Download PDF
ads:
Marilanda Ferreira Bellini
Estudos imuno-histoquímico das proteínas p53, p16,
Fhit, caspase 3 e antígeno Ki67; e citogenético
molecular em lesões benignas e carcinoma de
esôfago
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
Campus de São José do Rio Preto
Marilanda Ferreira Bellini
Estudos imuno-histoquímico das proteínas p53, p16,
Fhit, caspase 3 e antígeno Ki67; e citogenético
molecular em lesões benignas e carcinoma de
esôfago
Orientadora: Profa. Dra. Ana Elizabete Silva
Co-Orientadora: Profa. Dra. Marileila Varella-Garcia
São José do Rio Preto – SP
2009
Programa de Pós-Graduação em Genética
Tese apresentada para
obtenção do Título de Doutor
em Genética
ads:
Bellini, Marilanda Ferreira.
Estudos imuno-histoquímico das proteínas p53, p16, Fhit, caspase 3 e
antígeno Ki67; e citogenético molecular em lesões benignas e carcinoma de
esôfago/ Marilanda Ferreira Bellini. - São José do Rio Preto : [s.n.], 2009.
219 f. : il. ; 30 cm.
Orientador: Ana Elizabete Silva
Co-orientador : Marileila Varella-Garcia
Tese (doutorado) Universidade Estadual Paulista, Instituto de
Biociências, Letras e Ciências Exatas
1. Genética. 2. Chagas, Doença de. 3. Megaesôfago chagásico. 4.
Esofagite crônica. 5. Carcinoma de células escamosas. 6. Esôfago - Doenças.
7. Lesões esofágicas benignas. I. Silva, Ana Elizabete. II. Varella-Garcia,
Marileila. III. Universidade Estadual Paulista, Instituto de Biociências, Letras e
Ciências Exatas. IV. Título.
CDU - 575
Ficha catalográfica elaborada pela Biblioteca do IBILCE
Campus de São José do Rio Preto - UNESP
Marilanda Ferreira Bellini
Estudos imuno-histoquímico das proteínas p53, p16, Fhit, caspase 3 e
antígeno Ki67; e citogenético molecular em lesões benignas e carcinoma
de esôfago
Dissertação apresentada para obtenção do título
de Doutor em Genética, junto ao Programa de
Pós-Graduação em Genética do Instituto de
Biociências, Letras e Ciências Exatas, da
Universidade Estadual Paulista “Júlio de Mesquita
Filho”, Campus de São José do Rio Preto.
BANCA EXAMINADORA
Profa. Dra. Ana Elizabete Silva
Professor Adjunto Livre-Docente
UNESP – São José do Rio Preto
Orientadora
Profa. Dra. Juliana Karina Ruiz Heinrich
Bióloga
Universidade Estadual de Campinas
Profa. Dra. Agnes Cristina Fett Conte
Professor Livre-Docente
Faculdade de Medicina de São José do Rio Preto
Profa. Dra. Silvia Regina Rogatto
Professor Adjunto Livre-Docente
UNESP – Botucatu
Profa. Dra. Paula Rahal
Professor Adjunto Livre-Docente
UNESP – São José do Rio Preto
São José do Rio Preto, 20/02/2009.
O presente trabalho foi realizado no Laboratório de
Citogenética e Biologia Molecular Humana, Departamento de Biologia do
Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto
– SP, da Universidade Estadual Paulista “Júlio de Mesquita Filho” – UNESP;
Laboratório de Imuno-histoquímica e Colorações Especiais, Seção de
Patologia do Hospital de Base de São José do Rio Preto SP; Laboratório
de Patologia Cirúrgica e Molecular, Hospital Sírio Libanês, São Paulo – SP e
Cytocore, University of Colorado, Health Sciences Center, Aurora CO
USA, com bolsa de Doutorado do CNPq, bolsa de estágio de doutoramento
no exterior CAPES e auxílio financeiro da FAPESP.
Dedicatória
Aos meus pais, Pedro Edgard Bellini e Cleonice
Maria Ferreira Bellini, e a minha “irmãzinha” Franciele Ferreira
Bellini, pois não deve ter sido nada fácil me apoiar minhas
peripécias e idéias de cientista lunática.
Agradecimentos
Senhor,
Dai-me serenidade para aceitar as coisas que não posso
mudar;
Coragem para mudar as que eu posso e
Sabedoria para distinguir umas das outras.”(E. K. Ross,D.Kessler)
A Deus, “por ordenar o mundo de maneira
tão bela e sábia”, permitindo que sempre se abra uma janela, quando todas
as portas parecem estar fechadas;
“Eu tenho tanto pra te falar,
mas com palavras não sei dizer, como é grande o meu amor por você,
Nem mesmo o céu, nem as estrelas, mesmo o sol ou o infinito, não
conseguem ser maior que o meu amor, nem mais bonito” (Vinicius de
Morais) A minha Família pelo AMOR incondicional;
“Imagine how the world could be
So very fine
So happy together” (Garry Bonner e Alan Gordon)
A Juliano Farias da Nóbrega pela parceria,
companheirismo, apoio e incentivo.
“Mestre, posso sair mais tarde hoje?
Ao contrário do que algumas vezes te pedi, hoje quero ficar mais um pouco.
Ficar mais alguns instantes para desfrutar de tua presença e da proteção
que ela me traz.
Ficar, para poder admirar, mais uma vez, a tua destreza, a tua capacidade
de diagnosticar e prognosticar. Ficar pela segurança, pelo poder contar,
contar contigo, amparando minhas dúvidas e, suscitando em mim a
maturidade de um profissional...
Agora, encontro-me, procurando meu estado de aluno, sabendo que em
instantes me tornarei seu colega. Porém, com a certeza de jamais deixar de
ser seu discípulo. Discípulo que guardará na memória seus ensinamentos e
no coração, a gratidão, o respeito e a saudade” (Anônimo)
As Profª Drª Ana Elizabete Silva e Profa.
Dra. Marileila Varella-Garcia pela confiança, ensinamentos e amizade;
A Banca Examinadora, Profa. Dra. Silvia
Regina Rogatto, Profa. Dra. Juliana K.R. Heinririch, Profa. Dra. Agnes C.
Fett-Conte e Profa. Dra. Paula Rahal por terem aceitado a participar da
análise e enriquecimento do trabalho.
Aos meus amigos que “como anjos me levantaram, quando minhas asas
tiveram problemas, me lembrando como voltar a voar” (Mário Quintana);
“O mais altruísta dos amigos que um homem pode ter neste mundo egoísta,
aquele que nunca o abandona e nunca mostra ingratidão ou deslealdade, é
o cão”. (Anônimo)
A todos animais de estimação, que
passaram pelo meu percurso, pelos rabinhos abanando de felicidade, e em
especial a Bella, pela felicidade ao me reencontrar depois de um ano e pelo
companheirismo confidente, meses e meses, sempre ao meu lado, durante
a confecção desta Tese;
“Se tem bigodes de foca, nariz de tamanduá;
Parece meio estranho, heim?
Também um bico de pato e um jeitão de sabiá;
Mas é amigo, não precisa mudar, é tão lindo deixa assim como está”
(Roberto Carlos)
Aline Poersch, Andressa Seri, Arianca
Alvarado, Cíntia Nunes, Claudiane Borba, Edson Lopes, Gislaine
Rodrigues, Mateus Marcos, Milene Lara e Patrícia Batista, por não se
importarem com as diferenças, desavenças e distância;
Isabeth Estevão, Ligia Baracioli, Lucilene
Maschio e Rita Peruquetti, a esquerda festiva, por também “esquecerem o
que falaram sobre ser adulto” (Arnaldo Jabor) e terem dividido suas idiotices
comigo;
Cadu Barbosa, Fernanda Carregaro,
Franciole e Tatiana Caparroz, Gilmar Santos, Janaina Rigonatto,
Leonardo Cabrioti, Marco “Todd” Asanome, Marta Lovato, Mauro
Leonardo, Nayara Delgado, Patrícia Ayub, Rodrigo Juliano, Ronaldo
Costa e Tázio Gaspari, “por me guardarem do lado esquerdo do peito,
mesmo que tempo e a distância digam não” (Milton Nascimento).
Luciana Ondei, Paula Zamaro, Ana
Carolina, Ana Luiza, Profa. Dra. Claudia Regina Bonini Domingos,
Nelson C. Tukamoto Jr, Carlos Zago, por se serem AMIGOS até nos
momentos mais difíceis.
Don’t stop believin
Hold on to the feelin
Streetlight people” (James Iha)
Diana Villa, Estefânia Muriedas e Elvia
Navarro, por serem as melhores muchachas em terras tão distantes.
Aos meus primos Monique, Wanderson,
Ivan, Bruna, Ligia, Juliano e Michele por me aceitaram como sou e se
divertirem com isso, sempre oferecendo o ombro amigo.
“Pane no sistema, alguém me desconfigurou” (Pitty)
A Flayd Guerreiro e Juliano Farias
Nóbrega por toda assessoria excell, photoshop, corel draw e afins;
When you’re down and troubled
And you need some loving care
And nothing, nothing is going right
Close your eyes and think of me and soon
I will be there to brighten up even your darkest night
Ain’t it good to know you’ve got a friend…” (Carole King)
Marcelo Almeida, Milena Andrade,
Juliano Farias, Manuela Santoro, Rodriguinho, Bruninha, “The Class
Team”, pela diversão durante o prepatório para TOEFL Test and friendship.
"O valor das coisas não está no tempo que elas duram, mas na intensidade
com que acontecem. Por isso, existem momentos inesquecíveis, coisas
inexplicáveis e pessoas incomparáveis”.(Fernando Pessoa)
Aos colegas do Laboratório de
Citogenética e Biologia Molecular Humana, Cidinha Silveira, Daniela
Bizari, Fernanda Manoel-Caetano, Héctor Matioli, Isabella Migliori,
Josué Rodrigues, Juliana Oliveira, Márcia Duarte e Yvana Jorge.
Ao Pessoal do Setor de Patologia do
Hospital de Base, Dinha por repassar meus telefonemas constantes,
Andréia por estar sempre disponível em me auxiliar com os prontuários,
Darlei pela seleção dos blocos.
A Imuno-histoquimica por ter me
presenteado com grandes amigas: Elaine Keid, Elaine Gouveia, Flávia
Gomes e Ana Paula.
Aos meninos do Laboratório de Patologia
do Hospital Sírio Libanês, Felipe, Laisaac, Fernando, Robson,
Alexandre, Agenor; e as meninas também, Rosangela, Mayra, Márcia,
Rosineide, Dra. Fernanda, por dividirem comigo seu espaço e sua simpatia,
em especial ao Isaque Santana e a Josiane Costa pela atenção,
companhia e disposição.
As Profas. Dras. Patrícia Maluf Cury e
Kátia Ramos Moreira Leite pelo diagnóstico patológico das amostras e
auxílio nas análises de imuno-histoquímica.
Ao Prof. Dr. Sebastião Roberto Taboga e
Luis Roberto Faleiros pela colaboração no preparo das lâminas e foto-
documentação.
Ao Setor de Endoscopia do Hospital de
Base, Dr. Kenji Miyazaki e Dr. Henrique Oliveira pela coleta das biópsias
de megaesôfago.
A Profa. Dra. Agnes C. Fett-Conte,
Adriana Barbosa e Cristina do Laboratório de Genética, FAMERP, pela
disponibilização do microscópio de fluorescência;
A Profa. Dra. Eny Maria Goloni Bertollo, a
secretária Eliana, Silvia e João (SAME) pelo auxílio na consulta de
prontuários;
Margaret Skokan, Pornthip Kiatsimkul,
Sujatha Gajapathy e Yun Xiao, “Leila’s Angels”, pela convivência,
ensino-aprendizagem, intercâmbio cultural, horários de almoço, horários
extraordinários, caronas, confidências, confiança, segredos, desabafos,
choros, ombros, caixinhas de lenços, abraços, alegrias, chocolates, sorvetes
e principalmente pela amizade.
A equipe do Cancer Center, University of
Colorado Health Sciences Center, pela convivência harmoniosa,
agradável e muito produtiva, em especial a Maria Pia Morelli, Marialuisa
Valente, Sharvari Gayal, Christopher Koch e Efang Li pela amizade
construída.
Ao Prof. Dr. Antonio José Manzato pela
assessoria estatística.
A Seção de Pós-graduação, em especial a
Rosana Ferro, Rosemar Brena e Silvia Kazama, por estarem sempre
solicitas.
“Cada um que passa em nossa vida, passa sozinho, pois cada pessoa é
única, e nenhuma substitui a outra. Cada um que passa em nossa vida,
passa sozinho, mas não vai só, nem nos deixa só, leva um pouco de nós
mesmos, e deixa um pouco de si mesmo. os que levem muito, mas
os que não deixam nada. Essa é a maior responsabilidade de nossa vida. É
a prova evidente que duas almas não se encontram ao acaso” (Saint
Exupéry)
Ana Lúcia Dias, Ana Paula Moreno,
Bárbara Bisoli, Brett Radetsky, Christina Mailloux, Cínara Brandão,
Claudio Cordioli, Débora Santana, Eliza Oliveira, Fabián Mendiburu,
Fernando Lago, Flávia Paba, Helena Lelis, Jozélia Ferreira, Junior
Caixeta, Lauriane Giselle, Lidiane Moura, Profa. Dra. Maria Tercília A.
Oliveira, Mário Sérgio Mantovani, Monique Beaudoin, Nancy Joleon,
Hangeseth’s, Montoya’s, Paulsen’s, Família Tinoco, Família Monteiro
Amaral, Família Guerreiro, Família Farias Nóbrega; Sandra, Edimilson e
Maryanne Melo; Nathalie, Nayara, Silvana e José Carlos de Souza;
Nélio e Márcio Farias; Enéas e Mathias Bontempo; Jociléa, Alex e A.J.
Scalisse; Fatinha e Grazielle Prado; Cybelle, Maria Helena e
Hindemburgo Almeida.
“Mas a Escola é a luz que ilumina o caminho da gente” (Carlos Pedro
Ferreira)
A Universidade Estadual Paulista Júlio de
Mesquita Filho – UNESP, ao Instituto de Biociências Letras e Ciências
Exatas IBILCE, ao Programa de Pós-Graduação em Genética PPGGen,
pela oportunidade de concluir esse passo o importante em minha
formação acadêmica.
“Dos filhos deste solo és mãe gentil
Pátria amada
Brasil” (Joaquim Osório Duque Estrada)
Aos órgãos de fomento: CNPq pela bolsa de
estudos, CAPES pela bolsa de estágio de doutoramento no exterior e
FAPESP pelo auxílio financeiro.
A todos aqueles que de maneira direta e
indireta colaboraram para o desenvolvimento deste trabalho.
MUITO OBRIGADA
Epígrafe
“Você não sabe o quanto eu caminhei
Prá chegar até aqui
Percorri milhas e milhas antes de dormir
Eu não cochilei
Os mais belos montes escalei
Nas escuras de frio chorei
A vida ensina e o tempo traz o tom
Pra nascer uma canção
Com a fé do dia-a-dia
Encontrar solução
...
Meu caminho só meu Pai pode mudar”
(Toni Garrido, Lazão, Da Gama e Bino Farias)
Sumário
SUMÁRIO
I. INTRODUÇÃO........................................................................................................... 38
I.1. Lesões Benignas do esôfago ....................................................................... 39
I.2. Carcinogênese do esôfago e alterações genéticas……………………………45
I.3. Alterações Genéticas em esofagite crônica e megaesôfago ................. ……53
I.4. Controle de Proliferação Celular e Apoptose ............................................... 56
II. OBJETIVOS ............................................................................................................. 62
CAPÍTULO I: Genomic imbalances in esophageal squamous cell carcinoma
identified by molecular cytogenetic techniques ............................................................. 64
CAPÍTULO II: p53, p16 and Fhit Proteins Expressions in Chronic Esophagitis and
Chagas Disease ........................................................................................................... 94
CAPÍTULO III: Expression of caspase-3 protein and Ki67 antigen in benign lesions
and esophageal carcinoma and relationship with p53 protein. .................................... 104
CAPÍTULO IV: Chromosomal imbalances are uncommon in Chagasic
megaesophagus ......................................................................................................... 125
III. DISCUSSÃO.......................................................................................................... 159
IV. CONCLUSÕES ..................................................................................................... 167
REFERÊNCIAS BIBLIOGRÁFICAS ............................................................................ 170
APÊNDICE ................................................................................................................. 192
Apêndice 1: Termo de Consentimento Livre e Esclarecido (Sanduíche) .......... 193
Apêndice 2: Questionário ................................................................................. 194
Apêndice 3: Caracterização das amostras de mucosa esofágica normal e
Carcinoma de células escamosa de esôfago ................................................... 195
Apêndice 4: Caracterização das amostras de pacientes com esofagite crônica
........................................................................................................................ 196
Apêndice 5: Caracterização das amostras de pacientes chagásicos sem
megaesôfago. .................................................................................................. 197
Apêndice 6: Caracterização das amostras de pacientes chagásico com
megaesôfago Apêndice……………………………………………………………..198
Apêndice 7: Chromosomal Mapping for the newly developed probes. ............. 201
ANEXOS .................................................................................................................... 202
Anexo 1. Parecer Consubstanciado do Comitê de Ética em Pesquisa
Institucional (Projeto de Doutorado Original). ................................................... 203
Anexo 2. Parecer Consubstanciado do Comitê de Ética em Pesquisa
Institucional (Projeto de Estágio de Doutoramento no Exterior). ...................... 204
Anexo 3. Metodologias para o desenvolvimento de sondas utilizadas na técnica
de Hibridação In Situ Fluorescente (FISH) ....................................................... 205
Lista de Figuras
Lista de Figuras
I. INTRODUÇÃO
Figura 1. Imagens endoscópicas: (A) Esôfago Normal, (B) Esofagite
Crônica......................................................................................................... 40
Figura 2. Esquema de alterações em megaesôfago: dilatação do corpo
esofágico e falta de abertura do esfíncter esofagiano inferior..................... 42
Figura 3. Vias intrínseca e extrínseca de apoptose..................................... 59
Capítulo I
Figure 1 Summary of copy number alterations. in esophageal squamous cell
carcinomas analyzed by comparative genomic hybridization. tumor.…...... 93
Capítulo II
Figure 1. Immunohistochemical stain in esophageal mucosa……………..101
Capítulo III
Figure 1. Immunostaining of Ki67 antigen and CPP32 in esophageal
mucosa.......................................................................................................124
Capítulo IV
Figure 1. Exploratory analysis using three-dimensional plots of the
percentages of loss genes status for individual patients is illustrated…….155
Figure 2. Exploratory analysis using three-dimensional plots of the
percentages of gain and loss genes status for individual patients is
illustrated…………………………………………………………………………156
Figure 3: Exploratory analysis using three-dimensional plots of the
percentages of gain genes status for individual patients is illustrated…….157
Figure 4. FISH images for the unbalanced genes and centromeric targets in
the megaesophagus specimens…………………………………………........158
Lista de Tabelas
Lista de Tabelas
Capítulo II
Table I. Demographic and clinicopathological distribution,
immunohistochemical and statistical analysis for the proteins p53, p16 and
Fhit in esophageal mucosa .…………………………………………………….99
Table II. Kappa test to describe the intensity of agreement among the
expression of three proteins simultaneously and association between protein
expression, two by two, by Fisher’s exact test on esophageal mucosa, in
each evaluated group…………………………………………………………..100
Capítulo III
Table 1. Immunohistochemical and statistical analysis for Ki67 antigen and
CPP32 protein in the different groups……………………………………......120
Table 2. Association between expression of Ki67 antigen and CPP32 protein,
by Fisher’s Exact Test (p<0.05)…………………………………...................121
Table 3. Association between expression of p53 protein
[15]
with Ki67 antigen
and CPP32 protein, by Fisher’s Exact Test (p<0.05)……………….…........122
Capítulo IV
Table 1. Mean copy number per cell and standard deviation (SD) for the 12
DNA targets tested in esophageal mucosa, including 9 genes and 3
centromeric sequences.....……………………………………………………..149
Table 2. Comparison among the patient groups based on total counting
results for the targets…………………………………………………………...150
Table 3. Comparison between gene and centromere target……………….150
Table 4. Mean copy number per cell and ranging of each target in distinct
grades of megaesophagus………………………………………..…………...151
Table 5. Frequencies of loss, balanced and gain of the targets in chagasic
megaesophagus (CM) and health patients (NM)……………………………152
Table 6. Frequencies of nuclei with aneusomies of 3, 7 and 9 centromeres in
the different groups …………………………………………………………….153
Lista de abreviaturas e
símbolos
Lista de abreviaturas e símbolos
- Absence of immunostain
+ Weak immunostain
++ Moderate immunostain
+++ Strong immunostain
x
Mean
* Statistically significant, p<0.05
a, b, c
Statistically significant , p<0.05
AAA
achalasia, adrenocortical insufficiency,
alacrimia
aCGH arranjos de CGH (array CGH)
ADAM8
ADAM metallopeptidase domain 8
AgNOR Argyrophilic nucleolar organizer region
Ala aminoácido Alanina
ANOVA Analysis of Variance
APAF-1
apoptotic peptidase activating factor 1
Arg aminoácido Arginina
B Basal layer of tissue
BAC Bacterial artificial chromosome
Bad proteína Bad
Bak proteína Bak
BCL2
B-cell CLL/lymphoma 2
Bcl-2 proteína Bcl-2 (Bcl-2 protein)
Bcl-X proteína Bcl-X (Bcl-X protein)
BRCA2
breast cancer 2, early onset
Cat. # catalog number
CCND1
cyclin D1
CD Chagas Disease
CDC25B
cell division cycle 25 homolog B (S. pombe)
CDK4
cyclin-dependent kinase 4
CDK6
cyclin-dependent kinase 6
CDKN2A
(P16, INK4A, MTS-1)
cyclin-dependent kinase inhibitor 2A
(melanoma, p16, inhibits CDK4)
CE Chronic Esophagitis
CGH Comparative Genomic Hybridization
cIAP1, 2
baculoviral IAP repeat-containing 2
CK4 Cytokeratin 4
CK14 Cytokeratin 14
CONEP Comitê Nacional de Ética em Pesquisa
CM Chagasic Megaesophagus
CPP32 caspase 3, apoptosis-related cysteine
peptidase
DAB
3,3’-diaminobenzidine
DAPI 4’, 6’-diamino-2-phenylindole
DR Receptores de Morte (Death Receptors)
ECT2
epithelial cell transforming sequence 2
oncogene
EGF epidermal growth factor (beta-urogastrone)
EGFR
epidermal growth factor receptor
[erythroblastic leukemia viral (v-erb-b)
oncogene homolog, avian])
ERBB2
v-erb-b2 erythroblastic leukemia viral
oncogene homolog 2, neuro/glioblastoma
derived oncogene
ESCC Esophageal Squamous Cell Carcinoma
FAD
presenilin 1
FADD
Fas (TNFRSF6)-associated via death
domain
FFPE formalin fixed, paraffin embedded
FGF3
(INT-2)
fibroblast growth factor 3 (murine mammary
tumor virus integration site (v-int-2)
FGF4
fibroblast growth factor 4
FGFR1
fibroblast growth factor receptor 1
FHIT
fragile histidine triad gene
Fhit proteína Fhit
FISH
Fluorescence In Situ Hybridization
FITC Fluorescein microscopy filter
FRA Região de sítio frágil
FRA3B fragile site, aphidicolin type, common,
fra(3)(p14.2)
H
2
O
2
Peróxido de Hidrogênio
HE Coloração Hematoxilina & Eosina
HGF
hepatocyte growth factor (hepapoietin A;
scatter factor)
HGF-R
hepatocyte growth factor receptor
HLA Human Leukocyte Antigen
IAP
baculoviral IAP repeat-containing
ILP2
baculoviral IAP repeat-containing 8
INCA Instituto Nacional do Câncer
Ki67 Antígeno Ki67
KYSE Serie of esophageal squamous cell
carcinoma cell line
LI Labeling Index
LOH Loss of Heterozygosity
LY6K
lymphocyte antigen 6 complex, locus K
mCGH metaphase CGH
M-FISH Multiplex fluorescence in situ hybridization
MIB
mindbomb homolog
MLPA Multiplex Ligation Dependent Probe
Amplification
MYC
v-myc myelocytomatosis viral oncogene
homolog (avian)
MYEOV
myeloma overexpressed (in a subset of
t(11;14) positive multiple myelomas)
n
number of specimens positive
immunostained
N Total of specimens
NAIP
NLR family, apoptosis inhibitory protein
NCL-Ki67p monoclonal antibody Ki-67
NCOA3
nuclear receptor coactivator 3
NM Normal mucosa, health patients
NP it was not performed
ns not significant, p>0.05
oligo-array Oligonucleotide array
p15 proteína p15
P15
(CDKN2B, INK4B, MTS-2)
cyclin-dependent kinase inhibitor 2B (p15,
inhibits CDK4)
p16 proteína p16
p53 proteína p53
PCNA proliferating cell nuclear antigen
PCR-SSCP polymerase chain reaction-single strand
conformation polymorphism
PIK3CA
phosphoinositide-3-kinase, catalytic, alpha
polypeptide
PPFIA
protein tyrosine phosphatase, receptor type,
f polypeptide (PTPRF), interacting protein
(liprin)
pRb proteína retinoblastoma
Pro aminoácido Prolina
RB
retinoblastoma
RB1
retinoblastoma 1
RT Room temperature
S Superficial layer of tissue
SD Standard Deviation
SE Standard Error
SHANK2
SH3 and multiple ankyrin repeat domains 2
SKY
Spectral Karyotyping
Smac/Diablo
diablo homolog (Drosophila)
SNP Single Nucleotide Polymorphism
SSC Sodium chloride, sodium citrate solution
SST
somatostatin
TE Serie of esophageal squamous cell
carcinoma cell line
TERC
telomerase RNA component
TFRC
transferrin receptor (p90, CD71)
TGFα
transforming growth factor, alpha
TMEM16A
anoctamin 1, calcium activated chloride
channel
TP53
tumor protein p53
TP63
tumor protein p63
vs
versus
v/v Volume/volume
XIAP
X-linked inhibitor of apoptosis
WT1
Wilms tumor 1
YAMA
Aliase of caspase 3, apoptosis-related
cysteine peptidase
YES-1
v-yes-1 Yamaguchi sarcoma viral oncogene
homolog 1
µ mean
Resumo
RESUMO
O carcinoma de esôfago apresenta um modelo de
progressão tumoral a partir da seqüência esofagite, atrofia, displasia,
carcinoma in situ e carcinoma invasivo, com algumas alterações genéticas
bem estabelecidas nos estágios iniciais e avançados da
carcinogênese.Contudo em lesões benignas precursoras como o
megaesôfago e esofagite crônica os estudos genéticos são escassos.
Portanto, com o objetivo de identificar o envolvimento de algumas proteínas
que participam da regulação do ciclo celular e apoptose, no presente estudo
foi avaliada a expressão das proteínas p53, p16, Fhit, caspase-3 e do
antígeno Ki67, por imuno-histoquímica. Foram utilizados cortes histológicas
de mucosa de pacientes chagásicos crônicos sem (CD) e com megaesôfago
(CM), este último grupo por apresentar maior risco de desenvolvimento de
carcinoma esofágico, e pacientes com esofagite crônica (CE), devido à
relação entre o processo inflamatório e carcinogênese. Estas amostras
foram comparadas com carcinoma de células escamosas de esôfago
(ESCC) e mucosa esofágica histologicamente normal (NM). Também se
avaliou a ocorrência de concordâncias utilizando o Teste Kappa, entre os
casos com a expressão alterada das proteínas nos diferentes grupos, assim
como a ocorrência de associações, entre padrões alterados de expressão
das proteínas com sexo, idade, hábitos tabagistas e etilistas. Outro objetivo
do estudo foi avaliar o padrão de perdas e ganhos cromossômicos de genes
freqüentemente descritos como relacionados com a carcinogênese
esofágica, FHIT, TP63, PIK3CA, EGFR, FGFR1, MYC, CDKN2A, YES1,
NCOA3, e centrômeros 3, 7 e 9, como controles, por FISH. A avaliação
imuno-histoquímica revelou que a proporção de casos positivos para a
proteína p53 aumentou progressivamente de acordo com a severidade da
lesão, CD (7,7%), CM (26,1%), CE (52,2%) and ESCC (100%). Entretanto,
as proteínas p16 e Fhit não mostraram diferenças estatisticamente
significantes entre os grupos, mas também, em CE observou-se um número
maior de casos com expressão reduzida dessas proteínas (95,7%; 34,8%,
respectivamente), similar ao ESCC (90,9%; 18,2%, respectivamente). A
análise de concordância entre as expressões das proteínas (Teste Kappa)
não evidenciou concordâncias entre os casos com expressão alterada e
normal, para as três proteínas simultaneamente. Porém, o Teste Exato de
Fisher mostrou associação entre a expressão alterada das proteínas p53 e
p16; exceto em ESCC, único grupo que apresentou associação entre p53 e
Fhit. Enquanto a associação entre a expressão alterada de p16 e Fhit,
não foi evidenciada em NM. A investigação de alterações nas taxas de
proliferação celular e apoptose evidenciaram que o índice de marcação de
Ki67 (LI) foi similar em todos os grupos, 30,1% em NM, 30,9% em CD,
42,3% em CM; 44,6% em CE e 48,4% em ESCC, no total de 500 células
analisadas por caso, não sendo observadas diferenças significantes. A
frequência de positividade de CPP32 foi similar nos grupos CD (30,8%), CM
(30,4%) e CE (34,8%), mas aumentada em ESCC (55,5%). Também não foi
observada associação entre os níveis de CPP32, Ki67 e expressão da
proteína p53 nos diferentes grupos, nem dessas com os parâmetros de
idade, sexo e hábitos tabagista e etilista. A análise citogenética para
avaliação dos padrões de perdas e ganhos nas camadas superficial e basal
de mucosa esofágica não mostrou diferenças significantes para a maioria
dos alvos investigados, exceto para EGFR no grupo CM, que apresentou
freqüência menor de cópias na camada basal. Considerando-se o número
total de cópias (camadas superficial e basal) apenas o gene CDKN2A e
centrômero 9 apresentaram médias significativamente menores em CM que
em NM. Enquanto, quando foram avaliadas, para cada gene, as freqüências
de núcleos com padrão de perda ou ganho, apenas o gene PIK3CA
apresentou freqüência significativamente maior de núcleos com perdas no
grupo CM em comparação a NM. A partir de análise exploratória usando
“plots” tridimensional das porcentagens das classes de genes com perda ou
ganho, alguns casos de CM mostraram níveis, não-estatisticamente
significantes, mas que se destacaram da frequência média do grupo, de
perdas para genes específicos: TP63, FHIT, PIK3CA, EGFR, CDKN2A,
YES1; CEP9 ou de ganhos para PIK3CA, TP63, FGFR1, MYC, CDKN2A,
NCOA3, e CEP9, sendo a maioria associada aos graus III e IV do
megaesôfago, provavelmente devido ao processo inflamatório acentuado.
Em conclusão, o presente estudo evidência o envolvimento da expressão
aumentada da proteína p53 nos processos iniciais da carcinogênese
esofágica (esofagite crônica e megaesôfago chagásico), sugerindo sua
utilização como marcador em lesões precursoras.De modo contrário, perdas
na expressão de Fhit e p16 não parecem ser significantes, assim como
alterações na expressão do antígeno Ki67 e da proteína caspase-3,
sugerindo que não evidências de alterações importantes nos níveis de
proliferação celular e apoptose nas lesões benignas e carcinoma, nas
condições estudadas. Além desses dados, observação de que regiões
genômicas com desequilíbrios na carcinogênese esofágica não são
significativamente afetadas em megaesôfago chagásico sugere que não
será possível utilizar tais características como marcadores eficazes de risco
para desenvolvimento de ESCC em megaesôfago.
Palavras-chave: Megaesôfago chagásico, Esofagite crônica, Carcinoma de
células escamosas, apoptose, proliferação celular, ganhos, perdas e
amplificações gênicas, proteínas reguladoras do ciclo celular
Abstract
ABSTRACT
Esophagus carcinoma presents a tumor progression model from the
sequence esophagitis, atrophy, dysplasia, carcinoma in situ and invasive
carcinoma, with some well-established genetic changes in early and
advanced stages of carcinogenesis. In benign precursor lesions such as
megaesophagus and chronic esophagitis genetic studies are scarce.
Therefore, to identify the involvement of certain cell cycle and apoptosis
regulatory proteins, the present study evaluated the expression of p53, p16,
Fhit, caspase-3 and Ki67 antigen by immunohistochemistry. Histological
sections of esophageal mucosa were obtained from chronic chagasic
patients without (CD) and megaesophagus (CM), the latter group presents
higher risk of developing esophageal cancer, and patients with chronic
esophagitis (CE), because the relationship between the inflammatory
process and carcinogenesis. These samples were compared with squamous
cell carcinoma of the esophagus (ESCC) and histologically normal
esophageal mucosa (NM). It also assessed the occurrence of agreement
using the Kappa test, among the cases with altered expression of proteins in
different groups as well as the occurrence of associations, and altered
patterns of protein expression with sex, age, smoking and alcohol habits.
Another aim of the study was to evaluate the pattern of chromosomal gains
and losses of genes frequently described as related to esophageal
carcinogenesis, FHIT, TP63, PIK3CA, EGFR, FGFR1, MYC, CDKN2A,
YES1, NCOA3 and centromere 3, 7 and 9, as controls for FISH. The
immunohistochemical evaluation showed that the proportion of cases
positive for p53 protein increased progressively according to the severity of
the injury, CD (7.7%), CM (26.1%), CE (52.2%) and ESCC (100%). However,
the proteins p16 and Fhit showed no statistically significant differences
between groups, but also in CE was observed a greater number of cases
with reduced expression of these proteins (95.7%, 34.8%, respectively),
similar to ESCC (90.9%, 18.2%, respectively). The analysis of correlation
between the expressions of proteins (Kappa test) showed no correlation
between the cases with normal expression changed and, for the three
proteins simultaneously. However, the Fisher's exact test showed an
association between the altered expression of p53 and p16, except in ESCC,
the only group that showed an association between p53 and Fhit. While the
association between altered expression of p16 and Fhit, was not observed
only in NM. Investigation of changes in cell proliferation and apoptosis rates
revealed that the rate of labeling of Ki67 (LI) was similar in all groups, 30.1%
in NM, 30.9% in CD, 42.3% in CM; 44.6% in CE and 48.4% in ESCC, in total
500 cells examined per case, no significant differences were observed. The
frequency of positivity of CPP32 was similar in the groups CD (30.8%), CM
(30.4%) and CE (34.8%) but increased in ESCC (55.5%). Also no
association was found between the levels of CPP32, Ki67 and p53 protein
expression in different groups, or those with the parameters such as age,
sex, smoking and alcohol habits. The cytogenetic analysis to assess
patterns of losses and gains in the superficial and basal layers of
esophageal mucosa showed no significant differences for most of the targets
investigated, except for EGFR in the CM group, which showed lower
frequency of copies in the basal layer. Considering the total number of
copies (superficial and basal layers) only the CDKN2A gene and centromere
9 showed significantly lower averages in CM than in NM. Meanwhile, they
were evaluated for each gene, the frequencies of nuclei with standard loss or
gain, only the PIK3CA gene showed a significantly higher frequency of nuclei
with losses in the CM group compared to NM. From exploratory analysis
using three-dimensional plots of the percentages of genes classes with loss
or gain, some cases of CM showed levels, non-statistically significant, but it
highlighted the group's average frequency of losses for specific genes: TP63,
FHIT, PIK3CA, EGFR, CDKN2A, YES1; CEP9 or gains for PIK3CA, TP63,
FGFR1, MYC, CDKN2A, NCOA3 and CEP9, most of them associated with
grades III and IV of megaesophagus, probably due to the inflammatory
process. In conclusion, this study highlighted the involvement of increased
expression of p53 protein in cases of benign precancerous lesions
(esophagitis and chronic chagasic megaesophagus), suggesting its use as a
marker in precursors lesions. Controversially, losses on the expression of
Fhit and p16 not appear to be significant as well as changes in the
expression of Ki67 antigen and caspase-3 protein, suggesting that there is
no evidence of major changes in the levels of cell proliferation and apoptosis
in carcinoma and benign lesions under the studied conditions. Besides these
data, the findings that genomic imbalances common in esophageal
carcinomas are not affected in megaesophagus suggest that these features
will not be effective biomarkers for risk assessment of esophageal carcinoma
in chagasic megaesophagus.
Key words: chagasic megaesophagus, chronic esophagitis, esophageal
squamous cell carcinoma, apoptosis, cell proliferation, genomics imbalances,
cell cycle regulators proteins
Introdução
39
I.
INTRODUÇÃO
I.1. Lesões Benignas do esôfago
O esôfago, devido ao seu papel na condução de
substâncias a o estômago, está exposto a condições adversas
responsáveis pela ocorrência de lesões que variam desde uma simples
azia, esofagites e hérnias de hiato até cânceres letais. As lesões benignas
mais frequentemente encontradas neste órgão são as esofagites e a
acalasia ou megaesôfago (BRASILEIRO FILHO, 2006).
A esofagite é uma lesão da mucosa esofágica com
subseqüente inflamação, mundialmente comum. Nos Estados Unidos e
em outros países ocidentais, a esofagite ocorre em aproximadamente 5%
da população adulta e prevalências maiores são encontradas no Irã e
algumas partes da China (CRAWFORD, 2004).
As esofagites podem ocorrer na forma aguda e crônica,
sendo a primeira causada pelo refluxo do conteúdo gástrico, infecção por
bactérias, rus ou fungos, ingestão de alimentos e líquidos
excessivamente quentes, substâncias cáusticas (BRASILEIRO FILHO,
2006) e ingestão de medicamentos (MINCIS, 1997).
A esofagite crônica (Figura 1) pode ser provocada pelos
mesmos agentes que a aguda e ainda pela estase alimentar (retenção de
alimentos) (CRAWFORD, 2004; BRASILEIRO FILHO, 2006). Essa estase
pode causar a esofagite crônica devido ao contato prolongado do alimento
parcialmente digerido com a mucosa esofágica, aumento do crescimento
bacteriano e irritação química (RIBEIRO et al., 1996). Quanto maior o
grau da dilatação esofágica, maior a proliferação de microorganismos no
40
líquido de estase, contribuindo para o desenvolvimento da inflamação
(PAJECKI et al., 2002). As alterações fundamentais das esofagites são:
infiltrado inflamatório de mononucleares, hiperplasia do epitélio, erosões e
ulcerações da mucosa, estenose do órgão, hiperemia, friabilidade e graus
variados de fibrose na parede (CRAWFORD, 2004; MADER et al., 2002;
BRASILEIRO FILHO, 2006).
Essas duas principais lesões do esôfago, ou seja, o
refluxo esofágico e a esofagite crônica estão associados a carcinogênese
esofágica. A primeira, possivelmente, aumenta a susceptibilidade ao
desenvolvimento de esôfago de Barret e conseqüentemente ao
adenocarcinoma (JONES et al., 2003), enquanto que a esofagite crônica é
considerada uma alteração precoce no carcinoma de células escamosas
do esôfago (MANDARD et al., 1998).
FIGURA 1. Imagens endoscópicas: (A) Esôfago Normal, (B) Esofagite Crônica (IQB,
Instituto Químico Biológico, 2007)
Exames endoscópicos em grupos de alto risco de
desenvolvimento de câncer, de diferentes países, têm demonstrado a
presença de esofagite crônica em 42% a 84% dos indivíduos, atrofia em
3,8% a 10% e displasia em 2,4% a 8% (CASTELLETTO et al., 1992).
Estes dados sugerem que a história natural do carcinoma esofágico pode
iniciar-se a partir da esofagite (MUÑOZ, 1997). Pacientes com evidência
histológica de esofagite desenvolveram, por um período de até 6,8 anos,
carcinoma de células escamosas do esôfago e câncer esofágico não
específico em 0,15% e 0,3% dos casos respectivamente, indicando um
A
B
41
risco moderadamente aumentado para o desenvolvimento de carcinoma,
mas não para o adenocarcinoma (MURPHY et al., 2005). Por outro lado,
Wang et al. (2005) em acompanhamento clínico por endoscopia durante o
período de 13 anos, o observaram evidências de que a presença de
esofagite aumente o risco de desenvolvimento do carcinoma de esôfago.
Outra lesão do esôfago com potencial pré-canceroso é o
megaesôfago ou dilatação do esôfago (Figura 2), também denominada
acalasia, cardioespasmo e aperistalsia, (VANTRAPPEN; HELLEMANS,
1982 apud KRAICHELY; FARRUGIA, 2006). Ele é caracterizado pela
destruição ou ausência dos plexos nervosos intramurais, determinando a
ausência de peristaltismo ao nível do corpo do órgão e a falta de abertura
do esfíncter esofagiano inferior, em resposta à deglutição. Em
conseqüência, inicia-se a retenção do bolo alimentar (estase esofágica)
na luz do órgão (BRASILEIRO FILHO, 2006), pela dificuldade no
relaxamento do esfíncter esofagiano inferior (KRAICHELY; FARRUGIA,
2006). O sintoma clínico clássico do megaesôfago é a dificuldade para
engolir (disfagia) que ocorre de modo progressivo, evoluindo de alimentos
sólidos para pastosos, até a pessoa engolir apenas líquidos. Podem
ocorrer também a regurgitação e a aspiração noturnas do alimento não
digerido (OLIVEIRA et al., 1998; CRAWFORD, 2004).
Mundialmente, tais características correspondem à lesão
denominada de acalasia, cuja patogênese é pobremente conhecida e
parece envolver alterações degenerativas na inervação neural levando à
dilatação do órgão (CRAWFORD, 2004). A estase alimentar constitui um
estímulo permanente para as contrações do corpo do esôfago na tentativa
de ultrapassar o obstáculo representado pelo esfíncter. No início, essas
contrações são fortes e irregulares levando à hipertrofia das fibras
musculares e espessamento da camada muscular caracterizando,
portanto, a fase inicial da dilatação (megaesôfago). As contrações tornam-
se progressivamente menos intensas e as fibras musculares vão
alongando-se e gradualmente sendo substituídas por tecido conjuntivo,
42
tornando a dilatação mais acentuada pela atonia completa da musculatura.
Conseqüentemente, provoca a inflamação da mucosa (esofagite), que
pode determinar o aparecimento de acantose, paraceratose e leucoplasia,
lesões possivelmente pré-cancerosas (PINOTTI, 1996; KRAICHELY;
FARRUGIA, 2006).
ERROR: stackunderflow
OFFENDING COMMAND: ~
STACK:
Objetivos
63
II. OBJETIVOS
Considerando que algumas alterações genéticas estão
relacionadas às etapas iniciais da carcinogênese do esôfago, justifica-se
a necessidade de estudos que avaliem alterações na expressão de
proteínas e desequilíbrios gênicos em lesões benignas do esôfago com
potencial pré-canceroso, sendo assim, o presente trabalho teve como
objetivos:
a. Avaliar a expressão das proteínas p53, p16 e Fhit, em mucosa
esofágica de pacientes com lesões benignas como esofagite crônica e
megaesôfago chagásico em comparação com o carcinoma de esôfago;
assim como verificar a ocorrência de concordância e associações no
padrão de expressão das três proteínas em lesões benignas e carcinoma
esofágico;
b. Investigar a ocorrência de alterações em apoptose, por meio da
expressão da caspase-3, e proliferação celular, com o antígeno Ki67, e
associações com a expressão da proteína p53 nos grupos de lesões
benignas e carcinoma do esôfago;
c. Avaliar no grupo de pacientes com megaesôfago chagásico os
padrões de deleção e ganho de genes citados em desequilíbrios gênicos
em carcinoma esofágico identificados a partir de dados da literatura,
assim como associações com a graduação do megaesôfago;
d. Investigar nos grupos de lesões benignas e carcinoma a ocorrência
de associações entre a expressão das proteínas p53, p16, Fhit, caspase-
3 e antígeno Ki67, assim como os desequilíbrios gênicos com parâmetros
como idade, sexo, hábitos tabagista e etilista.
Capítulo I
65
CAPÍTULO I: Genomic imbalances in esophageal squamous cell
carcinoma identified by molecular cytogenetic techniques
Authors: Marilanda Ferreira Bellini
1
, Ana Elizabete Silva
1
,
Marileila
Varella-Garcia
2
Affiliations
1
Laboratório de Citogenética e Biologia Molecular, Department of Biology,
UNESP, São Paulo State University, Campus o José do Rio Preto, SP;
Brazil
2
Medicine/Medical Oncology, University of Colorado, Health Sciences
Center, Aurora, Colorado, USA
Short running title: Genomic imbalances in esophageal cancer
Key words: Genomic Gains, Genomic Losses, Amplifications, Oncogenes,
CGH, FISH and Esophageal Carcinoma
Corresponding author:
Ana Elizabete Silva,
IBILCE/UNESP Departamento de Biologia, Rua Cristóvão Colombo,
2265, São José do Rio Preto, SP, Brazil - CEP. 15054-000;
phone 55 - 17 – 32212384.
e-mail:[email protected]sp.br
Artigo de revisão a ser submetido e redigido nas normas da revista
GENETICS AND MOLECULAR BIOLOGY (e-ISSN: 1678-4685)
66
Resumo
A presente revisão sumariza as alterações
cromossômicas detectadas por técnicas de citogenética molecular em
carcinoma de células escamosas de esôfago (ESCC), a nona neoplasia
maligna mais comum no mundo. A análise genômica total em linhagens
celulares de ESCC e em tumores primários indicou que as regiões de
ganho mais freqüentes são observadas em regiões dos cromossomos 1,
2q, 3q, 5p, 6p, 7, 8q, 9q, 11q, 12p, 14q, 15q, 16, 17, 18p, 19q, 20q, 22q, e
X, com amplificações focais em 1q32, 2p16-22, 3q25-28, 5p13-15.3,
7p12-22, 7q21-22, 8q23-24.2, 9q34, 10q21, 11p11.2, 11q13, 13q32,
14q13-14, 14q21, 14q31-32, 15q22-26, 17p11.2, 18p11.2-11.3, e em
20p11.2. As regiões de perdas recorrentes são 3p, 4, 5q, 6q, 7q, 8p, 9,
10p, 12p, 13, 14p, 15p, 18, 19p, 20, 22, Xp e Y. Ganhos em 5p e 7q, e
deleções em 4p, 9p e 11q são fatores prognósticos significantes para
estadiamento de ESCC. Ganhos em 6p e 20p, e perdas em 10p e 10q são
as alterações mais significantes tanto em carcinomas primários quanto em
metástases, o que sugere que essas regiões contenham oncogenes e
genes supressores tumorais. Ganho em 12p e perda em 3p podem estar
associados comrápida progressão da doença. Essas alterações
genômicas podem representar marcadores de diagnóstico ou prognóstico
aplicáveis na prática clínica, assim como identificarem moleculas alvo
para terapia personalizada.
Palavras-chave: carcinoma de células escamosas de esôfago, deleções,
ganhos, amplificações, citogenética molecular
67
Abstract
This review summarizes chromosome changes detected
by molecular cytogenetic approaches in esophageal squamous cell
carcinoma (ESCC), the ninth most common malignancy in the world.
Whole genome analyses in ESCC cell lines and tumors indicated that the
most frequent genomic gains were observed at 1, 2q, 3q, 5p, 6p, 7, 8q, 9q,
11q, 12p, 14q, 15q, 16, 17, 18p, 19q, 20q, 22q, and X, with focal
amplifications at 1q32, 2p16-22, 3q25-28, 5p13-15.3, 7p12-22, 7q21-22,
8q23-24.2, 9q34, 10q21, 11p11.2, 11q13, 13q32, 14q13-14, 14q21,
14q31-32, 15q22-26, 17p11.2, 18p11.2-11.3, 20p11.2. The recurrent
losses involved 3p, 4, 5q, 6q, 7q, 8p, 9, 10p, 12p, 13, 14p, 15p, 18, 19p,
20, 22, Xp and Y. Gains at 5p and 7q, and deletion at 4p, 9p, and 11q
were significant prognostic factors for patients with ESCC. Gains at 6p and
20p, and losses at 10p and 10q were the most significant imbalances, both
in primary carcinoma and in metastasis, suggesting these regions could
harbor oncogenes and tumor suppressor genes. Gains at 12p and losses
at 3p could be associated with poor relapse-free survival. These changes
may represent markers with clinical applicability at the diagnosis or
prognosis or may identify molecular targets for personalized therapy.
Key words: esophageal squamous cell carcinoma, deletion, gain,
amplification, molecular cytogenetic
68
Esophageal Carcinoma
Cancer of the esophagus has been reported as the ninth
most common malignancy in the world, but its incidence varies largely
among regions (Lam et al., 2000), with higher incidence in China, Japan,
Singapore and Puerto Rico (INCA, 2008). The American Cancer Society
estimated around 16,470 new cases of esophageal carcinoma in the USA
population for 2008 (American Cancer Society, 2008). The Brazilian
National Institute of Research in Cancer (INCA) reported that esophageal
cancer was the sixth in the cancer rank of mortality in 2000 with 5,307
deaths (INCA, 2008) and estimated about 10550 new cases in 2008
ranging among geographical areas from 1.04 to 19.07 in males and from
0.39 to 7.58 in 100,000 in females.
The development of human esophageal cancer is a
progressive process, resulting in successive accumulation of genetic
changes that culminate in the malignant transformation (Knudson, 1985;
Somers; Schechter, 1992; Xue et al., 2006). An early indicator of this
process is the increased proliferation of esophageal epithelial cells,
morphologically evolving to stages of basal cell hyperplasia, dysplasia,
carcinoma in situ and invasive carcinoma (Muñoz, 1997; Mandard et al.,
2000; D’Âmico, 2006).
With the exception of the USA the esophageal squamous
cell carcinoma (ESCC) is the prevalent histological type worldwide (except
in USA) and has multifactorial origin. Besides environmental components
(Crawford, 2004), several genetic factors are associated with esophageal
carcinogenesis such as chromosomal aneuploidy, allelic deletions,
activation of oncogenes and inactivation of tumor suppressor genes
(Kuwano et al., 2005). At the cellular level, these factors head to disorders
of the cell proliferation, differentiation and apoptosis (Koch et al., 1994;
McCabe; Dlamini, 2005; D’Amico, 2006; Daigo; Nakamura, 2008;
Khushalani, 2008).
69
Specific chromosome aberrations have been identified as
markers for diagnosis and prognosis in solid tumors (Tada et al., 2000;
Yen et al., 2000; Shiomi et al., 2003; Qin et al., 2004, 2005ab; Wang et al.,
2006; Qin et al., 2008). Despite reports of numerous chromosome
changes, no particular diagnostic or prognostic chromosomal markers
have been described in esophageal carcinoma. The aim of this review is to
summarize the recurrent chromosomal changes detected by molecular
cytogenetic approaches in ESCC, such as gains and losses in regions that
may harbor oncogenes and tumor suppressor genes. These chromosomal
imbalances may represent markers with clinical applicability in the
diagnostis or prognostic or be supportive of novel targeted therapies.
Molecular Cytogenetic Technologies Identify Genomic Changes in
Cancer
The primary cytogenetic technique used for a better
understanding of the molecular pathogenesis involved in esophageal
carcinogenesis was DNA fluorescence in situ hybridization (FISH). FISH
uses small fragments of DNA as fluorescent probes that bind to
chromosomal sequences of the target DNA to which they show a high
degree of homology (Bauman et al., 1980; Langer et al., 1981) it detects
and localizes specific DNA sequences on chromosomes. FISH probes are
often derived from fragments of DNA on the order of few hundreds to 200
thousand base-pairs that are isolated, purified, amplified and labeled with
fluorochrome-conjugated nucleotides. The DNA probe may be hybridized
to distinct DNA targets such as metaphase chromosomes, interphase
nuclei, and extended chromatin fibers and DNA fragments in a variety of
biological specimens or platforms, including isolated cells, tissue section
and oligonuclotide arrays (Speicher; Carter, 2005) and DNA microarrays
(Solinas-Toldo et al., 1997; Pinkel et al., 1998).
70
There are numerous variants of the FISH assay; the
variant most effectively used to detect genome wide imbalances is called
Comparative Genomic Hybridization (CGH). CGH was originally
developed as the competitive hybridization of a mix of the test DNA and a
normal reference DNA, labeled with different fluorochromes, to metaphase
spreads of a normal specimen (metaphase CGH - mCGH) (Kallioniemi et
al., 1992; du Manoir et al., 1993). ). Chromosomal regions of the test DNA
with normal copy numbers will show a balanced ratio of hybridization with
the test and the control DNA. Chromosomal regions with excess or lack of
copy numbers in the test DNA will show the predominant color of the
hybridization in the normal template. The DNA used in the assay is
extracted from dividing or non-dividing cells from virtually all types of
tissues even those fixed in formalin, thus the technique allows an
informative overview of archived specimens. The level of resolution of
specific imbalances results in the mCGH assay basically depends on the
condensation of the chromosomes to which the DNA mix is hybridized and
is estimated as ranging from 5 to 10 MB (Kallioniemi et al., 1992; Speicher;
Carter, 2005). It is possible to identify large regions involved in low level of
genomic gain or loss and small regions with focal amplification but overall
the resolution of the mCGH is limited or insufficient for identification of
specific chromosomal bands (Kallioniemi et al., 1992; Speicher; Carter,
2005). Therefore, mCGH studies are used as preliminary tools, to infer
potential genes located in imbalanced regions and to support refined
studies with higher resolution techniques, such as array CGH (aCGH) or
FISH with single gene probes (Nakakuki et al., 2002; Arai et al., 2003)
The aCGH technique detects chromosome copy number
changes at a much higher resolution level than mCGH (Solinas-Toldo et
al., 1997; Pinkel et al., 1998). Instead of using metaphase spreads as
template for hybridization, the aCGH uses a collection of DNA inserts
contained in bacterial artificial chromosomes (BAC arrays) or
oligonucleotides (oligo-arrays) printed on a glass slide. Similarly to the
71
mCGH, a differentially labeled mix of DNAs from the test sample and a
normal reference control sample is hybridized with the platform and the
ratio of the fluorescence intensity of the test to the reference DNA is
calculated. Using aCGH, copy number changes can be detected at levels
of few hundred kilobases of DNA sequences for BAC arrays or 30 kb for
oligoarrays (Snijders et al., 2001; Fiegler et al., 2003; Medical Genetics
Laboratories, 2008). SNP array is a type of DNA microarray which is used
to detect polymorphisms within a population. A single nucleotide
polymorphism (SNP), a variation at a single site in DNA, is the most
frequent type of variation in the genome. For example, there are around 10
million SNPs that have been identified in the human genome. As SNPs are
highly conserved throughout evolution and within a population, the map of
SNPs serves as an excellent genotypic marker for research (Sherry et al.,
2001).
Other variants of the FISH technology are the Multiplex-
FISH (M-FISH) and the Spectral Karyotyping (SKY). These procedures
allow identification of the chromosomal origin of each chromosomal region
in a metaphase cell, e.g., visualizes all 24 human chromosomes in a single
hybridization (Speicher; Carter, 2005). In both techniques, the probe set is
a pool of differentially labeled DNAs for each of the 24 human
chromosomes. In the M-FISH, images for each fluorochrome are
individually collected and merged, and a combinatorial labeling algorithm
identifies each chromosome, visualized in pre-defined pseudocolour
(Speicher et al., 1996). In the SKY assay, a single image is captured per
cell and an interferometer is used for discrimination of the fluorochrome
spectrum in each image pixel, to which a pseudocolor is assigned
(Schröck et al., 1996). Both techniques have been successful in clarify
complex chromosomal rearrangements in solid tumors (Schröck; Padilla-
Nash, 2000), including ESCC (Yen et al., 2003).
Altogether, the numerous variants of FISH technology
have allowed accurate identification of DNA sequences of interest in the
72
chromosomes and search of the whole genome total for gains and losses
associated with in the carcinogenesis process.
Genomic Imbalances in ESCC cell lines
ESCC lines are highly abnormal cytogenetically. An
integrated study using mCGH, SKY and FISH with single probes was
performed in 8 ESCC cell lines; the pooled CGH results revealed frequent
gains on almost all chromosome arms (1p, 1q, 3q, 5p, 6p, 7p, 7q, 8q, 9q,
11q, 12p, 14q, 15q, 16p, 16q, 17q, 18p, 19q, 20q, 22q, and Xq), while
frequent losses were found on 3p, 4, 5q, 6q, 7q, 9p, and 18q. SKY
analyses detected 195 translocations, 13 deletions and 2 duplications. The
most frequently amplified genes were PIK3CA and TP63 (3p28). The
protein encoded by PIK3CA represents the catalytic subunit, which uses
ATP to phosphorylate phosphatidylinositoland TP63 encodes, a protein
that works in the development and maintenance of stratified epithelial
tissues, these oncogenes, were amplified in 6 and 5 cell lines, respectively
(Yen et al., 2003; National Center for Biotechnology Information, 2009).
Multiple gains and losses involving different chromosomal
regions were also found by mCGH in 10 ESCC cell lines of the KYSE
series, TE-1–6, -8 11, -13, and -15. The most frequent losses were
observed at chromosome arms 3p, 4p and q, 8p, 9p, 18q, and Xp;
whereas the most common gains were noted at 1q, 3q, 5p, 7p, 8q, 9q, 11q,
18p, 20q and Xq. While focal loss was only identified at 11q 23-25, focal
amplifications were detect at 1q32, 2p16-22, 3q25-28, 5p13-15.3, 7p12-22,
7q21-22, 8q23-24.2, 9q34, 10q21, 11p11.2, 11q13, 13q32, 14q13-14,
14q21, 14q31-32, 15q22-26, 17p11.2, 18p11.2-11.3, 20p11.2 (Shinomiya
et al., 1999; Pimkhaokham et al. 2000; Su et al., 2006).
Later, Yang et al. (2008a) characterized cytogenetic
abnormalities in the cell line KYSE 410-4 using M-FISH, detecting
chromosome gains at 2q, 3, 8, 17p, and X. An isochromosome 3q was
73
visualized in this line, which might be one intermediate mechanism leading
to 3p loss and 3q gain. For the cell line KYSE 180, M-FISH analysis
detected loss of DNA copy number at 4p, 5q, 6q, 9, 10p, 12p, 13, 14p, 15p,
18p, 18q, 20, 22, and Y; chromosomal gains and translocations mainly
involved chromosomes 1, 2p, 3, 4p, 5p, 5q, 6p, 7, 8, 10q, 11, 12q, 14q, 16,
17q, 19, and Xp. Seven derivative chromosomes involving chromosomes
5, 8, 12, 14, 14, 14, and 17 presented complex translocations, each
involving three or four chromosomes and loss of chromosomes 9, 13, and
Y were also detected (Wu et al., 2006).
Since previous studies of CGH revealed frequent
amplifications in 18p in esophageal cell lines (Shimada et al., 1992;
Pimkhaokham et al., 2000), Nakakuki et al. (2002) screened 29 ESSC cell
lines to discern amplifications by FISH of 14 known genes and 21
uncharacterized transcripts within amplicons in chromosome 18. These
authors also investigated the levels of protein expression of these genes
by southern-, dot- and northern-blotting. Only four known genes, showed
amplification and correlated over-expression, YES1, TYMS, HEC and
TGIF YES1encodes a protein with tyrosine kinase activity, TYMS is critical
for DNA replication and repair, HEC isinvolved in spindle checkpoint
signaling and TGIF is a highly conserved transcription regulator with
potential role in the transmission of nuclear signals during development
and in the adult.. , These results suggest those genes are likely candidate
targets for 18p11.3 amplification and may be associated with esophageal
tumorigenesis.
In summary, these whole genome analyses in ESCC cell
lines indicated that the most frequent genomic gains were observed at 1p,
1q, 2q, 3q, 5p, 6p, 7p, 7q, 8q, 9q, 11q, 12p, 14q, 15q, 16p, 16q, 17p, 17q,
18p, 19q, 20q, 22q, and X, with focal amplifications at 1q32, 2p16-22,
3q25-28, 5p13-15.3, 7p12-22, 7q21-22, 8q23-24.2, 9q34, 10q21, 11p11.2,
11q13, 13q32, 14q13-14, 14q21, 14q31-32, 15q22-26, 17p11.2, 18p11.2-
11.3, 20p11.2. The recurrent losses involved 3p, 4, 5q, 6q, 7q, 8p, 9, 10p,
74
12p, 13, 14p, 15p, 18, 20, 22, Xp and Y (Figure 1A). The detected
alterations affect most of the genome and involve regions harboring many
known oncogenes and tumor suppressor genes, as well regions not yet
associated with such genes. Although the level of molecular resolution of
the majority of these studies is low and not conclusive, these findings are
promising in assisting the design of refined investigations on the molecular
pathogenesis and development of new therapeutics of ESCC.
Genomic Imbalances in ESCC tumor samples
Despite the better understanding of the risk factors and
cellular derangements associated with esophageal cancer, the clinical
treatment of this disease surprisingly has had little changes and long-term
survival from esophageal cancer remains poor, with 5-years survival rates
about 20% (Hsia et al., 2003).
The combination of different techniques (FISH, mCGH and
aCGH) indicated the chromosomes 1, 3, 7, 9, 11, 18, 19 and 20 shows
high frequency of alterations. Genomic profiles in primary carcinomas
have showed imbalances affecting most of the chromosomes, such as
gains at 1q, 3q, 5p, 7p, 8q, 11q, 13q, 18p, 20q, Xq; and losses at 1p, 3p,
4p, 8p, 9p, 18q, 19, 22q and Y. Focal losses at 9p13, focal gains at the
regions 5p15, 8p12-11.2, 8q24, 11q13, 14q32, and amplifications at 1p34,
2p24, 2q24-34, 3q22-ter, 7p12-22, 8q13-qter, 11p11.2, 11q13, 12p11.2,
13q21-34, 17q12, 20q12-13 and Xq27-28 are also commons findings
(Shinomiya et al., 1999; Pack et al., 1999; Mayama et al., 2000; Yen et al.,
2001; Kamitani et al., 2002; Yen et al., 2003; Kwong et al., 2004; Qin et al.,
2004, 2005ab, 2008; Sugimoto et al., 2007). High-level amplifications were
observed in 30 regions and recurrently involved 7p11.2 and 11q13. EGFR
isa cell surface protein that when binds to its ligand induces receptor
dimerization and tyrosine autophosphorylation, leading cell proliferation
the 2
nd
region harborsCCND1 is a regulator of CDK kinases required for
75
G1/S cell cycle transition. (Carneiro et al., 2008; National Center for
Biotechnology Information, 2009). Interstitial deletions in 1p, 3p, 5q, 6q,
11q, and 12q were also detected (Pack et al., 1999). These observations
altogether evidenced that accumulation of chromosomal aberrations is
common in ESCC (Figure 1B) and suggest that 1q, 3q, 5p, 6q, 8q,18p,
and 20q, mainly the specific regions 1p34, 2p24, 2q24-34, 3q22-ter, 7p12-
22, 8q13-qter, 11p11.2, 11q13, 12p11.2, 13q21-34, 17q12, 20q12-13 and
Xq27-28, may contain ESCC-related oncogenes; 1p, 3p, 4p, 8p, 9p13, 9q
and 19p may contain ESCC-related tumor suppressor genes involved in
the development and progression of esophageal cancer (Figure 1B).
Early genomic changes and imbalances associated with tumor
staging
It has been known that ESCC arise through multi-step
genetic and cytogenetic alterations. The time sequence of these
alterations, however, remains to be identified. Thus studies that correlate
chromosomal aberrations with stage and clinical outcome of prognostic
significance are necessary to assist in the selection of patients for specific
treatments.
An interesting and recently published study explored the
application of M-FISH for early diagnosis and risk prediction of precursor
lesions of ESCC in tumor and premalignant lesions in 113 patients (Yao et
al. 2008). Elevated aneuploidy rates of chromosomes 3, 8, 10, 12, 17 and
20 were frequently found both in ESCC and in its precursor dysplastic
lesions. These findings support the conclusion that a multi-target FISH
assay investigating chromosomal aneuploidy in esophageal dysplastic
sites may be useful to predict risk to ESCC.
The progression to advanced, metastatic stage is
accompanied by genomic changes, as detected by mCGH analyses in
lymph node metastasis of ESCC. Copy number gains were frequently
76
detected at 1q, 1p36.32, 3q, 5p, 8q23-qter, 11q13-14, 5p14-pter, 6p, 20q,
7p22.3, 7q, 2p, 12p, 19p13.3 and 20p and DNA amplifications were
detected at 11q13, 2q12, 6p12-6q12, 7q21, 20q11.2 and 20p12. Losses
were detected at 18q, 3p, 9p, 5q14-23, 4q, 13, and 11q22-qter (Qin et al.,
2005a; Wang et al., 2006; Carneiro et al., 2008; Qin et al., 2008).
Gain of 3q, 5p, 1q, 11q13-14 and loss of 4 and 13q were
all significantly correlated with pathologic staging, while gains of 8q, loss of
4p were linked to nodal metastasis and gains of 2p and loss of 4 and
11q14-qter were associated with distant organ metastasis (Qin et al.,
2004). It is likely that gain of 1q, 3q, 5p, , 11q13-14 and loss of 4 and 13q
are the genetic aberrations critical for the development of esophageal
carcinoma, whereas gains of 2p and 8q, and loss of 4 and , 11q14-qter
are considered later events associated with tumor progression and are
thought to confer metastatic potential to esophageal carcinoma.
Furthermore, nodal and distant organ metastases involve different genes
(Qin et al., 2005b). The gains of 3q and 11q13 and losses of 3p, 4q, 5q14-
23, 9p and 18q were detected in both early and advanced stage ESCC.
It was found that deletions of 4p and 13q12–q14 and gain
of 5p were significantly correlated with pathologic staging. Losses of 8p22-
pter and 9p also were found more frequently in patients with advanced
disease. Gain of 8q24-qter was seen more frequently in patients with
grade 3 tumors (Yen et al., 2001). Shiomi et al. (2003) using mCGH,
observed that gains of 3q, 8q, 11q13 and 14q were early events, while
losses of 3p, 5q, 13q and 21q, and gains of 1p and Xq were later events in
progression of individual tumors.
Gains at 6p and 20p, and losses at 10p and 10q are the
most significant imbalances, as in primary carcinoma as in metastasis,
suggesting the regions could have oncongenes and tumor suppressor
genes (Qin et al., 2005a). However, gain in 12p, and loss in 3p could be
associated with poor relapse-free survival (Kwong et al., 2004).
77
Searching for relevant oncogenes in ESCC
In 41 primary ESCC investigated by technology??(Fujita et
al. 2003); (Xu et al.2007), numerous genes have been seen amplified,
such as the cell cycle-regulator kinase BTAK (20q13.2-q13.3) in 9.8%,
E2F1 (20q11.2), plays a crucial role in the control of cell cycle and action
of tumor suppressor proteins) in 7.3%, NCOA3 (20q12) in 4.9%, and DcR3
(20q13.3), which plays a regulatory role in apoptosis) in 4.9%Xu et al.
(2007) detected NCOA3 overexpression and increased copy number in
46% and 13% of 221 ESCCs, respectively. NCOA3 encodes a nuclear
receptor coactivator that interacts with nuclear hormone receptors to
enhance their transcriptional activator functions. Its overexpression was
observed more frequently in late T stages than in earlier stages, but no
significant association of expression of NCOA3 and lymph node
metastases was observed. These results suggest that overexpression of
NCOA3 caused by genomic gain or other molecular mechanisms might
provide a selective advantage for the development and local invasion of
certain subsets of ESCC.
To investigate allelic imbalance of chromosome 18q in
ESCC, FISH analysis was performed and two of five resected ESCC
samples from patients showed loss of one copy of chromosome 18q and
13 of 46 ESCC samples (28.3%) showed loss of almost the entire 18q
(Ando et al., 2007). The authors suggested that 18q loss may play an
important role in the progression of ESCC.
Some studies have been focused on the identification of
genetic targets for identifying deranged pathways and clinically applicable
markers. Oncogene amplification was examined with DNA microarrays in
20 surgically resected ESCC and 57 oncogenes were detected as
amplified. Alterations in DNA copy numbers detected by microarrays were
compared to those obtained by mCGH. Amplification of 8 oncogenes
(CCND1, FGF3/ FGF4, EMS1, SAS, ERBB2, PDGFRA, MYC, and BCL2)
78
was detected by DNA microarrays in 9 of 20 tumors. Although ERBB2 was
23-fold higher than the control level in one case, the average magnitude of
gene amplification was approximately 2 - to 4 - fold that of the control level.
EMS1, CCND1, and FGF3/FGF4, which are all located on 11q13, were
amplified in 7, 5, and 4 of 20 ESCC, respectively, and they were co-
amplified in 3 tumors. EMS1 has two roles: it regulates the interactions
between components of adherens-type junctions and organize the
cytoskeleton and cell adhesion structures of epithelia and carcinoma cells
(National Center for Biotechnology Information, 2009). FGF4/FGF3 broad
the mitogenic, cell survival and oncogenic activity. A comparison of
genome DNA microarrays and mCGH data revealed that although most
amplified oncogenes were included in chromosomal regions for which
DNA copy number gains were detected by mCGH, not all amplified genes
on microarrays showed concomitant DNA copy number gains on mCGH,
indicating that the resolution reached by the mCGH technique was limited.
Microarrays of oncogenes are useful for the comprehensive identification
of amplified oncogenes and for analysis of areas of specific amplification
within chromosomal regions with DNA copy number increases detected by
mCGH analysis (Arai et al., 2003).
FISH assays revealed amplification of PLK1 (polo-like
kinase 1 (Drosophila)), an essential gene for the maintenance of genomic
stability during mitosis (Feng et al., 2009), suggesting that PLK1 might be
a useful prognostic marker. Investigation on 108 ESCCs and 9 ESCC cell
lines showed that MDS1 (myelodysplasia syndrome 1) and PRKCI (protein
kinase C, iota), genes implicated in neoplastic transformation, were
frequently gained and a positive correlation was found for PRKCI between
amplification and tumor size, lymph node metastasis and clinical stage.
PRKCI gene amplification was highly correlated with protein
overexpression suggesting that gene amplification is one important
mechanism involved in PRKCI overexpression (Yang et al.
, 2008b).
79
Overexpression of epidermal growth factor receptor
(EGFR, epidermal growth factor receptor) is observed in many cancers,
sometimes accompanied by gene amplification. By FISH, EGFR gene was
found amplified in ESCC (Sunpaweravong et al., 2005; Hanawa et al.,
2006). Also, EGFR gene overrepresentation (balanced gene and
chromosome 7 polysomy) and HER-2 amplification were common events
(Mimura et al., 2005; Sunpaweravong et al., 2005; Bizari et al., 2006).
Cyclin D1 (CCDN1) is a cell-cycle regulator and an
oncogene implicated in the pathogenesis of numerous tumor types.
Amplification of the CCDN1 gene occurs commonly in ESCC and it was
detected by FISH (Sheyn et al., 1997; Jin et al., 2004; Manoel-Caetano et
al., 2004; Sunpaweravong et al., 2005; Bizari et al., 2006).
Correlation between the overexpression and amplification
of oncogenes with survival has not been extensively investigated, however,
the survival of patients with BTAK or E2F1 amplification was significantly
lower than that of patients without these abnormalities, suggesting that
amplification of those genes is likely to lead to an increase in the number
of malignant ESCC phenotypes and that aberrations can be expected to
be useful as marker of poor prognosis (Fujita et al., 2003).
Concluding Remarks
The molecular cytogenetic approaches have been useful
to demonstrate the extensive genetic complexity in the different stages of
ESCC, supporting the involvement of various key genes in the esophageal
carcinogenesis. Most of the unbalanced chromosomal regions were similar
in primary tumors and cell lines, confirming that cell lines are reliable
models for investigation of molecular mechanisms in effect in patient
specimens.
80
There were specific imbalanced patterns during tumor
progression. While gains at 1q, 5p, 8q, 14q and losses at 4p, 13q and 18q
are related to early stages of ESCC development; gains at 1p, 2p, 7p22.3,
8q, 8q24-qter, Xq and losses at 8p22-pter, 11q14-qter, 13q and 21q are
associated with advanced stage. Gains at 3q and 11q13, and losses at 3p,
4q, 5q14-23, 9p, 18q were detected in both early and advanced stage of
ESCC. These regions harbor genes relevant for essential cellular
processes (e.g., regulation of transcription, signal transduction, cell
proliferation and cell differentiation) that participate of central signalizing
cascades impacting cancer development. Some imbalances may indicate
a poor prognostic marker such as losses at 4p, 9p, 11q and gains at 1p36-
32, 5p, 7q, 19p13.3. Gene amplifications affected mostly oncogenes like
YES-1, TYMS, HEC, TGIF, NCOA-3, BTAK, DcR-3, E2F1, MYC, EGFR,
EGR2, CCND1/ Cyclin D1, FGF3/FGF4, EMS1, SAS, ERBB2 (Her-2-neu),
PDGFR1, BCL2, MDS1 and PRKCI, while genomic losses lead to
deletions of suppressor tumor genes CDKN2A, MTAP, TP53.
The identification of these critical genes in esophageal
carcinogenesis will assist the development of individualized target therapy,
which is expected to positively impact the clinical outcome of ESCC
patients.
References
Ando T, Ishiguro H, Kimura M, Mitsui A, Mori Y, Sugito N, Tomoda K, Mori
R, Harada K, Katada T, Ogawa R, Fujii Y and Kuwabara Y (2007)
Frequent loss of the long arm of chromosome 18 in esophageal squamous
cell carcinoma. Oncol Rep. 17(5):1005-1011.
Arai H, Ueno T, Tangoku A, Yoshino S, Abe T, Kawauchi S, Oga A,
Furuya T, Oka M and Sasaki K (2003) Detection of amplified oncogenes
81
by genome DNA microarrays in human primary esophageal squamous
cell carcinoma: comparison with conventional comparative genomic
hybridization analysis. Cancer Genet Cytogenet. 146:16–21.
Bauman JG, Wiegant J, Borst P and van Duijn P (1980) A new method for
fluorescence microscopical localization of specific DNA sequences by in
situ hybridization of fluorochromelabelled RNA. Exp Cell Res. 128:485–
490.
Bizari L, Borim AA, Leite KR, Gonçalves F de T, Cury PM, Tajara EH and
Silva AE (2006) Alterations of the CCND1 and HER-2/neu (ERBB2)
proteins in esophageal and gastric cancers. Cancer Genet Cytogenet.
165(1):41-50.
Carneiro A, Isinger A, Karlsson A, Johansson J, Jönsson G, Bendahl PO,
Falkenback D, Halvarsson B and Nilbert M (2008) Prognostic Impact of
Array-based Genomic Profiles in Esophageal Squamous Cell Cancer.
BMC Cancer 8:98-107.
Crawford JM (2004) The Gastrointestinal Tract. In: Cotran RS, Kumar V
and Collins T Pathologic basis of disease. 7
th
ed. Philadelphia: WB
Saunders Company, pp. 775–787.
Daigo Y and Nakamura Y (2008) From cancer genomics to thoracic
oncology: discovery of new biomarkers and therapeutic targets for lung
and esophageal carcinoma. Gen Thorac Cardiovasc Surg. 56(2):43-53.
D'Amico TA (2006) Molecular biologic staging of esophageal cancer.
Thorac Surg Clin. 16(4):31-327.
du Manoir S, Speicher MR, Joos S, Schröck E, Popp S, Döhner H, Kovacs
G, Robert-Nicoud M, Lichter P, Cremer T (1993) Detection of complete
82
and partial chromosome gains and losses by comparative genomic in situ
hybridization. Hum Genet. 90:590–610.
Feng YB, Lin DC, Shi ZZ, Wang XC, Shen XM, Zhang Y, Du XL, Luo ML,
Xu X, Han YL et al. (2009) Overexpression of PLK1 is associated with
poor survival by inhibiting apoptosis via enhancement of survivin level in
esophageal squamous cell carcinoma. Int J Cancer. 124(3):578-588.
Fiegler H, Carr P, Douglas EJ, Burford DC, Hunt S, Scott CE, Smith J,
Vetrie D, Gorman P, Tomlinson IP et al. (2003) DNA microarrays for
comparative genomic hybridization based on DOP-PCR amplification of
BAC and PAC clones. Genes Chromosomes Cancer 36:361– 374.
Fujita Y, Sakakura C, Shimomura K, Nakanishi M, Yasuoka R, Aragane H,
Hagiwara A, Abe T, Inazawa J and Yamagishi H (2003) Chromosome arm
20q gains and other genomic alterations in esophageal squamous cell
carcinoma, as analyzed by comparative genomic hybridization and
fluorescence in situ hybridization. Hepatogastroenterology 50(54):1857-63.
Hanawa M, Suzuki S, Dobashi Y, Yamane T, Kono K, Enomoto N and Ooi
A (2006) EGFR protein overexpression and gene amplification in
squamous cell carcinomas of the esophagus. Int J Cancer. 118(5):1173-
1180.
Hsia JY, Chen CY, Chen JTA, Hsu CP, Shai SE, Yang SS, Chuang CY,
Wang PY and Miaw J (2003) Prognostic significance of caspase-3
expression in primary resected esophageal squamous cell carcinoma.
EJSO. 2944±48.
Huang XP, Rong TH, Wang JY, Tang YQ, Li BJ, Xu DR, Zhao MQ, Zhang
LJ, Fang Y, Su XD et al. (2006) Negative implication of C-MYC as an
83
amplification target in esophageal cancer. Cancer Genet Cytogenet.
165(1):20-24.
Jin Y, Jin C, Law S, Chu KM, Zhang H, Strombeck B, Yuen AP and Kwong
YL (2004) Cytogenetic and fluorescence in situ hybridization
characterization of clonal chromosomal aberrations and CCND1
amplification in esophageal carcinomas. Cancer Genet Cytogenet.
148(1):21-28.
Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F
and Pinkel D (1992) Comparative genome hybridization for molecular
cytogenetics analysis of solid tumors. Science 258 (5083):818-821.
Kamitani S, Sugihara H, Shiomi H, Tani T and Hattori T (2002)
Intratumoral regional variations in copy number of the chromosomal part
revealed by microdissection and combined ploidy and comparative
genomic hybridization analyses in esophageal squamous cell carcinoma.
Cancer Genet Cytogenet. 132:30–35
Khushalani N (2008) Cancer of the esophagus and stomach. Mayo Clin
Proc. 83(6):712-722.
Knudson AG (1985) Hereditary Cancer, oncogenes, and anti-oncongenes.
Cancer Res. 45:1437–1443.
Koch WM, Boyle JO, Mao L, Hankim J, Hruban RH and Sidransky D (1994)
TP53 gene muations as markers of tumor spread in synchoronous oral
cancer. Arch. Otalaryngol Head Neck Surg. 120:943–947.
84
Kuwano H, Kato H, Miyazaki T, Fukuchi M, Masuda N, Nakajima M, Fukai
Y, Sohda M, Kimura H and Faried A (2005) Genetic alterations in
esophageal cancer. Surg Today 35:7-18.
Kwong D, Lam A, Guan X, Law S, Tai A, Wong J and Sham J (2004)
Chromosomal aberrations in esophageal squamous cell carcinoma among
Chinese: gain of 12p predicts poor prognosis after surgery. Hum Pathol.
35(3):309-316.
Kwong KF (2005) Molecular Biology of Esophageal Cancer in the
Genomics Era. Surg Clin N Am. 85:539–553.
Lam AK (2000) Molecular biology of esophageal squamous cell
carcinoma. Crit Rev Oncol Hematol. 33:71–90.
Langer PR, Waldrop AA and Ward DC (1981) Enzymatic synthesis of
biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc. Natl
Acad. Sci. USA 78:6633–6637.
Makhija S, Sit A, Edwards R, Aufman K, Weiss H, Kanbour-Shakir A,
Gooding W, D’angelo G, Ferrell R, Raja S et al. (2003) Identification of
genetic alteration related to chemoreistence in ephitelial ovarian cancer.
Gynecol Oncol. 90:3-9.
Mandard AM, Hainaut P and Hollstein M (2000) Genetic steps in the
development of squamous cell carcinoma of the esophagus. Mutat Res.
462:335-342.
Manoel-Caetano F da S, Borim AA, Caetano A, Cury PM, Silva AE (2004)
Cytogenetic alterations in chagasic achalasia compared to esophageal
carcinoma. Cancer Genet Cytogenet. 149(1):17-22.
85
Mayama T, Fukushige S, Shineha R, Nishihira T, Satomi S, Horii A (2000)
Frequent loss of copy number on the long arm of chromosome 21 in
human esophageal squamous cell carcinoma. Int J Oncol. 17(2):245-252
McCabe ML and Dlamini Z (2005) The molecular mechanisms of
oesophageal cancer. Int Immunopharmacol. 5:1113–1130.
Mimura K, Kono K, Hanawa M, Mitsui F, Sugai H, Miyagawa N, Ooi A and
Fujii H (2005) Frequencies of HER-2/neu expression and gene
amplification in patients with oesophageal squamous cell carcinoma. Br J
Cancer 92(7):1253-60.
Muñoz N (1997) Le déspistage du cancer de I’oesophage est-il réalisable?
Semaines dês Hôpitaux de Paris 73:633-635.
Nakakuki K, Imoto I, Pimkhaokham A, Fukuda Y, Shimada Y, Imamura M,
Amagasa T and Inazawa J (2002) Novel targets for the 18p11.3
amplification frequently observed in esophageal squamous cell carcinoma.
Carcinogenesis 23 (1):19-24.
Pack SD, Karkera JD, Zhuang Z, Pak ED, Balan KV, Hwu P, Park WS,
Pham T, Ault DO, Glaser M et al. (1999) Molecular cytogenetic
fingerprinting of esophageal squamous cell carcinoma by comparative
genomic hybridization reveals a consistent pattern of chromosomal
alterations. Genes Chromosomes Cancer 25(2):160-168.
Pelengaris S and Khan M (2003) The many faces of c-MYC. Arch
Biochem Biophys. 416(2):129-136.
86
Pimkhaokham A, Shimada Y, Fukuda Y, Kurihara N, Imoto I, Yang ZQ,
Imamura M, Nakamura Y, Amagasa T and Inazawa J (2000) Nonrandom
Chromosomal Imbalances in Esophageal Squamous Cell Carcinoma Cell
Lines: Possible Involvement of the ATF3 and CENPF Genes in the 1q32
Amplico Jpn J Cancer Res. 91:1126–1133.
Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo
WL, Chen C, Zhai Y et al. (1998) High resolution analysis of DNA copy
number variations using comparative genomic hybridization to
microarrays. Nat Genet. 20:207–211
Qin YR, Wang LD, Kwong D, Guan XY, Zhuang ZH, Fan ZM, An JY and
Tsao G (2004) Comparative genomic hybridization of esophageal
squamous cell carcinoma and gastric cardia adenocarcinoma in high-
incidence region of esophageal carcinoma. Linzhou Henan. Zhonghua Yi
Xue Yi Chuan Xue Za Zhi 21(6):625-8
Qin YR, Wang LD, Dora K, Guan XY, Zhuang ZH, Fan ZM, Deng W and
Cao SH (2005a) Genomic changes in primary lesion and lymph node
metastases of esophageal squamous cell carcinoma. Ai Zheng
24(9):1048-1053.
Qin YR, Wang LD, Kwong D, Gao SS, Guan XY, Zhuang ZH, Fan ZM,
Deng W and Hu L (2005b) Comparative genomic hybridization: the profile
of chromosomal imbalances in esophageal squamous cell carcinoma.
Zhonghua Bing Li Xue Za Zhi 34(2):80-83.
Qin YR, Wang LD, Fan ZM, Kwong D and Guan XY (2008) Comparative
genomic hybridization analysis of genetic aberrations associated with
development of esophageal squamous cell carcinoma in Henan, China.
World J Gastroenterol. 14(12):1828-1835.
87
Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-
Smith MA, Ning Y, Ledbetter DH, Bar-Am I, Soenksen D et al. (1996)
Multicolor spectral karyotyping of human chromosomes. Science 273:494–
497.
Schröck E, Padilla-Nash H (2000) Spectral karyotyping and multicolor
fluorescence in situ hybridization reveal new tumor-specific chromosomal
aberrations. Semin Hematol. 37(4):334-47.
Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM,
Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic
Acids Res. 29:308–311.
Sheyn I, Noffsinger AE, Heffelfinger S, Davis B, Miller MA and Fenoglio-
Preiser CM (1997) Amplification and expression of the cyclin D1 gene in
anal and esophageal squamous cell carcinomas. Hum Pathol. 28(3):270-
276.
Shimada Y, Imamura M, Wagata T, Yamaguchi N and Tobe T (1992)
Characterization of 21 newly established esophageal cancer cell lines.
Cancer 69:277-284.
Shinomiya T, Mori T, Ariyama Y, Sakabe T, Fukuda Y, Murakami Y,
Nakamura Y and Inazawa J (1999) Comparative genomic hybridization of
squamous cell carcinoma of the esophagus: The possible involvement of
the DP1 gene in the 13q34 amplicon. Genes Chromosomes Cancer
24:337–344.
Shiomi H, Sugihara H, Kamitani S, Tokugawa T, Tsubosa Y, Okada K,
Tamura H, Tani T, Kodama M and Hattori T (2003) Cytogenetic
88
heterogeneity and progression of esophageal squamous cell carcinoma.
Cancer Genet Cytogenet. 147(1):50-61.
Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N, Conroy J,
Hamilton G, Hindle AK, Kimura K, Law S et al. (2001) Assembly of
microarrays for genome-wide measurement of DNA copy number. Nat
Genet. 29(3):263-264.
Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A,
Döhner H, Cremer T, Lichter P (1997) Matrix-based comparative genomic
hybridization: biochips to screen for genomic imbalances. Genes
Chromosomes Cancer 20: 399–407.
Somers KD and Schechter GL (1992) Genetic alterations in head and
neck cancer. Mol Biol Genetics 25(5):1065 – 1071.
Speicher MR, Ballard SG and Ward DC (1996) Karyotyping human
chromosomes by combinatorial multi-fluor FISH. Nat Genet. 12:368–375.
Speicher MR and Carter NP (2005) The new cytogenetics: blurring the
boundaries with molecular biology. Nature 6:782 – 792.
Su M, Chin SF, Li XY, Edwards P, Caldas C and Fitzgerald RC (2006)
Comparative genomic hybridization of esophageal adenocarcinoma and
squamous cell carcinoma cell lines. Dis Esophagus 19(1):10-14
Sugimoto T, Arai M, Shimada H, Hata A and Seki N (2007) Integrated
analysis of expression and genome alteration reveals putative amplified
target genes in esophageal cancer. Oncol Rep. 18:465-472.
89
Sunpaweravong P, Sunpaweravong S, Puttawibul P, Mitarnun W, Zeng C,
Barón AE, Franklin W, Said S and Varella-Garcia M (2005) Epidermal
growth factor receptor and cyclin D1 are independently amplified and
overexpressed in esophageal squamous cell carcinoma. J Cancer Res
Clin Oncol. 131(2):111-119.
Tada K, Oka M, Hayashi H, Tangoku A, Oga A and Sasaki K (2000)
Cytogenetic analysis of esophageal squamous cell carcinoma cell lines by
comparative genomic hybridization: relationship of cytogenetic aberrations
to in vitro cell growth. Cancer Genet Cytogenet. 117(2):108-112.
Wang LD, Qin YR, Fan ZM, Kwong D, Guan XY, Tsao GS, Sham J, Li JL
and Feng XS (2006) Comparative genomic hybridization: comparison
between esophageal squamous cell carcinoma and gastric cardia
adenocarcinoma from a high-incidence area for both cancers in Henan,
northern China. Dis Esophagus 19(6):459-67.
Wu YP, Yang YL, Yang GZ, Wang XY, Luo ML, Zhang Y, Feng YB, Xu X,
Han YL, Cai Y et al. (2006) Identification of chromosome aberrations in
esophageal cancer cell line KYSE180 by multicolor fluorescence in situ
hybridization. Cancer Genet Cytogenet. 170(2):102-107.
Xu FP, Xie D, Wen JM, Wu HX, Liu YD, Bi J, Lv ZL, Zeng YX and Guan
XY (2007) SRC-3/AIB1 protein and gene amplification levels in human
esophageal squamous cell carcinomas. Cancer Lett. 245 (1-2):69-74.
Xue LY, Hu N, Song YM, Zou SM, Shou JZ, Qian LX, Ren LQ, Lin DM,
Tong T, He ZG et al. (2006) Tissue microarray analysis reveals a tight
correlation between protein expression pattern and progression of
esophageal squamous cell carcinoma. BMC Cancer 6:296-311.
90
Yang YL, Chu JY, Wu Y, Luo ML, Xu X, Han YL, Cai Y, Zhan Q and Wang
M (2008a) Chromosome analysis of esophageal squamous cell carcinoma
cell line KYSE 410-4 by repetitive multicolor fluorescence in situ
hybridization. J Genet Genomics 35(1):11-16.
Yang YL, Chu JY, Luo ML, Wu YP, Zhang Y, Feng YB, Shi ZZ, Xu X, Han
YL, Cai Y et al. (2008b) Amplification of PRKCI, located in 3q26, is
associated with lymph node metastasis in esophageal squamous cell
carcinoma. Genes Chromosomes Cancer 47(2):127-36.
Yao HQ, He S, Wu YP, Wang XC, Han YL, Xu X, Cai Y, Wang GQ and
Wang MR (2008) Application of Multicolor Fluorescence In situ
Hybridization to Early Diagnosis of Esophageal Squamous Cell
Carcinoma. Ai Zheng (11):1137-43.
Yen CC, Chen YJ, Chen JT, Hsia JY, Chen PM, Liu JH, Fan FS, Chiou TJ,
Wang WS, Lin CH (2001) Comparative genomic hybridization of
esophageal squamous cell carcinoma: correlations between chromosomal
aberrations and disease progression/prognosis. Cancer 92(11):2769-2777.
Yen CC, Chen YJ, Lu KH, Hsia JY, Chen JT, Hu CP, Chen PM, Liu JH,
Chiou TJ, Wang WS et al. (2003) Genotypic analysis of esophageal
squamous cell carcinoma by molecular cytogenetics and real-time
quantitative polymerase chain reaction. Int J Oncol 23: 871-881.
Internet Resources Section
AMERICAN CANCER SOCIETY, http://www.cancer.org (December 8
th
,
2008)
91
GENOME, NATIONAL HUMAN GENOME RESEARCH INSTITUTE,
http://www.genome.gov/Pages/Hyperion/DIR/VIP/Glossary/Illustration/fish.
cfm?key=fluorescence%20in%20situ%20hybridization%20(FISH) (January
20
th
, 2009)
INSTITUTO NACIONAL DO CÂNCER (INCA), http://www.inca.org.br
(December 8
th
, 2008)
MEDICAL GENETICS LABORATORIES,
http://www.bcm.edu/geneticlabs/tests/cyto/105Kcma.html (December 22
nd
,
2008)
NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION,
http://www.ncbi.nlm.nih.gov/sites/entrez, (March 5
th
, 2009)
92
Legend of figures:
Figure 1. Summary of copy number alterations. in esophageal squamous
cell carcinomas analyzed by comparative genomic hybridization.
Chromosomal regions of gain are represented in red on the right side of
the chromosome ideograms, the amplification regions are represented by
the larger dark red line on the right side of the chromosome ideograms
and regions of loss are represented in green on the left side. A. cell lines;
B. tumor
A.
Loss
Gain
B.
93
Amplification
Loss
Gain
Amplification
B.
Capítulo II
95
CAPÍTULO II: p53, p16 and Fhit Proteins Expressions in Chronic
Esophagitis and Chagas Disease
Authors: Marilanda Ferreira Bellini
1
; Kátia Ramos Moreira Leite
2
, Patrícia
Maluf Cury
3
and Ana Elizabete Silva
1
Authors Addresses:
1
Department of Biology, UNESP, São Paulo State University, Campus
São José do Rio Preto, SP;
2
Laboratory of Surgery and Molecular Pathology, Hospital Sírio Libanês,
São Paulo, SP;
3
Department of Pathology, FAMERP Medicine School, São José do Rio
Preto, SP, Brazil
Correspondence to: Ana Elizabete Silva, IBILCE/UNESP
Departamento de Biologia, Rua Cristóvão Colombo, 2265, São Jo do
Rio Preto, SP, Brazil - CEP. 15054-000.
Tel:+ 551732212384, e-mail: [email protected]
Key Words: p53, p16, Fhit protein, esophagitis, megaesophagus,
esophageal carcinoma.
Running Title: Bellini et al: p53, p16 and Fhit Protein Expressions in
Esophageal Lesions
Supported by Brazilian Agencies FAPESP and CNPq
Artigo original publicado na revista
Anticancer Research (ISSN:1791-7530)
28(6A):3793-3800, 2008.
96
Resumo
Introdução: Alguns modelos sugerem que o
desenvolvimento do carcinoma esofágico é resultante de uma sequência
de alterações, que envolvem esofagite, atrofia, displasia, carcinoma in situ
e carcinoma invasivo. Enquanto diversas alterações genéticas têm sido
descritas em carcinoma de esôfago, os estudos em lesões benignas com
potencial pré-canceroso ainda são escassos. Material e Métodos: Foi
realizada imuno-histoquíca para as proteínas p53, p16 e Fhit em mucosa
esofágica de pacientes com Doença de Chagas (CD), megaesôfago
chagásico (CM), esofagite crônica (CE), carcinoma de células escamosas
de esôfago (ESCC) e em mucosa normal (NM). Resultados: A proporção
de casos positivos para a proteína p53 aumentou progressivamente de
acordo com a severidade da lesão, CD (7.7%), CM (26.1%), CE (52.2%)
and ESCC (100%). Entretanto, as proteínas p16 e Fhit não mostraram
diferenças estatisticamente significantes entre os grupos. Conclusão: O
presente estudo mostra o envolvimento da proteína p53 super expressa
nos processos iniciais da carcinogênese esofágica, sugerindo sua
utilização como marcador em lesões precursoras, inversamente, perdas
na expressão de Fhit e p16 não foram significantes
Capítulo III
105
CAPÍTULO III: Expression of Ki67 antigen and caspase-3 protein in
benign lesions and esophageal carcinoma and relationship with p53
protein.
Authors: Marilanda Ferreira Bellini
1
; Patrícia Maluf Cury
2
, Ana Elizabete
Silva
1
Authors Addresses:
1
UNESP, São Paulo State University, Department of Biology, Campus
São José do Rio Preto, SP, Brazil
2
FAMERP Medicine School, Department of Pathology, São José do Rio
Preto, SP, Brazil
Correspondences to: Ana Elizabete Silva, IBILCE/UNESP
Departamento de Biologia, Rua Cristóvão Colombo, 2265, São Jo do
Rio Preto, SP, Brazil - CEP. 15054-000; phone 55 - 17 - 32212384
e-mail: [email protected]esp.br
Artigo original a ser submetido e redigido nas normas da revista
APOPTOSIS (e-ISSN: 1573-675X)
106
Resumo
O desbalanço entre proliferação e morte celular é um dos
fatores chave da tumorigênese. O presente estudo teve por objetivos
verificar alterações nos níveis de proliferação celular e apoptose em
lesões benignas esofágicas em comparação com carcinoma esofágico e
estabelecer associações com a expressão da proteína p53, estimada em
estudo prévio. Ensaios de immuno-histoquímica foram realizados para o
antígeno Ki67 e proteína caspase-3 (CPP32) em mucosa esofágica de
pacientes com Doença de Chagas sem (CD) e com megaesôfago (CM),
pacientes com esofagite crônica (CE), pacientes com carcinoma esofágico
(ESCC) e em mucosa normal (NM). Associações com a expressão de p53,
estimada em estudo anterior, também foram realizadas. O índice de
marcação de Ki67 (LI) foi similar em todos os grupos (variação de 30,1%
a 48%), não sendo observadas diferenças significantes. A frequência de
positividade de CPP32 foi similar nos grupos CD (30,8%), CM (30,4%) e
CE (34,8%), mas aumentada em ESCC (55,5%), embora sem diferenças
significantes. Nenhuma associação entre os níveis de CPP32, Ki67 e
expressão da proteína p53 foram observadas, nos diferentes grupos.
Desta forma, não evidências de alterações nos níveis de proliferação
celular e apoptose nas lesões benignas estudadas.
Palavras-chave: CPP32, Ki67, megaesôfago chagásico, esofagite
crônica, carcinoma esofágico.
107
Abstract
One key factor in the tumorigenesis is the imbalance
between cell proliferation and death. The present study aimed to evaluate
alterations of apoptosis and cell proliferation in esophageal benign lesion
comparing to esophageal carcinoma and establish relationship with p53
expression estimated in previous study. Immunohistochemistry was
performed for expression of caspase-3 protein (CPP32) and Ki67 antigen
in the esophageal mucosa from patients with Chagas disease without (CD)
and with megaesophagus (CM), patients with chronic esophagitis (CE),
esophageal carcinoma (ESCC) and in normal mucosa (NM). The Labeling
Index (LI) for Ki67 was similar in every group (range: 30.1% - 48%)and
was not statistically significant. The positive CPP32 immunostaining was
observed in similar frequencies in the groups of CD (30.8%), CM (30.4%)
e CE (34.8%), but increased in ESCC (55.5%), though no significant
differences. No associations among the levels of CPP32, Ki67 and p53
expression were observed in the different groups. Thus are not evident
changes in in benign studied lesions.
Key Words: CPP32, Ki67, chagasic megaesophagus, chronic esophagitis,
esophageal squamous cell carcinoma
108
Introduction
The cancer development involves many genes that control
growth, cell proliferation and homeostasis of the tissue by apoptosis [1].
After an inflammatory process or the toxic effects of carcinogens the cell
proliferation increases the probability of new genetically altered cells [2].
There is a tendency of neoplastic population increase proliferative capacity
and escape the control mechanisms of normal growth. With the increased
cell proliferation, the mutant progeny arises as a result of genomic
instability, where the majority does not survive due to immune selection, or
apoptosis metabolic changes [3].
Many of the biochemical and morphological alterations
that occur during apoptosis is consequence from cysteine proteases family
called caspase, which in turn cleave the various substrate proteins that
account for apoptosis. Caspase-3, also known as CPP32, YAMA, or
apopain, is probably the one that so far best correlates with apoptosis.
Caspase-3–mediated proteolysis, which is initiated by the multiple different
stimuli (endogenous and exogenous) that induce apoptosis, is a critical
element of the apoptotic process [4]. Analysis of the expression of
caspase-3 from primary esophageal squamous cell carcinoma (ESCC)
showed that 60% of the cases were positive [5], and that caspase-3 was
associated with a favorable prognosis. Caspase-3 was suggested as a
new prognostic factor in ESCC indicating that biomarkers related
apoptosis can be used as predictive in advance and prognosis of ESCC [6,
7, 8].
The assessment of cell proliferation by the detection of
Ki67 antigen in neoplastic cell populations has been shown to be of
prognostic value. There is a strong correlation between low or high Ki67
index and low or high-grade histopathology of neoplasms [8]. The
progressive increase of Ki67 antigen from dysplasia to ESCC, suggested
that this antigen is an effective biomarker in the squamous ephitelium of
esophagus [9, 10, 11].
109
TP53 tumor suppressor gene, which acts on apoptosis
and cell proliferation, is the major mutated gene in human neoplasm.
Mutations in this gene may fail both to arrest of cell cycle as to cause cell
death in cancer cells, because the mutated form of p53 is ineffective in
triggering apoptosis [12].
Esophageal carcinogenesis follows the multistep model
involving esophagitis, atrophy, dysplasia, carcinoma in situ, and finally
invasive carcinoma [13, 14]. Thus is important to evaluated benign lesions
with precancerous potential as esophagitis and megaesophagus
(esophagus dilation), the later as a consequence of Chagas disease,
which there are few genetic studies that investigated changes of their cell
cycle, as apoptosis and cell proliferation. The aim of this study was to
evaluate the levels of cell proliferation (Ki67) and apoptosis (CPP32) and
their associations with expression of p53 protein, estimated in previous
study [15] in benign and possible precursor lesions, as chagasic
megaesophagus and chronic esophagitis in cancer-free patients and
ESCC patients.
Samples and Methods
Samples
A total of 78 specimens of paraffin embedded esophageal
tissue were obtained from patients who underwent middle and distal
esophageal biopsies, before any chemo- or radiotherapy treatment, at
Pathology Section, Hospital de Base (São José do Rio Preto, SP, Brazil)
at the period between 2003 and 2006. Twenty-three specimens were
proceeding from Chagas Disease patients with chagasic megaesophagus
(CM), 13 with Chagas Disease (CD) but without megaesophagus, 23 from
chronic esophagitis (CE) patients, and 9 from esophageal squamous cell
carcinoma (ESCC). Both patients with Chagas Disease and chronic
110
esophagitis were esophageal cancer-free. Esophageal mucosa from 10
healthy patients were obtained and diagnosed as histologically normal
(NM).
In the NM, with histologically normal esophageal mucosa,
the majority of subjects were female, aged between 26 and 67 years (
x
±
SE = 42.4 ± 4.81), of which 40% of them have alcoholic habit and 30%
have smoking habit. Of the 36 chronic chagasic patients, 13 did not have
megaesophagus (CD), the majority being female, aged between 45 and
79 years (
x
± SE = 61.3 ± 2.85). Among chagasic without
megaesophagus, 30.8% were alcoholic and 38.5% were smokers. In this
group, 53.8% developed other complications related to Chagas disease -
(5 / 13) and megacolon (2 / 13) chagasic cardiomyopathy, and most
(76.9% - 10/13) had mild to moderate esophagitis. The other 23 patients
had chronic chagasic megaesophagus (CM) and most were male, aged 57
to 83 years (
x
± SE = 64.3 ± 2.08). As the classification of
megaesophagus, 4.3% (1 / 23) of cases were grade I, 13% (3 / 23) grade
II, 43.5% (10/23) grade III and 39.2% (9 / 23) Grade IV. Among patients
with chagasic megaesophagus, 34.8% (8 / 23) had alcoholic habit and
56.5% (13/23) smoking. Among other complications of Chagas' disease,
four patients (17.4%) developed megacolon, and 34.8% have heart
disease. Except for six cases, all other patients had esophagitis: 23.5%
mild, 47.1% moderate and 29.4% severe. In the group CE group, about
half were female or male, aged 40 to 70 years (
x
± SE = 50.5 ± 1.99).
Only 4.3% of the cases were drinkers and 17.4% were smokers. In
contrast, the group with squamous cell carcinoma of the esophagus was
formed by 8 males and one female, with ages ranging from 42 to 69 years
(
x
± SE = 56.5 ± 2.68). Of these, most are drinker and smoker (72.7% and
81.8%, respectively). In this group, three patients are chagasic, of which
two had chagasic megaesophagus associated with carcinoma.
111
The study was approved by Brazilian National Research
Ethics Committee (CONEP).
Immunohistochemical Assay
Consecutive m-tick sections were cut from each
trimmed paraffin block, and mounted in glass slides pre-treated with 3-
aminopropyl-triethoxysilane/acetone solution. In brief, following
deparaffinization, sections were re-hydrated, treated with citrate buffer, at
96°C, for 30 min.; and treated with 3% H
2
O
2
in methanol (v/v) for 30 min.
to block the endogenous peroxidases. The sections were then incubated
for 1 hour, at room temperature, with specifics antibodies: CPP32 (clone
JHM-62, Novocastra, Newcastle, UK, 1:100) and Ki67 antigen (clone MM1,
Novocastra, Newcastle, UK, 1:200). The slides were incubated with
secondary antibody; next, slides were incubated polymer to CPP32
(Novolink Polymer, Novocastra, Newcastle, UK,) or streptavidin-biotin
peroxidase to Ki67 (Dako Cytomation Kit, Strept ABComplex/HRP, Dako,
Glostrup, Denmark), following the manufacturer’s instructions. The
immunostaing was visualized with 3,3’ diaminobenzidine
tetrahydrochloride (DAB) containing 0,005% H
2
O
2
, and counterstained
with hematoxylin. Negative controls were established by replacing the
primary antibody with buffer solution. Tonsil tissues were used as positive
controls for both antibodies.
The polyclonal antibody (NCL-Ki67p) labels Ki67 antigen
in the granular components of the nucleolus during late G1, S, G2 and M
phases [9]. The positive immunostain for Ki67 antigen was brown nuclear
staining and the negative was the absence of nuclear staining. Five
hundred cells were counted for each sample. Ki67 was considered positive
when >10% of cells showed nuclear reactivity [16, 17]. The Labeling Index
(LI) for Ki67 antigen (the ratio of cells positively stained for Ki67 on the
total of cells counted for each case [12] was calculated.
112
For CPP32, all tissue extension was examined for each
sample. Immunostaing for CPP32 (brown cytoplasm staining) was graded
by intensity of staining as negative: (-) absent brown staining and (+)
weakly stained; or as positive: (++) moderately stained and (+++) strongly
stained [4].
All analysis was done under a light microscope (x400
magnification). Areas that were poorly preserved, crushed, cauterized,
folded, or retracted were specifically avoided.
Statistical Analysis
Descriptive statistics, Kolmogorov and Smirnov method for
normality distribution, Kruskall-Wallis Test for CPP32 and Ki67; and
Analysis of Variance (ANOVA) with Tukey-Kramer Multiple Comparisons
post-test for Ki67 antigen were used to determined statistical significance.
Fisher’s Exact Test was performed to establish associations between
apoptosis, cell proliferation and p53 expression, two by two. The level of
significance was set as P<0.05. The statistical analysis was carried out
with GraphPad Instat 3 computer software [18].
Results
The LI for Ki67 antigen for each group was as follow:
30.1% of NM, 30.9% of CD, 42.3% of CM; 44.6% of CE and 48.4% of
ESCC in 500 cells analyzed per case (Table 1). The Kolmogorov and
Smirnov method indicated normality distribution and then ANOVA with
Tukey-Kramer Multiple Comparison post-test was performed among the
groups, but none significant difference was observed.
One hundred percent of the cases in the NM, CD, CE and
ESCC groups were classified as Ki67 positive, since they showed more
than 10% of cell positively immunostained for the antigen, while in the CM
113
group 91.3% of cases were Ki67 positive. The statistical analyses for the
positive cases, by Kruskall-Wallis Test, did not indicate any significant
difference among the groups (Table 1).
Positive citoplasmatic immunostaining for CPP32 was
observed in a few cases in the normal mucosa group 20% (2/10), which
was interpreted as normal level of apoptosis. The positive CPP32
immunostaing was observed in similar frequencies in the groups of CD,
CM and CE respectively, 30.8% (4/13), 30.4% (7/23), and 34.8% (8/23),
but increased in ESCC group, 55.5% (5/9) (Table 1). Statistically
significant differences were not observed using the test Kruskall-Wallis test
among the groups.
The establishment of associations between CPP32, Ki67
and p53 expression (based on previous data, [15]) were performed by
Fisher’s Exact Test, indicating that there is no association between the cell
regulation processes studied in the groups analyzed (Table 2), neither
between the altered expression of p53 and CPP32 protein or Ki67 antigen
in each studied group (Table 3). Moreover, significant associations were
not observed between altered expression pattern of Ki67 antigen and
CPP32 protein, with parameters such as age, gender, smoking and
alcoholism (data not shown) at different groups.
Figure 1 illustrates the immunostaining of Ki67 antigen
(nuclear) and CPP32 protein (cytoplasmic) in the esophageal mucosa of
benign lesions and carcinoma.
Discussion
Recent studies have demonstrated that gene
abnormalities of cell-cycle regulators that function in the transition from the
G1 to S phase are associated with life style factors in ESCC [19], however,
associations between these parameters, such as age, gender, smoking
114
and alcoholism, and the status of Ki67 antigen and CPP32 protein were
not observed in the studied groups (data not shown).
In the present study, the Ki67 labeling index (LI) were
higher in CM, CE and ESCC groups, than in the others, although both LI
and positivity for Ki67 was not statistically significant among the different
groups. However, ESCC showed higher expression of CPP32 than the
others groups, indicating high level of apoptosis in tumor tissue. When the
analysis of associations between the molecules (Ki67, CPP32 and p53)
could be performed, no associations were found.
Tumor cell cycle analysis has indicated that tumors with a
higher proliferation rate (>40%) show more aggressive clinical behaviors
compared to tumors with a low proliferation rate (<40%) [20]. The Ki67 LI
has been identified as a parameter of tumor proliferation. ESCC patients
with a high Ki67 LI have lower postoperative survival rates; thus, a high
Ki67 LI is one of the prognostic factors of ESCC [19, 21]. In our study, the
Ki67 LI were greater than 40% in CM (14 cases, 60.8%), CE (11 cases,
47.8%) and ESCC (5 cases, 55.5%) groups, but did not show significant
difference with the NM and CD groups (with Ki67 LI ~30%). Despite some
studies which indicate that the Ki67 LI is a powerful prognostic marker for
patients with esophageal carcinoma [22, 23, 24], the results of the current
study did not displayed increased Ki67 LI in the ESCC group compared to
others groups analyzed.
High expression of tumor proliferation-related factors (Ki67,
PCNA, and AgNOR), abnormalities of adhesion molecule (E-Cadherin,
alpha-Catenin), activation of autocrine mechanism of growth factor (EGFR,
TGFα, EGF), and DNA ploidy pattern, which is thought to be the result of
an accumulation of genomic abnormalities are also prognostic factors for
esophageal cancer [25]. Ki67-% was significantly higher in patients with
erosive esophagitis and in patients with functional heartburn than in
controls, concluding Ki67 evaluation provides quantitative and objective
data on squamous epithelium proliferative activity [9, 11]. Meanwhile, the
115
present study did not find any statistical significant difference among the
benign lesion and ESCC, neither among the normal mucosa. Though, the
expression of Ki67 did not show significant differences in biomarker
expression between carcinoma of the esophagus and its precursor lesions
(mild, moderate and severe dysplasia) [20], what corroborate our results.
We observed an increased expression of CPP32 protein
only in ESCC group (55.5%), but it was not significant. The positive
staining in ESCC group should be arose from the high apoptotic activity in
response to the severe injury, whereas in CD, CM and CE (positive in
~30% cases), it might be occur as a consequence of physiological and
inflammatory process of esophageal epithelium. So the high expression of
CPP32 protein in ESCC, in the current study, may indicate a favorable
prognostic, according some studies that observed a relationship between
moderate to strong CPP32 staining and better prognostic [6]. Moreover,
caspase-3 revealed significant increase in the positivity pattern between
dysplasia and their corresponding invasive cancer portion and may be
involved in the progression from dysplasia to ESCC [26, 27]. In conclusion,
the analysis of the apoptotic protein expression patterns would be valuable
to develop rational strategies for early detection of lesions at risk in
advance as well as for prevention and treatment of ESCC.
Wild type of p53 triggers apoptosis following DNA damage
or induces p21WAF1/Cip1, which causes G1 arrest, allowing time for
damaged DNA to be repaired. Therefore, examining the relationship
among p53, cell proliferation and apoptosis may be critical to determine
the progress of carcinogenesis [12, 28]. Beardsmore et al. (2003) [12]
found relationship between p53 expression and apoptosis, or p53
expression and cell proliferation indexes when ESCC patients were
treated with chemotherapy. But, in our study associations between the
molecules CPP32, Ki67 and p53 could not be performed in all groups,
because, in some cases, the combination of variables was zero. When the
analysis was performed in the groups CD (CPP32 x p53); CM (Ki67 x p53;
116
Ki67 x CPP32 and CPP32 x p53) and CE (CPP32 x p53); we could not
find any relationship among the expression of the molecules evaluated.
These results also can be in consequence of reduced number of cases
evaluated in each group.
The absence of association between Ki67 antigen and
CPP32 protein could be related to an imbalance in cell defense
mechanism, when the organism tries to interrupt the proliferation of
damaged cell, decreasing cell proliferation and increasing the apoptosis
levels, because close coordination of these two phenomena is essential
not only for a regulation and normal physiology, but to disease prevention
[4] and combat.
In conclusion, the role of the Ki67 antigen in ESSC seems
not clear, because some authors believe in the increase of Ki67
expression following the severity of the lesion, while others do not. In the
present study, we did not find any difference among the groups, indicating
the need of further investigations. Our results did not show statistically
difference of the CPP32 expression between the benign lesion groups and
ESCC group. Also were not observed associations among the levels of
CPP32, Ki67 and p53 expression. Thus it is not evident significant
changes in apoptosis and cell proliferation in the studied esophageal
benign lesions, at the tested conditions.
Acknowledgements:
The authors are grateful to Dr. Sebastião Roberto Taboga
and Luiz Roberto Faleiros for help with histological sections and photo
documentation. We also thank Brazilian agencies Fundação de Apoio à
Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de
Pesquisa e Desenvolvimento (CNPq) for financial support.
117
References:
[1] Koch WM, Boyle JO, Mao L, et al (1994) TP53 gene muations as
markers of tumor spread in synchoronous oral cancer. Arch. Otalaryngol.
Head Neck Surg. 120:943-947.
[2] Cheng KC, Loeb LA (1993) Genomic instability and tumor progression:
mechanistic considerations. Adv. Cancer Res. 60:121-156.
[3] Nowell PC (1976) Clonal evolution of tumor cell sub-populations.
Science 194:23.
[4] Krajewska M, Wang HG, Krajewski S et al (1997)
Immunohistochemical analysis of in vivo patterns of expression of CPP32
(Caspase-3), a cell death protease. Cancer Res. 57(8):1605-1613.
[5] Hsia Jy, Chen Cy, Chen Jt et al (2003). Prognostic significance of
caspase-3 expression in primary resected esophageal squamous cell
carcinoma. EJSO 29:44-48.
[6] Sutter AP, Maaser K, Höpfner M et al (2002) Specific ligands of the
peripheral benzodiazepine receptor induce apoptosis and cell cycle arrest
in human esophageal cancer cells. Int. J. Cancer. 102:318–327.
[7] Xue LY, Hu N, Song YM et al (2006) Tissue microarray analysis
reveals a tight correlation between protein expression pattern and
progression of esophageal squamous cell carcinoma. BMC Cancer 6:
296-311.
[8] IHC World (2008) Ki67 Antibody Staining Protocol for
Immunohistochemistry. In: Life Science Information Network. IHC World,
LLC. Available via DIALOG
http://www.ihcworld.com/_protocols/antibody_protocols/ki67_novocastra.ht
m
Acessed November 25
th
, 2008.
[9] Mastracci L, Grillo F, Zentilin P et al (2006) Cell proliferation of
squamous epithelium in gastro-oesophageal reflux disease: correlations
with clinical, endoscopic and morphological data. Aliment Pharmacol Ther.
25:637-645.
[10] Figueroa JD, Terry MB, Gammon MD et al. (2008) Cigarette smoking,
body mass index, gastro-esophageal reflux disease, and non-steroidal
anti-inflammatory drug use and risk of subtypes of esophageal and gastric
cancers by P53 overexpression. Cancer Causes Control. in press.
118
[11] Zhang GH, Su M, Tian DP et al (2008) Analysis of basement
membrane structure and inflammation during the development of
esophageal squamous cell carcinoma in the Chinese Chaoshan high risk
region. Cancer Invest. 26(3):296-305.
[12] Beardsmore DM, Verbeke CS, Davies CL et al (2003) Apoptotic and
proliferative indexes in esophageal cancer: predictors of response to
neoadjuvant therapy. J Gastrointest Surg. 7(1):77-86.
[13] Muñoz N (1997) Le déspistage du cancer de I’oesophage est-il
réalisable? Semaines dês Hôpitaux de Paris 73:633-635.
[14] Mandard AM, Hainaut P, Hollstein M (2000) Genetic steps in the
development of squamous cell carcinoma of the esophagus. Mutat Res.
462:335-342.
[15] Bellini MF, Leite KRM, Cury PM et al (2008) p53, p16 and Fhit
proteins expressions in chronic esophagitis and chagas disease.
Anticancer Res. 28(6A):3793-3800.
[16] Miller RT (2003) Immunohistochemistry in Urothelial Dysplasia. In:
The Focus- Immunohistochemistry. ProPath. Available via DIALOG
http://www.ihcworld.com/_newsletter/2003/focus_jun_2003.pdf
Accessed December 17
th
, 2008
[17] Boone J, van Hillegersberg R, van Diest PJ et al (2008) Validation of
tissue microarray technology in squamous cell carcinoma of the
esophagus. Virchows Arch. 452:507–514.
[18] Instat (2007) GraphPad Instat.Instant biostatistic. In: GraphPad
Software, Analyse, Graph and organize your data. Available via DIALOG
http://www.graphpad.com/instat/instat.htm
Accessed April 03
rd
, 2007
[19] Takeuchi H, Ozawa S, Ando N et al (2003) Cell-Cycle Regulators and
the Ki-67 Labeling Index Can Predict the Response to chemoradiotherapy
and the Survival of Patients With Locally Advanced Squamous Cell
Carcinoma of the Esophagus. Annals of Surgical Oncology, 10(7):792–
800.
[20] Huang JX, Yan W, Song ZX et al (2005) Relationship between
proliferative activity of cancer cells and clinicopathological factors in
patients with esophageal squamous cell carcinoma. World J Gastroenterol.
19:2956-2959.
119
[21] Horii N, Nishimura Y, Okuno Y et al (2001) Impact of neoadjuvant
chemotherapy on Ki-67 and PCNA labeling indices for esophageal
squamous cell carcinoma. Int. J. Radiation Oncology Biol. Phys.
49(2):527–532.
[22] Youssef EM, Matsuda T, Takada N et al (1995) Prognostic
significance of the MIB-1 proliferation index for patients with squamous cell
carcinoma of the esophagus. Cancer 76:358–366.
[23] Kawamura T, Goseki N, Koike M et al (1996) Acceleration of
proliferative activity of esophageal squamous cell carcinoma with invasion
beyond the mucosa: Immunohistochemical analysis of Ki-67 and p53
antigen in relation to histopathological findings. Cancer 77:843– 849.
[24] Ikeda G, Isaji S, Chandra B et al (1999) Prognostic Significance of
Biologic Factors in Squamous Cell Carcinoma of the Esophagus. Cancer.
86 (8):1396–1405.
[25] Shimada Y, Imamura M (1996) Prognostic factors for esophageal
cancer--from the viewpoint of molecular biology. Gan To Kagaku Ryoho
23(8):972-981.
[26] Kurabayashi A, Furihata M, Matsumoto M et al (2001) Expression of
Bax and apoptosis-related proteins in human esophageal squamous cell
carcinoma including dysplasia. Mod Pathol. 14(8):741-747.
[27] Chang MS, Lee HS, Lee BL et al (2005) Differential protein
expression between esophageal squamous cell carcinoma and dysplasia,
and prognostic significance of protein markers. Pathol Res Pract 201(6):
417-425.
[28] Okumura H, Natsugoe S, Nakashima S et al (2000) Apoptosis and cell
proliferation in esophageal sqamous cell carcinoma treated by
chemotherapy. Cancer Lett. 158:211-216.
120
Table 1.
Immunohistochemical and statistical analysis for Ki67 antigen and CPP32 protein in the different groups.
Groups
N
Ki67 CPP32
Labeling Index (LI) Positive Positive (++/+++)
x
± SE (%)
Range
n/N %
n/N %
NM 10 30.1 ± 2.63
ns
18.2 - 44
10/10 100.0
a
2/10 20.0
a
CD 13 30.9 ± 2.80
ns
12.0 – 42.0
13/13 100.0
a
4/13 30.8
a
CM 23 42.3 ± 3.82
ns
2.4 – 62.8
21/23 91.3
a
7/23 30.4
a
CE 23 44.6 ± 3.28
ns
20.6 – 76.4
23/23 100.0
a
8/23 34.8
a
ESCC 9 48.4 ± 7.12
ns
21.2 – 72.0
9/9 100.0
a
5/9 55.5
a
Statistical Analysis
ANOVA, p = 0.0120
Tukey-Kramer Multiple
Comparison Test, p > 0.05
Kruskall-Wallis Test, p = 0.3035
Kruskall-Wallis Test, p = 0.5731
NM, health patients; CD, Chagas Disease patients without megaesophagus; CM, chagasic megaesophagus; CE, chronic esophagitis; ESSC, esophageal squamous
cell carcinoma; N, total of specimens; n, number of specimens positive immunostained;
x
, average; SE, standard error. Statistical Analysis: groups following the
same letter are not statistically different, on the same column;
ns
, there is not statistical difference.
120
121
Table
2
. Association between
expression of Ki67 antigen and CPP32 protein, by Fisher’s Exact Test
(p<0.05).
Groups
Ki67 + Ki67 - Ki67 x CPP32
CPP32 + CPP32 - CPP32 + CPP32 - p value
NM
1 (10%)
9 (90%)
0 (0%)
0 (0%)
NP
CD
1 (7.69%)
12 (92.31 %)
0 (0%)
0 (0%)
NP
CM
6 (26.08%)
15 (65.22%)
0 (0%)
2 (8.70%)
1.000
ns
CE
12 (52.17%)
11 (47.83%)
0 (0%)
0 (0%)
NP
ESCC
5 (55.56%)
4 (44.44%)
0 (0%)
0 (0%)
NP
NM, health patients; CD, Chagas Disease patients without megaesophagus; CM, chagasic
megaesophagus; CE, chronic esophagitis; ESSC, esophageal squamous cell carcinoma; NP, it was
not performed because one row or column is filled with zeros and in this situations the analysis is
impossible;
ns
it is not statistically significant
121
122
Table 3
. A
ssociation between expression of Ki67 antigen and CPP32 protein with p53 protein
[
15
]
, by Fisher’s Exact Test (p<0.05).
Groups
Ki67 + Ki67 -
Ki67xp53
CPP32 + CPP32 -
CPP32xp53
p53 + p53 - p53 + p53 - p value p53 + p53 - p53 + p53 - p value
NM
0 (0%)
10 (0%)
0 (0%)
0 (0%)
NP
0 (0%)
1 (10%)
0 (0%)
9 (90%)
NP
CD
4 (30.8%)
9 (69.2%)
0 (0%)
0 (0%)
NP
0 (0%)
4 (30.8%)
1 (7.7%)
8 (61.5%)
1.0000
ns
CM
6 (26.0%)
15 (65.2%)
0 (0%) 0 (0%) NP
2 (8.7%)
5 (21.7%)
4 (17.4%)
12 (52.2%)
1.0000
ns
CE
8 (34.8%)
15 (65.2%)
0 (0%)
0 (0%)
NP
3 (13.0%)
5 (21.7%)
9 (39.2%)
6 (26.1%)
0.4003
ns
ESCC
9 (100%)
0 (0%)
0 (0%)
0 (0%)
NP
5 (55.5%)
0 (0%)
4 (44.4%)
0 (0%)
NP
NM, health patients; CD, Chagas Disease patients without megaesophagus; CM, chagasic megaesophagus; CE, chronic esophagitis; ESSC, esophageal
squamous cell carcinoma; NP, it was not performed because one row or column is filled with zeros and in this situations the analysis is impossible;
ns
it is
not statistically significant.
122
123
Legend of figure:
Figure 1. Immunostaining of Ki67 antigen and CPP32 in esophageal mucosa. A,
Ki67 antigen. B. CPP32 protein. 1., normal mucosa (Ki67+, CPP32 -), 2. chagasic
without megaesophagus (Ki67+, CPP32 ++), 3. chagasic megaesophagus (Ki67+,
CPP32 ++), 4. chronic esophagitis (Ki67+, CPP32 +), 5. esophageal squamous cell
carcinoma (Ki67+, CPP32 +++). Ki67+, more than 10% of cell is positively
immunostained. CPP32 -, absence of immunostaining; CPP32 +, weak
immunostaining; CPP32 ++, moderate immunostaining; CPP32 +++, strong
immunostaining. Magnification 200x
124
Capítulo IV
126
CAPÍTULO IV: Chromosomal imbalances are uncommon in Chagasic
megaesophagus
Authors: Bellini, MF
1,2
; Manzato, AJ
3
; Silva, AE
1
; Varella-Garcia, M
2
Authors Addresses:
1
UNESP, São Paulo State University, Department of Biology, Campus
São José do Rio Preto, SP, Brazil
2
University of Colorado Denver, Department of Medicine/Medical
Oncology, Aurora, Colorado, USA
3
UNESP, São Paulo State University, Department of Computer Sciences
and Statistics, Campus São José do Rio Preto, SP, Brazil
Correspondence to: Ana Elizabete Silva,
IBILCE/UNESP Departamento de Biologia, Rua Cristóvão Colombo,
2265, São José do Rio Preto, SP, Brazil - CEP. 15054-000;
phone 55 - 17 – 32212384.
e-mail:[email protected]sp.br
Running Title: Chromosomal Imbalances in chagasic megaesophagus
Artigo original a ser submetido e escrito nas normas da revista
CHROMOSOME RESEARCH : CYTOGENETICS, GENOMICS,
CHROMATIN AND THE NUCLEUS (e-ISSN: 1573-6849)
127
Resumo
A doença de Chagas é uma doença parasitária tropical.
Entre os pacientes na fase crônica, 6 a 7% desenvolvem mega síndromes
do esôfago ou cólon. A dilatação do esôfago é conhecida como
megaesôfago chagásico (CM) e uma de suas conseqüências tardias é o
aumento do risco desses pacientes desenvolverem carcinoma esofágico
(ESCC). Baseando-se na relação entre o CM e ESCC, investigamos, em
cortes histológicos da mucosa esofágica de pacientes com CM e mucosa
normal (NM), genes frequentemente não-balanceados descritos em ESCC,
como FHIT, TP63, PIK3CA, EGFR, FGFR1, MYC, CDKN2A, YES1,
NCOA3, e centrômeros 3, 7 e 9, como controles, por FISH (Hibridação In
Situ Fluorescente). A análise citogenética nas camadas superficial e basal
da mucosa esofágica não mostrou diferenças significantes para a maioria
dos alvos investigados, exceto para EGFR no grupo CM, que apresentou
freqüência menor de cópias na camada basal. O número total de cópias
de PIK3CA, CDKN2A e CEP9 foi significativamente menor em CM que em
NM. Alguns casos de CM mostraram níveis não-significantes de perdas
para genes específicos: TP63, FHIT, PIK3CA, EGFR, CDKN2A, YES1;
CEP9 ou de ganhos para PIK3CA, TP63, FGFR1, MYC, CDKN2A e
NCOA3. Em conclusão, a observação de que alvos genômicos com
desequilíbrios na carcinogênese esofágica não são significativamente
afetadas em CM sugere que o será possível utilizar tais características
como marcadores eficazes de risco para desenvolvimento de ESCC em
CM.
Palavras-chave: megaesôfago chagásico, carcinoma de células
escamosas de esôfago e FISH
128
Abstract
Chagas' disease is a human tropical parasitic disease. Among the chronic
chagasic individuals, 6 to 7% develop mega syndromes of the esophagus
or colon. The esophagus dilation is known as Chagas megaesophagus
(CM) and one of the serious late consequences of CM is the increased risk
for esophageal carcinoma (ESCC). Based on the association between CM
and ESCC, we proposed to investigate in CM the genomic status of DNA
targets frequently unbalanced in ESCC as FHIT, TP63, PIK3CA, EGFR,
FGFR1, MYC, CDKN2A, YES1 and NCOA3; and the centromere 3,
centromere 7 and centromere 9 were used as control, by FISH. Analyses
in the superficial and basal layers of the epithelial mucosa did not show
differences among them, excepted for the gene EGFR in CM, which was
deleted in the basal layer. The copy number of PIK3CA, CDKN2A and
CEP9 were significantly lower in CM than in NM. Some CM cases had
non-significant levels of deletions in TP63, FHIT, PIK3CA, EGFR,
CDKN2A, YES1; CEP9 or gains at PIK3CA, TP63, FGFR1, MYC,
CDNK2A and NCOA3. In summary, the findings that genomic imbalances
common in esophageal carcinomas are not affected in CM suggest that
these features will not be effective biomarkers for risk assessment of
ESCC in CM
Key Words: chagasic megaesophagus, esophageal squamous cell
carcinoma, FISH
129
Introduction
Chagas' disease is a human tropical parasitic disease
which occurs in the Americas, particularly in South America (Lana; Tafuri,
2000). During the chronic phase, 6 to 7% of chagasic patients develop
mega syndromes (muscular hypertrophy and dilation) of the esophagus or
colon, probably because the protozoan T. cruzi destroys the mioenteric
plexus (Crawford, 2004). In these digestive ways, muscular hypertrophy
and dilation of the esophagus or colon are observed in advanced stages of
the disease (Brasileiro-Filho, 2006).
The megaesophagus is consequence of achalasia
characterized by the destruction or lack of intramural nerve plexus, which
determines the absence of peristalsis and lack of openness of the lower
esophageal sphincter in response to swallowing. In consequence, there is
food retention, called esophageal stasis (Kraichely; Farrugia, 2006), which
can determine the appearance of acanthosis, paraceratose and
leukoplakia, possibly pre-cancerous lesions (Pinotti et al, 1996). One of
the serious late consequences of chagasic megaesophagus is the
increased risk (3% to 8%), of developing esophageal squamous cell
carcinoma (ESCC) compared to when megaesophagus is not present
(Bektas et al, 2001; Brüncher et al., 2001, Gockel et al, 2006). Also, ESCC
develops in chagasic megaesophagus patients at a younger age than in
those without this disease (Crawford, 2004). The detection of cancer in
these patients is complicated because the symptoms are hidden by the
severe dysphagia caused by megaesophagus (Chino et al, 2000), and the
diagnosis is made frequently only in advanced stage (Haubrich; Schaffner;
Berk, 1995) resulting in a poor prognosis (Brücher et al, 2001).
ESCC has been reported as the ninth most common
malignancy and ranks the sixth most frequent cause of death over the
world, but its incidence varies extremely among regions (Health A to Z,
2008; INCA, 2008) The American Cancer Society estimated around
16,470 new cases of esophageal carcinoma in the USA population for
130
2008 (American Cancer Society, 2008). The Brazilian National Institute of
Research in Cancer (INCA) reported that esophageal cancer was the sixth
in the cancer rank of mortality in 2000 with 5,307 deaths (INCA, 2008) and
estimated about 10550 new cases in 2008 of this malignancy ranging
among geographical areas from 1.04 to 19.07 in males and from 0.39 to
7.58 in 100,000 in females (INCA 2008).
Geographical variations and higher incidence in patients
over 40-year old favors a multifactorial origin for ESCC, and the
involvement of environmental factors such as smoking and alcoholic habits
has been long known (Matsuo et al., 2001; Kuwano et al., 2005; Pelucchi
et al., 2008). In addition to the environmental and pathogenic factors,
genetic alterations, such as chromosomal aneuploidies, allelic deletions,
activation of oncogenes and inactivation of tumor suppressor genes are
associated with esophageal carcinogenesis (Kuwano et al., 2005;
Daigo;Nakamura, 2008; D’Amico, 2008). Most of these phenomena are
associated with genomic imbalances, such as gene amplification, over-
representation or loss (Daigo;Nakamura, 2008; D’Amico, 2008).
In ESCC, different techniques of molecular cytogenetic
have shown unbalanced genomic regions implicated with the amplification
of some oncogenes and deletion of tumor suppressor genes (Kuwano et
al., 2005; Daigo;Nakamura, 2008; D’Amico, 2008). In this study were
selected FHIT, TP63, PIK3CA, EGFR, FGFR1, MYC, CDKN2A, YES1 and
NCOA3 genes, frequently unbalanced in ESCC (Pack et al., 1999;
Shinomyia et al., 1999; Du Plessis et al., 1999; Pimkhaokham et al., 2000;
Yen et al., 2001; Ishizuka et al., 2002; Nakakuki et al., 2002; Arai et al.,
2003; Shiomi et al., 2003; Yen et al., 2005; Su et al., 2006; Wang et al.,
2006)
The amplification of the tumor suppressor gene TP63
(3p28, whose protein plays in the development and maintenance of
stratified epithelial tissues) has been described by Yen et al. (2003, 2005),
in early stage of ESCC carcinogenesis but down-regulated in advanced
131
stage of disease. (Yen et al., 2005). However, losses at 3p and 9p,
correspondent to the FHIT and CDKN2A respectively, were lost in some
cases of ESCC (Du Plessis et al, 1999, Pack et al, 1999, Shinomiya et al,
1999, Pimkhaokham et al, 2000, Yen et al, 2001, Arai et al, 2003, Shiomi
et al, 2003, Su et al, 2006, Wang et al, 2006).
Amplification of PIK3CA (3q26), whose protein represents
the catalytic subunit, which uses ATP to phosphorylate
phosphatidylinositol, was assessed ESCC (Yen et al. 2003; Yang et al.,
2008, National Center for Biotechnology Information, 2009). FISH using
BAC clones containing oncogene PIK3CA found that gene was amplified
in 6 cell lines. Q-PCR analysis of primary tumors revealed amplification of
PIK3CA in 100% of the cases (Yen et al., 2003) .Positive correlation was
found only between amplification and tumor size, lymph node metastasis
and clinical stage. PIK3CA gene amplification was highly correlated with
protein overexpression, suggesting that gene amplification is one
important mechanism involved in PIK3CA overexpression (Yang et al.,
2008).
Overexpression of membrane receptors has been
reported in various cancers, and it has been suggested that it may be a
poor prognostic factor in cases with solid tumors (Sugiura et al, 2007).
EGFR (7p12) is a cell surface protein that binds to epidermal growth factor.
Binding of the protein to a ligand induces receptor dimerization and
tyrosine autophosphorylation and leads to cell proliferation (National
Center for Biotechnology Information, 2009). Overexpression of EGFR is
observed in many cancers, sometimes accompanied by gene amplification.
By FISH, EGFR gene showed amplification in ESCC (Sunpaweravong et
al., 2005; Hanawa et al., 2006). Also, EGFR gene overrepresentation
(balanced gene and chromosome 7 polysomy) was common event in
ESCC (Mimura et al., 2005; Sunpaweravong et al., 2005). The co-
expression of both aFGF and FGFR1 (8p12) was associated with a larger
tumor area and poorer prognosis what suggests the membrane receptors
132
may promote proliferation of esophageal cancer cells in an angiogenesis-
independent and autocrine manner, and may contribute to rapid growth of
esophageal cancer on recurrence after esophageal resection (Sugiura et
al, 2007).
Ishizuka et al. (2002) and Arai et al. (2003) detected
amplification of MYC (8q24) by aCGH. MYC was found to be amplified in
the 3 ESCC cell lines (Ishizuka et al., 2002) and in 9 of 20 tumors found on
the microarray, but it was located on chromosomal regions that showed no
increase in DNA copy number by CGH (Arai et al., 2003).
YES1 (18p11.31, protein has tyrosine kinase activity)
amplification was detected by FISH, what suggests it is likely to be
candidate target for 18p11.3 amplification and be associated with
esophageal carcinogenesis (Nakakuki et al., 2002, National Center for
Biotechnology Information, 2009).
NCOA3 (20q12), which the protein is a nuclear receptor
coactivator that interacts with nuclear hormone receptors to enhance their
transcriptional activator functions, has been observed overexpressed and
with increased copy number in 46% and 13% of ESCCs, respectively (Xu
et al., 2007). Overexpression of NCOA3 was observed more frequently in
primary ESCCs in late T stages than that in earlier stages, but no
significant association of expression of NCOA3 and status of lymph node
metastases was observed. These results suggest that overexpression of
NCOA3 caused by genomic gain or other molecular mechanisms might
provide a selective advantage for the development and local invasion of
certain subsets of ESCC.
Despite the numerous genetic alterations reported in
esophageal carcinogenesis, studies in benign lesions with precancerous
potential as megaesophagus are scarce. This study investigated the
genomic status in chagasic megaesophagus of genes frequently
unbalanced in ESCC with the goal of identifying a potential panel of
markers of risk to cancer. Among the as FHIT, TP63, PIK3CA, EGFR,
133
FGFR1, MYC, CDKN2A, YES1 and NCOA3 and three DNA targets:
centromere 3, centromere 7 and centromere 9 used as control, by FISH
assay.
Material and Methods
1. Subjects Characterization
Formalin-fixed, paraffin-embedded (FFPE) esophageal
mucosa was obtained from 10 health individuals with histologically normal
esophagus (NM) and 40 patients with diagnosis of chagasic
megaesophagus (CM) who underwent middle and distal esophageal
biopsies from 2000 to 2007 at the Hospital de Base of the São José do
Rio Preto, SP, Brazil. The study was approved by the Institution Research
Ethical Committee (CEP) and by the Brazilian National Research Ethics
Committee (CONEP).
From 40 CM patients, 20 were male and 20 were female
and the mean age was 62.5 years (range: 40 83 years). Twenty-nine
were never-alcoholics, 3 were former-alcoholics (at least 5 years) and 8
were current alcoholics (at least 5 years); 18 were never-smokers, 6 were
former-smokers (at least 5 years) and 16 were current smokers (at least 5
years). The histological grade of megaesophagus was classified as I to IV,
based on the retention of contrast, diameter, tonicity of the lower sphincter
and the length of the esophagus body (de Rezende; Lauar; de Oliveira,
1960). This study cohort included 5 patients with megaesophagus grade I,
7 with grade II, 17 with grade III and 11 with grade IV. The group group
was followed-up until the end of this study and none individual developed
esophageal squamous cell carcinoma. The CM group was followed-up
until the end of this study and none individual developed esophageal
squamous cell carcinoma.
The control group (NM) was composed by 10 health
patients who were submitted to endoscopy under suspicion of dyspepsia,
but the histopathological analysis has shown normal esophageal mucosa.
134
In this group, seven individuals were female and three were male, and the
mean age was 42.4 (range: 26 - 67 years), where four were current
alcoholics and 6 were never alcoholics; 3 were current smokers and 7
were never smokers. Despite the groups composed for 10 patients, only
two of them was tested for each probe set.
2. Fluorescence In Situ Hybridization (FISH)
Serial m-thick sections were cut from each trimmed
paraffin block and mounted in glass slides pre-treated with 3-aminopropyl-
triethoxysilane/acetone solution. Tissue sections were incubated at 56°C
overnight, deparaffinized in Citrisolv (Fisher Brand, Cat #22-143975)
washes (three times for 10 min), and dehydrated in 100% ethanol. After
incubation in 2xSSC (Sodium chloride, sodium citrate solution, pH 7.0) at
75°C, sections were digested with proteinase K (0.25 mg/ml in 2xSSC, pH
7.0) at 45°C, rinsed in 2xSSC (pH 7.0) at room temperature for 5 min, and
dehydrated in an ethanol series.
The following DNA probe sets were used: EGFR/CEP7
(Abbott Molecular, Cat. # 32-191053), P16/CEP9 (CDKN2A, Abbott
Molecular, Cat. # 32-190078), c-MYC (Abbott Molecular, Cat. # 32-190006)
and homebrew probes: FGFR1 (RP11-350N15), FHIT (CTD-2196D15) /
centromere 3 (p alpha 3.5), TP63 (RP11 - 373I6) / PIK3CA (RP11 -
245C23) and YES1 (RP11-769O8) / NCOA3 (RP11-456N23). Each probe
set was applied to the selected area on a designated slide. The
hybridization areas were covered with glass coverslip and sealed with
rubber cement. Co-denaturation of chromosomal and probe DNAs was
performed at 8C for 10 min and hybridization was allowed to occur in a
humidified chamber at 37°C for 24 h for commercial probes and 48h for
homebrew probes. After hybridization, the slides were washed twice in
2xSSC/0.3% NP-40 at 73
o
C for 2min, rinsed in 2xSSC at RT for 2min,
dehydrated in 70%, 85% and 100% ethanol, allowed to air dry and
135
counterstained with 4’, 6’-diamino-2-phenylindole - DAPI, (0.3 ug/ml in
Vectashield Mounting Medium, Vector, Cat. # H-1200).
Microscopic analyses were performed in epifluorescence
microscope. Fluorescence signals were scored using single band filters for
DAPI, FITC (fluorescein), and Texas red, a double-band pass filter (FITC
and Texas red) and a triple-band pass filter (DAPI, FITC, and Texas Red).
Histological areas previously selected in the HE-stained sections were
identified in the fluorescence in situ hybridization (FISH)-treated slides.
Signals were scored in 100 epithelial nuclei per specimen, in at least four
distinct areas: 50 nuclei in the superficial layer (larger cells, closer to the
lumen) and 50 nuclei in the basal layer (darker HE-stained nuclei, smaller
cells, closer to the muscular layer). The scoring was performed in both
layers to check for differences between proliferate activity, since basal
layer cells are in high proliferative activity, whereas the superficial layer
cells are more mature.
For 3 genes, FHIT, EGFR and CDKN2A the experiments
were performed including centromeric sequences of carrier chromosomes
as an internal control, respectively chromosomes 3, 7 and 9. This design
was necessary for FHIT and CDKN2A since these genes are know for
their loss in cancer specimens.
3. Statistical Analysis
Descriptive statistics were calculated using an Microsoft Excel
macro template previously validated including mean copy number per cell,
standard deviation and frequency of cells with 1, 2 and 3 copies of each
DNA target tested, as well as the ratio for gene/control probe when
applicable. Comparisons between the superficial and basal layers were
done by t-student paired test, and between the experimental groups were
performed by t-student unpaired test; in both cases confidence level was
established as 0.05 (Graphpad, 2008). Association between age, gender
and life style factors (smoking and alcoholism), and megaesophagus
136
grade in the groups was compared by ANOVA and the comparisons for
aneusomies were done by χ
2
test. One exploratory analysis using three-
dimensional plots was performed for the percentages of genes status
classes.
Results
The descriptive indexes (mean and standard deviation) for
the genes FHIT, PIK3CA, TP63, EGFR, FGFR1, MYC, CDKN2A,YES1,
NCOA3 and centromeric sequences of chromosomes 3, 7 and 9, and the
results of the statistical analyses for comparison of mean copy numbers
between the superficial and basal layers in each group are presented in
Table 1. The range of the mean in the CM group was 1.49 - 1.79 in the
superficial layer and 1.45 - 1.79 in the basal layer. In the NM the mean
frequency ranged 1.35 1.77 in the superficial layer and 1.61-1.78 in the
basal layer. Superficial and basal layers did not show significant
differences, excepted for EGFR in the CM group (p=0.008), that showed
lower copy number in the basal layer. These results supported the
combination of both layers for comparison of each gene between the CM
and NM groups (Table 2). The total counting of copy number of the
PIK3CA, TP63, FGFR1, MYC, YES1 and NCOA3 genes are not
statistically different, when the groups CM and NM were compared.
However, the copy number of the gene CDKN2A was significantly lower
(p<0,0001) in the CM group compared to NM, the same was observed for
the centromere 9 (CEP9) (p=0.0002).
The gene/centromere ratio, for FHIT/CEN3, EGFR/CEP7
and CDKN2A/CEP9, genes for which a control probe (centromeric
sequence) was included in the assay, in all CM and NM specimens
analyzed was balanced, ranging from 0.96 to 1.00, and statistically
significant difference was not detected between the mean copy number for
each gene and its centromere (Table 3).
137
In the CM group there was no significant differences on
the mean copy number per cell for most genomic target according the
histological grades of megaesophagus (I, II, III and IV) excepted for MYC
and YES1 (Table 4), Similarly, significant associations with parameters
such as age and gender and life style factors (smoking and alcoholism), ,
at different groups, were also not observed (data not shown).
When frequencies of nuclei with balanced copy number or
loss and gain copy number for each target were evaluated (Table 5), only
PIK3CA showed higher frequency of cells with loss in CM compared to NM
(36.4% vs. 28.5%). Statistical analysis was not performed for gain due to
the scarcity of cells with this pattern.
An exploratory analysis using three-dimensional plots of the
percentages of genes status classes (loss, balanced and gain) for
individual patients is illustrated in Figures 1, 2 and 3. Several patients were
identified harboring deletions in specifics targets: CM36 (FHIT), CM13 and
CM19 (PIK3CA), CM 13 (TP63), CM30 (EGFR), CM12 (CDKN2A), CM7
(YES1), and CM16, CM34 and CM36 (CEP9). Other patients have shown
genomic gain for specific targets: CM11 and CM28 (PIK3CA), CM6 and
CM7 (TP63), CM3, CM6 and CM30 (MYC), CM30 (FGFR1), CM11 and
CM16 (CDKN2A), CM36 (NCOA3), and CM11 and CM21 (CEP9). Some
showing changes in more than one target. Interestingly, although no
statistical difference was observed among the megaesophagus grades,
excepted for MYC and YES1, most of the patients detected with loss or
gain in the exploratory analyses were diagnosed with advanced
megaesophagus grade III and IV.
The Figure 4 shows some FISH images for the unbalanced
genes and centromeric targets in the megaesophagus specimens.
Monosomies involving centromeres 3, 7, and 9 were also
investigated in each group (Table 6) and the cells were classified in three
classes: <2 copies, 2 copies and >2 copies. The CM group showed
significantly increased frequencies of cells with only one copy for
138
centromeres 7 and 9 (51% and 44%, respectively) in comparison to the
NM group (28% and 23%, respectively). The CM group also showed
numerically higher frequencies of cells with >2 copies of centromeres 7
and 9 (1.68% and 10.38%, respectively) than the NM group (0.50% and
0.00%, respectively), although it was not possible to perform statistical
analysis.
Discussion
The esophageal squamous cell carcinoma is one of the
most prevalent cancers worldwide and has multifactorial origin, in which
the environment plays very significant role (Health A to Z, 2008),
especially the abuse of alcohol and smoking (Matsuo et al., 2001;
Kuwano et al., 2005; Pelucchi et al., 2008). Besides the participation of
environmental and pathologic factors, several genetic alterations are
associated with ESCC, such as aneuploidies, allelic deletions, activation of
oncogenes and inactivation of tumor suppressor genes (Kuwano et al.,
2005; Daigo; Nakamura, 2008; D’Amico, 2008).
In the present study, the analysis of genomic status in CM
of DNA targets frequently unbalanced in ESCC as FHIT, TP63, PIK3CA,
EGFR, FGFR1, MYC, CDKN2A, YES1 and NCOA3; and the centromeres
3, 7 and 9 used as control, showed that the superficial and basal layers of
esophageal mucosa are similar, except for lower EGFR copy number in
the basal than in the superficial layer. The analysis for gene loss and of
centromeres, indicated only PIK3CA with loss pattern and monosomies of
the chromosomes 7 and 9 in the CM group. Despite the differences were
not statistically significant, we detected CM cases with loss for FHIT,
CDKN2A, EGFR, TP63, PIK3CA, YES1 and centromere 9 and cases with
gain for PIK3CA, TP63, MYC, FGFR1, CDNK2A, NCOA3 and centromere
9 sequences, most of all associated to grades III and IV of
megaesophagus. Although significant differences were detected on the
139
mean copy number only for MYC and YES1 among the histological grades
of megaesophagus.
Human esophageal carcinoma expresses multi-autocrine
growth factors and hormones including EGF. Overexpression of epidermal
growth factor receptor (EGFR) by tumor cells is closely correlated with
tumor invasion and poor prognosis. The accumulation and interaction of
several growth factors produced by tumor cells are necessary for the
progression of human esophageal and gastric carcinomas (Yoshida et al,
1990).
Evidence suggests the existence of a new model of EGFR
signaling pathway in which activated EGFR undergoes nuclear
translocation and subsequently regulates gene expression and potentially
mediates other cellular processes. Likely through its ability to upregulate
gene expression, the nuclear EGFR pathway is associated with the major
characteristics of more aggressive tumors such as increased proliferative
potential, nitric oxide synthesis, and accelerated G1/S cell cycle
progression (Lo; Hung, 2006). Increased expression of nuclear EGFR is
linked to poor clinical outcome in patients with oropharyngeal squamous
cell carcinomas (Psyrri et al, 2005). In this study, decrease in the copy
number of EGFR was found in the basal layer of CM in comparison to the
superficial layer and in one CM case there was EGFR loss (not statistically
significant), what could indicate that EGFR may be deleted in this benign
lesion.
The loss of CDKN2A function, preventing the blocking of
G1 phase appears to be a necessary event for the progression of pre-
cancerous cells to malignancy (Mori et al., 1994; Nuovo et al., 1999;
Li;Yang, 2003). In primary ESCC and cell lines, occurrence of point
mutations or deletions in the CDKN2A gene have been observed in 16%
of cases (Chen et al., 2006), but the most frequent phenomenon
responsible for CDKN2A inactivation is hypermethylation of the promoter
region. In ESCC and pre-neoplastic lesions several studies have shown
140
hypermethylation of CDKN2A with frequencies ranging from 20% to 88%.
This frequency increases gradually with the histological severity of the
disease and is associated with poor prognosis (Fukuoka et al., 2006; Guo
et al., 2006, Roth et al., 2006; Guo et al., 2007; Ito et al., 2007; Fujiwara et
al., 2008; Wang et al., 2008). The loss of p16 protein expression, detected
by immunohistochemical techniques, has been observed in 50% to 97% of
cases of ESCC (Kato et al., 2000; Ralhan et al., 2000; Takeuchi et al.,
2001; Chang et al., 2005; Guo et al., 2007; Fujiwara et al., 2008). The
current study could only detect the fraction of cases in which the loss of
CDKN2A was due to physical deletion. This higher frequency of CDKN2A
and centromere 9 losses in CM compared with NM, observed in the
present study, is also a phenomenon that associates CM with the
esophageal carcinogenesis process, because patients with idiopathic
achalasia and chagasic megaesophagus, with or without esophageal
carcinoma, showed changes in the expression of p16 (Chino et al., 2000)
and Bellini et al. (2008) observed a marginal decrease in the p16
expression in megaesophagus.
TP63 and PIK3CA were reported as oncongenic potential
in a variety of carcinomas (Yen et al, 2005). Gene amplification is one of
the basic mechanisms that lead to overexpression of oncogenes and
PIK3CA and TP63 are described as amplified in ESCC (Pimkhaokoham
et al, 2002; Yen et al, 2005). In our research, we found a statistically
significant difference in deletion of PIK3CA gene in CM, probably
indicating the loss of this gene in the early steps of esophageal
carcinogenesis. Overexpression of TP63 was found in most ESCC (Hibi et
al, 2000, 2001; Glickman et al, 2001; Hu et al, 2002). In a
immunohistochemistry study, TP63 protein was found highly expressed in
ESCC, dysplasia, and even in histologically normal epithelia of esophagus
adjacent to the cancerous tissues (Glickman et al, 2001). We found two
CM cases with numerical gain for PIK3CA, and two case with gains for
TP63, but none had significantly higher copy numbers.
141
Some CM cases were highlighted for deletion of FHIT in
chromosome 3 and EGFR in chromosome 7, however only chromosome
7 loss was statistically significant. Deletion in both FHIT alleles results in
loss of exons and concomitant failure in the transcript (Druck et al., 1997).
These genomic rearrangements alter the mRNA, leading to absence or
reduction of Fhit protein, which is associated with the development of
several kinds of cancer (Mori et al., 2000; Kuroki et al., 2003). Loss of
heterozygosity (LOH) has also been reported in low-grade dysplasia in
regions 3p14-p21 as early events in esophageal carcinogenesis (3p14.2).
The FHIT gene has been described as hypermethylated in 33% to 69.4%
of ESCC cases. Its hypermethylation is also significantly correlated with
deletion and loss of protein expression in esophageal carcinoma (Druck et
al., 1997).
In the present study, 3 cases showed gain for MYC, not
statistically significant. One mCGH study revealed gains of 8q23~ter,
including the MYC locus, but amplification of MYC was infrequent in ESCC
(1/20) by microarray (Arai et al., 2003) corroboting our results. We also
verified 10% (4/40) cases with FGFR1 gain like Ishisuka et al. (2002) who
identified 6% (2/32) of primary ESCC amplified in the locus 8p11. NCOA3
amplification was observed in 4.9% (2/41) of ESCC specimens (Fujita et
al., 2003), amplification/gain of NCOA3 gene was observed in 13%
(15/115) of cases, including high-level amplification in 5 cases (4.3%) and
low-level gain in 10 cases (8.7%) (Xu et al, 2008), similarly, we observed
2,5% of CM patients with gain for this gene.
The CM cases identified with genomics deletion and gain
were, in the most, grade III and IV, although no statistically significant,
excepted for the MYC and YES1 genes. Megaesophagus patients have
high variety in esophageal microbiota, which consists mainly of Gram-
positive anaerobic bacteria, correlated with the dilation grade (Pajecki et
al., 2002; Gockel et al., 2006). These data suggest that the level of dilation
and inflammation of megaesophagus could promote genetic damages and
142
could be related to increased risk of tumor development (Chino et al., 2000;
Bektas et al., 2001; Lehman et al., 2001).
Numerical alterations of chromosomes 7, 11 and 17 and
TP53 deletion, by FISH technique, have been reported in megaesophagus
by our research group in previous study (Manoel-Caetano et al., 2004).
However, recent subset analyses did not find mutations CDKN2A (exons 1
and 2) FHIT (exons 5 and 7), suggesting these events are uncommon in
CM (Manoel-Caetano et al., 2009). Similar data were found for p16 and
Fhit protein expression, with no significant decrease in the level of protein
expression in these patients (Bellini et al., 2008).
In conclusion, despite the relevance of genomic
imbalances involving TP63, EGFR, MYC, FGFR1, YES1 and NCOA3 in
the esophageal carcinogenesis, these genes were not found unbalanced
in chagasic megaesophagus. Only PIK3CA and CDKN2A showed deletion
pattern and losses of chromosomes 7 and 9 could be related to the early
process of carcinogenesis in chagasic megaesophagus. These findings
suggest that genomic imbalances are not promising biomarkers for
assessment of ESCC risk in CM.
Acknowledgements
The authors are grateful to Dr. Kenji Miyazaki and
Henrique Oliveira for collected the biopsies; Dr. Patricia Maluf Cury for
supply the paraffin embedded material; Dr. Sebastião Roberto Taboga
and Luiz Roberto Faleiros for help with histological sections. We also
thank Brazilian agency CAPES and UCCC Cancer Center of University of
Colorado for financial and technical support.
References
Bektas A, Yasa MH, Kuzu I, Dogan I, Unal S, Ormeci N (2001) Flow
Cytometric DNA analysis and immunohistochemical p53, PCNA and
143
histopathologic study in primary achalasia: preliminary results.
Hepatogastroenterology 48:408-412.
Bellini MF, Leite KRM, Cury PM, Silva AE (2008) p53, p16 and Fhit
proteins expressions in chronic esophagitis and chagas disease.
Anticancer Res. 28(6B):3793-3799.
Bizari L, Borim AA, Leite KR, Gonçalves F de T, Cury PM, Tajara EH and
Silva AE (2006) Alterations of the CCND1 and HER-2/neu (ERBB2)
proteins in esophageal and gastric cancers. Cancer Genet Cytogenet.
165(1):41-50.
Brasileiro Filho, G. (2006) Bogliolo Patologia. Guanabara Koogan, 7
th
ed.
Brücher BLDM, Stein HJ, Bartels H, Feussner H, Siewert JR(2001)
Achalasia and esophageal cancer: incidence, prevalence and prognosis.
World J Surg 25:745-749.
Chang MS Lee HS, Lee BL, Kim YT, Lee JS, Kim WH (2005) Differential
protein expression between esophageal squamous cell carcinoma and
dysplasia, and prognostic significance of protein markers. Pathol Res
Pract. 201(6):417-425.
Chen PL, Cheng YW, Chiang CC, Tseng SH, Chau PS, Tsai YY (2006)
Hypermethylation of the p16 gene promoter in pterygia and its association
with the expression of DNA methyltransferase 3b, Molecular Vision
12:1411-1416.
Chino O, Kijima H, Shimada H, Nishi T, Tanaka H, Oshiba G et al (2000)
Clinicopathological studies of esophageal carcinoma in achalasia: analysis
of carcinogenesis using histological and immunohistochemical procedures.
Anticancer Res 20:3717-3722.
Crawford JM (2004) The Gastrointestinal Tract. In: Cotran RS, Kumar V
and Collins T Pathologic basis of disease. Philadelphia: WB Saunders
Company 7
th
ed.
Daigo Y and Nakamura Y (2008) From cancer genomics to thoracic
oncology: discovery of new biomarkers and therapeutic targets for lung
and esophageal carcinoma. Gen Thorac Cardiovasc Surg. 56(2):43-53.
D'Amico TA (2006) Molecular biologic staging of esophageal cancer.
Thorac Surg Clin. 16(4):31-327
144
de Rezende J, Lauar KM, de Oliveira A (1960) Clinical and radiological
aspects of aperistalsis of the esophagus. Rev Bras Gastroenterol. 12:247-
262.
Druck T, Hadaczek P, Fu TB, Ohta M, Siprashvili Z, Baffa R et al (1997)
Structure and expression of the human FHIT gene in normal and tumor
cells. Cancer Res. 57:504-512.
Fujita Y, Sakakura C, Shimomura K, Nakanishi M, Yasuoka R, Aragane H
et al. (2003) Chromosome arm 20q gains and other genomic alterations in
esophageal squamous cell carcinoma, as analyzed by comparative
genomic hybridization and fluorescence in situ hybridization.
Hepatogastroenterol. 50(54):1857-1863.
Fujiwara S, Noguchi T, Takeno S, Kimura Y, Fumoto S, Kawahara K
(2008) Hypermethylation of p16 gene promoter correlates with loss of p16
expression that results in poorer prognosis in esophageal squamous cell
carcinomas. Dis of the Esophagus 21:125–131.
Fukuoka T, Hibi K, Nakao A (2006) Aberrant methylation is frequently
observed in advanced esophageal squamous cell carcinoma. Anticancer
Res. 26(5A):3333-3335.
Glickman JN, Yang A, Shahsafaei A, McKeon F, Odze RD (2001)
Expression of p53-related protein p63 in the gastrointestinal tract and in
esophageal metaplastic and neoplastic disorders. Hum Pathol.
32(11):1157-1165
Gockel I, Kammerer P, Brieger J, Heinrich UR, Mann WJ, Bittinger F et al
(2006) Image cytometric DNA analysis of mucosal biopsies in patients with
primary achalasia. World J Gastroenterol. 21(12 -19):3020-3025.
Guo M, Ren J, House MG, Qi Y, Brock MV, Herman JG (2006)
Accumulation of promoter methylation suggests epigenetic progression in
squamous cell carcinoma of the esophagus. Clin Cancer Res.
12(15):4515-4522.
Guo XQ, Wang SJ, Zhang LW, Wang XL, Zhang JH, Guo W (2007) DNA
methylation and loss of protein expression in esophageal squamous cell
carcinogenesis of high-risk area. J Exp Clin Cancer Res. 26(4):587-594.
Hanawa M, Suzuki S, Dobashi Y, Yamane T, Kono K, Enomoto N et al
(2006) EGFR protein overexpression and gene amplification in squamous
cell carcinomas of the esophagus. Int J Cancer. 118(5):1173-1180.
145
Haubrich WS, Schaffner F, Berk JE (1995) Gastroenterology. Philadelphia:
WB Saunders Company 5
th
ed.
Hibi K, Trink B, Patturajan M, Westra WH, Caballero OL, Hill DE et al
(2000) AIS is an oncogene amplified in squamous cell carcinoma. Proc
Natl Acad Sci 97(10):5462-5467.
Hibi K, Nakayama H, Taguchi M, Kasai Y, Ito K, Akiyama S et al (2001)
AIS overexpression in advanced esophageal cancer. Clin Cancer Res.
7(3):469-472.
Hu H, Xia SH, Li AD, Xu X, Cai Y, Han YL et al (2002) Elevated
expression of p63 protein in human esophageal squamous cell
carcinomas. Int J Cancer 102: 580-583.
Ito S, Ohga T, Saeki H, Watanabe M, Kakeji Y, Morita M et al. Promoter
hypermethylation and quantitative expression analysis of CDKN2A
(p14ARF and p16INK4a) gene in esophageal squamous cell carcinoma.
Anticancer Res. 27(5A):3345-3353, 2007.
Kato H, Yoshikawa M, Fukai Y, Tajima K, Masuda N, Tsukada K et al
(2000) An immunohistochemical study of p16, pRb, p21 and p53 proteins
in human esophageal cancers. Anticancer Res. 20:345-349.
Kraichely RE, Farrugia G (2006) Achalasia: physiology and
etiopathogenesis. Diseases of the esophagus 19:213-223.
Kuroki T, Trapasso F, Yendamuri S, Matsuyama A, Alder H, Mori M et al
(2003) Allele loss and promoter hypermethylation of VLH, RAR-beta,
RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in
esophageal squamous cell carcinoma. Cancer Res. 63:3724-3728.
Kuwano H, Kato H, Miyazaki T, Fukuchi M, Masuda N, Nakajima M et al
(2005) Genetic alterations in esophageal cancer. Surg Today 35:7-18.
Lana M de, Tafuri WL (2000) In: Neves DP Parasitologia Humana. São
Paulo: Atheneu, 10
th
ed.
Lehman MB, Clark SB, Ormsby AH, Rice TW, Richter JE, Goldblum JR
(2001) Squamous mucosal alterations in esophagectomy specimens from
patients with end-stage achalasia. Am J Surg Pathol 25:1413-1418.
146
Li L and Yang T (2003) Expression of Cdk4, cyclin D1 and Rb in
exogenous wild type P16 gene transfected bladder cancer cell line.
Colloids and Surfaces B: Biointerfaces 30:315–322.
Lo HW and Hung MC (2006) Nuclear EGFR signalling network in cancers:
linking EGFR pathway to cell cycle progression, nitric oxide pathway and
patient survival. British Journal of Cancer 94, 184 – 188.
Manoel-Caetano F da S, Borim AA, Caetano A, Cury PM, Silva AE (2004)
Cytogenetic alterations in chagasic achalasia compared to esophageal
carcinoma. Cancer Genet Cytogenet. 149(1):17-22.
Manoel-Caetano FS, Silveira AFP, Silva AE (2009) Gene mutations in
esophageal mucosa of Chagas disease patients. Anticancer Res, in press.
Matsuo K, Hamajima N, Shinoda M, Hatooka S, Inoue M, Takezaki T et al
(2001) Gene-environment interaction between an aldehyde
dehydrogenase-2 (ALDH2) polymorphism and alcohol consumption for the
risk of esophageal cancer. Carcinogenesis 22:913-916.
Mimura K, Kono K, Hanawa M, Mitsui F, Sugai H, Miyagawa N et al (2005)
Frequencies of HER-2/neu expression and gene amplification in patients
with oesophageal squamous cell carcinoma. Br J Cancer 92(7):1253-60.
Mori T, Miura K, Aoki T, Nishihira T, Mori S, Nakamura Y (1994) Frequent
somatic mutation of the MTS1/CDK4I (multiple tumor suppressor/cyclin-
dependent kinase 4 inhibitor) gene in esophageal squamous cell
carcinoma. Cancer Res. 54:3396-3397.
Mori M, Mimori K, Shiraishi T, Alder H, Inoue H, Tanaka Y et al. Altered
expression of Fhit in carcinoma and precarcinomatous lesions of the
esophagus. Cancer Res. 60:1177-1182.
Nuovo G, Plaia TW, Belinsky SA, Baylin SB, Herman JG (1999) In situ
detection of the hypermethylation-induced inactivation of the p16 gene as
an early event in oncogenesis. PNAS, 96(22):12754-12759.
Pajecki D, Zilberstein B, dos Santos MA, Ubriaco JA, Quintanilha AG,
Cecconello I et al (2002). Megaesophagus Microbiota: A Qualitative and
Quantitative Analysis. Journal of Gastrointestinal Surgery 6:723 – 729.
Pelucchi C, Galeone C, Montella M, Polesel J, Crispo A, Talamini R et al
(2008) Alcohol and tobacco use, and cancer risk for upper aerodigestive
tract and liver. Eur J Cancer Prev. 17(4):340-344.
147
Pimkhaokham A, Shimada Y, Fukuda Y, Kurihara N, Imoto I, Yang ZQ et
al (2000) Nonrandom Chromosomal Imbalances in Esophageal Squamous
Cell Carcinoma Cell Lines: Possible Involvement of the ATF3 and CENPF
Genes in the 1q32 Amplico Jpn J Cancer Res. 91:1126–1133.
Pinotti, HW (1996) In: Coelho JCU Aparelho Digestivo. Rio de Janeiro:
MDESI, 2
th
ed.
Psyrri A, Yu Z, Weinberger PM, Sasaki C, Haffty B, Camp R et al (2005)
Quantitative determination of nuclear and cytoplasmic epidermal growth
factor receptor expression in oropharyngeal squamous cell cancer by
using automated quantitative analysis. Clin Cancer Res 11: 5856–5862
Ralhan R, Mathew R, Arora S, Bahl R, Shukla NK, Mathur M (2000)
Frequent alterations in the expression of tumor suppressor genes
p16INK4A and pRb in esophageal squamous cell carcinoma in the Indian
population. J. Cancer Res. Clin. Oncol. 126:655-660.
Roth MJ, Abnet CC, Hu N, Wang QH, Wei WQ, Green L et al (2006) p16,
MGMT, RARbeta2, CLDN3, CRBP and MT1G gene methylation in
esophageal squamous cell carcinoma and its precursor lesions. Oncol
Rep. 15(6):1591-1597.
Safatle-Ribeiro AV, Ribeiro U Jr, Sakai P, Clarke MR, Fylyk SN, Ishioka et
al (2000) Integrated p53 histopathologic/genetic analysis of premalignant
lesions of the esophagus. Cancer Detect Prev. 24:13-23.
Sunpaweravong P, Sunpaweravong S, Puttawibul P, Mitarnun W, Zeng C,
Barón AE et al (2005) Epidermal growth factor receptor and cyclin D1 are
independently amplified and overexpressed in esophageal squamous cell
carcinoma. J Cancer Res Clin Oncol. 131(2):111-119.
Takeuchi H, Ozawa S, Ando N, Kitagawa Y, Mukai M, Ueda M et al.
(2001) Further evidence that altered p16/CDKN2 gene expression is
associated with lymph node metastasis in squamous cell carcinoma of the
esophagus. Oncol. Rep. 8:627-632.
Xu FP, Liu YH, Zhuang HG, Li L, Luo XL, Wen JM (2008) Role of AIB1
gene in development of esophageal squamous cell carcinoma and its
clinicopathologic significance. Zhonghua Bing Li Xue Za Zhi. 37(4):250-
254.
Wang J, Sasco AJ, Fu C, Xue H, Guo G, Hua Z, et al. (2008) Aberrant
148
DNA methylation of P16, MGMT, and hMLH1 genes in combination with
MTHFR C677T genetic polymorphism in esophageal squamous cell
carcinoma. Cancer Epidemiol Biomarkers Prev. 17(1):118-125.
Yen CC, Chen YJ, Pan CC, Lu KS, Chen PCH, Hsia JY et al (2005) Copy
number changes of target genes in chromosome 3q25.3-qter of
esophageal squamous cell carcinoma: TP63 is amplified in early
carcinogenesis but down-regulated as disease progressed. World J
Gastroenterol 11(9):1267-1272.
Yoshida K, Yasui W, Ito H, Tahara E (1990) Growth factors in progression
of human esophageal and gastric carcinomas. Exp Pathol. 40(4):291-300.
Internet References
American Cancer Society (2008) Internet Reference. Retrieved from
http://www.cancer.org. December 8
th
, 2008.
Graphpad, (2008) Internet Reference. Retrieved from
http://www.graphpad.com/instat. April 3
rd
, 2008.
Health A to Z (2008) Internet Reference. Retrieved from
http://www.healthatoz.com/healthatoz/Atoz/common/standard/transform.js
p?requestURI=/healthatoz/Atoz/ency/esophageal_cancer.jsp. December
8th 2008.
INCA, Instituto Nacional do Câncer Internet Reference. Retrieved from
http://www.inca.org.br. December 8
th
, 2008.
149
Table 1. Mean copy number per cell and standard deviation (SD) for the 12 DNA targets tested in esophageal mucosa, including 9 genes and 3 centromeric sequences.
Groups
N
Targets (Average±SD)
FHIT
3p14.2
PIK3CA
3q26.32
TP63
3q28
EGFR
7p12
FGFR1
8p12
MYC
8q24
CDKN2A
9p21
YES1
18p11.31
NCOA3
20q12
CEN3
Centromere 3
CEP7
Centromere
7
CEP9
Centromere
9
CM 40
S - Layer
1.77±0.08 1.76±0.09 1.77±0.11
1.52±0.12
a
1.78±0.01 1.76±0.09 1.49±0.08 1.67±0.13 1.65±0.11 1.77±0.08 1.53±0.12
1.53±0.09
B - Layer
1.78±0.08
1.78±0.08 1.78±0.09
1.45±0.15
b
1.76±0.10 1.75±0.09 1.50±0.07 1.67±0.12 1.64±0.11 1.79±0.07 1.50±0.16
1.53±0.09
Total
1.76±0.08 1.77±0.07 1.77±0.09
1.49±0.13
a,b
1.77±0.08 1.76±0.08 1.50± 0.06
1.67±0.11 1.64±0.10 1.77±0.07 1.52±0.13
1.53±0.07
Range
1.56-1.90 1.56-1.96 1.56-2.06 1.25-1.80 1.56-2.22 1.58-1.77 1.34-1.59 1.37-1.99 1.37-1.80 1.56-1.90 1.26-1.53 1.33-1.65
NM
S - Layer
1.35±0.49 1.70±0.09 1.70±0.09
1.60±0.00 1.63±0.01 1.66±0.01 1.76±0.14 1.70±0.08 1.66±0.11 1.71±0.07 1.67±0.01
1.77±0.15
B - Layer
1.75±0.04 1.78±0.11 1.78±0.11
1.74±0.01 1.70±0.03 1.74±0.02 1.72±0.01 1.68±0.13 1.61±0.01 1.76±0.08 1.79±0.04
1.77±0.04
Total
1.74±0.04 1.74±0.01 1.74±0.01
1.67±0.01 1.67±0.03 1.70±0.01 1.74±0.07
1.69±0.07 1.64±0.06 1.74±0.08 1.73±0.21
1.77±0.10
Range
1.71-1.77 1.64-1.86 1.64-1.86 1.60-1.75 1.62-1.72 1.69-1.70 1.69-1.79 1.58-1.75 1.59-1.68 1.68-1.79 1.76-1.82 1.70-1.84
CM, Chagasic Megaesophagus; NM, health individuals; SD, standard-deviation; S, superficial; B, basal; Statistical Analysis: t-Student (p<0.05);
a,b,
, p=0.008.
149
150
Table 2. Comparison among the chagasic megaesophagus (CM) and
normal mucosa groups based on total counting results for the targets
Targets
CM NM
Statistical
Analysis
Average ± SD
FHIT
1.77±0.08
1.73±0.22
ns
PIK3CA
1.77±0.07 1.74±0.02 ns
TP63
1.77±0.09 1.74±0.01 ns
EGFR
1.49±0.12 1.67±0.01 ns
FGFR1
1.77±0.08 1.67±0.01 ns
CDKN2A
1.50±0.08
1.74±0.07 * p<0.0001
MYC
1.75±0.07 1.70±0.01 ns
YES-1
1.67±0.11
1.69±0.08 ns
NCOA-3
1.64±0.10 1.64±0.06 ns
CEN3 1.77±0.08
1.74±0.08
ns
CEP7 1.51±0.13 1.73±0.02 ns
CEP9 1.53±0.08 1.77±0.10 * p=0.0002
SD, standard-deviation; Statistical Analysis: t-Student; * p<0.05; ns, p>0.05
Table 3. Comparison between gene and centromere targets
Gene-Centromere
CM NM
Average±SD Ratio Average±SD Ratio
FHIT 1.77±0.08 1.00 1.74±0.04
1.00
CEN3 1.77±0.08
1.74±0.08
t-Student
ns ns
EGFR 1.49±0.12 0.98 1.67±0.01 0.96
CEP7 1.51±0.13 1.73±0.02
t-Student
ns ns
CDKN2A 1.51±0.09 1.00 1.74±0.07 0.98
CEP9 1.54±0.10 1.77±0.10
t-Student
ns ns
chagasic megaesophagus, CM; SD, standard-deviation; normal mucosa, NM;
NP, assay was not performed; Statistical Analysis: t-Student (p<0.05); ns,
p>0.05.
151
Table 4. Mean copy number per cell and ranging of each genomic target in distinct grades of
megaesophagus
Targets
Megaesophagus Grade
ANOVA I II III IV
FHIT
1.66 ± 0.331 1.54±0.319 1.77±0.067 1.80±0.080 p = 0.0810
ns
1.0 - 1.86 1.0 - 1.83 1.66 - 1.88 1.68 - 1.92
PIK3CA
1.75 ± 0.009 1.78 ± 0.057 1.77 ±0.090 1.77 ± 0.067 p = 0.9319
ns
1.74 - 1.76 1.68 - 1.84 1.58 - 1.87 1.65 - 1.84
TP63
1.75 ± 0.033 1.78 ± 0.058 1.77 ± 0.997 1.78 ± 0.096 p = 0.8483
ns
1.71 - 1.79 1.68 - 1.83 1.58 - 1.89 1.65 - 1.99
EGFR
1.50 ± 0.130 1.51 ± 0.100 1.49 ± 0.109 1.47 ± 0.140 p = 0.9467
ns
1.36 - 1.68 1.34 - 1.61 1.3 - 1.73 1.25 - 1.8
FGFR1
1.77 ± 0.060 1.81 ± 0.057 1.76 ± 0.081 1.73 ± 0.120 p = 0.3936
ns
1.7 - 1.84 1.72 - 1.87 1.57 - 1.88 1.58 - 2.01
MYC
1.76 ± 0.062 1.81 ± 0.058 1.75 ± 0.083 1.71 ± 0.070 p = 0.0492 *
1.68 - 1.85
a,b,c
1.72 - 1.87
a,b
1.6 - 1.89
a,b,c
1.58 - 1.81
a,c
CDKN2A
1.50±0.057 1.48 ± 0.035 1.49 ± 0.081 1.51 ± 0.087 p = 0.8833
ns
1.42 - 1.55 1.44 - 1.53 1.34 - 1.59 1.34 - 1.69
YES-1
1.71 ± 0.088 1.64 ± 0.053 1.65 ± 0.088 1.57 ± 0.123 p = 0.0463 *
1.61 - 1.83
a
1.57 - 1.70
a,b
1.53 - 1.9
a,b
1.37 - 1.78
b
NCOA-3
1.72 ± 0.085 1.64 ± 0.075 1.68 ± 0.091 1.59 ± 0.136 p = 0.0685
ns
1.61 - 1.83 1.53 - 1.73 1.54 - 1.91 1.37 - 1.8
CEN3
1.80 ± 0.069 1.73 ± 0.106 1.77 ± 0.070 1.79 ± 0.079 p = 0.3806
n
s
1.69 - 1.86 1.56 - 1.83 1.66 - 1.88 1.68 - 1.92
CEP7
1.59 ± 0.129 1.52 ± 0.115 1.52 ± 0.097 1.50 ± 0.153 p = 0.5688
ns
1.41 - 1.74 1.34 - 1.64 1.35 - 1.68 1.26 - 1.78
CEP9
1.54 ± 0.068 1.53 ± 0.063 1.53 ± 0.094 1.54 ±0.094 p = 0.945
ns
1.45 - 1.62 1.44 - 1.62 1.33 - 1.63 1.34 - 1.69
ns
, p>0.05; * p < 0.05
152
Table 5. Frequencies of loss, balanced and gain of the genes in chagasic
megaesophagus (CM) and health patients (NM).
Target
Loss Balanced Gain
CM NM χ
2
test CM NM CM NM
FHIT
N
%
20
0.79
2
1.34
P= 10.672
ns
2478
98.96
144
96.64
6
0.24
3
2.04
PIK3CA
N
%
898
36.39
57
28.50
P=0.000
+
*
1530
61.99
139
69.50
35
1.42
4
2.00
TP63
N
%
885
23.29
58
29.00
P=2.579
ns
2878
75.74
136
68.00
37
0.97
6
3.00
EGFR
N
%
298
7.59
12
6.00
P=1.067
ns
3433
88.03
187
93.50
171
4.38
1
0.50
FGFR1
N
%
928
24.38
68
34.00
P=4.172
ns
2833
74.41
121
60.50
46
1.21
1
0.50
MYC
N
%
918
24.00
62
31
P=4.812
ns
2849
75.00
135
67.50
33
0.01
2
1.00
CDKN2A
N
%
183
4.69
6
3.00
P=17,702
ns
3649
93.56
194
97.00
68
1.74
0
0.00
YES1
N
%
1381
36.34
62
31.00
P=2.171
ns
2407
63.34
136
68.00
12
0.32
2
1.00
NCOA3
N
%
45
1.86
8
5.80
P= 3,627
ns
2366
97.81
130
94.20
8
0.33
0
0.00
N, number of cell counted; Statistical Analysis, χ
2
test: *, p<0.05,
ns
p>0.05
153
Table 6. Frequencies of nuclei with aneusomies of 3, 7 and 9 centromeres in the
different groups
Centromere
CM
NM
Statistical
Analysis
N %
N %
CEN 3
< 2 copies
683 21.00
54 27.00
P = 0.470
ns
2 copies
2510 78.44
145 72.50
> 2 copies
7 0.56
1 0.50
CEP 7
< 2 copies
1637 51.16
56 28.00
P = 0.00
+
*
2 copies
1509 47.16
143 71.50
> 2 copies
54 1.68
1 0.50
CEP9
< 2 copies
1400 43.75
46 23.00
P = 0.00
+
*
2 copies
1468 45.87
154 77.00
> 2 copies
332 10.38
0 0.00
CM, Chagasic Megaesophagus; NM, normal mucosa; N number of cells counted;
Statistical Analysis, χ
2
test: *, p<0.05,
ns
p>0.05.
154
Legend of figures:
Figure 1. Exploratory analysis using three-dimensional plots of the
percentages of loss genes status for individual patients is illustrated.
EGFR, CM30 ~ 30% of loss; FHIT, CM36 ~10% of loss and YES1, CM7
~60% of loss
Figure 2. Exploratory analysis using three-dimensional plots of the
percentages of gain and loss genes status for individual patients is
illustrated. PIK3CA, CM13 and CM19 ~ 40% of loss, CM28 and CM11,
between 5 and 10% of gain; TP63, CM13 ~ 45% of loss, CM6 and CM7
~10% of gain; CDKN2A, CM12 ~12% of loss, CM 11 and CM 16 ~ 6% of
gain; CEP9, CM16, CM34 and CM 36 ~ 60% of loss, CM1 and CM 21 ~
6% of gain.
Figure 3: Exploratory analysis using three-dimensional plots of the
percentages of gain genes status for individual patients is illustrated.
NCOA3, CM36 ~ 4,5% of gain; MYC, CM3, CM6 and CM30 between 5
and 7.5% of gain; FGFR1, CM30 ~10% of gain.
Figure 4. FISH images for the unbalanced genes and centromeric targets
in the megaesophagus specimens.
CM30
EGFR Mean frequency in the CM
Loss = 6.84%
CM36
Mean frequency in the CM
Loss = 0.63%
FHIT
CM7
155
Mean frequency in the CM
Loss = 36.34%
YES1
Figure 1.
Health patients
L
o
s
s
Gain
Megaesophagus patients
CM13
CM19
CM11
CM28
CM6
CM7
PIK3CA
Mean frequency in the CM
Loss: 23.63%
Gain: 0.92%
TP63
CM13
CM6
CM7
Mean frequency in CM
Loss: 23.29%
Gain: 1.07 %
CM36, CM16, CM34
156
Health patients
L
o
s
s
Gain
CM12
CDKN2A
CM11
CM16
Mean frequency in the CM
Loss: 4.76%
Gain: 1.79%
Mean frequency in the CM
Loss: 46.5%
Gain: 1.21%
Centromere 9
CM21
CM1
Figure 2.
Megaesophagus patients
Mean frequency in the CM
Gain = 0.21%
NCOA3
CM36
CM30
CM3
CM6
Mean frequency in the CM
Gain = 0.87%
MYC
CM30
CM19
CM3, CM7
157
CM30
Mean frequency in the CM
Gain = 1.21%
FGFR1
Figure 3.
Health patients
L
o
s
s
Gain
Megaesophagus patients
CDKN2A
CEP9
A. Loss CDKN2A and centromere 9
EGFR
CEP7
B. Loss of EGFR and centromere 7
158
FHIT
CEN3
C. Loss FHIT and gain of centromere 3
TP63
PIK3CA
D. Gain of TP63 and loss of PIK3CA
Figure 4.
Discussão
160
III. DISCUSSÃO
No presente estudo, a avaliação de alterações na expressão de
proteínas reguladoras do ciclo celular, como p53, p16 e Fhit, e dos níveis de
Ki67 e CPP32, em lesões benignas do esôfago com potencial pré-canceroso
mostrou expressão aumentada da proteína p53 com um aumento crescente
de casos p53 positivos de acordo com a severidade da lesão (megaesôfago,
esofagite e carcinoma). Assim indicando participação desta nas etapas
iniciais da carcinogênese do esôfago. Entretanto, para as proteínas p16 e
Fhit não foram observadas alterações importantes em suas expressões entre
os diferentes grupos. Da mesma forma, também não se observou alterações
significantes nos níveis de proliferação celular e apoptose nos grupos de
lesões benignas, mas apenas uma freqüência maior de casos CPP32
positivos nos carcinomas. Também não foi evidenciada a ocorrência de
concordância na expressão alterada das proteínas p53, p16 e Fhit nos
grupos avaliados, nem associação da expressão alterada da p53 com a
expressão de CPP32 e antígeno Ki67. Nestas avaliações não foi possível
estabelecer associações entre essas proteínas e parâmetros como idade,
sexo e hábitos tabagista e etilista. O estudo citogenético molecular em
pacientes com megaesôfago chagásico, pela técnica FISH, para avaliação
de perdas e ganhos de genes freqüentemente em desequilíbrio em
carcinoma esofágico (FHIT, TP63, PIK3CA, EGFR, FGFR1, MYC, CDKN2A,
YES1, NCOA3, e centrômeros 3, 7 e 9), mostrou que o número de cópias
dos genes nas camadas superficial e basal da mucosa esofágica eram
estatisticamente diferentes apenas para EGFR, com menor número de
cópias na camada basal. Neste estudo, observaram-se diferenças
significantes no grupo de megaesôfago como perda de CDKN2A, PIK3CA e
161
dos cromossomos 7 e 9, associados principalmente aos graus III e IV do
megaesôfago, ainda que diferença significativa não tenha sido observada
entre o número de cópias para a maioria dos alvos genômicos estudados e
os graus de megaesôfago, exceto para os genes MYC e YES1.
O gene TP53 desempenha papel importante na regulação do
ciclo celular, mas quando alterado é um dos principais genes envolvidos em
cerca de 50% das neoplasias humanas (ASKER; WIMAN; SELIVANOVA
1999). No presente estudo pode ser constatado um aumento crescente de
casos p53 positivos a partir do grupo de chagásicos sem megaesôfago
(7,7%), com megaesôfago (26,1%), esofagite crônica (52,2%) e carcinoma
esofágico (100%). Fuji et al. (2000), avaliando a natureza pré-maligna de
megaesôfago, analisaram a expressão de p53, por imuno-histoquímica, em
pacientes com carcinoma esofágico que apresentavam megaesôfago e as
regiões de epitélio não maligno com esofagite e/ ou displasia. Os autores
verificaram expressão aumentada de p53 nos tumores, mas não no epitélio
não-neoplásico, como na esofagite e displasia. Contudo, no epitélio de
megaesôfago, observou além de alterações histológicas em vários graus, a
expressão aumentada de p53. Da mesma forma, Fagundes et al. (2005)
também detectaram a imunoexpressão da proteína p53 de forma crescente
em indivíduos com mucosa normal (12%), esofagite moderada (22%),
esofagite severa (33%), displasia (36%) e carcinoma (100%), com
predomínio da expressão em fumantes e etilistas, sugerindo que pacientes
que apresentam esofagite crônica, com hiperexpressão de p53 têm risco
elevado para desenvolver câncer de esôfago. Entretanto, mais recentemente,
Gockel et al. (2006), não encontraram positividade de p53 em nenhum dos
15 pacientes com megaesôfago estudados. ,
Os pacientes com megaesôfago chagásico frequentemente
apresentam esofagite crônica, devido à retenção do bolo alimentar (estase
esofágica) no esôfago dilatado, aumentando o risco de proliferação
162
bacteriana e danos à mucosa (CHINO et al., 2000; FUJI et al., 2000;
PAJECKI et al., 2002). Entre essas bactérias estão caracterizadas aquelas
pertencentes a microbiota normal da boca e orofarínge, que são
responsáveis por criar um ambiente favorável a microrganismos anaeróbios,
capazes de reduzir nitratos em nitritos, gerando carcinógenos, que poderão
desencadear o processo de carcinogênese esofágica (PAJECKI et al., 2002).
No estudo realizado 69% dos pacientes com megaesôfago também
apresentavam esofagite crônica. Portanto, os casos com expressão alterada
de p53, (6/23) em megaesôfago chagásico e (12/23) em esofagite crônica,
podem ter ocorrido em resposta ao processo inflamatório e/ou a injúrias no
DNA, enquanto que em carcinoma de células escamosas de esôfago a
expressão acentuada da proteína nos 11 casos estudados deve estar
relacionada com mutações no gene TP53. A freqüência maior de casos p53
positivos no grupo de esofagite crônica reforça a participação do processo
inflamatório na expressão dessa proteína. Murphy et al. (2005) observaram
um aumento moderado no risco de desenvolvimento de carcinoma de
esôfago, mas não de adenocarcinoma em pacientes com esofagite,
confirmando que a lesão precursora de adenocarcinoma seja o esôfago de
Barret e que esofagite possa ser uma lesão precursora de carcinoma de
células escamosas do esôfago.
A perda ou redução da expressão da proteína p16 pode estar
associada com mutações de ponto, deleções, perda de heterozigose ou
processos que inativam a expressão gênica, como a hipermetilação da
região promotora (HU et al., 2004; KRÜGER et al., 2005; SANTIN et al.,
2005). Em estudo de carcinoma esofágico familial e esporádico, no Irã, foi
observado que 64,3% dos membros da família estudada apresentavam o
gene CDKN2A (MTS-1; P16) com hipermetilação na região promotora. Nos
casos esporádicos, essa freqüência foi maior nas amostras de tecido tumoral,
ou seja, 73,3%, mas nas amostras de soro e sangue, dos mesmos pacientes,
163
a hipermetilação foi de 26,6% e 43,3%, respectivamente (ABBASZADEGAN
et al., 2005). Assim, revelando uma forte associação com o processo de
hipermetilação do gene apenas no tecido tumoral, e indicando que o gene
CDKN2A mutante pode ser utilizado como biomarcador na identificação
precoce de carcinoma esofágico em populações de alto risco e em casos de
história familiar. No presente estudo, entretanto, a análise da expressão da
proteína p16 em pacientes com lesões esofágicas benignas e em carcinoma
esofágico se mostrou significantemente alterada apenas no grupo de
esofagite crônica, visto que foram encontradas perdas na expressão desta
proteína em freqüência elevada também no grupo de mucosa normal.
Entretanto, o estudo citogenético molecular ora realizado mostrou média
menor de número de cópias de CDKN2A e do centrômero 9 no grupo de
megaesôfago, indicando perda desses alvos genômicos nesta lesão.
A expressão anormal da proteína Fhit foi descrita como um
evento freqüente no estágio inicial do desenvolvimento do carcinoma de
esôfago, devido à perda completa ou redução da expressão, aumentando de
acordo com a progressão da severidade das alterações histopatológicas da
mucosa, ou seja, de displasia (média, moderada e severa) para carcinoma in
situ e carcinoma invasivo (MORI et al., 2000; KITAMURA et al., 2001). No
presente estudo, essa expressão anormal foi observada principalmente no
grupo de esofagite, mas a análise estatística empregada não mostrou
diferença entre os grupos estudados. A análise citogenética de perdas e
ganhos destacou um caso de megaesôfago com deleção de FHIT, embora
não tenha sido observado diferenças significantes na média de número de
cópias desse gene e centrômero 3 entre os grupos de megaesôfago e
mucosa normal.
As alterações necessárias para o surgimento de câncer
envolvem vários genes que controlam o crescimento, a proliferação celular e
a homeostase do tecido por meio de apoptose (KOCH et al., 1994). Um dos
164
marcadores de proliferação celular é o antígeno nuclear Ki67 expresso nas
fases G1, S e M do ciclo celular. A expressão aumentada de Ki67 nuclear
tem sido associada à progressão de uma variedade de tumores (LUTTGES
et al., 2000 apud LEBE et al., 2004). Nos grupos de mucosa normal,
chagásicos sem megaesôfago, esofagite crônica e carcinoma 100% dos
casos foram classificados como Ki67 positivos, pois apresentaram mais de
10% de positividade para marcação do antígeno. Enquanto que no grupo de
megaesôfago 91,3% casos foram positivos para Ki67. Porém, a análise
estatística para os casos positivos, não indicou diferenças estatisticamente
significativas entre os grupos.
A avaliação de apoptose utilizando a marcação
citoplasmática da proteína caspase-3 (CPP32) em lesões primárias de ESCC
tem mostrado que 60% dos casos são positivos (HSIA et al., 2003). No
presente estudo, a coloração positiva para CPP32 foi observada em poucos
casos de mucosa normal 20% (2/10), sendo interpretada como nível normal
de apoptose, e em frequências similares entre os grupos CD, CM e CE
respectivamente, 30,8% (4/13), 30,4% (7/23) e 34,8% (8/23), mas
aumentada em ESCC, 55,5% (5/9), corroborando alguns estudos da
literatura sugerindo que este evento esteja relacionado com melhor
prognóstico.
A proteína p53 desempenha uma importante função na
indução de apoptose em resposta a danos no DNA (LEVINE, 1997; STEELE
et al., 1998). As células bloqueadas na fase G
1
permitem o reparo ou
induzem a apoptose se houver falhas nesse mecanismo, prevenindo assim,
a transmissão de lesões no DNA às células filhas (LANE, 1992, 1994). Nesse
contexto, a inativação da proteína p53 pode promover a desregulação do
ciclo celular e a inibição de apoptose, fornecendo forte vantagem no
crescimento de células tumorais, como evidenciado no presente estudo, em
que observamos alteração na expressão da proteína p53 nas lesões
165
benignas e carcinoma. Entretanto, não foram estabelecidas associações
entre a expressão alterada da proteína p53 com o antígeno Ki67 ou a
proteína CPP32.
Além de fatores ambientais e patogênicos, alterações
genéticas, como aneupolidias, deleções alélicas, ativação de oncogenes e
inativação de genes supressores tumorais estão associadas a carcinogênese
esofágica (KUWANO et al., 2005; DAIGO;NAKAMURA, 2008; D’AMICO,
2008). Estudos de citogenética molecular, como mCGH, aCGH, SKY e FISH
indicam algumas regiões cromossômicas como alvo de alteração durante o
desenvolvimento do câncer. Entre elas podemos citar as regiões 1, 2q, 3q,
5p, 6p, 7, 8q, 9q, 11q, 12p, 14q, 15q, 16, 17, 18p, 19q, 20q, 22q e X, para
ganhos, com amplificações em 1q32, 2p16-22, 3q25-28, 5p13-15.3, 7p12-22,
7q21-22, 8q23-24.2, 9q34, 10q21, 11p11.2, 11q13, 13q32, 14q13-14, 14q21,
14q31-32, 15q22-26, 17p11.2, 18p11.2-11.3, 20p11.2; e as seguintes regiões
envolvidas em perdas 3p, 4, 5q, 6q, 7q, 8p, 9, 10p, 12p, 13, 14p, 15p, 18,
19p, 20, 22, Xp and Y (SHIMADA et al., 1992; PACK et al., 1999;
SHINOMIYA et al., 1999; MAYAMA et al., 2000; PIMKHAOKHAM et al. 2000;
YEN et al., 2001, 2003; KAMITANI et al., 2002; HSIA et al., 2003; KWONG et
al., 2004; QIN et al., 2004, 2005ab, 2008; SU et al., 2006; SUGIMOTO et al.,
2007; YANG et al. 2008). Além dessas regiões, os genes PIK3CA (3q26),
TP63 (3p28), EGFR (7p11), YES1 (18p11.31) e NCOA3 (20q12) foram
encontrados amplificados em freqüências elevadas, enquanto sào
encontradas deleções nos genes supressores de tumor CDKN2A (9p21),
MTAP (9p21) and TP53 (17p13.1) em ESCC (SHIMADA et al., 1992;
PIMKHAOKHAM et al., 2000; NAKAKUKI et al., 2002; YEN et al., 2003; XU et
al., 2007; CARNEIRO et al., 2008).
No presente estudo, a análise de perdas e ganhos, no grupo
de megaesôfago, de genes freqüentemente em desequilíbrio em ESCC,
mostrou que o número de cópias do gene EGFR era menor na camada basal
166
da mucosa esofágica que na superficial, e um caso de megaesôfago foi
destacado para perda desse gene. Outras alterações também foram
evidenciadas como uma média menor de número de cópias de CDKN2A e
centrômero 9, padrão de deleção do gene PIK3CA e perda dos
cromossomos 7 e 9. Apesar dos demais genes investigados não
apresentarem alterações significantes, podemos destacar alguns casos de
megaesôfago com ganho em PIK3CA, TP63, CDKN2A, FGFR1, MYC,
NCOA3 e centrômero 9, ou deleção em FHIT, PIK3CA, EGFR, CDKN2A,
TP63, YES1 e centrômero 9, sempre associados aos graus III e IV de
megaesôfago. Sabe-se que pacientes com megaesôfago apresentam grande
variedade na microbiota esofágica, correlacionadas ao grau de dilatação
esofágica e processo inflamatório (PAJECKI et al., 2002; GOCKEL et al.,
2006).Portanto, a maior incidência de câncer nos pacientes portadores de
megaesôfago pode estar relacionada à ocorrência dessas alterações
inflamatórias da mucosa, desencadeando alterações genéticas (PINOTTI et
al., 1996), como evidenciado neste estudo. Apesar de, até a conclusão deste
estudo, as informações dos prontuários médicos dos pacientes com
megaesôfago o revelaram nenhum caso que tenha evoluído para
carcinoma. Dessa forma, esses achados citogenéticos em megaesôfago,
assim como a expressão alterada da proteína p53 tanto em megaesôfago
como em esofagite crônica são relevantes, pois evidenciam a ocorrência de
alterações genéticas em lesões benignas precursoras como eventos
precoces que devem participar das etapas iniciais da carcinogênese do
esôfago.
Conclusões
168
IV. CONCLUSÕES
No presente estudo, considerando-se as amostras
avaliadas e as técnicas utilizadas, obtemos as seguintes conclusões:
a) A expressão da proteína p53 é aumentada nas lesões benignas
estudadas, obedecendo a uma progressão em relação à severidade
histopatológica da lesão, a partir do megaesôfago, esofagite crônica e
carcinoma indicando sua participação desde os estágios iniciais a
tardios da carcinogênese esofágica;
b) A expressão das proteínas p16 e Fhit não apresentam alterações
significantes nos grupos de lesões benignas e carcinomas avaliados, não
havendo indicação de que desempenhem um papel importante na
progressão das lesões estudadas;
c) Não concordância no padrão de expressão das proteínas p53,
p16 e Fhit nas lesões benignas e carcinoma, entretanto expressão
alterada das proteínas p53 e p16, p53 e Fhit, p16 e Fhit podem estar
associadas nestas lesões durante o processo de controle do ciclo celular;
d) Não evidências de alterações nos níveis de expressão do
antígeno Ki67 e da proteína caspase-3, indicando ausência alterações
significantes nas taxas de proliferação celular e apoptose nas lesões
estudadas;
e) Da mesma forma, também não evidências de associações
entre a expressão alterada das proteínas p53, p16, Fhit, CPP32 e
antígeno Ki67 com parâmetros como sexo, idade, hábitos tabagista e
etilista nas lesões benignas e carcinomas do esôfago avaliados;
169
f) Apesar da relevância de desequilíbrios gênicos em TP63, EGFR,
MYC, FGFR1, YES1 e NCOA3 em carcinoma de esôfago, estes genes
não apresentam padrões de perda ou ganho em megaesôfago chagásico.
Assim não devem encontrar-se desbalanceados neste tipo de lesão do
esôfago;
g) Apenas os genes PIK3CA e CDKN2A apresentam padrão de
deleção em megaesôfago chagásico, juntamente com perda dos
cromossomos 7 e 9, sendo consideradas como alterações iniciais do
processo carcinogênico do esôfago.
h) A observação de que regiões genômicas com desequilíbrios na
carcinogênese esofágica não são significativamente afetadas em
megaesôfago chagásico sugere que não será possível utilizar tais
características como marcadores eficazes de risco para desenvolvimento
de carcinoma em megaesôfago.
Referências
Bibliográficas
171
REFERÊNCIAS BIBLIOGRÁFICAS
ABBASZADEGAN, M.R. et al. Aberrant p16 methylation, a possible
epigenetic risk factor in familial esophageal squamous cell carcinoma. Int J
Gastrointest Cancer, v. 36, n. 1, p. 47-54, 2005.
ARAI, H. et al. Detection of amplified oncogenes by genome DNA
microarrays in human primary esophageal squamous cell carcinoma:
comparison with conventional comparative genomic hybridization analysis.
Cancer Genet Cytogenet. v. 146, p.16–21. 2003
ASKER, C.; WIMAN, K.G.; SELIVANOVA, G. p53-induced apoptosis as a
safeguard against cancer. Biochemical and Biophysical Research
Communications, v. 265, p. 1- 6, 1999.
BEKTAS, A. et al. Flow Cytometric DNA analysis and
immunohistochemical p53, PCNA and histopathologic study in primary
achalasia: preliminary results. Hepatogastroenterology, v.48, p.408-412,
2001.
BENCHIMOL, S. et al. Transformation associated p53 is encoded by a
gene on human chromosome 17. Som. Cell Mol. Gen., v.11, p. 505 – 509,
1985.
BLANCHARD, C. et al. Eotaxin-3 and uniquely conserved gene-
expression profile in eosinophilic esophagitis. The Journal of Clinical
Investigation, v. 116, n. 2, p. 536-547, 2006.
BLANKENBERG, FG; TAIT, JF; STRAUSS, W. Apoptotic cell death: its
implications for imaging in the next millennium. Eur. J. Nucl. Med., v.27, p.
359 - 367, 2000.
BRASILEIRO-FILHO, G. Bogliolo Patologia. 7ª ed. Rio de Janeiro:
Guanabara Koogan, 2006. 1488 p. ISBN: 8527712229
BRETON, J. et al. Simultaneous use of DGGE and DHPLC to screen
TP53 mutations in carcers of the esophagus and cardia from a European
172
high incidence area (Lower Normandy, France). Mutagenesis, v. 18,
p.299-306, 2003.
BRÜCHER, B.L.D.M. et al. Achalasia and esophageal cancer: incidence,
prevalence and prognosis. World J Surg, v.25, p.745-749, 2001.
CADWELL, C.; ZAMBETTI, G.P. The effects of wild-type p53 tumor
suppressor activity and mutant p53 gain-of-function on cell growth. Gene,
v. 277, p.15-30, 2001.
CAI, H.Y. et al. Changes of serum p53 antibodies and clinical significance
of radiotherapy for esophageal squamous cell carcinoma. World J
Gastroenterol. v. 14, n. 25, p.4082-4086, 2008.
CARNEIRO, A. et al. Prognostic impact of array-based genomic profiles in
esophageal squamous cell cancer. BMC Cancer, v. 8, n. 98, p. 1-19, 2008.
CASTELLETTO, R. et al. Pre-cancerous lesions of the oesophagus in
Argentina: prevalence and association with tobacco and alcohol. Int J
Cancer, v. 51, p. 34-37, 1992.
CHAN, W.C. et al. p16 tumor suppressor gene mutations in Chinese
esophageal carcinomas in Hong Kong. Cancer Letters, v. 115, p. 201-
206, 1997.
CHANG, M.S. et al. Differential protein expression between esophageal
squamous cell carcinoma and dysplasia, and prognostic significance of
protein markers. Pathol Res Pract, v. 201, n. 6, p. 417-425, 2005.
CHEN, Y.J. et al. Aberrant FHIT transcripts is cancerous and
corresponding non-cancerous lesions of the digestive tract. Int J Cancer,
v.72, p.955-958, 1997.
CHEN, P.L. et al. Hypermethylation of the p16 gene promoter in pterygia
and its association with the expression of DNA methyltransferase 3b,
Molecular Vision, v.12, p. 1411-1416, 2006.
173
CHINO, O. et al. Clinicopathological studies of esophageal carcinoma in
achalasia: analysis of carcinogenesis using histological and
immunohistochemical procedures. Anticancer Res, v.20, p.3717-3722,
2000.
CHINO, O. et al. Accumulation of p53 in esophageal squamous cell
carcinoma. Int J Mol Med, v.8, p.359-363, 2001.
CHIPUK, J.E.; GREEN, D.R. How do BCL-2 proteins induce mitochondrial
outer membrane permeabilization? Trends Cell Biol., v. 18, n. 4, p. 157-
164, 2008.
COGGI, G. et al. p53 protein accumulation and p53 gene mutation in
esophageal carcinoma. Cancer, v.79, p.425-432, 1997.
CRAWFORD, J.M. The Gastrointestinal Tract. In: COTRAN, RS; KUMAR,
V; COLLINS, T. Pathologic basis of disease. 7
th
ed Philadelphia: WB
Saunders Company, 2004. cap.17, p. 775 – 787.
CUNHA-NETO, E. et al. Restricted heterogeneityof T cell receptor variable
alpha chain transcripts in heart of Chagas’ disease cardiomyopathy
patients. Parasit. Immunology, v.16, p.171-179, 1994.
CUNHA-NETO, E. et al. Autoimunity in Chagas disease cardiopathy:
Biological relevance of cardiac myosin-specific epitope cross-reactive to
an immunodominant Trypanosoma cruzi antigen. Proc Nat Acad Sci, v.92,
p.3541-3545, 1995.
DAIGO, Y.; NAKAMURA, Y. From cancer genomics to thoracic oncology:
discovery of new biomarkers and therapeutic targets for lung and
esophageal carcinoma. Gen Thorac Cardiovasc Surg, v. 56, n. 2, p.43-
53, 2008.
D'AMICO, T.A. Molecular biologic staging of esophageal cancer. Thorac
Surg Clin, v.16, n.4, p.317-327, 2006.
174
de REZENDE, J.; LAUAR K.M.; de OLIVEIRA, A. Clinical and radiological
aspects of aperistalsis of the esophagus. Rev Bras Gastroenterol, v. 12,
p. 247-262, 1960.
DLAMINI, Z. et al. Genealogy, expression and molecular mechanisms in
apoptosis. Pharmacology and Therapeutics, v. 101, p. 1 – 15, 2004.
DRUCK, T. et al. Structure and expression of the human FHIT gene in
normal and tumor cells. Cancer Res, v.57, p.504-512, 1997.
DU PLESSIS, L. et al. Mapping of novel regions of DNA gain and loss by
comparative genomic hybridization in esophageal carcinoma in the Black
and Colored populations of South Africa. Cancer Res, v.59, v. 8, p.1877-
1883,1999.
EGASHIRA, A. et al. p53 gene mutations in esophageal squamous cell
carcinoma and their relevance to etiology and pathogenesis: results in
Japan and comparisons with other countries. Cancer Sci,. v. 98, n.8,
p.1152-1156, 2007.
FAGUNDES, R.B. et al. p53 immunoexpression: An aid to conventional
methods in the screening of precursor lesions of squamous esophageal
cancer in patients at high-risk? Cancer Detection and Prevention, v.29,
n.3, p.227-232, 2005.
FIGUEROA, J.D. et al. Cigarette smoking, body mass index, gastro-
esophageal reflux disease, and non-steroidal anti-inflammatory drug use
and risk of subtypes of esophageal and gastric cancers by P53
overexpression. Cancer Causes Control, in press, 2008.
FUJI, T. et al. Histopathological analysis of non-malignant and malignant
epithelium in achalasia of the esophagus. Dis Esophagus, v.13, n. 2,
p.110–116, 2000.
FUJITA, Y. et al. Chromosome arm 20q gains and other genomic
alterations in esophageal squamous cell carcinoma, as analyzed by
comparative genomic hybridization and fluorescence in situ hybridization.
Hepatogastroenterol. v. 50, n. 54, p. 1857-1863, 2003.
175
FUJIWARA, S. et al. Hypermethylation of p16 gene promoter correlates
with loss of p16 expression that results in poorer prognosis in esophageal
squamous cell carcinomas. Dis Esophagus, v. 21, p.125–131, 2008.
FUKUOKA, T.; HIBI, K.; NAKAO, A. Aberrant methylation is frequently
observed in advanced esophageal squamous cell carcinoma. Anticancer
Res, v. 26, n. 5A, p. 3333-3335, 2006.
GOCHHAIT, S. et al. Concomitant presence of mutations in mitochondrial
genome and p53 in cancer development - a study in north Indian sporadic
breast and esophageal cancer patients. Int J Cancer, v. 123, n. 11, p.
2580-2586, 2008.
GOCKEL, I. et al. Image cytometric DNA analysis of mucosal biopsies in
patients with primary achalasia. World J Gastroenterol, v.12, n.19, p.
3020-3025, 2006.
GUO, M. et al. Accumulation of promotermethylation suggests epigenetic
progression in squamous cell carcinoma of the esophagus. Clin Cancer
Res, v. 12, n. 15, p. 4515-4522, 2006.
GUO, X.Q. et al. DNA methylation and loss of protein expression in
esophageal squamous cell carcinogenesis of high-risk area. J Exp Clin
Cancer Res, v. 26, n. 4, p.587-594, 2007.
HAINAUT, P. et al. IARC Database of p53 gene mutations in human
tumors and cell lines: updated compilation, revised formats and new
visualisation tools. Nucleic Acids Research, v.26, n.1, p. 205-213, 1998.
HANAWA, M. et al. EGFR protein overexpression and gene amplification
in squamous cell carcinomas of the esophagus. Int J Cancer, v. 118, n. 5,
p.1173-1180, 2006.
HAUBRICH, W.S.; SCHAFFNER, F.; BERK, J.E. Gastroenterology.
5
th
.ed. Philadelphia: WB Saunders Company, 1995. 881p. ISBN: 13:
9780721637228
176
Health A to Z: Disponível em: http://www.healthatoz.com/healthatoz/Atoz/
common/standard/transform.jsp?requestURI=/healthatoz/Atoz/ency/esoph
ageal_cancer.jsp. Acesso em 11 de dezembro de 2008.
HIBI, K. et al. Molecular detection of p16 promoter methylation in the
serum of patients with esophageal squamous cell carcinoma. Clin Cancer
Res, v.7, p.3135-3138, 2001.
HSIA, J.Y. et al. Prognostic significance of caspase-3 expression in
primary resected esophageal squamous cell carcinoma. EJSO, v. 29, p.
44-48, 2003.
HU, N. et al. Frequent inactivation of the TP53 gene in esophageal
squamous cell carcinoma from a high-risk population in China. Clin
Cancer Res, v. 7, p. 883-91, 2001.
HUANG, J.X. et al. Relationship between proliferative activity of cancer
cells and clinicopathological factors in patients with esophageal squamous
cell carcinoma. World J Gastroenterol, v. 11, p. 19, p.2956-2959, 2005.
IHC World. Disponível em: http://www.ihcworld.com/_protocols/antibody
protocols/ki67_novocastra.htm. Acesso em 25 de novembro de 2008.
IKEDA, G. et al. Prognostic Significance of Biologic Factors in Squamous
Cell Carcinoma of the Esophagus. Cancer, v. 86, n. 8, p. 1396–1405,
1999.
IMGENEX, Inovation in Functional Genomics. Disponível em:
http://www.imgenex.com/emarketing/081606Livinor Survivin/ apoptosis-
pathway6.jpg. Acesso em 11 de dezembro de 2008.
INCA, Instituto Nacional do Câncer. Disponível em: http://www.inca.org.br.
Acesso em 05 de dezembro de 2008.
177
IQB, Instituto Químico Biológico. Disponível em:
http://www.iqb.es/digestivo/ galeria/endoscopia. Acesso em 03 de abril de
2007.
ISHIZUKA, T. et al. Gene amplification profiling of esophageal squamous
cell carcinoma by DNA array CGH. Biochem Biophys Res Commun, v.
296, p. 152 – 155, 2002.
ITO, S. et al. Promoter hypermethylation and quantitative expression
analysis of CDKN2A (p14ARF and p16INK4a) gene in esophageal
squamous cell carcinoma. Anticancer Res, v. 27, n. 5A, p.:3345-3353,
2007.
IWATA, T. et al. p53 and MIB-1 expression of esophageal carcinoma
concominant with achalasia. Hepatogastroenterology, 2007 v. 54, n. 77,
p.1430-1432, 2007.
JEONG, S.Y.; SEOL, D.W. The role of mitochondria in apoptosis. BMB
Rep, v. 41, n. 1, p. 11-22, 2008.
JONES, R. et al. Heartburn in patients with gastro-oesophageal reflux
disease in Germany and Sweden: a study on patients' burden of disease.
Pharmacoeconomics, v. 21, n.15, p.1091-1102, 2003.
KALLIONIEMI, A. et al. Comparative genome hybridization for molecular
cytogenetics analysis of solid tumors. Science, v.258, n.5083, p. 818-821,
1992.
KAMB, A. et al. A cell cycle regulator potentially involved in genesis of
many tumor types. Science, v.264, p.436-440, 1994.
KAMITANI, S. et al. Intratumoral regional variations in copy number of the
chromosomal part revealed by microdissection and combined ploidy and
comparative genomic hybridization analyses in esophageal squamous cell
carcinoma. Cancer Genet Cytogenet, v.132, p.30–35, 2002.
178
KANEKO, K. et al. Study of p53 gene alteration as a biomarker to evaluate
the malignant risk of Lugol-unstained lesion with non-dysplasia in the
oesophagus. Br J Cancer, v.96, n. 3, p. 492-498, 2007.
KASTAN, M.B. et al. Participation of p53 protein in the cellular response to
DNA damage. Cancer Res, v.51, p.6304-6311, 1991.
KATIYAR, S. et al. p53 gene mutation and human papillomavirus (HPV)
infection in esophageal carcinoma from three different endemic
geographic regions of India. Cancer Letters, p. 1-11, 2004.
KATO, H. et al. An immunohistochemical study of p16, pRb, p21 and p53
proteins in human esophageal cancers. Anticancer Res, v.20, p.345-349,
2000.
KAWAKUBO, H. et al. Alterations of p53, cyclin D1 and pRB expression in
the carcinogenesis of esophageal squamous cell carcinoma. Oncol Rep,
v.14, n. 6, p. 1453-1459, 2005.
KEMPSTER, S. et al. Methylation of exon 2 of p16 is associated with late
stage oesophageal cancer. Cancer Lett, v.150, p.57-62, 2000.
KERR, J.F.R.; WYLLIE, A.H.; CURRIE, A.R. Apoptosis: a basic biological
phenomenon with wide-ranging implications in tissue kinetics. Br. J.
Cancer, n. 26, p. 239 – 257, 1972.
KERR, J.F.R.; WINTERFORD, C.M.; HARMON, B.V. Apoptosis: its
significance in cancer and cancer therapy. Cancer, v. 73, p. 2013 - 2026,
1994.
KHUSHALANI, N. Cancer of the esophagus and stomach. Mayo Clin
Proc, v. 83, n. 6, p.712-722, 2008.
KIM, S.G. et al. The expression of p53, p16, cyclin D1 in esophageal
squamous cell carcinoma and esophageal dysplasia. Korean J
Gastroenterol, v. 48, n. 4, p. 269-276, 2006.
179
KITAMURA, A. et al. Reduced Fhit expression occurs in the early stage of
esophageal tumorigenesis: no correlation with p53 expression and
apoptosis. Oncology, v.61, p.205-211, 2001.
KNUDSON, A.G. Hereditary Cancer, oncogenes, and anti-oncongenes.
Cancer Res, n45, p. 1437 – 1443, 1985.
KOBAYASHI, M. et al. p53 Mutation analysis of low-grade dysplasia and
high-grade dysplasia/carcinoma in situ of the esophagus using laser
capture microdissection. Oncology, v. 71, n. 3-4, p. 237-245, 2006.
KOCH, W.M. et al. TP53 gene muations as markers of tumor spread in
synchoronous oral cancer. Arch Otalaryngol. Head Neck Surg, n. 120, p.
943 – 947, 1994.
KOUNTOURAS, J.; ZAVOS, C.; CHATZOPOULOS, D. Apoptosis and
autoimmunity as proposed pathogenetic links between Helicobacter
pyloryinfection and idiopathic achalasia. Medical Hypotheses, v.63,
p.624-629, 2004.
KRAICHELY, R.E.; FARRUGIA, G. Achalasia: physiology and
etiopathogenesis. Dis Esophagus, v.19, p. 213-223, 2006.
KRAJEWSKA, M. et al (1997) Immunohistochemical analysis of in vivo
patterns of expression of CPP32 (Caspase-3), a cell death protease.
Cancer Res, 57(8):1605-1613.
KROEMER, G. Mitochondrial control of apoptosis: an introduction.
Biochemical and Biophysical Research Communications, n. 304, p.
433 - 435, 2003.
KRÜGER, S. et al. P16 Immunoreactivity Is an Independent Predictor of
Tumor Progression in Minimally Invasive Urothelial Bladder Carcinoma.
European Urology, v.47 p.463–467, 2005.
180
KUERBITZ, S.J. et al. Wild type p53 is a cell cycle checkpoint determinant
following irradiantion. Proc Natl Acad Sci USA, v.89, p. 7491-7495, 1992.
KUROKI, T. et al. Allele loss and promoter hypermethylation of VLH, RAR-
beta, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in
esophageal squamous cell carcinoma. Cancer Res, v. 63, p. 3724-8,
2003.
KWONG, D. et al. Chromosomal aberrations in esophageal squamous cell
carcinoma among Chinese: gain of 12p predicts poor prognosis after
surgery. Hum Pathol, v. 35, n. 3, p. 309-316, 2004.
LAM, AK. Molecular biology of esophageal squamous cell carcinoma.
Critical Reviews in Oncology:Hematology, v.33, p.71–90, 2000.
LANA, M. de; TAFURI, W.L. Doença de Chagas. In: NEVES, D.P.
Parasitologia Humana. 10ª ed. São Paulo: Atheneu, 2000. cap.11, p.428.
LANE, D. P. p53: guardian of the genome. Nature, n. 358, p.15 – 16, 1992.
LANE, D. P. A death in the life of p53. Nature, n. 362, p. 786 – 787, 1994.
LEBE, B. et al. The importance of cyclin D1 and Ki67 expression on the
biological behavior of pancreatic adenocarcinomas. Pathology
research and Pratice, v. 200, p.389-396, 2004.
LEHMAN, M.B. et al. Squamous mucosal alterations in esophagectomy
specimens from patients with end-stage achalasia. Am J Surg Pathol,
v.25, p.1413-1418, 2001.
LEIBY, D.A. et al. Soroepidemiology of Trypanosoma cruzi, etiologic agent
of Chagas disease, in US blood donors. J Infect Dis, v.176, p.1047-1052,
1997.
181
LEVINE, A.J. et al. The 1993 Walter Hubert Lecture: The role of p53
tumor-supressor gene in tumorigenesis. Br J Cancer, v.69, p. 409 – 416,
1994.
LEVINE, A.J. p53, the cellular gatekeeper for growth and division. Cell, n.
88, p. 323 – 331, 1997.
LI, L.; YANG, T. Expression of Cdk4, cyclin D1 and Rb in exogenous wild
type P16 gene transfected bladder cancer cell line. Colloids and
Surfaces B: Biointerfaces, v.30, p.315–322, 2003.
LIN, D.C.; DU, X.L.; WANG, M.R. Protein alterations in ESCC and clinical
implications: a review. Dis Esophagus, in press, 2008.
MADER, A.M.A.A. et al. Esofagite de refluxo em crianças: estudo
histológico e morfométrico. Arq Gastroenterol, v.39, n. 2, p. 126-131,
2002.
MAESAWA, C. et al. Inactivation of the CDKN2 gene by homozygous
deletion and de novo methylation is associated with advanced stage
esophageal squamous cell carcinoma. Cancer Res, v.56, p.3875-3878,
1996.
MALTZMAN, W.; CZYZYK, L. UV irradiation stimulates levels of p53
cellular tumor antigen in nontransformed mouse cell. Mol Cell Biol, v.4,
p.1689-1694, 1984.
MANDARD, A. M. et al. Expression of p53 in oesophageal squamous
epithelium from surgical specimens resected for squamous cell carcinoma
of the oesophagus, with special reference to uninvolved mucosa. J Pathol,
v. 181, p. 334-5,1998.
MANDARD, A.M.; HAINAUT, P.; HOLLSTEIN, M. Genetic steps in the
development of squamous cell carcinoma of the esophagus. Mutat Res, v.
462, p. 335-342, 2000.
182
MANOEL-CAETANO, F.S. et al. Cytogenetic alterations in chagasic
achalasia compared to esophageal carcinoma. Cancer Genet Cytogenet,
v.149, p. 17 – 22, 2004.
MANOEL-CAETANO, F.S.; SILVEIRA A.F.P.; SILVA, A.E. (2009) Gene
mutations in esophageal mucosa of Chagas disease patients. Anticancer
Res, in press.
MASTRACCI, L. et al. Cell proliferation of squamous epithelium in gastro-
oesophageal reflux disease: correlations with clinical, endoscopic and
morphological data. Aliment Pharmacol Ther, v. 25, p. 637–645, 2006.
MATSUO, K. et al. Gene-environment interaction between an aldehyde
dehydrogenase-2 (ALDH2) polymorphism and alcohol consumption for the
risk of esophageal cancer. Carcinogenesis, v.22, p.913-916, 2001.
MAYAMA, T. et al. Frequent loss of copy number on the long arm of
chromosome 21 in human esophageal squamous cell carcinoma. Int J
Oncol, v.17, n.2, p.245-252, 2000.
McCABE, M.L.; DLAMINI, Z. The molecular mechanisms of oesophageal
cancer. Int Immunopharmacol, v.5, p.1113– 1130, 2005.
MENIN, C. et al. Anomalous transricpts and allelic deletions of the FHIT
gene in human esophageal cancer. Cancer Genet Cytogenet, v.119,
p.56-61, 2000.
MICHAEL, D. et al. Frequent deletions of FHIT and FRA3B in Barrett’s
metaplasia and esophageal adenocarcinomas. Oncogene, v.15, p.1653-
1659, 1997.
MIMURA, K. et al. Frequencies of HER-2/neu expression and gene
amplification in patients with oesophageal squamous cell carcinoma. Br J
Cancer, v. 92, n. 7, p. 1253-60, 2005.
183
MINCIS, M. Gastroenterologia e hepatologia, diagnóstico e
tratamento. São Paulo: Lemos Editorial & Gráficos Ltda, 1997, 960p.
ISBN: 13: 9788561125066
MORI, T. et al. Frequent somatic mutation of the MTS1/CDK4I (multiple
tumor suppressor/cyclin-dependent kinase 4 inhibitor) gene in esophageal
squamous cell carcinoma. Cancer Res, v.54, p.3396-3397, 1994.
MORI, M. et al. Altered expression of Fhit in carcinoma and
precarcinomatous lesions of the esophagus. Cancer Res, v.60, p.1177-
1182, 2000.
MORITA, M. et al. Expression of FHIT in esophageal epithelium and
carcinoma: reference to drinking, smoking and multicentric carcinogenesis.
Anticancer Res, v. 26, n.3B, p.2243-2248, 2006.
MORRIS, R.G. et al. Hormone-induced cell death: surface changes in
thymucytes undergoing apoptosis. Am J Pathol, n. 115, p. 426 – 436,
1984.
MUÑOZ, N. Le déspistage du cancer de I’oesophage est-il réalisable?
Semaines dês Hôpitaux de Paris, v. 73, p. 633-635, 1997.
MURPHY, S.J. et al. Have patients with esophagitis got an increased risk
of adenocarcinoma? Results from a population-based study. World J
Gastroenterol, v. 11, p. 7290-7295, 2005.
MURTAZA, I. et al. A study on p53 gene alterations in esophageal
squamous cell carcinoma and their correlation to common dietary risk
factors among population of the Kashmir valley. World J Gastroenterol,
v.12, n.25, p.4033-4037, 2006.
MUZEAU, F. et al. Loss of hetrezygisity on chromosome 9 and p16
(MTS1, CDKN2) gene mutations in esophageal cancer. Int JCancer, v.72,
p.27-30, 1997.
184
NAKAKUKI, K. et al. Novel targets for the 18p11.3 amplification frequently
observed in esophageal squamous cell carcinoma. Carcinogenesis, v. 23,
n. 1, p. 19-24, 2002.
NOGUCHI, T. et al. FHIT expression and hypermetilation in esophageal
squamous cell carcinoma. Int J of Mo Medicine, v.11, p.441-447, 2003.
NUOVO, G. et al. In situ detection of the hypermethylation-induced
inactivation of the p16 gene as an early event in oncogenesis. PNAS, v.96,
n.22, p.12754-12759, 1999.
OHTA, M. et al. The FHIT gene, spanning the chromosome 3p14.2 fragile
site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in
digestive tract cancers. Cell, v.84, p.587-597, 1996.
OLIVEIRA, R.B. de et al. Gastrointestinal manifestations of Chagas’
Disease. Am J Gastroenterol, v.93, p.884-889, 1998.
OLIVIER, M. et al. The IARC TP53 database: new online mutation
analysis and recommendations to users. Hum Mutat, v. 19, p. 607-14,
2002.
ORALCHELATION, www.oralchelation.com/faq/images2/a1.gif, Acesso
em 10 de março de 2009.
PACK, S.D. et al. Molecular cytogenetic fingerprinting of esophageal
squamous cell carcinoma by comparative genomic hybridization reveals a
consistent pattern of chromosomal alterations. Genes Chromosomes
Cancer, v.25, n.2, p.160-168, 1999.
PAJECKI, D. et al. Megaesophagus Microbiota: A Qualitative and
Quantitative Analysis. J Gastrointest Surg, v. 6, p. 723 – 729, 2002.
PALLARDY, M.; PERRIN-WOLFF, M.; BIOLA, A. Cellular Stress and
Apoptosis. Toxicol in Vitro, 11: 573 - 578, 1997.
185
PAROLIN, M.B.; REASON I.J.M. Apoptose como mecanismo de lesão nas
doenças hepatobiliares. Arq Gastroenterol, v.38, n.2, p.138-144, 2001.
PEKARSKY, Y. et al. FHIT: from gene discovery to cancer treatment and
prevention. Lancet Oncol, v.3, p.748-754, 2002.
PELUCCHI, C. et al. Alcohol and tobacco use, and cancer risk for upper
aerodigestive tract and liver. Eur J Cancer Prev, v.17, n. 4, p.340-344,
2008.
PIMKHAOKHAM, A. et al. Nonrandom Chromosomal Imbalances in
Esophageal Squamous Cell Carcinoma Cell Lines: Possible Involvement
of the ATF3 and CENPF Genes in the 1q32. Amplico Jpn J Cancer Res,
v. 91, p.1126–1133, 2000.
PINOTTI, H.W. Megaesôfago Chagásico. In: COELHO, J.C.U. Aparelho
Digestivo. 2
a
ed. Rio de Janeiro: MDESI, 1996, cap. 1, p.61-67.
PUTZ, A. et al. TP53 mutation pattern of esophageal squamous cell
carcinomas in a high risk area. Int J Cancer, v.98, p.99-105, 2002.
QIN, Y.R. et al. Comparative genomic hybridization of esophageal
squamous cell carcinoma and gastric cardia adenocarcinoma in high-
incidence region of esophageal carcinoma. Linzhou Henan. Zhonghua Yi
Xue Yi Chuan Xue Za Zhi, v. 21, n. 6, p. 625-8, 2004.
QIN, Y.R. et al. Genomic changes in primary lesion and lymph node
metastases of esophageal squamous cell carcinoma. Ai Zheng, v. 24, n. 9,
p.1048-1053, 2005a.
Qin Y.R. et al. Comparative genomic hybridization: the profile of
chromosomal imbalances in esophageal squamous cell carcinoma.
Zhonghua Bing Li Xue Za Zhi, v. 34, n. 2, p. 80-83, 2005b.
QIN, Y.R. et al. Comparative genomic hybridization analysis of genetic
aberrations associated with development of esophageal squamous cell
186
carcinoma in Henan, China. World J Gastroenterol, v. 14, n. 12, p.1828-
1835, 2008.
RALHAN, R. et al. Frequent alterations in the expression of tumor
suppressor genes p16INK4A and pRb in esophageal squamous cell
carcinoma in the Indian population. J Cancer Res Clin Oncol, v.126,
p.655-660, 2000.
RIBEIRO, Jr.U. et al. Risk factors for squamous cell carcinoma of the
oesophagus. Br J Surg, v. 83, p. 1174-1185, 1996.
ROTH, M.J. et al. Genetic progression and heterogeneity associated with
the development of esophageal squamous cell carcinoma. Cancer Res,
v.61, p.4098-4104, 2001.
ROTH, M.J. et al. p16, MGMT, RARbeta2, CLDN3, CRBP and MT1G
gene methylation in esophageal squamous cell carcinoma and its
precursor lesions. Oncol Rep, v.15, n.6, p.1591-1597, 2006.
ROZ, L. et al. Restoration of fragile histidine triad (FHIT) expression
induces apoptosis and suppresses tumorigenicity in lung and cervical cell
lines. PNAS, v.99, n. 6, p. 3615 – 3620, 2002.
SANTIN, A. D. et al. Gene expression profiles of primary HPV16- and
HPV18-infected early stage cervical cancers and normal cervical
epithelium: identification of novel candidate molecular markers for cervical
cancer diagnosis and therapy. Virology, v.331, p.269–291, 2005.
SARD, L. et al. The tumor-suppressor gene FHIT is involc=ved in the
regulation of apoptosis and in cell cycle control. Proc Natl Acad Sci
USA ,v. 96, p. 8489 – 8492, 1999.
SEPEHR, A. et al. Distinct pattern of TP53 mutations in squamous cell
carcinoma of the esophagus in Iran. Oncogene, v. 21, p. 7368-74, 2002.
SHAW, P et al. Induction of apoptosis by wild type p53 in a human colon
tumor-derived cell line. Proc Natl Acad Sci USA, v.89, p.4495-4499, 1992.
187
SHI, S. et al. Role of p53 gene mutations in human esophageal
carcinogenesis: results from immunohistochemical and mutation analyses
of carcinomas and nearby non-cancerous lesions. Carcinogenesis, v.20,
p.591-597, 1999.
SHIMADA, Y. et al. Characterization of 21 newly established esophageal
cancer cell lines. Cancer, v.69, p.277-284,1992.
SHIMADA Y.; IMAMURA M. Prognostic factors for esophageal cancer--
from the viewpoint of molecular biology. Gan To Kagaku Ryoho, v. 23, n.
8, p. 972-981, 1996.
SHIMADA, Y. et al. Loss of fragile histidine triad gene expression is
associated with progression of esophageal squamous cell carcinoma, but
not with the patient’s prognosis and smoking history. Cancer, v.89, p.5 -11,
2000.
SHIOZAKI, H. et al. Larynx preservation in surgical treatment of cervical
esophageal cancer--combined procedure of laryngeal suspension and
cricopharyngeal myotomy. Dis Esophagus, v. 13, n. 3, p. 213-218, 2000.
SHINOMIYA, T. et al. Comparative genomic hybridization of squamous
cell carcinoma of the esophagus: The possible involvement of the DP1
gene in the 13q34 amplicon. Genes Chromosomes Câncer, v.24,
p.337–344, 1999.
SILVEIRA, A.P.F. Investigação de mutações nos genes TP53 e FHIT
em esofagite crônica e carcinoma esofágico. 2008. Dissertação
(Mestrado em Genética) – Instituto de Biociências, Letras e Ciências
Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São
José do Rio Preto.
SOMA, T. et al. Nicotine induces the fragile histidine triad methylation in
human esophageal squamous epithelial cells. Int J Cancer, v.119,
p.1023–1027, 2006.
188
SOMERS, K.D.; SCHECHTER, G.L. Genetic alterations in head and neck
cancer. Mol Biol Genetics, v. 5, n. 25, p. 1065 – 1071, 1992.
SOUTO, J.V.Jr.; RIBEIRO, M.A.A. Saúde e vida on line/Doença de
Chagas. Disponível em: http://www.nib.unicamp.br/svol/chagas.htm.
Acesso em 26 de outubro de 2005.
SPEICHER, M.R.; CARTER, N.P. The new cytogenetics: blurring the
boundaries with molecular biology. Nature, v. 6, p. 782 – 792, 2005.
STEELE, R. J. et al. The p53 tumour suppressor gene. Br J Surg, v. 11,
n. 85, p. 1460 – 1467, 1998.
STEMMERMANN, G. et al. The molecular biology of esophageal and
gastric cancer and their precursosrs: oncogenes, tumor suppressor genes,
and growth factor. Hum Pathol, v.25, p.968 – 981, 1994.
SU, M. et al. Comparative genomic hybridization of esophageal
adenocarcinoma and squamous cell carcinoma cell lines. Dis Esophagus,
v. 19, n. 1, p.10-14, 2006.
SUGIMOTO, T. et al. Integrated analysis of expression and genome
alteration reveals putative amplified target genes in esophageal cancer.
Oncol Rep, v. 18, p. 465-472, 2007.
SUGIURA, K. et al. Co-expression of aFGF and FGFR-1 is predictive of a
poor prognosis in patients with esophageal squamous cell carcinoma.
Oncol Rep. v. 17, n.3, p.557-564, 2007.
SUNPAWERAVONG, P. et al. Epidermal growth factor receptor and cyclin
D1 are independently amplified and overexpressed in esophageal
squamous cell carcinoma. J Cancer Res Clin Oncol, v.131, n.2, p.111-
119, 2005.
TAKAHASHI, K. et al. Serum p53 antibody as a predictor of early
recurrence in patients with postoperative esophageal squamous cell
carcinoma. Dis Esophagus v. 20, p. 117–122, 2007.
189
TAKEUCHI, H. et al. Further evidence that altered p16/CDKN2 gene
expression is associated with lymph node metastasis in squamous cell
carcinoma of the esophagus. Oncol Rep, v.8, p.627-632, 2001.
TAKEUCHI, H. et al. Cell-cycle regulators and the Ki-67 labeling index can
predict the response to chemoradiotherapy and the survival of patients
with locally advanced squamous cell carcinoma of the esophagus. Ann
Surg Oncol, v. 10, n. 7, 2003.
TANAKA, H. et al. Methylation of the 5’ CpG island of the FHIT gene is
closely associated with transcriptional inactivation in esophageal
squamous cell carcinomas. Cancer Res, v.58, p.3429-3434, 1998.
TRAPASSO, F. et al. Designed FHIT alleles establish that Fhit-induced
apoptosis in cancer cells is limited by substrate binding. PNAS, v.100, n. 4
p. 1592 – 1597, 2003.
UEDA, N.; SHAH, S. Apoptosis. J Lab Clin Med, 124: 169 - 177, 1994.
UFRGS, Universidade Federal do Rio Grande do Sul.Trypanosoma cruzi.
Disponível em:
http://www.ufgrs.br/parasite/Imagenatlas/Protozoa/Trypanosoma cruzi.htm
Acesso em 11 de dezembro de 2008.
WANG, G.Q. et al. Histological precursors of oesophageal squamous cell
carcinoma: results from a 13 year perspective follow up study in a high risk
population. Gut, v. 54, p. 187-192, 2005.
WEINBERG, R.A. A biologia do câncer. Porto Alegre: Artmed, 2008.
864p. ISBN:978-85-363-1348-1
WHO, World Health Organization. Chagas. Disponível em:
http://who.int/ctd/chagas/disease.htm. Acesso em 11 de dezembro de
2008.
190
WYLLIE, A.H. Apoptosis. Br J Cancer, v. 67, p. 205 – 208, 1993.
XING, E.P. et al. Mechanisms of inactivation of p14
ARF
, P15
INK4b
, and
p16
INK4a
genes in human esophageal squamous cell carcinoma. Clin
Cancer Res, v.5, p.2704-2713, 1999.
XU, F.P. et al. SRC-3/AIB1 protein and gene amplification levels in human
esophageal squamous cell carcinomas. Cancer Lett, v. 245, n. 1-2, p. 69-
74, 2007.
XU, F.P. et al.Role of AIB1 gene in development of esophageal
squamous cell carcinoma and its clinicopathologic significance. Zhonghua
Bing Li Xue Za Zhi, v. 37, n. 4, p. 250-254, 2008.
XUE, L.Y. et al. Tissue microarray analysis reveals a tight correlation
between protein expression pattern and progression of esophageal
squamous cell carcinoma. BMC Cancer, v. 6, p. 296-311, 2006.
YANG, Y.L. et al. Amplification of PRKCI, located in 3q26, is associated
with lymph node metastasis in esophageal squamous cell carcinoma.
Genes Chromosomes Cancer. v. 47, n. 2, p.127-136, 2008.
YEN, C.C. et al. Comparative genomic hybridization of esophageal
squamous cell carcinoma: correlations between chromosomal aberrations
and disease progression/prognosis. Cancer, v. 92, n. 11, p.2769-2777,
2001.
YEN, C.C. et al. Genotypic analysis of esophageal squamous cell
carcinoma by molecular cytogenetics and real-time quantitative
polymerase chain reaction. Int J Oncol, v. 23, p. 871-881, 2003.
YEN, C.C. et al. Copy number changes of target genes in chromosome
3q25.3-qter of esophageal squamous cell carcinoma: TP63 is amplified in
early carcinogenesis but down-regulated as disease progressed.
World J
Gastroenterol. v. 11, n. 9, p.1267-1272, 2005.
191
YONISH-ROUACH E. et al. Wild-type p53 induces apoptosis of myeloid
leukaemic cells that is inhibited by interleukin-6. Nature, v.352, p.345-347,
1991.
ZHANG, G.H. et al. Analysis of basement membrane structure and
inflammation during the development of esophageal squamous cell
carcinoma in the Chinese Chaoshan high risk region. Cancer Invest, v. 26,
n. 3, p.296-305, 2008.
ZHOU, X. et al. Genomic DNA and messenger RNA expression alterations
of the CDKN2B and CDKN2A genes in esophageal squamous carcinoma
cell lines. Genes Chromosomes Cancer, v.13, p.285-290, 1995.
ZOU, T.T. et al. FHIT gene alterations in esophageal câncer and ulcerative
colitis (UC). Oncogene, v.15, p.101-105, 1997.
192
Apêndices
193
Apêndice 1: Termo de Consentimento Livre e Esclarecido (Sanduíche)
TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO
(Conselho Nacional de Saúde, Resolução 196/96)
Eu, Marilanda Ferreira Bellini, RG: 30.212.578-4 SSP/SP, aluna de Doutorado do Programa de Pós-Graduação
em Genética do Instituto de Biociências, Letras e Ciências Exatas IBILCE / UNESP Campus São José do Rio
Preto, convido ____________________________________________________________
RG:_________________________, nascido em ____/_____/______ e domiciliado à __________________
_______________________________________________, município de _______________________, usuário (ou
responsável legal pelo usuário_____________________________________________), a participar, como
voluntário, no projeto de pesquisa “Investigação de perdas e ganhos genômicos em pacientes com
Megaesôfago Chagásico, pela técnica FISH (Hibridização in situ fluorescente) e desenvolvimento de
sondas de DNA como marcadores de tumorigênese”, e em extensões deste, que pretende estudar alterações
na expressão do material genético, pelas técnicas CGH e FISH em pessoas que apresentam um tipo de doença
que provoca o aumento do esôfago, causado pela doença de Chagas, por isso sendo conhecida como
“megaesôfago chagásico”. Declaro que o voluntário foi satisfatoriamente esclarecido que: A) o estudo será
realizado utilizando pequenos pedaços (biópsias) de local do esôfago com alteração (megaesôfago chagásico),
que serão colhidos durante o processo de rotina para a realização de exame de endoscopia, solicitado pelo
médico do voluntário, no Serviço de Endoscopia do Hospital de Base de São José do Rio Preto; B) não haverá
nenhum risco adicional para sua saúde, pois a colheita do material será realizada pelos profissionais qualificados
e que precisa fazer a endoscopia independente deste projeto; C) o voluntário poderá consultar as pesquisadoras
responsáveis em qualquer época para esclarecimento de qualquer dúvida; D) está livre para, a qualquer momento,
deixar de participar da pesquisa e que não precisa apresentar justificativas para isso; E) fornecerá informações
através de um questionário realizado durante uma entrevista antes do seu exame e também autoriza a coleta de
dados em seu prontuário médico; F) todas as informações fornecidas pelo voluntário e os resultados obtidos serão
mantidos em sigilo e que estes últimos serão utilizados somente para divulgação em reuniões e revistas científicas,
sem sua identificação, pois o material coletado será identificado por código; G) será informado pelo seu médico
dos resultados obtidos, caso possam auxiliar seu tratamento ou prevenir a progressão da lesão que apresenta no
esôfago, independentemente do fato destes poderem mudar seu consentimento em participar da pesquisa; H) que
a biópsia será utilizada após o procedimento cotidiano de emblocamento em parafina pelo Setor de Patologia
do Hospital de Base de São José do Rio Preto, responsável pelo seu armazenamento; l) este estudo consiste
numa pesquisa científica importante, pois seus resultados poderão trazer informações básicas, evidenciando a
expressão diferencial de proteínas, envolvidas nos estágios iniciais que ocorrem nestes tipos de lesões do
esôfago (esofagite crônica e megaesôfago chagásico), e assim, se há um risco para o aparecimento de um câncer
do esôfago, portanto podendo auxiliar futuramente no diagnóstico precoce, evolução e tratamento da doença.
Assim, o usuário consente em participar do projeto de pesquisa em questão.
São José do Rio Preto, _____ de _____________ de 200____
____________________________ ___________________________
Usuário/ responsável legal Pesquisador responsável
OBS: Este termo apresenta duas vias, uma destinada ao usuário ou seu representante legal e a outra ao
pesquisador.
Projeto:
Investigação de perdas e ganhos genômicos em pacientes com Megaesôfago Chagásico, pela técnica
FISH (Hibridização in situ fluorescente) e desenvolvimento de sondas de DNA como marcadores de tumorigênese
Pesquisadores: Doutoranda Marilanda Ferreira Bellini
Profa. Dra. Ana Elizabete Silva
Instituição: UNESP – Universidade Estadual Paulista/IBILCE - Instituto de Biociências, Letras e Ciências Exatas
Endereço: R.Cristóvão Colombo, 2265 - Jardim Nazareth – CEP 15054-000 São José do Rio Preto-SP
Fone: 17 3221-2384
E-mail: mbellini@webmail.ibilce.unesp.br
194
Apêndice 2: Questionário
Questionário do Projeto: “Investigação de perdas e ganhos genômicos em pacientes com
megaesôfago chagásico, pela cnica de FISH (Hibridização in situ fluorescente) e
desenvolvimento de sondas de DNA como marcadores de tumorigênese”
Responsáveis: M.sc. Marilanda Ferreira Bellini, Profa. Dra. Ana Elizabete Silva (Departamento
de Biologia IBILCE/UNESP São José do Rio Preto SP) e Dr. Kenji Miyazaki (Setor de
Endoscopia – Hospital de Base, São José do Rio Preto)
IDENTIFICAÇÃO:
Nome:______________________________________________Prontuário:_______________
Data de nascimento: ____/____/_______ Sexo: ( )M ( ) F
Endereço Atual: _____________________________________Fone:____________________
Cidade:____________________________________________Estado:___________________
Procedência: ________________________________________________________________
Profissão Atual:_____________________________________Tempo de atuação:__________
Profissão Anterior:___________________________________Tempo de atuação:__________
DADOS PESSOAIS E FAMILIAIS
Consumo de bebida alcoólica: ( )Sim ( )Não
Há quantos anos? _______________ Tipo de bebida: ___________ dose:________________
Consumo de cigarro: ( )Sim ( )Não
Há quantos anos? _______________ Quantidade (unidade/dia): ________________
Doenças Anteriores no Aparelho Digestório:
( ) esôfago ( ) estômago Outras:___________ Tipo:________________
Tratamentos anteriores para megaesôfago: ( ) Sim ( ) Não Tipo:____________
Cirurgias anteriores: ( ) Sim ( ) Não Tipo:____________
Há história de tumor de esôfago ou outras doenças na família: ( ) Sim ( )Não
Tipo:_______________________________ Grau de Parentesco:_______________________
Data: ____/____/________ Responsável pelo Procedimento:______________________
195
Apêndice 3: Caracterização das amostras de mucosa esofágica normal e
Carcinoma de células escamosa de esôfago
Caracterização de estilo de vida e clinico-patológica nos grupos de pacientes com mucosa
esofágica normal (NM) e com carcinoma de células escamosas de esôfago (ESCC),
acompanhados por 4 anos.
Código
Idade
(anos)
Sexo Etilismo
Tabagismo
Dados Clínicos
Mucosa E
sofá
gica N
ormal
NM1
26 F Não Não Nada Consta
NM2
67 F Não Não
Nada Consta
NM3
33 M Sim Sim Nada Consta
NM4
29 F Não Não Nada Consta
NM5
51 M Sim Sim Nada Consta
NM6
34 M Sim Não Nada Consta
NM7
34 F Sim Não Nada Consta
NM8
66 F Não Não Nada Consta
NM
9
54 F Não Não Nada Consta
NM10
30 F Não Sim Nada Consta
Carcinoma de células escamosas de esôfago
ESCC1
65 M Sim Sim
Cardiopatia, megacólon,
megaesôfago
ESCC2
56 M Sim Sim Sorologia positiva (Chagas)
ESCC3
69 F Sim Não
Megacólon, megaesôfago,
cardiopatia
ESCC4
42 M Não Sim Tumor intestinal operado
ESCC5
48 M Sim Sim Nada Consta
ESCC6
64 M Sim Sim Nada Consta
ESCC7
47 M Sim Sim Nada Consta
ESCC8
55 M Sim Sim Nada Consta
ESCC9
64 M Não Sim Nada Consta
ESCC10
48 M Sim Sim Nada Consta
ESCC11
63 M Não Não gastrite enantematosa
F, Feminino; M, Masculino
196
Apêndice 4: Caracterização das amostras de pacientes com esofagite
crônica
Caracterização de estilo de vida e clinico-patológica nos grupos de pacientes com
esofagite crônica (CE), acompanhados por 4 anos.
Código
Idade
(anos)
Sexo Etilismo Tabagismo Dados Clínicos
CE
1
40 F Não Não Nada Consta
CE2
43 F Não Sim Nada Consta
CE3
50 F Não Sim Cardiopatias, obesidade, óbito
CE4
52 M Sim Sim Hérnia Hiato, gastrite leve
CE5
40 M Sim Não Malária
CE6
42 F Não Não Nada Consta
CE7
41 F Não Não Nada Consta
CE8
49 F Não Não Nada Consta
CE9
57 F Não Não Nada Consta
CE10
56 M Não Não Nada Consta
CE11
65 M Não Não Gastrite enantematosa
CE12
51 M Não Não
Gastrite enantematosa, H.
pylori+
CE13
55 M Não Não Nada Consta
CE14
67 M Não Não Cardiopatia
CE15
54 M Não Não Gastrite enantematosa
CE16
46 F Não Não Gastrite discreta
CE17
40 F Não Não Nada Consta
CE18
47 M Não Não
Gastrite leve; úlcera duodenal
recorrente
CE19
42 M Não Não Nada Consta
CE20
70 F Não Não Nada Consta
CE21
45 F Não Sim Carcinoma de cólo uterino
CE22
41 F Não Não Cálculo renal
CE23
68 M Não Sim Câncer de próstata
F, Feminino; M, Masculino
197
Apêndice 5: Caracterização das amostras de pacientes chagásicos sem
megaesôfago.
Caracterização de estilo de vida e clinico-patológica no grupo de paciente chagásico sem
megaesôfago (CD), acompanhados por 4 anos.
Código
Idade
(anos)
Sexo Etilismo Tabagismo Dados Clínicos
CD1
63 M Sim Não
Esôfago de Barret; megacólon
operado
CD2
62 M Sim Não Megacólon; esofagite crônica leve
CD
3
62 F Não Não Cardiopatia; esofagite crônica leve
CD
4
72 F Não Sim Esofagite crônica leve
CD5
76 F Não Não Esofagite crônica leve
CD
6
49 M Não Sim Esofagite crônica moderada
CD
7
45 F Não Não Megacólon; esofagite crônica leve
CD8
75 F Sim Sim
Esofagite crônica moderada,
gastrite leve e cardiopatia
CD
9
59 M Sim Sim Esofagite leve
CD10
79 F Não Não Nada Consta
CD11
50 F Não Sim Nada Consta
CD12
59 F Não Não
Megacólon, esofagite crônica
moderada
CD13
57 M Não Não
Megacólon, esofagite de refluxo,
gastrite erosiva
F, Feminino; M, Masculino
198
Apêndice 6: Caracterização das amostras de pacientes chagásico com
megaesôfago
Caracterização de estilo de vida e clinico-patológica no grupo de paciente chagásico com megaesôfago
(CM), acompanhados por 2 a 4 anos.
Código
Original
Código
FISH
Grau
CM
Idade
(anos)
Sexo Etilismo Tabagismo Dados Clínicos
CM1
II 59 M Não Não
Esofagite crônica
moderada
CM2
II 58 F Sim Não
Megacólon operado,
esofagite crônica leve
CM3
CM2
IV 64 F Não Sim Esofagite crônica leve
CM4 CM3
IV 72 M Não Não
Megacólon/ esofagite
crônica severa
CM5 CM4
I 83 M Sim Sim
Megacólon; esofagite
crônica severa; óbito
CM6
CM5
III 60 M Sim Não Esofagite crônica leve
CM7 CM6
III 81 F Sim Sim
Megacólon operado;
cardiopatia; esofagite
crônica leve
CM8
CM7
IV 55 F Não Sim Nada Consta
CM9
CM8
IV 61 M Não Não Cardiopatia
CM10
CM9
IV 78 M Não Sim Esofagite crônica severa
CM11
CM10
III 58 F Não Não Gastrite crônica
CM12 CM11
III 63 M Sim Sim
Gastrite severa e
cardiopatia
CM13
CM12
IV 42 M Não Não Gastrite leve
CM14 CM13
III 69 F Sim Sim
Megaesôfago recidivado;
cardiopatia; esofagite
crônica severa
CM15 CM14
III 70 F Não Sim
Esofagite crônica
moderada
CM16 CM15
IV 68 F Não Não
Esofagite crônica
moderada, gastrite
crônica severa,
cardiopatia
CM17
CM16
IV 83 M Não Sim Esofagite crônica severa
CM18 CM17
III 61 M Não Sim
H pylori +, gastrite
crônica moderada
CM19 CM18
III 64 M Sim Sim
Esofagite crônica
moderada, gastrite
199
crônica discreta
CM20
III 57 M Sim Sim
Gastrite crônica, H
pylori+
CM21 CM20
IV 59 F Não Sim
Cardiopatia, esofagite
crônica moderada
CM22
III 66 F Não Não
Esofagite crônica
moderada, gastrite
enantemática e
cardiopatia
CM23 CM21
II 53 F Não Sim
Esofagite crônica
moderada
CM22
IV 63 F Não
Não
Megaesôfago
Recidivado
CM23
I 57 F Não
Sim
Gastrite, Extração de
vesícula biliar, esofagite
crônica moderada,
cardiopatia
CM24
III 69 M S Sim
Cardiopatia,
Hipertensão, Metaplasia
Intestinal, Gastrite
Crônica Enamtematosa
CM25
III 58 F Não
Não
Constipação Intestinal,
Megacólon, Megabulbo
Duodenal, Gastrite
Enantematosa
CM26
III 40 M Não
Sim
Gastrite Crônica
Discreta, H pylori +,
Esofagite Crônica Leve,
Megacólon e
Megaesôfago
Recidivados
CM27
I 59 F Não
Não
Gastrite enamtematosa,
duodenite erosiva,
metaplasia intestinal
CM28
II 59 F Não
Não
Gastrite, Esofagite
Erosiva
CM29
II 64 M Não
Não
Megaesôfago
Recidivado, Megacólon,
Esofagite Crônica
Moderada, Refluxo
Gastro-esofágico
CM30
III 70 F Não
Sim
Constipação Intestinal,
Megacólon,
Gastrectomia Parcial,
Colectomia subtotal,
gastrite Crônica,
Metaplasia Intestinal,
Esofagite Crônica
Moderada
CM31
III 40 M Não
Não
Constipação instestinal,
esofagite crônica
moderada, gastrite
enantematosa
200
CM32
II 48 F Não
Não
Constipação Instestinal,
Refluxo Gástrico-
esofágico, esofagite
crônica moderada,
pangastrite
enamtematosa
CM33
I 64 F Não
Não
Gastrite Erosiva,
Bulboduodenite
CM34
III 53 M Sim
Não
Esofagite Crônica
Moderada, Refluxo
Gastro-esofágico
CM35
III 57 M Sim
Sim
Nada Consta
CM36
II 66 M Sim
Sim
Constipação Intestinal,
Megacólon, Cardiopatia,
Gastrite, Hérnia de Hiato
CM37
III M Não Não
Nada Consta
CM39
II 76 F Não
Não
Cardiopatia
CM19
III 65 M Sim Sim
Gastrite Crônica, H
pylori+, Metaplasia
Intestinal, Cardiopatia
CM40
II 62 M Não
Sim
Ulcera, Gastrite,
Esofagite Crônica
Erosiva, Constipação
Intestinal
CM1
I 69 F N N
Hérnia de Hiato, Gastrite
Enantemosa, Ulcera,
Esofagite, H pylori +,
Cardiopatia
CM38
IV 56 F Não
Sim Constipação Intestinal
F, Feminino; M, Masculino
201
Apêndice 7: Chromosomal Mapping for the newly developed probes.
A1) FHIT (red) and
FGFR1 (green);
B1) TP63 (red) and
PIK3CA (green);
C1) pα3.5 (green);
D1) YES1 (red) and
NCOA3 (green);
Inverted DAPI images.
A2) FHIT 3p14.2 and
FGFR1 – 8p12;
B2) TP63 3q28 and
PIK3CA – 3q26.32;
C2) pα3.5 centromere
of chromosome 3;
D2) YES1 18p11.31
and NCOA3 – 20q12.
Anexos
203
ANEXOS
Anexo 01. Parecer Consubstanciado do Comitê de Ética em Pesquisa
Institucional (Projeto de Doutorado Original).
204
Anexo 02. Parecer Consubstanciado do Comitê de Ética em Pesquisa
Institucional (Projeto de Estágio de Doutoramento no Exterior).
205
Anexo 03. Metodologias para o desenvolvimento de sondas utilizadas na
técnica de Hibridação In Situ Fluorescente (FISH)
Cytogenetics Core
Anschutz Medical Campus, L18-8401A
Mail Stop 8117 P.O. Box 6511 Aurora, CO 80045
Phones: 303-724-3147, 303-724-3148
Fax: 303-724-3889 www.uccc.info/cytogenetics
206
VI. DNA Cloning - Protocol 1
Establishing cultures, isolating single colonies, and verifying sequences
I. Reagents
1. Agar plates. LB-agar plates must contain the appropriate antibiotic in the correct concentration,
based on the library design.
Antibiotics
a. Ampicillin (Sigma, Cat. # A2804).
Stock solution (1:1000) = 60 mg/ml
Dissolve 1.5 g ampicillin sodium salt in 25 ml of distilled water.
Filter sterilize, dispense in 1ml aliquots in screw cap tubes. Store at –20°C.
Usual final concentration in culture media = 40 ug/ml.
b. Kanamycin sulfate (Gibco, Cat. # 11815-016).
Stock = 25 mg/ml
Dissolve 250 mg in 10 ml of distilled water.
Filter sterilize, dispense in 1 ml aliquots in screw cap tubes. Store at –20°C.
Usual final concentration in culture media = 25 ug/ml.
c. Tetracycline hydrochloride (Gibco, Cat. # 11860-012).
Stock = 12.5 mg/ml
Dissolve 125 mg in 10 ml ethanol/water (50% v/v).
Filter sterilize, dispense in 1ml aliquots in screw cap tubes. Store at -20°C in the dark (wrap tubes
in aluminum foil).
Usual final concentration in culture media = 12.5 ug/ml.
d. Penicillin/Streptomycin (SIGMA, Cat. # P0906). Penicillin G potassium = 5,000,000 Units
(3.34 g/5millions units = 0.668 g/million units). Streptomycin sulfate = 5 g
Stock = 10,000 U of pen & strep
Dissolve the content of the vial in 500 ml distilled water.
Filter sterilize, dispense in 2 ml aliquots in screw cap tubes. Store at –20°C.
Usual final concentration is 1/10 dilution.
e. Chloramphenicol (Sigma, Cat # C-0378)
Stock = 34 mg/ml
Dissolve 340 mg in 10 mL of absolute EtOH. Mix solution completely and aliquot into
microcentrifuge tubes. Store at –20°C.
2. LB-broth – freshly prepared and supplemented with the appropriate antibiotic (see above for
information.).
3. 1% Triton X
4. 20mM Tris HCl 7.5
5. 2mM EDTA
6. BAC clones (recommend
http://www.ensembl.org
or
http://genome.ucsc.edu
for clone selection)
7. Primers (recommend Integrated DNA Technologies, Coralville, IA 800-328-2661 www.idtdna.com)
specific to BACs
8. GoTaq Green Master Mix (Promega, Cat. # M7122)
9. Sterile 50% Glycerol – Combine equal amounts Sterile water and Glycerol, autoclave
10. 1xPBS
11. Cold 100% ethanol and 70% ethanol.
Cytogenetics Core
Anschutz Medical Campus, L18-8401A
Mail Stop 8117 P.O. Box 6511 Aurora, CO 80045
Phones: 303-724-3147, 303-724-3148
Fax: 303-724-3889 www.uccc.info/cytogenetics
207
12. 3 M NaAcetate pH 5.4
13. TE Buffer (10mM Tris-HCl, 0.5mM EDTA, pH 9.0)
14. Ethidium Bromide Stock Solution 10mg/ml
15. Agarose ultraPure (Life Technologies Cat. # 15510-027)
16. 1 x Tris-Acetate Buffer (TAE) – Dilute 1 part 50x stock in 49 parts Milli-Q water
Prepare 50x stock buffer as follows:
242.0 g Tris base
57.1 mL Glacial Acetic Acid
100 mL 0.5M EDTA pH 8.0
Sufficient quantity Milli-Q water for 1L solution]
17. 6x loading dye
18. Markers for size of DNA bands: (a) 100bp High Mass Ladder; (b) 3 ul of Gel Pilot 100 bp ladder
(Qiagen # 239035) or (c) 0.5 ul of 100 bp DNA ladder (Invitrogen # 15628-019)
II. Procedure
A. Selecting clones
1. Select the proper clone(s) for the area of interest using
a.
http://www.ensembl.org
b.
http://genome.ucsc.edu
2. Print a hard copy of the Contig View for the Probe Development binder which includes:
a. Chromosomal map
b. Position of gene of interest
c. Collection of clones available
d. Highlight selected clone
3. Acquire the clone(s) of interest from one of the following:
a. http://
www.CHORI.org
b. http://
www.invitrogen.com
4. Print a hard copy of the documentation for the clone purchase
B. Establishing cultures from stab or stocks (Following steps should be done using sterile technique.)
1. Prepare LB broth minus antibiotic. Autoclave with Liquid240 setting. Aliquot 3 ml of sterile LB
broth into 15ml tube. Incubate the tube overnight at 37°C to test for contamination. If the broth is
clear on day two, proceed with the protocol.
2. Determine the amount of LB broth (3 ml per 15ml tube per clone) you will need and supplement
this amount with the appropriate antibiotic. Label each tube with clone ID, initials and date.
3. Aliquot 3 ml of antibiotic-supplemented LB broth into 15 ml tubes. Stab the original glycerol stock
with a sterile loop, scoop up a few cells and swish loop into the broth. Incubate in shaker waterbath
overnight at 37°C.
4. After culturing overnight, freeze 1 ml of culture in two labeled cryovials: 500ul culture + 500ul
50% sterile glycerol and store at -80°C. Indicate location of frozen vials in Freezer -80°C log.
5. Store the remaining amount at 4°C (good for 2 weeks) wrapped or proceed to the next step.
C. Isolating and setting up mini-cultures from single cell colonies
1. Prepare LB agar minus antibiotic. Autoclave with Liquid240 setting. Pour agar plates (100 x
15mm plates hold 35-40ml), allow to solidify and store all but one plate at 4°C. Incubate the
Cytogenetics Core
Anschutz Medical Campus, L18-8401A
Mail Stop 8117 P.O. Box 6511 Aurora, CO 80045
Phones: 303-724-3147, 303-724-3148
Fax: 303-724-3889 www.uccc.info/cytogenetics
208
agar plate overnight at 37°C to test for contamination. If the plate is clear on day two, proceed
with protocol.
2. Determine the number of agar plates (2 plates per clone) need, apply 75-100ul of antibiotic on
plate surface and spread thoroughly with sterile glass triangle. Allow plates to dry for 2-3
hours. Label each plate with clone, tech initials and date.
3. Stab the original glycerol stock or touch the liquid culture with a sterile loop and streak the
surface of the antibiotic LB-agar plate. Streak plates with a small number of turn-arounds as to
not facilitate overgrowth.
4.
Incubate overnight at 37°C in designated incubator
.
5. Transfer 5-10 single bacterial colonies using the end of a transfer pipet tip to 15 ml tubes with 3
ml LB-broth with the appropriate antibiotic one colony per tube. Label each tube with the
clone ID, colony number, initials and date.
6. Store agar plates at 4°C (good for 2 weeks) wrapped in Saran wrap
7. Incubate tubes with loose lids (must allow air flow) in shaker waterbath 8-12h at 37°C.
D. Verifying presence of specific DNA sequences
1. Design primers specific to template
a. Search Ensembl (www.ensembl.org) to insure primers are crossing intron/exon junctions; use
flanking parameters of 500 (flanking sequence) 25 (intron bp); show full intronic sequence
b. Copy and paste selected sequence from Ensembl into Integrated DNA Technologies (IDT)
www.idtdna.com
to select and purchase forward and reverse primer sequences.
1. Optimal primers are 400bp, < 50% C/G content, and have annealing temperature ranges
from 55-60°C
2. Blast primers before purchasing directly from IDT webpage.
a. Select the following Blast parameters:
Database Human genomic + transcript
Optimize for Highly similar sequences (megablast)
b. An optimal Blast exhibits 100% Query Coverage and an E value <1.0 to the
area of interest only. If there is 100% Query Coverage and an E value <1.0 to areas different
from the chosen, new primer sequences must be selected for optimization.
3. Once a sequence Blast is successful, print a hard copy of the Blast table (typically 3-8
pages in length) and label the pages “forward” or “reverse”
4. Print a hard copy of the purchased Primer Set
c. Create and print for the Probe Development binder a Word document that includes the
following: 1. Name of clone; 2. Name of gene/area; 3. Exon/Intron sequence used for
primer design; 4. Forward and Reverse primer - sequences only
2. Prepare PCR templates from single colony cultures lysing the cells as follows:
a. Prepare plasmid lysis solution by combining the following for a total volume of 5ml:
1. 50ul 100% Triton X; 2. 100ul 1M Tris HCl 7.5; 3. 20ul 0.5M EDTA; 4. 4830ul
sterile water
b. In a microcentrifuge tube add 1. 50 ul plasmid lysis solution; 2. 5 ul of cell suspension
c. Heat to 95°C for 5 minutes using the PTC 200 or AB 2720 Thermal Cycler
d. Chill on ice or hold at 4°C until ready for PCR
3. Store remaining single colony cultures at 4
o
C after parafilming the caps shut (good for two
weeks).
Cytogenetics Core
Anschutz Medical Campus, L18-8401A
Mail Stop 8117 P.O. Box 6511 Aurora, CO 80045
Phones: 303-724-3147, 303-724-3148
Fax: 303-724-3889 www.uccc.info/cytogenetics
209
4. Submit the lysates to ‘Touchdown’ PCR (programmed into AB 2720 Thermal Cycler for
primers chosen with annealing temperature range from 55-65°C).
a. Dilute Primers. For IDT primers, add the vial’s nmol value ul x 10 of sterile or nuclease-
free water directly into the primer vial.
b. Dilute Stock. 10ul stock primer + 90ul sterile or nuclease-free water. Be sure to label
diluted primer tubes with primer name, forward or reverse, initials and date.
c. In a 200ul microcentrifuge tube add the following reagents in the order listed below:
Promega GoTaq Green Master Mix = 12.5 ul
Primers = 1 ul each of forward and reverse
Sterile Water = 9 ul
Template = 1.5 ul
Total reaction volume = 25 ul
d. Store vials at -20°C or proceed with next step.
5. Verify size of fragment by submitting specimen to gel electrophoresis using a 1% agarose gel
to confirm that the product band has the expected size (small gel casting tray 50 ml, larger tray
150 ml + add EtBr prior to pouring the gel - ~4-6 ul of 10mg/ml stock EtBr). Allow gel to
cascade for 30-40 mins for a small gel, 45-60 min for a large gel, run at 85-90 volts.
6. In the marker lane, use appropriate size markers (ie 2 ul of 100bp High Mass Ladder, 3 ul of
Gel Pilot 100 bp ladder or 0.5 ul of 100 bp DNA ladder Invitrogen +1 ul 6x dye + sterile water
to complete 6 ul. In the test DNA wells, use 6ul of DNA product (dye is part of GoTaq Green
Master Mix)
7. Compare the results of the gel for each colony per clone and select for further steps one or two
colonies that showed the expected product size and had the sharpest band on the gel.
8. Expand the clone in overnight cultures:
a. For mini-cultures: 3 ml LB broth with proper antibiotic + one loopful of culture at 37°C in
the water bath shaker.
b. For maxi-cultures: Transfer remaining content of 15 ml tube to a 1 liter erlenmeyer and add
an additional 125 ml of TB broth and appropriate quantity of antibiotic.
9. Make aliquots of the selected single colony (in duplicate) to freeze: 500ul single colony culture
+ 500ul 50% sterile glycerol and store at -80°C. Indicate location of frozen vials in Freezer -
80°C log.
10. Submit the remaining culture to the appropriate DNA purification protocol.
Revised April 15, 2008 (LG/MS/SH)
Approved on ____________by______
Read and understood by laboratory personnel
Name Date
Cytogenetics Core
Anschutz Medical Campus, L18-8401A
Mail Stop 8117 P.O. Box 6511 Aurora, CO 80045
Phones: 303-724-3147, 303-724-3148
Fax: 303-724-3889 www.uccc.info/cytogenetics
210
VI. DNA Cloning – Protocol 6
BAC DNA Preparations from Mini-Cultures
I. Reagents
1. QIAamp DNA Mini Kit (Qiagen Cat. # 51304)
2. 1XPBS
3. Cold 100% ethanol and 70% ethanol.
4. 3 M NaAcetate pH 5.4
5. TE Buffer (10mM Tris-HCl, 0.5mM EDTA, pH 9.0)
6. Ethidium Bromide Stock Solution 10mg/ml
7. Agarose ultraPure (Life Technologies Cat. # 15510-027)
8. 1 x Tris-Acetate Buffer (TAE) – Dilute 1 part 50x stock in 49 parts Milli-Q water
Prepare 50x stock buffer as follows: 242.0 g Tris base + 57.1 mL Glacial Acetic Acid +100 mL
0.5M EDTA pH 8.0 + Milli-Q water to complete 1L solution]
9. 6x loading dye
10. Markers for size of DNA bands: (a) 100bp High Mass Ladder; (b) 3 ul of Gel Pilot 100 bp
ladder (Qiagen # 239035) or (c) 0.5 ul of 100 bp DNA ladder (Invitrogen # 15628-019)
II. Procedure Note: Following steps should be done using sterile technique
A. Establishing Cultures and Isolating Single Colonies
1. Complete DNA Cloning Protocol 1: Establishing bacterial cultures, isolating single colonies
and verifying presence of desired sequence
B. DNA Extraction and Purification
Extract and purify DNA from mini-cultures using the QIAamp DNA mini-kit (Appendix pg.49 and
Blood and Body Fluid Spin Protocol pgs.27-29.) The purified DNA is used as template for whole
genome amplification using the Qiagen REPLI-g kit. Even though this mini-kit is not designed for
BAC DNA, experimentation has resulted in sufficient yields for REPLI-g amplification. For greater
BAC DNA yields refer to DNA Protocol 5 using the Nucleobond BAC Maxi-Kit.
1. Centrifuge 2ml of cell suspension for 5 min at 9.0x1000 rpm/g in a microcentrifuge tube. Remove
the supernatant completely and discard, taking care not to disturb the cell pellet.
2. Resuspend cell pellet in 1XPBS to a final volume of 200 µl.
3. Add 20 µl QIAGEN Proteinase K.
4. Add 200 µl Buffer AL to the sample. Mix by pulse-vortexing for 15 s. In order to ensure efficient
lysis, it is essential that the sample and Buffer AL are mixed thoroughly to yield a homogeneous
solution.
5. Incubate in Thermal Block at 56°C for 10 min.
6. Pulse spin the microcentrifuge tube to remove drops from the inside of the lid.
7. Add 200 µl 100% ethanol to the sample, and mix again by pulse-vortexing for 15 s. After mixing,
pulse spin the microcentrifuge tube to collect drops from the inside of the lid.
8. Carefully apply the mixture from step 6 to the QIAamp Spin Column (in a 2 ml collection tube)
without wetting the rim, close the cap, and centrifuge at 9.0x1000 rpm/g in for 1 min. Place the
Cytogenetics Core
Anschutz Medical Campus, L18-8401A
Mail Stop 8117 P.O. Box 6511 Aurora, CO 80045
Phones: 303-724-3147, 303-724-3148
Fax: 303-724-3889 www.uccc.info/cytogenetics
211
QIAamp Spin Column in a clean 2ml collection tube (provided), and discard the tube containing
the filtrate.
9. Carefully open the QIAamp Spin Column and add 500 µl Buffer AW1 without wetting the rim.
Close the cap and centrifuge at 9.0x1000 rpm/g for 1 min. Place the QIAamp Spin Column in a
clean 2 ml collection tube (provided), and discard the collection tube containing the filtrate.
10. Carefully open the QIAamp Spin Column and add 500 µl Buffer AW2 without wetting the rim.
Close the cap and centrifuge at 9.0x1000 rpm/g for 3 min.
11. Place the QIAamp Spin Column in a new 2 ml collection tube (not provided) and discard the
collection tube with the filtrate. Centrifuge at 9.0x1000 rpm/g for 1 min.
12. Place the QIAamp Spin Column in a clean 1.5 ml microcentrifuge tube (not provided), and discard
the collection tube containing the filtrate. Carefully open the QIAamp Spin Column and add 200 µl
Buffer AE. Incubate at room temperature (15–25°C) for 5 min, and then centrifuge at 9.0x1000
rpm/g for 1min. ***IMPORTANT: After centrifugation, keep the supernatant and label
microcentrifuge tube Elute1.
13. Repeat Step 12 in a second clean 1.5 ml microcentrifuge tube. ***IMPORTANT: After
centrifugation, keep the supernatant and label microcentrifuge tube Elute2.
C. DNA Precipitation and Concentration
1.Add content Elute 2 tube to Elute 1 tube for a total volume of 400 µl.
2.Add to the 400 µl reaction:
a. 0.1x the volume of the reaction of 3M Na Acetate = 40 µl
b. 2-2.5x of the volume of reaction of 100% cold EtOH = ~1100 µl
3. Mix gently but thoroughly by inverting the tube and keep at -80°C for 50 min., or at -20°C
overnight.
4. Spin 40 min. in refrigerated microcentrifuge at 11000 rpm. Carefully remove the supernatant.
5. Wash pellet with 70% cold ethanol, add slowly ~200 ul of cold 70% ethanol to the wall of the tube,
invert the tube and spin for 10min in refrigerated microcentrifuge at 11000 rpm.
6. Remove supernatant, wipe the tube walls carefully and dry the pellet at 37°C for ~20 min.
7. Dissolve the pellet in 10-20 ul TE buffer.
8. Incubate the tube in water bath at 37°C for 20 min to completely dissolve the pellet. Mix well.
9. Verify size of fragment by submitting specimen to gel electrophoresis using a 1% agarose gel to
confirm that the product band has the expected size (small gel casting tray 50 ml, larger tray 150
ml + add EtBr prior to pouring the gel - ~4-6 ul of 10mg/ml stock EtBr). Allow gel to cascade for
30-40 mins for a small gel, 45-60 min for a large gel, run at 85-90 volts.
10. In the marker lane, use appropriate size markers (ie 2 ul of 100bp High Mass Ladder, 3 ul of Gel
Pilot 100 bp ladder or 0.5 ul of 100 bp DNA ladder Invitrogen +1 ul 6x dye + sterile water to
complete 6 ul. In the test DNA wells, use 6ul of DNA product (dye is part of GoTaq Green Master
Mix)
11. Annotate the DNA vial with ID, concentration, date, tech initials, and buffer type.
12. Store DNA at -20°C.
Revised April 15, 2008 (LG/MS/SH)
Approved on ____________by______
Read and understood by laboratory personnel
Name Date
Cytogenetics Core
Anschutz Medical Campus, L18-8401A
Mail Stop 8117 P.O. Box 6511 Aurora, CO 80045
Phones: 303-724-3147, 303-724-3148
Fax: 303-724-3889 www.uccc.info/cytogenetics
212
VI. DNA Cloning – Protocol 8
Amplification of DNA Sequences
I. Reagents
1. REPLI-g Midi Kit (Qiagen Cat. No. 150045)
2. Human Control Kit (Qiagen Cat. No. 150090)
3. Ethidium Bromide Stock Solution 10mg/ml
4. Agarose ultraPure (Life Technologies Cat. No. 15510-027)
5. 1 x Tris-Acetate Buffer (TAE) – Dilute 1 part 50x stock in 49 parts Milli-Q water
Prepare 50x stock buffer as follows: 242.0 g Tris base + 57.1 mL Glacial Acetic Acid +100 mL
0.5M EDTA pH 8.0 + Milli-Q water to complete 1L solution]
6. 6x loading dye
7. Markers for size of DNA bands: (a) 100bp High Mass Ladder; (b) 3 ul of Gel Pilot 100 bp ladder
(Qiagen # 239035) or (c) 0.5 ul of 100 bp DNA ladder (Invitrogen # 15628-019)
II. Procedure
This protocol is optimized for BAC DNA templates. The optimal DNA concentration to be entered
into the REPLI-g assay should be 100ng.
1. Prepare Stock Buffer DLB by adding 500 ul nuclease-free water to the tube. Mix thoroughly and
centrifuge briefly. Note: Reconstituted Buffer DLB can be stored for 6 months at –20°C.
2. Prepare sufficient Buffer D1 (denaturation buffer) and Buffer N1 (neutralization buffer) for the total
number of whole genome amplification reactions. Buffer D1 and Buffer N1 should not be stored
longer than 3 months.
Preparation of Buffer D1 Component Volume*
Reconstituted Buffer DLB† 5 ul
Nuclease-free water 35 ul
Preparation of Buffer N1 Component Volume*
Stop Solution 8 ul
Nuclease-free water 72 ul
3. Clearly label a 200ul microcentrifuge tube and pipet 5 or 2.5 ul of template DNA into the tube.
The concentration of template DNA should be 100 ng. Lower starting concentrations of REPLI-g
DNA may lead to inaccurate labeling reactions downstream, although there is evidence of
successful amplification with as little as 11ng.
4. Add 5 or 2.5 ul Buffer D1 to the DNA for denaturation. Mix by vortexing and centrifuge briefly.
5. Incubate the samples at room temperature (15–25°C) for 3 min.
6. Add 10 or 5 ul Buffer N1 to the samples for neutralization. Mix by vortexing and centrifuge briefly.
7. Thaw REPLI-g Midi DNA Polymerase on ice. Thaw all other components at room
temperature, vortex, then centrifuge briefly. The REPLI-g Midi Reaction Buffer may form a
precipitate after thawing. The precipitate will dissolve by vortexing for 10 s.
8. Prepare a master mix on ice. Mix and centrifuge briefly.
Important: Add the master mix components in the order listed. After addition of water and REPLI-g
Midi Reaction Buffer, briefly vortex and centrifuge the mixture before addition of REPLI-g Midi
DNA Polymerase. The master mix should be kept on ice and used immediately upon addition of the
REPLI-g Midi DNA Polymerase.
Preparation of Master Mix per specimen (5ul)
Preparation of Master Mix per specimen (2ul)
REPLI-g Midi Reaction Buffer 29ul REPLI-g Midi Reaction Buffer 29ul
Cytogenetics Core
Anschutz Medical Campus, L18-8401A
Mail Stop 8117 P.O. Box 6511 Aurora, CO 80045
Phones: 303-724-3147, 303-724-3148
Fax: 303-724-3889 www.uccc.info/cytogenetics
213
Nuclease-free water 10ul
REPLI-g Midi DNA Polymerase 1ul REPLI-g Midi DNA Polymerase 1ul
8. Add the 30 or 40 ul of the master mix to 20 or 10 ul of denaturated DNA (step 4).
9. Place the 200 ul microcentrifuge tube into the Applied BioSystems Thermal Cycler and select Run.
Choose ‘repli-g’ and Start. The Thermal Cycler REPLI-g selection is pre-programmed with the
following steps:
a. Incubate at 30°C for:
i. 16 hrs (recommended for non-repetitive sequence DNA)
ii. 6 or 8 hrs (recommended for repetitive sequence DNA)
b. Inactivate REPLI-g Midi DNA Polymerase by heating the sample for 3 min at 65°C.
c. Store amplified DNA at 4°C for short-term storage or –20°C for long-term storage.
10. Dilute the REPLI-g product 1:9 (REPLI-g product to Sterile Water)
11. Verify size of fragment by submitting specimen to gel electrophoresis using a 1% agarose gel to
confirm that the product band has the expected size (small gel casting tray 50 ml, larger tray 150
ml + add EtBr prior to pouring the gel - ~4-6 ul of 10mg/ml stock EtBr). Allow gel to cascade for
30-40 mins for a small gel, 45-60 min for a large gel, run at 85-90 volts.
10. In the marker lane, use appropriate size markers (ie 2 ul of 100bp High Mass Ladder, 3 ul of Gel
Pilot 100 bp ladder or 0.5 ul of 100 bp DNA ladder Invitrogen +1 ul 6x dye + sterile water to
complete 6 ul. In the test DNA wells, use 6ul of DNA product (dye is part of GoTaq Green Master
Mix)
12. Annotate the DNA vial with ID, concentration, date, and initials.
13. Store DNA at -20°C or proceed with labeling.
Revised April 15, 2008 (LG/MS/SH)
Approved on ____________by______
Read and understood by laboratory personnel
Name Date
Cytogenetics Core
Anschutz Medical Campus, L18-8401A
Mail Stop 8117 P.O. Box 6511 Aurora, CO 80045
Phones: 303-724-3147, 303-724-3148
Fax: 303-724-3889 www.uccc.info/cytogenetics
214
IV. DNA Labeling - Protocol 3
DNA Direct Labeling by Nick-Translation
I. Reagents:
1. Nick Translation Kit (Abbott Molecular Cat. # 32-801300)
2. SpectrumGreen (Cat. # 30-803200), SpectrumOrange (Cat. # 30-803000) or SpectrumRed (Cat. #
30-803400) labeled nucleotides
II. Preparing the Reagents (Protect From Light):
1. 0.2 mM SpectrumGreen, SpectrumOrange or SpectrumRed. Add 10 ul of 1mM dUTP stock to 40 ul
nuclease-free water
2. 0.1 mM dTTP. Add 10 ul of 0.3 mM dTTP to 20 ul nuclease-free water
3. 0.1 mM dNTP Mix. Mix together 10 ul each of 0.3 mM dATP, dCTP, and dGTP
III. Procedure (Protect from Light):
1. Prepare pure DNA. Labeling DNA not efficiently purified can result in poor incorporation of
SpectrumGreen, SpectrumOrange or SpectrumRed labeled nucleotides and high background after
hybridization.
2. Label a 0.5 ml microcentrifuge tube with the DNA ID, label to be used, and date. Place the tube on
ice.
3. For each reaction, add the following to the labeled tube in the correct order:
a. 1 ug of DNA (x ul) and dH
2
0 (17.5 – x ul).
b. 5 ul Nick Translation Buffer
c. 2.5 ul of 0.2 mM SpectrumGreen, SpectrumOrange or SpectrumRed dUTP.
d. 5 ul of 0.1 mM dTTP.
e. 10 ul of 0.1 mM dNTP mix. Vortex briefly and pulse spin.
f. 10 ul of nick translation enzyme.
NOTE: Be sure to take an ice bucket to the freezer and place the nick-translation enzyme in it. Carry
the bucket back to the workstation. Return the enzyme to the freezer immediately after use. Proper
storage and handling procedures will ensure a long life for the enzyme mix.
4. Mix briefly and spin for 2 seconds (pulse spin) in a microcentrifuge.
5. Place the tube in a thermoblock, and incubate at 15°C for 3-20 hours, depending on the size of the
DNA to be labeled and the desired size of the labeled fragments, according to the table below. For
directions to use the thermoblock see Protocol IV. 4.
DNA Initial Size of DNA Final Size of Fragment
Incubation Time
2 ug Plasmid DNA (~0.5-
1kb of
repeated sequences)
~50-100 bp 3 Hours
1 ug ~4.5 kb ~300 bp 4 Hours
1 ug ~7.9 kb ~300 bp 7 Hours
Cytogenetics Core
Anschutz Medical Campus, L18-8401A
Mail Stop 8117 P.O. Box 6511 Aurora, CO 80045
Phones: 303-724-3147, 303-724-3148
Fax: 303-724-3889 www.uccc.info/cytogenetics
215
1 ug ~10 kb ~300 bp 8 Hours
1 ug Cosmids (~40 kb) ~150-200 bp 12 Hours
1 ug P1 DNA (~70-100 kb) ~300 bp 15 Hours
1 ug BAC DNA (~100-200kb) ~300 bp 16 Hours: Cell Lines
18 Hours: Tissue Sect.
1 ug YAC DNA (~200kb-1.5Mb) ~300 bp 20 Hours
1 ug Genomic DNA (for CGH) ~300-1000 bp 3 Hours
6. Spin down labeled DNA for 2 seconds in a microcentrifuge and store at -20
o
C until needed (up to 2
years).
IV. Comments:
1. Before using the probes, it is convenient to determine the size of the labeled fragments (Protocol
IV.P2). The probe can be left in this state or may be immediately precipitated for FISH (Protocol IV.
P5).
2. For hybridization in formalin-fixed, paraffin-embedded tissue sections, probe fragments should be
smaller and longer incubation times are needed. For BACs, 18 h. instead of 16 h. is optimal.
3. The amount of DNA used in the labeling reaction may be changed depending on the original size
and the optimal final size. For instance, for 5 kb inserts, 2 ug of DNA may be introduced in the
reaction and labeled for 8 hours; this is expected to provide more labeled DNA with the correct final
size. In this case, the precipitation and hybridization is regularly performed taking the final volume of
the labeled DNA as for 1 ug.
Revised April 8, 2008 (LG/SH)
Approved on _____________by ____
Read and understood by laboratory personnel
Name Date
Cytogenetics Core
Anschutz Medical Campus, L18-8401A
Mail Stop 8117 P.O. Box 6511 Aurora, CO 80045
Phones: 303-724-3147, 303-724-3148
Fax: 303-724-3889 www.uccc.info/cytogenetics
216
IV. DNA Labeling - Protocol 5
Probe Preparation for Hybridization
I. Reagents:
1. Cold 100% ethanol and 70% ethanol.
2. 3 M Na Acetate pH 5.4
3. 5 mg/ml salmon/herring sperm DNA.
4. 1 ug/ul Cot 1 DNA (Human, mouse, rat)
5. Hybridization Buffer: 65% formamide hybridization buffer for repetitive sequence; 50% formamide
hybridization buffer for single sequences or commercial mix according to the manufacturer
recommendations.
II. Procedure (Protect from Light):
1. Add to the 50 ul of labeling reaction
a. 50x the amount of labeled DNA (1ug) of salmon sperm (10 ug/ul) = 5 ul
b. 10x the amount of labeled DNA of Cot-1 DNA* (1 ug/ul) = 10 ul
c. 0.1x the volume of the reaction of 3M Na Acetate = 7.5 ul
d. 2-2.5x of the volume of reaction of 100% cold EtOH = ~180 ul
* Cot-1 DNA is only added if the probe is not a repetitive sequence. In addition the reagent is
species-specific (human, mouse, etc.) and its concentration may be adjusted to allow better
signals
2. Mix by inverting the tube and keep at -80°C for 30-60 min., or at -20°C overnight.
* Hold tube at 4
°
C in cold room for 5 min before spinning to equilibrate.
3. Spin 30 min. in refrigerated microcentrifuge at 11000 rpm. Remove the supernatant.
4. Wash pellet 2 times with 70% cold ethanol (slowly add ~200 ul of cold 70% ethanol to the wall of
the tube, and invert the tube. If the pellet gets loose when you add the ethanol, it must be centrifuged
again.
5. Wipe the tube walls carefully and dry the pellet at 56°C for ~15-30 min.
6. Redissolve the pellet in the desired amount of the appropriate hyb mix. (homebrew 65% formamide
hybridization buffer for repetitive sequence; homebrew 50% formamide hybridization buffer for single
sequences; for commercial hyb mixes follow manufacturer’s instructions).
7. Incubate the tube in a water bath at 37°C for 15-30 min to completely dissolve the pellet. Mix well
and store at -20°C until needed.
Comments: If the probe generates heavy background in the FISH preparations, it may help to
precipitate the labeling reaction twice. In this case, at the first time only the labeled DNA, 3 M Na
Acetate and 100% ethanol is used. Then, the pellet is dissolved in 100 ul of dH
2
O, and the proper
proportions of carrier and blocking DNA, 3 M Na Acetate and 100% ethanol are added.
III. For Hybridization with Mixture of Probes (for one 22 x 22 mm cover area)
Cytogenetics Core
Anschutz Medical Campus, L18-8401A
Mail Stop 8117 P.O. Box 6511 Aurora, CO 80045
Phones: 303-724-3147, 303-724-3148
Fax: 303-724-3889 www.uccc.info/cytogenetics
217
A. Combination of Unique Sequence (or Alpha Satellite) Probes
1. Mix the following components:
a. Selected amount of each labeled unique sequence DNA [about 100-150 ng for cosmid, PAC
and BAC DNA, 100 to 200 ng for YAC DNA]
b. 10x of Cot-1 Human or the proper species (1 ug/ul) to labeled DNA (do not exceed 30 ug if
mixing several probes)
c. 50x of salmon sperm DNA (5 ug/ul) or an amount that does not exceed a total of 15 ug of
DNA, otherwise the hybridization solution will be too concentrated and the pellet will not dissolve in
hybridization mix.
d. 0.1x the volume of the DNA solution of 3 M Na Acetate
e. 2-2.5x of the volume of reaction of 100% cold EtOH
2. Mix well and incubate at -80°C for 30 min.
3. Microspin at 4°C for 30 min. at 11,000 rpm. Remove the supernatant.
4. Carefully wipe the tube walls and dry the pellet at 56°C for 15-30 min.
5. Carefully rinse the pellet in 70% ethanol (slowly add ~200 ul of cold 70% ethanol to the wall of the
tube, and invert the tube. If the pellet gets loose when you add the ethanol, it must be centrifuged
again.
6. After the pellet is dry, add the desired amount of 50% formamide hybridization mix (minimum 10-
15 ul) to dissolve the pellet. Incubate the tube at 37°C for 10 min. (it may be necessary to incubate in
higher temperature or longer time). Mix by tapping with finger tip; spin 2 sec. in a microcentrifuge to
pellet the droplets.
7. Store at -20°C or proceed for denaturation.
The steps below can be performed during the hybridization (see Protocols in section V. FISH).
8. Calculate the total volume needed for all slides (for example: 6 ul of this mixture is needed for a 15 mm
dia. coverslip). Ratio of probe to dH
2
O to 50% formamide hybridization buffer or LSI Hybridization
Buffer is 1.0 ul probe to 2.0 ul dH
2
O to 7.0 ul LSI Hybridization Buffer. Adjust the volumes accordingly
for different coverslips.
9. Denature the probe mixture at 75-80°C for 5-10 min. (place the tube tightly closed, in a bubble rack
and float in a water bath at 80°C for 10 min.).
10. Chill on ice for about 2-5 min. to condense vapor inside the tube. Pulse spin to collect the droplets.
11. Incubate the probe mixture in a water bath at 37°C for 20-30 min. for pre-annealing of the Cot-1
repetitive sequences (if applicable).
12. Chill the mixture on ice for 2-5 min. Pulse spin and keep on ice until use.
B. Combination of Probes with Repetitive and Unique Sequences
1. Proceed with steps 1 to 7 of III.A for repetitive sequence probes (EXCEPT that no Cot-1 DNA is
added and 65% formamide hybridization buffer is used).
Cytogenetics Core
Anschutz Medical Campus, L18-8401A
Mail Stop 8117 P.O. Box 6511 Aurora, CO 80045
Phones: 303-724-3147, 303-724-3148
Fax: 303-724-3889 www.uccc.info/cytogenetics
218
2. Prepare unique sequence probes as defined in III.A.
The steps below can be performed during the hybridization (see Protocols in section V. FISH).
3. After blocking of the repetitive sequences of the unique sequence DNA, mix the appropriate amount
of repetitive and unique sequence probes along with dH
2
O and LSI Hybridization Buffer if necessary
to obtain the required volume of the final mixture.
4. Denature the probe mixture at 75-80°C for 5-10 min and chill on ice until use.
Revised April 8, 2008 (LG/SH)
Approved on _____________by ____
Read and understood by laboratory personnel
Name Date
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo