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Introduction

In this thesis we study the dynamics of C! diffeomorphisms far away from homo-
clinic tangencies, taht is, such that no diffeomorphism in a neighborhood exhibits a
non-transverse intersection between the stable manifold and the unstable manifold
of some periodic point. There are two main sets of results, having in common the
general theme that diffeomorphisms far away from tangencies resemble hyperbolic
diffeomorphisms.

In the first part of the work we study the ergodic measures of diffeomorphisms
far away from homoclinic tangencies. We show that every ergodic measure has at
most one vanishing Lyapunov exponent, and the Osledets splitting corresponding
to positive, zero, and negative exponents is dominated.

In fact we prove that Pesin theory (existence of smooth local stable and local
unstable manifolds) holds in this C! setting: the usual C*+H# /e regularity assump-
tion can be replaced by the condition that this system is fay away from homoclinic
tangencies. Morever, some shadowing lemma holds, and every hyperbolic ergodic
measure is the weak limit of a sequence of atomic invariant measures supported on
periodic orbits belonging to the same homoclinic class.

By means of a result announced recently by Diaz and Gorodetski, we deduce
that for C! generic diffeomorphisms far away from tangencies, every chain recur-
rent class C is either hyperbolic or has a non-hyperbolic ergodic invariant measure.
In particular, if C' is an aperiodic class, then every ergodic measure supported in it
is non-hyperbolic. That gives a partial answer to a conjecture given by Diaz and
Gorodetski in the case of diffeomorphisms far away from tangencies.

In the second part of the work we study the so-called C! Newhouse phenomenon:
existance of infinitely many periodic sinks or sources for a residual subset of some C'*
open set of diffeomorphisms. We prove that if the C' Newhouse phenomenon occurs
for diffeomorphisms far away from tangencies, then those periodic sinks/sources
must be related to some homoclinic class of codimension 1. In fact, the homoclinic
class is the Hausdorff limit of a sequence of periodic sinks/sources. This is in
contrast with the only known example of C'! Newhouse phenomenon, due to Bonatti
and Diaz, which correspond to diffeomorphisms close to homoclinic tangencies, and
for which the periodic sinks/sources are often related to aperiodic classes.
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ERGODIC MEASURES FAR AWAY FROM TANGENCIES
JIAGANG YANG

ABSTRACT. We show that for C'! diffeomorphisms far away from homoclinic tangencies, every ergodic
invariant measure has at most one zero Lyapunov exponent, and the Oseledets splitting corresponding to
positive, zero, and negative exponents is dominated. When the invariant ergodic measure is hyperbolic
(all exponents non-zero), then almost every point has a local stable manifold and a local unstable
manifold both of which are differentiably embeded disks. Moreover, a version of the classical shadowing
lemma holds, so that the hyperbolic measure is the weak limit of a sequence of atomic measures supported
on periodic orbits belonging to the same homoclinic class.

Together with a recent result of [6], this allows us to prove that there exists a residual subset R of C'!
diffeomorphisms far away from tangencies such that for any f € R, every chain recurrence class either
is hyperbolic, or admits a non-hyperbolic ergodic measure. In particular, if the chain recurrent class is

aperiodic, then every ergodic invariant measure supported in it is non-hyperbolic.

1. INTRODUCTION

In his famous paper [14], the first time Oseledets gave the definition and existence of Lyapunov
exponents for any invariant measure: for an ergodic measure p of a diffeomorphism f, there exist k € N,
real numbers A\; > --- > X\, and for y—almost all € M, there exists a splitting T,M = E} @ --- @ EF

of the tangent space, such that the splitting is invariant under D f, and
1 .
lim —log||Df"(x)vi|| = Ny  v; € E; N\ {0}.
n—ztoo n

We call \; the Lyapunov exponent of ;1 and the splitting E' @ --- @ E* Oseledets splitting. Usually the
splitting is just defined on a full measure subset, not continuous just measurable changed with the points.
In fact, for any measurable bundle on M, Oseledets proved the existence of Lyapunov exponents for any
invariant measure.

Since then, Lyapunov exponents have played a key role in studying the ergodic behavior of a dynamical
system, understanding the Lyapunov exponents also become to one of the classical problems of the theory
of differential dynamical systems. Especially when all the Lyapunov exponents are not vanishing, such
kind of ergodic measure is called hyperbolic measure and which attracts a lot of attention.

Here we prove that if the diffeomorphism is far away from homoclinic tangencies, the Lyapunov ex-
ponents of its ergodic measures can be given a good description. Here a diffeomorphism is far away
from homoclinic tangencies means that no diffeomorphism in a neighborhood exhibits a non-transverse

intersection between the stable manifold and the unstable manifold of some periodic point.

Theorem 1: Suppose f is far away from tangencies and p is an ergodic measure of f, then
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o cither p is hyperbolic with index © and the index i Oseledets splitting is a dominated splitting,
e or p has just one zero Lyapunov exponent, and the Oseledets splitting corresponding to negative,

zero and positive Lyapunov exponents is a dominated splitting.

Remark: The definition of dominated splitting is given in section 1, since dominated splitting is always

continuous, so the above special kind of Oseledets splitting is always continuous.

By the definition, the tangent space of almost every point of a hyperbolic measure is splitted as the
sum of two subspaces which are exponentially contracted or expanded by all large enough iterated of the
derivative, it means the hyperbolic measure has some 'weak’ hyperbolic property on the tangent space.
Pesin showed that with some additional regularity assumption on the diffeomorphism (C? or C1*+Holder),
the hyperbolic ergodic measure shares many properties with hyperbolic set, for example, there exists
a family of local stable manifolds on a positive subset which is continuous and with uniform size, such
property is called the stable manifold theorem; Katok gave also a shadowing lemma, with it he proved that
the hyperbolic ergodic measure is the weak limit of a sequence of atomic invariant measures supported
on periodic orbits belonging to the same homoclinic class, such property is called Katok’s closing lemma.
Along this direction several deeper results have been proved, such as entropy formula, dimension theory
etc, all these results are called Pesin theory.

Now usually we call a hyperbolic measure together with the diffeomorphism a non-uniform hyperbolic
system, Pesin theory has been proved a very important and powerful tool to understand the non-uniform
hyperbolic system. But there is a restriction because the Pesin theory always needs the diffeomorphism
be Ct+Holder for C1 diffeomorphism the arguments fail to work (see [18]).

In [1], they begin to consider C' Pesin theory, they proved that with a dominated assumption on the
tangent space, the stable manifold theorem is still true, and if the diffeomorphism is ’tame’, then there
exist a lot of hyperbolic ergodic measures.

In this paper we treat Pesin theory as a theory derives topological information from hyperbolic mea-
sure, it means that we just consider the stable manifold theorem and Katok’s closing lemma. With such
understanding, we show that when the diffeomorphism is C! far from tangencies, C' Pesin theory is still
true. It means that we can replace the regularity assumption about the diffeomorphism in the C? Pesin

theory by a weak assumption on the diffeomorphism. The precisely statement is following;:

Theorem 2: Suppose f € CY(M)\ HT and p is a hyperbolic ergodic measure of f, then C* Pesin theory

s true:

a) there erists a compact positive measure subset A®(resp. A") which has continuous and uniform
size of stable (resp. unstable) manifolds, and almost every point has a local stable manifold and
a local unstable manifold both of which are differentiably embeded disks.

b) p is the weak limit of a sequence of invariant measures p,, supported by periodic orbits p, with

index t, and the periodic orbits are homoclinic related with each other.

Remark:
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o The stable manifolds we get usually is not absolutely continuous, that’s because the absolutely
continuous property heavily depends on distortion which just holds under C? assumption.
e In fact, from the proof, it’s easy to see the above theorem can be stated in the following classical

way of Pesin theory in the C? case:

Suppose f is far away from tangencies and p is an ergodic measure of f, then there exists a family
of compact set Ao C Ay C --- with positive measure such that f¥(7)(A;) C Ay1, p(UA) = 1
and they satisfy the following properties: '

— for every A;, there exist local continuous stable and unstable manifolds on it with uniform
size;

— for every A;, there exist ¢; > 0, L; > 0 and N; € N, such that if there exist x € A; and
m > N; satisfying f™(z) € A; and d(z, f™(z)) < €;, then there exists periodic point p with
period m and d(f(x), fi(p)) < L; - d(x, f™(x)) for 0 < j < m. Moreover, some point in
the periodic orbit we get has uniform size of local stable and local unstable manifolds and the

size just depend on the compact set A;.

Corollary 1: Suppose f is far away from tangencies, C is a chain recurrence class of f without periodic

point, then any ergodic measure p with supp(u) C C is non-hyperbolic.

In [6], Diaz and Gorodetski started to consider the generic existence of non-hyperbolic ergodic measure

and gave the following conjecture:

Conjecture 1: There exists a generic subset R in C*(M) such that for any f € R and C chain recur-

rent class of f, either C' is hyperbolic or there exists a non-hyperbolic ergodic measure u with support in C.

[6] shows that for C! residual diffeomorphisms, if its some homoclinic class contains periodic points
with different indices, then there exists a non-hyperbolic ergodic measure with support in this homoclinic

class. With their result, we prove conjecture 1 for diffeomorphisms far from tangencies:

Theorem 3: There exists a residual subset R in C*(M)\ HT such that for any f € R and any chain

recurrence class C of f,

e cither C' is hyperbolic,

e or there exists a non-hyperbolic ergodic measure p with support contained in C.

The structure of this paper is following: in § 2 we give some definitions and notations, theorem 1 is
proved in § 3, in § 4, we give the proof of theorem 2 and corollary 1, in § 5 we give some basic C'! generic

properties theorem 3 is proved in § 6.
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2. DEFINITIONS AND NOTATIONS

Let M be a compact boundlessness Riemannian manifold with dim(M) = d > 2. Let Per(f) denote
the set of periodic points of f and Q(f) the non-wondering set of f, for p € Per(f), m(p) means the
period of p. If p is a hyperbolic periodic point, the index of p is the dimension of the stable bundle. We
denote Per;(f) the set of the index i periodic points of f, and we call a point z is an index ¢ preperiodic
point of f if there exists a family of diffeomorphisms g, LN f, where g,, has an index i periodic point

pn and p, — x. P*(f) is the set of index 4 preperiodic point of f, it’s easy to know P;(f) C Pr(f).

Let A be an invariant compact set of f, we say A is an index i fundamental limit if there exists a family
of diffeomorphisms g,, C! converging to f, p, is an index i periodic point of g, and Orb(p,) converge to
A in Hausdorff topology. So if A(f) is an index ¢ fundamental limit, we have A(f) C PF(f).

For two points x,y € M and some § > 0, we say there exists a §-pseudo orbit connects x and y means
that there exist points © = zg,z1, - ,2, = y such that d(f(z;),z;41) < 6 for i = 0,1,--- ,;n — 1, we
denoteitx?y. Wesayx—iyifforany5>OwehavexgiyanddenotexHyifx—iyandy—ix. A
point z is called a chain recurrent point if z H x. CR(f) denotes the set of chain recurrent points of f,
it’s easy to know that H is an closed equivalent relation on CR(f), and every equivalent class of such
relation should be compact and is called chain recurrent class. Let K be a compact invariant set of f, if
x,y are two points in K, we’ll denote x 1_({ y if for any § > 0, we have a § -pseudo orbit in K connects x
and y. If for any two points x,y € K we have z I—(| y, we call K a chain recurrent set. Let C' be a chain
recurrent class of f, we call C' is an aperiodic class if C' does not contain periodic point.

Let A be an invariant compact set of f, for 0 < A < 1 and 1 < i < d, we say A has an index i — (I, \)
dominated splitting if we have a continuous invariant splitting Ta M = E @ F where dim(E,) = i for any
re€Aand || DfYr(x) | - || Df Yr(f'z) |< A for all x € A. For simplicity, sometimes we just call A(f)
has an index ¢ dominated splitting. A compact invariant set can have many dominated splittings, but

for fixed ¢, the index ¢ dominated splitting is unique.

Remark 2.1. Suppose p is an ergodic measure of diffeomorphism f, and supp(u) has an index i domi-
nated splitting E @& F, since the bundles E, F are continuous, they are measurable bundles, consider the
Lyapunov exponents for u on bundle E and F respectively, denote A1 < -+ < Aip1 < -+ < Ag the
exponents of , by the definition of dominated splitting, the vectors of F' expands faster than the vectors
of E, so the exponents for u on bundle E are smaller than the exponents for p on bundle F, it implies

A1, -+, A are the exponents for p on bundle E and A1, -+, A\g are the exponents for p on bundle F.

We say an ergodic invariant measure p of diffeomorphism f has type (i, k) if #{negative Lyapunov
exponents of u} = i and #{vanishing Lyapunov exponents of u} = k. In particular, if kK = 0, we say p

has index 1.
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We say a diffeomorphism f has C” tangency if f € C"(M), f has hyperbolic periodic point p and there
exists a non-transverse intersection between W#(p) and W*(p). HT" is the set of the diffeomorphisms
which have C” tangency, usually we just use HT denote HT'. We call a diffeomorphism f is far away
from tangency if f € CY(M)\ HT. The following proposition shows the relation between dominated

splitting and far away from tangencies.

Proposition 2.2. ([19]) f is C' far away from tangencies if and only if there exists (I,\) such that
P*(f) has index i — (I, \) dominated splitting for 0 < i < d.

Usually dominated splitting is not a hyperbolic splitting, Mané showed that in some special case, one

bundle of the dominated splitting is hyperbolic.

Proposition 2.3. ([13]) Suppose A(f) has an index i dominated splitting ESF (i # 0), if A(f) P} (f) =
¢ for 0 < j < i, then E is a contracting bundle.

3. Proof of theorem 1

At first we need the following special statement of ergodic closing lemma which is a little stronger than

the original statement given in [13] and whose proof will be given in § 3.1.

Lemma 3.1. (New statement of Ergodic closing lemma) Suppose  is a type (i, k) ergodic measure of f,
then for any i < j <i+k, supp(u) C Pr and there exists a family of diffeomorphisms gn, such that:

Cl
2) : g has periodic point p, with index j, let pu, denote the invariant atom measure on Orby, (py),

*—weak
we have p, —

Proof of theorem 1: We divide the proof into two cases:

a) u is hyperbolic with index i;
b) p has type (i, k) where k # 0.

In the case a), by lemma 3.1 and proposition 2.2, supp(p) C P and supp(p) has index ¢ dominated split-
ting E{° © EfY,. By the definition of dominated splitting and remark 2.1, the Lyapunov exponents for u
on bundle Ef* are strictly smaller than the Lyapunov exponents for u on bundle Ef,, since the number
of negative exponents of p is ¢, the Lyapunov exponents for ;1 on bundle E{* are negative and the dom-

inated splitting E{* ® EfY, is the Oseledts splitting corresponding to the positive and negative exponents.

In the case b), at first we’ll show k = 1.
If k > 1, by lemma 3.1, supp(p) C Py (P (- Py, then by proposition 2.2 and f € (HT)*,
supp(p) has index i dominated splitting Ef* @ EfY;; index i + 1 dominated splitting £?; @ EfYs; - - -,

and index ¢ + k dominated splitting Ei7, & EfY, ;. Denote

c _ cS cu c _ cs cu c _ cs cu
Ei+1,1 - Ei+1 ﬂEi ) Ei+2 - Ei+2 ﬂEz’-Ha T E¢+k - Ei+k' ﬂEi+k—1a
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then supp(p) has a new dominated splitting
Tsupp(uyM = E* © Ef{1 1 ® Ej 91 @ ® Ef ;1 ® B,

We denote Ay < Ay < -+ < Ay the Lyapunov exponents of p, since p has type (i,k), Aix1 = -+ =
Aigk = 0, and we have [In||Df(vs)||/l|vzlldp(x) = Aj = 0 where v, € ES,(x) \ {0} icj<itr. In fact

for any n > 0, [In[[Df"(ve)ll/valldu(x) = nZlflnIIth“(vz)H/llth(vz)IIdM(x) = nAj = 0 where
vy € By (2) \ {0} icj<itk. Since Ef ;| @ Ef+;f is a dominated splitting, there exists [ € N such that
1D £ wo)ll/llvall < 1D f(w2) [}/ for any = € supp() and v, € B, 4(x), we € Ef, s, (x), s0 we have
0=XNt1= [In][DfY(v)|/lvalldp(z) < [In||DfH(ws)]|/]|wel|dp(z) = Xiy2 = 0, that’s a contradiction.
So p has type (4,1), by lemma 3.1, supp(p) C P} () P}, ,, using proposition 2.2 and above argument,
supp(j1) has the following dominated splitting Ty M = Ef*© LY, | @ EfY,, using remark 2.1, with the
same argument in case (a), the Lyapunov exponents for 4 on bundle E¢® are smaller than the Lyapunov
exponent for p on bundle EY,; ;, and the Lyapunov exponent for 1 on bundle Ef,, ; are smaller than the
Lyapunov exponents for 4 on bundle Ef},, since p has type (i,1), we know that the dominated splitting
Eff @ Ef 1 @ EfY, is also the Oseledets splitting corresponding to the negative, zero, positive exponents.

]

3.1. A new version of Mané’s ergodic closing lemma.
Proof : Suppose the theorem is wrong, then the measure is not trivial and there exists j with i < j <
i + k which does not satisfy the theorem.

In the following we’ll get the contradiction by showing that #{negative Lyapunov exponents of pu} >
j > i or #{positive Lyapunov exponents of u} > d—j > d— (i + k), because we know that p has exactly
i number of negative exponents and d — (i + k) number of positive exponents. In order to prove this, we
need show that there is a positive measure subset such that for every point in this subset, on its tangent
space, the tangent map Df exponentially contracting a subspace with dimension larger than j or the

tangent map exponentially expanding a subspace with dimension larger than d — j.

Lemma 3.2. (Ergodic closing lemma) Suppose p is an ergodic measure of f, then there exists a family

of diffeomorphisms g, such that:

Cl
1) D Gn — f,
2) : gn has periodic point p,, let w, denote the invariant atom measure on Orby (pn), we have
Lin *ﬂak

From Mané’s ergodic closing lemma, there always exists a family of diffeomorphisms g, < f where
gn has an invariant measure u,, supported on periodic orbit p,(g,) and pu, *wegk 1, suppose the periodic
points’ indices are all the same and strictly bigger than j.

Denote jo = rtnzl?{t : exists a family of diffeomorphisms g, < f where g, has an invariant measure

tn supported on index t periodic orbit p,(gn) and i, +—weak u }, then jo > j. Choose such a family
of diffeomorphisms {g,,} which has periodic point {p,(g,)} with index jo, and Orb,, (p,) supports an

invariant measure pu, for g, satisfying pu, *weak u, since p is not trivial, lim my, (pn(gn)) — oc.
n—oo
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Denote £, (Orb(p,)) the contracting subspace on Orb(p,) with dimension jo, then we get a family of

periodic linear maps {Dgn‘Ejo_,n(Orb(pn))}-

Definition 3.3. The above sequence of periodic linear maps {Dgy,

Eio,n(OTb(Pn))} over R is called uni-

formly periodic contracting if there exists € > 0 such that for any n large enough and any periodic linear

map {A1, -+, Ar, (g(on))} OVEr RP satisfying || A; *Dg"|Ejo’n(g%’1(pn)) || < e, we have all the eigenvalues

Tpn

Of H Aj < 1.
j=1

Now we’ll show that the above sequence of periodic linear maps {Dg,

Efo,n(o’“b(pn))} we've got is

uniformly periodic contracting. At first, we need the well known Franks lemma:

1
Lemma 3.4. g, c, [, suppose py, is a periodic point of gn, Alory(p,) 15 an e-perturbation of { Dgnlorsp,) }
then for any neighborhood U of Orb(py,), there exists g, such that g, = gn on (M \ U)|JOrb(p.),
dc1(gn, 97,) < € and {DgHorb(pn)} = {A|O7'b(pn)}‘

As a corollary of Franks lemma, we can show that the family of periodic linear maps is uniformly

periodic contracting:

Corollary 3.5. There exists € > 0 such that for any periodic linear map {Ay, -, Az (p.)} over RJo

Tpn
satisfying || Aj — Dgn| - (i ))|| < g, we have all the eigenvalues of [] A; < 1.
do.n(9n " (Pn j=1

Proof : If the sequence is not uniformly periodic contracting, there exists €,,, — 0 and a sequence of pe-
riodic linear maps {(Ay, 1, - ,Anj’ﬂ_qnj (9 (P ) }; over R such that ||A,; x — Dgn, |Ef0,n] (657 (o)) | <

7"gnj (pnj )

€n; and one eigenvalue of [  Ap; x> 1.
k=1

Now we claim that replace by another sequence of periodic linear maps over R/, we can always sup-

Wgnj (pnj )
pose  [[  An, x hasindex jo — 1.
k=1
Proof of the claim: We can choose a new sequence periodic linear map {(Bn; 1, , Bn, 7wy (gn. (pn.))) )i
j 3J 3j
. Wgn] (Pnj )
over R7 such that || B,,; x — Dgn;| g (05 (pm.) | < en;, all the eigenvalues of ~ [[ By, x <1 except
doony \Iny (Pnj k=1
one real or a couple of complex eigenvalues with norm 1.
7"'gnj (pnj )
If J] Ba,x has only one real eigenvalue with norm 1, after small perturbation, we get a new
k=1
" . 7Tgnj (pnj ) _
periodic linear map {(Ay, 1, A, x,. (pn,-))}j over R% such that  [] Ap; 1 has index jo — 1.
J k=1
ﬂ-ynj (pnj )

If J] Bn,r has a couple of complex eigenvalues with norm 1, lemma 3.7 of [4] shows after small
k=1

perturbagion, we can let the two complex eigenvalues to be real with norm 1, then by another perturbation,
Wgn,j (pnj) .

we get a new periodic linear map {(An; 1, - ,ﬁnjmg" , (p"j))} ; over R? such that  [] Ap, k has index
J k=1

Jo—1.
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By above arguments, we can always get a new sequence of periodic linear maps {(gnj EPREEIN gnj,wgn _ (pnj))} j
J

‘ _ 7"971/]- (Pnj) "
over R7° which satisfying ||A,, » — Dgn, (gﬁ;l(pnj))ﬂ <2y, and ]  Ap, hasindex jo — 1.
' ’ ' k=1
Replace the sequence of periodic linear maps {(An; 1, , An, 7y (g0 (pn.))) 15 OVEL R7° by the sequence
h j J

of periodic linear maps {(gnj,l, e ,Enj,ﬂgn v (pnj)>}j over R and finished the proof of the claim. O
J

Now use Franks lemma, by €, perturbation, we can get a new diffeomorphism g;j such that
Or bgn (Pn; (9n;)) is an index jo — 1 periodic orbit of g, , that’s a contradiction with the definition of jo.
O

For such kind of uniformly contracting periodic linear maps, [13] gave the following lemma:

Lemma 3.6. ([13] Lemma IL.4): g, G, f, suppose py, is index jo periodic point of g, and lim s (pn) —
o0o. If the sequence of periodic linear maps {Dgn|E (Orb(p,) n Y s uniformly periodic contmctmg, then
there exist Il > 0, Ng > 0 and A < 1 such that for any pemodzc orbit p, with period w(p,) > Ny, we have

[T
(3.1) H 1Dy s it pall < Al

jo,n
1=0

w(pm]

Remark 3.7. Under the same assumption with lemma 3.6, and | > 0, Ny > 0, A < 1 given there, for
any periodic orbit p,, with period w(p,) > No and any k > 0, we have

k[‘lr(;;n ]
. k ﬂ'(Im)]
(3.2) ]1 1D (gitanl < A"

That’s because we can consider the new sequence of periodic linear maps

{(Dgnles, ,0rbw.)); (DgnlEs | (Orbignma)); * (Dgn (O i
: el [ 25 (pn)
Then (3.1) is true for gn where k > 0.

Now we need the following well known Pliss lemma:

Lemma 3.8. (Pliss lemma) For K > 0 and A < Ay < 0, there exists § > 0 such that for any sequence

n

{an} satisfying ||an|| < K and lim 1 Z a; < X, there exist {N;} and a subsequence {an,} such that
j=

1<n; <N}

- > 0.

Z an,+j < A1 for any m € N and hmlnf #an;
J_

For the uniformly contracting periodic linear maps {Dg,

B n(Orb(pn))}a remark 3.6 gives parameters
I >0, Ng >0and A < 1, choose A < \g < 1, by (3.2) and lemma 3.8 (Pliss lemma), with the fact

lim * i 04 (pn) — Hn Where fu, is the ergodic measure on Orby, (pn), if denote A,, = {y € Orb(py,) :

’ﬂ‘?OOn .

H 1Dg;. |5
that o (A n) > 0.

(gff(y))” < Ay'}, then for w(p,) big enough, there exists a uniformly number 6 > 0, such

Proposition 3.9. Suppose X is a compact metric space, denote CX = {K : K is compact subset of X},
the space CX with Hausdorff topology is still a compact space.
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Since A,, is compact, with proposition 3.9, there is a compact set A such that lim A, — A. It’s
n—oo

easy to know that u(A) > d and for every point y € A, there exists a jo dimension space Ej,(y) in it’s
tangent space such that H ||Dgn|E]0 sty ll < AG for m > 0, so every point in A has at least jo number

of negative Lyapunov exponents Since the measure p is ergodic and A has positive measure, p has at
least jo number of negative Lyapunov exponents. That’s a contradiction, since p has just ¢ number of

negative Lyapunov exponents and ¢ < j < jg. O

4. PROOF OF THEOREM 2 AND COROLLARY 1

Before we give the proof, we need the following lemma which claims that with a dominated assumption,
the C! Pesin theory stated in theorem 2 is true. Such idea was given in [1] and the name of C'* Pesin
theory was given there at first. Here we cite one of their result (the stable manifold theorem) and add
another new property (similar with Katok’s closing lemma in C? case), we put them together and call
C' Pesin theory.

Lemma 4.1. f € CY(M), suppose p is a hyperbolic ergodic measure of f with index i and there exists

an i-dominated splitting on supp(u), then C' Pesin theory is true:

a) there erists a compact positive measure subset A®(resp. A") which has continuous and uniform
size of stable (resp. unstable) manifolds,
b) wp is the weak limit of a sequence of invariant measures u, supported by periodic orbits p, with

index i, and supp(p) is contained in every homoclinic class H(py, f).

a) is given in [1] at first, we state it here just in order to make the statement more complete. b)
generalizes [12]’s result to C!, in the proof of b) we use a shadowing lemma given in [9] which is similar

with the shadowing lemma for C? Pesin theory.

Proof of theorem 2: By lemma 3.1, we know that supp(u) C PF(f), by proposition 2.2, supp(u) has

index ¢ dominated splitting, recall that p has index ¢, theorem 1 is a simple corollary of lemma 4.1. O

Proof of corollary 1: If there is a hyperbolic ergodic measure p with supp(p) C C, by the fact
f € (HT)¢ and b) of theorem 1, there is a periodic point in C, that’s a contradiction. O

The proofs of lemma 4.1 is given in § 3.1.

4.1. C! Pesin theory. In this subsection we’ll give the proof of lemma 4.1. a) of theorem 1 was given

in [1], but for completeness, we still give a proof here.

Proof of a): We just prove the stable manifold theorem, the proof for unstable manifold theorem is the
same. Denote E° @ E* the index ¢ dominated splitting on supp(p), it’s easy to know that they are a
Oseledets splitting, and the Lyapunov exponents on bundle £ are smaller than the Lyapunov exponents
on bundle E*. Since the dimension of £ is ¢ and u is a hyperbolic ergodic measure with index 7, we

know that the Lyapunov exponents on bundle E°® (resp. E°*) are negative (resp. positive). So from the
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sub-ergodic theorem, there exists A > 0 such that:

. 1 n
(4.1) nlirr;o/ - In || D f"| ges (2 |dp(z) < =X <0,

choose N big enough such that [In||DfN|ges(y)lldu(xz) < =X < 0, from Birkhopf ergodic theorem,

there exists a p full measure subset A® such that for any x € A® we have:

n—1
1 N
(4.2) Jm — ‘EolnllDf | Bes (pin @yl < =A-
iz

n—1
Choose 0 < Ag < A, denote A* the set such that for any y € A* we have £ 37 In ||DfN|ges(pin ()|l <
3=0

—Xg for any n > 0. It’s easy to know that A® is a closed set, lemma 3.8 (Pliss lemma) gives § > 0, we’ll

show that p(A®) > d. The proof of the following result is very easy and we just omit here.

Lemma 4.2. There exists a p full measure subset Aj such that for any x € A, we have

n—1
. weaktoplogy
lim — E O3 (a) —
n—oo N 4 o ‘
j=

We can suppose A5 C A® always, by A® is compact and lemma 4.2, for z € A§, there exists {N;} such
Ni—1
that p(A®) > lim o ZO 8ti(my(A%) > 6> 0.
J:
Now we’ll show that the positive measure set A® has continuous and uniform size of stable manifold.
Let 1™ = (=1,1)»0=) and I2™ = (¢, )4 denote by Emb(I*™, M) the set of C-
embedding of If(u) on M, recall by [11] that A has index i dominated splitting EaoF implies the

following.

Lemma 4.3. There exist two continuous function ®°° : A — Emb*(I°, M) and ®°* : A —
Emb(I*, M) such that, with WS (z) = ®°(2)I5 and W (x) = @ (x)IY, the following properties
hold:
a) T,We = E(z) and T,We = F(z),
b) For all 0 < &1 < 1, there ewists 5 such that f(W(x)) € WE(f(x)) and f~H(W(x)) C
Wen (s (@) ~
¢) For all 0 < e < 1, there exists 6 > 0 such that if y1, y2 € A and d(y1, y2) < 9, then W (y1) M
W (y2) # ¢.

The following lemma given by [17] shows that there really exists an uniform continuous stable manifold

on A®.

Lemma 4.4. ([17]) For any 0 < X < 1, there exists ¢ > 0 such that for x € A which satisfies
n—1
'Ho ||DfN1|E(ij11)H < A" for all m > 0, then diam(f™"(WS%)) — 0, i.e. the central stable manifold
j:

of x with size € is in fact a stable manifold.

Proof of b): Here we should use a special shadowing lemma given by [9]:
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Lemma 4.5. (][9], theorem 1.1): Let f € C1(M), assume that A is a closed invariant set of f and there
is a continuous invariant splitting T\M = E @ F on A, i.e. Df(E;) = Ef,) and Df(F;) = Fy(yy for
x € A. For any A\ < Ay < 1 there exist L > 0, g > 0, Ny such that for any 6 < o if we have an orbit

segment (x, f(x),---, f*N1(z)) satisfies the following properties:
s—1
TP @yl £ (W) for0<s<n—1,

i=0

s—1
H IDF =M g pon-nm @yl
=0

d(z, "™ (2)) < 3§,

IN

(M)? for 0<s<n-1,

then there exists a periodic point p with period nNy and Lé-shadows (z, f(x),--- , f*V(x)).

Now from the proof of a), there also exists a positive measure subset A* such that for any x € A,
n—1
lim £ 5 In || Df~N|geu(p-in (@) | < —A. Since p is ergodic, there exists ng such that A** = f0(A%) A"

has positive measure, now from the proof of a), for any x € A%,

n—1 n—1

1 _ 1
gZInHDf M geu (p-in @l < =Aos EZlnHDfN
=0 =0

Ees(fiN=n0(z)) || < =)o

Choose nq big enough and 1 > Ay > Ag, for Ny =n; - N and any x € A°", we have

1 n—1 1 n—1 B
(4.3) - D DN e g o | < =i - > DN pew(poim oyl < A1
=0 =0

Now we need the following result:

Lemma 4.6. There exists a subset Ag C A%, such that p(Ao) = n(A%*) and for any x € Ag

(A) x is a recurrent point, i.e. there exists 0 < iy < iy < ---i, < --- such that fi»™(x) € AS* and
lim d(z, fi»Ni(z)) — 0.
n—oo
inNp—1

n—oo

Remark 4.7. Above lemma can be proved by Poincaré recurrence theorem and Birkhoff ergodic theorem,

and in fact, we can show that for any x € Ao, supp(p) C Orb™(z).

Fix a point # € Ag, by (A) of lemma 4.6, we can choose i, such that d(z, fi»V1(z)) < dy, by

lemma 4.5 and (4.3), there a periodic point p, with period i,N; which L - d(x, fi»™(2))-shadows
. _ i N1 —1
(JI, f(x)a U 7flnN1 (.’II))’ by (B> of lemma 467 nh_{go inﬁ\]l 20 6)”(;0”) - M.

Now we claim that the above family of periodic points _{pn} will have uniform size of stable and un-

stable manifold.

Proof of the claim: For n big enough, Orb(p,,) is in a small neighborhood of supp(u), denote A=
supp(p) J(U Orb(pn)), then A has index i dominated splitting also.
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Choose 1 > Ay > A, then there exists a §y such that for any two points y;,y2 € A and d(y1,y2) <
b0, we have In||D ™| ges(yy || — In || D fN gesyoy | < A2 — A1. We know that p,, has period i, Ni and
L - d(z, f»Ni1(z))-shadows (z, f(z),---, fi»N1(x)), with lim d(z, fi»V(z)) — 0 and (4.3), for n big

| < A for 0 < m < 4, Ny,

ijlpn)‘ f_lepn)|

m—1
enough, we have [] HDle\E(
i=0 =
since p, is periodic point with period 4, N1, we know that

m—1
<y and [T IDF 5
j=

m—1 m—1
(4.4) TT 1D gl < N85 TTIDE ™ 5y -imapy || < Ag'for m >0
j=0 j=0
Now by lemma 4.3 and 4.4, p,, has uniform size of stable manifold and unstable manifold. O

Since p,, — z, and p,, has uniform size of stable and unstable manifold, by (3) of lemma 4.3, when
n, m big enough, W _(pn) M Wi .(pm) # ¢ and W} _(p,) h W (pm) # &, so p, and p, are homoclinic
related. Replace by a subsequence, we can suppose {p,} are all homoclinic related with each other, so
{pn} and z all belong to the same homoclinic class, by remark 4.7, supp(u) C Orb™(x), so we get that
supp(p) and {p,} all belong to the same homoclinic class. O

5. C'! GENERIC PROPERTIES

Here at first we’ll state some well known C' generic properties.

Lemma 5.1. There exists a C' residual subset R such that for any f € R, the following properties are
right:
1) all the periodic points are hyperbolic and the intersection between stable manifold and unstable
manifold of periodic points are always transverse,
2) (I5]) suppose C' is a chain recurrent class of f, if C' contains a periodic point p, then C = H (p, f),
3) (I5]) suppose A is an index i fundamental limit of f, then there exists a family of index i periodic
points {pn} such that lim Orbd(p,) Hausdorff y
4) (16]) if C is a homoclizi—c}?lass contains periodic points with different indexes, then there exists a

non-trivial non-hyperbolic ergodic measure with support in C.
The following result is given by Shaobo Gan, a proof can be found in [21].

Lemma 5.2. f € CY(M) and {p,} is a family of index i periodic points of f satisfying lim m(p,) — oo,
n—oo
if {pn} is index stable, then there exists a subsequence {p;, } such that p;, and p;, are homoclinic related
for n #£ m, so especially, if we have lim Orb(p,) — A, then A is contained in the homoclinic class of
n—oo

an index i periodic point.

Corollary 5.3. Suppose f € R, C is a chain recurrent class of f and A C C is an index i fundamental

limit, if C doesn’t contain index i periodic point, then A is index i — 1 or i+ 1 fundamental limit.

Proof : Suppose C doesn’t contain index 4 periodic point, then especially A is not an orbit of index
i periodic orbit. By above argument and 3) of 5.1, there exists a family of index i periodic point {p,}

satisfying lim Orb(p,) = A and lim =« (p,) = co.
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By lemma 5.2, the family of periodic points are not index stable, with [4]’s argument and Franks lemma,

1
there exists a subsequence of periodic orbits {Orb(py,)} and a family of diffeomorphisms g, <, f such
that Orb(py; ) is index i 41 or i — 1 periodic points of g,,. So A is also an index i +1 or i — 1 fundamental
limit. O

6. PROOF OF THEOREM 3:

At first we need the following lemma whose proof is given in § 6.1:

Lemma 6.1. There ezists a generic subset R in C'(M)\ HT such that for any f € R and C(f) is a

homoclinic class whose periodic points are all hyperbolic and have an unique index ¢, then

o cither C' is a hyperbolic set,

e or there exists a non-hyperbolic ergodic measure p with supp(u) C C.

Proof of theorem 3: Suppose f € R and C is a chain recurrent class of f, we can always suppose C' is

not trivial (#(C) = oo) since if #(C) is finite, C' is a periodic orbit, by 1) of lemma 5.1, C' is a hyperbolic

periodic orbit, so there is only one invariant measure with support on C' and the measure is hyperbolic.
We divide the proof into three cases:

1)

2)

3) C contains index different periodic point.

C' is an aperiodic class;

C contains periodic points and all the periodic points in C' have the same index;

In the case 1), Corollary 1 shows any ergodic measure g with support on C' is not hyperbolic and has
just 1 zero Lyapunov exponent.

In the case 2), lemma 6.1 shows that either C' is hyperbolic or there exists a non-hyperbolic ergodic
measure p with supp(u) C C.

In the case 3), we need the generic property 4) of lemma 5.1 which was proved in [6] shows that there

always exists a non-hyperbolic ergodic measure p with supp(u) C C. d

6.1. Proof of lemma 6.1.
Proof : Here we suppose that C' is not hyperbolic and all the ergodic measures with support on C are
hyperbolic, we’ll show the contradiction.

Suppose C' contains index ¢ (i # 0,d) periodic point p, then C C H(p, f) C P, by proposition 2.2, C
has an index i dominated splitting E{° © Ef};. Since C is not hyperbolic, the splitting is not hyperbolic
splitting, we can suppose the bundle E{* is not hyperbolic, by proposition 2.3, there exists j < 4 such that
cN P # ¢, it means there exist g, il» f and p,, index j periodic points of g,, such that p, il» zeC,
from the definition of chain recurrent class, it’s easy to know that limsup Orb(p,) C C and the set is
an index j fundamental limit, denote ig = min{j : C' contains index jnfz;odamental limit}, then we have
C P} = ¢ for j <io.

Choose Ay C C an index iy fundamental limit, by proposition 2.2, Ay has an index iy dominated
splitting B @ Ef", |, by proposition 2.3 and the definition of ig, the bundle Ej¥ is contracting, we denote
Ef® by Ej since now. By generic properties in lemma 5.1, there exists a family of index ¢o periodic points

{pn} such that lim Orbd(p,) — Ao. By lemma 5.3, {p,} cannot be index stable and Ay is an index
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ip + 1 fundamental limit also, so A C P} ;. By proposition 2.2 again, Ao has index i + 1 dominated
splitting Ef*,, @ Eft, o, denote Ef, | = Ef* | () Ef" |, then Ag has the following dominated splitting
E; @ Ej 11® Ef" .

Since Ay is an index 7o fundamental limit, that means the bundle Ej, ., ; is not contracting, now we

need the following lemma whose proof is easy and we just omit.

Lemma 6.2. suppose A is a compact invariant subset of f with dominated splitting E® F and the bundle

E(A) is not contracting, then there exists a point x € A such that | D f"|g)ll > 1 for n > 0.

n—1
By the above lemma there exists © € Ay such that [] ||Df|ge

: +1,1
=0 ¢

(fianll = 1 for n > 0 (since
n—1

n—
dim(Ef, | ;) = 1), choose a converge subsequence from { Y 01/(4) }ney and suppose lim > 64z — Vo,
’ 7=0 J=o0 j=0

then v is an invariant measure with supp(vg) C w(z) C Ag such that on |Dfleg,,  lldvo = 0. By er-
godic decomposition theorem on Ay, we can suppose there exists an ergodic measure v with support on
Ao satistying [, IDfleg ., lldv = 0. Denote Ay < Ay < --- < Ag the Lyapunov exponents of v, then
Nigt1 = on ||Df|Efg+1,1| dv > 0. Recall that we have supposed v is hyperbolic, so A;,+1 > 0, that means
v has index smaller than ig + 1, by f € R C C*(M) \ HT and theorem 1, C' contains periodic points

with index smaller than 7o + 1. Recall that iy < i, C' contains index different periodic points, that’s a

contradiction. O
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JIAGANG YANG

ABSTRACT. We show that for a C! residual subset of diffeomorphisms far away from tangency, every
non-trivial chain recurrent class that is accumulated by sources ia a homoclinic class contains periodic

points with index 1 and it’s the Hausdorff limit of a family of sources.
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In the middle of last century, with many remarkable work, hyperbolic diffeomorphisms have been

understood very well, but soon people discovered that the set of hyperbolic diffeomorphisms are not

dense among differential dynamics, two kinds of counter examples were described, one associated with

heterdimension cycle was given by R.Abraham and Smale [3] and then given by Shub [40] and Mané [28],

another counter example associated with homoclinic tangency was given by Newhouse [31] [32]. In fact,

Newhouse got an open set UC C?(M) where dim(M) = 2 such that there exists a C? generic subset

R C U and for any f € R, f has infinite sinks or sources. Such complicated phenomena (there exist an

open set U in C" (M) and a generic subset R C U, such that any f € R has infinite sinks or sources) is

called C" Newhouse phenomena today, and we say C” Newhouse phenomena happens at U.

Date: May 28, 2008.
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In last 90’s, some new examples of Newhouse phenomena were found, [33] generalized Newhouse phe-
nomena to high dimensional manifold (dimM > 2) but with the same topology C"(r > 1). [7] used a
new tool 'Blender’ to show the existence of C! Newhouse phenomena on manifold with dim(M) > 2.
Until now, all the construction of C™ Newhouse phenomena relate closely with homoclinic tangency, more
precisely, all the open set U given by the construction above which happens Newhouse phenomena there
will have «/ C HT. We hope that it’s a necessary condition for C” Newhouse phenomena happens at /.

Palis states it as a conjecture.
Conjecture (Palis): If C" Newhouse phenomena happens at U, then U is contained in HT".

When r =1 and M is a compact surface, with Mané’s work [29], Pujals’ conjecture is equivalent with

the famous C! Palis strong conjecture.

C! Palis strong conjecture : Diffeomorphisms of M exhibiting either a homoclinic tangency or het-

erodimensional cycle are C* dense in the complement of the C' closure of hyperbolic systems.

In the remarkable paper [36] they proved C! Palis strong conjecture on C'*(M) when M is a boundless
compact surface, so in such case Pujals’ conjecture is right. In [37] they gave many relations between C2
Newhouse phenomena and HT'. In this paper we just consider C'' Newhouse phenomena, and we show
that if C! Newhouse phenomena happens in an open set U ¢ C*(M )\ﬁ, it should have some special
properties, in fact, in [7] they found an open set U C m and there exists a generic subset R C U
such that any f € R has infinite sinks or sources stay near a chain recurrent class, and such class does
not contain any periodic points, such kind of chain recurrent class is called aperiodic class now. Here
we proved that in HT", if there exists Newhouse phenomena, the sinks or sources will just stay near a

special kind of homoclinic class.

Theorem 1 There exists a generic subset R C C*(M)\HT?, such that for f € R and C is any non-trivial
chain recurrent class of f, if C(\ Py # ¢, C should be a homoclinic class containing index 1 periodic

points and C is an index 0 fundamental limit.

Theorem 1 means that if we want to disprove the existence of Newhouse phenomena in C(M) \ HT,
we just need study the homoclinic class containing index 1 periodic point.

In §3 we’ll state some generic properties. In §4 we’ll introduce a special minimal non-hyperbolic set
and theorem 1 will be proved in §5.
Acknowledgements: This paper is part of the author’s thesis, I would like to thank my advisor Professor
Marcelo Viana for his support and enormous encouragements during the preparation of this work. I would
like to thank Professor Shaobo Gan for checking the details of the proof and finding out an essential gap
in the original argument which is crucial to the work. I also thank Professors Jacob Palis, Lan Wen,
Enrique R. Pujals, Lorenzo Diaz, Christian Bonatti for very helpful remarks. Finally I wish to thank my

wife, Wenyan Zhong, for her help and encouragement.
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2. NOTATIONS AND DEFINITIONS

Let M be a compact boundless Riemannian manifold, since when M is a surface [36] has proved
that hyperbolic diffeomorphisms are open and dense in C!(M) \ HT, we suppose dim(M) = d > 2 in
this paper. Let Per(f) denote the set of periodic points of f and Q(f) the non-wondering set of f, for
p € Per(f), m(p) means the period of p. If p is a hyperbolic periodic point, the index of p is the dimension
of the stable bundle. We denote Per;(f) the set of the index i periodic points of f, and we call a point
x is an index 7 preperiodic point of f if there exists a family of diffeomorphisms g, o f, where g,, has
an index ¢ periodic point p,, and p, — x. P*(f) is the set of index ¢ preperiodic points of f, it’s easy
to know P;(f) C Py(f).

Let A be an invariant compact set of f, we say A is an index ¢ fundamental limit if there exists a family
of diffeomorphisms g,, C! converging to f, p, is an index i periodic point of g, and Orb(p,,) converge to
A in Hausdorff topology. So if A(f) is an index ¢ fundamental limit, we have A(f) C PF(f).

For two points z,y € M and some ¢ > 0, we say there exists a d-pseudo orbit connects x and y means
that there exist points © = xg, 21, ,x, = y such that d(f(x;),ziy1) < 6 for i = 0,1,--- ,n— 1, we
denoteitxgiy. Wesayx—iyifforany6>Owehavea:?yanddenotexl—iyifx—iyandy—ia:. A
point z is called a chain recurrent point if  H z. CR(f) denotes the set of chain recurrent points of f,
it’s easy to know that H is an closed equivalent relation on CR(f), and every equivalent class of such
relation should be compact and is called chain recurrent class. Let K be a compact invariant set of f, if
x,y are two points in K, we’ll denote x 1_(| y if for any & > 0, we have a § -pseudo orbit in K connects z
and y. If for any two points x,y € K we have z 1_<| y, we call K a chain recurrent set. Let C' be a chain
recurrent class of f, we call C' is an aperiodic class if C' does not contain periodic point.

Let A be an invariant compact set of f, for 0 < A < 1 and 1 <i < d, we say A has an index i — (I, A)
dominated splitting if we have a continuous invariant splitting TA M = E @ F where dim(E,) = i for any
r€Aand || DfYe(x) | - || Df Yr(f'z) |< A for all x € A. For simplicity, sometimes we just call A(f)
has an index i dominated splitting. A compact invariant set can have many dominated splittings, but
for fixed ¢, the index ¢ dominated splitting is unique.

We say a diffeomorphism f has C" tangency if f € C"(M), f has hyperbolic periodic point p and there
exists a non-transverse intersection between W*(p) and W*(p). HT" is the set of the diffeomorphisms
which have C" tangency, usually we just use HT denote HT'. We call a diffeomorphism f is far away
from tangency if f € C'(M)\ HT. The following proposition shows the relation between dominated

splitting and far away from tangency.

Proposition 2.1. ([42]) f is C! far away from tangency if and only if there exists (I, \) such that P} (f)
has index i — (I, \) dominated splitting for 0 < i < d.

Usually dominated splitting is not a hyperbolic splitting, Mané showed that in some special case, one

bundle of the dominated splitting is hyperbolic.

Proposition 2.2. ([29]) Suppose A(f) has an index i dominated splitting EQF' (i # 0), if A(f) P} (f) =
¢ for 0 < j < i, then E is a contracting bundle.
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3. GENERIC PROPERTIES

For a topology space X, we call a set R C X is a generic subset of X if R is countable intersection
of open and dense subsets of X, and we call a property is a generic property of X if there exists some
generic subset R of X holds such property. Especially, when X = C'(M) and R is a generic subset of
C1(M), we just call R is C! generic, and we call any generic property of C1(M) ’a C! generic property’
or ’the property is C' generic’.

Here we’ll state some well known C! generic properties.

Proposition 3.1. There is a C! generic subset Ry such that for any f € Ry, one has

1) f is Kupka-Smale (every periodic point p in Per(f) is hyperbolic and the invariant manifolds of

periodic points are everywhere transverse).

) CR(f) =Q = Per(f).
) Pr(f)="P(f)
4) any chain recurrent set is the Hausdor(f limit of periodic orbits.
) any index i fundamental limit is the Hausdorff limit of index i periodic orbits of f.
) any chain recurrent class containing a periodic point p is the homoclinic class H(p, f).
) Suppose C' is a homoclinic class of f, and jo = min{j : C(Per;(f) # ¢}, j1 = maz{j :
C (N Per;j(f) # ¢}, then for any jo < j < j1, we have C() Per;(f) # ¢.

By proposition 3.1, for any f in Ry, every chain recurrent class C of f is either an aperiodic class or
a homoclinic class. If #C = oo, we call C' is non-trivial.
Let R = Ry \ HT, we'll show that the generic subset R of HT® will satisfy theorem 1.

4. A SPECIAL MINIMAL SET

Let f € R, C is a non-trivial chain recurrent class of f, and jo = min{j : C (| P} # ¢}.

Definition 4.1. : An invariant compact subset A of f is called minimal if all the invariant compact
subsets of A are just A and ¢. An invariant compact subset A of f is called minimal index j fundamental
limit if A is an index j fundamental limit and any invariant compact subset Ao & A is not an index j

fundamental limat.
Lemma 4.2. If C) Pr # ¢, there always exists a minimal index j fundamental limit in C.

Proof Let H = {[~\ : A C C is an index j fundamental limit} and we order H by inclusion. Suppose
T € CﬂPJT", then there exist g, < f, pn is index j periodic point of g, and p, — z. Denote
A, =1lim Orb(P,), then A, is an index j fundamental limit. It’s easy to know A, is a chain recurrent set
and A, C C,s0o A, € H. It means H # ¢.

Let Hr = {A\ : A € '} be a totally ordered chain of H. Then Ay = [\ Ax is a compact invariant
set, in fact, there exists {\;}52; such that Ay, D Ay,,, and As = [)ooq An,.

We claim that A, is an index j fundamental limit also.

i+l
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Proof of the claim  From generic property 5) of proposition 3.1 and f € R, for any € > 0, there
exists periodic point p; such that p; € Per;(f) and dg(Orb(p;),Ax;) < 5. When i is big enough, we’ll

have dp(Ax,, Ass) < 5, so for any € > 0, there exists p; € Per;(f)such that dg(Orb(p;), As) < €. O
Now by Zorn’s lemma, there exists a minimal index j fundamental limit in C. ]

Suppose A is a minimal index jy fundamental limit of C, the main aim of this section is the following

lemma.

Lemma 4.3. Suppose f € R, C is a non-trivial chain recurrent class of f, jo = min{j : C(\ P} # ¢}.
Let A be any minimal indez jo fundamental limit in C, then
a) either A is a non-trivial minimal set with partial hyperbolic splitting T|\M = Ej ©® ET ® Ej; .,

b) or C contains a periodic point with index jo or jo + 1 and C is an index jo fundamental limit.

We postpone the proof of lemma 4.3 to §4.4, before that, I’ll give or introduce some results at first.
In §4.1 I'll give a proof of Shaobo Gan’s lemma, in §4.2 I’ll introduce Liao’s selecting lemma and prove a

weakly selecting lemma, in §4.3 T’ll introduce a powerful tool ’transition’ given by [BDP].

4.1. Shaobo Gan’s lemma. Let GL(d) be the group of linear isomorphisms of R?, we call ¢ a periodic
sequence of linear map if £ : Z — Gl(d) is a sequence of isomorphisms of R? and there exists ng > 1
such that &1, = ¢ for all j. We denote 7(§) = min{n : {;4+, = §; for all j} the period of &, and we
call £ has index ¢ if the map W(i_)[o 1 &; is hyperbolic and has index 7, we say £ is contracting if £ has index
d. We denote E**) the stablej(unstable) bundle of .

Suppose 7 is a periodic sequence of linear maps also, we call 7 is an e-perturbation of £ if 7(n) = 7(§)
and [| n; — §&; ||< e for any j.

Let {£%},e.a be a family of periodic sequence of linear maps with index 4, we call it is bounded if there
exists K > 0 such that for any o € A and any j € Z, we have || fj(-a) |l< K. For a family of bounded
periodic sequences of linear maps {£*},c .4, we say it’s index stable if (@) has index i for all & € A, and
there exists €9 > 0 such that #{«| there exists n(® is eg-perturbation of £(®) and 7(® has index different
with i} < co. Especially, if it’s index d stable, we call f(a)|aeA is uniformly contracting.

Suppose f € CY(M) and {p,(f)} is a family of hyperbolic periodic points of f with index i, we say
Pn(f) is index i stable if {D f|ors(p,)tney is index i stable and nh_{{.lo m(pp) = 00.

Remark 4.4. Pliss has proved that if {p,(f)} is index i stable, then i # 0,d.
The following lemma was given by Shaobo Gan, and the proof comes from him also.

Lemma 4.5. ([15]) f € CY(M), suppose {pn(f)} is index i stable, then there exists a subsequence

{pn, 52 such that p,; and py;,, are homoclinic related.

Here we just prove the following weaker statement of Gan’s lemma.

Lemma 4.6. ( Weaker statement of Gan’s lemma) Suppose f € R, A is a non-trivial chain recurrent set
of f, {pn(f)} is index i stable and lim Orb(p,) = A, then there exists a subsequence {pn;(f)}32; such
that pp; (f) and pn,,,(f) are homoclinic related.
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Before we prove lemma 4.6, we’ll give a few lemmas which will be used in the proof.

Lemma 4.7. Suppose A:(]g g) is a hyperbolic linear map with index i (i # 0,d), where B € GL(R?) is
a contracting map and D € GL(R™) is a expanding map. If there exists B' € GL(R") an e-perturbation
of B and B’ has index different with i, then A’:(%’ C) is an e-perturbation of A with index different
with i. In fact, we’ll have ind(A’") = ind(B').

With lemma 4.7, the following lemma is obvious.

Lemma 4.8. Suppose {£™}22 | is index i stable, then {£™)

the same time, {£(™)

Es(g(n))}ﬁf’:l is stable contracting, and at

Bu(etm) e 8 stable expanding.
In [29] Mané has given a necessary condition for bounded stable contracting sequence.

Lemma 4.9. (Manié) If {£™}22 | is stable contracting and bounded, then there exist No,lp,0 < Ao < 1
such that if T(£™) > Ny we’ll have

[ﬂ'(ﬁn)]71
lo lo—1 (n) [ﬂ_(El(n))]
II I &Gasnecd <20 "
j=0 t=0

for any 0 < s < mw(£(M).

Proof of lemma 4.6: Since A C P and f is far away from tangency, by proposition 2.1, A has an index
1 — (I, \) dominated splitting T|aM = E @ F. In order to make the proof more simiplier, here we just

suppose | = 1. Choose a small open neighborhood U of A, when U is small enough, A= N f7(U) has
JEL
an index i — (1, A) dominated splitting T M = E® F where A\ < A<l and E[y = E, F|y = F.
Since lim Orb(P,) = A, we can always suppose Orb(p,) C U, so Orb(P,) C A and E*|orbp,) =

E|Orb(pn)a Fu'Orb(p“) = F|Orb(p“)'
By lemma 4.8, we know that {Df E“(Orb(p“))}%ozl is

stable expanding. By lemma 4.9, there exist Ny, lp,0 < Ag < 1 such that if 7(p,(f)) > No, we have

E9(Orb(py)) fnee1 18 stable contracting and {Df

[W(Ipn)]_l
‘0 ; [ﬂ(llé)n)]
(4.1) H IDfl g fitop)ll < Ao
j=0
(=] -1 o)
: (=tgal
(4.2) H IDf l0|Fu(f*ﬂ0pn)H <X °
j=0

Since lim Orb(p,) = A and A is not trivial, we have lim 7(p,) — oo, then we can always suppose all
n—oo n—oo
the p,, satisfy (4.1) and (4.2). For simplicity, we suppose Iy = 1 here.
Choose some € > 0 and A\; < 1 such that maX{X, Ao} +e < A2 <\ < 1. Now we'll state Pliss lemma

in a special context.

Lemma 4.10. (Pliss[34]) Given 0 < Ao +¢ < A1 < 1 and Orb(p,) C A such that for some m € N, we
t—1
have [] ||Df
j=0

B (fipa )|l < (Ao + )t for all s > m, there exists a sequence 0 < ny < ng < --- such that

t—1
I IDflE=(pipapll < Nmm forallt >mnyp, 7 =1,2,--- .

J="nr
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Remark 4.11. The sequence {n; };";1 we get above is called the \y-hyperbolic time for bundle E*|oppp,) -
By (4.1),(4.2), when n is big enough, Orb(p,) will satisfy the assumption of Pliss lemma, so by lemma
1

t—
4.10, there exists q,7 € Orb(py,) such that [] ||Df
§=0

Es(figy )H < M and g, € Orb(p,) such that

H HDf7 |Fu(f iqn )H <)\1 fOT all t > 0.

j=0

Let’s denote

s—1
Sp+={meZ: H IDflgs(gm+ipyll < AT for all s > 0},
3=0
s—1
Sp—={meZl: H IDf = pu(pm-ipll < A7 for all s > 0}.
3=0

Then S, is the set of A\; hyperbolic time for bundle E*|o,4(p,) and Sy, — is the set of hyperbolic time for
bundle F""|orp(p,.)- From remark 4.11, the set S,, 4 and S, — are not empty. We denote S, = Sy 4 [Sn,—.

Lemma 4.12. S, # ¢.

Proof: Here for a,b € Z and a < b, we denote (a,b)z = {c| ¢ € Z and a < ¢ < b}.

Now suppose the lemma is false, we can choose {by, s, bpn, s+1} C Sp,— such that we have by, 511 > by s,
(bn,s; bn,erl)Z n S — = ¢ and Qn,t € (bn S bn s+1)Z ﬂ Sn +7 then bn Sy bn,erl ¢ Sn,+~
We claim that for 0 < k < by, 541 — bp,s — 1, we have H IDf " pugponotirip)ll > PLE

j_
Proof of the claim: We’ll use induction to give a proof.
When k = 1, since by s +1 ¢ Sy, we have [|Df ™ g ponet1, | > Ar
Now suppose the claim is true for all 1 <k < kg — 1 where 1 < kg < by 541 — bpn,s — 1, and we suppose
the claim is false for kg, it means that
ko—1
_ K,
(4.3) H 1D f 1|Fu(fb“~b'+j+1pn)|| <A
§=0
Then by the assumption above that the claim is true for 1 < k < kg — 1, we have

k—1

(4.4) H HDf71|Fu(fbn.s+j+1pn)|| = /\]f
=0

By (4.3) and (4.4), we get that H |Df1

j=k

pu(ponstitip |l < Mok for 1 < k < ko — 1. It’s equivalent

to say that

(4.5) H IDf~

Fu(fnstko—ip )||</\]f for 1 <k<ky—1
By (4.3) and (4.5), we get that

(4.6) H IDf*

Fu(fbnstko=ip, )H < )\k for 1 <k <k
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When k > ko,by (4.6) and the fact b, s € Sp,—, we have

ko—1 k—ko—1
H ||Df Fu fbn s+tko— 7 || — H ||Df Fu fbn s+ko— 7)” : H ||Df Fu fbn s— 7 || < )\ko )\k ko — = A
7=0 7=0

it means b, s + ko € Sy, —, it’s a contradiction since by, s + ko € (bp s, bpn,s+1)z, s0 we finish the induction.
O

By the claim above, for 0 < k < by, 541 — by,s — 1, we have

k—1

(4.7) H ||Df*1|pu(fbn.s+j+1pn)|| > Ak,
=0

Since on 7\, E @ F is an index i — (1, X) dominated splitting, we have

k—1

H(||Df|E(fhn,.§+.7pn)|| ’ ||Df_1|ﬁ(fbn,s+.7‘+lpn)”) < AM.
=0

By (47) and E|Orb(pn) = ES|Orb(pn)aﬁ|Orb(pn) = Fu|Orb(pn)7 we’ll get
k—1 Nk

(4.8) < XN o for 1<k <bpeir—bns— 1.

=0 )\1 (A<A2<1)

When k > by 541 — bns — 1, let k = (ant — bn,s) + (k — any), by (4.8) and an € Sy +,

k—1 an,t—bn,s—1 k—an :—1
[T IDf1gepometsipll = IT  IDflgepmeripnlls TT 1D gecpon iyl
j=0 J=0 J=0

(49) < /\Clln,f,—bn,s . )\llf—an,t — A]f_bn’s

By (4.8) and (4.9), we get by.s € Sp 4+, 80 Sp+ [ Sn,— # ¢, it’s a contradiction with our assumption, so
we finish the proof of lemma 4.12. O

Now let’s continue the proof of lemma 4.6, we need the following two lemmas to show that for a,, € Sy,
the point f%(p,,) will have uniform size of stable manifold and unstable manifold.

Let I, = (—1,1)" and I. = (—¢, ¢)?, denote by Emb' (I, M) the set of C'-embedding of I; on M, recall
by [21] that A has a dominated splitting E @ F implies the following.

Lemma 4.13. There exist two continuous function P : A — Emb! (I, M) and & : A —
EmbY(I, M) such that, with We*(z) = ®°(x)I. and W (x) = ®°“(x)I., the following properties hold:
a) T,We = E(z) and T,W = F(x),
b) For all 0 < &1 < 1, there eists e5 such that f(WS(x)) € WE(f(x)) and f~H W (z)) C
Wes(f 1 (). i
c) For all 0 < e < 1, there exists § > 0 such that if y1, y2 € A and d(y1, y2) < 0, then WE(y1) i
Wet(ys) # ¢.

Corollary 4.14. ([36]) For any 0 < A < 1, there exists € > 0 such that for x € A which satisfies
n—1
[T 1Dfl gl <A™ for alln >0, then diam(f" (W) — 0, i.e. the central stable manifold of x with
j=0

size € is in fact a stable manifold.
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Now for A1, using corollary 4.14, we can get an € > 0. It means that for any a, € S,, denote
gn = [ (pn), then W2%(g,,) is a stable manifold and W<*(g,) is an unstable manifold. For this ¢ > 0,
use ¢) of lemma 4.13, we can fix a §. Choose a subsequence {n;} such that d(gn,,¢n,,,) < 0, then by c)
of lemma 4.13, we know W (qn,) M W(qn,,,) # ¢ and W (qn,.,) M WE(qn,) # ¢. Since the local
central stable manifold and local central unstable manifold of g,, have dynamical meaning, we know that

Orb(gn,) and Orb(gy,,,) are homoclinic related. O

Remark 4.15. In the proof of lemma 4.6 we suppose the set A has 1-step dominated splitting, that means
Il =1, and we suppose lo = 1 there also, they are just in order to make the proof more simplier. In the

rest part of the paper, usually we don’t use such assumption any more, if we use it we’ll point out.
Now let’s consider a sequence of periodic points which are not index stable.

Lemma 4.16. Suppose f € R, lim g, = f, {pn(gn)}>2, is a family of index i periodic points (i # 0, d)
n—oo

and lim 7(p,) — oo. If there exist \, — 17 and lim l,, — oo such that lim @ — oo and
n—oo n—oo n—o00 n
[ﬂ-(l}:,,n)]_l [‘"(Pn)]
1 |IDgk B (gl (|l = An ", then for any € >0 and N > 0, there exists an ng > N and g, is
J:O n n

an e-perturbation of gn, such that pn,(gn,) i an index i — 1 periodic point of gl,.

Proof: Fix N, consider the periodic sequence of linear maps {§" : £" = Dgn|gs(0rb(p,)) fn>nN, they are

all contracting maps. We claim that {{"} are not stable contracting.

Proof of the claim: If {£"} is stable contracting, by lemma 4.9, there exist Np, lp, 0 < Ag < 1 such
that if 7(£™) > Ny, we have

m(Pn) —1
[ to ] [W(Pn)]

(4.10) [T 19yl <0
i

Choose some N; big enough such that for n > Nq, we have A,, > A* > Ao for some \* € (Ao, 1), then by

lim @ — oo and lim [, — oo, when n is big enough, we have 7(p,,) > [, > max{ly, No} and
n—oo " n— o0
HRe U ET I L =]
from jl;lo ||D97{L|Es(g¥f"pn)|‘ =2 A > (A) T well get jl;lo I Dgyy ES(gffOpn)” >N ">
[‘"’(pn)]
Ao © 7, It’s a contradiction with (4.10). O

Since {£"},>n isn’t stable contracting, for ¢ > 0, there exists a sequence {n;} and {™} such that n™ is
an e-perturbation of £™ and 7™ has index smaller than 7. Since {{™} is bounded and lim 7 (p,) — oo,
by [10]’s work, for n; big enough, we can in fact get n™ with index ¢ — 1. By l(arrlmnf;;f.o77 there exists
{A|orb(p,) fn>0 an e-perturbation of {Dgnlorp(p,)} such that {A]o.pp,)} has index i — 1. Now we need

the following version of Franks lemma.

Lemma 4.17. (Franks lemma) Suppose p, is a periodic point of gn, Alors(p,) is an e-perturbation of

{Dgnlorb(p,)}. then for any neighborhood U of Orb(py), there exists g;, such that g, = gn on (M \
U) UOrb(pn), dcl (gnvg;z) <e and {Dg;z|orb(pn)} = {A|Orb(pn)}'
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From Franks lemma, we can change the derivative map along TOTb(pni)M to be {A|orp(p,)} and get a

new map g;,. such that p,,(gn,) is index i — 1 periodic point of g;, . O

4.2. Weakly selecting lemma. Liao’s selecting lemma, is a powerful shadowing lemma for non-uniformly
hyperbolic system, with it, we can not only get a lot of periodic points like what the standard shadowing
lemma can do, we can even let the periodic points have hyperbolic property as weak as we like. Liao
at first used this lemma to study minimal non-hyperbolic set and proved the 2-stable conjecture for
diffeomorphisms in dimension 2 and for flow without singularity in dimension 3. [16] [17] [19] [41] use the
same idea proved structure(Q)) stability conjecture for flows without singularity in any dimension. Until
now, the most important papers about selecting lemma are [18],[44], [45] and there contain more details
about selecting lemma.

In this subsection and the next, we’ll show what will happen if all the conditions in weakly selecting
lemma are satisfied. The main result in this subsection is lemma 4.21 (The weakly selecting lemma).

Now let’s state the selecting lemma at first.

Proposition 4.18. (Liao) Let A be a compact invariant set of [ with index i — (I, \) dominated splitting
E¢ @ Fe“. Assume that

n—1
a) there is a point b € A satisfying [] | Df! ges(pitpyl| = 1 for allm > 1.
j=0
b) (The tilda condition) there are Ay and A2 with A < A1 < A2 < 1 such that for any x € A

n—1
satisfying ] ||Dfl|Ecs(fle.)H > X" for all n > 1, w(z) contains a point ¢ € A satisfying
§=0

n—1
'Ho HDfl|ECb'(fjlc)|| <A} for alln > 1.
J:

Then for any Az and Ay with A2 < A3 < Ay < 1 and any neighborhood U of A, there exists a hyperbolic
periodic orbit Orb(q) of f of index i contained entirely in U with a point g € Orb(q) such that

m—1
(4.11) 1T 1D e pugpl S NP for m=1,---, m(q)
j=0
m(g)—1
(4.12) I D el = A5 form=1,---, m(q)
j=mi(q)—m

where m,(q) is the period of q for the map f'. The similar assertion for F* holds respecting f~".

Remark 4.19. It’s easy to know w(q) > m(q). Since f-™(9(q) = q, it’s obvious that (4.11) and (4.12)
are true for all m € N. In the selecting lemma, when A3 and Ay are fixed, we can indeed find a sequence
of periodic points {q,} satisfying (4.11) and (4.12) and lim Orb(q,) C A. If f is a Kupuka-Smale
diffeomorphism, especially when f € R, we can let nlLH;O m (TqL:)OO—> o0, then we’ll have nlirgo 7w(gn) — 0

at the same time.

Corollary 4.20. f € R, let A be a compact chain recurrent set of f with index i — (lo, \) dominated
splitting E°¢ @ F°* (1 < i < d—1). Assume that the splitting satisfies all the conditions of selecting

lemma for all I, = nly (n € N) but with the same parameters A < A1 < Aoy < 1, then for any sequence
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{(An,3, An,a) 152y satisfying Ao < A1 3 < A1a < Aoz < Aoz < --- where \p.3 — 17, there exists a family
of periodic points {q,(f)} with index i such that

a) lim m, (g, (f)) — oo.

b)
m—1
(4.13a) H IDF" [ 5s (potm gy | < At
3=0
T, (an)—1
(413b) H HDfln|Es(fjl“ an) > /\23 fOT m e N

j:ﬂ‘],n (Qn)7m

c) EOrb(qH) C A.
d) A C H(qn(f)) for alln.

Proof : At first, let’s fix Ay < A13 < A4 < 1 and a small neighborhood U of A small enough such
that the maximal invariant set A of U has index i — (lo, X) dominated splitting with A< A2, we denote
the dominated splitting still by Ef* © F'. (If ¢ is an index ¢ periodic point in [~\, then we denote
Ef* @© F' loreg) = E° ® F* orb(q))- Now using selecting lemma, with remark 4.19, we can find a family
of periodic points {g1 ., (f)}5°_; with index ¢ satisfying b), lim (¢1,»,) C A, lm m,(q1,n) — oo and
n—oo m—0oQ
Orb(gim(f)) C A
Since A has an index i — (I3, ) dominated splitting ES @ F", from (4.13b) we can know

7le(th,m) 7‘—11(‘11,'m)71 3

_ ~ A
11 IDf ™ peupitr gyl S A/ 11 IDf5 s (i1 gy oy | < (E)t for (1eny,

J=m1; (q1,m)—t+1 J=m1; (q1,m)—t

it equivalent with

A
F““(f_jllth,m)H S (E)t fOI‘ t S N

s

m—1
(4.14) I s
t=0

From (4.13a), (4.13b), by lemma 4.13, Corollary 4.14 and % < 1, we can know that for some €1, g1,
will have uniformly size of stable manifold W (¢1,,) and uniform size of unstable manifold W2 (q1,,)

and there exists a subsequence {qiy, };‘;1 such that they are homoclinic related with each other, so

H(qi.n,) = H(gi,n,) = -+ -, with @Orb(qlm) C A, we know A H(q1,n;) # ¢. Since f € R, H(q1,n;)
should be a chain recurrent class.jBecause A is a chain recurrent set, we have A C H(qunj), let ¢1 = q1,n,
for some j big enough, then ¢; satisfies a), d).

Now consider 0 < Ay < Ag3 < Aoa < 1, EF¥@FL" is obviously an index i — (I2, A) dominated splitting of
A and by the assumption, the splitting satisfy the conditions of selecting lemma for I3, A < Ay < Ay < 1,
so repeat the above argument, we can get a family of periodic points {g2,(f)}22, satisfying b), d),
lim Orb(qe,n) C A, A C H(ge1,f) =+ = H(qan, f) = -+ and lim 7, (ga,n(f)) — oo. When ng is
ggoznough, we'll have m, (¢2,n,) > 7, (1) and Orb(gsa,p, ) is near Xﬁr;oore than Orb(g1). Let g2 = go.n,,

continue the above argument for I, and Ay < Ap 3 < Ay < 1, we can get {g,}ne; which we need. O

The following weakly selecting lemma shows when the conditions of the above corollary will be satisfied.
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Lemma 4.21. (Weakly selecting lemma) Let f € R, A be a compact invariant set of f with index
i — (lp, A\) dominated splitting E* @ F* (1 <i<d—1). Assume that
a) (Non-hyperbolic condition) the bundle E° is not contracting,

b) (Strong tilda condition) there are Ao < 1 and Iy > 1 such that for any x € A, w(x) contains a

n—1 ,
point ¢ € A satisfying [ || Df'| | <A foralln > 1.
=0

i Ew(fﬂ{)c)|

Then for any I, = n - (lo - ) and any sequence {(An.3, An.a)}S2, satisfying maz{No,\a} < A3 <
Aa < - < Apg < Apa < --- where Ay 3 — 17, there exists a family of periodic points {qn(f)} with
index i such that

o lim m, (ga(f)) — o0

m—1 Trln(Q"n,)_l
. H HDfl"|Es(f_7‘znq“)|| < A3y and 11 HDfl"|Es(f_7‘znqn)H > Aty form >1
7=0 =T, (qn)_m

o ﬁOrb(qn) CA
o A C H(qn(f)) forn >1.

Proof Since E{° @ F" is a (lp, A) dominated splitting and 1, = Iy - I}, it should be a (11, /\lf?) dominated
splitting also. Choose A, A1 such that max{)\lé, Ao} < A1 < Ay < A3, we'll show that the splitting
EY © F{* and the [, Mo < A\ < A, < 1 will satisfy all conditions of corollary 4.20, equivalent, we’ll
show the splitting E{® @ F{¥, [, and Mo < )\ < A, < 1 will satisfy the condition of selecting lemma for
alln > 1.
0) Since E§*@®F* is a (11, Al) dominated splitting and I,, = n-ly, E$ ® F§* is a (I,,, A%) dominated
splitting also.

1) Here we need the following lemma:
Lemma 4.22. Let A be a compact invariant set of f, E§® is an continuous invariant bundle on
A, and dim(E®(z)) =i for any x € A where i # 0, suppose | € N, if for any x € A, there exists

n—1
an n such that T] |Df!|ges (il < 1, then ES is a contracting bundle.
§=0

Since we know E§° is continuous but not contracting, so for any I,,, there exists b,, such that
n—1
[T IDfL] ges (patnp,y || =1 for all m > 1.
j=0
nlom—1 , .
2) For any = € A, w(x) contains a point ¢, € A such that [] ||DflO|ECS(szé( )|| < A3 for all

j=0
m > 1, since

nlom—1 m—1 m—1
1 loly, ln
| DTN | R X (YT
=0 =0 =0

m—1
we have that [] ||Df™
§=0

Ecs(fjl,ncn)” S )\g"mlo § )\7271 fOl" all m 2 1.

Remark 4.23. In b) of weakly selecting lemma, we don’t give any restriction on x, so b) is in fact more
stronger than the tilda condition, that’s why we call the condition b) in weakly selecting lemma the strong

tilda condition.
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By 0), 1), 2) above and corollary 4.20, we proved the lemma. a

4.3. Transition. Transition was introduced in [6] at first, there they consider a special linear system
with a special property called transition and use it to study homoclinic class. Here I prefer to use a little
different way to state it, the notation and definition are basically copy from [6]. The main result in this
subsection is corollary 4.26. We begin by giving some definitions.

Given a set A, a word with letters in A is a finite sequence of A, its length is the number of letters
composing it. The set of words admits a natural semi-group structure: the product of the word [a] =
(a1, yan) by [b] = (b1, ,by) is [a]- [b] = (a1, -+ ,an, b1, -+ ,b;). We say that a word [a] is not a power
if [a] # [b]* for every word [b] and k > 1.

Here we’ll use some special words. Let’s fix f € CY(M), for any = € Per(f), we write [x] =
(fr@=Y(z)),- -, x) and {z} = (Df(f7@~Yz)),--- ,Df(z)). We call a word [a] = (ay, -~ ,a;) with
letters in M is a finite e-pseudo orbit if d(f(a;),ai+1) < e for 1 < i < k — 1, if ¢ = 0, that means
fla;)) = aj41 for 1 < i < k — 1, then we call [a] is a finite segment of orbit. We always denote
{a} = (Df(ax),--+ , Df(ar)).

Suppose we have a finite orbit [a] = (an, - ,a1) and an e-pseudo orbit [b] = (b, -+ ,b1), we say [b]
is ¢-shadowed by [a] if n = [ and d(a;,b;) < € for 1 < i < n. We say {a} is d-close to {b} if n =1 and
IDf(a;) — Df(b;)|| <6 for 1 <i<n.

Suppose H(p, f) is a non-trivial homoclinic class, we say H(p, f) has e-transition property if : for

any finite hyperbolic periodic points p1,--- ,p, in H(p, f) which are homoclinic related with each other,

there exist finite orbits [t17] = (tzgm), ot for any (i,7) € {1,---,n}? where k(i,7) is the length
of [t4], such that, for every m € N, | = (i1, -+ ,im) € {1,---,n}™ and @ = (a1, -+, ) € N™
where the word ((i1, 1), -, (im, @ )) with letters in N x N is not a power, the pseudo orbit [w(l, a)] =
[timoi] . [p;, Jom - [tim=tim] L [p, o J@m-t..L L [fi2] L [ 197 is an e-pseudo orbit and there is a periodic

orbit Orb(q(l,«)) C H(p, f) such that:
a) the length of [w(l, a)] is 7(q(l, @) and [¢(I, )] e-shadow the pseudo orbit [w(l, &)].
b) the word {q(l, @)} is e-close to {w(l, a)}.

¢) there exists a word {tti-ti+1} = (T;J(:;rl), co P54 with letters in GL(RY) e close to {ti:i+1},
let T4+ = Tl?(zjj::-ll—l) ..... Tfa"iﬁl’ then

T (E*(4i;)) = E*(qi;11)s aTi'j7i'7+1(Eu(Qi_7‘)) = E"(qi; 1)
We say H(p, f) has transition property if H(p, f) has e-transition property for any € > 0.

Lemma 4.24. ([6]) f € CY(M), suppose p is an index i (i # 0,d) hyperbolic periodic point of f, then
H(p, f) has transition property.

Lemma 4.25. f € R, suppose p is an index i (i # 0,d) hyperbolic periodic point of f and H(p, f) is not

trivial. Suppose there exists a family of periodic point {py,}>2, with index i in H(p, f) homoclinic related
Ty (pn)*l
with p and l,, — 00, A\, — 17 such that m, (p,) — o0 and  [[  ||Df™
§=0

(Pn)

Be(pinpap | 2 An'™

then H(p, f) is an index i — 1 fundamental limit.

Proof : We claim that we can find ¢,(g,) is periodic point of g, with index 4 such that:
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1) lim g, = f.

n—oo

2) Orby, (gn) is periodic orbit of f also (flor,, (4.) = Inlors,, (4.))> S0 We just denote it Orb(gn),
then we have Orb(q,) C H(p, f) and lim Orb(q,) = H(p, f).
n—oo

3) lim —”(lq") — 0
n—00 "

[m{en)] -1

In

) I |Dgr

j=0
Proof of the claim: Choose ¢, — 071, let’s fix ng at first and choose an ¢ > 0 such that Ano +2e < 1.

There exists Ng > ng such that for any n > Ng, we’ll have [, > [,, and A\, > \,, + 2¢, then by
Tin (pn)*l . ( ) mlno Ty (pn)*l
I 1D e gotnpn | = A0 @ webave [T Db
=0 =0
then we get

["'(IKZH)]
3 jln > >\ In
Bs, (gt () | = An

ln n
Be(fitnp) |l = An o™i (Pn) for m > 1,

mlpmy, (Pn)—1

(4.15) II Ipsi

Jj=0

Es(fﬂnopn)H > (Ang + 26)’”["07”" ®n) for m > 1.

Since f € R, there exists a family of periodic points {¢/}}¥, with index i, which are &,,-dense in
H(p, f) and they are homoclinic related with p and {p,}32 ;. Now use e,,-transition property for {g}(=
PNo)s 1, N}, then for {i,5} € {0,1,---, N}?, there exists finite orbit [t*V] = (t;;gi,j)v e ,ti’j) such
that for [ = (0,1,---,N) and ay, = (m - Iy, 1, -+, 1), the pseudo orbit [w(l,a,)] = [tV0] - [gh] -+

Ing 7 (P
[t91] - [q{)]m'l%% is an e,,-pseudo orbit and is &,,-shadowed by periodic orbit [¢(I, a,y,)] whose
index is ¢, where Orb(q(l, o)) C H(p, f) and {q(l, am)} is ep,-near {w(l, am)}.

Consider the word {@ (1, am)} = {tV O -{gh}- - - {tVO}-{gh} ™0, it’s e, near {w(l, cum)}, s0 {w (1, m)}
is 2e,,, near with {q(l,am)}. Now use lemma 4.17 (Franks lemma), we can get a C! diffeomorphism
9(1,0) SUch that d(gq,a,.), f) < 2€n,, Orby(q(l, i) is also orbit of g 4.y, and {Dgq,a,.)lorb(g,am)) } =
{w(l, am)}. By ¢) of transition property, E;(") (qg) is invariant bundle of {w(l, ay,)}, so they are invariant
bundle of g q,,, that means Dg@fiii’?’”))(Ej(q{))) = E%(qy) and Dggfggi’;‘m))(E}‘(q(’))) = E}(qp)- It's easy
to know when m is big enough, E;(u) (o) is stable(unstable) bundle for g 4,,), so when m is big enough,
4(1,a,) Would be an index i hyperbolic periodic point of g q,,.)-

Now choose m big enough and let ¢,, = q(I, m), Gno = 9(1,a.,), it's €asy to know g, gn, satisfy 1),
2). About 3), let’s notice that w(gn) > ml,, and m can be chosen arbitrary big. 4) comes from (4.15)

and m is big enough. O

Now let’s continue the proof of lemma 4.25, by the above claim and lemma 4.16, for any € > 0 and
N > 0, there exist an ng > N and g, is e-perturbation of g,, such that Orb(gn,) is index i — 1 periodic
orbit of g;,. and Orb(qn,) is €n,-dense in H(p, f). Since ¢ and e,, can be arbitrarily small, we get that

lim g/, = f, Orb(qy,) is index i — 1 periodic orbit of g/, and lim Orbd(q,.) = H(p, f), so H(p, f) is an
n—oo i i j j—oo i

index 7 — 1 fundamental limit. O

Then main result of this subsection is the following corollary.

Corollary 4.26. f € R, C is a chain recurrent class of f, A is compact invariant set of f with index
1— (I, \) dominated splitting E° @ F°* (1 < ¢ < d) and assume they satisfy all the assumption of weakly

selecting lemma, then C contains index i periodic point and C is an index i — 1 funadamental limit.
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Proof : It’s just a corollary from Lemma 4.21 (weakly selecting lemma) and lemma 4.25. g

4.4. Proof of lemma 4.3. Proof : When A is trivial (#(A) < 00), A is a periodic orbit, since A is an
index jo-fundamental limit, it should be an index jg hyperbolic periodic orbit, so C' contains an index jg
periodic point and it’s an index jo fundamental limit.

Now we suppose A is not trivial, by generic property 5 of proposition 3.1, there exists a family of
index jop periodic points {p,(f)}32, such that nlingo Orb(pn(f)) = A. Since A is not trivial, we have
#(pa(f)) — .

If A isn’t an index jo+ 1 fundamental limit, we know that {p, (f)} is index jy stable, then by lemma 4.6
(Gan’s lemma), there exits a subsequence {p,, (f)}{2; such that p,,(f) and py, (f) are homoclinic related,
s0 H(pny, [) = H(Pny, [) = -+, especially, by lim Orb(p,(f)) = A, we know that A C H(pn,, f), by
generic property 6) of proposition 3.1, C = H (pr,l:,o;), so C' contains index jo periodic point and it’s an
index jo fundamental limit.

So from now, we suppose A is an index jo + 1 fundamental limit also, then A C P} N Pr 1, since f
is far away from tangency, by proposition 2.1, A has an index jo dominated splitting £5%(A) ® E5" 1 (A)
and an index jo + 1 dominated splitting E%;, 1 (A) @ ES' o (A). Let EY(A) = E54 (A) (N Ef; 1 (A), then
on A we have the following dominated splitting: Ty M = E5’(A) © E{(A) © Ej" 5(A). Since C(\ P = ¢
for j < jo, by proposition 2.2, E5* is in fact contracting, so we prefer denoting it £ . Now on A we have

the dominated splitting T|aM = Ej (A) ® E{(A) © E5,4 5(A).

Remark 4.27. Since A is index jo fundamental limit, E{(A) is not contracting, that means that the

bundle (E5 & ET)|a is not contracting also.

When jo + 1 = d, especially, the dominated splitting on A should be T|aM = E; (A) ® Ef(A). In
this case, if A is not minimal, there exists an xg € A such that w(zg) & A. By the definition of A and
jo =d—1, w(xp) is an index d fundamental limit but not index j fundamental limit for j < d. With
the generic property (5) of proposition 3.1, w(zg) can be converged by a family of sinks {p,(f)}, by
remark 4.4, w(p,,(f)) should be bounded ( If it’s not bounded, there exist p,, (f) and gn, < f such that
Inolors, (Prg () = f|Obe(pn0(f)) and Orb(pn, (f)) is a periodic orbit of g with index smaller than d, that
means w(xg) is an fundamental limit with index smaller than d, it’s a contradiction). That means w(z)
is trivial, so it’s a periodic orbit. Since f is a Kupuka-Smale diffeomorphism and w(zg) is an index d
fundamental limit, we can know that w(zo) is an index d hyperbolic periodic orbit, then C' contains a
sink, it means C itself is just the orbit of sink and C' = w(xy), that’s a contradiction with C' is not trivial,
so we proved A is minimal when jo + 1 = d.

Now we just consider jo + 1 < d, we claim that with all the assumptions above on A, then either A is

minimal, or C' contains periodic points with index jo + 1 and C' is an index jy fundamental limit.

Proof of claim: Suppose A is not minimal, it means that there exists xg € A such that w(xzg) # A.
Consider the set of compact chain recurrent subset of A: {Ay @ Ao G A}aca, since w(zg) € {Aa}aca,
A # ¢, by generic property (4) of proposition 3.1, A, is a fundamental limit. By the definition of jo and
A, A, is an index j, fundamental limit with j, > jo + 1. Denote B={5 € A, Ag does not contain index
j fundamental limit for j > jo + 1}.
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Remark 4.28. : For any B € B, Ag is an index jo+ 1 fundamental limit, on Ag we have an index jo+ 1
dominated splitting 57, (Ag) © E5', 5(Ag). Since we have Ag does not contain any index j fundamental
limit for all j # jo + 1, by proposition 2.2, the index jo + 1 dominated splitting is in fact a hyperbolic
splitting, that means Ag is a hyperbolic set.

Now we divide the proof of the claim to three subcases: #(B) = 0, #(B) = N; < o0 and #(B) = 0.
Case A: #(B) =

That means for all @« € A, A, contains an index j, fundamental limit A}, for some j, > jo + 1.

Now we need the following two results.

Lemma 4.29. ([45]) Assume f € R, let A be an index ¢ fundamental limit of f (1 < i < d—1),
E*(A) @ EfY (A) is an index i — (I, \) dominated splitting on A given by proposition 2.1, then
1) either for any p € (A, 1), there exists ¢ € A such that H | Df! | ez (pitey |l < p™ forn > 1,

2) or Ef® splits into a dommated splzttmg Ve, e Ve wzth dzm(V1 ) =1 such that for any p € (A, 1),

Yyes (piren |l < p™ for alln > 1.

Lemma 4.30. Let A be an invariant compact set of f, with two dominated splitting E°° & F°* and
Es @ Feu | if dim(E) < dim(E°®), then E° C E°S.

Choose pg € (A, 1), since A is an index j, fundamental limit, proposition 2.1 gives an index j, — (I, A)
dominated splitting E5° & F7" ; on A7.
If 1) of lemma 4.29 is true for A}, then there exists ¢ € A, such that H | Df! |Em (fitey|l < pg forn > 1.

=0
On A, we have another dominated splitting (Ej & EY) & E#+2 induced from A. Since dim(E; & EY) =

Jo+1 < ja = dim(Ej]), be lemma 4.30, B & EY C E5°, so we have H | Df! ES GES (itey|l < pg for
7=0
n>1.
If 2) of lemma 4.29 is true for A%, then there exists ¢’ such that H | Df! |Vr§71(f7l(./)|| < ug forn > 1,
recall that dim(E5 @ EY) = jo+1 < jo — 1 =dim(VS*_ 1), by lemma 4 30, B3 © EY C Ve 1 (A7), so we

n—1
have [] || Df!
=0

E;O@Ef(szc/)ﬂ < pug for n > 1.

Remark 4.31. : By the above arguments, we know that for any o € A\ B, and for any po € (A1),
there exists ¢ € A, such that

n—1
(4.16) [T1Df
j=0

s eps(pioll S pg forn > 1.

By remark 4.27and remark 4.31, the index jo + 1 — (I, \) dominated splitting (£} & EY) & ESY, 5 on A

satisfies all the conditions of weakly selecting lemma, by corollary 4.26, C' contains index jo + 1 periodic
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point and C' is an index jy fundamental limit.

Case B: #(B) = N; < o0

Let B={01, - ,0n,}, fix A < po < 1, then by the argument in case A, for any § € A\ B, there exists
¢ € A satisfies (4.16).

For 8; € B, Ag, should be a hyperbolic set where the bundle E; ® E¥| Ag, is a contracting bundle, so
there exists I’ such that for any = € Ag,, ||Dfl/|(E$0@Ef)(w)|| <1/2.

Let lp =1+ and 1 > p; > max{puo, %}, then for any A, (a € A), there exists a point ¢ € A, such

n—1

that [] || Df'

7=0
(Ej0 @ ES) @ ES' o on A satisfies all the conditions of weakly selecting lemma, by corollary 4.26, C'

Be ops(fioey|l < pf. With remark 4.27, the index jo + 1 — (I, A) dominated splitting
Jo

contains index jy + 1 periodic point and C' is an index jo fundamental limit.

Case C: #(B) = o0

In remark 4.28, we have shown that for any 3 € B, Ag is a hyperbolic chain recurrent set with
index jo + 1. Then there exists a family of periodic points {pg,}52; in C' with index jo + 1 and
lim Orb(ps,n) = Ag (by shadowing lemma). If Ag is trivial, that means it’s an index jo + 1 periodic
g;b?;, we can let Orb(pg,n) = Ag for n > 1; if Ag is not trivial, we can let 7(pg,n) — oo.

We have the following two subcases.

e Subcase C.1: There exists § > 0 such that for any Ag, § € B, there exists a family of periodic
points {pg 152, such that lim Orb(pg,) = Ag and | Df’r(pﬁv")|Ef(pﬁyn) |< e~ 0m(Pam),
e Subcase C.2: For any L > 0, there exist 3, € B and a family of periodic points {pg,, »}o2;

L
Ef(ppyy.n) |> €T Pomn)

satisfying lim Orb(pg, ») = Ag and | D f7(Psm.n)

In the subcase C.1, let’s fix 1 > uy > po > e °. For B € B, recall that dim(E§(A)) = 1 and

m(pp,n)—1
| Df7Pan) ES(psn) 1< e 0w we'll get ] | Dflee(ps.) 1< e~9™(Pa.n)  that means for any
i=0
sm(pg,mn)—1
s > 1, we have 11 | DflEepsn) 1< e=*07sn) for s > 1. By lemma 4.10 (Pliss lemma) there
i=0

1
ES(zp.) |= ‘Ho | Df|Ef(fi(wﬁyn)) |< p for s > 1. Suppose

exists 23, € Orb(pgn) such that | Df*®

n—00

s—1
lim g, — cg where cg € Ag, then [[ | Df|pe(si(es)) |< pg for s > 1. Notice that E7 [ is dominated
=0

t—1 ,
by Ef|a and gy > po, there exists I’ > 1 doesn’t depend on 3 such that [] || Df! |Beom: (rit (ol < Wi
i=0 Jo

fort > 1.
t—1
For o € A\ B, by the argument in case A, there exists ¢, € A, such that 1:[0 ||Dfl0|Ef@E;0(fuo(ca))|| <
ut for t > 1.
t—1
Let Iy =1’ - lp, then for any o € A, there exists ¢, € A such that [] ||Dfl1|E§@E;O(f“1(ca))|| < p} for

=0
t > 1. With remark 4.27, the index jo + 1 — (I, A\) dominated splitting (E5 © EY) @ E}! ., on A satisfies
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all the conditions of weakly selecting lemma. By Corollary 4.26, C' contains index jy + 1 periodic point
and C' is an index jo fundamental limit.

In the subcase C.2, since Ag,, is a hyperbolic set, we can always suppose {pg,, »}or, is homoclinic
related with each other and pg,, , € C, so C contains index jy + 1 periodic points. Now we’ll show C' is
an index jo fundamental limit also.

We claim that there exists a subsequence {3, }72; C {fn} and for every f,,, there exists pg,,, n, €

{Pgyn, m}uz such that lim 7(pg,,, n,) — o0,

Proof of the claim: Let Bo={0, : Ag,, is given in subcase C.2 and Ag,, is not trivial. }

If #(By) = oo, then for any (3, € Bo, by Ag,, is not trivial, we'll have nlirgo (P, ,n) — OO, SO
when n is big enough, we can let 7(pg,,, ») arbitrarily big.

If #(By) < oo, then for B, ¢ By, Ag,, is an index jo + 1 periodic orbit and Orb(pg,, n) = Ag,, for
n > 1. Since f is a Kupka-Smale diffeomorphism, the number of periodic points with fixed boundary of
period should be finite, by the fact #(B\ B,)) = oo, there are infinite of m such that A,, is index jo + 1

periodic orbits, then we can choose Ag,, is an index jo + 1 periodic orbit with arbitrarily big period. O

Now for simiplicity, we denote pg,,. n, by pg,. n.-

For {pg,,.nm too_1, we have lim 7(pg,,.n,. ) — oo and
m— 00

(417) |Df7r(p[}mynm)|Ef(pﬁm.nm)| > efTiW(p[im,nm).
Choose {l,,}2_; carefully, we’ll have lim [, — oo, lim %“”’") — oo and l’ﬁ — 01 (after
m—00 m— o0 m
replacing {pg,. n.. }oo—; by a subsequence, we can always do this). Since m,, (pg,, n,.) > w, we
have
(4.18) im 7, (P8, mm) — 00
m—00

By (4.17) and the fact [ - m;(p) is always a multiple of 7(p) for any period point p and I > 1, we have

|Dflm Tl (p["?n sm

1
m b1, (p["?n sm ) ,

|5 )| > €

it’s equivalent with

Tim (pﬁ'm sTm )—1

[ 1o

=0

Im
, ey (D )
B (fitm (pg ) | = € Tim Pmomm

then we get
Tlm (p5nL~”7n)_1

IT  IDF msoms, ysim o | 2 € T omenm),
o i
=0

since lim %‘ — 07 and by (4.18), lemma 4.25 tells us C is an index jo fundamental limit, this finishes
m— 00

the proof of the claim. O

Now let’s continue the proof of lemma 4.3, by the above argument, we can suppose A is minimal, not

trivial, it’s an index jo and jo + 1 fundamental limit with dominated splitting E5 & ET @ E$t o|a where

J
Sona(A) # .
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If " 5(A) is not expanding, by lemma 4.22, we can know that there exists a point b € A such that
n—1
I1 HDf_l|E¢u+2(f(i+1)lb) | > 1, since (Ej, © EY) ® Ej" 5| is an index jo + 1 — (I, A) fundamental limit, it
i=0 70
means that

n—1 n—1
H) IDS s emecrnon - TTIDF pen,cparnayll S A", for n > 1,

J
=0

n—1
so |1 ||Dfl|E;; wpe(raeyll < A" for all n > 1. Since A is minimal, the index jo + 1 dominated splitting
i=0 70
on A satisfies strong tilda condition, by remark 4.27, it also satisfies the non-hyperbolic condition, so
it satisfies all the conditions of weakly selecting lemma, then by corollary 4.26, C' contains index jo + 1

periodic point and it’s an index jy fundamental limit. O

5. PROOF OF THEOREM 1

In order to prove theorem 1, we need the following lemma whose proof has been postponed to the end

of this section.

Lemma 5.1. Let f € R, C is any non-trivial chain recurrent class of f, suppose A C C is a non-trivial
minimal set with a codimension-1 partial hyperbolic splitting TaAM = E{ @ EY where dim(E$|a) = 1 and
E$(A) is not contracting, then C is a homoclinic class containing index 1 periodic point and C is an

index 0 fundamental limit.

Remark 5.2. in [9], they show that for f € R, if C is a chain recurrent class of f with a codimension-1
dominated splitting Tc M = EY © EY where dim(E$|c) = 1 and Ef|c is not hyperbolic, then C should be

a homoclinic class. We generalize this result to minimal set with Crovisier’s work on central curves.

Proof of theorem 1: Suppose C'[| Py # ¢, let A be an minimal index 0 fundamental limit, then A is
not trivial ( if A is trivial, A should be an orbit of source, then C itself is source also, that contradicts
with C' is not trivial)). By lemma 4.3, either C' is a homoclinic class containing index 1 periodic point and
C is an index 0 fundamental limit or A is a non-trivial minimal set with codimension-1 partial hyperbolic
splitting TAM = E$ @ EY where ES|a is not trivial. In the first case we've proved theorem 1, in the

second case, by lemma 5.1, we also prove theorem 1. O

In §5.1, we’ll introduce some properties for codimension-1 partial hyperbolic splitting set, in §5.2 we’ll
introduce Crovisier’s central model for the invariant compact set with partial hyperbolic splitting whose

central bundle is 1-dimension and non-hyperbolic. In §5.3 I'll give the proof of lemma 5.1.

5.1. Some properties for codimension-1 partial hyperbolic splitting. Let f € R, A is a given
non-trivial minimal set of f with a codimension-1 partial hyperbolic splitting TaM = E* @ E{, where
dim(E§(A)) = 1 and the bundle E{|, is not hyperbolic. In this section we always suppose the dominated
splitting is 1-step and the bundle E* is 1-step expanding, it means that there exists 0 < A < 1 such that

for any v* € E¥(z), v° € E{(z) where [v*| = |v°| =1, z € A, we have ‘lglf((sz))“ <\ [Df(v¥)] > A71 Fix
a small neighborhood Uy of A, then the maximal invariant set Ag = [\ f7(Up) has also a codimension-1

Jj=—o0

partial hyperbolic splitting Eu @Ev’f, the dominated splitting is 1-step and the bundle E’V“| A, 18 also 1-step
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expanding. We say Ef(A) has an f-orientation if Ef|A is orientable and D f preserves the orientation. If
E¢|A has an f-orientation, we choose Uy small enough such that Ev{(A) has an f-orientation also.

Here we should notice the reader that in this section, all the argument will take place just in Uy, and
we can suppose Uy is small enough such that it satisfies all the properties which we need.

When Uj is small enough, we can extend the bundle E’V“|A0 and EV’ﬂAO to Uy such that for any r € 70,
T,M = E“(z) & E¢(z), and if ES|, is orientable, E/ﬂﬁo is orientable also. In fact, no matter E/ﬂvo is
orientable or not, we can always locally define an orientation of Ef|z, , it means that there exists 6o > 0
such that for any = € Uy, we can give an orientation for the bundle EﬂBao )N Uo.

For every point x € Uy, we define two kinds of cones on its tangent space C?(z) = {v|v € T, M, there
exists v’ € Ev’(x) such that d(ﬁ, ‘Z—il) < a}i=cu- When a small enough, C¢(NC¥ = ¢, Df(C¥(z)) C
Cu(f(2)) and Df~L(CE(w)) € Co(f (@) for € Ao.

We say a submanifold D* (i = c,u) tangents with cone C? if dim(D?) = d — 1 when i = u and
dim(D?) = 1 when i = ¢ and for x € D!, T, D' C Ci(z). For simplicity, sometimes we call it i-disk,
especially when i = ¢, we just call D¢ a central curve. We say an i-disk D? has centrer x with size § if
x € D', and respecting the Riemannian metric restricting on D?, the ball centered on = with radius ¢ is
in D*. We say an i-disk D* has center x with radius ¢ if x € D?, and respecting the Riemannian metric
restricting on D?, the distance between any point y € D' and z is smaller than 4.

The following lemma shows some well-known results, it depends on a simple fact: locally the splitting
Ev’f @ Evu|ﬁo looks like linear. [9] ’s subsection 4.1 gives many details about such view, from lemma 4.8 in

[9], it would be very easy to get the following properties, so here we ’ll not give a proof.

Lemma 5.3. : Let f € R, A is a non-trivial minimal set of f with a codimension-1 partial hyperbolic
splitting TAM = EY @ E* where the bundle Ef|p is not hyperbolic. Up,dy, C,CS are defined by the
above argument. Let U be any small neighborhood of A satisfying U C Uy, there exist two neighborhoods
Us,Uy of A such that A C Uy C U, c U c U CU C Uy and there exist ag small enough and
0<d1,3<d1,2 <011 <00/2 such that they satisfy the following properties:

P1 For any = € Us, we have Bas, ,(x) C Uy, and for any x € Uy, we have Bas, ,(z) C U, then for
any i-disk D' (i = c,u) with center x € Uy and radius 261,17 we’ll have D' C U.

For any x € Uy, EvﬂB%M(m) is orientable, we can choose an orientation and call the direction
right, then the orientation of Ef|B251Y1(w) will give an orientation for central curves in Bas, , ().
We suppose 01,1 is small enough such that any central curve in Bas, | (x) will not intersect with
itself.

For two points y1,y2 € Bas, , (), we say y1 is on the x-right of ya if there exists a central
curve | C Bas, ,(x) connects yy and yz and in 1, y1 is on the right of yo. Then since any central
curve in Bas,  (x) is not self-intersection, ya is not on x-right of y1 anymore. Usually, we just
simply call yy is on the right of ys.

P2) Let A = ‘ ﬁ FUUL), apply lemma 4.13 on Ay, we can get the following two kinds of submani-

1=—00

folds families: the local unstable manifolds W e (x) zea, and the local central curves Wi () gen, -



P3)

P4)

P5)

P6)

P7)

PS8)

P9)
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Choose 61,1 properly ( small enough) we can suppose Wi () (i=uu,c) has size 011, let ng ()
be the ball in W} (z) with central x and radius 61,1, then we have ng () (wehyime,un) always

tangents with cone C .

In fact, for AT = ﬁ fi(U), any x € AT will have uniform size of unstable manifold W61 ' ()
which tangents with ch)%e Cad-
By the property of strong unstable manifolds, for yi,y2 € AT, if we have 61“1/2 (v1)N Wgﬁ/z(y?)
#+ ¢, then y; € Ws ' (y2) and y2 € Ws ' (y1). There exists 0 < X\ < 1 such that for any smooth
curve | C Wi (z) where x € AT, we’ll have length(f~1(1)) < X - length(l).
For any central curve D¢ and u-disk D" in U with centers in A1 and radius smaller than 261 1,
we have #{z| z € D°(\ D%} < 1. If D°( D" # ¢, then they are transverse intersect with each
other.
For anyx € Uy, y € Bs, ,(x) Ay, thg is an i-disk with center y and radius 612, then Df;l .
Bs, (x).

For z € Bs, 4(x) and ZEL (2) is a central curve at the right of z with length 612 and z is one of

C

its extreme points, suppose lg: (2) is a central curve at the left of z with length 01,2 and z is one
of its extreme points, let I§, ,(z) = lgjz( 2)Ul5,, (2), then #{1§5, () YW, (y)} = 1 and they are
transverse intersect. Suppose z ¢ Wi (y), then if 151 , Wt (y) # ¢, we say z is at x-left of y;
if l5 . AW (y) # ¢, we say 2 is at x-right of y. It’s easy to show when z is at x-right of y, it’s

not at x-right of y anymore.

For simplicity, we just call z at the left of WX (y) or the right of W ¥ (y).
For any x € Uy, any § < 012, there exists 6* < & such that for y € Bs«(z) (A1, if we have
z € Bs«(x) (VA1 also, then #{I5(2) YW, (y)} = 1 and they are transverse intersect (I§(z) is
defined in P5).
For any 0 < 6* < 241,1, there exists a 6**such that if I is a central curve in U, with length(T) <
2011, for z,y € I' and suppose the segment in I' connecting x and y has length bigger than §*,
then d(z,y) > 0**.

For any z € Uy, any central curve | in B, o(x) will have length smaller than 61,1.

For y € Bs, ,(x) AT, we can let Wit (y) ( Bs, , () always just have one connected compo-
nents, and Wg* ,(y) divides By, ,(x) into two connected components: the left part and the right
part.

If 21, 22 € Bs, , () are on the different side of Bs, ,(z) (W3 1/2( ) and there is a central curve
[ C Bs, ,(z) connecting them, then #{l 61“1/2( y)} =1.
Let x € Uy, suppose y1,y2 € Bs, ,(x)(VA] and there exists a central curve | in Bs, ,(z) con-
nects them, so by P8) length(l) < 01,1, now we know Wg /z(yl)ﬂW(ﬁ“l/?(yg) = ¢ (other-
wise y1 € Wit (y2), then #{IW5" (y1)} > 2, it contradicts with P4), it means Wy 1/2(y1)
and W(;‘lf‘l/Q(yg) divide Bs, ,(x) into three connected components. Suppose y1 is at x-left of y,
then for any point z € AT which are on the left of g‘lf‘lp(yg)ﬂBgm (z) and on the right of

Wdlul /2 (y1)N Bs, , (z), we have W(ﬁiﬁ/g(z) N W(;Llul /2 (yi) = ¢ (i=1,2) and Wg’ff/Q(z) NI # ¢.
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P10) A C' curve T in Uy is called a central segment if f/(I') C Uy for all i € Z and it always tangents
with Cg . Then I' C Ay and it’s easy to know that for any x € I', we have T,I" = Ev’f(x) OnT
we have normally hyperbolic splitting Ev’f ® E/T"h" since T,I' = Ev’f(x), by the property of normally
hyperbolic manifold, LEJF ngﬁﬂ(x) is a submanifold (dim = d) with boundary, we denote it

P

Wit (D).
P11) For any € > 0, if we have a family of central segment {T',}52 1 with length(T'y,) > €, there exists
8 > 0 such that vol(W¥ ,,(T'y)) > 6, so we can findn; # n; such that W(}LI‘I/Q(FM) Nw;s 1/2(Fnj)

61,1/2
# 6.

5.2. Crovisier’s central model. In this subsection, let’s fix U, Uy, Ua, A1, 00/2 > 01,1 > d12 > d1,3 > 0,
and ag given by lemma 5.3, we’ll introduce Crovisier’s central model. By his work, we can get some
dynamical property for the central curve Wy 1(ac) where € A;. The main result in this subsection is

lemma 5.11.

Definition 5.4. A central model is a pair (K, f) where

a) K isa compact metric space called the base of the central model.

b) f is a continuous map from K x [0,1] into K x [0, 00)

&) F(E x {0}) = K x {0) N

d) f is a local homeomorphism in a neighborhood of K x {0} : there exists a continuous map
g: K x [0,1] — K x [0,00) such that fog and o f are identity maps on 'gv’l(f? x [0,1]) and
FUEK % [0,1]) respectively.

e) fis a skew product: there exits two map fl . K — K and fg : K x [0,1] — [0, 00) respectively
such that for any (z,t) € K x [0,1], one has f(x,t) = (fi(z), fa(z,1)).

f general doesn’t preserve K x [0,1], so the dynamics outside K x {0} is only partially defined.

The central model (K, f) has a chain recurrent central segment if it contains a segment I = {2} x [0, ]
contained in a chain recurrent class of f| Bx[0,1]"

A subset S C K x [0,1] of a product K x [0,00) is a strip if for any « € K, the intersection S ({z} x
[0,00) is a non-trivial interval.

In his remarkable paper [13], Crovisier got the following important result.

Lemma 5.5. ([13] Proposition 2.5) Let (I?, f) be a central model with a chain transitive base, then the
two following properties are equivalent:
a) There is no chain recurrent central segment.
b) There exists some strip S in K x [0,1] that is arbitrarily small neighborhood of K x {0} and it’s
a trapping region for f or f=1 : either f(CU(S)) C Int(S) or f~1(CI(S)) C Int(S).

Remark 5.6. If the central model (K, f) has a chain recurrent central segment and K x {0} is transitive,
from Crovisier’s proof, we can know for any small neighborhood V' of K x {0}, there exists a segment

x % [0, alqx0 contained in the same chain recurrent class of flv with K x {0}.

An open strip S C f x [0,1] satisfying f(CI(S)) C Int(S) or f~H(CI(S)) C Int(S) will be called a
trapping strip.
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Definition 5.7. Let f be a diffeomorphism of a manifold M, A, A1,U, Uy, Ur,Usz,a0,50/2 > 011 >
01,2 > 01,3 > 0 are given in §5.1, where Ay is a partial hyperbolic invariant compact set of f having
a 1-dimensional central bundle. A central model (A1, f) is a central model for (A1, f) if there exists a
continuous map T : Ay x [0,00) — M such that:
a) m semi-conjugate fand f: for=mof on A x [0,1]
b) m(Ar x {0}) = Ay
c¢) The collection of map t — w(Z,t) is a continuous family of C* embedding of [0,00) into M,
parameterized by T € ;\Vl
d) Foranyz € ]\vl, the curve m(z,[0,00)) C U has length bigger than 61 2 but smaller than 261 1, it’s
tangent at the point x = w(x,0) € Ay to the central bundle and it’s a central curve ( that means

the curve m(z,[0,00)) tangents with the central cone C§, ).

Remark 5.8. From now, if (/Nh,f) is a central model for (A1, f) and 7w is the projection map, we’ll
denote the central model as (Kl,f,w). Here I should notice the reader that w in this paper has two
different meanings, one denote the period of periodic point and another denote the projection map of

central model. If there is any confusion, I'll point out.

The following lemma shows the relation between central model and a set with codimension-1 partial

hyperbolic splitting.

Lemma 5.9. ([Cr2]) A, Ay, U, Uy are given in §5.1, then there exists a central model (A, f.m) for (Aq, f).
Let’s denote A C Ay which satisfies 7= 2(A) (A1 x {0}) = A x {0}, then (A, f.m) is a central model for
(A, f), and A x {0} is minimal.

Remark 5.10. 1) When the cental bundle Ev’f(Al) has an f-orientation (it means that Ev’f(Al) is
orientable and D f preserves such orientation), we call the orientation ’right’, then we can get two
central models (1’\:*, ) and (/,\\1:,]?_,71'_) for (A1, f), we call them the right model and the
left model, where ©* ;— _y is a bijection between At x {0} and Ay, and for 7 € N, 7(F x [0, 00))
is a half of central curve at the right (i = +) or left (i = —) of x = 7(Z* x {0}).

2) If f doesn’t preserve any orientation ovaf(Al), then: Ay — Ay is two-one: any point x € Ay
has two preimages T= and T in 1~\1, the homeomorphism o of A1 which exchanges the preimages
Tt and T of any point x € A1 commutes with f

In § 5.1, we know any point x € Ay has a local orientation, then m(T+ x [0,00)) is a central
curve on the right of x, (T~ x [0,00)) is on the left of x, the union of them is a central curve

with central at x and radius d11.

The following lemma is the main result in this subsection, it’s similar with [Cr]’s proposition 3.6, but

a little stronger.

Lemma 5.11. f € R, A is a non-trivial minimal set with a codimension-1 partial hyperbolic splitting
Ef ® E* where dim(E§(A)) = 1 and E$(A) is not hyperbolic. Let U,Uy, Ay be given in §5.1, by lemma
5.9, (A1, f) has a central model (1~\1, f,ﬂ), then we can choose Uy properly such that

a) either (Kl, f,ﬂ) has a trapping region,
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b) or A is contained in a homoclinic class C, C contains periodic points with index 1 and it’s an

indezx 0 fundamental limit.

Proof : Let A C Ay satisfy A x {0} = 7=1(A) (A1 x {0}, then (A, f,7) is a central model for (A, f).
Since now, we just denote A x {0} by A.

At first, let’s suppose (1~\7 f, 7) has no trapping region, then by remark 5.6, for any small neighborhood
V of A in A x [0, 1], there exists a chain recurrent central segment = x I in V respecting the map f By
Crovisier’s result ([Cr], proposition 3.6), there exits a family of periodic points {p,} such that they all
belong to the same chain recurrent class with A and nan;o Orb(p,) = A, so A C H(pn, f)n>1. When n is
big enough, Orb(p,) C A1, so Orb(p,) has a codimension-1 partial hyperbolic splitting E’f ® E"|Orb(pn),
that means p,, is an index 1 periodic point.

Now we claim that H(p,, f) is an index 0 fundamental limit.
Proof of the claim: The argument is exactly the same with the case C' in the proof of lemma 4.3, so

here we just give a sketch of the proof, we divide the proof to two cases.

A) : there exists 6 > 0 such that for any p,,, we have |Df“(p")|gu(p )| < e 0mPn),
1(Pn

B) : for any - > 0, there exists p,,, such that |Df(Prm )| > e m T Prm),

)|~
E{(pn
In the first case, we use weakly selecting lemma, in case B, we use lemma 4.25. O

Now we suppose (7\, }V', 7) has a trapping region S, we can suppose f(Cl(s)) C Int(S) always. Choose
Ay an open neighborhood of A in A; small enough, we can get an open strip Sy for Ao (here open respect
Ay x [0,1]) such that:

a) for any 7 € A, 7 x [0,1] (S =7 x [0,1] ) S,
b) for any 7 € Ay and f(F) € Ag, we have f(CI((Z x [0,1]) (N S2)) C (f(F) x [0,1]) () S

Choose U* neighborhood of A small enough, let A* = ) T, then A* C Ay, let A* C Ay

satisfies A* = 7~ 1(A*) (A1, we'll have A* C Ay. Then consider the central model (A*, f, ) for (A*, f),
Sy M(A* x [0,1]) is a trapping region for (A*, f.m).
Now replace Uy by U* and Ay by A*, we get a trapping region for (Kl, f, ). O

5.3. Proof of lemma 5.1. Now we suppose A is a non-trivial minimal set with a codimension-1 partial
hyperbolic splitting E§ @& E* where dim(E$) = 1 and E$(A) is not hyperbolic. We divide the proof of

lemma 5.1 into two cases: Ef(A) has an f-orientation or not.

Proof of lemma 5.1 ( E$(A) has an f-orientation)

Let Uy be the small neighborhood of A given in §5.1 such that we can extend the splitting E{ @ E%|z
to Uy, we denote the splitting T,M = E’f o Ev (x € Tj’o). Suppose U is any small neighborhood
of A such that U C Uy, then from lemma 5.3, we can get open sets Us,U; and A; = ﬁ fi(Uy),

1=—00

ap > 0,0 < 813 < 912 < 1,1 < do/2 such that they satisfy properties P1-P11 of lemma 5.3 there.
Since E¢(A) has an f-orientation, ES(A) has an f-orientation also, by remark 5.10 we get two central

models: the right central model (Kf, f*‘,w"’) and the left central model (/~\f, f‘,w‘), where for any
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It e AT, 7t (&t x [0,00)) is a central curve at the right of 2 = 7+ (Z x {0}) and &; 5 < length(x™ (T x
[0,00))) < 201,1, so 7T (ZT x [0,00)) C Bas, ,(x) CU. For any T~ € A, we have the similar property.
At first, we consider the right central model (Kf,f—’_,ﬂ—i_), if the right central model doesn’t have
trapping region, by lemma 5.11, A is contained in a homoclinic class H (p, f) which contains an index 1
periodic point and the homoclinic class is an index 0 fundamental limit, then we’ve proved lemma 5.1,
so now we suppose that there exists a trapping region ST for the right central model. By the similar

argument for the left central model, we can suppose it has a trapping region S~ also.
Claim: A is an index 0 fundamental limit.

Proof of the claim: If A is not an index 0 fundamental limit, since A has a codimension-1 dominated
splitting, A should be an index 1 fundamental limit. By generic property 5 of proposition 3.1, there
exists a family of index 1 periodic points {p,} such that lim Orb(p,) = A and they are index stable,
then by Gan’s lemma, there exists a subsequence of periodril: gcj)ints {pn,, }5°_; in C. Now with the same
argument of the case C' in the proof of lemma 4.3, we can show A satisfies weakly selecting lemma, by

weakly selecting lemma 4.21, A is an index 0 fundamental limit, that’s a contradiction. g

Since A is an index 0 fundamental limit, by generic property 5) of proposition 3.1, there exists a
family of sources {p,}22; of f satisfying nlLH;o Orb(pn) = A. We can suppose Orb(p,,) C Uy always and
let pi, € Al (i—t,—) such that 7@ (p!, x {0}) = p,,, then (f1)™Pe) (p1) = p%. Denote f)}'{(_) x I7) =
B ) % [0,00)) N ST and yof ) = 7O EHO) x L)) let vy U~y;, then v, is a central curve
with center at p,. Since length('y,f[(*)) < 201,1, we have v, C Bas, , (pn) C Un.

We've suppose S* is a trapping region, then fT(-)(ST(2) c Int(ST()) or (FH())"1(S+()
Int(SJr(*)). In the first case, we say the trapping region is 1-step contracting, in the second case we
say it’s 1-step expanding. When S‘ is 1-step contracting case, we have (f%)™®)(pi x T;) Cpl x I,
so fTPn)(yi) C 4% for i = +,— and there exists > 0 doesn’t depend on n such that length(y% \
) (yi)) > § for all n > 1. If S is 1-step expanding, we'll still have length(yi \ f~7®)(yi)) > § for
all n > 1.

Since 7% is either expanding or contracting for f™(Pn) let T, = ' N e () (i=+,—), we'll have
j=—o0

f’r(”")(Ffm) =TI (i=+,—) Where I'‘’s extreme points are periodic points. When T’ is not trivial, we
denote ¢, (i=+,—) the extreme periodic point different with p,,, if I is trivial, we just let ¢¢ = p,. We
let T,, = TF UL, and hi =~% \ TP (i=+,—), then T'y, C Ay, hi C U;. It’s easy to know that h? is in the
stable (unstable) manifold of ¢’ if S® is 1-step contracting (expanding). And since f is a Kupka-Smale
diffwomorphism, f7®») | is also a Kupka-Smale diffeomorphism and just has finite sinks and sources
(vespect f7®)|r, ).

Lemma 5.12. If T, Ty, # ¢, then T'yy Ty is a connected central curve, and Ty |JTy, is a central

segment.

Proof : We need prove some lemmas at first.



26 JIAGANG YANG

Lemma 5.13. let © € T, ('), and x is not a periodic point, v1 € T, is the nearest periodic point at
the left of x and xo € '), is the nearest periodic point at the right of x. Denote I, C T',, the segment

connecting r1 and xs, then I, C Ty,

Proof : By the assumption, f™®») has no any other fixed point in I, so for z; and z2, one of
them is sink for f7®=)|p ~and another is source for f™(®»)|p . We suppose x; is the source, then
llim fimen) () — 25 and lim fmn)(z) — x1. Since Iy, is a periodic central segment with pe-
;"ioidO m(pm) and x € Ty, we Zhao\je fimen)men) (2) € T, for all i € Z, so xo = llim firea)men) (2) € T,
and x; = hm frime)rem) () € T, o

Now denote I, the central segment in I';,, connecting 1 and x».

We claim that I,, = I,,,.

Proof of the claim: If it’s not true, there exists y € Int(I,), z € W5 (y) () Im and z # y.
For any ¢ > 0, consider a = fiﬁ(pn)ﬂ(l)m)(y) where ¢ is very big, then a € I, and it’s near x5 very
much. Let b € Wy (a) () I, recall that I, and I, are tangent at Ev’f(xg), when i is big enough, there

exists a curve [ in Wi (a) connecting a and b with length(l) < e.

W(;llul (xl)Wtsl 1( ) W51 1( ) W61 1( )

Now it’s easy to know f—i7®Pn)7(em)(p) e Wt (y) L. By P4 of lemma 5.3, #{Wy" (y) T'n} =1,
so fira)m(em)(h) = 2, then f~7P)7(Pm)(]) is a curve connecting y and z, by P3 of lemma 5.3, we’ll
have length(f= " P)mem) (1)) < g . N7 (Pr)7(Pm),

Since € can be chosen arbitrarily small, we get y = z, that’s a contradiction.
By the claim, we finish the proof of lemma 5.13.
We still need the following result.

Lemma 5.14. Let = € T',, T, and x be a fized point of f*P)|p and f~®Pm)|p | suppose T',, and T,
both have points on the right of x. Let x,, € T',, be the nearest fized point of f™@n)

r, on the right of x and
Ty € Ty be the nearest fized point of f*Pm) | on the right of x. Denote I, C T, the central segment

in 'y, connecting x and x,, L, C Ty, the central segment in 'y, connecting x and x,,, then I, = I,,.

Proof : At first, we claim that either Wj", (zn) (\1n # ¢ or W§ (zm) (V1 In # ¢



NEWHOUSE PHENOMENON AND HOMOCLINIC CLASSES 27

Proof of the claim: Suppose Wi* (z,) () I # ¢, we know that x,, is on the left of W3 (2,), recall

1
that x,, is on the right of x, so by P9 of lemma 5.3, Wi (Xm) N In # ¢ O
Now we suppose Wy ()N Im = y # ¢, then y € I, \ {2}, it’s easy to know f~@n)™(Pm)(y) €
Wi (zn) (VL for i > 1, s0 frime)m(em) (y) = . But Zlggo fm@a)m(em) (y)) — 2,,, s0 ,, = y. It means
that x,, € I, \ {z}, so ©,, = &,. By the same argument in lemma 5.13, we can prove I,, = I,. O

Now let’s continue the proof of lemma 5.12.

Let T =T, (T, € T be the left extreme point of T', then by lemma 5.13, x should be a periodic
point and on the left of x, there doesn’t contain points of at least one of the segment I',, or I';,,. Let
y € I" be the right extreme point of I', then on the right of y, there doesn’t contain points of at least one
of the segments I',, or I',.

When z =y, T',, and Ty, are on different side of z, Ty, |J T, is obviously a central segment.

When z # y, let I be the maximal central curve in ' containing z, let z be the right extreme point
in I, by lemma 5.13, z should be a periodic point. If z # y, y is on the right of z and y € T, (T,
so by lemma 5.14, I will contain a central segment on the right of z, that’s a contradiction with the
maximalicity of I, so z = y. It means that I = T',, (T, is an interval, and x,y are its extreme points
on the left and right, and I';, and T'), can not both have points on the left of z, they can not both have

points on the right of y also, it’s easy to see now that T',, |JT',, is a central curve. O

Now we divide the proof of lemma 5.1 to three cases depending on the contracting or expanding prop-

erties of the two central models.
Case A: Two central models have 1-step expanding properties.

In this case, for any v,, we have f~%(v,) € U; for i > 1, it means v C A, and any z € =, will
have uniform size of unstable manifold Wg* (x). Let Ws. ) (V) = xgy Wi /2(), by the property of

normally hyperbolic submanifold, Wy /2('yn) is a submanifold (dim = d) with boundary, it’s easy to

know that Wg‘M/Q(’yn) has uniform size, that means there exists an € > 0 such that B.(p,) C Ws /2 (vn)

for all n > 1. Suppose lim p, = p € A, then when n is big enough, p € B.(p,) C W 1/2('yn), SO
n—oo s

lim =) (p,) — some periodic point z € I',,, it means z € A. But A is a non-trivial minimal set of

11— 00

f, that’s a contradiction. O

Case B: Left central model is 1-step contracting and the right central model is 1-step expanding.

Let’s consider «;", with the same argument in case A, it has uniform size of unstable manifold

Wy 1/2(7;{) = U 5 j2(@) (it’s because length(~;F) > length(h;}) > §), so there exists an £ > 0 such
: Lo

TEYn

that Vol(Wy  »(7:1)) > e.

Now we claim that for any sequence {n;}$2,, there exists igp and a sequence iy < i3 < iz < --- such
that for any j > 0, W£,1/2(77J{ij N W(gl,l/Q('Vrerio) + ¢.
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Proof of the claim: Suppose that the claim is not true, then we can find a subsequence {n;; };";1 such

that W3, (. YN /2 (t, ) = ¢ for jo € Nand j > jo, it’s a contradiction with Vol (W' /2 (vh) >
, Jo > j ,
g, since we'll have Vol(M) > > Vol(W 1/2(77t_)) = 00. O
J ' ’

By the above claim, we can find a subsequence {n;}$2; such that for any ip € NT, we can get
Wit 1/2(%4;;) Nw; 1/2(7;_7:0) # ¢ for i > ig. Since f is a Kupka-Smale diffeomorphism, on T,,, it just has
finite periodic points. So when we fix i, we can let i big enough such that p,, ¢ Yni,- 1t means that
we can choose a subsequence {(I'y,, 'y, )}52, such that py,, ¢ I'y,, 50 /2 (viN W5 /2 (v,h,) # ¢ and
lim (pp,;) = lim (pm,) = o for some zg € A.
1— 00 1— 00

Since Wyt o (%) W5t | jo(vih,) # ¢, suppose y; € Wit o (v ) W3, | 5(7:h,), then

hm fﬁjﬂp(p"i)ﬂ-(pmi)(yi) — F;; and hm f‘*jﬂ(p.,”)ﬂ'(pmi)(yi) N F”j;%’
j—o0 ‘ j—00

so 't NI, # ¢, by lemma 5.12, T'y,, (JT'y,, is a central segment.
For simplicity, we suppose p,, is on the right of p,,, for all ¢ € N, the proof of the other case is similar.
Since py,, ¢ I, and I'; =Ty, (U, is a central curve. py,, is on the right of ¢} also. Recall that ¢} is

r, , and ht belongs to its basin, so bt Wi o (pm,) = ¢.

7T(pni)
a source for f s /2

Remark 5.15. : We don't know h;f, C Ty, here.

We know that h:{ is a central curve on the right of q:{ with length bigger than §, by property
P6 of lemma 5.3, there exists a 0* such that d(q;} ,pm,) > 0*.( Since if d(q;} ,pm,) < 6%, we have
AACARIN W5t o(pn) # ¢ where IF (g} ) is any central curve at the right of ¢ with length & and ¢} is
the left extreme point of it, with the fact that p,, is on the right of ¢} , we’ll have h;f () Wiﬁm (Pm,;) # O,
that’s a contradiction because h;; C W“(q,ﬂ[)) So especially, in the central segment I';, the distance
between p,, and p,,, is bigger than 6*. By property P7 of lemma 5.3, there exists §** > 0 such that

d(pn;, Pm;) > 0**, it’s a contradiction with lim (p,,) = lim (pm,;) = zo € A. O
11— 00 11— 00

Case C: The two central models have 1-step contracting properties.

In this case, replace by a subsequence, we can suppose for {I',}°2 ;, we have p, ¢ |J T;.
i<n

Lemma 5.16. There exists ng big enough such that for any mi,n2 > ng, n1 # ng, we always have

W ) W o(Tn,) = 6.

Proof Suppose the lemma is not true, then we can choose n; and ny arbitrarily big and satisfying
W;j,l/g(Fm) N W5 e (Thn,) # @, then it’s easy to know I'y,, (T'n, # ¢ and Ty, T, is a central curve.
We can suppose ng > ni, then by the assumption of {I'y,}52 ;, we have p,, & I'p,.

We just suppose py, is on the right of p,,,, since I' = T",,, [JT',, is a central curve and p,, ¢ I',,,, we
can know p,,, is on the right of sz_l also, and q;’{l ely,.

We know that there exists a § > 0 such that length(hf{(f)) > § for all n > 1. And for such §, by
proposition P6 of lemma 5.3, there exists 0 < §* < § such that for any z,y € Ay, if d(z,y) < §*, we have
#{ (;‘11"1/2(36) N15(y)} = 1 where [§(y) is a central curve with center y and on the two sides of y both

have length 6.
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Suppose z € T, is the nearest periodic point on the right side of qn , and let I C I'), the central
segment in I',, connecting q+ and x.

Now we claim that length(I) > 6*.

Proof of the claim: If length(I) < 6*, then d(g;} ,2) < 6* also. By the facts that x is on the right of
qf, and h;f is a central curve with length bigger than d, we have hf (W ,(z) # ¢. Then for any
y € Int(1), Wi o (5) (Vb # o

It’s easy to know I ¢ hf{l since hjgl contains no periodic point, so there exists z € hjgl such that

W(;‘lf‘l/Z(z) NInt(l) =y # z.

Wﬁul/g(qyfl) VV(;?,LM2 () W;lul/z( )

hay
qf{l a; Y .

Because the two central models are 1-step contracting, qj{l is a sink for f”(”"l)|pn1 , then it’s also a sink
for f”(pnl)”(p"2)|p where I' = T',,, UT',,,. We can choose ¢ big enough, such that z; = f“’(p"l)”(pw)(z)
near ¢} very much, let a; = Wit p(zi) (V1. Since hif and I are tangent at ¢, on Evf(qjl‘l), for any
e > 0, when 4 big enough, there exists a curve I C Wg" (z;) connecting a; and z; and length(l) < €.
Since f~im(Pni)™(Pna) (q;) € € Wg, ,(2) N1, that means =" (Pn)7Pn2) (q;) = y and f=imPr)7™Pn2) (1) is a
curve connecting z and y. By property P3 of lemma 5.3, length(f " Pr)7(Pn2) (1)) < €X', Since i can be

chosen arbitrarily big, we can get y = z, that’s a contradiction. |

Since length(I) > 0*, the segment in I' connecting p,, and p,, will have length bigger than 0*
also, by property P7 of lemma 5.3, there exists §** > 0 such that d(pn,,pn,) > 0**. But recall that
lim p, — xo € A and n1,ny can be chosen arbitrarily big, we can get d(pn,,pn,) < 0**, that’s a

n—oo
contradiction. O

With lemma 5.16, we can chosen {I',}72, such that if n # m, Wy o(I'n) Wy, | 5(I'n) = ¢. Then
by property P11 of lemma 5.3, lim length(T';,) = 0.

Choose ng big enough suchntﬁzz for m > ng, d(Pm,Pn,) < 0*/4 and length(T',,) < 6*/4, we can
suppose pp, is on the right of p,,, then by ng,l/Q(F”) N ng,l/Q(F”) = ¢, we know that p,, is on the
right of ¢ and ¢, is on the right of ¢ also.

Since d(q, . ¢m) < d(Gt,Pno) + d(Gm, Pm) + APy, Pm) < length(Ty,) + 6% /4 + length(L'y,) < 6%, by
Property P6 of lemma 5.3 and length(h} ) > 6, length(h,,) > 6, we can get bt Wg‘lul/Z(q;L) # ¢ and
h, h W 1/2(%0) # ¢. Recall that hf C W*(q} ) and h,, C W*(q;,), we can know ¢,/ and g, are in
the same homoclinic class.

When m — oo, by length(T'y,) — 0 and lim p,, — x9 € A, we have ¢,, — zg also, so
x € H(gt , f) and then A C H(g;!, f). méoo
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Now we'll prove H (g, , f) is an index 0 fundamental limit.
Recall that Orb(q; ) C U and U can be chosen arbitrarily small, so in fact we’ve proved that there
exists a family of periodic points ¢, with index 1 such that lim Orb(g,) = A and A C H(qy, f) =
n—oo

H(q2’ f) = ...
By the same argument with case C in the proof of lemma 4.3, we can prove H(q, f) is an index 0

fundamental limit. O

Now let’s keep on proving the other case of lemma 5.1.
Proof of lemma 5.1(E§(A) has no any f-orientation):

In this case, we just have one central model, but locally we still have orientation for Evf(Al), and the
two sides have the same dynamical property: they are both 1-step expanding or they are both 1-step

contracting. All the other argument is the same with the case where E{(A) has an f-orientation. O
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