TÉCNICAS DE PROPAGAÇÃO DE ONDAS NA ESTIMATIVA DE PROPRIEDADES MECÂNICAS DE PAINÉIS OSB

ELEN APARECIDA MARTINES MORALES

Tese apresentada ao Programa de Pós-Graduação Interunidades Ciência e Engenharia de Materiais, da Universidade de São Paulo, para obtenção do título de Doutor em Ciência e Engenharia de Materiais.

Orientador: Francisco Antonio Rocco Lahr

São Carlos 2006

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Morales, Elen Aparecida Martines

"Técnicas de propagação de ondas na estimativa de propriedades mecânicas de painéis OSB"

Elen Aparecida Martines Morales - São Carlos, 2006.

Tese (Doutorado) – Interunidades Ciência e Engenharia de Materiais, da Universidade de São Paulo, 2007 – páginas: 94 Área: Desenvolvimento, Caracterização e aplicação de materiais Orientador: Prof. Dr. Francisco Antonio Rocco Lahr

1. OSB. 2. Ultra-som. 3. Stress Wave I. Título

"Deus tem concedido talentos aos homens: um intelecto para inventar, um coração para ser o lugar de Seu trono, afeições que extravasem em bênçãos para outros, uma consciência para convencer do pecado. Cada um tem recebido algo do Mestre, e devem todos fazer a sua parte em suprir as necessidades da obra de Deus. Deus deseja que Seus obreiros olhem para Ele como o Doador de tudo que possuem, que se lembrem de que tudo o que têm e são vem dAquele que é maravilhoso em conselho e grande em obra." Administração Eficaz, E. G. White.

Ao meu querido Vinicius, o grande companheiro que Deus me deu.

AGRADECIMENTOS

A Deus, o Princípio, o Meio e o Fim;

Aos meus pais, Roseli e Joaquim, pelo amor que me têm e porque sem eles não teria a felicidade e a vida que tenho hoje;

Ao meu querido esposo Vinicius, pelo amor, apoio e companheirismo, em especial, durante a elaboração deste trabalho;

Ao professor e amigo Francisco Antonio Rocco Lahr, pois sem sua orientação não teria concluído mais esta etapa;

Aos professores Raquel, Adriano Ballarin, André Bartholomeu, Alex Trinca, Obede Farias, Rosane, Ivaldo e Silvio Govone, bem como seus respectivos técnicos, Flávia, Gisleiva, Japão, Isabella, Ailton e Israel, por sugestões, críticas, apoio e auxílio nos ensaios;

A amiga e companheira de sala Fati, por todo apoio, atenção e carinho;

Ao amigo Fabricio, por todos os momentos de lutas compartilhados;

Aos amigos Orlando, Karin, Simone, Lik, Eloísa, Alessandra, Wesley, Késia, Anelise e Madison, por toda amizade e orações a mim dispensadas;

Às amigas Lilian, Yuriko e Loreta, que mesmo a distância foram companheiras constantes;

Aos professores do LaMEM Dias e Calil, e funcionários Andréa, Arnaldo, Bragatto, Cido, Jaime, José Francisco, Samuel, Silvio, Roberto e Tânia, pois fazem parte deste trabalho;

A MASISA do Brasil, pela doação de painéis OSB;

A CAPES, pelo apoio financeiro a esta pesquisa;

A todos que contribuíram de forma direta ou indireta para a conclusão deste trabalho.

SUMÁRIO

Lis	sta de figuras	iii
Lis	sta de tabelas	v
Lis	sta de abreviaturas ou siglas	.viii
Lis	sta de símbolos	ix
Re	esumo	xii
Ab	ostract	xiii
1.	Introdução	.01
2.	Objetivos	.03
3.	Revisão Bibliográfica	05
	3.1. Produtos derivados de madeira	05
	3.2. O OSB	06
	3.2.1. Características gerais	08
	3.2.2. Propriedades mecânicas	.11
	3.3. Avaliações não-destrutivas	.13
	3.3.1. Stress wave	.14
	3.3.2. Ultra-som	.16
	3.3.3. Atenuação	.18
	3.4. Ensaios destrutivos	.19
	3.4.1. Umidade (EN 322-2000)	.20
	3.4.2. Densidade (EN 323 – 2000)	.20
	3.4.3. Inchamento em espessura e absorção de água (EN 317 – 1993).	.21
	3.4.4. Flexão Estática (EN 310 -2000)	.22
	3.4.5. Tração perpendicular às faces (EN 319 – 1993)	24
	3.5. Amostragem dos painéis para controle de qualidade em fábrica (EN 32 1/2000 e EN 326-2/2000)	26 – 25
	3.6. Ensaios não-destrutivos, stress wave e ultra-som em derivados madeira	de 27

	3.7. Comentários sobre a revisão bibliográfica apresentada	35
4.	. Materiais e Métodos	36
	4.1. Generalidades	36
	4.1.1. Ensaios preliminares	37
	4.1.2. Ensaios principais – primeira etapa	41
	4.1.3. Ensaios principais – segunda etapa	44
5.	. Resultados	48
	5.1. Ensaios preliminares	48
	5.2. Ensaios principais – primeira etapa	50
	5.3. Ensaios principais – segunda etapa	54
6.	. Discussão dos resultados	71
	6.1. Ensaios preliminares	71
	6.2. Ensaios principais – primeira etapa	72
	6.3. Ensaios principais – segunda etapa	77
7.	. Conclusões	84
A	nexo1	87
A	nexo 2	89
8.	. Referências Bibliográficas	91

LISTA DE FIGURAS

Figura 1 -	Exemplos de compósitos de madeira
Figura 2 -	Localização das fábricas de painéis de madeiras no Brasil
Figura 3 -	Painéis OSB
Figura 4 -	Exemplos de aplicações dos painéis OSB
Figura 5 -	Processo de manufatura dos painéis OSB e aplicações estruturais
Figura 6 -	Disposição de aparelhos de ultra-som
Figura 7 -	Ponto de medição das espessuras para o ensaio de densidade
Figura 8 -	Exemplo de plano de corte de corpos-de-prova segundo a EN 326-1/1994
Figura 9 -	Esquema da medição do tempo de propagação das ondas utilizando aparelho de ultra-som
Figura 10 -	Medições de tempo de propagação com o aparelho de ultra-som
Figura 11 -	Equipamento de ultra-som STEINKAMP, modelo BP-7
Figura 12 -	Medições de tempo na espessura do painel
Figura 13 -	Exemplos de ensaios mecânicos nos painéis OSB
Figura 14 -	Esquema de plano de corte para os painéis OSB
Figura 15 -	Aparelho Stress Wave Timer, modelo 239 A – METRIGUARD e seu acessórios
Figura 16 -	Exemplo de posicionamento dos transdutores do aparelho stress wave para a medição do tempo no painel OSB e nos corpos-de-prova
Figura 17 -	Equipamento de ultra-som PANAMETRICS, modelo EPOCH4 e esquema para medição dedo tempo de propagação de onda através da espessura dos painéis
Figura 18 -	Exemplo de posicionamento dos transdutores do aparelho stress wave para a medição do tempo nos painéis OSB nas direções longitudinal e transversal
Figura 19 -	Velocidade x força máxima na flexão estática, na direção transversal, com medições realizadas pelo ultra- som
Figura 20 -	Velocidade x força máxima na flexão estática, na direção transversal, com medições realizadas pelo stress wave – painéis 15(2) e 25mm
Figura 21 -	Velocidade x resistência na flexão estática, na direção longitudinal, com medições realizadas pelo ultra-som – valores médios
Figura 22 -	Velocidade x resistência na flexão estática, na direção longitudinal, com medições realizadas pelo stress wave –

	valores médios	67
Figura 23 -	Valores de módulos de resistência x velocidades para os três painéis	75
Figura 24 -	Normalidade dos valores das velocidades determinadas na direção transversal do painel de espessura 15(1)mm	76
Figura 25 -	Módulos de resistência x velocidades para os dois grupos de painéis	81

LISTA DE TABELAS

Tabela 1 -	Painéis para usos gerais e para componentes para interiores(incluindo mobiliário) para utilização em ambiente seco –Requisitos para as propriedades mecânicas e de inchamento1.
Tabela 2 -	Painéis para fins estruturais utilizados em ambiente seco – Requisitos para as propriedades mecânicas e de inchamento
Tabela 3 -	Painéis para fins estruturais utilizados em ambiente úmido – Requisitos para as propriedades mecânicas e de inchamento
Tabela 4 -	Painéis para fins estruturais especiais utilizados em ambiente úmido – Requisito para as propriedades mecânicas e de inchamento
Tabela 5 -	Número mínimo de corpos-de-prova m a serem ensaiados de cada painel
Tabela 6 -	Número mínimo de corpos-de-prova m a serem ensaiados de cada painel e número de corpos-de-prova m _u ensaiados em cada painel
Tabela 7 -	Propriedades físicas dos painéis OSB 1 e 2 4
Tabela 8 -	Propriedades mecânicas dos painéis OSB 1 e 2 4
Tabela 9 -	Velocidades de propagação das ondas: espessura dos painéis 4
Tabela 10 -	Constantes dinâmicas de propagação de ondas: espessura dos painéis
Tabela 11 -	Velocidades e constantes dinâmicas de propagação de ondas: direções longitudinal e transversal dos painéis
Tabela 12 -	Propriedades físicas dos painéis OSB
Tabela 13 -	Propriedades mecânicas dos painéis OSB
Tabela 14 -	Velocidades de propagação das ondas: espessura dos painéis 5
Tabela 15 -	Constantes dinâmicas de propagação de ondas: espessurados painéis5
Tabela 16 -	Velocidades e constantes dinâmicas de propagação de ondas: direções longitudinal e transversal dos painéis
Tabela 17 -	Velocidades e constantes dinâmicas de propagação de ondas: direções longitudinal e transversal dos painéis – stress wave
Tabela 18 -	Velocidades e constantes dinâmicas de propagação de ondas: corpos-de-prova de flexão dos painéis – stress wave
Tabela 19 -	Equações, R e R ² entre os valores dos ensaios físico- mecânicos e não-destrutivos pelo método de ultra-som
Tabela 20 -	Equações, R e R ² entre os valores dos ensaios físico- mecânicos e não-destrutivos pelo método de stress wave – painéis 15(1) x 15(2)mm
Tabela 21 -	Equações, R e R ² entre os valores dos ensaios físico- mecânicos e não-destrutivos pelo método de stress wave – painéis 15(1) x 25mm

Tabela 22 -	Equações, R e R ² entre os valores dos ensaios físico- mecânicos e não-destrutivos pelo método de stress wave – painéis 15(2) x 25mm
Tabela 23 -	Propriedades físicas dos painéis OSB dos grupos 1 e 2
Tabela 24 - Tabela 25 -	Propriedades mecânicas das chapas OSB dos grupos 1 e 2 Teor de umidade e densidade dos painéis OSB dos grupos 1 e 2
Tabela 26 -	Valores de inchamento e absorção de água (24h), e de resistência à tração perpendicular às faces, nos painéis OSB dos grupos 1 e 2
Tabela 27 -	Valores de força de ruptura, de módulos de elasticidade e de resistência na flexão estática na direção longitudinal dos painéis OSB dos grupos 1 e 2
Tabela 28 -	Valores de força de ruptura, de módulos de elasticidade e de resistência na flexão estática na direção transversal dos painéis OSB dos grupos 1 e 2
Tabela 29 -	Velocidades de propagação de ondas: espessuras dos painéis OSB dos grupos 1 e 2
Tabela 30 -	Constantes dinâmicas de propagação de ondas: espessura dos painéis OSB dos grupos 1 e 2
Tabela 31 -	Atenuações de propagação de ondas: espessura dos painéis OSB dos grupos 1 e 2
Tabela 32 -	Velocidades de propagação de ondas: direções longitudinal e transversal dos painéis OSB dos grupos 1 e 2 – ultra-som
Tabela 33 -	Constantes dinâmicas de propagação de ondas: direções longitudinal e transversal dos painéis OSB dos grupos 1 e 2 – ultra-som
Tabela 34 -	Velocidades de propagação de ondas: direções longitudinal e transversal dos painéis OSB dos grupos 1 e 2 – stress wave
Tabela 35 -	Constantes dinâmicas de propagação de ondas: direções longitudinal e transversal dos painéis OSB dos grupos 1 e 2 – stress wave
Tabela 36 -	Equações, R e R ² entre os valores obtidos nos ensaios físico- mecânicos e não-destrutivos pelo método de ultra-som
Tabela 37 -	Equações, R e R ² entre os valores obtidos nos ensaios físico- mecânicos e não-destrutivos pelo método de stress wave – todos os valores
Tabela 38 -	Equações, R e R ² entre os valores obtidos nos ensaios físico- mecânicos e não-destrutivos pelo método de stress wave
Tabela 39 -	Equações, R e R^2 entre os métodos de ultra-som e stress
Tabela 40 -	Equações, R e R^2 entre os métodos de ultra-som e stress wave
Tabela 41 -	Equações, R e R ² entre os valores obtidos nos ensaios físico- mecânicos e não-destrutivos pelo método de ultra-som –

	valores médios	
Tabela 42 -	Equações, R e R ² entre os valores obtidos nos ensaios físico- mecânicos e não-destrutivos pelo método de stress wave – valores médios	69
Tabela 43 -	Equações, R e R^2 entre os métodos de ultra-som e stress	70
Tabela 44 -	Equações, R e R^2 entre os métodos de ultra-som e stress wave – valores médios	70
Tabela 45 -	Velocidade x resistência na flexão estática, na direção longitudinal, com medições realizadas pelo stress wave – valores médios	77
Tabela 46 -	Diferenças, em médias, entre valores de propriedades físico- mecânicas dos painéis dos grupos 1 e 2: maiores valores para os painéis do grupo 2	77

LISTA DE ABREVIATURAS OU SIGLAS

- ASTM American Society for Testing and Materials
- EESC Escola de Engenharia de São Carlos
- EN European Committee for Standardization
- FEAGRI Faculdade de Engenharia Agrícola
- FEB Faculdade de Engenharia de Bauru
- HDF High Density Fiberboard
- LaMEM Laboratório de Madeiras e de Estruturas de Madeira
- LVL Laminated Venner Lumber
- *MDF* Medium Density Fiberboard
- MUF Melamine Fortified Urea Formaldheid
- NDT Nondestructive Testing
- OSB Oriented Strand Board
- PMDI Isocianato
- SBA Structural Board Association
- SET Departamento Engenharia de Estruturas
- TECO Timber Company
- UNESP Universidade Estadual Paulista
- UNICAMP Universidade Estadual de Campinas
- USP Universidade de São Paulo

LISTA DE SÍMBOLOS

a – Comprimento do corpo-de-prova (mm)

 $a_2 - a_1$ – Incremento da flecha correspondente a $F_2 - F_1$

AI – Tração perpendicular às faces ou adesão interna (MPa)

Atn – Atenuação de propagação de ondas (d β /cm)

 $Atn_{A e I}$ – Atenuação de propagação de onda no local correspondente ao corpo-deprova de absorção de água e de inchamento (d β /cm)

 Atn_{AI} – Atenuação de propagação de onda no local correspondente ao corpo-deprova de adesão interna (d β /cm)

 Atn_d – Atenuação de propagação de onda no local correspondente ao corpo-deprova de densidade (d β /cm)

 A_m – Absorção de água, por imersão em água por 24h (%)

b – Largura do corpo-de-prova (mm)

 b_1 – Dimensão da borda (mm)

 b_2 – Dimensão da borda (mm)

C – Constante Dinâmica (MPa)

 C_A – Constante dinâmica de propagação da onda no local correspondente ao corpo-de-prova de absorção de água (MPa)

 C_{AI} – Constante dinâmica de propagação da onda no local correspondente ao corpo-de-prova de adesão interna (MPa)

 C_d – Constante dinâmica de propagação da onda no local correspondente ao corpode-prova de densidade (MPa)

 C_i – Constante dinâmica de propagação da onda no local correspondente ao corpode-prova de inchamento (MPa)

*C*_{*I e A} – Constante dinâmica de propagação da onda no local correspondente ao corpo-de-prova de inchamento e absorção de água (MPa)</sub>*

CV – Coeficiente de variação

 C_{\perp} – Constante dinâmica de propagação de ondas na direção transversal (MPa)

 $C_{//}$ – Constante dinâmica de propagação de ondas na direção longitudinal (MPa)

d – Distância (m)

d.m.s. – Diferenças mínimas significativas

 E_m – Módulo de elasticidade na flexão estática (MPa)

 $E_{m\perp}$ – Módulo de elasticidade na flexão estática na direção transversal (MPa)

 $E_{m//}$ – Módulo de elasticidade na flexão estática na direção longitudinal (MPa)

f – Freqüência (Hz)

 f_m – Módulo de resistência na flexão estática (MPa)

 $f_{m\perp}$ – Módulo de resistência na flexão estática na direção transversal (MPa)

 $f_{m//}$ – Módulo de resistência na flexão estática na direção longitudinal (MPa)

 $F_2 - F_1$ = incremento de força, em Newton, na seção retilínea da curva força-flecha,

onde F1 deve ser cerca de 10% e F2 cerca de 40% da força de ruptura

 F_{max} – Força de ruptura (N)

 $F_{max//}$ – Força de ruptura na flexão estática, na direção longitudinal (N)

 $F_{max^{\perp}}$ – Força de ruptura na flexão estática, na direção transversal (N)

 F_{maxAl} – Força de ruptura na resistência à tração perpendicular às faces (N)

 G_t – Inchamento em espessura, por imersão em água por 24h (%)

H – Umidade (%)

 I_1 – Distância entre os centros dos apoios (mm)

 I_2 – Comprimento (mm)

m – Massa (kg) e/ou número de corpos-de-prova

 m_1 – Massa inicial (g)

 m_2 – Massa final (g)

- p Valor de probabilidade
- R Coeficiente de variação

- R^2 Coeficiente de determinação
- s Desvio Padrão

t – Tempo (s) e/ ou espessura (mm)

 t_1 – Espessura inicial (mm)

 t_2 – Espessura final (mm)

x - Média Aritmética

V – Velocidade (m/s)

 V_A – Velocidade de propagação da onda no local correspondente ao corpo-deprova de absorção de água (m/s)

 $V_{A/}$ – Velocidade de propagação da onda no local correspondente ao corpo-deprova de adesão interna (m/s)

 V_d – Velocidade de propagação da onda no local correspondente ao corpo-de-prova de densidade (m/s)

 V_l – Velocidade de propagação da onda no local correspondente ao corpo-de-prova de inchamento (m/s)

 V_{leA} – Velocidade de propagação da onda no local correspondente ao corpo-deprova de inchamento e absorção de água (m/s)

 V_{\perp} – Velocidade de propagação de ondas na direção transversal (m/s)

 $V_{\prime\prime}$ – Velocidade de propagação de ondas na direção longitudinal (m/s)

- α -Nível de confiança
- ρ -Densidade (kg/ m³)
- λ Comprimento de Onda (m)

RESUMO

Um dos painéis derivados de madeira que tem se destacado é o OSB (Oriented Strand Board). Cada vez mais se evidencia a necessidade de novas tecnologias relacionadas à avaliação das propriedades mecânicas desse tipo de derivado de madeira, atualmente realizada através de ensaios destrutivos, efetuados horas ou dias após a respectiva produção. A utilização de métodos não-destrutivos tem se mostrado eficiente na caracterização mecânica e na avaliação da gualidade da madeira, e promissora em relação aos derivados de madeira. O objetivo geral deste trabalho foi investigar a eficiência de técnicas não-destrutivas de ensaio, de ultrasom e de stress wave, na estimativa de parâmetros físicos e mecânicos de painéis OSB fabricados no país. Foram considerados dois grupos, com 10 painéis de espessuras nominais de 15mm cada, que possuíam valores de resistência e de módulos de elasticidade na flexão estática, na direção longitudinal, distintos entre si. Primeiramente foram conduzidos os ensaios não-destrutivos, de ultra-som e de stress wave, nos painéis OSB e, em seguida, os ensaios destrutivos para a caracterização físico-mecânica e subsegüentes comparações. Os painéis estudados apresentaram valores de velocidades e constantes dinâmicas diferenciados na espessura e nas direções longitudinal e transversal. Os coeficientes de correlação obtidos entre os valores de velocidades e de constantes dinâmicas e os das propriedades físico-mecânicas, dos dois grupos de painéis, na espessura e direção transversal, não atingiram 0,70 e, na direção longitudinal superaram 0,90. Mostrou-se que é equivalente a estimativa de parâmetros mecânicos na flexão estática, ou até mesmo o estudo de painéis OSB, com a utilização dos métodos não-destrutivos de ultra-som e de stress wave. Com os resultados obtidos são gerados importantes subsídios para possibilitar a avaliação da produção de painéis OSB, viabilizando eventuais correções e ajustes até no decorrer do próprio processo produtivo.

Palavras-chave: derivados de madeira, ensaios não-destrutivos, OSB, stress wave, ultra-som.

ABSTRACT

Wood based materials production has grown in the national market, as it is the current international trend. Such products have been an interesting alternative to the sawn wood. Among them, OSB (Oriented Strand Board) has been of an outstanding importance. Its potential of production in the national context is expressive when supplying civil construction, furniture industry, and others. However, this fact also makes clear the need of innovative technologies for mechanical properties evaluation of this wood based material, since until the present day it has been conducted with destructive tests which are only made hours or days after production. Nondestructive methods utilization has been proven to be efficient for mechanical characterization and quality evaluation of sawn wood, and quite promising for wood based materials. The main goal of this research has been to investigate the efficiency of nondestructive testing (ultrasound and stress wave) when estimating physical and mechanical parameters of OSB panels made in Brazil. Two groups of ten 15mm thick panels have been used, having each one of them strength and modulus of elasticity in static bending values distinct from each other in longitudinal direction. First the two types of nondestructive testing have been conducted on all OSB panels and then destructive tests have also been conducted for physical-mechanical characterization and following comparisons. Values of velocities and dynamic constants both in thickness and longitudinal and transversal directions have been different in the two groups of studied panels. Correlation coefficients between values of velocity and dynamic constants and values of physical-mechanical properties of the two groups of panels have not reached 0,70 in thickness and transversal direction, but they have exceeded 0.90 in longitudinal direction. It has been shown that ultrasound is analogous to stress wave either when estimating static bending mechanical parameters or studying OSB panels by nondestructive testing. Such results generate some important subsidies to the evaluation of OSB production, making feasible eventual corrections and adjustments even in the course of its process.

Keywords: wood based materials, nondestructive testing, OSB, stress wave, ultrasound.

Papítulo 1 - Sntrodução

Uma das tendências mais evidentes na indústria madeireira é o crescimento da produção dos chamados painéis (ou chapas) à base de madeira. Estes têm se mostrado uma alternativa interessante em relação à madeira serrada pois, por exemplo, viabilizam a utilização de praticamente cem por cento de uma tora; não impõem restrições ao emprego de espécies de reflorestamento, de rápido crescimento e de densidade média; alguns deles podem ser fabricados com resíduos de madeireiras; propiciam diminuição da anisotropia e apresentam poucas limitações dimensionais.

Indústrias brasileiras têm fabricado e investido na produção de laminados como o compensado (1940), de compósitos de fibra de madeira como as chapas de fibra (1955) e o MDF (1998) bem como de compósitos de partículas de madeira como o aglomerado (1966) e o OSB (2002), o mais recente. Essa produção busca atender aos mercados interno e externo, nos setores da construção civil e moveleiro, entre outros.

Entre esses produtos, o que tem mostrado crescente aplicação mundialmente, em especial na construção civil, incluindo telhados, paredes, pisos, contrapisos e vigas de edificações com até três andares, é o OSB (Oriented Strand Board). No Brasil a sua utilização tem sido mais expressiva na área do design, móveis, decoração e embalagens. Um cuidado especial, que necessita urgentes investimentos de pesquisa, se refere ao desenvolvimento de tecnologia para permitir a avaliação mais expedita das propriedades mecânicas dos derivados de madeira.

Em indústrias nacionais de produtos derivados de madeira, até o presente momento, essa avaliação normalmente tem se baseado em procedimentos de amostragem estatística, nos quais partes desses produtos são testadas destrutivamente, em geral horas depois de sua produção.

Se a amostra apresentar valores de propriedades físico-mecânicas inferiores às requeridas do lote em fabricação, após mais algumas horas é realizada nova amostragem. Confirmado o primeiro resultado, a produção é paralisada, o problema no processo de produção é investigado, posteriormente corrigido e metros cúbicos de painéis produzidos são descartados.

Como descrito, tal procedimento demanda muito tempo. Além disto, caso sejam determinadas propriedades que não atendam aos requisitos de qualidade, somente haverá como introduzir modificações na linha de produção, de modo a corrigir o problema, após se consumarem grandes volumes de perdas.

Neste contexto fica plenamente evidenciada a importância de se investigar a adequação do uso de técnicas não-destrutivas de ensaio (NDT – Nondestructive Testing), como as do "stress wave" e do ultra-som, para a adequada estimativa de propriedades de painéis derivados da madeira. Essas técnicas são de fácil e rápida implementação, bem como de custo competitivo.

Papítulo 2 - Objetivos

2.1. Objetivo geral

Constitui-se objetivo geral do presente trabalho investigar a eficiência de técnicas não-destrutivas de ensaio (stress wave e ultra-som) na estimativa de parâmetros físicos e mecânicos de painéis OSB fabricados no país.

2.2. Objetivos específicos

Como objetivos específicos, têm-se:

- Avaliar a existência de correlação entre os valores obtidos nos ensaios nãodestrutivos, de ultra-som e de stress wave, e nos ensaios físico-mecânicos destrutivos convencionais, conduzidos em painéis OSB de produção nacional;
- Avaliar a existência de diferenças entre valores de velocidades de propagação da onda, e correspondentes valores de constantes dinâmicas, na espessura e nas direções longitudinal e transversal de painéis OSB, de produção nacional, através da utilização dos métodos não-destrutivos de ultra-som e de stress wave;
- Avaliar a correlação entre valores de velocidades de propagação da onda, e correspondentes valores de constantes dinâmicas, obtidos nos métodos de ultra-som e stress wave, quando utilizados em painéis OSB, de fabricação nacional;

- Avaliar a existência de diferenças entre valores de velocidades de propagação da onda, e correspondentes valores de constantes dinâmicas, para painéis OSB, de fabricação nacional, pertencentes a lotes com propriedades mecânicas de valores distintos entre si, com a utilização dos métodos nãodestrutivos de ultra-som e de stress wave;
- Gerar subsídios para a disseminação do emprego de técnicas não-destrutivas de ensaio para a estimativa de propriedades de painéis derivados da madeira.

Capítulo 3 - Revisão Bibliográfica

Neste capítulo são apresentadas informações referentes ao OSB, a ensaios destrutivos e a avaliações não-destrutivas utilizadas com a madeira e seus derivados.

3.1. Produtos derivados de madeira

Os produtos derivados da madeira podem ser classificados de várias formas. Bodig (2001) propõe uma divisão em dois grandes grupos, os laminados e os compósitos de madeira.

Os compósitos de madeira são definidos, geralmente, como produtos nos quais a madeira é usada na forma de partículas ou fibras e estes componentes são aglomerados por adesivo, em processo que requer o controle de diversas variáveis.

Como exemplos podem ser citados os painéis aglomerados de madeira, o OSB (Oriented Strand Board), o MDF (Medium Density Fiberboard), o HDF (High Density Fiberboard). A Figura 1 mostra exemplos de compósitos de madeira.

Figura 1 – Exemplos de compósitos de madeira: a) MDF, b) chapa de partículas e c) OSB. Fonte: <u>http://www.wii.com/BLDGMATR.HTM</u>

No Brasil é expressiva a produção de painéis de partículas de madeira. A título de ilustração, a Figura 2 mostra onde estão localizadas as fábricas de painéis brasileiras, cuja concentração ocorre nas regiões sudeste e sul do país.

Figura 2 - Localização das fábricas de painéis de madeiras no Brasil. Fonte: ABIPA, 2006.

3.2. O OSB

O OSB é a segunda geração do Waferboard. Este produto foi desenvolvido por James Clarke, da US Potchland Corporation, em 1954, quando pesquisava novas utilizações para as espécies oriunda das florestas de Potchland, que não eram apropriadas para emprego como madeira serrada ou como polpa.

Clarke descobriu que o fatiamento de toras cortadas ao longo da grã em finos "wafers" e a união destes, por meio de resina fenólica, resultaria, após um período de prensagem, em um painel com características muito interessantes para diversas finalidades, quer na construção, quer na indústria do mobiliário (Janssens, 1998).

O desenvolvimento do Waferboard seguiu a ênfase colocada pelo Provincial Government of Saskatchewan (Canadá) para a utilização das suas florestas de Aspen (*Populus tremuloides*). Em 1955, o Waferboard foi fabricado comercialmente pela primeira vez, em pequena escala, pela Pack River Company, Sandpoint, Idaho, USA e, em larga escala, pela Wizewood Limited, Hudson Bay, Saskatchewan, Canadá, em 1962, com o nome comercial "Aspenite" (Cloutier, 1998).

Essa última indústria surgiu de um grupo de negociantes que compraram a patente de Clarke. Tal grupo teve sérios problemas financeiros em 1963 e a indústria foi incorporada pelo governo da província de Saskatchewan, sendo vendida à Macmillan Bloedel Ltd. O produto foi amplamente comercializado no setor da construção civil e teve sucesso no mercado, pelo seu desempenho e pelo seu preço competitivo.

A Associação Canadense de Waferboard (Canadian Waferboard Association – CWA) foi fundada em 1976 por quatro manufatores de Waferboard canadenses. Entre 1970 e 1980, muitos esforços foram feitos para caracterizar as propriedades e obter o reconhecimento do Waferboard nos códigos e normas de edificações dos EUA e Canadá.

Muita pesquisa foi realizada no antigo Eastern Forest Products Laboratory em Ottawa, Ontário, atual Forintek Canada Corp. (Québec), incluindo o estudo do impacto do alinhamento dos wafers sobre as propriedades do painel.

Em 1981 o termo "Oriented Strand Board" foi incluído à definição de Waferboard. O nome da CWA foi mudado para "Structural Board Association" (SBA) em 1990. No fim de 1996, a indústria de OSB já incluía 57 plantas na América do Norte (38 nos EUA e 19 no Canadá), responsáveis por uma produção de 13,3 milhões de m³/ano. A SBA também inclui uma planta na Escócia, no Chile e na França (Cloutier, 1998).

O OSB tem sido rapidamente aceito desde o início de sua produção. De fato, muitas áreas da América do Norte têm substituído outros painéis derivados da madeira na construção residencial (SBA, 2002).

As principais diferenças entre o Waferboard e o OSB são:

- Dimensões das partículas: os wafers apresentam dimensões 40mm por 40mm, no Waferboard, sendo que os strands, no OSB, são mais longos, medindo aproximadamente 25mm de largura por 80mm a 150mm de comprimento.
- Modo de formação do colchão: No Waferboard, as partículas são dispostas aleatoriamente no colchão, formando apenas uma camada, não-homogênea. O OSB é formado pelos strands dispostos em várias camadas (geralmente três), que são alinhadas perpendicularmente entre si (Janssens, 1998).

3.2.1. Características gerais

Segundo a EN 300/ 2002 (Norma Portuguesa), o OSB (aglomerado de partículas de madeira longas e orientadas) é composto por várias camadas constituídas por partículas de madeira longas, de determinado formato e espessura, aglutinadas por uma resina colante (adesivo). A Figura 3(a) mostra exemplos de painéis OSB.

As partículas longas de madeira das camadas exteriores encontram-se alinhadas e dispostas preferencialmente na direção paralela ao comprimento ou a largura do painel e as partículas da, ou das, camadas interiores podem encontrarse orientadas aleatoriamente ou alinhadas, geralmente, na direção perpendicular à das partículas de madeira longas das camadas exteriores. A Figura 3(b) mostra a orientação em camadas dos painéis OSB.

(b)

Estas partículas de madeira longas ou "strands", são unidas umas às outras com resina à prova d'àgua, sob calor e pressão (FPL, 1999).

As dimensões das partículas são predeterminadas e têm uma espessura uniforme (SBA, 2002). Apresentam cerca de 25mm de largura, 90 a 150mm de comprimento por 0,50 a 0,75 mm de espessura (CLOUTIER, 1998). As dimensões dos painéis usualmente comercializados são 1220 x 2440mm e as suas espessuras comuns variam de 6 a 40mm.

As Figuras 4 (a), (b), (c), (d), (e) e (f) mostram exemplos das aplicações do OSB.

Figura 4: Exemplos de aplicações dos painéis OSB. (a) Construção residencial. Fonte: <u>http://www.modular-homes-plans.com/roof_sheathing.html</u>, (b) Construção de edifício. Fonte: <u>http://www.apawood.org/level_b.cfm?content=prd_osb_main</u>, (c) Paredes projetadas com OSB. Fonte: <u>http://www.modular-homesplans.com/roof_sheathing.html</u>, (d) Piso em OSB. Fonte:

<u>http://www.ipcorp.com/productas/productsDetail.jsp?ProductGroupID=14ProductID=364b</u>, (e) Exemplo de viga estrutural I. Fonte :<u>http://www.wii.com/StrucjoistDG.pdf</u> e (f) Móveis. Fonte: <u>http://www.masisa.com.br</u>.

Os adesivos habitualmente utilizados na fabricação dos painéis OSB são o fenol-formaldeído, a melamina-ureia-formadeido (Melamine Fortified Urea Formalheyde – MUF) e o isocianato (PMDI), sendo que todos estes são resistentes à umidade. Na Europa, é comum utilizar-se uma combinação de adesivos, sendo o PMDI normalmente utilizado na camada central e a MUF nas camadas exteriores, o

que reduz os ciclos de prensagem e ao mesmo tempo confere um aspecto mais brilhante à superfície do painel (site <u>http://www.osb-info.org</u>, 2002).

As suas principais aplicações são: Produção de divisórias de ambientes; fechamento de paredes, contrapisos e forros de coberturas; produção de vigas I estruturais; fabricação de móveis (Einsfeld et al, 1998); tapumes e barracões de obras; corpos de motor-home; carrocerias de caminhões; pallets tipo container; embalagens; displays; decoração e design (site MASISA, 2002).

A Figura 5 mostra o processo de fabricação de painéis OSB, de uma forma simplificada, e suas aplicações estruturais.

Figura 5 - Processo de manufatura dos painéis OSB e aplicações estruturais. Fonte: APA, 2000.

Segundo a EN 300 (2002) são especificados quatro tipos de painéis OSB:

 a) OSB/1: Painéis para usos gerais e painéis para componentes interiores (incluindo mobiliário) utilizados em ambiente seco.

b) **OSB/2:** Painéis para fins estruturais utilizados em ambiente seco.

c) **OSB/3:** Painéis para fins estruturais utilizados em ambiente úmido.

 d) OSB/4: Painéis para fins estruturais especiais utilizados em ambiente úmido.

Os painéis para fins estruturais são destinados ao projeto e constituição dos elementos estruturais para a construção, por exemplo, de paredes, de pavimentos,

de telhados ou de vigas I (ENV 1995-1-1 e/ou Normas de desempenho) em utilização em ambiente seco ou úmido.

Considera-se como ambiente seco o definido para a classe de serviço 1, de acordo com a ENV 1995-1-1, para painéis para fins estruturais, caracterizado por um teor de água dos materiais correspondentes a temperatura do ar de 20°C e umidade relativa do ar que apenas ultrapasse os 65% durante algumas semanas por ano.

Considera-se como ambiente úmido o definido para a classe de serviço 2, de acordo com a ENV 1995-1-1, caracterizado por uma umidade relativa do ar que apenas ultrapasse os 85% durante algumas semanas por ano.

Segundo a APA (2000), os painéis OSB são classificados quanto à sua resistência à exposição à umidade em dois grupos:

• Painéis Exteriores (Exterior): Produzidos com adesivos à prova d'água, são indicados para aplicações sujeitas à exposição permanente ao intemperismo.

 Painéis Exposição 1 (Exposure 1): Produzidos com adesivos à prova d'água, são indicados para aplicações onde podem ser esperados longos atrasos em construções e for programada uma proteção prévia. Aproximadamente 95% dos Painéis de Desempenho Classificado (Performance Rated Panels) são manufaturados com essa designação.

3.2.2. Propriedades Mecânicas

Os requisitos em termos de valores limites para as propriedades mecânicas dos 4 tipos de painéis OSB definidos no documento normativo EN 300 são apresentados nas Tabelas 1, 2, 3 e 4, onde f_m, E_m, AI e G_t representam, respectivamente, os módulos de resistência e de elasticidade na flexão estática, resistência à tração perpendicular às faces e inchamento em espessura. Caracteriza-se por teor de umidade no material correspondente à umidade relativa de 65% e à temperatura de 20°C.

Tabela 1 – Painéis para usos gerais e para componentes de interiores (incluindo mobiliário) para utilização em ambiente seco – Requisitos para as propriedades mecânicas e de inchamento

Painel tipo OSB/ 1			Requisitos		
Propriedade	Método de Ensaio Unidade		Espessura do painel (nominal, mm)		
			6 a 10	> 10 e < 18	18 a 25
f _m – Direção longitudinal	EN 310	N/mm ²	20	18	16
f _m – Direção transversal	EN 310	N/mm ²	10	9	8
E _m – Direção longitudinal	EN 310	N/mm ²	2500	2500	2500
E _m – Direção transversal	EN 310	N/mm ²	1200	1200	1200
AI	EN 319	N/mm ²	0,30	0,28	0,26
G _t (24h)	EN 317	%	25	25	25

Fonte: EN 300, 2002.

Tabela 2 – Painéis para fins	estruturais utilizados	em ambiente seco ·	 Requisitos
para as propr	riedades mecânicas o	e de inchamento	

Painel tipo OSB/ 2	Método de Ensaio Unidade		Requisitos			
Propriedade			Espessura do painel (nominal, mm)			
			6 a 10	> 10 e < 18	18 a 25	
f _m – Direção longitudinal	EN 310	N/mm ²	22	20	18	
f _m – Direção transversal	EN 310	N/mm ²	11	10	9	
E _m – Direção longitudinal	EN 310	N/mm ²	3500	3500	3500	
E _m – Direção transversal	EN 310	N/mm ²	1400	1400	1400	
AI	EN 319	N/mm ²	0,34	0,32	0,30	
G _t (24h)	EN 317	%	20	20	20	

Fonte: EN 300, 2002.

Tabela 3 – Painéis para fins estruturais utilizados em ambiente úmido – Requisitos para as propriedades mecânicas e de inchamento

Painel tipo OSB/ 3	Método de Ensaio Unidade		Requisitos			
Propriedade			Espessura do painel (nominal, mm)			
			6 a 10	> 10 e < 18	18 a 25	
f _m – Direção longitudinal	EN 310	N/mm ²	22	20	18	
f _m – Direção transversal	EN 310	N/mm ²	11	10	9	
E _m – Direção longitudinal	EN 310	N/mm ²	3500	3500	3500	
E _m – Direção transversal	EN 310	N/mm ²	1400	1400	1400	
AI	EN 319	N/mm ²	0,34	0,32	0,30	
G _t (24h)	EN 317	%	15	15	15	

Fonte: EN 300, 2002.

Painel tipo OSB/ 4			Requisitos		
Propriedade	Método de Ensaio Unidade		Espessura do painel (nominal, mm)		
			6 a 10	> 10 e < 18	18 a 25
f _m – Direção longitudinal	EN 310	N/mm ²	30	28	26
f _m – Direção transversal	EN 310	N/mm ²	16	15	14
E _m – Direção longitudinal	EN 310	N/mm ²	4800	4800	4800
E _m – Direção transversal	EN 310	N/mm ²	1900	1900	1900
AI	EN 319	N/mm ²	0,50	0,45	0,40
G _t (24h)	EN 317	%	12	12	12

Tabela 4 – Painéis para fins estruturais especiais utilizados em ambiente úmido – Requisito para as propriedades mecânicas e de inchamento

* Para os painéis OSB/2, OSB/3 e OSB/4 se o comprador notificar que os painéis são destinados a uma utilização específica em pavimento, parede ou telhado, a Norma de desempenho correspondente também tem que ser consultada. Este fato pode implicar a observância de requisitos adicionais.

Fonte: EN 300, 2002.

3.3. Avaliações não-destrutivas

A pesquisa sobre ensaios não-destrutivos em madeira e derivados de madeira foi incentivada nos EUA por um simpósio em Pullman, Washington, em 1980, organizado por Roy F. Pellerin (Washington State University) e Kent MacDonald (USDA Forest Service, Forest Products Laboratory). Incluem a medição de propriedades físicas e mecânicas, classificação de materiais, e monitoramento de defeitos em árvores, toras, madeira sólida, madeira serrada e tábua, derivados de madeira e produtos compósitos (Kawamoto e Williams, 2002).

A avaliação não-destrutiva de materiais (nondestructive evaluation – NDE) consiste na identificação de propriedades físico-mecânicas de parte do material sem alterar suas propriedades de utilização, com a finalidade de tomar decisões apropriadas a respeito de suas aplicações. Tais avaliações são feitas através de testes não-destrutivos (nondestructive testing – NDT) para prover informação a respeito das propriedades, desempenho ou condição do material em questão (Ross, 1998).

Quase todos os tipos de ensaios não-destrutivos podem ser utilizados com a madeira e derivados de madeira, sendo que a escolha para a sua utilização depende da aplicação específica (Bodig, 2001).

Esses métodos apresentam muitas vantagens sendo uma das mais importantes a possibilidade de a madeira ser caracterizada eficazmente sem a extração de corpos-de-prova, uma vez que a avaliação é feita na própria peça ou estrutura (Oliveira, 2001). Proporcionam também maior rapidez para analisar uma grande população e versatilidade para se adequar a uma rotina padronizada numa linha de produção (Oliveira; Sales, 2000).

Dentre eles podem ser citados a classificação visual (que é um dos mais amplamente utilizados), testes químicos (para detectar defeitos biológicos), "stress wave", ultra-som, método de deflexão, teste de propriedades elétricas, radiações gama, penetração de radiação e método de raio-x. Destes, os mais usualmente utilizados para madeira e seus derivados são o "stress wave" e o ultra-som (Bodig, 2001).

3.3.1. Stress wave

Neste tipo de NDT são geradas ondas através de uma vibração produzida por impacto na peça em estudo. Mede-se a velocidade do som, cujo valor é utilizado na determinação da constante dinâmica (C) (Bodig, 2001).

As técnicas não-destrutivas de stress wave utilizam baixos movimentos moleculares de tensão para medir duas propriedades fundamentais dos materiais: a energia armazenada e a dissipação. A energia armazenada manifesta-se pela velocidade com a qual a onda percorre o material. Em contraste, a taxa sob a qual a onda é atenuada é uma indicação de dissipação de energia (Ross e Pellerin, 1988).

Jayne (1958) apud Ross e Pellerin (1988)¹ colocou como hipótese que estas propriedades são controladas pelos mesmos mecanismos que determinam o comportamento mecânico do material. Como uma conseqüência, seria possível estabelecer relações matemáticas entre as ondas de tensão e as propriedades mecânicas estáticas do material, através de técnicas de análise de regressão estatística.

A aplicação de ondas acústicas e, medição das mesmas, consiste no posicionamento de dois transdutores acelerômetros sobre o material a ser avaliado. Uma onda acústica é induzida ao material, ao tocar-se este com um martelo, um pêndulo ou outros meios.

Quando a onda acústica alcança o acelerômetro de partida, uma contagem de tempo, em microssegundos, é iniciada no instrumento. Quando esta onda atinge o acelerômetro de parada, a contagem de tempo cessa, o aparelho registra e mostra o tempo decorrido de trânsito da onda de tensão entre os acelerômetros através do material (METRIGUARD apud Matos, 1997)².

Os tempos registrados são utilizados no cálculo da velocidade da propagação da onda (V), utilizando-se a Equação (1):

$$V = \frac{d}{t} \tag{1}$$

Onde:

V = velocidade de propagação da onda (m/s)

d = distância entre os transdutores (m)

t = tempo de propagação da onda (s)

A partir do cálculo de V este teste permite avaliar o valor da constante dinâmica (C), dada pela segunda lei de Newton (Equação 2):

¹ JAYNE, B., A. Vibrational properties of wood as indices of quality. **Forest Products Journal**, v. 9 (11), p. 413 – 416, 1959.

² METRIGUARD INC. Metriguard Model 239 A Stress Wave Timer. Manual care and instructions, theory and data reduction. Pullman, 1997.

$$C = \rho . V^2 . 10^{-6} \tag{2}$$

Onde:

C = constante dinâmica (MPa)

 ρ = densidade do material (kg/m³)

V = velocidade de propagação da onda (m/s).

3.3.2. Ultra-som

Este tipo de NDT utiliza freqüências mais altas e é similar ao "stress wave", com a diferença de que as ondas são induzidas por transdutores e não por impacto (Bodig, 2001).

Tem demonstrado ser um valioso instrumento para a estimativa das propriedades da madeira. O manuseio dos equipamentos de ultra-som é simples e seu custo não é alto, o que tem disseminado o seu uso em várias partes do mundo. Paralelamente a isso, cresce o interesse em torno de ensaios não-destrutivos para a determinação de propriedades físicas e mecânicas de toda sorte de materiais, o que se coaduna com a visão deste novo século, que deverá ser pautado pelos cuidados com a preservação ambiental (Bartholomeu, 2001).

A principal vantagem desta técnica é a flexibilidade em medir a velocidade e a atenuação de ondas ultra-sônicas. Esta última é caracterizada por três fatores: a geometria do campo de radiação, a dispersão e a radiação.

A disposição mais comum para aparelhos de ultra-som é composta por um gerador de ultra-som, transdutores piezoelétricos (emissor e receptor), um osciloscópio, um analisador espectral e um computador, como esquematizado na Figura 6. Os requisitos básicos de um transdutor de ultra-som são boa sensibilidadede e resolução (Bucur, 1999).

Figura 6 – Disposição de aparelhos de ultra-som: (a) gerador de ultra-som, (b) transdutores, (c) corpo-de-prova, (d) aparelho mecânico, (e) osciloscópio, (f) analisador de espectro e (g) computador. Fonte: <u>http://www.ndt.net/article/v04n11/bucur/bucur.htm</u>.

A aplicação e a medição pelo teste de ultra-som consistem no posicionamento de dois transdutores acelerômetros sobre o material a ser avaliado. A onda ultrasônica é introduzida por um dos transdutores e captada pelo outro, sendo a contagem do tempo, em microssegundos, efetuada pelo próprio equipamento de ultra-som. Os tempos registrados são empregados no cálculo de V, utilizando-se a Equação (2), já mencionada anteriormente.

Calculado o valor V, o teste de ultra-som permite avaliar o valor da constante dinâmica (C) segundo qualquer eixo, de acordo com o posicionamento dos transdutores, dada pela Segunda Lei de Newton, conforme a Equação (3), já mencionada anteriormente.

O cálculo de V é afetado pela freqüência (f) e depende do comprimento da onda (λ) de ultra-som, dada pela Equação (3):

$$V = f \cdot \lambda \tag{3}$$

Onde:

V = velocidade de propagação da onda (m/s)

f = freqüência (Hz)

 λ = comprimento da onda (m).
Os fatores que mais influenciam a propagação das ondas ultra-sônicas na madeira maciça são: teor de umidade, relação d/ λ (onde d é a distância percorrida pela onda, que é equivalente ao comprimento da peça, e λ é o comprimento de onda), freqüência e densidade aparente, quando esta última é considerada dentro de uma mesma estrutura anatômica.

3.3.3. Atenuação

A amplitude do pulso recebido é função da atenuação do pulso emitido. Além da divergência do sinal emitido pelo transdutor e da diminuição da amplitude do sinal durante a propagação da onda, o material testado também interfere na transmissão do sinal.

Essa influência ocorre em dois níveis. Um primeiro fator, a dispersão, resulta da não homogeneidade do material. Durante o percurso, a cada vez que a onda encontra um obstáculo não alinhado à sua propagação, a onda se dividirá em onda incidente e onda transmitida. Cada onda é então constantemente dividida em ondas parciais em complexos percursos.

A maior ou menor incidência desses fenômenos dependerá do tamanho do comprimento em relação à dimensão das descontinuidades do material. Para a madeira, se a relação entre a descontinuidade e o comprimento de onda (λ) estiver entre 1/1000 à 1/100 esse efeito será desprezível. No entanto, caso essa relação seja inferior a 1/10 a experimentação se torna impraticável (Krautkramer; Krautkramer, 1983).

A Absorção, o segundo fator da atenuação, consiste na conversão da energia sonora em calor e pode ser entendida como a redução da oscilação das partículas. A absorção aumenta com o aumento da freqüência do sinal, mas a uma taxa muito mais lenta do que a dispersão. Assim, o decréscimo da amplitude do sinal causado pela atenuação é dado pela relação:

$$A = A_0 e^{-\alpha d}$$
(4)

Onde:

A = amplitude final

A₀ = amplitude inicial

 α = coeficiente de atenuação

d = comprimento da peça analisada.

Isolando-se α da Equação 4 e exprimindo em termos de decibéis por metro, se obtém a Equação 5:

$$\alpha = \frac{20}{d} \log \frac{A}{A_0}$$
(5)

No uso dessa expressão a amplitude é dada em unidades relativas que dependem do tipo de equipamento utilizado para a medição (Exemplo: volts).

A atenuação pode ser medida também em termos de dB perdidos, como é o caso do equipamento utilizado nessa pesquisa. Nesse caso verifica-se a diferença entre a amplitude inicial (em dB) e a amplitude final (em dB).

3.4. Ensaios destrutivos

A seguir são comentados os procedimentos adotados nos ensaios destrutivos realizados de umidade, densidade, inchamento e absorção de água, flexão estática e adesão interna.

3.4.1. Umidade (EN 322-2000)

Para a determinação do teor de umidade dos painéis, devem ser deles retirados corpos-de-prova com peso mínimo de 20g, sendo que a sua forma e dimensões não são padronizados. Estes não devem conter partículas soltas.

Inicialmente os corpos-de-prova devem ser pesados e depois colocados em estufa a uma temperatura de $(103 \pm 2)^{\circ}$ C, até atingirem uma massa constante, ou seja, quando duas pesagens sucessivas, efetuadas com pelo menos 6 horas de intervalo, não diferem mais de 0,1% em relação a massa do corpo-de-prova.

Depois que os corpos-de-prova forem arrefecidos, aproximadamente à temperatura ambiente, eles devem ser pesados novamente. O teor de umidade (H), dado em porcentagem, é calculado através da Equação (6):

$$H = \frac{m_H - m_0}{m_0}.100$$
 (6)

Onde:

m_H = massa inicial (g)

 m_0 = massa final (g)

3.4.2. Densidade (EN 323-2000)

Para a determinação da densidade dos painéis, devem ser deles retirados corpos-de-prova de formato quadrado, com os lados medindo 50mm nominais.

Se necessário os corpos-de-prova devem ser condicionados até massa constante a uma umidade relativa de $(65\pm5)\%$ e a uma temperatura de $(20\pm2)^{\circ}$ C. Considera-se massa constante quando os resultados de duas pesagens sucessivas, efetuadas com pelo menos 24 horas de intervalo, não diferirem mais de 0,1% em relação à massa do corpo-de-prova.

Os corpos-de-prova devem ser inicialmente pesados e ter sua espessura t medida no ponto de encontro de suas diagonais. Deve-se medir b_1 e b_2 , em 2 pontos, paralelamente às bordas do corpo-de-prova, ao longo das linhas que passam pelo centro das bordas opostas como mostra a Figura 7.

Figura 7: Ponto de medição das espessuras para o ensaio de densidade.

A densidade (p) é calculada através da Equação (7):

$$\rho = \frac{m}{b_1 \cdot b_2 \cdot t} \cdot 10^6 \tag{7}$$

Onde:

m = massa (g)

b₁ e b₂ = dimensões das bordas (mm)

3.4.3. Inchamento em espessura e absorção de água (EN 317-1993)

Para a determinação de inchamento em espessura e absorção de água, após a imersão dos painéis em água destilada por 24h, devem ser retirados corpos-deprova das mesmas de formato quadrado, com (50 ± 1) mm de aresta.

Devem ser medidas as espessuras dos corpos-de-prova na intersecção das diagonais antes e após a sua imersão em água limpa, com pH 7 ± 1 e temperatura de $20 \pm 1^{\circ}$ C e estes devem permanecer cobertos por 25 ± 5 mm de água durante 24h. O inchamento em espessura (G_t), dado em percentagem, é calculado através da Equação (8):

$$G_t = \frac{t_2 - t_1}{t_1} .100 \tag{8}$$

Onde:

t₁ = espessura inicial (mm)

 t_2 = espessura final (mm)

No ensaio de absorção de água, deve ser medida a massa do corpo-deprova, antes e após a imersão. A absorção de água (A_m), dada em porcentagem, é calculada através da Equação (9):

$$A_m = \frac{m_2 - m_1}{m_1} .100 \tag{9}$$

Onde:

 m_1 = massa inicial (g)

m₂ = massa final (g)

3.4.4. Flexão Estática (EN 310-2000)

Para a determinação dos módulos de elasticidade (E_m) e de resistência (f_m) à flexão estática dos painéis, dados em MPa, devem ser deles retirados corpos-deprova de formato retangular, com a largura (b) igual a (50 ± 1)mm. O comprimento (I_2) deve ser igual a 20 vezes a espessura nominal mais 50mm, com um comprimento máximo de 1050mm e um mínimo de 150mm. A espessura deve ser medida no ponto de interseção das diagonais e a largura, na metade do comprimento.

A amostragem e corte dos corpos-de-prova devem ser efetuadas de acordo com as prescrições do documento normativo EN 326-1/1994, sendo necessárias séries de corpos-de-prova nas duas direções, longitudinal e transversal.

Os mesmos devem ser condicionados até a massa constante, sob umidade relativa de $(65\pm5)\%$ e uma temperatura de $(20\pm2)^{\circ}$ C, sendo que considera-se massa constante quando os resultados de duas pesagens sucessivas, efetuadas

com pelo menos 24 horas de intervalo, não diferem mais de 0,1% em relação a massa inicial do corpo-de-prova.

Os corpos-de-prova devem ser biapoiados, a força deve ser aplicada pontualmente no centro do vão e o instrumento utilizado para medir a flecha deve ter precisão de 0,1mm.

A distância deve ser regulada entre os centros de apoios, de 20 vezes a espessura nominal do painel, sem que ela seja inferior a 100mm e superior a 1000mm. A distância entre os centros de apoio, deve ser medida com a aproximação de 0,5mm.

Os corpos-de-prova devem ser colocados na horizontal, sobre os apoios, com o seu eixo longitudinal perpendicular aos eixos dos apoios com o ponto central sob a força. Aplica-se a força a velocidade constante e regula-se a velocidade do ensaio de modo que a força de ruptura seja atingida em (60 ± 30) s.

Mede-se a flecha no ponto médio do vão do corpo-de-prova em função das forças correspondentes. Se a flecha for determinada por leituras sucessivas, utilizar pelo menos 6 pares de leitura.

Os ensaios são efetuados sobre dois grupos de corpos-de-prova retirados segundo as duas direções do painel, isto é, segundo a direção longitudinal e a transversal. Em cada grupo, ensaia-se metade dos corpos-de-prova com a face superior para cima, e a outra com a face inferior para cima.

O módulo de elasticidade na flexão estática é calculado através da Equação (10). Para cada grupo de corpos-de-prova, tirados de um mesmo painel, consiste na média aritmética dos módulos de elasticidade na flexão dos corpos-de-prova considerados e deve ser expresso com três números significativos.

$$E_{m} = \frac{l_{1}^{3}(F_{2} - F_{1})}{4bt^{3}(a_{2} - a_{1})}$$
(10)

Onde,

 I_1 = distância entre os centros dos apoios (mm)

b = largura do corpo-de-prova (mm)

t = espessura do corpo-de-prova (mm)

 $F_2 - F_1$ = incremento de força, em Newton, na seção retilínea da curva força-flecha, onde F_1 deve ser cerca de 10% e F_2 cerca de 40% da força de ruptura

 $a_2 - a_1$ = incremento da flecha correspondente a $F_2 - F_1$

A resistência à flexão de cada corpo-de-prova é calculada pela Equação (11). Para cada grupo de corpos-de-prova retirados do mesmo painel, consiste na média aritmética das resistências à flexão dos corpos-de-prova considerados e é expressa com três algarismos significativos.

$$f_{\rm m} = \frac{3F_{\rm max}l_1}{2bt^2} \tag{11}$$

Onde,

 F_{max} = força de ruptura (N)

l₁ = distância entre os centros dos apoios (mm)

b = largura do corpo-de-prova (mm)

t = espessura do corpo-de-prova (mm)

3.4.5. Tração perpendicular às faces (EN 319-1993)

Para a determinação da resistência à tração perpendicular às faces dos painéis, ou adesão interna (AI), devem ser deles retirados corpos-de-prova de formato quadrado, com (50 ± 1) mm de aresta.

São colados suportes de metal nas duas faces dos corpos-de-prova, que posteriormente são tracionados em sentidos opostos, de forma que o mesmo se rompa.

A adesão interna é calculada através da Equação (12).

$$AI = \frac{F_{max}}{ab}$$
(12)

Onde,

 F_{max} = força máxima (N)

a = comprimento do corpo-de-prova (mm)

b = largura do corpo-de-prova (mm)

3.5. Amostragem dos painéis para controle de qualidade em fábrica segundo os documentos normativos EN 326-1/2000 e EN 326-2/2002

Segundo as recomendações da EN 326-1/1994, o tamanho de uma amostra de painéis depende do propósito da determinação das propriedades dos mesmos e, devido à variedade no painel, e entre painéis, é necessário ensaiar um número de painéis, bem como um número certo de corpos-de-prova, apresentado na Tabela 5, cortados de um painel simples, para obter resultados confiáveis.

Norma EN	m
EN 322	4
EN 323	6
EN 310	6
EN 319	8
N 317	8
	Norma EN EN 322 EN 323 EN 310 EN 319 N 317

Tabela 5 – Número mínimo de corpos-de-prova m a serem ensaiados de cada

Fonte: Adaptado da EN 326-1/1994.

* Para painéis com propriedades diferentes de acordo com a direção, devem ser utilizados 2 grupos de corpos-de-prova.

Para a retirada dos corpos-de-prova, devem ser seguidos os seguintes passos:

 a) O corpo-de-prova poderá ser cortado de painéis individuais nas dimensões especificadas pelas normas dos métodos de ensaio, usando um planejamento de corte adequado para uma seleção não-parcial. No mínimo um corpo-de-prova de cada grupo será cortado da borda do painel aparado depois que qualquer perfil ou tratamento de proteção tenha sido removido;

b) Um exemplo de plano de corte para os corpos-de-prova é mostrado na Figura 8. A distância mínima entre dois corpos-de-prova para um mesmo tipo de ensaio deve ser de 100mm. Este requerimento pode ser omitido se for necessária uma troca de corpo-de-prova.

Figura 8: Exemplo de plano de corte de corpos-de-prova segundo a EN 326-1/1994.

c) Para painéis assimétricos em relação ao centro de sua espessura como, por exemplo, o OSB que possui três camadas (camadas ímpares), já que o resultado do ensaio é influenciado pela superfície que é mais espessa quando ensaiada (isto, é na determinação da f_m), serão testados m/2 corpos-de-prova em cada superfície de orientação. Em todos os outros casos, quando a orientação da superfície do painel é de menor influência sobre a propriedade testada, a posição da superfície mais acima ou mais abaixo durante o ensaio deve ser escolhida aleatoriamente.

Quanto à determinação da correlação entre os resultados obtidos com um procedimento alternativo e os obtidos com o procedimento normalizado, deve-se realizar a amostragem aleatória de, pelo menos, 32 painéis do mesmo tipo de produto.

Se o valor calculado do coeficiente de correlação for superior ou igual a 0,70, que equivale a R² igual a 0,49, a equação de regressão pode ser utilizada para ajustar os resultados do ensaio pelo procedimento alternativo aos obtidos pela aplicação do procedimento normalizado.

3.6. Ensaios não-destrutivos, stress wave e ultra-som em derivados de madeira

Tem se relatado o emprego de técnicas não-destrutivas na determinação de propriedades físicas e mecânicas, seja na madeira serrada, em produtos à base de madeira ou em árvores em pé (Bartholomeu, 2001 e Ballarin; Gonçalves, 2001).

Tais técnicas podem ser utilizadas na classificação de lâminas de madeira para painéis LVL, na localização de defeitos, como bolhas ou vazios, em painéis de partículas, MDF, OSB ou compensados (Ross, 1998).

Integrando o efeito do sistema, a eficiência industrial da avaliação com o ultrasom permite uma precisão de mais ou menos 95%, que é extremamente significante nas técnicas das indústrias à base de madeira, e diretamente aplicável a ela. No eixo longitudinal do produto a ser testado, esse método se mostra uma ferramenta eficiente em qualquer passo do processo de transformação industrial da madeira. Estudos têm sido realizados com métodos não-destrutivos do tipo "stress wave" e ultra-som para a caracterização física e mecânica de derivados de madeira, incluindo o OSB. A seguir serão considerados alguns deles e que apresentam dados específicos para a presente pesquisa.

Ross e Pellerin (1988) revelaram em seu estudo que ensaios não-destrutivos com stress wave podem ser utilizados para estimar propriedades de tração, flexão e adesão interna de materiais compostos de madeira. Os resultados de ensaios preliminares indicaram que a velocidade da onda e a atenuação foram propriedades relatadas do material da mesma forma que as suas propriedades mecânicas.

Nesse estudo, os autores utilizaram uma amostra aleatória de 160 corpos-deprova de 0,60m x 2,40m de compósitos de madeira com uma ampla variedade de propriedades mecânicas estáticas e de muitos produtores norte-americanos de painéis, que incluíam vários tipos de adesivos, formulações e níveis, espécies de madeiras e muitas geometrias de partículas.

O stress wave foi utilizado em cada corpo-de-prova, a 6% de umidade, e as dimensões eram de 15cm x 2,40m para os ensaios de tração e flexão, e os ensaios destrutivos foram conduzidos de acordo com as recomendações da ASTM 1037-96.

Foram utilizadas regressões lineares em uma variável e multivariáveis para analisar a correlação entre os parâmetros não-destrutivos medidos, que incluíam densidade, velocidade de propagação da onda, módulo de elasticidade dinâmico e atenuação, e as propriedades de tração, flexão e adesão interna.

A equação de regressão utilizada nesta análise foi assumida na forma seguinte (Equação (13)):

$$P = K N_0^{x} N_1^{y} N_2^{z}$$
(13)

Onde,

P = propriedade a ser estimada

K, x, y e z = constantes empíricas

 N_0 , $N_1 e N_2$ = parâmetros não-destrutivos

Os parâmetros não-destrutivos incluídos foram a densidade, a velocidade de propagação da onda, a constante dinâmica e atenuação.

Foi utilizada análise de regressão linear dos dados que foram usados para determinar valores para K, x, y, z e para o ajuste da regressão, linearizou-se a Equação (14) através da transformação In:

$$\ln(P) = \ln(K) + x\ln(N_0) + y\ln(N_1) + z\ln(N_2)$$
(14)

Os valores obtidos na análise da regressão linear revelaram que a constante dinâmica foi melhor estimadora da resistência à tração perpendicular às faces e do módulo de ruptura na flexão estática do que a velocidade ao quadrado. Como a constante dinâmica é dada em função da densidade e da velocidade ao quadrado, mostraram que, apesar de a densidade ter sido uma estimadora pobre em comparação com as demais propriedades, ela teve efeito interativo que contribuiu significativamente quando utilizada em conjunto com a velocidade ao quadrado.

A velocidade de propagação da onda foi mais alta através dos corpos-deprova mais resistentes enquanto que a atenuação foi maior para os menos resistentes. Os valores de adesão interna foram menores nos corpos-de-prova menos resistentes e para essa propriedade mecânica foi melhor o modelo de análise multivariada, por que nesse se levou em conta os valores da atenuação além da constante dinâmica.

Os modelos de regressão desenvolvidos expressaram 94% do comportamento elástico observado e acima de 90% das resistências na tração e flexão. Foram encontradas também fortes correlações com propriedades de adesão interna, sendo que nas chapas onde a colagem era mais fraca, a atenuação se correlacionou mais efetivamente com essa propriedade mecânica.

Vun et al (2000) estudaram painéis OSB, com 44 corpos-de-prova de camada simples (609,6 x 711,2 x 12,7)mm e 32 corpos-de-prova de camada tripla (609,6 x 609,6 x 12,7)mm, com 0,5% de cera e ambas com 4% ou 6% de conteúdo de resina, através da espessura, com sistemas ultra-sônicos de contato direto e de não-contato.

Os aparelhos utilizados para estes sistemas foram, respectivamente, o Panametrics 5058 Pulser/Receiver, com a freqüência dos transdutores de 100kHz e o Second Wave Model NCA 1000-2E, com transdutores de freqüência 250kHz e com alta transmissão piezoelétrica sem contato, modelo NCT 102.

Encontraram nas chapas OSB de uma camada com densidade próxima a 600kg/m³, com o método de ultra-som (contato direto) valores de velocidades próximos a 700m/s e (sem contato) valores de atenuação próximos a 75dβ. Correlacionaram os resultados de tais ensaios com valores dos módulos de elasticidade e resistência na flexão e também à adesão interna, obtidos através de ensaios destrutivos conduzidos de acordo com a ASTM D1037.

A velocidade de transmissão da onda ultra-sônica e os dados de atenuação foram ajustados através de um polinômio com termos linear (Equação (15)), quadrático e cúbico em relação à densidade, usando o SAS (Statistical Analysis System), cujo modelo tem a forma geral:

$$Y = A + B\rho + C\rho^2 + D\rho^3$$
(15)

Onde Y é a propriedade a ser investigada e A, B, C e D são as constantes de regressão.

Nesse estudo os autores chegaram às seguintes conclusões: a velocidade e a atenuação correlacionam-se não-linearmente com a densidade; os melhores modelos de propriedades de velocidade de onda ultrasônica foram para chapas com 4% de resina; devido ao nível de alinhamento das partículas, estas podem ser

melhor caracterizadas através da atenuação do que da velocidade de propagação de ondas; os módulos de elasticidade e de resistência na flexão correlacionaram-se linearmente à velocidade de propagação das ondas; a correlação entre a densidade do painel e a velocidade de propagação de ondas provê um meio para determinar a variação da densidade do painel utilizando técnicas baseadas em ultra-som e ambos métodos, de contato direto e contato não-direto, mostraram-se técnicas promissoras para a caracterização interna do OSB.

Bektha, Niemz e Kucera (2000) utilizaram a freqüência de ressonância e velocidade da propagação de ondas, dois métodos de caracterização nãodestrutiva, em chapas de partículas, MDF e OSB de produção industrial, de 16, 17 e 18 mm de espessura, respectivamente, nas direções paralela e perpendicular à direção da produção da chapa, sendo que a velocidade do som foi medida também através da espessura da chapa.

Foram utilizados transdutores de freqüências 50, 100 e 200 kHz e os aparelhos Steinkamp/Bremen (Germany), system BP5 e Card PCUS 10 NF, de Fraunhofer Institute for Nondestructive Evaluations Methods, Saarbrücken (Germany) com sensores de Krautkrämer, tipo K0,1G (cilíndrico, diâmetro de 44,5mm).

Os resultados obtidos desses ensaios foram comparados às características elásticas e mecânicas obtidas nos ensaios estáticos destrutivos conduzidos de acordo com as recomendações dos documentos normativos DIN 52182, 52183 e 51286, para os cálculos respectivamente, de densidade, conteúdo de umidade e módulos de resistência e de elasticidade na flexão estática.

Nos painéis de partículas foram estudadas as variáveis: largura do corpo-deprova (20 a 200)mm, espessura do corpo-de-prova (16 a 96)mm e sete tipos de diferentes densidades e espessuras. Foram utilizados 50 corpos-de-prova nas dimensões 50 x 400mm, ambos nas direções paralela e perpendicular à direção de produção, já que as propriedades elásticas diferem nessas duas direções, 10 corpos-de-prova (500x50x14)mm a 8% de umidade a 6 temperaturas diferentes (-30 a +70)°C e 10 corpos-de-prova (500x50x14)mm a 20°C a 5 níveis diferentes de umidade relativa (50 a 90%).

Foi utilizada regressão linear para analisar relações entre a velocidade de propagação de ondas, freqüência e módulos de resistência e de elasticidade na flexão estática, bem como entre a constante dinâmica.

Encontraram as seguintes faixas de velocidades em relação à direção de propagação das ondas:

- Direção paralela: 2271 a 3294 m/s;
- Direção perpendicular: 2118 a 2991 m/s.

Os valores das velocidades de propagação das ondas foram menores ao longo da direção perpendicular do que os valores correspondentes na direção longitudinal para o MDF, OSB e chapas de partículas, indicando as propriedades anisotrópicas dos produtos. Para o MDF as diferenças foram menos significativas, indicando propriedades mais uniformes entre as duas direções principais.

Entre os produtos ensaiados, o OSB teve a velocidade das ondas mais alta a um dado nível de freqüência. A uma freqüência de 50kHz, a velocidade média foi de cerca de 3294m/s (paralela) e de 2271m/s (perpendicular). Através da espessura, as velocidades do som não variaram.

Para o OSB, a melhor correlação foi encontrada na direção longitudinal, entre o módulo de elasticidade na flexão estática e a freqüência de ressonância ($R^2 = 0,53$) bem como entre o módulo de elasticidade na flexão estática e constante dinâmica em relação a freqüência de ressonância ($R^2 = 0,64$). A estimativa do módulo de resistência para as chapas de partículas e OSB tanto para a velocidade de propagação de ondas e para as freqüências de ressonância com regressão simples deram pouco significativos estatisticamente.

Concluíram que a velocidade de propagação de ondas, em geral, diminui com o aumento da espessura e da largura do corpo-de-prova; o aumento da umidade relativa do ar (50 a 90)% e temperatura (-35° a +70)°C ocasionam o decréscimo da velocidade de propagação de ondas e a medição em sete tipos diferentes de chapas de partículas (em densidade e espessura) mostrou diferenças de velocidade de propagação de ondas para todos os tipos de chapas.

Com o aumento da freqüência a velocidade do som também aumentou, mas para o OSB não foi possível mostrar uma diferença clara de maiores freqüências (100kHz e 200kHz). Dentre as freqüências estudadas só a menor, de 50kHz, foi capaz de penetrar o OSB. A espessura da chapa e a largura do corpo-de-prova não afetam a velocidade de propagação de onda abaixo de uma freqüência de 50kHz.

No Brasil, o estudo da caracterização da madeira utilizando métodos nãodestrutivos do tipo "stress wave" e ultra-som tem sido expandido, mas com relação aos derivados de madeira ainda é recente.

Matos (1997) avaliou a viabilidade de utilização de lâminas de *Pinus taeda* para a produção de painéis estruturais de lâminas paralelas (LVL), através da classificação preliminar das lâminas em classes de resistência, utilizando método não-destrutivo de "stress wave", pela aplicação de ondas acústicas através do aparelho Timer METRIGUARD, modelo 239 A. Uma de suas conclusões foi de que a classificação proposta das lâminas em classes de qualidade, pela determinação do módulo de elasticidade dinâmico, baseada nesse método, mostrou-se altamente eficaz para as lâminas de *Pinus taeda* testadas.

Matos et al (2000) realizaram estudos de avaliação não-destrutiva de propriedades mecânicas de painéis compensados multilaminados, em diferentes espessuras, obtidos a partir de lâminas de *Pinus spp*, utilizando o método de "stress

wave", através do aparelho Timer METRIGUARD, modelo 239 A, estabelecendo relação com as técnicas de avaliação convencionais destrutivas.

Concluíram que o uso desta técnica mostra-se viável e adequado para os compensados, tendo obtido bons índices de correlação entre o módulo de elasticidade na flexão estática obtido na técnica convencional destrutiva e a constante dinâmica, permitindo a classificação de painéis por sua qualidade ou a predição dos seus valores de resistência mecânica através de modelos matemáticos.

Mendes et al (2002) realizaram estudos de avaliação não-destrutiva de propriedades mecânicas de 39 painéis OSB produzidos com seis espécies de Pinus spp e mistura entre elas, com e sem parafina, através do método de "Stress Wave", utilizando o aparelho Timer METRIGUARD, modelo 239 A, onde estabeleceram relação entre os resultados obtidos nesses ensaios e os obtidos com as técnicas de avaliação convencionais.

Encontraram baixos coeficientes de correlação entre os valores do módulo de elasticidade na flexão estática obtidos nesses dois tipos de avaliação, mas encorajaram mais pesquisa neste tema com painéis OSB, visto que alguns trabalhos demonstraram que esta técnica é viável quando aplicada em outros tipos de painéis de madeira como, por exemplo, compensados convencionais e LVL.

Silva (2003) estudou chapas MDF produzidas com *Pinus spp* e *Eucalipto spp* no Laboratório Piloto da Empresa Duratex, sob seis condições experimentais, com variações de adesivo, pressão, temperatura, espessura, umidade e densidade das fibras de madeira e utilização de adesivo poliuretano à base de óleo de mamona.

Realizou a caracterização física e mecânica das mesmas também através do método não-destrutivo de ultra-som, utilizando o aparelho Steikamp, modelo BP-7, com transdutores exponenciais de 45kHz, para a propagação de ondas de compressão, através do comprimento das chapas de 40 x 40cm; com transdutores

planos, para a aplicação de ondas de superfície e com transdutores planos posicionados na espessura das chapas, gerando ondas de compressão.

Obteve correlações significativas entre a velocidade e o módulo de elasticidade na flexão estática ($R^2 = 96$, 98 e 95%) com os transdutores planos aplicando ondas de superfície e, assim, a indicação da possibilidade da utilização da velocidade de propagação de ondas de compressão para a estimativa do módulo de resistência na flexão estática de chapas MDF, o que ocorreu também com os transdutores exponenciais e com as correlações entre a constante dinâmica e o módulo de elasticidade estático com estes dois tipos de transdutores (R^2 maiores do que 0,94). Os dados obtidos foram processados através do MINITAB.

3.7. Comentários sobre a revisão bibliográfica apresentada

Nas referências bibliográficas até aqui consultadas, não se localizou qualquer trabalho que aborde, de modo conclusivo, a adequação do emprego de técnicas não-destrutivas, como a de ultra-som e de stress wave, para a estimativa de propriedades de produtos derivados da madeira, em particular do OSB, principalmente quando analisadas as medições em painéis comerciais e inteiros.

Em conformidade com o objetivo proposto de se investigar a eficiência de técnicas não-destrutivas de ensaio (stress wave e ultra-som) na estimativa de parâmetros físicos e mecânicos de painéis OSB comerciais, vê-se que a literatura reforça a originalidade do tema investigado no trabalho.

Papítulo 4 - Materiais e Métodos

4.1. Generalidades

O desenvolvimento deste trabalho se deu em três etapas:

1) Ensaios preliminares: nesta fase foram realizados ensaios exploratórios, utilizando a técnica de ultra-som, para avaliação preliminar da propagação das ondas através de painéis OSB/3. Foram empregados dois painéis de espessura nominal 15mm. Buscou-se, com tal procedimento, verificar a possibilidade de serem correlacionados os valores de velocidades obtidos através deste método e os valores obtidos nos ensaios físico-mecânicos.

2) Ensaios principais - primeira etapa: como não se obtiveram correlações entre os resultados dos ensaios destrutivos e não-destrutivos na fase preliminar, na primeira etapa dos ensaios principais, buscou-se investigar a existência, ou não, dessa correlação ao se estudarem painéis OSB/3 de três espessuras diferentes (6, 15 e 25mm), utilizando-se medições realizadas pelas técnicas de ultra-som e "stress wave".

3) Ensaios principais – segunda etapa: nesta etapa o objetivo foi verificar a existência de correlações entre os resultados dos ensaios destrutivos e não-destrutivos, pelos métodos de ultra-som e stress wave, entre dois grupos contendo dez painéis OSB/3 de espessura 15mm e que apresentaram valores discrepantes em propriedades da flexão estática, não-equivalentes estatisticamente nessa propriedade, e respectivos valores de velocidade e constantes dinâmicas.

A segunda etapa dos ensaios principais foi planejada por que, embora algumas correlações hajam sido obtidas nos ensaios principais (primeira etapa), para painéis de espessuras diferentes, os valores de propriedades físico-mecânicas apresentaram baixa variabilidade. Por outro lado, se detectou, com o método de stress wave, uma diferenciação entre valores de velocidades de propagação de ondas de painéis que apresentaram valores diferentes de módulos de elasticidade e de resistência na flexão estática, em uma dada direção dos painéis.

Para as três etapas do trabalho, primeiramente foram realizados os ensaios não-destrutivos nos painéis OSB.

Em seguida, em corpos-de-prova retirados dos mencionados painéis, foram realizados ensaios destrutivos para a determinação do inchamento, da absorção de água, do teor de umidade, da densidade, da resistência à tração perpendicular às faces e dos módulos de resistência e de elasticidade na flexão estática, conduzidos de acordo com as recomendações das EN 317, 322, 323, 319 e 310, respectivamente.

A adoção dos documentos normativos europeus se justifica pelo fato de não estarem, ainda, disponíveis os métodos brasileiros específicos para esta categoria de painel.

A partir dos ensaios destrutivos foram determinados os valores dos parâmetros físico-mecânicos, para subseqüentes comparações com os obtidos nos ensaios não-destrutivos.

A seguir estão descritos, de uma maneira mais detalhada, os materiais, equipamentos e metodologia utilizados em cada uma destas três etapas.

4.1.1. Ensaios preliminares

Os painéis ensaiados foram fabricados pela MASISA do Brasil. Foi escolhido o painel MASISA OSB Home, certificado pela TECO (Timber Company), por apresentar valores mais elevados para as propriedades físico-mecânicas, bem como por ser indicado para uso na construção de edificações.

Dentre os diversos parâmetros para escolha dos painéis, optou-se por fixar, inicialmente, a espessura de 15mm, por ser este um dos painéis mais comercializados e por apresentar valor intermediário de espessura. Foram utilizados dois painéis OSB/3, cujos requisitos para as propriedades mecânicas e de inchamento estão na Tabela 3.

Os painéis estudados são constituídos de três camadas, sendo as externas com as partículas longas e orientadas (strands) paralelas entre si, na direção do comprimento do painel, e a camada interior com os strands dispostos na direção perpendicular aos das camadas externas. A proporção face-miolo-face destes painéis é de 1:2:1.

Nos ensaios de flexão estática para a determinação dos módulos de elasticidade e de resistência, consideram-se duas situações para os painéis OSB:

- a) Direção longitudinal: Direção onde as partículas das camadas exteriores estão dispostas longitudinalmente em relação ao comprimento do painel.
- b) Direção transversal: Direção perpendicular à direção longitudinal.

Primeiramente os painéis foram demarcados em suas larguras e comprimentos, de 50 em 50mm. Nestas posições foram feitas medições com o aparelho de ultra-som (Figuras 9, 10(a) e (b)).

Figura 9 – Esquema da medição do tempo de propagação das ondas utilizando aparelho de ultra-som.

Figura 10 – Medições de tempo de propagação com o aparelho de ultra-som: (a) Direção longitudinal do painel e (b) Direção transversal do painel.

O equipamento de ultra-som utilizado foi o STEINKAMP (Figura 11), modelo BP-7, com transdutores planos, de freqüência 45 kHz e gel medicinal como acoplante. Este aparelho pertence ao Laboratório de Acustoelástica, da Faculdade de Engenharia Agrícola (FEAGRI), da Universidade Estadual de Campinas (UNICAMP), local onde esta etapa de ensaios foi conduzida.

Figura 11 – Equipamento de ultra-som STEINKAMP, modelo BP-7.

Depois, foi esquematizado o maior número de corpos-de-prova possível por painel, seguindo as prescrições da EN 326-1/ 1994 e o esquema da Figura 8, resumidas na Tabela 6.

Propriedade do painel	Norma EM	m	m _u
Н	EN 322	4	8
ρ	EN 323	6	12
E _m e f _m	EN 310	6	12
AI	EN 319	8	16
G _t	EN 317	8	16

Tabela 6 – Número mínimo de corpos-de-prova m a serem ensaiados de cada painel e número de corpos-de-prova m_u ensaiados em cada painel

* Para painéis com propriedades diferentes, de acordo com a direção, devem ser utilizados 2 grupos de m corpos-de-prova. Fonte: Adaptado da EN 326-1 (1994). Também foram feitas medições do tempo de propagação de ondas na espessura dos painéis, nos locais correspondentes aos corpos-de-prova de tração perpendicular às faces, densidade, inchamento e absorção de água, para posterior correlação dos valores de velocidades e de constantes dinâmicas calculados com os obtidos nos ensaios destrutivos correspondentes, como pode ser visto na Figura 12.

Figura 12 – Medições de tempo na espessura do painel.

Em prosseguimento, foram realizados os ensaios físico-mecânicos dos painéis na máquina universal de ensaios Dartec, no Laboratório de Madeiras e de Estruturas de Madeira (LaMEM), do Departamento de Engenharia de Estruturas (SET), da Escola de Engenharia de São Carlos (EESC), da Universidade de São Paulo (USP), Campus de São Carlos.

As Figuras 13(a) e 13(b) mostram, respectivamente, exemplos dos ensaios realizados de flexão estática e de tração perpendicular às faces.

Figura 13 – Exemplos de ensaios mecânicos nos painéis OSB: (a) Flexão estática e (b) Tração perpendicular às faces.

A princípio, objetivava-se obter modelos de regressão e correlações entre os valores obtidos por meio dos métodos de ensaios destrutivos e não-destrutivos.

Como analisado posteriormente, na discussão dos resultados, no item 6.1, os coeficientes de correlação obtidos em ambos os métodos, destrutivo convencional e de ultra-som, mostram a homogeneidade dos painéis OSB. Devido a essa homogeneidade os intervalos de variação dessas propriedades não permitiram a obtenção de modelos de correlações entre os valores obtidos por meio desses dois métodos de ensaios.

Para investigação mais detalhada a respeito das eventuais correlações, fez-se necessário planejamento que permitisse suficiente variabilidade de propriedades dos painéis, como por exemplo, no estudo de painéis OSB de diferentes valores nominais de espessuras, o que se tornou o objeto dos ensaios principais - primeira etapa.

4.1.2. Ensaios Principais – primeira etapa

A partir dos resultados dos ensaios preliminares e obtidas indicações para o prosseguimento do trabalho, foram realizados novos ensaios com a utilização dos métodos não-destrutivos de ultra-som e stress wave, em painéis de espessuras nominais diferentes.

Foram ensaiados painéis OSB/3, fabricados pela MASISA do Brasil: um de espessura 6mm; dois de espessura 15mm, denotados por 15(1) e 15(2), e um de espessura 25mm.

Os referidos painéis são constituídos de três camadas, sendo as externas com os strands paralelos entre si, na direção do comprimento do painel, e a camada interior com os strands dispostos na direção perpendicular aos das camadas externas. A proporção face-miolo-face destes painéis é de 1:2:1.

Inicialmente os painéis foram demarcados em suas larguras e comprimentos, de 50 em 50mm e foi esquematizado o maior número possível de corpos-de-prova (Figura 9) para os ensaios físico-mecânicos posteriores, por painel, seguindo as prescrições da EN 326-1/ 1994. Adotou-se o critério de ter no mínimo 30 corpos-deprova em cada tipo de ensaio, para se obter grandes amostras, como mostram as Figuras 14 (a), (b) e (c), em representações dos painéis seccionados, que estão apresentados de maneira completa no Apêndice A.

(c) Figura 14 – Esquema de plano de corte para os painéis OSB. (a) Espessura 6mm, (b) Espessura 15mm e (c) Espessura 25mm.

Posteriormente foram conduzidos ensaios não-destrutivos com o equipamento de ultra-som nos painéis de 6mm, 15mm(1) e 25mm, no Laboratório de Acustoelástica, da Faculdade de Engenharia Agrícola (FEAGRI), da Universidade Estadual de Campinas (UNICAMP). O aparelho utilizado foi o STEINKAMP, modelo BP-7, com transdutores planos de freqüência 45 kHz, com gel medicinal como acoplante, pertencentes a esse laboratório.

Procedeu-se à medição do tempo de propagação da onda ao longo dos painéis para a determinação dos valores das velocidades e constantes dinâmicas, e subseqüentes correlações com os valores dos módulos de elasticidade e de resistência na flexão estática, Figuras 10 (a) e (b). Também foi medido o tempo de

propagação da onda na espessura dos dois últimos painéis (Figura 12), nos locais correspondentes aos corpos-de-prova de tração perpendicular às faces, densidade, inchamento e absorção de água, para posterior correlação com os valores obtidos nos ensaios destrutivos correspondentes.

As medições na espessura não foram realizadas no painel de 6mm por não haver transdutores de maiores freqüências disponíveis, mais adequadas a essa espessura. Não foram realizadas medições ao longo do painel de espessura 15(2)mm.

Na continuação, foram realizados os ensaios não-destrutivos utilizando equipamento de stress wave (Figura 15) ao longo do painel de espessura 15(2)mm e nos corpos-de-prova de flexão estática longitudinal e transversal dos painéis de espessura 6mm, 15(1)mm e (2) e 25mm (Figura 16). Tais ensaios foram realizados, depois que os corpos-de-prova foram usinados, no Laboratório de Ensaio de Materiais (LEM), do Departamento de Engenharia Rural, na Faculdade de Ciências Agrícolas (FCA), da Universidade Estadual Paulista (UNESP), Campus de Botucatu, instituição a qual o aparelho pertence.

Figura 15 – (a) Aparelho Stress Wave Timer, modelo 239 A – METRIGUARD e seus acessórios: (b) acelerômetro (madeira), (c) martelo de impacto (madeira) e (d) conjunto de presilhas (derivados de madeira). Fonte: <u>http://www.metriguard.com/239A.HTM</u>.

Em prosseguimento, foram realizados os ensaios para a obtenção dos valores dos módulos de elasticidade e de resistência na flexão estática, Figura 13 (a), de resistência à tração perpendicular às faces, Figura 13 (b), densidade,

inchamento e absorção de água, no Laboratório de Madeiras e de Estruturas de Madeiras (LaMEM), do SET-EESC-USP. Os ensaios mecânicos foram realizados na máquina universal de ensaios Dartec.

Figura 16 – Exemplo de posicionamento dos transdutores do aparelho stress wave para a medição do tempo no painel OSB e nos corpos-de-prova.

Os resultados foram analisados estatisticamente através de gráficos, valores de coeficientes de correlações, cálculos de médias, desvios padrão e coeficientes de variação, pelos métodos de Kolmogorov-Smirnov, Barttlet e Análise de Variância, pelos programas MINITAB, versão 13 e EXCEL, 2003.

4.1.3. Ensaios Principais – segunda etapa

A partir dos resultados obtidos nos ensaios principais – primeira etapa, e obtidas indicações para a continuidade do trabalho, foram realizados novos ensaios com a utilização dos métodos não-destrutivos de ultra-som e stress wave, em painéis de espessuras nominais de 15mm, pertencentes a dois grupos (1 – maiores valores de resistência e de módulos de elasticidade na flexão estática, e 2 – menores valores).

Todos os painéis utilizados foram fabricados pela MASISA do Brasil, sendo 11 deles por ela cedidos e os outros 11 comprados. Foram analisados 10 painéis OSB/3 de cada um desses níveis, previamente caracterizados por amostragem.

Tais painéis são constituídos de três camadas, sendo as externas com as partículas longas e orientadas paralelas entre si, na direção do comprimento do

painel, e a camada interior com os strands dispostos na direção perpendicular aos das camadas externas. A proporção face-miolo-face destes painéis é de 1:2:1.

Como nas outras etapas, os painéis foram demarcados em suas larguras e comprimentos, de 50 em 50mm (Figura 9), e foi esquematizado o maior número possível de corpos-de-prova para os ensaios físico-mecânicos posteriores, por painel, seguindo as prescrições da EN 326-1/1994 (Apêndice A).

Foram realizados os ensaios não-destrutivos com o equipamento de ultra-som nos painéis inteiros, na espessura, nas posições correspondentes aos corpos-deprova de densidade, tração perpendicular às faces, inchamento e absorção de água, com o aparelho Panametrics, modelo EPOCH 4, Figura 17 (a), do Laboratório de Acustoelástica, da Faculdade de Engenharia Agrícola (FEAGRI), da Universidade Estadual de Campinas (UNICAMP).

Os painéis foram colocados em pé com o auxílio de dois cavaletes móveis para eliminar problemas de interferências na propagação das ondas, Figura 17 (b). Os transdutores utilizados foram planos, de freqüência 80kHz, com gel medicinal como acoplante. Além dos valores de velocidade e de constantes dinâmicas, foi calculada também a atenuação (Atn) em cada ponto de medição.

Figura 17: (a) Equipamento de ultra-som PANAMETRICS, modelo EPOCH4 e (b) esquema para medição do tempo de propagação de onda através da espessura dos painéis através do equipamento PANAMETRICS, modelo EPOCH4.

As espessuras foram medidas em quatro pontos dos painéis, em ambas as direções. Posteriormente, foi calculada a média desses 16 valores, o que se considerou a espessura de cada painel.

Com o aparelho Panametrics, modelo EPOCH 4 (aparelho projetado para ser utilizado em metais), foi possível fazer as medições de tempo somente na espessura dos painéis OSB, mas não nas direções longitudinal e transversal dos mesmos, pois as distâncias de propagação das ondas eram muito longas, Figuras 10 (a) e (b), e os seus sinais foram atenuados.

Assim, para as medições do tempo de propagação das ondas nas direções transversal e longitudinal dos painéis, Figuras 10 (a) e (b), foi utilizado o aparelho STEIKAMP, modelo BP-7 (projetado para ser utilizado em madeira ou em seus derivados), com transdutores planos de freqüência 45kHz e gel medicinal como acoplante.

Nessas duas direções também foram conduzidos ensaios utilizando o equipamento de stress wave Timer METRIGUARD, modelo 239 A, Figuras 18 (a) e (b).

Figura 18 – Exemplo de posicionamento dos transdutores do aparelho stress wave para a medição do tempo nos painéis OSB nas direções: (a) longitudinal e (b) transversal.

Nesta etapa foi mais importante caracterizar os painéis por grupos, tendo sido empregados dez painéis por grupo. Assim, optou-se por ensaiar o número mínimo dos corpos-de-prova exigidos pelo documento normativo EN 326-1/1994 (Tabela 5) para as propriedades físico-mecânicas de cada painel, ou seja, para a determinação dos valores de E_m , f_m , H, ρ , AI, G_t e A_m foram ensaiados, respectivamente, 12, 4, 6, 8, 8 e 8 corpos-de-prova de cada painel.

No total, para a realização desta etapa foram realizados 240 ensaios de flexão estática (120 em cada direção) e 80, 120, 160, 160 e 160 para a determinação do teor de umidade, da densidade, da resistência à tração perpendicular às faces, inchamento em espessura e da absorção de água, respectivamente.

Na continuação, foram realizados os ensaios para a obtenção dos valores da resistência à tração perpendicular às faces, dos módulos de elasticidade e de resistência na flexão estática na Máquina Universal de Ensaios EMIC (30 toneladas), no Laboratório de Construção Civil, do Departamento de Engenharia Civil, da Faculdade de Engenharia de Bauru (FEB), da Universidade Estadual Paulista (UNESP), Campus de Bauru,

Os ensaios para a determinação dos valores da densidade, inchamento e absorção de água, bem como os ensaios não-destrutivos desta fase, foram conduzidos no Laboratório de Madeiras e de Estruturas de Madeiras (LaMEM), do SET-EESC-USP.

Os resultados foram analisados estatisticamente através de gráficos, coeficientes de correlação, cálculos de médias, desvios padrão e coeficientes de variação e dos métodos de Kolmogorov-Smirnov e Kruskal-Wallis, pelos programas MINITAB, versão 13 e EXCEL, 2003.

Papítulo 5 - Resultados

Neste capítulo serão explicitados os resultados obtidos nos Ensaios Preliminares – etapa preliminar e Ensaios Principais – primeira e segunda etapas.

5.1. Ensaios Preliminares

A Tabela 7 apresenta os valores médios de propriedades físicas dos painéis, onde H, ρ , G_t, A_m, \bar{x} , s e CV significam, respectivamente, teor de umidade, densidade, inchamento, absorção de água (24h), média aritmética, desvio padrão e coeficiente de variação (%).

Pai	inel	H (%)	ρ (kg/m³)	G _t (%)	A _m (%)
	\overline{x}	9	589	14	54
1	S	1	17	3	9
	CV	11	3	20	16
	$\frac{1}{x}$	9	612	15	52
2	S	1	77	2	10
	CV	10	13	15	19

Tabela 7 – Propriedades físicas dos painéis OSB 1 e 2

Os resultados obtidos nos ensaios de propriedades mecânicas são apresentados na Tabela 8, onde $E_{m/}$, $E_{m\perp}$, $f_{m/}$, $f_{m\perp}$ e AI significam, respectivamente, módulos de elasticidade e de resistência na flexão estática nas direções longitudinal e transversal e adesão interna.

Painel E_{m//} (MPa) E_{m⊥} (MPa) f_{m//} (MPa) f_{m⊥} (MPa) AI (MPa) 0.43 4795 1800 28 15 x 1 619 363 0,2 5 3 S CV38 13 20 18 16 5079 1747 14 0,43 30 x 2 719 296 4 2 0,1 S CV14 17 13 15 28

Tabela 8 – Propriedades mecânicas dos painéis OSB 1 e 2

Os valores médios referentes às velocidades e constantes dinâmicas obtidas por medições do tempo de propagação de ondas na espessura dos painéis, nos locais correspondentes aos corpos-de-prova de tração perpendicular às faces, densidade, inchamento e absorção de água, respectivamente representados por V_{AI} , V_d e $V_{Gt/Am}$ e C_{AI} , C_d e $C_{Gt/Am}$, estão apresentados nas Tabelas 9 e 10.

Pai	nel	V _{AI} (m/s)	V _d (m/s)	V _{Gt/Am} (m/s)
	$\frac{1}{x}$	1084	1091	1108
1	S	77	78	80
	CV	7	7	7
	$\frac{1}{x}$	1140	1154	1116
2	S	116	104	105
	CV	10	9	9

Tabela 9 – Velocidades de propagação das ondas: espessura dos painéis

Tabela 10 – Constantes dinâmicas de propagação de ondas: espessura dos painéis

Painel		C _{AI} (MPa)	C _d (MPa)	C _{Gt /Am} (MPa)
_	$\frac{1}{x}$	695	706	725
1	S	98	115	103
	CV	14	16	14
	$\frac{1}{x}$	803	826	767
2	S	165	206	145
	CV	20	25	19

Os valores médios referentes às velocidades e constantes dinâmicas obtidas por medições de tempo nas direções longitudinal e perpendicular dos painéis estão apresentados na Tabela 11, onde V_{//}, C_{//}, V_{\perp} e C_{\perp} representam, respectivamente, as velocidades e as constantes dinâmicas nas direções longitudinal e transversal dos painéis.

Tabela 11 – Velocidades e constantes dinâmicas de propagação de ondas: direções longitudinal e transversal dos painéis

Pai	inel	V∥ (m/s)	V⊥(m/s)	C _{//} (MPa)	C⊥(MPa)
	\overline{x}	3347	2661	6534	4135
1	S	46	27	187	74
	CV	1	1	3	2
	$\frac{1}{x}$	3308	2686	6600	4403
2	S	65	35	255	119
	CV	2	1	4	3

5.2. Ensaios Principais – primeira etapa

Os resultados médios das propriedades físico-mecânicas determinados na primeira etapa são apresentados nas Tabelas 12 e 13. Nestas, t é a espessura do painel e, $F_{max/l}$, $F_{max_{\perp}}$ e F_{maxAl} , força de ruptura na flexão estática, nas direções longitudinal e transversal, e força de ruptura na adesão interna, respectivamente.

t (m	m)	H (%)	ρ (kg/m³)	G _t (%)	A _m (%)	AI (MPa)	F _{maxAl} (N)
•	\overline{x}	10	614	18	60	0.47	1191
6	S	0.4	45	4	6	0.2	380
	CV	4	7	22	11	32	32
	\overline{x}	9	595	15	71	0.44	1084
15(1)	S	0.1	44	3	9	0.1	324
	CV	1	7	21	13	30	30
4 5 (0)	\overline{x}	9	589	14	75	0.36	941
15(2)	S	0.1	38	4	10	0.1	358
	CV	1	6	28	13	37	38
05	\overline{x}	9	595	19	87	0.18	453
25	S	0.2	21	1	6	0.1	207
	CV	2	4	7	7	46	46

Tabela 12 – Propriedades físicas dos painéis OSB

Tabela 13 – Propriedades mecânicas dos painéis OSB

t (m	m)	E _{m//} (MPa)	E _{m⊥} (MPa)	f _{m//} (MPa)	f _{m⊥} (MPa)	F _{max//} (N)	F _{max⊥} (N)
•	\overline{x}	3661	1376	32	16	404	204
6	S	725	380	8	5	107	60
	CV	20	28	26	29	26	29
	$\frac{1}{x}$	4142	1652	25	14	658	355
15(1)	S	590	231	6	2	162	63
	CV	14	14	25	18	25	18
4 5 (0)	\overline{x}	4069	1386	25	10	661	263
15(2)	S	525	206	5	2	135	55
	CV	13	15	20	21	20	21
05	$\frac{1}{x}$	4553	1817	26	13	1135	560
25	S	680	132	4	2	169	72
	CV	15	7	15	13	15	13

Os valores médios referentes às velocidades e constantes dinâmicas obtidas por medições do tempo de propagação, pelo aparelho de ultra-som, na espessura dos painéis, nos locais correspondentes aos corpos-de-prova de tração perpendicular às faces, densidade, inchamento e absorção de água estão apresentados nas Tabelas 14 e 15. Por problemas técnicos não foi possível realizar as medições nas espessuras dos painéis de espessuras 6 e 15(2)mm.

t (n	nm)	V _{AI} (m/s)	V _d (m/s)	V _{Gt/Am} (m/s)
	$\frac{1}{x}$	1086	1091	1102
15(1)	S	80	108	76
	CV	7	10	7
25	$\frac{-}{x}$	963	965	966
	S	71	50	55
	CV	7	5	6

Tabela 14 – Velocidades de propagação das ondas: espessura dos painéis

Tabela 15 – Constantes dinâmicas de propagação de ondas: espessura dos painéis

t (n	וm)	C _{AI} (MPa)	C _d (MPa)	C _{Gt/Am} (MPa)
	$\frac{1}{x}$	706	722	726
15(1)	S	104	174	99
	CV	15	24	14
	$\frac{1}{x}$	554	555	556
25	S	81	66	62
	CV	15	12	11

Os valores médios referentes às velocidades e constantes dinâmicas obtidas por medições de tempo nas direções longitudinal e transversal dos painéis, estão apresentados na Tabela 16.

t (m	ım)	V _{//} (m/s)	V⊥(m/s)	С // (МРа)	C⊥(MPa)
	\overline{x}	3251	2084	6491	2816
6	S	43	498	169	1089
	CV	1	24	3	39
	$\frac{1}{x}$	3039	2575	5498	3946
15(1)	S	21	28	76	86
	CV	1	1	1	2
	$\frac{1}{x}$	3216	2658	6150	4201
25	S	44	24	166	76
	CV	1	1	3	2

Tabela 16 – Velocidades e constantes dinâmicas de propagação de ondas: direções longitudinal e transversal dos painéis

Os valores médios referentes às velocidades e constantes dinâmicas obtidas por medições de tempo, pelo aparelho de stress wave, nas direções longitudinal e transversal do painel de espessura 15(2)mm estão apresentados na Tabela 17.

t (mm)		V ∥ (m/s)	V⊥(m/s)	C _{//} (MPa)	C⊥(MPa)
15(2)	\overline{x}	2889	2040	4915	2450
15(2)	S	33	30	97	72
	CV	1	1	2	3

Tabela 17 – Velocidades e constantes dinâmicas de propagação de ondas: direções longitudinal e transversal do painel de espessura 15(2)mm – stress wave

Os valores médios referentes às velocidades e constantes dinâmicas obtidas por medições de tempo, pelo aparelho de stress wave, nos corpos-de-prova de flexão estática, nas direções transversal e longitudinal (15(1) - cp, 15(2) - cp e 25 cp), estão apresentados na Tabela 18.

t (mm) V∥ (m/s) $V_{\perp}(m/s)$ C_{//} (MPa) C_⊥ (MPa) 3116 2439 5780 3544 х 15(1) 54 66 200 191 S ср CV2 3 3 5 3139 2187 5804 2818 х 15(2) 69 253 116 45 S ср CV2 2 4 4 3216 2496 6150 3703 х 25 90 43 355 125 S ср CV3 2 6 3

Tabela 18 – Velocidades e constantes dinâmicas de propagação de ondas: corpos-de-prova de flexão dos painéis – stress wave

As Figuras 19 e 20 mostram exemplos gráficos, de retas de regressão, encontrados entre os valores obtidos nos ensaios destrutivos e nos ensaios nãodestrutivos, utilizando os métodos de ultra-som e de stress wave, respectivamente. Todos os gráficos de reta de regressão são apresentados nos Apêndices F e G.

Figura 19 – Velocidade x força máxima na flexão estática, na direção transversal, com medições realizadas pelo ultra-som.

Figura 20 – Velocidade x força máxima na flexão estática, na direção transversal, com medições realizadas pelo stress wave – painéis 15(2) e 25mm.

As Tabelas 19, 20, 21 e 22 apresentam os modelos de regressão (equações) e coeficientes de correlação (R) e de determinação (R²) encontrados entre os valores obtidos nos ensaios destrutivos e nos ensaios não-destrutivos através dos métodos de ultra-som e de stress wave, respectivamente. O símbolo * significa que as correlações, bem como os seus respectivos modelos de regressão, não foram significativos entre as propriedades estudadas.

Tabela 19 – Equações, R e R² entre os valores dos ensaios físico-mecânicos e nãodestrutivos pelo método de ultra-som

R	R ²	Equação	R	R ²	Equação
0,30	0,09	f _{m//} = 0,0169V _{//} - 27,095*	0,62	0,38	AI = 0,0011V _{AI} - 0,7668
0,75	0,56	F _{max//} = 2,693V _{//} - 7523,4	0,62	0,38	AI = 0,0009C _{AI} - 0,234
0,49	0,24	E _{m//} = 0,9531C _{//} - 1189,8	0,61	0,38	F _{maxAI} = 2,6173V _{AI} - 1912,1
0,00	0,00	$f_{m\perp}$ = -0,0011 V_{\perp} + 16,297*	0,48	0,23	$G_t = -0,0168V_{Gt} + 34,475$
0,78	0,61	$F_{max\perp}$ =1,9916V ₁ - 4753,7	0,49	0,24	$G_t = -0.0137C_{Gt} + 25.887$
0,48	0,23	$E_{m\perp}$ = 0,6698 C_{\perp} - 992,74	0,74	0,55	A _m = -0,0856V _{Am} + 168,01
0,39	0,15	d = 0,1286V _d + 460,93	0,74	0,55	A _m = -0,0686C _{Am} + 123,53

Tabela 20 – Equações, R e R² entre os valores dos ensaios físico-mecânicos e nãodestrutivos pelo método de stress wave – painéis 15(1) x 15(2)mm

R	R ²	Equação	R	R ²	Equação
0,15	0,02	$f_{m//} = 0,0055V_{//} + 8,5302^*$	0,68	0,46	f _m ⊥ = 0,0091V⊥ - 8,7585
0,06	0,00	$F_{max//} = 0,0747V_{//} + 435,49*$	0,67	0,44	$F_{max^{\perp}}$ = 0,2403V _{\perp} - 228,76
0,51	0,26	$E_{m//} = 0,3375C_{//} + 2204,9$	0,56	0,32	E _m ⊥ = 0,2516C⊥ + 762,99
R	R ²	Equação	R	R ²	Equação
------	----------------	---	------	----------------	---
0,22	0,05	f _{m//} = 0,0168V _{//} - 27,462*	0,22	0,05	$f_{m^{\perp}}$ = 0,0072V _{\perp} - 4,4546*
0,61	0,38	F _{max//} = 2,5569V _{//} - 7188,7	0,49	0,24	$F_{max^{\perp}}$ = 0,9555V $_{\perp}$ - 1903,7
0,28	0,08	E _{m//} = 0,7125C _{//} + 117,04*	0,40	0,16	E _m ⊥ = 0,4556C⊥ + 79,347

Tabela 21 – Equações, R e R² entre os valores dos ensaios físico-mecânicos e nãodestrutivos pelo método de stress wave – painéis 15(1) x 25mm

Tabela 22 – Equações, R e R² entre os valores dos ensaios físico-mecânicos e nãodestrutivos pelo método de stress wave – painéis 15(2) x 25mm

R	R ²	Equação	R	R ²	Equação
0,24	0,06	$f_{m//} = 0,0066V_{//} + 5,3741*$	0,64	0,41	$f_{m^{\perp}}$ = 0,0068V _{\perp} - 4,0173
0,87	0,75	F _{max//} = 1,4883V _{//} - 3634,4	0,91	0,83	F _{max} ⊥= 0,6382V⊥ - 1036
0,56	0,32	$E_{m//} = 0,3945C_{//} + 2007,9$	0,78	0,61	E _m ⊥ = 0,3418C⊥ + 549,27

5.3. Ensaios Principais – segunda etapa

As Tabelas 23 e 24 apresentam os resultados médios obtidos nos ensaios de

propriedades físico-mecânicas para os painéis de amostragem dos grupos 1 e 2.

Pai	inel	H (%)	ρ (kg/m³)	G _t (%)	A _m (%)
	$\frac{1}{x}$	8	601	13	46
1	S	1	34	2	5
	CV	18	6	13	10
	$\frac{-}{x}$	7	598	19	52
2	S	4	39	4	4
	CV	6	7	22	7

Tabela 23 – Propriedades físicas dos painéis OSB dos grupos 1 e 2

Tabela 24 – Propriedades mecânicas das chapas OSB dos grupos 1 e 2

Pai	nel	E _{m//} (MPa)	E _{m⊥} (MPa)	f _{m//} (MPa)	f _{m⊥} (MPa)	AI (MPa)
	$\frac{1}{x}$	5290	1601	31	11	0,33
1	S	783	273	7	3	0,2
	CV	15	17	22	24	54
	$\frac{-}{x}$	3401	1794	19	13	0,27
2	S	801	259	5	2	0,1
2	CV	24	14	27	18	32

As Tabelas 25, 26, 27 e 28 apresentam os resultados médios obtidos nos ensaios de propriedades físico-mecânicas para os painéis dos grupos 1 e 2. Os valores totais obtidos nesses ensaios são apresentados no Apêndice B.

Pair Gru	néis po 1	H (%)	ρ (kg/m³)	Pair Gru	néis po 2	H (%)	ρ (kg/m³)
	$\frac{1}{x}$	7	574		$\frac{-}{x}$	6	592
11	S	1	39	21	S	0	22
	CV	10	7		CV	7	4
	\overline{x}	7	573		$\frac{1}{x}$	6	597
12	S	1	52	22	S	1	18
	CV	10	9		CV	11	3
	\overline{x}	7	583		$\frac{1}{x}$	7	603
13	S	1	21	23	S	0	56
	CV	9	4		CV	3	9
	\overline{x}	7	565		\overline{x}	7	631
14	S	1	26	24	S	0	22
	CV	15	5		CV	7	4
	\overline{x}	6	594		\overline{x}	7	591
15	S	0	32	25	S	0	35
	CV	6	5		CV	2	6
	$\frac{1}{x}$	7	559		$\frac{-}{x}$	6	593
16	S	0	34	26	S	0	21
	CV	4	6		CV	7	4
	$\frac{1}{x}$	7	582		$\frac{-}{x}$	7	596
17	S	1	35	27	S	0	32
	CV	8	6		CV	2	5
	$\frac{1}{x}$	7	570		$\frac{-}{x}$	7	555
18	S	0	30	28	S	0	30
	CV	5	5		CV	4	5
	\overline{x}	7	563		$\frac{1}{x}$	7	555
19	S	0	32	29	S	1	36
	CV	5	6		CV	14	6
	\overline{x}	6	594		$\frac{1}{x}$	7	586
110	S	0	55	210	S	1	22
	CV	5	9		CV	8	4

Tabela 25 – Teor de umidade e densidade dos painéis OSB dos grupos 1 e 2

Paiı Gru	néis po 1	G _t (%)	A _m (%)	Al (MPa)	F _{maxAl} (N)	Pair Gru	néis po 2	G _t (%)	A _m (%)	Al (MPa)	F _{maxAl} (N)
	\overline{x}	10	41	0,46	1125		\overline{x}	17	46	0,46	1152
11	S	2	4	0,1	187	21	S	4	6	0,1	343
	CV	19	10	17	17		CV	23	13	30	30
	\overline{x}	10	39	0,40	1005		$\frac{1}{x}$	16	48	0,41	1021
12	S	6	5	0,2	446	22	S	4	7	0,1	218
	CV	1	10	44	44		CV	23	15	21	21
	$\frac{-}{x}$	13	39	0,49	1239		$\frac{-}{x}$	21	49	0,39	960
13	S	5	4	0,1	209	23	S	5	5	0,1	216
	CV	41	11	23	23		CV	26	9	23	23
	\overline{x}	12	42	0,52	1296		\overline{x}	19	45	0,46	1149
14	S	2	4	0,2	366	24	S	4	5	0,1	239
	CV	18	9	28	28		CV	21	11	21	21
	$\frac{1}{x}$	16	39	0,55	1376		$\frac{-}{x}$	18	47	0,39	970
15	S	5	7	0,2	392	25	S	2	9	0,1	263
	CV	31	17	28	28		CV	11	20	27	27
	$\frac{-}{x}$	14	43	0,58	1405		$\frac{-}{x}$	17	48	0,40	973
16	S	3	7	0,2	526	26	S	4	6	0,1	211
	CV	22	16	37	37		CV	25	12	24	22
	\overline{x}	12	44	0,55	1345		$\frac{1}{x}$	17	49	0,40	996
17	S	2	4	0,1	219	27	S	4	6	0,2	378
	CV	16	9	16	16		CV	25	12	38	38
	$\frac{-}{x}$	13	42	0,43	1032		$\frac{-}{x}$	17	46	0,46	134
18	S	2	6	0,1	253	28	S	4	6	0,1	285
	CV	19	14	24	25		CV	25	13	25	25
	$\frac{-}{x}$	13	48	0,53	1289		$\frac{-}{x}$	17	46	0,47	1191
19	S	5	7	0,2	357	29	S	2	7	0,1	156
	CV	36	15	27	28		CV	13	15	14	13
	\overline{x}	15	42	0,51	1265		\overline{x}	17	51	0,46	1160
110	S	3	3	0,1	302	210	S	4	9	0,1	166
	CV	22	7	24	24		CV	26	17	15	14

Tabela 26 – Valores de inchamento e absorção de água (24h), de força de ruptura e de resistência à tração perpendicular às faces, dos painéis OSB dos grupos 1 e 2

Paiı Gru	néis po 1	f _{m//} (MPa)	E _{m//} (MPa)	F _{max//} (N)	Pair Gru	néis po 2	f _{m//} (MPa)	E _{m//} (MPa)	F _{max//} (N)
	$\frac{1}{x}$	31	4745	820		$\frac{1}{x}$	20	4108	517
11	S	5	569	132	21	S	3	330	76
	CV	17	12	16		CV	15	8	15
	\overline{x}	32	5187	819		\overline{x}	18	3694	464
12	S	5	589	124	22	S	4	639	88
	CV	16	11	15		CV	21	17	19
	$\frac{-}{x}$	32	5526	844		\overline{x}	23	4344	591
13	S	5	692	120	23	S	4	436	99
	CV	15	13	14		CV	16	10	17
	\overline{x}	33	5225	871		\overline{x}	22	4326	572
14	S	3	235	58	24	S	2	282	51
	CV	8	5	7		CV	9	7	9
	$\frac{1}{x}$	31	5187	792		$\frac{1}{x}$	20	4012	520
15	S	2	384	64	25	S	4	613	95
15	CV	7	7	8		CV	20	15	18
	$\frac{1}{x}$	31	5046	807		$\frac{1}{x}$	21	3882	537
16	S	2	648	81	26	S	5	705	133
	CV	7	13	10		CV	25	18	25
	$\frac{1}{x}$	29	5028	721		$\frac{1}{x}$	23	4134	596
17	S	5	400	131	27	S	4	531	104
	CV	19	8	18		CV	18	13	17
	$\frac{-}{x}$	30	4840	764		$\frac{1}{x}$	21	4121	548
18	S	7	722	199	28	S	4	581	119
	CV	25	15	26		CV	21	14	22
	$\frac{1}{x}$	29	4948	737		$\frac{1}{x}$	21	4115	568
19	S	7	782	191	29	S	5	531	130
	CV	24	16	26		CV	24	13	23
	$\frac{1}{x}$	29	4928	753		\overline{x}	22	4015	580
110	S	5	778	114	210	S	3	320	81
	CV	16	16	15		CV	15	8	14

Tabela 27 – Valores de força de ruptura, de módulos de elasticidade e de resistência na flexão estática na direção longitudinal dos painéis OSB dos grupos 1 e 2

Paiı Gru	néis po 1	f _{m⊥} (MPa)	E _{m⊥} (MPa)	F _{max⊥} (N)	Pair Gru	néis po 2	f _{m⊥} (MPa)	E _{m⊥} (MPa)	F _{max⊥} (N)
	$\frac{1}{x}$	14	1838	358		$\frac{1}{x}$	14	2099	356
11	S	1	174	34	21	S	3	365	89
	CV	10	9	10		CV	25	17	25
	\overline{x}	14	1915	357		\overline{x}	14	2023	348
12	S	4	375	114	22	S	2	271	60
	CV	33	20	32		CV	17	13	17
	$\frac{1}{x}$	15	1926	397		$\frac{1}{x}$	12	1885	311
13	S	3	213	83	23	S	3	366	67
	CV	21	11	21		CV	22	19	22
	$\frac{1}{x}$	11	1651	295		$\frac{1}{x}$	14	2039	353
14	S	2	159	41	24	S	2	198	49
	CV	17	10	14		CV	13	10	14
	\overline{x}	14	1828	365		\overline{x}	14	2001	357
15	S	1	80	28	25	S	3	230	69
15	CV	6	4	8		CV	18	12	19
	$\frac{-}{x}$	14	1870	374		$\frac{-}{x}$	14	1979	357
16	S	2	188	64	26	S	3	241	84
_	CV	17	10	17		CV	22	12	23
	$\frac{1}{x}$	2	1777	304		$\frac{1}{x}$	14	1961	348
17	S	2	213	46	27	S	3	391	70
_	CV	14	12	15		CV	19	20	20
	$\frac{-}{x}$	13	1653	334		\overline{x}	13	1812	321
18	S	3	123	79	28	S	2	193	56
	CV	20	7	24		CV	17	11	18
	$\frac{1}{x}$	12	1629	298		$\frac{-}{x}$	13	1870	349
19	S	3	342	65	29	S	3	270	73
_	CV	25	21	22		CV	21	14	21
	\overline{x}	12	1665	311		\overline{x}	14	1984	360
110	S	2	179	56	210	S	1	208	35
	CV	19	11	18		CV	9	10	10

Tabela 28 – Valores de força de ruptura, de módulos de elasticidade e de resistência na flexão estática na direção transversal dos painéis OSB dos grupos 1 e 2

Os valores médios referentes às velocidades e atenuações obtidas por medições do tempo de propagação, pelo aparelho de ultra-som, na espessura dos painéis, nos locais

correspondentes aos corpos-de-prova de tração perpendicular às faces, densidade, inchamento e absorção de água estão apresentados nas Tabelas 29, 30 e 31. Os valores totais são apresentados no Apêndice C.

Pair Gru	néis po 1	V _d (m/s)	V _{AI} (m/s)	V _{Gt/Am} (m/s)	Pair Gru	néis po 2	V _d (m/s)	V _{AI} (m/s)	V _{Gt/Am} (m/s)
	$\frac{1}{x}$	849	840	854		$\frac{1}{x}$	843	862	856
11	S	90	75	67	21	S	80	97	106
	CV	11	9	8		CV	9	11	12
	$\frac{-}{x}$	927	855	841		$\frac{-}{x}$	846	840	863
12	S	91	101	111	22	S	84	100	94
	CV	10	12	25		CV	11	12	11
	$\frac{-}{x}$	862	865	883		$\frac{-}{x}$	904	896	895
13	S	76	90	82	23	S	95	97	73
	CV	9	10	9		CV	10	11	8
	$\frac{-}{x}$	880	904	911		$\frac{-}{x}$	917	903	915
14	S	74	115	108	24	S	86	63	91
	CV	8	13	12		CV	9	7	10
	$\frac{1}{x}$	902	884	855		\overline{x}	874	860	829
15	S	96	85	71	25	S	104	57	75
	CV	11	10	8		CV	12	7	9
	$\frac{1}{x}$	874	881	873		$\frac{1}{x}$	900	879	882
16	S	73	75	76	26	S	76	97	83
	CV	8	9	9		CV	8	11	9
	$\frac{1}{x}$	916	885	899		$\frac{-}{x}$	881	855	896
17	S	56	94	105	27	S	66	76	58
	CV	6	11	12		CV	7	9	6
	$\frac{-}{x}$	836	842	851		$\frac{-}{x}$	864	928	866
18	S	73	80	76	28	S	75	72	78
	CV	9	9	9		CV	9	8	9
	$\frac{-}{x}$	850	851	854		$\frac{-}{x}$	851	860	873
19	S	73	71	95	29	S	96	59	70
	CV	9	8	11		CV	11	7	8
	\overline{x}	921	872	892		\overline{x}	848	857	874
110	S	66	121	111	210	S	69	53	60
110	CV	7	14	12		CV	8	6	7

Tabela 29 – Velocidades de propagação de ondas: espessuras dos painéis OSB dos grupos 1 e 2

Paiı Gru	néis po 1	C _d (MPa)	С _{АІ} (MPa)	C _{Gt/Am} (MPa)	Pair Gru	néis po 2	C _d (MPa)	C _{AI} (MPa)	C _{Gt/Am} (MPa)
	$\frac{1}{x}$	418	408	421		$\frac{-}{x}$	424	446	440
11	S	85	71	63	21	S	81	98	99
	CV	20	17	15		CV	19	22	22
	\overline{x}	497	424	441		$\frac{1}{x}$	432	427	449
12	S	98	96	111	22	S	94	99	97
	CV	20	23	25		CV	22	23	22
	\overline{x}	437	441	458		\overline{x}	498	489	486
13	S	77	91	84	23	S	103	102	77
	CV	18	21	18		CV	21	21	16
	\overline{x}	440	465	475		$\frac{-}{x}$	535	517	533
14	S	75	76	104	24	S	97	72	102
	CV	17	16	22		CV	18	14	19
	\overline{x}	489	469	437		\overline{x}	458	439	410
15	S	104	88	74	25	S	108	57	74
15	CV	21	19	17		CV	24	13	18
	$\frac{1}{x}$	430	437	429		$\frac{1}{x}$	484	463	465
16	S	72	71	77	26	S	81	102	88
	CV	17	16	18		CV	17	22	19
	$\frac{1}{x}$	491	461	477		$\frac{-}{x}$	465	439	481
17	S	62	98	105	27	S	69	78	64
	CV	13	21	22		CV	15	18	13
	$\frac{-}{x}$	401	407	416		$\frac{-}{x}$	417	481	419
18	S	71	77	75	28	S	71	76	72
	CV	18	19	18		CV	17	16	17
	$\frac{-}{x}$	410	410	415		$\frac{-}{x}$	407	412	426
19	S	78	65	94	29	S	85	56	70
	CV	19	16	23		CV	21	14	16
_	\overline{x}	506	459	480		\overline{x}	425	432	449
110	S	72	125	108	210	S	69	53	62
	CV	14	27	22		CV	16	12	14

Tabela 30 – Constantes dinâmicas de propagação de ondas: espessura dos painéis OSB dos grupos 1 e 2

Na Tabela 31 Atn_d, Atn_{Al} e Atn_{Gt/Am} significam, respectivamente, as atenuações medidas nos locais referentes aos corpos-de-prova de densidade, tração perpendicular às faces e inchamento / absorção de água.

Pair Gru	néis po 1	Atn _d (dβ loss)	Atn _{Al} (dβ loss)	Atn _{Gt/Am} (dβ loss)	Pair Gru	néis po 2	Atn _d (dβ loss)	Atn _{Al} (dβ loss)	Atn _{Gt/Am} (dβ loss)
	$\frac{1}{x}$	59	58	61		$\frac{1}{x}$	59	58	60
11	S	6	6	6	21	S	5	5	4
	CV	9	10	10		CV	9	9	7
	\overline{x}	56	59	59		$\frac{1}{x}$	58	59	58
12	S	5	6	5	22	S	5	6	6
	CV	9	10	9		CV	9	10	10
	\overline{x}	56	58	54		$\frac{-}{x}$	57	59	56
13	S	7	5	4	23	S	5	5	6
	CV	12	9	8		CV	9	8	10
	$\frac{-}{x}$	56	56	58		$\frac{-}{x}$	57	57	56
14	S	6	9	4	24	S	5	6	4
	CV	10	15	7		CV	9	10	8
	\overline{x}	56	56	57		\overline{x}	58	59	59
15	S	5	7	6	25	S	5	5	4
	CV	9	12	11		CV	8	8	6
	$\frac{1}{x}$	56	55	56		$\frac{1}{x}$	56	58	56
16	S	5	5	5	26	S	5	5	5
	CV	8	9	9		CV	8	9	8
	\overline{x}	53	54	56		\overline{x}	58	57	58
17	S	4	6	5	27	S	5	5	5
	CV	7	10	9		CV	9	8	8
	$\frac{-}{x}$	58	55	57		$\frac{1}{x}$	58	56	59
18	S	6	11	6	28	S	5	5	5
	CV	10	20	10		CV	9	10	8
	$\frac{1}{x}$	57	58	57		$\frac{1}{x}$	58	59	58
19	S	6	5	5	29	S	4	4	4
	CV	10	9	8		CV	6	7	6
	\overline{x}	55	57	57		\overline{x}	59	58	58
110	S	6	5	5	210	S	4	4	4
110	CV	10	9	8		CV	7	6	7

Tabela 31 – Atenuações de propagação de ondas: espessura dos painéis OSB dos grupos 1 e 2

As Tabelas 32 e 33 apresentam os valores médios de velocidade e constantes dinâmicas de propagação de ondas nas direções longitudinal e transversal, obtidos através do método de ultra-som. No Apêndice C estão contidos os valores totais.

Pair Gru	néis po 1	V∥ (m/s)	V⊥ (m/s)	Paiı Gru	néis po 2	V∥ (m/s)	V⊥ (m/s)
	$\frac{1}{x}$	3157	2497		$\frac{-}{x}$	2853	2496
11	S	25	33	21	S	27	43
	CV	1	1		CV	1	2
	\overline{x}	3182	2487		\overline{x}	2866	2516
12	S	19	31	22	S	20	47
	CV	1	1		CV	1	2
	$\frac{1}{x}$	3179	2494		$\frac{1}{x}$	2867	2535
13	S	21	45	23	S	24	42
	CV	1	2		CV	1	2
	$\frac{1}{x}$	3184	2479		$\frac{-}{x}$	2869	2510
14	S	21	26	24	S	18	44
	CV	1	1		CV	1	2
	$\frac{1}{x}$	3151	2486		$\frac{-}{x}$	2864	2506
15	S	29	32	25	S	21	52
	CV	1	1		CV	1	2
	$\frac{1}{x}$	3160	2472		$\frac{1}{x}$	2848	259
16	S	25	36	26	S	16	37
	CV	1	1		CV	1	1
	$\frac{-}{x}$	3017	2232		\overline{x}	2856	2519
17	S	32	27	27	S	14	45
_	CV	1	1		CV	0	2
	\overline{x}	3162	2478		$\frac{1}{x}$	2859	2507
18	S	20	35	28	S	29	48
_	CV	1	1		CV	1	2
	$\frac{1}{x}$	3135	2459		$\frac{-}{x}$	2851	2487
19	S	25	46	29	S	35	44
	CV	1	2		CV	1	2
	\overline{x}	3148	2469		\overline{x}	2837	2481
110	S	48	34	210	S	34	41
	CV	2	1		CV	1	2

Tabela 32 – Velocidades de propagação de ondas: direções longitudinal e transversal dos painéis OSB dos grupos 1 e 2 – ultra-som

Pair Gru	néis po 1	С _{//} (MPa)	C⊥ (MPa)	Pair Gru	néis po 2	С _{//} (MPa)	C⊥ (MPa)
	\overline{x}	5721	3580		$\frac{1}{x}$	4845	3707
11	S	89	95	21	S	92	127
	CV	2	3		CV	2	3
	\overline{x}	5802	3534		$\frac{-}{x}$	4905	3780
12	S	69	88	22	S	69	141
	CV	1	2		CV	1	4
	\overline{x}	5891	3628		\overline{x}	4955	3876
13	S	78	132	23	S	81	129
	CV	1	4		CV	2	3
	\overline{x}	5727	3472		\overline{x}	5194	3977
14	S	75	73	24	S	65	141
	CV	1	2		CV	1	4
	$\frac{1}{x}$	5899	3670		$\frac{1}{x}$	4848	3712
15	S	108	95	25	S	70	155
	CV	2	3		CV	1	4
	$\frac{-}{x}$	5582	3415		$\frac{-}{x}$	4810	3765
16	S	89	100	26	S	53	110
_	CV	2	3		CV	1	3
	$\frac{1}{x}$	5297	2900		$\frac{-}{x}$	4863	3784
17	S	112	71	27	S	47	135
	CV	2	2		CV	1	4
	\overline{x}	5699	3501		\overline{x}	4537	3490
18	S	71	98	28	S	93	135
	CV	1	3		CV	2	4
	$\frac{-}{x}$	5533	3406		$\frac{-}{x}$	4513	3433
19	S	87	127	29	S	112	120
	CV	2	4		CV	2	3
	\overline{x}	5889	3621		\overline{x}	4717	3608
110	S	178	98	210	S	114	118
	CV	3	3		CV	2	3

Tabela 33 – Constantes dinâmicas de propagação de ondas: direções longitudinal e transversal dos painéis OSB dos grupos 1 e 2 – ultra-som

Os valores médios de velocidade e constantes dinâmicas de propagação de ondas nas direções longitudinal e transversal, obtidos através do método de stress wave, são apresentados nas Tabelas 34 e 35. O Apêndice C apresenta os valores totais.

Pair Gru	néis po 1	V _{//} (m/s)	V⊥ (m/s)	Pair Gru	néis po 2	V _{//} (m/s)	V⊥ (m/s)
	$\frac{1}{x}$	2986	2212		$\frac{-}{x}$	2727	2215
11	S	18	49	21	S	21	35
	CV	1	2		CV	1	2
	$\frac{1}{x}$	3009	2227		\overline{x}	2706	2041
12	S	26	31	22	S	34	356
	CV	1	1		CV	1	17
	$\frac{1}{x}$	3034	2233		$\frac{1}{x}$	2729	2230
13	S	14	26	23	S	22	36
	CV	0	1		CV	1	2
	$\frac{1}{x}$	3030	2232		$\frac{-}{x}$	2667	2220
14	S	19	23	24	S	252	32
	CV	1	1		CV	9	1
	$\frac{1}{x}$	3023	2228		$\frac{-}{x}$	2723	2236
15	S	17	35	25	S	18	40
	CV	1	2		CV	1	2
	\overline{x}	3013	2222		\overline{x}	2738	2233
16	S	18	24	26	S	18	48
	CV	1	1		CV	1	2
	$\frac{1}{x}$	2901	2046		$\frac{1}{x}$	2740	2219
17	S	25	31	27	S	21	49
	CV	1	2		CV	1	2
	$\frac{1}{x}$	3007	2228		$\frac{-}{x}$	2752	2220
18	S	27	23	28	S	54	46
	CV	1	1		CV	2	2
	$\frac{1}{x}$	3005	2216		\overline{x}	2726	2220
19	S	29	27	29	S	21	48
	CV	1	1		CV	1	2
	$\frac{1}{x}$	3000	2236		$\frac{1}{x}$	2746	2232
110	S	62	44	210	S	34	35
	CV	2	2		CV	1	2

Tabela 34 – Velocidades de propagação de ondas: direções longitudinal e transversal dos painéis OSB dos grupos 1 e 2 – stress wave

Pair Gru	néis po 1	С _{//} (MPa)	C⊥ (MPa)	Pair Gru	néis po 2	С _{//} (MPa)	C⊥ (MPa)
	$\frac{1}{x}$	5118	2809		$\frac{1}{x}$	4402	2904
11	S	61	120	21	S	69	92
	CV	1	4		CV	2	3
	$\frac{1}{x}$	5189	2843		$\frac{-}{x}$	4373	2561
12	S	91	80	22	S	109	701
	CV	2	3		CV	2	27
	$\frac{-}{x}$	5369	2907		$\frac{-}{x}$	4492	2999
13	S	39	67	23	S	73	97
	CV	1	2		CV	2	3
	$\frac{1}{x}$	5189	2815		$\frac{1}{x}$	4527	3111
14	S	64	60	24	S	731	90
	CV	1	2		CV	16	3
	$\frac{-}{x}$	5430	2950		$\frac{-}{x}$	4384	2955
15	S	59	93	25	S	56	106
	CV	1	3		CV	1	4
	$\frac{-}{x}$	5075	2760		$\frac{-}{x}$	4447	2959
16	S	62	59	26	S	59	126
	CV	1	2		CV	1	4
	$\frac{-}{x}$	4898	2438		$\frac{-}{x}$	4475	2935
17	S	85	75	27	S	67	129
	CV	2	3		CV	1	4
	$\frac{-}{x}$	5153	2829		$\frac{-}{x}$	4204	2737
18	S	93	59	28	S	167	113
	CV	2	2		CV	4	4
	$\frac{-}{x}$	5086	2765		$\frac{-}{x}$	4123	2736
19	S	97	67	29	S	64	118
	CV	2	2		CV	2	4
	\overline{x}	5348	2971		\overline{x}	4418	2920
110	S	218	116	210	S	108	91
	CV	4	4		CV	2	3

Tabela 35 – Constantes dinâmicas de propagação de ondas: direções longitudinal e transversal dos painéis OSB dos grupos 1 e 2 – stress wave

Os coeficientes de determinação obtidos para os painéis do Grupo 1, quando comparados os valores dos ensaios destrutivos aos dos não-destrutivos, pelos

métodos de ultra-som e stress wave, variaram de 0,0081 a 0,1209 e os de correlação variaram de 0,09 a 0,35. Para os painéis do Grupo 2 esses valores variaram de 0,0008 a 0,3146 e de 0,03 a 0,56, respectivamente.

No ponto de medição 13, para o método de stress wave, na direção longitudinal, o tempo de propagação da onda (1717 μ s) mostrou-se discrepante dentre os demais (em média, na faixa de 880 μ s) interferindo nos valores de V e C para as correlações com os valores de módulos de resistência e de elasticidade do corpo-de-prova F_{9//}.

Nos pontos de medição 12, 28 e 29, para o método de stress wave, na direção transversal, os tempos de propagação das ondas (1349, 1598 e 1527 μ s) mostraram-se discrepantes dentre os demais (em média, na faixa de 610 μ s) interferindo nos valores de V e C para as correlações com os valores de módulos de resistência e de elasticidade com os corpos-de-prova F₁₁ e F20_⊥.

As Figuras 21 e 22 mostram exemplos gráficos, de retas de regressão, encontrados entre os valores médios obtidos nos ensaios destrutivos e nos nãodestrutivos, através dos métodos de ultra-som e de stress wave, respectivamente. Todos os gráficos de retas de regressão são apresentados nos Apêndices H, I, J e L.

Figura 21 – Velocidade x resistência na flexão estática, na direção longitudinal, com medições realizadas pelo ultra-som – valores médios.

Figura 22 – Velocidade x resistência na flexão estática, na direção longitudinal, com medições realizadas pelo stress wave – valores médios.

As Tabelas 36 e 37 apresentam os modelos de regressão e os coeficientes de correlação e de determinação encontrados entre os valores totais, obtidos nos ensaios físico-mecânicos e não-destrutivos, através dos métodos de ultra-som e de stress wave, quando comparados os painéis dos grupos 1 e 2. O símbolo * significa que as correlações, bem como os seus respectivos modelos de regressão, não foram significativos entre as propriedades estudadas.

 \mathbb{R}^2 \mathbb{R}^2 R R Equação Equação $f_{m//} = 0.0311 V_{//} - 67.542$ $F_{maxAl} = 1,3192V_{Al} + 11,019$ 0,56 0,38 0,14 0,75 0.75 $F_{max//} = 0,8256V_{//} - 1806,7$ $AI = 0,0005C_{AI} + 0,2644$ 0,56 0,33 0,11 0,68 0,46 $E_{m/\prime} = 1,0212C_{\prime\prime} - 806,89$ 0,26 0,07 $AI = -0,0085Atn_{AI} + 0,7783$ $G_t = 0,004V_{Gt} + 11,705^*$ $f_{m^{\perp}} = 0,0094V_{\perp} - 9,9829$ 0,27 0,07 0,08 0,01 $G_t = 0,0055C_{Gt} + 12,708^*$ 0,29 0,09 0,11 0,01 $F_{max^{\perp}} = 0,2707V_{\perp} - 329,43$ 0,40 0,16 $E_{m^{\perp}} = 0,431C_{\perp} + 320,15$ 0,05 0,00 $G_t = -0,0663Atn_{Gt} + 17,607^*$ A_m = -0,013V_{Am} + 55,858* 0,36 0,13 $d = 0,1436V_d + 458,87$ 0,16 0,03 0,35 0,12 $d = -3,4798Atn_d + 709,5$ 0,15 0,02 $A_m = -0.0112C_{Am} + 49.57^*$ $AI = 0,0005V_{AI} + 0,0042$ $A_m = 0.3489Atn_{Am} + 31.792^*$ 0,37 0,14 0,17 0,03

Tabela 36 – Equações, R e R² entre os valores obtidos nos ensaios físicomecânicos e não-destrutivos pelo método de ultra-som

R	R ²	Equação	R	R ²	Equação		
0,65	0,42	$f_{m//} = 0,0243V_{//} - 43,475$	0,10	0,01	$f_{m\perp}$ = 0,0016V _{\perp} + 9,965*		
0,65	0,43	F _{max//} = 0,6467V _{//} - 1177	0,13	0,02	$F_{max^{\perp}}$ = 0,0525V _{\perp} + 227,34*		
0,60	0,36	$E_{m/\prime} = 0,8948C_{\prime\prime} + 295,34$	0,13	0,02	E _m ⊥ = 0,1105C⊥ + 1557,8*		

Tabela 37 – Equações, R e R² entre os valores obtidos nos ensaios físicomecânicos e não-destrutivos pelo método de stress wave – todos os valores

A Tabela 38 apresenta os modelos de regressão e coeficientes de correlação e de determinação encontrados entre todos os valores obtidos nos ensaios destrutivos e nos não-destrutivos, através do método de stress wave, quando comparados os painéis dos grupos 1 e 2. Destes valores, foram excluídos os de velocidades e de constantes dinâmicas relacionados às leituras discrepantes de tempo no painel 24, na direção longitudinal (ponto de leitura $12_{//}$) e no painel 22, na direção transversal (pontos 12_{\perp} , 28_{\perp} e 29_{\perp}).

Tabela 38 – Equações, R e R² entre os valores obtidos nos ensaios físicomecânicos e não-destrutivos pelo método de stress wave

R	R ²	Equação	R	R ²	Equação
0,76	0,57	$f_{m//} = 0,034V_{//} - 71,632$	0,24	0,06	f _m ⊥ = 0,0123V⊥ - 13,861
0,76	0,58	F _{max//} = 0,9017V _{//} - 1913,1	0,28	0,08	$F_{max^{\perp}}$ = 0,3761V ₁ - 491,2
0,69	0,48	E _{m//} = 1,1715C _{//} - 1050,3	0,33	0,11	E _m ⊥ = 0,5507C⊥ + 290,42

A Tabela 39 apresenta os modelos de regressão e coeficientes de correlação e de determinação encontrados entre os valores obtidos nos métodos de ultra-som e de stress wave, quando comparados os painéis dos grupos 1 e 2. A Tabela 40 apresenta o mesmo, excluindo-se os valores de velocidades e de constantes dinâmicas relacionados às leituras discrepantes de tempo no painel 24, na direção longitudinal (ponto de leitura 12_{ii}) e no painel 22, na direção transversal (pontos 12_{\perp} , 28_{\perp} e 29_{\perp}).

Tabela 39 – Equações, R e R² entre os métodos de ultra-som e stress wave (todos os valores)

R	R ²	Equação	R	R ²	Equação
0,85	0,73	$V_{//SW} = 0,9438V_{//US} + 25,253$	0,85	0,73	C _{//SW} = 0,8627C _{//US} + 233
0,14	0,02	$V_{\perp_{SW}} = 0,3144 V_{\perp_{US}} + 1416,8$	0,29	0,08	C⊥ _{SW} = 0,3774C⊥ _{US} + 1471,6

R	R ²	Equação	R	R ²	Equação
0,97	0,95	V _{//SW} = 0,9027V _{//US} + 156,08	0,97	0,94	C _{//US} = 0,8591C _{//SW} + 273,78
0,79	0,62	$V_{\perp_{\text{US}}}$ = 0,5575 $V_{\perp_{\text{SW}}}$ + 833,95	0,86	0,74	C⊥ _{US} = 0,5491C⊥ _{SW} + 893,73

Tabela 40 – Equações, R e R² entre os métodos de ultra-som e stress wave

As Tabelas 41 e 42 apresentam os modelos de regressão e coeficientes de correlação e de determinação encontrados entre os valores médios, obtidos nos ensaios destrutivos e nos não-destrutivos através dos métodos de ultra-som e de stress wave, quando comparados os painéis dos grupos 1 e 2. O símbolo * significa que as correlações, bem como os seus respectivos modelos de regressão, não foram significativos entre as propriedades estudadas.

Tabela 41 – Equações, R e R² entre os valores obtidos nos ensaios físicomecânicos e não-destrutivos pelo método de ultra-som – valores médios

R	R ²	Equação	R	R ²	Equação
0,96	0,93	$f_{m//} = 0,0323V_{//} - 71,013$	0,26	0,07	F _{maxAI} = 1,5895V _{AI} - 230,21*
0,90	0,91	E _{m//} = 1,0004C _{//} - 693,04	0,04	0,00	AI = 9E-05C _{AI} + 0,4277*
0,96	0,92	F _{max//} = 0,8294V _{//} - 1819,1	0,64	0,40	AI = -0,0305Atn _{AI} + 1,5762
0,17	0,03	$f_{m^{\perp}}$ = 0,0028V $_{\perp}$ + 6,4172*	0,42	0,18	$G_t = 0,0116V_{Gt} + 5,1193^*$
0,55	0,13	E _m ⊥ = 0,3389C⊥ + 652,68	0,24	0,06	$G_t = 0.0211C_{Gt} + 5.4855^*$
0,36	0,30	$F_{max^{\perp}}$ = 0,1588V $_{\perp}$ - 51,452*	0,45	0,20	G _t = 1,037Atn _{Gt} - 22,852*
0,43	0,18	$d = 0,2722V_d + 344^*$	0,35	0,13	$A_m = 0.0133V_{Am} + 33.434^*$
0,18	0,03	d = 2,6555Atn _d + 486,54*	0,06	0,00	$A_m = 0,0077C_{Am} + 41,324^*$
0,26	0,07	AI = 0,0006V _{AI} - 0,0896*	0,57	0,32	A _m = 1,7778Atn _{Am} - 20,089*

Tabela 42 – Equações, R e R² entre os valores obtidos nos ensaios físicomecânicos e não-destrutivos pelo método de stress wave – valores médios

R	R ²	Equação	R	R ²	Equação
0,96	0,93	f _{m//} = 0,0341V _{//} - 71,808	0,05	0,00	$f_{m^{\perp}}$ = -0,0009V _{\perp} + 15,345*
0,95	0,91	F _{max//} = 0,8748V _{//} - 1833,5	0,20	0,04	$F_{max^{\perp}} = 0,0983V_{\perp} + 125,62^*$
0,92	0,85	E _{m//} = 1,1597C _{//} - 978,53	0,27	0,07	$E_{m^{\perp}}$ = 0,2396C _{\perp} + 1188,6*

A Tabela 43 apresenta os modelos de regressão e coeficientes de correlação e de determinação encontrados entre os métodos de ultra-som e de stress wave, em valores médios, quando comparados os painéis dos grupos 1 e 2. A Tabela 44 apresenta o mesmo, excluindo-se os valores de velocidades e de constantes dinâmicas relacionados às leituras discrepantes de tempo no painel 22, na direção transversal (pontos 12_{\perp} , 28_{\perp} e 29_{\perp}).

Tabela 43 – Equações, R e R² entre os métodos de ultra-som e stress wave – valores médios (todos os valores)

R	R ²	Equação	R	R ²	Equação
0,99	0,97	$V_{//SW} = 0.9328 V_{//US} + 62.494$	0,99	0,97	C _{//SW} = 0,8703C _{//US} + 206,25
0,58	0,34	$V_{\perp_{SW}} = 0,5293 V_{\perp_{US}} + 893,78$	0,77	0,59	$C_{\perp_{SW}}$ = 0,5243 $C_{\perp_{US}}$ + 961,46

Tabela 44 – Equações, R e R² entre os métodos de ultra-som e stress wave – valores médios

R	R ²	Equação	R	R ²	Equação
0,94	0,88	$V_{\perp_{SW}} = 0,6234 V_{\perp_{US}} + 670,29$	0,96	0,93	$C_{\perp_{SW}} = 0,6046C_{\perp_{US}} + 693,74$

Papítulo 6 - Discussão dos Resultados

6.1. Ensaios Preliminares

Os valores obtidos nos ensaios de caracterização físico-mecânica dos dois painéis atingiram, e até superaram, os valores estipulados pelo documento normativo EN 300/2002, para painéis OSB/3.

Os maiores coeficientes de variação (CV) foram obtidos para a resistência à tração perpendicular às faces, 38% e 28% para os painéis 1 e 2, respectivamente. Para a densidade, os valores de CV foram 1% e 7%. Para todas as outras propriedades CV variou entre 13% e 20%.

Os valores médios das velocidades na espessura e nas direções longitudinal e transversal dos dois painéis mostraram-se diferentes, 1116m/s, 3327m/s e 2674m/s, com coeficientes de variação muito baixos, de 8%, 2% e 1%. Esses valores de velocidades nas direções longitudinal e transversal estão de acordo com os encontrados por Bekhta et al (2002).

Os valores das constantes dinâmicas na espessura e nas direções longitudinal e transversal dos dois painéis também se mostraram diferentes, 755MPa, 6567MPa e 4269MPa, com coeficientes de variação 19%, 3% e 4%, os dois últimos muito baixos.

Como era de se esperar, os valores da constante dinâmica, obtidos no ensaio não-destrutivo, foram superiores aos valores do módulo de elasticidade obtidos a partir dos ensaios de flexão estática, 75% na direção longitudinal e 41,5% na transversal.

Os baixos coeficientes de correlação obtidos entre os métodos destrutivos convencionais e o de ultra-som evidenciam a homogeneidade dos painéis OSB ensaiados, uma vez que os intervalos de variação dessas propriedades não foram suficientes. Além disso, o intervalo de confiança das propriedades indica que os painéis são estatisticamente equivalentes.

6.2. Ensaios Principais – primeira etapa

Os valores obtidos nos ensaios de caracterização físico-mecânica dos painéis atingiram o estipulado pelo documento normativo EN 300/2002, para painéis OSB/3, com exceção dos valores de: módulo de elasticidade na direção transversal dos painéis de espessura 6mm e de 15(2)mm, módulo de resistência à flexão na direção perpendicular do painel de espessura 15(2)mm, inchamento em espessura (24h) e adesão interna do painel de espessura 25mm.

Os maiores coeficientes de variação (acima de 30%) foram obtidos para os valores de resistência à tração perpendicular às faces.

Para os ensaios realizados com o aparelho de ultra-som, os valores das velocidades na espessura e nas direções longitudinal e transversal dos painéis mostraram-se novamente diferentes, como nos ensaios preliminares, com coeficientes de variação entre 1% e 10%, valores também baixos.

Os valores da velocidade foram menores na espessura por que o painel apresenta maior heterogeneidade nessa direção, devido à superposição de três camadas de partículas, e maiores na direção longitudinal por que o painel apresenta maior homogeneidade nessa direção, devido à orientação das partículas.

Os valores de velocidades nas direções longitudinal e transversal estão de acordo com os encontrados por Bekhta et al (2002), exceto para o painel de espessura 6mm na direção transversal, o qual apresentou um coeficiente de variação 24%.

Os valores das velocidades medidas na espessura foram maiores para o painel de espessura 15(1)mm do que no de 25mm, para o qual a atenuação de ondas é mais significativa.

O valor de velocidade na espessura do painel de espessura 15(1)mm (1196m/s) foi em média 41% maior do que os obtidos por Vun et al (2002) e o valor da constante dinâmica média correspondente foi de 718MPa. Para o painel de espessura 25mm os valores médios da velocidade e constante dinâmica foram, respectivamente, 965m/s e 555MPa.

Os valores das constantes dinâmicas na espessura e nas direções longitudinal e transversal dos dois painéis se mostraram diferentes, à semelhança do que se obteve nos ensaios preliminares.

Assim, confirma-se que é possível detectar a variação de características mecânicas dos painéis, pois os valores das velocidades de propagação de ondas, pelo método de ultra-som, são diferentes nas três direções. Além disso, confirma-se também que a maior dispersão dos valores obtidos na espessura pode indicar não homogeneidade das camadas ao longo de todo o painel.

Os valores das constantes dinâmicas, obtidos no ensaio não-destrutivo de ultra-som, foram superiores aos valores do módulo de elasticidade obtidos a partir dos ensaios de flexão estática, como era de se esperar, sendo que os valores para o painel de espessura 15(1)mm foram equivalentes aos obtidos nos painéis dos ensaios preliminares: 75% maior que este na direção longitudinal e 41,5% maior na direção transversal.

Para o painel de espessura 6mm, o método de ultra-som não se mostrou adequado, provavelmente devido ao diâmetro da superfície de contato do transdutor plano ser maior que a espessura do painel.

Como nos ensaios preliminares, os coeficientes de correlação obtidos entre ambos os métodos, destrutivo convencional e de ultra-som, na maioria das propriedades físico-mecânicas estudadas, mostram a homogeneidade dos painéis OSB (Tabela 19). Somente para a força de ruptura na flexão versus a velocidade, nas direções longitudinal e transversal, e para a absorção de água versus a velocidade e constante dinâmica, os coeficientes de correlação foram superiores a 0,74, excedendo 0,70, valor estipulado pela EN 326-2/ 2002.

Em relação aos ensaios realizados com o aparelho de stress wave ao longo dos corpos-de-prova, os valores das velocidades nas direções longitudinal e transversal dos painéis também se mostraram diferentes, respectivamente, 3116 a 3216m/s e 2187 a 2496m/s, com baixos coeficientes de variação, de 1% a 6%. Esses valores de velocidades nas direções longitudinal e transversal estão de acordo com os encontrados por Bekhta et al (2002), em ensaios conduzidos pelo método de ultra-som.

Para as medições realizadas através do método de stress wave, ao longo do painel de espessura 15(2)mm, na direção longitudinal, encontrou-se o valor médio de velocidade 2889m/s, que está em conformidade com os valores encontrados por Bekhta et al (2002). Já na direção transversal, onde a velocidade foi de 2040m/s, isso não ocorreu. Esse painel foi o que não alcançou os valores estabelecidos para a flexão estática na direção transversal de painéis OSB/3, espessura 15mm, e o que apresentou menor valor de densidade.

Os valores médios obtidos para a velocidade e a constante dinâmica foram maiores nos corpos-de-prova de flexão estática do que nas medições ao longo do painel de espessura 15(2)mm, nas direções perpendicular e longitudinal, provavelmente devido à distância de propagação da onda ser menor nos corpos-de-prova.

Os valores das constantes dinâmicas nas direções longitudinal e transversal dos painéis de espessura 15(1)mm e 25mm também se mostraram diferentes e

superiores aos valores do módulo de elasticidade obtidos a partir dos ensaios de flexão estática.

Os coeficientes de correlação obtidos em ambos os métodos, destrutivo convencional e de stress wave, nos painéis de espessura 15(2)mm e 25mm, para a força de ruptura na flexão estática versus a velocidade, nas direções longitudinal e transversal, acima de 0,87, bem como do módulo de elasticidade na flexão estática versus constante dinâmica, igual a 0,78, foram superiores a 0,70, estipulado pela EN 326-2/ 2002.

Por outro lado, os valores de módulos de resistência e de elasticidade na flexão estática, bem como de velocidades e de constantes dinâmicas, na direção transversal, indicaram diferença entre os painéis de espessura 15(2)mm e os de 15(1)mm e 25mm. Para o primeiro painel, que apresentou menores valores de módulos de resistência e de elasticidade na flexão estática do que os outros, na direção transversal, também foram menores os valores de velocidades e de constantes dinâmicas. Um exemplo é mostrado no gráfico da Figura 23.

Figura 23 – Valores de módulos de resistência x velocidades para os três painéis.

O próximo passo foi, então, analisar a equivalência estatística entre as populações de velocidades e constantes dinâmicas dos painéis de espessura 15(1)mm, 15(2)mm e 25mm.

A normalidade dos dados foi confirmada como pode ser visto, por exemplo, na Figura 24, através do teste de Kolmogorov-Smirnov. A homogeneidade das variâncias foi verificada por meio do Teste Estatístico de Barttlet.

Figura 24 – Normalidade dos valores das velocidades determinadas na direção transversal do painel de espessura 15(1)mm.

Na Análise de Variância das médias de velocidades e constantes dinâmicas foram encontrados, respectivamente, os valores de F: 402,7 e 422,34, superiores a $F_{2, 291, 0,05}$ = 3,37, Isto mostrou haver pelo menos uma das médias estatisticamente diferente. A análise detalhada está contida no Anexo 1.

O próximo passo foi utilizar o Teste de Tukey, para α = 0,05 e 291 graus de liberdade (k = 3 e n = 98).

As diferenças entre as médias das velocidades e das constantes dinâmicas dos painéis de espessura 15(1)mm e 15(2)mm, 15(1)mm e 25mm e 15(2)mm e 25mm foram de, respectivamente: 251,9m/s, 315,4m/s, 63,5m/s, 725,6MPa, 904,4MPa e 178,8MPa, todas superiores às diferenças mínimas significativas

(d.m.s.) encontradas para cada um desses parâmetros: 16,4m/s e 45,97MPa. O Anexo 2 apresenta essa análise de maneira detalhada.

Assim, provou-se que as três populações não são estatisticamente equivalentes entre si.

6.3. Ensaios Principais – segunda etapa

Os valores obtidos nos ensaios de caracterização físico-mecânica por amostragem dos painéis dos grupos 1 e 2 mostram que, para estes dois grupos de painéis OSB/3, há diferenças significativas para os módulos de elasticidade e de resistência na flexão estática na direção longitudinal, objetivo para essa etapa do trabalho, o qual poderia ter prosseguimento com esses dois grupos de painéis.

Os valores obtidos nos ensaios de caracterização físico-mecânica dos painéis atingiram os valores estipulados pelo documento normativo EN 300/2002 para painéis OSB/3, sendo os valores apresentados pelos painéis do grupo 1, em média, superiores aos valores apresentados pelos painéis do grupo 2, com exceção das propriedades densidade e módulos de resistência e de elasticidade na flexão estática, na direção transversal (Tabelas 45 e 46).

Tabela 45 – Diferenças, em médias, entre valores de propriedades físico-mecânicas dos painéis dos grupos 1 e 2: maiores valores para os painéis do grupo 1

Grupo		E _{m//} (MPa)	f _{m//} (MPa)	AI (MPa)	G _t (%)	A _m (%)
1	_	5066	31	0,50	13	42
2	x	4075	21	0,43	17	48
Diferença (%)		20	32	14	31	14

Tabela 46 – Diferenças, em médias, entre valores de propriedades físico-mecânicas dos painéis dos grupos 1 e 2: maiores valores para os painéis do grupo 2

Grupo		E _{m⊥} (MPa)	f _{m⊥} (MPa)	ρ (kg/m³)
1	_	1775	13	576
2	x	1965	14	590
Diferença		11	8	2

Considerando-se os dez painéis de cada grupo estudado, os maiores coeficientes de variação foram obtidos entre os valores de resistência à tração perpendicular às faces e inchamento em espessura (24h).

Os coeficientes de correlação obtidos para os painéis do Grupo 1, quando comparados os valores dos ensaios físico-mecânicos aos dos não-destrutivos, pelos métodos de ultra-som e stress wave, variaram de 0,09 a 0,35, e para os painéis do Grupo 2 esses valores variaram de 0,03 a 0,56, respectivamente. Isto mostra a homogeneidade entre painéis de um mesmo lote.

Para os ensaios realizados com o aparelho de ultra-som, os valores das velocidades mostraram-se novamente diferentes de acordo com a direção de propagação das ondas nos painéis, como nas outras duas etapas, com coeficientes de variação entre 6% e 25%, na espessura, e entre 0% a 2% nas direções longitudinal e transversal, sendo muito baixos estes últimos valores.

Os valores de velocidades na espessura dos painéis foram em média 24% maiores do que os obtidos por Vun et al (2002) e variaram de 836 a 928m/s. Entre os dois grupos de painéis, os valores das velocidades referentes a medidas de tempo na espessura mostraram pequena diferença de magnitude: 2%. Os valores de constantes dinâmicas correspondentes variaram de 407 a 535MPa.

Esses valores de velocidades, obtidos por leituras realizadas pelo aparelho Panametrics, modelo EPOCH4, foram maiores do que os obtidos nas duas outras etapas, onde as leituras foram conduzidas pelo aparelho STEINKAMP, modelo BP7.

Para os dois grupos de painéis os coeficientes de correlação obtidos entre os valores de velocidades e de constantes dinâmicas, na espessura dos painéis, e os de propriedades físico-mecânicas, em corpos-de-prova correspondentes, variaram de 0,08 a 0,38 e, em valores médios, de 0,04 a 0,43. Assim, não atingiram o valor 0,70, estipulado pela EN 326-2/ 2002.

Em média, os valores de atenuação, que variaram de 53 a 61dβ loss, foram cerca de 25% menores do que os encontrados por Vun et al (2002) e muito próximos nos grupos 1 e 2 de painéis: 3%. Os coeficientes de variação para essa propriedade foram de 6% a 20%.

Os coeficientes de correlação entre os valores de atenuação, na espessura dos painéis, e os de propriedades físico-mecânicas, em corpos-de-prova correspondentes, variaram de 0,05 a 0,17 e, entre os valores médios, de 0,18 a 0,64. Assim, não atingiram o valor 0,70, estipulado pela EN 326-2/ 2002.

Algumas leituras de tempo na direção longitudinal, nos painéis do grupo 2, que também apresentaram menores valores de módulos de elasticidade e de resistência na flexão estática, foram mais difíceis de serem obtidas. Nestes casos foi necessária a utilização de maior quantidade de gel medicinal e várias tentativas até se obter o sinal da onda. Isto indicou maior atenuação e que os métodos nãodestrutivos utilizados são sensíveis a eventuais problemas nos painéis que possam ocasionar redução nos valores das propriedades mecânicas de flexão estática.

Os valores médios de velocidades para a propagação de ondas nas direções longitudinal (2837 a 3184m/s) e transversal (2232 a 2535m/s), para os dois grupos de painéis, estão de acordo com os encontrados por Bekhta et al (2002), como nas outras duas etapas.

Os valores das constantes dinâmicas nas direções longitudinal e transversal dos dois grupos de painéis também se mostraram diferentes, sendo semelhantes aos obtidos nos ensaios preliminares. Os intervalos de valores médios, nas direções longitudinal e transversal, foram, respectivamente: 4513 a 5899MPa e 2900 a 3977MPa.

Os coeficientes de correlação obtidos entre os valores de força de ruptura e módulos de resistência e de elasticidade na flexão estática e os de velocidades e de constantes dinâmicas, na direção longitudinal foram, respectivamente, iguais a 0,75, 0,75 e 0,68 e, na direção transversal, 0,29, 0,27 e 0,40. Assim, só as duas primeiras correlações superaram 0,70, estipulado pela EN 326-2/ 2002, na direção longitudinal, onde houve diferenças significativas relacionadas aos valores das propriedades de flexão estática dos painéis pertencentes aos dois grupos.

Os coeficientes de correlação obtidos entre os valores médios de força de ruptura e módulos de resistência e de elasticidade na flexão estática e os de velocidades e de constantes dinâmicas, na direção longitudinal foram, respectivamente, iguais a 0,96, 0,96 e 0,90 e, na direção transversal, 0,36, 0,17 e 0,55. Esses valores foram maiores do que quando comparados os valores totais. Outra vez as correlações correspondentes à direção longitudinal superaram o valor 0,70, estipulado pela EN 326-2/ 2002

Assim, novamente confirma-se que é possível detectar a variação de características mecânicas dos painéis, nas duas direções, pelo método de ultrasom. E, além disso, que a maior dispersão dos valores obtidos na espessura pode indicar menor homogeneidade das camadas ao longo de todo o painel.

Em relação aos ensaios realizados com o aparelho de stress wave, os valores das velocidades nas direções longitudinal (2667 a 3034m/s) e transversal (2041 a 2236m/s) dos painéis também se mostraram diferentes, com coeficientes de variação de 1% a 2%, com exceção do painel 2.2, na direção transversal, devido a leituras discrepantes de tempo em alguns pontos de medição.

As faixas de valores médios obtidos nas direções de propagação longitudinal e transversal para as constantes dinâmicas foram, respectivamente, de: 4123 a 5430MPa e 2438 a 3111MPa.

Os coeficientes de correlação obtidos entre os valores de força de ruptura e módulos de resistência e de elasticidade na flexão estática e os de velocidades e de constantes dinâmicas, na direção longitudinal foram, respectivamente, iguais a 0,65, 0,65 e 0,60 e, na direção transversal, 0,13, 0,10 e 0,13.

Quando não foram consideradas as velocidades e constantes dinâmicas relacionadas a tempos discrepantes de propagação de ondas, esses valores foram 0,76, 0,76 e 0,69, na direção longitudinal, e 0,28, 0,24 e 0,33, na direção transversal. Assim, só as duas primeiras correlações, relacionadas à direção longitudinal, atingiram o valor 0,70, estipulado pela EN 326-2/ 2002.

Os coeficientes de correlação obtidos entre os valores médios de força de ruptura e módulos de resistência e de elasticidade na flexão estática e os de velocidades e de constantes dinâmicas, na direção longitudinal foram, respectivamente, iguais a 0,96, 0,95 e 0,92 e, na direção transversal, 0,20, 0,05 e 0,27.

As correlações, relacionadas à direção longitudinal, atingiram 0,70, estipulado pela EN 326-2/ 2002 e, quando consideradas em relação a valores médios, não foram afetadas pelos valores de tempo de propagação de ondas discrepantes.

Esses dois métodos de ensaios não-destrutivos detectaram diferença nos valores das propriedades mecânicas de flexão na direção longitudinal dos painéis dos grupos 1 e 2, em relação às velocidades e constantes dinâmicas. Um exemplo é mostrado, em valores médios, obtidos pelo método de ultra-som, no gráfico da Figura 25.

Figura 25 – Módulos de resistência x velocidades para os dois grupos de painéis.

A análise da normalidade dos dados por meio do método de Kolmogorov-Smirnov não levou a resultados positivos. Desta forma optou-se por utilizar a prova não-paramétrica de Kruskal-Wallis, baseada na estatística H, ao invés da correspondente prova paramétrica F (análise de variância).

Os valores dos módulos de resistência e de elasticidade na flexão estática bem como das velocidades e constantes dinâmicas, na direção longitudinal, para os métodos de ultra-som e stress wave, nos grupos 1 e 2, foram comparados.

Em todos os casos o valor da probabilidade p = 0,000, associada à estatística H e a 1 grau de liberdade, foi menor do que o nível de confiança adotado α = 0,05. Assim, a diferença estatística entre cada propriedade dos grupos de painéis 1 e 2 foi constatada. As planilhas das referidas análises são apresentadas no Anexo 2.

Os valores médios de velocidades e constantes dinâmicas de propagação da onda, com o ensaio de ultra-som, na direção longitudinal, apresentaram uma diferença de 290m/s e 885MPa, respectivamente, entre os dois grupos. Para o ensaio de stress wave essas diferenças de valores foram de 275m/s e 800MPa.

Quando comparados os valores de velocidades e de constantes dinâmicas referentes à direção longitudinal obtidos pelos métodos de ultra-som e de stress wave, os coeficientes de correlação foram iguais a 0,85 e, na direção transversal, 0,14 e 0,29. Desconsiderando os valores discrepantes para o stress wave, esses coeficientes foram iguais a 0,97, na direção longitudinal, e 0,79 e 0,86, na direção transversal.

Para essa mesma comparação, em relação aos valores médios de velocidades e de constantes dinâmicas referentes à direção longitudinal, os coeficientes de correlação foram iguais a 0,99, e na direção transversal, foram iguais a 0,77 e 0,59. Desconsiderando os valores discrepantes para o stress wave, esses coeficientes foram iguais 0,94 e 0,96, na direção transversal.

Esses valores de coeficientes de correlação mostram que é equivalente o estudo de painéis OSB, ou até mesmo a estimativa de parâmetros mecânicos na

flexão estática, com a utilização dos métodos de ensaio não-destrutivos de ultrasom e de stress wave.

Papítulo 7 - Ponclusões

Através deste trabalho pode-se concluir que:

- a) Os baixos coeficientes de correlação entre os valores obtidos pelos métodos de ensaio não-destrutivos, de ultra-som e stress wave, e destrutivos, quando comparados painéis de um mesmo grupo, mostram a homogeneidade entre painéis OSB/3 pertencentes a um mesmo lote;
- b) Os métodos de ultra-som e de stress wave mostraram-se sensíveis à detecção de painéis OSB pertencentes a lotes com valores de propriedades mecânicas distintas entre si, em relação à flexão estática. Na direção em que os valores dos módulos de resistência e de elasticidade, bem como da força de ruptura, foram menores, os valores de velocidades e constantes dinâmicas também o foram;
- c) Os painéis estudados, com os métodos de ensaio não-destrutivos de ultra-som e de stress wave, apresentaram valores de velocidades e constantes dinâmicas diferenciados na espessura e nas direções longitudinal e transversal;
- d) Os valores de velocidades na espessura dos painéis, através do método de ultra-som, variaram de 836 a 928m/s, e os de constantes dinâmicas correspondentes variaram de 407 a 535MPa;
- e) Os coeficientes de correlação obtidos entre os valores de velocidades e de constantes dinâmicas dos dois grupos de painéis, na espessura dos painéis, não atingiram o valor 0,70, estipulado pela EN 326-2/ 2002;

- f) Os valores de atenuação, referentes a medidas realizadas na espessura dos painéis estudados, variaram de 53 a 61dβ loss. Os coeficientes de correlação entre os valores de atenuação, na espessura dos painéis, e os de propriedades físico-mecânicas, em corpos-de-prova correspondentes, não atingiram o valor 0,70, estipulado pela EN 326-2/ 2002;
- g) Para os painéis estudados, os valores médios de velocidades de propagação de ondas nas direções longitudinal e transversal foram 2837 a 3184m/s e 2232 a 2535m/s, para o método de ultra-som, e 2667 a 3034m/s e 2041 a 2236m/s, para o método de stress wave, que estão de acordo com os já encontrados por outros autores;
- h) Para os painéis estudados, os valores médios de constantes dinâmicas nas direções longitudinal e transversal foram 4513 a 5899MPa e 2900 a 3977MPa, para o método de ultra-som, e 4123 a 5430MPa e 2438 a 3111MPa, para o método de stress wave;
- i) Os coeficientes de correlação obtidos entre os valores médios de propriedades na flexão estática e os de velocidades e de constantes dinâmicas, na direção longitudinal, para o método de ultra-som, foram superiores a 0,90. Também foram maiores do que quando comparados com todos os valores. Na direção transversal, para valores médios, o maior coeficiente de correlação foi 0,55. Evidencia-se, então, a correlação entre parâmetros destrutivos e nãodestrutivos na direção em que os painéis dos grupos estudados apresentam valores diferentes de propriedades na flexão estática;
- j) Os coeficientes de correlação obtidos entre os valores médios de propriedades na flexão estática e os de velocidades e de constantes dinâmicas, na direção longitudinal, para o método de stress wave, foram superiores a 0,92. Também foram maiores do que quando comparados com todos os valores. Na direção transversal, para valores médios, o maior coeficiente de correlação foi 0,27,

valor este muito baixo. Evidencia-se, também para este método não-destrutivo, a correlação entre parâmetros destrutivos e não-destrutivos na direção em que os painéis dos grupos estudados apresentam valores diferentes de propriedades na flexão estática;

- k) Para os painéis estudados, quando comparados os métodos de ultra-som e de stress wave, em relação aos valores médios de velocidades e de constantes dinâmicas correspondentes, o coeficiente de correlação foi igual a 0,99, na direção longitudinal, e maior que 0,94 na direção transversal. Esses coeficientes de correlação mostram que é equivalente a estimativa de parâmetros mecânicos na flexão estática, ou até mesmo o estudo de painéis OSB, com a utilização dos métodos de ensaio não-destrutivos de ultra-som e de stress wave;
- Os resultados obtidos indicam a possibilidade da utilização dos métodos de ultra-som e de stress wave no controle de qualidade de parâmetros mecânicos de painéis OSB comerciais, em linha de produção, através dos modelos de regressão determinados;
- m) Os resultados obtidos mostram a necessidade de estudos entre painéis OSB de diferentes espessuras e de valores distintos de propriedades físico-mecânicas, como na flexão estática (direção transversal), na resistência à tração perpendicular às faces, densidade, inchamento em espessura e absorção de água – 24h, para subseqüente determinação de modelos de regressão com o método não-destrutivo utilizado, de ultra-som ou de stress wave.

Anexo 1

No Anexo 1 estão contidas as análises de variância e testes de Tukey referentes às populações das velocidades e constantes dinâmicas.

Análise de Variância e Teste de Tukey para as populações de velocidades

Analysis of Variance for VTotal F
 Source
 DF
 SS
 MS
 F
 P

 Amostras
 2
 1868258
 934129
 402.17
 0.000

 Error
 95
 220656
 2323
 0.000

 Total
 97
 2088914
 0.000
Individual 95% CIs For Mean Based on Pooled StDev
 Level
 N
 Mean
 StDev
 ---+-----+----+-----+---

 1
 33
 2439.2
 65.9
 (-*-)

 2
 36
 2187.3
 44.8
 (-*)

 3
 29
 2502.7
 20.1
 (-*-)
---+----+----+----+----+----+----2200 2300 2400 2500 Pooled StDev = 48.2 Tukey's pairwise comparisons Family error rate = 0.0500Individual error rate = 0.0192 Critical value = 3.37Intervals for (column level mean) - (row level mean) 1 2 2 224.2 279.6 -92.7 -344.0 -34.2 -286.7 3

*sinais iguais significam que os tratamentos não são estatisticamente equivalentes. d.m.s.

n= 98 $s_R^2 = 2323 \text{ m/s}$ $q_{3,291,0,05} = 3,37 \text{ d.m.s.} = 3,37. \sqrt{\frac{2323}{98}} = 16,4 \text{ m/s}$ $\overline{x}_{151} = 2439,2m/s$ $\overline{x}_{152} = 2187,3m/s$ $\overline{x}_{25} = 2502,7m/s$ $|2439,2-2187,3| = 251,9m/s \ge 16,4m/s$ $|2439,2-2502,7| = 63,5m/s \ge 16,4m/s$ $|2502,7-2187,3| = 315,4m/s \ge 16,4m/s$

... As três populações de velocidades das chapas analisadas não podem ser consideradas estatisticamente equivalentes.

Análise de Variância e Teste de Tukey para as populações de constantes dinâmicas

Analysis of Variance for Ctotal
 Source
 DF
 SS
 MS
 F
 P

 Atotal
 2
 15406067
 7703033
 422.34
 0.000

 Error
 95
 1732701
 18239
 Total
 97
 17138768
Individual 95% CIs For Mean Based on Pooled StDev _____+ 3000 3300 3600 Pooled StDev = 135.1 Tukey's pairwise comparisons Family error rate = 0.0500Individual error rate = 0.0192 Critical value = 3.37Intervals for (column level mean) - (row level mean) 1 2 2 648 803 -261 -97 -985 3 -824 d.m.s. n= 98 s_R^2 = 18329 MPa $q_{3,291,0,05}$ = 3,37 d.m.s. = 3,37. $\sqrt{\frac{18329}{98}}$ = 45,97 MPa $\bar{x}_{151} = 3543,9MPa$ $\bar{x}_{152} = 2818,3MPa$ $\bar{x}_{25} = 3722,7MPa$

 $|3543,9-2818,3| = 725,6MPa \ge 45,97MPa$ $|3543,9-3722,7| = 178,8MPa \ge 45,97MPa$ $|2818,3-3722,7| = 904,4MPa \ge 45,97MPa$

.: As três populações de constantes dinâmicas das chapas analisadas não podem ser consideradas estatisticamente equivalentes.
Anexo 2

No Anexo 2 estão contidas as análises de equivalência estatística pelo teste de Kruskal-Wallis referentes às populações das velocidades, constantes dinâmicas para os métodos de propagação de ondas de ultra-som e de stress wave, bem como os módulos de elasticidade e de resistência na flexão estática, na direção longitudinal, para os grupos 1 e 2.

Kruskal-Wallis Test - comparação de velocidades entre grupos 1 e 2 - ultra-som C20 Ν Median Ave Rank Ζ 240 360,5 18,95 3159 1 2 240 2862 120,5 -18,95 480 Overall 240,5 H = 359,25 DF = 1 P = 0,000 H = 359,28 DF = 1 P = 0,000 (adjusted for ties) Kruskal-Wallis Test - comparação de velocidades entre grupos 1 e 2 - stress wave C2 N Median Ave Rank 7. 360,4 1 240 3012 18,95 240 2731 120,6 -18,95 2 Overall 480 240,5 H = 358,91 DF = 1 P = 0,000 H = 358,94 DF = 1 P = 0,000 (adjusted for ties) Kruskal-Wallis Test - comparação de constantes dinâmicas entre grupos 1 e 2 ultra-som C2 Ν Median Ave Rank Ζ 240 1 18,87 5729 360,0 121,1 4841 -18,87 2 240 Overall 480 240,5 H = 355,97 DF = 1 P = 0,000H = 355,97 DF = 1 P = 0,000 (adjusted for ties) Kruskal-Wallis Test - comparação de constantes dinâmicas entre grupos 1 e 2 stress wave C2 Median Ave Rank Ν Ζ 240 360,2 18,91 1 5155 2 240 4417 120,8 -18,91 Overall 480 240,5 H = 357,41 DF = 1 P = 0,000 H = 357,41 DF = 1 P = 0,000 (adjusted for ties) Kruskal-Wallis Test - comparação de módulos de elaticidade na flexão estática entre grupos 1 e 2 C2 Median Ave Rank Ν Z 7,59 84,6 1 60 5128 2 60 4114 36,4 -7,59 Overall 120 60,5

H = 57,56 DF = 1 P = 0,000 H = 57,56 DF = 1 P = 0,000 (adjusted for ties)

Kruskal-Wallis Test - comparação de módulos de resistência na flexão estática entre grupos 1 e 2

C2	Ν	Median	Ave Rank	Z
1	60	31,00	85,9	7,99
2	60	21,00	35,1	-7,99
Overall	120		60,5	

H = 63,81 DF = 1 P = 0,000 H = 64,06 DF = 1 P = 0,000 (adjusted for ties)

Papítulo 8 - Referências Bibliográficas

- American Plywood Association (APA): <u>http://www.apawood.org/</u>. Acesso em: 03 de jul. 2003.
- AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D 1037-96 Standard test methods for evaluating properties of wood-base fiber and particle panel materials, Philadelphia, USA, p. 137-166, 1996.
- BALLARIN, A. W.; GONÇALVES, R. (2001). Ensaios não destrutivos aplicados aos produtos à base de madeira: a situação brasileira. In: Conferência sobre Tecnologia de Equipamentos, V, 2001. Anais. São Paulo, SP, 11p, Cd rom, arquivo digital.
- BARTHOLOMEU, A. Classificação de peças estruturais de madeira através do ultra-som. Tese (Doutorado em Construções Rurais e Ambiência). Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas, Campinas, SP, 2001, 105p.
- BEKHTA, P. A.; NIEMZ, P.; KUCERA, L. The study of sound propagation in the wood-based composite materials. In: Symposium on nondestructive testing of wood, 12, Sopron, 2000. Anais, Western Hungary, Sopron.
- BODIG, J. The process of NDE research for wood and wood composites. The e-Journal of Nondestructive Testing, v.6, n.03, mar. 2001. <u>http://www.ndt.net/index.html</u> / Apresentado no 12 th. International Symposium on Nondestructive Testing of Wood, Sopron, 2000/
- BUCUR, V. Acoustics as a Tool for the Nondestructive Testing of Wood. **The e-**Journal of Nondestructive Testing, v.4, n.11, nov. 1999. <u>http://www.ndt.net/index.html</u> /Apresentado no 11 th. International Symposium on Nondestructive Testing of Wood, Brasil, 1999/
- CLOUTIER, A. Oriented Strand Board (OSB): Raw material, manufacturing process, properties and uses. In: SEMINÁRIO INTERNACIONAL SOBRE PRODUTOS SÓLIDOS DE MADEIRA DE ALTA TECNOLOGIA – ENCONTRO SOBRE TECNOLOGIAS APROPRIADAS DE DESDOBRO, SECAGEM E UTILIZAÇÃO DA MADEIRA DE EUCALIPTO, I.,1998, Viçosa. Anais. Viçosa, UFV, 1998. p. 173 – 85.
- COSTA NETO, P. L. O. **Estatística.** São Paulo. Editora Edgard Blücher Ltda, 1977. 262p.

- EINSFELD, R. A. et al. Manufatura e características das chapas OSB (ORIENTED STRAND BOARD). In: ENCONTRO BRASILEIRO EM MADEIRAS E ESTRUTURAS DE MADEIRA, VI., 1998, Florianópolis. **Anais.** Florianópolis, UFSC, 1998. v.3, p. 387 – 93.
- DEUTSCHES INSTITUT FÜR NURMUNG: **Biegeversuch DIN 52 183.** Testing of wood: determination of moisture content. Berlin, 1977.
- DEUTSCHES INSTITUT FÜR NURMUNG: **Biegeversuch DIN 52 182.** Testing of wood: determination of density. Berlin, 1978.
- DEUTSCHES INSTITUT FÜR NURMUNG: **Biegeversuch DIN 52 186.** Testing of wood: bending test. Berlin, 1978.
- EUROPEAN COMMITTEE FOR STANDARDIZATION. **EUROCODE 5 Design of Timber Structures.** Part 1-1: General rules and rules for buildings, Brussels, 110p, 1995.
- EUROPEAN COMMITTEE FOR STANDARDIZATION. European Standard EN 300. Aglomerado de partículas de madeira longas e orientadas (OSB) – Definições, classificação e especificações. Portugal, 2002.
- EUROPEAN COMMITTEE FOR STANDARDIZATION. European Standard EN 310. Placas de derivados de madeira. Determinação do módulo de elasticidade em flexão e da resistência à flexão. Portugal, 2000.
- EUROPEAN COMMITTEE FOR STANDARDIZATION. **European Standard EN 319.** Particleboards and Fiberboards – Determination of internal adhesion. Bruxelas, 1993.
- EUROPEAN COMMITTEE FOR STANDARDIZATION. European Standard EN **317.** Particleboards and Fiberboards Determination of swelling in thickness after immersion in water. Bruxelas, 1993.
- EUROPEAN COMMITTEE FOR STANDARDIZATION. European Standard EN 322. Placas de derivados de madeira. Determinação do teor de água. Portugal, 2000.
- EUROPEAN COMMITTEE FOR STANDARDIZATION. European Standard EN 323. Placas de derivados de madeira. Determinação da massa volúmica. Portugal, 2000.
- EUROPEAN COMMITTEE FOR STANDARDIZATION. European Standard EN 326-1. Placas de derivados de madeira. Amostragem, corte e inspeção. Parte 1: Amostragem e corte dos provetes e expressão dos resultados de ensaio.Portugal, 2000.
- EUROPEAN COMMITTEE FOR STANDARDIZATION. **European Standard EN 326-2.** Placas de derivados de madeira. Amostragem, corte e inspeção. Parte 2: Controle de qualidade em fábrica. Portugal, 2002.
- Forest Products Laboratory (1999). Wood handbook Wood as an engineering material. Gen. Tech. Rep. FPL – GTR – 113. Madison, WI: US. Departament of Agriculture, Forest Service, Forest Products Laboratory, 463p.

- JANSSENS, D., P. The increasing recognition of Oriented Strand Board (OSB) as a preferred structural panel. In: SEMINÁRIO INTERNACIONAL SOBRE PRODUTOS SÓLIDOS DE MADEIRA DE ALTA TECNOLOGIA – ENCONTRO SOBRE TECNOLOGIAS APROPRIADAS DE DESDOBRO, SECAGEM E UTILIZAÇÃO DA MADEIRA DE EUCALIPTO, I,1998, Viçosa. Anais. Viçosa, UFV, 1998.
- KAWAMOTO, S.; WILLIAMS, R. S. Acoustic emission and acousto-ultrasonic techniques for wood and wood-based composites A review. Gen. Tech. Rep. FPL GTR 134. Madison, WI: U.S. Department of Agriculture, Forest Products Laboratory. 2002, 16p.
- KRAUTKRAMER, J.; KRAUTKRAMER, H. (1983). Ultrasonic Testing of Materials. Springer Verlag, New York, Third Edition.
- MARTINEZ, M. E.; CALIL, C. J. (2000). Determinação do valor característico da resistência da madeira: Distribuições de probabilidades simétricas e assimétricas. In: ENCONTRO BRASILEIRO DE MADEIRAS E EM ESTRUTURAS DE MADEIRA, VII, São Carlos, 2000. **Anais.** São Carlos, SP, Cd rom, arquivo digital.

MASISA Brasil: http://www.masisa.com.br. Acesso em: 05 nov. 2002.

- MATOS, J. L. M. Estudos sobre a produção de painéis estruturais de lâminas paralelas de Pinus taeda. L. Tese (Doutorado em Engenharia Florestal). Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, PR, 1997, 117p.
- MATOS, J. L. M.; KEINERT Jr., S.; ROSA, G. M. (2000). Uso de métodos de emissão acústica para determinação não destrutiva de propriedades de Painéis compensados de madeira. In: ENCONTRO BRASILEIRO DE MADEIRAS E EM ESTRUTURAS DE MADEIRA, VII, São Carlos, 2000. Anais. São Carlos, SP, 6 p, Cd rom, arquivo digital.
- MENDES, L. M.; ALBUQUERQUE, C. E. C.; IWAKIRI, S. Indústria brasileira de painéis de madeira. **Revista da Madeira**, ABPM Associação Brasileira de Produtores de Madeira, Curitiba, ano 10, n.56, 2001, p. 67-72.
- MENDES; L. M. MATOS, J. L. M.; IWAKIRI, S., MORI, F. A., TRUGUILHO, P. F. (2002). Uso de métodos de emissão acústica para determinação não destrutiva de propriedades de painéis OSB (Oriented Strand Board). In: Congresso Ibero-Americano de Pesquisa e Desenvolvimento de Produtos Florestais, II – Seminário em Tecnologia da Madeira e Produtos Florestais Não-Madeiráveis, I, Curitiba, 2002. Anais. Curitiba, PR, 10 p.
- New basics for professional panel engineering: <u>http://www.osb-info.org</u>. Acesso em 10 out. 2002.
- OLIVEIRA, F. G. R.; SALES, A. (2000). Propagação de ondas acústicas na madeira. In: ENCONTRO BRASILEIRO DE MADEIRAS E EM ESTRUTURAS DE MADEIRA, VII, São Carlos, 2000. **Anais.** São Carlos, SP, 10 p, Cd rom, arquivo digital.

- OLIVEIRA, F. R. G. Estudo de propriedades mecânicas de dicotiledôneas por meio de ensaio não destrutivo utilizando equipamentos de ultra-som. Dissertação (Mestrado em Ciências e Engenharia de Materiais). Escola de Engenharia de São Carlos, Universidade de São Paulo, Interunidades, São Carlos, SP, 2001, 55p.
- ROSS, R. J.; PELLERIN, R. F. NDE of wood-based composites with longitudinal stress waves. **Forest Products Journal**, v. 38, n. 5, p. 39 45, 1985.
- ROSS, R. J.; BRASHWA, B. K; PELLERIN, R. F. Nondestructive evaluation of wood. Forest Products Journal, v. 48, n.1, p.14-19, 1998.
- SILVA, S., A., M. Chapa de média densidade (MDF) fabricada com poliuretana mono-componente derivada de óleo de mamona – caracterização por método destrutivo e por ultra-som. Tese (Doutorado em Construções Rurais e Ambiência). Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas, Campinas, SP, 2003, 234p.
- STRUCTURAL BOARD ASSOCIATION. (2003). Oriented strand board: performance by design – Manufactured housing. Canadá. Disponível em: <<u>http://www.osbquide.com/osbliterature.html</u>>. Acesso em: 02 de jul. 2003.
- STRUCTURAL BOARD ASSOCIATION. <u>http://www.osbguide.com/</u>. Acesso em: 24 nov. 2002.
- VUN, R. Y.; WU, Q.; BHARDWAJ, M.; STEAD, G. Through-thickness ultrasonic transmission properties of oriented strand board. In: Symposium on nondestructive testing of wood, 12, Sopron, 2000. Anais, Western Hungary, Sopron, p. 77 – 86.

Apêndice A

densidade

Plano de corte para os painéis de espessura 6mm

Inchamento e absorção de água

Adesão Interna

Flexão (longitudinal)

Flexão (transversal)

densidade

Plano de corte para os painéis de espessura 15mm

Inchamento e absorção de água

Adesão Interna

Flexão (longitudinal)

Flexão (transversal)

Flexão (longitudinal)

Flexão (transversal)

Painéis	H (%)	ρ (kg/m³)	Painéis	H (%)	ρ (kg/m³)
		557			554
	6	593		6	598
11	7	531	21	6	596
	7	642	21	7	584
	7	555		7	600
		566			622
		511			596
	7 6	538		7	599
12		585	22	6	582
	<u>/</u>	540		/	578
	7	650		6	628
		612			601
		584			620
	6	552		7	636
13	7	603	23	7	540
10	8	562	20	7	526
	6	598		7	647
		596			651
	_	557		_	590
14	8	542		7	635
	7	559	24	7	641
	9	617		8	629
	6	563		6	655
		553			640
	0	624		_	562
	6	588		1	617
15	6	567	25	6	624
	1	566	_	1	625
	1	642		1	554
		577			562
	7	583		c	564
	7	581		6	578
16	7	505	26	o e	600
	6	522		0	611
	0	555		5	594
		504			<u> </u>
	Q	580 526		7	626
	6	520 627		7	020 500
17	7	603	27	7	545
	7	586		7	607
	1	564		I	579
		575			557
	7	623		7	538
	7	568		7	567
18	, 8	541	28	7	520
	7	543		7	542
	,	570		,	607
		512	I		007

Tabela B1 – Valores de H e ρ para os painéis OSB dos grupos 1 e 2

19	7 7 6 7	555 516 555 562 612 578	29	7 7 7 5	530 517 597 562 595 526
110	7 6 7 6	643 669 597 558 574 1306	210	6 7 8 7	578 570 602 622 562 584

Tabela B1 – Valores de H e ρ para os painéis OSB dos grupos 1 e 2 (continuação)

Painéis	G _t (%)	A _m (%)	AI(MPa)	Painéis	G _t (%)	A _m (%)	AI(MPa)
	8	38	0,41		21	44	0,40
	14	36	0,44		25	34	0,46
	10	37	0,61		18	51	0,35
11	9	37	0,37	21	15	47	0,22
11	12	45	0,49	21	17	52	0,48
	12	35	0,47		13	42	0,54
	7	33	0,42		17	49	0,59
	11	44	*		13	48	0,65
	3	38	0,18		9	53	0,22
	2	36	0,11		16	45	0,44
	15	37	0,58		17	56	0,38
12	11	37	0,36	22	19	58	0,42
	12	45	0,55		18	47	0,47
	18	35	0,40		20	49	0,51
	9	33	0,57		13	42	0,43
	14	44	0,48		20	36	0,39
	10	37	0,46		17	44	0,36
	16	37	0,69		1/	42	0,50
	1	35	0,31		26	57	0,43
13	11	40	0,55	23	26	49	0,41
	22	44	0,40	20	24	47	0,47
	9	46	0,52		16	45	0,36
	15	38	0,55		16	51	0,24
	13	33	0,45		15	45	0,31
	10	44 20	0,50		14	47	0,43
	10	38	0,00		18		0,31
	10	46	0,42		13	30	0,55
14	14	-0 20	0,38	24	24	47	0,54
	11	47	0,00		24	50	0.49
	15	45	0.50		20	39	0.39
	11	37	*		21	43	0.59
	13	36	0,44		17	44	0,26
	16	45	0,51		19	68	0,35
	13	52	0,63		18	43	0,50
15	26	41	0,76	25	18	46	0,45
15	17	39	0,44	25	19	46	*
	20	38	0,32		14	36	*
	14	35	0,55		20	48	*
	10	29	0,76		16	43	*
	18	42	0,84		19	52	0,38
	17	46	0,73		24	50	0,38
	9	57	0,75		10	55	0,28
16	13	34	0,54	26	16	48	0,38
-	12	38	0,36	-	13	51	0,31
	12	41	0,67		19	40	0,38
	14	47	0,20		16	38	0,59
	17	42	0,53		Z 1	40	0,49

Tabela B2 – Valores de G_t , A_m e AI para os painéis OSB dos grupos 1 e 2

			•				
	11	40	0,45		11	58	0,25
	13	43	0,71		19	50	0,42
	14	47	0,48		23	47	0,52
47	13	46	0,51	07	17	41	0,40
17	11	38	0,61	21	20	49	0,67
	9	51	0,49		17	49	0,46
	15	44	0,64		14	55	0,29
	14	45	0,53		12	40	0,21
	15	39	0,41		20	58	0,51
	15	42	0,61		14	49	0,47
	14	55	0,55		18	51	0,65
10	15	41	0,36	29	18	38	0,51
10	10	41	0,40	20	20	39	0,50
	10	43	0,32		9	48	0,31
	9	34	0,35		22	51	0,33
	13	37	0,40		18	46	0,36
	18	42	0,41		14	43	0,48
	10	61	0,78		18	46	0,57
	17	50	0,55		16	46	0,54
10	18	42	0,33	20	16	40	0,49
19	16	51	0,65	29	18	53	0,45
	15	40	0,42		19	41	0,48
	9	52	0,61		19	59	0,35
	5	46	0,51		14	40	0,42
	19	38	0,31		27	41	0,45
	15	40	0,58		19	53	0,50
	13	40	0,64		16	59	0,32
110	11	44	0,50	210	17	49	0,44
110	16	44	0,62	210	12	50	0,47
	15	44	0,40		18	47	0,45
	18	39	0,58		13	41	0,54
	9	45	0,40		17	67	0,51

Tabela B2 – Valores de G_t, A_m e AI para os painéis OSB dos grupos 1 e 2 (continuação)

* Representam corpos-de-prova em que houve problemas e não foi possível obter os resultados dos ensaios.

Painéis	f _m (MPa)	E _m (MPa)	Painéis	f _m (MPa)	E _m (MPa)
	33	4424		17	3591
	27	4007		21	3936
11	36	5398	21	24	4461
11	36	5387	21	21	4269
	31	4401		17	3994
	23	4852		22	4397
	24	4135		13	2577
	34	5183		23	4270
10	32	5777	22	22	4224
12	32	4976	22	17	3406
	28	5558		17	4007
	39	5494		19	3682
	37	6456		21	4097
	32	5219		20	4098
12	29	4962	22	21	4165
15	39	6273	23	23	4691
	26	5465		22	3946
	31	4782		30	5066
	34	4822		25	4505
	34	5316		24	4600
1/	34	5451	24	21	4516
14	30	5098	24	21	4003
	29	5244		23	4390
	35	5418		20	3945
	29	4436		15	3139
	33	5202		21	4403
15	28	5283	25	21	4354
10	30	5534	20	27	4775
	32	5329		17	3890
	31	5337		21	3510
	30	4533		15	3234
	30	4699		29	4961
16	26	4494	26	25	4412
	31	4827		20	3693
	32	5987		16	3115
	33	5734		21	3875
	31	4972		17	3129
	26	4657		29	4686
17	18	4610	27	24	4398
	32	4634		24	4121
	31	4935		23	4284
	33	5357		19	4187
	30	5139		19	3407
	28	4422		20	4515
18	31	5328	28	16	3435
	41	5816		21	4107
	18	3817		24	4514
	29	4521		29	4749

Tabela B3 – Valores de $f_{\rm m}$ e $E_{\rm m}$ para os painéis OSB dos grupos 1 e 2 na direção longitudinal

	20	3846		16	3398
	26	4852		24	4523
10	36	6233	20	27	4584
19	22	4605	29	25	4602
	36	5155		21	3970
	33	5116		15	3613
	21	3701		25	3771
	29	5892		21	4545
110	31	4723	210	26	4035
110	31	5252	210	21	4205
	30	4533		18	3841
	35	5465		19	3694

Tabela B3 – Valores de f_m e E_m para os painéis OSB dos grupos 1 e 2 na direção longitudinal (continuação)

Painéis	f _m (MPa)	E _m (MPa)	Painéis	f _m (MPa)	E _m (MPa)
	12	1742		16	2456
	13	1597		14	2357
11	16	1949	21	18	2111
	13	2040	21	10	1554
	14	1973		10	1764
	14	1730		17	2352
	14	2101		15	2029
	21	2470		17	2393
12	9	1645	22	12	1967
12	12	1518	22	10	1559
	11	1625		13	2090
	17	2128		15	2100
	11	1766		13	2082
	13	1964		15	2147
13	18	2265	23	8	1242
10	18	2069	20	11	1650
	16	1760		14	2057
	13	1734		14	2133
	13	1774		16	2147
	12	1656		16	2396
14	8	1393	24	12	1929
14	11	1551	2.	14	1892
	11	1707		12	1953
	13	1827		14	1916
	15	1747		16	2058
	15	1951		15	1960
15	13	1835	25	15	2196
	14	1847		17	2294
	13	1732		11	1826
	13	1859		11	1675
	15	2139		17	2001
	14	1898		17	1945
16	10	1000	26	15	2038
	17	1822		9	1571
	13	1677		15	2325
	11	2019		12	1997
	12	1430		13	1033
	13	1/41		10	2432
17	14	1003	27	12	1071
	10	1000		10	1403
	13	2077		10	2171
	12	1615		12	1726
	13	1823		15	1085
	17	1771		1/	1887
18	1/	1591	28	10	1511
	10	1638		13	2020
	11	1491		11	1739
	1.1	1731	I	1.1	1100

Tabela B4 – Valores de $f_{\rm m}$ e $E_{\rm m}$ para os painéis OSB dos grupos 1 e 2 na direção transversal

	12	1583		13	1876
	9	1374		12	1626
10	14	2169	20	12	1777
19	16	1905	29	19	2385
	9	1282		12	1695
	10	1459		12	1863
	12	1646		13	1798
	10	1460		14	1831
110	9	1445	210	15	2253
110	15	1764	210	16	2215
	13	1849		12	2004
	14	1827		13	1805

Tabela B4 – Valores de f_m e E_m para os painéis OSB dos grupos 1 e 2 na direção transversal (continuação)

Apêndice \mathcal{O}

СР	V _{AI} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)	СР	V _{Al} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)
1	671	896	258	461	61	56	1	615	765	217	335	67	60
2	755	938	327	505	58	52	2	721	717	298	295	57	68
3	907	720	472	297	54	63	3	896	757	460	328	52	55
4	800	674	368	260	58	70	4	951	951	518	518	54	50
5	766	776	337	346	66	63	5	926	1067	492	652	52	52
6	845	823	410	389	60	55	6	934	1058	500	641	58	52
7	891	889	456	454	52	56	7	1006	975	580	545	58	57
8	942	886	510	451	65	52	8	889	877	453	441	59	55
9	935	836	502	401	57	68	9	901	779	465	347	50	65
10	888	797	453	365	69	65	10	881	855	445	419	69	58
11	872	842	437	407	55	60	11	876	1030	440	608	54	54
12	874	922	438	488	56	49	12	1011	1049	585	630	55	55
13	884	922	449	488	53	59	13	910	958	474	525	51	60
14	931	884	498	448	62	58	14	854	874	418	437	53	57
15	748	934	321	501	69	61	15	726	766	302	336	70	70
16	746	902	319	467	51	68	16	737	725	311	301	58	65
17	913	856	479	421	58	60	17	938	835	504	400	55	59
18	896	847	461	411	62	58	18	956	864	524	428	60	59
19	884	803	449	370	55	61	19	863	883	427	447	61	60
20	870	886	434	451	55	53	20	764	892	335	456	63	58
21	770	912	340	478	60	68	21	714	817	292	383	68	57
22	760	801	331	369	54	70	22	784	838	352	402	67	59
23	831	854	397	419	47	67	23	832	800	397	366	64	65
24	779	882	349	446	60	60	24	829	768	394	338	58	55
25	805	837	372	402	55	68	25	828	831	393	395	56	64
26	905	869	470	433	52	61	26	858	875	422	439	67	56
27	876	794	440	362	61	69	27	888	940	451	507	65	55
28	811	788	378	357	52	60	28	854	1053	418	635	68	47
29	855	892	419	457	58	60	29	861	1114	424	711	60	51
30	935	903	501	468	67	50	30	791	942	358	508	60	52

Tabela C1 – Valores de V_{AI}, V_{Gt/Am}, C_{AI}, C_{Gt/Am}, Atn_{AI} e Atn_{Gt/Am} para os painéis 11 e 12, através do método de ultra-som

СР	V _{Al} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)	СР	V _{AI} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)
1	781	907	356	479	53	59	1	894	746	452	314	48	60
2	870	900	442	472	51	60	2	880	807	438	368	58	58
3	990	923	571	497	58	58	3	893	924	450	482	57	55
4	990	892	572	464	53	58	4	920	1024	478	592	54	48
5	879	757	451	334	68	64	5	1016	965	583	526	47	60
6	763	754	340	331	55	47	6	1069	912	645	470	53	63
7	768	901	344	474	58	50	7	960	1001	521	567	58	52
8	851	1015	422	601	59	52	8	910	1009	468	575	67	59
9	915	1007	489	591	58	48	9	971	946	533	506	52	60
10	727	969	308	547	65	48	10	945	1025	505	593	60	55
11	706	934	290	508	70	57	11	877	1051	435	624	60	52
12	878	792	450	366	55	58	12	1026	891	594	449	50	53
13	968	816	547	388	54	55	13	909	789	467	352	57	65
14	1024	942	611	518	57	57	14	797	628	359	223	61	62
15	940	967	515	546	59	55	15	746	683	314	264	69	55
16	768	871	343	442	60	58	16	796	921	358	479	32	65
17	744	762	323	338	58	52	17	958	899	518	456	61	59
18	869	756	440	333	47	51	18	897	942	454	501	51	58
19	905	800	478	373	59	49	19	857	1007	415	573	65	56
20	933	906	507	479	53	57	20	830	956	389	517	62	55
21	931	967	505	545	62	54	21	870	899	428	456	68	58
22	902	960	474	538	63	50	22	909	928	466	486	60	55
23	867	861	438	432	57	51	23	904	968	462	529	42	60
24	796	834	369	406	57	52	24	874	938	432	497	55	58
25	823	938	395	513	48	52	25	881	785	439	348	52	58
26	901	987	473	568	55	57	26	873	772	430	337	47	61
27	948	946	524	522	50	54	27	839	798	398	360	64	61
28	955	930	531	505	55	49	28	818	736	378	306	60	69
29	937	826	512	398	55	60	29	807	850	368	408	65	59
30	920	738	494	318	67	63	30	838	914	397	472	68	55

Tabela C2 – Valores de V_{AI}, V_{Gt/Am}, C_{AI}, C_{Gt/Am}, Atn_{AI} e Atn_{Gt/Am} para os painéis 13 e 14, através do método de ultra-som

СР	V _{Al} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)	СР	V _{Al} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)
1	871	985	450	576	42	49	1	970	812	526	368	47	55
2	907	975	489	565	61	49	2	891	870	444	423	55	52
3	951	793	538	374	49	65	3	907	880	460	433	53	56
4	1026	752	625	336	51	59	4	923	883	477	436	58	54
5	998	885	591	465	52	49	5	891	949	443	503	47	56
6	856	819	436	399	52	68	6	949	811	503	367	53	68
7	866	830	446	409	50	52	7	827	793	382	351	58	58
8	993	952	586	538	55	50	8	793	838	352	393	51	60
9	973	893	562	473	63	58	9	871	897	424	450	61	58
10	933	751	517	335	58	63	10	949	1091	504	665	55	58
11	860	794	439	374	58	53	11	971	1006	527	566	56	57
12	765	823	347	402	52	65	12	936	887	490	439	59	59
13	824	762	403	345	52	63	13	915	822	468	378	47	51
14	954	851	540	430	55	47	14	880	824	432	380	53	49
15	780	869	361	448	69	61	15	721	882	291	435	58	63
16	727	809	314	389	63	60	16	693	864	268	418	48	58
17	859	820	438	400	47	58	17	775	828	336	383	53	42
18	898	881	479	461	53	53	18	873	815	426	371	55	53
19	992	958	584	546	55	55	19	998	750	556	314	55	55
20	860	973	439	563	61	50	20	899	779	452	340	50	60
21	741	852	326	431	64	61	21	877	912	430	465	60	60
22	795	842	375	422	65	52	22	900	914	453	467	65	61
23	865	857	444	437	53	65	23	867	893	420	445	50	51
24	931	786	514	367	63	60	24	878	956	431	511	60	56
25	989	871	581	451	47	55	25	962	930	517	484	56	60
26	1033	1033	634	633	52	47	26	827	810	382	367	65	56
27	1061	984	668	575	47	55	27	697	776	272	337	63	60
28	1034	906	635	487	56	58	28	749	770	314	332	63	53
29	884	788	464	369	60	60	29	813	805	369	362	52	58
30	791	855	372	435	59	52	30	873	821	426	377	57	60

Tabela C3 – Valores de V_{AI}, V_{Gt/Am}, C_{AI}, C_{Gt/Am}, Atn_{AI} e Atn_{Gt/Am} para os painéis 15 e 16, através do método de ultra-som

СР	V _{Al} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)	СР	V _{Al} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)
1	1063	966	657	543	47	58	1	771	844	339	406	35	45
2	990	963	570	539	49	52	2	776	825	343	388	63	60
3	972	903	549	474	56	60	3	792	857	358	418	54	63
4	835	888	406	459	60	63	4	852	932	413	495	62	60
5	827	783	399	357	63	60	5	852	815	414	379	63	65
6	793	691	366	278	55	57	6	841	720	403	296	59	63
7	804	879	377	450	55	52	7	844	798	406	363	55	50
8	1050	1059	642	653	53	53	8	800	826	365	389	68	51
9	1032	1005	620	588	57	51	9	791	734	357	307	54	68
10	938	980	512	559	53	55	10	846	797	408	362	61	57
11	927	930	501	504	50	47	11	943	1007	507	577	53	50
12	918	716	490	298	56	65	12	1014	1025	586	599	53	57
13	823	702	394	287	58	60	13	959	939	524	502	62	51
14	860	874	430	445	58	63	14	788	854	354	416	58	53
15	882	929	452	502	54	55	15	653	810	243	374	65	64
16	692	987	278	568	64	52	16	727	890	301	452	17	56
17	752	992	329	573	44	51	17	913	933	475	496	50	60
18	850	981	420	560	42	50	18	928	894	491	456	48	51
19	822	973	393	551	57	52	19	923	854	486	416	48	58
20	860	977	431	556	58	55	20	887	812	448	375	47	60
21	856	969	427	546	63	55	21	864	781	426	347	57	59
22	958	863	534	433	50	63	22	819	780	382	347	58	58
23	909	808	481	380	54	53	23	792	833	357	395	68	52
24	822	765	393	341	53	63	24	828	852	391	414	55	59
25	842	833	413	404	60	53	25	789	811	355	375	58	50
26	947	912	522	484	52	58	26	772	836	340	399	47	58
27	823	936	394	510	58	50	27	858	800	420	365	65	63
28	824	879	396	450	58	57	28	880	758	442	327	37	58
29	945	825	520	396	60	53	29	877	966	438	532	60	45
30	847	957	417	533	53	52	30	904	1009	466	580	48	55

Tabela C4 – Valores de V_{AI}, V_{Gt/Am}, C_{AI}, C_{Gt/Am}, Atn_{AI} e Atn_{Gt/Am} para os painéis 17 e 18, através do método de ultra-som

СР	V _{Al} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)	СР	V _{Al} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)
1	919	855	475	412	58	55	1	595	972	210	561	63	55
2	814	885	373	441	52	61	2	715	998	304	592	59	61
3	771	924	335	480	55	58	3	981	1007	571	602	55	58
4	832	880	389	436	62	60	4	1063	984	672	575	60	60
5	910	793	467	354	50	58	5	864	844	443	423	62	58
6	717	760	289	326	65	61	6	781	615	362	224	69	61
7	667	815	250	374	55	53	7	786	677	367	273	58	53
8	853	905	410	461	53	58	8	781	898	362	479	57	58
9	899	774	455	337	61	65	9	858	684	437	278	64	65
10	924	677	481	258	53	67	10	804	699	384	291	52	67
11	888	757	444	322	61	55	11	805	922	385	505	60	55
12	844	741	401	309	58	57	12	952	958	539	546	52	57
13	930	795	487	356	55	50	13	1068	936	678	521	48	50
14	936	1007	494	571	65	55	14	1073	908	684	489	49	55
15	910	1033	466	601	52	59	15	961	957	549	544	52	59
16	911	1030	467	598	63	60	16	739	900	324	481	55	60
17	860	883	416	439	50	55	17	792	876	373	456	58	55
18	844	781	401	343	57	52	18	911	947	493	533	57	52
19	873	797	429	357	53	55	19	798	912	378	494	58	55
20	838	793	396	354	60	63	20	852	920	431	503	57	63
21	867	888	423	444	48	52	21	862	1002	442	596	58	52
22	895	994	451	557	60	60	22	898	966	479	555	55	60
23	774	870	337	426	68	58	23	981	890	572	471	55	58
24	756	850	322	407	63	47	24	996	941	589	526	47	47
25	856	949	412	508	55	55	25	1015	988	612	580	54	55
26	917	937	473	494	45	50	26	918	996	501	589	60	50
27	915	861	472	417	51	61	27	833	762	412	345	65	61
28	882	857	438	413	65	65	28	779	669	361	266	58	65
29	873	721	429	293	59	65	29	865	847	444	427	51	65
30	665	586	249	193	68	58	30	928	975	512	565	67	58

Tabela C5 – Valores de V_{AI}, V_{Gt/Am}, C_{AI}, C_{Gt/Am}, Atn_{AI} e Atn_{Gt/Am} para os painéis 19 e 110, através do método de ultra-som

СР	V _{Al} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)	СР	V _{Al} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)
1	823	905	401	485	51	54	1	726	771	315	355	60	63
2	784	933	364	516	65	59	2	710	819	301	401	65	65
3	823	935	401	517	63	61	3	773	877	357	459	58	60
4	931	908	513	488	60	66	4	856	933	437	519	67	58
5	958	898	543	478	50	65	5	759	804	344	386	67	55
6	814	793	392	372	63	60	6	666	703	265	295	66	65
7	758	774	340	355	63	60	7	754	751	340	337	58	60
8	838	665	416	262	61	64	8	837	746	418	332	64	62
9	707	548	296	178	52	69	9	710	694	301	288	60	50
10	641	666	243	262	63	58	10	678	784	274	367	65	59
11	781	941	361	524	61	53	11	834	925	415	511	60	52
12	947	945	530	529	51	58	12	968	870	559	451	59	63
13	837	871	415	449	65	58	13	926	860	512	442	47	59
14	794	878	374	457	60	58	14	908	872	492	454	58	61
15	851	876	428	454	61	64	15	855	927	436	513	65	65
16	877	813	456	392	55	65	16	886	830	469	411	55	68
17	964	851	550	429	58	58	17	933	844	520	425	55	47
18	992	937	583	520	50	58	18	899	1084	482	701	56	52
19	959	858	544	436	58	58	19	912	978	497	571	52	55
20	955	912	540	492	52	53	20	961	910	551	495	55	58
21	832	989	410	579	63	60	21	819	919	400	505	55	51
22	821	815	399	393	51	61	22	819	945	400	533	49	53
23	1008	851	602	429	52	57	23	983	971	576	562	54	50
24	1003	967	595	554	53	57	24	993	888	589	470	55	52
25	906	925	486	507	53	55	25	943	854	530	435	60	59
26	914	966	495	552	53	58	26	872	912	454	496	52	54
27	955	951	540	536	60	65	27	850	865	431	447	54	65
28	975	973	563	561	52	60	28	817	806	399	388	55	65
29	1107	996	726	587	47	51	29	765	914	349	499	58	56
30	1235	905	903	485	47	59	30	913	974	497	567	53	58

Tabela C6 – Valores de V_{AI}, V_{Gt/Am}, C_{AI}, C_{Gt/Am}, Atn_{AI} e Atn_{Gt/Am} para os painéis 21 e 22, através do método de ultra-som

СР	V _{Al} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)	СР	V _{Al} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)
1	787	893	373	481	58	57	1	943	931	561	547	50	58
2	853	921	438	512	61	56	2	942	955	560	576	55	55
3	732	939	323	531	65	58	3	964	830	587	435	53	65
4	667	894	268	482	65	58	4	902	835	513	440	65	56
5	864	791	450	377	66	65	5	854	888	460	498	53	61
6	837	734	423	325	68	63	6	827	698	432	308	61	63
7	753	776	342	363	58	56	7	833	734	437	340	54	55
8	842	870	427	457	59	54	8	923	982	537	608	56	59
9	919	812	510	397	57	53	9	826	880	430	489	68	50
10	923	841	514	427	58	55	10	797	805	401	409	65	53
11	909	987	498	588	65	52	11	862	889	469	498	57	52
12	963	956	559	551	53	52	12	814	842	419	447	58	59
13	906	954	495	549	55	55	13	867	879	474	487	53	55
14	873	933	460	525	58	52	14	984	1008	611	642	53	56
15	899	959	488	555	65	64	15	987	971	614	595	60	59
16	951	918	545	509	56	65	16	1001	977	633	603	47	55
17	1027	893	636	480	53	52	17	982	935	608	551	59	59
18	1059	988	677	589	52	46	18	883	913	492	526	58	60
19	979	824	578	410	58	64	19	930	976	546	602	52	50
20	865	792	451	378	63	60	20	979	1015	605	650	59	52
21	886	944	473	538	60	55	21	851	1075	457	730	47	55
22	975	963	573	559	63	59	22	876	1004	484	636	63	47
23	1014	948	621	542	55	54	23	960	973	582	597	55	50
24	1005	948	609	542	55	42	24	885	963	494	586	58	55
25	819	856	405	442	60	60	25	854	958	460	579	57	53
26	796	853	382	439	55	58	26	948	1018	567	654	50	47
27	823	895	409	483	61	60	27	941	1081	559	737	58	49
28	823	910	409	499	61	52	28	988	1138	615	817	45	47
29	964	816	560	401	55	63	29	1031	944	671	562	58	65
30	799	762	385	350	58	60	30	907	881	519	490	63	55

Tabela C7 – Valores de V_{AI}, V_{Gt/Am}, C_{AI}, C_{Gt/Am}, Atn_{AI} e Atn_{Gt/Am} para os painéis 23 e 24, através do método de ultra-som

СР	V _{Al} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)	СР	V _{Al} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)
1	820	989	398	578	63	52	1	732	947	318	532	60	52
2	897	925	475	506	58	59	2	775	935	356	518	60	55
3	913	804	493	382	63	60	3	870	874	449	453	63	59
4	889	767	467	347	53	59	4	843	748	422	331	62	64
5	930	767	511	348	65	63	5	728	784	315	365	68	53
6	770	679	351	273	68	69	6	773	901	354	481	62	55
7	739	716	323	303	61	59	7	799	848	379	426	61	55
8	819	833	396	410	65	65	8	739	790	324	370	60	55
9	803	825	381	402	60	57	9	783	774	363	355	61	63
10	868	886	445	464	55	55	10	867	874	446	453	58	52
11	880	932	458	513	55	60	11	933	995	516	587	52	52
12	868	889	445	467	47	58	12	979	910	568	491	50	63
13	817	793	394	371	58	63	13	943	839	527	417	58	61
14	814	765	391	346	61	58	14	864	813	442	392	55	60
15	897	797	475	375	60	59	15	850	821	429	400	59	60
16	928	783	509	363	57	63	16	867	839	446	417	55	60
17	976	803	563	381	58	55	17	839	802	418	381	63	60
18	889	801	467	379	52	55	18	880	833	459	412	63	56
19	837	766	414	346	57	60	19	974	917	562	499	55	52
20	884	812	462	390	55	57	20	1004	914	598	496	47	55
21	906	900	485	479	55	54	21	1003	973	596	562	58	49
22	880	887	458	465	62	60	22	1011	1064	606	671	51	50
23	828	868	405	446	58	56	23	1035	979	635	568	52	55
24	789	920	368	500	61	63	24	992	996	584	588	59	50
25	754	900	336	479	63	55	25	861	998	439	591	60	57
26	812	893	389	472	60	50	26	877	947	456	532	49	58
27	926	956	506	541	55	58	27	990	977	581	566	53	52
28	954	915	538	495	55	58	28	942	997	527	589	55	62
29	976	923	563	503	52	57	29	827	970	405	558	65	60
30	1027	921	623	501	55	53	30	850	924	428	507	55	52

Tabela C8 – Valores de V_{AI}, V_{Gt/Am}, C_{AI}, C_{Gt/Am}, Atn_{AI} e Atn_{Gt/Am} para os painéis 25 e 26, através do método de ultra-som

СР	V _{AI} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)	СР	V _{AI} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)
1	766	840	350	421	58	58	1	820	931	373	481	52	58
2	850	835	431	416	52	58	2	887	863	437	414	51	59
3	950	893	538	476	59	55	3	924	871	474	421	60	55
4	894	925	477	510	54	58	4	898	901	448	451	55	65
5	880	897	462	479	57	62	5	910	863	460	413	52	60
6	746	834	332	414	68	66	6	983	830	536	382	55	65
7	708	813	299	394	60	58	7	1069	846	634	397	58	56
8	835	860	415	441	58	62	8	1079	891	646	441	45	62
9	752	857	337	437	61	65	9	1030	935	589	486	55	63
10	792	948	374	535	57	50	10	890	1000	439	555	61	55
11	847	1013	427	611	52	58	11	840	880	392	430	55	60
12	865	906	446	489	49	55	12	905	814	455	368	51	61
13	1025	902	626	485	55	52	13	979	828	532	380	53	58
14	885	954	467	542	55	55	14	940	861	490	412	59	52
15	836	910	417	493	61	63	15	960	938	512	488	55	55
16	909	859	493	440	58	62	16	997	934	551	485	49	63
17	895	852	477	433	55	65	17	956	907	507	457	53	63
18	849	922	430	507	55	53	18	891	937	440	487	57	54
19	911	1002	495	599	51	60	19	836	909	388	459	58	65
20	972	895	563	477	55	58	20	875	670	425	249	68	49
21	804	860	385	441	68	58	21	862	668	412	248	65	65
22	764	835	348	416	58	65	22	854	783	405	341	53	63
23	871	878	452	459	57	50	23	1009	821	565	374	50	55
24	902	1021	485	622	53	55	24	888	897	438	447	63	57
25	893	946	476	534	58	56	25	797	810	353	364	57	65
26	887	760	469	344	50	61	26	915	782	464	339	55	63
27	830	765	411	349	65	55	27	885	829	435	381	63	65
28	866	943	446	530	58	55	28	889	857	439	408	55	60
29	869	984	451	577	65	60	29	900	905	449	455	60	58
30	721	897	310	480	68	65	30	800	918	355	468	68	67

Tabela C9 – Valores de V_{AI}, V_{Gt/Am}, C_{AI}, C_{Gt/Am}, Atn_{AI} e Atn_{Gt/Am} para os painéis 27 e 28, através do método de ultra-som

СР	V _{Al} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)	СР	V _{Al} (m/s)	V _{Gt/Am} (m/s)	C _{AI} (MPa)	C _{Gt/Am} (MPa)	Atn _{Al} (dβloss)	Atn _{Gt/Am} (dβloss)
1	818	832	371	384	55	57	1	916	937	491	514	59	58
2	834	891	386	440	59	60	2	962	920	542	496	50	53
3	913	994	463	548	68	59	3	860	900	434	474	58	60
4	882	1002	432	558	60	63	4	766	845	344	419	65	68
5	874	985	424	538	55	50	5	861	924	435	500	53	58
6	856	832	407	384	63	58	6	834	1026	407	617	63	57
7	795	817	351	370	56	60	7	797	896	373	471	55	61
8	829	881	381	431	58	60	8	899	787	474	363	58	63
9	872	745	422	308	52	65	9	829	813	403	388	59	52
10	944	811	494	365	63	53	10	785	845	361	419	65	60
11	981	934	534	484	55	58	11	812	799	387	374	60	60
12	876	876	426	425	61	56	12	803	767	378	345	57	63
13	823	804	376	359	59	59	13	841	821	414	395	57	53
14	882	804	432	359	58	60	14	843	928	417	504	62	55
15	892	864	441	414	56	63	15	799	900	374	475	58	58
16	908	881	458	431	57	54	16	797	939	372	516	58	51
17	890	896	440	445	63	58	17	866	920	440	496	54	60
18	745	804	308	359	65	58	18	860	851	433	424	61	55
19	732	817	298	371	63	61	19	912	842	487	416	60	55
20	854	846	405	397	55	62	20	930	891	507	465	55	53
21	865	827	416	380	63	59	21	870	836	443	410	60	62
22	903	902	453	452	53	54	22	898	833	472	406	57	55
23	894	997	444	552	61	52	23	904	906	479	481	55	59
24	767	918	327	467	58	58	24	924	845	500	418	55	55
25	677	776	254	334	65	60	25	919	914	495	489	53	52
26	764	744	324	307	55	65	26	955	1009	534	596	57	52
27	829	858	382	409	63	52	27	909	1002	485	588	63	52
28	746	890	309	440	63	61	28	706	948	292	527	68	61
29	807	822	362	375	68	68	29	737	865	318	438	55	58
30	829	873	381	423	59	64	30	901	788	475	363	60	62

Tabela C10 – Valores de V_{AI}, V_{Gt/Am}, C_{AI}, C_{Gt/Am}, Atn_{AI} e Atn_{Gt/Am} para os painéis 29 e 210, através do método de ultra-som

СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)	СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)
1	939	506	36	1	836	401	59
2	929	495	36	2	938	504	47
3	918	484	32	3	1036	614	53
4	903	468	34	4	1028	605	52
5	848	412	41	5	1103	697	55
6	812	379	37	6	1109	705	47
7	813	379	36	7	1042	622	58
8	921	487	32	8	1081	670	50
9	844	409	39	9	1029	607	58
10	760	332	33	10	873	437	53
11	924	490	34	11	875	439	55
12	1013	589	33	12	875	439	56
13	984	555	37	13	844	408	55
14	911	476	40	14	858	422	60
15	836	401	39	15	951	518	55
16	854	419	37	16	1087	678	52
17	919	485	42	17	1023	600	57
18	868	432	36	18	972	542	51
19	782	351	44	19	1008	583	52
20	780	349	41	20	962	530	52
21	794	362	37	21	931	497	61
22	816	382	36	22	982	553	60
23	868	432	33	23	931	496	63
24	901	466	34	24	921	486	57
25	924	490	37	25	936	502	53
20	966	536	36	20	859	423	53
21	920	492	31 22	21	704	333	60
20	910	470	5Z 41	20	790	000 191	60 60
29	725	420	20	29	917	401 534	60
21	723	365	34	21	900	459	09 57
32	870	335 443	34	32	032	400	55
32	946	513	31	33	1028	605	55
34	1007	582	37	34	844	408	58
35	699	281	42	35	771	341	55
36	619	220	41	36	872	436	61
37	706	286	42	37	961	530	56
38	778	348	37	38	946	513	61
39	845	410	34	39	802	369	65
40	823	389	31	40	796	363	60
41	802	369	36	41	926	491	40
42	643	237	35	42	982	552	50
43	714	292	34	43	917	482	56
44	898	462	38	44	826	391	55
45	829	395	41	45	840	405	57
46	928	494	33	46	801	368	60
47	831	396	40	47	833	397	52
48	774	344	42	48	998	571	46

Tabela C11 – Valores de V_d , C_d e Atn_d para os painéis 11 e 12, através do método de ultra-som

СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)	СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)
1	916	489	52	1	791	354	60
2	915	488	51	2	785	348	60
3	906	478	55	3	809	370	58
4	814	386	65	4	868	425	51
5	728	309	54	5	905	463	57
6	794	368	65	6	912	470	63
7	890	462	42	7	929	488	50
8	917	490	54	8	977	540	55
9	997	580	48	9	894	451	50
10	909	482	67	10	830	389	58
11	927	501	58	11	800	361	57
12	1105	711	53	12	789	352	57
13	931	506	60	13	839	398	60
14	864	435	63	14	784	347	68
15	929	504	49	15	811	371	50
16	894	466	55	16	979	542	52
17	888	460	59	17	916	474	47
18	926	500	50	18	836	395	55
19	919	492	58	19	882	440	45
20	910	483	50	20	926	485	55
21	836	408	49	21	945	504	52
22	801	374	59	22	954	515	58
23	768	344	59	23	940	499	52
24	748	327	60	24	973	535	57
25	857	428	57	25	881	438	50
26	883	455	59	26	/8/	350	60
27	862	433	55	27	840	398	50
28	902	475	55	28	893	450	42
29	885	457	50	29	992	550	55
30	819	391	58	30	1093	0/5	52
31	838	409	45 52	31	995	559 477	08
32	830	402	52 51	32	919	4//	58 55
24	009	40 I 51 2	51 47	24	094	401	50 50
25	937	126	47	25	802	264	50
36	824	420	65	36	802	456	63
37	804	377	50	37	030	+30 537	48
38	810	301	50	38	034	102	+0 63
30	834	405	48	30	883	492	58
40	801	463	40	40	850	408	58
40	031	4 05 505	-1/ 52	40	700	360	63
42	926	500	63	42	851	410	59
43	806	379	57	43	941	501	49
44	766	342	56	44	851	409	52
45	771	347	67	45	748	316	66
46	761	338	61	46	765	330	58
47	779	354	68	47	853	411	55
48	677	267	69	48	897	455	58

Tabela C12 – Valores de V_d , C_d e Atn_d para os painéis 13 e 14, através do método de ultra-som

СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)	СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)
1	936	521	49,61	1	788	347	53
2	1023	622	51,05	2	733	301	64
3	1022	620	60,40	3	773	334	55
4	968	557	48,89	4	822	378	63
5	1030	630	51,77	5	820	376	58
6	941	527	56,08	6	851	404	58
7	765	348	66,87	7	801	359	63
8	726	313	56,08	8	896	449	52
9	845	424	52,49	9	991	549	45
10	957	544	58,96	10	907	460	55
11	1002	596	53,21	11	894	446	52
12	843	422	61,83	12	875	428	58
13	765	347	61,12	13	879	432	58
14	859	439	50,33	14	968	523	63
15	951	537	57,52	15	1004	564	54
16	1009	604	50,33	16	1044	610	47
17	1051	656	51,05	17	1023	584	52
18	1127	754	51,05	18	856	410	57
19	960	547	47,45	19	854	407	55
20	850	429	58,96	20	794	352	60
21	863	442	57,52	21	742	308	58
22	828	407	56,08	22	832	387	62
23	840	420	60,40	23	859	413	55
24	820	399	57,52	24	881	434	55
25	841	420	60,40	25	854	408	56
26	943	528	56,80	26	853	407	54
27	8/3	453	60,40	27	930	484	54
28	849	428	55,36	28	903	456	57
29	885	465	60,40	29	908	460	59
30	930	513	52,49	30	870	424	60
31	1000	594	47,45	31	831	380	60
32	890	470	53,93	32	933	480	47
24	090	479	55,30 52,40	24	944	490	52
25	1072	640	52,49	25	776	420	62
36	861	049 440	50,24 68 31	36	780	340	54
37	740	326	60,31	37	023	176	54
20	740	363	60,40	20	923	4/0	55
30	805	385	62 55	30	930	403	58
40	820	400	55 36	40	900	5/1	50
40	025	542	51,05	40	905	500	50
42	950	544	53 21	42	940 848	402	53
43	956	543	52 49	43	834	389	55
44	955	542	57 52	40	812	369	63
45	854	434	64 71	45	809	366	53
46	869	448	49.61	46	804	362	67
47	772	354	69.02	47	846	401	58
48	771	353	60,40	48	955	510	51

Tabela C13 – Valores de V_d , C_d e Atn_d para os painéis 15 e 16, através do método de ultra-som

СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)	СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)
1	1032	619	52	1	838	400	50
2	1040	629	48	2	846	408	55
3	963	539	59	3	837	399	57
4	897	468	47	4	848	410	59
5	884	455	50	5	848	410	57
6	896	467	52	6	821	384	65
7	872	442	55	7	840	402	58
8	835	405	58	8	871	433	53
9	868	439	55	9	744	316	58
10	883	454	52	10	706	284	55
11	876	447	52	11	815	378	58
12	888	459	54	12	831	393	52
13	913	485	52	13	898	460	51
14	898	469	55	14	901	463	69
15	925	498	51	15	895	456	54
16	964	541	51	16	916	479	58
17	996	5/8	51	17	858	420	52
18	952	527	53	18	834	396	63
19	901	472	55	19	748	319	80
20	964	541	50 51	20	/ 1Z 910	289	00 55
21	960	509	50	21	801	365	55
22	940 850	/20	10	22	870	J05 /31	51
23	844	429	49 58	23	1013	585	55
25	944	518	55	25	840	402	60
26	994	576	55	26	725	300	53
27	978	557	51	27	798	363	65
28	997	578	47	28	847	409	60
29	940	514	58	29	830	393	65
30	925	498	58	30	733	307	65
31	926	499	58	31	762	331	55
32	897	468	55	32	968	535	61
33	955	531	58	33	744	316	65
34	952	527	53	34	707	285	58
35	929	502	50	35	824	387	65
36	862	432	50	36	810	374	65
37	847	417	53	37	731	305	63
38	913	485	52	38	787	353	50
39	918	491	52	39	888	450	62
40	910	482	55	40	948	512	52
41	936	510	59	41	1004	575	53
42	1032	619	52	42	928	491	55
43	895	467	48	43	841	403	55
44	/94	367	55	44	/91	356	58
45	891	462	47	45	851	413	60
46	833	403	64	46	872	434	55
47	111	352	59	4/	883	445	54
48	0/0	447	4/	48	902	404	40

Tabela C14 – Valores de V_d , C_d e Atn_d para os painéis 17 e 18, através do método de ultra-som

СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)	СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)
1	814	373	63	1	865	444	51
2	859	416	50	2	919	502	50
3	910	467	58	3	949	535	51
4	863	420	42	4	966	554	58
5	876	432	52	5	840	419	63
6	956	514	53	6	883	463	47
7	836	393	63	7	984	576	59
8	761	326	67	8	880	460	46
9	819	378	60	9	817	396	61
10	881	437	58	10	749	333	59
11	845	402	58	11	784	365	63
12	794	355	60	12	854	433	63
13	838	395	58	13	972	561	49
14	624	219	68	14	935	520	52
15	598	202	65	15	912	494	52
16	793	354	53	16	1019	616	45
17	833	390	60	17	872	452	63
18	871	427	51	18	860	439	55
19	806	365	67	19	974	563	50
20	828	386	55	20	966	554	50
21	902	458	58	21	942	527	57
22	892	448	58	22	1026	625	42
23	911	467	50	23	1081	694	57
24	877	433	52	24	946	532	63
25	966	526	50	25	892	472	58
26	908	464	63	26	856	435	60
27	781	344	63	27	844	423	52
28	810	369	61 50	28	882	462	55
29	744	312	52	29	931	514	53
30	011	340	63	30	997	591	60 57
31	941	499	60 55	31	903	33 I 475	57
ు∠ 22	924	400	55 65	- 3∠ 22	094	470	49 50
34	799	359	61	33	001	400	50 47
35	002	158	55	35	1017	40Z 614	47
36	902	536	47	36	1017	615	+0 53
37	958	517	52	37	995	588	48
38	850	407	55	38	010	502	
30	778	341	60	30	886	466	52
40	731	301	58	40	957	544	59
41	781	343	54	41	879	459	55
42	947	504	47	42	891	472	55
43	1003	567	50	43	960	547	55
44	936	493	50	44	926	509	55
45	919	475	55	45	871	451	57
46	943	501	58	46	907	488	60
47	856	412	55	47	974	563	63
48	776	339	66	48	948	534	63

Tabela C15 – Valores de V_d , C_d e Atn_d para os painéis 19 e 110, através do método de ultra-som
СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)	СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)
1	822	400	57	1	854	436	56
2	789	368	65	2	864	446	53
3	768	349	65	3	961	551	50
4	827	405	55	4	866	447	65
5	917	498	57	5	813	395	63
6	951	536	52	6	804	386	61
7	889	468	59	7	818	399	61
8	838	415	68	8	752	338	63
9	837	415	59	9	725	314	55
10	775	356	55	10	891	474	58
11	794	373	62	11	916	501	60
12	858	436	58	12	973	565	55
13	861	439	65	13	841	422	63
14	772	353	65	14	694	287	58
15	747	330	55	15	799	381	50
16	881	460	57	16	1000	597	51
17	961	547	58	17	967	559	58
18	920	501	65	18	955	544	58
19	786	366	65	19	763	347	61
20	740	324	56	20	640	245	66
21	882	460	51	21	766	350	55
22	971	558	50	22	1007	606	47
23	956	541	54	23	1008	607	56
24	1023	619	50	24	923	509	55
25	908	488	59	25	864	446	58
26	816	394	71	26	809	391	63
27	880	459	58	27	840	422	63
28	983	5/2	60	28	875	457	63
29	851	428	68	29	790	372	65
30	758	340	66	30	696	289	57
31	796	375	63	31	772	355	58
32	882	461	60	32	963	554	52
33	974	502	55	33	979	572	50
34	000	440	03	34	000	400	60
30 26	131	321	52	30	624	309 222	04 59
27	724	204	53	27	769	252	50
20	7.34	470	55	20	700	352	52
30 30	900	479	50 52	30	07U 855	40Z 437	60 52
39	912	493	52	39	000	437	52
40	047	424	50	40	002	444 204	50
+ı ⊿0	77/	355	50	41	805	394	57
42	929	406	63 58	42	785	368	55
43	811	389	62	43	820	401	57
45	812	300	52	45	020	510	51
46	750	333	63	46	873	455	65
47	735	320	63	47	861	442	51
48	881	459	68	48	930	517	65

Tabela C16 – Valores de V_d , C_d e Atn_d para os painéis 21 e 22, através do método de ultra-som

СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)	СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)
1	984	584	52	1	998	629	54
2	937	530	58	2	993	622	52
3	974	572	56	3	1007	640	55
4	1080	703	55	4	999	630	55
5	1049	663	52	5	1002	633	50
6	969	566	67	6	984	610	65
7	879	466	57	7	918	532	55
8	886	473	53	8	727	333	69
9	927	518	50	9	754	358	51
10	925	516	50	10	1027	666	54
11	929	520	55	11	993	622	57
12	945	538	65	12	960	581	51
13	922	513	62	13	1061	711	50
14	928	519	53	14	1032	673	55
15	1025	634	52	15	989	617	51
16	1036	647	54	16	1018	654	53
17	894	482	61	17	959	581	52
18	813	399	57	18	972	596	58
19	749	338	63	19	969	592	63
20	658	261	64	20	955	575	59
21	755	344	53	21	937	554	65
22	740	330	61	22	924	538	52
23	732	323	58	23	856	463	63
24	861	447	58	24	823	427	53
25	832	417	54	25	829	434	57
26	823	409	58	26	850	456	56
27	827	413	64 65	27	976	601	55
28	791	311	00 47	28	978	604 569	58 56
29	800	430	47	29	949	000 612	30
30	846	400	04 55	30	900	527	47 58
32	876	432	50	32	923	468	63
33	883	402	58	33	916	4 00 520	60
34	903	491	56	34	978	604	53
35	919	510	65	35	967	590	62
36	823	409	52	36	844	450	59
37	871	458	59	37	796	400	60
38	917	507	61	38	786	390	63
39	919	509	53	39	770	374	63
40	982	582	57	40	736	341	61
41	899	487	55	41	794	398	58
42	959	555	50	42	853	459	65
43	984	584	58	43	901	512	51
44	886	473	60	44	936	553	55
45	925	516	52	45	885	494	55
46	1010	615	55	46	907	519	57
47	1050	665	47	47	900	511	58
48	1123	761	49	48	820	425	64

Tabela C17 – Valores de V_d , C_d e Atn_d para os painéis 23 e 24, através do método de ultra-som

СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)	СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)
1	762	343	63	1	845	424	55
2	771	351	60	2	865	444	56
3	887	465	50	3	912	494	57
4	842	419	65	4	904	485	55
5	782	362	58	5	902	483	55
6	856	433	60	6	760	343	60
7	814	392	60	7	738	323	65
8	811	389	65	8	822	400	58
9	836	413	60	9	870	449	55
10	873	450	58	10	761	343	65
11	970	556	59	11	792	372	52
12	982	570	58	12	950	535	58
13	941	524	57	13	919	500	54
14	999	590	51	14	986	5/6	53
15	991	580	57	15	1010	605	46
10	971	557	55	10	1014	610	53
17	978	500	58	17	902	483	51
10	938	520	58 50	10	828	407	58
19	799	3//	52 47	19	851	430	63 EE
20	000	204	47	20	904	001	00 55
21	1050	663	50	21	1031	645	33 46
22	084	572	55	22	043	527	40
23	803	471	50	23	884	464	51
25	849	426	57	25	882	461	55
26	907	486	55	26	907	488	55
27	962	546	55	27	895	475	59
28	898	477	61	28	924	506	49
29	899	478	56	29	815	393	63
30	1092	705	47	30	832	410	51
31	1094	707	54	31	997	590	55
32	1010	603	55	32	974	563	55
33	952	536	58	33	1032	631	50
34	869	447	52	34	975	564	63
35	730	315	65	35	898	478	52
36	664	260	58	36	903	483	58
37	731	316	59	37	916	497	64
38	888	466	55	38	947	531	54
39	947	529	60	39	934	517	56
40	885	463	59	40	861	440	57
41	772	352	61	41	843	422	56
42	725	310	58	42	791	371	65
43	846	423	57	43	798	377	58
44	860	437	64	44	875	454	52
45	839	416	63	45	953	539	50
46	758	340	68	46	954	540	60
47	/57	339	61	47	895	475	53
48	807	385	65	48	895	475	50

Tabela C18 – Valores de V_d , C_d e Atn_d para os painéis 25 e 26, através do método de ultra-som

СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)	СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)
1	971	562	47	1	715	283	65
2	884	466	55	2	795	350	58
3	856	436	56	3	893	442	65
4	890	472	60	4	887	437	55
5	920	504	57	5	859	410	63
6	929	515	68	6	876	426	63
7	895	477	58	7	904	453	65
8	920	504	55	8	805	360	60
9	855	436	57	9	813	367	52
10	789	371	63	10	838	390	57
11	819	400	52	11	821	374	58
12	861	442	66	12	826	378	50
13	733	321	63	13	763	323	63
14	759	343	65	14	742	305	50
15	961	551	53	15	827	379	55
16	943	530	52	16	936	486	53
17	928	513	65	17	913	462	60
18	952	540	55	18	848	399	63
19	820	407	60 62	19	754	310	80
20	020	407 592	03	20	0/5	203	60 59
21	900 1005	00Z 602	40 55	21	703	340 456	50
22	003	486	55	22	900	200	63
23	800	482	58	23	852	402	55
25	853	433	62	25	761	322	60
26	766	350	58	26	760	321	60
27	836	416	65	27	936	487	52
28	856	437	60	28	948	499	55
29	751	336	65	29	976	529	49
30	781	363	55	30	998	553	65
31	938	525	55	31	910	460	61
32	876	457	65	32	836	388	62
33	860	441	57	33	843	394	50
34	843	423	61	34	951	502	53
35	833	413	63	35	883	433	63
36	922	506	59	36	893	442	64
37	955	543	55	37	1010	566	63
38	850	430	59	38	943	494	58
39	835	416	51	39	886	436	59
40	940	527	55	40	880	429	58
41	910	494	56	41	854	404	58
42	843	423	58	42	880	430	58
43	846	427	5/	43	911	460	60 55
44	009	4/1	51	44	000	415	00 60
40 46	940	0∠0 501	57 52	40	039	391	00 56
40 ⊿7	030 990	517	55	40 ⊿7	030 000	432 182	52
48	911	495	53	48	1004	560	52

Tabela C19 – Valores de V_d , C_d e Atn_d para os painéis 27 e 28, através do método de ultra-som

СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)	СР	V _d (m/s)	C _d (MPa)	Atn _d (dβ loss)
1	522	151	50	1	942	520	60
2	651	235	58	2	875	449	60
3	783	340	63	3	824	398	61
4	753	314	63	4	819	393	63
5	842	393	55	5	821	395	63
6	896	446	65	6	813	388	60
7	896	445	58	7	724	307	67
8	677	254	60	8	761	339	67
9	663	244	55	9	908	483	52
10	850	401	60	10	822	396	60
11	861	412	58	11	789	364	59
12	813	367	60	12	848	422	57
13	819	372	54	13	867	440	55
14	888	438	60	14	915	490	58
15	856	406	58	15	942	520	55
16	832	384	60	16	891	465	57
17	865	415	53	17	923	499	57
18	832	384	57	18	981	564	55
19	769	328	66	19	980	563	57
20	852	403	55	20	946	524	57
21	921	471	60	21	833	407	60
22	942	493	56	22	786	362	60
23	968	520	57	23	795	370	63
24	854	405	50	24	780	302	57
20	832	384	58 50	25	806	380	45 55
20	009	439	59	20	000	400	50
21	888	433	60	21	800	465	53
20	950	501	55	20	792	368	59
20	804	443	60 60	30	835	400	60
31	893	443	55	31	830	403	61
32	983	536	59	32	820	394	61
33	919	469	59	33	865	439	60
34	930	480	55	34	993	578	53
35	958	509	62	35	912	487	62
36	938	488	57	36	820	394	58
37	983	536	53	37	840	413	55
38	1011	567	53	38	714	299	63
39	906	456	61	39	714	298	59
40	832	384	53	40	790	365	58
41	825	378	63	41	799	374	60
42	815	368	59	42	841	414	55
43	817	370	53	43	892	466	59
44	891	440	58	44	859	433	63
45	922	472	59	45	824	398	65
46	867	418	55	46	823	397	60
47	754	315	64	47	851	424	65
48	673	251	66	48	766	344	65

Tabela C20 – Valores de V_d , C_d e Atn_d para os painéis 29 e 210, através do método de ultra-som

Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)	Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)
1	3142	5666	3000	5166	1	3169	5755	2978	5081
2	3133	5633	2994	5147	2	3160	5723	2961	5024
3	3144	5675	2988	5123	3	3168	5749	2953	4997
4	3160	5733	2988	5123	4	3203	5877	2972	5060
5	3168	5762	3000	5166	5	3186	5816	2982	5095
6	3183	5816	3013	5209	6	3160	5723	2982	5095
7	3204	5892	3015	5218	7	3181	5800	3003	5168
8	3196	5862	2991	5136	8	3179	5792	3009	5189
9	3183	5815	2976	5085	9	3178	5788	2998	5151
10	3188	5834	2994	5145	10	3193	5841	3008	5185
11	3180	5804	2991	5136	11	3186	5817	3023	5235
12	3169	5763	2963	5039	12	3153	5696	3023	5235
13	3170	5767	2959	5027	13	3139	5646	3001	5161
14	3153	5706	2966	5050	14	3165	5739	3008	5183
15	3137	5649	2971	5066	15	3201	5871	3024	5240
16	3146	5681	2988	5123	16	3210	5905	3024	5240
17	3139	5655	2971	5066	17	3198	5859	3033	5271
18	3132	5630	2949	4992	18	3199	5864	3036	5282
19	3118	5581	2963	5039	19	3199	5863	3046	5318
20	3117	5577	2983	5106	20	3202	5874	3036	5282
21	3125	5606	2998	5161	21	3195	5848	3023	5235
22	3145	5679	3012	5206	22	3198	5860	3018	5220
23	3165	5750	3003	5178	23	3189	5825	3032	5266
24	3167	5758	2991	5135	24	3160	5722	3049	5327

Tabela C21 – Valores de V e C para os painéis 11 e 12, através dos métodos de ultra-som e stress wave, na direção longitudinal de propagação

Donto	Vus	Cus	Vsw	Csw	Donto	Vus	Cus	Vsw	Csw
Ponto	(m/s)	(MPa)	(m/s)	(MPa)	Ponto	(m/s)	(MPa)	(m/s)	(MPa)
1	3198	5964	3030	5354	1	3184	5728	3046	5241
2	3180	5895	3025	5336	2	3191	5752	3047	5245
3	3170	5859	3020	5318	3	3188	5743	3038	5215
4	3180	5894	3032	5358	4	3151	5610	3021	5156
5	3168	5850	3053	5436	5	3167	5665	3014	5134
6	3165	5841	3042	5397	6	3212	5828	3021	5156
7	3175	5879	3022	5324	7	3189	5746	3020	5153
8	3177	5885	3029	5349	8	3158	5636	3009	5115
9	3175	5876	3045	5406	9	3160	5641	3020	5151
10	3152	5792	3047	5413	10	3167	5667	3020	5153
11	3150	5786	3044	5401	11	3151	5610	3018	5145
12	3189	5929	3036	5374	12	3167	5667	3013	5128
13	3204	5986	3037	5376	13	3195	5767	3003	5093
14	3202	5976	3044	5403	14	3186	5736	3001	5089
15	3193	5943	3035	5372	15	3175	5694	3020	5151
16	3195	5953	3043	5399	16	3190	5751	3033	5199
17	3211	6010	3054	5438	17	3205	5803	3033	5197
18	3216	6031	3046	5410	18	3210	5821	3061	5292
19	3202	5978	3024	5331	19	3223	5868	3074	5338
20	3159	5819	3015	5300	20	3218	5849	3052	5263
21	3137	5737	3025	5336	21	3176	5698	3033	5199
22	3151	5789	3031	5356	22	3160	5641	3043	5232
23	3161	5824	3027	5342	23	3194	5764	3053	5266
24	3177	5883	3021	5320	24	3194	5764	3041	5223

Tabela C22 – Valores de V e C para os painéis 13 e 14, através dos métodos de ultra-som e stress wave, na direção longitudinal de propagação

Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)	Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{SW} (MPa)
1	3066	5583	2993	5319	1	3154	5563	3000	5031
2	3108	5737	3003	5355	2	3133	5488	2991	5000
3	3144	5870	3011	5384	3	3134	5491	2984	4979
4	3152	5903	3024	5432	4	3155	5565	2998	5025
5	3154	5911	3030	5452	5	3119	5437	3014	5077
6	3148	5886	3031	5457	6	3112	5415	3006	5050
7	3176	5993	3044	5505	7	3125	5460	3003	5039
8	3204	6099	3047	5515	8	3118	5434	3033	5144
9	3174	5983	3043	5501	9	3148	5538	3032	5137
10	3139	5854	3048	5517	10	3169	5613	3028	5125
11	3162	5940	3039	5487	11	3182	5659	3017	5088
12	3176	5993	3027	5443	12	3187	5679	2983	4975
13	3176	5993	3037	5478	13	3186	5675	3019	5094
14	3169	5965	3024	5432	14	3163	5592	3029	5129
15	3134	5833	3014	5398	15	3158	5576	3018	5090
16	3133	5829	3031	5456	16	3184	5666	3040	5166
17	3144	5873	3043	5501	17	3191	5692	3031	5135
18	3142	5864	3030	5452	18	3183	5664	3009	5060
19	3122	5790	3005	5364	19	3183	5665	3025	5116
20	3126	5804	3003	5358	20	3198	5717	3040	5166
21	3155	5913	3008	5374	21	3168	5610	2991	5000
22	3168	5960	3012	5387	22	3161	5586	2980	4965
23	3180	6006	3012	5390	23	3166	5603	3020	5099
24	3180	6006	3003	5356	24	3159	5578	3023	5109

Tabela C23 – Valores de V e C para os painéis 15 e 16, através dos métodos de ultra-som e stress wave, na direção longitudinal de propagação

Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{SW} (MPa)	Ponto	V _{US} (m/s)	С _{US} (MPa)	V _{sw} (m/s)	C _{SW} (MPa)
1	2995	5220	2861	4762	1	3155	5673	2989	5092
2	2980	5167	2866	4779	2	3146	5641	2984	5077
3	2976	5155	2894	4874	3	3150	5657	2973	5039
4	2988	5196	2893	4870	4	3150	5657	2977	5052
5	2991	5205	2866	4779	5	3144	5634	2986	5083
6	2993	5215	2882	4835	6	3130	5584	2990	5096
7	2994	5217	2910	4927	7	3123	5561	3001	5134
8	3000	5240	2902	4902	8	3138	5614	3006	5151
9	3019	5305	2897	4886	9	3147	5643	3000	5130
10	3022	5317	2911	4931	10	3155	5673	3000	5130
11	3041	5381	2907	4919	11	3169	5725	2996	5117
12	3067	5474	2924	4975	12	3188	5794	2986	5083
13	3060	5449	2933	5006	13	3170	5729	3001	5134
14	3018	5300	2940	5030	14	3164	5707	3008	5158
15	3013	5283	2942	5037	15	3175	5745	2973	5037
16	3065	5467	2911	4933	16	3152	5663	2970	5027
17	3052	5420	2912	4935	17	3165	5711	3005	5147
18	3031	5346	2909	4923	18	3197	5825	3042	5274
19	3042	5387	2899	4892	19	3184	5777	3047	5292
20	3049	5410	2929	4994	20	3176	5751	3042	5274
21	3050	5414	2919	4957	21	3176	5750	3051	5308
22	3024	5321	2892	4866	22	3189	5797	3048	5296
23	2985	5187	2875	4812	23	3187	5790	3045	5285
24	2948	5058	2846	4714	24	3157	5681	3037	5258

Tabela C24 – Valores de V e C para os painéis 17 e 18, através dos métodos de ultra-som e stress wave, na direção longitudinal de propagação

Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)	Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)
1	3126	5501	2993	5042	1	3035	5471	2844	4803
2	3112	5454	3005	5084	2	3050	5526	2870	4894
3	3113	5455	3010	5101	3	3069	5594	2910	5031
4	3145	5567	3009	5097	4	3099	5706	2899	4991
5	3135	5532	3006	5086	5	3132	5828	2933	5111
6	3122	5489	2991	5038	6	3138	5848	2995	5328
7	3152	5592	3003	5078	7	3152	5902	3015	5400
8	3157	5611	3018	5129	8	3173	5980	3044	5503
9	3157	5610	3014	5114	9	3193	6056	3046	5510
10	3153	5597	3006	5086	10	3209	6117	3033	5466
11	3132	5522	3020	5133	11	3218	6149	3023	5429
12	3132	5523	3019	5131	12	3219	6154	3041	5494
13	3132	5523	2994	5046	13	3202	6091	3064	5576
14	3118	5474	2996	5052	14	3183	6019	3070	5597
15	3131	5518	3032	5174	15	3157	5918	3056	5548
16	3164	5635	3055	5256	16	3150	5893	3035	5471
17	3179	5690	3041	5207	17	3158	5925	3040	5489
18	3160	5622	3031	5172	18	3154	5908	3035	5473
19	3153	5597	3027	5159	19	3146	5877	3013	5391
20	3153	5596	3014	5114	20	3152	5902	2999	5342
21	3141	5555	2996	5054	21	3158	5924	3008	5375
22	3118	5475	2986	5019	22	3147	5882	3008	5373
23	3082	5348	2959	4928	23	3135	5840	3002	5353
24	3073	5317	2907	4759	24	3133	5832	3016	5402

Tabela C25 – Valores de V e C para os painéis 19 e 110, através dos métodos de ultra-som e stress wave, na direção longitudinal de propagação

Ponto	V _{us} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)	Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)
1	2825	4748	2724	4393	1	2801	4685	2712	4390
2	2812	4706	2704	4328	2	2822	4754	2705	4367
3	2818	4726	2687	4274	3	2860	4884	2686	4306
4	2823	4742	2712	4354	4	2868	4910	2637	4151
5	2816	4717	2699	4313	5	2864	4898	2619	4094
6	2823	4740	2694	4297	6	2867	4908	2650	4194
7	2829	4764	2714	4360	7	2861	4887	2697	4343
8	2835	4781	2717	4370	8	2864	4896	2680	4288
9	2852	4840	2729	4408	9	2856	4869	2667	4245
10	2865	4883	2737	4433	10	2873	4928	2705	4369
11	2871	4903	2738	4437	11	2904	5033	2712	4390
12	2859	4865	2713	4359	12	2891	4990	2727	4439
13	2840	4799	2713	4357	13	2886	4973	2742	4488
14	2833	4775	2725	4395	14	2882	4960	2733	4461
15	2857	4856	2719	4377	15	2863	4892	2728	4442
16	2874	4915	2725	4397	16	2873	4928	2744	4495
17	2861	4870	2729	4408	17	2880	4953	2730	4449
18	2867	4890	2742	4452	18	2868	4911	2729	4447
19	2881	4940	2752	4483	19	2868	4911	2738	4474
20	2900	5004	2742	4450	20	2869	4915	2721	4420
21	2885	4953	2745	4461	21	2863	4894	2732	4456
22	2884	4950	2750	4478	22	2867	4907	2728	4442
23	2893	4980	2766	4529	23	2873	4926	2717	4409
24	2877	4924	2769	4538	24	2869	4913	2710	4386

Tabela C26 – Valores de V e C para os painéis 21 e 22, através dos métodos de ultra-som e stress wave, na direção longitudinal de propagação

Ponto	V _{us} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)	Ponto	V _{us} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)
1	2903	5083	2730	4495	1	2836	5076	2721	4672
2	2893	5046	2728	4489	2	2835	5072	2726	4690
3	2865	4950	2724	4473	3	2851	5128	2699	4597
4	2854	4910	2700	4396	4	2856	5146	2688	4558
5	2863	4944	2701	4398	5	2843	5100	2721	4670
6	2875	4985	2722	4468	6	2855	5143	2727	4693
7	2875	4985	2736	4512	7	2869	5195	2712	4641
8	2876	4989	2736	4514	8	2864	5176	2706	4621
9	2889	5032	2740	4526	9	2868	5191	2727	4692
10	2880	5003	2734	4507	10	2874	5213	2742	4744
11	2881	5004	2705	4413	11	2886	5256	2754	4785
12	2900	5071	2724	4475	12	2886	5256	2749	4769
13	2888	5028	2751	4564	13	2876	5218	1849	2158
14	2880	5002	2737	4516	14	2866	5183	1858	2178
15	2880	5002	2749	4557	15	2853	5135	2770	4843
16	2868	4961	2764	4606	16	2868	5190	2770	4841
17	2862	4940	2738	4519	17	2886	5254	2763	4817
18	2862	4940	2719	4456	18	2880	5233	2761	4811
19	2850	4898	2680	4330	19	2873	5209	2758	4800
20	2845	4880	2684	4343	20	2904	5320	2756	4793
21	2828	4821	2743	4537	21	2898	5299	2750	4771
22	2811	4764	2751	4563	22	2869	5192	2761	4811
23	2827	4818	2748	4552	23	2874	5211	2779	4873
24	2843	4876	2759	4591	24	2886	5255	2762	4813

Tabela C27 – Valores de V e C para os painéis 23 e 24, através dos métodos de ultra-som e stress wave, na direção longitudinal de propagação

Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)	Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)
1	2833	4744	2715	4356	1	2822	4724	2794	4629
2	2833	4744	2715	4356	2	2818	4710	2789	4613
3	2833	4744	2720	4371	3	2831	4752	2747	4473
4	2838	4760	2727	4394	4	2848	4810	2739	4448
5	2855	4818	2714	4355	5	2857	4842	2750	4483
6	2849	4797	2687	4266	6	2862	4858	2729	4416
7	2861	4838	2700	4307	7	2872	4892	2735	4434
8	2888	4928	2731	4409	8	2860	4850	2737	4443
9	2858	4827	2720	4373	9	2840	4784	2735	4434
10	2850	4802	2705	4324	10	2846	4804	2730	4421
11	2872	4875	2729	4403	11	2839	4781	2727	4409
12	2891	4938	2739	4433	12	2839	4781	2731	4424
13	2909	5002	2727	4394	13	2834	4761	2723	4396
14	2880	4903	2712	4348	14	2828	4741	2724	4401
15	2863	4844	2713	4350	15	2850	4818	2742	4458
16	2873	4877	2728	4398	16	2845	4799	2742	4460
17	2862	4841	2731	4408	17	2839	4780	2726	4407
18	2863	4844	2733	4416	18	2862	4858	2733	4431
19	2851	4803	2729	4403	19	2862	4857	2730	4421
20	2867	4856	2703	4319	20	2874	4898	2715	4373
21	2889	4932	2716	4359	21	2874	4899	2738	4444
22	2855	4816	2751	4472	22	2857	4840	2733	4431
23	2868	4861	2757	4491	23	2845	4801	2733	4431
24	2899	4967	2761	4506	24	2845	4801	2737	4443

Tabela C28 – Valores de V e C para os painéis 25 e 26, através dos métodos de ultra-som e stress wave, na direção longitudinal de propagação

Ponto	V _{US}	C _{US}	V _{SW}	C _{SW} (MPa)	Ponto	V _{US}	C _{US}	V _{SW}	C _{SW} (MPa)
	(11/3)	(1011 0)	(11/3)	(1411 0)	- 1	0704	(1011 8)	(11/3)	(1011 0)
1	2836	4794	2771	4578	1	2791	4323	2771	4263
2	2852	4848	2750	4508	2	2805	4368	2749	4195
3	2863	4884	2744	4487	3	2826	4434	2730	4136
4	2842	4812	2751	4510	4	2851	4511	2738	4161
5	2825	4757	2723	4418	5	2840	4476	2748	4190
6	2846	4827	2736	4460	6	2827	4436	2745	4182
7	2845	4823	2754	4520	7	2838	4470	2738	4161
8	2839	4804	2730	4443	8	2846	4495	2714	4088
9	2845	4825	2699	4342	9	2846	4495	2696	4034
10	2844	4820	2702	4352	10	2835	4460	2707	4068
11	2873	4919	2726	4428	11	2853	4516	2741	4171
12	2870	4909	2721	4411	12	2874	4584	2725	4120
13	2852	4849	2736	4462	13	2874	4583	2714	4089
14	2857	4864	2747	4496	14	2886	4623	2747	4188
15	2856	4863	2721	4413	15	2902	4675	2746	4185
16	2862	4881	2716	4398	16	2903	4677	2743	4177
17	2875	4926	2746	4494	17	2892	4642	2689	4012
18	2875	4927	2739	4472	18	2880	4603	2663	3936
19	2868	4901	2732	4448	19	2885	4618	2729	4134
20	2868	4903	2748	4501	20	2879	4599	2870	4570
21	2875	4928	2761	4543	21	2880	4603	2891	4639
22	2863	4885	2766	4560	22	2874	4584	2811	4385
23	2861	4880	2767	4563	23	2867	4563	2820	4414
24	2862	4882	2775	4588	24	2861	4542	2811	4387

Tabela C29 – Valores de V e C para os painéis 27 e 28, através dos métodos de ultra-som e stress wave, na direção longitudinal de propagação

Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)	Ponto	V _{us} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)
1	2789	4318	2691	4018	1	2880	4861	2771	4501
2	2801	4355	2713	4085	2	2874	4840	2775	4513
3	2830	4446	2744	4180	3	2868	4821	2766	4483
4	2834	4456	2685	4000	4	2876	4847	2761	4466
5	2804	4363	2664	3939	5	2858	4786	2767	4487
6	2788	4315	2708	4069	6	2845	4742	2752	4439
7	2811	4385	2717	4099	7	2862	4800	2753	4442
8	2828	4438	2730	4137	8	2865	4811	2767	4487
9	2839	4473	2739	4163	9	2855	4778	2755	4449
10	2845	4491	2726	4125	10	2874	4841	2767	4487
11	2833	4454	2721	4109	11	2873	4836	2790	4562
12	2856	4527	2729	4133	12	2844	4739	2793	4573
13	2868	4566	2732	4144	13	2845	4744	2793	4571
14	2870	4570	2750	4198	14	2841	4728	2770	4496
15	2880	4602	2735	4150	15	2827	4684	2728	4360
16	2877	4593	2740	4167	16	2812	4633	2710	4305
17	2902	4674	2744	4180	17	2795	4579	2684	4222
18	2910	4699	2732	4142	18	2818	4653	2677	4198
19	2893	4645	2752	4204	19	2836	4714	2716	4323
20	2882	4611	2739	4164	20	2812	4633	2738	4392
21	2870	4571	2721	4109	21	2787	4552	2730	4369
22	2870	4571	2742	4174	22	2787	4553	2711	4306
23	2875	4588	2735	4152	23	2777	4521	2700	4271
24	2875	4588	2721	4109	24	2772	4502	2717	4327

Tabela C30 – Valores de V e C para os painéis 29 e 210, através dos métodos de ultra-som e stress wave, na direção longitudinal de propagação

Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)	Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{SW} (MPa)
1	2411	3335	2210	2803	1	2407	3574	2274	2062
2	2436	3407	2224	2840	2	2513	3618	2258	2922
3	2443	3425	2234	2865	3	2493	3561	2250	2901
4	2443	3426	2217	2820	4	2511	3613	2260	2926
5	2478	3526	2193	2760	5	2510	3611	2255	2914
6	2469	3498	2177	2721	6	2450	3439	2245	2887
7	2443	3426	2197	2770	7	2451	3441	2241	2878
8	2452	3450	2229	2852	8	2449	3437	2237	2868
9	2477	3522	2019	2339	9	2477	3515	2229	2846
10	2492	3566	2006	2309	10	2532	3675	2227	2843
11	2481	3534	2208	2798	11	2523	3648	2239	2873
12	2472	3509	2195	2765	12	2513	3618	2247	2892
13	2494	3570	2187	2744	13	2519	3636	2265	2939
14	2512	3622	2191	2754	14	2490	3551	2285	2993
15	2495	3573	2213	2810	15	2492	3559	2271	2955
16	2506	3604	2230	2854	16	2505	3596	2257	2919
17	2524	3656	2223	2836	17	2532	3672	2268	2948
18	2528	3669	2230	2854	18	2557	3747	2276	2968
19	2518	3640	2231	2856	19	2513	3617	2257	2920
20	2494	3570	2208	2799	20	2489	3548	2225	2837
21	2494	3571	2210	2803	21	2487	3545	2204	2782
22	2524	3655	2215	2817	22	2492	3557	2203	2781
23	2522	3652	2204	2789	23	2493	3561	2214	2808
24	2509	3614	2222	2835	24	2481	3526	2200	2774
25	2528	3669	2244	2891	25	2487	3543	2172	2703
26	2520	3644	2255	2918	26	2484	3535	2166	2688
27	2510	3616	2229	2852	27	2475	3510	2182	2728
28	2504	3599	2179	2726	28	2466	3484	2200	2774
29	2479	3527	2166	2694	29	2463	3476	2206	2787
30	2495	3573	2186	2743	30	2440	3412	2209	2796
31	2492	3566	2221	2831	31	2428	3377	2223	2832
32	2495	3572	2251	2909	32	2453	3448	2225	2837
33	2542	3708	2249	2903	33	2453	3448	2211	2802
34	2560	3760	2250	2905	34	2451	3441	2210	2800
35	2560	3761	2245	2894	35	2463	3477	2214	2808
36	2514	3628	2217	2822	36	2453	3449	2187	2741
37	2486	3549	2190	2753	37	2420	3355	2160	2673
38	2468	3497	2201	2782	38	2411	3332	2163	2682
39	2444	3428	2207	2796	39	2465	3481	2185	2734
40	2477	3522	2206	2792	40	2490	3554	2213	2806
41	2530	3673	2224	2838	41	2499	3578	2233	2858
42	2536	3693	2236	2869	42	2522	3644	2231	2851
43	2509	3613	2253	2915	43	2505	3597	2228	2844
44	2505	3601	2243	2887	44	2501	3583	2245	2889
45	2523	3655	2245	2892	45	2492	3559	2246	2891
46	2541	3707	2275	2971	46	2459	3466	2245	2887
47	2532	3680	2268	2952	47	2466	3483	2239	2873
48	2501	3590	2254	2916	48	2475	3510	2219	2821

Tabela C31 – Valores de V e C para os painéis 11 e 12, através dos métodos de ultrasom e stress wave, na direção transversal de propagação

Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)	Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)
1	2474	3569	2256	2968	1	2496	3520	2235	2822
2	2469	3553	2240	2925	2	2514	3572	2241	2836
3	2469	3555	2224	2884	3	2541	3649	2268	2906
4	2467	3549	2223	2881	4	2535	3631	2296	2978
5	2461	3530	2244	2936	5	2527	3608	2288	2959
6	2488	3610	2282	3037	6	2530	3615	2300	2989
7	2524	3713	2293	3065	7	2510	3560	2279	2936
8	2653	4103	2299	3081	8	2482	3482	2213	2767
9	2654	4105	2271	3006	9	2454	3404	2208	2755
10	2528	3727	2246	2941	10	2448	3385	2219	2783
11	2525	3718	2248	2947	11	2480	3476	2220	2785
12	2512	3678	2240	2925	12	2480	3474	2208	2754
13	2487	3606	2238	2921	13	2475	3462	2217	2778
14	2461	3531	2229	2897	14	2489	3499	2222	2790
15	2453	3507	2244	2936	15	2468	3442	2201	2737
16	2453	3509	2236	2914	16	2449	3387	2210	2759
17	2471	3559	2195	2808	17	2435	3350	2209	2757
18	2489	3610	2200	2822	18	2471	3450	2221	2787
19	2479	3584	2220	2874	19	2503	3541	2217	2778
20	2495	3630	2230	2899	20	2467	3438	2227	2802
21	2490	3616	2241	2928	21	2449	3389	2245	2849
22	2466	3545	2248	2945	22	2476	3463	2213	2767
23	2488	3608	2239	2923	23	2514	3571	2228	2804
24	2525	3717	2242	2930	24	2497	3523	2250	2862
25	2514	3685	2236	2914	25	2443	3371	2234	2820
26	2501	3646	2218	2868	26	2443	3371	2248	2856
27	2507	3665	2231	2903	27	2459	3417	2248	2854
28	2509	3669	2238	2919	28	2450	3392	2227	2802
29	2501	3647	2226	2890	29	2460	3418	2238	2831
30	2485	3599	2235	2912	30	2484	3487	2253	2869
31	2494	3627	2233	2906	31	2485	3490	2241	2838
32	2494	3627	2227	2892	32	2479	3473	2227	2802
33	2489	3612	2234	2910	33	2472	3452	2229	2808
34	2521	3706	2243	2932	34	2435	3351	2243	2842
35	2545	3775	2264	2989	35	2465	3434	2242	2840
36	2527	3723	2265	2991	36	2493	3510	2222	2788
37	2521	3707	2255	2964	37	2458	3414	2241	2838
38	2525	3716	2236	2916	38	2467	3440	2220	2785
39	2522	3708	2219	2870	39	2493	3512	2213	2766
40	2521	3707	2221	2875	40	2502	3536	2243	2842
41	2475	3570	2206	2838	41	2476	3463	2211	2762
42	2438	3466	2195	2808	42	2459	3416	2197	2728
43	2451	3502	2193	2805	43	2462	3425	2215	2771
44	2452	3504	2201	2826	44	2466	3437	2221	2787
45	2449	3497	2199	2820	45	2475	3461	2227	2802
46	2451	3502	2182	2775	46	2495	3516	2233	2818
47	2430	3443	2198	2817	47	2494	3513	2219	2781
48	2420	3415	2195	2808	48	2470	3447	2209	2757

Tabela C32 – Valores de V e C para os painéis 13 e 14, através dos métodos de ultrasom e stress wave, na direção transversal de propagação

Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)	Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{SW} (MPa)
1	2445	2552	2206	2800	1	2461	2296	2220	2902
2	2443	3546	2200	2030	2	2401	3335	2239	2766
3	2440	3561	2217	2920	3	2459	3381	2224	2776
4	2476	3642	2226	2944	4	2400	3435	2226	2769
5	2506	3729	2264	3045	5	2437	3319	2190	2681
6	2505	3728	2204	3082	6	2436	3318	2189	2679
7	2469	3621	2215	2913	7	2476	3427	2204	2714
8	2459	3591	2191	2852	8	2481	3441	2205	2718
9	2483	3662	2201	2879	9	2481	3442	2219	2754
10	2457	3586	2195	2861	10	2460	3382	2187	2673
11	2468	3618	2216	2917	11	2415	3261	2164	2617
12	2505	3729	2237	2972	12	2413	3255	2189	2679
13	2495	3697	2236	2969	13	2451	3358	2218	2750
14	2474	3637	2209	2899	14	2485	3453	2250	2831
15	2482	3661	2159	2769	15	2486	3455	2253	2837
16	2474	3635	2147	2737	16	2488	3460	2222	2760
17	2451	3567	2206	2891	17	2505	3508	2237	2797
18	2486	3673	2245	2995	18	2531	3581	2246	2820
19	2510	3743	2248	3003	19	2521	3554	2236	2794
20	2503	3722	2253	3014	20	2478	3433	2241	2808
21	2460	3594	2243	2987	21	2453	3364	2201	2708
22	2447	3557	2223	2935	22	2445	3341	2203	2713
23	2476	3641	2199	2872	23	2450	3355	2244	2815
24	2515	3756	2197	2866	24	2494	3476	2263	2864
25	2532	3809	2208	2895	25	2520	3550	2248	2826
26	2506	3730	2202	2881	26	2511	3525	2248	2824
27	2523	3782	2208	2895	27	2519	3547	2266	2869
28	2548	3857	2233	2961	28	2528	3572	2264	2866
29	2513	3751	2263	3041	29	2540	3607	2252	2835
30	2472	3629	2236	2969	30	2520	3551	2234	2790
31	2470	3625	2196	2865	31	2495	3480	2238	2799
32	2477	3644	2182	2828	32	2506	3512	2230	2780
33	2460	3595	2166	2788	33	2534	3589	2218	2750
34	2419	3476	2191	2850	34	2506	3512	2230	2780
35	2419	3475	2219	2926	35	2462	3388	2236	2794
36	2444	3547	2225	2941	36	2446	3343	2220	2755
37	2471	3626	2238	2976	37	2435	3313	2209	2728
38	2516	3760	2254	3018	38	2469	3407	2213	2738
39	2528	3798	2297	3135	39	2489	3463	2226	2771
40	2482	3660	2302	3149	40	2459	3381	2215	2743
41	2504	3725	2266	3049	41	2457	3374	2182	2663
42	2542	3838	2243	2989	42	2449	3352	2182	2663
43	2531	3805	2248	3001	43	2441	3331	2192	2686
44	2546	3851	2270	3061	44	2435	3315	2199	2703
45	2531	3805	2264	3045	45	2403	3229	2219	2/52
40	2486	30/2	2264	3045	40	2407	3237	2218	2/50
4/	24//	3645	2282	3094	4/	2424	3285	2216	2/45
4ð	2470	3024	2201	3090	4ð	2451	3338	ZZ 14	2/40

Tabela C33 – Valores de V e C para os painéis 15 e 16, através dos métodos de ultrasom e stress wave, na direção transversal de propagação

Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)	Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{SW} (MPa)
1	2186	2781	2017	2368	1	2462	3455	2252	2801
2	2195	2805	2019	2373	2	2471	3480	2231	2836
3	2216	2858	2021	2376	3	2493	3544	2217	2801
4	2228	2889	2042	2427	4	2506	3580	2225	2822
5	2246	2936	2080	2518	5	2483	3514	2239	2858
6	2243	2929	2098	2563	6	2459	3446	2255	2898
7	2239	2916	2073	2500	7	2465	3465	2256	2902
8	2260	2972	2056	2460	8	2457	3442	2236	2850
9	2261	2974	2035	2410	9	2405	3297	2219	2808
10	2261	2974	2023	2383	10	2396	3273	2244	2870
11	2261	2975	2050	2447	11	2454	3432	2255	2900
12	2241	2922	2055	2458	12	2464	3461	2250	2887
13	2234	2905	2045	2434	13	2476	3494	2258	2905
14	2211	2846	2034	2409	14	2521	3622	2255	2898
15	2232	2900	2044	2433	15	2521	3622	2258	2905
16	2264	2982	2073	2502	16	2501	3564	2255	2898
17	2256	2962	2085	2530	17	2493	3543	2237	2852
18	2247	2938	2090	2542	18	2513	3600	2219	2806
19	2217	2861	2085	2530	19	2513	3600	2217	2802
20	2226	2885	2083	2525	20	2486	3524	2224	2818
21	2226	2885	2085	2531	21	2477	3496	2217	2802
22	2224	2880	2062	2475	22	2483	3515	2197	2751
23	2226	2884	2023	2382	23	2475	3491	2194	2744
24	2212	2848	1999	2325	24	2457	3441	2205	2771
25	2205	2830	2006	2343	25	2472	3482	2217	2802
26	2205	2830	2003	2336	26	2488	3528	2250	2885
27	2198	2811	2007	2345	27	2484	3518	2238	2856
28	2203	2824	2052	2450	28	2513	3601	2229	2831
29	2231	2898	2092	2548	29	2540	3678	2254	2896
30	2247	2939	2066	2484	30	2524	3630	2245	2874
31	2245	2933	2035	2410	31	2514	3603	2241	2861
32	2233	2901	2026	2388	32	2493	3543	2236	2850
33	2227	2886	2009	2348	33	2472	3484	2217	2802
34	2216	2857	2015	2363	34	2464	3461	2211	2787
35	2213	2851	2009	2348	35	2431	3370	2210	2785
36	2202	2821	2010	2351	36	2399	3280	2178	2705
37	2196	2808	2031	2401	37	2392	3262	2166	2674
38	2231	2897	2032	2402	38	2416	3328	2180	2710
39	2233	2902	2061	2472	39	2477	3497	2194	2744
40	2238	2916	2094	2552	40	2513	3599	2213	2790
41	2272	3003	2097	2558	41	2518	3614	2216	2799
42	2301	3082	2077	2510	42	2502	3568	2200	2759
43	2315	3120	2075	2506	43	2465	3464	2217	2802
44	2274	3010	2076	2509	44	2457	3442	2260	2911
45	2225	2882	2052	2450	45	2481	3508	2255	2900
46	2218	2864	2022	2379	46	2505	3576	2236	2849
47	2220	2867	1994	2315	47	2496	3550	2229	2833
48	2185	2778	2002	2333	48	2503	3571	2219	2808

Tabela C34 – Valores de V e C para os painéis 17 e 18, através dos métodos de ultrasom e stress wave, na direção transversal de propagação

Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)	Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)
1	2440	3352	2201	2729	1	2475	3638	2226	2944
2	2431	3329	2190	2700	2	2490	3684	2248	3003
3	2446	3369	2209	2747	3	2499	3710	2296	3131
4	2466	3423	2249	2848	4	2501	3715	2300	3143
5	2479	3460	2243	2832	5	2531	3805	2318	3192
6	2532	3611	2225	2787	6	2504	3725	2331	3228
7	2532	3610	2225	2787	7	2483	3664	2309	3167
8	2476	3451	2228	2794	8	2483	3662	2313	3178
9	2457	3399	2224	2785	9	2457	3586	2296	3133
10	2449	3377	2211	2753	10	2476	3641	2254	3018
11	2423	3305	2204	2734	11	2461	3597	2204	2884
12	2408	3266	2182	2680	12	2418	3474	2217	2920
13	2424	3307	2155	2615	13	2457	3587	2242	2986
14	2438	3347	2170	2652	14	2485	3670	2244	2991
15	2440	3351	2212	2754	15	2463	3602	2263	3043
16	2449	3377	2219	2772	16	2453	3576	2260	3033
17	2460	3408	2208	2746	17	2442	3543	2278	3082
18	2471	3437	2229	2798	18	2451	3568	2235	2967
19	2501	3522	2219	2773	19	2462	3600	2203	2882
20	2479	3460	2208	2746	20	2479	3650	2233	2963
21	2483	3472	2217	2768	21	2514	3755	2241	2982
22	2514	3559	2234	2810	22	2539	3829	2305	3157
23	2510	3546	2286	2942	23	2540	3831	2310	3170
24	2528	3597	2253	2859	24	2496	3700	2267	3053
25	2532	3611	2222	2779	25	2493	3691	2248	3001
26	2539	3630	2231	2803	26	2518	3766	2227	2946
27	2517	3568	2229	2796	27	2450	3565	2224	2939
28	2507	3539	2237	2817	28	2410	3450	2206	2890
29	2502	3524	2192	2705	29	2410	3451	2183	2831
30	2479	3459	2208	2746	30	2428	3501	2196	2865
31	2436	3341	2258	2871	31	2470	3624	2213	2910
32	2375	3176	2236	2814	32	2474	3637	2212	2906
33	2413	3279	2221	2777	33	2481	3657	2183	2831
34	2416	3286	2219	2773	34	2500	3713	2180	2822
35	2336	3073	2187	2693	35	2500	3713	2219	2924
30	2352	3115	2108	2647	30	2477	3643	2238	2976
37	2417	3288	2180	2075	37	2460	3594	2244	2991
38	2433	3334	2202	2730	38	2478	3040	2185	2830
39	2420	2260	2210	2701	39	2470	3023	2109	2790
40	2409	3200	2190	2/12	40	2400	3000	2190	2003
41 12	2429 2453	3386	21/9	2073	41	2400	3574	2202	200 I 2803
42 12	2400	3300	2191 2212	2703	42	2400	3576	2207	2090
40	2449	3383	2212	2780	43	2400	3542	2197	2000
44	2401	3452	2242	2822	44	2442 2/12	3450	∠19 4 2191	2009
46	2503	3527	2240	2000	46	2413	3430	2101	2020
47	2000	3402	2207	2857	47	2400	3477	2200	2800
48	2458	3402	2191	2703	48	2425	3492	2224	2937

Tabela C35 – Valores de V e C para os painéis 19 e 110, através dos métodos de ultrasom e stress wave, na direção transversal de propagação

Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)	Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)
1	2552	3874	2314	3171	1	2514	3773	2182	2844
2	2524	3789	2269	3046	2	2532	3826	2205	2902
3	2494	3702	2219	2916	3	2530	3820	2237	2987
4	2460	3602	2210	2891	4	2512	3767	2213	2924
5	2434	3526	2180	2815	5	2483	3681	2126	2699
6	2430	3513	2164	2773	6	2461	3617	2085	2596
7	2440	3544	2175	2801	7	2466	3630	2133	2717
8	2488	3684	2185	2825	8	2475	3656	2151	2761
9	2510	3749	2196	2855	9	2505	3747	2107	2651
10	2519	3776	2165	2775	10	2551	3885	2156	2775
11	2538	3832	2167	2780	11	2565	3927	2224	2954
12	2506	3738	2203	2873	12	2559	3910	1254	939
13	2484	3673	2157	2755	13	2588	3999	1254	939
14	2488	3682	2161	2765	14	2589	4000	2216	2932
15	2468	3624	2184	2823	15	2558	3907	2210	2917
16	2464	3611	2187	2832	16	2517	3781	2157	2777
17	2457	3593	2206	2882	17	2483	3681	2154	2770
18	2482	3666	2222	2922	18	2485	3688	2209	2913
19	2527	3799	2273	3058	19	2519	3788	2210	2917
20	2521	3781	2242	2976	20	2567	3934	2208	2911
21	2519	3774	2204	2875	21	2569	3941	2189	2861
22	2531	3812	2238	2966	22	2578	3969	2223	2950
23	2531	3813	2232	2949	23	2577	3963	2262	3055
24	2499	3716	2196	2855	24	2540	3852	2238	2991
25	2457	3593	2201	2869	25	2524	3803	2168	2807
26	2453	3580	2199	2862	26	2512	3766	2161	2787
27	2460	3600	2189	2837	27	2509	3759	2168	2805
28	2477	3650	2210	2891	28	2499	3727	1095	716
29	2511	3751	2249	2994	29	2510	3762	755	340
30	2529	3806	2274	3062	30	2558	3905	1149	788
31	2522	3784	2252	3002	31	2574	3957	2227	2961
32	2503	3727	2220	2918	32	2584	3988	2224	2952
33	2502	3724	2208	2887	33	2603	4046	2231	2970
34	2476	3648	2209	2889	34	2574	3957	2217	2933
35	2434	3524	2222	2922	35	2492	3708	2208	2911
36	2426	3501	2245	2983	36	2455	3597	1557	1448
37	2451	3574	2189	2836	37	2455	3597	1526	1390
38	2501	3721	2155	2750	38	2449	3581	2112	2663
39	2537	3829	2212	2896	39	2466	3632	2120	2683
40	2567	3921	2231	2947	40	2484	3683	2098	2629
41	2607	4044	2222	2922	41	2466	3631	2096	2623
42	2598	4017	2239	2968	42	2494	3712	2155	2773
43	2558	3894	2252	3002	43	2527	3814	2205	2902
44	2512	3756	2241	2974	44	2507	3752	2203	2897
45	2480	3659	2275	3064	45	2485	3687	2219	2939
46	2462	3608	2239	2968	46	2459	3611	2199	2886
47	2451	3574	2212	2896	47	2434	3536	2144	2743
48	2447	3562	2210	2891	48	2417	3488	2134	2718

Tabela C36 – Valores de V e C para os painéis 21 e 22, através dos métodos de ultrasom e stress wave, na direção transversal de propagação

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	006622552435
2 2517 3817 2240 3025 3 2457 3810 2247 3186 4 2550 3922 2224 2982 4 2477 3870 2258 3216 5 2574 3995 2166 2830 5 2514 3988 2249 3192 6 2542 3895 2188 2886 6 2551 4105 2238 3162 7 2501 3771 2221 2974 7 2577 4189 2229 3136 8 2457 3639 2204 2928 8 2565 4151 2229 3136 9 2449 3617 2192 2897 9 2521 4010 2227 3130 10 2489 3737 2190 2892 10 2515 3990 2236 3154	6 6 2 2 6 5 7 4 3 5
4 2550 3922 2224 2982 4 2477 3870 2258 3216 5 2574 3995 2166 2830 5 2514 3988 2249 3192 6 2542 3895 2188 2886 6 2551 4105 2238 3162 7 2501 3771 2221 2974 7 2577 4189 2229 3136 8 2457 3639 2204 2928 8 2565 4151 2229 3136 9 2449 3617 2192 2897 9 2521 4010 2227 3130 10 2489 3737 2190 2892 10 2515 3990 2236 3154	6 2 2 6 2 2 6 2 2 6 5 7 4 3 5
5 2574 3995 2166 2830 5 2514 3988 2249 3192 6 2542 3895 2188 2886 6 2551 4105 2238 3162 7 2501 3771 2221 2974 7 2577 4189 2229 3136 8 2457 3639 2204 2928 8 2565 4151 2229 3136 9 2449 3617 2192 2897 9 2521 4010 2227 3130 10 2489 3737 2190 2892 10 2515 3990 2236 3154	2 2 2 3 3 3 4 3 3
6254238952188288662551410522383162725013771222129747257741892229313682457363922042928825654151222931369244936172192289792521401022273130102489373721902892102515399022363154	2 6 6 7 4 3 5
725013771222129747257741892229313682457363922042928825654151222931369244936172192289792521401022273130102489373721902892102515399022363154	6 6 0 4 3 5
8 2457 3639 2204 2928 8 2565 4151 2229 3136 9 2449 3617 2192 2897 9 2521 4010 2227 3130 10 2489 3737 2190 2892 10 2515 3990 2236 3154	6 0 4 3 3
9 2449 3617 2192 2897 9 2521 4010 2227 3130 10 2489 3737 2190 2892 10 2515 3990 2236 3154	0 4 3 3
10 2489 3737 2190 2892 10 2515 3990 2236 3154	4 3 3
	B 3
11 2511 3801 2197 2910 11 2501 3947 2230 3138	3
12 2524 3840 2210 2946 12 2455 3804 2201 3056	-
13 2542 3897 2226 2987 13 2457 3811 2177 2991	1
14 2561 3955 2263 3087 14 2487 3902 2192 3032	2
15 2574 3996 2270 3107 15 2532 4046 2241 3170	D
16 2572 3990 2258 3075 16 2566 4154 2243 3174	4
17 2546 3908 2285 3147 17 2572 4176 2226 3128	3
18 2512 3806 2253 3060 18 2565 4150 2246 3184	4
19 2469 3676 2206 2935 19 2548 4098 2200 3054	4
20 2459 3647 2205 2932 20 2526 4026 2132 2868	3
21 2494 3751 2208 2941 21 2484 3893 2173 2980	3
22 2509 3797 2226 2989 22 2460 3819 2218 3104	4
23 2529 3858 2263 3089 23 2477 3870 2215 3095	5
24 2557 3941 2236 3014 24 2505 3961 2215 3097	7
25 2567 3973 2244 3037 25 2531 4041 2223 3118	3
26 2577 4004 2249 3050 26 2549 4100 2260 3222	2
27 2574 3994 2309 3215 27 2568 4161 2265 3237	7
28 2557 3942 2325 3260 28 2594 4246 2253 3204	4
29 2514 3812 2221 2974 29 2565 4152 2239 3164	4
30 2474 3692 2166 2830 30 2521 4010 2159 2940	2
31 2475 3693 2164 2825 31 2488 3906 2168 2967	7
32 2506 3786 2212 2950 32 2453 3797 2220 3110)
<u>33 2548 3915 2233 3006 33 2444 3769 2213 3091</u>	1
34 2592 4053 2238 3019 34 2476 3868 2218 3104	4
35 2632 4179 2241 3027 35 2536 4058 2214 3093	3
36 2626 4157 2256 3070 36 2574 4179 2217 3100)
37 2587 4036 2253 3060 37 2567 4157 2230 3138	3
38 2540 3891 2178 2862 38 2557 4124 2268 3245	S
39 2510 3798 2168 2834 39 2527 4030 2288 3304 10 260 270 2017 2025 10 2527 4030 2288 3304	+
40 2499 3766 2217 2965 40 2504 3955 2187 3019	J O
41 2504 3780 2215 2957 41 2489 3908 2151 2920	J
4Z Z5Z1 3854 ZZU9 Z943 4Z Z451 3792 ZZU9 3075	1
43 2344 3903 2224 2983 43 2434 3739 2206 3072	<u>۲</u>
44 2000 3940 2279 3131 44 2430 3744 2180 2998	3 0
45 2505 3907 2250 3070 45 2401 3823 2191 3026	3 0
40 2031 4047 2210 2907 40 2400 3900 2241 3100	נ ר
47 2517 4005 2241 5029 47 2501 5945 2249 5192 48 2531 3864 2256 3070 48 2519 4003 2250 310/	<u>~</u>

Tabela C37 – Valores de V e C para os painéis 23 e 24, através dos métodos de ultrasom e stress wave, na direção transversal de propagação

Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)	Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)
1	2479	3632	2248	2986	1	2542	3832	2305	3150
2	2471	3607	2248	2986	2	2546	3845	2302	3144
3	2453	3557	2228	2933	3	2533	3804	2268	3050
4	2444	3531	2176	2800	4	2478	3640	2217	2916
5	2418	3457	2176	2798	5	2452	3565	2155	2755
6	2409	3429	2213	2895	6	2466	3607	2134	2702
7	2469	3602	2172	2788	7	2473	3626	2216	2912
8	2512	3729	2171	2786	8	2477	3640	2255	3015
9	2527	3775	2224	2924	9	2494	3688	2228	2943
10	2530	3783	2218	2908	10	2544	3838	2257	3021
11	2503	3704	2229	2935	11	2565	3903	2185	2830
12	2484	3646	2231	2941	12	2532	3801	2191	2847
13	2443	3526	2209	2884	13	2514	3748	2291	3113
14	2426	3479	2207	2879	14	2515	3751	2236	2964
15	2449	3545	2191	2838	15	2515	3751	2210	2897
16	2483	3643	2218	2908	16	2496	3695	2210	2897
17	2519	3750	2250	2993	17	2469	3615	2195	2858
18	2556	3860	2260	3018	18	2469	3615	2243	2984
19	2600	3996	2327	3201	19	2519	3763	2296	3125
20	2594	3976	2332	3214	20	2565	3902	2315	3179
21	2548	3835	2301	3129	21	2584	3958	2311	3166
22	2533	3793	2264	3030	22	2581	3949	2315	3179
23	2510	3722	2229	2937	23	2566	3905	2324	3202
24	2485	3650	2220	2913	24	2569	3914	2291	3113
25	2485	3650	2215	2900	25	2550	3857	2229	2947
26	2485	3650	2233	2946	26	2501	3710	2200	2870
27	2512	3730	2239	2963	27	2482	3652	2205	2883
28	2556	3862	2265	3032	28	2500	3706	2204	2881
29	2580	3934	2283	3081	29	2527	3786	2238	2969
30	2562	3880	2276	3061	30	2544	3839	2254	3013
31	2575	3920	2274	3057	31	2561	3891	2236	2966
32	2569	3901	2263	3028	32	2575	3933	2245	2990
33	2518	3747	2246	2982	33	2551	3860	2293	3119
34	2500	3693	2245	2980	34	2540	3826	2285	3095
35	2504	3706	2246	2982	35	2531	3800	2241	2979
36	2503	3704	2233	2948	36	2512	3741	2237	2967
37	2502	3700	2222	2917	37	2500	3707	2233	2958
38	2521	3757	2215	2898	38	2499	3702	2203	2878
39	2540	3812	2254	3003	39	2510	3736	2144	2725
40	2582	3941	2316	3170	40	2542	3833	2168	2788
41	2620	4058	2287	3091	41	2560	3887	2226	2939
42	2566	3891	2233	2948	42	2550	3856	2182	2823
43	2503	3703	2210	2888	43	2537	3818	2183	2826
44	2448	3543	2190	2834	44	2511	3738	2236	2964
45	2430	3491	2186	2824	45	2495	3690	2197	2862
46	2447	3539	2165	2//1	46	24//	3639	2182	2825
4/	2438	3512	2200	2861	4/	2470	3617	2208	2892
48	2472	3611	2265	3032	48	2442	3535	2214	2906

Tabela C38 – Valores de V e C para os painéis 25 e 26, através dos métodos de ultrasom e stress wave, na direção transversal de propagação

Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{sw} (MPa)	Ponto	V _{US} (m/s)	C _{US} (MPa)	V _{sw} (m/s)	C _{SW} (MPa)
1	2550	3876	2278	3003	1	2459	3355	2252	2814
2	2527	3807	2260	3044	2	2484	3424	2253	2818
3	2528	3808	2264	3055	3	2530	3552	2223	2742
4	2569	3933	2209	2908	4	2558	3631	2201	2690
5	2558	3899	2132	2709	5	2584	3706	2185	2649
6	2521	3789	2106	2643	6	2603	3760	2201	2688
7	2503	3735	2164	2792	7	2600	3753	2208	2705
8	2485	3681	2234	2975	8	2574	3677	2204	2697
9	2470	3636	2217	2928	9	2521	3529	2206	2700
10	2457	3598	2213	2919	10	2486	3430	2161	2591
11	2498	3720	2224	2949	11	2453	3339	2199	2683
12	2547	3865	2235	2977	12	2433	3286	2261	2838
13	2531	3818	2197	2878	13	2459	3357	2247	2802
14	2540	3846	2239	2988	14	2522	3530	2248	2806
15	2568	3930	2283	3107	15	2574	3677	2263	2842
16	2524	3795	2233	2973	16	2594	3736	2302	2942
17	2515	3770	2216	2927	17	2586	3710	2326	3002
18	2530	3815	2217	2928	18	2546	3597	2282	2891
19	2503	3733	2224	2947	19	2526	3542	2257	2827
20	2512	3762	2243	2999	20	2508	3492	2238	2781
21	2539	3843	2255	3032	21	2486	3429	2217	2729
22	2560	3906	2248	3013	22	2486	3429	2224	2744
23	2587	3988	2268	3065	23	2510	3497	2189	2658
24	2576	3956	2288	3121	24	2520	3525	2191	2663
25	2557	3896	2281	3101	25	2495	3456	2250	2811
26	2536	3834	2238	2986	26	2522	3529	2243	2793
27	2474	3648	2206	2899	27	2538	3576	2245	2798
28	2433	3529	2199	2883	28	2501	3472	2234	2770
29	2425	3504	2178	2827	29	2492	3445	2216	2725
30	2407	3452	2187	2851	30	2466	3375	2176	2629
31	2439	3545	2169	2804	31	2430	3277	2151	2567
32	2500	3725	2195	2872	32	2439	3302	2111	2473
33	2521	3789	2273	3079	33	2460	3358	2131	2521
34	2557	3897	2273	3079	34	2492	3446	2232	2765
35	2586	3984	2256	3034	35	2537	3571	2252	2814
36	2576	3955	2225	2951	36	2556	3626	2242	2790
37	2549	3871	2189	2855	37	2547	3601	2250	2811
38	2524	3796	2149	2752	38	2528	3546	2246	2800
39	2494	3708	2118	2673	39	2500	3469	2238	2779
40	2447	3569	2136	2720	40	2467	3377	2241	2788
41	2441	3551	2229	2960	41	2440	3303	2222	2741
42	2505	3740	2280	3099	42	2425	3265	2153	2572
43	2559	3904	2295	3139	43	2435	3291	2090	2425
44	2579	3963	2206	2901	44	2457	3350	2159	2586
45	2560	3906	2111	2656	45	2498	3463	2232	2765
46	2532	3822	2159	2779	46	2509	3493	2220	2736
47	2524	3796	2230	2964	47	2508	3490	2245	2797
48	2511	3756	2255	3032	48	2499	3465	2258	2831

Tabela C39 – Valores de V e C para os painéis 27 e 28, através dos métodos de ultrasom e stress wave, na direção transversal de propagação

Ponto	V _{US}	C _{US}	V _{SW}	C _{SW}	Ponto	V _{US}	C _{US}	V _{SW}	C _{SW}
1	2411	2226	0000	(IMI d)	1	2462	2554	2207	2065
2	2411	3220	2222	2741	2	2403	3570	2207	3045
2	2413	3269	2213	2697	3	2483	3613	2289	3070
4	2461	3360	2194	2672	4	2482	3611	2200	3035
5	2494	3452	2139	2539	5	2467	3568	2232	2919
6	2519	3523	2203	2693	6	2467	3565	2222	2894
7	2547	3600	2268	2854	7	2473	3584	2224	2899
8	2545	3594	2259	2832	8	2486	3622	2238	2934
9	2547	3601	2311	2965	9	2513	3700	2251	2970
10	2510	3497	2264	2845	10	2539	3779	2233	2921
11	2463	3367	2241	2788	11	2532	3757	2258	2987
12	2482	3420	2248	2806	12	2476	3594	2261	2994
13	2494	3453	2212	2715	13	2468	3569	2221	2890
14	2459	3357	2140	2542	14	2485	3619	2231	2918
15	2457	3350	2092	2428	15	2465	3562	2242	2945
16	2485	3428	2180	2639	16	2417	3422	2238	2936
17	2521	3528	2273	2867	17	2402	3381	2208	2858
18	2555	3624	2241	2786	18	2432	3465	2200	2837
19	2539	3579	2221	2737	19	2466	3563	2237	2932
20	2515	3511	2270	2860	20	2505	3678	2226	2903
21	2504	3479	2291	2912	21	2538	3776	2211	2865
22	2474	3398	2258	2829	22	2538	3776	2222	2892
23	2467	3379	2231	2762	23	2513	3701	2224	2899
24	2475	3399	2243	2791	24	2495	3648	2238	2936
25	2493	3449	2268	2854	25	2485	3620	2258	2987
26	2540	3582	2248	2806	26	2483	3613	2262	2998
27	2549	3607	2224	2746	27	2465	3560	2236	2931
28	2530	3553	2269	2856	28	2493	3642	2234	2925
29	2539	3578	2306	2952	29	2524	3733	2239	2938
30	2542	3585	2262	2840	30	2521	3726	2231	2918
31	2514	3509	2222	2739	31	2521	3726	2243	2949
32	2485	3429	2224	2744	32	2504	3673	2258	2987
33	2459	3357	2213	2717	33	2510	3691	2238	2934
34	2434	3287	2204	2697	34	2535	3766	2229	2910
35	2433	3286	2153	2573	35	2510	3692	2248	2962
36	2457	3350	2141	2544	36	2467	3566	2252	2972
37	2493	3448	2222	2739	37	2412	3409	2240	2940
38	2531	3554	2193	2668	38	2403	3383	2235	2927
39	2519	3523	2173	2621	39	2480	3605	2258	2987
40	2513	3505	2231	2763	40	2517	3713	2265	3006
41	2494	3453	2199	2685	41	2528	3/45	2251	2970
42	2448	3326	2150	2566	42	2528	3/45	2237	2932
43	2425	3264	2157	2581	43	2508	3687	2213	2870
44	2419	3247	21/6	2627	44	24/6	3592	2203	2844
45	2399	3193	2180	2637	45	2423	3441	2163	2/42
40	2413	3232	2185	2050	40	2390	3365	2102	2090
4/	24/4	3391	2245	2198	4/	∠404 2424	3388 2424	2121	2030 2770
4 0	Z400	3429	ZZ00	2900	40	<u>24</u> 2 I	3434	21//	2110

Tabela C40 – Valores de V e C para os painéis 29 e 210, através dos métodos de ultrasom e stress wave, na direção transversal de propagação

Apêndice 🛛

No Apêndice D estão contidos os gráficos de correlações entre os valores dos parâmetros não-destrutivos (V, C e Atn) e os obtidos nos ensaios mecânicos destrutivos ($E_{m//}$, $E_{m\perp}$, $f_{m//}$, $f_{m\perp}$ e AI) e nos ensaios físicos (D, G_t e A_m), referentes a todos os corpos-de-prova ensaiados nos ensaios principais (primeira parte), para os painéis de espessura 15(1) e 25mm, através de medições por ultra-som.

Figura D1 - V_{//} x f_{m//} através do método de ultra-som.

Figura D2 – $V_{//} x F_{max//}$ através do método de ultra-som.

Figura D3 – $C_{//} \times E_{m//}$ através do método de ultra-som.

Figura D4 – V $_{\perp}$ x f_{m \perp} através do método de ultra-som.

Figura D5 - V $_{\perp}$ x F_{max \perp} através do método de ultra-som.

Figura D6 – $C_{\perp} x E_{m^{\perp}}$ através do método de ultra-som.

Figura D7 - $V_d x d$ através do método de ultra-som.

Figura D8 – $V_{AI} \times F_{maxAI}$ através do método de ultra-som.

Figura D9 - V_{AI} x AI através do método de ultra-som.

Figura D10 – C_{AI} x AI através do método de ultra-som.

Figura D11 – $V_{Gt} x G_t$ através do método de ultra-som.

Figura D12 – $C_{Gt} x G_t$ através do método de ultra-som.

Figura D13 - $V_{Am} x A_m$ através do método de ultra-som.

Figura D14 – $C_{Am} x A_m$ através do método de ultra-som.

Apéndice Æ

No Apêndice E estão contidos os gráficos de correlações entre os valores dos parâmetros não-destrutivos (V e C) e os obtidos nos ensaios mecânicos destrutivos ($E_{m//}$, $E_{m\perp}$, $f_{m//}$ e f $_{m\perp}$), referentes a todos os corpos-de-prova ensaiados nos ensaios principais (primeira parte), para os painéis de espessuras 15(1), 15(2) e 25mm, através de medições por stress wave.

Figura E1 – $V_{//}$ x f_{m//} através do método de stress wave – painéis 15(1) e 15(2)mm.

Figura E2 - V_{//} x F_{max//} através do método de stress wave – painéis 15(1) e 15(2)mm.

Figura E3 – $C_{//} \times E_{m//}$ através do método de stress wave – painéis 15(1) e 15(2)mm.

Figura E4 - V_{\perp} x f_{m \perp} através do método de stress wave – painéis 15(1) e 15(2)mm.

Figura E5 - V_{\perp} x F_{max \perp} através do método de stress wave – painéis 15(1) e 15(2)mm.

Figura E6 – C_{\perp} x E_{m^{\perp}} através do método de stress wave – painéis 15(1) e 15(2)mm.

Figura E7 - $V_{//} x f_{m//}$ através do método de stress wave – painéis 15(1) e 25mm.

Figura E8 - V_{//} x F_{max//} através do método de stress wave – painéis 15(1) e 25mm.

Figura E9 – $C_{//} \times E_{m//}$ através do método de stress wave – painéis 15(1) e 25mm.

Figura E10 - V_{\perp} x f_{m^{\perp}} através do método de stress wave – painéis 15(1) e 25mm.

Figura E11 - V_{\perp} x F_{max \perp} através do método de stress wave – painéis 15(1) e 25mm.

Figura E12 – C_{\perp} x E_{m^{\perp}} através do método de stress wave – painéis 15(1) e 25mm.

Figura E13 - $V_{//} x f_{m//}$ através do método de stress wave – painéis 15(2) e 25mm.

Figura E14 - V_{//} x F_{max//} através do método de stress wave – painéis 15(2) e 25mm.

Figura E15 – $C_{//} x E_{m//}$ através do método de stress wave – painéis 15(2) e 25mm.

Figura E16 - V_{\perp} x f_{m^{\perp}} através do método de stress wave – painéis 15(2) e 25mm.

Figura E17 - V⊥ x F_{max}⊥ através do método de stress wave – painéis 15(2) e 25mm.

Figura E18 – C_{\perp} x E_{m^{\perp}} através do método de stress wave – painéis 15(2) e 25mm.

Apéndice S

No Apêndice F estão contidos os gráficos de correlações entre os valores dos parâmetros não-destrutivos (V, C e Atn) e os obtidos nos ensaios mecânicos destrutivos ($E_{m/\prime}$, $E_{m\perp}$, $f_{m/\prime}$ e $f_{m\perp}$), referentes a todos os corpos-de-prova ensaiados nos ensaios principais (segunda parte), para os grupos 1 e 2, através de medições por ultra-som.

Figura F1 – V_{AI} x AI através do método de ultra-som.

Figura F2 – V_{AI} x F_{maxAI} através do método de ultra-som.

Figura F3 – C_{AI} x AI através do método de ultra-som.

Figura F4 – Atn_{AI} x AI através do método de ultra-som.

Figura F5 – $V_d x d$ através do método de ultra-som.

Figura F6 – Atn_d x d através do método de ultra-som.

Figura F7 – $V_{Gt} x G_t$ através do método de ultra-som.

Figura F8 – $C_{Gt} \times G_t$ através do método de ultra-som.

Figura F9 – Atn_{Gt} x G_t através do método de ultra-som.

Figura F10 – $V_{Am} x A_m$ através do método de ultra-som.

Figura F11 – $C_{Am} x A_m$ através do método de ultra-som.

Figura F12 – $Atn_{Am} x A_m$, através do método de ultra-som.

Figura F13 – $V_{//} x f_{m//}$ através do método de ultra-som.

Figura F14 – $V_{//} x F_{max}$ através do método de ultra-som.

Figura F15 – $V_{\perp} \, x \; f_{m \perp}$ através do método de ultra-som.

Figura F16 – $V_{\perp}\,x$ $F_{max \perp}$ através do método de ultra-som.

Figura F17 – $C_{\prime\prime}$ x $E_{m\prime\prime}$ através do método de ultra-som.

Figura F18 – $C_{\perp} x E_{m\perp}$ através do método de ultra-som.

Apêndice G

No Apêndice G estão contidos os gráficos de correlações entre os valores dos parâmetros não-destrutivos (V e C) e os obtidos nos ensaios mecânicos destrutivos ($E_{m//}$, $E_{m\perp}$, f _{m//} e f _m), referentes a todos os corpos-de-prova ensaiados nos ensaios principais (segunda parte), para os grupos 1 e 2, através de medições por stress wave.

Figura G1 – $V_{//} x f_{m//}$ através do método de stress wave – todos os valores.

Figura G2 – $V_{//} x F_{max}$ através do método de stress wave – todos os valores.

Figura G3 – V_{\perp} x $f_{m \perp}$ através do método de stress wave – todos os valores.

Figura G4 – $V_{\perp} x F_{max \perp}$ através do método de stress wave – todos os valores.

Figura G5 – $C_{//} x E_{m//}$ através do método de stress wave – todos os valores.

Figura G6 – $C_{\!\perp} \, x \; E_{m\!\perp}$ através do método de stress wave – todos os valores.

Nas Figuras G7, G8, G9, G10, G11 e G12 estão contidos os gráficos de correlações entre os valores dos parâmetros não-destrutivos (V e C) e os obtidos nos ensaios mecânicos destrutivos ($E_{m/}$, $E_{m\perp}$, f _{m/} e f _m), referentes a todos os corpos-de-prova ensaiados nos

ensaios principais (segunda parte), para os grupos 1 e 2, através de medições por stress wave, excluindo-se os valores de velocidades e de constantes dinâmicas relacionados às leituras discrepantes de tempo no painel 24, na direção longitudinal (ponto de leitura $12_{//}$) e no painel 22, na direção transversal (pontos 12_{\perp} , 28_{\perp} e 29_{\perp}).

Figura G7 – $V_{//} x f_{m//}$ através do método de stress wave.

Figura G8 – $V_{//}$ x F_{max} através do método de stress wave.

Figura G9 – $V_{\perp} \, x \; f_{m \perp}$ através do método de stress wave.

Figura G10 – V_{\perp} x F_{max} através do método de stress wave.

Figura G11 – $C_{\prime\prime}$ x $E_{m\prime\prime}$ através do método de stress wave.

Figura G12 – $C_{\!\perp} \, x \; E_{m\!\perp}$ através do método de stress wave.

Apéndice H

No Apêndice H estão contidos os gráficos de correlações entre os valores médios dos parâmetros não-destrutivos (V, C e Atn) e os obtidos nos ensaios mecânicos destrutivos ($E_{m//}$, $E_{m\perp}$, f_{m/}, f_m e AI) e nos ensaios físicos (d, G_t e A_m), referentes aos ensaios principais (segunda parte), para os grupos 1 e 2, através de medições por ultra-som.

Figura H1 – V_{AI} x AI através do método de ultra-som.

Figura H2 – V_{AI} x F_{maxAI} através do método de ultra-som.

Figura H3 – C_{AI} x AI através do método de ultra-som.

Figura H4 – Atn_{Al} x Al através do método de ultra-som.

Figura $H5 - V_d x d$ através do método de ultra-som.

Figura H6 – Atn_d x d através do método de ultra-som.

Figura H7 – $V_{Gt} x G_t$ através do método de ultra-som.

Figura H8 – $C_{Gt} \times G_t$ através do método de ultra-som.

Figura H9 – Atn_{Gt} x G_t através do método de ultra-som.

Figura H10 – $V_{Am} x A_m$ através do método de ultra-som.

Figura H11 – $C_{Am} x A_m$ através do método de ultra-som.

Figura H12 – Atn_{Am} x A_m, através do método de ultra-som.

Figura H13 – $V_{\prime\prime}$ x f_{m//} através do método de ultra-som.

Figura H14 – $V_{\prime\prime}$ x F_{max} através do método de ultra-som.

Figura H15 – $V_{\perp}\,x\;f_{m\perp}$ através do método de ultra-som.

Figura H16 – $V_{\perp} x F_{max \perp}$ através do método de ultra-som.

Figura H17 – $C_{\prime\prime}$ x $E_{m\prime\prime}$ através do método de ultra-som.

Figura H18 – $C_{\!\perp} \; x \; E_{m\!\perp}$ através do método de ultra-som.

Apéndice 🔊

No Apêndice I estão contidos os gráficos de correlações entre os valores médios dos parâmetros não-destrutivos (V e C) e os obtidos nos ensaios mecânicos destrutivos ($E_{m//}$, $E_{m\perp}$, f_{m/} e f_m), aos ensaios principais (segunda parte), para os grupos 1 e 2, através de medições por stress wave.

Figura I1 – $V_{//} x f_{m//}$ através do método de stress wave.

Figura I2 – $V_{\prime\prime}$ x F_{max} através do método de stress wave.

Figura I3 – $V_{\perp} x f_{m\perp}$ através do método de stress wave.

Figura I4 – V_{\perp} x $F_{max\perp}$ através do método de stress wave.

Figura I5 – $C_{//} \times E_{m//}$ através do método de stress wave.

Figura I6 – $C_{\!\perp} \; x \; E_{m\!\perp}$ através do método de stress wave.

Apéndice A

No Apêndice J estão contidos os gráficos de correlações entre os valores de C e V obtidos nos ensaios dos métodos de ultra-som (US) e stress wave (SW) referentes a todos os corpos-de-prova ensaiados nos ensaios principais (segunda parte), nas direções longitudinal e transversal, para os grupos 1 e 2.

Figura $J1 - V_{I/US} \times V_{I/SW}$ – Todos os valores.

Figura J2 – $V_{\perp_{US}} x V_{\perp_{SW}}$ – Todos os valores.

Figura J3 – C_{//US} x C_{//SW} – Todos os valores.

Figura J4 – $C_{\perp US} \times C_{\perp SW}$ – Todos os valores.

As Figuras J5, J6, J7 e J8 mostram os gráficos de correlações entre os valores de C e V obtidos nos ensaios dos métodos de ultra-som e stress wave retirando-se os corpos-de-prova ensaiados nos ensaios principais (segunda parte), nas direções longitudinal e transversal, para o grupo 2, que apresentaram valores discrepantes para o stress wave.

Figura J5 – V_{//US} x V_{//SW} – Sem os valores discrepantes.

Figura J6 – C_{//US} x C_{//SW} – Sem os valores discrepantes.

Figura J7 – $V_{\perp_{US}} \times V_{\perp_{SW}}$ – Sem os valores discrepantes.

Figura J8 – $C_{\perp_{US}} \times C_{\perp_{SW}}$ – Sem os valores discrepantes.

Apêndice <

No Apêndice L estão contidos os gráficos de correlações entre os valores médios de C e V obtidos nos ensaios dos métodos de ultra-som (US) e stress wave (SW) referentes a todos os corpos-de-prova ensaiados nos ensaios principais (segunda parte), nas direções longitudinal e transversal, para os grupos 1 e 2.

Figura $L1 - V_{I/US} \times V_{I/SW}$ – Todos os valores.

Figura $L2 - V_{\perp_{US}} \times V_{\perp_{SW}}$ – Todos os valores.

Figura $L3 - C_{I/US} \times C_{I/SW}$ – Todos os valores.

Figura L4 – $C_{\perp US} \times C_{\perp SW}$ – Todos os valores.

As Figuras J5, J6, J7 e J8 mostram os gráficos de correlações entre os valores médios de C e V obtidos nos ensaios dos métodos de ultra-som e stress wave retirando-se os corpos-de-prova ensaiados nos ensaios principais (segunda parte), na direção transversal, para o grupo 2, que apresentaram valores discrepantes para o stress wave.

Figura L5 – $V_{\perp US} \times V_{\perp SW}$ – Sem os valores discrepantes.

Figura L6 – $C_{\perp_{US}} \times C_{\perp_{SW}}$ – Sem os valores discrepantes.

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo