
THE FEDERAL CENTER of TECHNOLOGICAL EDUCATION of PARANÁ
Graduate School in Electrical Engineering and Industrial Computer Science

CEFET-PR/CPGEI

Mixed Integer Linear Programming and

Constraint Logic Programming:

Towards a Unified Modeling

Framework

Doctoral Thesis

by

Leandro Magatão

Examining Board

Adviser:

Prof.a Dra. Lúcia Valéria Ramos de Arruda CEFET-PR

Examiners:

Prof. Dr. Celso Carnieri UFPR

Prof. Dr. Paulo Morelato França UNICAMP

Dr. Marcus Vińıcius de Oliveira Magalhães PETROBRAS

Prof. Dr. Flávio Neves Junior CEFET-PR

Curitiba, Paraná, Brazil
May 12, 2005.

LEANDRO MAGATÃO

Mixed Integer Linear Programming and

Constraint Logic Programming:

Towards a Unified Modeling

Framework

Doctoral Thesis submitted in partial ful-
fillment of the requirements for the degree
of Doctor of Science (DSc) at the Gradu-
ate School in Electrical Engineering and
Industrial Computer Science (CPGEI),
The Federal Center of Technologi-
cal Education of Paraná (CEFET-PR),
emphasis on Industrial Computer Science.

Adviser: Prof.a Dra. Lúcia Valéria
Ramos de Arruda

Curitiba, Paraná, Brazil
May 12, 2005.

Contents

List of Tables vii

List of Figures ix

List of Labels xi

Sponsorship xiii

Acknowledgments xv

Abstract xvii

1 CLP–MILP: Introduction 1

1.1 Preliminary Overview . 1

1.2 Thesis’ Outline . 3

2 CLP–MILP: Overview of Main Characteristics 7

2.1 Introduction to CLP . 7

2.2 Introduction to MILP . 13

2.3 Search, Relaxation, and Inference . 17

2.4 Remarks on Chapter 2 . 20

3 CLP–MILP: Introduction to a Cluster of Articles 21

3.1 Comparisons between CLP and MILP 21

3.2 Modeling and Solving in a Combined CLP-MILP Approach 23

3.3 Other Hybrid Approaches . 29

3.4 Mixed Logical Linear Programming (MLLP) 29

3.5 Choosing CLP or MILP . 32

4 MILP: Modeling Structures 37

4.1 Building MILP Models . 37

4.2 Reformulation of Logical Relations 40

4.2.1 Basic Logic Concepts . 40

4.2.2 Connecting Logical Variables 42

iii

4.2.3 Logically Related Linear Form Constraints 45

4.2.3.1 Logical Constraint in the Implication Form 46

4.2.3.2 Logical Constraint in the Equivalence Form 52

4.3 High-Level MILP Modeling Structures 60

4.3.1 Either-Or Statement . 60

4.3.2 If-Then Statement . 65

4.3.3 If-Then-Else Statement . 65

4.3.4 Remarks on the Use of δ . 68

4.4 An Illustrative Example of Flexible Storage 70

4.5 Remarks on Using MILP Modeling Structures 73

5 MILP: Application of the High-Level Modeling Structures 75

5.1 Introduction to the Problem Context 75

5.2 Problem Description . 77

5.3 Methodology . 78

5.4 Mathematical Formulation . 81

5.4.1 Notation . 82

5.4.2 Auxiliary Routine . 87

5.4.3 Main Model . 87

5.4.3.1 Main Model: Objective Function 89

5.4.3.2 Main Model: Constraints 90

5.4.3.3 Main Model: The Number of Variables 97

5.5 Results . 101

5.5.1 An Operational Scenario . 101

5.5.2 Operational Cost versus Scheduling Horizon 103

5.5.2.1 First Computational Experiment 103

5.5.2.2 Second Computational Experiment 109

5.5.3 An Illustrative Case of Pumping Procedure 112

5.6 Remarks on Chapter 5 . 114

6 CLP-MILP: Towards a Unified Modeling Framework 115

6.1 Modeling Premises . 115

6.2 Building a CLP Model . 117

6.2.1 CLP Objective Function . 118

6.2.2 CLP Constraints . 118

6.2.3 CLP Global Constraints . 120

6.2.4 CLP Search Procedure . 121

6.2.5 CLP Model: The Number of Variables/Constraints 122

6.3 Building a CLP-MILP Model . 123

6.3.1 CLP-MILP Objective Function 125

6.3.2 CLP-MILP Constraints . 125

iv

6.3.2.1 High-Level CLP-MILP Structures 126

6.3.2.2 Common CLP-MILP Constraints 128

6.3.2.3 Ordinary CLP-MILP Structures 129

6.3.2.4 CLP-MILP Global Constraints 130

6.3.3 CLP-MILP Search Component 131

6.3.4 CLP-MILP Model: The Number of Variables 131

6.4 Results . 132

6.4.1 First Computational Experiment 132

6.4.1.1 Results: Commentaries on Table 6.1 135

6.4.2 Second Computational Experiment 137

6.4.2.1 Results: Commentaries on Table 6.3 141

6.4.3 Third Computational Experiment 142

6.4.3.1 Results: Commentaries on Table 6.4 146

6.5 Remarks on Chapter 6 . 147

7 Conclusions/Contributions and Future Research 149

7.1 Conclusions/Contributions . 149

7.2 Future Research . 153

References 166

v

vi

List of Tables

4.1 Truth Table of Logical Connectives. 41

4.2 Transformation of Logical Statements into Equivalent Forms. 42

4.3 Variable Transformations: Logic Statement versus Linear Constraint. 44

4.4 Logical Constraints in the Implication Form. 51

4.5 Logical Constraints in the Equivalence Form. 60

4.6 Either-Or Statement: ρ1 ∈ {≤,≥} and ρ2 ∈ {≤,≥, <, >, =, 6=}. 63

4.7 Either-Or Statement: ρ1 ∈ {<,>} and ρ2 ∈ {≤,≥, <, >, =, 6=}. 63

4.8 Either-Or Statement: ρ1 ∈ {=, 6=} and ρ2 ∈ {≤,≥, <, >, =, 6=}. 64

4.9 If-Then Statement. 66

4.10 If-Then-Else Statement. 67

5.2 Input Data for the Considered Scenario. 103

5.3 Computational Data for the Main Model Illustrative Instances. 105

5.4 Computational Data for the Main Model (Chigh
o = 1, 2, 3, 4, 5, 10

∀o∈O). 110

6.1 Main Model Illustrative Instances I – MILP, CLP, and CLP-MILP

Formulations. 134

6.2 Main Model Illustrative Instances – CLP (Sub)Optimal Solutions Af-

ter Ten Seconds. 135

6.3 Main Model Illustrative Instances II – MILP, CLP, and CLP-MILP

Formulations. 140

6.4 Main Model Illustrative Instances III – MILP, CLP, and CLP-MILP

Formulations. 145

vii

viii

List of Figures

2.1 Constraint Propagation and Domain Reduction: A Simple Example. . 10

5.1 Pipeline Physical Structure Overview. 77

5.2 Optimization Structure. 79

5.3 Auxiliary Routine - An Illustrative Case. 88

5.4 Electric Cost. 95

5.5 Number of Main Model Variables (2 ≤
∑

o∈O npo ≤ 20, ne = 7). . . . 100

5.6 The ne Value. 102

5.7 Computational Time versus Scheduling Horizon. 106

5.8 Cost versus Scheduling Horizon (Chigh
o = 5 ∀o∈O). 107

5.9 Cost versus Scheduling Horizon (Chigh
o = 1, 2, 3, 4, 5, 10 ∀o∈O). . . 110

5.10 Pumping Procedure: An Illustrative Case. 113

5.11 Pumping Procedure: The Flow Rate Behavior. 113

6.1 Average Computational Time for MILP, CLP, and CLP-MILP Models.141

6.2 Average Computational Time Reduction when Comparing the Third

Experiment with the Second Experiment. 146

ix

x

List of Labels

AI Artificial Intelligence

CLP Constraint Logic Programming

CNF Conjunctive Normal Form

CP Constraint Programming

COPs Combinatorial Optimization Problem(s)

CS Computer Science

CSPs Constraint Satisfaction Problem(s)

DNF Disjunctive Normal Form

FD-store Finite Domain Store

GDP Generalized Disjunctive Programming

ILP Integer Linear Programming

IP Integer Programming

LCIF Logical Constraint in the Implication Form

LCEF Logical Constraint in the Equivalence Form

LFCk Linear Form Constraint k

LP Linear Programming

LP-store Linear Programming Store

LS Local Search

MILP Mixed Integer Linear Programming

MINLP Mixed Integer Non-Linear Programming

MI(N)LP Mixed Integer (Non-)Linear Programming

MIP Mixed Integer Programming

MLLP Mixed Logical Linear Programming

OPL Optimization Programming Language

OR Operational Research, Operations Research

SOS Special Ordered Sets

TSP Traveling Sales Person

xi

xii

Sponsorship

The author of this thesis acknowledges financial support from ANP and FINEP

(PRH-ANP/MCT PRH10 CEFET-PR).

xiii

xiv

Acknowledgments

In a theoretical point of view, this work owes much to others and, fortunately, it is

impossible to name them all. To a large degree it rests upon intellectual founda-

tion laid by pioneers, who have skilled explored the connections between logic and

mathematical programming. In a practical point of view, there are many individuals

that have made it possible for me to pursue a doctorate, and it is also impossible

to name them all. In particular, I would like to thank my adviser, Prof.a Valéria,

for the guidance, the free will on the research, and also for proofreading and com-

menting the entire manuscript(s) in depth. To Prof. Flávio, for his endless effort to

coordinate the laboratory (financial) issues. His effort has been a sine qua non to

my (and to others) research conduction. To the colleague Sérgio, for the research

collaborations or discussions, advices, and comments, which gave me an invaluable

help during all the ups and downs upon the research efforts. I am also specially

grateful to the colleague Antônio, for his goodwill in always help me (and anyone

else) in handling hardware and software computational issues. In addition, I would

like to thank everyone in the “LASCA/CPGEI/CEFET-PR” research group for the

many discussions that, in fact, hardly ever contributed to the research, but have

made these years very enjoyable. I have never stopped learning from them. Last,

but not least, I am thoroughly grateful to my family, for the unconditional support.

xv

xvi

Abstract

The struggle to model and solve Combinatorial Optimization Problems (COPs) has

challenged the development of new approaches to deal with COPs. In one of the

front lines of such approaches, Operational Research (OR) and Constraint Program-

ming (CP) optimization techniques are beginning to converge, despite their very

different origins. More specifically, Mixed Integer Linear Programming (MILP)

and Constraint Logic Programming (CLP) are at the confluence of the OR and

the CP fields. This thesis summarizes and contrasts the essential characteristics

of MILP and CLP, and the ways that they can be fruitfully combined. Chapters

1 to 3 sketch the intellectual background for recent efforts at integration and the

main results achieved. In addition, these chapters highlight that CLP is known by

its rich modeling framework, and the MILP modeling vocabulary is just based on

inequalities, which makes the modeling process hard and error-prone. Therefore,

a combined CLP-MILP approach suffers from this MILP inherited drawback. In

chapter 4, this issue is addressed, and some “high-level” MILP modeling structures

based on logical inference paradigms are proposed. These structures help the for-

mulation of MILP models, and can be seen as a contribution towards a unifying

modeling framework for a combined CLP-MILP approach. In addition, chapter 5

presents an MILP formulation addressing a combinatorial problem. This problem

is focused on issues regarding the oil industry, more specifically, issues involving the

scheduling of operational activities in a multi-product pipeline. Chapter 5 demon-

strates the applicability of the high-level MILP modeling structures in a real-world

scenario. Furthermore, chapter 6 presents a CLP-MILP formulation addressing the

same scheduling problem previously exploited. This chapter demonstrates the ap-

plicability of the high-level MILP modeling structures in an integrated CLP-MILP

modeling framework. The set of simulations conducted indicates that the combined

CLP-MILP model was solved to optimality faster than either the MILP model or the

CLP model. Thus, the CLP-MILP framework is a promising alternative to deal with

the computational burden of this pipeline-scheduling problem. In essence, this the-

sis considers the integration of CLP and MILP in a modeling standpoint: it conveys

the fundamentals of both techniques and the modeling features that help establish

a combined CLP-MILP approach. Herein, the concentration is on the building of

MILP and CLP-MILP models rather than on the solution process.

Keywords: Mixed Integer Linear Programming (MILP), Constraint Logic Pro-

gramming (CLP), Combinatorial Optimization Problems (COPs), Scheduling, Pi-

peline.

xvii

xviii

Chapter 1

CLP–MILP: Introduction

This chapter briefly introduces
constraint logic programming and
mixed integer linear programming,
discusses the opportunities for the
integration of both techniques, and
presents the thesis’ outline.

1.1 Preliminary Overview

Many (real-life) problems have a combinatorial nature. Often, one has to find

a solution to a situation by searching in a finite, but generally huge, collection of

alternatives. In many cases, such a solution is chosen according to some well-defined

criterion. Therefore, the set of solutions is evaluated and the best one is selected,

that is, an optimized answer is chosen instead of just a feasible answer.

Decision-making problems that can be viewed as combinatorial (optimization)

problems are ubiquitous in a variety of areas, such as: logistics, finance, transporta-

tion, configuration, etc. In a simplified standpoint, a combinatorial (optimization)

problem is concerned with the efficient allocation of limited resources in order to

meet desired objectives. Furthermore, the values of some (or all) of the involved

variables are restricted to be integrals. Just to name a few examples of such prob-

lems, in production, the sequencing of jobs and assignment of resources, as well as

packaging, design, and cutting stock problems have to be solved. In transporta-

tion, companies face decisions concerning the fleet management, timetables (flights,

2 Chapter 1. CLP–MILP: Introduction

buses), configuration (e.g. trains), and intermediate storing. Personnel-related is-

sues are crew scheduling (vital in the airline industry), the staffing of shifts (e.g. in

health care), and timetables for courses. A typical managerial task is the planning

of projects. An example in finance is optimal portfolio management. In telecommu-

nications, routing and network layout decisions have to be taken (Heipcke, 1999).

Therefore, the few examples previously named illustrate that Combinatorial Opti-

mization Problems (COPs) are present in day-to-day situations, and their study is

an important issue, even more because COPs have a negative characteristic: they

are difficult to solve. In particular, the classical book of Garey and Johnson (1979)

contains an explanation about the complexity of such class of problems.

The importance of solving combinatorial optimization problems has challenged

the development of techniques to deal with these problems, and the Operations Re-

search (OR) approach for solving COPs has been used for a long time. This approach

was burst by advancements in continuous optimization, with its foundation in the

rise of Linear Programming - LP (Dantzig, 1963). This development took place

in the second half of the 20th century, and has defined the field known as Mixed

Integer Linear Programming - MILP (Nemhauser and Wolsey, 1988; Wolsey, 1998).

In a typical MILP, some variables (or all for Integer Programming - IP) are con-

strained to be integers, and linear equalities and inequalities link the variables.

MILP technologies have been employed with tremendous success for solving com-

binatorial optimization problems. In recent years, however, a new programming

paradigm has evolved within the Computer Science (CS) and Artificial Intelligence

(AI) communities: Constraint Logic Programming (CLP).

According to Barták (2002), CLP can be understood as a framework for solving

combinatorial (optimization) problems. The basic idea is to model the problem as

a set of variables with domains (the valid values for each variable), and a set of

constraints restricting the possible combinations for the values of variables. In a CLP

framework, variables are linked by a set of constraints that can be mathematical or

symbolical. Constraints embed constraint propagation algorithms that effectively

reduce the search space by removing combinations of variable-value assignments

1.2 Thesis’ Outline 3

that are proven infeasible1. The constraint logic programming methodology allows

the natural expression of complex relationships between variables, including logical

expressions. It is ideally suited for operational problems, which require fast and

feasible answers. Users can also guide the search process based on their own problem

knowledge. The industrial success of CLP has, little by little, caught the attention

of many OR researchers for this technology (Focacci, 2000). CLP has been used

for modeling and solving combinatorial optimization problems such as scheduling,

planning, sequencing, and routing. A complete survey of CLP applications is given

by Rossi (1999).

Currently, an increasing number of researchers, both from the OR and the

AI communities, are investigating the possibility of integrating methodologies from

the two fields for solving COPs. As stated by Hooker (2002), OR optimization

techniques and CLP are beginning to converge, despite their very different origins.

OR optimization is primarily associated with mathematics and engineering, while

CLP developed much more recently in the CS and AI communities. The two fields

evolved independently until a few years ago. Yet, they have much in common, and

they are applied to many of the same problems. Both have enjoyed considerable

commercial success. Most important for present purposes, they have complementary

strengths, and the last few years have seen growing efforts to combine them. The

recent interaction between OR optimization and CLP promises to change both fields.

It is conceivable that portions of both will merge into a single problem solving

technology for discrete and mixed discrete/continuous problems. The key feature in

such integration is that OR optimization and CLP are similar enough to make their

combination possible and yet different enough to make it profitable (Hooker, 2002).

1.2 Thesis’ Outline

Situated at the confluence of the OR and the AI fields, the integration of Con-

straint Logic Programming (CLP) and Mixed Integer Linear Programming (MILP)

is an emerging discipline that has been recognized as a suitable environment for

1Further details about constraint propagation are given in section 2.1.

4 Chapter 1. CLP–MILP: Introduction

achieving the best that both fields can contribute to solve COPs. This thesis sum-

marizes and contrasts the characteristics of MILP and CLP, and the ways that they

can be combined.

The benefits of an integrated CLP-MILP approach are explained in chapters

2 and 3. Chapter 2 conveys the fundamentals of CLP and MILP that guide the

opportunities for integrating techniques. Chapter 3 surveys a cluster of articles

that have contributed to different facets in this integration process. In particular,

these chapters sketch the intellectual background for recent efforts at CLP-MILP

integration and are not aimed at being a comprehensive review of neither CLP nor

MILP, but rather an introductory discussion of opportunities for the integration of

these techniques in a combined CLP-MILP approach.

Chapters 2 and 3 rise a quite large body of evidences that Mixed Integer Linear

Programming and Constraint Logic Programming are merging. In addition, the lit-

erature surveyed in these chapters indicates that the combined CLP-MILP approach

is a promising alternative to deal with combinatorial optimization problems. How-

ever, the integration process brings some technical difficulties, which are explained,

for instance, by Heipcke (1999). One of these difficulties is that the MILP modeling

vocabulary is based on inequalities, which makes the modeling process hard and

error-prone. On the other hand, the CLP modeling vocabulary involves a series

of different (logical) operators2, besides inequalities. Thus, CLP is stronger than

MILP in its expressive power (Williams and Wilson, 1998). Either in a traditional

MILP framework or in a combined CLP-MILP approach, the MILP formulation is

a difficult task. A combined CLP-MILP approach suffers from this MILP inherited

drawback.

In chapter 4, the MILP modeling issue is addressed in details. The difficulties

of an LP/MILP modeling framework are stretched, and some “high-level” MILP

modeling structures based on logical inference paradigms are proposed to soften such

modeling difficulties. These structures help the formulation of MILP models, and

can be seen as a contribution towards a unifying modeling framework for a combined

2Further details about CLP operators are given in chapter 2.

1.2 Thesis’ Outline 5

approach between CLP and MILP. Therefore, chapter 4 provides an approach to

narrow the gap between CLP and MILP modeling devices.

Chapter 5 presents the development of an MILP formulation addressing a

combinatorial problem. This model is focused on issues regarding the oil indus-

try, more specifically, issues involving the scheduling of operational activities in a

multi-product pipeline. The main goal is to demonstrate the applicability of the

high-level MILP modeling structures developed in chapter 4 rather than to fully ex-

ploit the problem-scheduling details. The modeling and optimization tool Extended

LINGO/PC Release 8.0 (LINDO, 2002) is used to implement and solve the MILP

formulation.

Chapter 6 presents a CLP and a combined CLP-MILP formulation addressing

the same problem exploited in chapter 5. The main goal is to demonstrate the

applicability of the high-level MILP modeling structures developed in chapter 4 in

an integrated CLP-MILP modeling framework. The functionalities of the modeling

and optimization tool ILOG OPL Studio 3.6.1 (ILOG, 2002b) are used to implement

the root MILP3 and CLP formulations and also the combined CLP-MILP approach.

The computational results presented by the MILP, the CLP and the CLP-MILP

approaches are compared, demonstrating that the combined approach is a promising

alternative to deal with this pipeline-scheduling problem.

Last but not least, chapter 7 presents the main thesis’ conclusions/contributions

and the directions for future research. The interested reader is invited to examine

the following chapters, which focus on modeling and how a rethinking on modeling4

traditions can aid the formulation of either MILP or CLP-MILP approaches.

3The MILP formulation, which is previously presented/implemented in chapter 5, is
(re)implemented in the ILOG OPL Studio 3.6.1.

4The development of algorithms to improve the communication between CLP and MILP devices
is not addressed in this work.

6 Chapter 1. CLP–MILP: Introduction

Chapter 2

CLP–MILP: Overview of Main

Characteristics

This chapter introduces the fun-
damental principles of CLP and
MILP (search, relaxation, and
inference) and overviews the main
characteristics of both techniques.

2.1 Introduction to CLP

Constraint Logic Programming (CLP) is a multidisciplinary research area that

can be located between AI, OR, and programming languages. CLP has to do with

modeling, solving, and programming problems, which can be described as a set

of statements (the constraints) that pose some relationship amongst the problem’s

variables (Rossi, 1999).

In last few years, CLP has attracted high attention among experts from many

areas due to its potential for solving real-life problems. Not only it is based on a

strong theoretical foundation but it is also attracting widespread commercial inter-

est, in particular, in areas of modeling optimization problems. Not surprisingly, it

has been identified by the Association for Computing Machinery (ACM) as one of

the strategic directions in computer research (Barták, 1999).

The seminal work of computational systems based on constraints, or Constraint

8 Chapter 2. CLP–MILP: Overview of Main Characteristics

Programming (CP) systems, can be traced back in the late 70s (Laurière, 1978).

However, the success of constraint programming technology was sprung due to the

union of CP systems with Logic Programming inference methods (Colmerauer, 1987;

Hentenryck, 1989). CLP is a programming paradigm that combines constraint solv-

ing techniques with logic programming devices (Jaffar and Maher, 1994).

According to Thorsteinsson (2001), CLP programs are traditionally aimed at

solving feasibility problems rather than optimization problems. In feasibility prob-

lems the goal is to find a solution to a situation satisfying a set of requirements;

in optimization problems, the goal is to find the best solution given some criteria

on what makes one solution better than another. Classical examples of feasibility

programs are the n-queens problem and the map coloring problem. In the former, n

queens should be placed on an n by n chessboard in arrangements that no queen can

capture another queen. In the later, the goal is to color different regions on a map

with a limited number of colors, such that adjacent regions have different colors.

These problems are more accurately classified as Constraint Satisfaction Problems

(CSPs). However, an algorithm that finds a feasible solution can be turned into an

optimization algorithm by imposing a bound on the objective function. Anytime a

better feasible solution is found, the bound is updated, and the solution is stored.

When no more feasible solutions are found, the last stored solution is the optimal

one.

Informally speaking, an instance of a CSP is described by a set of variables, a

set of possible values for each variable, and a set of constraints among variables. The

set of possible values of a variable is called the variable’s domain. A constraint among

variables expresses the combinations of values that are allowed for the variables. The

question to be answered for a CSP instance is whether there exists an assignment

of values to variables, such that all constraints are satisfied. Such an assignment

is called a solution of the CSP (Smith, 1995). One of the key ideas of CLP is

that constraints can be “actively” used to reduce the computational effort needed

to solve combinatorial problems. Constraints are, thus, not only used to test the

validity of a solution, as in conventional mathematical programming, but also in

an active mode: they are used to remove values from the domains, deduce new

2.1 Introduction to CLP 9

constraints, and detect inconsistencies. This process of actively using constraints to

come to certain deductions is called constraint propagation, which decisively aids to

prune the search space . The specific deductions that result in the removal of values

from the domains are called domain reductions. The set of values in the domain of

a variable that are not invalidated by constraint propagation is called the current

domain (indomain) of that variable (Baptiste et al., 2001). Modeling languages

(constraint-based languages) and efficient constraint propagation algorithms have

been developed to address classes of constraints, such as boolean constraints, finite

domain constraints, interval constraints, and linear constraints (Rossi, 1999).

Therefore, the core of CLP is based on constraint propagation and domain

reduction techniques. Considering a simple example, where x and y denote integer

variables, x < y and x > 3 are imposed constraints. Thus, it can be inferred that

y ≥ 4. If later the constraint y ≤ 3 is added, a contradiction can be immediately

detect. Thus, each constraint has assigned a filtering algorithm that can reduce

domains of variables involved in constraints. The filtering algorithm removes the

values that cannot take part in any feasible solution. This algorithm is evoked every

time a variable’s domain is changed, and this change is propagated to domains of

other variables (Barták, 1999). Several techniques have been developed to propagate

constraints and reduce domains. Among these, the most well-known is the arc-

consistency, which is exploited by Brailsford et al. (1999).

Figure 2.1, which is adapted from Barták (2002), illustrates the constraint

propagation and the domain reduction mechanisms. In this figure, it is initially con-

sidered that the domains of variables x, y, and z are Dx = Dy = Dz = {1, 2, 3, 4, 5}.

As some hypothetical model constraints are imposed (x < y and z < x − 2), it

immediately leads to a significant reduction in the domain of all variables. In this

simple example, the domains of x, y, and z become singleton (Dx = {4}, Dy = {5},

Dz = {1}), and the values for x, y, and z are promptly determined.

The mechanisms of constraint propagation and domain reduction can be ap-

plied to reduce the search space of variables. However, while this may determine

whether a model is infeasible, it does not necessarily find solutions to the model. In

10 Chapter 2. CLP–MILP: Overview of Main Characteristics

x in {1,2,3,4,5}
y in {1,2,3,4,5}
z in {1,2,3,4,5}

x in {1,2,3,4}
y in {2,3,4,5}
z in {1,2,3,4,5}

x in {4}
y in {2,3,4,5}
z in {1}

x in {4}
y in {5}
z in {1}

x<y z<x-2 x<y

Figure 2.1: Constraint Propagation and Domain Reduction: A Simple Example.

order to do this, one must program a search strategy. Traditionally, the search facil-

ities provided by a constraint programming system have been based on tree search

(see section 2.3) with depth-first strategy for node selection. Depth-first has been

used because, in the context of computer programming, the issues regarding memory

management are dramatically simplified. Nevertheless, there are other alternative

strategies for node selection such as, best-first search, limited discrepancy search,

depth bounded discrepancy search, and interleaved depth-first search (Lustig and

Puget, 2001). In Smith (1995), a n-queens example is considered in detail in order

to show the effect of different search strategies.

Variables in CLP include types such as integer, boolean, symbolic, rational

numbers, real numbers. Thus, the set is richer than MILP, which would only include

integer, boolean, and real number types. In particular, the CLP field denominated

Finite Domain Constraint Logic Programming (FD-CLP) has developed specialized

algorithms to deal with variables that present finite-valued domains (Brailsford et al.,

1999).

Constraints in CLP can be of several types: mathematical constraints (a+ b =

c), conjunctive/disjunctive constraints (tasks A and B occur at different times),

relational constraints (at most two jobs should be allocated to machine number

three), explicit constraints (the pair (x, y) must be (1, 2) or (2, 3) or (4, 5)), unary

constraints (z is an integer between five and ten). Again, the set of types of con-

straints is essentially richer than the MILP set. In MILP all constraints must, by

convention, be linear. Within CLP, constraint operators such as =, ≥, ≤, >, <, ×,

÷, subset, union (∪), intersection (∩), boolean or (∨), boolean and (∧), boolean

xor (⊗), negation (¬), equivalence (↔), implication (→) are all permissible. In

general, CLP constraints can be translated into MILP constraints involving integer

2.1 Introduction to CLP 11

and linear variables, with varying degrees of difficulty. However, CLP admits the

types of listed operators in their immediate form, without translation. Thus, CLP

is stronger than MILP in its expressive power (Williams and Wilson, 1998).

Another important expressiveness feature of CLP relies on the development

of global constraint structures. Global constraints capture interesting substruc-

tures of a problem, serving to the model builder as building blocks of problem

statements. Operationally, global constraints are software components inside the

solver. They encapsulate dedicated inference algorithms based on feasibility reason-

ing. Global constraints infer which values are infeasible for a variable with respect

to the constraint-structure they represent, and provide information to the search

process on the most viable course. The most classical example of a global constraint

is the alldifferent predicate, which is largely used in scheduling problems (Williams

and Wilson, 1998). As it can be inferred from its name, the alldifferent global

constraint states that each variable takes a different value chosen from its domain

(e.g. the constraint alldifferent(x, y) states that x 6= y). According to Williams and

Wilson (1998) this global constraint is awkward to express in MILP. In the special

case of a disequality constraint involving two variables (e.g. x 6= y) the usual MILP

formulation requires the introduction of a “small quantity” denoted by ε (ε > 0), so

that if x ≥ y + ε or x ≤ y − ε then x 6= y.

One reason for introducing global constraints is that they allow the model

builder to represent a problem in a more “natural” and compact manner. The

availability of non-linear and high-level constraints gives a great scope to express

models, extending the potentialities of the modeling language. If practitioners can

write their models with as many global constraints as possible, this means that they

can change their modeling habits. However, the more important feature is that

global constraints open up the possibility of including structure specific propagation

into a general solver, which is extremely important for the solver computational

efficiency (Ottosson et al., 2001). Thus, the CLP modeling environment allows

incorporating some problem-specific features, which are used in dedicated solver

algorithms. There are different global constraints, such as atleast, atmost, exactly,

cumulative, element, circuit, sequence, etc, which are described, for instance, by

12 Chapter 2. CLP–MILP: Overview of Main Characteristics

Beldicenau and Contejean (1994) and by Hooker (2000).

The classical example of the Traveling Sales Person (TSP) can be used to

evidence the modeling benefits of using global constraints. Supposing that a sales-

person wants to visit a set E of cities, every city exactly once, such that the cost

of the tour is minimized. Let cij be the cost of going directly from city i to city j,

and let xij = 1 if the tour goes directly from i to j, 0 otherwise. Then the problem

can be written in the classical MILP approach, as illustrated in formulation 2.1.

In this formulation, the objective function is the first expression, which states the

cost minimization. The second and third equations ensure that exactly one edge of

the tour enters, and exactly one leaves each node (city). The fourth inequality is

the subtour elimination, ensuring that selected edges represent a Hamiltonian tour1,

and the last statement defines x as a binary variable (Thorsteinsson, 2001).

min
∑
i,j

cijxij

s.t.
∑

i

xij = 1 ∀j

∑
j

xij = 1 ∀i

∑
i,j∈S

xij ≤ |S| − 1 ∀S E

xij ∈ {0, 1} ∀i, j

(2.1)

In a CLP modeling framework, variables can appear in subscripts, which can

be of great value to the model builder. Thus, the factor cijxij that appeared in

formulation 2.1 can be replaced by the factor cjyj
, using the variable subscription

technique. In this case, yj is a general integer variable, which represents the city

in the tour after city j. The look up for coefficients (e.g. yj in cjyj
) is handled by

a global constraint denominated element (Bockmayr and Kasper, 1997). The TSP

formulation can be also dramatically simplified by the use of the global constraint

circuit, which states that y1, y2, . . . , yE describe a Hamiltonian tour. The final TSP

formulation, within a typical CLP framework, can be seen in 2.2. Hooker (2003)

1A path through a graph that starts and ends at the same node and includes every other node
exactly once (ILOG, 2002a).

2.2 Introduction to MILP 13

makes a detailed algorithmic explanation about formulation 2.2. The TSP remains

an NP-complete problem. The difference is that the MILP approach uses a complex

model and a generic solution algorithm; in the CLP approach, the model is simpler,

but the design of the propagation algorithm is more complicated. The work is shifted

from designing the model to designing the algorithm (Thorsteinsson, 2001).

min
∑

j

cjyj

s.t. circuit{y1, y2, . . . , yE}
(2.2)

CLP has been the basis for many commercially successful systems, which model

and solve real–life problems by using constraint (logic) programming techniques.

In particular, CHIP was the first CLP language to employ constraint propagation

(Hentenryck, 1989). Other examples of CLP-related systems are the constraint

handling libraries of ILOG (2001a) and COSYTEC (1995), and the CLP languages

Prolog III (Colmerauer, 1987), CLP(R) (Jaffar and Maher, 1994), ECLiPSe (Wallace

et al., 1997), CIAO (Hermenegildo, 1997), and clp(fd) (Codognet and Diaz, 1996).

Many hard applications have been successfully tackled using constraint related

technologies. Rossi (1999) provides a description of CLP applications in areas such

as network management, scheduling, transport problems, personnel assignment, con-

trolling electro-mechanical systems, constraint-based spreadsheets, interactive prob-

lem solving, graphical interfaces, over-constrained problems, circuit verification, re-

source allocation, timetabling, and many other combinatorial problems.

2.2 Introduction to MILP

Combinatorial Optimization Problems (COPs) are solved by choosing an op-

timal member (according to some well-defined criterion) of a finite, but often huge,

collection of alternatives. The MILP formulation of COPs is based on algebraic

specification of a set of feasible alternatives, as well as the objective criterion for

comparing alternatives. This is achieved by (Chandru and Rao, 1996):

(i) Introducing discrete-value decision variables (often 0-1 variables);

14 Chapter 2. CLP–MILP: Overview of Main Characteristics

(ii) Expressing the criterion as a linear function of variables;

(iii) Representing the set of feasible alternatives as the solutions to a conjunction

of linear equations and inequalities on variables.

Therefore, MILP provides a general framework for modeling a large variety

of problems such as planning, scheduling, packing, network design, supply chain

management, etc. However, MILP models remain challenging from a computational

standpoint: they are NP-complete or worse (see Garey and Johnson, 1979), and it

is widely believed that no general and efficient algorithm exists for solving them

(Chandru and Rao, 1996).

Expression 2.3 defines a general MILP formulation. In this expression, the cj’s

and the ci’s are referred to as cost coefficients, the akj’s are referred to as constraint

coefficients on continuous variables xj’s, the aki’s are referred to as constraint coef-

ficients on integer variables yi’s, the bk’s are referred to as requirements2, J is the

set of continuous variables, I is the set of integer variables, and K is the set of

constraints. The symbol ρ denotes mathematical relations, such as, ≤, ≥, and =.

A maximization model can be written as a minimization model by multiplying the

objective by (-1) and minimizing it.

min
∑
j∈J

cjxj +
∑
i∈I

ciyi

s.t.
∑
j∈J

akjxj +
∑
i∈I

akiyi {ρ} bk ∀k ∈ K

xj ≥ 0 ∀j ∈ J

yi ∈ Z+ ∀i ∈ I

(2.3)

MILP has been the subject of many books (e.g. Nemhauser and Wolsey, 1988;

Wolsey, 1998; Williams, 1999) and survey articles (e.g. Chandru and Rao, 1996; Sher-

ali and Driscoll, 2000; Bixby et al., 2000), which deeply exploit theoretical topics

such as simplex and interior point methods, column generation, branch-and-bound,

branch-and-cut, relaxations, polyhedron theory, etc. A practical and concise point

of view can be obtained in Magatão (2001). The author comments the resolution

2It is customary to gather all the constants to the right-hand side of an MILP constraint.

2.2 Introduction to MILP 15

of MILP models, and he highlights aspects concerning MILP modeling techniques

(number of binary variables, number of constraints, Big-M formulation, logical con-

ditions, etc). The author also develops detailed MILP formulations of a problem-

specific environment, demonstrating the potential and functionality of this OR mod-

eling/solving technique.

MILP is built on top of Linear Programming (LP) by adding the option of

integrality requirements of some variables (or all for ILP models). Most commonly,

0-1 variables represent no-yes, off-on, or false-true choices (decision variables), or

they are linked to some of the continuous variables (for details see Big-M formu-

lations in Schrage, 2000). A classical example of a 0-1 program is the Traveling

Salesperson Problem (TSP), previously illustrated in formulation 2.1 on page 12.

The underlying linear form is a natural part of the solution process of MILP mod-

els. The linear programming relaxation is obtained by “ignoring” the integrality

restrictions on integer variables. Therefore, the art of MILP rests on useful inter-

plays between search methodologies and linear programming relaxation (Chandru

and Rao, 1996). The effectiveness of MILP methods depends on both: (i) the size of

LP subproblems; (ii) the integrality gap3. Thus, at the core of any MILP off-the-shelf

software, a(n) (efficient) linear programming code is indispensable.

MILP modeling techniques allow the expression of some logical conditions be-

tween 0-1 variables (e.g. or, and, not, and xor) by means of linear constraints

(LINDO, 2002). This restricted form of problem representation has aided the for-

malization and modeling of problems. However, the lack of high-level modeling

constructs for disjunctions and combinatorial constraints makes the process of mod-

eling hard and error-prone. Thus, MILP programmers are becoming more aware of

inequality-based modeling limitations.

There exist, however, one example of a “global constraint” in MILP: the Special

Ordered Sets (SOS), which were primarily introduced by Beale and Tomlin (1970).

This constraint comes in two different forms: SOS-1, which is a set of variables within

3|(zr− zo)/zo|, where zr is the initial linear programming relaxed solution and zo is the optimal
solution. The smaller the relaxation gap, the faster the model tends to be solved. For an in-depth
explanation see, for instance, Wolsey (1998).

16 Chapter 2. CLP–MILP: Overview of Main Characteristics

exactly one variable must be non-zero, and SOS-2, which is a set of variables within

two variables can be non-zero, but they must be adjacent in the ordering. These

conditions can be modeled using linear inequalities, but there is great computational

advantage to be gained from treating these restrictions algorithmically (Nemhauser

and Wolsey, 1988; Williams, 1999). Examples where the SOS conditions might be

useful include depot siting, where a depot can be built at only one of a number

of possible positions (the SOS-1 condition), and in piecewise linear optimization,

where each piece can be modeled as the convex combination of its endpoints (the

SOS-2 condition). The SOS is, generally, a built-in feature in the most popular

MILP solvers.

MILP modeling takes place within fully declarative modeling languages, such

as AMPL (Fourer et al., 1990), GAMS (Brooke and Meeraus, 1982), LINGO (LINDO,

2002), XPRESS-MP (Guéret et al., 2002), and MPL (Maximal, 2005). The model

builder can state the model without describing the solution procedure, and the model

can be passed to different solvers by means of standard formats (for details see MPS

matrix in Schrage, 2000). High-level modeling languages often provide global con-

structs or simplified syntax to aid in modeling process. These constructions include

sum, set membership, set cover, vector operators, etc. In the end, however, the

high-level model is passed to a matrix generator and only the matrix is passed to

the solver. Thus, at the time the model is compiled, all the high-level constructs

must be determined by the matrix generator, since an MILP solver cannot process

them during the tree search. Thus, much of the problem structure is lost before

the problem reaches the solver algorithms. Furthermore, the black-box structure of

MILP solvers does not allow the users to directly interfere in the search process4.

In spite of the “disadvantages” of the black-box structure of MILP solvers, the

improvement of MILP codes (see Bixby, 2002) has contributed to widespread the use

of this OR optimization technique in real-world applications, with notorious results.

Kalvelagen (2003), for instance, reports the resolution of a large-scale MILP pro-

gressive party problem. Examples of MILP models for difficult scheduling problems

4Indeed, the user can manage some solver settings that, in theory, may influence the search
process conduction.

2.3 Search, Relaxation, and Inference 17

are given by Pekny and Reklaitis (1998), Shah (1998), and Pinto and Grossmann

(1998). Nevertheless, there is still a great number of hard problems (Garey and

Johnson, 1979), whose resolution would bring great benefits in day-to-day situa-

tions. Goldbarg and Luna (2000) describe some of these situations. In particular,

the integration of deeply studied MILP techniques with CLP technology seems to of-

fer a better chance of success in solving some hard COPs than the state-of-the-art of

either CLP or MILP techniques in separate frameworks (Heipcke, 1999). Therefore,

the integration CLP-MILP is a promising field5. Section 2.3 conveys the fundamen-

tal principles of CLP and MILP that guide the main opportunities for integrating

the techniques.

2.3 Search, Relaxation, and Inference

Although developed in different communities, with different perspectives, Con-

straint Logic Programming (CLP) and Mixed Integer Linear Programming (MILP)

share the same fundamental principles: search, relaxation, and inference . These

principles guide the main opportunities for integrating the techniques and, thus, are

herewith explained.

Search is the process of systematic exploration of a set (or space) of possible

solutions. In a simplified point of view, the search goal is to assign values to variables

to satisfy given constraints. A search algorithm is said to be exact if it finds a

solution (given enough time), in case of the solution exists; otherwise, the algorithm

reports the lack of solutions. For combinatorial optimization, most exact algorithms

are based on tree search, that is, they implicitly define a tree, where internal nodes

correspond to partial solutions, branches are choices (partitioning the search space),

and leaf nodes are complete solutions (Ottosson and Carlsson, 1997).

The branch-and-bound algorithm (Land and Doig, 1960) is an exact tree-based

search used in both CLP and MILP, although in slightly different shapes. In CLP,

the branching is combined with inference, which is aimed at reducing the amount

5Chapter 3 further investigates the computational advantages of the hybrid approach CLP-
MILP in comparison with the root techniques.

18 Chapter 2. CLP–MILP: Overview of Main Characteristics

of choices to be exploited. In MILP, the branching is intertwined with a relaxa-

tion analysis. This procedure eliminates the exploitation of nodes for which the

relaxation value is worse than the best solution found so far.

Within the class of tree-based search algorithms there exist numerous varia-

tions. Classically, one identifies three choices to make in each algorithm step:

(i) What node to continue exploiting;

(ii) What variable to branch on; and,

(iii) What (set of) values to restrict it to.

In addition to tree search, there are various schemes of approximate search,

such as genetic algorithms and neighborhood search. These iterative procedures

maintain one or more complete solutions, which are gradually improved. These

algorithms usually scale well on hard problems, but they can stuck in local optima

and, therefore, not guarantee to ever find the globally best solution (Glover and

Laguna, 1993).

A relaxation of a model, in a simplified point of view, is a formulation that

includes the set of feasible solutions to the model. The relaxation provides a lower

bound (assuming minimization), since the model optimal solution cannot be bet-

ter than the relaxation “best” solution. The relaxation also provides a point in

space around which the search can be centered and, in case of a good relaxation,

this point is close to the true solution. This fact is exploited in traditional MILP

branch-and-bound search, which branches on fractional values that violate the in-

tegrality requirements. The relaxation should (to be useful) satisfy two criteria

(Thorsteinsson, 2001):

(i) It should be faster to solve to optimality than the original formulation; and,

(ii) Its “solution structure” should resemble the original model as closely as possi-

ble (in order to provide strong bounds).

According to Hooker (2002), a clear distinction between MILP and CLP arises

in the relaxation feature. In general, MILP packages are built on the top of efficient

2.3 Search, Relaxation, and Inference 19

linear programming (LP) codes, which provide the “global relaxation” of a model6.

On the other hand, CLP lacks such global relaxation because constraint propagation

and domain reduction mechanisms operate “locally” in each constraint. Thus, when

looking for an optimal solution instead of just any feasible solution, the power of

LP plays a significant role.

An inference method attempts to derive a desired implication from a set

of constraints. Various forms of inference can occur in algorithms for combina-

torial optimization. In general, inference strengthens the model by adding valid

constraints, thus, reducing the search space. Inference acts in CLP by reducing

domains (the possible values of variables); in MILP, inference eliminates fractional

regions of the space solution by adding cutting planes. A cutting plane, in a simpli-

fied point of view, is a logical implication of a set of inequalities (this issue is deeply

addressed by Wolsey, 1998). Inference in CLP has traditionally been focused on fea-

sibility; constraint propagation removes only infeasible elements from domains, and

not suboptimal ones. On the contrary, inference in MILP has been optimization

oriented (e.g. cutting planes). Moreover, MILP preprocessing algorithms, which

eliminate variables or strengthen constraints, can be regarded as inference methods

(Thorsteinsson, 2001).

Inference in CLP and MILP takes different forms due to the difference between

the underlying solution techniques: constraint propagation versus linear program-

ming. Hooker (2002) highlights that inference can be very ineffective in CLP when

an equation contains many variables. Cost and profit functions tend to contain

many variables, representing the many activities that influence the cost or con-

tribute to profit. This fact often makes optimization problems hard to CLP. The

OR community escapes from this impasse by using continuous relaxations.

6Such “global relaxation” is obtained by dropping integrality requirements and solving an LP
resulting model.

20 Chapter 2. CLP–MILP: Overview of Main Characteristics

2.4 Remarks on Chapter 2

Sections 2.1, 2.2, and 2.3 have established a background knowledge about

the fundamentals of CLP and MILP, and described the underlying principles of

both techniques (search, relaxation, and inference). The next chapter (chapter 3)

assumes this background knowledge, and surveys a literature that is focused on the

integration of constraint programming devices and (mixed) integer programming

techniques.

Chapter 3

CLP–MILP: Introduction to a

Cluster of Articles

This chapter aims at presenting a
cluster of articles that have con-
tributed to the integration of CLP
and MILP.

3.1 Comparisons between CLP and MILP

Several papers compare CLP and MILP and propose schemes for integrat-

ing the underlying fundamental principles of both techniques (search, relaxation,

and inference). Sections 3.1 and 3.2 try to present the main contributions to this

integration process1.

Darby-Dowman et al. (1997) apply CP and IP to a set of real-world man-

ufacturing assignment problems. Models for both CP and IP are introduced and

discussed. The CP formulation is found to be closer to the problem structure, and

facilitates the application of heuristic searches and redundant constraints. Further-

more, the mechanism to control the search is more powerful in the CP solver, which

turns out to be valuable. For these problems, CP outperforms IP in both: CPU

1The reader should be aware that some articles herein clustered discuss the merge between CP
and IP rather than CLP and MILP. However, this chapter does not make distinctions between
CP-IP or CLP-MILP combinations. On the contrary, the integration of mathematical program-
ming techniques with constraint programming devices is broadly relevant, and, therefore, articles
conveying this subject are of interest.

22 Chapter 3. CLP–MILP: Introduction to a Cluster of Articles

time and robustness. The IP solver demonstrates difficulties to prove the solution

optimality. The paper also discusses and illustrates how CP could be integrated

with IP to increase the performance of the IP solver, but this integration is not

deeply exploited.

Darby-Dowman and Little (1998) expand the investigations made by Darby-

Dowman et al. (1997) and add three more problems for study. The new problems

are a golf scheduling problem, a crew scheduling problem, and a flow aggregation

problem. The results confirm some of the previous acclaimed properties of the

techniques. The golf scheduling problem is highly constrained, with an awkward

IP formulation with many variables and a weak linear relaxation, which makes the

problem hard to be solved with IP. In contrast, the CP formulation is more compact,

and CP solves the problem in a few seconds using a customized search procedure.

The opposite is true for the crew scheduling problem, which is easily solved using

IP, and where CP cannot find any good solution. The flow aggregation problem is

also easily solved with IP, while CP only produces suboptimal solutions in the same

time.

The article of Proll and Smith (1998) describes the use of IP to solve a practical

problem arising in the printing industry. Solution of the model proves elusive. The

problem is then modeled using CP in order to assess whether certain deficiencies of

the IP approach can be remedied. The article demonstrates some strengths of the

CP approach, and makes suggestion for generalizations of the ideas.

Yunes et al. (2000) present a crew rostering problem and solve it by means of

IP and CP approaches. Both models are discussed in detail. Lower bounds obtained

with LP relaxation are used to evaluate the quality of solutions. Furthermore, the

article presents a hybrid column generation approach that combines IP and CP.

Experiments are conducted upon real data sets, and the computational results of

the three solution methods are compared.

The article of Brailsford et al. (1996) contrasts IP and CP for the solution

of a specific discrete optimization problem. This problem arose in the course of

organizing the social program at a yacht rally. The problem proved to be difficult,

3.2 Modeling and Solving in a Combined CLP-MILP Approach 23

although it does not belong to a known category of combinatorial optimization

problems (it poses some similarities with school timetabling). The problem proved

intractable to IP alone, and CP was unable to find good (near optimal) solutions.

However, a combination of LP with CP provided a very fast method to find optimal

solutions of different problem instances.

Another well-studied example is the Progressive Party Problem (Smith et al.,

1996). This problem is a quite clear case when the linearity requirements of IP force

a very large and weak relaxation. In comparison, CP has a more compact model,

where variables have a direct mapping to the original problem decisions. The latter

allows better search strategies to be implemented. This fact, in combination with

the smaller model, makes CP perform better on this problem. Hooker and Osorio

(1999) have also studied this problem, and a model using global constraints is given

by Kay (1997).

The article of Brailsford et al. (1999) is a comprehensive review of CSPs, their

typical applications and solution methods. Moreover, this article also evaluates CP

as a technique for solving CSPs and compares it with IP. The criteria used for evalu-

ation include facility of implementation, flexibility to handle a variety of constraints

that occur in practical problems, computational time, and solution quality. The ar-

ticle concluded that CP compares favorably in terms of ease of implementation and

flexibility to add new constraints. Its performance with respect to solution quality

tends to be problem/data dependent.

3.2 Modeling and Solving in a Combined CLP-

MILP Approach

According to Focacci (2000), at least two main and complementary streams

for the integration of CP and OR modeling/solving techniques can be considered.

The first one is an algorithmic approach. Several studies follow this stream on dif-

ferent directions. An incomplete list of directions is the following: OR methods can

be used to remove uninteresting (infeasible or suboptimal) values from the domain

24 Chapter 3. CLP–MILP: Introduction to a Cluster of Articles

of variables within a CP framework; logical methods can be used to deduce valid

inequalities within a branch-and-cut framework; local search algorithms can be used

within a CP framework to speed up the convergence towards good solutions; consis-

tency algorithms can be used to some variables in an Integer Linear Program (ILP)

during a preprocessing step. The second stream is called an engineering approach.

New optimization languages such as OPL (ILOG, 2001b) propose a clear separation

between problem modeling and problem solving. In these languages, the model does

not imply a solving technology, but it is just a problem description. In general, soft-

ware engineering practice can be applied to OR approaches leading to more flexible

and modifiable code. In this sense, CP can be understood as software engineering

applied to OR (Puget, 1994).

In CLP, modeling has traditionally been done within a programming language.

In MILP, the problem is specified by the use of algebraic modeling languages, and

then translated to a matrix form. Barth and Bockmayr (1995) show that the basic

functionality of algebraic modeling languages can be realized in a CLP language.

Fourer (1998) proposes an extension of the algebraic modeling language AMPL that

incorporates modeling devices from constraint programming, but the author does

not address the issue of how solvers might cooperate to handle this extension.

COSYTEC, a French optimization company, has recently announced the in-

tegration of CHIP V5 (COSYTEC, 2005) constraint programming technology with

the leading edge linear programming engine from Dash Optimization company, the

XPRESS-MP (Guéret et al., 2002). The companies argue that the headway gained

by global constraints and the linear relaxation is made available in an intertwined

kernel, which is called XPRESS-CP.

Other approach is to combine CLP and MILP techniques by means of user-

written interface programs. Rodošek et al. (1999) combine the finite domain con-

straint solver ECLiPSe (Wallace et al., 1997) with the well-known mathematical

programming solver CPLEX (ILOG, 2001d). Heipcke (1999) used the mathemat-

ical programming technology of the XPRESS-MP associated with the SchedEns

(Colombani and Heipcke, 1997), a constraint programming system for solving nu-

3.2 Modeling and Solving in a Combined CLP-MILP Approach 25

merical constraints over unions of integer intervals.

A recent algebraic modeling system called Optimization Programming Lan-

guage (OPL), invokes both linear programming (ILOG Planner/CPLEX) and con-

straint programming (ILOG Solver) solvers. OPL is the core of ILOG OPL Studio,

an interactive modeling environment, which lets the user state optimization models

without the low-level complexities of ordinary programming languages. OPL allows

using both CLP constraints and a linear relaxation, although the interface allows

only limited forms of interaction. Links between CLP and LP are one-to-one map-

pings of variables. Model-specific search can be defined, overriding the default. A

review of the ILOG Optimization Suite can be obtained in ILOG (2001c).

Some research effort has been aimed at incorporating better support for sym-

bolic constraints and logic in IP. Hajian (1996) shows how disequalities can be

handled (more) efficiently in IP solvers. Furthermore, the author gives a linear

modeling of the alldifferent constraint by means of introducing non-zero variables.

This restriction is not expressed as constraints in the model, but rather handled

implicitly through an extension to the branch-and-bound algorithm. This is similar

to how SOS variables are usually treated2. The expression of logical relationships

in 0-1 (in)equalities is a well-studied subject, such as presented by McKinnon and

Williams (1989) and Williams (1995). Mitra et al. (1994) present a tool for ex-

pressing these (in)equalities. Logical relationships expressed in (in)equalities can

be solved in an LP solver and used for complementing logical constraints in a CLP

framework. Many schemes for logic-based branching in IP (e.g. Raman and Gross-

mann, 1993; Raman and Grossmann, 1994) can be seen as a step towards CLP,

whether they were the source of inspiration or not (Hooker, 2002).

Bockmayr and Kasper (1997) develop a branch-and-infer framework to unify

solution algorithms. The authors suggest ways in which algorithms for both types

of approaches may be combined. They extended the classes of constraints that the

algorithms can handle, either in relaxed or exact form. They propose a framework

for combining finite domain CP and IP in which several approaches to integration or

2Special Ordered Sets (SOS) are explained in section 2.2.

26 Chapter 3. CLP–MILP: Introduction to a Cluster of Articles

synergy are possible. They investigate how symbolic constraints can be incorporated

into IP, much as cutting planes are. The authors also show how a linear system of

inequalities can be used in CP by incorporating it as a symbolic constraint. Fur-

thermore, they discuss a closer integration in which linear inequalities and domains

appear in the same constraint store.

Rodošek et al. (1999) use CLP along with LP relaxations in a single tree search.

This integration tightens bounds rather than adds constraints during the search.

The integrated system combines components of the CLP system ECLiPSe (Wallace

et al., 1997) and the MILP system CPLEX (ILOG, 2001d). The model builder may

annotate constraints to indicate which solver should handle them (CLP, MILP, or

both). The hybrid algorithm reduces the solution space by calling finite domain

propagation of ECLiPSe, as well as dual simplex of CPLEX. A node can fail by two

different causes: (i) propagation produces an empty domain; (ii) the LP relaxation is

infeasible or has a value that is worse than the “temporary optimal” solution value.

Moreover, the linear relaxation can be strengthened by adding cutting planes. The

results of such integration are illustrated by efficiently solving difficult optimization

problems (the progressive party problem and the hoist scheduling problem), while

neither the CLP nor the MILP solvers were able to solve them in reasonable time.

Carlsson and Ottosson (1999) compare CP, IP, and a hybrid algorithm for a

configuration problem. Linear relaxations, branch-and-bound search, cutting planes,

and preprocessing are experimented in both, pure and mixed variants. Computa-

tional experiments show that, for this problem, linear relaxations and cutting planes

are the most important factors for computational efficiency.

There are also approaches where the constraint programming and mathemat-

ical programming models are not merged. Heipcke (1999) proposes a scheme where

two different models, which are formulated according to finite domain CP and MILP

techniques, are separately solved in two synchronized search trees. The models are

linked by variables, which provide information exchange between solvers. This ap-

proach is called double modeling : a problem is formulated in both systems, and com-

munication modules connect corresponding decision variables. During the search,

3.2 Modeling and Solving in a Combined CLP-MILP Approach 27

each software handles its own tree search, and the communication modules coordi-

nate the two-part status. The reasoning behind this approach is that each software

is implemented in a way that best suits the specific needs of its genuine techniques.

In the finite domain CP framework, the constraint propagation mechanism dictates

the system architecture, whereas in MILP it is necessary to handle the matrices in

an efficient way.

Jain and Grossmann (1999) present a scheme where the problem is decomposed

into two sub-parts, one handled by IP and one by CP. This is exemplified with

a multi-machine scheduling problem, where the assignment of tasks to machines

is formalized as an IP, and the sequencing of tasks on the assigned machines is

handled with CP. The implemented search scheme is an iterative procedure, where

first an assignment model is solved to optimality (identifying which machine to use

for each task), and then a feasibility model is solved by CP, trying to sequence tasks

according to the previous assignment. If the sequencing fails, cutting planes are

added to the IP formulation, and the process is iterated.

Harjunkoski et al. (2000) combine mathematical programming and CLP in the

area of job-shop scheduling and trim-loss problems. They propose two hybrid ap-

proaches: first, they consider a decomposition strategy in which they iterate between

an MILP master model and a feasibility CLP model; second, they reformulate the

solution of a bilinear MINLP (Mixed Integer Non-Linear Programming) model as

the solution of an MILP, followed by the iterative solution of a feasibility CLP sub-

model. The authors compare the two hybrid approaches, and the numerical results

are encouraging.

Harjunkoski and Grossmann (2002) present two strategies to reduce the com-

binatorial complexity of solving single stage and multistage optimization scheduling

problems that involve cost minimization, due dates, and sequence independent setup

times. The problems are decomposed into assignment and sequencing subproblems.

The proposed strategies rely on either combining MILP to model the assignment

part and CLP for modeling the sequencing part, or combining MILP models for

both parts. Results are presented for both single and multistage systems. The

28 Chapter 3. CLP–MILP: Introduction to a Cluster of Articles

authors stated that MILP evaluates all constraints simultaneously, while CLP eval-

uates the effect of constraints sequentially, by communication through the domain

of variables. Consequently, it is generally difficult to obtain the optimal solution

for loosely constrained CLP models. On the other hand, MILP methods require all

constraints to be linear equalities or inequalities due to the LP based model. This

restriction does not apply for CLP formulations.

In some models constraint programming solvers can be more efficient for finding

a satisfying solution, but not perform as well as MILP for finding and proving

optimality. Hajian et al. (1995) describe how the ECLiPSe (finite domain) constraint

system is used to find a good feasible initial solution to a fleet assignment problem.

The initial solution is then used to “warm-start” a traditional branch-and-bound

MILP solver that, on its own, had problems in finding a starting point.

Apart from the various optimization schemes centered on (Mixed) Integer Pro-

gramming, the OR community has developed a wide range of algorithms for specific

problems, such as scheduling, routing, allocation, packing, and network flows. Some

efforts have been taken in order to encapsulate these algorithms in global constraints

of CLP (e.g. Baptiste et al., 2001).

The computational studies of hybrid solvers rise a quite large body of evi-

dences that a hybrid CLP-MILP approach can bring both modeling and algorithmic

advantages. It includes computational studies involving chemical process design

(Raman and Grossmann, 1991; Türkay and Grossmann, 1996), distillation network

design (Grossmann et al., 1994; Raman and Grossmann, 1994; Hooker and Os-

orio, 1999), truss structure design (Bollapragada et al., 2001), machine schedul-

ing (Heipcke, 1999; Jain and Grossmann, 1999), highly combinatorial scheduling

(Hooker and Osorio, 1999; Rodošek et al., 1999), production planning and trans-

portation with piecewise linear functions (Thorsteinsson, 2001), warehouse loca-

tion (Bockmayr and Kasper, 1997), traveling salesman problem with time windows

(Focacci, 2000), to name a few.

3.3 Other Hybrid Approaches 29

3.3 Other Hybrid Approaches

In addition to the integration of CLP and MILP, other hybrid approaches have

been investigated. However, it is beyond this thesis’ scope to survey other directions

that have gained interest. In particular, two promising fields are:

(i) The combination of Local Search (LS) and CP, which is explored, for example,

by Pesant and Gendreau (1996) and De-Baker et al. (2000);

(ii) The combination of Generalized Disjunctive Programming (GDP) with MILP

(e.g. Pinto and Grossmann, 1997; Vecchietti and Grossmann, 2000).

GDP is based on the idea of representing discrete and continuous optimization

problems through equations, disjunctions, logic propositions, and also boolean and

continuous variables. CLP is similar to GDP because it also involves equations, logic

statements and disjunctions. However, the most important difference is that CLP

has high-level procedural constructs (global constraints), which aid the formulation

of models in compact forms. In contrast, GDP gives rise to declarative models, which

are expressed through explicit equations. Furthermore, GDP models can be solved

through branch-and-bound, or reformulated as MILP models; CLP models are solved

with the aid of implicit enumeration techniques: domain reduction and constraint

propagation (Harjunkoski and Grossmann, 2002). Vecchietti and Grossmann (2000)

made a comparison between CLP and GDP with several constraint transformations

from CLP to GDP.

3.4 Mixed Logical Linear Programming (MLLP)

One of the most promising directions for integrating MILP and CLP tech-

niques is called Mixed Logical Linear Programming (MLLP). MLLP is a general ap-

proach to formulating and solving optimization problems, which have both discrete

and continuous elements. The motivation behind MLLP is that many mixed dis-

crete/continuous models are traditionally conceived as continuous models in which

some of the variables are restricted to be integers. However, many integer variables

30 Chapter 3. CLP–MILP: Introduction to a Cluster of Articles

are often used only to model a given logical constraint, and serve no real purpose

in the model relaxation. Therefore, in the MLLP framework, discrete functions and

continuous functions are separated.

MLLP has been deeply explored by Hooker and Osorio (1999), Harjunkoski

et al. (2000), and Thorsteinsson (2001). The authors advocate that, to get the

best from both CLP and MILP, it is necessary to reconsider the modeling process of

CLP and MILP. They suggest using neither the CLP model nor the MILP model but

rather a whole new model, designed specifically for a hybrid solver. This approach

roughly separates the model into a discrete part, the Finite Domain Store (FD-store),

and a continuous part, the Linear Programming Store (LP-store). In this model,

one can achieve domain reduction on the FD-store using constraint propagation.

Inference from the FD-store can be applied to the LP-store using bounds, cutting

planes, and a natural relaxation (the LP relaxation). The authors argue that the

key to effective integration lies in the design of the modeling language, and their

aim is to design a model that can suit the traditional solvers rather than adjust the

solvers to suit the traditional models.

MLLP assumes that an LP solver and a branching mechanism are available.

Its constraints are written as conditional statements of the form D ⇒ C, where the

antecedent D (Discrete) is a constraint involving discrete variables and the conse-

quent C (Continuous) is a system of linear inequalities. This conditional structure

relates to a branching algorithm in a natural way. At each node of the branching

tree, the values of the discrete variables may be fixed or restricted in such a way

as to satisfy some of the antecedents D. The corresponding consequents C form an

LP constraint set that is passed to an LP solver. Checking whether partially de-

termined discrete variables satisfy the antecedents is an inference problem that can

be attacked with constraint propagation and domain reduction methods, developed

within a CLP framework. The MLLP language architecture not only provides the

useful modeling devices associated with constraint satisfaction, but also captures

continuous and discrete elements in a way that appears convenient for a wide range

of problems (Thorsteinsson, 2001).

3.4 Mixed Logical Linear Programming (MLLP) 31

In an MLLP framework, CLP can enhance the search by reducing domains of

variables, tightening the linear relaxation by adding bounds and cuts (in addition

to classical cutting planes), and eliminating search for symmetric solutions. MILP,

on the other hand, can be used to find relaxed solutions, and to prove infeasibility.

In order to get the best from both methods, a whole new general model is defined,

as illustrated in formulation 3.1.

min cx

s.t. hi(y) → Aix ≥ bi i ∈ I

x ∈ Rn y ∈ D

(3.1)

In formulation 3.1, c is a cost vector, x is a vector of n continuous variables,

Ai is a set of constraint coefficients, bi is a set of constraint requirements, and y is a

vector of discrete variables. D is the cartesian product of some discrete domains and

I represents the set of constraints. The antecedents hi(y) are constraints that can

be treated with CLP techniques. The consequents are linear inequality systems that

can be inserted into an LP relaxation. A linear constraint Ax ≥ b, which should be

unconditionally enforced, may be written in the conditional form: “true”→ Ax ≥ b.

The absence of discrete variables from the objective function can be algorithmically

useful. Costs that depend on discrete variables can be represented with conditional

constraints. For example, the objective function
∑

j cjxj, where xj ∈ {0, 1}, can

be written
∑

j zj, with constraints (xj = 1) → (zj = cj) and zj, cj ≥ 0 for all j

(Thorsteinsson, 2001).

An MLLP model is solved by branching on the discrete variables. The condi-

tionals assign different functions to CLP and LP algorithms. CLP is applied to the

discrete constraints in order to reduce the search and help determine when partial as-

signments satisfy the antecedents. At each node of the branching tree, an LP solver

minimizes cx subject to the inequalities Aix ≥ bi, for which hi(y) is determined to

be true. This delayed posting of inequalities leads to small and lean LP models that

can be efficiently solved. A feasible solution is obtained when the truth-value of

every antecedent is determined and the LP solver finds an optimal solution, subject

to the enforced inequalities. More precisely, the algorithm conducts a tree search

32 Chapter 3. CLP–MILP: Introduction to a Cluster of Articles

by branching on values of the discrete variables yi. When branching on yi, the al-

gorithm defines each branch by restricting the domain of yi to a different subset D̄i

of the original domain Di. The variable yi is fixed to a particular value when Di is

restricted to a singleton (Thorsteinsson, 2001). A more detailed description of the

MLLP solution algorithm can be obtained in Hooker et al. (2000). Furthermore,

Ottosson et al. (2002) introduce new symbolic constraints to MLLP, and show how

these constraints can be used to model piecewise linear functions.

It is important to highlight that the MLLP framework does not demand the

invention of new optimization methods. On the contrary, one may use all existing

techniques for CLP and LP. In general, a solver based on MLLP should be able

to compete with MILP solvers and CLP solvers. Some computational results for

specific problem instances can be obtained in Thorsteinsson (2001).

3.5 Choosing CLP or MILP

Solution methods for both CLP and MILP usually rely on tree search, as pre-

viously explained in chapter 2. In CLP the core-engines are constraint propagation

and domain reduction. MILP relies on setting bounds on integer variables and cre-

ating relaxation submodels that can be solved by LP methods. Whereas MILP

alters bounds, CLP alters domains of variables. Some comparative studies between

CLP and MILP implementations have been done during the last years, as previously

stated in sections 3.1, 3.2, and 3.4, but no general guidelines have been established so

far. Thus, it is difficult to give any general recommendation on using CLP, MILP,

or a combined approach. Heipcke (1999) explains that a combined approach can

suffer from inherited drawbacks, and performing poorer than the root techniques.

Herewith are some observations for choosing CLP or MILP based on the analysis of

articles presented in sections 3.1, 3.2, and 3.4.

There are some reasons to represent and solve a problem by CLP rather than

by MILP. The two main ones are the following:

(i) The representation as a CLP model is often much closer to the original prob-

3.5 Choosing CLP or MILP 33

lem: the CLP variables directly correspond to problem entities, and the CLP

constraints do not need to be linear. This makes the formulation simpler, the

solution easier to understand, and the choice of good heuristics to guide the

solution strategy more straightforward;

(ii) The CLP modeling vocabulary is richer than the MILP one. As a result, not

all CLP expressions can be easily converted into an equivalent MILP form,

and it might not be possible to represent a CLP model in an efficient MILP

formulation.

In cases where the domains of variables are large or the constraints involve a

large number of variables, constraint propagation may not be very successful leav-

ing (presumably) large domains to be searched afterward. Sometimes the original

formulation of a CLP model makes hard to determine if there is any solution at all.

In these cases, it might be preferable to use an MILP approach to conclude whether

a solution exists or not.

When the constraints are linear or easily translated to a linear form, integer

programming might be preferred. In addition, when looking for an optimal solution

to a given problem, and not just any feasible solution, the power of linear program-

ming plays a significant role; the LP relaxation can be fruitfully used to establish

bounds that help reducing the search space.

The research of Heipcke (1999) involves several examples of finite domain CP

and MILP, and it demonstrates that each technique might be advantageous in some

cases. Typically, MILP approaches are better for genuinely linear constraints (e.g.

the knapsack constraints), whereas CP profits from any further knowledge that may

be directly incorporated into the formulation of complex (non-linear) constraint rela-

tions. In Heipcke (1999), the author identified factors that influence the applicability

and success of each technique separately or in combination. However, Heipcke high-

lighted that it is difficult to give a detailed decision rule merely based on the studied

examples. Herewith are the main observations made by Heipcke (1999):

(i) If it is easy to construct feasible solutions based on partial instantiations, CP

34 Chapter 3. CLP–MILP: Introduction to a Cluster of Articles

alone or in combination quickly leads to feasible solutions;

(ii) If the objective function can be estimated from a (small) subset of the decision

variables, enumeration in CP prioritizing these variables quickly gives good

solution estimates;

(iii) If the constraints are genuinely linear, the MILP approach may be better

suited, but if MILP requires some kind of linearization, CP usually profits

from a model that is closer to the original problem;

(iv) Search strategies may profit from a problem specific knowledge (CP preferable)

or a structural point of view (MILP preferable);

(v) Valuable information to cut off branches can be obtained from the LP relaxa-

tion;

(vi) If the LP solution is close to being integral, CP based rounding heuristics may

be successful in a combined approach;

(vii) It is valid to verify whether local or global techniques are more adapted to the

nature of a problem: CP consistency algorithms operate “locally” on subsets

of variables and constraints; MILP works on the matrix as a whole.

Lustig and Puget (2001) indicate that CLP tends to be better than MILP in

applications that concern sequencing and scheduling, and for problems in which an

MILP formulation contains much symmetry. In addition, strict feasibility problems

are good candidates for applying CLP techniques. MILP seems to be superior for

models in which the linear programming relaxations provide strong bounds for the

objective function.

According to Hooker and Osorio (1999), it is likely that traditional optimiza-

tion techniques such as MILP, CLP, and LS will be combined in many more ways in

the future. Eventually, the border between different search strategies will become

blurred, and search will become seamlessly intertwined with relaxations, inference

and other techniques aimed at reducing the search needed. However, the authors

highlight that such integration is dependent on the research interest of two fields:

3.5 Choosing CLP or MILP 35

(i) Development of robust and widely acceptable integration schemes for optimiza-

tion and constraint programming;

(ii) Development of generic modeling languages to integrate CLP and MILP.

In the following chapter (chapter 4), the issue (ii) is somehow addressed. Chap-

ter 4 surveys the directives for the development of high-level MILP modeling struc-

tures. These structures can be used to straightforward formulate MILP models. As

the CLP formulation tends to be easily created, a combined CLP-MILP approach

with high-level MILP structures certainly facilitates the model builder task, and can

be seen as a step towards the integration of both techniques.

36 Chapter 3. CLP–MILP: Introduction to a Cluster of Articles

Chapter 4

MILP: Modeling Structures

This chapter surveys the directives
for the development of high-level
MILP modeling structures. These
structures can be used to straight-
forward formulate MILP models.

4.1 Building MILP Models

Building models is one of the most creative aspects of Operations Research

and it is presumed to be more of an art than a science. The representation of

complex OR problems in an easy way has been a long-lasting concern, along with the

identification of a suitable solution method for a particular problem. Furthermore,

building LP/MILP models remains a challenging task because each model has its

own unique features (Murphy and Panchanadam, 1997). Jeroslow and Lowe (1984)

say that the automatic transformation of a user description to a formal MIP is one

of the most difficult issues to be addressed in the OR field. Without an efficient

formulation process, it is difficult to narrow the gap between model builders and

decision makers. Therefore, either in a traditional MILP framework or in a combined

CLP-MILP approach, the MILP formulation is a difficult task, mainly because it

has implicit logical meaning incorporated into constraints.

Some attempts have been presented in the literature in order to translate qual-

itative specification of problems into MIP optimization models. In particular, this

38 Chapter 4. MILP: Modeling Structures

chapter henceforth investigates the parallels between logical inference and optimiza-

tion that are aimed at helping the MILP modeling task. Nevertheless, the connection

between logical inference and optimization methods is a broad field of study, which

is, for instance, well discussed by Chandru and Hooker (1999).

Most of the pioneering work in the logic/optimization interface was done, no-

tably, by Jeroslow and Lowe (1984), Williams (1987), and McKinnon and Williams

(1989). Jeroslow and Lowe (1984) used IP to solve inference problems and intro-

duced a number of other seminal ideas, as well as Williams (1987) did. McKinnon

and Williams (1989) created a modeling language for IP based on nested represen-

tations of the “greater-than-or-equal” predicate. This procedure was implemented

in Prolog (Colmerauer, 1987), but it was not integrated into a modeling system.

Furthermore, Williams (1995) surveys the many connections between the methods

of computational logic and integer programming. The author shows how computa-

tional problems arising in formal logic can be solved by IP, and how the methods of

logic are applicable to modeling and solving IP.

The papers of Hadjiconstantinou and Mitra (1994) and Mitra et al. (1994)

demonstrate that propositional logic statements can be expressed as linear equal-

ities or inequalities involving zero-one variables. The authors argue that the real

way forward to the model building process is to capture knowledge in the qualita-

tive logic form and reformulate it in the quantitative discrete optimization form,

which is amenable to solution by well-established and efficient computational meth-

ods. Sharing the same fundamental principle, Yeom and Lee (1998) describe logical

operators to assist the formulation of IP models. These operators are subsequently

transformed to a solvable conventional IP form. Hürlimann (1998) presents a pro-

cedure that translates logical constraints into mathematical constraints containing

zero-one variables. The procedure has been integrated with the modeling language

LPL (Hürlimann, 2000). LPL (Linear Programming Language) can be used to for-

mulate models that contain mathematical and logical constraints. LPL subsequently

translates logical constraints into the equivalent integer form.

Floudas (1995) presents some guidelines in modeling MI(N)LP. The author

4.1 Building MILP Models 39

separates the guidelines in four topics: (i) modeling with 0-1 variables (including the

use of propositional logic expressions); (ii) modeling with continuous and linear 0-1

variables (including activation and relaxation of constraints, either-or constraints,

and constraint functions in logical expressions); (iii) modeling with bilinear products

of continuous and 0-1 variables; (iv) modeling nonlinearities of continuous variables.

These guidelines are exemplified in the chemical process synthesis context, and,

unfortunately, they are just briefly discussed.

A series of papers of Raman and Grossmann (e.g. Raman and Grossmann,

1991; Raman and Grossmann, 1992; Raman and Grossmann, 1993; Raman and

Grossmann, 1994) shows that qualitative knowledge expressed in propositional logic

form has an equivalent representation as linear equations and inequalities. These

papers are particularly applied to chemical process synthesis.

In Raman and Grossmann (1991), the authors illustrated how logic relations

and heuristics expressed in the form of propositional logic can be represented in terms

of linear inequalities involving 0-1 variables. Based on this representation, Raman

and Grossmann (1992) proposed the integration of logic and heuristic knowledge

using a quantitative framework. The authors considered the addition of constraints

for the logic relations among units in the MI(N)LP to decrease the relaxation gap1.

Constraints for heuristic rules and logic relations were used to improve the search in

a master MI(N)LP approach. The computational results showed that the addition

of logic constraints in MILP models often produces significant computational time

reductions.

In Raman and Grossmann (1993), the authors studied the symbolic integration

of logic in mixed integer linear programming techniques. Once more, the application

was focused on chemical process synthesis. The main objective was to reduce the

number of enumerated nodes by using the logic to decide on the branching of vari-

ables, and to determine, by symbolic inference, whether additional variables should

be fixed at each node. Therefore, the authors proposed a branch-and-bound method

that performs logical inferences at each node.

1The relaxation gap is defined in section 2.2.

40 Chapter 4. MILP: Modeling Structures

In Raman and Grossmann (1994), a solution algorithm that generalizes the

method presented in Raman and Grossmann (1993) is proposed. Thus, it is possible

to notice that the papers of Raman and Grossman focused on not only the formula-

tion of propositional logic statements as linear inequalities, but also on how to use

logical inference in search procedures.

Last but not least, there is always useful information about model building

techniques for MILP in the classical book of Williams (1999).

4.2 Reformulation of Logical Relations

The literature previously cited in section 4.1 indicates that connections be-

tween logic and integer programming can be fruitfully used to the construction of

mathematical programming models. Therefore, this connection is herewith further

investigated. Section 4.2 explains modeling techniques that help transform some log-

ical relations with special, for instance nonlinear, features into conventional mixed

integer linear programming models. In particular, in section 4.2.3, this thesis ex-

pands some modeling features presented in Hadjiconstantinou and Mitra (1994),

Mitra et al. (1994), and Hürlimann (1998).

4.2.1 Basic Logic Concepts

A basic concept used in propositional logic is the statement. A statement

defines a declarative sentence, which is either true or false. A statement is also

called an atomic proposition. A proposition can take one of the truth values true

(abbreviated by T) or false (abbreviated by F). As no other value is permitted, the

calculus of propositions is referred to as a two-valued logic. Propositional calculus

enables compound propositions to be formed by connecting simple statements with

logical connectives. The primary logical connectives are negation (¬p), conjunction

(p∧ q), and disjunction (p∨ q), which are understood to represent the semantics of,

respectively, not, and, or. However, an additional set of logical connectives, which

can be derived from the primary ones (see table 4.2), are also important: implication

4.2 Reformulation of Logical Relations 41

(p → q: if p then q), equivalence (p ↔ q: p if and only if q), exclusive disjunction

(p⊗ q: p xor q), joint denial (¬(p ∨ q): p nor q), and non-conjunction (¬(p ∧ q): p

nand q). Table 4.1 presents the truth values for the main logical connectives2.

Table 4.1: Truth Table of Logical Connectives.

p q ¬p p ∧ q p ∨ q p → q p ↔ q p⊗ q ¬(p ∨ q) ¬(p ∧ q)

0 0 1 0 0 1 1 0 1 1

0 1 1 0 1 1 0 1 0 1

1 0 0 0 1 0 0 1 0 1

1 1 0 1 1 1 1 0 0 0

Two expressions are said to be “equivalent” if and only if their truth values

are the same, and this is expressed as p ≡ q (p is equivalent to q). The well-known

De Morgan’s laws are examples of logical equivalences:

(i) First law: ¬(p ∨ q) ≡ ¬p ∧ ¬q;

(ii) Second law: ¬(p ∧ q) ≡ ¬p ∨ ¬q.

By De Morgan’s laws, conjunction can be expressed in terms of negation and

disjunction, and disjunctions can be expressed in terms of negation and conjunctions.

A general compound proposition in the form R1 ∧R2 ∧ . . . ∧Rn, in which every Ri,

i = 1, 2, . . . , n, is a disjunction of atomic propositions is called Conjunctive Normal

Form (CNF). A general compound proposition in the form S1 ∨ S2 ∨ . . . ∨ Sn, in

which every Si, i = 1, 2, . . . , n, is a conjunction of atomic propositions is called Dis-

junctive Normal Form (DNF). Table 4.2, which is adapted from Hadjiconstantinou

and Mitra (1994), indicates the transformation of logical statements into equivalent

forms.

2The numerical values one (1) and zero (0) are used to represented, respectively, true (T) and
false (F) atomic propositions.

42 Chapter 4. MILP: Modeling Structures

Table 4.2: Transformation of Logical Statements into Equivalent Forms.

Statement Equivalent Form Observations

¬¬p p double negation

p⊗ q (¬p ∧ q) ∨ (p ∧ ¬q) exclusive OR (either p or q)

¬(p ∨ q) ¬p ∧ ¬q De Morgan’s law

¬(p ∧ q) ¬p ∨ ¬q De Morgan’s law

p ∧ (q ∨ r) (p ∧ q) ∨ (p ∧ r) distributive law

p ∨ (q ∧ r) (p ∨ q) ∧ (p ∨ r) distributive law

p → q ¬p ∨ q implication (if p then q)

p → q ∧ r (p → q) ∧ (p → r) implication

p → q ∨ r (p → q) ∨ (p → r) implication

p ∧ q → r (p → r) ∨ (q → r) implication

p ∨ q → r (p → r) ∧ (q → r) implication

p ↔ q (p → q) ∧ (q → p) equivalence (p if and only if q)

p ↔ q (p → q) ∧ (¬p → ¬q) equivalence

4.2.2 Connecting Logical Variables

The basic logic concepts previously described in section 4.2.1 are, in fact, a

background knowledge for the main objective of this chapter: the expression of

logical relations into a system of mixed integer linear programming constraints.

This problem was already addressed, with different emphases (see section 4.1), by

Raman and Grossmann (1991), Hadjiconstantinou and Mitra (1994), Mitra et al.

(1994), Floudas (1995), Yeom and Lee (1998), and Hürlimann (1998). In order

to explain the underlying principles of reformulating logical relations into MILP

constraints, this thesis follows the same train of reasoning of Hadjiconstantinou and

Mitra (1994), in which the authors distinguished two main topics, namely:

(i) Connecting logical variables (explained in this section (section 4.2.2)); and,

(ii) Logically related linear form constraints (explained and expanded in section 4.2.3).

4.2 Reformulation of Logical Relations 43

Initially, let’s consider that pk denotes the kth logical statement, which takes

values true (T) or false (F), and represents an atomic proposition describing an

action, option, or decision. Furthermore, each type of action (or option) has asso-

ciated an integer variable. This variable, known as the binary decision variable, is

denoted by δk, and can only take the values 0 and 1. The connection of δk with the

propositions is defined by the following relations: δk = 1 if and only if proposition

pk is true, and δk = 0 if and only if proposition pk is false. Logical conditions linking

the different actions in a model are achieved by expressing these conditions as linear

constraints connecting the associated decision variables. For example, the statement

p1 ∨ ¬p2 can be associated with the IP formulation δ1 + (1− δ2) ≥ 1.

Table 4.3, which is adapted from Hadjiconstantinou and Mitra (1994), presents

a list of standard form “variable transformations”. These transformations can be ap-

plied to compound statements involving one or more atomic propositions pk, whereby

the compound statements are restated in linear algebraic forms involving decision

variables δk. The expressions involving pk’s and δk’s are logically equivalent.

Just in order to illustrate the use of tables 4.1 to 4.3, the logical expression

(p1 ∨ p2 ∨ p3) ∧ (¬(p1 ∧ ¬p3)) is herein translated to an equivalent linear constraint

form. By table 4.2, ¬(p ∧ q) ≡ (¬p ∨ ¬q), and ¬¬p ≡ p. Therefore, the initial ex-

pression can be rewritten as (p1 ∨ p2 ∨ p3) ∧ (¬p1 ∨ p3)
3. By table 4.1, ¬p ≡ (1− p).

Thus, by tables 4.1 and 4.3, (p1 ∨ p2 ∨ p3) ≡ (δ1 + δ2 + δ3 ≥ 1), and (¬p1 ∨ p3) ≡

((1− δ1) + δ3 ≥ 1), therefore, (¬p1 ∨ p3) ≡ (δ1 − δ3 ≤ 0). Hence, the initial logical

expression can be rewritten as indicated in equivalence 4.1.

(p1 ∨ p2 ∨ p3) ∧ (¬(p1 ∧ ¬p3)) ≡

 δ1 + δ2 + δ3 ≥ 1

δ1 − δ3 ≤ 0
(4.1)

Equivalence 4.1 is just a small example of a compound logical proposition that

is translated into a set of constraints involving indicator variables. However, a huge

set of different compound logical expressions can be specified, thus, it is necessary

to establish a systematic procedure to translate such expressions into conventional

3At this point, the original expression is in the form R1 ∧R2, where R1 and R2 are disjunctions
of atomic propositions: R1 = p1 ∨ p2 ∨ p3; R2 = ¬p1 ∨ p3.

44 Chapter 4. MILP: Modeling Structures

Table 4.3: Variable Transformations: Logic Statement versus Linear Constraint.

Statement Linear Form Constraint

¬p1 δ1 = 0

p1 ∨ p2 δ1 + δ2 ≥ 1

p1 ⊗ p2 δ1 + δ2 = 1

p1 ∧ p2 δ1 = 1, δ2 = 1

¬(p1 ∨ p2) δ1 = 0, δ2 = 0

¬(p1 ∧ p2) δ1 + δ2 ≤ 1

p1 → ¬p2 δ1 + δ2 ≤ 1

p1 → p2 δ1 − δ2 ≤ 0

p1 ↔ p2 δ1 − δ2 = 0

p1 → p2 ∧ p3 δ1 ≤ δ2, δ1 ≤ δ3

p1 → p2 ∨ p3 δ1 ≤ δ2 + δ3

p1 ∧ p2 → p3 δ1 + δ2 − δ3 ≤ 1

p1 ∨ p2 → p3 δ1 ≤ δ3, δ2 ≤ δ3

p1 ∧ (p2 ∨ p3) δ1 = 1, δ2 + δ3 ≥ 1

p1 ∨ (p2 ∧ p3) δ1 + δ2 ≥ 1, δ1 + δ3 ≥ 1

p1 ∨ p2 ∨ . . . ∨ pn δ1 + δ2 + . . . + δn ≥ 1

p1 ⊗ p2 ⊗ . . .⊗ pn δ1 + δ2 + . . . + δn = 1

p1 ∧ . . . ∧ pk → pk+1 ∨ . . . ∨ pn (1− δ1) + . . . + δk+1 + . . . + δn ≥ 1

At least k out of n are true δ1 + δ2 + . . . + δn ≥ k

Exactly k out of n are true δ1 + δ2 + . . . + δn = k

At most k out of n are true δ1 + δ2 + . . . + δn ≤ k

pn ≡ p1 ∨ p2 ∨ . . . ∨ pk δ1 + δ2 + . . . + δk ≥ δn

(δn ≥ δj j = 1, 2, . . . , k)

pn ≡ p1 ∧ p2 ∧ . . . ∧ pk −δ1 − δ2 − . . .− δk + δn ≥ 1− k

(δn ≤ δj j = 1, 2, . . . , k)

4.2 Reformulation of Logical Relations 45

linear form constraints. In general, the approach used in such translation involves

a reduction to conjunctive/disjunctive normal forms (CNF/DNF).

According to Chandru and Hooker (1999), the two normal forms (CNF and

DNF) are dual representations with symmetric properties. Although there are some

applications of propositional logic for which the DNF may be the more accepted

normal form, the CNF is the most used. The traditional technique of transforming

a given formula of statements connected by ∧ and ∨ connectives into an equivalent

CNF is show in procedure 1.

Procedure 1: Reduction to CNF (Chandru and Hooker, 1999)

Step 1: Use the transformation rules of De Morgan’s law, and the double negation

(table 4.2) to absorb all “¬” into the atomic statements;

Step 2: Use the distributive law (table 4.2) to move the conjunctions out of the

statements, until each statement is a clause of pure disjunctions.

The study of this translation procedure is beyond the thesis’ scope, and the

interested reader is referred to Chandru and Hooker (1999). In particular, Chandru

and Hooker (1999) proved that procedure 1 is, in the worst case, an exponential-time

algorithm.

4.2.3 Logically Related Linear Form Constraints

Section 4.2.2 initially considered that a binary indicator variable denoted by δk

represents the truth or falsehood of an atomic proposition pk. In sequence, section

4.2.2 established the equivalence between compound logic statements and linear al-

gebraic constraints involving binary indicator variables (δk). However section 4.2.2

does not explicitly indicate the underlying association of mixed integer linear pro-

gramming constraints with indicator variables δk. In fact, much of the literature

content cited in section 4.1 is just aimed at the connection between binary variables

and compound logical propositions.

In order to express the association of binary variables and MILP constraints,

46 Chapter 4. MILP: Modeling Structures

let’s initially consider the general statement of a linear mathematical programming

model, defined in formulation 4.2. In 4.2, the cj’s are referred to as cost coefficients,

the akj’s are referred to as constraint coefficients on variables xj’s, the bk’s are re-

ferred to as requirements4, J is the set of variables, and K is the set of constraints.

The symbol ρ denotes mathematical relations such as ≤, ≥, <, >, =, and 6=. The

term
∑

j∈J akjxj{ρ}bk, ∀k∈K is the Linear Form Constraint k (LFCk). A maxi-

mization model can be written as a minimization model by multiplying the objective

by (-1) and minimizing it.

min
∑
j∈J

cjxj

s.t.
∑
j∈J

akjxj{ρ}bk ∀k∈K

xj ≥ 0 ∀j∈J

(4.2)

Considering now the existence of finite upper (Uk) and lower (Lk) bounds on

LFCk, as indicated in 4.3.

Lk ≤
∑
j∈J

akjxj − bk ≤ Uk ∀k∈K (4.3)

The bounds on inequality 4.3 may be given or, alternatively, can be computed

for finite ranges of xj, as demonstrated by Brearley et al. (1975). For example, if

lj ≤ xj ≤ uj, j∈J , then the lower and upper bounds on the linear form constraint

can be determined as indicated in formulation 4.4.

Lk =
∑
j∈Pk

akjlj +
∑
j∈Nk

akjuj − bk ∀k∈K

Uk =
∑
j∈Pk

akjuj +
∑
j∈Nk

akjlj − bk ∀k∈K

Pk = {j : akj > 0} Nk = {j : akj < 0}

(4.4)

4.2.3.1 Logical Constraint in the Implication Form

A “logical constraint in the implication form” (LCIF) is a logical combination

of simple constraints, and is defined as: if antecedent, then consequent. In this case,

4It is customary to gather all the constants to the right-hand side of an LP constraint.

4.2 Reformulation of Logical Relations 47

the antecedent is a logical variable and the consequent is a linear form constraint.

In order to model the LCIF, a 0-1 indicator variable (binary variable) is linked to

the antecedent. Whether the LFCk applies (δk =1) or otherwise (δk =0) is indicated

by a binary variable δk.

Propositions 4.2.1 to 4.2.6 indicate the mixed integer linear programming ex-

pression of logical constraints in the implication form. These propositions were de-

veloped considering “ρ” of LFCk as ≤, ≥, <, >, =, and 6=. For notation simplicity,

the quantifier ∀k∈K is omitted and the term
∑

j∈J akjxj is written as
∑

j akjxj.

Proposition 4.2.1.(
δk = 1 →

∑
j

akjxj − bk ≤ 0

)
︸ ︷︷ ︸

if antecedent then consequent

≡
∑

j

akjxj − bk ≤ Uk(1− δk)︸ ︷︷ ︸
MILP expression

Proof. In proposition 4.2.1, δk is a variable that can assume either values 0 or 1.

Then, testing both cases in the MILP expression yields:

δk = 0 →
∑

j

akjxj − bk ≤ Uk ∴ tautology

δk = 1 →
∑

j

akjxj − bk ≤ 0 ∴ proposition holds

Therefore, setting δk = 0 imposes the relation
∑

j akjxj − bk ≤ Uk, which is a tau-

tology (see inequality 4.3). Setting δk = 1 makes the constraint
∑

j akjxj − bk ≤ 0

valid. Thus, proposition 4.2.1 holds.

Remark 4.2.1. Lk ≤ 0. As it is stated in formulation 4.4, Lk as well as Uk can be

determined prior to applying the “Simplex” algorithm. In general, commercial LP

codes bring strong pre-processing algorithms, and Lk and Uk can be effectively deter-

mined. Therefore, Lk and Uk are parameters to the MILP formulation. However, in

case Lk > 0, then
∑

j akjxj − bk must be greater than zero (see inequality 4.3), and

the indicator variable δk cannot be set to one in any feasible circumstance. Thus,

there is no sense in applying proposition 4.2.1 in case Lk > 0. This is a “natural

constraint” to proposition 4.2.1.

48 Chapter 4. MILP: Modeling Structures

Propositions 4.2.2 to 4.2.6 follow the same train of reasoning of proposition

4.2.1. In propositions 4.2.3, 4.2.4, and 4.2.6, ε is a positive small tolerance value

(ε > 0), below which the linear constraint
∑

j akjxj{ρ}bk, ρ ∈ {<,>} is regarded as

having been broken5. In proposition 4.2.6, δ
′

k and δ
′′

k are auxiliary binary variables.

Proposition 4.2.2.(
δk = 1 →

∑
j

akjxj − bk ≥ 0

)
≡

∑
j

akjxj − bk ≥ Lk(1− δk)

Proof.

δk = 0 →
∑

j

akjxj − bk ≥ Lk ∴ tautology

δk = 1 →
∑

j

akjxj − bk ≥ 0 ∴ proposition holds

Remark 4.2.2. Uk ≥ 0. There is no sense in applying proposition 4.2.2 in case Uk < 0

because δk cannot be set to one. Thus, the “natural constraint” is that Uk ≥ 0.

Proposition 4.2.3.(
δk = 1 →

∑
j

akjxj − bk < 0

)
≡

∑
j

akjxj − bk ≤ (Uk + ε)(1− δk)− ε

Proof.

δk = 0 →
∑

j

akjxj − bk ≤ Uk ∴ tautology

δk = 1 →
∑

j

akjxj − bk ≤ −ε ∴
∑

j

akjxj − bk < 0 ∴ proposition holds

Remark 4.2.3. Lk ≤ −ε. There is no sense in applying proposition 4.2.3 in case

Lk ≥ 0 because δk cannot be set to one. Thus, the “natural constraint” is that

5The determination of a suitable value for ε is dependent upon the accuracy level of each
particular software/hardware. For instance, the set of simulations conducted in this thesis (chapters
5 and 6) used ε=10−3.

4.2 Reformulation of Logical Relations 49

Lk < 0. However, strict inequalities are not directly specified in LP, and a small

tolerance value ε is used in the MILP expression. Therefore, in order to validate

such MILP expression, Lk must be lower than or equal −ε and not just lower than

zero.

Proposition 4.2.4.(
δk = 1 →

∑
j

akjxj − bk > 0

)
≡

∑
j

akjxj − bk ≥ (Lk − ε)(1− δk) + ε

Proof.

δk = 0 →
∑

j

akjxj − bk ≥ Lk ∴ tautology

δk = 1 →
∑

j

akjxj − bk ≥ +ε ∴
∑

j

akjxj − bk > 0 ∴ proposition holds

Remark 4.2.4. Uk ≥ +ε.

Proposition 4.2.5.(
δk = 1 →

∑
j

akjxj − bk = 0

)
︸ ︷︷ ︸

if antecedent then consequent

≡


∑

j akjxj − bk ≤ Uk(1− δk)∑
j akjxj − bk ≥ Lk(1− δk)︸ ︷︷ ︸

set of MILP expressions

Proof. In proposition 4.2.5, δk is a variable that can assume either values 0 or 1.

Then, testing both cases in the set of MILP expressions yields:

δk = 0 →


∑

j akjxj − bk ≤ Uk ∴ tautology∑
j akjxj − bk ≥ Lk ∴ tautology

δk = 1 →


∑

j akjxj − bk ≤ 0∑
j akjxj − bk ≥ 0

 ∴
∑

j

akjxj − bk = 0 ∴ proposition holds

Remark 4.2.5. (Lk ≤ 0) ∧ (Uk ≥ 0).

50 Chapter 4. MILP: Modeling Structures

Proposition 4.2.6.

(
δk = 1 →

∑
j

akjxj − bk 6= 0

)
︸ ︷︷ ︸

if antecedent then consequent

≡


∑

j akjxj − bk ≤ (Uk + ε)(1− δ
′

k)− ε∑
j akjxj − bk ≥ (Lk − ε)(1− δ

′′

k) + ε

δk = δ
′

k + δ
′′

k︸ ︷︷ ︸
set of MILP expressions

Proof. In proposition 4.2.6, δk is a variable that can assume either values 0 or 1.

With δk = 0 in the set of MILP expressions, then:

δk = 0 ∴ δ
′

k + δ
′′

k = 0 → (δ
′

k = 0) ∧ (δ
′′

k = 0) ∴

∴ (δ
′

k = 0) ∧ (δ
′′

k = 0) →


∑

j akjxj − bk ≤ Uk ∴ tautology∑
j akjxj − bk ≥ Lk ∴ tautology

With δk = 1 in the set of MILP expressions of proposition 4.2.6, then:

δk = 1 ∴ δ
′

k + δ
′′

k = 1 → [(δ
′

k = 1) ∧ (δ
′′

k = 0)]︸ ︷︷ ︸
Case (i)

∨ [(δ
′

k = 0) ∧ (δ
′′

k = 1)]︸ ︷︷ ︸
Case (ii)

∴

Case (i):

(δ
′

k = 1) ∧ (δ
′′

k = 0) →


∑

j akjxj − bk ≤ −ε ∴
∑

j akjxj − bk < 0∑
j akjxj − bk ≥ Lk ∴ tautology

 ∴

∴ (δ
′

k = 1) ∧ (δ
′′

k = 0) →
∑

j

akjxj − bk < 0

Case (ii):

(δ
′

k = 0) ∧ (δ
′′

k = 1) →


∑

j akjxj − bk ≤ Uk ∴ tautology∑
j akjxj − bk ≥ +ε ∴

∑
j akjxj − bk > 0

 ∴

∴ (δ
′

k = 0) ∧ (δ
′′

k = 1) →
∑

j

akjxj − bk > 0

4.2 Reformulation of Logical Relations 51

By Case (i) and Case (ii), therefore:

δk = 1 → [
∑

j

akjxj − bk < 0] ∨ [
∑

j

akjxj − bk > 0] ∴

∴ δk = 1 →
∑

j

akjxj − bk 6= 0 ∴ proposition 4.2.6 holds

Remark 4.2.6. (Lk ≤ −ε) ∧ (Uk ≥ +ε).

Table 4.4 summarizes the logical constraints in the implication form (LCIF)

demonstrated in propositions 4.2.1 to 4.2.6. In these propositions, “ρ” of LFCk was

considered as ≤, ≥, <, >, =, and 6=. Hadjiconstantinou and Mitra (1994) and Mitra

et al. (1994) also show the LCIF for ρ as ≤, ≥, and =. Amongst the section 4.1

literature, the papers have also limited the scope of LCIF as in Hadjiconstantinou

and Mitra (1994) and Mitra et al. (1994). Therefore, this thesis expands this specific

feature of Hadjiconstantinou and Mitra (1994) and Mitra et al. (1994).

Table 4.4: Logical Constraints in the Implication Form.

LCIF Equivalent Set of MILP Expressions Remark
(∀k∈K) (∀k∈K) (∀k∈K)

δk = 1 →
∑

j akjxj ≤ bk
∑

j akjxj − bk ≤ Uk(1− δk) Lk ≤ 0

δk = 1 →
∑

j akjxj ≥ bk
∑

j akjxj − bk ≥ Lk(1− δk) Uk ≥ 0

δk = 1 →
∑

j akjxj < bk
∑

j akjxj − bk ≤ (Uk + ε)(1− δk)− ε Lk ≤ −ε

δk = 1 →
∑

j akjxj > bk
∑

j akjxj − bk ≥ (Lk − ε)(1− δk) + ε Uk ≥ +ε

δk = 1 →
∑

j akjxj = bk

{ ∑
j akjxj − bk ≤ Uk(1− δk)∑
j akjxj − bk ≥ Lk(1− δk)

{
Lk ≤ 0
Uk ≥ 0

δk = 1 →
∑

j akjxj 6= bk


∑

j akjxj − bk ≤ (Uk + ε)(1− δ
′
k)− ε∑

j akjxj − bk ≥ (Lk − ε)(1− δ
′′
k) + ε

δk = δ
′
k + δ

′′
k

{
Lk ≤ −ε
Uk ≥ +ε

52 Chapter 4. MILP: Modeling Structures

4.2.3.2 Logical Constraint in the Equivalence Form

A “logical constraint in the equivalence form” (LCEF) is a logical combination

of simple constraints, and is defined as: if and only if antecedent, then consequent.

In this case, the antecedent is a logical variable and the consequent is a linear form

constraint. In order to model the LCEF, a 0-1 indicator variable (binary variable)

is linked to the antecedent. Whether the LFCk applies (δk =1) or otherwise (δk =0)

is indicated by the binary variable δk.

Propositions 4.2.7 to 4.2.12 indicate the mixed integer linear programming

expression of logical constraints in the equivalence form. These propositions were

developed considering “ρ” of LFCk as ≤, ≥, <, >, =, and 6=. The ε is a positive

small tolerance value (ε > 0), below which the linear constraint
∑

j akjxj{ρ}bk,

ρ∈{<,>} is regarded as having been broken. For notation simplicity, the quantifier

∀k∈K is omitted and the term
∑

j∈J akjxj is written as
∑

j akjxj.

Proposition 4.2.7.(
δk = 1 ↔

∑
j

akjxj − bk ≤ 0

)
︸ ︷︷ ︸
if and only if antecedent then consequent

≡


∑

j akjxj − bk ≤ Uk(1− δk)∑
j akjxj − bk ≥ (Lk − ε)δk + ε︸ ︷︷ ︸

set of MILP expressions

Proof. From table 4.2, an equivalence can be generically expressed as:

p ↔ q ≡ (p → q)︸ ︷︷ ︸
(i1)

∧ (¬p → ¬q)︸ ︷︷ ︸
(i2)

Hence, if implications (i1) and (i2) hold, then the equivalence holds. In the particular

equivalence presented in proposition 4.2.7, implications (i1) and (i2) can be written

as:

Implication (i1) : δk = 1 →
∑

j

akjxj − bk ≤ 0

Implication (i2) : δk = 0 →
∑

j

akjxj − bk � 0 ∴
∑

j

akjxj − bk > 0

In proposition 4.2.7, δk can assume either values zero or one. Testing both cases in

4.2 Reformulation of Logical Relations 53

the set of MILP expressions yields:

δk = 0 →


∑

j akjxj − bk ≤ Uk ∴ tautology∑
j akjxj − bk ≥ ε ∴

∑
j akjxj − bk > 0

 ∴ implication (i2) holds

δk = 1 →


∑

j akjxj − bk ≤ 0∑
j akjxj − bk ≥ Lk ∴ tautology

 ∴ implication (i1) holds

Implications (i1) and (i2) hold, therefore proposition 4.2.7 holds.

Remark 4.2.7. (Lk ≤ 0) ∧ (Uk ≥ ε).

Propositions 4.2.8 to 4.2.12 follow the same train of reasoning of proposition

4.2.7, and their explanation is somehow shortened. In propositions 4.2.11 and 4.2.12,

δ
′

k and δ
′′

k are auxiliary binary variables.

Proposition 4.2.8.(
δk = 1 ↔

∑
j

akjxj − bk ≥ 0

)
≡


∑

j akjxj − bk ≥ Lk(1− δk)∑
j akjxj − bk ≤ (Uk + ε)δk − ε

Proof. From table 4.2, the equivalence can be expressed as:

p ↔ q ≡ (p → q)︸ ︷︷ ︸
(i1)

∧ (¬p → ¬q)︸ ︷︷ ︸
(i2)

Therefore, implications (i1) and (i2) must hold:

Implication (i1) : δk = 1 →
∑

j

akjxj − bk ≥ 0

Implication (i2) : δk = 0 →
∑

j

akjxj − bk � 0 ∴
∑

j

akjxj − bk < 0

In proposition 4.2.8, δk can assume either values zero or one:

δk = 0 →


∑

j akjxj − bk ≥ Lk ∴ tautology∑
j akjxj − bk ≤ −ε ∴

∑
j akjxj − bk < 0

 ∴ implication (i2) holds

δk = 1 →


∑

j akjxj − bk ≥ 0∑
j akjxj − bk ≤ Uk ∴ tautology

 ∴ implication (i1) holds

Implications (i1) and (i2) hold, therefore proposition 4.2.8 holds.

54 Chapter 4. MILP: Modeling Structures

Remark 4.2.8. (Lk ≤ −ε) ∧ (Uk ≥ 0).

Proposition 4.2.9.(
δk = 1 ↔

∑
j

akjxj − bk < 0

)
≡


∑

j akjxj − bk ≤ (Uk + ε)(1− δk)− ε∑
j akjxj − bk ≥ Lkδk

Proof. From table 4.2, the equivalence can be expressed as:

p ↔ q ≡ (p → q)︸ ︷︷ ︸
(i1)

∧ (¬p → ¬q)︸ ︷︷ ︸
(i2)

Therefore, implications (i1) and (i2) must hold:

Implication (i1) : δk = 1 →
∑

j

akjxj − bk < 0

Implication (i2) : δk = 0 →
∑

j

akjxj − bk ≮ 0 ∴
∑

j

akjxj − bk ≥ 0

In proposition 4.2.9, δk can assume either values zero or one:

δk = 0 →


∑

j akjxj − bk ≤ Uk ∴ tautology∑
j akjxj − bk ≥ 0

 ∴ implication (i2) holds

δk = 1 →


∑

j akjxj − bk ≤ −ε ∴
∑

j akjxj − bk < 0∑
j akjxj − bk ≥ Lk ∴ tautology

 ∴ implication (i1) holds

Implications (i1) and (i2) hold, therefore proposition 4.2.9 holds.

Remark 4.2.9. (Lk ≤ −ε) ∧ (Uk ≥ 0).

Proposition 4.2.10.(
δk = 1 ↔

∑
j

akjxj − bk > 0

)
≡


∑

j akjxj − bk ≥ (Lk − ε)(1− δk) + ε∑
j akjxj − bk ≤ Ukδk

Proof. From table 4.2, the equivalence can be expressed as:

p ↔ q ≡ (p → q)︸ ︷︷ ︸
(i1)

∧ (¬p → ¬q)︸ ︷︷ ︸
(i2)

4.2 Reformulation of Logical Relations 55

Therefore, implications (i1) and (i2) must hold:

Implication (i1) : δk = 1 →
∑

j

akjxj − bk > 0

Implication (i2) : δk = 0 →
∑

j

akjxj − bk ≯ 0 ∴
∑

j

akjxj − bk ≤ 0

In proposition 4.2.10, δk can assume either values zero or one:

δk = 0 →


∑

j akjxj − bk ≥ Lk ∴ tautology∑
j akjxj − bk ≤ 0

 ∴ implication (i2) holds

δk = 1 →


∑

j akjxj − bk ≥ +ε ∴
∑

j akjxj − bk > 0∑
j akjxj − bk ≤ Uk ∴ tautology

 ∴ implication (i1) holds

Implications (i1) and (i2) hold, therefore proposition 4.2.10 holds.

Remark 4.2.10. (Lk ≤ 0) ∧ (Uk ≥ +ε).

Proposition 4.2.11.

(
δk = 1 ↔

∑
j

akjxj − bk = 0

)
≡



∑
j akjxj − bk ≤ Uk(1− δ

′

k)∑
j akjxj − bk ≥ (Lk − ε)δ

′

k + ε∑
j akjxj − bk ≥ Lk(1− δ

′′

k)∑
j akjxj − bk ≤ (Uk + ε)δ

′′

k − ε

δk = δ
′

k + δ
′′

k − 1

Proof. From table 4.2, the equivalence can be expressed as:

p ↔ q ≡ (p → q)︸ ︷︷ ︸
(i1)

∧ (¬p → ¬q)︸ ︷︷ ︸
(i2)

Therefore, implications (i1) and (i2) must hold:

Implication (i1) : δk = 1 →
∑

j

akjxj − bk = 0

Implication (i2) : δk = 0 →
∑

j

akjxj − bk 6= 0 ∴

∴ δk = 0 → (
∑

j

akjxj − bk < 0)︸ ︷︷ ︸
(i
′
2)

∨ (
∑

j

akjxj − bk > 0)︸ ︷︷ ︸
(i
′′
2)

56 Chapter 4. MILP: Modeling Structures

With δk = 0 in proposition 4.2.11, then:

δk = 0 ∴ δ
′

k + δ
′′

k = 1 → [(δ
′

k = 1) ∧ (δ
′′

k = 0)]︸ ︷︷ ︸
Case (i)

∨ [(δ
′

k = 0) ∧ (δ
′′

k = 1)]︸ ︷︷ ︸
Case (ii)

∴

Case (i):

(δ
′

k = 1) ∧ (δ
′′

k = 0) →



∑
j akjxj − bk ≤ 0∑
j akjxj − bk ≥ Lk ∴ tautology∑
j akjxj − bk ≥ Lk ∴ tautology∑
j akjxj − bk ≤ −ε ∴

∑
j akjxj − bk < 0


∴

∴ (δ
′

k = 1) ∧ (δ
′′

k = 0) →
∑

j

akjxj − bk < 0 ∴ (i
′

2) holds

Case (ii):

(δ
′

k = 0) ∧ (δ
′′

k = 1) →



∑
j akjxj − bk ≤ Uk ∴ tautology∑
j akjxj − bk ≥ +ε ∴

∑
j akjxj − bk > 0∑

j akjxj − bk ≥ 0∑
j akjxj − bk ≤ Uk ∴ tautology


∴

∴ (δ
′

k = 0) ∧ (δ
′′

k = 1) →
∑

j

akjxj − bk > 0 ∴ (i
′′

2) holds

By Case (i) and Case (ii), therefore:

δk = 0 → [
∑

j

akjxj − bk < 0] ∨ [
∑

j

akjxj − bk > 0] ∴

∴ δk = 0 →
∑

j

akjxj − bk 6= 0 ∴ implication (i2) holds

With δk = 1 in proposition 4.2.11, then:

δk = 1 ∴ δ
′

k + δ
′′

k = 2 → (δ
′

k = 1) ∧ (δ
′′

k = 1)︸ ︷︷ ︸
Case (iii)

∴

4.2 Reformulation of Logical Relations 57

Case (iii):

(δ
′

k = 1) ∧ (δ
′′

k = 1) →



∑
j akjxj − bk ≤ 0∑
j akjxj − bk ≥ Lk ∴ tautology∑
j akjxj − bk ≥ 0∑
j akjxj − bk ≤ Uk ∴ tautology


∴

∴ (δ
′

k = 1) ∧ (δ
′′

k = 1) → (
∑

j

akjxj − bk ≤ 0) ∧ (
∑

j

akjxj − bk ≥ 0) ∴

∴ (δ
′

k = 1) ∧ (δ
′′

k = 1) → (
∑

j

akjxj − bk = 0)

By case (iii), therefore:

δk = 1 →
∑

j

akjxj − bk = 0 ∴ implication (i1) holds

By cases (i), (ii), and (iii), implications (i1) and (i2) hold, therefore proposition

4.2.11 holds.

Remark 4.2.11. (Lk ≤ −ε) ∧ (Uk ≥ +ε).

Proposition 4.2.12.

(
δk = 1 ↔

∑
j

akjxj − bk 6= 0

)
≡



∑
j akjxj − bk ≤ Ukδk∑
j akjxj − bk ≥ Lkδk∑
j akjxj − bk ≤ (Uk + ε)(1− δ

′

k)− ε∑
j akjxj − bk ≥ (Lk − ε)(1− δ

′′

k) + ε

δk = δ
′

k + δ
′′

k

Proof. From table 4.2, the equivalence can be expressed as:

p ↔ q ≡ (p → q)︸ ︷︷ ︸
(i1)

∧ (¬p → ¬q)︸ ︷︷ ︸
(i2)

58 Chapter 4. MILP: Modeling Structures

Therefore, implications (i1) and (i2) must hold:

Implication (i1) : δk = 1 →
∑

j

akjxj − bk 6= 0 ∴

∴ δk = 1 → (
∑

j

akjxj − bk < 0)︸ ︷︷ ︸
(i
′
1)

∨ (
∑

j

akjxj − bk > 0)︸ ︷︷ ︸
(i
′′
1)

Implication (i2) : δk = 0 →
∑

j

akjxj − bk = 0

With δk = 1 in proposition 4.2.12, then:

δk = 1 ∴ δ
′

k + δ
′′

k = 1 → [(δ
′

k = 1) ∧ (δ
′′

k = 0)]︸ ︷︷ ︸
Case (i)

∨ [(δ
′

k = 0) ∧ (δ
′′

k = 1)]︸ ︷︷ ︸
Case (ii)

∴

Case (i):

(δ
′

k = 1) ∧ (δ
′′

k = 0) →



∑
j akjxj − bk ≤ Uk ∴ tautology∑
j akjxj − bk ≥ Lk ∴ tautology∑
j akjxj − bk ≤ −ε ∴

∑
j akjxj − bk < 0∑

j akjxj − bk ≥ Lk ∴ tautology


∴

∴ (δ
′

k = 1) ∧ (δ
′′

k = 0) →
∑

j

akjxj − bk < 0 ∴ (i
′

1) holds

Case (ii):

(δ
′

k = 0) ∧ (δ
′′

k = 1) →



∑
j akjxj − bk ≤ Uk ∴ tautology∑
j akjxj − bk ≥ Lk ∴ tautology∑
j akjxj − bk ≤ Uk ∴ tautology∑
j akjxj − bk ≥ +ε ∴

∑
j akjxj − bk > 0


∴

∴ (δ
′

k = 0) ∧ (δ
′′

k = 1) →
∑

j

akjxj − bk > 0 ∴ (i
′′

1) holds

4.2 Reformulation of Logical Relations 59

By Case (i) and Case (ii), therefore:

δk = 1 → [
∑

j

akjxj − bk < 0] ∨ [
∑

j

akjxj − bk > 0] ∴

∴ δk = 1 →
∑

j

akjxj − bk 6= 0 ∴ implication (i1) holds

With δk = 0 in proposition 4.2.12, then:

δk = 0 ∴ δ
′

k + δ
′′

k = 0 → (δ
′

k = 0) ∧ (δ
′′

k = 0)︸ ︷︷ ︸
Case (iii)

∴

Case (iii):

(δ
′

k = 0) ∧ (δ
′′

k = 0) →



∑
j akjxj − bk ≤ 0∑
j akjxj − bk ≥ 0∑
j akjxj − bk ≤ Uk ∴ tautology∑
j akjxj − bk ≥ Lk ∴ tautology


∴

∴ (δ
′

k = 0) ∧ (δ
′′

k = 0) → (
∑

j

akjxj − bk ≤ 0) ∧ (
∑

j

akjxj − bk ≥ 0) ∴

∴ (δ
′

k = 0) ∧ (δ
′′

k = 0) → (
∑

j

akjxj − bk = 0)

By case (iii), therefore:

δk = 0 →
∑

j

akjxj − bk = 0 ∴ implication (i2) holds

By cases (i), (ii), and (iii), implications (i1) and (i2) hold, therefore proposition

4.2.12 holds.

Remark 4.2.12. (Lk ≤ −ε) ∧ (Uk ≥ +ε).

Table 4.5 summarizes the logical constraints in the equivalence form (LCEF)

demonstrated in propositions 4.2.7 to 4.2.12. In these propositions, “ρ” of LFCk

was considered as ≤, ≥, <, >, =, and 6=. Amongst the section 4.1 literature, just

Hürlimann (1998) indicates the possibility of attaining the LCEF, but, in fact, the

60 Chapter 4. MILP: Modeling Structures

paper does not develop the equivalent set of MILP expressions. Hadjiconstantinou

and Mitra (1994) and Mitra et al. (1994) have not addressed the development of

LCEF. Therefore, this thesis fulfills this specific feature of Hürlimann (1998).

Table 4.5: Logical Constraints in the Equivalence Form.

LCEF Equivalent Set of MILP Expressions Remark
(∀k∈K) (∀k∈K) (∀k∈K)

δk = 1 ↔
∑

j akjxj ≤ bk

{ ∑
j akjxj − bk ≤ Uk(1− δk)∑
j akjxj − bk ≥ (Lk − ε)δk + ε

{
Lk ≤ 0
Uk ≥ +ε

δk = 1 ↔
∑

j akjxj ≥ bk

{ ∑
j akjxj − bk ≥ Lk(1− δk)∑
j akjxj − bk ≤ (Uk + ε)δk − ε

{
Lk ≤ −ε
Uk ≥ 0

δk = 1 ↔
∑

j akjxj < bk

{ ∑
j akjxj − bk ≤ (Uk + ε)(1− δk)− ε∑
j akjxj − bk ≥ Lkδk

{
Lk ≤ −ε
Uk ≥ 0

δk = 1 ↔
∑

j akjxj > bk

{ ∑
j akjxj − bk ≥ (Lk − ε)(1− δk) + ε∑
j akjxj − bk ≤ Ukδk

{
Lk ≤ 0
Uk ≥ +ε

δk = 1 ↔
∑

j akjxj = bk



∑
j akjxj − bk ≤ Uk(1− δ

′
k)∑

j akjxj − bk ≥ (Lk − ε)δ
′
k + ε∑

j akjxj − bk ≥ Lk(1− δ
′′
k)∑

j akjxj − bk ≤ (Uk + ε)δ
′′
k − ε

δk = δ
′
k + δ

′′
k − 1

{
Lk ≤ −ε
Uk ≥ +ε

δk = 1 ↔
∑

j akjxj 6= bk



∑
j akjxj − bk ≤ Ukδk∑
j akjxj − bk ≥ Lkδk∑
j akjxj − bk ≤ (Uk + ε)(1− δ

′
k)− ε∑

j akjxj − bk ≥ (Lk − ε)(1− δ
′′
k) + ε

δk = δ
′
k + δ

′′
k

{
Lk ≤ −ε
Uk ≥ +ε

4.3 High-Level MILP Modeling Structures

4.3.1 Either-Or Statement

In order to present the either-or statement, which is also briefly illustrated by

Williams (1999) and Floudas (1995), let’s initially consider the linear programming

model defined in formulation 4.5, where one of the constraints c1 or c2 must hold. In

4.3 High-Level MILP Modeling Structures 61

4.5, the symbols ρ1 and ρ2 denote mathematical relations such as ≤, ≥, <, >, =, 6=,

and the remaining symbols were previously defined in formulation 4.2, on page 46.

min
∑
j∈J

cjxj

s.t. (c1) :
∑
j∈J

a1jxj{ρ1}b1

(c2) :
∑
j∈J

a2jxj{ρ2}b2

xj ≥ 0 ∀j∈J

(4.5)

The condition that one of the constraints c1 or c2 must hold cannot be directly

specified in a linear programming framework, where, by definition, all constraints

must hold. In order to overcome this difficulty, a rationale similar to the one applied

on propositions 4.2.1 to 4.2.12 is adopted. The idea is to use lower (Lk) and upper

(Uk) bounds on constraints ck (c1 and c2), a small tolerance value ε (ε > 0), and a

binary variable δ to properly express the either-or relation between constraints.

Considering a function fk, which is dependent on Lk, Uk, ε, and δ, then c1 and

c2 can be rewritten as indicate in 4.6.

(c1) :
∑
j∈J

a1jxj − b1{ρ1}f1(L1, U1, ε,¬δ)

(c2) :
∑
j∈J

a2jxj − b2{ρ2}f2(L2, U2, ε, δ)
(4.6)

Functions f1 and f2 must establish that, in case δ = 0 one constraint is obliga-

torily imposed, and the other is relaxed; when δ = 1 the situation is reversed, and

the constraint that was relaxed is imposed and the other is relaxed. Hence, in all

cases one of the constraints is imposed and the other is relaxed. Nevertheless, it is

important to be aware that the relaxed constraint may also hold. The equivalent

62 Chapter 4. MILP: Modeling Structures

“mixed integer program” is specified in formulation 4.7.

min
∑
j∈J

cjxj

s.t. (c1) :
∑
j∈J

a1jxj − b1{ρ1}f1(L1, U1, ε,¬δ)

(c2) :
∑
j∈J

a2jxj − b2{ρ2}f2(L2, U2, ε, δ)

xj ≥ 0 ∀j∈J

(4.7)

Tables 4.6, 4.7, and 4.8 contain the final format of constraints “c1” and “c2”.

This format is, in fact, a set of MILP expressions that establish the either-or relations

between c1 and c2, according to ρ1, f1, and ρ2, f2. In these tables, the factor e1 is

equivalent to
∑

j∈J a1jxj − b1, and the factor e2 is equivalent to
∑

j∈J a2jxj − b2.

The equivalence between the either-or and the set of MILP expressions is not herein

proved, but the rationale is similar to the one applied on propositions 4.2.1 to

4.2.12. For instance, let’s take table 4.6, with ρ1 and ρ2 equal to ≤. Then, the set

of equivalent MILP expressions is illustrated in inequalities 4.8.

(c1) :
∑
j∈J

a1jxj − b1{ρ1}f1(L1, U1, ε,¬δ) ≡
∑
j∈J

a1jxj − b1 ≤ U1δ

(c2) :
∑
j∈J

a2jxj − b2{ρ2}f2(L2, U2, ε, δ) ≡
∑
j∈J

a2jxj − b2 ≤ U2(1− δ)
(4.8)

In 4.8, when δ = 0, then c1 holds and c2 is relaxed6. In case δ = 1, then

c1 is relaxed and c2 holds. Therefore, either c1 or c2 must hold. The remaining

either-or statements of tables 4.6, 4.7, and 4.8 can be understood according to the

same reasoning illustrated in 4.8.

In particular, the literature of section 4.1 does not present a complete list of

either-or statements, as tables 4.6, 4.7, and 4.8 indeed present. Therefore, these

tables aid the modeling of either-or statements.

6The inequality
∑

j∈J a2jxj − b2 ≤ U2 is a tautology.

4.3 High-Level MILP Modeling Structures 63

Table 4.6: Either-Or Statement: ρ1 ∈ {≤,≥} and ρ2 ∈ {≤,≥, <, >, =, 6=}.
ρ1, ρ2 Set of MILP Expressions ρ1, ρ2 Set of MILP Expressions

≤, ≤
{

e1 ≤ U1δ
e2 ≤ U2(1− δ) ≥, ≤

{
e1 ≥ L1δ
e2 ≤ U2(1− δ)

≤, ≥
{

e1 ≤ U1δ
e2 ≥ L2(1− δ) ≥, ≥

{
e1 ≥ L1δ
e2 ≥ L2(1− δ)

≤, <

{
e1 ≤ U1δ
e2 ≤ (U2 + ε)(1− δ)− ε

≥, <

{
e1 ≥ L1δ
e2 ≤ (U2 + ε)(1− δ)− ε

≤, >

{
e1 ≤ U1δ
e2 ≥ (L2 − ε)(1− δ) + ε

≥, >

{
e1 ≥ L1δ
e2 ≥ (L2 − ε)(1− δ) + ε

≤, =

 e1 ≤ U1δ
e2 ≤ U2(1− δ)
e2 ≥ L2(1− δ)

≥, =

 e1 ≥ L1δ
e2 ≤ U2(1− δ)
e2 ≥ L2(1− δ)

≤, 6=


e1 ≤ U1δ

e2 ≤ (U2 + ε)(1− δ
′
)− ε

e2 ≥ (L2 − ε)(1− δ
′′
) + ε

δ = δ
′
+ δ

′′

≥, 6=


e1 ≥ L1δ

e2 ≤ (U2 + ε)(1− δ
′
)− ε

e2 ≥ (L2 − ε)(1− δ
′′
) + ε

δ = δ
′
+ δ

′′

Table 4.7: Either-Or Statement: ρ1 ∈ {<,>} and ρ2 ∈ {≤,≥, <, >, =, 6=}.
ρ1, ρ2 Set of MILP Expressions ρ1, ρ2 Set of MILP Expressions

<, ≤
{

e1 ≤ (U1 + ε)δ − ε
e2 ≤ U2(1− δ) >, ≤

{
e1 ≥ (L1 − ε)δ + ε
e2 ≤ U2(1− δ)

<, ≥
{

e1 ≤ (U1 + ε)δ − ε
e2 ≥ L2(1− δ) >, ≥

{
e1 ≥ (L1 − ε)δ + ε
e2 ≥ L2(1− δ)

<, <

{
e1 ≤ (U1 + ε)δ − ε
e2 ≤ (U2 + ε)(1− δ)− ε

>, <

{
e1 ≥ (L1 − ε)δ + ε
e2 ≤ (U2 + ε)(1− δ)− ε

<, >

{
e1 ≤ (U1 + ε)δ − ε
e2 ≥ (L2 − ε)(1− δ) + ε

>, >

{
e1 ≥ (L1 − ε)δ + ε
e2 ≥ (L2 − ε)(1− δ) + ε

<, =

 e1 ≤ (U1 + ε)δ − ε
e2 ≤ U2(1− δ)
e2 ≥ L2(1− δ)

>, =

 e1 ≥ (L1 − ε)δ + ε
e2 ≤ U2(1− δ)
e2 ≥ L2(1− δ)

<, 6=


e1 ≤ (U1 + ε)δ − ε

e2 ≤ (U2 + ε)(1− δ
′
)− ε

e2 ≥ (L2 − ε)(1− δ
′′
) + ε

δ = δ
′
+ δ

′′

>, 6=


e1 ≥ (L1 − ε)δ + ε

e2 ≤ (U2 + ε)(1− δ
′
)− ε

e2 ≥ (L2 − ε)(1− δ
′′
) + ε

δ = δ
′
+ δ

′′

64 Chapter 4. MILP: Modeling Structures

Table 4.8: Either-Or Statement: ρ1 ∈ {=, 6=} and ρ2 ∈ {≤,≥, <, >, =, 6=}.
ρ1, ρ2 Set of MILP Expressions ρ1, ρ2 Set of MILP Expressions

=, ≤

 e1 ≤ U1δ
e1 ≥ L1δ
e2 ≤ U2(1− δ)

6=, ≤


e1 ≤ (U1 + ε)(1− δ

′
)− ε

e1 ≥ (L1 − ε)(1− δ
′′
) + ε

e2 ≤ U2(1− δ)
δ = 1− δ

′ − δ
′′

=, ≥

 e1 ≤ U1δ
e1 ≥ L1δ
e2 ≥ L2(1− δ)

6=, ≥


e1 ≤ (U1 + ε)(1− δ

′
)− ε

e1 ≥ (L1 − ε)(1− δ
′′
) + ε

e2 ≥ L2(1− δ)
δ = 1− δ

′ − δ
′′

=, <

 e1 ≤ U1δ
e1 ≥ L1δ
e2 ≤ (U2 + ε)(1− δ)− ε

6=, <


e1 ≤ (U1 + ε)(1− δ

′
)− ε

e1 ≥ (L1 − ε)(1− δ
′′
) + ε

e2 ≤ (U2 + ε)(1− δ)− ε

δ = 1− δ
′ − δ

′′

=, >

 e1 ≤ U1δ
e1 ≥ L1δ
e2 ≥ (L2 − ε)(1− δ) + ε

6=, >


e1 ≤ (U1 + ε)(1− δ

′
)− ε

e1 ≥ (L1 − ε)(1− δ
′′
) + ε

e2 ≥ (L2 − ε)(1− δ) + ε

δ = 1− δ
′ − δ

′′

=, =


e1 ≤ U1δ
e1 ≥ L1δ
e2 ≤ U2(1− δ)
e2 ≥ L2(1− δ)

6=, =


e1 ≤ (U1 + ε)(1− δ

′
)− ε

e1 ≥ (L1 − ε)(1− δ
′′
) + ε

e2 ≤ U2(1− δ)
e2 ≥ L2(1− δ)
δ = 1− δ

′ − δ
′′

=, 6=


e1 ≤ U1δ
e1 ≥ L1δ

e2 ≤ (U2 + ε)(1− δ
′
)− ε

e2 ≥ (L2 − ε)(1− δ
′′
) + ε

δ = δ
′
+ δ

′′

6=, 6=



e1 ≤ (U1 + ε)(1− δ
′

1)− ε

e1 ≥ (L1 − ε)(1− δ
′′

1) + ε

e2 ≤ (U2 + ε)(1− δ
′

2)− ε

e2 ≥ (L2 − ε)(1− δ
′′

2) + ε

δ = 1− δ
′

1 − δ
′′

1

δ = δ
′

2 + δ
′′

2

4.3 High-Level MILP Modeling Structures 65

4.3.2 If-Then Statement

The if-then statement is herewith considered as having the form: If δ then p,

where δ is a binary variable7, and p is a linear constraint. In order to understand this

statement, let’s initially consider the proposition 4.3.1, which highlights a relation

between the if-then statement and the logical constraint in the implication form

(LCIF), defined on page 46.

Proposition 4.3.1.

If δ then p ≡ (δ → p)

Proof. This is trivial, since the proposition matches the if-then statement definition.

Hence, if δ = 1 implies p to be true; if δ = 0, then p is relaxed. Therefore, If δ then

p is equivalent to (δ → p).

Remark 4.3.1. Proposition 4.3.1 demonstrates that the LCIF and the if-then state-

ment are interrelated. Table 4.4 summarizes the LCIF previously established in

propositions 4.2.1 to 4.2.6. Therefore, table 4.4 can be adapted to generate table

4.9, which indicates a series of if-then statements and the equivalent MILP expres-

sion of such statements.

4.3.3 If-Then-Else Statement

The if-then-else statement is herewith considered as having the form: If δ

then p else q, where δ is a binary variable, p and q are linear constraints. In order

to understand this statement, let’s initially consider the proposition 4.3.2, which

highlights a relation between the if-then-else statement and the logical constraint in

the equivalence form (LCEF), previously defined on page 52.

Proposition 4.3.2.

If δ then p else ¬p ≡ (δ ↔ p)

7By convention, δ is true whether it is equal to one, zero otherwise. Therefore, for simplicity,
the if-then statement is expressed by If δ then p instead of If δ=1 then p.

66 Chapter 4. MILP: Modeling Structures

Table 4.9: If-Then Statement.
If-Then Statement Equivalent Set of MILP Expressions Remark
(∀k∈K) (∀k∈K) (∀k∈K)

If δk then
∑

j akjxj ≤ bk
∑

j akjxj − bk ≤ Uk(1− δk) Lk ≤ 0

If δk then
∑

j akjxj ≥ bk
∑

j akjxj − bk ≥ Lk(1− δk) Uk ≥ 0

If δk then
∑

j akjxj < bk
∑

j akjxj − bk ≤ (Uk + ε)(1− δk)− ε Lk ≤ −ε

If δk then
∑

j akjxj > bk
∑

j akjxj − bk ≥ (Lk − ε)(1− δk) + ε Uk ≥ +ε

If δk then
∑

j akjxj = bk

{ ∑
j akjxj − bk ≤ Uk(1− δk)∑
j akjxj − bk ≥ Lk(1− δk)

{
Lk ≤ 0
Uk ≥ 0

If δk then
∑

j akjxj 6= bk


∑

j akjxj − bk ≤ (Uk + ε)(1− δ
′
k)− ε∑

j akjxj − bk ≥ (Lk − ε)(1− δ
′′
k) + ε

δk = δ
′
k + δ

′′
k

{
Lk ≤ −ε
Uk ≥ +ε

Proof. By table 4.2, (δ ↔ p) ≡ (δ → p) ∧ (¬δ → ¬p). Hence, if δ = 1 implies p to

be true; if δ = 0 implies ¬p to be true. Therefore, If δ then p else ¬p is equivalent

to (δ ↔ p).

Remark 4.3.2. Proposition 4.3.2 demonstrates that the LCEF is a special case of

the if δ then p else q statement, where q = ¬p. Table 4.5 summarizes the LCEF

previously established in propositions 4.2.7 to 4.2.12. Therefore, table 4.5 can be

adapted to generate table 4.10, which indicates a series of particular if-then-else

statements and the equivalent MILP expression of such statements.

Considering proposition 4.3.2, it is evident that the if-then-else statement has a

parallel with logical connectives, mainly the implication. Proposition 4.3.3 indicates

this parallel.

Proposition 4.3.3.

If δ then p else q ≡ (δ → p) ∧ (¬δ → q)

Proof. This is trivial, since the proposition matches the if-then-else statement defi-

nition. Hence, if δ = 1 implies p to be true; if δ = 0 implies q to be true. Therefore,

4.3 High-Level MILP Modeling Structures 67

Table 4.10: If-Then-Else Statement.
If-Then-Else Statement Equivalent Set of MILP Expressions Remark
(∀k∈K) (∀k∈K) (∀k∈K)

If δk

{
then

∑
j akjxj ≤ bk

else
∑

j akjxj > bk

{ ∑
j akjxj − bk ≤ Uk(1− δk)∑
j akjxj − bk ≥ (Lk − ε)δk + ε

{
Lk ≤ 0
Uk ≥ +ε

If δk

{
then

∑
j akjxj ≥ bk

else
∑

j akjxj < bk

{ ∑
j akjxj − bk ≥ Lk(1− δk)∑
j akjxj − bk ≤ (Uk + ε)δk − ε

{
Lk ≤ −ε
Uk ≥ 0

If δk

{
then

∑
j akjxj < bk

else
∑

j akjxj ≥ bk

{ ∑
j akjxj − bk ≤ (Uk + ε)(1− δk)− ε∑
j akjxj − bk ≥ Lkδk

{
Lk ≤ −ε
Uk ≥ 0

If δk

{
then

∑
j akjxj > bk

else
∑

j akjxj ≤ bk

{ ∑
j akjxj − bk ≥ (Lk − ε)(1− δk) + ε∑
j akjxj − bk ≤ Ukδk

{
Lk ≤ 0
Uk ≥ +ε

If δk

{
then

∑
j akjxj = bk

else
∑

j akjxj 6= bk



∑
j akjxj − bk ≤ Uk(1− δ

′
k)∑

j akjxj − bk ≥ (Lk − ε)δ
′
k + ε∑

j akjxj − bk ≥ Lk(1− δ
′′
k)∑

j akjxj − bk ≤ (Uk + ε)δ
′′
k − ε

δk = δ
′
k + δ

′′
k − 1

{
Lk ≤ −ε
Uk ≥ +ε

If δk

{
then

∑
j akjxj 6= bk

else
∑

j akjxj = bk



∑
j akjxj − bk ≤ Ukδk∑
j akjxj − bk ≥ Lkδk∑
j akjxj − bk ≤ (Uk + ε)(1− δ

′
k)− ε∑

j akjxj − bk ≥ (Lk − ε)(1− δ
′′
k) + ε

δk = δ
′
k + δ

′′
k

{
Lk ≤ −ε
Uk ≥ +ε

68 Chapter 4. MILP: Modeling Structures

If δ then p else q is equivalent to (δ → p) ∧ (¬δ → q).

Remark 4.3.3. The if-then-else statement poses, in fact, some similarities with the

either-or statement, previously discussed in section 4.3.1. If δ = 1 implies c2 of

formulation 4.7 to hold (a statement p is imposed). If δ = 0 implies c1 of formula-

tion 4.7 to hold (a statement q is imposed). Thus, there is a parallel between the

if-then-else and the either-or statements. Therefore, tables 4.6, 4.7, and 4.8 can be

also used to formulate “if-then-else” constructions.

4.3.4 Remarks on the Use of δ

The binary indicator variable δ, which appears in both the if-then and the

if-then-else statements, can represent the truth or falsehood of a compound logical

proposition. Furthermore, this proposition can also be logically related with linear

constraints, as demonstrated in section 4.2.3. In order to illustrate this fact, let’s

consider a hypothetical example, where the following condition has to be modeled

in MILP: “If f(x) ≤ 0 and g(x) > 0 then h(x) ≥ 0 else h(x) < 0”, where f(x),

g(x), and h(x) are linear constraints.

Initially, it is necessary to formulate the statement f(x) ≤ 0 and g(x) > 0 as

a compound logical proposition associated with δ. The logical constraints in the

equivalence form, summarized in table 4.5, allow the association of binary variables

δf and δg with, respectively, f(x) ≤ 0 and g(x) > 0, as indicated in equivalences 4.9

and 4.10. In 4.9 and 4.10, Uf and Ug are the upper bounds on, respectively, f(x)

and g(x); Lf and Lg are the lower bounds on, respectively, f(x) and g(x); ε is a

positive small tolerance value (ε > 0).

δf = 1 ↔ f(x) ≤ 0 ≡

 f(x) ≤ Uf (1− δf)

f(x) ≥ (Lf − ε)δf + ε
(4.9)

δg = 1 ↔ g(x) > 0 ≡

 g(x) ≤ Ugδg

g(x) ≥ (Lg − ε)(1− δg) + ε
(4.10)

4.3 High-Level MILP Modeling Structures 69

For this particular example, δ ↔ (δf ∧ δg). According to table 4.2, p ↔ q ≡

(p → q)∧(q → p). Therefore, δ ↔ (δf∧δg) is equivalent to [δ → (δf∧δg)]∧[(δf∧δg) →

δ]. By table 4.3, the implication δ → (δf ∧ δg) can be expressed by the linear

constraints δ ≤ δf and δ ≤ δg; the implication (δf ∧ δg) → δ can be expressed by

the linear constraint δf + δg − δ ≤ 1. Therefore, the statement “δ = 1 if and only

if f(x) ≤ 0 and g(x) > 0” is expressed in the set of inequalities 4.11.



f(x) ≤ Uf (1− δf)

f(x) ≥ (Lf − ε)δf + ε

g(x) ≤ Ugδg

g(x) ≥ (Lg − ε)(1− δg) + ε

δf + δg − δ ≤ 1

δ ≤ δf

δ ≤ δg

(4.11)

In addition, proposition 4.3.2 states that “If δ then p else ¬p” is equivalent to

δ ↔ p. Thus, the if-then-else statement “If δ then h(x) ≥ 0 else h(x) < 0” can be

expressed according to equivalence 4.12, which is obtained from table 4.5. In 4.12,

Uh and Lh are, respectively, the upper and lower bounds on h(x); ε is a positive

small tolerance value (ε > 0).

δ = 1 ↔ h(x) ≥ 0 ≡

 h(x) ≥ Lh(1− δ)

h(x) ≤ (Uh + ε)δ − ε
(4.12)

Therefore, the initial statement “If f(x) ≤ 0 and g(x) > 0 then h(x) ≥ 0

else h(x) < 0” can be represented by the MILP set of inequalities indicated in

70 Chapter 4. MILP: Modeling Structures

formulation 4.13.



f(x) ≤ Uf (1− δf)

f(x) ≥ (Lf − ε)δf + ε

g(x) ≤ Ugδg

g(x) ≥ (Lg − ε)(1− δg) + ε

h(x) ≥ Lh(1− δ)

h(x) ≤ (Uh + ε)δ − ε

δf + δg − δ ≤ 1

δ ≤ δf

δ ≤ δg

(4.13)

4.4 An Illustrative Example of Flexible Storage

In order to illustrate the concepts previously described in sections 4.2 and 4.3,

a small example of MILP modeling, which is adapted from Hürlimann (1998), is

presented:

Let’s suppose that a refinery produces two oil products A and B in

unknown quantities x and y. The products are stored in tanks. The

company owns two tanks with capacities a and b. The products can-

not be mixed in the same tank. Normally, product A is stored in the

first tank and product B in the second one. Therefore, due to storage

constraints, the company can produce only the maximum quantity a of

product A, and the maximum quantity b of product B. Occasionally,

only one product is produced and both tanks can be used to store it. In

this case, the company may produce the product at a maximum quantity

of a + b. Hence, either the company produces both products at quanti-

ties less than or equal to a and b, or it produces only one product with

quantity less than or equal to a + b. How to express such operational

conditions in a set of MILP constraints?

4.4 An Illustrative Example of Flexible Storage 71

The feasible space is a disjunctive set. Therefore, the situation cannot be

formulated as a single LP model. One alternative is to create three convex spaces

(LP1, LP2, and LP3), as indicated in formulation 4.148.

LP1 : x ≤ a and y ≤ b

LP2 : x ≤ a + b and y ≤ 0

LP3 : x ≤ 0 and y ≤ a + b

(4.14)

The overall non-convex set can be expressed as LP1 ⊗ LP2 ⊗ LP3. Therefore,

the problem can be formulated as a single constraint containing logical and mathe-

matical operators, as indicated in 4.15.

(x ≤ a ∧ y ≤ b)⊗ (x ≤ a + b ∧ y ≤ 0)⊗ (x ≤ 0 ∧ y ≤ a + b) (4.15)

The disjunctive formulation 4.15 can be translated into a logical form as indi-

cated in 4.16.

δ1 = 1 → (x ≤ a) ∧ (y ≤ b)

δ2 = 1 → (x ≤ a + b) ∧ (y ≤ 0)

δ3 = 1 → (x ≤ 0) ∧ (y ≤ a + b)

δ1 ⊗ δ2 ⊗ δ3

(4.16)

Formulation 4.17 can be obtained by observing that each implication in 4.16

can be independently applied.

δ1 = 1 → x ≤ a

δ1 = 1 → y ≤ b

δ2 = 1 → x ≤ a + b

δ2 = 1 → y ≤ 0

δ3 = 1 → x ≤ 0

δ3 = 1 → y ≤ a + b

δ1 ⊗ δ2 ⊗ δ3

(4.17)

8See commentary about 4.14 on page 72, paragraph before formulation 4.18.

72 Chapter 4. MILP: Modeling Structures

In a simplified point of view, the lower and upper bounds on constraints

can be determined based on the minimum/maximum storage capacity. Therefore,

Lk = 0, Uk = a + b ∀k∈K. Using tables 4.3 and 4.4, the disjunctive formulation

4.17 can be translated into an MILP, as indicated in 4.18.

In addition, it is important to highlight that, in 4.14, the terms y ≤ 0 and

x ≤ 0 could have been specified as, respectively, y = 0 and x = 0. However, in

propositions 4.2.1 to 4.2.12, strict inequalities (<, >), equality (=), and disequality

(6=) operators are harder to express than simple inequalities (≤, ≥). Therefore, if it

were used y = 0 and x = 0 instead of y ≤ 0 and x ≤ 0, this would have increased the

number of constraints in formulation 4.18. Thus, as long as possible, it is advisable

to use ≤ and ≥, which yield simplified sets of MILP constraints.

x− a ≤ (a + b)(1− δ1)

y − b ≤ (a + b)(1− δ1)

x− (a + b) ≤ (a + b)(1− δ2)

y ≤ (a + b)(1− δ2)

x ≤ (a + b)(1− δ3)

y − (a + b) ≤ (a + b)(1− δ3)

δ1 + δ2 + δ3 = 1

(4.18)

This is just a simple example, but the direct translation of the problem de-

scription into an MILP model is not straightforward, even for this simple example.

In addition, the translation task tends to be much more difficult as the problem

becomes more complex. However, the intermediate logical structures 4.14 to 4.17

are simpler to formulate than the MILP set of inequalities 4.18. Thus, the use of

intermediate logical structures seems to be of great value to aid the MILP modeling

process.

4.5 Remarks on Using MILP Modeling Structures 73

4.5 Remarks on Using MILP Modeling Structures

This chapter provides some MILP modeling structures that help the expres-

sion of MILP models. However, the structures provided do not necessarily achieve

the most computationally efficient model, that is, they do not provide the sharpest

MILP formulation. This is not a specific fail of this work, and, in fact, the litera-

ture (Hadjiconstantinou and Mitra, 1994; Mitra et al., 1994; Yeom and Lee, 1998;

Hürlimann, 1998) has also pointed out this particular negative feature of MILP re-

formulation procedures. The merit of this work remains on simplifying the logical

expression of constraints in an MILP framework. It is also important to highlight

that Hürlimann (1998) presents a procedure that translates logical constraints into

mathematical constraints containing zero-one variables, and this procedure is com-

pletely integrated into a modeling system, the LPL (Hürlimann, 2000). This chapter

presents some high-level logical structures that help to build MILP models. How-

ever, after the logical formulation task, the user has to also translate the high-level

formulation to the base-level MILP formulation. There is no automatic reformula-

tion procedure implemented.

Chapters 1 to 3 stated that the CLP modeling features overcome the MILP

modeling features, which are essentially based on inequalities. However, in an inte-

grated CLP-MILP approach, the MILP modeling, which is a hard task (see section

4.1), is indispensable. Sections 4.2 to 4.3 present connections between logical in-

ference and MILP, which can be used to facilitate the MILP modeling task. Thus,

the high-level MILP structures presented in chapter 4 can be seamlessly used in

an integrated CLP-MILP modeling framework. The overall CLP-MILP modeling

approach gains versatility, since CLP is well-known by its rich modeling framework,

and the high-level MILP structures also facilitate the model builder task.

74 Chapter 4. MILP: Modeling Structures

Chapter 5

MILP: Application of the

High-Level Modeling Structures

This chapter presents an MILP for-
mulation addressing a combinatorial
problem. This problem is focused on
issues regarding the oil industry, more
specifically, involving the management
of a multi-product pipeline. The main
goal is to demonstrate the applicability of
the high-level MILP modeling structures
developed in chapter 4.

5.1 Introduction to the Problem Context

The oil industry has a strong influence upon the economic market. Research

in this area may provide highly profitable solutions and also avoid environmental

damages. The oil distribution-planning problem is within this context. A wide

net with trains, tankers, and pipelines are used to link harbors, refineries, and

consumers. According to Kennedy (1993), pipelines provide an efficient way to

transport oil and gas, and making good use of this transportation medium becomes

interesting to the oil industry. However, the operational decision-making in pipeline

systems is still based on experience, with the aid of manual calculations. According

to Lee et al. (1996), mathematical programming techniques for planning have been

extensively studied and implemented, but much less work has been devoted to short-

76 Chapter 5. MILP: Application of the High-Level Modeling Structures

term scheduling, which in fact reproduces the operational decision-making process.

In general lines, the short-term scheduling problem involves the optimal ex-

ploitation of available resources in order to optimize a plant production over a given

time horizon. These resources consist of, basically, (raw) materials, production

units, utilities, and manpower. The problem is to determine the optimal assignment

of production tasks to operating units, the best task sequence, and the optimal op-

erating level, in order to optimize a given production objective (Ierapetritou and

Floudas, 1998). The short-term scheduling requires the explicit modeling of discrete

decisions. The approach to solve this problem is manifold. A general one is to use a

mixed integer linear programming (MILP) formulation1. One great concern of short-

term scheduling problems formulated by MILP models is related to the difficulty of

finding solutions in a reasonable computational time (Reklaitis, 1992). According

to Applequist et al. (1997), an MILP feature of a practical problem requires a large

number of integer variables, and, therefore, the computational expense has to be

concerned. Subrahmanyam et al. (1995) demonstrate that decomposition strate-

gies are a valid approach to avoid the combinatorial explosion introduced by integer

variables. In addition, Wu and Ierapetritou (2003) present a series of decomposition-

based approaches for the efficient solution of short-term scheduling problems, which

are, otherwise, intractable.

Another great concern of short-term scheduling problems modeled by MILP is

the time representation. In general, such representation can be categorized in two

main streams: discrete time formulations and continuous time formulations. In the

former, the scheduling horizon is discretized into a number of equal duration inter-

vals, and all events must occur at the edge of the fixed intervals; in the latter, the

events can occur at any continuous time in the scheduling horizon, and the occur-

rence of real-event points determines the timing feature (event-driven formulation).

In the continuous time domain, the discretization of the scheduling horizon into a

number of subintervals is generally avoided. Reklaitis (1992) thoroughly describes

these time representation approaches, but, in a simplified point of view, the major

limitation at discrete time formulations is that the time quantum must be specified

1Section 2.2 on page 13 brings an explanation about MILP.

5.2 Problem Description 77

to equal the greatest common divisor of all event-duration. For instance, if task

processing times range from ten hours to fifteen minutes, the latter value must be

chosen for the discretization. If the problem data are rounded, the time quantum can

be increased, but the obtained solution can be either too conservative or infeasible.

If the problem data are accurately treated, then the model can become too large for

routine solution. On the other hand, continuous time formulations tend to produce

smaller models than equivalent discrete time formulations, however the integrality

gap2 tends to be bigger. Therefore, it is not possible to ensure whether a short-term

scheduling MILP model is computationally efficient just because it employs discrete

or continuous time representation (Reklaitis, 1992).

This chapter addresses a short-term scheduling problem by MILP techniques.

The problem description is presented in section 5.2, and the methodology used to

deal with this problem is explained in section 5.3.

5.2 Problem Description

The considered problem involves the short-term scheduling of activities in a

specific pipeline, which connects a harbor to an inland refinery. Figure 5.1 illustrates

the pipeline physical structure overview.

Refinery Pipeline Harbor

∆h

∆l

∆v

Figure 5.1: Pipeline Physical Structure Overview.

The pipeline presents 93.5 km in length (∆l), it can store a total volume of

7314 m3 (∆v), and it connects a refinery tank farm to a harbor tank farm going

along regions with 900-meter-altitude difference (∆h). The pipe conveys different

2The integrality gap is defined in section 2.2.

78 Chapter 5. MILP: Application of the High-Level Modeling Structures

types of products (gasoline, diesel, kerosene, liquefied petroleum gas, jet fuel, etc),

which are, mainly, oil products. Thus, the set of products conveyed by the pipe

is limited. The pipeline always operates completely filled, and there is no physical

separation between successive products as they are pumped. Consequently, there

is a contamination area between miscible products: the interface. Some interfaces

are operationally not recommended, and a plug (small volume of product) can be

used to avoid them, even though, plug inclusions increase the operational cost. The

products can be pumped either from the refinery to the harbor (this is called “flow”

procedure) or from the harbor to the refinery (this is called “reflow” procedure)3.

A complete pumping operation covers either a flow procedure followed by a reflow

procedure or a reflow followed by a flow procedure. The tank farm infrastructure,

an up-to-date storage scenario, the pipeline flow rate details, and the demand re-

quirements are known a priori. The main task is to specify the pipeline operation

during a limited scheduling horizon (H), providing low cost operational procedures.

Nevertheless, the scheduling process must also take into account some issues con-

cerning pumping sequence, flow rate determination, and operational requirements.

The operational cost is basically influenced by the usage of plugs, the time period

that the pipe remains pressurized and idle, and the seasonal cost of electric energy

(on-peak demand hours). Magatão (2001) presents a detailed description of the

problem features, as well as the factors that influence the operational cost. Section

5.4, which describes the mathematical model, also presents additional information

about the problem characteristics.

5.3 Methodology

This pipeline-scheduling problem was already addressed by the author of this

thesis and co-workers in Magatão et al. (2001), Magatão et al. (2002), and Magatão

et al. (2004). The core methodology applied in these papers is mixed integer linear

3In fact, “flow” procedure and “reflow” procedure are operational terms that would be better
defined as, respectively, flow forwards procedure and flow backwards procedure. For simplicity,
this thesis uses the operational terms flow and reflow.

5.3 Methodology 79

programming, but the high-level MILP modeling structures presented in chapter

4 were not used. In Magatão et al. (2001), the authors developed a monolithic

MILP model that relied on uniform time discretization. They demonstrated that

even small problem instances have potentially large integer search spaces, and the

computational burden should have been deeply considered.

In Magatão et al. (2002) the authors indeed considered the computational ex-

pense previously detected by Magatão et al. (2001). The problem was divided in

small entities, which were based on the three key elements of scheduling: assignment

of resources, sequencing of activities, and determination of resource timing utiliza-

tion by these activities4. The idea was to share the basic scheduling elements among

an integrated architecture, which provided a framework that was aimed at reducing

the computational expense.

Similarly to the work of Magatão et al. (2002), in Magatão et al. (2004) the

authors also developed an optimization structure based on MILP with decomposi-

tion strategies. In general, the latter approach tends to produce better scheduling

answers than the former one5. Thus, the optimization structure henceforth used in

this chapter, which is illustrated in figure 5.2, is based on Magatão et al. (2004).

Tank
Bound

Auxiliary
Routine

Data
Base

Main
Model

Figure 5.2: Optimization Structure.

The optimization structure proposed by Magatão et al. (2004) is based on an

MILP main model (Main Model), one auxiliary MILP model (Tank Bound), a time

computation procedure (Auxiliary Routine), and a database (Data Base), which

gathers the input data and the information provided by the other optimization

4The key elements of scheduling are explained, for instance, by Reklaitis (1992).
5An early comparison between optimization structures is presented by Magatão (2001).

80 Chapter 5. MILP: Application of the High-Level Modeling Structures

blocks. The Tank Bound task involves the appropriate selection of some resources

(tanks) for a given activity (the pumping of demanded products). Its main inputs are

demand requirements, product availability, and tankage constraints. As an output,

it specifies the tanks to be used in operational procedures.

The Auxiliary Routine takes into account the available time horizon, the prod-

uct flow rate range, and demand requirements. It specifies temporal constraints

(time-windows), which must be respected by the Main Model.

The Main Model, which is based on MILP with uniform time discretization,

determines the product pumping sequence and it establishes the initial and the final

time of each pumping activity. The final scheduling is attained by first solving the

Tank Bound and the Auxiliary Routine, and, at last, the Main Model. The Main

Model must respect the parameters previously determined by the Auxiliary Routine.

This chapter uses the optimization structure illustrated in figure 5.2, but there

exist two fundamental differences in relation to the work of Magatão et al. (2004):

(i) The Main Model is based on MILP with continuous time approach;

(ii) The Auxiliary Routine was reformulated in order to satisfy the continuous time

approach.

The Tank Bound, however, is essentially the same model of Magatão et al.

(2004), which specifies the tanks to be used during the operational procedures.

Therefore, for simplicity, the Tank Bound is not herein discussed, as well as the fea-

tures involving the storage resources. The interested reader should consult Magatão

et al. (2004) and Magatão (2001).

The continuous time approach was chosen because of two main reasons:

(i) Section 5.1 stated that it is not possible to ensure whether a short-term schedul-

ing MILP model is computationally efficient just because it employs discrete or

continuous time representation. Discrete time formulations were applied in the

previous work addressing the same problem (Magatão et al., 2001; Magatão

et al., 2002; Magatão et al., 2004). Therefore, investigating a continuous for-

5.4 Mathematical Formulation 81

mulation seemed to be a necessity in order to verify whether such continuous

approach could better suit operational issues or not;

(ii) Discrete time representations tend to handle constraints with ease, since these

are explicitly enforced at the discrete time points; on the other hand, continu-

ous time formulations tend to be more challenging from a modeling standpoint

(Kondili et al., 1993). This fact turns out to be valuable, because the MILP

modeling structures developed in chapter 4 can be applied in a “difficult” con-

tinuous time formulation.

5.4 Mathematical Formulation

The general guidelines used to create the mathematical formulation are sum-

marized in conditions 1 to 12, henceforth described:

1. Products can be pumped from two different origins : either refinery or harbor.

The refinery is the origin for the flow procedure; the harbor is the origin for

the reflow procedure. The set O is used to represent these different origins.

By convention, o = 1 indicates the flow procedure, and o = 2 indicates the

reflow procedure. Therefore, o∈O, O = {1, 2};

2. A subset of products is pumped from each origin (p∈Po) during the schedul-

ing horizon. A complete pumping operation covers either a reflow procedure

followed by a flow procedure or a flow procedure followed by a reflow proce-

dure. Therefore, the pipeline scenario involves both flow forwards and flow

backwards procedures. Such a particular operational condition has to be in-

corporated into the mathematical model;

3. The product flow rate, which is within a range, must be respected. Therefore,

there is a minimum and a maximum time interval to pump each product;

4. Each product is pumped only once (one batch) throughout the scheduling

horizon. This operational procedure contributes to minimize interfaces losses;

82 Chapter 5. MILP: Application of the High-Level Modeling Structures

5. The set of demanded products must be pumped during the scheduling horizon;

6. A minimum scheduling horizon (Hmin) must be available for pumping proce-

dures, otherwise (H < Hmin) the problem is infeasible. At H = Hmin each

product is pumped at its maximum flow rate;

7. The pipeline stores 7314 m3 and it always operates completely filled. There is

a time delay in between pumping a product and receiving it. Therefore, an

extra product amount must be pumped after the last flow sequenced product

and the last reflow sequenced product. This extra product amount is used to

maintain the pipeline filled with no interfaces inside the pipe (see figure 5.10

on page 113);

8. The plug volume is significantly smaller than any demanded product volume,

so that, its pumping time is neglected;

9. Plug inclusions increase the operational cost, so that, use of plugs should be

minimized;

10. Set-up times are neglected;

11. The pipeline can be stopped during the scheduling horizon. However, there

is an operational cost to maintain the pipeline without pumping (pressurized

and idle)6;

12. The electric energy has seasonal costs. Typically, from 6 p.m. to 9 p.m. (on-

peak demand hours) the cost is higher than in the rest of the day (COPEL,

2005). Therefore, during the scheduling horizon, the electric energy has inter-

vals that receive different electric cost rates (see figure 5.4 on page 95).

5.4.1 Notation

This section details the notation adopted to formulate the mathematical model.

This notation is indispensable for the formulation understanding.

6In order to maintain the pipeline pressurized and idle (without pumping), the system operator
can, for instance, determine that inlet/outlet valves must remain closed.

5.4 Mathematical Formulation 83

Sets

E set of on-peak electric cost intervals inside the scheduling horizon,

E = {1, 2, . . . , ne} (the general parameter ne is defined on page 84);

O set of origins, O = {1, 2};

Po set of demanded products from each origin o, P1 = {1, 2, . . . , np1} and

P2 = {np1 + 1, np1 + 2, . . . , np1 + np2} (np1 and np2 are defined on page

84 - see the general parameter npo).

Subscripts

e electric cost (e∈E);

o, ō origins (o∈O, ō∈O, O = {1, 2})7;

p, pa products (p∈Po, pa∈Po).

General Parameters

C low
o the electric energy has seasonal costs, which receive different electric

cost rates; the parameter C low
o indicates the standard electric cost rate

per hour applied when products are pumped from origin o ($/h);

Chigh
o the electric energy has seasonal costs, which receive different electric cost

rates; the parameter Chigh
o indicates the additional value to the standard

electric cost rate per hour (C low
o); Chigh

o is applied when products are

pumped from origin o during on-peak demand intervals ($/h);

Cplug
o average cost to pump a plug product from origin o ($);

Cpres average cost per hour to maintain the pipeline pressurized and idle

($/h);

d defines the origin (either refinery or harbor) that starts the pumping

procedure (d ∈ {1, 2}, d + d̄ = 3)8; if d = 1 and d̄ = 2 then the flow

procedure starts the pumping process, otherwise (d = 2 and d̄ = 1) the

reflow procedure starts the pumping process;

7It is important to notice that ō is not the complement of o, but rather just a notation.
8It is important to notice that d̄ is not the complement of d, but rather just a notation.

84 Chapter 5. MILP: Application of the High-Level Modeling Structures

d̄ defines the origin (either harbor or refinery) that finishes the pumping

procedure (d̄ ∈ {1, 2}, d + d̄ = 3); if d = 1 and d̄ = 2 then the reflow

procedure finishes the pumping process, otherwise (d=2 and d̄=1) the

flow procedure finishes the pumping process;

demp,o demanded amount of product p from origin o (m3);

ε non-dimensional small tolerance value (ε > 0, e.g. ε = 10−3) used to

express if-then and if-then-else statements (see details in section 4.2.3);

ϕmax
p,o maximum flow rate of product p from origin o (m3/h);

ϕmin
p,o minimum flow rate of product p from origin o (m3/h), when the pipeline

is not pressurized and idle9;

fhe during the scheduling horizon, the electric energy has intervals that

receive different electric cost rates (see figure 5.4 on page 95, intervals

e=1, e=2, . . . , e=ne); the parameter fhe indicates the time value that

the on-peak electric cost e finishes (h);

H scheduling horizon (h);

L non-dimensional value (lower bound) used to express if-then and

if-then-else statements (see section 4.2.3). In particular, the fixed value

L = −(maximum(H) + 1) was used;

ne number of on-peak electric cost intervals during the scheduling horizon

(see figure 5.6, page 102);

npo number of demanded products from each origin o;

pin product that establishes the interface with the first pumped p of origin

d (origin that starts the pumping procedure). Indeed, pin is already

inside the pipe at the initial scheduling time;

plugp,pa 1 if the interface between products p and pa demands a plug, 0 otherwise;

pv pipeline internal volume (m3);

9Indeed, when the pipeline is pressurized and idle, the flow rate is equal to zero. However, ϕmin
p,o

is the minimum allowable flow rate value when product p from origin o is being pumped.

5.4 Mathematical Formulation 85

she during the scheduling horizon, the electric energy has intervals that

receive different electric cost rates (see figure 5.4, intervals e=1,

e=2, . . . , e=ne); the parameter she indicates the time value that the

on-peak electric cost e starts (h);

U non-dimensional value (upper bound) used to express if-then and

if-then-else statements (see section 4.2.3). In particular, the fixed value

U = +(maximum(H) + 1) was used.

Parameters Determined by the Auxiliary Routine

dmax
p,o maximum pumping duration of product p from origin o (h), when p is

pumped uninterruptedly;

dmin
p,o minimum pumping duration of product p from origin o (h);

fd available time (h) to complete either the flow procedure (d=1, d̄=2)

or the reflow procedure (d=2, d̄=1) - see figure 5.3 on page 88;

fdmin lower time limit (h) to complete either the flow procedure (d=1, d̄=2)

or the reflow procedure (d=2, d̄=1) - see figure 5.3;

Hmin minimum scheduling horizon (h) to complete pumping procedures (flow

and reflow) - see figure 5.3;

tdmax
p,o maximum pumping duration to fill up the pipeline uninterruptedly with

product p from origin o (h);

tdmin
p,o minimum pumping duration to fill up the pipeline with product p from

origin o (h).

Main Model Variables

δ00
p,o,e continuous variable used to indicate the pumping temporal position of

product p from origin o in relation to electric cost interval e (see figure

5.4, positions 1 and 2) - in fact, just binary values are assigned to δ00
p,o,e;

δ01
p,o,e continuous variable used to indicate the pumping temporal position of

product p from origin o in relation to electric cost interval e (see figure

5.4, position 3) - in fact, just binary values are assigned to δ01
p,o,e;

86 Chapter 5. MILP: Application of the High-Level Modeling Structures

δ10
p,o,e continuous variable used to indicate the pumping temporal position of

product p from origin o in relation to electric cost interval e (see figure

5.4, position 4) - in fact, just binary values are assigned to δ10
p,o,e;

δ11
p,o,e continuous variable used to indicate the pumping temporal position of

product p from origin o in relation to electric cost interval e (see figure

5.4, positions 5 and 6) - in fact, just binary values are assigned to δ11
p,o,e;

dpres continuous variable that indicates the time period that the pipeline

remains pressurized and idle during the scheduling horizon (h);

fp,o continuous variable that indicates the pumping finish time of product p

from origin o (h);

fghp,o,e binary variable that indicates whether fp,o is greater than or equal fhe

(fghp,o,e = 1), or otherwise (fghp,o,e = 0) - see figure 5.4;

firstp,o binary variable that indicates whether p is the first pumped product

from origin o (firstp,o = 1), or otherwise (firstp,o = 0);

gtp,pa,o binary variable that indicates whether product p is pumped before

product pa (gtp,pa,o = 1), or otherwise (gtp,pa,o = 0) - both products are

pumped from origin o;

inhp,o,e continuous variable that indicates, together with stopp,o,e, the pumping

duration of product p from origin o in the electric cost interval e (h);

lastp,o binary variable that indicates whether p is the last pumped product

from origin o (lastp,o = 1), or otherwise (lastp,o = 0);

sp,o continuous variable that indicates the pumping start time of product p

from origin o (h);

seqp,o continuous variable that indicates the pumping sequence of product p

from origin o (in fact, just integer values are assigned to seqp,o);

sghp,o,e binary variable that indicates whether sp,o is greater than or equal she

(sghp,o,e = 1), or otherwise (sghp,o,e = 0) - see figure 5.4;

stopp,o,e continuous variable that indicates, together with inhp,o,e, the time pe-

riod that product p from origin o is maintained pressurized and idle

during the electric cost interval e (h);

5.4 Mathematical Formulation 87

tp,pa,o binary variable that indicates whether the pumping of product p is

immediately followed by the pumping of product pa and, therefore, the

interface p− pa is established (tp,pa,o = 1), or otherwise (tp,pa,o = 0) -

both products are pumped from origin o;

twp,pa binary variable that indicates whether the pumping of product p from

origin o is followed by the pumping of product pa from origin ō

(twp,pa = 1), or otherwise (twp,pa = 0).

5.4.2 Auxiliary Routine

Equations 5.1 to 5.7 define parameters determined by the Auxiliary Routine.

These parameters, in fact, establish time windows that must be respected by the

pumping procedures. Figure 5.3 illustrates such time windows.

dmin
p,o = demp,o/ϕ

max
p,o ∀o∈O, p∈Po (5.1)

dmax
p,o = demp,o/ϕ

min
p,o ∀o∈O, p∈Po (5.2)

tdmin
p,o = pv/ϕmax

p,o ∀o∈O, p∈Po (5.3)

tdmax
p,o = pv/ϕmin

p,o ∀o∈O, p∈Po (5.4)

fdmin =
∑
o=d,
p∈Po

dmin
p,o + min

o=d,
p∈Po

(tdmin
p,o) (5.5)

Hmin =
∑
o=d,
p∈Po

dmin
p,o +

∑
ō=d̄,

pa∈Pō

dmin
pa,ō + min

o=d,
p∈Po

(tdmin
p,o) + min

ō=d̄,
pa∈Pō

(tdmin
pa,ō) (5.6)

fd = fdmin + H −Hmin (5.7)

5.4.3 Main Model

The Main Model is created based on the aforementioned conditions 1 to 12

(page 81). Another important premise is considering a continuous time approach.

Therefore, the events, such as the pumping finish of a product p, can occur at any

continuous time value, inside the scheduling horizon. The Main Model formulation

88 Chapter 5. MILP: Application of the High-Level Modeling Structures

fdmin fd Hmin H0

available scheduling horizon

minimum scheduling horizon

available time for either
reflow or flow

minimum time for either
reflow or flow

minimum time for either
flow or reflow

available time for either
flow or reflow

Figure 5.3: Auxiliary Routine - An Illustrative Case.

also used the abstraction of temporal blocks, which define the pumping start time

(sp,o) and the pumping completion time (fp,o) of each required product p, in each

origin o (see figure 5.4, page 95). The initial and the final boundary of such blocks

determine the values of, respectively, sp,o and fp,o, which are continuous variables.

These continuous variables are used to establish whether a product p from origin o

is pumped before a product pa from origin o (gtp,pa,o = 1), or otherwise (gtp,pa,o = 0)

- see expression 5.9.

Based on the value of gtp,pa,o, the variables seqp,o, tp,pa,o, firstp,o, lastp,o, and

twp,pa are used to specify the pumping sequence details (see expressions 5.10 to 5.20).

The values of sp,o and fp,o are also used to establish the time period that a product is

pumped (inhp,o,e) or remains pressurized and idle (stopp,o,e) during on-peak demand

time intervals of electric energy. The variables fghp,o,e, sghp,o,e, δ00
p,o,e, δ01

p,o,e, δ10
p,o,e, and

δ11
p,o,e are created in order to detected such electric cost conditions (see expressions

5.21 to 5.27 and figure 5.4). The variable called dpres is used to specify the time

period that the pipe remains pressurized and idle (see equation 5.28). In addition,

expressions 5.29 to 5.35 are used to determine the minimum/maximum allowable

duration of pumping activities.

5.4 Mathematical Formulation 89

The high-level MILP modeling structures developed in chapter 4 are widely

used in the Main Model formulation. Thus, for simplicity, the reader should consult

tables 4.9 (page 66) and 4.10 (page 67).

5.4.3.1 Main Model: Objective Function

The Main Model objective function (expression 5.8) defines the operational

cost minimization. This function is weighed by the following cost factors:

(i) Electric cost variations (C low
o ∀o∈O, Chigh

o ∀o∈O);

(ii) Cost of using plugs (Cplug
o ∀o∈O); and,

(iii) Cost of maintaining the pipeline pressurized and idle (Cpres).

minimize∑
o∈O

∑
p∈Po

C low
o · (fp,o − sp,o)

+
∑
o∈O

∑
p∈Po

∑
e∈E

Chigh
o · (inhp,o,e − stopp,o,e)

+
∑
o∈O

∑
p∈Po

∑
pa∈Po,
pa 6=p

Cplug
o · tp,pa,o · plugp,pa

+
∑
o=d,
p∈Po

∑
ō=d̄,

pa∈Pō

Cplug
ō · twp,pa · plugp,pa

+
∑

p=pin,
o=d,

pa∈Po

Cplug
o · firstp,o · plugp,pa

+ Cpres · dpres

(5.8)

In a simplified standpoint, expression 5.8 indicates that the time period that

a product is pumped during on-peak demand intervals is detected by the model

(inhp,o,e − stopp,o,e), and receives an additional charge (Chigh
o). Thus, the solution

method seeks scheduling answers that avoid pumping products during on-peak de-

mand hours. At this case, alternatively, the pipe can be maintained pressurized and

idle (stopp,o,e > 0), but this condition also influences the operational cost by the term

“Cpres · dpres” (see equation 5.28 on page 96). In addition, plug inclusions increase

90 Chapter 5. MILP: Application of the High-Level Modeling Structures

the operational cost, and the optimization method has to seek scheduling solutions

that minimize the plug usage. Therefore, a series of factors must be considered in

order to determine the scheduling condition that yields the minimum operational

cost.

5.4.3.2 Main Model: Constraints

The Main Model is also subject to constraints, which are expressed in 5.9

to 5.35. In the if-then-else statement 5.9, the truth of the binary variable gtp,pa,o

(gtp,pa,o =1) indicates that product p is pumped before product pa (fp,o ≤ spa,o); the

falsehood of such variable (gtp,pa,o =0) implies that fp,o > spa,o. Both products are

pumped from origin o. The inequalities written in brace are, in fact, the equivalent

set of MILP “base-level” expressions for the “high-level” if-then-else statement. The

base-level is obtained by table 4.10. In fact, general MILP modeling languages can

only interpret base-level (in)equalities10.

If gtp,pa,o Then fp,o≤spa,o Else fp,o >spa,o ∀o∈O, p∈Po, pa∈Po, p 6=pa fp,o − spa,o ≤ U · (1− gtp,pa,o) ∀o∈O, p∈Po, pa∈Po, p 6=pa

fp,o − spa,o ≥ (L− ε) · gtp,pa,o + ε ∀o∈O, p∈Po, pa∈Po, p 6=pa

(5.9)

Equations 5.10 and 5.11 are used to assign the product pumping sequence to

variable seqp,o. For example, seq1,1 = 2 indicates that product one (p = 1) is the

second to be pumped during the flow operation (o = 1).

∑
p∈Po

∑
pa∈Po,
pa 6=p

gtp,pa,o =

k=npo∑
k=1

(k − 1) ∀o∈O (5.10)

seqp,o = npo −
∑

pa∈Po,
pa 6=p

gtp,pa,o ∀o∈O, p∈Po (5.11)

In order to exemplify the working of equations 5.10 and 5.11, let’s consider a

hypothetical case where npo = 4 ∀o∈O. By the if-then-else statement 5.9, the truth

10For simplicity, single values of U and L were used in the Main Model formulation instead of
Uk and Lk, suggested in tables 4.9 and 4.10. In particular, the fixed values U =+(maximum(H)+
1) and L = −(maximum(H) + 1) were used. These values are attained by observing that the
upper/lower bounds on all if-then and if-then-else “base-level” inequalities of section 5.4.3 cannot
exceed the scheduling horizon value.

5.4 Mathematical Formulation 91

of the binary variable gtp,pa,o implies that product p is pumped before product pa.

Therefore, for the first sequenced product,
∑

pa∈Po,
pa 6=p

gtp,pa,o ∀o∈O, p∈Po is equal to

three (the first sequenced product is pumped before three other products); for the

second sequenced product,
∑

pa∈Po,
pa 6=p

gtp,pa,o ∀o∈O, p∈Po is equal to two; for the

third sequenced product, the value of
∑

pa∈Po,
pa 6=p

gtp,pa,o ∀o∈O, p∈Po is equal to one;

for the fourth sequenced product,
∑

pa∈Po,
pa 6=p

gtp,pa,o ∀o∈O, p∈Po is equal to zero. By

equation 5.10, for each origin o, the value of
∑k=npo

k=1 (k − 1) is equal to six (0+1+2+3),

and, therefore,
∑

p∈Po

∑
pa∈Po,
pa 6=p

gtp,pa,o = 6 ∀o∈O. By equation 5.11, for all origins

o and for each product p ∈ Po, if
∑

pa∈Po,
pa 6=p

gtp,pa,o is equal to three, then, p is the

first sequenced product from origin o (seqp,o = 4− 3). If
∑

pa∈Po,
pa 6=p

gtp,pa,o is equal to

zero, then, p is the last sequenced product from origin o (seqp,o = 4− 0). The other

sequence positions are attained in an analogous way.

In the if-then statement 5.12, the truth of the binary variable tp,pa,o implies

that the pumping of product p is immediately followed by the pumping of product

pa. Both products are pumped from origin o.

If tp,pa,o Then seqpa,o − seqp,o = 1 ∀o∈O, p∈Po, pa∈Po, p 6=pa seqpa,o − seqp,o − 1 ≤ U · (1− tp,pa,o) ∀o∈O, p∈Po, pa∈Po, p 6=pa

seqpa,o − seqp,o − 1 ≥ L · (1− tp,pa,o) ∀o∈O, p∈Po, pa∈Po, p 6=pa

(5.12)

Equation 5.13 and inequalities 5.14 and 5.15 establish that a product must be

pumped only once throughout the scheduling horizon.

∑
p∈Po

∑
pa∈Po,
pa 6=p

tp,pa,o = npo − 1 ∀o∈O (5.13)

∑
pa∈Po,
pa 6=p

tp,pa,o ≤ 1 ∀o∈O, p∈Po (5.14)

∑
pa∈Po,
pa 6=p

tpa,p,o ≤ 1 ∀o∈O, p∈Po (5.15)

The if-then statement 5.16 and the equation 5.17 determine that the truth of

the binary variable firstp,o implies p to be the first pumped product from origin

o. The same effect of the if-then statement 5.16 and the equation 5.17 could have

92 Chapter 5. MILP: Application of the High-Level Modeling Structures

been achieved by just the unnumbered if-then-else statement that appears right

after equation 5.1711. However, the reader should be aware that this if-then-else

formulation would increase the number of variables and constraints in comparison

with the if-then statement 5.16 and the equation 5.17 (e.g. the auxiliary binary

variables first
′
p,o, first

′′
p,o ∀o∈O, p∈Po would have been created if the if-then-else

formulation were used). In general, it is advisable to look for compact formulations.

If firstp,o Then seqp,o = 1 ∀o∈O, p∈Po seqp,o − 1 ≤ U · (1− firstp,o) ∀o∈O, p∈Po

seqp,o − 1 ≥ L · (1− firstp,o) ∀o∈O, p∈Po

(5.16)

∑
p∈Po

firstp,o = 1 ∀o∈O (5.17)

If firstp,o Then seqp,o = 1 Else seqp,o 6= 1 ∀o∈O, p∈Po

seqp,o − 1 ≤ U · (1− first
′
p,o) ∀o∈O, p∈Po

seqp,o − 1 ≥ (L− ε) · first
′
p,o + ε ∀o∈O, p∈Po

seqp,o − 1 ≥ L · (1− first
′′
p,o) ∀o∈O, p∈Po

seqp,o − 1 ≤ (U + ε) · first
′′
p,o − ε ∀o∈O, p∈Po

firstp,o = first
′
p,o + first

′′
p,o − 1 ∀o∈O, p∈Po

first
′
p,o, first

′′
p,o ∈ {0, 1} ∀o∈O, p∈Po

The if-then statement 5.18 and the equation 5.19 determine that the truth of

the binary variable lastp,o implies p to be the last pumped product from origin o.

If lastp,o Then seqp,o = npo ∀o∈O, p∈Po seqp,o − npo ≤ U · (1− lastp,o) ∀o∈O, p∈Po

seqp,o − npo ≥ L · (1− lastp,o) ∀o∈O, p∈Po

(5.18)

∑
p∈Po

lastp,o = 1 ∀o∈O (5.19)

11This if-then-else statement is unnumbered because it was not implemented. Instead of it, the
if-then statement 5.16 and the equation 5.17 were indeed implemented.

5.4 Mathematical Formulation 93

Expression 5.20 establishes that a binary variable twp,pa is set to one if the

pumping of product p from origin o is followed by the pumping of product pa from

origin ō, otherwise twp,pa is set to zero. The inequalities written in brace are, in fact,

the MILP base-level expression of the and (∧) statement.

The expression of and statements involving binary variables is a well-known

subject. Considering, for example, that c = a∧b, with both a and b binary variables.

Then, the equivalent formulation for the and statement is indicated by the following

set of inequalities: c ≤ a, c ≤ b, and c ≥ a + b− 1 (Schrage, 2000).

twp,pa = (lastp,o) ∧ (firstpa,ō) ∀p∈Po, pa∈Pō, o = d, ō = d̄
twp,pa ≤ lastp,o ∀p∈Po, pa∈Pō, o = d, ō = d̄

twp,pa ≤ firstpa,ō ∀p∈Po, pa∈Pō, o = d, ō = d̄

twp,pa ≥ lastp,o + firstpa,ō − 1 ∀p∈Po, pa∈Pō, o = d, ō = d̄

(5.20)

Electric Cost: On-peak Intervals. One great concern of specialists in using

pipeline-scheduling models in real-world scenarios is the difference between theoret-

ical models and practical needs. One example of an important practical feature to

be addressed is the seasonal variation of electric energy cost. Such cost variation

represents on-peak demand hours that are charged at different rates. In a discrete

time representation, the seasonal electric cost variation can be addressed with ease,

since cost differences are explicitly enforced at the discrete time points (e.g. Magatão

et al., 2004). On the other hand, to address electric cost variations on a continuous

time formulation tends to be more challenging from a modeling standpoint, as herein

presented in expressions 5.21 to 5.28.

The if-then-else statements 5.21 and 5.22 establish that if the binary indi-

cator variables fghp,o,e and sghp,o,e are set to one, then, respectively, the condi-

tions fp,o ≥ fhe and sp,o ≥ she must hold; otherwise, the conditions fp,o < fhe and

sp,o < she must hold. These binary variables are used to identify the relative posi-

tion of a pumping time block defined by product p in relation to an on-peak electric

94 Chapter 5. MILP: Application of the High-Level Modeling Structures

time interval e (see figure 5.4 and expressions 5.23 to 5.26).

If fghp,o,e Then fp,o ≥ fhe Else fp,o < fhe ∀o∈O, p∈Po, e∈E fp,o − fhe ≥ L · (1− fghp,o,e) ∀o∈O, p∈Po, e∈E

fp,o − fhe ≤ (U + ε) · fghp,o,e − ε ∀o∈O, p∈Po, e∈E

(5.21)

If sghp,o,e Then sp,o ≥ she Else sp,o < she ∀o∈O, p∈Po, e∈E sp,o − she ≥ L · (1− sghp,o,e) ∀o∈O, p∈Po, e∈E

sp,o − she ≤ (U + ε) · sghp,o,e − ε ∀o∈O, p∈Po, e∈E

(5.22)

Figure 5.4 illustrates the six possible positions of a temporal block p in rela-

tion to an interval e. In the first position (1), block p totally precedes the inter-

val e (fp,o < she). In the second position (2), block p starts before the interval e

(sp,o < she), but it finishes inside e (she ≤ fp,o < fhe). In the third position (3),

block p starts and finishes inside the interval e (sp,o ≥ she and fp,o < fhe). In the

fourth position (4), block p starts before e (sp,o < she) and it finishes just after e

(fp,o ≥ fhe). In the fifth position (5), block p starts inside e (she ≤ sp,o < fhe), but

it finishes after e (fp,o ≥ fhe). In the sixth position (6), block p totally succeeds the

interval e (sp,o ≥ fhe). The duration of a temporal block p inside the electric cost

interval e is determined by expressions 5.23 to 5.26, herein detailed.

The if-then statement 5.23 establishes that the truth of the logical expression

(¬fghp,o,e) ∧ (¬sghp,o,e) implies that the inequality inhp,o,e ≥ fp,o − she must hold.

In the base-level of such if-then statement, δ00
p,o,e assumes either values zero or one,

according to the logical expression (¬fghp,o,e)∧ (¬sghp,o,e). The truth of this logical

expression indicates that a temporal block p is located in positions 1 or 2 of figure

5.4.

If (¬fghp,o,e)∧(¬sghp,o,e) Then inhp,o,e≥fp,o−she ∀o∈O, p∈Po, e∈E

δ00
p,o,e ≤ 1− fghp,o,e ∀o∈O, p∈Po, e∈E

δ00
p,o,e ≤ 1− sghp,o,e ∀o∈O, p∈Po, e∈E

δ00
p,o,e ≥ 1− fghp,o,e − sghp,o,e ∀o∈O, p∈Po, e∈E

inhp,o,e − fp,o + she ≥ L · (1− δ00
p,o,e) ∀o∈O, p∈Po, e∈E

(5.23)

5.4 Mathematical Formulation 95

1 fp,osp,o

6 fp,osp,o

2 fp,osp,o

3 fp,osp,o

4 fp,osp,o

5 fp,osp,o

fheshe

interval eBlock p in
position 1

0 H

e=2 e=ne-1 e=neee=1

interval e=ne of
on-peak demand

5 or 611

401

310

1 or 200

position of
block psghp,o,efghpp,o,e,o,e

Figure 5.4: Electric Cost.

The if-then statement 5.24 establishes that the truth of the logical expression

(¬fghp,o,e) ∧ (sghp,o,e) implies that the equation inhp,o,e = fp,o − sp,o must hold. In

the base-level of such if-then statement, δ01
p,o,e assumes either values zero or one,

according to the logical expression (¬fghp,o,e) ∧ (sghp,o,e). The truth of this logical

expression indicates that a temporal block p is located in position 3 of figure 5.4.

If (¬fghp,o,e) ∧ (sghp,o,e) Then inhp,o,e = fp,o−sp,o ∀o∈O, p∈Po, e∈E

δ01
p,o,e ≤ 1− fghp,o,e ∀o∈O, p∈Po, e∈E

δ01
p,o,e ≤ sghp,o,e ∀o∈O, p∈Po, e∈E

δ01
p,o,e ≥ sghp,o,e − fghp,o,e ∀o∈O, p∈Po, e∈E

inhp,o,e − fp,o + sp,o ≤ U · (1− δ01
p,o,e) ∀o∈O, p∈Po, e∈E

inhp,o,e − fp,o + sp,o ≥ L · (1− δ01
p,o,e) ∀o∈O, p∈Po, e∈E

(5.24)

The if-then statement 5.25 establishes that the truth of the logical expression

(fghp,o,e) ∧ (¬sghp,o,e) implies that the equation inhp,o,e = fhe − she must hold. In

the base-level of such if-then statement, δ10
p,o,e assumes either values zero or one,

according to the logical expression (fghp,o,e) ∧ (¬sghp,o,e). The truth of this logical

96 Chapter 5. MILP: Application of the High-Level Modeling Structures

expression indicates that a temporal block p is located in position 4 of figure 5.4.

If (fghp,o,e) ∧ (¬sghp,o,e) Then inhp,o,e = fhe−she ∀o∈O, p∈Po, e∈E

δ10
p,o,e ≤ fghp,o,e ∀o∈O, p∈Po, e∈E

δ10
p,o,e ≤ 1− sghp,o,e ∀o∈O, p∈Po, e∈E

δ10
p,o,e ≥ fghp,o,e − sghp,o,e ∀o∈O, p∈Po, e∈E

inhp,o,e − fhe + she ≤ U · (1− δ10
p,o,e) ∀o∈O, p∈Po, e∈E

inhp,o,e − fhe + she ≥ L · (1− δ10
p,o,e) ∀o∈O, p∈Po, e∈E

(5.25)

The if-then statement 5.26 establishes that the truth of the logical expression

(fghp,o,e) ∧ (sghp,o,e) implies that the inequality inhp,o,e ≥ fhe − sp,o must hold. In

the base-level of such if-then statement, δ11
p,o,e assumes either values zero or one,

according to the logical expression (fghp,o,e) ∧ (sghp,o,e). The truth of this logical

expression indicates that a temporal block p is located in positions 5 or 6 of figure

5.4.

If (fghp,o,e) ∧ (sghp,o,e) Then inhp,o,e ≥ fhe−sp,o ∀o∈O, p∈Po, e∈E

δ11
p,o,e ≤ fghp,o,e ∀o∈O, p∈Po, e∈E

δ11
p,o,e ≤ sghp,o,e ∀o∈O, p∈Po, e∈E

δ11
p,o,e ≥ fghp,o,e + sghp,o,e − 1 ∀o∈O, p∈Po, e∈E

inhp,o,e − fhe + sp,o ≥ L · (1− δ11
p,o,e) ∀o∈O, p∈Po, e∈E

(5.26)

Inequality 5.27 assigns a bound to stopp,o,e. Therefore, the time interval that

a product p from origin o is maintained pressurized and idle during the on-peak

demand interval e is limited by inhp,o,e.

stopp,o,e ≤ inhp,o,e ∀o∈O, p∈Po, e∈E (5.27)

Equation 5.28 indicates that the continuous variable dpres has assigned the

time period value that the pipeline remains pressurized and idle. It is interesting

to notice that the pipe may remain pressurized and idle during on-peak intervals

(
∑

o∈O

∑
p∈Po

∑
e∈E stopp,o,e > 0) or during intervals that are charged at low rates

(H −
∑

o∈O

∑
p∈Po

(fp,o − sp,o) > 0).

dpres = H −
∑
o∈O

∑
p∈Po

(fp,o − sp,o) +
∑
o∈O

∑
p∈Po

∑
e∈E

stopp,o,e (5.28)

5.4 Mathematical Formulation 97

Inequalities 5.29 and 5.30 establish, respectively, the minimum and the maxi-

mum allowable pumping time interval of each product p from origin o.

fp,o − sp,o ≥ dmin
p,o +

∑
e∈E

stopp,o,e + lastp,o · tdmin
p,o ∀o∈O, p∈Po (5.29)

fp,o − sp,o ≤ dmax
p,o +

∑
e∈E

stopp,o,e + lastp,o · tdmax
p,o ∀o∈O, p∈Po (5.30)

Inequality 5.31 indicates that there must not be overlaps between temporal

blocks.

fp,o ≤ spa,ō ∀p∈Po, pa∈Pō, o = d, ō = d̄ (5.31)

Inequalities 5.32 to 5.35 establish that the temporal parameters determined by

the auxiliary routine must be respected by the Main Model.

sp,o ≥ 0 ∀p∈Po, o = d (5.32)

spa,ō ≥ fdmin ∀pa∈Pō, ō = d̄ (5.33)

fp,o ≤ fd ∀p∈Po, o = d (5.34)

fpa,ō ≤ H ∀pa∈Pō, ō = d̄ (5.35)

Thus, expressions 5.8 to 5.35 establish the Main Model mathematical for-

mulation. This formulation is tailor-made for the unique features of the pipeline-

scheduling problem previously described in section 5.212. Nevertheless, the metho-

dology applied to this formulation, which is described in section 5.3, can be adapted

to other specific scheduling problems.

5.4.3.3 Main Model: The Number of Variables

According to Williams (1999), the number of (integer) variables in an (M)ILP

model can be often regarded as an indicator of the computational difficulty for solv-

ing such model. The author deeply exploits the theme, and warns that, sometimes,

the task of building an MILP model can just serve to show that the model demands

12In addition, other pipeline-scheduling features such as due-dates (or time-windows) for receiv-
ing products can be added to the formulation, according to operational necessities.

98 Chapter 5. MILP: Application of the High-Level Modeling Structures

a prohibitive computational effort. Therefore, prior to applying MILP solution al-

gorithms, it is advisable to estimate the number of variables presented by an MILP

model. This can be an “indicator” of whether the generated model is likely to be

solved by the state-of-the-art MILP solution strategies or not13. Besides the remark-

able evolution of MILP solvers (see section 2.2 on page 13), it is recommended to

be careful about MILP models that present, for instance, an exponential growth of

variables. Thus, one important issue regarding the Main Model formulation is to

determine its number of binary and continuous variables according to the considered

problem instance.

Along the Main Model expressions 5.8 to 5.35, it can be observed that the

subscripts of variables are products (p, pa), origins (o, ō) and electric cost (e).

Hence, the number of binary and continuous variables are dependent upon these

subscripts. By the problem definition (section 5.2), the number of different origins

equals two (refinery and harbor). The number of demanded products in each origin

(npo) and the number of on-peak electric cost intervals during the scheduling horizon

(ne) are input parameters, given according to the problem instance.

Equations 5.36 and 5.37 indicate, respectively, the total number of binary

variables (nbv) and continuous variables (ncv) presented in the Main Model, as a

function of npo and ne. These equations were attained by observing the individual

growth of each Main Model variable, according to different values of npo and ne.

For example, let’s consider the generic variable fghp,o,e in an illustrative case with

np1 = 4, np2 = 3 and ne = 2. Therefore, the following derived variables should be

created in the model: fgh1,1,1, fgh2,1,1, fgh3,1,1, fgh4,1,1, fgh5,2,1, fgh6,2,1, fgh7,2,1,

fgh1,1,2, fgh2,1,2, fgh3,1,2, fgh4,1,2, fgh5,2,2, fgh6,2,2, and fgh7,2,2. Hence, it can be

observed that the number of fghp,o,e derived variables is equal to ne ·
∑

o∈O npo.

Following the same train of reasoning for all Main Model variables, equations 5.36

and 5.37 can be attained.

13In fact, it is very difficult to predict the computational burden of a particular MILP model.
Often, large-scale constrained MILP models can be solved in a reasonable computational time
(e.g. Kalvelagen, 2003; Magatão et al., 2004). Thus, the most reliable way to determine the
computational burden of a particular MILP model seems to be through extensive simulations.

5.4 Mathematical Formulation 99

nbv = 2 ·
∑
o∈O

np2
o + 2 · ne ·

∑
o∈O

npo +
∏
o∈O

npo (5.36)

ncv = 1 + (3 + 6 · ne) ·
∑
o∈O

npo (5.37)

In order to illustrate the use of equations 5.36 and 5.37, let’s consider a hypo-

thetical case with npo = 4 ∀o∈O, ne = 5. Therefore, by equation 5.36, nbv is equal

to 2 · (42 + 42) + 2 · 5 · (4 + 4) + 4 · 4, that is, nbv = 160 (see table 5.3, page 105,

column tnbv, ne = 5). By equation 5.37, ncv is equal to 1+(3+6 ·5) · (4+4), that

is, ncv = 265. Hence, the total number of variables, which is given by nbv + ncv, is

equal to 425 (see table 5.3, column tnv, ne = 5).

Alternatively, equation 5.38 expresses in an algebraic form the MILP model

total number of variables (tnvMILP). Equation 5.38 is obtained by adding 5.36 to

5.37. The term nbv + ncv was renamed tnvMILP. Hence, if npo = 4 ∀o∈O and

ne = 5 then tnvMILP can be calculated as: 2 · (42 +42)+(3+8 ·5) · (4+4)+(4 ·4)+1,

that is, tnvMILP =425.

tnvMILP = 2·
∑
o∈O

np2
o + (3 + 8·ne)·

∑
o∈O

npo +
∏
o∈O

npo + 1 (5.38)

The considered problem involves the short-term-scheduling of activities in a

real-world pipeline scenario. Thus, there is no sense in using a scheduling horizon

greater than one week, because no complete information is known about the input

data, mainly the required demands. In addition, the on-peak demand time intervals

are considered to occur between 6 p.m. and 9 p.m., thus, in one week, ne = 7. Figure

5.5 illustrates the growth in the number of Main Model variables, according to the

total number of demanded products. This figure was plotted based on equations

5.36 and 5.37 for ne = 7, npo = npō (o = 1, ō = 2), and 2 ≤
∑

o∈O npo ≤ 20.

As stated in section 5.2, the pipeline conveys a limited set of oil products,

which are demanded in batches. Typically, each batch demands a pumping time

that ranges from many hours to an entire day. In addition, the pipeline operates

completely filled, and an extra product amount should be pumped after the last

flow and the last reflow sequenced products. In a typical operational condition,

100 Chapter 5. MILP: Application of the High-Level Modeling Structures

Number of Main Model Variables

0

100

200

300

400

500

600

700

800

900

2 4 6 8 10 12 14 16 18 20

Total Number of Demanded Products

N
um

be
r

of
 V

ar
ia

bl
es

nbv
ncv

Figure 5.5: Number of Main Model Variables (2 ≤
∑

o∈O npo ≤ 20, ne = 7).

ϕmax
p,o = 300 m3/h ∀o ∈ O, p ∈ Po. Considering the pipeline volume as equal to

7314 m3 (pv), hence, 24 h are spent to fill up the pipeline after either flow or reflow

operations: 7314m3

300m3/h
= 24.38 ≈ 24 h. A complete pumping operation covers both flow

and reflow procedures. Therefore, 48 h are spent to fill up the pipeline after the last

sequenced products. Thus, in one week (168 h), there exist, in fact, an available time

of roughly 120 h to pump demanded products (168− 48). Considering a hypothetical

case, where each demanded batch takes six hours of pumping, thus, in one week,

twenty different products (120/6) could be pumped. This is indeed a theoretical

hypothesis, since the batches typically take more than six hours to be pumped in the

real-world scenario. By equations 5.36 and 5.37, with npo = 10 ∀o∈O (
∑

o∈O npo =

20), then nbv = 780 and ncv = 901. The MILP literature14 has pointed out the

solution of far bigger MILP models in reasonable computational time (seconds to

few minutes). Therefore, the use of this MILP model formulation for this specific

pipeline-scheduling problem does not produce too large MILP models. Section 5.5,

which considers a typical operational scenario of the real-world pipeline modeled,

indicates that this assumption is indeed true (see table 5.3, page 105).

14See, for instance, Kalvelagen (2003).

5.5 Results 101

5.5 Results

5.5.1 An Operational Scenario

In order to investigate the computational results presented by the mathemat-

ical model (section 5.4), a typical operational scenario of the real-world pipeline

modeled is herein stated:

• An example involving the pumping of four products from the harbor to the

refinery followed by other four pumped from the refinery to the harbor is

henceforth considered, thus np1 = 4, np2 = 4, d = 2, and d̄ = 1.

• The illustrative example is simulated in a range of scheduling horizons. This

range spans since the minimum scheduling horizon (Hmin = 114 h), which is

determined by equation 5.6 of the Auxiliary Routine, up to 144 h.

• The parameters Cplug
o ∀o∈O, C low

o ∀o∈O, and Cpres are considered unitary.

In a first computational experiment, the value of Chigh
o ∀o∈O is set greater

than the value of C low
o ∀o∈O by a factor of five (COPEL, 2005); in a sec-

ond computational experiment, alternative Chigh
o values are also considered

(Chigh
o =1, 2, 3, 4, and 10 ∀o∈O).

• The electric energy on-peak demand was considered to occur during the fol-

lowing intervals: 18 h – 21 h, 42 h – 45 h, 66 h – 69 h, 90 h – 93 h, 114 h – 117 h,

and 138 h – 141 h, as illustrated in figure 5.6. Therefore, in case H≤114 h then

ne = 4; if 114 h<H≤138 h then ne = 5; if 138 h<H≤144 h then ne = 6. In

particular, figure 5.6 indicates six on-peak demand intervals (e=1, e=2, . . . ,

e=6).

• At the initial time the pipeline is filled with a product called pin, which requires

no plug usage with the other products (plugpin,p = 0 ∀o∈O, p∈Po).

• Table 5.2 presents input data for the considered scenario. In addition, it was

considered that ϕmin
p,o = 150 m3/h ∀o ∈O, p ∈ Po; ϕmax

p,o = 300 m3/h ∀o ∈O,

p∈Po; and pv = 7200 m3. Thus, tdmin
p,o can be calculated as 7200m3

300m3/h
= 24 h

102 Chapter 5. MILP: Application of the High-Level Modeling Structures

(tdmin
p,o = 24 h ∀o ∈O, p ∈ Po) and tdmax

p,o can be calculated as 7200m3

150m3/h
= 48 h

(tdmax
p,o = 48 h ∀o∈O, p∈Po), in accordance with equations 5.3 and 5.4 of the

Auxiliary Routine15.

• The non-dimensional auxiliary parameters U , L, and ε used to express the

“base-level” of if-then and if-then-else statements (section 5.4.3) were consid-

ered, respectively, +145, −145, and 10−3. As stated in chapter 4, U and L

can be determined for each constraint (Uk and Lk). However, for simplic-

ity, the illustrative instances henceforth mentioned adopted the fixed values

±145 (±(maximum(H)+1)). These values are attained by observing that the

upper/lower bounds on all if-then and if-then-else “base-level” inequalities of

section 5.4.3 can not exceed the scheduling horizon value16.

0 144138 h < H ≤ 144 h, ne = 6

0 114H ≤ 114 h, ne = 4

0 138114 h < H ≤ 138 h, ne = 5

On-peak Demand Intervals

0 H18 21 42 45 66 69 90 93 114 117 138 141

e=1 e=2 e=3 e=4 e=5 e=6

Figure 5.6: The ne Value.

In this chapter, the modeling and optimization tool Extended LINGO/PC Re-

lease 8.0 (LINDO, 2002) is used to implement and solve the optimization structure.

LINGO is a commercial solver, which has its own modeling language and allows the

15For simplicity, an approximate value of pv was adopted (7200m3) instead of the exactly one
(7314m3).

16In fact, the values of U and L are conservatives for some if-then statements (e.g state-
ments 5.12, 5.16, and 5.18). In such cases, alternative values could be adopted (e.g. U

′
=

+(maximumo∈O(npo) + 1) and L
′
=−(maximumo∈O(npo) + 1)).

5.5 Results 103

Table 5.2: Input Data for the Considered Scenario.

Operation Product demp,o (m3) Plug Necessity (plugp,pa)

Flow p1 dem1,1 = 1800 plug1,pa = 1, pa = 2, 4, 6, 8

p2 dem2,1 = 3600 plug2,pa = 1, pa = 1, 5

p3 dem3,1 = 1800 plug3,pa = 1, pa = 4, 8

p4 dem4,1 = 1800 plug4,pa = 1, pa = 1, 3, 5, 7

Reflow p5 dem5,2 = 1800 plug5,pa = 1, pa = 2, 4, 6, 8

p6 dem6,2 = 1800 plug6,pa = 1, pa = 1, 5

p7 dem7,2 = 3600 plug7,pa = 1, pa = 4, 8

p8 dem8,2 = 3600 plug8,pa = 1, pa = 1, 3, 5, 7

interface with databases. The tool can be used in the process of formulating linear

and non-linear large models, solving them, and analyzing the solution. There is a

series of algorithm settings to be defined in this MILP solver. These settings include,

for example, the linear programming method (primal simplex, dual simplex, bar-

rier), the branch-and-bound direction (up, down, both), the node selection (depth

first, worst bound, best bound), the use of optimality margin, to name a few. Each

of these settings can directly influence the search procedure. For an in-depth discus-

sion, the interested reader is referred to LINDO (2002). Nevertheless, for simplicity,

in the illustrative examples herein presented, these settings are maintained in the

default option of LINGO17, in exception of the available solver memory, which is

altered from 32 Mbyte to 512 Mbyte.

5.5.2 Operational Cost versus Scheduling Horizon

5.5.2.1 First Computational Experiment

Table 5.3 (page 105) provides information about the optimization structure

simulation on a Pentium 4, 2.4 GHz, 1 Gbyte RAM. For each scheduling horizon

(H), the optimization structure is run, and a specific cost is attained (value of

expression 5.8). The Auxiliary Routine and the Tank Bound simulation data are

17For a detailed description of LINGO’s default option see LINDO (2002).

104 Chapter 5. MILP: Application of the High-Level Modeling Structures

neglected. These structures required a computational time lower than one second,

for all illustrative instances (114 h≤H≤144 h). No uncertainties are considered.

The model is solved for fixed product demands. In table 5.3, H is the schedul-

ing horizon, ne is the number of on-peak electric time intervals, tnv stands for

the total number of variables (tnvMILP - see equation 5.38), tnbv stands for the

total number of binary variables (see equation 5.36), tnc stands for the total num-

ber of constraints, ct stands for the computational time spent to solve the model

to optimality18, branches indicates the total number of branches visited by the

branch-and-bound algorithm, it stands for the total number of iterations, and Cost

indicates the operational cost (value of expression 5.8).

Magatão et al. (2004) previously addressed the same pipeline-scheduling prob-

lem by a discrete time formulation (see section 5.3). The authors reported a hy-

pothetical instance involving the pumping of four products from the harbor to the

refinery followed by other four pumped from the refinery to the harbor. The re-

flow/flow procedures were covered in 120 h, using a discretized time interval of 1 h.

This instance gave rise to a discrete MILP Main Model with 3253 variables, 782

binary variables, and 8896 constraints. This large scale MILP was solved to opti-

mality in 1375 s in a Pentium 4, 1.8 GHz, 512 Mbyte RAM running the Extended

LINGO/PC Release 8.0 (LINDO, 2002).

Figure 5.7 is based upon table 5.3 data, and it indicates the computational

time presented by the continuous formulation as a function of the available schedul-

ing horizon. One can observe that such computational time ranged from seconds

to few minutes19. According to table 5.3, the continuous time approach tends to

produce smaller formulations than the discrete time model presented by Magatão

et al. (2004). These smaller formulations are likely to be solved faster than the large

scale discrete MILP model, as indicated in figure 5.7.

Figure 5.8 is based upon table 5.3 data, and it shows the operational cost

(expression 5.8 value) as a time horizon function. Figure 5.8 highlights the existence

18For all simulation instances, near optimal integer solutions were attained before 20 seconds of
processing, but the branch-and-bound algorithm was run up to the optimal solution determination.

19In the worst case the computational time was ≈ 7.5 minutes (449 seconds); in average it was
≈ 2.9 minutes (171 seconds).

5.5 Results 105

Table 5.3: Computational Data for the Main Model Illustrative Instances.
H (h) ne tnv tnbv tnc ct (s) branches it (×106) Cost ($)
114 4 361 144 1132 107 12506 0.66 174
115 5 425 160 1324 148 17756 0.89 175
116 5 425 160 1324 181 22292 1.09 176
117 5 425 160 1324 319 28850 1.92 177
118 5 425 160 1324 284 37202 1.64 174
119 5 425 160 1324 30 3454 0.18 171
120 5 425 160 1324 314 43690 1.64 168
121 5 425 160 1324 336 47727 1.62 164
122 5 425 160 1324 322 41539 1.67 160
123 5 425 160 1324 309 37375 1.41 156
124 5 425 160 1324 252 30943 1.20 153
124.5 5 425 160 1324 266 37528 1.22 151.5
125 5 425 160 1324 115 13401 0.60 150
125.5 5 425 160 1324 282 38644 1.29 148.5
126 5 425 160 1324 441 54322 1.80 147
126.5 5 425 160 1324 420 50939 1.74 145.5
127 5 425 160 1324 449 53508 1.96 144
127.5 5 425 160 1324 389 49060 1.61 142.5
128 5 425 160 1324 356 42084 1.52 141
128.25 5 425 160 1324 154 15392 0.69 138.375
128.5 5 425 160 1324 177 19602 0.79 139.5
128.75 5 425 160 1324 177 17855 0.76 138.75
129 5 425 160 1324 117 10301 0.55 138
129.25 5 425 160 1324 141 12689 0.71 138.25
129.5 5 425 160 1324 142 12744 0.68 138.5
129.75 5 425 160 1324 185 17895 0.87 138.75
130 5 425 160 1324 137 12279 0.66 139
130.5 5 425 160 1324 237 23204 1.18 139.5
131 5 425 160 1324 119 9024 0.63 140
131.5 5 425 160 1324 130 9546 0.66 140.5
132 5 425 160 1324 97 7623 0.48 139
132.5 5 425 160 1324 88 6983 0.44 139.5
133 5 425 160 1324 66 4214 0.37 140
133.5 5 425 160 1324 72 3884 0.38 140.5
134 5 425 160 1324 104 11641 0.50 141
134.5 5 425 160 1324 62 5299 0.33 141.5
135 5 425 160 1324 82 6368 0.42 142
135.5 5 425 160 1324 76 4381 0.41 142.5
136 5 425 160 1324 73 6496 0.39 143
136.5 5 425 160 1324 76 4173 0.43 143.5
137 5 425 160 1324 74 3691 0.42 144
137.5 5 425 160 1324 90 6189 0.47 144.5
138 5 425 160 1324 80 6211 0.41 144
138.5 6 489 176 1516 64 6609 0.29 145.5
139 6 489 176 1516 89 6831 0.44 145
140 6 489 176 1516 66 4340 0.36 146
141 6 489 176 1516 81 5447 0.45 147
142 6 489 176 1516 55 2373 0.30 148
143 6 489 176 1516 55 3479 0.29 149
144 6 489 176 1516 89 8931 0.43 150

106 Chapter 5. MILP: Application of the High-Level Modeling Structures

Computational Time vs. Scheduling Horizon

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

425

450

114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144

H (h)

C
T

 -
 C

om
pu

ta
tio

na
l T

im
e

 (
s)

Figure 5.7: Computational Time versus Scheduling Horizon.

of specific scheduling horizons (e.g. 128 h≤H ≤ 130 h) that yield low operational

costs. The cost versus scheduling horizon function clearly demonstrates

that a correct pipeline operation can provide significant cost saving.

Commentaries on Figure 5.8: Figure 5.8 demonstrates that in H =Hmin =114 h

the operational cost is equal to 174 normalized cost units (Cost=174 $). This cost

reflects a pumping procedure where plug inclusions were minimized20, and each

demanded product was pumped at its maximum flow rate, with no interruptions

(e.g. stopp,o,e =0 ∀o∈O, p∈Po, e∈E). Therefore, products were indeed pumped

during the on-peak demand intervals 18 h < H ≤ 21 h, 42 h < H ≤ 45 h, 66 h <

H ≤ 69 h, and 90 h < H ≤ 93 h, even if the procedure of pumping products during

such intervals causes an increase in the operational cost value (Chigh
o = 5 ∀o ∈ O,

whereas C low
o =1 ∀o∈O). However, for 114 h<H≤144 h there exists an available

scheduling horizon greater than the minimum scheduling horizon (H >Hmin), and

20In fact, for all illustrative instances (114 h≤H≤144 h), the optimization structure determined
pumping sequences where no plugs were used. Further details are given in section 5.5.3, page 112.

5.5 Results 107

Cost vs. Scheduling Horizon

136
138
140
142
144
146
148
150
152
154
156
158
160
162
164
166
168
170
172
174
176
178

114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144

H (h)

C
os

t
($

)

Figure 5.8: Cost versus Scheduling Horizon (Chigh
o = 5 ∀o∈O).

the optimization structure can manage this “spare time” (H−Hmin) in order to

achieve low cost operational procedures. The main subtlety is to stop pumping

during on-peak demand intervals, as far as possible.

Moreover, figure 5.8 indicates that during the interval 114 h<H≤117 h the

operational cost function increased up to the normalized value 177 (Cost = 177 $).

In fact, for 114 h<H≤117 h there exists another on-peak demand (see figure 5.6

on page 102, interval e = 5). For any scheduling horizon inside the period 114 h <

H≤117 h, the “spare time” is charged at high electric rates, and pumping products

inside this period turns out being too costly. Then, the pipeline is just maintained

pressurized and idle, which increased the operational cost (Cost=175, 176, 177 $),

but was the most economical procedure. However, right after H = 117 h, the cost

function presents a turning point, and it started to decrease. In order to justify

this cost reduction, let the scheduling horizon be 118 h. Therefore, the interval

117 h<H≤118 h has a low electric cost rate, and pumping products at this one-

hour period is economically more advantageous than pumping products at any pre-

vious on-peak demand interval (see figure 5.6, intervals e = 1, e = 2, . . . , e = 5). So

108 Chapter 5. MILP: Application of the High-Level Modeling Structures

that, the most economical decision is to stop pumping during one hour of a previ-

ous on-peak demand interval, and continuing pumping during the low rate period

117 h<H≤118 h. In case of H = 119 h, there exists a two-hour interval with a

low electric cost rate (117 h<H≤119 h). Without loss of generality, each schedul-

ing horizon, such that H > Hmin, can potentially have a “spare time” with a low

electric cost rate. Furthermore, maintaining the pipeline pressurized and idle dur-

ing on-peak demand intervals and pumping during low electric cost rate intervals

is a heuristic, and figure 5.8 indicates a decreasing tendency on the cost function

(117 h<H≤129 h) that is originated from pumping during low rate intervals instead

of on-peak intervals.

For H > 129 h, figure 5.8 indicates an average increasing tendency on the

objective function value. In fact, a scheduling horizon of 129 h provides enough time

for both:

(i) Maintain the pipeline pressurized and idle during all the five previous on-peak

demand intervals (see figure 5.6, intervals e=1, e=2, . . . , e=5);

(ii) Pump each product during electric cost intervals that are charged at low rates

(0 h≤H ≤ 18 h, 21 h < H ≤ 42 h, 45 h < H ≤ 66 h, 69 h < H ≤ 90 h, 93 h < H ≤

114 h, and 117 h < H ≤ 129 h). In this case, each product is pumped at its

maximum flow rate during the low cost intervals.

As it can be observed in the objective function (expression 5.8, page 89), the

time period that is spent to pump a product is charged at
∑

o∈O

∑
p∈Po

C low
o · (fp,o−

sp,o); so that, to spread out a product pumping for too long may not be a wise

procedure. On the other hand, if all products are pumped before H, the pipeline

must remain pressurized and idle, and this condition also influences the operational

cost (Cpres · dpres). As the objective function is weighed by a series of factors,

too long scheduling horizons may be inadequate, and just cause cost increases (e.g.

H > 129 h). Even the opportunity of stop pumping during the on-peak interval

138 h<H≤141 h did not cause a significant overall cost reduction, as it can be

observed in figure 5.8.

5.5 Results 109

5.5.2.2 Second Computational Experiment

Table 5.3 reports that the normalized cost value ranged from 138 units to 177

units, according to the available scheduling horizon. Therefore, table 5.3 indicates a

potential cost variation, and, in particular, figure 5.8 highlights this fact. However,

one must notice that Chigh
o , C low

o , Cplug
o , and Cpres, which are parameters that weigh

the objective function (expression 5.8), directly influence the cost value. Variations

on such parameters can cause changes in the objective function value. In the first

computational experiment of section 5.5.2, these parameters were considered to be

equal to one, in exception of Chigh
o (Chigh

o =5 ∀o∈O).

This computational experiment further investigates the Chigh
o influence on

the operational cost value. For this task, the same pipeline-scheduling model,

with the input data stated in section 5.5.1 (e.g. 114 h≤H≤144 h, C low
o =1 ∀o∈O,

Cplug
o =1 ∀o∈O, Cpres =1), is (re)simulated, but alternative Chigh

o values are herein

also considered (Chigh
o =1, 2, 3, 4, and 10 ∀o∈O). Table 5.4 indicates the obtained

operational cost values.

In table 5.4, H is the scheduling horizon, ne is the number of on-peak electric

time intervals, tnv stands for the total number of variables (tnvMILP - see equation

5.38), tnc stands for the total number of constraints, ct stands for the compu-

tational time (in seconds)21, and Cost indicates the normalized operational cost

(expression 5.8 value), according to Chigh
o variations.

Figure 5.9, which is based on table 5.4 data, evidences the obtained operational

cost functions for 114 h≤H≤144 and Chigh
o =1, 2, 3, 4, 5, 10 ∀o∈O.

Commentaries on Figure 5.9: Figure 5.9 indicates that the operational cost

value is influenced by Chigh
o variations. In case of Chigh

o =1 ∀o∈O, the generated cost

function presents a minimum value (Cost = 126 $) at H =Hmin =114 h (details on

numerical cost values are given in table 5.4); for 114 h < H ≤ 144 h, the operational

cost has an increasing tendency. In contrast, for Chigh
o =2, 3, 4, 5, 10 ∀o∈O, the

21In table 5.4, the average values of ct for Chigh
o =1, 2, 3, 4, 5, and 10 were, respectively, 95 s,

153 s, 176 s, 179 s, 172 s, and 181 s.

110 Chapter 5. MILP: Application of the High-Level Modeling Structures

Table 5.4: Computational Data for the Main Model (Chigh
o = 1, 2, 3, 4, 5, 10 ∀o∈O).

Chigh
o =1 Chigh

o =2 Chigh
o =3 Chigh

o =4 Chigh
o =5 Chigh

o =10
H ne tnv tnc ct Cost ct Cost ct Cost ct Cost ct Cost ct Cost
(h) (s) ($) (s) ($) (s) ($) (s) ($) (s) ($) (s) ($)
114 4 361 1132 87 126 221 138 171 150 102 162 107 174 213 234
115 5 425 1324 97 127 196 139 146 151 139 163 148 175 216 235
116 5 425 1324 97 128 138 140 211 152 186 164 181 176 124 236
117 5 425 1324 125 129 150 141 166 153 179 165 319 177 182 237
118 5 425 1324 112 130 256 141 278 152 226 163 284 174 213 229
119 5 425 1324 146 131 321 141 269 151 296 161 30 171 250 221
120 5 425 1324 143 132 208 141 259 150 275 159 314 168 45 214
121 5 425 1324 167 132 360 140 300 148 300 156 336 164 282 204
122 5 425 1324 128 132 292 139 364 146 342 153 322 160 336 195
123 5 425 1324 77 132 233 138 345 144 284 150 309 156 442 186
124 5 425 1324 94 133 183 138 362 143 334 148 252 153 345 178
125 5 425 1324 98 134 182 138 228 142 243 146 115 150 332 170
126 5 425 1324 133 135 237 138 392 141 460 144 441 147 469 162
127 5 425 1324 186 136 196 138 286 140 447 142 449 144 313 154
128 5 425 1324 104 136 183 138 214 139 313 140 356 141 388 146
129 5 425 1324 95 136 176 138 202 138 118 138 117 138 185 138
130 5 425 1324 89 137 118 139 125 139 131 139 137 139 113 139
131 5 425 1324 76 138 111 139 93 140 221 140 119 140 105 140
132 5 425 1324 91 139 109 139 85 139 87 139 97 139 71 139
133 5 425 1324 90 140 64 140 81 140 86 140 66 140 96 140
134 5 425 1324 84 141 121 141 87 141 68 141 104 141 92 141
135 5 425 1324 66 141 96 142 82 142 76 142 82 142 84 142
136 5 425 1324 70 142 65 143 91 143 61 143 73 143 89 143
137 5 425 1324 59 143 82 144 96 144 80 144 74 144 94 144
138 5 425 1324 49 144 69 144 86 144 58 144 80 144 73 144
139 6 489 1516 55 145 64 145 35 145 53 145 89 145 74 145
140 6 489 1516 51 146 57 146 80 146 103 146 66 146 65 146
141 6 489 1516 77 147 66 147 66 147 65 147 81 147 85 147
142 6 489 1516 74 148 69 148 78 148 76 148 55 148 74 148
143 6 489 1516 56 149 66 149 78 149 65 149 55 149 80 149
144 6 489 1516 75 150 68 150 90 150 85 150 89 150 89 150

Cost vs. Scheduling Horizon

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

240

114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144

H (h)

C
os

t
($

)

OoC

OoC

OoC

OoC

OoC

OoC

high
o

high
o

high
o

high
o

high
o

high
o

∈∀=
∈∀=
∈∀=
∈∀=
∈∀=
∈∀=

10

5

4

3

2

1

Figure 5.9: Cost versus Scheduling Horizon (Chigh
o = 1, 2, 3, 4, 5, 10 ∀o∈O).

5.5 Results 111

generated cost functions present minimum operational cost points22 for H >Hmin.

This decreasing cost tendency is directly related with the fact that the optimiza-

tion structure indicates scheduling solutions where the pipeline is stopped during

high electric cost intervals (commentaries on figure 5.8, page 106, further explained

this fact). In addition, figure 5.9 demonstrates that the interval 128 h≤H≤130 h

represents a low operational cost region, at least for Chigh
o =2, 3, 4, 5, and 10 ∀o∈O.

Moreover, figure 5.9 reinforces a remark about too long scheduling horizons,

previously discussed in commentaries of figure 5.8: such scheduling horizons can

be inadequate and just cause cost increases (e.g. H > 129 h). In particular, figure

5.9 highlights that the six tested Chigh
o values (Chigh

o =1, 2, 3, 4, 5, 10 ∀o∈O) yield

(almost) the same cost value for H > 129 h. As previously stated, a scheduling

horizon of 129 h provides enough time for both:

(i) Maintain the pipeline pressurized and idle during all the five previous on-peak

demand intervals (see figure 5.6, intervals e=1, e=2, . . . , e=5);

(ii) Pump each product during electric cost intervals that are charged at low rates

(0 h≤H ≤ 18 h, 21 h < H ≤ 42 h, 45 h < H ≤ 66 h, 69 h < H ≤ 90 h, 93 h < H ≤

114 h, and 117 h < H ≤ 129 h). In this case, each product is pumped at its

maximum flow rate during the low cost intervals.

Thus, for H > 129 h, the most economical procedure evidenced during simu-

lations was to pump the demanded products at the available low electric cost rate

intervals, and to maintain the pipeline pressurized and idle during the remaining

time. Therefore, in a practical standpoint, no products were pumped during high

electric cost intervals, and the Chigh
o differences did not alter the overall cost value.

As a consequence, the cost functions were “equalized” for H >129 h, Chigh
o =1, 2, 3,

4, 5, and 10 ∀o∈O, as evidenced in figure 5.9.

Furthermore, figure 5.9 indicates that a change in a factor that weighs the

objective function can decisively alters the operational cost value, even if one con-

siders the same scheduling horizon value. For example, let the scheduling horizon

22In fact, Chigh
o =2 also has a minimum operational cost point (Cost=138 $) at H =Hmin.

112 Chapter 5. MILP: Application of the High-Level Modeling Structures

be H =Hmin =114 h, then the cost values for Chigh
o = 1, 2, 3, 4, 5, and 10 ∀o∈O are,

respectively, 126, 138, 150, 162, 174, and 234 normalized units (details on numerical

cost values are given in table 5.4). Therefore, an accurate determination of Chigh
o ,

C low
o , Cplug

o , Cpres values is advisable in order to obtain a realistic cost function.

5.5.3 An Illustrative Case of Pumping Procedure

Figure 5.10 illustrates the pumping operation predicted by the optimization

structure for H =129 h. In addition, figure 5.11 indicates the pipeline flow rate

behavior during such pumping operation. By figure 5.10, the determined pumping

sequence is p8, p6, p7, and p5 (reflow procedure); p1, p3, p2, and p4 (flow procedure).

According to table 5.2, this pumping sequence implies no use of plugs23.

The pumping process starts at time equal to zero, with the reflow proce-

dure. At time equal to 12 the entire demanded amount of p8 is inside the pipe,

but the refinery just receives it later. Consequently, there is a time in between

sending a product and receiving it. During the interval 18< time≤21 the pipeline

remains pressurized and idle, as indicated in figure 5.11. The condition of main-

taining the pipe pressurized and idle also occurs during the intervals 42< time≤45,

66< time≤69, 90< time≤93, and 114< time≤117.

At time equal to 66 the refinery has already received the products from the

harbor (p8, p6, p7, and p5), and an extra product amount of p5 has filled the pipeline.

Then, the flow procedure is started with the pumping of p1 (in fact, the pumping

is just started right after 69 time units). Set-up times are neglected. At time equal

to 129 the harbor has already received the products from the refinery (p1, p3, p2,

and p4), and an extra product amount of p4 has filled the pipeline.

According to figure 5.11, the pipeline remained pressurized and idle during the

on-peak demand intervals e=1, e=2, . . . , e=5, indicated in figure 5.6 (page 102).

Furthermore, after the completion of pumping procedures (H > 129 h) the pipeline

also remained pressurized and idle.

23plugpin,8 = plug8,6 = plug6,7 = plug7,5 = plug5,1 = plug1,3 = plug3,2 = plug2,4 = 0.

5.5 Results 113

time

0

12

18

21

33

42

45

66

69

75

81

90

93

96

114

117

129 p1 p5

p5

p4 p2 p3 p1 p5

p2 p3

pin p8 p6 p7

p5

pin p8 p6 p7 p5

pin p8 p6 p7

p8 p5

pin p8 p7 p5p6

pin p8 p5

pin p8 p6 p7 p5

pin p8 p6 p7 p5

p5

p4 p2 p3

p2 p3

p4

p1

p3 p1 p5

p2 p3 p1

p3p2p4

p4 p2

p2 p3 p1 p5

p2

p7pin

p3 p1 p5

p5

p4 p5

p4

p1

Refinery Harbor

p4 p1 p5

p6 p7

p6

p4

Reflow
Procedure

Flow
Procedure

Pipeline

extra amount of p5

extra amount of p4

Figure 5.10: Pumping Procedure: An Illustrative Case.

Flow Rate vs. Scheduling Horizon

0

50

100

150

200

250

300

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132

H (h)

F
lo

w
 R

at
e

 (
m

3 /h
)

Figure 5.11: Pumping Procedure: The Flow Rate Behavior.

114 Chapter 5. MILP: Application of the High-Level Modeling Structures

5.6 Remarks on Chapter 5

This chapter addressed the problem of developing an optimization structure to

aid the operational decision-making of scheduling activities in a real-world pipeline

scenario. The pipeline connects an inland refinery to a harbor, conveying different

types of oil products. The optimization structure was developed based on mixed

integer linear programming (MILP) with continuous time approach. The MILP well-

known computational burden was avoided by the proposed decomposition strategy

(see figure 5.2). Illustrative instances have demonstrated that the optimization

structure is able to define new operational points to the pipeline system, providing

significant cost saving (see figure 5.8).

The main goal of chapter 5 was to demonstrate the applicability of the “high-

level” MILP modeling structures presented in chapter 4. Therefore, the MILP model

formulation presented in section 5.4.3 extensively uses such high-level structures, in

particular, the if-then and the if-then-else “high-level” statements. In section 5.4.3,

some “base-level” MILP expressions derived from if-then and if-then-else “high-

level” statements are presented. It is difficult to consider the direct modeling of the

base-level expressions without the if-then and the if-then-else high-level statements.

This would be certainly a harder task. Therefore, the if-then and the if-then-else

“high-level” structures decisively aid the MILP model formulation. Moreover, the

author of this thesis has already addressed the same pipeline-scheduling problem

by the traditional inequality-based approach (Magatão, 2001), and, in a practical

standpoint, the high-level structures use make the formulation task simpler and

more straightforward.

Chapter 6

CLP-MILP: Towards a Unified

Modeling Framework

This chapter presents a CLP-MILP
formulation addressing the same
problem exploited in chapter 5.
The main goal is to demonstrate
the applicability of the high-level
MILP modeling structures devel-
oped in chapter 4 in an integrated
CLP-MILP modeling framework.

6.1 Modeling Premises

This chapter addresses the same pipeline-scheduling problem studied in chap-

ter 5, and some concepts previously presented are henceforth also used. For the sake

of a better understanding, the reader is advised to review the following sections of

chapter 5 that are presupposed by chapter 6:

• Sections 5.1 (page 75) and 5.2 (page 77), which introduce the main features

about the problem description;

• Section 5.3 (page 78), which describes the methodology adopted to deal with

the problem. In particular, this methodology is also used in chapter 6, in ex-

ception that the Main Model (see figure 5.2 on page 79) is developed based on

116 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

different approaches than MILP. Therefore, the parameters previously deter-

mined by the Tank Bound (Magatão et al., 2004) and the Auxiliary Routine

(see equations 5.1 to 5.7 on page 87) should be respected;

• Section 5.4 (page 81), which presents the general guidelines used to create

the mathematical formulation, as well as the notation adopted (section 5.4.1).

These guidelines and notation are also observed in chapter 6.

In addition to the modeling guidelines inherited from chapter 5, it has to be

observed that a combined CLP-MILP formulation demands that CLP and MILP

models be developed. At this particular case, the MILP part was already addressed

in chapter 5. In section 6.2, a CLP model is developed. Subsequently, in section 6.3,

a combined CLP-MILP approach is demonstrated. The functionalities of the com-

mercial tool ILOG OPL Studio 3.6.1 (ILOG, 2002b) are used in this chapter for the

investigations involving a combined CLP-MILP approach.

OPL Studio is an integrated development environment for mathematical pro-

gramming and combinatorial optimization problems. The development of such en-

vironment has its basis on modeling languages such as AMPL (Fourer et al., 1990),

GAMS (Brooke and Meeraus, 1982), and LINGO (LINDO, 2002), which provide

computer code representations to traditional algebraic notation. OPL, which stands

for Optimization Programming Language, provides similar support for modeling

MILP models, and it gives access to state-of-the-art linear/integer programming al-

gorithms. Furthermore, beyond the traditional support for LP and MILP, OPL is an

attempt to combine the strengths of mathematical programming languages and con-

straint logic programming. It aims at both, increasing the applicability of modeling

languages by incorporating techniques from CLP, and improving the expressiveness

of traditional CLP tools by borrowing ideas from modeling languages. Another

OPL’s functionality is its high-level support for scheduling and resource allocation

problems, which are ubiquitous in industry. An in-depth discussion about OPL’s

functionalities can be found in ILOG (2002b). In addition, the OPL language details

are specified in ILOG (2002a). The models henceforth presented in this chapter are

implemented and tested with the ILOG OPL Studio 3.6.1 functionalities.

6.2 Building a CLP Model 117

6.2 Building a CLP Model

The main goal of chapter 5 was to demonstrate the applicability of the “high-

level” MILP modeling structures presented in chapter 4. Therefore, the MILP model

formulation presented in section 5.4.3 extensively uses such high-level structures, in

particular, the if-then and the if-then-else statements. These high-level structures

were tailor-made to aid the MILP modeling process, which relies on an inequality-

based vocabulary. On the other hand, CLP is known by its rich modeling framework.

In particular, the if-then and the if-then-else statements used in section 5.4.3, which

demanded the “base-level” MILP expressions, can be directly modeled in a CLP

framework. Therefore, there is no necessity of such base-level expressions in the

equivalent CLP formulation. For example, the if-then-else statement 5.9 (page 90)

can be represented by the equivalence gtp,pa,o = 1 ↔ fp,o ≤ spa,o ∀o∈O, p 6= pa∈Po.

Equivalences and implications are ordinary features in a CLP framework, and the

if-then and the if-then-else statements presented in section 5.4.3 are replaced by,

respectively, implications (→) and equivalences (↔) in the CLP approach. Further

details are given in section 6.2.21.

Another important characteristic of a CLP framework is the availability of

specialized algorithms to deal with specific classes of problems, such as scheduling

problems. In order to use specialized scheduling algorithms at this CLP model,

the former definition of variables fp,o and sp,o (see section 5.4.1 on page 82) was

incorporated into one of the most fundamental concepts for scheduling applications

presented by the OPL tool: the activity. An activity can be thought of as an object

containing three items: a starting date, a duration, and an ending date, together

with the duration constraint. The duration constraint states that the ending date

of an activity is its starting date plus its duration (ILOG, 2002a). Therefore, in this

CLP model, a new variable called pumpp,o ∀o∈O, p∈Po is declared as having the

type activity. Thus, the pumping process starts at time pump.startp,o (abbreviated

by p.sp,o), it finishes at time pump.endp,o (abbreviated by p.ep,o), and it has duration

1Chapter 4 brings an in-depth discussion about the correspondence of if-then-else statements
and equivalences, and if-then statements and implications.

118 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

of pump.durationp,o (abbreviated by p.dp,o). It is important to notice that p.sp,o is

the “equivalent CLP variable” of sp,o, p.ep,o is the equivalent CLP variable of fp,o, and

p.dp,o has assigned a value equivalent to fp,o − sp,o. The OPL tool has also a series

of other specific scheduling and resource-allocation built-in applications. They are

generally organized around the various types of resources, and defined over a global

time interval, which spans since the scheduling origin to the scheduling horizon. The

interested reader should consult the OPL’s language manual (ILOG, 2002a).

Expressions 5.8 (page 89) to 5.35 (page 97) establish the Main Model math-

ematical formulation, according to an MILP approach. The CLP model is created

based on this MILP approach, in exception that:

(i) Variables fp,o and sp,o are replaced by, respectively, p.ep,o and p.sp,o;

(ii) The if-then and the if-then-else statements are directly expressed by implica-

tions and equivalences;

(iii) Global constraints and a “search procedure” are incorporated into the model.

Sections 6.2.1 to 6.2.4 present a CLP formulation for the pipeline-scheduling

problem previously defined in chapter 5.

6.2.1 CLP Objective Function

The objective function, which defines the operational cost minimization, is

maintained as defined in expression 5.8, in exception that the term fp,o − sp,o is

replaced by p.dp,o.

6.2.2 CLP Constraints

The if-then-else statement 5.9 is rewritten as indicated in equivalence 6.1 (fp,o

is replaced by p.ep,o and spa,o is replaced by p.spa,o). Equations 5.10 and 5.11 are

maintained as originally stated. In equivalence 6.1, “gtp,pa,o = 1 ↔ p.ep,o ≤ p.spa,o”

is expressed as “gtp,pa,o ↔ p.ep,o ≤ p.spa,o”. Thus, the antecedent “gtp,pa,o = 1” is

6.2 Building a CLP Model 119

simply expressed as “gtp,pa,o”; the consequent, however, is maintained without syn-

tactical simplification. This convention is henceforth used in CLP constraints that

involve equivalences and implications. Therefore, either an equivalence or an impli-

cation holds if its antecedent holds, that is, if its antecedent is true2.

gtp,pa,o ↔ p.ep,o ≤ p.spa,o ∀o∈O, p∈Po, pa∈Po, p 6=pa (6.1)

The if-then statement 5.12 is rewritten as indicated in implication 6.2. Equa-

tion 5.13 and inequalities 5.14 and 5.15 are maintained as originally stated.

tp,pa,o → seqpa,o − seqp,o = 1 ∀o∈O, p∈Po, pa∈Po, p 6=pa (6.2)

The if-then statement 5.16 is rewritten as indicated in implication 6.3. Equa-

tion 5.17 is maintained as originally stated.

firstp,o → seqp,o = 1 ∀o∈O, p∈Po (6.3)

The if-then statement 5.18 is rewritten as indicated in implication 6.4. Equa-

tion 5.19 is maintained as originally stated.

lastp,o → seqp,o = npo ∀o∈O, p∈Po (6.4)

The and statement modeled in 5.20 by means of three sets of inequalities is

directly expressed, according to 6.5.

twp,pa = (lastp,o) and (firstpa,ō) ∀p∈Po, pa∈Pō, o = d, ō = d̄ (6.5)

The if-then-else statements 5.21 and 5.22 are rewritten as indicated in, re-

spectively, equivalences 6.6 and 6.7 (fp,o is replaced by p.ep,o and sp,o is replaced by

p.sp,o).

fghp,o,e ↔ p.ep,o ≥ fhe ∀o∈O, p∈Po, e∈E (6.6)

sghp,o,e ↔ p.sp,o ≥ she ∀o∈O, p∈Po, e∈E (6.7)

The if-then statements 5.23 to 5.26 are rewritten as indicated in, respectively,

implications 6.8 to 6.11 (fp,o is replaced by p.ep,o and sp,o is replaced by p.sp,o).

2In case of binary variables, the antecedent is true whether it is equal to one, zero otherwise.

120 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

Inequality 5.27 is maintained as originally stated. Equation 5.28 and inequalities

5.29 and 5.30 are also maintained as originally stated, in exception that the term

fp,o − sp,o is replaced by p.dp,o.

(¬fghp,o,e) ∧ (¬sghp,o,e) → inhp,o,e ≥ p.ep,o − she ∀o∈O, p∈Po, e∈E (6.8)

(¬fghp,o,e) ∧ (sghp,o,e) → inhp,o,e = p.ep,o − p.sp,o ∀o∈O, p∈Po, e∈E (6.9)

(fghp,o,e) ∧ (¬sghp,o,e) → inhp,o,e = fhe − she ∀o∈O, p∈Po, e∈E (6.10)

(fghp,o,e) ∧ (sghp,o,e) → inhp,o,e ≥ fhe − p.sp,o ∀o∈O, p∈Po, e∈E (6.11)

Inequalities 5.31 to 5.35 are rewritten as indicated in 6.12 to 6.16 (fp,o is

replaced by p.ep,o, fpa,ō is replaced by p.epa,ō, sp,o is replaced by p.sp,o, and spa,ō is

replaced by p.spa,ō).

p.ep,o ≤ p.spa,ō ∀p∈Po, pa∈Pō, o = d, ō = d̄ (6.12)

p.sp,o ≥ 0 ∀p∈Po, o = d (6.13)

p.spa,ō ≥ fdmin ∀pa∈Pō, ō = d̄ (6.14)

p.ep,o ≤ fd ∀p∈Po, o = d (6.15)

p.epa,ō ≤ H ∀pa∈Pō, ō = d̄ (6.16)

6.2.3 CLP Global Constraints

Another important feature of a CLP framework is the availability of global

constraints. Global constraints, a fundamental tool for solving a variety of com-

binatorial optimization problems, enforce complex relationships among variables

(ILOG, 2002b). In particular, OPL offers a variety of global constraints over dis-

crete values. In fact, the CLP mechanisms in OPL are based on finite domain

constraint logic programming devices (ILOG, 2002a). Therefore, some functional-

ities, such as global constraints, are just available for variables ranging in a finite

domain of values.

The pipeline-scheduling problem was previously addressed by a continuous

time MILP approach. The pumping starting time (sp,o) and the pumping completion

time (fp,o) were considered to assume real values inside the scheduling horizon. In

6.2 Building a CLP Model 121

the CLP formulation, variables p.sp,o (pump.startp,o) and p.ep,o (pump.endp,o) can

just assume integer values in the scheduling horizon. Therefore, the former MILP

continuous time approach is modified in the CLP model, which just accepts integer-

valued variables.

Expressions 6.17 to 6.23 define global constraints3 in the CLP model. In par-

ticular, expressions 6.21 to 6.23 use one of the built-in scheduling features of OPL:

the precedence constraint. This constraint can be used in variables of type activity4.

In order to exemplify the precedence constraint effect, let’s consider the hypothetical

statement “a precedes b”. This statement specifies that the ending date of an ac-

tivity “a” (a.end) must be smaller or equal than the starting date of an activity “b”

(b.start).

alldifferent(seqp,o) ∀p∈Po, o = d (6.17)

alldifferent(seqpa,ō) ∀pa∈Pō, ō = d̄ (6.18)

alldifferent(p.sp,o) ∀o∈O, p∈Po (6.19)

alldifferent(p.ep,o) ∀o∈O, p∈Po (6.20)

gtp,pa,o ↔ pumpp,o precedes pumppa,o ∀o∈O, p∈Po, pa∈Po, p 6=pa (6.21)

firstp,o → pumpp,o precedes pumppa,o ∀o∈O, p∈Po (6.22)

lastp,o → pumppa,o precedes pumpp,o ∀o∈O, p∈Po (6.23)

6.2.4 CLP Search Procedure

As stated in section 2.1 the CLP mechanisms of constraint propagation and

domain reduction can be applied to reduce the search space of variables. However,

while they may determine whether a model is infeasible, they do not necessarily find

solutions to the model. To do this, one must program a search procedure, which

typically consists of two main parts (Hentenryck et al., 2000):

(i) A search component defining the search tree to be explored; and,

3Further details about global constraints are given in section 2.1.
4The variable pumpp,o ∀o∈O, p∈Po is declared as having the type activity.

122 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

(ii) A strategy component specifying how to explore the search tree.

OPL has a number of default search procedures, and it also offers the ability

to specify search procedures tailored to the application at hand. The OPL’s search

functionalities allow that special-purpose heuristics be incorporated in the model.

Traditionally, modeling languages and most mathematical programming packages

hide the search procedures from users, who can “control” them only through a set

of parameters (ILOG, 2002a).

At this CLP model, a predefined search component called generate is used.

This component simply receives a discrete variable, or an array of discrete variables,

and generates values for the specified variables, respecting the domain conditions

(ILOG, 2002a). Therefore, the search tree is created based on the OPL’s built-in

command generate5. Expression 6.24 defines the adopted search component. In

addition, the generated search tree is explored by means of the traditional depth-first

approach (strategy component), which is described, for instance, in ILOG (2002a).

generate(seqp,o) ∀o∈O, p∈Po (6.24)

Therefore, based on section 6.2 directives, the Main Model is rewritten ac-

cording to CLP modeling features. At this point the reader must be aware that a

complete CLP model, which indeed addresses the pipeline-scheduling problem under

analysis, is already formulated.

6.2.5 CLP Model: The Number of Variables/Constraints

Equation 6.25 indicates the total number of variables presented by the CLP

model (tnvCLP) heretofore described in section 6.2. This equation is obtained in

a similar reasoning explained in section 5.4.3.3 (page 97). One can observe that

equation 5.38 (page 99), which defines the total number of variables presented by

the MILP formulation (tnvMILP), and equation 6.25 differ. The CLP model was

derived from the MILP model, but the CLP formulation does not demand some

5“The order in which one generates the nodes of the search tree can have a dramatic effect on
the size of the tree.” (Hooker, 2000)

6.3 Building a CLP-MILP Model 123

auxiliary variables, such as δ00
p,o,e, δ01

p,o,e, δ10
p,o,e, and δ11

p,o,e, that were necessary in the

MILP approach. Additionally, the CLP model incorporates specialized scheduling

features for pumping activities, and auxiliary variables such as p.sp,o, p.ep,o, and

p.dp,o were created for the CLP approach6. In particular, the MILP variables sp,o

and fp,o were replaced by, respectively, p.sp,o and p.ep,o.

tnvCLP = 2·
∑
o∈O

np2
o + (8 + 4·ne)·

∑
o∈O

npo +
∏
o∈O

npo + 1 (6.25)

In order to illustrate the use of equation 6.25, let’s consider a hypothetical

example with npo =6 ∀o∈O and ne=5. Hence, tnvCLP can be calculated as: 2·(62+

62)+(8+4·5)·(6+6)+(6·6)+1, that is, tnvCLP =517 (see table 6.3, page 140, column

“Number of Variables”, sub-column clp). In a similar way, equation 5.38 yields

tnvMILP =2·(62+62)+ (3+8·5)·(6+6)+ (6·6)+1, that is tnvMILP =697 (see table 6.3,

column “Number of Variables”, sub-column milp). Therefore, tnvCLP 6= tnvMILP.

In a similar reasoning used to verify that tnvCLP 6= tnvMILP, one can observe

that the number of MILP constraints differs from the number of CLP constraints

(see table 6.3, column “Number of Constraints”, sub-columns milp and clp). As

stated in section 6.2.2, some MILP constraints are maintained in the CLP model

(e.g. equation 5.13, inequalities 5.14 and 5.15 - page 91), but other ones are rewritten

according to CLP modeling devices, such as implications (→) and equivalences (↔).

For example, the if-then statement 5.16 (page 92) is rewritten by the implication

6.3 (page 119). However, the if-then 5.16 demands two sets of base level inequalities

to state the same modeling condition directly expressed as the CLP implication 6.3.

Thus, the number of constraints used to model equivalent MILP/CLP conditions

may differ. For simplicity, this thesis does not state equations that determine neither

the CLP nor the MILP number of constraints.

6.3 Building a CLP-MILP Model

The combined CLP-MILP version of the Main Model is composed by the CLP

formulation established in section 6.2, and the MILP formulation presented in sec-

6Further details about the activity concept (ILOG, 2002a) are given in section 6.2, page 117.

124 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

tion 5.4.3. The search procedure of both models is integrated by means of an OPL’s

built-in feature, which essentially uses the MILP linear relaxation as the main ele-

ment of integration.

OPL offers the functionality of adding information provided by MILP linear

relaxations into CLP search procedures. This functionality is activated by the

keywords with linear relaxation (e.g. minimize with linear relaxation in-

stead of minimize). This functionality adds the linear relaxation of any linear or

integer constraint to the constraint store7. In other words, the constraint store re-

ceives the relaxation of an integer constraint c whenever c becomes a float (real)

constraint, and all its integer variables are considered of type float (ILOG, 2002a).

Thus, at any time the OPL’s solver, which is a branch-and-bound algorithm that

uses a cooperation between a constraint-based domain reduction and a simplex

code, produces a lower bound (minimization model), this bound is used to tighten

the search (ILOG, 2002a). As stated in section 2.1, the CLP search process lacks

the global relaxation of a model. In this integrated approach, the MILP linear re-

laxation serves as such global model relaxation, contributing to the search process

reduction. Section 6.4 (numerical results) indeed confirms this fact. In addition,

ILOG (2002b) brings an example that displays the generated search trees with and

without the minimize with linear relaxation functionality8. The example ev-

idences the linear relaxation influence on the search tree pruning.

In a practical standpoint, the CLP formulation (section 6.2) and the MILP for-

mulation (section 5.4.3) are written in a unified OPL’s framework. Then, the solver

is informed by specific keywords that it should perform an “integrated” search pro-

cedure, which uses linear relaxations on all linear/integer constraints. Thus, the

linear programming engine (CPLEX) produces a bound at each node of the solver

search tree (ILOG, 2002b). In particular, if one takes either the CLP model or

the MILP model, this specific formulation could, in theory, be solved9, giving in-

sights into the pipeline-scheduling resolution. The fact that has to be investigated is

7The constraint store is a constraint-solving system reasoning about fundamental properties of
constraints, such as satisfiability and entailment (ILOG, 2002a).

8For details see Chapter 7 of ILOG (2002b).
9The computational burden can hinder the model resolution.

6.3 Building a CLP-MILP Model 125

whether the integrated approach presents a computational performance better than

the root techniques or not. Section 6.4 gives particular attention to computational

issues involving the MILP, the CLP, and the CLP-MILP models.

6.3.1 CLP-MILP Objective Function

Expression 6.26 illustrates the CLP-MILP objective function, which defines the

operational cost minimization. This function is maintained as in formulation 5.8, in

exception that the keywords with linear relaxation are added.

minimize with linear relaxation∑
o∈O

∑
p∈Po

C low
o · (fp,o − sp,o)

+
∑
o∈O

∑
p∈Po

∑
e∈E

Chigh
o · (inhp,o,e − stopp,o,e)

+
∑
o∈O

∑
p∈Po

∑
pa∈Po,
pa 6=p

Cplug
o · tp,pa,o · plugp,pa

+
∑
o=d,
p∈Po

∑
ō=d̄,

pa∈Pō

Cplug
ō · twp,pa · plugp,pa

+
∑

p=pin,
o=d,

pa∈Po

Cplug
o · firstp,o · plugp,pa

+ Cpres · dpres

(6.26)

6.3.2 CLP-MILP Constraints

The CLP-MILP constraints involve the CLP constraints established in section

6.2 and the MILP constraints presented in section 5.4.3. In order to simplify the

CLP-MILP model understanding, all constraints are herein clustered in expressions

6.27 to 6.81. The reader must notice that the CLP constraints can be identified by

the presence of symbols ↔ and → , by variables p.sp,o , p.dp,o , and p.ep,o , or

by commands written in typewriter font.

126 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

6.3.2.1 High-Level CLP-MILP Structures

Constraints 6.27 to 6.46 gather the high-level MILP statements (section 5.4.3.2)

and the equivalent CLP formulations of such statements (section 6.2.2).

If gtp,pa,o Then fp,o≤spa,o Else fp,o >spa,o ∀o∈O, p∈Po, pa∈Po, p 6=pa fp,o − spa,o ≤ U · (1− gtp,pa,o) ∀o∈O, p∈Po, pa∈Po, p 6=pa

fp,o − spa,o ≥ (L− ε) · gtp,pa,o + ε ∀o∈O, p∈Po, pa∈Po, p 6=pa

(6.27)

gtp,pa,o ↔ p.ep,o ≤ p.spa,o ∀o∈O, p∈Po, pa∈Po, p 6=pa (6.28)

If tp,pa,o Then seqpa,o − seqp,o =1 ∀o∈O, p∈Po, pa∈Po, p 6=pa seqpa,o − seqp,o − 1 ≤ U · (1− tp,pa,o) ∀o∈O, p∈Po, pa∈Po, p 6=pa

seqpa,o − seqp,o − 1 ≥ L · (1− tp,pa,o) ∀o∈O, p∈Po, pa∈Po, p 6=pa

(6.29)

tp,pa,o → seqpa,o − seqp,o = 1 ∀o∈O, p∈Po, pa∈Po, p 6=pa (6.30)

If firstp,o Then seqp,o = 1 ∀o∈O, p ∈ Po seqp,o − 1 ≤ U · (1− firstp,o) ∀o∈O, p∈Po

seqp,o − 1 ≥ L · (1− firstp,o) ∀o∈O, p∈Po

(6.31)

firstp,o → seqp,o = 1 ∀o∈O, p∈Po (6.32)

If lastp,o Then seqp,o = npo ∀o∈O, p∈Po seqp,o − npo ≤ U · (1− lastp,o) ∀o∈O, p∈Po

seqp,o − npo ≥ L · (1− lastp,o) ∀o∈O, p∈Po

(6.33)

lastp,o → seqp,o = npo ∀o∈O, p∈Po (6.34)

6.3 Building a CLP-MILP Model 127

If fghp,o,e Then fp,o ≥ fhe Else fp,o < fhe ∀o∈O, p∈Po, e∈E fp,o − fhe ≥ L · (1− fghp,o,e) ∀o∈O, p∈Po, e∈E

fp,o − fhe ≤ (U + ε) · fghp,o,e − ε ∀o∈O, p∈Po, e∈E

(6.35)

fghp,o,e ↔ p.ep,o ≥ fhe ∀o∈O, p∈Po, e∈E (6.36)

If sghp,o,e Then sp,o ≥ she Else sp,o < she ∀o∈O, p∈Po, e∈E sp,o − she ≥ L · (1− sghp,o,e) ∀o∈O, p∈Po, e∈E

sp,o − she ≤ (U + ε) · sghp,o,e − ε ∀o∈O, p∈Po, e∈E

(6.37)

sghp,o,e ↔ p.sp,o ≥ she ∀o∈O, p∈Po, e∈E (6.38)

If (¬fghp,o,e)∧(¬sghp,o,e) Then inhp,o,e≥fp,o−she ∀o∈O, p∈Po, e∈E

δ00
p,o,e ≤ 1− fghp,o,e ∀o∈O, p∈Po, e∈E

δ00
p,o,e ≤ 1− sghp,o,e ∀o∈O, p∈Po, e∈E

δ00
p,o,e ≥ 1− fghp,o,e − sghp,o,e ∀o∈O, p∈Po, e∈E

inhp,o,e − fp,o + she ≥ L · (1− δ00
p,o,e) ∀o∈O, p∈Po, e∈E

(6.39)

(¬fghp,o,e) ∧ (¬sghp,o,e) → inhp,o,e≥p.ep,o−she ∀o∈O, p∈Po, e∈E (6.40)

If (¬fghp,o,e) ∧ (sghp,o,e) Then inhp,o,e =fp,o−sp,o ∀o∈O, p∈Po, e∈E

δ01
p,o,e ≤ 1− fghp,o,e ∀o∈O, p∈Po, e∈E

δ01
p,o,e ≤ sghp,o,e ∀o∈O, p∈Po, e∈E

δ01
p,o,e ≥ sghp,o,e − fghp,o,e ∀o∈O, p∈Po, e∈E

inhp,o,e − fp,o + sp,o ≤ U · (1− δ01
p,o,e) ∀o∈O, p∈Po, e∈E

inhp,o,e − fp,o + sp,o ≥ L · (1− δ01
p,o,e) ∀o∈O, p∈Po, e∈E

(6.41)

(¬fghp,o,e) ∧ (sghp,o,e) → inhp,o,e =p.ep,o−p.sp,o ∀o∈O, p∈Po, e∈E (6.42)

128 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

If (fghp,o,e) ∧ (¬sghp,o,e) Then inhp,o,e =fhe−she ∀o∈O, p∈Po, e∈E

δ10
p,o,e ≤ fghp,o,e ∀o∈O, p∈Po, e∈E

δ10
p,o,e ≤ 1− sghp,o,e ∀o∈O, p∈Po, e∈E

δ10
p,o,e ≥ fghp,o,e − sghp,o,e ∀o∈O, p∈Po, e∈E

inhp,o,e − fhe + she ≤ U · (1− δ10
p,o,e) ∀o∈O, p∈Po, e∈E

inhp,o,e − fhe + she ≥ L · (1− δ10
p,o,e) ∀o∈O, p∈Po, e∈E

(6.43)

(fghp,o,e) ∧ (¬sghp,o,e) → inhp,o,e =fhe−she ∀o∈O, p∈Po, e∈E (6.44)

If (fghp,o,e) ∧ (sghp,o,e) Then inhp,o,e≥fhe−sp,o ∀o∈O, p∈Po, e∈E

δ11
p,o,e ≤ fghp,o,e ∀o∈O, p∈Po, e∈E

δ11
p,o,e ≤ sghp,o,e ∀o∈O, p∈Po, e∈E

δ11
p,o,e ≥ fghp,o,e + sghp,o,e − 1 ∀o∈O, p∈Po, e∈E

inhp,o,e − fhe + sp,o ≥ L · (1− δ11
p,o,e) ∀o∈O, p∈Po, e∈E

(6.45)

(fghp,o,e) ∧ (sghp,o,e) → inhp,o,e≥fhe−p.sp,o ∀o∈O, p∈Po, e∈E (6.46)

6.3.2.2 Common CLP-MILP Constraints

Constraints 6.47 to 6.54 are part of either the root CLP model (section 6.2.2)

or the root MILP model (section 5.4.3.2). For simplicity, when the combined CLP-

MILP model is formulated, these constraints, which are common in the root models,

are written just once.

∑
p∈Po

∑
pa∈Po,
pa 6=p

gtp,pa,o =

k=npo∑
k=1

(k − 1) ∀o∈O (6.47)

seqp,o = npo −
∑

pa∈Po,
pa 6=p

gtp,pa,o ∀o∈O, p∈Po (6.48)

6.3 Building a CLP-MILP Model 129

∑
p∈Po

∑
pa∈Po,
pa 6=p

tp,pa,o = npo − 1 ∀o∈O (6.49)

∑
pa∈Po,
pa 6=p

tp,pa,o ≤ 1 ∀o∈O, p∈Po (6.50)

∑
pa∈Po,
pa 6=p

tpa,p,o ≤ 1 ∀o∈O, p∈Po (6.51)

∑
p∈Po

firstp,o = 1 ∀o∈O (6.52)

∑
p∈Po

lastp,o = 1 ∀o∈O (6.53)

stopp,o,e ≤ inhp,o,e ∀o∈O, p∈Po, e∈E (6.54)

6.3.2.3 Ordinary CLP-MILP Structures

Constraints 6.55 to 6.72 are also part of the CLP-MILP model. In addition,

equations 6.73 and 6.74, which link the CLP variables p.sp,o and p.ep,o with, respec-

tively, the MILP variables sp,o and fp,o, are added to the formulation.

twp,pa = (lastp,o) ∧ (firstpa,ō) ∀p∈Po, pa∈Pō, o = d, ō = d̄
twp,pa ≤ lastp,o ∀p∈Po, pa∈Pō, o = d, ō = d̄

twp,pa ≤ firstpa,ō ∀p∈Po, pa∈Pō, o = d, ō = d̄

twp,pa ≥ lastp,o + firstpa,ō − 1 ∀p∈Po, pa∈Pō, o = d, ō = d̄

(6.55)

twp,pa = (lastp,o) and (firstpa,ō) ∀p∈Po, pa∈Pō, o = d, ō = d̄ (6.56)

dpres = H −
∑
o∈O

∑
p∈Po

(fp,o − sp,o) +
∑
o∈O

∑
p∈Po

∑
e∈E

stopp,o,e (6.57)

dpres = H −
∑
o∈O

∑
p∈Po

p.dp,o +
∑
o∈O

∑
p∈Po

∑
e∈E

stopp,o,e (6.58)

fp,o − sp,o ≥ dmin
p,o +

∑
e∈E

stopp,o,e + lastp,o · tdmin
p,o ∀o∈O, p∈Po (6.59)

fp,o − sp,o ≤ dmax
p,o +

∑
e∈E

stopp,o,e + lastp,o · tdmax
p,o ∀o∈O, p∈Po (6.60)

130 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

p.dp,o ≥ dmin
p,o +

∑
e∈E

stopp,o,e + lastp,o · tdmin
p,o ∀o∈O, p∈Po (6.61)

p.dp,o ≤ dmax
p,o +

∑
e∈E

stopp,o,e + lastp,o · tdmax
p,o ∀o∈O, p∈Po (6.62)

fp,o ≤ spa,ō ∀p∈Po, pa∈Pō, o = d, ō = d̄ (6.63)

sp,o ≥ 0 ∀p∈Po, o = d (6.64)

spa,ō ≥ fdmin ∀pa∈Pō, ō = d̄ (6.65)

fp,o ≤ fd ∀p∈Po, o = d (6.66)

fpa,ō ≤ H ∀pa∈Pō, ō = d̄ (6.67)

p.ep,o ≤ p.spa,ō ∀p∈Po, pa∈Pō, o = d, ō = d̄ (6.68)

p.sp,o ≥ 0 ∀p∈Po, o = d (6.69)

p.spa,ō ≥ fdmin ∀pa∈Pō, ō = d̄ (6.70)

p.ep,o ≤ fd ∀p∈Po, o = d (6.71)

p.epa,ō ≤ H ∀pa∈Pō, ō = d̄ (6.72)

p.sp,o = sp,o ∀o∈O, p∈Po (6.73)

p.ep,o = fp,o ∀o∈O, p∈Po (6.74)

6.3.2.4 CLP-MILP Global Constraints

alldifferent(seqp,o) ∀p∈Po, o = d (6.75)

alldifferent(seqpa,ō) ∀pa∈Pō, ō = d̄ (6.76)

alldifferent(p.sp,o) ∀o∈O, p∈Po (6.77)

alldifferent(p.ep,o) ∀o∈O, p∈Po (6.78)

gtp,pa,o ↔ pumpp,o precedes pumppa,o ∀o∈O, p∈Po, pa∈Po, p 6=pa (6.79)

firstp,o → pumpp,o precedes pumppa,o ∀o∈O, p∈Po (6.80)

lastp,o → pumppa,o precedes pumpp,o ∀o∈O, p∈Po (6.81)

6.3 Building a CLP-MILP Model 131

6.3.3 CLP-MILP Search Component

generate(seqp,o) ∀o∈O, p∈Po (6.82)

6.3.4 CLP-MILP Model: The Number of Variables

Equation 6.83 indicates the total number of variables presented by the inte-

grated CLP-MILP model (tnvCLP-MILP) described in sections 6.3.1 to 6.3.3. This

equation is obtained in a similar reasoning explained in section 5.4.3.3 (page 97).

At first sight, one could think that the total number of variables presented by the

CLP-MILP model can be obtained by adding the results presented by equations 6.25

and 5.38, which determine, respectively, the total number variables presented by the

CLP (tnvCLP) and the MILP (tnvMILP) models. Nevertheless, many variables are

used by both models (e.g. dpres; fghp,o,e; firstp,o; gtp,pa,o; inhp,o,e; lastp,o; seqp,o;

sghp,o,e; stopp,o,e; tp,pa,o; and twp,pa), but are declared just once in the CLP-MILP

framework. Therefore, in a practical standpoint, tnvCLP-MILP is different from the

result provided by tnvCLP + tnvMILP, as it can be observed by equations 6.83 and

6.84.

tnvCLP-MILP = 2·
∑
o∈O

np2
o + (10 + 8·ne)·

∑
o∈O

npo +
∏
o∈O

npo + 1 (6.83)

tnvCLP + tnvMILP = 4·
∑
o∈O

np2
o + (11 + 12·ne)·

∑
o∈O

npo + 2·
∏
o∈O

npo + 2 (6.84)

In order to illustrate the use of equations 6.83 and 6.84, let’s consider a hypo-

thetical example with npo =6 ∀o∈O and ne=5. Hence, tnvCLP-MILP can be calcu-

lated as: 2·(62+62)+ (10+8·5)·(6+6)+(6·6)+1, that is, tnvCLP-MILP =781 (see table

6.3, page 140, column “Number of Variables”, sub-column clp-milp). In a similar

way, equation 6.84 yields tnvCLP+tnvMILP =4·(62+62)+(11+12·5)·(6+6)+2·(6·6)+2,

that is, tnvCLP+tnvCLP = 1214 (see table 6.3, column “Number of Variables”, and

add the values presented in a row of sub-columns clp and milp). Therefore,

tnvCLP-MILP 6= tnvCLP+tnvMILP (781 6= 1214 (517 + 697)). Other numerical results

presented in tables 6.1 (page 134) and 6.3 indeed confirms this fact. Furthermore,

132 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

the computational results of section 6.4 have demonstrated that the combined CLP-

MILP approach tends to have smaller running times than the root MILP and CLP

models. Numerical details are given, for instance, in tables 6.1, 6.3, and 6.4 (page

145).

6.4 Results

6.4.1 First Computational Experiment

This section considers a pumping scenario previously exploited in chapter 5,

and the input data presented in section 5.5.1 are herein also valid. Therein sec-

tion 6.4.1, however, numerical comparisons amongst three different Main Model ver-

sions, which are formulated according to MILP, CLP, and CLP-MILP approaches,

are developed.

Table 6.1 provides information about the optimization structure simulation on

a Pentium 4, 2.4 GHz, 1 Gbyte RAM. The modeling and optimization tool ILOG

OPL Studio 3.6.1 (ILOG, 2002b) is used to implement and solve the optimization

structure. There is a series of algorithm settings to be defined in this tool. These

settings include, for example, the linear programming method (primal simplex, dual

simplex, barrier), the branch-and-bound direction (up, down, both), the node selec-

tion (depth first, worst bound, best bound), the use of optimality margin, to name

a few. Each of these settings can directly influence the search procedure. For an

in-depth discussion, the interested reader is referred to ILOG (2002b). Neverthe-

less, for simplicity, in the illustrative example herein presented, these settings are

maintained in the OPL’s default option10.

In addition, the computational experiments henceforth conducted demand that

several instances of different models (MILP, CLP, and CLP-MILP) be solved. In

such a task, the functionalities of OPLScript (ILOG, 2002a), a script language for

composing and controlling optimization models, were exploited. Basically, OPLScript

enables the user to (systematically) solve different instances of the same model, make

10For a detailed description of OPL’s default option see ILOG (2002b).

6.4 Results 133

data modifications, format output data, and create algorithm solutions where the

output of one model is used as the input of a second model. A complete description

of OPLScript is given in ILOG (2002a).

In table 6.1, H is the scheduling horizon, ne is the number of on-peak electric

time intervals, the milp label refers to the formulation presented in section 5.4, the

clp label refers to the formulation explained in section 6.2, and the clp-milp label

refers to the formulation presented in section 6.3.

For each scheduling horizon (H), the optimization structure is run, and a spe-

cific cost is attained (objective function value). The Auxiliary Routine and the Tank

Bound simulation data are neglected. These structures required a computational

time lower than one second, for all illustrative instances (114 h ≤ H ≤ 144 h). No

uncertainties are considered. The model is solved for fixed product demands.

The columns named “Number of Variables” and “Number of Constraints”

indicate the number of variables and constraints presented by the milp, clp, and

clp-milp models. The column “Optimum found in (s)” indicates the processing

time (in seconds) spent by each optimization approach to find the optimum solution,

according to values of H . At this time, the solution optimality is not yet proved. On

the other hand, the column “Optimality proved in (s)” indicates the processing time

(in seconds) spent by each optimization approach to prove the solution optimality,

for each value of H. The column “Nodes Exploited” indicates the total number of

nodes visited by the “branch-and-bound” algorithm, according to the optimization

model and the H value, in order to prove the solution optimality. In these three

columns, a dash (-) indicates that the Main Model was not run to optimality to the

specific problem instance, and the computational data are neglected. In fact, the

simulation was aborted after 2 h (7200 s) of running. The column “Cost” indicates

objective function values, according to the available scheduling horizon (H).

134 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

T
ab

le
6.

1:
M

ai
n

M
o
d
el

Il
lu

st
ra

ti
ve

In
st

an
ce

s
I

–
M

IL
P
,
C

L
P
,
an

d
C

L
P

-M
IL

P
F
or

m
u
la

ti
on

s.
H

n
e

N
u
m

b
er

o
f
V
a
ri

a
b
le

s
N

u
m

b
er

o
f
C

o
n
st

ra
in

ts
O

p
ti
m

u
m

fo
u
n
d

in
(s

)
O

p
ti
m

a
li
ty

p
ro

v
ed

in
(s

)
N

o
d
es

E
x
p
lo

it
ed

C
o
st

(h
)

m
il

p
c
l
p

c
l
p
-m

il
p

m
il

p
c
l
p

c
l
p
-m

il
p

m
il

p
c
l
p

c
l
p
-m

il
p

m
il

p
c
l
p

c
l
p
-m

il
p

m
il

p
c
l
p

c
l
p
-m

il
p

($
)

1
1
4

4
3
6
1

2
7
3

4
1
7

1
1
3
2

5
7
1

1
6
2
0

1
1

0
.7

0
.8

1
5

0
.8

5
.0

9
4
5
3

5
7
5

5
7
5

1
7
4

1
1
5

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

1
5

7
.9

1
.1

1
7

6
9

7
.3

1
1
5
7
3

1
5
6

1
0
3

6
1
4

1
7
5

1
1
6

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

2
4
1

1
.1

1
9

3
1
5

7
.4

1
3
4
9
2

6
2
7

1
0
3

7
1
4

1
7
6

1
1
7

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

2
5
5

2
.3

2
2

4
1
7

1
6

1
5
7
0
8

8
7
0

1
0
3

1
6
5
5

1
7
7

1
1
8

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

9
8
6

2
.4

2
3

6
2
9

1
6

1
5
0
2
8

1
.2

5
1
0
6

1
6
4
2

1
7
4

1
1
9

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

2
1
5
1

2
.5

3
4

1
0
7
5

1
6

2
3
0
9
1

1
.9

0
1
0
6

1
7
8
3

1
7
1

1
2
0

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

2
7

1
0
6
9

5
.1

4
2

6
3
1
2

3
3

2
8
5
0
9

1
3
.7

1
0
6

3
5
9
6

1
6
8

1
2
1

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

1
3

-
5
.8

4
1

-
3
7

2
5
1
4
5

-
4
0
7
3

1
6
4

1
2
2

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

3
4

-
5
.8

4
6

-
3
6

3
2
2
5
8

-
3
9
7
6

1
6
0

1
2
3

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

2
1

-
7
.2

7
5

-
4
4

4
9
0
7
9

-
5
0
4
6

1
5
6

1
2
4

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

5
1

-
6
.0

8
5

-
3
9

5
6
6
1
3

-
4
5
0
9

1
5
3

1
2
5

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

3
0

-
5
.9

6
1

-
3
8

3
7
6
4
5

-
4
4
8
0

1
5
0

1
2
6

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

3
-

6
.6

6
4

-
4
9

4
4
9
6
7

-
5
9
1
1

1
4
7

1
2
7

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

2
-

6
.6

9
1

-
4
6

6
1
2
0
2

-
5
4
1
9

1
4
4

1
2
8

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

3
4

-
6
.5

7
8

-
4
0

4
8
8
9
8

-
4
6
8
5

1
4
1

1
2
9

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

2
0

-
5
.0

4
5

-
2
5

2
5
9
9
9

-
2
7
4
9

1
3
8

1
3
0

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

9
0

-
5
.1

9
0

-
2
5

5
0
6
8
6

-
2
8
7
9

1
3
9

1
3
1

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

1
3

-
5
.4

3
6

-
2
6

2
2
1
8
5

-
2
9
8
8

1
4
0

1
3
2

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

4
0

-
7
.0

6
0

-
2
5

3
1
7
4
0

-
2
8
8
8

1
3
9

1
3
3

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

3
7

-
7
.0

5
7

-
2
6

3
1
6
5
1

-
2
9
0
0

1
4
0

1
3
4

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

8
-

6
.9

5
0

-
2
5

2
7
0
0
5

-
2
7
8
3

1
4
1

1
3
5

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

4
3

-
7
.1

9
1

-
2
6

4
7
1
4
2

-
2
8
7
8

1
4
2

1
3
6

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

2
9

-
7
.2

8
4

-
2
6

4
8
0
5
5

-
2
8
8
3

1
4
3

1
3
7

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

8
-

7
.1

6
4

-
2
6

3
4
8
6
0

-
2
8
4
4

1
4
4

1
3
8

5
4
2
5

3
0
5

4
8
1

1
3
2
4

6
3
1

1
8
6
0

4
5

-
5
.6

7
3

-
2
2

3
6
6
2
0

-
2
5
4
7

1
4
4

1
3
9

6
4
8
9

3
3
7

5
4
5

1
5
1
6

6
9
1

2
1
0
0

5
0

-
6
.9

5
2

-
2
5

2
7
7
4
6

-
2
8
3
5

1
4
5

1
4
0

6
4
8
9

3
3
7

5
4
5

1
5
1
6

6
9
1

2
1
0
0

5
5

-
7
.0

8
8

-
2
6

4
3
4
5
5

-
2
8
7
3

1
4
6

1
4
1

6
4
8
9

3
3
7

5
4
5

1
5
1
6

6
9
1

2
1
0
0

1
1
6

-
7
.5

1
7
0

-
2
8

6
2
8
2
9

-
3
0
6
7

1
4
7

1
4
2

6
4
8
9

3
3
7

5
4
5

1
5
1
6

6
9
1

2
1
0
0

3
-

7
.6

1
1
3

-
2
8

6
0
2
2
1

-
3
0
9
1

1
4
8

1
4
3

6
4
8
9

3
3
7

5
4
5

1
5
1
6

6
9
1

2
1
0
0

3
0

-
7
.4

7
3

-
2
9

3
2
2
1
9

-
3
1
1
6

1
4
9

1
4
4

6
4
8
9

3
3
7

5
4
5

1
5
1
6

6
9
1

2
1
0
0

2
-

1
8

5
7

-
7
7

2
9
2
0
2

-
8
4
4
5

1
5
0

6.4 Results 135

6.4.1.1 Results: Commentaries on Table 6.1

Table 6.1 indicates that the computational effort demanded by the clp model is

greater than the one demanded by the milp and the clp-milp approaches by orders

of magnitude. In some illustrative instances (121 h ≤ H ≤ 144 h), unfortunately, the

results regarding the optimal solution could not be achieved by the clp model. It

is necessary to highlight, however, that feasible solutions were attained by the clp

model in few seconds of processing. This fact was observed during simulations, and

it is reported in table 6.2. In this table, H is the available scheduling horizon, zs

indicates the best (sub)optimal solution found by the CLP search procedure after

ten (10) seconds of processing, zo is the optimal solution to the specific problem

instance, which can be attained in table 6.1, column “Cost”, and the term (zs−zo)/zo

indicates the difference (in percentage) between zs and zo. Therefore, table 6.2

indicates that, in the worst case (H = 132 h), the CLP model found a suboptimal

solution within 31.7 % from the optimal value after ten seconds of processing.

Table 6.2: Main Model Illustrative Instances – CLP (Sub)Optimal Solutions After
Ten Seconds.

H zs zo (zs − zo)/zo H zs zo (zs − zo)/zo

(h) ($) ($) (%) (h) ($) ($) (%)
114 174 174 0 130 181 139 30.2
115 175 175 0 131 182 140 30.0
116 179 176 1.7 132 183 139 31.7
117 181 177 2.6 133 184 140 31.4
118 178 174 2.3 134 185 141 31.2
119 175 171 2.3 135 186 142 31.0
120 172 168 2.4 136 187 143 30.8
121 170 164 3.7 137 188 144 30.6
122 178 160 11.3 138 189 144 31.3
123 174 156 11.5 139 190 145 31.0
124 171 153 11.8 140 191 146 30.8
125 168 150 12.0 141 192 147 30.6
126 165 147 12.2 142 193 148 30.4
127 166 144 15.3 143 194 149 30.2
128 167 141 18.4 144 195 150 30.0
129 156 138 13.0

The generate procedure was used as the clp search component (see section

6.2.4). In scheduling problems, feasible solutions can be usually defined by a subset

of variables (e.g. seqp,o), and, in general, it is possible to construct feasible solutions

by searching into valid values of strategic variable-subsets. So that, as indicated in

136 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

table 6.2, without much information about the solution quality, feasible scheduling

answers were attained by searching over the seqp,o variable-domain (see expression

6.24). At present, the optimality proof remains a challenging feature for the clp

approach. However, it is also important to highlight that the size of variables’

domain has great influence on the solution time of general CLP models, mainly if

the constraints cannot rule out large parts of the search space (Heipcke, 1999). At

the considered clp model, an increase on H value causes that the domains of some

variables (e.g. dpres, p.ep,o, and p.sp,o) be increased. As indicated in table 6.1, the

clp model tends to exploit a large number of nodes as the domains of variables are

increased, and, therefore, the running time becomes prohibitive.

Unlike the clp formulation, both the milp and the clp-milp approaches de-

manded a reasonable computational effort (seconds to few minutes). In particular,

table 6.1 presents the milp computational results obtained for the OPL Studio 3.6.1,

running the well-known CPLEX MILP solver (ILOG, 2001d). In chapter 5, the same

MILP model is implemented and solved in the modeling and optimization tool Ex-

tended LINGO/PC Release 8.0 (LINDO, 2002), and the computational results are

presented in table 5.3. The same Pentium 4, 2.4 GHz, 1 Gbyte RAM was used for

running either OPL or LINGO. In both cases, the computational times were reason-

able, however, OPL presented, in the great majority of instances, smaller times than

LINGO. In fact, if one compares the same instances simulated either in LINGO or

in OPL, the former spent an average time of 172.5 s (value calculated in table 5.3,

column ct (s), for H as an integer) and, the latter, 61.8 s (average value calculated

in table 6.1, column “Optimality proved in (s)”, sub-column milp). Therefore, in

average, OPL was 2.8 times faster than LINGO in proving a solution optimality.

Table 6.1 also allows a comparison between the milp and the clp-milp com-

putational results. If one takes the column “Optimum found in (s)”, sub-column

milp, the average time spent by the milp model, for each H value, is equal to

27.3 s; in the sub-column clp-milp, the average time is equal to 5.9 s. Therefore,

the clp-milp model found the optimal solution, in average, 4.6 times faster than

the milp model. Now, taking the column “Optimality proved in (s)”, sub-columns

milp and clp-milp, the average times are equal to, respectively, 61.8 s and 28.9 s.

6.4 Results 137

Thus, in average, the clp-milp model gave the final scheduling answer 2.1 times

faster than the milp model. Hence, table 6.1 indicates that the clp-milp model

tends to find the optimal solution instance, and prove its optimality, even faster than

the milp model. According to Heipcke (1999) a combined CLP-MILP approach can

suffer from inherited drawbacks from the root techniques. At present, the isolated

clp model does not present reasonable computational results as the H value in-

creases (e.g. H > Hmin+6 h). It is likely that improvements in such clp model can

also cause improvements in the clp-milp model computational results.

Now, if one compares the clp and the clp-milp models, the “Nodes Ex-

ploited” column indicates that the clp-milp version tends to exploit fewer nodes

than the clp model. The search mechanisms applied by both approaches are essen-

tially the same, in exception of the auxiliary bounds provided by the milp formula-

tion in a combined clp-milp approach (section 6.3, page 123, further explains this

fact). Therefore, it is evident that the linear relaxation provided by the milp model

decisively aids the search space pruning at this clp-milp model. In particular, the

mathematical programming community has developed effective techniques for calcu-

lating lower bounds on relaxed minimization models since the sixties (Dantzig, 1963).

The integration of these techniques in CLP search procedures has, obviously, a large

potential.

6.4.2 Second Computational Experiment

In the first computational experiment (section 6.4.1), the three different Main

Model versions (MILP, CLP, and CLP-MILP approaches) were simulated in a re-

alistic pipeline-scheduling scenario, which demanded running times of seconds to

few minutes, at least for the MILP and CLP-MILP approaches (details are given in

table 6.1). In this section (section 6.4.2), the three Main Model versions are tested

in some hypothetical problem instances. Such instances do not necessarily repre-

sent typical operational scenarios. In fact, the main goal is to further investigate

the computational effort trend presented by the different Main Model versions in

theoretically more time-consuming problem instances. The computational results

138 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

are reported in table 6.3 (page 140). The main parameters used during section 6.4.2

simulations are herein stated in (i) to (vi):

(i) The number of demanded products is progressively increased from 8 to 12

(8 ≤
∑

o∈O npo ≤ 12);

(ii) The model is solved for fixed product demands, such that demp,o = 1800 m3

∀o∈O, p∈Po;

(iii) For each different set of demanded products (
∑

o∈O npo = 8, 9, . . . , 12), the

scheduling horizon varies in the following interval: Hmin≤H≤Hmin + 6 h;

(iv) The ne value varies (ne = 4 or ne = 5) according to the available scheduling

horizon (see figure 5.6, page 102);

(v) The plug necessity follows the hypothetical rule: plugp,pa = 1 if p + pa is an

odd number, and plugp,pa = 0 if p + pa is an even number. For example, if

npo = npō = 6, then plug1,pa = 1 for pa = 2, 4, 6, 8, 10, 12, and plug1,pa = 0 for

pa=1, 3, 5, 7, 9, 11;

(vi) The simulation parameters that were not mentioned in statements (i) to (v)

are maintained as originally presented in section 5.5.1.

Table 6.3 provides information about the optimization structure simulation on

a Pentium 4, 2.4 GHz, 1 Gbyte RAM. The modeling and optimization tool ILOG

OPL Studio 3.6.1 (ILOG, 2002b) is used to implement and solve the optimization

structure. In addition, the functionalities of OPLScript (ILOG, 2002a), a script

language for composing and controlling optimization models, were exploited in order

to solve several instances of different Main Model versions (MILP, CLP, and CLP-

MILP approaches).

In table 6.3, H is the scheduling horizon, ne is the number of on-peak electric

time intervals, npo and npō indicate the number of demanded products in origins

o and ō, while
∑

o∈O npo represents the total number of demanded products. The

set of parameters H, ne, npo, and npō represents a specific problem instance. The

milp label refers to the formulation presented in section 5.4, the clp label refers

6.4 Results 139

to the formulation explained in section 6.2, and the clp-milp label refers to the

formulation presented in section 6.3. For each set of H, ne, npo, and npō values,

the optimization structure is run, and a specific cost is attained (objective function

value). The Auxiliary Routine and the Tank Bound simulation data are neglected.

These structures required a computational time lower than one second, for all il-

lustrative instances. No uncertainties are considered. The model is solved for fixed

product demands. The columns named “Number of Variables” and “Number of Con-

straints” indicate the number of variables and constraints presented by the milp,

clp, and clp-milp models. The column “Optimality proved in (s)” indicates the

processing time (in seconds) spent by each optimization approach to prove the solu-

tion optimality. A dash (-) indicates that the Main Model was not run to optimality

to the specific problem instance, and the computational data are neglected. In fact,

the simulation was aborted after 72 hours of running (259200 seconds). The col-

umn “Average time” indicates the average computational time, displayed in format

hours:minutes:seconds (hh:mm:ss). This time is calculated based on the seven dif-

ferent instances that are run when the
∑

o∈O npo remains constant. As an example,

for
∑

o∈O npo =8, H =96, 97, 98, 99, 100, 101, and 102 h, the “Optimality proved in

(s)” column indicates that the clp-milp times were, respectively, 5.2, 7.3, 7.1, 14,

12, 12, and 23 s. Thus, the average clp-milp time for
∑

o∈O npo =8 can be calcu-

lated as 5.2+7.3+7.1+14+12+12+23
7

≈ 12 s. The column “Cost” indicates objective function

values, according to different problem instances.

In addition to results provided by table 6.3, another fact regarding the number

of demanded plugs was observed during simulations: the optimization structure

determined pumping sequences (for each set of H, ne, npo, and npō values) where

two (2) plugs were included. For instance, at H = 96 h, ne = npo = npō = 4, the

determined pumping sequence is p6, p8, p5, and p7 (reflow procedure); p1, p3, p2,

and p4 (flow procedure). According to statement (v) on page 138, this pumping

sequence implies the use of plugs between p8/p5 and between p3/p2. Therefore, the

total number of demanded plugs equals two11.

11This fact is going to be exploited in section 6.4.3 – see assumption (b) on page 142.

140 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

T
ab

le
6.

3:
M

ai
n

M
o
d
el

Il
lu

st
ra

ti
ve

In
st

an
ce

s
II

–
M

IL
P
,
C

L
P
,
an

d
C

L
P

-M
IL

P
F
or

m
u
la

ti
on

s.
H

n
e

n
p

o
n
p

ō
∑ o

∈
O

n
p

o
N

u
m

b
er

o
f
V
a
ri

a
b
le

s
N

u
m

b
er

o
f
C

o
n
st

ra
in

ts
O

p
ti
m

a
li
ty

p
ro

v
ed

in
(s

)
A

v
er

a
g
e

ti
m

e
(h

h
:m

m
:s

s)
C

o
st

(h
)

m
il

p
c
l
p

c
l
p
-m

il
p

m
il

p
c
l
p

c
l
p
-m

il
p

m
il

p
c
l
p

c
l
p
-m

il
p

m
il

p
c
l
p

c
l
p
-m

il
p

($
)

9
6

4
4

4
8

3
6
1

2
7
3

4
1
7

1
1
3
2

5
7
1

1
6
2
0

2
3

0
.7

5
.2

1
5
8

9
7

4
4

4
8

3
6
1

2
7
3

4
1
7

1
1
3
2

5
7
1

1
6
2
0

4
1

6
.7

7
.3

1
5
4

9
8

4
4

4
8

3
6
1

2
7
3

4
1
7

1
1
3
2

5
7
1

1
6
2
0

2
7

4
6

7
.1

1
5
0

9
9

4
4

4
8

3
6
1

2
7
3

4
1
7

1
1
3
2

5
7
1

1
6
2
0

6
1

2
3
1

1
4

0
0
:0

0
:5

0
0
0
:2

6
:5

0
0
0
:0

0
:1

2
1
4
6

1
0
0

4
4

4
8

3
6
1

2
7
3

4
1
7

1
1
3
2

5
7
1

1
6
2
0

5
2

3
9
7

1
2

1
4
3

1
0
1

4
4

4
8

3
6
1

2
7
3

4
1
7

1
1
3
2

5
7
1

1
6
2
0

5
3

6
3
5

1
2

1
4
0

1
0
2

4
4

4
8

3
6
1

2
7
3

4
1
7

1
1
3
2

5
7
1

1
6
2
0

9
1

9
9
5
2

2
3

1
3
7

1
0
2

4
5

4
9

4
1
8

3
1
9

4
8
1

1
3
0
2

6
7
9

1
8
9
1

2
5
6

3
.2

2
5

1
6
4

1
0
3

4
5

4
9

4
1
8

3
1
9

4
8
1

1
3
0
2

6
7
9

1
8
9
1

3
8
6

4
2

3
6

1
6
0

1
0
4

4
5

4
9

4
1
8

3
1
9

4
8
1

1
3
0
2

6
7
9

1
8
9
1

5
4
8

3
3
2

3
5

1
5
6

1
0
5

4
5

4
9

4
1
8

3
1
9

4
8
1

1
3
0
2

6
7
9

1
8
9
1

4
9
8

1
5
7
0

7
3

0
0
:1

0
:1

9
0
3
:3

8
:4

5
0
0
:0

1
:0

5
1
5
2

1
0
6

4
5

4
9

4
1
8

3
1
9

4
8
1

1
3
0
2

6
7
9

1
8
9
1

7
1
7

2
7
8
9

6
4

1
4
9

1
0
7

4
5

4
9

4
1
8

3
1
9

4
8
1

1
3
0
2

6
7
9

1
8
9
1

7
2
1

4
5
1
4

6
4

1
4
6

1
0
8

4
5

4
9

4
1
8

3
1
9

4
8
1

1
3
0
2

6
7
9

1
8
9
1

1
2
0
6

8
2
6
2
6

1
5
7

1
4
3

1
0
8

4
5

5
1
0

4
7
6

3
6
6

5
4
6

1
4
7
9

7
9
2

2
1
7
4

4
9
0
8

2
3

1
6
6

1
7
0

1
0
9

4
5

5
1
0

4
7
6

3
6
6

5
4
6

1
4
7
9

7
9
2

2
1
7
4

5
8
3
4

2
4
5

2
2
2

1
6
6

1
1
0

4
5

5
1
0

4
7
6

3
6
6

5
4
6

1
4
7
9

7
9
2

2
1
7
4

9
3
0
6

2
1
2
4

2
2
4

1
6
2

1
1
1

4
5

5
1
0

4
7
6

3
6
6

5
4
6

1
4
7
9

7
9
2

2
1
7
4

1
6
7
5
2

1
0
8
1
9

4
3
1

0
3
:1

7
:3

2
1
1
:2

0
:0

9
0
0
:0

6
:2

4
1
5
8

1
1
2

4
5

5
1
0

4
7
6

3
6
6

5
4
6

1
4
7
9

7
9
2

2
1
7
4

1
6
8
9
0

1
9
8
4
8

3
7
8

1
5
5

1
1
3

4
5

5
1
0

4
7
6

3
6
6

5
4
6

1
4
7
9

7
9
2

2
1
7
4

1
1
0
6
9

3
2
4
9
1

3
7
9

1
5
2

1
1
4

4
5

5
1
0

4
7
6

3
6
6

5
4
6

1
4
7
9

7
9
2

2
1
7
4

1
8
2
0
2

2
2
0
1
1
0

8
9
1

1
4
9

1
1
4

4
6

5
1
1

5
3
8

4
1
7

6
1
5

1
6
6
4

9
1
7

2
4
7
7

1
0
3
2
4
3

3
5
6

2
1
8
6

1
7
6

1
1
5

5
6

5
1
1

6
2
6

4
6
1

7
0
3

1
9
2
5

9
9
8

2
8
0
4

1
3
3
3
8
1

2
9
4
7
7

2
9
3
4

1
7
7

1
1
6

5
6

5
1
1

6
2
6

4
6
1

7
0
3

1
9
2
5

9
9
8

2
8
0
4

1
1
1
2
7
5

1
8
6
6
3
5

2
8
7
7

1
7
8

1
1
7

5
6

5
1
1

6
2
6

4
6
1

7
0
3

1
9
2
5

9
9
8

2
8
0
4

1
2
5
1
1
2

-
5
9
1
6

3
9
:3

3
:3

1
-

0
1
:2

8
:3

4
1
7
9

1
1
8

5
6

5
1
1

6
2
6

4
6
1

7
0
3

1
9
2
5

9
9
8

2
8
0
4

1
6
9
9
9
6

-
5
9
0
7

1
7
6

1
1
9

5
6

5
1
1

6
2
6

4
6
1

7
0
3

1
9
2
5

9
9
8

2
8
0
4

1
7
6
6
9
7

-
5
7
6
8

1
7
3

1
2
0

5
6

5
1
1

6
2
6

4
6
1

7
0
3

1
9
2
5

9
9
8

2
8
0
4

1
7
7
1
7
4

-
1
1
6
0
7

1
7
0

1
2
0

5
6

6
1
2

6
9
7

5
1
7

7
8
1

2
1
4
0

1
1
3
5

3
1
4
8

-
-

2
1
3
2
4

1
9
7

1
2
1

5
6

6
1
2

6
9
7

5
1
7

7
8
1

2
1
4
0

1
1
3
5

3
1
4
8

-
-

2
4
8
0
8

1
9
3

1
2
2

5
6

6
1
2

6
9
7

5
1
7

7
8
1

2
1
4
0

1
1
3
5

3
1
4
8

-
-

2
4
2
1
3

1
8
9

1
2
3

5
6

6
1
2

6
9
7

5
1
7

7
8
1

2
1
4
0

1
1
3
5

3
1
4
8

-
-

4
9
2
5
4

-
-

1
2
:4

2
:4

9
1
8
5

1
2
4

5
6

6
1
2

6
9
7

5
1
7

7
8
1

2
1
4
0

1
1
3
5

3
1
4
8

-
-

5
0
2
3
3

1
8
2

1
2
5

5
6

6
1
2

6
9
7

5
1
7

7
8
1

2
1
4
0

1
1
3
5

3
1
4
8

-
-

5
0
0
2
0

1
7
9

1
2
6

5
6

6
1
2

6
9
7

5
1
7

7
8
1

2
1
4
0

1
1
3
5

3
1
4
8

-
-

1
0
0
5
3
0

1
7
6

6.4 Results 141

6.4.2.1 Results: Commentaries on Table 6.3

In essence, the experiments conducted in section 6.4.2 are aimed at comparing

the computational effort demanded by methodologies MILP, CLP, and CLP-MILP

in different problem instances. Table 6.3 reports the results of such computational

comparisons. In particular, the “Average time” column of table 6.3 indicates the

MILP, CLP, and CLP-MILP computational effort trend, according to the considered

problem instances. Figure 6.1 is plotted in order to enable the results of such trend

to be visualized, and it shows the average computational time as a function of the

total number of demanded products (
∑

o∈O npo). In figure 6.1 the CLP, MILP,

and CLP-MILP tendency curves are plotted. These curves are approximated by

exponential functions of the form y=cebx, where c and b are constants, and e is the

natural logarithm base (e≈2.7182818 . . .).

Average Computational Time

0

5

10

15

20

25

30

35

40

8 9 10 11 12
Total Number of Demanded Products

C
om

pu
ta

tio
na

l T
im

e
(h

)

CLP

 CLP-MILP

MILP

Figure 6.1: Average Computational Time for MILP, CLP, and CLP-MILP Models.

Figure 6.1 clearly indicates that, in average, the combined CLP-MILP model

tends to solve this specific problem faster than the MILP and the CLP models, as

the total number of demanded products increased. Obviously, one might argue that

even the CLP-MILP model has an exponential-time computational behavior, but,

for sure, the combined model could “go a step further” than both, the MILP and

142 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

the CLP models. In addition, the search component applied by the CLP and the

CLP-MILP approaches is essentially the same. However, in the CLP-MILP search

mechanism, the auxiliary bounds provided by the MILP formulation are indeed used

(section 6.3 further explains this fact). Therefore, when comparing the CLP and

the CLP-MILP models, one can infer that the latter perform better due to the aid

of linear programming bounds on the search mechanism.

6.4.3 Third Computational Experiment

Figure 6.1 indicates the average computational time presented by the CLP,

MILP, and CLP-MILP models herewith developed. Such figure highlights the

CLP-MILP computational gain over the root techniques, as the problem instances

(
∑

o∈O npo) are progressively increased. Nevertheless, even the combined approach

presents an exponential-time tendency. Therefore, one might argue whether there is

an alternative procedure to reduce the computational burden. In particular, this sec-

tion (section 6.4.3) investigates the use of “heuristic” information to aid the search

process. Such heuristic is based in two main assumptions:

(a) The pipeline is maintained pressurized and idle during high electric cost inter-

vals;

(b) The number of plugs used during pumping procedures is known a priori.

The computational data of section 6.4.2 are also used within this experi-

ment. So that, the parameters (i) to (vi) stated on page 138 should be observed.

In particular, parameter (iii) establishes that for each different set of demanded

products (
∑

o∈O npo = 8, 9, . . . , 12), the scheduling horizon varies in the interval

Hmin≤H ≤Hmin + 6 h. According to the experiments of section 5.5.2 (page 103),

the optimization structure indeed maintains the pipeline pressurized and idle during

on-peak demand intervals, as far as possible. Therefore, experiments of section 5.5.2

help understand assumption (a). Moreover, the second computational experiment

(page 137) indicated that, for the hypothetical data of section 6.4.2, the demanded

number of plugs equals two. Therefore, the number of demanded plugs is known a

6.4 Results 143

priori, as stated by assumption (b). The three models are informed about assump-

tions (a) and (b) as follows:

• Constraints 6.85 and 6.86 are added to the MILP formulation;

• The search component is modified in the CLP model, as indicated in formu-

lation 6.87. Therefore, the search tree is created based on the OPL’s built-in

command generate, which receives the discrete variable seqp,o and generates

values for the specified variables, respecting the domain conditions. However,

just the generated sequences that verify equation 6.86 are accepted. Fur-

thermore, within the accepted sequences, the dpres value is set to H−Hmin.

Obviously, the search tree defined by formulation 6.87 differs from the one

generated by formulation 6.24. In the CLP model, constraints 6.85 and 6.86

are not explicitly added to the formulation, but are indeed tested during the

search tree, according to 6.87;

• The CLP-MILP approach inherits constraints 6.85, 6.86, and the search com-

ponent defined by formulation 6.87.

dpres = H −Hmin (6.85)

∑
o∈O

∑
p∈Po

∑
pa∈Po,
pa 6=p

tp,pa,o · plugp,pa +
∑
o=d,
p∈Po

∑
ō=d̄,

pa∈Pō

twp,pa · plugp,pa +

∑
p=pin,
o=d,

pa∈Po

firstp,o · plugp,pa = 2
(6.86)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

generate(seqp,o) ∀o∈O, p∈Po

If equation . verifies

Then∣∣∣∣∣∣ dpres = H −Hmin;

generate the node to be exploited

Else do not generate the node

(6.87)

144 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

Table 6.4 provides information about the optimization structure simulation on

a Pentium 4, 2.4 GHz, 1 Gbyte RAM. In table 6.4, H is the scheduling horizon, ne

is the number of on-peak electric time intervals, npo and npō indicate the number of

demanded products in origins o and ō, while
∑

o∈O npo represents the total number

of demanded products. The set of parameters H, ne, npo, and npō represents a

specific problem instance. The milp label refers to the formulation presented in

section 5.4, the clp label refers to the formulation explained in section 6.2, and the

clp-milp label refers to the formulation presented in section 6.3. For each set of

H, ne, npo, and npō values, the optimization structure is run, and a specific cost

is attained (objective function value). The Auxiliary Routine and the Tank Bound

simulation data are neglected. These structures required a computational time lower

than one second, for all illustrative instances. No uncertainties are considered. The

model is solved for fixed product demands.

The columns named “Number of Variables” and “Number of Constraints” in-

dicate the number of variables and constraints presented by the milp, clp, and

clp-milp models. The column “Optimality proved in (s)” indicates the processing

time (in seconds) spent by each optimization approach to prove the solution op-

timality. A dash (-) indicates that the Main Model was not run to optimality to

the specific problem instance, and the computational data are neglected. In fact,

the simulation was aborted after 72 hours of running (259200 seconds). The col-

umn “Average time” indicates the average computational time, displayed in format

hours:minutes:seconds (hh:mm:ss). This time is calculated based on the seven dif-

ferent instances that are run when the
∑

o∈O npo remains constant. As an example,

for
∑

o∈O npo = 8, H = 96, 97, 98, 99, 100, 101, and 102 h, the “Optimality proved

in (s)” column indicates that the clp-milp times were, respectively, 1.4, 1.6, 1.6,

2.1, 2.1, 2.3, and 3.2 s. Thus, the average clp-milp time for
∑

o∈O npo = 8 can be

calculated as 1.4+1.6+1.6+2.1+2.1+2.3+3.2
7

≈ 2 s. In addition, the “Average time” column

informs (between parenthesis) the average processing time value attained in the sec-

ond computational experiment (page 137), and reported in table 6.3. The column

“Cost” indicates objective function values, according to different problem instances.

6.4 Results 145

T
ab

le
6.

4:
M

ai
n

M
o
d
el

Il
lu

st
ra

ti
ve

In
st

an
ce

s
II

I
–

M
IL

P
,
C

L
P
,
an

d
C

L
P

-M
IL

P
F
or

m
u
la

ti
on

s.
H

n
e

n
p

o
n
p

ō
∑ o

∈
O

n
p

o
N

u
m

b
er

o
f
V
a
ri

a
b
le

s
N

u
m

b
er

o
f
C

o
n
st

ra
in

ts
O

p
ti
m

a
li
ty

p
ro

v
ed

in
(s

)
A

v
er

a
g
e

ti
m

e
(h

h
:m

m
:s

s)
C

o
st

(h
)

m
il

p
c
l
p

c
l
p
-m

il
p

m
il

p
c
l
p

c
l
p
-m

il
p

m
il

p
c
l
p

c
l
p
-m

il
p

m
il

p
c
l
p

c
l
p
-m

il
p

($
)

9
6

4
4

4
8

3
6
1

2
7
3

4
1
7

1
1
3
4

5
7
1

1
6
2
2

7
.3

0
.2

1
.4

1
5
8

9
7

4
4

4
8

3
6
1

2
7
3

4
1
7

1
1
3
4

5
7
1

1
6
2
2

9
.3

0
.8

1
.6

1
5
4

9
8

4
4

4
8

3
6
1

2
7
3

4
1
7

1
1
3
4

5
7
1

1
6
2
2

1
3

4
.9

1
.6

1
5
0

9
9

4
4

4
8

3
6
1

2
7
3

4
1
7

1
1
3
4

5
7
1

1
6
2
2

2
0

2
3

2
.1

0
0
:0

0
:1

7
0
0
:0

2
:3

5
0
0
:0

0
:0

2
1
4
6

1
0
0

4
4

4
8

3
6
1

2
7
3

4
1
7

1
1
3
4

5
7
1

1
6
2
2

2
5

3
7

2
.1

(0
0
:0

0
:5

0
)*

(0
0
:2

6
:5

0
)

(0
0
:0

0
:1

2
)

1
4
3

1
0
1

4
4

4
8

3
6
1

2
7
3

4
1
7

1
1
3
4

5
7
1

1
6
2
2

2
4

5
6

2
.3

1
4
0

1
0
2

4
4

4
8

3
6
1

2
7
3

4
1
7

1
1
3
4

5
7
1

1
6
2
2

2
3

9
6
1

3
.2

1
3
7

1
0
2

4
5

4
9

4
1
8

3
1
9

4
8
1

1
3
0
4

6
7
9

1
8
9
3

1
0
9

0
.6

5
.5

1
6
4

1
0
3

4
5

4
9

4
1
8

3
1
9

4
8
1

1
3
0
4

6
7
9

1
8
9
3

1
5
4

3
.2

6
.2

1
6
0

1
0
4

4
5

4
9

4
1
8

3
1
9

4
8
1

1
3
0
4

6
7
9

1
8
9
3

1
2
1

2
2

6
.2

1
5
6

1
0
5

4
5

4
9

4
1
8

3
1
9

4
8
1

1
3
0
4

6
7
9

1
8
9
3

1
3
6

1
0
2

8
.6

0
0
:0

3
:1

1
0
0
:1

4
:0

9
0
0
:0

0
:0

8
1
5
2

1
0
6

4
5

4
9

4
1
8

3
1
9

4
8
1

1
3
0
4

6
7
9

1
8
9
3

3
6
4

1
6
6

8
.2

(0
0
:1

0
:1

9
)

(0
3
:3

8
:4

5
)

(0
0
:0

1
:0

5
)

1
4
9

1
0
7

4
5

4
9

4
1
8

3
1
9

4
8
1

1
3
0
4

6
7
9

1
8
9
3

1
6
2

2
5
5

8
.2

1
4
6

1
0
8

4
5

4
9

4
1
8

3
1
9

4
8
1

1
3
0
4

6
7
9

1
8
9
3

2
9
0

5
3
9
3

1
3

1
4
3

1
0
8

4
5

5
1
0

4
7
6

3
6
6

5
4
6

1
4
8
1

7
9
2

2
1
7
6

9
5
0

2
.0

1
9

1
7
0

1
0
9

4
5

5
1
0

4
7
6

3
6
6

5
4
6

1
4
8
1

7
9
2

2
1
7
6

1
0
4
1

1
1

2
2

1
6
6

1
1
0

4
5

5
1
0

4
7
6

3
6
6

5
4
6

1
4
8
1

7
9
2

2
1
7
6

8
0
3

8
8

2
1

1
6
2

1
1
1

4
5

5
1
0

4
7
6

3
6
6

5
4
6

1
4
8
1

7
9
2

2
1
7
6

1
8
0
7

4
1
9

3
0

0
0
:2

1
:4

9
0
1
:0

6
:4

2
0
0
:0

0
:2

8
1
5
8

1
1
2

4
5

5
1
0

4
7
6

3
6
6

5
4
6

1
4
8
1

7
9
2

2
1
7
6

1
2
6
0

7
2
1

2
7

(0
3
:1

7
:3

2
)

(1
1
:2

0
:0

9
)

(0
0
:0

6
:2

4
)

1
5
5

1
1
3

4
5

5
1
0

4
7
6

3
6
6

5
4
6

1
4
8
1

7
9
2

2
1
7
6

1
9
4
6

1
1
1
9

2
8

1
5
2

1
1
4

4
5

5
1
0

4
7
6

3
6
6

5
4
6

1
4
8
1

7
9
2

2
1
7
6

1
3
5
6

2
5
6
5
3

4
7

1
4
9

1
1
4

4
6

5
1
1

5
3
8

4
1
7

6
1
5

1
6
6
6

9
1
7

2
4
7
9

2
3
7
3
7

1
3

1
1
5

1
7
6

1
1
5

5
6

5
1
1

6
2
6

4
6
1

7
0
3

1
9
2
7

9
9
8

2
8
0
6

2
5
8
5
3

6
6
2

1
4
6

1
7
7

1
1
6

5
6

5
1
1

6
2
6

4
6
1

7
0
3

1
9
2
7

9
9
8

2
8
0
6

5
8
9
9
6

3
9
2
8

1
4
3

1
7
8

1
1
7

5
6

5
1
1

6
2
6

4
6
1

7
0
3

1
9
2
7

9
9
8

2
8
0
6

2
1
5
0
7

4
8
9
8

2
0
4

0
7
:4

7
:4

2
0
7
:5

8
:4

6
0
0
:0

3
:1

4
1
7
9

1
1
8

5
6

5
1
1

6
2
6

4
6
1

7
0
3

1
9
2
7

9
9
8

2
8
0
6

2
4
1
4
2

7
1
7
6

2
0
3

(3
9
:3

3
:3

1
)

(-
)

(0
1
:2

8
:3

4
)

1
7
6

1
1
9

5
6

5
1
1

6
2
6

4
6
1

7
0
3

1
9
2
7

9
9
8

2
8
0
6

1
2
9
7
8

1
0
7
6
8

2
0
5

1
7
3

1
2
0

5
6

5
1
1

6
2
6

4
6
1

7
0
3

1
9
2
7

9
9
8

2
8
0
6

2
9
3
2
3

1
7
3
6
3
4

3
4
5

1
7
0

1
2
0

5
6

6
1
2

6
9
7

5
1
7

7
8
1

2
1
4
2

1
1
3
5

3
1
5
0

-
6
3

5
3
0

1
9
7

1
2
1

5
6

6
1
2

6
9
7

5
1
7

7
8
1

2
1
4
2

1
1
3
5

3
1
5
0

-
2
4
9

5
6
3

1
9
3

1
2
2

5
6

6
1
2

6
9
7

5
1
7

7
8
1

2
1
4
2

1
1
3
5

3
1
5
0

-
2
7
3
2

5
5
7

1
8
9

1
2
3

5
6

6
1
2

6
9
7

5
1
7

7
8
1

2
1
4
2

1
1
3
5

3
1
5
0

-
1
8
4
8
3

7
9
9

-
-

0
0
:1

2
:4

5
1
8
5

1
2
4

5
6

6
1
2

6
9
7

5
1
7

7
8
1

2
1
4
2

1
1
3
5

3
1
5
0

-
-

8
2
0

(-
)

(-
)

(1
2
:4

2
:4

9
)

1
8
2

1
2
5

5
6

6
1
2

6
9
7

5
1
7

7
8
1

2
1
4
2

1
1
3
5

3
1
5
0

-
-

8
1
6

1
7
9

1
2
6

5
6

6
1
2

6
9
7

5
1
7

7
8
1

2
1
4
2

1
1
3
5

3
1
5
0

-
-

1
2
7
0

1
7
6

*
T

h
e

v
a
lu

es
b
et

w
ee

n
p
a
re

n
th

es
is

in
d
ic

a
te

th
e

a
v
er

a
g
e

ti
m

e
fo

r
th

e
se

co
n
d

co
m

p
u
ta

ti
o
n
a
l
ex

p
er

im
en

t
(s

ee
ta

b
le

6
.3

).

146 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

6.4.3.1 Results: Commentaries on Table 6.4

In essence, the experiments conducted in section 6.4.3 are aimed at verifying

the computational effect of adding heuristic information - assumptions (a) and (b)

- into MILP, CLP, and CLP-MILP developed models. Therefore, comparing the

simulations of section 6.4.3 with section 6.4.2, where no heuristic information is used,

is a must. In a simplified way, table 6.4 reports such computational comparisons.

The “Average time” column of table 6.4 indicates the MILP, CLP, and CLP-

MILP computational effort trend, according to the considered problem instances.

In addition, the same column informs (between parenthesis) the section 6.4.2 cor-

respondent computational results. For all cases, section 6.4.3 presented smaller

running times than the equivalent simulation of section 6.4.2. Therefore, table 6.4

indicates that, in average, there existed a computational time reduction when com-

paring simulations of sections 6.4.3 and 6.4.2. Figure 6.2 is plotted in order to enable

the results of such computational time reduction to be visualized. For example, if

one takes the sub-column clp-milp, with
∑

o∈O npo = 12, then, the average time

reduction can be calculated as 12:42:49
00:12:45

= 45769 s
765 s

≈ 60 . Figure 6.2 shows the average

time reduction as a function of the total number of demanded products (
∑

o∈O npo).

Average Computational Time Reduction

0

10

20

30

40

50

60

8 9 10 11 12
Total Number of Demanded Products

A
ve

ra
ge

 T
im

e
R

ed
uc

tio
n MILP

CLP
CLP-MILP

Figure 6.2: Average Computational Time Reduction when Comparing the Third

Experiment with the Second Experiment.

6.5 Remarks on Chapter 6 147

In the MILP model, constraints 6.85 and 6.86 were added, and helped prune

the traditional MILP search tree. By table 6.4, the MILP average time reduction

can be calculated as (00:00:50
00:00:17

+ 00:10:19
00:03:11

+ 03:17:32
00:21:49

+ 39:33:31
07:47:42

)/4 ≈ 5.1. Thus, the MILP

model informed about assumptions (a) and (b) was, in average, 5.1 times faster

than the MILP model with no heuristic information added. In the CLP model, the

search component was altered, and indeed helped reduce the processing time by an

average factor of (00:26:50
00:02:35

+ 03:38:45
00:14:09

+ 11:20:09
01:06:42

)/3 ≈12. In the CLP-MILP model, the

average processing time reduction can be calculated as (00:00:12
00:00:02

+ 00:01:05
00:00:08

+ 00:06:24
00:00:28

+

01:28:34
00:03:14

+ 12:42:49
00:12:45

)/5 ≈ 23. However, a different time reduction behavior can be

observed in the CLP-MILP model. In theory, the three models were informed about

assumptions (a) and (b), but, as indicated in figure 6.2, the CLP-MILP approach

presented a computational time reduction more expressive than the root techniques,

as the total number of demanded products increased. For theoretic more time-

consuming instances (e.g.
∑

o∈O npo = 12), the CLP-MILP model tends to present

an average computational time reduction greater than the average time reduction

presented in theoretic less time-consuming instances (e.g.
∑

o∈O npo = 8). In fact,

this is a very promising characteristic because more difficult instances tend to have a

more expressive computational time reduction. Thus, using the problem knowledge

(heuristic information) in order to reduce the computational burden seems to be a

valid procedure, mainly in the CLP-MILP model.

6.5 Remarks on Chapter 6

The main goal of chapter 6 was to demonstrate the creation of a combined CLP-

MILP modeling approach where both parts of the combined model are generated

through the same basis: a set of high-level MILP modeling structures with equivalent

CLP modeling devices. The importance of building a combined model instead of just

creating either MILP or CLP models was indeed evidenced by the computational

results (section 6.4). The CLP-MILP model presented, in average, smaller running

times than the root techniques. Numerical details are given in tables 6.1 (page 134),

6.3 (page 140), and 6.4 (page 145).

148 Chapter 6. CLP-MILP: Towards a Unified Modeling Framework

Chapter 7

Conclusions/Contributions and

Future Research

7.1 Conclusions/Contributions

The struggle to model and solve Combinatorial Optimization Problems (COPs)

has challenged the development of new approaches to deal with them. In one of the

front lines of such approaches, Operational Research (OR) and Constraint Program-

ming (CP) optimization techniques are converging, despite their very different ori-

gins. More specifically Mixed Integer Linear Programming (MILP) and Constraint

Logic Programming (CLP) are at the confluence of the OR and the CP fields. It

is conceivable that the union of CLP and MILP in a unique CLP-MILP framework

can bring an alternative approach to solve problems that could not be addressed by

none of the root techniques (Hooker, 2002). In particular, this thesis considers the

integration of CLP and MILP in a modeling standpoint: it conveys the fundamen-

tals of both techniques, and the modeling features that help establish a combined

CLP-MILP approach.

Chapters 1 to 3 rise a quite large body of evidences that MILP and CLP

are merging. In addition, the literature surveyed in these chapters indicates that

the combined CLP-MILP approach is a promising alternative to deal with hard

combinatorial optimization problems. Nevertheless, chapters 1 to 3 are not aimed at

150 Chapter 7. Conclusions/Contributions and Future Research

being a comprehensive review of neither CLP nor MILP, but rather an introductory

discussion of opportunities for the integration of these techniques in a combined

CLP-MILP approach.

Contribution 1: The development of a literature survey about

opportunities for the integration of CLP and MILP techniques

in a combined CLP-MILP approach.

CLP is well-known by its rich modeling framework, mainly global constraints.

On the other hand, the MILP modeling vocabulary is based on inequalities, which

makes the modeling process hard and error-prone. Chapter 4 addresses this is-

sue, and it presents high-level MILP modeling structures based on logical inference

paradigms. Some of these structures are literature-based and others are herein pro-

posed. Such high-level structures help the formulation of MILP models, providing

an approach to narrow the gap between CLP and MILP modeling devices. However,

chapter 4 just addressed the formulation of MILP structures, and the development of

algorithms to encapsulate such high-level structures is a completely different matter.

Contribution 2: The development of a set of high-level MILP

modeling structures based on logical inference paradigms.

Chapter 5 presents the development of an MILP formulation addressing a

combinatorial problem. This model was focused on issues regarding the oil industry,

more specifically, involving the scheduling of operational activities in a multi-product

pipeline. The main goal was to demonstrate the applicability of the high-level MILP

modeling structures developed in chapter 4 rather than to fully exploit the prob-

lem scheduling details. Problems concerning pipeline-management were already

addressed by the author of this thesis, as it can be seen, for instance, in Magatão

(2001). Chapter 5 evidenced two important issues concerning the high-level struc-

tures proposed in chapter 4, in particular the if-then and the if-then-else statements:

(i) they indeed worked to model a real-world problem; (ii) they decisively aided the

MILP formulation of such model.

7.1 Conclusions/Contributions 151

Contribution 3: The development and simulation of a novel

continuous time approach MILP model addressing a specific

pipeline-scheduling problem.

Chapter 6 presents a CLP and a combined CLP-MILP formulation addressing

the same problem exploited in chapter 5. The main goal is to demonstrate the

applicability of the high-level MILP modeling structures developed in chapter 4 in an

integrated CLP-MILP modeling framework. The functionalities of the commercial

tool ILOG OPL Studio 3.6.1 (ILOG, 2002b) were used in order to implement and

solve the root MILP1 and CLP models and also the combined CLP-MILP approach.

Contribution 4: The development of a CLP model addressing

a specific pipeline-scheduling problem.

Contribution 5: The development of a combined CLP-MILP

model addressing a specific pipeline-scheduling problem.

Chapter 6 exploited some computational characteristics of the combined ap-

proach over the root techniques. Section 6.4 brings a discussion about the compu-

tational results presented by the particular studied models. In general lines, the

combined CLP-MILP formulation presented, in most simulation instances, smaller

running times than either the CLP model or the MILP model. Numerical details

are given in tables tables 6.1 (page 134), 6.3 (page 140), and 6.4 (page 145).

Contribution 6: The test of MILP, CLP, and CLP-MILP

models in a series of specific problem instances, providing

numerical comparisons amongst the three models.

Section 4.5 stated that the high-level MILP modeling structures, which were

widely used in the CLP-MILP formulation, do not necessarily achieve the most

computationally efficient model, that is, they do not provide the sharpest MILP

formulation. However, the numerical results (section 6.4) demonstrate that, at this

1The MILP formulation was previously presented in chapter 5.

152 Chapter 7. Conclusions/Contributions and Future Research

CLP-MILP formulation, the non-sharp MILP linear relaxation played a significant

role, and indeed contributed to reduce the computational expense. Chapter 6 also

evidenced one of the remarks previously acclaimed in section 4.5 (page 73), which

is herewith quoted:

“Chapters 1 to 3 stated that the CLP modeling features overcome the

MILP modeling features, which are essentially based on inequalities. How-

ever, in an integrated CLP-MILP approach, the MILP modeling, which

is a hard task (see section 4.1), is indispensable. Sections 4.2 to 4.3

present connections between logical inference and MILP, which can be

used to facilitate the MILP modeling task. Thus, the high-level MILP

structures presented in chapter 4 can be seamlessly used in an integrated

CLP-MILP modeling framework. The overall CLP-MILP modeling ap-

proach gains versatility, since CLP is well-known by its rich modeling

framework, and the high-level MILP structures also facilitate the model

builder task.”

Therefore, based on a practical problem, the modeling techniques presented in

chapter 4 could be used in a CLP-MILP formulation. In addition, the practical use

of such high-level structures evidenced that the resulting model tends to be simpler

to understand and modify than the traditional MILP inequality-based model2. This

issue was already exploited in an illustrative example of flexible storage, presented

in section 4.4. Therefore, it can be stated that, somehow, the high-level structures

bring “robustness” to the MILP modeling process.

Contribution 7: The development of a “Logical Mixed Inte-

ger Programming (L-MILP)” framework, that is, an MILP

formulation based on a set of high-level MILP modeling struc-

tures demonstrated in chapter 4.

Another important issue of creating a combined CLP-MILP formulation con-

cerns the compatibility between CLP and MILP modeling structures. In fact, the

2The referred inequality-based MILP model is presented by Magatão et al. (2004).

7.2 Future Research 153

model builder should be aware that, in order to provide a better support for the

CLP-MILP formulation to be created, one should try to use CLP structures with

correspondent high-level MILP statements. Without the high-level MILP state-

ments, the gap between CLP and MILP modeling devices becomes too large: it

ranges from CLP global constraints to MILP bare inequalities.

Contribution 8: The introduction of a combined CLP-MILP

modeling approach where both parts of the combined model

can be created through the same basis: a set of high-level

MILP modeling structures with equivalent CLP modeling de-

vices.

The previous chapters evidenced that the combined CLP-MILP approach is

a promising alternative to deal with combinatorial problems. However, the reader

must be aware about some particular negative features of this combined approach:

• The model builder must address both formulations, or, at least, a hybrid model

with CLP and MILP expressions;

• Just a few commercial solvers that deal with CLP and MILP modeling devices

in an intertwined kernel are available (details are given in chapters 2 and 3);

• User-written applications for the hybrid technology tend to be hard to im-

plement, because they demand algorithm knowledge about CLP and MILP

structures, besides the additional effort to coordinate the different search mech-

anisms (Heipcke, 1999).

7.2 Future Research

This thesis focuses on modeling, and how a rethinking on modeling traditions

can aid the formulation of either MILP or CLP-MILP approaches. The development

of algorithms to improve the communication between CLP and MILP devices was

beyond the research scope. This technical feature was circumvented by the use of an

154 Chapter 7. Conclusions/Contributions and Future Research

optimization tool (ILOG, 2002b) that lets the user state integrated CLP-MILP ap-

plications without the complexities of ordinary programming languages. Therefore,

incoming work tends to be geared towards the directions herewith presented:

• In a practical point of view, the pipeline-scheduling formulation developed in

chapters 5 and 6 can be improved. According to operational necessities, other

scheduling details may be addressed. In fact, a formulation that incorporates

origin and destination features in an intertwined arrangement, mass balance,

due-dates (or time-windows) for sending/receiving products would have been

desirable.

• The high-level MILP modeling structures of chapter 4 can be also applied to

other (combinatorial) optimization problems, giving rise to “Logical Mixed

Integer Linear Programming (L-MILP)” models. These L-MILP formulations

should resemble the model created in chapter 5. In addition, L-MILP models

can be integrated in a CLP framework, as indicated in chapter 6. In particular,

decision problems open a wide range of candidate applications for the high-

level MILP structures.

• In a theoretical point of view, the study of the high-level MILP modeling

structures of chapter 4 can be extended. This is a promising research field,

even more if one considers that, in the near future, a single optimization state-

ment (e.g. alldifferent) may be part of an integrated modeling environment,

and different techniques, such as CLP and MILP, should interpret this “high-

level” form of problem representation. In this case, the model does not imply

a solving technology, but it is just a form of problem description. Thus, the

extension of the high-level MILP structures presented in chapter 4 is an in-

teresting alternative towards a unifying modeling framework for a combined

CLP-MILP approach.

• The algorithm integration of CLP and MILP devices can be further investi-

gated. Perhaps, a user-written CLP-MILP algorithm integration can be de-

signed.

Bibliography

Applequist, G., Samikoglu, O., Pekny, J. F. and Reklaitis, G. V. (1997). Issues in

the use, design and evolution of process scheduling and planning systems, ISA

Transactions 36(2): 81–121.

Baptiste, P., LePape, C. and Nuijten, W. (2001). Constraint-Based Scheduling:

Applying Constraint Programming to Scheduling Problems, Kluwer Academic

Publishers, Massachusetts, USA.

Barták, R. (1999). Constraint programming: In pursuit of the holy grail, Proceedings

of Week of Doctoral Students (WDS99), part IV, MatFyzPress, Charles Univer-

sity in Prague, Faculty of Mathematics and Physics, Department of Theoretical

Computer Science, pp. 555–564.

Barták, R. (2002). Constraint-based scheduling: An introduction to newcomers,

Technical Report TR 2002/2, Charles University in Prague, Faculty of Mathe-

matics and Physics, Department of Theoretical Computer Science.

Barth, P. and Bockmayr, A. (1995). Modeling mixed-integer optimisation prob-

lems in constraint logic programming, Technical Report MPI-I-95-2-011, Max-

Planck-Institut für Informatik, Saarbrücken, Germany.

Beale, E. M. L. and Tomlin, J. A. (1970). Special facilities in a general mathematical

programming system for non-convex problems using ordered sets of variables,

in J. Lawrence (ed.), Proceedings of the Fifth International Conference on Op-

erational Research, Tavistock Publications, pp. 447–454.

156 BIBLIOGRAPHY

Beldicenau, N. and Contejean, E. (1994). Introducing global constraints in CHIP,

Journal of Mathematical and Computer Modeling 20(12): 97–123.

Bixby, R. E. (2002). Solving real-world linear programs: A decade and more of

progress, Operations Research 50(1): 3–15.

Bixby, R., Fenelon, M., Gu, Z., Rothberg, E. and Wunderling, R. (2000). MIP: The-

ory and practice — closing the gap, in M. Powell and S. Scholtes (eds), Systems

Modelling and Optimization: Methods, Theory, and Applications, Kluwer Aca-

demic Publishers, pp. 19–49.

Bockmayr, A. and Kasper, T. (1997). A unifying framework for integer and finite do-

main constraint programming, Technical Report MPI-I-97-2-008, Max-Planck-

Institut für Informatik, Saarbrücken, Germany.

Bollapragada, S., Ghattas, O. and Hooker, J. N. (2001). Optimal design of truss

structures by mixed logical linear programming, Operations Research 49: 42–51.

Brailsford, S. C., Hubbard, P. M., Smith, B. M. and Williams, H. P. (1996). Or-

ganizing a social event — A difficult problem of combinatorial optimization,

Computers and Operations Research 23(9): 845–856.

Brailsford, S. C., Potts, C. N. and Smith, B. M. (1999). Constraint satisfaction prob-

lems: Algorithms and applications, European Journal of Operational Research

119: 557–581.

Brearley, A. L., Mitra, G. and Williams, H. P. (1975). Analysis of mathematical

programming problems prior to applying the simplex algorithm, Mathematical

Programming 8: 54–83.

Brooke, A. and Meeraus, A. (1982). On the development of a general algebraic mod-

eling system in a strategic planning environment, Mathematical Programming

Study 20: 1–29.

Carlsson, M. and Ottosson, G. (1999). A comparison of CP, IP and hybrids for

configuration problems, Technical Report 99/04, Uppsala University, Swedish

Institute of Computer Science (SICS).

BIBLIOGRAPHY 157

Chandru, V. and Hooker, J. N. (1999). Optimization Methods for Logical Infer-

ence, Wiley-Interscience Series in Discrete Mathematics and Optimization,

New York, USA.

Chandru, V. and Rao, M. R. (1996). Combinatorial optimization: An integer pro-

gramming perspective, ACM Computing Surveys 28(1): 55–58.

Codognet, P. and Diaz, D. (1996). Compiling constraints in clp(fd), Journal of Logic

Programming 27(3): 185–226.

Colmerauer, A. (1987). Opening the Prolog-III universe, BYTE magazine

12(9): 177–182.

Colombani, Y. and Heipcke, S. (1997). The constraint solver SchedEns. Tutorial and

documentation, Technical Report 241, Université Aix-Marseille II, Laboratoire

d’Informatique de Marseille (LIM), Marseille, France.

COPEL (2005). Companhia Paranaense de Energia Elétrica –

Tarifas de energia elétrica (on-line information available at

http://www.copelsolucoes.com/downloads/downloads.html in May 2005).

COSYTEC (1995). CHIP C Library, COSYTEC editor, Orsay, France.

COSYTEC (2005). CHIP V5: Second generation constraint programming technol-

ogy (on-line information available at http://www.cosytec.com/ in May 2005).

Dantzig, G. B. (1963). Linear Programming and Extensions, Princeton University

Press, Princeton, New Jersey, USA.

Darby-Dowman, K. and Little, J. (1998). Properties of some combinatorial optimiza-

tion problems and their effect on the performance of integer programming and

constraint logic programming, INFORMS Journal on Computing 10(3): 276–

286.

Darby-Dowman, K., Little, J., Mitra, G. and Zaffalon, M. (1997). Constraint logic

programming and integer programming approaches and their collaboration in

solving assignment scheduling problem, Constraints 1(3): 245–264.

158 BIBLIOGRAPHY

De-Baker, B., Furnon, V., Prosser, P., Kilby, P. and Shaw, P. (2000). Solving vehicle

routing problems using constraint programming and metaheuristics, Journal of

Heuristics Special Issue on Constraint Programming 6(4): 501–524.

Floudas, C. A. (1995). Nonlinear and Mixed Integer Optimization: Fundamentals

and Applications, Oxford University Press, New York, USA.

Focacci, F. (2000). Solving Combinatorial Optimization Problems in Constraint

Programming, PhD thesis, Università degli Studi di Ferrara, Ferrara, Italia.

Fourer, R. (1998). Extending a general-purpose algebraic modeling language to

combinatorial optimization, in D. L. Woodruff (ed.), Advances in Computa-

tional and Stochastic Optimization, Logic Programming and Heuristic Search:

Interfaces in Computer Science and Operations Research, Kluwer Academic

Publishers, Dordrecht, The Netherlands, pp. 31–74.

Fourer, R., Gay, D. M. and Kernighan, B. W. (1990). A modeling language for

mathematical programming, Management Science 36: 519–554.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability – A Guide

to the Theory of NP-Completeness, W. H. Freeman and Company, New York,

Bell Laboratories, Murray Hill, New Jersey, USA.

Glover, F. and Laguna, M. (1993). Modern Heuristic Techniques for Combinatorial

Optimization, Blackwell Scientific Publications, Oxford.

Goldbarg, M. C. and Luna, H. P. L. (2000). Otimização Combinatória e Pro-

gramação Linear – Modelos e Algoritmos, Editora Campus, Rio de Janeiro,

RJ, Brazil. (in portuguese).

Grossmann, I. E., Hooker, J. N., Raman, R. and Yan, H. (1994). Logic cuts for pro-

cessing networks with fixed charges, Computers & Operations Research 21: 265–

279.

Guéret, C., Prins, C. and Sevaux, M. (2002). Applications of Optimization with

Xpress–MP, Dash Optimization editor, France. Translated and revised by S.

Heipcke.

BIBLIOGRAPHY 159

Hadjiconstantinou, E. and Mitra, G. (1994). A linear and discrete programming

framework for representing qualitative knowledge, Journal of Economic Dy-

namics and Control 18: 273–297.

Hajian, M. T. (1996). Dis-equality constraints in linear/integer programming, Tech-

nical report, IC-Parc, Imperial College, London, UK.

Hajian, M. T., El-Sakkout, H., Wallace, M., Lever, J. M. and Richards, B. (1995).

Towards a closer integration of finite domain propagation and simplex-based

algorithms, Technical report, IC-Parc, Imperial College, London, UK.

Harjunkoski, I. and Grossmann, I. E. (2002). Decomposition techniques for mul-

tistage scheduling problems using mixed-integer and constraint programming

methods, Computers & Chemical Engineering 26: 1533–1552.

Harjunkoski, I., Jain, V. and Grossmann, I. E. (2000). Hybrid mixed-

integer/constraint logic programming strategies for solving scheduling and com-

binatorial optimization problems, Computers & Chemical Engineering 24: 337–

343.

Heipcke, S. (1999). Combined Modelling and Problem Solving in Mathematical Pro-

gramming and Constraint Programming, PhD thesis, University of Bucking-

ham, UK.

Hentenryck, P. V. (1989). Constraint Satisfaction in Logic Programming, MIT Press.

Hentenryck, P. V., Perron, L. and Puget, J. F. (2000). Search and strategies in

OPL, ACM Transactions on Computational Logic 1(2): 285–320.

Hermenegildo, M. (1997). Some challenges for constraint programming, Constraints,

Special Issue on Strategic Directions in Constraint Programming. 2(1): 63–69.

Hooker, J. N. (2000). Logic-Based Methods for Optimization: Combining Optimiza-

tion and Constraint Satisfaction, Wiley-Interscience Series in Discrete Mathe-

matics and Optimization, New York, USA.

160 BIBLIOGRAPHY

Hooker, J. N. (2002). Logic, optimization and constraint programming, INFORMS

Journal on Computing 14: 295–321.

Hooker, J. N. (2003). A framework for integrating solution methods, in H. K.

Bhargava and M. Ye (eds), Proceedings of ICS2003: Computational Modeling

and Problem Solving in the Networked World, Kluwer Academic Publishers,

pp. 3–30.

Hooker, J. N. and Osorio, M. A. (1999). Mixed/logical linear programming, Discrete

Applied Mathematics 96–97(1–3): 395–442.

Hooker, J. N., Ottosson, G. and Thorsteinsson, E. S. (2000). A scheme for unify-

ing optimization and constraint satisfaction methods, Knowledge Engineering

Review 15: 11–30.

Hürlimann, T. (1998). An efficient logic-to-IP translation procedure, APMOD98

International Conference, Applied Mathematical Programming and Modeling,

Lymassol, Cyprus, pp. 1–26.

Hürlimann, T. (2000). Reference manual for the LPL modeling language, version

4.40, Technical Report 00-5, University of Fribourg, Institute of Informatics,

Fribourg, Switzerland.

Ierapetritou, M. G. and Floudas, C. A. (1998). Short-term scheduling: New math-

ematical models vs algorithmic improvements, Computers & Chemical Engi-

neering 22(supplement): S419–S426.

ILOG (2001a). Constraint Programming with ILOG Solver, ILOG Corporation,

Gentilly, France, pp. 33–44.

ILOG (2001b). ILOG OPL Studio, ILOG Corporation, Gentilly, France, pp. 14–19.

ILOG (2001c). ILOG Optimization Suite – White Paper, ILOG Corporation. (Avai-

lable at http://www.ilog.com/ in May 2005).

ILOG (2001d). Mathematical Programming with ILOG CPLEX, ILOG Corporation,

Gentilly, France, pp. 26–32.

BIBLIOGRAPHY 161

ILOG (2002a). ILOG OPL Studio 3.6.1 – Language Manual, ILOG Corporation,

France.

ILOG (2002b). ILOG OPL Studio 3.6.1 – User’s Manual, ILOG Corporation,

France.

Jaffar, J. and Maher, M. J. (1994). Constraint logic programming: A survey, Journal

of Logic Programming, Supplement 1 19–20: 503–581.

Jain, V. and Grossmann, I. E. (1999). Algorithms for hybrid MILP/CLP models for

a class of optimization problems, Technical report, Carnegie Mellon University,

Department of Chemical Engineering, Pittsburg, PA, USA.

Jeroslow, R. G. and Lowe, J. K. (1984). Modelling with integer variables, Mathe-

matical Programming Study 22: 167–184.

Kalvelagen, E. (2003). On solving the progressive party problem as a MIP, Com-

puters & Operations Research 30(11): 1713–1726.

Kay, P. (1997). COSYTEC white paper: CHIP example code (available at

http://www.cosytec.com/ in May 2005).

Kennedy, J. L. (1993). Oil and Gas Pipeline Fundamentals, PennWell Publishing

Company, Oklahoma, USA.

Kondili, E., Pantelides, C. C. and Sargent, R. W. H. (1993). A general algorithm for

short-term scheduling of batch operations – I. MILP formulation, Computers

& Chemical Engineering 17(2): 211–227.

Land, A. H. and Doig, A. G. (1960). An automatic method for solving discrete

programming problems, Econometrica 28: 497–520.

Laurière, J. L. (1978). A language and a program for stating and solving combina-

torial problems, Artificial Intelligence 10: 29–127.

Lee, H., Pinto, J. M., Grossman, I. E. and Park, S. (1996). Mixed-integer linear pro-

gramming model for refinery short-term scheduling of crude oil unloading with

162 BIBLIOGRAPHY

inventory management, Industrial & Engineering Chemistry Research 35: 1630–

1641.

LINDO (2002). LINGO: The Modeling Language and Optimizer – User’s Guide,

LINDO Systems Inc., Chicago, Illinois.

Lustig, I. J. and Puget, J. F. (2001). Program does note equal program: Constraint

programming and its relationship to mathematical programming, Interfaces

31(6): 29–53.

Magatão, L. (2001). Programação matemática aplicada à otimização das operações

de um poliduto, Master’s thesis, Centro Federal de Educação Tecnológica do

Paraná (CEFET-PR). Programa de Pós-Graduação em Engenharia Elétrica e

Informática Industrial (CPGEI), Curitiba, Paraná, Brazil. (in portuguese).

Magatão, L., Arruda, L. V. R. and Neves-Jr, F. (2001). Sequencing inputs to a

multi-product pipeline, Proceedings of the European Control Conference - ECC

2001, Porto, Portugal, pp. 2152–2157.

Magatão, L., Arruda, L. V. R. and Neves-Jr, F. (2002). A methodology for schedul-

ing commodities in a multi-product pipeline, Proceedings of the XV IFAC World

Congress on Automatic Control, Barcelona, Spain.

Magatão, L., Arruda, L. V. R. and Neves-Jr, F. (2004). A mixed integer program-

ming approach for scheduling commodities in a pipeline, Computers & Chemical

Engineering 28(1-2): 171–185.

Maximal (2005). Maximal software inc. – MPL modeling system (on-line information

available at http://www.maximal-usa.com/ in May 2005).

McKinnon, K. I. M. and Williams, H. P. (1989). Constructing integer programming

model by the predicate calculus, Annals of Operational Research 21: 227–246.

Mitra, G., Lucas, C., Moody, S. and Hadjiconstantinou, E. (1994). Tools for refor-

mulating logical forms into zero-one mixed integer programs, European Journal

of Operational Research 72: 262–276.

BIBLIOGRAPHY 163

Murphy, F. H. and Panchanadam, V. (1997). Understanding linear programming

modeling trough and examination of the early papers on model formulation,

Operations Research 45(3): 341–356.

Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and Combinatorial Optimiza-

tion, John Wiley & Sons, Inc., New York, USA.

Ottosson, G. and Carlsson, M. (1997). Using global constraints for frequency allo-

cation, Technical Report 97/07, Uppsala University, Swedish Institute of Com-

puter Science (SICS).

Ottosson, G., Thorsteinsson, E. S. and Hooker, J. N. (2001). Mixed global con-

straints and inference in hybrid CLP–IP solvers, Annals of Mathematics and

Artificial Intelligence, Special Issue on Large Scale Combinatorial Optimisation

and Constraints 34(4): 271–290.

Ottosson, G., Thorsteinsson, E. S. and Hooker, J. N. (2002). Mixed global con-

straints and inference in hybrid CLP–IP solvers, Annals of Mathematics and

Artificial Intelligence, Special Issue on Large Scale Combinatorial Optimisation

and Constraints 34(4): 271–290.

Pekny, J. F. and Reklaitis, G. V. (1998). Towards the convergence of theory and

practice: A technology guide for scheduling/planning methodology, American

Institute of Chemical Engineering Symposium Series 94(320): 91–111.

Pesant, G. and Gendreau, M. (1996). A view of local search in constraint program-

ming, Lecture Notes in Computer Science 1118: 353–363.

Pinto, J. M. and Grossmann, I. E. (1997). A logic-based approach to schedul-

ing problems with resource constraints, Computers & Chemical Engineering

21: 801–818.

Pinto, J. M. and Grossmann, I. E. (1998). Assignment and sequencing models for the

scheduling of chemical processes, Annals of Operations Research 81: 433–466.

164 BIBLIOGRAPHY

Proll, L. and Smith, B. (1998). Integer linear programming and constraint pro-

gramming approaches to a template design problem, INFORMS Journal on

Computing 10(3): 265–275.

Puget, J. F. (1994). A C++ implementation of CLP, Technical Report 94-01, ILOG

Corporation, Gentilly, France.

Raman, R. and Grossmann, I. E. (1991). Relation between MILP modeling and

logical inference for chemical process synthesis, Computers & Chemical Engi-

neering 15(2): 73–84.

Raman, R. and Grossmann, I. E. (1992). Integration of logic and heuristic knowledge

in MINLP optimization for process synthesis, Computers & Chemical Engineer-

ing 16(3): 155–171.

Raman, R. and Grossmann, I. E. (1993). Symbolic integration of logic in mixed-

integer linear programming techniques for process synthesis, Computers &

Chemical Engineering 17(9): 909–927.

Raman, R. and Grossmann, I. E. (1994). Modeling and computational tech-

niques for logic based integer programming, Computers & Chemical Engineer-

ing 18(7): 563–578.

Reklaitis, G. V. (1992). Overview of scheduling and planning of batch process oper-

ations, Proceedings of the NATO Advanced Study Institute on Batch Processing

Systems, Antalya, Turkey, pp. 660–705.

Rodošek, R., Wallace, M. G. and Hajian, M. T. (1999). A new approach to inte-

grating mixed integer programming and constraint logic programming, Annals

of Operations Research 86: 63–87.

Rossi, F. (1999). Constraint logic programming: A survey on research and applica-

tions., in K. R. Apt, A. C. Kakas, E. Monfrey and F. Rossi (eds), New Trends

in Constraints, Joint ERCIM/Compulog Net Workshop, Vol. 1865 of Lecture

Notes in Computer Science, Springer, pp. 40–74.

BIBLIOGRAPHY 165

Schrage, L. (2000). Optimization Modeling with LINGO, LINDO Systems Inc.,

Chicago, Illinois.

Shah, N. (1998). Single and multisite planning and scheduling: Current status

and future challenges, American Institute of Chemical Engineering Symposium

Series 94(320): 75–90.

Sherali, H. D. and Driscoll, P. J. (2000). Evolution and state-of-the-art in integer

programming, Journal of Computational and Applied Mathematics 124: 319–

340.

Smith, B. M. (1995). A tutorial on constraint programming, Technical Report 95.14,

University of Leeds, Division of Artificial Intelligence, Leeds, UK. School of

Computer Studies, Research Report Series.

Smith, B. M., Brailsford, S. C., Hubbard, P. M. and Williams, H. P. (1996). The

progressive party problem: Integer linear programming and constraint pro-

gramming compared, Constraints 1: 119–136.

Subrahmanyam, S., Bassett, M. H., Pekny, J. F. and Reklaitis, G. V. (1995). Issues in

solving large scale planning, design and scheduling problems in batch chemical

plants, Computers & Chemical Engineering 19(supplement): S577–S582.

Thorsteinsson, E. S. (2001). Hybrid Approaches to Combinatorial Optimisation,

PhD thesis, Carnegie Mellon University, Graduate School of Industrial Admin-

istration, Pittsburgh, Pennsylvania, USA.

Türkay, M. and Grossmann, I. E. (1996). Logic-based MINLP algorithms for

the optimal synthesis of process network, Computers & Chemical Engineering

20: 959–978.

Vecchietti, A. and Grossmann, I. E. (2000). Modeling issues and implementation

of language for disjunctive programming, Computers & Chemical Engineering

24: 2143–2155.

Wallace, M., Novello, S. and Schimpf, J. (1997). ECLiPSe: A platform for constraint

logic programming, Technical report, IC-Parc, Imperial College, London, UK.

166 BIBLIOGRAPHY

Williams, H. P. (1987). Linear and integer programming applied to the propositional

calculus, International Journal of Systems Research and Information Science

2: 81–100.

Williams, H. P. (1995). Logic applied to integer programming and integer program-

ming applied to logic, European Journal of Operational Research 81: 605–616.

Williams, H. P. (1999). Model Building in Mathematical Programming, John Wiley

& Sons, Inc., UK.

Williams, H. P. and Wilson, J. M. (1998). Connections between integer linear pro-

gramming and constraint logic programming — an overview and introduction

to the cluster of articles, INFORMS Journal on Computing 10(3): 261–264.

Wolsey, L. A. (1998). Integer Programming, John Wiley & Sons, Inc., New York,

USA.

Wu, D. and Ierapetritou, M. G. (2003). Decomposition approaches for the efficient

solution of short-term scheduling problems, Computers & Chemical Engineering

27: 1261–1276.

Yeom, K. and Lee, J. K. (1998). Logical representation of integer programming

models, Decision Support Systems 18: 227–251.

Yunes, T. H., Moura, A. V. and Souza, C. C. (2000). Modeling and solving a

crew rostering problem with constraint logic programming and integer program-

ming, Technical Report IC-00-04, State University of Campinas, Campinas, SP,

Brazil.

ABSTRACT

The struggle to model and solve Combinatorial Optimization Problems (COPs) has
challenged the development of new approaches to deal with COPs. In one of the front
lines of such approaches, Operational Research (OR) and Constraint Programming
(CP) optimization techniques are beginning to converge, despite their very different
origins. More specifically, Mixed Integer Linear Programming (MILP) and Constraint
Logic Programming (CLP) are at the confluence of the OR and the CP fields. This
thesis summarizes and contrasts the essential characteristics of MILP and CLP, and the
ways that they can be fruitfully combined. Chapters 1 to 3 sketch the intellectual
background for recent efforts at integration and the main results achieved. In addition,
these chapters highlight that CLP is known by its rich modeling framework, and the
MILP modeling vocabulary is just based on inequalities, which makes the modeling
process hard and error-prone. Therefore, a combined CLP-MILP approach suffers from
this MILP inherited drawback. In chapter 4, this issue is addressed, and some “high-
level” MILP modeling structures based on logical inference paradigms are proposed.
These structures help the formulation of MILP models, and can be seen as a
contribution towards a unifying modeling framework for a combined CLP-MILP
approach. In addition, chapter 5 presents an MILP formulation addressing a
combinatorial problem. This problem is focused on issues regarding the oil industry,
more specifically, issues involving the scheduling of operational activities in a multi-
product pipeline. Chapter 5 demonstrates the applicability of the high-level MILP
modeling structures in a real-world scenario. Furthermore, chapter 6 presents a CLP-
MILP formulation addressing the same scheduling problem previously exploited. This
chapter demonstrates the applicability of the high-level MILP modeling structures in an
integrated CLP-MILP modeling framework. The set of simulations conducted indicates
that the combined CLP-MILP model was solved to optimality faster than either the
MILP model or the CLP model. Thus, the CLP-MILP framework is a promising
alternative to deal with the computational burden of this pipeline-scheduling problem.
In essence, this thesis considers the integration of CLP and MILP in a modeling
standpoint: it conveys the fundamentals of both techniques and the modeling features
that help establish a combined CLP-MILP approach. Herein, the concentration is on the
building of MILP and CLP-MILP models rather than on the solution process.

KEYWORDS
Mixed Integer Linear Programming (MILP), Constraint Logic Programming (CLP),
Combinatorial Optimization Problems (COPs), Scheduling, Pipeline.

ÁREAS / SUB-ÁREAS DO CONHECIMENTO
3.08.02.00-8 Pesquisa Operacional
3.08.02.02-4 Programação Linear, Não-Linear, Mista e Dinâmica
3.06.03.16-1 Petróleo e Petroquímica

2005

No: 11

	Contents
	List of Tables
	List of Figures
	List of Labels
	Sponsorship
	Acknowledgments
	Abstract
	CLP--MILP: Introduction
	Preliminary Overview
	Thesis' Outline

	CLP--MILP: Overview of Main Characteristics
	Introduction to CLP
	Introduction to MILP
	Search, Relaxation, and Inference
	Remarks on Chapter 2

	CLP--MILP: Introduction to a Cluster of Articles
	Comparisons between CLP and MILP
	Modeling and Solving in a Combined CLP-MILP Approach
	Other Hybrid Approaches
	Mixed Logical Linear Programming (MLLP)
	Choosing CLP or MILP

	MILP: Modeling Structures
	Building MILP Models
	Reformulation of Logical Relations
	Basic Logic Concepts
	Connecting Logical Variables
	Logically Related Linear Form Constraints
	Logical Constraint in the Implication Form
	Logical Constraint in the Equivalence Form

	High-Level MILP Modeling Structures
	Either-Or Statement
	If-Then Statement
	If-Then-Else Statement
	Remarks on the Use of

	An Illustrative Example of Flexible Storage
	Remarks on Using MILP Modeling Structures

	MILP: Application of the High-Level Modeling Structures
	Introduction to the Problem Context
	Problem Description
	Methodology
	Mathematical Formulation
	Notation
	Auxiliary Routine
	Main Model
	Main Model: Objective Function
	Main Model: Constraints
	Main Model: The Number of Variables

	Results
	An Operational Scenario
	Operational Cost versus Scheduling Horizon
	First Computational Experiment
	Second Computational Experiment

	An Illustrative Case of Pumping Procedure

	Remarks on Chapter 5

	CLP-MILP: Towards a Unified Modeling Framework
	Modeling Premises
	Building a CLP Model
	CLP Objective Function
	CLP Constraints
	CLP Global Constraints
	CLP Search Procedure
	CLP Model: The Number of Variables/Constraints

	Building a CLP-MILP Model
	CLP-MILP Objective Function
	CLP-MILP Constraints
	High-Level CLP-MILP Structures
	Common CLP-MILP Constraints
	Ordinary CLP-MILP Structures
	CLP-MILP Global Constraints

	CLP-MILP Search Component
	CLP-MILP Model: The Number of Variables

	Results
	First Computational Experiment
	Results: Commentaries on Table 6.1

	Second Computational Experiment
	Results: Commentaries on Table 6.3

	Third Computational Experiment
	Results: Commentaries on Table 6.4

	Remarks on Chapter 6

	Conclusions/Contributions and Future Research
	Conclusions/Contributions
	Future Research

	References

