e de S _t obtidos no ensaio de palheta	52
Tabela 3.11 – Saturação, adensamento e deformação dos corpos de prova	59
Tabela 3.13 – Resultado de S _u dos ensaios CAUc e CAUe realizados pelo NGI	60
Tabela 4.1 – Resultados da calibração da célula de ponta – Campanha 1	66
Tabela 4.2 – Resultados da calibração da célula da ponta – Campanha 2	66
Tabela 4.3 – Resultados da calibração da célula de atrito –campanha 1	67
Tabela 4.4 – Resistência de ponta q _{in} na campanha 1	71
Tabela 4.5 – Resistência de ponta q _{in} na campanha 2	72
Tabela 4.6 – Resultados de q _{out} na campanha 1	74
Tabela 4.7 – Resultados dos ensaios cíclicos 1 e 2, q _{in} (kPa)	75
Tabela 5.1 – Valores de qout/qin para ensaio Tb1	82
Tabela 5.2 – Valores de qout/qin para ensaio Tb2	83
Tabela 5.3 – Valores de qout/qin para ensaio Tb3	83
Tabela 5.4 – Valores de qout/qin para ensaio Tb4	83

CAPÍTULO 1

INTRODUÇÃO

1.1. Apresentação

A resistência não drenada, S_u , de um depósito argiloso saturado pode ser obtida através de ensaios de campo e laboratório. Dentre os ensaios de campo, o ensaio de palheta é considerado o ensaio de referência. Entretanto, o ensaio é realizado em determinados intervalos, não fornecendo um perfil contínuo de S_u com a profundidade. Embora o ensaio de piezocone seja capaz de fornecer tal perfil, da maneira como tradicionalmente é obtido o valor de S_u depende de um fator, denominado N_{KT} , o qual varia com as propriedades do depósito, por exemplo com a razão de pré-adensamento, OCR.

No caso de ensaios de laboratório, a principal dificuldade consiste na obtenção de amostras de boa qualidade, sobretudo em situação *off-shore*.

Com a finalidade de reunir as vantagens dos ensaios de palheta e de piezocone, foi desenvolvido na Austrália (STEWART e RANDOLPH, 1991) um ensaio denominado de penetração de cilindro (T-Bar). Este ensaio forneceria um perfil contínuo de S_u com a profundidade, sendo o valor de S_u obtido através de um fator, denominado N_b , o qual seria menos dependente das propriedades do depósito. O ensaio seria particularmente interessante em situação *off-shore*.

A COPPE/UFRJ, em convênio com o Instituto Norueguês de Geotecnia (NGI) e a Universidade do Oeste da Austrália (UWA), produziu – com a cooperação da Grom Engenharia – um penetrômetro cilíndrico. Com este equipamento foram realizadas campanhas de ensaios na Barra da Tijuca, na cidade do Rio de Janeiro, em uma área de aproximadamente 10m de espessura de solo mole. No local será construída a Vila Olímpica para os Jogos PANAMERICANOS de 2007.

Além dos ensaios com este novo penetrômetro, também foram realizados ensaios de palheta (vane test), de piezocone e triaxiais, em amostras indeformadas, levados a efeito no NGI.

1.2. Objetivo da tese

O principal objetivo da presente pesquisa consiste na comparação entre os perfis de resistência não drenada obtidos pelo ensaio de penetração de cilindro com aqueles fornecidos através de ensaios de palheta, de piezocone e de ensaios triaxiais de laboratório.

1.3. Organização da tese

A tese está desenvolvida em 6 capítulos, incluindo o presente capítulo introdutório.

O capítulo 2 apresenta uma breve revisão bibliográfica sobre ensaios de penetração de cilindro, conhecido na literatura internacional como T-Bar.

O capítulo 3 mostra as características geotécnicas da região de ensaio, definidas pelos ensaios de laboratório e de campo realizados nesta pesquisa.

O capítulo 4 apresenta a campanha de ensaios de penetração de cilindro, descrevendo-se os procedimentos e equipamentos empregados. Os resultados destes ensaios são também apresentados neste capítulo.

O capítulo 5 compara os resultados do novo equipamento com os outros ensaios realizados na pesquisa.

O capítulo 6 apresenta as conclusões do trabalho e as sugestões para novas pesquisas.

CAPÍTULO 2

ENSAIOS DE PENETRAÇÃO DE CILINDRO

2.1. Introdução

O ensaio de penetração de cilindro foi desenvolvido originalmente para ensaios em centrífuga na Universidade do Oeste da Austrália (UWA) por STEWART e RANDOLPH (1991), com a finalidade de determinar um perfil contínuo de resistência não drenada, S_u, em solos moles. Este ensaio consistiu na cravação, com velocidade constante de 3 mm/s, de uma barra cilíndrica horizontal, tal como representado na figura 2.1.

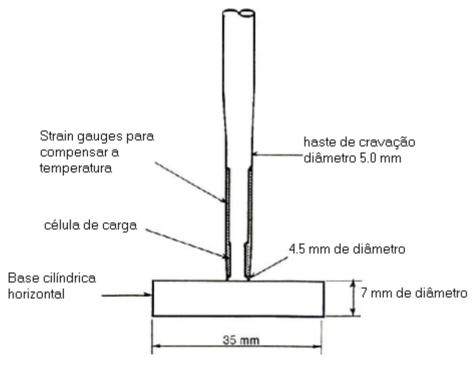


Figura 2.1 – Esquema do penetrômetro cilíndrico (STEWART e RANDOLPH, 1991)

As principais vantagens deste novo ensaio, segundo STEWART e RANDOLPH (1991), seriam:

A existência de uma solução analítica (RANDOLPH e HOULSBY, 1984),
 baseada na Teoria da Plasticidade, que possibilita a interpretação do ensaio. Esta solução permite a obtenção de um perfil de S_u com pequena margem de erros.

 Algumas características superiores aos ensaios de piezocone e palheta, a serem discutidas adiante.

Posteriormente o ensaio de penetração de cilindro foi utilizado em campo (STEWART e RANDOLPH, 1994a, 1994b) em Burswood, Austrália. Nesta campanha foi investigada a resistência de um solo mole com 18m de espessura. O penetrômetro cilíndrico utilizado consistiu na retirada da extremidade cônica do piezocone e na adaptação de uma barra cilíndrica horizontal em seu lugar, tal como mostrado na figura 2.2. A barra era de alumínio e possuía 20 cm de comprimento e 5 cm de diâmetro. A extremidade da haste possuía um pino para resistir a esforços de flexão e anteparo em forma de espada para manter a estabilidade da barra durante a cavação.

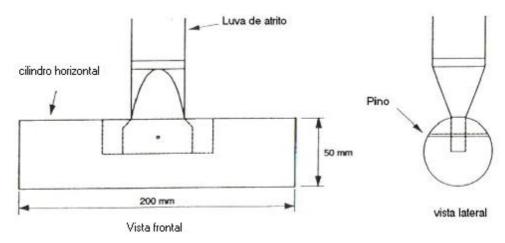


Figura 2.2. – Penetrômetro cilíndrico desenvolvido para utilização em campo (STEWART e RANDOLPH, 1994a, 1994b)

A cravação era feita com o emprego da mesma máquina de cravação utilizada para o ensaio de cone (CPT) e com a mesma velocidade de 2 cm/s.

Nesta versão o pino mencionado não era capaz de resistir aos esforços relativos à retirada da barra horizontal, que era, portanto, não recuperada.

O ensaio também foi utilizado em investigações *off-shore* (RANDOLPH et alii, 1998) no mar do Timor, no litoral norte da Austrália. A espessura de lâmina de água era de 380 m e os ensaios atingiram 25 m abaixo do fundo do mar. O penetrômetro cilíndrico utilizado possuía 25 cm de comprimento e 4 cm de diâmetro, como ilustra a figura 2.3.

Nos ensaios de RANDOLPH et alii (1998), um inclinômetro foi instalado no interior do penêtrometro, o que possibilitava o controle tanto da cravação como da extração do equipamento. Também foram incluídos dois transdutores de poro-pressão, nas posições indicadas na figura 2.3.

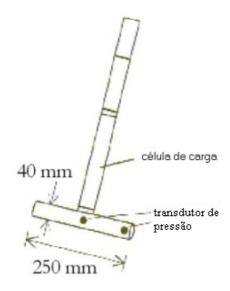


Figura 2.3 – Esquema do penetrômetro cilíndrico utilizado por RANDOLPH et alii (1998) para investigações *off-shore*

HEFER e NEUBECKER (1999) descrevem os mesmos ensaios relatados por RANDOLPH et alii (1998), e o esquema do mecanismo de cravação utilizado por estes autores é mostrado na figura 2.4. O equipamento, denominado Seacalf, era posicionado no fundo do mar, permitindo a cravação contínua até 40 m.

HEFER e NEUBECKER (1999) também apresentam ensaios adicionais, em outro local, onde foram realizados ensaios cíclicos, com a finalidade de obtenção da resistência amolgada (S_{ur}) do solo, tendo sido efetuadas sucessivas cravações e extrações para se obter tal resistência.

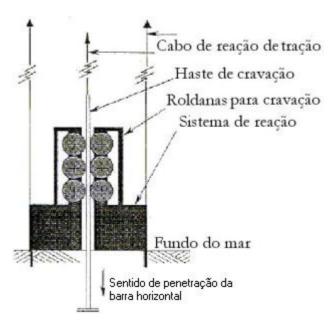


Figura 2.4 – Mecanismo de cravação do penetrômetro cilíndrico empregado no mar do Timor (HEFER e NEUBECKER, 1999)

CHUNG e RANDOLPH (2001), através de um convênio entre a UWA e o NGI, realizaram ensaios de penetração de cilindro em Burswood, Austrália. Nesta campanha foram usados penetrômetros com superfícies lisa e rugosa. Além de variar a rugosidade, foram utilizados outros dois equipamentos com diferentes comprimentos: o primeiro com 25 cm e o segundo com 16 cm de comprimento, ambos com 4 cm de diâmetro. Estes equipamentos consistiram em uma adaptação feita ao piezocone, como mostra a figura 2.5.

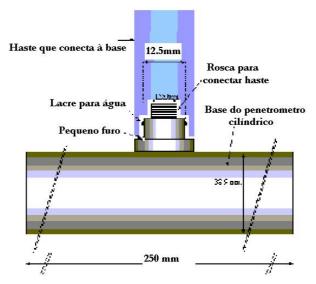


Figura 2.5 – Esquema que representa o penetrômetro cilíndrico utilizado por CHUNG e RANDOLPH (2001)

O NGI (2001) realizou ensaios de penetração de cilindro em Onsφy, Noruega. O equipamento utilizado também era uma adaptação do piezocone e possuía 24,9 cm de comprimento e 4 cm de diâmetro, como ilustra a figura 2.6.

Figura 2.6 – Penetrômetro cilíndrico utilizado pelo NGI (2001)

2.2. A Solução analítica

A interpretação do ensaio de penetração de cilindro é baseada na solução analítica de RANDOLPH e HOULSBY (1984), os quais analisaram o problema de carregamento transversal em estacas. Para resolver o problema, os autores utilizaram a Teoria da Plasticidade para estabelecer a relação entre a força por unidade de comprimento (P) atuante no cilindro e a resistência não drenada S_u, conforme expressão (2.1). Na solução de RANDOLPH e HOULSBY (1984), a barra cilíndrica move-se lateralmente em solo coesivo, tendo os autores definido um fator, N_b, através dos teoremas dos limites superior e inferior.

$$\frac{P}{S_u \cdot d} = N_b \tag{2.1}$$

onde:

P é a força por unidade de comprimento atuante no cilindro;

d é o diâmetro da barra cilíndrica;

N_b é o fator barra.

Na solução de RANDOLPH E HOULSBY (1984), para definir o fator N_b , através dos teoremas dos limites inferior e superior, foi considerado que o solo é perfeitamente plástico, que a coesão c independe do estado de tensões e que a deformação se dá a volume constante.

No limite inferior, os autores consideram uma distribuição de tensões no solo, em equilíbrio com uma determinada carga.

No limite superior, o mecanismo de ruptura é postulado, obtendo-se a carga de ruptura através de equação relacionando a dissipação de energia na massa de solo com o trabalho realizado pela carga externa.

O fator N_b depende da rugosidade da barra cilíndrica, que é representada pelo fator de aderência α . Este fator pode variar de 0 (barra perfeitamente lisa) a 1 (barra rugosa). No caso do limite inferior, o fator N_b é obtido através da expressão (2.2), a qual é representada graficamente na figura 2.7.

$$\frac{P}{S_u d} = \pi + 2\Delta + 2\cos\Delta + 4\left[\cos\left(\frac{\Delta}{2}\right) + \sin\left(\frac{\Delta}{2}\right)\right]$$
(2.2)

onde,

 Δ – arcsen α ;

 $\alpha = a/S_u - fator de aderência;$

a – aderência solo/cilindro.

No caso do limite superior, N_b é obtido pela expressão (2.3), também representada graficamente na figura 2.7. Os valores de N_b podem variar de 9,14 a 11,94, representando os limites da solução.

$$\frac{P}{S_u d} = \pi + 2\Delta + 4\cos\Psi\left(\sqrt{2} + \sin\Psi\right) \tag{2.3}$$

onde.

$$\Psi = (\pi/4 - \Delta/2)$$

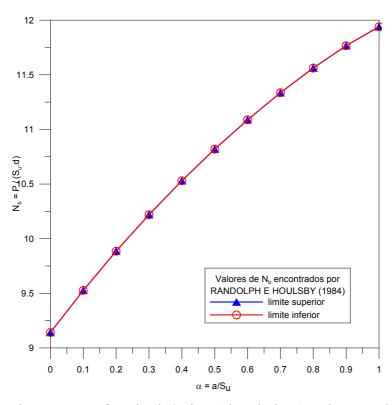


Figura 2.7 – Fator barra N_b versus fator de aderência α (adaptado de RANDOLPH e HOULSBY, 1984)

Ao substituir o valor de ψ na expressão (2.3), observa-se que se recai na expressão (2.2). Ou seja, os limites superior e inferior são iguais, tendo-se, portanto, uma solução exata para o problema.

MURFF et alii (1989), basearam-se nos estudos de RANDOLPH e HOULSBY (1984), e verificaram que os resultados dos limites superior e inferior são iguais somente quando α =1 (superfície rugosa). Para barra lisa (α =0), ocorre a maior divergência entre os limites superior e inferior, que é 9,1%. Neste estudo, os autores determinaram cargas de ruptura durante a penetração do cilindro em solo coesivo, porém nada é mencionado a respeito do fator carga N_b .

STEWART e RANDOLPH (1991) apresentam as curvas N_b versus α na figura 2.8. Embora tenham citado RANDOLPH e HOULSBY (1984), as duas curvas apenas coincidem no caso de barra rugosa. A expressão que define o limite superior, não é apresentada por STEWART e RANDOLPH (1991).

Considerando que o fator de aderência dificilmente se aproxima de 0 ou 1 (RANDOLPH e HOULSBY, 1984), STEWART e RANDOLPH (1991) sugerem o emprego de N_b como sendo 10,5. Segundo STEWART e RANDOLPH (1991) a adoção deste valor, associada à estreita faixa possível de valores para N_b (9,14 a 11,94), implica em um erro máximo de 13%.

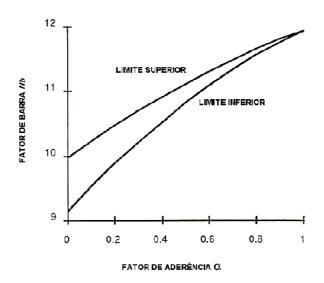


Figura 2.8 – Fator barra N_b versus fator de aderência α (STEWART e RANDOLPH, 1991)

A solução para obter o fator N_b, desenvolvida por RANDOLPH e HOULSBY (1984), analisava o valor de S_u para carregamento transversal em estacas. STEWART e RANDOLPH (1991) admitiram que esta solução fosse aplicada a ensaios de penetração de cilindro horizontal, considerando-se o solo isotrópico. Outras simplificações são mostradas no item 2.4.

RANDOLPH (2004) analisa novamente o problema, e considerava que a expressão do limite inferior é a mesma de RANDOLPH e HOULSBY (1984). Já para o limite superior, no caso de barra lisa, o autor apresenta o valor de N_b como sendo igual a 9,20, pouco maior que o valor 9,14, encontrado por RANDOLPH e HOULSBY (1984). Estes dois resultados, para barra lisa, estão mais próximos do que na solução de STEWART e RANDOLPH (1991)

De qualquer forma, as diferenças correspondentes às variações de N_b acima mencionadas são pequenas, não influenciando o valor médio igual a 10,5 (STEWART e RANDOLPH, 1991), adotado na presente tese.

2.3. Vantagens e desvantagens do ensaio de penetração de cilindro em relação aos ensaios de piezocone e palheta

2.3.1. Vantagens

- i) Segundo STEWART e RANDOLPH (1991), um ensaio ideal para a obtenção da resistência não drenada em argilas moles em centrífuga seria aquele que combinasse as características do ensaio de palheta e de cone. No caso do ensaio de palheta, que fornecesse uma medida "exata" ou direta da resistência não drenada. No caso do cone, que fosse capaz de prover um perfil contínuo dessa resistência com a profundidade. Uma vez que o fator do penetrômetro cilíndrico (fator barra), N_b , seria independente da relação de pré-adensamento, OCR, bem como do nível de tensões o que não ocorre com o fator de cone $N_{\rm KT}$ –, o ensaio de penetração de cilindro teria as propriedades requeridas, e, assim, reuniria as vantagens do ensaio de palheta e de cone. Naturalmente, os comentários daqueles autores são válidos não apenas para ensaios em centrífuga, mas também para ensaios em campo;
- ii) Sendo a área projetada da base cilíndrica dez vezes maior que a do cone, a força medida (grosseiramente) é, no caso do penetrômetro cilíndrico, cerca de dez vezes maior que no caso do cone, para o mesmo solo. Como conseqüência, a acurácia da força medida é muito maior no caso do ensaio de penetração de cilindro (STEWART e RANDOLPH, 1991). Esses comentários, que admitem a mesma capacidade da célula de carga nos dois casos, são verdadeiros, particularmente no caso de células de carga comerciais. Porém, uma célula de carga de alta qualidade, como a existente no piezocone COPPE empregado na presente pesquisa, é capaz de trabalhar com cargas muito pequenas em relação à sua capacidade, com excelente acurácia (DANZIGER, 1990, DANZIGER et alii, 1997). A calibração apresentada no capítulo 4 ilustra este fato;
- iii) Nenhuma correção é necessária devida às pressões de água ou de solo que atuam acima e abaixo da base cilíndrica. Neste caso, estando o sistema em equilíbrio, mede-se a resistência de ponta líquida na cravação (RANDOLPH et alii, 1998);

- iv) Segundo RANDOLPH et alii (1998) os fatores que contribuem para incertezas na estimativa de S_u, a partir de ensaios com piezocone são:
 - Falta de acurácia na leitura de resistência de ponta q erro de \pm 5%;
 - Incerteza ao obter σ'_{v} erro de $\pm 5\%$;
 - Variação da razão de área a durante a penetração do cone erro de ± 10%;
 - Incerteza ao obter N_{KT} erro de $\pm 20\%$;
 - Incerteza ao obter B_q erro de ± 20%;

Os itens descritos acima, juntos, podem conduzir a incertezas que chegam a 35%. No caso de ensaios de penetração de cilindro, estas incertezas atingiriam um valor máximo de 13% (STEWART e RANDOLPH, 1991).

2.3.2. Desvantagens

- i) STEWART e RANDOLPH (1991) mencionam que, no caso de depósitos com súbitas variações de resistência, o cone poderia fornecer medidas de resistência mais confiáveis;
- ii) Verificou-se na presente pesquisa que, no que se refere ao processo executivo, em regiões com aterro, o ensaio é dificultado pela necessidade de furo com diâmetro mínimo de 30 cm no aterro. Isto restringe a utilização do ensaio a regiões de solo mole superficial;
- iii) Antes de iniciar o ensaio de penetração de cilindro, deve-se ter uma estimativa da resistência do perfil de solo, para não danificar a base cilíndrica por flexão.

2.4. Simplificações associadas à interpretação

A aplicação da Teoria da Plasticidade adotada por RANDOLPH e HOULSBY (1984) para o caso do ensaio de penetração de cilindro está associada às seguintes simplificações:

- a barra empregada no ensaio não é infinita, mas na solução adotada considera-se o cilindro infinito sem qualquer correção devido ao comprimento (STEWART e RANDOLPH, 1991);
- ii. o atrito ao longo das extremidades do cilindro é desprezado, segundo STEWART e RANDOLPH (1991). Estes autores comentam que a célula de carga empregada (no caso da centrífuga) pode ser influenciada pela tensão horizontal do solo, mas esse erro é muito pequeno, e pode ser compensado pelo atrito na extremidade do cilindro, que seria da mesma ordem de grandeza, cerca de 2%. Em ensaios em campo STEWART e RANDOLPH (1994, 1994b) comentam que as extremidades da barra são lisas, porém não fazem comentários quanto à célula de carga;
- iii. é admitido que o solo acima do penetrômetro cilíndrico (sentido oposto ao movimento) se fecha com a passagem do equipamento, ou seja, nenhum vazio ocorre (STEWART e RANDOLPH, 1994a, 1994b);
- iv. Não se considera que na parte superior há uma região ocupada pela haste de cravação (STEWART e RANDOLPH, 1991). Considera-se a barra 100% imersa em solo coesivo.
- v. As tensões distribuídas na parte inferior da barra são na verdade maiores do que as tensões na parte superior. STEWART e RANDOLPH (1991) adotam a hipótese que as cargas correspondentes a estas pressões, acima e abaixo da barra, se anulam. A figura 2.9 de HEFER e NEUBECKER (1999) ilustra este comentário.
- vi. Na literatura, nenhuma consideração foi feita sobre o comportamento da célula de carga devido a esforços de torção ou flexão da base cilíndrica. Nesta pesquisa esta hipótese também não foi considerada.

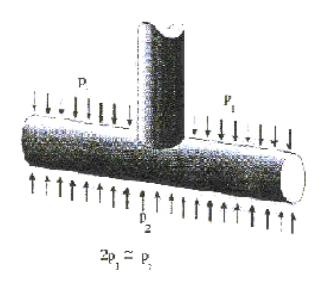


Figura 2.9 – Tensões atuantes na base do penetrômetro cilíndrico (HEFER e NEUBECKER, 1999)

2.5. Aplicações do penetrômetro cilíndrico

O ensaio de penetração de cilindro mede a carga lateral última do solo atuando na barra cilíndrica, fornecendo capacidade de carga para pilares (STEWART e RANDOLPH, 1991), em dutos enterrados, desde que o solo analisado seja isotrópico.

A retirada de amostras indeformadas em situações *off-shore*, para ensaios de resistência de solo, torna-se uma tarefa difícil, devido ao amolgamento durante a extração. Então, o ensaio de penetração de cilindro seria uma ferramenta adicional, já que o fundo do mar é constituído, na maioria das vezes, por solo mole (RANDOLPH et alii, 1998).

Conhecendo-se o perfil de resistência do solo, em situações *off-shore*, com ensaios de penetração de cilindro, obtem-se resultados importantes que poderiam gerar uma economia significativa no dimensionamento de fundações de plataformas *off-shore* (HEFER e NEUBECKER, 1999).

A razão entre a resistência de ponta na cravação e na extração (q_{in}/q_{out}) fornece a sensibilidade do solo (RANDOLPH et alii, 1998) que, para o autor desta pesquisa, esta razão poderia representar o arrancamento de uma âncora, por exemplo.

O ensaio de penetração de cilindro cíclico é uma maneira simples de fornecer a resistência amolgada do solo, através de sucessivos ciclos de cravação/extração (HEFER e NEUBECKER, 1999).

2.6. Resultados de ensaios já realizados

Os ensaios com penetrômetros cilíndricos, em campo, realizados por STEWART e RANDOLPH (1994) mostraram boa correlação com ensaios de palheta e piezocone, mostrado na figura 2.10.

Nos ensaios realizados por RANDOLPH et alii (1998) em situações *off-shore*, para profundidade menores, até 7 m, a resistência de ponta do penetrômetro cilíndrico (q_t) é cerca de 5% menor que a resistência líquida corrigida do piezocone (q_c). Para profundidades maiores, cerca de 17 m, esta diferença chega a 20%. No ensaio mediu-se também a sensibilidade do solo (q_t)_{in} / (q_t)_{out}. Os resultados são mostrados nas figuras 2.11 e 2.12.

Para os autores acima, o aumento da divergência de S_u , entre o ensaio de penetração de cilindro e o ensaio de piezocone, com a profundidade, pode estar associado à variação de parâmetros do piezocone como: i) variação da razão de área, ii) a razão entre o excesso de poro pressão na ponta e na base $(\Delta u_1/\Delta u_2)$ e iii) principalmente à variação do fator N_{KT} com a profundidade.

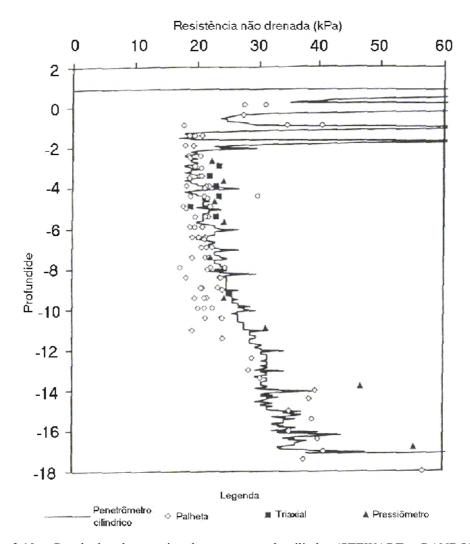


Figura 2.10 - Resultados dos ensaios de penetração de cilindro (STEWART e RANDOLPH, 1994a, 1994b)

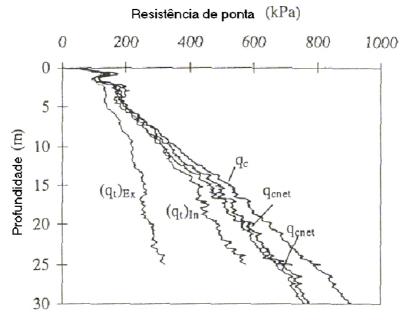


Figura 2.11 – Resultados dos ensaios de penetração de cilindro (RANDOLPH et alii, 1998)

Onde na Figura 2.14,

q_c - resistência de ponta líquida do piezocone;

(q_t)_{in} – resistência de ponta do penetrômetro cilíndrico na cravação;

(q_t)_{out} – resistência de ponta do penetrômetro cilíndrico na extração.

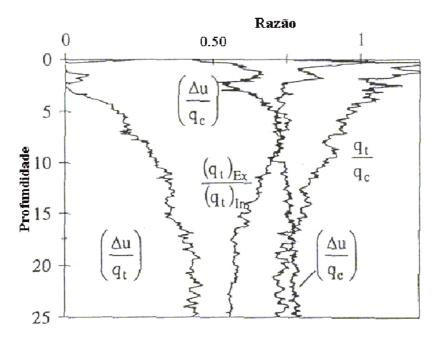


Figura 2.12 – Resultados dos ensaios de penetração de cilindro (RANDOLPH et alii, 1998)

HEFER e NEUBECKER (1999) realizaram ensaios de penetração de cilindro cíclicos, com sucessivas cravações e extrações, até obter a resistência amolgada do solo, como mostra a figura 2.14. Os autores realizaram também ensaios convencionais e verificaram que as dispersões (picos) nos resultados são menores quando comparados aos ensaios piezocone, facilitando a interpretação dos resultados, mostrada na figura 2.13.

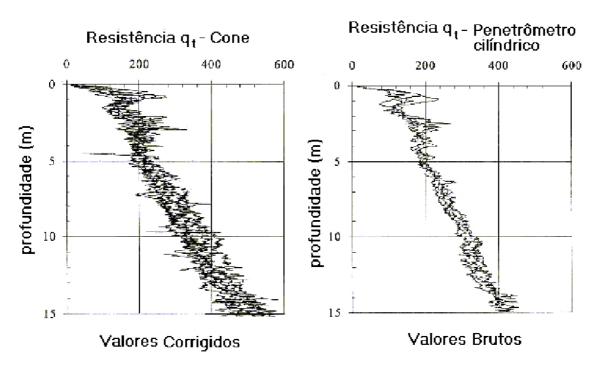


Figura 2.13 – Resistência de ponta dos ensaios de penetração de cilindro e do piezocone (HEFER e NEUBECKER, 1999)

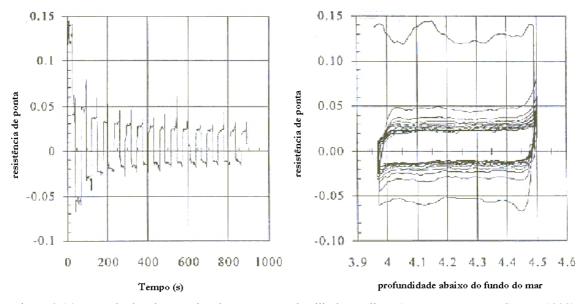


Figura 2.14 – Resultados dos ensaios de penetração de cilindro cíclicos (HEFER e NEUBECKER, 1999)

CHUNG e RANDOLPH (2001) realizaram ensaios em Burswood na Austrália, até 18 m de profundidade. Além dos ensaios com penetrômetro cilíndrico, foram realizados ensaios de piezocone e palheta. Nesta campanha foram utilizadas barras com diferentes comprimentos e diferentes rugosidades. A cravação foi à 2 cm/s e os autores verificaram as relações existentes entre as resistências de ponta do penetrômetro cilíndrico e do piezocone, o efeito da rugosidade e o efeito do comprimento da barra.

A figura 2.15 exibe as resistências de ponta obtidas com o penetrômetro cilíndrico liso de 25 cm (padrão) e com o piezocone CHUNG e RANDOLPH (2001). Na figura 2.16 foram utilizados bases cilíndricas lisas e rugosas, com comprimento 25 cm e diâmetro 4 cm, onde as resistências de ponta mostraram-se muito próximas para ambos penetrômetros, entre 4 e 10 m de profundidade. Para profundidades maiores, cerca de 17 m, a resistência de ponta do piezocone foi 25% maior.

Os mesmos autores acima verificaram que a rugosidade da barra é pouco significativa, apresentando a barra lisa valores de resistência de ponta ligeiramente (5 a 7 %) menores que a rugosa, mostrado na figura 2.17.

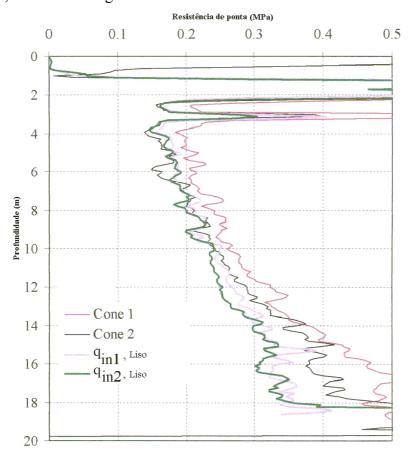


Figura 2.15 – Resistências de ponta q_{in} do ensaio de penetração de cilindro e do ensaio de piezocone (CHUNG e RANDOLPH, 2001)

Os pesquisadores CHUNG e RANDOLPH (2001) verificaram ainda o efeito do comprimento da base cilíndrica. Foram realizados ensaios com barras de 25 cm (padrão) e 16 cm (pequeno) de comprimento, mantendo-se o diâmetro igual a 4 cm. Os autores verificaram que, para ambos comprimentos, os resultados da resistência de ponta q_{in} na

cravação foram muito próximos, com diferença de 3%, mostrado na figura 2.17. Já para a resistência de ponta na extração q_{out}, o penetrômetro cilíndrico com 25 cm de comprimento, apresentou valores cerca de 12% menores, exibidos na figura 2.18.

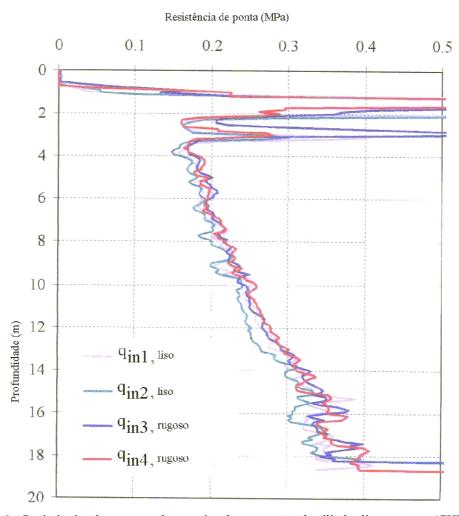


Figura 2.16 – Resistências de ponta q_{in} dos ensaios de penetração de cilindro liso e rugoso (CHUNG e RANDOLPH, 2001)

No relatório apresentado pelo NGI (2001) foram realizados ensaios de penetração de cilindro em Onsφy, Noruega. Nesta campanha os ensaios atingiram 25 m de profundidade, sendo medidos a resistência de ponta q_{in}, a poro-pressão na junção entre a haste de cravação e a barra cilíndrica e o atrito lateral. Os resultados de poro-pressão não foram satisfatórios, apresentando repetibilidade ruim, mostrado na figura 2.19. A resistência ao atrito também não apresentou bons resultados, sendo influenciada pela dimensão da barra (25 cm de comprimento por 4 cm de diâmetro), conforme figura 2.20. O valor da resistência q_{in} é próxima à resistência q_c (sem correção) do piezocone,

porém a poro-pressão não influencia os resultados da resistência de ponta, como ocorre no piezocone, ilustrado na figura 2.21.



Figura 2.17 – Resistências de ponta q_{in} dos ensaios de penetração de cilindro pequeno e padrão (CHUNG e RANDOLPH, 2001)

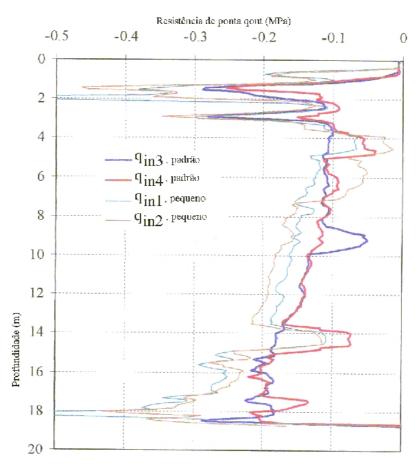


Figura 2.18 – Resistências de ponta q_{out} dos ensaios de penetração de cilindro pequeno e padrão (CHUNG e RANDOLPH, 2001)



Figura 2.19 – Resultados de poro-pressão obtidos com ensaios de penetração de cilindro (NGI, 2001)

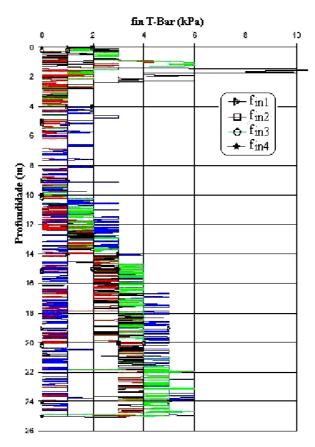


Figura 2.20 – Resultados de resistência ao atrito obtidos com ensaios de penetração de cilindro (NGI, 2001)

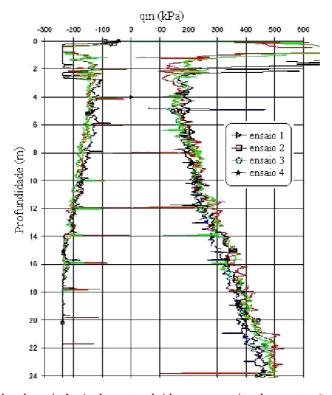


Figura 2.21 – Resultados de resistência de ponta obtidos com ensaios de penetração de cilindro (NGI, 2001)

2.7. Comentários finais

No ensaio de penetração de cilindro é mais fácil interpretar o perfil S_u , quando comparado ao piezocone. Neste novo ensaio, seria necessário uma grande variação da força de cravação para causar dispersões (picos nos gráficos). Sendo a resistência a penetração q a força de cravação F dividida pela área de projeção A, em ensaios com piezocone, uma pequena variação de F causaria dispersões consideráveis no perfil da resistência de ponta q, conseqüentemente no perfil de S_u .

Na literatura, verifica-se que o ensaio de penetração de cilindro (T-Bar) apresenta ótimos resultados de S_u quando comparado a outros penetrômetros, como, por exemplo o piezocone. Isto faz deste novo equipamento uma importante ferramenta para determinar o perfil de S_u , principalmente em regiões *off-shore*.

Nos ensaios de penetração de cilindro, o fator de barra N_b (função da rugosidade da barra) é pré-estabelecido e igual a 10.5 (RANDOLPH E HOULSBY, 1984). Já para ensaios com piezocone, o fator N_{KT} , análogo ao fator N_b , é função das propriedades do solo (OCR e rigidez, por exemplo) e deve ser calculado com auxílio do ensaio de palheta.

Comparando-se as resistências q_{in} , obtida com o penetrômetro cilíndrico, com a q_T do piezocone, verifica-se que q_{in} é geralmente menor que q_T . Considerando-se que o solo ensaiado seja o mesmo, que a área de projeção da base cilíndrica seja 10 vezes a do cone, a resistência de ponta deveria ser a mesma para ambos penetrômetros. A diferença que ocorre entre q_{in} e q_T poderia estar associada a zona de amolgamento causada pela cravação do cilindro, fazendo com que q_{in} seja menor que q_T .

CAPÍTULO 3

CARACTERÍSTICAS GEOTÉCNICAS DA ÁREA DE ENSAIOS

3.1. Localização da área de ensaio

Os ensaios foram realizados na Av. Ayrton Senna - Barra da Tijuca - Rio de Janeiro - RJ, onde será construída a Vila Olímpica dos Jogos Panamericanos de 2007. O perfil de solo, onde foram feitos os ensaios, é constituído por argila mole, mostrado em uma foto aérea na figura 3.1. A figura 3.2 mostra a foto da área de ensaios, onde a vegetação e o ressecamento da crosta permitem o acesso à área de ensaios, sem maiores problemas.

A figura 3.3 ilustra o Lay out dos ensaios realizados, próximos ao furo de sondagem SPT 163.

Figura 3.1 – Foto aérea da região de ensaios na Barra da Tijuca.

A área de ensaios está localizada no final da Linha Amarela, próximo ao SESC/RJ, que está distante num raio aproximado de 600m da área da presente pesquisa. O perfil de solo do SESC também é constituído por solo mole e é semelhante ao perfil de solo da presente pesquisa, servindo como referência para estudos preliminares.

Figura 3.2 – Foto da área de ensaio.

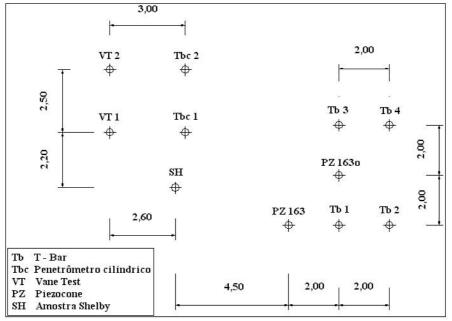


Figura – 3.3 – Locação dos ensaios.

3.2. Perfil geotécnico obtido a partir de sondagem à percussão

A região de ensaio apresenta um perfil de aproximadamente 11 m de argila mole, segundo o boletim de sondagem à percussão, mostrado na figura 3.4. O nível de água

(N.A) foi encontrado a 0,80 m de profundidade e o solo apresenta coloração cinza escura devido à matéria orgânica.

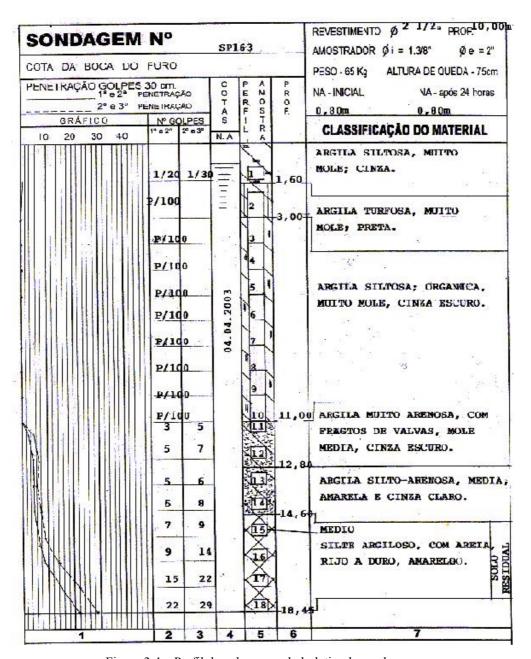


Figura 3.4 – Perfil do solo, segundo boletim de sondagem.

As umidades obtidas na sondagem a percussão SPT 163, como sugerido por Sandroni (1991), foram 138,2 % a 1 m; 116,3 % a 2 m; 197 % a 3 m; 216,5 a 4 m; 231 % a 5 m; 256,5 % a 6 m; 258,3 % a 7 m; 187,3 % a 8 m; 143,9 % a 9 m; 121,3 % a 10 m e 34,8 % a 11 m.

3.3. Amostragem

Foram realizados duas campanhas de amostragem com pistão estacionário. Na primeira campanha, as amostras foram retiradas em amostrador Asterberg de comprimento 75 cm e diâmetro 10 cm, coletadas nas profundidades 1,75 a 2,50, 4,75 a 5,50 e 7,75 a 8,50 m. Os tubos empregados para retirada da amostra foram de aço galvanizado, conforme NBR 9820/1996.

Para avaliar a qualidade da amostra, nas campanhas 1 e 2, foi utilizado o critério de LUNNE et alii (1997), que se baseia na variação do índice de vazios, como mostra a Tabela 3.1.

Na campanha 1, foram obtidos, dos ensaios de adensamento edométrico, valores $\Delta e/e_i$ iguais a 0,032 para 5,10 m de profundidade e 0,039 para 8,10 m de profundidade. Com isto, verificou-se, na Tabela 3.1, que a amostragem possuía qualidade excelente.

Na segunda campanha, as amostras foram coletadas com amostrador com pistão estacionário de 10 cm de diâmetro interno e 82 cm comprimento, mostrado na figura 3.5. O amostrador era de aço galvanizado e apresentava paredes lisas, em acordo com a NBR 9820/1996. As amostras foram coletadas nas profundidades 3,00 a 3,70; 5,00 a 5,70 e 7,00 a 7,70 m. O intervalo entre a cravação do amostrador e a retirada deste, para extrair as amostras, foi no mínimo 4 horas.

Após a retirada das amostras, estas foram parafinadas, como mostra a figura 3.6, e transportadas para o laboratório da COPPE/UFRJ, dentro de uma caixa de madeira com serragem úmida. No laboratório, as amostram permaneceram em câmara úmida por 7 dias, até serem transportadas de avião para o NGI, onde foi realizada a campanha de ensaios triaxiais.

Os ensaios de laboratório foram realizados pelo NGI, de forma a atender aos prazos requeridos no convênio do NGI com a UWA. Não foi possível realizar os ensaios triaxiais na COPPE/UFRJ, uma vez que o cronograma não seria atendido.

Figura 3.5 – Retirada do amostrador, segunda campanha.

Figura 3.6 – Amostra sem parafina (à esquerda) e com parafina (à direita), segunda campanha.

As amostras obtidas nestas duas campanhas foram utilizadas em ensaios edométricos e triaxiais

Nos ensaios triaxiais, realizados pelo NG, foi verificada a qualidade da amostra da campanha 2. O método utilizado foi o de LUNNE et alii (1997) e, de acordo com este método, que correlaciona Δ_e/e_i com OCR, verificou-se que a amostra ensaiada possuía qualidade I, ou seja, excelente. O valor de $\Delta e/e_i$ vale 0,035 para 3,55 m de profundidade e 0,039 para profundidade de 7,55 m. O valor do OCR, conhecido em ensaios de piezocone, é cerca de 1,3. A tabela tabela 3.1 mostra o critério de LUNNE et alii (1997) para avaliar a amostragem.

Tabela 3.1 – Critério de avaliação de qualidade da amostra (LUNNE et alii, 1997)

OCR	$\Delta e/e_i$						
0.011	I	II	III	IV			
1 – 2	< 0,04	0,04 a 0,07	0,07 a 0,14	> 0,14			
2-3	< 0,03	0,03 a 0,05	0,05 a 0,10	> 0,10			
4 - 6	< 0,02	0,02 a 0,0035	0,035 a 0,07	> 0,07			

I – amostra com qualidade excelente;

II – amostra de boa qualidade;

III – amostra ruim;

IV – amostra muito ruim;

 Δ_e – variação do ídice de vazios durante o ensaio realizado;

e_i – ídice de vazios inicial da amostra.

3.4. Ensaios de caracterização, determinação da umidade e peso específico.

O peso específico úmido é de 12,0 kN/m³ e a umidade é 199 %. O limites de Atterberg são: limite de liquidez LL = 210%, limite de plasticidade LP = 90 % e índice de plasticidade IP = 121 %. A composição granulométrica é 3% de areia grossa, 9% de areia média, 9% de areia fina, 47% de silte e 32% de argila. Estes valores foram obtidos com amostra coletada entre as profundidades 7,75 e 8,45 m. A figura 3.7 apresenta a curva granulométrica obtida no ensaio de caracterização.

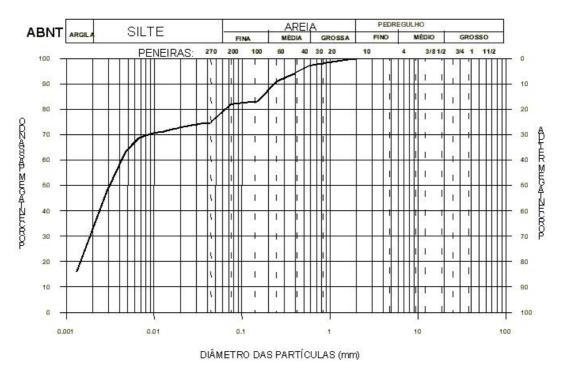


Figura 3.7 – Curva granulométrica

3.5. Ensaios Edométricos

3.5.1. Metodologia empregada

Os ensaios edométricos foram realizados pelo professor da COPPE/UFRJ Ian Schumann Marques Martins, que utilizou as amostras coletadas na primeira campanha de amostragem, citada no item 3.3.

Foram adotados os seguintes procedimentos para moldagem dos corpos de prova (LADD, 2003):

i - serrou-se 10 cm a partir da extremidade da amostra, de forma a eliminar a extremidade ressecada;

ii – em seguida, serrou-se transversalmente o amostrador, cuidadosamente, sem atingir a amostra. Foi serrado 20 cm (dois diâmetros) na parte superior do amostrador, de forma a

eliminar o trecho admitido amolgado. Após serrar o amostrador, seccionou-se a amostra transversalmente com um fio de nylon;

iii – o comprimento útil da amostra utilizada foi 35 cm, que foi fatiada (com serra e fio) em segmentos de 10 cm. Estes segmentos têm o objetivo de diminuir a tensão cisalhante durante a extrusão da amostra;

iv – para minimizar ainda mais o efeito de extrusão da amostra, foi introduzida uma agulha com 12 cm de comprimento e 1mm de diâmetro na interface solo-tubo, onde passou-se um fio de aço com cerca de 0,1 mm de diâmetro, por quatro voltas, tal como mostrado na figura 3.7;

v – feita esta operação o tubo era, então, posicionado na vertical e, com auxílio de um êmbulo, extraía-se a amostra;

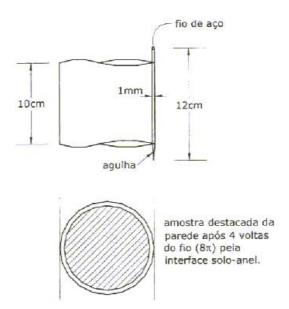


Figura 3.8 – Esquema da amostra destacada da parede do tubo, após quatro voltas do fio pela interface solo-parede do amostrador (LADD, 2003)

3.5.2. Resultados

Após moldado o corpo de prova, este foi colocado na prensa e inundado sob uma tensão de 3,13 kPa, durante pelo menos 12 horas. A partir daí foram aplicadas as tensões 6,25-12,5-25-50-100-200-400 kPa, onde cada estágio atingiu o fim do adensamento primário.

O coeficiente de adensamento vertical c_v encontrado nos ensaios edométricos variam entre $41x10^{-8}$ a $1,0x10^{-8}$ m²/s, conforme ilustra a tabela 3.2. Esta tabela mostra os valores dos coeficientes de adensamento vertical (c_v) , a tensão de pré-adensamento (σ'_{vm}) , a razão de pré-adensamento (OCR), a umidade (W) e a tensão vertical efetiva (σ'_{vo}) . A figura 3.9 mostra as curvas de adensamento obtidas nos ensaios edométrico.

Tabela 3.2 – Resultados dos ensaios de adensamento

Profund.	Carregamento	$c_v (m^2/s)$	σ' _{vm}	Diâmetro	OCR	Umidade	γ'	σ'_{V_0}
(m)	(kPa)	10 ⁻⁸	(kPa)	da célula		inicial	(kN/m^3)	(kN/m^3)
				(cm)		ω (%)		
1,75 – 2,45	***	***	***	***	***	***	***	***
4,75 – 5,45	3,13 a 4,00	23,0 a 1,2	15	5,08	1,5	254	12,0	9,9
7,75 – 8,45	3,13 a 4,00	41,0 a 1,4	33	5,08	1,5	203	12,7	21,9
7,75 – 8,45	3,13 a 4,00	23,0 a 1,0	33	7,15	1,4	203	13,0	24,3

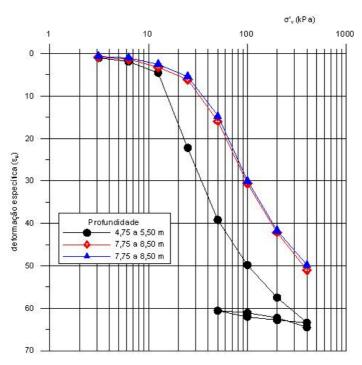


Figura 3.9 – Resultado dos ensaios edométricos

As amostras referentes a profundidade 1,75 - 2,50 m apresentaram-se muito ruins e não puderam ser ensaiadas.

Para determinar os valores de OCR, obteve-se os valores de σ'_{vm} , mostrados na tabela 3.2, através do método Pacheco Silva. Os valores da tensão vertical efetiva σ_{Vo} , foram obtidos na profundidade média de cada amostra.

3.6. Ensaios de piezocone

3.6.1. Generalidades

Foram realizadas 2 verticais de ensaios de piezocone: uma vertical com ensaios de dissipação (PZ163) e outra sem (PZ163a).

3.6.2. Breve descrição do equipamento

Foi utilizado o piezocone IV da COPPE/UFRJ (terceira geração), onde as grandezas medidas são: as poro-pressões na ponta (u_1) e na base (u_2) , as resistências de ponta (q_c) e de atrito (f_s) e a inclinação (i).

O sistema utilizado para realizar o ensaio pode ser dividido em três partes: mecanismo de cravação, sistema de aquisição de dados e o piezocone propriamente dito.

O mecanismo de cravação (SOARES et alii, 1986) é uma estrutura apoiada em 3 pontos, com sistema de cravação hidráulico. A máquina de cravação é capaz de utilizar velocidade constante de cravação entre 1 e 50 mm/s, independentemente do tipo de solo. A energia para cravação é produzida por um gerador com potência de pelo menos 10 HP. A figura 3.10 apresenta o esquema da máquina de cravação.

A capacidade da máquina é de 200 kN e pesa apenas 7 kN (700kgf), o que permite ser rebocada por um carro pequeno. Em virtude de seu pequeno peso, a máquina é ancorada em um dispositivo de reação, tendo este dispositivo grande importância para ensaios em solos mais resistentes.

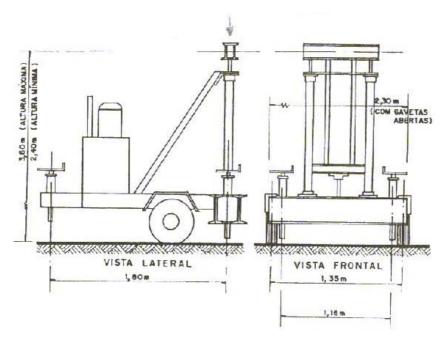


Figura 3.10 – Esquema da máquina de cravação do piezocone (SOARES et alii, 1986)

O piezocone IV utilizado nos ensaios tem área da base igual a 10cm^2 e área lateral igual a 150cm^2 . A figura 3.11 ilustra as dimensões do piezocone utilizado nos dois ensaios.

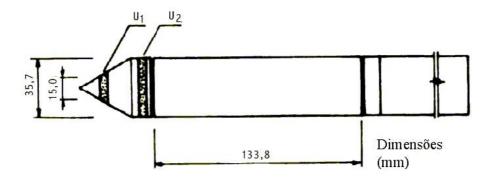


Figura 3.11. Dimensões do piezocone IV utilizado no ensaio (BEZERRA, 1996)

3.6.3. Calibração

Os procedimentos adotados para a calibração das células de carga de ponta, de atrito e dos transdutores de poro-pressão constituem metodologia padrão adotada pela COPPE/UFRJ. Os resultados são apresentados nas tabelas 3.3 a 3.6.

As capacidades dos transdutores são:

• Ponta: 6000 kgf

• Atrito: 1000 kgf

• Poro-base (u₂): 1,5 MPa

• Poro-ponta (u₁): 0,7 MPa

Tabela 3.3 - Resultado da calibração da célula de carga de ponta

Ciclo	Carga máx. (kgf)	Tensão de alimentação (V)	b (kgf.V/mV)	Erro padrão da estimativa (kgf)	Histerese (% fso)	Não linearidade (% fso)	Não retorno ao zero (% fso)
Primeiro	75	9,68	325,60	0,15	0,7	0,7	0,4
Segundo	75	9,68	327,70	0,19	0,7	0,6	0,7
Terceiro	75	9,68	326,10	0,17	0,7	0,7	0,3

[%] fso – percentagem de fundo de escala.

Tabela 3.4 - Resultado da calibração da célula de carga de atrito

Ciclo	Carga máx. (kgf)	Tensão de alimentação (V)	b (kgf.V/mV)	Erro padrão da estimativa (kgf)	Histerese (% fso)	Não linearidade (% fso)	Não retorno ao zero (% fso)
Primeiro	51	9,64	57,23	0,28	1,6	1,0	0,5
Segundo	51	9,64	57,26	0,18	1,0	0,6	0,0
Terceiro	51	9,64	57,09	0,15	0,9	0,7	0,1

[%] fso – percentagem de fundo de escala.

Tabela 3.5 - Resultado da calibração do transdutor de pressão poro-ponta $u_1\,$

Ciclo	Tensão de alimentação (V)	b (kgf.V/mV)	Coef. de correlação	Erro padrão da estimativa (kgf)	Histerese (% fso)	Não linearidade (% fso)	Não retorno ao zero (% fso)
Primeiro	9.,66	16,5	1,00	0,40	0,5	0,5	0,4
Segundo	9,66	16,6	1,00	0,30	0,8	0,8	0,1
Terceiro	9,66	16,6	1,00	0,40	0,8	0,8	0,0

[%] fso – percentagem de fundo de escala.

Tabela 3.6 - Resultado da calibração do transdutor de pressão poro-base u_2

Ciclo	Tensão de alimentação (V)	b (kgf.V/mV)	Coef. de correlação	Erro padrão da estimativa (kgf)	Histerese (%fso)	Não linearidade (% fso)	Não retorno ao zero (% fso)
Primeiro	9,66	8,1	1,00	1,59	0,4	0,5	0,4
Segundo	9,66	8,1	1,00	1,83	0,3	0,8	0,0
Terceiro	9,66	8,1	1,00	1,89	0,4	0,9	0,0

[%] fso – percentagem de fundo de escala.

3.6.4. Resultados obtidos

Os dois ensaios de piezocone (PZ163 e PZ163a) apresentaram valores próximos (boa repetibilidade), tanto para resistências de ponta e atrito quanto para as poro-pressões u₁ e u₂. As figuras 3.12 a 3.15 mostram os resultados obtidos com piezocone 163.

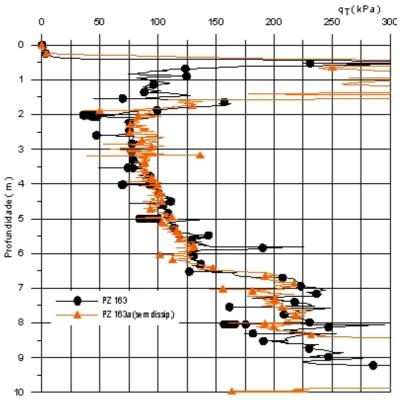


Figura 3.12 – Ensaios de piezocone, resistência de ponta x profundidade

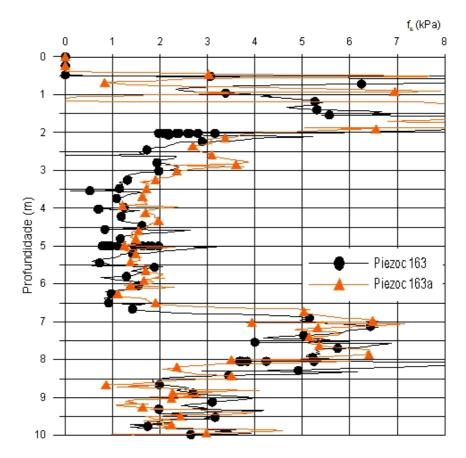


Figura 3.13 – Ensaios de piezocone, atrito lateral x profundiade

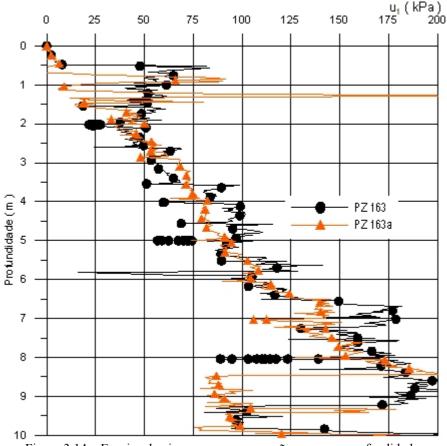


Figura 3.14 – Ensaios de piezocone, poro-pressão u₁ versus profundidade.

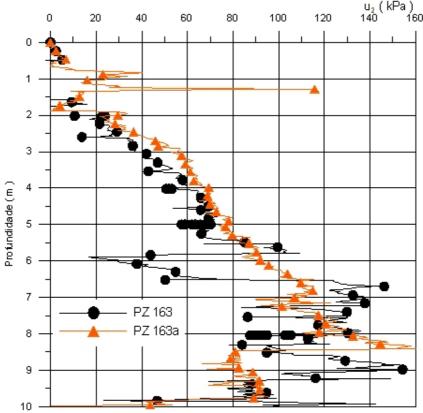


Figura 3.15– Ensaios de piezocone, poro-pressão u₂ versus profundidade.

Os resultados apresentam mesma ordem de grandeza dos estudos feitos por ALMEIDA (1988), que realizou ensaios com piezocone na obra do SESC, também localizada na Av. Ayrton Senna, a 600 m da área de ensaio da presente tese.

De acordo com a figura 3.12, o efeito do ressecamento da crosta ocorre entre 0 e 2,5 m de profundidade. Para a profundidade entre 2,5 e 6,5 m, o solo é mais homogêneo com pouca variação (picos) de resistência. A partir de 6,5 m, o solo apresenta comportamento mais heterogêneo.

A mudança de camada fica ainda mais nítida na figura 3.13, onde verificam-se diferentes faixas de resistência de atrito lateral, nas profundidades 2,50 a 6,50; 6,50 a 8,0 e acima de 8,0m.

Para o ensaio PZ 163, na figura 3.15, ocorreu queda brusca na poro-pressão u₂, entre 5,80 e 6,50 m de profundidade, que pode ser explicada pela presença de solo mais granular nesta profundidade.

3.6.5. Coeficiente de adensamento horizontal (ch)

Para estimar o valor de c_h usou-se o método de HOULSBY e TEH (1988; 1991) com dados obtidos da dissipação do ensaio do piezocone PZ 163.

O valor de E_u foi obtido no ensaio triaxial realizado pelo NGI, onde foi encontrado o valor de 400 kN/m². Considerando $G=E_u$ / $2(1+\nu)$, com $\nu=0,5$ (solo incompressível) e sendo $S_u=3,4$ kN/m² (triaxial NGI), o valor $I_r=G$ / S_u vale aproximadamente 39.

Para determinar o valor de ch, foi adotada a seguinte metodologia:

i – Traçar curva poro-pressão normalizada versus log do tempo;

ii – Traçar curva gabarito HOULSBY E TEH (1988) LogT* x poro-pressão normalizada, conforme tabela 3.7.

Tabela 3.7 - Valores de T* a utilizar na análise de ensaios de dissipação (HOULSBY E TEH, 1988)

u (%) poro-pressão	Posição do filtro						
normalizada	Vértice do cone	Face do cone	Base do cone				
80	0,001	0,014	0,038				
70	0,006	0,032	0,078				
60	0,027	0,063	0,142				
50	0,069	0,118	0,245				
40	0,154	0,226	0,439				
30	0,345	0,463	0,804				
20	0,0829	0,104	1,60				

iv – Sobrepor a curva normalizada medida (u x log t) e a curva gabarito (u x log T^*). No melhor ajuste (sobreposição) das curvas, determinar $\log T^* = 0$ (ou seja $T^* = 1$) e verificar

o valor de t na curva medida. Conhecido o valor do tempo t, pode-se determinar o valor de c_h pela expressão (6.1):

$$c_{h} = \frac{R^{2} \cdot (Ir)^{0,5}}{t} \tag{6.1}$$

Conhecendo-se os valores de R (raio do piezocone), t e I_r, determina-se o valor de c_h. A tabela 3.8 mostra os resultados do ensaio de dissipação e os valores de c_h. Foram realizados 4 ensaios de dissipação e o critério para término do ensaio foi 75% de dissipação ou 3 horas de ensaio. As figuras 3.16 a 3.20 mostram as curvas do ensaio de dissipação das poro - pressões u₁ e u₂ em função do tempo. A figura 3.18 mostra a curva gabarito de HOULSBY e TEH (1988), usada para se obter o melhor ajuste entre a curva medida e a curva gabarito.

Tabela 3.8 – Resultados dos ensaios de dissipação na vertical PZ 163

Profundidade (m)	$C_h (m^2/s)$	Dissipação ao final	Duração do ensaio de
Fromididade (iii)	C _h (III /8)	do ensaio (%)	dissipação
2,00	5,2 x 10 ⁻⁶	55,0	3 horas
5,00	9,5 x 10 ⁻⁸	75,0	3 horas
8,00	1,3 x 10 ⁻⁶	90,0	1 hora +40 min

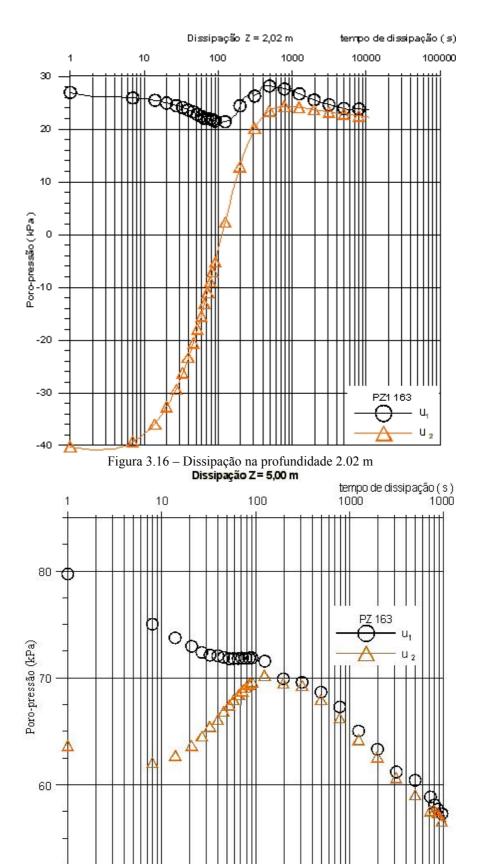
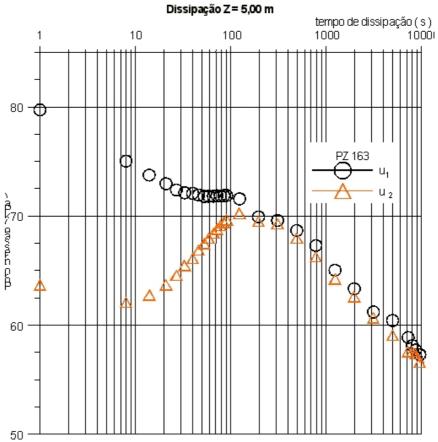
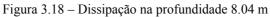




Figura 3.17 – Dissipação na profundidade 5.00 m

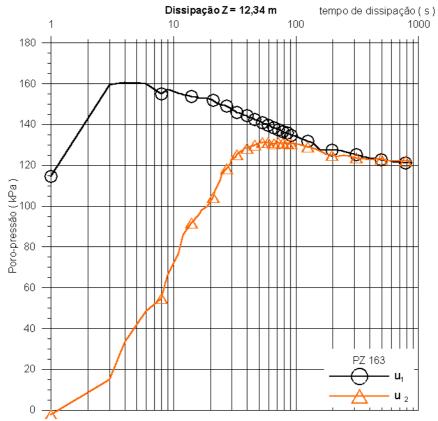
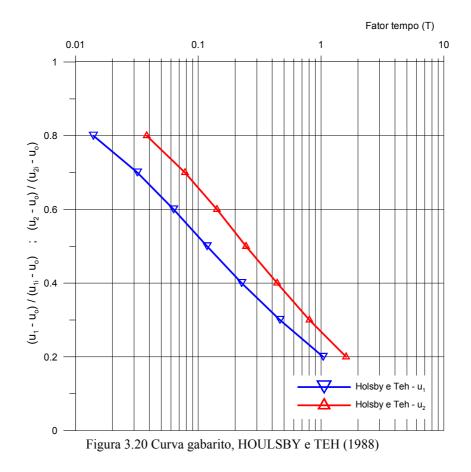



Figura 3.19 – Dissipação na profundidade 12.34 m

3.6.6. Razão de Pré-adensamento (OCR), ângulo de atrito (ϕ ') e coeficiente de empuxo no repouso (K_o):

A razão de pré-adensamento OCR foi calculada pelos critérios de SULLY et alii (1988) e CHEN e MAYNE (1996).

SULLY et alii (1988) propõem uma diferença de poro-pressão (PPD) para a estimativa de OCR. A expressão (3.2) proposta é válida para OCR menor ou igual a 10.

$$PPD = \frac{u_1 - u_2}{u_o} \tag{3.2}$$

$$OCR = 0.66 + 1.43 \cdot PPD$$
 (3.3)

CHEN e MAYNE (1996) propõem a expressão (3.4):

$$OCR = 0.305 \cdot \left(\frac{q_T - \sigma_{vo}}{\sigma'_{vo}}\right) \tag{3.4}$$

Com base nestes critérios obteve-se a variação de OCR com a profundidade mostrada na figura 3.21.

Os resultados dos dois métodos mostraram-se muito próximos. A camada de 0 a 2 m apresentou OCR alto (maior do que 8), para ambos os métodos, devido ao ressecamento da crosta. Para profundidades maiores obteve-se os valores de OCR listados na tabela 3.8.

O valor de OCR adotado foi 1,3 para profundidades entre 2,5 e 6,0, que corresponde à camada de argila mole mais homogênea.

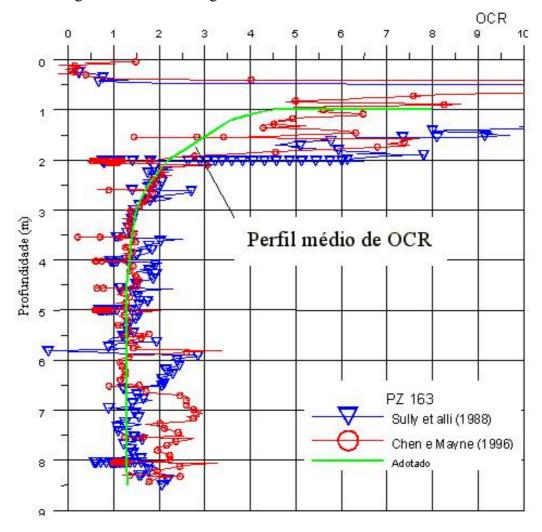
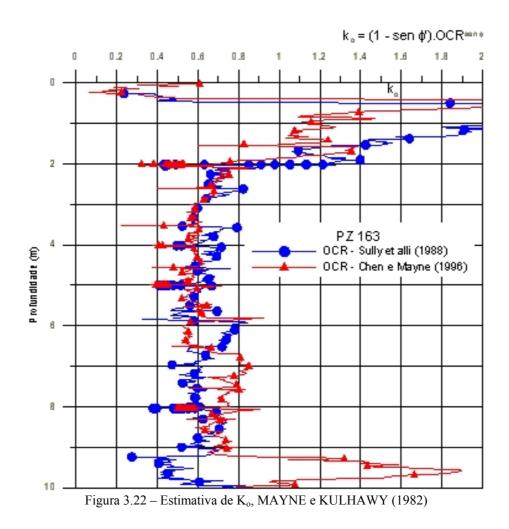


Figura 3.21 – Perfil de OCR obtido com o piezocone.


Tabela 3. 9 – Valores de OCR obtido com piezocone PZ 163

Profundidade (m)	OCR				
	Sully et alli (1988)	Chen e Mayne (1996)			
2,00 a 6,50	1,3	1,3			
6,50 a 9,00	1,3	2,5			

Com o valor de OCR, obteve-se o valor de K_o médio igual a 0,6, tal como mostrado na figura 3.22, através da expressão (3.5) de MAYNE e KULHAWY (1982)

$$K_o = (1 - \operatorname{sen} \phi') \cdot OCR^{\operatorname{sen} \phi'}$$
(3.5)

Foi adotado ϕ '= 30° com base nos estudos de NAVARRO (2004) feitos na Barra da Tijuca.

3.6.7. Fator N_{KT} do piezocone

LUNNE et alii (1985) mostram que a resistência de ponta corrigida (q_T) pode ser relacionada com o valor de S_u , preferencialmente obtido no ensaio de palheta, através do fator de cone N_{KT} , expressão (3.6). O valor de N_{KT} é mostrado no item 3.7:

$$S_u = \frac{q_t - \sigma_{vo}}{N_{KT}} \tag{3.6}$$

$$\sigma_{vo} = \gamma \cdot h \tag{3.7}$$

sendo:

 σ_{vo} – tensão vertical total;

$$\gamma_{arg} = 12 \text{ kN/m}^3$$
;

N_{KT} (o valor deste parâmetro é apresentado ao longo do capítulo).

O valor do peso específico igual a 12,0 kN/m³ foi obtido tanto nos ensaios edométrico quanto nos ensaios triaxiais.

Os resultados de S_u são mostrados no capítulo 5 que faz análise dos valores de S_u calculados com penetrômetro cilíndrico, com piezocone, com palheta e com ensaios triaxiais. O perfil de N_{KT} é mostrado no item 3.7.5, obtido após campanha de ensaios de palheta.

3.7. Ensaios de palheta

3.7.1. Objetivo dos ensaios

Os objetivos desta campanha foram obter valores de S_u indeformado e amolgado, a serem comparados com os valores de S_u encontrados nos ensaios de penetração de cilindro, nas campanhas 1 e 2.

Os ensaios foram realizados em duas verticais, na mesma área de ensaios de penetrômetro cilíndrico. As profundidades ensaiadas foram: 2,5; 3,5; 4,5; 5,5, 6,5; 7,5 e 8,5 m.

3.7.2. Breve descrição do equipamento e do ensaio

O equipamento utilizado foi desenvolvido através de uma parceria entre COPPE/UFRJ, UFPE e Grom Engenharia, tendo sido descrito por NASCIMENTO (1998). O equipamento é baseado na concepção de CADLING e ODENSTAD (1950). A razão entre a altura e o diâmetro da palheta é 2:1. A altura mede 130 mm, o diâmetro 65 mm e a espessura 2,0 mm.

A rotação é aplicada por um motor de passo (NAVARRO, 2004) situado na mesa de torque, visto na figura 3.23, que permite ensaio com rotação mínima de 0,6°/min e máxima de 7,5°/min. A velocidade de rotação adotada para a presente pesquisa foi constante e igual a 6°/min. O torque é medido por uma célula de carga de capacidade 60 Nm, sendo o equipamento calibrado até 1/3 da capacidade da célula.

O conjunto de hastes internas e externas, a célula de carga e os cabos elétricos são protegidos pelo revestimento do casco, mostrados na figura 3.24.

O revestimento utilizado para realizar o ensaio possuía 123 mm de diâmetro e 1,5 m de comprimento. O objetivo deste revestimento foi estabilizar o pré-furo feito até atingir o solo mole, uma vez que o equipamento é cravado manualmente.

Para realizar o ensaio o equipamento de palheta foi cravado manualmente no solo até à profundidade 50 cm anterior à cota de ensaio, protegido pela sapata de proteção. A partir desta profundidade, a lâmina (palheta) avançava 50 cm, atingindo a cota de ensaio. Após o ensaio, a palheta era novamente recolhida para dentro da sapata de proteção, reiniciando-se o processo.

O tempo médio gasto entre a inserção da palheta e o início do ensaio foi 60 segundos, estando em acordo com a norma brasileira MB 3122 da ABNT. Após o ensaio indeformado, foram aplicadas 20 revoluções rápidas, entre 32 e 39 segundos, para determinar a resistência amolgada.

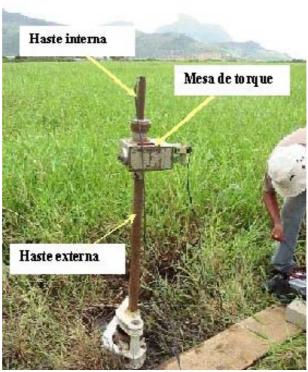


Figura 3.23 – Equipamento que aplica torque à palheta, apresentado por NAVARRO (2004).

Figura 3.24 – Foto da Palheta e sua proteção.

3.7.3. Sistema de calibração

O sistema de calibração é simples, constituído por uma polia de raio 11 cm, onde aplicase o torque a ser lido pela célula de carga e registrado por uma unidade de leitura. A mesa de aplicação de torque deve estar na posição horizontal e fixada em pelo menos dois pontos. Na extremidade da haste, a palheta é substituída por uma polia a qual é tangenciada por um cabo onde é aplicado o torque, conforme pode ser observado na figura 3.25.

Para iniciar a calibração, conecta-se um cabo à célula de carga e a unidade de leitura para registrar o torque aplicado. Este foi mantido ligado por 60 minutos para aquecimento, com o objetivo de estabilizar a fonte, evitando erros nas leituras. Após o aquecimento aplicam-se estágios de carregamento/descarregamento ao pendural, que são registrados na unidade de leitura. Os resultados da calibração são mostrados na tabela 3.10.

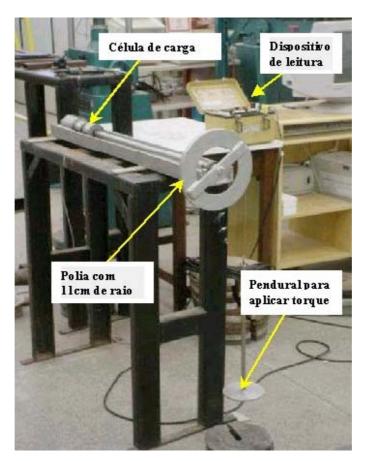


Figura 3.25. – Calibração do equipamento de palheta.

Tabela 3.10- Resultado da calibração do equipamento de palheta

Ciclo	b (kgf/mV)	Histerese (%fso)	Não lineariedade (%fso)	Não retorno ao zero (%fso)
1	0,00873	1,8	1,6	0,2
2	0,00874	0,4	0,2	0,0
3	0,00875	0,3	0,2	0,0
Média	0,00874	0,8	0,7	0,1

3.7.4. Resistência não drenada

A resistência não drenada é obtida pela expressão utilizada pela norma da ABNT MB 3122, na equação (3.8):

$$S_u = 0.86 \frac{T}{\pi \cdot D^3} \tag{3.8}$$

Onde,

T – torque máximo registrado no ensaio;

D – diâmetro da palheta.

Esta expressão foi deduzida para palhetas retangulares com altura igual ao dobro do diâmetro. Admite-se que a resistência vertical S_{uv} seja igual à resistência horizontal S_{uh} , ou seja, não há anisotropia de S_u . Na expressão (3.8), assume-se ainda que a distribuição de tensões cisalhantes é uniforme para as superfícies de ruptura horizontal e vertical, circunscritas à palheta.

O valor da resistência não drenada no ensaio amolgado S_{ur} é obtido pela mesma expressão acima, sendo a sensibilidade S_t obtida pela expressão (3.9):

$$S_t = \frac{S_u}{S_{ur}} \tag{3.9}$$

Os resultados de S_u do ensaio de palheta VT1 são menores do que no VT2, tal como mostrado na tabela 3.11 e nas figuras 3.26 e 3.27. As curvas torque versus rotação são apresentadas entre as figuras 3.26 a 3.32.

Tabela 3.11 – Valores de S_u e de S_t obtidos no ensaio de palheta

Ensaio VT1			Ensaio VT2				
Prof (m)	S _u (kPa)	S _{ur} (kPa)	St	Prof (m)	S _u (kPa)	S _{ur} (kPa)	St
2.5	11.5	2.6	4.5	2.5	13.0	1.3	10.1
3.5	5.4	0.6	8.4	3.5	7.0	0.6	11.3
4.5	6.4	0.5	13.4	4.5	7.5	0.7	10.2
5.5	6.2	0.8	7.9	5.5	7.4	0.6	11.9
6.5	6.9	0.8	9.0	6.5	10.0	0.8	13.4
7.5	23.4	2.5	9.5	7.5	***	0.9	**
8.5	16.2	1.8	8.9	8.5	16.1	1.1	15.2

Para a vertical 1 (VT1) a sensibilidade varia de 4,5 a 13,4 e para VT2 varia de 10,1 a 15,2.

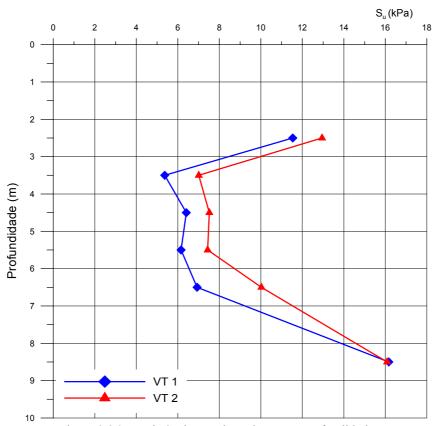


Figura 3.26 - Resistência não drenada versus profundidade.

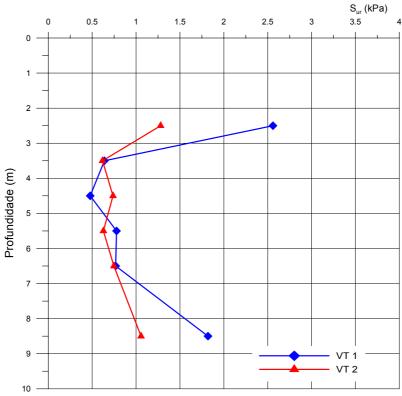


Figura 3.27 – Resistência amolgada versus profundidade.

Para a camada onde a argila é muito mole, 2,5 a 6,5m, os valores de S_u para o VT1 variam de 5,4 a 6,9 kPa e, para o VT2, varia de 7,0 a 10,0 kPa. O valor de S_{ur} varia de 0,6 a 0,8 kPa para ambos os ensaios. A sensibilidade, mostrada na figura 3.28, apresenta valores entre 4,5 e 13,5 não uniformes com a profundidade. As figuras 3.29 a 3.35 mostram o torque versus a rotação. Nestes gráficos, para a camada homogênea entre 3,5 e 6,5 m de profundidade, verifica-se que o solo rompeu entre 8 e 12^o de rotação da palheta.

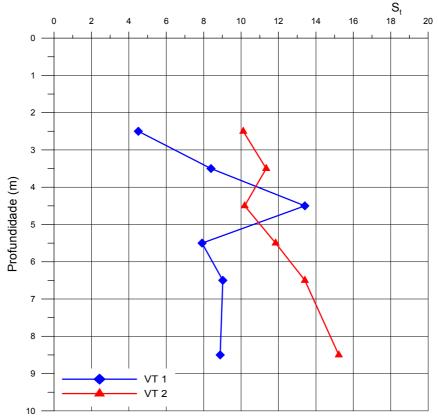


Figura 3.28 – Sensibilidade versus profundidade.

Figura 3.29 – Torque versus rotação, profundidade 2,5 m

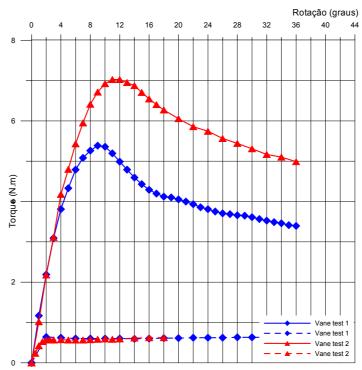


Figura 3.30 – Torque versus rotação, profundidade 3,5 m

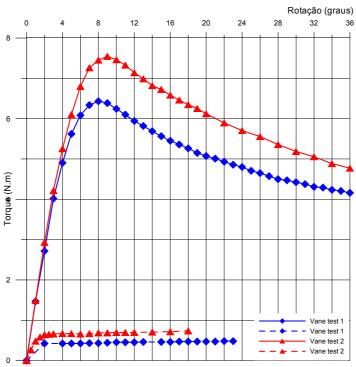


Figura 3.31 – Torque versus rotação, profundidade 4,5 m

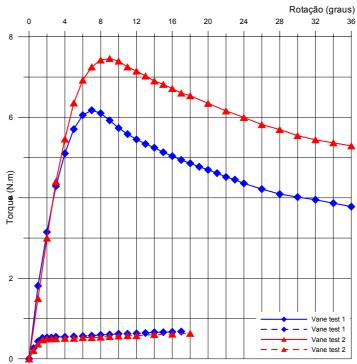


Figura 3.32 – Torque versus rotação, profundidade 5,5 m

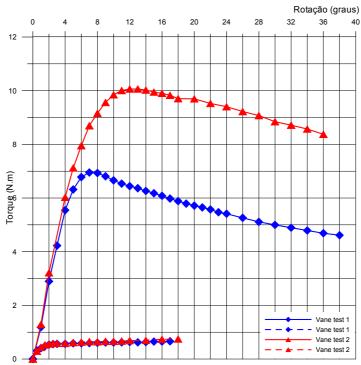
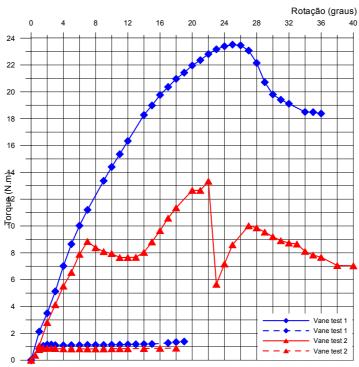
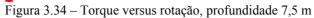




Figura 3.33 – Torque versus rotação, profundidade 6,5 m

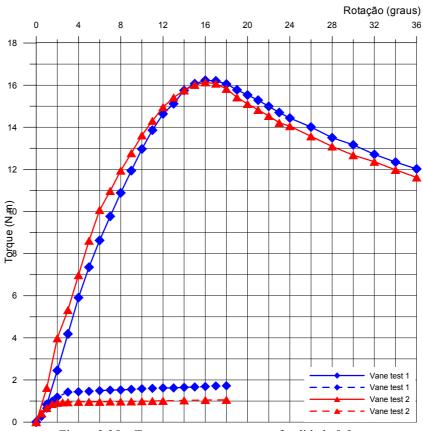
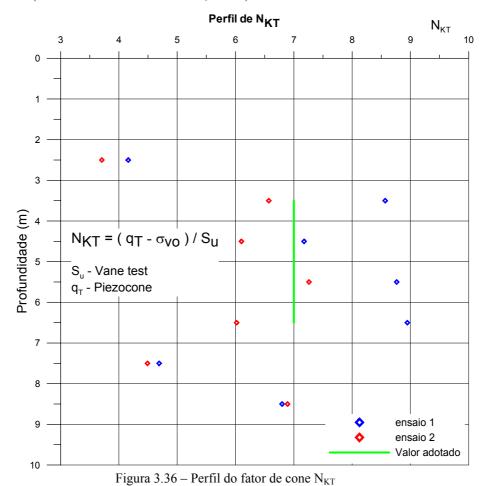


Figura 3.35 – Torque versus rotação, profundidade 8,5 m


3.7.5. Perfil N_{KT}

Com o valor de S_u do ensaio de palheta, calculou-se o perfil de N_{KT} pela expressão (3.10) de LUNNE (1997), mostrado na figura 3.36. Para se obter este parâmetro, foi adotada a média dos valores de N_{KT} entre as profundidades 3,5 e 6,5 m que correspondem à camada de solo mole.

$$N_{KT} = (q_T - \sigma_{vo})/S_u$$
 (3.10)

Onde q_T é a resistência de ponta obtida em ensaios com piezocone.

O valor médio encontrado representa um limite inferior da faixa relativa a solos moles brasileiros (DANZIGER e SCHNAID, 2000).

A dispersão dos valores encontrados podem estar ligados a heterogeneidade do solo, uma vez que os ensaios de piezocone apresentaram boa repetibilidade.

3.8. Ensaios triaxiais

3.8.1 Ensaios triaxiais realizados pelo NGI

3.8.1.1. Tipos de ensaios realizados

O NGI realizou ensaios triaxiais de compressão anisotrópica CAUc e de extensão anisotrópica CAUe. Foram feitos 2 ensaios CAUc para amostras retiradas nas profundidades 3,35 e 7,35 m e 2 ensaios CAUe para amostras retiradas a 3,45 e 7,45 m. Foram utilizadas as amostras coletadas na segunda campanha, como descrito no início do capítulo.

3.8.1.2. Saturação e tensão confinante

A saturação dos 4 corpos de prova dos ensaios triaxiais foi verificada com o parâmetro B de Skempton. Este parâmetro variou de 0,961 a 0,984.

A tensão confinante aplicada para adensar o corpo de prova anisotropicamente foi feita em etapas. Foi adotado pelo NGI o valor de K_o igual a 0,70 para determinar a razão das tensões confinantes. Embora o perfil de K_o encontrado nesta pesquisa ($K_o = 0,60$;item 3.6.6), seja menor do que o valor 0,70 adotado nos ensaios, isto não afeta o valor de S_u consideravelmente. Na tabela 3.12 são mostrados alguns dados dos ensaios realizados, com amostras de ótima qualidade, conforme descrito no início deste capítulo.

Tabela 3.112 – Saturação, adensamento e deformação dos corpos de prova

Profundidade	CP (corpo	Ensaio	=' (l ₂ D ₀)	=' (l ₂ D ₀)	В	ε _{vol}	
(m)	de prova)	Elisaio	σ' ₁ (kPa)	σ' ₃ (kPa)	(Skempton)	(%)	$\mathbf{\epsilon}_{\mathrm{ac}}$
3,35	1	CAUc	8	6,3	98,1	98,1	27,17
3,45	2	CAUe	8,4	6,1	98,4	98,4	27,73
7,35	3	CAUc	17	11,9	97,6	97,6	3,94
7,45	4	CAUe	17,2	12,1	96,1	96,1	4,05

 ϵ_{vol} – deformação volumétrica;

ε_{ac} – deformação axial

3.8.1.3. Descrição dos resultados

O valor da resistência não drenada S_u nos ensaios CAUc foi 3,4 kPa para a profundidade 3,35 m e 10,5 kPa para a profundidade de 7,35 m. Nos ensaios CAUe o valor de S_u foi 12,0 kPa para a profundidade de 3,45 m e 11,4 kPa para a profundidade de 7,45 m. A tabela 3.13 e as figura 3.37 a 3.40 exibem os resultados dos ensaios triaxiais.

Tabela 3.13 – Resultado de Su dos ensaios CAUc e CAUe realizados pelo NGI

Profundidade (m)	CP	Ensaio	S _u (kPa)	$\Delta e/e_i$
3,35	1	CAUc	3,4	0,289
3,45	2	CAUe	12,0	0,290
7,35	3	CAUc	10,5	0,054
7,45	4	CAUe	11,4	0,058

 $\Delta e/e_i$ – variação do índice de vazios.

Figura 3.37 – Resultado do ensaio triaxial CAUc na profundidade 3,35 m.

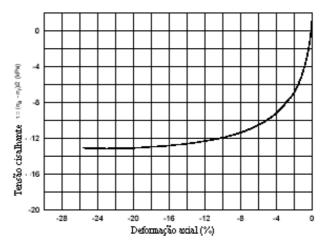


Figura 3.38– Resultado do ensaio triaxial CAUe na profundidade 3,45 m.

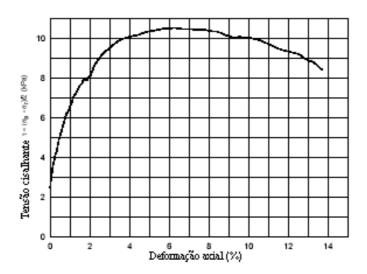


Figura 3.39– Resultado do ensaio triaxial CAUc na profundidade 7,35 m.

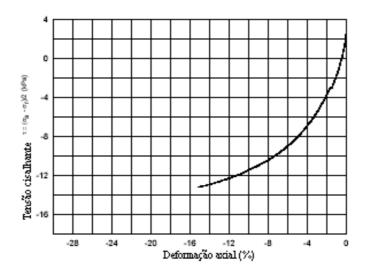


Figura 3.40– Resultado do ensaio triaxial CAU_e na profundidade 7,35 m

3.8.2 Ensaios triaxiais realizados na COPPE/UFRJ

Foram realizados dois ensaios triaxiais: um de compressão anisotrópica não drenado (CAU_c) e um de extensão anisotrópica não drenado (CAU_e). As amostras ensaiadas foram obtidas na campanha 1 de amostragem, na profundidade entre 7,75 e 8,45 m.

O adensamento anisotrópico foi feito em duas etapas. Na primeira o corpo de prova foi adensado isotropicamente com 11 kPa. Na segunda etapa o adensamento foi anisotrópico com σ_c = 11kPa (confinante) e σ_1 = 20,0 kPa (vertival), com valor de K_o

igual a 0,55. Este valor de K_o adotado corresponde a um ϕ 'estimado igual a 35°. Posteriormente adotou-se um novo valor de ϕ ', igual a 30° (item 3.6.6), obtido na pesquisa de NAVARRO (2004), que realizou ensaios muito próximos à área de ensaios da presente tese. Os dados dos ensaios são apresentados na tabela 3.14.

Tabela 3.12 – Tensões de adensamento, parâmetro B de Skempton e S., dos ensajos triaxiais

Profundidade (m)	CP (corpo de prova)	Ensaio	σ' ₁ (kPa)	σ' ₃ (kPa)	B (Skempton)	Su
7,75-8,45	1	CAUc	20	11	986	22,2
7,75-8,45	2	CAUe	20	11	978	13,0

Os resultados dos ensaios triaxiais são exibidos nas figuras 3.41 e 3.42.

Os valores de S_u dos triaxiais CAU_e do NGI e da COPPE/UFRJ apresentaram valores muito próximos. Já para os ensaios CAUc, o valor de S_u do NGI corresponde a 50% do S_u do ensaio da COPPE.

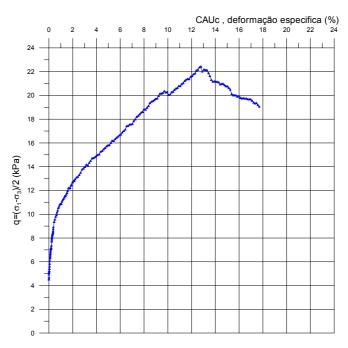


Figura 3.41 - Resultado do triaxial CAU_c - COPPE/UFRJ

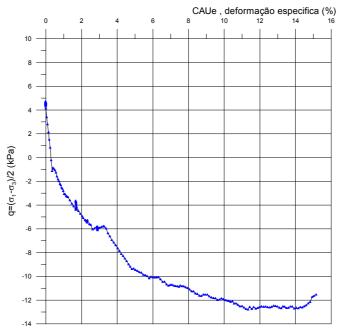


Figura 3.42 – Resultado do triaxial CAU_e – COPPE/UFRJ

CAPÍTULO 4

ENSAIOS DE PENETRAÇÃO DE CILINDRO REALIZADOS

4.1. Introdução

As campanhas de ensaios de penetração de cilindro tiveram como objetivo determinar a resistência não drenada indeformada, S_u , e amolgada, S_{ur} . De forma a avaliar os valores de S_u determinados por este novo penetrômetro, foram realizados ensaios de palheta, triaxiais e de piezocone para comparar resultados. Os resultados dos ensaios de penetração de cilindro são apresentados no presente capítulo e a análise destes no capítulo 5.

Os ensaios foram divididos em duas fases: campanha 1, com ensaio *convencional* (cravação/extração), e campanha 2, com ensaio *cíclico* (sucessivas cravações/extrações). Na campanha 1, usou-se a expressão (2.1) do capítulo 2 (STEWART e RANDOLPH, 1991), para obter o perfil de resistência não drenada S_u durante a cravação do penetrômetro, sendo o valor de N_b adotado igual a 10,5. Na campanha 2 foi obtida a resistência amolgada S_{ur} do solo. Na primeira campanha foram realizados 4 ensaios e, na segunda, 2 ensaios com o novo penetrômetro.

No presente capítulo serão apresentados a metodologia para realização dos ensaios, a descrição do equipamento, os resultados das calibrações e dos ensaios.

4.2. Equipamento utilizado

A fabricação do penetrômetro cilíndrico consistiu na substituição da ponta cônica do piezocone COPPE III (BEZERRA, 1996) por uma barra cilíndrica, conforme mostrado na figura 4.1.

A empresa responsável pela adaptação do piezocone para este novo penetrômetro foi a Grom Engenharia, que coopera com a COPPE/UFRJ desde o início do projeto piezocone. Para fazer tal adaptação, retirou-se a extremidade cônica do piezocone, mantendo-se as células de carga de ponta e de atrito lateral. A capacidade destas células de carga é 6000 kgf e 1000 kgf, para a ponta e para o atrito lateral, respectivamente.

No ensaio de penetração de cilindro não é feita leitura de poro-pressão. No ensaio são lidas as resistências de ponta na cravação q_{in} , na extração q_{out} e o atrito lateral f_{in} (cravação) e f_{out} (extração).

A barra cilíndrica do penetrômetro é horizontal em alumínio, com 25 cm de comprimento e 4 cm de diâmetro. A figura 4.1 mostra o equipamento utilizado nos ensaios. Na parte superior do penetrômetro, acima da luva de atrito, é conectado um cabo elétrico que liga a célula de carga ao sistema de aquisição de dados.

Figura 4.1 – Penetrômetro cilíndrico produzido a partir do piezocone COPPE III.

4.3. Calibrações das células de carga: campanhas 1 e 2

A calibração das células de carga foi feita antes de cada campanha de campo. Para verificar a qualidade de cada calibração, usou-se o programa Calibrs (DANZIGER, 1990), adotando-se a proposta de SCHAAP e ZUIDEBERG (1982), que determinam os parâmetros de histerese, não linearidade e o não retorno ao zero.

A) Resistência de Ponta

Os valores das constantes de calibração obtidas para as campanhas 1 e 2 mostraram-se muito próximas, como ilustrado nas tabelas 4.1 e 4.2.

Para calibrar a célula de carga de ponta, usou-se os mesmos procedimentos já usados para o piezocone, com 3 ciclos de carga e descarga que variam de 0 a 821,7 kgf (806,1 kPa). A carga máxima a ser atingida na calibração foi estimada com base nos resultados de ensaios de piezocone obtidos por ALMEIDA (1998), no aterro do SESC, situado a cerca de 600 metros da área de ensaios da presente tese, onde o local apresenta um perfil de solo semelhante ao desta pesquisa.

Tabela 4.1 – Resultados da calibração da célula de ponta – Campanha 1

	Fonte	b	Erro Padrão	Histerese	Não	Não Retorno
Ciclo			de Estimativa		Linearidade	ao Zero
	(V) (kgf	(kgf.V/mV)	gf.V/mV) (Kgf)	(% fso)	(% fso)	(% fso)
1°	9,68	158,5	3,5	1,1	1,1	0,1
2°	9,68	158,7	2,5	0,8	0,8	0,1
3°	9,68	158,7	3,0	0,9	0,9	0,1

fso – percentagem de fundo de escala

.

Tabela 4.2 – Resultados da calibração da célula da ponta – Campanha 2

	Fonte	b	Erro Padrão	Histerese	Não	Não Retorno
Ciclo			de Estimativa	(% fso)	Linearidade	ao Zero
	(V) (kg	(kgf.V/mV)	gf.V/mV) (Kgf)		(% fso)	(% fso)
1°	9,68	157,6	3,8	1,0	1,6	0,0
2°	9,68	157,4	2,0	0,5	0,7	0,0
3°	9,68	157,0	1,6	0,6	0,5	0,2

fso – percentagem de fundo de escala.

A figura 4.2 mostra a calibração da célula de ponta. Foi utilizada uma prensa de ensaios triaxiais, pois na calibração, o carregamento exigia uma carga alta de 821,7 kgf (806,1kPa), dez vezes maior que a do piezocone. Não foi possível utilizar o mesmo equipamento de calibração (pendural de calibração) do piezocone, já que o pendural admite carga máxima de aproximadamente 100 kgf.

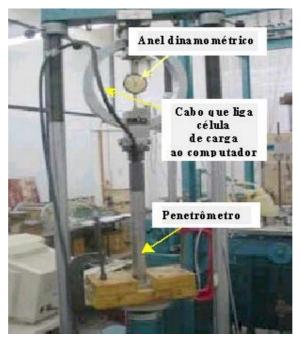


Figura 4.2 - Calibração da ponta do penetrômetro cilíndrico

B) Atrito lateral

A calibração da célula de carga que faz a leitura da resistência ao atrito lateral foi feita apenas na campanha 1, pois na campanha 2 o objetivo era medir apenas a resistência de ponta.

Para calibrar a célula de carga de atrito, empregaram-se os mesmos ciclos de carga/descarga utilizados para calibrar o piezocone, já que manteve-se a luva de atrito do piezocone na adaptação piezocone/penetrômetro cilíndrico. Nesta calibração a carga máxima foi 51 kgf (33,4 kPa).

Os resultados da calibração são apresentados na tabela 4.3.

Tabela 4.3 – Resultados da calibração da célula de atrito –campanha 1

	Carga	Fonte	h	Erro Padrão	Histores	Não	Não Retorno ao
Ciclo	máx.		b	da Estimativa	Histerese	Linearidade	Zero
	(kgf)	(mV)	(kgf.V/mV)	(kgf)	(% fso)	(% fso)	(% fso)
1°	51	9680	43,09	0,51	2,7	1,0	1,2
2°	51	9680	44,43	0,35	1,8	0,5	0,2
3°	51	9680	44,52	0,24	1,5	0,5	0,0

[%]fso – percentagem de fundo de escala.

4.4. Metodologia dos ensaios

Campanha 1

A finalidade desta campanha foi medir o perfil de resistência de ponta na cravação (q_{in}) e na extração (q_{out}) , o atrito f_{in} e f_{out} entre 0 e 9 m de profundidade. Com os resultados de q_{in} , determinou-se o perfil de resistência indeformada $S_u = q_{in}/10,5$ (STEWART e RANDOLPH, 1991). Este valor será comparado com os obtidos por outros ensaios no capítulo 5.

A profundidade máxima atingida no ensaio foi definida com base em resultados de ensaios de piezocone e boletim de sondagem. Profundidades superiores a 9 m apresentariam alta resistência que poderia danificar a base cilíndrica do penetrômetro.

Para realização do ensaio foi utilizado o mesmo mecanismo de cravação (figura 4.3) e o mesmo sistema de aquisição de dados do piezocone. Também foi empregada a mesma velocidade de cravação, 2 cm/s.

A figura 4.4 mostra a fase inicial do ensaio. No início do ensaio é feita a leitura zero (ou de referência), assim como, no final do ensaio, verificando se a constante de calibração permaneceu estável.

Neste ensaio não foram feitas leituras de poro-pressão, sendo registradas leituras de ponta e de atrito, sendo as leituras de atrito medidas apenas na campanha 1. A resistência ao atrito f_{in} é pouco significativa, uma vez que o solo é, provavelmente, muito amolgado durante a penetração do equipamento.

Figura 4.3 – Máquina de cravação do penetrômetro cilíndrico/piezocone utilizada pela COPPE/UFRJ.

Figura 4.4 –Penetrômetro cilíndrico em fase inicial de ensaio.

Campanha 2

Esta campanha consistiu na determinação das resistências q_{in} e q_{out} entre as profundidades 0 e 8 m, através de ensaios cíclicos com o penetrômetro cilíndrico. Usando a mesma metodologia de cravação e aquisição de dados da campanha 1,

determinou-se na campanha 2, a resistência amolgada do solo S_{ur} a ser comparada com os resultados do ensaio amolgado de palheta.

A metodologia do ensaio cíclico consistiu na realização de leituras de cravação q_{in} até 8 m de profundidade e, em seguida, extrair o penetrômetro até 7 m, fazendo-se leituras q_{out}. A partir desta última profundidade, começou-se o ensaio cíclico, com sucessivas cravações/extrações, em um total de 5 cravações e 5 extrações para cada profundidade ensaiada.

4.5. Resultados

Na campanha 1 foram realizados 4 ensaios de penetração de cilindro, até a profundidade de 9 m. Nesta campanha foram medidos as resistências de ponta à penetração (q_{in} e q_{out}) e a resistência ao atrito lateral.

Os ensaios cíclicos, na campanha 2, foram feitos entre as profundidades 7,0 e 8,0 m, 6,0 e 7,0 m, 5,0 e 6,0 m e 3,0 e 4,0 m, nesta mesma seqüência de ensaios, seguindo a mesma metodologia e o mesmo número de ciclos para cada ensaio. Neste ensaio foi medida a resistência amolgada S_{ur}.

Os ensaios das campanhas 1 e 2 apresentaram valores de q_{in} muito próximos e com boa repetibilidade, mostrado na figura 4.7.

4.5.1. Resistência de ponta q_{in} da campanha 1

Conforme resultados de q_{in} apresentados na tabela 4.4 e na figura 4.5 o ensaio de penetração de cilindro Tb 3 apresentou valores cerca de 100% maiores que os outros ensaios, porém mesmo aspecto de curva. A hipótese levantada para justificar este comportamento é que alguma raiz pode ter agarrado à haste e/ou base durante a cravação.

Tabela 4.4 – Resistência de ponta q_{in} na campanha 1

Campanha 1 – 2,5 a 7,0 m				
Ensaio Resistência de Ponta q _{in} (kPa				
Tb 1	50 a 75			
Tb 2	65 a 85			
Tb 3	140 a 165			
Tb 4	85 – aproximadamente constante			

Nota: a simbologia Tb é utilizada no NGI e na UWA, e significa T-bar (inglês) ou barra tê (tradução).

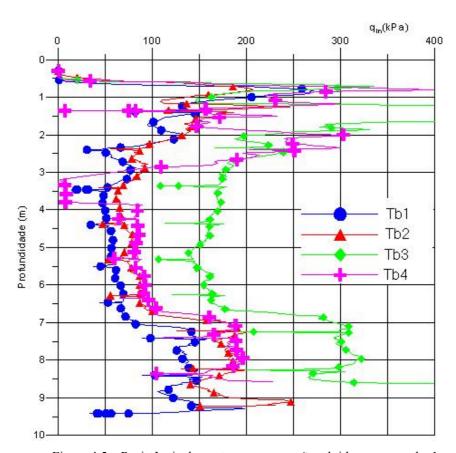


Figura 4.5 – Resistência de ponta q_{in} na cravação, obtida na campanha 1

O ensaio Tb 4 apresentou queda brusca nos valores de q_{in} para a profundidade entre 3 e 4 m, mostrado na figura 4.5. A justificativa para isso seria alguma heterogeinedade do solo.

Nos resultados das campanhas 1 e 2, verifica-se um aumento da resistência de ponta a partir de 7 m de profundidade, conforme figuras 4.5 (campanha1) e figura 4.7 (campanha 2). Este aumento de resistência também foi verificado nos ensaios de piezocone e palheta, confirmando o bom desempenho do penetrômetro cilíndrico.

Figura 4.6 – Observação de raízes no local de ensaios

4.5.2. Resistência de ponta q_{in} da campanha 2

Para determinar o valor de q_{in} na campanha 2, a base cilíndrica foi cravada até 8 m de profundidade, sendo as leituras de resistência de ponta efetuadas a cada 2 cm/s, da mesma forma que na campanha 1.

Os resultados de q_{in} da campanha 2 são exibidos na figura 4.7 e mostrados na tabela 4.5. Esta tabela fornece a resistência à cravação q_{in} entre as profundidades 0 e 8 m antes de se começar o ensaio cíclico.

Tabela 4.5 – Resistência de ponta q_{in} na campanha 2

Resistência q _{in} na campanha 2				
Ensaio	q _{in} (kPa)			
Ensaio 1	60 a 130 kPa			
Ensaio 2	60 a 130 kPa			

Os resultados de q_{in} dos ensaios 1 e 2 (campanha 2), na cravação até 8 m, apresentaramse muito próximos, com diferença máxima de 10 kPa. Isto mostra que os dois ensaios apresentaram excelente repetibilidade. Comparando estes dois ensaios com os valores q_{in} obtidos na campanha 1, os resultados das duas campanhas apresentam-se muito próximos.

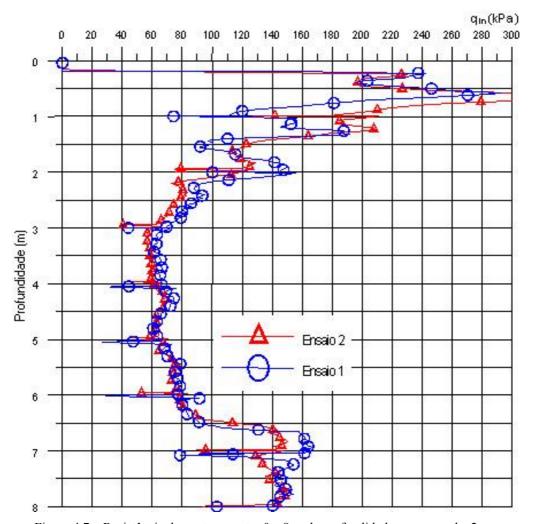


Figura 4.7 – Resistência de ponta $q_{\rm in}$ entre 0 e 8 m de profundidade na campanha 2.

4.5.3. Resistência de ponta q_{out} da campanha 1

Os ensaios de penetração de cilindro apresentaram valores com boa repetibilidade de resistência de ponta à extração q_{out} entre as profundidades 4 e 8 m, como mostram a tabela 4.6 e a figura 4.8.

Durante a extração, verificou-se no perfil de q_{out} um aumento de resistência de solo a partir de 6,5 m de profundidade. Este aumento de resistência também foi verificado na cravação q_{in} da campanha 1, mostrado na figura 4.5.

Tabela 4.6 – Resultados de q_{out} na campanha 1

Resistência q _{out} (kPa) na campanha 1						
Profundidade	Tb 1	Tb 2	Tb 3	Tb 4		
(m)						
2,0 a 3,0	25 a 35	25 a 35	25 a 40	50 a 100		
3,0 a 4,0	20	22	35	25 a 50		
4,0 a 6,5	25	25	25	25		
6,5 a 8,0	80	65	75	95		

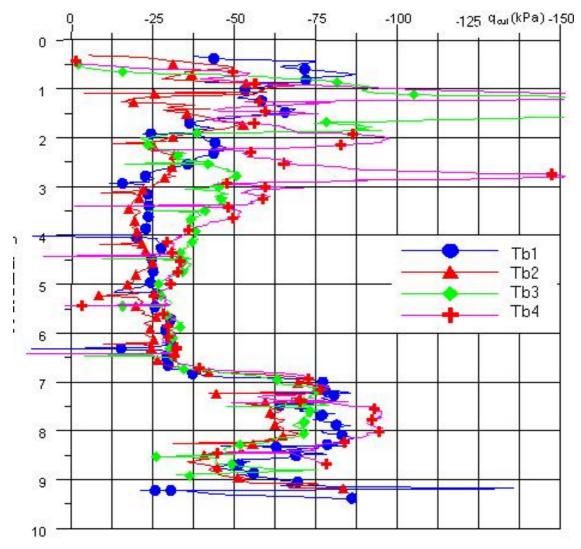


Figura 4.8 – Resistência de ponta q_{out} na extração, obtida na campanha 1

4.5.4. Resistência de ponta qin do ensaio cíclico da campanha 2

Os ensaios cíclicos foram realizados entre as profundidades: 3,0 e 4,0 m - 5,0 e 6,0 m - 6,0 e 7,0 m - 7,0 e 8,0 m.

Os resultados de q_{in} dos ensaios cíclicos são descritos na tabela 4.7 e ilustrados nas figuras 4.9 a 4.13. A resistência q_{in} residual é atingida, geralmente, no terceiro ciclo de cravação/extração, mas foram realizados cinco ciclos em cada ensaio.

Tabela 4.7 – Resultados dos ensaios cíclicos 1 e 2, q_{in} (kPa)

Profundidade (m)	Ciclo 1	Ciclo 2	Ciclo 3	Ciclo 4	Ciclo 5
3,0 a 4,0	30,0	28,0	25,0	22,0	20,0
5,0 a 6,0	35,0	27,0	25,0	23,0	21,0
6,0 a 7,0	28,0 a 60,0				
7,0 a 8,0	90,0	83,0	75,0	68,0	61,0

Os resultados dos dois ensaios, para a mesma profundidade, mostraram-se muito próximos, com ótima repetibilidade, sendo a diferença entre eles de aproximadamente 0,5 kPa, mostrado entre as figuras 4.9 e 4.12.

Com o valor último de q_{in} (ciclo 5), calcula-se o valor de S_{ur} , que é apresentado no capítulo 5.

Na profundidade entre 6,0 e 7,0 m, provavelmente há mudança de camada. Neste caso, o valor de q_{in} no quinto ciclo é 28 kPa para a profundidade entre 6,0 e 6,5 m e 60 kPa para a profundidade entre 6,5 e 7,0m.

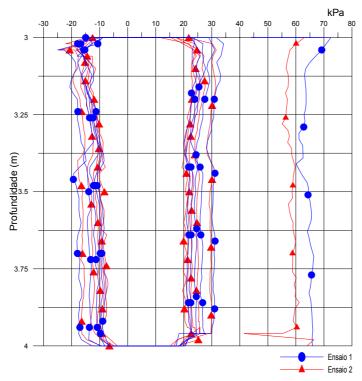
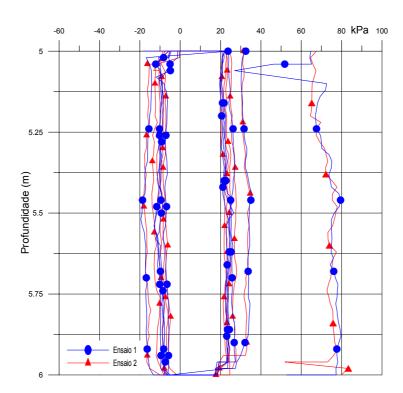



Figura 4.9. – Resistência q_{in} do ensaio cíclico entre 3,0 e 4,0 m de profundidade, campanha 2.

 $Figura\ 4.10-Resistência\ q_{in}\ do\ ensaio\ cíclico\ entre\ 5,0\ e\ 6,0\ m\ de\ profundidade,\ campanha\ 2.$

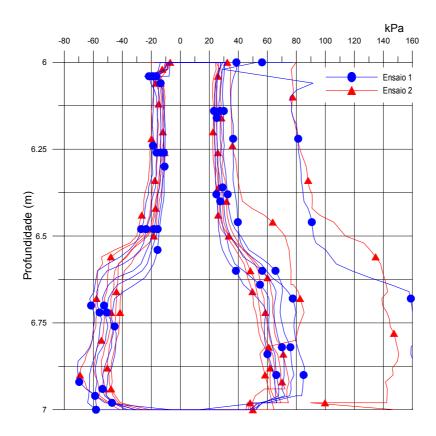


Figura 4.11 - Resistência q_{in} do ensaio cíclico entre 6.0 e 7.0 m de profundidade, campanha 2.

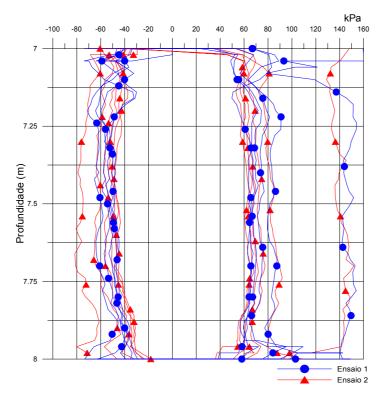


Figura 4.12 - Resistência q_{in} do ensaio cíclico entre 7,0 e 8,0 m de profundidade, campanha 2.

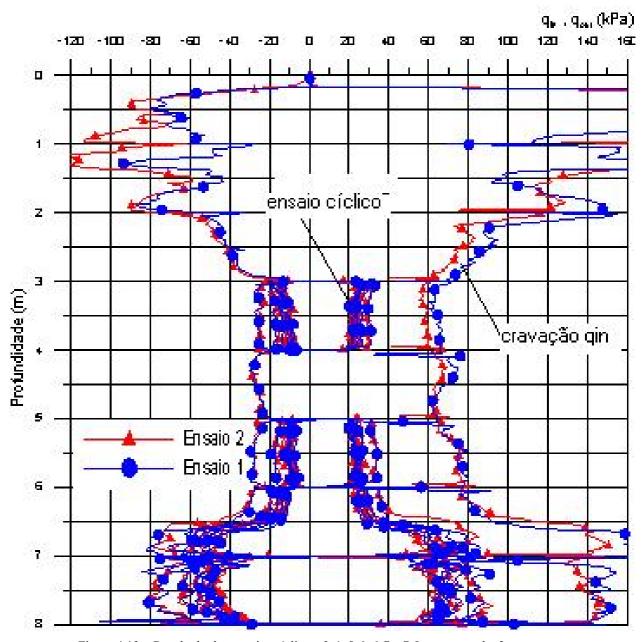
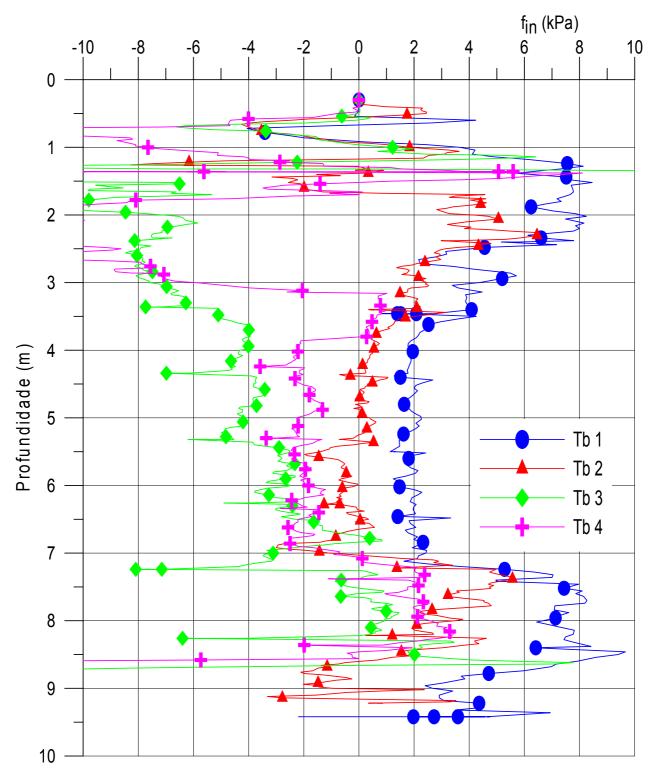



Figura 4.13 – Resultado dos ensaios cíclicos: 3-4, 5-6, 6-7 e 7-8 m, campanha 2.


4.5.5. Resistência de atrito fin e fout

Na cravação os ensaios Tb2, Tb3 e Tb4 apresentaram valores negativos para f_{in} , mostrado na figura 4.14. Na extração, apresentaram divergência de até 6,0 kPa. Como o valor de f_s para a camada mole encontrado com o piezocone é 2,5 kPa, a divergência entre os resultados f_{in} e/ou f_{out} é muito grande quando comparado ao piezocone.

A má qualidade dos resultados de f_{in} e f_{out} era esperada, uma vez que a base cilíndrica amolga o solo durante a cravação, fazendo com as leituras de atrito não fossem representativas, dificultando a interpretação.

 $Figura\ 4.14-Resistência\ ao\ atrito\ na\ cravação\ f_{in},\ campanha 1.$

 $Figura\ 4.15-Resistência\ ao\ atrito\ na\ extração\ f_{out},\ campanha 1.$

4.5.6. Observações feitas nas campanhas de penetração de cilindro

Durante as duas campanhas observou-se que:

- Não houve maiores dificuldades na execução do ensaio, uma vez que a área de ensaio não possuía aterro;
- Em áreas com espessura de aterro superior a 1 metro, a execução do ensaio seria dificultada pela necessidade de execução de um revestimento (ou forma) necessário para estabilizar o furo, com diâmetro de cerca de 30 cm;
- Apesar da cravação ser feita com 2 cm/s, a velocidade de extração tem que ser calibrada para se obter 2 cm/s;
- A profundidade máxima a ser atingida deve ser previamente estabelecida, pois solos com grande resistência podem causar danificando a base do penetrômetro;
- O programa que faz aquisição de dados deve ser adaptado para ensaios de extração, pois a profundidade registrada é sempre crescente, ou seja, o programa só reconhece as profundidades de cravação.
- No ensaio deveria ser medido também o esforço de flexão no meio da base cilíndrica do equipamento. Este momento gerado na cravação, principalmente para base cilíndrica com grande dimensão, poderia reduzir o valor da resistência q_{in}. Neste caso seria necessário corrigir q_{in} devido à flexão da base.

CAPÍTULO 5

ANÁLISE DOS RESULTADOS

5.1. Apresentação

Este capítulo compara os resultados dos ensaios de penetração de cilindro com os ensaios de piezocone, palheta e triaxiais. Esta comparação estabelece uma relação entre as resistências de ponta do penetrômetro cilíndrico e do piezocone, compara as resistências S_u indeformada e amolgada com os ensaios de palheta e triaxiais e, apresenta, um gráfico resumo com os valores de S_u de todos os ensaios realizados para a presente tese.

5.2. Resultados dos ensaios de penetração de cilindro

5.2.1. Razão de resistência de ponta: qout/qin

Os ensaios de penetração de cilindro da campanha 1 atingiram profundidade máxima de 9 m, tendo sido obtida a razão de atrito $|q_{out}/q_{in}|$ mostrada nas tabelas 5. 1 a 5.4. O valor médio desta razão, considerando os ensaios Tb1, Tb2 e Tb4, é igual a 0,40. O ensaio Tb 3 apresentou valores de q_{in} cerca de 100% maiores que os demais ensaios, por isto não foi incluído no cálculo da média q_{out}/q_{in} . A figura 5.1 exibe os valores de q_{in} e q_{out} e a figura 5.2 mostra a razão q_{out}/q_{in} destes quatro ensaios.

Tabela 5.1 – Valores de qout/qin para ensaio Tb1

Profundidade (m)	q _{in} (kPa) médio	q _{out} (kPa) médio	$ q_{out}/q_{in} $
0 a 2	Crosta	-50	-
2 a 3	100	-38	0,38
3 a 5	55	-25	0,45
5 a 6,5	60	-25	0,42
6,5 a 9	135	-75	0,55
		Média	0,45

Tabela 5.2 – Valores de qout/qin para ensaio Tb2

Profundidade (m)	q _{in} (kPa) médio	q _{out} (kPa) médio	$ q_{out}/q_{in} $
0 a 2	Crosta	-38	-
2 a 3	87	-27	0,31
3 a 5	70	-25	0,36
5 a 6,5	87	-25	0,29
6,5 a 9	175	-75	0,43
		Média	0,35

Tabela 5.3 – Valores de qout/qin para ensaio Tb3

Profundidade (m)	q _{in} (kPa) médio	q _{out} (kPa) médio	$ q_{out}/q_{in} $
0 a 2	Crosta	Valor muito disperso	-
2 a 3	210	-37	0,18
3 a 5	165	-35	0,21
5 a 6,5	150	-25	0,17
6,5 a 9	300	-75	0,25
		Média	0,20

Tabela 5.4 – Valores de qout/qin para ensaio Tb4

Profundidade (m)	q _{in} (kPa) médio	q _{out} (kPa) médio	$ q_{out}/q_{in} $
0 a 2	Crosta	Valor muito disperso	-
2 a 3	Valor muito disperso	Valor muito disperso	-
3 a 5	80	-35	0,44
5 a 6,5	87	-25	0,29
6,5 a 9	175	-75	0,43
	•	Média	0,39

O valor de $|q_{out}/q_{in}|$ encontrado por RANDOLPH et alii (1998) varia entre 0,50 e 0,75, conforme descrito no capítulo 2. Comparando estes valores com a relação $|q_{out}/q_{in}|$ igual a 0,40 encontrada nesta tese, acredita-se que esta relação pode ser função da sensibilidade do solo. Ou seja, como nos ensaios de palheta a argila apresentou sensibilidade S_t alta, variando entre 4 e 16 kPa, conclui-se que a razão q_{out}/q_{in} varia em função da sensibilidade da argila.

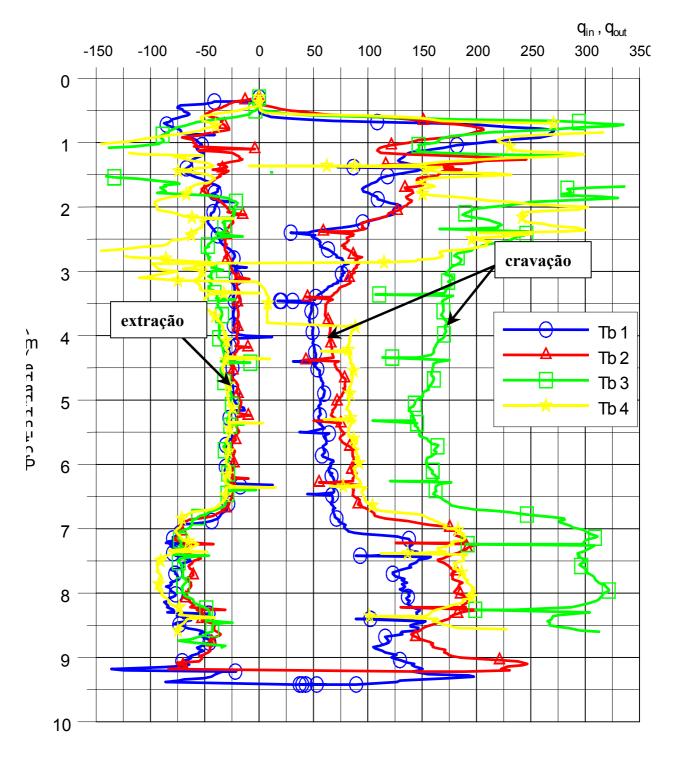


Figura 5.1 – Resistência de ponta na cravação e na extração do penetrômetro cilíndrico

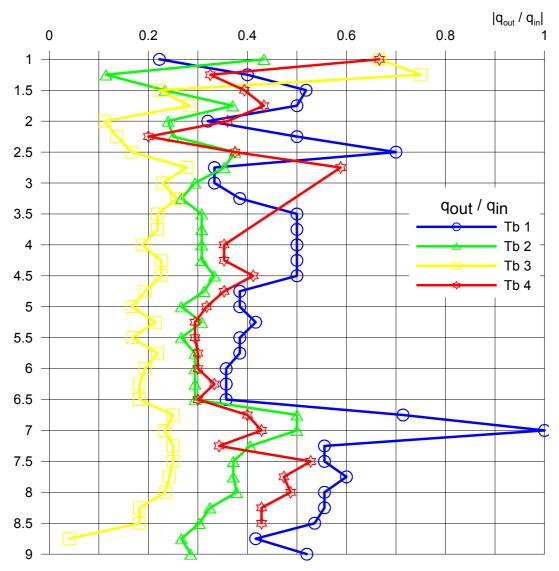


Figura 5.2 – Razão |q_{out}/q_{in}| dos ensaios de penetração de cilindro na campanha 1

5.2.2. Razão de atrito: fout/fin

A razão de atrito f_{out}/f_{in} não pôde ser estabelecida, pois os resultados de f_{out} não se apresentaram satisfatórios, atingindo uma divergência de até 300% entre os ensaios, o que é mostrado na figura 5.3.

Outro fato que não contribuiu para estabelecer a relação f_{out}/f_{in} , foram os valores positivos apresentados por f_{out} nos ensaios, como não deveria ocorrer. Durante a extração do penetrômetro a célula de carga deveria ser tracionada, o que causaria registro de valores negativos para f_{out} .

5.2.3 Relação entre atrito f_{in} do penetrômetro cilíndrico e o atrito f_s do piezocone

A resistência ao atrito f_s obtida no ensaio de piezocone, adotada como valor padrão, varia entre 1 e 2 kPa, para profundidade entre 2,0 e 6,5 m. Com base nestes valores, conclui-se que os valores de f_{in} obtidos com Tb1, Tb3 e Tb4 não foram satisfatórios, abrangendo faixa de valores muito dispersa entre -6 e 2,0 kPa, para profundidade de 3 a 6 m. O ensaio Tb2 apresentou valores cerca de 100% menores que os demais ensaios, como mostra a figura 5.3.

Os valores de f_{out} , para a camada mais homogênea entre 3 e 6 m é cerca de 2,0 kPa , apresentando menor dispersão quando comparado aos valores de f_{in} .

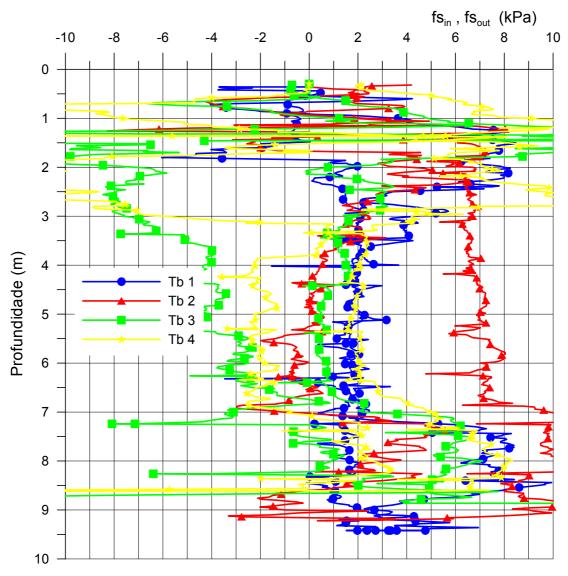


Figura 5.3 – Resistência ao atrito na cravação e na extração

5.2.4 Relação entre as resistências de ponta q_{in} do penetrômetro cilíndrico e q_T do piezocone

Como mostra a figura 5.4, para profundidade entre 2,5 e 6,5 m, os valores de q_{in} da campanha 1 variam entre 50 e 80 kPa. Já os valores de q_{T} variam entre 75 e 130 kPa. Adotando um valor médio q_{in} igual a 65 kPa e q_{T} igual a 102,5 kPa, conclui-se que a resistência de ponta q_{in} dos ensaios Tb1, Tb2, Tb3 e Tb4 é cerca de 63% da resistência q_{T} do piezocone.

Para profundidade entre 6,5 e 9,0 m, onde há aumento da resistência do solo, q_{in} varia entre 130 a 175 kPa e q_T é aproximadamente constante e igual a 225 kPa. Nesta profundidade, embora seja maior a resistência do solo, os valores de q_{in} são cerca de 68% da resistência do piezocone. Os valores do ensaio Tb3 foram desconsiderados, como mencionado no item 5.2.1.

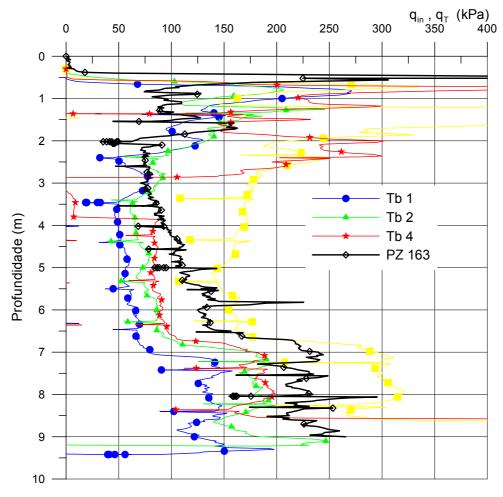


Figura 5.4 – Comparação entre resistências de ponta do penetrômetro cilíndrico e do piezocone

Para justificar os valores de q_{in} da ordem de 35% menores que o q_T, o autor desta tese levanta a seguinte hipótese: i) durante a cravação, surgem poro-pressões menores (ou até mesmo sucção) na parte superior da base cilíndrica que poderia gerar uma força que reduziria o valor das leituras.

5.2.5 Relação entre os valores de Su do penetrômetro cilíndrico e do Palheta

> Resistência Indeformada

Para a obtenção de S_u a partir do ensaio de penetração de cilindro foi empregada a expressão (2.1), com fator barra N_b igual a 10,5 tal como sugerido por STEWART e RANDOLPH (1991).

Como mostra a figura 5.6, para a profundidade entre 2,0 e 3,0 m os valores de S_u dos ensaios de penetração de cilindro são cerca de 68% dos valores do de S_u de palheta. Para este intervalo de profundidade o valor médio de S_u para os ensaios de penetração cilíndrica é 7,5 kPa, enquanto para o palheta é 11,0 kPa.

Para a camada de argila mole entre 3,0 e 6,5 m de profundidade, onde esta é mais homogênea, os valores de S_u, tanto para o penetrômetro cilíndrico quanto para os ensaios de palheta, mostraram-se muito próximos, como ilustra a figura 5.6. O valor de S_u varia de 5,0 a 9,0 kPa para ambos os ensaios.

À profundidade de 7,5 m, o ensaio de palheta forneceu valores da ordem de 60 % maiores que os do ensaio de penetração cilíndrica. Já à profundidade de 8,5 m, a faixa de valores obtida para o ensaio de palheta é da ordem de 15% maior que a faixa obtida pelo penetrômetro.

Pode-se afirmar, assim, que o este novo equipamento forneceu resultados satisfatórios para a previsão da resistência não drenada considerando-se o valor de N_b igual a 10,5, mesmo para camadas mais resistentes, onde o solo provavelmente é mais heterogêneo.

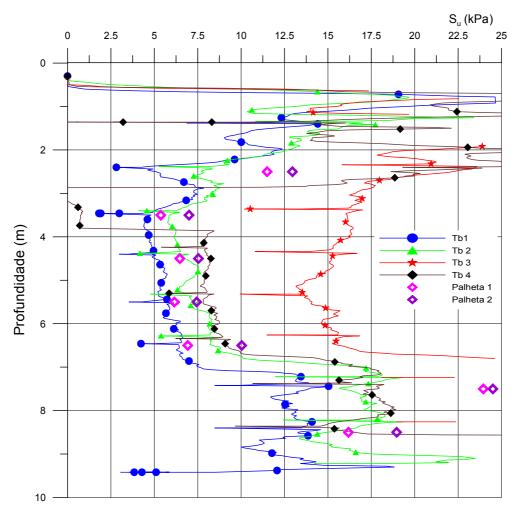


Figura 5.5 – Resultados de S_u penetrômetro cilíndrico e do Palheta

Resistência Amolgada

A figura 5.7 mostra que o valor de S_{ur} calculado com ensaio de palheta varia entre 0,5 e 1,0 kPa, para profundidades entre 3,5 e 6,5 m. Já os valores de S_{ur} encontrados com ensaio cilíndrico cíclico é aproximadamente 2 kPa. O perfil de S_u do palheta apresenta valores cerca de 100% menores que o S_u do ensaio de cilindro. Tal fato pode estar associado à quantidade de ciclos realizados no ensaio cilíndrico cíclico, ou seja, o número de ciclos não foi suficiente para que o solo atingisse a resistência residual.

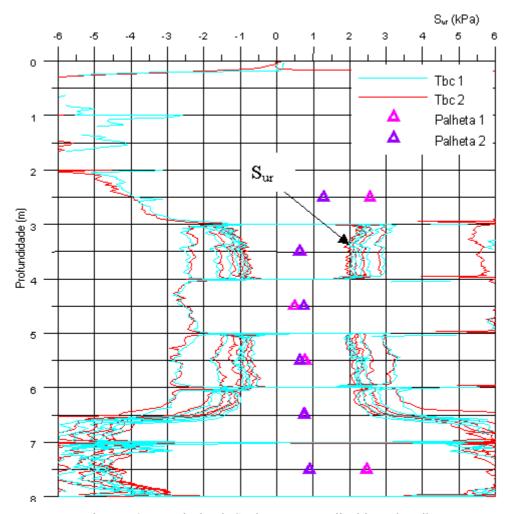


Figura 5.6 - -Resultados de S_{ur} de penetração cilíndrica e de Palheta

5.2.6. Relação entre os valores de S_u do penetrômetro cilíndrico e do piezocone

Para a estimativa do valor de S_u a partir do ensaio de piezocone, utilizou-se o valor de N_{KT} igual a 7, calibrado especificamente para o depósito ensaiado (ver capítulo 3). Quando se comparam os valores de S_u do cilindro com os obtidos com piezocone, obtém-se uma boa concordância entre de resultados. Isso seria naturalmente de se esperar, uma vez que o penetrômetro cilíndrico apresentou boa concordância com os ensaios de palheta que está diretamente ligado ao S_u do piezocone. Caso tivessem sido usados valores mais elevados para N_{KT} (por exemplo, da ordem de 13), os valores de S_u a partir do piezocone teriam sido muito conservativos.

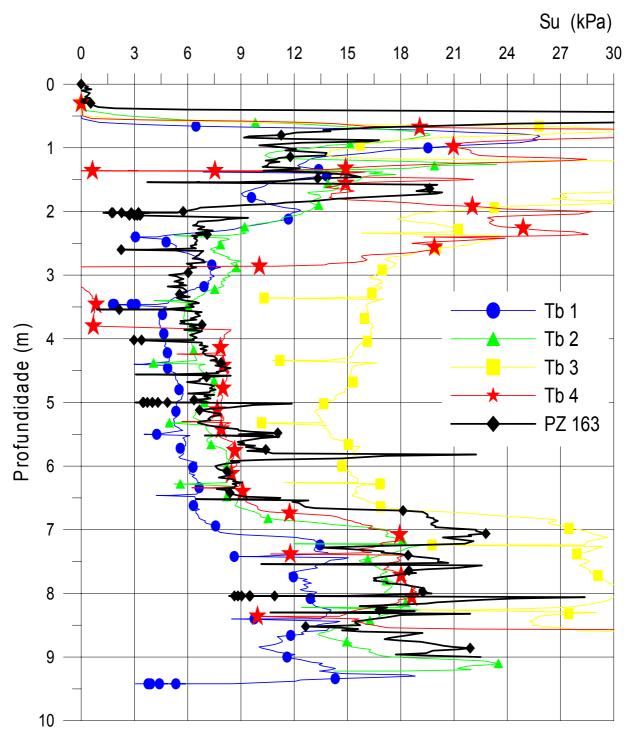


Figura 5.7 - Valores de S_u do penetrômetro cilíndrico e do piezocone

5.2.7 Relação entre os valores de S_u do penetrômetro cilíndrico e dos ensaios triaxiais

A figura 5.8 mostra os resultados dos valores de S_u obtidos com ensaios cilíndricos e triaxiais. Os ensaios triaxiais CAUc foram feitos pelo NGI com amostras retiradas nas profundidades 3,35 e 7,45 m.

É difícil uma análise da tendência dos dados dos resultados dos ensaios triaxiais em relação aos do penetrômetro cilíndrico. De fato, apenas 6 ensaios triaxiais foram realizados, sendo 4 no NGI e 2 na COPPE/UFRJ. Dos 4 ensaios realizados no NGI, sendo 2 de compressão e 2 de extensão, 3 apresentaram valores menores que a faixa dos valores do ensaio cilíndrico. Apenas o ensaio de extensão à profundidade 3,35 m forneceu valores maiores (da ordem do dobro) da média do penetrômetro.

Por outro lado, os dois ensaios realizados na COPPE/UFRJ forneceram valores muito distintos: o de compressão situou-se na faixa (inferior) do ensaio de penetração de cilindro, enquanto o de extensão é cerca de 45% maior que a média dos resultados dos ensaios cilíndricos. Mais ensaios seriam necessários para se entender melhor os resultados obtidos.

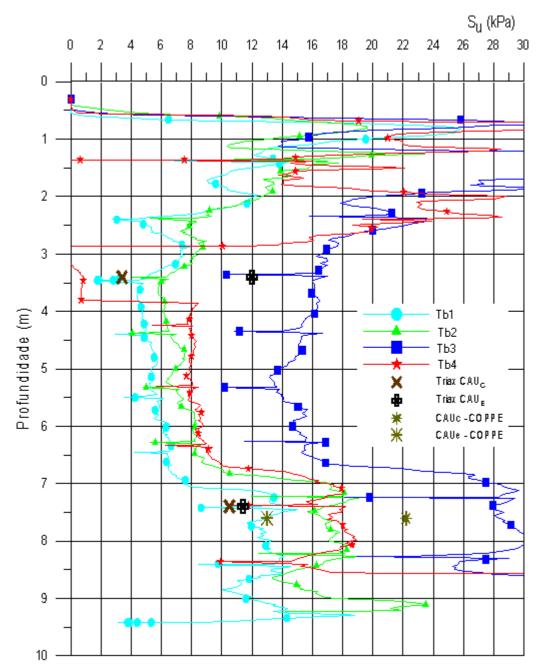


Figura 5.8 – Valores de S_u obtidos com penetração cilíndrica e com triaxial

5.3. Resumo dos ensaios

A figura 5.9 apresenta os resultados de S_u dos ensaios de penetração de cilindro, de piezocone, de palheta, e dos triaxiais realizados nesta tese.

Como conclusão adicional em relação aos diversos ensaios, observa-se que o ensaio triaxial de extensão realizado na COPPE/UFRJ, à profundidade de 7,75 a 8,45 m, apresentou uma diferença inferior a 10% em relação ao ensaio de palheta, ambos os

valores situando-se bem acima da tendência dos demais resultados à mesma profundidade. O autor da presente tese não vislumbrou nenhuma explicação para este fato além de (i) alguma heterogeneidade local ou (ii) algum efeito de anisotropia.

Concluiu-se, ainda, que o ensaio de cilindro foi de fato menos dependente da variação do fator N_b do que o piezocone em relação à variação do fator N_{KT} . Em outras palavras, o emprego de $N_b = 10,5$ – sugerido para qualquer depósito – forneceu bons resultados de S_u , enquanto o piezocone precisou de uma correlação local para se poder obter bons resultados de S_u . Tal fato representa um aspecto promissor do ensaio de penetração de cilindro para a estimativa de S_u em solos moles.

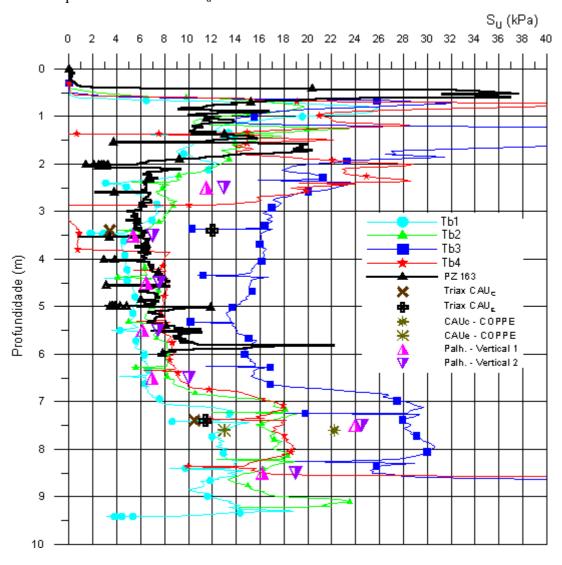


Figura 5.9 – Valores de S_u do penetrômetro cilíndrico, piezocone, palheta e triaxial

Com base nos estudos de JAMIOLKOWSKI et alii (1985), que definiram a expressão (5.1) para calcular o valor de S_u , observa-se que esta expressão não é aplicável à argila desta pesquisa, visto na figura 5.10. O perfil de S_u obtido com a expressão mencionada, tem como fonte de dados o perfil de OCR adotado, mostrado na figura 3.21.

$$S_u = 0.22 \cdot OCR^{0.8} \tag{5.1}$$

Analisando os valores dos perfis de S_u , obtidos de maneira teórica e experimental, com penetrômetro cilíndrico e com OCR do piezocone, verifica-se que estes dois métodos apresentaram valores bem diferentes, embora o aspecto da curva seja semelhante. Observou-se, para a presente pesquisa, uma melhor concordância com as medições *in situ*, usando-se a equação (5.2):

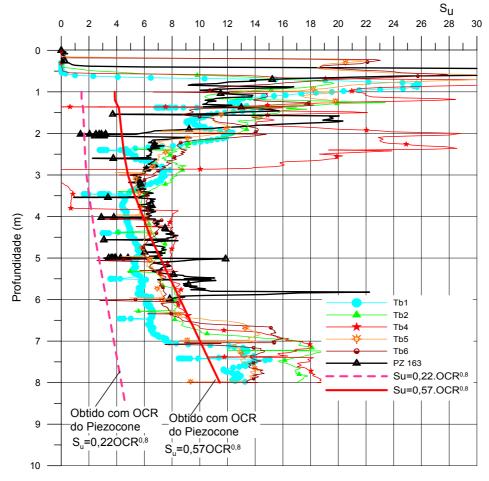


Figura 5.10 – Resistência S_u obtida com penetrômetro cilíndrico e com expressão de JAMIOLKOWSKI et alii (1985).

CAPÍTULO 6

CONCLUSÕES E SUGESTÕES PARA NOVAS PESQUISAS

Foi produzido um equipamento de penetração de cilindro – desenvolvido originalmente na Universidade do Oeste da Austrália (UWA) – cuja principal finalidade é a obtenção da resistência não drenada de solos moles. O equipamento mostrou-se simples de ser utilizado no campo.

Foram realizados 6 verticais de ensaios, em duas campanhas, na argila mole da Vila do Pan-Americano, na Barra da Tijuca. Os ensaios apresentaram uma boa repetibilidade, com exceção de uma das verticais (Tb3). Foram realizados, ainda, em 2 verticais, ensaios cíclicos, com a finalidade de estimativa da resistência amolgada do solo.

Ensaios de palheta, de piezocone e triaxiais foram também realizados, de modo a se efetuar uma comparação com os resultados obtidos pelo penetrômetro cilíndrico.

Comparando-se os valores de S_u do ensaio de palheta com os do ensaio de cilindro – empregando-se o fator N_b igual a 10,5 –, obteve-se boa concordância para a região mais homogênea do solo, entre 2,5 e 6,5 m. Para as outras camadas, os valores correspondentes ao palheta foram maiores (de 15 a 60%) que os obtidos com o penetrômetro cilíndrico.

Retroanalisando-se o valor de N_{KT} a partir dos ensaios de palheta, obteve-se um valor médio de 7, limite inferior da faixa encontrada em solos moles brasileiros. Quando se emprega este valor de N_{KT} , obtém-se, naturalmente, uma boa concordância entre os valores de S_u do piezocone e do penetrômetro cilíndrico.

O pequeno número de ensaios de laboratório e a dispersão verificada não possibilitaram uma comparação adequada entre seus valores e os obtidos com o novo equipamento.

Concluiu-se que o ensaio de penetração de cilindro foi de fato menos dependente da variação do fator N_b do que o piezocone em relação à variação do fator N_{KT} . Em outras palavras, o emprego de $N_b = 10,5$ – sugerido para qualquer depósito – forneceu bons

resultados de S_u , enquanto o piezocone precisou de uma correlação local para se poder obter bons resultados de S_u . Tal fato representa um aspecto promissor do ensaio cilíndrico para a estimativa de S_u em solos moles.

No que toca à resistência amolgada, os valores obtidos pelo ensaio cilíndrico nos ensaios cíclicos foram da ordem de 2 a 4 vezes superiores aos encontrados pelos ensaios de palheta.

No que concerne a futuras pesquisas:

i) Quanto ao equipamento

- i.1) Adaptar o sistema de aquisição de dados para o processo de extração. Houve necessidade de artifícios, no campo, para se poder adquirir os registros do ensaio, uma vez que o programa existente não prevê esta hipótese. Além disso, há necessidade, posteriormente, de corrigir as planilhas para a obtenção dos dados finais.
- i.2) Introduzir na máquina de cravação um dispositivo que possibilite manter a velocidade de extração igual à de cravação sem a necessidade de qualquer operação. Foi necessário se alterar o fluxo de óleo e calibrar a velocidade a cada mudança de sentido do ensaio.

ii) Quanto ao ensaio:

- ii.1) Realizar outras pesquisas semelhantes à efetuada em outros depósitos, de modo a se verificar a possibilidade de variação de N_b em outras condições;
- ii.2) Estudar os efeitos da anisotropia e velocidade de penetração na comparação a diversos ensaios.

REFERÊNCIAS BIBLIOGRÁFICAS

- ALMEIDA, M. S. S. (1998), "Site Caracterization os a Lacustrine Very Soft Rio de Janeiro Organic Clay", Proc., ISC'98, Atlanta, Vol. 2, pp. 961-966
- ALMEIDA, M. S. S., FUTAI, M. M., MARQUES, M. E. S.(2002), "Theoritical and Practical Concepts to the Behaviour of Rio de Janeiro clays" completar.
- ALMEIDA, M. S., SANTA MARIA, P. E. L. MARTINS, I. S. M., SPOTTI, A. P., COELHO, L. B M. (2000), "Consilidation of a Very Soft Clay With Vertical Drains", Proc., Geotecchnique 50, No 6, 633-643.
- BALIGH, M. M. (1986), Undrained Deep Penetration, II: Poro Pressures" Geotechnique, Vol. 36, No. 4, pp. 487-501.
- BALIGH, M. M., AZZOUZ, A. S., WISSA, A. Z. E., MARTIN, R. T. MORRISON, M. J. (1981), "The Piezocone Penetrometer", Proc. of Simposion on Cone penetration Test and Expirience, ASCE, St. Louis, pp. 247-263.
- BALIGH, M. M., LEVADOUX, J. N. (1986), "Consolidation after undrained piezocone penetration": I Prediction. Journal of Geotechnical Engineering Division, ASCE, Vol. 112, n°. 7, pp. 707-725.
- BRUZZI, D., BATTAGLIO, M. (1988), "Pore Pressures Mesurements During Cone Penetration Test", Proc., Research Report, ISMES.
- CAMPANELLA, R. G., ROBERTSON, P. K. (1988), "Currente Status of the Piezocone Test Proc State of Art Report", Proce. of the I Int. Symposium on Penetration Testing, Orlando, Vol1, pp. 93-116.
- CAMPANELLA, R. G., ROBERTSON, P. K. (1986), "Factors Affecting The Pore Water Pressure and its Measurement Around a Penetration Cone", Proc. 39th Canadian Conference, Ottawa.

- CAMPANELLA, R. G., ROBERTSON, P. K. (1981), "Applied Cone Research", Proc of the Simposium on Cone Penetration Testing and Expirience, ASCE, St. Louis, pp. 343-362.
- CAMPANELLA, R. G., GILLESPIE, D., ROBERTSON, P. K. (1982), "Pore Pressures During Cone Penetration Testing. Proceedings" 2nd European Symposium on Penetration Testing, Amsterdam, pp. 24-27.
- CHEN, B. S., MAYNE, P. W. (1994), "Profiling The Overconsolidation Ratio of Clays By Piezocone Tests", Georgea Institute of Technology, Atlanta, Report GIT-CEEGEO-94.
- CHEN, B. S., MAYNE, P. W. (1996), "Statistical Relationships Between Piezocone Mesurements and Stress History of Clays", Canadian Journal, Vol. 33, pp. 488 498.
- CHUNG, K. Y., RANDOLPH, M. F. (2001), "Characterization Of Soft Soil For Deep Water Developments", Proc. Geomechanics Group Centre For Off-shore Foundation Systems-The University Of Western Austrália.
- COUTINHO, R.Q., OLIVEIRA,J.T.R, CALVALCANTE, S.P.P. (2001), "Exemplos Práticos nas Argilas Moles do Recife", Encontro de Argilas Moles Brasileiras COPPE/UFRJ (2001).
- DANZIGER, F. A. B. (1990), Desenvolvimento do Equipamento para Realização de Ensaio de Piezocone: Aplicação a argilas moles" Tese D. Sc. COPPE/UFRJ.
- DANZIGER, F. A. B., LUNNE, T. (1994), "The Development Of Semi Empirical Design Procedures For Foundations. Status For Use Of Triple Element Piezocone for Foundation Desingn", NGI Report 52-1551-1.
- DANZIGER, F. A. B., SCHNAID, F. (2000), "Ensaios de Piezocone: Procedimentos, Recomendações e Interpretação", Proc. SEFE IV, BIC, Vol. 3 pp. 01-51.

- DE RUITER, J. (1981), "Eletric Penetrometer For Site Investigation", Proc. Journal Of the Soil Mechanics and Foundations Engeneering, ASCE, SM2, pp. 457-473.
- HEFER, P. A., NEUBECKER, S. (1999) "A Recent Development in Offshore Site Investigation Tools The T-bar", Advanced Geomechanics Research Report, Perth, Australia.
- HOULSBY, G. T., THE, C.I. (1988), "Analysis Of The Piezocone In Clay", Proc. Of The II Symposium On Penetration Testing, Amsterdam, Vol. 2, pp. 777-783.
- ISSMFE (1989), "Report Of The ISSMFE Technical Committee on Penetration Testin Of Soils TC 16 With Reference Test Procedures", Swedish Geotechnical Society, Swedish Geotechnical Institute, Information No 7.
- HOULSBY, G. T. (1988), "Introduction To Papers 14-19", Proc. Of The Geotechnology Conference On Penetration Testing In The U.K., Birmingham, pp.141-146.
- JAMIOLKOWSKI, M., LADD, C. C., GERMAINE, J. T., LANCELLOTTA, R. (1985), "New Development In Field And Laboratory Testing Of Soils", Proc Of The XI Int. Conf. On Soil Mech. And Found Eng., Vol. 1 pp. 57-153.
- JONES, G. A., VAN, ZYL, D. J. A. (1981), "Piezometer Probe A Useful Toll", Proc. Of The 10th Int. Conf. On Soil Mech. And Found. Eng., Vol. II, Stokholm, pp. 489-496.
- LACASSE, S. (1980), "Procedure For Deaering The Pore Pressure Probe In Laboratory", Report 40015-6, Norwegian Geotechnical Institute, Oslo.
- LACASSE,S., LUNNE, T.(1988), "Calibration of Dilatometer Correlations", International Symposium on Penetration Tests, Orlando Flórida vol 1, p.539-548.
- LADD G., Charles C., Don, J. (2003). "Recommended practice for soft ground site characterization", Arthur Casagrande Lecture. 12th Panamerican

- Conference for Soil Mechanics and Geotechnical Engineering, Boston: 3-57.
- LEVADOUX, J. N. (1980), "Poro pressure Generated During Cone Penetration", Ph.D. Thesis, MIT, Cambrige, Mass.
- LUNNE, T., ROBERTSON P. K., POWELL, J. J. M. (1997), "Cone Penetration Testing in Geotechnical Practice. Blackie Academic & Professional, 1st Ed.
- LUNNE, T., POWEL, J. J. M. (1992), "Recent Developments In Situ Testing In Off-Shore Soil Investigation", Proc. Conference On Off-Shore Site Investigation And Foundation Behaviour, SUT, London, pp. 147-180.
- LUNNE, T., EIDSMOEN, T. E. GILLESPIE, D., HOWLAND. J. D. (1986), "Laboratory And Field Evaluation Of Cone Penetrometer", Proc. Of In-Situ 86, Speciality Conference, ASCE, Blacksburg, pp. 714-729.
- LUNNE, T., LACASSE, S., RAD, N. S. (1989), "SPT, CPT, Pressuremeter Testing Of Soils", Proc. Of The XII Int. Conf. On Soil Mech. And Found. Eng., Rio de Janeiro, General Report, Session 2.
- MARTINS, I.S.M.(2004), "Ensaios geotécnicos para Vila dos Atletas", Proc. Relatório COPPETEC.
- MAYNE, P. W., KULHAWY, F. H. (1982), " K_0 OCR relationships in soi". Journal of Geotechnical Engineering Division, ASCE, Vol. 108, GT 6, pp. 851-872.
- MAYNE, P. W., MITCHEL, J. K. (1988), Consolidation Ratio In Clays By Field Vane", Canadian Geotechinical Journal, 25 (1), pp. 150-157.
- MULABDIC, M., ESKILSON, S., LARSSON, R. (1990), "Calibration Of Piezocones For Investigation In Soft Soil And Demands for Accuracy Of The Equipaments", Swedish Geotechnical Institute, Varia No 270.

- MUROMACHI, T. (1981), "Cone Penetration Test In Japan", Proc. Symposium On Cone Penetration Testing and Experience, ASCE, St Louis, pp. 49-75.
- NASCIMENTO, I.N.S. (1998), "Desenvolvimento E Utilização De Um Equipamento de Palheta Elétrico *in situ*", Proc. Tese M.Sc COPPE/UFRJ.
- NETO, F. N. C. (2004), "Estudo da Velocidade de Rotação na Tensão Cisalhante obtida em ensaio de Palheta", tese M.Sc COPPE/UFRJ.
- NETO, F.N.C. (2003), "Estudo da Velocidade de Rotação na Resistência Não Drenada", Proc. Tese M.Sc COPPE/UFRJ.
- NEWSON, T. A., WATSON, P. G., BRANSBY, M. F. (2000), "Undrained Shear Strength Profiling using a Spherical Penetrometer". The University of Western Australia Research Report no G1469.
- OLIVEIRA, J.R.M.S. (2001), "Estudo Sobre a Variação de Velocidade em Ensaios de Penetração", Seminário de qualificação de doutorado COPPE/UFRJ.
- RAD, N. S., TUMAY (1985), "Pore pressure Response Of The Piezicone Penetrometer", Geothechnical Testing Journal, ASTM, Vol. 8, pp. 125-131.
- RANDOLPH, M. F., HOULSBY G. T. (1984), "The Limiting Pressure on a Circular Pile Loaded Laterally in Cohesive Soil". Geotechnique, Vol. 34, no 4, pp. 613-623.
- RANDOLPH M, F., HEFER, P. A., GEISE, J. M. & WATSON, P. G. (1998), "Improved Seabed Strength Profiling using T-bar Penetrometer. Proceedings Offshore Site Investigation and Foundation Behaviour". 'New Frontiers', Society for Underwater Technology, London, pp. 221-233.
- ROBERTSON, P. K., CAMPANELLA, R. G., GILLESPIE, D., GREIG, J. (1986), "Use Of Piezometer Cone Data", Proc. Of In Situ 86, Specialty Conference, ASCE, Blacksbourg, pp. 1263-1280.

- ROBERTSON, P. K. (1991), "Soil Classification Using The Cone Penetration Test: Replay", Canadian Geotechnical Journal, Vol. 38, pp. 176-178.
- ROBERTSON, P. K. (1990), "Soil Classification Using The Cone Penetration Test", Canadian Geotechnical Journal, Vol. 27, pp. 151-158.
- SANDVEN, R. (1990), "Strenth And Deformation Properties Of Fine Graned Soils Obtained From Piezocone Tests", Ph.D. Thesis, Institutt For Geoteknikk, Tromdheim.
- SANDRONI, S.S. (2001), "Recalque em Solos Extremamente moles", Encontro de Argilas Moles Brasileiras COPPE/UFRJ (2001).
- SCHAAP, L. H. J., ZUIDBERG, H. M. (1982), "Mechanical and Eletrical Aspects os the Eletric Cone Penetromer Tip", Proc. Of The II European Symposium Of Penetration Testing, Amsterdam, Vol. II, pp. 841-851.
- SCHNAID, F. (2000), "Ensaios de Campo e Sua Aplicação à Engenharia de Fundações", Oficina de Textos, São Paulo.
- SENNESET, K., JANBU, N. (1984), "Shearning Parameters Obtained from Static Cone Penetration Tests", Proc. of the Symp. On Strength Testing of Marine Sedments: Laborat. and In Situ Measuraments, ASTM 04-883000-38, San Diego, pp. 41-54.
- SENNSET, K., JANBU, N., SVANO, G. (1982), "Strength and Deformation Parameters from Deformation Parameters from Cone Penetration Tests", Proc. of the II European Symposium on Penetration Testing, Amsterdam, Vol. II, pp. 863-870.
- SENNSET, K., SANDVEN, R., JANBU, N (1989), "The Evaluation of Soil Parameters from Piezocone Tests", Proc. of the In Situ Testing of Soil Properties for

- Transportations Facilities, National Research Council, TRB, Washington (citado por Sandven, 1990).
- SMITS, F. P., (1982), "Penetration Pore Pressure Measured with Piezometer Cone", Proc. of the II European Symposium on Penetration Testing, Amsterdam, Vol. II, pp. 871-876.
- SOARES, M. M., LUNNE, T., ALMEIDA, M. S. S., DANZIGER, F. A. B. (1986), "Ensaios com Piezocones COPPE e Fugro em Argila Mole", Anais, VI COBRAMSEF, Porto Alegre, Vol. II, pp. 75-87.
- SULLY, j. P., CAMPANELLA, R. G., ROBERTSON, P. K. (1988A), "Overconsolidation Ratio of Clays from Penetration Poro pressure", Jouenal of Geotechinical Engineering, ASCE, Vol. 114, No 2, pp. 209-216.
- SULLY, j. P., CAMPANELLA, R. G., ROBERTSON, P. K. (1988b), "Interpetration of Penetration Poro Pressures to Evaluet Stress Hitory in Clays", Proc. of the I Int. Symp. On Penetration Testing, Orlando, Vol II, pp. 993-999.
- TAVENAS, F., LEROUEIL, S., ROY, M. (1982), "The Piezocone Test in Clays: Used and Limitations", Proc. of the II European Symposium on Penetration Testing, Amsterdam, vol. II, pp. 889-894.
- TORSTENSSON, B. A. (1977), "The Pore Pressure Probe", Jjellsprengningsteknikk, Bergmekanikk/Geotecknikk, pp. 34.1-34.15.
- TORSTENSSON, B. A. (1975), "Pore Pressure Sounding Instrument", Proc. ASCE Spec. Conf. On In Situ Measurements of Soil Properties, Vol. II, pp. 48-54.
- TUMAY, M. T., BORGES, R. L., ACAR, Y. (1981), "Subsurface Investigation with Piezocone Penetrometer", Proc. of the Symposium on Cone Penetration Test and Expirience, ASCE, St. Louis, pp. 325-342.

- STEWART, D. P. & RANDOLPH, M. F. (1991), "A new site Investigation Tool For The Centrifuge". Proceedings International Conference on Centrifuge Modelling Centrifuge ,91, Boulder/Colorado, pp. 531-538.
- STEWART, D. P., RANDOLPH, M. F. (1994), "T-bar Penetration Testing in Soft Clay". Journal of Geotechnical Engineering Division ASCE, Vol. 120, no 12, pp. 2230-2235.
- WATSON, P. G., SUEMASA, N., RANDOLPH, M. F. (2000), "Evaluating Undrained Shear Strength Using the Vane Shear Apparatus". Proc., Tenth International Off-Shore and Polar Engineering Conference, Seattle, USA, pp. 485-493.
- WISSA, A. Z. E., MARTIN, R. T., GARLANGER, J. E. (1975), "The Piezometer Probe", Proc. ASCEpec. Conf. On In Situ Measuraments of Properties, Vol. I, pp. 536-545.
- WROTH, C. P. (1984), "The Interpretation Of in Situ Soil Tests". Geotechnique, Vol. 34, no 4, pp. 449-489.
- WROTH, C. P., HOULSBY, G. T. (1985), "Soil Mechanics Property characterisation and analysis procedures". Proceedings 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Vol. 1, pp. 1-55.

Livros Grátis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

<u>Baixar</u>	livros	de	Adm	<u>inis</u>	tra	ção

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciência da Computação

Baixar livros de Ciência da Informação

Baixar livros de Ciência Política

Baixar livros de Ciências da Saúde

Baixar livros de Comunicação

Baixar livros do Conselho Nacional de Educação - CNE

Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos

Baixar livros de Economia

Baixar livros de Economia Doméstica

Baixar livros de Educação

Baixar livros de Educação - Trânsito

Baixar livros de Educação Física

Baixar livros de Engenharia Aeroespacial

Baixar livros de Farmácia

Baixar livros de Filosofia

Baixar livros de Física

Baixar livros de Geociências

Baixar livros de Geografia

Baixar livros de História

Baixar livros de Línguas

Baixar livros de Literatura

Baixar livros de Literatura de Cordel

Baixar livros de Literatura Infantil

Baixar livros de Matemática

Baixar livros de Medicina

Baixar livros de Medicina Veterinária

Baixar livros de Meio Ambiente

Baixar livros de Meteorologia

Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Música

Baixar livros de Psicologia

Baixar livros de Química

Baixar livros de Saúde Coletiva

Baixar livros de Serviço Social

Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo