UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA DEPARTAMENTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO DE QUÍMICA

SISTEMAS DE COBRE: AGENTES QUIMIOTERÁPICOS POTENCIAIS PARA COMBATER O CRESCIMENTO DE TUMORES MALIGNOS

Mirian Paula dos Santos

Tese apresentada ao programa de pósgraduação em Química da Universidade Federal de São Carlos, como parte dos requisitos para a obtenção do título de DOUTOR EM CIÊNCIAS (área de concentração QUÍMICA INORGÂNICA)

Orientador: Prof. Dr. Edward Ralph Dockal

Bolsista CNPq

São Carlos - SP 2007

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária/UFSCar

S237sc	Santos, Mirian Paula dos. Sistemas de cobre : agentes quimioterápicos potenciais para combater o crescimento de tumores malignos / Mirian Paula dos Santos São Carlos : UFSCar, 2008. 246 f.
	Tese (Doutorado) Universidade Federal de São Carlos, 2007.
	1. Schiff, Bases de. 2. Complexos com bases de Schiff. 3. Câncer. I. Título.
	CDD: 546.3 (20 ^a)

UNIVERSIDADE FEDERAL DE SÃO CARLOS Centro de Ciências Exatas e de Tecnologia Departamento de Química PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA Curso de Doutorado

Assinaturas dos membros da banca examinadora que avaliaram e aprovaram a defesa de tese de doutorado da candidata Mirian Paula dos Santos realizado em 14 de dezembro de 2007:

Edward R Docka Prof. Dr. Edward Ralph Dockal

an no brambeing

Prof. Dr. Renê Alexandre Giampedro

Profa. Dra. Wania da Conceição Moreira

Profa. Dra. Regina Helena de Almeida Santos

Prof. Dr. Eder Taden Gomes Cavalheiro

Tenho pensamentos que, se pudesse revelá-los e fazê-los viver, acrescentariam nova luminosidade às estrelas, nova beleza ao mundo e maior amor ao coração dos homens.

Fernando pessoa

À Deus por inspirar-me e guiar-me nos momentos de dúvida e indecisão. E por permitir que dentre tantos caminhos, eu escolhesse esse: o da pesquisa científica.

À minha grande família, pelo amor, dedicação, pela paciência com minhas ausências, por todo apoio e compreensão, em especial ao meu pai Antônio (in memoriam), o grande incentivador de toda esta jornada;

Ao prof. Dr. Edward R. Dockal , expresso minha imensa gratidão, pela confiança, amizade, orientação, e por tudo o que me ensinou neste período tão importante;

À Sonia Mello Antonio, por sua presença em minha vida, sempre me incentivando e apoiando, com tanta paciência e amor.

Agradecimentos

Às amigas Sandra Romera e Márcia Cordeiro, companheiras do dia a dia, partilhamos sonhos, esperanças, frustrações, e muitas horas de boa conversa.

Aos amigos de Águas da Prata, de Campinas, de São Carlos e de Rincão, um agradecimento especial pelo carinho e incentivo que sempre me deram;

Aos colegas do departamento de Química e do LSICC, em especial ao Pedro, Ana Carla e Priscila pela convivência tão tranqüila e prazerosa;

Ao prof. Dr. Éder T. G. Cavalheiro, Prof. Dr. Miguel G. Neumann e profa. Dra. Carla C. S. Cavalheiro, que sempre estiveram de braços abertos para nos receber em seus laboratórios nos momentos de necessidade;

À profa. Dra. Regina H. A. Santos pela determinação das estruturas utilizando raios-X;

À profa. Dra. Christiane P. Soares e à profa. Maria da Paz Moreno pela realização dos testes de atividade biológica; Aos técnicos Luciana vizotto, Paulo Lambertucci e Doraí Perioto pela inestimável colaboração;

Ao CNPq pelo auxílio financeiro;

E finalmente, a todos que direta ou indiretamente sempre tiveram uma palavra de incentivo ao meu trabalho, contribuindo para a sua realização.

Agradecimentos

A todos, o meu mais sincero e profundo agradecimento.

SUMÁRIO	
RESUMO	XV
ABSTRACT	xvi
LISTA DE ABREVIATURAS	xvii
LISTA DE FIGURAS	xxiii
LISTA DE TABELAS	xxxiii
1. INTRODUÇÃO	1
1.1. CONCEITOS GERAIS SOBRE AS BASES DE SCHIFF	3
1.2. CONSIDERAÇÕES ACERCA DA ESTRUTURA DAS BASES DE SCHIFF	4
1.2.1 EFEITO DO SUBSTITUINTE NOS ANÉIS AROMÁTICOS	7
1.3. BASES DE SCHIFF TRIDENTADAS	9
1.4. USOS E APLICAÇÕES DAS BASES DE SCHIFF	12
1.5. ALGUNS ASPECTOS DO COBRE	14
1.5.1. APLICAÇÕES DE COMPOSTOS DE COBRE COM BASES DE SCHIFF	15
1.5.2. ESTUDOS DE TOXICIDADE E TESTES BIOLÓGICOS	17
2. OBJETIVOS	19
3. MATERIAIS E MÉTODOS	25
3.1. MATERIAIS UTILIZADOS	27
3.1.1 ALDEÍDOS E CETONAS	27
3.1.2 AMINAS	28
3.1.3 DEMAIS REAGENTES	28
3.2. COMPOSTOS SIMÉTRICOS TETRADENTADOS	29
3.2.1 SÍNTESE DOS LIGANTES SIMÉTRICOS TETRADENTADOS DO TIPO SALEN	29
3.2.2 SÍNTESE DOS COMPLEXOS SIMÉTRICOS TETRADENTADOS DO TIPO SALEN	31
3.3. COMPOSTOS ASSIMÉTRICOS TRIDENTADOS	31
3.3.1 SISTEMA DOADOR ONN, N	32
3.3.1.1 LIGANTES ASSIMÉTRICOS TRIDENTADOS ONN	32
3.3.1.2 COMPLEXOS ASSIMÉTRICOS TRIDENTADOS ONN	35
3.4. COMPOSTOS ASSIMÉTRICOS TETRADENTADOS	37

3.4.1 LIGANTES ASSIMÉTRICOS TETRADENTADOS	37
3.4.2 COMPLEXOS ASSIMÉTRICOS TETRADENTADOS	37
3.5. CARACTERIZAÇÕES	39
3.5.1. TESTE DE SOLUBILIDADE	39
3.5.2. MEDIDAS DE PONTO DE FUSÃO	39
3.5.3. ESPECTROSCOPIA VIBRACIONAL NA REGIÃO DO INFRAVERMELHO	40
3.5.4. ESPECTROSCOPIA DE ABSORÇÃO NA REGIÃO DO ULTRAVIOLETA-VISÍVEL	40
3.5.5. VOLTAMETRIA CÍCLICA	41
3.5.6. DIFRAÇÃO DE RAIOS-X	41
3.5.7. ANALISE ELEMENTAR	42
3.5.8. SUSCEPTIBILIDADE MAGNÉTICA	42
3.6. TESTES DE ATIVIDADE BIOLÓGICA	43
3.6.1 TESTES CITOTOXICOS EM CELULAS TRANSFORMADAS POR HPV	43
3.6.1.1. CULTURA DE CÉLULAS	43
3.6.1.2. ENSAIO DE CITOTOXICIDADE (MTT)	44
3.6.2. TESTES CITOTOXICOS EM CÉLULAS ESPLÊNICAS DE CAMUNDONGOS BALB/c	45
3.6.2.1. PREPARAÇÃO DOS COMPLEXOS PARA OS TESTES	45
3.6.2.2. PREPARAÇÃO DOS ANIMAIS PARA OS TESTES	45
3.6.2.3. PREPARAÇÃO DE CÉLULAS ESPLÊNICAS	46
3.6.2.4. AVALIAÇÃO DA ATIVIDADE TÓXICA DOS COMPOSTOS EM CÉLULAS DE CAMUNDONGOS ISOGÊNICOS	46
4. RESULTADOS E DISCUSSÃO	47
4.1. LIGANTES SIMÉTRICOS DO TIPO SALEN COM SEUS RESPECTIVOS COMPLEXOS DE COBRE	49
4.1.1. ANÁLISE GERAL DOS VALORES DE ABSORÇÃO ENCONTRADOS PARA OS LIGANTES E COMPLEXOS SIMÉTRICOS NA REGIÃO DO INFRAVERMELHO	49
4.1.2. ANÁLISE GERAL DOS VALORES DE ABSORÇÃO ENCONTRADOS PARA OS LIGANTES E COMPLEXOS SIMÉTRICOS NA REGIÃO DO ULTRAVIOLETA-VISÍVEL	54
4.1.3. LIGANTE SALEN E COMPLEXO COBRE SALEN	58
4.1.3.1. DADOS GERAIS DE CARACTERIZAÇÃO	58
4.1.3.2 ESPECTROS VIBRACIONAIS	59

4.1.3.3. ESPECTROS ELETRÔNICOS	62
4.1.3.4. VOLTAMETRIA CÍCLICA	64
4.1.4. LIGANTES SALEN COM SUBSTITUINTES METOXI NAS POSIÇÕES 3, 4 e 5 COM SEUS RESPECTIVOS COMPLEXOS	65
4.1.4.1 DADOS GERAIS DE CARACTERIZAÇÃO	65
4.1.4.2. ESPECTROS VIBRACIONAIS	67
4.1.4.3. ESPECTROS ELETRÔNICOS	74
4.1.4.4. VOLTAMETRIA CÍCLICA	78
4.1.4.5. DIFRAÇÃO DE RAIOS-X	79
4.1.5. LIGANTES DO TIPO SALEN COM SUBSTITUINTE HIDROXI NAS POSIÇÕES 3 e 4, COM SEUS RESPECTIVOS COMPLEXOS	82
4.1.5.1. DADOS GERAIS DE CARACTERIZAÇÃO	82
4.1.5.2. ESPECTROS VIBRACIONAIS	84
4.1.5.3. ESPECTROS ELETRÔNICOS	88
4.1.6. LIGANTE SALEN COM SUBSTITUINTE ETOXI NA POSIÇÃO 3, COM SEU RESPECTIVO COMPLEXO	90
4.1.6.1. DADOS GERAIS DE CARACTERIZAÇÃO	90
4.1.6.2. ESPECTROS VIBRACIONAIS	92
4.1.6.3. ESPECTROS ELETRÔNICOS	94
4.1.6.4. DIFRAÇÃO DE RAIOS-X	94
4.1.7. COMPARAÇÃO DOS EFEITOS DO SUBSTITUINTE NA POSIÇÃO 3 PARA OS DIFERENTES COMPOSTOS	97
4.1.8. LIGANTE SALEN COM SUBSTITUINTE DIETILAMINA (DEA) NA POSIÇÃO 4, E SEU RESPECTIVO COMPLEXO	100
4.1.8.1. DADOS GERAIS DE CARACTERIZAÇÃO	100
4.1.8.2. ESPECTROS VIBRACIONAIS	101
4.1.8.3. ESPECTROS ELETRÔNICOS	105
4.1.8.4. VOLTAMETRIA CÍCLICA	106
4.1.8.5. DIFRAÇÃO DE RAIOS-X	106
4.1.9. COMPARAÇÃO DOS EFEITOS DOS SUBSTITUINTES NA POSIÇÃO 4 DOS COMPOSTOS	110
4.1.10. LIGANTE SALEN COM SUBSTITUINTE NITRO (NO ₂) NA POSIÇÃO 5, JUNTAMENTE COM O COMPLEXO [Cu(5-NO ₂ SALEN)]	111

4.1.10.1 DADOS GERAIS DE CARACTERIZAÇÃO	111
4.1.10.2. ESPECTROS VIBRACIONAIS	112
4.1.10.3. ESPECTROS ELETRÔNICOS	115
4.1.11. LIGANTE SALEN COM SUBSTITUINTES CLORO E BROMO NA POSIÇÃO 5, JUNTAMENTE COM OS COMPLEXOS [Cu(5-Clsalen)] E [Cu(5-Brsalen)]	116
4.1.11.1. DADOS GERAIS DE CARACTERIZAÇÃO	116
4.1.11.2. ESPECTROS VIBRACIONAIS	119
4.1.11.3. ESPECTROS ELETRÔNICOS	123
4.1.12. COMPARAÇÃO DOS EFEITOS DOS SUBSTITUINTES NA POSIÇÃO 5 DOS COMPOSTOS	124
4.1.13. LIGANTE SALEN COM SUBSTITUINTE CLORO (CI) NAS POSIÇÕES 3 E 5 SIMULTANEAMENTE E SEU RESPECTIVO COMPLEXO	127
4.1.13.1. DADOS GERAIS DE CARACTERIZAÇÃO	127
4.1.13.2. ESPECTROS VIBRACIONAIS	128
4.1.13.3. ESPECTROS ELETRÔNICOS	132
4.1.14. LIGANTE SALEN COM SUBSTITUINTE BROMO (Br) NAS POSIÇÕES 3 E 5, JUNTAMENTE COM O RESPECTIVO COMPLEXO DE COBRE	133
4.1.14.1 DADOS GERAIS DE CARACTERIZAÇÃO	133
4.1.14.2. ESPECTROS VIBRACIONAIS	134
4.1.14.3. ESPECTROS ELETRÔNICOS	138
4.1.15. LIGANTE SALEN COM SUBSTITUINTES IODO NAS POSIÇÕES 3 E 5, JUNTAMENTE COM O COMPLEXO [Cu(3,5-Isalen)]	139
4.1.15.1. DADOS GERAIS DE CARACTERIZAÇÃO	139
4.1.15.2. ESPECTROS VIBRACIONAIS	140
4.1.15.3. ESPECTROS ELETRÔNICOS	143
4.1.16. COMPARAÇÃO ENTRE OS COMPOSTOS COM SUBSTITUINTES NAS POSIÇÕES 3 E 5 SIMULTANEAMENTE	144
4.1.17. LIGANTES SALEN COM SUBSTITUINTES METIL (Me) E ETIL (Et) NA POSIÇÃO 7 JUNTAMENTE COM SEUS RESPECTIVOS COMPLEXOS DE COBRE	146
4.1.17.1. DADOS GERAIS DE CARACTERIZAÇÃO	146
4.1.17.2. ESPECTROS VIBRACIONAIS	149
4.1.17.3. ESPECTROS ELETRÔNICOS	152

4.1.18. LIGANTES DO TIPO SALEN COM OS SUBSTITUINTES 7-FENIL (7- Φ), 7-FENILETIL (7- Φ Et) E 7-FENIL-4-METOXI (7- Φ -4-MeO), JUNTAMENTE COM OS SEUS RESPECTIVOS COMPLEXOS DE COBRE	154
4.1.18.1. DADOS GERAIS DE CARACTERIZAÇÃO	154
4.1.18.2. ESPECTROS VIBRACIONAIS	157
4.1.18.3. ESPECTROS ELETRÔNICOS	162
4.2. COMPLEXOS ASSIMÉTRICOS	164
4.2.1. COMPLEXOS ASSIMÉTRICOS COM SUBSTITUINTES NA POSIÇÃO 3. METOXI (MeO) E ETOXI (EtO)	164
4.2.1.1. DADOS GERAIS DE CARACTERIZAÇÃO	165
4.2.1.2. ESPECTROS VIBRACIONAIS	166
4.2.1.3. ESPECTROS ELETRÔNICOS	168
4.2.2. COMPLEXOS ASSIMÉTRICOS COM SUBSTITUINTES NA POSIÇÃO 4. METOXI (MeO), HIDROXI (OH) E DIETILAMINA (DEA)	169
4.2.2.1. DADOS GERAIS DE CARACTERIZAÇÃO	170
4.2.2.2. ESPECTROS VIBRACIONAIS	171
4.2.2.3. ESPECTROS ELETRÔNICOS	174
4.2.3. COMPLEXOS ASSIMÉTRICOS COM SUBSTITUINTES NA POSIÇÃO 5. METOXI (MeO), NITRO (NO ₂), CLORO (Cl) E BROMO (Br)	176
4.2.3.1. DADOS GERAIS DE CARACTERIZAÇÃO	176
4.2.3.2. ESPECTROS VIBRACIONAIS	172
4.2.3.3. ESPECTROS ELETRÔNICOS	182
4.2.4. COMPLEXOS ASSIMÉTRICOS COM SUBSTITUINTES NAS POSIÇÕES 3 E 5 SIMULTANEAMENTE. CLORO (Cl), BROMO (Br) E IODO (I)	184
4.2.4.1. DADOS GERAIS DE CARACTERIZAÇÃO	184
4.2.4.2. ESPECTROS VIBRACIONAIS	185
4.2.4.3. ESPECTROS ELETRÔNICOS	189
 4.2.5. COMPLEXOS ASSIMÉTRICOS COM SUBSTITUINTES NA POSIÇÃO 7. ETIL (Et), FENIL (Φ), FENILETIL (ΦEt) E O COMPLEXO COM SUBSTITUINTE NAS DUAS POSIÇÕES 7 FENIL E 4 METOXI (7-Φ-4-MeO) 	191
4.2.5.1. DADOS GERAIS DE CARACTERIZAÇÃO	192
4.2.5.2. ESPECTROS VIBRACIONAIS	193
4.2.5.3. ESPECTROS ELETRÔNICOS	196

4.3. COMPLEXOS TRIDENTADOS	199
4.3.1. ANÁLISE GERAL DOS VALORES DE ABSORÇÃO ENCONTRADOS PARA OS COMPLEXOS TRIDENTADOS NA REGIÃO DO INFRAVERMELHO	
4.3.2 COMPLEXOS TRIDENTADOS COM SISTEMA DOADOR ONN, PONTE ETILENODIAMINA (en)	
4.3.2.1. DADOS GERAIS DE CARACTERIZAÇÃO	201
4.3.2.2. ESPECTROS VIBRACIONAIS	202
4.3.2.3. ESPECTROS ELETRÔNICOS	204
4.3.3. COMPLEXOS TRIDENTADOS COM SISTEMA DOADOR ONN, PONTE <i>trans</i> -1,2- DIAMINOCICLOHEXANO (<i>t</i> -dac)	206
4.3.3.1. DADOS GERAIS DE CARACTERIZAÇÃO	207
4.3.3.2. ESPECTROS VIBRACIONAIS	
4.3.3.3. ESPECTROS ELETRÔNICOS	
4.3.4. COMPLEXOS TRIDENTADOS COM SISTEMA DOADOR ONN, PONTE <i>orto-</i> FENILENODIAMINA (<i>o</i> -Ph)	213
4.3.4.1. DADOS GERAIS DE CARACTERIZAÇÃO	214
4.3.4.2. ESPECTROS VIBRACIONAIS	
4.3.4.3. ESPECTROS ELETRÔNICOS	217
4.4. ENSAIOS DE TOXICIDADE	220
4.4.1. TESTES CITOTOXICOS EM CÉLULAS TRANSFORMADAS POR HPV	
4.4.2. TESTES CITOTOXICOS EM CÉLULAS ESPLÊNICAS DE CAMUNDONGOS BALB/c	
5. CONSIDERAÇÕES FINAIS	225
5.1. SUGESTÕES PARA TRABALHOS FUTUROS	229
6. REFERÊNCIAS BIBLIOGRÁFICAS	231

RESUMO

SISTEMAS DE COBRE: AGENTES QUIMIOTERÁPICOS POTENCIAIS PARA COMBATER O CRESCIMENTO DE TUMORES MALIGNOS. Em busca de compostos inorgânicos com propriedades biológicas que pudessem, através da atuação como agentes quimioterápicos, contribuir para aumentar as possibilidades no tratamento de algumas doenças, foram sintetizados e caracterizados complexos de cobre com ligantes bases de Schiff do tipo salen, foram estudados no total 63 compostos, sendo 19 complexos tetradentados simétricos com seus respectivos ligantes; 16 complexos tetradentados assimétricos e 9 complexos tridentados. Todos, complexos e ligantes, foram caracterizados pelas técnicas de espectroscopia vibracional (região do infravermelho) e eletrônica (região do ultravioleta-visível) entre outras técnicas como pontos de fusão e solubilidade, foram realizadas medidas de susceptibilidade magnética e estudos eletroquímicos para alguns complexos. Os complexos [Cu(3-MeOsalen)], [Cu(3-EtOsalen)] e [Cu(4-DEAsalen)], tiveram suas estruturas determinadas por difração de raios-x, método de monocristal. Foram realizados testes de toxicidade para o complexo simétrico [Cu(4-DEAsalen)], em relação à células infectadas com dois tipos de HPV e testes de toxicidade em células esplênicas com alguns complexos tridentados. Os meios de caracterização empregados indicam que as sínteses foram bem sucedidas com rendimentos bastante eficientes, foram feitas comparações com respeito aos efeitos dos substituintes no anel aromático dentro de uma mesma série de compostos e também foram comparados os resultados obtidos para as diferentes séries de trabalho.

Abstract

ABSTRACT

COPPER SYSTEMS: POTENCIAL CHEMOTHERAPEUTIC AGENTS TO SUPRESS THE MALIGNANT TUMOR GROWTH. In order to find inorganic compounds with biological properties as chemotherapeutic agents that could increase the possibilities in the treatment of some diseases, copper complexes with Schiff base ligands were prepared and characterized. In this work we prepared 63 compounds, being 19 symmetrical tetradentate Schiff base ligands and their respective copper complexes, 16 copper complexes with unsymmetrical tetradentate Schiff base ligands and 9 copper complexes with tridentate Schiff base ligands derived from ethylenediamine, trans-1,2-diaminocyclohexane and orto-phenylenediamine, with salicylaldehyde or substituted salicylaldehyde. All were characterized by vibracional spectroscopy (infrared), electronic spectroscopy (ultraviolet-visible) and others methods such as solubility, melting points. Some complexes were studied by cyclic voltammetry and magnetic susceptibility. The structures of [Cu(3-MeOsalen)], [Cu(3-EtOsalen)] and [Cu(4-DEAsalen)], have been determined by single crystal X-ray diffraction. The cytotoxicity of the symmetrical complex [Cu(4-DEAsalen)], was evaluated using HPV-16 and HPV-18 infected cells. Cytotoxicity tests using spleen cells of BALB/c mice were performed using 5 tridentate complexes. The characterization results show that the synthesis had been successful with good yields. The effect of the substitution on the aromatic ring was compared for compounds within a series and between different series.

ATV	Associação de Tripsina e Versene
CCDC	Cambridge Crystallographic Data
CEUA	Comissão de Ética no Uso de Animais
DMEM	Dulbecco/Vogt Modified Eagle's Minimal Essential Medium
DMF	N,N'-Dimetilformamida
DMG	Dimetilglioxima
DMSO	Dimetilsulfoxido
EDTA	do inglês: ethylenediamine tetraacetic acid
en	ethylenediamine
FDA	Food and Drug Administration
GTF	do inglês: Glucose Tolerance Factor
HPV	do inglês: Humanun Papilloma Virus
ISO	do inglês: International Standard Organization
MTT	metiltiazoltetrazolio
NCGC	do inglês: National Chemical Genomics Center
NIH	do inglês: National Institute of Health
om	ombro
o-Ph	o-Phenylenediamine
РТВА	Perclorato de tetrabutilamonio
QSAR	do inglês: Quantitative Structure Activity Relashionship
REACH	do inglês: Registration, Evaluation, Autorization and Restriction of Chemicals
SFB	Serum Fetal Bovine
<i>t</i> -dac	(±)- <i>trans</i> -1,2-diaminociclohexane

Lista de Abreviaturas

Ligantes		
salen	N,N'etilenobis(salicilidenoimina)	
3-MeOsalen	N,N'etilenobis(3-metoxisalicilidenoimina)	
3-EtOsalen	N,N'etilenobis(3-etoxisalicilidenoimina)	
3-OHsalen	N,N'etilenobis(3-hidroxisalicilidenoimina)	
3,5-Clsalen	N,N'etilenobis(3,5-clorosalicilidenoimina)	
3,5-Brsalen	N,N'etilenobis(3,5-bromosalicilidenoimina)	
3,5-Isalen	N,N'etilenobis(3,5-iodosalicilidenoimina)	
4-MeOsalen	N,N'etilenobis(4-metoxisalicilidenoimina)	
4-OHsalen	N,N'etilenobis(4-hidroxisalicilidenoimina)	
4-DEAsalen	N,N'etilenobis(4-dietilaminasalicilidenoimina)	
5-MeOsalen	N,N'etilenobis(5-metoxisalicilidenoimina)	
5-NO ₂ salen	N,N'etilenobis(5-nitrosalicilidenoimina)	
5-Clsalen	N,N'etilenobis(5-clorosalicilidenoimina)	
5-Brsalen	N,N'etilenobis(5-bromosalicilidenoimina)	
7-Mesalen	N,N'etilenobis(7-metilsalicilidenoimina)	
7-Etsalen	N,N'etilenobis(7-etilsalicilidenoimina)	
7-Фsalen	N,N'etilenobis(7-fenilsalicilidenoimina)	
7-ФEtsalen	N,N'etilenobis(7-feniletilsalicilidenoimina)	
7-Ф-4-MeOsalen	N,N'etilenobis(7-fenil-4-metoxisalicilidenoimina)	

С	omplexos Tetradentados Simétricos
[Cu(salen)]	N,N'etilenobis(salicilidenoiminato)cobre(II)
[Cu(3-MeOsalen)]	N,N'etilenobis(3-metoxisalicilidenoiminato)cobre(II)
[Cu(3-EtOsalen)]	N,N'etilenobis(3-etoxisalicilidenoiminato)cobre(II)
[Cu(3-OHsalen)]	N,N'etilenobis(3-hidroxisalicilidenoiminato)cobre(II)
[Cu(4-MeOsalen)]	N,N'etilenobis(4-metoxisalicilidenoiminato)cobre(II)
[Cu(4-OHsalen)]	N,N'etilenobis(4-hidroxisalicilidenoiminato)cobre(II)
[Cu(4-DEAsalen)]	N,N'etilenobis(4-dietilaminasalicilidenoiminato)cobre(II)
[Cu(5-MeOsalen)]	N,N'etilenobis(5-metoxisalicilidenoiminato)cobre(II)
[Cu(5-NO ₂ salen)]	N,N'etilenobis(5-nitrosalicilidenoiminato)cobre(II)
[Cu(5-Clsalen)]	N,N'etilenobis(5-clorosalicilidenoiminato)cobre(II)
[Cu(5-Brsalen)]	N,N'etilenobis(5-bromosalicilidenoiminato)cobre(II)
[Cu(3,5-Clsalen)]	N,N'etilenobis(3,5-clorosalicilidenoiminato)cobre(II)
[Cu(3,5-Brsalen)]	N,N'etilenobis(3,5-bromosalicilidenoiminato)cobre(II)
[Cu(3,5-Isalen)]	N,N'etilenobis(3,5-iodosalicilidenoiminato)cobre(II)
[Cu(7-Mesalen)]	N,N'etilenobis(7-metilsalicilidenoiminato)cobre(II)
[Cu(7-Etsalen)]	N,N'etilenobis(7-etilsalicilidenoiminato)cobre(II)
[Cu(7- Φ salen)]	N,N'etilenobis(7-fenilsalicilidenoiminato)cobre(II)
[Cu(7- Φ Etsalen)]	N,N'etilenobis(7-feniletilsalicilidenoiminato)cobre(II)
[Cu(7-Φ-4-MeOsalen)]	N,N'etilenobis(7-fenil-4-metoxisalicilidenoiminato)cobre(II)

Lista de Abreviaturas

Complexos Tetradentados Assimétricos		
[Cu(3-MeOsalsalen)]	N-3-metoxisalicilidenoiminato-N´-etilenosalicilidenoiminatocobre(II)	
[Cu(3-EtOsalsalen)]	N-3-etoxisalicilidenoiminato-N´-etilenosalicilidenoiminatocobre(II)	
[Cu(3-OHsalsalen)]	N-3-hidroxisalicilidenoiminato-N´-etilenosalicilidenoiminatocobre(II)	
[Cu(4-MeOsalsalen)]	N-4-metoxisalicilidenoiminato-N'-etilenosalicilidenoiminatocobre(II)	
[Cu(4-OHsalsalen)]	N-4-hidroxisalicilidenoiminato-N´-etilenosalicilidenoiminatocobre(II)	
[Cu(4-DEAsalsalen)]	N-4-dietilaminosalicilidenoiminato-N´-etilenosalicilidenoiminatocobre(II)	
[Cu(5-MeOsalsalen)]	N-5-metoxisalicilidenoiminato-N´-etilenosalicilidenoiminatocobre(II)	
[Cu(5-NO ₂ salsalen)]	N-5-nitrosalicilidenoiminato-N´-etilenosalicilidenoiminatocobre(II)	
[Cu(5-Clsalsalen)]	N-5-clorosalicilidenoiminato-N´-etilenosalicilidenoiminatocobre(II)	
[Cu(5-Brsalsalen)]	N-5-bromosalicilidenoiminato-N'-etilenosalicilidenoiminatocobre(II)	
[Cu(3,5-Clsalsalen)]	N-3,5-clorosalicilidenoiminato-N´-etilenosalicilidenoiminatocobre(II)	
[Cu(3,5-Brsalsalen)]	N-3,5-bromosalicilidenoiminato-N´-etilenosalicilidenoiminatocobre(II)	
[Cu(3,5-Isalsalen)]	N-3,5-iodosalicilidenoiminato-N´-etilenosalicilidenoiminatocobre(II)	
[Cu(7-Mesalsalen)]	N-7-metilsalicilidenoiminato-N´-etilenosalicilidenoiminatocobre(II)	
[Cu(7-Etsalsalen)]	N-7-etilsalicilidenoiminato-N´-etilenosalicilidenoiminatocobre(II)	
[Cu(7-Φsalsalen)]	N-7-fenilsalicilidenoiminato-N´-etilenosalicilidenoiminatocobre(II)	
[Cu(7-ФEtsalsalen)]	N-7-feniletilsalicilidenoiminato-N´-etilenosalicilidenoiminatocobre(II)	
[Cu(7-Φ-4-MeOsalsalen)]	N-7-fenil-4-metoxisalicilidenoiminato-N´-etilenosalicilidenoiminatocobre(II)	

Complexos Tridentados		
[Cu(Hsal ¹ /2t-dac)py]ClO ₄	Perclorato de N-(2-aminociclohexano)salicilidenoiminatocobre(II)	
[Cu(3-MeOsal ¹ /2t-dac)py]ClO ₄	Perclorato de N-(2-aminociclohexano)-3-metoxisalicilidenoiminatocobre(II)	
[Cu(3-EtOsal ¹ /2t-dac)py]ClO ₄	Perclorato de N-(2-aminociclohexano)-3-etoxisalicilidenoiminatocobre(II)	
[Cu(Hsal ¹ /2en)py]ClO ₄	Perclorato de N-(2-aminoetil)salicilidenoiminatocobre(II)	
[Cu(3-MeOsal ¹ /2en)py]ClO ₄	Perclorato de N-(2-aminoetil)-3-metoxisalicilidenoiminatocobre(II)	
[Cu(3-EtOsal ¹ /2en)py]ClO ₄	Perclorato de N-(2-aminoetil)-3-etoxisalicilidenoiminatocobre(II)	
[Cu(Hsal ¹ /20-Ph)py]ClO ₄	Perclorato de N-(2-aminofenil)salicilidenoiminatocobre(II)	
[Cu(3-MeOsal ¹ /20-Ph)py]ClO ₄	Perclorato de N-(2-aminofenil)-3-metoxisalicilidenoiminatocobre(II)	
[Cu(3-EtOsal ¹ /20-Ph)py]ClO ₄	Perclorato de N-(2-aminofenil)-3-metoxisalicilidenoiminatocobre(II)	

Lista de Abreviaturas

ÍNDICE DE FIGURAS	
 FIGURA 1.1. Bases de Schiff em suas diversas formas. (A) Ligante Monodentado; (B) Ligante Bidentado; (C) Complexo Mononuclear; (D) Complexo Binuclear. 	3
FIGURA 1.2. Ligante simétrico tetradentado do tipo salen.	4
FIGURA 1.3. Possíveis estruturas adotadas pelos ligantes bases de Schiff derivados de acetilacetona e etilenodiamina.	5
FIGURA 1.4. Possíveis estruturas adotadas pelos ligantes bases de Schiff derivados do salicilaldeído.	5
FIGURA 1.5. Ligantes tridentados também conhecidos como 'half-units'.(A) Ligante tridentado com sistema doador ONN;(B) Ligante tridentado com sistema doador ONO;(C) Ligante tridentado com sistema doador ONS.	10
FIGURA 1.6. Potencial sintético das bases de Schiff tridentadas, como ligantes tridentados ou complexos tetradentados assimétricos.	11
FIGURA 1.7. Configuração do centro metálico adotada pelo complexo [Cu(N-Mesalim) ₂].	15
 FIGURA 2.1. Estrutura das bases de Schiff tetradentadas simétricas. (A) Ligantes, onde R = substituinte que pode ocupar as posições 3, 4, 5 e 3,5 dos anéis aromáticos e Y = Metil, Etil, Fenil, ou Feniletil. (B) Complexos, onde R = substituinte que pode ocupar as posições 3, 4, 5 e 3,5 do anéis aromáticos e Y = Metil, Etil, Fenil, ou Feniletil. 	21
FIGURA 2.2. Estrutura das bases de Schiff tetradentadas assimétricas, onde $R =$ substituinte que pode ocupar as posições 3, 4, 5 e 3,5 de apenas um dos anéis aromáticos e Y = Metil, Etil, Fenil, ou Feniletil.	22
FIGURA 2.3. Estrutura das bases de Schiff tridentadas, onde R = substituinte que pode ocupar as posições 3, 4, 5 e 3,5 do anel aromático e A = CH_2CH_2 ; C_6H_{10} ou C_6H_4 .	22
FIGURA 3.1. Mecanismo proposto para a reação de formação do ligante tetradentado base de Schiff.	29
FIGURA 3.2. Visão esquemática dos ligantes sintetizados com as posições onde serão utilizadas as substituições em evidência.	30
FIGURA 3.3. Esquema reacional para a obtenção do complexo de cobre tetradentado simétrico com sistema doador ONNO.	31
FIGURA 3.4. Visão esquemática do complexo de níquel utilizado como precursor na síntese do ligante tridentado.	34
FIGURA 3.5. Visão geral dos complexos de cobre tridentados com sistema doador ONN, N.	36
FIGURA 3.6. Visão esquemática da reação de obtenção do complexo tetradentado assimétrico.	37
FIGURA 3.7. Visão esquemática dos complexos assimétricos tetradentados evidenciando as posições onde serão observadas as substituições.	38
FIGURA 4.1. Visão ampliada das bandas referentes às ligações de hidrogênio.	49

<u>Lista de Figuras</u>

FIGURA 4.2. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) ilustrativo da grande quantidade de bandas presentes na região entre 1700-600 cm ⁻¹ nos compostos apresentados.	51
FIGURA 4.3. Visão esquemática do ligante salen e do complexo cobre salen.	58
FIGURA 4.4. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho entre 1700 e 350 cm ⁻¹ para o ligante salen juntamente com seu respectivo complexo de cobre.	60
 FIGURA 4.5. Espectros eletrônicos na região do ultravioleta-visível para o ligante salen juntamente com seu respectivo complexo de cobre. (A) Ligante salen; (B) Complexo [Cu(salen)]. 	63
FIGURA 4.6. Voltamograma cíclico obtido com eletrodo de carbono vítreo em solução 1,0x10 ⁻³ M do complexo [Cu(salen)] em acetonitrila, contendo 0,1M de PTBA. Velocidade de varredura de 0,1V/s.	64
 FIGURA 4.7. Visão esquemática dos compostos com substituintes metoxi (OCH₃). (A) Ligante 3-MeOsalen; (B) Complexo [Cu(5-Meosalen)]. 	65
FIGURA 4.8. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para os ligantes com substituintes metoxi nas posições 3, 4 e 5.	67
FIGURA 4.9. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para os complexos com substituintes metoxi nas posições 3, 4 e 5.	70
FIGURA 4.10. Visualização dos efeitos indutivo e mesomérico nas ligações do anel aromático.	71
FIGURA 4.11. Visão esquemática da influência do substituinte metoxi nas posições 3, 4 e 5.	71
FIGURA 4.12. Vista dos espectros eletrônicos para os compostos com substituintes metoxi na posição 3.	74
FIGURA 4.13. Vista dos espectros eletrônicos para os compostos com substituintes metoxi na posição 4.	75
FIGURA 4.14. Vista dos espectros eletrônicos para os compostos com substituintes metoxi na posição 5.	76
FIGURA 4.15. Vista dos espectros eletrônicos sobrepostos para os ligantes e complexos em concentração da ordem de 10^{-5} M.	77
FIGURA 4.16. Voltamograma cíclico obtido com eletrodo de carbono vítreo em solução 1,0x10 ⁻³ M do complexo [Cu(3-MeOsalen)] em acetonitrila, contendo 0,1M de PTBA. Velocidade de varredura de 0,1V/s.	78
FIGURA 4.17. Representação ORTEP para o complexo de cobre com substituinte metoxi na posição 3.	80
FIGURA 4.18. Representação ORTEP para o empacotamento da cela unitária para o complexo de cobre com substituinte metoxi na posição 3.(A) Normal ao plano 010;(B) Normal ao plano 100;(C) Normal ao plano 001.	81
FIGURA 4.19. Visão esquemática dos ligantes com substituinte hidroxi. (A) Ligante 4-OHsalen; (B) Complexo [Cu(3-OHsalen)].	82
FIGURA 4.20. Espectros vibracionais (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o ligante 3-OHsalen com seu respectivo complexo.	84

<u>Lista de Figuras</u>

FIGURA 4.21. Espectros vibracionais (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o ligante 4-OHsalen com seu respectivo complexo.	84
Figura 4.22. Visão ampliada do espectro referente a 3-OHsalen (vermelho) e [Cu(4-OHsalen)] (verde).	86
FIGURA 4.23. Visualização dos efeitos indutivo e mesomérico do substituinte hidroxi (OH) nas ligações do anel aromático.	86
FIGURA 4.24. Visão esquemática da influência do substituinte hidroxi nas posições 3e 4.	86
 FIGURA 4.25. Espectros eletrônicos na região do ultravioleta-visível, para os ligantes 3 e 4-OHsalen com seus respectivos complexos de cobre. (A) Sobreposições ligante/complexo e complexo/complexo 3-OHsalen; (B) Sobreposições ligante/complexo e complexo/complexo 4-OHsalen 	88
FIGURA 4.26. Visão esquemática do ligante 3-EtOsalen com o seu respectivo complexo de cobre.	90
FIGURA 4.27. Ampliação do espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o ligante 3-EtOsalen com seu respectivo complexo de cobre.	92
FIGURA 4.28. Espectros eletrônicos na região do ultravioleta-visível, para o ligante 3-EtOsalen com seu respectivo complexo de cobre.	94
FIGURA 4.29. Representação ORTEP para o complexo de cobre com substituinte etoxi na posição 3.	96
 FIGURA 4.30. Representação ORTEP para o empacotamento da cela unitária para o complexo de cobre com substituinte etoxi na posição 3. (A) Normal ao plano 010; (B) Normal ao plano 100; (C) Normal ao plano 001. 	97
FIGURA 4.31. Visão esquemática do complexo em cujo sítio de coordenação, ocorre a formação de anéis de seis membros, os quais permitem uma melhor distribuição dos elétrons na molécula.	99
FIGURA 4.32. Visão esquemática do ligante 4-DEAsalen, com seu complexo de cobre.	100
FIGURA 4.33. Espectros vibracionais (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o ligante 4-DEAsalen juntamente com seu respectivo complexo.	101
FIGURA 4.33. Visão esquemática dos efeitos indutivos e mesomérico do substituinte doador de elétrons dietilamina, no anel aromático.	103
FIGURA 4.34. Esquema da influência do substituinte ao ocupar a posição 4 no ligante.	103
FIGURA 4.35. Espectros eletrônicos na região do ultravioleta-visível, para o ligante 4-DEAsalen com seu respectivo complexo de cobre.	105
FIGURA 4.36. Voltamograma cíclico obtido com eletrodo de carbono vítreo em solução $1,0x10^{-3}$ M do complexo [Cu(4-DEAsalen)] em DMF, contendo 0,1M de PTBA. Velocidade de varredura de 0,1 V/s.	106
FIGURA 4.37. Representação ORTEP para o complexo de cobre com substituinte dietilamina na posição 4.	108
 FIGURA 4.38. Representação ORTEP para o empacotamento da cela unitária para o complexo de cobre com substituinte dietilamina na posição4. (A) Normal ao plano 010; (B) Normal ao plano 100; (C) Normal ao plano 001. 	109

Lista de Figuras

FIGURA 4.39. Visão esquemática do ligante 5-NO2salen com seu complexo de cobre.	112
FIGURA 4.40. (A) Visão esquemática dos efeitos indutivos e mesomérico do substituinte nitro na posição 5 do anel aromático;(B) Esquema da influência do substituinte ao ocupar a posição 5 no ligante.	113
FIGURA 4.41. Espectros vibracionais (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o ligante 5-NO ₂ salen com seus respectivos complexos.	113
FIGURA 4.42. Espectros eletrônicos na região do ultravioleta-visível, para o ligante 5-NO ₂ salen com seu respectivo complexo de cobre.	115
 FIGURA 4.43. Visão esquemática dos ligantes com seus complexos de cobre. (A) Ligante 5-Clsalen; (B) Complexo [Cu(5-Clsalen)]; (C) Ligante 5-Brsalen; (D) Complexo [Cu(5-Brsalen)]. 	117
FIGURA 4.44. Espectros vibracionais (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o ligante 5-Clsalen com seu respectivo complexo.	119
FIGURA 4.45. Espectros vibracionais (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o ligante 5-Brsalen com seu respectivo complexo.	119
FIGURA 4.46. (A) Visão esquemática dos efeitos indutivos e mesomérico do substituinte Cl ou Br, na posição 5 do anel aromático.	121
(B) Esquema da influência do substituinte ao ocupar a posição 5 no ligante.	
 FIGURA 4.46. Espectros eletrônicos na região do ultravioleta-visível, para os ligantes com seus respectivos complexos de cobre. (A) Sobreposição ligante/complexo 5-Clsalen em concentração de 10⁻⁵M em acetonitrila. (B) Sobreposição complexo/complexo [Cu(5-Clsalen)] em diferentes concentrações 10⁻³M e 10⁻⁵M em acetonitrila. (C) Sobreposição ligante/complexo 5-Brsalen em concentração de 10⁻⁵M em acetonitrila. (D) Sobreposição complexo/complexo [Cu(5-Brsalen)] em diferentes concentrações 10⁻³M e 10⁻⁵M em acetonitrila. 	123
FIGURA 4.47. Visão esquemática do ligante 3,5-Clsalen, com seu complexo de cobre.	127
FIGURA 4.48. Ampliação dos espectros vibracionais na região do infravermelho para o ligante 3,5- Clsalen com seu respectivo complexo.	128
FIGURA 4.49. Visão esquemática dos efeitos do substituinte Cl nas posições 3 e 5 do anel aromático simultaneamente.	130
FIGURA 4.50. Esquema da influência do substituinte ao ocupar as posições 3 e 5 no ligante.	130
FIGURA 4.51. Espectros eletrônicos na região do ultravioleta-visível, para o ligante 3,5-Clsalen com seu respectivo complexo de cobre.	131
FIGURA 4.52. Visão esquemática do ligante 3,5Brsalen e seu complexo [Cu(3,5-Brsalen)].	133
FIGURA 4.53. Espectros vibracionais (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o ligante 3,5-Brsalen com seu respectivo complexo.	134
FIGURA 4.54. Visão esquemática genérica, dos efeitos indutivos e mesomérico do substituinte bromo, nas posições 3 e 5 do anel aromático.	136

<u>Lista de Figuras</u>

FIGURA 4.55. Esquema da influência do substituinte ao ocupar as posições 3 e 5 simultaneamente no ligante.	136
FIGURA 4.56. Espectros eletrônicos na região do ultravioleta-visível, para o ligante 3,5-Brsalen com seu respectivo complexo de cobre.	138
FIGURA 4.57. Visão esquemática do ligante com seu complexo de cobre.	139
FIGURA 4.58. Espectros vibracionais (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o ligante 3,5-Isalen com seu respectivo complexo.	140
FIGURA 4.59. Visão esquemática dos efeitos indutivo e mesomérico do substituinte iodo nas posições 3 e 5 do anel aromático.	142
FIGURA 4.60. Esquema da influência do substituinte ao ocupar as posições 3 e 5 no ligante.	142
FIGURA 4.61 Espectros eletrônicos na região do ultravioleta-visível, para os ligantes com seus respectivos complexos de cobre.	143
FIGURA 4.62. Visão esquemática do ligante 7-Mesalen, e do complexo simétrico [Cu(7-Etsalen)].	147
FIGURA 4.63. Ampliação dos espectros vibracionais na região do infravermelho para o ligante 7- Mesalen com seu respectivo complexo.	149
FIGURA 4.64. Ampliação dos espectros vibracionais na região do infravermelho para o ligante 7- Mesalen com seu respectivo complexo.	149
 FIGURA 4.65. Espectros eletrônicos na região do ultravioleta-visível, para os ligantes com seus respectivos complexos de cobre. (A) Sobreposição ligante/complexo 7-Mesalen em concentração de 10⁻⁵M em acetonitrila. (B) Sobreposição complexo/complexo [Cu(7-Mesalen)] em diferentes concentrações 10⁻³M e 10⁻⁵M em acetonitrila. (C) Sobreposição ligante/complexo 7-Etsalen em concentração de 10⁻⁵M em acetonitrila. (D) Sobreposição complexo/complexo [Cu(7-Etsalen)] em diferentes concentrações 10⁻³ M e 10⁻⁵M em acetonitrila. 	152
FIGURA 4.66. Visão esquemática dos compostos: (A) Ligante 7-Fenilsalen; (B) Ligante 7-Feniletilsalen; (C) Complexo [Cu(7-Fenil-4-MeOsalen)].	154
FIGURA 4.67. Espectros vibracionais (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o ligante 7-Φsalen com seu respectivo complexo.	159
FIGURA 4.68. Espectros vibracionais (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o ligante 7-ΦEtsalen com seu respectivo complexo.	159
FIGURA 4.69. Espectros vibracionais (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o ligante 7-Φ-4-MeOsalen com seu respectivo complexo.	160
 FIGURA 4.70. Espectros eletrônicos na região do ultravioleta-visível, para os ligantes e seus respectivos complexos. (A) Sobreposição ligante/complexo 7-Fenilsalen; (B) Sobreposição complexo/complexo em diferentes concentrações; (C) Sobreposição ligante/complexo 7-Feniletilsalen; (D) Sobreposição complexo/complexo em diferentes concentrações; (E) Sobreposição ligante/complexo 7-Fenil-4-MeOsalen; (F) Sobreposição complexo/complexo em diferentes concentrações. 	162

 FIGURA 4.71. Visão esquemática dos complexos com substituintes na posição 3. (A) Metoxi (OCH₃); (B) Etoxi (OCH₂CH₃). 	164
FIGURA 4.72. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o complexo assimétrico com substituinte metoxi na posição 3 em comparação o correspondente complexo simétrico.	166
FIGURA 4.73. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o complexo assimétrico com substituinte etoxi na posição 3 em comparação com o correspondente complexo simétrico.	166
FIGURA 4.74. Espectros eletrônicos na região do ultravioleta-visível para os complexos assimétricos. (A)[Cu(3-MeOsalsalen)]; (B)[Cu(3-EtOsalsalen)].	168
 FIGURA 4.75. Visão esquemática dos complexos com substituinte na posição 4. (A) [Cu(4-MeOsalsalen)]; (B) [Cu(4-MeOsalsalen)]; (C) [Cu(4-MeOsalsalen)]. 	170
FIGURA 4.76. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o complexo assimétrico com substituinte metoxi na posição 4 em comparação com o complexo correspondente simétrico.	171
FIGURA 4.77. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o complexo assimétrico com substituinte hidroxi na posição 4 em comparação com o complexo correspondente simétrico.	171
FIGURA 4.78. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o complexo assimétrico com substituinte dietilamina na posição 4 em comparação com o complexo correspondente simétrico.	172
FIGURA 4.79. Espectros eletrônicos na região do ultravioleta-visível para os complexos assimétricos. (A)[Cu(4-MeOsalsalen)]; (B)[Cu(4-OHsalsalen)]; (C)[Cu(4-DEAsalsalen)].	174
 FIGURA 4.80. Visão esquemática dos complexos com substituinte na posição 4. (A) [Cu(5-NO₂salsalen)]; (B) [Cu(5-Brsalsalen)]. 	176
FIGURA 4.81. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o complexo assimétrico com substituinte metoxi na posição 5 em comparação com o complexo similar simétrico.	178
FIGURA 4.82. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o complexo assimétrico com substituinte nitro na posição 5 em comparação com o complexo similar simétrico.	178
FIGURA 4.83. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o complexo assimétrico com substituinte cloro na posição 5 em comparação com o complexo similar simétrico.	179
FIGURA 4.84. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para o complexo assimétrico com substituinte bromo na posição 5 em comparação com o complexo similar simétrico.	179

 FIGURA 4.85. Espectros eletrônicos na região do ultravioleta-visível para os complexos assimétricos. (A)[Cu(5-MeOsalsalen)]; (B)[Cu(5-NO₂salsalen)]; (C)[Cu(5-Clsalsalen)]; (D)[Cu(5-Brsalsalen)]. 	182
 FIGURA 4.86. Visão esquemática dos complexos com substituinte na posição 4. (A) [Cu(3,5-Clsalsalen)]; (B) [Cu(3,5-Isalsalen)]. 	184
FIGURA 4.87. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho comparando o complexo assimétrico com substituinte 3,5-Cl e o correspondente complexo simétrico.	185
FIGURA 4.88. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho comparando o complexo assimétrico com substituinte 3,5-Br e o correspondente complexo simétrico.	186
FIGURA 4.89. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho comparando o complexo assimétrico com substituinte 3,5-I e o correspondente complexo simétrico.	186
 FIGURA 4.90. Espectros eletrônicos na região do ultravioleta-visível para os complexos assimétricos. (A) [Cu(3,5-Clsalsalen)]; (B) [Cu(3,5-Brsalsalen)]; (C) [Cu(3,5-Isalsalen)]. 	189
 FIGURA 4.91. Visão esquemática dos complexos assimétricos com substituinte na posição 7. (A)[Cu(7-Etsalsalen)]; (B)[Cu(7-Φ-4-MeOsalsalen)] 	191
FIGURA 4.92. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho comparando o complexo assimétrico com substituinte etil na posição 7 e seu correspondente complexo simétrico.	193
FIGURA 4.93. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho comparando o complexo assimétrico com substituinte fenil na posição 7 e seu correspondente complexo simétrico.	193
FIGURA 4.94. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho comparando o complexo assimétrico com substituinte feniletil na posição 7 e seu correspondente complexo simétrico.	194
FIGURA 4.95. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho comparando o complexo assimétrico com substituinte fenil na posição 7 e metoxi na posição 4 com seu correspondente complexo simétrico.	194
 FIGURA 4.96. Espectros eletrônicos na região do ultravioleta-visível para os complexos assimétricos. (A) [Cu(7-Etsalsalen)]; (B) [Cu(7-Φsalsalen)]; (C) [Cu(7-ΦEtsalsalen)]; (D) [Cu(7-Φ-4-MeOsalsalen)]. 	197
 FIGURA 4.97. Espectro vibracional (Transmitância x Número de onda cm⁻¹) para os complexos. (A) [Cu(3-MeOsal½en)py]ClO₄ preto; (B) [Cu(3-EtOsal½t-dac)py]ClO₄ azul; (C) [Cu(Hsal½o-Ph) py]ClO₄ vermelho. 	199

 FIGURA 4.98. Visão esquemática dos compostos. (A) [Cu(Hsal½en)py]ClO₄, complexo sem substituinte; (B) [Cu(3-MeOsal½en)py]ClO₄ complexo com substituinte OCH₃ na posição 3; (C) [Cu(3-EtOsal½en)py]ClO₄ complexo com substituinte OCH₂CH₃ na posição 3. 	195
FIGURA 4.99. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para os complexos de cobre tridentados com etilenodiamina na ponte.	202
 FIGURA 4.100. Espectros eletrônicos na região do ultravioleta-visível para os complexos tridentados. (A) Sobreposição dos espectros do complexo sem substituição [Cu(Hsal½en)py]ClO₄ em duas concentrações; (B) Sobreposição dos espectros do complexo com substituinte metoxi [Cu(3-MeOsal½en)py]ClO₄ em duas concentrações; (C) Sobreposição dos espectros do complexo com substituinte etoxi [Cu(3-EtOsal½en)py]ClO₄ em duas concentrações; 	204
 FIGURA 4.101. Visão esquemática dos compostos. (A) [Cu(Hsal½t-dac)py]ClO₄, complexo sem substituinte, H em todas as posições; (B) [Cu(3-MeOsal½t-dac)py]ClO₄, complexo com substituinte metoxi na posição 3; (C) [Cu(3-EtOsal½t-dac)py]ClO₄, complexo com substituinte etoxi na posição 3. 	206
FIGURA 4.102. Espectros vibracionais (Transmitância x Número de onda cm^{-1}) na região do infravermelho para os complexos de cobre tridentados com <i>trans</i> -1,2-diaminociclohexano na ponte.	208
 FIGURA 4.103. Espectros eletrônicos na região do ultravioleta-visível para os complexos tridentados. (A) Sobreposição dos espectros do complexo sem substituição [Cu(Hsal¹/₂t-dac)py]ClO₄ em duas concentrações; (B) Sobreposição dos espectros do complexo com substituinte metoxi [Cu(3-MeOsal¹/₂t-dac)py]ClO₄ em duas concentrações; (C) Sobreposição dos espectros do complexo com substituinte etoxi [Cu(3-EtOsal¹/₂t-dac)py]ClO₄ em duas concentrações; 	211
FIGURA 4.104. Espectro eletrônico típico da piridina.	212
 FIGURA 4.105. Visão esquemática dos compostos. (A) [Cu(Hsal½o-Ph)py]ClO₄; (B) [Cu(3-MeOsal½o-Ph)py]ClO₄; (C) [Cu(3-EtOsal½o-Ph)py]ClO₄. 	213
FIGURA 4.106. Espectro vibracional (Transmitância x Número de onda cm ⁻¹) na região do infravermelho para os complexos de cobre tridentados com <i>orto</i> -fenilenodiamino na ponte.	215
 FIGURA 4.107. Espectro eletrônico na região do ultravioleta-visível para os complexos tridentados. (A) Sobreposição dos espectros do complexo sem substituição [Cu(Hsal½o-Ph)py]ClO₄ em duas concentrações; (B) Sobreposição dos espectros do complexo com substituinte metoxi [Cu(3-MeOsal½o-Ph)py]ClO₄ em duas concentrações; (C) Sobreposição dos espectros do complexo com substituinte etoxi [Cu(3-EtOsal½o-Ph)py]ClO₄ em duas concentrações. 	218

62

ÍNDICE DE TABELAS

TABELA 1.1. Grupos utilizados como substituintes do anel aromático, nos compostos em estudo99999

TABELA 3.1. Posições dos substituintes na figura 3.2, juntamente com os respectivos nomes dos 30 compostos.

TABELA 3.2. Posições dos substituintes na estrutura tridentada, juntamente com os respectivos 36 nomes dos compostos.

TABELA 3.3. Posições dos substituintes nos complexos assimétricos tetradentados com seus 38 respectivos nomes.

TABELA 3.4. Proporções utilizadas nos cálculos de intensidade relativa dos picos de absorção na
região do infravermelho.40

TABELA 4.1. Dados gerais de caracterização do ligante salen e seu respectivo complexo de
cobre em comparação com a literatura.58

TABELA 4.2. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm⁻¹. 61

TABELA 4.3. Principais bandas (cm⁻¹) afetadas no processo de formação do complexo.

TABELA 4.4. Coeficientes de extinção molar calculados e máximos de absorção na região doultravioleta-visível para o ligante salen, com seu respectivo complexo [Cu(salen)], bem como as63Atribuições tentativas de acordo com a literatura.

TABELA 4.5. Dados gerais de caracterização dos ligantes e seus respectivos complexos de cobre em comparação com a literatura. 66

TABELA 4.6. Atribuições tentativas das bandas observadas para os compostos na região do68infravermelho comparando com os valores encontrados na literatura, freqüências em cm⁻¹.68

TABELA 4.7. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm^{-1} . 69

TABELA 4.8. Comparação dos valores observados para os ligantes com substituinte metoxi nas diversas posições e o ligante salen. Valores em cm⁻¹. 72

TABELA 4.9. Comparação dos valores encontrados para as bandas dos ligantes com substituinte73metoxi e seus respectivos complexos de cobre, freqüências em cm⁻¹.73

TABELA 4.10. Coeficientes de extinção molar calculados e máximos de absorção na região doultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições74tentativas de acordo com a literatura.74

TABELA 4.11. Coeficientes de extinção molar calculados e máximos de absorção na região doultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições75tentativas de acordo com a literatura.75

TABELA 4.12. Coeficientes de extinção molar calculados e máximos de absorção na região doultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições76tentativas de acordo com a literatura.76

Lista de Tabelas

TABELA 4.13. Comparação entre os valores das bandas observadas para os complexos com substituintes metoxi nas posições 3, 4 e 5.	77
TABELA 4.14. Principais dados cristalográficos para o complexo [Cu(3-MeOsalen)].H ₂ O.	79
TABELA 4.15. Principais distâncias (Å) interatômicas para o complexo com os respectivos desvios padrão em comparação com dados da literatura.	80
TABELA 4.16. Principais ângulos (°) interatômicos para o complexo com os respectivos desvios padrão em comparação com os dados encontrados na literatura.	80
TABELA 4.17. Dados gerais de caracterização dos ligantes OHsalen e seus respectivos complexos de cobre em comparação com a literatura.	82
TABELA 4.18. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .	85
TABELA 4.19. Comparação dos valores observados para os ligantes com substituinte hidroxi nas duas posições e o ligante salen, freqüências em cm ⁻¹ .	87
TABELA 4.20. Comparação dos valores encontrados para as bandas do ligante com substutinte hidroxi e seu respectivo complexo de cobre, freqüências em cm ⁻¹ .	87
TABELA 4.21. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.	89
TABELA 4.22. Dados gerais de caracterização do ligante 3-EtOsalen e seu respectivo complexo de cobre em comparação com a literatura.	90
TABELA 4.23. Comparação dos valores observados para o ligante com substituinte etoxi e o ligante salen, freqüências em cm ⁻¹ .	91
TABELA 4.24. Comparação dos valores encontrados para as bandas do ligante com substituinte etoxi e seu respectivo complexo de cobre, freqüências em cm ⁻¹ .	91
TABELA 4.25. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .	93
TABELA 4.26. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as Atribuições tentativas de acordo com a literatura	94
TABELA 4.27. Principais dados cristalográficos para o complexo [Cu(3-EtOsalen)]	95
TABELA 4.28. Principais distâncias (Å) interatômicas para o complexo com os respectivos desvios padrão em comparação com dados da literatura.	95
TABELA 4.29. Principais ângulos (°) interatômicos para o complexo com os respectivos desvios padrão em comparação com os dados encontrados na literatura.	96
TABELA 4.30. Comparação dos valores encontrados para as deformações, na região do infravermelho, das ligações C=N e C–O, freqüências em cm^{-1} .	97

TABELA 4.31. Substituintes na posição 3 do anel fenólico, nos compostos em estudo neste98trabalho, com suas respectivas constantes.98

TABELA 4.32. Comparação dos valores encontrados para as bandas na região do ultravioletayisível. 99

TABELA 4.33. Dados gerais de caracterização do ligante 4-DEAsalen e seu respectivo complexo95de cobre em comparação com dados da literatura.95

TABELA 4.34. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm⁻¹.

TABELA 4.35. Comparação dos valores observados para o ligante com substituinte dietilamina e 103 o ligante salen.

TABELA 4.36. Comparação dos valores encontrados para as bandas do ligante com substituinte DEA e seu respectivo complexo de cobre, freqüências em cm^{-1} . 104

TABELA 4.37. Coeficientes de extinção molar calculados e máximos de absorção na região doultravioleta-visível para o ligante, com seu respectivo complexo, bem como as Atribuições105tentativas de acordo com a literatura.

TABELA 4.38. Principais dados cristalográficos para o complexo [Cu(4-DEAsalen)].

107

TABELA 4.39. Principais distâncias (Å) interatômicas para o complexo com os respectivosdesvios padrão em comparação com dados da literatura.

TABELA 4.40. Principais ângulos (°) interatômicos para o complexo com os respectivos desvios108padrão em comparação com os dados encontrados na literatura.108

TABELA 4.41. Comparação dos valores observados para os ligantes com substituinte na posição1104 e o ligante salen.110

TABELA 4.42. Comparação dos valores observados para os ligantes com substituinte na posição1104 e o ligante salen na região do ultravioleta-visível.110

TABELA 4.43. Dados gerais de caracterização do ligante 5-NO₂ e seu respectivo complexo de cobre em comparação com a literatura. 112

TABELA 4.44. Comparação dos valores observados para o ligante com substituinte nitro e o 113 ligante salen. Freqüências em cm⁻¹.

TABELA 4.45. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm^{-1} . 114

TABELA 4.46. Comparação dos valores encontrados para as bandas do ligante com substituinte etoxi e seu respectivo complexo de cobre, freqüências em cm⁻¹.

TABELA 4.47. Coeficientes de extinção molar calculados e máximos de absorção na região doultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições116tentativas de acordo com a literatura.

TABELA 4.48. Dados gerais de caracterização do ligante 5-Br e seu respectivo complexo de117cobre em comparação com a literatura.117

TABELA 4.49. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm⁻¹.

TABELA 4.50. Comparação dos valores observados para os ligantes com substituinte 5-Cl e 5-Br121e o ligante salen. Freqüências em cm⁻¹.121

TABELA 4.52. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições 124124TABELA 4.53. Comparação entre os valores encontrados para as ligações C=N e C-O dos ligantes com diferentes substituintes na posição 5 e o ligante salen.124TABELA 4.54. Comparação entre as freqüências das transições eletrônicas observadas para os de cobre.127TABELA 4.55. Dados gerais de caracterização do ligante 3,5-Clsalen e seu respectivo complexo de cobre.127TABELA 4.56. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparação dos valores encontrados para as bandas do ligante com substituinte cloro e o ligante salen, freqüências em cm ⁻¹ .131TABELA 4.58. Comparação dos valores encontrados para as bandas do ligante com substituinte cloro e seu complexo de cobre, freqüências em cm ⁻¹ .132TABELA 4.59. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.132TABELA 4.60. Dados gerais de caracterização do ligante 3,5-Brsalen e seu respectivo complexo de cobre em comparação dos valores encontrados para as bandas do ligante com substituinte toro e o ligante salen, freqüências em cm ⁻¹ .133TABELA 4.61. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparação dos valores encontrados para as bandas do ligante com substituinte brom o e ligante salen, freqüências em cm ⁻¹ .133TABELA 4.62. Comparação dos valores encontrados para as bandas do ligante com substituinte brom o e ligante salen, f	Tabela 4.51. Comparação dos valores encontrados para as bandas dos ligantes com substituinte 5- Cl e 5-Br e seus respectivos complexos de cobre, freqüências em cm ⁻¹ .	122
TABELA 4.53. Comparação entre os valores encontrados para as ligações C=N e C-O dos ligantes com diferentes substituintes na posição 5 e o ligante salen.124TABELA 4.54. Comparação entre as freqüências das transições eletrônicas observadas para os compostos com diferentes substituintes na posição 5.125TABELA 4.55. Dados gerais de caracterização do ligante 3,5-Clsalen e seu respectivo complexo de cobre.127TABELA 4.56. Atribuições tentativas das bandas observadas para os compostos na região do 	TABELA 4.52. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.	124
TABELA 4.54. Comparação entre as freqüências das transições eletrônicas observadas para os compostos com diferentes substituintes na posição 5.125TABELA 4.55. Dados gerais de caracterização do ligante 3,5-Clsalen e seu respectivo complexo de cobre.127TABELA 4.56. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados para as bandas do ligante com substituinte cloro e o ligante salen, freqüências em cm ⁻¹ .131TABELA 4.57. Comparação dos valores encontrados para as bandas do ligante com substituinte cloro e o ligante salen, freqüências em cm ⁻¹ .131TABELA 4.58. Comparação dos valores encontrados para as bandas do ligante com substituinte cloro e seu complexo de cobre, freqüências em cm ⁻¹ .132TABELA 4.59. Coeficientes de extinção molar calculados e máximos de absorção na região do 	TABELA 4.53. Comparação entre os valores encontrados para as ligações C=N e C-O dos ligantes com diferentes substituintes na posição 5 e o ligante salen.	124
TABELA 4.55. Dados gerais de caracterização do ligante 3,5-Clsalen e seu respectivo complexo de cobre.127TABELA 4.56. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparação dos valores encontrados na literatura, freqüências em cm ⁻¹ .129TABELA 4.57. Comparação dos valores encontrados para as bandas do ligante com substituinte cloro e o ligante salen, freqüências em cm ⁻¹ .131TABELA 4.58. Comparação dos valores encontrados para as bandas do ligante com substituinte cloro e seu complexo de cobre, freqüências em cm ⁻¹ .131TABELA 4.59. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura?.133TABELA 4.60. Dados gerais de caracterização do ligante 3,5-Brsalen e seu respectivo complexo de cobre em comparação dos valores encontrados para as bandas do ligante com substituinte spector en comparação dos valores encontrados para as bandas do ligante com substituinte spector en comparação dos valores encontrados na literatura, freqüências em cm ⁻¹ .133TABELA 4.61. Atribuições tentativas das bandas observadas para os compostos na região do ultravioleta-visível para o logante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.136TABELA 4.62. Comparação dos valores encontrados para as bandas do ligante com substituinte 3,5-Br e seu respectivo complexo de cobre, freqüência em cm ⁻¹ .136TABELA 4.63. Comparação dos valores encontrados para as bandas do ligante com substituinte 3,5-Br e seu respectivo complexo de cobre, freqüência em cm ⁻¹ .137TABELA 4.64. Coeficientes de extinção molar calc	TABELA 4.54. Comparação entre as freqüências das transições eletrônicas observadas para os compostos com diferentes substituintes na posição 5.	125
TABELA 4.56. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparação dos valores encontrados na literatura, freqüências em cm ⁻¹ .129TABELA 4.57. Comparação dos valores encontrados para as bandas do ligante com substituinte cloro e o ligante salen, freqüências em cm ⁻¹ .131TABELA 4.58. Comparação dos valores encontrados para as bandas do ligante com substituinte cloro e seu complexo de cobre, freqüências em cm ⁻¹ .131TABELA 4.59. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.133TABELA 4.60. Dados gerais de caracterização do ligante 3,5-Brsalen e seu respectivo complexo de cobre em comparação dos valores encontrados para as bandas do ligante com substituinte bromo e o ligante salen, freqüências em cm ⁻¹ .135TABELA 4.62. Comparação dos valores encontrados para as bandas do ligante com substituinte bromo e o ligante salen, freqüências em cm ⁻¹ .136TABELA 4.63. Comparação dos valores encontrados para as bandas do ligante com substituinte bromo e o ligante salen, freqüências em cm ⁻¹ .136TABELA 4.64. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.137TABELA 4.65. Dados gerais de caracterização do ligante 3,5-Isalen e seu respectivo complexo de cobre em comparação com a literatura.138TABELA 4.65. Dados gerais de caracterização do ligante 3,5-Isalen e seu respectivo complexo de cobre em comparação com a literatura.140TABELA 4.66. At	TABELA 4.55. Dados gerais de caracterização do ligante 3,5-Clsalen e seu respectivo complexo de cobre.	127
TABELA 4.57. Comparação dos valores encontrados para as bandas do ligante com substituinte cloro e o ligante salen, freqüências em cm ⁻¹ .131TABELA 4.58. Comparação dos valores encontrados para as bandas do ligante com substituinte cloro e seu complexo de cobre, freqüências em cm ⁻¹ .131TABELA 4.59. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.132TABELA 4.60. Dados gerais de caracterização do ligante 3,5-Brsalen e seu respectivo complexo de cobre em comparação com a literatura ² .133TABELA 4.61. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparação dos valores encontrados para as bandas do ligante com substituinte 3,5-Br e seu respectivo complexo de cobre, freqüências em cm ⁻¹ .136TABELA 4.62. Comparação dos valores encontrados para as bandas do ligante com substituinte 3,5-Br e seu respectivo complexo de cobre, freqüência em cm ⁻¹ .137TABELA 4.63. Comparação dos valores encontrados para as bandas do ligante com substituinte 3,5-Br e seu respectivo complexo de cobre, freqüência em cm ⁻¹ .138TABELA 4.64. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.131TABELA 4.65. Dados gerais de caracterização do ligante 3,5-Isalen e seu respectivo complexo de cobre em comparação com a literatura.140TABELA 4.66. Atribuições tentativas das bandas observadas para os compostos na região do ultravioleta-visível para o ligante, com seu respectivo complexo de cobre	TABELA 4.56. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .	129
TABELA 4.58. Comparação dos valores encontrados para as bandas do ligante com substituinte cloro e seu complexo de cobre, freqüências em cm ⁻¹ .131TABELA 4.59. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.132TABELA 4.60. Dados gerais de caracterização do ligante 3,5-Brsalen e seu respectivo complexo de cobre em comparação com a literatura ² .133TABELA 4.61. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparação dos valores encontrados para as bandas do ligante com substituinte 5,-Br e seu respectivo complexo de cobre, freqüência em cm ⁻¹ .136TABELA 4.63. Comparação dos valores encontrados para as bandas do ligante com substituinte 3,5-Br e seu respectivo complexo de cobre, freqüência em cm ⁻¹ .137TABELA 4.64. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.137TABELA 4.65. Dados gerais de caracterização do ligante 3,5-Isalen e seu respectivo complexo de cobre em comparação com a literatura.138TABELA 4.65. Dados gerais de caracterização do ligante 3,5-Isalen e seu respectivo complexo de cobre em comparação com a literatura.140TABELA 4.67. Comparação dos valores encontrados na literatura, freqüências em cm ⁻¹ .141TABELA 4.67. Comparação dos valores encontrados na literatura, freqüências em cm ⁻¹ .142	TABELA 4.57. Comparação dos valores encontrados para as bandas do ligante com substituinte cloro e o ligante salen, freqüências em cm ⁻¹ .	131
TABELA 4.59. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições132TABELA 4.60. Dados gerais de caracterização do ligante 3,5-Brsalen e seu respectivo complexo de cobre em comparação com a literatura ² .133TABELA 4.61. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparação dos valores encontrados na literatura, freqüências em cm ⁻¹ .135TABELA 4.62. Comparação dos valores encontrados para as bandas do ligante com substituinte bromo e o ligante salen, freqüências em cm ⁻¹ .136TABELA 4.63. Comparação dos valores encontrados para as bandas do ligante com substituinte 3,5-Br e seu respectivo complexo de cobre, freqüência em cm ⁻¹ .137TABELA 4.64. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições138TABELA 4.65. Dados gerais de caracterização do ligante 3,5-Isalen e seu respectivo complexo de cobre em comparação com a literatura.140TABELA 4.65. Comparação dos valores encontrados para os compostos na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições141TABELA 4.65. Dados gerais de caracterização do ligante 3,5-Isalen e seu respectivo complexo de cobre em comparação com a literatura.140TABELA 4.66. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .141TABELA 4.67. Comparação dos valores observados para o ligante com substituinte 3,5-I e o ligante acon subarea on s	TABELA 4.58. Comparação dos valores encontrados para as bandas do ligante com substituinte cloro e seu complexo de cobre, freqüências em cm ⁻¹ .	131
TABELA 4.60. Dados gerais de caracterização do ligante 3,5-Brsalen e seu respectivo complexo de cobre em comparação com a literatura ² .133TABELA 4.61. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .135TABELA 4.62. Comparação dos valores encontrados para as bandas do ligante com substituinte bromo e o ligante salen, freqüências em cm ⁻¹ .136TABELA 4.63. Comparação dos valores encontrados para as bandas do ligante com substituinte 3,5-Br e seu respectivo complexo de cobre, freqüência em cm ⁻¹ .137TABELA 4.64. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.138TABELA 4.65. Dados gerais de caracterização do ligante 3,5-Isalen e seu respectivo complexo de cobre em comparação com a literatura.140TABELA 4.66. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .141	TABELA 4.59. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.	132
TABELA 4.61. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .135TABELA 4.62. Comparação dos valores encontrados para as bandas do ligante com substituinte bromo e o ligante salen, freqüências em cm ⁻¹ .136TABELA 4.63. Comparação dos valores encontrados para as bandas do ligante com substituinte 3,5-Br e seu respectivo complexo de cobre, freqüência em cm ⁻¹ .137TABELA 4.64. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.138TABELA 4.65. Dados gerais de caracterização do ligante 3,5-Isalen e seu respectivo complexo de cobre em comparação com a literatura.140TABELA 4.66. Atribuições tentativas das bandas observadas para os compostos na região do 	TABELA 4.60. Dados gerais de caracterização do ligante 3,5-Brsalen e seu respectivo complexo de cobre em comparação com a literatura ² .	133
TABELA 4.62. Comparação dos valores encontrados para as bandas do ligante com substituinte bromo e o ligante salen, freqüências em cm ⁻¹ .136TABELA 4.63. Comparação dos valores encontrados para as bandas do ligante com substituinte 3,5-Br e seu respectivo complexo de cobre, freqüência em cm ⁻¹ .137TABELA 4.64. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.138TABELA 4.65. Dados gerais de caracterização do ligante 3,5-Isalen e seu respectivo complexo de cobre em comparação com a literatura.140TABELA 4.66. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparação dos valores observados para o ligante com substituinte 3,5-I e o ligante selan Eraciâncias em cm ⁻¹ .142	TABELA 4.61. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .	135
TABELA 4.63. Comparação dos valores encontrados para as bandas do ligante com substituinte 3,5-Br e seu respectivo complexo de cobre, freqüência em cm ⁻¹ .137TABELA 4.64. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.138TABELA 4.65. Dados gerais de caracterização do ligante 3,5-Isalen e seu respectivo complexo de cobre em comparação com a literatura.140TABELA 4.66. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .141TABELA 4.67. Comparação dos valores observados para o ligante com substituinte 3,5-I e o ligante selan Eraciâncias am cm ⁻¹ .142	TABELA 4.62. Comparação dos valores encontrados para as bandas do ligante com substituinte bromo e o ligante salen, freqüências em cm ⁻¹ .	136
TABELA 4.64. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.138TABELA 4.65. Dados gerais de caracterização do ligante 3,5-Isalen e seu respectivo complexo de cobre em comparação com a literatura.140TABELA 4.66. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .141TABELA 4.67. Comparação dos valores observados para o ligante com substituinte 3,5-I e o ligante selan Eracitências em cm ⁻¹ .142	TABELA 4.63. Comparação dos valores encontrados para as bandas do ligante com substituinte 3,5-Br e seu respectivo complexo de cobre, freqüência em cm ⁻¹ .	137
TABELA 4.65. Dados gerais de caracterização do ligante 3,5-Isalen e seu respectivo complexo de cobre em comparação com a literatura.140TABELA 4.66. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .141TABELA 4.67. Comparação dos valores observados para o ligante com substituinte 3,5-I e o ligante selan Eracitências em cm ⁻¹ .142	TABELA 4.64. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições tentativas de acordo com a literatura.	138
TABELA 4.66. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ . 141 TABELA 4.67. Comparação dos valores observados para o ligante com substituinte 3,5-I e o ligante selan Eracijências em cm ⁻¹ . 142	TABELA 4.65. Dados gerais de caracterização do ligante 3,5-Isalen e seu respectivo complexo de cobre em comparação com a literatura.	140
TABELA 4.67. Comparação dos valores observados para o ligante com substituinte 3,5-I e o 142	TABELA 4.66. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .	141
	TABELA 4.67. Comparação dos valores observados para o ligante com substituinte 3,5-I e o ligante salen. Freqüências em cm ⁻¹ .	142

TABELA 4.68. Comparação dos valores encontrados para as bandas do ligante com substituinte1433,5-Br e seu respectivo complexo de cobre, freqüência em cm^{-1} .143

TABELA 4.69. Coeficientes de extinção molar calculados e máximos de absorção na região doultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições144tentativas de acordo com a literatura.

TABELA 4.69. Comparação dos valores encontrados para as deformações, na região do infravermelho, das ligações C=N e C–O. 144

TABELA 4.70. Substituintes nas posições 3 e 5 do anel fenólico, nos compostos em estudo neste145trabalho, com suas respectivas constantes.145

TABELA 4.71. Comparação dos valores encontrados para as bandas na região do ultravioletavisível. 145

TABELA 4.72. Dados gerais de caracterização do ligante 7-Mesalen e seu respectivo complexo147de cobre em comparação com dados da literatura.147

TABELA 4.73. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm⁻¹. 150

TABELA 4.74. Comparação dos valores observados para os ligantes com substituinte metil e etil e o ligante salen. Freqüências em cm⁻¹.

TABELA 4.75. Comparação dos valores encontrados para as bandas do ligante com substituinte etoxi e seu respectivo complexo de cobre, freqüências em cm^{-1} . 152

TABELA 4.76. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições 153 tentativas de acordo com a literatura.

TABELA 4.77. Dados gerais de caracterização dos ligantes e seus respectivos complexos de 155 cobre em comparação com a literatura.

TABELA 4.78. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm⁻¹. 157

TABELA 4.79. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm⁻¹. 158

TABELA 4.80. Comparação dos valores observados para os ligantes com substituintes na posição 7 e o ligante salen.

TABELA 4.81. Comparação dos valores encontrados para as bandas dos ligantes com substituintes na posição 7 e seus respectivos complexos de cobre, freqüências em cm⁻¹.

TABELA 4.82. Coeficientes de extinção molar calculados e máximos de absorção na região doultravioleta-visível para o ligante, com seu respectivo complexo, bem como as atribuições163tentativas de acordo com a literatura.

TABELA 4.83. Dados gerais de caracterização dos complexos assimétricos [Cu(3-MeOsalsalen)]165e [Cu(3-EtOsalsalen)].165

TABELA 4.84. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm⁻¹. 167

TABELA 4.85. Coeficientes de extinção molar calculados e máximos de absorção na região do168ultravioleta-visível para os complexos em comparação com os respectivos complexos simétricos,

bem como as Atribuições tentativas de acordo com a literatura.	
TABELA 4.86. Dados gerais de caracterização dos complexos assimétricos com substituinte na posição 4.	170
TABELA 4.87. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .	173
TABELA 4.88. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para os complexos em comparação com o complexo simétrico sem substituição, bem como as Atribuições tentativas de acordo com a literatura.	175
TABELA 4.89. Dados gerais de caracterização dos complexos assimétricos com substituinte metoxi e nitro na posição 5.	176
TABELA 4.90. Dados gerais de caracterização dos complexos assimétricos com substituinte cloro e bromo na posição 5.	177
TABELA 4.91. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .	181
TABELA 4.92. Coeficientes de extinção molar calculados e máximos de absorção para os complexos em comparação com o complexo simétrico sem substituição, bem como as atribuições tentativas de acordo com a literatura.	182
TABELA 4.93. Dados gerais de caracterização dos complexos assimétricos com substituintes Cl, Br e I nas posições 3 e 5.	184
TABELA 4.94. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .	188
TABELA 4.95. Coeficientes de extinção molar calculados e máximos de absorção para os complexos em comparação com o complexo simétrico sem substituição, bem como as atribuições tentativas de acordo com a literatura.	189
TABELA.4.96. Dados gerais de caracterização dos complexos assimétricos com substituintes etil, fenil.	192
TABELA 4.97. Dados gerais de caracterização dos complexos assimétricos com substituintes feniletil e fenil-metoxi.	192
TABELA 4.98. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .	195
TABELA 4.99. Coeficientes de extinção molar calculados e máximos de absorção para os complexos em comparação com o complexo simétrico sem substituição, bem como as atribuições tentativas de acordo com a literatura.	197
TABELA 4.100. Dados gerais de caracterização dos três complexos tridentados.	201
TABELA 4.101. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm ⁻¹ .	203
TABELA 4.102. Coeficientes de extinção molar para os complexos tridentados e as atribuições tentativas de acordo com a literatura. Usando acetonitrila como solvente.	204
TABELA 4.103. Coeficientes de extinção molar e máximos de absorção para os complexos tridentados e as atribuições tentativas de acordo com a literatura. Utilizando como solvente	205
acetona.

TABELA 4.104. Coeficientes de extinção molar e máximos de absorção para os complexostridentados e as atribuições tentativas de acordo com a literatura. Utilizando como solvente205etanol.

TABELA 4.105. Dados gerais de caracterização para os complexos tridentados.

207

TABELA 4.106. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm⁻¹. 209

TABELA 4.107. Coeficientes de extinção molar e máximos de absorção para os complexos tridentados e as atribuições tentativas de acordo com a literatura. Usando acetonitrila como 211 solvente.

 TABELA 4.108. Dados gerais de caracterização para os complexos tridentados.
 214

TABELA 4.109. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura, freqüências em cm⁻¹. 216

TABELA 4.110. Coeficientes de extinção molar e máximos de absorção para os complexos tridentados e as atribuições tentativas de acordo com a literatura. Usando acetonitrila como 218 solvente.

TABELA 4.111. Porcentagens de células mortas em função da concentração no testes com
células da linhagem SiHa infectadas com HPV 18.221

TABELA 4.112. Porcentagens de células mortas em função da concentração no testes com
células da linhagem SiHa infectadas com HPV 16.221

TABELA 4.113. Porcentagens de células mortas em função da concentração no testes com
células da linhagem SiHa infectadas com HPV 18.221

TABELA 4.114. Porcentagens de células mortas em função da concentração no testes com222células da linhagem HeLa infectadas com HPV 16.222

TABELA 4.115. Porcentagens de células mortas em função da concentração no testes com222células da linhagem HeLa infectadas com HPV 18.222

TABELA 4.116. Resultados obtidos no testes com células esplênicas para os complexos 223 tridentados.

1. Introdução

1.1. CONCEITOS GERAIS SOBRE AS BASES DE SCHIFF

Os compostos em estudo neste trabalho são complexos de cobre(II) com ligantes tri e tetradentados do tipo base de Schiff.

As bases de Schiff são compostos caracterizados pela presença de um grupo imino (-N=CR-), podem ser facilmente obtidas pela reação de condensação entre uma amina primária e um composto que apresenta um grupo carbonila ativo.

Estes ligantes são muito versáteis representando um importante papel na química de coordenação, na figura 1.1 são mostrados exemplos de como eles podem apresentar-se nas formas monodentada, bi, tri, tetra, penta, e até hexadentada entre outras, além disso podem dar origem a complexos estáveis mono ou binucleares com a maioria dos metais de transição¹⁻⁴ e ainda alumínio^{5,6,7}, índio⁸ e estanho⁹

FIGURA 1.1. Bases de Schiff em suas diversas formas. (A) Ligante Monodentado¹⁰; (B) Ligante Bidentado¹¹; (C) Complexo Mononuclear¹⁰; (D) Complexo Binuclear¹².

Uma classe de bases de Schiff bastante conhecida é a do salen, N,N'etilenobis(salicilidenoamina), cuja representação pode ser vista na figura 1.2. Estes ligantes, simétricos possuem grupos funcionais hidroxila na posição *orto* ao grupo imino, podendo formar depois de metalados anéis quelatos de cinco ou seis membros, os quais contêm dois átomos de nitrogênio e dois átomos de oxigênio no sítio de coordenação, ONNO.

FIGURA 1.2. Ligante simétrico tetradentado do tipo salen¹³.

1.2. CONSIDERAÇÕES ACERCA DA ESTRUTURA DAS BASES DE SCHIFF

No que concerne à estrutura dos ligantes bases de Schiff uma questão preliminar é a exata natureza da forma tautomérica, ceto-imina, ceto-amina ou enol imina?

Durante a década de 50, já se discutia a possibilidade dos ligantes bases de Schiff se apresentarem em equilíbrio, entre duas ou três formas tautoméricas possíveis, e já se tentava a comprovação ou não da existência de ligações de hidrogênio intra ou intermolecular.

Ueno e Martell publicaram¹⁴⁻¹⁷ estudos na região do infravermelho para vários ligantes e complexos derivados de acetilacetona e etilenodiamina, dos quais podem ser vistos exemplos na figura 1.3, onde sugerem um equilíbrio entre as formas

I(enol-imina) e II(ceto-amina) que sofrem influência de substituintes fortemente eletronegativos como CF_3 nos carbonos ligados as carbonilas deslocando as bandas de absorção das ligações OH e CO.

FIGURA 1.3. Possíveis estruturas adotadas pelos ligantes bases de Schiff derivados de acetilacetona e etilenodiamina¹⁴.

Para os compostos derivados do salicilaldeído e etilenodiamina estes autores concluem que existe um equilíbrio tautomérico entre as estruturas ilustradas na figura 1.4, onde ocorrem ligações de hidrogênio intramolecular¹⁵.

FIGURA 1.4. Possíveis estruturas adotadas pelos ligantes bases de Schiff derivados do salicilaldeído¹⁵.

Estes pesquisadores ainda investigaram o efeito da inclusão de grupos doadores e retiradores de elétrons como substituintes nas cadeias laterais das bases de Schiff permitindo ou não à ligação C=N uma conjugação com sistemas aromáticos¹⁶. Eles constataram que cada substituinte estabiliza melhor uma determinada estrutura da figura 1.4 e que as vibrações referentes à deformação da ligação OH, CO e C=N podem deslocar-se em direções opostas às esperadas como resultado dos efeitos indutivos destes grupos¹⁷.

Teyssié e Charette divulgaram em 1963 a forma enol-imina para um ligante, base de Schiff derivado do salicilaldeído¹⁸, a qual foi reafirmada por experimentos na região do infravermelho¹⁹ e ultravioleta-visível²⁰. Os efeitos da inclusão de substituintes doadores e retiradores de elétrons nos ligantes e seus

respectivos complexos também são explorados por estes pesquisadores que concluem que os substituintes exercem um importante papel, modificando a acidez do grupo enol e a ressonância entre o grupo imino e o núcleo aromático muitas vezes de forma competitiva^{19,20}.

Pelo trabalho de Freedman²¹, pode-se concluir que a ligação de hidrogênio intramolecular de OH para N, provoca um grande deslocamento na freqüência de absorção da ligação OH em compostos alifáticos de 100 a 153 cm⁻¹, podendo chegar até 310 cm⁻¹ em compostos onde se insere um anel aromático conjugado ao átomo de nitrogênio. Em compostos alifáticos contendo o grupo C=N este deslocamento não é tão pronunciado devido a um decréscimo na basicidade do nitrogênio que apresenta a configuração sp². Ainda segundo Freedman²¹, não é possível observar os efeitos da inclusão de grupos doadores e retiradores de elétrons na freqüência de estiramento da ligação OH, devido à extrema largura e complexidade da banda característica deste grupo. A ligação de hidrogênio também afeta a freqüência da ligação C=N, porém ao contrário do que se observa com os compostos carbonílicos análogos, não são observados grandes deslocamentos na freqüência da ligação C=N.

Segundo estudos mais recentes, as bases de Schiff podem exibir isomerismo entre enol-imina e ceto-imina dependendo das ligações de hidrogênio intramolecular. Salicilaldiminas sempre se apresentam na forma enol-imina, em solução, com poucas exceções. O tautômero dominante depende do tipo de precursor carbonílico utilizado, mas não da estereoquímica da molécula ou do substituinte do nitrogênio imínico^{22,23}, a posição de equilíbrio tautomérico é fortemente afetada pelo solvente. Solventes não polares favorecem a forma ceto-amina pela ausência de interações entre o ligante e o solvente; já em solventes polares ocorrem interações dos grupos polares do ligante com as moléculas do solvente, favorecendo assim a forma tautomérica enol-imina²⁴. A análise das estruturas de raios-X tem demonstrado que em algumas classes de compostos, as formas enol-imina e ceto-imina existem ambas no estado sólido, e a diferença entre as duas é um apreciável aumento na distância C=N, concomitantemente a um encurtamento da distância C–O referentes à dominância da forma ceto-amina²⁵.

(1)

1.2.1 EFEITO DO SUBSTITUINTE NOS ANÉIS AROMÁTICOS

Ao tentarmos correlacionar os efeitos do substituinte no anel aromático com as modificações observadas nos espectros eletrônicos e vibracionais das bases de Schiff, uma ferramenta muito importante é a equação de Hammett.

Hammett propôs uma relação quantitativa entre o efeito do substituinte no anel benzênico e a reatividade da cadeia lateral de um composto. Esta relação ficou conhecida como equação de Hammett e é amplamente aplicada na forma:

Esta equação (1) é válida apenas para substituintes nas posições meta (m) e para (p) do anel benzênico onde, k e k_0 são as constantes de equilíbrio dos compostos substituídos e sem substituição respectivamente, ρ é a constante de reação que depende das condições nas quais a reação é efetuada e da natureza da cadeia lateral Y²⁶.

σ é conhecida como constante de grupo, uma vez que mede a influência eletrônica de um dado substituinte (R), independentemente da reação ou da molécula a que ele está ligado deve-se salientar que a constante σ de Hammett sofre influência da posição que o substituinte (R) ocupa na molécula e é de caráter aditivo. O valor absoluto de σ reflete a grandeza dos efeitos indutivos e de ressonância exercidos pelo grupo substituinte no centro de reação ou na propriedade físico-química medida. Valores positivos são observados em substituintes que atraem elétrons e valores negativos, em substituintes que repelem elétrons²⁶. σ*p* e σ*m* são valores da constante σ de Hammett para substituintes em posição *para* e *meta* no anel benzênico, respectivamente.

Na tentativa de conhecer separadamente os efeitos indutivo e de ressonância dos substituintes nas posições *para* ou *meta* em anéis aromáticos, Taft e

6

Lewis²⁷ sugeriram que a constante σ de Hammett fosse desmembrada por meios de equações matemáticas, em seus componentes indutivos e de ressonância representados por σI e σR , respectivamente.

A grande vantagem do desmembramento do valor original de σ em seus componentes é a possibilidade de expressar as contribuições individuais dos efeitos indutivo e de ressonância para a velocidade ou posição de equilíbrio da reação ou para a propriedade medida.

Swain e Lupton, em 1968²⁸, revendo a constante σ de Hammett propuseram a decomposição do efeito eletrônico de grupos substituintes no efeito indutivo e no efeito de ressonância. Estes autores consideraram o efeito indutivo ou de campo, **F**, de "field", combinado linearmente ao efeito de ressonância, **R**, de "ressonance", equivalentes ao valor da constante sigma de Hammett. Apesar de criticados os descritores eletrônicos **F** e **R** propostos por Swain e Lupton²⁸ têm sido empregados com sucesso em diversos trabalhos, principalmente aqueles envolvidos em estudos de QSAR (Quantitative Structure Activity Relationship).

Hansch²⁹ definiu, analogamente ao parâmetro σ de Hammett, o parâmetro π , que representa a contribuição hidrofóbica de um determinado substituinte. π se refere às contribuições relativas à substituição do átomo de hidrogênio pelo substituinte. A posição do grupo substituinte influi significativamente no valor da constante de hidrofobicidade π , sendo possível observar diferentes valores para um mesmo grupo substituinte em função de sua posição na molécula.

Um outro parâmetro que auxilia na descrição estrutural, é a refratividade molar, MR. Este parâmetro até recentemente era pouco empregado, mas, atualmente, é encontrado com certa freqüência em estudo de QSAR. O parâmetro de refratividade molar, MR, expressa uma propriedade físico-química de caráter constitutiva e aditiva, sendo, portanto, extremamente dependente da estrutura do composto químico. O valor de MR de um determinado grupo substituinte pode ser relacionado, também, com a sua lipofilicidade expressa pela constante π de Hansch²⁹. Esta relação resulta em correspondência altamente significativa de valores, uma vez que ambos dependem, em certa extensão, do volume molar, do substituinte.

A tabela a seguir apresenta os valores das constantes que podem auxiliar no estabelecimento das correlações sobre a posição e os efeitos dos substituintes no anel aromático.

	π	MR	F	R	$\sigma_{\rm m}$	σ_{p}
MeO	-0,02	7,87	0,26	-0,51	0,12	-0,27
EtO	0,38	12,47	0,22	-0,44	0,01	-0,24
OH	-0,67	2,85	0,29	-0,64	0,12	-0,37
DEA	1,18	24,85	0,01	-0,91	-0,23	-0,90
NO_2	-0,28	7,36	0,67	0,16	0,71	0,78
Cl	0,71	6,03	0,41	-0,15	0,37	0,23
Br	0,86	8,88	0,44	-0,17	0,39	0,23
Ι	1,12	13,94	0,40	-0,19	0,35	0,18
Me	0,56	5,65	-0,04	-0,13	-0,07	-0,17
Et	1,02	10,30	-0,05	-0,10	-0,07	-0,15
Ph	1,96	25,36	0,08	-0,08	0,06	-0,01

TABELA 1.1. Grupos utilizados como substituintes do anel aromático, nos compostos em estudo neste trabalho, com suas respectivas constantes³⁰.

1.3. BASES DE SCHIFF TRIDENTADAS

Poucos ligantes resultantes da condensação simples (1:1) de uma molécula de um grupo carbonílico e apenas uma função amina de uma diamina são conhecidos, exemplos de tais ligantes tratados por meia unidade ou 'half-units' podem ser vistos na figura 1.5^{31-33} .

FIGURA 1.5. Ligantes tridentados também conhecidos como 'half-units'.
(A) Ligante tridentado com sistema doador ONN³¹;
(B) Ligante tridentado com sistema doador ONO³²;
(C) Ligante tridentado com sistema doador ONS³³.

Devido à facilidade com que ocorre a reação de condensação 1:2 que leva ao produto simétrico tetradentado, as condições para obtenção dos ligantes tridentados têm que ser cuidadosamente controladas, desta forma deve-se promover a adição do reagente carbonílico a um excesso de diamina³⁴ ou proceder à reação de quantidades equimolares em soluções bem diluídas. Melhores resultados são obtidos quando se utiliza uma diamina com uma das funções substituídas, tendo assim um efeito estérico que blinda uma das extremidades³⁵. Alguns complexos com ligantes tridentados do tipo 'half-unit', são facilmente obtidos se a reação de condensação é feita na presença de certos metais com os reagentes em proporção 1:1:1^{36,37}. A ordem de adição dos reagentes em alguns casos³⁶ é fundamental para a obtenção de um rendimento satisfatório com um substancial grau de pureza. Outras rotas sintéticas envolvem a hidrólise parcial de bases de Schiff tetradentadas³⁸.

Muitos complexos metálicos derivados de half-units quirais têm sido preparados, estimulados por sua potencial aplicação como catalisadores de algumas reações orgânicas^{39,40}. Observando a figura 1.6, pode-se notar que as half-units têm um

potencial sintético muito grande, podendo ser usadas como ligantes tridentados ou como ótimos precursores para a preparação de uma grande variedade de compostos assimétricos tetradentados pela condensação do outro grupo amino com uma variedade de reagentes contendo um grupo carbonílico.

FIGURA 1.6. Potencial sintético das bases de Schiff tridentadas, como ligantes tridentados ou complexos tetradentados assimétricos²⁵.

Os ligantes tridentados derivados da reação de compostos carbonilados com etanolamina e 2-aminoetanotiol, formando sistemas doadores ONO³² e ONS^{33,41} ao contrário dos anteriores com sistema doador ONN^{31,39}, podem ser isolados na forma sólida facilmente sem que sejam necessários maiores cuidados, apenas baixas temperaturas no caso dos derivados da etanolamina⁴².

1.4. USOS E APLICAÇÕES DAS BASES DE SCHIFF

Devido à versatilidade de suas propriedades estéricas e eletrônicas, as quais podem ser modificadas escolhendo as aminas apropriadas e os substituintes no anel aromático carbonilado ou os substituintes na cadeia alifática de carbonilas ativas, os ligantes, base de Schiff, possuem aplicações nas mais diversas áreas, podemos citar como exemplo sua aplicação:

– na construção e/ou modificação de eletrodos sensíveis aos íons $cobre(II)^{43}$ e chumbo(II)⁴⁴;

- como titulante pela complexação seletiva para cobre(II)⁴⁵;

– como reagente de extração para determinação espectrofotométrica de cobre(II)⁴⁶;

– como reagente cromogênico para a determinação de níquel em alimentos⁴⁷;

- na micro-determinação de cobalto(II)⁴⁸;

– na extração de pares iônicos de cátions bivalentes⁴⁹;

 – como agente complexante para extração/pré concentração 'on line' de cobre e chumbo em espectrometria de absorção atômica-injeção em fluxo⁵⁰;

– na formação de filmes ou polímeros^{51,52} que são utilizados para proteger o cobre contra corrosão^{53,54} e

– em estudo para aplicação em ótica não linear^{55,56}.

Já os complexos metálicos destes ligantes tem destacada atuação como catalisadores das mais diversas reações, dentre elas podemos citar a alta enatioseletividade do complexo de Jacobsen [MnCl(3,5-t-busalcn)]⁵⁷ como catalisador na epoxidação de alquenos; a catálise da oxidação de sulfetos próquirais à sulfóxidos por uma variedade de complexos quirais de oxovanádio com bases de Schiff⁵⁸; a epoxidação de olefinas catalisada por complexos de Ru(III) e Mn(III)⁵⁹; as reações enantioseletivas para glicose-manose catalisadas por complexos de níquel(II)⁶⁰.

Os complexos cromosalen são conhecidos catalisadores utilizados em reações de epoxidação estereo-seletiva de alcenos^{61,62}, na resolução cinética de

epóxidos^{63,64}, na oxidação de álcoois⁶⁵, na adição assimétrica de reagentes organometálicos aos aldeídos⁶⁶, e em reações de Diels-Alder⁶⁷.

São encontrados na literatura relatos da oxidação de álcoois e aldeídos por complexos de uranila com bases de Schiff⁶⁸; a 'trimetilsililcianação' enantioseletiva de benzaldeído catalisada por complexos de titânio(IV) e bases de Schiff quirais⁶⁹; a cicloadição de CO₂ ao epóxido pelo sistema catalítico de complexos de alumínio salen (AIX)⁷⁰ e ainda, complexos de metal–salen podem ser catalisadores eficientes na oxigenação de compostos orgânicos contendo heteroátomos⁷¹.

Em outras áreas de aplicação podemos citar os complexos de bases de Schiff com cromo(III), como o $[Cr(salen)(H_2O)_2]Cl$, os quais atuam como um novo modelo para GTF (Glucose Tolerance Factor), também reduzem os sintomas de diabetes como hipoglicemia e colesterol em ratos portadores de diabetes^{72,73}.

Complexos de metais com bases de Schiff também são usados em medicina. Natile *et al.*⁷⁴ demonstraram que complexos de *trans*-imino éter platina(II) possuem uma atividade antitumoral maior do que o isômero *cis*. Sava *et al.*⁷⁵ demonstraram que complexos quadrado planares de Rh(I)-1,5-ciclooctadieno e certos ligantes bases de Schiff possuem alta atividade contra tumores primários. Complexos de alquila-cobalto(III) estão sendo estudados no tratamento de leucemia por gerar radicais alquilas, pois assim aumentam o efeito anticancerígeno (radicais livres) e diminuem rapidamente o tecido atingido pelo tumor⁷⁶. Testes biológicos revelaram que os complexos de vanádio com bases de Schiff atuam como mimetizadores da insulina^{58.}

Outras formas de aplicação dos complexos metálicos com bases de Schiff, são os estudos de suas propriedades eletroquímicas^{77,78}, termoquímicas⁷⁹⁻⁸¹, espectrais^{82,83}, estruturais^{84,85}, bem como de reatividade⁸⁶, seu uso como biossensores e eletrodos modificados^{87,88}.

1.5. ALGUNS ASPECTOS DO COBRE

O cobre é reconhecido como um metal traço essencial para os organismos vivos desde o final de 1930^{89} .

Seu papel como um co-fator para enzimas cruciais está bem estabelecido, estas incluem *citocromo c oxidase* (enzima envolvida com transporte de elétrons e respiração), *Cu/Zn superoxido dismutase* e *ceruloplasmina* (as quais eliminam superoxidos e outros radicais prejudiciais), assim como, *tirosinase* (produtora de melanina), *lisil oxidase* (que atua na ligação cruzada entre elastina e colágeno), *dopamina monooxigenase* (necessária para a produção de catecolamina) e *peptidil glicina α-amidating monooxigenase* (requerida para a modificação de hormônios neuropeptidicos)⁹⁰. A maioria destas enzimas catalisa reações de oxi-redução às quais tem oxigênio molecular como co-substrato. Uma disfunção dos mecanismos que controlam a avaliabilidade de íons metálicos essenciais tais como cobre e zinco, pode levar a severos efeitos na saúde humana. Tais defeitos no metabolismo do cobre são o centro e uma variedade de desordens genéticas fatais em humanos, incluindo as doenças de Menkes e Wilson^{91,92}.

De fato, a química do cobre faz dele um participante ideal destas reações redox, por sua facilidade em mudar do estado cuproso para o cuprico⁹⁰.

No estado de oxidação +2, os compostos de cobre são geralmente coloridos e paramagnéticos⁹³. Os complexos de cobre são comumente azuis ou verdes, exceções são geralmente causadas por uma forte banda de transferência de carga, na região do ultravioleta, cuja cauda se prolonga até o final do azul no espectro visível, fazendo assim com que as substâncias tenham a coloração vermelha ou marrom⁹⁴.

Os complexos de cobre tetracoordenados podem adotar diferentes configurações, quadrado-planar ou tetraédrica, que podem sofrer distorções, tornandose assim tetraédrica comprimida (θ <109°), quadrado-coplanar (tetraédrica torcida) especialmente quando existem ligantes quelatos envolvidos, assim etilenodiamina (en), dietilenotriamina (dien), tris(2-aminoetil)amina (tren) podem causar distorções no comprimento das ligações da ordem de 0,1Å, e nos ângulos de ligação em cerca de 5°.

Na série de complexos substituídos derivados do salicilaldeído como o $[Cu(N-Mesalim)_2]$ da figura 1.7 o centro metálico CuN_2O_2 planar, só é mantido para substituintes pequenos e de cadeias retas (R = H, Me e n-propil), já para substituintes volumosos como o iso-propil, o sítio CuN_2O_2 tem a estereoquímica tetraédrica

comprimida⁹⁵ com o centro metálico apresentando uma estrutura desnivelada, cujo exemplo pode ser visto na figura 1.7.

FIGURA 1.7. Configuração do centro metálico adotada pelo complexo $[Cu(N-Mesalim)_2]^{95}$.

1.5.1. APLICAÇÕES DE COMPOSTOS DE COBRE COM BASES DE SCHIFF

Os complexos de cobre com ligantes do tipo salen ou salen substituído têm sido amplamente estudados por sua habilidade em se ligar reversivelmente ao oxigênio, tendo aplicações em diversas áreas entre elas biológicas e industriais.

A oxidação química de vários compostos com cobre salen como catalisador tem sido estudada por vários grupos. Em 1986, foi reportada a oxidação de hidroquinona à benzoquinona por complexos de cobre(II) com bases de Schiff⁹⁶. Em 1989, Huang e Xi publicaram um estudo onde várias espécies, incluindo cobre(II) salen foram utilizadas como catalisadores na oxidação de álcoois aos correspondentes compostos carbonílicos⁹⁷. Depois, em 1991 Jiang e Xi empregaram cobre(II) salen na oxidação catalítica de ciclohexanol pelo oxigênio⁹⁸. Outros grupos fazem referência à utilização de bases de Schiff e seus complexos na hidrogenação catalítica de olefinas, transferência de um grupo amina e a oxidação de álcoois primários aos correspondentes aldeídos⁹⁹. Adicionalmente, encontram-se trabalhos citando o uso destes compostos como catalisadores homogêneos na "aziridinação"^{100,101} e ciclopropanação¹⁰² de olefinas, na oxidação de sulfetos a sulfóxidos¹⁰³, na oxidação de fenol a benzinas por peróxidos¹⁰⁴, na oxidação do catecol¹⁰⁵ e na epoxidação do estireno¹⁰⁶. Complexos de cobre(II) com bases de Schiff quirais podem ser

aproveitados como catalisadores assimétricos⁵⁸. Ciclopropanações assimétricas de olefinas pelos complexos de cobre(II) com bases de Schiff derivadas de aminoaçúcares e α -aminoácidos foram utilizados em sínteses enantioseletivas de precursores de inseticidas¹⁰⁷. Complexos [Cu(salen)] foram utilizados como catalisadores na C-alquilação de bases de Schiff derivadas de anilina e de ésteres de glicina¹⁰⁸.

No caso dos compostos assimétricos, sabe-se que os ligantes ao redor do íon metálico central em sistemas naturais são não simétricos, assim existe um interesse na modificação das propriedades dos complexos que apresentam elementos doadores mistos¹⁰⁹.

É fato que os compostos assimétricos oferecem clara vantagem sobre os análogos simétricos na elucidação da geometria e composição dos sítios ligantes nos íons metálicos em metaloproteínas e seletividade dos sistemas naturais com materiais sintéticos¹¹⁰.

Como propriedades biológicas podem ser citadas a indução da clivagem da dupla hélice do DNA por complexos de cobre salen¹¹¹.

Estes compostos (cobre salen) têm sido usados como modelo para mimetizar a atividade biológica de metaloproteínas e enzimas, particularmente seus sítios ativos, por exemplo, a galactose oxidase¹¹¹. Por fim pode ser citado o uso de complexos de cobre como agentes quimioterápicos no combate a determinados tipos de câncer, via angiogênese (processo de formação de novos vasos sanguíneos) o qual tem despertado interesse, por apresentar um grande potencial em termos de novas terapias no tratamento do câncer¹¹².

1.5.2. ESTUDOS DE TOXICIDADE E TESTES BIOLÓGICOS

Em face destas propriedades biológicas expostas a busca de um agente quimioterápico baseado em complexos de cobre, é objeto de estudo de vários grupos de pesquisa¹¹³⁻¹¹⁵. Neste processo a avaliação da citotoxicidade *in vitro* tem sido uma ferramenta de ampla utilização, nas primeiras etapas de seleção de compostos

promissores¹¹⁶⁻¹¹⁹. Como a produção de uma nova droga é um processo bastante caro, é essencial identificar e excluir candidatos à droga que não sejam seguros o quanto antes no processo de desenvolvimento¹²⁰. Por outro lado, o papel da previsão toxicológica tem também sido enfatizado pelas autoridades reguladoras, particularmente, depois do lançamento, pela União Européia, da agência reguladora, Registro, Avaliação, Autorização e Restrição de Químicos (REACH)¹²¹. Para agilizar tão grande tarefa, métodos alternativos para estudos de toxicologia *in vivo* são certamente necessários. Citotoxidade *in vitro* e testes de viabilidade celular têm servido para predizer precisamente a toxicidade baseados em vários pontos, no número de células, morfologia e atividade metabólica¹²². Além de estimar o potencial tóxico de agentes químicos, resultados de testes de viabilidade celular são usados para construir relações estrutura-atividade (quantitativas) ((Q)SARs)¹²³.

Para que a avaliação seja confiável, é necessário dispor de um conjunto de linhagens celulares que represente diversos tipos de tumores, e conhecer sua sensibilidade a agentes com ação citotoxica demonstrada¹²⁴. O Instituto Nacional do Câncer dos Estados Unidos recomenda um conjunto com 60 linhagens celulares, que representam nove tipos de tumores humanos (cérebro, cólon, pulmão, ovário, rim, melanoma, leucemia, mama e próstata)¹²⁵. Essa instituição também recomenda que os testes sejam iniciados com uma pequena seleção de células altamente sensíveis e com base nestes resultados ampliar tais linhagens.

Dentre os tumores humanos citados acima, o câncer de cólon ou cervical é responsável por quase 12% de todos os cânceres nas mulheres, representando o segundo mal ginecológico mais freqüente no mundo¹²⁶.

Estudos epidemiológicos e moleculares nas duas últimas décadas vêm demonstrando convincentemente que os tipos papillomavirus (HPV) de alto risco especialmente HPV 16 e 18 estão etiologicamente relacionados com a progressão do câncer cervical¹²⁷⁻¹²⁹, embora tenham sido detectados mais de 85 tipos de HPV na mucosa genital¹³⁰, na maioria dos indivíduos infectados, o vírus é eliminado. Entretanto, algumas lesões não regridem e a progressão maligna pode proceder em larga metástase¹³¹.

De acordo com o Órgão Internacional de Padronização (International Standard Organization), ISO 10993, o ensaio de citotoxicidade *in vitro* é o primeiro teste para avaliar a biocompatibilidade de qualquer material para uso em dispositivos biomédicos e depois de comprovada a sua não toxicidade é que o estudo da biocompatibilidade do produto pode ter continuidade, realizando-se os ensaios necessários em animais de laboratório¹³². A toxicidade de uma substância pode ser avaliada por vários métodos, os quais têm como base a verificação de alterações celulares por diferentes mecanismos, entre eles a incorporação de corantes vitais ou a inibição da formação de colônias celulares¹²³. O parâmetro mais utilizado para avaliar a toxicidade é a viabilidade celular¹²³.

Os métodos *in vitro* apresentam vantagens em relação aos *in vivo* tais como poder limitar o número de variáveis experimentais, obter dados significativos mais facilmente, além do período de teste ser em muitos casos, mais curto. Estudos com estes métodos demonstraram que os testes com culturas celulares podem ser utilizados com sucesso, pois são reprodutíveis, rápidos, sensíveis e financeiramente acessíveis para a execução do estudo de biocompatibilidade *in vitro*¹³².

A medida do grau de toxicidade pode ser feita através da determinação da IC_{50} , ou seja, a metade da concentração máxima inibitória, que representa a concentração de uma substância que é requerida para 50% da inibição do seu alvo (enzima, célula, célula receptora ou microorganismo). Simplificando, este índice mede o quanto de uma dada substância/molécula é necessário para inibir algum processo biológico em 50% conforme o National Institutes of Health (NIH) Chemical Genomics Center (NCGC) e o FDA^{133, 134}.

<u>Objetivos</u>

2. Objetivos

<u>Objetivos</u>

Este trabalho teve como objetivos a síntese, a caracterização dos ligantes com seus correspondentes complexos de cobre(II) baseados em arquiteturas moleculares específicas e posterior teste da atividade biológica como agentes quimioterápicos.

Pretende-se estudar no total 63 compostos, os quais foram agrupados, segundo suas características estruturais, em três séries de compostos visando propiciar um melhor entendimento das etapas de síntese e caracterização do trabalho.

PRIMEIRA SÉRIE – COMPLEXOS TETRADENTADOS SIMÉTRICOS

Esta série de trabalho se constitui de 19 complexos e seus respectivos ligantes todos derivados de etilenodiamina e salicilaldeído (salen) com diferentes substituintes no anel aromático.

FIGURA 2.1. Estrutura das bases de Schiff tetradentadas simétricas.

(A) Ligantes, onde R = substituinte que pode ocupar as posições 3, 4, 5 e 3,5 dos anéis aromáticos e Y = Metil, Etil, Fenil, ou Feniletil.

(B) Complexos, onde R = substituinte que pode ocupar as posições 3, 4, 5 e 3,5 do anéis aromáticos e Y = Metil, Etil, Fenil, ou Feniletil.

SEGUNDA SÉRIE – COMPLEXOS TETRADENTADOS ASSIMÉTRICOS

Esta série de compostos contém um total de 18 complexos os quais apresentam em sua estrutura dois anéis, o primeiro, é um anel aromático sem substituição proveniente do salicilaldeído, o outro, é um anel aromático proveniente de

Objetivos

salicilaldeído substituído na posição 3, 4 ou 5 e ainda 3,5 simultaneamente, unidos por uma ponte de etilenodiamina.

FIGURA 2.2. Estrutura das bases de Schiff tetradentadas assimétricas, onde R = substituinte que pode ocupar as posições 3, 4, 5 e 3,5 de apenas um dos anéis aromáticos e Y = Metil, Etil, Fenil, ou Feniletil.

TERCEIRA SÉRIE - COMPLEXOS TRIDENTADOS

Esta classe de compostos é formada por 9 complexos de cobre com ligantes tridentados contendo diferentes substituintes no anel aromático e diferentes aminas na ponte.

FIGURA 2.3. Estrutura das bases de Schiff tridentadas, onde R = substituinte que pode ocupar as posições 3, 4, 5 e 3,5 do anel aromático e A = CH_2CH_2 ; C_6H_{10} ou C_6H_4 .

As técnicas utilizadas na caracterização dos ligantes bem como dos complexos podem variar de acordo com a informação de interesse neste caso as técnicas propostas foram:

- Ponto de fusão;
- Solubilidade;
- Análise elementar;
- Espectroscopia vibracional na região do infravermelho;

- Espectroscopia eletrônica na região do ultravioleta-visível;
- Susceptibilidade magnética;
- Difração de raios-X, monocristal.

Tendo sido realizado o processo de caracterização, outro objetivo foi o de correlacionar, utilizando os dados espectrais, os efeitos dos diversos substituintes dentro de cada série de trabalho e posteriormente extrapolar estes efeitos comparando as séries de trabalho.

Testes de possível atividade biológica como agentes citotóxicos, especialmente no combate ao crescimento de tumores malignos, compreendem mais um objetivo, tendo em vista o alto custo e a grande demanda de tempo necessários para a obtenção dos resultados destes testes, eles foram realizados com apenas alguns compostos selecionados, em parceria com outros grupos de pesquisa.

Objetivos

<u>Materiais e Métodos</u>

3. Materiais e Métodos

3.1. MATERIAIS UTILIZADOS

Todos os solventes e reagentes foram utilizados da forma como foram comprados, sem processos de purificação adicionais.

3.1.1 ALDEÍDOS E CETONAS

Salicylaldehyde (*H*),

- o-Vanilin (3-MeO),
- 3-Ethoxysalicylaldehyde (3-EtO),
- 2,3-Dihydroxybenzaldehyde (3-OH),
- 2,4-Dihydroxybenzaldehyde (4-OH),
- 2-Hydroxy-4-methoxybenzaldehyde (4-MeO),
- 4-(Diethylamino)-salicylaldehyde (4-DEA),
- 2-Hydroxy-5-methoxybenzaldehyde (5-MeO),
- 2-Hydroxy-5-nitrobenzaldehyde (5-NO₂),
- 5-Bromosalicylaldehyde (5-Br),
- 5-Chlorosalicylaldehyde (5-Cl),
- 3,5-Dibromosalicylaldehyde (3,5-Br),
- 3,5-Dichlorosalicylaldehyde (3,5-Cl),
- 3,5-Diidosalicylaldehyde (3,5-I),
- 2-Hydroxyacetophenone (7-Me),
- 2-Hydroxy-4-methoxybenzophenone $(7-\Phi-4-MeO)$,
- 2-Hydroxybenzophenone $(7-\Phi)$,
- 2-Hydroxypropiophenone (7-Et),
- 2-Hydroxy-3-phenylpropiophenone (7- Φet).

Todos os aldeídos e cetonas foram adquiridos de Aldrich Chemical Co.

3.1.2 AMINAS

Ethylenediamine (*en*), procedente de: Aldrich Chemical Co.
(±)-*trans*-1,2-diaminociclohexane (*t-dac*), procedente de : Aldrich Chemical Co. *o*-Phenylenediamine (*o*-*Ph*), procedente de : Aldrich Chemical Co.

3.1.3 DEMAIS REAGENTES

Perclorato de cobre de cobre(II) hexahidratado, procedente de : Merck, ACS Acetato de cobre(II) hidratado, procedente de : Merck, ACS Piridina, procedente de :Synth Metanol, procedente de :Synth Etanol, procedente de :Synth Acetonitrila, procedente de :Synth Acetona, procedente de :Synth Tetracloreto de carbono, procedente de :Synth Tolueno, procedente de :Synth Clorofórmio, procedente de :Synth EDTA, procedente de Merck, ACS DMG procedente de Merck, ACS PTBA procedente de Merck, ACS Trietilamina, procedente de: Aldrich Chemical Co. DMEM e Ham's F10 1:1, procedente de: Sigma Co. Soro Fetal Bovino (SFB), procedente de: Cultlab Penicilina e Estreptomicina, procedente de: Sigma Co. Anfotericina, procedente de: Sigma Co. Ciprofloxacina, procedente de: Sigma Co. Kananicina, procedente de: Sigma Co.

ATV (Associação de Tripsina (0,2%) e Versene (0,02%)) procedente de: Instituto Adolpho Lutz

MTT (metil-tiazol-tetrazolio), procedente de: Sigma Co.

3.2. COMPOSTOS SIMÉTRICOS TETRADENTADOS

3.2.1 SÍNTESE DOS LIGANTES SIMÉTRICOS TETRADENTADOS DO TIPO SALEN

A síntese dos ligantes tetradentados simétricos do tipo salen é de fácil execução para a maioria dos compostos apresentados, e foi feita com base em procedimentos já publicados^{2,82,83,135}.

Inicialmente foram dissolvidos 5,0 mmol do aldeído de interesse em cerca de 30 mL de etanol, esta solução de coloração amarelo-pálido foi mantida sob aquecimento e agitação constantes. Adicionou-se então 2,5 mmol de etilenodiamina, observando-se prontamente a mudança de coloração da solução para um amarelo mais intenso, após cerca de 30 minutos o aquecimento foi desligado, e a solução foi mantida sob agitação até que atingisse a temperatura ambiente. O sólido amarelo obtido foi resfriado em geladeira por cerca de 12 horas, foi filtrado em funil de placa sinterizada, lavado com etanol gelado, seco em dessecador e em seguida devidamente caracterizado.

FIGURA 3.1. Mecanismo proposto para a reação de formação do ligante tetradentado base de Schiff.

Foram sintetizados os seguintes ligantes.

FIGURA 3.2. Visão esquemática dos ligantes sintetizados com as posições onde serão utilizadas as substituições em evidência.

Posição	Substituinte	Nome ^{4,13}
Todas	Н	N,N'etilenobis(salicilidenoimina)
3 = 3'	OCH ₃	N,N'etilenobis(3-metoxisalicilidenoimina)
3 = 3'	OCH ₂ CH ₃	N,N'etilenobis(3-etoxisalicilidenoimina)
3 = 3'	OH	N,N'etilenobis(3-hidroxisalicilidenoimina)
4 = 4'	OCH ₃	N,N'etilenobis(4-metoxisalicilidenoimina)
4 = 4'	OH	N,N'etilenobis(4-hidroxisalicilidenoimina)
4 = 4'	$N(CH_2CH_3)_2$	N,N'etilenobis(4-dietilaminasalicilidenoimina)
5 = 5'	OCH ₃	N,N'etilenobis(5-metoxisalicilidenoimina)
5 = 5'	NO_2	N,N'etilenobis(5-nitrosalicilidenoimina)
5 = 5'	Cl	N,N'etilenobis(5-clorosalicilidenoimina)
5 = 5'	Br	N,N'etilenobis(5-bromosalicilidenoimina)
3,5 = 3',5'	Cl	N,N'etilenobis(3,5-clorosalicilidenoimina)
3,5 = 3',5'	Br	N,N'etilenobis(3,5-bromosalicilidenoimina)
3,5 = 3',5'	Ι	N,N'etilenobis(3,5-iodosalicilidenoimina)
7 = 7'	CH ₃	N,N'etilenobis(7-metilsalicilidenoimina)

TABELA 3.1. Posições dos substituintes na figura 3.2, juntamente com os respectivos nomes dos compostos.

7 = 7'	CH ₂ CH ₃	N,N'etilenobis(7-etilsalicilidenoimina)
7 = 7'	Φ	N,N'etilenobis(7-fenilsalicilidenoimina)
7 = 7'	$\Phi CH_2 CH_3$	N,N'etilenobis(7-feniletilsalicilidenoimina)
4,7 = 4',7'	Φ ,OCH ₃	N,N'etilenobis(7-fenil-4-metoxisalicilidenoimina)

3.2.2 SÍNTESE DOS COMPLEXOS SIMÉTRICOS TETRADENTADOS DO TIPO SALEN

Existem duas formas para a obtenção dos complexos, sempre que possível foi utilizado o método da dissolução do ligante^{83,106,135} que está descrito à seguir, e cuja equação de obtenção está exemplificada na figura 3.3.

Em um béquer foram dissolvidos 2,0 mmol do ligante previamente sintetizado em etanol 40 mL, esta solução amarela foi mantida sob aquecimento e agitação até que se adicionasse gota a gota uma solução contendo 2,0 mmol de acetato de cobre (CuOAc.2H₂O) em água. A mistura permaneceu reagindo por cerca de 4 horas, desligando-se o aquecimento, a reação permaneceu sob agitação até que alcançasse a temperatura ambiente. O béquer foi levado à geladeira por cerca de 12 horas. O precipitado formado foi filtrado em funil de placa sinterizada, lavado com etanol gelado e seco em dessecador, sendo então caracterizado.

Outra forma de se obter o complexo simétrico tetradentado é através da reação *in situ*, onde é seguido o procedimento de formação do ligante simétrico tetradentado e a seguir adicionado o sal de cobre (CuOAc.H₂O) no mesmo sistema reacional procedendo-se como descrito acima.

FIGURA 3.3. Esquema reacional para a obtenção do complexo de cobre tetradentado simétrico com sistema doador ONNO.

Materiais e Métodos 3.3. COMPOSTOS ASSIMÉTRICOS TRIDENTADOS

Esta série de trabalho é formada por complexos que possuem um ligante tridentado e apresentam uma piridina ocupando o quarto sítio de coordenação do metal. Ela foi pensada com o propósito de investigar a influência de várias aminas na ponte, várias combinações de sítios doadores e de substituintes no anel aromático.

3.3.1 SISTEMA DOADOR ONN, N

O primeiro grupo de compostos possui várias combinações de aminas na ponte, com variações nos substituintes no anel aromático.

3.3.1.1 LIGANTES ASSIMÉTRICOS TRIDENTADOS ONN

Foram testados vários procedimentos diferentes, baseados em relatos da literatura^{12,31,136,137} aos quais foram feitas algumas adaptações para as condições de trabalho do nosso laboratório.

PROCEDIMENTO I³¹:

Foi preparada uma solução de etilenodiamina(6,8 mmol) em clorofórmio (150 mL) esta foi transferida para um balão de fundo redondo de capacidade 250 mL. O balão foi colocado em um sistema para reações em baixa temperatura 0°C, onde foi submetido a agitação vigorosa. Em um funil de adição foram colocados 6,8 mmol de salicilaldeído diluídos em 50 mL de clorofórmio, esta solução foi adicionada muito lentamente ao balão de fundo redondo (cerca de 5 horas). Terminada a adição, o solvente foi rotaevaporado e observou-se a formação de um sólido amarelo que foi caracterizado por espectroscopia na região do infravermelho como sendo o ligante tetradentado simétrico salen.

Em uma segunda tentativa o sistema de adição do aldeído foi modificado, passando a ser utilizada uma bureta, com uma agulha na ponta para

garantir a adição contínua, porém lenta, desta vez foram utilizados 3,4 mmol de etilenodiamina em 75 mL de clorofórmio e 3,4 mmol de salicilaldeído em 25 mL de clorofórmio. Não tendo sido obtido um resultado satisfatório novamente, partiu-se para uma terceira tentativa.

Na terceira tentativa incorporou-se ao sistema reacional peneira molecular de 4Å, o procedimento continuou sendo realizado conforme a primeira tentativa, porém utilizando-se 3,4 mmol de cada reagente. A adição da peneira molecular causou problemas para a agitação do sistema, prejudicando assim o andamento da síntese.

Para a quarta tentativa foram incorporadas todas as modificações anteriores, utilizando peneira molecular moída. Embora a reação tenha se processado sem problemas, o espectro na região do infravermelho, para o produto obtido, foi idêntico ao do ligante tetradentado simétrico salen.

A última tentativa foi feita removendo-se a agulha da ponta da bureta, 3,4 mmol de etilenodiamina em clorofórmio (75 mL) foram colocados em um balão de fundo redondo contendo peneira molecular moída, este foi colocado em um sistema para reações em baixa temperatura 0°C com vigorosa agitação. Uma bureta contendo 3,4 mmol de salicilaldeído em clorofórmio (25 mL) foi acoplada ao balão e lentamente (5 horas) adicionou-se seu conteúdo ao balão. Depois de completada a adição, a mistura foi agitada até que atingisse a temperatura ambiente, sendo então filtrada. O filtrado foi rotaevaporado e obteve-se um sólido amarelo claro, que novamente foi caracterizado como sendo o ligante tetradentado simétrico salen.

PROCEDIMENTO II¹³⁶:

A estratégia desta rota sintética consiste na protonação das aminas da ponte pela reação com HCl anidro.

Inicialmente foi preparado o composto 1 pela reação:

$NH_{2}CH_{2}CH_{2}NH_{2} + 2HC1 \longrightarrow Cl^{-}H_{3}N^{+}CH_{2}CH_{2}N^{+}H_{3}Cl^{-}$ composto 1

Em um balão de fundo redondo, 25 mmol de etilenodiamina foram dissolvidos em éter anidro e submetidos à agitação vigorosa. Foi acoplado ao balão um sistema de geração de HCl anidro. Após o borbulhamento do gás observou-se o aparecimento de um precipitado branco. A mistura permaneceu sob agitação por cerca de 10 horas, sendo então submetida à filtração. O produto foi caracterizado por infravermelho como sendo a etilenodiamina protonada.

Em um sistema para reações em baixa temperatura 0°C, o composto 1 (1,3 mmol) foi dissolvido em clorofórmio, e mantido sob agitação. Adicionou-se então lentamente 1,1 mmol de etilenodiamina, o sistema permaneceu assim por cerca de 30 minutos até que se adicionou 2,0 mmol de 5-Brsalicilaldeído. Observou-se a formação de um precipitado amarelo, o qual foi caracterizado como sendo o ligante simétrico 5-Brsalen.

Foram realizadas novas tentativas utilizando como solvente etanol anidro, como base trietilamina, e com o auxílio de peneira molecular no sistema reacional, todas foram infrutíferas.

PROCEDIMENTO III^{12, 137}:

A estratégia abordada aqui consiste na síntese de um complexo de níquel com o ligante tridentado de interesse e posterior retirada do metal por dimetilglioxima (DMG) ou ácido etilenodiaminotetraacetico (EDTA).

FIGURA 3.4. Visão esquemática do complexo de níquel utilizado como precursor na síntese do ligante tridentado.

O complexo de níquel da figura 3.4 foi sintetizado conforme procedimento descrito por Elder¹². Este complexo (1 mmol) foi dissolvido em metanol

com aquecimento e agitação constantes sendo adicionados na seqüência 2 mmol de DMG. As condições foram mantidas até que o sistema entrasse em refluxo. Após 24 horas, o precipitado vermelho foi removido por filtração, o solvente foi rotaevaporado e observou-se a formação de sólidos de duas cores (branco e creme) nas paredes do balão. Ao serem analisados, por espectrometria na região do infravermelho, os dois forneceram espectro idênticos, revelando que ambos eram DMG.

Este mesmo procedimento foi realizado utilizando-se (\pm) -*trans*-1,2diaminociclohexano (*t*-*dac*), como diamina, EDTA para complexar o níquel, e um sal de cobre para forma o complexo inicial, todas se mostraram ineficientes.

PROCEDIMENTO IV¹³⁷:

Aqui o objetivo é realizar a reação em condições de diluição (1:5).

3mmol de 3-metoxisalicilaldeído foram dissolvidos em clorofórmio. Com o auxílio de uma bureta, adicionados lentamente, por cerca de 5 horas, a uma solução contendo 15 mmol de etilenodiamina dissolvidos em clorofórmio, colocados em um sistema para reações em baixa temperatura, com agitação por cerca de 12 horas. Removido o resfriamento, o sistema permaneceu sob agitação até que atingisse a temperatura ambiente. O sistema foi aberto para que o clorofórmio evaporasse lenta e naturalmente, revelando uma solução oleosa avermelhada que foi caracterizada como sendo o ligante simétrico 3-MeOsalen.

Este mesmo procedimento também foi aplicado utilizando 3,5-Brsalicilaldeído, e mais uma vez não foi obtido o produto desejado.

3.3.1.2 COMPLEXOS ASSIMÉTRICOS TRIDENTADOS ONN

A síntese destes compostos é feita pelo método template, onde se constrói o ligante ao redor do metal, este procedimento foi adotado com base em métodos já publicados, aos quais foram feitas as devidas adaptações^{36, 138}.

Inicialmente foi preparada uma solução contendo 5,0 mmol do aldeído com o substituinte de interesse em 30 mL de etanol, mediante aquecimento brando e agitação constante; adicionou-se a esta solução 5,0 mmol de cloreto de cobre
(CuClO₄.6H₂O) em água, gota a gota. Observou-se uma mudança na coloração da solução de amarelo para verde. Após 30 minutos de reação foram adicionados 5,5 mmol de piridina, observando-se então uma nova mudança na coloração da solução para outra tonalidade de verde. Passados mais 30 minutos foram finalmente adicionados 5,0 mmol da diamina 'ponte' de interesse. Obsevando-se mais uma vez uma mudança na coloração da solução. Depois de aproximadamente 3 horas de reação foi observada a formação de um precipitado, o aquecimento foi então desligado, mantendo-se a agitação até que o sistema alcançasse a temperatura ambiente. O frasco reacional foi levado à geladeira por uma semana, posteriormente filtrado em funil de placa sinterizada, lavado com etanol gelado, e seco em dessecador. O produto obtido foi devidamente caracterizado.

Foram sintetizados os compostos tridentados com sistema doador ONN,N mostrados na figura 3.5, os substituintes na posição 3 e as diaminas A, estão detalhados na tabela 3.2.

FIGURA 3.5. Visão geral dos complexos de cobre tridentados com sistema doador ONN, N.

TABELA 3.2. Posições do	s substituintes na	a estrutura	tridentada,	juntamente	com	os
respectivos nomes dos comp	postos.					

Posição	Substituinte	Nome ¹²			
А		(±) TRANS-1,2DIAMINOCICLOHEXANO			
Todas	Н	[N-(2-aminociclohexano)salicilidenoiminato] cobre(II)			
3	OCH ₃	[N-(2-aminociclohexano)-3-metoxisalicilidenoiminato] cobre(II)			
3	OCH ₂ CH ₃	[N-(2-aminociclohexano)-3-etoxisalicilidenoiminato] cobre(II)			
А		ORTO-PHENILENODIAMINA			
Todas	Н	[N-(2-aminofenil)salicilidenoiminato] cobre(II)			

3 = 3'	OCH ₃	[N-(2-aminofenil)-3-metoxisalicilidenoiminato] cobre(II)
3 = 3'	OCH ₂ CH ₃	[N-(2-aminofenil)-3-metoxisalicilidenoiminato] cobre(II)
А		ETILENODIAMINA
Todas	Н	[N-(2-aminoetil)salicilidenoiminato] cobre(II)
3 = 3'	OCH ₃	[N-(2-aminoetil)-3-metoxisalicilidenoiminato] cobre(II)
3 = 3'	OCH ₂ CH ₃	[N-(2-aminoetil)-3-etoxisalicilidenoiminato] cobre(II)

3.4. COMPOSTOS ASSIMÉTRICOS TETRADENTADOS

3.4.1 LIGANTES ASSIMÉTRICOS TETRADENTADOS

Esta classe de ligantes deveria ter sua síntese feita a partir da reação de condensação do ligante tridentado assimétrico com sistema doador ONN, derivado da etilenodiamina, com outro aldeído de interesse. Como não foi possível a obtenção destes ligantes tridentados, a síntese dos ligantes tetradentados tornou-se inviável.

3.4.2 COMPLEXOS ASSIMÉTRICOS TETRADENTADOS

A síntese destes compostos foi feita de maneira bastante simples, com base em métodos previamente publicados^{35, 138}, utilizando como precursor, um complexo tridentado derivado da etilenodiamina ([Cu(Hsal1/2en)py]) ilustrado na figura 3.5, procedeu-se a reação deste precursor com um aldeído de interesse, obtendo-se como produto o complexo desejado.

FIGURA 3.6. Visão esquemática da reação de obtenção do complexo tetradentado assimétrico.

Foram dissolvidos 5,0 mmol do complexo precursor em etanol sob aquecimento e agitação constantes. A esta solução foi adicionado aproximadamente 1,0 mL de NaOH concentrado observando-se uma mudança na coloração da solução. Após cerca de 30 minutos adicionou-se o aldeído de interesse, 5,0 mmol, observandose uma nova mudança na coloração da solução. Passadas 3-4 horas, desligou-se o aquecimento mantendo-se a agitação até que a mistura alcançasse a temperatura ambiente. O sistema foi levado à geladeira por cerca de 12 horas, após este período o precipitado obtido foi filtrado em funil de placa sinterizada, lavado com etanol gelado e levado ao dessecador por uma semana aproximadamente, após o que foi devidamente caracterizado.

FIGURA 3.7. Visão esquemática dos complexos assimétricos tetradentados evidenciando as posições onde serão observadas as substituições.

Esta classe de compostos tem hidrogênio como substituinte nas posições 3, 4, 5, 6 e 7.

Posição	Substituinte	NOME ¹³⁹
3'	OCH ₃	N-3-metoxisalicilideno-N´-salicilideno-1,2-diaminoetano
3'	OCH ₂ CH ₃	N-3-etoxisalicilideno-N'-salicilideno-1,2-diaminoetano
4'	OCH ₃	N-4-metoxisalicilideno-N´-salicilideno-1,2-diaminoetano
4'	OH	N-4-hidroxisalicilideno-N´-salicilideno-1,2-diaminoetano
4'	$N(CH_2CH_3)_2$	N-4-dietilsalicilideno-N´-salicilideno-1,2-diaminoetano
5'	OCH ₃	N-5-metoxisalicilideno-N´-salicilideno-1,2-diaminoetano
5'	NO_2	N-5-nitrosalicilideno-N´-salicilideno-1,2-diaminoetano
5'	Cl	N-5-clorosalicilideno-N´-salicilideno-1,2-diaminoetano
5'	Br	N-5-bromosalicilideno-N´-salicilideno-1,2-diaminoetano

TABELA 3.3. Posições dos substituintes nos complexos assimétricos tetradentados com seus respectivos nomes.

3',5'	Cl	N-3,5-clorosalicilideno-N´-salicilideno-1,2-diaminoetano
3',5'	Br	N-3,5-bromosalicilideno-N´-salicilideno-1,2-diaminoetano
3',5'	Ι	N-3,5-iodosalicilideno-N´-salicilideno-1,2-diaminoetano
7'	CH ₃	N-7-metilsalicilideno-N´-salicilideno-1,2-diaminoetano
7'	CH ₂ CH ₃	N-7-etilsalicilideno-N´-salicilideno-1,2-diaminoetano
7'	$\Phi CH_2 CH_3$	N-7-feniletilsalicilideno-N´-salicilideno-1,2-diaminoetano
7',4'	Φ ,OCH ₃	N-7-fenil-4-metoxisalicilideno-N'-salicilideno-1,2-diaminoetano

3.5. CARACTERIZAÇÃO

Os complexos e ligantes sintetizados foram caracterizados com base em estudos realizados através das técnicas de espectroscopia vibracional na região do infravermelho e espectroscopia eletrônica na região do ultravioleta-visível, aliadas às análises dos testes de solubilidade, ponto de fusão e em alguns casos análise elementar. A caracterização dos complexos contou ainda com medidas de susceptibilidade magnética, comportamento eletroquímico por voltametria cíclica, difração de raios-X para alguns compostos e ressonância magnética nuclear de carbono e hidrogênio para alguns ligantes.

3.5.1. TESTE DE SOLUBILIDADE

Determinou-se a solubilidade dos ligantes e complexos utilizando uma série de solventes orgânicos polares e apolares (água, acetonitrila, acetona, etanol, tetracloreto de carbono e tolueno). Utilizou-se 1 mg de amostra para 1 mL de solvente. Os testes foram realizados em temperatura ambiente (25 °C) e à quente (temperatura de ebulição do solvente) o aquecimento foi realizado com tubo de ensaio em banho Maria.

3.5.2. MEDIDAS DE PONTO DE FUSÃO

Os pontos de fusão foram obtidos em três aparelhos diferentes.

Um do modelo MARCONI MA 324 pertencente ao Laboratório de Sínteses Inorgânicas Catálises e Cinética – LSICC-DQ-UFSCar, o segundo modelo Mel-TempII Laboratory Devices, pertencente ao Departamento de Química da UFSCar e o terceiro, modelo Büchi 535 pertencente ao Laboratório de Estrutura e Reatividade de Compostos Inorgânicos – LERCI, do DQ-UFSCar.

3.5.3. ESPECTROSCOPIA VIBRACIONAL NA REGIÃO DO INFRAVERMELHO

Os espectros vibracionais foram obtidos utilizando-se espectrofotômetros BOMEM MICHELSON FTIR MB 102 do Departamento de Química da UFSCar, e do grupo de fotoquímica do IQSC-USP, sob supervisão do Prof. Dr. Miguel Guillermo Neumann. As medidas foram realizadas na região de 4000 a 300 cm⁻¹, com resolução de 4 cm⁻¹, utilizando pastilhas de KBr e CsI, seguindo a proporção 1:100. Os dois sais foram mantidos em estufa a 120 °C e triturados antes de serem utilizados.

As intensidades relativas foram calculadas, tomando-se como 100% a banda mais intensa, e restante foi atribuído de acordo com a relação:

Valor	Porcentagem (%)
Fraca (f)	0-19
Média fraca (mf)	20-39
Média (m)	40-59
Média forte (mF)	60-79
Forte (F)	80-100

TABELA 3.4. Proporções utilizadas nos cálculos de intensidade relativa dos picos de absorção na região do infravermelho.

3.5.4. ESPECTROSCOPIA DE ABSORÇÃO NA REGIÃO DO ULTRAVIOLETA-VISÍVEL

Os espectros eletrônicos foram obtidos em dois espectrofotômetros diferentes, um SHIMADZU MultSpec-1501 pertencente ao LATEQS do IQSC sob responsabilidade do Prof. Dr. Éder T. G. Cavalheiro, e outro SHIMADZU MultSpec-1501 pertencente ao nosso laboratório.

Foram preparadas em soluções com concentração da ordem de 10^{-3} mol.L⁻¹, em acetonitrila, sendo posteriormente diluídas para 10^{-4} mol.L⁻¹ e 10^{-5} mol.L⁻¹. As medidas foram feitas em cubeta com caminho óptico de 1 cm na faixa de 190 a 1100 nm.

3.5.5. VOLTAMETRIA CÍCLICA

As medidas foram efetuadas em temperatura ambiente em uma faixa de potencial de 1,6 V até -2,0 V e velocidade de varredura de 0,1V/s. Os voltamogramas foram obtidos utilizado-se um sistema eletroquímico constituído de um potenciostato BAS 100B, acoplado a um computador PC AT 486. As medidas eletroquímicas foram efetuadas em uma cela eletroquímica de vidro, com capacidade para 3 mL, consistindo basicamente de três eletrodos: um eletrodo de referência Ag/AgCl, em solução 0,1 mol/L de PTBA (perclorato de tetrabutilamonio) em acetonitrila ou DMF (N,N'dimetilformamida), mantido no interior de um capilar de Lugen-Haber; eletrodo de trabalho de carbono vítreo, e eletrodo auxiliar de chapa de platina, mergulhados em solução de PTBA 0,1M. O experimento foi realizado em uma solução de concentração da ordem de 1,0x10⁻³ mol/L do complexo a ser analisado em acetonitrila ou DMF de acordo com as solubilidades dos mesmos.

3.5.6. DIFRAÇÃO DE RAIOS-X

A coleta de dados foi feita em colaboração com o grupo de cristalografia do IQSC-USP, as medidas foram realizadas pela aluna Érica Tozzo, sob orientação da Profa. Dra. Regina H. A. Santos.

Foi utilizado um difratômetro automático CAD4 da Enraf-Nonius no modo ω -2 θ com radiação K α de molibdênio monocromada por grafite (λ =0,71043Å).

As estruturas foram resolvidas com a localização do átomo de cobre usando o método de Patterson, com o programa SHELXS¹⁴⁰ no sistema WinGX¹⁴¹.

O refinamento foi efetuado através do sistema SHELXL¹⁴⁰, com a análise simultânea dos parâmetros geométricos da estrutura feita através do sistema PLATON¹⁴², incorporados ao WinGX.

Os átomos de hidrogênio foram posicionados geometricamente, assumindo-se no refinamento o parâmetro de deslocamento térmico como sendo igual a 1,3 vezes o do átomo ao qual ele está ligado.

As representações gráficas das moléculas foram feitas usando o programa ORTEP3 for Windows¹⁴³.

Os fatores de espalhamento atômico utilizados foram aqueles contidos na *International Tables for X-Ray Crystallography*¹⁴⁴.

Em todas as estruturas foi realizada a correção devido à absorção usando o método PSISCAN¹⁴⁵.

3.5.7. ANALISE ELEMENTAR

As análises de CHN a partir das amostras sólidas dos complexos sintetizados foram realizadas no laboratório de microanálises do DQ da UFSCar no aparelho Faison EA 1108 acoplado a um computador Venturis 575. Sob responsabilidade dos técnicos Luciana Vizotto e Paulo R. Lambertucci.

3.5.8. SUSCEPTIBILIDADE MAGNÉTICA

Estas medidas foram feitas em uma balança MSB-Auto, Magnetic Suscpetibility Balance, Johnson Mattley, pertencente ao LERCI (Laboratório de Estruturas e Reatividade de Compostos Inorgânicos) de responsabilidade do Prof. Dr. Alzir Azevedo Batista do DQ UFSCAr. O momento magnético efetivo foi calculado pela expressão¹⁴⁶:

$$\boldsymbol{\mu}_{eff} = 2.84 \left\{ \left[\left(\chi_g . PM \right) T \right]^{\frac{1}{2}} \right\} MB$$

Onde: $\chi_g = \acute{e}$ o momento medido na balança; PM é o peso fórmula do composto em g/mol e T= temperatura em Kelvin.

3.6. TESTES DE ATIVIDADE BIOLÓGICA

Foram realizados dois testes diferentes em parceria com dois grupos de pesquisa.

A primeira parceria foi estabelecida com o laboratório de Citologia e Biologia Celular, coordenado pela Profa. Dra. Christiane Pienna Soares, do Departamento de Análises Clínicas, da Faculdade de Ciências Farmacêuticas, UNESP Araraquara, onde foram iniciados os testes para conhecera atividade antitumoral do complexo simétrico tetradentado [Cu(4-DEAsalen)] pelo aluno Mauro Cafundó, sob orientação da professora Christiane.

3.6.1 TESTES CITOTOXICOS EM CELULAS TRANSFORMADAS POR HPV

3.6.1.1. CULTURA DE CÉLULAS

Nos ensaios biológicos foram utilizadas as linhagens celulares de carcinoma cervical transformadas pelo HPV-16 (SiHa), e HPV-18 (HeLa), cedidas pela Dra. Luiza Lina Villa, do Laboratório de Virologia, do Instituto Ludwig para pesquisa do câncer. As células foram cultivadas em garrafas para cultura com mistura

de meio DMEM (Dulbecco/Vogt modified Eagle's minimal essential medium), e Ham's F10 1:1 suplementado com 10% de soro fetal bovino e antibióticos: penicilina 100 U/mL, estreptomicina 100 μ g/mL, 0,25 μ g/mL de anfotericina B, 0,2 mg/mL de ciprofloxacina, 0,1 mg/mL de kananicina (Sigma), para se evitar contaminação. O crescimento celular foi feito em garrafas na estufa com 5% de CO₂ a 37°C até que a monocamada celular esteja confluente. Depois disso, as células foram lavadas com 5 mL de solução de Hanks (0,4 g de KCl, 0,06 g de KH₂PO₄, 0,04 g de Na₂HPO₄, 0,35 g de NaHCO₃, 1 g de glicose, H₂O q.s.p. 1000 mL) e colhidas adicionando-se 1mL de ATV (Associação de Tripsina (0,2%) e Versene (0,02%)). Então, a suspensão de células foi transferida para duas novas garrafas para continuar a crescer. Após o desprendimento do tapete celular, as células foram homogeneizadas com volumes variados do meio acrescido de 10% de soro fetal bovino. A suspensão celular obtida em uma garrafa foi transferida para outras garrafas, de modo a obter 10⁵ células por garrafa. O procedimento foi repetido até que se obteve quantidade de células suficientes para os experimentos.

3.6.1.2. ENSAIO DE CITOTOXICIDADE (MTT)

Foi cultivada uma suspensão de células contendo $2,5x10^4$ células/mL em cada poço da placa com 96 poços. Após 24 horas de cultivo, as células HeLa, e SiHa foram tratadas com o complexo [Cu(4-DEAsalen)] em diversas concentrações por 24 horas. Como controle positivo, utiliza-se dexorrubicina 30 µg/mL, controle de veículo com meio de cultura contendo 1,0% de DMSO e o controle negativo contendo apenas meio de cultura sem soro fetal bovino (células não tratadas). Depois, descartou-se o meio de cultura da placa e colocou-se 10 µL de MTT a 5 mg/mL em cada poço. Incubou-se a placa por mais 3 horas nas mesmas condições para ocorrer a redução do sal. Finalmente foi feita a leitura com comprimento de onda a 540 nm em leitor de placas ELISA Bio-Tek Powerwave X, BioTek Instruments, Inc.,USA. Foram feitos dois ensaios independentes para cada linhagem celular (HeLa e SiHa) a fim de que se obtivessem valores estatísticos significantes.

A IC_{50} foi determinada a partir da reta de regressão linear calculada pela porcentagem de células mortas obtida pela fórmula:

% cels. mortas = (Abs CN - Abs Teste) / (Abs CN) x 100

Onde *Abs CN* é a média da absorbância dos poços com controle negativo e *Abs Teste* é a média da absorbância dos poços com o composto a ser testado.

O outro grupo com o qual foi estabelecida uma parceria para os testes é o grupo de pesquisas do Departamento de Imunologia do Centro de Pesquisas Aggeu Magalhães – FIOCRUZ, em Recife, PE. Onde foi testada a citotoxicidade dos complexos, em camundongos no laboratório de Imunoparasitologia, sob os cuidados da Profa. Dra. Valéria R. A. Pereira.

3.6.2. TESTES CITOTOXICOS EM CÉLULAS ESPLÊNICAS DE CAMUNDONGOS BALB/c

3.6.2.1. PREPARAÇÃO DOS COMPLEXOS PARA OS TESTES

Foram utilizados nestes testes os complexos da série tridentada. Os compostos testados foram solubilizados em dimetilsulfóxido (DMSO) e estocados a - 20°C. Para os ensaios, cada composto foi diluído na concentração apropriada utilizando-se meio RPMI 1640 contendo 10% de soro bovino fetal (SBF), 1% de L-glutamina 200 mM; 1% de piruvato de sódio 100mM; 26,8 ml de bicarbonato de sódio a 7,5% e 1% de solução de antibióticos (estreptomicina - 100 mg/ml e penicilina - 100 U/ml) (meio completo).

3.6.2.2. PREPARAÇÃO DOS ANIMAIS PARA OS TESTES

Foram utilizados camundongos Mus musculus das linhagens isogênicas BALB/c e C57B1/6, machos, com 6-8 semanas de idade, pesando 20 ± 2 g e provenientes do biotério da Fundação Oswaldo Cruz/FIOCRUZ, Rio de Janeiro. O

protocolo de experimentação animal (processo número 0266-05), utilizado no presente trabalho, está sendo avaliado pela Comissão de Ética no Uso de Animais (CEUA) da FIOCRUZ.

3.6.2.3. PREPARAÇÃO DE CÉLULAS ESPLÊNICAS

As células esplênicas foram obtidas após o sacrifício do animal em cilindro de CO2, o baço de cada camundongo foi removido em condições assépticas e colocado em tubo Falcon contendo meio RPMI 1640 sem SBF (meio incompleto). No fluxo vertical, cada baço foi transferido para placa de Petri onde foram macerados. As suspensões celulares obtidas foram transferidas para tubos Falcon contendo aproximadamente 10 mL de meio incompleto por baço, centrifugadas a 4°C, 200xg durante 5 minutos. Após descarte do sobrenadante, ao sedimento adiciona-se água destilada para promover lise das hemácias. O sobrenadante, sem conter os debris celulares, foi coletado e centrifugado a 4°C, 200 x g durante 5 minutos. O sedimento (contendo as células) foi ressuspendido em meio RPMI 1640 completo. Uma alíquota de cada suspensão celular foi separada. Em seguida, diluída em azul de trypan para ser quantificada em câmara de Neubauer, assim como verificar a viabilidade celular.

3.6.2.4. AVALIAÇÃO DA ATIVIDADE TÓXICA DOS COMPOSTOS EM CÉLULAS DE CAMUNDONGOS ISOGÊNICOS

Células esplênicas $(6x10^5$ células/poço), obtidas de acordo com o item anterior, foram cultivadas em placas de 96 poços de fundo plano, contendo meio de cultura completo. Para o ensaio de citotoxicidade, as células foram incubadas com os compostos em sete diferentes concentrações (200, 100, 50, 25, 10, 1 e 0,1 mg/mL) e timidina tritiada (1 mCi/poço) durante 24 h em estufa de CO₂ a 37°C. Para o controle foram utilizadas células tratadas com saponina (0,05%), células tratadas com DMSO (1%), e sem tratamento, todos com timidina tritiada (1 mCi/poço) associada em paralelo. Cada droga foi testada em triplicata. Após 24 h de incubação, as células foram coletadas em papel de fibra de vidro e, posteriormente, a captação de timidina

tritiada foi determinada através do contador beta de cintilação. O percentual de citotoxicidade foi determinado comparando-se a percentagem de incorporação de timidina tritiada nos poços com as drogas em relação aos poços não tratados.

Resultados & Discussão

4.1. LIGANTES SIMÉTRICOS DO TIPO SALEN COM SEUS **RESPECTIVOS COMPLEXOS DE COBRE**

4.1.1. ANÁLISE GERAL DOS VALORES DE ABSORÇÃO ENCONTRADOS PARA OS LIGANTES E COMPLEXOS SIMÉTRICOS NA **REGIÃO DO INFRAVERMELHO**

A análise dos espectros vibracionais para os compostos apresentados neste trabalho pode ser dividida em três partes.

Esta primeira região vai de 4000 cm⁻¹ até 1700 cm⁻¹. Nesta porção do espectro podemos observar as vibrações referentes ás ligações O-H, no caso dos ligantes e C–H para ambos, complexos e ligantes.

As vibrações de estiramento das hidroxilas (vOH) ocorrem normalmente na região de 3650-3200 cm⁻¹. Quando o grupamento hidroxila não participa de

ligações de hidrogênio é possível observá-lo entre 3650 cm⁻¹ e 3584 cm^{-1 147,148} como é o caso do complexo [Cu(5-NO₂salen)], que apresenta duas bandas nesta região, uma estreita em 3557 cm⁻¹ que acabamos de descrever e outra alargada em 3391 cm⁻¹ que corresponde às vibrações dos grupamentos hidroxila em ligação de hidrogênio intermolecular^{147, 148} como podemos observar na figura 4.1. Os demais compostos, quando apresentam as vibrações correspondentes às hidroxilas, estas aparecem na região de 3440 cm⁻¹, em alguns casos esta banda aparece desdobrada com um outro extremo de absorção na região de 3380cm⁻¹, como é o caso do ligante 3-OHsalen e dos complexos [Cu(5-MeOsalen)], [Cu(3-OHsalen)] e [Cu(4-OHsalen)].

Como discutido anteriormente, estes ligantes têm grande tendência à formação de ligações de hidrogênio entre o grupo hidroxila e o nitrogênio imínico. Estas deformações aparecem na faixa entre 2800 e 2500 cm⁻¹, em forma de ombros os

quais muitas vezes tornam-se tão alargados que fica impossível sua identificação^{2, 79, 85,} 106, 149-151

Um pouco mais à direita no espectro é possível observar as vibrações características das ligações C–H. Segundo Dziembowska *et al.*¹⁵¹ os estiramentos para as ligações CH aromático de uma forma geral, aparecem entre 3087 cm⁻¹ e 2983 cm⁻¹ e na região de 2972 cm⁻¹ até 2795 cm⁻¹ são observados os estiramentos referentes às ligações C–H alifáticas. Segundo Teyssie e Charette¹⁹ a vibração da ligação C–H do grupo =CH– conjugado ao anel aromático é esperada na mesma faixa das vibrações aromáticas (3100-3000 cm⁻¹), e pode estar superposta ao primeiro grupo. Os estiramentos das ligações C–H saturadas apresentam as bandas referentes ao CH₃ em 2962 e 2872 cm⁻¹, CH₂ em 2962 e 2853 cm⁻¹ e CH é esperada em 2890 cm⁻¹. Valores estes que também estão de acordo com os intervalos apresentados por Silvertein¹⁴⁸.

Nos compostos em estudo aparece pelo menos uma banda de intensidade fraca a média que conseguimos identificar como sendo aquelas de estiramento de C–H aromático (v_{ar} C–H) entre 3085 e 3036 cm⁻¹ para todos os complexos e ligantes. Na região compreendida entre 3024 e 3005 cm⁻¹ foram localizadas as absorções referentes às ligações C–H iminico (=CH–) e na região de 2978 cm⁻¹ até 2828 cm⁻¹ são observadas as vibrações para os estiramentos simétricos e assimétricos de C–H alifático [v_s (C–H) e v_{as} (C–H) –(CH₂)–].

São observadas duas bandas de intensidade fraca a médio-fraca em torno de 2360 cm⁻¹ e 2343cm⁻¹ que foram atribuídas de acordo com a literatura¹⁵² como sendo v₃O–CO (CO₂) e na região inferior em torno de 669 cm⁻¹ v₂O–CO (CO₂). Estas bandas são provenientes da contaminação das amostras com CO₂ em grande concentração no momento da aquisição dos espectros.

Não sendo observadas outras bandas na primeira região, passamos à análise da segunda parte que compreende a região do espectro entre 1700 e 1000 cm⁻¹ região esta que é muito rica, contendo a maior parte das vibrações observadas para os compostos.

FIGURA 4.2. Espectro vibracional (Transmitância x Número de onda cm⁻¹) ilustrativo da grande quantidade de bandas presentes na região entre 1700-600 cm⁻¹ nos compostos apresentados.

De acordo com a literatura^{19, 83, 84, 150, 151} os estiramentos referentes às ligações C=N para compostos similares, aparecem na região de 1679-1609 cm⁻¹. Em conseqüência do processo de coordenação, o que leva a uma forte atração eletrônica entre o grupo imínico e o metal, estes valores deslocam-se geralmente para regiões de menor freqüência aparecendo na região de 1645-1598 cm⁻¹ nos complexos. Esta vibração sofre influência de vários fatores e pode deslocar-se para maiores ou menores freqüências de acordo com o tipo do metal complexante e os substituintes no anel aromático. Teyssie e Charette¹⁹ mostram uma discussão representativa dos possíveis efeitos indutivos e de ressonância trabalhando com 5-NO₂; 4-OH; 5-Cl; 3-OCH₃; 5-SO₃Na e naftil como substituintes no anel aromático e mostram que embora em alguns casos estes fatores possam contribuir para deslocamentos nas freqüências observadas, um comportamento usual revela a existência de influências competitivas entre os efeitos estérico, indutivo e de ressonância.

Os valores observados nesta série de compostos (complexos simétricos e seus respectivos ligantes) mostram que as vibrações correspondentes às ligações C=N aparecem na região de 1646-1613 cm⁻¹ para os ligantes e 1650-1594 cm⁻¹ para os complexos, portanto, dentro da faixa esperada.

No caso dos compostos simétricos, os complexos: [Cu(salen)], [Cu(4-MeOsalen)], [Cu(5-MeOsalen)], [Cu(3-EtOsalen)], [Cu(5-NO₂salen)], [Cu(5-Clsalen)], [Cu(5-Brsalen)] e [Cu(7-ΦEtsalen)], fogem desta tendência de

deslocamento para regiões de menor freqüência. Todos os outros mostram as vibrações da ligação C=N em regiões de menor freqüência que o ligante.

Um outro fato bastante interessante observado é que a banda correspondente à vibração da ligação C=N para alguns complexos aparece na forma de dubletes, ou com um ombro, os quais são atribuídos aos estiramentos assimétricos e simétricos da ligação C=N¹⁵³ ou talvez resultantes do acoplamento com as vibrações das ligações C- H_{im}^{151} .

É possível também que haja um outro acoplamento com as vibrações da ligação C=C que ocorre na região de 1600 cm⁻¹, apresentando, segundo a literatura¹⁹ três bandas altamente características de anéis aromáticos conjugados com dupla ligação em 1600, 1580 e 1500 cm⁻¹. Outros grupos de pesquisa^{84, 150, 151} atribuem até 5 ou 6 as vibrações na região de 1620-1510 cm⁻¹ como sendo referentes às duplas ligações C=C.

Nos compostos simétricos em estudo foi possível identificar pelo menos duas bandas características de C=C na região citada pela literatura.

O estiramento da ligação C–N presente na ponte (etilenodiamina) foi observado como uma banda de intensidade mediana que aparece entre 1420 e 1388 cm⁻¹, valor este que concorda com os de outros estudos com compostos similares. 1450-1378 cm^{-1 154}, 1394-1373 cm^{-1 83}, 1390-1380 cm^{-1 2, 84, 150}.

Para os ligantes foram atribuídas às vibrações referentes à deformação angular da ligação OH, como pertencentes à faixa de 1420-1330 cm⁻¹ em concordância com os valores da literatura^{148, 151}.

Os estiramentos das ligações C–O puderam ser observados para a quase totalidade dos compostos como uma banda de intensidade variando entre média e forte na região de 1280 cm⁻¹ em plena concordância com os valores encontrados^{84, 148, 150, 151} para compostos semelhantes.

Nesta próxima faixa do espectro vibracional são encontradas as vibrações referentes às ligações C–C, C–N e C–O as quais ocorrem na mesma região (1240-1070 cm^{-1 84}; 1240-1020 cm^{-1 150, 155}), sendo então, muito difícil atribuí-las separadamente. Para esta série de compostos foram encontradas vibrações na faixa de 1228-1064 cm⁻¹, e 1237-1108 cm⁻¹ para ligantes e complexos respectivamente.

As diversas vibrações referentes à ligação C–H ocorrem por toda a faixa do espectro, às vezes acopladas com outras vibrações, especialmente aquelas das ligações C-C e os valores encontrados para os compostos em estudo estão próximos dos dados da literatura^{19, 84, 148, 150, 151} tendo sido atribuídas as seguintes vibrações:

- 1483-1458 cm⁻¹; 1454-1438 cm⁻¹; 1368-1335 cm⁻¹; 906-873 cm⁻¹; 792-774 cm⁻¹; (δ–(CH₂)–) deformação angular da ligação C-H referentes aos grupamentos CH₂;
- 1426 cm⁻¹; 1093-1070 cm⁻¹; deformação angular de CH do anel aromático (δC–H_{ar}) possivelmente acoplada com δOH;
- 1391-1375 cm⁻¹ deformação angular no plano, da ligação C–H do grupo imínico (δCH_{im});
- 1037-1013 cm⁻¹ (δ -(CH₂)- acoplada com δ C-H_{ar});
- 979-963 cm⁻¹ deformação angular fora do plano da ligação C–H do grupo imínico (γCH_{im});
- 957-949 cm⁻¹ deformação angular fora do plano de (γCH_{im});
- 940-920 cm⁻¹; 756-730 cm⁻¹; deformação angular fora do plano de CH do anel aromático (γC–H_{ar});

Na terceira faixa do espectro a ser analisada entre 900 cm⁻¹ e 350 cm⁻¹ os estiramentos mais importantes são aqueles referentes às ligações metal-ligante.

Os valores encontrados na literatura para estas vibrações são Cu–N: 530-52 0cm⁻¹, 385-375 cm^{-1 144, 83, 156}; 625-610 cm^{-1 157}; 421-320cm^{-1 158}; 420-360 cm^{-1 152}; e Cu-O: 485-450 cm^{-1 83, 159}; 455-440 cm^{-1 152, 156, 157}; 316-275 cm^{-1 160}. Como estas bandas são geralmente fracas e pela região em que aparecem elas podem estar sobrepostas com outras absorções mais fortes, tais como aquelas resultantes da deformação da ligação CH, tornando difícil uma atribuição uniforme. Tendo conhecimentos destes fatos, as atribuições realizadas para esta classe de compostos foram feitas principalmente com base na diferença entre os espectros observados para os ligantes e seus complexos.

Cabe ainda ressaltar que nesta parte do espectro foram identificadas:

• 869-826 cm⁻¹ deformação angular fora do plano de OH (γ OH);

 As deformações angulares das ligações C–C no plano em 649-621 cm⁻¹ e 595-533 cm⁻¹; fora do plano entre 509-483 cm⁻¹ e 479-454 cm⁻¹; e a faixa que compreende a torção das ligações C–C do anel em 448-380 cm⁻¹.

Os espectros vibracionais de todos os compostos apresentados neste trabalho podem ser vistos sem cortes no apêndice I que se encontra no CD que acompanha este volume.

4.1.2. ANÁLISE GERAL DOS VALORES DE ABSORÇÃO ENCONTRADOS PARA OS LIGANTES E COMPLEXOS SIMÉTRICOS NA REGIÃO DO ULTRAVIOLETA-VISÍVEL

Em um espectro na região do ultravioleta-visível para os ligantes do tipo salen, são esperadas pelos menos duas bandas referentes às transições π - π * dos cromóforos C=C e C=N, e uma banda referente à transição n- π * do par de elétrons livres do nitrogênio. No caso dos complexos, é esperada além destas, a banda referente às transições dos elétrons d do metal.

O anel benzênico possui três transições π - π * características as quais são observadas em 184, 205 e 256 nm. Quando se tem um grupo cromofórico ligado a um anel aromático, as bandas em 256 nm são observadas em comprimentos de onda maiores^{147,148}.

Uma substituição auxocrômica desloca a banda na região de 204 nm para a região de maior comprimento de onda, pois o heteroátomo partilha o par de elétrons livres com o sistema eletrônico π do anel, facilitando assim a transição π - π * e causando o deslocamento para o vermelho^{147,148}.

Substituintes com pares de elétrons não ligados (*n* elétrons) podem causar um deslocamento das bandas do anel aromático, pois os elétrons não ligantes podem estender os sistemas π por meio das estruturas de ressonância, quanto mais disponíveis estes elétrons estiverem para interação com o sistema π , maior será o deslocamento¹⁴⁷. Para as bases de Schiff em estudo, duas transições π - π * são atribuídas, a primeira na faixa de 196-270 nm^{84, 106, 150, 160, 161, 162}, e a segunda no intervalo entre 280-300 nm^{2, 82, 106}.

As iminas não apresentam absorção no ultravioleta próximo, a menos que o grupo -C=N- esteja em conjugação¹⁴⁸, quando isto acontece, por exemplo, nas bases de Schiff é atribuída a esta transição a banda que aparece entre 317 e 370 nm^{2, 82-84, 106, 150, 160, 161, 163, 164}, ou entre 357-417 nm^{106, 161, 165} e ainda entre 320-410 nm^{160, 162}.

As transições $n-\pi^*$ de grupos cromofóricos isolados tais como os grupamentos carbonila ou nitro, são geralmente caracterizadas por baixa absortividade molar. Estas transições são influenciadas pelo solvente apresentando deslocamento hipsocrômico com o aumento da polaridade deste. Modificações na estrutura molecular podem deslocar esta banda para maiores comprimentos de onda^{147, 148}. Para os ligantes do tipo base de Schiff foram encontradas atribuições para estas transições nos seguintes intervalos 385-420^{82, 83, 150, 163, 164}, 415-430^{84, 161} e 402-441^{2, 166}.

A ligação de hidrogênio intramolecular que ocorre nos ligantes pode explicar o deslocamento das bandas que ocorrem entre 385 e 420 nm⁸², cálculos teóricos indicam que esta transição é do tipo n(nitrogênio)- π^* pertencente à uma excitação nHOMO \rightarrow LUMO¹⁶⁷. Um outro fator que contribui para a atribuição desta transição é a sua ausência no espectro dos complexos⁸³.

Compostos que contenham ambos, sistemas π e pares de elétrons não ligados exibem duas absorções, uma n- π * em maiores comprimentos de onda (> 300 nm) com baixa intensidade e uma π - π * com alta intensidade em comprimentos de onda mais curtos (<250 nm)¹⁴⁷.

As transições *d*-*d* em complexos de cobre:

Complexos de cobre tetracoordenados são comuns, mas as geometrias, estritamente tetraédrica ou quadrado planar são raras, mais usuais são geometrias aproximadas as quais disponibilizam quatro transições entre os orbitais d⁹⁵. O espectro para um complexo de cobre quadrado planar, exibe segundo a literatura três ou quatro transições as quais dependem da simetria que o complexo pode adotar com o íon metálico que contém elétrons na camada 3d¹⁶⁵.

Segundo Crawford¹⁶⁸, os níveis de energia para íons metálicos com elétrons na camada 3d, em um complexo quadrado planar seguem a ordem, $dz^2 < dxz$ ~ $dyz < dxy < dx^2-y^2$. O íon cobre terá no mínimo uma vacância no orbital menos estável dx^2-y^2 permitindo assim pelo menos três transições eletrônicas dos outros

55

níveis mais estáveis. Na realidade os complexos de cobre em estudo apresentam uma estrutura geométrica quadrado planar distorcida, e os níveis de energia podem não estar arranjados exatamente desta forma. Estudos utilizando dicroísmo circular (CD) apontam para o fato de que os grupos imínicos não são coplanares e assim provocam uma distorção para uma configuração tetraédrica achatada^{160, 165}.

A desconvolução na faixa do visível do espectro para o complexo [Cu(salen)] revela que a banda observada em torno de 560 nm é constituída na verdade por quatro transições que estão situadas entre, 470 e 635 nm⁸³.

Nos espectros onde não foram efetuadas as desconvoluções as transições d-d aparecem como bandas alargadas e baixa intensidade em torno de 560 nm^{8, 106, 161, 165, 169, 170}, variações na posição desta banda podem ser descritas como perturbações da energia provenientes dos efeitos indutivos e ressonância, devido às substituições no anel fenólico¹⁰⁶. Desta forma pode ser feita uma correlação entre os parâmetros de Hammett apropriados para cada substituinte e as posições dos máximos de absorção das bandas d-d^{106, 171}.

Um quarto tipo de transição encontrado nos espectros de complexos de metais de transição com bases de Schiff, são as transições de transferência de carga entre o metal e o ligante.

Como foi relatado por Shriver¹⁶³ e também Gullotti¹⁷⁰, o espectro eletrônico dos complexos apresentam na região de ~400 nm observando a intensidade estas bandas não podem ser classificadas como transições d-d porém, uma comparação com o espectro do ligante e com o espectro de complexos similares com outros metais, sugere que elas ocorrem devido à presença do metal, suas posições são influenciadas pelo solvente, isto sugere que são bandas de transferência de carga que envolvem metal e ligante, existem desta forma duas possibilidades:

A) excitação do par de elétrons livres do doador oxigênio para altos níveis não preenchidos,

 B) a excitação dos elétrons do orbital d preenchido para os orbitais antiligante vazios do cromóforo imino.

A primeira hipótese fica descartada, pois este tipo de transferência de carga costuma ocorrer em regiões de muito maior energia que estas entre 370nm e

56

476nm, assim, estas bandas podem ser atribuídas às transições d- π^* . Foram encontradas na literatura, atribuições para estas bandas nas regiões de 390-430 nm^{2,162, 170}, 454 nm¹⁶³, 376-392 nm¹⁶⁶.

Alguns pesquisadores fizeram uso das transições eletrônicas na região do ultravioleta-visível para definir as formas tautoméricas do ligante, atribuindo as bandas entre 320 nm e 365 nm como pertencentes ao tautômero enol-imina^{22, 150, 172}.

Teyssie e Charette²⁰ realizaram um estudo onde correlacionam o deslocamento das bandas no espectro de ligantes bases de Schiff com a capacidade do solvente em formar ligações de hidrogênio com os mesmos. Estes autores também exploram o efeito dos substituintes no anel aromático e ainda estabelecem uma relação entre o abaixamento da freqüência vibracional da ligação C=N na região do infravermelho, o comprimento de onda e intensidades de determinadas bandas.

Na espectrometria na região do ultravioleta-visível o solvente exerce um grande efeito no resultado observado. Encontram-se na literatura inúmeros trabalhos relatando o efeito de solventes nas freqüências de absorção dos ligantes e complexos de bases de Schiff^{22, 162, 163, 166, 173}.

De uma forma geral, solventes com capacidade para formação de ligações de hidrogênio com o ligante como álcool, água ou formamida, provocam modificações na intensidade e nos comprimentos de onda das bandas que aparecem entre 237 e 425 nm. Em solventes com pouca capacidade para formar ligação de hidrogênio estas alterações não aparecem²⁰.

O solvente utilizado neste trabalho é a acetonitrila, um solvente aprótico e polar (constante dielétrica 37,5) que foi escolhido por apresentar uma grande faixa de transparência na região do ultravioleta e do visível e também pelo fato de solubilizar todos os ligantes e complexos do tipo salen sob estudo.

Os espectros eletrônicos de todos os compostos apresentados neste trabalho nas três concentrações podem ser vistos no apêndice II que se encontra no CD que acompanha este volume.

4.1.3. LIGANTE SALEN E COMPLEXO COBRE SALEN

4.1.3.1. DADOS GERAIS DE CARACTERIZAÇÃO

FIGURA 4.3. Visão esquemática do ligante salen e do complexo cobre salen.

TABELA 4	4.1. Dados	gerais de	e caracterização	do ligante	salen	e	seu	respectivo
complexo d	e cobre em	comparaç	ăo com a literatu	ra ^{2, 83, 106, 174-}	176			-

Dados Gerais	Ligante	Complexo
Fórmula	$C_{16}H_{16}N_2O_2$	$CuC_{16}H_{14}N_2O_2$
Peso fórmula (g/mol)	268,31	329,84
Cor	Amarelo	Verde
Ponto de Fusão °C	127-128	316-317
Literatura	125-126	315-317
C(%) H(%) N(%)	71,6 6,01 10,4	57,7 4,2 8,5
Calculado	71,7 6,0 10,4	58,3 4,4 8,5
Literatura	71,6 6,0 10,4	58,3 4,3 8,5
Susceptibilidade Magnética		1,997MB

As sínteses foram realizadas sem maiores problemas com rendimentos de 87% para o ligante e 83% para o complexo. O valor de susceptibilidade calculado para o complexo se aproxima bastante dos valores encontrados na literatura¹⁷⁷⁻¹⁷⁹, para complexos com d⁹ elétrons.

Os testes de solubilidade mostraram que o ligante é solúvel em acetona, acetonitrila e etanol, ainda a frio. Em tolueno e tetracloreto de carbono foi parcialmente solúvel e se mostrou insolúvel em água, mesmo quando o teste foi realizado na temperatura de ebulição do solvente (à quente).

O complexo foi solúvel apenas em acetonitrila a frio, depois do aquecimento apresentou solubilidade em etanol, acetona e tolueno, mas ainda continuou insolúvel em água e tetracloreto de carbono.

4.1.3.2 ESPECTROS VIBRACIONAIS

Na espectroscopia vibracional na região do I.V., a formação do complexo pode ser acompanhada através de 5 mudanças notáveis no espectro^{19, 149}.

– o desaparecimento das bandas atribuídas à ligação OH;

 – o deslocamento das bandas referentes à ligação C–O, resultantes da coordenação do oxigênio;

 – a variação na posição da banda referente à deformação no plano da ligação C–H do grupo imínico para uma região de menor freqüência, e para uma região de maior número de onda da deformação fora do plano;

 – o deslocamento da banda característica da ligação C=N, na maioria das vezes para uma região de menor freqüência;

– e por fim, o surgimento das bandas referentes às ligações Cu–N e Cu–
O na região de 600 a 400.

Abaixo podem ser vistos os espectros vibracionais do ligante salen e seu respectivo complexo de cobre com as devidas atribuições realizadas com bases em relatos da literatura para compostos semelhantes.

59

FIGURA 4.4. Espectro vibracional (Transmitância x Número de onda cm⁻¹) na região do infravermelho entre 1700 e 350 cm⁻¹ para o ligante salen juntamente com seu respectivo complexo de cobre.

TABELA 4.2. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

Salen	[Cu(salen)]	Atribuições
3437f	3430f	v(O–H) H ₂ O
2050f	3076f	
50501	3049f	v(C-H) _{ar}
3008f	3018f	ν (C–H) _{im} =CH–
2954f	2953f	ν _s (C–H)
2930f	2924f	e
2900f	2912f	$v_{as}(C-H)$
2868f	2850f	-(CH ₂)-
2635f	-	vOH N
20	2364f	
110	2344f	V ₃ (0–C0)
1636F	1649F	NC-N
1611f	1631F	VC-N
1577m	1599m	vC-C
1497mF	1531F	VC-C
1450mf	1468m	S(CII)
1439111	1449mF	0-(Cn ₂)-
1418mf	-	δО–Н
1371f	1388f	vC–N
no	1350f	δ-(CH ₂)-
1284mF	1304f	vC–O
1248f	1238f	v(C–C),
1199mf	1192mF	v(C–O)
1149m	1142mf	e
1114f	1127mf	v(C–N)
10/2m	1087f	$\delta(C, H)$
1042111	1053mf	0(C-11) _{ar}
897f	906mf	δ-(CH ₂)-
857m	852f	үО–Н
775f	790f	
748mF	752mF	γ (C–H) _{ar}
	734mF	
647f	648f	δC–C
562f	500f	<u>γC–C</u>
473f		
432f	no	τ(C–C)
378f		
_	617f	Cu–N
	572f	
-	466f	Cu–O
	441f	

ν estiramento; δ deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; ()_{ar} = aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

Ligação	$v(C-H)_{im} = CH-$	vOH N	C=N	vC–O	γC–H _{im}	Cu–N	Cu–O
aalan	2009	2625	1626	1004	981		
salen	3008	2033	1030	1284	972	-	-
[Cu(color)]	2019		1649	1204	979	617	466
	5018	-	1631	1304	955	572	441

TABELA 4.3. Principais bandas(cm⁻¹) afetadas no processo de formação do complexo.

Analisando os espectros do ligante e do complexo, podemos observar algumas modificações no posicionamento das bandas cuja movimentação é característica do efeito da quelação do ligante.

As bandas referentes aos estiramentos e deformações angulares da ligação C–H do grupo imínico deslocam-se para uma região de maior e menor freqüência respectivamente. Estes deslocamentos estão em direções opostas às descritas na literatura para compostos similares^{19, 152}, isto ocorre como conseqüência do deslocamento da vibração da ligação C=N em decorrência de acoplamentos com vibrações de outros grupos que ocorrem na mesma região;

Ocorre o desaparecimento da banda característica (que aparece como um ombro alargado com centro próximo a 2635 cm⁻¹) do grupo OH em ligação de hidrogênio;

Foi observado um desdobramento em dois picos e também o deslocamento para uma região de maior freqüência da banda referente à ligação C=N, cujos motivos foram discutidos na seção anterior 4.1.1;

A banda de estiramento da ligação C–O desloca-se para uma região de maior freqüência como conseqüência da coordenação do oxigênio;

E finalmente, observou-se o aparecimento das bandas referentes ás ligações metal-nitrogênio e metal-oxigênio na região de menor freqüência do espectro.

4.1.3.3. ESPECTROS ELETRÔNICOS

Pela observação dos espectros eletrônicos exibidos nos itens (A) e (B) da figura 4.5 é possível identificar as transições referentes aos cromóforos C=C do anel aromático e C=N do grupo imínico para ligante e complexo respectivamente, com

concentração da ordem de 10^{-5} mol.L⁻¹, as transições *d-d* são melhor visualizadas na figura 4.5 (B), onde aparece ampliada para a concentração da ordem de 10^{-3} mol.L⁻¹.

FIGURA 4.5. Espectros eletrônicos na região do ultravioleta-visível para o ligante

salen juntamente com seu respectivo complexo de cobre.

- (A) Sobreposição ligante complexo;
- (B) Sobreposição do complexo em duas concentrações diferentes.

TABELA 4.4. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante salen, com seu respectivo complexo [Cu(salen)], bem como as Atribuições tentativas de acordo com a literatura^{2, 83, 106, 162, 164, 166, 170}

Composto	λ	λ	λ	λ	λ	λ
Composio	Emax.	Emax.	E _{max}	E _{max}	E _{max}	E _{max}
Calar	215	256		314	404	
Salen	51100	25620	-	9000	135	-
$\left[C_{u}(aalaa)\right]$	232	246	273	361		568
[Cu(salen)]	67630	68240	73210	14830	-	413
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$n \rightarrow \pi^*_{(C=N)}$	$d \rightarrow d$
	1 1					

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

Pela comparação dos espectros podemos observar o deslocamento das bandas, sobretudo da banda referente ao cromóforo C=N, que está diretamente envolvido no processo de formação do complexo devido á coordenação do nitrogênio, o que provoca um deslocamento para uma região de menor energia⁸³. Podemos observar também o desaparecimento da banda referente à transição n- π^* , e o surgimento da banda de baixa intensidade referente às transições dos elétrons d.

Resultados e Discussão 4.1.3.4. VOLTAMETRIA CÍCLICA

Com a finalidade de se investigar o comportamento eletroquímico dos complexos estudados, foram realizados os voltamogramas cíclicos onde puderam ser observados os processos referentes à oxidação/redução do metal na região compreendida entre -2,0 e -0,25 V, conforme pode ser visto na figura 4.6.

No voltamograma cíclico exibido na Figura abaixo o pico de redução do metal, pode ser observado em -1,12 V, no complexo cobre salen utilizando acetonitrila.

De acordo com a literatura, o potencial de pico catódico Cu(II)/Cu(I) no complexo [Cu(salen)] usando DMSO como solvente, está localizado em torno de - 1,23V.

FIGURA 4.6. Voltamograma cíclico obtido com eletrodo de carbono vítreo em solução $1,0x10^{-3}$ mol.L⁻¹ do complexo [Cu(salen)] em acetonitrila, contendo 0,1 mol.L⁻¹ de PTBA. Velocidade de varredura de 0,1V/s.

Resultados e Discussão 4.1.4. LIGANTES SALEN COM SUBSTITUINTES METOXI NAS POSIÇÕES 3, 4 e 5 COM SEUS RESPECTIVOS COMPLEXOS.

4.1.4.1 DADOS GERAIS DE CARACTERIZAÇÃO.

FIGURA 4.7. Visão esquemática dos compostos com substituintes metoxi (OCH₃).(A) ligante 3-MeOsalen;(B) complexo [Cu(5-Meosalen)].

	1 3	
Dados Gerais	Ligante	Complexo
Fórmula	$C_{18}H_{20}N_2O_4$	CuC ₁₈ H ₁₈ N ₂ O ₄ .H ₂ O
Peso fórmula (g/mol)	328,36	407,91
Cor (posição 3, 4 e 5)	Amarelo(s)	Vinho, Verde e Verde
Rendimento % 3 / 4 / 5	82 / 78 / 77	86 / 76 / 79
Ponto de Fusão 3-MeOsalen 4-MeOsalen 5-MeOsalen LITERATURA*	165-167°C 170,8-171,7°C 154-155°C 154-155°C	> 360°C 245-247°C 283-285°C
C(%) H(%) N(%)* CALCULADO* LITERATURA*	64,47 6,03 8,19 65,84 6,14 8,53 64,5 6,03 8,19	
Susceptibilidade Magnética**	-	1,890MB

TABELA 4.5. Dados gerais de caracterização dos ligantes e seus respectivos complexos de cobre em comparação com a literatura^{2, 106}.

* Valor referente ao ligante 5-MeOsalen².

** Valor referente ao complexo [Cu(3-MeOsalen)].

Embora os três ligantes e os três complexos possuam os mesmos pesos fórmula, foi observada uma ligeira variação em seus pontos de fusão, o que pode ser explicado pelo empacotamento das moléculas no sistema cristalino, o qual ocorre de maneira diferente para cada composto devido aos fatores estéricos dos substituintes e possíveis interações intermoleculares.

O valor encontrado para a susceptibilidade magnética do complexo [Cu(3-MeOsalen)] está de acordo com valores encontrados na literatura^{161, 171, 177} para compostos paramagnéticos similares, com apenas um elétron desemparelhado.

Os ligantes mostraram-se solúveis em acetona, etanol e acetonitrila, ainda a frio e permaneceram insolúveis em tolueno, tetracloreto de carbono e água mesmo quando aquecidos, com exceção do ligante 5-MeOsalen que se mostrou solúvel em tetracloreto de carbono e tolueno, já os complexos foram solubilizados por etanol, acetona e acetonitrila à frio e os complexos [Cu(3-MeOsalen)] e [Cu(4-MeOsalen)] permaneceram insolúveis, mesmo à quente, em água, tolueno e tetracloreto de carbono. O complexo [Cu(5-MeOsalen)] foi solúvel em tolueno à quente, pouco

solúvel em tetracloreto de carbono à quente e permaneceu insolúvel em água mesmo quando aquecido.

4.1.4.2. ESPECTROS VIBRACIONAIS

Os espectros vibracionais foram interpretados com base em estudos de compostos semelhantes disponíveis na literatura. Nas tabelas 4.6 e 4.7 e figuras 4.8 e 4.9 exibidas abaixo, podem ser vistos os espectros na região entre 1700 e 350 cm⁻¹ bem como as atribuições das principais bandas observadas para os ligantes e seus respectivos complexos.

FIGURA 4.8. Espectro vibracional (Transmitância x Número de onda cm⁻¹) na região do infravermelho para os ligantes com substituintes metoxi nas posições 3, 4 e 5.

TABELA 4.6. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

Ligante 3-MeOsalen	Ligante 4-MeOsalen	Ligante 5-MeOsalen	Atribuições
3446f	3447f	no	v(O–H); H ₂ O
3086f	3073f	no	ν (C–H) _{ar}
2995f	3014f	3008f	$v(C-H)_{im} = CH-$
2931f	2072£	2957mf	
2898f	2973I 2027f	2937mf	$v_{s}(C-H) e v_{as}(C-H);$
2847f	29371 2842f	2897mf	-(CH ₂)-
2834f	28431	2835f	
2584f	2624f	2636f	vOHN
2360mf	2360mf	2381f	(0,0,0)
2342f	2343f	2347f	$V_{3}O-CO(CO_{2})$
1633F	1619F	1639m	vC=N
	15096	Iigante 5-MeOsalen no no 3008f 2957mf 2937mf 2897mf 2835f 2636f 2381f 2347f 1639m 1588mF 1492F no 1391mf 1328f 1275mF 1228mf 1031F 1191mf 1158mF no no 1031F 1228mf 1031F 1191mf 158mF no no no 976f 854mf 828m 780mf no no 428f 414f 356f	vC=C
по	1508111		
1471mF	1444		S (CII.)
1438f	1444111	по	$\delta_s - (CH_2) -$
1410mf	1396mf	1391mf	vC–N
1324f	1338f	1328f	δΟ–Н
1295f	1286m	1275mF	vC–O
1251F	1223mF	1228mf	v _{as} C–O–C
1081mF	1025m	1031F	v_sC-O-C
1170f	1174m	1191mf	v(C–C); v(C–O)
1133f	1114F	1158mF	e v(C–N);
1054mf	no	no	δC–H _{ar}
1010mf	no	no	$\delta - (CH_2) - + \delta C - H_{ar}$
987f	064m	076f	WC II
963mF	904111	9701	$\gamma C - \Pi_{im}$
881f	852m	854mf	δ (CH) + vO H
837mf	0.52111	0.041111	0-(CΠ2)-+γ0-Π
792m	800f	828m	δ_(CH ₂)_
781f	782f	780mf	0-(C112)-
741m	no	no	vС–Н
731m	110	IIO	$\gamma C - \Pi_{ar}$
669f	669f	662f	v ₂ O–CO (CO ₂)
621f	649f	502f	SC C
564f	581mf	5951	0C-C
520f	508f		
	471f	479f	γC–C
	461f		
140f		428f	
4401 /16f	399f	414f	τ(CC)
4101		356f	

v estiramento; δ deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; ()_{ar} = aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

TABELA 4.7. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

Complexo 3-MeO	Complexo 4-MeO	Complexo 5-MeO	Atribuições	
3447mf	3397m	3393mf	ν(O–H); H ₂ O	
3058mf	no	no	ν (C–H) _{ar}	
3006mf	3014mf	3006m	ν (C–H) _{im} =CH–	
2029mf	2071mf	2955m		
2938IIII 2820mf	29711111 2020mf	2926m	$V_{s}(C-H) \in V_{as}(C-H);$	
2039111	2920111	2828m	-(CH ₂)-	
2363m	2362m	2360mF	1000000	
2344m	2343m	2342m	$V_{3}O = CO(CO_{2})$	
	1636F	1648F		
1629F	1610F	1635F	vC=N	
	10101	1614F		
1604m	1520E	1542F	vC-C	
1546m	1329Г	1534F	VC-C	
1474m	1459m	1460E		
14/4111 14/8mE	1440mF	1409F 1422mE	δ_s –(CH ₂)–	
1448IIIF	1423mf	1423IIIF		
1397mf	1394mf	1384m	vC–N	
no	1356m	1352m	δ_s –(CH ₂)–	
1315m	1308m	1292mF	vC–O	
1042mE	1223F	1255mF	$v_{as}C-O-C$	
1243mF	1026m	1033F	v _s C–O–C	
1004mE		1223mF	$u(\mathbf{C}, \mathbf{C})$	
1224IIIF 1171mf	1174mf	1186m	V(C-C);	
11/1111 1109mE	1126F	1156F	V(C = 0) e	
11081115		1118m	V(C-N);	
1086f	1092f	1089m	δC-H _{ar}	
no	1053mf	1057m	δC–H _{ar}	
096mf		975m		
9001111 066mf	979m	957m	$\gamma C-H_{im}$	
900111		944m		
956mf	924m	825F		
6301111 799	034111 799f	798mF	δ-(CH ₂)-	
/88mi	/88mi	776mF		
745m	no	737m	γC–H _{ar}	
no	no	669m	v ₂ O–CO (CO ₂)	
626m	644mf		50.0	
569f	589f	no	0C-C	
507f	508f	505m	γ C – C	
384mf	401f	399m	-(C, C)	
376f	374f	384m	$\tau(C-C)$	
534f	617f	613m	Cu N	
	569f	571m	Cu–N	
455mf	470m	467m	Cu. 0	
420f	431f	419m	Cu–O	
v estiramento; δ deformaç	v estiramento; δ deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; () _{ar} =			

aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

FIGURA 4.9. Espectro vibracional (Transmitância x Número de onda cm⁻¹) na região do infravermelho para os complexos com substituintes metoxi nas posições 3, 4 e 5.

Nos espectros dos ligantes com substituintes metoxi, pode ser observado o aparecimento de uma banda em 1250cm⁻¹, 1223cm⁻¹ e 1228cm⁻¹ para o substituinte nas posições 3, 4 e 5 respectivamente, referente ao estiramento assimétrico do grupo C–O–C e outra em 1081cm⁻¹, 1025cm⁻¹ e 1030cm⁻¹ referente ao estiramento simétrico do mesmo grupo nas posições 3, 4 e 5 respectivamente. Nos espectros dos complexos a banda de estiramento assimétrico aparece em 1243 cm⁻¹ para a posição 3, 1223 cm⁻¹ para a posição 4, e 1255 cm⁻¹ para a posição 5; e o estiramento simétrico foi observado para a posição 3 em 1081 cm⁻¹, em 1025cm⁻¹ para a posição 4 e 1032cm⁻¹ para a posição 5. Os valores encontrados na literatura para compostos similares (1275-1200cm⁻¹; 1253-1248cm⁻¹; 1259-1246cm⁻¹ assimétricas e 1075-1020cm⁻¹; 1041-1035cm⁻¹; 1058-1029cm⁻¹ simétricas)^{84, 148, 150} confirmam estas atribuições.

Pelas figuras 4.10 e 4.11 podemos observar como este substituinte ao ocupar as diferentes posições irá afetar as ligações C=N e C–O.

A contribuição do efeito estérico no deslocamento ou não destas bandas é importante apenas na posição 3, ao ocupar as posições 4 e 5 ele se afasta completamente do sítio de coordenação, que estamos observando mais atentamente.

A combinação dos efeitos indutivo doador de elétrons e mesomérico *o*, *p* dirigente afeta os grupos imínico (–CH=N–) e fenólico, (C–OH) de maneira diferente
ao variarmos a posição de ocupação do substituinte metoxi, conforme pode ser visto abaixo.

FIGURA 4.10. Visualização dos efeitos indutivo e mesomérico nas ligações do anel aromático.

Esta influência se faz notar quando comparamos os valores destas ligações com o ligante salen, e no caso dos complexos o [Cu(salen)] os quais não possuem substituintes no anel aromático, podendo então ser tratados como compostos de referência.

Ligação	$C=N \text{ cm}^{-1}$	$C-O \text{ cm}^{-1}$
salen	1636	1283
3-MeOsalen	1633	1295
4-MeOsalen	1619	1286
5-MeOsalen	1639	1275

TABELA 4.8. Comparação dos valores observados para os ligantes com substituinte metoxi nas diversas posições e o ligante salen. Valores em cm⁻¹.

Com o substituinte metoxi nas posições 3 e 5, os híbridos de ressonância conduzem a carga negativa para as posições *o* e *p* em relação a sua posição, esta carga irá posicionar-se sobre o carbono do grupo fenólico, afetando principalmente a ligação C–O. Que por este motivo deve deslocar-se para uma região de menor freqüência.

As constantes de Hammett²⁶, ($\sigma_m = 0,12$; $\sigma_p = -0,27$) revelam a existência de efeitos competitivos e assim, explicam o ligeiro deslocamento da freqüência da ligação C=N quando o substituinte ocupa a posição 5 (σ_m) e um grande deslocamento da freqüência da ligação C-O (σ_p).

Na posição 4 observa-se claramente o efeito do substituinte deslocando a banda C=N para uma região de menor energia pelo efeito da localização da densidade eletrônica sobre o nitrogênio imínico, enfraquecendo a ligação C=N e causando este deslocamento. O posicionamento *meta* com relação ao grupo OH confere uma ligeira alteração na freqüência vibracional da ligação C–O.

O efeito estérico que também aparece quando este substituinte está na posição 3 impede uma visualização da aplicação das constantes de Hammett para esta posição.

		_ !	\sim
Dodultadod	\sim		a - 0
RESULLAUUS			ธลบ
	<u> </u>		

Ligação	v(C-H) _{im}	vOH N	C=N	C-0	γC–H _{im}	Cu–N	Cu–O
3-MeOsalen	2995	2584	1633	1295	987 963	-	-
[Cu(3-MeOsalen)]	3006	-	1629	1315	986 966	534	455 420
4-MeOsalen	3014	2624	1619	1286	964	-	-
[Cu(4-MeOsalen)]	3013	-	1636 1610	1308	979	617 569	470 431
5-MeOsalen	3008	2636	1639	1275	976	-	-
[Cu(5-MeOsalen)]	3006	-	1648 1635 1614	1292	975 957 944	613 571	467 419

TABELA 4.9. Comparação dos valores encontrados para as bandas dos ligantes com substutinte metoxi e seus respectivos complexo de cobre, freqüências em cm⁻¹.

Como efeitos da formação do complexo de cobre para estes ligantes observou-se que as deformações no plano da ligação C–H do grupo imínico permanece praticamente inalterada e as deformações fora do plano deslocam-se tanto para regiões de maior freqüência (4-MeOsalen) como para regiões de menor freqüência (5-MeOsalen).

O desaparecimento da banda larga característica ligação de hidrogênio entre o grupo OH e o nitrogênio do grupo imínico foi também observado.

A formação dos complexos resultou em grandes modificações nos estiramentos correspondentes às ligações C=N. Aparecem divisões em dois e até 3 bandas decorrentes do acoplamento com outras vibrações, como já foi discutido na seção 4.1. Existe também a possibilidade que estes desdobramentos ocorram devido à diferença na estrutura molecular, especialmente nos ângulos de torção dos anéis aromáticos, que faz com que estes se posicionem numa angulação mais ou menos inclinada em relação ao plano da molécula, afetando a distribuição dos elétrons π pelo sistema o que irá refletir no posicionamento das bandas na região do infravermelho¹⁸¹.

A coordenação do oxigênio faz com que as deformações características da ligação C–O se desloquem para uma região de maior freqüência.

E, ainda, notou-se o surgimento das bandas características das ligações Cu–N e Cu–O.

Resultados e Discussão 4.1.4.3. ESPECTROS ELETRÔNICOS

FIGURA 4.12. Vista dos espectros eletrônicos para os compostos com substituintes metoxi na posição 3.

TABELA 4.10. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as Atribuições tentativas de acordo com a literatura^{2, 16, 20, 78, 79, 106, 161, 162, 164, 170}.

Composto	λ	λ	λ	λ	λ
Composio	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}
2 MaQaalan	222	263	331	415	
3-MeOsalen	40910	19240	4260	321	-
$[C_{u}(2, M_{a}O_{aa}]_{ab}]$	238	279	368		540
[Cu(3-MeOsalen)]	40360	24580	6089	-	226
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$n \rightarrow \pi^*_{(C=N)}$	$d {\rightarrow} d$

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

Novamente pode ser observado o deslocamento da banda referente ao cromóforo C=N para uma região de menor energia como resultado da formação do complexo, o desaparecimento da banda referente a transição $n-\pi^*$ e o surgimento da banda característica das transições *d-d*.

FIGURA 4.13. Vista dos espectros eletrônicos para os compostos com substituintes metoxi na posição 4.

TABELA 4.11. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as Atribuições tentativas de acordo com a literatura^{2, 16, 20, 78, 79, 106, 161, 162, 164, 170}.

Composto	λ	λ	λ	λ	λ	λ	λ
Composto	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}
4-	221	231		276	305	384	
MeOsalen	30800	30800	-	31100	21800	2150	-
[Cu(4-		231	254	284	345,	364om	564
MeOsalen)]	-	40810	42880	30510	15870,	12060	348
Atribuição	$\pi \rightarrow \pi^* (C-C)$	$\pi \rightarrow \pi^* (C-C)$	$\pi \rightarrow \pi^* (C-C)$	$\pi \rightarrow \pi^* (C - C)$	$\pi \rightarrow \pi^* (C-N)$	$n \rightarrow \pi^*_{(C=N)}$	$d \rightarrow d$
7 ti 10 alçao				c) (C=C)		TCML complexo	u ·u

As transições referentes ao grupo imino deslocam-se para maior comprimento de onda, como conseqüência da formação do complexo e no espectro do complexo foi identificada à banda referente às transições *d-d* do metal.

Aqui também pode ser observada a forte influência que o substituinte metoxi na posição 4, exerce sobre o grupo imínico, provocando o surgimento de um ombro na banda característica do cromóforo C=N, este ombro também pode estar associado à um deslocamento na transição de transferência de carga metal-ligante, uma vez que este processo utiliza um orbital π^* do grupo imino sobre o qual está localizada a carga negativa decorrente do efeito de ressonância da molécula.

FIGURA 4.14. Vista dos espectros eletrônicos para os compostos com substituintes metoxi na posição 5.

TABELA 4.12. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as Atribuições tentativas de acordo com a literatura^{2, 16, 20, 78, 79, 106, 161, 162, 164, 170}.

Composto	λ	λ	λ	λ	λ	λ	λ
Composio	E _{max}	E max	€ _{max}	E _{max}	E _{max}	E _{max}	E _{max}
5-	215om	230	257om		343	434om	
MeOsalen	38070	46700	15530	-	9020	930	-
[Cu(5-		232	256om	274om	397		568
MeOsalen)]	-	54610	39320	29050	11150	-	453
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=N)}$	$n \rightarrow \pi^*_{(C=N)}$	$d \rightarrow d$

Novamente podem identificadas as mudanças no espectro referentes à formação do complexo, o deslocamento da banda π - π * (C=N) para uma região de maior comprimento de onda, o desaparecimento da banda referente à n- π * e o surgimento da banda típica das transições *d*-*d*.

FIGURA 4.15. Vista dos espectros eletrônicos sobrepostos para os ligantes e complexos em concentração da ordem de 10^{-5} M.

TABELA 4.13. Comparação entre os valores das bandas calculadas para os complexos com substituintes metoxi nas posições 3, 4 e 5.

Composto	λ	λ	λ	λ	λ	λ
Composio	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}
[Cu(color)]	232	246	273	361		568
[Cu(salen)]	67630	68240	73210	14830	-	413
[Cu(2 MaQualan)]	238	n 0	279	368		540
[Cu(5-WeOsalell)]	40360	по	24580	6089	-	270
[Cu(1 MaQualar)]	231	254	284	345	364om	564
[Cu(4-MeOsalell)]	40810	42880	30510	15870	12060	348
[Cu(5 MaQualar)]	232	256om	274om	397		568
	54610	39320	29050	11150	-	453
Atribuição	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=N)}$	TCML	$d \rightarrow d$

Como foi dito na seção anterior 4.2, em relação às transições C=C do anel aromático, ao efetuarmos uma substituição auxocrômica no anel, a banda mais baixa permanece inalterada enquanto as bandas mais altas sofrem um deslocamento para um maior comprimento de onda o que pode ser comprovado comparando o espectro dos complexos substituídos com o do complexo [Cu(salen)], sem substituições.

A transição *d-d* para o complexo com substituinte metoxi na posição 3, sofre um ligeiro deslocamento para uma região de maior energia, devido ao efeito estérico do grupo metoxi que provoca uma distorção na geometria do centro de coordenação.

Resultados e Discussão 4.1.4.4. VOLTAMETRIA CÍCLICA

FIGURA 4.16. Voltamograma cíclico obtido com eletrodo de carbono vítreo em solução $1,0x10^{-3}$ mol.L⁻¹ do complexo [Cu(3-MeOsalen)] em acetonitrila, contendo 0,1 mol.L⁻¹ de PTBA. Velocidade de varredura de 0,1V/s.

Em acetonitrila o pico para redução do Cu(II) para Cu(I) foi encontrado em -1,18V, que está próximo a -1,26V valor encontrado na literatura¹⁸⁰ para o complexo de cobre $(1,0x10^{-3} \text{ mol.L}^{-1})$ com o mesmo substituinte, porém na posição 5 [Cu(5-MeOsalen)] e utilizando DMSO como solvente.

Resultados e Discussão 4.1.4.5. DIFRAÇÃO DE RAIOS-X

Foi feita a determinação da estrutura do complexo [Cu(3-MeOsalen)] por difração de raios-X e os principais dados cristalográficos para o composto estão listados na tabela 4.15. Os dados referentes à determinação estão devidamente depositados no banco de dados de Cambridge (CCDC) sob o número 612992.

TABELA 4.14. Principais dados cristalográficos para o complexo [Cu(3-MeOsalen)]. H_2O

Formula	$C_{10}C_{10}H_{20}N_{2}O_{2}$
	407.01
Peso formula	407,91
Sistema cristalino	Ortorrômbico
Grupo espacial	Pna2 ₁
a (Å)	7,5140(6)
b (Å)	9,2629(10)
<u>c</u> (Å)	24,721(3)
$\alpha = \beta = \gamma$	90°
$V(Å^3)$	1720,6(3)
Z (cela unitária)	4
$D_{\rm c} (\rm g.cm^{-3})$	1,575
Dimensões do cristal (mm)	0,10 x 0,15 x 0,30
$\mu (\text{mm}^{-1})$	1,302
λ (Kα (Mo) (Å))	0,71073
Modo de coleta	ω-2θ
Temperatura de coleta (K)	293
Intervalo de θ (°)	2,8-30,0
<i>hkl</i> máx.:mín.	-10:3; -13:5; -34:4
Reflexões coletadas; únicas	2651; 2633
Observadas [I>2 σ (I)], Npar	1776, 240
R; R _w ; GOF	0,0375; 0,1119; 1,05
Dens. Residual (e/ Å ³) máx. e mín.	0,43 e 0,53

As tabelas completas contendo todos os ângulos e distâncias interatômicas para este complexo estão no apêndice III.

O complexo cristalizou-se com uma molécula de água localizada sobre o átomo de cobre, que aparece no centro da molécula, coordenado aos nitrogênios imínicos e oxigênios fenólicos, adotando uma geometria quadrada planar, ligeiramente distorcida, a qual pode ser comprovada observando-se os ângulos e comprimentos de ligação apresentados abaixo.

Ligação	Distância	Bunce ¹⁰³ et al.	Nathan ¹⁸² et al.	Baker ¹⁸³ et al	Baker ¹⁸⁴ et al
Cu-O1	1,955(8)	1,929(2)	1,946(3)	1,92	1,906
Cu-O3	1,897(8)	1,916 (2)	1,905(3)	1,90	1,886
Cu-N1	1,964(9)	1,952(3)	1,954(4)	1,95	1,928
Cu-N2	1,949(11)	1,949(3)	1,953(4)	1,93	1,904
Cu-OW	2,366(3)	2,494(4)			

TABELA 4.15. Principais distâncias (Å) interatômicas para o complexo com os respectivos desvios padrão em comparação com dados da literatura.

As distâncias encontradas estão próximas dos valores encontrados na literatura para compostos similares.

FIGURA 4.17. Representação ORTEP para o complexo de cobre com substituinte metoxi na posição 3.

Os átomos de hidrogênio foram omitidos para melhor visualização do complexo.

respectivos						
Ligações	Angulos	Bunce et al. ¹⁰³	Nathan et al. ¹⁰²	Baker et al. ¹⁸⁵	Baker et al. 104	
O1-Cu-O3	90.7(3)	91,06(10)	91,4(2)	90,2	87,8	
N1-Cu-N2	82.9(4)	83,29(12)	83,8(2)	84,7	82,7	
O1-Cu-N1	92.3(4)	92,43(12)	92,4(2)	93,5	95,5	
O3-Cu-N2	92.0(4)	91,92(12)	91,1(2)	91,4	94,2	
O1-Cu-N2	162.4(4)	169,57(12)	170,2(2)	173,7	-	
O3-Cu-N1	171.8(4)	171,29(12)	171,1(2)	178,0	-	
OW-Cu-O3	97.1(3)	87,97(14)				
OW-Cu-N1	89.9(3)	90,81(13)				
OW-Cu-N2	98.0(4)	99,33(14)				
O1-Cu-OW	99.0(3)	99,29(12)				

TABELA 4.16. Principais ângulos (°) interatômicos para o complexo com os respectivos desvios padrão em comparação com os dados encontrados na literatura.

A geometria quadrado planar distorcida pode ser verificada pelos ângulos O1-Cu-N2 162.4° e O3-Cu-N1 171.8° que deveriam ser de 180° cada um, e dos outros ângulos que deveriam ser de 90°. Este desvio pode ser causado pela molécula de água localizada sobre o átomo de cobre ou pela ponte etilenodiamina, que sendo 'curta' uma compressão do ângulo entre os nitrogênios.

FIGURA 4.18. Representação ORTEP para o empacotamento da cela unitária para o complexo de cobre com substituinte metoxi na posição 3.

- (A) normal ao plano 010
- (B) normal ao plano 100
- (C) normal ao plano 001

Resultados e Discussão4.1.5. LIGANTES DO TIPO SALEN COM SUBSTITUINTEHIDROXI NAS POSIÇÕES 3 e 4, COM SEUS RESPECTIVOS COMPLEXOS

4.1.5.1. DADOS GERAIS DE CARACTERIZAÇÃO

FIGURA 4.19. Visão esquemática dos ligantes com substituinte hidroxi. (A) Ligante 4-OHsalen

(B) Complexo [Cu(3-OHsalen)]

Dados Gerais	Ligante	Complexo
Fórmula	$C_{16}H_{16}N_2O_4$	CuC ₁₆ H ₁₄ N ₂ O ₄
Peso fórmula (g/mol)	300,31	361,84
Cor posição 3 / 4	Alaranjado / Amarelo	Marrom / Roxo
Rendimento % 3 / 4	68 / 72	72 / 76
Ponto de Fusão °C		
3-OHsalen	decompõe 231,7	> 360
4-OHsalen	205-207	> 360
LITERATURA*	205-207	> 350

TABELA 4.17. Dados gerais de caracterização dos ligantes OHsalen e seus respectivos complexos de cobre em comparação com a literatura^{135,185}.

* valor referente ao ligante 4-OHsalen e seu respectivo complexo.

Os pontos de fusão medidos estão muito próximos aqueles da literatura. Não foram realizadas as medidas de susceptibilidade magnética para os complexos e também não foi feita à análise elementar.

Dos testes de solubilidade foram obtidos que os ligantes foram solúveis acetonitrila ainda a frio e depois de aquecidos foram solúveis em etanol e acetona, permanecendo insolúveis em tolueno, tetracloreto de carbono água.

Os complexos de forma semelhante aos ligantes foram solúveis em acetonitrila a frio e solubilizados por etanol e acetona, depois de aquecidos, estes também não foram solubilizados por tolueno, tetracloreto de carbono e água.

4.1.5.2. ESPECTROS VIBRACIONAIS

FIGURA 4.20. Espectros vibracionais (Transmitância x Número de onda cm⁻¹) na região do infravermelho para o ligante 3-OHsalen com seu respectivo complexo.

FIGURA 4.21. Espectros vibracionais (Transmitância x Número de onda cm⁻¹) na região do infravermelho para o ligante 4-OHsalen com seu respectivo complexo.

3-OHsalen	[Cu(3-OHsalen)]	4-OHsalen	[Cu(4-OHsalen)]	Atribuições
3386mF	2270		3455mf	
3254m	33/2m	no	3312f	$V(O-H); H_2O$
no	3035mf	3049f	3042f	v(C-H) _{ar}
no	no	3013f	No	$v(C-H)_{im} = CH-$
2947f	2024	2936f	200.66	$v_{s}(C-H) e v_{as} (C-H);$
2860f	2924mf	2876f	28861	-(CH ₂)-
2475f	-	2438m	-	vOH····N
	2359m	0244		
no	2341mf	2344m	no	$v_3 O-CO(CO_2)$
1634F	1624F	1644f	1624F	vC=N
1549f	1551	1586mF	1542 5	0.0
1521f	1551m	1507mf	1543mF	VC=C
1462mF	1449F	1475mf	1450mF	δ _s -(CH ₂)-
1381mF	1395mF	1395f	1393 mf	vC-N
1360mF	1315m	1357mf	1373mf	δΟ–Η
1275m	1264m	1285m	1282f	vC-O
1240 6	1017 5	1239mf	1224F	v(CC);
1249mf	1217mF	1166mf	1167mF	v(C-O)e
1192m	1063mf	1112m	1129mF	v(C-N);
10706			1085mf	SC II
1070f	no	no	1056f	ðC–H _{ar}
1019mF	1036mf	1000m	No	δ-(CH ₂)-
	046f	976mF	001f	C II
no	946mI	940mf	991mf	$\gamma C - H_{im}$
901mf	no	896mf	873f	δ-(CH ₂)-
858mf	864mf	835mF	825mf	δΟ–Η
784mf	787mf	802F	791mf	δ-(CH ₂)-
736mF	739mF	749m	750f	γC–H _{ar}
669f	668mf	670mf	no	v ₂ O–CO (CO ₂)
		609F	(10f	
55 0f	560f	591mf	648mf	SC C
558mi	Soomi	562mf	595mi	0C-C
		518f	2021	
505f	503mf	453mf	454f	γ C – C
434f		433f	246 6	•
390f		393m	340mi	
331f	no	345m	3231	$\tau(C-C)$
322f		312f	312f	
	613m		2016	
-	384mf	-	3811	Cu-N
	483mf		405f	0.0
-	442mf	-	467f	Cu-O
v estiramento:	δ deformação angular no pla	no: v deformação an	gular fora do plano: 7 torção	das ligações C_C:() –

TABELA 4.18. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

v estiramento; δ deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; ()_{ar} = aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

Figura 4.22. Visão ampliada do espectro referente a 3-OHsalen (vermelho) e [Cu(4-OHsalen)] (verde).

Para estes compostos foram observadas claras alterações nas bandas referentes à ligação OH, além das outras que são características do processo de coordenação.

Na região entre 3500cm⁻¹-3250cm⁻¹ são vistas as bandas referentes aos estiramentos das hidroxilas, que podem ou não participar de ligações de hidrogênio intermoleculares, como pode ser visto na ampliação ao lado, onde aparece em verde, o complexo [Cu(4-OHsalen)] e em vermelho o ligante 3-OHsalen.

FIGURA 4.23. Visualização dos efeitos indutivo e mesomérico do substituinte hidroxi (OH) nas ligações do anel aromático.

FIGURA 4.24. Visão esquemática da influência do substituinte hidroxi nas posições 3, 4.

Resultados e Discussão TABELA 4.19. Comparação dos valores observados para os ligantes com substituinte

	Ligonão		'_N	(
hidroxi nas duas	posições e o	ligante salen	, freqüência	as em o	cm^{-1} .		
1 ABELA 4.19.	Comparação	dos valores o	observados	para c	os ngantes	com	substitu

Ligação	C=N	С-О
salen	1636	1283
3-OHsalen	1634	1275
4-OHsalen	1643	1285

O efeito do substituinte hidroxi é muito semelhante ao efeito do substituinte metoxi. Na posição 3, os híbridos de ressonância conduzem a carga negativa para as posições *o* e *p* em relação ao substituinte, esta carga irá posicionar-se sobre o carbono que está ligado ao outro OH, afetando principalmente a ligação C–O. Que por este motivo deve deslocar-se para uma região de menor freqüência.

Pela combinação dos efeitos indutivo e de ressonância [constantes de Hammett²⁶, (σ_m = 0,12; σ_p = -0,37)] quando o grupo OH ocupa a posição 4 a densidade eletrônica localiza-se sobre o nitrogênio imínico, enfraquecendo a ligação C=N que se encontra em posição *para* ao grupo hidroxi. A freqüência desta ligação, deveria sofrer um deslocamento para uma região de menor freqüência, porém o que se observa é um deslocamento para uma região de maior freqüência. O posicionamento *meta* com relação ao grupo OH confere uma ligeira alteração na freqüência vibracional deste.

Ligação	v(C-H) _{im}	vOH N	C=N	С-О	γC–H _{im}	Cu–N	Cu–O
3-OHsalen	no	2475	1634	1275	no	-	-
[Cu(3-OHsalen)]	no	-	1624	1264	946	613	483
						384	442
4 OHealan	2012	2428	1642	1295	976		
4-OHsalen	3012	2438	1045	1283	940	-	-
[Cu(4 O Haplan)]	no		1624	1292	001	201	405
	110	-	1024	1282	991	381	467

TABELA 4.20. Comparação dos valores encontrados para as bandas dos ligantes com substutinte hidroxi e seu respectivo complexo de cobre, freqüências em cm⁻¹.

As variações no posicionamento das bandas referentes às vibrações da ligação CH do grupo imínico não foram observadas para o ligante e complexo com substituinte OH na posição 3 e para a posição 4 não é possível definir a direção do deslocamento.

Foi observado o desaparecimento da banda alargada característica das ligações de hidrogênio OH-N.

Para os complexos observa-se uma diminuição da freqüência das ligações C=N, decorrentes da coordenação do nitrogênio imínico, e também um novo posicionamento em menor freqüência da vibração da ligação C–O, decorrente da coordenação do oxigênio.

Foi observado também o aparecimento das bandas características das ligações metal-ligante.

4.1.5.3. ESPECTROS ELETRÔNICOS

- (A) Sobreposições ligante/complexo e complexo/complexo 3-OHsalen;
- (B) Sobreposições ligante/complexo e complexo/complexo 4-OHsalen

as Athonições tentativas de acordo com a incratara							
Composto	λ	λ	λ	λ	λ	λ	
Composio	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	
2 Ollaslan	221	20	264	300om	426	-	
3-OHsalen	31070	110	25450	10640	266		
[Cu(3-OHsalen)]	no	233	281	371		564	
		64250	37020	9070	-	281	
4 Ollaslar	222	232om	276	306	389		
4-OHsalen	70600	58700	57700	38400	311	-	
[Cu(4 Olleslar)]	231	254	284	345		563	
[Cu(4-OHsalen)]	37390	35520	27540	13280	-	116	
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$n \rightarrow \pi^*_{(C=N)}$	$d \rightarrow d$	

TABELA 4.21. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as Atribuições tentativas de acordo com a literatura^{2, 16, 20, 78, 79, 106, 161, 162, 164, 170}.

A coordenação do nitrogênio imínico causa um deslocamento batocrômico na banda própria da ligação C=N, que quando comparada com o salen, aparece deslocada para uma região de maior energia como esperado pelo efeito do substituinte.

Pode ser notado também o desaparecimento das bandas características das transições $n-\pi^*$ e o surgimento das bandas das transições *d-d* do átomo de cobre.

4.1.6. LIGANTE SALEN COM SUBSTITUINTE ETOXI NA POSIÇÃO 3, COM SEU RESPECTIVO COMPLEXO

4.1.6.1. DADOS GERAIS DE CARACTERIZAÇÃO

FIGURA 4.26: Visão esquemática do ligante 3-EtOsalen com o seu respectivo complexo de cobre.

TABELA 4.22. Dados gerais de caracterização do ligante 3-EtOsalen e seu respectivo complexo de cobre em comparação com a literatura⁸³⁻⁸⁵.

Dados Gerais	Ligante	Complexo	
Fórmula	$C_{20}H_{24}N_2O_4$	CuC ₂₀ H ₂₂ N ₂ O ₄ .H ₂ O	
Peso fórmula (g/mol)	356,42	435,96	
Cor	Amarelo	Vinho	
Rendimento %	89	86	
Ponto de Fusão °C	138-139	238-239	
Literatura	139-140	250-252	
C(%) H(%) N(%)	68,1 6,9 7,9	-	
Calculado	67,4 6,8 7,9	55,10 5,55 6,43	
Literatura	67,3 6,7 7,9	54,89 5,59 6,21	

Os testes de solubilidade mostraram que o ligante é solúvel em acetona, acetonitrila e etanol sem aquecimento e se torna parcialmente solúvel em tetracloreto de carbono e tolueno quando aquecidos, mas continuam insolúveis em água. Para o complexo observou-se que este é solúvel em acetona, acetonitrila, etanol e parcialmente solúvel em tolueno ainda a frio e mesmo com aquecimento se mostram insolúveis em água e tetracloreto de carbono.

No que diz respeito à influência do substituinte, o 3-etoxi comporta-se da mesma forma que o 3-metoxi, afetando principalmente a freqüência da ligação C–O, devendo apenas ser lembrado que o efeito estérico do primeiro é mais intenso.

Foi observado também o surgimento das vibrações características da presença dos substituintes correspondentes respectivamente aos estiramentos assimétricos e simétricos do grupo C–O–C em 1248 cm⁻¹ e 1033 cm⁻¹ para os ligantes e em 1244 cm⁻¹ e 1049 cm⁻¹ para os complexos.

TABELA 4.23. Comparação dos valores observados para o ligante com substituinte etoxi e o ligante salen.

Ligação	C=N cm ⁻¹	CO cm ⁻¹
salen	1636	1283
3-EtOsalen	1627	1271

Da análise dos espectros foi possível perceber que após a formação do complexo ocorreu o desaparecimento da banda alargada com centro na região de 2580 cm⁻¹, o deslocamento das ligações C=N e C–O para uma região de maior freqüência bem como o surgimento das bandas referentes às ligações Cu–N e Cu–O.

TABELA 4.24. Comparação dos valores encontrados para as bandas do ligante com substituinte etoxi e seu respectivo complexo de cobre, freqüências em cm⁻¹.

Ligação	vOH N	C=N	С-О	Cu–N	Cu–O
3-EtOsalen	2585	1627	1271	-	-
[Cu(3-		1620	1214	611	468
EtOsalen)]	-	1032	1314	520	418

4.1.6.2. ESPECTROS VIBRACIONAIS

FIGURA 4.27. Espectro vibracional (Transmitância x Número de onda cm⁻¹) na região do infravermelho para o ligante 3-EtOsalen com seu respectivo complexo de cobre.

Ligante	Complexo	Atribuições	
3447m	3474m	v(O–H); H ₂ O	
no	3052mf	v(C–H) _{ar}	
2978m	2078		
2932m	2978III 2024m	$v_{s}(C-H) e v_{as}(C-H);$	
2880m	2924111 2872mf	-(CH ₂)-	
2848mf	2872111		
2585f	-	vOH N	
2363mf	2360m	$\nu_{\rm c}O_{\rm c}CO_{\rm c}(CO_{\rm c})$	
2344f	2339m	V ₃ O-CO (CO ₂)	
1627F	1632F	vC=N	
1578m	1601m		
1543mf	1544mE	vC=C	
1492m	1544111		
1464F	1468mF	$\delta_{r-1}(CH_2)-$	
1450mF	1446F		
1388m	1394mF	vC–N	
1368m	no	δ_s -(CH ₂)-	
1335m	-	δО-Н	
<u>1271mF</u>	1314mF	vC–O	
1248F	1244mF	v _{as} C–O–C	
1033mF	1049m	<u>vsC-O-C</u>	
1170m	1222F	$\nu(C-C);$	
1115mF	11//m	v(C-O) e	
1075 5	1122m	<u>v(C-N);</u>	
10/5mF	1085mF	$\delta C - H_{ar}$	
072m	1017m	$\frac{0 - (CH_2) - + 0C - H_{ar}}{C - H_{ar}}$	
972III 000m	040m	γ C - Π _{im}	
900III 853m	949III 002m	δ -(CH ₂)-+ γ O-H	
832m	905III 848m		
786m	784mf	δ-(CH ₂)-	
753mF	704111		
730mF	732mF	γ C–H _{ar}	
	669mf	$v_2O-CO(CO_2)$	
632m	645m		
574m	588mf	δC-C	
463mf	508mf	уС-С	
100	399mf		
400m	384m	τ(C–C)	
385m	374m		
	611mf	C. N	
-	520mf	Cu–N	
	468m	Chi O	
-	418mf		

TABELA 4.25. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

ν estiramento; δ deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; ()_{ar} = aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

4.1.6.3. ESPECTROS ELETRÔNICOS

FIGURA 4.28. Espectros eletrônicos na região do ultravioleta-visível, para o ligante 3-EtOsalen com seu respectivo complexo de cobre.

TABELA 4.26. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as Atribuições tentativas de acordo com a literatura^{2, 16, 20, 78, 79, 106, 161, 162, 164, 170}.

Composto	λ	λ	λ	λ	λ
Composio	E _{max}	8 max	8 max	E _{max}	E _{max}
2 EtOsolon	222	263	328	420	
3-EtOsalen	40910	19240	4260	321	-
$\left[C_{2}\left(2 E_{1}C_{2}\right)\right]$	239	281	372		562
[Cu(3-EiOsalen)]	40360	24580	6089	-	331
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$n \rightarrow \pi^*_{(C=N)}$	$d \rightarrow d$
(T 1-1 -1)					

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

A inclusão de um grupo auxocrômico provoca um deslocamento das bandas do anel aromático para uma região de maior freqüência, este fato pode ser observado na comparação com os compostos sem substituintes.

O espectro do complexo mostra o desaparecimento da banda na região característica da transição eletrônica $n-\pi^*$ e o aparecimento da banda de baixa absortividade característica das transições *d-d*.

4.1.6.4. DIFRAÇÃO DE RAIOS-X

Os dados referentes à determinação da estrutura do complexo [Cu(3-EtOsalen)] por difração de raios-X estão devidamente depositados no banco de dados de Cambridge (CCDC) sob o número 612989, e os principais dados cristalográficos para o composto estão listados na tabela 4.28.

Formula	CuC ₂₀ H ₂₂ N ₂ O ₄ , H ₂ O
Peso fórmula	435,96
Sistema cristalino	Ortorrômbico
Grupo espacial	Pbcn
a (Å)	7.639(5)
b (Å)	12.760(5)
c (Å)	19.733(5)
$\alpha = \beta = \gamma$	90°
$V(Å^3)$	1923.4(15)
Z (cela unitária)	4
$D_{c} (g.cm^{-3})$	1,505
Dimensões do cristal (mm)	0,03 x 0,10 x 0,10
$\mu (\text{mm}^{-1})$	1,170
λ (K α (Mo) (Å))	0,71073
Modo de coleta	ω-2θ
Temperatura de coleta (K)	293
Intervalo de θ (°)	3,2-30,0
<i>hkl</i> máx.:mín.	-10:4 -3:17 -27:5
Reflexões coletadas; únicas	3006; 797
Observadas [I>2 σ (I)], Npar	1524, 131
R; R _w ; GOF	0,0457; 0,1281; 1,00
Dens. Residual (e/ $Å^3$) máx. e mín.	-0,76 e 0,32

TABELA 4.27. Principais dados cristalográficos para o complexo [Cu(3-EtOsalen)]

As tabelas completas contendo todos os ângulos e distâncias interatômicas para este complexo estão no anexo II. O complexo cristalizou-se com uma molécula de água localizada entre os oxigênios fenólicos e os oxigênios do substituinte etoxi. O átomo de cobre está posicionado no centro da molécula coordenado aos nitrogênios imínicos e oxigênios fenólicos, adotando uma geometria bastante aproximada da quadrada planar, cujos ângulos e comprimentos de ligação estão apresentados abaixo.

TABELA 4.28. Principais distâncias (Å) interatômicas para o complexo com os respectivos desvios padrão em comparação com dados da literatura.

Ligação	Distância	Chi et al. ¹⁸⁶	Valko et al. ¹⁸⁷	Atkins et al. ¹⁸⁸	Baker et al. ¹⁸⁴
Cu-O2	1.906(2)	1,899(6)	1,890(2)	1,892(7)	1,906
Cu-O2a	1.906(2)	1,907(6)	1,890(2)	1,867(8)	1,886
Cu-N1	1.933(3)	1,963(7)	1,932(3)	1,943(9)	1,928
Cu-N1a	1.933(3)	1,912(7)	1,932(3)	1,929(9)	1,904

Como metade da molécula foi gerada por uma operação de simetria, as distâncias do átomo de cobre central para O2a e N1a são idênticas entre o Cu e O2 e N1. As distâncias encontradas estão próximas dos valores encontrados na literatura para compostos similares.

FIGURA 4.29. Representação ORTEP para o complexo de cobre com substituinte etoxi na posição 3.

Os átomos de hidrogênio foram omitidos para melhor visualização do complexo.

respectivos d	respectivos desvios padrão em comparação com os dados encontrados na literatura.							
Ligações	Ângulos	Valko et al. ¹⁸⁷	Atkins et al. ¹⁸⁸	Baker et al. ¹⁸⁴	Bunce et al. ¹⁰³			
O2-Cu-O2a	89,50(8)	88,7(2)	87,1(3)	90,2	91,06(10)			
N1-Cu-N1a	83,90(11)	83,9(2)	87,0(4)	84,7	83,29(12)			
O2-Cu-N1	93,30(9)	93,74(10)	92,2(3)	91,4	92,43(12)			
O2a-Cu-N1a	93,30(9)	93,74(10)	95,2(4)	93,5	91,92(12)			
O2-Cu-N1a	177,20(10)	176,72(12)	169,9(4)	173,7	169,57(12)			
O2a-Cu-N1	177,20(10)	176,72(12)	171,8(4)	178,0	171,29(12)			

TABELA 4.29. Principais ângulos (°) interatômicos para o complexo com os respectivos desvios padrão em comparação com os dados encontrados na literatura.

A pequena distorção da geometria quadrado-planar pode ser verificada pelos ângulos O2-Cu-N1a e O2a-Cu-N1 que deveriam ser de 180°, e dos outros

ângulos que deveriam se aproximam de 90° . Novamente observamos o desvio causado pela ponte etilenodiamina, que comprime o ângulo entre os nitrogênios.

FIGURA 4.30. Representação ORTEP para o empacotamento da cela unitária para o complexo de cobre com substituinte etoxi na posição 3.

- (A) normal ao plano 010
- (B) normal ao plano 100
- (C) normal ao plano 001

4.1.7. COMPARAÇÃO DOS EFEITOS DO SUBSTITUINTE NA POSIÇÃO 3 PARA OS DIFERENTES COMPOSTOS.

TABELA 4.30. Comparação dos valores encontrados para os estiramentos, na região do infravermelho, das ligações C=N e C–O, freqüências em cm⁻¹.

Ligação	C=N cm ⁻¹	$C-0 \text{ cm}^{-1}$
salen	1636	1283

	Resultados			Discussão
3-MeOsalen	1633	1295		
3-OHsalen	1634	1275		
3-EtOsalen	1627	1271		

Com base no posicionamento dos elétrons pelos efeitos indutivos e de ressonância, apenas a freqüência da ligação C–O deveria ser afetada pelos substituintes na posição 3 do anel aromático. De fato, ocorre o deslocamento para uma região de menor freqüência para os substituintes hidroxi e etoxi. O substituinte metoxi apresenta um deslocamento para uma região de maior freqüência.

Considerando os parâmetros de Hammett para estes substituintes observamos que todos possuem um efeito indutivo que atrai para si os elétrons com intensidades muito próximas. O efeito de ressonância doador de elétrons, apresenta uma ligeira variação entre os três crescendo na ordem EtO < MeO ~ OH.

TABELA 4.31. Substituintes na posição 3 do anel fenólico, nos compostos em estudo neste trabalho, com suas respectivas constantes³⁰.

	π	MR	F	R	$\sigma_{\rm I}$	σ_{R}	σm	$\sigma_{ m p}$
MeO	-0,02	7,87	0,26	-0,51	0,27	-0,54	0,12	-0,27
EtO	0,38	12,47	0,22	-0,44	0,28	-0,52	0,01	-0,24
OH	-0,67	2,85	0,29	-0,64	0,29	-0,66	0,12	-0,37

Ao ocupar a posição 3 todos os substituintes adotam um posicionamento *orto* ao grupo OH e *meta* em relação ao grupo C=N. Isto explica a variação na freqüência da ligação C=N para o substituinte etoxi.

A freqüência da ligação C–O, por influência do substituinte na posição 3 aparece como esperado, deslocada para uma região de menor número de onda, portanto menor energia devido à localização da carga negativa sobre o carbono da ligação C–O.

Composto	λ	λ	λ	λ	λ	λ	λ
Composio	E _{max}	E _{max}	Emax	E _{max}	E _{max}	E _{max}	E _{max}
aalan	215		256		314	404	
salen	51100		25620		9000	135	-
2 MaQualar	222		263		331	415	
5-MeOsalen	40910		19240		4260	321	-
2 Ollaslar	221		264		300	426	
3-OHsalen	31070		25450		10640	266	-
2 EtOsslar	222		263		328	420	
3-ElOsalen	40910		19240		4260	321	-
[Cu(color)]		232	246	273	361		568
		67630	68240	73210	14830	-	413
[Cu(3-		238		279	368		540
MeOsalen)]		40360		24580	6089	-	270
[Cu(3-		233		281	371		564
OHsalen)]		64250		37020	9070	-	281
[Cu(3-		239		281	372		562
EtOsalen)]		40360		24580	6089	-	331
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$n \rightarrow \pi^*_{(C=N)}$	$d \rightarrow d$

TABELA 4.32. Comparação dos valores encontrados para as bandas na região do ultravioleta-visível.

Os ligantes com substituintes na posição 3, apresentam as transições eletrônicas dos cromóforos C=C ligeiramente deslocadas em relação ao ligante salen. Quando ocorre a formação do complexo estas transições aparecem deslocadas para uma região de menor energia, porque com a formação do complexo são formados anéis quelatos de 6 membros que estendem a conjugação, possibilitando uma melhor distribuição dos elétrons na molécula.

FIGURA 4.31. Visão esquemática do complexo em cujo sítio de coordenação, ocorre a formação de anéis de seis membros, os quais permitem uma melhor distribuição dos elétrons na molécula.

As bandas referentes ao cromóforo C=N apresentam um deslocamento para o vermelho como efeito da substituição no anel aromático, uma vez que às transições deste grupo só ocorrem porque ele está em conjugação com o anel aromático.

As bandas referentes às transições $n-\pi^*$ também sofrem um deslocamento por influência da substituição na posição 3.

4.1.8. LIGANTE SALEN COM SUBSTITUINTE DIETILAMINA (DEA) NA POSIÇÃO 4, E SEU RESPECTIVO COMPLEXO

4.1.8.1. DADOS GERAIS DE CARACTERIZAÇÃO

FIGURA 4.32. Visão esquemática do ligante 4-DEAsalen, com seu complexo de cobre.

Dados Gerais	Ligante	Complexo		
Fórmula	$C_{24}H_{34}N_4O_2$	CuC ₂₄ H ₃₂ N ₄ O ₂		
Peso fórmula (g/mol)	410,55	472,08		
Cor	Amarelo	Marrom		
Rendimento %	72	79		
Ponto de Fusão °C	131-133	205-207		
Literatura	132-133	210-212		

TABELA 4.33. Dados gerais de caracterização do ligante 4-DEAsalen e seu respectivo complexo de cobre em comparação com dados da literatura ^{135, 83}.

Os testes de solubilidade mostraram que o ligante é solúvel em acetonitrila e parcialmente solúvel em acetona em temperatura ambiente. Depois de aquecido o composto passa a ser solúvel em etanol e parcialmente solúvel em tolueno, permanecendo insolúvel em água e tetracloreto de carbono.

4.1.8.2. ESPECTROS VIBRACIONAIS

FIGURA 4.33. Espectros vibracionais na região do infravermelho (Transmitância x Número de onda cm⁻¹) para o ligante 4-DEAsalen com seu respectivo complexo.

,		
4-DEAsalen	[Cu(4-DEAsalen)]	Atribuições
3432f	3452f	ν(O–H); H ₂ O
3085f	3081f	ν(C–H) _{ar}
2969mf	2070m	$\mathcal{H}(\mathbf{C},\mathbf{H})$
2933f	2970111 2026mf	$V_{s}(C-H)e$
2895f	29201111 2867mf	$V_{as}(C-\Pi),$
2840f	280/1111	-(CH ₂)-
2575f	-	vOH N
2360f	2358f	(0, 0, 0)
2340f	2341f	$V_{3}O-CO(CO_{2})$
1627F	1594F	vC=N
1562m	15150	
1520m	13136	vC=C
1484f	1468f	
1448f	1441f	δ_s –(CH ₂)–
1422mF	1409f	
1389F	1275f	
1372f	15751 1254m	vC–N
1347m	155411	
1303mf	-	δΟ–Η
1283m	1307f	vC–O
1242mF	1248F	v(C–C);
1195mf	1193f	v(C–O) e
1130F	1140mF	v(C–N);
1077mf	1090m	δC–H _{ar}
1038m	1015f	δ-(CH ₂)-
1014f	10151	$+ \delta C - H_{ar}$
970f	974f	γ C– H_{im}
917f	924f	γ C–H _{ar}
859mf	070f	δ-(CH ₂)-
823m	8281	+ γO - Η
782m	780f	δ-(CH ₂)-
703mf	702mf	γ C–H _{ar}
No	662f	v ₂ O–CO (CO ₂)
654f		
589f	639f	δC–C
562f		
446f		
425f	no	$\tau(\mathbf{U}-\mathbf{U})$
	623f	
-	591f	Cu–N
	395f	

TABELA 4.34. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

FIGURA 4.33. Visão esquemática dos efeitos indutivos e mesomérico do substituinte doador de elétrons dietilamina, no anel aromático.

FIGURA 4.34. Esquema da influência do substituinte ao ocupar a posição 4 no ligante.

Pelo espectro na região do infravermelho podemos confirmar o que é esperado quando se comparam os valores para o ligante dietilamina e salen, conforme pode ser visto na tabela 4.35.

A ligação C=N é bastante afetada pelos efeitos indutivos e mesomérico, que levam a carga negativa a posicionar-se sobre o nitrogênio do grupo imínico deslocando a banda para uma região de menor freqüência.

A freqüência da ligação C–O permanece inalterada.

TABELA 4.35. Comparação dos valores observados para o ligante com substituinte dietilamina e o ligante salen. Freqüências em cm^{-1} .

Ligação $C=N \text{ cm}^{-1} C-O \text{ cm}^{-1}$

		Resu	ltados	е	Discussão
sal	en	1636	1283		
4-DEA	salen	1627	1283		

A formação do complexo provoca várias mudanças no espectro vibracional, observa-se o desaparecimento da banda alargada característica da ligação de hidrogênio entre o grupo OH e o nitrogênio imínico. Uma segunda alteração do espectro em relação ao do ligante é um grande deslocamento da freqüência da ligação C=N para uma região mais baixa provavelmente devido a um forte acoplamento desta vibração com as vibrações da ligação C=C do anel aromático que ocorrem nesta mesma região. A terceira modificação que mostra a formação do complexo é o deslocamento da freqüência da ligação C–O para uma região mais alta resultante da coordenação do oxigênio que tornando a ligação mais rígida.

TABELA 4.36. Comparação dos valores encontrados para as bandas do ligante com substituinte DEA e seu respectivo complexo de cobre, freqüências em cm⁻¹.

Ligação	vOH N	C=N	С-О	γC–H _{im}	Cu–N	Cu–O
4-DEAsalen	2575	1627	1283	970	-	-
					623	557
[Cu(4-DEAsalen)]	-	1594	1307	974	591	470
					395	443

Como resultado da formação do complexo a banda referente à ligação CH do grupo imínico sofre um pequeno deslocamento para uma região de maior freqüência. Por último nota-se o aparecimento das bandas características das ligações Cu-N e Cu-O.

4.1.8.3. ESPECTROS ELETRÔNICOS

FIGURA 4.35. Espectros eletrônicos na região do ultravioleta-visível, para o ligante 4-DEAsalen com seu respectivo complexo de cobre.

TABELA 4.37. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as Atribuições tentativas de acordo com a literatura^{2, 16, 20, 78, 79, 106, 161, 162, 164, 170}.

Composto	λ	λ	λ	λ	λ	λ
Composito	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}
4 DE Acolon	220	255		340		
4-DEAsaleli	39670	10690		55730	-	-
[Cu(4-DEAsalen)]	220	242	275om	345	377om	562
	38120	43320	25040	59950	36770	536
Salar	215	256		314	404	
Saleli	51100	25620		9000	135	-
[Cu(colon)]	232	246	273	361		568
	67630	68240	73210	14830	-	413
Atribuição	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$n \rightarrow \pi^*_{(C=N)}$ TCML	$d \rightarrow d$

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

No espectro eletrônico dos compostos com substituinte dietilamina na posição 4, é possível observar o deslocamento batocrômico da banda referente à transição π - π * do cromóforo C=N, com um grande aumento na intensidade de absorção, por efeito da inclusão do substituinte. No espectro do complexo, além da banda referente à transição *d*-*d* do cobre, observa-se também o surgimento de uma

banda na região típica das transições n- π^* dos ligantes, que é atribuída na literatura^{163,} ¹⁷⁰ para compostos similares como pertencente à transferência de carga metal-ligante.

4.1.8.4. VOLTAMETRIA CÍCLICA

FIGURA 4.36. Voltamograma cíclico obtido com eletrodo de carbono vítreo em solução $1,0x10^{-3}$ mol.L⁻¹ do complexo [Cu(4-DEAsalen)] em DMF, contendo 0,1 mol.L⁻¹ de PTBA. Velocidade de varredura de 0,1 V/s.

O pico catódico para cobre(II)/cobre(I) aparece em -1,28V para o complexo com substituinte dietilamina na posição 4, este valor está bastante próximo dos valores encontrados na literatura¹⁸⁰ para os complexo de cobre como o [Cu(salen)] (-1,23V) e [Cu(3-MeOsalen)] (-1,26V) com a utilização do mesmo solvente DMF.

4.1.8.5. DIFRAÇÃO DE RAIOS-X

Os dados referentes à determinação da estrutura do complexo [Cu(4-DEAsalen)] estão devidamente depositados no banco de dados de Cambridge (CCDC) sob o número 612990.
Formula	CuC ₂₄ H ₃₂ N ₄ O ₂ .H ₂ O
Peso fórmula	490,10
Sistema cristalino	Monoclínico
Grupo espacial	C2/c
a (Å)	19,571(2)
b (Å)	9,8514(12)
c (Å)	12,4552(14)
$\alpha = \gamma$	90°
β	93,705(10)°
$V(Å^3)$	2396,4(5)
Z (cela unitária)	4
$D_{c} (g.cm^{-3})$	1,358
Dimensões do cristal (mm)	0,05 x 0,10 x 0,20
$\mu (\mathrm{mm}^{-1})$	0.944
λ (K α (Mo) (Å))	0,71073
Modo de coleta	ω-2θ
Temperatura de coleta (K)	293
Intervalo de θ (°)	2,3-30,0
hkl máx.:mín.	-27:27; -13:0; -17:0
Reflexões coletadas; únicas	3574; 3427
Observadas [I>2 σ (I)], Npar	1654, 149
R; R _w ; GOF	0,0590; 0,1620; 1,00
Dens. Residual (e/ $Å^3$) máx. e mín.	-0,43 e 0,56

TABELA 4.38. Principais dados cristalográficos para o complexo [Cu(4-DEAsalen)].

As tabelas completas contendo todos os ângulos e distâncias interatômicas para este complexo estão no apêndice III.

Como pode ser visto na representação ORTEP da figura 4.35, a estrutura determinada para o complexo exibe uma molécula de água posicionada próxima na mesma região dos oxigênios fenólicos, as distâncias de contato (Cu-Ow = 3,796(6); O-Ow = 2,841(6)) mostram que esta molécula de água está ligeiramente afastada da molécula do complexo.

O sítio de coordenação apresenta uma geometria quadrada planar distorcida, como se confirma pelos ângulos apresentados na tabela 4.40.

TABELA 4.39. Principais distâncias (Å) interatômicas para o complexo com os respectivos desvios padrão em comparação com dados da literatura.

Ligação	Distância	Bunce <i>et al.</i> ¹⁰³	Mohan <i>et al.</i> ¹⁸⁹	Mohan <i>et al.</i> ¹⁸⁹	Mohan <i>et al.</i> ¹⁸⁹
Cu-O1	1,916(2)	1,929(2)	1,945(2)	1,908(6)	1,904(2)
Cu-O1a	1,916(2)	1,916 (2)	1,911(2)	1,895(5)	1,911(1)
Cu-N1	1,931(3)	1,952(3)	1,958(2)	1,948(7)	1,943(2)
Cu-N1a	1,931(3)	1,949(3)	1,959(2)	1,942(7)	1,945(2)

Metade da molécula foi gerada por simetria, o que faz com que os ângulos e distâncias encontrados tenham os mesmos valores os quais estão bem próximos dos valores encontrados na literatura para compostos similares.

FIGURA 4.37. Representação ORTEP para o complexo de cobre com substituinte dietilamina na posição 4.

Os átomos de hidrogênio foram omitidos para melhor visualização da molécula.

TABELA 4.40. Principais ângulos (°) interatômicos para o complexo com os respectivos desvios padrão em comparação com os dados encontrados na literatura.

Ligações	Ângulos	Bunce <i>et al.</i> ¹⁰³	Mohan <i>et al</i> . ¹⁸⁹	Mohan <i>et al</i> . ¹⁸⁹	Mohan <i>et al</i> . ¹⁸⁹
O1-Cu-O1a	93,03(10)	91,06(10)	91,43(9)	90,4(3)	91,63(6)

			ICED UI CU		10000000
N1-Cu-N1a	83,62(14)	83,29(12)	83,7(1)	85,0(3)	83,56(8)
O1a-Cu-N1a	93,78(12)	92,43(12)	91,16(9)	91,6(3)	92,63(7)
N1-Cu-O1	93,78(12)	91,92(12)	92,56(9)	92,9(3)	92,98(6)
O1-Cu-N1a	163,73(13)	169,57(12)	170,40(8)	176,4(3)	172,41(9)
O1a-Cu-N1	163,73(13)	171,29(12)	171,3(1)	173,9(3)	171,8(1)

Resultados e Discussão

O ângulo entre os nitrogênios aparece mais curto por influência da ponte

que possui apenas dois carbonos não permitindo assim um maior afastamento entre estes.

FIGURA 4.38. Representação ORTEP para o empacotamento da cela unitária para o complexo de cobre com substituinte dietilamina na posição4.

- (A) Normal ao plano 010
- (B) Normal ao plano 100
- (C) Normal ao plano 001

4.1.9. COMPARAÇÃO DOS EFEITOS DOS SUBSTITUINTES NA POSIÇÃO 4 DOS COMPOSTOS

TABELA 4.41. Comparação dos valores observados para os ligantes com substituinte na posição 4 e o ligante salen.

Ligação	$C=N \text{ cm}^{-1}$	$C-O \text{ cm}^{-1}$
salen	1636	1283
4-MeOsalen	1619	1286
4-OHsalen	1643	1285
4-DEAsalen	1627	1283

Pelas estruturas de ressonância exibidas anteriormente, pudemos observar que quando estes substituintes ocupam a posição 4, a carga negativa será posicionada sobre o nitrogênio imínico, e que a ligação C=N fica enfraquecida, como conseqüência, observamos um deslocamento na freqüência desta ligação para uma região de menor energia. Fato que é observado para os substituintes metoxi e dietilamina.

A freqüência da ligação C–O não é afetada pela inclusão dos substituintes na posição 4 como fica comprovado pelos dados da Tabela 4.41.

Composto	λ	λ	λ	λ	λ	λ	λ
Composto	E _{max}	Emax.	8 max	E _{max}	E _{max}	€ _{max}	E _{max}
aalan	215		256		314	404	
saleli	51100		25620		9000	135	-
4 MaQaalan	221	231		276	305	384	
4-MeOsalen	30800	30800		31100	21800	2150	-
4-OHsalen	222	232om		276	306	389	
	70600	58700		57700	38400	311	-
	220		255		340		
4-DEAsalen	39670		10690		55730		-
$\left[C_{re}\left(r,1,r\right)\right]$		232	246	273	361		568
[Cu(salen)]		67630	68240	73210	14830	-	413
$\left[C_{-1}(4, \mathbf{M}_{2}, \mathbf{O}_{2}, 1_{2}, \mathbf{v})\right]$		231	254	284	345,	364om	564
[Cu(4-MeOsalen)]		40810	42880	30510	15870	12060	348
$\left[O_{12}(4, O_{12}, 1, n)\right]$		231	254	284	345		563
[Cu(4-OHsalen)]		37390	35520	27540	13280	-	116

TABELA 4.42. Comparação dos valores calculados para os ligantes com substituinte na posição 4 e o ligante salen na região do ultravioleta-visível.

			Resu	litado	sel	JISCUS	ssao
[Cy(4 DE A color)]	220		242	275om	345	377om	562
[Cu(4-DEAsalell)]	38120		43320	25040	59950	36770	536
Atribuição	$\pi {\rightarrow} \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi {\rightarrow} \pi {\ast}_{(C=N)}$	$\underset{\text{TCML}}{n \rightarrow \pi^*_{(C=N)}}$	$d \rightarrow d$

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

A presença dos substituintes na posição 4 não influencia as fregüências próprias das transições d. apenas a presença do substituinte DEA provoca o surgimento de uma forte banda na região de 370 nm típica das transições de transferência de carga entre o metal e o ligante.

Todos os compostos exibem um deslocamento da transição π - π * do cromóforo C=N para uma região de menor freqüência quando comparada com o valor do correspondente composto sem substituinte. Isto ocorre devido à influência da substituição dos hidrogênios da posição 4 por grupos doadores de elétrons, que adotam um posicionamento para com relação ao grupo iminico, o ligante com substituinte DEA apresenta uma banda muito intensa em 340 nm que provavelmente está encobrindo esta transição.

Para os ligantes com substituintes metoxi e hidróxi, foram identificadas três transições π - π * do cromóforo C=C. O ligante com substituinte dietilamina apresenta um espectro parecido com o do ligante salen. Onde são identificadas apenas duas transições π - π *.

Todos os complexos apresentam três transições π - π * do cromóforo C=C.

4.1.10. LIGANTE SALEN COM SUBSTITUINTE NITRO (NO₂) NA POSIÇÃO 5, JUNTAMENTE COM O COMPLEXO [Cu(5-NO₂SALEN)]

4.1.10.1. DADOS GERAIS DE CARACTERIZAÇÃO

FIGURA 4.39. Visão esquemática do ligante 5-NO2salen com seu complexo de cobre.

TABELA 4.43. Dados gerais de caracterização do ligante $5-NO_2$ e seu respectivo complexo de cobre em comparação com a literatura ^{2, 106, 135, 190}.

Dados Gerais	Ligante	Complexo	
Fórmula	$C_{16}H_{14}N_4O_6$	CuC ₁₆ H ₁₂ N ₄ O ₆	
Peso fórmula (g/mol)	358,31	419,84	
Cor	Amarelo	Verde	
Rendimento %	40	71	
Ponto de Fusão °C Literatura	261-263 275-277	> 360	
C(%) H(%) N(%)	53,3 3,8 15,8	45,2 3,01 13,1	
Calculado Literatura	53,6 3,9 15,6 54,1 4,0 15,8	45,8 2,9 13,3 45,8 2,9 13,6	

Os testes de solubilidade mostraram que em temperatura ambiente o ligante é solúvel apenas em acetonitrila e parcialmente solúvel em todos os outros solventes testados. Os testes realizados com aquecimento não alteraram estes

resultados. O complexo mostrou-se solúvel em acetonitrila à frio e mesmo depois de aquecido passou a ser apenas parcialmente solúvel etanol e acetona, permanecendo insolúvel nos outros solventes testados.

4.1.10.2. ESPECTROS VIBRACIONAIS

Como pode ser visto nas Figura4.40 abaixo, o ligante nitro na posição 5 deve influenciar fortemente a ligação C–O, a presença da carga positiva no carbono ligado ao oxigênio faz com que a ligação se torne mais forte e seja deslocada para uma região de maior freqüência.

FIGURA 4.40. (A) Visão esquemática dos efeitos indutivos e mesomérico do substituinte nitro na posição 5 do anel aromático.

(B) Esquema da influência do substituinte ao ocupar a posição 5 no ligante²⁰.

TABELA 4.44. Comparação dos valores observados para o ligante com substituinte nitro e o ligante salen. Freqüências em cm⁻¹.

Ligação	$C=N \text{ cm}^{-1}$	$C-O \text{ cm}^{-1}$		
salen	1636	1283		
5-NO ₂ salen	1646; 1613	1323		

FIGURA 4.41. Espectros vibracionais (Transmitância x Número de onda cm⁻¹) na região do infravermelho para o ligante 5-NO₂salen com seu respectivo complexo. TABELA 4.45. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

, incquencias em em .						
Complexo	Atribuições					
3557mF 3391mF	v(O–H); H ₂ O					
2930f	v _s (C–H) e v _{as} (C–H); –(CH ₂)–					
-	vOHN					
2360mf 2342f	v ₃ O–CO (CO ₂)					
1650F	vC=N					
1600F 1551F	$vC=C + v_{as} (N=O)_2$ ArNO ₂					
1486m 1470f 1442mf	δ _s (CH ₂)					
1393m	vC–N					
1318F	v (N=O) ₂ ArNO ₂ + vC-O					
1189f	v(C–C);					
1135f	v(C–O) e					
1109F	v(C–N);					
-	$\delta C - H_{ar} + \delta O H$					
1052f	$\delta - (CH_2) - + \delta C - H_{ar}$					
981f 950m	$\gamma C - H_{im} + \gamma C - H_{ar}$					
900f	$\delta - (CH_2) - + \gamma O - H$					
835m	v(C–N); ArNO ₂					
	Complexo 3557mF 3391mF 2930f - 2360mf 2342f 1650F 1600F 1551F 1486m 1470f 1442mf 1393m 1318F 1189f 1135f 1109F - 1052f 981f 950m 900f 835m					

	790f	+ δ-(CH ₂)-
754f	755mf	
730f	755111	γ C -Π _{ar}
No	703m	γNO_2
())f	654mf	SC C
0281	606f	
495f	529f	γ C – C
376f	No	τ(C–C)
	565f	Cu N
-	391f	Cu-N
	461f	Cu O
-	419f	Cu–O
v estiramento; δ deforma	ção angular no plano; γ deformação ang	ular fora do plano; τ torção das ligações C–C; () _{ar} =

Resultados e Discussão

aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

A formação do complexo de cobre pode ser confirmada pelo desaparecimento da banda alargada característica de uma ligação de hidrogênio entre a hidroxila e o nitrogênio imínico, indicando a desprotonação do OH e o aparecimento das bandas em 461 cm⁻¹ e 419 cm⁻¹ indicam a coordenação do oxigênio.

O deslocamento da ligação C=N para uma região de maior freqüência e o aparecimento das bandas em 561 cm⁻¹ e 391 cm⁻¹ indicam a coordenação do nitrogênio do grupo imínico.

O deslocamento da ligação C–O não pôde ser devidamente avaliado, pois a banda referente ao estiramento da ligação N=O do substituinte nitro aparece na mesma região que a primeira e nos espectros do ligante e do complexo aparece uma banda alargada em 1323 cm⁻¹ e 1318 cm⁻¹ respectivamente.

IIU	inte miro e seu resp	ectivo com	ipiexo (ue cobre, frequenci	las em c	ш.
	Ligação	vOH N	C=N	v (N=O) ₂ ArNO ₂ + vC-O	Cu–N	Cu–O
	5-NO ₂ salen	2663	1646 1613	1323	-	-
	[Cu(5-NO ₂ salen)]	-	1650	1318	565 391	461 419

TABELA 4.46. Comparação dos valores encontrados para as bandas do ligante com substituinte nitro e seu respectivo complexe de cobre, fregüências em cm⁻¹ substituinte

4.1.10.3. ESPECTROS ELETRÔNICOS

FIGURA 4.42. Espectros eletrônicos na região do ultravioleta-visível, para o ligante 5-NO₂salen com seu respectivo complexo de cobre.

TABELA 4.47. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as Atribuições tentativas de acordo com a literatura^{2, 16, 20, 78, 79, 106, 161, 162, 164, 170}.

Composto	λ ε _{max}	$λ ε_{max}$	$λ ε_{max}$				
5-	218	238	257		320	402	
NO ₂ salen	30210	34250	30860		20890	8960	-
[Cu(5-		235	255		377		569
NO ₂ salen)]		18285	18370		20580	-	283
Salan	215		256		314	404	
Saleli	51100		25620		9000	135	-
[Cu(colon)]		232	246	273	361		568
		67630	68240	73210	14830	-	413
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$n {\rightarrow} \pi^*_{(C=N)}$	$d {\rightarrow} d$

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

As transições eletrônicas características dos cromóforos C=C, aparecem na região entre 218 e 257 nm. A inclusão do grupo NO₂ no anel aromático provoca um aumento na intensidade de absorção e das freqüências para as transições π - π * (C=N) e n- π *. As transições *d*-*d* do metal foram observadas em 569 nm.

4.1.11. LIGANTE SALEN COM SUBSTITUINTES CLORO E BROMO NA POSIÇÃO 5, JUNTAMENTE COM OS COMPLEXOS [Cu(5-Clsalen)] E [Cu(5-Brsalen)]

4.1.11.1. DADOS GERAIS DE CARACTERIZAÇÃO

FIGURA 4.43. Visão esquemática dos ligantes com seus complexos de cobre.(A) ligante 5-Clsalen; (B) complexo [Cu(5-Clsalen)](C) ligante 5-Brsalen; (D) complexo [Cu(5-Brsalen)]

TABELA 4.48. Dados gerais de caracterização do ligante 5-Br e seu respectivo complexo de cobre em comparação com a literatura^{2, 106, 135}.

Dados Gerais	Ligante	Complexo
Fórmula	$\begin{array}{c} C_{16}H_{14}Cl_2N_2O_2\\ C_{16}H_{14}Br_2N_2O_2 \end{array}$	$\begin{array}{c} CuC_{16}H_{12}Cl_2N_2O_2\\ CuC_{16}H_{12}Br_2N_2O_2 \end{array}$

Peso fórmula (g/mol)		
5-Cl	337,20	398,73
5-Br	426,10	487,63
Cor	Amarelo(s)	Verde(s)
Rendimento % 5-Cl / 5-Br	41 / 93	87 / 85
Ponto de Fusão °C		
5-Cl	155-157	306-308
5-Br	171-173	292-293
Literatura 5-Cl / 5-Br	155-157 171-173	-
C(%) H(%) N(%) 5-Cl	57,0 4,2 8,3	47,8 3,0 6,9
C(%) H(%) N(%) 5-Br	44,2 3,1 6,2	38,9 2,5 5,6
Calculado 5-Cl	57,0 4,2 8,3	48,2 3,0 7,0
Calculado 5-Br	45,1 3,3 6,6	39,4 2,5 5,7
Literatura 5-Cl	57,0 4,2 8,3	-
Literatura 5-Br	44,2 3,1 6,2	39,1 2,5 5,8

Resultados e Discussão

Os testes mostraram que as solubilidades dos ligantes são similares. O ligante 5-Clsalen é solúvel em acetona e acetonitrila em temperatura ambiente, parcialmente solúvel nos outros solventes testados e insolúvel em água. Após o aquecimento o ligante passou a ser solúvel em tetracloreto de carbono, permanecendo parcialmente solúvel em etanol e tolueno e insolúvel em água.

O ligante 5-Brsalen é solúvel em acetonitrila em temperatura ambiente e parcialmente solúvel em tetracloreto de carbono, tolueno, etanol, acetona e insolúvel em água. Após o aquecimento o ligante a solubilidade continuou a mesma.

Os complexos foram solubilizados por acetona e acetonitrila, parcialmente solubilizados por etanol, tolueno e tetracloreto de carbono e se mostraram insolúveis em água mesmo após o aquecimento.

4.1.11.2. ESPECTROS VIBRACIONAIS

FIGURA 4.44. Espectros vibracionais (Transmitância x Número de onda cm⁻¹) na região do infravermelho para o ligante 5-Clsalen com seu respectivo complexo.

FIGURA 4.45. Espectros vibracionais (Transmitância x Número de onda cm^{-1}) na região do infravermelho para o ligante 5-Brsalen com seu respectivo complexo.

TABELA 4.49. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

5-Clsalen	[Cu(5-Clsalen)]	5-Brsalen	[Cu(5-Brsalen)]	Atribuições
No	3447mf	3437mf	3446mf	v (O–H); H ₂ O
3074f	3071f	3065f	3069f 3045f	ν (C–H) _{ar}
2939f	2952f	2936f	2950f	v _s (C–H) e
2902f	2918f	2902f	2917f	v _{as} (C–H);
2873f	2853f	2872f	2849f	-(CH ₂)-
2623f	-	2617f	-	vOH N
2359mf	2360f 2342f	No	2362f	v ₃ O-CO (CO ₂)
1634F	1638F	1634F	1637F	v C=N
1571mf	1596f 1523m	1567mf 1510f	1588f 1519m	v C=C
1478F	1454mF 1422f	1475F	1452F 1419f	δ _s –(CH ₂)–
1391f	1377m	1392f	1375m	v C-N
1362m	1330f	1361m	1330f	δ _s (CH ₂)
1307m	1308m	1306f	1307m	vC–O
1276mF	-	1276F	-	δΟ–Η
1214f	1209f	1217f	1207f	v(C–C);
1185m	1175mf	1184mf	1174m	v(C–O) e

		Res	ultados	e Discussão
1118f	1138mf	1127f	1139f	ν(C–N);
1092mf	1087f	<u>1114f</u> 1079mf	1087f	vCl_Ph / vBr_Ph
1034mF 977m 921f	1052f 968f	1033mF 978mf 913f	1050f 969f	δ -(CH ₂)-+ δ C-H _{ar}
894f 827F 711mf	836mf 706mF	896f 827F 777mf	869f 833mf 790f 738f	δ-(CH ₂)-
776f	791f	-	-	vC-Cl
-	-	692mf	686mf	vC-Br
645m	655f	628m	641f	δC–C
563f 477f 430f	543f 468f	558mf 479f 429f	548f 467f	үС–С
384f 347f	399f 383f	399f	399f 378f	τ(C–C)
-	606f 579f 512f	-	603f 577f 508f	Cu–N
-	418f 455f	-	419f 448f	Cu–O

v estiramento; δ deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; ()_{ar} = aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

Como resultado dos efeitos, indutivo e mesomérico das substituições no anel aromático, é possível observar um grande deslocamento na freqüência da ligação C–O que é fortemente afetada por estes na posição 5, conforme pode ser visto nos esquemas abaixo.

FIGURA 4.46. (a) Visão esquemática dos efeitos indutivos e mesomérico do substituinte nitro na posição 5 do anel aromático.

(b) Esquema da influência do substituinte ao ocupar a posição 5 no ligante.

TABELA 4.50. Comparação dos valores observados para os ligantes com substituinte 5-Cl e 5-Br e o ligante salen. Freqüências em cm^{-1} .

Ligação	$C=N \text{ cm}^{-1}$	$C-O \text{ cm}^{-1}$
salen	1636	1283
5-Clsalen	1634	1306
5-Brsalen	1634	1307

O espectro vibracional para os complexos apresentou mudanças quando

comparado ao dos ligantes referentes à coordenação dos nitrogênios e dos oxigênios.

Pela Tabela 4.51 podemos acompanhar os deslocamentos das bandas.

Tabela 4.51. Comparação dos valores encontrados para as bandas dos ligantes com substituinte 5-Cl e 5-Br e seus respectivos complexos de cobre, freqüências em cm⁻¹.

Ligação	vOH N	C=N	С-О	Cl–Ph / Br–Ph	CCl CBr	Cu–N	Cu–O
5-Clsalen	2623	1634	1307	1092	776	-	-
[Cu(5-Clsalen)]	-	1638	1308	1087	791	606 579 512	418 455
5-Brsalen	2617	1634	1306	1079	692	-	-
[Cu(5-Brsalen)]	-	1637	1307	1087	686	603 577 508	419 448

As bandas na região de 2600 cm⁻¹ características das ligações de hidrogênio intramolecular presentes nos ligantes, desaparecem nos complexos;

As bandas referentes à ligação C=N sofrem um ligeiro deslocamento após a coordenação do nitrogênio, para maiores freqüências, possivelmente devido aos acoplamentos entre as vibrações desta ligação com outras da vizinhança;

A coordenação do oxigênio não implicou em grandes alterações na freqüência de vibração da ligação C–O;

Surgiram bandas características das ligações dos substituintes com o anel aromático, em torno de $1080 \text{ cm}^{-1} \text{ e } 700 \text{ cm}^{-1}$.

Foram observadas também, na região de menor freqüência, as bandas características das ligações Cu–N e Cu–O.

4.1.11.3. ESPECTROS ELETRÔNICOS

FIGURA 4.46. Espectros eletrônicos na região do ultravioleta-visível, para os ligantes com seus respectivos complexos de cobre.

(A) Sobreposição ligante/complexo 5-Clsalen em concentração de 10^{-5} M em acetonitrila.

(B) Sobreposição complexo/complexo [Cu(5-Clsalen)] em diferentes concentrações 10^{-3} M e 10^{-5} M em acetonitrila.

(C) Sobreposição ligante/complexo 5-Brsalen em concentração de 10^{-5} M em acetonitrila.

(D) Sobreposição complexo/complexo [Cu(5-Brsalen)] em diferentes concentrações 10^{-3} M e 10^{-5} M em acetonitrila.

Composto	$\lambda \epsilon_{max}$	$\lambda \epsilon_{max}$	$\lambda \epsilon_{max}$	$\lambda \epsilon_{max}$	$\lambda \epsilon_{max}$
5 Clealan	222	254	327	418	
5-Cisaleli	61930	17300	7289	305	-
$[C_{\rm W}(5, Classical)]$	238		372		569
[Cu(5-Cisalen)]	47630		5150		207
5 Ducalan	222	253om	327	418	
J-DISaleli	68030	19920	7990	331	-
$[C_{\rm H}(5, D_{\rm max})]$	235	251om	370	390om	569
[Cu(5-Brsalen)]	77000	64590	10530	8290	409
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$n \rightarrow \pi^*_{(C=N)}$ TCML	$d {\rightarrow} d$

TABELA 4.52. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as Atribuições tentativas de acordo com a literatura^{2, 16, 20, 78, 79, 106, 161, 162, 164, 170}.

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

Os espectros eletrônicos dos compostos com substituinte cloro ou bromo na posição 5, apresentam as transições π - π * e n- π * deslocadas para uma região de

maior comprimento de onda, quando comparadas com os compostos sem substituinte (salen), as transições dos cromóforos C=C do anel aromático aparecem na mesma faixa do espectro para ambos, assim como as transições d-d do metal. O ombro que aparece em 390 nm para o complexo com substituinte bromo na posição 5 pode ser atribuído a transferência de carga entre o metal e o ligante.

4.12. COMPARAÇÃO DOS EFEITOS DOS SUBSTITUINTES NA POSIÇÃO 5 DOS COMPOSTOS

TABELA 4.53. Comparação entre os valores encontrados para as ligações C=N e C–O dos ligantes com diferentes substituintes na posição 5 e o ligante salen.

Ligação	$C=N \text{ cm}^{-1}$	$C-O \text{ cm}^{-1}$
salen	1636	1283
5-MeOsalen	1639	1275
5 NO color	1646	1222
5-INO ₂ saleli	1613	1525
5-Clsalen	1634	1306
5-Brsalen	1634	1307

Os substituintes na posição 5 apresentam as mesmas formas de atuação dos efeitos indutivo e mesomérico que os substituintes na posição 3 devendo assim afetar exclusivamente a freqüência vibracional da ligação C–O, a alteração na freqüência da ligação C=N para o substituinte nitro pode ser atribuída ao efeito do acoplamento com o estiramento assimétrico da ligação N–O, do grupo NO₂ que aparece na mesma região.

A freqüência da ligação C–O, é deslocada para regiões de maior ou menor energia de acordo com o substituinte analisado.

Fazendo uso dos parâmetros de Hammett³⁰, podemos observar que o MeO doador de elétrons (σ_p = -0,27), provoca um deslocamento para uma região de menor energia, enquanto o NO₂ (σ_p = 0,78), Cl (σ_p = 0,23), e Br (σ_p = 0,23) retiradores de elétrons irão provocar um deslocamento considerável para regiões de maior energia.

TABELA 4.54. Comparação entre as freqüências das transições eletrônicas calculadas para os compostos com diferentes substituintes na posição 5.

Composto	λ	λ	λ	λ	λ	λ	λ
----------	---	---	---	---	---	---	---

	Emax	E _{max}	E _{max}				
Color	215		256		314	404	
Saleli	51100		25620		9000	135	-
5 MaQaalan	215om	230	257om		343	434om	
5-MeOsalell	38070	46700	15530		9020	930	-
5 NO color	218	238	257		320	402	
5-NO ₂ salen	30210	34250	30860		20890	8960	-
5 Claslar	222		254		327	418	
5-Cisalen	61930		17300		7289	305	-
5 Ducalan	222		253om		327	418	
5-Brsalen	68030		19920		7990	331	-
[Cu(color)]		232	246	273	361		568
[Cu(saleli)]		67630	68240	73210	14830	-	413
[Cu(5 MaQaalan)]		232	256om	274om	397		568
[Cu(3-weOsalell)]		54610	39320	29050	11150	-	453
$[C_{\rm H}(5,{\rm NO},{\rm solar})]$		235	255		377		569
[Cu(3-NO ₂ salen)]		18285	18370		20580	-	283
[Cu(5 Clealar)]		238			372		569
[Cu(5-Cisalen)]		47630			5150	-	207
[Cu(5-Brsalen)]		235	251om		370	390om	569
		77000	64590		10530	8290	409
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$\begin{array}{c} n \longrightarrow \pi^*_{(C=N)} \\ TCML \end{array}$	$d \rightarrow d$

Resultados e Discussão

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

Os ligantes 5-MeO e 5-NO₂ apresentam as bandas referentes às transições do cromóforo C=C do anel aromático, na região de 220, 230 e 250 nm. Para os ligantes 5-Cl e 5-Br, a transição na região de 230 nm não foi observada.

Ainda em relação ao cromóforo C=C, todos os complexos com substituintes na posição 5 apresentam apenas duas bandas atribuídas a este, com exceção do complexo com substituinte metoxi que apresenta assim como o [Cu(salen)] uma transição em torno de 273.

As transições π - π * do cromóforo C=N que só ocorrem devido à conjugação com o anel aromático aparecem deslocadas para um maior comprimento de onda nos complexos.

As transições *d-d*, específicas do centro metálico não sofrem influência da inclusão do substituinte.

4.1.13. LIGANTE SALEN COM SUBSTITUINTE CLORO (CI) NAS POSIÇÕES 3 E 5 SIMULTANEAMENTE E SEU RESPECTIVO COMPLEXO

4.1.13.1. DADOS GERAIS DE CARACTERIZAÇÃO

FIGURA 4.47. Visão esquemática do ligante 3,5-Clsalen, com seu complexo de cobre.

Dados Gerais	Ligante	Complexo
Fórmula	$C_{16}H_{12}N_2O_2Cl_4$	$CuC_{16}H_{10}N_2O_2Cl_4$
Peso fórmula (g/mol)	4056,09	467,62
Cor	Amarelo	Marrom
Rendimento %	86	89
Ponto de Fusão °C	208-210	> 360
Literatura ²	208-210	-
C(%) H(%) N(%)	47,0 2,7 6,7	46,7 2,1 5,9
Calculado	47,3 3,0 2,9	41,1 2,2 6,0
Literatura ²	47,0 2.7 6,7	_

TABELA 4.55. Dados gerais de caracterização do ligante 3,5Clsalen e seu respectivo complexo de cobre.

Os testes de solubilidade destes compostos mostraram que o ligante é parcialmente solúvel em todos os solventes testados com exceção da água, onde este se mostrou insolúvel quando o teste é realizado em temperatura ambiente. Após o aquecimento, o ligante passou a ser solúvel em acetonitrila apenas e continuou parcialmente solúvel nos outros (etanol, acetona, tolueno e tetracloreto) e insolúvel em água.

O complexo apresenta uma solubilidade bastante limitada, é insolúvel em água, acetona, tolueno e tetracloreto de carbono, é pouco solúvel em etanol e acetonitrila em temperatura ambiente. Após o aquecimento, este é solubilizado apenas por acetonitrila, permanecendo da mesma maneira com os demais solventes.

4.1.13.2. ESPECTROS VIBRACIONAIS

FIGURA 4.48. Espectros vibracionais (Transmitância x Número de onda cm⁻¹) na região do infravermelho para o ligante 3,5-Clsalen com seu respectivo complexo.

TABELA 4.56. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

3,5-Clsalen	[Cu(3,5-Clsalen)]	Atribuições
3437f	3442mf	ν(O–H); H ₂ O
3045f	3075f	$v(C-H)_{ar}$
3018f	No	v(C–H) _{im}
2940f	2020f	v _s (С–Н) е
2882f	29201	v _{as} (C–H); –(CH ₂)–
2560f	-	vOH N
No	2360mf	$v \cap C \cap (C \cap)$
110	2335f	VO-CO (CO ₂)
1639F	1635F	vC=N
1507m	1587f	
1507111	1519mf	VC-C
1459mf	1438F	δ_s -(CH ₂)-
No	1412f	vC–N
1363f	1381f	vC–O
1286f	-	δΟ–Η
1210m	1214mf	v(C–C); v(C–O)

	1100 01	
1145mf	1171mf	e v(C–N);
No	1087f	vCl–Ph
No	1051f	δC–H _{ar}
1002mf	No	$\delta - (CH_2) - + \delta C - H_{ar}$
No	967mf	$\gamma C - H_{im}$
899f	881f	δ (CH)
851mf	865mf	0-(СП2)-
735mf	756m	vC–Cl
No	690f	$\gamma C-H_{ar}$
No	662f	v ₂ O–CO (CO ₂)
556f	556f	δC–C
418f	414f	$\tau(\mathbf{C},\mathbf{C})$
397f	398f	
	616f	
-	582f	Cu–N
	508f	
	483f	Cu O
-	434f	Cu–O

Resultados e Discussão

v estiramento; δ deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; ()_{ar} = aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

FIGURA 4.49. Visão esquemática dos efeitos do substituinte Cl nas posições 3 e 5 do anel aromático simultaneamente.

FIGURA 4.50. Esquema da influência do substituinte ao ocupar as posições 3 e 5 no ligante.

A ligação C=N permanece quase sem modificações, uma vez que os efeitos dos substituintes estão todos direcionados para a ligação C–O, esta por sua vez sofre os efeitos dos substituintes que provocam uma deficiência eletrônica no carbono, como conseqüência ocorre um encurtamento da ligação C–O, que se torna mais forte, o que leva ao aumento da freqüência vibracional.

TABELA 4.57. Comparação dos valores encontrados para as bandas do ligante com substituinte cloro e o ligante salen, freqüências em cm^{-1} .

Ligação	$C=N \text{ cm}^{-1}$	$C-O \text{ cm}^{-1}$
salen	1636	1283
3,5-Clsalen	1639	1363

Sobre a formação do complexo podemos observar que a deformação no plano referente à ligação C-H do grupo imínico não foi observada para o complexo e a deformação fora do plano não foi observada no caso do ligante.

Ocorreu o desaparecimento da ligação em 2560 cm⁻¹, própria das ligações de hidrogênio entre o grupo OH e N.

A ligação C=N apresentou uma banda deslocada para uma região de menor freqüência como é esperado para a maioria das bases de Schiff depois da coordenação do nitrogênio.

A banda referente à ligação C–O, devido a uma combinação dos efeitos do substituinte na posição 3 e na posição 5, os quais apontam para esta ligação, tem sua freqüência deslocada para uma região mais alta.

As bandas referentes às ligações C–Cl foram identificadas e as bandas pertencentes às ligações M-L também foram devidamente localizadas.

TABELA 4.58. Comparação dos valores encontrados para as bandas do ligante com substituinte cloro e seu complexo de cobre, freqüências em cm⁻¹.

Ligação	(C-H) _{im}	OHN	C=N	С-О	Cl-Ph	C-H _{im}	CCl	Cu–N	Cu-O
3,5-Clsalen	3018	2560	1639	1363	1093	968	735	-	-
[Cu(3,5-Clsalen)]		1635	1635	1381	1087	967	756	616 582 508	483 434

4.1.13.3. ESPECTROS ELETRÔNICOS

FIGURA 4.51. Espectros eletrônicos na região do ultravioleta-visível, para o ligante 3,5-Clsalen com seu respectivo complexo de cobre.

TABELA 4.59. Coeficientes de extinção molar calculados e máximos de ab	sorção na
região do ultravioleta-visível para o ligante, com seu respectivo complexo, b	em como
as Atribuições tentativas de acordo com a literatura ^{2, 16, 20, 78, 79, 106, 161, 162, 164, 17}	⁰ .

Composto	λ	λ	λ	λ	λ	λ
Composio	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}
2.5 Claslan		223	258om	332	429	
5,5-CIsaleli		45950	16750	5106	1952	
$[C_{\rm ex}(2.5, C_{\rm loc}]_{\rm ex})]$	202	233	280	371		568
[Cu(3,3-Cisalen)]	29898	33711	18671	5482		196
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=N)}$	$n \rightarrow \pi^{*}_{(C=N)}$	$d \rightarrow d$

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

Pela tabela 4.59 podemos notar as transições π - π * dos cromóforos C=C e C=N que após a formação do complexo todas apresentam um deslocamento batocrômico conforme esperado devido à coordenação do oxigênio e nitrogênio.

Foram observadas também as bandas referentes às transições $n-\pi^*$ do par de elétrons livres do nitrogênio e dos elétrons d do metal.

4.1.14. LIGANTE SALEN COM SUBSTITUINTE BROMO (Br) NAS POSIÇÕES 3 E 5, JUNTAMENTE COM O RESPECTIVO COMPLEXO DE COBRE

4.1.14.1 DADOS GERAIS DE CARACTERIZAÇÃO

FIGURA 4.52. Visão esquemática do ligante 3,5Brsalen e seu complexo [Cu(3,5-Brsalen)].

TABELA 4.60. Dados gerais de caracterização do ligante 3,5-Brsalen e seu respectivo complexo de cobre em comparação com a literatura.

Dados Gerais	Ligante	Complexo
Fórmula	$C_{16}H_{12}N_2O_2Br_4$	$CuC_{16}H_{10}N_2O_2Br_4$
Peso fórmula (g/mol)	583,89	645,42
Cor	Amarelo	Marrom
Rendimento %	89	84
Ponto de Fusão °C	238-241	259-261
Literatura ²	238-241	-
C(%) H(%) N(%)	33,1 2,2 4,9	29,5 1,6 4,4
Calculado	32,9 2,1 4,8	29,8 1,6 4,3
Literatura ²	33,1 2,2 4,9	-

Os testes de solubilidade mostraram que em temperatura ambiente o ligante é insolúvel em água e parcialmente solúvel em todos os outros solventes testados. Os testes realizados com aquecimento quase não alteraram estes resultados, o composto mostrou-se solúvel em acetonitrila apenas.

O complexo da mesma forma que o ligante, foi solubilizado apenas por acetonitrila e com aquecimento.

4.1.14.2. ESPECTROS VIBRACIONAIS

FIGURA 4.53. Espectros vibracionais (Transmitância x Número de onda cm⁻¹) na região do infravermelho para o ligante 3,5-Brsalen com seu respectivo complexo.

TABELA 4.61. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

	,	
3,5-Brsalen	[Cu(3,5-Brsalen)]	Atribuições
No	3443mf	v(О–Н); H ₂ O
3069mf	3067f	v(C–H) _{ar}
2887mf	2916f	v _s (C–H) e
2853mf	2854f	v _{as} (C–H); –(CH ₂)–
2515f	-	vOH N
No	2364f	$v O C O (C O_{2})$
INU	2341f	VO-CO (CO ₂)
1636F	1629F	vC=N

1592f	1578f	
1557f	15/01	vC=C
1509f	15051	
1444F	1435F	δ _s -(CH ₂)-
No	1377f	vC–N
1357m	1356f	vC–O
1287m	-	δΟ–Н
1211mf	1213mf	v(C–C); v(C–O)
1162mF	1156m	e v(C–N);
1093f	1087f	vBr–Ph
1036mf	1037mf	δC-H _{ar}
968f	967f	γ C–H _{im}
867m	868m	δ-(CH ₂)-
741f	752f	γC–H _{ar}
687mF	686mf	vC–Br
556f	555f	δC–C
449f	No	γС–С
419f	419f	$\tau(C, C)$
395f	399f	
	609f	
-	573f	Cu–N
	548f	
	501f	Cu O
-	474f	Cu–O

aromático, () $_{im}$ = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

As figuras 4.54 e 4.55 abaixo ilustram o posicionamento dos substituintes e como eles afetam o restante do composto.

FIGURA 4.54. Visão esquemática genérica, dos efeitos indutivos e mesomérico do substituinte bromo, nas posições 3 e 5 do anel aromático.

FIGURA 4.55. Esquema da influência do substituinte ao ocupar as posições 3 e 5 simultaneamente no ligante.

TABELA 4.62. Comparação dos valores encontrados para as bandas do ligante com substituinte bromo e o ligante salen, freqüências em cm^{-1} .

Ligação	$C=N \text{ cm}^{-1}$	$C-O \text{ cm}^{-1}$
salen	1636	1283
3,5-Brsalen	1636	1357

Ao analisarmos os substituintes nas posições 3 e 5, podemos observar que ambos direcionam os efeitos para a mesma ligação C-O que deve sofrer um

deslocamento considerável para uma região de maior freqüência, em virtude da grande deficiência eletrônica no carbono desta ligação.

TABELA 4.63. Comparação dos valores encontrados para as bandas do ligante com substituintes 3,5-Br e seu respectivo complexo de cobre, freqüências em cm^{-1} .

Ligação	OH N	C=N	С-О	Br–Ph	C-H _{im}	C–Br	Cu–N	Cu–O
3,5-Brsalen	2515	1636	1357	1093	968	687	-	-
[Cu(3,5-Brsalen)]	-	1629	1356	1087	967	686	609 573 548	501 474

Como comprovação da obtenção do complexo, podemos citar:

O desaparecimento da banda alargada característica de uma ligação de hidrogênio entre a hidroxila e o nitrogênio imínico, indicando a desprotonação do OH.

O deslocamento da ligação C=N para uma região de menor freqüência, como conseqüência da coordenação do nitrogênio.

O aparecimento das bandas em 609 cm⁻¹, 573 cm⁻¹ e 548 cm⁻¹ que indicam a coordenação do nitrogênio do grupo imínico.

E o aparecimento das bandas em 501 cm⁻¹ e 474 cm⁻¹ que indicam a coordenação do oxigênio.

Foram observados ainda, a ausência de um deslocamento da ligação C–O o que pode ser atribuído ao efeito estérico do átomo de bromo na posição 3 e as bandas referentes à ligação C–Br.

Resultados e Discussão 4.1.14.3. ESPECTROS ELETRÔNICOS

FIGURA 4.56. Espectros eletrônicos na região do ultravioleta-visível, para o ligante 3,5-Brsalen com seu respectivo complexo de cobre.

TABELA 4.64. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as Atribuições tentativas de acordo com a literatura^{2, 16, 20, 78, 79, 106, 161, 162, 164, 170}.

Composto	λ	λ	λ	λ	λ	λ
Composto	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}
3,5-Brsalen	200	226	260om	334	426	
	46370	58400	20900	6313	2859	-
$[C_{\rm W}(2.5, {\rm Drealar})]$	202	230	270om	377		569
[Cu(3,3-Disalell)]	8954	15741	5940	2447	-	337
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$n \rightarrow \pi^*_{(C=N)}$	$d \rightarrow d$

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

Para este composto foram observadas três transições referentes ao cromóforo C=C do anel aromático, aos quais são correspondentes às três transições observadas para o benzeno, porém por efeito das substituições no anel estas estão deslocadas para uma região de maior freqüência. Este mesmo deslocamento é observado para as bandas que envolvem o grupo imino, π - π * do cromóforo C=N e n- π * do par de elétrons não ligantes do nitrogênio.

A transição *d-d* não sofre alteração quando comparada com o complexo sem substituinte.

Resultados e Discussão 4.1.15. LIGANTE SALEN COM SUBSTITUINTES IODO NAS POSIÇÕES 3 E 5, JUNTAMENTE COM O COMPLEXO [Cu(3,5-Isalen)]

4.1.15.1. DADOS GERAIS DE CARACTERIZAÇÃO

FIGURA 4.57. Visão esquemática do ligante com seu complexo de cobre.

Dados Gerais	Ligante	Complexo
Fórmula	$C_{16}H_{12}N_2O_2I_4$	$CuC_{16}H_{10}N_2O_2I_4$
Peso fórmula (g/mol)	771,9	833,42
Cor	Amarelo	Marrom
Rendimento %	55	62
Ponto de Fusão °C Literatura ²	240-242 240-242	309-310
C(%) H(%) N(%)	24,6 1,6 3,3	22,7 1,3 3,5
CALCULADO LITERATURA ²	24,9 1,6 3,6 24,6 1,6 3,3	23,1 1,2 3,4

TABELA 4.65. Dados gerais de caracterização do ligante 3,5-Isalen e seu respectivo complexo de cobre em comparação com a literatura.

O ligante 3,5-Isalen não é solúvel nenhum solvente testado em temperatura ambiente. Quando o teste é realizado com aquecimento este passa a ser solúvel em acetonitrila e permanece insolúvel nos demais solventes.

Para o complexo observou-se o mesmo comportamento.

4.1.15.2. ESPECTROS VIBRACIONAIS

FIGURA 4.58. Espectros vibracionais (Transmitância x Número de onda cm⁻¹) na região do infravermelho para o ligante 3,5-Isalen com seu respectivo complexo.

3,5-Isalen	[Cu(3,5-Isalen)]	Atribuicões
No	3442f	v(O–H); H ₂ O
3052f	3041f	v(C–H) _{ar}
2882f		$v_{\rm s}(\rm C-H) e$
2846f	2910f	$v_{as}(C-H); -(CH_2)-$
2501f	_	vOH····N
No	2363f	v ₃ O–CO (CO ₂)
	2336f	
1630F	1618F	vC=N
1581mf	1565mf	vC=C
No	1488f	δ _s -(CH ₂)-
1436F	1427F	vC–N
1353mf	1373f	vC–O
1282m	-	δО–Н
1210mf	1222f	v(C–C); v(C–O)
1151mF	1149mf	e v(C–N);
1030mF	1080f	δC–H _{ar}
967f	966f	γC–H _{im}
867m	869mf	δ-(CH ₂)-
740f	753mf	γC–H _{ar}
656m	No	δC–C
550f	545f	vC–I
445f	No	γ C – C
387f	384f	τ(C–C)
-	607f	· · · · · ·
	568f	Cu–N
	516f	
-	493f	Cri O
	469f	Cu–O

TABELA 4.66. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹

v estiramento; δ deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; ()_{ar} = aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

FIGURA 4.59. Visão esquemática dos efeitos indutivo e mesomérico do substituinte iodo nas posições 3 e 5 do anel aromático.

FIGURA 4.60. Esquema da influência do substituinte ao ocupar as posições 3 e 5 no ligante.

Os efeitos mesomérico e indutivo provocam um deslocamento da freqüência de vibração da ligação C–O para valores mais altos, já a freqüência de vibração da ligação C=N permanece inalterada. Neste ligante deve ser considerado ainda o efeito estérico provocado pelo átomo de iodo na posição 3.

TABELA 4.67. Comparação dos valores observados para o ligante com substituinte 3,5-I e o ligante salen. Freqüências em cm^{-1} .

Ligação	$C=N \text{ cm}^{-1}$	$C-0 \text{ cm}^{-1}$
salen	1636	1283
3,5-Isalen	1630	1353

As mudanças referentes à coordenação dos nitrogênios e dos oxigênios

foram observadas pela comparação do espectro do ligante e do complexo.

Pela Tabela 4.68 podemos acompanhar o deslocamento das bandas.

TABELA 4.68. Comparação dos valores encontrados para as bandas do ligante com substituintes 3,5-Br e seu respectivo complexo de cobre, freqüências em cm^{-1} .

Ligação	OH N	C=N	С-О	C-H _{im}	C–I	Cu–N	Cu–O
3,5-Isalen	2501	1630	1353	967	550	-	-
[Cu(3,5-Isalen)]	-	1618	1373	966	545	607 568 516	493 469

De início pode ser notado o desaparecimento da banda alargada com centro em 2501 cm⁻¹, que sugere a desprotonação do grupo OH e a coordenação do oxigênio, que é evidenciada pelo deslocamento da freqüência vibracional da ligação C–O. O deslocamento da banda característica da ligação C=N para uma região de menor freqüência indica a coordenação do nitrogênio imínico.

As bandas características de ligação Cu–N e Cu–O foram observadas na região de menor freqüência do espectro. Foram ainda identificadas as estiramentos da ligação C–I.

4.1.15.3. ESPECTROS ELETRÔNICOS

FIGURA 4.61 Espectros eletrônicos na região do ultravioleta-visível, para os ligantes com seus respectivos complexos de cobre.

as Atribuições ter	itativas de ac	ordo com a l	iteratura ^{2, 10,}	20, 70, 79, 100, 10	•	
Composto	λ	λ	λ	λ	λ	λ
Composio	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}
2 5 Jaalan	212	232	260om	341	433	
5,5-Isaleli	51730	63570	21150	7730	1173	-
[Cu(3,5-Isalen)]	220	242	275om	375		570
	38120	43320	25040	3500	-	536
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$n \rightarrow \pi^*_{(C=N)}$	$d {\rightarrow} d$

TABELA 4.69. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as Atribuições tentativas de acordo com a literatura^{2, 16, 20, 78, 79, 106, 161, 162, 164, 170}.

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

As bandas referentes às transições dos cromóforos C=C e C=N aparecem deslocadas para uma região de maior freqüência depois da formação do complexo, pois como é esperado, a formação de anéis quelatos expandem a conjugação, possibilitando uma melhor distribuição dos elétrons na molécula.

Duas mudanças podem ser notadas no espectro do complexo quando comparado com o ligante, o desaparecimento da banda referente a transição $n-\pi^*$ do cromóforo C=N, e o surgimento da bandas larga de baixa absortividade característica das transições *d-d* do metal.

4.1.16. COMPARAÇÃO ENTRE OS COMPOSTOS COM SUBSTITUINTES NAS POSIÇÕES 3 E 5 SIMULTANEAMENTE

Ligação	$C=N \text{ cm}^{-1}$	$C-O \text{ cm}^{-1}$
salen	1636	1283
3,5-Clsalen	1639	1363
3,5-Brsalen	1636	1357
3,5-Isalen	1630	1353

TABELA 4.69. Comparação dos valores encontrados para as deformações, na região do infravermelho, das ligações C=N e C–O.

Embora ocupem duas posições diferentes no anel aromático os substituintes direcionam o efeito indutivo retirador de elétrons (**F**) principalmente para a ligação C–O que sofre um deslocamento considerável para uma região de maior

freqüência. A ordem de intensidade dos deslocamentos Cl > Br > I reflete a existência do efeito competitivo com (**R**) que tem sentido contrário e aumenta do cloro ao iodo como pode ser visto na tabela 4.70 abaixo.

TABELA 4.70. Substituintes nas posições 3 e 5 do anel fenólico, nos compostos em estudo neste trabalho, com suas respectivas constantes³⁰.

	F	R	$\sigma_{\rm m}$	σ_{p}
Cl	0,41	-0,15	0,37	0,23
Br	0,44	-0,17	0,39	0,23
Ι	0,40	-0,19	0,35	0,18

A ligação C=N permanece quase sem modificações, considerando o erro experimental de 4cm⁻¹, uma vez que os efeitos dos substituintes estão todos direcionados para a ligação C–O.

Composto	λ	λ	λ	λ	λ	λ
Composto	E _{max}	E _{max}				
aalan		215	256	314	404	
salen		51100	25620	9000	135	-
2.5 Clealan		223	258om	332	429	
5,5-Cisaleli		45950	16750	5106	1952	-
2.5 Drealon	200	226	260om	334	426	
5,5-DISaleli	46370	58400	20900	6313	2859	-
2.5 Icolon	212	232	260om	341	433	
5,5-Isalen	51730	63570	21150	7730	1173	-
		232				
[Cu(solon)]		67630	273	361		568
[Cu(salell)]		246	73210	14830	-	413
		68240				
[Cu(2.5, Clealan)]	202	233	280	371		568
	29898	33711	18671	5482	-	196
$[C_{\rm W}/2.5 \mathrm{Drealer})]$	202	230	270om	377		569
	8954	15741	5940	2447	-	337
[Cu(2.5 Looler)]	220	242	275om	375		570
	38120	43320	25040	3500	-	536
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$n \rightarrow \pi^{*}_{(C=N)}$	$d \rightarrow d$

TABELA 4.71. Comparação dos valores encontrados para as bandas na região do ultravioleta-visível.

 λ (nm); ε_{max} . (L.mol⁻¹.cm⁻¹)

Comparando os espectros dos ligantes 3,5 substituídos com o ligante sem substituição podemos notar que no caso do bromo e iodo aparecem as três transições

referentes aos cromóforos C=C, e ainda que todas as transições (π - π * e n- π *) apresentam um deslocamento batocrômico por efeito das substituições no anel aromático.

Os espectros dos complexos exibem também as três transições para o cromóforo C=C, deslocadas para uma região de maior comprimento de onda, sendo que o deslocamento mais pronunciado é o causado pelo iodo. As transições π - π * do cromóforo C=N aparecem também deslocadas em relação ao complexo sem substituinte e as transições *d*-*d* exibem um ligeiro aumento indo do cloro ao iodo.

4.1.17. LIGANTES SALEN COM SUBSTITUINTES METIL (Me) E ETIL (Et) NA POSIÇÃO 7 JUNTAMENTE COM SEUS RESPECTIVOS COMPLEXOS DE COBRE

4.1.17.1. DADOS GERAIS DE CARACTERIZAÇÃO

FIGURA 4.62. Visão esquemática do ligante 7-Mesalen, e do complexo simétrico [Cu(7-Etsalen)].

TABELA 4.72. Dados gerais de caracterização dos ligantes 7-Mesalen e 7-Etsalen juntamente com seus respectivos complexos de cobre em comparação com dados da literatura^{83, 135}.

Dados Gerais	Ligante	Complexo
Fórmula		
7-Me	$C_{18}H_{20}N_2O_2$	$CuC_{18}H_{18}N_2O_2$
7-Et	$C_{20}H_{24}N_2O_2$	$CuC_{20}H_{22}N_2O_2$
Peso fórmula (g/mol)		
7-Me	296,36	357,89
7-Et	324,42	385,95
Cor		
7-Me	Amarelo	Vermelho
7-Et	Amarelo	Lilás
Rendimento %		
7-Me	78	85
7-Et	82	81
Ponto de Fusão °C		
7-Me	197-200	283-285
7-Et	**	265-267
Literatura*	200-202	277-279
C(%) H(%) N(%) 7-Me	-	59,9 5,03 7,9
Calculado 7-Me	72,9 6,8 9,5	60,4 5,07 7,8
C(%) H(%) N(%) 7-Et	-	62,5 5,8 7,2
Calculado 7-Et	74,1 7,5 8,6	62,4 5,8 7,3
		(0,7,5,04,7,0
Literatura /-Me	73,26,99,5	60,75,047,9

* valor referente ao ligante 7-Mesalen.

** não foi possível observar o ponto de fusão do ligante talvez devido a uma instabilidade deste composto que aparentemente se decompõe, em algumas semanas à temperatura ambiente.

Os dois ligantes são solúveis em etanol, acetona e acetonitrila e insolúveis em tolueno, tetracloreto de carbono e água, em temperatura ambiente. Após o teste realizado com aquecimento observou-se que ambos passaram a apresentar uma pequena solubilidade em tetracloreto de carbono, permanecendo insolúveis nos outros solventes.

O complexo com substituinte Metil na posição 7, apresentou-se solúvel em acetonitrila, pouco solúvel em acetona e tetracloreto de carbono e insolúvel em água, etanol e tolueno, à temperatura ambiente, depois de aquecido, este passou a ser solúvel em acetona e permaneceu da mesma forma perante os outros solventes.

O complexo [Cu(7-Etsalen)] é insolúvel em água e tetracloreto de carbono, pouco solúvel em etanol, acetonitrila e tolueno e solúvel em acetona em temperatura ambiente. Após ser aquecido este passou a ser solúvel em acetonitrila e etanol e pouco solúvel em tetracloreto de carbono, permanecendo insolúvel em água.

4.1.17.2. ESPECTROS VIBRACIONAIS

FIGURA 4.63. Espectros vibracionais (Transmitância x Número de onda cm⁻¹) na região do infravermelho para o ligante 7-Mesalen com seu respectivo complexo.

FIGURA 4.64. Espectros vibracionais (Transmitância x Número de onda cm⁻¹) na região do infravermelho para o ligante 7-Etsalen com seu respectivo complexo.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7-Mesalen	[Cu(7-Mesalen)]	7-Etsalen	[Cu(7-Etsalen)]	Atribuições	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3443	3567	3447	3463	ν(O-H); H ₂ O	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3053	3077 3013	3081	3065	v(C–H) _{ar}	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2935		2975	2970	и (С. Ц) a	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2898	2942	2935	2929	$V_{s}(\mathbf{C}-\mathbf{\Pi}) \in \mathbf{C}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2836		2875	2871	$v_{as}(C-11), -(C11_2)-$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	no	-	2585	-	vOH N	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2360	2360	2359	2361	$v - C \cap (C \cap x)$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2300	2342	2336	2341	$VO-CO(CO_2)$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1610F	1603F	1613F	1598F	vC=N	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1575f	1590f	1576f	1590F	vC-C	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1507mf	1534mF	1499f	1534m	VC-C	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1445m	1438mF	1440m	1437m	vC–N	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1366f	1346mf	1371f	1338m	δ (CH ₂)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1331f	1333mf	1339f	155011	0-(C112)-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1293mf	-	1293mf	-	δΟ–Η	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1260f	1262f	1266mf	1267f	vC–O	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1241mf	1236mf	1227m	1215mf	$v(\mathbf{C}, \mathbf{C}) \cdot v(\mathbf{C}, \mathbf{O})$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1162mf	1164f	1163m	1159f	V(C-C); V(C-O)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1129f	1138mf	1131f	1141f	e v(C-N),	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1000f			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1065mf	1100f	1077f	1095f	δC–H _{ar}	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1050m			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1025f	1025f	No	No	$\delta - (CH_2) - + \delta C - H_{ar}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		988f	962mf			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	948mf	926f	942f	930f	$\gamma C-H_{ar}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7201	926f			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	860f	868f	852mf	879f	δ-(CH ₂)-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	834mf	846f	828mf	846f	0 (0112)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	758F	734F	750F	751mf	$\gamma C-H_{ar}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	649mf		672f			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	558f	647f	647f	689f	δC–C	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	525f	522f	558f	635f		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			539f			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	503f	505f	502f	459f	γC–C	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			453f	1000	1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	423f), T	419f	420f		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	398f	No	399f	399f	$\tau(C-C)$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	384f		384f	<u>384f</u>		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		620f		0U0I 574f	Cr. N	
$- \frac{489f}{443f} - \frac{490f}{436f} Cu-O$	-	590f	-	J/01 517f	Cu-IN	
$- \frac{4001}{443f} - \frac{4901}{136f}$ Cu–O		/80f		J1/1 /00f		
	-	+091 ΔΔ2f	-	4901 436f	Cu–O	

TABELA 4.73. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

v estiramento; δ deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; ()_{ar} = aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

O efeito do substituinte nestes compostos é muito forte sobre a ligação C=N, pois o substituinte está localizado justamente no carbono do grupo imínico.

A presença de um grupo doador de elétrons como o metil ou o etil, conforme $\mathbf{F} \in \mathbf{R}$ na tabela 4.74, faz com que a banda característica do grupo imínico seja bastante deslocada para uma região de menor freqüência. Isto ocorre em virtude do aumento da densidade eletrônica sobre o átomo de nitrogênio, o que enfraquece a ligação C=N.

Um deslocamento similar é observado para a freqüência da ligação C–O ainda por influência do substituinte no carbono imínico.

TABELA 4.74. Comparação dos valores observados para os ligantes com substituinte metil e etil e o ligante salen. Freqüências em cm^{-1} .

Ligação	$C=N \text{ cm}^{-1}$	$C-O \text{ cm}^{-1}$	F	R
salen	1636	1283	0	0
7-Mesalen	1610	1260	-0,04	-0,13
7-Etsalen	1613	1266	-0,05	-0,10

A banda característica de ligação de hidrogênio intramolecular entre o grupo imino e o grupo fenólico aparece como uma banda larga bastante sutil na região entre 2700 e 2000 cm^{-1 21,153} não tendo sido possível atribuir um valor para o ligante 7-Mesalen. Para o ligante 7-Etsalen, esta banda foi identificada como uma banda larga com centro em 2585 cm⁻¹.

Ligação C=N tem sua freqüência deslocada para uma região de menor freqüência conforme se espera após a coordenação do nitrogênio.

A ligação C–O apresenta um deslocamento para uma região de maior energia após a coordenação do oxigênio, um comportamento similar tem sido relatado na literatura para compostos do mesmo tipo^{82, 83,85, 149}.

Foram observadas as bandas características das ligações Cu–O e Cu–N na região entre 600 e 400 cm⁻¹.

u	iosutunite etoxi e seu respectivo complexo de cobre, frequencias em cm .					ш.
	Ligação	OH N cm ⁻¹	$C=N \text{ cm}^{-1}$	$C-0 \text{ cm}^{-1}$	Cu–N cm ⁻¹	Cu–O cm ⁻¹
	7-Mesalen		1610	1331	-	-
	[Cu(7-Mesalen)]	-	1603	1333	620, 590	489, 443
	7-Etsalen	2585	1613	1339	-	-
-	[Cu(7-Etsalen)]	-	1598	1338	606, 576, 517	490, 436

TABELA 4.75. Comparação dos valores encontrados para as bandas do ligante com substituinte etoxi e seu respectivo complexo de cobre, freqüências em cm⁻¹.

4.1.17.3. ESPECTROS ELETRÔNICOS

(A) Sobreposição ligante/complexo 7-Mesalen em concentração de 10⁻⁵M em acetonitrila.

(B) Sobreposição complexo/complexo [Cu(7-Mesalen)] em diferentes concentrações 10^{-3} M e 10^{-5} M em acetonitrila.

(C) Sobreposição ligante/complexo 7-Etsalen em concentração de 10^{-5} M em acetonitrila.

(D) Sobreposição complexo/complexo [Cu(7-Etsalen)] em diferentes concentrações 10^{-3} M e 10^{-5} M em acetonitrila.

TABELA 4.76. Coeficientes de extinção molar calculados e máximos de a	absorção na
região do ultravioleta-visível para o ligante, com seu respectivo complexo,	bem como
as Atribuições tentativas de acordo com a literatura ^{2, 16, 20, 78, 79, 106, 161, 162, 164,}	170

Composto	λ	λ	λ	λ	λ	λ
Composio	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}
7 Magalan	217	231	274	310	403	
/-Mesalen	36850	37780	49270	2762	1154	-
$[C_{u}(7 M_{acc})]$		237	272	362		555
[Cu(/-iviesaleli)]		56710	34130	8230	-	421
7 Etcolor	220	259		319sh	390	
/-Etsalen	36470	30600		8458	1250	-
[Cu(7 Etaslar)]	236		272	361		554
[Cu(/-Etsalen)]	35880		16140	8390	-	309
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$n \rightarrow \pi^*_{(C=N)}$	$d {\rightarrow} d$

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

A transição π - π * do cromóforo C=N geralmente desloca-se para uma região de menor energia devido à coordenação do nitrogênio, e as transições π - π * devido ao anel aromático costumam exibir um deslocamento no mesmo sentido porém em menor extensão⁸², fato que está de acordo com o observado para os ligantes 7-Mesalen, 7-Etsalen e seus respectivos complexos.

Nota-se também na comparação dos espectros dos ligantes com os complexos o desaparecimento das bandas características das transições n- π^* em torno de 400 nm, bem como o surgimento das bandas de baixa intensidade características das transições *d*-*d* na região de 550 nm.

4.1.18. LIGANTES DO TIPO SALEN COM OS SUBSTITUINTES 7-FENIL (7-Φ), 7-FENILETIL (7-ΦEt) E 7-FENIL-4-METOXI (7-Φ-4-MeO), JUNTAMENTE COM OS SEUS RESPECTIVOS COMPLEXOS DE COBRE .

4.1.18.1. DADOS GERAIS DE CARACTERIZAÇÃO

FIGURA 4.66. Visão esquemática dos compostos: (a) ligante 7-Fenilsalen, (b) ligante 7-Feniletilsalen, (c) complexo [Cu(7-Fenil-4-MeOsalen)].

TABELA	4.77.	Dados	gerais	de	caracterização	dos	ligantes	e	seus	respectivos
complexos	s de co	bre em c	compara	ição	com a literatura	ι.				

Dados Gerais	Ligante	Complexo	
Fórmula			
7-Ф	$C_{28}H_{24}N_2O_2$	$CuC_{28}H_{22}N_2O_2$	
7- Φ Et	$C_{32}H_{32}N_2O_2$	$CuC_{32}H_{30}N_2O_2$	
7-Ф-4-МеО	$C_{30}H_{28}N_2O_4$	$CuC_{30}H_{26}N_2O_4$	
Peso fórmula (g/mol)			
7-Ф	420,51	482,03	
7- Φ Et	476,61	538,14	
7-Ф-4-МеО	480,56	542,08	
Cor			
7-Ф	Amarelo	Verde	
7-ΦEt	Amarelo	Roxo	
7-Ф-4-МеО	Amarelo	Verde	
Rendimento %			
7-Ф	85	81	
7-ФЕt	72	77	
7-Ф-4-МеО	83	73	
Ponto de Fusão °C			
7-Ф	151-152	354-355	
7-ΦEt	160-161	249-251	
7-Ф-4-МеО	250-251	> 400	
Literatura ¹³⁵ *	155-156		
C(%) H(%) N(%)7-Ф	-	70,0 4,6 5,7	
Calculado 7-Φ	80,0 5,7 6,7	69,8 4,6 5,8	
C(%) H(%) N(%)7-ΦEt	-	70,8 5,7 5,3	
Calculado 7-ΦEt	80,6 6,8 5,9	71,4 5,6 5,2	
C(%) H(%) N(%)7-Ф-4-MeO	-	65,7 4,9 5,2	
Calculado 7-Φ-4-MeO	75,0 5,9 5,8	66,5 4,8 5,2	

* valor referente ao ligante 7-Фsalen

Para o ligante 7- Φ salen o teste de solubilidade mostrou que este é insolúvel em água e parcialmente solúvel em todos os outros solventes testados em temperatura ambiente, após o aquecimento o ligante foi solubilizado por acetona e acetonitrila, permanecendo da mesma forma para os outros solventes. O complexo correspondente apresentou comportamento idêntico.

O ligante 7-ΦEtsalen mostrou-se solúvel em etanol, acetona e acetonitrila, parcialmente solúvel em tolueno e tetracloreto de carbono e insolúvel em água em temperatura ambiente, com aquecimento este passou a ser solúvel em tetracloreto de carbono. O complexo de cobre correspondente mostrou-se parcialmente solúvel em acetonitrila e tolueno e insolúvel nos demais solventes nos testes realizados em temperatura ambiente. Quando foram realizados os testes com aquecimento observou-se que o complexo é solúvel em acetonitrila. Para os outros solventes não houve modificação nos resultados.

O ligante 7- Φ -4-MeOsalen foi parcialmente solúvel em todos os solventes testados exceto na água, onde é insolúvel. Depois de aquecido, passa a ser solúvel em etanol, acetona e acetonitrila. Em temperatura ambiente, o complexo [Cu(7- Φ -4-Meosalen)] é parcialmente solúvel em etanol, acetona e acetonitrila e insolúvel em água, tolueno e tetracloreto de carbono, perante aquecimento este composto passa a ser solúvel em acetonitrila e permanece da mesma forma para os outros solventes.

4.1.18.2. ESPECTROS VIBRACIONAIS

TABELA 4.78. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

7-Фsalen	7- ΦEtsalen	7-Φ-4-MeOsalen	Atribuições
-	-	3447	ν(O–H); H ₂ O
3059	3062	3073	v(C H)
3021	3024	3060	V(C-H) _{ar}
	2968	2961	
2943	2926	2934	v _s (C–H) e
2880	2897	2905	$v_{as}(C-H); -(CH_2)-$
	2861	2840	
2560		2618	vOH N
2360	2360	2362	$vO-CO(CO_2)$
1 (00)	1.005	2342	
1608F	1620F	1608F	vC=N
1572f	1607F	15176	
1495m	15/3mF 1407m	151/f	VC=C
1450mf	1497111	1445	
1450mr	1446m	1445m	VC-N
1333m	1336mf		δ-(CH ₂)-
1308m	1309m	1352mF	δО–Н
1259m	1266mf	1261mF	vC–O
_	-	1210mF	$v_{as}C-O-C$
		1029mF	v _s C–O–C
1149m	1232mf	1176mf	v(C-C): v(C-O)
1109mf	1159m	1114F	e v(C–N);
10726	102/mf		~ //
10/3I 10/2m	1080m 1040f	1073f	$\delta C-H_{ar}$
1045III 1016m	10401		S(CH) + SCH
1010111		068	$0 - (CH_2) - + 0C - H_{ar}$
942f	936f	908111 030f	γ C— H_{ar}
894mf		7571	
860f	851mf	861mf	$\delta - (CH_2) - \delta$
829mf	819f	802mf	0 (0112)
766	7555	769mf	
/00F 757E	/55F 722f	751f	
708mE	7231 703mE	720f	γ C– H_{ar}
700mF	669f	703m	
700111	0001	688f	
	623mf	646f	
647m	586m	629f	50.0
542mf	555f	582mi	0C-C
	523f	5511 510f	
495f	487m	3101	
469mf	444f	462f	үС–С
394f		399f	
382f	379f	384f	τ(C–C)
v estiramento; δ d	eformação angular no plano;	γ deformação angular fora do plano; τ	torção das ligações C-C; () _{ar} =

v estiramento; o deformação angular no plano; y deformação angular fora do plano; t torção das ngações C–C; ($)_{ar}$ = aromático, ($)_{im}$ = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

TABELA 4.79. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

[Cu(7-Φsalen)]	[Cu(7- Φ Etsalen)]	[Cu(7-Φ-4-MeOsalen)]	Atribuições	
3424	3421	3316	v(O–H); H ₂ O	
2057	3080			
3056	3059	3061	$v(C-H)_{ar}$	
5018	3025			
2961	2955	2962	$v(\mathbf{C},\mathbf{H})$	
2913	2922	2902	$v_{s}(C-H) \in U$	
2853	2862	2830	$v_{as}(C-11), -(C11_2)-$	
2360	2363	2363	$v \Theta - C \Theta (C \Theta_2)$	
2339	2336	2343	10 60 (602)	
1601F	1599F	1608F	vC=N	
1583mf	1586F	1582F		
1560f	1532m	1555m	vC=C	
1527mF	1496mf	1488mf		
1443mF	1439F	1444m	vC–N	
13/7m	13/2m	1376m	δ_(CH ₂)_	
1347111	1342111	1328mf	0-(CII2)-	
1256f	1271f	1255m	vC–O	
		1219mF	$v_{as}C-O-C$	
-	-	1028m	v _s C–O–C	
1243m	1229mf	1165m	v(C-C): $v(C-O)$	
1143m	1161f	1105m	v(C - N)	
1119f	1137mf	1125111	e v(e 11),	
	1085f	1048f	δC–H _{err}	
	1043f	10101	oe mar	
1028f	1030f		$\delta - (CH_2) - + \delta C - H_{ar}$	
	1010f			
945f	988f	981mf	A H	
918f	930f	930f	$\gamma C - H_{ar}$	
	904f	0.4.1 . 6		
842mf	852f	841mf	δ-(CH ₂)-	
750	8281	<u> </u>		
/52m 701mE	/ 30m	//0I 700mE	$\gamma C-H_{ar}$	
/01IIIF 	620f	/00IIIF		
0471 545f	6201 500f	554f	δC–C	
		5541		
4671 466f	4901 /3/f	462f	үС–С	
		308f		
376f	376f	373f	τ(CC)	
633f	5701	5751		
603f	631f	603f	Cu–N	
517f	516f	501f	Cu 11	
441f	453f	435f	~ -	
419f	411f	418f	Cu–O	
v actiremento: 8 dafo	rmação angular no plano; y dof	ormação angular fora do plano: a torção	das ligações C C() =	

v estiramento; o deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; ()_{ar} = aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

FIGURA 4.67. Espectros vibracionais (Transmitância x Número de onda cm^{-1}) na região do infravermelho para o ligante 7- Φ salen com seu respectivo complexo.

FIGURA 4.68. Espectros vibracionais (Transmitância x Número de onda cm^{-1}) na região do infravermelho para o ligante 7- Φ Etsalen com seu respectivo complexo.

FIGURA 4.69. Espectros vibracionais (Transmitância x Número de onda cm⁻¹) na região do infravermelho para o ligante 7- Φ -4-MeOsalen com seu respectivo complexo.

TABELA 4.80. Comparação dos valores observados para os ligantes com substituintes na posição 7 e o ligante salen.

Ligação	$C=N \text{ cm}^{-1}$	C0 cm ⁻¹	F	R
salen	1636	1283	0	0
7-Фsalen	1606	1259	-0,08	-0,08
7 DEteolon	1620	1266	Φ-0,08	Φ-0,08
/-WEtsalen	1620	1200	Et -0,05	Et -0,10
7 A MaQualan	1609	1261	Φ-0,08	Φ-0,08
/-Ψ-4-MeOsalen	1008	1201	MeO 0,26	MeO -0,51

A presença dos substituintes na posição 7, ou seja no carbono imínico, com efeito doador de elétrons como pode ser visto pelos valores de $\mathbf{F} \in \mathbf{R}$ na tabela provoca um deslocamento das freqüências vibracionais da ligação C=N, conforme o esperado. O efeito destes substituintes se prolongam até a ligação C–O, que também sofre um deslocamento pra uma região de menor energia.

	OH N	C=N	0-Н	С-О	Cu-N	Cu-O	
7-Φsalen	2560	1606	1309	1259	-	-	
					633	441	
[Cu(7- Φ salen)]	-	1601	-	1256	603	441 /10	
					517	417	
7-ΦEtsalen	-	1620	1308	1266	-	-	
[Cu(7 DEteolor)]		1508		1271	631	453	
	-	1390	-	1271	516	411	
7-Φ-4-MeOsalen	2618	1608	1351	1261	-	-	
$[C_{\rm U}(7 \oplus 4 \text{ MoOsolon})]$		1608		1267	603	435	
	-	1008	-	1207	501	418	

TABELA 4.81. Comparação dos valores encontrados para as bandas dos ligantes com substituintes na posição 7 e seus respectivos complexos de cobre, freqüências em cm⁻¹.

Como efeitos da formação do complexo, podemos observar:

O desaparecimento da banda alargada característica de uma ligação de hidrogênio entre a hidroxila e o nitrogênio imínico, indicando a desprotonação do OH. No caso do ligante 7-ФEtsalen foi observada uma banda de pouca intensidade e bastante alargada que dificultou a atribuição de um máximo. Observou-se também o desaparecimento das bandas referentes à deformação angular da ligação O–H.

O deslocamento da ligação C=N para uma região de menor freqüência, como conseqüência da coordenação do nitrogênio e o deslocamento da freqüência de vibração da ligação C–O como conseqüência da coordenação do oxigênio.

O aparecimento das bandas entre 633-501 cm⁻¹ que indicam a coordenação do nitrogênio do grupo imínico ao cobre, o aparecimento das bandas em 453-411 cm⁻¹ que indicam a coordenação do oxigênio ao cobre.

Foram observadas ainda as bandas referentes aos estiramentos assimétricos/simétricos do grupo C–O–C em 1210/1029 cm⁻¹ e 1219/1028 cm⁻¹ para ligante e complexo com substituinte metoxi na posição 4.

4.1.18.3. ESPECTROS ELETRÔNICOS

FIGURA 4.70. Espectros eletrônicos na região do ultravioleta-visível, para os ligantes e seus respectivos complexos.

- (A)Sobreposição ligante/complexo 7-Fenilsalen;
- (B)Sobreposição complexo/complexo em diferentes concentrações;
- (C)Sobreposição ligante/complexo 7-Feniletilsalen;

(D)Sobreposição complexo/complexo em diferentes concentrações;

(E)Sobreposição ligante/complexo 7-Fenil-4-MeOsalen;

(F)Sobreposição complexo/complexo em diferentes concentrações.

TABELA 4.82. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para o ligante, com seu respectivo complexo, bem como as Atribuições tentativas de acordo com a literatura^{2, 16, 20, 78, 79, 106, 161, 162, 164, 170}.

Composto	λ	λ	λ	λ	λ	λ
Composto	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}
7 Equilation	212	225om	257	321	400om	
/-remisaten	76370	65450	43090	17580	881	-
[Cu(7 Equilation)]		226om	245	364		559
		26510	24790	6920	-	804
7 Equilatilation		227	255	320	390	
/-reinietiisaien		24060	18650	7950	942	
[Cu(7 Equilatilation)]		236	274	363		556
		45350	20130	9485	-	315
7 Earil 4 MaQualar	225	233	278	307	384	
/-Fellii-4-MeOsaleli	46800	46620	39280	28590	6240	-
[Cu(7 Eanil 4 MaQaalan)]		234om	287	330		562
[Cu(/-Feliii-4-MeOsaleli)]		18650	21880	10670	-	127
Atribuição	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=N)}$	$n \rightarrow \pi^{*}_{(C=N)}$	$d \rightarrow d$

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

Os espectros eletrônicos dos ligantes quando comparados aos dos complexos, exibem a última (~ 250 nm) das três transições eletrônicas π - π * dos cromóforos C=C claramente deslocadas para uma região de maior freqüência, as outras duas, que ocorrem em menores comprimentos de onda (~220 nm e ~230 nm) aparecem como ombros tornando difícil uma avaliação mais detalhada.

As transições π - π * dos cromóforos C=N sofrem um deslocamento batocrômico devido à coordenação do nitrogênio imínico, comportamento semelhante foi descrito na literatura⁸².

Foi observado o desaparecimento das bandas típicas das transições $n-\pi^*$ dos ligantes e o surgimento da banda alargada de baixa intensidade característica das transições *d-d*.

4.2. COMPLEXOS ASSIMÉTRICOS

4.2.1. COMPLEXOS ASSIMÉTRICOS COM SUBSTITUINTES NA POSIÇÃO 3. METOXI (MeO) E ETOXI (EtO)

FIGURA 4.71. Visão esquemática dos complexos com substituintes na posição 3.(A) metoxi (OCH₃);(B) etoxi (OCH₂CH₃).

4.2.1.1. DADOS GERAIS DE CARACTERIZAÇÃO

TABELA 4.83. Dados gerais de caracterização dos complexos assimétricos [Cu(3-MeOsalsalen)] e [Cu(3-EtOsalsalen)].

Dados Gerais	[Cu(3-MeOsalsalen)]	[Cu(3-EtOsalsalen)]		
Fórmula	CuC ₁₇ H ₁₆ N ₂ O ₃	CuC ₁₈ H ₁₈ N ₂ O ₃		
Peso fórmula (g/mol)	359,87	359,87		
Cor	Marrom	Roxo		
Rendimento % (3, 4 e 5)	82	75		
Ponto de Fusão °C	decompõe (315,9)	264,3-264,9		

Dos testes de solubilidade podemos concluir que o complexo com substituinte metoxi, é insolúvel em água e em solventes orgânicos apolares, é solúvel em acetona, acetonitrila e outros solventes orgânicos polares.

O teste de solubilidade mostrou que o complexo com substituinte etoxi é insolúvel em água, tolueno e tetracloreto de carbono, e solúvel em solventes orgânicos polares como acetona, acetonitrila e etanol, quando observado em temperatura ambiente. O teste realizado com aquecimento mostrou o mesmo comportamento do complexo frente aos solventes testados anteriormente.

FIGURA 4.72. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho para o complexo assimétrico com substituinte metoxi na posição 3 em comparação o correspondente complexo simétrico.

FIGURA 4.73. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho para o complexo assimétrico com substituinte etoxi na posição 3 em comparação com o correspondente complexo simétrico.

TABELA 4.84	4. Atribuições	tentativas	das band	las observ	adas pa	ra os	compostos	na
região do infra	vermelho com	parando co	om os val	ores encor	ntrados 1	na lite	eratura ^{2, 14, 19}), 83,
84, 147, 148, 150, 152	^{2, 154, 156-160} , free	jüências en	$n \text{ cm}^{-1}$.					

[Cu(3-MeOsalsalen)]	[Cu(3-EtOsalsalen)]	Atribuições
3442mf	3442mf	v(O–H); H ₂ O
3056f	3053f	v(C–H) _{ar}
3002f	No	vC–H _{im}
2920f	2978f	$v_{s}(C-H) e v_{as}(C-H);$
2835f	2914f	-(CH ₂)-
2357f, 2337f	2359f, 2338f	v ₃ O–CO (CO ₂)
1631F	1631F	vC=N
1602f, 1537mf	1600mF, 1535mf	vC=C
1472mf, 1447m	1467m, 1446m	δ _s –(CH ₂)–
1390f	1392mf	vC–N
1342m	1342f	δ _s –(CH ₂)–
1307m	1311m	vC–O
1242f	1238f	v _{as} C–O–C
1095mf	1085m	v _s C–O–C
1220mf	1151f	v(C–C); v(C–O)
1151f	1118m	e v(C–N);
979f	976f, 954f	γ C– H_{im}
899f, 861f, 772mf	904f, 852f	δ-(CH ₂)-
739mf	763mf, 740mf	$\gamma C-H_{ar}$
No	643f, 579f	δC–C
No	396f, 372f	τ(C–C)
622mf, 513f, 368f	621mf, 511f, 347f	Cu–N
462f, 430f	466f, 420f	Cu–O
v estiramento; δ deformação angular no	plano; γ deformação angular fora do plano	p; τ torção das ligações C–C; () _{ar} =

v estiramento; δ deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; ()_{ar} = aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

O efeito do substituinte na posição 3 do anel aromático é igual ao que foi discutido em relação aos compostos simétricos correspondentes, porém fica menos evidente nesta classe de compostos, pois apenas um anel tem substituição tornando seus efeitos menos perceptíveis.

Foram observadas os estiramentos característicos dos grupos C–O–C, as deformações assimétricas na região de 1240 cm⁻¹ e 1238 cm⁻¹ e as simétricas aparecem próximas a 1095 cm⁻¹ e 1085 cm⁻¹ para metoxi e etoxi respectivamente.

Os espectros dos complexos assimétricos são muito parecidos com os espectros dos complexos simétricos correspondentes.

As bandas que caracterizam a formação dos complexos C=N, C–N, C–O, Cu–N e Cu–O podem ser observadas na tabela 4.84.

FIGURA 4.74. Espectros eletrônicos na região do ultravioleta-visível para os complexos assimétricos. (a)[Cu(3-MeOsalsalen)]; (b)[Cu(3-EtOsalsalen)].

TABELA 4.85. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para os complexos em comparação com os respectivos complexos simétricos, e as Atribuições tentativas de acordo com a literatura^{2, 16, 20, 78, 79, 106, 161, 162, 164, 170}

Composto	λ	λ	λ	λ	λ
Composto	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}
$[Cu(2 M_{2} O_{22}]an)]$		238	279	368	540
[Cu(5-MeOsalen)]		40360	24580	6089	226
$\left[C_{\rm W}(2,{\rm MeO}_{\rm aclaslaw})\right]$	229om	240	275	364	563
[Cu(3-MeOsaisalen)]	39100	40300	19800	8830	352
[Cu(colon)]	232	246	273	361	568
[Cu(salen)]	67630	68240	73210	14830	413
[Cu(2 EtOsolooloo)]	230om	241	276	364	559
[Cu(3-ElOsaisalell)]	38900	39600	20500	8070	261
$[C_{\rm H}/2 \ E_{\rm f}O_{\rm hol}]$		239	281	372	562
[Cu(3-ElOsalen)]		40360	24580	6089	331
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=N)}$	$d \rightarrow d$

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

Segundo Matsushita e Shono¹⁹¹ todas as transições dos complexos assimétricos aparecem entre as do complexo sem substituinte e do complexo simétrico correspondente. De fato podemos verificar que isto se aplica a estes complexos assimétricos com substituintes na posição 3.

Os espectros dos complexos assimétricos apresentam três transições entre 200 nm e 280 nm que foram identificadas como sendo as transições π - π * dos cromóforos C=C do anel, que aparecem deslocadas quando comparadas com o complexo sem substituição.

As transições π - π * dos cromóforos C=N foram identificadas em regiões de maior energia que as freqüências dos mesmos cromóforos nos complexos simétricos com os correspondentes substituintes.

As transições correspondentes aos elétrons d do metal foram identificadas na região de 560 nm, ligeiramente deslocadas se comparadas com o complexo sem substituição.

4.2.2. COMPLEXOS ASSIMÉTRICOS COM SUBSTITUINTES NA POSIÇÃO 4. METOXI (MeO), HIDROXI (OH) E DIETILAMINA (DEA)

FIGURA 4.75. Visão esquemática dos complexos com substituinte na posição 4.
(A) [Cu(4-MeOsalsalen)];
(B) [Cu(4-OHsalsalen)];
(C) [Cu(4-DEAsalsalen)].

4.2.2.1. DADOS GERAIS DE CARACTERIZAÇÃO

Dados Gerais	[Cu(4- MeOsalsalen)]	[Cu(4- OHsalsalen)]	[Cu(4- DEAsalsalen)]				
Fórmula	CuC ₁₇ H ₁₆ N ₂ O ₃	CuC ₁₆ H ₁₄ N ₂ O ₃	CuC ₂₀ H ₂₃ N ₃ O ₂				
Peso fórmula (g/mol)	359,87	345,84	400,96				
Cor	vinho	Marrom	Marrom				
Rendimento %	73	61	58				
Ponto de Fusão °C	253,6-254-5	Decompõe (304,6)	242,3-243,8				

TABELA 4.86. Dados gerais de caracterização dos complexos assimétricos com substituinte na posição 4.

Pelo teste de solubilidade foi observado que o complexo com substituinte hidroxi é insolúvel em água e nos solventes orgânicos apolares testados, é parcialmente solúvel em etanol e acetona e solúvel em acetonitrila. Após o aquecimento o complexo passou a ser solúvel em acetona e parcialmente solúvel em tolueno.

O teste do complexo com substituinte dietilamina se mostrou idêntico em temperatura ambiente e perante aquecimento. O complexo é solúvel em acetona e acetonitrila parcialmente solúvel em etanol e tolueno e insolúvel em água e tetracloreto de carbono.

4.2.2.2. ESPECTROS VIBRACIONAIS

FIGURA 4.76. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho para o complexo assimétrico com substituinte metoxi na posição 4 em comparação com o complexo correspondente simétrico.

FIGURA 4.77. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho para o complexo assimétrico com substituinte hidroxi na posição 4 em comparação com o complexo correspondente simétrico.

FIGURA 4.78. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho para o complexo assimétrico com substituinte dietilamina na posição 4 em comparação com o complexo correspondente simétrico.

Como foi visto anteriormente, a influência do substituinte na posição 4 recai principalmente sobre o grupo imino (C=N). Para estes compostos podemos observar que a banda característica da deformação axial da ligação C=N segue o mesmo padrão dos correspondentes complexos simétricos aparecendo deslocada para uma região de menor freqüência quando comparada com o complexo simétrico sem

substituinte, e ainda exibe desdobramentos ou alargamentos por influência da diferença entre as ligações C=N, que não são mais equivalentes.

As principais bandas para caracterização dos complexos (C=N, C–N, C– O, Cu–N, Cu–O) podem ser vistas na Tabela 4.87 abaixo.

TABELA 4.87. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

[Cu(4-MeOsalsalen)]	[Cu(4-OHsalsalen)]	[Cu(4-DEAsalsalen)]	Atribuições	
3519f	3380f	3409mf	ν(O–H); H ₂ O	
No	3046f	No	$v(C-H)_{ar}$	
3018f	3018f	No	ν (C–H) _{im}	
2040f	2012f	2969f	$v_{s}(C-H) e$	
29401 2940f	29131 2950f	2920f	$v_{as}(C-H)$	
28401	28501	2862f	-(CH ₂)-	
2360f	2357f	2358f	(0,0,0)	
2338f	2336f	2336f	$V_3 O - CO(CO_2)$	
1(20)	1646F	1631mf		
1629F	1631F	1598F	VC=N	
1606F	1599F	1536f	vC=C	
1529mF	1538mf	1514mf		
1469mf	1468f	1468f	δ _s -(CH ₂)-	
1444m	1448m	1448mf		
1390mf	1388f	1386f	vC–N	
1342f	1335mf	1345f	δ_s –(CH ₂)–	
1301mf	1305f	1306f	vC–O	
1263f			$v_{as}C-O-C$	
1029f	-	-	v _s C–O–C	
	1225mf	1250m		
1122m	1192mf	1230III 1104f	V(C-C);	
	1141f	11941	V(C-O)e	
	1125mF	1119mF	v(C–N);	
No	1052f	No	δC–H _{ar}	
978f	978f	978f	γC–H _{im}	

	Resultados e	DISCUSSAO	
905f	903mf		
851f	826f	δ-(CH ₂)-	
755mf	759mf		
734f	No	δ-(CH ₂)-	
No	703f	γC–H _{ar}	
647f	584f	δC–C	
No	No	γC–C	
280f	No	$\tau(\mathbf{C},\mathbf{C})$	
3091	INO	$\eta(\mathbf{C}-\mathbf{C})$	
617mf	619m		
570f	528f	Cu–N	
348f	391f		
466f	463f	C O	
439f	420f	Cu–O	
	905f 851f 755mf 734f No 647f No 389f 617mf 570f 348f 466f 439f	No No 389f No 647f 584f No No 389f No 617mf 619m 570f 528f 348f 391f 466f 463f 439f 420f	

Pogultadog o Digguação

v estiramento; δ deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; ()_{ar} = aromático, () $_{im}$ = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

4.2.2.3. ESPECTROS ELETRÔNICOS

FIGURA 4.79. Espectros eletrônicos na região do ultravioleta-visível para os complexos assimétricos.(A)[Cu(4-MeOsalsalen)], (B)[Cu(4-OHsalsalen)], (C)[Cu(4-DEAsalsalen)].

TABELA 4.88. Coeficientes de extinção molar calculados e máximos de absorção na região do ultravioleta-visível para os complexos em comparação com o complexo simétrico sem substituição, bem como as Atribuições tentativas de acordo com a literatura^{2, 16, 20, 78, 79, 106, 161, 162, 164, 170}.

Composto	λ	λ	λ	λ	λ
Composto	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}
[Cu(4-MeOsalsalen)]	231	245sh	275	351	554
	47700	41600	25600	1300	280
[Cu(4-OHsalsalen)]	231		271	357	562
	17200		7580	4800	201
$\left[C_{12}(A, \mathbf{D}\mathbf{E}, \mathbf{A}, \mathbf{a}, 1, \mathbf{a}, 1, \mathbf{a}, \mathbf{b})\right]$	229		272	351	559
[Cu(4-DEAsaisaieii)]	32150		15670	2430	442
[Cu(salen)]	232	246	273	361	568
	67630	68240	73210	14830	413,6
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$d \rightarrow d$
$(nm)_{10} (I_{10}mol^{-1} om^{-1})$					

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

Os espectros eletrônicos para os complexos assimétricos com substituintes na posição 4 são muito parecidos entre si no aspecto geral, e todos diferem dos espectros dos complexos simétricos com os mesmos substituintes.

A influência do substituinte na posição 4 recai principalmente sobre a ligação C=N, o que pode ser confirmando observando as transições π - π * para os cromóforos C=N que apresentam um deslocamento hipsocrômico quando comparadas com as transições correspondentes no complexo sem substituições. As transições *d*-*d*

também sofrem influência da alteração do ambiente eletrônico no grupo imino e aparecem deslocadas.

As transições correspondentes aos cromóforos C=C foram identificadas na região entre 229 nm e 275 nm em comprimentos de onda muito próximos dos atribuídos aos mesmos cromóforos no complexo sem substituição.

4.2.3. COMPLEXOS ASSIMÉTRICOS COM SUBSTITUINTES NA POSIÇÃO 5. METOXI (MeO), NITRO (NO₂), CLORO (Cl) E BROMO (Br)

FIGURA 4.80. Visão esquemática dos complexos com substituinte na posição 4. (A) [Cu(5-NO₂salsalen)];

(B) [Cu(5-Brsalsalen)].

4.2.3.1. DADOS GERAIS DE CARACTERIZAÇÃO

TABELA 4.89. Dados gerais de caracterização dos complexos assimétricos com substituinte metoxi e nitro na posição 5.

Dados Gerais	[Cu(5-MeOsalsalen)]	[Cu(5-NO ₂ salsalen)]
Fórmula	CuC ₁₇ H ₁₆ N ₂ O ₃	CuC ₁₆ H ₁₃ N ₃ O ₄
Peso fórmula (g/mol)	359,87	374,84
Cor	verde	Marrom
Rendimento %	71	61
Ponto de Fusão °C	281,4-281,8	decompõe(310,7)

TABELA 4.90. Dados gerais de caracterização dos complexos assimétricos com substituinte cloro e bromo na posição 5.

Dados Gerais	[Cu(5-Clsalsalen)]	[Cu(5-Brsalsalen)]
Fórmula	CuC ₁₆ H ₁₃ N ₂ O ₂ Cl	CuC ₁₆ H ₁₃ N ₂ O ₂ Br
Peso fórmula (g/mol)	364,29	408,74
Cor	Verde	Cinza
Rendimento %	69	72
Ponto de Fusão °C	299,9-300,5	285,3-286,2

Observou-se que o complexo com substituinte nitro apresenta solubilidade em solventes orgânicos polares, tais como etanol, acetona e acetonitrila, nos solventes orgânicos apolares testados o composto apresentou-se solúvel em tolueno e parcialmente solúvel em tetracloreto de carbono. No teste para água demonstrou ser insolúvel.

Para o complexo com substituinte cloro, o teste de solubilidade mostrou que este composto segue a tendência de solubilidade em solventes orgânicos polares (etanol acetona e acetonitrila), sendo insolúvel em água, e assim como o complexo
anterior apresenta uma característica diferente dos demais sendo solúvel em tolueno e parcialmente solúvel em tetracloreto de carbono.

O resultado do teste de solubilidade para o complexo com substituinte bromo varia em relação aos resultados observados até agora, o complexo demonstrou ser solúvel em todos os solventes testados, polares e apolares (etanol, acetona, acetonitrila, tolueno e tetracloreto de carbono), exceto no caso da água onde este composto apresenta uma solubilidade parcial.

4.2.3.2. ESPECTROS VIBRACIONAIS

FIGURA 4.81. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho para o complexo assimétrico com substituinte metoxi na posição 5 em comparação com o complexo similar simétrico.

FIGURA 4.82. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho para o complexo assimétrico com substituinte nitro na posição 5 em comparação com o complexo similar simétrico.

FIGURA 4.83. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho para o complexo assimétrico com substituinte cloro na posição 5 em comparação com o complexo similar simétrico.

FIGURA 4.84. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho para o complexo assimétrico com substituinte bromo na posição 5 em comparação com o complexo similar simétrico.

Os complexos com o substituinte na posição 5 exibem algumas características que podem ser atribuídas à substituição assimétrica, foram observados desdobramentos (duas outras bandas em freqüências próximas) das bandas correspondentes às ligações C=N, para os substituintes 5-MeO e 5-Cl, o desdobramento das bandas correspondentes às deformações da ligação C–O, para todos os complexos exceto o 5-NO₂ que tem uma banda intensa e alargada nesta região devido à sobreposição das deformações da ligação C–O com as do grupo NO₂, que aparecem nesta mesma freqüência, e ainda o desdobramento das bandas correspondentes às deformações angulares da ligação C–H do grupo imino (γ C–H_{im}) para todos os complexos com substituintes na posição 5. Para os outros complexos em estudo estes desdobramentos também devem ter ocorrido, mas por efeito de acoplamentos, as bandas correspondentes podem ter sido deslocadas para regiões de maior ou menor freqüência tornando sua identificação muito difícil.

As deformações características de cada substituinte foram identificadas:

- v_{as}C-O-C; v_sC-O-C 1261; 1035 cm⁻¹; - v(N=O)₂ ArNO₂ 1309 cm⁻¹;

- vC–Br 684 cm⁻¹; - vC–Cl 756 cm⁻¹;

E as deformações das ligações que caracterizam a formação do complexo (C=N, C-N, C-O, Cu-N, Cu-O) podem ser vistas na tabela 4.90 abaixo.

TABELA 4.91. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

[C (F	, nequener	[O/E	[C (5	
[UU(5- MaQaalaalan)]	[UU(5- NO calcalor)]	[Cu(5- Classicaler)]	[UU(5- Presidential and 1	Atribuições
MeOsaisaien)	NO ₂ saisaien)]	Cisaisalen)]	brsaisaien)	_
3415f	3440mf	3417f	3444f	v(O–H); H ₂ O
No	3058f	3048f	3045f	$v(C-H)_{ar}$
3018f	3020f	3016f	3014f	$v(C-H)_{im}$
2926f	2921f	2923f	2914f	$v_{s}(C-H) e v_{as}(C-H)$
2829f	2854f	2850f	2852f	-(CH ₂)-
1647F	16255	1648F	1/200	
1633F	1035F	1633F	1629F	VC=N
1600f	1600F	1598m	1600mf	C-C
1537mF	1522m	1531m	1523m	VC=C
14700	1492f	1450 - F	1449	
14/0F	1468f	1430IIIF	1448IIIF	δ_{s} –(CH ₂)–
1450111	1448m	14201	14211	
1386mf	1388m	1382mf	1379m	vC–N
1350mf	No	1347f	1344f	δ _s -(CH ₂)-
1333f	1200E	1332f	1332f	C. O
1299mf	1309F	1301mf	1311m	vC-0

	Resu	ltados e	Discussão
1242f	1283f	1238f	$u(\mathbf{C}, \mathbf{C})$
1195f	1193f	1193f	V(C-C);
1146f	1147f	1145f	v(C-O)e
1127f	1128f	1128f	V(C-N);
1105mf	1087f	1087mf	SC U
1054f	1051f	1051mf	οC-Π _{ar}
975f	977f	977f	VC H
946f	953f	953f	$\gamma C - \Pi_{im}$
902f	902f	900mf	
837f	831mf	825mf	δ-(CH ₂)-
790f	791f	792f	
756m	756m	756m	wС Ц
697mf	705m	684m	$\gamma C - \Pi_{ar}$
654f	640f	617f	8C C
593f	569f	04/1	0C-C
518f	502f	503f	γC–C
296f	389f	393f	$\tau(\mathbf{C},\mathbf{C})$
3801	369f	374f	
617mf	617mf	617f	
01/III 254f	548f	570f	Cu–N
3341	343f	347f	
466f	466f	464f	
453f	448f	449f	Cu–O
	1242f 1195f 1146f 1127f 1105mf 1054f 975f 946f 902f 837f 790f 756m 697mf 654f 593f 518f 386f 617mf 354f 466f 453f	Resu1242f1283f1195f1193f1146f1147f1127f1128f1105mf1087f1054f1051f975f977f946f953f902f902f837f831mf790f791f756m756m697mf705m654f640f593f569f518f502f386f389f354f548f354f343f466f466f453f448f	Resultados e1242f1283f1238f1195f1193f1193f1146f1147f1145f1127f1128f1128f1105mf1087f1087mf1054f1051f1051mf975f977f977f946f953f953f902f902f900mf837f831mf825mf790f791f792f756m756m756m697mf705m684m654f640f593f569f386f369f386f369f354f548f570f354f466f466f466f466f453f448f449f

~ ~ · · <u>,</u> _

v estiramento; δ deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; ()_{ar} = aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

4.2.3.3. ESPECTROS ELETRÔNICOS

FIGURA 4.85. Espectros eletrônicos na região do ultravioleta-visível para os complexos assimétricos. (A)[Cu(5-MeOsalsalen)], (B)[Cu(5-NO₂salsalen)], (C)[Cu(5-Clsalsalen)], (D)[Cu(5-Brsalsalen)].

TABELA 4.92. Coeficientes de extinção molar calculados e máximos de absorção para os complexos em comparação com o complexo simétrico sem substituição, bem como as Atribuições tentativas de acordo com a literatura^{2, 16, 20, 78, 79, 106, 161, 162, 164, 170}.

Composto	λ	λ	λ	λ	λ
Composto	E _{max}	٤ _{max}	٤ _{max}	٤ _{max}	E _{max}
[Cu(5 MaQaalaalan)]	232		275	372	569
[Cu(J-weOsaisaieii)]	50200		24200	9910	400
[Cu(5, NO, color local)]	228			364	567
	39000			25700	445
[Cu(5 Classical and)]	199	235	264	364	568
[Cu(J-Cisaisaieii)]	31900	55100	26700	11470	397
[Cu(5 Prealedlap)]			267	364	567
[Cu(J-BIsaisaieii)]			30800	11180	404
[Cu(aalan)]	232	246	273	361	568
	67630	68240	73210	14830	413
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=N)}$	$d \rightarrow d$

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

Dos complexos com substituintes na posição 5 o que mais se assemelha ao complexo sem substituinte é o metoxi, que apresenta duas transições para o cromóforo C=C, e a banda referente às transições *d-d* em posições bem próximas do [Cu(salen)] a banda característica do cromóforo C=N apresenta um deslocamento batocrômico este mesmo deslocamento é observado no espectro simétrico com o mesmo substituinte, porém em maior escala.

A inclusão do cromóforo NO_2 na posição 5 faz com que este esteja em uma orientação *para* com relação ao auxocromo OH, fato que segundo Silverstein¹⁴⁸, irá aumentar a influência na absorção. Esta observação pode ser comprovada ao constarmos o efeito hipercrômico na banda em 364 nm, a qual encobre uma boa parte

do espectro de forma que foi possível observar apenas uma banda referente às transições C=C do anel aromático em 228 nm.

O complexo com substituinte cloro apresenta um deslocamento hipsocrômico para as três bandas referentes às transições π - π * dos cromóforos C=C do anel aromático quando comparadas com as mesmas transições do complexo sem substituições, as transições referentes ao cromóforo C=N e transições *d*-*d* permanecem na mesma região quando comparadas com o [Cu(salen)].

O complexo com bromo como substituinte apresenta uma estrutura pouco definida, com muitos ombros tornando muito difícil a atribuição das bandas π - π^* que se localizam nos menores comprimentos de onda do espectro. As transições π - π^* dos cromóforos C=N e transições *d*-*d* que ocorrem em maiores comprimentos de onda foram identificadas normalmente.

4.2.4. COMPLEXOS ASSIMÉTRICOS COM SUBSTITUINTES NAS POSIÇÕES 3 E 5 SIMULTANEAMENTE. CLORO (Cl), BROMO (Br) E IODO (I)

FIGURA 4.86. Visão esquemática dos complexos com substituinte na posição 4. (A) [Cu(3,5-Clsalsalen)]

(B) [Cu(3,5-Isalsalen)].

4.2.4.1. DADOS GERAIS DE CARACTERIZAÇÃO

TABELA	4.93.	Dados	gerais	de	caracterização	dos	complexos	assimétricos	com
substituint	es Cl,	Br e I na	as posiç	ões	3 e 5.				

Dados Gerais	[Cu(3,5- Clsalsalen)]	[Cu(3,5- Brsalsalen)]	[Cu(3,5- Isalsalen)]	
Fórmula	$CuC_{16}H_{12}N_2O_2Cl_2$	$CuC_{16}H_{12}N_2O_2Br_2$	$CuC_{16}H_{12}N_2O_2I_2$	
Peso fórmula (g/mol)	398,73	487,63	581,63	
Cor	Marrom	Marrom	Marrom	
Rendimento %	69	76	71	
Ponto de Fusão °C	279,5-280,4	276,6-277,3	273,1-274,4	

Os testes de solubilidade resultaram em respostas bastante semelhantes para os três compostos, todos se mostraram insolúveis em água, solúveis em acetona, acetonitrila, e etanol e parcialmente solúveis em tolueno e tetracloreto de carbono, em temperatura ambiente, o teste realizado perante aquecimento não mostrou alteração nos resultados observados anteriormente.

4.2.4.2. ESPECTROS VIBRACIONAIS

FIGURA 4.87. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho comparando o complexo assimétrico com substituintes 3,5-Cl e o correspondente complexo simétrico.

FIGURA 4.88. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho comparando o complexo assimétrico com substituintes 3,5-Br e o correspondente complexo simétrico.

FIGURA 4.89. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho comparando o complexo assimétrico com substituintes 3,5-I e o correspondente complexo simétrico.

Os efeitos do substituinte no anel aromático não muito intensos, pois a substituição ocorre em apenas um dos anéis, ainda assim é possível verificar o deslocamento da freqüência da ligação C–O para uma região mais alta nos três complexos, quando comparada com a freqüência vibracional para a mesma ligação no complexo sem substituinte.

A substituição em apenas um dos anéis também provoca alterações na freqüência vibracional da ligação C=N uma vez que os grupos imino deixam de ser equivalentes, para os complexos com substituinte bromo e iodo é possível verificar o desdobramento da banda correspondente à ligação C=N e o deslocamento das bandas que ocorrem na mesma região para uma região de menor freqüência.

As bandas características dos substituintes Cl, Br e I foram identificadas em 753 cm⁻¹, 705 cm⁻¹ e 644 cm⁻¹ respectivamente.

TABELA 4.94. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

	,		
[Cu(3,5- Clsalsalen)]	[Cu(3,5- Brsalsalen)]	[Cu(3,5- Isalsalen)]	Atribuições
No	3415f	3382f	v(O–H); H ₂ O
3048f	3051f	3035f	ν (C–H) _{ar}
3018f	3015f	No	ν (C–H) _{im}
2914f	2012£	2911mf	$v_{s}(C-H) e v_{as}(C-H)$
2849f	29151	2853f	-(CH ₂)-
2353f	2356f	No	
2330f	2333f	INO	$V_{3}O-CO(CO_{2})$
16400	1638F	1637F	NC N
1040F	1600f	1598mf	VC=N
1600mf	1580f	1567m	
1537mf	1537f	1536m	vC=C
1518mf	1504f	1487mf	
14420	1420mE	1466mf	S (CII)
1443Г	1439ШГ	1434mF	$0_{s} - (C \Pi_{2}) -$
1381f	1377f	1387f	vC–N
1341f	1337f	1333f	δ _s -(CH ₂)-
1313m	1313m	1310mF	vC–O
1210mf	1215f	1222m	v(C–C);
1194f	1194f	1195m	v(C–O) e
1166mf	1152m	1145F	v(C–N);

		<u>Resultados e</u>	Discussão
1113mf	1114mf	1125f	
		1088mf	
1053f	1052f	1044mf	δC-H _{ar}
		1029f	
966f	964f	977f	$\gamma C-H_{im}$
		899mf	
902f	901f	870mf	S (CII)
859f	858f	849f	0-(Сп ₂)-
		789f	
753mF	751mf	755F	wС Ц
687f	705mf	678mF	γ C – Π _{ar}
553f	546f	543f	δC–C
507f	501f	508f	γC–C
		398f	
No	372f	377f	τ(CC)
		366f	
619f	618f	617mf	
602f	598f	595mf	Cu–N
347f	344f	348f	
465f	463f	/159m	
410f	419f	437111	
v estiramento; δ deformação	angular no plano; γ defe	ormação angular fora do plano; τ torção	das ligações C–C; () _{ar} =

v estramento; o deformação angular no plano; y deformação angular fora do plano; t torção das ingações C–C; ()_{ar} = aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

4.2.4.3. ESPECTROS ELETRÔNICOS

FIGURA 4.90. Espectros eletrônicos na região do ultravioleta-visível para os complexos assimétricos.(A) [Cu(3,5-Clsalsalen)], (B) [Cu(3,5-Brsalsalen)], (C) [Cu(3,5-Isalsalen)].

TABELA 4.95. Coeficientes de extinção molar calculados e máximos de absorção para os complexos em comparação com o complexo simétrico sem substituição, bem como as Atribuições tentativas de acordo com a literatura^{2, 16, 20, 78, 79, 106, 161, 162, 164, 170}.

Composto	λ	λ	λ	λ	λ
	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}
[Cu(2.5 Clealedon)]	199	235	268	366	573
	34100	49400	26900	11200	317
$[C_{\rm H}(2.5, \mathbf{D}_{\rm meal}, a_{\rm log})]$	203	237	269	365	566
	28340	42400	24900	10100	226
[Cu(2.5 Isolaslar)]	199	225	242	366	568
[Cu(3,3-Isaisaien)]	42900	50700	47000	11000	225
[Cu(aolon)]	232	246	273	361	568
[Cu(salen)]	67630	68240	73210	14830	413
Atribuição	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=N)}$	$d \rightarrow d$

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

Assim como os complexos com substituintes halogênios na posição 5, os complexos assimétricos com substituinte cloro, bromo e iodo nas posições 3 e 5 simultaneamente apresentam um deslocamento hipsocrômico das bandas referentes às transições π - π * dos cromóforos C=C dos anéis aromáticos quando comparadas com as do complexo simétrico [Cu(salen)].

As transições π - π * dos cromóforos C=N apresentam um pequeno deslocamento para regiões de maior freqüência que as transições destes cromóforos para o complexo sem substituição. Um deslocamento na mesma direção, porém com maior intensidade é observado para os correspondentes complexos simétricos.

Para os complexos com substituinte bromo e iodo, as transições dos elétrons d aparecem próximas às do complexo sem substituinte, o complexo com substituinte cloro exibe esta banda deslocada para uma região de menor energia.

4.2.5. COMPLEXOS ASSIMÉTRICOS COM SUBSTITUINTES NA POSIÇÃO 7. ETIL (Et), FENIL (Φ), FENILETIL (Φ Et) E O COMPLEXO COM SUBSTITUINTE NAS DUAS POSIÇÕES 7 FENIL E 4 METOXI (7- Φ -4-MeO)

FIGURA 4.91. Visão esquemática dos complexos assimétricos com substituinte na posição 7.

(A) [Cu(7-Etsalsalen)]

(B) [Cu(7-Φ-4-MeOsalsalen)]

4.2.5.1. DADOS GERAIS DE CARACTERIZAÇÃO

TABELA 4.96. Dados gerais de caracterização dos complexos assimétricos com substituintes etil, fenil.

Dados Gerais	[Cu(7-Etsalsalen)]	[Cu(7-Øsalsalen)]	
Fórmula	$CuC_{18}H_{18}N_2O_2$	$CuC_{22}H_{18}N_2O_2$	
Peso fórmula (g/mol)	357,89	405,94	

Resultados e Discussão

Cor	Marrom	Verde	
Rendimento %	63	68	
Ponto de Fusão °C	decompõe (190,7)	300,1-300,6	

TABELA 4.97. Dados gerais de caracterização dos complexos assimétricos com substituintes feniletil e fenil-metoxi.

Dados Gerais	[Cu(7- Φ Etsalsalen)]	[Cu(7-Φ-4-MeOsalsalen)]	
Fórmula	$CuC_{24}H_{22}N_2O_2$	CuC ₂₃ H ₂₀ N ₂ O ₃	
Peso fórmula (g/mol)	433,99	435,97	
Cor	Roxo	Marrom	
Rendimento %	72	61	
Ponto de Fusão °C	decompõe (136,9)	347,1-348,4	

Todos os quatro compostos apresentaram solubilidade nos solventes orgânicos polares. Para os solventes apolares observou-se que o complexo com substituinte etil foi solubilizado em tolueno, mas não em tetracloreto de carbono, os complexos com substituinte Φ et e Φ -MeO mostraram-se parcialmente solúveis em tolueno e insolúveis em tetracloreto de carbono, já o complexo com substituinte Φ demonstrou ser solúvel em ambos. Testados em água os complexos se mostraram insolúveis.

Com o aquecimento não foram observadas modificações nas solubilidades dos complexos.

4.2.5.2. ESPECTROS VIBRACIONAIS

FIGURA 4.92. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho comparando o complexo assimétrico com substituinte etil na posição 7 e seu correspondente complexo simétrico.

FIGURA 4.93. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho comparando o complexo assimétrico com substituinte fenil na posição 7 e seu correspondente complexo simétrico.

FIGURA 4.94. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho comparando o complexo assimétrico com substituinte feniletil na posição 7 e seu correspondente complexo simétrico.

FIGURA 4.95. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho comparando o complexo assimétrico com substituinte fenil na posição 7 e metoxi na posição 4 com seu correspondente complexo simétrico.

TABELA 4.98. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

[Cu(7-Φ-4-	[Cu(7-	[Cu(7-	[Cu(7-	Atribuiçãos
MeOsalsalen)]	Φsalsalen)]	ΦEtsalsalen)]	Etsalsalen)]	Atribuições
3445f	3417mf	3390f	3389mf	ν(O–H); H ₂ O
	2055f	3081f	2000f	
3059f	50551 2019f	3055f	50601 2022f	ν (C–H) _{ar}
	50181	3022f	50521	
2970f		2012f	2973f	$v_{s}(C-H) e$
2939f	2929f	29131 2853f	2927f	$v_{as}(C-H)$
2837f		26331	2872f	-(CH ₂)-
2359mf	2358mf	2360f	2358mf	$v \cap C \cap (C \cap c)$
2339f	2336f	2333f	2336f	VO-CO (CO ₂)
1641F	1647mF	1637F	1650mF	vC-N
1602mf	1599F	1598F	1601F	VC-IN
1586mF	1532mf	1535E	1537E	
1538f	1332IIII 1402f	1353F 1403f	1337F 1404f	vC=C
1526m	14921	14931	14741	
1470f	1465mf	1467f	1470m	δ (CH ₂)
1445mf	1443mF	1440m	1442mF	$0_{s} - (C \Pi_{2}) - $
1399f	1396f	1394f	1398mf	vC–N
1367mf	13/6m	13//m	1345m	δ_(CH ₂)_
1345f	154011	1344111	1345111	$\mathbf{U}_{\mathbf{S}}$ (CII ₂)
1305f	1317m	1312mf	1313mf	vC–O
1244m	1241mf	1220f	1252mf	v(C, C)
1244III 1221m	1193mf	12501 1105f	1232IIII 1105mf	V(C-C);
122111	1150mf	11951 1140f	11951111 1140mf	V(C = 0) e
11196	1115mf	11491	11491111	V(C-N);
1080f	1085f	1089f	1050f	SC H
10001	1050f	1029f	10501	oc-m _{ar}
979f	981f	973f	975f	$\gamma C-H_{im}$
905f	912f	902mf	903f	γC–H _{ar}
890f	855f	874f	848f	δ (CH ₂)
848mf	841f	852f	0401	0-(C112)-
755f	753mF	757m	756mF	δC–C
701f	700mf	700mf	537f	
7011 538f	548f	535f	5571 454f	γC–C
	537f	5551	4341	
465f	445f	455f	425f	
4001 300f	398f	301f	388f	τ(C–C)
5771	373f	5711	5001	
618mf	616f	619mf	618mf	
583f	581f	581f	571f	Cu–N
355f	349f	356f	337f	
480f	491f	492f	488f	Cu–O
415f	469f	418f	468f	

v estiramento; δ deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; ()_{ar} = aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

Os substituintes na posição 7 atuam diretamente sobre a ligação C=N, observando os espectros em conjunto com a Tabela 4.98, foram identificadas as bandas características da formação dos complexos e as bandas correspondentes AOS estiramentos assimétricos e simétricos do grupo metoxi em 1244 cm⁻¹ e 1033 cm⁻¹ respectivamente.

Nos correspondentes complexos simétricos as bandas referentes à ligação C=N aparecem em torno de 1600 cm⁻¹, estes mesmos valores foram observados para os complexos assimétricos, porém acompanhados de outra banda em uma freqüência mais alta, por exemplo, podemos observar mais nitidamente no complexo com substituintes 7-fenil-4-MeO as duas deformações distintas para os grupos imino diferentes, a mais baixa (1602cm⁻¹) acoplada com as deformações da ligação C=C dos anéis aromáticos e a mais alta (1641cm⁻¹) com um valor bastante aproximado do complexo simétrico sem substituinte.

O fato de terem sido identificadas as bandas referentes às deformações angulares da ligação C–H do grupo imino, também é comprobatório da substituição em apenas um dos grupos imino.

4.2.5.3. ESPECTROS ELETRÔNICOS

FIGURA 4.96. Espectros eletrônicos na região do ultravioleta-visível para os complexos assimétricos.(A) [Cu(7-Etsalsalen)], (B) [Cu(7-Φsalsalen)], (C) [Cu(7- Φ Etsalsalen)], (D) [Cu(7- Φ -4-MeOsalsalen)].

para os complexos em comparação com o complexo simetrico sem substituição, bem como as Atribuições tentativas de acordo com a literatura ^{2, 16, 20, 78, 79, 106, 161, 162, 164, 170} .							
Composto	λ	λ	λ	λ	λ		
Composto	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}		
[Cu(7 Etcologian)]	233		274	360	558		
[Cu(/-Etsaisalen)]	37600		22300	10180	338		
[Cu(7-Фsalsalen)]	225	246	275	363	563		
	25100	21200	18300	10550	343		
	232		276	362	560		
[Cu(/-\Etsaisaien)]	32500		21700	12150	384		
$[Cu(7 \oplus 4 M_{2} \cap c_{2})]$	225	257	287	354	559		
[Cu(7-Φ-4-MeOsaisaieii)]	20200	15600	14100	11900	409		
$[\mathbf{C}_{\mathbf{u}}(\mathbf{solon})]$	232	246	273	361	568		
[Cu(salell)]	67630	68240	73210	14830	413,6		
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$d \rightarrow d$		

TABELA 4.99. Coeficientes de extinção molar calculados e máximos de absorção

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

O espectro do complexo com substituinte etil, assim como o correspondente complexo simétrico, exibe as transições dos cromóforos C=C e C=N em comprimentos de onda bastante aproximados daqueles observados para o complexo sem substituição. A banda referente às transições d-d aparece deslocada para uma região de menor freqüência em ambos simétrico e assimétrico quando comparados ao [Cu(salen)].

Para o complexo com substituinte fenil a banda referente a transição π - π^* do cromóforo C=C que está localizada na região mais baixa do espectro, aparece deslocada para uma região de menor freqüência, fato que também é observado no complexo simétrico correspondente, as transições dos elétrons *d* também aparecem deslocadas para uma região de menor freqüência como no complexo simétrico [Cu(7- Φ salen)] porém em menor escala.

O substituinte fenil-etil assim como o substituinte etil também tem um espectro que se aproxima bastante do complexo sem substituição e do complexo simétrico correspondente, com deslocamento observado apenas para a transição *d-d*.

O complexo com substituinte metoxi aliado ao fenil apresenta as transições referentes ao cromóforo C=C do anel aromático em comprimentos de onda muito aproximados daqueles encontrados para o complexo simétrico com substituinte metoxi na posição 4. A banda referente às transições do cromóforo C=N aparece em um comprimento de onda intermediário entre o [Cu(salen)] e [Cu(7- Φ -4-MeOsalsalen)].

A banda alargada típica das transições *d-d* aparece deslocada para um comprimento de onda menor, esta tendência geral observada para os complexos simétricos e assimétricos com substituintes na posição 7 nos permite concluir que substituições no carbono do grupo imínico influenciam fortemente o sítio de coordenação modificando a intensidade da distorção da geometria quadrado planar.

4.3. COMPLEXOS TRIDENTADOS

4.3.1. ANÁLISE GERAL DOS VALORES DE ABSORÇÃO ENCONTRADOS PARA OS COMPLEXOS TRIDENTADOS NA REGIÃO DO INFRAVERMELHO

A grande diferença nos espectros de absorção na região do infravermelho dos complexos tetradentados simétricos já discutidos na seção 4.1.1 é a região de maior número de onda onde aparecem às bandas referentes às deformações da ligação N–H.

Uma outra modificação é a inclusão da piridina ocupando o quarto sítio de coordenação no átomo de cobre, porém suas bandas características (C–H aromático, C–C e C–N do esqueleto do anel e C–H angular)¹⁴⁸ podem estar acopladas e superpostas com as outras bandas que ocorrem na mesma região ficando difícil atribuí-las exclusivamente às deformações da piridina.

Uma terceira alteração que se faz notar em comparação com os complexos tetradentados simétricos é a presença do contra-íon perclorato o qual pode ser identificado facilmente através da banda alargada correspondente à deformação axial que ocorre na região de 1090 cm^{-1 152} acompanhada de uma segunda banda na região 620 cm^{-1 152} que também foi observada.

FIGURA 4.97. Espectro vibracional ampliado para os complexos: (a) [Cu(3-MeOsal¹/2en)py]ClO₄ preto, (b) [Cu(3-EtOsal¹/2t-dac)py]ClO₄ azul e (c) [Cu(Hsal¹/2o-Ph) py]ClO₄ vermelho.

Na região de 3400-3000 cm^{-1 1-6} os complexos desta classe de compostos apresentam duas bandas geralmente finas, decorrentes dos estiramentos da ligação N–H.

Em alguns casos é possível observar uma banda larga centrada em torno de 3440 cm⁻¹, esta banda pode ser atribuída às vibrações de deformação axial das hidroxilas (vOH) que ocorrem normalmente na região de 3650-3200 cm^{-1 148}.

Nas regiões compreendidas entre 3150 e 2700 cm⁻¹, entre 1465 e 1375 cm⁻¹ e também entre 1000 e 650 cm⁻¹ são identificadas às deformações características da ligação CH em suas várias possibilidades¹⁴⁷.

Nas faixas entre 1680 e1475 cm⁻¹; 649-621 cm⁻¹; 595-533 cm⁻¹; 509-4833 cm⁻¹; 479-454 cm⁻¹ e 448-380 cm⁻¹ estão localizadas as bandas referentes às várias deformações possíveis das ligações C–C alifáticas e dos anéis aromáticos.

As deformações da ligação C=N podem ser observadas como bandas finas e muito intensas nas vizinhanças de 1640cm⁻¹.

As ligações C–N, C–O e C–C são identificadas por um conjunto de bandas que ocorrem entre $1240 \text{ e } 1020 \text{ cm}^{-1}$.

As deformações para as ligações do cobre com os nitrogênios são encontradas na faixa entre $625-360 \text{ cm}^{-1}$ e com os oxigênios na faixa entre $485-275 \text{ cm}^{-1}$.

4.3.2 COMPLEXOS TRIDENTADOS COM SISTEMA DOADOR ONN, PONTE ETILENODIAMINA (en)

FIGURA 4.98. Visão esquemática dos compostos (a) $[Cu(Hsal¹/2en)py]ClO_4$, complexo sem substituinte; (b) $[Cu(3-MeOsal¹/2en)py]ClO_4$ complexo com substituinte OCH₃ na posição 3 e (c) $[Cu(3-EtOsal¹/2en)py]ClO_4$ complexo com substituinte OCH₂CH₃ na posição 3.

4.3.2.1. DADOS GERAIS DE CARACTERIZAÇÃO

Dados Gerais	[Cu(Hsal ¹ /2en)py]ClO 4	[Cu(3- MeOsal ¹ /2en)py]ClO 4	[Cu(3- EtOsal ¹ /2en)py]ClO 4
Fórmula	CuC ₁₄ H ₁₆ N ₃ O	CuC ₁₅ H ₁₈ N ₃ O ₂	CuC ₁₆ H ₂₀ N ₃ O ₂
Peso fórmula (g/mol)	305,84	335,87	349,89
Cor	Verde	Verde	Lilás

TABELA 4.100. Dados gerais de caracterização dos três complexos tridentados.

Ponto de Fusão °C	228,9-229,6	213,2-214,1	227,7-228,6
Rendimento %	83	79	76
Susceptibilidad e Magnética MB		1,710	

Resultados e Discussão

Os compostos apresentam solubilidades similares nos solventes testados. O primeiro, [Cu(Hsal½en)py], demonstrou ser parcialmente solúvel em água, etanol, acetona e acetonitrila e completamente insolúvel em tolueno e tetracloreto de carbono. Após aquecimento este passou a ser solúvel em acetona, etanol e acetonitrila permanecendo da mesma forma em relação aos outros solventes.

Os outros dois se diferenciam apenas em relação à água, onde são solúveis após aquecimento.

O valor encontrado no teste de susceptibilidade magnética está aproximado do valor relatado para compostos semelhantes com d⁹ elétrons^{4, 191}.

4.3.2.2. ESPECTROS VIBRACIONAIS

FIGURA 4.99. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho para os complexos de cobre tridentados com etilenodiamina na ponte.

Pela figura acima podemos identificar as vibrações características dos complexos incluem a banda em torno de 1640 cm⁻¹ a qual caracteriza a presença do grupo imino, uma banda na região de 1380 cm⁻¹ que caracteriza a ligação C–N. A banda na região de 1320 cm⁻¹, que parece estar encoberta pela banda alargada com centro em 1290 cm⁻¹ no complexo com substituinte metoxi pode ser atribuída a ligação C–O, as bandas na região de menor energia características das ligações Cu–N e Cu–O também foram observadas. Estão atribuídas na Tabela 4.101 abaixo os estiramentos simétricos e assimétricos do grupo C–O–C para os complexos com substituintes metoxi e etoxi, as bandas alargadas na região de 1090 acompanhadas de outra na região de 620 características do perclorato e a faixa onde foram observados os estiramentos típicos das ligações N–H.

TABELA 4.101. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

[Cu(Hsal ¹ /2en)py]	[Cu(3-MeOsal ¹ /2en)py]	[Cu(3-EtOsal ¹ /2en)py]	Atribuições
3442f	No	3446f	v(O–H) H ₂ O
3322f	3319m	3287m	
3300f	3258mf	3196mf	VIN-H
	3117f	2110mf	
3112f	3076f	5110IIII 2054f	ν (C–H) _{ar}
	3051f	30341	
2952f	2977f	2931m	$v_s(C-H) e v_{as}(C-H) -$
2861f	2959f	2857f	(CH ₂)–
No	2358f	2260f	$H \cap C \cap (C \cap)$
INO	2399f	25001	$V_{3}O = CO(CO_{2})$
1635F	1640F	1636F	vC=N
1601mF	1604mf	1600m	C-C
1537m	1554f	1548f	VC=C
1469m	1470mf	1468mf	δ (CH)
1448F	1446mF	1447mf	0-(СП ₂)-
1386f	1382f	1389mf	NC N
1349mf	1342mf	1340f	VC-N
1320mf	1294m	1320mf	vC–O
	1247mf	1245mf	$v_{as}C-O-C$
-	1044f	1042f	v_sC-O-C
1220mf	1226mf	1223mf	v(C–C); v(C–O)
1199mf	1170mf	1177f	e ν(C–N);
1091F	1098mF	1095f	vClO ₄
979f	961f	973f	γC–H _{im}
928f	908f	952f	мС Ц
891f	888f	905f	$\gamma C - \Pi_{ar}$

		Resultados e	e DISCUSSão
857f	851f	848f	δ-(CH ₂)-
774mF	788f	787f	VC II
756mf	747mF	741f	γ C – Π _{ar}
697m	700mF	698m	8C C
575f	579f	560f	0C-C
622mF	621mF	622mF	vClO ₄
424f	426f	427f	$\tau(\mathbf{C},\mathbf{C})$
299f	394f	393f	
537f	544f	522f	Cu N
332f	335f	337f	Cu-N
467f	483f	450f	Cu O
412f	441f	4301	Cu–O

 ν estiramento; δ deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; ()_{ar} = aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

4.3.2.3. ESPECTROS ELETRÔNICOS

FIGURA 4.100. Espectros eletrônicos na região do ultravioleta-visível para os complexos tridentados.

(A) Sobreposição dos espectros do complexo sem substituição [Cu(Hsal¹/2en)py]ClO₄ em duas concentrações;

(B) Sobreposição dos espectros do complexo com substituinte metoxi [Cu(3-MeOsal¹/2en)py]ClO₄ em duas concentrações;

(C) Sobreposição dos espectros do complexo com substituinte etoxi [Cu(3-EtOsal¹/2en)py]ClO₄ em duas concentrações;

Composto	λ	λ λ		λ	λ		
Composito	E _{max.}	Emax.	E _{max.}	Emax.	E _{max.}		
	201	229	269	366	579		
	14220	21060	10620	4440	166		
$[Cy(2, M_{2}, O_{2}, 0]]/(2\pi)$	199	240	278	381	588		
	16890	20840	11170	3040	141		
	201	241	278	378	584		
[Cu(3-ElOsal/2en)py]ClO4	15390	20190	10350	28870	121		
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$d \rightarrow d$		
λ (nm); ε_{max} . (L.mol ⁻¹ .cm ⁻¹)							

TABELA 4.102. Coeficientes de extinção molar e máximos de absorção para os complexos tridentados e as Atribuições tentativas de acordo com a literatura^{2, 83, 106, 162, 164, 166, 170}. Usando acetonitrila como solvente.

Observando os espectros na região do ultravioleta-visível conseguimos identificar as três bandas correspondentes às transições referentes ao cromóforo C=C do anel aromático, as duas de menor energia aparecem nas mesmas regiões que as correspondentes nos complexos simétricos {[Cu(salen)] (232 nm, 273 nm), [Cu(3-MeOsalen)] (238 nm, 279 nm), [Cu(3-EtOsalen)] (239 nm, 281 nm)}.

A banda característica da transição π - π * do cromóforo C=N, sofre um ligeiro deslocamento batocrômico ao ser comparada com a mesma banda nos complexos tetradentados simétricos (361 nm, 368 nm, 372 nm para os complexos sem substituinte, 3-MeO e 3-EtO, respectivamente).

As transições dos elétrons *d* do metal, são caracterizadas pelas bandas de baixa absortividade em comprimentos de onda próximos à 580 nm. Estudos¹³⁸ utilizando difração de raios-X indicam que os complexos deste tipo possuem uma geometria de coordenação quadrado planar fortemente distorcida, com o nitrogênio imínico e o nitrogênio da piridina acima do plano do metal e o nitrogênio do grupo amina e o oxigênio abaixo do plano do metal.

TABELA 4.103. Coeficientes de extinção molar e máximos de absorção para os complexos e as Atribuições tentativas de acordo com a literatura^{2, 83, 106, 162, 164, 166, 170}. Utilizando solvente acetona.

Composto	λ	λ
Composto	E _{max}	ε _{max}
[Cu(Haall/an)pu]ClO	366	579
	6080	161
	375	585
	3690	121
	375	581
	3650	136
Atribuição	$\pi \rightarrow \pi^*_{(C=N)}$	$d {\rightarrow} d$

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

TABELA 4.104. Coeficientes de extinção molar e máximos de absorção para os complexos e as Atribuições tentativas de acordo com a literatura^{2, 83, 106, 162, 164, 166, 170}. Utilizando como solvente etanol.

Composto	λ	λ	λ	λ	λ
Composto	٤ _{max}	٤ _{max}	٤ _{max}	ε _{max}	E _{max}
	224	241	264	365	604
	18600	17500	14900	5770	123
		237	274	375	609
		26300	12840	4080	109
		239	275	377	609
[Cu(5-EiOsal22en)py]CiO4		25100	12700	3890	94
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$d \rightarrow d$

 λ (nm); ε_{max} (L.mol⁻¹.cm⁻¹)

Estudos adicionais foram realizados em acetona e etanol para estes complexos. A mudança de solvente não influencia as transições π - π * do cromóforo C=N e nem as transições π - π * (C=C) do anel aromático exceto para o complexo sem substituição que apresenta a estrutura fina, característica do anel benzênico quando observado em etanol. As transições dos elétrons *d* do metal são afetadas pela mudança no solvente, quando utilizamos etanol ocorre um deslocamento para uma região de maior freqüência.

4.3.3. COMPLEXOS TRIDENTADOS COM SISTEMA DOADOR ONN, PONTE *trans*-1,2-DIAMINOCICLOHEXANO (*t*-dac)

FIGURA 4.101. Visão esquemática dos compostos.

- (A) [Cu(Hsal¹/2t-dac)py]ClO₄, complexo sem substituinte, H em todas as posições;
- (B) [Cu(3-MeOsal¹/2t-dac)py]ClO₄, complexo com substituinte metoxi na posição 3;
- (C) [Cu(3-EtOsal¹/2t-dac)py]ClO₄, complexo com substituinte etoxi na posição 3.

4.3.3.1. DADOS GERAIS DE CARACTERIZAÇÃO

Dados Gerais	[Cu(Hsal ¹ /2t- dac)py]ClO ₄	[Cu(3-MeOsal ¹ /2t- dac)py]ClO ₄	[Cu(3-EtOsal ¹ / ₂ t- dac)py]ClO ₄
Fórmula	CuC ₁₈ H ₂₂ N ₃ O ₅ Cl	CuC ₁₉ H ₂₄ N ₃ O ₆ Cl	CuC ₂₀ H ₂₆ N ₃ O ₆ Cl
Peso fórmula (g/mol)	459,39	489,42	503,44
Cor	Verde	Violeta	Verde
Ponto de Fusão °C	260,5-260,9	223,4-224,1	192,0-193,1
Rendimento %	77	85	80
Susceptibilidade Magnética MB		2,110	

TABELA 4.105. Dados gerais de caracterização para os complexo tridentados.

O valor encontrado no teste de susceptibilidade magnética está aproximado do valor encontrado para compostos semelhantes com um elétron desemparelhado^{4, 191}.

O complexo sem substituição no anel aromático é insolúvel em água e tetracloreto de carbono, parcialmente solúvel em tolueno e etanol e solúvel em acetona e acetonitrila, quando o teste é realizado em temperatura ambiente. Após o aquecimento o complexo passa a ser solúvel em etanol e permanece da mesma forma com relação aos outros solventes.

A solubilidade dos dois complexos com substituintes metoxi e etoxi é bem parecida. Ambos são solúveis em etanol, acetona e acetonitrila. O complexo com substituinte metoxi é parcialmente solúvel em água e tetracloreto de carbono e insolúvel em tolueno mesmo perante aquecimento. O complexo com substituinte etoxi ainda foi solúvel em água e após o aquecimento se mostrou parcialmente solúvel em tolueno e tetracloreto de carbono.

4.3.3.2. ESPECTROS VIBRACIONAIS

FIGURA 4.102. Espectros vibracionais (Transmitância x Número de onda cm⁻¹), na região do infravermelho para os complexos de cobre tridentados com *trans*-1,2-diaminociclohexano na ponte.

TABELA 4.106. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

[Cu(Hsal ¹ /2t-	[Cu(Hsal ¹ /2t- [Cu(3-MeOsal ¹ /2t- [Cu(3-EtOsal ¹ /2t-		A tribuiçãos
dac)py]	dac)py]	dac)py]	Atribuições
No	No	3422mf	ν(O–H) H ₂ O
3296m	3291mf	3329mF	NI II
3218f	3193mf	3273m	VIN-II
3123f	3110mf	3078f	$v(C-H)_{ar}$
2030m	2020m	2973mf	$v_{s}(C-H) e$
2930III 2852f	2930111 2856mf	2932mf	$v_{as}(C-H)$
26551	2630111	2895mf	-(CH ₂)-
1636F	1636F	1645F	vC=N
1599m	1600m	1604m	
1536mF	1546mf	1547mf	VC-C
1467mf	1471mF	1447mF	δ (CH)
1449mF	1445mF	144711116	0-(СП ₂)-
1396m	1208f	1208f 1396m	VC N
1343mF	13701	1338f	VC-IN
1324f	1319m	1310m	vC–O
	1246m	1244m	$v_{as}C-O-C$
-	1041mf	1056mf	v _s C–O–C
1221f			
1193f	1220mF	1223mF	$v(C, C) \cdot v(C, O)$
1146mf	1145mf	1180f	$v(C - C), v(C - O) \in U(C - N)$
1109mf	1120mF	1140f	V(C-IV),
1033mf			
1090mf	1090mF	1088f	vClO ₄
975mf	973mf	968f	$\gamma C-H_{im}$
909m	921f	919f	γ C–H _{ar}

		Resultados	e DISCUSSão
		895f	
850f	860mf	847f	δ-(CH ₂)-
757mF	784f	787f	UC II
735mf	738m	744m	$\gamma C - \Pi_{ar}$
700f	(00	696m	50.0
592f	699m	586f	0C-C
627mF	623m	626m	vClO ₄
521f	509f	527f	үС–С
429f	427f	429f	
395f	393f	394f	((C-C)
562f	560f	548f	Cu N
338f	337f	334f	Cu-IN
467mf	485f	483f	
446f	449f	453f	Cu–O

Degultadag o Digguagão

v estiramento; δ deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; ()_{ar} = aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

A inclusão do ciclohexano na ponte, não provoca grandes alterações no espectro dos complexos, quando comparado com os tridentados com ponte de etilenodiamina.

Os estiramentos da ligação C=N aparecem na região de 1640 cm⁻¹, seguida da banda característica da ligação C-N que aparece desdobrada (1390 cm⁻¹; 1340 cm⁻¹) fato que é explicado pela diferença entre os dois nitrogênios um pertencente ao grupo imínico e o outro ao grupo amino. Foram encontradas as bandas referentes: aos estiramentos da ligação C-O, as bandas características dos estiramentos dos grupos C–O–C dos substituintes, a banda alargada na região de 1090 cm⁻¹ e outra fina na região de 620 cm⁻¹ que indicam a presença do contra-íon ClO₄, e as bandas características das deformações da ligação Cu-N e Cu-O. As tentativas de atribuição com base em dados encontrados na literatura estão na Tabela 4.106.

4.3.3.3. ESPECTROS ELETRÔNICOS

FIGURA 4.103. Espectro eletrônico na região do ultravioleta-visível para os complexos tridentados.

(A) Sobreposição dos espectros do complexo sem substituição [Cu(Hsal $\frac{1}{2t}$ dac)py]ClO₄ em duas concentrações;

(B) Sobreposição dos espectros do complexo com substituinte metoxi [Cu(3-MeOsal¹/2*t*-dac)py]ClO₄ em duas concentrações;

(C) Sobreposição dos espectros do complexo com substituinte etoxi [Cu(3-EtOsal $\frac{1}{2t}$ -dac)py]ClO₄ em duas concentrações;

TABELA 4.107. Coeficientes de extinção molar e máximos de absorção para os complexos tridentados e as Atribuições tentativas de acordo com a literatura^{2, 83, 106, 162, 164, 166, 170}. Usando acetonitrila como solvente.

	λ	λ	λ	λ	λ	λ
Composto	E _{max.}					
[Cu(Hsal ¹ /2t-dac)py]ClO ₄	199	227	243	269	366	594
	19546	23330	23080	11650	4943	99
[Cu(3-MeOsal ¹ / ₂ t-dac)py]ClO ₄	199		242	278	375	587

		<u>Resultados e Discussão</u>				
	25320		24340	12234	3489	131
[Cu(3-EtOsal ¹ /2t-dac)py]ClO ₄	199		239	277	378	587
	33640		30710	15503	4447	175
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=N)}$	$d \rightarrow d$
λ (nm): ε_{max} (L.mol ⁻¹ .cm ⁻¹)						

Os espectros eletrônicos dos complexos com *trans*-1,2diaminociclohexano na ponte apresentam as três transições π - π * dos cromóforos C=C do anel aromático deslocadas para o vermelho se comparadas com o benzeno isolado. Para o complexo sem substituinte, a transição em 243 nm apresenta uma divisão da banda de absorção por influência das transições eletrônicas da piridina que retém ainda um pouco da estrutura fina típica do benzeno, como pode ser visto no espectro eletrônico para a piridina, na figura abaixo.

FIGURA 4.104. Espectro eletrônico típico da piridina¹⁹².

As transições π - π * do cromóforo C=N também aparecem deslocadas para uma região de maior freqüência se comparadas com os complexos tetradentados similares.

As bandas largas de baixa absortividade molar características das transições dos elétrons d do metal aparecem na região próxima a 600nm, das três classes de compostos em estudo neste trabalho, esta série é a que apresenta os valores mais altos. O anel ciclohexano da ponte se encontra na conformação de cadeira, segundo relatos da literatura^{58, 151} este fato pode causar uma maior distorção alterando a geometria de coordenação adotada pelos complexos.
Resultados e Discussão

4.3.4. COMPLEXOS TRIDENTADOS COM SISTEMA DOADOR ONN, PONTE *orto*-FENILENODIAMINA (*o*-Ph)

Resultados e Discussão

FIGURA 4.105. Visão esquemática dos compostos.

- (A) $[Cu(Hsal^{1/2}o-Ph)py]ClO_4;$
- (B) [Cu(3-MeOsal¹/20-Ph)py]ClO₄;
- (C) $[Cu(3-EtOsal^{1/2}o-Ph)py]ClO_4$.

4.3.4.1. DADOS GERAIS DE CARACTERIZAÇÃO

Dados Gerais	[Cu(Hsal ¹ /20- Ph)py]ClO ₄	[Cu(3-MeOsal ¹ /20- Ph)py]ClO ₄	[Cu(3-EtOsal ¹ /20- Ph)py]ClO ₄
Fórmula	CuC ₁₈ H ₁₆ N ₃ O ₅ Cl	CuC ₁₉ H ₁₈ N ₃ O ₆ Cl	CuC ₂₀ H ₂₀ N ₃ O ₆ Cl
Peso fórmula (g/mol)	453,34	483,37	497,39
Cor	Marrom	Verde	Verde
Ponto de Fusão °C	181,2-182,4	205,5-205,8	195,7-197,3
Rendimento %	75	68	67
Susceptibilidade		1,640	

TABELA 4.108. Dados gerais de caracterização para os complexos tridentados.

Magnética MB		

Os três complexos apresentam solubilidades muito parecidas.

Todos são solúveis em acetona e acetonitrila, parcialmente solúveis em água e etanol e insolúveis em tolueno e tetracloreto de carbono. Após aquecimento todos passam a ser solúveis em etanol, e a resposta para os demais solventes continua idêntica à do teste em temperatura ambiente, exceto para o complexo com substituinte metoxi que passa a ser solúvel também em água.

O valor encontrado no teste de susceptibilidade magnética está aproximado do valor encontrado para compostos semelhantes com configuração d^{9 4,} ¹⁹¹

4.3.4.2. ESPECTROS VIBRACIONAIS

FIGURA 4.106. Espectro vibracional (Transmitância x Número de onda cm⁻¹), na região do infravermelho para os complexos de cobre tridentados com *orto*-fenilenodiamino na ponte.

TABELA 4.109. Atribuições tentativas das bandas observadas para os compostos na região do infravermelho comparando com os valores encontrados na literatura^{2, 14, 19, 83, 84, 147, 148, 150, 152, 154, 156-160}, freqüências em cm⁻¹.

[Cu(Hsal ⁴ /20-	[Cu(3-MeOsal ⁴ /20-	[Cu(3-EtOsal ⁴ 20-	Atribuições
	Pn)pyjClO4	Ph)py]ClO4	
<u>N0</u>	<u>3446m</u>	344/mf	$v(O-H) H_2O$
3262m	3200m	3211m	vN–H
<u>3214f</u>	3156f		
3116f	3109f	3106f	ν (C–H) _{er}
3061f			
No	2940f	2976f	$v_s(C-H) e v_{as}(C-H)$
110	2837f	2889f	-(CH ₂)-
2366f	2358f	2359f	$vO-CO(CO_{2})$
2330f	2341f	2341f	vo-co (co ₂)
1607F	1607F	1605F	vC=N
1590f	1540m	1540m	
1533m	1342III 1405m	1342III 1406m	vC=C
1493mf	1495111	1490111	
1465mf	1465f	144 5 m E	S (CII)
1447m	1446mF	1443INF	0-(СП ₂)-
1387m	1391m	1389m	
1355f	1361f	1361f	VC-N
1329mf	1329mf	1327mf	vC–O
	1241mF	1241F	$v_{as}C-O-C$
-	1044m	1043f	v _s C–O–C
1215m	1001	1222mf	
1180mf	1221m	1188m	v(C-C); v(C-O)
1152m	1189m	1113mF	e v(C-N);
1071mF	1108mF	1064mf	vClO ₄
No	976m	978f	vC-Him
926mf	930f	7101	
852f	956f	012mf	vC H
82/mf	811f)121111	$\gamma C - \Pi_{ar}$
024111	0111	8/18f	
No	No	812f	δ-(CH ₂)-
7/8mF	703mf	702mf	
740IIII 721f	7951111 756mE	7921111 756mE	$\gamma C-H_{ar}$
/211 601m	/J0IIIF	/ J0IIIF	<u> </u>
<u> </u>	<u> </u>	<u> </u>	0C-C
<u> </u>	UZJIII Na		
<u> </u>	1N0 4200	3001	<u>γι-ι</u>
430f	4281	42/1	τ(υ-υ)
5271	519f	518t	Cu–N
351t		342t	a ^
466mt	<u> </u>	445t	Cu–O

Resultados e Discussão

v estiramento; δ deformação angular no plano; γ deformação angular fora do plano; τ torção das ligações C–C; ()_{ar} = aromático, ()_{im} = iminico; f = fraca, mf = média fraca, m = média, mF = média forte, F = forte, no = não observada

Os estiramentos da ligação N-H aparecem deslocados para uma região

de menor freqüência devido à maior rigidez da ponte aromática.

Resultados e Discussão

A banda característica da ligação C=N aparece deslocada para uma região de menor energia quando comparada com a mesma banda para os complexos tridentados anteriormente apresentados com ponte alifática ou alicíclica. Este deslocamento ocorre porque a modificação da ponte para um anel aromático produz uma maior rigidez no complexo, e também permite uma extensão da conjugação entre o grupo imino e os dois anéis aromáticos diminuindo a densidade eletrônica sobre o nitrogênio iminico.

O complexo sem substituintes não possui hidrogênios ligados à carbonos alifáticos, de fato não foram detectadas as bandas características destes.

Foram atribuídas duas bandas para os estiramentos da ligação C–N, devido à não equivalência dos dois nitrogênios.

Os estiramentos referentes aos grupos C–O–C e ClO_4 foram identificados e atribuídos na Tabela 4.109, juntamente com deformações das ligações Cu–N e Cu–O.

4.3.4.3. ESPECTROS ELETRÔNICOS

FIGURA 4.107. Espectro eletrônico na região do ultravioleta-visível para os complexos tridentados.

(A) Sobreposição dos espectros do complexo sem substituição [Cu(Hsal $\frac{1}{20}$ -Ph)py]ClO₄ em duas concentrações;

(B) Sobreposição dos espectros do complexo com substituinte metoxi [Cu(3-MeOsal¹/20-Ph)py]ClO₄ em duas concentrações;

(C) Sobreposição dos espectros do complexo com substituinte etoxi [Cu(3-EtOsal $\frac{1}{20}$ -Ph)py]ClO₄ em duas concentrações.

TABELA 4.110. Coeficientes de extinção molar e máximos de absorção para os complexos tridentados e as Atribuições tentativas de acordo com a literatura^{2, 83, 106, 162, 164, 166, 170}. Usando acetonitrila como solvente.

Composto	λ	λ	λ	λ	λ	λ
Composto	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}
	199	226		297	413	577
	33460	18430		13380	8207	160
[Cu(3-MeOsal ¹ /20-	199	230	243	321	424	572
Ph)py]ClO ₄	35250	22853	21073	15280	6099	112
[Cu(3-EtOsal ¹ /20-	199	230	244	323	426	580
Ph)py]ClO ₄	35470	18835	18322	12765	5729	117
Atribuição	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^*_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=C)}$	$\pi \rightarrow \pi^{*}_{(C=N)}$	$d \rightarrow d$

 λ (nm); ε_{max} . (L.mol⁻¹.cm⁻¹)

Uma característica marcante dos espectros eletrônicos para estes compostos é a estrutura fina típica do benzeno que aparece na região de 230 nm para os complexos com substituinte metoxi e etoxi. O surgimento desta estrutura provoca um deslocamento nas transições π - π * (C=C) que ocorrem normalmente na região de 270 nm.

Resultados e Discussão

O efeito da extensão da conjugação entre os anéis aromáticos da ponte e do aldeído possibilitado pela presença do grupo imino, é o deslocamento batocrômico das bandas referentes às transições π - π * do cromóforo C=N.

As transições *d-d* são observadas na mesma região para estes complexos e para os complexos com ponte de etilenodiamina (580 nm), segundo a literatura^{4, 35, 104,138, 193} esta região é indicativa de uma geometria de coordenação quadrado planar com grande distorção se aproximando da tetraédrica.

Resultados e Discussão

4.4. ENSAIOS DE TOXICIDADE

4.4.1. TESTES CITOTOXICOS EM CÉLULAS TRANSFORMADAS POR HPV

O composto escolhido para os testes de atividade antitumoral foi o complexo simétrico [Cu(4-DEAsalen)] pois este estava bem caracterizado, por difração de raios-x além das outras técnicas espectroscópicas.

Através do ensaio de metil-tiazol-tetrazolio (MTT) podemos determinar a atividade metabólica da mitocôndria e correlacionar com as células viáveis após tratamento com agentes quimioterápicos. Trata-se de um ensaio colorimétrico baseado na capacidade das células viáveis em reduzir o sal de MTT, por ação da succinato desidrogenase mitocondrial, e formar cristais de azul de formazam. Apresenta a vantagem de ser um teste rápido, de fácil execução e boa correlação clínica, pois permite a determinação da Concentração Inibitória 50% (IC₅₀) e citotoxicidade de compostos.

Através dos ensaios realizados foram determinadas as concentrações inibitórias IC_{50} . A avaliação destas concentrações nos permite concluir que o complexo possui atividade citotoxica frente às células infectadas com HPV sendo mais eficiente com relação às células infectadas da linhagem HeLa infectadas com HPV-18, pois foram obtidos os mesmos resultados com uma concentração menor de complexo.

Os gráficos que acompanham as tabelas apresentadas à seguir, são ilustrativos do comportamento citotóxico do complexo [Cu(4-DEAsalen)] frente às células do tipo SiHa e Hela. Os valores exatos da porcentagem de células mortas, os quais foram usados para o cálculo de IC₅₀ estão listados nas tabelas 4.111 - 4.115.

TABELA 4.111. Porcentagens de células mortas em função da concentração no testes com células da linhagem SiHa infectadas com HPV 18.

Concentração	% cels. mortas
0,0043	15,6
0,0425	16,8
0,4254	18,3
4,254	36,3
42,54	64,9
425,40	63,8
СР	49,1
CV	14,0

IC₅₀ 7,1uM

TABELA 4.112. Porcentagens de células mortas em função da concentração no testes com células da linhagem SiHa infectadas com HPV 16.

Concentração	% cels. mortas
0,0043	6,6
0,0425	2,3
0,4254	11,7
4,254	28,0
42,54	66,8
425,40	67,0
СР	57,9
CV	4,8

-

IC50 8,4uM

TABELA 4.113. Porcentagens de células mortas em função da concentração no testes com células da linhagem SiHa infectadas com HPV 18.

Concentração	% cels. mortas
1,53	12,2
3,06	32,0
6,13	43,3
12,5	52,8
25,0	52,4
50,0	52,2
100,0	51,7
СР	43,9
CV	5,6

IC₅₀ 10,4uM

Resultados e Discussão

TABELA 4.114. Porcentagens de células mortas em função da concentração no testes com células da linhagem HeLa infectadas com HPV 16.

Concentração	% cels. mortas
1,3	9,3
2,5	14,4
5,0	32,7
10,0	79,0
СР	82,1
CV	7,9

32,1

32,1

58,5

72,0

86,6

86,9

87,9

88,7

88,5

87,9

82,3

15,1

TABELA 4.115. Porcentagens de células mortas em função da concentração no testes com células da linhagem HeLa infectadas com HPV 18.

Os testes in vivo não foram realizados, pois ainda está sendo padronizado um protocolo para a indução do tumor nos camundongos.

4.4.2. TESTES CITOTOXICOS EM CÉLULAS ESPLÊNICAS DE CAMUNDONGOS BALB/c

Os testes realizados com células esplênicas são indicativos da citotoxicidade de linfócitos T. O linfócito T citotóxico, é um importante leucócito que ataca células que se tornam anormais, geralmente tumorais ou infectadas por vírus. As amostras foram testadas em sua capacidade para inibição da proliferação de células esplênicas em concentrações entre 1 e 100 μ g/mL.

Os resultados obtidos estão listados na tabela 4.116.

TABELA 4.116. Resultados obtidos no testes com células esplênicas para os complexos tridentados.

Composto	Citotoxicidade(µg/mL) (a)	% de inibição (b)
[Cu(Hsal ¹ /2en)py]ClO ₄	< 1	-
[Cu(3-EtOsal ¹ /2en)py]ClO ₄	5	25.05
[Cu(3-MeOsal ¹ /2en)py]ClO ₄	5	24.47
[Cu(Hsal ¹ /20Ph)py]ClO ₄	< 1	-
[Cu(3-MeOsal ¹ /20Ph)py]ClO ₄	< 1	-
Saponina (0,05%)		94,6%

(a) maior concentração atóxica* em células esplênicas de camundongos BALB/c;

* as concentrações atóxicas foram definidas como aquelas que causaram uma redução na incorporação com timidina tritiada abaixo de 30% em relação ao controle sem tratamento (células esplênicas sem as substâncias testadas).

(b) comparação da percentagem de incorporação de timidina tritiada nos poços com as moléculas testadas em relação aos poços sem as moléculas testadas.

A saponina (0,05% da saponina com percentual de inibição de 94,6%) que é citotoxica foi utilizada como um controle positivo, os resultados mostram que os compostos com substituintes metoxi e etoxi apresentam uma porcentagem de inibição de 5%, portanto, uma concentração atóxica abaixo de 30%, com relação à saponina. Esta concentração atóxica (5%) dos complexos é um bom indicativo de que o composto pode ser submetido aos testes farmacológicos como agentes quimioterápicos, pois sua toxicidade não irá interferir nos resultados.

Resultados e Discussão

Os outros complexos tridentados apresentam uma citotoxicidade <1% o

que significa que a concentração atóxica está fora do limite de detecção do aparelho.

Considerações Finais

5. Considerações Finais

Considerações Finais

5. CONSIDERAÇÕES FINAIS

Observando todos os resultados apresentados podemos concluir que as sínteses foram bem sucedidas, com rendimentos altamente satisfatórios entre 85% e 61%, os ligantes e complexos sintetizados se apresentam na forma sólida e são estáveis ao ar tanto em solução como na forma cristalina.

As técnicas utilizadas foram eficientes na caracterização dos compostos sintetizados. Utilizando a ferramenta de difração de raios-X, foram determinadas as estruturas inéditas de 3 complexos com ligantes tetradentados do tipo salen, onde o átomo de cobre adota a geometria quadrado planar distorcida. Todos os complexos exibem uma molécula de água próxima ao centro de coordenação.

Com base na análise dos espectros observamos que a substituição no anel aromático influencia fortemente as freqüências vibracionais e eletrônicas modificando o posicionamento das bandas características das ligações C=N e C–O. Na maioria dos compostos a inclusão de substituintes nas diversas posições dos anéis aromáticos, revela a existência de uma competição entre o efeito indutivo, mesomérico e estérico, este fato é observado mais nitidamente nos espectros dos ligantes simétricos, todavia não foi possível estabelecer parâmetros para a predominância de um em relação aos outros.

Na posição 3 existe um deslocamento das freqüências vibracionais da ligação C–O para uma região de menor energia. Nos espectros eletrônicos ocorre o deslocamento das transições características da ligação C=N para uma região de menor energia, causada pela alteração no ambiente eletrônico do anel aromático ao qual o grupo imínico está conjugado.

Na posição 4 o efeito mais intenso é o deslocamento das freqüências vibracionais da ligação C=N para uma região de menor energia, que é também acompanhado por um deslocamento das bandas referentes às transições eletrônicas π - π^* do mesmo grupo.

Considerações Finais

Na posição 5 assim como na posição 3 o efeito mais marcante é o deslocamento das freqüências vibracionais da ligação C–O para regiões de maior ou menor energia dependendo do tipo de efeito indutivo inerente ao substituinte e um deslocamento das transições eletrônicas para uma região de menor energia.

Para as posições 3 e 5 simultaneamente, ocorrem as mesmas modificações observadas com os mesmos substituintes na posição 3 ou 5 isoladamente.

A posição 7 deveria afetar exclusivamente as freqüências da ligação C=N, porém em alguns casos observa-se o efeito da inclusão dos substituintes nesta posição se prolongando até a ligação C–O.

A maioria dos complexos assimétricos exibe também os efeitos da substituição em apenas um anel aromático, porém neste caso os efeitos são bastante sutis e algumas vezes não é possível observá-los.

Os complexos da série dos compostos tridentados apresentam diferenças marcantes nos espectros vibracionais e eletrônicos quando comparados com os complexos tetradentados simétricos análogos, como resultado da mudança na geometria de coordenação que se afasta do quadrado planar e se aproxima da tetraédrica.

Os resultados obtidos nos teste de atividade biológica, demonstram que os compostos que foram submetidos aos testes têm potencial para atuarem como agentes citotóxicos.

O complexo [Cu(4-DEAsalen)] tem atividade citotóxica no combate á células infectadas com HPV, em especial àquelas infectadas com HPV-18 da linhagem HeLa.

Os complexos tridentados $[Cu(3-MeOsal¹/2en)]ClO_4$ e $[Cu(3-EtOsal¹/2en)]ClO_4$ apresentam uma concentração atóxica abaixo de 30% em comparação com a saponina, nos testes realizados com as células esplênicas dos camundongos BALB/c.

5.1. SUGESTÕES PARA TRABALHOS FUTUROS.

Como sugestões para trabalhos futuros ficam, o desenvolvimento de uma rota sintética que possibilite a formação dos ligantes tridentados e ligantes tetradentados assimétricos de maneira simples e com bons rendimentos e também a síntese de compostos tridentados com sistemas doadores mistos como ONO ou ONS.

Na parte experimental, ficam como sugestões a desconvolução dos espectros na região do ultravioleta-visível para uma atribuição mais precisa das freqüências das transições eletrônicas; a realização de estudos com a técnica de ressonância magnética nuclear de ¹H e ¹³C para os ligantes; a aplicação de outras técnicas de caracterização como EPR, CD e espectrometria de massas para que com um maior número de informações possam ser melhor esclarecidas as influências dos substituintes no anel aromático e a aplicação de técnicas termogravimétricas e eletroquímicas, para um melhor entendimento da estrutura dos compostos apresentados neste trabalho.

Além das sugestões anteriores podem ser realizados também, os testes *in vivo* para determinar a possibilidade de atuação como agentes quimioterápicos dos complexos [Cu(4-DEAsalen)], [Cu(3-MeOsal¹/2en)]ClO₄ e [Cu(3-MeOsal¹/2en)]ClO₄ e os testes de outros complexos com relação às suas citotoxicidades e às suas potenciais atividades como agentes quimioterápicos.

Considerações Finais

6. Referências Bibliográficas

01. COZI, P. G. "Metal–salen Schiff base complexes in catalysis: practical aspects" Chem. Soc. Rev., **33**, 2004, 410-421.

02. ARANHA, P. E., SANTOS, M. P. dos, ROMERA, S. & DOCKAL, E. R. "Synthesis, characterization and spectroscopic studies of tetradentate Schiff base chromium(III) complexes" Polyhedron, **26**, 2007, 1373-1382.

03. MIDÕES, A. C. D., ARANHA, P. E., SANTOS, M. P. dos, TOZZO, E., ROMERA, S., SANTOS, R. H. A. & DOCKAL, E. R. "Synthesis, characterization, crystal structure and catalytic property of [Cu(SalAHE)₂] (SalAHE = salicylaldehydeimine-1-hydroxyethane) complex for the oxidation of 3,5-di-tert-butylcatechol" Polyhedron, in press, corrected proof. Available on line 29 october 2007.

04. HOBDAY, M. D. & SMITH, T. D. "N,N'-Ethylenebis(salicylideneiminato) transition metal ion chelates" Coord. Chem. Rev., **9**, 1972-1973, 311-337.

05. SANTOS, M. P., GARCIA, C. V., ROMERA, S. & Dockal, E. R. "Síntese e caracterização de complexos de alumínio(III) com bases de Schiff tetradentadas do tipo salen". Livro de Resumos da 28ª. Reunião Anual da Sociedade Brasileira de Química. Poços de Caldas – MG, 2005. Resumo QI-070.

06. GARCIA, C. V., ROMERA, S., SANTOS, M. P. dos & DOCKAL, E. R. "Estudo de alguns complexos de Al(III) com bases de Schiff tetradentadas tipo ONNO". Anais da VI Jornada Científica da UFSCar, XIII Congresso de Iniciação Científica da UFSCar, São Carlos – SP, 2005. vol. 1, p. 714.

07. LEWINSKI, J., ZACHARA, J., JUSTYNIAK, I. & DRANKA, M. "Hydrogen-bond supramolecular structure of group 13 Schiff base complexes" Coord. Chem. Rev., **249**, 2005, 1185-1199.

08. HOBDAY, M. D. & SMITH, T. D. "Reaction of Indium(III) and Gallium(III) halides with transition-metal ion Schiff-base complexes" J. Chem. Soc., Dalton trans., 1972, 2287-2289.

09. TONIOLO, PATRICIA HELENA & DOCKAL, E. R. "Síntese de compostos de estanho(II) com bases de Schiff tetradentadas do tipo ONNO e sua caracterização". Anais da V Jornada Científica da UFSCar, XII Congresso de Iniciação Científica da UFSCar, 2004, São Carlos, S.P.

10. WILKINSON, G., GILLARD, R. D. & McCLEVERTY, J. A. Comprehensive Coordination Chemistry – The synthesis, reactions, properties & applications of coordination compounds. 1^a ed. New York, Pergamon Press, 1987. vol 2, p. 715-738.

11. MASLEN, H. S., WATERS, T. N. "The conformation of Schiff base complexes of copper(II): A stereo-electronic view" Coord. Chem. Rev., **17**, 1975, 137-176.

12. ELDER, R. C. "Tridentate and unsymmetrical tetradentate Schiff base ligands from salicylaldehydes and diamines: Their monomeric and dimeric Nickel(II) complexes" Aust. J. Chem., **31**, 1978, 35-45.

13. PAHOR, N. B., CALLIGARIS, M., NARDIN, G. & RANDACCIO, L. "N,N'-Ethylenebis(salicylideneimine)" Acta Cryst., **B34**, 1978, 1360-1363.

14. UENO, K. & MARTELL, A. E. "Infrared study of metal chelates of bisacetylacetoneethylenediimine and related compounds" J. Phys. Chem., **59**, 1955, 998-1004.

15. UENO, K. & MARTELL, A. E. "Infrared studies on synthetic oxygen carriers" J. Phys. Chem., 60, 1956, 1270-1275.

16. UENO, K & MARTELL, A. E. "Ultraviolet and visible absorption spectra of metal chelates of bisacetylacetoneethylenediimine and related compounds" J. Phys. Chem., **61**, 1957, 257-261.

17. MARTELL, A. E., BELFORD, R. L. & CALVIN, M. "Influence of fluorine substitution on the properties of metal chelate compounds - II" J. Inorg. Nucl. Chem., **5**, 1958, 170-181.

18. TEYSSIE, P. & CHARETTE, J. J. "A nuclear magnetic resonance proof of phenol-imine form in isopropylsalicylaldimine" Spectrochim. Acta, **19**, 1963, 1275-1279.

19. TEYSSIE, P. & CHARETTE, J. J. "Physico-chemical properties of co-ordinating compounds – III. Infra-red spectra of N-salicylidene-alkylamines and their chelates" Spectrochim. Acta, **19**, 1963, 1407-1423.OK

20. CHARETTE, J. J., FALTLHANSL, G. & TEYSSIE, P. "Physico-chemical properties of coordinating compounds – IV. Solvation equilibria of Schiff bases" Spectrochim. Acta, **20**, 1964, 597-618OK

21. FREEDMAN, H. H. "Intramolecular H-bonds. I. A spectroscopic study of the hydrogen bond between hydroxyl and nitrogen" J. Am. Chem. Soc., **83**, 1961, 2900-2905.

22. YILDIZ, M., KILIÇ, Z. & HÖKELEK, T. "Intramolecular hydrogen bonding and tautomerism in Schiff bases. Part I. Structure of 1,8-di[N-2-oxyphenyl-salicylidene]-3,6-dioxaoctane" J. Mol. Struct., **441**, 1998, 1-10.

23. NAZIR, H., YILDIZ, M., YILMAZ, H., TAHIR, M. N. & ULKU, D. "Intramolecular hydrogen bonding and tautomerism in Schiff bases. Structure of *N*-(2-pyridil)-2-oxo-1-naphthylidenemethylamine" J. Mol. Struct., **524**, 2000, 241-250.

24. DEMIRELLI, H., TÜMER, M. & GÖLCÜ, A. "Synthesis and characterization of polydentate Schiff base ligands and their complexes" Bull. Chem. Soc. Jpn., **79**(6), 2006, 867-875.

25. McCLEVERTY, J. A. & MEYER, T. J. Comprehensive Coordination Chemistry II – From biology to nanotechnology. 2^a ed., Elsevier Ltd, 2003. vol 1, p. 411-446.

26. JAFFÉ, H. H. "A reexamination of the Hammett equation" Chem. Rev., 53, 1953, 191-254.

27 TAFT, R. W. "Polar and steric substituent for aliphatic and *o*-benzoate groups from rates of esterification and hydrolysis of esters" J. Am. Chem. Soc., **74**, 1952, 3120. Apud: TAVARES, L. C. & FERREIRA E. I "Relações quantitativas estrutura–atividade: Fundamentos e aplicação da análise de Hansch" Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil. In: http://www.iupac.org/publications/cd/medicinal_chemistry/ acessado em 18/11/2007.

28. SWAIN, C. G. & LUPTON, E. C. "Field and ressonance components of substituent effects" J. Am. Chem. Soc. **90**, 1968, 4328. Apud: TAVARES, L. C. & FERREIRA E. I "Relações quantitativas estrutura–atividade: Fundamentos e aplicação da análise de Hansch" Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil. In: http://www.iupac.org/publications/cd/medicinal_chemistry/ acessado em 18/11/2007.

29 HANSCH, C., SAMMES, P. G. & TAYLOR, J. B. *Comprehensive Medicinal Chemistry: The Rational Design, Mechanistic Study and Therapeutic Application of Chemical Compounds*, Vol. 4, Pergamon Press, Oxford., 1990. Apud: TAVARES, L. C. & FERREIRA E. I "Relações quantitativas estrutura–atividade: Fundamentos e aplicação da análise de Hansch" Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil. In: http://www.iupac.org/publications/cd/medicinal_chemistry/ acessado em 18/11/2007.

30. TAVARES, L. C. & FERREIRA E. I. "Relações quantitativas estrutura-atividade: Fundamentos e aplicação da análise de Hansch" Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil. In: http://www.iupac.org/publications/cd/medicinal_chemistry/ acessado em 18/11/2007.

31. LOPEZ, J., LIANG, S., & BU, X. R. "Unsymmetric chiral salen Schiff bases: A new chiral ligand pool from bis-Schiff bases containing two different salicylaldehyde units" Tetrahedron Lett., **39**, 1998, 4199-4202.

32. SYAMAL, A. & KUMAR, D. "New oxozirconium(IV) complexes of the Schiff bases derived from ethanolamine with salicylaldehyde or substituted salicylaldehyde" J. Less-Common Met., **71**, 1980, 113-117.

33. SYAMAL, A. "New oxovanadium(IV) complexes with Schiff bases derived from salicylaldehyde or substituted salicylaldehyde and 2-amino-ethanetiol or 3-aminothiophenol" Curr. Sci., Letters to the editor, **47**(20) 1978, 759-761.

34. KWIATKOWSKI, M., KWIATKOWSKI, E., OLECHNOWICZ, A., HO, D. M. & DEUTSCH, E. "A convenient synthetic route to the monocondensation products of pentane-2,4-dione and aliphatic α, ω -diamines. Synthesis, X-ray structure and magnetic properties of a trinuclear copper(II) complex with 8-amino-5-aza-4-methyl-3-octene-2-one" Inorg. Chim. Acta, **150**, 1988,65-73.

35. COSTES, J. P. & GARCIA, M. I. F. "Easy synthesis of 'half-units': their use as ligands or as precursors of non-symmetrical Schiff base complexes" Inorg. Chim. Acta, **237**, 1995, 57-63.

36. ROOT, C. A., HOESCHELE, J. D., CORNMAN, C. R., KAMPF, J. W. & PECORARO, V. L. "Structural and spectroscopic characterization of dioxovanadium(V) complexes with asymmetric Schiff base ligands" Inorg. Chem., **32**, 1993, 3855-3861.

37. NOWICKA, B., SAMOTUS, A., SZKLARZEWICZ, J., HEINEMANN, F. W., & KISCH, H. "Oxocyano complexes of molybdenium(IV) and tungsten(IV) with Schiff base ligands derived from salicylaldehyde and aliphatic amines. Crystal structure of [PPh₄]2[Mo(CN)₃O(ensal)]5.5H₂O (Hensal = N-salicylideneethylenediamine)" J. Chem. Soc. Dalton Trans., 1998, 4009–4013.

38. COSTES, J. P. & FENTON, D. E. "Compartmental ligands. Part 6. Transition-metal complexes of a non-symmetric, acyclic, Schiff base derived from heptane-2,4,6-trione,1-(*o*-hydroxyphenyl)butane-1,3-dione, and 1,2-diaminoethane" J. Chem. Soc. Dalton Trans., 1983, 2235-2239.

39. KWIATKOWSKI, E., KLEIN, M. & ROMANOWSKI, G. "The optically active and racemic products of monocondensation of 1,2-diaminopropane and 2,4-pentadione as ligands and precursors for preparation of unsymmetrical Schiff bases and their nickel(II) complexes" Inorg. Chim. Acta, **293**, 1999, 115-122.

40. COSTES J. P., DAHAN, F., DOMINGUEZ-VERA, J. M., LAURENT, J. P., RUIZ, J. & SOTIROPOULOSS, J. "Stereoisomerism in the nickel(II) complexes of a chiral tridentate ligand solid-state and solution study" Inorg. Chem., **33**, 1994, 3908-3913.

41. CHEN, X., FEMIA, F. J., BABICH, J. W. & ZUBIETA, J. "Schiff base chemistry of the {ReO}³⁺ core: structural characterization of the unusual '3+2' complex [ReO(η^3 -OC₆H₄-CH=NC₆H₄-2-S)(η^2 -OC₆H₄C=NC₆H₄-2-S)]" Inorg. Chim. Acta, **307**, 2000, 149-153.

42. SOLIMAN, A. A. & LINERT, W. "Investigations on new transition metal chelates of the 3methoxy-salicylidene-2-aminothiophenol Schiff base" Thermochimica acta, **338**, 1999, 67-75.

43. BELOKON, Y. N., NORTH, M., CHURKINA, T. D., IKONNIKOV, N. S. & MALEEV, V. I. "Chiral salen-metal complexes as novel catalysts for the asymmetric synthesis of α -amino acids under phase transfer catalysis conditions" Tetrahedron, **57**, 2001, 2491-2498.

44. ARDAKANY, M. M., ENSAFI, A. A., NAEIMI, H., DASTANPOUR, A. & SHAMLLI, A. "Highly selective lead(II) coated-wire electrode based on a new Schiff base" Sens. Actuat. B, **96**, 2003, 441-445.

45. KORMALÝ, E. & KÝLIC, E. "N,N'-disalicylidene-1,3-diaminopropane as a selective chelating titrant for copper(II)" Talanta, **58**, 2002, 793-802.

46. CIMERMAN, Z., GALIC, N. & BOSNER, B. "The Schiff bases of salicylaldehyde and aminopyridines as highly sensitive analytical reagents" Anal. Chim. Acta, **343**, 1997, 145-153.

47. FAKHARI, A. R., KHORRAMI, A. R. & NAEIMI, H. "Synthesis and analytical application of a novel tetradentate N_2O_2 Schiff base as a chromogenic reagent for determination of nickel in some natural food samples" Talanta, **66**, 2005, 813-817.

48. KHEDR, A. M., GABER, M., ISSA, R. M. & ERTEN, H. "Synthesis and spectral studies of 5-[3-(1,2,4-triazolyl-azo]-2,4-dihydroxybenzaldehyde (TA) and its Schiff bases with 1,3-diaminopropane (TAAP) and 1,6-diaminohexane (TAAH). Their analytical application for spectrophotometric microdetermination of cobalt(II). Application in some radiochemical studies" Dyes Pigments, **67**, 2005, 117-126.

49. OSHIMA, S., HIRAYAMA, N., KUBONO, K., KOKUSEN, H. & HONJO, T. "Ion-pair extraction behavior of divalent metal cations using neutral di-Schiff base ligands derived from 1,2-cyclohexanediamine and o-phenylenediamine" Talanta, **59**, 2003, 867.

50. DADFARNIA, S., SHABANI, A. M. H., TAMADDON, F. & REZAEI, M. "Immobilized salen (N,N'-bis (salicylidene) ethylenediamine) as a complexing agent for on-line sorbent extraction/preconcentration and flow injection–flame atomic absorption spectrometry" Anal. Chim. Acta, **539**, 2005, 69-75.

51. DIAB, A. S., HATHOOT, A. A., ABDEL-AZZEM, M. & MERZ, A. "Preparation of a novel conducting polymer by electropolymerization of thiophenylidine 8-naphthylamine Schiff-base" Eur. Polym. J., **36**, 2000, 1959-1965.

52. HATHOOT, A. A. "Electro-oxidative polymerization of Schiff-base of 1,8-diaminonaphthaline and 3-acetylthiophene. I. Preparation and study the redox behaviour of the resulting polymer" Eur. Polym. J., **36**, 2000, 1063-1071.

53. QUAN, Z., CHEN, S., LI, Y. & CUI, X. "Adsorption behaviour of Schiff base and corrosion protection of resulting films to copper substrate" Corros. Sci., 44, 2002, 703-715.

54. EHTESHAMZADE, M., SHAHRABI, T. & HOSSEINI, M. G. "Inhibition of copper corrosion by self-assembled films of new Schiff bases and their modification with alkanethiols in aqueous medium" App. Surf. Sci., **252**, 2006, 2949-2959.

55. BELLA, S., FRAGALA, I., LEDOUX, I., & MARKS, T. J. "Role of the metal electronic properties in tuning the second-order nonlinear optical response of coordination complexes. A combined experimental and theoretical investigation of a homologous series of (N,N'-disalicylidene-1,2-phenylenediaminato)M(II) (M = Co, Ni, Cu) complexes" J. Am. Chem. Soc., **117**, 1995, 9481-9485.

56. BELLA, S., FRAGALA, I., MARKS, T. J., & RATNER, M. A. "Large second-order optical nonlinearities in open-shell chromophores. Planar metal complexes and organic radical ion aggregates" J. Am. Chem. Soc., **118**, 1996, 12747-12751.

57. JACOBSEN, E. N., ZHANG, W., MUCI, A. R., ECKER, J. R. & DENG, L. "Highly enantioselective epoxidation catalysts derived from 1,2-diaminocyclohexane" J. Am. Chem. Soc., **113**, 1991, 7063-7064.

58. ROMERA, S. *Complexos de Cobre(II) e Oxovanádio(IV) com Base de Schiff Quiral: Preparação, Caracterização e Alguns Ensaios Catalíticos.* São Carlos, Programa de Pós-Graduação em Química - UFSCar, 2007. Tese de doutorado.

59 KURESHY, R. I., KHAN, N. H., ABDI, S. H. R., IYER, P. & BHATT, A. K. "Enantioselective catalytic epoxidation of nonfunctionalized prochiral olefins by dissymmetric chiral Schiff base complexes of Mn(III) and Ru(III) metal ions II" J. Mol. Catal., **120**, 1997, 101-106.

60. BRUNNER, H. & OPITZ, D. "Enantioselective catalysis. Part 102. Epimerization of glucose and mannose in the presence of nickel(II) complexes of optically active ligands" J. Mol. Catal., **118**, 1997, 273-282.

61. MCGARRIGLE, E. M., MURPHY, D. M. & GILHEANY, D. G. "Ligand tuning in the chromium-salen-mediated asymmetric epoxidation of alkenes" Tetrahedron: Asymmetry, **15**, 2004, 1343-1354.

62. IMANISHI, H. & KATSUKI, T. "Unusual solvent-effect in stereochemistry of asymmetric epoxidation using a (salen)chromium(III) complex as a catalyst" Tetrahedron Lett., **38**, 1997, 251-254.

63. BRANDES, B. D. & JACOBSEN, E. N. "Regioselective ring opening of enantiomerically enriched epoxides via catalysis with chiral Cr(III)(salen) complexes" Synlett., 2001, 1013-1015.

64. JACOBSEN, E. N. "Asymmetric catalysis of epoxi ring-opening reactions" Acc. Chem. Res., **33**, 2000, 421-431.

65. ADAM W., GELACHA, F. G., SAHA-MÖLLER, C. R. & STEGMANN, V. R. "Chemoselective C-H oxidation of alcohols to carbonyl compounds with iodosobenzene catalyzed by (salen)chromium complex" J. Org. Chem., **65**, 2000, 1915-1918.

66. BANDINI, M., COZZI, P. G. & UMANI-RONCHI, A. "Enantioselective catalytic addition of allyl organometallic reagents to aldehydes promoted by [Cr(Salen)]: the hidden role played by weak Lewis acids in metallo-Salen promoted reactions" Tetrahedron, **57**, 2001, 835-843.

67. MALINOWSKA, M., KWIATKOWSKI, P. & JURCZAK, J. "The enantioselective high-pressure Diels–Alder reaction of 1-methoxybuta-1,3-diene with tert-butyldimethylsilyloxyacetaldehyde catalyzed by (salen)Co(II) and (salen)Cr(III)Cl complexes" Tetrahedron Lett., **45**, 2004, 7693-7696.

68. MASTERSON, D. S., HOBBS, T. L. & GLATZHOFER, D. T. "Catalytic enantioselective cyclopropanation of olefins using N-salicylidene-4-amino[2.2]paracyclophane as an asymmetric ligand" J. Mol. Catal. A: Chem., **145**, 1999, 75-81.

69. GAMA, A., FLORES-LÓPEZ, L. A. Z., AGUIRRE, G., PARRA-HAKE, M., SOMANATHAN, R. & COLEB, T. "A study of substituent effects on the enantioselective trimethylsilylcyanation of benzaldehyde catalyzed by chiral Schiff base–titanium(IV) complexes" Tetrahedron: Asymmetry, **16**, 2005, 1167-1174.

70. LU, X.-B., ZHANG, Y.-J., JIN, K., LUO, L.-M. & WANG, H. "Highly active electrophilenucleophile catalyst system for the cycloaddition of CO_2 to epoxides at ambient temperature" J. Catal. **227**, 2004, 537-541.

71. VENKATARAMANAN, N. S., KUPPURAJ, G. & RAJAGOPAL, S. "Metal–salen complexes as efficient catalysts for the oxygenation of heteroatom containing organic compounds—synthetic and mechanistic aspects" Coord. Chem. Rev., **249**, 2005, 1249-1268.

72. GOVINDARAJU, K., RAMASAMI, T. & RAMASWAMY, D. "Chymotrypsin-catalyzed hydrolysis of chromium(III) derivatives of insulin: Evidence for stabilization of the protein through interactions with metal ions" J. Inorg. Biochem., **35**, 1989, 127-135.

73. GOVINDARAJU, K., RAMASAMI, T. & RAMASWAMY, D. "Chromium(III)-insulin derivatives and their implication in glucose metabolism" J. Inorg. Biochem., **35**, 1989, 137-147.

74. CINI, R., CAPUTO, P., INTINI, F. P. & NATILE, G. "Mechanistic and stereochemical investigation of imino ethers formed by alcoholysis of coordinated nitriles: X-ray crystal structures of cis- and trans-Bis(1-imino-1-methoxyethane)dichloroplatinum(II)" Inorg. Chem., **34**, 1995, 1130-1137.

75. a)SAVA, G., ZORZET, S., MESTRONI, G. & ZASSINOVICH, G. "Antineoplastic activity of planar rhodium(I) complexes in mice bearing Lewis lung carcinoma and P388 leukemia." Anticancer Res., **5**, 1985, 249-252.

b) SAVA, G., PACOR, S., CESCHIA, V., ZASSINOVICH, G. & MESTRONI, G. "Inhibition of carrageenin paw edema by pyridinalalkylimine rhodium(I) complexes." Anticancer Res., **9**, 1989, 767-770.

76. VOL'PIN, M., LEVITIN, I. & OSINSKY, S. "New course in the search for antitumor agents: The use of pH-dependent sources of reactive radicals" Angew. Chem., Int. Ed. Engl., **35**, 1996, 2395-2396.

77. BENEDETTI, A. V., DOCKAL, E. R., CHUM, H. L. & RABOCKAI, T. "Electrochemistry of organometallic compounds: Part IV. Oxidations of benzylic derivatives and p-substituted benzylic derivatives of bis(dimethylglyoximato) and bis(salicylaldehyde)o-phenylenediimine cobalt(III) in dimethylformamide" J. Electroanal. Chem., **142**, 1982, 191-199.

78. BENEDETTI, A. V., CILENSE, M., DOCKAL, E. R., BORIN, A. C. & RABOCKAI, T. "Solvent effects on the electrochemical oxidation of [CH₃CO^{III}(Salen)] at different temperatures" Anal. Lett., **19**, 1986, 925-938.

79. CAVALHEIRO, E. T. G., LEMOS, F. C. D., ZUKERMAN-SCHECPTOR, J. & DOCKAL, E. R. "The thermal behaviour of nickel, copper and zinc complexes with the Schiff bases cis- and trans-N,N'-bis(salicylidene)-1,2-ciclohexadiamine (Salcn)" Thermochim. Acta, **370**, 2001, 129-133.

80. FELICIO, R. C., CAVALHEIRO, E. T. G. & DOCKAL, E. R. "Preparation, characterization and thermogravimetric studies of [N,N'-cis-1,2-cyclohexylene bis(salicylideneaminato)]cobalt(II) and $[N,N'-(\pm)-trans-1,2-cyclo-hexylene bis(salicylideneaminato)]cobalt(II)$ " Polyhedron, **20**, 2001, 261-268.

81. LEMOS, F. C. D., MURARO, M., ZUKERMAN-SCHECPTOR, J., CAVALHEIRO, E. T. G. & DOCKAL, E. R. "Thermal decomposition of complexes Manganese(II) and vanadyl with *cis*- and iron(II), manganese(II) and vanadyl with *trans*-N,N'-bis(salicylidene)-1,2-cyclohexanediamine (salcn)" J. Therm. Anal. Cal., **75**, 2004, 599-606.

82. ZAMIAN, J, R. & DOCKAL, E. R. "Tetradentate Schiff base oxovanadium(IV) complexes" Transition Met. Chem. **21**, 1996, 370-376.

83. FELICIO, R. C., SILVA, G. A., CERIDÓRIO, L. F. & DOCKAL, E. R. "Tetradentate Schiff base copper(II) complexes" Synth. React. Inorg. Met.-Org. Chem., **29**, 1999, 171-192.

84. SIGNORINI, O., DOCKAL, E. R., CASTELLANO, G. & OLIVA, G. "Synthesis and characterization of Aquo[N,N'-ethylenebis(3-ethoxysalicylideneaminato)]dioxouranium(VI)" Polyhedron, **15**, 1996, 245-255.

85. ZAMIAN, J. R., DOCKAL, E. R., CASTELLANO, G. & OLIVA, G. "Synthesis and characterization of [N,N'-ethylenebis(3-ethoxysalicylideneaminato)]oxovanadium(IV)" Polyhedron, **14**, 1995, 2411-2418.

86. DOS SANTOS, J. E., DOCKAL, E. R. & CAVALHEIRO, E. T. G. "Synthesis and characterization of Schiff bases from chitosan and salicylaldehyde derivatives" Carbohydr. Polym., **60**, 2005, 277-282.

87. TEIXEIRA, M. F. S., MARINO, G., DOCKAL, E. R. & CAVALHEIRO, E. T. G. "Voltammetric determination of pyridoxine (Vitamin B₆) at a carbon paste electrode modified with vanadyl(IV)–salen complex" Anal. Chim Acta, **508**, 2004, 79-85.

88. TEIXEIRA, M. F. S., DOCKAL, E. R. & CAVALHEIRO, E. T. G. "Sensor for cysteine based on oxovanadium(IV) complex of salen modified carbon paste electrode", Sens. Actuat. B, **106**, 2005, 619-625.

89. LINDER, M.C. "Copper and genomic stability in mammals" Mutat. Res., 475, 2001, 141-152.

90. GAETKE, L. M. & CHOW, C. K. "Copper toxicity, oxidative stress, and antioxidant nutrients" Toxicol., **189**, 2003, 147-163.

91. O'HALLORAN, T., PUFAHL, R., SINGER, C., HUFFMAN, D., MUNSON, G. & OUTEEN, W. "Menkes and Wilson disease: Coordination chemistry of copper chaperone domains" J. Inorg. Biochem., **67**, 1997, 142.

92.SARKAR, B., "Copper transport and its defect in Wilson disease: characterization of the copperbinding domain of Wilson disease ATPase" J. Inorg. Biochem., 79, 2000, 187-191.

93. CHAMBERS, C. & HOLLIDAY, A. K. *Modern Inorganic Chemistry, an intermediate text.* 1^a ed., Butterworths, 1975, p. 409.

94. COTTON, F. A. & WILKINSON, G. Advanced Inorganic Chemistry: a comprehensive text. 6^a. ed., New York, Wiley-Interscience, 1999.

95. WILKINSON, G., GILLARD, R. D. & McCLEVERTY, J. A. Comprehensive Coordination Chemistry: The synthesis, reactions, properties and applications of coordination compounds. 1^aed., Pergamon Books Ltd., 1987. vol 5, p. 605,606.

96. HUANG, J. & XI, Z. Cuihua Xuebao, **10**, 1989, 326. Apud: SAMIDE, M., PETERS, D. G. "Electrochemical reduction of copper(II) salen at carbon cathodes in dimethylformamide" J. Electroanal. Chem., **443**, 1998, 95-102.

97. JIANG, Z., & XI, Z. . Cuihua Xuebao, **12**, 1991, 286. Apud: SAMIDE, M., PETERS, D. G. "Electrochemical reduction of copper(II) salen at carbon cathodes in dimethylformamide" J. Electroanal. Chem., **443**, 1998, 95-102.

98. SAMIDE, M., PETERS, D. G. "Electrochemical reduction of copper(II) salen at carbon cathodes in dimethylformamide" J. Electroanal. Chem., **443**, 1998, 95-102.

99. VELUSAMY, S. & PUNNIYAMURTHY "Copper(II)-catalyzed oxidation of alcohols to carbonyl compounds with hydrogen peroxide" Eur. J. Org. Chem., 2003, 3913-3915.

100. LI, Z., CONSER, K. R. & JACOBSEN, E. N. "Asymmetric Alkene Aziridination with Readily Available Chiral Diimine-Based Catalysts" J. Am. Chem. Soc., **115**, 1993, 5326-5327.

101. SILVA, A. R., FIGUEIREDO, J. L., FREIRE, C. & CASTRO B. "Copper(II) acetylacetonate anchored onto an activated carbon as a heterogeneous catalyst for the aziridination of styrene" Catal. Today, **102-103**, 2005, 154-159.

102. IGLESIAS, A. L., AGUIRRE, G., SOMANATHAN, R. & PARRA-HAKE, M. "New chiral Schiff base-Cu(II) complexes as cyclopropanation catalysts" Polyhedron, **23**, 2004, 3051-3062.

103. BUNCE, S., CROSS, R. J., FARRUGIA, L. J., KUNCHANDY, S., MEASON, L. L., MUIR, K. W., O'DONNELL, M., PEACOCK, R. D., STIRLING, D. & TEAT, S. J. "Chiral Schiff base complexes of copper (II), vanadium (IV) and nickel (II) as oxidation catalysts. X-ray crystal structures of [Cu (R-salpn) (OH₂)] and [Cu (+/-busalcx)]" Polyhedron, **17**, 1998, 4179-4187.

104. JACOB, C. R., VARKEY, S. P. & RATNASAMY, P. "Selective oxidation over copper and manganese salens encapsulated in zeolites" Microporous Mesoporous Mater., **22**, 1998, 465-474.

105. LOULOUDI, K., MITOPOULOU, K., EVAGGELOU, E., DELIGIANNAKIS, Y., & HADJILIADIS, N. "Homogeneous and heterogenized copper(II) complexes as catechol oxidation catalysts" J. Mol. Catal. A: Chem, **198**, 2003, 231-240.

106. ZOLEZZI, S., DECINTI, A. & SPODINE, E. "Syntheses and characterization of copper(II) complexes with Schiff base ligands from ethylenediamine, diphenylethylenediamine and nitro, bromo and methoxy salicylaldehyde" Polyhedron, **18**, 1999, 897-904.

107. LAIDLER, A. & MILNER, D. J. "Asymmetric synthesis of cyclopropane carboxylates: Catalysis of diazoacetate reactions by copper(II) Schiff base complexes derived from α -amino acids" J. Organomet. Chem. **270**, 1984, 121-129.

108. BELOKON, Y. N., NORTH, M., CHURKINA, T. D. IKONNIKOV, N. S. & MALEEV, V. I. "Chiral salen-metal complexes as novel catalysts for the asymmetric synthesis of α -amino acids under phase transfer catalysis conditions" Tetrahedron, **57**, 2001, 2491-2498.

109. ADAMS, H., BAYLEI, N. A., BAIRD, I. S., FENTON, D. E. "Syntheses, properties and crystal and molecular structures of the copper(II) and nickel(II) complexes of the non-symmetric schiff bases, derived from 1,2-diaminoethane, pentane-2,4-dione and 2-pyrollecarboxaldehyde" Inorg. Chim. Acta, **101**, 1985, 7-12.

110. DANHESVAR, N., ENTEZAMI, A. A., KHANDAR, A. A. & SAGHATFOROUSH, L. A. "Synthesis and characterization of copper(II) complexes with dissymmetric tetradentate Schiff base ligands derived from aminothioether pyridine. Crystal structures of $[Cu(pytIsal)]ClO_4 \cdot 0.5CH_3OH$ and $[Cu(pytAzosal)]ClO_4$ " Polyhedron, **22**, 2003, 1437-1445.

111. ROUTIER, S., BERNIER, J. L., WARING, M. J., COLSON, P., HOUSSIER, C. & BAILLY, C. "Synthesis of a Functionalized Salen-Copper Complex and Its Interaction with DNA" J. Org. Chem., **61**, 1996, 2326-2331.

112. JAIN, R. K., CARMELIET, P. F. "Vessels of death or life" Sci. Am., 285, 2001, 26-33, 38-45.

113. TARAFDER, M. T. H., ALIL, M. A., WEE, D. J., AZAHARI, K., SILONG, S. & CROUSE, K. A. "Complexes of a tridentate ONS Schiff base. Synthesis and biological properties" Transition Met. Chem., **25**, 2000, 456-460.

114. TARAFDER, M. T. H., SARAVANAN, N., CROUSE, K. A. & ALI, A. M. "Coordination chemistry and biological activity of nickel(II) and copper(II) ion complexes with nitrogen-sulphur donor ligands derived from S-benzyldithiocarbazate (SBDTC)" Transition Met. Chem., **26**, 2001, 613-618.

115. TARAFDER, M. T. H., ALI, A. M., SARAVANAN, N., WENG, W. Y., SARAVANA, K., UMAR-TSAFE, N. & CROUSE, K. A. "Coordination chemistry and biological activity of two tridentate ONS and NNS Schiff bases derived from S-benzyldithiocarbazate" Transition Met. Chem. **25**, 2000, 295-298.

116. POPIOLKIEWICZ, J., POLKOWSKI, K., SKIERSKI, J. S. & MAZUREK, A. P. "In vitro toxicity evaluation in the development of new anticancer drugs-genistein glycosides" Cancer Lett., **229**, 2005, 67–75.

117. CHOHAN, Z. H. & SUPURAN, C. T. "In-vitro antibacterial and cytotoxic activity of cobalt (ii), copper (ii), nickel (ii) and zinc (ii) complexes of the antibiotic drug cephalothin (Keflin)" J. Enzym. Inhib. Med. Chem., **20**(5), 2005, 463-468.

118. RUPESH, K. R., DEEPALATHA, S., KRISHNAVENI, M., VENKATESAN, R., & JAYACHANDRAN, S. "Synthesis, characterization and in vitro biological activity studies of Cu-M $(M = Cu^{2+}, Co^{2+}, Ni^{2+}, Mn^{2+}, Zn^{2+})$ bimetallic complexes" Eur. J. Med. Chem., **41**, 2006, 1494-1503.

119. COS, P., VLIETINCK, A. J., BERGHE, D. V. & MAES, L. "Anti-infective potential of natural products: How to develop a stronger in vitro 'proof-of-concept'" J. Ethnopharmacol., **106**, 2006, 290–302.

120. PRITCHARD, J. F., JURIMA-ROMET, J. M., REIMER, M. I., MORTIMER, E., ROLFE, B. & CAYEN, M. N. "Making better drugs: Decision gates in nonclinical drug development" Nat. Rev. Drug Discov., **2**, 2003, 542-553.

121. European Commission, The new chemicals legislation REACH (2007). http://ec.europa.eu/enterprise/reach/index_en.htm acessado em 18/11/2007.

122. WILSON, A. P. Animal cell culture: A practical approach. 1^a ed., Oxford University Press, New York, 2000, vol. 7, p. 175-218.

123. POHJALA, L., TAMMELA, P., SWAPAN, K. S., YLI-KAUHALUOMA, J. & VUORELA, P. "Assessing the data quality in predictive toxicology using a panel of cell lines and cytotoxicity assays" Anal. Biochem., **362**, 2007, 221-228.

124. LÉON, C. J., GÓMEZ, S. M., MORANTES, S. J., CORDERO. C. P. & ANCÍZAR, F. "Caracterización del perfil de sensibilidad de un panel de líneas celulares para valoración de citotoxicidad in vitro" Biomédica, **26**, 2006, 161-168.

125. TAKIMOTO, C. H. "Anticancer drug development at the U.S. Nacional Cancer Institute" Cancer Chemother. Pharmacol., **52**, 2003, 29-33.

126. PISANI, P., BRAY, F. & PARKIN, D. M. "Estimates of the worldwide prevalence of cancer for 25 sites in the adult population" Int. J. Cancer, **97**, 2002, 72-81.

127. Human papillomaviruses. In Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon, France, International Agency for Research on Cancer, **64**, 1995.

128.KLETER, B., van DOORN, L. J., ter SCHERGGET, J., SCHRAUWEN, L., van KRIMPEN, K., BURGER, M., ter HARMSEL, B. & QUINT, W. "A novel short-fragment PCR assay for highly sensitive broad-spectrum detection of anogenital human papillomaviruses" Am. J. Pathol., **153**, 1998, 1731–1739.

129. HERRERO, R., HILDESHEIM, A., BRATTI, C., SHERMAN, M. E., HUTCHINSON M., MORALES, J. & BALMACEDA, I. "Population-based study of human papillomavirus infection and cervical neoplasia in rural Costa Rica" J. Natl. Cancer Inst. **92**, 2000, 464–474.

130. CHAN, S. Y., DELIUS, H., HALPERN, A. L. & BERNARD, H. U. "Analysis of genomic sequences of 95 papillomavirus types: uniting typing, phylogeny, and taxonomy" J. Virol., **69**, 1995, 3074-3083.

131. CANAVAN, T. P. & DOSHI, N. R. "Cervical cancer" Am. Fam. Physician, 61, 2000, 1369-1376.

132. ROGERO, S. O., LUGÃO, A. B., IKEDA, T. I. & CRUZ, A. S. "Teste *in vitro* de citotoxicidade: Estudo comparativo entre duas metodologias" Mat. Res., **6**, 2003, 317-320.

133. The National Institutes of Health (NIH) Chemical Genomics Center (NCGC) is being established as part of the Molecular Libraries Screening Center Network (MLSCN). In: http://www.ncgc.nih.gov/guidance/section3.html acessado em 18/11/2007.

134. http://www.fda.gov/ohrms/dockets/dockets/05d0183/05D-0183-EC3-Attach-1.pdf Acessado em 18/11/2007.

135. FELICIO, R. C. Síntese, Caracterização e Aplicação de Complexos de Cobalto(II) com Bases de Schiff na Reação de Oxidação por Oxigênio Molecular. Araraquara, Programa de Pós-Graduação em Química – Instituto de Química, UNESP. 1998. Tese de doutorado.

136. CAMPBELL, E. J. & NGUYEN, S. T. "Unsymmetrical salen-type ligands: high yield synthesis of salen-type Schiff bases containing two different benzaldehyde moieties" Tetrahedron Lett., **42**, 2001, 1221-1225.

137. BOGHAEI, D. & MOHEBI, S. "Non-symmetrical tetradentate vanadyl Schiff base complexes derived from 1,2-phenylene diamine and 1,3-naphthalene diamine as catalysts for the oxidation of cyclohexene" Tetrahedron, **58**, 2002, 5357-5366.

138. COSTES, J. P., DAHAN, F. FERNANDEZ, M. B., GARCIA, M. I. F., DEIBE, A. M. G. & SANMARTIN, J. "General synthesis of 'salicylaldehyde half-unit complexes': structural determination and use as synthon for the synthesis of dimetallic or trimetallic complexes and of 'self-assembling ligand complexes' "Inorg. Chim. Acta, **274**, 1998, 73-81.

139. BIAN, H. D., GU, W., XU, J. Y., BIAN, F., YAN, S. P., LIAO, D. Z., JIANG, Z. H. & CHENG, P. "The first μ_3 -oxalato bridged copper complex with tridentate Schiff base ligand N-ethyl-N'-salicylidene-1,2-diaminoethane: Synthesis, structure and magnetic properties" Inorg. Chem. **42**, 2003, 4265-4267.

140. a) SHELDRICK, G. M. SHELXS-86 Program for the solution of crystal structures, University of Göttingen, Germany, 1990.

b) SHELDRICK, G. M. SHELXL-97 Program for the refinement of crystal structures, University of Göttingen, Germany, 1997.

141. FARRUGIA, L. J. "*WinGX* suite for small-molecule single-crystal crystallography" Appl. Crystallogr., **32**, 1999, 837-838.

142. SPEK, A. L. "Single-crystal structure validation with the program *PLATON*" J.Appl.Cryst., **36**, 2003, 7-13.

143. FARRUGIA, L. "ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI)" J Appl. Crystallogr., **30**, 1997, 565.

144. PAUFLER, P. "International Tables for Crystallography" Acta Cryst. A63, 2007, 483.

145. NORTH, A. C. T., PHILLIPS, D. C. & MATHEWS, F. S., Acta Cryst., A44, 1988, 257.

146. SHRIVER, D. F., ATKINS, P. W., & LANGFORD, C. H. Inorganic Chemistry, 2^a ed. Oxford, Oxford University Press, 1994.

147. PAVIA, D. L., LAMPMAN, G. M., KRIZ, G. S. Introduction to Spectroscopy – A Guide for Students of Organic Chemistry, 3a. ed., USA, Brooks/Cole, 2001.

148. SILVERSTEIN, R. M. BASSLER, G. C. & MORRIL, T. C. Spectrometric Identification of Organic Compounds, 5th. ed., New York, Wiley 1991.

149. FANIRAN, J. A. & PATEL, K. S. "Infrared spectra of N,N⁻-bis(salicylidene)-1,1-(dimethyl)ethylene-diamine and its metal complexes" J. Inorg. Nucl. Chem., **36**, 1974, 1547-1551.

150. TOZZO, E., ROMERA, S., dos SANTOS, M. P. MURARO, M. SANTOS, R. H. de A., LIÃO, L. M., VIZOTTO, L. & DOCKAL, E. R. "Synthesis, spectral studies and X-ray crystal structure of N,N'- (\pm) -*trans*-1,2cyclohexylenebis(3-ethoxysalicilideneamine) H₂(*t*-3-EtOsalchxn)" J. Mol. Struct., 2007, in press Corrected Proof, available on line 21 june 2007.

151. DZIEMBOWSKA, T., AMBROZIAK, K. & MAJERZ, I. "Analysis of the vibracional spectra of *trans*-N,N'-bis-salicylidene-1',2'-cyclohexanediamine tautomers" J. Mol. Struct., **738**, 2005, 15-24.

152. NAKAMOTO, K. *Infrared and Raman Spectra of Inorganic and Coordination Compounds* 4th. ed., New York, John Willey e Sons, 1986.

153. NOUR, E. M., TAHA, A. A. & ALNAIMI I. S. "Infrared and raman studies of $[UO_2(salen) (L)]$ (L = H₂O and CH₃OH)" Inorg. Chim. Acta, **141**, 1988, 139-144.

154. PERCY, G. C. & THORNTON, D. A. "Infrared spectra of N-ARYL salicylaldimine complexes substituted in both aryl rings" J. Inorg. Nucl. Chem., **35**, 1973, 2319-2327.

155. YUZAWA, T., TAKAHASHI, H. & HAMAGUCHI, H. "Submicrosecond time-resolved infrared study on the structure of the photoinduced transient species of salicylideneaniline in acetonitrila" Chem. Phys. Lett., **202**, 1993, 221-225.

156. SAHU, K, L., PRASAD, P. K., PANDA, A. K. & GURU, S. "Complexes of cobalt(II), nickel(II), copper(II), cadmium(II) and mercury(II) with tetradentate Schiff base ligands" Transition Met. Chem., **15**, 1990, 270-272.

157. BEHERA, S. & PRADHAN, B. "Nickel(II), copper(II) and manganese(II) complexes with tetradentate Schiff base and neutral ligands" J. Indian Chem. Soc., **66**, 1989, 470-472.

158. LEVER, B. P. & MANTOVANI, E. "The far infrared and electronic spectra of some bisethylenediamine and related complexes of copper(II) and relevance of these data to tetragonal distorcion and bond strengths" Inorg. Chem., **10**(4), 1971, 817-826.

159. ABU-EL-WAFA, S. M., ISSA, R. M. & McAULIFFE, C. A. "Unusual Cu(III)–Schiff base complexes" Inorg. Chim. Acta, **99**, 1985, 103-106.

160. SZLYK, E., SURDYKOWSKI, A., BARWIOLEK, M. & LARSEN, E. "Spectroscopy and stereochemistry of the optically active copper(II), cobalt(II) and nickel(II) complexes with Schiff bases N,N'-(1R,2R)-(-)-1,2-cyclohexylenebis(3-methylbenzylideneiminato) and N,N'-(1R,2R)-(-)-1,2-cyclohexylenebis(5-methylbenzylideneiminato)" Polyhedron, **21**, 2002, 2711-2717.

161. MARVEL, C. S., ASPEY, S. A. & DUDLEY, E. A. "Quadridentate and sexadentate chelates. Some preliminary studies in their preparation and termal stability" J. Am. Chem. Soc., **78**(19), 1956, 4905-4909.

162. BATLEY, G. E. & GRADDON, D. P. "Binuclear complexes of copper(II) and zinc(II) halides with bidentate and quadridentate Schiff base complexes" Aust. J. Chem., **21**(6), 1968, 1473-1485.

163. SHRIVER, D. F., ATKINS, P. W., & LANGFORD, C. H. *Inorganic Chemistry*, 2^a ed. Oxford, Oxford University Press, 1994.

164. KATO, M., JONASSEN, H. B. & FANNING, J. C. "Copper(II) complexes with subnormal magnetic moments" Chem. Rev., **64**, 1964, 99-128.

165. TYSON, G. N. Jr & ADAMS, S. C. "The configuration of some cupric, nickelous and cobaltous complexes by means of magnetic measurements" J. Am. Chem. Soc., **62**(5), 1940, 1228-1229.

166. GÜNER, V. & BAYARI, S. "Infrared spectra and am1 calculations of n-benzylideneanilines" Spectrosc. Lett., **35**(1), 2002, 83–98.

167. KASUMOV, V. T., KOKSAL, F. "Synthesis, spectroscopy, and electrochemistry of copper(II) complexes with N,N'-bis(3,5-di-*t*-butylsalicylideneimine) polymethylenediamine ligands" Specrochim. Acta., **A61**, 2005, 225-231.

168. CRAWFORD, S., M., "The ultra-violet and visible spectra of some transition metal chelates with N,N'-bis-(*o*-hydroxybenzylidene)ethylenediamine and N,N'-bis-(*o*-hydroxybenzylidene)-*o*-phenylenediamine and related compounds" Spectrochim. Acta, **19**, 1963, 255-270.

169. BOSNICH, B. "An interpretation of the circular dichroism and electronic spectra of salicylaldimine complexes of square-coplanar diamagnetic nickel" J. Am. Chem. Soc., **90**, 1968, 627-632.

170. GULLOTTI, M., PASINI, A., FANTUCCI, P., UGO, R. & GILLARD, R. D. Gazz. Chim. Ital., **102**, 1972, 855.

171. DOWNING, R. S., & URBACH, . L. "The circular dichroism of square-planar, tetradentate Schiff base chelates of copper(II)" J. Am. Chem. Soc., **91**, 1969, 5977-5983.

172. KURZAK, K., BIERNACKA, I. K., KURZAK, B. & JEZIERSKA, J. "Spectrochemical properties of non cubical transition metal complexes in solution. XII. Angular overlap studies of salicylideneethylenediamine Cu(II) complex in various solvents" J. Sol. Chem., **30**, 2001, 709-731.

173. ESTIÚ, G. L., JUBERT, A. H., COSTAMAGNA, J. & VARGAS, J. "UV-visible spectroscopy in the interpretation of the tautomeric equilibrium of N,N'(bis-3,5-di-bromo-salicyliden)-1,2-diaminobenzene and the redox activity of its Co(II) complex. A quantum chemical approach." J. Mol. Struct., **367**, 1996, 97-110.

174. BRAITHWAITE, A. C., WRIGHT, P. E. & WATERS, T. N. "Electronic transitions in salicylaldimine complexes" J. Inorg. Nucl. Chem., **37**, 1975, 1669-1674.

175. HOLM, R., H. "Studies on Ni(II) complexes. I. Spectra of tricyclic Schiff base complexes of Ni(II) and Cu(II)" J. Am. Chem. Soc., **82**, 1960, 5632-5636.

176. KLEMENT, R., STOCK, F., ELIAS, H., PAULUS, H., PELIKAN, P., VALKO, M. & MAZUR, M. "Copper(II) complexes with derivatives of salen and tetrahydrosalen: a spectroscopic, electrochemical and structural study" Polyhedron, **18**, 1999, 3617-3628.

177. CSÁSZÁR, J. "Visible spectral studies and stereohemical considerations on copper(II) complexes containing bi- and tetradentate secondary amine ligands derived from aromatic Schiff bases" Acta Chim. Hungarica, **128**, 1991, 255-265.

178. AMBROZIAK, K., ROZWADOWSKI, Z., DZIEMBOWSKA, T., & BIEG, B. " Synthesis and spectroscopic study of Schiff bases derived from *trans*-1,2 diaminocyclohexane. Deuterium isotope effect on ¹³C chmical shift." J. Mol. Struct., **615**, 2002, 109-120.

179. NAGAKURA, S. & BABA, H. "Dipole moments and near ultraviolet absorption of some monosubstituted benzenes – The effect of solvents and hydrogen bonding" J. Am. Chem. Soc., **74**, 1952, 5693-5698.

180. NAKAO, Y., NONAGASE, N. & NAKAHARA, A. "The stability of fused rings in metal chelates. IV. Preparation and relative stability of copper(II) complexes with tetradentate Schiff base ligands" Bull. Chem. Soc. Japan, **42**, 1969, 452-456.

181. ZOLEZZI, S., DECINTI, A. & SPODINE, E. "Electrochemical studies of copper(II) complexes with Schiff base ligands" Polyhedron, **21**, 2002, 55-59.

182.NATHAN, L. C. & TRAINA, C. A. "Tautomerism in complexes with neutral tetradentate Schiff base ligands: The X-ray structures of cadmium(II) nitrate complexes of bis(acetylacetone)-*m*-phenylenediimine and bis(acetylacetone)-*p*-phenilenediimine" Polyhedron, **22**, 2003, 3213-3221.

183. BAKER, E. N., HALL, D. & WATERS, T. N. "Conformational influences in copper coordination compounds. PartIV. Crystal structure of the chloroform adduct of N,N'-ethylenebis-(salicylideneiminato)copper(II)" J. Chem. Soc. (A), 1970, 406-409.

184. BAKER, E. N., HALL, D. & WATERS, T. N. "Conformational influences in copper coordination compounds. PartIII. Crystal structure of the *p*-nitrophenol adduct of N,N'-ethylenebis-(salicylideneiminato)copper(II)" J. Chem. Soc. (A), 1970, 400-405.

185. MARVEL, C. S., ASPEY, S. A. & DUDLEY, E. A. "Quadridentate and sexadentate chelates. Some preliminary studies in their preparation and thermal stability" J. Am. Chem. Soc., **7**, 1956, 4905-4909.

186. CHI, M. C., HOI, L. K., WAI, C. C., KIN, F. C., WING, S. L., YU, H. S., YEUNG, C. T. & CHEUNG, K. K. "Copper Complexes of Chiral Tetradentate Binaphthyl Schiff-Base Ligands: Syntheses, X-ray Crystal Structures and Activity in Catalytic Asymmetric Cyclopropanation of Alkenes" Eur. J. Inorg. Chem., 2002, 1456-1463.

187. VALKO, M., BOFA, R., KLEMENT, R., KOZISEK, J, MAZFIR, M., PELIKAN, P., MORRIS, H. ELIAS, H. & MÜLLER, L. "Effect of hydrogenation on electronic and distant magnetic properties in copper(ll) complexes with derivatives of tetrahydrosalen and salen. Xray crystal structure of [Cu {Bu,Me(saltmen)}] complex." Polyhedron, **16**, 1997, 903-908.

188. ATKINS, R., BREWER, G., KOKOT, E., MOCKLER, G. M. & SINN, E. "Copper(II) and nickel(II) complexes of unsymmetrical tetradentate Schiff base ligands" Inorg. Chem., **24**, 1985, 127-134.

189. MOHAN, M. B. & SRINIVAS, D. "Effects on molecular association, chelate conformation, and reactivity toward substitution in Cu(5-X-salen) complexes, salen = N,N'-Ethylenebis(salicylidenaminato, X = H, CH₃0, and C1: synthesis, X-ray structures, and EPR investigations" Inorg. Chem., **32**, 1993, 6122-6130.

190. MARVEL, C. S. & TARKOY, N. "Heat stability studies on chelates from Schiff bases of salicylaldehyde derivatives.II." J. Am. Chem. Soc., **80**, 1958, 832-835.

191. MATSUSHHITA T. & SHONO, T. "A facile synthesis of unsymmetrical tetradentate Schiff base ligands and their copper(II) and nickel(II) complexes" Polyhedron, **5**, 1986, 735-738.

192. National Institute of Standards and Technology (NIST) http://webbook.nist.gov/chemistry/ acessado em 18/11/2007.

193. BU, X. R., JACKSON, C. R., van DERVEER, D., YOU, X. Z., MENG, Q. J. & WANG, R. X. "New copper(II) complexes incorporating unsymmetrical tetradentate ligands with *cis*-N₂O₂ chromophores: Synthesis, molecular structure, substituent effect and thermal stability" Polyhedron, **16**, 1997, 2991-3001. This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.
Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo