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1 Summary: Goals and Results.

In this work we study one dimensional mechanical system of infinitely many
point particles interacting through elastic collisions with tagged particle, sub-
ject to a constant force. All point particles are field neutral and the mass of
the tagged particle and field neutral particles are equal (the last condition
can be removed, and we can consider the case of ”heavy” tagged particle). A
special feature of our model is that all neutral particles are equipped with a
lifetime, which starts to discount after the first collision with the tagged par-
ticle. When lifetime expires, the point particle is removed from the system,
while the tagged particle has infinite lifetime and remains in the system for-
ever. The principal question is to determine long time behavior of the tagged
particle. Our main goal in this work is to generalize results (and extend tech-
niques) of [12] to as broad as possible class of distributions of lifetimes of the
neutral particles in mechanical models of the Brownian motion. It is believed
that in the ’original model’, i.e. no lifetimes, during the evolution each neu-
tral particle interacts with the tagged particle only finitely many times, and
then ’flies away’. However, the tail of the distribution of the last collision
is expected to decay polynomially, thus producing long term memory in the
system. Our motivation comes from the fact, that the understanding of be-
havior of models with more general class of lifetime distribution might serve
as another step forward in developing new (stochastic) tools which permit to
analyze this long standing problem.

Applying an approach, which relies on imploring line covering techniques by
random intervals, proposed in our collaboration with V. Beffara, V. Sidoravi-
cius and M.E. Vares, we succeed to show that the Law of Large Numbers
and the Invariance Principle for the rescaled position of the tracer particle
holds as long as the lifetimes of the neutral particles are integrable random
variables. Moreover, we are able to show that for the class of ”physically
relevant” distributions of lifetimes, such as inverse Gaussian (nonintegrable
case!), the mechanical system at low density of neutral particles still under-
goes periods of clustering (against the predictions in physics literature), and,
in fact, is Bernoulli system (see for the detailed description of the results the
next session).

The key element of the proof is to show that the mechanical systems under
our assumptions undergo so called ’clustering process’, i.e. has infinitely
many regeneration instants, when the system looses completely influence of
its ’past’ on its ’future’, and then to establish the tail asymptotic for the
clustering event to occur. The control on tail decay determines the decay of
correlations for the system. This is the hardest part of the approach. Once
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this is achieved, there is a number of available ”standard techniques” which
one applies in this case in a routine way to obtain the Law of Large Numbers
and the Invariance Principle. It is important to notice that in this work
we prove the LLN and the CLT only for the discrete dynamics, obtained
by observing our system at the times of the collisions of the tagged particle
with freshly coming neutral particles (i.e. at the moment of the first collision
between the tagged particle and each neutral particle).

Future perspective: we believe that the idea to implore interval covering
techniques is potentially very robust in the force driven systems, where one
expects ballistic behaviour of a tracer particle at large time scales. Currently
we are working on the extensions of these methods to the systems with neutral
particles moving with Maxwellian velocities.
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2 Introduction.

In this work we are concerned with the asymptotic behaviour of one dimen-
sional mechanical systems, in particular with the motion of a tracer particle
(t.p.) subject to a constant electric field in a random environment of neutral
gas particles (n.p.s). This is one of fundamental questions in non-equilibrium
statistical mechanics.
Our main model of interest, we call it Model 1, from ”mechanical point of
view” is exactly the same as in [12], and informally can be described as
follows: we consider semi-infinite segment [0, +∞), with neutral particles
initially located at positions xi > 0, and the charged tracer particle is lo-
cated at the origin. All particles including the t.p. have equal mass one.
The constant force f > 0 acts only on the charged particle, while the neutral
particles do not feel the force. At the moment of collision the tracer particle
exchanges velocities with the neutral particle elastically. Neutral particles
are initially standing, and interdistances between any two neighbouring par-
ticles are independent identically distributed exponential random variables
with the parameter λ. However differently from [12], where the lifetimes of
particles were taken as i.i.d. exponential random variables with parameter
1, in the present work we will assume that lifetimes χi of neutral particles
are i.i.d. random variables which are integrable, Eχ1 < +∞ .
To obtain control on Model 1 we will consider auxiliary Model 2 : a one-
dimensional particle system in R+ = [0,∞] consisting of the t.p. interacting
through elastic collisions with infinitely many point-like particles of an ideal
gas and, as before, we suppose that all particles including the t.p. have equal
mass one. Randomness enters through a measure under which the t.p. ini-
tially is at rest, located at the origin, and which governs ”injection” of n.p.s
in to the system in the following way: the n.p.s collide with the t.p. for the
first time at Poisson times, i.e. the times between consecutive first (fresh)
collisions of the t.p. with the n.p.s are i.i.d. exponential random variables
with intensity % > 0. In other words, differently from Model 1, where neutral
particles are initially assumed to be standing at exponential interdistances,
in Model 2 we will assume that the n.p.s arrive (are injected in to the system)
at Poisson times at the position of the t.p. with zero incoming velocity. Then
they remain in the system. Between collisions, a constant force f > 0 acts
only on the t.p. while the n.p.s, as in Model 1, do not feel the force and do
not interact among each other either. At collisions, the t.p. exchanges veloc-
ities with the n.p.s elastically. For convenience neutral particles are thought
as undistinguishable pulses which only exchange velocities at collisions with
each other and are re-labeled afterwards, i.e. we may think they cross each
other. Multiple arrivals at the same first collision time with equal velocities
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are excluded by our construction. In this way, the proof of the fact that the
dynamics of the system seen from the position of the t.p. is well-defined and
governed by a uniform motion plus elastic collisions which obey the rules of
classical mechanics follows the same line as the proof of the main theorem
in [13]. In the case of Model 1 the existence of the dynamics is proved in [13].

In general situation (no lifetimes) the system is expected to be asymptot-
ically free, it is expected that the velocity of the t.p. does not approach to
equilibrium with an exponential decay in general. The reason for this be-
haviour lies in the appearance of multiple recollisions between the t.p. and
the same neutral particles of the environment. When the t.p. accelerates, it
can collide with a n.p. many times which influences the friction force and
affects the limiting velocity of the t.p. In particular, a n.p. which has col-
lided earlier with the t.p., can recollide after an arbitrarily large time. This
potentially can create a long tail memory which is responsible for a power law
behaviour of correlations. So far, there is unfortunately no satisfactory way
of treating fully Newtonian systems without any stochastic dynamics. One
alternative approach proposed by [12] is the introduction of lifetimes for the
n.p.s. The notion of lifetimes had already appeared indirectly in the models of
[8], [9] or [5] for instance, where geometric restrictions and conditions on the
velocity of the n.p.s lead (explicitly or not) to uniformly bounded lifetimes.
Explicit exponential lifetimes of the n.p.s in this context were introduced for
the first time in [12]. In this work the authors were concerned with relaxing
the condition of lower uniform boundedness of the interdistances in [4]. The
model of [12] together with ours is some kind of asymptotic version of the
virtually one-dimensional model of [5], the so-called modified Rayleigh gas
with only horizontaly moving stick of height 1 subject to a constant force
and collisions with n.p.s. In [5] the second dimension is only available to the
n.p.s. Indeed, the horizontal initial velocity component v1 and the vertical
initial velocity component v2 of the n.p.s in [5] determine their ’lifetimes’
χ = 1

v2
, due to the assumption that the vertical velocity components of the

stick and the n.p.s do not change at collision times. In other words, χ is the
time each of the n.p. remains inside the strip available to the stick, and once
a n.p. leaves the strip, it can be considered ’extinct’ since it has become
out of reach for the moving stick. In this way, our model can be interpreted
as having zero horizontal velocity component and stick length going to zero,
with the difference that our model is initially a Poisson system in time and
not in space, and secondly the n.p.s in [5] enter the strip available to the stick
in a Poissonian manner and therefore do not necessarily collide for the first
time at exponential interdistances with the stick as well. On the other hand,
allowing both v1 and v2 to be normal distributed at the same time, χ becomes
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inverse Gaussian (one-sided 1
2
-stable), a heavy tailed distribution, known to

be the distribution of the first time a Brownian excursion hits some given
level. This case is excluded in [5] where a uniform lower bound of the verti-
cal velocity distribution is imposed to exclude ’long living’ n.p.s and control
recollisions. In view of this motivation, we suppose therefore that the t.p.
has an infinite lifetime and the lifetimes of the n.p.s are i.i.d. with absolutely
continuous distribution, independent of the first collision (arriving) times at
which they start to be discounted.

In [4] and [11], the mechanical motion is ’delayed’ with respect to a Marko-
vian evolution where n.p.s are annihilated immediately after collisions (and
thus neglecting recollisions at all), i.e. tn(ω) ≥ t̃n(ω) where t̃n(ω) (resp.
tn(ω)) is the hitting time of the t.p. of the position of the n-th n.p. at first
collision in the Markovian (resp. interaction) dynamics in some configuration
ω. In our case, it follows directly from the definition of the model that the
Markovian velocity is an upper bound for the velocity of the t.p. in the true
dynamics for any time, since here tn(ω) = tn(ω̃) for the suitable Markovian
configuration ω̃, since in contrast to the above models, fresh n.p.s can arrive
during the interaction of the t.p. with a block of already moving particles
and the t.p. does not have to ’go through’ moving n.p.s in front of it first to
reach the next fresh particle. In particular, the times when the n.p.s become
extinct coincide in these two dynamics for our model. Observe also that in
[4] and [11], beeing specified initially in space, intercollision times of the t.p.
with standing n.p.s in the Markovian evolution are proportional to the square
root of the interdistances, making them Weibull distributed, in contrast to
our case, where the intercollision times in both Markovian and true dynam-
ics coincide and are exponential. By symmetry between these models, in our
case the interdistances in the Markovian evolution are Weibull with possibly
different parameters. Still, since our model is truly one-dimensional, the t.p.
cannot ’overtake’ n.p.s during the evolution.

As all other models mentioned above, either directly or indirectly, our analy-
sis relies essentially on the somewhat artificial notion of the so-called cluster
times, i.e. first collision times at which the t.p. will not interact in the fu-
ture with any n.p. it had collided with before including, the n.p. it collides
with at this time. These times will then determine the mixing properties
of the system. To construct a specific subset of cluster times, due to lack
of mechanical arguments, we recurr first to the finding of conditions for the
lifetime distribution which guarantee the existence of times of total extinc-
tion, i.e. stopping times with respect to the dynamics at which all previously
moving n.p.s become extinct. The only memory of the past is then contained
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in the own velocity of the t.p. Upon this, since all particles have equal mass,
cluster times are constructed by a simple mechanical argument and the gen-
eral cluster times are then stochastically dominated by these special ones.
This interpretation is indeed very close to the classical concepts of random
covering problems in some different context and which allows us to interpret
the set of moments of total extinction of the n.p.s as the so-called ’uncov-
ered set’ which is the closed image of an associated subordinator, i.e. an
increasing Lévy process which represents here the continuous time analogue
of a renewal process. Cluster times are then stochastically bounded by the
characteristics of this process. One natural way of generalization is to allow
other distributions for the interarrival times of the n.p.s. One might think
that if the interarrival time distribution were substituted by some heavier
tailed distribution like Weibull, the most natural one in a Markovian (anni-
hilation) version of the dynamics in the original one-dimensional model in
[11] or [4] as already noted above, one may expect that such heavy-tailed in-
terarrival distributions (still with finite mean) favour the non-covering of R+

more than the light-tailed exponent ial distribution, that is the ’heaviness’
of lifetime distributions which caused covering in the Poisson case might be
weakend in the non-Poisson arrival case.

2.1 The mechanical models.

For convenience, we begin first with the formal description of Model 2. The
state space of this system seen from the position of the t.p. as described in
the introduction is given by

Ω = R+ ×X = {ω = (V, x) : V ∈ R+, x ∈ X}

where for any bounded A ∈ B(R+),

X = {x ⊆M× (0, +∞) : card(x ∩ (A× R+)× (0, +∞)) < ∞ and

card(x ∩ (q, v)× (0, +∞)) ≤ 1}

is the (marked) environment of the n.p.s andM = R+×R+ is the one-particle
state space consisting of the (relative w.r.t. the position of t.p.) position q
and (absolute) velocity v of one n.p. Here V stands for the velocity of the
t.p. (the first particle) and x is the point process of all locally finite subsets
(in space) of M, marked by the lifetimes, whose projection x : Ω → X is
given by

x(ω) = xm(ω)
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where xm are the moving n.p.s in the configuartion ω. As for the main
quantities, we write (qn(t))n∈N for the positions of the n.p.s relative to the
t.p. at time t, (vn(t))n∈N for the absolute velocities of the n.p.s at time t,
(σn)n∈N denote the interarrival times of the n.p.s and (χn)n∈N the lifetimes of
the n.p.s, with the convention that the t.p. has an infinite lifetime, qn ≤ qn+1

and if qn = qn+1, then vn < vn+1 and χn < χn+1. q0(t) denotes the position
of the t.p. at time t. The topology of X is the one for which a fundamental
system of neighbourhoods of a point x ∈ X is given by

GA,B,C = {x′ ∈ X : card(x ∩ (A×B)× C) = card(x′ ∩ (A×B)× C)}
with A, B and C open sets in R+ resp. (0, +∞) such that A is bounded
with x ∩ (∂A×B)×C = ∅ where ∂A is the boundary of a set A. With this
topology, X is a Polish space and we denote by B(X) its Borel σ-algebra
resp. B(Ω) = B(R+)⊗B(X) the Borel σ-algebra of Ω. Initially, the t.p. is at
rest and we endow (Ω,B(Ω)) with the probability measure P , concentrated
on the space of initial configurations

Ω0 = {ω ∈ Ω : V (ω) = 0, x(ω) = ∅},
under which the interarrival times (σn)n∈N of the fresh n.p.s are i.i.d. expo-
nential distributed with intensity % > 0 and the lifetimes (χn)n∈N are i.i.d.
and independent of (σn)n∈N, with common absolute continuous distribution
function which we denote by Fχ1

(t) =
∫ t

0
fχ1

(y)dy for some density fχ1
.

When we speak of arrivals of n.p.s, we mean the times at which n.p.s appear
(are injected) at the position of the t.p. with incoming velocity zero. The
lifetime of the n-th n.p. starts to be discounted at the n-th arrival time
tn =

∑n
i=1 σi with t0 = 0, whereas the t.p. has an infinite lifetime. Thus, the

initial configuration can be described by the point process (tn, χn)n∈N on the
upper right plane H = R+ × (0,∞) with intensity measure n : B(H) → R+

given by

n(B) = %

∫

B

Fχ1
(dy)dt = %

∫

B

fχ1
(y)dydt

for B ∈ B(H). One then associates to each n.p. its lifetime interval, i.e.
the interval In = (tn, tn + χn) for the n-th. n.p. The dynamics, which we
will denote by (T t)t∈R+ , is then such that the t.p. is uniformly accelerated
by the force f > 0 between consecutive collisions and at these collisions, it
exchanges its velocity elastically with the n.p.s according to the mechanical
rule

∆V = −∆v

8



where ∆V = V + − V − and ∆v = v+ − v− are the velocity jumps and V +

(V −) and v+ (v−) are the outgoing (incoming) velocities of the t.p. and
the n.p.s. The dynamics is right-continuous in the sense that at collision
times the velocities are the outgoing ones, i.e. V + = V and v+ = v. In this
way, the dynamics is P -a.s. well-defined on Ω (the same argument as in [4],
Proposition A.1, works here as well). All statements about the dynamics
will be understood such that they hold for those ω for which the dynamics
is well-defined. If convenient, we may write as well for ω ∈ Ω and t > 0,

ω(t) = T tω = (Vt(ω), x(ω(t))) = (Vt(ω), xm(ω(t)) ∪ x0(ω(t)))

where Vt(ω) = V (T tω) = V (ω(t)) is the velocity of the t.p. at time t ≥ 0
given by

Vt(ω) = ft +
∑

s∈J(V )∩[0,t]

∆Vs(ω)

with V0 = Vtn = 0 and J(V ) = {t : ∆Vt < 0} is the set of jump times of the
process V = (Vt)t∈R+ . The position Qt(ω) = Q(T tω) = Q(ω(t)) of the t.p.
at time t ≥ 0 for ω ∈ Ω is then

Qt(ω) =

∫ t

0

Vs(ω)ds

with Q0 = 0. Note also that for t ∈ J(V ), the jumps are ∆Vt = Vt − Vt− =
−ft with Vt− = V −

t . The dynamics at the particular moments of arrivals of
the n.p.s is called the discrete dynamics and is (well-)defined by

ω(n) = T nω = T tnω = (0, xm(ω(n)) ∪ x0(ω(n)))

for any n ≥ 1 on the associated configuration space

Ω1 = {ω ∈ Ω : V (ω) = 0}.

Finally, the evolution of the initial measure under the discrete dynamics
(T n)n∈N is denoted by

Pn(C) = P (T−nC)

for C ∈ B(Ω1). As for Model 1 (cf. [11]), we make the suitable modifications
and recall the description in the introduction and the notation for Model 2.
The topology is analogous to the one of Model 2 with the difference that a
configuration consists now of a sequence of positions, velocities and (residual)
lifetimes instead of arrival times, velocities and (residual) lifetimes. We will
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maintain the nomenclatura of Model 2 and denote all related quantities of the
dynamics of Model 1 by the same letters, e.g. Vt = Vt(ω) for ω ∈ Ω, making
it clear at confusing places, about which model we are talking. Formally,
all particles are initially at rest, i.e. V = vn = 0 for any n ≥ 1 and the
initial measure P on (Ω,B(Ω)) is such that the sequence of interparticle
distances ξn = qn − qn−1, n ≥ 1, is i.i.d. exponential with density λ > 0.
The lifetimes χn, n ≥ 1, begin to be discounted at the times of first collisions
tn, n ≥ 1, are i.i.d. with distribution function Fχ1 = Fχ1 and independent of
the whole sequence (ξn)n∈N. The initial configuration can then be described
by the point process (qn, χn)n∈N on H = R+ × (0,∞) with intensity measure
n : B(H) → R+ given by

n(A) = λ

∫

A

Fχ1
(dy)dq

for A ∈ B(H). Analogous to Model 2, the dynamics (T t)t∈R+ is such that
the t.p. is uniformly accelerated by the force f > 0 between consecutive
collisions and at these collisions, it exchanges its velocity elastically with the
n.p.s according to ∆V = −∆v. By the same conventions as in Model 2, the
dynamics is well-defined by [11], Remark 2, since the proof is independent
of the lifetime (distribution). At difference to Model 2, here we have a ini-
tial Poissonian system in space and the first hitting times tn depend heavily
on possible recollisions, whereas in Model 2, the freshly arriving n.p.s ’rain
down’ on the t.p. at exponential interarrival times independent of recollisions.

In the sequel, we write generically FZ(z) = P (Z ≤ z) resp. FZ(z) = P (Z ≤
z) for the distribution function under the initial measure P resp. P for some
random element Z on Ω or Ω and F̄Z = 1 − FZ resp. F̄Z = 1 − FZ for its
tail. For a stochastic process we often also write the common abbreviation
Z = (Zt)t∈R+ .

We may state now our main results which concerns Model 1 (initially standing
n.p.s). Let µ(n) denotes the measure on the phase space as seen from the t.p.
at the moment of the first collision with the n-th n.p.

Theorem (1.1) Under assumptions that the lifetimes {χj}j of n.p.s are i.i.d.
integrable random variables, Eχ1 < +∞, and initial density of the particles
is small enough, there exists a probability measure µ on X so that

µ(n) → µ weakly, as n → +∞.

The proof of the above theorem is based on the construction of so-called
cluster index, and using this construction we in fact will get the following:
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Corollary (1.2) Under assumptions of the Theorem (1.1) the following
holds:
I) Let Mn

m denote the σ-field generated by the variables τi : m ≤ i ≤ n,
where τi is the interarrival time between (i − 1)-th and i-th particle. Then
under assumptions Eχ1 < +∞, and initial density of the particles is small
enough, there exist positive constants a, b such that

sup
A∈Mk

0 , B∈M+∞
k+n

|µ(B|A)− µ(B)| ≤ ce−c′n

for all k, n ≥ 1.
II) there exists a positive constant vd (the drift velocity), so that

q0(t)

t
→ vd, µ0 − a.s.;

III) There exist a positive constant σ such that the process

(q0(ut)− vdut

σ
√

u

)
0≤t≤1

converge in law, on D([0, 1],R), to a standard Brownian motion, as u → +∞.

As we just mentioned above, the proof of the above theorem is based on
the construction of a cluster index. This is the key part of the work, and
is contained in Section 3.5. We will achieve this by doing coupling between
three models, which in some stochastic sense dominate each other. First
we will show that if lifetimes of n.p.s are integrable, then the Markovian
(anihilation) version of Model 2 has infinitely many regeneration times with
any density of the injected n.p.s. This will imply that the same property
holds for the original version of Model 2. Finally, using comparisons and
couplings, we will show that this implies that the Model 1 with small enough
density of particles also posses the same property. Once this is achieved, we
briefly outline consequences and give references to the all necessary steps,
which are at this point rather standard, to achieve the proof of the Theorem
and of the Corollary.

2.2 Annihilation dynamics.

We begin again with Model 2. Due to possible recollisions, without enlarging
the underlying probability space, the velocity process V = (Vt)t∈R+ is a non-
Markovian càdlàg process which increases linearly in time proportional to
the constant field f > 0 between successive collisions and at these collision
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times has negative jumps. A simple auxiliary Markovian dynamics can be
achieved by annihilating the n.p.s immediately at each first collision with the
t.p., which makes the corresponding velocity process Markovian due to the
exclusion of recollisions. At each collision (which is then always a first one)
the environment of the n.p.s is recreated according to the initial measure and
the t.p. is the only moving particle in the system. The state space of this
dynamics is denoted by Ω̃. Since the velocity change in the interval (tn−1, tn)
is only due to the constant field f > 0, the corresponding velocity process,
denoted by Ṽ = (Ṽt)t∈R+ , becomes

Ṽt = f(t− tϑt)

for any t ≥ 0, Ṽ0 = 0, where ϑt =
∑

n∈N 1{tn≤t} is the Poisson process of
the number of freshly arriving n.p.s in the interval [0, t] with mean 1

%
(this

number coincides here with the number of collisions due to the exclusion of
recollisions) and tϑt =

∑ϑt

n=1 σn the time of the last arrival of a n.p. before

time t. We also write (T̃ t)t∈R+ for the corresponding dynamics. It follows

that Ṽ is a strong Markov process with infinitesimal generator

AṼ ϕ(v) = fϕ′(v) + %(ϕ(0)− ϕ(v))

with v ∈ R+ and ϕ : R+ → R+ bounded and continuous, and Ṽ hits the
zero on the set of its jump times J(Ṽ ) = {tn : n ∈ N}. Note also that
limt→∞ ϑt = +∞, and ϑt > n if and only if tn < t. By the renewal theorem
(cf. [6]) the law of the velocity process converges as t →∞ to the stationary
distribution ν̃ given by

ν̃(B) = %E

∫ σ1

0

1B(Ṽs)ds

for B ∈ B(R+), in particular Eν̃Ṽ. = %f
2
Eσ2

1 = f
%
. As for the strong law of

large numbers (SLLN) for the position process Q̃ = (Q̃t)t∈R+ in the annihila-
tion dynamics, it is sufficient to consider moments of first arrivals only, since
tϑt ≤ t < tϑt+1 and Q̃tϑt

≤ Q̃t ≤ Q̃tϑt+1
imply

Q̃tϑt

tϑt+1

≤ Q̃t

t
≤ Q̃tϑt+1

tϑt

.

Since Q̃tϑt
=

∑ϑt

k=1 ξ̃k with ξ̃k =
∫ tk

tk−1
Ṽsds is a sum of i.i.d. random variables

with Eξ̃1 = f
2
Eσ2

1 = f
%2 , the existence of the Markovian drift ṼD = limt→∞

Q̃t

t
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follows at once from the SLLN for the sequence of i.i.d. random variables
(ξ̃n)n∈N and from limt→∞ ϑt

t
= % P -a.s., namely

ṼD = lim
t→∞

ϑt

t
(

∑ϑt

n=1 ξ̃n

ϑt

) =
f

%
P -a.s. (ν̃-a.s.)

with ṼD = ṼD(f) ∈ (0, +∞) for f > 0. Thus in the limit the force can be
interpreted as being balanced by the friction exercited by the environment.
Observe that due to possible recollisions, the velocity in the annihilation
dynamics (T̃ t)t∈R+ is an upper bound for the velocity in the interacting dy-
namics (T t)t∈R+ in the sense that if we consider the original Model 2 dynamics
and its annihilating version, with the same inter-arrival times of n.p.s, then
for any t ≥ 0 one has

Vt ≤ Ṽt.

In particular, lim supt→∞
Qt

t
≤ ṼD P -a.s (ν̃-a.s.) and ξn < ∞ P -a.s. since

ξn ≤ ξ̃n for any n ≥ 1 where as above, ξn =
∫ tn

tn−1
Vsds and ξ̃n =

∫ tn
tn−1

Ṽsds are

the travelled distances of the t.p. in the interacting dynamics (T t)t∈R+ resp.

annihilation dynamics (T̃ t)t∈R+ between successive arrivals of fresh n.p.s.

Remark. As for the SLLN for the displacement of the t.p. in Model 1, one
has

Q̃n

t̃n
=

n−1
∑n

k=1 ξk

n−1
∑n

k=1

√
2ξk

f

and hence similarily for the asymptotic drift

ṼD = lim
t→∞

Q̃t

t
=

Eξ1

Eτ̃1

P -a.s.

As for the comparison with the original Model 1 dynamics, this reads now
for two initial configurations ω and ω̃ such that x0(ω) = x0(ω̃),

Vtn ≤ Ṽt̃n

for any n ≥ 1. For the formal proof of that fact we refer to [14], Proposition
3.3.
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3 Renewal structure of the dynamics.

Coming back to the mechanical model on the probability space (Ω,B(Ω), P ),
we make the following definitions using the same notation as in sections 1.1
and 1.2.

Definition 2.1.

1. A moment t > 0 is called a time of total annihilation (extinction) for

the initial configuration ω ∈ Ω iff ω(t) ∈ Ω̃. In words, at time t > 0,
all n.p.s such that the t.p. had met before time t are annihilated from
the system (extinct, lifetimes of all of them expired) and the remaining
’memory of the past’ is contained only in the velocity of the t.p. at that
time. We denote by D(ω) ⊆ R+ the set of all times of total annihilation
for the configuration ω.

2. An arrival time tk > 0 is called a cluster time (regeneration time) for
the initial configuration ω ∈ Ω iff the t.p. will never collide for any
t > tk with the n.p.s it had collided with for t ≤ tk, including the
freshly arriving n.p. it collides with at tk. If tk is a cluster time for ω,
we call the integer k a cluster index for ω.

3. A cluster time tk is called double cluster time for ω iff tk−1 is as well a
cluster time for ω. The index k is then called double cluster index for
ω.

Remark 2.2. If there is an infinite sequence of cluster indices k1 < k2 < ...
for the configuration ω, then R+ =

⋃
n∈N Jkn where on each of the intervals

Jkn = [tkn , tkn+1) with Jkn ∩ Jkm = ∅ for any n 6= m, the t.p. can interact
only with n.p.s born in such an Jkn and only with them. One then might
say that the dynamics is regenerative or ’splits into independent clusters’
Cn(ω) = {ω(kn + t) : 0 ≤ t ≤ tkn+1}, n ≥ 1, since

P (T knA ∩B) = P (A)P (B)

for any A ∈ B(Ω), B ∈ {T−knA : A ∈ B(Ω)} and n ≥ 1. Note also that
D can be written as D = R+ \

⋃
n∈N In, the so-called uncovered set of R+

(cf. [7],[12]) where In = (tn, tn + χn) are the lifetimes intervals. The zero
is always contained in D if there are no initially moving n.p.s. Denoting
by C the σ-algebra generated by the cluster times (tkn)n∈N, then under the
conditional measure P C = P (.|C), the travelled distances (ξkn+1)n∈N are i.i.d.
Weibull with form parameter 1

2
and scale parameter f

2%2 whose tail is given

14



by

F̄ξk1+1
(ξ) = exp(−%

√
2ξ

f
)

resp. its density takes the form

fξk1+1
(ξ) =

%√
2fξ

exp(−%

√
2ξ

f
)

with variance Γ = 5f2

%4 > 0. This distribution is also known as the Rayleigh

distribution. Furthermore, under P C, the vectors (ξkn+2, ..., ξkn+1)n∈N are in-
dependent and for any m 6= n, the m-vector (ξkm+2, ..., ξkm+1) is independent
of ξkn+1. To construct a specific subset of cluster times of those as defined in
Definition 2.1.2, as already indicated in the introduction, upon a condition
which guarantees that the set D is non-trivial, the existence of cluster times
is then shown by a simple mechanical argument.

3.1 Random covering interpretation.

In the light of the previous subsection, we consider the maximal residual
lifetime (survival) process R = (Rt)t∈R+ starting at R0 = r ≥ 0, i.e. the
process which decreases linearly with slope one between consecutive arrivals
and jumps upward at arrival times if the lifetimes of these n.p.s are larger
than the incoming value of R. The magnitude of the jump is given by the
difference between such lifetimes and the incoming values of R, hence the
absolute value of R at jump times is the lifetime of the arriving n.p. at that
time. If this process becomes zero at some (random) time, all n.p.s which
where alive before this time are extinct (annihilated). Formally, the linear
part of R in tϑt < t < tϑt+1 is given by

Rt = (Rtϑt
− αt)

+ = (Rtϑt
− αt) ∨ 0 = (Rtϑt

− αt)1{Rtϑt
>αt}.

This is decreasing linearly with slope one since α is increasing in (tϑt , tϑt+1).
The jump of R at t = tn for some n ≥ 1 is then

∆Rtn = (χn −Rtn−)+,

in particular

Rtn =

{
χn if χn > Rtn−
Rtn− if χn ≤ Rtn−.

15



Altogether, R can be written as

Rt = (r − t +
ϑt∑

k=1

(χk −Rtk−)+) ∨ 0 (1)

for any t ≥ 0. As usual, Pr refers to distribution of R starting at the point
R0 = r, and we consider the naturally filtered complete probability space
(Ω,FR,FR

t , P ). Since the interarrival times of the n.p.s are i.i.d. exponential
with intensity % > 0, R forms a strong Markov process with inifinitesimal
generator given by

ARϕ(r) = −ϕ′(r) + %E(ϕ(χ1 ∨ r)− ϕ(r))

= %

∫ ∞

r

ϕ′(s)F̄χ1
(s)ds− ϕ′(r),

where F̄χ1
(s) = P (χ1 > s) is the tail of the lifetime distribution and ϕ :

R+ → R+ bounded, continuous with bounded derivatives. The process is
strong Markov since

Rτ+t −Rτ = (

ϑτ+t∑

ϑτ+1

(χk −Rtk−)+ − t) ∨ 0

starts at zero and is independent of FR
τ where τ is a finite FR

t -stopping time
since (ϑτ+t − ϑτ )t∈R+ is a Poisson process independent of FR

τ by the lack of
memory property of the exponential distribution of the interarrival times.
One reads the first equality in the form of the generator directly from the
representation (1), whereas the second equality follows from the calculation

Eϕ(χ1 ∨ r) =

∫ ∞

0

ϕ(s ∨ r)Fχ1
(ds)

= ϕ(r)Fχ1
(r) +

∫ ∞

r

ϕ(s)Fχ1
(ds)

= ϕ(∞)−
∫ ∞

r

ϕ′(s)Fχ1
(s)ds

=

∫ ∞

r

ϕ′(s)F̄χ1
(s)ds + ϕ(r),

using integration by parts in the third equality. Define now the survival
probability and the first time of total extinction as

π(r) = P (Rt > 0 for any t ≥ 0|R0 = r)

H(r) = inf{t > 0 : Rt = 0|R0 = r}
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with π(0) = 0 and π(∞) = 1 resp., and H(∞) = ∞ P -a.s. The crucial
observation is that by the Markov property of R, π is a bounded invariant
function, i.e. Erπ(Rt) = π(r) and hence ARπ(r) = 0 if π is in the domain of
AR (which will indeed follow by the verification argument below). Note that
(π(Rt))t∈R+ is a martingale iff ARπ(r) = 0 by standard argument. Indeed,
both directions follow by Dynkin’s formula since ARπ(r) = 0 on the one
hand, and on the other hand, (

∫ t

0
ARπ(Rs)ds)t∈R+ is a continuous martingale

of finite variation with mean zero, hence it must be zero. Now plugging in
differentiation to get rid of the integral term yields

π′′(r) = −%F̄χ1
(r)π′(r).

Solving this equation and using integration, subject to the initial condition
π(0) = 0, gives the expression for the survival probability

π(r) = β

∫ r

0

exp(−%

∫ s

0

F̄χ1
(u)du)ds

for some constant β ≥ 0. In particular π is continuous and differentiable.
Since 0 ≤ π ≤ 1 and limr→∞ π(r) = π(∞) = 1, if the right hand side above
does not converge, it follows that one must have β = 0 and hence π(r) = 0
resp. H(r) < ∞ P -a.s. for any r > 0. In other words, the zero is a recurrent
state for R. The case R0 = r > 0 corresponds to initially moving n.p.s with
r as the maximum residual lifetime of all these already moving n.p.s at time
zero. On the other hand, if the above integral converges as r → ∞, again
from limr→∞ π(r) = π(∞) = 1 it follows that

β−1 =

∫ ∞

0

exp(−%

∫ s

0

F̄χ1
(u)du)ds < ∞ (2)

and π(r) > 0 for any r > 0. Since π is a positive bounded invariant function,
(Mπ

t∧H(r))t∈R+ is a stopped martingale where we have defined

Mπ
t = π(Rt) = PRt(Rs > 0 for any s ≥ 0)

with Mπ
0 = π(r) > 0 for any r > 0 and 0 < Mπ

t ≤ 1. By optimal stopping,
EMπ

t = EMπ
0 = π > 0 for any t ≥ 0. By continuity, π(∞) = 1 and

the martingale convergence theorem, the limit Mπ
∞ = limt→∞ Mπ

t exists and
equals 1A = Mπ

∞ = 1 P -a.s. for the invariant set A = {Rt > 0 for any t ≥ 0}.
Taking expectation and bounded convergence yields π(r) = E1A = 1 for any
r > 0 which entails limt→∞ Rt = ∞ resp. H(r) = ∞ P -a.s. for any r > 0.

If r = 0, we set M̃π
t = Mπ

t1∨t starting at M̃π
0 = π(χ1) > 0 instead of Mπ

t and
proceed as before. Hence if r = 0, then D = {0} P -a.s. resp. if r > 0, then
D = ∅ P -a.s. in this case.
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3.2 Distribution of the first time of total extinction.

The above martingale method is not adequate to determine the distribution
of the first time of total extinction. But using well-known concepts from
excursion theory, one can show that this equals to the first passage time of
an associated subordinator above some fixed level, and this can be calculated
explicitly in terms of the characteristics of the subordinator. More precisely,
we suppose that R0 = 0 and set for H = H0 for brevity. Define the local
time of R in [0, t] as

τt =

∫ t

0

1{Rs=0}ds

which equals to the amount of time less or equal to t which R spents at
zero. It is constant on time intervals where R is away from zero (excursion
intervals) and increases on time intervals where R hits the zero, hence if
we denote Yt = 1{Rt=0} for short, then Yt = 1 iff τt+s > τt for any s > 0.
From the construction of the strong Markov process R and the fact that the
residual arrival time δt = tϑt+1− t at time t ≥ 0 is again exponential and has
no atom at zero, one sees that P0(H = 0) = P (δ. > 0) > 0 which entails by
Blumenthal’s zero-one law that P0(H = 0) = 1, i.e. the process R will hit the
zero a.s. infinitely often during any initial time interval and thus the zero is
regular for itself. It then follows from [3], Chap. V, that the right-continuous
inverse of the local time of R denoted by

St = τ−1
t = inf{s ≥ 0 : τs > t}

is a subordinator, i.e. an increasing Lévy process starting at zero whose
Laplace exponent Φ(θ) = − log Ee−θS1 , θ ≥ 0, is given by the Lévy-Khintchin
formula

Φ(θ) = ηθ +

∫ ∞

0

(1− e−θs)Π(ds) = θ(η +

∫ ∞

0

e−θsΠ̄(s)ds)

where Π is a Borel measure on (0,∞) (Lévy measure) such that
∫ 1

0
sΠ(ds) =∫ 1

0
Π̄(s)ds < ∞ where Π̄ denotes its tail, and η = limθ→∞

Φ(θ)
θ

> 0 the drift.
Equivalently, the Lévy-Itô decomposition reads

St = ηt +

∫ ∞

0

sNt(ds),

where N is the Poisson random measure Nt(Λ) =
∑

0<s≤t 1Λ(∆Zs), t > 0,
Λ ∈ B((0,∞)), on (0,∞)2 associated to the jumps of Z with EN1(Λ) =
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Π(Λ) as its intensity measure. The domain (time axis) of S is R+ and its
image (range) the closure of D = {t ≥ 0 : Rt = 0}. Observe that Dc =⋃

t∈J(S)(St−, St), so that the ’gaps’ in R+ (’pre-clusters’ in the interpretation

of the mechanical model) are the jumps of S where J(S) is the set of its jump
times. Following ideas from excursion theory, one has here two time scales
(domains), the natural time scale of the Markov process R (of the dynamics
(T t)t∈R+) and the time scale of the subordinator S. Furthermore,

τt = inf{s ≥ 0 : Ss > t},
i.e. the local time of R coincides with the local time of S, and the potential
(renewal) measure is given by

U(B) =

∫

B

P (Rt = 0)dt =

∫ ∞

0

PSt(B)dt

for B ∈ B(R+) resp. U([0, t]) = Eτt where PSt denotes the distribution of
St under P . As one sees from the Lévy-Khintchin formula, if S

′
is another

subordinator with image the closure of D, there is a constant c > 0 such
that S ′t = Sct P -a.s. for any t ≥ 0. In this way, the subordinator is uniquely
characterized up to a constant. Note also that τ∞ = ∞ P -a.s. iff the zero
is recurrent for R. Indeed, Since ϑ is a Poisson process on R+, the number
N(A) of coordinates which fall into the set A ∈ B(H) is Poisson distributed
with mean n(A) where n is the intensity measure as in section 1.1. Hence
for At = {(s, u) : 0 < t− s < u} and t > 0 fixed, the probability that at time
t all n.p.s born before t are extinct is given by

P (Rt = 0) = P (N(At) = 0) = exp(−%

∫ t

0

F̄χ1
(t− s)ds)

with the mean number of alive n.p.s at time t > 0 given by

n(At) = EN(At) = %

∫ t

0

F̄χ1
(t− s)ds.

On the other hand, by symmetry and since F̄χ1
(t−s) = F̄χ1

(s)−P (s < χ1 ≤
t− s) on (0, t

2
], one has

∫ t

0

F̄χ1
(t− s)ds = 2

∫ t/2

0

F̄χ1
(t− s)ds ≤ 2

∫ t

0

F̄χ1
(s)ds.

Hence in terms of the subordinator S, if β−1 = ∞, it follows that

Eτ∞ =

∫ ∞

0

P (Rt = 0)dt ≥
∫ ∞

0

exp(−2%

∫ t

0

F̄χ1
(s)ds)dt = c̃β−1 = ∞
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for some constant c̃ > 0, thus τ∞ = ∞ P -a.s. and D is unbounded. In
particular, the renewal measure of S is a Radon measure with density

u(t) = exp(−%

∫ t

0

F̄χ1
(t− s)ds).

To determine the distribution of H, note that taking the marginal distribu-
tion of the jump of S at its local time τt in Proposition 2, Chap. III, in [2],
we can write for the fourth equality below

FH(t) = P (H ≤ t) = P (∃s > 0 : Ss > t) = P (Sτt > t) =

∫ t

0

Π̄(t− s)u(s)ds.

In view of Definiton 2.1.1, we have therefore

P (∃s ≤ t : ω(s) ∈ Ω̃) =

∫ t

0

Π̄(t− s)u(s)ds.

Remark 2.2.1. To recover the characteristics of S, observe that on the one
hand, the Laplace transform of the renewal measure can be expressed as

1

Φ(θ)
=

∫ ∞

0

exp(−θt− %

∫ t

0

F̄χ1
(t− s)ds)dt,

whereas by the Lévy-Khintchin formula we have the drift η = limθ→∞
Φ(θ)

θ

and the Laplace transform
∫∞
0

e−θtΠ̄(s)ds = Φ(θ)
θ
− η. Inverting the last

equation, one can recover the tail of the Lévy measure.

3.3 Construction of cluster times.

The divergence of β−1 is a sufficient condition to guarantee the existence
of cluster times as defined in Definition 2.1.2. Conversely though, from the
convergence of (2) one cannot deduce the absence of cluster times as defined
in 2.1.2 since it does not exclude a more mechanical ’continuous loss of mem-
ory’ as already indicated in section 1 and Remark 2.2. To see sufficiency,
we apply a simple mechanical argument. Suppose now that that β−1 = ∞
and r = 0, in particular H < ∞ P -a.s. Given H = s, fix a constant a > 0
and denote by V? = Vs > 0 the velocity of the t.p. which is positive since
the subordinator has positive drift. Then the outgoing velocity of the next
arriving n.p. is the constant v+

ϑ̂
> V? + fa on the set {δs > a} due to the

exclusion of recollisions where we have set ϑ̂ = ϑs + 1 and δs = tϑ̂ − s is the
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residual arrival time as usual. Choosing now the lifetime of the n.p. smaller
than b = t̂ such that

t̂v+

ϑ̂
> Q̂t̂ =

∫ t̂

0

V̂sds

where V̂t = ft is the ’free’ velocity, gives b = 2
f
(V? + fa) and the lifetime

of the n.p. is smaller than the time the t.p. would need to catch it up in
the ’free’ dynamics, i.e. with no further n.p.s arriving in (tϑ̂,∞]. Together
with the distribution function FH(t) = (ν̄ ? u)(t) of H as determined in the
previous section and choosing the appropriate constants a > 0 and b > 0 as
above, one gets with the event AH = {δH > a} ∩ {χϑH+1 ≤ b} that

P (∃s ≤ t : tϑs+1 is a cluster time)

≥ P ({H ≤ t} ∩ AH) =

∫ t

0

P (As|H = s)FH(ds)

=

∫ t

0

e−%aFχ1
(b)FH(ds) = e−%aFχ1

(b)

∫ t

0

Π̄(t− s)u(s)ds

using the conditional independence of the interarrival times (σn)n∈N and the
i.i.d. lifetimes (χn)n∈N, the lack of memory of the residual arrival time δs

and the absolute continuity of the lifetime distribution. This amounts to
say that the distribution of the cluster times is dominated stochastically by
FH which on its side is determined by the tail of the Lévy measure and the
renewal density of the associated subordinator. It will be convenient later
to consider also double cluster times as in Definition 2.1.3 which is indeed
analogous to the notion of ’good cluster indices’ in [4]. To produce them in
our case, replace the event AH = {δH > a}∩{χϑH+1 ≤ b} by A′

H = AH ∩BH

where BH = {HϑH+1 > b} ∩ {χϑH+2 ≤ 2b} and then one has as above

P (∃s ≤ t : tϑs+1 is a double cluster time) ≥ c′FH(t)

for some constant c′ = c′(a, V?, f, %) with 0 < c′ < ĉ. In particular, if H1 = H,
Hk = inf{t > Hk−1 : Rt = 0} and Y ′

k = 1{tϑHk
+1 is a double cluster time} for

k ≥ 1, then P (Y ′
1 = 1) ≥ c′ > 0 and P (Y ′

k = 1|Y ′
1 , ..., Y

′
k−1) ≥ c′ > 0 for k ≥ 2.

It follows that there is a γ′ > 0 such that lim infn→∞ 1
n

∑n
k=1 Y ′

k ≥ γ′ > 0
P -a.s.

3.4 Remark on renewal arrivals.

In most of ”realistic” models interarrival times of the n.p.s are not exponen-
tial, and, therefore, one would like to drop this condition, i.e. we do not im-
pose necessarily exponential times. As already observed, a natural choice in
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the context of the one-dimensional models of [4] and [11] would be a Weibull
distribution. But one immediate consequence of dropping the exponential
distribution is the loss of the Markov property of the associated process R of
maximal survival, defined in the same way as in section 2.1, since the count-
ing process ϑ is a Markov process if and only if the interarrival times are i.i.d.
exponential due to the lack of memory of the exponential distribution. If ϑ is
not Poisson, the future of the process R depends through the distribution of
the time to the next arrival on the past via the time spent since the last arrival
of a particle. If ϑ is a renewal process with finite mean 1

%
and existing sec-

ond moment of the interarrival times, with absolute continuous interarrival
distribution with density fσ1

and corresponding distribution function Fσ1
,

which is independent of the lifetimes, then one can make R being Markovian
without enlarging the underlying probability space (Ω,B(Ω), P ) by consider-
ing the bivariate process (R,α) = (Rt, αt)t∈R+ , where αt = t− tϑt is the spent
time since the last arrival before time t > 0. Note that the annihilation dy-
namics in the renewal case is analogous to the Poisson case in 1.2 where the
Markovian drift becomes now ṼD = ṼD(f) = %f

2
Eσ2

1 by invoking the renewal
theorem. Coming back to (R, α), for some t > 0 fixed, this process evolves
deterministically for s ∈ (t, t + αt) as (Rs, αs) = (Rt − (s − t), αt − (s − t))
and for s = tϑt+1, (Rs, αs) = (χϑt+1 ∨Rtϑt+1−, 0). Since α is a strong Markov
process and ϑ a counting process, (R,α) is a strong Markov process with
Rt+s(ω)−Rs(ω) = r +Rt(T

sω). The infinitesimal generator of (R, α) can be
calculated from the same arguments as the one in the Poisson case as

A(R,α)ϕ(r, a) =
fσ1(a)

F̄σ1(a)

∫ ∞

r

∂yϕ(y, a)F̄χ1
(y)dy − ∂rϕ(r, a) + ∂aϕ(r, a)

for ϕ : R+ × R+ → R+ in the domain of the generator, noting that α
increases deterministically between two consecutive arrivals and if %(a)da +
o(da) denotes the probability that there is an arrival in the interval (a, a+da)

conditionally that up to time a > 0 there is no arrival, then %(a) =
fσ1 (a)

F̄σ1(a)

is the hazard (failure) rate for the distribution of the interarrival times for
which the well-known relations %(a) = limh→0

1
h
P (a < σ1 < a + h|σ1 > a)

and F̄σ1(a) = exp(− ∫ a

0
%(s)ds) hold. Note also that (ϑt−

∫ t

0
%(αs)ds)t∈R+ is a

martingale, i.e. (
∫ t

0
%(αs)ds)t∈R+ is the compensator of (ϑt)t∈R+ . Analogously

to the Poisson case, (ϕ(Rt, αt))t∈R+ is a martingale iff

∂rϕ(r, a) = %(a)

∫ ∞

r

∂yϕ(y, a)F̄χ1
(y)dy + ∂aϕ(r, a).
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3.5 Comparison and coupling.

The main goal of this subsection is to construct a suitable comparison be-
tween the original dynamics of the Model 1 and convenient interpretation
as a line covering problem of the Markovian version of Model 2, which was
described in previous subsections. The key difficulty is that in the original
dynamics of Model 1, as well as of Model 2, we can say very little about
the distribution of interarrival times of n.p.s, and to treat a line covering
problem with such a complicated and dependent interdistances seems to be
out of reach. We will take a different route: we will show that there is a
stochastic comparison between the line covering problem with exponential
interdistances (in the case of absence of covering) and low n.p.s density case
in Model 1.
For this purpose we will introduce an auxiliary covering process, which we call
ε-reinforced covering process. As in the original covering process associated
with Markovian version of Model 2, we will assume that start-points where
the covering intervals begin, are distributed according to the Poisson law with
intensity % > 0. However, from each such point now we will allow to start
multiple number of covering intervals, which are all going rightwards. The
probability that out of a given point we start k, k ≥ 1, intervals is geometric
with parameter ε, and equals to εk−1(1− ε) for 0 < ε < 1, independently for
each Poissonian point. The lengths of all intervals are chosen independently,
and are distributed according to Fχ1

. Thus the only difference with the origi-
nal model is, that in this reinforced model, we have multiple intervals starting
from one point and the one with the maximal length is the one which is im-
portant. If {χnk : n ∈ N, 1 ≤ k ≤ N ε

n} is the infinite independent array of life-
times associated to the ε-reinforced covering process, where (N ε

n)n∈N are i.i.d.
geometric with P (N ε

1 = k) = εk−1(1−ε), then χε
n = max1≤k≤N ε

n
χnk, n ≥ 1, is

i.i.d. with tail F̄χε
1

= (1 − ε)
∑

k∈N εk−1F̄ k
χ1

by conditional independence.
Note that the condition for non-covering for the reinforced model is the
same as for the non-reinforced one with (χn)n∈N replaced by (χε

n)n∈N. Since∫∞
0

exp(−%
∫ s

0
F̄χε

1
(u)du)ds ≥ ∫∞

0
exp(−%

∫ s

0
F̄χ1

(u)du)ds for any 0 < ε < 1

by F̄χ1
> F̄ k

χ1
, for any k ≥ 1 we have the following simple property comparing

these two processes.

Proposition 2.4.1. If Fχ1
and % are such that the original covering process

with these parameters does not cover semi-infinite interval eventually a.s.,
then the ε-reinforced covering process with parameters Fχε

1
and % does not

cover semi-infinite interval eventually a.s. ¥
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Before stating the next Lemma, we recall that by τn = τn(Fχ1
, %) we de-

note the time between consecutive fresh collisions of the t.p. with the ini-
tially standing n.p.s in the original mechanical Model 1, which are heavily
dependent due to recollisions, and where we assume that at time 0 the inter-
distances between particles are chosen as exponential random variables with
parameter % > 0 and their lifetimes distributed according to the law of χ1 .

Lemma 2.4.2. If χ (the distribution of lifetimes of n.p.s in the mechan-
ical model) is such that there exists λ > 0 such that the associated line
covering process with the parameters χ and λ does not cover semi-infinite
interval eventually a.s., then there exist 0 < λ′ < λ, such that the modified
line covering process with the interdistances between left-endpoints of suc-
cessive intervals being taken as τi(χ, λ′) and distribution of covering interval
length being χ, also does not cover semi-infinite interval eventually a.s.

Proof. We split the proof in several steps. Recall that we are assuming that
M = m = 1. Below we present the proof which relies on this fact. However
the statement of the Lemma holds for the general case M ≥ m, but proofs
are considerably more involved.
Step 1. Observe first of all, that τi ≥

√
2ξ′i/f (= the free flight time between

two consecutive collisions). Thus, if χ (= the distribution of lifetimes of
n.p.s in the mechanical model) satisfies the condition of the Lemma, i.e.
there exists λ > 0 such that the associated line covering process with the
parameters χ and λ does not cover semi-infinite interval eventually a.s., then
for any ε > 0, to be specified later, we can find 0 < λ′ ≡ λ′(ε) < λ such that if
ξ and ξ′ are two independent exponential random variables with parameters
λ and λ′ respectively, then the following holds:

P (
√

2ξ′/f < ξ) ≤ ε.

Step 2. We begin with the following simple observation, which we state
as the Proposition below. Consider two line covering processes Ξ and Ξ′.
Interdistances between consecutive start-points of the segments in process Ξ
are taken as {ξi}i, and in the process Ξ′ as {ξ′i}i. The length of covering
segments {`i}i and {`′i}i in both processes are taken equal, i.e. `i = `′i, ∀i.
Proposition 2.4.3. If the process Ξ does not cover semi-infinite segment
eventually, and ξj ≤ ξ′j, ∀j, then there is no eventual covering of the semi-
infinite line in the process Ξ′.
Proof. Since ξj ≤ ξ′j, ∀j, we can couple both realizations of the start-points
of sticks {xi}i and {x′i}i in such a way, that xj ≤ x′j, and xj−xj−1 ≤ x′j−x′j−1

∀j. Since `i = `′i, ∀i, it immediately implies the claim of the proposition.
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To complete the proof of the Lemma we will construct another yet auxiliary
covering process associated with the mechanical system. Take two sequences
{ξi}i and {ξ′i}i of independent exponential random variables with parame-
ters λ and λ′ in each sequence respectively. Take line covering process with
interdistances between consecutive left-endpoints xi−1 and xi of segments,
being taken as

√
2ξ′i/f . Next we will perform the following ”surgery”: every

segment [xi−1, xi] such that
√

2ξ′i/f < ξi will be subtracted, by performing
the left shift of the semi-infinite configuration lying to the right of the point
xi by distance xi − xi−1, and associating point xi with xi−1, and every seg-
ment [xi−1, xi] such that

√
2ξ′i/f ≥ ξi will be contracted, by performing the

left shift of the semi-infinite configuration lying to the right of the point xi

by distance
√

2ξ′i/f − ξi, and associating point xi with x̃i. As one can easily

see, the new obtained process, call it Ξ̃ is ε-reinforced process of the process
Ξ (which by our assumptions does not cover semi-infinite line). According

to Proposition (2.4.1), one can choose ε > 0 such that Ξ̃ does not cover
semi-infinite interval either.
For notational reason we can assume that in the process Ξ̃ the intervals which
were completely subtracted have lengths ξ̃j = 0. With this in hands we im-

mediately can apply proposition (2.4.3) to compare the process Ξ̃ and the line
covering process with the interdistances between left-endpoints of successive
intervals being taken as τi(χ, λ′) and distribution of covering interval length
being χ, concluding that if there is no eventual covering of the semi-infinite
line in the process Ξ̃, then there is no eventual covering of the semi-infinite
line in the latter process. This completes the proof of the Lemma. ¥
Remark 1. Previous Lemma immediately implies that the original dynamics
of the Model 1 (as well of Model 2) has infinitely many cluster indices, and
inter-cluster-indices distribution has exponentially decaying tails as long as
Eχ1 < +∞.

Remark 2. If lifetime distribution is inverse Gaussian (nonintegrable), our
considerations still imply that at the low enough density of the n.p.s the
system has infinitely many cluster indices. This in particular implies that
system is Bernoulli system.

4 Invariant measure.

4.1 Tightness.

The key Lemma and Corollary 1 of the previous section brings us to the
point that most of remaining work is just routine following of the standard
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procedures [14], which we outline in the next few short subsections.

We have for the mean number of alive n.p.s at time t > 0 by section 2.2.
that

EN(At) = %

∫ t

0

F̄χ1
(t− s)ds ≤ 2%

∫ t

0

F̄χ1
(s)ds ≤ 2%Eχ1 .

By Markov’s inequality P (N(At) > k) ≤ k−1EN(At) ≤ k−12%Eχ1 for k > 0,
denoting An = Atn and since limn→∞ tn = ∞, if the lifetimes have finite
mean, it follows that P (Rt = 0) > 0 for any t > 0 and

lim
k→∞

lim sup
n→∞

P (N(An) > k) = 0

which entails by [11], Lemma 4.5, the tightness of {N(An) : n ∈ N}. If
Pn = P ◦ T−n is the law of the discrete dynamics as defined in section 1.1,
the above result entails the tightness of the family {Pn : n ∈ N} and hence
the convergence to a necessarily invariant measure µ say, i.e. µ = µ ◦ T−n

for any n ≥ 1 such that µ(Ω1) = 1.

4.2 Coupling of µ and P , mixing and SLLN.

Existence of some limiting invariant measure µ under the discrete dynamics
(T n)n∈N follows by tightness of the family {Pn : n ∈ N} as shown above under
the condition of finite first moment of the lifetime distribution. Uniqueness
follows by successfully coupling µ with the initial measure P . In the light
of the construction of the cluster times in 2.3 it is quite clear how to pro-
duce a successful coupling. For this, let ω ∈ Ω be a configuration with
decomposition x(ω) = x0(ω) ∪ xm(ω) and distributed according to the mea-
sure µ. Take two initial configurations ω′ and ω′′ distributed according to P
resp. µ such that x0(ω) = x0(ω

′) = x0(ω
′′), xm(ω′) = ∅, xm(ω) = xm(ω′′),

R0(ω
′) = 0 and R0(ω

′′) = r0 for some r0 > 0. Note also that under µ, the
freshly arriving n.p.s and the moving n.p.s are independent and the fresh
n.p.s distributed according to the initial measure P , i.e. µ = P ⊗ µm with
P (ΩX0) = µm(Ωc

X0
) = 1. In words, the configuration ω′ consists only of the

t.p. and the freshly arriving n.p.s distributed according to P and ω′′ has the
same arriving n.p.s as ω′ and its moving n.p.s are distributed according to
µm with initial maximal residual lifetime r0, i.e. their joint distribution is
the measure Q on Ω0 × Ω0 given by

Q(dω′dω′′) = ε{xm(ω′)=∅}ε{x0(ω′)=x0(ω′′)}P (dω′)µ(dω′′)

where ε is the Dirac point measure. If convenient, we write the related
quantities to the two configurations with the corresponding superscrupts like
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H ′
1 or H ′′

1 for H1(ω
′) resp. H1(ω

′′), for instance. With the same notation
as in the previous sections, letting Hr0(ω

′) = inf{s > r0 : Rs(ω
′) = 0},

one has Hr0(ω
′) = ZLr0

(ω′) = H(ω′′) = H(ω) where Z is the associated
subordinator and Lr0 its local time at r0 > 0. Set Hk(ω

′) = Hk(ω
′′) and

χk(ω
′) = χk(ω

′′) for any 1 ≤ k ≤ [H(ω)] where [.] denotes the integer part
and let V ′

? = VH(ω′) > 0 and V ′′
? = VH(ω′′) > 0. Fix now some a′ > 0, sample

δH(ω′) according to the exponential distribution P (δ′H ≤ s|δ′H > a′) (again
by lack of memory) and then set δH(ω′′) = δH(ω′) in the configuration ω′′.
Both n.p.s arriving at t′ϑH+1(= t′′ϑH+1) have some minimal outgoing velocity
v′min resp. v′′min, depending on V ′

? resp. V ′′
? (and of f and a′). If χ′′ϑH+1 ≤ b′

and χ′′ϑH+1 ≤ b′′ for the corresponding constants b′ and b′′, determined as
in section 2.4, then t′ϑH+1 is a cluster time for both configurations ω′ and
ω′′. Setting the interdistances as ξ′ϑH+k = ξ′′ϑH+k for any k ≥ 2 concludes
the coupling in this case. Otherwise, repeat the above procedure now with
H(T r0ω′) instead of H(ω). Since D = R+ P -a.s. and all other events involved
have strictly positive probability, a successfull coupling also in this case will
be achieved in finite time.

5 Invariance principle.

The proof of the invariance principle for the displacement of the t.p. un-
der mixing conditions is now classic and follows the lines of [1] and [4].
Define the random element on (Ω1,B(Ω1), µ) by S[nt] = n−1/2Z[nt] where

Zn =
∑

1≤k≤n(ξk − %−1VD) and VD = %Eµξ1 is the drift. Note that Eµξ̃1 =

Eξ̃1 = f%−2, hence by section 1.2, Eµξ1 ≤ f%−2 and Eµξ
2
1 ≤ 6f 2%−4. Sup-

pose
∑

n∈N ψ(n)1/2 < ∞ where ψ(n) is the mixing coefficient as in section 3.2.
Then σ2 = limn→∞ n−1EµZ

2
n = Eµ(ξ1−%−1VD)+2

∑
k≥2 Eµ(ξ1−%−1VD)(ξk−

%−1VD) < ∞ and if σ2 > 0, S[nt] converges weakly on the Skorokhod space
to σWt where W = (Wt)t∈R+ is standard one-dimensional Brownian motion.
Analogous to [4], if C ′ is the σ-algebra generated by the double cluster times,
by the property of conditional variance, EµZ

2
n = Eµ(EC′

µ Z2
n) + Eµ(EC′

µ Zn)2 ≥
Eµ(EC′

µ Z2
n) and by conditional independence as in Remark 2.2,

n−1EC′
µ Z2

n = n−1

n∑

k=1

EC′
µ ξ2

k ≥ Γn−1

n∑

k=1

Y ′
k

with Γ > 0 as in Remark 2.2 and Y ′
k the indicator of the k-th double cluster

time as in section 2.3. Hence

lim inf
n→∞

n−1EC′
µ Z2

n ≥ Γγ′ > 0 µ-a.s.
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for some γ′ > 0 by section 2.3 and therefore σ2 > 0 by integration. Replacing
n by nκ for 0 < κ < 1/2 in the coupling of section 3.2 guarantees that ξk(ω

′) =
ξk(ω

′′) a.s. for k ≥ nκ and n large enough with the appropriate configurations
ω′ and ω′′. Using Minkowski’s inequality and limn→∞ nκ−1/2 = 0, one sees
that the invariance principle for S[nt] is valid also on (Ω1,B(Ω1), P ). By [1],
Theorem 17.1, we have that n−1/2Zϑnt converges weakly to σ%−1/2Wt. Noting

that Qt =
∑ϑt

k=1 ξk +
∫ t

tϑt
Vsds it follows that |S[nt]−Sϑnt | ≤ n−1/2|ξ̃ϑnt+1| and

by Chebyshev’s inequality this converges in probability P (resp. µ) to zero
as n → ∞ uniformly in t yielding the invariance principle for (Qt)t∈R+ , i.e.
n−1/2Q[nt] converges weakly on Skorokhod space to σ̃Wt with σ̃ = σ%−1/2 > 0.
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