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Abstract 
 

Advances in computer throughput have helped to popularize numerical optimization as an 

engineering tool. However, they also favor an increase in complexity of the state-of-the-art 

simulation. As a result, the computational cost of complex high-fidelity engineering simulations 

often makes it difficult to rely exclusively on simulation for optimization. This doctoral research 

presents an effort in combining global optimization and surrogate modeling techniques as a way 

to rationally use the computer budget and increase the information level obtained during the 

optimization task. The above mentioned techniques were used in the solution of the continuous-

discrete problems of the optimal design of a vehicular structure and aircraft structural 

components; identification of aircraft longitudinal stability and control derivatives and non-linear 

landing gear model and the improvement of surrogate models through extra simulations. 

Besides, the solution of the combinatorial problem of the optimal Latin Hypercube has been 

implemented. At the end of the research, the main learning is that, as it also happens with 

classical optimization algorithms, the success in using heuristic methods is highly dependent on 

a number of factors, such as the level of fidelity of the simulations, level of previous knowledge 

of be problem, and, of course, computational resources. This way, the use of variable fidelity 

and surrogate models together with heuristic optimization methods is a successful approach, 

since heuristic algorithms do not require gradient information (i.e., resources are directly used 

for the search, and there is no propagation of the errors due to the computation of the 

gradients); and they have the trend to find the global or near global solution. In some cases, a 

cascade-type combination of heuristic and classical optimization methods may be a suitable 

strategy for taking advantage of the global and local search capabilities of the individual 

algorithms. 

 

 

 

 

 

Keywords: Heuristic optimization, surrogate modeling, design optimization, inverse problems, 

variable-fidelity modeling. 
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Resumo 
 

Avanços na capacidade de processamento computacional popularizaram a otimização 

numérica como uma ferramenta de engenharia. Contudo, eles favoreceram também o aumento 

na complexidade das simulações. Como resultado, o custo computacional de simulações 

complexas de alta fidelidade em engenharia dificultam o uso exclusivo de simulações em 

otimização. Esta pesquisa de doutorado representa um esforço em combinar técnicas de 

otimização global e meta-modelagem como uma forma de usar racionalmente os recursos 

computacionais e aumentar o nível de informação obtida durante a tarefa de otimização. As 

técnicas mencionadas acima foram usadas na resolução dos problemas contínuo-discretos do 

projeto ótimo de uma estrutura veicular e componentes estruturais aeronáuticos; identificação 

de derivadas de controle e estabilidade longitudinal de aviões e modelo não linear de trem de 

pouso; e melhoramento de meta-modelos via adição de simulações. Além disso, a solução do 

problema combinatorial do hipercubo latino ótimo também foi implementado. Ao final da 

pesquisa, a principal lição é que, assim como também acontece com algoritmos clássicos de 

otimização, o sucesso no uso de métodos heurísticos é altamente dependente do problema, 

nível de fidelidade das simulações, nível das informações já conhecidas do problema, e, 

obviamente, recursos computacionais. Desta forma, o uso de fidelidade variável e meta-

modelagem juntamente com métodos heurísticos de otimização é uma estratégia bem 

sucedida, uma vez que métodos heurísticos não requerem informação sobre o gradiente (isto 

é, os recursos são diretamente usados na busca e não há propagação dos erros devido ao 

cálculo dos gradientes); e eles têm a tendência em encontrar a solução global ou próxima dela.  

Em alguns casos, uma combinação em cascata de métodos de otimização heurísticos e 

clássicos pode compor uma estratégia viável para aproveitar as capacidades de busca global e 

local dos algoritmos individuais. 

 

 

 

Palavras-Chave: Métodos heurísticos de otimização, meta-modelagem, otimização de projeto, 

problemas inversos, modelagem por fidelidade variável. 
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Nomenclature 

Chapter 1 
 
( )f x  objective function 

( )f x   vector of objective functions 
( )g x  inequality constraint 

( )h x  equality constraint 

cnstrtn  total number of constraints (inequality and equality) 

dvn  number of design variables 

ineqcnstrtn  number of inequality constraints 

x  vector of design variables 
∗x  optimal solution 

ix  ith  design variable 
( )y x  actual function 

( )ŷ x  surrogate model of the actual function 

 
Chapter 2 
 
( )f x  scaled version of  ( )f x

( )g x  scaled version of  ( )g x

( )h x  scaled version of  ( )h x
objn  number of objective functions 
p  number of points in a DOE 

BestPRESS  surrogate with lowest PR  value for a given DOE ESS

DOE design of experiments 

CVE cross-validation error 

( )J x  functional that combines objective and constraint functions 

KRG kriging 

PRS polynomial response surface 

RBNN radial basis neural networks 

RMSE  root mean square error 

SVR support vector regression 

PRESS  prediction sum of squares 
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Chapter 3 
 
1c  PSO self trust parameter 

2c  PSO population trust parameter 

popn  population size 

ACO Ant Colony Optimization 

CR  DE crossover probability 

DE Differential Evolution 

DM  dispersion measure of the population 

ESEA Enhanced Stochastic Evolutionary Algorithm 

F  DE weighting factor 

LC LyfeCycle algorithm 

P  population matrix 

PSO Particle Swarm Optimization 
γ  ACO dissolving rate 

σACO  aggregation of the ACO population around the current minimum 

 
Chapter 4 
 
( )β̂ x  ratio correction surrogate 

( )δ̂ x  difference correction surrogate 
( )HFy x  high fidelity analysis 
( )LFy x  low fidelity analysis 

mxpN  number of extra actual function evaluations 

 
Chapter 5 
 
BestRMSE  most accurate surrogate of the initial DOE (basis of comparison for all other 

surrogates) 

LM Levenberg-Marquardt algorithm 

NMSDS Nelder-Mead simplex direct search 
2
aR  PRS adjusted correlation coefficients 

pφ  criterion which leads to the maximization of the point-to-point distance in a 

DOE 

 



CHAPTER I 

INTRODUCTION 

As Venkataraman and Haftka (2004) discussed, the engineering and scientific 

communities as consumers of computing devices have greatly benefited from the growth in 

the computer throughput. As a result, the design of engineering systems, ranging from 

simple products, such as a child’s toy, to complex systems, such as an aircraft or 

automobiles, has become computer centric. This is seen in modern computer-based 

methodologies of Computer-Aided Design and Computer-Aided Engineering (CAD/CAE), 

instead of a time consuming process of prototype trial and error. Current software packages 

allow since three-dimensional drafting to numerical optimization. 

However, the truth is that the increases in computer processing power, memory and 

storage space have alleviated but not eliminated computational cost and time constraints on 

the use of optimization. In the words of Venkataraman and Haftka (2004): “this is due to the 

constant increase in the required fidelity (and hence complexity) of analysis models”. In 

short, analysis as well as optimization algorithms have incorporated the hardware advances 

by increasing the complexity, fidelity, and scope. The bottom line is that the developing in 

hardware throughput still feeds the advances in both mathematical formulation and numerical 

implementation of analysis and optimization algorithms, and there is no evidence of changes 

in years to come. This scenario poses a challenge to optimization, as a discipline: to remain 

attractive as an engineering tool, while incorporating the technological progress. 

This research presents an attempt of combining modern global optimization and 

surrogate modeling techniques as a way to rationally use the computer budget and increase 

the information level obtained during the optimization task. The efforts are concentrated in 

the field of the heuristic optimization methods, where the potential for global optimization, 

easiness to code, and robustness are encouraging.  More precisely, Ant Colony Optimization 

(ACO), Differential Evolution (DE), Genetic Algorithms (GA), Particle Swarm Optimization 

(PSO), LifeCycle Optimization (LC), and the Enhanced Stochastic Evolutionary Algorithm 

(ESEA) form the set of algorithms studied in this thesis. Surrogate modeling are then used to 

reduce the computational effort intrinsic to these optimization algorithms. Instead of a single 

and predefined surrogate, this research adopts the use of a large set of different models in 

order to prevent against badly fitted surrogates. Kriging models (KRG), Polynomial Response 
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Surfaces (PRS), Radial Basis Neural Networks (RBNN) and Support Vector Regression 

(SVR) are used in this research. When a large set is used, the selection of a single surrogate 

follows an estimator of the root mean square error (RM ) based on data points, i.e. the 

prediction sum of squares (PR ). This surrogate is then called Be . 

SE

ESS stPRESS

The main objectives of this work are: (i) studying of the modern optimization 

techniques; (ii) combining surrogate modeling and heuristic algorithms; (iii) developing 

general-purpose optimization routines; and (iv) performing applications in direct and inverse 

problems of engineering. The set of applications, all real world problems, are important to 

suggest guidelines for the practitioner.  These algorithms were employed to solve the 

following list of continuous/discrete optimization problems: 

1. Vehicular three-dimensional structure design optimization. 

2. Optimization of aircraft structural components using heuristic algorithms and multi-

fidelity approximations. 

3. Aircraft longitudinal stability and control derivatives identification by using LifeCycle 

and Levenberg-Marquardt optimization algorithms. 

4. Parameter identification of a non-linear landing gear model. 

5. Improvement of surrogate models using heuristic optimization algorithms and a pre-

defined number of extra high-fidelity analyses. 

6. Optimization of the Latin hypercube design of experiments. 

 

As a result, the contributions of this research can be summarized as: 

• The use of non-conventional methods based on heuristic optimization techniques for 

system identification was explored. Heuristic algorithms presented the required 

robustness to deal with corrupted experimental data that are typical in this type of 

application.  

• The use of heuristic methods coupled with statistical tools for the solution of design 

problems was consolidated. This approach presents an alternative to overcome the 

limitations of classic methods and decrease the computational burden associated 

with heuristic optimization methods. 

• The implementation of both a general-purpose optimization toolbox (SIMPLE 

Toolbox) and a surrogate modeling toolbox (SURROGATES Toolbox), which are 

tested in a number of applications. 

 

Next sections introduce the basic concepts on optimization used in this research. 



 3

1.1. Fundamental Concepts in Surrogate Modeling 

To reduce the computational time of complex engineering simulations, very often 

surrogate models, also known as meta-models, are employed replacing actual simulation or 

experimental models.  Essentially, surrogate modeling consists in using statistical techniques 

to build approximations of expensive computer simulation codes. This way, given the vector 

of variables of interest, , if the true nature of a model is: x

  (1.1) ( ) ( )  ,y F=x x

then a surrogate model is: 

  (1.2) ( ) ( )ˆ  ,y G=x x

and 

  (1.3) ( ) ( ) ( )ˆ error  ,y x y x x= +

where ( )error x  represents both the approximation and measurement (random) errors. 

Figure 1.1 summarizes the general statistical procedure to generate and use 

surrogates. 

 
Figure 1.1. Stages of the surrogate-based modeling. 
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The internal steps of the loop can be detailed as: 

1. Design of experiments: the design space is sampled in order to reveal its contents and 

tendencies (Owen, 1992; Morrsi and Mitchell 1995; and Montgomery, 1997). At this step, 

the gain of as much information as possible must be balanced with the cost of 

simulation/experimentation. 

2. Run simulation/experimentation at sampled points: at this phase, the simulation (or 

experimentation) unfeasible regions of the design space can be revealed. 

3. Construct surrogate models: the surrogate model is fitted to the collected data (Myers 

and Montgomery, 1995; Wasserman, 1993; Martin and Simpson, 2005; and Smola and 

Scholkopf, 2004). It may imply in the solution of a system of linear equations or even in 

the solution of an optimization problem. 

4. Assess quality of fit: the precedent steps are sufficient to build a first tentative model, 

which overall quality and usefulness has to be evaluated by adequate sets of metrics 

(Box et al., 1978; Sacks et al., 1989; and Meckesheimer et al., 2002). 

Table 1.1 shows several options for previously discussed techniques used in surrogate 

modeling. 

Table 1.1. Techniques for surrogate modeling. 

Technique Examples 

Design of 

experiments 

Factorial (full and fractional), Central Composite Design, Box-Behnken, 

D-optimal, Orthogonal Array,  Latin Hypercube 

Surrogate model Polynomial Response Surface, Radial Basis Neural Networks, Kriging 

Models, Support Vector Regression  

Verification of 

model accuracy 

Root mean square error, Maximum absolute error, Coefficient of 

correlation (using test points), Prediction sum of squares, Coefficient of 

determination ( ), Estimated prediction variance, Estimated process 

variance 

2R

1.2. Fundamental Concepts in Numerical Optimization 

According to Vanderplaats (2005), in Mathematics, optimization is the discipline 

concerned with finding the maxima and minima of functions, possibly subjected to 

constraints. Despite its name, optimization does not necessarily mean finding the optimum 
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solution to a problem; instead, it means finding the more suitable solution to a problem 

(which is the case of compromise solutions and robust solutions). An example of an 

optimization problem is the following: maximize the profit of a manufacturing operation while 

ensuring that none of the resources exceed certain limits and also satisfying as much of the 

demand faced as possible. Thus, extending the previous discussion, the optimization work is 

a mathematical problem compound by the following elements (Haftka and Gürdal, 1992; 

Marler and Arora, 2004; and Vanderplaats, 2005): 

• Design space: where all possible solutions for a problem are considered (also known as 

search space). Each element of the design space is called design variable. The vector of 

design variables, , is composed by the elements , which means 

that the number of design variables is n . The bounds of the design space are given by 

lower and upper limits for each design variable, . 

Design variables can be continuous (i.e., real values within a range), or discrete (i.e., 

certain values defined in a list of permissible values). When optimization is solved 

numerically, scaling design variables is important to avoid ill conditioning problems. This 

process consists in mapping the boundaries of each design variable to a new design 

space with boundaries [0  or . 

x , 1,  2,  ,  ix i ndv= …

l u
v

−

dv

,  1,  2,  ,  i di ix x x i n≤ ≤ = …

1] [ 1 1]

• Objective function: also known as cost function, fitness function or evaluating function. 

This is the way to evaluate each point of the design space. The objective function is 

denoted as  for single objective problems and  for multi-objective problems. ( )f x ( )f x

• Constraints: impose restrictions to the system. A design point which satisfies all the 

constraints is called feasible, while a design point which violates even a single constraint 

is called infeasible. The collection of all feasible points is called feasible domain, or 

occasionally the constraint set. Figure 1.2 shows modifications in the original design 

space that are caused by constraints. 

• Optimization algorithms: the algorithm that will search for the solution of the optimization 

problem. 
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Figure 1.2. Design space definition. 

In the single objective case, numerical optimization solves the following nonlinear, 

constrained problem: find the point, , in the design space that will minimize the objective 

function for a given set of system parameters, possibly observing a set of constraints. In 

other words, the standard formulation of an optimization problem is: 

∗x

  (1.4) ( )   ,minimize f x

subject to: 

  (1.5) ( )

( )

1,  2,  ,   ,,

0, 1,  2,  ,   ,

1,  2,  ,  ,0,

l u
dvii i

j ineqcnstrt

ineqcnstrt ineqcnstrt cnstrtj

i nx x x

g j n

j n n nh

⎧⎪ = …≤ ≤⎪⎪⎪⎪ ≤ = …⎨⎪⎪⎪ = + + …=⎪⎪⎩

x

x  

u
i

where: 

•  is the objective function, ( )f x

•  imposes the side constraints to the design space, l
iix x x≤ ≤

•  is the number of design variables, dvn

•  is the number of inequality constraints, ineqcnstrtn

•  is the total number of constraints (inequality and equality), and cnstrtn

•  and  are the inequality and equality constraints, respectively. ( )jg x ( )jh x

About the optimization algorithms, they can be classified according to the level of 

information required to solve the problem. This way, as it can be found in Vanderplaats 

(2005): 

• Zero-order methods: use direct evaluation of the functions (also called direct-search 

methods). These methods present advantages such as easiness to program, capability of 

dealing with non-convex and discontinuous functions, and in many cases capability of 
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working with discrete design variables. The price paid for this generality is that these 

methods often require a large number of function evaluations. 

• First-order methods: require the evaluation of the gradient of the functions. Since more 

information is used during the search, these methods are expected to be more efficient in 

terms of the number of function evaluations as compared with zero-order methods. 

However, the price paid is that gradient information must be supplied. In addition, they 

have difficulties to deal with local minima and discontinuity on the first derivatives.  

• Second-order methods: use function values, gradient and the Hessian matrix (the square 

matrix of second order partial derivatives of a function). As they increase the amount of 

used information, they are expected to be more efficient. However, while it does not solve 

the difficulties with local minima, this fact also implies in the additional hardness of the 

Hessian computation. 

Other than the level of information, the approach used by the algorithm to manipulate 

this information allows a second classification. In this sense, classical methods are based on 

Algebra and Differential Calculus. Alternatively, in heuristic methods, the most appropriate 

solutions of several found are selected at successive stages for use in the next step of the 

search. They are called heuristic methods since the selection and update of solutions follow 

a heuristic rather than a formal mathematical approach (Rasmussen, 2002; and Haupt and 

Haupt, 2004). Figure 1.3 shows a concise representation of both classifications for the 

optimization algorithms. 

 
Figure 1.3. Classification of optimization algorithms. 
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1.3. Classification of the Optimization Problems 

In terms of classification, in this research work, the optimization problems with 

continuous and eventually discrete-continuous variables are divided in two groups, namely 

direct problems and inverse problems. The distinction between them depends on the causes 

and effects relationship of the system. Figure 1.4 shows a scheme that illustrates the 

concepts in discussion. This way, in direct problems the inputs are used to determine either 

the best configuration of the given system or the response of the system to a pre-defined set 

of inputs. As an example of direct problems can be cited those in rigid body dynamics (in 

particular, articulated rigid body dynamics) that often require mathematical programming 

techniques, since rigid body dynamics attempts to solve an ordinary differential equation 

subjected to a set of constraints, which are various nonlinear geometric constraints such as 

“these two points must always coincide,” “this surface must not overlap to any other,” or “this 

point must always lie somewhere on this curve.” On the other hand, the inverse problem 

consists in using the results of actual observations to infer about either the values of the 

parameters characterizing the system under investigation or the inputs that generate a 

known set of outputs. As an example of inverse problems can be cited the identification of 

the proper boundary conditions and/or initial conditions such as: a) determination of thermal, 

stress/strain, electromagnetic, fluid flow boundary conditions on inaccessible boundaries, 

and b) determination of initial position, velocity, acceleration or chemical composition. 

 

 
(a) Direct problems 

 
(b) Inverse problems 

Figure 1.4. Classification of problems according to the causes and effects context 

In addition, some difficulties that are intrinsic to inverse problems may arise: 

• an accurate model of the system is required, since the results of the identification 

procedure rely upon the model used; 

• identification problems are sensitive to noise found in the experimental data; and 
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• experimental data are incomplete either in the spatial sense (responses are available 

only in a limited number of positions along the structure), as in the time sense 

(responses are obtained in a given time interval and sampling frequency). 

 

Alternatively, it is also possible that instead of finding the optimal set of values for 

different design variables, the optimization problem consists in finding the optimal 

combination of elements in a vector. As in the literature (Nemhauser and Wolsey, 1988; 

Papadimitriou and Steiglitz, 1998), here, these problems are classified as combinatorial 

optimization problems. In this category, instead of varying the values of each design variable, 

the optimizer changes the position of the design variables within the vector of design 

variables. The vehicle routing problem is an example of combinatorial optimization problem. 

Often the context is that of delivering goods located at a central depot to customers who 

have placed orders for such goods. The goal is minimizing the cost of distributing the goods, 

while serving the customers with a fleet of vehicles. Another example is the knapsack 

problem. It consists in the maximization problem of the best choice of essentials that can fit 

into one bag to be carried on a trip. Given a set of items, each with a cost and a value, the 

goal is to determine the number of each item to include in a collection so that the total cost is 

less than a given limit and the total value is as large as possible. 

1.4. Literature Review 

There is a vast literature about the basis of surrogate modeling and the application in 

benchmark and real world problems. Wang and Shan (2007) reviewed the state-of-the-art 

surrogate-based techniques from a practitioner’s perspective according to the role of 

surrogate modeling in supporting design optimization, including model approximation, design 

space exploration, problem formulation, and solving various types of optimization problems. 

Simpson et al. (2001) surveyed the theoretical and practical aspects of several meta-

modeling techniques, including Design of Experiments, Response Surface Methodology, 

Neural Networks, Inductive Learning and Kriging. Simpson et al. (2004) presented a 

discussion about concepts, state-of-the-art, applications and future directions of 

approximation methods in multidisciplinary analysis and optimization. Queipo et al. (2005) 

provided a discussion of the fundamental issues in surrogate-based analysis and 

optimization, including loss function and regularization criteria for constructing the 

surrogates, design of experiments, surrogate selection and construction, sensitivity analysis, 

convergence, and optimization. Zerpa et al. (2005) used multiple surrogates for optimization 
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of an alkaline–surfactant–polymer flooding processes incorporating a local weighted average 

model of the individual surrogates. Goel et al. (2007) explored different approaches in which 

the weights associated with each surrogate model are determined based on the global cross-

validation error measure called prediction sum of squares. 

The literature about heuristic optimization algorithms is vast as well. Coello (2005) 

provided a brief introduction to this class of algorithm including some of their applications and 

current research directions. Van Veldhuizen and Lamont (2000) and Marler and Arora (2004) 

presented a survey of current continuous non-linear multi-objective optimization concepts 

and methods. Michalewicz (1995) and Coello (2002) reviewed methods for handling 

constraints by heuristic methods and tested them on selected benchmark problems; and 

discussed their strengths and weaknesses. About the algorithms themselves, especially 

those embraced in this research, Ant Colony Optimization is presented in details in Dorigo et 

al. (1996) and Pourtakdoust and Nobahari (2004); Differential Evolution is comprehensively 

discussed in Storn and Price (1997) and Kaelo and Ali (2006); Genetic Algorithms are well 

explained in Haupt and Haupt (2004) and Michalewicz and Fogel (2000); Particle Swarm 

Optimization is described in Kennedy and Eberhart (1995) and Venter and Sobieszczanski-

Sobieski (2003); and finally, LifeCycle Optimization is introduced in Krink and Løvberg (2002) 

and recently applied to a real-word problem in Flores et al. (2007). Enhanced Stochastic 

Evolutionary Algorithm was first introduced by Saab and Rao (1991) and later applied to the 

optimization of the Latin hypercube design in Jin et al. (2005) and Viana et al. (2007c). 

1.5. Scope of Current Research 

In short, the goal of the present work is to develop methodologies for applying heuristic 

optimization techniques to the solution of optimization problems in Engineering. The 

research, conducted in the context of a doctoral thesis, has the following main objectives: 

• Study of the modern optimization techniques, embracing since the problem definition to 

the solution of the optimization problem. 

• Combining surrogate modeling and heuristic algorithms to the solution of optimization 

problems. 

• Developing general-purpose optimization routines for academic use enabling its 

application to both direct and inverse problems. 

• Using the above mentioned aspects in the solution of engineering problems. The 

applications studied must contain both direct and inverse problems. 
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The organization of this work is as follows. Chapter II gives more details about 

surrogate modeling and numerical optimization; it includes an overview about design of 

experiments as well as the basic surrogate models and the ensemble of surrogates as well 

as a revision of the formulation of the optimization problem, including constrained and multi-

objective techniques as they are used by heuristic algorithms. Chapter III discusses the 

optimization algorithms used in this work as well as it presents some of the contributions of 

the present research on the implementation of such methods. Chapter IV discusses the 

different proposed approaches on how to couple surrogate modeling and heuristic algorithms 

to optimization. Chapter V presents the applications studied during this doctoral research. 

Finally, Chapter VI highlights the major conclusions of the present research work and 

delineates the scope of future work on this topic. 
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CHAPTER II 

SURROGATE MODELING AND NUMERICAL OPTIMIZATION 

2.1. Introduction 

Chapter I has already introduced the basic concepts on surrogate modeling and 

numerical optimization. This chapter discusses how the current doctoral research 

approached these techniques. This is done by presenting: 

1. The interaction between the general user of numerical optimization and the set of 

components involved in the solution of an optimization problem. 

2.  The proper formulation of optimization algorithms and surrogate modeling techniques 

addressed by this research. 

Figure 2.1 shows a possible scenario on how the user approaches the problem to be 

solved (at this point there is no distinction between direct, inverse or combinatorial 

problems). It is worth mentioning that among the different activities illustrated in Figure 2.1, 

the conception and decision phases (“Concept problem” and “Take decision”, respectively) 

are not covered by the present study. For the remaining three, the set of different exemplified 

software makes it easy to see the insertion in the Computer-Aided Engineering, where the 

computational tools are used together with real world data. In a real world context, these 

activities may not appear in cascade or there may be others to be considered. System 

Engineering (Kossiakoff and Sweet, 2002) techniques are usually employed to guide the 

solution of the problem, by maximizing the acquired amount of information. 
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Surrogate modeling software

SurrogateToolbox

modeFrontierVisualDOC

Statistica

Others

Matlab

Optimization software

SimpleToolboxmodeFrontier

VisualDOCMatlab Others

Analysis software

User-defined routinesAnsys

Nastran OthersMatlab

Create surrogate models

Real world data

A priori knowlegment

Experimental data

Perform optimization

Concept problem

Optimization team

Create models

Take decision

using

using

using

using

using

 
Figure 2.1. Optimization environment. 

More details are given below: 

• Concept problem: this is the process through which goals, scope and resources are 

defined. The focus is on the needs and required functionality, documenting and then 

proceeding to design synthesis and system validation while considering the complete 

problem. This phase often involves contribution from diverse technical disciplines (not 

only Engineering but also resource management). Figure 2.2-(a) illustrates a possible 

flowchart for this phase. 

• Create models: this is the phase in which high-fidelity (possibly computationally or 

experimentally expensive) models are created. “Models” are intended to represent the 

physical reality of the systems under investigation. The level of accuracy in representing 

the reality defines the level of fidelity of the model. In the present work, to avoid 

misunderstandings, the expression “actual model” is sometimes used to define the high-

fidelity models. Finally, the expression “expensive models” stands for difficulties in the 

model evaluation related to time or resource consumptions. Figure 2.2-(b) shows a 

possible cycle for this phase. 
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<<datastore>>
Documentation

Concept problem

Define resources

Define execution

Define scopeDefine goals

Start conception phase

Finish conception phase

Update actual model database

Define design spaceEvaluate modelsUpdate models <<datastore>>
Documentation
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Are models OK?

Start actual modeling phase

Finish actual modeling phase

Models are not OK

Models are OK

(a) Conception phase. (b) Modeling phase. 

Assess quality of surrogates

Update surrogate database

Redefine the design space

Update surrogate models

Create surrogate models

<<datastore>>
Documentation Are surrogates OK?

Redifine the design space?

Finish surrogate modeling phase

Start surrogate modeling phase

Surrogates are not OK

No Yes

Surrogates are OK

Define optimization problem

Create optimization task

Run optimization task

Generate reports

<<datastore>>
Documentation

Start optimization phase

Finish optimization phase
 

(c) Surrogate modeling phase. (d) Optimization phase. 

Check optimization (task and problem) 
and models (actual and surrogates)

Redifine optimization task/problem

Analyze optimization results

Update optimization results

Correct models/surrogates

New run

<<datastore>>
Documentation

Is optimization task/problem OK?

Are results OK?

Finish decision phase

Start decision phase

Results are OK

Models/surrogates are OK

Results are not OK

Optimization task/problem is not OK

 
(e) Decision phase. 

Figure 2.2. Activity diagram of different phases of the Engineering problem solution. 
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• Create surrogate models: when the actual models are extremely expensive to be used, 

surrogate models are constructed. This phase is based on statistical procedures to 

replace the actual models. It frequently encompasses resources for building and 

evaluating the fidelity level of the resulting surrogate models. Figure 2.2-(c) exemplifies 

the sequence of activities in this phase. 

• Perform optimization: in this phase the optimization problem is defined and solved. Figure 

2.2-(d) suggests a possible scheme for this phase. 

• Take decision: this procedure is supported by all previous ones. In a more general sense, 

practical considerations (such as investment, cost-benefit ratio, marketing trends) are 

combined with the results of the modeling and optimization phases. Here, the focus is 

given to the optimization process instead, as illustrated in Figure 2.2-(e). 

Despite the beauty of each of the phases, this work addresses the aspects of the use 

of heuristic optimization techniques on the solution of engineering problems. It means that 

during the conception phase, the optimization team already decided to use this class of 

optimization algorithms. 

2.2. Surrogate Modeling Framework 

2.2.1. Design of Experiments (DOE) and Latin Hypercube Sampling 

The location of experimental/simulation data points is very important for generating 

accurate surrogate models, while maintaining a reasonable number of data points. Design of 

Experiments (Myers and Montgomery, 1995; and Montgomery 1997) aids in the process of 

point selection, extracting as much information as possible from a limited number of design 

points. There are many different criteria available for creating a design of experiments. The 

criterion of space filling design, which aims to cover as much of the design space, seems to 

be the most suitable for the use with heuristic optimization algorithms. Most of the time in this 

research, the space filling design called Latin Hypercube design of experiment was used. 

This sampling scheme, proposed by McKay et al. (1979) and Iman and Conover (1980), 

presents several advantages, such as: (i) number of points (samples) is not fixed; (ii) 

orthogonality of the sampling points (different points do not have the same projection in any 

dimension); (iii) sampling points do not depend on the surrogate model that will be 

constructed; and (iv) different configurations can be constructed for the same number of 

variables and number of sampling points. 
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The Latin Hypercube design is constructed in such a way that each one of the  

dimensions is divided into  equal levels and that there is only one point for each level 

(Bates et al., 2004). The final Latin Hypercube design then has  samples. Figure 2.3 shows 

two possible Latin Hypercube designs for  and . Note that the Latin 

Hypercube design is constructed using a random procedure. This process results in many 

possible designs, each being equally good in terms of the Latin Hypercube conditions. 

However, a design that is ill suited for creating a surrogate model is possible, even if all the 

Latin Hypercube requirements are satisfied, as illustrated in Figure 2.3. 

dvn

p

p

2dvn = 5p =

 

  
(a) Latin Hypercube 01, (b) Latin Hypercube 02. 

Figure 2.3. Latin Hypercube DOEs for  and . 2dvn = 5p =

To overcome the above mentioned problem, the Optimal Latin Hypercube design was 

introduced to improve the space-filling property of the Latin Hypercube design. The Optimal 

Latin Hypercube design augments the Latin Hypercube design by requiring that the sample 

points be distributed as uniformly as possible throughout the design space. Unfortunately, 

the Optimal Latin Hypercube design results in a hard and time consuming optimization 

problem. For example, to optimize the location of 10  samples in  dimensions, the optimizer 

has to select the best design from more than 1022  possible designs. If the number of design 

variables is increased to 5 , the number of possible designs is more than . To solve 

the Optimal Latin Hypercube design, it is necessary to formulate an optimization problem, the 

solution of which is the best design. To have an idea about how difficult this task can be, Ye 

et al. (2000) reported that generating an Optimal Latin Hypercube design with 25  samples in 

 dimensions using a column-wise/pair-wise algorithm could take several hours on a Sun 

SPARC 20 workstation. The Optimal Latin Hypercube was a case study of combinatorial 

optimization during this doctoral research. The achieved advances were reported in Viana et 

al. (2007a), where the generation of an Optimal Latin Hypercube design with  samples in 

 dimensions was as fast as 5  minutes in a PC with a 1000 MHz Pentium III Zeon 

processor. Chapter V gives more details about this implementation. 

4

326 10×

4

256

4
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2.2.2. Surrogate Modeling Techniques 

Viana et al. (2008a) have already shown that, for prediction purposes, it pays to 

generate a large set of surrogates and then pick the best of the set according to an estimator 

of the root mean square error called PRESS (prediction sum of squares). The main features of 

the four surrogate models used in this study are described in the following sections. For all 

discussion, consider that the models are fitted with the set of  samples. p

1. Kriging (KRG) 

Kriging is named after the pioneering work of the South African mining engineer D.G. 

Krige. It estimates the value of a function as a combination of known functions  (e. g., a 

linear model such as a polynomial trend) and departures (representing low and high 

frequency variation components, respectively) of the form: 

( )if x

  (2.1) ( ) ( ) ( )

1
ˆ  ,

p

i i
i

y f Zβ
=

= +∑x x x

)

where  is assumed to be a realization of a stochastic process with zero mean,  process 

variance , and spatial covariance function given by: 

( )Z x
2σ

  (2.2) ( ) ( )( ) (2cov , ,  ,i j i jZ Z Rσ=x x x x

where ( ),i jR x x  is the correlation between  and . ix jx

The conventional KRG models interpolate training data. This is an important 

characteristic when dealing with noisy data. In addition, KRG is a flexible technique since 

different instances can be created, for example, by choosing different pairs of  and 

correlation functions. The complexity of the method and the lack of commercial software may 

hinder this technique from being popular in the near term (Simpson et al., 1997). 

( )if x

The Matlab code developed by Lophaven et. al (2002) was used to execute the KRG 

algorithm. More details about KRG are provided in Sacks et al. (1989), Simpson et al. (1997), 

and Martin and Simpson (2005). 

2. Polynomial Response Surface (PRS) 

The PRS approximation is one of the most well established meta-modeling techniques. 

In PRS modeling, a polynomial function is used to approximate the actual function. A 

second-order polynomial model can be expressed as: 
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  (2.3) ( ) 0
1 1 1
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i i j

y xβ β β
= = =

= + +∑ ∑∑x x x

The set of coefficients  can be obtained by least squares and according to the PRS 

theory are unbiased and have minimum variance. Another characteristic is that it is possible 

to identify the significance of different design factors directly from the coefficients in the 

normalized regression model (in practice, using t-statistics). In spite of the advantages, there 

is a drawback when applying PRS to model highly nonlinear functions. Even though higher-

order polynomials can be used, it may be too difficult to take sufficient sample data to 

estimate all of the coefficients in the polynomial equation, particularly in large dimensions. 

β

The SURROGATES toolbox of Viana and Goel (2008) was used for PRS modeling. 

See Box et al. (1978) and Myers and Montgomery (1995) for more details about PRS. 

3. Radial Basis Neural Networks (RBNN) 

RBNN is an artificial neural network which uses radial basis functions as transfer 

functions. RBNN consist of two layers: a hidden radial basis layer and an output linear layer, 

as shown in Figure 2.4. 

 
Figure 2.4. Radial basis neural network architecture. 

The output of the network is thus: 

  (2.4) ( ) ( )
1

ˆ ,  
N

i i
i

y a ρ
=

=∑x x ,c

where N  is the number of neurons in the hidden layer,  is the center vector for neuron i , 

and  are the weights of the linear output neuron. The norm is typically taken to be the 

Euclidean distance and the basis function is taken to be the following: 

ic

ia

 ( ) ( )2, exp  iρ β= − −x c x c ,i  (2.5) 
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where ( )exp ⋅  is the exponential function. 

RBNN may require more neurons than standard feed-forward/back-propagation 

networks, but often they can be designed in a fraction of the time it takes to train standard 

feed-forward networks. They work best when many training points are available, and this can 

be a crucial drawback in some applications. Another important point to consider is that the 

training process may lead to totally different configurations and thus different models. 

The native neural networks Matlab® toolbox (MathWorks Contributors, 2002) was used 

to execute the RBNN algorithm. RBNN is comprehensively presented in Smith (1993), 

Wasserman (1993), and Cheng and Titterington (1994). 

 

4. Support Vector Regression (SVR) 

SVR is a particular implementation of support vector machines (SVM). In its present 

form, SVM was developed at AT&T Bell Laboratories by Vapnik and co-workers in the early 

1990s (Vapnik, 1995). In SVR, the aim is to find  that has at most ε  deviations from 

each of the targets of the training inputs. Mathematically, the SVR model is given by: 

( )ŷ x

  (2.6) ( ) ( ) ( )
1

ˆ ,
p

i i i
i

y a a K∗

=
= − +∑x bx x

)where  is the so-called kernel function,  are different points of the original 

DOE and  is the point of the design space in which the surrogate is evaluated. Parameters 

, , and b are obtained during the fitting process. 

( ,iK x x ix

x

ia ia∗

Table 2.1 lists the kernel functions used in this work. 

During the fitting process, SVR minimizes an upper bound of the expected risk unlike 

empirical risk minimization techniques, which minimize the error in the training data (which 

defines , , and b  in Eq. (2.6)). This is done by using alternative loss functions. Figure 

2.5 shows two of the most common possible loss functions. Figure 2.5-(a) corresponds to the 

conventional least squares error criterion. Figure 2.5-(b) illustrates the loss function used in 

this work, which is given by: 

ia ia∗

 ( )

( ) ( )

( ) ( )

ˆ, if 

ˆ , otherwise

y y
Loss

y y

ε ε− ≤⎧⎪⎪= ⎨⎪ −⎪⎩

x x
x

x x
 (2.7) 
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Table 2.1. Kernel functions (consider ( )exp ⋅  as the exponential function). 

Gaussian Radial Basis Function 
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1 2
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Anova-Spline (Anova) 
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The implication is that in SVR the goal is to find a function that has at most deviation 

from the training data. In other words, the errors are considered zero as long as they are 

inferior to ε . 

ε

According to Smola and Scholkopf (2004): “after that the algorithmic development 

seems to have found a more stable stage, one of the most important ones seems to be to 

find tight error bounds derived from the specific properties of kernel functions.” Another open 

issue in SVR is the choice of the values of parameters for both kernel and loss functions. 

 

  
(a) Quadratic (b) - insensitive ε

Figure 2.5. Loss functions. 

The Matlab code developed by Gunn (1998) was used to execute the SVR algorithm. 

To learn more about SVR see Vapnik (1995), Smola and Scholkopf (2004), and Clarke et al. 

(2005). 

 



 22 

5. Using a Large Set of Surrogates 

Before start the discussion about the use of an ensemble of surrogates, it is important 

to clarify that when a set of surrogates is generated a common measure of quality must be 

employed in order to rank the surrogates. Since the set may be constituted by surrogates 

based on different statistical assumptions, this measure must be model-independent. One 

commonly used measure is the root mean square error (RM ), which in the design 

domain with volume V  is given by: 

SE

 ( ) ( )[ ]2
1 ˆ  ,
V

RMSE y y d
V

= −∫ x x x  (2.8) 

RMSE  is computed by Monte-Carlo integration at a large number of  test points: testp

 ( )2

1

1 ˆ
testp

i i
test i

RMSE y y
p =

= −∑  (2.9) 

However, the use of an extra large set of test points is frequently prohibitive in most of 

the real world applications. This way,  is estimated by using cross-validation errors. A 

cross-validation error is the error at a data point when the surrogate is fitted to a subset of 

the data points not including that point. When the surrogate is fitted to all the other  

points, (so-called leave-one-out strategy), it is obtained the vector of cross-validation errors, 

. This vector is also known as the PR  vector (  stands for prediction sum of 

squares). Figure 2.6 illustrates the cross-validation errors at the third point of the DOE by 

fitting a PRS and a KRG model to the remaining four of the five data points of the function 

sin(x). 

RMSE

1p −

e� ESS PRESS

 
Figure 2.6. Cross-validation errors (CVE) for a polynomial response surface and Kriging 

surrogates. 
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However, the leave-one-out strategy is computationally expensive for large number of 

points. We then use a variation of the k-fold strategy (Kohavi, 1995). According to the 

classical k -fold strategy, after dividing the available data (p points) into p/k clusters, each fold 

is constructed using a point randomly selected (without replacement) from each of the 

clusters. Of the k folds, a single fold is retained as the validation data for testing the model, 

and the remaining k – 1 folds are used as training data. The cross-validation process is then 

repeated k times with each of the k folds used exactly once as validation data. Note that k-

fold turns out to be the leave-one-out when k = p. 

The RM  is estimated from the PR  vector: SE ESS

 2

1

1 ,  
p

RMSi
i

PRESS e PRESS PRESS
p=

= =∑ � ,  (2.10) 

where  is the cross-validation error obtained at the i-th point of the DOE. ie�

As shown in Viana et al. (2008b), since  is a good estimator of the 

, one possible way of using multiple surrogates is to select the model with best 

 value (called in the literature as Be  surrogate). Because the quality of fit 

depends on the data points the Be  surrogate may vary from DOE to DOE. This 

strategy may include surrogates based on the same methodology, such as different 

instances of Kriging (e.g., Kriging models with different regression and/or correlation 

functions). The main benefit from a diverse and large set is the increasing chance of avoiding 

(i) poorly fitted surrogates and (ii) DOE dependence of the performance of individual 

surrogates. Obviously, the key for the success when using  is the quality of the 

 estimator. 

RMSPRESS

RMSE

PRESS stPRESS

stPRESS

BestPRESS

PRESS

The SURROGATES toolbox of Viana and Goel (2008) is used for an easy manipulation 

of all different codes previously presented. 

2.3. General Optimization Problem 

The basic version of the heuristic optimization algorithms is defined for unconstrained 

problems with a single objective. Since most engineering problems are multi-objective and/or 

constrained problems in one way or another, it is important to add the capability of dealing 

with constraint functions in a multi-criteria context. For the sake of clarity, the optimization 

problem is restated in its general form as: 
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where: 

•  is the vector of objective functions. This 

vector is composed by objective functions that can sometimes support but more 

commonly conflict with each other. 

( ) ( ) ( ) ( )1 2 obj

T
nf f f⎡= ⎢⎣f x x x x…

•  imposes the side constraints to the design space, l
iix x x≤ ≤

•  is the number of design variables, dvn

•  is the number of inequality constraints, ineqcnstrtn

•  is the total number of constraints (inequality and equality), and cnstrtn

•  and  are the inequality and equality constraints, respectively. ( )jg x ( )jh x

 

Figure 2.7 gives a graphical representation of the general optimization problem in 

terms of design and function space. 

 
Figure 2.7. General optimization problem. 

The addition of multiple objectives asks for the introduction of new concepts. While the 

solution of a single objective problem is a single design point, the solution of a multi-objective 

problem is a subspace of designs. The subspace is characterized by the condition that no 

objective function can be improved without some deterioration in another objective function. 
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This is known as “Pareto optimally” (Haftka and Gürdal, 1992; Marler and Arora, 2004). 

Formally, the Pareto optimal can be defined as follows (Marler and Arora, 2004): 

• A point, , is a Pareto optimal if there does not exist another 

point, , such that  for all , 

and  for at least one objective function. 

FeasibleDesignSpace∗ ∈x

FeasibleDesignSpace∈x ( ) (i if f≤x x )∗

)∗x

D

1,  2, ,  obji n= …

( ) (i if f<x

The set of Pareto optimal points creates what is typically referred to as the Pareto front. 

Another important concept in multi-objective optimization is the concept of utopia point 

(Marler and Arora, 2004): 

• A point, , is an utopia point (or ideal point) if for each 

, .  

( ) FeasibleObjectiveSpace∈f xD

1,  2, ,  obji n= … ( ) ( )( )mini if f=x x

In general, the utopia point is unattainable, and the best solution is as close as possible 

to the utopia point. Such a solution is called a compromise solution and is Pareto optimal. 

Figure 2.8 illustrates these concepts by considering the example of two conflicting objectives. 

The shaded area defines non-optimal solutions. 

 
Figure 2.8. Pareto front. 

As in the case of design variables, performing a mapping of the functions to a common 

range may be convenient. By doing this, they will not be erroneously interpreted when 

combined together by the handling techniques. There are different methods of scalarization, 

depending on whether a function is an objective or a constraint.  

Considering the objective functions, the first approach is as simple as: 

 ( )
( )

( )max  ,i
i

i

ff
f

= xx
x

�  (2.13) 
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where  is the scaled version of  and  is the maximum value possible 

for . Note that  is assumed. The result, , is a non-dimensional 

objective function with an upper limit of one (or negative one) and an unbounded lower limit. 

( )if x� ( )if x ( )max
if x

( )if x ( )max 0if ≠x ( )if x�

An alternative to Eq. (2.13) is: 

 ( )
( ) ( )

( )
 .i i

i
i

f ff
f
−= x xx
x

D

D
�  (2.14) 

In this case, the lower value of  is restricted to zero, while the upper value is 

unbounded. 

( )if x�

However, a most robust approach is given as follows: 

 ( )
( ) ( )

( ) ( )max  .i i
i

ii

f ff
f f

−=
−

x xx
x x

D

D
�  (2.15) 

In this case, the values assumed by  are between zero and one. ( )if x�

It is easy to see that the mapping as suggested by Eqs. (2.13) to (2.15), relies on 

 and . Unfortunately, this information is not available. Indeed, there might be 

no reason for optimization if  was known. In practice, these values are either 

estimated or assumed as based on any a priori knowledgement regarding the problem. 

Vanderplaats (2005) suggests  as the objective function associated with the initial 

design (also called baseline design) to replace ; and  as the desired value of 

this objective function to be used in the place of . The counterparts on the case of 

heuristic optimization algorithms are the worst value of the objective function  found in 

the initial population as suggestion for , and in the case of lacking an initial guess 

for , the best value found in the initial population for  could be used as . 

( )max
if x ( )if xD

( )if xD

( )worst
if x

( )max
if x ( )if ∗ x

( )if xD

( )if x

( )worst
if x

( )if ∗ x ( )if x ( )if ∗ x

As in the case of objective functions, inequality constraint functions can also lie in 

different ranges. Then, when treated by penalty methods (as explained later), that can be 

misinterpreted as different level of violation instead of different ranges. In that case, it is 

desired that the scaled versions of the constraints have the same range (or order of 

magnitude) while restoring the formulation as presented in Eq. (2.12). Thus, assuming that 

an inequality constraint is as ( )j jg ∗≤x g , there are just two possibilities for the target value, 

jg∗ : 0jg∗ = , or 0jg∗ ≠ . For the first case, i.e. 0jg∗ = , the scaled version is given by: 
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 ( )
( )

0 ,j
j

j

g
g

g•
= ≤

x
x�  (2.16) 

where  is the scaled version of , and ( )jg x� ( )jg x jg•  is its order of magnitude. 

For the second case, i.e. 0jg∗ ≠ ,  is computed using: ( )jg x�

 ( )
( )

1 0 .j
j

j

g
g

g∗
= − ≤

x
x�  (2.17) 

On other circumstances, the optimum must satisfy ( )j jg ∗≥x g , and as before, the 

scaled version depends on jg∗ . For 0jg∗ = , the scaled version is given by changing the 

inequality on Eq. (2.16). For 0jg∗ ≠ , the scaled version is as: 

 ( )
( )

1  0 .j
j

j

g
g

g∗
= − ≤

x
x�  (2.18) 

Finally, for the same reasons, re-writing the set of equality constraints may be 

convenient. If the target value of  is ( )jh x 0jh∗ = , the scaled version, ( )jh x� , is as: 

 ( )
( )

0 ,j
j

j

h
h

h•
= =

x
x�  (2.19) 

where jh•  is the order of magnitude of . ( )jh x

If on the other hand, 0jh∗ ≠ , then ( )jh x�  is given by: 

 ( )
( )

1 0 j
j .

j

h
h

h∗
= − =

x
x�  (2.20) 

Now that all functions considered in the optimization problem have been properly 

scaled, the general optimization problem can be re-stated to be solved by using heuristic 

optimization algorithms. Equations (2.11) and (2.12) are combined in a functional, , to 

be minimized. This functional is obtained as follows (Marler and Arora, 2004): 

( )J x

  (2.21) ( ) ( )( ) ( ) ( )( ,  J F P= +x f x g x h x� � ) ,�
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where  plays the role of the multi-objective handling technique that combines the 

vector of scaled objective functions, , and   plays the role of the 

constrained optimization handling technique that combines the vectors of scaled inequality 

constraints, , and equality constraints, .  is zero, if no violation 

occurs, and positive otherwise (actually, the worst the violation the larger the value of 

). 

( )(F f x� )

)

)

)

⎤⎥⎦

( )f x� ( ) ( )( ,P g x h x��

( )g x� ( )h x� ( ) ( )( ,P g x h x��

( ) ( )( ),P g x h x��

2.4. Multi-Objective Optimization Techniques 

When considering multi-objective problems, the algorithms offer alternatives either to 

compute the compromise solution (Van Veldhuizen and Lamont 2000; and Marler and Arora, 

2004) or to build the Pareto front (Zitzler and Thiele, 1999; and Deb, 2001). In this work, the 

focus is on algorithms used to obtain the compromise solution. 

Basically, there are two main strategies used for these techniques. The first consists in 

building a functional through the manipulation of the objective functions. The second one 

redefines the multi-objective problem as a constrained optimization problem. For the sake of 

simplicity, in this work only the most common methods following the first approach are 

covered. 

2.4.1. Weighted Sum Method 

This is the most common approach used in multi-objective optimization. The functional 

 is given by: ( )(F f x�

  (2.22) ( )( ) ( )

1
 ,

objn

i i
i

F w f
=

=∑f x x� �

where  is the vector of weighting factors, which indicate the 

importance of each objective, such as  and . 

1 2 obj

T
nw w w⎡= ⎢⎣w …

1
1

objn

i
i
w

=
=∑ 0iw >

The results of the optimization problem formulated by Eq.(2.22) can vary significantly 

according to the choice of the weights. Consequently, it is possible to generate the Pareto 

front by systematically changing the values of the weights (Coello, 1999; and Gerace, 2007). 
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2.4.2. Compromise Programming Method 

While the Weighted Sum Method has the strength of being able to generate the Pareto 

frontier, it is sensitive to the values of the weights if used to obtain the compromise solution. 

The Compromise Programming Method represents a variation of Eq.(2.22) pursuing more 

robustness in generating the compromise solution. The functional  is obtained by: ( )(F f x� )

 ( )( ) ( )( )
1

1
 .

objn pp
i i

i
F w f

=

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦
∑f x x� �  (2.23) 

Other than the vector , the solution also depends on the value of the parameter  

(generally ). Since  is between zero and one (or at least ),  is 

proportional to the amount of emphasis placed on minimizing the function with the largest 

difference between  and  (or, more practically, ).  

w p

2p = ( )if x� ( ) 0if ≥x� p

( )if x ( )if xD ( )if ∗ x

2.4.3. Weighted Min-Max Method 

The Weighted Min-Max Method is presented as follows: 

  (2.24) ( )( ) ( )(max  .i i
i

F w f=f x x� � )

)

This is equivalent to the limit of Eq. (2.23) as p . Therefore, Eq. (2.24) can 

provide the complete Pareto optimal set by varying the values of the weights as well (Marler 

and Arora, 2004). 

→ ∞

2.5. Constrained Optimization Techniques 

There exist several methods proposed for handling constraints by heuristic algorithms 

for numerical optimization problems (Michalewicz, 1995; and Coello, 2002). In this research, 

the focus is on those based on the concept of penalty functions. 

Before calculating , it is necessary to pre-handle the set of constraints. 

The set of  and  functions are grouped to form a new set of functions, , that 

represents all the constraints. One of the possible options is given below: 

( ) ( )( ,P g x h x��

( )g x� ( )h x� ( )jc x

 ( ) ( )( )
( )( )

( )

max ,0 , 1,  2,  ,   ,
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j

cnstrtj

g j n
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j m m nh

⎧ = …⎪⎪⎪= ⎨⎪ = + + …⎪⎪⎩

x
g x h x

x

�
�� �  

 (2.25) 
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Equation (2.25) presents a proper treatment for the inequality constraints, i.e., ( )jc x  is 

zero if there is no violation, and  otherwise. However, if the equality constraints follow 

rigorously the definition given by Eq. (2.12), it does not present a practical solution for the 

heuristic algorithms. The formulation as in 

( )jg x�

( )jh x�  has the inconvenience of making 

infeasible regions of the design space close to ( ) 0jh =x� . Then, the solution is 

transforming an equality function, ( )jh x� , to an inequality one, , of the form: ( )jg x�

 ( ) ( ) 0 ,j jg h ε= − ≤x x��  (2.26) 

where  is a tolerance to the violation, usually a “small” value. ε
Finally, with the redefinition of the equality constraints as inequality constraints as given 

by Eq. (2.26), Eq. (2.25) is re-written as: 

 ( )( ) ( )( )max ,0 ,  1,  2,  ,  , j jc g j= = …g x x� � cnstrtn  (2.27) 

and the functional for the constraints  turns into ( ) ( )( ),P g x h x�� ( )( )P g x� . 

2.5.1. Static Penalties Method 

In this method, the functional ( )( )P g x�  is given by: 

  (2.28) ( )( ) ( )( )[
1

objn

i i
i

P r c β

=
=∑g x g x� ]�

where  is a constant (usually ) and β 2β = 1 2 cnstrt

T
nr r r⎡ ⎤= ⎢ ⎥⎣ ⎦r …  is the vector of 

weighting factors used to express the penalty degree of each constraint. 

Differently from what happens in multi-objective problems, for which the weights lead to 

different solutions on the Pareto front, here the weights may be used to distinguish the 

importance of individual constraints. While this can change the level of violation, it may not 

change the solution of the problem (i.e. the set of optimum design variables and the value of 

the objective functions). As a consequence, using the same value, r , for all elements of the 

vector  is common. In this case, Eq. (2.28) is re-defined as: r

  (2.29) ( )( ) ( )( )[
1

objn

i
i

P r c β

=
= ∑g x g x� � ]
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2.5.2. Dynamic Penalties Method 

The second and last method used in this research imposes dynamic penalties. The 

idea is to make the penalization harder along the evolution of the optimization process. At the 

beginning of the process there is little or no knowlegment about the problem. At this point, 

penalization could inhibit the proper exploration of the design space. As the optimization 

evolves, it is expected that infeasible regions get harder penalties. In practice, the functional 

( )( )P g x� , at the iteration t , is given by: 

  (2.30) ( )( ) ( ) ( )( )[
1

 ,
objn

i
i

P C t c βα

=
= × ∑g x g x� ]�

where , , and  are constants. As suggested in Michalewicz (1995), a reasonable 

choice for these parameters is  and . 

C α β

0.5C = 2α β= =

When using Eqs. (2.28), (2.29) or (2.30), heuristic optimization methods do not have 

any extra information (such as Lagrange multipliers). Then, these equations define the level 

of violation, if any, of each individual of the population. As a consequence, the penalty 

parameters ( , , or C ) may assume large values in order to better differentiate the 

feasible region of the design space. 

r r

This chapter reviewed concepts about surrogate modeling and the optimization 

problem formulation as used by heuristic algorithms. The algorithms themselves are 

presented in the next chapter. 
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CHAPTER III 

HEURISTIC OPTIMIZATION ALGORITHMS 

3.1. Introduction 

Chapter II showed the set of activities performed during the solution of an optimization 

problem as well as general concepts on surrogate modeling and formulation of the 

optimization problem as treated by heuristic optimization algorithms. This chapter presents 

the basic schemes of the algorithms and theoretical aspects of the contributions proposed 

during this doctoral research. 

Even though classical methods (where the search process is guided by information 

regarding the gradient) have been widely used due to their computational efficiency, they 

have difficulties when a local minimum is found (often erroneously interpreted as the global 

one). On the other hand, Venter and Sobieszczanski-Sobieski (2003) discussed that in 

recent years non-gradient nature based, probabilistic search algorithms (which generally 

mimic some natural phenomena) have attracted much attention from the scientific community 

due to features such as easiness to code, ability of handle non-continuous functions, 

capability of using parallel architectures, and the trend of finding the global, or near global, 

solution. The large number of function evaluations required by these methods often presents 

a drawback when compared with classical gradient-based algorithms, despite the advances 

in computational throughput that have helped the use this class of algorithm in real world 

problems (Venter and Sobieszczanski-Sobieski, 2003 and Viana and Steffen Jr, 2005). 

As introduced in Chapter I, the focus of this work is on heuristic and population-based 

optimization algorithms (i.e. algorithms that use a set of points updated via statistical rules for 

exploration of the design space during the optimization task). More precisely, Ant Colony 

Optimization (ACO), Differential Evolution (DE), Genetic Algorithms (GA), Particle Swarm 

Optimization (PSO), LifeCycle Optimization (LC), and the Enhanced Stochastic Evolutionary 

Algorithm (ESEA) are the set of algorithms studied in this thesis. These methods generate 

new points in the design space by applying operators to current points and statistically 

moving toward more optimal places in the design space. They rely on a heuristic-driven 

search of a finite solution space and do not require function derivatives. Consequently, they 
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can deal with discrete variables and non-convex and non-continuous functions. The following 

sections describe specific details as well as the common ground of the algorithms. 

3.2. Ant Colony Optimization 

Ant Colony Optimization (ACO) is inspired in the behavior of real ants and their 

communication scheme by using pheromone trail (Dorigo, 1992). When searching for food, 

real ants start moving randomly, and upon finding food they return to their colony while laying 

down pheromone trails (Socha, 2004). This means that if other ants find such a path, they 

return and reinforce it. However, over time the pheromone trail starts to evaporate, thus 

reducing its attractive strength. When a short and a long path are compared, it is easy to see 

that a short path gets marched faster and thus the pheromone density remains high.  

Consequently, if one ant finds a short path (from the optimization point of view, it means a 

good solution) when marching from the colony to a food source, other ants are more likely to 

follow that path, and positive feedback eventually encourages all the ants in following the 

same single path. ACO follows some basic concepts, as presented below (Socha, 2004): 

• A search performed by a population of ants, i.e., by simple independent agents. 

• Incremental construction of solutions. 

• Probabilistic choice of solution components based on stigmergic information of 

pheromone. A stigmergic process is the process through which the results of a worker 

insect's activity act as a stimulus to further activities. 

• No direct communication between ants. 

The outline of a basic ACO algorithm is presented in Figure 3.1. 

The question that arises is how ACO, first used to solve combinatorial problems 

(Dorigo et al., 1996, Dorigo and Gambardella, 1997), deals with continuous variables. A 

possible answer to this question would be the conversion of the continuous variables and the 

pheromone trail into a string of bits as proposed in the past by Monmarché et al. (1999). 

Instead, the present continuous version extends ACO in order to work directly with 

continuous variables. 
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Figure 3.1. Basic scheme for ACO. 

Following the idea of directly using continuous variables, a population of  ants 

(herein referred to as individuals) is expressed as a  matrix, 

. The continuous version of ACO models the pheromone trail as 

an amount of pheromone laid on the path. As suggested by Socha (2004) and Pourtakdoust 

and Nobahari (2004), for the continuous model implementation, this is done by using a 

normal probability distribution function (PDF). Then, for the  dimension of the design 

space, the pheromone trail, , is given by: 

popn

pop dvn n×

1 2 pop

T
n⎡= ⎢⎣P x x x… ⎤⎥⎦

-i th
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1
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j
z z

n
σ

=
= −
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where: 

• ( )exp ⋅  is the exponential function ; 

•  is the  coordinate of the best point found by the optimization task within the 

design space until the current iteration; 

ix∗ -i th
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•  is an index related to the aggregation of the population around the current 

minimum for the  coordinate of the design space; 

ACO
iσ

-i th

•  is the  column of the population matrix ; and z -i th P
• z  is the mean value of the vector . z

The updating process of the values of each design variable for all individuals is the 

process in which, for a given iteration, each individual sets the values for the trial solution 

based on the probability distribution given by Eq. (3.1). Computationally, this is implemented 

through a random number generator based on a normal PDF. From Eq. (3.1), it can be 

noticed that each variable uses a different random number generator together with its 

respective PDF. About the pheromone scheme, it is possible to see that the concentration of 

pheromone increases in the area of the candidate to the optimum. This approach (also called 

as positive update) reinforces the probability of the choices that lead to good solutions. 

However, for avoiding premature convergence, negative update procedures are not 

discarded, as described by Socha (2004). In this work, a simple method to perform negative 

update is used: dissolving of the pheromone. The idea of this scheme is to spread the 

amount of pheromone by changing the current standard deviation (for each variable) 

according to the following equation: 

  (3.3) σ σ  ,ACO ACO
new oldγ=

where  is the dissolving rate (usually ). The dissolving rate affects the 

exploration capabilities, and consequently, the convergence of the algorithm. 

1γ > 1.25γ =

At the initialization the algorithm: 

•  is randomly chosen within the design space using a uniform PDF; minx

•  is taken as being 3 times greater than the length of the search interval. σACO

 

The SIMPLE Optimization toolbox of Viana and Steffen Jr (2008) was used to run ACO 

algorithm. 

3.3. Differential Evolution 

Differential Evolution (DE) was proposed by Storn and Price (1995) as an algorithm to 

solve global optimization problems of continuous variables. Even though the DE community 

has adopted biological terms to describe arithmetic operations on real (and discrete) 

variables, i.e., mutation and recombination, the operations are more akin to 

dynamics/thermodynamics and physics than they are to biology. Selection is perhaps the 
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DE’s most Darwinian aspect, but even here, competition for survival is more limited than in 

most evolutionary algorithms. The main idea behind DE is how possible solutions taken from 

the population of individuals are set, recombined and chosen to evolve the population to the 

next generation (Storn and Price, 1997, Ronkkonen et al., 2005). This way, the weighted-

difference scheme seems to be the most important feature of the present heuristic. 

In a population of individuals (seen as potential solutions), a fixed number of points (or 

vectors in the DE nomenclature) are randomly initialized, and then evolved over the 

optimization task to explore the design space and hopefully to locate the optimum of the 

objective function. At each iteration, new vectors are generated by the combination of vectors 

randomly chosen from the current population (this is also referred to as “mutation” in the DE 

literature). The out coming vectors are then mixed with a predetermined target vector. This 

operation is called “recombination” and produces a “trial vector”. Finally, the “trial vector” is 

accepted for the next generation if and only if it yields a reduction in the value of the objective 

function. This last operator is referred to as “selection.” As can be seen, the basic algorithm 

preserves some common aspects of the traditional simple GA (specially the nomenclature of 

some operators, such as selection, crossover and mutation). 

Again, a population of  individuals is expressed as a  matrix, 

. The outline of a basic DE is as shown in Figure 3.2. 

popn pop dvn n×

1 2 pop

T
n⎡= ⎢⎣P x x x… ⎤⎥⎦

 
Figure 3.2. Basic scheme for DE. 
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The DE community has established the following notation to determine how the 

mutation and crossover operators work together (Storn and Price, 1995; Storn and Price, 

1997; and Ronkkonen et al., 2005):  , where: / / /DE a b c

•  specifies the vector to be mutated, which currently can be one of the following: a
- “rand”: a randomly chosen population vector, 

- “best”: the vector of best objective value from the current population, 

- “rand-to-best”: takes both randomly and best individuals. 

•  is the number of difference vectors used, and b

•  denotes the crossover scheme, which can be either “bin” (independent binomial 

experiments) or “exp” (exponential crossover). 

c

3.3.1. Mutation 

As described before, the DE mutation is the operator that first adds the weighted 

difference between two individuals to a third individual. Table 3.1 gives more details about 

each mutation scheme. 

Table 3.1 Different implementations of the DE mutation. 

Type Updating equation Target vector Population size 

/1rand  1 2( )trial r r rF= + −x x x x 3  1rx  3>  

/2rand  
1

2 3 4 5( )
trial r

r r r rF

= +

− + −

x x

x x x x
 1rx  5>  

/1best  2 3( )trial best r rF= + −x x x x bestx  3>  

best/2  
1 2 3( )

trial best

r r r rF

= +

− + −

x x

x x x x 4
 bestx  5>  

- - /1rand to best  
1 2( )

trial

best r rF

= +

− + −

x x

x x x x
 x  5>  

- - /2rand to best  
1 2 3 4

( )

( )
trial best

r r r r

F

F

= + − +

− + −

x x x x

x x x x
 x  6>  

 

where: 

•  is the trial vector (individual); trialx

•  are random integer indexes and mutually 

different; 

{1,  2,  3,  4,  5  1,  2,  ,r r r r r m∈ … }
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•  is a real constant factor , which controls the amplification of the 

differential variation; 

F [ 0, 2∈ ]

n

•  is the best individual of the current population; and bestx

•  is the current individual. x
In DE, the second step of the design variable update is the crossover operator. There 

are two types of crossovers: binary and exponential. The superiority of each crossover 

scheme over the other can not be uniquely defined, which means that this is a problem-

dependent operator. Thus, the final trial vector, , is formed in such a way that the  

coordinate is given by: 

trialx -i th

  (3.4) 
if crossover is applicable,,

  1,  2,  ,  .
otherwise,,

mutation
ì

trial dv
i

x
x i

x

⎧⎪⎪= =⎨⎪⎪⎩
…

In practical terms, DE has a parameter that controls the crossover, namely the 

crossover probability, CR . In exponential crossover, the crossover is performed in a loop 

controlled by a uniform random number, , and a counter, i , that ranges from 1  to . 

The first time a randomly picked number between 0  and 1  goes beyond the CR  value, no 

crossover is performed and the remaining of the n  variables is left intact (Storn and Price, 

1995; Storn, 1996; Storn and Price, 1997; and Ronkkonen et al., 2005). Figure 3.3 shows a 

flowchart for the exponential crossover. 

rn dvn

dv

 
Figure 3.3. Basic scheme for the DE exponential crossover. Consider rand() as a function for 

generating a uniform random number. 
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In the binomial crossover, the operation is performed on each of the n  variables 

whenever a randomly picked number between 0  and 1  is lesser than the CR  value (Storn 

and Price, 1995; Storn, 1996; Storn and Price, 1997; and Ronkkonen et al., 2005). Figure 3.4 

shows a flowchart for the binomial crossover. 

 
Figure 3.4. Basic scheme for the DE binomial crossover. Consider rand() as a function for 

generating a uniform random number. 

It can be noticed that for high values of CR , the exponential and binomial crossovers 

yield similar results. 

3.3.2. Selection 

Selection is the simplest DE operator. It is used to decide whether or not the new 

vector, , should become a member of the next generation. The approach is 

straightforward: the objective function value of the new individual, , is compared with 

the one of the target vector, . If there is an improvement,  is set to the next 

generation; otherwise,  is retained. 

newx

( newf x )

)target(f x newx

targetx

3.3.3. Remarks about DE 

Storn (1996) gives a set of practical rules useful when it comes to choose the DE 

parameters, namely: 

• A population size of 10 times the number of design variables is a good choice for 

many applications. However, it is worth mentioning that various scientists have been 

successful in using a smaller population for DE. 



 41

• Most often the crossover probability, CR , must be considerably lower than one (e.g. 

). However, if no convergence can be achieved,  should be tried. 

This is especially true when using exponential crossover. 

0.3 [  0.8,  1CR ∈ ]

• The higher the population size is chosen, the lower the weighting factor F . 

•  is usually chosen F [ ] 0.5,  1∈ . 

 

Last but not least, it is worth mentioning that by combining the six mutation schemes 

shown in Table 3.1 with the two previously presented crossover schemes, a total number of 

twelve DE strategies can be explored. By following the  notation: DE/rand/1/bin, 

DE/rand/1/exp, DE/rand/2/bin, DE/rand/2/exp, DE/best/1/bin, DE/best/1/exp, DE/best/2/bin, 

DE/best/2/exp, DE/rand-to-best/1/bin, DE/rand-to-best/1/exp, DE/rand-to-best/2/bin, and 

DE/rand-to-best/2/exp. 

/ / /DE a b c

The code developed by Price et al. (2005) was used to execute the DE algorithm. 

3.4. Genetic Algorithm 

Genetic Algorithm (GA) is an optimization algorithm used to find approximate solutions 

to difficult-to-solve problems through the application of the principles of evolutionary biology 

to computer science. GA is based on Darwin's theory of survival and evolution of species, as 

explained by Gen and Cheng (1999), Michalewicz and Fogel (2000) and Haupt and Haupt 

(2004). GA uses biologically-derived concepts such as inheritance, mutation, natural 

selection, and recombination (or crossover). Due to the vast literature on GA, for the sake of 

simplicity, just an overview is provided in this text. 

The algorithm starts from a population of random individuals, viewed as candidate 

solutions to a problem. During the evolutionary process, each individual of the population is 

evaluated, reflecting its adaptation capability to the environment. Some of the individuals of 

the population are preserved while others are discarded; this process mimics the natural 

selection in Darwinism. The members of the remaining group of individuals are paired in 

order to generate new individuals to replace those that are discarded in the selection 

process. Finally, some of them can be submitted to mutation, and as a consequence, the 

chromosomes of these individuals are altered. The entire process is repeated until a 

satisfactory solution is found. The outline of a basic GA is as shown in Figure 3.5. 
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Figure 3.5. Basic scheme for GA. 

Although the initially proposed GA algorithm was dedicated to discrete variables only, 

nowadays improvements are available to deal with discrete and continuous variables (see 

Gen and Cheng, 1999; Michalewicz and Fogel, 2000; and Haupt and Haupt, 2004). 

The SIMPLE Optimization toolbox of Viana and Steffen Jr (2008) was used to run GA 

algorithm. 

3.5. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) was introduced by Kennedy and Eberhart (1995), 

as emerged from experiences with algorithms inspired in the social behavior of some bird 

species. Consider the following situation: a swarm of birds searching for food around a 

delimited area. Suppose there is just one place with food and the birds do not know where it 

is. The success of one bird is shared by the whole swarm (learning from the experience of 

other individuals). In this sense, the adjustment between exploration (the capacity of 

individual search) and exploitation (taking advantage of someone else's success) is required. 

If there is little exploration, the birds will all converge on the first good place encountered. On 

the other hand, if there is little exploitation, the birds will slowly converge or they will try to 

find food alone. It is clear that the best policy is a trade-off between both policies. 
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In PSO, the flight of each bird (herein referred as individual) is modeled by using a 

velocity vector, which considers the contribution of the current velocity, as well as two other 

parts accounting for the self-knowledge of the individual and the knowledge of the swarm 

(herein referred to as population) about the search space. This way, the velocity vector is 

used to update the position of each individual in the population (Kennedy and Eberhart, 

1995; Parsopoulos and Vrahatis, 2002; and Venter and Sobieszczanski-Sobieski, 2003). An 

outline of a basic PSO algorithm is shown in Figure 3.6. 

 
Figure 3.6. Basic scheme for PSO. 

The position of each individual is updated according to the following equation: 

  (3.5) 1  ,i i i
k k kx x v t−= + ∆

where  is the position of the individual i  in the iteration k ;  represents the 

corresponding velocity vector; and  is the time step (generally ). 

i
kx

i
kv

t∆ 1t∆ =
The velocity vector is updated as follows: 

 1 1
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1)−  (3.6) 

where w  is the inertia of the individual;  and  are the two "trust" parameters;  and  

are random numbers between  and 1 ;  is the best position found by the individual i  up 

to the current iteration; and  is the best individual in the iteration . 

1c 2c 1r 2r

0 ip

1
s
kp − 1k −
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Equation (3.6) can be interpreted as a sum of three different contributions. The first 

term, pondered by the inertia, w , gives how much of “exploration” there will be in the 

resulting velocity. The second term, pondered by the self trust parameter, , indicates how 

much the knowledge of the individual itself there will be in the resulting velocity. Finally, the 

term weighted by the trust on the population, , shows how much of the population success 

will influence the resulting velocity. As a consequence, the larger the inertia value, the more 

global (as opposed to individualistic) will be the behavior. The trust parameters  and  

must be set to balance the influence of the amount of knowledge that was acquired by the 

individual itself and the knowledge acquired by the population. 

1c

2c

1c 2c

3.5.1. Initial Population 

The initial population is created by randomly distributing the individuals throughout the 

search space. The initial position and the initial velocity vectors are given by: 

  (3.7) min 1 max min0 (  ix x r x x= + − ) ,

 min 2 max min
0

(  ,i x r x xv
t

+ −=
∆

)
 (3.8) 

where  is the lower bound vector; and  is the upper bound vector for the variables. minx maxx

3.5.2. Algorithm Parameters 

The velocity vector update formula has some parameters that can be adjusted 

according to the problem, namely the trust parameters,  and , and the inertia weight, w . 1c 2c

Kennedy and Eberhart (1995) initially suggested , as a way to equally 

weight the contribution given by the individual and the population. Later, various works (Shi 

and Eberhart, 1998; Fourie and Groenwold, 2002; and Venter and Sobieszczanski-Sobieski, 

2003) proposed that trust parameters could be set to different values, generally satisfying 

. In this work, the default values are  and , as used by  Venter 

and Sobieszczanski-Sobieski (2003). 

1 2 2c c= =

1 2 4c c+ = 1 1.5c = 2 2.5c =

The inertia parameter, in general, is such that . In addition, a scheme of 

dynamic reduction of w  has several advantages (Venter and Sobieszczanski-Sobieski, 

2003). It improves the convergence to the optimum solution and makes the problem less 

sensitive to the w  parameter. The idea is to start with a large value for w , since the 

knowledge bases of the individual and the population are empty, and then, to reduce 

0.8 1.4w≤ ≤
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continuously that value along the optimization process, privileging the flying experiences. 

The following equation gives the updating scheme for : w

  (3.9)  ,new w oldw f w=

where is the updated value;  is the previous value; and  is a constant between 

 and 1  (usually, ). 

neww oldw wf

0 0.975wf =

The inertia is not updated each iteration. Instead, a dispersion measure, DM , as will 

be described in Section 3.7.1, of a subset of the individuals is used to guide when to apply 

the inertia reduction. If the value of this subset of individuals falls below a pre-defined 

threshold value, it is understood that the algorithm is converging to an optimum, then Eq. 

(3.9) is applied. As suggested by Venter and Sobieszczanski-Sobieski (2003), a subset of 

the best 20% of the individuals from the population is monitored and 

 is used as threshold forDM . 

DM

max0.1threshDM D= ×

3.5.3. Dealing with Violated Constraints 

When in an optimization problem the individuals violate the constraints, a strategy for 

repairing the violation has to be considered. As suggest by Venter and Sobieszczanski-

Sobieski (2003), the idea of feasible directions (Vanderplaats, 2005) is used to achieve this 

goal. This way, when the constraints are violated, the velocity vector is recomputed 

according to the equation: 

 1 1
1 1 2 2

( ) (i i s i
i k k
k

p x p x
v c r c r

t t
− −− −

= +
∆

1)k−
∆

 (3.10) 

After obtaining the new velocity vector, the position is recalculated by using Eq. (3.5). 

The difference between this formula and the initial one is that the current velocity is 

neglected. Since just the elements of the best solution found by the individual and the 

population are considered, it is expected that this new velocity vector will bring the individual 

back to a feasible region of the search space. When this is not the case, Eq. (3.10) is applied 

repetitively until the individual falls in a feasible region. 

The SIMPLE Optimization toolbox of Viana and Steffen Jr (2008) was used to execute 

PSO algorithm. 
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3.6. LifeCycle Algorithm 

LyfeCycle (LC) algorithm is a hybrid heuristic optimization method inspired by the idea 

of life cycle stages, initially proposed by Krink and Løvberg (2004). From the mathematical 

point of view, natural algorithms such as ACO, DE, GA, and PSO are heuristic search 

methods of proven efficiency as optimization tools. LC is intended to avoid poor performance 

of individual methods and creates a self-adaptive optimization approach (Flores et al., 2007). 

Each individual, as a candidate solution, decides based on its success if it would prefer to 

belong to a population of an ACO, DE, GA, or PSO algorithm. This means that various 

heuristic techniques contribute to form a robust high performance optimization tool. The idea 

is that complex problems can be conveniently considered from the optimization viewpoint. As 

can be seen, the less successful individuals must change their status in order to improve 

their fitness. This means that the optimization approach does not follow a rigid scheme, in 

which various techniques are used sequentially in a cascade-type of structure. In other 

words, it is the mechanism of self-adaptation to the optimization problem that rules the 

procedure. A LC outline follows in Figure 3.7. 

 
Figure 3.7. Basic scheme for LC. 

Since the algorithm is composed by various heuristics, it is necessary to set the 

parameters of every heuristic used in the LC. Nevertheless, there is a parameter inherent to 
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the LC, namely the number of iterations that represent a stage of the LC, known as stage 

interval. At the end of each stage interval, the less successful individuals must change their 

stage in order to improve their fitness. During the optimization procedure the agents of each 

subpopulation commute to the other in such a way that its own fitness is improved. In other 

words, it is the mechanism of self-adaptation to the optimization problem that rules the 

procedure. To close the definition, LC stages must be presented. In the present work, two or 

more of the previously presented heuristics are used as stages. Other versions of the LC can 

be proposed by considering other heuristics and a mix of them, as shown by Krink and 

Løvberg (2004). 

The SIMPLE Optimization toolbox of Viana and Steffen Jr (2008) was used to run LC 

algorithm. 

3.7. Common Ground of the Basic Algorithms 

Despite the differences on the inspiration of the previously presented algorithms, they 

share common points such as: 

• Modeling a set of points on the design space as a population of individuals: each 

individual represents a vector of design variables, whose values are iteratively 

updated according to a heuristic rule. 

• Ability to have the population split in clusters during the optimization task: this is when 

the population is divided in sub-populations, or clusters, that run the optimization 

separately from each other. Eventually, these clusters can exchange information 

when a migration operator is applied. 

• Possibility of applying elitism and additional randomness operators: even though 

these two operators were first used in GA, they can be easily extended to all 

previously discussed methods. In fact, DE uses a sort of the elitism during the 

selection operator, and the PSO community has already tested a randomness 

operator as can be viewed in Venter and Sobieszczanski-Sobieski (2003). 

Therefore, a unified framework is naturally proposed, as illustrated by Figure 3.8. 
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Figure 3.8. Framework for population-based heuristic optimization algorithms. 

Going deeper on the discussion of each step: 

1. Initialize algorithm parameters: this is when different operators and parameters are 

set, including both general, such as migration scheme and population size, and 

heuristic-specific, such as the GA crossover operator or the PSO trust parameters. 

2. Create the initial population: at this step, the design space is sampled. The intention 

is to raise as much information as possible. To accomplish that, a random sampling 

or other statistic-based sampling strategies are commonly applied. 

3. Run a step of the optimization algorithm for each cluster of the population: as 

described in previous sections, each of the algorithms has an internal loop that 

besides dealing with specific data structures, basically, performs selection, generation 

and replacement of individuals in the population. It is important to notice that the 

evaluations of the functions occur during this step. 

4. Perform additional randomness: as in the case of the GA mutation, an additional 

randomness can be applied to the new population in order to avoid premature 

convergence so that other parts of the design space can be explored. It is worth 

mentioning that since LC performs complete steps of each algorithm, there is no need 

to be redundant here. Therefore, LC has no additional randomness operator. 

5. Perform elitism: a pre-defined number of individuals are kept from iteration to iteration 

according to their rank in the population. 

6. Perform migration: when the population is divided in clusters, migration refers to the 

transfer of an individual from one cluster to another. This allows clusters to 
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communicate, increasing diversity. A migration rate must be chosen to determine how 

often individuals migrate to other clusters. Cantu-Paz (2001) reviews several 

migration schemes. In this work, a simple ring-type scheme is implemented, i.e., the 

 cluster migrates into the (-n th )1 -n + th  cluster (the last cluster migrates into the 

first). A migration fraction parameter controls how many individuals move from one 

cluster to the other and the migration interval controls how many iterations occur 

before another migration occurs. 

7. Stop criterion: this is necessary to stop the optimization task avoiding any additional 

function evaluations. 

Now that the common framework is clear, the following sub-sections cover details 

about how to deal with discrete/integer variables, different implementations of the 

randomness operator, and a set of stopping criteria. 

3.7.1. Dispersion Measure of the Population 

Some of the operators are only applied when a dispersion measure of the population 

follows below a threshold. Since all design variables are normalized between  and 1 , a 

convenient dispersion measure, DM , can be defined as follow: 

0

 
max

DDM
D

=  (3.11) 

where: 

• 
1

1 popn

i
pop i

D
n =

= −∑ x x : defines the dispersion of the population and it is equivalent 

to the mean value of the Euclidian distance between each individual and x .  

• x : is the vector of mean values of each design variable for the population P , i.e. 

1

1 popn

j ij
pop i

x
n =

= ∑ P  (i and  j represents the design variable and the individual of the 

population, respectively). 

• max 1
1
2 dvnD ×= 1 : defines the maximum possible dispersion of the population. 

Each of the  elements of the vector 1  is equal to 1 . Assuming that all individuals 

are uniformly distributed on the borders of the design space,  is the mean value 

of the Euclidian distance between each individual and the center of the design space. 

dvn

maxD
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DM represents the ratio between the current dispersion of the population around its 

mean value and the maximum possible dispersion. Then, the smaller the  value the 

more aggregated is the population. 

DM

Frequently, the operators are only applied when a dispersion measure of the 

population follows below a threshold, , which can be calculated by: threshDM

  (3.12) maxthreshDM thresh D= ×

where  is the threshold value. 0 thresh≤ 1≤

3.7.2. Discrete/Integer Variables 

ACO, DE, GA, PSO and LC differ historically at this point, since ACO was originally 

introduced to solve combinatorial optimization problems, DE, PSO and LC were first used to 

deal with continuous problems and, GA was initially designed to solve discrete problems. 

However, this aspect does not make unfeasible the implementation of each algorithm to 

solve continuous, discrete or discrete-continuous problems. A simple modification can make 

the algorithms able to deal with the design variables as integer numbers. The approach is 

straightforward: the set of discrete variables of each individual is rounded to its closest 

integer value before evaluating the objective function. This method, although simple, has 

shown to be quite effective in several problems tested in this research. 

3.7.3. Additional Randomness 

To avoid premature convergence of the algorithms, additional randomness is 

introduced using a randomness operator. The randomness operator behaves like the 

mutation operator in GA. The randomness operator used here changes the vector of design 

variables that represents an individual of the population. 

In the present implementation, the individuals to be modified are identified by using the 

dispersion measure , as in the case of the inertia reduction for the PSO algorithm. If 

 falls below a pre-defined threshold value, it is assumed that the population is becoming 

too uniform. In this case, a random subset of the population is subjected to the randomness 

operator. As in the case of the GA mutation operator, a randomness operator rate, 

DM

DM

fracr , 

controls the maximum size of this subset. Finally,  is used as 

threshold value forDM . 

maxthreshDM thresh D= ×

Table 3.2 summarizes the different implementations for the randomness operator used 

in this work. 
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3.7.4. Stopping Criteria 

A convergence criterion is necessary to avoid any additional function evaluations after 

an optimum solution is found. Ideally, the convergence criterion should not have any problem 

specific parameters. In this work, the algorithms repeat an iterative loop until at least a stop 

criterion is achieved. The implemented stopping criteria are shown in Table 3.3. 

Table 3.2. Randomness operators. 

Name Description 

Boundary It changes randomly one of the parameters of the individual either to 

its upper or its lower boundary value. 

Non-uniform It changes one of the parameters of the individual by using a 

Gaussian distribution. This distribution starts wide, and narrows to a 

point distribution as the current iteration approaches the maximum 

number of iterations. 

Multi-non-uniform It changes all of the parameters of the individual based on a Gaussian 

distribution. This distribution starts wide, and narrows to a point 

distribution as the current iteration approaches the maximum number 

of iterations. 

Uniform It changes one of the parameters of the individual by using a uniform 

probability distribution. 

Table 3.3. Stopping criteria. 

Criterion Description Default value 

Iterations Maximum number of iterations. 100  

Function 

Evaluations 
Maximum number of function evaluations. Iterationspopn ×

Time 
Total time (in seconds) allowed for the 

optimization task. 
+∞  

Objective limit 
The lowest value allowed for the objective 

function. 
−∞  

Iterations for 

convergence 

Number of consecutive iterations without 

improvements allowed for the optimization task. 
15  

Time for 

convergence 

Time without improvements allowed for the 

optimization task. 
+∞  
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The SIMPLE Optimization toolbox of Viana and Steffen Jr (2008) is also used for an 

easy manipulation of all different codes previously presented. 

3.8. Enhanced Stochastic Evolutionary Algorithm 

The Enhanced Stochastic Evolutionary Algorithm (ESEA) is a modified version 

introduced by Jin et al. (2005) in the Stochastic Evolutionary Algorithm, initially developed by 

Saab and Rao (1991). The ESEA, as shown in Figure 3.9, consists of an inner loop and an 

outer loop, as described in the following. The inner loop constructs new designs by an 

element-exchange approach and dictates whether to accept the designs based on a certain 

acceptance criterion dealing with the location of the points. A set of  designs is taken by 

exchanging two elements within the column and then the best of this  designs is chosen 

to be compared with the current best solution. The outer loop controls the entire optimization 

process by adjusting the threshold value, , in the acceptance criterion of the inner loop. 

According to Jin et al. (2005), this dynamic adjustment of the acceptance criterion enables 

the algorithm to avoid local minima designs. During this process,  is used to keep track 

of the best design. 

Dn

Dn

hT

bestx

3.8.1. Inner Loop 

The inner loop is responsible for constructing new designs by using an element-

exchange approach. The new designs can be accepted or rejected, based on an acceptance 

criterion that deals with the location of the points. As can be seen in Figure 3.9 (b), the inner 

loop has M  iterations. At iteration i , a set of  designs is created by exchanging two 

elements within the column of the current design, , with the best of these  designs, 

, selected for comparison with the current solution, . The substitution of  by  

depends on the acceptance criterion given by: 

Dn

x Dn

trialx x x trialx

  (3.13) ( )rand 0,1  ,hf T∆ ≤ ×

where: 

• , ( ) ( )trialJ J J∆ = −x x

• ( )rand 0,1  is a function that generates uniform random numbers between 0 and 1, 

and 

•  is the threshold control parameter. 0hT >
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trialx  will be accepted only if it satisfies 0  and the probability of 

acceptance given by: 

hJ T≤ ∆ ≤

 ( ) 1  
h h

JP S T
∆ ∆≥ = − .J

T  (3.14) 

 

 
(a) Outer loop (b) Inner loop 

Figure 3.9. Basic scheme for ESEA. 

Using the scheme guided by Eqs. (3.13) and (3.14), the algorithm attempts to avoid 

local solutions. It can be noticed that a temporarily worse design, , could be accepted to 

replace the current design, . Table 3.4 gives the values for the inner loop parameters, 

according to Jin et al. (2005). 

trialx

x

3.8.2. Outer Loop 

The outer loop controls the entire optimization process by adjusting the threshold value 

 in the acceptance criterion of the inner loop. Initially,  is taken as a small fraction of the 

initial design ( ) and its value is dynamically updated during the search 

process. The search process is divided in two main stages: (a) the improving process, which 

hT hT

( 00.005hT J= × x )
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attempts to find a locally optimal design, and, (b) the exploration process, which try to escape 

from the locally optimal design. These two stages are now discussed in more detail. 

Table 3.4. Inner loop parameters. 

Parameter Value Comments 

Dn  5en , but no larger than 50 en  is the number of all possible distinct 

 element-exchanges in a column. In 

the Latin Hypercube case 

2k =

( )
!

! !
dv

e
dv

nn
k n k

=
−

. 

M  2 dvnN J× × , but no larger than 100 

(if the candidate solution is represented 

as a vector ; otherwise, N  is 

the number of rows) 

1N =

M  is the number of iterations in the inner 

loop 

 

Improving process: The search process switches to the improving process if the 

objective function is improved after completing an entire inner loop. This mechanism is 

controlled by , i.e. . Once in the improving process,  is adjusted to 

rapidly find a local optimal design. This is done keeping the value of  small, so that only a 

better, or a slightly worse, design is accepted to replace .  is updated based on the 

acceptance ratio 

impflag 1impflag = hT

hT

x hT

acptn M  (number of accepted design divided by the number of tries in the 

inner loop) and the improvement ratio impn M  (number of improved design divided by the 

number of tries in the inner loop). Thus, there are the following possibilities: 

1.  will decrease if the acceptance ratio is larger than a small percentage (e.g., 10%) 

and the improvement ratio is less than the acceptance ratio. 

hT

2.  will remain constant if the acceptance ratio is larger than the small percentage 

and the improvement ratio is equal to the acceptance ratio (meaning that  is so 

small that only improving designs are accepted by the acceptance criterion). 

hT

hT

3.  will increase otherwise. The following equations are used to decrease and 

increase  respectively: 

hT

hT

  (3.15) 1  ,new old
h hT Tα=
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 1  ,new h
h

TT α=
old

1

 (3.16) 

where . As in Jin et al. (2005), setting  worked well in all tests. 10 α< < 1 0.8α =

Exploration process: If no improvement is made after completing an entire inner loop, 

the search process will turn to the exploration process. This mechanism is controlled by 

, i.e. . During the exploration process,  is adjusted to help the 

algorithm escape from a locally optimal design. Unlike the improving process,  fluctuates 

within a range based on the acceptance ratio. If the acceptance ratio is less than a small 

percentage (e.g., 10%),  will rapidly increase until the acceptance ratio is larger than a 

large percentage (e.g. 80%). If this happens,  will slowly decrease until the acceptance 

ratio is less than the small percentage. This process will be repeated until an improved 

design is found. 

impflag 0impflag = hT

hT

hT

hT

The following equations are used to decrease and increase , respectively: hT

  (3.17) 2  ,new old
h hT Tα=

 3  ,new h
h

TT α=
old

1

 (3.18) 

where . As in Jin et al. (2005),  and  worked well in all 

tests. 

3 20 α α< < < 2 0.8α = 3 0.7α =

As a result, during the exploration process  increases rapidly (so that worse designs 

could be accepted) to help escaping a local optimal design.  decreases slowly for finding 

better designs after moving away from the local optimal design. For the whole algorithm, the 

maximum number of cycles is used as the stopping criterion. 

hT

hT

ESEA was implemented during an internship of this doctoral research at Vanderplaats 

Research and Development, Inc. The current version of the VisualDOC general-purpose 

design optimization software from (VR&D contributors, 2006) uses this module to generate 

optimum Latin hypercube DOEs. Chapter V shows the results of this collaboration. 

To close this chapter, a summary of the contributions to the basic algorithms is given: 

• Multiple schemes for DE and GA: the developed computational code allows the use 

of multiple schemes for both DE and GA. For instance, DE can be set up with a 

combination of DE/rand/1/bin and DE/best/1/exp; or GA can be set up with two 

different selection operators (e.g. roulette and tournament). 
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• Additional randomness for ACO and DE: the general framework as presented by 

Figure 3.8 makes possible to include additional randomness in these two algorithms, 

which have limited capabilities of avoiding premature convergence. 

• Dispersion measure on the normalized design space: in opposition to schemes based 

on the function space, the proposed approach prevents difficulties in detecting 

aggregation of the population when the function space has several minima. 

• Implementation of ESEA in an environment of commercial software development to 

generate the optimal Latin hypercube. 

Next chapter presents different approaches on how to couple surrogate modeling and 

heuristic algorithms during the solution of the optimization problem. 



CHAPTER IV 

MIXING SURROGATES AND HEURISTIC OPTIMIZATION ALGORITHMS 

4.1. Introduction 

Chapter I to Chapter III clarified concepts related to the general formulation of the 

optimization problem, surrogate modeling and heuristic algorithms. The level of accuracy in 

representing the physical reality was used to define the level of fidelity of the model; the 

higher the fidelity the more accurate is the model. Chapter III even showed theoretical 

aspects of some contributions of this research. This is the last theoretical chapter of this 

thesis; it discusses how to combine surrogate models and heuristic algorithms during the 

solution of the optimization problem. 

As explained in Chapters I and II, surrogate models are used when computational 

models of high physical fidelity or numerical accuracy are prohibitively expensive in iterative 

procedures such as in numerical optimization. In this scenario, another alternative is the use 

of lower-fidelity models, which may not capture a particular feature of the physical 

phenomenon to the same degree of accuracy as its higher-fidelity counterpart, but may still 

have satisfactory predictive properties for the purposes of finding a good direction of 

improvement for the higher-fidelity model. The combination of high-fidelity, low-fidelity and 

surrogate models determine the model management framework,  which aims at maximizing 

the use of lower-fidelity and surrogate models in iterative procedures with occasional, but 

systematic, recourse to higher-fidelity, and more expensive models for monitoring the 

progress of the optimization (Alexandrov et al. 1999, and Vitali et al. 2002). 

Starting from the high-fidelity models, three approaches are described in the following 

sections: (i) surrogates directly replace actual models; (ii) variable-fidelity models, i.e. aiming 

to optimize high-fidelity but expensive models, the optimization is conducted with cheaper 

low-fidelity models corrected by surrogates; and (iii) simultaneous use of actual high-fidelity 

and surrogate models (during the optimization, surrogate models can eventually be updated). 
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4.2. First Approach: Direct Use of Surrogate Models 

This is the simplest case of direct substitution of the high-fidelity models by their 

surrogate counterparts. When using this approach it pays the use of multiple surrogates 

instead of a single one for reasons such as the most accurate surrogate does not guarantee 

the global optimum, and fitting many surrogates and repeating optimizations is cheap as 

compared to the cost of the simulations. Figure 4.1 shows how this approach works. Most of 

the steps were already discussed in Chapter I and II, however here both full cycles of 

surrogate modeling and optimization are combined together. This is not an automatic 

process since steps involving (i) assessment of quality of fitting of the set of surrogates and 

selection of a reduced subset; (ii) assessment of the quality of the results; and (iii) 

redefinition of the design space and sampled points usually requires external intervention. As 

a consequence, the optimal solution is obtained gradually. At the end of each iteration, 

candidate solutions can be used in the decision of narrowing the design space, on the re-

fitting of the set of surrogates or even as extra points for assessment of the quality of the 

surrogates. 

 
Figure 4.1. Basic scheme for direct use of surrogate models. 

If multiple surrogates are used instead of the high-fidelity models, one could ask why 

not use classical gradient-based algorithms to solve the optimization problem. The answer is 

that surrogate modeling may also lead to local optima. In a scenario of easy function 

evaluations, heuristic algorithms may be a more suitable alternative since they present a 

trend to finding the global, or near global, solution. The bottom line could be the use of both 
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heuristic and gradient-based algorithms in a cascade-type scheme in which the heuristic 

algorithm generate proper initial guesses for the gradient-based algorithm. 

4.3. Second Approach: Use of Different Levels of Fidelity 

This is the case in which surrogates are used to map the responses obtained from the 

low-fidelity to the high-fidelity space (i.e., they correct the responses obtained by using low-

fidelity models). This allows the use of faster low-fidelity models during the optimization; 

while a reduced set of expensive high-fidelity models are run “off-line.” A common approach 

is to use the ratio or difference between the low-fidelity and high-fidelity models at one or 

several points in order to correct the low-fidelity model at other points (Alexandrov et al. 

1999, Vitali et al. 2002, Gano et al. 2004, and Marduel et al. 2006). Figure 4.2 shows a 

possible flowchart for this approach. 

 
Figure 4.2. Basic scheme for variable-fidelity framework. 

Correction surrogates couple high-fidelity and low-fidelity methods of analysis at a 

number of points in the design domain. Here, two ways of coupling the ratio and difference 

methods of analysis are presented. The process starts with high and low-fidelity computation 

of the response of interest,y , at different  points. At these points, the ratio β : p

  ,HF

LF

y
y

β =  (4.1) 

and the difference δ : 

  (4.2)  ,HF LFy yδ = −
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are computed. The subscripts  and LF  in Eqs. (4.1) and (4.2) indicate the value of y  

obtained from high-fidelity and low-fidelity models, respectively. 

HF

Equation (4.1) may lead to a conditioning problem of , when  tends to zero. 

Marduel et al. (2006) show that adding a user-defined constant, , sufficiently large, can 

prevent ill-conditioning. β  is then defined by: 

β LFy

K

  ,HF

LF

y K
y K

β +=
+

 (4.3) 

The next step is to build the surrogate models  and  for  andδ , 

respectively. Here, there is no surrogate model to be preferably used. Instead, as in the 

previous approach, a set of different surrogates can also be used as a way to prevent 

against bad fitted surrogates. 

( )β̂ x ( )δ̂ x β

The variable-fidelity approximation to y  at any other point, , is obtained from a low-

fidelity analysis as: 

x

  (4.4) ( ) ( ) ( ) ( )  or   ,y y y yβ≅ ≅x x x xδ

ˆ

ˆ

  (4.5) 
( ) ( ) ( )

( ) ( ) ( )

 ,

ˆ  .

LF

LF

y y

y y

β

δ

β

δ

=

= +

x x x

x x x

In order to avoid the need to interface the low-fidelity analysis with the optimization 

software, Vitali et al. (2002) also propose the replacement of the low-fidelity model by its 

surrogate counterpart. Instead of calling the low-fidelity analysis program every time a value 

of  is needed, the optimizer calls for the surrogate model. This way: ( )y x

  (4.6) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆˆ   or   .LF LFy y y yβ δ≅ ≅ +x x x x x x

Vitali et al. (2002) go even further by proposing that in addition to those given by Eqs. 

(4.4) and (4.6), two other approximations of  can be obtained by correcting the low-

fidelity values 

( )y x

( )LFy x  by  and/or , then fitting another surrogate of  

and/or , i. e.: 

( )β̂ x ( )δ̂ x ( )yβ x

( )yδ x

  (4.7) ( ) ( ) ( ) ( )ˆ   or   ,y y y yβ≅ ≅x x x xδ̂
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At the end, the cost of running ( )LFy x  may be used to decide whether use 

computations following Eq. (4.4) or use only Eqs.(4.6) and (4.7). Once again, the use of 

multiple variable-fidelity approximations to  is encouraged as a way to generate a 

diverse set of candidate solutions for the optimization problem. In this sense, if Eqs. (4.4) to 

(4.7) are used, at the end of the optimization a set of candidate solutions must be evaluated, 

instead of a single one. 

( )y x

4.4. Third Approach: Coupling Actual High-Fidelity and Surrogate Models 

This is the case in which both high-fidelity and surrogate models are used during 

optimization. High fidelity models can be used both to check the accuracy and to update the 

surrogate models. There are a number of studies reporting the use of different surrogates 

and different strategies for coupling them with optimization algorithms. Liang et al. (2000) 

proposed a strategy for coupling heuristic algorithms with local search and quadratic 

response surface methods. However, when working with multimodal problems the accuracy 

of quadratic models can become questionable. Jin et al. (2002) presented a framework for 

coupling heuristic algorithms and neural-network-based surrogate models. This approach 

uses both the expensive and approximate models throughout the search, with an empirical 

criterion to decide the frequency at which each model should be used. Ong et al. (2003) 

employed both high-fidelity and support vector regression models (with linear-splines as 

kernel function) during the optimization. They propose an approach in which the local search 

is conducted with the surrogate models and the global search is performed with the actual 

high-fidelity models. Zhou et al. (2007) proposed a framework that uses different surrogate 

models during local and global search. The framework employs a data-parallel Gaussian 

process based global surrogate model to filter the heuristic algorithm population so that 

promising individuals are retained. Subsequently, these potential individuals undergo a trust-

region gradient-based search strategy that employs radial basis function local surrogate 

models to accelerate convergence. 

While several researchers have primarily been concerned with the choice among 

different surrogates, there has been virtually no work regarding the use of multiple 

surrogates. Thus, in this doctoral research, the following aspects are explored: 

1. A large set of different surrogates is used during both off-line and on-line phases of 

the optimization. 

2. Update of the surrogates during the on-line phase of the optimization through a pre-

defined number of extra actual function evaluations (high-fidelity analysis). 
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3.  (i.e. surrogate with the smallest  value of the set) is used for 

global search. Since PR  is used as an estimator of the  (RMS error); the 

idea is to pick up the surrogate with best global approximation capabilities. 

BestPRESS PRESS

ESS RMSE

A scheme with two variations is proposed, as seen in Figure 4.3. There is a common 

off-line phase as well as a common on-line phase (see Figure 4.3-(a) and (b)). During the off-

line phase, the basic steps of the surrogate modeling (discussed in Chapter II) are 

performed. However, instead of the traditional use of a single surrogate model, here a set of 

different basic surrogates are generated. In the sequence, parameters for the optimization 

are defined. Other than parameters of the optimization method (such as population size, 

number of iterations, etc.), the number of extra actual function evaluations, , must be 

defined.  acts like the computational budget used during the on-life phase for updating 

the surrogates. Using Be  as objective function, heuristic optimization algorithms 

are in charge of generating candidate solutions considered to be added the set of initial data 

points. If a candidate solution is not in the design matrix already, the high-fidelity analysis is 

performed. It is worth remembering that especially with discrete variables, different runs of 

the heuristic algorithm may lead to the same candidate solution. Thus, it is suggested that 

this loop run for up to 1.  iterations, instead of just for . The two proposed 

variations differ on the actual evaluation phase. Figure 4.4-(a) illustrates the first and simplest 

approach, where the candidate solutions are added to the design matrix,  (and its 

respective actual function value to the  vector). At the end of the loop, the resulting design 

matrix,  (and the respective ) is used for updating the set of basic surrogates. The 

update of the surrogates is performed just once, right before the final run of the heuristic 

algorithm, which finally generates the final candidate solution, . The second approach 

updates the surrogates every time a new point is added to the design matrix, as shown in 

Figure 4.4-(b). It means that Be , used as objective function, may change in both 

shape and identity. It is easy to see that while the first approach is faster, the second one 

may benefit from the constant update of the surrogates. The downside of the second 

approach is the iterative computation of PR  errors. In high dimensions, this may be an 

issue and the use of alternative PR   approaches as the k -fold strategy may be 

considered (as discussed in Chapter II). In this case, instead of computing PR  errors 

through the leave-one-out strategy every time a new point is added to the design matrix, 

,  is performed using the k -fold strategy with pre-defined number of points and 

respective values of k. As an illustration of this question, consider the case of 12-point initial 

design matrix in a 2-dimensional space, and . Most probably, there are no 

mxpN

mxpN

stPRESS

5 mxpN× mxpN

X
Y

newX newY

optmx

stPRESS

ESS

ESS

ESS

newX PRESS

6mxpN =
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computational issues in performing PR  calculations when the number of points in  

 is equal to 13, 14, 15, 16, 17, and 18. On the other hand, consider a 56-point initial 

design matrix in a 6-dimensional space, and . Here, the computation of PR  

may be expensive and instead of employing the leave-one-out strategy, the k-fold strategy 

may be used when, for example, the number of points in  reaches 60, 63, 66, and 68, 

with k equals to 20, 21, 22, and 17; respectively. For the sake of simplicity, the flowchart of 

Figure 4.3-(b) and Figure 4.4-(b) show just the leave-one-out implementation (the k-fold 

variation is left as an exercise for the reader). The SIMPLE Optimization toolbox of Viana and 

Steffen Jr (2008) has all previously discussed functionalities already implemented. 

ESS

newX

14mxpN = ESS

newX

 

 

(a) Off-line phase. (b) On-line phase. 

Figure 4.3. Basic scheme for the coupling of actual high-fidelity and surrogate models. 
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(a) Without update of surrogates. (b) With update of surrogates. 

Figure 4.4. Different alternatives for the “actual evaluation phase” of Figure 4.3-(b). 



CHAPTER V 

APPLICATIONS 

The previous chapters showed the basis and theoretical contributions of this doctoral 

research. This chapter is devoted to the numerical applications. Ant Colony Optimization, 

Differential Evolution, Genetic Algorithms, Particle Swarm Optimization and LifeCycle Model 

were employed to solve the following list of direct/inverse optimization problems: 

 

• Direct problems: (a) Vehicular three-dimensional structure design optimization; and 

(b) Optimization of aircraft structural components by using heuristic algorithms and 

multi-fidelity approximations. 

• Coupling heuristic optimization and high-fidelity analysis to improve surrogate models 

in the region of the optima. 

• Inverse problems: (a) Identification of a non-linear landing gear model using heuristic 

optimization; and (b) Aircraft longitudinal stability and control derivatives identification 

by using LifeCycle and a local optimization algorithm. 

• Enhanced Stochastic Evolutionary Algorithm used to solve the combinatorial 

optimization of the optimal Latin hypercube design of experiments. 

5.1. Direct Problems 

5.1.1. Three-dimensional Vehicular Structure Design Optimization 

This application explores discrete-continuous, multi-objective and constrained 

optimization using heuristic optimization methods. It consists in the design optimization of a 

vehicular three-dimensional structure (space frame type) by means of a set of nature-

inspired optimization algorithms, namely ACO, GA, and PSO. The structure is used as a 

chassis of a high performance roadster vehicle. In general, for this type of vehicle, a chassis 

must be as rigid and lightweight as possible in order to fulfill drivability (the degree of 

smoothness and steadiness of acceleration of a car) and maneuverability (the quality of 

being capable of maneuvering or changing position) requirements. This application was fully 

reported in Viana et al. (2007b) and Oliveira et al. (2007). 
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1. Baseline Design Definition and Modeling 

The use of three-dimensional vehicular structures became popular since 1960s, due to 

the interest in designing high performance race cars (Aird, 1997). Figure 5.1 shows one of 

the most common structures for this type of chassis. 

 
Figure 5.1. Space frame chassis in three-dimensional arrangement. 

According to the literature (Thompson et al., 1998 and Aird, 1997), for design purposes 

the most effective strategy should consider both the mass reduction and the increase of the 

torsional stiffness. Translating this to the design level, the engineer must choose the material 

(by defining the material density, Poisson's ratio, and the Young’s modulus) and design the 

proper geometry of the structure (by defining the total mass and moment of inertia). Even 

though steel alloy and aluminum alloy are the most attractive materials for the chassis 

construction, 1020 carbon steel was employed here as a low cost solution. Figure 5.2 

illustrates the baseline design for a two-passenger vehicle as obtained by consulting the 

literature about high performance roadster vehicles (Thompson et al., 1998; and Aird, 1997).  

The lateral view shows indications of the suspensions anchorage points. Since lack of roof 

and the presence of side doors can make this structure flexible, left and right trusses were 

placed together with diagonal bars in the floor-plan (minimizing buckling tendencies). Table 

5.1 gives more details about this initial design configuration. Regarding the finite element 

modeling of the structure, while the use of more sophisticated elements may be more 

accurate, they are also more expensive from the computational viewpoint, and thus, not 

convenient within the optimization framework. In this case study, bar elements were used as 

a compromise solution between accuracy and computational cost. Each element has twelve 

degrees of freedom (two nodes per element): translations along x, y and z nodal directions 

and rotations with respect to x, y and z nodal axes. The baseline design has 19,167  degrees 

of freedom, mass of [ ]139.52 Kg  and torsional stiffness of 1728.1 degKgf m⎡ ⎤⋅⎢ ⎥⎣ ⎦ . 
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Figure 5.2. Baseline design of the space-frame chassis (lateral view indicates points of 

suspensions anchorage). 

Table 5.1. Baseline details. 

General 

Mass: 139.52 Kg  
Torsional stiffness: 

1,728.1 degKgf m⋅  

Initial geometry: circular tubes 

with 350.8 10  [ ]m−×  of 

external diameter and 

31 10  [ ]m−×  of wall thickness 

Wheelbase: 2.62 m  Front and rear tracks: 1.475 m  

Front suspension type: short arm 
Rear suspension type: MacPherson with 

aggregate 

Material (carbon steel) 

Young’s modulus: 
11 22.1 10  N m×  Poisson ratio: 0.3  Density: 37850 Kg m  

FE model 

Element type: BEAM04 NDOF per element: 12 NDOF of the model: 18,675  

 

The torsional stiffness is numerically obtained through a static analysis of the structure. 

Figure 5.3 illustrates the boundary conditions for this aim. The torsional stiffness is then 

obtained by using the information about the stress and strain, as detailed in Aird (1997). The 

commercial finite element package ANSYS (Ansys Contributors, 2006) is used to run the 

finite element analysis. More details about the torsional stiffness computation for this specific 

application can be found in Oliveira (2007). 
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Figure 5.3. Boundary conditions for computing torsional stiffness. 

2. Optimization Problem Formulation 

Figure 5.4 shows a possible way of incorporating numerical optimization in the design 

cycle. Modeling of the structure and analysis of design requirements are steps of the 

“problem definition and formulation.” After this first stage, a baseline design is proposed. 

After each “optimization” step, the candidate solution is revised. If either the constraints were 

not satisfied or it is possible to achieve some extra improvement, the candidate solution is 

redefined as a baseline for a new iteration of the design cycle. This loop continues until the 

candidate solution satisfies the proposed goals. As a result of the optimization, it may be 

observed not only changes in the design in the sense of the nodal coordinates, but also 

changes in the finite element model. A candidate solution may lead the designer to include or 

eliminate elements in the structure. 

The formulated optimization problem deals with two responses obtained from the finite 

element model, namely, the mass and the torsional stiffness (in a more realistic design 

scenario, it would be necessary to include other factors such as dynamic responses, 

manufacture constraints, etc.). A total number of 32  nodal coordinates on the central part of 

the chassis are assumed as continuous design variables and the external diameter of the 

tube is a discrete variable. The baseline design is placed at the center of the design space in 

such a way that and each node can be shifted to a position that has coordinates varying from 

75%  to 125%  of the baseline counterparts. Figure 5.5 illustrates where the 32  nodal 

coordinates take place in the baseline design. The external diameter of the tube can assume 

values shown in Table 5.2. For all these diameter values, the thickness ranges from 
31.06 10 m−×  to 33.00 10 m−×  (all values were obtained from commercial steel tubes 

found in the market). This way, the optimization is defined as a problem of 33 design 

variables (32  continuous and 1  discrete). 
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Figure 5.4. Optimization included in the design cycle. 

 
Figure 5.5. Nodal points for optimization. 

Table 5.2. Possible values of the external diameter. 

Design variable values 1 2 3 4 5 

Corresponding diameter 310 m−⎡ ⎤×⎣ ⎦  38.10  41.27  44.45  47.60  50.80  

 

Four different formulations were tested in the first “optimization” step of the design 

cycle. Table 5.3 gives the description of each of the four formulations. Static penalties and 

weighted sum methods were used to handle the constrained optimization, and the multi-

objective problems, respectively. 
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Table 5.3. Formulation of the optimization problem. 

Scenario Description Formulation 

#1  Optimization problem is defined as 

the minimization of a dummy 

objective function, while both the 

mass and the stiffness are 

considered as design constraints. 

( )

( )

( )

1

2

Objective:

0

Mass constraint:

1.0 0

Stiffness constraint:

1.0 0

limit

limit

J

MG
M

KG
K

=

= − ≤

= − ≤

x

x

x

 

#2  Mass reduction is an objective 

function while stiffness increase is 

taken as a constraint. 

( )

( )

Mass objective:       

Stiffness constraint: 1.0 0

limit

limit

MF
M

KG
K

=

= − ≤

x

x
 

#3  Stiffness increase is an objective 

while mass reduction is a 

constraint. 

( )

( )

Stiffness objective:

Mass constraint: 1.0 0

limit

limit

KF
K

MG
M

= −

= − ≤

x

x
 

#4  Multi-objective optimization: mass 

reduction and stiffness increase. 
( )

( )

1

2

Mass objective:

Stiffness objective:

limit

limit

MF
M

KF
K

=

= −

x

x
 

 

3. Results and Discussion 

Table 5.4 contains the optimal results obtained in the first “optimization” step, in which 

all heuristic methods were set up with a population size of 50  and number of iterations of 

50 ,  [ ]100 limitM Kg=  and 1900 deglimitK Kgf m⎡ ⎤= ⋅⎢ ⎥⎣ ⎦ . According to Table 5.4, 

although all algorithms performed well, considering both mass and torsional stiffness, PSO 

using formulation #1 showed to be the best choice. This way, this is the only configuration 

for the “optimization” step in a second iteration of the design cycle. Table 5.5 summarizes all 

information about the only two cycles required to achieve an optimal design. In the second 

iteration, PSO was set up with a population size of 100  and number of iterations of 100 , 

[ ]80 limitM Kg=  and 2835 deglimitK Kgf m⎡ ⎤= ⋅⎢ ⎥⎣ ⎦ . 

The framework illustrated in Figure 5.4 showed to be capable of improving the baseline 

design in every cycle of optimization. 
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Table 5.4. Optimal results for the first step.  

Mass Torsional stiffness 
Method Formulation 

Value [ ]Kg  %of reduction Value degKgf m⎡ ⎤⋅⎢ ⎥⎣ ⎦  % of increasing 

#1 107.24 23.1 1897.7 9.8 

#2 115.93 16.9 1937.8 12.1 

#3 100 28.3 1765.08 2.1 
ACO 

#4 105.31 24.5 1937.8 12.1 

#1 107.96 22.6 1774.54 2.7 

#2 126.34 9.45 1937.8 12.1 

#3 100.03 28.3 1809.56 4.7 
GA 

#4 100 28.3 1937.8 12.1 

#1 106.08 24 2106.25 21.9 

#2 110.01 21.2 1937.8 12.1 

#3 108.55 22.2 1933.4 11.9 
PSO 

#4 105.63 24.3 1868 8.1 

 

Table 5.5. Summary of the optimization process.  

Design cycle iteration Designs 
Mass 

[ ]Kg  

Torsional  

stiffness degKgf m⎡ ⎤⋅⎢ ⎥⎣ ⎦  
DOF of the 
model 

Baseline 139.5 1728.1 19167 
#1  Candidate 

solution 
106.1 2106.3 18609 

New baseline 105.7 2266 18675 
#2  New candidate 

solution 
109 2880 18333 

Final design refinement Optimal 104 2810 17643 

% Improvement (reduction for mass and 

increasing for stiffness) 
25.5 62.6 --- 

 

4. Summary and Conclusions 

This application demonstrated the use of heuristic optimization algorithms directly 

coupled with finite element models to solve the design optimization of a three-dimensional 

vehicular structure. The investigation showed the possibility of using the present techniques 

in real world environment. A combination of continuous and discrete design variables was 
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successfully handled by the algorithms. It is also important to say that the algorithms were 

able to handle constraint functions and performed satisfactorily in the context of multi-criteria 

optimization design. The results are very encouraging in the sense that other system 

requirements, embracing for example the gravity center, dynamic and manufacture 

constraints, will be included in the optimization problem in further research work. 
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5.1.1. Optimization of Aircraft Structural Components by using Heuristic Algorithms and Multi-

Fidelity Approximations 

This application explores the use of the multi-fidelity framework coupled with heuristic 

optimization methods in order to reduce the computational cost in the on-line phase of the 

optimization. In this work, a suite of nature-inspired optimization methods, namely ACO, GA, 

PSO, and LC, is applied in the design of a flat pressure bulkhead reinforced by an array of 

beams. Variable fidelity is proposed as compromise solution between numerical performance 

and computational cost. This allows faster linear analyses during the optimization; whilst a 

reduced set of expensive non-linear analyses are run “off-line”, enhancing the linear results 

according to the physics of the structure. Preliminary results of this application was reported 

in Viana et al. (2007d), the full report is in Viana et al. (2008d). 

1. Component Description and Formulation 

From the structural viewpoint, the pressurized cabin of a modern aircraft is a system of 

sealed pressure vessels containing an atmosphere near to that of sea level and its functional 

requirements include (Bruhn, 1973): (i) transmission of internal and external flight loads; (ii) 

necessity for non-structural cutouts such as doors and windows; (iii) shape efficiency for both 

aerodynamics and space allocation; and (iv) minimum structural weight. More specifically, 

devices called pressure bulkheads close the extremities of pressurized cabins. According to 

Niu and Niu (1999), pressure bulkheads should have a dome-like structure in preference to a 

flat one. It is also known, however, that some requirements, mostly related to space 

availability, impose the adoption of the flat geometry. This case study is although geared 

towards the non-ideal condition, which is a flat bulkhead. For a more realistic analysis, it 

should be considered that when the carrying of transverse loads entails large (more than a 

few tenths of the plate thickness) deflections in the same direction (see Figure 5.1), the 

plates deform into curved surfaces, giving rise to mid-surface stresses. Still, the edge 

supports resist the in-plane movements of the plates, leading to further membrane (mid-

surface) action. 

From the analysis point of view, all previous discussion justifies the use of non-linear 

finite element modeling to deal with such complex calculations. On the other hand, within a 

design optimization framework, several analyses are required iteratively and, due to their 

usually high computational cost, a feasibility obstacle can arise. In this case study, variable 

fidelity is used to overcome this issue. Faster linear analyses are employed during the 

optimization; and a reduced set of expensive non-linear analyses are run “off-line.” 
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(a) Non-deformed. (b) Deformed. 

Figure 5.1. Displacement post-processing indicating large deflections at a pressurized flat 

bulkhead reinforced by beams. 

2. Numerical Optimization of the Pressure Bulkhead 

The optimization framework based on heuristic methods and on variable fidelity 

analyses, as described in Chapter IV, is used here. Table 5.1 to Table 5.3 contain useful 

design data, such as the general information about the pressure bulkhead; design variable 

descriptions and their respective boundary specifications; and finally, response descriptions 

and respective values for the baseline design and target design as well. All this information is 

important for the good understanding and definition of the optimization problem. It is worth 

mentioning that in Table 5.2, the normalization was performed to preserve interests in the 

technological content of this work. 

The sets of four design variables and five responses that describe the pressure 

bulkhead modeling are listed in Table 5.2 and Table 5.3, respectively. The target values were 

chosen to be 80% of those at the baseline design (since all of them are quantities to be 

minimized). The bulkhead mass is set to be 2.5 times more important than the other 

responses (i.e. the weight coefficients are 1iw = , for 1 to 4i =  and 5 2.5w = ). The 

baseline responses are chosen as the worst accepted values, thus forcing the optimizer to 

move away from them in a clear attempt to improve the design. 

Table 5.1. Pressure bulkhead description. 

Web material Al 2024 

Number of horizontal reinforcement beams 3 

Number of vertical reinforcement beams 5 

Reinforcement beams material Al 7050 

Pressure differential Equivalent to 30,000 ft 
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Table 5.2. Design variables values normalized by the bulkhead diameter (normalization 

makes the design variables non-dimensional).  

Design variable Lower bound Baseline Upper bound 

1x : width of reinforcement beams 0.01 0.02 0.03 

2x : height of reinforcement beams 0.040 0.05 0.06 

3x : thickness of reinforcement beams 0.0008 0.0012 0.0016 

4x : web thickness 0.0008 0.0012 0.0016 

 

Table 5.3. Baseline design and target design response values. 

Objectives 
Baseline 
value 

Target 
value 

( )1f x : ratio of ultimate tension stress at the reinforcement beams with 

respect to allowable 
1.01 0.8 

( )2f x : ratio of ultimate compression stress at the reinforcement beams 

with respect to allowable 
0.85 0.68 

( )3f x : web maximum displacement, normalized with respect to the 

bulkhead diameter 
0.116 0.928 

( )4f x : maximum limit tension stress with respect to yield limit 0.19 0.15 

( )5f x : pressure bulkhead mass 22.56 18.05 

 

For the sake of simplicity, the variable fidelity is implemented with a second order PRS 

model for the difference between the high and low fidelity analyses of responses ( )1f x  to 

( )4f x . Since ( )5f x  is the pressure bulkhead mass, it does not require any correction (its 

fidelity does not depend on whether the calculations are linear or non-linear; eventually, 

small differences may appear due to either rounding or truncation). 

In order to keep the computational cost low (in terms of low-fidelity simulations), 

instead of a multi-objective approach for generating the Pareto front, the responses are 

combined into a functional whose minimization implies that all responses tend to a target 

value and depart from a non-desirable one. This simplifies the solution of the problem and 

can be considered acceptable given the general scope of this work. Compromise 

Programming (discussed in Chapter II) was used: 

 ( )
( ) ( )( )
( ) ( )

2

1

objn
i i

i worst
iii

f f
J w

f f

∗

∗
=

⎛ ⎞− ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ −⎝ ⎠∑ x xx
x x

 (0.1) 
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where: 

• ( )J x  is a compromise objective function. 

• ( )if x  is the i-th response of interest, in a total of objn . 

• ( )if ∗ x  is the target value of the i-th response. 

• ( )worst
if x  is the worst (avoidable) value accepted for the i-th response. 

• iw  is the weighting factor applied for the i-th response of interest. 

 

The target and avoidable values are not necessarily design goals, but play an 

important role at the optimization problem by defining the tendency of the desired optima with 

respect to the baseline design. In the context of the present work, it is a useful approach 

since the heuristic techniques are defined for unconstrained and single-objective problems 

only. During the optimization task, each of the responses is calculated through a linear static 

finite element analysis (low-fidelity) and corrected by the PRS that correlate the result with 

the one obtained by means of non-linear finite element analysis (high-fidelity).  

The samples for the regression are generated through a Central Composite Design 

CCD, as described in Box et al. (1978), is one of the most commonly used DOEs for 

quadratic polynomial response surfaces. CCD consists of three distinct sets of experimental 

runs: (1) a factorial (perhaps fractional) design in the factors studied, each having two levels; 

(2) the central point, whose values of each design variable are the medians of the design 

space; and (3) a set of axial points, experimental runs identical to the centre points except for 

one design variable, which will take on values both below and above the median of the 

design space, and typically both outside their range (all variables are varied in this way).In 

this application, CCD demanded 25 finite element simulations (both linear and non-linear). 

Following the idea presented in Chapter IV, most of the off-line computational effort is due to 

these runs, apart from isolated validations. According to this procedure, the obtained PRS 

are shown in the following equations: 

 

( )1 1 2 3 4

2 2 2
1 2 3

1 2 1 3 1 4 2 3

ˆ 3.07513 1.57573 0.75861 0.97382 0.23060

0.41144 0.11233 0.23423

0.18688 0.32223 0.23890 0.14728

x x x x x

x x x

x x x x x x x x

δ = − + + + +

− − − +

− − − −

 (0.2) 

 
( )2 1 2 3

2
1 23

ˆ 5.09962 1.68555 1.33653 0.96027

0.63840 0.29912

x x x x

x x x

δ = − + + + +

− −
 (0.3) 

 ( ) 2
3 2 4 4
ˆ 7.77607 0.41315 5.39596 2.36998x x x xδ = − + + −  (0.4) 
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( )4 1 2 3 4

2
1 34

ˆ 18.5759 2.6548 1.2855 2.4576 6.3808

1.2053 1.0776

x x x x x

x x x

δ = − − − − + +

− −
 (0.5) 

Table 5.4 gives the comparison of the adjusted correlation coefficients, 2
aR , of the PRS 

models for the responses, ( )f̂ x , and for the correction surrogates, ( )δ̂ x . 2
aR  primarily 

measures the statistical accuracy of the PRS surrogates (the closer 2
aR  is to 1, the better). 

Mathematically: 

 
( )

( )
( )

( )

2

2 1

2

1

ˆ
11    ,

1

p

i i
dvi

a p
dv

i
i

y y
nR

n p
y y

=

=

−
−= −

− −
−

∑

∑
 (0.6) 

where p  is the number of data points, iy  is the observed data, îy  is the prediction of the 

PRS model, and y is the mean of the observed data. 

The success in using variable-fidelity over the direct meta-modeling of the responses 

can be observed in Table 5.4. 

Table 5.4. Comparison of the adjusted correlation coefficients.  

( )1̂f x  ( )2̂f x  ( )3̂f x  ( )4̂f x  
Surrogate of the response 

0.65 0.34 0.93 0.87 

( )1̂δ x  ( )2̂δ x  ( )3̂δ x  ( )4̂δ x  
Correction surrogate 

0.99 0.96 0.982 0.952 

 

As expected from the theoretical analysis, it can be observed that (i) due to the non-

linearities, it pays to use the variable-fidelity framework over the PRS models of the 

responses; and (ii) the correction PRS models adjust very well to the data. As a 

consequence, the corrected response values (low-fidelity analyses and correction PRS 

surrogates) and the actual non-linear results (high-fidelity analyses) have very close variation 

in the case of all four responses of interest, as shown in Figure 5.2. As a final verification, the 

data corresponding to the 25 runs of the CCD was used to calculate two sets of correlation 

coefficients, as shown in Table 5.5. All sets of data move in the same direction (positive 

correlations) and, in general, the correlation is greater when the correction surrogates are 

used with the linear results. Given the improvement on the predicting capabilities of the low-
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fidelity models due to the use of the correction surrogates adopted on the variable fidelity 

framework, it is now safe to perform the intended optimization procedures. 

 

  
(a) Ratio of maximum tension stress at the reinforcement 

beams with respect to allowable one. 

(b) Ratio of minimum compression stress at the 

reinforcement beams with respect to allowable one. 

  
(c) Web maximum misplacement, normalized with respect to 

the bulkhead diameter. 

(d) Maximum limit tension stress with respect to yield limit. 

Figure 5.2. Variation of actual and corrected values of responses ( )1f x  to ( )4f x .  

Table 5.5. Correlation coefficients of non-corrected and corrected linear results with respect 

to actual non-linear results.  

Response 
Uncorrected linear to non-linear 

correlation coefficients 
Corrected linear to non-linear 

correlation coefficients 
( )1f x  51,32% 66,64% 

( )2f x  28,94% 79,28% 

( )3f x  70,09% 87,86% 

( )4f x  61,26% 94,62% 

 

One of the aims of this work is to show the performance of the heuristic algorithms 

when combined with variable fidelity in a real world problem. Given the random nature of the 

algorithms used, results may vary from one run to another (or at least present slight 

differences). This way, in the first part of the study, each algorithm is tested 10 times (each 

time with different initial populations). The success of the algorithms in performing the initial 

global search is observed if the results of these repetitions are close to each other. Table 5.6 

shows the setup used for each of the heuristic optimization algorithms. In all cases, each run 

of the algorithms will demand 1,500 low-fidelity function evaluations. 

Secondly, a set of initial designs given by the heuristic methods fed the Nelder-Mead 

simplex direct search (NMSDS, detailed in Appendix D) in order to finish the local search. 
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NMSDS was chosen because it is a zero-order method as well and thus it has no privilege of 

information when compared with the heuristic optimization algorithms. Finally, one of the final 

designs is used to validate the results of the optimization performed with variable fidelity 

analysis. This is done by checking the differences between the uncorrected and corrected 

linear (low-fidelity) simulations with respect to the non-linear one (high-fidelity). 

Table 5.6. Setup for heuristic optimization methods. 

Population size 50 

Iterations 30 General 

Stop criterion Maximum. number of iterations 

ACO Dissolving rate 1.25 

Number of individuals for elitism 2 

Selection function simpleGASelectionRoulette 

Crossover function simpleGACrossoverHeuristic 

Crossover fraction 0.8 

Mutation function simpleGAMutationUniform 

Migration direction 'forward' 

Migration interval 20 

GA 

Migration fraction 0.2 

Inertia (w ) 1.4 

Self trust ( 1c ) 1.5 

Swarm trust ( 2c ) 2.5 

DT 1 

Vmax 0.2 

Mass extinction factor 0.975 

Coefficient of Variation 1 

PSO 

Swarm Subset 0.2 

 

3. Results and Discussion 

In the first part of the study, the performance and convergence of the heuristic 

algorithms is tested Figure 5.3 and Figure 5.4 show an arbitrary run executed with each of 

them. They help as an initial comparison basis to analyze the behavior of the used 

techniques. Figure 5.3 shows how the best, the mean and the standard deviation of the 

objective function values for the population of ACO, GA and PSO evolve during the 

optimization procedure. Figure 5.4 illustrates the evolution of the LC along the iterations. 
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Figure 5.4-(a) shows which heuristic is conducting the optimization process at a given 

iteration. Figure 5.4-(b) shows the transitions due to its self-adaptation skills. 

 

   

(a) ACO (b) GA (c) PSO 

Figure 5.3. Sample of one run of the optimization for each basic algorithm.  

In all cases shown above, good convergence both in terms of results (represented by 

the best value of the objective function) and in terms of the dispersion of the population 

(represented by the mean and standard deviation of the objective function) can be observed. 

Figure 5.4-(a) illustrates how GA and PSO alternate in providing to LC the optimal 

solution. During the first 4 iterations, this is done by PSO, then the solution is few times 

updated by GA. Figure 5.4-(b) shows how this process is reflects the split of the population 

between GA and PSO. Since most of the time GA performs better than PSO, it can be 

observed that the population trends to perform GA rather than PSO. 

 

  
(a) Best objective trace. (b) Number of individuals trace. 

Figure 5.4. Sample of one run of the optimization for the LC algorithm.  

Given the random nature of the algorithms used, the profiles of Figure 5.3 and Figure 

5.4  may vary from one run to another (final results may also vary slightly). This way, for the 

sake of the statistical analysis, each run was repeated 10 times and the best, worst, average, 

standard deviation and coefficient of variation of the results from each of the 10 repetitions 

were recorded. The average indicates the central tendency which the heuristic results tend 

to. The standard deviation indicates the stability of the optimal solutions, measuring the 

degree of convergence. The average value for   is the average of values of the functional 

over the 10 runs; it does not correspond to the value obtained when running the analysis with 
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the average design. Table 5.7 reports this information for each of the heuristic methods. The 

best and average results are shown in bold face. Table 5.7 shows that all algorithms 

converged fairly well. While GA achieved the best result, LC presents better dispersion 

(smaller differences among the best, average and worst designs). This is an evidence of the 

LC robustness, somehow expected, since LC is intended to take advantage of multiple 

heuristics simultaneously and to reduce the bias of a poorly performed algorithm. Altogether, 

Table 5.7 also indicates the success of all algorithms in pointing to a close region of the 

design space.  

Table 5.7. Optimization results for all heuristic algorithms (performed alone).  

 

Table 5.8 shows what happens when running the objective function with the average 

result found by each algorithm. The response values are all obtained by linear analysis (low 

fidelity) and further on properly corrected. Indeed, despite the apparent differences among 

the average values (which suggests small advantage for GA), the four averages are 

statistically equivalent at a 95% significance level, since all of them belong to the 

corresponding confidence interval that goes from 1.667 to 1.828. 

Design variable 
Algorithm Statistics 

3
1 10x −×  3

2 10x −×  3
3 10x −×  3

4 10x −×  

Objective 
function ( )J x  

Best 25 41.94 1.5 1.08 1.44 

Average 24.96 40.19 1.5 1.03 1.73 

Worst 24.96 39.4 1. 5 1.02 1.76 
ACO 

StdDev 0.035 0.73 0.0001 0.02 0.10 

Best 29.08 42.87 1.65 0.98 1.3 

Average 26.70 38.37 1.63 1.00 1.67 

Worst 22.5 47.4 1.47 1.06 1.9 
GA 

StdDev 2.55 5.65 0.09 0.04 0.16 

Best 24.89 41.35 1.49 1.07 1.47 

Average 24.61 40.72 1.49 1.04 1.76 

Worst 24.3 38.87 1.48 1.06 1.81 
PSO 

StdDev 0.42 1.59 0.007 0.03 0.10 

Best 25.00 40.28 1.50 1.03 1.764 

Average 24.62 40.47 1.5 1.04 1.774 

Worst 24.38 41.05 1.5 1.05 1.785 
LC 

StdDev 0.4 0.64 0.002 0.01 0.009 
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Table 5.8. Comparison of the average design and the corresponding responses for each 

algorithm.  

Algorithm 
Design 

ACO GA PSO LC 
3

1 10x −×  24.96 26.703 24.614 24.624 

3
2 10x −×  40.191 38.367 40.717 40.473 

3
3 10x −×  1.5 1.625 1.49 1.499 

Design 
variables 

3
4 10x −×  1.03 1.003 1.038 1.036 

( )1f x  0.96 0.92 0.96 0.96 

( )2f x  -0.72 -0.66 -0.72 -0.72 

( ) 3
3 10f −×x  109.42 109.44 109.23 109.28 

( )4f x  0.18 0.18 0.18 0.18 

Responses 
(linear 
corrected) 

( )5f x  21.56 21.82 21.60 21.6 

Functional ( )J x  1.77 1.67 1.78 1.77 

 

In the second part of the study, the efficiency of heuristics in providing an initial guess 

for a classical algorithm is tested. Table 5.9 shows the results when running another step of 

optimization using NMSDS with initial designs as given by Table 5.8.  All final designs 

present even closer values for the design variables, individual responses and respective 

functional, ( )J x . Indeed, the initial designs were in a close region of the design space. 

Table 5.9. Results when using NMSDS with initial designs given by different heuristics.  

Algorithm 
Design ACO + 

NMSDS 
GA + 
NMSDS 

PSO + 
NMSDS 

LC + 
NMSDS 

3
1 10x −×  29.93 29.96 29.93 29.94 

3
2 10x −×  33.06 33.04 33.04 33.04 

3
3 10x −×  1.73 1.73 1.73 1.73 

Design 
variables 

3
4 10x −×  0.96 0.96 0.96 0.96 

( )1f x  0.89 0.89 0.89 0.89 

( )2f x  -0.67 -0.67 -0.67 -0.67 

( ) 3
3 10f −×x  112.34 112.35 112.34 112.35 

( )4f x  0.17 0.17 0.17 0.17 

Responses 
(linear 
corrected) 

( )5f x  21.79 21.79 21.79 21.79 

Functional ( )J x  1.64 1.64 1.64 1.64 
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As seen in Chapter IV, the final step of the variable-fidelity approach is the validation of 

the optimization outcomes. This is done by running the high-fidelity simulations using the 

optimal design. Table 5.10 shows the results of an arbitrary run of the LC algorithm as 

performed lonely (simulation #10) and the results of LC + NMSDS (as in Table 5.9). In 

general, the non-linear and linear corrected simulations present just small differences for 

responses ( )1f x  to ( )4f x  ( ( )5f x  is the pressure bulkhead mass and it does not depend on 

the level of fidelity). The similar results (bold face in Table 5.10) show once again that the 

candidate solutions found by the heuristic methods lay in a neighborhood of the design 

space, where the optimal may be. From the design viewpoint, the changes introduced by the 

optimizers seem to be sound choices. Material has been removed from the web to the 

reinforcement beams, in a clear effort to minimize the mass, which was given highest priority 

by means of the 2.5 weighting factor in the Compromise Programming. Most important, the 

optimizers were capable of finding a design that overall improved the involved quantities, 

despite their inherent conflicting nature. The small increase in the displacement is secondary 

in view of the improvements observed in the other responses. 

Table 5.10. Validation of the optimal designs given by LC and LC + NMSDS.  

Response 

Design 
( )1f x  ( )2f x  

( )3

310

f
−×

x
 ( )4f x  ( )5f x  

Baseline (Non-linear) 1.01 -0.85 116.0 0.2 22.56 

Linear uncorrected 3.42 -5.35 1.71 0.09 20.95 

Linear corrected 0.92 -0.66 109.44 0.17 20.95 

Non-linear 0.91 -0.65 117.5 0.17 20.95 

LC 

(simulation #10, 
( ) 1.76J =x ) 

Optimization effect (%) -9.90 -23.53 +1.29 -15.00 -7.14 

Linear uncorrected 0.06 -0.0709 1.85 0.0016 21.79 

Linear corrected 0.89 -0.67 112.35 0.17 21.79 

Non-linear 0.88 -0.62 118.20 0.18 21.79 

LC + NMSDS 

( ( ) 1.64J =x ) 

Optimization effect (%) -12.87 -27.06 1.90 -10.00 -3.41 

 

4. Summary and Conclusions 

In this application, the use of intensive computing heuristic techniques for the optimal 

design of aircraft structural components was described. It was explored (i) coupling of non-

linear high-fidelity and linear low-fidelity analyses through the variable fidelity approach; and 

(ii) the performance of different heuristic optimization methods. 
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The study allows the following conclusions: 

• Variable fidelity approach enabled the use of intensive computing heuristic 

techniques and expensive non-linear analyses. 

• The four applied nature-inspired methods converged in the sense of pointing out the 

same region of the design space as a candidate to contain the most suitable design. 

This means that these techniques can be used for initial exploration of the design 

space, with the purpose of identifying the improvement trends and ruling out the 

inadequate design choices. 
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5.1.  Inverse Problems 

5.1.1. Aircraft Longitudinal Stability and Control Derivatives Identification by using LifeCycle 

and Levenberg-Marquart Optimization Algorithms 

This application explores the use of global (heuristic) and local (classical) optimization 

algorithms in solo performance and in a cascade-type approach to accomplish the parameter 

identification of the longitudinal motion of a real aircraft by using the Output Error Method. 

The first algorithm is the LC Model (composed by Genetic Algorithms and Particle Swarm 

Optimization). The second one is the gradient-based technique named Levenberg-Marquardt 

algorithm (LM, detailed in Appendix D), which is a variant of the Gauss-Newton method. 

Flight test data, performed with a military aircraft (Xavante AT-26 FAB 4509), were used to 

feed the Output Error Method. In this context, both optimization algorithms were tested, in 

solo performance and in a cascade-type approach. This application shortly reported Góes et 

al. (2007), and later detailed in Viana et al (2008c). 

1. Experimental Data 

The identification of longitudinal stability derivatives from flight test data were 

performed using a set of experimental flight data performed with a military aircraft, namely 

the Xavante (AT-26 FAB 4516), as illustrated in Figure 5.1. The AT-26 FAB 4509 flight test 

instrumentation system installed on the aircraft is composed by an inertial sensor, an 

anemometric boom, a GPS sensor, a surface position sensor; and a data acquisition and 

record unity. It provides the following measures: elevator deflection (input data in the 

identification procedure), angle-of-attack, pitch rate (both output data). 

 
Figure 5.1. Xavante AT-26 FAB 4516. 

The angle-of-attack (an airflow measurement) requires an air data probe installed in a 

region of the aircraft in which the minimum disturbance of the inflow air by the aircraft is 

encountered. The pitch rate (being an inertial quantity) requires an inertial measurement unit 
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generally installed near the center-of-gravity of the air vehicle in order to reduce the 

necessity of some corrections in acceleration measurements. The elevator deflection (a 

displacement) is generally measured by potentiometers directly installed in the aircraft 

control surfaces. Table 5.1 gives some information about the experimental work to evaluate 

some of the AT-26 FAB 4509 characteristics. 

Table 5.1. AT-26 FAB 4509  data acquisition setup. 

Measurement Acquisition Rate Acquisition Accuracy 

Angle-of-attack 32 hz 0.11 % 

Pitch Rate 32 hz 0.5 % 

Elevator Deflection 16 hz 1.0 % 

 

A single and manually applied longitudinal flight test maneuver was collected. It was 

specified in order to excite, mainly, the short period longitudinal dynamic model. Figure 5.2 

shows the elevator deflection used as input in the identification procedure. 

 
Figure 5.2. Elevator deflection. 

2. Identification Problem Formulation 

Figure 5.3 shows a scheme of the output error method, one of the most used 

estimation methods for aerodynamic parameter estimation from flight test data (Iliff, 1989) 

and the method used in this application. The output error method has several desirable 

statistical properties, including its applicability to nonlinear dynamical systems and the proper 

accounting of measurements noise (Iliff, 1989). In addition, it has no specific requirement 

about the optimization method. Even though most of works in the literature reports the use of 

classical methods, there are no limitations in using other approaches. In this scenario, three 

optimization strategies, described in Table 5.2, are explored to solve the identification 

problem. 
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Figure 5.3. Block diagram of the estimation procedure. 

Table 5.2 Optimization strategies used in the output error scheme. 

Strategy 
Optimization 
Method 

Comments 

#1  LC 
The main explored characteristics are the global search capability and the low 

level of knowledge about the search space. 

#2  LM 
As a classical method, local search capabilities and small number of function 

evaluations are the main explored advantages. 

#3  LC and LM 
The result of a first global search performed by LC is used as an initial guess in 

the LM method. This cascade approach aims to make use of the main 

advantages of both methods. 

 

As can be found in Góes et al. (2007) and Viana et al (2008c), the longitudinal 

equations of motion of the aircraft for the short period mode are described in terms of 10 

variables, which constitute the search space defined in Table 5.3. Parameters Zα , qZ , Mα , 

qM , eZδ , and eMδ  are the stability and control derivatives, which represent the aerodynamic 

model of the aircraft. Parameters 1xb , 2xb , 1yb , and 2yb comprise measurement biases in the 

output and input variables, and initial conditions on the state variables.  

Table 5.3. 10-dimensional search space. 

Parameter Search space Parameter Search space 

Zα  5 0⎡ ⎤−⎢ ⎥⎣ ⎦  eMδ  10 0⎡ ⎤−⎢ ⎥⎣ ⎦  

qZ  0 5⎡ ⎤⎢ ⎥⎣ ⎦  1xb  0.1 0.1⎡ ⎤−⎢ ⎥⎣ ⎦  

Mα  5 0⎡ ⎤−⎢ ⎥⎣ ⎦  2xb  0.1 0.1⎡ ⎤−⎢ ⎥⎣ ⎦  

qM  5 0⎡ ⎤−⎢ ⎥⎣ ⎦  1yb  0.1 0.1⎡ ⎤−⎢ ⎥⎣ ⎦  

eZδ  0 5⎡ ⎤⎢ ⎥⎣ ⎦  2yb  0.1 0.1⎡ ⎤−⎢ ⎥⎣ ⎦  
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The model is considered to be known, and the identification process consists in 

determining the parameter vector, x , which gives the best prediction of the output signal 

( )y t , using optimization criteria. The attainment of an estimate through optimization of a 

functional based on the prediction error of the plant involves the minimization of a nonlinear 

function. Thus, LC, LM or a composition of both is used here to estimate the parameters of 

the model. Therefore, the functional involves the prediction error: 

 ( ) ( ) ( )ˆ ,e k y k y k= −  (0.1) 

where ( )ŷ k  is the output prediction based on the estimate x̂  of the parameter vector x  at 

the k  sample. 

Consider an identifiable dynamic system represented by a model ( )M x  and output y . 

Suppose that ( )p y x  is the conditional probability Gaussian distribution of the random 

variable y  with dimension m , mean ( )f x  and covariance R , with dimension m m× . 

( )p y x  is known as the likelihood functional. Goodwin and Payne (1977) attribute this name 

due to the fact that it is a measure of the probability of occurrence of the observation y  for a 

given parameter x . Thus, the likelihood functional is: 

 ( )
( )

( )[ ] ( )[ ]{ }1
2 12

1 1.exp , , .
22

n TT
n kTm

p y e k R e k
Rπ

−
=

⎡ ⎤= − ⎣ ⎦∑x x x  (0.2) 

The Maximum Likelihood Estimate (MLE) is defined as the value of x  which maximizes 

this functional, in such a way that the best estimate of x  is: 

 ( )ˆ ArgMaxp y=x x  (0.3) 

The  maximization of ( )p y x  is equivalent to the minimization of ( )J x , which is given 

by: 

 ( ) ( )[ ] ( )[ ]{ }1
1
1 , , ln .
2

n TT
kJ e k R e k R−
=

⎡ ⎤= +⎣ ⎦∑x x x  (0.4) 

3. Results and Discussion 

Given the random nature of LC and the dependency of the initial guess of LM, the 

results may vary from one run to another. This way, for the sake of a reasonable statistical 

analysis, each one of the three strategies was repeated 20 times. For strategy #1, LC was 

set with different and random initial population of 50 individuals and maximum number of 200 
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iterations. For strategy #2 , LM was set with different and initial guesses randomly picked 

within the design space. Finally, for strategy #3 , the results obtained when running LC were 

used as initial guesses for LM. Besides the best and the mean results, a dispersion measure 

called coefficient of variation (COV) was used for comparing the performance of the different 

strategies. COV is computed by dividing the standard deviation by the mean (i.e., it intends 

to filter the order of magnitude). 

Table 5.4 to Table 5.6 report a set of identification results obtained following the three 

different optimization strategies. It is worth mentioning that the mean value for J  is the mean 

value of the functional over the 20 runs; it does not correspond to the value obtained when 

running the analysis with the mean values of the design variables. 

Table 5.4 shows the best and the mean results as well as COV. Results are in a close 

region of the design space for strategy #1. 

Table 5.4. Results for strategy #1 (LC, 50 individuals and 200 iterations). 

 Best run Mean COV 

Zα  -1.94 -2.23 -0.40 

qZ  1.00 0.99 0.41 

Mα  -2.85 -2.01 -0.65 

qM  -0.83 -1.42 -0.53 

eZδ  2.74 2.57 0.37 

eMδ  -5.78 -7.20 -0.26 

1xb  -0.06 -0.01 -6.07 

2xb  0.1 0.1 0.08 

1yb  0.1 0.09 0.13 

2yb  0.04 0.06 0.31 

J  7.5 x 10-9 2.1 x 10-8 0.41 

 

For strategy #2 , most of the runs did not find a feasible solution. Out of the 20 runs, 2 

ended with an indetermination for the value of the functional J , 2 other runs ended 

with J = +∞  and J = −∞ , and only 3 ended up with feasible solutions (revealing strong 

dependence on the initial guess when executing LM). Consequently, Table 5.5 was build 

computing only the remaining 16 runs. In addition to this, both mean and COV values reveal 

the dependency on the initial guess. Figure 5.4 helps the interpretation of these results.  
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Table 5.5. Results for strategy #2  (LM with initial guesses randomly picked within the 

design space). 

 Best run Mean COV 

Zα  -0.70 -20.87* -1.19 

qZ  0.23 6.45* 3.31 

Mα  -2.37 -2.26 -11.73 

qM  -1.18 1.29* 4.13 

eZδ  0.38 2.89* 10.4 

eMδ  -7.16 0.002* 1.8 x 104 

1xb  -0.01 -1.23 -2.92 

2xb  0.20 1.88* 4.94 

1yb  0.08 2.75* 6.80 

2yb  0.02 2.63* 2.73 

J  1.2 x 10-11 7.5 x 10149 4 

*: boundary violation. 

 
Figure 5.4. Final values of J  for strategy  #2  (LM). 

Table 5.6 shows performance when using strategy #3 . It is easy to see the capability 

of the strategy in finding nearly same solutions. Differently from results shown in Table 5.4 

and Table 5.5, here there is very small dispersion and all runs end up in feasible solutions. 

Now that is clear that the winning approach is the strategy #3 , the question that 

arises is how important the improvements driven by LM are. The answer is given when the 

predictions are compared. This way, Figure 5.5 and Figure 5.6 illustrate the prediction 

capabilities of strategy #1 (LC alone) and strategy #3  (LC+LM).  Figure 5.5 helps to see 
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that even though relatively close, the results found by LC are not good enough as in Figure 

5.6, which illustrates the success of the LC+LM strategy. 

Table 5.6. Results for strategy #3  (initial guesses for LM provided by previous run of LC). 

 Best run Mean COV 

Zα  -0.7012 -0.7012 -0.07 x 10-3 

qZ  0.2308 0.2308 -0.10 x 10-3 

Mα  -2.3688 -2.3689 -0.2 x 10-3 

qM  -1.1760 -1.1760 -0.2 x 10-3 

eZδ  0.3841 0.3841 0.2 x 10-3 

eMδ  -7.1653 -7.1652 -0.1 x 10-3 

1xb  -0.0093 -0.0093 -0.3 x 10-3 

2xb  0.2037 0.2037 0.05 x 10-3 

1yb  0.0774 0.0774 0.05 x 10-3 

2yb  0.0182 0.0182 0.09 x 10-3 

J  1.2 x 10-11 1.2 x 10-11 2.2 x 10-5 

 

  
(a) Angle of attack (best case). (b) Angle of attack (worst case). 

  
(c) Pitch angular rate (best case). (d) Pitch angular rate (worst case). 

Figure 5.5. LC performance. 
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(a) Angle of attack (best case). (b) Angle of attack (worst case). 

  
(c) Pitch angular rate (best case). (d) Pitch angular rate (worst case). 

Figure 5.6. LC+LM performance. 

4. Summary and Conclusions 

This application presented an identification procedure to determine the 

longitudinal stability and control derivatives of a military aircraft. Within the framework 

of the Output Error method, the tested optimization algorithms are based on LC and 

LM methods. In the present application, GA and PSO represented the phases of the 

LC algorithm. The individual performances of both the algorithms were tested and 

then a cascade-type scheme was proposed aiming at taking advantage of the global 

search capabilities of LC and the local search capabilities of LM. Finally, the 

experimental investigation illustrated the possibility of using the proposed technique 

in real world environment. The results are very encouraging in the sense that more 

complex models, embracing non-linearities, will be analyzed in further research. 
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5.1.2. Identification of a Non-Linear Landing Gear Model using Heuristic Optimization 

This application explores the parameter identification of a non-linear landing gear 

model proposed as an optimization problem solved by a heuristic optimization method, 

namely the LC algorithm (with GA and PSO representing the phases of the LC algorithm). 

The model is described in terms of the landing gear geometry, internal volumes and areas, 

shock absorber travel, tire type, and gas and oil characteristics of the shock absorber. The 

polytropic coefficient of the gas and the damping coefficient of the shock absorber are 

assumed as being unknown: they are considered as design variables. As an illustration, 

experimental drop test data, obtained under zero horizontal speed, were used in the non-

linear landing gear model updating of a small aircraft. Preliminary results of this application 

was reported in Zanini et al. (2007), the full report is in Viana et al. (2008e). 

5. Drop Test Arrangements  and Non-Linear Landing Gear Model 

Figure 5.7-(a) illustrates a simplified drawing of the drop test installation and landing 

gear components. The landing gear is attached to a carriage that runs vertically between two 

rigs. This carriage is pre-loaded with the equivalent aircraft reduced mass. Position 

transducers are used to determine the vertical displacement of the carriage and deflection of 

the shock absorber. The difference between these parameters gives the tire deflection. 

Three-dimensional load cells together with strain gages are used to obtain the impact loads 

transferred to the aircraft. It is important to point out that, in this arrangement, no apparatus is 

used to simulate the aerodynamic lift. 

The reduced mass used in the drop test represents the portion of the aircraft mass 

loaded on the landing gear during the landing impact. This mass can be calculated based on 

the aircraft static configuration (aircraft attitude on the ground) and certification requirements 

and it is further corrected to take into account the aircraft lift. A telescopic-type landing gear 

with an oil-pneumatic shock absorber was used. The main components of the oil-pneumatic 

shock absorber are shown in Figure 5.7-(b). The lower chamber contains hydraulic fluid that 

is forced to flow through small orifices (throttle) as a result of the piston displacement during 

landing. The impact energy is dissipated in this process and the air contained in the upper 

chamber compressed. After the maximum shock absorber deflection, part of the hydraulic 

fluid flows back into the lower chamber due to the expansion of the compressed air. In this 

extension stage, the numbers of orifices through which the fluid flows must be enough to 

guarantee that the tire stays in contact with the runway avoiding the rebound effect. The 

shock absorber considered in the present work uses eight orifices for compression and four 

orifices during extension. The “unsprung” mass corresponds to the sum of all movable parts 
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of the landing gear as tire, wheel, piston tube, fork, etc. Part of the hydraulic fluid mass is 

also computed in the “unsprung” mass. 
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(a) Drop test sketch. (b) Oil-pneumatic shock absorber. 

Figure 5.7. Drop test arrangement. 

Further details about the non-linear modeling of the landing gear can be found in Viana 

et al. (2008e). In the scope of this text, it is enough to give general ideas involved in the 

formulation of the equations of movement. Figure 5.8 shows the two degrees of freedom 

landing gear model used in this study. In this model, 1M  and 2M  represent respectively the 

reduced and “unsprung” masses. 1K  and b  correspond to the pneumatic spring and 

damping coefficients of the shock absorber. The tire is represented by a pneumatic spring 

2K . The vertical displacements of both reduced and “unsprung” masses are named as 1Z  

and 2Z , respectively. The shock absorber deflection Z  is obtained by the difference 

between the displacements 1Z  and 2Z . 

Viana et al. (2008e) shows details on the modeling of quantities that are used in the 

formulation of the optimization problem, namely, the shock absorber spring force ( 1KF ), the 

shock absorber damping force ( bF ), tire spring force ( 2KF ), the vertical displacement of the 

reduced mass ( 1X ), the tire deflection ( 3X ), the shock absorber deflection (Z ), and the 

values of the  maximum vertical forces ( 1VF  and 2VF ).  1VF  is the vertical force that 

corresponds to the first half of the shock absorber deflection stage. 2VF  is the vertical force 
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that corresponds to the second half of the deflection stage. Figure 5.9 illustrates the behavior 

of both 1VF  and 2VF . 
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Figure 5.8. Landing gear model graphical representation. 
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Figure 5.9. Vertical force vs. deflection curve. 

The equations of motion that represent the landing gear dynamic behavior are obtained 

by combining the Lagrangian and Rayleigh’s dissipation functions and replacing the terms 

that represent the shock absorber spring force ( 1KF ), tire spring force ( 2KF ) and damping 

force ( bF ).  Thus, after some algebraic manipulation: 
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In order to obtain the numerical solution, it is assumed that 1 1X Z= , 2 1 1X Z X= =� � , 

3 2X Z= , and 4 2 3X Z X= =� � . 

It is also possible to write four first order differential equations, as presented below: 
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Shock Absorber Spring Force ( 1KF ) 

 

The non-linear spring characteristic of the shock absorber is taken into account by 

considering the compression of the air and of the hydraulic fluid interconnected with a 

common force. Considering a fluid with uniform mass density and constant secant bulk 

modulus (hydraulic fluid stiffness), the force due to hydraulic fluid compression is given by: 

 
2

0 2
1 0

0 1 0
   ,

n

K
v A sF P A

v A s V
β ⋅ ⋅⎛ ⎞⎟⎜= ⋅ ⋅ =⎟⎜ ⎟⎜⎝ ⎠− ⋅

 (0.7) 

where: 

• 0P  is the absolute air pressure for the fully extended shock absorber, 

• A  is the piston reference area, 

• 0v  is the air volume for the fully extended shock absorber, 

• 1s  is the shock absorber deflection due to the air compression, 

• n  is the polytrophic coefficient (constant value between 1.0  and 1.4  for adiabatic 

and isothermal compression, respectively), 

• β  is the secant bulk modulus, 

• 2s  is the shock absorber deflection due to hydraulic fluid compression, and 

• 0V  is the hydraulic fluid volume for the fully extended shock absorber. 

 

The sum of the deflections obtained from air and fluid compression, ( 1s ) and ( 2s ) 

respectively, corresponds to the difference between the reduced and “unsprung” masses 

displacements. Figure 5.10-(b) illustrates the absorber force versus deflection. 
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(a) Shock absorber force vs. deflection 

curve. 
(b) Tire load vs. deflection curve. (c) Hydraulic force vs. deflection speed. 

Figure 5.10. Details of the landing gear model. 
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Tire Spring Force ( 2KF ) 

 

The tire was modeled as a pure spring element. The tire load versus deflection curve 

supplied by the manufacturer was divided into four linear regions. Therefore, the tire stiffness 

assumed four different values depending on the tire deflection at each simulation step. A 

comparison between the proposed force vs. deflection curve and that obtained from the tire 

manufacturer is presented in Figure 5.10-(b). 

 

Hydraulic Resistance Force ( bF  ) 

 

The hydraulic resistance in the shock absorber resulted from the difference of pressure 

associated with the fluid flow through the orifice. In the considered landing gear, the orifice 

area is enough in relation to the diameter of the shock absorber so that the jet velocities and 

Reynolds numbers are sufficiently large, exhibiting a fully turbulent flow. As a result, the 

damping force varies with the square of the telescoping velocity rather than linearly with the 

velocity. As a consequence, the hydraulic resistance ( bF ) is given by: 
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where ρ  is the mass density of the hydraulic fluid, hA  is the hydraulic area, Z�  is the shock 

absorber deflection velocity, dC  is the coefficient of discharge, nA  is the net orifice area, 

DS  is a constant  given by
( )

3

22
h

d n

ADS
g C A
ρ ⋅=

⋅ ⋅ ⋅
, and g  is the acceleration of gravity. 

Figure 5.10-(c) is obtained by using the quadratic relation between the hydraulic force 

and the shock absorber deflection speed and by considering that the number of orifices 

reduces during shock absorber extension to avoid rebound effect. 

 

Vertical Force Transferred to the Reduced Mass ( vF  ) 

 

The vertical force transferred to the reduced mass was based on the D’Alembert’s 

principle. Thus: 

 1 1 1vF M g M Z= ⋅ − ⋅ ��  (0.9) 



 98 

6. Identification Problem Formulation 

The parameters that cannot be accurately determined by theoretical methods were 

selected for identification: the polytrophic coefficient (n ), and the damping parameter (DS ). 

The corresponding identification problem consists in finding the set of design variables 
T

n DS⎡ ⎤= ⎢ ⎥⎣ ⎦x  that minimizes the objective function given by: 

 

( )

1 1 2 2

1 2
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max max
exp exp
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F F

− − −
= + + +
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+

x
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The polytropic coefficient ranges between 1.0  and 1.4  for isothermal and adiabatic 

processes, respectively. The discharge coefficient was theoretically calculated by taking into 

account the diameters of the orifices of the shock absorber and the Reynolds’ number for the 

upstream flow condition. The bounds of the search space for the damping parameter were 

arbitrarily defined as 15%±  of the theoretical value THDS . 

7. Results and Discussion 

LC was used as the algorithm to solve the optimization problem. It was set up with 10 

individuals, running along 50 iterations. The identified values are the following: polytropic 

coefficient 1.05n = , and damping parameter 2 2622 .DS kg s m= . Currey (1984) 

recommended using a polytropic coefficient of 1.1  for shock absorbers without separator 

piston between gas and oil. Since this value is used only as reference and some variations 

can occur, for the studied shock absorber, which has oil in contact with the gas, the obtained 

value of 1.05  is considered as a good estimate. Similarly, the obtained damping parameter is 

approximately 9%+  above of the theoretical value, which represents also a good matching. 

Figure 5.11 shows the graphics obtained for the simulations with the identified 

parameters and the drop test cases. Table 5.7 compares some experimental and simulated 

quantities. Again, the good performance and robustness of LC together with the proposed 

mathematical model were demonstrated. As can be seen, the agreement between 

experimental and simulated curves is satisfactory. The magnitude of the obtained loads 

variation is acceptable for a landing gear in the context of airplane design. Specifically for the 

tire deflection and vertical force, given by 3X  and vF , respectively, small differences 
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between experimental and theoretical results are found. This is mainly due to the flexibility 

effect of the landing gear fork that was not considered in the proposed mathematical model. 
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(a) Reduced mass – vertical force ( vF ). (b) Reduced mass – vertical displacement ( 1X ). 
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(c) Shock absorber deflection (Z ). (d) Tire deflection ( 3X ). 

Figure 5.11. Comparison between simulation and experimental data. 

Table 5.7. Experimental and simulated results for the landing gear. 

Parameter Drop Test Simulation Error (%) 

1
max  ( )VF N  56,650.4  57,781.0  2.0  

2
max  ( )VF N  65,212.3  63,278.5  3.0−  

1 ( )X m  0.315  0.318  1.2  

3  ( )X m  0.088  0.082  6.1−  

 ( )Z m  0.229  0.231  1.1  

 

8. Summary and Conclusions 

This application was dedicated to the use of a heuristic optimization technique to solve 

the inverse problem represented by the identification of an aircraft landing gear model. For 

this aim, it was shown that the multi-objective function formulation makes use of both a set of 

measures that describe the behavior of the system and its numerical counterparts to build a 

representative functional, which once minimized gives a possible solution for the 

identification problem. The behavior of the landing gear was simulated as a non-linear model. 

A good match between the theoretical results and those obtained from the experimental 

drop-test was found. Therefore, it can be concluded that the proposed identification approach 
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was proved successful; encouraging future research involving more complex models, such 

as the ones in which wheel rotation for the representation of drag loads and landing gear 

flexibility are included (in addition to the two degrees of freedom considered in the present 

model). 
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5.2. Coupling Actual High-Fidelity and Surrogate Models 

5.2.1. Coupling Heuristic Optimization and High-Fidelity Function Analysis to Improve 

Surrogate Models 

This section shows how to couple heuristic optimization methods and high-fidelity 

analysis to improve surrogate models. This was discussed during the Section 4.4 of Chapter 

IV. The proposed approach is based on (i) the use of a large set of surrogates; (ii) the online 

update of the surrogates; and (iii) the use of BestPRESS  for global search. In few words, 

the first variation updates the set of surrogates after refining any initial DOE with a pre-

defined number of points. The second variation also refines any initial DOE with a pre-

defined number of points; however, the update is performed every time a new point is added 

to the set. Here, DE was used to conduct the optimization and the performance of these 

approaches is studied through a set of analytical functions. 

1. Numerical Experiments 

A. Basic Surrogates 

Table 5.8 shows the 24 different basic surrogates used during the investigation (see 

Chapter II for more details). The toolbox of Lophaven et al. (2002), the native neural 

networks Matlab toolbox (Mathworks Contributors, 2002), the code developed by Gunn 

(1998), and the SURROGATES toolbox of Viana and Goel (2008) were used to execute the 

KRG, RBNN, SVR, and PRS algorithms, respectively. SURROGATES ToolBox is also used 

for an easy manipulation of all these different codes. No attempt was made to improve the 

predictions of any surrogate by fine tuning its respective parameters. Six different Kriging 

surrogates are generated by varying the regression and correlation models, and 16 different 

SVR surrogates are created by varying the kernel function, the loss function ( -insensitiveε  

or quadratic) and the SVR parameters (C and ε ). The suggestions of Cherkassky and Ma 

(2004) are followed for the computation of C and ε . Additionally, for SVR, details about the 

kernels are given in Table 2.1. See Chapter II for more details about each surrogate 

technique. 

 

B. Performance Measures 

Since surrogates with different statistical assumptions are used, the root mean square 

error (RMSE , defined in Sub-section 2.2.2 of Chapter II) is chosen as measure of fit quality 

for the surrogates. From the set of basic surrogates, two derived surrogates are used to 

check the performance. They are BestPRESS  and the most accurate surrogate of the initial 



 102 

DOE, BestRMSE  (basis of comparison for all other surrogates). BestRMSE  would be 

selected if the performances of the surrogates were known a priori. In order to check the 

effectiveness of the strategies in adding points to the initial DOE, BestRMSE  is selected 

just once, i.e., the best surrogate of the ensemble as fitted with the initial set of data. 

Table 5.8. Information about the set of 24 basic surrogates.  

Surrogates Modeling technique Details 

1 KRG-Poly0-Exp 

2 KRG-Poly0-Gauss 

3 KRG-Poly1-Exp 

4 KRG-Poly1-Gauss 

5 KRG-Poly2-Exp 

6 KRG-Poly2-Gauss 

Kriging model 

Poly0, Poly1, and Poly2 indicate zero, first, and second 

order polynomial regression model, respectively. Exp 

and Gauss indicate general exponential and Gaussian 

correlation model, respectively. In all cases, 

0 110 ndvθ ×= ×1 , and 

210 200 , 1,2, ,i i ndvθ− ≤ ≤ = … . 

6 different Kriging surrogates are chosen by varying the 

regression and correlation models. 

7 PRS2 Polynomial response surface Full model of degree 2. 

8 RBNN Radial basis neural network ( )20.05Goal y=  and 1
3Spread = . 

9 SVR-Anova-E-Full 

10 SVR-Anova-E-Short01 

11 SVR-Anova-E-Short02 

12 SVR-Anova-Q 

13 SVR-ERBF-E-Full 

14 SVR-ERBF-E-Short01 

15 SVR-ERBF-E-Short02 

16 SVR-ERBF-Q 

17 SVR-GRBF-E-Full 

18 SVR-GRBF-E-Short01 

19 SVR-GRBF-E-Short02 

20 SVR-GRBF-Q 

21 SVR-Spline-E-Full 

22 SVR-Spline-E-Short01 

23 SVR-Spline-E-Short02 

24 SVR-Spline-Q 

Support vector regression 

Anova, ERBF, GRBF and Spline indicate the kernel 

function (ERBF and GRBF kernel functions ware set 

with 0.5σ = ). 

E and Q indicate the loss function as -insensitiveε  

and quadratic, respectively. 

Full means that C = ∞  and 41 10ε −= × , while 

Short01 and Short02 mean that y
k

σε =  and 

( )ln3 y
k
kε σ=  , in that order, while 

( )100max 3 , 3y yC y yσ σ= + − , where y  

and yσ  are the mean value and the standard deviation 

of the function values at the design data, respectively. 

16 different SVR surrogates are chosen by varying the 

kernel function, the loss function ( -insensitiveε  or 

quadratic) and the SVR parameters (C and ε ) define 

these surrogates. 

 

Each basic surrogate and BestPRESS  are compared with the best surrogate of the 

initial DOE (BestRMSE ). %difference  is defined such as the percent difference by 

choosing a specific model over BestRMSE : 

 % 100  .BestRMSE Surr

BestRMSE

RMSE RMSEdifference
RMSE

−=  (0.11) 
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At the initial DOE, for BestPRESS , it is expected that % 0difference ≤ , which means 

that there may be losses and the best case scenario is when one of the basic surrogates 

(hopefully BestPRESS ) coincides with BestRMSE . With the final set of points, 

%difference  for BestPRESS  may turns to positive, which express improvement over 

BestRMSE . 

 

C. Analytical Examples 

To test the effectiveness of the various approaches, a set of analytical functions widely 

used as benchmark problems in optimization is employed (Dixon and Szegö, 1978). These 

are: 

1. Branin-Hoo function (2 variables): 

 
( ) ( )

22
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2. Camelback function (2 variables): 
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3. Hartman functions (3 and 6 variables): 

 
( ) ( )2

1 1
exp  ,

0 1 , 1,  2,  ,  .

q m

i ij j ij
i j

j

y a b x d

x j m
= =

⎛ ⎞⎟⎜ ⎟⎜= − − − ⎟⎜ ⎟⎜ ⎟⎝ ⎠
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∑ ∑x
 (0.14) 

Hartman3, with 3 variables and Hartman6 with 6 variables were used. For both, 4q = , 

1.0 1.2 3.0 3.2⎡ ⎤= ⎢ ⎥⎣ ⎦a , and other parameters are given in Table 5.9. 

Table 5.10 shows details about the data set generated for each test function. Naturally, 

the number of points used to fit surrogates increase with dimensionality. Since quality of fit 

may vary with the initial DOE, results based on 100 different instances of latin hypercube 

designs (created with the MATLAB latin hypercube function lhsdesign, set with the 

“maxmin” option with 100 iterations) for all the problems are presented. For all examples, 5 

different latin hypercube designs are used to test the surrogates (also created with 
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lhsdesign, but set with the “maxmin” option and only 10 iterations). The RMSE  is taken 

as the mean of the values for the 5 DOEs. The number of extra points presented in Table 

5.10 refers to those points allocated by the heuristic optimization. The number of points for 

update of surrogates refers to when the approach suggested on Figure 4.4 (Chapter IV) 

performs the step illustrated on Figure 4.4-(b). k-folds refers to the value of k used for the k-

fold strategy of computation of the PRESS  errors. This way, for the Hartman6 function, 

when the number of points is equal to 60, k = 20, when it is 63, k = 21, and so on.  

Table 5.9. Parameters used in Hartman function. 

H
ar

tm
an
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3.0 10.0 30.0

0.1 10.0 35.0

3.0 10.0 30.0

0.1 10.0 35.0
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⎣ ⎦

B  

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

D  

 

Table 5.10. Specifications for the Latin hypercube DOEs.  

Test problem 
# design 
variables 

#  points 
for fitting 

#  extra 
points 

# points for 
update of 

surrogates 
k-folds 

# points for test 
(in each of the 

5 DOEs) 

Branin-Hoo 2 12 6 13, 14, …, 18 13, 14, …, 18 2000 

Camelback 2 12 6 13, 14, …, 18 13, 14, …, 18 2000 

Hartman3 3 20 10 21, 22, …, 30 21, 22, …, 30 2000 

Hartman6 6 56 14 60, 63, 66, 69, 70 20, 21, 22, 23, 14 2000 

 

In addition, the RMSE  on the neighborhood of the optimum of each function is also 

studied. The setup for this part is given in Table 5.11. The DOEs were generated with the 

MATLAB lhsnorm function (latin hypercube sample with a normal distribution) set with 

µ ∗= x , and ( )10.001 dvndiagσ ×= × 1 . 
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Table 5.11. Point of optimum and number of points used to estimate the RMSE  at the 

region close to the optimum. 

Test problem ∗x  # points for test 

9.4248 2.4750
T⎡ ⎤⎢ ⎥⎣ ⎦  1000 

3.1416 2.2750
T⎡ ⎤⎢ ⎥⎣ ⎦  1000 Branin-Hoo 

3.1416 12.2750
T⎡ ⎤−⎢ ⎥⎣ ⎦  1000 

0.0898 0.7127
T⎡ ⎤−⎢ ⎥⎣ ⎦  1000 

Camelback 
0.0898 0.7127

T⎡ ⎤−⎢ ⎥⎣ ⎦  1000 

Hartman3 0.1 0.5559 0.8522
T⎡ ⎤⎢ ⎥⎣ ⎦  1000 

Hartman6 0.2017 0.15 0.4769 0.2753 0.3117 0.6573
T⎡ ⎤⎢ ⎥⎣ ⎦  1000 

 

Figure 5.12 illustrates the complexity of the problems. For the two-dimensional cases, 

plots using the test points reveal the presence of high gradients. For all other cases, the test 

points were used to obtain boxplots of the functions, which show variation in the values of the 

functions by more than one order of magnitude. See Appendix C for details about boxplots. 

 

    

(a) Branin-Hoo (b) Camelback (c) Hartman3 (d) Hartman6 

Figure 5.12. Plot of test functions. 

Table 5.12 shows the setup used for DE, the method used inside the algorithm 

proposed in Chapter IV, Figure 4.3, for all test functions. 

2. Results and Discussion 

The numerical experiments are intended to: 

• measure the improvement due to the addition of points in the data set in the (i) 

RMSE ; (ii) region close to the optimum; 
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• check the effectiveness of the two different strategies proposed in Figure 4.3 in 

adding points to the initial data set; and 

• explore how to take advantage of a large set of surrogates. 

Table 5.12. Setup for DE algorithm. 

DE scheme Amplification 
Factor 

Crossover 
Probability 

Max. number of
Iterations 

Population size 

'rand-to-best/1/exp' 0.8 0.5 20 

Same number of 

points used to fit 

surrogates (see 

Table 5.10). 

 

The first bullet is first quantified by comparing the correlation between RMSPRESS  

and RMSE  across the 24 surrogates (i.e., for a given DOE, the correlation is computed 

between the vectors of RMSPRESS  and RMSE  values for the different surrogates) and the 

effect on the performance measures. The second bullet is quantified by the %difference   for 

each of the 24 surrogates and BestPRESS  as compared with the best surrogate 

(BestRMSE ) obtained with the initial set of data. 

Figure 5.13 shows the frequency of best RMSPRESS  and the best RMSE  for each of 

the surrogates for the Branin-Hoo function. It can be observed that for both RMSPRESS  and 

RMSE , the best surrogate depends (i) on the problem, i.e. no single surrogate or even 

modeling technique is always the best; (ii) on the DOE, i.e. for the same problem, the 

surrogate that performs the best can vary from DOE to DOE; (iii) adding points to the initial 

DOE may change the identity of the best surrogates; and (iv) the best 3 surrogates according 

to both RMSPRESS  and RMSE   tend to be the same. 

Figure 5.14 shows a histogram of the correlations between RMSPRESS  and RMSE  

for different surrogates, where the histograms represents the 100 DOEs. The Branin-Hoo 

and Hartman6 functions are chosen for illustrating what happens in low and high dimension, 

respectively. In a given DOE, the correlation is computed between the sets of RMSPRESS  

and RMSE  values. While none of the strategies to add points seems to be significantly 

better than the other, the correlation appears to improve with the number of points. 
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(a) Branin-Hoo, 12 points. 

  
(b) Branin-Hoo, 18 points. Actual evaluation phase, 

without update of surrogates. 

(c) Branin-Hoo, 18 points. Actual evaluation phase, 

with update of surrogates. 

Figure 5.13. Frequency, in number of DOEs (out of 100), of best RMSPRESS  and RMSE  

for each basic surrogate for the Branin-Hoo function (numbers on the ordinate indicate the 

surrogate as in Table 5.8). 

   
(a) Branin-Hoo, 12 points. (b) Branin-Hoo, 18 points. Actual 

evaluation phase, 

without update of surrogates. 

(c) Branin-Hoo, 18 points. Actual 

evaluation phase, 

with update of surrogates. 

   
(d) Hartman6, 56 points. (e) Hartman6, 70 points. Actual 

evaluation phase, 

without update of surrogates. 

(f) Hartman6, 70 points. Actual 

evaluation phase, 

with update of surrogates. 

Figure 5.14. Frequency of the correlation between RMSPRESS  and RMSE  (out of 100 

experiments) for the Branin-Hoo (low-dimension) and Hartman6 (high-dimension). 
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Figure 5.15 complements Figure 5.14, showing the median of RMSPRESS  and 

RMSE  over the 100 DOEs. 

 

 
(a) Branin-Hoo, 12 points. 

  
(b) Branin-Hoo, 20 points. Actual evaluation phase, 

without update of surrogates. 

(c) Branin-Hoo, 20 points. Actual evaluation phase, 

with update of surrogates. 

 
(d) Hartman6, 56 points. 

  
(e) Hartman6, 70 points. Actual evaluation phase, 

without update of surrogates. 

(f) Hartman6, 70 points. Actual evaluation phase, 

with update of surrogates. 

Figure 5.15. Median over 100 DOEs of RMSPRESS  and RMSE  (lower values indicate 

better fits) for basic surrogates for the analytical examples (numbers on the ordinate indicate 

the surrogate as in Table 5.8; the 25th surrogate is BestPRESS ). 
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Once again, while there is no significant difference on the strategies, the agreement 

between both criteria improves with increasing number of points. Figure 5.15 and Figure 5.14 

show that not only the correlation is good but also the actual values of RMSPRESS  and 

RMSE   agreed well, especially for an increasing number of points. Altogether, RMSPRESS  

is good just for filtering out bad surrogates when there are few points (low-dimensional 

problems, i.e., 2 and 3 variables), and it can identify the sub-set of the best surrogates when 

there are more points available. Up to this point, while the benefits of the DOE refinement are 

already clear, there is no significant difference in performance when the two different 

strategies illustrated in Figure 4.4 are compared. In addition, since the identity of the best 

surrogate is DOE and problem dependent, it is also clear the advantage of using a large set 

of surrogates and then BestPRESS  as a way to prevent against bad fitted surrogates. 

Next, the improvement over the BestRMSE  by adding points is studied. Figure 5.16 

and Figure 5.17 illustrates the %difference  for all basic surrogates and BestPRESS  for the 

examples of the Branin-Hoo and Hartman6 functions. For Figure 5.16, test data were 

generate as specified in Table 5.10. For Figure 5.17, test data were generate as specified in 

Table 5.11. Contrarily to what can be expected, adding points to the initial DOE does not 

always improve the performance of the basic surrogates. On the other hand, BestPRESS  

shows to be not only more robust but also capable to gain with the extra simulations 

performed. It is also clear that, especially in high dimensions, the strategies for adding points 

benefit the region of the optima more intensively than the whole design space. Even though 

this is a trivial observation, it is worth to point out the potential of the BestPRESS  for 

optimization. 

Table 5.13 provides the mean, median and standard deviation of the %difference  in 

the RMSE  for the best 3 surrogates and BestPRESS . Test data were generate as 

specified in Table 5.10. The positive or negative signs of %difference  indicate gain or loss in 

terms of RMSE  for the specific surrogate compared with the best surrogate of the original 

DOE. In general, BestPRESS  is the second best surrogate. It can be observed that (i) over 

the design space, the gains are limited by both the number of design variables (see the 

contrast between Branin-Hoo and Hartman6) and the complexity (see the contrast between 

Branin-Hoo and Camelback); and (ii) at the region of the optima, BestPRESS  always 

presented gains higher than 30%. 
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(a) Branin-Hoo, 20 points. Actual evaluation phase, 

without update of surrogates. 

(b) Branin-Hoo, 20 points. Actual evaluation phase, 

with update of surrogates. 

  
(c) Hartman6, 70 points. Actual evaluation phase, 

without update of surrogates. 

(d) Hartman6, 70 points. Actual evaluation phase, 

with update of surrogates. 

Figure 5.16. %difference  in the RMSE , defined in Eq. (0.11), over the design space 

(numbers on the ordinate indicate the surrogate as in Table 5.8; the 25th surrogate is 

BestPRESS . See Appendix C for details about boxplots). 

  
(a) Branin-Hoo, 20 points. Actual evaluation phase, 

without update of surrogates. 

(b) Branin-Hoo, 20 points. Actual evaluation phase, 

with update of surrogates. 

  
(c) Hartman6, 70 points. Actual evaluation phase, 

without update of surrogates. 

(d) Hartman6, 70 points. Actual evaluation phase, 

with update of surrogates. 

Figure 5.17. %difference  in the RMSE , defined in Eq. (0.11), in the region of the optima 

(numbers on the ordinate indicate the surrogate as in Table 5.8; the 25th surrogate is 

BestPRESS . See Appendix C for details about boxplots). 
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Table 5.13. %difference  in the RMSE , defined in Eq. (0.11), of the best 3 basic surrogates 

(according to how often they have the best RMSPRESS , see Figure 5.13) and BestPRESS  

(for the basic surrogates, the numbers indicate the identity as in Table 5.8) 
Over the design space In the region of the optima 

Problem Surrogate 
Freq. of best 

 PRESSRMS Median Mean StdDev Median Mean StdDev 

2 41 57 50 31 64 47 51 

20 15 19 20 25 23 25 26 

21 12 28 28 29 39 21 78 

Branin-Hoo 

(without update 

of surrogates) 
BestPRESS --- 33 31 39 34 23 67 

2 50 66 60 26 68 57 37 

9 12 27 21 32 24 -8 117 

20 12 19 21 26 23 26 31 

Branin-Hoo 

(with update 

of surrogates) 
BestPRESS --- 49 43 33 47 35 57 

1 11 13 11 22 14 -26 115 

5 19 31 29 19 40 24 62 

6 16 16 20 15 64 39 111 

Camelback 

(without update 

of surrogates) 
BestPRESS --- 6 8 22 48 36 49 

1 13 13 10 22 10 -35 123 

5 20 32 30 18 48 29 61 

17 15 -8 -18 41 73 62 32 

Camelback 

(with update 

of surrogates) 
BestPRESS --- 6 9 21 46 31 68 

2 49 29 27 24 40 31 56 

4 14 18 14 25 38 25 77 

13 14 13 14 16 -4 -30 87 

Hartman3 

(without update 

of surrogates) 
BestPRESS --- 21 21 25 33 25 67 

2 46 32 26 29 63 48 46 

8 7 5 -14 88 31 21 63 

13 37 16 17 16 6 -8 79 

Hartman3 

(with update 

of surrogates) 
BestPRESS --- 24 24 19 34 31 55 

8 67 10 9 7 42 40 30 

13 9 3 3 6 8 8 25 

18 18 2 1 9 18 16 28 

Hartman6 

(without update 

of surrogates) 
BestPRESS --- 8 7 7 34 35 31 

2 6 -1 -3 13 34 37 35 

8 73 10 10 7 54 48 33 

13 17 4 5 6 23 26 29 

Hartman6 

(with update 

of surrogates) 
BestPRESS --- 8 9 7 45 44 34 

 

3. Summary and Conclusions 

In this application, the use of multiple surrogates, heuristic optimization methods, and 

extra high-fidelity simulations for minimum RMSE  in meta-modeling were explored. This 

was done by (i) the generation of a large set of surrogates and the use of RMSPRESS  as a 
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criterion for surrogate selection; and (ii) the use of heuristic optimization for the generation of 

extra points for high-fidelity simulation. In addition, two different strategies for updating the 

surrogates were studied. The first one does not include the update of the surrogates after the 

inclusion of each point in the data set. Contrarily, the second one updates the set of 

surrogates every time a new point is included in the data set. 

Based on a set of standard test functions, the study leads to the conclusion that the 

benefits of both strategies depend on dimensionality and number of points: 

• BestPRESS  is efficient avoiding poorly fitted surrogates and then indicating new 

points for extra simulation. 

• While over the design space, the gains are limited by the number of design variables 

and the complexity of the function, both approaches presented above are robust in 

presenting gains in the region where the optima are located. 

 

Additionally, there is no significant difference between the strategies used for adding 

points. This will be a subject for further research on this topic. 
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5.3.  Combinatorial Optimization 

5.3.1. On How to Implement an Affordable Optimal Latin Hypercube 

It is worth mentioning that the reported methodology for obtaining Optimal Latin 

Hypercube was implemented during an exchange program at Vanderplaats Research and 

Development Inc., from May/2006 to July 2006. The resulting code is now part of the 

commercial package VisualDOC, one of the company’s optimization software. This research 

was also properly reported in Viana et al. (2007a) and Viana et al. (2007c). 

1. The Optimal Latin Hypercube 

Chapter II has already discussed the importance of the Latin Hypercube design for 

computer generated experiments. Unfortunately, generating an Optimal Latin Hypercube 

design results in a difficult optimization problem that is traditionally solved by time consuming 

non-gradient based methods, for example a genetic algorithm. Solutions reported in the 

literature often exceed several hours for large number of points and large number of design 

variables (Morrsi and Mitchell, 1995; Ye et al., 2000; and Bates et al., 2004). Such a high 

computational cost limits the practical use of this important design of experiments. 

The Optimal Latin Hypercube is obtained through the optimization problem of 

searching for a design ∗X  (a design matrix with n  points and dvn  variables), which 

minimizes the objective function ( )f X : 

 ( )min  .f∗ =X X  (0.15) 

The objective function is formulated to achieve the required uniform space-filling 

property and, as a result, to avoid situations such as that illustrated in Figure 2.3-(b). In this 

application, the pφ  criterion (Morris and Mitchell, 1995; Jin et al., 2005) was used for the 

objective function; which leads to the maximization of the point-to-point distance in the 

design (Johnson et al., 1990). A design is called a pφ -optimal design, if it minimizes: 

 
1

1
 ,

s p
p

p i i
i

dφ −

=

⎡ ⎤
⎢ ⎥= Θ⎢ ⎥⎣ ⎦
∑  (0.16) 
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where: 

• p  is a positive integer, with a very large p , the pφ -criterion is equivalent to the 

maximin distance criterion (Jin et al., 2005); 

• id ’s are distinct distance values with 1 2 sd d d< < <… ; 

• iJ  is the number of pairs of points in the design separated by id ; and 

• s  is the number of distinct distance values. 

By sorting all the point-to-point distance ijd  ( 1i ≥ , j n≤ , i j≠ ), the distance list 

( 1 2,  ,  ,  sd d d… ) and the index list ( 1 2,  ,  ,  sΘ Θ Θ… ) can be obtained. To close the pφ  

definition, the inter-sited distance can be expressed as follows: 

 ( )
1
22

1
,  .

dvn

ij i j ik jk
k

d d x x
=

⎡ ⎤
⎢ ⎥= = −⎢ ⎥⎣ ⎦
∑x x  (0.17) 

Up to this point, only the optimization problem was defined. However, in order to 

efficiently obtain an Optimal Latin Hypercube design, more than the problem definition is 

required. An appropriate optimization algorithm, with an affordable computational cost for 

evaluating the objective function, is also important. To overcome the high computational cost 

associated with the existing approaches the method used in this work is supported by (a) an 

adaptation and an enhancement of a global search algorithm, i.e., the Enhanced Stochastic 

Evolutionary Algorithm (i.e., ESEA, already presented in Chapter III), and (b) an efficient 

method for evaluating the objective function to reduce the computational cost. 

2. Efficient Approach for Evaluating the Optimality Criterion 

Since the objective function is evaluated whenever a new design of experiments is 

constructed, the efficiency of this evaluation becomes very important for creating the Optimal 

Latin Hypercube design within a reasonable time frame. Consider the evaluation of the pφ  

based on Eq. (0.16). It can be seen that this process includes three parts, i.e.: 

 

1. evaluation of all the point-to-point distances; 

2. sorting of these distances to obtain a distance list and index list; and 

3. evaluation of the pφ  value. 

 

However, it can be observed that after an exchange ( 1 2i k i kx x↔ ) only elements in 

rows 1i  and 2i  and columns 1i  and 2i  are changed in the distance matrix, D . Thus, if Eq. 
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(0.16) could be written to take advantage of this fact, an efficient way for the calculation of 

pφ  is provided. It would avoid unnecessary calculations and the sorting required by Eq. 

(0.16). In this case, the new pφ  is computed by: 

 

( ) ( )( )

( ) ( )( )

1 1
1 2

2 2
1 2

1 , ,
1

1 , ,
 ,

p pp
p p i j i j

j n j i i

p
p p

i j i j
j n j i i

d d

d d

φ φ − −

≤ ≤ ≠

− −

≤ ≤ ≠

⎡
⎢′ ′= + − +⎢
⎢⎣

⎤
⎥′ − ⎥
⎥⎦

∑

∑
 (0.18) 

where: 

• ( ) ( )1 1 1

12 2
1 2, , ,i j j i i jd d d s i i k j⎡ ⎤′ ′= = +⎢ ⎥⎣ ⎦ ; 

• ( ) ( )2 2 2

12 2
1 2, , ,i j j i i jd d d s i i k j⎡ ⎤′ ′= = +⎢ ⎥⎣ ⎦ ; and 

• ( ) 2 1
2 2

1 2, , , i k jk i k jks i i k j x x x x= − − − . 

Table 5.14 provides an indication of possible savings in computational time when using 

Eq. (0.18) to evaluate the objective function. fullT  is the objective function calculated through 

Eq. (0.16) and enhancedT  is the enhanced approach, using Eq. (0.18). Table 5.14 shows the 

wall-clock time. 

Table 5.14. Time comparison between two ways of calculating the objective function, 

adapted from Jin et al. (2005). 

Latin Hypercube 12 x 4 25 x 4 50 x 5 100 x 10 

enhanced
full

T
T  0.45 0.19 0.08 0.03 

 

3. Structured Latin Hypercube Design 

This section discusses the methodology proposed during this doctoral research for 

obtaining Optimal Latin Hypercube designs without using formal optimization. Using this 

methodology, the Optimal Latin Hypercube designs are obtained with minimal computational 

effort and in real time. The methodology exploits patterns of point locations for Optimal Latin 

Hypercube designs. Small building blocks with one or several points in each are used to 

recreate these patterns by taking into account the dimensionality of the problem and the 

required number of design points. 
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In its current form, the obtained Structured Latin Hypercube designs provided by this 

new methodology in two dimensional spaces cannot be improved using non-gradient 

optimization methods.  In higher dimensional design spaces, the Structured Latin Hypercube 

designs generated using the proposed methodology are still good, but can be improved 

using non-gradient optimization methods. Even though the designs can be improved for 

higher dimensional problems, the proposed methodology still provides a powerful and 

practical tool for obtaining good Optimal Latin Hypercube designs in real time (at most, 

seconds). 

The approach is quite simple and it is based on the hope that the simple dvn -

dimensional Latin Hypercube that can be constructed from a dvn -dimensional seed design.  

Instead of a formal description of the approach, a practical example will be used to explain 

the methodology of creating a Structured Latin Hypercube design. Consider the case in 

which is desired a 16 2×  Latin Hypercube, i.e., 16  points in 2 dimensions. First, a small 

Latin Hypercube design will be constructed to be used as a seed in the process.  Figure 5.18 

shows the some examples of 2-dimensional seed designs. Figure 5.18-(a) shows the seed 

used in this example.  This seed can be as simple as just a 1 dvn×   design (where dvn  is the 

number of dimensions of the problem, i.e. the number of design variables). 

 

 
 

 
 

(a) 1x2 seed design. (b) 2x2 seed design. (c) 3x2 seed design. (d) 4x2 seed design. 

Figure 5.18. Examples of seed designs for 2 design variables. 

Second, the design space is divided into blocks, in such a way that each dimension is 

divided in the same number of blocks. The result is that each block can be filled using the 

seed design (defined previously).  It is clear that these processes are inter-dependent. The 

seed size, i.e., the number of points in the seed design, and the final design size will 

determine the number of blocks in each dimension. In general, the following relations must 

be observed: 

  ,blocks seedp n n= ×  (0.19) 

 ( )  ,dvnblocks divisionsn n=  (0.20) 
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  .seed
blocks

pn
n

=  (0.21) 

For the seed design from Figure 5.18-(a), Figure 5.19 shows how the 16 2×  Latin 

Hypercube mesh will be divided into blocks. It is important to point out that the fact that each 

block has four rows and four columns of the Latin Hypercube mesh does not mean that each 

block will have four points at the end of the process. Instead of that, this is a way to ensure 

the minimal distance between points in the final Latin Hypercube design. 

 
Figure 5.19. 16 2×  Latin Hypercube mesh divided into blocks. 

The seed design must be properly placed into each of the blocks. Figure 5.20 

illustrates how this process works. The first step is to properly scale the “seed design” and 

then place it at the origin. Next, a set of shifts must be performed. The first one is to shift the 

seed to consecutive blocks following one of the dimensions. The second one is to shift the 

origin of the seed inside the mesh of the block. There is a coupling between these two 

processes. If the block shift is performed in the rows, the seed-origin shift must be performed 

in the columns, and vice-versa. This process is repeated until one of the dimensions is 

fulfilled. After that, the whole set of points placed in that dimension can be used to feedback 

the “shifting” process that continues fulfilling the next dimensions. 

The biggest advantage of this approach is that there are no calculations to perform. All 

operations can be viewed as translations of an seedn -points in the dvn -dimensional 

hypercube. Although efficient for generating large designs, the previous algorithm fails to 

provide the flexibility for the number of points that the user may want. The approach 

described above is limited by the relationship: 

 ( )  ,dvndivisionsp n=  (0.22) 
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which follows directly from the Eqs. (0.20) and (0.21) for the smallest seed size of 1seedn = . 

It means that the described algorithm is restricted to have the number of points to be equal to 

the integer power of the number of design variables. 

 

  
Figure 5.20. The process of creating the 16 2×  Structured Latin Hypercube design. 

The fact that the algorithm is capable of generating well distributed points that fill the 

design space well is used to overcome this deficiency. To generate the Structured Latin 

Hypercube design with any number of points, the first step is to generate the design that has 

at least the required number of points using the algorithm described above. If after 

generating the design we obtain the required number of points, the process is completed. If 

after applying the Structured Latin Hypercube algorithm the number of point is larger than 

required, a shrinking process is used to reduce the number of points to the desired one. The 

points are one-by-one removed from the initial Structured Latin Hypercube design discarding 

points that are the farthest from the center of the hypercube. The reason that such criterion 

works is that this criterion preserves the kernel of the initially generated design formed by 

well distributed points. 
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4. Results and Discussion 

Figure 5.21 shows both the initial Latin Hypercube, i.e. before optimization, and the 

final Optimal Latin Hypercube, which is obtained by solving the optimization problem. The 

initial Latin Hypercube is a random design with good one-dimensional projective properties 

(in other words, there is only one point for each level), but with a poor space-filling property. 

This is typically for Latin Hypercube designs. In contrast, the Optimal Latin Hypercube design 

maintains the projective property while providing an excellent space filling property. 

 

  
(a) Initial Latin Hypercube. (b) Final Optimal Latin Hypercube. 

Figure 5.21.   Latin Hypercube before and after optimization. 

The appeal of the proposed methodology for generating Structured Latin Hypercube 

design is that virtually no computational time is required to create good Latin Hypercube 

designs. This empirical approach can be used either to quickly obtain a Latin Hypercube 

design with good space-filling properties or to generate a good starting point for a formal 

Optimal Latin Hypercube optimization procedure (like ESEA). 

Table 5.15 shows the performance comparison of the ESEA procedure of generating 

Optimal Latin Hypercube designs starting from three different initial designs: 

1. the worst design, where the points are located along the diagonal of the design 

space; 

2. Structured Latin Hypercube design; 

3. a random initial design. 

For all cases, the stopping criterion used was a maximum number of 100 iterations.  

Table 5.15 also allows to directly comparing the values of criterion for the Structured 

Latin Hypercube design with the Optimal Latin Hypercube design obtained with ESEA. 

Note that for the case of two design variables (225 2×  and 1024 2× ), the optimization 

procedure was not able to improve the pφ -criterion of the Structured Latin Hypercube 

design. This indicates that for the 2D cases, the proposed empirical methodology of creating 

the Structured Latin Hypercube design produced the optimum results at no computation cost. 

For the higher dimensional cases, the formal optimization was able to make relatively small 
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improvements to the pφ -criterion of the Structured Latin Hypercube design. This is an 

indication that the Structured Latin Hypercube design generated using the proposed 

methodology provides a reasonable approximation to the Optimal Hypercube designs in high 

dimensions. 

Table 5.15. Optimal Latin Hypercube designs generated using ESEA from three different 

initial designs. 

Design size Performance Worst case Structured case Random case 

Time [s] 143 68 147 

Iterations 251 101 237 

pφ  initial 0.5571 0.0752 0.5111 225 2×  

pφ  final 0.0756 0.0752 0.0752 

Time [s] 11155 3868 7838 

Iterations 284 101 202 

pφ  initial 0.5743 0.0353 0.507 1024 2×  

pφ  final 0.0421 0.0353 0.0426 

Time [s] 313 372 469 

Iterations 283 336 424 

pφ  initial 0.2793 0.0166 0.0385 256 4×  

pφ  final 0.0110 0.0109 0.0108 

Time [s] 609 556 550 

Iterations 547 498 494 

pφ  initial 0.2232 0.0130 0.0267 243 5×  

pφ  final 0.0069 0.0068 0.0068 

Time [s] 34283 27772 29421 

Iterations 601 489 518 

pφ  initial 0.2297 0.0044 0.0109 1024 10×  

pφ  final 0.0023 0.0023 0.0023 

 

Finally, Figure 5.22 shows how the shrinking process works. In order to generate a 

18 2×  Latin Hypercube, a 27 2×  Optimal Latin Hypercube initially feeds the shrinking 

algorithm. The space filling property is preserved on the final design. 
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(a) Initial 27 2×  Latin Hypercube. (b) Final 18 2×  Latin Hypercube. 

Figure 5.22. Shrinking process. 

5. Summary and Conclusions 

The application discussed two affordable algorithms for constructing the Optimal Latin 

Hypercube Design of Experiments. The first one uses the ESEA and an efficient method for 

evaluating the optimality criteria ( pφ ). The second one uses an empirical approach to 

creating Structured Latin Hypercube designs that are good approximations of Optimal Latin 

Hypercube designs. 

Test cases in low dimension show that the Structured Latin Hypercube approach 

produces designs that could not be improved using a formal optimization approach. In higher 

dimensions, the formal optimization approach could make small improvements to the designs 

obtained from the empirical approach. Future work will include both the discussion about the 

influence of the “seed” on the final design and enhancements on the algorithm in order to 

work better in higher dimensions. 
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CHAPTER VI 

SUMMARY, CONCLUSIONS AND FUTURE WORK 

This chapter summarizes this research work, presents its main conclusions and 

contributions and discusses the prospects for future work. 

As stated in the beginning, the main goal of this contribution was to develop 

methodologies for applying heuristic optimization techniques to the solution of problems in 

engineering. Firstly, fundamental concepts in surrogate modeling and numerical optimization 

were revisited. The set of activities performed during the solution of an optimization problem 

as well as general concepts on the formulation of the optimization problem as treated by 

heuristic optimization algorithms were discussed. Then, the heuristic optimization methods 

used in this research were presented. Besides the basic version of these methods, some 

theoretical contributions were also introduced. At this point, challenges behind the use of 

heuristic methods in real world problems, such as the large number of function evaluations 

and the proper optimization problem formulation, were analyzed. Other than the direct use of 

actual models, three different approaches for effective management of models with different 

levels of fidelity were illustrated. They are the direct use of surrogate models, the use of the 

variable fidelity framework, and the coupling of both actual and surrogate models. It is clear 

that surrogate models appear as an alternative to alleviate high computational costs 

associated with heuristic optimization methods. Finally, a set of applications solved during 

this research showed the success of using heuristic optimization techniques. Important 

lessons from this work and the scope of future work are briefly presented as follows. 

First, a summary of the theoretical contributions to the basic heuristic optimization 

algorithms is given: 

• DE and GA implemented with multiple instances of operators: the developed 

computational code allows the use of multiple schemes for both DE and GA. For 

instance, DE can be simultaneously set up with a combination of DE/rand/1/bin and 

DE/best/1/exp; or GA can be set up with two different selection operators (e.g. 

roulette and tournament). 

• Additional randomness for ACO and DE: the general framework, as presented by 

Figure 3.6, makes possible to include additional randomness in these two algorithms, 
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whose basic implementations have limited capabilities of avoiding premature 

convergence. 

• Dispersion measure on the normalized design space: in opposition to schemes based 

on the function space, the proposed approach prevents difficulties in detecting 

aggregation of the population when the function space contains several minima. In 

addition, this is also useful in the context of inverse problems, where besides the 

objective function, the set of design variables define the solution. 

• Implementation of ESEA in an environment of commercial software development to 

generate the optimal Latin hypercube. 

 

About mixing surrogates, extra actual function evaluations, and heuristic optimization 

algorithms, during the present doctoral research, two variations of a scheme for updating the 

surrogates were proposed. The following aspects are explored: (i) large set of different 

surrogates is used during both off-line and on-line phases of the optimization; (ii) update of 

the surrogates during the on-line phase of the optimization through a pre-defined number of 

extra actual function evaluations (high-fidelity analysis); and (iii) Best  (i.e. surrogate 

with the smallest PR  value of the set) is used for global search. Remembering that 

 is used as an estimator of the RM , the idea is to chose the surrogate with the 

best global approximation capabilities. The proposed variations differ in the update of the 

surrogates. While one updates the ensemble every time a new point is included in the data 

set, the other one performs the updating after the set of new points is generated. 

PRESS

ESS

PRESS SE

 

Now, a summary and lessons from the applications: 

1. Three-dimensional vehicular structure design optimization: this first application 

demonstrated the use of heuristic optimization algorithms directly coupled with finite 

element models to solve the design optimization of a three-dimensional vehicular 

structure. In the context of this doctoral work, this is an example of direct use of high-

fidelity models. It is also important to say that the heuristic algorithms have successfully 

handled (i) a combination of continuous and discrete design variables, and (ii) 

constrained multi-criteria optimization. The results were encouraging regarding the 

possibility of adding system requirements, such as dynamic and manufacture constraints, 

during the optimization task. 

2. Optimization of aircraft structural components by using heuristic algorithms and multi-

fidelity approximations: in this application, the coupling of non-linear high-fidelity and 

linear low-fidelity analyses through the variable fidelity approach allowed the use of 
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intensive computing heuristic techniques for the optimal design of aircraft structural 

components. The study allows concluding that the use of variable fidelity together with 

heuristic optimization methods is a successful approach. The reasons are: (i) they do not 

require gradient information (which implies that the resources can be directly used for the 

search, and that there is no propagation of the errors due to the computation of the 

gradients based on corrected responses); and (ii) they have the trend to find the global or 

near global solution (which reduces the need of running multiple times the optimization 

problem). 

3. Aircraft longitudinal stability and control derivatives identification by using LifeCycle and 

Levenberg-Marquardt optimization algorithms: this application presented an 

identification procedure to determine the longitudinal stability and control 

derivatives of a military aircraft by coupling together heuristic (global) and 

classical (local) optimization algorithms within the framework of the Output Error 

method. The individual performances of both the algorithms were tested and then 

a cascade-type scheme was proposed aiming at taking advantage of the global 

and local search capabilities of the individual algorithms. The results were very 

encouraging in the sense of adding complexity to the models, by embracing non-

linearities for example, in further research. 

4. Identification of a non-linear landing gear model using heuristic optimization: this 

application was dedicated to the identification of an aircraft landing gear model by using a 

heuristic optimization technique. A set of measures that describe the behavior of the 

system and its numerical counterparts are used together to build a representative 

functional, which once minimized gives a possible solution for the identification problem. 

A good match between the theoretical results and those obtained from the experimental 

drop-test was found. Encouraging future research involving more complex models, such 

as the ones in which the wheel rotation for the representation of drag loads and the 

flexibility of the landing gear are to be included (in addition to the two degrees of freedom 

considered in the present model). 

5. Improving surrogate models by coupling heuristic optimization and extra high-fidelity 

function evaluations: in this application, the use of multiple surrogates, heuristic 

optimization methods, and extra high-fidelity simulations for minimization of the RM  

in meta-modeling were explored. The key points of the methodology are (i) the 

generation of a large set of surrogates and the use of  as a criterion for 

SE

RMSPRESS
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surrogate selection; and (ii) the use of heuristic optimization for the generation of extra 

points for high-fidelity simulation. Two different strategies for updating the surrogates 

were studied (with and without the update of the surrogates after the inclusion of each 

point in the data set). Based on a set of standard test functions, the study leads to the 

conclusion that (i) the benefits of both strategies depend on dimensionality and number of 

points; (ii) BestP  efficiently indicates new points for extra simulation; and (iii) while 

the gains over the design space are limited by the number of design variables and the 

complexity of the function, the gains in the region of the optima are less sensitive. 

RESS

6. On how to implement an affordable Optimal Latin Hypercube: the application discussed 

how to obtain the Optimal Latin Hypercube Design of Experiments by using either the 

ESEA and an efficient method for evaluating the optimality criteria (φ ), or an empirical 

approach (creating Structured Latin Hypercube designs, which are good approximations 

of Optimal Latin Hypercube designs). Test cases in low dimension show that the 

Structured Latin Hypercube approach produces designs that could not be improved using 

a formal optimization approach. In higher dimensions, the formal optimization approach 

could make small improvements to the designs obtained from the empirical approach. 

p

More generally, during this doctoral research the following points were achieved: 

• The use of non-conventional methods for system identification was explored. 

Heuristic algorithms presented a robust alternative to the solution of problems in 

which experimental data are corrupted or in which the models are not sufficiently 

known.  

• The use of heuristic methods coupled with statistical tools for the solution of design 

problems was consolidated. This approach has been used (i) as a way to overcome 

the limitations of classic methods and (ii) as an alternative to decrease the 

computational costs that are commonly associated with heuristic optimization 

methods. 

• The use of the developed techniques to solve various representative real world 

problems. 

• The implementation of both a general-purpose optimization toolbox (SIMPLE 

Toolbox) and a surrogate modeling toolbox (SURROGATES Toolbox). 

 

The main learning is that, as it also happens with classical optimization algorithms, the 

success in using heuristic methods is highly dependent on the formulation of the problem. 

This also includes the level of fidelity, the quality of information already known, and the 
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computational budget. In this sense, the choice of fidelity levels to be used and the proper 

handling strategy are both problem dependent. Additionally, since a large number of points of 

the design space is naturally visited when using heuristic algorithms, it is natural that the 

proper analysis of the whole set of points represents a complementary phase. 

Aiming at amplifying the employment of heuristic optimization algorithms in real world 

problems, the following suggestions for future research work are given: 

1. Heuristic optimization algorithms: 

• Comparison of the performance of different DE schemes against simultaneous use of 

DE schemes. The same study for GA (regarding GA operators for that matter) should 

be implemented. At the end of this proposed study, the following question should be 

answered: what is the best strategy to be followed, a single scheme or a composition 

of different operators (and how many)? 

• Development of a self-tuning approach for selecting different DE or GA schemes 

according to the performance in the early stages of the optimization. Independently of 

single or multiple operators, is it possible to choose the operators based on the first 

iterations of the optimization task? 

• Study on the effectiveness of the randomness operator for ACO and DE. When use it 

and when not? 

• LC outperforms the worst suited heuristic for a given problem. However, it also hurts 

the best one. This way, is it possible to speed up the selection of a heuristic method 

for a given problem? 

2. Heuristic optimization in real world problems: consolidation of these algorithms through 

different test cases. Based on a larger set of applications, is it possible to build a general 

procedure that first evaluates the potential of using heuristic algorithms for a specific 

application and then gives general directions about their use? 

3. Optimal Latin Hypercube: discussion about the influence of the “seed” on the final design 

and enhancements on the algorithm for the Structural Latin Hypercube, in order to work 

better in higher dimension problems. 

4. Surrogate improvement through DOE refinement and heuristic optimization: 

• Enhancements on the update algorithm, especially in the phase of surrogate updates. 

• Application of the proposed approaches to real world problem. 
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APPENDIX A 

SIMPLE OPTIMIZATION TOOLBOX 

This is a short appendix about the SIMPLE Toolbox (SimpleToolBox), a set of functions 

for numerical optimization. The development is part of this PhD. For further reference, please 

check Viana and Steffen (2008). 

A.1. What is the SIMPLE Optimization Toolbox? 

SIMPLE Optimization ToolBox (SimpleToolBox) is a software that provides tools for 

creating, editing and solving general optimization problems. This way, you have access to a 

set of routines that can be easily used to deal with engineering design, inverse and 

multidisciplinary optimization problems. The current version includes: 

 

• Multi-objective functions: weighted sum, compromise programming, and weighted 

min-max implementations. 

 

• Constrained optimization functions: static penalties and dynamic penalties 

implementations. 

 

• Solvers: Ant Colony Optimization, Differential Evolution, Genetic Algorithm, Particle 

Swarm Optimization, and LifeCycle Method. 

 

• Report Generators: several plot functions, e.g. stopping criteria, objective statistics, 

and trace of the best score. 

 

Examples: 

• Mathematical functions: single objective, multi-objective, and constrained 

optimization. 

• Design: PID controller, pressure vessel, and welded beam. 

• Identification: fault diagnosis, frequency and time domain identification. 
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Figure A.1 illustrates the functionalities available in SimpleToolBox. 

 
Figure A.1. SimpleToolBox facilities. 

A.2. Installation and Uninstallation 

Both the installation and the uninstallation processes are quite “simple”. To install 

SimpleToolBox, the first step is to download from <http://fchegury.110mb.com>. Then unzip 

the SimpleToolBox, open a MATLAB terminal and go to the directory where it is the 

SimpleToolBox (for example, D:projects\matlab\SimpleToolBox4p0, however, there 

is no preference for where the user should unzip it). Then type: 

 
>> cd setup\ 

>> setup 

 

Figure A.2 shows what you would see. 

   
Figure A.2. First step of installation (or uninstallation). 

http://fchegury.110mb.com/
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At this moment, the setup routine will help the user to install (or uninstall) the current 

version of the SimpleToolBox (see Figure A.3). 

   
Figure A.3. Second step of installation (or uninstallation). 

Observations: 

1. The SimpleToolBox has been tested in both MATLAB® Version 7.0 Release 14 and 

MATLAB® Version 6.5 Release 13. 

2. In practice, either the installation or uninstallation will change only the MATLAB 

search path. It means the NO files will be copied or moved. 

 

To check the current version of the SimpleToolBox, open a MATLAB terminal and type: 

 
>> srgtsVersion 

 

Figure A.4 shows what you see for the current version. 

   
Figure A.4. SimpleToolBox version. 
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A.3. Help on Functions 

All MATLAB functions in toolbox have prefix “simple” (except setup.m). To get help on 

a specific function just type: 

 
>> help function_name 

 

See Figure A.5 for an example. 

   
Figure A.5. Help on simpleOptimget. 

A.4. Bug Reports 

To check the history of bug reports, go to BugBuster at <http://fchegury.110mb.com>. 

A.5. Simpletoolbox/Surrogatestoolbox User's List 

If the user wants to receive periodical information about both the SimpleToolBox and 

the SimpleToolBox, he/she can join to the SimpleToolBox/SurrogatesToolBox User’s List. It 

is easy; just send an e-mail to Felipe (fchegury@yahoo.com) with the following data: full 

name, e-mail address, and affiliation. 

By doing that, the user will be informed about the state of development of those 

toolboxes, including updates on the code, change of standards, tendencies, etc. If the user 

no longer wants to receive e-mails from this list, he/she just have to send me an e-mail to 

Felipe (fchegury@yahoo.com) asking to exclude his/her address from the list. 

mailto:fchegury@yahoo.com
mailto:fchegury@yahoo.com


APPENDIX B 

SURROGATES TOOLBOX 

This is a short appendix about the SURROGATES Toolbox (SurrogatesToolBox), a set 

of functions for surrogate modeling. The first functions were developed during the PhD work 

of Dr. Tushar Goel (Goel, 2007). During a exchange program in 2007, the development was 

conducted together with the present research. For further reference, please check Viana and 

Goel (2008). 

B.1. What is the SURROGATES Toolbox? 

SURROGATES Toolbox (SurrogatesToolBox) provides tools for creating and editing 

different surrogate models (commonly used to replace expensive simulations of engineering 

problems). The current version includes: 

 

Design of Experiments: 

• Face centered cubic design (FCC). 

• Combination of a face centered cubic design and a ordinary (but improved) latin 

hypercube design (FCCLH). 

• Mixed-level full-factorial design (FFD). 

• Latin hypercube sampling (LHS is especially suitable for very large designs, when the 

native MATLAB function run out of memory). 

• Combination of latin hypercube and D-optimal design (LHDoptimal). 

• Filling of user-defined design with a latin hypercube design (LHFilling). 

• Selection of points from a user-defined design according to a specific optimality 

criterion (OptimalSubDoE can use “MaxMin” or “Doptimal” criteria). 

 

Surrogates: Kriging, polynomial response surface, radial basis neural network, support 

vector regression, and weighted average surrogates. 
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Performance Metrics: 

• Based on test points: correlation coefficient, RMS error, maximum absolute error, and 

error matrix. 

• Based on data points: PRESS and cross-validation errors. 

 

Global Sensitivity Analysis using two different approaches: Monte Carlo and Gaussian 

Quadrature. 

 

Other capabilities: 

• Selection of cross-validation sets following the “k-fold” strategy. 

• Generation of a text report file. 

 

Examples: 

• Design of experiment examples. 

• Braninhoo function. 

• Engineering problem 1: Diffuser. 

• Engineering problem 2: Radial turbine. 

• Data structure update (from previous version to the current version of the toolbox). 

 

Figure B.1 illustrates the functionalities available in SurrogatesToolBox. 

 
Figure B.1. SurrogatesToolBox facilities. 
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B.2. Installation and Uninstallation 

Both the installation and the uninstallation processes are quite “simple”. To install 

SurrogatesToolBox, the first step is to download from <http://fchegury.110mb.com>. Then 

unzip the SurrogatesToolBox, open a MATLAB terminal and go to the directory where it is 

the SurrogatesToolBox (for example, D:projects\matlab\SurrogatesToolBox1p1, 

however, there is no preference for where the user should unzip it). Then type: 

 
>> cd setup\ 

>> setup 

 

Figure B.2 shows what you would see. 

  
Figure B.2. First step of installation (or uninstallation). 

At this moment, the setup routine will help the user to install (or uninstall) the current 

version of the SurrogatesToolBox (see Figure B.3). 

  
Figure B.3. Second step of installation (or uninstallation). 

 

http://fchegury.110mb.com/
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Observations: 

1. The SurrogatesToolBox has been tested in both MATLAB® Version 7.0 Release 14 

and MATLAB® Version 6.5 Release 13. 

2. In practice, either the installation or uninstallation will change only the MATLAB 

search path. It means the NO files will be copied or moved. 

 

To check the current version of the SurrogatesToolBox, open a MATLAB terminal and 

type: 

 
>> srgtsVersion 

 

Figure B.4 shows what you see for the current version. 

  
Figure B.4. SurrogatesToolBox version. 

B.3. Help on Functions 

All MATLAB functions in toolbox have prefix “srgts” (except setup.m). To get help on a 

specific function just type: 

 
>> help function_name 

 

See Figure B.5 for an example. 

B.4. Bug Reports 

To check the history of bug reports, go to BugBuster at <http://fchegury.110mb.com>. 

http://fchegury.110mb.com/
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B.5. Simpletoolbox/Surrogatestoolbox User's List 

If the user wants to receive periodical information about both the SimpleToolBox and 

the SurrogatesToolBox, he/she can join to the SimpleToolBox/SurrogatesToolBox User’s 

List. It is easy; just send an e-mail to Felipe (fchegury@yahoo.com) with the following data: 

full name, e-mail address, and affiliation. 

By doing that, the user will be informed about the state of development of those 

toolboxes, including updates on the code, change of standards, tendencies, etc. If the user 

no longer wants to receive e-mails from this list, he/she just have to send me an e-mail to 

Felipe (fchegury@yahoo.com) asking to exclude his/her address from the list. 

  
Figure B.5. Help on srgtsFCCDesign. 

mailto:fchegury@yahoo.com
mailto:fchegury@yahoo.com
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APPENDIX C 

BOXPLOTS 

In a boxplot, the box is defined by lines at the lower quartile (25%), median (50%), and 

upper quartile (75%) values. Lines extend from each end of the box to show the coverage of 

the rest of the data (i.e., they are plotted at a distance of 1.5 times the inter-quartile range in 

each direction or the limit of the data, if the limit of the data falls within 1.5 times the inter-

quartile range). Outliers are data with values beyond the ends of the lines by placing a “+” 

sign for each point. 

See an example given in the MATLAB tutorial (MathWorks Contributors, 2002). The 

following command lines create a box plot of car mileage grouped by countries. 

 
>> load carsmall 

>> boxplot(MPG, Origin) 

 

Figure C.1 shows the results of the boxplot command. 

 
Figure C.1. Example of boxplot figure. 
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APPENDIX D 

NELDER-MEAD SIMPLEX DIRECT SEARCH AND LEVENBERG-MARQUADT 
OPTIMIZATION METHODS 

D.1. Nelder-Mead Simplex Direct Search 

As seen in Lagarias et al. (1998), the Nelder-Mead simplex direct search (NMSDS) 

does not use numerical or analytic gradients. This method uses the simplex concept, which 

in the -dimensional space is characterized by the  distinct points in its vertices 

(e.g., if , a simplex is a triangle). At each step of the search, a new point in the 

neighborhood of the current simplex is generated. One of the vertices is replaced by this new 

point if the new function value is smaller than the values at the vertices of the simplex (which 

generates a new simplex). This step is repeated until the diameter of the simplex is less than 

a specified tolerance. The MATLAB fminsearch function (Mathworks Contributors, 2002), set 

with the default options, is used as implementation of the NMSDS algorithm. 

dvn 1dvn +

2dvn =

D.2. Levenberg-Marquadt Algorithm 

The Levenberg-Marquardt method (LM) is a second order variant of the Gauss-Newton 

method (Gill et al., 1981). This method, although complex, is suitable for a quadratic 

cost function, and is expected to converge quickly. First,  is approximated by a 

parabolic function  under the condition  (retaining only the 3 first Taylor 

series terms): 

( )f x

( )Lf x Lx

 ( ) ( ) ( ) ( ) ( ) ( ) (21 .
2

T TT
L L L L L L Lf f f f⎡ ⎤≅ + − ∇ + − ∇ − )L⎣ ⎦x xx x x x x x x x x x  (D.1) 

Let the Jacobian of  be denoted by ( )f x J , then the LM method searches in the 

direction given by the solution p  to the equations: 

  (D.2) ( )  ,T
k k k kk fλ+ = −J J I p JTk
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where  are nonnegative scalars and  is the identity matrix. kλ I

The LM algorithm can be interpreted in the following manner: for small values of   it 

behaves as the Gauss-Newton algorithm, while for high values of  it behaves as the 

steepest gradient algorithm. 

kλ

kλ

In the scope of this work, either NMSDS or LM are employed with initial designs given 

by the candidate solutions of the heuristic optimizers. This cascade-type scheme using a 

heuristic algorithm for global search and a classical algorithm for local search is believed to 

reduce the changes of fail because of local minima. 
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VIANA, F. A. C., 2005, Técnicas de Meta-Modelagem e Métodos Heurísticos de 
Opimização Aplicados a Problemas de Projeto e Identificação. 2008. 144 páginas. Tese 

de Doutorado. Universidade Federal de Uberlândia, Uberlândia, Brazil. 

RESUMO EXTENDIDO EM PORTUGUÊS 

Avanços na capacidade de processamento computacional popularizaram a otimização 

numérica como uma ferramenta de engenharia. Contudo, eles aparentemente também 

favoreceram o aumento na complexidade das simulações. Como resultado, o custo 

computacional de simulações complexas de alta fidelidade em engenharia dificultam o uso 

exclusivo de simulações em otimização. Esta pesquisa de doutorado representa um esforço 

em combinar técnicas de otimização global e meta-modelagem como uma forma de usar 

racionalmente os recursos computacionais e aumentar o nível de informação obtida durante 

a tarefa de otimização. Aspectos positivos dos métodos heuristicos de otimização, tais como 

o potencial para otimização global, facilidade para programação, e robustez foram 

explorados. Estes métodos também foram combinados com modelos de fidelidade variável, 

que reduz o esforço computacional intrínseco aos algoritmos heurísticos de otimização. As 

técnicas mencionadas acima foram usadas na solução dos problemas contínuo-discretos do 

projeto ótimo de uma estrutura veicular e componentes estruturais aeronáuticos; 

identificação de derivadas de controle e estabilidade longitudinal de aviões e modelo não 

linear de trem de pouso; e melhoramento de meta-modelos via adição de simulações; bem 

como na solução do problema combinatorial do hipercubo latino ótimo. Para a solução de 

problemas de otimização contínuo-discreta Otimização por Colônia de Formigas (OCF), 

Evolução Diferencial (ED), Algoritmos Genéticos (AG), Otimização por Enxame de 

Partículas, e Modelo do Ciclo de Vida foram usados. Para a solução do problema de 

otimização combinatorial o Algoritmo Estocástico Evolucionário Melhorado (AEEM) foi 

usado. Como resultado, algumas contribuições teóricas foram introduzidas à versão básica 

dos algoritmos heurísticos estudados, incluindo: (i) uso simultâneo de diferentes instâncias 

de operadores para o ED e AG; (ii) aleatoriedade adicional para OCF e ED; (iii) operadores 

de aleatoriedade disparados por uma medida de dispersão; e (iv) implementação do 

hipercubo latino ótimo em um ambiente de desenvolvimento de software comercial. Ao final 

da pesquisa, a principal lição é que, assim como também acontece com algoritmos clássicos 

de otimização, o sucesso no uso de métodos heurísticos é altamente dependente do 

problema, nível de fidelidade das simulações, nível das informações já conhecidas, e, 

obviamente, recursos computacionais. Desta forma, o uso de fidelidade variável juntamente 
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com métodos heurísticos de otimização é uma estratégia bem sucedida, uma vez que 

métodos heurísticos não requerem informação sobre o gradiente (isto é, os recursos são 

diretametne usados na busca e não há propagação dos erros devido ao compto dos 

gradientes); e eles têm a tendência em encontrar a solução global ou próximo dela. Em 

alguns casos, uma combinação em cascata de métodos de otimização heurísticos e 

clássicos pode compor uma estratégia viável para aproveitar as capacidades de busca 

global e local dos algoritmos individuais. Ao acoplar simulações de alta fidelidade e 

otimização heurística para o melhoramento de meta-modelos, as estratégias propostas 

neste trabalho de doutorado indicam eficientemente novos pontos para simulações; e 

enquanto os ganhos sobre o espaço de projeto são limitados pelo número de variáveis e 

pela complexidade da função, os ganhos na região dos ótimos são menos sensíveis. 

Finalmente, uma vez que um grande número de pontos no espaço de projeto é naturalmente 

visitado no uso de algoritmos heurísticos, é natural que uma análise apropriada do conjunto 

de pontos seja uma fase complementar ao final da otimização. 
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