

SEDENIONS DE CAYLEY-DICKSON E DILATAÇÃO DE FUNÇÕES K-QUASECONFORMES

Michele Regina Dornelas Roque

Dissertação de Mestrado Pós-Graduação em Matemática

Rua Cristovão Colombo, 2265 15054-000 - São José do Rio Preto - SP - Brasil Telefone: (017) 3221-2444 Fax: (017) 3221-2445

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Sedenions de Cayley-Dickson e Dilatação de Funções k-Quaseconformes

Michele Regina Dornelas Roque¹

Dissertação apresentada ao Instituto de Biociências, Letras e Ciências Exatas da Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus de São José do Rio Preto, São Paulo, para a obtenção do título de Mestre em Matemática.

Orientador: Prof. Dr. Manoel Ferreira Borges Neto

São José do Rio Preto 17 de fevereiro de 2009

 $^{^{1}} contato: micheledornel as @yahoo.com.br\\$

Dissertação apresentada para obtenção do título de Mestre em Matemática junto ao Programa de Pós-Graduação em Matemática do Instituto de Biociências, Letras e Ciências Exatas da Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus de São José do Rio Preto.

BANCA EXAMINADORA

Prof. Dr. Manoel Ferreira Borges Neto Professor Titular UNESP - São José do Rio Preto Orientador

Prof. Dr. Masayoshi Tsuchida Professor Assistente Doutor UNESP - São José do Rio Preto

Prof. Dr. José Arnaldo Frutuoso Roveda Professor Assistente Doutor UNESP - Sorocaba

São José do Rio Preto, 17 de Fevereiro de 2009.

"A satisfação está no esforço feito para alcançar o objetivo, e não em tê-lo alcançado." *Gandhi*

Aos meus pais, Nelson e Vandira, e ao meu irmão, Tiago, exemplos de compreensão, humildade e amizade. Dedico.

Agradecimentos

Inicialmente, agradeço a Deus por tudo.

Agradeço aos professores do Departamento de Ciências de Computação e Estatística, pelo incentivo e acompanhamento referente ao meu trabalho de pesquisa durante o mestrado.

Especialmente ao meu orientador, Prof. Dr. Manoel Ferreira Borges Neto, agradeço pela dedicação, confiança, paciência, seriedade constante e integridade sempre presente durante a construção desta dissertação.

Em particular, agradeço ao meu marido, Mairon Thiago Roque, pelas valiosas sugestões e pelo incentivo para a realização deste trabalho.

Finalmente, agradeço aos meus familiares e amigos pela compreensão, perseverança e por acreditarem no meu trabalho.

Agradeço ao CNPQ, pelo apoio financeiro.

Resumo

Nesta dissertação, estuda-se estruturas matemáticas relacionadas à álgebra dos sedenions de Cayley-Dickson. O conceito de funções sedeniônicas do tipo $f(z) = z^n$, $z \in \mathbb{S}$ e $n \in \mathbb{N}$, é desenvolvido a partir da distância |f(y)-f(x)|, com o objetivo de obter-se uma generalização. A este tipo de mapeamentos trata-se por funções quaseconformes, ou seja, mapeamentos que não preservam a magnitude dos ângulos.

Em particular, através de métodos de resolução, apresenta-se e discute-se polinômios de 2n graus com coeficientes sedeniônicos com o intuito de enfatizar o valor da k-dilatação causada quando trabalha-se com o número sedeniônico em coordenadas esféricas. Por fim, ilustra-se geometricamente os cortes produzidos em hiperesferas $\overline{B}(x,r)$ quando submetidas às transformações do tipo z^2 e z^3 .

Palavras-chave: *Sedenions*, transformações k-quaseconformes, equações de Cauchy-Riemann, dilatação nos hipercomplexos, mapeamentos.

Abstract

In this work, we propose to study the mathematical construction related with algebra of Cayley-Dickson sedenions. We will present the concept of sedenions functions of $f(z) = z^n$ type, $z \in \mathbb{S}$ and $n \in \mathbb{N}$, developing |f(y) - f(x)| distance, with the objective of creating a generalization. This type of mappings is known as *quasiconformal functions*, that is, mapping that don't preserve the magnitude of angles.

Specially, by means of resolution methods, we will discuss polynomials of 2n degrees with sedenions coefficients focused on highlighting the value of the k-dilation caused when we work with the sedenion number in spherical coordinates. Finally, it is illustrated geometrically the cuts produced in hiperspheres $\overline{B}(x, r)$ when submitted to the transformations of the type z^2 and z^3 .

Keywords: Sedenions, k-quasiconformal transformation, Cauchy-Riemann equations, dilation in the hipercomplexs, mappings.

Sumário

1	Intr	odução	1								
	1.1	Aspectos Históricos dos Números Hipercomplexos									
	1.2	Os Sedenions de Cayley-Dickson	5								
		1.2.1 Representação Geométrica dos Hipercomplexos	10								
		1.2.2 Propriedades Elementares	12								
	1.3	Sedenions Cônicos: Um Breve Estudo	17								
		1.3.1 Estudo da Multiplicação dos Sedenions Cônicos 	18								
		1.3.2 Propriedades dos <i>Sedenions</i> Cônicos	20								
	1.4	Diferenças entre Sedenions de Cayley-Dickson e os Sedenions Cônicos	22								
	1.5	Considerações	24								
2	Um	estudo algébrico do desenvolvimento de x^n	25								
	2.1	Função Hipercomplexa 16-dimensional	25								
3	Rep	presentação de uma hipersuperfície em \mathbb{R}^{16}	30								
	3.1	Coordenadas esféricas 16-dimensionais	30								
4	Noç	ções Topológicas Elementares	35								
	4.1	Regiões no Plano Complexo	35								
	4.2	Transformações	40								
	4.3	Equações de Cauchy-Riemann 16-dimensional	42								
5	Ger	neralização de $ f(y) - f(x) $ dado que $f(z) = z^n$	61								
	5.1	Fator de expansão e a k-quaseconformidade	61								

	5.2	O case	$p \text{ em que } f(z) = z^n \dots \dots$	•	63									
	5.3	3 O caso em que $f(z) = z^2$												
	5.4	4 O caso em que $f(z) = z^3$												
	5.5	5 O caso em que $f(z) = z^4$												
6) Projeções em \mathbb{R}^3 e o Cálculo da Dilatação													
	6.1	1 Mapeamentos Curvilíneos												
	6.2	2 Projeção de z^2 e cálculo computacional da k-dilatação												
	6.3	Projeç	ão de z^3 e cálculo computacional da k-dilatação		91									
	6.4	Estud	o da influência do raio na hiperesfera		96									
		6.4.1	Exemplos de projeções do tipo $f(z) = z^2$		96									
		6.4.2	Exemplos de projeções do tipo $f(z) = z^3$		98									
		6.4.3	Considerações sobre o valor da k-dilatação	. 1	100									
7	Con	iclusão		1	01									
A	Con	ıstruçã	o de Cayley-Dickson	1	.03									
	Ref	erência	as Bibliográficas	1	.09									

Prefácio

Nas últimas décadas a tentativa de se compreender a importância da Mecânica Quântica por meio dos *sedenions* tem resultado em um significativo avanço no desenvolvimento de estruturas matemáticas sedeniônicas e suas aplicações em Física. O crescente progresso realizado no estudo de funções hipercomplexas quaseconformes tem possibilitado calcular o valor da k-dilatação em hipercomplexos sem a necessidade de realizar cálculos tediosos. Uma tentativa proposta que visa em futuro distinguir a teoria quântica hipercomplexa da quaterniônica é apresentada por Maricato [20, 21]. Ele sugere um estudo computacional para o cálculo da k-dilatação em funções submetidas à transformação do tipo $f(z) = z^n$, $n \in \mathbb{N}$, a qual trataremos por funções quaseconformes, na procura de quantificar o valor de k. Os resultados desses estudos mostraram que as transformações para os quatérnios sofrem deformações similares aos complexos, porém em dimensões maiores. Uma análise análoga, vide Benzatti [25], feita para os octônios expandem resultados parecidos quando comparados com os quatérnios.

Nesta dissertação volta-se os olhares para álgebra dos hipercomplexos, dando continuidade ao estudo feito por Maricato [20, 21], porém explorando os *sedenions* como o espaço hipercomplexo 16-dimensional, com o intuito de comparar *qualitativamente* os resultados obtidos por Maricato e Benzatti [20, 21, 25].

Também expande-se neste trabalho, os recentes artigos, Borges e Machado [16, 17], que remetem ao conceito de diferenciabilidade em funções hipercomplexas quaseconformes, partindo dos estudos realizados por Oliveira e Pendeza (vide [22, 23]) e estendendo as equações de Cauchy-Riemann generalizadas para os *sedenions*.

Para o desenvolvimento deste trabalho, estrutura-se esta dissertação da seguinte forma: começa-se o capítulo 1 com uma nota histórica mostrando o surgimento dos hipercomplexos e, em seguida, introduz-se os conceitos básicos sobre *sedenions*. Discute-se brevemente as diferenças algébricas entre os dois tipos de *sedenions*: os de Cayley-Dickson e os cônicos.

O capítulo 2 é baseado essencialmente na generalização do cálculo de x^n , em que $n \in \mathbb{N}$ e x é um hipercomplexo, recorrendo a notação de x^n por meio de fórmulas binomiais e define-se também o conceito de funções para os hipercomplexos.

Percebe-se, através do capítulo 2, que o sedenion quando elevado a potência $n, n \in \mathbb{N}$,

resulta num extenso processo que dificulta o cálculo da dilatação quando define-se a distância como |f(y) - f(x)|, $x, y \in S$. Devido a isto, torna-se essencial utilizar uma notação mais simplificada para representar um *sedenion*, e é no capítulo 3 que faz-se uma mudança de coordenadas, ou seja, representa-se um *sedenion* em coordenadas esféricas, conforme é feito em procedimento análogo para os quatérnios [20, 21].

O estudo das funções de variáveis complexas têm sido uma das teorias mais sólidas dentro da Matemática capaz de proporcionar instrumentos poderosos aos matemáticos e físicos, e é no capítulo 4 que faz-se uso desta teoria para resgatar alguns conceitos topológicos necessários para o bom compreendimento deste trabalho. No quarto capítulo também é apresentado o conceito de transformações conformes e as Equações de Cauchy-Riemann generalizadas 16dimensional, fazendo uso propriamente dito da tábua de multiplicação dos *sedenions*.

A parte central desta dissertação, capítulos 5 e 6, concretizam a proposta deste trabalho. No capítulo 5 desenvolve-se a distância |f(y) - f(x)|, com $x, y \in \mathbb{S}$, que se estabelece uma métrica capaz de quantificar computacionalmente o valor da k-dilatação, quando a função sedeniônica é submetida à transformação $f(z) = z^n$, n = 2, 3, 4, Também é no capítulo 5 que se define o siginificado de uma função f ser k-quaseconforme em um domínio I simplesmente conexo. Finalmente, no capítulo 6, ilustra-se geometricamente os mapeamentos de $f(z) = z^n$ através de projeções em \mathbb{R}^3 , este tipo de mapeamento se torna possível devido a diferentes cortes fixados nas hipersuperfícies em questão. Os cortes são obtidos através da manipulação dos ângulos envolvidos e do centro da hiperesfera 16-dimensional.

> São José do Rio Preto 17 de Fevereiro de 2009 Michele Regina Dornelas Roque

Capítulo 1

Introdução

Neste capítulo, apresenta-se um estudo algébrico dos *sedenions* a partir de uma nota histórica. Introduz-se os números *sedenions* e na sequência é realizada uma construção dos *sedenions* como uma estrutura algébrica 16-dimensional, e suas principais propriedades são discutidas.

1.1 Aspectos Históricos dos Números Hipercomplexos

A história dos números complexos ilustra bem como um conceito matemático fundamental pode demorar muito até ser bem compreendido e aceito. É uma história longa de resistência, por parte de excelentes matemáticos, a admitirem a existência dos números complexos, mesmo quando já os usavam indiretamente.

Os números complexos foram introduzidos a partir do século XVI, quando pensava-se que com a criação dos números reais já se tinha uma representação para a solução de todos os problemas de medida, o que se presumia o não avanço de nenhum outro campo numérico. Acreditava-se que não existia raiz quadrada de um número negativo.

Geronimo Cardano (1501-1576), em seu tratado Ars Magna (1545), descreve o método para resolver a equação do terceiro e quarto grau, muito embora Nicolo Tartaglia (1500-1557) foi quem sugeriu as soluções das equações cúbicas. Enquanto sobre a regra para resolver equações quárticas, Cardano escreveu no Ars Magna que "é devida a Luigi Ferrari, que a inventou a meu pedido". Cardano usou soluções de polinômios que levavam a raízes quadradas de quantidades negativas, a qual ele se referia como "sofísticas" e concluia que o resultado nesse caso era "*tão sutil quanto inútil*". Pode-se dizer que Ars Magna foi um marco à pesquisa em álgebra em todas as direções, desde os babilônios.

A partir daí, os matemáticos começaram a usar os números complexos aplicando-lhes as regras usuais do cálculo com números reais, embora escandalizados e dando declarações de que eles "não existiam" e eram "inúteis". Em 1629, Albert Girard (1595-1632), foi quem introduziu o símbolo $\sqrt{-1}$, e posteriormente, o matemático suíco Leonhard Euler (1707-1783) simbolizou *i* para representar $\sqrt{-1}$, enquanto que os termos reais e imaginários foram expressos por René Descartes (1596- 1650). E só em 1831, Carl Friedrich Gauss (1777-1855), estabeleceu a expressão número complexo, no qual ele observou que cada ponto de uma reta correspondia um número real e cada ponto do plano podia ser associado a um número complexo.

Em 1833, William Rowan Hamilton (1805-1865) percebendo a dificuldade com que os estudiosos tinham com as quantidades negativas e imaginárias, passou a se empenhar no significado dos números imaginários. Ele toma o par (0, 1) como representando $\sqrt{-1}$, o que significa expressar a unidade imaginária em termos de números reais, percebendo que seus pares ordenados podiam ser entendidos como entidades no plano e tentou estender a idéia a três dimensões indo dos números complexos, $a + b\mathbf{i}$, para ternas ordenadas, $a + b\mathbf{i} + c\mathbf{j}$. O fato que levou Hamilton a tal propósito foi o desejo de conectar cálculo com geometria, através de uma extensão ainda não descoberta, ao espaço de três dimensões.

O problema consistia em encontrar uma regra para multiplicar ternas, ou seja, desenvolver o produto (a + bi + cj)(x + yi + zj), o qual resultava por,

$$(ax - by - cz) + i(ay + bx) + j(az + cx) + ij(bz + cy)$$

de modo que os três primeiros termos deveriam estar associados às coordenadas espaciais e o problema para Hamilton era desvendar o significado do quarto termo ij. Por volta de uma década, esta pergunta aborreceu Hamilton, que escreveu para seu filho Archibald [1]:

"Every morning in the early part of the above-cited month [Oct. 1843] on my coming down to breakfast, your brother William Edwin and yourself used to ask me: Well, Papa, can you multiply triplets? Whereto I was always obliged to reply, with a sad shake of the head: No, I can only add and subtract them". Em 1843, Hamilton fez uso da propriedade da não-comutatividade e atribuiu um nome ao produto ij, chamando-o de coeficiente k, conduzindo à passagem do plano ao espaço. Eis então uma de suas maiores descobertas, os Quatérnios. Esta brilhante idéia de Hamilton se deu enquanto ele caminhava ao longo do Canal Royal, onde repentinamente parou sob a Ponte de Brougham, tirou seu canivete, e arranhou a fórmula fundamental dos símbolos i, j, k:

Figura 1.1: Descoberta de Hamilton

 $i^2 = j^2 = k^2 = ijk = -1$

em uma pedra. Hoje não há nenhum sinal que remonta a existência disto, porém em 1956, em homenagem à descoberta, uma placa foi erguida neste local.

O estudo dos quatérnios foi para Hamilton uma de suas maiores realizações, em *Lec*tures on Quaternions [2], Hamilton apresentou uma teoria de um sistema não comutativo algébrico. Ele interpretou o quatérnio como sendo a razão entre dois vetores, tornando real a relação dos quatérnios com o espaço tridimensional. Sua mais famosa obra na teoria dos quatérnios é conhecida por *Elements of Quaternions* [3], sendo editada e publicada por seu filho, William Edwin Hamilton, em 1866, no ano seguinte à morte de Hamilton.

Sucessivas investigações passaram a ocorrer desde então, e foi através da perda da propriedade da associatividade que John Thomas Graves (1806-1870), amigo de Hamilton, encontrou uma álgebra das oitavas, com 8 elementos de base, ou seja, os octônios. Em 1845, os octônios foram redescobertos por Arthur Cayley (1821-1895), em seu artigo, "On Jacobi's elliptic functions, in reply to the Rev. B. Brouwin; and on quaternions", e é devido a isso que eles também são conhecidos como Números de Cayley [4, 5].

Outro matemático responsável pelo avanço dos hipercomplexos foi James Joseph Sylvester (1814-1897), grande amigo de Cayley, que passou a trabalhar com equações algébricas generalizadas com raízes imaginárias. Acredita-se que Sylvester seja um dos percursores dos *sedenions*.

A palavra *sedenion* provém de *sexdecim*, o que significa dezesseis. Os *sedenions* consistem de uma álgebra 16-dimensional sobre os números reais.

Há dois tipos de *sedenions*:

1. Sedenions obtidos pela aplicação da construção de Cayley-Dickson, também conhecido por sedenions circulares [6];

2. Sedenions cônicos - M-álgebra de dezesseis dimensões, introduzidos por Charles A.
 Musès (1919-2000) - obtidos como parte do conceito de hipernúmeros [7, 8, 9].

A multiplicação dos *sedenions* de Cayley-Dickson não é nem comutativa e nem associativa, assim como os octônios. Mas, em contra-partida com os octônios, os *sedenions* não têm a propriedade de serem alternativos. Eles têm, entretanto, a propriedade de serem associativos em relação à potenciação.

Os *sedenions* de Cayley-Dickson, são contituídos de uma unidade real e 15 raízes imaginárias, já os *sedenions* cônicos são contituídos de uma unidade real, 8 raízes imaginárias e 7 raízes contra imaginárias.

Nesta dissertação, somente são investigados com maior profundidade, após uma introdução sobre os dois tipos de *sedenions* acima descritos, os *sedenions* de Cayley-Dickson. Os *sedenions* cônicos serão deixados para uma futura investigação.

1.2 Os Sedenions de Cayley-Dickson

Um sedenion é um número hipercomplexo 16-dimensional. Define-se o conjunto dos sedenions por S, tal que:

$$\mathbb{S} = \{(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}) | a_n \in \mathbb{R}, n = 0, \dots, 15\}, (1.1)$$

Um número sedenion apresenta a seguinte estrutura:

$$s = a_0 + ia_1 + ja_2 + ka_3 + e^{'}a_4 + i^{'}a_5 + j^{'}a_6 + k^{'}a_7 + e^{''}a_8 + i^{''}a_9 + j^{''}a_{10} + k^{''}a_{11} + e^{'''}a_{12} + i^{'''}a_{13} + j^{'''}a_{14} + k^{'''}a_{15},$$

$$(1.2)$$

em que cada a_n é um número real.

Os símbolos i, j, k, e', i', j', k', e'', i'', j'', k'', e''', i''', j''', k''' são unidades imaginárias que obedecem as seguintes regras de multiplicação:

Define-se a operação de adição entre $s, t \in \mathbb{S}$ por:

$$s + t = (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}) + (b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}, b_{11}, b_{12}, b_{13}, b_{14}, b_{15}) = (a_{0} + b_{0}) + i(a_{1} + b_{1}) + j(a_{2} + b_{2}) + k(a_{3} + b_{3}) + e'(a_{4} + b_{4}) + i'(a_{5} + b_{5}) + j'(a_{6} + b_{6}) + k'(a_{7} + b_{7}) + e''(a_{8} + b_{8}) + i''(a_{9} + b_{9}) + j''(a_{10} + b_{10}) + k''(a_{11} + b_{11}) + e'''(a_{12} + b_{12}) + i'''(a_{13} + b_{13}) + j'''(a_{14} + b_{14}) + k'''(a_{15} + b_{15})$$
(1.3)

A operação de adição com um número real x é dada por:

$$s + x = (a_0 + x) + ia_1 + ja_2 + ka_3 + e'a_4 + i'a_5 + j'a_6 + k'a_7 + e''a_8 + i''a_9 + j''a_{10} + k''a_{11} + e'''a_{12} + i'''a_{13} + j'''a_{14} + k'''a_{15}$$
(1.4)

Já a operação de subtração é dada por:

$$s - t = (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}) - (b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}, b_{11}, b_{12}, b_{13}, b_{14}, b_{15}) = (a_{0} - b_{0}) + i(a_{1} - b_{1}) + j(a_{2} - b_{2}) + k(a_{3} - b_{3}) + e^{i}(a_{4} - b_{4}) + i^{i}(a_{5} - b_{5}) + j^{i}(a_{6} - b_{6}) + k^{i}(a_{7} - b_{7}) + e^{i''}(a_{8} - b_{8}) + i^{i''}(a_{9} - b_{9}) + j^{i''}(a_{10} - b_{10}) + k^{i''}(a_{11} - b_{11}) + e^{i'''}(a_{12} - b_{12}) + i^{i'''}(a_{13} - b_{13}) + j^{i'''}(a_{14} - b_{14}) + k^{i'''}(a_{15} - b_{15})$$
(1.5)

O *sedenion* negativo é definido por:

$$-s = -a_0 - ia_1 - ja_2 - ka_3 - e^{i}a_4 - i^{i}a_5 - j^{i}a_6 - k^{i}a_7 - e^{i''}a_8 - i^{''}a_9 - j^{''}a_{10} - k^{''}a_{11} - e^{i'''}a_{12} - i^{'''}a_{13} - j^{'''}a_{14} - k^{'''}a_{15}$$

$$(1.6)$$

A multiplicação é distributiva, assim em fazendo-se as seguintes identificações:

um número sedenion $s = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15})$, com $a_n \in \mathbb{R}$, n = 0, ..., 15, pode ser representado por:

em que a_0 representa a parte escalar positiva Re(x) do número sedenion e $h_x = ia_1 + ja_2 + ka_3 + e'a_4 + i'a_5 + j'a_6 + k'a_7 + e''a_8 + i''a_9 + j''a_{10} + k''a_{11} + e'''a_{12} + i'''a_{13} + j'''a_{14} + k'''a_{15}$, a sua parte vetorial imaginária. Assim S pode ser representado como uma soma direta:

$$\mathbb{S} = \mathbb{R} \oplus V$$

onde \mathbb{R} é o corpo dos reais e V é um espaço euclidiano.

Tomando as unidades 1, i, j, k, e', i', j', k', e'', i'', j'', k'', e''', i''', j''', k''' como uma base ortonormal da álgebra 16-dimensional, pode-se construir a tábua de multiplicação para os *sedenions*:

*	1	i	j	k	e '	i'	j'	k'	e"	i"	j "	k"	e""	i"''	j "'	\mathbf{k} "
1	1	i	j	k	e'	i'	j'	k'	e"	i"	j"	k"	e",	i"'	j"'	k"'
i	i	-1	k	-j	i'	-e'	-k'	j'	i"	-e"	-k"	j"	-i"'	e",	k"'	-j"''
j	j	-k	-1	i	j'	k'	-e'	-i'	j"	k"	-e"	-i"	-j"'	-k"'	e"'	i"'
k	k	j	-i	-1	k'	-j'	i'	-e'	k"	-j"	i"	-e"	-k"'	j"'	-i"'	e"'
e'	e'	-i'	-j'	-k'	-1	i	j	k	e",	i"'	j"'	k"'	-e"	-i"	-j"	-k"
i'	i'	e'	-k'	j'	-i	-1	-k	j	i"'	-e"'	k"'	-j"'	i"	-e"	k"	-j"
j'	j'	k'	e'	-i'	-j	k	-1	-i	j"'	-k"'	-e"'	i"'	j"	-k"	-e"	i"
k'	k'	-j'	i'	e'	-k	-j	i	-1	k"'	j"'	-i"'	-e"'	k"	j"	-i"	-e"
e"	e"	-i"	-j"	-k"	-e"'	-i"'	-j"'	-k"'	-1	i	j	k	e'	i'	j'	k'
i"	i"	e"	-k"	j"	-i"'	e",	k"'	-j"''	-i	-1	-k	j	-i'	e'	k'	-j'
j "	j"	k"	e"	-i"	-j"''	-k"'	e"'	i"'	-j	k	-1	-i	-j'	-k'	e'	i'
k"	k"	-j"	i"	e"	-k"'	j"'	-i"'	e"'	-k	-j	i	-1	-k'	j'	-i'	e'
e""	e",	i"'	j"'	k"'	e"	-i"	-j"	-k"	-e'	i'	j'	k'	-1	-i	-j	-k
i""	i"'	-e"'	k"'	-j"'	i"	e"	k"	-j"	-i'	-e'	k'	-j'	i	-1	k	-j
j""	j"'	-k"'	-e",	i"'	j"	-k"	e"	i"	-j'	-k'	-e'	i'	j	-k	-1	i
k""	k",	j"'	-i",	-e"'	k"	j"	-i"	e"	-k'	j'	-i'	-e'	k	j	-i	-1

Tabela 1.1: Tábua de multiplicação para os sedenions

O sedenion conjugado \overline{s} de $s = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15})$ é dado por:

$$\overline{s} = a_0 - ia_1 - ja_2 - ka_3 - e'a_4 - i'a_5 - j'a_6 - k'a_7 - e''a_8 - i''a_9 - j''a_{10} - k'''a_{11} - e''''a_{12} - i''''a_{13} - j'''a_{14} - k''''a_{15}$$
(1.8)

A multiplicação de um número $s = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15})$ por um número real x, é dada por

$$sx = a_0x + ia_1x + ja_2x + ka_3x + e'a_4x + i'a_5x + j'a_6x + k'a_7x + e''a_8x + i''a_9x + j''a_{10}x + k''a_{11}x + e'''a_{12}x + i'''a_{13}x + j'''a_{14}x + k'''a_{15}x$$
(1.9)

Sejam,

$$s = a_0 + ia_1 + ja_2 + ka_3 + e^{i}a_4 + i^{i}a_5 + j^{i}a_6 + k^{i}a_7 + e^{i''}a_8 + i^{''}a_9 + j^{''}a_{10} + k^{''}a_{11} + e^{i'''}a_{12} + i^{'''}a_{13} + j^{'''}a_{14} + k^{'''}a_{15},$$

e,

$$t = b_0 + ib_1 + jb_2 + kb_3 + e'b_4 + i'b_5 + j'b_6 + k'b_7 + e''b_8 + i''b_9 + j''b_{10} + k''b_{11} + e'''b_{12} + i'''b_{13} + j'''b_{14} + k'''b_{15},$$

A operação divisão é definida por:

$$\frac{s}{t} = \frac{s}{t} \cdot \frac{\bar{t}}{\bar{t}} = \frac{s.\bar{t}}{t^2} = \frac{(a_0, a_1, a_2, a_3, a_4, \dots, a_{12}, a_{13}, a_{14}, a_{15})(b_0, -b_1, -b_2, -b_3, -b_4, \dots, -b_{12}, -b_{13}, -b_{14}, -b_{15})}{b_0^2 + b_1^2 + b_2^2 + b_3^2 + b_4^2 + b_5^2 + b_6^2 + b_7^2 + b_8^2 + b_9^2 + b_{10}^2 + b_{11}^2 + b_{12}^2 + b_{13}^2 + b_{14}^2 + b_{15}^2}$$

A norma |s| de um sedenion $s = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15})$ é um número real, isto é:

$$|s| = \sqrt{a_0^2 + a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2 + a_7^2 + a_8^2 + a_9^2 + a_{10}^2 + a_{11}^2 + a_{12}^2 + a_{13}^2 + a_{14}^2 + a_{15}^2 + a_{15}^2$$

e, consequentemente,

$$|s|^{2} = a_{0}^{2} + a_{1}^{2} + a_{2}^{2} + a_{3}^{2} + a_{4}^{2} + a_{5}^{2} + a_{6}^{2} + a_{7}^{2} + a_{8}^{2} + a_{9}^{2} + a_{10}^{2} + a_{11}^{2} + a_{12}^{2} + a_{13}^{2} + a_{14}^{2} + a_{15}^{2}$$

1.2.1 Representação Geométrica dos Hipercomplexos

Os números reais, denotados por \mathbb{R} , correspondem ao conjunto vazio no estudo dos hipercomplexos, uma vez que o conjunto dos \mathbb{R} não contêm nenhuma unidade imaginária.

Os números complexos $\mathbb C$ correspondem a um único ponto imaginário, denotado por *i*.

Figura 1.2: Representação dos complexos no plano

Os quatérnios correspondem à projeção ortogonal no espaço tridimensional do ponto. As unidades imaginárias dos quatérnios são i, j, k. Indo de i para j obtém-se k, e então temos um ciclo. A regra de multiplicação dos quatérnios é determinada pela tripla associativa (i, j, k), tal que ii = jj = kk = ijk = -1.

Figura 1.3: Ciclo dos quatérnios

Uma forma de representar a multiplicação dos octônios é dada por um diagrama denominado **Plano Fano**, mais precisamente, representa-se a multiplicação dos octônios por um triângulo. Os pontos do triângulo são representados através das unidades imaginárias dos octônios: i, j, k, e', i', j', k'. As setas indicam se o sinal da multiplicação é positivo ou negativo.

Figura 1.4: Plano Fano

E, finalmente, a representação da multiplicação das unidades imaginárias dos sedenions se dá por meio de um tetraedro. Neste caso há 35 ciclos sedeniônicos. As setas indicam os sinais dos resultados da multiplicação de cada elemento da base: i, j, k, e', i', j', k', e'', i'', j'', k'', e''', j''', k''', quando positivo ou negativo.

Figura 1.5: Representação geométrica para os sedenions

1.2.2 Propriedades Elementares

Sendo $s, t \in v \in \mathbb{S}$, analisa-se, a seguir, propriedades que envolvem os sedenions.

1.2.2.1 Não-comutatividade: Os *sedenions* não satisfazem a propriedade da comutatividade, isto é,

• *st* não é necessariamente igual a *ts*,

Por exemplo, em tomando-se, s = i e t = j, percebemos que,

$$st = ij = k$$

е,

$$ts = ji = -k$$

ou seja,

1.2.2.2 Não-associatividade: Os sedenions não são associativos, ou seja,

• (st)v não é necessariamente igual a s(tv),

Ilustra-se isto, em tomando s = i, t = j, v = e', então,

$$(st)v = (ij)e' = ke' = k'$$

e,

$$s(tv) = i(je') = ij' = -k'$$

ou melhor,

1.2.2.3 Não-alternatividade: Outra propriedade importante é que os *sedenions* não são alternativos,

• s(st) não é necessariamente igual a s^2t ,

De fato, sejam s = i + e''', t = j;

$$s(st) = (i + e''')((i + e''')j) = -2j + 2k''' \neq -2j = (i + e''')^2 j$$

pois,

$$\begin{split} s(st) &= (i + e''')((i + e''')j) = (i + e''')(ij + e'''j) = (i + e''')(k + j''') = ik + ij''' + e'''k + e'''j''' \\ &= -j + k''' + k''' - j = -2j + 2k''' \end{split}$$

enquanto,

$$s^{2} = (i + e^{\prime\prime\prime})^{2} = (i + e^{\prime\prime\prime})(i + e^{\prime\prime\prime}) = ii + ie^{\prime\prime\prime} + e^{\prime\prime\prime}i + e^{\prime\prime\prime}e^{\prime\prime\prime} = -1 - i^{\prime\prime\prime} + i^{\prime\prime\prime} - 1 = -2$$

$$s^2 t = (i + e''')^2 j = -2j$$

1.2.2.4 Não-modularidade: Os sedenions não são modulares, o que significa dizer que,

• |st| não é necessariamente igual a |s||t|,

De fato, em tomando $s=i+j^{\prime\prime},\,t=e^{\prime}+k^{\prime\prime\prime};$ então,

$$|st| = |(i+j'')(e'+k''')| = \sqrt{8} > 2 = |i+j''||e'+k'''| = |s||t|$$

já que,

$$\begin{split} |i + j'''| &= \sqrt{2} \\ |e' + k'''| &= \sqrt{2} \\ \Rightarrow |i + j'''| |e' + k'''| &= \sqrt{2}\sqrt{2} = \sqrt{4} = 2 \end{split}$$

enquanto,

$$|(i+j'')(e'+k''')| = |ie'+ik'''+j''e'+j''k'''| = |i'-j'''-j'''+i'| = |2i'-2j'''| = \sqrt{8}$$

1.2.2.5 Zero-Divisores: Os sedenions não formam uma álgebra de divisão, isto é,

• s.t=0, não implica necessariamente que s=0 e t=0,

Um fato que ilustra tal propriedade pode ser considerado em fazendo-se,

$$s = i + j'', \quad t = k''' - e',$$

ou seja, $s \neq 0$ e $t \neq 0$, e,

$$st = (i+j'')(k'''-e') = ik'''-ie'+j''k'''-j''e' = -j'''-i'+i'+j''' = 0$$

- 1.2.2.6 Identidades de Moufang: Os sedenions não satisfazem as seguintes relações:
 - (st)(vs) = s(tv)s
 - (sts)v = s(t(sv))
 - v(sts) = ((vs)t)s

De fato:

Sejam s = j'', t = i e v = k', verifica-se que:

Os sedenions não obedecem a primeira relação da Identidade de Moufang, pois:

(st)(vs) = (j''i)(k'j'') = k''(-i''') = -j's(tv)s = j''(ik')j'' = j''j'j'' = e'''j'' = j'

o que mostra que (st)(vs) não necessariamente é igual a s(tv)s.

Verifica-se agora que a segunda relação, $(sts)v \neq s(t(sv))$, também não é satisfeita: (sts)v = (j''ij'')k' = (k''j'')k' = ik' = j' s(t(sv)) = j''(i(j''k')) = j''(i(i''')) = j''(e''') = -j' $\log_{0}, (sts)v \neq s(t(sv))$

E finalmente, verifica-se que nem sempre v(sts) = ((vs)t)s, v(sts) = k'(j''ij'') = k'(k''j'') = k'i = -j' ((vs)t)s = ((k'j'')i)j'' = ((-i''')i)j'' = e'''j'' = j'e portanto, $v(sts) \neq ((vs)t)s$. **Definição 1.1** Uma expansão binomial de uma soma de a $e b \in S$, é dada por,

$$(a+b)^{x} = a^{x} + xa^{x-1}b + \frac{x(x-1)}{1.2}a^{x-2}b^{2} + \dots + \frac{x(x-1)(x-2)\dots 2.1}{1.2.3\dots(x-1)x}b^{x}$$
(1.10)

Tem-se então a seguinte fórmula para expansão,

$$(a+b)^{x} = \sum_{r=0}^{x} \begin{pmatrix} x \\ r \end{pmatrix} a^{x-r}b^{r}$$

$$(1.11)$$

em que,

$$\begin{pmatrix} x \\ r \end{pmatrix} = \frac{x!}{r!(x-r)!}$$
(1.12)

1.2.2.7 Potência-Associativa: Esta propriedade mostra que para todo $s \in \mathbb{S}$ e \forall $m, n \in \mathbb{N}$, têm-se,

• $s^m s^n = s^{m+n}$

De fato, seja $s \in \mathbb{S}$, isto é, $s = a_0 + ia_1 + ja_2 + ka_3 + e'a_4 + i'a_5 + j'a_6 + k'a_7 + e''a_8 + i''a_9 + j''a_{10} + k''a_{11} + e'''a_{12} + i'''a_{13} + j'''a_{14} + k'''a_{15}$. Então, para todo $m, n, \in \mathbb{N}$, tem-se que:

 $s^{m+n} = (a_0 + ia_1 + ja_2 + ka_3 + e'a_4 + i'a_5 + j'a_6 + k'a_7 + e''a_8 + i''a_9 + j''a_{10} + k''a_{11} + e'''a_{12} + i'''a_{13} + j'''a_{14} + k'''a_{15})^{m+n},$

Pode-se escrever $s = (a_0 + h_x)$, em que $h_x = ia_1 + ja_2 + ka_3 + e'a_4 + i'a_5 + j'a_6 + k'a_7 + e''a_8 + i''a_9 + j''a_{10} + k''a_{11} + e'''a_{12} + i'''a_{13} + j'''a_{14} + k'''a_{15}$, desta forma,

$$s^{m+n} = (a_0 + h_x)^{m+n}$$

Então, pela definição 1.1 de expansão binomial, tem-se que para todo $s \in \mathbb{S}$,

$$s^{m} = (a_{0} + h_{x})^{m} = \sum_{r=0}^{m} \begin{pmatrix} m \\ r \end{pmatrix} a_{0}^{m-r} h_{x}^{r}$$

assim como,

$$s^{n} = (a_{0} + h_{x})^{n} = \sum_{r=0}^{n} \begin{pmatrix} n \\ r \end{pmatrix} a_{0}^{n-r} h_{x}^{r}$$

então,

$$s^{m+n} = (a_0 + h_x)^{m+n} = \sum_{r=0}^{m+n} \begin{pmatrix} m+n \\ r \end{pmatrix} a_0^{m+n-r} h_x^r$$

Verifica-se agora que,

$$s^{m}s^{n} = \left[\sum_{r=0}^{m} \binom{m}{r} a_{0}^{m-r}h_{x}^{r}\right] \left[\sum_{r=0}^{n} \binom{n}{r} a_{0}^{n-r}h_{x}^{r}\right] = \sum_{r=0}^{m+n} \binom{m+n}{r} a_{0}^{m+n-r}h_{x}^{r} = s^{m+n}$$
Do fato

De fato,

$$\begin{split} s^{m}s^{n} &= \left[\left(\begin{array}{c} m \\ 0 \end{array} \right) a_{0}^{m}h_{x}^{0} + \left(\begin{array}{c} m \\ 1 \end{array} \right) a_{0}^{m-1}h_{x}^{1} + \left(\begin{array}{c} m \\ 2 \end{array} \right) a_{0}^{m-2}h_{x}^{2} + \ldots + \left(\begin{array}{c} m \\ m \end{array} \right) a_{0}^{m-m}h_{x}^{m} \right] \\ &= \left[a_{0}^{m} + ma_{0}^{m-1}h_{x}^{1} + \frac{m(m-1)}{1.2}a_{0}^{m-2}h_{x}^{2} + \ldots + \frac{m(m-1)(m-2)...2.1}{1.2...(m-1)m}a_{0}^{m-m}h_{x}^{m} \right] \\ &= \left[a_{0}^{m} + ma_{0}^{m-1}h_{x}^{1} + \frac{m(m-1)}{1.2}a_{0}^{m-2}h_{x}^{2} + \ldots + \frac{m(m-1)(m-2)...2.1}{1.2...(m-1)m}a_{0}^{m-m}h_{x}^{m} \right] \\ &= a_{0}^{m}a_{0}^{n} + na_{0}^{n-1}h_{x}^{1} + \frac{n(n-1)}{1.2}a_{0}^{n-2}h_{x}^{2} + \ldots + \frac{n(n-1)(n-2)...2.1}{1.2...(n-1)n}a_{0}^{n-n}h_{x}^{n} \right] \\ &= a_{0}^{m}a_{0}^{n} + na^{m}a_{0}^{n-1}h_{x}^{1} + \frac{n(n-1)}{2}a_{0}^{m}a_{0}^{n-2}h_{x}^{2} + \ldots + \frac{n(n-1)...2.1}{1.2...(n-1)n}a_{0}^{m}h_{x}^{n} \\ &+ ma_{0}^{m-1}a_{0}^{n}h_{x}^{1} + mna_{0}^{m-1}a_{0}^{n-1}h_{x}^{2} + \frac{mn(n-1)}{2}a_{0}^{m-2}a_{0}^{n}h_{x}^{2} + \ldots + \frac{n(m-1)...2.1}{2}a_{0}^{m-2}a_{0}^{n-1}h_{x}^{3} + \ldots + \\ &+ \frac{n(n-1)...2.1}{1.2...(n-1)n}ma_{0}^{m-2}a_{0}^{n-2}h_{x}^{4} + \ldots + \frac{m(m-1)}{2}a_{0}^{m-2}h_{x}^{n+2} \\ &\vdots &\vdots &\vdots &\vdots \\ &+ a_{0}^{n}\frac{m(m-1)(m-2)...2.1}{1.2...(m-1)m}h_{x}^{m} + na_{0}^{n-1}\frac{m(m-1)...2.1}{1.2...(m-1)m}h_{x}^{m+1} \\ &+ \frac{n(n-1)}{2}\frac{m(m-1)...2.1}{1.2...(m-1)m}h_{x}^{m+2} + \ldots + \frac{m(m-1)...2.1}{1.2...(m-1)m}h_{x}^{m+n} \end{split}$$

Com
o $a_0^m a_0^n = a_0^{m+n}, \, \forall \; a_0 \in \mathbb{R}, \, m,n \in \mathbb{N},$ agrupando os coeficientes $h_x^r, \, r=0,...,m+n,$ têm-se,

$$\begin{split} s^m s^n &= a_0^{m+n} + (m+n)a_0^{m+n-1}h_x + \frac{(m+n)(m+n-1)}{1.2}a_0^{m+n-2}h_x^2 + \dots \\ &+ \frac{(m+n)(m+n-1)...2.1}{1.2...(m+n-1)(m+n)}h_x^{m+n} = a_0^{m+n} + (m+n)a_0^{m+n-1}h_x \\ &+ \frac{(m+n)(m+n-1)}{1.2}a_0^{m+n-2}h_x^2 + \dots + h_x^{m+n} = s^{m+n} \end{split}$$

Portanto, para todo $s \in \mathbb{S} \in \forall m, n \in \mathbb{N}$,

$$s^m s^n = s^{m+r}$$

1.3 Sedenions Cônicos: Um Breve Estudo

Charles A. Musès (1919-2000), elaborou vários estudos no campo da Matemática, da Física, da Filosofia, entre outros. Musès também ficou conhecido por vários pseudônimos, como Musès, Musaios, Kyril Demys, Arthur Fontaine, Kenneth Demarest e Carl von Balmadis. Musès fundou a *Lion Path*, um movimento do xamanismo.

O conceito de hipernúmeros que consiste no estudo da álgebra dos números hipercomplexos foi introduzido por Musès, o qual denominou o termo M-álgebra, usado para investigar subalgebras, como os sedenions cônicos 16-dimensional [7, 8, 9, 10].

Os sedenions cônicos são constituídos de um número real, base 1, oito números imaginários, o qual denota-se por i_n , n = 0, ..., 7, tal que $i_n^2 = -1$, e sete números contra imaginários, denotados por ε_n , n = 1, ..., 7, tal que $\varepsilon_n^2 = +1$, de modo que um sedenion cônico apresenta a seguinte estrutura:

$$s = a + b_1 i_1 + b_2 i_2 + b_3 i_3 + b_4 i_4 + b_5 i_5 + b_6 i_6 + b_7 i_7 + c_1 \varepsilon_1 + c_2 \varepsilon_2 + c_3 \varepsilon_3 + c_4 \varepsilon_4 + c_5 \varepsilon_5 + c_6 \varepsilon_6 + c_7 \varepsilon_7 + di_0,$$
(1.13)

De forma generalizada, pode-se expressar,

$$s = a + b_n i_n + c_n \varepsilon_n + di_0, \quad n = 1, ..., 7$$
 (1.14)

em que, $i_0 = i_n \varepsilon_n = \varepsilon_n i_n$, i_n são os clássicos octônios, n = 1, ..., 7.

Os sedenions cônicos são baseados em três hipernúmeros fundamentais: $1, i \in \varepsilon$.

1.3.1 Estudo da Multiplicação dos Sedenions Cônicos

A tábua de multiplicação dos sedenions cônicos é dada da seguinte forma:

*	1	i_1	i_2	i_3	i_4	i_5	i_6	i_7	i_0	ε_1	ε_2	ε_3	ε_4	ε_5	ε_6	ε_7
1	1	i_1	i_2	i_3	i_4	i_5	i_6	i_7	i_0	ε_1	ε_2	ε_3	ε_4	ε_5	ε_6	ε_7
i_1	i_1	-1	i_3	- <i>i</i> ₂	i_5	$-i_4$	$-i_{7}$	i_6	-ε ₁	i ₀	ε_3	-ε ₂	ε_5	-ε ₄	- <i>E</i> 7	ε_6
i_2	i_2	-i3	-1	i_1	i_6	i_7	$-i_4$	$-i_5$	$-\varepsilon_2$	- <i>ɛ</i> 3	i_0	ε_1	ε_6	ε_7	$-\varepsilon_4$	$-\varepsilon_5$
i_3	i_3	i_2	$-i_1$	-1	i_7	$-i_6$	i_5	$-i_4$	$-\varepsilon_3$	ε_2	$-\varepsilon_1$	i_0	ε_7	$-\varepsilon_6$	ε_5	$-\varepsilon_4$
i_4	i_4	- <i>i</i> ₅	$-i_{6}$	$-i_{7}$	-1	i_1	i_2	i_3	$-\varepsilon_4$	-E ₅	$-\varepsilon_6$	$-\varepsilon_7$	i_0	ε_1	ε_2	ε_3
i_5	i_5	i_4	$-i_{7}$	i_6	$-i_1$	-1	$-i_{3}$	i_2	$-\varepsilon_5$	ε_4	-E7	ε_6	-ε ₁	i_0	$-\varepsilon_3$	ε_2
i_6	i_6	i_7	i_4	$-i_{5}$	$-i_2$	i_3	-1	$-i_1$	-ε ₆	ε_7	ε_4	$-\varepsilon_5$	$-\varepsilon_2$	ε_3	i_0	$-\varepsilon_1$
i_7	i_7	- <i>i</i> ₆	i_5	i_4	$-i_3$	$-i_2$	i_1	-1	- <i>E</i> 7	-ε ₆	ε_5	ε_4	$-\varepsilon_3$	$-\varepsilon_2$	ε_1	i_0
i_0	i_0	-ε ₁	$-\varepsilon_2$	$-\varepsilon_3$	$-\varepsilon_4$	$-\varepsilon_5$	$-\varepsilon_6$	-E7	-1	i_1	i_2	i_3	i_4	i_5	i_6	i_7
ε_1	ε_1	i ₀	ε_3	$-\varepsilon_2$	ε_5	-ε ₄	- <i>E</i> 7	ε_6	i_1	1	- <i>i</i> ₃	i_2	$-i_{5}$	i_4	i_7	- <i>i</i> 6
ε_2	ε_2	- <i>ɛ</i> 3	i_0	ε_1	ε_6	ε_7	$-\varepsilon_4$	$-\varepsilon_5$	i_2	i_3	1	$-i_1$	$-i_{6}$	$-i_{7}$	i_4	i_5
ε_3	ε_3	ε_2	-ε ₁	i_0	ε_7	$-\varepsilon_6$	ε_5	$-\varepsilon_4$	i_3	- <i>i</i> ₂	i_1	1	$-i_{7}$	i_6	$-i_{5}$	i_4
ε_4	ε_4	- ε_5	$-\varepsilon_6$	-E7	i_0	ε_1	ε_2	ε_3	i_4	i_5	i_6	i_7	1	$-i_1$	$-i_2$	- <i>i</i> ₃
ε_5	ε_5	ε_4	-E7	ε_6	$-\varepsilon_1$	i_0	$-\varepsilon_3$	ε_2	i_5	- <i>i</i> ₄	i_7	$-i_{6}$	i_1	1	i_3	- <i>i</i> ₂
ε_6	ε_6	ε_7	ε_4	$-\varepsilon_5$	$-\varepsilon_2$	ε_3	i_0	$-\varepsilon_1$	i_6	-i7	$-i_4$	i_5	i_2	$-i_3$	1	i_1
ε_7	ε_7	-ε ₆	ε_5	ε_4	$-\varepsilon_3$	$-\varepsilon_2$	ε_1	i_0	i_7	i_6	$-i_{5}$	$-i_4$	i_3	i_2	$-i_1$	1

Tabela 1.2: Tábua de multiplicação dos sedenions cônicos

É perceptível algumas relações entre a multiplicação das unidades imaginárias dos sedenions cônicos.

• Fórmulas Básicas:

Considere a um índice, então,

$$i_0 = i_a \varepsilon_a = \varepsilon_a i_a \tag{1.15}$$

$$i_a i_a = -1 \tag{1.16}$$

$$\varepsilon_a \varepsilon_a = 1 \tag{1.17}$$

• Relações anticomutativas:

Considere $a, b \in c$ índices distintos, então,

$$i_a i_b = -i_b i_a \tag{1.18}$$

$$i_a \varepsilon_b = -\varepsilon_b i_a \tag{1.19}$$

$$\varepsilon_b \varepsilon_c = -\varepsilon_c \varepsilon_b \tag{1.20}$$

• Relações imediatas:

$$i_a i_b = i_c \tag{1.21}$$

$$\varepsilon_a \varepsilon_b = -i_c \tag{1.22}$$

$$i_a \varepsilon_b = \varepsilon_c \tag{1.23}$$

$$\varepsilon_a i_b = \varepsilon_c \tag{1.24}$$

• Relações antiassociatiativas:

Sejam $a, b, c \in d$, índices distintos, tal que $i_a i_b = i_d$.

$$(i_a i_b)i_c = -i_a(i_b i_c) \tag{1.25}$$

$$(i_a\varepsilon_b)\varepsilon_c = -i_a(\varepsilon_b\varepsilon_c) \tag{1.26}$$

$$(\varepsilon_a i_b)\varepsilon_c = -\varepsilon_a(i_b\varepsilon_c) \tag{1.27}$$

$$(\varepsilon_a \varepsilon_b) i_c = -\varepsilon_a(\varepsilon_b i_c) \tag{1.28}$$

• Relações envolvendo i_0 :

$$(i_0 i_a)i_b = -\varepsilon_a i_b = -\varepsilon_c = i_0 i_c = i_0 (i_a i_b)$$

$$(1.29)$$

$$(i_0 i_a)\varepsilon_b = -\varepsilon_a \varepsilon_b = i_c = i_0 \varepsilon_c = i_0 (i_a \varepsilon_b)$$
(1.30)

$$(i_0\varepsilon_a)i_b = i_a i_b = i_c = i_0\varepsilon_c = i_0(\varepsilon_a i_b)$$
(1.31)

$$(i_0\varepsilon_a)\varepsilon_b = i_a\varepsilon_b = \varepsilon_c = -i_0i_c = i_0(\varepsilon_a\varepsilon_b)$$
(1.32)

$$(i_0 i_n)i_n = -\varepsilon_n i_n = -i_0 = i_0(i_n i_n)$$
(1.33)

$$(i_0 i_n)\varepsilon_n = -\varepsilon_n \varepsilon_n = -1 = i_0 i_0 = i_0 (i_n \varepsilon_n)$$
(1.34)

$$(i_0\varepsilon_n)i_n = i_n i_n = -1 = i_0 i_0 = i_0(\varepsilon_n i_n)$$

$$(1.35)$$

$$(i_0\varepsilon_n)\varepsilon_n = i_n\varepsilon_n = i_0 = i_0(\varepsilon_n\varepsilon_n) \tag{1.36}$$

1.3.2 Propriedades dos Sedenions Cônicos

Os *sedenions* cônicos formam uma álgebra não-comutativa, não-associativa, entretanto, são alternativos e modulares.

De fato, sejam os sedenions cônicos: s, t, z, tal que, $s = i_1, t = i_2$, e $v = i_4$ Quanto a não-comutividade, têm-se que,

$$st = i_1 i_2 = i_3$$
$$ts = i_2 i_1 = -i_3$$
$$\Rightarrow st \neq ts$$

Já em relação a não-associatividade, pode-se observar que,

$$(st)v = (i_1i_2)i_4 = i_3i_4 = i_7$$
$$s(tv) = i_1(i_2i_4) = i_1(i_6) = -i_7$$
$$\Rightarrow (st)v \neq s(tv)$$

Os sedenions cônicos obedecem as relações da Identidade de Moufang, isto é,

- (st)(vs) = s(tv)s
- (sts)v = s(t(sv))
- v(sts) = ((vs)t)s

Considerando quaisquer três elementos sedeniônicos temos,

$$(st)(vs) = \pm ((st)v)s = (s(tv))s = s(tv)s$$

$$(sts)v = (s(ts))v = \pm (s((ts))v) = s(t(sv))$$

$$v(sts) = v((st)s) = \pm (v(st))s = ((vs)t)s$$

A expressão \pm se justifica para as unidades imaginárias; se s, t e z são do mesmo ciclo, então eles são associativos, caso contrário, eles são antiassociativos.

Os sedenions cônicos são alternativos, isto é,

• s(st) = (ss)t, e s(tt) = (st)t

Considere dois *sedenions* cônicos: $s = \sum s_n e_n$ e $t = \sum t_n e_n$, onde s_n, t_n são os coeficientes reais dos elementos sedeniônicos e_n , tal que,

$$st = \sum s_n e_n \sum t_n e_n = \sum \sum (s_n e_n) t_n e_n = \sum \sum s_n e_n t_n e_n = \sum \sum s_n t_n e_n e_n$$

O que mostra que,

$$s(st) = \sum s_n e_n (\sum s_n e_n \sum t_n e_n) = \sum s_n e_n (\sum \sum s_n e_n t_n e_n) = \sum s_n e_n \sum \sum s_n t_n e_n e_n$$
$$= \sum \sum s_n s_n t_n e_n e_n e_n = \sum \sum s_n s_n e_n e_n \sum t_n e_n = \sum \sum s_n e_n s_n e_n \sum t_n e_n$$
$$= (\sum \sum s_n e_n s_n e_n) \sum t_n e_n = (\sum s_n e_n \sum s_n e_n) \sum t_n e_n = (ss)t$$
(1.37)

De forma, análoga,

$$st = \sum s_n e_n \sum t_n e_n = \sum \sum (s_n e_n) t_n e_n = \sum \sum s_n e_n t_n e_n = \sum \sum s_n t_n e_n e_n$$

O que mostra que,

$$(st)t = (\sum s_n e_n \sum t_n e_n) \sum t_n e_n = (\sum \sum s_n e_n t_n e_n) \sum t_n e_n = \sum \sum s_n t_n e_n e_n \sum t_n e_n$$
$$= \sum \sum s_n t_n t_n e_n e_n e_n = \sum s_n e_n \sum \sum t_n t_n e_n e_n = \sum s_n e_n \sum \sum t_n e_n t_n e_n$$
$$= \sum s_n e_n (\sum \sum t_n e_n t_n e_n) = \sum s_n e_n (\sum t_n e_n \sum t_n e_n) = s(tt)$$
(1.38)

Definição 1.2 A norma de um sedenion cônico é dada por:

$$|s| = ss^* = (a + b_n i_n + c_n \varepsilon_n + di_0)(a + b_n i_n + c_n \varepsilon_n + di_0)^*$$

$$(1.39)$$

em que s^* , é o conjugado de s, e s^* pode assumir uma das seguintes formas:

1.
$$s_i^* = a - b_n i_n + c_n \varepsilon_n - di_0$$
,
2. $s_{\varepsilon}^* = a + b_n i_n - c_n \varepsilon_n - di_0$,
3. $s_{i,\varepsilon}^* = a - b_n i_n - c_n \varepsilon_n + di_0$

Os sedenions cônicos são modulares, o que significa dizer que,

•
$$|st| = |s||t|$$

De fato,

$$|s||t| = (ss^*)(tt^*) = s(tt^*)s^* = (st)(t^*s^*) = (st)(st)^* = |st|$$

A primeira igualdade vem da definição de norma, a segunda se justifica pelo fato de $tt^* = |t|$, que envolve números reais e i_0 , que são comutativos e associativos com todos os *sedenions*, incluindo $s \in s^*$. A terceira igualdade se dá pelo uso da Identidade de Moufang. E finalmente, a última, usa-se novamente a definição de norma.

1.4 Diferenças entre *Sedenions* de Cayley-Dickson e os *Sedenions* Cônicos

Estudos realizados por Imaeda e Imaeda [6], sobre os *sedenions* de Cayley-Dickson e por Musès [7, 8, 9], envolvendo os *sedenions* cônicos, mostram diferenças básicas entre os dois tipos de *sedenions*. Considere-se então esses dois sistemas: Os sedenions cônicos de Charles Musès, são baseados em raízes quadradas de -1 e +1, e são constituídos da seguinte forma,

- 1;
- $i_n, 1 \le n \le 7$, $tal \quad i_n^2 = -1;$
- $\varepsilon_n, 1 \le n \le 7$, tal $\varepsilon_n^2 = 1$;
- $i_0 = i_n \varepsilon_n$, onde $i_0^2 = -1$

Já os sedenions de Cayley-Dickson, baseados em dezesseis elementos, mantêm a estrutura,

- 1;
- $i_n, 1 \le n \le 15$, $tal \quad i_n^2 = -1;$

Desta forma, as propriedades dos *sedenions* cônicos e os *sedenions* de Cayley-Dickson, diferem em números no seguinte aspecto:

- Potência-Associativa: $s^{m+n} = s^m s^n$;
- Alternatividade: (ss)t = s(st) e t(ss) = (ts)s;
- Modularidade: |st| = |s||t|

Assim, os *sedenions* de Cayley-Dickson satisfazem:

- Potência-Associativa;
- Não-Alternatividade;
- Não-Modularidade

Enquanto que os sedenions cônicos satisfazem:

- Não Potência-Associativa;
- Alternatividade;
- Modularidade

Esquematicamente, têm-se,
Propriedades/Hipercomplexos	Sedenions de Cayley-Dickson	Sedenions Cônicos
Potência-Associativa	Sim	Não
Alternatividade	Não	Sim
Modularidade	Não	Sim

Tabela 1.3: Comparação entre os sedenions de Cayley-Dickson e os sedenions cônicos

1.5 Considerações

Atualmente, pesquisas avançadas procuram unificar a teoria dos hipercomplexos (complexos, quatérnios, octônios, *sedenions*,...), juntamente com a teoria das transformações, mais especificamente, com as Álgebras de Clifford [11, 12], fazendo um estudo paralelo com geometria.

Os sedenions, como analisados neste capítulo, são uma extensão não-associativa dos quatérnios. Os quatérnios surgiram no final do século XIX, e naquela época, eles haviam perdido espaço na maioria das aplicações para os vetores, e só tornaram a serem objetos de pesquisa por volta do século XX, quando matemáticos, físicos e estudiosos da computação gráfica se depararam com a necessidade de utilizar os hipercomplexos com o intuito de parametrizar o espaço de rotação 3-dimensional (\mathbb{R}^3). É quando surge a utilidade de se trabalhar com mapeamentos.

No estudo da Álgebra Linear, vetores, matrizes e transformações lineares são alvo de pesquisa, muito embora sabe-se que algumas transformações usadas hoje em computação gráfica não sejam lineares, como é o caso de projeção em perspectiva. Com os estudos em expansão dos hipercomplexos será possível realizar grandes avanços computacionais em computação gráfica sem se limitar ao uso de matrizes e vetores.

Capítulo 2

Um estudo algébrico do desenvolvimento de x^n

Define-se neste capítulo, o conceito de funções para os sedenions com domínio $I \subset S$. Também estuda-se a generalização de x^n , em que x é um hipercomplexo. Utiliza-se para isso não só tabelas de multiplicação como também fórmulas binomiais simples. De agora em diante, a menos que mencionado o contrário, trata-se-á opinião dos sedenions de Cayley-Dickson.

2.1 Função Hipercomplexa 16-dimensional

Sejam I e I' domínios no espaço euclidiano 16-dimensional \mathbb{R}^{16} , $I \subset \mathbb{S}$, $I' \subset \mathbb{S}$. Uma função:

$$f: I \to I'$$

é uma função sedeniônica se f é um mapeamento que faz corresponder a cada $x = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}) \in \mathbb{S}$ um $y = f(x), y \in I' \subset \mathbb{S}$.

Sendo f uma função sedeniônica pode-se decompô-la em parte escalar $f_0(x) = \phi(x)$ e parte vetorial $if_1(x) + jf_2(x) + kf_3(x) + e'f_4(x) + i'f_5(x) + j'f_6(x) + k'f_7(x) + e''f_8(x) + i''f_9(x) + j''f_{10}(x) + k''f_{11}(x) + e'''f_{12}(x) + i'''f_{13}(x) + j'''f_{14}(x) + k'''f_{15}(x) = \varphi(x)$, ou seja,

$$f(x) = f_0(x) + if_1(x) + jf_2(x) + kf_3(x) + e'f_4(x) + i'f_5(x) + j'f_6(x) + k'f_7(x) + e''f_8(x) + i''f_9(x) + j''f_{10}(x) + k''f_{11}(x) + e'''f_{12}(x) + i'''f_{13}(x) + j'''f_{14}(x) + k'''f_{15}(x) = \phi(x) + \varphi(x),$$

em que $f_i: \mathbb{R}^{16} \to \mathbb{R}$ são funções coordenadas de valores reais para i = 0, 1, 2, ..., 15.

Consequentemente,

$$|f| = \sqrt{f_0^2 + f_1^2 + f_2^2 + f_3^2 + f_4^2 + f_5^2 + f_6^2 + f_7^2 + f_8^2 + f_9^2 + f_{10}^2 + f_{11}^2 + f_{12}^2 + f_{13}^2 + f_{14}^2 + f_{15}^2}$$
(2.1)

 $\acute{\mathrm{e}}$ a sua norma.

Fazendo agora, um estudo do cálculo de $x^n, \, x \in \mathbb{S},$ através das relações De Moivre's têm-se:

$$x^{n} = (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15})^{n}$$
(2.2)

Considere,

$$x = a_0 + ia_1 + ja_2 + ka_3 + e^{i}a_4 + i^{i}a_5 + j^{i}a_6 + k^{i}a_7 + e^{i''}a_8 + i^{''}a_9 + j^{''}a_{10} + k^{''}a_{11} + e^{i'''}a_{12} + i^{'''}a_{13} + j^{'''}a_{14} + k^{'''}a_{15} + i^{''}a_{16} + k^{i}a_{17} + i^{'''}a_{10} + k^{''}a_{11} + e^{i'''}a_{12} + i^{'''}a_{13} + j^{'''}a_{14} + k^{'''}a_{15} + i^{''}a_{16} + k^{i}a_{17} + i^{'''}a_{19} + i^{''}a_{19} +$$

em que $h_{\boldsymbol{x}}$ é a parte vetorial imaginária da forma:

$$h_{x} = ia_{1} + ja_{2} + ka_{3} + e^{'}a_{4} + i^{'}a_{5} + j^{'}a_{6} + k^{'}a_{7} + e^{''}a_{8} + i^{''}a_{9} + j^{''}a_{10} + k^{''}a_{11} + e^{'''}a_{12} + i^{'''}a_{13} + j^{'''}a_{14} + k^{'''}a_{15}$$

$$(2.4)$$

 Como

$$h_x^2 = -a_1^2 - a_2^2 - a_3^2 - a_4^2 - a_5^2 - a_6^2 - a_7^2 - a_8^2 - a_9^2 - a_{10}^2 - a_{11}^2 - a_{12}^2 - a_{13}^2 - a_{14}^2 - a_{15}^2$$
(2.5)

tem-se que h_x^2 é real, e assim, para cada $n \in \mathbb{N}$, obtem-se que $h_x^{2n+1} = h_x^{2n} \cdot h_x = h_x \cdot h_x^{2n}$ é imaginário, pois,

$$h_x^{2n}(ia_1 + ja_2 + ka_3 + e^{'}a_4 + i^{'}a_5 + j^{'}a_6 + k^{'}a_7 + e^{''}a_8 + i^{''}a_9 + j^{''}a_{10} + k^{''}a_{11} + e^{'''}a_{12} + i^{'''}a_{13} + j^{'''}a_{14} + k^{'''}a_{15}) = ia_1h_x^{2n} + ja_2h_x^{2n} + ka_3h_x^{2n} + e^{'}a_4h_x^{2n} + i^{'}a_5h_x^{2n} + j^{'}a_6h_x^{2n} + k^{'}a_7h_x^{2n} + e^{''}a_8h_x^{2n} + i^{''}a_9h_x^{2n} + j^{''}a_{10}h_x^{2n} + k^{''}a_{11}h_x^{2n} + e^{'''}a_{12}h_x^{2n} + i^{'''}a_{13}h_x^{2n} + j^{'''}a_{14}h_x^{2n} + k^{'''}a_{15}h_x^{2n}$$

Desta forma,

$$\begin{aligned} h_x^{2n+1} &= ia_1h_x^{2n} + ja_2h_x^{2n} + ka_3h_x^{2n} + e^{'}a_4h_x^{2n} + i^{'}a_5h_x^{2n} + j^{'}a_6h_x^{2n} + k^{'}a_7h_x^{2n} + e^{''}a_8h_x^{2n} + \\ &+ i^{''}a_9h_x^{2n} + j^{''}a_{10}h_x^{2n} + k^{''}a_{11}h_x^{2n} + e^{'''}a_{12}h_x^{2n} + i^{'''}a_{13}h_x^{2n} + j^{'''}a_{14}h_x^{2n} + k^{'''}a_{15}h_x^{2n} \end{aligned}$$

Então,

$$\begin{aligned} x^{n} &= (a_{0} + h_{x})^{n} = \sum_{k=0}^{n} \binom{n}{k} a_{0}^{n-k} h_{x}^{k} \\ &= \binom{n}{0} a_{0}^{n} h_{x}^{0} + \binom{n}{2} a_{0}^{n-2} h_{x}^{2} + \ldots + \binom{n}{2k} a_{0}^{n-2k} h_{x}^{2k} + \\ &+ \binom{n}{1} a_{0}^{n-1} h_{x}^{1} + \binom{n}{3} a_{0}^{n-3} h_{x}^{3} + \ldots + \binom{n}{2k+1} a_{0}^{n-(2k+1)} h_{x}^{2k+1} \\ &= \sum_{k=0}^{2k \leq n} \binom{n}{2k} a_{0}^{n-2k} h_{x}^{2k} + \underbrace{\sum_{k=0}^{2k+1 \leq n} \binom{n}{2k+1} a_{0}^{n-(2k+1)} h_{x}^{2k+1}}_{imaginario} \\ &= \sum_{k=0}^{2k \leq n} \binom{n}{2k} a_{0}^{n-2k} h_{x}^{2k} + \underbrace{\sum_{k=0}^{2k+1 \leq n} \binom{n}{2k+1} a_{0}^{n-(2k+1)} h_{x}^{2k}}_{imaginario} h_{x} \\ &= \mathbb{R}e(x^{n}) + Im(x^{n}) \end{aligned}$$
(2.6)

Exemple 2.1 Obter x^2 , em que $x = a_0 + ia_1 + ja_2 + ka_3 + e'a_4 + i'a_5 + j'a_6 + k'a_7 + e''a_8 + i''a_9 + j''a_{10} + k''a_{11} + e'''a_{12} + i'''a_{13} + j'''a_{14} + k'''a_{15}.$

Pela fórmula, têm-se:

$$\mathbb{R}e(x^2) = \sum_{k=0}^{2k \le 2} \begin{pmatrix} 2\\ 2k \end{pmatrix} a_0^{2-2k} h_x^{2k} = \begin{pmatrix} 2\\ 0 \end{pmatrix} a_0^2 h_x^0 + \begin{pmatrix} 2\\ 2 \end{pmatrix} a_0^0 h_x^2 = a_0^2 + h_x^2$$
(2.7)

enquanto,

$$Im(x^{2}) = h_{x} \left[\sum_{k=0}^{2k+1 \le 2} \begin{pmatrix} 2\\ 2k+1 \end{pmatrix} a_{0}^{2-(2k+1)} h_{x}^{2k} \right] = h_{x} \left[\begin{pmatrix} 2\\ 1 \end{pmatrix} a_{0}^{2-(0+1)} h_{x}^{0} \right] = 2a_{0}h_{x} \quad (2.8)$$

Desta forma,

$$\begin{aligned} x^2 &= a_0^2 + h_x^2 + 2a_0h_x = a_0^2 - a_1^2 - a_2^2 - a_3^2 - a_4^2 - a_5^2 - a_6^2 - a_7^2 - a_8^2 - a_9^2 - a_{10}^2 - a_{11}^2 - a_{12}^2 \\ &- a_{13}^2 - a_{14}^2 - a_{15}^2 + 2ia_0a_1 + 2ja_0a_2 + 2ka_0a_3 + 2e'a_0a_4 + 2i'a_0a_5 + 2j'a_0a_6 + 2k'a_0a_7 \\ &+ 2e''a_0a_8 + 2i''a_0a_9 + 2j''a_0a_{10} + 2k''a_0a_{11} + 2e'''a_0a_{12} + 2i'''a_0a_{13} + 2j'''a_0a_{14} + 2k'''a_0a_{15} \end{aligned}$$

E através da junção das tabelas 2.1 e 2.2, obtêm-se o mesmo resultado:

$x^2 = x \cdot x$	a_0	ia_1	ja_2	ka_3	$e'a_4$	$i'a_5$	$j'a_6$	$k'a_7$
<i>a</i> ₀	a_0^2	ia_0a_1	ja_0a_2	ka_0a_3	$e'a_0a_4$	$i'a_0a_5$	$j'a_0a_6$	$k'a_0a_7$
ia_1	ia_0a_1	$-a_1^2$						
ja_2	ja_0a_2		$-a_{2}^{2}$					
ka_3	ka_0a_3			$-a_{3}^{2}$				
$e'a_4$	$e'a_0a_4$				$-a_4^2$			
$i'a_5$	$i'a_0a_5$					$-a_{5}^{2}$		
$j'a_6$	$j'a_0a_6$						$-a_{6}^{2}$	
$k'a_7$	$k'a_0a_7$							$-a_{7}^{2}$
$e''a_8$	$e''a_0a_8$							
$i''a_9$	$i''a_0a_9$							
$j''a_{10}$	$j''a_0a_{10}$							
$k''a_{11}$	$k''a_0a_{11}$							
$e'''a_{12}$	$e'''a_0a_{12}$							
$i'''a_{13}$	$i'''a_0a_{13}$							
$j'''a_{14}$	$j'''a_0a_{14}$							
$k'''a_{15}$	$k'''a_0a_{15}$							

Tabela 2.1: Desenvolvimento do fator x	volvimento do fator x^2
--	---------------------------

continuação	$e''a_8$	$i''a_9$	$j''a_{10}$	$k''a_{11}$	$e'''a_{12}$	$i'''a_{13}$	$j'''a_{14}$	$k'''a_{15}$
<i>a</i> ₀	$e''a_0a_8$	$i''a_0a_9$	$j''a_0a_{10}$	$k''a_0a_{11}$	$e'''a_0a_{12}$	$i'''a_0a_{13}$	$j'''a_0a_{14}$	$k'''a_0a_{15}$
ia_1								
ja_2								
ka_3								
$e'a_4$								
$i'a_5$								
$j'a_6$								
$k'a_7$								
$e''a_8$	$-a_{8}^{2}$							
$i''a_9$		$-a_{9}^{2}$						
$j''a_{10}$			$-a_{10}^2$					
$k''a_{11}$				$-a_{11}^2$				
$e'''a_{12}$					$-a_{12}^2$			
$i'''a_{13}$						$-a_{13}^2$		
$j'''a_{14}$							$-a_{14}^2$	
$k'''a_{15}$								$-a_{15}^2$

Tabela 2.2: Desenvolvimento do fator x^2 (continuação)

Capítulo 3

Representação de uma hipersuperfície em \mathbb{R}^{16}

Os sedenions quando potenciados promovem um grande número de índices. Devido a este fato, é necessário uma notação mais simplificada. Para isto explora-se o uso de bolas 16-dimensionais $\overline{B}(x, r)$ em coordenadas esféricas.

3.1 Coordenadas esféricas 16-dimensionais

Consideremos $x = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15})$ o centro da hiperesfera 16-dimensional de raio r em um domínio I simplesmente conexo contido em \mathbb{S} , dado que \mathbb{S} é um espaço hipercomplexo; se tomarmos um ponto em sua fronteira $y \in \overline{B}(x, r) \subset I$, $y = (y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}, y_{11}, y_{12}, y_{13}, y_{14}, y_{15})$, pode-se escrever a hiperesfera $\overline{B}(x, r)$ em coordenadas esféricas, conforme a seguir:

$$y_{0} = a_{0} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}c_{11}c_{12}c_{13}c_{14}c_{15}, 0 \leq \theta_{15} \leq 2\pi$$

$$y_{1} = a_{1} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}c_{11}c_{12}c_{13}c_{14}s_{15}, \frac{-\pi}{2} \leq \theta_{14} \leq \frac{\pi}{2}$$

$$y_{2} = a_{2} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}c_{11}c_{12}c_{13}s_{14}, \frac{-\pi}{2} \leq \theta_{13} \leq \frac{\pi}{2}$$

$$y_{3} = a_{3} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}c_{11}s_{12}, \frac{-\pi}{2} \leq \theta_{12} \leq \frac{\pi}{2}$$

$$y_{4} = a_{4} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}c_{11}s_{12}, \frac{-\pi}{2} \leq \theta_{11} \leq \frac{\pi}{2}$$

$$y_{5} = a_{5} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}s_{11}, \frac{-\pi}{2} \leq \theta_{10} \leq \frac{\pi}{2}$$

$$y_{6} = a_{6} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}s_{10}, \frac{-\pi}{2} \leq \theta_{9} \leq \frac{\pi}{2}$$

$$y_{7} = a_{7} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}s_{9}, \frac{-\pi}{2} \leq \theta_{8} \leq \frac{\pi}{2}$$

$$y_{10} = a_{10} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}s_{8}, \frac{-\pi}{2} \leq \theta_{5} \leq \frac{\pi}{2}$$

$$y_{11} = a_{11} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}s_{8}, \frac{-\pi}{2} \leq \theta_{5} \leq \frac{\pi}{2}$$

$$y_{12} = a_{12} + rc_{1}c_{2}c_{3}c_{4}c_{5}s_{6}, \frac{-\pi}{2} \leq \theta_{3} \leq \frac{\pi}{2}$$

$$y_{13} = a_{13} + rc_{1}c_{2}s_{3}, \frac{-\pi}{2} \leq \theta_{2} \leq \frac{\pi}{2}$$

$$y_{14} = a_{14} + rc_{1}s_{2}, \frac{-\pi}{2} \leq \theta_{1} \leq \frac{\pi}{2}$$

$$y_{15} = a_{15} + rs_{1}, 0 \leq r < \infty$$

ou seja, é possível escrever y em coordenadas $(r, \theta_i), i = 1, ..., 15.$

Como forma de simplificarmos a notação, denota-se:

$$cos(\theta_i) = c_i,
sin(\theta_i) = s_i,
tan(\theta_i) = t_i$$
(3.2)

Seja o número sedenion

$$x = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}) = a_0 + ia_1 + ja_2 + ka_3 + e'a_4 + i'a_5 + j'a_6 + k'a_7 + e''a_8 + i''a_9 + j''a_{10} + k''a_{11} + e'''a_{12} + i'''a_{13} + j'''a_{14} + k'''a_{15},$$

o centro de uma hiperesfera de rai
orem um domínioI simple
smente conexo contido em S, S é um espaço hipercomplexo, e tal que,

$$y \in \overline{B}(x,r) \subset I \Rightarrow |y-x| = r > 0$$

 $y = (y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}, y_{11}, y_{12}, y_{13}, y_{14}, y_{15}) = y_0 + iy_1 + jy_2 + ky_3 + e'y_4 + i'y_5 + j'y_6 + k'y_7 + e''y_8 + i''y_9 + j''y_{10} + k''y_{11} + e'''y_{12} + i'''y_{13} + j'''y_{14} + k'''y_{15},$

então, segue que

$$(y_0 - a_0)^2 + (y_1 - a_1)^2 + (y_2 - a_2)^2 + (y_3 - a_3)^2 + (y_4 - a_4)^2 + (y_5 - a_5)^2 + (y_6 - a_6)^2 + (y_7 - a_7)^2 + (y_8 - a_8)^2 + (y_9 - a_9)^2 + (y_{10} - a_{10})^2 + (y_{11} - a_{11})^2 + (y_{12} - a_{12})^2 + (y_{13} - a_{13})^2 + (y_{14} - a_{14})^2 + (y_{15} - a_{15})^2 = r^2$$

$$(3.3)$$

Tem-se que,

$$h_{x} = ia_{1} + ja_{2} + ka_{3} + e^{'}a_{4} + i^{'}a_{5} + j^{'}a_{6} + k^{'}a_{7} + e^{''}a_{8} + i^{''}a_{9} + j^{''}a_{10} + k^{''}a_{11} + e^{'''}a_{12} + i^{'''}a_{13} + j^{'''}a_{14} + k^{'''}a_{15},$$

$$(3.4)$$

é a parte vetorial imaginária de um número sedenion. Elevando-se h_x ao quadrado, resulta:

$$h_x^2 = -a_1^2 - a_2^2 - a_3^2 - a_4^2 - a_5^2 - a_6^2 - a_7^2 - a_8^2 - a_9^2 - a_{10}^2 - a_{11}^2 - a_{12}^2 - a_{13}^2 - a_{14}^2 - a_{15}^2, (3.5)$$

analogamente,

$$\begin{split} h_y^2 &= -y_1^2 - y_2^2 - y_3^2 - y_4^2 - y_5^2 - y_6^2 - y_7^2 - y_8^2 - y_9^2 - y_{10}^2 - y_{11}^2 - y_{12}^2 - y_{13}^2 - y_{14}^2 - y_{15}^2 \\ &= -[(a_1 + rc_1c_2...c_{14}s_{15})^2 + (a_2 + rc_1c_2...c_{13}s_{14})^2 + (a_3 + rc_1c_2...c_{12}s_{13})^2 + (a_4 + rc_1c_2...c_{11}s_{12})^2 \\ &+ (a_5 + rc_1c_2...c_{10}s_{11})^2 + (a_6 + rc_1c_2...c_{9}s_{10})^2 + (a_7 + rc_1c_2...c_8s_9)^2 + (a_8 + rc_1c_2...c_7s_8)^2 \\ &+ (a_9 + rc_1c_2...c_6s_7)^2 + (a_{10} + rc_1c_2...c_5s_6)^2 + (a_{11} + rc_1c_2c_3c_4s_5)^2 + (a_{12} + rc_1c_2c_3s_4)^2 \\ &+ (a_{13} + rc_1c_2s_3)^2 + (a_{14} + rc_1s_2)^2 + (a_{15} + rs_1)^2] \end{split}$$

$$\Rightarrow h_y^2 = -[a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2 + a_7^2 + a_8^2 + a_9^2 + a_{10}^2 + a_{11}^2 + a_{12}^2 + a_{13}^2 + a_{14}^2 + a_{15}^2 \\ + 2a_1rc_1c_2...s_{15} + 2a_2rc_1c_2...s_{14} + 2a_3rc_1c_2...s_{13} + 2a_4rc_1c_2...s_{12} + 2a_5rc_1c_2...s_{11} \\ + 2a_6rc_1c_2...s_{10} + 2a_7rc_1c_2...s_{9} + 2a_8rc_1c_2...s_{8} + 2a_9rc_1c_2...s_{7} + 2a_{10}rc_1c_2...s_{6} \\ + 2a_{11}rc_1c_2...s_{5} + 2a_{12}rc_1c_2c_3s_4 + 2a_{13}rc_1c_2s_3 + 2a_{14}rc_1s_2 + 2a_{15}rs_1 \\ + r^2(c_1^2c_2^2...s_{15}^2 + c_1^2c_2^2...s_{14}^2 + c_1^2c_2^2...s_{13}^2 + c_1^2c_2^2...s_{12}^2 + c_1^2c_2^2...s_{11}^2 + c_1^2c_2^2...s_{10}^2 \\ + c_1^2c_2^2...s_{9}^2 + c_1^2c_2^2...s_{8}^2 + c_1^2c_2^2...s_{7}^2 + c_1^2c_2^2...s_{6}^2 + c_1^2c_2^2...s_{5}^2 + c_1^2c_2^2c_3^2s_{4}^2 + c_1^2c_2^2s_{3}^2 + c_1^2s_{2}^2 + s_{1}^2)]$$

$$\Rightarrow h_y^2 = -[a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2 + a_7^2 + a_8^2 + a_9^2 + a_{10}^2 + a_{11}^2 + a_{12}^2 + a_{13}^2 + a_{14}^2 + a_{15}^2 \\ + 2r(a_1c_1c_2...s_{15} + a_2c_1c_2...s_{14} + a_3c_1c_2...s_{13} + a_4c_1c_2...s_{12} + a_5c_1c_2...s_{11} \\ + a_6c_1c_2...s_{10} + a_7c_1c_2...s_9 + a_8c_1c_2...s_8 + a_9c_1c_2...s_7 + a_{10}c_1c_2...s_6 + a_{11}c_1c_2...s_5 \\ + a_{12}c_1c_2c_3s_4 + a_{13}c_1c_2s_3 + a_{14}c_1s_2 + a_{15}s_1) + r^2(c_1^2c_2^2...c_{14}^2s_{15}^2 + c_1^2c_2^2...c_{13}^2s_{14}^2 \\ + c_1^2c_2^2...c_{12}^2s_{13}^2 + c_1^2c_2^2...c_{11}^2s_{12}^2 + c_1^2c_2^2...c_{10}s_{11}^2 + c_1^2c_2^2...c_9^2s_{10}^2 + c_1^2c_2^2...c_8^2s_9^2 + c_1^2c_2^2...s_8^2 \\ + c_1^2c_2^2...s_7^2 + c_1^2c_2^2...s_6^2 + c_1^2c_2^2...s_5^2 + c_1^2c_2^2c_3^2s_4^2 + c_1^2c_2^2s_3^2 + c_1^2s_2^2 + s_1^2)]$$

Em tomando-se,

$$\Pi = a_1c_1c_2...s_{15} + a_2c_1c_2...s_{14} + a_3c_1c_2...s_{13} + a_4c_1c_2...s_{12} + a_5c_1c_2...s_{11} + a_6c_1c_2...s_{10} + a_7c_1c_2...s_9 + a_8c_1c_2...s_8 + a_9c_1c_2...s_7 + a_{10}c_1c_2...s_6 + a_{11}c_1c_2...s_5 + a_{12}c_1c_2c_3s_4 + a_{13}c_1c_2s_3 + a_{14}c_1s_2 + a_{15}s_1$$

$$(3.7)$$

tem-se, que o termo que multiplica $r^2,$ na equação 3.6, se reduz facilmente a,

$$\begin{split} c_1^2 [c_2^2 ... c_{14}^2 (1-c_{15}^2) &+ c_2^2 ... c_{13}^2 (1-c_{14}^2) + c_2^2 ... c_{12}^2 (1-c_{13}^2) + c_2^2 ... c_{11}^2 (1-c_{12}^2) + c_2^2 ... c_{10}^2 (1-c_{11}^2) + c_2^2 ... c_{10}^2 (1-c_{11}^2) + c_2^2 ... c_{11}^2 (1-c_{12}^2) + c_2^2 ... c_{10}^2 (1-c_{11}^2) + c_2^2 ... c_{11}^2 (1-c_{12}^2) + c_2^2 ... c_{10}^2 (1-c_{11}^2) + c_2^2 ... c_{11}^2 (1-c_{11}$$

$$\Rightarrow c_1^2 [c_2^2 \dots c_{14}^2 - c_2^2 \dots c_{14}^2 c_{15}^2 + c_2^2 \dots c_{13}^2 - c_2^2 \dots c_{13}^2 c_{14}^2 + c_2^2 \dots c_{12}^2 - c_2^2 \dots c_{12}^2 c_{13}^2 + c_2^2 \dots c_{10}^2 c_{11}^2 - c_2^2 \dots c_{11}^2 c_{12}^2 + c_2^2 \dots c_{10}^2 - c_2^2 \dots c_{10}^2 c_{11}^2 + c_2^2 \dots c_9^2 - c_2^2 \dots c_9^2 c_{10}^2 + c_2^2 \dots c_8^2 - c_2^2 \dots c_8^2 c_9^2 + c_2^2 \dots c_7^2 - c_2^2 \dots c_7^2 c_8^2 + c_2^2 \dots c_6^2 - c_2^2 \dots c_6^2 c_7^2 + c_2^2 \dots c_5^2 - c_2^2 \dots c_5^2 c_6^2 + c_2^2 c_3^2 c_4^2 - c_2^2 c_3^2 c_4^2 c_5^2 + c_2^2 c_3^2 c_4^2 + c_2^2 - c_2^2 c_3^2 + 1 - c_2^2] + [1 - c_1^2] = -s^2$$

$$\Rightarrow -c_1^2 c_2^2 \dots c_{15}^2 + 1 = -s^2$$

Como,

$$-c_1^2 c_2^2 \dots c_{15}^2 = -c^2$$

$$\Rightarrow -c^2 + 1 = -s^2 \tag{3.8}$$

Substituindo 3.8 em 3.6, segue que,

$$h_y^2 = -[-h_x^2 + 2r\Pi + r^2(-s^2)]$$

$$\Rightarrow h_y^2 = h_x^2 - 2r\Pi + r^2 s^2 \tag{3.9}$$

Logo, em 3.1 tem-se a representação de uma hipersuperfície em $\mathbb{R}^{16}.$

Capítulo 4

Noções Topológicas Elementares

Após estudo do conceito geral de função nos hipercomplexos, reforça-se agora, de forma intuitiva, alguns conceitos matemáticos topológicos [15] que permitem a exploração e o conhecimento dos complexos como forma de crescente investigação. Desenvolve-se, neste capítulo, as Equações de Cauchy-Riemann para os *sedenions*.

4.1 Regiões no Plano Complexo

Definição 4.1 Sejam $z \in \mathbb{C}$ e r > 0. A **bola fechada** de raio r e centro $z = (z_0, z_1)$, é representada por $\overline{B}(z, r)$ e é constituída pelo conjunto dos pontos y de \mathbb{C} , tais que:

$$\overline{B}(z,r) = \{ y \in \mathbb{C} : |y-z| \le r \}$$

$$\Leftrightarrow \sqrt{(y_0 - z_0)^2 + (y_1 - z_1)^2} \le r$$

$$\Leftrightarrow (y_0 - z_0)^2 + (y_1 - z_1)^2 \le r^2$$
(4.1)

A equação 4.1, representa os pontos do interior de uma bola centrada em z e de raio r. A **bola aberta** de centro z e raio r > 0 é o conjunto,

$$B(z,r) = \{ y \in \mathbb{C} : |y-z| < r \}$$

Uma vizinhança de um ponto z é qualquer subconjunto de \mathbb{C} que contenha uma bola aberta de centro em z, isto é, V_z é uma vizinhança de z se $B(z,r) \subseteq V_z$.

Figura 4.1: V_z não é uma vizinhaça de z

Diz-se que z é um **ponto interior** de um conjunto $B \subset \mathbb{C}$ quando existe um disco com centro em z contido em B, ou seja, quando B for uma vizinhaça de z.

Diz-se que $B \subset \mathbb{C}$ é **aberto** se todos os pontos de *B* são pontos interiores de *B*.

Definição 4.2 Um conjunto B é fechado se o complementar B^c é aberto.

Chama-se **fronteira** de um conjunto $B \subset \mathbb{C}$ ao conjunto dos pontos z tais que qualquer vizinhaça de z contém pontos de B e do complementar de B.

Notação: $F_r(B)$

Observação 4.1 É claro que todo ponto da fronteira de B é ponto da fronteira do complementar de B.

Observação 4.2 Os pontos da $F_r(B)$ podem ou não pertencer à B.

Chama-se **pontos de acumulação** de um conjunto $B \subset \mathbb{C}$, aos pontos z tais que toda vizinhaça de z contém pontos de B distintos de z.

Notação: B' pontos de acumulação de B.

Observação 4.3 Todo ponto interior de B é ponto de acumulação, mas não é ponto de fronteira.

Um conjunto B é **conexo** se ele não pode ser escrito como união de dois abertos disjuntos e não-vazios.

Diz-se que B é conexo se quaisquer dois pontos distintos de B podem ser ligados por uma poligonal toda contida em B.

Figura 4.2: $V = V_0 \cup V_1$ não é conexo

Figura 4.3: B é conexo

Por convenção admite-se que,

Região: qualquer subconjunto conexo de \mathbb{C} .

Região Aberta (Fechada): é uma região que é um conjunto aberto (fechado).

No caso de região aberta, também denomina-se domínio.

Definição 4.3 Um caminho é uma aplicação contínua $\gamma : [a, b] \to \mathbb{C}$.

Figura 4.4: Caminho γ

O conjunto imagem de γ , $Imag(\gamma)$ é chamado de traço do caminho.

Observação 4.4 Note que tem-se uma orientação (ou sentido) de percurso para γ . O caminho com orientação oposta à de γ será denotado por $\tilde{\gamma}$.

Definição 4.4 Um caminho $\gamma : [a, b] \to \mathbb{C}$ é dito regular quando γ tem derivada γ' em [a, b], além disso, γ' é contínua em [a, b].

Figura 4.5: Traço de um caminho que não é regular

Definição 4.5 Um caminho regular por partes é um caminho $\gamma : [a, b] \to \mathbb{C}$ que é regular em [a, b] exceto em um número finito de pontos.

Definição 4.6 Um caminho $\gamma : [a, b] \to \mathbb{C}$ é **fechado** se $\gamma(a) = \gamma(b)$. Um caminho fechado é **simples** se é injetivo, exceto nos pontos a e b.

Figura 4.6: Caminhos Fechados

Observação 4.5 Todo caminho regular por partes, fechado e simples é chamado de Curva de Jordan.

Figura 4.7: Exemplos de Curva de Jordan

Teorema de Cauchy-Goursat: A integral de uma função complexa calculada de z_0 a z_1 pode ou não depender do caminho considerado na integração. O próximo teorema nos permite dar condições para que a integral não dependa do caminho. Enuncia-se duas versões do conhecido *Teorema de Cauchy-Goursat*.

Teorema 4.1 Seja f analítica em um domínio D simplesmente conexo. Então, por todo caminho fechado γ nesse domínio cumprem-se

$$\int_{\gamma} f(z)dz = 0 \tag{4.2}$$

Teorema 4.2 Seja f analítica em um domínio D simplesmente conexo. Então a integral de f ao longo de um caminho γ que liga z_0 a z_1 só depende desses pontos e não do contorno considerado.

$$\int_{z_0}^{z_1} f(z)dz = \int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$
(4.3)

Em que $\gamma : [a, b] \subset D \to \mathbb{C}$ é um caminho regular por partes tal que $Imag(\gamma) \subset D$, $\gamma(a) = z_0 \in \gamma(b) = z_1$. A função $f(\gamma(t))\gamma'(t)$ pode não ser contínua devido a $\gamma'(t)$, mas como γ é regular por partes então $\gamma'(t)$ é contínua a menos de um número finito de pontos.

Observação 4.6 Os teoremas 4.1 e 4.2 são equivalentes.

Demonstração: De fato, sejam $\gamma_0 \in \gamma_1$ dois caminhos ligando $z_0 \approx z_1$. Mostra-se que,

$$\int_{\gamma_0} f(z)dz = \int_{\gamma_1} f(z)dz \tag{4.4}$$

Seja $\gamma = \gamma_0 \cup \widetilde{\gamma_1}$. Então pelo teorema 4.1 tem-se,

$$0 = \int_{\gamma} f(z)dz = \int_{\gamma_0 \cup \widetilde{\gamma_1}} f(z)dz = \int_{\gamma_0} f(z)dz + \int_{\widetilde{\gamma_1}} f(z)dz = \int_{\gamma_0} f(z)dz - \int_{\gamma_1} f(z)dz \quad (4.5)$$

Portanto,

$$\Rightarrow \int_{\gamma_0} f(z)dz = \int_{\gamma_1} f(z)dz \tag{4.6}$$

Mostra-se agora, que $4.2 \Rightarrow 4.1$.

Seja γ um caminho fechado simples. Verifica-se, a seguir, que $\int_{\gamma} f(z) dz = 0$

Sejam $z_0, z_1 \in Imagem(\gamma)$ com $z_0 \neq z_1$. Tem-se então dois caminhos que ligam $\gamma_0 \in \gamma_1$ ligando z_0 a z_1 e tal que $\gamma = \gamma_0 \cup \widetilde{\gamma_1}$.

$$\int_{\gamma} f(z)dz = \int_{\gamma_0 \cup \widetilde{\gamma_1}} f(z)dz$$

$$= \int_{\gamma_0} f(z)dz + \underbrace{\int_{\widetilde{\gamma_1}} f(z)dz}_{-\int_{\gamma_1} f(z)dz} = 0$$

$$\Rightarrow \int_{\gamma} f(z)dz = 0$$
(4.7)

Estabelece-se agora, a recíproca do teorema de Cauchy-Goursat.

Teorema 4.3 Teorema de Morera: Se f é contínua num domínio D simplesmente conexo, e se $\int_{\gamma} f(z)dz = 0$ para todo caminho fechado $\gamma \in D$, então f é analítica em D.

Demonstração: Seja $z \in \mathbb{C}$ e seja $F(z) = \int_{z_0}^{z} f(w) dw$.

Do teorema fundamental do cálculo, usa-se a continuidade de f para concluir que F é uma primitiva de f, ou seja, que F'(z) = f(z).

Assim F é derivável em todo ponto do aberto D e então F é analítica em D.

Se F é analítica num domínio D então F possui derivadas de todas as ordens em D. Desta forma, F possui derivadas F', F'', F''', \dots , sendo cada uma delas uma função analítica. Como F'(z) = f(z), temos F''(z) = f'(z). Conclui-se f é analítica em D.

4.2 Transformações

Definição 4.7 Um mapeamento ou transformação conforme é uma função $f: D \to \mathbb{C}$ para z em D se, e somente se, este mapeamento preserva a magnitude dos ângulos e a direção dos ângulos para z.

Teorema 4.4 Para z complexo, se f(z) é analítica com $f'(z) \neq 0$ numa região D simplesmente conexa, então a transformação w = f(z) é conforme em todos os pontos de D.

Uma condição necessária para que f(z) = u(x, y) + iv(x, y) seja analítica numa região Dé que em D, $u \in v$ satisfaçam as equações de Cauchy-Riemann nos complexos:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Se as derivadas parciais de f(z) são contínuas em D, então as equações de Cauchy-Riemann são também condições suficientes para que f(z) seja analítica em D. Nos complexos, a translação, a dilatação, a rotação e a inversão são mapeamentos conformes.

Exemplo 4.1 Considere a transformação h(z) = Az + C, $z \in \mathbb{C}$ e A, C constantes. Então h consiste da rotação de z pelo ângulo Arg(A) em torno da origem, em seguida faz-se uma expansão ou contração pelo fator |A|, e segue fazendo uma translação pelo vetor C. Considerando a função h(z) = iz, geometricamente a imagem da região 0 < x < 1 por esta transformação é dada por:

Figura 4.8: Transformação w = iz

Neste caso, A = i, logo,

|A| = 1

$$Arg(A) = \frac{\pi}{2}$$

isto é, a imagem torna-se rotacionada pelo ângulo $\frac{\pi}{2}$ em torno da origem.

A seguir, estuda-se nos hipercomplexos as equações de Cauchy-Riemann.

4.3 Equações de Cauchy-Riemann 16-dimensional

Estudos recentes [17, 22, 23] têm mostrado o conceito de funções hipercomplexas regulares que satisfazem condições de integrabilidade. Utiliza-se, a seguir, o conceito de integração à esquerda e à direita para expandir as Equações de Cauchy-Riemann.

Seja f uma função $\mathbb{R}^{16} \to \mathbb{R}$, de posse do fato dos *sedenions* serem não comutativos, define-se duas integrais $\int f dz$ e $\int dz f$, ou seja,

 $\int f dz = \int (f_0 + f_1 \mathbf{i} + f_2 \mathbf{j} + f_3 \mathbf{k} + f_4 \mathbf{e}' + f_5 \mathbf{i}' + f_6 \mathbf{j}' + f_7 \mathbf{k}' + f_8 \mathbf{e}'' + f_9 \mathbf{i}'' + f_{10} \mathbf{j}'' + f_{11} \mathbf{k}'' + f_{10} \mathbf{i}'' + f_{10} \mathbf{i}''' + f_{10} \mathbf{i}'' + f_{10} \mathbf{i}'''$ $f_{12}\mathbf{e}^{'''} + f_{13}\mathbf{i}^{'''} + f_{14}\mathbf{j}^{'''} + f_{15}\mathbf{k}^{'''})(da_0 + da_1\mathbf{i} + da_2\mathbf{j} + da_3\mathbf{k} + da_4\mathbf{e}^{'} + da_5\mathbf{i}^{'} + da_6\mathbf{j}^{'} + da_7\mathbf{k}^{'} + da_8\mathbf{e}^{''} + da_8\mathbf{e}^{''}$ $da_{9}\mathbf{i}'' + da_{10}\mathbf{j}'' + da_{11}\mathbf{k}'' + da_{12}\mathbf{e}''' + da_{13}\mathbf{i}''' + da_{14}\mathbf{j}''' + da_{15}\mathbf{k}''') = \int (f_{0}da_{0} - f_{1}da_{1} - f_{2}da_{2} - f_{1}da_{2} - f_{2}da_{2} - f_{1}da_{2} - f_{2}da_{2} - f_{2}da$ $f_3da_3 - f_4da_4 - f_5da_5 - f_6da_6 - f_7da_7 - f_8da_8 - f_9da_9 - f_{10}da_{10} - f_{11}da_{11} - f_{12}da_{12} - f_{13}da_{13} - f_{13}da_{13} - f_{12}da_{13} - f_{13}da_{13} - f_{13}$ $f_{14}da_{14} - f_{15}da_{15}) + \int (f_1da_0 + f_0da_1 - f_3da_2 + f_2da_3 - f_5da_4 + f_4da_5 + f_7da_6 - f_6da_7 - f_9da_8 + f_8da_7 - f_8da_8 + f_8da_8$ $f_8da_9 + f_{11}da_{10} - f_{10}da_{11} + f_{13}da_{12} - f_{12}da_{13} - f_{15}da_{14} + f_{14}da_{15})\mathbf{i} + \int (f_2da_0 + f_3da_1 + f_0da_2 - f_{12}da_{13} - f_{15}da_{14} + f_{14}da_{15})\mathbf{i} + \int (f_2da_0 + f_3da_1 + f_0da_2 - f_{12}da_{13} - f_{15}da_{14} + f_{14}da_{15})\mathbf{i} + \int (f_2da_0 + f_3da_1 + f_0da_2 - f_{12}da_{13} - f_{15}da_{14} + f_{14}da_{15})\mathbf{i} + \int (f_2da_0 + f_3da_1 + f_0da_2 - f_{12}da_{13} - f_{15}da_{14} + f_{14}da_{15})\mathbf{i} + \int (f_2da_0 + f_3da_1 + f_0da_2 - f_{15}da_{14} + f_{14}da_{15})\mathbf{i} + \int (f_2da_0 + f_3da_1 + f_0da_2 - f_{15}da_{14} + f_{14}da_{15})\mathbf{i} + \int (f_2da_0 + f_3da_1 + f_0da_2 - f_{15}da_{14} + f_{14}da_{15})\mathbf{i} + \int (f_2da_0 + f_3da_1 + f_0da_2 - f_{15}da_{14} + f_{14}da_{15})\mathbf{i} + \int (f_2da_0 + f_3da_1 + f_0da_2 - f_{15}da_{14} + f_{14}da_{15})\mathbf{i} + \int (f_2da_0 + f_3da_1 + f_0da_2 - f_{15}da_{14} + f_{14}da_{15})\mathbf{i} + \int (f_2da_0 + f_3da_1 + f_0da_2 - f_{15}da_{14} + f_{14}da_{15})\mathbf{i} + \int (f_2da_0 + f_3da_1 + f_0da_2 - f_{15}da_{14} + f_{14}da_{15})\mathbf{i} + \int (f_2da_0 + f_3da_1 + f_0da_2 - f_{15}da_{14} + f_{15}da_{15})\mathbf{i} + \int (f_2da_0 + f_3da_1 + f_0da_2 + f_1da_{15})\mathbf{i} + \int (f_2da_0 + f_1da_{15} + f_1da_{15})\mathbf{i} + \int (f_2da_0 + f_1da_{15})\mathbf{i} + \int (f_2da_0 + f_1da_{15} + f_1da_{15})\mathbf{i} + \int (f_2da_0 + f_1da_{15})\mathbf{i} +$ $f_1 da_3 - f_6 da_4 - f_7 da_5 + f_4 da_6 + f_5 da_7 - f_{10} da_8 - f_{11} da_9 + f_8 da_{10} + f_9 da_{11} + f_{14} da_{12} + f_{15} da_{13} - f_{10} da_{10} + f_{10} da_{1$ $f_{12}da_{14} - f_{13}da_{15})\mathbf{j} + \int (f_3da_0 - f_2da_1 + f_1da_2 + f_0da_3 - f_7da_4 + f_6da_5 - f_5da_6 + f_4da_7 - f_{11}da_8 + f_6da_5 - f_5da_6 + f_4da_7 - f_{11}da_8 + f_6da_5 - f_5da_6 + f_4da_7 - f_{11}da_8 + f_6da_5 - f_5da_6 + f_6da_5 - f_5da_6 + f_6da_7 - f_{11}da_8 + f_6da_5 - f_5da_6 + f_6da_7 - f_{11}da_8 + f_6da_7 - f_{11}d$ $f_{10}da_9 - f_9da_{10} + f_8da_{11} + f_{15}da_{12} - f_{14}da_{13} + f_{13}da_{14} - f_{12}da_{15})\mathbf{k} + \int (f_4da_0 + f_5da_1 + f_6da_2 + f_6$ $f_7 da_3 + f_0 da_4 - f_1 da_5 - f_2 da_6 - f_3 da_7 - f_{12} da_8 - f_{13} da_9 - f_{14} da_{10} - f_{15} da_{11} + f_8 da_{12} + f_9 da_{13} + f_9 da_{13} + f_9 da_{14} + f_9 da_{15} + f_9 da_{1$ $f_{10}da_{14} + f_{11}da_{15})\mathbf{e}' + \int (f_5da_0 - f_4da_1 + f_7da_2 - f_6da_3 + f_1da_4 + f_0da_5 + f_3da_6 - f_2da_7 - f_{13}da_8 + f_1da_4 + f_0da_5 + f_3da_6 - f_2da_7 - f_{13}da_8 + f_1da_4 + f_0da_5 + f_1da_6 - f_2da_7 - f_{13}da_8 + f_1da_8 + f_1d$ $f_{12}da_9 - f_{15}da_{10} + f_{14}da_{11} - f_9da_{12} + f_8da_{13} - f_{11}da_{14} + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_4da_2 + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_4da_2 + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_4da_2 + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_4da_2 + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_4da_2 + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_4da_2 + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_4da_2 + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_4da_2 + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_4da_2 + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_4da_2 + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_4da_2 + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_4da_2 + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_4da_2 + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_4da_2 + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_4da_2 + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_4da_2 + f_{10}da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_8da_2 + f_8da_{15})\mathbf{i}' + \int (f_6da_0 - f_7da_1 - f_8da_{15})\mathbf{i}' + \int (f_8da_0 - f_$ $f_5da_3 + f_2da_4 - f_3da_5 + f_0da_6 + f_1da_7 - f_{14}da_8 + f_{15}da_9 + f_{12}da_{10} - f_{13}da_{11} - f_{10}da_{12} + f_{11}da_{13} + f_{11}da_{13} + f_{11}da_{13} + f_{12}da_{10} - f_{13}da_{11} - f_{10}da_{12} + f_{11}da_{13} +$ $f_8 da_{14} - f_9 da_{15})\mathbf{j}' + \int (f_7 da_0 + f_6 da_1 - f_5 da_2 - f_4 da_3 + f_3 da_4 + f_2 da_5 - f_1 da_6 + f_0 da_7 - f_{15} da_8 - f_1 da_6 + f_0 da_7 - f_{15} da_8 - f_1 da_6 + f_0 da_7 - f_{15} da_8 - f_1 da_6 + f_0 da_7 - f_{15} da_8 - f_1 da_6 + f_0 da_7 - f_{15} da_8 - f_1 da_8 - f$ $f_{14}da_9 + f_{13}da_{10} + f_{12}da_{11} - f_{11}da_{12} - f_{10}da_{13} + f_9da_{14} + f_8da_{15})\mathbf{k}' + \int (f_8da_0 + f_9da_1 + f_{10}da_2 + f_{10}da_{14} + f_{10}da_{15})\mathbf{k}' + \int (f_8da_0 + f_9da_1 + f_{10}da_2 + f_{10}da_{15})\mathbf{k}' + \int (f_8da_0 + f_9da_1 + f_{10}da_2 + f_{10}da_{15})\mathbf{k}' + \int (f_8da_0 + f_9da_1 + f_{10}da_2 + f_{10}da_{15})\mathbf{k}' + \int (f_8da_0 + f_9da_1 + f_{10}da_2 + f_{10}da_{15})\mathbf{k}' + \int (f_8da_0 + f_9da_1 + f_{10}da_2 + f_{10}da_{15})\mathbf{k}' + \int (f_8da_0 + f_9da_1 + f_{10}da_2 + f_{10}da_{15})\mathbf{k}' + \int (f_8da_0 + f_9da_1 + f_{10}da_2 + f_{10}da_{15})\mathbf{k}' + \int (f_8da_0 + f_9da_1 + f_{10}da_{15})\mathbf{k}' + \int (f_8da_0 + f_$ $f_{11}da_3 + f_{12}da_4 + f_{13}da_5 + f_{14}da_6 + f_{15}da_7 + f_0da_8 - f_1da_9 - f_2da_{10} - f_3da_{11} - f_4da_{12} - f_5da_{13} - f_5da_{13$ $f_6 da_{14} - f_7 da_{15}) \mathbf{e}'' + \int (f_9 da_0 - f_8 da_1 + f_{11} da_2 - f_{10} da_3 + f_{13} da_4 - f_{12} da_5 - f_{15} da_6 + f_{14} da_7 + f_{14} da$ $f_1da_8 + f_0da_9 + f_3da_{10} - f_2da_{11} + f_5da_{12} - f_4da_{13} - f_7da_{14} + f_6da_{15})\mathbf{i}'' + \int (f_{10}da_0 - f_{11}da_1 - f_{10}da_1 - f_{10}da_1$ $f_8da_2 + f_9da_3 + f_{14}da_4 + f_{15}da_5 - f_{12}da_6 - f_{13}da_7 + f_2da_8 - f_3da_9 + f_0da_{10} + f_1da_{11} + f_6da_{12} + f_1da_{11} + f_6da_{12} + f_1da_{11} + f_6da_{12} + f_1da_{11} + f_1da_{11} + f_1da_{12} + f_1da_{13} + f_1da_{14} + f_$ $f_7 da_{13} - f_4 da_{14} - f_5 da_{15})\mathbf{j}'' + \int (f_{11} da_0 + f_{10} da_1 - f_9 da_2 - f_8 da_3 + f_{15} da_4 - f_{14} da_5 + f_{13} da_6 - f_{14} da_5 - f_{14} da_5 + f_{13} da_6 - f_{14} da_5 + f_{15} da_6 - f_{14} da_5 + f_{15} da_6 - f_{15} da_$ $f_{12}da_7 + f_3da_8 + f_2da_9 - f_1da_{10} + f_0da_{11} + f_7da_{12} - f_6da_{13} + f_5da_{14} - f_4da_{15})\mathbf{k}'' + \int (f_{12}da_0 - f_1da_{10} + f_0da_{11} + f_7da_{12} - f_6da_{13} + f_5da_{14} - f_4da_{15})\mathbf{k}'' + \int (f_{12}da_0 - f_1da_{10} + f_0da_{11} + f_7da_{12} - f_6da_{13} + f_5da_{14} - f_4da_{15})\mathbf{k}'' + \int (f_{12}da_0 - f_1da_{10} + f_0da_{11} + f_7da_{12} - f_6da_{13} + f_5da_{14} - f_4da_{15})\mathbf{k}'' + \int (f_{12}da_0 - f_1da_{10} + f_0da_{11} + f_7da_{12} - f_6da_{13} + f_5da_{14} - f_4da_{15})\mathbf{k}'' + \int (f_{12}da_0 - f_1da_{10} + f_0da_{11} + f_7da_{12} - f_6da_{13} + f_5da_{14} - f_4da_{15})\mathbf{k}'' + \int (f_{12}da_0 - f_1da_{10} + f_1da_{10} + f_1da_{10} + f_1da_{12} - f_1da_{14} - f_1da_{15})\mathbf{k}'' + \int (f_{12}da_0 - f_1da_{10} + f_1da_{10} + f_1da_{14} - f_1da_{15})\mathbf{k}'' + \int (f_{12}da_0 - f_1da_{15} + f_1da_{15} - f_1da_{15})\mathbf{k}'' + \int (f_{12}da_0 - f_1da_{15} + f_1da_{15} - f_1da_{15})\mathbf{k}'' + \int (f_{12}da_0 - f_1da_{15} + f_1da_{15} - f_1da_{15})\mathbf{k}'' + \int (f_{12}da_0 - f_1da_{15} + f_1da_{15} - f_1da_{15})\mathbf{k}'' + \int (f_{12}da_0 - f_1da_{15} + f_1da_{15} - f_1da_{15})\mathbf{k}'' + \int (f_{12}da_0 - f_1da_{15} + f_1da_{15} - f_1da_{15})\mathbf{k}'' + \int (f_{12}da_0 - f_1da_{15} + f_1da_{15} - f_1da_{15})\mathbf{k}'' + \int (f_{12}da_0 - f_1da_{15} - f_1da_{15} - f_1da_{15})\mathbf{k}'' + \int (f_{12}da_0 - f_1da_{15} - f_1da_{15} - f_1da_{15})\mathbf{k}'' + \int (f_{12}da_{15} - f_1da_{15} - f_1da_{15})\mathbf{k}'' + \int (f_{12}da_{15} - f_1da_{15} - f_1da_{15})\mathbf{k}'' + \int (f_{12}da_{15} - f_1da_{15})\mathbf{k}'' + \int (f_{12}da_{15} - f_{12}da_{15})\mathbf{k}'' + \int (f_{12}da_{15} - f_{12}da_{15})\mathbf{k}''$ $f_{13}da_1 - f_{14}da_2 - f_{15}da_3 - f_8da_4 + f_9da_5 + f_{10}da_6 + f_{11}da_7 + f_4da_8 - f_5da_9 - f_6da_{10} - f_7da_{11} + f_{10}da_6 + f_{11}da_7 + f_{10}da_8 - f_{10}da_9 - f_{10}da_{10} - f_{10}da_{10} + f_{10}da_{10} - f_{10$ $f_0 da_{12} + f_1 da_{13} + f_2 da_{14} + f_3 da_{15}) \mathbf{e}^{'''} + \int (f_{13} da_0 + f_{12} da_1 - f_{15} da_2 + f_{14} da_3 - f_9 da_4 - f_8 da_5 - f_9 da_5 - f_9$ $f_{11}da_6 + f_{10}da_7 + f_5da_8 + f_4da_9 - f_7da_{10} + f_6da_{11} - f_1da_{12} + f_0da_{13} - f_3da_{14} + f_2da_{15})\mathbf{i}''' +$
$$\begin{split} &\int (f_{14}da_0 + f_{15}da_1 + f_{12}da_2 - f_{13}da_3 - f_{10}da_4 + f_{11}da_5 - f_8da_6 - f_9da_7 + f_6da_8 + f_7da_9 + f_4da_{10} - f_5da_{11} - f_2da_{12} + f_3da_{13} + f_0da_{14} - f_1da_{15})\mathbf{j}^{'''} + \int (f_{15}da_0 - f_{14}da_1 + f_{13}da_2 + f_{12}da_3 - f_{11}da_4 - f_{10}da_5 + f_9da_6 - f_8da_7 + f_7da_8 - f_6da_9 + f_5da_{10} + f_4da_{11} - f_3da_{12} - f_2da_{13} + f_1da_{14} + f_0da_{15})\mathbf{k}^{'''} \\ & e, \end{split}$$

 $\int dz f = \int (da_0 + da_1 \mathbf{i} + da_2 \mathbf{j} + da_3 \mathbf{k} + da_4 \mathbf{e}' + da_5 \mathbf{i}' + da_6 \mathbf{j}' + da_7 \mathbf{k}' + da_8 \mathbf{e}'' + da_9 \mathbf{i}'' + da_9 \mathbf{i}''' + da_9 \mathbf{i}'' + da_9 \mathbf{i}'' + da_9 \mathbf{i}''' + da_$ $da_{10}\mathbf{j}'' + da_{11}\mathbf{k}'' + da_{12}\mathbf{e}''' + da_{13}\mathbf{i}''' + da_{14}\mathbf{j}''' + da_{15}\mathbf{k}''')(f_0 + f_1\mathbf{i} + f_2\mathbf{j} + f_3\mathbf{k} + f_4\mathbf{e}' + f_5\mathbf{i}' + f_6\mathbf{j}' + f_6\mathbf{j}' + f_6\mathbf{j}')$ $f_{7}\mathbf{k}' + f_{8}\mathbf{e}'' + f_{9}\mathbf{i}'' + f_{10}\mathbf{j}'' + f_{11}\mathbf{k}'' + f_{12}\mathbf{e}''' + f_{13}\mathbf{i}''' + f_{14}\mathbf{j}''' + f_{15}\mathbf{k}''') = \int (da_{0}f_{0} - da_{1}f_{1} - da_{2}f_{2} - da_{1}f_{1} - d$ $da_3f_3 - da_4f_4 - da_5f_5 - da_6f_6 - da_7f_7 - da_8f_8 - da_9f_9 - da_{10}f_{10} - da_{11}f_{11} - da_{12}f_{12} - da_{13}f_{13} - da_{12}f_{12} - da_{13}f_{13} - da_{13}f_{13} - da_{10}f_{10} - da_{11}f_{11} - da_{12}f_{12} - da_{13}f_{13} - da_{13$ $da_{14}f_{14} - da_{15}f_{15}) + \int (da_0f_1 + da_1f_0 + da_2f_3 - da_3f_2 + da_4f_5 - da_5f_4 - da_6f_7 + da_7f_6 + da_8f_9 - da_8f_9$ $da_9f_8 - da_{10}f_{11} + da_{11}f_{10} - da_{12}f_{13} + da_{13}f_{12} + da_{14}f_{15} - da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + da_{15}f_{14})\mathbf{i} + \int (da_0f_2 - da_1f_3 + da_2f_0 + + da_2f_0$ $da_3f_1 + da_4f_6 + da_5f_7 - da_6f_4 - da_7f_5 + da_8f_{10} + da_9f_{11} - da_{10}f_8 - da_{11}f_9 - da_{12}f_{14} - da_{13}f_{15} + da_{11}f_{15} - da_{12}f_{14} - da_{13}f_{15} + da_{11}f_{15} - da_{12}f_{16} - da_{11}f_{16} - da_{12}f_{16} - da_{12}f_{16} - da_{13}f_{15} + da_{12}f_{16} - da_{12}f_{16} - da_{13}f_{15} - da_{12}f_{16} - da_{12}f_{16} - da_{13}f_{16} - da_{12}f_{16} - da_{13}f_{16} - da_{12}f_{16} - da_{12}f_{16} - da_{13}f_{16} - da_{16}f_{16} - da_{16$ $da_{14}f_{12} + da_{15}f_{13}$)**j** + $\int (da_0f_3 + da_1f_2 - da_2f_1 + da_3f_0 + da_4f_7 - da_5f_6 + da_6f_5 - da_7f_4 + da_8f_{11} - da_8f_6 + da_8f_6 +$ $da_9f_{10} + da_{10}f_9 - da_{11}f_8 - da_{12}f_{15} + da_{13}f_{14} - da_{14}f_{13} + da_{15}f_{12})\mathbf{k} + \int (da_0f_4 - da_1f_5 - da_2f_6 - da_$ $da_3f_7 + da_4f_0 + da_5f_1 + da_6f_2 + da_7f_3 + da_8f_{12} + da_9f_{13} + da_{10}f_{14} + da_{11}f_{15} - da_{12}f_8 - da_{13}f_9 - da_{12}f_8 - da_{13}f_9 - da_{12}f_8 - da_{13}f_9 - da_{13}f_9$ $da_{14}f_{10} - da_{15}f_{11})\mathbf{e}' + \int (da_0f_5 + da_1f_4 - da_2f_7 + da_3f_6 - da_4f_1 + da_5f_0 - da_6f_3 + da_7f_2 + da_8f_{13} - da_8f_{13}$ $da_9f_{12} + da_{10}f_{15} - da_{11}f_{14} + da_{12}f_9 - da_{13}f_8 + da_{14}f_{11} - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_4 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_6 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_6 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_6 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_6 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_6 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_6 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_6 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_6 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_6 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_6 - da_{15}f_{10})\mathbf{i}' + \int (da_0f_6 + da_1f_7 + da_2f_6 - da_2f_7 + da_2f_7 + da_2f_6 - da_2f_7 + da_2f_7$ $da_3f_5 - da_4f_2 + da_5f_3 + da_6f_0 - da_7f_1 + da_8f_{14} - da_9f_{15} - da_{10}f_{12} + da_{11}f_{13} + da_{12}f_{10} - da_{13}f_{11} - da_{13}f_{11} - da_{12}f_{10} - da_{13}f_{11} - da_{13}f_{11}$ $da_{14}f_8 + da_{15}f_9)\mathbf{j}' + \int (da_0f_7 - da_1f_6 + da_2f_5 + da_3f_4 - da_4f_3 - da_5f_2 + da_6f_1 + da_7f_0 + da_8f_{15} + da_8f$ $da_9f_{14} - da_{10}f_{13} - da_{11}f_{12} + da_{12}f_{11} + da_{13}f_{10} - da_{14}f_9 - da_{15}f_8)\mathbf{k}' + \int (da_0f_8 - da_1f_9 - da_2f_{10} - da_2f_{10} - da_2f_{10})\mathbf{k}'$ $da_3f_{11} - da_4f_{12} - da_5f_{13} - da_6f_{14} - da_7f_{15} + da_8f_0 + da_9f_1 + da_{10}f_2 + da_{11}f_3 + da_{12}f_4 + da_{13}f_5 + da_{12}f_4 + da_{13}f_5 + da_{12}f_4 + da_{13}f_5 + da_{14}f_4 + da_{15}f_5 + da_{15}f_4 + da_{15}f_5 + da_{15}f_$ $da_{14}f_6 + da_{15}f_7)\mathbf{e}'' + \int (da_0f_9 + da_1f_8 - da_2f_{11} + da_3f_{10} - da_4f_{13} + da_5f_{12} + da_6f_{15} - da_7f_{14} - da_7f_{14} + da_8f_{15} - da_7f_{14} - da_8f_{15} - da_8f_{15}$ $da_8f_1 + da_9f_0 - da_{10}f_3 + da_{11}f_2 - da_{12}f_5 + da_{13}f_4 + da_{14}f_7 - da_{15}f_6)\mathbf{i}'' + \int (da_0f_{10} + da_1f_{11} +$ $da_2f_8 - da_3f_9 - da_4f_{14} - da_5f_{15} + da_6f_{12} + da_7f_{13} - da_8f_2 + da_9f_3 + da_{10}f_0 - da_{11}f_1 - da_{12}f_6 - da_{12}f_6 - da_{11}f_1 - da_{12}f_1 - da$ $da_{13}f_7 + da_{14}f_4 + da_{15}f_5)\mathbf{j}'' + \int (da_0f_{11} - da_1f_{10} + da_2f_9 + da_3f_8 - da_4f_{15} + da_5f_{14} - da_6f_{13} + da_5f_{14} - da_6f_{14} - da_6f_{15} + da_5f_{14} - da_6f_{13} + da_5f_{14} - da_6f_{15} + da_5f_{15} - da_5f_{15}$ $da_{7}f_{12} - da_{8}f_{3} - da_{9}f_{2} + da_{10}f_{1} + da_{11}f_{0} - da_{12}f_{7} + da_{13}f_{6} - da_{14}f_{5} + da_{15}f_{4})\mathbf{k}'' + \int (da_{0}f_{12} + da_{11}f_{0} - da_{12}f_{7} + da_{13}f_{6} - da_{14}f_{5} + da_{15}f_{4})\mathbf{k}'' + \int (da_{0}f_{12} + da_{11}f_{0} - da_{12}f_{7} + da_{13}f_{6} - da_{14}f_{5} + da_{15}f_{4})\mathbf{k}'' + \int (da_{0}f_{12} + da_{11}f_{0} - da_{12}f_{7} + da_{13}f_{6} - da_{14}f_{5} + da_{15}f_{4})\mathbf{k}'' + \int (da_{0}f_{12} + da_{11}f_{0} - da_{12}f_{7} + da_{13}f_{6} - da_{14}f_{5} + da_{15}f_{4})\mathbf{k}'' + \int (da_{0}f_{12} + da_{11}f_{0} - da_{12}f_{7} + da_{13}f_{6} - da_{14}f_{5} + da_{15}f_{4})\mathbf{k}'' + \int (da_{0}f_{12} + da_{11}f_{0} - da_{12}f_{7} + da_{13}f_{6} - da_{14}f_{5} + da_{15}f_{4})\mathbf{k}'' + \int (da_{0}f_{12} + da_{11}f_{12} + da_{11$ $da_1f_{13} + da_2f_{14} + da_3f_{15} + da_4f_8 - da_5f_9 - da_6f_{10} - da_7f_{11} - da_8f_4 + da_9f_5 + da_{10}f_6 + da_{11}f_7 + da$ $da_{12}f_0 - da_{13}f_1 - da_{14}f_2 - da_{15}f_3)\mathbf{e}^{'''} + \int (da_0f_{13} - da_1f_{12} + da_2f_{15} - da_3f_{14} + da_4f_9 + da_5f_8 + da_5f_8)\mathbf{e}^{'''}$ $da_6f_{11} - da_7f_{10} - da_8f_5 - da_9f_4 + da_{10}f_7 - da_{11}f_6 + da_{12}f_1 + da_{13}f_0 + da_{14}f_3 - da_{15}f_2)\mathbf{i}''' +$ $\int (da_0 f_{14} - da_1 f_{15} - da_2 f_{12} + da_3 f_{13} + da_4 f_{10} - da_5 f_{11} + da_6 f_8 + da_7 f_9 - da_8 f_6 - da_9 f_7 - da_{10} f_4 + da_9 f_8 + da_7 f_9 - da_8 f_6 - da_9 f_7 - da_{10} f_4 + da_9 f_8 + da_7 f_9 - da_8 f_6 - da_9 f_7 - da_{10} f_4 + da_9 f_8 + da_7 f_9 - da_8 f_6 - da_9 f_7 - da_{10} f_4 + da_9 f_8 + da_7 f_9 - da_8 f_6 - da_9 f_7 - da_{10} f_4 + da_9 f_8 + da_7 f_9 - da_8 f_8 + da_7 f_9 + da_8 f_8 + da_8 f$ $da_{11}f_5 + da_{12}f_2 - da_{13}f_3 + da_{14}f_0 + da_{15}f_1)\mathbf{j}^{''} + \int (da_0f_{15} + da_1f_{14} - da_2f_{13} - da_3f_{12} + da_4f_{11} + da_2f_{13} - da_3f_{12} + da_4f_{11} + da_5f_1)\mathbf{j}^{''} + \int (da_0f_{15} + da_1f_{14} - da_2f_{13} - da_3f_{12} + da_4f_{11} + da_5f_1)\mathbf{j}^{''} + \int (da_0f_{15} + da_1f_{14} - da_2f_{13} - da_3f_{12} + da_4f_{11} + da_5f_1)\mathbf{j}^{''} + \int (da_0f_{15} + da_1f_{14} - da_2f_{13} - da_3f_{12} + da_4f_{11} + da_5f_1)\mathbf{j}^{''} + \int (da_0f_{15} + da_1f_{14} - da_2f_{13} - da_3f_{12} + da_4f_{11} + da_5f_1)\mathbf{j}^{''} + \int (da_0f_{15} + da_1f_{14} - da_2f_{13} - da_3f_{12} + da_4f_{11} + da_5f_1)\mathbf{j}^{''} + \int (da_0f_{15} + da_1f_{14} - da_2f_{13} - da_3f_{12} + da_4f_{11} + da_5f_1)\mathbf{j}^{''} + \int (da_0f_{15} + da_1f_{14} - da_2f_{13} - da_3f_{12} + da_4f_{11} + da_5f_1)\mathbf{j}^{''} + \int (da_0f_{15} + da_1f_{14} - da_2f_{13} - da_3f_{12} + da_4f_{11} + da_5f_1)\mathbf{j}^{''} + \int (da_0f_{15} + da_1f_{14} - da_2f_{13} - da_3f_{12} + da_4f_{11} + da_5f_{15})\mathbf{j}^{''} + \int (da_0f_{15} + da_1f_{14} - da_2f_{13} - da_3f_{12} + da_4f_{11} + da_5f_{15})\mathbf{j}^{''} + \int (da_0f_{15} + da_1f_{15} - da_1f_{15})\mathbf{j}^{''} + \int (da_0f_{15} + da_1f_{15} - da_1f_{15})\mathbf{j}^{''} + \int (da_0f_{15} + da_1f_{15})\mathbf{j}^{$ $da_5f_{10} - da_6f_9 + da_7f_8 - da_8f_7 + da_9f_6 - da_{10}f_5 - da_{11}f_4 + da_{12}f_3 + da_{13}f_2 - da_{14}f_1 + da_{15}f_0)\mathbf{k}''$

Supondo contínuas as funções coordenadas $f_l : \mathbb{R}^{16} \mapsto \mathbb{R}, l = 0, ..., 15$, e dado um caminho com extremos em $x = (x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15})$ e $y = (y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}, y_{11}, y_{12}, y_{13}, y_{14}, y_{15})$ numa região conexa de um espaço de dezesseis dimensões, as integrais $\int f dz$ e $\int dz f$ independerão do caminho de integração, se satisfizerem as condições dos seguintes teoremas:

Teorema 4.5 Para todo par de pontos x e y, e qualquer caminho ligando-os em um espaço simplesmente conexo 16-dimensional, a integral $\int_x^y f dz$ independe do caminho dado se, e somente se, existe uma função $F = F_0 + F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k} + F_4 \mathbf{e}' + F_5 \mathbf{i}' + F_6 \mathbf{j}' + F_7 \mathbf{k}' + F_8 \mathbf{e}'' + F_9 \mathbf{i}'' + F_{10} \mathbf{j}'' + F_{11} \mathbf{k}'' + F_{12} \mathbf{e}''' + F_{13} \mathbf{i}''' + F_{14} \mathbf{j}''' + F_{15} \mathbf{k}''' \text{ com } \int_x^y f dz = F(y) - F(x) e que$ satisfaz as seguintes condições:

$$f_{0} = \frac{\partial F_{0}}{\partial a_{0}} = \frac{\partial F_{1}}{\partial a_{1}} = \frac{\partial F_{2}}{\partial a_{2}} = \frac{\partial F_{3}}{\partial a_{3}} = \frac{\partial F_{4}}{\partial a_{4}} = \frac{\partial F_{5}}{\partial a_{5}} = \frac{\partial F_{6}}{\partial a_{6}} = \frac{\partial F_{7}}{\partial a_{7}} = \frac{\partial F_{8}}{\partial a_{8}}$$
$$= \frac{\partial F_{9}}{\partial a_{9}} = \frac{\partial F_{10}}{\partial a_{10}} = \frac{\partial F_{11}}{\partial a_{11}} = \frac{\partial F_{12}}{\partial a_{12}} = \frac{\partial F_{13}}{\partial a_{13}} = \frac{\partial F_{14}}{\partial a_{14}} = \frac{\partial F_{15}}{\partial a_{15}},$$
(4.8)

$$f_{1} = \frac{\partial F_{1}}{\partial a_{0}} = -\frac{\partial F_{0}}{\partial a_{1}} = \frac{\partial F_{3}}{\partial a_{2}} = -\frac{\partial F_{2}}{\partial a_{3}} = \frac{\partial F_{5}}{\partial a_{4}} = -\frac{\partial F_{4}}{\partial a_{5}} = -\frac{\partial F_{7}}{\partial a_{6}} = \frac{\partial F_{6}}{\partial a_{7}} = \frac{\partial F_{9}}{\partial a_{8}}$$
$$= -\frac{\partial F_{8}}{\partial a_{9}} = -\frac{\partial F_{11}}{\partial a_{10}} = \frac{\partial F_{10}}{\partial a_{11}} = -\frac{\partial F_{13}}{\partial a_{12}} = \frac{\partial F_{12}}{\partial a_{13}} = \frac{\partial F_{15}}{\partial a_{14}} = -\frac{\partial F_{14}}{\partial a_{15}}, \qquad (4.9)$$

$$f_{2} = \frac{\partial F_{2}}{\partial a_{0}} = -\frac{\partial F_{3}}{\partial a_{1}} = -\frac{\partial F_{0}}{\partial a_{2}} = \frac{\partial F_{1}}{\partial a_{3}} = \frac{\partial F_{6}}{\partial a_{4}} = \frac{\partial F_{7}}{\partial a_{5}} = -\frac{\partial F_{4}}{\partial a_{6}} = -\frac{\partial F_{5}}{\partial a_{7}} = \frac{\partial F_{10}}{\partial a_{8}}$$
$$= \frac{\partial F_{11}}{\partial a_{9}} = -\frac{\partial F_{8}}{\partial a_{10}} = -\frac{\partial F_{9}}{\partial a_{11}} = -\frac{\partial F_{14}}{\partial a_{12}} = -\frac{\partial F_{15}}{\partial a_{13}} = \frac{\partial F_{12}}{\partial a_{14}} = \frac{\partial F_{13}}{\partial a_{15}}, \qquad (4.10)$$

$$f_{3} = \frac{\partial F_{3}}{\partial a_{0}} = \frac{\partial F_{2}}{\partial a_{1}} = -\frac{\partial F_{1}}{\partial a_{2}} = -\frac{\partial F_{0}}{\partial a_{3}} = \frac{\partial F_{7}}{\partial a_{4}} = -\frac{\partial F_{6}}{\partial a_{5}} = \frac{\partial F_{5}}{\partial a_{6}} = -\frac{\partial F_{4}}{\partial a_{7}} = \frac{\partial F_{11}}{\partial a_{8}}$$
$$= -\frac{\partial F_{10}}{\partial a_{9}} = \frac{\partial F_{9}}{\partial a_{10}} = -\frac{\partial F_{8}}{\partial a_{11}} = -\frac{\partial F_{15}}{\partial a_{12}} = \frac{\partial F_{14}}{\partial a_{13}} = -\frac{\partial F_{13}}{\partial a_{14}} = \frac{\partial F_{12}}{\partial a_{15}}, \tag{4.11}$$

$$f_4 = \frac{\partial F_4}{\partial a_0} = -\frac{\partial F_5}{\partial a_1} = -\frac{\partial F_6}{\partial a_2} = -\frac{\partial F_7}{\partial a_3} = -\frac{\partial F_0}{\partial a_4} = \frac{\partial F_1}{\partial a_5} = \frac{\partial F_2}{\partial a_6} = \frac{\partial F_3}{\partial a_7} = \frac{\partial F_{12}}{\partial a_8}$$
$$= \frac{\partial F_{13}}{\partial a_9} = \frac{\partial F_{14}}{\partial a_{10}} = \frac{\partial F_{15}}{\partial a_{11}} = -\frac{\partial F_8}{\partial a_{12}} = -\frac{\partial F_9}{\partial a_{13}} = -\frac{\partial F_{10}}{\partial a_{14}} = -\frac{\partial F_{11}}{\partial a_{15}}, \qquad (4.12)$$

$$f_5 = \frac{\partial F_5}{\partial a_0} = \frac{\partial F_4}{\partial a_1} = -\frac{\partial F_7}{\partial a_2} = \frac{\partial F_6}{\partial a_3} = -\frac{\partial F_1}{\partial a_4} = -\frac{\partial F_0}{\partial a_5} = -\frac{\partial F_3}{\partial a_6} = \frac{\partial F_2}{\partial a_7} = \frac{\partial F_{13}}{\partial a_8}$$
$$= -\frac{\partial F_{12}}{\partial a_9} = \frac{\partial F_{15}}{\partial a_{10}} = -\frac{\partial F_{14}}{\partial a_{11}} = \frac{\partial F_9}{\partial a_{12}} = -\frac{\partial F_8}{\partial a_{13}} = \frac{\partial F_{11}}{\partial a_{14}} = -\frac{\partial F_{10}}{\partial a_{15}},$$
(4.13)

$$f_{6} = \frac{\partial F_{6}}{\partial a_{0}} = \frac{\partial F_{7}}{\partial a_{1}} = \frac{\partial F_{4}}{\partial a_{2}} = -\frac{\partial F_{5}}{\partial a_{3}} = -\frac{\partial F_{2}}{\partial a_{4}} = \frac{\partial F_{3}}{\partial a_{5}} = -\frac{\partial F_{0}}{\partial a_{6}} = -\frac{\partial F_{1}}{\partial a_{7}} = \frac{\partial F_{14}}{\partial a_{8}}$$
$$= -\frac{\partial F_{15}}{\partial a_{9}} = -\frac{\partial F_{12}}{\partial a_{10}} = \frac{\partial F_{13}}{\partial a_{11}} = \frac{\partial F_{10}}{\partial a_{12}} = -\frac{\partial F_{11}}{\partial a_{13}} = -\frac{\partial F_{8}}{\partial a_{14}} = \frac{\partial F_{9}}{\partial a_{15}}, \qquad (4.14)$$

$$f_{7} = \frac{\partial F_{7}}{\partial a_{0}} = -\frac{\partial F_{6}}{\partial a_{1}} = \frac{\partial F_{5}}{\partial a_{2}} = \frac{\partial F_{4}}{\partial a_{3}} = -\frac{\partial F_{3}}{\partial a_{4}} = -\frac{\partial F_{2}}{\partial a_{5}} = \frac{\partial F_{1}}{\partial a_{6}} = -\frac{\partial F_{0}}{\partial a_{7}} = \frac{\partial F_{15}}{\partial a_{8}}$$
$$= \frac{\partial F_{14}}{\partial a_{9}} = -\frac{\partial F_{13}}{\partial a_{10}} = -\frac{\partial F_{12}}{\partial a_{11}} = \frac{\partial F_{11}}{\partial a_{12}} = \frac{\partial F_{10}}{\partial a_{13}} = -\frac{\partial F_{9}}{\partial a_{14}} = -\frac{\partial F_{8}}{\partial a_{15}}, \qquad (4.15)$$

$$f_8 = \frac{\partial F_8}{\partial a_0} = -\frac{\partial F_9}{\partial a_1} = -\frac{\partial F_{10}}{\partial a_2} = -\frac{\partial F_{11}}{\partial a_3} = -\frac{\partial F_{12}}{\partial a_4} = -\frac{\partial F_{13}}{\partial a_5} = -\frac{\partial F_{14}}{\partial a_6} = -\frac{\partial F_{15}}{\partial a_7}$$
$$= -\frac{\partial F_0}{\partial a_8} = \frac{\partial F_1}{\partial a_9} = \frac{\partial F_2}{\partial a_{10}} = \frac{\partial F_3}{\partial a_{11}} = \frac{\partial F_4}{\partial a_{12}} = \frac{\partial F_5}{\partial a_{13}} = \frac{\partial F_6}{\partial a_{14}} = \frac{\partial F_7}{\partial a_{15}},$$
(4.16)

$$f_{9} = \frac{\partial F_{9}}{\partial a_{0}} = \frac{\partial F_{8}}{\partial a_{1}} = -\frac{\partial F_{11}}{\partial a_{2}} = \frac{\partial F_{10}}{\partial a_{3}} = -\frac{\partial F_{13}}{\partial a_{4}} = \frac{\partial F_{12}}{\partial a_{5}} = \frac{\partial F_{15}}{\partial a_{6}} = -\frac{\partial F_{14}}{\partial a_{7}} = -\frac{\partial F_{1}}{\partial a_{8}}$$
$$= -\frac{\partial F_{0}}{\partial a_{9}} = -\frac{\partial F_{3}}{\partial a_{10}} = \frac{\partial F_{2}}{\partial a_{11}} = -\frac{\partial F_{5}}{\partial a_{12}} = \frac{\partial F_{4}}{\partial a_{13}} = \frac{\partial F_{7}}{\partial a_{14}} = -\frac{\partial F_{6}}{\partial a_{15}}$$
(4.17)

$$f_{10} = \frac{\partial F_{10}}{\partial a_0} = \frac{\partial F_{11}}{\partial a_1} = \frac{\partial F_8}{\partial a_2} = -\frac{\partial F_9}{\partial a_3} = -\frac{\partial F_{14}}{\partial a_4} = -\frac{\partial F_{15}}{\partial a_5} = \frac{\partial F_{12}}{\partial a_6} = \frac{\partial F_{13}}{\partial a_7} = -\frac{\partial F_2}{\partial a_8}$$
$$= \frac{\partial F_3}{\partial a_9} = -\frac{\partial F_0}{\partial a_{10}} = -\frac{\partial F_1}{\partial a_{11}} = -\frac{\partial F_6}{\partial a_{12}} = -\frac{\partial F_7}{\partial a_{13}} = \frac{\partial F_4}{\partial a_{14}} = \frac{\partial F_5}{\partial a_{15}}$$
(4.18)

$$f_{11} = \frac{\partial F_{11}}{\partial a_0} = -\frac{\partial F_{10}}{\partial a_1} = \frac{\partial F_9}{\partial a_2} = \frac{\partial F_8}{\partial a_3} = -\frac{\partial F_{15}}{\partial a_4} = \frac{\partial F_{14}}{\partial a_5} = -\frac{\partial F_{13}}{\partial a_6} = \frac{\partial F_{12}}{\partial a_7} = -\frac{\partial F_3}{\partial a_8}$$
$$= -\frac{\partial F_2}{\partial a_9} = \frac{\partial F_1}{\partial a_{10}} = -\frac{\partial F_0}{\partial a_{11}} = -\frac{\partial F_7}{\partial a_{12}} = \frac{\partial F_6}{\partial a_{13}} = -\frac{\partial F_5}{\partial a_{14}} = \frac{\partial F_4}{\partial a_{15}}, \tag{4.19}$$

$$f_{12} = \frac{\partial F_{12}}{\partial a_0} = \frac{\partial F_{13}}{\partial a_1} = \frac{\partial F_{14}}{\partial a_2} = \frac{\partial F_{15}}{\partial a_3} = \frac{\partial F_8}{\partial a_4} = -\frac{\partial F_9}{\partial a_5} = -\frac{\partial F_{10}}{\partial a_6} = -\frac{\partial F_{11}}{\partial a_7} = -\frac{\partial F_4}{\partial a_8}$$
$$= \frac{\partial F_5}{\partial a_9} = \frac{\partial F_6}{\partial a_{10}} = \frac{\partial F_7}{\partial a_{11}} = -\frac{\partial F_0}{\partial a_{12}} = -\frac{\partial F_1}{\partial a_{13}} = -\frac{\partial F_2}{\partial a_{14}} = -\frac{\partial F_3}{\partial a_{15}},$$
(4.20)

$$f_{13} = \frac{\partial F_{13}}{\partial a_0} = -\frac{\partial F_{12}}{\partial a_1} = \frac{\partial F_{15}}{\partial a_2} = -\frac{\partial F_{14}}{\partial a_3} = \frac{\partial F_9}{\partial a_4} = \frac{\partial F_8}{\partial a_5} = \frac{\partial F_{11}}{\partial a_6} = -\frac{\partial F_{10}}{\partial a_7} = -\frac{\partial F_5}{\partial a_8}$$
$$= -\frac{\partial F_4}{\partial a_9} = \frac{\partial F_7}{\partial a_{10}} = -\frac{\partial F_6}{\partial a_{11}} = \frac{\partial F_1}{\partial a_{12}} = -\frac{\partial F_0}{\partial a_{13}} = \frac{\partial F_3}{\partial a_{14}} = -\frac{\partial F_2}{\partial a_{15}},$$
(4.21)

$$f_{14} = \frac{\partial F_{14}}{\partial a_0} = -\frac{\partial F_{15}}{\partial a_1} = -\frac{\partial F_{12}}{\partial a_2} = \frac{\partial F_{13}}{\partial a_3} = \frac{\partial F_{10}}{\partial a_4} = -\frac{\partial F_{11}}{\partial a_5} = \frac{\partial F_8}{\partial a_6} = \frac{\partial F_9}{\partial a_7} = -\frac{\partial F_6}{\partial a_8}$$
$$= -\frac{\partial F_7}{\partial a_9} = -\frac{\partial F_4}{\partial a_{10}} = \frac{\partial F_5}{\partial a_{11}} = \frac{\partial F_2}{\partial a_{12}} = -\frac{\partial F_3}{\partial a_{13}} = -\frac{\partial F_0}{\partial a_{14}} = \frac{\partial F_1}{\partial a_{15}}, \qquad (4.22)$$

$$f_{15} = \frac{\partial F_{15}}{\partial a_0} = \frac{\partial F_{14}}{\partial a_1} = -\frac{\partial F_{13}}{\partial a_2} = -\frac{\partial F_{12}}{\partial a_3} = \frac{\partial F_{11}}{\partial a_4} = \frac{\partial F_{10}}{\partial a_5} = -\frac{\partial F_9}{\partial a_6} = \frac{\partial F_8}{\partial a_7} = -\frac{\partial F_7}{\partial a_8}$$
$$= \frac{\partial F_6}{\partial a_9} = -\frac{\partial F_5}{\partial a_{10}} = -\frac{\partial F_4}{\partial a_{11}} = \frac{\partial F_3}{\partial a_{12}} = \frac{\partial F_2}{\partial a_{13}} = -\frac{\partial F_1}{\partial a_{14}} = -\frac{\partial F_0}{\partial a_{15}}$$
(4.23)

Demonstração: A integral $\int_x^y f dz$, independerá do caminho se existir uma função F, tal que:

 $\int_{x}^{y} f dz = \int_{x}^{y} dF = \int_{x}^{y} d(F_{0} + F_{1}\mathbf{i} + F_{2}\mathbf{j} + F_{3}\mathbf{k} + F_{4}\mathbf{e}' + F_{5}\mathbf{i}' + F_{6}\mathbf{j}' + F_{7}\mathbf{k}' + F_{8}\mathbf{e}'' + F_{9}\mathbf{i}'' + F_{10}\mathbf{j}'' + F_{11}\mathbf{k}'' + F_{12}\mathbf{e}''' + F_{13}\mathbf{i}''' + F_{14}\mathbf{j}''' + F_{15}\mathbf{k}''') = F(y) - F(x),$

Supondo que a função F exista, podemos escrever as diferenciais totais das suas respectivas funções coordenadas da seguinte forma:

$$\begin{split} dF_{0} &= \frac{\partial F_{0}}{\partial a_{0}} da_{0} + \frac{\partial F_{0}}{\partial a_{1}} da_{1} + \frac{\partial F_{0}}{\partial a_{2}} da_{2} + \frac{\partial F_{0}}{\partial a_{3}} da_{3} + \frac{\partial F_{0}}{\partial a_{4}} da_{4} + \frac{\partial F_{0}}{\partial a_{5}} da_{5} + \frac{\partial F_{0}}{\partial a_{6}} da_{6} + \frac{\partial F_{0}}{\partial a_{7}} da_{7} \\ &+ \frac{\partial F_{0}}{\partial a_{8}} da_{8} + \frac{\partial F_{0}}{\partial a_{9}} da_{9} + \frac{\partial F_{0}}{\partial a_{10}} da_{10} + \frac{\partial F_{0}}{\partial a_{11}} da_{11} + \frac{\partial F_{0}}{\partial a_{12}} da_{12} + \frac{\partial F_{0}}{\partial a_{13}} da_{13} + \frac{\partial F_{0}}{\partial a_{14}} da_{14} + \frac{\partial F_{0}}{\partial a_{15}} da_{15} \\ &= f_{0} da_{0} - f_{1} da_{1} - f_{2} da_{2} - f_{3} da_{3} - f_{4} da_{4} - f_{5} da_{5} - f_{6} da_{6} - f_{7} da_{7} - f_{8} da_{8} - f_{9} da_{9} \\ &- f_{10} da_{10} - f_{11} da_{11} - f_{12} da_{12} - f_{13} da_{13} - f_{14} da_{14} - f_{15} da_{15}, \end{split}$$

$$\begin{split} dF_{1} &= \frac{\partial F_{1}}{\partial a_{0}} da_{0} + \frac{\partial F_{1}}{\partial a_{1}} da_{1} + \frac{\partial F_{1}}{\partial a_{2}} da_{2} + \frac{\partial F_{1}}{\partial a_{3}} da_{3} + \frac{\partial F_{1}}{\partial a_{4}} da_{4} + \frac{\partial F_{1}}{\partial a_{5}} da_{5} + \frac{\partial F_{1}}{\partial a_{6}} da_{6} + \frac{\partial F_{1}}{\partial a_{7}} da_{7} \\ &+ \frac{\partial F_{1}}{\partial a_{8}} da_{8} + \frac{\partial F_{1}}{\partial a_{9}} da_{9} + \frac{\partial F_{1}}{\partial a_{10}} da_{10} + \frac{\partial F_{1}}{\partial a_{11}} da_{11} + \frac{\partial F_{1}}{\partial a_{12}} da_{12} + \frac{\partial F_{1}}{\partial a_{13}} da_{13} + \frac{\partial F_{1}}{\partial a_{14}} da_{14} + \frac{\partial F_{1}}{\partial a_{15}} da_{15} \\ &= f_{1} da_{0} + f_{0} da_{1} - f_{3} da_{2} + f_{2} da_{3} - f_{5} da_{4} + f_{4} da_{5} + f_{7} da_{6} - f_{6} da_{7} - f_{9} da_{8} + f_{8} da_{9} \\ &+ f_{11} da_{10} - f_{10} da_{11} + f_{13} da_{12} - f_{12} da_{13} - f_{15} da_{14} + f_{14} da_{15}, \end{split}$$

$$dF_{2} = \frac{\partial F_{2}}{\partial a_{0}} da_{0} + \frac{\partial F_{2}}{\partial a_{1}} da_{1} + \frac{\partial F_{2}}{\partial a_{2}} da_{2} + \frac{\partial F_{2}}{\partial a_{3}} da_{3} + \frac{\partial F_{2}}{\partial a_{4}} da_{4} + \frac{\partial F_{2}}{\partial a_{5}} da_{5} + \frac{\partial F_{2}}{\partial a_{6}} da_{6} + \frac{\partial F_{2}}{\partial a_{7}} da_{7} + \frac{\partial F_{2}}{\partial a_{8}} da_{8} + \frac{\partial F_{2}}{\partial a_{9}} da_{9} + \frac{\partial F_{2}}{\partial a_{10}} da_{10} + \frac{\partial F_{2}}{\partial a_{11}} da_{11} + \frac{\partial F_{2}}{\partial a_{12}} da_{12} + \frac{\partial F_{2}}{\partial a_{13}} da_{13} + \frac{\partial F_{2}}{\partial a_{14}} da_{14} + \frac{\partial F_{2}}{\partial a_{15}} da_{15} = f_{2} da_{0} + f_{3} da_{1} + f_{0} da_{2} - f_{1} da_{3} - f_{6} da_{4} - f_{7} da_{5} + f_{4} da_{6} + f_{5} da_{7} - f_{10} da_{8} - f_{11} da_{9}$$

 $+ f_8 da_{10} + f_9 da_{11} + f_{14} da_{12} + f_{15} da_{13} - f_{12} da_{14} - f_{13} da_{15},$

$$dF_{3} = \frac{\partial F_{3}}{\partial a_{0}} da_{0} + \frac{\partial F_{3}}{\partial a_{1}} da_{1} + \frac{\partial F_{3}}{\partial a_{2}} da_{2} + \frac{\partial F_{3}}{\partial a_{3}} da_{3} + \frac{\partial F_{3}}{\partial a_{4}} da_{4} + \frac{\partial F_{3}}{\partial a_{5}} da_{5} + \frac{\partial F_{3}}{\partial a_{6}} da_{6} + \frac{\partial F_{3}}{\partial a_{7}} da_{7} \\ + \frac{\partial F_{3}}{\partial a_{8}} da_{8} + \frac{\partial F_{3}}{\partial a_{9}} da_{9} + \frac{\partial F_{3}}{\partial a_{10}} da_{10} + \frac{\partial F_{3}}{\partial a_{11}} da_{11} + \frac{\partial F_{3}}{\partial a_{12}} da_{12} + \frac{\partial F_{3}}{\partial a_{13}} da_{13} + \frac{\partial F_{3}}{\partial a_{14}} da_{14} + \frac{\partial F_{3}}{\partial a_{15}} da_{15} \\ = f_{3} da_{0} - f_{2} da_{1} + f_{1} da_{2} + f_{0} da_{3} - f_{7} da_{4} + f_{6} da_{5} - f_{5} da_{6} + f_{4} da_{7} - f_{11} da_{8} + f_{10} da_{9} \\ - f_{9} da_{10} + f_{8} da_{11} + f_{15} da_{12} - f_{14} da_{13} + f_{13} da_{14} - f_{12} da_{15},$$

$$\begin{aligned} dF_4 &= \frac{\partial F_4}{\partial a_0} da_0 + \frac{\partial F_4}{\partial a_1} da_1 + \frac{\partial F_4}{\partial a_2} da_2 + \frac{\partial F_4}{\partial a_3} da_3 + \frac{\partial F_4}{\partial a_4} da_4 + \frac{\partial F_4}{\partial a_5} da_5 + \frac{\partial F_4}{\partial a_6} da_6 + \frac{\partial F_4}{\partial a_7} da_7 \\ &+ \frac{\partial F_4}{\partial a_8} da_8 + \frac{\partial F_4}{\partial a_9} da_9 + \frac{\partial F_4}{\partial a_{10}} da_{10} + \frac{\partial F_4}{\partial a_{11}} da_{11} + \frac{\partial F_4}{\partial a_{12}} da_{12} + \frac{\partial F_4}{\partial a_{13}} da_{13} + \frac{\partial F_4}{\partial a_{14}} da_{14} + \frac{\partial F_4}{\partial a_{15}} da_{15} \\ &= f_4 da_0 + f_5 da_1 + f_6 da_2 + f_7 da_3 + f_0 da_4 - f_1 da_5 - f_2 da_6 - f_3 da_7 - f_{12} da_8 - f_{13} da_9 \\ &- f_{14} da_{10} - f_{15} da_{11} + f_8 da_{12} + f_9 da_{13} + f_{10} da_{14} + f_{11} da_{15}, \end{aligned}$$

$$\begin{split} dF_5 &= \frac{\partial F_5}{\partial a_0} da_0 + \frac{\partial F_5}{\partial a_1} da_1 + \frac{\partial F_5}{\partial a_2} da_2 + \frac{\partial F_5}{\partial a_3} da_3 + \frac{\partial F_5}{\partial a_4} da_4 + \frac{\partial F_5}{\partial a_5} da_5 + \frac{\partial F_5}{\partial a_6} da_6 + \frac{\partial F_5}{\partial a_7} da_7 \\ &+ \frac{\partial F_5}{\partial a_8} da_8 + \frac{\partial F_5}{\partial a_9} da_9 + \frac{\partial F_5}{\partial a_{10}} da_{10} + \frac{\partial F_5}{\partial a_{11}} da_{11} + \frac{\partial F_5}{\partial a_{12}} da_{12} + \frac{\partial F_5}{\partial a_{13}} da_{13} + \frac{\partial F_5}{\partial a_{14}} da_{14} + \frac{\partial F_5}{\partial a_{15}} da_{15} \\ &= f_5 da_0 - f_4 da_1 + f_7 da_2 - f_6 da_3 + f_1 da_4 + f_0 da_5 + f_3 da_6 - f_2 da_7 - f_{13} da_8 + f_{12} da_9 \\ &- f_{15} da_{10} + f_{14} da_{11} - f_9 da_{12} + f_8 da_{13} - f_{11} da_{14} + f_{10} da_{15}, \end{split}$$

$$\begin{aligned} dF_6 &= \frac{\partial F_6}{\partial a_0} da_0 + \frac{\partial F_6}{\partial a_1} da_1 + \frac{\partial F_6}{\partial a_2} da_2 + \frac{\partial F_6}{\partial a_3} da_3 + \frac{\partial F_6}{\partial a_4} da_4 + \frac{\partial F_6}{\partial a_5} da_5 + \frac{\partial F_6}{\partial a_6} da_6 + \frac{\partial F_6}{\partial a_7} da_7 \\ &+ \frac{\partial F_6}{\partial a_8} da_8 + \frac{\partial F_6}{\partial a_9} da_9 + \frac{\partial F_6}{\partial a_{10}} da_{10} + \frac{\partial F_6}{\partial a_{11}} da_{11} + \frac{\partial F_6}{\partial a_{12}} da_{12} + \frac{\partial F_6}{\partial a_{13}} da_{13} + \frac{\partial F_6}{\partial a_{14}} da_{14} + \frac{\partial F_6}{\partial a_{15}} da_{15} \\ &= f_6 da_0 - f_7 da_1 - f_4 da_2 + f_5 da_3 + f_2 da_4 - f_3 da_5 + f_0 da_6 + f_1 da_7 - f_{14} da_8 + f_{15} da_9 \\ &+ f_{12} da_{10} - f_{13} da_{11} - f_{10} da_{12} + f_{11} da_{13} + f_8 da_{14} - f_9 da_{15}, \end{aligned}$$

$$dF_{7} = \frac{\partial F_{7}}{\partial a_{0}} da_{0} + \frac{\partial F_{7}}{\partial a_{1}} da_{1} + \frac{\partial F_{7}}{\partial a_{2}} da_{2} + \frac{\partial F_{7}}{\partial a_{3}} da_{3} + \frac{\partial F_{7}}{\partial a_{4}} da_{4} + \frac{\partial F_{7}}{\partial a_{5}} da_{5} + \frac{\partial F_{7}}{\partial a_{6}} da_{6} + \frac{\partial F_{7}}{\partial a_{7}} da_{7} + \frac{\partial F_{7}}{\partial a_{8}} da_{8} + \frac{\partial F_{7}}{\partial a_{9}} da_{9} + \frac{\partial F_{7}}{\partial a_{10}} da_{10} + \frac{\partial F_{7}}{\partial a_{11}} da_{11} + \frac{\partial F_{7}}{\partial a_{12}} da_{12} + \frac{\partial F_{7}}{\partial a_{13}} da_{13} + \frac{\partial F_{7}}{\partial a_{14}} da_{14} + \frac{\partial F_{7}}{\partial a_{15}} da_{15} = f_{7} da_{0} + f_{6} da_{1} - f_{5} da_{2} - f_{4} da_{3} + f_{3} da_{4} + f_{2} da_{5} - f_{1} da_{6} + f_{0} da_{7} - f_{15} da_{8} - f_{14} da_{9}$$

 $+ f_{13}da_{10} + f_{12}da_{11} - f_{11}da_{12} - f_{10}da_{13} + f_9da_{14} + f_8da_{15},$

$$dF_{8} = \frac{\partial F_{8}}{\partial a_{0}}da_{0} + \frac{\partial F_{8}}{\partial a_{1}}da_{1} + \frac{\partial F_{8}}{\partial a_{2}}da_{2} + \frac{\partial F_{8}}{\partial a_{3}}da_{3} + \frac{\partial F_{8}}{\partial a_{4}}da_{4} + \frac{\partial F_{8}}{\partial a_{5}}da_{5} + \frac{\partial F_{8}}{\partial a_{6}}da_{6} + \frac{\partial F_{8}}{\partial a_{7}}da_{7} + \frac{\partial F_{8}}{\partial a_{8}}da_{8} + \frac{\partial F_{8}}{\partial a_{9}}da_{9} + \frac{\partial F_{8}}{\partial a_{10}}da_{10} + \frac{\partial F_{8}}{\partial a_{11}}da_{11} + \frac{\partial F_{8}}{\partial a_{12}}da_{12} + \frac{\partial F_{8}}{\partial a_{13}}da_{13} + \frac{\partial F_{8}}{\partial a_{14}}da_{14} + \frac{\partial F_{8}}{\partial a_{15}}da_{15} = f_{8}da_{0} + f_{9}da_{1} + f_{10}da_{2} + f_{11}da_{3} + f_{12}da_{4} + f_{13}da_{5} + f_{14}da_{6} + f_{15}da_{7} + f_{0}da_{8} - f_{1}da_{9} - f_{2}da_{10} - f_{3}da_{11} - f_{4}da_{12} - f_{5}da_{13} - f_{6}da_{14} - f_{7}da_{15},$$

$$dF_{9} = \frac{\partial F_{9}}{\partial a_{0}} da_{0} + \frac{\partial F_{9}}{\partial a_{1}} da_{1} + \frac{\partial F_{9}}{\partial a_{2}} da_{2} + \frac{\partial F_{9}}{\partial a_{3}} da_{3} + \frac{\partial F_{9}}{\partial a_{4}} da_{4} + \frac{\partial F_{9}}{\partial a_{5}} da_{5} + \frac{\partial F_{9}}{\partial a_{6}} da_{6} + \frac{\partial F_{9}}{\partial a_{7}} da_{7} \\ + \frac{\partial F_{9}}{\partial a_{8}} da_{8} + \frac{\partial F_{9}}{\partial a_{9}} da_{9} + \frac{\partial F_{9}}{\partial a_{10}} da_{10} + \frac{\partial F_{9}}{\partial a_{11}} da_{11} + \frac{\partial F_{9}}{\partial a_{12}} da_{12} + \frac{\partial F_{9}}{\partial a_{13}} da_{13} + \frac{\partial F_{9}}{\partial a_{14}} da_{14} + \frac{\partial F_{9}}{\partial a_{15}} da_{15} \\ = f_{9} da_{0} - f_{8} da_{1} + f_{11} da_{2} - f_{10} da_{3} + f_{13} da_{4} - f_{12} da_{5} - f_{15} da_{6} + f_{14} da_{7} + f_{1} da_{8} + f_{0} da_{9} \\ + f_{3} da_{10} - f_{2} da_{11} + f_{5} da_{12} - f_{4} da_{13} - f_{7} da_{14} + f_{6} da_{15},$$

$$dF_{10} = \frac{\partial F_{10}}{\partial a_0} da_0 + \frac{\partial F_{10}}{\partial a_1} da_1 + \frac{\partial F_{10}}{\partial a_2} da_2 + \frac{\partial F_{10}}{\partial a_3} da_3 + \frac{\partial F_{10}}{\partial a_4} da_4 + \frac{\partial F_{10}}{\partial a_5} da_5 + \frac{\partial F_{10}}{\partial a_6} da_6 + \frac{\partial F_{10}}{\partial a_7} da_7 \\ + \frac{\partial F_{10}}{\partial a_8} da_8 + \frac{\partial F_{10}}{\partial a_9} da_9 + \frac{\partial F_{10}}{\partial a_{10}} da_{10} + \frac{\partial F_{10}}{\partial a_{11}} da_{11} + \frac{\partial F_{10}}{\partial a_{12}} da_{12} + \frac{\partial F_{10}}{\partial a_{13}} da_{13} + \frac{\partial F_{10}}{\partial a_{14}} da_{14} + \frac{\partial F_{10}}{\partial a_{15}} da_{15} \\ = f_{10} da_0 - f_{11} da_1 - f_8 da_2 + f_9 da_3 + f_{14} da_4 + f_{15} da_5 - f_{12} da_6 - f_{13} da_7 + f_2 da_8 - f_3 da_9 \\ + f_0 da_{10} + f_1 da_{11} + f_6 da_{12} + f_7 da_{13} - f_4 da_{14} - f_5 da_{15},$$

$$dF_{11} = \frac{\partial F_{11}}{\partial a_0} da_0 + \frac{\partial F_{11}}{\partial a_1} da_1 + \frac{\partial F_{11}}{\partial a_2} da_2 + \frac{\partial F_{11}}{\partial a_3} da_3 + \frac{\partial F_{11}}{\partial a_4} da_4 + \frac{\partial F_{11}}{\partial a_5} da_5 + \frac{\partial F_{11}}{\partial a_6} da_6 + \frac{\partial F_{11}}{\partial a_7} da_7 \\ + \frac{\partial F_{11}}{\partial a_8} da_8 + \frac{\partial F_{11}}{\partial a_9} da_9 + \frac{\partial F_{11}}{\partial a_{10}} da_{10} + \frac{\partial F_{11}}{\partial a_{11}} da_{11} + \frac{\partial F_{11}}{\partial a_{12}} da_{12} + \frac{\partial F_{11}}{\partial a_{13}} da_{13} + \frac{\partial F_{11}}{\partial a_{14}} da_{14} + \frac{\partial F_{11}}{\partial a_{15}} da_{15} \\ = f_{11} da_0 + f_{10} da_1 - f_{9} da_2 - f_8 da_3 + f_{15} da_4 - f_{14} da_5 + f_{13} da_6 - f_{12} da_7 + f_3 da_8 + f_2 da_9 \\ - f_{1} da_{10} + f_{0} da_{11} + f_7 da_{12} - f_6 da_{13} + f_5 da_{14} - f_4 da_{15},$$

$$dF_{12} = \frac{\partial F_{12}}{\partial a_0} da_0 + \frac{\partial F_{12}}{\partial a_1} da_1 + \frac{\partial F_{12}}{\partial a_2} da_2 + \frac{\partial F_{12}}{\partial a_3} da_3 + \frac{\partial F_{12}}{\partial a_4} da_4 + \frac{\partial F_{12}}{\partial a_5} da_5 + \frac{\partial F_{12}}{\partial a_6} da_6 + \frac{\partial F_{12}}{\partial a_7} da_7 \\ + \frac{\partial F_{12}}{\partial a_8} da_8 + \frac{\partial F_{12}}{\partial a_9} da_9 + \frac{\partial F_{12}}{\partial a_{10}} da_{10} + \frac{\partial F_{12}}{\partial a_{11}} da_{11} + \frac{\partial F_{12}}{\partial a_{12}} da_{12} + \frac{\partial F_{12}}{\partial a_{13}} da_{13} + \frac{\partial F_{12}}{\partial a_{14}} da_{14} + \frac{\partial F_{12}}{\partial a_{15}} da_{15} \\ = f_{12} da_0 - f_{13} da_1 - f_{14} da_2 - f_{15} da_3 - f_8 da_4 + f_9 da_5 + f_{10} da_6 + f_{11} da_7 + f_4 da_8 - f_5 da_9 \\ - f_6 da_{10} - f_7 da_{11} + f_0 da_{12} + f_1 da_{13} + f_2 da_{14} + f_3 da_{15},$$

$$dF_{13} = \frac{\partial F_{13}}{\partial a_0} da_0 + \frac{\partial F_{13}}{\partial a_1} da_1 + \frac{\partial F_{13}}{\partial a_2} da_2 + \frac{\partial F_{13}}{\partial a_3} da_3 + \frac{\partial F_{13}}{\partial a_4} da_4 + \frac{\partial F_{13}}{\partial a_5} da_5 + \frac{\partial F_{13}}{\partial a_6} da_6 + \frac{\partial F_{13}}{\partial a_7} da_7 \\ + \frac{\partial F_{13}}{\partial a_8} da_8 + \frac{\partial F_{13}}{\partial a_9} da_9 + \frac{\partial F_{13}}{\partial a_{10}} da_{10} + \frac{\partial F_{13}}{\partial a_{11}} da_{11} + \frac{\partial F_{13}}{\partial a_{12}} da_{12} + \frac{\partial F_{13}}{\partial a_{13}} da_{13} + \frac{\partial F_{13}}{\partial a_{14}} da_{14} + \frac{\partial F_{13}}{\partial a_{15}} da_{15} \\ = f_{13} da_0 + f_{12} da_1 - f_{15} da_2 + f_{14} da_3 - f_{9} da_4 - f_8 da_5 - f_{11} da_6 + f_{10} da_7 + f_5 da_8 + f_4 da_9 \\ - f_7 da_{10} + f_6 da_{11} - f_1 da_{12} + f_0 da_{13} - f_3 da_{14} + f_2 da_{15},$$

$$\begin{split} dF_{14} &= \frac{\partial F_{14}}{\partial a_0} da_0 + \frac{\partial F_{14}}{\partial a_1} da_1 + \frac{\partial F_{14}}{\partial a_2} da_2 + \frac{\partial F_{14}}{\partial a_3} da_3 + \frac{\partial F_{14}}{\partial a_4} da_4 + \frac{\partial F_{14}}{\partial a_5} da_5 + \frac{\partial F_{14}}{\partial a_6} da_6 + \frac{\partial F_{14}}{\partial a_7} da_7 \\ &+ \frac{\partial F_{14}}{\partial a_8} da_8 + \frac{\partial F_{14}}{\partial a_9} da_9 + \frac{\partial F_{14}}{\partial a_{10}} da_{10} + \frac{\partial F_{14}}{\partial a_{11}} da_{11} + \frac{\partial F_{14}}{\partial a_{12}} da_{12} + \frac{\partial F_{14}}{\partial a_{13}} da_{13} + \frac{\partial F_{14}}{\partial a_{14}} da_{14} + \frac{\partial F_{14}}{\partial a_{15}} da_{15} \\ &= f_{14} da_0 + f_{15} da_1 + f_{12} da_2 - f_{13} da_3 - f_{10} da_4 + f_{11} da_5 - f_8 da_6 - f_9 da_7 + f_6 da_8 + f_7 da_9 \\ &+ f_4 da_{10} - f_5 da_{11} - f_2 da_{12} + f_3 da_{13} + f_0 da_{14} - f_1 da_{15}, \end{split}$$

$$dF_{15} = \frac{\partial F_{15}}{\partial a_0} da_0 + \frac{\partial F_{15}}{\partial a_1} da_1 + \frac{\partial F_{15}}{\partial a_2} da_2 + \frac{\partial F_{15}}{\partial a_3} da_3 + \frac{\partial F_{15}}{\partial a_4} da_4 + \frac{\partial F_{15}}{\partial a_5} da_5 + \frac{\partial F_{15}}{\partial a_6} da_6 + \frac{\partial F_{15}}{\partial a_7} da_7 \\ + \frac{\partial F_{15}}{\partial a_8} da_8 + \frac{\partial F_{15}}{\partial a_9} da_9 + \frac{\partial F_{15}}{\partial a_{10}} da_{10} + \frac{\partial F_{15}}{\partial a_{11}} da_{11} + \frac{\partial F_{15}}{\partial a_{12}} da_{12} + \frac{\partial F_{15}}{\partial a_{13}} da_{13} + \frac{\partial F_{15}}{\partial a_{14}} da_{14} + \frac{\partial F_{15}}{\partial a_{15}} da_{15} \\ = f_{15} da_0 - f_{14} da_1 + f_{13} da_2 + f_{12} da_3 - f_{11} da_4 - f_{10} da_5 + f_{9} da_6 - f_8 da_7 + f_7 da_8 - f_6 da_9 \\ + f_5 da_{10} + f_4 da_{11} - f_3 da_{12} - f_2 da_{13} + f_1 da_{14} + f_0 da_{15} \end{cases}$$

o que nos dá,

$$\begin{aligned} f_0 &= \frac{\partial F_0}{\partial a_0} = \frac{\partial F_1}{\partial a_1} = \frac{\partial F_2}{\partial a_2} = \frac{\partial F_3}{\partial a_3} = \frac{\partial F_4}{\partial a_4} = \frac{\partial F_5}{\partial a_5} = \frac{\partial F_6}{\partial a_6} = \frac{\partial F_7}{\partial a_7} = \frac{\partial F_8}{\partial a_8} \\ &= \frac{\partial F_9}{\partial a_9} = \frac{\partial F_{10}}{\partial a_{10}} = \frac{\partial F_{11}}{\partial a_{11}} = \frac{\partial F_{12}}{\partial a_{12}} = \frac{\partial F_{13}}{\partial a_{13}} = \frac{\partial F_{14}}{\partial a_{14}} = \frac{\partial F_{15}}{\partial a_{15}}, \end{aligned}$$

$$f_1 = \frac{\partial F_1}{\partial a_0} = -\frac{\partial F_0}{\partial a_1} = \frac{\partial F_3}{\partial a_2} = -\frac{\partial F_2}{\partial a_3} = \frac{\partial F_5}{\partial a_4} = -\frac{\partial F_4}{\partial a_5} = -\frac{\partial F_7}{\partial a_6} = \frac{\partial F_6}{\partial a_7} = \frac{\partial F_9}{\partial a_8}$$
$$= -\frac{\partial F_8}{\partial a_9} = -\frac{\partial F_{11}}{\partial a_{10}} = \frac{\partial F_{10}}{\partial a_{11}} = -\frac{\partial F_{13}}{\partial a_{12}} = \frac{\partial F_{12}}{\partial a_{13}} = \frac{\partial F_{15}}{\partial a_{14}} = -\frac{\partial F_{14}}{\partial a_{15}},$$

$$\begin{aligned} f_2 &= \frac{\partial F_2}{\partial a_0} = -\frac{\partial F_3}{\partial a_1} = -\frac{\partial F_0}{\partial a_2} = \frac{\partial F_1}{\partial a_3} = \frac{\partial F_6}{\partial a_4} = \frac{\partial F_7}{\partial a_5} = -\frac{\partial F_4}{\partial a_6} = -\frac{\partial F_5}{\partial a_7} = \frac{\partial F_{10}}{\partial a_8} \\ &= \frac{\partial F_{11}}{\partial a_9} = -\frac{\partial F_8}{\partial a_{10}} = -\frac{\partial F_9}{\partial a_{11}} = -\frac{\partial F_{14}}{\partial a_{12}} = -\frac{\partial F_{15}}{\partial a_{13}} = \frac{\partial F_{12}}{\partial a_{14}} = \frac{\partial F_{13}}{\partial a_{15}}, \end{aligned}$$

$$f_3 = \frac{\partial F_3}{\partial a_0} = \frac{\partial F_2}{\partial a_1} = -\frac{\partial F_1}{\partial a_2} = -\frac{\partial F_0}{\partial a_3} = \frac{\partial F_7}{\partial a_4} = -\frac{\partial F_6}{\partial a_5} = \frac{\partial F_5}{\partial a_6} = -\frac{\partial F_4}{\partial a_7} = \frac{\partial F_{11}}{\partial a_8}$$
$$= -\frac{\partial F_{10}}{\partial a_9} = \frac{\partial F_9}{\partial a_{10}} = -\frac{\partial F_8}{\partial a_{11}} = -\frac{\partial F_{15}}{\partial a_{12}} = \frac{\partial F_{14}}{\partial a_{13}} = -\frac{\partial F_{13}}{\partial a_{14}} = \frac{\partial F_{12}}{\partial a_{15}},$$

$$f_4 = \frac{\partial F_4}{\partial a_0} = -\frac{\partial F_5}{\partial a_1} = -\frac{\partial F_6}{\partial a_2} = -\frac{\partial F_7}{\partial a_3} = -\frac{\partial F_0}{\partial a_4} = \frac{\partial F_1}{\partial a_5} = \frac{\partial F_2}{\partial a_6} = \frac{\partial F_3}{\partial a_7} = \frac{\partial F_{12}}{\partial a_8}$$
$$= \frac{\partial F_{13}}{\partial a_9} = \frac{\partial F_{14}}{\partial a_{10}} = \frac{\partial F_{15}}{\partial a_{11}} = -\frac{\partial F_8}{\partial a_{12}} = -\frac{\partial F_9}{\partial a_{13}} = -\frac{\partial F_{10}}{\partial a_{14}} = -\frac{\partial F_{11}}{\partial a_{15}},$$

$$f_5 = \frac{\partial F_5}{\partial a_0} = \frac{\partial F_4}{\partial a_1} = -\frac{\partial F_7}{\partial a_2} = \frac{\partial F_6}{\partial a_3} = -\frac{\partial F_1}{\partial a_4} = -\frac{\partial F_0}{\partial a_5} = -\frac{\partial F_3}{\partial a_6} = \frac{\partial F_2}{\partial a_7} = \frac{\partial F_{13}}{\partial a_8}$$
$$= -\frac{\partial F_{12}}{\partial a_9} = \frac{\partial F_{15}}{\partial a_{10}} = -\frac{\partial F_{14}}{\partial a_{11}} = \frac{\partial F_9}{\partial a_{12}} = -\frac{\partial F_8}{\partial a_{13}} = \frac{\partial F_{11}}{\partial a_{14}} = -\frac{\partial F_{10}}{\partial a_{15}},$$

$$f_{6} = \frac{\partial F_{6}}{\partial a_{0}} = \frac{\partial F_{7}}{\partial a_{1}} = \frac{\partial F_{4}}{\partial a_{2}} = -\frac{\partial F_{5}}{\partial a_{3}} = -\frac{\partial F_{2}}{\partial a_{4}} = \frac{\partial F_{3}}{\partial a_{5}} = -\frac{\partial F_{0}}{\partial a_{6}} = -\frac{\partial F_{1}}{\partial a_{7}} = \frac{\partial F_{14}}{\partial a_{8}} = -\frac{\partial F_{15}}{\partial a_{9}} = -\frac{\partial F_{12}}{\partial a_{10}} = \frac{\partial F_{13}}{\partial a_{11}} = \frac{\partial F_{10}}{\partial a_{12}} = -\frac{\partial F_{11}}{\partial a_{13}} = -\frac{\partial F_{8}}{\partial a_{14}} = \frac{\partial F_{9}}{\partial a_{15}},$$

$$f_7 = \frac{\partial F_7}{\partial a_0} = -\frac{\partial F_6}{\partial a_1} = \frac{\partial F_5}{\partial a_2} = \frac{\partial F_4}{\partial a_3} = -\frac{\partial F_3}{\partial a_4} = -\frac{\partial F_2}{\partial a_5} = \frac{\partial F_1}{\partial a_6} = -\frac{\partial F_0}{\partial a_7} = \frac{\partial F_{15}}{\partial a_8}$$
$$= \frac{\partial F_{14}}{\partial a_9} = -\frac{\partial F_{13}}{\partial a_{10}} = -\frac{\partial F_{12}}{\partial a_{11}} = \frac{\partial F_{11}}{\partial a_{12}} = \frac{\partial F_{10}}{\partial a_{13}} = -\frac{\partial F_9}{\partial a_{14}} = -\frac{\partial F_8}{\partial a_{15}},$$

$$f_8 = \frac{\partial F_8}{\partial a_0} = -\frac{\partial F_9}{\partial a_1} = -\frac{\partial F_{10}}{\partial a_2} = -\frac{\partial F_{11}}{\partial a_3} = -\frac{\partial F_{12}}{\partial a_4} = -\frac{\partial F_{13}}{\partial a_5} = -\frac{\partial F_{14}}{\partial a_6} = -\frac{\partial F_{15}}{\partial a_7}$$
$$= -\frac{\partial F_0}{\partial a_8} = \frac{\partial F_1}{\partial a_9} = \frac{\partial F_2}{\partial a_{10}} = \frac{\partial F_3}{\partial a_{11}} = \frac{\partial F_4}{\partial a_{12}} = \frac{\partial F_5}{\partial a_{13}} = \frac{\partial F_6}{\partial a_{14}} = \frac{\partial F_7}{\partial a_{15}},$$

$$f_9 = \frac{\partial F_9}{\partial a_0} = \frac{\partial F_8}{\partial a_1} = -\frac{\partial F_{11}}{\partial a_2} = \frac{\partial F_{10}}{\partial a_3} = -\frac{\partial F_{13}}{\partial a_4} = \frac{\partial F_{12}}{\partial a_5} = \frac{\partial F_{15}}{\partial a_6} = -\frac{\partial F_{14}}{\partial a_7} = -\frac{\partial F_1}{\partial a_8}$$
$$= -\frac{\partial F_0}{\partial a_9} = -\frac{\partial F_3}{\partial a_{10}} = \frac{\partial F_2}{\partial a_{11}} = -\frac{\partial F_5}{\partial a_{12}} = \frac{\partial F_4}{\partial a_{13}} = \frac{\partial F_7}{\partial a_{14}} = -\frac{\partial F_6}{\partial a_{15}}$$

$$f_{10} = \frac{\partial F_{10}}{\partial a_0} = \frac{\partial F_{11}}{\partial a_1} = \frac{\partial F_8}{\partial a_2} = -\frac{\partial F_9}{\partial a_3} = -\frac{\partial F_{14}}{\partial a_4} = -\frac{\partial F_{15}}{\partial a_5} = \frac{\partial F_{12}}{\partial a_6} = \frac{\partial F_{13}}{\partial a_7} = -\frac{\partial F_2}{\partial a_8}$$
$$= \frac{\partial F_3}{\partial a_9} = -\frac{\partial F_0}{\partial a_{10}} = -\frac{\partial F_1}{\partial a_{11}} = -\frac{\partial F_6}{\partial a_{12}} = -\frac{\partial F_7}{\partial a_{13}} = \frac{\partial F_4}{\partial a_{14}} = \frac{\partial F_5}{\partial a_{15}}$$

$$f_{11} = \frac{\partial F_{11}}{\partial a_0} = -\frac{\partial F_{10}}{\partial a_1} = \frac{\partial F_9}{\partial a_2} = \frac{\partial F_8}{\partial a_3} = -\frac{\partial F_{15}}{\partial a_4} = \frac{\partial F_{14}}{\partial a_5} = -\frac{\partial F_{13}}{\partial a_6} = \frac{\partial F_{12}}{\partial a_7} = -\frac{\partial F_3}{\partial a_8} = -\frac{\partial F_2}{\partial a_9} = \frac{\partial F_1}{\partial a_{10}} = -\frac{\partial F_0}{\partial a_{11}} = -\frac{\partial F_7}{\partial a_{12}} = \frac{\partial F_6}{\partial a_{13}} = -\frac{\partial F_5}{\partial a_{14}} = \frac{\partial F_4}{\partial a_{15}},$$

$$f_{12} = \frac{\partial F_{12}}{\partial a_0} = \frac{\partial F_{13}}{\partial a_1} = \frac{\partial F_{14}}{\partial a_2} = \frac{\partial F_{15}}{\partial a_3} = \frac{\partial F_8}{\partial a_4} = -\frac{\partial F_9}{\partial a_5} = -\frac{\partial F_{10}}{\partial a_6} = -\frac{\partial F_{11}}{\partial a_7} = -\frac{\partial F_4}{\partial a_8}$$
$$= \frac{\partial F_5}{\partial a_9} = \frac{\partial F_6}{\partial a_{10}} = \frac{\partial F_7}{\partial a_{11}} = -\frac{\partial F_0}{\partial a_{12}} = -\frac{\partial F_1}{\partial a_{13}} = -\frac{\partial F_2}{\partial a_{14}} = -\frac{\partial F_3}{\partial a_{15}},$$

$$f_{13} = \frac{\partial F_{13}}{\partial a_0} = -\frac{\partial F_{12}}{\partial a_1} = \frac{\partial F_{15}}{\partial a_2} = -\frac{\partial F_{14}}{\partial a_3} = \frac{\partial F_9}{\partial a_4} = \frac{\partial F_8}{\partial a_5} = \frac{\partial F_{11}}{\partial a_6} = -\frac{\partial F_{10}}{\partial a_7} = -\frac{\partial F_5}{\partial a_8} = -\frac{\partial F_4}{\partial a_9} = \frac{\partial F_7}{\partial a_{10}} = -\frac{\partial F_6}{\partial a_{11}} = \frac{\partial F_1}{\partial a_{12}} = -\frac{\partial F_0}{\partial a_{13}} = \frac{\partial F_3}{\partial a_{14}} = -\frac{\partial F_2}{\partial a_{15}},$$

$$f_{14} = \frac{\partial F_{14}}{\partial a_0} = -\frac{\partial F_{15}}{\partial a_1} = -\frac{\partial F_{12}}{\partial a_2} = \frac{\partial F_{13}}{\partial a_3} = \frac{\partial F_{10}}{\partial a_4} = -\frac{\partial F_{11}}{\partial a_5} = \frac{\partial F_8}{\partial a_6} = \frac{\partial F_9}{\partial a_7} = -\frac{\partial F_6}{\partial a_8} = -\frac{\partial F_7}{\partial a_9} = -\frac{\partial F_4}{\partial a_{10}} = \frac{\partial F_5}{\partial a_{11}} = \frac{\partial F_2}{\partial a_{12}} = -\frac{\partial F_3}{\partial a_{13}} = -\frac{\partial F_0}{\partial a_{14}} = \frac{\partial F_1}{\partial a_{15}},$$

$$f_{15} = \frac{\partial F_{15}}{\partial a_0} = \frac{\partial F_{14}}{\partial a_1} = -\frac{\partial F_{13}}{\partial a_2} = -\frac{\partial F_{12}}{\partial a_3} = \frac{\partial F_{11}}{\partial a_4} = \frac{\partial F_{10}}{\partial a_5} = -\frac{\partial F_9}{\partial a_6} = \frac{\partial F_8}{\partial a_7} = -\frac{\partial F_7}{\partial a_8}$$
$$= \frac{\partial F_6}{\partial a_9} = -\frac{\partial F_5}{\partial a_{10}} = -\frac{\partial F_4}{\partial a_{11}} = \frac{\partial F_3}{\partial a_{12}} = \frac{\partial F_2}{\partial a_{13}} = -\frac{\partial F_1}{\partial a_{14}} = -\frac{\partial F_0}{\partial a_{15}}$$

Teorema 4.6 Para todo par de pontos x e y, e qualquer caminho ligando-os em um espaço simplesmente conexo 16-dimensional, a integral $\int_x^y dz f$ independe do caminho dado se, esomente se, existe uma função $G = G_0 + G_1 \mathbf{i} + G_2 \mathbf{j} + G_3 \mathbf{k} + G_4 \mathbf{e}' + G_5 \mathbf{i}' + G_6 \mathbf{j}' + G_7 \mathbf{k}' + G_8 \mathbf{e}'' + G_9 \mathbf{i}'' + G_{10} \mathbf{j}'' + G_{11} \mathbf{k}'' + G_{12} \mathbf{e}''' + G_{13} \mathbf{i}''' + G_{14} \mathbf{j}''' + G_{15} \mathbf{k}''' \operatorname{com} \int_x^y dz f = G(y) - G(x)$ e que satisfaz as seguintes condições:

$$\frac{\partial G_0}{\partial a_0} = \frac{\partial G_1}{\partial a_1} = \frac{\partial G_2}{\partial a_2} = \frac{\partial G_3}{\partial a_3} = \frac{\partial G_4}{\partial a_4} = \frac{\partial G_5}{\partial a_5} = \frac{\partial G_6}{\partial a_6} = \frac{\partial G_7}{\partial a_7} = \frac{\partial G_8}{\partial a_8}$$
$$= \frac{\partial G_9}{\partial a_9} = \frac{\partial G_{10}}{\partial a_{10}} = \frac{\partial G_{11}}{\partial a_{11}} = \frac{\partial G_{12}}{\partial a_{12}} = \frac{\partial G_{13}}{\partial a_{13}} = \frac{\partial G_{14}}{\partial a_{14}} = \frac{\partial G_{15}}{\partial a_{15}}, \quad (4.24)$$

$$\frac{\partial G_1}{\partial a_0} = -\frac{\partial G_0}{\partial a_1} = -\frac{\partial G_3}{\partial a_2} = \frac{\partial G_2}{\partial a_3} = -\frac{\partial G_5}{\partial a_4} = \frac{\partial G_4}{\partial a_5} = \frac{\partial G_7}{\partial a_6} = -\frac{\partial G_6}{\partial a_7} = -\frac{\partial G_9}{\partial a_8}$$
$$= \frac{\partial G_8}{\partial a_9} = \frac{\partial G_{11}}{\partial a_{10}} = -\frac{\partial G_{10}}{\partial a_{11}} = \frac{\partial G_{13}}{\partial a_{12}} = -\frac{\partial G_{12}}{\partial a_{13}} = -\frac{\partial G_{15}}{\partial a_{14}} = \frac{\partial G_{14}}{\partial a_{15}}, \qquad (4.25)$$

$$\frac{\partial G_2}{\partial a_0} = \frac{\partial G_3}{\partial a_1} = -\frac{\partial G_0}{\partial a_2} = -\frac{\partial G_1}{\partial a_3} = -\frac{\partial G_6}{\partial a_4} = -\frac{\partial G_7}{\partial a_5} = \frac{\partial G_4}{\partial a_6} = \frac{\partial G_5}{\partial a_7} = \frac{\partial G_{10}}{\partial a_8}$$
$$= -\frac{\partial G_{11}}{\partial a_9} = \frac{\partial G_8}{\partial a_{10}} = \frac{\partial G_9}{\partial a_{11}} = \frac{\partial G_{14}}{\partial a_{12}} = \frac{\partial G_{15}}{\partial a_{13}} = -\frac{\partial G_{12}}{\partial a_{14}} = -\frac{\partial G_{13}}{\partial a_{15}}, \quad (4.26)$$

$$\frac{\partial G_3}{\partial a_0} = -\frac{\partial G_2}{\partial a_1} = \frac{\partial G_1}{\partial a_2} = -\frac{\partial G_0}{\partial a_3} = -\frac{\partial G_7}{\partial a_4} = \frac{\partial G_6}{\partial a_5} = -\frac{\partial G_5}{\partial a_6} = \frac{\partial G_4}{\partial a_7} = -\frac{\partial G_{11}}{\partial a_8}$$
$$= \frac{\partial G_{10}}{\partial a_9} = -\frac{\partial G_9}{\partial a_{10}} = \frac{\partial G_8}{\partial a_{11}} = \frac{\partial G_{15}}{\partial a_{12}} = -\frac{\partial G_{14}}{\partial a_{13}} = \frac{\partial G_{13}}{\partial a_{14}} = -\frac{\partial G_{12}}{\partial a_{15}}, \quad (4.27)$$

$$\frac{\partial G_4}{\partial a_0} = \frac{\partial G_5}{\partial a_1} = \frac{\partial G_6}{\partial a_2} = \frac{\partial G_7}{\partial a_3} = -\frac{\partial G_0}{\partial a_4} = -\frac{\partial G_1}{\partial a_5} = -\frac{\partial G_2}{\partial a_6} = -\frac{\partial G_3}{\partial a_7} = -\frac{\partial G_{12}}{\partial a_8}$$
$$= -\frac{\partial G_{13}}{\partial a_9} = -\frac{\partial G_{14}}{\partial a_{10}} = -\frac{\partial G_{15}}{\partial a_{11}} = \frac{\partial G_8}{\partial a_{12}} = \frac{\partial G_9}{\partial a_{13}} = \frac{\partial G_{10}}{\partial a_{14}} = \frac{\partial G_{11}}{\partial a_{15}}, \quad (4.28)$$

$$\frac{\partial G_5}{\partial a_0} = -\frac{\partial G_4}{\partial a_1} = \frac{\partial G_7}{\partial a_2} = -\frac{\partial G_6}{\partial a_3} = \frac{\partial G_1}{\partial a_4} = -\frac{\partial G_0}{\partial a_5} = \frac{\partial G_3}{\partial a_6} = -\frac{\partial G_2}{\partial a_7} = -\frac{\partial G_{13}}{\partial a_8}$$
$$= \frac{\partial G_{12}}{\partial a_9} = -\frac{\partial G_{15}}{\partial a_{10}} = \frac{\partial G_{14}}{\partial a_{11}} = -\frac{\partial G_9}{\partial a_{12}} = \frac{\partial G_8}{\partial a_{13}} = -\frac{\partial G_{11}}{\partial a_{14}} = \frac{\partial G_{10}}{\partial a_{15}}, \quad (4.29)$$

$$\frac{\partial G_6}{\partial a_0} = -\frac{\partial G_7}{\partial a_1} = -\frac{\partial G_4}{\partial a_2} = \frac{\partial G_5}{\partial a_3} = \frac{\partial G_2}{\partial a_4} = -\frac{\partial G_3}{\partial a_5} = -\frac{\partial G_0}{\partial a_6} = \frac{\partial G_1}{\partial a_7} = -\frac{\partial G_{14}}{\partial a_8}$$
$$= \frac{\partial G_{15}}{\partial a_9} = \frac{\partial G_{12}}{\partial a_{10}} = -\frac{\partial G_{13}}{\partial a_{11}} = -\frac{\partial G_{10}}{\partial a_{12}} = \frac{\partial G_{11}}{\partial a_{13}} = \frac{\partial G_8}{\partial a_{14}} = -\frac{\partial G_9}{\partial a_{15}}, \quad (4.30)$$

$$\frac{\partial G_7}{\partial a_0} = \frac{\partial G_6}{\partial a_1} = -\frac{\partial G_5}{\partial a_2} = -\frac{\partial G_4}{\partial a_3} = \frac{\partial G_3}{\partial a_4} = \frac{\partial G_2}{\partial a_5} = -\frac{\partial G_1}{\partial a_6} = -\frac{\partial G_0}{\partial a_7} = -\frac{\partial G_{15}}{\partial a_8}$$
$$= -\frac{\partial G_{14}}{\partial a_9} = \frac{\partial G_{13}}{\partial a_{10}} = \frac{\partial G_{12}}{\partial a_{11}} = -\frac{\partial G_{11}}{\partial a_{12}} = -\frac{\partial G_{10}}{\partial a_{13}} = \frac{\partial G_9}{\partial a_{14}} = \frac{\partial G_8}{\partial a_{15}}, \quad (4.31)$$

$$\frac{\partial G_8}{\partial a_0} = \frac{\partial G_9}{\partial a_1} = \frac{\partial G_{10}}{\partial a_2} = \frac{\partial G_{11}}{\partial a_3} = \frac{\partial G_{12}}{\partial a_4} = \frac{\partial G_{13}}{\partial a_5} = \frac{\partial G_{14}}{\partial a_6} = \frac{\partial G_{15}}{\partial a_7} = -\frac{\partial G_0}{\partial a_8}$$
$$= -\frac{\partial G_1}{\partial a_9} = -\frac{\partial G_2}{\partial a_{10}} = -\frac{\partial G_3}{\partial a_{11}} = -\frac{\partial G_4}{\partial a_{12}} = -\frac{\partial G_5}{\partial a_{13}} = -\frac{\partial G_6}{\partial a_{14}} = -\frac{\partial G_7}{\partial a_{15}}, \quad (4.32)$$

$$\frac{\partial G_9}{\partial a_0} = -\frac{\partial G_8}{\partial a_1} = \frac{\partial G_{11}}{\partial a_2} = -\frac{\partial G_{10}}{\partial a_3} = \frac{\partial G_{13}}{\partial a_4} = -\frac{\partial G_{12}}{\partial a_5} = -\frac{\partial G_{15}}{\partial a_6} = \frac{\partial G_{14}}{\partial a_7} = \frac{\partial G_1}{\partial a_8}$$
$$= -\frac{\partial G_0}{\partial a_9} = \frac{\partial G_3}{\partial a_{10}} = -\frac{\partial G_2}{\partial a_{11}} = \frac{\partial G_5}{\partial a_{12}} = -\frac{\partial G_4}{\partial a_{13}} = -\frac{\partial G_7}{\partial a_{14}} = \frac{\partial G_6}{\partial a_{15}}$$
(4.33)

$$\frac{\partial G_{10}}{\partial a_0} = -\frac{\partial G_{11}}{\partial a_1} = -\frac{\partial G_8}{\partial a_2} = \frac{\partial G_9}{\partial a_3} = \frac{\partial G_{14}}{\partial a_4} = \frac{\partial G_{15}}{\partial a_5} = -\frac{\partial G_{12}}{\partial a_6} = -\frac{\partial G_{13}}{\partial a_7} = \frac{\partial G_2}{\partial a_8}$$
$$= -\frac{\partial G_3}{\partial a_9} = -\frac{\partial G_0}{\partial a_{10}} = \frac{\partial G_1}{\partial a_{11}} = \frac{\partial G_6}{\partial a_{12}} = \frac{\partial G_7}{\partial a_{13}} = -\frac{\partial G_4}{\partial a_{14}} = -\frac{\partial G_5}{\partial a_{15}}$$
(4.34)

$$\frac{\partial G_{11}}{\partial a_0} = \frac{\partial G_{10}}{\partial a_1} = -\frac{\partial G_9}{\partial a_2} = -\frac{\partial G_8}{\partial a_3} = \frac{\partial G_{15}}{\partial a_4} = -\frac{\partial G_{14}}{\partial a_5} = \frac{\partial G_{13}}{\partial a_6} = -\frac{\partial G_{12}}{\partial a_7} = \frac{\partial G_3}{\partial a_8}$$
$$= \frac{\partial G_2}{a_9} = -\frac{\partial G_1}{\partial a_{10}} = -\frac{\partial G_0}{\partial a_{11}} = \frac{\partial G_7}{\partial a_{12}} = -\frac{\partial G_6}{\partial a_{13}} = \frac{\partial G_5}{\partial a_{14}} = -\frac{\partial G_4}{\partial a_{15}}, \quad (4.35)$$

$$\frac{\partial G_{12}}{\partial a_0} = -\frac{\partial G_{13}}{\partial a_1} = -\frac{\partial G_{14}}{\partial a_2} = -\frac{\partial G_{15}}{\partial a_3} = -\frac{\partial G_8}{\partial a_4} = \frac{\partial G_9}{\partial a_5} = \frac{\partial G_{10}}{\partial a_6} = \frac{\partial G_{11}}{\partial a_7} = \frac{\partial G_4}{\partial a_8}$$
$$= -\frac{\partial G_5}{\partial a_9} = -\frac{\partial G_6}{\partial a_{10}} = -\frac{\partial G_7}{\partial a_{11}} = -\frac{\partial G_0}{\partial a_{12}} = \frac{\partial G_1}{\partial a_{13}} = \frac{\partial G_2}{\partial a_{14}} = \frac{\partial G_3}{\partial a_{15}}, \quad (4.36)$$

$$\frac{\partial G_{13}}{\partial a_0} = \frac{\partial G_{12}}{\partial a_1} = -\frac{\partial G_{15}}{\partial a_2} = \frac{\partial G_{14}}{\partial a_3} = -\frac{\partial G_9}{\partial a_4} = -\frac{\partial G_8}{\partial a_5} = -\frac{\partial G_{11}}{\partial a_6} = \frac{\partial G_{10}}{\partial a_7} = \frac{\partial G_5}{\partial a_8}$$
$$= \frac{\partial G_4}{\partial a_9} = -\frac{\partial G_7}{\partial a_{10}} = \frac{\partial G_6}{\partial a_{11}} = -\frac{\partial G_1}{\partial a_{12}} = -\frac{\partial G_0}{\partial a_{13}} = -\frac{\partial G_3}{\partial a_{14}} = \frac{\partial G_2}{\partial a_{15}}, \quad (4.37)$$

$$\frac{\partial G_{14}}{\partial a_0} = \frac{\partial G_{15}}{\partial a_1} = \frac{\partial G_{12}}{\partial a_2} = -\frac{\partial G_{13}}{\partial a_3} = -\frac{\partial G_{10}}{\partial a_4} = \frac{\partial G_{11}}{\partial a_5} = -\frac{\partial G_8}{\partial a_6} = -\frac{\partial G_9}{\partial a_7} = \frac{\partial G_6}{\partial a_8}$$
$$= \frac{\partial G_7}{\partial a_9} = \frac{\partial G_4}{\partial a_{10}} = -\frac{\partial G_5}{\partial a_{11}} = -\frac{\partial G_2}{\partial a_{12}} = \frac{\partial G_3}{\partial a_{13}} = -\frac{\partial G_0}{\partial a_{14}} = -\frac{\partial G_1}{\partial a_{15}}, \quad (4.38)$$

$$\frac{\partial G_{15}}{\partial a_0} = -\frac{\partial G_{14}}{\partial a_1} = \frac{\partial G_{13}}{\partial a_2} = \frac{\partial G_{12}}{\partial a_3} = -\frac{\partial G_{11}}{\partial a_4} = -\frac{\partial G_{10}}{\partial a_5} = \frac{\partial G_9}{\partial a_6} = -\frac{\partial G_8}{\partial a_7} = \frac{\partial G_7}{\partial a_8}$$
$$= -\frac{\partial G_6}{\partial a_9} = \frac{\partial G_5}{\partial a_{10}} = \frac{\partial G_4}{\partial a_{11}} = -\frac{\partial G_3}{\partial a_{12}} = -\frac{\partial G_2}{\partial a_{13}} = \frac{\partial G_1}{\partial a_{14}} = -\frac{\partial G_0}{\partial a_{15}}$$
(4.39)

Demonstração:

A integral $\int_x^y dz f$, independerá do caminho se existir uma função G, tal que,

 $\int_{x}^{y} dz f = G_{0} + G_{1}\mathbf{i} + G_{2}\mathbf{j} + G_{3}\mathbf{k} + G_{4}\mathbf{e}' + G_{5}\mathbf{i}' + G_{6}\mathbf{j}' + G_{7}\mathbf{k}' + G_{8}\mathbf{e}'' + G_{9}\mathbf{i}'' + G_{10}\mathbf{j}'' + G_{11}\mathbf{k}'' + G_{12}\mathbf{e}''' + G_{13}\mathbf{i}''' + G_{14}\mathbf{j}''' + G_{15}\mathbf{k}''' = G(y) - G(x)$, de modo que o valor dessa diferença dependerá unicamente dos pontos extremos.

$$dG_{0} = \frac{\partial G_{0}}{\partial a_{0}} da_{0} + \frac{\partial G_{0}}{\partial a_{1}} da_{1} + \frac{\partial G_{0}}{\partial a_{2}} da_{2} + \frac{\partial G_{0}}{\partial a_{3}} da_{3} + \frac{\partial G_{0}}{\partial a_{4}} da_{4} + \frac{\partial G_{0}}{\partial a_{5}} da_{5} + \frac{\partial G_{0}}{\partial a_{6}} da_{6} + \frac{\partial G_{0}}{\partial a_{7}} da_{7} + \frac{\partial G_{0}}{\partial a_{8}} da_{8} + \frac{\partial G_{0}}{\partial a_{9}} da_{9} + \frac{\partial G_{0}}{\partial a_{10}} da_{10} + \frac{\partial G_{0}}{\partial a_{11}} da_{11} + \frac{\partial G_{0}}{\partial a_{12}} da_{12} + \frac{\partial G_{0}}{\partial a_{13}} da_{13} + \frac{\partial G_{0}}{\partial a_{14}} da_{14} + \frac{\partial G_{0}}{\partial a_{15}} da_{15} = da_{0}f_{0} - da_{1}f_{1} - da_{2}f_{2} - da_{3}f_{3} - da_{4}f_{4} - da_{5}f_{5} - da_{6}f_{6} - da_{7}f_{7} - da_{8}f_{8} - da_{9}f_{9} - da_{10}f_{10} - da_{11}f_{11} - da_{12}f_{12} - da_{13}f_{13} - da_{14}f_{14} - da_{15}f_{15}$$

$$dG_{1} = \frac{\partial G_{1}}{\partial a_{0}} da_{0} + \frac{\partial G_{1}}{\partial a_{1}} da_{1} + \frac{\partial G_{1}}{\partial a_{2}} da_{2} + \frac{\partial G_{1}}{\partial a_{3}} da_{3} + \frac{\partial G_{1}}{\partial a_{4}} da_{4} + \frac{\partial G_{1}}{\partial a_{5}} da_{5} + \frac{\partial G_{1}}{\partial a_{6}} da_{6} + \frac{\partial G_{1}}{\partial a_{7}} da_{7} \\ + \frac{\partial G_{1}}{\partial a_{8}} da_{8} + \frac{\partial G_{1}}{\partial a_{9}} da_{9} + \frac{\partial G_{1}}{\partial a_{10}} da_{10} + \frac{\partial G_{1}}{\partial a_{11}} da_{11} + \frac{\partial G_{1}}{\partial a_{12}} da_{12} + \frac{\partial G_{1}}{\partial a_{13}} da_{13} + \frac{\partial G_{1}}{\partial a_{14}} da_{14} + \frac{\partial G_{1}}{\partial a_{15}} da_{15} \\ = da_{0}f_{1} + da_{1}f_{0} + da_{2}f_{3} - da_{3}f_{2} + da_{4}f_{5} - da_{5}f_{4} - da_{6}f_{7} + da_{7}f_{6} + da_{8}f_{9} - da_{9}f_{8} \\ - da_{10}f_{11} + da_{11}f_{10} - da_{12}f_{13} + da_{13}f_{12} + da_{14}f_{15} - da_{15}f_{14}$$

$$dG_{2} = \frac{\partial G_{2}}{\partial a_{0}} da_{0} + \frac{\partial G_{2}}{\partial a_{1}} da_{1} + \frac{\partial G_{2}}{\partial a_{2}} da_{2} + \frac{\partial G_{2}}{\partial a_{3}} da_{3} + \frac{\partial G_{2}}{\partial a_{4}} da_{4} + \frac{\partial G_{2}}{\partial a_{5}} da_{5} + \frac{\partial G_{2}}{\partial a_{6}} da_{6} + \frac{\partial G_{2}}{\partial a_{7}} da_{7} + \frac{\partial G_{2}}{\partial a_{8}} da_{8} + \frac{\partial G_{2}}{\partial a_{9}} da_{9} + \frac{\partial G_{2}}{\partial a_{10}} da_{10} + \frac{\partial G_{2}}{\partial a_{11}} da_{11} + \frac{\partial G_{2}}{\partial a_{12}} da_{12} + \frac{\partial G_{2}}{\partial a_{13}} da_{13} + \frac{\partial G_{2}}{\partial a_{14}} da_{14} + \frac{\partial G_{2}}{\partial a_{15}} da_{15} + da_{6} f_{7} - da_{6} f_{4} - da_{7} f_{5} + da_{8} f_{10} + da_{9} f_{11} - da_{10} f_{8} - da_{11} f_{9} - da_{12} f_{14} - da_{13} f_{15} + da_{14} f_{12} + da_{15} f_{13}$$

$$\begin{aligned} dG_3 &= \frac{\partial G_3}{\partial a_0} da_0 + \frac{\partial G_3}{\partial a_1} da_1 + \frac{\partial G_3}{\partial a_2} da_2 + \frac{\partial G_3}{\partial a_3} da_3 + \frac{\partial G_3}{\partial a_4} da_4 + \frac{\partial G_3}{\partial a_5} da_5 + \frac{\partial G_3}{\partial a_6} da_6 + \frac{\partial G_3}{\partial a_7} da_7 \\ &+ \frac{\partial G_3}{\partial a_8} da_8 + \frac{\partial G_3}{\partial a_9} da_9 + \frac{\partial G_3}{\partial a_{10}} da_{10} + \frac{\partial G_3}{\partial a_{11}} da_{11} + \frac{\partial G_3}{\partial a_{12}} da_{12} + \frac{\partial G_3}{\partial a_{13}} da_{13} + \frac{\partial G_3}{\partial a_{14}} da_{14} + \frac{\partial G_3}{\partial a_{15}} da_{15} \\ &= da_0 f_3 + da_1 f_2 - da_2 f_1 + da_3 f_0 + da_4 f_7 - da_5 f_6 + da_6 f_5 - da_7 f_4 + da_8 f_{11} - da_9 f_{10} \\ &+ da_{10} f_9 - da_{11} f_8 - da_{12} f_{15} + da_{13} f_{14} - da_{14} f_{13} + da_{15} f_{12} \end{aligned}$$

$$\begin{aligned} dG_4 &= \frac{\partial G_4}{\partial a_0} da_0 + \frac{\partial G_4}{\partial a_1} da_1 + \frac{\partial G_4}{\partial a_2} da_2 + \frac{\partial G_4}{\partial a_3} da_3 + \frac{\partial G_4}{\partial a_4} da_4 + \frac{\partial G_4}{\partial a_5} da_5 + \frac{\partial G_4}{\partial a_6} da_6 + \frac{\partial G_4}{\partial a_7} da_7 \\ &+ \frac{\partial G_4}{\partial a_8} da_8 + \frac{\partial G_4}{\partial a_9} da_9 + \frac{\partial G_4}{\partial a_{10}} da_{10} + \frac{\partial G_4}{\partial a_{11}} da_{11} + \frac{\partial G_4}{\partial a_{12}} da_{12} + \frac{\partial G_4}{\partial a_{13}} da_{13} + \frac{\partial G_4}{\partial a_{14}} da_{14} + \frac{\partial G_4}{\partial a_{15}} da_{15} \\ &= da_0 f_4 - da_1 f_5 - da_2 f_6 - da_3 f_7 + da_4 f_0 + da_5 f_1 + da_6 f_2 + da_7 f_3 + da_8 f_{12} + da_9 f_{13} \\ &+ da_{10} f_{14} + da_{11} f_{15} - da_{12} f_8 - da_{13} f_9 - da_{14} f_{10} - da_{15} f_{11} \end{aligned}$$

$$dG_{5} = \frac{\partial G_{5}}{\partial a_{0}}da_{0} + \frac{\partial G_{5}}{\partial a_{1}}da_{1} + \frac{\partial G_{5}}{\partial a_{2}}da_{2} + \frac{\partial G_{5}}{\partial a_{3}}da_{3} + \frac{\partial G_{5}}{\partial a_{4}}da_{4} + \frac{\partial G_{5}}{\partial a_{5}}da_{5} + \frac{\partial G_{5}}{\partial a_{6}}da_{6} + \frac{\partial G_{5}}{\partial a_{7}}da_{7} \\ + \frac{\partial G_{5}}{\partial a_{8}}da_{8} + \frac{\partial G_{5}}{\partial a_{9}}da_{9} + \frac{\partial G_{5}}{\partial a_{10}}da_{10} + \frac{\partial G_{5}}{\partial a_{11}}da_{11} + \frac{\partial G_{5}}{\partial a_{12}}da_{12} + \frac{\partial G_{5}}{\partial a_{13}}da_{13} + \frac{\partial G_{5}}{\partial a_{14}}da_{14} + \frac{\partial G_{5}}{\partial a_{15}}da_{15} \\ = da_{0}f_{5} + da_{1}f_{4} - da_{2}f_{7} + da_{3}f_{6} - da_{4}f_{1} + da_{5}f_{0} - da_{6}f_{3} + da_{7}f_{2} + da_{8}f_{13} - da_{9}f_{12} \\ + da_{10}f_{15} - da_{11}f_{14} + da_{12}f_{9} - da_{13}f_{8} + da_{14}f_{11} - da_{15}f_{10}$$

$$\begin{aligned} dG_6 &= \frac{\partial G_6}{\partial a_0} da_0 + \frac{\partial G_6}{\partial a_1} da_1 + \frac{\partial G_6}{\partial a_2} da_2 + \frac{\partial G_6}{\partial a_3} da_3 + \frac{\partial G_6}{\partial a_4} da_4 + \frac{\partial G_6}{\partial a_5} da_5 + \frac{\partial G_6}{\partial a_6} da_6 + \frac{\partial G_6}{\partial a_7} da_7 \\ &+ \frac{\partial G_6}{\partial a_8} da_8 + \frac{\partial G_6}{\partial a_9} da_9 + \frac{\partial G_6}{\partial a_{10}} da_{10} + \frac{\partial G_6}{\partial a_{11}} da_{11} + \frac{\partial G_6}{\partial a_{12}} da_{12} + \frac{\partial G_6}{\partial a_{13}} da_{13} + \frac{\partial G_6}{\partial a_{14}} da_{14} + \frac{\partial G_6}{\partial a_{15}} da_{15} \\ &= da_0 f_6 + da_1 f_7 + da_2 f_4 - da_3 f_5 - da_4 f_2 + da_5 f_3 + da_6 f_0 - da_7 f_1 + da_8 f_{14} - da_9 f_{15} \\ &- da_{10} f_{12} + da_{11} f_{13} + da_{12} f_{10} - da_{13} f_{11} - da_{14} f_8 + da_{15} f_9 \end{aligned}$$

$$dG_{7} = \frac{\partial G_{7}}{\partial a_{0}} da_{0} + \frac{\partial G_{7}}{\partial a_{1}} da_{1} + \frac{\partial G_{7}}{\partial a_{2}} da_{2} + \frac{\partial G_{7}}{\partial a_{3}} da_{3} + \frac{\partial G_{7}}{\partial a_{4}} da_{4} + \frac{\partial G_{7}}{\partial a_{5}} da_{5} + \frac{\partial G_{7}}{\partial a_{6}} da_{6} + \frac{\partial G_{7}}{\partial a_{7}} da_{7} \\ + \frac{\partial G_{7}}{\partial a_{8}} da_{8} + \frac{\partial G_{7}}{\partial a_{9}} da_{9} + \frac{\partial G_{7}}{\partial a_{10}} da_{10} + \frac{\partial G_{7}}{\partial a_{11}} da_{11} + \frac{\partial G_{7}}{\partial a_{12}} da_{12} + \frac{\partial G_{7}}{\partial a_{13}} da_{13} + \frac{\partial G_{7}}{\partial a_{14}} da_{14} + \frac{\partial G_{7}}{\partial a_{15}} da_{15} \\ = da_{0}f_{7} - da_{1}f_{6} + da_{2}f_{5} + da_{3}f_{4} - da_{4}f_{3} - da_{5}f_{2} + da_{6}f_{1} + da_{7}f_{0} + da_{8}f_{15} + da_{9}f_{14} \\ - da_{10}f_{13} - da_{11}f_{12} + da_{12}f_{11} + da_{13}f_{10} - da_{14}f_{9} - da_{15}f_{8}$$

$$\begin{aligned} dG_8 &= \frac{\partial G_8}{\partial a_0} da_0 + \frac{\partial G_8}{\partial a_1} da_1 + \frac{\partial G_8}{\partial a_2} da_2 + \frac{\partial G_8}{\partial a_3} da_3 + \frac{\partial G_8}{\partial a_4} da_4 + \frac{\partial G_8}{\partial a_5} da_5 + \frac{\partial G_8}{\partial a_6} da_6 + \frac{\partial G_8}{\partial a_7} da_7 \\ &+ \frac{\partial G_8}{\partial a_8} da_8 + \frac{\partial G_8}{\partial a_9} da_9 + \frac{\partial G_8}{\partial a_{10}} da_{10} + \frac{\partial G_8}{\partial a_{11}} da_{11} + \frac{\partial G_8}{\partial a_{12}} da_{12} + \frac{\partial G_8}{\partial a_{13}} da_{13} + \frac{\partial G_8}{\partial a_{14}} da_{14} + \frac{\partial G_8}{\partial a_{15}} da_{15} \\ &= da_0 f_8 - da_1 f_9 - da_2 f_{10} - da_3 f_{11} - da_4 f_{12} - da_5 f_{13} - da_6 f_{14} - da_7 f_{15} + da_8 f_0 + da_9 f_1 \\ &+ da_{10} f_2 + da_{11} f_3 + da_{12} f_4 + da_{13} f_5 + da_{14} f_6 + da_{15} f_7 \end{aligned}$$

$$\begin{aligned} dG_9 &= \frac{\partial G_9}{\partial a_0} da_0 + \frac{\partial G_9}{\partial a_1} da_1 + \frac{\partial G_9}{\partial a_2} da_2 + \frac{\partial G_9}{\partial a_3} da_3 + \frac{\partial G_9}{\partial a_4} da_4 + \frac{\partial G_9}{\partial a_5} da_5 + \frac{\partial G_9}{\partial a_6} da_6 + \frac{\partial G_9}{\partial a_7} da_7 \\ &+ \frac{\partial G_9}{\partial a_8} da_8 + \frac{\partial G_9}{\partial a_9} da_9 + \frac{\partial G_9}{\partial a_{10}} da_{10} + \frac{\partial G_9}{\partial a_{11}} da_{11} + \frac{\partial G_9}{\partial a_{12}} da_{12} + \frac{\partial G_9}{\partial a_{13}} da_{13} + \frac{\partial G_9}{\partial a_{14}} da_{14} + \frac{\partial G_9}{\partial a_{15}} da_{15} \\ &= da_0 f_9 + da_1 f_8 - da_2 f_{11} + da_3 f_{10} - da_4 f_{13} + da_5 f_{12} + da_6 f_{15} - da_7 f_{14} - da_8 f_1 + da_9 f_0 \\ &- da_{10} f_3 + da_{11} f_2 - da_{12} f_5 + da_{13} f_4 + da_{14} f_7 - da_{15} f_6 \end{aligned}$$

$$\begin{aligned} dG_{10} &= \frac{\partial G_{10}}{\partial a_0} da_0 + \frac{\partial G_{10}}{\partial a_1} da_1 + \frac{\partial G_{10}}{\partial a_2} da_2 + \frac{\partial G_{10}}{\partial a_3} da_3 + \frac{\partial G_{10}}{\partial a_4} da_4 + \frac{\partial G_{10}}{\partial a_5} da_5 + \frac{\partial G_{10}}{\partial a_6} da_6 \\ &+ \frac{\partial G_{10}}{\partial a_7} da_7 + \frac{\partial G_{10}}{\partial a_8} da_8 + \frac{\partial G_{10}}{\partial a_9} da_9 + \frac{\partial G_{10}}{\partial a_{10}} da_{10} + \frac{\partial G_{10}}{\partial a_{11}} da_{11} + \frac{\partial G_{10}}{\partial a_{12}} da_{12} + \frac{\partial G_{10}}{\partial a_{13}} da_{13} \\ &+ \frac{\partial G_{10}}{\partial a_{14}} da_{14} + \frac{\partial G_{10}}{\partial a_{15}} da_{15} = da_0 f_{10} + da_1 f_{11} + da_2 f_8 - da_3 f_9 - da_4 f_{14} - da_5 f_{15} + da_6 f_{12} \\ &+ da_7 f_{13} - da_8 f_2 + da_9 f_3 + da_{10} f_0 - da_{11} f_1 - da_{12} f_6 - da_{13} f_7 + da_{14} f_4 + da_{15} f_5 \end{aligned}$$

$$dG_{11} = \frac{\partial G_{11}}{\partial a_0} da_0 + \frac{\partial G_{11}}{\partial a_1} da_1 + \frac{\partial G_{11}}{\partial a_2} da_2 + \frac{\partial G_{11}}{\partial a_3} da_3 + \frac{\partial G_{11}}{\partial a_4} da_4 + \frac{\partial G_{11}}{\partial a_5} da_5 + \frac{\partial G_{11}}{\partial a_6} da_6 \\ + \frac{\partial G_{11}}{\partial a_7} da_7 + \frac{\partial G_{11}}{\partial a_8} da_8 + \frac{\partial G_{11}}{a_9} da_9 + \frac{\partial G_{11}}{\partial a_{10}} da_{10} + \frac{\partial G_{11}}{\partial a_{11}} da_{11} + \frac{\partial G_{11}}{\partial a_{12}} da_{12} + \frac{\partial G_{11}}{\partial a_{13}} da_{13} \\ + \frac{\partial G_{11}}{\partial a_{14}} da_{14} + \frac{\partial G_{11}}{\partial a_{15}} da_{15} = da_0 f_{11} - da_1 f_{10} + da_2 f_9 + da_3 f_8 - da_4 f_{15} + da_5 f_{14} - da_6 f_{13} \\ + da_7 f_{12} - da_8 f_3 - da_9 f_2 + da_{10} f_1 + da_{11} f_0 - da_{12} f_7 + da_{13} f_6 - da_{14} f_5 + da_{15} f_4$$

$$dG_{12} = \frac{\partial G_{12}}{\partial a_0} da_0 + \frac{\partial G_{12}}{\partial a_1} da_1 + \frac{\partial G_{12}}{\partial a_2} da_2 + \frac{\partial G_{12}}{\partial a_3} da_3 + \frac{\partial G_{12}}{\partial a_4} da_4 + \frac{\partial G_{12}}{\partial a_5} da_5 + \frac{\partial G_{12}}{\partial a_6} da_6 \\ + \frac{\partial G_{12}}{\partial a_7} da_7 + \frac{\partial G_{12}}{\partial a_8} da_8 + \frac{\partial G_{12}}{\partial a_9} da_9 + \frac{\partial G_{12}}{\partial a_{10}} da_{10} + \frac{\partial G_{12}}{\partial a_{11}} da_{11} + \frac{\partial G_{12}}{\partial a_{12}} da_{12} + \frac{\partial G_{12}}{\partial a_{13}} da_{13} \\ + \frac{\partial G_{12}}{\partial a_{14}} da_{14} + \frac{\partial G_{12}}{\partial a_{15}} da_{15} = da_0 f_{12} + da_1 f_{13} + da_2 f_{14} + da_3 f_{15} + da_4 f_8 - da_5 f_9 - da_6 f_{10} \\ - da_7 f_{11} - da_8 f_4 + da_9 f_5 + da_{10} f_6 + da_{11} f_7 + da_{12} f_0 - da_{13} f_1 - da_{14} f_2 - da_{15} f_3 \end{cases}$$

$$dG_{13} = \frac{\partial G_{13}}{\partial a_0} da_0 + \frac{\partial G_{13}}{\partial a_1} da_1 + \frac{\partial G_{13}}{\partial a_2} da_2 + \frac{\partial G_{13}}{\partial a_3} da_3 + \frac{\partial G_{13}}{\partial a_4} da_4 + \frac{\partial G_{13}}{\partial a_5} da_5 + \frac{\partial G_{13}}{\partial a_6} da_6 \\ + \frac{\partial G_{13}}{\partial a_7} da_7 + \frac{\partial G_{13}}{\partial a_8} da_8 + \frac{\partial G_{13}}{\partial a_9} da_9 + \frac{\partial G_{13}}{\partial a_{10}} da_{10} + \frac{\partial G_{13}}{\partial a_{11}} da_{11} + \frac{\partial G_{13}}{\partial a_{12}} da_{12} + \frac{\partial G_{13}}{\partial a_{13}} da_{13} \\ + \frac{\partial G_{13}}{\partial a_{14}} da_{14} + \frac{\partial G_{13}}{\partial a_{15}} da_{15} = da_0 f_{13} - da_1 f_{12} + da_2 f_{15} - da_3 f_{14} + da_4 f_9 + da_5 f_8 + da_6 f_{11} \\ - da_7 f_{10} - da_8 f_5 - da_9 f_4 + da_{10} f_7 - da_{11} f_6 + da_{12} f_1 + da_{13} f_0 + da_{14} f_3 - da_{15} f_2$$

$$\begin{aligned} dG_{14} &= \frac{\partial G_{14}}{\partial a_0} da_0 + \frac{\partial G_{14}}{\partial a_1} da_1 + \frac{\partial G_{14}}{\partial a_2} da_2 + \frac{\partial G_{14}}{\partial a_3} da_3 + \frac{\partial G_{14}}{\partial a_4} da_4 + \frac{\partial G_{14}}{\partial a_5} da_5 + \frac{\partial G_{14}}{\partial a_6} da_6 \\ &+ \frac{\partial G_{14}}{\partial a_7} da_7 + \frac{\partial G_{14}}{\partial a_8} da_8 + \frac{\partial G_{14}}{\partial a_9} da_9 + \frac{\partial G_{14}}{\partial a_{10}} da_{10} + \frac{\partial G_{14}}{\partial a_{11}} da_{11} + \frac{\partial G_{14}}{\partial a_{12}} da_{12} + \frac{\partial G_{14}}{\partial a_{13}} da_{13} \\ &+ \frac{\partial G_{14}}{\partial a_{14}} da_{14} + \frac{\partial G_{14}}{a_{15}} da_{15} = da_0 f_{14} - da_1 f_{15} - da_2 f_{12} + da_3 f_{13} + da_4 f_{10} - da_5 f_{11} + da_6 f_8 \\ &+ da_7 f_9 - da_8 f_6 - da_9 f_7 - da_{10} f_4 + da_{11} f_5 + da_{12} f_2 - da_{13} f_3 + da_{14} f_0 + da_{15} f_1 \end{aligned}$$

$$dG_{15} = \frac{\partial G_{15}}{\partial a_0} da_0 + \frac{\partial G_{15}}{\partial a_1} da_1 + \frac{\partial G_{15}}{\partial a_2} da_2 + \frac{\partial G_{15}}{\partial a_3} da_3 + \frac{\partial G_{15}}{\partial a_4} da_4 + \frac{\partial G_{15}}{\partial a_5} da_5 + \frac{\partial G_{15}}{\partial a_6} da_6 + \frac{\partial G_{15}}{\partial a_7} da_7 + \frac{\partial G_{15}}{\partial a_8} da_8 + \frac{\partial G_{15}}{\partial a_9} da_9 + \frac{\partial G_{15}}{\partial a_{10}} da_{10} + \frac{\partial G_{15}}{\partial a_{11}} da_{11} + \frac{\partial G_{15}}{\partial a_{12}} da_{12} + \frac{\partial G_{15}}{\partial a_{13}} da_{13} + \frac{\partial G_{15}}{\partial a_{14}} da_{14} + \frac{\partial G_{15}}{\partial a_{15}} da_{15} = da_0 f_{15} + da_1 f_{14} - da_2 f_{13} - da_3 f_{12} + da_4 f_{11} + da_5 f_{10} - da_6 f_9 + da_7 f_8 - da_8 f_7 + da_9 f_6 - da_{10} f_5 - da_{11} f_4 + da_{12} f_3 + da_{13} f_2 - da_{14} f_1 + da_{15} f_0$$

de onde surgem diretamente as relações,

$$\frac{\partial G_0}{\partial a_0} = \frac{\partial G_1}{\partial a_1} = \frac{\partial G_2}{\partial a_2} = \frac{\partial G_3}{\partial a_3} = \frac{\partial G_4}{\partial a_4} = \frac{\partial G_5}{\partial a_5} = \frac{\partial G_6}{\partial a_6} = \frac{\partial G_7}{\partial a_7} = \frac{\partial G_8}{\partial a_8}$$
$$= \frac{\partial G_9}{\partial a_9} = \frac{\partial G_{10}}{\partial a_{10}} = \frac{\partial G_{11}}{\partial a_{11}} = \frac{\partial G_{12}}{\partial a_{12}} = \frac{\partial G_{13}}{\partial a_{13}} = \frac{\partial G_{14}}{\partial a_{14}} = \frac{\partial G_{15}}{\partial a_{15}},$$

$$\frac{\partial G_1}{\partial a_0} = -\frac{\partial G_0}{\partial a_1} = -\frac{\partial G_3}{\partial a_2} = \frac{\partial G_2}{\partial a_3} = -\frac{\partial G_5}{\partial a_4} = \frac{\partial G_4}{\partial a_5} = \frac{\partial G_7}{\partial a_6} = -\frac{\partial G_6}{\partial a_7} = -\frac{\partial G_9}{\partial a_8}$$
$$= \frac{\partial G_8}{\partial a_9} = \frac{\partial G_{11}}{\partial a_{10}} = -\frac{\partial G_{10}}{\partial a_{11}} = \frac{\partial G_{13}}{\partial a_{12}} = -\frac{\partial G_{12}}{\partial a_{13}} = -\frac{\partial G_{15}}{\partial a_{14}} = \frac{\partial G_{14}}{\partial a_{15}},$$

$$\frac{\partial G_2}{\partial a_0} = \frac{\partial G_3}{\partial a_1} = -\frac{\partial G_0}{\partial a_2} = -\frac{\partial G_1}{\partial a_3} = -\frac{\partial G_6}{\partial a_4} = -\frac{\partial G_7}{\partial a_5} = \frac{\partial G_4}{\partial a_6} = \frac{\partial G_5}{\partial a_7} = \frac{\partial G_{10}}{\partial a_8}$$
$$= -\frac{\partial G_{11}}{\partial a_9} = \frac{\partial G_8}{\partial a_{10}} = \frac{\partial G_9}{\partial a_{11}} = \frac{\partial G_{14}}{\partial a_{12}} = \frac{\partial G_{15}}{\partial a_{13}} = -\frac{\partial G_{12}}{\partial a_{14}} = -\frac{\partial G_{13}}{\partial a_{15}},$$

$$\frac{\partial G_3}{\partial a_0} = -\frac{\partial G_2}{\partial a_1} = \frac{\partial G_1}{\partial a_2} = -\frac{\partial G_0}{\partial a_3} = -\frac{\partial G_7}{\partial a_4} = \frac{\partial G_6}{\partial a_5} = -\frac{\partial G_5}{\partial a_6} = \frac{\partial G_4}{\partial a_7} = -\frac{\partial G_{11}}{\partial a_8}$$
$$= \frac{\partial G_{10}}{\partial a_9} = -\frac{\partial G_9}{\partial a_{10}} = \frac{\partial G_8}{\partial a_{11}} = \frac{\partial G_{15}}{\partial a_{12}} = -\frac{\partial G_{14}}{\partial a_{13}} = \frac{\partial G_{13}}{\partial a_{14}} = -\frac{\partial G_{12}}{\partial a_{15}},$$

$$\frac{\partial G_4}{\partial a_0} = \frac{\partial G_5}{\partial a_1} = \frac{\partial G_6}{\partial a_2} = \frac{\partial G_7}{\partial a_3} = -\frac{\partial G_0}{\partial a_4} = -\frac{\partial G_1}{\partial a_5} = -\frac{\partial G_2}{\partial a_6} = -\frac{\partial G_3}{\partial a_7} = -\frac{\partial G_{12}}{\partial a_8}$$
$$= -\frac{\partial G_{13}}{\partial a_9} = -\frac{\partial G_{14}}{\partial a_{10}} = -\frac{\partial G_{15}}{\partial a_{11}} = \frac{\partial G_8}{\partial a_{12}} = \frac{\partial G_9}{\partial a_{13}} = \frac{\partial G_{10}}{\partial a_{14}} = \frac{\partial G_{11}}{\partial a_{15}},$$

$$\frac{\partial G_5}{\partial a_0} = -\frac{\partial G_4}{\partial a_1} = \frac{\partial G_7}{\partial a_2} = -\frac{\partial G_6}{\partial a_3} = \frac{\partial G_1}{\partial a_4} = -\frac{\partial G_0}{\partial a_5} = \frac{\partial G_3}{\partial a_6} = -\frac{\partial G_2}{\partial a_7} = -\frac{\partial G_{13}}{\partial a_8} = \frac{\partial G_{12}}{\partial a_9} = -\frac{\partial G_{15}}{\partial a_{10}} = \frac{\partial G_{14}}{\partial a_{11}} = -\frac{\partial G_9}{\partial a_{12}} = \frac{\partial G_8}{\partial a_{13}} = -\frac{\partial G_{11}}{\partial a_{14}} = \frac{\partial G_{10}}{\partial a_{15}},$$

$$\frac{\partial G_6}{\partial a_0} = -\frac{\partial G_7}{\partial a_1} = -\frac{\partial G_4}{\partial a_2} = \frac{\partial G_5}{\partial a_3} = \frac{\partial G_2}{\partial a_4} = -\frac{\partial G_3}{\partial a_5} = -\frac{\partial G_0}{\partial a_6} = \frac{\partial G_1}{\partial a_7} = -\frac{\partial G_{14}}{\partial a_8} = \frac{\partial G_{15}}{\partial a_9} = \frac{\partial G_{12}}{\partial a_{10}} = -\frac{\partial G_{13}}{\partial a_{11}} = -\frac{\partial G_{10}}{\partial a_{12}} = \frac{\partial G_{11}}{\partial a_{13}} = \frac{\partial G_8}{\partial a_{14}} = -\frac{\partial G_9}{\partial a_{15}},$$

$$\frac{\partial G_7}{\partial a_0} = \frac{\partial G_6}{\partial a_1} = -\frac{\partial G_5}{\partial a_2} = -\frac{\partial G_4}{\partial a_3} = \frac{\partial G_3}{\partial a_4} = \frac{\partial G_2}{\partial a_5} = -\frac{\partial G_1}{\partial a_6} = -\frac{\partial G_0}{\partial a_7} = -\frac{\partial G_{15}}{\partial a_8} = -\frac{\partial G_{16}}{\partial a_9} = \frac{\partial G_{13}}{\partial a_{10}} = \frac{\partial G_{12}}{\partial a_{11}} = -\frac{\partial G_{11}}{\partial a_{12}} = -\frac{\partial G_{10}}{\partial a_{13}} = \frac{\partial G_9}{\partial a_{14}} = \frac{\partial G_8}{\partial a_{15}},$$

$$\frac{\partial G_8}{\partial a_0} = \frac{\partial G_9}{\partial a_1} = \frac{\partial G_{10}}{\partial a_2} = \frac{\partial G_{11}}{\partial a_3} = \frac{\partial G_{12}}{\partial a_4} = \frac{\partial G_{13}}{\partial a_5} = \frac{\partial G_{14}}{\partial a_6} = \frac{\partial G_{15}}{\partial a_7} = -\frac{\partial G_0}{\partial a_8}$$
$$= -\frac{\partial G_1}{\partial a_9} = -\frac{\partial G_2}{\partial a_{10}} = -\frac{\partial G_3}{\partial a_{11}} = -\frac{\partial G_4}{\partial a_{12}} = -\frac{\partial G_5}{\partial a_{13}} = -\frac{\partial G_6}{\partial a_{14}} = -\frac{\partial G_7}{\partial a_{15}},$$

$$\frac{\partial G_9}{\partial a_0} = -\frac{\partial G_8}{\partial a_1} = \frac{\partial G_{11}}{\partial a_2} = -\frac{\partial G_{10}}{\partial a_3} = \frac{\partial G_{13}}{\partial a_4} = -\frac{\partial G_{12}}{\partial a_5} = -\frac{\partial G_{15}}{\partial a_6} = \frac{\partial G_{14}}{\partial a_7} = \frac{\partial G_1}{\partial a_8}$$
$$= -\frac{\partial G_0}{\partial a_9} = \frac{\partial G_3}{\partial a_{10}} = -\frac{\partial G_2}{\partial a_{11}} = \frac{\partial G_5}{\partial a_{12}} = -\frac{\partial G_4}{\partial a_{13}} = -\frac{\partial G_7}{\partial a_{14}} = \frac{\partial G_6}{\partial a_{15}}$$

$$\frac{\partial G_{10}}{\partial a_0} = -\frac{\partial G_{11}}{\partial a_1} = -\frac{\partial G_8}{\partial a_2} = \frac{\partial G_9}{\partial a_3} = \frac{\partial G_{14}}{\partial a_4} = \frac{\partial G_{15}}{\partial a_5} = -\frac{\partial G_{12}}{\partial a_6} = -\frac{\partial G_{13}}{\partial a_7} = \frac{\partial G_2}{\partial a_8} = -\frac{\partial G_3}{\partial a_9} = -\frac{\partial G_0}{\partial a_{10}} = \frac{\partial G_1}{\partial a_{11}} = \frac{\partial G_6}{\partial a_{12}} = \frac{\partial G_7}{\partial a_{13}} = -\frac{\partial G_4}{\partial a_{14}} = -\frac{\partial G_5}{\partial a_{15}}$$
$$\frac{\partial G_{11}}{\partial a_0} = \frac{\partial G_{10}}{\partial a_1} = -\frac{\partial G_9}{\partial a_2} = -\frac{\partial G_8}{\partial a_3} = \frac{\partial G_{15}}{\partial a_4} = -\frac{\partial G_{14}}{\partial a_5} = \frac{\partial G_{13}}{\partial a_6} = -\frac{\partial G_{12}}{\partial a_7} = \frac{\partial G_3}{\partial a_8} = \frac{\partial G_2}{\partial a_9} = -\frac{\partial G_1}{\partial a_{10}} = -\frac{\partial G_0}{\partial a_{11}} = \frac{\partial G_7}{\partial a_{12}} = -\frac{\partial G_6}{\partial a_{13}} = \frac{\partial G_5}{\partial a_{14}} = -\frac{\partial G_4}{\partial a_{15}},$$

$$\frac{\partial G_{12}}{\partial a_0} = -\frac{\partial G_{13}}{\partial a_1} = -\frac{\partial G_{14}}{\partial a_2} = -\frac{\partial G_{15}}{\partial a_3} = -\frac{\partial G_8}{\partial a_4} = \frac{\partial G_9}{\partial a_5} = \frac{\partial G_{10}}{\partial a_6} = \frac{\partial G_{11}}{\partial a_7} = \frac{\partial G_4}{\partial a_8}$$
$$= -\frac{\partial G_5}{\partial a_9} = -\frac{\partial G_6}{\partial a_{10}} = -\frac{\partial G_7}{\partial a_{11}} = -\frac{\partial G_0}{\partial a_{12}} = \frac{\partial G_1}{\partial a_{13}} = \frac{\partial G_2}{\partial a_{14}} = \frac{\partial G_3}{\partial a_{15}},$$

$$\frac{\partial G_{13}}{\partial a_0} = \frac{\partial G_{12}}{\partial a_1} = -\frac{\partial G_{15}}{\partial a_2} = \frac{\partial G_{14}}{\partial a_3} = -\frac{\partial G_9}{\partial a_4} = -\frac{\partial G_8}{\partial a_5} = -\frac{\partial G_{11}}{\partial a_6} = \frac{\partial G_{10}}{\partial a_7} = \frac{\partial G_5}{\partial a_8} = -\frac{\partial G_9}{\partial a_9} = -\frac{\partial G_9}{\partial a_{10}} = -\frac{\partial G_9}{\partial a_{11}} = -\frac{\partial G_9}{\partial a_{12}} = -\frac{\partial G_9}{\partial a_{13}} = -\frac{\partial G_9}{\partial a_{13}} = -\frac{\partial G_9}{\partial a_{14}} = \frac{\partial G_9}{\partial a_{15}},$$

$$\begin{array}{rcl} \frac{\partial G_{14}}{\partial a_0} & = & \frac{\partial G_{15}}{\partial a_1} = \frac{\partial G_{12}}{\partial a_2} = -\frac{\partial G_{13}}{\partial a_3} = -\frac{\partial G_{10}}{\partial a_4} = \frac{\partial G_{11}}{\partial a_5} = -\frac{\partial G_8}{\partial a_6} = -\frac{\partial G_9}{\partial a_7} = \frac{\partial G_6}{\partial a_8} \\ & = & \frac{\partial G_7}{\partial a_9} = \frac{\partial G_4}{\partial a_{10}} = -\frac{\partial G_5}{\partial a_{11}} = -\frac{\partial G_2}{\partial a_{12}} = \frac{\partial G_3}{\partial a_{13}} = -\frac{\partial G_0}{\partial a_{14}} = -\frac{\partial G_1}{\partial a_{15}}, \end{array}$$

$$\frac{\partial G_{15}}{\partial a_0} = -\frac{\partial G_{14}}{\partial a_1} = \frac{\partial G_{13}}{\partial a_2} = \frac{\partial G_{12}}{\partial a_3} = -\frac{\partial G_{11}}{\partial a_4} = -\frac{\partial G_{10}}{\partial a_5} = \frac{\partial G_9}{\partial a_6} = -\frac{\partial G_8}{\partial a_7} = \frac{\partial G_7}{\partial a_8}$$
$$= -\frac{\partial G_6}{\partial a_9} = \frac{\partial G_5}{\partial a_{10}} = \frac{\partial G_4}{\partial a_{11}} = -\frac{\partial G_3}{\partial a_{12}} = -\frac{\partial G_2}{\partial a_{13}} = \frac{\partial G_1}{\partial a_{14}} = -\frac{\partial G_0}{\partial a_{15}}$$

finalizando nossa demonstração.

Conforme Borges e Machado [17], obteve-se neste capítulo conceitos da teoria clássica que podem ser aceitos intuitivamente como a generalização das equações de Cauchy-Riemann em 16-dimensões, através da regra de multiplicação para os *sedenions*, e obtidos do conceito de integrabilidade de caminhos independentes.

Capítulo 5

Generalização de |f(y) - f(x)| dado que $f(z) = z^n$

Quando trabalha-se em coordenadas esféricas, ao efetuar-se a distância |f(y) - f(x)|, em que $x, y \in \mathbb{S}$ e para $f(z) = z^n$, n = 2, 3, 4, ..., produz-se através de um método de resolução, um polinômio na variável r e de grau 2n, em que r é o raio da hiperesfera 16-dimensional, para x, y em coordenadas esféricas, isto é,

$$|f(y) - f(x)| = \sqrt{A_2^{(n)}r^2 + A_3^{(n)}r^3 + \dots + A_{2n}^{(n)}r^{2n}} = \sqrt{\sum_{i=2}^{2n} A_i^{(n)}r^i}$$
(5.1)

Esse resultado será essencial para o cálculo numérico da k-dilatação no capítulo seguinte. Induziremos o estudo de |f(y) - f(x)|, para o caso quando $f(z) = z^2$, $f(z) = z^3$ e $f(z) = z^4$. Os coeficientes $A_i^{(n)}$ serão fixados de acordo com as variáveis r^i , i = 2, ..., 2n, e n fixo.

5.1 Fator de expansão e a k-quaseconformidade

Lars Valerian Ahlfors descreve em um de seus livros sobre a importância da teoria das transformações quaseconformes. Ele atribuiu a descoberta deste estudo à Herbert Grötzsch [13].

Por volta de 1928, Grötzsch foi o responsável por introduzir o conceito de medir o grau da quaseconformidade pelo máximo da dilatação ocorrida para mapeamentos no plano (n = 2).

Em 1935, Lavrent'ev expande os estudos para $n \ge 3$, mas, foi um brilhante matemático, chamado Oswald Teichmüller, que realizou uma inesperada descoberta. O significado da sua descoberta se deve ao fato de conectar superfícies de Riemann com diferenciais quadráticas holomorfas. Com isso, Teichmüller lança as bases para o que mais tarde ficou conhecido como a teoria dos Espaços de Teichmüller [14].

Entende-se por dilatação a deformação causada no volume da hiperesfera, ou seja, a dilatação em três dimensões de um sólido causada quando submetido a uma transformação. Aqui trabalha-se sempre com a transformação do tipo $f(z) = z^n$, n = 2, 3, 4, ..., para isto é preciso definir uma métrica, ou seja, um conceito matemático que nos permite analisar mensuravelmente o valor da dilatação. Na investigação do cálculo da k-dilatação, necessita-se apenas do coeficiente $A_2^{(n)}$, que é o termo que multiplica r^2 na equação 5.1.

Definição 5.1 Sejam I e I' domínios no n-espaço Euclidiano \mathbb{R}^n com $n \ge 2$ e seja $f : I \to I'$ um homeomorfismo (contínua, bijetora e preserva topologia). Para $x \in I$ e r > 0, considere a bola fechada $\overline{B}(x,r)$ (com centro em x) em I.

Define-se então o máximo de |f(x)-f(y)| como sendo M(x,r) e o mínimo de |f(x)-f(y)|denotado por m(x,r), da seguinte forma:

$$\begin{split} M(x,r) &= \max_{|x-y|=r} |f(y) - f(x)| = \max_{|x-y|=r} \sqrt{A_2^{(n)} r^2 + A_3^{(n)} r^3 + \ldots + A_{2n}^{(n)} r^{2n}} = \max_{|x-y|=r} \sqrt{\sum_{i=2}^{2n} A_i^{(n)} r^i} \\ m(x,r) &= \min_{|x-y|=r} |f(y) - f(x)| = \min_{|x-y|=r} \sqrt{A_2^{(n)} r^2 + A_3^{(n)} r^3 + \ldots + A_{2n}^{(n)} r^{2n}} = \min_{|x-y|=r} \sqrt{\sum_{i=2}^{2n} A_i^{(n)} r^i} \\ H(x,r) &= \frac{M(x,r)}{m(x,r)}, \end{split}$$

Com isto, obtém-se o valor da k-dilatação em se fazendo,

$$H(x) = \lim_{r \to 0} \sup H(x, r)$$

Dizemos que a função f será quaseconforme se a dilatação linear H(x) é uniformemente limitada em um domínio $I \subset S$. Definimos f sendo k-quaseconforme com $1 \le k < \infty$, se fé quaseconforme e

 $H(x) \le k$

Como,

$$H(x) = \lim_{r \to 0} \sup H(x, r) = \lim_{r \to 0} \sup \frac{M(x, r)}{m(x, r)}$$

$$= \lim_{r \to 0} \sup \frac{\max \sqrt{A_2^{(n)} r^2 + A_3^{(n)} r^3 + \dots + A_{2n}^{(n)} r^{2n}}}{\min \sqrt{A_2^{(n)} r^2 + A_3^{(n)} r^3 + \dots + A_{2n}^{(n)} r^{2n}}}$$

$$= \lim_{r \to 0} \sup \frac{\max \sqrt{r^2 (A_2^{(n)} + A_3^{(n)} r^1 + \dots + A_{2n}^{(n)} r^{2n-2})}}{\min \sqrt{r^2 (A_2^{(n)} + A_3^{(n)} r^1 + \dots + A_{2n}^{(n)} r^{2n-2})}}$$

$$= \lim_{r \to 0} \sup \frac{\max |r| \sqrt{A_2^{(n)} + A_3^{(n)} r^1 + \dots + A_{2n}^{(n)} r^{2n-2}}}{\min |r| \sqrt{A_2^{(n)} + A_3^{(n)} r^1 + \dots + A_{2n}^{(n)} r^{2n-2}}}$$

$$\Rightarrow H(x) = \sqrt{\frac{\max A_2^{(n)}}{\min A_2^{(n)}}}$$
(5.2)

Denomina-se por **fator de expansão** ao coeficiente $A_2^{(n)}$. Caso o fator de expansão não seja constante, diz-se que a função será k-quaseconforme com $1 < k < \infty$.

5.2 O caso em que $f(z) = z^n$

Seja $x = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15})$ o centro da bola 16dimensional de raio $r e y = (y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}, y_{11}, y_{12}, y_{13}, y_{14}, y_{15})$ um ponto de sua fronteira parametrizado por,

$$y_{0} = a_{0} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}c_{11}c_{12}c_{13}c_{14}c_{15}, 0 \le \theta_{15} \le 2\pi$$

$$y_{1} = a_{1} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}c_{11}c_{12}c_{13}c_{14}s_{15}, \frac{-\pi}{2} \le \theta_{14} \le \frac{\pi}{2}$$

$$y_{2} = a_{2} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}c_{11}c_{12}c_{13}s_{14}, \frac{-\pi}{2} \le \theta_{13} \le \frac{\pi}{2}$$

$$y_{3} = a_{3} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}c_{11}s_{12}, \frac{-\pi}{2} \le \theta_{12} \le \frac{\pi}{2}$$

$$y_{4} = a_{4} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}c_{11}s_{12}, \frac{-\pi}{2} \le \theta_{11} \le \frac{\pi}{2}$$

$$y_{5} = a_{5} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}s_{11}, \frac{-\pi}{2} \le \theta_{10} \le \frac{\pi}{2}$$

$$y_{6} = a_{6} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}s_{10}, \frac{-\pi}{2} \le \theta_{9} \le \frac{\pi}{2}$$

$$y_{7} = a_{7} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}s_{9}, \frac{-\pi}{2} \le \theta_{6} \le \frac{\pi}{2}$$

$$y_{10} = a_{10} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}s_{7}, \frac{-\pi}{2} \le \theta_{5} \le \frac{\pi}{2}$$

$$y_{11} = a_{11} + rc_{1}c_{2}c_{3}c_{4}c_{5}s_{6}, \frac{-\pi}{2} \le \theta_{3} \le \frac{\pi}{2}$$

$$y_{12} = a_{12} + rc_{1}c_{2}c_{3}s_{4}, \frac{-\pi}{2} \le \theta_{3} \le \frac{\pi}{2}$$

$$y_{13} = a_{13} + rc_{1}c_{2}s_{3}, \frac{-\pi}{2} \le \theta_{2} \le \frac{\pi}{2}$$

$$y_{14} = a_{14} + rc_{1}s_{2}, \frac{-\pi}{2} \le \theta_{1} \le \frac{\pi}{2}$$

$$y_{15} = a_{15} + rs_{1}, 0 \le r < \infty$$

A seguir, ilustra-se o procedimento usado para o cálculo de $|f(y) - f(x)|, x, y \in \mathbb{S}$, para $f(z) = z^n$.

Inicialmente, calcula-se a diferença entre f(y) e f(x) através da equação 2.6,

$$\begin{aligned} |f(y) - f(x)| &= |Re(y^n) - Re(x^n) + Im(y^n) - Im(x^n)| \\ &= |\sum_{k=0}^{2k \le n} \binom{n}{2k} (y_0^{n-2k} h_y^{2k} - a_0^{n-2k} h_x^{2k}) \end{aligned}$$

$$\begin{split} &+ i[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_1y_0^{n-(2k+1)}h_y^{2k} - a_1a_0^{n-(2k+1)}h_x^{2k})] \\ &+ j[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_2y_0^{n-(2k+1)}h_y^{2k} - a_2a_0^{n-(2k+1)}h_x^{2k})] \\ &+ k[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_3y_0^{n-(2k+1)}h_y^{2k} - a_3a_0^{n-(2k+1)}h_x^{2k})] \\ &+ e'[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_4y_0^{n-(2k+1)}h_y^{2k} - a_4a_0^{n-(2k+1)}h_x^{2k})] \\ &+ i'[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_5y_0^{n-(2k+1)}h_y^{2k} - a_5a_0^{n-(2k+1)}h_x^{2k})] \\ &+ j'[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_5y_0^{n-(2k+1)}h_y^{2k} - a_5a_0^{n-(2k+1)}h_x^{2k})] \\ &+ k'[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_5y_0^{n-(2k+1)}h_y^{2k} - a_6a_0^{n-(2k+1)}h_x^{2k})] \\ &+ k''[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_8y_0^{n-(2k+1)}h_y^{2k} - a_7a_0^{n-(2k+1)}h_x^{2k})] \\ &+ i'''[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_8y_0^{n-(2k+1)}h_y^{2k} - a_8a_0^{n-(2k+1)}h_x^{2k})] \\ &+ j'''[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_1y_0^{n-(2k+1)}h_y^{2k} - a_1a_0^{n-(2k+1)}h_x^{2k})] \\ &+ k'''[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_{11}y_0^{n-(2k+1)}h_y^{2k} - a_{12}a_0^{n-(2k+1)}h_x^{2k})] \\ &+ e''''[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_{11}y_0^{n-(2k+1)}h_y^{2k} - a_{12}a_0^{n-(2k+1)}h_x^{2k})] \\ &+ i''''[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_{11}y_0^{n-(2k+1)}h_y^{2k} - a_{13}a_0^{n-(2k+1)}h_x^{2k})] \\ &+ i''''[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_{11}y_0^{n-(2k+1)}h_y^{2k} - a_{13}a_0^{n-(2k+1)}h_x^{2k})] \\ &+ i''''[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_{11}y_0^{n-(2k+1)}h_y^{2k} - a_{13}a_0^{n-(2k+1)}h_x^{2k})] \\ &+ k''''[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_{12}y_0^{n-(2k+1)}h_y^{2k} - a_{13}a_0^{n-(2k+1)}h_x^{2k})] \\ &+ k''''[\sum_{k=0}^{2k+1\leq n} \binom{n}{2k+1} (y_{12}y_0^{n-(2k+1)}h_y^{2k} - a$$

com,

$$F = \sum_{k=0}^{2k \le n} \begin{pmatrix} n \\ 2k \end{pmatrix} (y_0^{n-2k} h_y^{2k} - a_0^{n-2k} h_x^{2k}),$$
(5.4)

$$F_{i} = \sum_{k=0}^{2k+1 \le n} \binom{n}{2k+1} (y_{1}y_{0}^{n-(2k+1)}h_{y}^{2k} - a_{1}a_{0}^{n-(2k+1)}h_{x}^{2k}),$$
(5.5)

$$F_j = \sum_{k=0}^{2k+1 \le n} \binom{n}{2k+1} (y_2 y_0^{n-(2k+1)} h_y^{2k} - a_2 a_0^{n-(2k+1)} h_x^{2k}),$$
(5.6)

$$F_k = \sum_{k=0}^{2k+1 \le n} \binom{n}{2k+1} (y_3 y_0^{n-(2k+1)} h_y^{2k} - a_3 a_0^{n-(2k+1)} h_x^{2k}),$$
(5.7)

$$F_{e'} = \sum_{k=0}^{2k+1 \le n} \binom{n}{2k+1} (y_4 y_0^{n-(2k+1)} h_y^{2k} - a_4 a_0^{n-(2k+1)} h_x^{2k}),$$
(5.8)

$$F_{i'} = \sum_{k=0}^{2k+1 \le n} \binom{n}{2k+1} (y_5 y_0^{n-(2k+1)} h_y^{2k} - a_5 a_0^{n-(2k+1)} h_x^{2k}), \tag{5.9}$$

$$F_{j'} = \sum_{k=0}^{2k+1 \le n} \binom{n}{2k+1} (y_6 y_0^{n-(2k+1)} h_y^{2k} - a_6 a_0^{n-(2k+1)} h_x^{2k}),$$
(5.10)

$$F_{k'} = \sum_{k=0}^{2k+1 \le n} \binom{n}{2k+1} (y_7 y_0^{n-(2k+1)} h_y^{2k} - a_7 a_0^{n-(2k+1)} h_x^{2k}),$$
(5.11)

$$F_{e''} = \sum_{k=0}^{2k+1 \le n} \binom{n}{2k+1} (y_8 y_0^{n-(2k+1)} h_y^{2k} - a_8 a_0^{n-(2k+1)} h_x^{2k}), \tag{5.12}$$

$$F_{i''} = \sum_{k=0}^{2k+1 \le n} \binom{n}{2k+1} (y_9 y_0^{n-(2k+1)} h_y^{2k} - a_9 a_0^{n-(2k+1)} h_x^{2k}),$$
(5.13)

$$F_{j''} = \sum_{k=0}^{2k+1 \le n} \binom{n}{2k+1} (y_{10}y_0^{n-(2k+1)}h_y^{2k} - a_{10}a_0^{n-(2k+1)}h_x^{2k}),$$
(5.14)

$$F_{k''} = \sum_{k=0}^{2k+1 \le n} \binom{n}{2k+1} (y_{11}y_0^{n-(2k+1)}h_y^{2k} - a_{11}a_0^{n-(2k+1)}h_x^{2k}),$$
(5.15)

$$F_{e'''} = \sum_{k=0}^{2k+1 \le n} \binom{n}{2k+1} (y_{12}y_0^{n-(2k+1)}h_y^{2k} - a_{12}a_0^{n-(2k+1)}h_x^{2k}), \tag{5.16}$$

$$F_{i'''} = \sum_{k=0}^{2k+1 \le n} \binom{n}{2k+1} (y_{13}y_0^{n-(2k+1)}h_y^{2k} - a_{13}a_0^{n-(2k+1)}h_x^{2k}), \tag{5.17}$$

$$F_{j'''} = \sum_{k=0}^{2k+1 \le n} \binom{n}{2k+1} (y_{14}y_0^{n-(2k+1)}h_y^{2k} - a_{14}a_0^{n-(2k+1)}h_x^{2k}), \tag{5.18}$$

$$F_{k'''} = \sum_{k=0}^{2k+1 \le n} \binom{n}{2k+1} (y_{15}y_0^{n-(2k+1)}h_y^{2k} - a_{15}a_0^{n-(2k+1)}h_x^{2k});$$
(5.19)

a partir desta construção, obtêm-se,

$$\begin{split} |f(y) - f(x)| &= \sqrt{F^2 + F_i^2 + F_j^2 + F_k^2 + F_{e'}^2 + F_{j'}^2 + F_{j'}^2 + F_{e'''}^2 + F_{i'''}^2 + F_{j'''}^2 + F_{j'''}^2 + F_{k'''}^2} \\ &= \sqrt{\sum_{s=2}^{2n} A_s^{(n)} r^s} \end{split}$$

Para compreender melhor este método, que permite calcular a distância |f(y) - f(x)| em função de um polinômio de grau 2n, induz-se o cálculo para $n = 2, 3 \in 4$, fixo. Usa-se como referência deste método os estudos realizados por Maricato [20, 21].

Basicamente, a idéia central consiste em escrever cada $F_l, l = 0, ..., 15$, na seguinte forma:

$$F_l = \sum_{t=1}^n f_{lt} r^t \tag{5.20}$$

$$\Rightarrow F_l^2 = a_{l2}r^2 + a_{l3}r^3 + \dots + a_{l2n}r^{2n} = \sum_{s=2}^{2n} a_{ls}r^s$$
(5.21)

Sendo que para cada l = 0, ..., 15

$$a_{ls} = \begin{cases} \sum_{p=1}^{s-1} f_{lp} f_{l(s-p)}, & se \quad 2 \le s \le n+1 \\ \sum_{n-p}^{n-p} f_{l(p+k)} f_{l(n-k)}, & se \quad s = n+p, \quad p > 1 \end{cases}$$
(5.22)

de modo que,

$$\begin{split} |f(y) - f(x)|^2 &= F^2 + F_i^2 + F_j^2 + F_k^2 + F_{e'}^2 + F_{i'}^2 + F_{j'}^2 + F_{e'''}^2 + F_{e'''}^2 + F_{i'''}^2 + F_{j'''}^2 + F_{k'''}^2 \\ &\sum_{s=2}^{2n} (a_s + a_{is} + a_{js} + a_{ks} + a_{e's} + a_{i's} + a_{j's} + a_{k's} + a_{e''s} + a_{i''s} + a_{j''s} + a_{k''s} + a_{e'''s} + a_{i''s} + a_{i''s} + a_{i''s} + a_{i'''s} + a_$$

5.3 O caso em que $f(z) = z^2$

Seja $x = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15})$ o centro da bola 16dimensional de raio r, e $y = (y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}, y_{11}, y_{12}, y_{13}, y_{14}, y_{15})$ um ponto de sua fronteira parametrizado pela equação 5.3.

Vamos utilizar 2.6, para calcular |f(y) - f(x)|, para $f(z) = z^2$. Em que, $x^2 = (x_0 + h_x)^2 = \mathbb{R}e(x^2) + Im(x^2)$,

$$\mathbb{R}e(x^{2}) = \sum_{k=0}^{2k \le 2} \begin{pmatrix} 2\\ 2k \end{pmatrix} a_{0}^{2-2k} h_{x}^{2k} = \begin{pmatrix} 2\\ 0 \end{pmatrix} a_{0}^{2} h_{x}^{0} + \begin{pmatrix} 2\\ 2 \end{pmatrix} a_{0}^{0} h_{x}^{2} = a_{0}^{2} + h_{x}^{2}$$
$$Im(x^{2}) = h_{x} \begin{bmatrix} 2k+1 \le 2\\ 2k+1 \end{bmatrix} a_{0}^{2-(2k+1)} h_{x}^{2k} \end{bmatrix} = h_{x} \begin{bmatrix} \begin{pmatrix} 2\\ 1 \end{pmatrix} a_{0}^{2-(0+1)} h_{x}^{0} \end{bmatrix} = 2a_{0}h_{x}$$

De forma análoga, calcula-se $y^2 = (y_0 + h_y)^2 = \mathbb{R}e(y^2) + Im(y^2),$

$$\mathbb{R}e(y^2) = \sum_{k=0}^{2k \le 2} \binom{2}{2k} y_0^{2-2k} h_y^{2k} = y_0^2 + h_y^2$$
$$Im(y^2) = h_y \left[\sum_{k=0}^{2k+1 \le 2} \binom{2}{2k+1} y_0^{2-(2k+1)} h_y^{2k} \right] = 2y_0 h_y$$

Sendo assim, segue que,

$$\begin{split} |f(y) - f(x)| &= |(y_0 + h_y)^2 - (a_0 + h_x)^2| = |y_0^2 - a_0^2 + h_y^2 - h_x^2 + 2y_0h_y - 2a_0h_x| \\ &= |y_0^2 - a_0^2 + h_y^2 - h_x^2 + 2y_0(iy_1 + jy_2 + ky_3 + e^{'}y_4 + i^{'}y_5 + j^{'}y_6 \\ &+ k^{'}y_7 + e^{''}y_8 + i^{''}y_9 + j^{''}y_{10} + k^{''}y_{11} + e^{'''}y_{12} + i^{'''}y_{13} + j^{'''}y_{14} + k^{'''}y_{15}) \\ &- 2a_0(ia_1 + ja_2 + ka_3 + e^{'}a_4 + i^{'}a_5 + j^{'}a_6 + k^{'}a_7 + e^{''}a_8 + i^{''}a_9 + j^{''}a_{10} \\ &+ k^{''}a_{11} + e^{'''}a_{12} + i^{'''}a_{13} + j^{'''}a_{14} + k^{'''}a_{15})| = |y_0^2 - a_0^2 + h_y^2 - h_x^2 \\ &+ (2y_0y_1 - 2a_0a_1)i + (2y_0y_2 - 2a_0a_2)j + (2y_0y_3 - 2a_0a_3)k + (2y_0y_4 - 2a_0a_4)e^{'} \\ &+ (2y_0y_5 - 2a_0a_5)i' + (2y_0y_6 - 2a_0a_6)j' + (2y_0y_7 - 2a_0a_7)k' + (2y_0y_8 - 2a_0a_8)e^{''} \\ &+ (2y_0y_9 - 2a_0a_9)i'' + (2y_0y_{10} - 2a_0a_{10})j'' + (2y_0y_{11} - 2a_0a_{11})k'' + (2y_0y_{12} - 2a_0a_{12})e^{''} \\ &+ (2y_0y_{13} - 2a_0a_{13})i''' + (2y_0y_{14} - 2a_0a_{14})j''' + (2y_0y_{15} - 2a_0a_{15})k'''| \end{split}$$

Simplifica-se a notação acima denominando por,

$$\begin{split} F &= y_0^2 - a_0^2 + h_y^2 - h_x^2, \quad F_i = 2y_0y_1 - 2a_0a_1, \quad F_j = 2y_0y_2 - 2a_0a_2, \quad F_k = 2y_0y_3 - 2a_0a_3, \\ F_{e'} &= 2y_0y_4 - 2a_0a_4, \quad F_{i'} = 2y_0y_5 - 2a_0a_5, \quad F_{j'} = 2y_0y_6 - 2a_0a_6, \quad F_{k'} = 2y_0y_7 - 2a_0a_7, \\ F_{e''} &= 2y_0y_8 - 2a_0a_8, \quad F_{i''} = 2y_0y_9 - 2a_0a_9, \quad F_{j''} = 2y_0y_{10} - 2a_0a_{10}, \quad F_{k''} = 2y_0y_{11} - 2a_0a_{11}, \\ F_{e'''} &= 2y_0y_{12} - 2a_0a_{12}, \quad F_{i'''} = 2y_0y_{13} - 2a_0a_{13}, \quad F_{j'''} = 2y_0y_{14} - 2a_0a_{14}, \quad F_{k'''} = 2y_0y_{15} - 2a_0a_{15} \end{split}$$

Desta forma,

$$F = y_0^2 - a_0^2 + h_y^2 - h_x^2 = (y_0 - a_0)(y_0 + a_0) + h_y^2 - h_x^2$$

= $(a_0 + rc_1c_2...c_{15} - a_0)(a_0 + rc_1c_2...c_{15} + a_0) + h_x^2 - 2r\Pi + r^2(c^2 - 1) - h_x^2$
= $rc(2a_0 + rc) - 2r\Pi + r^2(c^2 - 1) = 2a_0rc + r^2c^2 - 2r\Pi + r^2(c^2 - 1)$
= $(2a_0c - 2\Pi)r + (2c^2 - 1)r^2 = f_1r + f_2r^2$,

dado que, $f_1 = (2a_0c - 2\Pi)$, e $f_2 = 2c^2 - 1$.

Procedendo de forma análoga, resulta

$$\begin{split} F_i &= 2y_0y_1 - 2a_0a_1 = (2(a_0 + rc_1c_2...c_{15})(a_1 + rc_1c_2...s_{15})) - 2a_0a_1 \\ &= 2a_0a_1 + 2a_0rc_1c_2...s_{15} + 2a_1rc_1c_2...c_{15} + 2r^2c_1^2c_2^2...c_{14}^2c_{15}s_{15} - 2a_0a_1 \\ &= 2r(a_0c_1c_2...s_{15} + a_1c + rcc_1c_2...s_{15}) = (2a_0c_1c_2...s_{15} + 2a_1c)r + (2cc_1c_2...c_{14}s_{15})r^2 \\ &= f_{i1}r + f_{i2}r^2, \end{split}$$

para, $f_{i1} = 2a_0c_1c_2...s_{15} + 2a_1c$, e $f_{i2} = 2cc_1...s_{15}$.

Para F_j , tem-se:

$$F_{j} = 2y_{0}y_{2} - 2a_{0}a_{2} = (2(a_{0} + rc_{1}c_{2}...c_{15})(a_{2} + rc_{1}c_{2}...s_{14})) - 2a_{0}a_{2}$$

$$= 2a_{0}a_{2} + 2a_{0}rc_{1}c_{2}...s_{14} + 2a_{2}rc_{1}c_{2}...c_{15} + 2r^{2}c_{1}c_{2}...c_{15}c_{1}...s_{14} - 2a_{0}a_{2}$$

$$= 2a_{0}rc_{1}c_{2}...s_{14} + 2ra_{2}c + 2r^{2}cc_{1}c_{2}...s_{14} = (2a_{0}c_{1}...s_{14} + 2a_{2}c)r + (2cc_{1}...s_{14})r^{2}$$

$$= f_{j1}r + f_{j2}r^{2},$$

sendo que, $f_{j1} = 2a_0c_1c_2...s_{14} + 2a_2c$, e $f_{j2} = 2cc_1...s_{14}$.

Seguindo o mesmo raciocínio, têm-se:

$$F_{k} = 2y_{0}y_{3} - 2a_{0}a_{3} = (2a_{0}c_{1}...s_{13} + 2a_{3}c)r + 2cc_{1}...s_{13}r^{2} = f_{k1}r + f_{k2}r^{2}$$

$$F_{e'} = 2y_{0}y_{4} - 2a_{0}a_{4} = (2a_{0}c_{1}...s_{12} + 2a_{4}c)r + 2cc_{1}...s_{12}r^{2} = f_{e'1}r + f_{e'2}r^{2}$$

$$\vdots$$

$$F_{j'''} = 2y_{0}y_{14} - 2a_{0}a_{14} = (2a_{0}c_{1}s_{2} + 2a_{14}c)r + 2cc_{1}s_{2}r^{2} = f_{j'''1}r + f_{j'''2}r^{2}$$

$$F_{k'''} = 2y_{0}y_{15} - 2a_{0}a_{15} = (2a_{0}s_{1} + 2a_{15}c)r + 2cs_{1}r^{2} = f_{k'''1}r + f_{k'''2}r^{2}$$

Deste modo, deve-se calcular,

$$\begin{aligned} |f(y) - f(x)|^2 &= F^2 + F_i^2 + F_j^2 + F_k^2 + F_{e'}^2 + F_{i'}^2 + F_{j'}^2 + F_{k'}^2 + F_{e''}^2 + F_{i''}^2 + F_{j''}^2 + F_{k''}^2 \\ &+ F_{e'''}^2 + F_{i'''}^2 + F_{j'''}^2 + F_{k'''}^2 \end{aligned}$$

Como $F_l = f_{l1}r + f_{l2}r^2$, para cada F_l , l = 0, ..., 15, eleva-se à potência 2, isto é,

$$\begin{array}{rcl} F^2 &=& f_1^2 r^2 + 2 f_1 f_2 r^3 + f_2^2 r^4, \\ F_i^2 &=& f_{i1}^2 r^2 + 2 f_{i1} f_{i2} r^3 + f_{i2}^2 r^4, \\ F_j^2 &=& f_{j1}^2 r^2 + 2 f_{j1} f_{j2} r^3 + f_{j2}^2 r^4, \\ && \vdots \\ F_{j'''}^2 &=& f_{j'''1}^2 r^2 + 2 f_{j'''1} f_{j'''2} r^3 + f_{j'''2}^2 r^4, \\ F_{k'''}^2 &=& f_{k'''1}^2 r^2 + 2 f_{k'''1} f_{k'''2} r^3 + f_{k'''2}^2 r^4 \end{array}$$

Com isto, chega-se ao polinômio da equação 5.1, isto é,

$$|f(y) - f(x)| = \sqrt{A_2^{(2)}r^2 + A_3^{(2)}r^3 + A_4^{(2)}r^4},$$

dado que,

$$\begin{aligned} A_2^{(2)} &= f_1^2 + f_{i1}^2 + f_{j1}^2 + f_{k1}^2 + f_{e'1}^2 + f_{i'1}^2 + f_{j'1}^2 + f_{k'1}^2 + f_{e''1}^2 + f_{i''1}^2 + f_{j''1}^2 + f_{k''1}^2 \\ &+ f_{e'''1}^2 + f_{i'''1}^2 + f_{j'''1}^2 + f_{k'''1}^2 \end{aligned}$$

$$\Rightarrow A_2^{(2)} = \sum_{l=0}^{15} f_{l1}^2 \tag{5.23}$$

$$\Rightarrow A_3^{(2)} = \sum_{l=0}^{15} 2f_{l1}f_{l2} \tag{5.24}$$

$$\begin{aligned} A_4^{(2)} &= f_2^2 + f_{i2}^2 + f_{j2}^2 + f_{k2}^2 + f_{e'2}^2 + f_{i'2}^2 + f_{j'2}^2 + f_{k'2}^2 + f_{e''2}^2 + f_{i''2}^2 + f_{j''2}^2 + f_{k''2}^2 \\ &+ f_{e'''2}^2 + f_{i'''2}^2 + f_{j'''2}^2 + f_{k'''2}^2 \end{aligned}$$

$$\Rightarrow A_4^{(2)} = \sum_{l=0}^{15} f_{l2}^2 \tag{5.25}$$

Efetuando os devidos cálculos, têm-se,

$$\begin{split} A_2^{(2)} &= f_1^2 + f_{i1}^2 + f_{j1}^2 + f_{k1}^2 + f_{e'1}^2 + f_{j'1}^2 + f_{j'1}^2 + f_{k'1}^2 + f_{e''1}^2 + f_{i''1}^2 + f_{j''1}^2 + f_{k''1}^2 + f_{e'''1}^2 + f_{k''1}^2 + f_{e'''1}^2 \\ &+ f_{i'''1}^2 + f_{j'''1}^2 + f_{k'''1}^2 = (4a_0^2c^2 - 8a_0c\Pi + 4\Pi^2) + (4a_0^2c_1^2...s_{15}^2 + 8a_0a_1cc_1...s_{15} + 4a_1^2c^2) \\ &+ (4a_0^2c_1^2...s_{14}^2 + 8a_0a_2cc_1...s_{14} + 4a_2^2c^2) + (4a_0^2c_1^2...s_{13}^2 + 8a_0a_3cc_1...s_{13} + 4a_3^2c^2) + \dots \\ &+ (4a_0^2s_1^2 + 8a_0a_{15}cs_1 + 4a_{15}^2c^2) = 4a_0^2c^2 - 8a_0c\Pi + 4\Pi^2 + 4a_0^2c_1^2...c_{14}^2(1 - c_{15}^2) \\ &+ 4a_0^2c_1^2...c_{13}^2(1 - c_{14}^2) + 4a_0^2c_1^2...c_{12}^2(1 - c_{13}^2) + 4a_0^2c_1^2...c_{11}^2(1 - c_{12}^2) + 4a_0^2c_1^2...c_{10}^2(1 - c_{11}^2) \\ &+ 4a_0^2c_1^2...c_9^2(1 - c_{10}^2) + 4a_0^2c_1^2...c_8^2(1 - c_9^2) + 4a_0^2c_1^2...c_7^2(1 - c_8^2) + 4a_0^2c_1^2...c_6^2(1 - c_7^2) \\ &+ 4a_0^2c_1^2...c_5^2(1 - c_6^2) + 4a_0^2c_1^2...c_4^2(1 - c_5^2) + 4a_0^2c_1^2c_2^2c_3^2(1 - c_4^2) + 4a_0^2c_1^2c_2^2(1 - c_3^2) + 4a_0^2c_1^2(1 - c_2^2) \\ &+ 4a_0^2(1 - c_1^2) + 8a_0c[a_1c_1c_2....s_{15} + a_2c_1c_2....s_{14} + ... + a_{15}s_1] + 4c^2[a_1^2 + a_2^2 + ... + a_{15}^2] \\ &= 4a_0c^2 - 8a_0c\Pi + 4\Pi^2 - 4a_0^2c^2 + 4a_0^2 + 8a_0c\Pi - 4h_x^2c^2 = 4(a_0^2 - h_x^2c^2 + \Pi^2) \end{split}$$

$$\Rightarrow A_2^{(2)} = 4(a_0^2 - h_x^2 c^2 + \Pi^2)$$
(5.26)

$$\begin{split} A_3^{(2)} &= 2f_1f_2 + 2f_{i1}f_{i2} + 2f_{j1}f_{j2} + 2f_{k1}f_{k2} + 2f_{c'1}f_{c'2} + 2f_{i'1}f_{i''2} + 2f_{j''1}f_{j''2} + 2f_{k''1}f_{k''2} + 2f_{c''1}f_{c'''2} \\ &+ 2f_{i''1}f_{i'''2} + 2f_{j''1}f_{j'''2} + 2f_{k''1}f_{k'''2} + 2f_{c'''1}f_{c'''2} + 2f_{i'''1}f_{i'''2} + 2f_{j'''1}f_{j'''2} + 2f_{k'''1}f_{k'''2} \\ &= 2[2(a_0c - \Pi)(2c^2 - 1) + (2a_0c_1...s_{15} + 2a_1c)(2cc_1...s_{15}) + (2a_0c_1...s_{14} + 2a_2c)(2cc_1...s_{14}) \\ &+ (2a_0c_1...s_{13} + 2a_3c)(2cc_1...s_{13}) + (2a_0c_1...s_{12} + 2a_4c)(2cc_1...s_{12}) + (2a_0c_1...s_{11} + 2a_5c)(2cc_1...s_{14}) \\ &+ (2a_8c)(2cc_1...s_{16}) + 2a_6c)(2cc_1...s_{10}) + (2a_0c_1...s_{19} + 2a_{7c})(2cc_1...s_{9}) + (2a_0c_1...s_{8}) \\ &+ 2a_8c)(2cc_1...s_{8}) + (2a_0c_1...s_{7} + 2a_9c)(2cc_1...s_{7}) + (2a_0c_1...s_{6} + 2a_{10}c)(2cc_1...s_{6}) + (2a_0c_1...s_{7}) \\ &+ 2a_{11}c)(2cc_{1...s_{5}}) + (2a_0c_1...s_{4} + 2a_{12}c)(2cc_1...s_{4}) + (2a_0c_1c_2s_3 + 2a_{13}c)(2cc_1c_2s_3) + (2a_0c_1s_2) \\ &+ 2a_{14}c)(2cc_{1...s_{5}}) + (2a_0c_1...s_{4} + 2a_{12}c)(2cc_1...s_{14}) + (2a_0c_1^2...s_{13}^2 + 4a_{3}c^2c_{1...s_{13}} + 4a_{0}cc_{1}^2...s_{15}^2 \\ &+ 4a_1c^2c_1...s_{15} + 4a_0cc_{1}^2...s_{14}^2 + 4a_2c^2c_1...s_{14} + 4a_0cc_{1}^2...s_{13}^2 + 4a_3c^2c_{1...s_{13}} + 4a_0cc_{1}^2...s_{16}^2 \\ &+ 4a_4c^2c_1...s_{12} + 4a_0cc_{1}^2...s_{14}^2 + 4a_2c^2c_1...s_{14} + 4a_0cc_{1}^2...s_{10}^2 + 4a_0cc_{1}^2...s_{16}^2 \\ &+ 4a_1c^2c_1...s_{6} + 4a_0cc_{1}^2...s_{5}^2 + 4a_{11}c^2c_{1...s_{7}} + 4a_0cc_{1}^2...s_{16}^2 + 4a_0cc_{1}^2...s_{16}^2 \\ &+ 4a_{10}c^2c_{1...s_{6}} + 4a_0cc_{1}^2...s_{5}^2 + 4a_{10}c^2c_{1...s_{7}} + 4a_{0}cc_{1}^2...s_{16}^2 + 4a_{0}cc_{1}^2...s_{16}^2 + 4a_{0}cc_{1}^2...s_{16}^2 \\ &+ 4a_{10}c^2c_{1...s_{6}} + 4a_{0}cc_{1}^2...c_{5}^2 + 4a_{0}cc_{1}^2...s_{1}^2 + 4a_{0}cc_{1}^2...s_{16}^2 + 4a_{0}cc_{1}^2...s_{16}^2 \\ &+ 4a_{0}cc_{1}^2...(1 - c_{15}^2) + 4a_{0}cc_{1}^2...c_{14}^2(1 - c_{15}^2) + 4a_{0}cc_{1}^2(1 - c_{12}^2) \\ &+ 4a_{0}cc_{1}^2...(1 - c_{15}^2) + 4a_{0}cc_{1}^2...c_{14}^2(1 - c_{15}^2) + 4a_{0}cc_{1}^2...c_{$$

$$\Rightarrow A_3^{(2)} = 4(a_0c + \Pi) \tag{5.27}$$

$$\begin{aligned} A_4^{(2)} &= f_2^2 + f_{i2}^2 + f_{j2}^2 + f_{k2}^2 + f_{e'2}^2 + f_{i'2}^2 + f_{j'2}^2 + f_{k'2}^2 + f_{e''2}^2 + f_{i''2}^2 + f_{j''2}^2 + f_{k''2}^2 + f_{e'''2}^2 \\ &+ f_{i'''2}^2 + f_{j'''2}^2 + f_{k'''2}^2 = (2c^2 - 1)^2 + (2cc_1...s_{15})^2 + (2cc_1...s_{14})^2 + ... + (2cc_1s_2)^2 + (2cs_1)^2 \\ &= 4c^4 - 4c^2 + 1 + 4c^2c_1^2...c_{14}^2(1 - c_{15}^2) + 4c^2c_1^2...c_{13}^2(1 - c_{14}^2) + ... + 4c^2c_1^2(1 - c_2^2) + 4c^2(1 - c_1^2) \\ &= 4c^4 - 4c^2 + 1 - 4c^2c_1^2...c_{15}^2 + 4c^2 = 4c^4 + 1 - 4c^4 = 1 \end{aligned}$$

$$\Rightarrow A_4^{(2)} = 1 \tag{5.28}$$

Logo,

$$\begin{cases}
A_2^{(2)} = 4(a_0^2 - h_x^2 c^2 + \Pi^2), \\
A_3^2 = 4(a_0 c + \Pi), \\
A_4^{(2)} = 1
\end{cases}$$
(5.29)

E portanto,

$$|f(y) - f(x)| = \sqrt{A_2^{(2)}r^2 + A_3^{(2)}r^3 + A_4^{(2)}r^4} = \sqrt{4(a_0^2 - h_x^2c^2 + 4\Pi)r^2 + 4(a_0c + \Pi)r^3 + 1r^4}$$

5.4 O caso em que $f(z) = z^3$

Considere $x = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15})$ o centro da bola 16-dimensional de raio r, e $y = (y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}, y_{11}, y_{12}, y_{13}, y_{14}, y_{15})$ um ponto de sua fronteira parametrizado pela equação 5.3. Com o intuito de calcular |f(y) - f(x)|, através da transformação $f(z) = z^3$, têm-se,

$$f(x) = x^{3} = (a_{0} + h_{x})^{3} = \mathbb{R}e(x^{3}) + Im(x^{3}) = a_{0}^{3} + 3a_{0}^{2}h_{x} + 3a_{0}h_{x}^{2} + h_{x}^{3}$$

$$f(y) = y^{3} = (y_{0} + h_{y})^{3} = \mathbb{R}e(y^{2}) + Im(y^{2}) = y_{0}^{3} + 3y_{0}^{2}h_{y} + 3y_{0}h_{y}^{2} + h_{y}^{3}$$

segue que,

$$\begin{split} |f(y) - f(x)| &= |y_0^3 + 3y_0^2h_y + 3y_0h_y^2 + h_y^3 - a_0^3 - 3a_0^2h_x - 3a_0h_x^2 - h_x^3| \\ &= |y_0^3 - a_0^3 + 3(y_0h_y^2 - a_0h_x^2) + 3y_0^2h_y + h_y^3 - 3a_0^2h_x - h_x^3| \\ &= |y_0^3 - a_0^3 + 3(y_0h_y^2 - a_0h_x^2) + (3y_0^2 + h_y^2)h_y - (3a_0^2 + h_x^2)h_x| \\ &= |y_0^3 - a_0^3 + 3(y_0h_y^2 - a_0h_x^2) + (3y_0^2 + h_y^2)(iy_1 + iy_2 + ky_3 + e^{'}y_4 + i^{'}y_5 + i^{'}y_6 + k^{'}y_7 \\ &+ e^{''}y_8 + i^{''}y_9 + j^{''}y_{10} + k^{''}y_{11} + e^{'''}y_{12} + i^{'''}y_{13} + j^{'''}y_{14} + k^{'''}y_{15}) - (3a_0^2 + h_x^2)(ia_1 \\ &+ ja_2 + ka_3 + e^{'}a_4 + i^{'}a_5 + j^{'}a_6 + k^{'}a_7 + e^{''}a_8 + i^{''}a_9 + j^{''}a_{10} + k^{''}a_{11} + e^{'''}a_{12} \\ &+ i^{'''}a_{13} + j^{'''}a_{14} + k^{'''}a_{15})| = |y_0^3 - a_0^3 + 3(y_0h_y^2 - a_0h_x^2) + i[(3y_0^2 + h_y^2)y_1 - (3a_0^2 \\ &+ h_x^2)a_1] + j[(3y_0^2 + h_y^2)y_2 - (3a_0^2 + h_x^2)a_2] + k[(3y_0^2 + h_y^2)y_3 - (3a_0^2 + h_x^2)a_3] \\ &+ e^{'}[(3y_0^2 + h_y^2)y_4 - (3a_0^2 + h_x^2)a_4] + i'[(3y_0^2 + h_y^2)y_5 - (3a_0^2 + h_x^2)a_5] + j'[(3y_0^2 + h_y^2)y_6 \\ &- (3a_0^2 + h_x^2)a_6] + k'[(3y_0^2 + h_y^2)y_7 - (3a_0^2 + h_x^2)a_7] + e^{''}[(3y_0^2 + h_y^2)a_1] + k^{''}[(3y_0^2 \\ &+ h_y^2)y_{11} - (3a_0^2 + h_x^2)a_1] + e^{'''}[(3y_0^2 + h_y^2)y_{12} - (3a_0^2 + h_x^2)a_1] + i^{'''}[(3y_0^2 + h_y^2)y_{13} \end{split}$$

$$- (3a_0^2 + h_x^2)a_{13}] + j'''[(3y_0^2 + h_y^2)y_{14} - (3a_0^2 + h_x^2)a_{14}] + k'''[(3y_0^2 + h_y^2)y_{15} - (3a_0^2 + h_x^2)a_{15}]$$

$$= |F + iF_i + jF_j + kF_k + e'F_{e'}i'F_{i'} + j'F_{j'} + k'F_{k'} + e''F_{e''} + i''F_{i''} + j''F_{j''}$$

$$+ k''F_{k''} + e'''F_{e'''}i'''F_{i'''} + j'''F_{j'''} + k'''F_{k'''}|,$$

dado que,

$$\begin{split} F &= y_0^3 - a_0^3 + 3(y_0h_y^2 - a_0h_x^2) = (a_0 + rc)^3 - a_0^3 + 3((a_0 + rc)(h_x^2 - 2r\Pi + r^2s^2) - a_0h_x^2) \\ &= a_0^3 + 3a_0^2cr + 3a_0c^2r^2 + c^3r^3 - a_0^3 + 3a_0h_x^2 - 6a_0r\Pi + 3a_0r^2s^2 + 3rch_x^2 - 6r^2c\Pi + 3r^3cs^2 - 3a_0h_x^2 \\ &= 3a_0^2cr + 3a_0c^2r^2 + c^3r^3 - (6a_0\Pi - 3h_x^2c)r + (3a_0s^2 - 6c\Pi)r^2 + 3cs^2r^3 = [3c(a_0^2 + h_x^2) - 6a_0\Pi]r \\ &+ [3a_0(c^2 - (1 - c^2)) - 6c\Pi]r^2 + [c^3 + 3c^3 - 3c]r^3 = [3c(a_0^2 + h_x^2) - 6a_0\Pi]r + [3a_0(2c^2 - 1) \\ &- 6c\Pi]r^2 + [4c^3 - 3c]r^3 = f_1r + f_2r^2 + f_3r^3 \end{split}$$

para,

$$f_1 = 3c(a_0^2 + h_x^2) - 6a_0\Pi$$
$$f_2 = 3a_0(2c^2 - 1) - 6c\Pi$$
$$f_3 = 4c^3 - 3c$$

$$\begin{split} F_i &= (3y_0^2 + h_y^2)y_1 - (3a_0^2 + h_x^2)a_1 = 3(y_0^2y_1 - a_0^2a_1) + (y_1h_y^2 - a_1h_x^2) = 3(y_0^2y_1 - a_0^2a_1) \\ &+ (a_1 + rc_1...s_{15})(h_x^2 - 2r\Pi + s^2r^2) - a_1h_x^2 = 3((a_0 + rc)^2(a_1 + rc_1...s_{15}) - a_0^2a_1) \\ &+ a_1h_x^2 - 2a_1r\Pi + a_1s^2r^2 + rc_1...s_{15}h_x^2 - 2r^2\Pi c_1...s_{15} + r^3s^2c_1...s_{15} - a_1h_x^2 \\ &= 3(a_0^2 + 2a_0rc + r^2c^2)(a_1 + rc_1...s_{15}) - 3a_0^2a_1 - 2a_1r\Pi + a_1s^2r^2 + rc_1...s_{15}h_x^2 - 2r^2\Pi c_1...s_{15} \\ &+ r^3s^2c_1...s_{15} = 3a_0^2a_1 + 3a_0^2rc_1...s_{15} + 6a_0a_1rc + 6a_0r^2cc_1...s_{15} + 3a_1r^2c^2 + 3r^3c^2c_1...s_{15} \\ &- 3a_0^2a_1 - 2a_1r\Pi + a_1s^2r^2 + rc_1...s_{15}h_x^2 - 2r^2\Pi c_1...s_{15} + r^3s^2c_1...s_{15} = (3a_0^2c_1...s_{15} + 6a_0a_1c \\ &+ h_x^2c_1...s_{15} - 2a_1\Pi)r + (6a_0cc_1...s_{15} + 3a_1c^2 + a_1s^2 - 2\Pi c_1...s_{15})r^2 + (3c^2c_1...s_{15} + s^2c_1...s_{15})r^3 \\ &= f_{i1}r^1 + f_{i2}r^2 + f_{i3}r^3 \end{split}$$

 $\operatorname{com},$

$$\begin{split} f_{i1} &= 3a_0^2c_1...s_{15} + 6a_0a_1c + h_x^2c_1...s_{15} - 2a_1\Pi = (3a_0^2 + h_x^2)c_1...s_{15} + 2a_1(3a_0c - \Pi), \\ f_{i2} &= 6a_0cc_1...s_{15} + 3a_1c^2 - a_1(1 - c^2) - 2\Pi c_1...s_{15} = a_1(4c^2 - 1) + 2(3a_0c - \Pi)c_1...s_{15}, \\ f_{i3} &= 3c^2c_1...s_{15} + s^2c_1...s_{15} = c_1...s_{15}(3c^2 - (1 - c^2)) = c_1...s_{15}(4c^2 - 1) \end{split}$$

Analogamente,

$$\begin{split} F_{j} &= (3y_{0}^{2} + h_{y}^{2})y_{2} - (3a_{0}^{2} + h_{x}^{2})a_{2} = 3(y_{0}^{2}y_{2} - a_{0}^{2}a_{2}) + (y_{2}h_{y}^{2} - a_{2}h_{x}^{2}) = 3(a_{0} + rc)^{2}(a_{2} + rc_{1}...s_{14}) \\ &- 3a_{0}^{2}a_{2} + (a_{2} + rc_{1}...s_{14})(h_{x}^{2} - 2r\Pi + s^{2}r^{2}) - a_{2}h_{x}^{2} = 3(a_{0}^{2} + 2a_{0}rc + r^{2}c^{2})(a_{2} + rc_{1}...s_{14}) \\ &- 3a_{0}^{2}a_{2} + (a_{2} + rc_{1}...s_{14})(h_{x}^{2} - 2r\Pi + s^{2}r^{2}) - a_{2}h_{x}^{2} = 3a_{0}^{2}a_{2} + 3a_{0}^{2}rc_{1}...s_{14} + 6a_{0}a_{2}rc \\ &+ 6a_{0}r^{2}cc_{1}...s_{14} + 3r^{2}c^{2}a_{2} + 3r^{3}c^{2}c_{1}...s_{14} - 3a_{0}^{2}a_{2} + a_{2}h_{x}^{2} - 2a_{2}r\Pi + a_{2}s^{2}r^{2} + h_{x}^{2}rc_{1}...s_{14} \\ &- 2r^{2}\Pi c_{1}...s_{14} + s^{2}r^{3}c_{1}...s_{14} - a_{2}h_{x}^{2} = (3a_{0}^{2}c_{1}...s_{14} + 6a_{0}a_{2}cc - 2a_{2}\Pi + h_{x}^{2}c_{1}...s_{14})r \\ &+ (6a_{0}cc_{1}...s_{14} + 3c^{2}a_{2} + a_{2}s^{2} - 2\Pi c_{1}...s_{14})r^{2} + (3c^{2}c_{1}...s_{14} + s^{2}c_{1}...s_{14})r^{3} \\ &= f_{j1}r^{1} + f_{j2}r^{2} + f_{j3}r^{3} \end{split}$$

dado que,

$$f_{j1} = (3a_0^2 + h_x^2)c_1...s_{14} + 2a_2(3a_0c - \Pi)$$

$$f_{j2} = (3a_0c - \Pi)2c_1...s_{14} + a_2(c^2 - 1 + 3c^2) = a_2(4c^2 - 1) + 2(3a_0c - \Pi)c_1...s_{14}$$

$$f_{j3} = 3c^2c_1...s_{14} + s^2c_1...s_{14} = c_1...s_{14}(3c^2 - (1 - c^2)) = c_1...s_{14}(4c^2 - 1)$$

Procedendo de forma análoga, obtêm-se,

$$F_{k} = [(3a_{0}^{2} + h_{x}^{2})c_{1}...s_{13} + 2a_{3}(3a_{0}c - \Pi)]r + [a_{3}(4c^{2} - 1) + 2(3a_{0}c - \Pi)c_{1}...s_{13}]r^{2} + [c_{1}...s_{13}(4c^{2} - 1)]r^{3} = f_{k1}r^{1} + f_{k2}r^{2} + f_{k3}r^{3} F_{e'} = [(3a_{0}^{2} + h_{x}^{2})c_{1}...s_{12} + 2a_{4}(3a_{0}c - \Pi)]r + [a_{4}(4c^{2} - 1) + 2(3a_{0}c - \Pi)c_{1}...s_{12}]r^{2} + [c_{1}...s_{12}(4c^{2} - 1)]r^{3} = f_{e'1}r^{1} + f_{e'2}r^{2} + f_{e'3}r^{3} \vdots F_{e'} = [(3a_{0}^{2} + h_{x}^{2})c_{1}c_{1} + 2a_{2}(3a_{0}c_{1} - \Pi)]r + [a_{2}(4c^{2} - 1) + 2(3a_{0}c_{1} - \Pi)c_{1}c_{1}...s_{12}]r^{2} \vdots$$

$$F_{j'''} = [(3a_0^2 + h_x^2)c_1s_2 + 2a_{14}(3a_0c - \Pi)]r + [a_{14}(4c^2 - 1) + 2(3a_0c - \Pi)c_1s_2]r^2 + [c_1s_2(4c^2 - 1)]r^3 = f_{j'''1}r^1 + f_{j'''2}r^2 + f_{j'''3}r^3$$

$$F_{k'''} = [(3a_0^2 + h_x^2)s_1 + 2a_{15}(3a_0c - \Pi)]r + [a_{15}(4c^2 - 1) + 2(3a_0c - \Pi)s_1]r^2 + [s_1(4c^2 - 1)]r^3 = f_{k'''1}r^1 + f_{k'''2}r^2 + f_{k'''3}r^3$$

Desta forma, segue que,

$$F_l = f_{l1}r^1 + f_{l2}r^2 + f_{l3}r^3, l = 0, \dots, 15$$

Consequentemente,

$$F_l^2 = f_{l1}^2 r^2 + 2f_{l1}f_{l2}r^3 + (f_{l2}^2 + 2f_{l1}f_{l3})r^4 + 2f_{l2}f_{l3}r^5 + f_{l3}^2r^6, l = 0, \dots, 15$$

então se,

têm-se,

$$|f(y) - f(x)| = \sqrt{A_2^{(3)}r^2 + A_3^{(3)}r^3 + A_4^{(3)}r^4 + A_5^{(3)}r^5 + A_6^{(3)}r^6}$$

dado que,

$$A_{2}^{(3)} = \sum_{l=0}^{15} f_{l1}^{2}, \quad A_{3}^{(3)} = \sum_{l=0}^{15} 2f_{l1}f_{l2}, \quad A_{4}^{(3)} = \sum_{l=0}^{15} (f_{l2}^{2} + 2f_{l1}f_{l3}), \quad A_{5}^{(3)} = \sum_{l=0}^{15} 2f_{l2}f_{l3}, \quad A_{5}^{(3)} = \sum_{l=0}^{15} f_{l3}^{2}$$

Neste caso, para n = 3, têm-se,

$$\begin{split} A_2^{(3)} &= f_1^2 + f_{11}^2 + f_{21}^2 + f_{e1}^2 + f_{e1}^2 + f_{p1}^2 + f_{21}^2 + f_{e1}^2 + f_{e1}^2 + f_{e1}^2 + f_{21}^2 + f_{e11}^2 + f_{$$

$$\begin{split} & \dots \quad s_{15}a_1 + c_1 \dots s_{14}a_2 + c_1 \dots s_{13}a_3 + \dots + c_1s_2a_{14} + s_1a_{15} \right] + 4(9a_0^2c^2 - 6a_0c\Pi + \Pi^2)[a_1^2 + a_2^2 + a_3^2 \dots \\ & + a_{14}^2 + a_{15}^2 \right] = 9c^2a_0^4 + 18c^2a_0^2h_x^2 + 9c^2h_x^4 - 36ca_0^3\Pi - 36ch_x^2a_0\Pi + 36a_0^2\Pi^2 - 9a_0^4c^2 - 6a_0^2c^2h_x^2 \\ & - h_x^4c^2 + 4(3a_0^2 + h_x^2)(3a_0c - \Pi)\Pi + 4(9a_0^2c^2 - 6a_0c\Pi + \Pi^2)(-h_x^2) + 9a_0^4 + 6a_0^2h_x^2 + h_x^4 \\ & = 18c^2a_0^2h_x^2 + 9c^2h_x^4 - 36ca_0^3\Pi - 36a_0ch_x^2\Pi + 36a_0^2\Pi^2 - 6a_0^2c^2h_x^2 - h_x^4c^2 + 36a_0^3c\Pi - 12a_0^2\Pi^2 \\ & + 12a_0ch_x^2\Pi - 4h_x^2\Pi^2 - 36a_0^2c^2h_x^2 + 24a_0c\Pi h_x^2 - 4\Pi^2h_x^2 + 9a_0^4 + 6a_0^2h_x^2 + h_x^4 = -24a_0^2c^2h_x^2 + 8c^2h_x^4 \\ & + 24a_0^2\Pi^2 - 8h_x^2\Pi^2 + 9a_0^4 + 6a_0^2h_x^2 + h_x^4 = 9a_0^4 + a_0^2[-24h_x^2c^2 + 6h_x^2 + 24\Pi^2] - 8h_x^2\Pi^2 + (8c^2 + 1)h_x^4 \\ & \Rightarrow A_2^{(3)} = 9a_0^4 + [-24h_x^2c^2 + 6h_x^2 + 24\Pi^2]a_0^2 - 8h_x^2\Pi^2 + (8c^2 + 1)h_x^4 \\ & \Rightarrow A_2^{(3)} = 9a_0^4 + [-24h_x^2c^2 + 6h_x^2 + 24\Pi^2]a_0^2 - 8h_x^2\Pi^2 + (8c^2 + 1)h_x^4 \\ & + ((3a_0^2 + h_x^2)c_1 \dots s_{15} + 2a_1(3a_0c - \Pi))(a_1(4c^2 - 1) + 2c_1 \dots s_{14}(3a_0c - \Pi))) \\ & + ((3a_0^2 + h_x^2)c_1 \dots s_{14} + 2a_2(3a_0c - \Pi))(a_2(4c^2 - 1) + 2c_1 \dots s_{14}(3a_0c - \Pi))) \end{split}$$

+
$$((3a_0^2 + h_x^2)c_1...s_{13} + 2a_3(3a_0c - \Pi))(a_3(4c^2 - 1) + 2c_1...s_{13})(3a_0c - \Pi)) + ...$$

+
$$((3a_0^2 + h_x^2)s_1 + 2a_{15}(3a_0c - \Pi))(a_{15}(4c^2 - 1) + 2s_1(3a_0c - \Pi))]$$

= $2[(3ca_0^2 + 3ch_x^2 - 6a_0\Pi)(6a_0c^2 - 3a_0 - 6c\Pi) + (3a_0^2 + h_x^2)c_1...s_{15}a_1(4c^2 - 1))]$

+
$$2c_1^2...s_{15}^2(3a_0c - \Pi)(3a_0^2 + h_x^2) + 2a_1^2(3a_0c - \Pi)(4c^2 - 1) + 4a_1c_1...s_{15}(9a_0^2c^2 - 6a_0c\Pi + \Pi^2)$$

+
$$(3a_0^2 + h_x^2)c_1...s_{14}a_2(4c^2 - 1) + 2c_1^2...s_{14}^2(3a_0c - \Pi)(3a_0^2 + h_x^2) + 2a_2^2(3a_0c - \Pi)(4c^2 - 1)$$

+
$$4a_2c_1...s_{14}(9a_0^2 - 6a_0c\Pi + \Pi^2) + ... + (3a_0^2 + h_x^2)s_1a_{15}(4c^2 - 1) + 2s_1^2(3a_0c - \Pi)(3a_0^2 + h_x^2)$$

+ $2s_1^2(3a_0c - \Pi)(4s_1^2 - 1) + 4s_1a_1(0s_1^2s_2^2 - 6s_1s_1 - \Pi^2) = 26s_1^3s_1^3 - 18s_1^3s_1 - 26s_1^2s_1^2$

+
$$2a_{15}^{2}(3a_{0}c - \Pi)(4c^{2} - 1) + 4s_{1}a_{15}(9a_{0}^{2}c^{2} - 6a_{0}c\Pi + \Pi^{2})] = 36a_{0}^{2}c^{3} - 18a_{0}^{2}c - 36a_{0}^{2}c^{2}\Pi$$

+ $36a_{0}c^{3}h_{x}^{2} - 18a_{0}ch_{x}^{2} - 36c^{2}h_{x}^{2}\Pi - 72a_{0}^{2}c^{2}\Pi + 36a_{0}^{2}\Pi + 72a_{0}c\Pi^{2} + (3a_{0}^{2} + h_{x}^{2})(4c^{2} - 1)2\Pi$

$$- 4c^{2}(3a_{0}c - \Pi)(3a_{0}^{2} + h_{x}^{2}) - 4h_{x}^{2}(3a_{0}c - \Pi)(4c^{2} - 1) + 8\Pi(9a_{0}^{2}c^{2} - 6a_{0}c\Pi + \Pi^{2}) + 4(3a_{0}c)$$

$$-\Pi)(3a_0^2 + h_x^2) = 36a_0^3c^3 - 18a_0^3c - 36a_0^2c^2\Pi + 36a_0c^3h_x^2 - 18a_0ch_x^2 - 36c^2h_x^2\Pi - 72a_0^2c^2\Pi$$

$$+ 4h_x^2\Pi + 36a_0^2\Pi + 72a_0c\Pi^2 + 24a_0^2c^2\Pi - 6a_0^2\Pi + 8c^2h_x^2\Pi - 2h_x^2\Pi - 36a_0^3c^3 - 12a_0c^3h_x^2$$

$$+ 12a_0^2c^2\Pi - 48a_0c^3h_x^2 + 12a_0ch_x^2 + 16c^2h_x^2\Pi - 4h_x^2\Pi + 72a_0^2c^2\Pi - 48a_0c\Pi^2 + 8\Pi^3 + 36a_0^3c$$

$$+ 12a_0ch_x^2 - 12a_0^2\Pi - 4\Pi h_x^2 + 4c^2h_x^2\Pi = 18a_0^3c - 24a_0c^3h_x^2 + 18a_0^2\Pi + 24a_0c\Pi^2 - 10h_x^2\Pi$$

$$+ 6a_0ch_x^2 + 8\Pi^3 - 8c^2h_x^2\Pi = 18a_0^3c + 18a_0^2\Pi + (6h_x^2 + 24\Pi^2 - 24h_x^2c^2)a_0c - (8c^2 + 10)h_x^2\Pi + 8\Pi^3$$

$$\Rightarrow A_3^{(3)} = 18a_0^3c + 18a_0^2\Pi + (6h_x^2 + 24\Pi^2 - 24h_x^2c^2)a_0c - (8c^2 + 10)h_x^2\Pi + 8\Pi^3$$
(5.31)

$$\begin{split} A_4^{(3)} &= f_2^2 + f_{12}^2 + f_{22}^2 + f_{e^2}^2 + f_{e^2}$$

$$\begin{split} A_5^{(3)} &= 2(f_2f_3 + f_{i2}f_{i3} + f_{j2}f_{j3} + \ldots + f_{k'''2}f_{k'''3}) = 2[(3a_0(2c^2 - 1) - 6c\Pi)(4c^3 - 3c) \\ &+ (a_1(4c^2 - 1) + 2c_1\ldots s_{15}(3a_0c - \Pi))((4c^2 - 1)c_1\ldots s_{15}) + \ldots + (a_{15}(4c^2 - 1) \\ &+ 2(3a_0c - \Pi)s_1)((4c^2 - 1)s_1)] = 2[(6a_0c^2 - 3a_0 - 6c\Pi)(4c^3 - 3c) + a_1c_1\ldots s_{15}(4c^2 - 1)^2 \\ &+ 2c_1^2\ldots s_{15}^2(3a_0c - \Pi)(4c^2 - 1) + \ldots + a_{15}s_1(4c^2 - 1)^2 + 2s_1^2(3a_0c - \Pi)(4c^2 - 1)] \\ &= 2[24a_0c^5 - 18a_0c^3 - 12a_0c^3 + 9a_0c - 24c^4\Pi + 18c^2\Pi + \Pi(16c^4 - 8c^2 + 1)] \end{split}$$

$$- 2c^{2}(3a_{0}c - \Pi)(4c^{2} - 1)] + 2(12a_{0}c^{3} - 3a_{0}c - 4c^{2}\Pi + \Pi) = 48a_{0}c^{5} - 36a_{0}c^{3}$$

$$- 24a_{0}c^{3} + 18a_{0}c - 48c^{4}\Pi + 36c^{2}\Pi + 32c^{4}\Pi - 16c^{2}\Pi + 2\Pi - 48a_{0}c^{5} + 12a_{0}c^{3} + 16c^{4}\Pi$$

$$- 4c^{2}\Pi + 48a_{0}c^{3} - 12a_{0}c - 16c^{2}\Pi + 4\Pi = 6a_{0}c + 6\Pi = 6(a_{0}c + \Pi)$$

$$\Rightarrow A_{5}^{(3)} = 6(a_{0}c + \Pi)$$

$$(5.33)$$

$$A_{6}^{(3)} = f_{3}^{2} + f_{i3}^{2} + \ldots + f_{k3}^{2} = (4c^{3} - 3c)^{2} + c_{1}^{2} \ldots s_{15}^{2}(4c^{2} - 1)^{2} + \ldots + s_{1}^{2}(4c^{2} - 1)^{2}$$

$$= (16c^{6} - 24c^{4} + 9c^{2}) + [c_{1}^{2} \ldots c_{14}^{2}(1 - c_{15}^{2}) + \ldots + (1 - c_{1}^{2})][16c^{4} - 8c^{2} + 1]$$

$$= 16c^{6} - 24c^{4} + 9c^{2} - c_{1}^{2} \ldots c_{15}^{2}(16c^{4} - 8c^{2} + 1) + 16c^{4} - 8c^{2} + 1$$

$$= 16c^{6} - 24c^{4} + 9c^{2} - 16c^{6} + 8c^{4} - c^{2} + 16c^{4} - 8c^{2} + 1 = 1$$

$$\Rightarrow A_{6}^{(3)} = 1$$
(5.34)

Assim,

$$\begin{array}{l} A_2^{(3)} &= 9a_0^4 + (-24h_x^2c^2 + 6h_x^2 + 24\Pi^2)a_0^2 - 8h_x^2\Pi^2 + (8c^2 + 1)h_x^4 \\ A_3^3 &= 18a_0^3c + 18a_0^2\Pi + (6h_x^2 + 24\Pi^2 - 24h_x^2c^2)a_0c - (8c^2 + 10)h_x^2\Pi + 8\Pi^3 \\ A_4^{(3)} &= 3(a_0^2 - h_x^2) + 12(a_0c + \Pi)^2 \\ A_5^{(3)} &= 6(a_0c + \Pi) \\ A_6^{(3)} &= 1 \end{array}$$

5.5 O caso em que $f(z) = z^4$

Novamente, consideremos $x = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15})$ o centro da bola 16-dimensional de raio r, e, $y = (y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}, y_{11}, y_{12}, y_{13}, y_{14}, y_{15})$ um ponto de sua fronteira parametrizado por 5.3, vamos calcular |f(y) - f(x)|, quando $f(z) = z^4$.

Como,

$$f(x) = x^{4} = \left[\begin{pmatrix} 4 \\ 0 \end{pmatrix} a_{0}^{4} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} a_{0}^{2}h_{x}^{2} + \begin{pmatrix} 4 \\ 4 \end{pmatrix} h_{x}^{4} \right] + \left[\begin{pmatrix} 4 \\ 1 \end{pmatrix} a_{0}^{3} + \begin{pmatrix} 4 \\ 3 \end{pmatrix} a_{0}^{1}h_{x}^{2} \right] h_{x},$$

$$f(y) = y^{4} = \left[\begin{pmatrix} 4 \\ 0 \end{pmatrix} y_{0}^{4} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} y_{0}^{2}h_{y}^{2} + \begin{pmatrix} 4 \\ 4 \end{pmatrix} h_{y}^{4} \right] + \left[\begin{pmatrix} 4 \\ 1 \end{pmatrix} y_{0}^{3} + \begin{pmatrix} 4 \\ 3 \end{pmatrix} y_{0}^{1}h_{y}^{2} \right] h_{y},$$

então,

em que F, por exemplo, é dada por:

$$\begin{split} F &= (y_0^4 - a_0^4) + 6(y_0^2 h_y^2 - a_0^2 h_x^2) + (h_y^4 - h_x^4) = ((a_0 + rc)^4 - a_0^4) + 6(a_0 + rc)^2(h_x^2 - 2r\Pi + r^2s^2) \\ &- 6a_0^2 h_x^2 + (h_x^2 - 2r\Pi + r^2s^2)^2 - h_x^4 = (a_0^2 + 2a_0rc + r^2c^2)^2 - a_0^4 + 6[(a_0^2 + 2a_0rc + r^2c^2)(h_x^2 - 2r\Pi + r^2s^2)] \\ &- 2r\Pi + r^2s^2)] - 6a_0^2 h_x^2 + h_x^4 + 2(h_x^2(-2r\Pi + r^2s^2)) + (-2r\Pi + r^2s^2)^2 - h_x^4 = a_0^4 + 4a_0^3rc \\ &+ 6a_0^2r^2c^2 + r^4c^4 - a_0^4 + (6a_0^2 + 12a_0rc + 6r^2c^2)(h_x^2 - 2r\Pi + r^2s^2) - 6a_0^2h_x^2 + h_x^4 + 2r^2s^2h_x^2 \\ &- 4r\Pi h_x^2 + 4r^2\Pi^2 - 4r^3s^2\Pi + r^4s^4 - h_x^4 = a_0^4 + 4a_0^3rc + 2a_0^2r^2c^2 + r^4c^4 - a_0^4 + 6a_0^2h_x^2 - 12a_0^2r\Pi \\ &+ 6a_0^2r^2s^2 + 12a_0rch_x^2 - 24a_0r^2c\Pi + 12a_0r^3cs^2 + 6r^2c^2h_x^2 - 12r^3c^2\Pi + 6r^4c^2s^2 - 6a_0^2h_x^2 + h_x^4 \\ &+ 2r^2s^2h_x^2 - 4r\Pi h_x^2 + 4r^2\Pi^2 - 4r^3s^2\Pi + r^4s^4 - h_x^4 = [4(a_0^3c - 3a_0^2\Pi + 3a_0ch_x^2 - h_x^2\Pi)]r \\ &+ [2(6a_0^2c^2 - 3a_0^2 - 12a_0c\Pi + 4c^2h_x^2 - h_x^2 + 2\Pi^2)]r^2 + [4(3a_0c^3 - 3a_0c - 4c^2\Pi - c^2\Pi + \Pi)]r^3 \\ &+ [8c^2(c^2 - 1) + 1]r^4 = f_1r + f_2r^2 + f_3r^3 + f_4r^4 \\ &\Rightarrow f_1 = 4(a_0^3c - 3a_0^2\Pi + 3a_0ch_x^2 - h_x^2\Pi) \end{split}$$

De forma similar, obtêm-se F_i ,

$$\begin{split} F_i &= (4y_0^3 + 4y_0h_y^2)y_1 - (4a_0^3 + 4a_0h_x^2)a_1 = (4(a_0 + rc)^3 + 4(a_0 + rc)(h_x^2 - 2r\Pi + r^2s^2))(a_1 \\ &+ rc_1...s_{15}) - 4(a_0^3 + a_0h_x^2)a_1 = 4(a_0^3 + 3a_0^2rc + 3a_0r^2c^2 + r^3c^3)(a_1 + rc_1...s_{15}) + 4(a_0 + rc)(a_1 \\ &+ rc_1...s_{15})(h_x^2 - 2r\Pi + r^2s^2) - 4(a_0^3 + a_0h_x^2)a_1 = 4a_0^3a_1 + 4a_0^3rc_1...s_{15} + 12a_0^2a_1rc \\ &+ 2a_0^2r^2cc_1...s_{15} + 12a_0a_1r^2c^2 + 12a_0r^3c^2c_1...s_{15} + 4a_1r^3c^3 + 4r^4c^3c_1...s_{15} + (4a_0a_1 \\ &+ 4a_0rc_1...s_{15} + 4a_1rc + 4r^2cc_1...s_{15})(h_x^2 - 2r\Pi + r^2s^2) - 4a_0^3a_1 - 4a_0a_1h_x^2 \\ &= 4a_0^3a_1 + 4a_0^3rc_1...s_{15} + 12a_0^2a_1rc + 12a_0^2r^2cc_1...s_{15} + 12a_0a_1r^2c^2 + 12a_0r^3c^2c_1...s_{15} + 4a_1r^3c^3 \\ &+ 4r^4c^3c_1...s_{15} + 4a_0a_1h_x^2 - 8a_0a_1r\Pi + 4a_0a_1r^2s^2 + 4a_0rc_1...s_{15}h_x^2 - 8a_0r^2c_1...s_{15}\Pi \\ &+ 4a_0r^3s^2c_1...s_{15} + 4a_0a_1h_x^2 - 8a_1r^2c\Pi + 4a_1r^3s^2c + 4r^2c_1...s_{15}h_x^2 - 8r^3\Picc_1...s_{15} \\ &+ 4r^4s^2cc_1...s_{15} - 4a_0^3a_1 - 4a_0a_1h_x^2 = [4(a_0^3c_1...s_{15} + 3a_0^2a_1c - 2a_0a_1\Pi + a_0c_1...s_{15}h_x^2 + a_1ch_x^2)]r^4 \\ &= a_0c_1...s_{15} - a_1c - 2\Picc_1...s_{15} + 2a_1c^3)]r^3 + [4(2c^3c_1...s_{15} - cc_1...s_{15})]r^4 \\ &= f_{i1}r + f_{i2}r^2 + f_{i3}r^3 + f_{i4}r^4 \\ &\Rightarrow f_{i1} = 4(a_0^3c_1...s_{15} + 3a_0^2a_1c - 2a_0a_1\Pi + a_0c_1...s_{15}h_x^2 + a_1ch_x^2) \end{bmatrix}r^4 \end{split}$$

Como necessita-se somente do coeficiente $A_2^{(4)}=\sum_{l=0}^{15}f_{l1}^2$ para o cálculo da dilatação, procedendo de forma análoga, encontra-se,

÷

$$f_{j1} = 4(a_0^3c_1...s_{14} + 3a_0^2a_2c - 2a_0a_2\Pi + a_0c_1...s_{14}h_x^2 + a_2ch_x^2)$$

$$f_{k1} = 4(a_0^3c_1...s_{13} + 3a_0^2a_3c - 2a_0a_3\Pi + a_0c_1...s_{13}h_x^2 + a_3ch_x^2)$$

$$f_{j'''1} = 4(a_0^3c_1s_2 + 3a_0^2a_{14}c - 2a_0a_{14}\Pi + a_0c_1s_2h_x^2 + a_{14}ch_x^2)$$

$$f_{k'''1} = 4(a_0^3s_1 + 3a_0^2a_{15}c - 2a_0a_{15}\Pi + a_0s_1h_x^2 + a_{15}ch_x^2)$$

Sendo assim,

em que,

$$F_l = f_{l1}r^1 + f_{l2}r^2 + f_{l3}r^3 + f_{l4}r^4, l = 0, \dots, 15$$

Então, para l=0,...,15,

$$F_l^2 = f_{l1}^2 r^2 + 2f_{l1}f_{l2}r^3 + (f_{l2}^2 + 2f_{l1}f_{l3})r^4 + (2f_{l1}f_{l4} + 2f_{l2}f_{l3})r^5 + (f_{l3}^2 + 2f_{l2}f_{l4})r^6 + 2f_{l3}f_{l4}r^7 + f_{l4}^2 r^8$$

com isso obtem-se

$$|f(y) - f(x)| = \sqrt{A_2^{(4)}r^2 + A_3^{(4)}r^3 + A_4^{(4)}r^4 + A_5^{(4)}r^5 + A_6^{(4)}r^6 + A_7^{(4)}r^7 + A_8^{(4)}r^8}$$

dado que

$$A_{2}^{(4)} = \sum_{l=0}^{15} f_{l1}^{2}, \quad A_{3}^{(4)} = \sum_{l=0}^{15} 2f_{l1}f_{l2}, \quad A_{4}^{(4)} = \sum_{l=0}^{15} (f_{l2}^{2} + 2f_{l1}f_{l3}),$$
$$A_{5}^{(4)} = \sum_{l=0}^{15} (2f_{l1}f_{l4} + 2f_{l2}f_{l3}), \quad A_{6}^{(4)} = \sum_{l=0}^{15} (f_{l3}^{2} + 2f_{l2}f_{l4}), \quad A_{7}^{(4)} = \sum_{l=0}^{15} 2f_{l3}f_{l4}, \quad A_{8}^{(4)} = \sum_{l=0}^{15} f_{l4}^{2}$$

O qual resulta que,

$$\begin{split} A_2^{(4)} &= f_1^2 + f_{i1}^2 + f_{j1}^2 + f_{k1}^2 + f_{e'1}^2 + f_{i'1}^2 + f_{j'1}^2 + f_{k'1}^2 + f_{e''1}^2 + f_{i''1}^2 + f_{j''1}^2 + f_{k''1}^2 + f_{e'''1}^2 + f_{i'''1}^2 + f_{e'''1}^2 + f_{e'''1}^2 + f_{i'''1}^2 + f_{i''1}^2 + f_{i''1}^2 + f_{i''1}^2 + f_{i'''1}^2 + f_{i''1}^2 + f_{i''1}^2 + f_{i'''1}^2 + f_{i''1}^2 +$$

Capítulo 6

Projeções em \mathbb{R}^3 e o Cálculo da Dilatação

De posse da construção do cálculo do coeficiente $A_2^{(n)}$, dado no capítulo anterior, denominado fator de expansão, pode-se agora, prover, através do software *Mathematica*, o valor da k-dilatação causada ao fazer-se $f(z) = z^n$, n = 2, 3, 4, ...; para isso utiliza-se o seguinte procedimento:

Para cada n fixo, define-se o comando $A_2^{(n)}$.

Em seguida, calcula-se o valor máximo e o valor mínimo de $A_2^{(n)}$, respectivamente,

$$M(x,r) = \max A_2^{(n)}$$
 e $m(x,r) = \min A_2^{(n)}$

Munidos desses dois valores, torna-se possível obter o último processo que remete ao valor de k, isto é,

$$k = \sqrt{\frac{\max A_2^{(n)}}{\min A_2^{(n)}}} \tag{6.1}$$

É através do cálculo computacional da dilatação que torna-se interessante visualizar o comportamento das funções hipercomplexas 16-dimensional. Para isto, é necessário analisar cortes no \mathbb{R}^3 , isto é, manipular os valores dos ângulos θ_i e das coordenadas de $s, s \in \mathbb{S}$, com o propósito de obter-se três coordenadas; para este procedimento faz-se uso do programa *Maple 9*.

Procura-se, neste capítulo, relacionar o cálculo da dilatação com as projeções em \mathbb{R}^3 .

6.1 Mapeamentos Curvilíneos

Para mapear uma função hipercomplexa do tipo 16-dimensional, é necessário definir uma bola fechada $\overline{B} = \overline{B}(x, r)$, com centro em $x = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15})$ e raio r. Com isto obtêm-se $\overline{B'}$, ou seja, $\overline{B'}$ é o mapeamento obtido pela função sedeniônica:

$$f:\overline{B}\to\overline{B'},$$

dado que $\overline{B'}$ é uma hipersuperfície tal que,

$$\overline{B'} = f(\overline{B}(x, r))$$

Considerando $y = (y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}, y_{11}, y_{12}, y_{13}, y_{14}, y_{15}), y \in \overline{B}(x, r)$ e tal que |y - x| = r, um ponto de sua fronteira representado em coordenadas esféricas como a seguir,

$$y_{0} = a_{0} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}c_{11}c_{12}c_{13}c_{14}c_{15}$$

$$y_{1} = a_{1} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}c_{11}c_{12}c_{13}c_{14}s_{15}$$

$$y_{2} = a_{2} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}c_{11}c_{12}c_{13}s_{14}$$

$$y_{3} = a_{3} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}c_{11}c_{12}s_{13}$$

$$y_{4} = a_{4} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}c_{11}s_{12}$$

$$y_{5} = a_{5} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}c_{10}s_{11}$$

$$y_{6} = a_{6} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}c_{9}s_{10}$$

$$y_{7} = a_{7} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}c_{8}s_{9}$$

$$y_{8} = a_{8} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}s_{8}$$

$$y_{9} = a_{9} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}c_{7}s_{8}$$

$$y_{10} = a_{10} + rc_{1}c_{2}c_{3}c_{4}c_{5}c_{6}s_{7}$$

$$y_{11} = a_{11} + rc_{1}c_{2}c_{3}c_{4}s_{5}$$

$$y_{12} = a_{12} + rc_{1}c_{2}c_{3}s_{4}$$

$$y_{13} = a_{13} + rc_{1}c_{2}s_{3}$$

$$y_{14} = a_{14} + rc_{1}s_{2}$$

$$y_{15} = a_{15} + rs_{1}$$
(6.2)

Sendo $\overline{B'}$ uma hipersuperfície 16-dimensional obtida em função de $r, \theta_1, \theta_2, ..., \theta_{15}$, pode-se escrever:

$$\overline{B'}: y'_l = f_l(r, \theta_1, ..., \theta_{15}), \quad l = 0, ..., 15$$
(6.3)

Discute-se, neste capítulo, apenas dois tipos de curvas de nível perpendiculares aos eixos coordenados obtidas através dos *sedenions*, visto que as outras possibilidades de cortes podem ou não originar figuras semelhantes em \mathbb{R}^3 .

O primeiro corte é obtido em se fazendo $\theta_1 = \theta_2 = \dots = \theta_{13} = 0$, e obtêm-se a esfera no \mathbb{R}^3 , denominada por $\overline{B'_1}(a_0, a_1, a_2)$, dada por:

$$\overline{B'_1}(a_0, a_1, a_2) : \begin{cases} y'_0 = f'_0(r, \theta_{14}, \theta_{15}), & \frac{-\pi}{2} \le \theta_{14} \le \frac{\pi}{2} \\ y'_1 = f'_1(r, \theta_{14}, \theta_{15}), & 0 \le \theta_{15} \le 2\pi \\ y'_2 = f'_2(r, \theta_{14}, \theta_{15}), & r \quad dado \end{cases}$$

Por outro lado, o segundo corte é obtido tornando $\theta_1 = \theta_2 = \dots = \theta_{12} = 0$ e $\theta_{15} = \frac{\pi}{2}$, gerando a superfície no \mathbb{R}^3 identificada por $\overline{B'_2}(a_1, a_2, a_3)$,

$$\overline{B'_2}(a_1, a_2, a_3) : \begin{cases} y'_1 = f'_1(r, \theta_{13}, \theta_{14}), & \frac{-\pi}{2} \le \theta_{13} \le \frac{\pi}{2} \\ y'_2 = f'_2(r, \theta_{13}, \theta_{14}), & 0 \le \theta_{14} \le 2\pi \\ y'_3 = f'_3(r, \theta_{13}, \theta_{14}), & r \quad dado \end{cases}$$

Para cada superfície $\overline{B'}$, pode-se interpretar $\overline{B'_m}$ como um corte meridional, fazendo para cada θ_i com variação de 0 a 2π , a variação $0 \le \theta_i \le \pi$. Também pode-se obter $\overline{B'_h}$, como forma de se obter cortes hemisféricos, em se fazendo para cada ângulo com variação entre $\frac{-\pi}{2}$ a $\frac{\pi}{2}$ a variação $\frac{-\pi}{2}$ a 0.

$$\overline{B'_m}(a_0, a_1, a_2) : \begin{cases} y'_0 = f'_0(r, \theta_{14}, \theta_{15}), \frac{-\pi}{2} \le \theta_{14} \le \frac{\pi}{2} \\ y'_1 = f'_1(r, \theta_{14}, \theta_{15}), 0 \le \theta_{15} \le \pi \\ y'_2 = f'_2(r, \theta_{14}, \theta_{15}), r \quad dado \end{cases}$$

$$\overline{B'_h}(a_0, a_1, a_2) : \begin{cases} y'_0 = f'_0(r, \theta_{14}, \theta_{15}), \frac{-\pi}{2} \le \theta_{14} \le 0\\ y'_1 = f'_1(r, \theta_{14}, \theta_{15}), 0 \le \theta_{15} \le 2\pi\\ y'_2 = f'_2(r, \theta_{14}, \theta_{15}), r \quad dado \end{cases}$$

Seja agora $\overline{B'}(a_i, a_j, a_k)$ a superfície obtida no \mathbb{R}^3 . É possível traçar a projeção em \mathbb{R}^2 de forma congruente ao que foi feito para obter as esferas, zerando uma das coordenadas, o que resulta em $\overline{B'}(a_i, a_j), \overline{B'}(a_i, a_k), \overline{B'}(a_j, a_k)$.

6.2 Projeção de z^2 e cálculo computacional da k-dilatação

Do capítulo anterior, foi possível calcular o fator de expansão $A_2^{(2)}$, conforme equação 5.26. Utiliza-se esse fator de expansão para o cálculo numérico da dilatação computacional. Através do software *Mathematica*, ilustra-se, a seguir, os procedimentos práticos utilizados quando se faz $f(z) = z^2$,

- 1º Passo: Entrar com valores aleatórios para as coordenadas do centro da hiperesfera, $a_0 = valor_0, a_1 = valor_1, a_2 = valor_2, \ldots, a_{15} = valor_{15};$
- **2º** Passo: Digitar a função $f = A_2^{(2)}$, isto é,

$$f = A_2^{(2)} = 4(a_0^2 + (a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2 + a_7^2 + a_8^2 + a_9^2 + a_{10}^2 + a_{11}^2 + a_{12}^2 + a_{13}^2 + a_{14}^2 + a_{15}^2)c_1^2c_2^2c_3^2c_4^2c_5^2c_6^2c_7^2c_8^2c_9^2c_{10}^2c_{11}^2c_{12}^2c_{13}^2c_{14}^2c_{15}^2 + (a_1c_1c_2...s_{15} + a_2c_1c_2...s_{14} + a_3c_1c_2...s_{13} + a_4c_1c_2...s_{12} + a_5c_1c_2...s_{11} + a_6c_1c_2...s_{10} + a_7c_1c_2...s_9 + a_8c_1c_2...s_8 + a_9c_1c_2...s_7 + a_{10}c_1c_2...s_6 + a_{11}c_1c_2...s_5 + a_{12}c_1c_2c_3s_4 + a_{13}c_1c_2s_3 + a_{14}c_1s_2 + a_{15}s_1)^2);$$

3º Passo: Maximizar a função $f = A_2^{(2)}$, através do comando:

$$\begin{split} Ma &= NMaximize[\{f, -Pi*0.5 <= t1 <= Pi*0.5, -Pi*0.5 <= t2 <= Pi*0.5, \\ -Pi*0.5 <= t3 <= Pi*0.5, -Pi*0.5 <= t4 <= Pi*0.5, -Pi*0.5 <= t5 <= Pi*0.5, \\ -Pi*0.5 <= t6 <= Pi*0.5, -Pi*0.5 <= t7 <= Pi*0.5, -Pi*0.5 <= t8 <= Pi*0.5, \\ -Pi*0.5 <= t9 <= Pi*0.5, -Pi*0.5 <= t10 <= Pi*0.5, -Pi*0.5 <= t11 <= Pi*0.5, \\ -Pi*0.5 <= t12 <= Pi*0.5, -Pi*0.5 <= t13 <= Pi*0.5, -Pi*0.5 <= t14 <= Pi*0.5, \\ 0 <= t15 <= 2*Pi\}, \{t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15\}]; \end{split}$$

4º Passo: Minimizar a função $f = A_2^{(2)}$, com o seguinte comando:

$$\begin{split} Mi &= NMinimize[\{f, -Pi * 0.5 <= t1 <= Pi * 0.5, -Pi * 0.5 <= t2 <= Pi * 0.5, \\ -Pi * 0.5 <= t3 <= Pi * 0.5, -Pi * 0.5 <= t4 <= Pi * 0.5, -Pi * 0.5 <= t5 <= Pi * 0.5, \\ -Pi * 0.5 <= t6 <= Pi * 0.5, -Pi * 0.5 <= t7 <= Pi * 0.5, -Pi * 0.5 <= t8 <= Pi * 0.5, \\ -Pi * 0.5 <= t9 <= Pi * 0.5, -Pi * 0.5 <= t10 <= Pi * 0.5, -Pi * 0.5 <= t11 <= Pi * 0.5, \\ -Pi * 0.5 <= t12 <= Pi * 0.5, -Pi * 0.5 <= t13 <= Pi * 0.5, -Pi * 0.5 <= t14 <= Pi * 0.5, \\ 0 <= t15 <= 2 * Pi\}, \{t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15\}]; \end{split}$$

5º Passo: Por fim, basta fazer o cálculo de k,

Após o cálculo computacional da k-dilatação, torna-se instigante visualizar a figura gerada a partir de cortes em \mathbb{R}^2 e \mathbb{R}^3 .

Como $f(z) = z^2 = (y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}, y_{11}, y_{12}, y_{13}, y_{14}, y_{15})^2 = (y_0 + h_y)^2$

$$\Rightarrow f(z) = z^2 = y_0^2 + 2y_0(h_y) + h_y^2,$$

em coordenadas esféricas, têm-se

$$\begin{split} y_0' &= y_0^2 + h_y^2 = (a_0 + rc_1c_2...c_{15})^2 - (a_1 + rc_1c_2...s_{15})^2 - (a_2 + rc_1c_2...s_{14})^2 - (a_3 + rc_1c_2...s_{13})^2 - (a_4 + rc_1c_2...s_{12})^2 - (a_5 + rc_1c_2...s_{11})^2 - (a_6 + rc_1c_2...s_{10})^2 - (a_7 + rc_1c_2...s_{9})^2 - (a_8 + rc_1c_2...s_{8})^2 - (a_9 + rc_1c_2...s_{7})^2 - (a_{10} + rc_1c_2...s_{6})^2 - (a_{11} + rc_1c_2...s_{5})^2 - (a_{12} + rc_1c_2...s_{4})^2 - (a_{13} + rc_1c_2s_{3})^2 - (a_{14} + rc_1s_{2})^2 - (a_{15} + rs_{1})^2, \\ y_1' &= 2y_0y_1 = 2(a_0 + rc_1c_2...c_{15})(a_1 + rc_1c_2...s_{15}), \\ y_2' &= 2y_0y_2 = 2(a_0 + rc_1c_2...c_{15})(a_2 + rc_1c_2...s_{14}), \\ y_3' &= 2y_0y_3 = 2(a_0 + rc_1c_2...c_{15})(a_2 + rc_1c_2...s_{14}), \\ y_3' &= 2y_0y_3 = 2(a_0 + rc_1c_2...c_{15})(a_4 + rc_1c_2...s_{12}), \\ y_5' &= 2y_0y_5 = 2(a_0 + rc_1c_2...c_{15})(a_5 + rc_1c_2...s_{14}), \\ y_6' &= 2y_0y_6 = 2(a_0 + rc_1c_2...c_{15})(a_6 + rc_1c_2...s_{14}), \\ y_6' &= 2y_0y_7 = 2(a_0 + rc_1c_2...c_{15})(a_7 + rc_1c_2...s_{16}), \\ y_7' &= 2y_0y_7 = 2(a_0 + rc_1c_2...c_{15})(a_7 + rc_1c_2...s_{16}), \\ y_1' &= 2y_0y_{10} = 2(a_0 + rc_1c_2...c_{15})(a_1 + rc_1c_2...s_{16}), \\ y_{11}' &= 2y_0y_{10} = 2(a_0 + rc_1c_2...c_{15})(a_1 + rc_1c_2...s_{16}), \\ y_{11}' &= 2y_0y_{11} = 2(a_0 + rc_1c_2...c_{15})(a_{11} + rc_1c_2...s_{16}), \\ y_{11}' &= 2y_0y_{11} = 2(a_0 + rc_1c_2...c_{15})(a_{11} + rc_1c_2...s_{16}), \\ y_{11}' &= 2y_0y_{13} = 2(a_0 + rc_1c_2...c_{15})(a_{11} + rc_1c_2...s_{16}), \\ y_{13}' &= 2y_0y_{13} = 2(a_0 + rc_1c_2...c_{15})(a_{11} + rc_1c_2...s_{16}), \\ y_{13}' &= 2y_0y_{13} = 2(a_0 + rc_1c_2...c_{15})(a_{11} + rc_1c_2...s_{16}), \\ y_{14}' &= 2y_0y_{14} = 2(a_0 + rc_1c_2...c_{15})(a_{14} + rc_1s_{2}), \\ y_{14}' &= 2y_0y_{14} = 2(a_0 + rc_1c_2...c_{15})(a_{14} + rc_{1}s_{2}), \\ y_{15}' &= 2y_0y_{15} = 2(a_0 + rc_1c_2...c_{15})(a_{15} + rs_{1}), \\ y_{15}' &= 2y_0y_{15} = 2(a_0 + rc_1c_2...c_{15})(a_{15} + rs_{1}), \\ y_{15}' &= 2y_0y_{15} = 2(a_0 + rc_1c_2...c_{15})(a_{15} + rs_{1}), \\ y_{15}' &= 2y_0y_{15} = 2(a_0 + rc_1c_2...c_{15})(a_{15} + rs_{1}), \\ y_{15}' &= 2y_0$$

satisfazendo $\frac{-\pi}{2} \leq \theta_1, \theta_2, ..., \theta_{14} \leq \frac{\pi}{2} \in 0 \leq \theta_{15} \leq 2\pi.$

A fundamentação para obter os dois tipos de cortes ($\overline{B'}$) distintos , denominados por $\overline{B'_1}$ e $\overline{B'_2}$, quando submetido a transformação $f(z) = z^2$, se dá através dos seguintes procedimentos:

O primeiro corte, dado por $\overline{B'_1}(a_0, a_1, a_2)$, é obtido em se fazendo $\theta_1 = \theta_2 = \ldots = \theta_{13} = 0$ e $y'_3 = y'_4 = \ldots = y'_{15} = 0$, isto é,

$$\overline{B_1'}(a_0, a_1, a_2) : \begin{cases} y_0' = (a_0 + rc_{14}c_{15})^2 - (a_1 + rc_{14}s_{15})^2 - (a_2 + rs_{14})^2 - a_3^2 - a_4^2 - a_5^2 - a_6^2 \\ -a_7^2 - a_8^2 - a_9^2 - a_{10}^2 - a_{11}^2 - a_{12}^2 - a_{13}^2 - a_{14}^2 - a_{15}^2, \frac{-\pi}{2} \le \theta_{14} \le \frac{\pi}{2} \\ y_1' = 2(a_0 + rc_{14}c_{15})(a_1 + rc_{14}s_{15}), 0 \le \theta_{15} \le 2\pi \\ y_2' = 2(a_0 + rc_{14}c_{15})(a_2 + rs_{14}), r \quad dado \end{cases}$$

Para obter-se cortes de $\overline{B'_1}(a_0, a_1, a_2)$ no \mathbb{R}^2 , basta considerar os três possíveis casos:

$$- \text{Tornando } \theta_{14} = 0 \text{ e } y_2' = 0, \\ \overline{B_1'}(a_0, a_1) : \begin{cases} y_0' = (a_0 + rc_{15})^2 - (a_1 + rs_{15})^2 - a_2^2 - a_3^2 - a_4^2 - a_5^2 - a_6^2 - a_7^2 - a_8^2 - a_9^2 \\ -a_{10}^2 - a_{11}^2 - a_{12}^2 - a_{13}^2 - a_{14}^2 - a_{15}^2, 0 \le \theta_{15} \le 2\pi \\ y_1' = 2(a_0 + rc_{15})(a_1 + rs_{15}), r \quad dado \end{cases}$$

$$- \text{ Tornando } \theta_{15} = 0 \text{ e } y_1' = 0, \\ \overline{B_1'}(a_0, a_2) : \begin{cases} y_0' = (a_0 + rc_{14})^2 - a_1^2 - (a_2 + rs_{14})^2 - a_3^2 - a_4^2 - a_5^2 - a_6^2 - a_7^2 - a_8^2 - a_9^2 \\ -a_{10}^2 - a_{11}^2 - a_{12}^2 - a_{13}^2 - a_{14}^2 - a_{15}^2, 0 \le \theta_{14} \le 2\pi \\ y_2' = 2(a_0 + rc_{14})(a_2 + rs_{14}), r \quad dado \end{cases}$$

e finalmente,

- Tornando
$$\theta_{15} = \frac{\pi}{2} e y'_0 = 0$$

 $\overline{B'_1}(a_1, a_2) : \begin{cases} y'_1 = 2a_0(a_1 + rc_{14}), 0 \le \theta_{14} \le 2\pi \\ y'_2 = 2a_0(a_2 + rs_{14}), r \quad dado \end{cases}$

Por outro lado, o corte dado por $\overline{B'_2}(a_1, a_2, a_3)$, é obtido em se fazendo $\theta_i = 0, i = 1, 2, ..., 12$ e $\theta_{15} = \frac{\pi}{2}$, bem como todas as coordenadas diferentes de y'_1, y'_2 e y'_3 nulas. O mapeamento é dado por:

$$\overline{B'_2}(a_1, a_2, a_3) : \begin{cases} y'_1 = 2a_0(a_1 + rc_{13}c_{14}), \frac{-\pi}{2} \le \theta_{13} \le \frac{\pi}{2} \\ y'_2 = 2a_0(a_2 + rc_{13}s_{14}), 0 \le \theta_{14} \le 2\pi \\ y'_3 = 2a_0(a_3 + rs_{13}), r \quad dado \end{cases}$$

e as projeções no \mathbb{R}^2 , obtidas a partir de $\overline{B'_2}(a_1, a_2, a_3)$, são dadas por:

$$\begin{aligned} - &\operatorname{Se} \ \theta_{13} = 0 \ \operatorname{e} \ y_3' = 0 \\ \overline{B_2'}(a_1, a_2) : \begin{cases} y_1' = 2a_0(a_1 + rc_{14}), 0 \le \theta_{14} \le 2\pi \\ y_2' = 2a_0(a_2 + rs_{14}), r \quad dado \end{cases} \\ - &\operatorname{Se} \ \theta_{14} = 0 \ \operatorname{e} \ y_2' = 0 \\ \overline{B_2'}(a_1, a_3) : \begin{cases} y_1' = 2a_0(a_1 + rc_{13}), 0 \le \theta_{13} \le 2\pi \\ y_3' = 2a_0(a_3 + rs_{13}), r \quad dado \end{cases} \\ - &\operatorname{Se} \ \theta_{14} = \frac{\pi}{2} \ \operatorname{e} \ y_1' = 0 \\ \overline{B_2'}(a_2, a_3) : \begin{cases} y_2' = 2a_0(a_2 + rc_{13}), 0 \le \theta_{13} \le 2\pi \\ y_3' = 2a_0(a_3 + rs_{13}), r \quad dado \end{cases} \\ \end{cases}$$

Neste caso, o corte tipo $\overline{B'_2}$, torna-se em \mathbb{R}^3 uma simples esfera e as projeções em \mathbb{R}^2 são circunferências.

Produz-se agora um simples exemplo do corte $\overline{B'_1}$ e mensura-se o valor computacional da k-dilatação. Para isto, seleciona-se aleatoriamente valores do centro da hiperesfera e raio r. Indica-se por m cortes meridionais e h cortes hemisféricos.

Exemplo 6.1 Considere o número sedenion com as coordenadas do centro dadas por x = (0.1, 1, 5, 3, 2, 8, 1, 2, -1, 0, 1, 6, 0, 0, 0.35, 5) e raio r = 6. A desenvolve-se o valor da kdeformação causada ao se fazer $f(z) = z^2$, e suas respectivas projeções em \mathbb{R}^3 e \mathbb{R}^2 . Enfatizase que o corte aqui utilizado é o do tipo $\overline{B'_1}(a_0, a_1, a_2)$.

$$MaxA_{2}^{(2)} = 684.53$$
$$MinA_{2}^{(2)} = 0.04$$
$$k(0.1, 1, 5, 3, 2, 8, 1, 2, -1, 0, 1, 6, 0, 0, 0.35, 5) = 130.818$$

Figura 6.1: Corte $\overline{B'_1}(a_0, a_1, a_2), x = (0.1, 1, 5, 3, 2, 8, 1, 2, -1, 0, 1, 6, 0, 0, 0.35, 5)$ e r = 6

Figura 6.2: Cortes: $\overline{B'_{1m}}(a_0, a_1, a_2) \in \overline{B'_{1h}}(a_0, a_1, a_2)$, respectivamente

Figura 6.3: $\overline{B'_1}(a_0, a_1)$

Figura 6.4: $\overline{B'_1}(a_0, a_3)$

Figura 6.5: $\overline{B'_1}(a_2, a_3)$

6.3 Projeção de z^3 e cálculo computacional da k-dilatação

A partir do fator de expansão $A_2^{(3)}$, calcula-se o valor da dilatação causada ao se fazer $f(z) = z^3$, em que,

$$A_2^{(3)} = 9a_0^4 + \left[-24h_x^2c^2 + 6h_x^2 + 24\Pi^2\right]a_0^2 - 8h_x^2\Pi^2 + (8c^2 + 1)h_x^4$$
(6.4)

O procedimento computacional para o cálculo de k, é análogo à seção anterior, alterando apenas o valor da f que passa a ser o fator de expansão $A_2^{(3)}$.

Para plotar as projeções, produz-se cortes no \mathbb{R}^3 e no \mathbb{R}^2 a partir do \mathbb{R}^{16} .

Neste caso, tem-se $f(z) = z^3 = (y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}, y_{11}, y_{12}, y_{13}, y_{14}, y_{15})^3$, isto é,

$$\begin{split} f(z) &= y_0^3 + 3y_0^2 h_y + 3y_0 h_y^2 + h_y^3 = y_0^3 + 3y_0 h_y^2 + (3y_0^2 + h_y^2)y_1 + (3y_0^2 + h_y^2)y_2 + (3y_0^2 + h_y^2)y_3 \\ &+ (3y_0^2 + h_y^2)y_4 + (3y_0^2 + h_y^2)y_5 + (3y_0^2 + h_y^2)y_6 + (3y_0^2 + h_y^2)y_7 + (3y_0^2 + h_y^2)y_8 + (3y_0^2 + h_y^2)y_9 \\ &+ (3y_0^2 + h_y^2)y_{10} + (3y_0^2 + h_y^2)y_{11} + (3y_0^2 + h_y^2)y_{12} + (3y_0^2 + h_y^2)y_{13} + (3y_0^2 + h_y^2)y_{14} + (3y_0^2 + h_y^2)y_{15} \end{split}$$

que na forma parametrizada fica,

$$y'_{0} = y_{0}^{3} + 3y_{0}h_{y}^{2} = (a_{0} + rc_{1}...c_{15})^{3} - 3(a_{0} + rc_{1}...c_{15})((a_{1} + rc_{1}...s_{15})^{2} + (a_{2} + rc_{1}...s_{14})^{2} + (a_{3} + rc_{1}...s_{13})^{2} + (a_{4} + rc_{1}...s_{12})^{2} + (a_{5} + rc_{1}...s_{11})^{2} + (a_{6} + rc_{1}...s_{10})^{2} + (a_{7} + rc_{1}...s_{9})^{2} + (a_{8} + rc_{1}...s_{8})^{2} + (a_{9} + rc_{1}...s_{7})^{2} + (a_{10} + rc_{1}...s_{6})^{2} + (a_{11} + rc_{1}...s_{5})^{2} + (a_{12} + rc_{1}...s_{4})^{2} + (a_{13} + rc_{1}c_{2}s_{3})^{2} + (a_{14} + rc_{1}s_{2})^{2} + (a_{15} + rs_{1}s_{2})^{2})$$

$$y_{1}' = (3y_{0}^{2} + h_{y}^{2})y_{1} = [3(a_{0} + rc_{1}...c_{15})^{2} - (a_{1} + rc_{1}...s_{15})^{2} - (a_{2} + rc_{1}...s_{14})^{2} - (a_{3} + rc_{1}...s_{13})^{2} - (a_{4} + rc_{1}...s_{12})^{2} - (a_{5} + rc_{1}...s_{11})^{2} - (a_{6} + rc_{1}...s_{10})^{2} - (a_{7} + rc_{1}...s_{9})^{2} - (a_{8} + rc_{1}...s_{8})^{2} + (a_{9} + rc_{1}...s_{7})^{2} - (a_{10} + rc_{1}...s_{6})^{2} - (a_{11} + rc_{1}...s_{5})^{2} - (a_{12} + rc_{1}...s_{4})^{2} - (a_{13} + rc_{1}c_{2}s_{3})^{2} - (a_{14} + rc_{1}s_{2})^{2} - (a_{15} + rs_{1})^{2}](a_{1} + rc_{1}...s_{15})$$

$$y_{2}' = (3y_{0}^{2} + h_{y}^{2})y_{2} = [3(a_{0} + rc_{1}...c_{15})^{2} - (a_{1} + rc_{1}...s_{15})^{2} - (a_{2} + rc_{1}...s_{14})^{2} - (a_{3} + rc_{1}...s_{13})^{2} - (a_{4} + rc_{1}...s_{12})^{2} - (a_{5} + rc_{1}...s_{11})^{2} - (a_{6} + rc_{1}...s_{10})^{2} - (a_{7} + rc_{1}...s_{9})^{2} - (a_{8} + rc_{1}...s_{8})^{2} - (a_{9} + rc_{1}...s_{7})^{2} - (a_{10} + rc_{1}...s_{6})^{2} - (a_{11} + rc_{1}...s_{5})^{2} - (a_{12} + rc_{1}...s_{4})^{2} - (a_{13} + rc_{1}c_{2}s_{3})^{2} - (a_{14} + rc_{1}s_{2})^{2} - (a_{15} + rs_{1})^{2}](a_{2} + rc_{1}...s_{14})$$

$$y'_{3} = (3y_{0}^{2} + h_{y}^{2})y_{3} = [3(a_{0} + rc_{1}...c_{15})^{2} - (a_{1} + rc_{1}...s_{15})^{2} - (a_{2} + rc_{1}...s_{14})^{2} - (a_{3} + rc_{1}...s_{13})^{2} - (a_{4} + rc_{1}...s_{12})^{2} - (a_{5} + rc_{1}...s_{11})^{2} - (a_{6} + rc_{1}...s_{10})^{2} - (a_{7} + rc_{1}...s_{9})^{2} - (a_{8} + rc_{1}...s_{8})^{2} - (a_{9} + rc_{1}...s_{7})^{2} - (a_{10} + rc_{1}...s_{6})^{2} - (a_{11} + rc_{1}...s_{5})^{2} - (a_{12} + rc_{1}...s_{4})^{2} - (a_{13} + rc_{1}c_{2}s_{3})^{2} - (a_{14} + rc_{1}s_{2})^{2} - (a_{15} + rs_{1})^{2}](a_{3} + rc_{1}...s_{13})$$

$$y'_{4} = (3y_{0}^{2} + h_{y}^{2})y_{4} = [3(a_{0} + rc_{1}...c_{15})^{2} - (a_{1} + rc_{1}...s_{15})^{2} - (a_{2} + rc_{1}...s_{14})^{2} - (a_{3} + rc_{1}...s_{13})^{2} - (a_{4} + rc_{1}...s_{12})^{2} - (a_{5} + rc_{1}...s_{11})^{2} - (a_{6} + rc_{1}...s_{10})^{2} - (a_{7} + rc_{1}...s_{9})^{2} - (a_{8} + rc_{1}...s_{8})^{2} - (a_{9} + rc_{1}...s_{7})^{2} - (a_{10} + rc_{1}...s_{6})^{2} - (a_{11} + rc_{1}...s_{5})^{2} - (a_{12} + rc_{1}...s_{4})^{2} - (a_{13} + rc_{1}c_{2}s_{3})^{2} - (a_{14} + rc_{1}s_{2})^{2} - (a_{15} + rs_{1})^{2}](a_{4} + rc_{1}...s_{12})$$

÷

$$y_{14}' = (3y_0^2 + h_y^2)y_{14} = [3(a_0 + rc_1...c_{15})^2 - (a_1 + rc_1...s_{15})^2 - (a_2 + rc_1...s_{14})^2 - (a_3 + rc_1...s_{13})^2 - (a_4 + rc_1...s_{12})^2 - (a_5 + rc_1...s_{11})^2 - (a_6 + rc_1...s_{10})^2 - (a_7 + rc_1...s_{9})^2 - (a_8 + rc_1...s_{8})^2 - (a_9 + rc_1...s_{7})^2 - (a_{10} + rc_1...s_{6})^2 - (a_{11} + rc_1...s_{5})^2 - (a_{12} + rc_1...s_{4})^2 - (a_{13} + rc_1c_2s_{3})^2 - (a_{14} + rc_1s_2)^2 - (a_{15} + rs_1)^2](a_{14} + rc_1s_2)$$

$$y_{15}' = (3y_0^2 + h_y^2)y_{15} = [3(a_0 + rc_1...c_{15})^2 - (a_1 + rc_1...s_{15})^2 - (a_2 + rc_1...s_{14})^2 - (a_3 + rc_1...s_{13})^2 - (a_4 + rc_1...s_{12})^2 - (a_5 + rc_1...s_{11})^2 - (a_6 + rc_1...s_{10})^2 - (a_7 + rc_1...s_{9})^2 - (a_8 + rc_1...s_{8})^2 - (a_9 + rc_1...s_{7})^2 - (a_{10} + rc_1...s_{6})^2 - (a_{11} + rc_1...s_{5})^2 - (a_{12} + rc_1...s_{4})^2 - (a_{13} + rc_1c_2s_3)^2 - (a_{14} + rc_1s_2)^2 - (a_{15} + rs_1)^2](a_{15} + rs_1)$$

dado que $\frac{-\pi}{2} \le \theta_1, \theta_2, ..., \theta_{14} \le \frac{\pi}{2} e \ 0 \le \theta_{15} \le 2\pi.$

Nesta seção, trabalha-se com dois tipos de cortes denominados por $\overline{B'_1}$ e $\overline{B'_2}$, lembrando que, os mapeamentos desenvolvidos aqui são referente à transformação $f(z) = z^3$.

Tornando $\theta_1 = \theta_2 = \ldots = \theta_{13} = 0$ e $y'_3 = y'_4 = \ldots = y'_{15} = 0$ obtem-se o corte $\overline{B'_1}(a_0, a_1, a_2)$, ou melhor,

$$\overline{B'_{1}}: \begin{cases} y'_{0} = (a_{0} + rc_{14}c_{15})^{3} - 3(a_{0} + rc_{14}c_{15})((a_{1} + rc_{14}s_{15})^{2} + (a_{2} + rs_{14})^{2} + a_{3}^{2} + a_{4}^{2} + a_{5}^{2} + a_{6}^{2} \\ +a_{7}^{2} + a_{8}^{2} + a_{9}^{2} + a_{10}^{2} + a_{11}^{2} + a_{12}^{2} + a_{13}^{2} + a_{14}^{2} + a_{15}^{2}), \frac{-\pi}{2} \leq \theta_{14} \leq \frac{\pi}{2} \\ y'_{1} = [3(a_{0} + rc_{14}c_{15})^{2} - (a_{1} + rc_{14}s_{15})^{2} - (a_{2} + rs_{14})^{2} - a_{3}^{2} - a_{4}^{2} - a_{5}^{2} - a_{6}^{2} - a_{7}^{2} - a_{8}^{2} - a_{9}^{2} \\ -a_{10}^{2} - a_{11}^{2} - a_{12}^{2} - a_{13}^{2} - a_{14}^{2} - a_{15}^{2}](a_{1} + rc_{14}s_{15}), 0 \leq \theta_{15} \leq 2\pi \\ y'_{2} = [3(a_{0} + rc_{14}c_{15})^{2} - (a_{1} + rc_{14}s_{15})^{2} - (a_{2} + rs_{14})^{2} - a_{3}^{2} - a_{4}^{2} - a_{5}^{2} - a_{6}^{2} - a_{7}^{2} - a_{8}^{2} - a_{9}^{2} \\ -a_{10}^{2} - a_{11}^{2} - a_{12}^{2} - a_{13}^{2} - a_{14}^{2} - a_{15}^{2}](a_{2} + rs_{14}), r \quad dado \end{cases}$$

$$(6.5)$$

Para obter-se curvas de nível no \mathbb{R}^2 utiliza-se 6.5, considerando que,

$$- \operatorname{Se} \theta_{14} = 0 \operatorname{e} y_2' = 0 \overline{B_1'}(a_0, a_1) : \begin{cases} y_0' = (a_0 + rc_{15})^3 - 3(a_0 + rc_{15})((a_1 + rs_{15})^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2 + a_7^2 + a_8^2 + a_9^2 + a_{10}^2 + a_{11}^2 + a_{12}^2 + a_{13}^2 + a_{14}^2 + a_{15}^2), 0 \le \theta_{15} \le 2\pi \\ y_1' = [3(a_0 + rc_{15})^2 - (a_1 + rs_{15})^2 - a_2^2 - a_3^2 - a_4^2 - a_5^2 - a_6^2 - a_7^2 - a_8^2 - a_9^2 - a_{10}^2 - a_{11}^2 - a_{12}^2 - a_{13}^2 - a_{14}^2 - a_{15}^2](a_1 + rs_{15}), r \quad dado \end{cases}$$

$$- \operatorname{Se} \theta_{15} = 0 \operatorname{e} y_1' = 0$$

$$\overline{B_1'}(a_0, a_2) : \begin{cases} y_0' = (a_0 + rc_{14})^3 - 3(a_0 + rc_{14})(a_1^2 + (a_2 + rs_{14})^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2 + a_7^2 + a_8^2 + a_9^2 + a_{10}^2 + a_{11}^2 + a_{12}^2 + a_{13}^2 + a_{14}^2 + a_{15}^2), 0 \le \theta_{14} \le 2\pi$$

$$y_2' = [3(a_0 + rc_{14})^2 - a_1^2 - (a_2 + rs_{14})^2 - a_3^2 - a_4^2 - a_5^2 - a_6^2 - a_7^2 - a_8^2 - a_9^2 - a_{10}^2 - a_{11}^2 - a_{12}^2 - a_{13}^2 - a_{14}^2 - a_{15}^2](a_2 + rs_{14}), r \quad dado$$

e,

$$- \operatorname{Se} \theta_{15} = \frac{\pi}{2} \operatorname{e} y_0' = 0 \\ \overline{B_1'}(a_1, a_2) : \begin{cases} y_1' = [3a_0^2 - (a_1 + rc_{14})^2 - (a_2 + rs_{14})^2 - a_3^2 - a_4^2 - a_5^2 - a_6^2 - a_7^2 - a_8^2 - a_9^2 - a_{10}^2 - a_{11}^2 - a_{12}^2 - a_{13}^2 - a_{14}^2 - a_{15}^2](a_1 + rc_{14}), 0 \le \theta_{14} \le 2\pi \\ y_2' = [3a_0^2 - (a_1 + rc_{14})^2 - (a_2 + rs_{14})^2 - a_3^2 - a_4^2 - a_5^2 - a_6^2 - a_7^2 - a_8^2 - a_9^2 - a_{10}^2 - a_{11}^2 - a_{12}^2 - a_{13}^2 - a_{14}^2 - a_{15}^2](a_2 + rs_{14}), r \quad dado \end{cases}$$

Outro corte distinto de $\overline{B'_1}(a_0, a_1, a_2)$, é possível em se fazendo $\theta_1 = \theta_2 = \dots = \theta_{12} = 0$, $\theta_{15} = \frac{\pi}{2}, y'_0 = 0$ e $y'_4 = \dots = y'_{15} = 0$; chega-se ao corte $\overline{B'_2}(a_1, a_2, a_3)$, ou melhor,

$$\overline{B}_{2}': \begin{cases} y_{1}' = [3a_{0}^{2} - (a_{1} + rc_{13}c_{14})^{2} - (a_{2} + rc_{13}s_{14})^{2} - (a_{3} + rs_{13})^{2} - a_{4}^{2} - a_{5}^{2} - a_{6}^{2} - a_{7}^{2} - a_{8}^{2} - a_{9}^{2} \\ -a_{10}^{2} - a_{11}^{2} - a_{12}^{2} - a_{13}^{2} - a_{14}^{2} - a_{15}^{2}](a_{1} + rc_{13}c_{14}), \frac{-\pi}{2} \leq \theta_{13} \leq \frac{\pi}{2} \\ y_{2}' = [3a_{0}^{2} - (a_{1} + rc_{13}c_{14})^{2} - (a_{2} + rc_{13}s_{14})^{2} - (a_{3} + rs_{13})^{2} - a_{4}^{2} - a_{5}^{2} - a_{6}^{2} - a_{7}^{2} - a_{8}^{2} - a_{9}^{2} \\ -a_{10}^{2} - a_{11}^{2} - a_{12}^{2} - a_{13}^{2} - a_{14}^{2} - a_{15}^{2}](a_{2} + rc_{13}s_{14}), 0 \leq \theta_{14} \leq 2\pi \\ y_{3}' = [3a_{0}^{2} - (a_{1} + rc_{13}c_{14})^{2} - (a_{2} + rc_{13}s_{14})^{2} - (a_{3} + rs_{13})^{2} - a_{4}^{2} - a_{5}^{2} - a_{6}^{2} - a_{7}^{2} - a_{8}^{2} - a_{9}^{2} \\ -a_{10}^{2} - a_{11}^{2} - a_{12}^{2} - a_{13}^{2} - a_{14}^{2} - a_{15}^{2}](a_{3} + rs_{13}), r \quad dado \end{cases}$$

$$(6.6)$$

A partir de $\overline{B'_2}(a_1, a_2, a_3)$ pode-se obter as curvas de nível no \mathbb{R}^2 utilizando 6.6, considerando os possíveis casos,

$$- \operatorname{Se} \theta_{14} = 0 \operatorname{e} y_3' = 0$$

$$\overline{B_2'}(a_1, a_2) : \begin{cases} y_1' = [3a_0^2 - (a_1 + rc_{13})^2 - a_2^2 - (a_3 + rs_{13})^2 - a_4^2 - a_5^2 - a_6^2 - a_7^2 - a_8^2 - a_9^2 \\ -a_{10}^2 - a_{11}^2 - a_{12}^2 - a_{13}^2 - a_{14}^2 - a_{15}^2](a_1 + rc_{13}), 0 \le \theta_{13} \le 2\pi \\ y_2' = [3a_0^2 - (a_1 + rc_{13})^2 - a_2^2 - (a_3 + rs_{13})^2 - a_4^2 - a_5^2 - a_6^2 - a_7^2 - a_8^2 - a_9^2 \\ -a_{10}^2 - a_{11}^2 - a_{12}^2 - a_{13}^2 - a_{14}^2 - a_{15}^2]a_2, r \quad dado \end{cases}$$

$$- \operatorname{Se} \theta_{13} = 0 \operatorname{e} y_{2}' = 0$$

$$\overline{B_{2}'}(a_{1}, a_{3}) : \begin{cases} y_{1}' = [3a_{0}^{2} - (a_{1} + rc_{14})^{2} - (a_{2} + rs_{14})^{2} - a_{3}^{2} - a_{4}^{2} - a_{5}^{2} - a_{6}^{2} - a_{7}^{2} - a_{8}^{2} - a_{9}^{2} \\ -a_{10}^{2} - a_{11}^{2} - a_{12}^{2} - a_{13}^{2} - a_{14}^{2} - a_{15}^{2}](a_{1} + rc_{14}), 0 \le \theta_{14} \le 2\pi \\ y_{3}' = [3a_{0}^{2} - (a_{1} + rc_{14})^{2} - (a_{2} + rs_{14})^{2} - a_{3}^{2} - a_{4}^{2} - a_{5}^{2} - a_{6}^{2} - a_{7}^{2} - a_{8}^{2} - a_{9}^{2} \\ -a_{10}^{2} - a_{11}^{2} - a_{12}^{2} - a_{13}^{2} - a_{14}^{2} - a_{15}^{2}]a_{3}, r \quad dado \end{cases}$$

$$- \operatorname{Se} \theta_{14} = \frac{\pi}{2} \operatorname{e} y_1' = 0 \\ \overline{B_2'}(a_2, a_3) : \begin{cases} y_2' = [3a_0^2 - a_1^2 - (a_2 + rc_{13})^2 - (a_3 + rs_{13})^2 - a_4^2 - a_5^2 - a_6^2 - a_7^2 - a_8^2 - a_9^2 \\ -a_{10}^2 - a_{11}^2 - a_{12}^2 - a_{13}^2 - a_{14}^2 - a_{15}^2](a_2 + rc_{13}), 0 \le \theta_{13} \le 2\pi \\ y_3' = [3a_0^2 - a_1^2 - (a_2 + rc_{13})^2 - (a_3 + rs_{13})^2 - a_4^2 - a_5^2 - a_6^2 - a_7^2 - a_8^2 - a_9^2 \\ -a_{10}^2 - a_{11}^2 - a_{12}^2 - a_{13}^2 - a_{14}^2 - a_{15}^2](a_3 + rs_{13}), r \quad dado \end{cases}$$

Munidos desses cortes feitos no \mathbb{R}^2 e no \mathbb{R}^3 , pode-se agora, ilustrar o próximo exemplo.

Figura 6.7: Cortes: $\overline{B'_{1m}}(a_0, a_1, a_2)$ e $\overline{B'_{1h}}(a_0, a_1, a_2)$, respectivamente

6.4 Estudo da influência do raio na hiperesfera

Na seção anterior, foi possível traçar um paralelo entre o cálculo da k-dilatação e o tipo de mapeamento quaseconforme para funções sedeniônicas submetidas à transformação $f(z) = z^2$ e $f(z) = z^3$. Entende-se que se o centro da hiperesfera coincidir com a origem do sistema de coordenadas, trata-se de uma simples hiperesfera obviamente dilatada por um fator r^n . E, então, os resultados mostraram que quando se relaciona uma transformação, o centro da bola x pode não coincidir com a origem do sistema de coordenadas, sendo assim, percebe-se que o comportamento destes mapeamentos sofrem deformações e até mesmo involuções.

Outro fator constatado aqui foi que fixado um centro de coordenadas para a hiperesfera e alterando aleatoriamente o valor do raio r, o valor numérico da dilatação não se altera, independentemente da localização da hiperesfera no espaço. Com isto, conclui-se diretamente que o raio não influencia no cálculo da k-dilatação, porém, influencia de forma característica na imagem produzida através dos cortes.

Ilustra-se, a seguir, alguns exemplos interessantes pelo seu aspecto, que traduzem melhor estas palavras. Para tanto, selecionou-se valores aleatórios para o centro da hiperesfera e raio r, e projetou-se suas respectivas imagens em \mathbb{R}^3 , para os diferentes cortes aqui considerados.

6.4.1 Exemplos de projeções do tipo $f(z) = z^2$

Figura 6.11: Corte $\overline{B'_1}(a_0, a_1, a_2)$, x = (-1, 0, 5, -1, 5, 2, 6, 0, -3, 0, -1, 0, 0, 7, 1, 3); o raio influencia na imagem projetada, porém, o valor da dilatação é o mesmo, isto é, $k(-1, 0, 5, -1, 5, 2, 6, 0, -3, 0, -1, 0, 0, 7, 1, 3) = 12.6886, \forall r \in \mathbb{R}.$

Figura 6.12: Corte $\overline{B'_1}(a_0, a_1, a_2), x = (0, 0, -5, 1, 18, 0, 11, 0, 6, 0, -7, 5, -20, 4, 5, 30);$ o valor da dilatação é $k(x) = 2.01003 \times 10^9, \forall r \in \mathbb{R}.$

(a) r = 1.5 (b) r = 3 (c) r = 30

Figura 6.13: Corte $\overline{B'_1}(a_0, a_1, a_2), x = (0, -3, 10, 1, 2, 5, 0, 0, 0, -3, 4, 6, -17, 0, 11, 4);$ valor de $k(x) = 3.6874 \times 10^{11}, \forall r \in \mathbb{R}.$

(a) r = 0.1

 $\forall r \in \mathbb{R}.$

6.4.2 Exemplos de projeções do tipo $f(z) = z^3$

Figura 6.14: Corte $\overline{B'_1}(a_0, a_1, a_2), x = (-1, 0, 5, -1, 5, 2, 6, 0, -3, 0, -1, 0, 0, 7, 1, 3); k(x) = 3.07643,$

(b) r = 5

(a) r = 5 (b) r = 15 (c) r = 35

Figura 6.15: Corte $\overline{B'_1}(a_0, a_1, a_2), x = (0.6, 1, -4.5, 3, 2, 3.5, -2, 1, 0.1, 1, 7, -1, 1, 8, 0.3, 1);$ o valor da dilatação é $k(x) = 3.02579, \forall r \in \mathbb{R}$

(c) r = 25

(a) r = 3 (b) r = 7 (c) r = 13

Figura 6.16: Corte $\overline{B'_2}(a_1, a_2, a_3), x = (-9, 0, 7, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2); k(x) = 3.70345, \forall r \in \mathbb{R}.$

6.4.3 Considerações sobre o valor da k-dilatação

Outro aspecto investigado computacionalmente nesta dissertação foi que se alterarmos uniformemente o valor do centro de coordenadas o valor numérico da k-dilatação não se altera. Além disso, caso o coeficiente $a_0 \neq 0$ e $a_i = 0$, i = 1, ..., 15, segue que, o valor da dilatação é 1, quando $f(z) = z^2$, $f(z) = z^3 e f(z) = z^4$. Outro fator determinante constatado foi que se $a_0 \rightarrow 0$ e $a_i \neq 0$, i = 1, ..., 15, têm-se que o valor da dilatação de $f(z) = z^2$ tende a se aproximar do valor da dilatação $f(z) = z^4$ e o valor da k-dilatação para $f(z) = z^3$ tende a ficar muito próximo de 3. Podemos esquematizar esses dados a partir da seguinte tabela:

Valores Aleatórios do Centro	z^2	z^3	z^4
k(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)	4	4	4.52918
${ m k}(5,\!5,\!5,\!5,\!5,\!5,\!5,\!5,\!5,\!5,\!5,\!5,\!5,\!5$	4	4	4.52918
$\mathbf{k}(20,\!20,\!20,\!20,\!20,\!20,\!20,\!20,\!20,\!20,\!$	4	4	4.52918
k(2,2,2,2,-2,-2,-2,-2,2,2,2,2,-2,-2,-2,-2)	3.87298	3.87298	3.80149
k(-3,-3,-3,-3,3,3,3,3,-3,-3,-3,-3,3,3,3,3	3.4641	3.4641	3.80149
k(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)	1	1	1
k(5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)	1	1	1
k (15, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1	1.00033	1.00089	1.03322
${\rm k}(15,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1,$	1.03280	1.09091	1.42066
$\mathbf{k}(25, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.$	1.00300	1.00802	1.10363
$\mathbf{k}(25,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$	1.01193	1.03226	1.22279
${\rm k}(0.001,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1$	3872.98	3.00000	3869.82
${\bf k}(0.01,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1,\!1$	387.3	3.00008	386.988
k(0.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)	38.7427	3.00802	38.7588
k(0.005,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,	1549.19	3.00001	1547.93
$\mathbf{k}(0.05,\!2,\!2,\!2,\!2,\!2,\!2,\!2,\!2,\!2,\!2,\!2,\!2,\!2,$	154.923	3.0005	154.808
k(0.5,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	15.5242	3.05063	14.5751

Tabela 6.1: Comparação numérica da dilatação quando altera-se o valor do centro

Capítulo 7

Conclusão

Em continuidade aos trabalhos desenvolvidos recentemente sobre funções quaseconformes do tipo $f(z) = z^n$, para z imaginário hipercomplexo [20, 21, 25], este presente trabalho resulta num diferenciado estudo da teoria dos *sedenions* de Cayley-Dickson. Investigações anteriores nos levaram a métodos de resoluções polinomiais muito próximos quando calculase a distância |f(y) - f(x)|, $x, y \in \mathbb{S}$. Foi através da definição de métrica que conseguiu-se estabelecer um critério para mensurarmos o valor computacional da k-dilatação provocada em bolas $\overline{B}(x,r)$ quando submetidas à transformações do tipo z^2 e z^3 .

Nosso objetivo pode ser interpretado como um passo muito próximo na direção de um compreendimento vasto do papel que os *sedenions* podem desempenhar em álgebra, análise de variáveis complexas e teoria das funções. Uma teoria completa de álgebra para os *sedenions*, ainda esta longe de ser desenvolvida. Apesar de um número *sedenion* apresentar uma estrutura algébrica ampla, ainda falta um incentivo concreto que force o uso dos *sedenions* ao invés dos complexos, quatérnios e octônios. Num futuro próximo poderia ser útil desenvolver estudos envolvendo os *sedenions* nas Álgebras de Clifford, o que supostamente consolidaria aspectos teóricos e algébricos envolvendo os hipercomplexos. Já no que remete à Relatividade Especial de Albert Einstein e suas expansões, poder-se-ia generalizar a estrutura dos *sedenions* em aplicações diversas através das Equações de Maxwell e Dirac, por exemplo. O grande interesse e o aprimoramento das estruturas matemáticas envolvidas na Mecânica quântica através do uso dos *sedenions* tem um papel preponderante na unificação da teoria dos hipercomplexos que poderão resultar num crescente desenvolvimento sobre este assunto.

Os resultados obtidos nesta dissertação foram suficientes na busca de um avanço significante no entendimento dos mapeamentos k-quaseconformes para funções sedeniônicas juntamente com a forte evidência dos testes experimentais do cálculo da dilatação e de suas respectivas imagens geradas em \mathbb{R}^3 . É esperado com isso que futuras investigações poderão conectar mapeamentos quaseconformes com a álgebra não associativa dos *sedenions*, e serem estudadas em muitas áreas da Matemática no que diz respeito à análise e em especial, da Física no campo computacional da Mecânica Quântica.

Uma sugestão natural para trabalhos futuros é:

- Explorar o conceito de quaseconformidade para hipercomplexos e expandir o mesmo tipo de estudo realizado nesta dissertação para os *sedenions* cônicos;
- Desenvolver uma notação simplificada, no que diz respeito a álgebra e a geometria, que permita interpretar problemas matemáticos e suas formulações físicas através do uso dos *sedenions* cônicos;
- Ainda no âmbito do desenvolvimento dos hipercomplexos, procurar aplicações em estudos desenvolvidos recentemente na Mecânica Quântica envolvendo os *sedenions* de Charles Musès.

Apêndice A

Construção de Cayley-Dickson

A construção de Cayley-Dickson consiste num processo dado por números hipercomplexos 2^n -dimensional, e é construído através de números hipercomplexos 2^{n-1} -dimensional, onde n é um inteiro positivo [6].

Desta forma, se $x \in y$ são dois números hipercomplexos do tipo 2^n -dimensional, pode-se escrever cada $x \in y$ como um par ordenado de números hipercomplexos a, b, c, d do tipo 2^{n-1} -dimensional,

$$x := (a; b), \quad y := (c; d)$$
 (A.1)

Então pelo processo de Cayley-Dickson define-se a multiplicação de x e y por,

$$xy := (a; b)(c; d) := (ac - \gamma d^*b; bc^* + da)$$
(A.2)

onde c^*, d^* é o conjugado de c, d, respectivamente; e γ é um parâmetro.

- Se n = 0, tem-se números hipercomplexos 1-dimensional, denominados reais.
- Se n = 1, tem-se números hipercomplexos 2-dimensional, denominados por complexos.
- Se n = 2, tem-se números hipercomplexos 4-dimensional, denominados por quatérnios.
- Se n = 3, temos números hipercomplexos 8-dimensional, denominados por octônios.
- Se n = 4, temos números hipercomplexos 16-dimensional, denominados por sedenions.

Desta forma, pode-se escolher o parâmetro $\gamma = 1$ e constrõem-se os complexos através dos reais, os quatérnios através dos complexos, os octônios através dos quatérnios e os *sedenions* através dos octônios.

-Os números complexos (n=1): Considere dois números complexos, z = a + bi, e w = c + di, onde $a, b, c, d \in \mathbb{R}$, e $i^2 = 1$, então

$$zw = (ac - bd) + (ad + bc)i \tag{A.3}$$

Comparando este resultado com o processo de multiplicação de Cayley-Dickson para z = (a; b), e w = (c; d), com $\gamma = 1$, obtêm-se,

$$zw = (a; b)(c; d) = (ac - bd; ad + bc),$$
 (A.4)

onde c^*, d^* é o conjugado de c, d, respectivamente, pois $c, d \in \mathbb{R}$.

Nota-se que se j é um outro número imaginário que satisfaz a propriedade $j^2 = -1$, mas diferente de i e tal que ij = -ji, então,

$$jz = j(a+bi) = aj - bij = (a-bi)j = z^*j$$
 (A.5)

-Os quatérnios (n=2): Para construirmos os quatérnios precisamos introduzir a unidade imaginária j, tal que $j^2 = -1$. Escreve-se dois quatérnios p, e q, em termos de quatro números complexos,

$$p := a + bj, \quad q := c + dj \tag{A.6}$$

onde $a, b, c, d \in \mathbb{C}$, então

$$pq = (a + bj)(c + dj) = ac + bjc + adj + bjdj$$
$$= ac + bc^*j + daj + bd^*jj$$
$$= (ac - d^*b) + (bc^* + da)j$$
(A.7)

Comparando este resultado com o processo de multiplicação de Cayley-Dickson de dois quatérnios como dois pares de números complexos (a; b) e (c; d), com $\gamma = 1$,

$$pq := (a; b)(c; d) = (ac - d^*b; bc^* + da)$$
(A.8)

Em se expressando p := a + bj, há um termo que provém de ij. Representa-se este novo número imaginário por k := ij.

-Os octônios (n=3): Sejam p, q, r, s números quatérnios. Define-se dois octônios, m e n, como os pares ordenados,

$$m := (p;q), \quad n := (r;s)$$
 (A.9)

Então a multiplicação de $m \in n$ é dada por,

$$mn := (pr + \gamma s^* q; qr^* + sp) \tag{A.10}$$

As novas unidades imaginárias para os octônios introduzidas pelo processo são $e', i', j' \in k'$.

-Os sedenions (n=4): Seja $s \in S$, então s pode ser representado como um par ordenado de dois octonions, ou seja, sendo a e b, dois octonions, pode-se representar,

$$s := (a; b) \tag{A.11}$$

Pelo processo de multiplicação Cayley-Dickson, em tomando-se $s, t \in \mathbb{S}$ e $a, b, c, d \in \mathbb{O}$, pode-se representar o produto de dois *sedenions* em termos de quatro octônios,

$$st := (a; b)(c; d) := (ac + \gamma d^*b; bc^* + da)$$
 (A.12)

Assim, através deste processo, novas unidades imaginárias para os *sedenions* serão introduzidas sendo estas: e'', i'', j'', k'', e''', j''', k'''.

Um sedenion, s, pode ser escrito como,

$$s := \sum_{\mu=0}^{15} s_{\mu} a_{\mu} = s_0 a_0 + \sum_{n=1}^{15} s_n a_n \tag{A.13}$$

Através da tábua de multiplicação do processo de Cayley-Dickson, pode-se representar os *sedenions* a partir dos octônios através de 35 ciclos, ou seja,

(1,2,3),	(1,4,5),	(1,7,6),	(1, 8, 9),	(1, 11, 10),	(1, 13, 12),	(1, 14, 15)
(2,4,6),	(2,5,7),	(2, 8, 10),	(2, 9, 11),	(2, 14, 12),	(2, 15, 13)	
(3,4,7),	(3, 6, 5),	(3, 8, 11),	(3,10,9),	(3, 13, 14),	(3, 15, 12)	
(4, 8, 12),	(4,9,13),	(4, 10, 14),	(4, 11, 15)			
(5, 8, 13),	(5,10,15),	(5,12,9),	(5, 14, 11)			
(6, 8, 14),	(6, 11, 13),	(6, 12, 10),	(6, 15, 9)			
(7, 8, 15),	(7, 9, 14),	(7, 12, 11),	(7, 13, 10)			

em que (j, k, m) representa uma permutação. Caso a multiplicação envolvendo o ciclo (j, k, m) seja positiva, trata-se de uma permutação par, e se a multiplicação do ciclo (j, k, m) for negativa, tem-se uma permutação ímpar.

Desta forma, a multiplicação de dois elementos bases dos sedenions, $a_j \in a_k$, é dada por

$$a_j a_k = -\delta_{j,k} + \sum_{j,k,m} \varepsilon_{j,k,m} a_m, (j,k,m=1,2,...,15)$$
(A.14)

Como as unidades imaginárias dos *sedenions* satisfazem a propriedade da anticomutatividade, tem-se que,

$$\varepsilon_{j,k,m} = \begin{cases} 1, & \text{se } (j,k,m) \text{ \'e uma permutação par;} \\ -1, & \text{se } (j,k,m) \text{ \'e uma permutação ímpar;} \\ 0, & \text{contrário} \end{cases}$$
(A.15)

e,

$$\delta_{j,k} = \begin{cases} 1, & \text{se } j = k; \\ 0, & \text{caso contrário;} \end{cases}$$
(A.16)

Exemplo A.1 Considere o ciclo (5, 12, 9). Em relação aos sedenions, temos j = 5, k = 12e m = 9, então de A.14, obtêm-se que:

$$a_5 a_{12} = -\delta_{5,12} + \sum_{5,12,9} \varepsilon_{5,12,9} a_9 \tag{A.17}$$

como,

 $\delta_{5,12} = 0, \quad (pois \ 5 \neq 12)$ (A.18)

A permutação (5,12,9) é uma permutação par, segue que,

$$\varepsilon_{5,12,9} = 1 \tag{A.19}$$

logo,

$$a_5 a_{12} = -0 + \sum_{5,12,9} 1 a_9$$
 (A.20)

$$\Rightarrow a_5 a_{12} = a_9 \tag{A.21}$$

Agora, se tomarmos o ciclo (5, 12, 9), j = 9, k = 12 e m = 5, então de A.14, têm-se que,

$$a_9 a_{12} = -\delta_{9,12} + \sum_{9,12,5} \varepsilon_{9,12,5} a_5, \tag{A.22}$$

como

$$\delta_{9,12} = 0,$$
 (A.23)

pois $9 \neq 12$, e como a permutação (9, 12, 5) é uma permutação ímpar, segue que,

$$\varepsilon_{9,12,5} = -1 \tag{A.24}$$

logo,

$$a_9 a_{12} = -0 + \sum_{5,12,9} -1a_5 \tag{A.25}$$

$$\Rightarrow a_9 a_{12} = -a_5 \tag{A.26}$$

Se procedermos da mesma forma, para j = 9, k = 5 e m = 12, obtêm-se,

$$a_9 a_5 = a_{12}$$
 (A.27)

*	a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_0	a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	a_{11}	<i>a</i> ₁₂	a_{13}	a_{14}	a_{15}
a_1	a_1	$-a_0$	a_3	$-a_2$	a_5	$-a_4$	$-a_{7}$	a_6	a_9	- <i>a</i> ₈	$-a_{11}$	a_{10}	-a ₁₃	a_{12}	a_{15}	$-a_{14}$
a_2	a_2	$-a_3$	$-a_0$	a_1	a_6	a_7	$-a_4$	$-a_5$	<i>a</i> ₁₀	a_{11}	- <i>a</i> ₈	$-a_{9}$	- <i>a</i> ₁₄	$-a_{15}$	a_{12}	a_{13}
a_3	a_3	a_2	$-a_1$	$-a_0$	a_7	- <i>a</i> ₆	a_5	$-a_4$	<i>a</i> ₁₁	$-a_{10}$	a_9	$-a_{8}$	- <i>a</i> ₁₅	a_{14}	$-a_{13}$	a_{12}
a_4	a_4	- <i>a</i> ₅	- <i>a</i> ₆	- <i>a</i> ₇	- <i>a</i> ₀	a_1	a_2	a_3	<i>a</i> ₁₂	a_{13}	a_{14}	a_{15}	-a ₈	$-a_{9}$	- <i>a</i> ₁₀	<i>-a</i> ₁₁
a_5	a_5	a_4	- <i>a</i> ₇	a_6	- <i>a</i> ₁	- <i>a</i> ₀	- <i>a</i> ₃	a_2	<i>a</i> ₁₃	$-a_{12}$	a_{15}	-a ₁₄	a_9	- <i>a</i> ₈	a_{11}	$-a_{10}$
a_6	a_6	a_7	a_4	$-a_5$	-a ₂	a_3	$-a_0$	$-a_1$	<i>a</i> ₁₄	$-a_{15}$	$-a_{12}$	a_{13}	<i>a</i> ₁₀	- <i>a</i> ₁₁	- <i>a</i> ₈	a_9
a_7	a_7	- <i>a</i> ₆	a_5	a_4	- <i>a</i> ₃	- <i>a</i> ₂	a_1	$-a_0$	a_{15}	a_{14}	- <i>a</i> ₁₃	$-a_{12}$	<i>a</i> ₁₁	a_{10}	- <i>a</i> ₉	- <i>a</i> ₈
a_8	a_8	- <i>a</i> ₉	- <i>a</i> ₁₀	- <i>a</i> ₁₁	-a ₁₂	- <i>a</i> ₁₃	- <i>a</i> ₁₄	$-a_{15}$	- <i>a</i> ₀	a_1	a_2	a_3	a_4	a_5	a_6	a_7
a_9	a_9	a_8	$-a_{11}$	a_{10}	-a ₁₃	a_{12}	a_{15}	$-a_{14}$	- <i>a</i> ₁	$-a_0$	$-a_3$	a_2	-a ₅	a_4	a_7	- <i>a</i> ₆
a_{10}	<i>a</i> ₁₀	a_{11}	a_8	$-a_{9}$	- <i>a</i> ₁₄	$-a_{15}$	a_{12}	a_{13}	- <i>a</i> ₂	a_3	$-a_0$	$-a_1$	- <i>a</i> ₆	$-a_{7}$	a_4	a_5
<i>a</i> ₁₁	a_{11}	- <i>a</i> ₁₀	a_9	a_8	- <i>a</i> ₁₅	a_{14}	$-a_{13}$	a_{12}	-a3	$-a_2$	a_1	$-a_0$	- <i>a</i> ₇	a_6	- <i>a</i> ₅	a_4
a_{12}	a_{12}	a_{13}	a_{14}	a_{15}	a_8	- <i>a</i> ₉	- <i>a</i> ₁₀	- <i>a</i> ₁₁	- <i>a</i> ₄	a_5	a_6	a_7	- <i>a</i> ₀	$-a_1$	$-a_2$	- <i>a</i> ₃
<i>a</i> ₁₃	<i>a</i> ₁₃	- <i>a</i> ₁₂	a_{15}	- <i>a</i> ₁₄	a_9	a_8	a_{11}	-a ₁₀	- <i>a</i> ₅	$-a_4$	a_7	- <i>a</i> ₆	a_1	$-a_0$	a_3	$-a_2$
a_{14}	a_{14}	$-a_{15}$	- <i>a</i> ₁₂	a_{13}	<i>a</i> ₁₀	- <i>a</i> ₁₁	a_8	a_9	- <i>a</i> ₆	-a7	- <i>a</i> ₄	a_5	a_2	- <i>a</i> ₃	$-a_0$	a_1
a_{15}	a_{15}	a_{14}	$-a_{13}$	$-a_{12}$	<i>a</i> ₁₁	a_{10}	$-a_{9}$	a_8	-a ₇	a_6	$-a_5$	$-a_4$	a_3	a_2	$-a_1$	- <i>a</i> ₀

Tabela A.1: Ciclos dos sedenions

Referências Bibliográficas

- Hamilton W. R., The Mathematical Papers of Sir William Rowan Hamilton, Cambridge UP, Cambridge (1967).
- [2] Hamilton W. R., Lectures on Quaternions, Dublin (1853).
- [3] Hamilton W. R., Elements of Quaternions, Chelsea Publishing Co., New York (1969).
- [4] Cayley A., On Jacobi's elliptic functions, in reply to the Rev. B. Bronwin; and on quaternions, Phyl. Magazine XXVI, 208–211 (1845).
- [5] Cayley A., On the 8-square imaginaries, Amer. J. Math. IV, 293–296 (1881).
- [6] Imaeda K. and Imaeda M., Sedenions: algebra and analysis, Appl. Math. Comput. 115, 77-88 (2000).
- [7] Musès C. A., Hypernumbers and their Spaces: a Summary of New Findings, J. Study. Consciousness, 5: 251-256 (1972).
- [8] Musès C. A., Explorations in mathematics, Impact of Science on Society, 27: 67-85 (1977).
- [9] Musès C. A., Hypernumbers and quantum field theory with a summary of physically applicable hypernumber arithmetics and their geometries, Appl. Math. Comput.,6:63-94 (1980).
- [10] Carmody K., Circular and hyperbolic quaternions, octonions, and sedenions-further results, Appl. Math. Comput., 84: 27–48 (1997).
- [11] Clifford W. K., Preliminary Sketch of Biquaternions, Proc. Lon. Math. Soc. 4, 381–395 (1873).

- [12] Clifford W. K., Collected Mathematical Papers, Chelsea (1882).
- [13] Seppo R., Quasiconformal Mappings, Annales Ac. Scientiarum Fennicae, Séries A. I. Math., Volumen 13, 371 – 385 (1988).
- [14] Teichmüller O., Extremale quasiconforme Abbildungen and quadratische Differentiale, Abh. Preuss. Akad. Iss. 22, 1-197, (1940).
- [15] Spiegel M. R., Variáveis Complexas. São Paulo, McGraw- Hill do Brasil; (Coleção Schaum) (1973).
- [16] Machado J. M. and Borges M. F., Hypercomplex Functions and Conformal Mappings, Internacional Journal of Applied Math., 9:(1) (2002).
- [17] Machado J. M. and Borges M. F., New Remarks on the Differentiability of Hipercomplex Functions, International Journal of Applied Mathematics, 8:(1)85-101 (2002).
- [18] Leal J. M., Mapeamentos Conformes em Funções Hipercomplexas, Dissertação de Mestrado em Matemática Aplicada, UNESP(IBILCE), São José do Rio Preto, (2003).
- [19] Carvalho T. M. M. de, Análise das propriedades de funções que satisfazem as relações generalizadas de Cauchy-Riemann, Dissertação de Mestrado em Matemática Aplicada, UNESP(IBILCE), São José do Rio Preto, (2003).
- [20] Maricato J. B. J., Funções Quaseconformes, Dissertação de Mestrado em Matemática Aplicada, UNESP(IBILCE) (2005).
- [21] Maricato J. B. J., Machado J.M. and Borges M.F., Quasiconformal Transformations and Hypercomplex Functions, International Journal of Applied Mathematics, V.20, 691-702 (2007).
- [22] Oliveira A. C., Quatérnios, operadores de Fueter e Relações Quaterniônicas Transcendentais, Dissertação de Mestrado em Matemática Aplicada, UNESP(IBILCE) (2006).
- [23] Pendeza C. A., Algebras não associativas octoniônicas e relações extensivas do tipo "De Moivre", Dissertação de Mestrado em Matemática Aplicada, UNESP(IBILCE) (2006).

- [24] Borges M. F., Benzatti L. F. L. e Dornelas M. R., Estudo Gráfico da Dilatação em Funções Octoniônicas Quase Conforme, Pôster apresentado no 26º Colóquio Brasileiro de Matemática, (IMPA) Rio de Janeiro (2007).
- [25] Benzatti L. F. L., Analiticidade e Efeito Gráfico da Dilatação em Funções Octoniônicas Quaseconformes do tipo $f(z) = z^n$, Dissertação de Mestrado em Matemática, UNESP(IBILCE) (2008).

Autorizo a reprodução xerográfica para fins de pesquisa.

São José do Rio Preto, ____ /____ /____

Assinatura

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo