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Introduction

In this thesis we study the dynamics of C1 diffeomorphisms far away from homo-
clinic tangencies, taht is, such that no diffeomorphism in a neighborhood exhibits a
non-transverse intersection between the stable manifold and the unstable manifold
of some periodic point. There are two main sets of results, having in common the
general theme that diffeomorphisms far away from tangencies resemble hyperbolic
diffeomorphisms.

In the first part of the work we study the ergodic measures of diffeomorphisms
far away from homoclinic tangencies. We show that every ergodic measure has at
most one vanishing Lyapunov exponent, and the Osledets splitting corresponding
to positive, zero, and negative exponents is dominated.

In fact we prove that Pesin theory (existence of smooth local stable and local
unstable manifolds) holds in this C1 setting: the usual C1+Holder regularity assump-
tion can be replaced by the condition that this system is fay away from homoclinic
tangencies. Morever, some shadowing lemma holds, and every hyperbolic ergodic
measure is the weak limit of a sequence of atomic invariant measures supported on
periodic orbits belonging to the same homoclinic class.

By means of a result announced recently by Dı́az and Gorodetski, we deduce
that for C1 generic diffeomorphisms far away from tangencies, every chain recur-
rent class C is either hyperbolic or has a non-hyperbolic ergodic invariant measure.
In particular, if C is an aperiodic class, then every ergodic measure supported in it
is non-hyperbolic. That gives a partial answer to a conjecture given by Dı́az and
Gorodetski in the case of diffeomorphisms far away from tangencies.

In the second part of the work we study the so-called C1 Newhouse phenomenon:
existance of infinitely many periodic sinks or sources for a residual subset of some C1

open set of diffeomorphisms. We prove that if the C1 Newhouse phenomenon occurs
for diffeomorphisms far away from tangencies, then those periodic sinks/sources
must be related to some homoclinic class of codimension 1. In fact, the homoclinic
class is the Hausdorff limit of a sequence of periodic sinks/sources. This is in
contrast with the only known example of C1 Newhouse phenomenon, due to Bonatti
and Dı́az, which correspond to diffeomorphisms close to homoclinic tangencies, and
for which the periodic sinks/sources are often related to aperiodic classes.
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ERGODIC MEASURES FAR AWAY FROM TANGENCIES

JIAGANG YANG

Abstract. We show that for C1 diffeomorphisms far away from homoclinic tangencies, every ergodic

invariant measure has at most one zero Lyapunov exponent, and the Oseledets splitting corresponding to

positive, zero, and negative exponents is dominated. When the invariant ergodic measure is hyperbolic

(all exponents non-zero), then almost every point has a local stable manifold and a local unstable

manifold both of which are differentiably embeded disks. Moreover, a version of the classical shadowing

lemma holds, so that the hyperbolic measure is the weak limit of a sequence of atomic measures supported

on periodic orbits belonging to the same homoclinic class.

Together with a recent result of [6], this allows us to prove that there exists a residual subset R of C1

diffeomorphisms far away from tangencies such that for any f ∈ R, every chain recurrence class either

is hyperbolic, or admits a non-hyperbolic ergodic measure. In particular, if the chain recurrent class is

aperiodic, then every ergodic invariant measure supported in it is non-hyperbolic.

1. Introduction

In his famous paper [14], the first time Oseledets gave the definition and existence of Lyapunov

exponents for any invariant measure: for an ergodic measure µ of a diffeomorphism f , there exist k ∈ N,

real numbers λ1 > · · · > λk, and for µ−almost all x ∈ M , there exists a splitting TxM = E1
x ⊕ · · · ⊕ Ek

x

of the tangent space, such that the splitting is invariant under Df , and

lim
n→±∞

1
n

log‖Dfn(x)vi‖ = λi, vi ∈ Ei
x \ {0}.

We call λi the Lyapunov exponent of µ and the splitting E1 ⊕ · · · ⊕ Ek Oseledets splitting. Usually the

splitting is just defined on a full measure subset, not continuous just measurable changed with the points.

In fact, for any measurable bundle on M , Oseledets proved the existence of Lyapunov exponents for any

invariant measure.

Since then, Lyapunov exponents have played a key role in studying the ergodic behavior of a dynamical

system, understanding the Lyapunov exponents also become to one of the classical problems of the theory

of differential dynamical systems. Especially when all the Lyapunov exponents are not vanishing, such

kind of ergodic measure is called hyperbolic measure and which attracts a lot of attention.

Here we prove that if the diffeomorphism is far away from homoclinic tangencies, the Lyapunov ex-

ponents of its ergodic measures can be given a good description. Here a diffeomorphism is far away

from homoclinic tangencies means that no diffeomorphism in a neighborhood exhibits a non-transverse

intersection between the stable manifold and the unstable manifold of some periodic point.

Theorem 1: Suppose f is far away from tangencies and µ is an ergodic measure of f , then
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• either µ is hyperbolic with index i and the index i Oseledets splitting is a dominated splitting,

• or µ has just one zero Lyapunov exponent, and the Oseledets splitting corresponding to negative,

zero and positive Lyapunov exponents is a dominated splitting.

Remark:The definition of dominated splitting is given in section 1, since dominated splitting is always

continuous, so the above special kind of Oseledets splitting is always continuous.

By the definition, the tangent space of almost every point of a hyperbolic measure is splitted as the

sum of two subspaces which are exponentially contracted or expanded by all large enough iterated of the

derivative, it means the hyperbolic measure has some ’weak’ hyperbolic property on the tangent space.

Pesin showed that with some additional regularity assumption on the diffeomorphism (C2 or C1+Holder),

the hyperbolic ergodic measure shares many properties with hyperbolic set, for example, there exists

a family of local stable manifolds on a positive subset which is continuous and with uniform size, such

property is called the stable manifold theorem; Katok gave also a shadowing lemma, with it he proved that

the hyperbolic ergodic measure is the weak limit of a sequence of atomic invariant measures supported

on periodic orbits belonging to the same homoclinic class, such property is called Katok’s closing lemma.

Along this direction several deeper results have been proved, such as entropy formula, dimension theory

etc, all these results are called Pesin theory.

Now usually we call a hyperbolic measure together with the diffeomorphism a non-uniform hyperbolic

system, Pesin theory has been proved a very important and powerful tool to understand the non-uniform

hyperbolic system. But there is a restriction because the Pesin theory always needs the diffeomorphism

be C1+Holder, for C1 diffeomorphism the arguments fail to work (see [18]).

In [1], they begin to consider C1 Pesin theory, they proved that with a dominated assumption on the

tangent space, the stable manifold theorem is still true, and if the diffeomorphism is ’tame’, then there

exist a lot of hyperbolic ergodic measures.

In this paper we treat Pesin theory as a theory derives topological information from hyperbolic mea-

sure, it means that we just consider the stable manifold theorem and Katok’s closing lemma. With such

understanding, we show that when the diffeomorphism is C1 far from tangencies, C1 Pesin theory is still

true. It means that we can replace the regularity assumption about the diffeomorphism in the C2 Pesin

theory by a weak assumption on the diffeomorphism. The precisely statement is following:

Theorem 2: Suppose f ∈ C1(M)\HT and µ is a hyperbolic ergodic measure of f , then C1 Pesin theory

is true:

a) there exists a compact positive measure subset Λs(resp. Λu) which has continuous and uniform

size of stable (resp. unstable) manifolds, and almost every point has a local stable manifold and

a local unstable manifold both of which are differentiably embeded disks.

b) µ is the weak limit of a sequence of invariant measures µn supported by periodic orbits pn with

index i, and the periodic orbits are homoclinic related with each other.

Remark:
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• The stable manifolds we get usually is not absolutely continuous, that’s because the absolutely

continuous property heavily depends on distortion which just holds under C2 assumption.

• In fact, from the proof, it’s easy to see the above theorem can be stated in the following classical

way of Pesin theory in the C2 case:

Suppose f is far away from tangencies and µ is an ergodic measure of f , then there exists a family

of compact set Λ0 ⊂ Λ1 ⊂ · · · with positive measure such that f+(−)(Λi) ⊂ Λi+1, µ(
⋃
i

Λi) = 1

and they satisfy the following properties:

– for every Λi, there exist local continuous stable and unstable manifolds on it with uniform

size;

– for every Λi, there exist εi > 0, Li > 0 and Ni ∈ N, such that if there exist x ∈ Λi and

m > Ni satisfying fm(x) ∈ Λi and d(x, fm(x)) < εi, then there exists periodic point p with

period m and d(f j(x), f j(p)) < Li · d(x, fm(x)) for 0 ≤ j < m. Moreover, some point in

the periodic orbit we get has uniform size of local stable and local unstable manifolds and the

size just depend on the compact set Λi.

Corollary 1: Suppose f is far away from tangencies, C is a chain recurrence class of f without periodic

point, then any ergodic measure µ with supp(µ) ⊂ C is non-hyperbolic.

In [6], Dı́az and Gorodetski started to consider the generic existence of non-hyperbolic ergodic measure

and gave the following conjecture:

Conjecture 1: There exists a generic subset R in C1(M) such that for any f ∈ R and C chain recur-

rent class of f , either C is hyperbolic or there exists a non-hyperbolic ergodic measure µ with support in C.

[6] shows that for C1 residual diffeomorphisms, if its some homoclinic class contains periodic points

with different indices, then there exists a non-hyperbolic ergodic measure with support in this homoclinic

class. With their result, we prove conjecture 1 for diffeomorphisms far from tangencies:

Theorem 3: There exists a residual subset R in C1(M) \HT such that for any f ∈ R and any chain

recurrence class C of f ,

• either C is hyperbolic,

• or there exists a non-hyperbolic ergodic measure µ with support contained in C.

The structure of this paper is following: in § 2 we give some definitions and notations, theorem 1 is

proved in § 3, in § 4, we give the proof of theorem 2 and corollary 1, in § 5 we give some basic C1 generic

properties theorem 3 is proved in § 6.
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2. Definitions and Notations

Let M be a compact boundlessness Riemannian manifold with dim(M) = d ≥ 2. Let Per(f) denote

the set of periodic points of f and Ω(f) the non-wondering set of f , for p ∈ Per(f), π(p) means the

period of p. If p is a hyperbolic periodic point, the index of p is the dimension of the stable bundle. We

denote Peri(f) the set of the index i periodic points of f , and we call a point x is an index i preperiodic

point of f if there exists a family of diffeomorphisms gn
C1

−→ f , where gn has an index i periodic point

pn and pn −→ x. P ∗i (f) is the set of index i preperiodic point of f , it’s easy to know Pi(f) ⊂ P ∗i (f).

Let Λ be an invariant compact set of f , we say Λ is an index i fundamental limit if there exists a family

of diffeomorphisms gn C1 converging to f , pn is an index i periodic point of gn and Orb(pn) converge to

Λ in Hausdorff topology. So if Λ(f) is an index i fundamental limit, we have Λ(f) ⊂ P ∗i (f).

For two points x, y ∈ M and some δ > 0, we say there exists a δ-pseudo orbit connects x and y means

that there exist points x = x0, x1, · · · , xn = y such that d(f(xi), xi+1) < δ for i = 0, 1, · · · , n − 1, we

denote it x a
δ

y. We say x a y if for any δ > 0 we have x a
δ

y and denote x à y if x a y and y a x. A

point x is called a chain recurrent point if x à x. CR(f) denotes the set of chain recurrent points of f ,

it’s easy to know that à is an closed equivalent relation on CR(f), and every equivalent class of such

relation should be compact and is called chain recurrent class. Let K be a compact invariant set of f , if

x, y are two points in K, we’ll denote x a
K

y if for any δ > 0, we have a δ -pseudo orbit in K connects x

and y. If for any two points x, y ∈ K we have x a
K

y, we call K a chain recurrent set. Let C be a chain

recurrent class of f , we call C is an aperiodic class if C does not contain periodic point.

Let Λ be an invariant compact set of f , for 0 < λ < 1 and 1 ≤ i < d, we say Λ has an index i− (l, λ)

dominated splitting if we have a continuous invariant splitting TΛM = E⊕F where dim(Ex) = i for any

x ∈ Λ and ‖ Df l|E(x) ‖ · ‖ Df−l|F (f lx) ‖< λ for all x ∈ Λ. For simplicity, sometimes we just call Λ(f)

has an index i dominated splitting. A compact invariant set can have many dominated splittings, but

for fixed i, the index i dominated splitting is unique.

Remark 2.1. Suppose µ is an ergodic measure of diffeomorphism f , and supp(µ) has an index i domi-

nated splitting E ⊕ F , since the bundles E, F are continuous, they are measurable bundles, consider the

Lyapunov exponents for µ on bundle E and F respectively, denote λ1 ≤ · · ·λi ≤ λi+1 ≤ · · · ≤ λd the

exponents of µ, by the definition of dominated splitting, the vectors of F expands faster than the vectors

of E, so the exponents for µ on bundle E are smaller than the exponents for µ on bundle F , it implies

λ1, · · · , λi are the exponents for µ on bundle E and λi+1, · · · , λd are the exponents for µ on bundle F .

We say an ergodic invariant measure µ of diffeomorphism f has type (i, k) if #{negative Lyapunov

exponents of µ} = i and #{vanishing Lyapunov exponents of µ} = k. In particular, if k = 0, we say µ

has index i.
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We say a diffeomorphism f has Cr tangency if f ∈ Cr(M), f has hyperbolic periodic point p and there

exists a non-transverse intersection between W s(p) and Wu(p). HT r is the set of the diffeomorphisms

which have Cr tangency, usually we just use HT denote HT 1. We call a diffeomorphism f is far away

from tangency if f ∈ C1(M) \ HT . The following proposition shows the relation between dominated

splitting and far away from tangencies.

Proposition 2.2. ([19]) f is C1 far away from tangencies if and only if there exists (l, λ) such that

P ∗i (f) has index i− (l, λ) dominated splitting for 0 < i < d.

Usually dominated splitting is not a hyperbolic splitting, Mañé showed that in some special case, one

bundle of the dominated splitting is hyperbolic.

Proposition 2.3. ([13]) Suppose Λ(f) has an index i dominated splitting E⊕F (i 6= 0), if Λ(f)
⋂

P ∗j (f) =

φ for 0 ≤ j < i, then E is a contracting bundle.

3. Proof of theorem 1

At first we need the following special statement of ergodic closing lemma which is a little stronger than

the original statement given in [13] and whose proof will be given in § 3.1.

Lemma 3.1. (New statement of Ergodic closing lemma) Suppose µ is a type (i, k) ergodic measure of f ,

then for any i ≤ j ≤ i + k, supp(µ) ⊂ P ∗j and there exists a family of diffeomorphisms gn, such that:

1) : gn
C1

−→ f ,

2) : gn has periodic point pn with index j, let µn denote the invariant atom measure on Orbgn
(pn),

we have µn
∗−weak−→ µ.

Proof of theorem 1: We divide the proof into two cases:

a) µ is hyperbolic with index i;

b) µ has type (i, k) where k 6= 0.

In the case a), by lemma 3.1 and proposition 2.2, supp(µ) ⊂ P ∗i and supp(µ) has index i dominated split-

ting Ecs
i ⊕Ecu

i+1. By the definition of dominated splitting and remark 2.1, the Lyapunov exponents for µ

on bundle Ecs
i are strictly smaller than the Lyapunov exponents for µ on bundle Ecu

i+1, since the number

of negative exponents of µ is i, the Lyapunov exponents for µ on bundle Ecs
i are negative and the dom-

inated splitting Ecs
i ⊕Ecu

i+1 is the Oseledts splitting corresponding to the positive and negative exponents.

In the case b), at first we’ll show k = 1.

If k > 1, by lemma 3.1, supp(µ) ⊂ P ∗i
⋂

P ∗i+1

⋂ · · ·⋂ P ∗i+k, then by proposition 2.2 and f ∈ (HT )c,

supp(µ) has index i dominated splitting Ecs
i ⊕ Ecu

i+1; index i + 1 dominated splitting Ecs
i+1 ⊕ Ecu

i+2; · · · ,
and index i + k dominated splitting Ecs

i+k ⊕ Ecu
i+k+1. Denote

Ec
i+1,1 = Ecs

i+1

⋂
Ecu

i , Ec
i+2 = Ecs

i+2

⋂
Ecu

i+1, · · · , Ec
i+k = Ecs

i+k

⋂
Ecu

i+k−1,
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then supp(µ) has a new dominated splitting

Tsupp(µ)M = Ecs
i ⊕ Ec

i+1,1 ⊕ Ec
i+2,1 ⊕ · · · ⊕ Ec

i+k,1 ⊕ Ecu
i+k+1.

We denote λ1 ≤ λ2 ≤ · · · ≤ λd the Lyapunov exponents of µ, since µ has type (i, k), λi+1 = · · · =

λi+k = 0, and we have
∫

ln ‖Df(vx)‖/‖vx‖dµ(x) = λj = 0 where vx ∈ Ec
j,1(x) \ {0} i<j≤i+k. In fact

for any n > 0,
∫

ln ‖Dfn(vx)‖/‖vx‖dµ(x) =
n−1∑
t=0

∫
ln ‖Df t+1(vx)‖/‖Df t(vx)‖dµ(x) = nλj = 0 where

vx ∈ Ec
j,1(x) \ {0} i<j≤i+k. Since Ec

i+1,1 ⊕ Ec
i+2,1 is a dominated splitting, there exists l ∈ N such that

‖Df l(vx)‖/‖vx‖ < ‖Dlf(wx)‖/‖wx‖ for any x ∈ supp(µ) and vx ∈ Ec
i+1,1(x), wx ∈ Ec

i+2,1(x), so we have

0 = λi+1 =
∫

ln ‖Df l(vx)‖/‖vx‖dµ(x) <
∫

ln ‖Df l(wx)‖/‖wx‖dµ(x) = λi+2 = 0, that’s a contradiction.

So µ has type (i, 1), by lemma 3.1, supp(µ) ⊂ P ∗i
⋂

P ∗i+1, using proposition 2.2 and above argument,

supp(µ) has the following dominated splitting Tsupp(µ)M = Ecs
i ⊕Ec

i+1,1⊕Ecu
i+2, using remark 2.1, with the

same argument in case (a), the Lyapunov exponents for µ on bundle Ecs
i are smaller than the Lyapunov

exponent for µ on bundle Ec
i+1,1, and the Lyapunov exponent for µ on bundle Ec

i+1,1 are smaller than the

Lyapunov exponents for µ on bundle Ecu
i+2, since µ has type (i, 1), we know that the dominated splitting

Ecs
i ⊕Ec

i+1,1⊕Ecu
i+2 is also the Oseledets splitting corresponding to the negative, zero, positive exponents.

¤

3.1. A new version of Mañé’s ergodic closing lemma.

Proof : Suppose the theorem is wrong, then the measure is not trivial and there exists j with i ≤ j ≤
i + k which does not satisfy the theorem.

In the following we’ll get the contradiction by showing that #{negative Lyapunov exponents of µ} >

j ≥ i or #{positive Lyapunov exponents of µ} > d− j ≥ d− (i+ k), because we know that µ has exactly

i number of negative exponents and d− (i + k) number of positive exponents. In order to prove this, we

need show that there is a positive measure subset such that for every point in this subset, on its tangent

space, the tangent map Df exponentially contracting a subspace with dimension larger than j or the

tangent map exponentially expanding a subspace with dimension larger than d− j.

Lemma 3.2. (Ergodic closing lemma) Suppose µ is an ergodic measure of f , then there exists a family

of diffeomorphisms gn, such that:

1) : gn
C1

−→ f ,

2) : gn has periodic point pn, let µn denote the invariant atom measure on Orbgn
(pn), we have

µn
∗−weak−→ µ.

From Mañé’s ergodic closing lemma, there always exists a family of diffeomorphisms gn
C1

−→ f where

gn has an invariant measure µn supported on periodic orbit pn(gn) and µn
∗−weak−→ µ, suppose the periodic

points’ indices are all the same and strictly bigger than j.

Denote j0 = min
t≥j

{t : exists a family of diffeomorphisms gn
C1

−→ f where gn has an invariant measure

µn supported on index t periodic orbit pn(gn) and µn
∗−weak−→ µ }, then j0 > j. Choose such a family

of diffeomorphisms {gn} which has periodic point {pn(gn)} with index j0 and Orbgn(pn) supports an

invariant measure µn for gn satisfying µn
∗−weak−→ µ, since µ is not trivial, lim

n→∞
πgn(pn(gn)) −→ ∞.
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Denote Es
j0,n(Orb(pn)) the contracting subspace on Orb(pn) with dimension j0, then we get a family of

periodic linear maps {Dgn|Es
j0,n(Orb(pn))}.

Definition 3.3. The above sequence of periodic linear maps {Dgn|Es
j0,n(Orb(pn))} over Rj0 is called uni-

formly periodic contracting if there exists ε > 0 such that for any n large enough and any periodic linear

map {A1, · · · , Aπpn (gn(pn))} over Rj0 satisfying ‖Aj−Dgn|Es
j0,n(gj−1

n (pn))‖ < ε, we have all the eigenvalues

of
πpn∏
j=1

Aj < 1.

Now we’ll show that the above sequence of periodic linear maps {Dgn|Es
j0,n(Orb(pn))} we’ve got is

uniformly periodic contracting. At first, we need the well known Franks lemma:

Lemma 3.4. gn
C1

−→ f , suppose pn is a periodic point of gn, A|Orb(pn) is an ε-perturbation of {Dgn|Orb(pn)},
then for any neighborhood U of Orb(pn), there exists g′n such that g′n ≡ gn on (M \ U)

⋃
Orb(pn),

dC1(gn, g′n) < ε and {Dg′n|orb(pn)} = {A|Orb(pn)}.

As a corollary of Franks lemma, we can show that the family of periodic linear maps is uniformly

periodic contracting:

Corollary 3.5. There exists ε > 0 such that for any periodic linear map {A1, · · · , Aπgn (pn)} over Rj0

satisfying ‖Aj −Dgn|Es
j0,n(gj−1

n (pn))‖ < ε, we have all the eigenvalues of
πpn∏
j=1

Aj < 1.

Proof : If the sequence is not uniformly periodic contracting, there exists εnj −→ 0 and a sequence of pe-

riodic linear maps {(Anj ,1, · · · , Anj ,πgn
j
(gnj

(pnj
)))}j over Rj0 such that ‖Anj ,k−Dgnj

|Es
j0,nj

(gk−1
nj

(pnj
))‖ <

εnj and one eigenvalue of
πgn

j
(pnj

)∏
k=1

Anj ,k > 1.

Now we claim that replace by another sequence of periodic linear maps over Rj0 , we can always sup-

pose
πgn

j
(pnj

)∏
k=1

Anj ,k has index j0 − 1.

Proof of the claim: We can choose a new sequence periodic linear map {(Bnj ,1, · · · , Bnj ,πgn
j
(gnj

(pnj
)))}j

over Rj0 such that ‖Bnj ,k−Dgnj
|Es

j0,nj
(gk−1

nj
(pnj

))‖ < εnj
, all the eigenvalues of

πgn
j
(pnj

)∏
k=1

Bnj ,k ≤ 1 except

one real or a couple of complex eigenvalues with norm 1.

If
πgn

j
(pnj

)∏
k=1

Bnj ,k has only one real eigenvalue with norm 1, after small perturbation, we get a new

periodic linear map {(Ãnj ,1, · · · , Ãnj ,πgn
j
(pnj

))}j over Rd such that
πgn

j
(pnj

)∏
k=1

Ãnj ,k has index j0 − 1.

If
πgn

j
(pnj

)∏
k=1

Bnj ,k has a couple of complex eigenvalues with norm 1, lemma 3.7 of [4] shows after small

perturbation, we can let the two complex eigenvalues to be real with norm 1, then by another perturbation,

we get a new periodic linear map {(Ãnj ,1, · · · , Ãnj ,πgn
j
(pnj

))}j over Rd such that
πgn

j
(pnj

)∏
k=1

Ãnj ,k has index

j0 − 1.
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By above arguments, we can always get a new sequence of periodic linear maps {(Ãnj ,1, · · · , Ãnj ,πgn
j
(pnj

))}j

over Rj0 which satisfying ‖Ãnj ,k −Dgnj
(gk−1

nj
(pnj

))‖ < 2εnj
and

πgn
j
(pnj

)∏
k=1

Ãnj ,k has index j0 − 1.

Replace the sequence of periodic linear maps {(Anj ,1, · · · , Anj ,πgn
j
(gnj

(pnj
)))}j over Rj0 by the sequence

of periodic linear maps {(Ãnj ,1, · · · , Ãnj ,πgn
j
(pnj

))}j over Rj0 and finished the proof of the claim. ¤

Now use Franks lemma, by εnj perturbation, we can get a new diffeomorphism g′nj
such that

Orbgnj
(pnj

(gnj
)) is an index j0 − 1 periodic orbit of g′nj

, that’s a contradiction with the definition of j0.

¤

For such kind of uniformly contracting periodic linear maps, [13] gave the following lemma:

Lemma 3.6. ([13] Lemma II.4): gn
C1−→ f , suppose pn is index j0 periodic point of gn and lim

n→∞
πgn(pn) −→

∞. If the sequence of periodic linear maps {Dgn|Es
j0,n(Orb(pn))} is uniformly periodic contracting, then

there exist l > 0, N0 > 0 and λ < 1 such that for any periodic orbit pn with period π(pn) > N0, we have

(3.1)
[

π(pn)
l ]∏

i=0

‖Dgl|Es
j0,n(gil

n (pn))‖ < λ[
π(pn)

l ].

Remark 3.7. Under the same assumption with lemma 3.6, and l > 0, N0 > 0, λ < 1 given there, for

any periodic orbit pn with period π(pn) > N0 and any k > 0, we have

(3.2)
k[

π(pn)
l ]∏

i=0

‖Dgl|Es
j0,n(gil

n (pn))‖ < λk[
π(pn)

l ].

That’s because we can consider the new sequence of periodic linear maps

{(Dgn|Es
j0,n(Orb(pn))); (Dgn|Es

j0,n(Orb(gn(pn)))); · · · ; (Dgn|Es
j0,n(Orb(g

π(pn)−1
n (pn)))

)}.

Then (3.1) is true for g
k·l·[ π(pn)

l ](pn)
n where k > 0.

Now we need the following well known Pliss lemma:

Lemma 3.8. (Pliss lemma) For K > 0 and λ < λ1 < 0, there exists δ > 0 such that for any sequence

{an} satisfying ‖an‖ < K and lim
n→∞

1
n

n∑
j=1

aj < λ, there exist {Nt} and a subsequence {ani
} such that

1
m

m∑
j=1

ani+j < λ1 for any m ∈ N and lim inf
t→∞

#{ani
;1<ni≤Nt}
Nt

> δ.

For the uniformly contracting periodic linear maps {Dgn|Es
j0,n(Orb(pn))}, remark 3.6 gives parameters

l > 0, N0 > 0 and λ < 1, choose λ < λ0 < 1, by (3.2) and lemma 3.8 (Pliss lemma), with the fact

lim
n→∞

1
n

n−1∑
j=0

δgj
n(pn) −→ µn where µn is the ergodic measure on Orbgn

(pn), if denote Λn = {y ∈ Orb(pn) :

m∏
i=0

‖Dgl
n|Es

n,j0
(gil

n (y))‖ < λm
0 }, then for π(pn) big enough, there exists a uniformly number δ > 0, such

that µn(Λn) > δ.

Proposition 3.9. Suppose X is a compact metric space, denote CX = {K : K is compact subset of X},
the space CX with Hausdorff topology is still a compact space.
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Since Λn is compact, with proposition 3.9, there is a compact set Λ such that lim
n→∞

Λn −→ Λ. It’s

easy to know that µ(Λ) > δ and for every point y ∈ Λ, there exists a j0 dimension space Ej0(y) in it’s

tangent space such that
m∏

i=0

‖Dgl
n|Ej0 (fil(y))‖ < λm

0 for m ≥ 0, so every point in Λ has at least j0 number

of negative Lyapunov exponents. Since the measure µ is ergodic and Λ has positive measure, µ has at

least j0 number of negative Lyapunov exponents. That’s a contradiction, since µ has just i number of

negative Lyapunov exponents and i ≤ j < j0. ¤

4. Proof of theorem 2 and corollary 1

Before we give the proof, we need the following lemma which claims that with a dominated assumption,

the C1 Pesin theory stated in theorem 2 is true. Such idea was given in [1] and the name of C1 Pesin

theory was given there at first. Here we cite one of their result (the stable manifold theorem) and add

another new property (similar with Katok’s closing lemma in C2 case), we put them together and call

C1 Pesin theory.

Lemma 4.1. f ∈ C1(M), suppose µ is a hyperbolic ergodic measure of f with index i and there exists

an i-dominated splitting on supp(µ), then C1 Pesin theory is true:

a) there exists a compact positive measure subset Λs(resp. Λu) which has continuous and uniform

size of stable (resp. unstable) manifolds,

b) µ is the weak limit of a sequence of invariant measures µn supported by periodic orbits pn with

index i, and supp(µ) is contained in every homoclinic class H(pn, f).

a) is given in [1] at first, we state it here just in order to make the statement more complete. b)

generalizes [12]’s result to C1, in the proof of b) we use a shadowing lemma given in [9] which is similar

with the shadowing lemma for C2 Pesin theory.

Proof of theorem 2: By lemma 3.1, we know that supp(µ) ⊂ P ∗i (f), by proposition 2.2, supp(µ) has

index i dominated splitting, recall that µ has index i, theorem 1 is a simple corollary of lemma 4.1. ¤

Proof of corollary 1: If there is a hyperbolic ergodic measure µ with supp(µ) ⊂ C, by the fact

f ∈ (HT )c and b) of theorem 1, there is a periodic point in C, that’s a contradiction. ¤

The proofs of lemma 4.1 is given in § 3.1.

4.1. C1 Pesin theory. In this subsection we’ll give the proof of lemma 4.1. a) of theorem 1 was given

in [1], but for completeness, we still give a proof here.

Proof of a): We just prove the stable manifold theorem, the proof for unstable manifold theorem is the

same. Denote Ecs ⊕ Ecu the index i dominated splitting on supp(µ), it’s easy to know that they are a

Oseledets splitting, and the Lyapunov exponents on bundle Ecs are smaller than the Lyapunov exponents

on bundle Ecu. Since the dimension of Ecs is i and µ is a hyperbolic ergodic measure with index i, we

know that the Lyapunov exponents on bundle Ecs (resp. Ecu) are negative (resp. positive). So from the
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sub-ergodic theorem, there exists λ > 0 such that:

lim
n→∞

∫
1
n

ln ‖Dfn|Ecs(x)‖dµ(x) < −λ < 0,(4.1)

choose N big enough such that
∫

ln ‖DfN |Ecs(x)‖dµ(x) < −λ < 0, from Birkhopf ergodic theorem,

there exists a µ full measure subset As such that for any x ∈ As we have:

lim
n→∞

1
n

n−1∑

j=0

ln ‖DfN |Ecs(fjN (x))‖ < −λ.(4.2)

Choose 0 < λ0 < λ, denote Λs the set such that for any y ∈ Λs we have 1
n

n−1∑
j=0

ln ‖DfN |Ecs(fjN (y))‖ <

−λ0 for any n > 0. It’s easy to know that Λs is a closed set, lemma 3.8 (Pliss lemma) gives δ > 0, we’ll

show that µ(Λs) > δ. The proof of the following result is very easy and we just omit here.

Lemma 4.2. There exists a µ full measure subset As
0 such that for any x ∈ As

0, we have

lim
n→∞

1
n

n−1∑

j=0

δfj(x)
weaktoplogy−→ µ.

We can suppose As
0 ⊂ As always, by Λs is compact and lemma 4.2, for x ∈ As

0, there exists {Nt} such

that µ(Λs) > lim
t→∞

1
Nt

Nt−1∑
j=0

δfj(x)(Λs) > δ > 0.

Now we’ll show that the positive measure set Λs has continuous and uniform size of stable manifold.

Let I
s,(u)
1 = (−1, 1)i,(n−i) and I

s,(u)
ε = (−ε, ε)i,(n−i), denote by Emb1(Is(u),M) the set of C1-

embedding of I
s(u)
1 on M , recall by [11] that Λ̃ has index i dominated splitting Ẽ ⊕ F̃ implies the

following.

Lemma 4.3. There exist two continuous function Φcs : Λ̃ −→ Emb1(Is,M) and Φcu : Λ̃ −→
Emb1(Iu,M) such that, with W cs

ε (x) = Φcs(x)Is
ε and W cu

ε (x) = Φcu(x)Iu
ε , the following properties

hold:

a) TxW cs
ε = Ẽ(x) and TxW cu

ε = F̃ (x),

b) For all 0 < ε1 < 1, there exists ε2 such that f(W cs
ε2

(x)) ⊂ W cs
ε1

(f(x)) and f−1(W cu
ε2

(x)) ⊂
W cu

ε1
(f−1(x)).

c) For all 0 < ε < 1, there exists δ > 0 such that if y1, y2 ∈ Λ̃ and d(y1, y2) < δ, then W cs
ε (y1) t

W cu
ε (y2) 6= φ.

The following lemma given by [17] shows that there really exists an uniform continuous stable manifold

on Λs.

Lemma 4.4. ([17]) For any 0 < λ < 1, there exists ε > 0 such that for x ∈ Λ̃ which satisfies
n−1∏
j=0

‖DfN1 |Ẽ(fjN1x)‖ ≤ λn for all n > 0, then diam(fn(W cs
ε )) −→ 0, i.e. the central stable manifold

of x with size ε is in fact a stable manifold.

Proof of b): Here we should use a special shadowing lemma given by [9]:
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Lemma 4.5. ([9], theorem 1.1): Let f ∈ C1(M), assume that Λ is a closed invariant set of f and there

is a continuous invariant splitting TΛM = E ⊕ F on Λ, i.e. Df(Ex) = Ef(x) and Df(Fx) = Ff(x) for

x ∈ Λ. For any λ1 < λ2 < 1 there exist L > 0, δ0 > 0, N1 such that for any δ < δ0 if we have an orbit

segment (x, f(x), · · · , fnN1(x)) satisfies the following properties:

s−1∏

i=0

‖DfN1 |E(fjN1 (x))‖ ≤ (λ1)s for 0 ≤ s ≤ n− 1,

s−1∏

i=0

‖Df−N1 |E(f(n−j)N1 (x))‖ ≤ (λ1)s for 0 ≤ s ≤ n− 1,

d(x, fnN1(x)) < δ,

then there exists a periodic point p with period nN1 and Lδ-shadows (x, f(x), · · · , fnN1(x)).

Now from the proof of a), there also exists a positive measure subset Λu such that for any x ∈ Λu,

lim
n→∞

1
n

n−1∑
j=0

ln ‖Df−N |Ecu(f−jN (x))‖ < −λ. Since µ is ergodic, there exists n0 such that Λsu = fn0(Λs)
⋂

Λu

has positive measure, now from the proof of a), for any x ∈ Λsu,

1
n

n−1∑

j=0

ln ‖Df−N |Ecu(f−jN (x))‖ < −λ0;
1
n

n−1∑

j=0

ln ‖DfN |Ecs(fjN−n0 (x))‖ < −λ0.

Choose n1 big enough and 1 > λ1 > λ0, for N1 = n1 ·N and any x ∈ Λsu, we have

(4.3)
1
n

n−1∑

j=0

ln ‖DfN1 |Ecs(fjN1 (x))‖ < −λ1;
1
n

n−1∑

j=0

ln ‖Df−N1 |Ecu(f−jN1 (x))‖ < −λ1.

Now we need the following result:

Lemma 4.6. There exists a subset Λ0 ⊂ Λsu, such that µ(Λ0) = µ(Λsu) and for any x ∈ Λ0

(A) x is a recurrent point, i.e. there exists 0 < i1 < i2 < · · · in < · · · such that f inN1(x) ∈ Λsu and

lim
n→∞

d(x, f inN1(x)) −→ 0.

(B) lim
n→∞

1
inN1

inN1−1∑
i=0

δfi(x) −→ µ.

Remark 4.7. Above lemma can be proved by Poincaré recurrence theorem and Birkhoff ergodic theorem,

and in fact, we can show that for any x ∈ Λ0, supp(µ) ⊂ Orb+(x).

Fix a point x ∈ Λ0, by (A) of lemma 4.6, we can choose in such that d(x, f inN1(x)) < d1, by

lemma 4.5 and (4.3), there a periodic point pn with period inN1 which L · d(x, f inN1(x))-shadows

(x, f(x), · · · , f inN1(x)), by (B) of lemma 4.6, lim
n→∞

1
inN1

inN1−1∑
i=0

δfi(pn) −→ µ.

Now we claim that the above family of periodic points {pn} will have uniform size of stable and un-

stable manifold.

Proof of the claim: For n big enough, Orb(pn) is in a small neighborhood of supp(µ), denote Λ̃ =

supp(µ)
⋃

(
⋃
n

Orb(pn)), then Λ̃ has index i dominated splitting also.
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Choose 1 > λ2 > λ1, then there exists a δ0 such that for any two points y1, y2 ∈ Λ̃ and d(y1, y2) <

δ0, we have ln ‖DfN1 |Ecs(y1)‖ − ln ‖DfN1 |Ecs(y2)‖ < λ2 − λ1. We know that pn has period inN1 and

L · d(x, f inN1(x))-shadows (x, f(x), · · · , f inN1(x)), with lim
n→∞

d(x, f inN1(x)) −→ 0 and (4.3), for n big

enough, we have
m−1∏
j=0

‖DfN1 |Ẽ(fjN1pn)‖ ≤ λm
2 and

m−1∏
j=0

‖Df−N1 |Ẽ(f−jN1pn)‖ ≤ λm
2 for 0 ≤ m ≤ inN1,

since pn is periodic point with period inN1, we know that

(4.4)
m−1∏

j=0

‖DfN1 |Ẽ(fjN1pn)‖ ≤ λm
2 ;

m−1∏

j=0

‖Df−N1 |Ẽ(f−jN1pn)‖ ≤ λm
2 for m ≥ 0

Now by lemma 4.3 and 4.4, pn has uniform size of stable manifold and unstable manifold. ¤

Since pn −→ x, and pn has uniform size of stable and unstable manifold, by (3) of lemma 4.3, when

n,m big enough, W s
loc(pn) t Wu

loc(pm) 6= φ and W s
loc(pn) t Wu

loc(pm) 6= φ, so pn and pm are homoclinic

related. Replace by a subsequence, we can suppose {pn} are all homoclinic related with each other, so

{pn} and x all belong to the same homoclinic class, by remark 4.7, supp(µ) ⊂ Orb+(x), so we get that

supp(µ) and {pn} all belong to the same homoclinic class. ¤

5. C1 Generic Properties

Here at first we’ll state some well known C1 generic properties.

Lemma 5.1. There exists a C1 residual subset R such that for any f ∈ R, the following properties are

right:

1) all the periodic points are hyperbolic and the intersection between stable manifold and unstable

manifold of periodic points are always transverse,

2) ([5]) suppose C is a chain recurrent class of f , if C contains a periodic point p, then C = H(p, f),

3) ([5]) suppose Λ is an index i fundamental limit of f , then there exists a family of index i periodic

points {pn} such that lim
n→∞

Orb(pn)
Hausdorff−→ Λ.

4) ([6]) if C is a homoclinic class contains periodic points with different indexes, then there exists a

non-trivial non-hyperbolic ergodic measure with support in C.

The following result is given by Shaobo Gan, a proof can be found in [21].

Lemma 5.2. f ∈ C1(M) and {pn} is a family of index i periodic points of f satisfying lim
n→∞

π(pn) −→∞,

if {pn} is index stable, then there exists a subsequence {pin
} such that pim

and pin
are homoclinic related

for n 6= m, so especially, if we have lim
n→∞

Orb(pn) −→ Λ, then Λ is contained in the homoclinic class of

an index i periodic point.

Corollary 5.3. Suppose f ∈ R, C is a chain recurrent class of f and Λ ⊂ C is an index i fundamental

limit, if C doesn’t contain index i periodic point, then Λ is index i− 1 or i + 1 fundamental limit.

Proof : Suppose C doesn’t contain index i periodic point, then especially Λ is not an orbit of index

i periodic orbit. By above argument and 3) of 5.1, there exists a family of index i periodic point {pn}
satisfying lim

n→∞
Orb(pn) = Λ and lim

n→∞
π(pn) = ∞.
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By lemma 5.2, the family of periodic points are not index stable, with [4]’s argument and Franks lemma,

there exists a subsequence of periodic orbits {Orb(pnj
)} and a family of diffeomorphisms gnj

C1

−→ f such

that Orb(pnj
) is index i+1 or i−1 periodic points of gnj

. So Λ is also an index i+1 or i−1 fundamental

limit. ¤

6. Proof of theorem 3:

At first we need the following lemma whose proof is given in § 6.1:

Lemma 6.1. There exists a generic subset R in C1(M) \ HT such that for any f ∈ R and C(f) is a

homoclinic class whose periodic points are all hyperbolic and have an unique index i, then

• either C is a hyperbolic set,

• or there exists a non-hyperbolic ergodic measure µ with supp(µ) ⊂ C.

Proof of theorem 3: Suppose f ∈ R and C is a chain recurrent class of f , we can always suppose C is

not trivial (#(C) = ∞) since if #(C) is finite, C is a periodic orbit, by 1) of lemma 5.1, C is a hyperbolic

periodic orbit, so there is only one invariant measure with support on C and the measure is hyperbolic.

We divide the proof into three cases:

1) C is an aperiodic class;

2) C contains periodic points and all the periodic points in C have the same index;

3) C contains index different periodic point.

In the case 1), Corollary 1 shows any ergodic measure µ with support on C is not hyperbolic and has

just 1 zero Lyapunov exponent.

In the case 2), lemma 6.1 shows that either C is hyperbolic or there exists a non-hyperbolic ergodic

measure µ with supp(µ) ⊂ C.

In the case 3), we need the generic property 4) of lemma 5.1 which was proved in [6] shows that there

always exists a non-hyperbolic ergodic measure µ with supp(µ) ⊂ C. ¤

6.1. Proof of lemma 6.1.

Proof : Here we suppose that C is not hyperbolic and all the ergodic measures with support on C are

hyperbolic, we’ll show the contradiction.

Suppose C contains index i (i 6= 0, d) periodic point p, then C ⊂ H(p, f) ⊂ P ∗i , by proposition 2.2, C

has an index i dominated splitting Ecs
i ⊕Ecu

i+1. Since C is not hyperbolic, the splitting is not hyperbolic

splitting, we can suppose the bundle Ecs
i is not hyperbolic, by proposition 2.3, there exists j < i such that

C
⋂

P ∗j 6= φ, it means there exist gn
C1

−→ f and pn index j periodic points of gn such that pn
C1

−→ x ∈ C,

from the definition of chain recurrent class, it’s easy to know that lim sup
n→∞

Orb(pn) ⊂ C and the set is

an index j fundamental limit, denote i0 = min{j : C contains index j fundamental limit}, then we have

C
⋂

P ∗j = φ for j < i0.

Choose Λ0 ⊂ C an index i0 fundamental limit, by proposition 2.2, Λ0 has an index i0 dominated

splitting Ecs
i0
⊕Ecu

i0+1, by proposition 2.3 and the definition of i0, the bundle Ecs
i0

is contracting, we denote

Ecs
i0

by Es
i0

since now. By generic properties in lemma 5.1, there exists a family of index i0 periodic points

{pn} such that lim
n→∞

Orb(pn) −→ Λ0. By lemma 5.3, {pn} cannot be index stable and Λ0 is an index
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i0 + 1 fundamental limit also, so Λ ⊂ P ∗i0+1. By proposition 2.2 again, Λ0 has index i0 + 1 dominated

splitting Ecs
i0+1 ⊕ Ecu

i0+2, denote Ec
i0+1,1 = Ecs

i0+1

⋂
Ecu

i0+1, then Λ0 has the following dominated splitting

Es
i0
⊕ Ec

i0+1,1 ⊕ Ecu
i0+2.

Since Λ0 is an index i0 fundamental limit, that means the bundle Ec
i0+1,1 is not contracting, now we

need the following lemma whose proof is easy and we just omit.

Lemma 6.2. suppose Λ is a compact invariant subset of f with dominated splitting E⊕F and the bundle

E(Λ) is not contracting, then there exists a point x ∈ Λ such that ‖Dfn|E(x)‖ ≥ 1 for n ≥ 0.

By the above lemma there exists x ∈ Λ0 such that
n−1∏
i=0

‖Df |Ec
i+1,1(f

i(x))‖ ≥ 1 for n ≥ 0 (since

dim(Ec
i+1,1) = 1), choose a converge subsequence from {

n−1∑
j=0

δfj(x)}∞n=1 and suppose lim
j→∞

n−1∑
j=0

δfj(x) −→ ν0,

then ν0 is an invariant measure with supp(ν0) ⊂ ω(x) ⊂ Λ0 such that
∫
Λ0
‖Df |Ec

i+1,1
‖dν0 ≥ 0. By er-

godic decomposition theorem on Λ0, we can suppose there exists an ergodic measure ν with support on

Λ0 satisfying
∫
Λ0
‖Df |Ec

i0+1,1
‖dν ≥ 0. Denote λ1 ≤ λ2 ≤ · · · ≤ λd the Lyapunov exponents of ν, then

λi0+1 =
∫
Λ0
‖Df |Ec

i0+1,1
‖dν ≥ 0. Recall that we have supposed ν is hyperbolic, so λi0+1 > 0, that means

ν has index smaller than i0 + 1, by f ∈ R ⊂ C1(M) \ HT and theorem 1, C contains periodic points

with index smaller than i0 + 1. Recall that i0 < i, C contains index different periodic points, that’s a

contradiction. ¤
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NEWHOUSE PHENOMENON AND HOMOCLINIC CLASSES

JIAGANG YANG

Abstract. We show that for a C1 residual subset of diffeomorphisms far away from tangency, every

non-trivial chain recurrent class that is accumulated by sources ia a homoclinic class contains periodic

points with index 1 and it’s the Hausdorff limit of a family of sources.
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1. Introduction

In the middle of last century, with many remarkable work, hyperbolic diffeomorphisms have been

understood very well, but soon people discovered that the set of hyperbolic diffeomorphisms are not

dense among differential dynamics, two kinds of counter examples were described, one associated with

heterdimension cycle was given by R.Abraham and Smale [3] and then given by Shub [40] and Mañé [28],

another counter example associated with homoclinic tangency was given by Newhouse [31] [32]. In fact,

Newhouse got an open set U⊂ C2(M) where dim(M) = 2 such that there exists a C2 generic subset

R ⊂ U and for any f ∈ R , f has infinite sinks or sources. Such complicated phenomena (there exist an

open set U in Cr(M) and a generic subset R ⊂ U , such that any f ∈ R has infinite sinks or sources) is

called Cr Newhouse phenomena today, and we say Cr Newhouse phenomena happens at U .
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In last 90’s, some new examples of Newhouse phenomena were found, [33] generalized Newhouse phe-

nomena to high dimensional manifold (dimM > 2) but with the same topology Cr(r > 1). [7] used a

new tool ’Blender’ to show the existence of C1 Newhouse phenomena on manifold with dim(M) > 2.

Until now, all the construction of Cr Newhouse phenomena relate closely with homoclinic tangency, more

precisely, all the open set U given by the construction above which happens Newhouse phenomena there

will have U ⊂ HT . We hope that it’s a necessary condition for Cr Newhouse phenomena happens at U .

Palis states it as a conjecture.

Conjecture (Palis): If Cr Newhouse phenomena happens at U , then U is contained in HT r.

When r = 1 and M is a compact surface, with Mañé’s work [29], Pujals’ conjecture is equivalent with

the famous C1 Palis strong conjecture.

C1 Palis strong conjecture : Diffeomorphisms of M exhibiting either a homoclinic tangency or het-

erodimensional cycle are C1 dense in the complement of the C1 closure of hyperbolic systems.

In the remarkable paper [36] they proved C1 Palis strong conjecture on C1(M) when M is a boundless

compact surface, so in such case Pujals’ conjecture is right. In [37] they gave many relations between C2

Newhouse phenomena and HT 1. In this paper we just consider C1 Newhouse phenomena, and we show

that if C1 Newhouse phenomena happens in an open set U ⊂ C1(M)\HT 1, it should have some special

properties, in fact, in [7] they found an open set U ⊂ (HT 1) and there exists a generic subset R ⊂ U
such that any f ∈ R has infinite sinks or sources stay near a chain recurrent class, and such class does

not contain any periodic points, such kind of chain recurrent class is called aperiodic class now. Here

we proved that in HT
c
, if there exists Newhouse phenomena, the sinks or sources will just stay near a

special kind of homoclinic class.

Theorem 1 There exists a generic subset R ⊂ C1(M)\HT 1, such that for f ∈ R and C is any non-trivial

chain recurrent class of f , if C
⋂

P ∗
0 �= φ, C should be a homoclinic class containing index 1 periodic

points and C is an index 0 fundamental limit.

Theorem 1 means that if we want to disprove the existence of Newhouse phenomena in C1(M) \HT ,

we just need study the homoclinic class containing index 1 periodic point.

In §3 we’ll state some generic properties. In §4 we’ll introduce a special minimal non-hyperbolic set

and theorem 1 will be proved in §5.
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2. Notations and definitions

Let M be a compact boundless Riemannian manifold, since when M is a surface [36] has proved

that hyperbolic diffeomorphisms are open and dense in C1(M) \ HT , we suppose dim(M) = d > 2 in

this paper. Let Per(f) denote the set of periodic points of f and Ω(f) the non-wondering set of f , for

p ∈ Per(f), π(p) means the period of p. If p is a hyperbolic periodic point, the index of p is the dimension

of the stable bundle. We denote Peri(f) the set of the index i periodic points of f , and we call a point

x is an index i preperiodic point of f if there exists a family of diffeomorphisms gn
C1−→ f , where gn has

an index i periodic point pn and pn −→ x. P ∗
i (f) is the set of index i preperiodic points of f , it’s easy

to know Pi(f) ⊂ P ∗
i (f).

Let Λ be an invariant compact set of f , we say Λ is an index i fundamental limit if there exists a family

of diffeomorphisms gn C1 converging to f , pn is an index i periodic point of gn and Orb(pn) converge to

Λ in Hausdorff topology. So if Λ(f) is an index i fundamental limit, we have Λ(f) ⊂ P ∗
i (f).

For two points x, y ∈ M and some δ > 0, we say there exists a δ-pseudo orbit connects x and y means

that there exist points x = x0, x1, · · · , xn = y such that d(f(xi), xi+1) < δ for i = 0, 1, · · · , n − 1, we

denote it x �
δ

y. We say x � y if for any δ > 0 we have x �
δ

y and denote x �� y if x � y and y � x. A

point x is called a chain recurrent point if x �� x. CR(f) denotes the set of chain recurrent points of f ,

it’s easy to know that �� is an closed equivalent relation on CR(f), and every equivalent class of such

relation should be compact and is called chain recurrent class. Let K be a compact invariant set of f , if

x, y are two points in K, we’ll denote x �
K

y if for any δ > 0, we have a δ -pseudo orbit in K connects x

and y. If for any two points x, y ∈ K we have x �
K

y, we call K a chain recurrent set. Let C be a chain

recurrent class of f , we call C is an aperiodic class if C does not contain periodic point.

Let Λ be an invariant compact set of f , for 0 < λ < 1 and 1 ≤ i < d, we say Λ has an index i − (l, λ)

dominated splitting if we have a continuous invariant splitting TΛM = E ⊕F where dim(Ex) = i for any

x ∈ Λ and ‖ Df l|E(x) ‖ · ‖ Df−l|F (f lx) ‖< λ for all x ∈ Λ. For simplicity, sometimes we just call Λ(f)

has an index i dominated splitting. A compact invariant set can have many dominated splittings, but

for fixed i, the index i dominated splitting is unique.

We say a diffeomorphism f has Cr tangency if f ∈ Cr(M), f has hyperbolic periodic point p and there

exists a non-transverse intersection between W s(p) and Wu(p). HT r is the set of the diffeomorphisms

which have Cr tangency, usually we just use HT denote HT 1. We call a diffeomorphism f is far away

from tangency if f ∈ C1(M) \ HT . The following proposition shows the relation between dominated

splitting and far away from tangency.

Proposition 2.1. ([42]) f is C1 far away from tangency if and only if there exists (l, λ) such that P ∗
i (f)

has index i − (l, λ) dominated splitting for 0 < i < d.

Usually dominated splitting is not a hyperbolic splitting, Mañé showed that in some special case, one

bundle of the dominated splitting is hyperbolic.

Proposition 2.2. ([29]) Suppose Λ(f) has an index i dominated splitting E⊕F (i �= 0), if Λ(f)
⋂

P ∗
j (f) =

φ for 0 ≤ j < i, then E is a contracting bundle.



4 JIAGANG YANG

3. Generic properties

For a topology space X , we call a set R ⊂ X is a generic subset of X if R is countable intersection

of open and dense subsets of X , and we call a property is a generic property of X if there exists some

generic subset R of X holds such property. Especially, when X = C1(M) and R is a generic subset of

C1(M), we just call R is C1 generic, and we call any generic property of C1(M) ’a C1 generic property’

or ’the property is C1 generic’.

Here we’ll state some well known C1 generic properties.

Proposition 3.1. There is a C1 generic subset R0 such that for any f ∈ R0, one has

1) f is Kupka-Smale (every periodic point p in Per(f) is hyperbolic and the invariant manifolds of

periodic points are everywhere transverse).

2) CR(f) = Ω = Per(f).

3) P ∗
i (f) = Pi(f)

4) any chain recurrent set is the Hausdorff limit of periodic orbits.

5) any index i fundamental limit is the Hausdorff limit of index i periodic orbits of f .

6) any chain recurrent class containing a periodic point p is the homoclinic class H(p, f).

7) Suppose C is a homoclinic class of f , and j0 = min{j : C
⋂

Perj(f) �= φ}, j1 = max{j :

C
⋂

Perj(f) �= φ}, then for any j0 ≤ j ≤ j1, we have C
⋂

Perj(f) �= φ.

By proposition 3.1, for any f in R0, every chain recurrent class C of f is either an aperiodic class or

a homoclinic class. If #C = ∞, we call C is non-trivial.

Let R = R0 \ HT , we’ll show that the generic subset R of HT
c

will satisfy theorem 1.

4. A special minimal set

Let f ∈ R, C is a non-trivial chain recurrent class of f , and j0 = min{j : C
⋂

P ∗
j �= φ}.

Definition 4.1. : An invariant compact subset Λ of f is called minimal if all the invariant compact

subsets of Λ are just Λ and φ. An invariant compact subset Λ of f is called minimal index j fundamental

limit if Λ is an index j fundamental limit and any invariant compact subset Λ0 � Λ is not an index j

fundamental limit.

Lemma 4.2. If C
⋂

P ∗
j �= φ, there always exists a minimal index j fundamental limit in C.

Proof Let H = {Λ̃ : Λ̃ ⊂ C is an index j fundamental limit} and we order H by inclusion. Suppose

x ∈ C
⋂

P ∗
j , then there exist gn

C1−→ f , pn is index j periodic point of gn and pn −→ x. Denote

Λx = limOrb(Pn), then Λx is an index j fundamental limit. It’s easy to know Λx is a chain recurrent set

and Λx ⊂ C, so Λx ∈ H . It means H �= φ.

Let HΓ = {Λλ : λ ∈ Γ} be a totally ordered chain of H . Then Λ∞ =
⋂

λ∈Γ Λλ is a compact invariant

set, in fact, there exists {λi}∞i=1 such that Λλi ⊃ Λλi+1 and Λ∞ =
⋂∞

i=1 Λλi .

We claim that Λ∞ is an index j fundamental limit also.
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Proof of the claim From generic property 5) of proposition 3.1 and f ∈ R, for any ε > 0, there

exists periodic point pi such that pi ∈ Perj(f) and dH(Orb(pi), Λλi) < ε
2 . When i is big enough, we’ll

have dH(Λλi , Λ∞) < ε
2 , so for any ε > 0, there exists pi ∈ Perj(f)such that dH(Orb(pi), Λ∞) < ε. �

Now by Zorn’s lemma, there exists a minimal index j fundamental limit in C. �

Suppose Λ is a minimal index j0 fundamental limit of C, the main aim of this section is the following

lemma.

Lemma 4.3. Suppose f ∈ R, C is a non-trivial chain recurrent class of f , j0 = min{j : C
⋂

P ∗
j �= φ}.

Let Λ be any minimal index j0 fundamental limit in C, then

a) either Λ is a non-trivial minimal set with partial hyperbolic splitting T |ΛM = Es
j0 ⊕ Ec

1 ⊕ Eu
j0+2,

b) or C contains a periodic point with index j0 or j0 + 1 and C is an index j0 fundamental limit.

We postpone the proof of lemma 4.3 to §4.4, before that, I’ll give or introduce some results at first.

In §4.1 I’ll give a proof of Shaobo Gan’s lemma, in §4.2 I’ll introduce Liao’s selecting lemma and prove a

weakly selecting lemma, in §4.3 I’ll introduce a powerful tool ’transition’ given by [BDP].

4.1. Shaobo Gan’s lemma. Let GL(d) be the group of linear isomorphisms of Rd, we call ξ a periodic

sequence of linear map if ξ : Z −→ Gl(d) is a sequence of isomorphisms of Rd and there exists n0 ≥ 1

such that ξj+n0 = ξj for all j. We denote π(ξ) = min{n : ξj+n = ξj for all j} the period of ξ, and we

call ξ has index i if the map
π(ξ)−1∏

j=0

ξj is hyperbolic and has index i, we say ξ is contracting if ξ has index

d. We denote Es(u) the stable (unstable) bundle of ξ.

Suppose η is a periodic sequence of linear maps also, we call η is an ε-perturbation of ξ if π(η) = π(ξ)

and ‖ ηj − ξj ‖≤ ε for any j.

Let {ξα}α∈A be a family of periodic sequence of linear maps with index i, we call it is bounded if there

exists K > 0 such that for any α ∈ A and any j ∈ Z, we have ‖ ξ
(α)
j ‖< K. For a family of bounded

periodic sequences of linear maps {ξα}α∈A, we say it’s index stable if ξ(α) has index i for all α ∈ A, and

there exists ε0 > 0 such that #{α| there exists η(α) is ε0-perturbation of ξ(α) and η(α) has index different

with i} < ∞. Especially, if it’s index d stable, we call ξ(α)|α∈A is uniformly contracting.

Suppose f ∈ C1(M) and {pn(f)} is a family of hyperbolic periodic points of f with index i, we say

pn(f) is index i stable if {Df |Orb(pn)}∞n=1 is index i stable and lim
n→∞ π(pn) = ∞.

Remark 4.4. Pliss has proved that if {pn(f)} is index i stable, then i �= 0, d.

The following lemma was given by Shaobo Gan, and the proof comes from him also.

Lemma 4.5. ([15]) f ∈ C1(M), suppose {pn(f)} is index i stable, then there exists a subsequence

{pnj}∞j=1 such that pnj and pnj+1 are homoclinic related.

Here we just prove the following weaker statement of Gan’s lemma.

Lemma 4.6. ( Weaker statement of Gan’s lemma) Suppose f ∈ R, Λ is a non-trivial chain recurrent set

of f , {pn(f)} is index i stable and lim
n→∞Orb(pn) = Λ, then there exists a subsequence {pnj(f)}∞j=1 such

that pnj (f) and pnj+1(f) are homoclinic related.
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Before we prove lemma 4.6, we’ll give a few lemmas which will be used in the proof.

Lemma 4.7. Suppose A=
(

B C
0 D

)
is a hyperbolic linear map with index i (i �= 0, d), where B ∈ GL(Ri) is

a contracting map and D ∈ GL(Rd−i) is a expanding map. If there exists B′ ∈ GL(Ri) an ε-perturbation

of B and B′ has index different with i, then A′=
(

B′ C
0 D

)
is an ε-perturbation of A with index different

with i. In fact, we’ll have ind(A′) = ind(B′).

With lemma 4.7, the following lemma is obvious.

Lemma 4.8. Suppose {ξ(n)}∞n=1 is index i stable, then {ξ(n)|Es(ξ(n))}∞n=1 is stable contracting, and at

the same time, {ξ(n)|Eu(ξ(n))}∞n=1 is stable expanding.

In [29] Mañé has given a necessary condition for bounded stable contracting sequence.

Lemma 4.9. (Mañé) If {ξ(n)}∞n=1 is stable contracting and bounded, then there exist N0, l0, 0 < λ0 < 1

such that if π(ξ(n)) > N0 we’ll have

[ π(ξn)
l0

]−1∏
j=0

‖
l0−1∏
t=0

ξ
(n)
(jl0+t)+s‖ ≤ λ

[ π(ξ(n))
l0

]

0

for any 0 ≤ s < π(ξ(n)).

Proof of lemma 4.6: Since Λ ⊂ P ∗
i and f is far away from tangency, by proposition 2.1, Λ has an index

i − (l, λ) dominated splitting T |ΛM = E ⊕ F . In order to make the proof more simiplier, here we just

suppose l = 1. Choose a small open neighborhood U of Λ, when U is small enough, Λ̃ =
⋂

j∈Z

f j(U) has

an index i − (1, λ̃) dominated splitting TΛ̃M = Ẽ ⊕ F̃ where λ < λ̃ < 1 and Ẽ|Λ = E, F̃ |Λ = F .

Since lim
n→∞Orb(Pn) = Λ, we can always suppose Orb(pn) ⊂ U , so Orb(Pn) ⊂ Λ̃ and Es|Orb(pn) =

Ẽ|Orb(pn), Fu|Orb(pn) = F̃ |Orb(pn).

By lemma 4.8, we know that {Df |Es(Orb(pn))}∞n=1 is stable contracting and {Df |Eu(Orb(pn))}∞n=1 is

stable expanding. By lemma 4.9, there existN0, l0, 0 < λ0 < 1 such that if π(pn(f)) > N0, we have

(4.1)

[ π(pn)
l0

]−1∏
j=0

‖Df l0|Es(fjl0pn)‖ ≤ λ
[ π(pn)

l0
]

0

(4.2)

[ π(pn)
l0

]−1∏
j=0

‖Df−l0|F u(f−jl0pn)‖ ≤ λ
[ π(pn)

l0
]

0

Since lim
n→∞Orb(pn) = Λ and Λ is not trivial, we have lim

n→∞π(pn) −→ ∞, then we can always suppose all

the pn satisfy (4.1) and (4.2). For simplicity, we suppose l0 = 1 here.

Choose some ε > 0 and λ1 < 1 such that max{λ̃, λ0}+ ε < λ2
1 < λ1 < 1. Now we’ll state Pliss lemma

in a special context.

Lemma 4.10. (Pliss[34]) Given 0 < λ0 + ε < λ1 < 1 and Orb(pn) ⊂ Λ̃ such that for some m ∈ N, we

have
t−1∏
j=0

‖Df |Es(fjpn))‖ ≤ (λ0 + ε)t for all s ≥ m, there exists a sequence 0 ≤ n1 < n2 < · · · such that

t−1∏
j=nr

‖Df |Es(fjpn))‖ ≤ λt−nr
1 for all t ≥ nr, r = 1, 2, · · · .
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Remark 4.11. The sequence {nj}∞j=1 we get above is called the λ1-hyperbolic time for bundle Es|Orb(pn).

By (4.1),(4.2), when n is big enough, Orb(pn) will satisfy the assumption of Pliss lemma, so by lemma

4.10, there exists q+
n ∈ Orb(pn) such that

t−1∏
j=0

‖Df |Es(fjq+
n )‖ ≤ λt

1 and q−n ∈ Orb(pn) such that

t−1∏
j=0

‖Df−1|F u(f−jq−
n )‖ ≤ λt

1 for all t > 0.

Let’s denote

Sn,+ = {m ∈ Z :
s−1∏
j=0

‖Df |Es(fm+jpn)‖ ≤ λs
1 for all s > 0},

Sn,− = {m ∈ Z :
s−1∏
j=0

‖Df−1|F u(fm−jpn)‖ ≤ λs
1 for all s > 0}.

Then Sn,+ is the set of λ1 hyperbolic time for bundle Es|Orb(pn) and Sn,− is the set of hyperbolic time for

bundle Fu|Orb(pn). From remark 4.11, the set Sn,+ and Sn,− are not empty. We denote Sn = Sn,+

⋂
Sn,−.

Lemma 4.12. Sn �= φ.

Proof : Here for a, b ∈ Z and a < b, we denote (a, b)Z = {c| c ∈ Z and a < c < b}.
Now suppose the lemma is false, we can choose {bn,s, bn,s+1} ⊂ Sn,− such that we have bn,s+1 > bn,s,

(bn,s, bn,s+1)Z

⋂
Sn,− = φ and an,t ∈ (bn,s, bn,s+1)Z

⋂
Sn,+, then bn,s, bn,s+1 /∈ Sn,+.

We claim that for 0 < k ≤ bn,s+1 − bn,s − 1, we have
k−1∏
j=0

‖Df−1|F u(fbn,s+j+1pn)‖ ≥ λk
1 .

Proof of the claim: We’ll use induction to give a proof.

When k = 1, since bn,s + 1 /∈ Sn,−, we have ‖Df−1|F u(fbn,s+1pn)‖ > λ1.

Now suppose the claim is true for all 1 ≤ k ≤ k0 − 1 where 1 < k0 ≤ bn,s+1 − bn,s − 1, and we suppose

the claim is false for k0, it means that

(4.3)
k0−1∏
j=0

‖Df−1|F u(fbn,s+j+1pn)‖ ≤ λk0
1 .

Then by the assumption above that the claim is true for 1 ≤ k ≤ k0 − 1, we have

(4.4)
k−1∏
j=0

‖Df−1|F u(fbn,s+j+1pn)‖ ≥ λk
1

By (4.3) and (4.4), we get that
k0−1∏
j=k

‖Df−1|F u(fbn,s+j+1pn)‖ < λk0−k
1 for 1 ≤ k ≤ k0 − 1. It’s equivalent

to say that

(4.5)
k−1∏
j=0

‖Df−1|F u(fbn,s+k0−jpn)‖ < λk
1 for 1 ≤ k ≤ k0 − 1

By (4.3) and (4.5), we get that

(4.6)
k−1∏
j=0

‖Df−1|F u(fbn,s+k0−jpn)‖ ≤ λk
1 for 1 ≤ k ≤ k0



8 JIAGANG YANG

When k > k0,by (4.6) and the fact bn,s ∈ Sn,−, we have

k−1∏
j=0

‖Df−1|F u(fbn,s+k0−j)‖ =
k0−1∏
j=0

‖Df−1|F u(fbn,s+k0−j)‖ ·
k−k0−1∏

j=0

‖Df−1|F u(fbn,s−j)‖ < λk0
1 · λk−k0

1 = λk
1 ,

it means bn,s + k0 ∈ Sn,−, it’s a contradiction since bn,s + k0 ∈ (bn,s, bn,s+1)Z, so we finish the induction.

�

By the claim above, for 0 < k ≤ bn,s+1 − bn,s − 1, we have

(4.7)
k−1∏
j=0

‖Df−1|F u(fbn,s+j+1pn)‖ ≥ λk
1 .

Since on Λ̃, Ẽ ⊕ F̃ is an index i − (1, λ̃) dominated splitting, we have

k−1∏
j=0

(‖Df |Ẽ(fbn,s+jpn)‖ · ‖Df−1|F̃ (fbn,s+j+1pn)‖) < λ̃k.

By (4.7) and Ẽ|Orb(pn) = Es|Orb(pn),F̃ |Orb(pn) = Fu|Orb(pn), we’ll get

(4.8)
k−1∏
j=0

‖Df |Es(fbn,s+jpn)‖ <
λ̃k

λk
1

<
(λ̃<λ2

1<1)

λk
1 for 1 < k ≤ bn,s+1 − bn,s − 1.

When k > bn,s+1 − bn,s − 1, let k = (an,t − bn,s) + (k − an,t), by (4.8) and an,t ∈ Sn,+,

k−1∏
j=0

‖Df |Es(fbn,s+jpn)‖ =
an,t−bn,s−1∏

j=0

‖Df |Es(fbn,s+jpn)‖ ·
k−an,t−1∏

j=0

‖Df |Es(fan,t+jpn)‖

< λ
an,t−bn,s

1 · λk−an,t

1 = λ
k−bn,s

1(4.9)

By (4.8) and (4.9), we get bn,s ∈ Sn,+, so Sn,+

⋂
Sn,− �= φ, it’s a contradiction with our assumption, so

we finish the proof of lemma 4.12. �

Now let’s continue the proof of lemma 4.6, we need the following two lemmas to show that for an ∈ Sn,

the point fan(pn) will have uniform size of stable manifold and unstable manifold.

Let I1 = (−1, 1)i and Iε = (−ε, ε)i, denote by Emb1(I, M) the set of C1-embedding of I1 on M , recall

by [21] that Λ̃ has a dominated splitting Ẽ ⊕ F̃ implies the following.

Lemma 4.13. There exist two continuous function Φcs : Λ̃ −→ Emb1(I, M) and Φcu : Λ̃ −→
Emb1(I, M) such that, with W cs

ε (x) = Φcs(x)Iε and W cu
ε (x) = Φcu(x)Iε, the following properties hold:

a) TxW cs
ε = Ẽ(x) and TxW cu

ε = F̃ (x),

b) For all 0 < ε1 < 1, there exists ε2 such that f(W cs
ε2

(x)) ⊂ W cs
ε1

(f(x)) and f−1(W cu
ε2

(x)) ⊂
W cu

ε1
(f−1(x)).

c) For all 0 < ε < 1, there exists δ > 0 such that if y1, y2 ∈ Λ̃ and d(y1, y2) < δ, then W cs
ε (y1) �

W cu
ε (y2) �= φ.

Corollary 4.14. ([36]) For any 0 < λ < 1, there exists ε > 0 such that for x ∈ Λ̃ which satisfies
n−1∏
j=0

‖Df |Ẽ(fjx)‖ ≤ λn for all n > 0, then diam(fn(W cs
ε )) −→ 0, i.e. the central stable manifold of x with

size ε is in fact a stable manifold.
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Now for λ1, using corollary 4.14, we can get an ε > 0. It means that for any an ∈ Sn, denote

qn = fan(pn), then W cs
ε (qn) is a stable manifold and W cu

ε (qn) is an unstable manifold. For this ε > 0,

use c) of lemma 4.13, we can fix a δ. Choose a subsequence {ni} such that d(qni , qni+1) ≤ δ, then by c)

of lemma 4.13, we know W cu
ε (qni) � W cs

ε (qni+1) �= φ and W cu
ε (qni+1) � W cs

ε (qni) �= φ. Since the local

central stable manifold and local central unstable manifold of qni have dynamical meaning, we know that

Orb(qni ) and Orb(qni+1 ) are homoclinic related. �

Remark 4.15. In the proof of lemma 4.6 we suppose the set Λ has 1-step dominated splitting, that means

l = 1, and we suppose l0 = 1 there also, they are just in order to make the proof more simplier. In the

rest part of the paper, usually we don’t use such assumption any more, if we use it we’ll point out.

Now let’s consider a sequence of periodic points which are not index stable.

Lemma 4.16. Suppose f ∈ R, lim
n→∞ gn = f , {pn(gn)}∞n=1 is a family of index i periodic points (i �= 0, d)

and lim
n→∞π(pn) −→ ∞. If there exist λn −→ 1− and lim

n→∞ ln −→ ∞ such that lim
n→∞

π(pn)
ln

−→ ∞ and

[
π(pn)

ln
]−1∏

j=0

‖Dgln
n |Es(gjln

n (pn))‖ ≥ λ
[

π(pn)
ln

]
n , then for any ε > 0 and N > 0, there exists an n0 > N and g′n0

is

an ε-perturbation of gn0 such that pn0(gn0) is an index i − 1 periodic point of g′n.

Proof: Fix N , consider the periodic sequence of linear maps {ξn : ξn = Dgn|Es(Orb(pn))}n≥N , they are

all contracting maps. We claim that {ξn} are not stable contracting.

Proof of the claim: If {ξn} is stable contracting, by lemma 4.9, there exist N0, l0, 0 < λ0 < 1 such

that if π(ξn) > N0, we have

(4.10)

[
π(pn)

l0
]−1∏

j=0

‖Dgl0
n |

Es(g
jl0
n pn)

‖ ≤ λ
[ π(pn)

l0
]

0

Choose some N1 big enough such that for n ≥ N1, we have λn ≥ λ∗ > λ0 for some λ∗ ∈ (λ0, 1), then by

lim
n→∞

π(pn)
ln

−→ ∞ and lim
n→∞ ln −→ ∞, when n is big enough, we have π(pn) 
 ln 
 max{l0, N0} and

from
[ π(pn)

l0
]−1∏

j=0

‖Dgln
n |Es(gjln

n pn)‖ ≥ λ
[ π(pn)

ln
]

n > (λ∗)[
π(pn)

ln
], we’ll get

[ π(pn)
l0

]−1∏
j=0

‖Dgl0
n |

Es(g
jl0
n pn)

‖ ≥ λ
[ π(pn)

ln
]

0 >

λ
[ π(pn)

l0
]

0 , It’s a contradiction with (4.10). �

Since {ξn}n≥N isn’t stable contracting, for ε > 0, there exists a sequence {ni} and {ηni} such that ηni is

an ε-perturbation of ξni and ηni has index smaller than i. Since {ξni} is bounded and lim
n→∞π(pn) −→ ∞,

by [10]’s work, for ni big enough, we can in fact get ηni with index i − 1. By lemma 4.7, there exists

{A|Orb(pn)}n≥0 an ε-perturbation of {Dgn|Orb(pn)} such that {A|Orb(pn)} has index i − 1. Now we need

the following version of Franks lemma.

Lemma 4.17. (Franks lemma) Suppose pn is a periodic point of gn, A|Orb(pn) is an ε-perturbation of

{Dgn|Orb(pn)}, then for any neighborhood U of Orb(pn), there exists g′n such that g′n ≡ gn on (M \
U)

⋃
Orb(pn), dC1(gn, g′n) < ε and {Dg′n|orb(pn)} = {A|Orb(pn)}.
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From Franks lemma, we can change the derivative map along TOrb(pni
)M to be {A|Orb(pn)} and get a

new map g′ni
such that pni(gni) is index i − 1 periodic point of g′ni

. �

4.2. Weakly selecting lemma. Liao’s selecting lemma is a powerful shadowing lemma for non-uniformly

hyperbolic system, with it, we can not only get a lot of periodic points like what the standard shadowing

lemma can do, we can even let the periodic points have hyperbolic property as weak as we like. Liao

at first used this lemma to study minimal non-hyperbolic set and proved the Ω-stable conjecture for

diffeomorphisms in dimension 2 and for flow without singularity in dimension 3. [16] [17] [19] [41] use the

same idea proved structure(Ω) stability conjecture for flows without singularity in any dimension. Until

now, the most important papers about selecting lemma are [18],[44], [45] and there contain more details

about selecting lemma.

In this subsection and the next, we’ll show what will happen if all the conditions in weakly selecting

lemma are satisfied. The main result in this subsection is lemma 4.21 (The weakly selecting lemma).

Now let’s state the selecting lemma at first.

Proposition 4.18. (Liao) Let Λ be a compact invariant set of f with index i− (l, λ) dominated splitting

Ecs ⊕ F cu. Assume that

a) there is a point b ∈ Λ satisfying
n−1∏
j=0

‖Df l|Ecs(fjlb)‖ ≥ 1 for all n ≥ 1.

b) (The tilda condition) there are λ1 and λ2 with λ < λ1 < λ2 < 1 such that for any x ∈ Λ

satisfying
n−1∏
j=0

‖Df l|Ecs(fjlx)‖ ≥ λ2
n for all n ≥ 1, ω(x) contains a point c ∈ Λ satisfying

n−1∏
j=0

‖Df l|Ecs(fjlc)‖ ≤ λn
1 for all n ≥ 1.

Then for any λ3 and λ4 with λ2 < λ3 < λ4 < 1 and any neighborhood U of Λ, there exists a hyperbolic

periodic orbit Orb(q) of f of index i contained entirely in U with a point q ∈ Orb(q) such that

(4.11)
m−1∏
j=0

‖Df l|Ecs(fjlq)‖ ≤ λm
4 , for m = 1, · · · , πl(q)

(4.12)
πl(q)−1∏

j=πl(q)−m

‖Df l|Ecs(fjlq)‖ ≥ λm
3 for m = 1, · · · , πl(q)

where πl(q) is the period of q for the map f l. The similar assertion for F cu holds respecting f−1.

Remark 4.19. It’s easy to know π(q) ≥ πl(q). Since f l·πl(q)(q) = q, it’s obvious that (4.11) and (4.12)

are true for all m ∈ N. In the selecting lemma, when λ3 and λ4 are fixed, we can indeed find a sequence

of periodic points {qn} satisfying (4.11) and (4.12) and lim
n→∞Orb(qn) ⊂ Λ. If f is a Kupuka-Smale

diffeomorphism, especially when f ∈ R, we can let lim
n→∞πl(qn) −→ ∞, then we’ll have lim

n→∞π(qn) −→ ∞
at the same time.

Corollary 4.20. f ∈ R, let Λ be a compact chain recurrent set of f with index i − (l0, λ) dominated

splitting Ecs ⊕ F cu (1 ≤ i ≤ d − 1). Assume that the splitting satisfies all the conditions of selecting

lemma for all ln = nl0 (n ∈ N) but with the same parameters λ < λ1 < λ2 < 1, then for any sequence
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{(λn,3, λn,4)}∞n=1 satisfying λ2 < λ1,3 < λ1,4 < λ2,3 < λ2,3 < · · · where λn,3 −→ 1−, there exists a family

of periodic points {qn(f)} with index i such that

a) lim
n→∞ πln(qn(f)) −→ ∞.

b)

m−1∏
j=0

‖Df ln |Es(fjln qn)‖ ≤ λm
n,4(4.13a)

πln (qn)−1∏
j=πln (qn)−m

‖Df ln |Es(fjln qn)‖ ≥ λm
n,3 for m ∈ N(4.13b)

c) lim
n→∞Orb(qn) ⊂ Λ.

d) Λ ⊂ H(qn(f)) for all n.

Proof : At first, let’s fix λ2 < λ1,3 < λ1,4 < 1 and a small neighborhood U of Λ small enough such

that the maximal invariant set Λ̃ of U has index i − (l0, λ̃) dominated splitting with λ̃ < λ2, we denote

the dominated splitting still by Ecs
i ⊕ F cu

i+1. (If q is an index i periodic point in Λ̃, then we denote

Ecs
i ⊕F cu

i+1|Orb(q) = Es ⊕Fu|Orb(q)). Now using selecting lemma, with remark 4.19, we can find a family

of periodic points {q1,m(f)}∞m=1 with index i satisfying b), lim
n→∞(q1,m) ⊂ Λ, lim

m→∞πl1(q1,n) −→ ∞ and

Orb(q1,m(f)) ⊂ Λ̃.

Since Λ̃ has an index i − (l1, λ̃) dominated splitting Ecs
Λ̃

⊕ F cu
Λ̃

, from (4.13b) we can know

πl1(q1,m)∏
j=πl1 (q1,m)−t+1

‖Df−l1 |F cu(fjl1q1,m)‖ ≤ λ̃t/

πl1(q1,m)−1∏
j=πl1(q1,m)−t

‖Df l1 |Ecs(fjl1 q1,m)‖ ≤ (
λ̃

λ1,3
)t for (t∈N),

it equivalent with

(4.14)
m−1∏
t=0

‖Df−l1|F cu(f−jl1q1,m)‖ ≤ (
λ̃

λ1,3
)t for t ∈ N.

From (4.13a), (4.13b), by lemma 4.13, Corollary 4.14 and λ̃
λ1,3

< 1, we can know that for some ε1, q1,n

will have uniformly size of stable manifold W s
ε1

(q1,n) and uniform size of unstable manifold Wu
ε1

(q1,n)

and there exists a subsequence {q1,nj}∞j=1 such that they are homoclinic related with each other, so

H(q1,n1) = H(q1,n2) = · · · , with lim
j→∞

Orb(q1,nj ) ⊂ Λ, we know Λ
⋂

H(q1,nj ) �= φ. Since f ∈ R, H(q1,nj )

should be a chain recurrent class. Because Λ is a chain recurrent set, we have Λ ⊂ H(q1,nj ), let q1 = q1,nj

for some j big enough, then q1 satisfies a), d).

Now consider 0 < λ2 < λ2,3 < λ2,4 < 1, Ecs
Λ ⊕F cu

Λ is obviously an index i−(l2, λ) dominated splitting of

Λ and by the assumption, the splitting satisfy the conditions of selecting lemma for l2, λ < λ1 < λ2 < 1,

so repeat the above argument, we can get a family of periodic points {q2,n(f)}∞n=1 satisfying b), d),

lim
n→∞Orb(q2,n) ⊂ Λ, Λ ⊂ H(q2,1, f) = · · · = H(q2,n, f) = · · · and lim

n→∞πl2(q2,n(f)) −→ ∞. When n0 is

big enough, we’ll have πl2(q2,n0) > πl1(q1) and Orb(q2,n0 ) is near Λ more than Orb(q1). Let q2 = q2,n0 ,

continue the above argument for ln and λ2 < λn,3 < λn,4 < 1, we can get {qn}∞n=1 which we need. �

The following weakly selecting lemma shows when the conditions of the above corollary will be satisfied.
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Lemma 4.21. (Weakly selecting lemma) Let f ∈ R, Λ be a compact invariant set of f with index

i − (l0, λ) dominated splitting Ecs ⊕ F cu (1 ≤ i ≤ d − 1). Assume that

a) (Non-hyperbolic condition) the bundle Ecs is not contracting,

b) (Strong tilda condition) there are λ2 < 1 and l′0 > 1 such that for any x ∈ Λ, ω(x) contains a

point c ∈ Λ satisfying
n−1∏
j=0

‖Df l′0 |
Ecs(fjl′0c)

‖ ≤ λn
2 for all n ≥ 1.

Then for any ln = n · (l0 · l′0) and any sequence {(λn,3, λn,4)}∞n=1 satisfying max{λl′0 , λ2} < λ1,3 <

λ1,4 < · · · < λn,3 < λn,4 < · · · where λn,3 −→ 1−, there exists a family of periodic points {qn(f)} with

index i such that

• lim
n→∞ πln(qn(f)) −→ ∞

•
m−1∏
j=0

‖Df ln |Es(fjln qn)‖ ≤ λm
n,4 and

πln (qn)−1∏
j=πln (qn)−m

‖Df ln |Es(fjln qn)‖ ≥ λm
n,3 for m ≥ 1

• lim
n→∞Orb(qn) ⊂ Λ

• Λ ⊂ H(qn(f)) for n ≥ 1.

Proof Since Ecs
Λ ⊕F cu

Λ is a (l0, λ) dominated splitting and l1 = l0 · l′0, it should be a (l1, λl′0) dominated

splitting also. Choose λ′
2, λ1 such that max{λl′0 , λ2} < λ1 < λ′

2 < λ1,3, we’ll show that the splitting

Ecs
Λ ⊕ F cu

Λ and the l1, λl′0 < λ1 < λ′
2 < 1 will satisfy all conditions of corollary 4.20, equivalent, we’ll

show the splitting Ecs
Λ ⊕ F cu

Λ , ln and λl′0 < λ1 < λ′
2 < 1 will satisfy the condition of selecting lemma for

all n ≥ 1.

0) Since Ecs
Λ ⊕F cu

Λ is a (l1, λl′0) dominated splitting and ln = n·l1, Ecs
Λ ⊕F cu

Λ is a (ln, λl′0) dominated

splitting also.

1) Here we need the following lemma:

Lemma 4.22. Let Λ be a compact invariant set of f , Ecs
Λ is an continuous invariant bundle on

Λ, and dim(Ecs(x)) = i for any x ∈ Λ where i �= 0, suppose l ∈ N, if for any x ∈ Λ, there exists

an n such that
n−1∏
j=0

‖Df l|Ecs(fjlx)‖ < 1, then Ecs
Λ is a contracting bundle.

Since we know Ecs
Λ is continuous but not contracting, so for any ln, there exists bn, such that

n−1∏
j=0

‖Df l
n|Ecs(fjln bn)‖ ≥ 1 for all m ≥ 1.

2) For any x ∈ Λ, ω(x) contains a point cn ∈ Λ such that
nl0m−1∏

j=0

‖Df l′0 |
Ecs(fjl′0 cn)

‖ ≤ λnl0m
2 for all

m ≥ 1, since

nl0m−1∏
j=0

‖Df l′0 |
Ecs(fjl′0cn)

‖ ≥
m−1∏
j=0

‖Dfnl0l′0 |
Ecs(fjnl0l′0cn)

‖ =
m−1∏
j=0

‖Df ln |Ecs(fjln cn)‖,

we have that
m−1∏
j=0

‖Df ln |Ecs(fjln cn)‖ ≤ λmnl0
2 ≤ λm

2 for all m ≥ 1.

Remark 4.23. In b) of weakly selecting lemma, we don’t give any restriction on x, so b) is in fact more

stronger than the tilda condition, that’s why we call the condition b) in weakly selecting lemma the strong

tilda condition.
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By 0), 1), 2) above and corollary 4.20, we proved the lemma. �

4.3. Transition. Transition was introduced in [6] at first, there they consider a special linear system

with a special property called transition and use it to study homoclinic class. Here I prefer to use a little

different way to state it, the notation and definition are basically copy from [6]. The main result in this

subsection is corollary 4.26. We begin by giving some definitions.

Given a set A, a word with letters in A is a finite sequence of A, its length is the number of letters

composing it. The set of words admits a natural semi-group structure: the product of the word [a] =

(a1, · · · , an) by [b] = (b1, · · · , bl) is [a] · [b] = (a1, · · · , an, b1, · · · , bl). We say that a word [a] is not a power

if [a] �= [b]k for every word [b] and k > 1.

Here we’ll use some special words. Let’s fix f ∈ C1(M), for any x ∈ Per(f), we write [x] =

(fπ(x)−1(x)), · · · , x) and {x} = (Df(fπ(x)−1(x)), · · · , Df(x)). We call a word [a] = (ak, · · · , a1) with

letters in M is a finite ε-pseudo orbit if d(f(ai), ai+1) ≤ ε for 1 ≤ i ≤ k − 1, if ε = 0, that means

f(ai) = ai+1 for 1 ≤ i ≤ k − 1, then we call [a] is a finite segment of orbit. We always denote

{a} = (Df(ak), · · · , Df(a1)).

Suppose we have a finite orbit [a] = (an, · · · , a1) and an ε-pseudo orbit [b] = (bl, · · · , b1), we say [b]

is δ-shadowed by [a] if n = l and d(ai, bi) ≤ ε for 1 ≤ i ≤ n. We say {a} is δ-close to {b} if n = l and

‖Df(ai) − Df(bi)‖ ≤ δ for 1 ≤ i ≤ n.

Suppose H(p, f) is a non-trivial homoclinic class, we say H(p, f) has ε-transition property if : for

any finite hyperbolic periodic points p1, · · · , pn in H(p, f) which are homoclinic related with each other,

there exist finite orbits [ti,j ] = (ti,jk(i,j), · · · , ti,j1 ) for any (i, j) ∈ {1, · · · , n}2 where k(i, j) is the length

of [ti,j ], such that, for every m ∈ N, l = (i1, · · · , im) ∈ {1, · · · , n}m and α = (α1, · · · , αm) ∈ Nm

where the word ((i1, α1), · · · , (im, αm)) with letters in N×N is not a power, the pseudo orbit [w(l, α)] =

[tim,i1 ] · [pim ]αm · [tim−1,im ] · [pim−1 ]αm−1 · · · · · [ti1,i2 ] · [pi1 ]α1 is an ε-pseudo orbit and there is a periodic

orbit Orb(q(l, α)) ⊂ H(p, f) such that:

a) the length of [w(l, α)] is π(q(l, α)) and [q(l, α)] ε-shadow the pseudo orbit [w(l, α)].

b) the word {q(l, α)} is ε-close to {w(l, α)}.
c) there exists a word {t̃tj,ti+1} = (T ij ,ij+1

k(ij ,ij+1), · · · , T
ij ,ij+1
1 ) with letters in GL(Rd) ε close to {tij ,tj+1},

let T ij ,ij+1 = T
ij,ij+1

k(ij ,ij+1) · · · · · T
ij,ij+1
1 , then

T ij,ij+1 (Es(qij )) = Es(qij+1 ), , T ij,ij+1(Eu(qij )) = Eu(qij+1 ).

We say H(p, f) has transition property if H(p, f) has ε-transition property for any ε > 0.

Lemma 4.24. ([6]) f ∈ C1(M), suppose p is an index i (i �= 0, d) hyperbolic periodic point of f , then

H(p, f) has transition property.

Lemma 4.25. f ∈ R, suppose p is an index i (i �= 0, d) hyperbolic periodic point of f and H(p, f) is not

trivial. Suppose there exists a family of periodic point {pn}∞n=1 with index i in H(p, f) homoclinic related

with p and ln −→ ∞, λn −→ 1− such that πln(pn) −→ ∞ and
πln (pn)−1∏

j=0

‖Df ln |Es(fjln (pn))‖ ≥ λ
πln (pn)
n ,

then H(p, f) is an index i − 1 fundamental limit.

Proof : We claim that we can find qn(gn) is periodic point of gn with index i such that:
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1) lim
n→∞ gn = f .

2) Orbgn (qn) is periodic orbit of f also (f |Orbgn (qn) = gn|Orbgn (qn)), so we just denote it Orb(qn),

then we have Orb(qn) ⊂ H(p, f) and lim
n→∞ Orb(qn) = H(p, f).

3) lim
n→∞

π(qn)
ln

−→ ∞

4)
[ π(qn)

ln
]−1∏

j=0

‖Dgln
n |Es

gn
(gjln

n (qn))‖ ≥ λ
[ π(qn)

ln
]

n

Proof of the claim: Choose εn −→ 0+, let’s fix n0 at first and choose an ε > 0 such that λn0 + 2ε < 1.

There exists N0 
 n0 such that for any n ≥ N0, we’ll have ln 
 ln0 and λn > λn0 + 2ε, then by
πln(pn)−1∏

j=0

‖Df ln |Es(fjln pn)‖ ≥ λ
πln (pn)
n , we have

mln0πln (pn)−1∏
j=0

‖Df ln |Es(fjln pn)‖ ≥ λ
mln0πln (pn)
n for m ≥ 1,

then we get

(4.15)
mlnπln (pn)−1∏

j=0

‖Df ln0 |Es(fjln0 pn)‖ ≥ (λn0 + 2ε)mln0πln (pn) for m ≥ 1.

Since f ∈ R, there exists a family of periodic points {q′i}N
i=1 with index i, which are εn0-dense in

H(p, f) and they are homoclinic related with p and {pn}∞n=1. Now use εn0-transition property for {q′0(=
pN0), q′1, · · · , q′N}, then for {i, j} ∈ {0, 1, · · · , N}2, there exists finite orbit [ti,j ] = (ti,jk(i,j), · · · , ti,j1 ) such

that for l = (0, 1, · · · , N) and αm = (m · ln0 , 1, · · · , 1), the pseudo orbit [w(l, αm)] = [tN,0] · [q′N ] · · · · ·
[t0,1] · [q′0]

m·lN0

lN0
·πlN0

(pN0
)

π(pN0
) is an εn0-pseudo orbit and is εn0-shadowed by periodic orbit [q(l, αm)] whose

index is i, where Orb(q(l, αm))) ⊂ H(p, f) and {q(l, αm)} is εn0-near {w(l, αm)}.
Consider the word {w̃(l, αm)} = {t̃N,0}·{q′N}·· · ·· {t̃N,0}·{q′0}ml0 , it’s εn0 near {w(l, αm)}, so {w̃(l, αm)}

is 2εn0 near with {q(l, αm)}. Now use lemma 4.17 (Franks lemma), we can get a C1 diffeomorphism

g(l,αm) such that d(g(l,αm), f) < 2εn0 , Orbf (q(l, αm)) is also orbit of g(l,αm), and {Dg(l,αm)|Orb(q(l,αm))} =

{w̃(l, αm)}. By c) of transition property, E
s(u)
f (q′0) is invariant bundle of {w̃(l, αm)}, so they are invariant

bundle of gl,αm , that means Dg
π(q(l,αm))
(l,αm) (Es

f (q′0)) = Es
f (q′0) and Dg

π(q(l,αm))
(l,αm) (Eu

f (q′0)) = Eu
f (q′0). It’s easy

to know when m is big enough, E
s(u)
f (q′0) is stable(unstable) bundle for g(l,αm), so when m is big enough,

q(l,αm) would be an index i hyperbolic periodic point of g(l,αm).

Now choose m big enough and let qn0 = q(l, αm), gn0 = g(l,αm), it’s easy to know qn0 , gn0 satisfy 1),

2). About 3), let’s notice that π(qn) ≥ mln0 and m can be chosen arbitrary big. 4) comes from (4.15)

and m is big enough. �

Now let’s continue the proof of lemma 4.25, by the above claim and lemma 4.16, for any ε > 0 and

N > 0, there exist an n0 > N and g′n0
is ε-perturbation of gn0 such that Orb(qn0 ) is index i− 1 periodic

orbit of g′n0
and Orb(qn0 ) is εn0-dense in H(p, f). Since ε and εn0 can be arbitrarily small, we get that

lim
n→∞ g′nj

= f , Orb(qnj ) is index i − 1 periodic orbit of g′nj
and lim

j→∞
Orb(qnj ) = H(p, f), so H(p, f) is an

index i − 1 fundamental limit. �

Then main result of this subsection is the following corollary.

Corollary 4.26. f ∈ R, C is a chain recurrent class of f , Λ is compact invariant set of f with index

i− (l, λ) dominated splitting Ecs ⊕F cu (1 ≤ i ≤ d) and assume they satisfy all the assumption of weakly

selecting lemma, then C contains index i periodic point and C is an index i − 1 funadamental limit.
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Proof : It’s just a corollary from Lemma 4.21 (weakly selecting lemma) and lemma 4.25. �

4.4. Proof of lemma 4.3. Proof : When Λ is trivial (#(Λ) < ∞), Λ is a periodic orbit, since Λ is an

index j0-fundamental limit, it should be an index j0 hyperbolic periodic orbit, so C contains an index j0

periodic point and it’s an index j0 fundamental limit.

Now we suppose Λ is not trivial, by generic property 5 of proposition 3.1, there exists a family of

index j0 periodic points {pn(f)}∞n=1 such that lim
n→∞Orb(pn(f)) = Λ. Since Λ is not trivial, we have

π(pn(f)) −→ ∞.

If Λ isn’t an index j0+1 fundamental limit, we know that {pn(f)} is index j0 stable, then by lemma 4.6

(Gan’s lemma), there exits a subsequence {pni(f)}∞i=1 such that pni(f) and pnj (f) are homoclinic related,

so H(pn1 , f) = H(pn2 , f) = · · · , especially, by lim
n→∞Orb(pn(f)) = Λ, we know that Λ ⊂ H(pn1 , f), by

generic property 6) of proposition 3.1, C = H(pn1 , f), so C contains index j0 periodic point and it’s an

index j0 fundamental limit.

So from now, we suppose Λ is an index j0 + 1 fundamental limit also, then Λ ⊂ P ∗
j0

⋂
P ∗

j0+1, since f

is far away from tangency, by proposition 2.1, Λ has an index j0 dominated splitting Ecs
j0 (Λ) ⊕ Ecu

j0+1(Λ)

and an index j0 + 1 dominated splitting Ecs
j0+1(Λ) ⊕ Ecu

j0+2(Λ). Let Ec
1(Λ) = Ecu

j0+1(Λ)
⋂

Ecs
j0+1(Λ), then

on Λ we have the following dominated splitting: T |ΛM = Ecs
j0 (Λ)⊕Ec

1(Λ)⊕Ecu
j0+2(Λ). Since C

⋂
P ∗

j = φ

for j < j0, by proposition 2.2, Ecs
j0

is in fact contracting, so we prefer denoting it Es
j0

. Now on Λ we have

the dominated splitting T |ΛM = Es
j0(Λ) ⊕ Ec

1(Λ) ⊕ Ecu
j0+2(Λ).

Remark 4.27. Since Λ is index j0 fundamental limit, Ec
1(Λ) is not contracting, that means that the

bundle (Es
j0
⊕ Ec

1)|Λ is not contracting also.

When j0 + 1 = d, especially, the dominated splitting on Λ should be T |ΛM = Es
j0 (Λ) ⊕ Ec

1(Λ). In

this case, if Λ is not minimal, there exists an x0 ∈ Λ such that ω(x0) � Λ. By the definition of Λ and

j0 = d − 1, ω(x0) is an index d fundamental limit but not index j fundamental limit for j < d. With

the generic property (5) of proposition 3.1, ω(x0) can be converged by a family of sinks {pn(f)}, by

remark 4.4, π(pn(f)) should be bounded ( If it’s not bounded, there exist pn0(f) and gn0

C1∼ f such that

gn0 |Orbf (pn0 (f)) = f |Orbf (pn0 (f)) and Orb(pn0 (f)) is a periodic orbit of g with index smaller than d, that

means ω(x0) is an fundamental limit with index smaller than d, it’s a contradiction). That means ω(x0)

is trivial, so it’s a periodic orbit. Since f is a Kupuka-Smale diffeomorphism and ω(x0) is an index d

fundamental limit, we can know that ω(x0) is an index d hyperbolic periodic orbit, then C contains a

sink, it means C itself is just the orbit of sink and C = ω(x0), that’s a contradiction with C is not trivial,

so we proved Λ is minimal when j0 + 1 = d.

Now we just consider j0 + 1 < d, we claim that with all the assumptions above on Λ, then either Λ is

minimal, or C contains periodic points with index j0 + 1 and C is an index j0 fundamental limit.

Proof of claim: Suppose Λ is not minimal, it means that there exists x0 ∈ Λ such that ω(x0) �= Λ.

Consider the set of compact chain recurrent subset of Λ: {Λα : Λα � Λ}α∈A, since ω(x0) ∈ {Λα}α∈A,

A �= φ, by generic property (4) of proposition 3.1, Λα is a fundamental limit. By the definition of j0 and

Λ, Λα is an index jα fundamental limit with jα ≥ j0 + 1. Denote B={β ∈ A, Λβ does not contain index

j fundamental limit for j > j0 + 1}.
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Remark 4.28. : For any β ∈ B, Λβ is an index j0 +1 fundamental limit, on Λβ we have an index j0 +1

dominated splitting Ecs
j0+1(Λβ)⊕Ecu

j0+2(Λβ). Since we have Λβ does not contain any index j fundamental

limit for all j �= j0 + 1, by proposition 2.2, the index j0 + 1 dominated splitting is in fact a hyperbolic

splitting, that means Λβ is a hyperbolic set.

Now we divide the proof of the claim to three subcases: #(B) = 0, #(B) = N1 < ∞ and #(B) = ∞.

Case A: #(B) = 0.

That means for all α ∈ A, Λα contains an index jα fundamental limit Λ∗
α for some jα > j0 + 1.

Now we need the following two results.

Lemma 4.29. ([45]) Assume f ∈ R, let Λ be an index i fundamental limit of f (1 ≤ i ≤ d − 1),

Ecs
i (Λ) ⊕ Ecu

i+1(Λ) is an index i − (l, λ) dominated splitting on Λ given by proposition 2.1, then

1) either for any µ ∈ (λ, 1), there exists c ∈ Λ such that
n−1∏
j=0

‖Df l|Ecs
i (fjlc)‖ ≤ µn for n ≥ 1,

2) or Ecs
i splits into a dominated splitting V cs

i−1 ⊕V c
1 with dim(V c

1 ) = 1 such that for any µ ∈ (λ, 1),

there is c′ ∈ Λ such that
n−1∏
j=0

‖Df l|V cs
i−1(fjlc′)‖ ≤ µn for all n ≥ 1.

Lemma 4.30. Let Λ be an invariant compact set of f , with two dominated splitting Ecs ⊕ F cu and

Ẽcs ⊕ F̃ cu, if dim(Ecs) ≤ dim(Ẽcs), then Ecs ⊂ Ẽcs.

Choose µ0 ∈ (λ, 1), since Λ∗
α is an index jα fundamental limit, proposition 2.1 gives an index jα− (l, λ)

dominated splitting Ecs
jα

⊕ F cu
jα+1 on Λ∗

α.

If 1) of lemma 4.29 is true for Λ∗
α, then there exists c ∈ Λ∗

α such that
n−1∏
j=0

‖Df l|Ecs
jα

(fjlc)‖ ≤ µn
0 for n ≥ 1.

On Λ∗
α we have another dominated splitting (Es

j0
⊕Ec

1)⊕Ej0+2
cu induced from Λ. Since dim(Es

j0
⊕Ec

1) =

j0 + 1 < jα = dim(Ecs
jα

), be lemma 4.30, Es
j0

⊕ Ec
1 ⊂ Ecs

jα
, so we have

n−1∏
j=0

‖Df l|Es
j0

⊕Ec
1(fjlc)‖ ≤ µn

0 for

n ≥ 1.

If 2) of lemma 4.29 is true for Λ∗
α, then there exists c′ such that

n−1∏
j=0

‖Df l|V cs
jα−1(f

jlc′)‖ ≤ µn
0 for n ≥ 1,

recall that dim(Es
j0 ⊕Ec

1) = j0 + 1 ≤ jα − 1 = dim(V cs
jα−1), by lemma 4.30, Es

j0 ⊕Ec
1 ⊂ V cs

jα−1(Λ
∗
α), so we

have
n−1∏
j=0

‖Df l|Es
j0

⊕Ec
1(fjlc′)‖ ≤ µn

0 for n ≥ 1.

Remark 4.31. : By the above arguments, we know that for any α ∈ A \ B, and for any µ0 ∈ (λ, 1),

there exists c ∈ Λα such that

(4.16)
n−1∏
j=0

‖Df l|Es
j0

⊕Ec
1(fjlc)‖ ≤ µn

0 for n ≥ 1.

By remark 4.27and remark 4.31, the index j0 + 1− (l, λ) dominated splitting (Es
j0
⊕Ec

1)⊕Ecu
j0+2 on Λ

satisfies all the conditions of weakly selecting lemma, by corollary 4.26, C contains index j0 + 1 periodic
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point and C is an index j0 fundamental limit.

Case B: #(B) = N1 < ∞
Let B={β1, · · · , βN1}, fix λ < µ0 < 1, then by the argument in case A, for any β ∈ A \B, there exists

c ∈ Λ satisfies (4.16).

For βi ∈ B, Λβi should be a hyperbolic set where the bundle Es
j1
⊕ Ec

1|Λβi
is a contracting bundle, so

there exists l′ such that for any x ∈ Λβi, ‖Df l′ |(Es
i0

⊕Ec
1)(x)‖ < 1/2.

Let l0 = l · l′ and 1 > µ1 > max{µ0,
1
2}, then for any Λα (α ∈ A), there exists a point c ∈ Λα such

that
n−1∏
j=0

‖Df l0 |Es
j0

⊕Ec
1(fjl0c)‖ ≤ µn

1 . With remark 4.27, the index j0 + 1 − (l, λ) dominated splitting

(Es
j0

⊕ Ec
1) ⊕ Ecu

j0+2 on Λ satisfies all the conditions of weakly selecting lemma, by corollary 4.26, C

contains index j0 + 1 periodic point and C is an index j0 fundamental limit.

Case C: #(B) = ∞
In remark 4.28, we have shown that for any β ∈ B, Λβ is a hyperbolic chain recurrent set with

index j0 + 1. Then there exists a family of periodic points {pβ,n}∞n=1 in C with index j0 + 1 and

lim
n→∞Orb(pβ,n) = Λβ (by shadowing lemma). If Λβ is trivial, that means it’s an index j0 + 1 periodic

orbit, we can let Orb(pβ,n) = Λβ for n ≥ 1; if Λβ is not trivial, we can let π(pβ,n) −→ ∞.

We have the following two subcases.

• Subcase C.1: There exists δ > 0 such that for any Λβ , β ∈ B, there exists a family of periodic

points {pβ,n}∞n=1 such that lim
n→∞ Orb(pβ,n) = Λβ and | Dfπ(pβ,n)|Ec

1(pβ,n) |< e−δπ(pβ,n).

• Subcase C.2: For any 1
m > 0, there exist βm ∈ B and a family of periodic points {pβm,n}∞n=1

satisfying lim
n→∞ Orb(pβm,n) = Λβ and | Dfπ(pβm,n)|Ec

1(pβm,n) |> e−
1
m π(pβm,n).

In the subcase C.1, let’s fix 1 > µ1 > µ0 > e−δ. For β ∈ B, recall that dim(Ec
1(Λ)) = 1 and

| Dfπ(pβ,n)|Ec
1(pβ,n) |< e−δπ(pβ,n), we’ll get

π(pβ,n)−1∏
i=0

| Df |Ec
1(pβ,n) |< e−δπ(pβ,n), that means for any

s ≥ 1, we have
sπ(pβ,n)−1∏

i=0

| Df |Ec
1(pβ,n) |< e−sδπ(pβ,n) for s ≥ 1. By lemma 4.10 (Pliss lemma) there

exists xβ,n ∈ Orb(pβ,n) such that | Dfs|Ec
1(xβ,n) |=

s−1∏
i=0

| Df |Ec
1(fi(xβ,n)) |< µs

0 for s ≥ 1. Suppose

lim
n→∞xβ,n −→ cβ where cβ ∈ Λβ , then

s−1∏
i=0

| Df |Ec
1(fi(cβ)) |< µs

0 for s ≥ 1. Notice that Es
j0 |Λ is dominated

by Ec
1|Λ and µ1 > µ0, there exists l′ 
 1 doesn’t depend on β such that

t−1∏
i=0

‖Df l′ |Ec
1⊕Es

j0
(fil′(cβ))‖ < µt

1

for t ≥ 1.

For α ∈ A\B, by the argument in case A, there exists cα ∈ Aα such that
t−1∏
i=0

‖Df l0 |Ec
1⊕Es

j0
(fil0(cα))‖ <

µt
1 for t ≥ 1.

Let l1 = l′ · l0, then for any α ∈ A, there exists cα ∈ A such that
t−1∏
i=0

‖Df l1|Ec
1⊕Es

j0
(fil1(cα))‖ < µt

1 for

t ≥ 1. With remark 4.27, the index j0 + 1 − (l, λ) dominated splitting (Es
j0 ⊕ Ec

1) ⊕ Eu
j0+2 on Λ satisfies
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all the conditions of weakly selecting lemma. By Corollary 4.26, C contains index j0 + 1 periodic point

and C is an index j0 fundamental limit.

In the subcase C.2, since Λβm is a hyperbolic set, we can always suppose {pβm,n}∞n=1 is homoclinic

related with each other and pβm,n ∈ C, so C contains index j0 + 1 periodic points. Now we’ll show C is

an index j0 fundamental limit also.

We claim that there exists a subsequence {βmt}∞t=1 ⊂ {βm} and for every βmt there exists pβmt ,nt ∈
{pβmt ,n}∞n=1 such that lim

t→∞π(pβmt ,nt) −→ ∞.

Proof of the claim: Let B0={βm : Λβm is given in subcase C.2 and Λβm is not trivial. }
If #(B0) = ∞, then for any βmt ∈ B0, by Λβmt

is not trivial, we’ll have lim
n→∞π(pβmt ,n) −→ ∞, so

when n is big enough, we can let π(pβmt ,n) arbitrarily big.

If #(B0) < ∞, then for βm /∈ B0, Λβm is an index j0 + 1 periodic orbit and Orb(pβm,n) ≡ Λβm for

n ≥ 1. Since f is a Kupka-Smale diffeomorphism, the number of periodic points with fixed boundary of

period should be finite, by the fact #(B \ B0) = ∞, there are infinite of m such that Λm is index j0 + 1

periodic orbits, then we can choose Λβm is an index j0 + 1 periodic orbit with arbitrarily big period. �

Now for simiplicity, we denote pβmt ,nt by pβm,nm .

For {pβm,nm}∞m=1, we have lim
m→∞ π(pβm.nm) −→ ∞ and

(4.17) |Dfπ(pβm,nm)|Ec
1(pβm,nm )| > e−

1
m π(pβm,nm ).

Choose {lm}∞m=1 carefully, we’ll have lim
m→∞ lm −→ ∞, lim

m→∞
π(pβm,nm )

lm
−→ ∞ and lm

m −→ 0+ (after

replacing {pβm,nm}∞m=1 by a subsequence, we can always do this). Since πlm(pβm,nm) ≥ π(pβm,nm )
lm

, we

have

(4.18) lim
m→∞πlm(pβm,nm) −→ ∞.

By (4.17) and the fact l · πl(p) is always a multiple of π(p) for any period point p and l ≥ 1, we have

|Df lm·πlm(pβm,nm)|Ec
1(pβm,nm )| > e−

1
m lm·πlm (pβm,nm ),

it’s equivalent with

πlm (pβm,nm )−1∏
i=0

‖Df lm |Ec
1(film (pβm,nm ))‖ ≥ e−

lm
m ·πlm (pβm,nm ),

then we get
πlm (pβm,nm )−1∏

i=0

‖Df lm |(Ec
1⊕Es

j0
)(film (pβm,nm ))‖ ≥ e−

lm
m ·πlm (pβm,nm ),

since lim
m→∞

lm
m −→ 0+ and by (4.18), lemma 4.25 tells us C is an index j0 fundamental limit, this finishes

the proof of the claim. �

Now let’s continue the proof of lemma 4.3, by the above argument, we can suppose Λ is minimal, not

trivial, it’s an index j0 and j0 + 1 fundamental limit with dominated splitting Es
j0
⊕Ec

1 ⊕Ecu
j0+2|Λ where

Ecu
j0+2(Λ) �= φ.
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If Ecu
j0+2(Λ) is not expanding, by lemma 4.22, we can know that there exists a point b ∈ Λ such that

n−1∏
i=0

‖Df−l|Ecu
j0+2(f

(i+1)lb)‖ ≥ 1, since (Es
j0 ⊕Ec

1)⊕Ecu
j0+2|Λ is an index j0 + 1− (l, λ) fundamental limit, it

means that
n−1∏
i=0

‖Df l|Es
j0

⊕Ec
1(fil(b))‖ ·

n−1∏
i=0

‖Df−l|Ecu
j0+2(f

(i+1)l(b))‖ ≤ λn, for n ≥ 1,

so
n−1∏
i=0

‖Df l|Es
j0

⊕Ec
1(fil(b))‖ ≤ λn for all n ≥ 1. Since Λ is minimal, the index j0 + 1 dominated splitting

on Λ satisfies strong tilda condition, by remark 4.27, it also satisfies the non-hyperbolic condition, so

it satisfies all the conditions of weakly selecting lemma, then by corollary 4.26, C contains index j0 + 1

periodic point and it’s an index j0 fundamental limit. �

5. Proof of theorem 1

In order to prove theorem 1, we need the following lemma whose proof has been postponed to the end

of this section.

Lemma 5.1. Let f ∈ R, C is any non-trivial chain recurrent class of f , suppose Λ ⊂ C is a non-trivial

minimal set with a codimension-1 partial hyperbolic splitting TΛM = Ec
1 ⊕ Eu

2 where dim(Ec
1|Λ) = 1 and

Ec
1(Λ) is not contracting, then C is a homoclinic class containing index 1 periodic point and C is an

index 0 fundamental limit.

Remark 5.2. in [9], they show that for f ∈ R, if C is a chain recurrent class of f with a codimension-1

dominated splitting TCM = Ec
1 ⊕Eu

2 where dim(Ec
1|C) = 1 and Ec

1|C is not hyperbolic, then C should be

a homoclinic class. We generalize this result to minimal set with Crovisier’s work on central curves.

Proof of theorem 1: Suppose C
⋂

P ∗
0 �= φ, let Λ be an minimal index 0 fundamental limit, then Λ is

not trivial ( if Λ is trivial, Λ should be an orbit of source, then C itself is source also, that contradicts

with C is not trivial)). By lemma 4.3, either C is a homoclinic class containing index 1 periodic point and

C is an index 0 fundamental limit or Λ is a non-trivial minimal set with codimension-1 partial hyperbolic

splitting TΛM = Ec
1 ⊕ Eu

2 where Ec
1|Λ is not trivial. In the first case we’ve proved theorem 1, in the

second case, by lemma 5.1, we also prove theorem 1. �

In §5.1, we’ll introduce some properties for codimension-1 partial hyperbolic splitting set, in §5.2 we’ll

introduce Crovisier’s central model for the invariant compact set with partial hyperbolic splitting whose

central bundle is 1-dimension and non-hyperbolic. In §5.3 I’ll give the proof of lemma 5.1.

5.1. Some properties for codimension-1 partial hyperbolic splitting. Let f ∈ R, Λ is a given

non-trivial minimal set of f with a codimension-1 partial hyperbolic splitting TΛM = Eu ⊕ Ec
1, where

dim(Ec
1(Λ)) = 1 and the bundle Ec

1|Λ is not hyperbolic. In this section we always suppose the dominated

splitting is 1-step and the bundle Eu is 1-step expanding, it means that there exists 0 < λ < 1 such that

for any vu ∈ Eu(x), vc ∈ Ec
1(x) where |vu| = |vc| = 1, x ∈ Λ, we have |Df(vc)|

|Df(vu)| < λ, |Df(vu)| > λ−1. Fix

a small neighborhood U0 of Λ, then the maximal invariant set Λ0 =
∞⋂

j=−∞
f j(U0) has also a codimension-1

partial hyperbolic splitting Ẽu⊕ Ẽc
1, the dominated splitting is 1-step and the bundle Ẽu|Λ0 is also 1-step
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expanding. We say Ec
1(Λ) has an f -orientation if Ec

1|Λ is orientable and Df preserves the orientation. If

Ec
1|Λ has an f -orientation, we choose U0 small enough such that Ẽc

1(Λ) has an f -orientation also.

Here we should notice the reader that in this section, all the argument will take place just in U0, and

we can suppose U0 is small enough such that it satisfies all the properties which we need.

When U0 is small enough, we can extend the bundle Ẽu|Λ0 and Ẽc
1|Λ0 to U0 such that for any x ∈ U0,

TxM = Ẽu(x) ⊕ Ẽc
1(x), and if Ec

1|Λ is orientable, Ẽc
1|U0

is orientable also. In fact, no matter Ẽc
1|U0

is

orientable or not, we can always locally define an orientation of Ẽc
1|U0

, it means that there exists δ0 > 0

such that for any x ∈ U0, we can give an orientation for the bundle Ẽc
1|Bδ0 (x)

⋂
U0.

For every point x ∈ U0, we define two kinds of cones on its tangent space Ci
a(x) = {v|v ∈ TxM, there

exists v′ ∈ Ẽi(x) such that d( v
|v| ,

v′
|v′| ) < a}i=c,u. When a small enough, Cc

a

⋂
Cu

a = φ, Df(Cu
a (x)) ⊂

Cu
a (f(x)) and Df−1(Cc

a(x)) ⊂ Cc
a(f−1(x)) for x ∈ Λ0.

We say a submanifold Di (i = c, u) tangents with cone Ci
a if dim(Di) = d − 1 when i = u and

dim(Di) = 1 when i = c and for x ∈ Di, TxDi ⊂ Ci
a(x). For simplicity, sometimes we call it i-disk,

especially when i = c, we just call Dc a central curve. We say an i-disk Di has centrer x with size δ if

x ∈ Di, and respecting the Riemannian metric restricting on Di, the ball centered on x with radius δ is

in Di. We say an i-disk Di has center x with radius δ if x ∈ Di, and respecting the Riemannian metric

restricting on Di, the distance between any point y ∈ Di and x is smaller than δ.

The following lemma shows some well-known results, it depends on a simple fact: locally the splitting

Ẽc
1 ⊕ Ẽu|U0

looks like linear. [9] ’s subsection 4.1 gives many details about such view, from lemma 4.8 in

[9], it would be very easy to get the following properties, so here we ’ll not give a proof.

Lemma 5.3. : Let f ∈ R, Λ is a non-trivial minimal set of f with a codimension-1 partial hyperbolic

splitting TΛM = Ec
1 ⊕ Eu where the bundle Ec

1|Λ is not hyperbolic. U0, δ0, C
u
a , Cc

a are defined by the

above argument. Let U be any small neighborhood of Λ satisfying U ⊂ U0, there exist two neighborhoods

U2, U1 of Λ such that Λ ⊂ U2 ⊂ U2 ⊂ U1 ⊂ U1 ⊂ U ⊂ U0 and there exist a0 small enough and

0 < δ1,3 < δ1,2 < δ1,1 < δ0/2 such that they satisfy the following properties:

P1 For any x ∈ U2, we have B2δ1,1(x) ⊂ U1, and for any x ∈ U1, we have B2δ1,1(x) ⊂ U , then for

any i-disk Di (i = c, u) with center x ∈ U1 and radius 2δ1,1 we’ll have Di ⊂ U .

For any x ∈ U1, Ẽc
1|B2δ1,1 (x) is orientable, we can choose an orientation and call the direction

right, then the orientation of Ec
1|B2δ1,1 (x) will give an orientation for central curves in B2δ1,1(x).

We suppose δ1,1 is small enough such that any central curve in B2δ1,1(x) will not intersect with

itself.

For two points y1, y2 ∈ B2δ1,1(x), we say y1 is on the x-right of y2 if there exists a central

curve l ⊂ B2δ1,1(x) connects y1 and y2 and in l, y1 is on the right of y2. Then since any central

curve in B2δ1,1 (x) is not self-intersection, y2 is not on x-right of y1 anymore. Usually, we just

simply call y1 is on the right of y2.

P2) Let Λ1 =
∞⋂

i=−∞
f i(U1), apply lemma 4.13 on Λ1, we can get the following two kinds of submani-

folds families: the local unstable manifolds Wuu
loc (x) x∈Λ1 and the local central curves W c

loc(x) x∈Λ1 .
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Choose δ1,1 properly ( small enough) we can suppose W i
loc(x) (i=uu,c) has size δ1,1, let W i

δ1,1
(x)

be the ball in W i
loc(x) with central x and radius δ1,1, then we have W i

δ1,1
(x) (x∈Λ1,i=c,uu) always

tangents with cone Ci
a0

.

In fact, for Λ+
1 =

∞⋂
i=0

f i(U1), any x ∈ Λ+
1 will have uniform size of unstable manifold Wuu

δ1,1
(x)

which tangents with cone Cuu
a0

.

P3) By the property of strong unstable manifolds, for y1, y2 ∈ Λ+
1 , if we have Wuu

δ1,1/2(y1)
⋂

Wuu
δ1,1/2(y2)

�= φ, then y1 ∈ Wuu
δ1,1

(y2) and y2 ∈ Wuu
δ1,1

(y1). There exists 0 < λ < 1 such that for any smooth

curve l ⊂ Wuu
δ1,1

(x) where x ∈ Λ+
1 , we’ll have length(f−1(l)) < λ · length(l).

P4) For any central curve Dc and u-disk Du in U with centers in Λ1 and radius smaller than 2δ1,1,

we have #{z| z ∈ Dc
⋂

Du} ≤ 1. If Dc
⋂

Du �= φ, then they are transverse intersect with each

other.

P5) For any x ∈ U1, y ∈ Bδ1,3(x)
⋂

Λ1, Di
δ1,2

is an i-disk with center y and radius δ1,2, then Di
δ1,2

⊂
Bδ1,1(x).

For z ∈ Bδ1,3(x) and lc+δ1,2
(z) is a central curve at the right of z with length δ1,2 and z is one of

its extreme points, suppose lc−δ1,2
(z) is a central curve at the left of z with length δ1,2 and z is one

of its extreme points, let lcδ1,2
(z) = lc+δ1,2

(z)
⋃

lc−δ1,2
(z), then #{lcδ1,2

(z)
⋂

Wuu
δ1,2

(y)} = 1 and they are

transverse intersect. Suppose z /∈ Wuu
δ1,2

(y), then if lc+δ1,2

⋂
Wuu

δ1,2
(y) �= φ, we say z is at x-left of y;

if lc−δ1,2

⋂
Wuu

δ1,2
(y) �= φ, we say z is at x-right of y. It’s easy to show when z is at x-right of y, it’s

not at x-right of y anymore.

For simplicity, we just call z at the left of Wuu
loc (y) or the right of Wuu

loc (y).

P6) For any x ∈ U1, any δ < δ1,2, there exists δ∗ � δ such that for y ∈ Bδ∗(x)
⋂

Λ1, if we have

z ∈ Bδ∗(x)
⋂

Λ1 also, then #{lcδ(z)
⋂

Wuu
δ1,2

(y)} = 1 and they are transverse intersect (lcδ(z) is

defined in P5).

P7) For any 0 < δ∗ < 2δ1,1, there exists a δ∗∗such that if Γ is a central curve in U1 with length(Γ) <

2δ1,1, for x, y ∈ Γ and suppose the segment in Γ connecting x and y has length bigger than δ∗,

then d(x, y) > δ∗∗.

P8) For any x ∈ U1, any central curve l in Bδ1,2(x) will have length smaller than δ1,1.

For y ∈ Bδ1,2(x)
⋂

Λ+
1 , we can let Wuu

δ1,1
(y)

⋂
Bδ1,2(x) always just have one connected compo-

nents, and Wuu
δ1,1/2(y) divides Bδ1,2(x) into two connected components: the left part and the right

part.

If z1, z2 ∈ Bδ1,2(x) are on the different side of Bδ1,2(x)
⋂

Wuu
δ1,1/2(y) and there is a central curve

l ⊂ Bδ1,2(x) connecting them, then #{l ⋂ Wuu
δ1,1/2(y)} = 1.

P9) Let x ∈ U1, suppose y1, y2 ∈ Bδ1,2(x)
⋂

Λ+
1 and there exists a central curve l in Bδ1,2(x) con-

nects them, so by P8) length(l) < δ1,1, now we know Wuu
δ1,1/2(y1)

⋂
Wuu

δ1,1/2(y2) = φ (other-

wise y1 ∈ Wuu
δ1,1

(y2), then #{l ⋂ Wuu
δ1,1

(y1)} ≥ 2, it contradicts with P4), it means Wuu
δ1,1/2(y1)

and Wuu
δ1,1/2(y2) divide Bδ1,2(x) into three connected components. Suppose y1 is at x-left of y2,

then for any point z ∈ Λ+
1 which are on the left of Wuu

δ1,1/2(y2)
⋂

Bδ1,2(x) and on the right of

Wuu
δ1,1/2(y1)

⋂
Bδ1,2(x), we have Wuu

δ1,1/2(z)
⋂

Wuu
δ1,1/2(yi) = φ (i=1,2) and Wuu

δ11/2(z)
⋂

l �= φ.
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P10) A C1 curve Γ in U1 is called a central segment if f i(Γ) ⊂ U1 for all i ∈ Z and it always tangents

with Cc
a0

. Then Γ ⊂ Λ1 and it’s easy to know that for any x ∈ Γ, we have TxΓ = Ẽc
1(x). On Γ

we have normally hyperbolic splitting Ẽc
1 ⊕ Ẽu|Γ since TxΓ = Ẽc

1(x), by the property of normally

hyperbolic manifold,
⋃

x∈Γ

Wuu
δ1,1/2(x) is a submanifold (dim = d) with boundary, we denote it

Wu
δ1,1/2(Γ).

P11) For any ε > 0, if we have a family of central segment {Γn}∞n=1 with length(Γn) > ε, there exists

δ > 0 such that vol(Wu
δ1,1/2(Γn)) > δ, so we can find ni �= nj such that Wu

δ1,1/2(Γni)
⋂

Wu
δ1,1/2(Γnj )

�= φ.

5.2. Crovisier’s central model. In this subsection, let’s fix U, U1, U2, Λ1, δ0/2 > δ1,1 > δ1,2 > δ1,3 > 0,

and a0 given by lemma 5.3, we’ll introduce Crovisier’s central model. By his work, we can get some

dynamical property for the central curve W c
δ1,1

(x) where x ∈ Λ1. The main result in this subsection is

lemma 5.11.

Definition 5.4. A central model is a pair (K̃, f̃) where

a) K̃ is a compact metric space called the base of the central model.

b) f̃ is a continuous map from K̃ × [0, 1] into K̃ × [0,∞)

c) f̃(K̃ × {0}) = K̃ × {0}
d) f̃ is a local homeomorphism in a neighborhood of K̃ × {0} : there exists a continuous map

g : K̃ × [0, 1] −→ K̃ × [0,∞) such that f̃ ◦ g̃ and g̃ ◦ f̃ are identity maps on g̃−1(K̃ × [0, 1]) and

f̃−1(K̃ × [0, 1]) respectively.

e) f̃ is a skew product: there exits two map f̃1 : K̃ −→ K̃ and f̃2 : K̃ × [0, 1] −→ [0,∞) respectively

such that for any (x, t) ∈ K̃ × [0, 1], one has f̃(x, t) = (f̃1(x), f̃2(x, t)).

f general doesn’t preserve K̃ × [0, 1], so the dynamics outside K̃ × {0} is only partially defined.

The central model (K̃, f̃) has a chain recurrent central segment if it contains a segment I = {x}× [0, a]

contained in a chain recurrent class of f |K̃×[0,1].

A subset S ⊂ K̃ × [0, 1] of a product K̃ × [0,∞) is a strip if for any x ∈ K̃, the intersection S
⋂{x} ×

[0,∞) is a non-trivial interval.

In his remarkable paper [13], Crovisier got the following important result.

Lemma 5.5. ([13] Proposition 2.5) Let (K̃, f̃) be a central model with a chain transitive base, then the

two following properties are equivalent:

a) There is no chain recurrent central segment.

b) There exists some strip S in K̃ × [0, 1] that is arbitrarily small neighborhood of K̃ × {0} and it’s

a trapping region for f̃ or f̃−1 : either f̃(Cl(S)) ⊂ Int(S) or f̃−1(Cl(S)) ⊂ Int(S).

Remark 5.6. If the central model (K̃, f̃) has a chain recurrent central segment and K̃×{0} is transitive,

from Crovisier’s proof, we can know for any small neighborhood V of K̃ × {0}, there exists a segment

x × [0, a]a�=0 contained in the same chain recurrent class of f̃ |V with K̃ × {0}.

An open strip S ⊂ f̃ × [0, 1] satisfying f̃(Cl(S)) ⊂ Int(S) or f̃−1(Cl(S)) ⊂ Int(S) will be called a

trapping strip.
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Definition 5.7. Let f be a diffeomorphism of a manifold M , Λ, Λ1, U, U0, U1, U2, a0, δ0/2 > δ1,1 >

δ1,2 > δ1,3 > 0 are given in §5.1, where Λ1 is a partial hyperbolic invariant compact set of f having

a 1-dimensional central bundle. A central model (Λ̃1, f̃) is a central model for (Λ1, f) if there exists a

continuous map π : Λ̃1 × [0,∞) −→ M such that:

a) π semi-conjugate f̃ and f : f ◦ π = π ◦ f̃ on Λ̃1 × [0, 1]

b) π(Λ̃1 × {0}) = Λ1

c) The collection of map t −→ π(x̃, t) is a continuous family of C1 embedding of [0,∞) into M ,

parameterized by x̃ ∈ Λ̃1.

d) For any x̃ ∈ Λ̃1, the curve π(x̃, [0,∞)) ⊂ U has length bigger than δ1,2 but smaller than 2δ1,1, it’s

tangent at the point x = π(x̃, 0) ∈ Λ1 to the central bundle and it’s a central curve ( that means

the curve π(x̃, [0,∞)) tangents with the central cone Cc
a0

).

Remark 5.8. From now, if (Λ̃1, f̃) is a central model for (Λ1, f) and π is the projection map, we’ll

denote the central model as (Λ̃1, f̃ , π). Here I should notice the reader that π in this paper has two

different meanings, one denote the period of periodic point and another denote the projection map of

central model. If there is any confusion, I’ll point out.

The following lemma shows the relation between central model and a set with codimension-1 partial

hyperbolic splitting.

Lemma 5.9. ([Cr2]) Λ, Λ1, U, U1 are given in §5.1, then there exists a central model (Λ̃1, f̃ , π) for (Λ1, f).

Let’s denote Λ̃ ⊂ Λ̃1 which satisfies π−1(Λ)
⋂

(Λ̃1 × {0}) = Λ̃ × {0}, then (Λ̃, f̃ , π) is a central model for

(Λ, f), and Λ̃ × {0} is minimal.

Remark 5.10. 1) When the cental bundle Ẽc
1(Λ1) has an f -orientation ( it means that Ẽc

1(Λ1) is

orientable and Df preserves such orientation), we call the orientation ’right’, then we can get two

central models (Λ̃+
1 , f̃+, π+) and (Λ̃−

1 , f̃−, π−) for (Λ1, f), we call them the right model and the

left model, where πi
(i=+,−) is a bijection between Λ̃i

1×{0} and Λ1, and for x̃i ∈ Λ̃i
1, π(x̃i×[0,∞))

is a half of central curve at the right (i = +) or left (i = −) of x = π(x̃i × {0}).
2) If f doesn’t preserve any orientation of Ẽc

1(Λ1), then π : Λ̃1 −→ Λ1 is two-one: any point x ∈ Λ1

has two preimages x̃− and x̃+ in Λ̃1, the homeomorphism σ of Λ̃1 which exchanges the preimages

x̃+ and x̃− of any point x ∈ Λ1 commutes with f̃ .

In § 5.1, we know any point x ∈ Λ1 has a local orientation, then π(x̃+ × [0,∞)) is a central

curve on the right of x, π(x̃− × [0,∞)) is on the left of x, the union of them is a central curve

with central at x and radius δ1,1.

The following lemma is the main result in this subsection, it’s similar with [Cr]’s proposition 3.6, but

a little stronger.

Lemma 5.11. f ∈ R, Λ is a non-trivial minimal set with a codimension-1 partial hyperbolic splitting

Ec
1 ⊕ Eu where dim(Ec

1(Λ)) = 1 and Ec
1(Λ) is not hyperbolic. Let U, U1, Λ1 be given in §5.1, by lemma

5.9, (Λ1, f) has a central model (Λ̃1, f̃ , π), then we can choose U1 properly such that

a) either (Λ̃1, f̃ , π) has a trapping region,
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b) or Λ is contained in a homoclinic class C, C contains periodic points with index 1 and it’s an

index 0 fundamental limit.

Proof : Let Λ̃ ⊂ Λ̃1 satisfy Λ̃ × {0} = π−1(Λ)
⋂

Λ̃1 × {0}, then (Λ̃, f̃ , π) is a central model for (Λ, f).

Since now, we just denote Λ̃ × {0} by Λ̃.

At first, let’s suppose (Λ̃, f̃ , π) has no trapping region, then by remark 5.6, for any small neighborhood

V of Λ̃ in Λ̃ × [0, 1], there exists a chain recurrent central segment x × I in V respecting the map f̃ . By

Crovisier’s result ([Cr], proposition 3.6), there exits a family of periodic points {pn} such that they all

belong to the same chain recurrent class with Λ and lim
n→∞ Orb(pn) = Λ, so Λ ⊂ H(pn, f)n≥1. When n is

big enough, Orb(pn) ⊂ Λ1, so Orb(pn) has a codimension-1 partial hyperbolic splitting Ẽc
1 ⊕ Ẽu|Orb(pn),

that means pn is an index 1 periodic point.

Now we claim that H(pn, f) is an index 0 fundamental limit.

Proof of the claim: The argument is exactly the same with the case C in the proof of lemma 4.3, so

here we just give a sketch of the proof, we divide the proof to two cases.

A) : there exists δ > 0 such that for any pn, we have |Dfπ(pn)|
Ẽc

1(pn)
| < e−δπ(pn).

B) : for any 1
m > 0, there exists pnm such that |Dfπ(pnm)|

Ẽc
1(pnm )| > e−

1
m π(pnm ).

In the first case, we use weakly selecting lemma, in case B, we use lemma 4.25. �

Now we suppose (Λ̃, f̃ , π) has a trapping region S, we can suppose f̃(Cl(s)) ⊂ Int(S) always. Choose

Λ̃2 an open neighborhood of Λ̃ in Λ̃1 small enough, we can get an open strip S2 for Λ̃2 (here open respect

Λ̃2 × [0, 1]) such that:

a) for any x̃ ∈ Λ̃, x̃ × [0, 1]
⋂

S = x̃ × [0, 1]
⋂

S2,

b) for any x̃ ∈ Λ̃2 and f̃(x̃) ∈ Λ̃2, we have f̃(Cl((x̃ × [0, 1])
⋂

S2)) ⊂ (f̃(x̃) × [0, 1])
⋂

S2.

Choose U∗ neighborhood of Λ small enough, let Λ∗ =
∞⋂
−∞

f i(U
∗
), then Λ∗ ⊂ Λ1, let Λ̃∗ ⊂ Λ̃1

satisfies Λ̃∗ = π−1(Λ∗)
⋂

Λ̃1, we’ll have Λ̃∗ ⊂ Λ̃2. Then consider the central model (Λ̃∗, f̃ , π) for (Λ∗, f),

S2

⋂
(Λ̃∗ × [0, 1]) is a trapping region for (Λ̃∗, f̃ , π).

Now replace U1 by U∗ and Λ1 by Λ∗, we get a trapping region for (Λ̃1, f̃ , π). �

5.3. Proof of lemma 5.1. Now we suppose Λ is a non-trivial minimal set with a codimension-1 partial

hyperbolic splitting Ec
1 ⊕ Eu where dim(Ec

1) = 1 and Ec
1(Λ) is not hyperbolic. We divide the proof of

lemma 5.1 into two cases: Ec
1(Λ) has an f -orientation or not.

Proof of lemma 5.1 ( Ec
1(Λ) has an f -orientation)

Let U0 be the small neighborhood of Λ given in §5.1 such that we can extend the splitting Ec
1 ⊕ Eu|Λ

to U0, we denote the splitting TxM = Ẽc
1 ⊕ Ẽu (x ∈ Ũ0). Suppose U is any small neighborhood

of Λ such that U ⊂ U0, then from lemma 5.3, we can get open sets U2, U1 and Λ1 =
∞⋂

i=−∞
f i(U1),

a0 > 0, 0 < δ1,3 < δ1,2 < δ1,1 < δ0/2 such that they satisfy properties P1-P11 of lemma 5.3 there.

Since Ec
1(Λ) has an f -orientation, Ẽc

1(Λ1) has an f -orientation also, by remark 5.10 we get two central

models: the right central model (Λ̃+
1 , f̃+, π+) and the left central model (Λ̃−

1 , f̃−, π−), where for any
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x̃+ ∈ Λ̃+
1 , π+(x̃+ × [0,∞)) is a central curve at the right of x = π+(x̃+ ×{0}) and δ1,2 < length(π+(x̃+ ×

[0,∞))) < 2δ1,1, so π+(x̃+ × [0,∞)) ⊂ B2δ1,1(x) ⊂ U . For any x̃− ∈ Λ̃−, we have the similar property.

At first, we consider the right central model (Λ̃+
1 , f̃+, π+), if the right central model doesn’t have

trapping region, by lemma 5.11, Λ is contained in a homoclinic class H(p, f) which contains an index 1

periodic point and the homoclinic class is an index 0 fundamental limit, then we’ve proved lemma 5.1,

so now we suppose that there exists a trapping region S+ for the right central model. By the similar

argument for the left central model, we can suppose it has a trapping region S− also.

Claim: Λ is an index 0 fundamental limit.

Proof of the claim: If Λ is not an index 0 fundamental limit, since Λ has a codimension-1 dominated

splitting, Λ should be an index 1 fundamental limit. By generic property 5 of proposition 3.1, there

exists a family of index 1 periodic points {pn} such that lim
n→∞ Orb(pn) = Λ and they are index stable,

then by Gan’s lemma, there exists a subsequence of periodic points {pnm}∞m=1 in C. Now with the same

argument of the case C in the proof of lemma 4.3, we can show Λ satisfies weakly selecting lemma, by

weakly selecting lemma 4.21, Λ is an index 0 fundamental limit, that’s a contradiction. �

Since Λ is an index 0 fundamental limit, by generic property 5) of proposition 3.1, there exists a

family of sources {pn}∞n=1 of f satisfying lim
n→∞Orb(pn) = Λ. We can suppose Orb(pn) ⊂ U2 always and

let p̃i
n ∈ Λ̃i

1 (i=+,−) such that π(i)(p̃i
n × {0}) = pn, then (f̃ i)π(pn)(p̃i

n) = p̃i
n. Denote p̃

+(−)
n × I

+(−)
n =

(p̃+(−)
n × [0,∞))

⋂
S+(−) and γ

+(−)
n = π+(−)(p̃+(−) × I

+(−)
n ), let γ=γ+

n

⋃
γ−

n , then γn is a central curve

with center at pn. Since length(γ+(−)
n ) < 2δ1,1, we have γn ⊂ B2δ1,1(pn) ⊂ U1.

We’ve suppose S± is a trapping region, then f̃+(−)(S+(−)) ⊂ Int(S+(−)) or (f̃+(−))−1(S+(−)) ⊂
Int(S+(−)). In the first case, we say the trapping region is 1-step contracting, in the second case we

say it’s 1-step expanding. When Si is 1-step contracting case, we have (f̃ i)π(pn)(p̃i
n × I

i

n) ⊂ p̃i
n × Ii

n,

so fπ(pn)(γi
n) ⊂ γi

n for i = +,− and there exists δ > 0 doesn’t depend on n such that length(γi
n \

fπ(pn)(γi
n)) > δ for all n ≥ 1. If Si is 1-step expanding, we’ll still have length(γi

n \ f−π(pn)(γi
n)) > δ for

all n ≥ 1.

Since γi
n is either expanding or contracting for fπ(pn), let Γi

n =
∞⋂

j=−∞
f jπ(pn)(γi

n) (i=+,−), we’ll have

fπ(pn)(Γi
n) = Γi

n (i=+,−) where Γi
n’s extreme points are periodic points. When Γi

n is not trivial, we

denote qi
n (i=+,−) the extreme periodic point different with pn, if Γi

n is trivial, we just let qi
n = pn. We

let Γn = Γ+
n

⋃
Γ−

n and hi
n = γi

n \ Γn
i (i=+,−), then Γn ⊂ Λ1, hi

n ⊂ U1. It’s easy to know that hi
n is in the

stable (unstable) manifold of qi
n if Si is 1-step contracting (expanding). And since f is a Kupka-Smale

diffwomorphism, fπ(pn)|Γn is also a Kupka-Smale diffeomorphism and just has finite sinks and sources

(respect fπ(pn)|Γn).

Lemma 5.12. If Γn

⋂
Γm �= φ, then Γn

⋂
Γm is a connected central curve, and Γn

⋃
Γm is a central

segment.

Proof : We need prove some lemmas at first.
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Lemma 5.13. let x ∈ Γn

⋂
Γm and x is not a periodic point, x1 ∈ Γn is the nearest periodic point at

the left of x and x2 ∈ Γn is the nearest periodic point at the right of x. Denote In ⊂ Γn the segment

connecting x1 and x2, then In ⊂ Γm.

Proof : By the assumption, fπ(pn) has no any other fixed point in In, so for x1 and x2, one of

them is sink for fπ(pn)|Γn and another is source for fπ(pn)|Γn . We suppose x1 is the source, then

lim
i→∞

f iπ(pn)(x) −→ x2 and lim
i→∞

f−iπ(pn)(x) −→ x1. Since Γm is a periodic central segment with pe-

riod π(pm) and x ∈ Γm, we have f iπ(pn)π(pm)(x) ∈ Γm for all i ∈ Z, so x2 = lim
i→∞

f iπ(pn)π(pm)(x) ∈ Γm

and x1 = lim
i→∞

f−iπ(pn)π(pm)(x) ∈ Γm.

Now denote Im the central segment in Γm connecting x1 and x2.

We claim that In = Im.

Proof of the claim: If it’s not true, there exists y ∈ Int(In), z ∈ Wuu
δ1,1

(y)
⋂

Im and z �= y.

For any ε > 0, consider a = f iπ(pn)π(pm)(y) where i is very big, then a ∈ In and it’s near x2 very

much. Let b ∈ Wuu
δ1,1

(a)
⋂

Im, recall that In and Im are tangent at Ẽc
1(x2), when i is big enough, there

exists a curve l in Wuu
δ1,1

(a) connecting a and b with length(l) < ε.

Wuu
δ1,1

(x1)Wuu
δ1,1

(y) Wuu
δ1,1

(a) Wuu
δ1,1

(x2)

x1

y a x2

z
b

In

Im

x

Now it’s easy to know f−iπ(pn)π(pm)(b) ∈ Wuu
δ1,1

(y)
⋂

Γm. By P4 of lemma 5.3, #{Wuu
δ1,1

(y)
⋂

Γm} = 1,

so f−iπ(pn)π(pm)(b) = z, then f−iπ(pn)π(pm)(l) is a curve connecting y and z, by P3 of lemma 5.3, we’ll

have length(f−iπ(pn)π(pm)(l)) < ε · λiπ(pn)π(pm).

Since ε can be chosen arbitrarily small, we get y = z, that’s a contradiction. �

By the claim, we finish the proof of lemma 5.13. �

We still need the following result.

Lemma 5.14. Let x ∈ Γn

⋂
Γm and x be a fixed point of fπ(pn)|Γn and fπ(pm)|Γm , suppose Γn and Γm

both have points on the right of x. Let xn ∈ Γn be the nearest fixed point of fπ(pn)|Γn on the right of x and

xm ∈ Γm be the nearest fixed point of fπ(pm)|Γm on the right of x. Denote In ⊂ Γn the central segment

in Γn connecting x and xn, Im ⊂ Γm the central segment in Γm connecting x and xm, then In = Im.

Proof : At first, we claim that either Wuu
δ1,1

(xn)
⋂

Im �= φ or Wuu
δ1,1

(xm)
⋂

In �= φ.
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Proof of the claim: Suppose Wuu
δ1,1

(xn)
⋂

Im �= φ, we know that xm is on the left of Wuu
δ1,1

(xn), recall

that xm is on the right of x, so by P9 of lemma 5.3, Wuu
δ1,1

(xm)
⋂

In �= φ. �

Now we suppose Wuu
δ1,1

(xn)
⋂

Im = y �= φ, then y ∈ Im \ {x}, it’s easy to know f−iπ(pn)π(pm)(y) ∈
Wuu

δ1,1
(xn)

⋂
Im for i ≥ 1, so f−iπ(pn)π(pm)(y) = y. But lim

i→∞
f−iπ(pn)π(pm)(y) −→ xn, so xn = y. It means

that xn ∈ Im \ {x}, so xn = xm. By the same argument in lemma 5.13, we can prove In = Im. �

Now let’s continue the proof of lemma 5.12.

Let Γ = Γn

⋂
Γm, x ∈ Γ be the left extreme point of Γ, then by lemma 5.13, x should be a periodic

point and on the left of x, there doesn’t contain points of at least one of the segment Γn or Γm. Let

y ∈ Γ be the right extreme point of Γ, then on the right of y, there doesn’t contain points of at least one

of the segments Γn or Γm.

When x = y, Γn and Γm are on different side of x, Γn

⋃
Γm is obviously a central segment.

When x �= y, let I be the maximal central curve in Γ containing x, let z be the right extreme point

in I, by lemma 5.13, z should be a periodic point. If z �= y, y is on the right of z and y ∈ Γn

⋂
Γm,

so by lemma 5.14, I will contain a central segment on the right of z, that’s a contradiction with the

maximalicity of I, so z = y. It means that I = Γn

⋂
Γm is an interval, and x, y are its extreme points

on the left and right, and Γn and Γm can not both have points on the left of x, they can not both have

points on the right of y also, it’s easy to see now that Γn

⋃
Γm is a central curve. �

Now we divide the proof of lemma 5.1 to three cases depending on the contracting or expanding prop-

erties of the two central models.

Case A: Two central models have 1-step expanding properties.

In this case, for any γn, we have f−i(γn) ∈ U1 for i ≥ 1, it means γ ⊂ Λ+
1 , and any x ∈ γn will

have uniform size of unstable manifold Wuu
δ1,1

(x). Let Wu
δ1,1/2(γn) =

⋃
x∈γn

Wuu
δ1,1/2(x), by the property of

normally hyperbolic submanifold, Wu
δ1,1/2(γn) is a submanifold (dim = d) with boundary, it’s easy to

know that Wu
δ1,1/2(γn) has uniform size, that means there exists an ε > 0 such that Bε(pn) ⊂ Wu

δ1,1/2(γn)

for all n ≥ 1. Suppose lim
n→∞ pn = p ∈ Λ, then when n is big enough, p ∈ Bε(pn) ⊂ Wu

δ1,1/2(γn), so

lim
i→∞

f−iπ(pn)(pn) −→ some periodic point z ∈ Γn, it means z ∈ Λ. But Λ is a non-trivial minimal set of

f , that’s a contradiction. �

Case B: Left central model is 1-step contracting and the right central model is 1-step expanding.

Let’s consider γ+
n , with the same argument in case A, it has uniform size of unstable manifold

Wu
δ1,1/2(γ

+
n ) =

⋃
x∈γ+

n

Wuu
δ1,1/2(x) ( it’s because length(γ+

n ) > length(h+
n ) > δ), so there exists an ε > 0 such

that V ol(Wu
δ1,1/2(γ

+
n )) > ε.

Now we claim that for any sequence {ni}∞i=1, there exists i0 and a sequence i0 < i1 < i2 < · · · such

that for any j > 0, Wu
δ1,1/2(γ

+
nij

)
⋂

Wu
δ1,1/2(γ

+
ni0

) �= φ.
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Proof of the claim: Suppose that the claim is not true, then we can find a subsequence {nij}∞j=1 such

that Wu
δ1,1/2(γ

+
nij0

)
⋂

Wu
δ1,1/2(γ

+
nij

) = φ for j0 ∈ N and j > j0, it’s a contradiction with V ol(Wu
δ1,1/2(γ

+
ni

)) >

ε, since we’ll have V ol(M) >
∑
j

V ol(Wu
δ1,1/2(γ

+
nij

)) = ∞. �

By the above claim, we can find a subsequence {ni}∞i=1 such that for any i0 ∈ N+, we can get

Wu
δ1,1/2(γ

+
ni

)
⋂

Wu
δ1,1/2(γ

+
ni0

) �= φ for i ≥ i0. Since f is a Kupka-Smale diffeomorphism, on Γni it just has

finite periodic points. So when we fix i0, we can let i big enough such that pni /∈ γni0
. It means that

we can choose a subsequence {(Γni , Γmi)}∞i=0 such that pmi /∈ Γni , Wu
δ1,1/2(γ

+
ni

)
⋂

Wu
δ1,1/2(γ

+
mi

) �= φ and

lim
i→∞

(pni) = lim
i→∞

(pmi) = x0 for some x0 ∈ Λ.

Since Wu
δ1,1/2(γ

+
ni

)
⋂

Wu
δ1,1/2(γ

+
mi

) �= φ, suppose yi ∈ Wu
δ1,1/2(γ

+
ni

)
⋂

Wu
δ1,1/2(γ

+
mi

), then

lim
j→∞

f−jπ(pni
)π(pmi

)(yi) −→ Γ+
ni

and lim
j→∞

f−jπ(pni
)π(pmi

)(yi) −→ Γ+
mi

,

so Γ+
ni

⋂
Γ+

mi
�= φ, by lemma 5.12, Γni

⋃
Γmi is a central segment.

For simplicity, we suppose pmi is on the right of pni for all i ∈ N, the proof of the other case is similar.

Since pmi /∈ Γni and Γi = Γni

⋃
Γmi is a central curve. pmi is on the right of q+

ni
also. Recall that q+

ni
is

a source for fπ(pni
)|Γni

, and h+
ni

belongs to its basin, so h+
ni

⋂
Wuu

δ1,1/2(pmi) = φ.

Remark 5.15. : We don’t know h+
ni

⊂ Γmi here.

We know that h+
ni

is a central curve on the right of q+
ni

with length bigger than δ, by property

P6 of lemma 5.3, there exists a δ∗ such that d(q+
ni

, pmi) > δ∗.( Since if d(q+
ni

, pmi) < δ∗, we have

l+δ (q+
ni

)
⋂

Wuu
δ1,1/2(pn) �= φ where l+δ (q+

ni
) is any central curve at the right of q+

ni
with length δ and q+

ni
is

the left extreme point of it, with the fact that pmi is on the right of q+
ni

, we’ll have h+
n

⋂
Wuu

δ1,1/2(pmi) �= φ,

that’s a contradiction because h+
ni

⊂ Wu(q+
ni

)). So especially, in the central segment Γi, the distance

between pni and pmi is bigger than δ∗. By property P7 of lemma 5.3, there exists δ∗∗ > 0 such that

d(pni , pmi) > δ∗∗, it’s a contradiction with lim
i→∞

(pni) = lim
i→∞

(pmi) = x0 ∈ Λ. �

Case C: The two central models have 1-step contracting properties.

In this case, replace by a subsequence, we can suppose for {Γn}∞n=1, we have pn /∈ ⋃
i<n

Γi.

Lemma 5.16. There exists n0 big enough such that for any n1, n2 > n0, n1 �= n2, we always have

Wu
δ1,1/2(Γn1)

⋂
Wu

δ1,1/2(Γn2) = φ.

Proof Suppose the lemma is not true, then we can choose n1 and n2 arbitrarily big and satisfying

Wu
δ1,1/2(Γn1)

⋂
Wu

δ1,1/2(Γn2) �= φ, then it’s easy to know Γn1

⋂
Γn2 �= φ and Γn1

⋃
Γn2 is a central curve.

We can suppose n2 > n1, then by the assumption of {Γn}∞n=1, we have pn2 /∈ Γn1 .

We just suppose pn2 is on the right of pn1 , since Γ = Γn1

⋃
Γn2 is a central curve and pn2 /∈ Γn1 , we

can know pn2 is on the right of q+
n1

also, and q+
n1

∈ Γn2 .

We know that there exists a δ > 0 such that length(h+(−)
n ) > δ for all n ≥ 1. And for such δ, by

proposition P6 of lemma 5.3, there exists 0 < δ∗ � δ such that for any x, y ∈ Λ1, if d(x, y) < δ∗, we have

#{Wuu
δ1,1/2(x)

⋂
lcδ(y)} = 1 where lcδ(y) is a central curve with center y and on the two sides of y both

have length δ.
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Suppose x ∈ Γm is the nearest periodic point on the right side of q+
n1

, and let I ⊂ Γm the central

segment in Γm connecting q+
n1

and x.

Now we claim that length(I) > δ∗.

Proof of the claim: If length(I) ≤ δ∗, then d(q+
n1

, x) ≤ δ∗ also. By the facts that x is on the right of

q+
ni

and h+
n1

is a central curve with length bigger than δ, we have h+
n1

⋂
Wuu

δ1,1/2(x) �= φ. Then for any

y ∈ Int(I), Wuu
δ1,1/2(y)

⋂
h+

n1
�= φ.

It’s easy to know I � h+
n1

since h+
n1

contains no periodic point, so there exists z ∈ h+
n1

such that

Wuu
δ1,1/2(z)

⋂
Int(I) = y �= z.

Wuu
δ1,1/2(q

+
n1

) Wuu
δ1,1/2(z) Wuu

δ1,1/2(x)

q+
n1

zi
z

h+
n1

ai y x

Because the two central models are 1-step contracting, q+
n1

is a sink for fπ(pn1)|Γn1
, then it’s also a sink

for fπ(pn1)π(pn2)|Γ where Γ = Γn1

⋃
Γn2 . We can choose i big enough, such that zi = f iπ(pn1)π(pn2)(z)

near q+
n1

very much, let ai = Wuu
δ1,1/2(zi)

⋂
I. Since h+

n1
and I are tangent at q+

n1
on Ẽc

1(q
+
n1

), for any

ε > 0, when i big enough, there exists a curve l ⊂ Wuu
δ1,1/2(zi) connecting ai and zi and length(l) < ε.

Since f−iπ(pn1)π(pn2)(ai) ∈ Wuu
δ1,1/2(z)

⋂
I, that means f−iπ(pn1)π(pn2)(ai) = y and f−iπ(pn1)π(pn2)(l) is a

curve connecting z and y. By property P3 of lemma 5.3, length(f−iπ(pn1)π(pn2)(l)) < ελi. Since i can be

chosen arbitrarily big, we can get y = z, that’s a contradiction. �

Since length(I) > δ∗, the segment in Γ connecting pn1 and pn2 will have length bigger than δ∗

also, by property P7 of lemma 5.3, there exists δ∗∗ > 0 such that d(pn1 , pn2) > δ∗∗. But recall that

lim
n→∞ pn −→ x0 ∈ Λ and n1, n2 can be chosen arbitrarily big, we can get d(pn1 , pn2) < δ∗∗, that’s a

contradiction. �

With lemma 5.16, we can chosen {Γn}∞n=1 such that if n �= m, Wu
δ1,1/2(Γn)

⋂
Wu

δ1,1/2(Γn) = φ. Then

by property P11 of lemma 5.3, lim
n→∞ length(Γn) = 0.

Choose n0 big enough such that for m ≥ n0, d(pm, pn0) < δ∗/4 and length(Γm) < δ∗/4, we can

suppose pm is on the right of pn0 , then by Wu
δ1,1/2(Γn)

⋂
Wu

δ1,1/2(Γn) = φ, we know that pm is on the

right of q+
n0

and q−m is on the right of q+
n0

also.

Since d(q+
n0

, q−m) ≤ d(q+
n0

, pn0) + d(q−m, pm) + d(pn0 , pm) < length(Γn0) + δ∗/4 + length(Γm) < δ∗, by

Property P6 of lemma 5.3 and length(h+
n0

) > δ, length(h−
m) > δ, we can get h+

n0
� Wuu

δ1,1/2(q
−
m) �= φ and

h+
m � Wuu

δ1,1/2(q
+
n0

) �= φ. Recall that h+
n0

⊂ W s(q+
n0

) and h−
m ⊂ W s(q−m), we can know q+

n0
and q−m are in

the same homoclinic class.

When m −→ ∞, by length(Γm) −→ 0 and lim
m→∞ pm −→ x0 ∈ Λ, we have q−m −→ x0 also, so

x ∈ H(q+
n0

, f) and then Λ ⊂ H(q+
n0

, f).
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Now we’ll prove H(q+
n0

, f) is an index 0 fundamental limit.

Recall that Orb(q+
n0

) ⊂ U and U can be chosen arbitrarily small, so in fact we’ve proved that there

exists a family of periodic points qn with index 1 such that lim
n→∞Orb(qn) = Λ and Λ ⊂ H(q1, f) =

H(q2, f) = · · · .
By the same argument with case C in the proof of lemma 4.3, we can prove H(q1, f) is an index 0

fundamental limit. �

Now let’s keep on proving the other case of lemma 5.1.

Proof of lemma 5.1(Ec
1(Λ) has no any f -orientation):

In this case, we just have one central model, but locally we still have orientation for Ẽc
1(Λ1), and the

two sides have the same dynamical property: they are both 1-step expanding or they are both 1-step

contracting. All the other argument is the same with the case where Ec
1(Λ) has an f -orientation. �
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