Download PDF
ads:
1
UNIVERSIDADE DO EXTREMO SUL CATARINENSE – UNESC
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE
LÊDA SOARES BRANDÃO GARCIA
ESTUDO DOS EFEITOS COMPORTAMENTAIS E NEUROQUÍMICOS
DA CETAMINA EM RATOS SUBMETIDOS A MODELOS ANIMAIS DE
DEPRESSÃO
CRICIÚMA, JULHO/2008
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
2
LÊDA SOARES BRANDÃO GARCIA
ESTUDO DOS EFEITOS COMPORTAMENTAIS E NEUROQUÍMICOS
DA CETAMINA EM RATOS SUBMETIDOS A MODELOS ANIMAIS DE
DEPRESSÃO
Dissertação de Mestrado apresentada ao
Programa de Pós-Graduação em Ciências da
Saúde para obtenção do
título de Mestre em Ciências da Saúde.
Orientador: Prof. Dr. João Luciano de Quevedo
Co-orientadora: Profa. Dra. Elaine Cristina Gavioli
CRICIÚMA, JULHO DE 2008.
ads:
3
AGRADECIMENTOS
Para os que fazem o meu entorno, coadjuvantes dos meus resultados:
São eles:
-a família original: mãe, irmãos; pai (in memoriam);
-a família que ajudei a construir: Dario e Fábio;
-os poucos, mas qualificados amigos;
-meus pacientes, permanente foco de atenção;
-meus alunos, ligação mais recente, porém estimulante;
agradecimentos especiais
-ao meu orientador, o jovem e capaz Professor João Quevedo, mentor intelectual
deste feito;
-à minha co-orientadora, Professora Elaine Gaviolli, bela criatura e competente
profissional;
-à Professora Alexandra Zugno, paciente revisora dos meus escritos;
-aos professores do curso, com quem pude interagir:
Álvaro José Back
Carina Rodrigues Boeck
Flávio Merino de Freitas Xavier
Keila Maria Ceresér
Paulo Rômulo de Oliveira Frota
Pedro Roosevelt Torres Romão
Vanessa Morais de Andrade;
-aos colegas do Neurolab, especialmente Clarissa Comim, promissora pesquisadora.
Lêda Soares Brandão Garcia
CRICIÚMA, JULHO/2008.
4
RESUMO
A depressão, por sua alta prevalência (16,5% ao longo da vida), cursa elevando
taxas de morbidade e de mortalidade, sendo considerada atualmente um problema
de saúde pública. Os tratamentos farmacológicos disponíveis são baseados em
estratégias dependentes do sistema monoaminérgico e apresentam algumas
limitações. Algumas evidências clínicas apontam para o bloqueio dos receptores
NMDA como potencial alvo terapêutico para o tratamento da depressão. Este
trabalho estabeleceu como objetivo avaliar experimentalmente o efeito
antidepressivo da cetamina, um antagonista não competitivo para o glutamato, que
se liga ao sítio da fenciclidina e que, conforme alguns achados clínicos, demonstrou
rápido início de ação para efeitos antidepressivos. Foram realizados três
experimentos: (1) ratos receberam tratamento agudo com cetamina e imipramina e o
comportamento dos animais foi avaliado nos testes do nado forçado e no campo
aberto. Cetamina e imipramina reduziram significativamente o tempo de imobilidade,
não alterando atividade locomotora; (2) utilizando um protocolo semelhante, ratos
receberam tratamento crônico com cetamina e imipramina o que resultou, em todas
as doses testadas, na diminuição do tempo de imobilidade, sem alteração da
atividade locomotora; (3) neste experimento, ratos submetidos a estresse crônico
moderado, apresentaram redução da ingestão de alimentos doces, redução do peso
corporal, aumento do peso da adrenal e dos níveis de cortisol e do hormônio
corticotrófico. A atividade locomotora não foi significativamente afetada. O
tratamento agudo com cetamina foi capaz de reverter a redução do peso corporal, o
aumento do peso da adrenal e o aumento dos níveis do cortisol e do ACTH, mas
não alterou a redução da ingestão de alimentos doces, quando comparado ao grupo
salina; o tratamento crônico com cetamina reverteu todos os parâmetros avaliados.
Conclui-se que, em consonância com dados da literatura, a cetamina apresentou
efeitos do tipo antidepressivo nos testes comportamentais realizados, estimulando
novas e mais esclarecedoras pesquisas sobre seus mecanismos.
Palavras chaves: glutamato; cetamina; receptores N-metil-D-aspartato; teste do
nado forçado; estresse crônico moderado.
5
ABSTRACT
Depression, a prevalent mood disorder (16,2% lifetime), increases mortality and
morbidity and has been considered a public health problem. Available treatments are
based in monoaminergic system and have several limitations. Growing body of
evidence has pointed to the blochade of N-metyl-D-aspartate (NMDA) receptors
signaling as a potencial therapeutic target for the treatment of major depression. The
present study aimed to evaluate the effects of ketamine, a non-competitive
antagonist to the phencyclidine site of NMDA receptors which some clinical findings
point to a rapid onset of action for antidepressant effects. Three experiments took
place: (1) rats were acutely treated with ketamine and imipramine and animal
behavioral was assessed in the forced swimming and open-field tests. Ketamine and
imipramine reduced time immobility and did not affect locomotor activity; (2) in a
same protocol, rats received chronic treatment and ketamine and imipramine, in all
doses tested, reduced time immobility and did not affect locomotor activity; (3) rats
were exposed to chronic mild stress procedure and decreased sweet intake and
body weight and increased adrenal gland weight and cortisol and
adrenocorticotrophin levels. Locomotor activity was not affected. Acute ketamine
treatment reverted body weight loss and the increase of adrenal weight and the
increase of cortisol and adrenocorticotrophin levels. Acute treatment did not
decrease sweet food intake, compared to saline. Chronic ketamine treatment
reverted all parameters evaluated. In conclusion, and according literature date,
ketamine showed antidepressant-like effects in behavioral tests and further studies
are necessary to investigate its mechanisms.
Keywords: glutamate; ketamine; N-metyl-D-receptors; forced swimming test; chronic
mild stress.
6
LISTA DE ABREVIATURAS
ACTH - (adrenocorticotropic hormone) - hormônio adrenocorticotrófico
BDNF - (brain derived neurothrophic factor) - fator neurotrófico derivado do
cérebro
CMS - (chronic mild stress) - estresse crônico moderado
CRH - (corticotropin-releasing hormone) - hormônio liberador de corticotrofina
ECT - eletroconvulsoterapia
FST - (forced swimming test) - teste do nado forçado
HPA - (hypothalamic-pituitary-adrenal) - hipotálamo-hipófise-adrenal
IMAO - inibidores da monoamina-oxidase
ISRS - inibidores seletivos da recaptação de serotonina
ISRSN - inibidores seletivos da recaptação de serotonina e de noradrenalina
NGF - (neural growing factor) - fator de crescimento neural
NMDA - (N-methyl-D-aspartate) - N-metil-D-aspartato
PCP - (phenciclidine) - fenciclidina
7
LISTA DE ILUSTRAÇÕES
Figura 1...........................................................................................................10
8
SUMÁRIO
1 INTRODUÇÃO................................................................................................1
1.1 Depressão e Estratégias de Tratamento.........................................................2
1.2 Fatores Neurotróficos e Depressão.................................................................5
1.3 Glutamato e Receptores NMDA......................................................................9
1.4 Cetamina........................................................................................................13
1.5 Modelos Animais de Depressão.....................................................................14
1.5.1 Teste do Nado Forçado.................................................................................15
1.5.2 Estresse Crônico Moderado..........................................................................16
2 OBJETIVOS..................................................................................................17
2.1 Objetivo geral.................................................................................................17
2.2 Objetivos Específicos.....................................................................................18
3 ARTIGOS.......................................................................................................19
4 DISCUSSÃO...................................................................................................20
5 REFERÊNCIAS...............................................................................................28
9
1- INTRODUÇÃO
A necessidade de um melhor entendimento acerca dos mecanismos
fisiopatológicos responsáveis pela depressão tem instigado a pesquisa sobre o tema
uma vez que, até o atual estágio do conhecimento, sequer foi possível definir se as
diferenças observadas nas manifestações clínicas da depressão constituem
diferentes patologias ou variáveis de uma única entidade mórbida (Fleck & Shansis,
2004). Assim, na ausência de evidências, o planejamento de abordagens de
tratamento para a depressão termina por ser estabelecido de modo arbitrário com
enfoque, ora direcionado para os seus aspectos psicossociais, ora, priorizando a
abordagem biológica. Para essa última, houve considerável avanço a partir do
estabelecimento da hipótese monoaminérgica, que associou depressão com
deficiência funcional de catecolaminas (Goodwin & Jamison, 1990). Desde então,
utilizam-se fármacos de ação monoaminérgica como importante ferramenta para o
tratamento da depressão com resultados positivos para grande número de pacientes
portadores do transtorno. Há, entretanto um período de espera, de 2 até 6 semanas
a partir do início do tratamento, para que esses pacientes apresentem sinais clínicos
de melhora (Janicak et al.,1996; Sadock & Sadock, 2005). Além disso, alguns
pacientes não conseguem tolerar os efeitos colaterais desses fármacos enquanto
outros, 10 a 20% em Zarate et al., (2002) e 19 a 34% em Licínio & Wong (2007)
simplesmente não apresentam resposta efetiva às múltiplas tentativas de
tratamento. Tais limitações ao tratamento impõem a busca de novas estratégias
terapêuticas, havendo desde linhas de pesquisas de abordagem não farmacológica,
como a estimulação magnética (Licínio & Wong, 2007), passando por estratégias
neuropeptidérgicas, quais sejam, o bloqueio do hormônio liberador de corticotrofina
1
10
(CRH) e o uso de antagonistas da substância P, até as linhas que buscam novos
alvos de ação das drogas, como as pesquisas que envolvem o sistema canabinóide
e o sistema glutamatérgico (Licínio & Wong, 2007). Em relação a esse último,
algumas evidências apontam para o papel dos receptores do tipo N-metil-D-
aspartato (NMDA) na fisiopatologia da depressão e no mecanismo de ação de
tratamentos antidepressivos (Berman et al.,2000; Zarate et al., 2006c). A relevância
do tema motivou o presente trabalho, que estabeleceu como objetivo o estudo dos
efeitos antidepressivos da cetamina em testes comportamentais e a avaliação de
alterações de neurotrofinas em tecido cerebral.
1.1 – Depressão e Estratégias de Tratamento
O Transtorno Depressivo é atualmente considerado um problema de saúde
pública por sua elevada prevalência e curso recorrente, por prejudicar os
desempenhos profissionais e sociais do seu portador, estando ainda associado com
morbidade médica e redução de expectativa de vida (Thase, 2007). Tem sido ainda
responsável por considerável ônus sócio-econômico uma vez que, além dos custos
diretos representados por tratamentos, há que se considerar o prejuízo pela perda
de dias trabalhados (Stahl, 2006). Dados recentes e representativos sobre a
população portadora de transtornos do humor veem do National Comorbidity Survey
Replication (NCS-R) que apresenta estimativas de prevalência para a depressão
maior, na população geral, na ordem de 16,5% ao longo da vida e 6,6% nos últimos
12 meses (Kessler et al., 2007).
2
11
A depressão frequentemente se manifesta com ampla variedade de sintomas:
emocionais (vazio e desespero), motivacionais (prejuízo de estímulo e iniciativa),
comportamentais (comprometimento de atividades usuais) e cognitivos (limitações
de concentração e de memória), além de alterações de apetite, sono, atividade
sexual e, não raro, quadros dolorosos e outras somatizações (Kolb, 2002). O
transtorno tem incidência maior no sexo feminino, estimando-se que 64% das
pessoas afetadas se recuperem em seis meses, algumas delas inclusive sem
tratamento (Kolb,2002), havendo, em contrapartida, os indivíduos afetados que,
mesmo sob tratamento adequado, não apresentam melhora do quadro (Zarate et al.,
2002; Licínio & Wong, 2007).
O largo espectro dos sintomas que caracterizam a depressão, afetando
desempenhos pessoais do seu portador, impondo uma infinidade de sintomas e
alterações comportamentais, representa um obstáculo a ser enfrentado pelos
investigadores que trabalham com o paradigma animal, não conseguindo reproduzir
em laboratório o complexo quadro clínico da depressão, ficando assim limitados à
reprodução e observação de aspectos comportamentais mensuráveis (Petit-
Demouliere et al., 2005).
Os fármacos de ação antidepressiva têm representado importantes
ferramentas do arsenal terapêutico para enfrentamento da depressão desde que, na
década de cinqüenta, foi observado que a reserpina, usada no tratamento de
hipertensão arterial, tendia a provocar sintomas depressivos (Iversen, 2007).
Pesquisas, então realizadas, demonstraram que tais sintomas estavam associados à
depleção dos estoques cerebrais de monoaminas, sendo posteriormente observado
a possibilidade de reversão dos sintomas depressivos pela administração de L-
DOPA, um precursor de catecolamina, estabelecendo-se então a associação entre
3
12
monoaminas cerebrais e depressão (Iversen, 2007). Seguiu-se a descoberta da
ação inibidora da monoaminaoxidase (MAO), enzima envolvida na degradação de
monoaminas no cérebro, apresentada pela isoniazida, substância usada para
tratamento da tuberculose e que mostrava peculiar efeito na elevação do humor
(Iversen, 2007). Mais adiante, a evidência de que medicamentos tricíclicos
(imipramina e amitriptilina) inibiam a captação de noradrenalina e de serotonina
reforçou o conceito de depressão como estado resultante da deficiência de
monoaminas (Iversen, 2007). Posteriormente foram desenvolvidos fármacos de ação
inibidora seletiva da recaptação de serotonina e os inibidores seletivos da
recaptação de noradrenalina que, possuindo ação mais seletiva e potente de
recaptação de serotonina e de noradrenalina respectivamente, mostraram melhor
perfil de tolerância em relação aos seus antecessores (Stahl, 2006). Persistem,
entretanto, os desafios representados pela demora na obtenção dos efeitos
terapêuticos (Mathew et al., 2008) e pela ausência de eficácia para considerável
número de pacientes Zarate et al., (2002).
Outra linha de pesquisa focada no desenvolvimento de estratégias
terapêuticas para a depressão surgiu a partir de evidências da relação existente
entre esse transtorno e perturbações do eixo hipotálamo-hipófise-adrenal (HPA)
(Licínio & Wong, 2007). Em testes pré-clínicos foi observado que o bloqueio dos
efeitos centrais do CRH, através do uso de substâncias antagonistas, apresentou
efeitos sugestivos de atividade ansiolítica e antidepressiva (Licínio & Wong, 2007).
O papel do estresse na etiopatogenia da depressão também tem sido objeto
de estudos na última década, associando o transtorno aos efeitos deletérios do
estresse na neuroplasticidade (Arantes-Gonçalves & Coelho, 2006). Por
neuroplasticidade entende-se a capacidade apresentada pela célula neuronal de se
4
13
transformar, adaptando sua estrutura e função em resposta a exigências internas do
organismo ou a demandas ambientais, podendo ocorrer tais transformações mesmo
em células maduras (Arteni & Alexandre Neto, 2004). Foi observado que os efeitos
deletérios do estresse poderiam ser revertidos pela ação de antidepressivos que, em
uso crônico, influenciam dois aspectos da neuroplasticidade: proliferação e
sobrevivência neuronal (Arantes-Gonçalves & Coelho, 2006).
1.2 - Fatores Neurotróficos e Depressão
Por fatores neurotróficos entendem-se, em última análise, as proteínas
reguladoras da formação de redes neuronais, destacando-se aqui a família das
neurotrofinas composta por quatro elementos: fator de crescimento neural (NGF),
fator de crescimento derivado do cérebro (BDNF), neurotrofina-3 e neurotrofina-4
(Castrén et al., 2007). Tais proteínas agem como mediadores de diferenciação
celular e modulam plasticidade e transmissão sináptica (Shatiel et al., 2007). Têm
origem endógena e lhes tem sido atribuído papel importante na sobrevivência,
manutenção e crescimento de neurônios centrais e periféricos (Kim et al, 2007). O
BDNF é o membro da família com maior expressão cerebral, sendo encontrado não
só no período de desenvolvimento, mas também no cérebro adulto, onde tem função
crítica na plasticidade sináptica e na formação de memórias (Gronli et al., 2006;
Bekinschtein et al., 2008). Estudos experimentais têm demonstrado resultados
consistentes com a hipótese que a menor expressão de BDNF, e possivelmente de
outros fatores de crescimento, seja fator associado à depressão e que, o aumento
dessa neurotrofina desempenha papel na ação de antidepressivos (Duman &
5
14
Monteggia, 2006). A diminuição dos níveis de BDNF observada experimentalmente,
na exposição ao estresse, pode ser considerada um indício do envolvimento dessa
neurotrofina na fisiopatologia dos transtornos de humor associados ao estresse
(Shirayama et al. 2002). A noção acerca do efeito deletério do estresse sobre o
sistema nervoso é anterior à descoberta das neurotrofinas e surgiu a partir de
estudos que demonstraram associação entre estresse e atrofia neuronal em
algumas estruturas cerebrais, notadamente no hipocampo (Duman & Monteggia,
2006), estrutura que tem sido implicada no desenvolvimento de transtornos de
humor uma vez que circuitos hipocampais controlam aprendizagem e memória, além
de exercer regulação do eixo HPA e manter conexões com amígdala e córtex pré-
frontal, regiões diretamente envolvidas com emoção e cognição, funções que estão
alteradas na depressão (Duman & Monteggia, 2006). Estudos experimentais têm
demonstrado aumento na concentração do BDNF a partir do uso de antidepressivos
inibidores da monoamina-oxidase (IMAO) e de eletroconvulsoterapia (ECT) apesar
de algumas classes de antidepressivos (os inibidores seletivos da recaptação de
serotonina e os inibidores seletivos da recaptação de serotonina e de noradrenalina)
terem mostrado resultados contraditórios (Duman & Monteggia, 2006). Algumas
evidências do papel das neurotrofinas na depressão, sobretudo naquela associada
ao estresse, podem ser consideradas:
1- O estresse crônico moderado está associado à menor expressão do BDNF no
hipocampo de ratos, comparados com controles não submetidos ao estresse (Gronli
et al., 2006);
2- Em dois modelos animais que avaliam o efeito antidepressivo de fármacos (teste
do nado forçado e paradigma do desamparo aprendido), a administração de BDNF
no hipocampo e no mesencéfalo mostrou resultado comparável ao efeito obtido com
6
15
tratamento crônico com antidepressivo. Os camundongos transgênicos que
expressam reduzidos níveis de BDNF no cérebro exibiram reduzida resposta a
antidepressivos em testes comportamentais (Shirayama et al., 2002; Saarelainen et
al., 2003; Sairanen et al.,2005). A infusão crônica de BDNF no mesencéfalo ou a
infusão aguda no giro denteado ou na área CA3 do hipocampo de roedores mostrou
melhorar o desempenho desses animais em testes comportamentais usados para
avaliar efeitos antidepressivos de fármacos (Shaltiel et al, 2007).
3- Tratamentos crônicos, mas não agudos, com antidepressivos elevam níveis do
RNAm que expressa o BDNF no hipocampo e córtex, enquanto
eletroconvulsoterapia (ECT) - o mais eficiente tratamento antidepressivo (UK ECT
Review Group, 2003), mesmo em tratamento agudo aumenta o referido RNAm
(Saaralainen et al., 2003; Mathew et al., 2008).
4- Níveis extra-celulares mais elevados de serotonina e norepinefrina seriam
necessários para ocorrência da proliferação de novas células na neurogênese
hipocampal, enquanto a sobrevivência desses novos neurônios estaria relacionada
com a sinalização do BDNF. Este processo levaria um tempo equivalente àquele
necessário para que tratamentos com antidepressivos iniciem os efeitos clínicos
esperados (Sairanen et al., 2005).
5- Em humanos, estudos de imagem têm demonstrado redução em córtex pré-
frontal, estriado e hipocampo, além de aumento ventricular em portadores de
transtornos do humor comparados a controles sadios (Shaltiel et al., 2007). Pelo
menos parte desse efeito pode ser revertido por fármacos antidepressivos (Fuchs et
al., 2004; Castrén et al., 2007).
6- Os níveis de BDNF se mostraram reduzidos no soro e no plasma de pacientes
deprimidos não tratados, comparados com controles saudáveis (Karege et al., 2003).
7
16
Outros estudos encontraram níveis de BDNF mais baixos no plasma de indivíduos
deprimidos que haviam apresentado recente tentativa de suicídio (Lee et al, 2006;
Kim et al., 2006). Também foram encontrados níveis mais baixos de BDNF no
sangue total de mulheres geneticamente predisposta e submetidas a recente evento
estressante (Trajkovska et al., 2008).
O efeito primário das neurotrofinas na sinalização celular seria a ativação de
um receptor tirosina-cinase da família Trk (Arteni & Alexandre Neto, 2004). Assim, o
conjunto de moléculas estabeleceria uma cascata na qual, a partir do momento em
que cada um dos fatores aumenta sua expressão, passaria a fortalecer a expressão
do fator subseqüente. A cascata seria a seguinte: AMPc – MAPcinase – CREB –
BDNF, e teria papel unificador em mecanismos como a reestruturação dendrítica,
aumento da neurogênese hipocampal e aumento da sobrevivência das células do
sistema nervoso central (Arantes-Gonçalves & Coelho, 2005). Entre os elementos da
cascata, o BDNF é considerado o que tem efeito antidepressivo mais potente
(Arantes-Gonçalves & Coelho, 2005), mas, todas essas moléculas já foram
implicadas na fisiopatologia da depressão havendo evidências de que o aumento da
expressão das mesmas seja necessário para a ação terapêutica dos
antidepressivos, o que torna as referidas moléculas alvo terapêutico de potencial
interesse na síntese de novos fármacos antidepressivos (Shaltier et al., 2007).
A pesquisa atual tem também associado a depressão a alterações
estruturais, relacionando o transtorno com deficiências na neuroplasticidade e na
resiliência celular cerebrais, condições que foram observadas em pacientes com
transtorno de humor severo ou recorrente e que, conforme sugerido por recentes
evidências, poderiam estar associadas a alterações na atividade do sistema
glutamatérgico (Maeng & Zarate, 2007).
8
17
1.3 – Glutamato e Receptores NMDA
O glutamato é o principal neurotransmissor excitatório do sistema
nervoso de vertebrados e tem ações na excitabilidade e na plasticidade sináptica em
muitos circuitos cerebrais, incluindo vias límbicas envolvidas na depressão (Witkin et
al., 2007). Pode também ter ação neurotóxica, estando assim implicado em
patologias neurológicas de natureza aguda, como isquemia cerebral e epilepsia, ou
processos neuropsiquiátricos degenerativos, de evolução crônica, como esclerose
lateral amiotrófica, coréia de Huntington, mal de Parkinson e doença de Alzheimer
(Meldrum, 2000; Zarate et al., 2002).
A excitotoxicidade é a principal hipótese atual para explicar o mecanismo
neuropatológico que mediaria a via final comum de vários transtornos
neuropsiquiátricos de curso degenerativo (Stahl, 2006). Sob tal circunstância, o
processo normal de neurotransmissão excitatória passaria a ocorrer de modo
desenfreado levando à morte neuronal, o que se daria através da abertura excessiva
dos canais de cálcio e o conseqüente aumento da concentração do cálcio
intracelular, condição que altera a excitabilidade da membrana e promove ativação
excessiva de enzimas intracelulares capazes de disparar uma cascata química
destrutiva (Stahl, 2006).
O interesse pelo papel do sistema glutamatérgico no mecanismo
fisiopatológico dos transtornos de humor cresceu a partir de resultados de estudos
de neuroimagem realizados em indivíduos com transtorno bipolar e com depressão
maior. Tais estudos revelaram alterações morfométricas sugestivas de perda ou de
atrofia celular e assim estimularam pesquisas envolvendo vias implicadas na
neurodegeneração (Zarate et al., 2002).
9
18
Para exercer sua ação, em níveis pré e pós-sináptico, o glutamato depende
de receptores específicos que podem ser classificados, por suas características
estruturais, em ionotrópicos e metabotrópicos. Estes últimos, ligados à Proteína-G,
exercem sua ação via segundo mensageiro; os receptores ionotrópicos apresentam
três diferentes subgrupos: NMDA (N-metil-D-aspartato), AMPA (ácido alfa-amino-3-
hidroxi-5-metil-isoxazol-4-propiônico) e KA (cainato) (Maeng & Zarate, 2007). Os
receptores AMPA são responsáveis pela imediata resposta ao glutamato que chega
à fenda sináptica a partir da sua liberação do neurônio pré-sináptico. Tal resposta
consiste na despolarização da membrana neuronal, permitindo a entrada do sódio
na célula, seguida da liberação do magnésio existente no canal do receptor NMDA o
que, em última análise, permite a entrada do cálcio na célula (Pliszka, 2004).
Fig 1: Visão esquemática dos quatro tipos de receptores para o glutamato (Dingledine & McBain,
1999)
10
19
Algumas condições (como anoxia e hipoglicemia) perturbam o mecanismo
celular que mantém o glutamato em seu compartimento pré-sináp tico ocorrendo
Algumas condições (como anoxia e hipoglicemia) perturbam o mecanismo celular
que mantém o glutamato em seu compartimento pré-sináptico ocorrendo assim uma
liberação maciça desse neurotransmissor e a seqüência de eventos iniciados nos
receptores AMPA e NMDA e, finalmente, nos receptores metabotrópicos que
exercem sua ação via segundo mensageiro (Zarate et al., 2002). Em estágios
precoces do desenvolvimento, as sinapses demonstram predomínio dos receptores
NMDA, enquanto, em adultos, cerca de 70% das sinapses apresentam tais
receptores em coexistência com receptores AMPA, de cuja ação dependem para
exercer seu funcionamento (Zarate et al, 2002).
Os receptores NMDA são capazes de mediar a neurotransmissão de modo
lento e esta possibilidade de se estender por período prolongado lhes confere
importante papel no desenvolvimento de sinapses e na plasticidade (Sadock &
Sadock, 2005). Na composição do seu canal são conhecidas três subunidades:
NR1, NR2 (NR2A a NR2D) e NR3 (NR3A e NR3B) (Maeng & Zarate, 2007). Os
sítios de ligação para o glutamato foram encontrados na subunidade NR2 enquanto
na subunidade NR1 existem os sítios de ligação para o coagonista glicina. No
interior do canal foram identificados dois sítios: o sítio “s” e o sítio da fenciclidina
(PCP) (Maeng &Zarate, 2007).
Substâncias antagonistas de receptores NMDA têm mostrado ser eficazes
nos modelos que predizem a atividade de antidepressivos (Berman et al, 2000). Por
sua vez, tem sido observado que a administração crônica de antidepressivos é
capaz de afetar esses receptores, que mostraram adaptações em 16, num total de
17 tratamentos com antidepressivos testados (Berman et al, 2000). Tais adaptações
11
20
seriam assim importante preditor de atividade antidepressiva (Berman et al., 2000).
O mecanismo da transcrição para esse fenômeno é sugerido pela evidência de que
a administração repetida de antidepressivo regionalmente altera a expressão de
RNAm que codifica múltiplas subunidades de receptores NMDA (Berman et al.,
2000). Estudos preliminares feitos com baixas doses de amantadina, um antagonista
NMDA de baixa potência, sugeriram a redução de sintomas depressivos (Berman et
al., 2000) enquanto observações mais recentes com a memantina, outro antagonista
de receptores NMDA, não constataram eficácia antidepressiva da substância (Zarate
et al., 2006a). A memantina é substância utilizada no tratamento de patologias
neurológicas de natureza degenerativa, como a doença de Alzheimer, onde
considera-se que seus efeitos benéficos na cognição ocorram através da redução na
excessiva atividade dos receptores NMDA, contribuindo assim no reajustamento do
equilíbrio entre inibição e excitação (Johnson & Kotermanski, 2007). Mecanismo
semelhante é encontrado em uma outra substância antagonista de receptores
NMDA, a cetamina, utilizada como anestésico. Apesar da similaridade no
mecanismo de ação, essas duas substâncias apresentam importantes diferenças
clínicas sendo a memantina melhor tolerada. A diversidade talvez decorra de
diferenças farmacocinéticas (a memantina apresenta eliminação mais lenta) ou por
provocarem diferentes alterações químicas nos receptores que inibem, ou ainda, por
sua diferente maneira de se ligarem aos receptores: a memantina liga-se a sítios
superficiais e profundos enquanto a cetamina liga-se ao sítio da fenciclidina
(Johnson & Kotermanski, 2007).
Para Witkin et al., (2007) os dados disponíveis na literatura sugerem que, no
transtorno depressivo, a neurotransmissão excitatória/inibitória se mostre
desregulada o que, por conseqüência, confere às substâncias com ação na
12
21
ativação, potenciação ou bloqueio de receptores glutamatérgicos um possível papel
inovador no tratamento dos transtornos do humor.
1.4 – Cetamina
A escolha do cloridrato de cetamina para o presente estudo foi feita em
decorrência de ser a substância um antagonista potente de receptores NMDA
(Berman et al., 2000). A cetamina é usada como anestésico, sendo útil em
procedimentos de pediatria e de pacientes com risco de hipertensão e
broncoespasmo. Tem efeitos colaterais que limitam seu uso rotineiro. Rapidamente
produz estado hipnótico distinto daquele produzido por outros anestésicos (Ferreira,
2004). Pacientes têm profunda analgesia, não respondem a comandos, têm
amnésia, mas podem permanecer de olhos abertos, movimentar os membros
involuntariamente e, frequentemente, ter respiração espontânea. Esse estado
cataléptico tem sido chamado de anestesia dissociativa. A substância é geralmente
administrada por via endovenosa, mas pode ser usada por via intramuscular, oral e
retal. Pode aumentar o fluxo sanguíneo cerebral e a pressão intracraniana. É
possível a ocorrência de delirium com alucinações, ilusões e sonhos vívidos, o que
pode representar uma complicação de difícil manejo num pós-operatório (Ferreira,
2004). Algumas pessoas fazem uso indevido da cetamina, como droga recreativa, às
vezes chamada “special K” (Stahl, 2000).
O mecanismo primário de ação da cetamina dá-se pelo bloqueio dos
receptores NMDA por ligação ao sítio da fenciclidina (PCP), localizado no interior do
canal iônico (Maeng & Zarate, 2007). Isto vale dizer que há inibição da transmissão
excitatória por antagonismo glutamatérgico, resultando em propriedades
farmacológicas responsáveis por sedação, hipnose e analgesia (Ferreira, 2004). A
13
22
cetamina tem apresentado efeito antidepressivo mais significativo, quando
comparada com a memantina (Maeng & Zarate, 2007), substância também
antagonista de receptores NMDA e melhor tolerada clinicamente, possivelmente por
apresentar maior afinidade pelo receptor, além de ter ação mais lenta no
bloqueio/desbloqueio do canal (Maeng & Zarate, 2007). A cetamina também interage
com receptores opióides, com receptores monoaminérgicos e muscarínicos e com
canais de cálcio sensíveis à voltagem. De modo diferente em relação a outras
substâncias anestésicas, a cetamina não interage com receptores GABA (Hirota &
Lambert, 1996).
Para a finalidade a que se propôs esse estudo, o cloridrato de cetamina foi
usado em tratamento agudo e crônico, sendo realizados dois testes
comportamentais avaliando-se tempo de imobilidade no nado forçado e atividade
locomotora e, posteriormente, dosado o BDNF hipocampal em ratos.
1.5 – Modelos Animais de Depressão
“Modelo animal de transtorno psiquiátrico pode ser definido operacionalmente
como estados comportamentais incomuns em animais que são especificamente
revertidos pelo mesmo tratamento farmacológico que reverte os sintomas do
transtorno humano“ (Petty & Sherman, 1990).
Os chamados modelos animais de depressão, embora carecendo da
condição humana, são considerados válidos a partir do preenchimento de alguns
critérios que devem se aproximar de condições humanas: (a) semelhança no
sintoma apresentado (validade de face); (b) apresentar melhora com tratamentos
eficazes em humanos e não apresentar resposta sob tratamentos ineficazes em
14
23
humanos (validade preditiva); (c) a condição deve ser provocada por eventos
capazes de provocar a condição em humanos (validade etiológica) e (d)
envolvimento de processos neuroquímicos similares (validade de construto)
(Anisman & Matherson, 2005). Assim os modelos animais de depressão terminam
por avaliar apenas alguns sintomas de depressão, como a anedonia que, juntamente
com o humor depressivo, apresenta-se na quase totalidade dos sub-tipos clínicos da
depressão (Anisman & Matherson, 2005).
No presente estudo foram utilizados o teste do nado forçado e o paradigma
do estresse crônico moderado.
1.5.1 – Teste do Nado Forçado (Forced Swiming Test - FST)
Esse teste foi desenvolvido por Porsolt e colaboradores (1978), na American
National Standard, com ratos e, posteriormente, com camundongos. O FST tem
sido, juntamente com o Teste de Suspensão da Cauda e o Teste do Desamparo
Aprendido, a ferramenta mais utilizada para avaliar atividade antidepressiva de
fármacos (Duman & Monteggia, 2006). O modelo é de uso difundido nos laboratórios
por ser de fácil utilização e apresentar confiabilidade no resultado e se baseia na
observação de que ratos colocados num cilindro com água, após tentativas iniciais
de fuga, rapidamente mostram imobilidade, interpretada como prejuízo do
comportamento esperado de tentar fugir ou como desenvolvimento de
comportamento passivo capaz de afastar o animal de formas ativas de
enfrentamento da situação estressora. Se um fármaco antidepressivo for
administrado entre as duas exposições, o animal apresentará comportamento mais
15
24
ativo, persistindo na tentativa de escapar por tempo mais prolongado, quando
comparado a animal que recebeu solução inócua (Porsolt et al., 1978; Cryan et al.,
2002). Este teste requer dois dias de procedimentos. O rato é colocado em um
cilindro com água a 23ºC, em nível suficiente para que o animal não consiga apoiar-
se no fundo. No primeiro dia (treinamento) os ratos são forçados a nadar durante 15
minutos. Vinte e quatro horas após o treinamento, cada animal é novamente posto
no cilindro com água e forçado a nadar, agora por 5 minutos, durante os quais se
avaliam parâmetros de imobilidade, aqui se considerando imobilidade total e/ou
movimentos para manter a cabeça fora da água sem intenção de escapar (Porsolt et
al., 1978).
Para avaliar se a redução da imobilidade deveria ser interpretada como um
comportamento relacionado com efeito antidepressivo da substância testada ou a
um efeito estimulante da atividade locomotora, tal como ocorre com uso de
psicoestimulantes (Hunt et al., 2006), foi também realizado o teste do Campo Aberto.
Embora seja ainda de difícil definição, o termo “atividade exploratória” é amplamente
utilizado em pesquisas relacionadas ao comportamento animal. Serão considerados
os números de “crossing” para avaliação da atividade locomotora e os números de
“rearing” para avaliação da atividade exploratória (Vianna et al., 2000).
1.5.2. – Estresse Crônico Moderado (Chronic Mild Stress - CMS)
Modelo desenvolvido por Willner, a partir de estudos iniciais de Katz e
colaboradores (Willner, 1997), no qual ratos são submetidos, por algumas semanas,
a estressores de intensidade moderada e natureza variável, uma vez que a
16
25
presença de um mesmo estressor pode levar à adaptação. A medida comumente
usada para avaliar os efeitos é a diminuição no consumo de solução açucarada. Tal
comportamento é considerado significativo de anedonia, ou seja, de incapacidade
para experimentar prazer de qualquer natureza, que constitui achado clínico
primordial nas formas melancólicas da depressão (Willner, 1997). É um modelo
considerado de boa validade de predição, de face e de construto por induzir redução
de resposta frente à recompensa (Willner, 1997). No presente trabalho os ratos
foram submetidos a estressores diversos (descritos no artigo III), por um período de
40 dias, sendo posteriormente avaliados os resultados dos tratamentos agudo e
crônico com cetamina através dos parâmetros: aceitação de alimento açucarado,
peso corporal, níveis de cortisol e de hormônio adrenocorticotrófico, atividade
locomotora e dosagem de BDNF no hipocampo.
2 – OBJETIVOS
2.1 – Objetivo Geral
o Avaliar os efeitos da administração de cetamina nos níveis hipocampais de
BDNF e no comportamento de ratos submetidos ao teste do nado forçado e
ao paradigma do estresse crônico moderado.
17
26
2.2 - Objetivos Específicos
o Avaliar os efeitos comportamentais promovidos pela administração aguda e
crônica de cetamina, em doses de 5, 10 e 15 mg/kg, em ratos submetidos ao
teste do nado forçado e ao campo aberto.
o Verificar os níveis de BDNF no hipocampo de ratos tratados, aguda e
cronicamente, com cetamina nas doses de 5, 10 e 15 mg/kg.
o Avaliar os efeitos comportamentais promovidos pela administração aguda e
crônica de cetamina, na dose de 15 mg/kg, em ratos submetidos ao
paradigma do estresse crônico moderado.
o Verificar os níveis de BDNF no hipocampo de ratos submetidos ao estresse
crônico moderado e posteriormente tratados, aguda e cronicamente, com
cetamina na dose de 15 mg/kg.
18
27
3. ARTIGOS
Os experimentos realizados tiveram seus respectivos projetos
previamente avaliados e aprovados pelo Comitê de Ética em Pesquisa da UNESC,
onde receberam os seguintes números de protocolo:
(I) Estudo dos efeitos comportamentais da cetamina em ratos submetidos ao teste
do nado forçado. Protocolo: 543/2007.
(II) Avaliação dos efeitos comportamentais do tratamento crônico com cetamina em
ratos submetidos ao teste do nado forçado. Protocolo: 699/2007.
(III) Avaliação do tratamento agudo e crônico com cetamina em ratos submetidos ao
paradigma do estresse crônico moderado. Protocolo: 77/2008.
19
28
Acute administration of ketamine induces antidepressant-like effects in the
forced swimming test and increases BDNF levels in the rat hippocampus (.pdf)
Chronic Administration of Ketamine Elicits Antidepressant-Like Effects in Rats
without Affecting Hippocampal Brain-Derived Neurotrophic Factor Protein
Levels (.pdf)
Ketamine Treatment Reverses Behavioral and Physiological Alterations
Induced by Chronic Mild Stress in Rats (.pdf)
1
1
Os artigos citados estão disponibilizados no final deste trabalho.
20
29
4. DISCUSSÃO
O presente trabalho avaliou inicialmente o efeito do tratamento agudo com
cetamina em ratos, através do teste do nado forçado, demonstrando que uma única
injeção de cetamina (10 e 15 mg/kg) diminuiu o tempo de imobilidade de ratos, no
referido teste comportamental, sem alterar a atividade locomotora espontânea, esta
última avaliada no teste do campo aberto. O resultado está de acordo com estudos
pré-clínicos, como o realizado por Chaturvedi et al. (2001), que demonstrou que a
cetamina conseguiu reverter a imobilidade observada em camundongos submetidos
ao mesmo teste do nado forçado. Em outro estudo, camundongos submetidos ao
teste de suspensão da cauda também apresentaram diminuição do tempo de
imobilidade quando sob efeito da cetamina (Yilmaz et al., 2002; Kos et al., 2006). A
cetamina também foi avaliada clinicamente em estudos como o realizado por
Berman et al. (2000) e replicado por Zarate et al. (2006c), cujos resultados
demonstraram rápida e robusta ação antidepressiva da substância. Esse último
estudo foi ainda seguido de observação dos pacientes que, após duas semanas sem
uso da cetamina, voltaram a receber infusão intravenosa da substância (0,5 mg/kg)
ou salina e, avaliados posteriormente, apresentaram melhores índices de resposta
para a Escala de Avaliação de Hamilton, a partir de 110 minutos após injeção, por
até uma semana depois (Maeng & Zarate, 2007).
Substâncias de ação antagonista de receptores NMDA, como a cetamina,
têm demonstrado em estudos clínicos proporcionar rápida ação antidepressiva
(Berman et al., 2000; Zarate et al., 2006c; Liebrenz et al., 2007). Também no estudo
experimental realizado por Yilmaz et al. (2002) foi observado que uma única injeção
da cetamina, em dose anestésica (160 mg/kg), induziu efeito do tipo antidepressivo
21
30
em ratos submetidos ao teste do nado forçado, no 3º, 7º ou no 10º dia após o
tratamento.
Os dados resultantes do tratamento agudo aqui realizado e referido
demonstraram ainda que o uso da cetamina promoveu aumento significativo dos
níveis de BDNF no hipocampo dos ratos que receberam a substância, sendo que tal
efeito não foi observado nos animais que receberam salina ou imipramina. O
aumento dos níveis desse fator neurotrófico tem sido associado a efeito
antidepressivo e alguns estudos sugerem que maior sinalização de BDNF e de seu
receptor TrkB seria condição necessária para que ocorresse ação antidepressiva
(Castrén et al., 2007). O aumento dos níveis do RNAm do BDNF tem sido observado
no uso crônico dos fármacos antidepressivos conhecidos mas ECT, de reconhecida
ação antidepressiva, em uso agudo, apresenta o mesmo resultado (Saarelainen et
al., (2003). Assim, deve ser considerada a possibilidade de a cetamina apresentar
rápida ação antidepressiva por produzir, de forma mais direta, alguns efeitos
resultantes de adaptações, como: redução funcional dos receptores NMDA para o
glutamato, favorecimento de ação rápida dos receptores AMPA e rápida indução do
fator de transcrição CREB, com reflexo nos níveis de BDNF (Krystal, 2007) e os
conseqüentes efeitos comportamentais característicos da ação de antidepressivos.
Os resultados obtidos no presente trabalho, em consonância com dados da
literatura, mostram que o tratamento agudo com a cetamina apresentou efeitos do
tipo antidepressivo, caracterizados por diminuição da imobilidade dos animais
submetidos ao FST e aumento dos níveis de BDNF no hipocampo de ratos.
Este trabalho também avaliou o efeito do tratamento crônico (14 dias) com
cetamina, em ratos igualmente submetidos aos testes comportamentais realizados
no tratamento agudo, e os resultados obtidos demonstraram que cetamina e
22
31
imipramina diminuíram o tempo de imobilidade dos ratos no teste do nado forçado,
em todas as doses testadas. A atividade locomotora foi também avaliada pelo teste
do campo aberto sendo demonstrado que a substância em estudo, tanto quanto a
imipramina, não alterou a atividade locomotora espontânea. Para esse experimento
foi ainda realizada dosagem dos níveis de BDNF no hipocampo dos animais
tratados, não se observando alterações significativas dos níveis da proteína referida,
resultado válido para cetamina e imipramina, em todas as doses testadas.
Neste mesmo experimento, o tratamento com imipramina (14 dias) resultou
em diminuição do tempo de imobilidade observada no FST, em todas as doses
testadas, inclusive na menor dose utilizada, comprovadamente ineficaz no
tratamento agudo. Também a cetamina, em uso crônico, apresentou redução do
tempo de imobilidade observada no FST, em todas as doses testadas, inclusive
naquelas ineficazes no tratamento agudo (5mg/kg), sugerindo eficácia em doses
baixas.
Outro aspecto importante observado refere-se à ausência de sinais de
tolerância observada na utilização das dosagens mais altas utilizadas (15m/kg) uma
vez que há registros de utilização da substância como droga de abuso (ver
introdução).
Detke et al., (1995), utilizando o teste do nado forçado, observaram que
drogas de efeito noradrenérgico (desipramina, maprotilina) aumentaram o
comportamento de elevação dos animais testados, enquanto antidepressivos de
ação serotonérgica (fluoxetina, sertralina, paroxetina) aumentaram o tempo de nado.
O presente experimento demonstrou que a cetamina, assim como a imipramina,
aumentou o tempo de elevação (climbing) e o tempo de natação dos animais
23
32
sugerindo a existência de um diferente mecanismo de ação ou a combinação de
diferentes mecanismos, o que certamente requer novos estudos.
Em relação ao BDNF, o efeito antidepressivo crônico tem sido largamente
associado com a elevação dos seus níveis. O presente trabalho, que registrou
elevação significativa dos níveis dessa proteína no hipocampo dos animais tratados
com cetamina, de forma aguda, observou ausência de alterações significativas em
seus valores no tratamento crônico. O resultado obtido permite pensar se tal
aumento não poderia ocorrer no início do uso da cetamina e não ser detectado em
tempo mais tardio, em função de possível mecanismo adaptativo.
Dúvidas, portanto, permanecem sobre o mecanismo de ação da substância
testada. Tem sido proposto que a ação neuroprotetora seja decorrência da redução
à transmissão excessiva de cálcio, assim como de um aumento na expressão de
fatores neurotróficos (Sanacora et al., 2003). Também há que se cogitar sobre
participação dos receptores AMPA, que apresentam sugestiva coexistência com
receptores NMDA em sinapses maduras. Estudos experimentais têm sugerido que
antagonistas de receptores glutamatérgicos do tipo NMDA mostram efeito
antidepressivo em modelo animal e eficácia semelhante aos antidepressivos
tricíclicos em ratos e em camundongos (Zarate et al., 2002), assim, tais substâncias
antagonistas poderiam ter efeito sinérgico com antidepressivos tradicionais o que as
tornaria possíveis agentes para terapêutica combinada em casos de depressão
resistente (Zarate et al., 2002)
Finalizando os experimentos do presente trabalho, a cetamina foi utilizada em
tratamento agudo e crônico, em ratos submetidos a estresse crônico variado.
Vários estudos têm demonstrado que exposição a situações estressoras pode
influenciar o comportamento alimentar em ratos e que a exposição a estresse
24
33
crônico pode alterar inclusive o peso corporal desses animais (Gamaro et al., 2003).
A condição de ameaça instalada e a necessidade de retomada do equilíbrio resultam
em maior estimulação do eixo hipotálamo-pituitária-adrenal (HPA) e a conseqüente
secreção de glicocorticóides que funciona, a um só tempo, como resposta ao
estresse e como mediador das mudanças fisiopatológicas doravante passíveis de
ocorrer (Mello et al., 2003).
Neste estudo, após 40 dias de exposição a estressores variados, evitando-se
assim possível adaptação dos animais, foi observada ocorrência de redução da
ingestão de alimentos açucarados e do peso corporal e aumento do peso da
glândula adrenal e dos níveis de cortisol e do hormônio corticotrópico (ACTH).
O tratamento agudo com cetamina conseguiu reverter a redução do peso
corporal, mas não alterou a ingestão de alimentos doces que havia sido reduzida
pelo estresse. Por sua vez, a administração crônica de cetamina foi capaz de
aumentar a ingestão de alimentos doces também no grupo de animais controle.
Dados da literatura dão conta que perda de peso e menor ingestão de alimentos
doces podem ser fenômenos dissociados, havendo inclusive evidências de
experimentos em que a redução na ingestão de alimentos foi menor em animais que
perderam mais peso (Wilner,1997). Assim, o aumento da ingestão de alimentos
doces observado nos animais não submetidos ao CMS, e tratados com repetidas
doses de cetamina, poderia estar relacionado a um aumento indiscriminado da
ingestão de alimentos, que a literatura refere como uma possível combinação de
ações centrais e viscerais exercidas por antagonistas de receptores NMDA (Burns &
Ritter, 1998; Treece et al., 2000; Jahng & Houpt, 2001). Burns & Ritter (1998)
mostraram que a inibição de neurônio aferente visceral, responsável pela condução
da saciedade ao sistema nervoso central, em ratos tratados com MK801, resultou
25
34
em bloqueio no aumento da ingestão de alimentos. Posteriormente, Treece et al.
(2000) demonstraram que lesão vagal, em ratos tratados com MK801, resultou em
consumo de alimentos doces em quantidade muito próxima àquela consumida pelos
animais que receberam salina. Assim, não se pode afastar a hipótese que a
reversão do comportamento de anedonia em animais submetidos ao CMS,
observada com o tratamento por cetamina, seja devida a uma ação direta da droga
sobre a ingestão de alimentos. O modelo, entretanto, está focado na observação da
redução do comportamento hedônico manifestada pelos animais submetidos ao
estresse e a redução no consumo do alimento doce observada no modelo, que pode
ser duradoura e revertida pela ação de fármacos antidepressivos, é interpretada
como sinal de anedonia (Wilner, 1997).
O estudo mostrou ainda que os animais submetidos ao estresse crônico
apresentaram aumento do peso da adrenal, além de elevação dos níveis de cortisol
e do ACTH, resultado compatível com dados da literatura sobre exposição de
animais ao estresse crônico moderado e sinais correlatos de maior atividade do eixo
HPA, incluindo hipertrofia adrenal e hipersecreção de hormônios corticosteróides
(Wilner, 1997; Harro et al., 2001). Conforme a validade preditiva do modelo, tais
alterações devem ser revertidas pelo uso de antidepressivos, resultado compatível
com aquele aqui observado nos tratamentos agudo e crônico com a cetamina.
Não foram observadas alterações na atividade locomotora, avaliada pelo teste
do campo aberto, resultado válido tanto para o tratamento agudo quanto para o
crônico. Os níveis de BDNF no hipocampo também não mostraram alterações
dependentes do estresse. Tampouco foram observadas alterações nos níveis da
proteína, após tratamentos agudo e crônico com a cetamina. Tais dados estão de
acordo com a literatura: Gronli et al. (2006) demonstraram que ratos submetidos ao
26
35
CMS por 5 semanas apresentaram redução da expressão do BDNF no giro
denteado, entretanto, tal alteração não foi observada no hipocampo.
Os efeitos clinico-comportamentais de outros antagonistas de receptores
NMDA também despertam interesse como possíveis agentes terapêuticos: a
memantina – de menor especificidade, mostra-se melhor tolerada clinicamente mas,
seu efeito antidepressivo não foi comprovado em ensaio de 8 semanas levado a
efeito por Zarate et al. (2006a), entretanto, os próprios autores, posteriomente,
questionaram se as doses utilizadas não teriam sido baixas (Zarate et al., 2006b).
Outro antagonista de receptores NMDA, a fenciclidina (PCP) – este de grande
especificidade, apresenta forte potencial de ação psicotomimética (Stahl, 2006),
dificultando a avaliação de outros possíveis efeitos.
O presente trabalho, utilizando dois modelos animais de depressão, avaliou a
cetamina, em tratamento agudo e crônico, inicialmente através do teste do nado
forçado e, posteriormente, através do paradigma do estresse crônico moderado,
obtendo resultados compatíveis com a literatura acerca dos efeitos antidepressivos
da substância testada. Como antagonista não competitivo de receptores NMDA para
o glutamato, a cetamina, também aqui, apresentou promissores efeitos do tipo
antidepressivos, a saber:
i) diminuiu o tempo de imobilidade no FST, nas doses de 10 e 15 mg/kg no
tratamento agudo e, em todas as doses testadas, no tratamento crônico;
ii) não induziu aumento da atividade locomotora, avaliada no teste do campo
aberto, nas doses testadas, nos 3 diferentes experimentos;
iii) o tratamento agudo com cetamina (15 mg/kg) mostrou significativo
aumento dos níveis de BDNF no hipocampo dos animais tratados. Não houve
27
36
diferença no tratamento crônico. Os animais submetidos ao paradigma do estresse
crônico moderado também não apresentaram alterações dos níveis de BDNF;
iv) no paradigma do CMS, o tratamento com cetamina (agudo e crônico)
mostrou-se capaz de reverter: o aumento do peso da adrenal; o aumento dos níveis
de corticosterona e de ACTH, e a diminuição do peso corporal, induzidos pelo
estresse. O tratamento crônico com a cetamina (mas não o agudo) foi capaz de
reverter a diminuição da ingestão de alimentos doces, observada no modelo.
O conjunto dos resultados obtidos no presente trabalho mostra-se consistente
com relatos prévios sobre a hipótese da disfunção de receptores glutamatérgicos
NMDA na depressão e os efeitos de seus antagonistas como possível via alternativa
de abordagem terapêutica devendo entretanto ser considerado que, embora a
cetamina seja relativamente seletiva para receptores NMDA, a possibilidade de os
presentes resultados serem mediados por interações com outros receptores não
pode ser totalmente descartada, requerendo assim novos estudos.
Quanto ao possível uso clínico da cetamina como agente antidepressivo,
alguns desafios deverão ser previamente suplantados. Alguns, já elencados por
Mathew et al., (2008), referem-se à necessidade de estudos acerca de dosagens e
dos resultados de seu uso em associações com outros fármacos. Também se faz
necessária uma melhor compreensão de possíveis efeitos colaterais sobre a
cognição e a senso-percepção, assim como das eventuais conseqüências do seu
uso repetido, já que os dados disponíveis sugerem efeito rápido.
28
37
REFERÊNCIAS
ARTENI NS & ALEXANDRE NETO C. Neuroplasticidade. In: Bases Biológicas dos
Transtornos Psiquiátricos (Kapcizinski F, Quevedo J, Isquierdo I & col.). 2ª ed.,
Artmed, Porto Alegre, pp 71,77-78. 2004.
ANISMAN H; MATHERSON K. Stress, depression, and anhedonia: caveats
concerning animal models. Neuroscience and Biobehavioral Reviews 29: 525-
546. 2005.
ARANTES-GONÇALVES F; COELHO R. Depressão e Tratamento – apoptose,
neuroplasticidade e antidepressivos. Acta Medica Portuguesa 19: 9-20.2006.
BEKINSCHTEIN P; CAMMAROTA M; KATCHE C; SLIPCZUK L; ROSSATO J I;
GOLDIN A; IZQUIERDO I; MEDINA J H. BDNF is essencial to promote persistence
of long-term memory storage. The National Academy of Science 105(07): 2711-
2716. 2008.
BERMAN RM; CAPPIELLO A; ANAND A; OREN DA; HENINGER GR; CHARNEY
DS; KRYSTAL JH. Antidepressant effects of ketamine in depressed patient. Society
of Biological Psychiatry 47: 351-354. 2000.
BURNS GA; RITTER RC. Visceral afferent participation in deleyed satiation following
NMDA receptor blockade. Physiology & Behavior 65(2): 361-6. 1998.
29
38
CASTRÉN E; VÕIKAR V; RANTAMÄKI T. Role of neurotophic factors in depression.
Current Opinion in Pharmacology 7: 18-21. 2007.
CHATURVEDI HK; BAPNA JS; CHANDRA D. Effect of fluvoxamine and N-methyl-D-
aspartate receptor antagonists on shock-induced depression in mice. Indian Journal
Physiology Pharmacology 45 (2): 199-207. 2001.
CRYAN JF; MARKOU A; LUCKI I. Assessing antidepressant activity in rodents:
recent developments and future needs. Trends in Pharmacological Sciences
23(5): 338-245. 2002.
DETKE MJ; RICKELS M; LUCKI I. Active behaviors in the rat foeced swimming test
differencially produced by serotoninergic and noradrenergic antidepressant.
Psychopharmacology 121(1): 66-72.1995.
DINGLEDINE R; McBAIN CJ. Glutamate and Aspartate. In: Basic Neurochemistry
(Siegel GJ, Albers RW, Brady ST, Price DL, eds). Elsevier AP,
DUMAN RS; MONTEGGIA LM. A neurotrophic model for stress-related mood
disorders. Biological Psychiatry 59: 1116-1127. 2006. New York, pp276.2006.
FERREIRA MBC. Anestésicos Gerais. In: Farmacologia Clínica – Fundamentos
da Terapêutica Racional (Fuchs FD; Wannmacher L, Ferreira MBC, eds).
Guanabara-Koogan, Rio de Janeiro, pp. 157-158, 182. 2004.
30
39
FLECK MPA & SHANSIS F. Depressão. In: Bases Biológicas dos Transtornos
Psiquiátricos (Kapcizinski F, Quevedo J, Isquierdo I & col.). 2ª ed., Artmed, Porto
Alegre, pp 265. 2004.
FUCHS E; CZÉH B; KOLI MHP; MICHAELIS T; LUCASSEN PJ. Alterations of
neuroplasticity in depression: the hippocampus and beyond. European Neuropsyco
pharmacology 14: S481- 481-S-490. 2004.
GAMARO GD; MANOLI LP; TORRES ILS;SILVEIRA R; DALMAZ C. Effects of
chronic variate stress on feeding behavior and on monoamine levels in different rat
brain structures. Neurochemistry International 42: 107-114. 2003.
GOODWIN FK; JAMISON KR. Manic-Depressive Ilness. Oxford University Press.
New York, pp 417
GRONLI J; BRAMHAM C; MURISON R; KANHEMA T; FISKE E; BJORVATN B;
URSIN R; PORTAS CM. Chronic mild stress inhibits BDNF protein expression and
CREB activation in the dentate but not in the hippocampus proper. Pharmacology,
Biochemistry and Behavior 85: 842-849. 2006.
HARRO J; TÕNISSAAR M; ELLER M; KASK A; ORELAND L. Chronic variable stress
and partial 5-HT denervation by parachloroamphetamine treatment in the rat: effects
on behavior and monoamine neurochemistry. Brain Research 899:227-239. 2001.
31
40
HIROTA K; LAMBERT DG. Ketamine: its mechanism(s) of action and unusual
clinical uses. British Journal of Anaesthesia 77(4):441-443.1996.
HUNT M; RAYNAUD B; GARCIA R. Ketamine dose-dependently induces high-
frequency oscillations in the nucleus accumbens in freely moving rats. Biological
Psychiatry 60(11): 1206-1214. 2006.
IVERSEN, L A hipótese monoaminérgica da depressão, em Biologia da Depressão
(Licínio J, Wong M, eds) Artmed, Porto Alegre, pp 77, 5º§, 2007.
JAHNG JW; HOUPT TA. MK801 increases feeding and decreases drinking in
nondeprived freely feeding rats. Pharmacology, Biochemistry and Behavior 68(2):
181-6. 2001.
JANICAK PG; DAVIS JM; PRESKORN SH; AYD Jr FJ. Tratamento com
antidepressivos. In: Princípios e Práticas em Psicofarmacoterapia (Janicak PG;
Davis JM; Preskorn SH; Ayd Jr FJ). MEDSI Editora Médica e Científica Ltda. Rio de
Janeiro, pp195.1996.
JOHSON JW; KOTERMANSKI S E. Mechanism of action of memantine. Current
Opinion in Pharmacology 6: 61-67. 2007.
KAREGE F; BONDOLFI G; GERVASONI N; SCHWALD M; AUBRY J; BERTSCHY
G. Low brain derived neurotrophic factor (BDNF) levels in serum of depressed
patients probably results from lowered platelet BDNF release unrelated to platelet
reactivity. Biological Psychiatry 57(9): 1068-1072. 2003.
32
41
KESSLER RC; MERIKANGAS KR; WANG OS. Prevalence, comorbidity and service
utilization for mood disorders in the United Sates at the beginning of the twenty-first
century. Annual Review of Clinical Psychology 3:137-58. 2007.
KIM, Y-K; LEE H-P; WON S-D; PARK E-Y; LEE H-Y; LEE B-H; LEE S-H; YOON D;
HAN C; KIM D-J; CHOI S-H. Low plasma BDNF is associated with suicidal behavior
in major depression. Progress in Neuro-Psycopharmacology & Biological
Psychiaty. 31: 78-85. 2007.
KOLB B; WISHAW IQ. Classificação das drogas psicoativas – antidepressivos. In:
Neurociência do Comportamento (Kolb B, Wishaw IQ). Manole, São Paulo, pp206-
207.2002.
KOS T; POPIK P; PIETRASZEK M; SHAFER D; DANYSZ W; DRAVOLINA O;
BLOKHINA E; GALANKIN T; BESPALOV AY. Effect of 5-HT3 receptor antagonist
MDL 72222 on behaviors induced by ketamine in rats and mice. European
Neuropsychopharmacology 16: 297-310. 2006.
KRYSTAL JH. Ketamine and the potencial role for rapid-acting antidepressant
medications. Swiss Medical Weekly 137:215-216. 2007.
LEE B-H; KIM H; PARK S-H; KIM Y-K. Decreased plasma BDNF level in depressed
patients. Journal of Affective Disorders 10:10-16. 2006.
33
42
LIEBRENZ M; BORGEAT A; LEISINGER R; STOHLER R. Intra-venous ketamine
therapy in a patient with a treatment-resistant major depression. The World Journal
of Biological Psychiatry 137: 234-236.2007
LICINIO J; WONG M. Biologia da Depressão. Artmed, Porto Alegre, pp.157e 161
2007.
MAENG S; ZARATE Jr CA. The role of glutamate in the mood disorders: results
from the ketamine in the major depression study and the presumed cellular
mechanism underlying its antidepressant effects. Current Psychiatry Reports 9:
467-474. 2007.
MATHEW S; MANJI HK; CHARNEY DS. Novel drugs and therapeutic targets for
severe mood disorders. Neuropsychopharmacology 1(13). npg. 2008.
MELDRUM BS. Glutamate as a neurotransmitter in the brain: review of physiology
and pathology. American Society for Nutricional Sciences. 1007S-1015S. 2000.
MELLO AAF; MELLO MF; CARPENTER LL; PRICE LH. Update on stress and
depression: the role of the hypothalamic-pituitary-adrenal (HPA) axis. Revista
Brasileira de Psiquiatria 25(4): 231-38. 2003
PETIT-DEMOULIÈRE B; CHENU F; BOURIN M. Forced swimming test in mice: a
review of antidepressant activity. Psychopharmacology 177: 245-255. 2005.
34
43
PETTY F; SHERMAN AD. Biochemical models. In: Manic-Depressive Ilness.
(Goodwin FK; Jamison KR). Oxford University Press. New York. Pp402.1990
PLISZKA SR. Neurociência para o Clínico de Saúde Mental. Artmed, Porto
Alegre, pp. 46 2º§. 2004.
PORSOLT, RD; ANTON G; BLAVET N; JALFRE M. Behavioural despair in rats: a
new model sensitive to antidepressant treatments. European Journal of
Pharmacology 47: 379-391. 1978
SADOCK BJ & SADOCK VA. Comprehensive Textbook of Psychiatry. 8ª ed.,
Lippincott Williams & Wilkins, Filadélfia, PA, EEUU, pp. 84 §1º, 65-66, 88. 2005.
SAARELAINEN T; HENDOLIN P; LUCAS G; KOPONEN E; SAIRANEN M;
MacDONALD E; AGERMAN K; HAAPASALO A; NAWA H; ALOYZ R; ERNFORS P;
CASTRÉN E. Activation of the Trk neurotrophin receptor is induced by
antidepressant drugs and is required for antidepressant-induced behavioral effects.
The Journal of Neuroscience 23(1):349-357. 2003
SAIRANEN M; LUCAS G; ERNFORS P; CASTRÉN M; CASTRÉN E. Brain-derived
neurotrophic factor and antidepressant drugs have different but coordinated effects
on neuronal turnover, proliferation, and survival in the adult dentate gyrus. The
Journal of Neuroscience 2:1089-1094. 2005
35
44
SANACORA G; ROTHMAN DL; MASON G; KRYSTAL JK. Clinical studies
implementing glutamate neurotransmission in mood disorders. Annals of the New
York Academy of Science 1003: 292-308. 2003.
SHALTIEL G; CHEN G; MANJI HK. Neurotrophic signaling cascades in the
pathophysiology and treatment of bipolar disorder. Current Opinion in
Pharmacology 7: 22-26. 2007.
SHIRAYAMA Y; CHEN A C-H; NAKAGAYA S; RUSSEL DS; DUMAN RS. Brain-
derived neurotrophic factor produces antidepressant effects in behavioral models of
depression. The Journal of Neuroscience 22(8): 3251-3261. 2002.
STAHL SM. Psicofarmacologia. 2ª ed., Guanabara Koogan, Rio de Janeiro, pp
135;217;219;385;502. 2006.
THASE ME. Molecules that mediate mood. The New England Journal of Medicine
357(23): 2400-02. 2007.
TRAJKOVSKA V; VINBERG M; AZNAR S. Whole blood BDNF levels in healthy twins
discordant for affective disorder: association to life events and neuroticism. Journal
of Affective Disorders 108: 165-169. 2008.
TREECE BR; RITTER RC; BURNS GA. Lesion of the dorsal vagal complex abolish
increases in meal size induced by NMDA receptor blockad. Brain Research 872 (1-
2) 37-43. 2000.
36
45
UK ECT REVIEW GROUP. Efficacy and safety of eletroconvulsive therapy in
depressive disorders: a systematic review and meta-analysis. Lancet 361 (9360):
799 – 808. 2003.
VIANNA MRM; ALONSO M; VIOLA H; QUEVEDO J; PARIS F; FURMAN M; STEIN
ML; MEDINA JH; IZQUIERDO I. Role of hippocampal signaling pathways in long-
term memory formation of a nonassociative learning task in the rat. Learning &
Memory 7: 333-340. 2000.
WILLNER P.Validity, reliability and utility of the chronic mild stress model of
depression: a 10-year review and evaluation. Psychopharmacology 134: 319-329.
1997.
WITKIN JM; MAREK GJ; JOHNSON BG; SCHOEPP DD. Metabotropic glutamate
receptors in the control of mood disorders. Current Drugs Tarugets: CNS &
Neurological Disorders 6:87-100.2007.
YILMAZ A; SCHULZ D; AKSOY A; CANBEYLI R. Prolonged effect of an anesthetic
dose of ketamine on behavioral despair. Pharmacology, Biochemistry and
Behavior 21(1): 341-344. 2002.
ZARATE CA; QUIROZ J; PAYNE J; MANJI HK. Modulators of the glutamatergic
system: implications for the development of improved therapeutics in mood disorders.
Psycopharmacology Bulletin. 36 (4): 35-83. 2002.
37
46
ZARATE CA Jr; SINGH JB; CARLSON PJ; BRUTSCHE NE; AMELI R;
LUCKENBAUGH DA; CHARNEY DS; MANJI HK. A randomized trial of an N-methyl-
D-aspartate antagonist in treatment-resistant major depression. Archives of General
Psychiatry 63: 856-863. 2006c.
ZARATE Jr CA; SINGH J; MANJI HK. Cellular plasticity cascades: targets for the
development of novel therapeutics for bipolar disorder. Biological Psychiatry 59:
1006-1020. 2006 b.
ZARATE Jr CA; SINGH JB; QUIROZ MD; DE JESUS G; DENICOFF KK;
LUCKENBAUGH DA; MANJI HK; CHARNEY DS. A double-bind, placebo-controlled
study of memantine in the treatment of major depression. American Journal of
Psychiatry 163: 153-155. 2006 a.
38
Acute administration of ketamine induces antidepressant-like effects in the
forced swimming test and increases BDNF levels in the rat hippocampus
Lêda S.B. Garcia
a
, Clarissa M. Comim
a
, Samira S. Valvassori
a
, Gislaine Z. Réus
a
,
Luciana M. Barbosa
a
, Ana Cristina Andreazza
b
, Laura Stertz
b
, Gabriel R. Fries
b
,
Elaine Cristina Gavioli
a
, Flavio Kapczinski
b
, João Quevedo
a,
a
Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde,
Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
b
Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Bipolar Disorders Program,
Centro de Pesquisas, Hospital de Clínicas. Rua Ramiro Barcelos, 2350, 90035-003 Porto Alegre, RS, Brazil
Received 24 May 2007; received in revised form 31 July 2007; accepted 31 July 2007
Abstract
Ketamine is a non-competitive antagonist to the phencyclidine site of N-methyl-
D-aspartate (NMDA) receptor. Clinical findings point to a
rapid onset of action for ketamine on the treatment of major depression. Considering that classic antidepressants may take long-lasting time to
exhibit their main therapeutic effects, the present study aims to compare the behavioral effects and the BDNF hippocampus levels of
acute administration of ketamine and imipramine in rats. To this aim, rats were acutely treated with ketamine (5, 10 and 15 mg/kg) and imipramine
(10, 20 and 30 mg/kg) and animal behavioral was assessed in the forced swimming and open-field tests. Afterwards, BDNF protein
hippocampal levels were assessed in imipramine- and ketamine-treated rats by ELISA-sandwich assay. We observed that ketamine at the doses of
10 and 15 mg/kg, and imipramine at 20 and 30 mg/kg reduced immobility time compared to saline group, without affecting locomotor activity.
Interesting enough, acute administration of ketamine at the higher dose, but not imipramine, increased BDNF protein levels in the rat
hippocampus. In conclusion, our findings suggest that the increase of hippocampal BDNF protein levels induced by ketamine might be necessary
to produce a rapid onset of antidepressant action.
© 2007 Published by Elsevier Inc.
Keywords: Antidepressants; BDNF; Forced swimming test; Imipramine; Ketamine; NMDA receptor
1. Introduction
Depression is one of the most prevalent and costly psy-
chopathologies and a leading cause of morbidity and mortality in
the world. It is worthy of note that the pharmacotherapy of
depression is costly and widely prescribed by physicians, although
less than half of treated patients attain complete remission after
therapy with a single antidepressant. Others exhibit partial,
refractory or intolerant responses to the pharmacological treat-
ment, emphasizing the need to discover novel antidepressants
(Pacher et al., 2001). The challenges for the design of new agents
to treat depression are threefold: rapid onset of antidepressant
response, broader efficacy, and fewer adverse effects. While
progress has been made to reduce side-effects, currently available
antidepressants do not show convincing evidence for a shorter
delay of onset of therapeutic actions neither for improved efficacy
on the treatment of major depression (Nutt, 2002). Thus, there is
clearly a need to develop rapidly acting and potent treatments for
major depression.
Glutamate is the primary excitatory neurotransmitter in the
mammalian brain. Glutamatergic neurotransmission may be mo-
dulated in the brain by different receptor types, including
Progress in Neuro-Psychopharmacology & Biological Psychiatry xx (2007) xxx xxx
+ MOD EL
PNP-06789; No of Pages 5
www.elsevier.com/locate/pnpbp
Abbreviations: BDNF, brain-derived-neurotrophic factor; IP, intraperitoneal;
EGTA, ethylene glycol tetraacetic acid; IMI, imipramine; KET, ketamine;
NMDA, N-methyl-D-aspartate; OD, optical density; PMSF, phenylmethylsulfo-
nyl fluoride; PBS, phosphate buffer solution.
Corresponding author. Fax: +55 48 3443 4817.
E-mail address: [email protected] (J. Quevedo).
0278-5846/$ - see front matter © 2007 Published by Elsevier Inc.
doi:10.1016/j.pnpbp.2007.07.027
ARTICLE IN PRESS
Please cite this article as: Garcia LSB et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF
levels in the rat hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry (2007), doi:10.1016/j.pnpbp.2007.07.027
ionotropic and metabotropic receptors. Studies have pointed to the
ionotropic glutamate N-methyl-
D-aspartate receptor (NMDA) as
an important player in the etiology of psychopathologies, such as
anxiety and major depression (Javitt, 2004; Krystal et al., 1999).
Several preclinical studies have demonstrated that NMDA
antagonists, such as MK-801, AP7, CPP, neramexane and others,
display anxiolytic- and antidepressant-like effects in rats injected
into distinct brain areas and subjected to various animal models of
anxiety and depression (Kos et al., 2006a; Molchanov and
Guimarães, 2002; Menard and Treit, 2000; Adamec et al., 1999;
Matheus and Guimarães, 1997; Przegalinski et al., 1997; Skolnick
et al., 1996; Maj et al., 1992; Trullas and Skolnick, 1990).
Ketamine is a non-competitive antagonist to the phencyclidine
site of N-methyl-
D-aspartate (NMDA) receptor for glutamate, but
it also interacts with voltage sensitive Ca
+2
channels, and opioid,
monoaminergic, and muscarinic receptors (for a review see: Hirota
and Lambert, 1996). Recently, clinical studies suggested that acute
administration of ketamine ameliorate depressive symptoms in
patients suffering from major depression (Zarate et al., 2006;
Berman et al., 2000). In agreement with these clinical findings,
some evidence from the literature suggests that ketamine induces
anxiolytic- and antidepressant-like effects in rodents subjected to
animal models of anxiety and depression (Kos et al., 2006b;
Yilmaz et al., 2002; Chaturvedi et al., 2001; Silvestre et al., 1997).
Brain-derived-neurotrophic factor (BDNF) is one of several
endogenous proteins that play critical roles in the survival,
maintenance, and growth of the brain and peripheral neurons
(Lewin and Barde, 1997). A growing body of evidence suggests
that BDNF could be mediating the pathophysiology of mood
disorders. In fact, reduced brain BDNF levels have been found in
postmortem samples from depressed patients (Karege et al.,
2002), whereas brain infusion of BDNF produces antidepressant-
like action in rats (Siuciak et al., 1997). In addition, exposure to
stress decreases levels of BDNF in brain regions associated with
depression, while antidepressant treatment produces opposite
actions and blocks the effects of stress on BDNF (for a review see:
Duman and Monteggia, 2006). Interestingly, chronic, but not
acute, antidepressant treatment induces increasing of BDNF
expression and BDNF immunoreactive fibers in the hippocampus
of rodents (Nibuya et al., 1996; De Foubert et al., 2004). Thus,
agents capable of rapidly enhancing BDNF levels may lead aid
the development of innovative antidepressant drugs.
The main aim of the present study was to compare behavioral
and molecular effects induced by acute administration of ketamine
and imipramine in rats. The behavioral effects of both drugs were
evaluated in the forced swimming test, which is a behavioral
despair assay widely used for screening antidepressant drugs
(McArthur and Borsini, 2006). The BDNF protein levels were
measured using an ELISA kit in the hippocampus of rats acutely
treated with ketamine and imipramine.
2. Materials and methods
2.1. Animals
Male Adult Wistar rats (60 days old) were obtained from
UNESC (Universidade do Extremo Sul Catarinense, Criciúma,
Brazil) breeding colony. They were housed five per cage with
food and water available ad libitum and were maintained on a
12-h light/dark cycle (lights on at 7:00 AM). All experi mental
procedures involving animals were performed in accordance
with the NIH Guide for the Care and Use of Laboratory Animals
and the Brazilian Society for Neuroscience and Behavior
(SBNeC) recommendations for animal care.
2.2. Drugs and treatments
Ketamine was obtained from Fort Dodge (Brazil) and imip-
ramine, the standard antidepressant, from Novartis Pharmaceuti-
cal Industry (Brazil). Different groups of rats (n=15 each) were
administered intraperitoneally (IP) with saline or different doses
of ketamine (5, 10 and 15 mg/kg) or imipramine (10, 20 and
30 mg/kg) 60 minutes before the test sessions, i.e. forced swim-
ming or open-field tests. All treatments were administered in a
volume of 1 ml/kg. The range of doses of ketamine employed in
this work was chosen based on a previous study, which reported an
increase of spontaneous locomotion at 25 mg/kg, while no
changes were observed at 10 mg/kg (Hunt et al., 2006).
2.3. App aratus
The forced swimming test was conducted according to pre-
vious reports (Porsolt et al., 1977; Detke et al., 1995). The test
involves two individual exposures to a cylindrical tank with water
in which rats cannot touch the bottom of the tank or escape. The
tank is made of transparent Plexiglas, 80 cm tall, 30 cm in
diameter, and filled with water (2223 °C) to a depth of 40 cm.
Water in the tank was changed after each rat. For the first
exposure, rats without drug treatment were placed in the water for
15 min (pre-test session). Twenty-four hours later, rats were
placed in the water again for a 5 min session (test session), and the
immobility time of rats were recorded in seconds. Rats were
treated with ketamine, imipramine or saline only 60 min before
the second exposure to the cylindrical tank of water (test session).
In a separate series of experiments, naïve rats were treated with
ketamine (515 mg/kg), imipramine (1030 mg/kg) and saline
60 min before the exposure to the open-field apparatus, in order to
assess possible effects of drug treatment on spontaneous loco-
motor activity. Analysis of rat spontaneous activity was carried
out in an open field apparatus, which is an arena 45× 60 cm
surrounded by 50 cm high walls made of brown plywood with a
frontal glass wall. The floor of the open field was divided into 9
rectangles (15×20 cm each) by black lines. Animals were gently
placed on the left rear quadrant, and left to explore the arena for
5 min. The number of horizontal (crossings) and vertical
(rearings) activity performed by each rat during the 5-min
observation period was counted by an expert observer.
2.4. Exp erimental procedure
Immediately after the forced swimming test, acutely saline,
imipramine and ketamine-treated rats were sacrificed and the
skulls were removed and hippocampus was dissected and stored at
80 °C for biochemical analyses. BDNF levels in hippocampus
2 L.S.B. Garcia et al. / Progress in Neuro-Psychopharmacology & Biological Psychiatry xx (2007) xxxxxx
ARTICLE IN PRESS
Please cite this article as: Garcia LSB et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF
levels in the rat hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry (2007), doi:10.1016/j.pnpbp.2007.07.027
were measured by anti-BDNF sandwich-ELISA, according to the
manufacturer instructions (Chemicon, USA). Briefly, rat hippo-
campus was homogenized in phosphate buffer solution (PBS)
with 1 mM phenylmethylsulfonyl fluoride (PMSF) and 1 mM
(EGTA). Microtiter plates (96-well flat-bottom) were coated for
24 h with the samples diluted 1:2 in sample diluent and standard
curve ranged from 7.8 to 500 pg/ml of BNDF. The plates were
then washed four times with sample diluent and a monoclonal
anti-BNDF rabbit antibody diluted 1:1000 in sample diluent was
added to each well and incubated for 3 h at room temperature.
After washing, a peroxidase conjugated anti-rabbit antibody
(diluted 1:1000) was added to each well and incubated at room
temperature for 1 h. After addition of streptavidin-enzyme,
substrate and stop solution, the amount of BDNF was determined
by absorbance in 450 nm. The standard curve demonstrates a
direct relationship between Optical Density (OD) and BDNF
concentration. Total protein was measured by Lowry's method
using bovine serum albumin as a standard, as previously described
by Frey et al. (2006).
2.5. Statistical analysis
All data are presented as mean± S.E.M. Differences among
experimental groups in the forced swimming, open field test and
in the assessment of BDNF levels were determined by one-way
ANOVA, followed by Tukey post-hoc test when ANOVA was
significant; p values less than 0.05 were considered to be statistical
significant.
3. Results
As depicted in Fig. 1, the acute administration of the standard
antidepressant imipramine reduced, in a significant manner, the
immobility time of rats at 20 and 30 mg/kg compared to saline
(F
(697)
=5.45; pb 0.05; Fig. 1). The intraperitoneal treatment
with ketamine at the doses of 10 and 15 mg/kg decreased
significantly the immobility time of rats compared to saline group
(F
(697)
=5.45; p b 0.05; Fig. 1). In the open-field test, the
treatment with ketamine and imiprimine at all doses tested did
not modify the number of crossing and rearing compared to saline
treated-rats (Fig. 2A and B).
Fig. 3 illustrated the effects of the acute treatment with imip-
ramine (10, 20 and 30 mg/kg), ketamine (5, 10 and 15 mg/kg) and
saline in BDNF protein hippocampus levels of rats. A statistical
significant increase in BDNF protein levels in the hippocampus
was observed in rats treated with ketamine only at the higher dose
(15 mg/kg; F
(336)
=5.73; p b 0.05), but not with imipramine,
compared to saline group.
4. Discussion
The present study demonstrated that: (1) the acute treat-
ment with ketamine (10 and 15 mg/kg) and imipramine (20
and 30 mg/kg) decreased the immobility time of rats in the
forced swimming test; (2) ketamine and imipramine did not
affect spontaneous locomotor activity in the open-field test;
and (3) the acute treatment with ketamine at the higher dose,
Fig. 1. Effects of the acute administration of ketamine (5, 10 and 15 mg/kg, i.p.)
and imipramine (10, 20 and 30 mg/kg, i.p.) on the immobility time of rats
subjected to the forced swimming test. Bars represent means ± S.E.M. of 15 rats.
p b 0.05 vs. saline according to ANOVA followed by Tukey post-hoc test.
Fig. 2. Effects of the acute administration of ketamine (5, 10 and 15 mg/kg, i.p.)
and imipramine (10, 20 and 30 mg/kg, i.p.) on the number of crossings (A) and
rearings (B) of rats subjected to the open field test. Bars represent means ±S.E.M. of
15 rats.
pb 0.05 vs. saline according to ANOVA followed by Tukey post-hoc test.
Fig. 3. Effects of the acute administration of ketamine (5, 10 and 15 mg/kg, i.p.)
and imipramine (10, 20 and 30 mg/kg, i.p.) on the BDNF levels in the rat
hippocampus. Bars represent means ± S.E.M. of 15 rats.
p b 0.05 vs. saline
according to ANOVA followed by Tukey post-hoc test.
3L.S.B. Garcia et al. / Progress in Neuro-Psychopharmacology & Biological Psychiatry xx (2007) xxxxxx
ARTICLE IN PRESS
Please cite this article as: Garcia LSB et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF
levels in the rat hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry (2007), doi:10.1016/j.pnpbp.2007.07.027
but not imipramine, increased BDNF protein levels in the rat
hippocampus.
The behavioral effects induced by ketamine in rats reported in
the present study are in agreement with literature data, which
support an antidepressant action for ketamine in basic and clinical
studies. In fact, the treatment with ketamine reversed the shock-
induced increase of immobility time in the mouse forced
swimming test (Chaturvedi et al ., 2001). Another study
demonstrated that a single injection of an anesthetic dose of
ketamine (160 mg/kg) induced antidepressant-like effects in rats
tested in 3, 7, or 10 days after the forced swimming test (Yilmaz
et al., 2002). Additionally, in the mouse tail suspension test
ketamine produced anti-immobility effects, suggesting an
antidepressant-like action in mice (Kos et al., 2006b). Taken
together, our findings are in agreement with these previous
observations, and are strengthening the view that ketamine
induces antidepressant-like effects in rodents.
In 2000, a pilot study showed that a single dose of ketam ine
produced antidepressant effects in patients suffering from major
depression (Berman et al., 2000). Recently, Zarate et al. (2006)
extended this study to a higher number of patients, and they
found that the acute administration of ketamine rapidly
improved depressive symptoms in patients with major depres-
sion. In this study, ketamine ameliorates the symptoms of
depression within 110 minutes after injection, and these effects
remained significant until 7 days after ketamine injection
(Zarate et al., 2006). Therefore, these data strongly suggest that
ketamine can induce robust and rapid antidepressant effects in
depressed patients after a single intravenous injection.
Our finding s also showed that acute administration of keta-
mine, but not imipramine, significantly increased BDNF
protein levels in the rat hippocampus compared with saline
group. Several studies have suggested that normal BDNF-TrkB
receptor signaling is both necessary and sufficient for anti-
depressant drug action (for a review see: Castrén et a l., 2007).
Some authors have found that antidepressants acting through
different mechanisms rapidly increase TrkB receptor activation
and signaling within an hour after drug administration
(Saarel aine n et al., 20 03; Ra ntam ak i et al., 200 6). Despite
that, studies have shown that rats treated with fluoxetine for 4,
7, 14 and 21 days displayed unaltered hippocampal BDNF
proteinlevelswhenassessedbyELISAassay(De Foubert et
al., 2004),andthesameholdstrueto3weeksoftreatmentwith
desipramine (Jacobs en and Mork, 2004). Th us, taken together
our data are showing that acute admi nistration of ketamine
increase hippocampal BDNF protein leve ls, whist acute
(present data) and chronic treatment with classic antidepressant
did not affect it.
A growing body of evidence support an important role of
neurotrophic factors in mood disorders. In fact, reduced brain
BDNF levels predispose to depression, whereas increases in
brain BDNF levels produce an antidepressant action (for a
review see: Castrén et al., 2007). Our present findings revealed
that acute administration of ketamine causes an increase of
BDNF hippocampal levels detect ed immediately after the
forced swimming test. Importantly, our data did not evaluate
the durat ion of ketamine effects on BNDF levels in rats. Further
studies aiming to establis h a timeresponse curve to ketamine in
behavioral and molecular assays are worthy of doing.
Altogether, our findings support a quite unique effect induced
by ketamine in the hippocampal BDNF protein levels, which
suggests that the rapid onset of action of ketamine in the clinic
might be due to the increase of hippocampal BDNF protein
levels. Additionally, our findings contribute in explaining the
slow onset of antidepressant activity observed with classic
antidepressants.
Finally, it should be noted that although ketamine is a high-
affinity NMDA receptor antagonist, it has less, but potentially
relevant, affinity for μ opiate, monoaminergic, and muscarinic
receptors and also interacts with voltage sensitive Ca
+2
channels
(Lindefors et al., 1997; Elliott et al., 1995; Wong et al., 1996;
Kapur a nd Seeman, 2001; Eide e t al., 1997). Thus, the
antidepressant-like effects of ketamine observed in the present
study could be due to interactions of ketamine with several
receptor systems, not only with NMDA receptors, which could
produce synergic effects on the brain pathways involved in the
modulation of behavioral and molecular actions of antidepres-
sants. Lastly, basic and clinical findings suggest that brain
pathways modulated by ketamine could play an important role in
reducing the onset of action of antidepressants.
5. Conclusion
The antidepressant-like effects of ketamine are in agreement
with literature data, which support an important role played by the
NMDA receptor signaling in major depression. However, it
should be kept in mind that, besides NMDA receptors, ketamine
interacts with distinct receptor systems, such opioid, monoamin-
ergic, muscarinic receptors and voltage sensitive Ca
+2
channels,
which could produce synergic effects on the brain pathways
involved in the modulation of behavioral and molecular actions of
antidepressants.
Interestingly enough, our study demonstrated that ketamine,
but not imipramine, increased BDNF levels in rat hippocampus
after one single injection. Altogether, basic and clinical findings
might suggest that acute increase of BDNF protein levels in
hippocampus might be critical to antidepressant drugs with rapid
onset of action. Future studies need to be carried out in an
attempt to further investigate pharmacological and molecular
mechanism by whi ch ketamine, and other NMDA antagonists,
induce antidepressant-like effects.
Acknowledgements
This study was supported in part by CNPq (Brazil), UNESC
(Brazil), FAPESC (Brazil).
References
Adamec RE, Burton P, Shallow T, Budgell J. Unilateral block of lasting
increases in anxiety-like behavior and unconditioned startle effective
hemisphere depends on the behavior. Physiol Behav 1999;65:73951.
Berman RB, Cappielo A, Anand A, Oren DA, George RH, Charney DS, et al.
Antidepressant effects of ketamine in depressed patients. Biol Psychiatry
2000;47:3514.
4 L.S.B. Garcia et al. / Progress in Neuro-Psychopharmacology & Biological Psychiatry xx (2007) xxxxxx
ARTICLE IN PRESS
Please cite this article as: Garcia LSB et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF
levels in the rat hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry (2007), doi:10.1016/j.pnpbp.2007.07.027
Castrén E, Võikar V, Rantamäki T. Role of neurotrophic factors in depression.
Curr. Opin. Pharmacol. 2007;7:1821.
Chaturvedi HK, Bapna JS, Chandra D. Effect of fluvoxamine and N-methyl-
D-
aspartate receptor antagonists on shock-induced depression in mice. Indian J
Physiol Pharmacol 2001;45:199207.
De Foubert G, Carney SL, Robinson CS, Destexhe EJ, Tomlinson R, Hicks CA,
et al. Fluoxetine-induced change in rat brain expression of brain-derived
neurotrophic factor varies depending on length of treatment. Neuroscience
2004;128:597604.
Detke MJ, Rickels M, Lucki I. Active behaviors in the rat forced swimming test
differentially produced by serotonergic and noradrenergic antidepressants.
Psychopharmacology (Berl) 1995;121:6672.
Duman RS, Monteggia LM. A neurotrophic model for stress-related mood
disorder. Biol Psychiatry 2006;59:111627.
Eide P, Stubhaug A, Breivik H, Oye I. Ketamine: relief from chronic pain
through actions at the NMDA receptor. Pain 1997;72:28991.
Elliott K, Kest B, Man A, Kao B, Inturrisi CE. N-methyl-
D-aspartate (NMDA)
receptors, mu and kappa opioid tolerance, and perspectives on new analgesic
drug development. Neuropsychopharmacology 1995;13:34756.
Frey BN, Andreazza AC, Ceresér KMM, Martins MR, Valvassori SS, Réus GZ,
et al. Effects of mood stabilizers on hippocampus BDNF levels in an animal
model of mania. Life Sci 2006;79:2816.
Hirota K, Lambert DJ. Ketamine: its mechanism(s) of action and unusual
clinical uses. Br J Anaesth 1996;77:4414.
Hunt MJ, Rainaud B, Garcia R. Ketamine dose-dependently induces high-
frequency oscillations in the nucleus accumbens freely moving rats. Biol
Psychiatry 2006;60:120614.
Jacobsen JP, Mork A. The effect of escitalopram, desipramine, electroconvulsive
seizures and lithium on brain-derived neurotrophic factor mRNA and protein
expression in the rat brain and the correlation to 5-HT and 5-HIAA levels.
Brain Res 2004;1024:18392.
Javitt DC. Glutamate as a therapeutic target in psychiatric disorders. Mol
Psychiatry 2004;9:98497.
Kapur S, Seeman P. Ketamine has equal affinity for NMDA receptors and the
high affinity st ate of the dopamine D2 receptor. Biol Psychiatry
2001;49:9547.
Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM. Decreased
serum brain-derived neurotrophic factor levels in major depressed patients.
Psychiatry Res 2002;15:1438.
Kos T, Legutko B, Danysz W, Samoriski G, Popik P. Enhancement of
antidepressant-like effects but not brain-derived neurotrophic factor mRNA
expression by the novel N-methyl-
D-aspartate receptor antagonist neramex-
ane in mice. J Pharmacol Exp Ther 2006a;318(323):112836.
Kos T, Popik P, Pietraszek M, Schafer D, Danysz W, Dravolina O, et al. Effect of
5-HT3 receptor antagonist MDL 72222 on behaviors induced by ketamine in
rats and mice. Eur Neuropsychopharmacol 2006b;16:297310.
Krystal JH, D'Souza DC, Petrakis IL, Belger A, Berman RM, Charney DS, et al.
NMDA agonists and antagonists as probes of glutamatergic dysfunction and
pharmacotherapies in neuropsychiatric disorders. Harv Rev Psychiatry
1999;7:12543.
Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci
1997;19:21521.
Lindefors N, Barati S, O'Connor WT. Differential effects of single and repeated
ketamine administration on dopamine, serotonin and GABA transmission in
rat medial prefrontal cortex. Brain Res 1997;759:20512.
Maj J, Rogoz Z, Skuza G, Sowinska H. The effect of CGP 37849 and CGP
39551, competitive NMDA receptor antagonists, in the forced swimming
test. Pol J Pharmacol Pharm 1992;44:33746.
Matheus MG, Guimarães FS. Antagonism of non-NMDA receptors in the dorsal
periaqueductal grey induces anxiolytic effect in the elevated plus maze.
Psychopharmacology (Berl) 1997;132:148.
McArthur R, Borsini F. Animal models of depression in drug discovery: a
historical perspective. Pharmacol Biochem Behav 2006;84:43652.
Menard J, Treit D. Intra-septal infusions of excitatory amino acid receptor
antagonists have differential effects in two animal models of anxiety. Behav
Pharmacol 2000;11:99108.
Molchanov ML, Guimarães FS. Anxiolytic-like effects of AP7 injected into the
dorsolateral or ventrolateral columns of the periaqueductal gray of rats.
Psychopharmacology (Berl) 2002;160:308.
Nibuya M, Nestler EJ, Duman RS. Chronic antidepressant administration
increases the expression of cAMP response element binding protein (CREB)
in rat hippocampus. J Neurosci 1996;16:236572.
Nutt DJ. The neuropharmacology of serotonin and noradrenaline in depression.
Int Clin Psychopharmacol 2002;17:S1S12.
Pacher P, Kohegyi E, Kecskemeti V, Furst S. Current trends in the development
of new antidepressants. Curr Med Chem 2001;8:89100.
Porsolt RD, Le Pichon M, Jalfre M. Animal model of depression. Nature
1977;266:7302.
Przegalinski E, Tatarczynska E, Deren-Wesolek A, Chojnacka-Wojcik E.
Antidepressant-like effects of a partial agonist at strychnine-insensitive
glycine receptors and a competitive NMDA receptor antagonist. Neuro-
pharmacology 1997;36:317.
Rantamaki T, Knuttila JE, Hokkanen E, Castren E. The effects of acute and long-
term lithium treatment on TrkB neurotrophin receptor activation in the
mouse hippocampus and anterior cirgulate cortex. Neuropharmacology
2006;50:4217.
Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDolnald E, et al.
Activation of the TrkB neurotrophin receptor is induced by antidepressant
drugs and is required for antidepressant-induced behavioral effects. J Neurosci
2003;23:34957.
Silvestre JS, Nadal R, Pallares M, Ferre N. Acute effects of ketamine in the
holeboard, the elevated-plus maze, and the social interaction test in Wistar
rats. Depress Anxiety 1997;5:2933.
Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM. Antidepressant-like effect of
brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav
1997;56:1317.
Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R. Adaptation of
N-methyl-
D-aspartate (NMDA) receptors following antidepressant treat-
ment: implications for the pharmaco therapy of depression. Pharmacop-
sychiatry 1996;29:236.
Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex
exhibit antidepressant actions. Eur J Pharmacol 1990;185:110.
Wong C-S, Cherng C-H, Luk H-N, Ho S-T, Tung C-S. Effects of NMDA
receptor antagonists on inhibition of morphine tolerance in rats: Binding at
μ-opioid receptors. Eur J Pharmacol 1996;297:2733.
Yilmaz A, Schulz D, Aksoy A, Canbeyli R. Prolonged effect of an anesthetic
dose of ketamine on behavioral despair. Pharmacol Biochem Behav
2002;71:34952.
Zarate Jr CA, Singh JB, Carson PJ, Brutshe NE, Ameli R, Luckenbaugh DA, et al.
A randomized trial of an N-methyl-
D-aspartate antagonist in treatment-resistant
major depression. Arch Gen Psychiatry 2006;63:85664.
5L.S.B. Garcia et al. / Progress in Neuro-Psychopharmacology & Biological Psychiatry xx (2007) xxxxxx
ARTICLE IN PRESS
Please cite this article as: Garcia LSB et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF
levels in the rat hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry (2007), doi:10.1016/j.pnpbp.2007.07.027
© 2008 The Authors
Doi: 10.1111/j.1742-7843.2008.00210.x
Journal compilation
© 2008 Nordic Pharmacological Society
. Basic & Clinical Pharmacology & Toxicology
UNCORRECTED PROOF
PTO 210
Operator:
Liu Lei
Dispatch:
31.01.08
PE:
Pamela Lewsey
Journal Name Manuscript No.
Proofreader:
Tang Foyu
No. of Pages:
5
Copy-editor:
Owen Lee
Blackwell Publishing Ltd
Chronic Administration of Ketamine Elicits Antidepressant-Like Effects
in Rats without Affecting Hippocampal Brain-Derived Neurotrophic
Factor Protein Levels
Lêda S. Garcia
1
, Clarissa M. Comim
1
, Samira S. Valvassori
1
, Gislaine Z. Réus
1
, Ana Cristina Andreazza
2
, Laura Stertz
2
, Gabriel R. Fries
2
,
Elaine Cristina Gavioli
1
, Flavio Kapczinski
2
and João Quevedo
1
1
Laboratory of Neurosciences, Postgraduate Program in Health Sciences, Unidade Acadêmica de Ciências da Saúde, Universidade do
Extremo Sul Catarinense, SC, Brazil, and
2
Bipolar Disorders Program, Centro de Pesquisas, Hospital de Clínicas de Porto Alegre, RS, Brazil
(Received September 23, 2007; Accepted October 29, 2007)
Abstract:
growing body of evidence has pointed to the blockade of the N-methyl-
-aspartate receptor (NMDA) receptor
signaling as a potential therapeutic target for the treatment of major depression. The present study was aimed to evaluate
the behavioural and molecular effects of the chronic treatment with ketamine and imipramine in rats. To this aim, rats were
14 days treated once a day with ketamine (5, 10 and 15 mg/kg) and imipramine (10, 20 and 30 mg/kg) and then subjected
to the forced swimming and open-field tests. Ketamine and imipramine, at the all doses tested, reduced immobility time,
and increased both climbing and swimming time of rats compared to the saline group, without affecting spontaneous
locomotor activity. Brain-derived neurotrophic factor
(
BDNF) hippocampal levels were assessed in imipramine- and
ketamine-treated rats by ELISA sandwich assay. Chronic administration of both drugs, ketamine and imipramine, did not
modify BDNF protein levels in the rat hippocampus. In conclusion, our findings demonstrate for the first time that chronic
administration of acute inactive doses of ketamine (5 mg/kg) becomes active after chronic treatment, while no signs of
tolerance to the behavioural effects of ketamine were observed after chronic administration of acute active doses (10 and
15 mg/kg). Finally, these findings further support the hypothesis that NMDA receptor could be a new pharmacological
target for the treatment of mood disorders.
Lately, several studies have been investigating into the optimal
treatment for major depression, despite that the adequate
management of this psychopathology remains a challenge.
The primary reasons for these pitfalls include (i) the incidence
of undesired side effects produced by currently available
antidepressants, (ii) the apparent delay in achieving measurable
therapeutic benefit and (iii) a high percentage of treatment-
resistant patients [1,2]. Thus, there is a compelling need for
the development of novel antidepressant therapies with an
improved pharmacological profile of action [3].
A growing body of evidence has pointed to the ionotropic
glutamate N-methyl-
-aspartate receptor (NMDA) as an
important player in the aetiology of psychopathologies,
including anxiety and major depression [4,5]. In fact, drugs
that block the NMDA receptor signaling have shown anti-
depressant properties in both clinical and preclinical studies
[6]. In this way, chemical compounds acting on NMDA
receptors could be interesting as pharmacological targets for
the treatment of mood disorders.
Ketamine, as well as phencyclidine, MK-801 and memantine,
are a non-competitive antagonist of NMDA receptor for
glutamate, which works in a use- and voltage-dependent
manner. Actually, ketamine binds the ionic channel of NMDA
receptor, thus blocking the entrance of Ca
2+
to the neuron
[7,8]. However, distinct from other NMDA receptor
antagonists, ketamine also interacts with voltage-sensitive
Ca
2+
channels, and opioid, monoaminergic and muscarinic
receptors [9].
Clinical studies suggest that acute administration of ketamine
ameliorates depressive symptoms in patients suffering
from major depression [10–12]. Preclinical findings, which
evaluated the behavioural effects of rodents acutely treated
with ketamine, also support this view. In fact, very recently,
we demonstrated that acute administration of ketamine
decreased immobility time in the forced swimming test [13].
In addition, some authors also suggest that ketamine induces
rapid and robust behavioural effects similar to classical
antidepressant in rodents subjected to animal models of
depression [14–17].
Neurotrophins, and particularly brain-derived neurotrophic
factor (BDNF), have been shown to function as a key
regulator of neurite outgrowth, synaptic plasticity and the
selection of functional neuronal connections in the central
nervous system, which make neurotrophins potential mediators
of the plastic changes induced by antidepressants [18]. In
fact, some authors have shown that chronic administration
of classic antidepressants increases mRNA encoding BDNF
and BDNF-immunoreactive fibres in the hippocampus of
rodents [18]. Interestingly, few studies reporting hippocampal
BDNF protein levels in rats treated with antidepressants are
1
Author for correspondence: João Quevedo, Laboratory of
Neurosciences, Programa de Pós-Graduação em Ciências da Saúde,
Unidade Acadêmica de Ciências da Saúde, Universidade do
Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil (fax +55
48 3443 4817, e-mail [email protected]).
2
2
LÊDA S. GARCIA
ET AL.
UNCORRECTED PROOF
© 2008 The Authors
Journal compilation
© 2008 Nordic Pharmacological Society.
Basic & Clinical Pharmacology & Toxicology
still available, and mostly these studies indicate that chronic
antidepressant treatment did not affect the BDNF levels
[19–21]. Very recently, we demonstrated that acute ketamine,
but not imipramine, increased BDNF protein levels in the
hippocampus of rats [13]. Thus, we suggest that ketamine
could be an innovative antidepressant drug by inducing
distinct and molecular effects on the rat hippocampus
compared to classic antidepressant.
The present study was aimed to assess the behavioural
effects of chronic treatment with ketamine in rats, in order to
provide evidence that the repeated administration of ketamine
does not induce tolerance. The behavioural effect of ketamine
was assessed in the forced swimming test, which is a
behavioural assay widely used for screening antidepressant
drugs [22]. The hippocampal BDNF protein levels were
also measured in rats 14 days treated with ketamine at 5, 10
and 15 mg/kg. Behavioural and molecular effects elicited by
chronic administration of ketamine were compared to
imipramine, a standard antidepressant drug.
Material and Methods
Animals.
Male adult Wistar rats (60 days old; weighing 300–350 g)
were obtained from UNESC (Universidade do Extremo Sul
Catarinense, Criciúma, Brazil) breeding colony. They were housed
five per cage (40
×
30
×
20 cm) with food and water available
ad libitum
and were maintained on a 12-hr light:dark cycle (lights on at
7:00 a.m.). All experimental procedures involving animals were
performed following the recommendations of the Brazilian Society
for Neuroscience and Behavior, which was in accordance with the
National Institutes of Health guidelines for the Animal Care and
Use of Laboratory Animals.
Drugs and treatments.
Ketamine employed in the present study was
purchased from Fort Dodge Animal Health (Fort Dodge, IA, USA)
as injectable solution (concentration 0.1 g/ml), and imipramine
from Novartis Pharmaceutical Industry (Basel, Switzerland).
Different groups of rats (n = 15 each) were administered intraperi-
toneally once a day with saline or different doses of ketamine
(5, 10 and 15 mg/kg) or imipramine (10, 20 and 30 mg/kg) during
14 days. Imipramine and ketamine were dissolved in saline imme-
diately before the intraperitoneal injections. All treatments were
administered in a volume of 1 ml/kg. The range of doses of ketamine
employed in this work was chosen based on our previous study
[13].
Rats were tested in the open field and forced swim test following
chronic imipramine and ketamine treatments. Beginning on day 12
of chronic treatment, rats were tested in the open field in order to
assess the spontaneous locomotor activity. On day 13 and 14 of
chronic treatment, rats were then tested in the forced swimming
test. From day 12 to 14 of chronic treatment, drug administration
was done 60 min. before the assessment of animal behaviour in the
open field (day 12) and forced swimming test (days 13 and 14).
Forced swimming test.
The forced swimming test was conducted
according to previous reports [23,24]. The test involves two individual
exposures to a cylindrical tank with water in which rats cannot touch
the bottom of the tank or escape. The tank is made of transparent
plexiglas, 80 cm tall, 30 cm in diameter, and filled with water (22–
23
°
C) to a depth of 40 cm. Water in the tank was changed after
each rat. On day 13 of chronic treatment, 1 hr after drug treatment
rats were individually placed in the cylinder containing water for
15 min. (pre-test session). On the 14th day, rats received the last
intraperitoneal drug treatment, and after 1 hr, they were subjected
again to the forced swimming test for a 5-min. session (test session).
During the test session, were recorded in seconds some behavioural
parameters, such as immobility time (i.e. no additional activity is
observed other than that required to keep the rat’s head above the
water), climbing time, which is defined as upward-directed move-
ments of the forepaws along the side of the swim chamber, and
swimming time (i.e. movement usually horizontal throughout the
swim chamber).
Open-field test.
This apparatus consists of a brown plywood arena
45
×
60 cm surrounded by wood 50 cm high walls and containing a
frontal glass wall. The floor of the open field was divided into nine
rectangles (15
×
20 cm each) by black lines. Animals were gently
placed on the left rear quadrant, and left to explore the arena for
5 min. After 12 days of treatment, rats were exposed to the open-field
apparatus, and the number of horizontal (crossings) and vertical
(rearings) activity performed by each rat during the 5-min. observation
period was counted by an expert observer.
Rat hippocampal BDNF level measurement.
The measurement of
BDNF hippocampal levels was performed as previously described
[25]. Immediately after the forced swimming test, the 14 days
chronically treated rat were killed and the skulls were removed and
hippocampus was dissected and stored at –80
°
C for biochemical
analyses. BDNF levels in the hippocampus were measured by anti-
BDNF sandwich-ELISA, according to the manufacturer instructions
(Chemicon International Inc., Temecula, CA, USA). Briefly, rat
hippocampus was homogenized in phosphate-buffered solution
with 1 mM phenylmethylsulfonyl fluoride and 1 mM ethylenegly-
coltetraacetic acid. Microtiter plates (96-well flat-bottom) were
coated for 24 hr with the samples diluted 1:2 in sample diluent and
standard curve ranged from 7.8 to 500 pg/ml of BNDF. The plates
were then washed four times with sample diluent and a monoclonal
anti-BNDF rabbit antibody diluted 1:1000 in sample diluent was
added to each well and incubated for 3 hr at room temperature.
After washing, a peroxidase-conjugated anti-rabbit antibody (horse-
radish peroxidase enzyme; diluted 1:1000) was added to each well
and incubated at room temperature for 1 hr. After addition of
streptavidin enzyme, substrate (3,3
,5,5
-tetramethylbenzidine) and
stop solution, the amount of BDNF was determined by absorbance
in 450 nm. The standard curve demonstrates a direct relationship
between optical density and BDNF concentration. BDNF was
expressed as pg of BDNF per ml of serum obtained from hippocampal
homogenate. Total protein was measured by Lowry’s method using
bovine serum albumin as a standard.
Statistical analysis.
All data are presented as mean ± S.E.M. Dif-
ferences among experimental groups in the forced swimming, and
open-field test in the assessment of BDNF levels were determined
by one-way
,
followed by Turkey’s
post hoc
test when

was significant; P-values of <0.05 were considered to be statistical
significant.
Results
As depicted in fig. 1, chronic administration of the standard
antidepressant imipramine reduced in a significant manner
the immobility time of rats at 10, 20 and 30 mg/kg compared
to saline (F
(3.54)
= 6.66; P < 0.001). Interestingly, the intra-
peritoneal treatment with ketamine at the doses of 5, 10 and
15 mg/kg significantly decreased the immobility time of rats
compared to saline group (fig. 2; F
(3.55)
= 6.26; P = 0.001). In
the open-field test, the treatment with ketamine and imiprimine
at all doses tested did not modify the number of crossing
and rearing compared to saline-treated rats (fig. 3A and B;
P > 0.05).
3
4
5
XXXXXX
3
UNCORRECTED PROOF
© 2008 The Authors
Journal compilation
© 2008 Nordic Pharmacological Society.
Basic & Clinical Pharmacology & Toxicology
Figure 4 illustrated the effects of the chronic treatment
with imipramine (10, 20 and 30 mg/kg), ketamine (5, 10 and
15 mg/kg) and saline in BDNF levels of rat hippocampus.
The treatment with ketamine and imiprimine at all doses
tested did not modify the BDNF levels in the rat hippocampus
compared to saline group (P > 0.05).
Discussion
The present study demonstrates that (i) the chronic treatment
with all doses of ketamine and imipramine decreased the
immobility time of rats in the forced swimming test; (ii)
ketamine and imipramine did not affect spontaneous
locomotor activity in the open-field test; and (iii) chronic
treatment with ketamine and imipramine did not modify
BDNF protein levels in the rat hippocampus. Thus, consider-
ing the abuse potential and the risk of tolerance to the
effects of ketamine, our findings are quite relevant, because
preclinical and clinical available data report ‘antidepressant
effects’ just for acute administration of ketamine.
In fact, very recently, we have demonstrated that a single
injection of ketamine (10 and 15 mg/kg) and imipramine (20
and 30 mg/kg) decreased the immobility time of rats in the
forced swimming test, without modifying the locomotor
activity [13]. In the tail suspension test, ketamine also
produced anti-immobility effects in mice [15]. Yilmaz et al.
Fig. 1. Effects of chronic administration of imipramine (10, 20 and
30 mg/kg, intraperitoneally) on the immobility, swimming and
climbing time of rats subjected to the forced swimming test. Bars
represent means ± S.E.M. of 15 rats. *P < 0.05 versus saline
according to followed by Turkey’s post hoc test.
Fig. 2. Effects of chronic administration of ketamine (5, 10 and
15 mg/kg, intraperitoneally) on the immobility, swimming and
climbing time of rats subjected to the forced swimming test. Bars
represent means ± S.E.M. of 15 rats. *P < 0.05 versus saline
according to followed by Turkey’s post hoc test.
Fig. 3. Effects of chronic administration of ketamine (5, 10 and
15 mg/kg, intraperitoneally) and imipramine (10, 20 and 30 mg/kg,
intraperitoneally) on the number of crossings (A) and rearings (B)
of rats subjected to the open-field test. Bars represent means ±
S.E.M. of 15 rats.
Fig. 4. Effects of chronic administration of ketamine (5, 10 and
15 mg/kg, intraperitoneally) and imipramine (10, 20 and 30 mg/kg,
intraperitoneally) on the BDNF hippocampal levels in rats. Bars
represent means ± S.E.M. of 10 rats.
6
4
LÊDA S. GARCIA
ET AL.
UNCORRECTED PROOF
© 2008 The Authors
Journal compilation
© 2008 Nordic Pharmacological Society.
Basic & Clinical Pharmacology & Toxicology
[16] demonstrated that a single injection of an anaesthetic
dose of ketamine (160 mg/kg) reduced the immobility time
in the rat forced swimming test assessed 3, 7 or 10 days after
the injection. Other literature findings show that the treatment
with ketamine reversed the shock-induced increase of
immobility time in the mouse forced swimming test [17].
Maeng et al. [14] recently demonstrated that a single injection
ketamine reversed learned helplessness behaviour in mice,
and reduced immobility time in the mouse forced swimming
test assessed 30 min. and 2 weeks after the drug administration.
Taken together, these findings support robust and sustained
effects to ketamine on behavioural tests used for screening
antidepressant drugs.
The present study demonstrates that 14 days of imipramine
treatment, at doses of 10, 20 and 30 mg/kg reduced immobility
time of rats subjected to the forced swimming test. These
findings are in agreement with other authors that support
reduction of immobility time in the forced swimming test
after repeated administration of imipramine, especially at low
doses (such as 10 mg/kg), which were acutely inactive [26,27].
Interestingly enough, ketamine also reduced immobility
time in the forced swimming test at all doses tested, including
doses that were inactive after acute administration, such as
5 mg/kg, as we previously reported [13]. These findings
show that chronic administration of ketamine at low doses
(i.e. 5 mg/kg) induces behavioural responses that were not
elicited acutely, while at higher doses (i.e. 10 and 15 mg/kg)
no signs of tolerance were observed after the chronic exposure.
In 1995, Detke et al. [24] reported that despite the
anti-immobility effects, antidepressant drugs that enhance
noradrenergic neurotransmission increase climbing behaviour,
whereas the enhancement of serotonergic neurotransmission
increases swimming time in the rat forced swimming test.
Our findings indicate that ketamine, like imipramine, con-
sistently reduced immobility time and significantly increased
climbing and swimming behaviour in rats. Literature data
show that imipramine dose-dependently reduces immobility
time, and equally increases both climbing and swimming
behaviour in the rat forced swimming test [28]. It should be
mentioned that minalcipram, a dual NE/5-HT reuptake
inhibitor [29], or BW373U86, a
δ
-opioid agonist [30], produced
a pattern of response similar to imipramine in the rat forced
swimming test. Thus, these unique behavioural effects appear
to be a combination of differently acting antidepressants, or
they could be due to a totally new mechanism of antidepressant
action. Further studies aiming to investigate the mechanism(s)
by which ketamine produces antidepressant-like effects are
required.
Several findings support the important role played by
neurotrophic factors in mood disorders. Actually, reduced
brain BDNF levels have been found in post-mortem samples
from depressed patients, and antidepressant therapy restores
BDNF brain levels to the normal range in human beings
[18]. Interestingly, preclinical findings suggest that chronic
treatment with classic antidepressants most commonly
increases mRNA encoding BDNF [18], than BDNF protein
levels, in the rat hippocampus [19,20]. Possible explanations
of the lack of increasing BDNF levels in rats chronically
treated with imipramine could be that (i) the half-life of
BDNF is too short for detecting changes, while the concentra-
tion of the BDNF transcript is stronger and more stable;
and (ii) the level of stress experienced by animals (acute and
chronic) probably influences the turnover and expression of
BDNF, and consequently its availability in the brain. In
fact, studies have shown that naïve rats chronically
treated with classic antidepressants such as fluoxetine and
desipramine, display unaltered hippocampal BDNF protein
levels [19,20]. In contrast, learned helplessness rats display
reduced BDNF levels in the hippocampus compared to
naïve animals, and repeated treatment with imipramine
restores BDNF levels in learned helplessness rats [21]. These
observations suggest that BDNF levels could be reduced in
the hippocampus under chronic stressful situations, and
repeated antidepressant treatment could normalize it.
Recently, we reported that one single injection of ketamine,
but not imipramine, increased BDNF levels in the rat hippo-
campus, suggesting that ketamine can alter acutely, but not
chronically (present findings) BDNF hippocampal levels in
rats. Thus, an increase of BDNF hippocampal levels could
possibly occur early during chronic administration (such as
observed after acute injection of ketamine), but it may not
be more detectable at a later time because of adaptive
mechanisms or due to the development of tolerance to
ketamine effects on hippocampal BDNF levels.
Taken together, the present data demonstrate that the
repeated administration of NMDA receptor antagonist
ketamine reduces immobility time at all doses tested in the
rat forced swimming test. These findings are absolutely relevant
to the clinical use of ketamine, due to (i) acute inactive
doses of ketamine (i.e. 5 mg/kg) become active after chronic
treatment, and (ii) acute active doses of ketamine (i.e. 10
and 15 mg/kg) do not produce tolerance to the behavioural
effects when injected chronically in rats assessed in the
forced swimming test.
Our data also show that ketamine, similar to imipramine,
did not alter BDNF protein levels in the hippocampus of
rats subjected to the forced swimming test. It could be due
to the fact that repeated administration of antidepressants
increases BDNF hippocampal levels under chronic, stressful
stimulus, but not under acute, stressful situations such as
forced swim. Another fact is that acute (previous findings),
but not chronic (present data) administration of ketamine
increases BDNF levels in the hippocampus. These contrasting
effects could be due to adaptive mechanisms or induction of
tolerance to the effects of ketamine on BDNF protein levels.
Finally, further studies aiming to investigate the mechanisms
by which ketamine induces antidepressant-like effects is
mandatory to the development of novel antidepressant
drugs with rapid and robust onset of action.
Acknowledgements
This study was supported in part by CNPq (Brazil),
UNESC (Brazil), FAPESC (Brazil) and Instituto Cérebro e
Mente (Brazil).
7
XXXXXX
5
UNCORRECTED PROOF
© 2008 The Authors
Journal compilation
© 2008 Nordic Pharmacological Society.
Basic & Clinical Pharmacology & Toxicology
References
1Skolnick P. Antidepressants for the new millennium. Eur J
Pharmacol 1999;
375
:31–40.
2Frazer A, Morilak DA. What should animal models of depression
model? Neurosci Biobehav Rev 2005;
29
:515–23.
3Skolnick P, Popik P, Janowsky A, Beer B, Lippa AS. ‘Broad
spectrum’ antidepressants: is more better for the treatment of
depression? Life Sci 2003;
73
:3175–9.
4Javitt DC. Glutamate as a therapeutic target in psychiatric
disorders. Mol Psychiatry 2004;
9
:984–97.
5 Krystal JH, D’Souza DC, Petrakis IL et al. NMDA agonists
and antagonists as probes of glutamatergic dysfunction and
pharmacotherapies in neuropsychiatric disorders. Harv Rev
Psychiatry 1999;
7
:12543.
6 Pittenger C, Sanacora G, Krystal JH. The NMDA receptor as a
therapeutic target in major depressive disorder. CNS Neurol
Disord Drug Targets 2007;
6
:101–15.
7 Cosman KM, Boyle LL, Porsteinsson AP. Memantine in the
treatment of mild-to-moderate Alzheimer’s disease. Expert Opin
Pharmacother 2007;
8
:203–14.
8 Danysz W, Parsons CG. The NMDA receptor antagonist
memantine as a symptomatological and neuroprotective treatment
for Alzheimer’s disease: preclinical evidence. Int J Geriatr
Psychiatry 2003;
18
:S23–32.
9 Hirota K, Lambert DJ. Ketamine: its mechanism(s) of action
and unusual clinical uses. Br J Anaesth 1996;
77
:441–4.
10 Liebrenz M, Borgeat A, Leisinger R, Stohler R. Intravenous
ketamine therapy in a patient with a treatment-resistant major
depression. Swiss Med Wkly 2007;
137
:2346.
11 Zarate CA Jr, Singh JB, Carson PJ et al. A randomized trial of
an N-methyl-D-aspartate antagonist in treatment-resistant major
depression. Arch Gen Psychiatry 2006;
63
:85664.
12 Berman RB, Cappielo A, Anand A et al. Antidepressant effects
of ketamine in depressed patients. Biol Psychiatry 2000;
47
:351–4.
13 Garcia LS, Comim CM, Valvassori SS et al. Acute administration
of ketamine induces antidepressant-like effects in the forced
swimming test and increases BDNF levels in the rat hippocampus.
Prog Neuropsychopharmacol Biol Psychiatry 2007; in press;
doi:10.1016/j.pnpbp.2007.07.027.
14 Maeng S, Zarate CA Jr, Du J et al. Cellular Mechanisms
Underlying the Antidepressant Effects of Ketamine: Role of
alpha-Amino-3-Hydroxy-5-Methylisoxazole-4-Propionic Acid
Receptors. Biol Psychiatry 2007; in press; doi:10.1016/
j.biopsych.2007.05.028.
15 Kos T, Popik P, Pietraszek M et al. Effect of 5-HT3 receptor
antagonist MDL 72222 on behaviors induced by ketamine in
rats and mice. Eur Neuropsychopharmacol 2006;
16
:297–310.
16 Yilmaz A, Schulz D, Aksoy A, Canbeyli R. Prolonged effect of
an anesthetic dose of ketamine on behavioral despair. Pharmacol
Biochem Behav 2002;
71
:349–52.
17 Chaturvedi HK, Bapna JS, Chandra D. Effect of fluvoxamine
and N-methyl-D-aspartate receptor antagonists on shock-induced
depression in mice. Indian J Physiol Pharmacol 2001;
45
:199–207.
18 Castrén, E, Võikar, V, Rantamäki T. Role of neurotrophic factors
in depression. Curr Opin Pharmacol 2007;
7
:18–21.
19 De Foubert G, Carney SL, Robinson CS et al. Fluoxetine-induced
change in rat brain expression of brain-derived neurotrophic
factor varies depending on length of treatment. Neuroscience
2004;
128
:597–604.
20 Jacobsen JP, Mork A. The effect of escitalopram, desipramine,
electroconvulsive seizures and lithium on brain-derived
neurotrophic factor mRNA and protein expression in the rat
brain and the correlation to 5-HT and 5-HIAA levels. Brain Res
2004;
1024
:183–92.
21 Itoh T, Tokumura M, Abe K. Effects of rolipram, a phospho-
diesterase 4 inhibitor, in combination with imipramine on
depressive behavior, CRE-binding activity and BDNF level in
learned helplessness rats. Eur J Pharmacol 2004;
13
:13542.
22 McArthur R, Borsini F. Animal models of depression in drug
discovery: a historical perspective. Pharmacol Biochem Behav
2006;
84
:436–52.
23 Porsolt RD, Le Pichon M, Jalfre M. Animal model of depression.
Nature 1977;
266
:730–2.
24 Detke MJ, Rickels M, Lucki I. Active behaviors in the rat
forced swimming test differentially produced by serotonergic and
noradrenergic antidepressants. Psychopharmacology 1995;
121
:66
72.
25 Frey BN, Andreazza AC, Ceresér KMM et al. Effects of mood
stabilizers on hippocampus BDNF levels in an animal model of
mania. Life Sci 2006;
79
:281–6.
26 Kawashima K, Araki H, Aihara H. Effect of chronic administra-
tion of antidepressants on duration of immobility in rats forced
to swim. Jpn J Pharmacol 1986;
40
:199–204.
27 Gorka Z, Janus K. Effects of neuroleptics displaying antidepres-
sant activity on behavior of rats in the forced swimming test.
Pharmacol Biochem Behav 1985;
23
:2036.
28 Barros HM, Ferigolo M. Ethopharmacology of imipramine in
the forced-swimming test: gender differences. Neurosci Biobehav
Rev 1998;
23
:279–86.
29 Reneric JP, Bouvard M, Stinus L. In the rat forced swimming
test, chronic but not subacute administration of dual 5-HT/NA
antidepressant treatments may produce greater effects than
selective drugs. Behav Brain Res 2002;
136
:521–32.
30 Broom DC, Jutkiewicz EM, Folk JE, Traynor JR, Rice KC,
Woods JH. Nonpeptidic delta-opioid receptor agonists reduce
immobility in the forced swim assay in rats. Neuropsychophar-
macology 2002;
26
:744–55.
8
9
A
ut
h
or
Q
uery
F
orm
Journal: Basic & Clinical Pharmacology & Toxicology
Article: pto_210.fm
Dear Author,
During the copy-editing of your paper, the following queries arose. Please respond to these b
y
marking up your proofs with the necessary changes/additions. Please write your answers on the quer
y
sheet if there is insufficient space on the page proofs. Please write clearly and follow the conventions
shown on the attached corrections sheet. If returning the proof by fax do not write too close to the
paper’s edge. Please remember that illegible mark-ups may delay publication.
Many thanks for your assistance.
No. Query Remarks
1
Please change these addresses into English.
2
Please change this correspondence address into English.
3
Please define ’UNESC’ in English.
4
Please check this snetence, as there are some words missing
in this sentence (During the test session, were recorded in
seconds some . . . ).
5
Please check if changes made on this sentence are OK
(Differences among experimental groups . . . ).
6
Please supply a short title for this article, preferably not more
than 40 characters long including spaces.
7
Please define ’CNPq’, ’UNESC’ and ’FAPESC’, respectively, in
English.
8
Any updates of publication status on reference no. 13?
9
Any updates of publication status on reference no. 14?
MARKED PROOF
Please correct and return this set
Instruction to printer
Leave unchanged
under matter to remain
through single character, rule or underline
New matter followed by
or
or
or
or
or
or
or
or
or
and/or
and/or
e.g.
e.g.
under character
over character
new character
new characters
through all characters to be deleted
through letter or
through characters
under matter to be changed
under matter to be changed
under matter to be changed
under matter to be changed
under matter to be changed
Encircle matter to be changed
(As above)
(As above)
(As above)
(As above)
(As above)
(As above)
(As above)
(As above)
linking characters
through character or
where required
between characters or
words affected
through character or
where required
or
indicated in the margin
Delete
Substitute character or
substitute part of one or
more word(s)
Change to italics
Change to capitals
Change to small capitals
Change to bold type
Change to bold italic
Change to lower case
Change italic to upright type
Change bold to non-bold type
Insert ‘superior’ character
Insert ‘inferior’ character
Insert full stop
Insert comma
Insert single quotation marks
Insert double quotation marks
Insert hyphen
Start new paragraph
No new paragraph
Transpose
Close up
Insert or substitute space
between characters or words
Reduce space between
characters or words
Insert in text the matter
Textual mark Marginal mark
Please use the proof correction marks shown below for all alterations and corrections. If you
in dark ink and are made well within the page margins.
wish to return your proof by fax you should ensure that all amendments are written clearly
KETAMINE TREATMENT REVERSES BEHAVIORAL AND PHYSIOLOGICAL
ALTERATIONS INDUCED BY CHRONIC MILD STRESS IN RATS
Lêda S.B. Garcia
a
, Clarissa M. Comim
a
, Samira S. Valvassori
a
, Gislaine Z.
Réus
a
, Laura Stertz
b
, Flávio Kapczinski
b
, Elaine C. Gavioli
a
, João Quevedo
a*
a
Laboratory of Neurosciences, Postgraduate Programme in Health Sciences,
University of Extremo Sul Catarinense, Criciúma, SC, Brazil
b
Bipolar Disorders Program and Molecular Psychiatry Laboratory, 90035-003
Porto Alegre, RS, Brazil.
*Corresponding author:
Prof. João Quevedo, MD, PhD
Laboratório de Neurociências,
Programa de Pós-Graduação em Ciências da Saúde,
Unidade Acadêmica de Ciências da Saúde,
Universidade do Extremo Sul Catarinense,
88806-000 Criciúma, SC, Brazil
Fax: +55 48 3443 4817.
ABSTRACT
Several studies have supported the idea that ionotropic glutamate N-methyl-D-
aspartate receptor (NMDA) is an important player in the etiology of
psychopathologies, such as anxiety disorders and major depression. A growing
body of evidence has pointed to the blockade of the NMDA receptor signaling
as a potential therapeutic target for the treatment of major depression. Available
antidepressants may take long-lasting time to exhibit their main therapeutic
effects nevertheless. The purpose of the present study was to evaluate
behavioral and physiological effects of acute and chronic administration of
ketamine, a NMDA receptor antagonist, in rats exposed to Chronic Mild Stress
procedure. To this aim, after 40 days of exposure to CMS procedure, rats were
treated with ketamine (15 mg/kg) and assessed sweet food consumption, body
and adrenal gland weight, corticosterone and adrenocorticotropic (ACTH)
hormone levels, and hippocampal BDNF protein levels. Our findings
demonstrated that chronic stressful situations induced anhedonia, evoked
hypertrophy of adrenal gland weight, impaired gain of body weight and
increased cortisol and ACTH circulating levels in rats. Acute and chronic
treatment with ketamine reversed the increase of adrenal gland weight,
promoted regain of body weight, and normalized cortisol and ACTH circulating
levels. Repeated, but not acute, administration of ketamine reversed anhedonia.
Finally, acute and chronic ketamine treatment did not alter hippocampal BDNF
protein levels in CMS rats. In conclusion, these findings support to the idea of a
potencial role of NMDA receptors in depression-like symptoms and the rapid
and robust effects of ketamine in the reversion of anhedonic behavior and
physiological alterations induced by chronic mild stressful situations in rats.
KEY WORDS: chronic mild stress; rat; ketamine; NMDA receptor; anhedonia.
ABBREVIATIONS:
ACTH (adrenocorticotropic hormone);
BDNF (brain-derived neurotrofic factor);
CMS (chronic mild stress);
(HPA) hypothalamic-pituitary-adrenal.
NMDA (N-methyl-D-aspartate)
1. INTRODUCTION
Major depression is a serious and recurrent disorder often manifested
with psychological, behavioral and physiological symptoms. It affects 17-20% of
the population of the world resulting in premature death, major social deficits
and economic consequences (Kessler et al., 1994). Among people with major
depression, 75-85% have recurrent episodes (Keller et al., 1986; Mueller, 1999)
and 10-30% recover incompletely and have persistent and residual depressive
symptoms (Mann, 2005).
The pharmacotherapy of depression is widely prescribed by physicians,
although less than half of treated patients attain complete remission after
therapy with a single antidepressant. Others exhibit partial, refractory or
intolerant responses to the pharmacological treatment, emphasizing the need to
discover novel antidepressants (Pacher et al., 2001). The challenges for the
design of new antidepressant agents are threefold: rapid onset of
antidepressant response, broader efficacy, and fewer adverse effects. While
progress has been made to reduce side-effects, currently available
antidepressants do not show convincing evidence for a shorter delay of onset of
therapeutic actions neither for improved efficacy on the treatment of major
depression (Nutt, 2002).
Several studies have supported the idea that ionotropic glutamate N-
methyl-D-aspartate receptor (NMDA) is an important player in the etiology of
psychopathologies, such as anxiety disorders and major depression (Javitt,
2004; Krystal et al., 1999). A growing body of evidence has pointed to the
blockade of the NMDA receptor signaling as a potential therapeutic target for
the treatment of major depression. Several preclinical studies have
demonstrated that NMDA antagonists, such as MK-801, AP7, CPP,
neramexane and others, display anxiolytic- and antidepressant-like effects in
rats injected into distinct brain areas and subjected to various animal models of
anxiety and depression (Kos et al., 2006; Molchanov and Guimarães, 2002;
Menard and Treit, 2000; Matheus and Guimarães, 1997; Skolnick et al., 1996;
Maj et al., 1992).
Ketamine is a NMDA receptor antagonist which displays high affinity to
the phencyclidine binding site, within the ionotropic channel. The quite unique
ability of ketamine to block the NMDA receptor is based on: 1) higher affinity for
the NMDA receptor; 2) much slower open-channel blocking/unblocking kinetics;
3) a different type of channel closure (ie, “trapping block” as opposed to “partial
trapping” properties); 4) a non selective blockage of voltage-sensitive Ca2+
channels, and opioid, monoaminergic and muscarinic receptors, than other
NMDA receptor antagonist (Bolshakov et al., 2003; for a review: Hirota and
Lambert, 1996). Some of these properties may explain why ketamine was found
to have significant antidepressant actions. In fact, administration of ketamine
has been shown to induce antidepressant effects in humans as well as in
rodents subjected to animal models of depression (for a review see: Maeng and
Zarate, 2007). In a pilot study developed by Berman et al. (2000), seven human
patients with treatment resistant depression showed significant improvement in
depressive symptoms within 72 hours of ketamine treatment. Other studies
replicated these findings and the results confirmed a rapid onset of action for
ketamine on the treatment of major depression (Zarate et al., 2006a; Liebrenz
et al., 2007a; Liebrenz et al., 2007b). Studies with animals models showed that
acute and chronic administration of ketamine induces robust and sustained
antidepressant-like effects in distinct animal models of depression, such as
learned helplessness and forced swimming test (Chatuverdi et al., 2001;
Yalmaz et al., 2002; Garcia et al., 2008a, 2008b; Maeng et al., 2008).
The role played by neurotrophic factors, particularly the brain-derived
neurotrophic factor (BDNF), in neurogenesis has also been considered
important in the mechanism of action of antidepressant drugs (for a review see:
Castren et al., 2007). BDNF has important functions in the adult human brain as
a regulator of neuronal survival, fast synaptic transmission, and activity-
dependent synaptic plasticity (Lewin and Barde, 1996; Hashimoto et al., 2004;
Blum and Konnert, 2005). However, in rodents, a limited number of studies has
investigated the hippocampal BDNF protein levels in antidepressant-treated
animals and available data indicate that antidepressant treatment did not affect
the total amount of that hippocampal protein (Jacobsen and Mork, 2004; Garcia
et al., 2008a, 2008b). Very recently, we demonstrated that distinct from
imipramine – a tricyclic antidepressant drug, acute injection of ketamine
increased BDNF protein levels in the hippocampus of rats (Garcia et al.,
2008a)., suggesting therefore that ketamine could be an innovative
antidepressant drug by inducing distinct molecular effects on the rat
hippocampus compared to classic antidepressant.
In this context, the chronic mild stress (CMS) model has been shown to
induce lower consumption of sucrose (sweet food), postulated to reflect
anhedonia (the loss of interest or pleasure) in animals, one of the two core
symptoms required for diagnosis of a major depressive episode in humans
(Katz, 1981; Willner, 1987; Willner, 1997). The exposure of rats to CMS also
induces changes in hypothalamic-pituitary-adrenal axis, loss of body weight,
and adrenal hypertrophy, which leads to corticosterone hypersecretion
(Vollmayr and Henn, 2003). The CMS paradigm described by Willner and
collaborators (1987) is a model of depression obtained by using chronic
unpredictable mild stressors (Wilner, 2005). The CMS model is based on
intensive labor, space demanding and long stress procedure which consists of
exposing animals sequentially to a variety of mild and unpredictable “stressors”
(e.g. isolation, water and food deprivation, restraint, forced swimming, flashing
light exposure) for a period of 4-6 weeks. The protocol is regarded as being
close to model the human situation, consisting more of daily hassles than
traumatic events (Wilner, 2005).
The present study aimed to investigate behavioral and physiological effects of
acute and repeated administration of ketamine in rats submitted to the chronic
mild stress procedure. Rats were subjected to 40 days of chronic unpredictable
stressful stimuli and, afterwards, sucrose consumption was assessed through
repeated sessions in saline- and ketamine-treated rats. Additionally, as
physiological parameters, body and adrenal gland were weighed, corticosterone
and ACTH circulating levels were analyzed in the serum. Finally, the amount of
hippocampal BDNF protein levels was assessed in all experimental groups.
The present study aimed to investigate behavioral and physiological
effects of acute and chronic administration of ketamine in rats submitted to the
chronic mild stress procedure. Rats were subjected to 40 days of chronic
unpredictable stressful stimuli, and afterwards sucrose consumption was
assessed through repeated sessions in saline- and ketamine-treated rats.
Additionally, as physiological parameters, body and adrenal gland were
weighed, corticosterone and ACTH circulating levels were analyzed in the
serum. Finally, the amount of hippocampal BDNF protein levels was assessed
in all experimental groups.
2. MATERIAL AND METHODS
2.1 Animals
Male Wistar rats (3-4 months, 220-310 g) were obtained from our
breeding colony (UNESC). The animals were housed 5 to a cage with food and
water available ad libitum (except for the stressed group during the period when
the stressor applied required no food or no water) and were maintained on a 12-
h light/dark cycle (lights on at 7:00 am). All experimental procedures involving
animals were performed in accordance with the NIH Guide for the Care and
Use of Laboratory Animals and the Brazilian Society for Neuroscience and
Behavior (SBNeC) recommendations for animal care.
2.2 Drugs and Treatment
Ketamine (Fort Dodge Animal Health - Fort Dodge, IA, USA) in dose of
15 mg/kg (as previously used by Garcia et al., 2008a, 2008b) was injected
intraperitoneally, one day (acute treatment) or once a day, across 7 days
(chronic treatment) after CMS procedure. All treatments were administered in a
volume of 1 ml/kg.
To develop this study we employed 90 animals (n=15) separated in six groups,
as follows: 1) non stressed – saline; 2) non stressed - acute ketamine; 3) non
stressed - chronic ketamine; 4) stressed – saline; 5) stressed - acute ketamine;
6) stressed - chronic ketamine. The chronic treatment with ketamine was
performed during the anhedonia test, once a day, across 7 days, 60 min prior to
behavioral assessment. In the acute treatment, the unique dose of ketamine
was administered in the first day of the anhedonia test, also 60 min before the
behavioral test.
2.3 Experimental Procedure
Chronic mild stress (CMS) protocol was adapted from the procedure
described by Gamaro and collaborators (2003). The animals were divided in
two groups: control and stressed. During the 40 days of treatment, control rats
were kept undisturbed in their home cages according conditions previously
refered (see above: 2.1 Animals). The 40-days CMS paradigm was used for the
stressed group rats. Individual stressors and length of time applied each day
are listed on Table 1. The following stressors were used: (i) 24h of food
deprivation; (ii) 24h of water deprivation; (iii) 1-3 h of restraint as described later,
(iv) 1,5-2 h of restraint at 4°C; (v) forced swimming during 10 or 15 min as
described later; (vi) flashing light for 120-210 min; (vii) isolation (2-3 days).
Stressors stimuli were applied at different time everyday, in order to minimize its
predictability.
Restraint was carried out by placing the animal in a 25 x 7cm plastic tube
and adjusting it with plaster tape on the outside, so that the animal was unable
to move. There was a 1cm hole at the far end for breathing. Forced swimming
was carried out by placing the animal in a glass tank measuring 50 x 47cm with
30 cm of water at 23±2°C. Exposure to flashing light was made by placing the
animal in a 60 x 60 x 25 cm plywood made box divided in 16 cells of 15 x 15 x
25 cm with a frontal glass wall. It was used a 40 w lamp flashing at frequency of
60 flashes/minute.
2.4 Sweet food consumption (anhedonia test)
After 40 days of treatment, consumption of sweet food was measured to
verify anhedonia. The animals were placed in a rectangular box (40 × 15 × 20
cm) with a glass ceiling, floor and side walls made of wood and divided into 9
equal rectangles by black lines. This test was performed between 8:00 a.m. and
12:00 a.m. Ten Froot Loops (Kellogg’s® pellets of wheat and corn starch and
sucrose) were placed on an extremity of the box. Animals were submitted to 5
sessions of 3 min each, once a day, to familiarize with this food (training
sessions) and, afterwards, the animals were exposed to two test sessions, 3
min each, and the number of ingested pellets and the spontaneous locomotor
activity (number of crossings over the black lines and rearings) were measured
(Gamaro et al., 2003; Frey et al., 2006). After each rat be tested, it took 40
seconds to clean the apparatus in order to prevent the smell of the previous rat
from affecting the behavior of subsequent animals.
It was established that when the animal ate part of the Froot (e.g. 1/3 or
1/4), this fraction would be considered as one unit according previous studies
(Katz et al., 1981; Gamaro et al., 2003; Wilner, 2005; Grønli et al., 2006). These
two evaluations were made with the animals fed ad libitum. It was done since
food deprivation, which is used in many behavior tasks as a motivating stimulus,
may also be an acute stressor (Katz et al., 1981; Gamaro et al., 2003). Body
weight was measured at the beginning (1
st
day) of the chronic mild stress
protocol and after 7 days of finished protocol.
On the seventh day of consumption of sweet food, immediately after the
last Froot Loop session, under ether anesthesia, blood was collected by cardiac
puncture, for subsequent analyses of corticosterone and adrenocorticotropic
(ACTH) serum levels. After euthanizing the rats by decapitation, the brains were
dissected and hippocampi were isolated immediately and then stored at -80°C
for later analysis of BDNF protein levels. The adrenal gland (only the right one)
was removed, through laparotomy, and weighed in an analytical balance.
Adrenal gland weight was used in this study as an indirect parameter of
hypothalamic-pituitary-adrenal axis activation (Gamaro et al., 2003).
2.5 Corticosterone and ACTH circulating levels
Corticosterone levels were determined using enzyme immunoassay kits.
Serum concentrations of ACTH were determined using commercially available
radioimmunoassay kits for animals. Both analyses were performed by a
commercial laboratory blind to the experiments.
2.6 Rat hippocampal BDNF level measurement.
The measurement of BDNF hippocampal levels was performed, as
previously described (Frey et al., 2006), by anti-BDNF sandwich-ELISA,
according to the manufacturer instructions (Chemicon International Inc.,
Temecula, CA, USA). Briefly, rat hippocampus was homogenized in phosphate-
buffered solution with 1 mM phenylmethylsulfonyl fluoride and 1 mM
ethyleneglycoltetraacetic acid. Microtiter plates (96-well flat-bottom) were
coated for 24 hr with the samples diluted 1:2 in sample diluent and standard
curve ranged from 7.8 to 500 pg/ml of BNDF. The plates were then washed four
times with sample diluent and a monoclonal anti-BDNF rabbit antibody diluted
1:1000 in sample diluent was added to each well and incubated for 3 hr at room
temperature. After washing, a peroxidase-conjugated anti-BDNF rabbit antibody
(horseradish peroxidase enzyme; diluted 1:1000) was added to each well and
incubated at room temperature for 1 hr. After addition of streptavidin enzyme,
substrate (3,3,5,5-tetramethylbenzidine) and stop solution, the amount of
BDNF was determined by absorbance in 450 nm. The standard curve
demonstrates a direct relationship between optical density and BDNF
concentration. BDNF was expressed as pg of BDNF per ml of serum obtained
from hippocampal homogenate. Total protein was measured by Lowry’s method
using bovine serum albumin as standard.
2.7 Statistical analysis
The Statistical Package for the Social Sciences (SPSS) 15.0 was utilized
for statistical analyses. All data are presented as mean ± S.E.M (the data was
normally distributed). Differences among experimental groups were determined
by one-way ANOVA followed by Tukey’s post hoc test for sweet food intake,
locomotor activity, adrenal gland weight, corticosterone and ACTH circulating
levels and BDNF hippocampal levels. By contrast, body weight was analyzed by
employing Student’s t-test for paired data. P values less than 0.05 were
considered statistically significant.
RESULTS
As depicted in Figure 1, stressed rats treated with saline displayed
decreased sweet food intake compared with control rats treated with saline (F
(5-
77)
=24,109; p=0,0001). Statistical analyses revealed that chronic treatment with
ketamine increased sweet food intake when compared with stressed rats
treated with saline (F
(5-77)
=24,109; p=0,0001). Acute treatment with ketamine
(stressed rats) did not alter sweet food intake when compared with stressed
rats treated with saline (F
(5-77)
=24,109; p=0,218). Additionally, it should be noted
that non-stressed rats chronically treated with ketamine increased sweet food
intake when compared with control rats treated with saline (F
(5-77)
=24,109;
p=0,012).
The open-field test evaluate locomotor activity in rats after 40-days of
chronic stressful stimuli and it was not observed any changes in the number of
crossings (F
(5-77)
=0,088 p=0,994) and rearings (F
(5-77)
=1,400; p=0,234)
displayed by all groups (date not shown).
The effects of the CMS protocol in body weight is illustrated in Figure 2.
Stressed rats treated with saline failed to gain weight (t= 1.065; df=13;
p=0,306). In contrast, stressed animals gained weight after the treatment with
ketamine (acute and chronic) compared with the body weight assessed at the
beginning of the experiment. Before experimental procedure it was not
observed body weight difference between groups (F
(5-75)
=0,941; p=0,459).
Corticosterone, ACTH hormone levels and adrenal gland weight are
shown in Figure 3A, 3B and 3C respectively. Rats subjected to the CMS
procedure, and treated with saline, displayed increased corticosterone (F
(5-
23)
=5.149; p=0,023) and ACTH (F
(5-21)
=4.276; p=0,033) hormone levels
compared with non-stressed rats injected with saline. The treatment of stressed
rats with ketamine compared with those treated with saline reverted the
increase of circulating cortisol in acute (F
(5-23)
=5.149; p=0,004) and chronic
treatment (F
(5-23)
=5.149; p=0,002) and ACTH in acute (F
(5-21)
=4.276; p=0,017)
and chronic treatment (F
(5-21)
=4.276; p=0,008) hormone levels compared with
stressed rats treated with saline. CMS procedure induced an increase of rat
adrenal gland weight in stressed rats treated with saline compared with non-
stressed rats injected with saline (F
(5-67)
=14,717; p=0,001). Interesting enough,
the treatment with ketamine (acute and chronic) reestablished a normal range
of adrenal gland weight in stressed rats. In the figure 2, non-stressed rats
treated with saline or ketamine (acute and chronic) gained weight compared
with the beginning of the experiment.
The analyses of hippocampus BDNF levels in stressed rats, as well as in
non stressed animals, injected with saline did not display any alteration (F
(5-
32)
=0.926; p=0,409). In the same way, ketamine (acute and chronic) treatment
did not alter BDNF protein levels in the hippocampus independent of stress
condition (date not shown).
DISCUSSION
The present study demonstrated that: (1) CMS rats displayed reduced sweet
food intake, without significant changes in locomotor activity; (2) CMS rats failed
to gain weight, and displayed hypertrophy of adrenal gland compared to non-
stressed rats; (3) CMS rats displayed increase of corticosterone and ACTH
circulating levels compared to non-stressed rats; (4) hippocampus BDNF
protein levels were not altered in the CMS rats; (5) chronic (but not acute)
administration of ketamine reversed the anhedonic behavior induced by chronic
stressful stimuli, and (6) acute/chronic ketamine treatment reversed the
increase of adrenal gland weight and corticosterone and ACTH circulating
levels, and prompted the gain of body weight in CMS rats and finally (7)
acute/chronic ketamine treatment did not alter hippocampal BDNF protein levels
in CMS rats.
The CMS paradigm is a model of depression characterized for chronic
unpredictable mild stressors (Willner, 2005). In the CMS model, both
consumption of and preference for sucrose intake, as well as decreased
intracranial self stimulation behavior, have served as markers of generalized
decrease in sensitivity to reward and it is quite related to anhedonia (Willner et
al., 1987; Gamaro et al., 2003; Berkris et al., 2005). In accordance with the
literature, present data confirm that rats exposed to CMS procedure, and
treated with saline, consumed less sweet food compared to non-stressed rats
treated with saline. These findings suggest that, under our experimental
conditions, the CMS procedure induced anhedonic behavior in our rats.
The present findings revealed that repeated administration of ketamine
reversed the anhedonic behavior in CMS rats and, indeed, increased sweet
food consumption in non-stressed rats. In fact, literature findings show that
distinct NMDA receptor antagonists, such as AP-1 and MK801, increase food
intake in rodents (Burns and Ritter, 1998; Treece et al., 2000; Jahng and Houpt,
2001). These behavioral effects seem to be a mixture of central and visceral
actions of NMDA receptor antagonists. Burns and Ritter (1998) have shown that
the destruction of small unmyelinated visceral afferent neurons, which carry the
satiety signals from viscera to satiety centre in the CNS, blocked the increase of
food intake in MK801 treated rats. Additionally, Treece and colleagues (2000)
have shown that the lesion of caudomedial subnucleus of the solitary tract
and/or dorsal motor nucleus of the vagus in MK801-treated rats resulted in
nearly the same amount of consumption of sucrose as compared with saline.
Based on these findings, we cannot rule out the hypothesis that ketamine
reversed the anhedonic behavior in rats subjected to CMS due to a direct effect
of this drug on food consumption. However, failed to gain weight in stressed
rats should not be ignored. Emotional changes, such as exposure to stress
situations, can influence feeding behavior, and studies have demonstrated that
chronic exposure to stressors may alter body weight of rats (Dess et al., 1988;
Gamaro et al., 2003; Berkris et al., 2005). In accordance with literature data, our
findings also demonstrated loss of body weight in CMS rats compared to non-
stressed rats. Interesting enough, CMS rats acutely or chronically treated with
ketamine regain body weight compared with stressed rats injected with saline.
Thus, the rapid recovery of body weight in stressed rats could suggest that
NMDA receptors could be modulating feeding behavior during stressful
situations.
Our findings also demonstrated an increase in adrenal gland weight in
CMS rats compared with non-stressed rats. Interestingly, acute and repeated
administration of ketamine reversed the hypertrophy of adrenal gland in
stressed rats. Distinct authors have already suggested an increase of rat
adrenal weight after 14 (Harro et al., 2001) or 28 days (Konarska et al., 1990) of
CMS paradigm. The hypertrophy of adrenal gland could be mediated by the
increase of ACTH circulating hormone, which is released in high concentrations
during stressful situations by anterior pituitary gland (O'Connor et al., 2000).
According to this view, our findings showed that ACTH and corticosterone
circulating levels were increased in stressed rats compared with non-stressed
animals. Importantly, acute and repeated administration of ketamine reversed
these hormonal alterations in CMS rats, thus, reinforcing the idea of a relevant
role played by glutamatergic signaling, via NMDA receptors, in the mediation of
physiological aspects of stress.
In the context, several studies support the hypothesis of BDNF
involvement in depression and suggest that depressive disorders induce a
marked decrease in plasma BDNF levels (for a review see: Castren et al., 2007;
Lee et al., 2007). Actually, reduced brain BDNF levels have been found in
postmortem samples from depressed patients, and antidepressant therapy
restores BDNF brain levels to the normal range in human beings (Castren et al.,
2007). Importantly, present study showed that CMS rats treated with saline did
not display alteration in BDNF protein levels in the rat hippocampus compared
with non-stressed group. In accordance with our findings, Grønli and colleagues
(2006) demonstrated that rats exposed for 5 weeks to repeated, unpredictable,
mild stressors showed reduced BDNF expression and inhibited in the dentate
gyrus, whereas no significant effects were observed in the hippocampus proper.
Thus, suggesting that BDNF protein alterations could occur after stressful
situations in some specific hippocampal areas, but not in the entirely structure.
Additionally, we should not rule out the fact that hippocampal BDNF protein
levels could be normalized while the BDNF measurement was being performed,
since these analyses were done on the 7th day after CMS protocol. In acute
administration of ketamine (15 mg/kg) it was demonstrated an increase in
BDNF protein levels in the rat hippocampus (Garcia et al., 2008a), while
repeated (14 days) administration of ketamine (at the same dose) did not alter
this hippocampal protein levels (Garcia et al., 2008b).
The hippocampus has been implicated in many cognitive aspects of
depression and the heterogeneity of clinical findings in major depression
suggests that multiple neurocircuits and neurochemicals aspects are involved in
its pathogenesis. Anhedonia is a particularly characteristic feature of major
depression and may provide insights into its underlying neurobiology.
Importantly, this symptom appears to be mediated by dopaminergic mesolimbic
and mesostriatal projections that are, in turn, influenced by key gene variants
and environment stressors (for a review: Stein, 2008). It is known that stress
decreases the expression of BDNF in limbic structures and that chronic
antidepressant treatment reverses the effects of stress. These decreased levels
of BDNF could contribute to the atrophy of certain limbic structures, including
the hippocampus and prefrontal cortex, that has been observed in depressed
subjects (for reviews: Duman and Monteggia, 2006; Castren et al., 2007).
In this study, we did not evaluated available BDNF levels in mesolimbic
system, but we cannot rule out the idea that this protein can be found in this
area. We evaluated hippocampus, one of the several limbic structures that have
been implicated in mood disorders. Hippocampal circuitry is also involved in
learning and memory functions and in regulation of the hypothalamic-pituitary-
adrenal axis that are altered in depression. In addition, the hippocampus has
connections with amygdala and prefrontal cortex, regions that show straight
involvement in emotion and cognition and, thereby contribute to other major
symptoms of depression (for review: Duman and Monteggia, 2006). Our data
demonstrate that repeated administration of ketamine (15 mg/kg) did not modify
hippocampal BDNF protein levels neither in CMS rats nor in control animals
however, it should be considered that the failure in reduction of hippocampal
BDNF protein levels in CMS rats could influence a possible effect of ketamine
on the amount of BDNF protein available in the hippocampus or, in other words,
ketamine would not be able to increase BDNF levels if stress did not reduce the
amount of hippocampal protein. Thus, ketamine action could have suffered
consequences of changes in HPA axis or even received interference of other
signalizations pathways.
CONCLUSION
The present findings suggest that chronic treatment with ketamine reversed the
effect of stress in rats subjected to CMS model and, thus reversed the decrease
on sweet food intake and this behavior is related to anhedonia. Additionally, our
findings revealed that acute as well as repeated administration of ketamine
reversed loss of body weight, the hypertrophy of adrenal glands, and the
increase of ACTH and corticosterone circulating levels. These findings could
suggest a participation of glutamatergic activation, via NMDA receptors, in the
mediation of physiological changes in rats subjected to stressful situations.
Finally, further studies aiming to investigate the mechanisms by which ketamine
induces antidepressant-like effects are mandatory for the development of
innovative antidepressant drugs with rapid onset of action.
Acknowledgements: This research was supported by grants from CNPq
(ECG, FK and JQ), FAPESC (ECG and JQ), Instituto Cérebro e Mente (FK,
ECG and JQ) and UNESC (ECG and JQ). FK and JQ are CNPq Research
Fellows. SSV is holder of a CAPES studentship, CMC is holder of a CNPq
Studentship, and GZR is holder of a FAPESC/CAPES studentship.
Statement of Interest: none.
REFERENCES
Bekris S, Antoniou K, Daskas S, Papadopoulou-Daifoti Z. Behavioural and
neurochemical effects induced by chronic mild stress applied to two different rat
strains. Behav Brain Res 2005; 161:45-59.
Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS,
Krystal JH. Antidepressant effects of ketamine in depressed patients. Biol
Psychiatry 2000; 47:351–354.
Bolshakov KV, Gmiro VE, Tikhonov DB, Magazanik LG. Determinants of
trapping block of N-methyl-d-aspartate receptor channels. J Neurochem 2003;
87:56–65.
Burns GA, Ritter RC. Visceral afferent participation in delayed satiation
following NMDA receptor blockade. Physiol Behav 1998; 65:361-6.
Castrén, E, Võikar, V, Rantamäki T. Role of neurotrophic factors in depression.
Curr Opin Pharmacol 2007; 7:18-21
Castrén E. Neurotrophic effects of antidepressant drugs. Curr Opin Pharmacol
2004; 4:58-64.
Chaturvedi HK, Bapna JS, Chandra D. Effect of fluvoxamine and N-methyl-D-
aspartate receptor antagonists on shock-induced depression in mice. Indian J
Physiol Pharmacol 2001; 45:199–207.
De Foubert G, Carney SL, Robinson CS, Destexhe EJ, Tomlinson R, Hicks CA,
Murray TK, Gaillard JP, Deville C, Xhenseval V, Thomas CE, O'Neill MJ,
Zetterström TS. Fluoxetine-induced change in rat brain expression of brain-
derived neurotrophic factor varies depending on length of treatment.
Neuroscience 2004; 128:597.604.
Dess NK, Raizer J, Chapman CD, Garcia J. Stressors in the learned
helplessness paradigm: effects on body weight and conditioned taste aversion
in rats. Physiol Behav 1988; 44:483–490.
Duman RS, Monteggia LM. A neurotrophic model for stress-related mood
disorders. Biol Psychiatry 2006; 59:1116-27.
Frey BN, Valvassori SS, Gomes KM, Martins MR, Dal-Pizzol F, Kapczinski F,
Quevedo J. Increased oxidative stress in submitochondrial particles after
chronic amphetamine exposure. Brain Res 2006; 1097:224-9.
Gamaro GD, Manoli LP, Torres IL, Silveira R, Dalmaz C. Effects stress on
feeding behavior and on monoamine levels in structures. Neurochem Int 2003;
42:107-14.
Garcia LS, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC,
Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J .Acute administration
of ketamine induces antidepressant-like effects in the forced swimming test and
increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol
Biol Psychiatry 2008a; 1:140-4.
Garcia LS, Comim CL, Valvassori, SS, Réus GZ, Andreazza, AC, Stertz L,
Fries GR, Gavioli CG, Kapczinski F, Quevedo J. Chronic Administration of
Ketamine Elicits Antidepressant-Like Effects in Rats without Affecting
Hippocampal Brain-Derived Neurotrophic Factor Protein Levels. Basic Clin
Pharmacol Toxicol, in Press, 2008b. Doi: 10.1111/j.1742-7843.2008.00210.x
Gillespie CF, Nemeroff CB. Hypercortisolemia and depression. Psychosomatic
Medicine 2005; 67:26-28.
Grønli J, Bramham C, Murison R, Kanhema T, Fiske E, Bjorvatn B, Ursin R,
Portas CM
. Chronic mild stress inhibits BDNF protein expression and CREB
activation in the dentate gyrus but not in the hippocampus proper. Pharmacol
Biochem Behav 2006; 85:842-849.
Harro J, Tonissaar M, Eller M, Kask A, Oreland L. Chronic variable stress and
partial 5-HT denervation by parachloroamphetamine treatment in the rat: effects
on behavior and monoamine neurochemistry. Brain Res 2001; 899: 227–239.
Hirota K, Lambert DJ. Ketamine: its mechanism(s) of action and unusual clinical
uses. Br J Anaesth 1996; 77:441–4.
Jacobsen JP, Mork A. The effect of escitalopram, desipramine,
electroconvulsive seizures and lithium on brain-derived neurotrophic factor
mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-
HIAA levels. Brain Res 2004; 1024:183–92.
Jahng JW
, Houpt TA. MK801 increases feeding and decreases drinking in
nondeprived, freely feeding rats. Pharmacol Biochem Behav 2001; 68:181-6.
Javitt DC. Glutamate as a therapeutic target in psychiatric disorders. Mol
Psychiatry 2004;9:984–97.
Katz RJ, Roth KA, Carroll BJ. Animal models and human depressive disorders.
Neurosci Biobehav Rev 1981; 5:231–246.
Keller MB
, Lavori PW, Rice J, Coryell W, Hirschfeld RM. The persistent risk of
chronicity in recurrent episodes of nonbipolar major depressive disorder: a
prospective follow-up. Am J Psychiatry 1986; 143:24-28.
Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S,
Wittchen HU, Kendler KS. Lifetime and 12-month prevalence of DSM-III-R
psychiatric disorders in the United States. Results from the National
Comorbidity Survey. Arch Gen Psychiatry 1994; 51:8-19.
Konarska M, Stewart RE, McCarty R. Predictability of chronic intermittent
stress: effects on sympathetic-adrenal medullary responses of laboratory rats.
Behav Neural Biol 1990; 53:231–243.
Kos T, Legutko B, Danysz W, Samoriski G, Popik P. Enhancement of
antidepressant-like effects but not brain-derived neurotrophic factor mRNA
expression by the novel N-methyl-D-aspartate receptor antagonist neramexane
in mice. J Pharmacol Exp Ther 2006a;318(323):1128–36.
Krystal JH, D'Souza DC, Petrakis IL, Belger A, Berman RM, Charney DS, et al.
NMDA agonists and antagonists as probes of glutamatergic dysfunction and
pharmacotherapies in neuropsychiatric disorders. Harv Rev Psychiatry
1999;7:125–43.
Lee BH, Kim H, Park SH, Kim YK. Decreased plasma BDNF level in depressive
patients. J Affect Disord 2007; 101:239-44.
Liebrenz M, Borgeat A, Leisinger R, Stohler R. Intravenous ketamine therapy in
a patient with a treatment-resistant major depression. Swiss Med Wkly 2007a;
137: 234-6.
Liebrenz M, Stohler R, Borgeat A. Repeated intravenous ketamine therapy in a
patient with treatment-resistant major depression. J Neurol Psychiatry 2007b;
10:1-4.
Maeng S, Zarate CA Jr. The role of glutamate in mood disorders: results from
the ketamine in major depression study and the presumed cellular mechanism
underlying its antidepressant effects. Curr Psychiatry Rep 2007; 9:467-74.
Maj J, Rogoz Z, Skuza G, Sowinska H. The effect of CGP 37849 and CGP
39551, competitive NMDA receptor antagonists, in the forced swimming test.
Pol J Pharmacol Pharm 1992;44:337–46.
Mann, JJ. The medical management of depression. N Engl J Med 2005;
353:1819-34.
Martinowich K, Manji H, Lu B. New insights into BDNF function in depression
and anxiety. Nat Neurosci 2007; 10:1089-93.
Matheus MG, Guimarães FS. Antagonism of non-NMDA receptors in the dorsal
periaqueductal grey induces anxiolytic effect in the elevated plus maze.
Psychopharmacology (Berl) 1997;132:14–8.
Menard J, Treit D. Intra-septal infusions of excitatory amino acid receptor
antagonists have differential effects in two animal models of anxiety. Behav
Pharmacol 2000;11:99–108.
Molchanov ML, Guimarães FS. Anxiolytic-like effects of AP7 injected into the
dorsolateral or ventrolateral columns of the periaqueductal gray of rats.
Psychopharmacology (Berl) 2002;160:30–8.
Mueller TI, Leon AC, Keller MB, Solomon DA, Endicott J, Coryell W, Warshaw
M, Maser JD. Recurrence after recovery from major depressive disorder during
15 years of observational follow-up. Am J Psychiatry 1999; 156:1000-1006
Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, Greshenfeld HK, Hen R,
Koester S, Lederhendler I, Meaney M, Robbins T, Winsky L, Zalcman S.
Preclinical model: Status of basic research in depression. Biol Psychiatry 2002;
52:503-528.
Nibuya M, Nestler EJ, Duman RS. Chronic antidepressant administration
increases the expression of cAMP response element binding protein (CREB) in
rat hippocampus. J Neurosci 1996; 16:2365–72.
Nutt DJ. The neuropharmacology of serotonin and noradrenaline in depression.
Int Clin Psychopharmacol 2002;17:S1–S12.
O'Connor TM, O'Halloran DJ, Shanahan F. The stress response and the
hypothalamic-pituitary-adrenal axis: from molecule to melancholia. Q J Med
2000; 93:323-33.
Pacher P, Kohegyi E, Kecskemeti V, Furst S. Current trends in the development
of new antidepressants. Curr Med Chem 2001;8:89–100.
Russo-Neustadt A, Ha T, Ramirez R, Kesslak JP. Physical activity-
antidepressant treatment combination: impact on brain-derived neurotrophic
factor and behavior in an animal model. Behav Brain Res 2001; 120:87–95.
Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E,
Agerman K, Haapasalo A, Nawa H, Aloyz R, Ernfors P, Castre´n E. Activation
of the TrkB neurotrophin receptor is induced by antidepressant drugs and is
required for antidepressant-induced behavioral effects. J Neurosci 2003; 23:349
–357
.
Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived
neurotrophic factor produces antidepressant effects in behavioral models of
depression. J Neurosci 2002; 22:3251–61.
Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R. Adaptation of N-
methyl-D-aspartate (NMDA) receptors following antidepressant treatment:
implications for the pharmacotherapy of depression. Pharmacopsychiatry
1996;29:23–6.
Stein DJ. Depression, anhedonia, and psychomotor symptoms: the role of
dopaminergic neurocircuitry. CNS Spectr 2008; 13:561-5.
Treece BR
, Ritter RC, Burns GA. Lesions of the dorsal vagal complex abolish
increases in meal size induced by NMDA receptor blockade. Brain Res 20008;
72: 37-43.
Vollmayr B, Henn FA. Stress models of depression. Clinical Neuroscience
Research 2003; 3:245-251.
Willner P, Towell A, Sampson D, Sophokclous S, Muscat R. Reduction of
sucrose preference by chronic unpredictable mild stress, and its restoration by a
tricyclic antidepressant. Psychopharmacology 1987; 93:358-364.
Wilner P. Chronic mild stress (CMS) revisited: consistency and
behavioralneurobiological concordance in the effects of CMS.
Neuropsychobiology 2005; 52:90-110.
Yilmaz A, Schulz D, Aksoy A, Canbeyli R. Prolonged effect of an anesthetic
dose of ketamine on behavioral despair. Pharmacol Biochem Behav 2002;
71:349–52.
Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA,
Charney DS, Manji HK. A randomized trial of an N-methyl-D-aspartate
antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006;
63:856–864.
TABLES
Table 1 - Schedule of stressor agent used during the chronic treatment.
Day of
treatment
Stressor
used
Duration Time of
day
Day 1 Water deprivation 24 h 8:00 a.m.
Day 2 Food deprivation 24 h 1:00 p.m.
Day 3 Isolation 24 h 6:00 p.m.
Day 4 Isolation 24 h -
Day 5 Isolation 24 h -
Day 6 Flashing light 3 h 3:00 p.m.
Day 7 Food deprivation 24 h 7:00 a.m.
Day 8 Forced swimming 10 min 8:00 p.m.
Day 9 Restraint 1 h 12:00 p.m.
Day 10 Water deprivation 24 h 10:00 a.m.
Day 11 No stressor
applied
- -
Day 12 No stressor
applied
- -
Day 13 Restraint + cold 2 h 9:00 a.m.
Day 14 Flashing light 2.5 h 1 p.m.
Day 15 Food deprivation 24 h 4 p.m.
Day 16 Forced swimming 15 min 11 a.m.
Day 17 Isolation 24 h 8:00 p.m.
Day 18 Isolation 24 h -
Day 19 Isolation 24 h -
Day 20 Water deprivation 24 h 10:00 a.m.
Day 21 Food deprivation 24 h 2:00 p.m.
Day 22 Flashing light 3 h 9:00 p.m.
Day 23 Restraint 2 h 7:00 a.m.
Day 24 Isolation 24 h 4 p.m.
Day 25 Isolation 24 h -
Day 26 Restraint + cold 1.5 h 11:00 a.m.
Day 27 Forced swimming 10 min 3:00 p.m.
Day 28 Flashing light 3.5 h 5:00 p.m.
Day 29 No stressor
applied
- -
Day 30 Food deprivation 24 h 10:00 a.m.
Day 31 Restraint 3 h 10:00 p.m.
Day 32 Flashing light 2 h 11:00 a.m.
Day 33 Water deprivation 24 h 1:00 p.m.
Day 34 Restraint + cold 2 h 7:00 a.m.
Day 35 Forced swimming 15 min 10:00 p.m.
Day 36 Isolation 24 h 9:00 a.m.
Day 37 Isolation 24 h 3:00 a.m.
Day 38 No stressor
applied
- -
Day 39 Flashing light 3 h 6:00 p.m.
Day 40 Forced swimming 10 min 8:00 a.m.
FIGURES
FIGURE 1 - Garcia et al.
FIGURE 2 - Garcia et al.
0
1
2
3
4
5
6
7
8
9
10
Control +
Saline
Control +
Acute
Ketamine
Control +
Chronic
Ketamine
CMS +
Saline
CMS + Acute
Ketamine
CMS +
Chronic
Ketamine
Sucrose Intake
(mean of pellets consume
d
in test sessions)
***
#
0
50
100
150
200
250
300
350
400
450
500
Control +
Saline
Control +
Acute
Ketamine
Control +
Chronic
Ketamine
CMS +
Saline
CMS +
Acute
Ketamine
CMS +
Chronic
Ketamine
body weight (g)
Before
After
**
**
*
FIGURE 3 - Garcia et al.
A)
B)
0
0,5
1
1,5
2
2,5
3
3,5
4
Control +
Saline
Control +
Acute
Ketamine
Control +
Chronic
Ketamine
CMS +
Saline
CMS +
Acute
Ketamine
CMS +
Chronic
Ketamine
Corticosterone levels ug/dL
*
**
***
0
100
200
300
400
500
Control +
Saline
Control +
Acute
Ketamine
Control +
Chronic
Ketamine
CMS + Saline CMS + Acute
Ketamine
CMS +
Chronic
Ketamine
ACTH levels pg/ml
*
**
***
C)
0
0,05
0,1
0,15
0,2
0,25
Control +
Saline
Control +
Acute
Ketamine
Control +
Chronic
Ketamine
CMS +
Saline
CMS +
Acute
Ketamine
CMS +
Chronic
Ketamine
adrenal weight (g)
*
***
**
LEGENDS OF FIGURES
Figure 1 – Effects of CMS procedure on sweet food consumption (pellets
consumed in 2 days of tests) in rats acute and repeatedly treated with ketamine.
Bars represent means ± S.E.M. of 15 rats. *p<0.05 vs. non-stressed + saline,
**p<0,05 vs. CMS + saline, # p<0,05 vs. non-stressed + saline, according to
ANOVA post-hoc Tukey test.
Figure 2 - Effects of CMS procedure on body weight of rats acute and
repeatedly treated with ketamine. Bars represent means ± S.E.M. of 15 rats.
*p<0,05 vs. before CMS protocol, according to Student t test for paired date.
Figure 3 - Effects of CMS procedure on corticosterone (3A), adrenocorticotropic
hormone (3B) circulating levels and adrenal gland weight (3C) in rats acute and
repeatedly treated with ketamine. Bars represent means ± S.E.M. of 15 rats.
*p<0.05 vs. control + saline, **p<0.05 vs. CMS + acute ketamine and ***p<0.05
vs. CMS + chronic ketamine, according to ANOVA post-hoc Tukey test.
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo