Download PDF
ads:
CONSERVAÇÃO GENÉTICA EX SITU DE POPULAÇÕES NATURAIS DE
Myracrodruon urundeuva Fr. All. EM SISTEMA SILVIPASTORIL
CARLA RENATA SILVA BALERONI GUERRA
Orientador: Prof. Dr. Mario Luiz Teixeira de Moraes
Co – orientadora: Prof (a) Dra: Cristina L. S. Petrarolha Silva
ILHA SOLTEIRA
JULHO – 2008
Tese apresentada à Faculdade de
Engenharia de Ilha Solteira da
Universidade Estadual Paulista,
como parte dos requisitos para
obtenção do título de Doutor em
Agronomia Área de
Concentração: Sistemas de
Produção.
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
FICHA CATALOGRÁFICA
Elaborada pela Seção Técnica de Aquisição e Tratamento da Informação/Serviço
Técnico
de Biblioteca e Documentação da UNESP-Ilha Solteira
Guerra, Carla Renata Silva Baleroni.
G934c Conservação genética Ex Situ de populações naturais de Myracrodruon urundeuva
Fr.All. em sistema silvipastoril / Carla Renata Silva Baleroni Guerra. -- Ilha Solteira :
[s.n.], 2008
108 f. : il. , mapas.
Tese (doutorado) - Universidade Estadual Paulista. Faculdade de Engenharia de Ilha
Solteira. Especialidade: Sistemas de Produção, 2008
Orientador: Mario Luiz Teixeira de Moraes
Co-orientador: Cristina L. S. P. Silva
Bibliografia: p. 76-95
1. Conservação genética. 2. Aroeira. 3. Teste de progênies. 4. Sistema silvipastoril.
ads:
Aos meus pais, Eduardo e Anadir, pelo amor, carinho, dedicação e por
muitas vezes sacrificarem suas vidas em detrimento do meu sucesso, pois sem eles
nada disso teria sido possível.
A minha irmã Camila Regina, pelo apoio, carinho, estímulo, ajuda e
amizade, não só nesta conquista mais por toda minha vida.
DEDIC
DEDICDEDIC
DEDICO
OO
O
Ao meu esposo Carlos Alexandre, por me apoiar sempre nas conquistas dos
meus ideais, por suportar pacientemente todas as minhas ausências, por todo seu
amor e dedicação.
As duas pessoas mais importante da minha, que são a grande razão de eu
estar aqui hoje, Luis Eduardo e Mariana.
OFEREÇO
OFEREÇOOFEREÇO
OFEREÇO
AGRADECIMENTOS
À DEUS, por me dar força, para superar todas as dificuldades nos diversos
caminhos de minha vida, e conseguir conquistar mais esta importante vitória.
Ao Prof. Mario Luiz Teixeira de Moraes, pela valiosa orientação, confiança a
mim dedicado nestes anos de convivência e principalmente por me ensinar a gostar
e compreender um pouco a genética.
À Cristina Lacerda Soares Petrarolha Silva (Kitty), pela amizade, estímulo, co-
orientação e me ensinar que genética é uma coisa interessante e não um bicho de
sete-cabeças.
À Selma M. B. de Moraes pela amizade e confiança durante este tempo de
convivência.
Aos funcionários da Fazenda, José Cambuim, Manoel Fernando Rocha
Bonfin (Baiano) e Alonso Ângelo da Silva, pela valiosa ajuda durante as coletas de
dados.
Aos acadêmicos de Medicina Veterinária Tatiane Ferrato dos Santos, e
Thiago Nunes Barreto, pela ajuda e companherismo durante a coleta de dados, para
realização deste trabalho.
À Dani, ao Alexandre e a Janete pela valiosa ajuda durante as análises
estatísticas, e pela grande amizade durante este período.
À amiga Flávia, pela brilhante colaboração e orientação na execução nas
análises de pastagens.
À Fundação Educacional de Andradina, em nome do diretor Dr Joji Ariki, pelo
estímulo e apoio durante realização do Doutorado.
Ao Coordenador do Curso de Medicina Veterinária Prof Dr. Ricardo Velludo
Gomes de Soutello, pelo apoio, amizade e cooperação durante a realização deste
trabalho.
À Dani e ao Eduardo Justo, pelo apoio na parte computacional e confecção
dos mapas.
À Camila, Zé, Brenda, Silvia, Carlinhos, Fran e Willian, pela amizade e
colaboração.
À banca examinadora pelas críticas e valiosas sugestões para o sucesso
deste trabalho.
Aos meus familiares pelo apoio em especial ao meu cunhado Recco e meus
sogros Luiz Antônio e Belinha.
A todos que direta ou indiretamente contribuíram para a realização deste
trabalho, minha eterna gratidão.
CONSERVAÇÃO GENÉTICA EX SITU DE POPULAÇÕES NATURAIS DE
Myracrodruon urundeuva Fr. All. EM SISTEMA SILVIPASTORIL
Autora: CARLA RENATA SILVA BALERONI GUERRA
Orientador: Prof. Dr. MARIO LUIZ TEIXEIRA DE MORAES
RESUMO
Dentre as espécies que vêm sofrendo interferência antrópica encontra-se a aroeira
(Myracrodruon urundeuva Fr. All.). Como estratégias de conservação propostas,
destacam-se a ex situ e entre as estratégias para avaliar a variabilidade genética
retida ex situ, destaca-se a genética quantitativa, onde são estimados parâmetros
genéticos para alguns caracteres silviculturais. Este trabalho teve como objetivo
avaliar o comportamento de duas populações de M. urundeuva em plantio
heterogêneo, estimar a variabilidade genética entre e dentro das populações de M.
urundeuva, fornecendo subsídios para a conservação genética ex situ, obter
informações sobre a regeneração natural de outras espécies arbóreas na área de
instalação do teste de progênies/procedências, avaliar o desenvolvimento e a
composição bromatológica da forrageira desenvolvida no sub-bosque de M.
urundeuva em sistema silvipastoril. Foram avaliados dois testes de progênies de M.
urundeuva, localizados em Selvíria-MS e estabelecidos em 1992 em plantios
heterogêneos, contendo 25 famílias provenientes de Aramina estado de São Paulo e
25 de Selvíria estado do Mato Grosso do Sul. Os ensaios foram avaliados para o
DAP (diâmetro a altura do peito), DMC (diâmetro médio da copa), altura, forma do
tronco e sobrevivência. Os resultados obtidos a partir do uso do software SELEGEN,
permitiram observar que as populações de Selvíria e Aramina, apresentaram baixa
herdabilidade, indicando a existência de variabilidade, sendo que a variabilidade
genética foi maior dentro da população de Selvíria, quando comparada a de
Aramina. A população de Selviria apresentou maiores ganhos com seleção que a de
Aramina, tanto na realização de propagação sexuada quanto de assexuada, as duas
populações apresentaram-se bem adaptadas ao local de implantação do teste de
progênie/procedência, visto que a taxa de sobrevivência foi superior a 90%, A
utilização do indíce multi-efeitos (IME), permite selecionar progênies que proporcione
um bom ganho de seleção e boa variabilidade, neste caso deve-se sempre
estabelecer um kf (número de indivíduos selecionados por progênies) ximo, para
que haja um maior tamanho efetivo (Ne) e maior diversidade genética. Os ganhos na
população de Aramina, foram baixos devido a grande antropização no local da
coleta de sementes, a área de instalação do teste de progênies/procedências
encontra-se em processo de revegetação, devido ao grande número de plantas
jovens. Quanto ao desenvolvimento da forrageira foi possível afirmar que o
desenvolvimento, tanto em altura quanto em massa, foi maior a pleno sol que em
área sombreada, o acúmulo de forragem foi baixo nas duas condições de
luminosidade, provavelmente devido a deficiência de manejo na manutenção e
implantação de sistema. Quanto a valores nutricionais não houve diferença
significativa em relação ao sol e sombra, sendo que as diferenças de fibra
detergente ácido (FDA), fibra detrgente neuro (FDN), Lignina e digestibilidade in
vitro da matéria seca (DIVMS) ocorreram apenas entre o pré e o pós pastejo.
Palavras – chaves: aroeira, genética quantitativa, parâmetros genéticos, índice
multi-efeito, gado.
EX SITU GENETIC CONSERVATION OF NATURAL POPULATIONS OF
Myracrodruon urundeuva Fr. All. BY AGROFORESTRY SYSTEM
Author: CARLA RENATA SILVA BALERONI GUERRA
Adviser: Prof. Dr. MARIO LUIZ TEIXEIRA DE MORAES
ABSTRACT
Among species that have been suffering for human interference is the Aroeira tree
(Myracrodruon urundeuva Fr. All.). Considering the conservation strategies proposed
the conservation ex situ stands out as the strategies to evaluate the genetic variation
retained ex situ, the quantitative genetics stands out where genetic parameters are
estimated for some forestry characters. The research have aimed to evaluate the
performance of two populations of M. urundeuva in heterogeneous planting, to
estimate the genetic variation between and within the populations of the species,
providing subsides for ex situ genetic conservation, to obtain information on natural
regeneration of other tree species in the area where the progeny/origin triols set up
were held, to evaluate the development and bromatological composition of forage
developed in sub-forest of M. urundeuva in a agroforestry system. Two progenies
test of M. urundeuva were evaluated. They were located in Selviria-MS and
established in 1992 in heterogeneous planting, containing 25 families coming from
Aramina-MS and 25 from Selviria-MS. The tests were evaluated for DAP (diameter at
breast height), DMC (average diameter of top), plant height, steam form, and
survival. The results obtained by the use of SELEGEN software, makes it possible to
observe the populations in Selviria and Aramina showed low inheritance, indicating
the existence of variation. The genetic variation was higher within Selvíria population,
than Aramina,and Selviria population showed higher gain of selection than the
Aramina population, not only by sexual propagation, but also by asexual propagation,
both populations were well adapted to the location of progeny /origin trials, beeing
that the survival rate was higher than 90 %. The use of IME has allowed the selection
of progenies which can provide a high gain of selection and variation; in that case a
maximum Kf must always be established, so there is a highe Ne and genetic
variation. The gain of Aramina populations were low due to the high human influence
on the place where the seeds were collected, the area of progeny/origin test was set
up is on restoration process, due to the high number of young plants. About the
development of the forage, it was possible to observe that the development , of both
height and wood mass, was higher under sun than under shade, the build-up of
forage was low in both lightining conditions, probably due to the lack of handling,
about the nutritional value there was no significant difference between sun and
shade, conditions being that the differences of FDA, FDN, Lignin, and DIVMS were
between pre and post pasturing.
Key – words: aroeira , multi-effect index, genetic parameter, quantitative genetics,
cattle.
Lista de Tabelas
TABELA 1: ESQUEMA DA ANÁLISE DE VARIÂNCIA CONJUNTA, UTILIZADO PARA CADA UM DOS CARACTERES
ESTUDADOS, NAS DUAS POPULAÇÕES DE M. URUNDEUVA, APRESENTANDO AS SEGUINTES FONTES DE VARIAÇÃO
(FV): REPETIÇÕES/POPULAÇÕES (R/S), POPULAÇÕES (S), PROGÊNIES/POPULAÇÕES (P/S) E O ERRO (E/P) E O ERRO
DENTRO (D)............................................................................................................................................................ 37
TABELA 2: EQUAÇÃO DE CALIBRAÇÃO PARA DETERMINAÇÃO DA MASSA DE FORRAGEM....................................... 42
TABELA 3: PERÍODO DE REBROTAÇÃO DO CAPIM BRACHIARIA DECUMBENS EM ESTAÇÕES DO ANO E NÚMERO DE
DIAS SOB DOIS REGIMES DE LUMINOSIDADE E DOIS MOMENTOS DE PASTEJOMANEJADOS SOB LOTAÇÃO ROTATIVA
DE OUTUBRO DE 2006 A JANAEIRO DE 2008 EM SELVÍRIA MS............................................................................. 44
TABELA 4: ESTIMATIVAS DE MÉDIA m
ˆ
, COEFICIENTE DE VARIAÇÃO EXPERIMENTAL (CV
EXP
), TESTE-F, ACURÁCIA
(
aa
r
ˆ
) E O COEFICIENTE DE DETERMINAÇÃO DO EFEITO DE PARCELA (
2
p
c
ˆ
) PARA OS CARACTERES QUANTITATIVOS
AVALIADOS EM DUAS POPULAÇÕES DE MYRACRODRUON URUNDEUVA, AOS 15,5 ANOS, EM SELVÍRIA–MS............. 48
TABELA 5: ESTIMATIVAS DE ALGUNS PARÂMETROS GENÉTICOS: COEFICIENTE DE VARIAÇÃO GENÉTICA INDIVIDUAL
E GENÉTICA DE PROGÊNIES (CV
GI
E CV
GP
), E A HERDABILIDADE, NO SENTIDO RESTRITO: EM NÍVEL DE INDIVÍDUO NA
PARCELA (
2
a
h
ˆ
), DE MÉDIA (
2
m
h
ˆ
) E DENTRO DE PARCELA (
2
d
h
ˆ
) PARA OS CARACTERES QUANTITATIVOS, AVALIADOS
EM DUAS POPULAÇÕES DE MYRACRODRUON URUNDEUVA, AOS 15,5 ANOS, EM SELVÍRIA–MS. ............................... 51
TABELA 6: ESTIMATIVAS DA HERDABILIDADE INDIVIDUAL (
2
h
ˆ
), VÁLIDA PARA CADA PROGÊNIE PARA OS
CARACTERES QUANTITATIVOS, AVALIADOS EM DUAS POPULAÇÕES DE MYRACRODRUON URUNDEUVA, AOS 15,5
ANOS, EM SELVÍRIA–MS. ....................................................................................................................................... 52
TABELA 7: EFEITOS ADITIVOS ( a
), VALORES GENÉTICOS ADITIVOS PREDITOS ( a
ˆ
ˆ
+
µ
), EFEITOS GENOTÍPICOS ( g
ˆ
)
E VALORES GENOTÍPICOS PREDITOS ( g
ˆ
ˆ
+
µ
) DOS 36 MELHORES INDIVÍDUOS, PARA O CARÁTER DAP (CM), EM UM
TESTE DE PROGÊNIES, ENVOLVENDO DUAS POPULAÇÕES DE MYRACRODRUON URUNDEUVA.................................... 54
TABELA 8: MATRIZES DE MYRACRODUON URUNDEUVA SELECIONADAS COM SOBREPOSIÇÃO DE GERAÇÕES, NUMA
POPULAÇÃO BASE DE 15,5 ANOS DE IDADE, INSTALADA EM SELVÍRIA-MS............................................................. 57
TABELA 9: COMPARAÇÃO ENTRE AS FORMAS DE SELEÇÃO PARA O CARÁTER DAP (CM) EM PROGÊNIES DE M.
URUNDEUVA CONSORCIADA COM TREMA MICRANTHA, PROCEDENTE DE FRAGMENTOS FLORESTAIS DA REGIÃO DE
ARAMINA-SP, EM TRÊS CONDIÇÕES: A (
f
k = K0), B (
f
k = K0) E C (
f
k =1 K 3), AOS 15,5 ANOS,
EM SELVÍRIA-MS. .................................................................................................................................................. 60
TABELA 10: COMPARAÇÃO ENTRE AS FORMAS DE SELEÇÃO PARA O CARÁTER DAP (CM) EM PROGÊNIES DE M.
URUNDEUVA, CONSORCIADA COM TREMA MICRANTHA, PROCEDENTE DE FRAGMENTOS FLORESTAIS DA REGIÃO DE
SELVÍRIA-MS, EM TRÊS CONDIÇÕES: A (
f
k = K0), B (
f
k = K0) E C (
f
k =1 K 3), AOS 15,5 ANOS,
EM SELVÍRIA-MS. .................................................................................................................................................. 61
TABELA 11: OCORRÊNCIA DE OUTRAS ESPÉCIES ARBÓREAS NO TESTES DE PROGÊNIES/ PROCEDÊNCIAS DE M.
URUNDEUVA INSTALADO EM SELVÍRIA- MS AOS 15,5 ANOS. .................................................................................. 64
TABELA 12: ALTURA DO DOSSEL FORRAGEIRO MENSURADA COM PRATO ASCENDENTE (ALTURA DO PRATO) E COM
RÉGUA (CM) EM PASTOS DE BRACHIARIA DECUMBENS SOB DOIS REGIMES DE LUMINOSIDADE E DOIS MOMENTOS DE
PASTEJO MANEJADOS, SOB LOTAÇÃO ROTATIVA DE OUTUBRO DE 2006 A JANEIRO DE 2008 EM SELVÍRIA - MS..... 67
TABELA 13: MASSA DE FORRAGEM (KG HA
-1
DE MS) EM PASTOS DE BRACHIARIA DECUMBENS SOB DOIS REGIMES DE
LUMINOSIDADE E DOIS MOMENTOS DE PASTEJO MANEJADOS SOB LOTAÇÃO ROTATIVA DE OUTUBRO DE 2006 A
JANEIRO DE 2008 EM SELVÍRIA - MS...................................................................................................................... 68
TABELA 14: MASSA SECA DE FOLHAS, COLMOS E MATERIAL MORTO (KG HA
-1
DO COMPONENTE MORFOLÓGICO) E
PROPORÇÃO DE FOLHAS, COLMOS E MATERIAL MORTO (%) NA MASSA DE FORRAGEM SOB DOIS REGIMES DE
LUMINOSIDADE E DOIS MOMENTOS DE PASTEJO MANEJADOS SOB LOTAÇÃO ROTATIVA DE OUTUBRO DE 2006 A
JANEIRO DE 2008 EM SELVÍRIA MS. .................................................................................................................... 69
TABELA 15: ACÚMULO DE FORRAGEM (KG HA
-1
DE MS ) E TAXA DE ACÚMULO DE FORRAGEM (KG HA
-1
DIA
-1
DE
MS) DE BRACHIARIA DECUMBENS SOB DOIS REGIMES DE LUMINOSIDADE E DOIS MOMENTOS DE PASTEJO
MANEJADOS SOB LOTAÇÃO ROTATIVA DE OUTUBRO DE 2006 A JANEIRO DE 2008 EM SELVÍRIA - MS.................... 71
TABELA 16: DENSIDADE DE FORRAGEM (G DE MS. CM
-1
HA) SOB DOIS REGIMES DE LUMINOSIDADE E DOIS
MOMENTOS DE PASTEJO MANEJADOS SOB LOTAÇÃO ROTATIVA DE OUTUBRO DE 2006 A JANEIRO DE 2008 EM
SELVÍRIA MS....................................................................................................................................................... 71
TABELA 17: TEORES PB, MM, FDN, FDA, LIG, CEL, HEMI, DIVMS (%) NA MASSA SECA DE FORRAGEM SOB
DOIS REGIMES DE LUMINOSIDADE E DOIS MOMENTOS DE PASTEJO MANEJADOS SOB LOTAÇÃO ROTATIVA DE
OUTUBRO DE 2006 A JANEIRO DE 2008 EM SELVÍRIA MS. ................................................................................... 74
Lista de Apêndice
TABELA 1-A: ESTIMATIVAS DE VARIÂNCIAS GENÉTICA ADITIVA (
2
ˆ
a
σ
), VARIÂNCIA AMBIENTAL ENTRE PARCELAS
(
2
ˆ
parc
σ
), VARIÂNCIA RESIDUAL (
2
ˆ
e
σ
) E VARIÂNCIA FENOTIPÍCA (
2
ˆ
f
σ
), PARA OS CARACTERES QUANTITATIVAS
AVALIADAS NAS DUAS POPULAÇÕES DE M. URUNDEUVA AOS 15 ANOS, EM SELVÍRIA–MS. .................................... 99
TABELA 2-A: ESTIMATIVAS DOS ÍNDICE MULTI-EFEITOS (IME), COM BASE NO CARÁTER DAP, PARA OS 36
MELHORES INDUVÍDUOS EM UM TESTE DE PROGÊNIE DE M.URUNDEUVA CONSORCIADA COM T. MICRANTHA
PROCEDENTES DE FRAGMENTOS FLORESTAIS DA REGIÃO DE ARAMINA SP. AOS 15,5 ANOS, EM SELVÍRIA MS.
............................................................................................................................................................................. 100
TABELA 3-A: ESTIMATIVAS DOS ÍNDICE MULTI-EFEITOS (IME), COM BASE NO CARÁTER DAP, PARA OS 36
MELHORES INDUVÍDUOS, RESULTANTES DA SELEÇÃO ENTRE (30%) E DENTRO (10%) EM UM TESTE DE PROGÊNIE DE
M.URUNDEUVA CONSORCIADA COM T. MICRANTHA PROCEDENTES DE FRAGMENTOS FLORESTAIS DA REGIÃO DE
ARAMINA SP, AOS 15,5 ANOS, EM SELVÍRIA MS. ........................................................................................... 101
TABELA 4-A: ESTIMATIVAS DOS ÍNDICE MULTI-EFEITOS (IME), COM BASE NO CARÁTER DAP, PARA OS 36
MELHORES INDUVÍDUOS, CONSIDERANDO NO MÁXIMO 3 PLANTAS POR FAMÍLIA, EM UM TESTE DE PROGÊNIE DE
M.URUNDEUVA CONSORCIADA COM T. MICRANTHA PROCEDENTES DE FRAGMENTOS FLORESTAIS DA REGIÃO DE
ARAMINA SP, AOS 15,5 ANOS, EM SELVÍRIA MS. ........................................................................................... 102
TABELA 5-A: ESTIMATIVAS DOS ÍNDICE MULTI-EFEITOS (IME), COM BASE NO CARÁTER DAP, PARA OS 36
MELHORES INDUVÍDUOS EM UM TESTE DE PROGÊNIE DE M.URUNDEUVA CONSORCIADA COM T. MICRANTHA
PROCEDENTES DE FRAGMENTOS FLORESTAIS DA REGIÃO DE SELVÍRIA MS, AOS 15,5 ANOS, EM SELVÍRIA MS.
............................................................................................................................................................................. 103
TABELA 6-A: ESTIMATIVAS DOS ÍNDICE MULTI-EFEITOS (IME), COM BASE NO CARÁTER DAP, PARA OS 36
MELHORES INDUVÍDUOS, RESULTANTES DA SELEÇÃO ENTRE (30%) E DENTRO (10%) EM UM TESTE DE PROGÊNIE
DE M.URUNDEUVA CONSORCIADA COM T. MICRANTHA PROCEDENTES DE FRAGMENTOS FLORESTAIS DA REGIÃO DE
SELVÍRA MS, AOS 15,5 ANOS, EM SELVÍRIA MS............................................................................................. 104
TABELA 7-A: ESTIMATIVAS DOS ÍNDICE MULTI-EFEITOS (IME), COM BASE NO CARÁTER DAP, PARA OS 36
MELHORES INDUVÍDUOS, CONSIDERANDO NO MÁXIMO 3 PLANTAS POR FAMÍLIA, EM UM TESTE DE PROGÊNIE DE
M.URUNDEUVA CONSORCIADA COM T. MICRANTHA PROCEDENTES DE FRAGMENTOS FLORESTAIS DA REGIÃO DE
ARAMINA SP, AOS 15,5 ANOS, EM SELVÍRIA MS. ........................................................................................... 105
TABELA 8-A: MASSA DE FORRAGEM (KG HA
-1
DE MS) EM PASTOS DE BRACHIARIA DECUMBENS SOB DOIS REGIMES
DE LUMINOSIDADE E DOIS MOMENTOS DE PASTEJO MANEJADOS E QUATRO ESTAÇÕES SOB LOTAÇÃO ROTATIVA DE
OUTUBRO DE 2006 A JANEIRO DE 2008 EM SELVÍRIA MS. ................................................................................. 106
TABELA 9-A: ESTIMATIVAS DE ALGUNS PARÂMETROS GENÉTICOS ESTIMADOS COM A METODOLOGIA
REML/BLUP: COEFICIENTE DE VARIAÇÃO GENÉTICA INDIVIDUAL E GENÉTICA DE PROGÊNIES (CV
GI
E CV
GP
),
QUOCIENTE DE SELEÇÃO (CV
R
), HERDABILIDADE, NO SENTIDO RESTRITO, DE INDIVÍDUO NA PARCELA (
2
h
ˆ
),
HERDABILIDADE NO SENTIDO RESTRITO, DE MÉDIA DE PROGÊNIE (
2
m
h
ˆ
), ACURÁCIA DE SELEÇÃO ( aa
r
ˆ
), PARA
ESPÉCIES ARVÓREAS............................................................................................................................................. 107
Sumário
LISTA DE TABELAS......................................................................................................................................VIII
LISTA DE APÊNDICE........................................................................................................................................ X
1 - INTRODUÇÃO.............................................................................................................................................. 14
2 - REVISÃO DE LITERATURA ..................................................................................................................... 17
2.1 MYRACRODRUON URUNDEUVA ...................................................................................................................... 17
2.2 CONSERVAÇÃO GENÉTICA ........................................................................................................................... 19
2.2.1 Conservação genética in situ .............................................................................................................. 20
2.2.2 Conservação genética ex situ.............................................................................................................. 21
2.3 TESTE DE PROGÊNIES E PROCEDÊNCIAS ....................................................................................................... 22
2.4 VARIABILIDADE GENÉTICA EM POPULAÇÕES NATURAIS .............................................................................. 24
2.5 REGENERAÇÃO DE ÁREAS DEGRADADAS .................................................................................................... 28
2.6 SISTEMA SILVIPASTORIL.............................................................................................................................. 29
3 - MATERIAL E MÉTODOS........................................................................................................................... 34
3.1 CARACTERES DE CRESCIMENTO................................................................................................................... 35
3.1.1 Material .............................................................................................................................................. 35
3.1.2 Métodos............................................................................................................................................... 35
3.2 REGENERAÇÃO NATURAL NA ÁREA POR ESPÉCIES ARBÓREAS...................................................................... 40
3.2.1 Material .............................................................................................................................................. 40
3.2.2 Métodos............................................................................................................................................... 40
3.3 SISTEMA SILVIPASTORIL.............................................................................................................................. 41
3.3.1 Material .............................................................................................................................................. 41
3.3.2 Métodos............................................................................................................................................... 41
4 - RESULTADOS E DISCUSSÃO ................................................................................................................... 46
4.1 ANÁLISES DOS CARACTERES DE CRESCIMENTO............................................................................................ 46
4.1.1 Variação genética e fenotípica ........................................................................................................... 46
4.1.2 Estimativa dos valores genéticos aditivos e genotipícos..................................................................... 52
4.1.3 Seleção de Matrizes ............................................................................................................................ 55
4.1.4 Ganho na seleção, tamanho efetivo e diversidade genética ............................................................... 58
4.2 REGENERAÇÃO NATURAL ............................................................................................................................ 62
4.3 SISTEMA SILVIPASTORIL.............................................................................................................................. 66
4.3.1 Altura do dossel forrageiro................................................................................................................. 66
4.3.2 Massa de forragem ............................................................................................................................. 67
4.3.3 Acúmulo de forragem e taxa de acúmulo............................................................................................ 70
4.3.4 Densidade de forragem....................................................................................................................... 71
4.3.5 Valor nutritivo e digestibilidade “in vitro” ........................................................................................ 71
5 - CONCLUSÕES .............................................................................................................................................. 75
6 - REFERÊNCIAS BIBLIOGRÁFICAS ......................................................................................................... 76
APÊNDICE .......................................................................................................................................................... 96
14
1 - INTRODUÇÃO
Devido a expansão da agropecuária no Cerrado brasileiro, ao longo dos anos,
a demanda por espaço físico para a implantação dessa atividade cresceu
consideravelmente. Aliado a este fato, tem ocorrido uma crescente demanda por
matéria prima florestal, seja ela destinada à energia, construções rurais ou para
outras aplicações. Esses fatores têm provocado uma exploração indiscriminada
resultando no desaparecimento desenfreado de maciços florestais, e na extinção de
espécies florestais de importante valor econômico e ecológico.
Dos 204 milhões de hectares originais do bioma Cerrado, estima-se que 57%
tenham sido completamente destruídos, com a metade do remanescente
descaracterizada e a biodiversidade comprometida (MCT, 2006). A taxa de
desmatamento nesse bioma chega a três milhões de hectares ao ano, tendo como
principal motivo a exploração da vegetação para produção de carvão vegetal e a
abertura de áreas para a agropecuária.
Do ponto de vista da integridade dos ecossistemas e da viabilidade das
populações remanescentes, principalmente das espécies endêmicas, a intervenção
humana tem sido, no mínimo, desastrosa. A exploração das florestas se inicia,
invariavelmente, com a extração das árvores de maior vigor e de melhor qualidade,
deixando-se apenas as de qualidade inferior para transmitir seus genes às próximas
gerações, num processo disgênico que leva à degradação dos remanescentes. Além
disso, as formações florestais vêm sendo reduzidas a fragmentos cada vez menores
e mais dispersos em meio às áreas antropizadas.
O constante desmatamento das florestas brasileiras tem ocasionado a
fragmentação da vegetação natural, levando à drástica redução no número e
tamanho das populações e possivelmente à perda de alelos que conferem
adaptação do indivíduo ao ambiente específico de colonização das espécies. Com a
finalidade de reverter este quadro e ter-se uma maior garantia da sobrevivência
dessas populações faz-se necessária a conservação ex situ de seus germoplasmas,
o que garante a manutenção de genes ou complexos de genes em condições
artificiais, fora do seu habitat natural (PAIVA e VALOIS, 2001).
Somando a isto a exploração irracional e indiscriminada de algumas espécies
raras, tem uma implicação muito significativa sob o ponto de vista genético de suas
15
populações, sendo que o risco de perdas irreversíveis de populações e
consequentemente diminuição da variablidade genética é muito grande em áreas
extensas (KAGEYAMA e GANDARA, 1993).
Dentre as espécies que vem sofrendo este tipo de ação antrópica está a
Myracrodruon urundeuva Fr. All., que a despeito de ampla ocorrência no Brasil, não
está livre da eliminação de populações inteiras. Na tentativa de minimizar esta
situação vêm sendo desenvolvidos estudos para que seja garantida a sobrevivência
da espécie. Estratégias conservacionistas pautam-se no conhecimento da estrutura
genética das populações existentes, o que é possível por meio da genética
quantitativa, que permite estimar parâmetros genéticos, para alguns caracteres
silviculturais. No entanto, esta é uma árdua tarefa, dada a complexidade dos
ecossistemas florestais e às dificuldades de obtenção de dados e elaboração de
bons indicadores para o monitoramento de mudanças causadas pela atividade
antrópica (GANDARA e KAGEYAMA, 1998).
A expansão agropecuária nos trópicos sempre esteve associada à derrubada
de florestas e vegetação nativa, com a eliminação da maioria das árvores existentes
para o estabelecimento de pastagens. Nos trópicos úmidos, são evidentes aos altos
ganhos iniciais de fertilidade do solo obtidos com a derrubada e queima das
florestas. Entretanto, um acelerado processo de perda da fertilidade é observado se
a vegetação original o for substituída por sistemas de uso da terra com
capacidade para proteção do solo e reposição de nutrientes, seja pela reciclagem
natural, ou introdução de fertilizantes (PACIULLO et al., 2007).
As pastagens brasileiras nos últimos 30 anos foram formadas em solos de
baixa fertilidade natural, o que contribuiu para o avanço dos processos de
degradação, após poucos anos de estabelecimento.
Para tornar-se mais competitiva, a pecuária brasileira vem preterindo o
modelo extrativista em favor daqueles que exigem investimentos em novas
tecnologias e processos de produção ambientalmente ajustados, uma solução viável
para enfrentar esses problemas é o estabelecimento de sistemas agroflorestais.
Os sistemas agroflorestais têm sido uma alternativa de uso da terra onde
várias espécies são cultivadas simultaneamente. Uma modalidade dos sistemas
agroflorestais é o sistema silvipastoril, onde árvores forrageiras e animais, podem
conviver em perfeita harmônia.
16
Em plantio experimental em sistema silvipastoril que tem por objetivo a
estimativa de parâmetros genéticos de populações naturais e áreas de conservação
genética ex situ” este tipo de sistema pode ser uma alternativa para tornar mais
eficiente o uso da terra.
Com base em todas estas informações este, trabalho teve como pretenção
obter informações sobre a variação genética em duas populações de M. urundeuva,
provenientes de áreas com perturbação antrópica (Aramina SP e Selviría MS))
em sistema de plantio heterogêneo, instalados na região de Selvíria-MS. Para tanto,
tiveram-se os seguintes objetivos:
- Avaliar o comportamento destas populações em plantio consorciado com Trema
micrantha;
- Estimar a variabilidade genética entre e dentro das populações de M. urundeuva;
- Fornecer subsídios para a conservação genética ex situdestas populações de M.
urundeuva;
- Obter informações sobre a regeneração natural de outras espécies arbóreas na
área de instalação do teste de progênies/procedências;
- Avaliar o desenvolvimento e a composição bromatológica da forrageira
desenvolvida no sub - bosque de M. urundeuva em sistema silvipastoril.
17
2 - REVISÃO DE LITERATURA
2.1 Myracrodruon urundeuva
A taxonomia da aroeira (Myracrodruon urundeuva Fr. All) de acordo com o
sistema de classificação de Cronquist, (1981) obedece a seguinte hierarquia:
Divisão: Magnoliophyta (Angiospermae), Classe: Magnoliopsida (Dicotiledonae),
Ordem: Sapindales, Família: Anacardiaceae, Espécie: Myracrodruon urundeuva Fr.
All.
Segundo Santin e Leitão Filho (1991), a M. urundeuva é uma espécie
arbórea, tropical, secundária tardia, o tronco geralmente é curto e tortuoso na
caatinga , mas na floresta pluvial, apresenta fuste com a12m de altura. A espécie
é considerada dióica, mas há relatos de monoicía e ocorrência de hermafroditismo
junto com dioicía. É uma árvore muito apícola, sendo seu fruto consumido por
periquitos e papagaios (SANTIN e LEITÃO FILHO, 1991; CARVALHO, 1994a; POTT
e POTT, 1994). O nome comum “aroeira” é corruptela de arara e da terminação eira,
significando árvore da arara”, por ser a planta em que, de preferência essa ave
pousa e vive (CARVALHO, 1994a). Essa família é representada por
aproximadamente 70-80 gêneros e cerca de 600 espécies. Sua distribuição é
pantropical, com ocorrência de gêneros em regiões temperadas (WILLIS, 1973;
CRONQUIST, 1981; BARROSO, 1984; SANTIN, 1989). No Brasil a M. urundeuva
compreende 12 espécies, podendo ser encontrada desde o norte ao sul do país,
em várias regiões fitoecológicas variando de 18 m, no Rio Grande do Norte a
1200 m de altitude, no Distrito Federal (SANTIN, 1989).
O centro de origem da M. urundeuva é descrito por vários autores (RIZZINI,
1971; NOGUEIRA, 1983 e SANTIN, 1989), como sendo o Brasil, ocorrendo desde o
Ceará até o Mato Grosso do Sul, mais freqüentemente no Maranhão, Piauí, Rio
Grande do Norte, Paraíba, Pernambuco, Sergipe, Bahia (caatinga), Mato Grosso do
Sul, Goiás, Minas Gerais, Rio de Janeiro, Espírito Santo e São Paulo, em ambientes
de cerrado ou em regiões próximas ao cerrado e no Paraná apresentando poucas
aparições (RIZZINI, 1971 e LORENZI, 1992). A M. urundeuva também aparece na
Bolívia, Paraguai e Argentina, nas formações do Chaco. Em formações florestais
18
associa-se com Piptadenia spp, Choriza speciosa, Tabebuia impetiginosa e
Hymenea stilbocarpa, sendo que, nas florestas secundárias, ela pode ocorrer em
povoamentos quase puros, com plantas de diferentes idades (FAO, 1986).
Esta planta foi descrita como heliófita, xerófita seletiva, característica de
terrenos secos e rochosos, e ocorre em agrupamentos densos, tanto em formação
aberta muito seca (caatinga) como em formação muito úmida e fechada (floresta
pluvial com 2000mm de precipitação anual). A M. urundeuva apresenta uma madeira
rosa claro ao ser cortada, mas ao ser exposta ao sol torna-se vermelho escura
(LORENZI, 1992). Apresenta um cerne com altas concentrações de tanino, o qual é
utilizado em curtumes, e embora sua madeira seja utilizada para lenha apresenta
dificuldades para queimar (NOGUEIRA, 1977).
As sementes de M. urundeuva estão contidas dentro de frutos drupáceos,
com exocarpo fortemente lignificado, tem envoltório membranáceo liso, são
exalbuminosa, os embriões são do tipo axial e o surgimento dos folíolos é epígio
carnoso, são fotoblásticas negativas, apresentam uma temperatura ideal de
germinação entre 15
o
C e 35
o
C (GUERREIRO CARMELLO, 1996 e SILVA et al.,
2002). A germinação inicia-se em dois dias, sendo epígea e fanerocotilar. As folhas
das plântulas apresentam forte cheiro agradável assim como na folha adulta
(FELICIANE, 1989). As sementes de M. urundeuva são consideradas ortodoxas,
podendo portanto ser desidratadas e conservadas hermeticamente em baixa
temperatura, inclusive em nitrogênio liquído. Assim, sementes de M. urundeuva
conservadas a temperatura de -20
o
C e 5% de umidade relativa pode ter uma
longevidade de aproximadamente 1165 anos (MEDEIROS, 1996). Em estudos da
composição química de sementes de M. urundeuva, Abdala et al. (2002) observaram
que a composição química das mesma foi 36,3% de proteínas, 26,5% de lipídeos,
3,5% de acúcares solúveis e apenas 0,1% de amido. Com o estudo dos caracteres
bioquímicos foi possível observar a grande variabilidade genética, indicando que a
coleta de sementes em várias árvores constitui uma amostragem mais
representativa da população.
A M. urundeuva é uma das principais plantas da medicina tradicional
nordestina, conhecida pelo seu uso secular na forma de semicúpio (banho-de-
assento) após o parto, em que se emprega o cozimento da entrecasca. Esta mesma
preparação é indicada também para o tratamento caseiro de afecções cutâneas,
problemas respiratórios, urinários, tem ação ainda antiinflamatório e cicatrizante,
19
sendo indicado no tratamento de ferimento, gastrites, úlceras gástricas, cervicites,
vaginites e hemorróidas (SOUSA e MATOS, 1991; MATOS, 1998; MORS, et al.,
2000).
A partir de estudos químicos foram encontrados diversos compostos fenólicos
dentre eles taninos dos tipos catéquico e pirogálico, chalconas diméricas e outros
flavanóides que se mostram biológicamente ativos. O óleo essencial apresenta
alfapinino, gama-terpineno e o beta cariofileno (BANDEIRA, 2002).
2.2 Conservação genética
Conservação é definida como o manejo pelo homem, da biosfera para que
possa produzir o maior benefício sustentável às atuais gerações, mantendo seu
potencial de satisfazer às necessidades e aspirações das gerações futuras. Neste
sentido, a conservação é positiva e compreende a preservação, manutenção,
utilização sustentável, restauração e melhoria do ambiente natural. A estratégia de
conservação depende da natureza do material, do objetivo e do alcance da
conservação. A natureza do material envolve a duração do ciclo total, modo de
reprodução, tamanho dos indivíduos e se o material é domesticado ou não. Além
disso deve-se considerar também o tempo (curto, médio e longo prazos) e o local
onde será realizada a conservação (NASS et al., 2001).
Antes da concretização da conservação genética de uma espécie propõe-se a
definição de três elementos básicos. O primeiro é definir o objetivo ou alvo principal,
se é uma espécie, uma associação, uma comunidade ou um ecossistema. O
segundo é estabelecer a escala de tempo, que reflete a dimensão temporal durante
a qual se espera que um programa de melhoramento permaneça operante. Esta
escala pode variar desde uma até infinitas gerações. O terceiro elemento é o
manejo. Todos os tipos de manejo, inclusive a ausência, podem afetar drasticamente
as relações dentro e entre as espécies até mesmo sua sobrevivência (LLEIRAS,
1992).
A conservação da biodiversidade depende da disponibilidade de
ecossistemas funcionais que, por sua vez, requerem diversidade de espécies, cada
uma com funções distintas e indispensáveis no ecossistema. Cada espécie deve
estar representada por populações viáveis e isso depende da existência de ampla
20
variabilidade genética que possibilite ajustes às mudanças ambientais ao longo das
gerações
Basicamente, existem duas estratégias de conservação denominadas in situ
e ex situ, as quais não são excludentes, devendo ser consideradas como
complementares.
A grande diferença entre as duas formas de conservação, in situ e ex situ, é
principalmente pelo fato de a primeira não ser estática, ou permitir que toda a
comunidade que vem sendo conservada tenha a possibilidade de continuidade da
evolução, incluindo também a coevolução entre as plantas os animais e os
microrganismos (KAGEYAMA et al., 2001).
2.2.1 Conservação genética in situ
Na conservação in situ as espécies são deixadas em seus habitats naturais e
tem como objetivo conservar o máximo possível do número de alelos e/ou a
diversidade de genótipos para que a evolução ocorra de forma contínua. Isso é
importante na geração de novos genes e genótipos, particularmente em resposta às
mudanças ambientais e para conferir resistência a novos tipos de patógenos
desenvolvidos; bem como para que a seleção ocorra de maneira contínua. O
benefício dessa prática está na conservação de muito mais biodiversidade, num
ecossistema inteiro, do que apenas por amostras de germoplasmas de uma espécie.
Sua desvantagem está no fato de o germoplasma não poder ser utilizado
eficientemente, por não se encontrar disponível para que seja explorado
rapidamente (HAYWARD e HAMILTON, 1997)
Um dos interesses da conservação in situ é manter a diversidade genética
dentro de populações selvagens em florestas naturais ou semi-naturais possuindo a
grande vantagem de permitir processos genéticos tal como o fluxo gênico dentro das
espécies de interesse (YOUNG et al., 2000).
Nos fragmentos florestais vêm ocorrendo com freqüência a perda de
diversidade genética de população em nível de espécies, mudança da estrutura
genética e aumento da endogamia. Estes efeitos sugestionam várias causas para
preocupação em termos da realização de uma conservação in situ, uma vez que a
variação genética limita a habilidade de espécies para responder a mudanças em
relação às condições ambientais por seleção, enquanto mudanças em estrutura de
21
interpopulação podem alterar o balanço à qual respostas seletivas acontecem
(YOUNG e BOYLE, 2000).
O grande desafio da conservação in situ de espécies arbóreas tropicais é,
sem dúvida, a altíssima diversidade de espécies associada à pouca informação
genética e ecológica dessas espécies. Não pode deixar de ser mencionado o
Cerrado como um ecossistema de grande diversidade de espécies arbóreas, que
tem sido relegado a um segundo plano nos programas de conservação nacionais,
sendo que a aptidão agrícola das áreas de Cerrado tem feito com que boa parte de
sua área tenha sido desmatada. Estudos mais recentes vêm mostrando que a
diversidade de plantas do Cerrado é comparável a outras áreas de florestas
tropicais.
Como se pode compreender, a conservação genética in situ adequa-se
perfeitamente à situação da alta diversidade das florestas, que seria impossível
armazenar, em condições ex situ, as centenas de milhares de espécies de um
desses ecossistemas, juntamente com a fauna associada e que interage com as
mesmas (KAGEYAMA et al., 2001).
2.2.2 Conservação genética ex situ
A conservação ex situ refere-se à manutenção de genes ou complexos de
genes em condições artificiais, fora do seu habitat natural. Este tipo de conservação
pode ser feito por meio de coleções permanentes de pólen, sementes, culturas de
tecidos, ou coleções de plantas mantidas em campo, entre outros (PAIVA e VALOIS,
2001).
O objetivo da conservação ex situ é manter amostras representativas das
populações, ou seja, com muitos alelos e combinações gênicas suficientes para que,
após caracterizadas, avaliadas e multiplicadas, possam ser utilizadas no
melhoramento genético ou em pesquisas correlatas (LLEIRAS, 1992; HAYARD e
HAMILTON, 1997). Os modos com que esse tipo de conservação pode ser
concretizado são os seguintes: coleção de base, coleção de trabalho, coleção a
campo, coleção in vitro, coleção em criopreservação, coleção nuclear e banco
genômico (VALOIS, 2004).
A manutenção de populações ex situ tem-se revelado uma importante forma
de intervenção na conservação da diversidade biológica, dado o crescente número
22
de espécies ameaçadas de extinção. Os programas têm contribuído para a
manutenção da variabilidade genética das populações, garantindo assim a
permanência de espécies que de outra forma estariam indisponíveis para gerações
futuras. As populações também podem servir como estoque de indivíduos para
possíveis reintroduções ou aumento do tamanho de populações selvagens.
A necessidade da conservação ex situ geralmente é motivada pela ação
antrópica. O fator mais ameaçador à conservação da diversidade das espécies
cultivadas é a introdução de cultivares novas, geralmente de alta produtividade, em
substituição às variedades tradicionais, as quais são importantes fontes de genes
pelo elevado poder adaptativo que apresentam para os diversos fatores de
estresses ambientais. Outro fator importante é a destruição do habitat natural, como
o que tem ocorrido com as florestas tropicais, cerrado, mangues e outros biomas
hoje em processo de degradação. Este processo de perda da variabilidade é
conhecido como erosão genética (VALOIS et al., 2001).
2.3 Teste de progênies e procedências
Para a avalição dos recursos genéticos de espécies perenes têm-se utilizado
testes envolvendo progênies e procedências. Estes podem ser empregados, tanto
com o objetivo de conservação genética como de p melhoramento e
melhoramento. No primeiro caso, o objetivo é determinar os padrões de variação
genética nas populações naturais, para estratégias de amostragem de forma a
representar geneticamente o máximo possível esssa variação. No segundo e
terceiro casos, o que se visa é a melhor população para a seleção dos melhores
indivíduos para um determinado fim (VITTI et al., 1992).
O teste de procedência é um experimento em que as sementes são coletadas
de um grande número de povoamentos, originados de diferentes locais e as
sementes são plantadas em condições similares (WRIGHT, 1976). Os testes de
procedências visam estudar os componentes genéticos e ambientais da
variabilidade fenotípica entre povoamentos ou árvores de diferentes origens
geográficas. Tais estudos objetivam detectar a variabilidade genética dentro de
populações; as relações entre esta variabilidade e os fatores do ambiente e as
reações das diferentes populações quando transferidas para um outro ambiente. A
partir desses estudos, podem-se determinar, tanto as variações adaptativas
23
herdáveis relacionadas com a variabilidade ecológica da área de ocorrência natural
da espécie como as características não adaptativas herdáveis que podem resultar
do isolamento ou outros fatores (FERREIRA e ARAÚJO, 1981).
O material genético a ser melhorado deve ser estudado quanto à sua
estabilidade e adaptabilidade, pois estes conceitos estão associados à pequena
variação no comportamento dos ambientes e à capacidade de resposta dos
materiais genéticos à melhoria do ambiente, respectivamente (RESENDE, 1999). Os
testes de procedências otimizam tais estudos de interação genótipo x ambiente,
considerando que serão testadas progênies de diferentes procedências, e a
variabilidade genética poderá ser quantificada.
Segundo Allard (1971), os testes de progênies consistem na avaliação do
genótipo dos genitores com base no fenótipo de seus descendentes. Esse
procedimento envolve uma avaliação mais precisa das plantas a serem
selecionadas, devido a estruturação em famílias, a possibilidade de melhor controle
ambiental, a presença de repetições e à maior generalização dos resultados, pela
possibilidade de se realizar o teste em vários locais (PATERNIANI e MIRANDA
FILHO, 1987). No melhoramento de espécies perenes o teste mais utilizado é o de
famílias de polinização livre, dado seu baixo custo e informações fornecidas, assim
como a possibilidade de serem trasformados em pomares de sementes
(KITZMILLER, 1983). Esses testes, no melhoramento genético são considerados
básicos, uma vez que comparam várias procedências e/ou progênies dentro das
populações, para avaliar as possíveis diferenças de comportamento sivicultural que
estejam ligados as respectivas diferenças genéticas (KANASHIRO, 1992). Além
disso, esses ensaios permitem inferir sobre a estrutura genética em diferentes níveis
e orientar decisões práticas no programa de melhoramento e conservação genética
(NAMKOONG, 1986). Os testes de progênies segundo Allard (1971), Wright (1976) e
Kageyama (1980) têm dois objetivos principais: predizer o valor genético ou verificar
a capacidade de combinação dos pais com a sobreposição de gerações.
A Tabela 9A do Apêndice apresenta os resultados de estudos em alguns
testes de progênies, pela metodologia REML/BLUP, a mesma utilizada para a
realização deste trabalho.
24
2.4 Variabilidade genética em populações naturais
A exploração irracional e indiscriminada de algumas espécies raras, tem uma
implicação muito significativa sob o ponto de vista genético de suas populações,
sendo que o risco de perdas irreversíveis de populações e consequentemente
diminuição da variablidade genética é muito grande em áreas extensas (KAGEYAMA
e GANDARA, 1993).
A variabilidade genética existente em uma população é a ferramenta básica
do melhorista, e o conhecimento de sua distribuição entre e dentro de famílias de
meios-irmãos e quais os caracteres do meio ambiente ou da espécie que influenciam
essa distribuição, é de fundamental importância para se definir as estratégias de
melhoramento a serem aplicadas à população de modo a preservar o máximo da
variabilidade das populações naturais, sendo necessária à estimativa de parâmetros
genéticos e não genéticos (DIAS e KAGEYAMA, 1991, SEBBENN et al., 1999).
A estrutura da distribuição da variabilidade pode ser manifestada entre
distintas populações geográficas, dentro de um grupo local de plantas ou mesmo em
grupos de progênies (LOVELESS e HAMARICK, 1984). Estes resultados têm grande
importância, tanto para a coleta de sementes na amostragem de populações como
na condução de programas de conservação genética in situ e ex situ (FONSECA,
2000).
A variabilidade genética é importante na medida em que permite às
populações se adaptarem a um ambiente em transformação. Indivíduos com certos
alelos ou combinações de alelos podem ter exatamente as características
necessárias para sobreviver e reproduzir em situações novas (PRIMACK e
RODRIGUES, 2001). Manter complexos gênicos na sua integridade tem grande
importância em programas de melhoramento em que o objetivo é desenvolver
genótipos com capacidade de adaptação à condições extremas ou atípicas para a
espécie, também para a preservação de alelos para uso imediato ou futuro.
A partir da década de 80, para a conservação de essências florestais nativas,
o Instituto Florestal do Estado de São Paulo, iniciou seu programa de conservação
dos Recursos Genéticos de Essências Nativas utilizando a genética quantitativa e
mais tarde utilizando isoenzimas e polimorfismos de DNA (SIQUEIRA et al.,1993,
FREITAS, 1999; KAGEYAMA et al., 2001).
25
Para uma maior garantia da sobrevivência de populações que estão sendo
fragmentadas, é necessária a conservação genética ex situ, ou seja, conservação do
germoplasma fora do seu ambiente natural, por estar sofrendo pressão que podem
levá-lo à extinção ou por estar mais facilmente disponível (VALOIS et al., 2001). A
conservação ex situ tem como finalidade manter amostras representativas de
populações para que, após serem caracterizadas, avaliadas e multiplicadas, estejam
disponíveis para o melhoramento genético e/ou pesquisas correlatas (LLEIRAS,
1992, ETTORI et al. 1999).
Estudos da variabilidade genética em populações naturais de plantas em
regiões tropicais demonstram que estas preservam grandes quantidades de
variabilidade dentro das populações, comparando-se com as existentes em outros
ambientes, e a distribuição da variabilidade genética natural é influenciada por
fatores como modo de reprodução das espécies, sistema de cruzamento, tamanho
efetivo da população, distribuição geográfica e fluxo gênico (PAIVA, 1998).
A maior parte das espécies florestais apresenta considerável variação
genética entre e dentro de populações, devido ao fluxo de genes por meio da
dispersão de pólen e sementes, que são de grande importância para a formação da
estrutura de uma espécie (KAGEYAMA e PATIÑO-VALERA, 1985). Segundo
Moraes et al. (1992), em M. urundeuva, a maior parte da variação genética encontra-
se dentro de populações (97,26%) e apenas 2,74% entre populações.
O tempo que a variabilidade genética pode ser conservada ex situ está
relacionado com o tamanho efetivo da amostra retido no banco que por sua vez,
depende das características genéticas, demográficas e reprodutivas da população
alvo de conservação, do tamanho amostral retido e dos níveis de endogamia e
coancestria existentes dentro das progênies. Pequenas amostras sofrem perdas de
variabilidade por deriva genética, em poucas gerações, reduzindo o tamanho efetivo
(FRANKEL e SOULÉ, 1981).
Segundo Sebbenn (2003) o tamanho amostral de 35 progênies e 20 plantas
por progênie é suficiente para atender objetivos de conservação ex situ, no curto
prazo, de espécies de sistema misto de reprodução, mas com altas taxas de
cruzamentos.
O conhecimento do sistema de reprodução das espécies é de fundamental
importância quando se pensa em coletar sementes de polinização, dado que este é
26
responsável pela transferência de informações genéticas de uma geração para outra
(SEBBENN, 2002).
Pequenos tamanhos amostrais podem sofrer a perda de alelos raros por
deriva genética, sendo esta perda tanto maior quanto menor for o tamanho amostral
(SEBBENN, 2006).
A seleção com base em testes de progênie é sempre mais eficiente do que a
realizada com base apenas no fenótipo das plantas individuais, pela avaliação não
dos indivíduos a serem selecionados como também de seus descendentes
(PAIVA, et al., 2002).
Por outro lado, a seleção combinada baseia-se em um índice que considera,
simultaneamente, o comportamento do indivíduo e sua família (FALCONER, 1981).
Dessa forma, mediante os pesos de ponderação do indivíduo e da família, é possível
selecionar indivíduos com características favoráveis dentro de famílias de
desempenho intermediário, ou ainda, indivíduos de desempenho intermediário
dentro de famílias superiores. No caso de plantas perenes, uma seleção combinada
aperfeiçoada deve incluir no índice também o efeito da parcela. Este todo de
seleção é denominado Índice Multiefeitos (RESENDE e HIGA, 1994), e equivale a
melhor predição linear não viciada, para o caso de dados balanceados (RESENDE e
FERNANDES, 1999).
Autofecundações e cruzamentos entre parentes geram endogamia nas
progênies e combinados com cruzamentos correlacionados aumentam a coancestria
acima do esperado em progênies de polinização aberta. Conseqüentemente, os
efeitos desses fatores, tanto isolados como combinados, reduzem o tamanho efetivo
de variância e levam à necessidade da coleta de maiores tamanhos amostrais para
a conservação ex situ do que seriam requeridos, caso os cruzamentos fossem
repetidos aleatoriamente (SEBBENN, 2003).
O tamanho efetivo (Ne) é uma medida de representatividade desenvolvida
para aplicação em populações naturais, de grande importância no melhoramento,
evitando estreitamento da base genética que é o principal responsável pela perda da
variabilidade genética. A primeira definição de Ne foi relatada por Wright (1931),
sendo definida como o tamanho de uma população ideal em que a composição
genética é influenciada por processos aleatórios, como deriva genética, da mesma
maneira que uma população real de tamanho físico (N).
27
Estudos de conservação genética, vêm demonstrando que a redução das
populações naturais tem levado a perda de genes adaptados a ambientes
específicos de ocorrência das espécies arbóreas. A redução contínua no tamanho
das populações as submete a perdas de variabilidade genética por deriva genética
(SEBBENN e ETTORI, 2001). A deriva pode causar a depressão por endogamia e
consequentemente, reduzir a capacidade adaptativa, fertilidade, vigor, porte e
produtividade entre outras coisas (FREITAS et al., 2005).
O declínio do tamanho populacional e da variabilidade genética entre e dentro
dessas populações é caracterizado pela expansão da população humana, devido á
utilização de forma extrativista e irracional dos recursos naturais na região de
ocorrência de M. urundeuva (FREITAS et al., 2006).
A redução no tamanho das populações pode ser revertida por práticas de
manejo de reposição, quando a população for detectada em vias de extinção ou
apresentar níveis altos de endogamia, parentesco e baixo tamanho efetivo
populacional (SEBBENN e ETTORI, 2001).
A base genética restrita, aliada à perda de alelos que possam futuramente ter
valor adaptativo, pode reduzir as chances de auto-regeneração, pelo aumento da
endogamia e coancestria da população fundada, tendo, como conseqüência, a
depressão endogâmica. Em espécies arbóreas, estes efeitos podem ser
incrementados pela sobreposição de gerações. Por isso, para garantir um mínimo de
variabilidade genética nos plantios, é necessário coletar sementes em um número
adequados de árvores matrizes (SEBBENN, 2002).
Espécies de sistemas mistos de reprodução requerem maiores tamanhos
amostrais para reter tamanhos efetivos alvos ou de referência, em programas de
conservação, melhoramento florestal e nas atividades de coleta de sementes para
reflorestamento ambiental do que se os cruzamentos forem perfeitamente aleatórios
(SEBBENN, 2002; 2003).
Um tamanho efetivo inadequado pode levar a dois eventos: mudança
aleatória nas freqüências alélicas (deriva genética) e aumento da endogamia na
próxima geração (RESENDE et al., 1997). O tamanho efetivo de uma população,
diferentemente do tamanho físico, determina a magnitude do efeito da deriva sobre a
dispersão das freqüências alélicas, taxa de perda de heterozigosidade e de variação
genética (LAWRENCE e MARSHALL, 1997).
28
O tamanho efetivo referente a colheita em 50 indivíduos tem sido sugerido
como suficiente para manter o coeficiente de endogamia à uma taxa de 1% por
geração, até 10 gerações, em locos com dois alelos de espécies diplóides, com
gerações discretas. Esse tamanho conserva muito dos genes de uma população e
pode ser suficiente para manter por um longo tempo grande proporção da variação
genética (SEBBENN, 2003).
2.5 Regeneração de Áreas Degradadas
As florestas tropicais formam um conjunto de áreas em diferentes estádios de
sucessão, uma complexa dinâmica de renovação contínua da floresta, restaurando
os pontos de distúrbio (KAGEYAMA, 1986). Essas áreas podem ter diferentes
composições de espécies, pois representam comunidades em diferentes graus de
maturidade sucessional (LEITÃO FILHO et al., 1993).
Entender como as espécies vegetais se estabelecem, colonizam e se
sucedem no tempo e no espaço tem sido um esforço constante daqueles que se
dedicam ao estudo dos mecanismos da ecologia vegetal. O conhecimento dos
mecanismos de sucessão ecológica pode trazer benefícios a humanidade,
principalmente no que se refere ao manejo sustentado dos recursos naturais e à
reabilitação de áreas colocadas à margem do sistema produtivo (BALERONI, 2003).
A sucessão secundária acontece com a dinâmica florestal, em que diferentes
grupos sucessinais irão se estabelecendo e se substituindo até que as clareiras se
reconstituam. A substituição de espécies e grupos ecológicos, ou seja, a sucessão
secundária, após um distúrbio natural ou provocado, é um processo lento. A
sucessão florestal demanda tempo e simplesmente proteger uma área degradada,
não garante a sua recuperação. Além do tempo é necessário que ocorram
condições favoráveis, como a chegada de sementes (dispersão) ou a presença de
sementes no solo (banco de sementes), em que as espécies que se instalarem no
local pertençam a categorias sucessionais distintas, de forma a se substituirem no
tempo (BERTONI e DICKFELDT, 2007).
O estudo da regeneração de espécies arbóreas e arbustivas nativas que
ocorrem em áreas degradadas, incluindo a estimativa de parâmetros populacionais e
outros aspectos ecológicos, é um passo importante para obtenção do conhecimento
29
do comportamento das diferentes espécies que possam compor determinada
vegetação (ANDRADE et al., 2002).
A fragmentação florestal ocorrida nos últimos anos, devido ao acelerado
processo de desmatamento, tem ocasionado a perda da diversidade biológica e
sustentabilidade no ciclo natural das florestas. A partir da caracterização de
fragmentos remanescentes, concluiu-se que as áreas de proteção natural sofreram
diversas alterações devido a ações antrópicas e naturais e que alguns destes
fragmentos necessitam de interferência para impedir o processo de perda da
biodiversidade diminuindo a instabilidade das populações, comunidades e
ecossistemas. Assim, a caracterização destes fragmentos deve ser a etapa inicial no
diagnóstico ambiental, fornecendo subsídios para a definição de um manejo
adequado (BENEDETTI e ZANI-FILHO, 1993).
Nos pequenos fragmentos florestais, as populações de plantas,
principalmente de árvores, são constituídas por poucos indivíduos da mesma
espécie, com reduzidas taxas de recrutamento, percentual considerável de
endogamia e alta probabilidade de extinção de espécies no local. Estes
pressupostos diminuem a variabilidade genética das populações, diminuindo as
possibilidades de uso dos recursos genéticos (COSTA e SCARIOT, 2003).
2.6 Sistema Silvipastoril
Sistema agroflorestal é um nome coletivo para sistemas e tecnologias de uso
da terra onde lenhosas e perenes são usadas deliberadamente na mesma unidade
de manejo da terra com cultivares agrícolas e/ou animais em alguma forma de
arranjo espacial e seqüência temporal (NAIR, 1993).
Os sistemas agroflorestais exercem um importante papel perante as
necessidades dos países tropicais em desenvolvimento ao criar uma interface entre
agricultura e floresta. Representam um grande potencial para o desenvolvimento
com base nas potencialidades dos sistemas agrícolas e/ou florestais e exercem
maior estabilidade ecológica ao conservar e melhor aproveitar os recursos pelo
gradiente arquitetônico e fisiológico dos componentes do sistema (GÖTSCH, 1995).
As agroflorestas são povoamentos permanentes, similares as florestas nativas, com
composição bastante diversificada e estratificada. Assemelham-se às florestas de
30
uso múltiplo, diferenciando-se destas pela presença de espécies agrícolas em algum
momento (DUBOIS, 1996).
Os sistemas silvipastoris, modalidade dos sistemas agroflorestais (SAF’s),
referem-se às técnicas de produção nas quais se integram animais, plantas
forrageiras e árvores na mesma área. Tais sistemas representam uma forma de uso
da terra, onde as atividades silviculturais e pecuárias são combinadas para gerar
produção de forma complementar pela interação de seus componentes (GARCIA e
COUTO, 1997).
Um requisito fundamental para o sucesso de sistemas silvipastoris
sustentáveis é a escolha certa das espécies componentes do sistema, inclusive a
raça dos animais. No caso das espécies forrageiras, não basta que estas sejam
tolerantes ao sombreamento, é necessário selecionar espécies com boa capacidade
produtiva, adaptadas ao manejo e ambientadas às condições edafoclimáticas da
região onde serão implantadas. Isto é particularmente importante quando se trata de
ecossistemas de Cerrado, com suas características peculiares de solos pobres e
ácidos e com uma estação seca prolongada e bem definida (ANDRADE et al., 2003).
A principal vantagem destes sistemas, em comparação com os
convencionais, é o aproveitamento mais eficiente dos recursos naturais,
principalmente pela otimização do uso da energia solar por meio da
multiestratificação diferenciada de espécies, reciclagem de nutrientes, manutenção
da umidade do solo, proteção do solo contra erosão, a lixiviação e o conforto térmico
para os animais, resultando em sistemas potencialmente mais produtivos e mais
sustentáveis (VEIGA e SERRÃO, 1990; LEME et al., 2005).
Em relação as vantagens que o sombreamento promove para os animais está
a redução da necessidae de energia para a manutenção animal, já que o excesso de
frio ou calor aumentam a necessidade de energia para a manutenção da
homeotermia, desviando energia que poderia ser utilizada para fins produtivos. O
sombreamento também exerce influência sobre a fertilidade que o excesso de
calor reduz a fertilidade afetando a ovulação na fêmea e a viabilidade do
espermatozóide no macho (SILVA, 2006).
O enriquecimento do solo de pastagens, em áreas sob a influência das copas
de árvores, tem sido observado em várias regiões e ocorre em razão do
aproveitamento de nutrientes pelas árvores, de camadas do solo que estão fora do
alcance das raízes das forrageiras, e à incorporação gradativa de biomassa das
31
árvores (folhas, flores e frutos) a pastagem. A velocidade do processo de
decomposição da serrapilheira torna-se mais eficiente, quando presença de
leguminosas arbóreas, cuja baixa relação carbono/nitrogênio favorece a atividade de
microrganismos e acelera o processo de decomposição e mineralização dos
principais nutrientes do ecossistema (PACIULLO et al., 2007).
Os sistemas silvipastoris podem ser classificados em eventuais e verdadeiros,
também chamados de permanentes. Nos eventuais a associação de árvores e
pastagem, com animais em pastejo, se estabelece somente em um determinado
momento. Nesses sistemas, o estrato herbáceo, formado por leguminosas e
gramíneas, espontâneas ou estabelecidas com o objetivo de cobrir o solo, são
pastejadas pelo gado até o momento em que o desenvolvimento das árvores e
fechamento das copas o constituem uma limitação para o crescimento das
forrageiras (PEREIRA e REZENDE, 1997).
O pastejo dos animais pode ainda ter a função de controlar invasoras” e
reduzir os riscos de incêndios, pela redução do acúmulo de material seco e estímulo
da rebrotação conforme vem sendo preconizado em cultivos de eucalipto (COUTO et
al., 1994).
Nos sistemas silvipastoris verdadeiros, as árvores e pastagens são
planejadas desde o início para serem integrantes permanentes do sistema. Para isso
o componente arbóreo é plantado em espaçamento adequado e a forrageira é
selecionada tendo em vista seus atributos morfo-fisiológicos que lhe confere
tolerância ao sombreamento e às pressões de pastejo, de modo a reduzir a
possibilidade de supressão de um em benefício do outro (PEREIRA e REZENDE,
1997).
Uma característica importante dos sistemas agroflorestais e silvipastoris é a
combinação de árvores, cultivos anuais e pastagens, onde o componente arbóreo,
geralmente com raízes mais profundas, pode beneficiar o herbáceo mediante a
ciclagem de nutrientes das camadas mais profundas para a superfície do solo, a
partir de folhas, galhos e outras partes da planta que ao caírem no terreno
aumentam a matéria orgânica e melhoram conseqüentemente as suas propriedades
químicas e físicas (KIRBY, 1976 e CONNOR, 1983).
Nos sistemas silvipastoris, o estrato arbóreo é o mais favorecido na
competição por luz, ficando a persistência do herbáceo (forrageiras) dependendo da
sua adaptação fisiológica a baixas intensidades luminosas, controladas pela
32
densidade de plantio e pela natureza do dossel foliar do componente arbóreo
(PEREIRA e REZENDE, 1997).
A intensidade luminosa interfere na qualidade nutricional das forrageiras
(WILSON e WONG, 1982 e WILSON et al., 1990). O sombreamento tem aumentado
os teores de nitrogênio de gramíneas forrageiras tropicais e conseqüentemente de
proteína bruta (WILSON et al., 1990 e CARVALHO et al., 1994). A literatura relata,
também, casos de aumento de teores de K, Ca e Mg na matéria seca (MS) de
forrageiras sombreadas (CARVALHO, 1994b e CARVALHO et al., 1994). A
digestibilidade das forrageiras é pouco afetada pelo sombreamento, embora Wilson
e Wong (1982) tenham observado efeito depressivo em capim green panic (Panicum
maximum), ocasionado pelo aumento da lignina e redução no teor de carboidratos
solúveis. A percentagem de folhas verdes de uma maneira geral tem sido maior em
forrageiras sombreadas (CARVALHO et al., 1995), mas parece que a relação folha
caule é reduzida pelo sombreamento (CARVALHO et al., 1994), podendo esse fato
ser responsável pela menor digestibilidade.
O teor de matéria seca em Andropogon guayanus cv Planaltina, B. brizantha
cv Marandu, B. decumbens, foi maior sob luminosidade ambiente, decrescendo com
o sombreamento (CASTRO et al. ,1999). Carvalho et al. (1995) observaram,
também, que gramíneas cultivadas à sombra são mais suculentas, possuindo menor
teor de matéria seca.
Andrade et al. (2004) avaliaram o acúmulo de matéria seca (MS) em
diferentes gramíneas durante as estações chuvosa e seca, observaram também o
grau de tolerância ao sombreamento com base no decréscimo relativo das taxas de
acúmulo de MS de cada genótipo, no período chuvoso, de acordo com o nível de
sombreamento, conforme proposto por Wong (1991). Os capins Brachiaria brizantha
cv. Marandu e Panicum maximum cv. Massai apresentaram boa tolerância ao
sombreamento e alta capacidade produtiva. O cultivar Marandu foi o que apresentou
maior taxa de acúmulo de matéria seca chegando a 138% em nível de
sombreamento de 70%.
Para o adequado manejo da pastagem deve-se ter informação sobre o
acúmulo de forragem (produção) e massa de forragem. A massa de forragem é
normalmente estimada por meio de amostragens destrutivas com corte manual da
forragem contida na área de pequenos quadrados. Porém, o tempo e trabalho
necessários para a colheita dessas amostras pode causar uma redução no número
33
de amostras devido à restrições de o-de-obra e recursos. Buscando alternativas
para essa questão têm sido utilizados procedimentos de dupla amostragem que
consistem na relação matemática entre a massa de forragem da área cortada e uma
amostragem não destrutiva, mais fácil e rápida, como por exemplo a altura do
dossel ou do prato ascendente mensurados na mesma área antes do corte.
Realizada essa calibração entre os dois todos, o uso de avaliações não
destrutivas propicia um aumento no número de observações no pasto e tem sido
utilizado para estimar a massa de forragem em estudos de pastagens (GONZALES
et al.,1990).
Como vantagem do procedimento de dupla amostragem pode-se ilustrar
que, para o corte de 50 amostras de um piquete um trabalhador gasta de 3 a 4
horas, enquanto que em apenas 15 minutos pode realizar a 50 medições com o
prato ascendente, além da redução do transporte de material e uso de freezers e
estufas para o processamento de todo o material colhido, por isso o método não
destrutivo tem se mostrado o mais dinâmico (BRANSBY et al., 1977). Porém, os
erros de calibração podem variar de 10% (RAYBURN e RAYBURN, 1998) até 26%
(SANDERSON et al., 2001). Por essa razão diversos estudos de dupla-amostragem
têm mostrado a necessidade de calibrações freqüentes conforme a espécie
forrageira, região, manejo dentre outros em detrimento do uso de equações
universais para a estimativa de massa, porque essas seriam irreais (FRAME, 1993).
34
3 - MATERIAL E MÉTODOS
As populações de M. urundeuva utilizadas neste experimento são
provenientes de áreas antropizadas. As sementes proveniente da população de
Aramina-SP (20
o
03’S e 47
o
48’W; altitude média 605m) foram retiradas de árvores
remanescentes nas áreas em que o solo não foi propicio ao cultivo de cana-de-
açúcar, que Aramina é um município que tem como base da economia, esta
atividade. As sementes que constituem a população de Selvíria-MS ( 20
o
19’S e 51
o
26’W; altitude média 372m), foram colhidas de árvores isoladas em pastagens
abandonadas. Em 1991 a base da economia da região de Selvíria era a pecuária. A
distância entre as duas populações é de 454 km.
A Figura 1 mostra a localização das duas populações estudadas neste
trabalho.
Figura 1: Mapa de localização das regiões de Selviria e Aramina.
35
3.1 Caracteres de crescimento
3.1.1 Material
As sementes das famílias que constituem o teste de progênies/procedências
de M. urundeuva, consorciada com candiúva (Trema micrantha), foram obtidas de 25
árvores de polinização livre na região de Aramina-SP e outras 25 na região de
Selvíria-MS, em setembro de 1991. Na coleta das sementes procurou-se obter uma
amostra representativa das populações estudadas.
Os experimentos foram implantados na Fazenda de Ensino e Pesquisa da
FE/UNESP, situada á margem direita do rio Paraná, no município de Selvíria-MS. O
relevo é moderadamente plano e ondulado. O tipo climático segundo Köeppen é
AW, caracterizado como tropical úmido com estação chuvosa no verão e seca no
inverno, temperatura média anual de 24,5
o
C, precipitação média anual de
1.1350 mm e umidade relativa média anual de 64,8%, sendo nos meses mais
chuvosos entre 60 e 80% (HERNANDEZ et al., 1995). A vegetação original
encontrada na área em estudo era do tipo cerrado.
O solo classificado por Demattê (1980) e reclassificado segundo o Sistema
Brasileiro de Classificação de Solos (EMBRAPA, 1999), é um LATOSSOLO
VERMELHO DISTRÓFICO típico argiloso, A moderado, hipidistrófico, álico,
caulinítico, férrico, compactado, muito profundo, moderadamente ácido (LVd).
3.1.2 Métodos
3.1.2.1 Instalação dos testes de progênies e caracteres
estudados
Em fevereiro de 1992, foi instalado o teste de progênies/procedências, com
25 famílias da população de Aramina-SP e 25 da população de Selvíria-MS, sendo
que em cada procedência foram acrescentadas mais três famílias provenientes da
outra população. O experimento foi conduzido, na Fazenda de Ensino, Pesquisa e
Extensão da Faculdade de Engenharia de Ilha Solteira, da Universidade Estadual
Paulista (FEIS/UNESP), no município de Selvíria – MS (Croqui no Apêndice).
36
O delineamento experimental utilizado, em cada teste de progênies, foi o de
blocos casualizados, com 28 tratamentos e seis repetições. As parcelas do
experimento foram instaladas na forma linear, com oito plantas, no espaçamento
3,0 x 3,0m, sendo que todas as plantas de M. urundeuva foram colocadas no centro
de quatro plantas de T. micrantha, espécie tida como pioneira, conforme Kageyama
et al. (1990), o que, segundo os autores confere a M. urundeuva um sombreamento,
que proporciona melhor forma ao tronco.
Os caracteres silviculturais avaliados foram: a) forma do tronco (FOR),
utilizando-se uma escala de notas, (ver no Apêndice) variando de 1 a 5, tanto para
bifurcação (B) como para retidão (R), sendo que a nota final foi dada, utilizando-se
da expressão:
(
)
2RBFT += ; b) altura total (ALT), em metros; c) diâmetro a altura
do peito (DAP), em centímetros; d) diâmetro médio da copa (DMC), em metros
(
(
)
2
21
LLDMC
+
=
), em que
1
L : leitura do diâmetro da projeção da copa na linha
e
2
L : leitura do diâmetro da projeção da copa na entrelinha; e) sobrevivência (SOB),
em porcentagem.
3.1.2.2 Estimativa de parâmetros genéticos e estatísticos
As estimativas de componentes de variância e parâmetros genéticos, nas
análises de cada população foram obtidas pelo método REML/BLUP (máxima
verossimilhança restrita/melhor predição linear não viciada), empregando-se o
software genético-estatístico SELEGEN-REML/BLUP, desenvolvido por Resende
(2002b), considerando progênies de meios-irmãos, delineamento em blocos
casualizados, várias plantas por parcela, um local e uma única população,
seguindo o procedimento proposto por Resende (2002a): y = Xb + Za + Wc + e; em
que: y = vetores de dados; b = vetores dos efeitos de blocos (fixos); a = vetores dos
efeitos genéticos aditivos (aleatórios); c = vetores dos efeitos de parcela (aleatórios);
e = vetores dos efeitos de erros aleatórios. X, Z e W são as matrizes de incidência
para b, a e c, respectivamente.
No presente trabalho assumiu-se que as progênies são de meios irmãos. No
entanto, Sebbenn (2006), fazendo uma ampla abordagem em relação ao sistema de
reprodução das espácies arbóreas tropicais, considera que não é recomendável
assumir que progênies de polinização livre são meios irmãos, mas que dependem da
37
estimativa do coeficiente de coancestria, que no caso de M. urundeuva foi estimado
por Moraes et al. (2004) como sendo igual a 0,190.
A análise conjunta, envolvendo as duas populações, foi realizada com base
no prodecimento PROC GLM do SAS. O efeito de população foi considerado fixo e o
esquema da análise de variância, com base em Vencovsky e Barriga (1992) é
apresentado na Tabela 1. O modelo matemático adotado foi o seguinte:
Y
ijkl
= m + r
j(i)
+ s
i
+ p
k(i)
+ e
jk(i)
+ d
l(ijk)
em que: Y
ijkl
é a observação na árvore l, da população i, na progênie k, da repetição
j; m é a média geral; r
j(i)
é o efeito da repetição j, dentro da população i, em que:
j = 1,2,..., r; s
i
é o efeito da população i, com k = 1,2,..., p
i
; e
jk(i)
é o efeito do erro
referente à parcela jk, na população i; d
l(ijk)
é o desvio referente à arvore l, da parcela
jk, na população i.
Tabela 1: Esquema da análise de variância conjunta, utilizado para cada um dos
caracteres estudados, nas duas populações de M. urundeuva, apresentando as
seguintes fontes de variação (FV): repetições/populações (R/S), populações (S),
progênies/populações (P/S) e o erro (E/P) e o erro dentro (D).
FV GL QM E(QM) F
(1)
R/S (r-1)s Q
1
2
/
22
sred
npn
σσσ
++
Q
1
/Q
4
S (s-1) Q
2
nprVsnpnrn
srsped
++++
2
/
2
/
22
σσσσ
(Q
2
+Q
4
)/(Q
1
+Q
3
)
P/S (p-1).s Q
3
2
/
22
sped
nrn
σσσ
++
Q
3
/ Q
4
E/P (p-1) (r-1)s Q
4
22
ed
n
σσ
+
-
D (n-1)prs Q
5
2
d
σ
-
(1) os números de graus de liberdade, utilizados para obter as estimativas de F para o efeito de
populações, foram obtidos conforme Satterthwaite, citado por Campos (1984).
2
d
σ
= variância
dentro de parcelas;
2
e
σ
= variância entre parcelas;
2
/ sp
σ
= variância entre progênies dentro de
populações;
2
/ sr
σ
= variância entre repetições dentro de populações; Vs = medida da diversidade
interpopulacional.
Neste trabalho o índice multi-efeitos foi estimado para todos os indivíduos do
teste de progênies, sendo selecionado com base neste índice o mesmo número de
38
indivíduos que seriam selecionados no ganho na seleção entre e dentro de
progênies, que no presente caso corresponde a 36 indivíduos.
Procurando fornecer uma idéia sobre o tamanho efetivo populacional (N
e
), do
número efetivo de famílias selecionadas (N
ef
) e da diversidade genética (D), foram
feitas as seguintes estimativas, com base em RESENDE (2002), para as duas
condições:
a) Seleção entre e dentro de famílias:
)3/()..4(
+
=
fff
kkNNe
onde:
f
N = número de famílias selecionadas;
f
k = número de indivíduos
selecionados por família.
b) Seleção pelo Indíce multi-efeitos (IME):
[
]
)/(3/)..4(
2
f
kf
ff
f
kkkNNe
σ
++=
onde:
2
kf
σ
= variância do número de indivíduos selecionados por família;
f
k = número
médio de indivíduos selecionados por família.
a diversidade genética (D) após a seleção pode ser quantificada, conforme
Wei e Lindgren (1996), citado por RESENDE (2002):
foef
NND /= , onde: 0<D1, sendo:
fo
N = número original de famílias, que no presente trabalho corresponde a 36
progênies.
ef
N = número efetivo de famílias selecionadas, sendo dado por:
=
22
/)(
ffef
kkN
Assim, poderá ser observado que uma estimativa de D próxima a zero indica
a quase extinção da variabilidade genética contida na população formada por
39
fo
N famílias. Já uma estimativa de D próxima a 1 quase manutenção da variabilidade
total da população de referência.
40
3.2 Regeneração natural na área por espécies arbóreas
3.2.1 Material
O local experimental corresponde a uma área de 2,42 ha, onde aos
15anos e 6 meses foi avaliado um teste de progênies/procedências de M.
urundeuva, consorciada com T. micrantha. A área antes da instalação do teste era
vegetação natural de cerrado até 1978, após este período foi utilizada para cultura
de cana-de-açúcar até 1984, deste período até 1990 a referida área permaneceu em
pousio, sendo posteriormente preparada para a instalação do teste de
progênies/procedências.
A regenaração do local deve-se a banco de sementes que permaneceu no
solo, brotação de raízes e também por dispersão de sementes por animais, que a
área encontra-se muito próxima a um fragmento de cerrado.
3.2.2 Métodos
A identificação das espécies arbóreas a campo foi realizada por Cambuim
1
(comunicação pessoal) e a identificação da nomenclatura botânica com base nos
trabalhos de: Lorenzi, 1992; Silva et al., 1994; Almeida et al., 1998; Carvalho, 2003;
Durigan et al., 2004 e Carvalho, 2006.
A análise de abundância de cada espécie foi estimada de acordo com a
expressão proposta por (CALDATO, et al.,1996)
ha
de
Número
espécie cada de plantas de Número
Ab(abs) =
Onde:
Ab(abs) é a abundância absoluta
x100
plantas/ha de Número
Ab(abs)
Ab% =
1
José Cambuim: Fazenda de Ensino e Pesquisa da FE/UNESP – Campus de Ilha Solteira. Av. Brasil
Centro, 56.
41
Onde:
Ab% é a abundância relativa
3.3 Sistema Silvipastoril
3.3.1 Material
Neste experimento foram utilizadas duas áreas, sendo a primeira uma área
sombreada de 2,42 ha e a segunda uma área a pleno sol com aproximadamente a
mesma medida. Ambas continham Brachiaria decumbens que se instalou,
naturalmente, no local sem que houvesse até o presente momento nenhum tipo de
trato cultural, na condução da gramínea. A presença de B.decumbens no local do
teste de progênie/procedencia (área sombreada) caracterizou um sistema
silvipastoril.
O sistema também continha 40 animais, sendo 39 vacas e 1 touro todos da
raça guzerá.
3.3.2 Métodos
3.3.2.1 Período experimental
O período experimental foi de 31 de outubro de 2006 a 11 de janeiro 2008
totalizando 391 dias. Durante esse período foram realizadas as amostragens pre-
pastejo, em seguida um lote de 40 bovinos (120 unidades animais) era colocado na
área experimental para pastejo, onde permanecia por 8 a 10 dias (exceto no pastejo
de inverno quando, devido a baixa quantidade de forragem permaneceram apenas
por 3 dias). Passado esse período suficiente para o consumo da forragem os
animais eram retirados. Após a saída dos animais eram realizadas as avaliações de
pós-pastejo.
3.3.2.2 Calibração altura versus massa de forragem
Com objetivo de gerar uma equação de calibração local obtida na própria área
de avaliação, foi realizada a calibração entre altura do dossel mensurada com régua
e prato ascendente e massa de forragem, com a finalidade de se estimar a massa
de forragem dos pastos a partir de leituras de altura do dossel e permitir o cálculo do
42
acúmulo de forragem, minimizando assim a necessidade de amostragens
destrutivas. Com essa finalidade, cinco áreas quadradas de 0,25 m
2
(0,50 x 0,50m)
por unidade experimental (piquete com sombra ou pleno sol) foram selecionadas no
ponto mais baixo e de menor massa de forragem (condição 1), outra no ponto mais
alto e de maior massa de forragem (condição 5) e outra no ponto representativo da
altura média (condição 3), em seguida foram escolhidos mais dois pontos entre a
condição 1 e 3 (condição 2) e entre a condição 3 e 5 (condição 4), totalizando 5
pontos de amostragem por tratamento em pré-pastejo. O ponto 1 foi o de menor
massa, o 3 o de massa intermediárioa e o 5 o de maior massa
A estratégia de coleta dos cinco pontos (mais baixo, médio e mais alto e
intermediários) dentro de cada condição estudada possibilitou que uma amplitude
significativa e representativa das situações (combinações entre massa de forragem e
altura do dossel) fosse contemplada, possibilitando a geração de equações de
calibração mais precisas. Dentro de cada área foi medida a altura do dossel com
régua e com prato ascendente e, posteriormente, a forragem foi cortada no nível do
solo, seca em estufa a 65
o
C até massa constante e pesada. Assim, depois de
determinada a massa seca, foi estabelecida, por meio de regressão linear, a relação
entre altura do dossel e massa de forragem da Brachiaria decumbens, como
demonstra a equação 1 abaixo:
MF = a + b h
em que: MF = massa de forragem, em kg ha
-1
de MS; h = altura do dossel, em cm ou
altura do prato; a= intercepto da regressão; b= coeficiente ângular da regressão.
As equações para determinação das massas de foragem são apresentadas
da Tabela 2.
Tabela 2: Equação de calibração para determinação da massa de forragem
Instrumento Equação Significância Coeficiente de
determinação (r
2
)
Prato ascendente MF=384,9+72,12.h 0,0003 0,8363
Régua MF=-340,91+44,697.h 0,0162 0,4640
As leituras com o uso do prato ascendente são influenciadas por
combinações de altura e densidade da cobertura vegetal e tem a vantagem de
combinar essas caractarísticas que, em conjunto, estão mais fortemente associadas
43
com a massa de forragem do que a altura do dossel isolada (MANNETJE, 2000 e
PEDREIRA, 2001). Por isso, optou-se por utilizar a equação gerada com o prato
ascendente para efetuar os cálculos de massa de forragem.
3.3.2.3 Componentes morfológicos
As amostragens de massa de forragem pré-pastejo foram realizadas antes
da entrada dos animais nas unidades experimentais e amostragens de pós-pastejo
logo após a saída dos animais. As amostras de forragem foram coletadas no período
de seis meses nas duas estações de maior crescimento (primavera e verão) em pré
e pós-pastejo. A forragem foi cortada até o solo em seis áreas de 0,25 m
2
, dentro de
cada unidade experimental, com o uso de foice manual. Os componentes da
amostra foram separados em lâminas foliares, colmos+bainhas e material morto,
pesadas e acondicionadas em sacos de papel e secas em estufas de ventilação
forçada de ar a 65ºC até peso constante, quando foram novamente pesadas.
Os valores de massa de forragem foram convertidos em kg.ha
-1
de MS e os
componentes morfológicos expressos em percentagem (%) da massa de forragem,
obtido no corte, gerando portanto, valores diferentes da massa de forragem
encontrada por meio da dupla amostragem e usada para os cálculos de acúmulo de
forragem.
3.3.2.4 Acúmulo total e taxas de acúmulo de forragem
O acúmulo de forragem foi calculado pela diferença entre as massas de
forragem no pré-pastejo atual e no pós-pastejo anterior de cada unidade
experimental determinadas pelo método não destrutivo de dupla amostragem. As
taxas de acúmulo de forragem (kg.ha
-1
dia
-1
de MS) foram calculadas dividindo-se o
acúmulo de forragem pelo número de dias de rebrotação mostrados na Tabela 3.
Para o cálculo do acúmulo de forragem no último período de rebrotação foi realizada
uma amostragem de massa de forragem no verão de 2008. O acúmulo total de
matéria seca do período experimental foi o somatório do acúmulo de forragem
durante os ciclos de pastejo.
44
Tabela 3: Período de rebrotação do capim Brachiaria decumbens em estações do
ano e número de dias sob dois regimes de luminosidade e dois momentos de
pastejomanejados sob lotação rotativa de outubro de 2006 a janaeiro de 2008 em
Selvíria – MS.
Período Duração
(dias)
Primavera06-Verão07 94
Verão07-Outono07 76
Outono07-Inverno07 115
Inverno07-Verão08 106
3.3.2.5 Densidade volumétrica da forragem e dos componentes
morfológicos
A densidade volumétrica média da forragem do pasto (kg de MS. cm
-1
.ha) foi
calculada dividindo-se as massas de forragem do pré-pastejo pela altura mensurada
com régua do dossel forrageiro.
3.3.2.6 Valor nutritivo da forragem
Após a pesagem dos componentes morfológicos secos os mesmos foram
unidos formando uma amostra única por unidade experimental correspondente à
planta inteira. Essas amostras foram moídas e encaminhadas para laboratório de
bromatologia. O teor de proteína bruta (PB) foi determinado de acordo A.O.A.C.
(1990), pelo método micro Kjeldhal. Para determinação dos teores de fibra insolúvel
em detergente neutro (FDN) e fibra insolúvel em detergente ácido (FDA) pelo
método descrito por Van Soest et al., 1991 e lignina (LIG) por hidrólise em ácido
sulfúrico do resíduo do FDN (VAN SOEST et al., 1991). Os teores de celulose e
hemicelulose foram determinados por diferença, sendo hemicelulose a diferença
entre o valor de FDN e FDA e a celulose a diferença entre o valor de FDA e LIG de
uma determinada amostra. A digestibilidade in vitro da matéria seca foi determinada
de acordo com o método de dois estágios de Tiley e Terry (1963).
3.3.2.7 Delineamento experimental e análise estatística
O delineamento experimental foi inteiramente casualizado em esquema
fatorial de duas parcelas e duas sub-parcelas, em que as parcelas foram
45
constituídas dos tratamentos de luminosidade (pleno sol e sombreada) e as sub-
parcelas constituídas pelos tratamentos de momentos de pastejo (pré-pastejo e pós-
pastejo), enquanto que as amostragens realizadas nos períodos constituíram-se de
repetições ao longo do tempo.
Os dados foram analisados utilizando-se o programa PROC MIXED
(modelos mistos) do pacote estatístico SAS® (Statistical Analysis System). A opção
pelo uso do procedimento MIXED foi devido à natureza de medidas repetidas dos
dados (coletados seqüencialmente no tempo).
A comparação de médias foi realizada por meio do “LSMEANS”,
utilizando teste de Tukey com nível de significância de 5%.
As relações lineares entre altura do dossel e massa de forragem
(equações de calibração) foram geradas pelo programa PROC REG do SAS®.
46
4 - RESULTADOS E DISCUSSÃO
4.1 Análises dos caracteres de crescimento
4.1.1 Variação genética e fenotípica
As estimativas de variâncias genética aditiva (
2
ˆ
a
σ
), variância ambiental entre
parcelas (
2
ˆ
parc
σ
), variância residual (
2
ˆ
e
σ
) e variância fenotipíca (
2
ˆ
f
σ
), para os
caracteres quantitativas avaliadas nas duas populações de M. urundeuva, são
apresentadas na Tabela 1-A do apêndice.
Como pode ser observado na Tabela 4 os caracteres DMC, forma do tronco,
DAP, na população de Selvíria apresentaram diferenças significativas, evidenciando
variabilidade, uma condição essencial para o estabelecimento de um programa de
conservação genética e melhoramento. Os demais caracteres não apresentaram
diferença significativa pelo teste F.
A realização da análise conjunta para todos os caracteres estudados
demonstrou que não superioridade de uma população em relação a outra visto
que o teste F, na análise conjunta, não apresentaram significância para todos os
caracteres estudadas.
A população de Aramina, apresentou médias superiores a população de
Selvíria, principalmente para os caracteres altura e DAP que estão mais
relacionadas com a importância econômica. Quanto a sobrevivência, as duas
populações apresentaram taxas de sobrevivência superior a 90%, indicando boa
adaptação ao local de instalação do teste de progênies/procedências.
Os coeficientes de variação experimental (CV
exp)
para os caracteres
analisadas ficaram entre 10,74% e 17,46%, para a população de Aramina e de
11,58% a 15,81% para a população de Selvíria. Essas estimativas podem ser
consideradas de média magnitude (GARCIA, 1989). Porém, verifica-se que com
CV
exp,
não foi possível detectar variação genética, nesse momento, na população de
Aramina. Freitas et al. (2006), trabalhando com M. urundeuva após 4 anos de plantio
obteviveram um CV
exp
médio de 15% para os caracteres analisados. Em trabalhos
realizados com Pterogyne nitens, Sebbenn et al (1998) obtiveram um CV
exp
da
47
ordem de 21,76% para o carater altura enquanto que para o DAP o valor de CV
exp
foi
27,38% após 15 anos de plantio. Os resultados nestes dois trabalhos foram
semelhantes aos obtidos para as populações de Aramina e Selvíria.
Valores de CV
exp
na ordem de 10% a 20% podem ser considerados baixos
para experimentos onde ocorre competição. Assim, os resultados obtidos indicam
boa precisão nas estimativas dos parâmetros genéticos.
O parâmetro
2
C
ˆ
(coeficiente de determinação dos efeitos ambientais entre
parcelas) quantifica a variabilidade dentro dos blocos. Um coeficiente alto significa
alta variabilidade ambiental entre parcelas, e o inverso, baixa variabilidade. As
populações analisadas apresentaram estimativas de 11,51% a 33,27% nas
populações de Selvíria e Aramina. Portanto, 22% em média, da variação fenotípica
total das duas populações é devido a variação ambiental entre parcelas. Segundo
Resende (2002a), para estimativas de
2
C
ˆ
o ideal são valores iguais ou inferiores a
10%. Simeão et al., (2002), trabalhando com erva mate, obteviveram estimativas de
2
C
ˆ
de 16%.
De maneira geral, os valores genéticos preditos ficaram aquém dos valores
genéticos verdadeiros dos indivíduos. A proximidade entre os dois valores pode ser
avaliada com base na estatística denominada acurácia, a qual refere-se a correlação
entre os valores genéticos preditos e os valores genéticos verdadeiros dos
indivíduos. Em geral, quanto maior a acurácia na avaliação de um indivíduo, maior é
a confiança na avaliação e no valor genético predito deste indivíduo (NASS et al.,
2001).
Os valores de acurácia variaram de 11% a 78%, sendo que valores entre
0 - 25% são considerados baixos, 25% – 75%, bons e acima de 75% ótimos.
A acurácia foi o parâmetro utilizado para a escolha do caráter DAP, para a
aplicação do IME, (índice multiefeito) já que avaliações realizadas, utilizando o
caráter DAP geram resultados confiáveis, pois existe uma boa precisão na tomada
dos valores desse caráter no campo, na população de Selvíria a acurácia para o
caráter DAP, foi de 76%, valor superior ao encontrado por Sampaio et al. (2002),
trabalhando com Pinus oocarpa, encontraram acurácia média de 35%. A população
de Aramina apresentou uma acurácia relativamente baixa, 12%, este fato pode estar
ligado ao fato desta população ter sofrido altos níveis de perturbação antrópica.
48
A acurácia na população de Aramina foi de baixa 11,88% (DAP) a média para
os demais caracteres estudados. Já na população de Selviria foi de média nos
caracteres ALT (0,5323), SOB (0,6058) e FOR (0,6955) a alta nos caracteres DAP
(0,7628) e DMC (0,7843). Assim uma das razões de ter sido encontrada significância
nos caracteres estudados foi a sua maior acurácia média (0,6761) em relação a
população de Aramina (0,4112)
Tabela 4: Estimativas de média m
ˆ
, coeficiente de variação experimental (CV
exp
),
teste-F, acurácia (
aa
r
ˆ
) e o coeficiente de determinação do efeito de parcela (
2
p
c
ˆ
) para
os caracteres quantitativos avaliados em duas populações de Myracrodruon
urundeuva, aos 15,5 anos, em Selvíria–MS.
Aramina-SP
Caracteres
m
ˆ
CV
exp
(%)
aa
r
ˆ
2
p
c
ˆ
F
(individual)
F
(conjunta)
Altura (m) 6,19 15,45 0,2799
0,3171
1,085
ns
1,234
ns
DAP (cm) 6,87 17,46 0,1188
0,2541
1,014
ns
1,414
ns
DMC (m) 2,94 14,89 0,4985
0,2299
1,330
ns
1,793
ns
Forma 3,38 12,30 0,6817
0,1151
1,868
ns
1,853
ns
Sob. (%) 95,67 10,74 0,4768
0,1483
1,294
ns
1,481
ns
Selvíria-MS
Caracteres
m
ˆ
CV
exp
(%)
aa
r
ˆ
2
p
c
ˆ
F
Altura (m) 6,02 15,65 0,5323
0,3327
1,395
ns
-
DAP (cm) 6,59 15,82 0,7628
0,1935
3,391
**
-
DMC (m) 2,99 1158 0,7843
0,1267
2,598
**
-
Forma 3,15 12,50 0,6955
0,1173
1,937
*
-
Sob. (%) 93,75 15,21 0,6057
0,2567
1,579
ns
-
As estimativas de h
2
(herdabilidade), CV (coeficiente de variação genética) e
CVr (coeficiente de variação relativa) são apresentados na Tabela 5.
Para a obtenção das estimativas dos diversos tipos de herdabilidade
apresentados, considerou-se a relação de meios-irmãos para as progênies
envolvidas, assim como, considerou-se negligenciável a ocorrência de endogamia
na população base em estudo, condições indispensáveis preconizadas por
Vencovsky (1969). Segundo Namkoong (1966), com a presença de endogamia,
49
decorrente da autofecundação, ou da restrição no tamanho efetivo da população o
teste de progênie de polinização aberta inflaria as estimativas da variância genética.
As herdabilidades individuais para os parâmetros estudados variaram de 0,00
a 0,26. Esses resultados são coerentes àqueles encontrados, por Baleroni et al.
(2003), para as mesmas populações de M.urundeuva e por Costa et al. (2005) para
progênies de erva mate nativas, o que denota perspectiva de variabilidade genética
a ser explorada ao longo de um programa de melhoramento genético.
Em estudos com M.urundeuva obteve-se valores de
2
a
h
ˆ
igual a 0,27 para o
carater DAP e para a altura o valor de
2
a
h
ˆ
foi de 0,08, estes valores foram próximos
aos obtidos na população de Selvíria (SEBBENN e ETTORI, 2001). Em Carinia
legalis a
2
a
h
ˆ
para altura foi igual a 0,18 e para o DAP foi 0,116 (SEBBENN et al.,
2000).
De acordo com a classificação descrita por Resende (2002a) a herdabilidade
pode ser considerada como de baixa magnitude quando
2
a
h
ˆ
< 0,15, média magnitude
entre 0,15 <
2
a
h
ˆ
< 0,50 e alta magnitude com
2
a
h
ˆ
> 0,50.
Em relação as informações de médias, as estimativas de herdabilidades
variaram de 0,01 a 0,61 os resultados estão próximos com os observados na
literatura relativa a diversas espécies florestais (KAGEYAMA, 1980; STURION,
1993; CORNELLIUS, 1994; SAMPAIO, 1996 e SIMEÃO et al., 2002). Em trabalhos
realizados com M. urundeuva os valores de herdabilidade média (
2
m
h
ˆ
) encontrados
para ALT e DAP variaram de 0,00 a 0,72 (NOGUEIRA et al., 1986; MORAES, 1992;
MORAES et al., 1992; OLIVEIRA et al., 2000), mostrando concordância com os
dados obtidos neste trabalho.
Sebbenn e Ettori, (2001), trabalhando com M. urundeuva, obtiveram uma
2
m
h
ˆ
igual a 0,15 para altura, valor próximo a este foi obtido neste experimento para a
mesma variável para a população de Selvíria.
A herdabilidade dentro de progênies
2
d
h
ˆ
teve uma variação de valores de 0,00
a 0,27, onde os menores valores foram observados na população de Aramina.
Freitas, (2003) obteve
2
d
h
ˆ
igual a 0,09 para a altura, em experimento onde a
M. urundeuva foi consorciada com outras duas espécies, e
2
d
h
ˆ
de 0,22 quando a
50
mesma foi consorciada com eucalipto, estes valores encontram-se em consonâncias
aos obtidos paras as populações de Selvíria e Aramina.
Em trabalho com M. urunduva os valores de
2
d
h
ˆ
para o DAP foi 0,14 e para
altura foi 0,04, este valor encontra-se próximo ao obtido, para este mesmo carater na
população de Aramina (SEBBENN e ETTORI, 2001).
A estimativa de
2
d
h
ˆ
para os caracteres altura e DAP foram de 0,39 e 0,10
respectivamente em trabalho feito com Carinia legalis (SEBBENN et al., 2000).
O coeficiente de variação genética é considerado um parâmetro de extrema
importância no entendimento da estrutura genética de uma população por mostrar a
quantidade de variação existente entre progênies e permitir as estimativas de
ganhos genéticos (KAGEYAMA, 1980).
Os valores do coeficiente de variação genética em nível de indivíduo (CV
gi
)
oscilaram de 1,70% a 15,23%, o menor e o maior valor foram obtidos para DAP. A
população de Selvíria apresentou valores de CV
gi
que evidenciam a possibilidade de
seleção indivíduos dentro de progênies com base no caráter em estudo, devido a
presença de variabilidade genética.
Os valores de coeficiente de variação genotípico de progênie (CV
gp
) ficaram
entre 0,85% e 7,62% e assim como no CV
gi
os valores mais altos também foram
obtidos na população de Selvíria.
Os coeficientes de variação genética para M. urundeuva relatados na
literatura variaram de 2,2% a 9,6% (NOGUEIRA et al., 1986; MORAES, 1992;
MORAES et al., 1992; OLIVEIRA et al., 2000 e FONSECA et al., 2003). A maior
parte das espécies florestais apresenta considerável variação genética entre e
dentro de populações, devido ao fluxo de genes a partir da dispersão de pólen e
sementes, que são de grande importância para a formação da estrutura de uma
espécie (KAGEYAMA e PATIÑO-VALERA, 1985).
Paiva et al. (2002) citam que para haver sucesso no melhoramento de uma
espécie é fundamental a presença de variabilidade genética, lembrando ainda, que
fatores como: método de seleção adotado, as correlações genéticas e fenotípicas
entre caracteres, o tipo de ação gênica envolvida e a precisão experimental,
influenciam neste processo. Para Sebbenn et al. (1998) um coeficiente de variação
genética acima de 7% é considerado alto.
51
A escolha de um caráter para a seleção pode ter como base aquele que
apresenta as maiores estimativas de CVr (coeficiente de variação relativa). Assim,
altos valores de CV
r
indicam sucesso na seleção. No caso deste experimento os
maiores valores de CV
r
foram obtidos na população de Selvíria para os caracteres
DAP (0,48) e DMC (0,52), indicando que devem ser os caracteres escolhidos para
um programa de melhoramento, como a diferença entre os dois foi pequena, optou-
se pelo DAP em função da sua facilidade de obtenção.
Tabela 5: Estimativas de alguns parâmetros genéticos: coeficiente de variação
genética individual e genética de progênies (CV
gi
e CV
gp
), e a herdabilidade, no
sentido restrito: em nível de indivíduo na parcela (
2
a
h
ˆ
), de dia (
2
m
h
ˆ
) e dentro de
parcela (
2
d
h
ˆ
) para os caracteres quantitativos, avaliados em duas populações de
Myracrodruon urundeuva, aos 15,5 anos, em Selvíria–MS.
Aramina-SP
Caracteres
CV
gi
(%) CV
gp
(%) CV
r
(%)
2
a
h
ˆ
2
m
h
ˆ
2
d
h
ˆ
Altura (m) 3,68 1,84 0,12 0,02 0,08 0,02
DAP (cm) 1,70 0,85 0,05 0,00 0,01 0,00
DMC (m) 6,99 3,50 0,23 0,07 0,25 0,07
Forma 9,36 4,68 0,38 0,13 0,46 0,11
Sob. (%) 4,76 2,38 0,22 0,05 0,23 0,04
Selvíria-MS
Caracteres
CV
gi
(%) CV
gp
(%) CV
r
(%)
2
a
h
ˆ
2
m
h
ˆ
2
d
h
ˆ
Altura (m) 8,03 4,02 0,26 0,11 0,28 0,13
DAP (cm) 15,23 7,62 0,48 0,26 0,58 0,27
DMC (m) 11,95 5,98 0,52 0,24 0,61 0,22
Forma 9,88 4,94 0,39 0,14 0,48 0,12
Sob. (%) 9,45 4,73 0,31 0,13 0,36 0,14
Com a utilização do programa SELEGEN foi possível estimar as
herdabilidades individuais de cada uma das progênies (Tabela 6) nas populações
estudadas. Verificou-se que a média destas estimativas de herdabilidades ficaram
semelhates as apresentadas na Tabela 5 para cada um dos caracteres estudados,
com exceção, da sobrevivência em função dos altos coeficientes de variação
encontrados para este caráter.
52
É interessante a observação destas herdabilidades individuais, pois se for
tomado como exemplo o caráter DAP, verifica-se que o mesmo praticamente não
tem variação na progênie da população de Aramina, que não apresenta variação
genética, mas apresenta uma distribuição interessante na população de Selvíria com
3 progênies (0,10 a 0,19), 13 (0,20 a 0,29), 7 (0,30 a 0,39) e 2 (0,40 a 0,49),
correspondendo a uma herdabilidade média de 0,28, o que fica próximo a estimativa
encontrada na Tabela 5, que foi de 0,26.
Tabela 6: Estimativas da herdabilidade individual (
2
h
ˆ
), válida para cada progênie
para os caracteres quantitativos, avaliados em duas populações de Myracrodruon
urundeuva, aos 15,5 anos, em Selvíria–MS.
Aramina – SP Selvíria – MS
Prog ALT DAP DMC FOR SOB Prog. ALT DAP DMC FOR SOB
1 0,02 0,004 0,10 0,12 0,08 26 0,10 0,22 0,20 0,20 0,14
2 0,02 0,003 0,08 0,15 0,04 27 0,10 0,39 0,20 0,16 0,12
3 0,03 0,006 0,09 0,13 0,08 28 0,11 0,18 0,16 0,12 0,08
4 0,03 0,004 0,06 0,14 0,02 29 0,12 0,26 0,33 0,14 0,12
5 0,02 0,003 0,09 0,11 0,02 30 0,12 0,28 0,32 0,14 0,08
6 0,03 0,004 0,09 0,12 0,02 31 0,14 0,34 0,34 0,18 0,11
7 0,02 0,003 0,08 0,13 0,31 32 0,14 0,26 0,16 0,14 0,46
8 0,03 0,004 0,09 0,13 0,31 33 0,12 0,28 0,22 0,19 0,12
9 0,02 0,004 0,08 0,19 0,02 34 0,16 0,30 0,28 0,14 0,16
10 0,03 0,004 0,09 0,14 0,05 35 0,11 0,24 0,21 0,15 0,46
11 0,03 0,004 0,09 0,16 0,31 36 0,11 0,23 0,26 0,16 0,16
12 0,02 0,003 0,06 0,16 0,03 37 0,14 0,35 0,34 0,11 0,11
13 0,02 0,003 0,05 0,13 0,31 38 0,08 0,19 0,15 0,14 0,16
14 0,03 0,003 0,08 0,15 0,04 39 0,12 0,24 0,22 0,14 0,22
15 0,03 0,005 0,07 0,14 0,31 40 0,15 0,37 0,24 0,16 0,46
16 0,02 0,003 0,10 0,15 0,31 41 0,09 0,26 0,24 0,11 0,14
17 0,02 0,003 0,06 0,14 0,08 42 0,13 0,40 0,30 0,19 0,46
18 0,02 0,004 0,08 0,18 0,04 43 0,11 0,40 0,22 0,13 0,12
19 0,02 0,003 0,08 0,14 0,05 44 0,18 0,35 0,33 0,17 0,22
20 0,03 0,004 0,07 0,14 0,31 45 0,16 0,29 0,39 0,14 0,07
21 0,02 0,003 0,05 0,16 0,03 46 0,10 0,19 0,19 0,18 0,11
22 0,02 0,003 0,07 0,09 0,31 47 0,10 0,27 0,20 0,14 0,46
23 0,03 0,004 0,08 0,13 0,08 48 0,11 0,30 0,25 0,12 0,14
24 0,03 0,003 0,08 0,10 0,08 49 0,10 0,20 0,17 0,15 0,10
25 0,03 0,004 0,09 0,12 0,08 50 0,11 0,28 0,23 0,10 0,22
MÉDIA 0,02 0,004 0,08 0,14 0,13 MÉDIA 0,12 0,28 0,25 0,15 0,20
CV(%) 16,81 18,75 18,50 15,69
94,57
CV(%) 19,46
23,96
27,38 17,99
69,63
4.1.2 Estimativa dos valores genéticos aditivos e genotipícos
Na Tabela 7 são apresentados os efeitos aditivos ( a
), valores genéticos
aditivos preditos ( a
ˆ
ˆ
+
µ
), efeitos genotípicos ( g
ˆ
) e valores genotípicos preditos
53
( g
ˆ
ˆ
+
µ
) dos 36 melhores indivíduos, para o caráter dap (cm), em um teste de
progênies, envolvendo duas populações de Myracrodruon urundeuva.
Nos testes de progênies de polinização livre pode-se realizar a seleção dos
melhores indivíduos para transformação em pomares de sementes por mudas
(propagação sexuada), ou para formação de pomares de sementes clonais
(propagação assexuada) (RESENDE, 2002a).
Foi possível verificar que as 36 melhores árvores selecionadas, considerando
propagação sexuada rvores ordenadas por a
) são as mesmas selecionadas para
a propagação assexuada (ordenadas por g
ˆ
), porém a seqüência das melhores
árvores é alterada pelo tipo de propagação considerada. Esse fato também foi
observado por Resende e Dias (2000), para o caráter número frutos por planta, em
progênies de irmãos completos de cacaueiro. Portanto, a seleção dos melhores
indivíduos com base no sistema de propagação (sexuada ou assexuada) está
intimamente ligada aos objetivos do programa de melhoramento de cada espécie.
Caso o objetivo seja a transformação do teste de progênie em pomares de sementes
por mudas, os melhores indivíduos devem ser selecionados com base em a
, caso o
objetivo seja fornecer material para a instalação de um pomar de sementes clonal,
então deve-se selecionar os indivíduos com base em g
ˆ
, para que haja um maior
ganho genético.
Na população de Aramina os ganhos selecionando-se os 36 melhores
indivíduos será muito baixo, que na propagação sexuada o ganho será de 0,25%
e na assexuada o ganho será de 0,34%. Na população de Selvíria o ganho com a
propagação sexuada será de 14,24% e na propagação assexuada será de 20,74%.
Estes resultados confirmam que a população de Aramina apresenta baixa
variabilidade genética, o que praticamente não proporciona ganhos na seleção.
Dessa forma, duas estratégias podem ser adotadas: a) na população de Aramina o
enfoque seria o de conservação genética ex situ e b) na população de Selvíria
pode se elaborar um programa de melhoramento.
54
Tabela 7: Efeitos aditivos (a
), valores genéticos aditivos preditos ( a
ˆ
ˆ
+
µ
), efeitos
genotípicos ( g
ˆ
) e valores genotípicos preditos ( g
ˆ
ˆ
+
µ
) dos 36 melhores indivíduos,
para o caráter dap (cm), em um teste de progênies, envolvendo duas populações de
Myracrodruon urundeuva.
a) Aramina-SP
Propagação sexuada Propagação assexuada
Ordem
Bloco
Prog
Ind
a
ˆ
a
ˆ
ˆ
+
µ
Ordem
Bloco
Prog
Ind
g
ˆ
g
ˆ
ˆ
+
µ
1
4
21
8
0,0245
6,8974
1
4
21
8
0,0374
6,9103
2
2
21
1
0,0224
6,8953
2
2
21
1
0,0339
6,9068
3
4
12
7
0,0221
6,8950
3
4
12
7
0,0306
6,9035
4
2
22
5
0,0214
6,8943
4
2
22
5
0,0297
6,9026
5
5
22
2
0,0213
6,8942
5
5
22
2
0,0296
6,9025
6
6
22
3
0,0200
6,8929
6
5
21
6
0,0284
6,9013
7
3
22
3
0,0199
6,8928
7
6
22
3
0,0273
6,9002
8
5
12
8
0,0192
6,8921
8
3
22
3
0,0272
6,9001
9
5
21
6
0,0191
6,8920
9
6
19
7
0,0264
6,8993
10
6
22
8
0,0183
6,8912
10
5
12
8
0,0257
6,8986
11
1
12
7
0,0182
6,8911
11
6
24
8
0,0253
6,8982
12
4
13
5
0,0176
6,8905
12
6
22
8
0,0246
6,8975
13
6
13
5
0,0174
6,8903
13
1
12
7
0,0240
6,8969
14
4
5
7
0,0174
6,8903
14
4
13
5
0,0236
6,8965
15
2
12
3
0,0172
6,8901
15
4
5
7
0,0236
6,8965
16
3
22
6
0,0171
6,8900
16
6
13
5
0,0232
6,8961
17
4
22
3
0,0168
6,8897
17
3
22
6
0,0225
6,8954
18
2
13
3
0,0168
6,8897
18
2
12
3
0,0224
6,8953
19
6
13
1
0,0165
6,8894
19
2
13
3
0,0222
6,8951
20
5
13
4
0,0165
6,8894
20
4
22
3
0,0221
6,8950
21
6
5
2
0,0164
6,8893
21
6
5
2
0,0221
6,8950
22
3
13
6
0,0164
6,8893
22
6
13
1
0,0218
6,8947
23
2
13
1
0,0163
6,8892
23
5
13
4
0,0217
6,8946
24
6
22
2
0,0161
6,8890
24
3
13
6
0,0216
6,8945
25
5
12
1
0,0160
6,8889
25
2
13
1
0,0213
6,8942
26
4
13
1
0,0160
6,8889
26
6
22
2
0,0209
6,8938
27
6
24
8
0,0155
6,8884
27
4
13
1
0,0208
6,8937
28
5
13
5
0,0155
6,8884
28
5
12
1
0,0204
6,8933
29
6
22
5
0,0155
6,8884
29
5
13
5
0,0200
6,8929
30
6
19
7
0,0153
6,8882
30
3
5
6
0,0199
6,8928
31
3
22
8
0,0152
6,8881
31
6
22
5
0,0198
6,8927
32
2
12
1
0,0152
6,8881
32
3
22
8
0,0194
6,8923
33
6
12
2
0,0151
6,8880
33
1
22
3
0,0193
6,8922
34
3
5
6
0,0151
6,8880
34
2
12
1
0,0191
6,8920
35
1
22
3
0,0151
6,8880
35
6
12
2
0,019
6,8919
36
2
12
6
0,0151
6,8880
36
2
12
6
0,0188
6,8917
Média geral (
µ
ˆ
= 6,8729)
6,8903
6,8966
55
b) Selvíria-MS
Propagação sexuada Propagação assexuada
Ordem
Bloco
Prog
Ind
a
ˆ
a
ˆ
ˆ
+
µ
Ordem
Bloco
Prog
Ind
g
ˆ
g
ˆ
ˆ
+
µ
1
2
36
1
2,0209
8,4805
1
2
36
1
2.6935
9.1531
2
6
36
7
1,7400
8,1996
2
1
46
1
2.2394
8.6990
3
5
36
4
1,6751
8,1347
3
6
36
7
2.2253
8.6849
4
1
36
8
1,6666
8,1262
4
2
38
3
2.2010
8.6606
5
4
36
4
1,6658
8,1254
5
5
36
4
2.1171
8.5767
6
1
36
3
1,6398
8,0994
6
4
28
7
2.1070
8.5666
7
2
36
6
1,6176
8,0772
7
1
36
8
2.1031
8.5627
8
6
36
6
1,5652
8,0248
8
4
36
4
2.1017
8.5613
9
2
38
3
1,5233
7,9829
9
6
28
1
2.0873
8.5469
10
1
36
2
1,4919
7,9515
10
1
36
3
2.0583
8.5179
11
4
36
1
1,4911
7,9507
11
2
40
7
2.0330
8.4926
12
3
36
2
1,4538
7,9134
12
6
35
5
2.0226
8.4822
13
4
36
3
1,4507
7,9103
13
2
36
6
2.0213
8.4809
14
4
28
7
1,4448
7,9044
14
6
36
6
1.9340
8.3936
15
6
28
1
1,4330
7,8926
15
4
38
2
1.9211
8.3807
16
3
36
5
1,4000
7,8596
16
1
36
2
1.8118
8.2714
17
2
36
8
1,3756
7,8352
17
4
36
1
1.8105
8.2701
18
4
38
2
1,3553
7,8149
18
2
35
2
1.7946
8.2542
19
6
35
5
1,3498
7,8094
19
6
40
5
1.7790
8.2386
20
2
40
7
1,3428
7,8024
20
6
34
3
1.7603
8.2199
21
2
36
3
1,3353
7,7949
21
3
28
5
1.7539
8.2135
22
4
36
6
1,3163
7,7759
22
3
36
2
1.7483
8.2079
23
5
36
3
1,2584
7,7180
23
1
34
1
1.7462
8.2058
24
3
36
3
1,2521
7,7117
24
4
36
3
1.7432
8.2028
25
1
46
1
1,2359
7,6955
25
3
35
6
1.7191
8.1787
26
3
28
5
1,2329
7,6925
26
6
28
3
1.6617
8.1213
27
6
36
3
1,2157
7,6753
27
3
36
5
1.6587
8.1183
28
2
35
2
1,2130
7,6726
28
2
36
8
1.6181
8.0777
29
3
36
4
1,1984
7,6580
29
3
28
7
1.5747
8.0343
30
6
40
5
1,1904
7,6500
30
2
28
2
1.5553
8.0149
31
6
34
3
1,1867
7,6463
31
2
36
3
1.5508
8.0104
32
1
34
1
1,1782
7,6378
32
4
36
6
1.5192
7.9788
33
6
28
3
1,1776
7,6372
33
5
36
3
1.4226
7.8822
34
3
35
6
1,1677
7,6273
34
3
36
3
1.4122
7.8718
35
3
28
7
1,1254
7,5850
35
6
36
3
1.3515
7.8111
36
2
28
2
1,1138
7,5734
36
3
36
4
1.3226
7.7822
Média geral (
µ
ˆ
= 6,8729)
7,8513
8,2980
4.1.3 Seleção de Matrizes
A seleção de matrizes com sobreposição de gerações é uma estimativa que
indica se a população base é representativa das matrizes originais. Em programas
de conservação e melhoramento genético, é interessante que se consiga a
representatividade dos indivíduos na população base, sem a necessidade de
56
recorrer às matrizes originais, garantindo a variabilidade genética e possibilidades de
altos ganhos genéticos na seleção.
A Tabela 8 apresenta o resultado do comportamento das matrizes de Aramina
e Selvíria em relação as suas progênies.
Entre as 25 matrizes que compõem na população de Aramina, 12 delas (1, 2,
3, 4, 6, 7, 8, 17, 19, 20, 23,24) apresentam menos de 50% de superioridade da
matriz original em relação às suas progênies, sendo que na matriz 2 todas as
progênies foram superiores, 11 matrizes (9, 10, 11, 13, 14, 15, 16, 18, 21, 22, 25)
apresentaram mais de 50% de superioridade e as matrizes 5 e 12 apresentaram
100% de superioridade em relação as suas progênies, indicando que para estas
duas matrizes não existiu nenhum pai geneticamente superior a mãe.
Na população de Selvíria o comportamento das matrizes foi o seguinte, 14
matrizes (26, 27, 29, 32, 33, 41, 42, 43, 44, 45, 46, 47, 48, 49), apresentaram menos
de 50% de superioridade em relação às suas progênies, 10 matrizes (28, 30, 31, 34,
35, 37, 38, 39, 40, 50) apresentaram mais de 50% de superioridade e a matriz 36
apresentou 100% de superioridade em relação as suas progênies.
A partir destes resultados foi possível observar que a representatividade das
matrizes originais na população de Aramina foi de 52%, enquanto na população de
Selvíria foi de 48,52%. Com base nestes resultados é possível observar que a
população de Aramina, está mais apta a conservação enquanto que a população de
Selvíria, pode ser utilizada tanto em programas de conservação como melhoramento
genético da espécie, pois otimiza os trabalhos de coleta de sementes/frutos, além de
ser um banco ativo de germoplasma da espécie.
57
Tabela 8: Matrizes de Myracroduon urundeuva selecionadas com sobreposição de gerações, numa população base de 15,5 anos
de idade, instalada em Selvíria-MS
Aramina - SP Selvíria - MS
Matrizes
Superioridade da matriz original
em relação as progênies (%) N
o
de indivíduos
Matrizes
Superioridade da matriz original
em relação as progênies (%) N
o
. indivíduos
1 22 46 26 36 42
2 0 41 27 23 43
3 20 46 28 75 40
4 49 41 29 48 40
5 100 40 30 68 40
6 40 42 31 51 45
7 38 48 32 33 39
8 37 46 33 14 42
9 51 41 34 75 44
10 51 45 35 70 46
11 62 45 36 100 45
12 100 41 37 72 43
13 89 47 38 81 26
14 50 44 39 51 43
15 79 48 40 79 47
16 54 46 41 35 43
17 9 45 42 2 42
18 59 44 43 46 41
19 38 45 44 47 47
20 18 44 45 31 39
21 82 39 46 31 39
22 88 48 47 21 42
23 41 46 48 15 40
24 47 47 49 44 39
25 67 45 50 65 46
58
4.1.4 Ganho na seleção, tamanho efetivo e diversidade genética
Neste trabalho, estudou-se o IME selecionando os 36 melhores indíviduos
(corresponde ao número de plantas que seriam selecionadas por uma seleção entre
(24%) e dentro (12,5%) em três diferentes condições): A) a primeira considera os 36
melhores indivíduos selecionados pelo IME, independente do número de indivíduos
por família (
f
k = k 0); B) a segunda aplicou-se IME aos indivíduos, que seriam
selecionados pela seleção entre e dentro de progênies (
f
k = k 0, sendo
f
k igual a
6 para todas as famílias); C) na terceira foi feita a seleção dos 36 melhores
indíviduos para o IME, sendo que o número de indivíduos por família era no máximo
igual a 3 (
f
k 1 k 3).
Os resultados apresentados na Tabela 9 e na Tabela 10 são importantes
quando se deseja conhecer o ganho na seleção e o que a seleção para a obtenção
deste ganho pode provocar em termos de tamanho efetivo (Ne) e diversidade
genética (D). Assim, tomando-se por base os indivíduos que seriam selecionados
em uma seleção entre e dentro de famílias e aplicando-se a eles o IME, ou seja, esta
passa a ser uma condição de referência, é possível verificar que o tamanho efetivo
corresponde a 16 e a diversidade genética a 0,24, portanto, foi mantida nesta
condição, 24% da diversidade genética inicial existente no teste de progênies. As
simulações de condições A (
f
k = k 0) e C (
f
k 1 k 3), quando comparadas a
condição de referência B (
f
k = k 0) aplicados a população de Aramina, verifica-se
que na condição A ocorre a seleção de um número igual famílias (6), portanto o
número de indivíduos por família também é o mesmo (6), o tamanho efetivo sofre
uma redução de 4,57, levando a uma redução na diversidade genética de 0,08, o
ganho na seleção tem um aumento de 0,10, correspondendo a uma eficiência de
84,93%. Na condição C ocorre um aumento no número de famílias selecionadas de
6 para 15; há uma redução no número de indivíduos por família de 6 para 2,4; há um
aumento no tamanho efetivo de 9,32 o que leva a um aumento na diversidade
genética de 0,30, e um ganho na seleção de 0,19% com eficiência de 46,63%.
Sampaio et al. (2002), trabalhando com P.oocarpa obtiveram um ganho na seleção
em média de 15%. Paludzyszyn Filho et al. (2002) em trabalho com P. taeda,
59
obtiveram um ganho de 8%, estes valores ficaram próximos aos ganhos obtidos na
população de Selviria.
Para a população de Selvíria na condição A (
f
k = k 0), quando comparada
a condição padrão B (
f
k = k 0) verifica-se que é possível selecionar um número
menor de famílias (5), embora ocorra um aumento no número de indivíduos por
família de 1,2, o tamanho efetivo da população sofre redução de 16 para 6,35, o que
acarreta numa redução na diversidade genética (0,16), o ganho na seleção é de
24,56%, com uma eficiência na seleção de 55,80%. Na condição C (
f
k 1 k 3).
ocorre um aumento no número de famílias selecionadas (13), reduz o número de
indivíduos por família (2,76), um aumento no tamanho efetivo de 16 para 24,41,
levando a um aumento na diversidade genética (0,26), proporcionando um ganho na
seleção de 19,93%, com eficiência de 26,45%.
Os valores dos IME, para cada indivíduo, encontram-se nas Tabelas 2A, 3A,
4A, 5A, 6A e 7A do Apêndice.
A seleção feita por meio do índice multiefeito deve ser, preferencialmente,
utilizada para os casos em que a herdabilidade dos caracteres é baixa, por
considerar simultaneamente o comportamento do indivíduo, o de sua família e o da
parcela em que foi plantado (PAIVA et al., 2002)
Segundo Resende, (2002a), quando o IME for utilizado e existìr a
preocupação de manter uma diversidade genética razoável deve-se estabelecer um
f
k máximo, conforme pode ser observado nos dados em questão.
A falta de variação genética entre as progênies da população de Aramina
reflete-se na obtenção dos ganhos de seleção (0,14%), enquanto para a população
de Selvíria apresenta um potencial de ganho da ordem de 15,63%, na situação em
que
f
k é constante. A tendência dos resultados para as estimativas de tamanho
efetivo (Ne) e Diversidade genética (D) foi a mesma nas populações de Aramina e
Selvíria, ou seja, as maiores estimativas ocorreram na condição C (
f
k 1 k 3),
vindo a seguir na condição A (
f
k = k 0).
60
Tabela 9: Comparação entre as formas de seleção para o caráter DAP (cm) em
progênies de M. urundeuva consorciada com Trema micrantha, procedente de
fragmentos florestais da região de Aramina-SP, em três condições: A (
f
k = k0),
B (
f
k = k0) e C (
f
k =1 k 3), aos 15,5 anos, em Selvíria-MS.
f
k = k0
f
k = k0
f
k =1 k 3
Prog.
f
k
Prog.
f
k
Prog.
f
k
5 8
4 6
4 3
12 11
5 6
5 3
13 11
12 6
6 2
19 1
13 6
7 2
21 4
15 6
8 1
22 1
21 6
9 2
- -
- -
10 3
- -
- -
11 1
- -
- -
12 3
- -
- -
13 3
- -
- -
14 3
- -
- -
15 3
- -
- -
18 3
- -
- -
19 3
- -
- -
21 1
N
36
N
36
N
36
fo
N
25
fo
N
25
fo
N
25
f
N
6
f
N
6
f
N
15
f
k
6
f
k
6
f
k
2,4
2
ˆ
kf
σ
21,6
2
ˆ
kf
σ
0
2
ˆ
kf
σ
0,69
e
N
11,43
e
N
16
e
N
25,32
(
)
cm
µ
6,87
(
)
cm
µ
6,87
(
)
cm
µ
6,87
(
)
cma
ˆ
0,02
(
)
cma
ˆ
0,01
(
)
cma
ˆ
0,01
(
)
%
ˆ
s
G
0,24
(
)
%
ˆ
s
G
0,14
(
)
%
ˆ
s
G
0,19
(
)
%.Ef
84,93
(
)
%.Ef
-
(
)
%.Ef
46,63
D
ˆ
0,16
D
ˆ
0,24
D
ˆ
0,54
N: n
o
de indivíduos selecionados; N
fo
= nº de progênies do teste; N
f
: n
o
de progênies selecionadas; k
f
: n
o
de indivíduos selecionados por
progênie; k
f
: n
o
médio de indivíduos selecionados por progênie; σ
kf
2
: variância do n
o
de indivíduos selecionados por progênie; N
e
:
tamanho efetivo;
µ
: média geral; a
ˆ
: efeito genético aditivo = IME: Índice Multi-efeito;
S
G
ˆ
: Ganho na seleção; Ef.: eficiência entre as formas de
seleção com base no IME, tendo à seleção entre e dentro de progênies como referência;
D
ˆ
: Diversidade genética.
61
Tabela 10: Comparação entre as formas de seleção para o caráter DAP (cm) em
progênies de M. urundeuva, consorciada com Trema micrantha, procedente de
fragmentos florestais da região de Selvíria-MS, em três condições: A (
f
k = k0),
B (
f
k = k0) e C (
f
k =1 k 3), aos 15,5 anos, em Selvíria-MS.
f
k = k0
f
k = k0
f
k =1 k 3
Prog.
f
k
Prog.
f
k
Prog.
f
k
28 5 28 6 26 3
30 2 34 6 28 2
34 2 35 6 29 3
35 3 36 6 30 3
36 24 37 6 31 3
- - 38 6 34 3
- - - - 35 3
- - - - 36 3
- - - - 37 3
- - - - 38 3
- - - - 39 3
- - - - 40 3
- - - - 41 1
N
36
N
36
N
36
fo
N
25
fo
N
25
fo
N
25
f
N
5
f
N
6
f
N
13
f
k
7,2
f
k
6,0
f
k
2,76
2
ˆ
kf
σ
89,7
2
ˆ
kf
σ
0
2
ˆ
kf
σ
0,359
e
N
6,35
e
N
16
e
N
24,41
(
)
cm
µ
6,59
(
)
cm
µ
6,59
(
)
cm
µ
6,59
(
)
cma
ˆ
1,456
(
)
cma
ˆ
0,927
(
)
cma
ˆ
1,182
(
)
%
ˆ
s
G
24,56
(
)
%
ˆ
s
G
15,63
(
)
%
ˆ
s
G
19,93
(
)
%.Ef
55,80
(
)
%.Ef
-
(
)
%.Ef
26,45
D
ˆ
0,08
D
ˆ
0,24
D
ˆ
0,50
N: n
o
de indivíduos selecionados; N
fo
= nº de progênies do teste; N
f
: n
o
de progênies selecionadas; k
f
: n
o
de indivíduos selecionados por
progênie; k
f
: n
o
médio de indivíduos selecionados por progênie; σ
kf
2
: variância do n
o
de indivíduos selecionados por progênie; N
e
:
tamanho efetivo;
µ
: média geral; a
ˆ
: efeito genético aditivo = IME: Índice Multi-efeito;
S
G
ˆ
: Ganho na seleção; Ef.: eficiência entre as formas de
seleção com base no IME, tendo à seleção entre e dentro de progênies como referência;
D
ˆ
: Diversidade genética.
62
4.2 Regeneração natural
Após 15,5 anos de plantio de M. urundeuva consorciada com T. micrantha, foi
realizado o levantamento da ocorrência de outras espécies no local, onde os
resultados estão expressos na Tabela 11.
O teste de progênies/procedências foi instalado inicialmente com M.
urundeuva e T. micrantha. A instalação foi realizada em consórcio, levando em
consideração que a M. urundeuva apresenta um comportamento ecológico de
secundária tardia, e a T. micrantha de pioneira. Assim, após 4 anos de instalação do
teste verificou-se na T. micrantha a morte dos indivíduos desta espécie,
proporcionando condição para o aparecimento de novas espécies arbóreas. Esse
processo de regeneração natural proporcionou no local a identificação de 71
espécies além da M. urundeuva. As espécies de ocorrência natural, foram
classificadas segundo Kageyama e Gandara, (1993), em muito comuns (20-100
ind/ha), comuns (1-20 ind/ha) e raras (0,1-1 ind/ha).
No estudo de regeneração natural na área, foram identificados 1718,27
ind/ha, pertencentes a 36 famílias botânicas. Verificou-se que as famílias que
apresentaram maior número de espécies em regeneração foram a Leguminosae,
com 11 espécies, Myrtaceae e Anonaceae, com 4 espécies e Clusiaceae e
Malpighiaceae, com 3 espécies em cada família. Dentre as 71 espécies identificas 4
delas se destacaram, pois apresentaram uma alta abundância absoluta, a Byrsonima
verbascifolia (340,49 ind/ha), Xylopia aromatica (267,76 ind/ha), Alibertia sessilis
(213,22 ind/ha) e Zanthoxyllum hyemale (111,98 ind/ha), que juntas correspondem a
54,34% da densidade total da área, todas as outras 67 espécies totalizam 45,66%
do total de indivíduos da área. Das espécies encontradas no local, 19 foram
consideradas muito comuns, 25 consideradas comuns e 27 espécies foram de
ocorrência rara.
A alta diversidade de espécies provavelmente está relacionada a alguns
fatores como, proximidade de um fragmento florestal, banco de sementes do solo e
rebrota de raízes.
Segundo Garwood, (1989) o principal meio de regeneração das espécies
tropicais dá-se a partir da chuva de sementes (as dispersas recentemente), por meio
do banco de sementes do solo (as dormentes no solo), através do banco de
plântulas (as estabelecidas e suprimidas no chão da floresta), e em função da
63
formação de bosque (emissão rápida de brotos e/ou raízes provenientes de
indivíduos danificados).
O processo de recolonização pela vegetação em um ambiente perturbado a
partir dos bancos de sementes no solo, mantém um papel fundamental no equilíbrio
dinâmico da floresta. Denomina-se banco de sementes no solo a todas as sementes
viáveis no solo ou asssociadas à serapilheira para uma determinada área num dado
momento. É um sistema dinâmico com entrada de sementes por meio da chuva de
sementes e dispersão, podendo ser transitório, com sementes que germinam dentro
de um ano após o início da dispersão, ou persistem, como sementes que
permanecem no solo por mais de um ano (CALDATO et al., 1996). Esta
persistência personifica segundo Simpson et al. (1989), uma reserva do potencial
genético acumulado.
O entendimento dos processos de regeneração natural de comunidades
vegetacionais é importante para o sucesso do seu manejo (DANIEL e JANKAUSKIS,
1989). Uma das informações necessárias é o conhecimento do estoque de
sementes existentes no solo, ou seja, do banco de sementes do solo.
64
Tabela 11: Ocorrência de outras espécies arbóreas no testes de progênies/ procedências de M. urundeuva instalado em Selvíria-
MS aos 15,5 anos.
Nome comum
Nome científico
Família Ocorrência AB (abs) AB%
Murici
Byrsonima verbascifolia
Malpighiaceae MC 340,49 19,82
Pimenta de macaco
Xylopia aromatica
Annonaceae MC 267,76 15,59
Marmelo de cachorro
Alibertia sessilis
Rubiaceae MC 213,22 12,41
Mamica de porca
Zanthoxyllum hyemale
Rutaceae MC 111,98 6,52
Algodãozinho
Asclepias curassavica
Asclepiadaceae MC 86,36 5,02
Copaíba
Copaifera sp
Leguminosae MC 84,29 4,90
Mamica de cadela
Zanthoxylum subserratum
Rutaceae MC 74,38 4,33
Calunga
Simaba ferruginea
Simaroubaceae MC 49,17 2,86
Pau terra de folha larga
Qualea grandiflora
Vochysiaceae MC 42,14 2,45
Murici de anta
Byrsonima sp
Malpighiaceae MC 38,01 2,21
Paineira
Chorisia speciosa
Bombacaceae MC 35,53 2,06
Camboatá
Sapindaceae
Sapindaceae MC 35,12 2,04
Jacaranda paulista
Machaerium villosum
Leguminosae – Fabaceae MC 31,40 1,82
Carrapateiro
Ricinus communis
Euphorbiaceae MC 31,40 1,82
Mercurinho
Solanum swartzeanum
Solanaceae MC 30,16 1,75
Araticum rasteiro
Duguetia furfuraceae
Annonaceae MC 26,44 1,54
Bacupari rasteiro
Garcinia gardneriana
Clusiaceae MC 24,38 1,42
Quina
Coutarea hexandra
Rubiaceae MC 23,14 1,35
Uvaia
Eugenia uvalha
Myrtaceae MC 20,66 1,20
Assa-peixe
Vernomnia ferruginosa
Asteraceae C 15,70 0,91
Marmelo
Cydonia oblonga
Rosaceae C 15,28 1,90
Caliandra
Calliandra haematocephala
Leguminosae C 14,87 0,87
Gonçalo alves
Astronium fraxinifolium
Anacardiaceae C 13,63 0,80
Espinho cruzeta
Maytenus ilicifolia
Celastraceae C 11,98 0,70
Pau terra
Qualea parviflora
Vochysiaceae C 6,19 0,36
Curriola
Pouteria ramiflora
Sapotaceae C 6,19 0,36
Batata de Teiu
Jatropha isabelli
Euphorbiaceae C 5,78 0,34
Quina doce
Vochysia cinnamomea
Vochysiaceae C 5,37 0,31
Barbatimão
Stryphnodendron barbatiman
Leguminosae – Fabaceae C 4,95 0,29
Embiruçu
Pseudobombax grandiflorum
Bombacaceae C 4,54 0,26
Sapucaia
Lecythis ollaria
Lecythidaceae C 3,72 0,22
Lixeira
Curatella americana
Dilleniaceae C 3,71 0,22
Uva do brejo
Vitis campestris
Vitaceae C 3,30 0,19
Pata de vaca
Bauhinia forficata
Leguminosae - Fabaceae C 3,30 0,19
65
Tabela 11: (continuação)
Nome comum
Nome científico
Família Ocorrência AB (abs) AB%
Cabelo de Nego
Ouratea spectabilis
Ochnaceae C 3,30 0,19
Vergatesa
Anemopaegma arvense
Bignoniaceae C 2,89 0,17
Açoita – cavalo
Luehea paniculata
Tiliaceae C 2,89 0,17
Cambuim
Myrciaria tenella . Myrtaceae
C 2,06 0,12
Fumo bravo
Solanum mauriciatrum
Solanaceae C 1,65 0,09
Sucupira preta
Bowdichia virgilioides
Leguminosae – Fabaceae C 1,24 0,07
Roseira do campo
Kielmeyera rubriflora
Clusiaceae C 1,24 0,07
Araçá
Psidium cattleyanum
Myrtaceae C 1,24 0,07
Nó de cachorro
Heteropterys aphrodisiaca
Malpighiaceae. C 1,23 0,07
Guariroba peluda
Campomanesia pubescens
Arecaceae C 1,23 0,07
Pequi
Caryocar brasiliense
Caryocaraceae R 0,82 0,04
Monjoleiro
Acacia polypylla
Leguminosae R 0,82 0,04
Marolo
Annona crassiflora
Annonaceae R 0,82 0,04
Mandiocão
Schefflera morototoni
Araliaceae R 0,82 0,04
João da costa
Echis tes peltata
Apocinaceae R 0,82 0,04
Jacarandá caroba
Jacaranda caroba
Bignoniaceae R 0,82 0,04
Guariroba
Syagrus oleracea
Arecaceae R 0,82 0,04
Grão de galo
Cordia myxa
Boraginaceae R 0,82 0,04
Angico vermelho
Anadenanthera macrocarpa
Leguminosae – Fabaceae R 0,82 0,04
Santa barbara
Melia azedarach
Meliaceae R 0,41 0,02
Pinha
Annona squamosa
Annonaceae R 0,41 0,02
Pau santo
Kielmeyera coriacea
Clusiaceae R 0,41 0,02
Negamina
Siparuna guianesis
Monimiaceae R 0,41 0,02
Murici de lobo
Solanum lycocarpum
Solanaceae R 0,41 0,02
Macaúba
Acrocomia aculeata
Palmae R 0,41 0,02
Lobeira
Solanum lycocarpum
Solanaceae R 0,41 0,02
Japeba
Pothomorphe umbellata
Piperaceae R 0,41 0,02
Guapeva
Chrysophyllum imperiale
Sapotaceae R 0,41 0,02
Goiaba
Psidium guajava
Myrtaceae R 0,41 0,02
Fava de anta
Dimorphandra mollis
Leguminosae- Caesalpinoideae R 0,41 0,02
Capitão
Zinnia elegans
Compositae R 0,41 0,02
Capeva
Pothomorphe umbellata
Piperaceae R 0,41 0,02
Canelão
Ocotea velutina
Lauraceae R 0,41 0,02
Canafistula
Senna multijuga
Leguminosae- Caesalpinoideae R 0,41 0,02
Cajuzinho
Anacardium humile
Anacardiaceae R 0,41 0,02
Cafezinho
Palicourea marcgravii
Rubiaceae R 0,41 0,02
Baru
Dipteryx alata
Leguminosae-Fabaceae R 0,41 0,02
MC: muito comum; C: comum; R: rara
66
4.3 Sistema Silvipastoril
4.3.1 Altura do dossel forrageiro
Na Tabela 12 são apresentados os dados de altura do dossel forrageiro, na
condição de pré e pós pastejo em área a pleno sol e área sombreada.
A altura mensurada com prato ascendente nos tratamentos pleno sol e
sombra apresentou diferença significativa quando efetuada a média entre os
períodos de pastejo. Embora na condição pré pastejo a diferença entre os
tratamentos não seja estatisticamente significativa, esta pode ter significado
economico, já que na condição de sombra a altura foi 68% menor que na condição a
pleno sol.
Os dados mensurados com a régua não foram significativos entre os
tratamentos de luminosidade (pleno sol e sombra), porém quando realizada a
comparação entre as média pré e pós pastejo, a diferença entre elas foi significativa.
O fato de a determinação da altura com o prato ascendente ter apresentado
diferença significativa no efeito da luminosidade e a altura com a régua a diferença
foi no momento do pastejo é porque a altura mensurada com o prato leva em
consideração não apenas o tamanho, mas também a densidade da pastagem sendo
que na área sombreada haviam vários locais de solo sem vegetação.
A altura foi maior no tratamento a pleno sol, provavelmente devido à maior
taxa de acúmulo de forragem. Porém, esses dados diferem dos dados obtidos por
Sousa et al. (2007) que apresentaram alturas maiores na área sombreada que a
pleno sol.
67
Tabela 12: Altura do dossel forrageiro mensurada com prato ascendente (altura do
prato) e com régua (cm) em pastos de Brachiaria decumbens sob dois regimes de
luminosidade e dois momentos de pastejo manejados, sob lotação rotativa de
outubro de 2006 a janeiro de 2008 em Selvíria - MS
PLENO SOL SOMBRA Média
Altura com prato ascendente (altura do prato)
Pré-pastejo 16,45 5,11 10,77ª
Pós pastejo 9,10 4,35 6,72A
Média 12,77ª 4,72b
Altura com régua (cm)
Pré-pastejo 38,57 27,42 33,00A
Pós pastejo 25,10 19,17 22,13B
Média 31,83ª 23,30a
Médias seguidas pela mesma letra minúscula na linha e maíuscula na coluna não diferem entre si
(P>0,05).
4.3.2 Massa de forragem
A massa de forragem apresentou variação significativa conforme o regime
de luminosidade, não havendo efeito significativo do momento de pastejo ou da
interação entre luminosidade e momento de pastejo como ficou evidenciado na
Tabela 13. Estes dados a respeito da massa de forragem estão em consonância
com os obtidos por Carvalho et al. (2002), Andrade et al., (2004), Paciullo et al.
(2007) e Sousa et al., (2007), onde a massa de forragem a pleno sol foi
significativamente superior à masssa de forragem em área sombreada.
A massa de forragem obtida nas diferentes estações do ano encontram-se
na Tabela 8-A do Apêndice.
A partir dos dados de massa de forragem é possível observar que o
consumo de B. decumbens pelos animais foi maior na área a pleno sol que na área
sombreada, o que pode ter ocorrido devido à maior facilidade dos animais em
transitar na área de sol, que a quantidade de árvores e as áreas sem capim na
área sombreada dificultam a ingestão de forragem pelos animais. Os dados a
respeito de consumo de forragem na literatura sâo contraditórios, enquanto
Samarakoon et al. (1990) afirmam que houve redução do consumo em área
sombreada, Norton et al. (1991) afirmam que o consumo foi igual, tanto em área a
pleno sol, como em área sombreada.
68
Tabela 13: Massa de forragem (kg ha
-1
de MS) em pastos de Brachiaria decumbens
sob dois regimes de luminosidade e dois momentos de pastejo manejados sob
lotação rotativa de outubro de 2006 a janeiro de 2008 em Selvíria - MS
PLENO SOL SOMBRA Média
Pré-pastejo 1.571,27 752,70 1.161,98A
Pós pastejo 1.041,20 698,63 869,91A
Média 1.306,24a 725,66b
Médias seguidas pela mesma letra minúscula na linha e maíuscula na coluna não diferem entre si
(P>0,05).
Na Tabela 14 são apresentados os dados de composição morfológica a partir
da separação das folhas, colmos e material morto. Para os caracteres massa de
folhas, massa de colmos e massa de material morto foi realizada análise estatistica
para os tratamentos luminosidade (pleno sol e sombra), momento de pastejo (pré e
pós pastejo) e interação entre luminosidade e momento de pastejo.
As massas de folhas e colmos não apresentaram diferenças significativas em
nenhuma das análises realizadas. Os valores médios encontrados na área de pleno
sol de matéria seca de forragem verde (MSFV) foram de 1.286,28 kg ha
-1
semelhantes àqueles relatados por Paciullo et al. (2007) de 1.260 a 1.501 kg ha
-1
, no
entanto a MSFV para áreas de sombra foi de apenas 286 kg ha
-1
, reflexo
principalmente da baixa cobertura do solo com capim na área sombreada, sendo
que para os autores citados acima a MSFV da sombra variou entre 658 a 1.158 kg
ha
-1
no primeiro e segundo ano, respectivamente. A principal diferença entre este
trabalho e o dos autores acima é que a gramínea neste caso se estabeleceu sem
nenhum preparo do solo, e no trabalho citado o sistema foi planejado. A massa de
material morto apresentou diferença significativa quanto a luminosidade, sendo que
a massa foi maior a pleno sol que em área sombreada, provavelmente devido ao
maior crescimento da forragem na área de pleno sol e mesmo intervalo entre
pastejos para área de pleno sol e sombra, o que pode ter causado uma taxa mais
acelerada de acúmulo e, consequentemente senescêscia na área a pleno sol, que
a forragem não foi colhida mais frequentemente nesta área. Sousa et al. (2007),
também, obtiveram diferença significativa quando compararam a relação entre
material vivo e material morto, em área sombreadas a diferença foi maior que em
área a pleno sol. Cargnelutti Filho et al. (2004) obtiveram diferença significativa para
massa de folhas e massa de colmos, obtendo resultados superiores para as
69
gramíneas a pleno sol que na sombra.
As proporções de folhas, colmos e material morto também são apresentados
na Tabela 14. Avaliando a proporção de folhas, colmos e material morto, foi possível
observar que a proporção das partes da gramínea se manteve constante quando
comparado o tratamento a pleno sol e sombra e a interação entre luminosidade e
momento de pastejo, porém quando avaliado o momento de pastejo, os três
caracteres apresentaram diferenças significativas, sendo que a proporção de folhas
e colmos foi maior no pque no pós pastejo, a proporção de material morto foi
maior no pós pastejo em relação ao p pastejo, isto porque no pós pastejo os
animais já haviam consumido a parte viva restando uma proporção maior de material
morto.
Tabela 14: Massa seca de folhas, colmos e material morto (kg ha
-1
do componente
morfológico) e proporção de folhas, colmos e material morto (%) na massa de
forragem sob dois regimes de luminosidade e dois momentos de pastejo manejados
sob lotação rotativa de outubro de 2006 a janeiro de 2008 em Selvíria – MS.
PLENO SOL SOMBRA Média
Massa de folhas (kg ha
-1
de lâminas foliares)
Pré-pastejo 824,55 164,40 494,48A
Pós pastejo 177,60 84,65 131,13A
Média 501,080a 124,53a
Massa de colmos (kg ha
-1
de colmos+bainhas)
Pré-pastejo 1.289,90 167,60 728,75A
Pós pastejo 281,90 158,30 220,10A
Média 785,90a 162,95a
Massa de material morto (kg ha
-1
de material morto)
Pré-pastejo 542,45 33,60 288,03A
Pós pastejo 707,90 480,90 554,40A
Média 625,18a 257,25b
Proporção de folhas (% de folhas na MF)
Pré-pastejo 31,95 42,43 37,19A
Pós pastejo 14,89 11,13 13,01B
Média 23,42a 26,78a
Proporção de colmos (% de colmos+bainhas na MF)
Pré-pastejo 47,31 46,85 47,08A
Pós pastejo 23,87 21,31 22,59B
Média 35,59a 34,08a
Proporção de material morto (% de material morto na MF)
Pré-pastejo 20,73 10,71 15,72B
Pós pastejo 61,24 67,55 64,39A
Média 40,98a 39,13a
Médias seguidas pela mesma letra minúscula na linha e maíuscula na coluna não diferem entre si (P>0,05).
70
4.3.3 Acúmulo de forragem e taxa de acúmulo
Houve efeito significativo da luminosidade para o acúmulo de forragem e a
taxa de acúmulo de forragem, sendo os valores superiores nas áreas a pleno sol
conforme Tabela 15. Os valores de acúmulo de forragem durante o período
experimental foram bastante reduzidos, provavelmente causados pela falta de tratos
culturais na área, tais como ausência de adubação, implantação do pasto e
manejo do pastejo inadequado, pois o pasto recebe animais apenas quando estes
se encontram na fazenda. Além desses fatores, existem muitas áreas de solo
desnudo, sem a presença de capim, devido a alta densidade arbórea na área
sombreada. Fagundes et al. (2005), trabalhando com B. decumbens sob quatro
doses de N (75, 150, 225 e 300 kg ha
-1
ano
-1
de N), encontraram taxas de acumulo
de forragem médias entre os tratamentos entre 9,7 e 67,1 kg ha
-1
dia
-1
no inverno e
verão, respectivamente, indicando que o potencial de acúmulo de forragem desta
espécie quando adubada com nitrogênio é muito superior aos encontrados neste
experimento.
O valor negativo de acúmulo de forragem obtido para a área sombreada no
período de primavera06-verão07 pode ter sido causado pela alteração na folhagem
das árvores que por sua vez alterou o ambiente luminoso e o crescimento pode ter
sido reduzido, enquanto que a senescência foi aumentada causando um efeito de
menor massa no pré-pastejo do que no pós-pastejo anterior. Zeferino (2006)
encontrou valores negativos de acúmulo de forragem para Brachiaria brizantha cv.
Marandu sob lotação e intermitente com taxas de acúmulo variando de -16,0 no
inverno a 59,6 kg ha
-1
dia
-1
, em períodos do ano de baixa pluviosidade e
temperaturas, indicando que nestas condições a senescência de forragem foi
superada pelo crescimento dessa, indicando que fatores ambientais tais como água,
temperatura e luminosidade podem afetar o acúmulo de forragem.
71
Tabela 15: Acúmulo de forragem (kg ha
-1
de MS ) e taxa de acúmulo de forragem
(kg ha
-1
dia
-1
de MS) de Brachiaria decumbens sob dois regimes de luminosidade e
dois momentos de pastejo manejados sob lotação rotativa de outubro de 2006 a
janeiro de 2008 em Selvíria - MS
Acúmulo de Forragem Taxa de Acúmulo
Período Pleno Sol Sombreada Pleno Sol Sombreada
Primavera06-Verão07 591,4
-180,0
6,3
-1,9
Verão07-Outono07 295,7
93,8
3,9
1,2
Outono07-Inverno07 79,6
64,9
0,7
0,6
Inverno07-Verão08 562,5
79,3
5,3
0,7
Média Ponderada 375,55a
15,54b
3,91a
0,14b
Médias seguidas pela mesma letra minúscula na linha e maíuscula na coluna não diferem entre si
(P>0,05).
4.3.4 Densidade de forragem
Para a densidade de forragem (Tabela 16) não houve efeito da
luminosidade, momento de pastejo e não houve interação entre luminosidade e
momento de pastejo, indicando uma possível constância de proporção entre altura
do dossel e massa de forragem.
Tabela 16: Densidade de forragem (g de MS. cm
-1
ha) sob dois regimes de
luminosidade e dois momentos de pastejo manejados sob lotação rotativa de
outubro de 2006 a janeiro de 2008 em Selvíria – MS.
PLENO SOL SOMBRA Média
Pré-pastejo 40,26
28,75
34,52A
Pós pastejo 45,73
39,01
42,37A
Média 43,00a
33,90a
Médias seguidas pela mesma letra minúscula na linha e maíuscula na coluna não
diferem entre si (P>0,05).
4.3.5 Valor nutritivo e digestibilidade “in vitro
Na Tabela 17 são apresentados os dados referentes a análise bromatológica
da forrageira a pleno sol e em área sombreada. As análises de proteína bruta,
material mineral, celulose e hemicelulose, não apresentaram diferenças significativas
entre os tratamentos luminosidade (pleno sol e sombra) e momento de pastejo (pré e
pós pastejo) e a interação entre ambos também não foi significativa. Sousa et al.
(2007), trabalhando com B. brizantha e analisando pleno sol e área sombreada, não
obtiveram diferença significativa apenas para a matéria mineral.
72
A análise de Fibra insolúvel em detergente neutro (FDN), Fibra insolúvel em
detergente ácido (FDA), Lignina e Digestibilidade in vitro da matéria seca (DIVMS)
não apresentaram diferença significativa para o tratamento luminosidade, porém
quando realizada a comparação entre pré e pós pastejo observou-se diferença
significativa.
Para FDN, que determina a porção fibrosa da pastagem a percentagem foi
maior no momento do pós pastejo em relação ao pré, isso devido a maior proporção
de folhas no ppastejo em relação ao pós, pois esse componente morfológico tem
menor proporção de fibras e é consumido preferencialmente pelos animais. A
análise de FDA também demostrou uma maior porcentagem no pós pastejo que no
pré . A porcentagem de lignina foi maior no s que no pré pastejo. Enquanto a
DIVMS teve comportamento inverso, foi maior no pré que no pós pastejo, pois
principalmente as folhas e também os colmos em maior proporação no pré-pastejo
são mais digestíveis em relação ao componente e material morto, predominante no
pós-pastejo. Dessa forma, os dados mostram coerência que existe uma relação
inversa entre lignina e DIVMS, ou seja, quanto mais lignina menor a digestibilidade.
Carvalho et al. (2002) analisaram a porcentagem de FDN e DIVMS de cinco
gramíneas forrageiras em condições de sol e sombra e a de porcentagem de FDN
para todas elas foi não significativa, a DIVMS apresentou diferença significativa
entre as gramíneas.
Paciullo et al. (2007), em experimento com B.decumbens sob sombreamento
e a pleno sol, obtiveram os seguintes resultados. As porcentagens de FDA e LIG
não apresentaram diferença significativa entre os tratamentos de luminosidade, FD
N, foi superior na área a pleno sol, enquanto DIVMS foi superior em área
sombreada.
Os valores de PB (3,88% a 5,45% da MS) e DIVMS (35,04% a 52,35% da
MS) encontrados estão baixos porém dentro do esperado para planta inteira, que
contemplam também os componentes colmo e material morto da forragem. Paciullo
et al. (2007), trabalhando com B. decumbens, encontraram valores de PB para
folhas de 9,6% a 12,4% para sol e sombra, respectivamente. Santos et al. (2004),
em experimento com a mesma espécie, relataram valores de PB de extrusa de
5,92%, 4,46% e 8,47% para os meses de agosto, setembro e outubro,
respectivamente, época de maior seca e presença de material senescente na
forragem disponível. Para DIVMS Paciullo et al. (2007) relataram valores de 58,0%
73
e 42,9% para folhas e colmos, respectivamente A DIVMS da forragem a pleno sol foi
em média 47,6% e 53,2% em média da forragem na sombra, amplitudes próximas
às encontradas no presente experimento.
Os valores de FDN (76,89 a 82,13), FDA (49,00 a 55,97) e LIG (7,32 a
11,57) encontrados estão elevados, porém também de acordo para amostras de
planta inteira, pois a amplitude de valores é um pouco acima do encontrado por
Paciullo et al., (2007) para as partes vivas da planta (colmo + folhas) de FDN 75,9 e
73,1; FDA 36,4 e 38,0; LIG 7,32 7,20 para áreas de pleno sol e sombreadas,
respectivamente. Enquanto, Santos et al. (2004) relataram valores obtidos em
extrusa de FDN de 74,73 a 72,31 e de FDA de 41,14 a 38,27 e LIG de 9,40 a 8,99
para o período de agosto a outubro.
74
Tabela 17: Teores PB, MM, FDN, FDA, LIG, CEL, HEMI, DIVMS (%) na massa seca
de forragem sob dois regimes de luminosidade e dois momentos de pastejo
manejados sob lotação rotativa de outubro de 2006 a janeiro de 2008 em Selvíria
MS.
PLENO SOL SOMBRA Média
Proteína bruta (PB) (% da MS)
Pré-pastejo 4,42 5,45 4,93A
Pós pastejo 4,21 3,88 4,04A
Média 4,31a 4,66a
Matéria Mineral (MM) (% da MS)
Pré-pastejo 7,60 10,22 8,91A
Pós pastejo 10,67 10,07 10,37A
Média 9,13a 10,15a
Fibra insolúvel em detergente neutro (FDN) (% da MS)
Pré-pastejo 78,29 78,29 76,89B
Pós pastejo 81,27 82,13 81,70A
Média 79,78a 78,81a
Fibra insolúvel em detergente ácido (FDA) (% da MS)
Pré-pastejo 49,00 49,37 49,18B
Pós pastejo 54,30 57,65 55,97A
Média 51,65a 53,51a
Lignina (LIG) (% da MS)
Pré-pastejo 7,32 7,38 7,35B
Pós pastejo 9,00 11,53 10,26A
Média 8,16a 9,46a
Celulose (CEL) (% da MS)
Pré-pastejo 37,89 35,73 36,81A
Pós pastejo 38,39 39,41 38,90A
Média 38,14a 37,57a
Hemicelulose (HEMI) (% da MS)
Pré-pastejo 28,28 26,12 27,70A
Pós pastejo 26,97 24,48 25,72A
Média 28,13a 25,30a
Digestibilidade in vitro da matéria seca (DIVMS) (% da MS)
Pré-pastejo 50,81 52,35 51,58A
Pós pastejo 43,41 35,04 39,22B
Média 47,11a 43,69a
Médias seguidas pela mesma letra minúscula na linha e maíuscula na coluna não diferem
entre si (P>0,05).
75
5 - CONCLUSÕES
o As populações de Selvíria e Aramina, apresentaram baixa herdabilidade,
indicando a existência de variabilidade;
o A variabilidade genética foi maior dentro da população de Selvíria, quando
comparada a população de Aramina;
o A população de Selviria apresentou maiores ganhos de seleção que a
população de Aramina, tanto na realização de propagação sexuada quanto de
propagação assexuada;
o As duas populações apresentam-se bem adaptadas ao local de implantação
do teste de progênie/procedência, visto que a taxa de sobrevivência foi maior
que 90%;
o As matrizes da população de Aramina estão mais bem representadas, que
mais de 50% das progênies foram superiores às matrizes;
o A utilização do IME, permite selecionar progênies que proporcione um bom
ganho de seleção e boa variabilidade, nestes caso deve-se sempre
estabelecer um kf máximo, para que haja um maior Ne e maior diversidade
genética;
o Os ganhos na população de Aramina, são baixos devido a baixa
variabilidadeprovocada pela a grande antropização do local da coleta de
sementes;
o A área de instalação do teste de progênies/procedências encontra-se em
processo de revegetação, devido ao grande número de plantas jovens.
o O desenvolvimento da forrageira, tanto em altura quanto em massa, foi maior
a pleno sol que em área sombreada;
o O acúmulo de forragem foi baixo nas duas condições de luminosidade, devido
a deficiência de manejo;
o Quanto ao valor nutricional não houve diferença significativa quanto ao sol e
sombra, sendo que as diferenças de FDA, FDN, Lignina e DIVMS ficaram
apenas entre o pré e o pós pastejo.
76
6 - REFERÊNCIAS BIBLIOGRÁFICAS
ABDALA, L.; MORAES, M.L.T; RECHIA, C.G.V.; GIORGINI, J.F.; SÁ, M.E.;
POLIZELI, M.L.T.M. Biochemical traits useful for the determination of genetic
variation in a natural population of Myracrodruon urundeuva Pesquisa
Agropecuária Brasileira, Brasília, v.37, n.7, p.909-916, 2002.
ALLARD, R.W. Princípios do melhoramento genético de plantas. São Paulo:
Edgard Blücher, 1971. 381p.
ALMEIDA, S.P.; PROENÇA, C.E.B.; SANO, S.M. ; RIBEIRO, J.F. Cerrado:
espécies vegetais úteis. Planaltina: EMBRAPA-CPAC, 1998. 464p.
ANDRADE, C.M.S.; GRACIA, R.; COUTO,L.; PEREIRA, O.G.; SOUZA, A.L.
Desempenho de seis gramíneas solteiras ou consorciadas com Stylosanthes
guianensi cv. Mineirão e eucalipto em sistema silvipastoril. Revista Brasileira
de Zootecnia, Viçosa, MG, v.32, n.6, p.1845-1850, 2003
ANDRADE, C.M.S.; VALENTIM, J.F.; CARNEIRO, J.C.; VAZ, F.A.Crescimento
de gramíneas e leguminosas forrageiras tropicais sob sombreamento.
Pesquisa Agropecuária Brasileira, Brasília, v.39, n.3, p.263-270, 2004.
ANDRADE; L.A. ; PEREIRA; I.M.; DORNELAS, G.V. Análise da vegetação
arbóreo-arbustiva; espontânea; ocorrente em taludes íngremes no município de
Areia- estado da Paraíba. Revista Árvore, Viçosa, MG, v.26, n.2, p.165-172,
2002.
ASSOCIATION OF OFFICIAL AGRICULTURAL CHEMISTS. Official methods
of analysis. 15.ed. Washington, 1990. 1298p.
BALERONI, C. R. S.; ALVES, P.F.; SANTOS, E.B.R.; CAMBUIM, J. ANDRADE,
J.A.C.; MORAES, M.L.T. Variação genética em populações naturais de aroeira
em dois sistemas de plantio. Revista do Instituto Florestal, São Paulo, v. 15,
n. 2, p. 125-136, 2003.
BALERONI, C.R.S. Comportamento de populações de Myracrodruon
77
urundeuva Fr. All. procedentes de área com perturbação antrópica. 2003.
123 f. Dissertação (Mestrado) Faculdade de Engenharia de Ilha Solteira,
Universidade Estadual Paulista, Ilha Solteira, 2003.
BANDEIRA, M.A.M. Myracrodruon urundeuva allemão (aroeira do sertão):
constituintes químicos ativos da planta em desenvolvimento e adulta. In.,
LORENZI, H.; MATOS, F.J.A. Plantas medicinais do Brasil: nativas e
exóticas. Nova Odessa: Instituto Plantarum, 2002. 512p.
BARROSO, G.M. Sistemática de angiosperma do Brasil. Viçosa: Imprensa
Universitária, 1984. v.2.
BENEDETTI, V. ; ZANI-FILHO, J. Metodologia para caracterização de
fragmentos florestais em projetos agro-silviculturais. In: CONGRESSO
FLORESTAL PANAMERICANO, 1, CONGRESSO FLORESTAL BRASILEIRO,
7, 1993, Curitiba. Anais... Curitiba: SBS/SBEF, 1993. v.2, p.440-446.
BERTONI, J.E.A.; DICKFELDT, E.P. Plantio de Myracrodruon urundeuva Fr.
All. (aroeira) em área alterada de floresta: desenvolvimento das mudas e
restauração florestal. Revista do Instituto Florestal, São Paulo, v.19, n.1,
p.31-38, 2007.
BOVI, M.L.A.; RESENDE, M.D.V.; SÁES, L.A.; UZZO, R.P. Genetic analysis for
sooty mold resistance and heart of palm yield in Archontophoenix Scientia
Agricola Piracicaba, v.61, n.2, p.178-184, 2004.
BOVI, M.L.A.; RESENDE, M.D.V.; SPIERING, S.H.; Genetic parameters
estimation in king palm throgh a mixed mating system model. Horticultura
Brasileira, Brasília, v.21, n.1, p.93-98, 2003.
BRANSBY, D.I.; MATCHES, A.G. ;KRAUSE, G.F. Disk meter for rapid
estimation of herbage yield in grazing trials. Agronomy Journal, Madison, v.69,
p.393-396, 1977.
CALDATO, S.L.; FLOSS, P.A.; DA CROCE, D.M.; LONGHI, S.J. Estudo da
regeneração natural, banco de sementes e chuva de sementes na reserva
genética florestal de Caçador, SC. Ciência Florestal, Santa Maria, v.6. n.1,
78
p.27-38, 1996.
CAMPOS, H. Estatística aplicada à experimentação com cana-de-açúcar.
Piracicaba: FEALQ, 1984. 292p.
CARGNELUTTI FILHO, A.; CASTILHOS, Z.M.S.; STORCK, L.; SAVIAN, J.F.
Análise de repetibilidade de caracteres forrageiros de genótipos de Panicum
maximum, avaliados come sem restrição solar. Ciência Rural, Santa Maria,
v. 34, n.3, p.723-729, 2004.
CARVALHO, M.M. O papel das árvores em sistemas de produção de animal a
pasto. O produtor de leite, Rio de Janeiro, v.24, n.147, p.56-59, 1994a.
CARVALHO, M.M.; FREITAS, V.P.; ANDRADE, A.P. Crescimento inicial de
cinco gramíneas tropicais em um sub bosque de angico vermelho
(Anadenathera macrocarpa Benth) Pasturas Tropicales, Cali, v.17, n.1, p.24-
30, 1994.
CARVALHO, M.M.; FREITAS, V.P.; XAVIER, D.F. Início de florescimento,
produção e valor nutritivo de gramíneas forrageiras sob condição de
sombreamento natural. Pesquisa Agropecuária Brasileira, Brasília, v.37, n.5,
p.717-722, 2002.
CARVALHO, P.E.R. Espécies arbóreas brasileiras. Brasília: Embrapa
Informação Tecnológica; Colombo: Embrapa Florestas, 2003. v.1, 1039p.
CARVALHO, P.E.R. Espécies arbóreas brasileiras. Brasília: Embrapa
Informação Tecnológica; Colombo: Embrapa Florestas, 2006. v.2, 627p.
CARVALHO, P.E.R. Espécies florestais brasileiras: recomendações
silviculturais, potencialidade e uso da madeira. Colombo:
Embrapa/CNPFlorestas, 1994b. 640p.
CARVALHO,M.M.; FREITAS, V.P.; ALMEIDA, D.S. Efeito de árvores isoladas
sobre a disponibilidade e composição mineral de forrageiras em pastagens de
braquiária. Revista Brasileira de Zootecnia, Viçosa, MG, v. 23, n.5, p.709-
718. 1995.
79
CASTRO, C.R.T.; GARCIA, R.; CARVALHO, M.M.; LAÉRCIO,C. Produção
Forrageira de Gramíneas sob Luminosidade Reduzida. Revista Brasileira de
Zootecnia. Viçosa, MG, v. 28, n.5, p.919-927, 1999.
CONNOR, D. J. Plant stress factoresand their influence and production of
agroforetry plant associations. In: HURLEY, R.A. (Ed.). Plant research and
agroforestry. Naiobi: ICRAE, 2003. p.401-424.
CORNELLIUS, J. Heretabilities and additive genetic coefficients of variation in
forest trees. Canadian Journal of Forestry Research
, Vancouver, v. 24,
p. 371-379, 1994.
COSTA, R.B. ; SCARIOT, A. A Fragmentação florestal e os recursos genéticos.
In: COSTA R.B. (Org.). Fragmentação florestal e alternativas de
desenvolvimento rural na região centro-Oeste. Campo Grande: UCDB,
2003. p.53-74.
COSTA, R.B.; RESENDE, M.D.V.; ARAUJO, A.J.; GONÇALVES, P.S.;
BORTOLETTO, N. Seleção combinada univariada e multivariada aplicada ao
melhoramento genético de seringueira. Pesquisa Agropecuária Brasileira,
Brasília, v. 35, n.2, p.381-388, 2000a.
COSTA, R.B.; RESENDE, M.D.V.; ARAUJO, A.J.; GONÇALVES, P.S.;
MARTINS, A.L.M. Genotype- environment interaction and the number of test
sites for the genetic improvement of rubber tress (Hevea) in São Paulo state,
Brazil. Genetic and Molecular Biology, Ribeirão Preto, v.23, n.1, p.179-187,
2000b.
COSTA, R.B.; RESENDE, M.D.V.; CONTINI, A.Z.; REGO, F. L. H.; ROA, R. A.
R.; MARTINS, W. J. Avaliação genética de indivíduos de erva-mate (Ilex
paraguariensis A. St.-Hil.) na Região de Caarapó, MS, pelo procedimento
REML/BLUP. Ciência Florestal, Santa Maria, v. 15, n. 4, p. 371-376, 2005.
COSTA, R.B.; RESENDE, M.D.V.; CONTINI, A.Z.; REGO, F.L.H.; ROA, R.A.R.;
MARTINS, W.J. Avaliação genética de indivíduos de erva-mate (Ilex
paraguariensis St.Hil.) na região de Caarapó, MS, pelo procedimeto
80
REML/BLUP. Ciência Florestal, Santa Maria, v.15, n.4, p.371-376, 2005.
CRONQUIST,A. An integrated system of classification of flowering plants.
New York: Columbia University, 1981. p.805-809.
CRUZ, C.D. ; REGAZZI, A.J. Modelos biométricos aplicados ao
melhoramento genético. Viçosa: UFV, 2001. 390p.
DANIEL, O.; JANKAUSKIS, J. Avaliação de metodologia para o estudo do
estoque de sementes do solo. Série IPEF, Piracicaba, v.41/42, p.18-26. 1989.
DEMATTÊ, J.L.I. Levantamento detalhado dos solos do Campus
experimental de Ilha Solteira. Piracicaba: USP/ESALQ, 1980. 114p.
(Mimeogr.).
DIAS, L.A.S. ; KAGEYAMA, P. Y. Variação genética em espécies arbóreas em
conseqüência para o melhoramento florestal. Agrotropica : Revista de
Agricultura dos Tropicos Umidos, Itabuna, v.3, n.3, p.119-127, 1991.
DUBOIS, J.C. Manual de sistemas agroflorestais. Rio de Janeiro: REBRAF,
1996. 228p.
DURIGAN, G.; BAITELLO, J.B.; FRANCO, G.A.D.C.; SIQUEIRA, M.F. Plantas
do cerrado paulista: imagens de uma paisagem ameaçada. São Paulo:
Páginas & Letras, 2004. 475p.
EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - Embrapa.
Sistema brasileiro de classificação de solos. Rio de Janeiro:
EMBRAPA/CNPSO, 1999. 412p.
ETTORI, L.C.; SIQUEIRA, A.C.M.F.; ZANATTO, A.C.S. & BOAS, O.V.
Variabilidade genética em duas populações de Cordia trichotoma. Revista do
Instituto Florestal, São Paulo, v.11, n.2, p.179-187, 1999.
FAGUNDES, J.L.; FONSECA, D.M. ; GOMIDE, J.A.; NASCIMENTO JÚNIOR,
D.;VITOR, C.M.J.; MORAIS, R.V.; MISTURA, C.;REIS, G.C.; MARTUSCELLO,
J.A. Acúmulo de forragem em pastos de Brachiaria decumbens adubados com
nitrogênio. Pesquisa Agropecuária Brasileira, Brasilia, v.4, n.4, p.397-403,
81
2005.
FALCONER, D. D. Introdução a genética quantitativa. Viçosa: UFV, 1981.
279p.
FARIAS NETO, J.T.; RESENDE, M.D.V.; OLIVEIRA, M.S.P.; SANTOS, N.S.A.;
CANUTO, E.L.; NOGUEIRA, O.L.; MULLER, A.A. Avaliação genética de
progênies de polinização aberta de açaí (Euterpe oleracea) e estimativas de
parâmetros genéticos. Cerne, Lavras, v.13, n.4, p.376-383, 2007.
FELICIANE A.N.P. Estudo da germinação de semntes e desenvolvimento
de muda, acompanhada de descrições morfológicas, de dez espécies
arbóreas ocorrentes no semi-árido nordestino. 1989. 114 f. Dissertação
(Mestrado) - Universidade Federal de Viçosa. Viçosa, MG, 1989.
FERREIRA, A.C.; ARAÚJO, A.J. Procedimentos e recomendações para
testes de procedências. Curitiba: EMBRAPA-URPFCS, 1981. 29p. (Série
documentos, 6).
FONSECA, A.J. Variação genética em populações naturais de aroeira
(Myracrodruon urundeuva Fr All.) Anacardiaceae- em sistema
agroflorestal. 2000. 65 f. Dissertação (Mestrado) Faculdade de Engenharia
de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, 2000.
FONSECA, A.J.; MORAES, M.L.T.; AGUIAR, A.V.; LACERDA, A.C.M.B.L.
Variação genética em progênies de duas populações de Myracroduon
urundeuva Fr. All. em sistema agroflorestal. Revista do Instituto Florestal,
São Paulo, v.15, n.2, 2003.
FOOD AGRICULTURAL ORGANIZATTION FAO. Databook on endangened
tree and sbrub species and provenances. Rome: FAO, 1986. p.116-125.
FRAME, J. Herbage mass. In: DAVIES, A.(Ed.). Sward measurement
handbook. Reading: The British Grassland Society, 1993. p.59-63.
FRANKEL, O.H.; SOULÉ, M.S. Conservation and evolution Cambridge:
Cambridge University Press, 1981. 327p.
82
FREITAS, M.L.M. Caracterização genética de população de Myracrodruon
urundeuva F.F. & M.F. a partir de marcador fAFLP e caracteres
quantitativos para Conservação in Situ e ex Situ. 2003. 85 f. Tese
(Doutorado) - Universidade Estadual Paulista, Jaboticabal, 2003.
FREITAS, M.L.M. Variação genética em progênies de aroeira (
Myracrodruon urundeuva Fr. All.) Anacardeaceae em diferentes sistema
de plantio. 1999. 95 f. Dissertação (Mestrado) Faculdade de Engenharia,
Universidade Estadual Paulista, Ilha Solteira, 1999.
FREITAS, M.L.M.; AUKAR, A.P.A.; SEBBENN, A.M.; MORAES, M.L.T.;
LEMOS, E.G.M. Variação genética em progênies de Myracrodruon urundeuva
F.F. & M.F. allemão em três sistemas de cultivo. Revista Árvore, Viçosa, MG,
v.30, n. 3, p. 319-329, 2006.
FREITAS, M.L.M.; AUKAR, A.P.A.; SEBBENN, A.M.; MORAES, M.L.T.;
LEMOS, E.G.M. Variabilidade genética intrapopulacional em Myracrodruon
urundeuva Fr. All por marcadores AFLP. Scientia Forestalis, Piracicaba, n.68,
p.21 – 28, 2005.
FURLANI, R.C.M.; MORAES, M.L.T.; RESENDE, M.D.V.; FURLANI JÚNIOR,
E.; GONÇALVES, P.S.; VALÉRIO FILHO, W.V. Estimation of variance
components and prediction of breeding values in rubber tree using the
REML/BLUP procedure. Genetic and Molecular Biology, Ribeirão Preto,
v.28, n.2, p.271-276, 2005.
GANDARA, F.B.; KAGEYAMA, P.Y. Indicadores de sustentabilidade de
florestas naturais. Série Técnica IPEF, Piracicaba, v.12, n. 31, p.79-84, 1998.
GARCIA, C.H. Tabela para classificação do coeficiente de variação.
Piracicaba: Instituto de Pesquisas e Estudos Florestais - IPEF, 1989. 10p.
(Circular técnica, 171).
GARCIA, C.H.; NOGUEIRA, M.C.S. Utilização da metodologia REML/BLUP na
seleção de clones de eucalipto. Scientia Forestalis, Piracicaba, n.68, p.107-
112, 2005.
83
GARCIA, R.; COUTO, L. Sistemas silvipastoris: tecnología emergente de
sustentabilidade. In: SIMPÓSIO INTERNACIONAL SOBRE PRODUÇÃO
ANIMALEM PASTEJO, 1997, Vinosa. Anais… Viçosa: DZO/UFV, 1997.
p.447-471.
GARWOOD, N.C. Tropical Soil Seed Banks: a Review. 1989. In: CALDATO,
S.L.; FLOSS, P.A.; DA CROCE, D.M.; LONGHI, S.J. Estudo da regeneração
natural, banco de sementes e chuva de sementes na reserva genética florestal
de Caçador, SC. Ciência Florestal, Santa Maria, v.6. n.1, p.27-38, 1996.
GONZALEZ, M.A.; HUSSEY, M.A.; CONRAD,B.E. Plant heigth, disk and
capacitance meter to estimate bermudagrass herbage mass. Agronomy
Journal, Madison, v.82, p.861-864, 1990.
GÖTSCH, E. O Renacer da agricultura. Rio de Janeiro: AS-PTA, 1995. 22p.
GUERREIRO CARMELO, S.M. Morfologia, anatomia e desenvolvimento
dos frutos, sementes e plântulas de Schinus terebinthifolius Raddi,
Lithera molleoides (Vell.) Engl., Myracrodruon urundeuva Fr. Allem. e
Astronium graveolens Jacq (Anacardiaceae). 1996. 231 f. Tese (Doutorado)
– Universidade Estadual Paulista, Rio Claro, 1996.
HAYAWARD, M.D.; HAMILTON, N.R.S. Genetic diversity population structure
and conservation. In: CALLOW, J.A.; FORD-LLOYD, B.V.; NEWBURY, H.J.
Bietechnologyand plant genetic reserch conservation and use. Biotechnology
in Agriculture Series, Cab internacional, v.19, p.49-76, 1997.
HERNANDEZ, F.B.T.; LEMOS FILHO, M.AF.; BUZETTI, S. Software HIDRISA
e o balaço hídrico de Ilha Solteira. Ilha Solteira: UNESP/FEIS, 1995. 45p.
(Série irrigação, 1).
KAGEYAMA, P. Y.; BIELLA, L. C.; PALERMO, A. J. Plantações mistas com
espécies nativas com fins de proteção a reservatório. In: CONGRESSO
FLORESTAL BRASILEIRO, 6, 1990, Campos de Jordão. Anais...o Paulo:
SBC/SBEF, 1990. p.109-118.
84
KAGEYAMA, P. Y.; GANDARA, F. B. Dinâmica de populações de espécies
arbóreas: implicações para o manejo e a conservação. In: SIMPÓSIO DE
ECOSSISTEMAS DA COSTA BRASILEIRA, 3, 1993, Serra Negra. Simpósio...
São Paulo: ACIESP, 1993. v.2, p.1-9.
KAGEYAMA, P.Y. ; PATIÑO-VALERA, F. Conservación e manejo de recursos
genéticos forestales: factores que influyen en la estructura y diversidad de los
ecosistemas forestales.
In: CONGRESSO FLORESTAL MUNDIAL, 9, México,
1985. Trabalhos convidados… México: FAO, 1985. 24p.
KAGEYAMA, P.Y. Estudo para implantações de matas ciliares e de
proteção na bacia hidrográfica do Passa Cinco visando a utilização para
abastecimento público. Piracicaba: DAEE/USP/FEALQ, 1986. 25 p (Relatório
de pesquisa).
KAGEYAMA, P.Y. Variação genética em progênies de uma população de
Eucalyptus grandis (Hill) Maiden. 1980. 125f. Tese (Doutorado em
Agronomia Genética e Melhoramento de Plantas) Escola de Agricultura
“Luiz de Queiroz” , Universidade de São Paulo, Piracicaba, 1980.
KAGEYAMA, P.Y.; GANDARA, F.B.; VENCOVSKY, R. Consevação in situ de
espécies arbóreas tropicais. In: NASS, L.L.; VALOIS, A.C.C.; MELO, I.S.;
VALADARES-INGLIS, M.C. Recursos genéticos e melhoramento- plantas.
Rondonópolis: Fundação MT, 2001. p.149-158.
KANASHIRO, M. Genética e melhoramento de essências florestais natives:
aspectos conceituais e práticos. In: CONGRESSO NACIONAL SOBRE
ESSÊNCIAS NATIVAS, 2, 1992, São Paulo. Anais… São Paulo, 1992. p.
1168-1178.
KIRBY,J.M. Forest grazing. Word Crops, London, v.28, n.6, p.248-250, 1976.
KITZMILLER, J.H. Progeny testing objectives and design. In: SERVIVE WIDE
GENETIC WORKSHOP, 1983, Charleston. Proceedings... Charleston: South
Carolina, 1983. p. 231-247.
85
LAWRENCE, M.J.; MARSHALL, D.F. Plant population genetics In: MAXTED,
N.; FORD-LLOYD, B.V.; HAWKES, J.G. Plant genetic conservation. London:
Chapman & Hall, The University of Birmingham, 1997.
LEITÃO FILHO, H.F.; PAGANO, S.N.; CESAR, O.; TIMONI, J.L. Ecologia da
Mata Atlântica em Cubatão (SP). São Paulo: Ed. UNESP-UNICAMP, 1993.
184p.
LEME, T.M.S.P.; PIRES, M.F.A.; VERNEQUE, R.S.V.; ALVIM, M.J.; AROEIRA,
L.J.M. Comportamento de vacas mestiças Holandês x Zebu, em pastagem de
Brachiaria decumbens em sistema silvipastoril. Ciência e Agrotecnologia,
Lavras, v. 29, p.668-675, 2005.
LLEIRAS, E. Conservação de recursos genéticos florestais. In: CONGRESSO
NACIONAL SOBRE ESSÊNCIAS NATIVAS, 2, 1992, São Paulo. Anais... São
Paulo: Secretaria do Meio Ambiente/Instituto Florestal, 1992. pt.4, p.1179-1184.
LORENZI, H. Árvores brasileiras: manual de identificação e cultivo de plantas
arbóreas nativas do Brasil. Nova Odessa: Plantarum, 1992. 368p.
LOVELESS, M.D. ; HAMRICK, J.L. Ecological determinants of genetic structure
in plant populations. Annual Review of Ecology and Systematics, Palo Alto,
v. 15, p. 65-95, 1984.
MANNETJE, L.T. Measurngi biomass of grassland vegetation. In: MANNET,J.E.
L.T. ; JONES R.M. (Ed.). Field and laboratory methods for grassland and
animal production reserarch. Wallingford: CABI Publishing, 2000. p.151-177.
MATOS, F.J.A. Farmácias vivas sistemas de utilização de plantas medicinais
projetado para pequenas comunidades. In. LORENZI, H.; MATOS, F.J.A.
Plantas medicinais do Brasil: nativas e exóticas. Nova Odessa: Instituto
Plantarum, 2002. 512p.
MEDEIROS, A.C.S. Comportamento fisiológico, conservação de
germoplasma alongo prazo e previsão de longevidade de sementes de
aroeira (Astronium urundeuva (Fr. All.) Engl.) 1996. 127 f. Tese (Doutorado)
86
- Universidade Estadual Paulista, Jaboticabal, 1996.
MINISTÉRIO DA CIÊNCIA E TECNOLOGIA - C&T MCT- Ministério da
Ciência e Tecnologia. C&T Jovem. Cerrado pode sumir até 2030. Disponível
em: <
http://www.cenargen.embrapa.br/cenargenda/noticias2006/ctjovem130606.pdf>
Acesso em: 09 jan. 2007.
MISSIO, R.F.; SILVA, A.M.; DIAS, L.A.S.; MORAES, M.L.T.; RESENDE, M.D.V.
Estimates of genetic parameters and prediction of additive genetic values in
Pinus kesya progenies. Crop Breeding and Applied Biotechnology, Viçosa,
MG, v.5, p.394 – 401, 2005.
MORAES, M. L. T. Variação genética e aplicação da análise multivariada
em progênies de Pinus caribaea Morelet var. hondurensis Barret e Golfari.
2001. 124 f. Tese (Livre Docente) Faculdade de Engenharia, Universidade
Estadual Paulista, Ilha Solteira, 2001.
MORAES, M.L.T. Variabilidade genética por isoenzimas e caracteres
quantitativos em duas populações naturais de aroeira Myracrodruon
urundeuva F.F. & M.F. Allemão Anacardiaceae (Syn: Astronium
urundeuva (Fr. Allemão) Engler). 1992. 139 f. Tese (Doutorado em Genética
e Melhoramento de Plantas) – Escola Superior de Agricultura “Luiz de Queiroz”,
Universidade de São Paulo, Piracicaba, 1992.
MORAES, M.L.T.; KAGEYAMA, P.Y.; SEBBENN, A.M. Correlated matings in
diocious tropical tree, Myracrodruon urundeuva FR. ALL. Forest Genetics
Zvolen, v.11, n.1, p.55-61, 2004.
MORAES, M.L.T.; KAGEYAMA, P.Y.; SIQUEIRA, A.C.M.F.; KANO, N.K.;
CAMBUIM, J. Variação genética em duas populações de aroeira (Astronium
urundeuva (Fr. All.) Engl. - Anacardiaceae). Revista do Instituto Florestal,
São Paulo, v.4, n.4, p.1241-1245, 1992.
MORAES, M.L.T.; MISSIO, R.F.; SILVA, A.M.; CAMBUIM, J.; SANTOS, L.A.;
RESENDE, M.D.V. Efeito do desbaste seletivo nas estimativas de parâmetros
87
genéticos em progênies de Pinus caribaea Morelet var hondurensis. Scientia
Forestalis, Piracicaba, n.74, p.55-65, 2007.
MORS, W.B.; RIZZINI, C.T.; PEREIRA, N.A. 2000. Medicinal plants of Brazil.
In., LORENZI, H.; MATOS, F.J.A. Plantas medicinais do Brasil: nativas e
exóticas, Instituto Plantarum, Nova Odessa, 512p. 2002.
NAIR, P.K. An introduction to agroforestry. The Netherlands: Kluwer
Academia Publishers with ICRAF, 1993. 496p.
NAMKOOG, G. Genetics and the forest of the future. Unasyla, Rome, v.38,
n.152, p.2-18, 1986.
NAMKOONG, G. Inbreeding effects on estimation of genetic additive variance.
Forest Science, Madison, v.12, p.8-13, 1966.
NASS, L.L.; VALOIS, A.C.C.; MELO, I.S.; VALADARES-INGLIS, M.C.
Recursos genéticos e melhoramento- Plantas, Rondonópolis: Fundação MT,
2001. 1183p.
NOGUEIRA, J.C.B. Conservação genética de essências nativas através de
ensaios de progênie/ procedência. Silvicultura , São Paulo, v.8, n.28, 1983.
NOGUEIRA, J.C.B. Reflorestamento heterogêneo com essências
indígenas. São Paulo: Instituto Florestal de São Paulo, 1977. (Boletim técnico,
24).
NOGUEIRA, J.C.B.; SIQUEIRA, A.C.M.F.; MORAES, E.; IWANE, M.S.S. Testes
de progênies e procedências da aroeira (Astronium urundeuva (Fr. All.) Engl.).
Boletim Técnico do Instituto Florestal, São Paulo, v.40A, p. 367-375, 1986.
NORTON, B.W.; WILSON, J.R.; SHELTON, H.M.; HILL, K.D. The effect of
shade on forage quality. In: SHELTON, H.M.; STUR, W.W. (Ed.). Forages for
plantation crops. ACIAR, Canberra, 1991. 168p. (Proceedings of a Workshop,
32, Bali, Indonésia, 27-29 jun.)
OLIVEIRA, S.A.; MORAES, M.L.T.; KURAMOTO, C.M.; SIQUEIEA; A.C.M.F.;
KAGEYAMA, P.Y. Variação genética em progênies de aroeira (Myracrodruon
88
urundeuva Fr. All.) sob deferentes condições de cultivo. Aspectos silviculturais.
Revista do Instituto Florestal, São Paulo, v.12, n.2, p.155-166, 2000.
OLIVEIRA, V.R.; REDENDE, M.D.V.; NASCIMENTO, C.E.S.; DRUMOND, M.A.;
SANTOS, C.A.F. Variabilidade genética de procedências e progênies de
umbuzeiro via metodologia de modelos lineares mistos (REML/BLUP). Revista
Brasileira de Fruticultura, Jaboticabal, v.26, n.1, p.53-56, 2004.
PACIULLO, D.S.C.; CARVALHO, C.A.B.; AROEIRA, L.J.M.; MORENZ, M.J.F.;
LOPES, F.C.F.; ROSSIELLO, R.O.P. Morfologia e valor nutritivo do capim
brachiaria sob sombreamento natural e a pleno sol. Pesquisa Agropecuária
Brasileira, Brasília, v. 42, n.4, p.573-579, 2007.
PAIVA, J. R.; RESENDE, M. D. V. ; CORDEIRO, E. R. Índice multiefeitos e
estimativas de parâmetros genéticos em aceroleira. Pesquisa Agropecuária
Brasileira, Brasília, v. 37, n. 6, p. 799-807, 2002.
PAIVA, J.R. Melhoramento genético de espécies agroindustriais da
Amazônia: estratégias e novas abordagens. Brasília: EMBRAPA/SPI, 1998.
135p.
PAIVA, J.R. ;VALOIS, A.C.C. Espécies selvagens e sua utilização no
melhoramento. In: NASS, L.L.; VALOIS, A.C.C.; MELO, I.S.; VALADARES-
INGLIS, M.C. Recursos genéticos e melhoramento- plantas. Rondonópolis:
Fundação MT, 2001. p.79-100.
PALUDZYSZYN FILHO, E.; FERNANDES, J.S.C.; RESENDE, M.D.V.
Avaliação e seleção precoce para crescimento de Pinus taeda. Pesquisa
Agropecuária Brasileira, Brasília, v.37, n.12, p.1719-1726, 2002.
PATERNIANI, E.; MIRANDA FILHO, J.B. Melhoramento de populações. In:
PATERNIANI, E.; VEIGAS, G.P. Melhoramento e produção de milho.
Campinas: Fundação Cargill, 1987, v.1. p.217-274.
PEDREIRA, C.G.S. Avanços metodológicos na avaliação de pastagens. In:
REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 38, Recife,
89
2001. Anais... Recife: SBZ, 2001.
PEREIRA J. M.; REZENDE, C.P. Sistemas silvipastoris: fundamentos
agroecológicos e estados da arte no Brasil.In Simposio sobre Manejo de
Pastagens, 1997, Piracicaba Anais… Piracicaba, 1997, p.199-217.
POTT, A. ; POTT, V.J. Plantas do pantanal. Corumbá: Embrapa, 1994. 320 p.
PRIMACK, R.B. ; RODRIGUES, E. Biologia da conservação. Londrina: E.
Rodrigues, 2001. 328p.
RAYBURN, E.B.; RAYBURN, S.B. A standardized plate meter for estimating
pasture mass in on-farm reserarchs trials. Agronomy Journal, Madison, v.90,
p.238-241, 1998.
RESENDE, M. D. V. ; HIGA , A. R. Maximização da eficiência da seleção em
testes de progênies de Eucalyptus através da utilização de todos os efeitos do
modelo matemático. Boletim de Pesquisa Florestal, Colombo, n.28/29, p.37-
55, 1994.
RESENDE, M. D. V. Genética biométrica e estatística no melhoramento de
plantas perenes. Brasília: Embrapa Informação Tecnológica, 2002a. 975 p.
RESENDE, M. D. V. Software SELEGN-REML/BLUP. Colombo: Embrapa
Florestas, 2002b, 67 p. (Embrapa Florestas. Documentos, 77).
RESENDE, M. D. V.; DIAS, L. A. S. Aplicação da metodologia de modelos
mistos (REML/BLUP) na estimação de parâmetros genéticos e predição de
valores genéticos em espécies frutíferas. Revista Brasileira de Fruticultura,
Jaboticabal, v.22, n.1, p.44-52, 2000.
RESENDE, M. D. V.; FERNANDES, J. S. C. Procedimento BLUP individual
para delineamentos experimentais aplicados ao melhoramento florestal.
Revista de Matemática e Estatística, São Paulo, v.17, p.89-107, 1999.
RESENDE, M.D.V. Melhoramento de essências florestais. In: BOREM, A.
Melhoramento de espécies cultivadas. Viçosa: UFV, 1999. p.589-647.
90
RESENDE, M.D.V.; ROSA PEREZ, J.R.P. Genética quantitativa e estatística
no melhoramento animal. Curitiba: UFPR, 1999. 315p.
REZENDE, M.D.V.; SIMEÃO, R.M.; STURION, J.A. Fundamentos de genética
de populações para a conservação genética de germoplasma de erva mate
(Ilex paraguaiensis St. Hill) In: CONGRESO SUL AMERICANO DE ERVA
MATE: Reunião Técnica do Cone Sul a Cultura da Erva-Mate, 1, 1997, Curitiba.
Anais... Curitiba: EMBRAPA Florestas, 1997.
RIZZINI, C.T. Árvores e madeiras úteis do Brasil: manual de dendrologia
brasileira. São Paulo: Edusp, 1971. 294p.
ROCHA, M.G. B.; PIRES,I.E.; ROCHA, R.B.; XAVIER, A.; CRUZ, C.D.
Avaliação genética de progênies de meio-irmãos de Eucalyptus grandis
procedimentos. Scientia Forestalis, Piracicaba, n.71, p.99 – 107, 2006.
SAMARAKOON, S.P.; WILSON, J.R.; SHELTON, H.M. Growth, morfology and
nutritive value of shaded Stenotaphrum secundatum and Penisetum
clandestinum herbage. Journal of Agricultural Science, Cambridge, v.114, p.
143-150, 1990.
SAMPAIO, P.T.B. Variação genética entre procedências e progênies de
Pinus oocarpa Schiede, Pinus caribaea var. hondurensis Barr. & Golf. e
Pinus maximinoi, H.E. Moore e métodos de seleção para melhoramento
genético. 1996. 169 f. Tese (Doutorado em Ciências Florestais) – Universidade
Federal do Paraná, Curitiba, 1996.
SAMPAIO, P.T.B.; RESENDE, M.D.V.; ARAUJO, A.J. Estimativas de
parâmetros genéticos e métodos de seleção para o melhoramento genético de
Pinus oocarpa Shiede. Pesquisa Agropecuária Brasileira, Brasília, v.37, n.5,
p.625-636, 2002.
SANDERSON, M.A. ;ROTZ, C.A.; STANLEY, W.F.; RAYBURN, E.B. Estimating
forage massa with a comercial capacitance meter, rising plate meter, and
pasture ruler. Agronomy Journal, Madison, v.93, p.1281-1286, 2001.
91
SANTIN, D.A. Revisão taxonômica do gênero Astronium jacq. e.
reavaliação do gênero Myracrodruon Fr. Allem. (Anacardeaceae). 1989.
178 f. Dissertação (Mestrado) -Universidade Estadual de Campinas, Campinas,
1989.
SANTIN, D.A.; LEITÃO FILHO, H.F. Restabelecimento e revisão taxonômica do
gênero Myracrodruon Freire Alemão (Anacardiaceae). Revista Brasileira de
Botânica, São Paulo, v.14, p.133-145, 1991.
SANTOS, E.D.G.; PAULINO, M.F.; QUEIROZ, D.S.; FONSCECA, D.M. ;
VALADARES FILHO, S.C.; LANA, R.P. Avaliação de pastagem diferida de B.
decumbens Stapf.2. Disponibilidade de forragem e desempenho animal durante
a seca. Revista Brasileira de Zootecnia, Brasilia, v.44, n.1, p.214-224, 2004.
SAS Institute Inc. SAS Procedures Guide. Version 8 (TSMO). Cari: SAS
Institute Inc. ,2000. (N.C., 27513).
SEBBENN, A. M. Número de árvores matrizes e conceitos genéticos na coleta
de sementes para reflorestamento com espécies nativas. Revista do Instituto
Florestal, São Paulo, v.114, p.115-132, 2002.
SEBBENN, A. M. ; SIQUEIRA, A.C.M.F. ; KAGEYAMA, P.Y.; MACHADO,
J.A.R. Parâmetros genéticos na conservação da cabreúva Myroxylon
peruiferum L.F. Allemão. Scientia Forestalis, Piracicaba, n. 53, p. 31-38, 1998.
SEBBENN, A.L.; SIQUEIRA, A.C.M.F.; GURGEL GARRIDO, L.M.A.;
ANGERAMI, E.M.R.A. Variabilidade genética e interação genótipo x locais em
Jequitibá Rosa- Cariniana legalis (Mart.) O. Ktze. Revista do Instituto
Florestal, São Paulo. v.12 n.1, p. 12-23, 2000.
SEBBENN, A.M. Sistemas de reprodução em espécies arbóreas tropicais e
suas implicações para a seleção de árvores matrizes para reflorestamentos
ambientais. In: HIGA A.R.; SILVA, L.D. Pomar de sementes de espécies
florestais nativas. Curitiba: FUPEF, 2006.
SEBBENN, A.M. Tamanho amostral para conservação ex situ de espécies
92
arbóreas com sistema misto de reprodução. Revista do Instituto Florestal,
São Paulo, v.15, n.2, p.147-162, 2003.
SEBBENN, A.M.; ETTORI, L.C. Conservação genética Ex Situ de Esenbeckia
leiocarpa, Myracrodruon urundeuva e Peltophorum dubium em teste de
progênies misto. Revista do Instituto Florestal, São Paulo, v.13, n.2, p.201-
211, 2001.
SEBBENN, A.M.; SIQUEIRA, A.C.M.F.; VENCOSVSKY, R.; MACHADO, J.A.R.
Interação genótipo x ambiente na conservaçõa “ex situ” de Peltophorum
dubium (Spreng.) Taub., em duas regiões do estado de São Paulo. Revista do
Instituto Florestal, São Paulo, v.11, n.1, p.75-89, 1999.
SILVA, J.A.; SILVA, D.B.; JUNQUEIRA, N.T.V.; ANDRADE, L.R.M. Frutas
nativas dos cerrados. Brasília: EMBRAPA-CPAC: EMBRAPA-SPI, 1994.
166p.
SILVA, L.M.M.; RODRIGUES, T.J.D.; AGUIAR, I.B. Efeito da luz e da
temperatura na germinação de semntes de aroeira (Myracrodruon urundeuva
Allemão). Revista Árvore, Viçosa, v.26, n. 6, p.691-697, 2002.
SILVA, V.P. Sistema silvipastoril para produção de carne. In: SIMPÓSIO
SOBRE MANEJO DE PASTAGEM, 23, 2006, Piracicaba. Anais... Piracicaba,
2006. p.297-325.
SIMEÃO, R. M.; STURION, J. A.; RESENDE, M. D. V. Avaliação Genética em
erva-mate pelo procedimento BLUP individual multivariado sob interação
genótipo x ambiente. Pesquisa Agropecuária Brasileira, Brasília, v. 37, n. 11,
p. 1589-1596, 2002.
SIMPSON, R.L.; LECK, M.A.; PARKER, V.T. Ecology of soil seeds banks.
California: Academis Press, 1989. 385p.
SIQUEIRA, C.M.F.; NOGUEIRA, J.C.B; KAGEYAMA, P.Y. Conservação dos
recursos genéticos ex situ do cumbaru Dipteryx alata Vog. Leguminodae.
Revista do Instituto Florestal, São Paulo, v.5, n.2, p.231-243, 1993.
93
SOUSA M.P.; MATOS, F.J.A. Constituintes químicos de plantas medicinais
brasileiras. In., LORENZI, H.; MATOS, F.J.A. Plantas medicinais do Brasil:
nativas e exóticas. Nova Odessa: Instituto Plantarum, 2002. 512p.
SOUSA, L.F.; GONÇALVES, L.C.; SALIBA, E.O.S.; MOREIRA, G.R.
Produtividade e valor nutritivo da Brachiaria brizantha cv. Marandu em um
sistema silvipastoril. Arquivos Brasileiro de Medicina Veterinária e
Zootecnia, Belo Horizonte, v. 59, n.4, p.1029-1037, 2007.
STURION, J.A. Variação genética de características de crescimento e de
qualidade da madeira em progênies de Eucalyptus viminalis. 1993. 112 f.
Tese (Doutorado) - Universidade Federal do Paraná, Curitiba, 1993.
TILLEY, J.M.A.; TERRY, R.A. A two-stage technique for the in vitro digestion of
forage crops. Journal British of the Grassland Society, Aberystwyth, v.18,
p.104-111, 1963.
VALOIS, A.C.; NASS, L.L. ; GOES, M. Conservação ex situ de recursos
genéticos vegetais. In: NASS, L.L.; VALOIS, A.C.C.; MELO, I.S.; VALADARES-
INGLIS, M.C. Recursos genéticos e melhoramento de Plantas. Brasília:
EMBRAPA, 2001. p.123-147.
VALOIS, A.C.C. A biodiversidade e os recursos genéticos. In Recursos
genéticos e Melhoramento de plantas para o Nordeste Brasileiro . Disponivel
em : www.cpatsa.embrapa.br/livros/temas.html. Acesso em: 15 mar. 2004.
VAN SOEST, P.J.; ROBERTSON, J.B.; LEWIS, B. Methods for dietary fiber,
neutral detergent fiber, and non-starch polysaccharides in relation to animal
nutrition. Journal of Dairy Science, Champaign, v.74, p.3583-3597, 1991.
VEIGA, J.B.; SERRÃO, E.A.S. Sistema silvipastoril e produção animal nos
trópicos úmidos. In: SOCIEDADE BRASILEIRA DE ZOOTECNIA. Pastagens.
Piracicaba: SBZ/FEALQ, 1990. p.37-68.
VENCOVSKY, R. Genética quantitativa. In: KERR, W.E. Melhoramento e
genética. São Paulo: Melhoramentos, 1969. p. 17-37.
94
VENCOVSKY, R.; BARRIGA, P. Genética biométrica no fitomelhoramento.
Ribeirão Preto: Sociedade Brasileira de Genética, 1992. 486p.
VITTI, A.P.; KAGEYAMA, P.Y.; COSTA, L.G.S.; BILLA, A.D.; SEGUESSE, F.;
SILVA, F.F. Estrutura genética em populações de Cecropia cinerea e
esenbeckia leiocarpa plantadas segundo a sucessão secundária.) In:
CONGRESSO NACIONAL SOBRE ESSÊNCIAS NATIVAS, 2, 1992, São
Paulo. Anais... São Paulo: Instituto Florestal, 1992. pt.4, p.1209-1212.
WILLIS, J.C. A dictionary of the flowering and terms. 8.ed. Cambridge:
Cambridge University Press, 1973. p.57.
WILSON, J.R.; HILL, K.; CAMERON, D.M. The growth of Paspalum notatum,
Ander shadeof a Eucaliptus grandis plantation Canopo or in full sun. Tropical
grassland, Brisbane, v.24, n.1, p.24-28, 1990.
WILSON, J.R.; WONG, C.C. Effects of shade on some factores influencing
nutritive qualityof green panic and siratu pastures. Australian Journal
Agricultura Research, Brisbane, v.33, n.10, p.937-949, 1982.
WONG, G.G. Shade toleranceof tropical forrages: a review. In: SHELTON,
H.M.; STÚR, W.W. Forrages for plantation crops. Canberra: Australian
Centre for Internacional Agricultural Reserach, 1991. p.64-69.
WRIGHT, J. W. Introduction to forest genetics. New York: Academic Press,
1976. 463p.
WRIGHT, S. Evolution in mendelian populations. Genetics, Bethesda, v.16,
p.97-159, 1931.
YOUNG, A. ; BOYLE, T. Forest fragmentation In: YOUNG, A.; BOSHIER, D.;
BOYLE, T. Forest conservation genetics: pinciples and practice. Austrália:
CSIRO, 2000. Cap.10 ,p.123-132.
YOUNG, A.; BOSHIER, D.; BOYLE, T. Forest conservation genetics :
pinciples and practice. Austrália: CSIRO, 2000. 352p.
95
ZEFERINO,C.V. Morfogênese e dinâmica de acúmulo de forragem em
pastos de capim-Marandu [Brachiaria brizantha (Hochst. ex. A. Rich.) cv.
Marandu] submetidos a regimes de lotação intermitente por bovinos de
corte. 2006. 193 f . Dissertação (Mestrado) Escola Superior de Agricultura
“Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, 2006.
96
APÊNDICE
97
Teste de progênies de aroeira (Myracrodruon urundeuva Fr. All.) consorciada
com candiúba (Trema micranta (L.) Blum) – CROQUI DE CAMPO
37 46 50 * * * * * * * * * * *
26 49 44 32 8 28 36 47 43 31 27 * * *
(S)
41 35 30 48 33 50 39 13 42 29 21 40 45 34
18 1 21 6 10 9 13 23 34 17 24 19 14 16
REP 6
(A)
5 8 7 11 12 36 20 2 4 46 15 25 22 3
29 13 50 42 31 27 35 37 45 36 8 32 46 41 (S)
48 40 50 33 39 30 47 21 28 49 43 26 44 34
18 24 5 20 1 16 10 13 7 15 4 21 14 8
REP 5
(A)
25 34 22 46 3 11 19 2 36 17 12 9 23 6
44 27 35 28 50 45 8 34 29 47 33 30 49 21 (S)
26 43 36 40 39 32 42 46 48 31 13 38 41 37
15 3 20 25 9 36 11 2 18 14 12 4 46 22
REP 4
(A)
23 24 1 16 10 19 6 8 34 7 21 5 13 17
28 34 29 31 21 39 32 38 46 44 30 43 36 11 (S)
40 35 13 27 33 45 42 41 48 26 47 49 50 37
13 30 20 33 1 2 8 12 21 16 18 4 3 9
REP 3
(A)
10 15 11 6 22 17 24 14 23 42 25 19 5 7
21 47 35 30 26 28 32 11 39 46 27 49 48 36 (S)
29 50 31 37 43 33 34 42 44 45 40 13 38 41
30 6 18 11 16 4 10 25 2 23 15 14 24 17
REP 2
(A)
21 12 13 22 33 8 19 20 7 9 5 1 3 42
36 38 47 29 46 37 49 33 35 43 48 40 50 28 (S)
34 26 11 27 39 41 13 21 32 45 30 44 31 42
33 18 24 25 5 42 8 21 20 2 3 10 1 9
REP 1
(A)
11 15 17 23 12 30 19 6 22 16 4 7 14 13
(A): Progênies de 1 a 25 - população de aroeira de Aramina-SP e (S): Progênies de 26
a 50 - população de aroeira de Selvíria-MS.
98
ESCALA DE NOTAS EM FUSTE DE 2,20 m
BIFURCAÇÃO
1 – Bifurcação abaixo de 1,30 com diâmetro igual ao fuste principal
2 – Bifurcação acima de 1,30 com diâmetro igual ao fuste principal
3 – Bifurcação abaixo de 1,30 com diâmetro inferior ao fuste principal
4 – Bifurcação acima de 1,30 com diâmetro inferior ao fuste principal
5 – Sem bifurcação
RETIDÃO
1 – Tortuosidade acentuada em toda extensão
2 – Tortuosidade acentuada abaixo de 1,30
3 – Tortuosidade acentuada acima de 1,30
4 – Leve tortuosidade em toda extensão
5 – Sem Tortuosidade
1,30
2,20
1,30
2,20
99
Tabela 1-A: Estimativas de variâncias genética aditiva (
2
ˆ
a
σ
), variância ambiental entre
parcelas (
2
ˆ
parc
σ
), variância residual (
2
ˆ
e
σ
) e variância fenotipíca (
2
ˆ
f
σ
), para os caracteres
quantitativas avaliadas nas duas populações de M. urundeuva aos 15 anos, em Selvíria–
MS.
Aramina-SP
Caracteres
2
ˆ
a
σ
2
ˆ
parc
σ
2
ˆ
e
σ
2
ˆ
f
σ
Altura (m) 0,051849 0,722285 1,503792 2,277926
DAP (cm) 0,013742 1,054335 3,081085 4,149162
DMC (m) 0,042148 0,135643 0,412183 0,589974
Forma 0,100141 0,089827 0,590666 0,780634
Sob. (%) 0,002072 0,006184 0,033446 0,041702
Selvíria-MS
Caracteres
2
ˆ
a
σ
2
ˆ
parc
σ
2
ˆ
e
σ
2
ˆ
f
σ
Altura (m) 0,233926 0,715422 1,201257 2,150605
DAP (cm) 1,008098 0,735369 2,056134 3,799600
DMC (m) 0,127460 0,066374 0,330145 0,523979
Forma 0,097109 0,081675 0,517534 0,696318
Sob. (%) 0,007858 0,015113 0,035892 0,058863
100
Tabela 2-A: Estimativas dos Índice Multi-efeitos (IME), com base no caráter DAP, para os 36
melhores induvíduos em um teste de progênie de M.urundeuva consorciada com T.
micrantha procedentes de fragmentos florestais da região de Aramina SP. aos 15,5 anos,
em Selvíria – MS.
Ordem Bloco FAM PTA IME
1 4 21 8 0,0245
2 2 21 1 0,0224
3 4 12 7 0,0221
4 2 22 5 0,0214
5 5 22 2 0,0213
6 6 22 3 0,02
7 3 22 3 0,0199
8 5 12 8 0,0192
9 5 21 6 0,0191
10 6 22 8 0,0183
11 1 12 7 0,0182
12 4 13 5 0,0176
13 6 13 5 0,0174
14 4 5 7 0,0174
15 2 12 3 0,0172
16 3 22 6 0,0171
17 4 22 3 0,0168
18 2 13 3 0,0168
19 6 13 1 0,0165
20 5 13 4 0,0165
21 6 5 2 0,0164
22 3 13 6 0,0164
23 2 13 1 0,0163
24 6 22 2 0,0161
25 5 12 1 0,016
26 4 13 1 0,016
27 6 24 8 0,0155
28 5 13 5 0,0155
29 6 22 5 0,0155
30 6 19 7 0,0153
31 3 22 8 0,0152
32 2 12 1 0,0152
33 6 12 2 0,0151
34 3 5 6 0,0151
35 1 22 3 0,0151
36 2 12 6 0,0151
IME (médio) = 0,02; Média geral da progênie = 6,87;
Ganho na seleção = 0,24%
101
Tabela 3-A: Estimativas dos Índice Multi-efeitos (IME), com base no caráter DAP, para os 36
melhores induvíduos, resultantes da seleção entre (30%) e dentro (10%) em um teste de
progênie de M.urundeuva consorciada com T. micrantha procedentes de fragmentos
florestais da região de Aramina – SP, aos 15,5 anos, em Selvíria – MS.
Ordem Bloco FAM PTA IME
1 1 21 8 0,0245
2 1 12 7 0,0221
3 1 13 5 0,0176
4 1 5 7 0,0174
5 2 13 5 0,0155
6 2 12 2 0,0151
7 1 15 7 0,0141
8 3 12 6 0,0138
9 2 5 3 0,0136
10 1 4 3 0,0128
11 3 13 6 0,0121
12 3 5 4 0,0121
13 4 12 5 0,0108
14 2 4 5 0,0107
15 2 21 7 0,0101
16 4 13 4 0,0096
17 3 4 5 0,0095
18 4 4 2 0,0089
19 5 12 4 0,0085
20 2 15 8 0,0085
21 3 21 5 0,0081
22 4 5 6 0,0076
23 6 4 6 0,0074
24 5 5 2 0,007
25 5 13 3 0,0069
26 3 15 1 0,0064
27 6 5 8 0,0054
28 4 15 8 0,005
29 6 12 1 0,0047
30 4 21 3 0,0046
31 5 4 2 0,004
32 5 15 3 0,0032
33 6 13 3 0,0024
34 5 21 3 0,0016
35 6 15 4 0,0006
36 6 21 4 -0,0012
IME (médio) = 0,01; Média geral da progênie = 6,87;
Ganho na seleção = 0,14%
102
Tabela 4-A: Estimativas dos Índice Multi-efeitos (IME), com base no caráter DAP, para os 36
melhores induvíduos, considerando no máximo 3 plantas por família, em um teste de
progênie de M.urundeuva consorciada com T. micrantha procedentes de fragmentos
florestais da região de Aramina – SP, aos 15,5 anos, em Selvíria – MS.
Ordem Bloco FAM PTA IME
1 4 21 8 0,0245
2 4 12 7 0,0221
3 5 12 8 0,0192
4 1 12 7 0,0182
5 4 13 5 0,0176
6 6 13 5 0,0174
7 4 5 7 0,0174
8 2 13 3 0,0168
9 6 5 2 0,0164
10 6 19 7 0,0153
11 3 5 6 0,0151
12 1 15 7 0,0141
13 4 15 5 0,014
14 6 15 5 0,0136
15 1 4 3 0,0128
16 5 10 3 0,0126
17 5 14 8 0,0124
18 5 9 6 0,0123
19 1 10 5 0,0119
20 3 6 4 0,0118
21 2 4 5 0,0107
22 5 14 4 0,0107
23 6 6 8 0,0107
24 4 11 1 0,0107
25 2 8 2 0,0106
26 3 9 4 0,0106
27 1 7 4 0,0103
28 5 18 8 0,0101
29 1 10 6 0,0101
30 3 4 5 0,0095
31 5 19 4 0,0095
32 3 19 5 0,0093
33 5 7 8 0,0093
34 3 18 5 0,0092
35 1 18 4 0,0092
36 6 14 6 0,0091
IME (médio) = 0,01; Média geral da progênie = 6,87;
Ganho na seleção = 0,19%
103
Tabela 5-A: Estimativas dos Índice Multi-efeitos (IME), com base no caráter DAP, para os 36
melhores induvíduos em um teste de progênie de M.urundeuva consorciada com T.
micrantha procedentes de fragmentos florestais da região de Selvíria MS, aos 15,5 anos,
em Selvíria – MS.
Ordem Bloco FAM PTA IME
1 2 36 1 2,0755
2 4 36 4 1,8926
3 6 36 7 1,8806
4 1 36 3 1,8715
5 1 36 8 1,8715
6 2 36 6 1,7876
7 5 36 4 1,72
8 4 36 1 1,6047
9 4 36 3 1,6047
10 6 36 6 1,5927
11 1 36 2 1,5836
12 6 28 1 1,5145
13 2 36 3 1,4998
14 2 36 8 1,4998
15 6 35 5 1,4705
16 3 36 2 1,4518
17 3 36 3 1,4518
18 3 36 5 1,4518
19 5 36 3 1,4321
20 2 35 2 1,3909
21 4 28 7 1,3775
22 1 34 1 1,3636
23 4 36 6 1,3169
24 6 36 3 1,3049
25 6 34 3 1,3014
26 3 35 6 1,2924
27 1 30 7 1,2687
28 6 28 3 1,2266
29 2 36 2 1,2119
30 3 30 8 1,1776
31 3 36 4 1,164
32 3 36 6 1,164
33 3 36 7 1,164
34 3 36 8 1,164
35 3 28 5 1,1376
36 3 28 7 1,1376
IME (médio) = 1,45; Média geral da progênie = 6,59;
Ganho na seleção = 24,56%
104
Tabela 6-A: Estimativas dos Índice Multi-efeitos (IME), com base no caráter DAP, para os 36
melhores induvíduos, resultantes da seleção entre (30%) e dentro (10%) em um teste de
progênie de M.urundeuva consorciada com T. micrantha procedentes de fragmentos
florestais da região de Selvíra – MS, aos 15,5 anos, em Selvíria – MS.
Ordem Bloco FAM PTA IME
1 2 36 1 2,0755
2 4 36 4 1,8926
3 6 36 7 1,8806
4 1 36 3 1,8715
5 5 36 4 1,72
6 6 28 1 1,5145
7 6 35 5 1,4705
8 3 36 2 1,4518
9 2 35 2 1,3909
10 4 28 7 1,3775
11 1 34 1 1,3636
12 6 34 3 1,3014
13 3 35 6 1,2924
14 3 28 5 1,1376
15 2 37 1 1,0915
16 5 37 6 1,0666
17 4 34 1 1,0617
18 2 28 2 1,0401
19 3 37 5 1,0368
20 4 35 3 1,0362
21 2 34 1 1,0227
22 5 28 1 0,9831
23 6 37 5 0,9679
24 5 34 2 0,9242
25 5 35 3 0,8585
26 1 28 3 0,8321
27 1 37 1 0,8049
28 4 37 2 0,7656
29 3 34 2 0,6659
30 1 35 4 0,5156
31 1 38 5 -0,0715
32 2 38 1 -0,379
33 2 38 7 -0,379
34 3 38 3 -0,4104
35 3 38 7 -0,4104
36 4 38 6 -1,3893
IME (médio) = 0,92; Média geral da progênie = 6,59;
Ganho na seleção = 15,63%
105
Tabela 7-A: Estimativas dos Índice Multi-efeitos (IME), com base no caráter DAP, para os 36
melhores induvíduos, considerando no máximo 3 plantas por família, em um teste de
progênie de M.urundeuva consorciada com T. micrantha procedentes de fragmentos
florestais da região de Aramina – SP, aos 15,5 anos, em Selvíria – MS.
Ordem Bloco FAM PTA IME
1 2 36 1 2,0755
2 4 36 7 1,8926
3 6 36 3 1,8806
4 2 38 5 1,6361
5 6 28 7 1,5145
6 4 38 7 1,4894
7 6 35 8 1,4705
8 6 40 1 1,4129
9 2 40 3 1,4092
10 2 35 5 1,3909
11 4 28 2 1,3775
12 1 34 6 1,3636
13 6 34 1 1,3014
14 3 35 4 1,2924
15 1 30 7 1,2687
16 6 28 3 1,2266
17 4 38 8 1,2015
18 3 30 6 1,1776
19 2 37 4 1,0915
20 5 37 1 1,0666
21 4 34 3 1,0617
22 5 41 6 1,0557
23 3 37 2 1,0368
24 3 39 3 0,9999
25 5 30 8 0,9656
26 5 31 2 0,9426
27 2 29 3 0,922
28 6 31 5 0,9129
29 6 39 3 0,8648
30 6 40 6 0,8372
31 6 26 3 0,7731
32 6 26 2 0,7731
33 2 31 4 0,7218
34 6 29 6 0,7135
35 6 29 7 0,7135
36 3 39 8 0,712
IME (médio) = 1,18; Média geral da progênie = 6,59;
Ganho na seleção = 19,93%
106
Tabela 8-A: Massa de forragem (kg ha
-1
de MS) em pastos de Brachiaria decumbens sob
dois regimes de luminosidade e dois momentos de pastejo manejados e quatro estações
sob lotação rotativa de outubro de 2006 a janeiro de 2008 em Selvíria – MS.
PLENO SOL SOMBRA
Período Pré-pastejo Pós-pastejo Pré-pastejo Pós-pastejo
Primavera
2.215,8
1.423,4
875,3
897,0
Verão
2.014,8
803,2
716,7
615,7
Outono
1098,9
976,3
709,4
644,5
Inverno
1055,6
961,9
709,4
637,3
107
Tabela 9-A: Estimativas de alguns parâmetros genéticos estimados com a metodologia REML/BLUP: coeficiente de variação genética
individual e genética de progênies (CV
gi
e CV
gp
), quociente de seleção (CV
r
), herdabilidade, no sentido restrito, de indivíduo na parcela (
2
h
ˆ
),
herdabilidade no sentido restrito, de média de progênie (
2
m
h
ˆ
), acurácia de seleção ( aa
r
ˆ
), para espécies arvóreas.
Espécie Caráter CV
gi
(%) CV
gp
(%)
2
h
ˆ
2
m
h
ˆ
aa
r
ˆ
Referência
Acerola
1
(Malpighia punicifolia)
Altura (m) - - 0,19 0,44 -
Paiva et al., 2002
Acerola
1
(Malpighia punicifolia)
Diâmetro (cm) - - 0,19 0,40 -
Paiva et al., 2002
Açaí (Euterpe oleracea)
Altura (m) 7,39 3,695 0,1155 - 0,527
Farias Neto et al., 2007
Açaí (Euterpe oleracea)
Diâmetro (cm) 1,641 0,820 0,0076 - -
Farias Neto et al., 2007
Erva mate (Ilex paraguariensis)
Altura 14,00 - 0,0524 0,5874 0,7826*
Costa et al., 2005
Erva mate (Ilex paraguariensis)
Diâmetro (mm) 62,19 - 0,0401 0,5410 0,7816*
Costa et al., 2005
Eucalyptus grandis
Altura (m) - - 0,24 0,49 - Resende e Higa, 1994
Eucalyptus grandis
DAP (cm) - - 0,14 0,53 - Resende e Higa, 1994
Eucalyptus grandis
Altura (m) 8,67 - 0,2778 - -
Rocha et al., 2006
Eucalyptus grandis
DAP (cm) 12,56 - 0,2247 - -
Rocha et al., 2006
Eucalyptus grandis
Volume (m
3
) 26,89 - 0,2111 - -
Rocha et al., 2006
Eucalyptus spp.
Volume (m
3
/árvore) - - 0,4646 - - Garcia e Nogueira, 2005
Palmeira (Archontophoenix)
Altura (m) - - 0,98 - 1,00*
Bovi et al., 2003
Palmeira (Archontophoenix)
Diâmetro (cm) - - 0,49 - 0,81*
Bovi et al., 2003
Palmeira (Archontophoenix)
Altura (m) 19,12 - 0,2637 ± 0,06 - 0,688*
Bovi et al., 2004
Palmeira (Archontophoenix)
Diâmetro (cm) 13,50 - 0,2648 ± 0,06 - 0,703*
Bovi et al., 2004
Pinus caribaea var. hondurensis
Altura (m) 5,44 2,72 0,261 0,274 0,523
Moraes et al., 2007
Pinus caribaea var. hondurensis
DAP (cm) 7,51 3,76 0,223 0,431 0,657
Moraes et al., 2007
Pinus caribaea var. hondurensis
Volume 22,29 11,14 0,332 0,463 0,680
Moraes et al., 2007
108
Tabela 9A. (continuação)
Espécie Caráter CV
gi
(%) CV
gp
(%)
2
h
ˆ
2
m
h
ˆ
aa
r
ˆ
Referência
Pinus kesya
Altura (m) 9,82 - 0,23 0,39 0,63
Missio et al., 2005
Pinus kesya
DAP (cm) 17,89 - 0,36 0,58 0,76
Missio et al., 2005
Pinus kesya
Forma 11,33 - 0,53 0,66 0,81
Missio et al., 2005
Pinus oocarpa
2
Forma - - 0,94 0,952 ± 0,050 -
Sampaio et al., 2002
Pinus oocarpa
2
Volume (m
3
) - - 0,110 0,734 ± 0,126 0,504*
Sampaio et al., 2002
Pinus oocarpa
2
DBM (g/cm
3
) - - 0,148 0,476 ± 0,343 -
Sampaio et al., 2002
Seringueira (Hevea brasiliensis)
Altura (m) - - 0,51 ± 0,12 - -
Furlani et al., 2005
Seringueira (Hevea brasiliensis)
Circunferência (cm) - - 0,43 ± 0,11 - -
Furlani et al., 2005
Seringueira (Hevea brasiliensis)
3
Produção de borracha 40,92 - 0,613 0,354 0,789
Costa et al., 2000b
Seringueira (Hevea brasiliensis)
Circunferência do caule 0,28 0,902 0,250 0,889 0,562 **
Costa et al., 2000ª
Umbu (Spondias tuberosa)
Maior diâmetro da copa - - 0,14 - -
Oliveira et al., 2004
Umbu (Spondias tuberosa)
Menor diâmetro da copa - - 0,08 - -
Oliveira et al., 2004
1
Primeiro ano de idade;
2
Procedência La campa, Honduras;
3
Valores referentes a Pindorama; * Estimativas associada ao índice multiefeitos; **Estimativa
associada ao método de seleção univariado.
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo