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Introduction

This thesis is composed of three essays referent to the subjects of macroeconometrics and finance. In each
essay, which corresponds to one chapter, the objective is to investigate and analyze advanced econometric
techniques, applied to relevant macroeconomic questions, such as the capital mobility hypothesis and the
sustainability of public debt. A finance topic regarding portfolio risk management is also investigated,

through an econometric technique used to evaluate Value-at-Risk models.

The first chapter investigates an intertemporal optimization model to analyze the current account. Based
on Campbell & Shiller’s (1987) approach, a Wald test is conducted to analyze a set of restrictions imposed
to a VAR used to forecast the current account. The estimation is based on three different procedures: OLS,
SUR and the two-way error decomposition of Fuller & Battese (1974), due to the presence of global shocks.
A note on Granger causality is also provided, which is shown to be a necessary condition to perform the Wald
test with serious implications to the validation of the model. An empirical exercise for the G-7 countries
is presented, and the results substantially change with the different estimation techniques. A small Monte
Carlo simulation is also presented to investigate the size and power of the Wald test based on the considered

estimators.

The second chapter presents a study about fiscal sustainability based on a quantile autoregression (QAR)
model. A novel methodology to separate periods of nonstationarity from stationary ones is proposed, which
allows one to identify trajectories of public debt that are not compatible with fiscal sustainability. Moreover,
such trajectories are used to construct a debt ceiling, that is, the largest value of public debt that does not
jeopardize long-run fiscal sustainability. An out-of-sample forecast of such a ceiling is also constructed, and
can be used by policy makers interested in keeping the public debt on a sustainable path. An empirical

exercise by using Brazilian data is conducted to show the applicability of the methodology.

In the third chapter, an alternative backtest to evaluate the performance of Value-at-Risk (VaR) models
is proposed. The econometric methodology allows one to directly test the overall performance of a VaR
model, as well as identify periods of an increased risk exposure, which seems to be a novelty in the literature.
Quantile regressions provide an appropriate environment to investigate VaR models, since they can naturally
be viewed as a conditional quantile function of a given return series. An empirical exercise is conducted for
daily S&P500 series, and a Monte Carlo simulation is also presented, revealing that the proposed test might

exhibit more power in comparison to other backtests.



Chapter 1

An econometric contribution to the
intertemporal approach of the current account:

Abstract

This paper investigates an intertemporal optimization model to analyze the current account through
Campbell & Shiller’s (1987) approach. In this setup, a Wald test is conducted to analyze a set of restrictions
imposed to a VAR, used to forecast the current account for a set of countries. We focused here on three
estimation procedures: OLS, SUR and the two-way error decomposition of Fuller & Battese (1974). We
also propose an original note on Granger causality, which is a necessary condition to perform the Wald
test. Theoretical results show that, in the presence of global shocks, OLS and SUR estimators might lead
to a biased covariance matrix, with serious implications to the validation of the model. A small Monte
Carlo simulation confirms these findings and indicates the Fuller & Battese procedure in the presence of
global shocks. An empirical exercise for the G-7 countries is also provided, and the results of the Wald test
substantially change with different estimation techniques. In addition, global shocks can account up to 40%
of the total residuals of the G-7. The model is not rejected for Canada, in sharp contrast to the literature,

since the previous results might be seriously biased, due to the existence of global shocks.

JEL Classification: C31, E21, F32, F47.
Keywords: current account, capital mobility, error decomposition, common shocks.
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1 Introduction

The current account can be used by domestic residents to smooth consumption by borrowing from or lending
to the rest of the world. Several authors have analyzed the open economy model, initially proposed by Sachs
(1982) and later detailed by Obstfeld & Rogoff (1994), with a theoretical framework that defines the optimal
current account from the agents’ intertemporal optimization problem, supposing that agents can freely
smooth consumption in the presence of shocks. The comparison of this optimal value with the observed

current account allows us to test for consumption optimality.

This approach is encompassed by several classes of small open economy models,> and the most basic
version is the present value model (PVM) of the current account. Although the literature of PVMs is
relatively extensive, the following papers should be mentioned (suggesting an overall rejection of the model
for developed countries): Sheffrin & Woo (1990) perform a study of the current account of Belgium, Canada,
Denmark and UK. The results indicate a rejection of the model for Denmark, Canada and UK, whereas
the PVM could not be rejected for Belgium. Otto (1992) tests the PVM for the USA and Canada, and
rejects the model in both countries. Ghosh (1995) investigates the current account of 5 major industrialized
countries: USA, Canada, Japan, Germany and UK, and the results suggest rejection of the model in all

countries, except for the USA.

On the other hand, some papers document results supporting the PVM, in contrast to the previous
findings, such as Ghosh & Ostry (1995) that test it for 45 developing countries and do not reject it for about
2/3 of the countries. Hussein & Mello (1999) also test the PVM for some developing countries (Chile, Greece,
Ireland, Israel, Malaysia, Mexico, South Africa, South Korea and Venezuela), and find evidences to support
the PVM. In the same line, Agénor et al. (1999) focus on the current account of France, concluding that the

PVM holds and the analyzed country was perfectly able to smooth consumption.?

Notwithstanding the lack of consensus on the macroeconomic front, what happens on the "econometric
side"? Is it possible that an inappropriate econometric technique leads to wrong conclusions regarding the
rejection of the PVM? Unlike the mentioned literature, the objective of this paper is to provide an econometric
approach to the current account debate. The methodology generally adopted in the literature to analyze the
PVM was initially proposed by Campbell & Shiller (1987), and consists of estimating an unrestricted VAR,

2For recent developments regarding small open economy models see Grohé & Uribe (2003). In addition, see Chinn & Prasad (2003),
which provide an empirical characterization of the determinants of current account for a large sample of industrial and developing
countries. See also Aguiar & Gopinath (2006), which develop a quantitative model of debt and default in a small open economy.
Finally, see Obstfeld & Rogoff (1996) and Bergin (2003) for a good discussion about new open economy literature and its empirical
dimension.

31In order to deepen the debate, several authors also proposed extensions to the standard PVM model. A short list includes Ghosh &
Ostry (1997), which consider precautionary saving, Gruber (2000) includes habit formation, Bergin & Sheffrin (2000) allow for a time-
varying world interest rate and consider tradable and non-tradable goods, Iscan (2002) modifies the basic model introducing durables
and also nontraded goods. More recently, Nason & Rogers (2006) propose a real business cycle (RBC) model, which nests the basic
PVM, including non-separable preferences, shocks to fiscal policy and world interest rate, and imperfect capital mobility, explanations
broadly presented in the literature for the rejection of the PVM. According to Nason & Rogers (2006), although each suspect matters

in some way, none is capable to completely improve the fit of the model to the data.



whose parameters are used in the construction of the optimal current account, and perform a Wald test to
investigate a set of restrictions imposed to the VAR, testing whether the optimal current account equals the

observed series.

However, the presence of common shocks in the econometric model can play a crucial role, and is widely
recommended in the literature to explain business cycles fluctuations. For instance, Centoni et al. (2003)
investigate whether co-movements observed in the international business cycles are the consequences of
common shocks or common transmission mechanisms. Similarly to most studies (such as King et al. 1991),
Centoni et al. (2003) confirm that permanent shocks are the main source of the business cycles, accounting
for a 50% effect in a panel of European countries. The authors also show that the domestic component is
responsible for most of the business cycle effects of transitory shocks for all the G-7 countries, whereas the
foreign component dominates the cyclical variability that is due to permanent shocks in France, Germany
and Italy.*

This way, seems to exist a consensus in the literature regarding a common world component that might
partially explain current account fluctuations. This common (or global) shock is ignored in the OLS estima-
tion (widely used in the literature), but could be considered in a SUR approach. In fact, along this paper we
stress the fact that in the estimation process an econometrician might consider a set of countries separately
(OLS) as well as jointly (e.g., SUR), in order to capture contemporaneous correlations of the residuals of the
VAR. However, due to the possible finite sample bias of the OLS and SUR covariance matrices (see Driscoll
& Kraay, 1998), we also investigate the two-way error decomposition of Fuller & Battese (1974), hereafter

FB, which can properly treat the existence of common shocks in the estimation process.

Therefore, we aim to contribute to the current account debate by investigating the estimation of a PVM
through three different techniques (OLS, SUR and FB). In addition, we propose a quite original note on
Granger causality, which is showed to be a necessary condition to perform the Wald test of Campbell &
Shiller (1987). In addition, we present some theoretical results to show that (in the presence of common
shocks) OLS and SUR estimators might produce a biased covariance matrix, with serious implications to

the validation of the model.

A small Monte Carlo simulation confirms these findings and indicates the FB procedure in the presence
of global shocks. We also provide an empirical exercise for the G-7 countries, and (indeed) the results
substantially change with different estimation techniques. In addition, global shocks can account up to 40%
of the total residuals of the G-7, confirming the importance of such shocks in the estimation process. The
model is not rejected for Canada, in sharp contrast to the literature, since the previous results might be

seriously biased, due to the existence of global shocks.

4In the same sense, Canova & Dellas (1993) document that after 1973 the presence of common disturbances, such as the first oil shock,
plays a role in accounting for international output co-movements. Glick & Rogoff (1995) study the current account response to different
productivity shocks in the G-7 countries, based on a structural model including global and country-specific shocks. Furthermore, Canova
& Marrinan (1998), which investigate the generation and transmission of international cycles in a multicountry model with production
and consumption interdependencies, argue that a common component to the shocks and of production interdependencies appear to be

crucial in matching the data.



This paper is structured in the following way: Section 2 provides an overview of the macroeconomic
model of the current account and discusses some econometric techniques that might be used in the estimation
process. Section 3 presents the results of an empirical exercise for the G-7 countries, and Section 4 presents

our main conclusions.

2 Methodology

2.1 Present Value Model

The Present Value Model (PVM) adopted to analyze the intertemporal optimization problem of a repres-
entative agent is based on Sachs (1982), considering the perfect capital mobility hypothesis across countries.
In this context, countries save through flows of capital in their current accounts, according to their expect-
ations of future changes in net output. Thus, the current account is used as an instrument of consumption

smoothing against possible shocks to the economy, and can be expressed by
CAt:Bt+1—Bt:Y%-FTBt—It—Gt—Ct (1)

where B; represents foreign assets, Y; gross domestic product (GDP), r the world interest rate, I; total

investment, G; the government’s expenses and C; aggregated consumption.

The consumption path, related to the dynamics of the current account, can be divided into two com-
ponents: the trend term, generated by the difference between the world interest rate and the rate of time
preference, and the smoothing component, related to the expectations of changes in permanent income. This
paper only studies the second component effect, by isolating from the current account, the trend component
in consumption. Thus, the optimal current account (only associated with the consumption smoothing term)
is given by

CA; =Y, +rBi— 1, — Gy — 0C; (2)

where 6 is a parameter that removes the trend component in consumption.® The net output Z; , also

known in the literature as national cash flow, is defined by
Zi =Y, — Iy — Gy (3)

Substituting the optimal consumption expression in equation (2), it can be shown that the present value
relationship between the current account and the future changes in net output is given by (see Ghosh &
Ostry (1995) for further details):

o0

Cap = =3 () BB i | R) (4)

Jj=1

where Ry is the agent’s information set. It should be mentioned that the main assumptions of the model
are time-separable preferences, zero depreciation of capital, and complete asset markets. A quadratic form

is also adopted for the utility function, without precautionary saving effects (see Ghosh & Ostry, 1997).

5The tilt parameter (6) is not equal to one whenever the rate of time preference differs from the world interest rate.



According to equation (4), the optimal current account is equal to minus the present value of the expected
changes in net output. For instance, the representative agent will increase its current account, accumulating

foreign assets, if a future decrease in income is expected, and vice-versa.

2.2 Econometric Model

The econometric model is based on the methodology developed by Campbell & Shiller (1987), which suggest
an alternative way to verify a PVM when the involved variables are stationary. The idea is to test a set
of restrictions imposed to a Vector Auto Regression (VAR), used to forecast the current account through
equation (4). The advantage of this approach is that, although the econometrician does not observe the
agent’s information set, this framework allows us to summarize all the relevant information through the

variables used in the construction of the VAR.

However, to apply this methodology, the VAR must be stationary. Hence, the first empirical implication
is to verify whether AZ; is a weakly stationary variable. The current account (in level) must also be a
stationary variable, since it can be written as a lineal combination of stationary variables (via equation (4)).
The stationarity of these variables can be checked later by unit root tests. Campbell & Shiller (1987) argue
that series represented by a Vector Error Correction Model (VECM) can be rewritten as an unrestricted

VAR. Thus, consider the following VAR representation:®
+ 'lﬁ + g,u (5)
Iy €4

AZ: ] B [ al(L) b (L) AZi,
where the index i represents the analyzed country and a'(L), b*(L), ¢!(L) and d’(L) are polynomials

CAL,

cAi |

of order p. Hence, the estimation of the VAR must be preceded by the estimation of 6, which occurs in
the cointegration analysis between C; and (Y; + 7By — It — G;). The model VAR(p) can be described as a
VAR(1), in the following way:

AZ; [l ooah b b ]| A e 1 T e, T
1 0 0
: . 0 : : :
AZ} 1 AZ: 0 0
t_]ZH | i i i :‘_p + v | T (6)
CA4; & oo o dy - d CA; Ha €a¢
: 1 : 0 0
0
i 1 i 0 0
L CAt—p-H i - L CAt—p i - - - -
or, in a compact form:
Xt = AXt_l =+ /.L* + Et (7)

61t should be mentioned that, hereafter, C A+ will be constructed considering the parameter 6, to remove the trend component in

consumption, as it follows: C A=Y +rBy—I1;—G—0C}.



/

where X; = [ AZF - AZZ_p_H CAi ... CAL pi1 } , A is the companion matrix, u* represents
a vector of intercepts, and ¢ is a vector that contains the residuals. The VAR(1) is stationary by assumption,

and the equation (7) can be rewritten removing the vector of means pu:
(Xt —p) = A(Xy—1 — p) + & (8)
where p* = (I — A)u. The forecast of the model j periods ahead is given by
E[(Xyyy —p | Hy) = AN (X; — p) (9)

where H; is the econometrician’s information set (composed of current and past values of CA and AZ),
contained in the agent’s information set R;. Define h’' as a vector with 2p null elements, except the first:

= [ 1 0 ... 0 |. Then, one can select AZ; in the vector X;, in the following way:
AZt = tht AZt+j = h/Xt+j (AZtJrj - /j‘AZ) = h/(Xt+j - /J,) (10)

where the vector p contains the means pa, and g 4-. Thus, applying the conditional expectation in

the previous expression, it follows that:
Bl(AZuss — pag) | Hil = B (Xers — ) | H) = WE((Xowy — ) | Hi] = WA (Xo — ) (11)

where the last equality comes from equation (9). In order to calculate the optimal current account C A},

one can take expectations of equation (4):

oo

B(CA; | H) = CA; = =3 (= VE(M s | Hy) (12

—+1r

j=1
The first equality comes from the fact that C'A; is contained in H;, and the second is given by the law
of iterated expectations (H; C R;). Applying the unconditional expectation in the previous expression:

o0 oo

1 .
E(CA}) = YE(AZ L . == J 13
; 1+7" t44) < Hoa ;(1+T,)MAZ (13)
Combining equation (12) with equation (13), it follows that:
oo 1 _
(CA} —poa-) = — Z(l +T)JE(AZt+j — tiaz | He) (14)
j=1
Applying the expression (11) in the equation above:
(€45 —pon) =~ S (WA (X, -y = (A - A (15)
tofea) T Ay ! L+r/0 14,

where the last equality is due to the convergence of an infinite sum, since the variables AZ; and C'A; are

stationary. Rewriting the previous equation in a simplified form:

(CAY — poa-) = K(Xy — p) (16)



A A

K=-K(i )0 -1 —|—7“)71 (17)

where the vector K is derived from the world interest rate r and the matrix A. To formally test the

model, one can analyze the null hypothesis (CAf — pga-) = (CA: — 1o 4). Define ¢’ as a vector with 2p
null elements, except the (p + 1)th element, that assumes a unit value. Thus, under the null hypothesis, it
follows that:

(CA} —poas) = (CAr — poa) = 9'(Xe — ) (18)

Combining equations (16) and (18), the model can be formally tested through a set of restrictions imposed
to the coefficients of the VAR:

A A

A A
1—|—r)(17 1+7r

:7h/
1—|—r) (l—i—r

g (X — p) = —h/( )X —p) g (-

) (19)

Applying the structure of matrix A into equation (19), the following restrictions” can be derived:

a; =c¢ ;t1=1.p
bi = di ) 1= 2...p (20)
b1 = dl — (]. +7")

Another important implication of the model is that the current account Granger-cause changes in net
output, or in other words, C' A; helps to forecast AZ;. This causality can be tested by means of the statistical
significance of the b(L) coefficients. Therefore, the implications of the intertemporal optimization model,
according to Otto (1992), can be summarized by:®

1. Verifying the stationarity of C'A; and AZ;, through unit root tests;

2. Checking if C A; Granger-cause AZ;;

3. Analyzing the cointegration between C; and (Y; + rB; — I; — G¢), and calculating the parameter 6;

4. Formally investigating, by means of a Wald test, the equality of the optimal and observed current

accounts, given by restrictions (20).

2.3 A note on Granger Causality and Wald Tests

The optimal current account is generated from the vector K (see expressions (16) and (17)), which depends
on matrix A and the world interest rate r. However, it should be noted that an estimated coefficient for
matrix A could not be statistically significant. These results could seriously compromise the subsequent

optimal current account analysis, as it follows.

The Granger causality between the current account and net output (CA; Granger-cause AZ;) is a prim-
ordial implication of the theoretical model, and as argued before, can be alternatively tested through the

significance of the b(L) coefficients.” Moreover, if this implication is not empirically observed, the model

"These restrictions can be verified by a Wald test.
81t is in fact a set of testable implications of the PVM. Therefore, the statistical acceptance of the model occurs only if all of these
implications could be verified.

9Presented in equation (5).



should be rejected irrespective of any other results, since equation (4) is the theoretical foundation of the
whole study. In this case, the current account could not help to predict variations in net output, suggesting
that the agents are badly described by the model. Thus, one should not construct the optimal current
account and perform a comparison with the observed series. Unfortunately, this is done in several papers

presented in the literature.

To study this topic more carefully, a simple VAR(1) is initially presented. The Granger causality between
CA; and AZ,, in this case, will be determined by the statistical significance of the b; coefficient.

SERAE 2 "

€2t
In this case, the VAR is represented in a compact form by X; = AX; 1 + pu+¢; and, after some algebraic

AZ,
CA,

AZy_y
CAy

K1
o

+ +

manipulations, the vector K takes the form:

A A

K=-h Iy —
h(l—i—r)(2 1+7r

r=[a 8], (22)

where ) p .
o= —ar(14+7—dy) —bicy ’ (23)
(]. + 2r — dl +T’2 — le —ay; — a1r+a1d1 — blCl)
—a1b1 — bl(l +r— al)

(1+27’7d1+’f‘277‘d17&17G1T+a1d17b161).

B = (24)

If the Granger causality is rejected by the data (e.g., by is not significant), then equation (25) indicates
that § = 0, or in other words, C'A} is not a function of C'A;. In this case, the optimal current account would
be given by

(CAt_MCA*):K(Xt_N):[a 0} LA

o e ] — a(AZ— piag). (25)

Hence, if § = 0 the null hypothesis (CAf — p&4) = (CAr — poa) is always rejected, since under Ho 3
should be equal to one (and « should be zero). A further analysis of the vector K for a VAR(2) is presented
in appendix, in a similar way. The generalization of this cautionary note for a VAR(p) is straightforward, and
can be summarized by Proposition 1. According to Hamilton (1994), in the context of a bivariate VAR(p),
if one of the two variables does not Granger-cause the other, then the companion matrix is lower triangular
(e.g., b(L) = 0). Thus, the 3, coefficients of the vector K (i = 1,...,p) are always zero, because of the

algebraic structure of the vector, as also detailed in appendix.

Proposition 1 Consider the VAR representation (5) of the intertemporal model of current account. The
Granger causality from the current account (C Ay) to the first difference of the net output (AZ;) is a necessary
condition to perform the Wald test and verify the validation of the model, i.e., if the b(L) coefficients of the
VAR(p) model are not statistically significant, then, the Wald test is not applicable and the model should be

rejected.



Proof. See Appendix. m
Therefore, if the Granger causality could not be confirmed by the data set, neither a Wald test should
be performed nor the optimal current account should be generated, since the basic assumption of the model

is not verified,'” as summarized in table 1.

Table 1 - A note on Granger causality and Wald tests

Result of Granger causality Wald test Model Conclusion
CA; not Granger-cause AZ; not applicable rejected model cannot generate CAZ‘(*)
(8=0)
CA; Granger-cause AZ} rejects Ho rejected CAZ‘ 7é CA; (**)
(B#1)
does not reject Ho not rejected CA; =CA; (%)
(B=1)

Notes: (*) indicates that (714;;< only depends on AZ, instead of C'Ay
(**) suggests that agents do not smooth consumption;

(***) means that agents perfectly smooth consumption.

2.4 Estimation Method
2.4.1 SUR estimation

The VAR model (5) is usually estimated in the literature, equation-by-equation, using OLS. However, the
Seemingly Unrelated Regressions (SUR) technique, originally developed by Zellner (1962), can also be ad-
opted, since it is based on a Generalized Least Squares (GLS) estimation applied to a system of equations
as a whole, in which the data for several countries is examined simultaneously. The joint estimation is given

by stacking the system of equations that compose the VAR (for each country i = 1,..., N) in the following

way:
AZ} {L) b(L AZ; i
Pl o @) VL) A I et (26)
CA: (L) di(L) CAi_, £,
AZi,
[ Az | az : i
Then, define Y} = : , Xt = e . &= git
CA (2x1) CA €2t (2x1)
CAipi / (apix1)
and B = (af ..oal B b, G od d L d, )(IX@_)

10Recall Ghosh & Ostry (1995) results, in which the authors test the PVM for 45 developing countries and do not reject it for 29
countries. However, a careful analysis of the tests reveals that only 25 countries (from the entire set of countries) in fact support the
Granger causality implication (at 5% level). This way, the paper should conclude that (at most) in only 18 countries (instead of 29)

the model could not be rejected, since only 18 countries indeed exhibit good results for both the Wald and Granger causality tests.
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This way, the VAR for a country i can be represented by

) _ thl 0 i
0 = ( 0 Xy )(2)(41),) ( g )<4p,-x1> +( °t )<2x1> @7)

Furthermore, the system of equations for a given set of IV countries can be expressed by

X¥ oo ... 0
V! 0 X} By &
: = : L0 : : 1 (28)
vy (2N x 1) 0 X 0 Y (4P x 1) & (2N x 1)
0 e 0 XM

(2N x 4P)
or in a compact form Y = XpB + . The name SUR comes from the fact that each equation in the
previous system has its own vector of coefficients, which might suggest that the equations are unrelated.

Nevertheless, correlation across the errors in different equations can provide links that can be exploited in

N

estimation. It should be noted that Y p; = P, where p; is the number of lags of the VAR, for a country 4.
i=1

The residuals ¢ have mean zero and are serially uncorrelated, with covariance matrix given by F(ege’) = o2€.

Hence, the GLS estimator of 5 and its variance-covariance matrix are given by

B=(x'0'x) X'y (29)

1

E(B - B)(B~p) =0 (X'07'X)" (30)
In general, the (N x N) matrix 2 is unknown and the last expression cannot be directly applied. However,
B can be calculated by an estimate of the ijth element of €2, given by

~ e»ej
Wiz = T

where e; is a (T x 1) vector containing the residuals of the ith equation estimated by OLS. In this case,

where 7,5 =1,..., N (31)

a feasible SUR estimator of 3 is obtained as

3= (X’ﬁle)il X0y (32)

o s N -1
B - 8)(B -8y =o* (XQ'X) (33)
The OLS estimator, on the other hand, is given by
B=(X'X)"XY (34)

EB-B)B-8) =0 (X'X) " X'QX (X'X)"" (35)

The difference between their variance-covariance matrices is a positive semidefinite matrix, and can be
expressed by

E(B —B)(B~B) —E(B~B)(B - ) =o*n (36)

where 7 = (X'X)' X/ — (X’Q*IX)f1 X'Q~1, indicating the gain in efficiency of SUR estimators in

comparison to the OLS counterpart.
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2.4.2 Caveats of SUR estimation

The SUR estimator generally exhibits a good performance when N is small relative to T', but in fact becomes
not feasible when T < (N +1)/2. Even when the SUR model is correctly specified, its performance might be
poor due to a very large number of free parameters to be estimated, in comparison to the time dimension.
In other words, as N becomes large for a fixed value of T, the estimated covariance matrix becomes “nearly”
singular, introducing a bias into the standard error estimates. This way, the finite sample performance of

the OLS and SUR estimators deteriorates rapidly as the size of the cross-sectional dimension increases.

Driscoll & Kraay (1998) investigate finite-sample properties of variance estimators, concluding that both
OLS and SUR estimators indeed exhibit substantial downward finite sample bias, even for moderate values
of cross-sectional dependence, and are outperformed by a spatial correlation consistent estimator proposed

in their article, based on the nonparametric technique of Newey & West (1987) and Andrews (1991).

The main idea is to obtain consistent estimates of the N x N matrix of cross-sectional correlations by
averaging over the time dimension. This way, the estimated cross-sectional covariance matrix can be used to
construct standard errors, which are robust to the presence of spatial correlation. Driscoll & Kraay (1998)’s
approach, in contrast to SUR, might be applicable in situations such as cross-country panel data models

with a relatively large number of countries.

In this paper, however, we focus on a panel model with small N and large 7', but in order to deal with
possible finite sample bias of the covariance matrix, we also investigate a two-way error decomposition (next

described) that can properly deal with cross-country correlations.

2.4.3 Fuller & Battese (1974) and the two-way error decomposition

The performance of any estimation procedure depends on the statistical characteristics of the error compon-
ents in the model. In this section, we adopt the Fuller & Battese (1974) method to consider individual and
time-specific random effects into the error disturbances, in which parameters can efficiently be estimated by

using a feasible GLS framework.

In dynamic panel models, the presence of lagged dependent variables might lead to a non-zero correlation
between regressors and error term. This could render OLS estimator for a dynamic error-component model
to be biased and inconsistent (see Baltagi, 2001, p. 130), due to the correlation between the lagged dependent
variable and the individual specific effect. In addition, a feasible GLS estimator for the random-effects model
under the assumption of independence between the effects and explanatory variables would also be biased.
In these cases (with large N and short T'), Andersen & Hsiao (1981) suggests first differencing the model to
get rid of the individual effect. On a different approach, but still in a framework of dynamic models with
large N and short T', Holtz-Eakin et alli (1988) investigate panel VAR (PVAR) models, in order to provide
more flexibility to the VAR modeling for panel data. See also Hsiao (2003, p. 70,107) for further details.

In this paper, due to the specific structure of our VAR, we take a different route. Since we are interested

here in weakly stationary variables, in a random-effects model with short IV and large T', we apply the Fuller
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& Battese (1974) approach to our system of equations (28). These authors establish sufficient conditions for a
feasible GLS estimator to be unbiased and exhibit the same asymptotic properties of the GLS estimator in a
crossed-error model, i.e., in which an error decomposition is considered to allow for individual effects that are
constant over cross sections or time periods. To do so, initially consider the stacked model Y = X5 +¢, from
the system of equations (28), where Y = (y1,1;v1.2;--;y1,7; - ¥2n,1); X = (T1,1;521,2;..; 1,75 s TanN,T); O
and z;; are p x 1 vectors. The Fuller & Battese (1974) two-way random error decomposition is given by
€it =V + € + €4, in which E(ee’ | X) = Q.

Thus, the model is a variance components model, with the variance components 02; 02; o2 to be estimated.
A crucial implication of such a specification is that the effects are not correlated with the regressors. For
random effects models, the estimation method is a feasible generalized least squares (FGLS) procedure that
involves estimating the variance components in the first stage and using the estimated variance covariance
matrix thus obtained to apply generalized least squares (GLS) to the data. It is also assumed that E(v;) =
0; E(v?) = 02; E(viv;) = 0,Yi # j;v; is uncorrelated with €;4,Vi,t; and also E(e;) = 0;E(e?) = 0%
E(eies) = 0,Vt # s;e; is uncorrelated with v; and e; 4, Vi, t.!

Contrary to Wallace & Hussain (1969) or Swamy & Arora (1972), Fuller & Battese (1974) also consider
the case in which 02 and/or o2 are equal to zero.!> The estimators for the variance components are obtained
by the fitting-of-constants method, with the provision that any negative variance components is set to
zero for parameter estimation purposes. First, the least square residuals are defined by: € = Mio( —
X[X' M2 X7 X' Mo]Y ;0 = (Myg+ My ) (I — X[ X' (Mg + My ) X1 X (Mo + M, )]Y; € = (Mya+ M) (I —
X[X' (Mg + M) X]71X'(Mya + M5)]Y. Next, Fuller & Battese compute the unbiased estimators for the
variance components: 83 = %; 812, = %/;[(?V(ivl_)i);iflag; 85 = @}[(J;(Tlgi)];izlﬁf where 01 =
rank(X'M12X); 62 = rank(X'M 2 X); 63 = rank(X' My X); ¢ = tr{[X' (M2 + M1 )X ' X' M1 X }; ¢y =
tr{[X'(Mia + M) X' X' M, X}

Once the component variances have been estimated, we form an estimator of the composite residual
covariance, and then GLS transform the dependent and regressor data. The respective GLS estimator is given
by BFB = (X'Q71X)"1X'Q1Y and, thus, the FB estimator is the related feasible GLS estimator BFB, in

which Q is estimated through -, 5, and 5>. Fuller & Battese (1974) show that their estimator is consistent,

HThe authors also define the following mutually orthogonal, symmetric and idempotent matrices M, = éz)]{]v; s My, =

M. ; Mo = % — M. ; M2 = IonT — % — % + M., ; where Ion and I are identity matrices of order 2NT" and
T, respectively; and Jan and Jp are (2N x 2N) and (T X T') matrices having all elements equal to one. The covariance matrix =
O'?IQNT+U%(IQN®JT)+UE(J2N®IT) can be expressed by Q = U§M12+(0§+TU%)M1,+(U?+2N0’§)M2+(U?+TO’%+2NO’§)MH,
or even, Q = vy M12 + Yo M1, +v3M.o + v, M., where v; = 02; 75 = (02 +T02); v53 = (02 +2No2); v4 = (02 + To2 +2No2).

12Baltagi (1981) performed a Monte Carlo study on a single regression equation with two-way error component disturbances and

IN®JT
T

studied the properties of several estimators, including OLS and six feasible GLS estimators: Fuller & Battese (1974), Swamy-Arora
(1972), Wallace & Hussain (1969), among others. The results suggest that OLS standard errors are biased and all FGLS are asymptot-
ically efficient and performed relatively well in finite samples, making it difficult to choose among them. The methods differ only in the
specifications estimated in evaluating the residuals: The Swamy-Arora estimator of the component variances uses residuals from the
within (fixed effect) and between (means) regressions, while the Wallace-Hussain estimator uses only OLS residuals. In general, they

provide similar answers, especially in large samples. Additional details on random effects models are provided in Baltagi (2001).
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unbiased and asymptotically equivalent to the GLS estimator. In addition, the estimated covariance matrix

. . . . . . . . A2 ~2 A2
of coefficients is unbiased, since it is based on unbiased and consistent estimators o, o, 0

v e’

Table 2 - Comparison of OLS, SUR and FB covariance matrix of residuals

E(eie5s | X) OLS SUR FB
i=jt=s o? o? (02 + 0%+ 0?)
i£jt=s 0 o3 o?
1=jt#s 0 0 o?

i £ jit#s 0 0 0

In the SUR approach, the covariance structure allows for conditional correlation between the contem-
poraneous residuals for cross-section, but restricts residuals in different periods to be uncorrelated. On the
other hand, following the argument of Wooldridge (2002, p. 259), rather than depending on N(N + 1)/2
variances and covariances, as would be the case in a SUR analysis, € of the Fuller & Battese (1974) approach

2 02,02, regardless of the size of N. This parsimonious feature might

only depends on three parameters, o
be useful for a large panel model, with N, T — oo. See Baltagi (1980), which investigates a SUR model with
error components, and also Pesaran and Smith (1995) and Phillips and Moon (1999) for panel data with
large T and N. ' We next show some important results of the OLS and SUR estimators for the system of

equations (28), under the Fuller & Battese error decomposition.

Definition 3: Define the bias on the estimated covariance matrix by: B = Var(8) — E(Var(B) | X);
Definition 4: Define ¥ = 2No?/(0? + To? + 2No?);

Assumption Al: (X'X) and (X'JX) are positive definite matrices, where J = Jan ® I;

Assumption A2: (i) ¢tr[(X’X)"'X'JX — I] > 0; and (ii) T > 2p, where p is the number of lags of the
VARM;

Proposition 2 (OLS) Assume the Fuller € Battese (1974) two-way random error decomposition. (i) If
(02;02;02) > 0, then, Boyg is inconsistent; (i) if 02 = 0 and (0% 02) > 0, then, @“(ﬂOLS) is biased;
(iii) if o2 = 0, (62;02) > 0, and A1-A2 hold, then, diag(%) > 0, i.e., an increase of the common shock
o2 (and, thus, W) induces an upward bias on all estimated e(OLS) variances; and (i) if (c02;02) = 0 and

02 >0, then, @(601;5) is unbiased.

Proof. See Appendix. m
As already expected, substituting OLS residuals instead of the true disturbances introduces bias in the

corresponding estimates of the variance components and, thus, on the covariance matrix of coefficients. See

BFor panels with large N and 7', several approaches might be considered: (i) sequential limits, in which a sequential limit theory is
considered; diagonal-path limits, which allows the two indexes to pass to infinity along a specific diagonal path in the two dimensional
array; or joint limits, in which both indexes pass to infinity simultaneously. See Hsiao (2003, p.295) for further details, and also Phillips
& Moon (1999), which provide sufficient conditions that ensures the sequential limits to be equivalent to joint limits.

N
MRecall from (28) that Zpi: P, where p; is the number of lags of the VAR for a given country 4. By assuming that p;= p, V4,

i=1
then it follows that k = 4P = 4Np, and thus T" > 2p means 2NT > 4Np = k.
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Maddala (1971) and Baltagi (2001, p.35) for further details. On the other hand, if assumptions A1-A2 do
not hold, then, we cannot guarantee that all estimated variances are upwarded biased. It could be the case

that some variances do exhibit a positive bias, whereas others are not affected at all, or even show a negative

bias.!?
Assumption A3: 02y + 02 Jon — s> 0;

Assumption A4: OEIQN + UEJQN = i;

2N(2NT—k)

tr(X’'X)"IX’JX)—2NT)F2N(2NT—F) where

Assumption Ab5: Sisa positive semidefinite matrix; and ¥ >
k=4Np and J = Joy ® Ir;

Proposition 3 (SUR) Assume the Fuller & Battese (1974) two-way random error decomposition. (i) If
(02;0%,02) > 0 , then, Bgyp is inconsistent; (ii) if 02 =0, (62;02) > 0 and A3 hold, then, @"(BSUR) is
biased. In addition, if A2(ii) and A5 also hold, then, (Bors — Bsur) = 0, i.e., the bias of SUR estimated
variances of 3 is not greater than the respective OLS bias; (iii) if 02 = 0, (62;02) > 0 and A4 hold, then,
@“(ﬂSUR) is unbiased; and (iv) if (02;0%) = 0 and A4 hold, then, @“(BSUR) = @(BOLS) is unbiased.

Proof. See Appendix. m

Note that as long as tr(X (X' X) 1 X'J) increases, the exigency for ¥ decreases, in order to guarantee that
(Bors — Bsur) = 0. In other words, if the common shock is relatively significant in the disturbance term,
then, the SUR technique might produce a less biased covariance matrix in respect to the OLS approach.
Now, we present sufficient conditions for the Fuller & Battese (1974) estimator to be unbiased and consistent
Whel}\ applied to our setup. Initially, lets define B rp as the unfeasible Fuller & Battese (1974) estimator,
and By as the feasible FB estimator, based on the estimated effects 62,62 and 5°.

Assumption A6: X'Q2Q7'X is nonsingular, and plim(%) = Q,, when T' — oo, with fixed N; where

Q. is a finite positive definite matrix;

Assumption AT: e; and ¢;; are independent and normally distributed;

= 0 and plim[(XL22) — (XL2)] = 0; where O = 57 Lvr+

62 (Ioy ® Jp) + 62 (Jan @ Ir) is the estimated Fuller & Battese (1974) covariance matrix.

Assumption AS8: plim[(xlﬁle)f(Xlﬂglx)]

Proposition 4 Assume the Fuller € Battese (1974) two-way random error decomposition. Thus, it follows
that: (i) if o2 =0, (6%;02) > 0, and A6 holds, then, (i) the FB estimator Bppg is unbiased and consistent; (i1)
if 02 =0, (62;02) > 0, and A6-A7 hold, then, the FB estimator EFB is asymptotically normally distributed,
i.e., BFB ~ N(B;(X'Q71X)™Y); and (iii) if A6, A7 and A8 hold, then, the feasible FB estimator BFB is

asymptotically equivalent to B FB-

5Note that if X = [1,...,1]’, then, it follows that (X’X)71 = 1/2NT and tr[XX'J] = tr[(JanT)(Jon ® IT)] = tr[(Jan ®
JT)(J2N®IT)] = tT‘[(JQNJQN)@(JTIT)] = tT(JgNJQN)tT'(JTIT) = TtT’(JQNJQN) = T(2N)(2N) Thus, tT’[(X/X)_lXIJXfl] =
tT[(X'X)le'JX] —tr(I) = ¢r[X'JX]/2NT — 2NT = tr[XX'J]/2NT — 2NT = 2N(2NT)/2NT —2NT =2N(1—-T) < 0. In
other words, if A1-A2 do not hold we cannot guarantee that diag(g%) > 0.
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Proof. See Appendix. m

Note that if one assumes that the residuals of each country are serially uncorrelated, then, E(e; ;s |
X) =0;Vt+#s, which means that 02 = 0.6 In addition, a fixed effect for v; would be more appropriate in
this framework, since we are focused on a specific set of N countries (see Baltagi, 2001 p.12). On the other
hand, for the time component e; we assume a random effect in order to avoid a significant loss of degrees of

freedom due to the large T setup.

In order to verify the finite sample performance of the competing OLS, SUR and FB estimators, we next

conduct a small Monte Carlo simulation.

2.5 Monte Carlo simulation

The econometric methodology described in section 2.2 suggests a Wald test to investigate a set of restrictions
imposed to the coefficients of a VAR, used to forecast the current account. The Wald test verifies whether or
not the optimal current account is statistically equal to the observed current account. Moreover, the Wald
test could be conducted based on OLS, SUR and FB estimations for the coefficients of the VAR. Therefore,
the goal of our experiment is to investigate the power and the size of the Wald test, comparing different

techniques used for the estimation of the VAR (reproduced below for a generic country i):
a'(L) b (L et
(1) () N
€2t

One of the critical issues regarding Monte Carlo experiments is that of Data-Generating Processes

AZi,
cA;,

(37)

cAl

AZi 1

(DGPs). In our experiment, we construct 100 DGPs, and for each DGP we generate 1,000 samples of

the series | AZ; CA; }/, by sampling random series of ;’s. Moreover, each sample contains 1,000 ob-
servations, but, in order to reduce the impact of initial values we consider only the last 7" = 100 or 200
observations. Thus, the Monte Carlo simulation performs 100,000 replications of the experiment.!”

Two important issues regarding the companion matrix of the generated series must be addressed at this
point. The first one is related to the null hypothesis to be checked by the Wald test: In our simulation, we
impose Ho to be true or false by just controlling the impact of the theoretical restrictions into the companion
matrix. The magnitude of the theoretical restrictions is given by the gamma parameter, in which v = 1
imposes Ho to be true, whereas v # 1 leads to a false Ho (see appendix for details). The second issue
is related to the stationarity of the VAR: In order to apply the econometric methodology, each sample of

the experiment must be constructed to generate a covariance-stationary VAR. This way, we show (see also

161p addition, the "individual effect" translates in practice into an individual intercept; which is also expected to be zero in our
setup, since all series are supposed to be weakly stationary and previously demeaned.

17A hybrid solution using E-Views, R and MatLab environments is adopted, since the proposed simulation is extremely computational
intensive. We proceed as follows: an E-Views code initially generates the time series AZ¢ and C Ay for each DGP. Then, it estimates
the VAR coefficients based on OLS and SUR techniques and save all the replications and the Wald test results in the hard disk. Next,
an R code computes the FB estimator and conducts the respective Wald test, also saving the results in a text file. Finally, a MatLab
code reads all the results from the hard disk, computes the size of the Wald test based on the three estimators and also constructs the

power results.
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appendix for details) how to guarantee the stationarity of the VAR by properly "choosing" the eigenvalues
of the companion matrix inside the unit circle, and then calculating the coefficients of the companion matrix

that generate those eigenvalues.

Results

Concerning the size of the Wald test, we calculate the estimated significance level by simply observing the
frequency of rejection of the null hypothesis in the 100,000 replications of the experiment under conditions
where the null hypothesis is imposed to be true. Regarding the power of the test, we also compute the

rejection frequencies, but under conditions where the null hypothesis is now imposed to be false.

Table 3 - Size of the Wald test

Model OLS SUR FB
(a) N=2; T=100 0.0171 0.0653 0.0534
(b) N=2; T=200 0.0154 0.0559 0.0520
(c) N=5; T=200 0.0175 0.0620 0.0503

Note: The nominal size of the test is & =5%, in which
empirical size = (frequency of p-values below the ¢ (nominal size) / (MC*DGP);

where (MC*DGP) = 100,000 = total number of replications.

Overall, the results suggest that FB-based test has an adequate size in all cases, whereas the OLS-test
exhibits a serious finite sample bias, as already predicted by Proposition 2. In the same line, the SUR-test
also seems to show a (small) non-zero bias due to the presence of global shocks, as previously discussed in

Proposition 3.

The power investigation can be conducted by controlling the experiment under conditions where the null
is imposed to be false, i.e., v # 1. If the null hypothesis were only ”slightly false” (e.g., v = 0.9), one would
expect power to be lower than if it were ”grossly false” (e.g., v = 0.5). The results of the power investigation
corroborate this expectation and are presented in next tables. To adjust for size distortion, we also report
a "size-corrected" power.'® The results with size correction are quite similar, suggesting that the Wald test

might exhibit similar power across the considered estimation procedures.

18 ngize-corrected power" is just power using the critical values that would have yielded correct size under the null hypothesis.
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Table 4 - Power of the Wald test

(a) N=2;T=100 | without size-correction size-corrected power
¥ OLS SUR FB | OLS SUR FB
0.9 0.051 0.150 0.126 | 0.082 0.087 0.104
0.7 0.439 0.541 0.545 | 0.520 0.533 0.527
0.5 0.725 0.795 0.782 | 0.729 0.727 0.742
(b) N=2;T=200 | without size-correction size-corrected power
¥ OLS SUR FB | OLS SUR FB
0.9 0.165 0.264 0.252 | 0.241 0.246 0.242
0.7 0.568 0.645 0.635 | 0.628 0.643 0.627
0.5 0.847 0.887 0.878 | 0.872 0.881 0.874
(c) N=5;T=200 | without size-correction size-corrected power
¥ OLS SUR FB | OLS SUR FB
0.9 0.113 0.226 0.200 | 0.184 0.205 0.194
0.7 0.544 0.674 0.638 | 0.642 0.660 0.633
0.5 0.795 0.851 0.834 | 0.827 0.823 0.826

Notes: a) Power = (frequency of p-values below the % nominal size) / (MC*DGP),

b) Gamma < 1 indicates a false Ho.

3 Empirical Results

3.1 Data

All data are from the national accounts of IFS — International Financial Statistics (IMF). The C'A; and
AZ; series for the G-7 countries are constructed from seasonally adjusted quarterly data (at annual rates),
and are expressed in 2000 local currency.'® In addition, all data are converted in per capita real terms, by
dividing it by the implicit GDP deflator and the population. It is worth mentioning that the current account
data are not directly obtained from the balance of payments data sets, since these series are not available
for all of the countries for an extensive period of time, and it would lead to an arbitrary allocation of "net

errors and omissions" in the current account.

Sample 1 (G-7): USA, Canada, Japan, United Kingdom, Germany, Italy, and France.
Period: 1980:q1-2007:q1 (set of 7 countries, 109 time periods, with a total amount of 2NT" = 1, 526 observations).

Sample 2: USA, Canada, Japan, United Kingdom, and Germany.
Period: 1960:q1-2007:q1 (set of 5 countries, 189 periods, with a total amount of 2NT = 1,890 observations).

19Based on IMF’s World Economic Outlook (April, 2005 - statistical appendix), we adopt the following fixed conversion rates (after
31/12/1998) between the Euro and the currencies of Germany, France and Italy: 1 Euro = 1.95583 Deutsche mark = 6.55957 French
francs = 1,936.27 Italian lire.
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3.2 Granger Causality

One of the four implications of the theoretical model,?’ listed by Otto (1992), is that C'A; helps to forecast
AZ;. According to our results, one can verify that the null hypothesis (C'A; does not Granger-cause AZ;)

is rejected at 5% level for Canada and Japan.

Table 5 - Comparison of Results (Ho: CA[» does not Granger-cause AZt)

Granger Causality (p-value)
Country \ Author IG (e} G A
USA 0.16944 0.0001 0.0004
CAN 0.04617 0.21 0.40
JPN 0.02426 - 0.62
UK 0.47515 - 0.68
GER 0.83352 - 0.76
ITA 0.91321 - -
FRA 0.59218 - - 0.10

Notes: IG means Issler & Gaglianone (our results), O refers to Otto (92), G indicates Ghosh (95), A refers to Agénor et al. (1999).

Our results are quite in contrast to the literature, probably due to the different sample periods. For
instance, Otto (1992) rejects Ho for the USA (at 1% level), but does not reject it for Canada. Ghosh (1995)
also rejects Ho for the USA (at 1% level) and does not reject it for Canada, Japan, UK and Germany, and
Agénor et al. (1999) present a p-value of 0.10 for France. The different results could possibly be explained
by the broader range of our sample period, in comparison to the previous studies, which do not account for
all global and idiosyncratic shocks occurred in the last decades: Our sample period covers quarterly data
from 1960 until 2007, whereas Otto (1992) considers the period 1950-88, Ghosh(1995) studies the period
1960-88, and Agénor et al. (1999) covers 1970-96.

Thus, our results indicate that, with the exception of Canada and Japan, the current account does not
help to forecast the net output of the G-7 countries, indicating that the agents possibly do not have any
additional information to predict AZ;, other than those contained in the past of their own series. Recall
Proposition 1, which states that if the Granger causality implication is not verified, then, the optimal current
account should not be generated, since it would lead to spurious results. In the present work, the Granger
causality is only verified for Canada and Japan. Thus, for the other countries, the model should be rejected
and the optimal current account should not be generated. For instance, the case of UK (sample 1) can be

analyzed as an example of spurious result. The VAR(1) estimated for this country is given by

VAR coefficients for UK
AZ, | a1 =-0.211322 (-240) by = —0.066236 (-1.76)
CA; N c1 = —0.133631 (-1.12)  dy = 0.854978 (16.99)

Note: t-statistics in parentheses

AZq
CAi

[ 5.477849 (1.67) ] . l 1

2.626709 (0.59) €9t

20T he results of ADF unit root test and the cointegration analysis are presented in appendix.
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where a; and d; are statistically significant, but this is not the case for b; and c¢;. As described in table

6, the vector K (recall equation (22)) is extremely sensitive to variations in b; and could generate completely

different C' A} series.?! Assuming b; = —0.066 (instead of zero, since by is not statistically significant), the
model indicates that § = 0.348 (unlike the correct value of 8 = 0).

Figurel - CA;} for UK
Table 6 - Vector K = [«; 5] for UK 0
Assume b= —0.066 Assume b;=0
a 0.134 0.172 A
8 0.348 0.000

-60 T T T T T T T T T
60 65 70 75 80 85 90 95 00 05

[~ UKcAOT — UK cA OT (b1=0)]

Note: The picture above exhibits two optimal current accounts

for UK (sample 1), generated from different K vectors of table 6.

3.3 Correlation matrix

The residual correlation matrix obtained in the joint estimation of the VAR could be a starting point to
justify the SUR technique, since the contemporaneous correlation across the G-7 countries should not be

ignored.

Table 7 - Residual Correlation Matrix (sample 1)

USA_DZ USA_CA CAN_DZ CAN_CA JPN_DZ JPN_CA FRA_DZ FRA_CA UK_DZ UK_CA GER_DZ GER_CA ITA_DZ ITA_CA
usA_bz[ 1.00 0.26
usA_cA| 0.26 1.00
CAN_DZ 0.15 0.04 1.00 0.53
CAN_CA 0.02 0.18 0.53 1.00
JPN_DZ 013 015  -009 001 100  0.06
JPN_CA 0.1 0.00 0.05 000 | 006  1.00

FRA_DZ 0.07 0.04 -0.03 -0.11 0.25 -0.06 1.00 0.32
FRA_CA 0.10 0.08 -0.13 -0.12 0.17 -0.02 0.32 1.00
UK_DZ 0.02 -0.05 0.13 0.15 -0.12 0.00 -0.10 0.01 1.00 0.44
UK_CA -0.13 -0.08 0.06 0.08 -0.01 -0.06 0.04 0.05 0.44 1.00
GER_DZ 0.10 0.16 -0.05 0.07 0.05 0.10 0.15 -0.04 -0.08 -0.06 1.00 0.20
GER_CA 021 0.01 0.19 0.05 -0.04 0.04 0.11 0.09 0.17 0.12 0.20 1.00
ITA_DZ 0.09 0.21 0.04 -0.06 -0.02 0.06 0.16 0.17 0.07 0.09 0.08 0.14 1.00 0.49
ITA_CA 0.02 0.28 0.07 0.03 0.13 -0.03 0.08 0.30 0.08 -0.08 0.11 0.07 0.49 1.00 |

Furthermore, a Likelihood Ratio (LR) test is able to provide a formal argument to adopt the SUR
approach, instead of the OLS technique. Under the null hypothesis, the residuals covariance matrix (£2) is a
diagonal (band)?? matrix, suggesting the OLS method. On the other hand, the alternative specification (H;)
supposes that € is a non-diagonal (band) matrix, recommending the SUR approach. This way, Ho imposes
a set of restrictions on the residuals covariance matrix, since all elements out of the diagonal (band) are set
to zero. In this case, according to Hamilton (1994), twice the log likelihood ratio for a Gaussian VAR is
given by

2(L;—L3):T<1n‘§0‘—m‘?zl‘), (38)

210ptima1 current account is generated by equations (16) and (17), and depends on the estimated coefficients of the VAR and the
world interest rate (supposed 2% per year).
22The residuals covariance matrix is diagonal-band, in OLS estimation, because of the structure of the VAR, since each country has

two equations (C' Ay and AZg ).
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where L{ is the maximum value for the log likelihood under Ho (and L7 under the alternative hypothesis), T

(AZO is the determinant of the residuals covariance matrix estimated

is the number of effective observations,

by OLS, and ﬁl‘ is the determinant of the same matrix estimated by SUR. Under the null hypothesis,
the difference between L} and Lj is statistically zero, and the LR statistic asymptotically follows a y?

distribution, with degrees of freedom equal to the number of restrictions imposed under Ho.

Table 8 - Results of the LR test

Sample 1 Sample 2
T 1,520 1,870
‘QO‘ 1.11734E+51 1.53125E+38
_lors
’ 1’ 4.47295E+50 1.23388E+38
SUR
Crr 1,391.53 403.77
(iR 1,385.13 402.91
5% critical value X?go):wl.ss ; X?90)2113-15 X§40):55.76
1% critical value X{s0)=112:33 5 X{gpy=124-12 X{10)=6369

—In

Notes: a) 1" is the number of effective observations, and CLR =T (ln ‘QO Ql D is the LR statistic.
b) CER is a modification to the LR test to take into account small-sample bias, replacing T by (T — k),

where K is the number of parameters estimated per equation.

¢) In sample 1, the degrees of freedom (dof)= 84, and in sample 2, dof=40.

Hence, the null hypothesis could be rejected in both samples, since the LR statistics are larger than the
critical values. Therefore, the residuals covariance matrices are non-diagonal (band), and the SUR approach
is better recommended than the OLS method.

3.4 Wald test

A formal comparison between (CA; — ug ) and (CA; — pio4), to measure the fit of the model with the
data, is provided by the restrictions (20) imposed to the coefficients of the VAR, through a Wald test, which
asymptotically follows a y? distribution (with the degrees of freedom equal to the number of restrictions).
The acceptance of those restrictions in the Wald test means that both series of current account (optimal and
observed) are statistically the same.?3

We perform the Wald test for the G-7 countries based on two different types of time series. The first one
is the usual time series suggested by the literature (e.g., Ghosh, 1995), in which the Wald test is conducted
from a seasonally adjusted quarterly data (at annual rates), expressed in 2000 local currency, converted in
per capita real terms, by dividing it by the implicit GDP deflator and the population. In order to compute
common shocks among the considered countries, we also convert all series to 2000 U.S. dollars. In the second

approach, however, data is not expressed in per capita terms and is converted to U.S. dollars by using a

23The Wald test can be implemented for several values of the world interest rate (). However, the results are almost the same for

values of 7 ranging from 1% to 6%. This way, we have adopted r = 2% following the literature.
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proper exchange rate time series, due to the fact that the global shocks must be computed from a proper set
of scaled and comparable time series. Since both methodologies lead to very similar results, we next present
the results only for the later approach, based on different estimation procedures: OLS, SUR, FB.1 and FB.2
(see tables 13 and 14 in appendix for further details).?*

The first estimator is merely OLS equation-by-equation, ignoring possible crossed effects among countries.
The second approach, SUR, is just a feasible GLS estimator applied to the considered system of equations
and, as already mentioned, might improve the efficiency when compared to the OLS method and, thus, the
covariance matrix of a SUR estimation could result in a rejection of the model previously accepted in the
OLS framework. The last estimators, FB.1 and FB.2, are based on a two-way random error decomposition
procedure of Fuller & Battese (1974), in which the residual term is decomposed into individual effects,
common shocks, and idiosyncratic terms, i.e., €;+ = v; + e; + €;+. The only difference between these two
estimators is that FB.1 assumes a unique global shock e; for the whole system of equations, whereas, FB.2
considers a common shock e{4 for the C'A; system of equations, and a different shock eP# for the AZ,

equations.

A comparison of these results with the empirical evidence found in the literature is presented in Table 9:
Otto (1992) rejects the model for the USA and Canada, Ghosh (1995) rejects the model for Canada, Japan,
the UK and Germany, but does not reject it for the USA, and Agénor et al. (1999) do not reject it for

France.

Table 9 - Comparison with the literature

Wald Test (p-value)
Country OLS SUR FB.1 FB.2 Otto (92) Ghosh (95) Agénor et al.(99)
USA () 0.1400 0.0207 (*)  0.034 (*) 0.0394 (*) 0.0041 (**) 1.19 -
CAN (1) 0.2402 0.0312 (*)  0.8692 0.8766 0.0020 (**) 95 (**) -
JPN (1) 0.0291 (*)  0.0205(*)  0.0032 (**)  0.0051 (**) - 75 (¥ -
UK @) 0.1796 0.1550 0.9970 0.9979 - 464 (**) -
GER @) 0.048 (*) 0.0097 (**)  0.6667 0.6898 - 90 (**) -
ITA @ 0.1425 0.0789 0.9771 0.9594 - - -
FRA (1) 0.0295 (*)  0.0000 (**)  0.7957 0.7525 - - 0.314
USA (2 0.0291 (*)  0.0069 (**)  0.0000 (**)  0.0000 (**)
CAN (2) 0.1499 0.0123 (*)  0.8288 0.8361
JPN (2) 0.0201 (*)  0.0160(*)  0.0363 (*)  0.3019
UK (2) 0.0139 (*)  0.0001 (**) 0.8727 0.6861
GER(2) 0.0143 (*)  0.0078 (**)  0.7161 0.3260

Notes: Ghosh (1995) presents chi-squared values; USA(l) indicates sample 1

and USA(2) means sample 2; (**) means rejection at 1% level, and (*) at 5% level.

First of all, note that the SUR estimator generally over rejects the model in comparison to OLS.?

However, recall from Proposition 1 that a fair analysis of Table 9 should only consider countries in which

24EViews 5.1 was used to obtain the OLS and SUR estimators, whereas a code in R was developed for the FB estimators, which

could alternatively be computed in SAS.
25An important remark is provided by Ghosh and Ostry (1995), which argue that the non-rejection of the model for a given country

can occur because of the magnitude of the standard deviations in the coefficients of the VAR. High values for the standard errors could

lead to a statistical equality between the optimal and observed current accounts, even if these series are graphically different.
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the Granger causality can (indeed) be verified. Since from Table 5 it only occurs for Canada and Japan,
and the later country failed at the Wald test, our empirical results suggest, contrary to the previous results

found in the literature, that the PVM model of the current account cannot be rejected for Canada.

Secondly, note that due to the possible finite sample bias of OLS and SUR estimators, the results are
quite different from the FB results, as already expected from Propositions 2-4. In fact, regarding the FB
results, the Hausman (1978) m-statistic, that provides information about the appropriateness of the random
effects specification, do not indicate a rejection?% of the null hypothesis of zero correlation between regressors

and effects.

More importantly, in both samples the FB approach suggest that o2 = 0, and that the global shock
component (e;) should not be ignored in the estimation process, since its relative importance in respect
to the total residual is estimated as ¥ = 0.42 in sample 1, and ¥ = 0.36 in sample 2. Recall that ¥ =
2No? /(02 4+ To? + 2No?) should be zero, in the case of no global shocks, and also recall Proposition 2(ii),
which states that the finite sample bias of the OLS estimated covariance matrix increases as long as the
common shocks become more present in the data. A global shock (e;) time series is depicted in next figure

and compared (for illustrative purposes) to U.S. recessions:

Figure 2 - Global shocks (sample 2) and U.S. recessions
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Note: Gray bars represent the U.S. (NBER) recessions.

Note that some of the U.S. recessions indeed coincide with the negative peaks of e;, including the most
recent period in 2001, which is a natural result since the global shocks in the current account of the G-7 are

expected to be (at least) partially driven by the world “s biggest economy movements.

4 Conclusions

The standard intertemporal optimization model of the current account is adopted to analyze the G-7 coun-
tries. In this framework, the perfect capital mobility allows the agents to smooth consumption via current
account. The econometric approach of the model, developed by Campbell & Shiller (1987), consists of estim-

ating an unrestricted VAR to verify the adherence of the theoretical framework onto the data. Furthermore,

206For instance, in sample 1, the FB.1 estimator, with 28 degrees of freedom, exhibit the m statistic equal to 11.19779 (p-value:
0.9980223); and for FB.2, with 14 degrees of freedom in each system, m=4.139241 (p-value: 0.9945687).
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a Wald test is used to investigate a set of restrictions imposed to the VAR, used to forecast the current

account, testing whether or not the optimal current account is equal to the observed series (null hypothesis).

In spite of all theoretical advances regarding the current account PVM models in recent years, we have
opted to investigate some econometric techniques that could be used in the estimation process, in order
to answer an important related question: Could an inappropriate econometric technique lead to wrong
conclusions regarding the rejection of the current account PVM model? We focused on three estimation
techniques (OLS, SUR and FB).

Firstly, a SUR technique could be recommended (instead of OLS) in order to properly consider contem-
poraneous correlations across the considered countries, that might be caused by global shocks such as the
oil shocks of 70s or the financial crises of 90s. However, due to potential pitfalls associated with the SUR
estimation, we also provide an application of the Fuller & Battese (1974) two-way random error decomposi-
tion, due to the existence of common shocks and the possible bias in the covariance matrix estimated with
OLS and SUR techniques.

We investigate these estimators in a Monte Carlo experiment, and evaluate the power and size of the
Wald test in the presence of global shocks, concluding that the FB-based test exhibits a good performance
in the size investigation. On the other hand, the OLS-based test performs unsatisfactorily, and a small finite
sample bias can also be detected for the SUR approach. The numerical simulations also indicate that there

is no clear difference in the size-corrected power of the considered Wald test based on different estimators.

To summarize, the theoretical methodology, as well as the Monte Carlo simulations, suggests the adoption
of the FB estimator (instead of OLS) in the presence of global shocks, small N and relatively large T. The
SUR approach could be used in this case, but only when the common shock exhibits a low magnitude, since

it directly leads to a biased estimated covariance matrix.

This paper also proposes a note on Granger causality and Wald tests: the Granger causality is addressed
as a "sine qua non" condition for the entire validation of the model, since the construction of the optimal
current account leads to spurious results when this condition is not verified. We further provide an empirical
exercise by estimating the model for the G-7 countries. Indeed, the results substantially change with the

application of the different estimation techniques.

More importantly, the FB framework indicates that the common shock in the G-7 countries can account
for almost 40% of the total residuals, suggesting that the previous (OLS) estimations might be seriously
biased, and the familiar inference procedures would no longer be appropriate. The error-decomposition
procedure only indicates a rejection of the model for the USA and Japan, which is in sharp contrast to the
previous literature. Putting all together, these findings suggest that the PVM cannot be rejected for Canada,
and cast serious doubts to some results presented in the literature, based on OLS estimation, that ignore

the presence of common shocks among countries.
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Appendix A. Note on Granger Causality and Wald tests

A VAR(2) model can be rewritten as a VAR(1) in the following way:

AZ, a1 ax b by AZy 4 €1t
AZ;_q _ 1 0 0 O y AZ;_o + 0
CA; c1 ¢ di do CA;_q £t
CAi_4 0O 0 1 O CA;_o 0

or in a compact form X; = AX; 1 + ;. Hence, the vector K is given by

A A
_ _ _ —1
K=[a1 az 8 8 | =W 177

a1 a2 b1 b2 1 0 0 O a; a2 b1 b2
1 1 0 0 O 01 0 0 1 1 0 0 O _
sK==[10 0 0] )( - )t

1+7r 1 ¢y di ds 0 0 1 0 1+7r ci ¢ di do

0O 0 1 0 00 0 1 0O 0 1 0

Thus, after some algebraic manipulations, the 8 coefficient of the vector K is given by:

ar(1+7)(b1 +b1r +02)  ap(bl + blr + b2)

b ; ?
7b1(1+7’)(1+27"+7’2 —al —alr—a2) b2(1 +2r + 7% — al — alr — a2)
¢ ¢
where ¢ = 14 2a1dir+4r + a1dir? — c1bar — 201017 + asdyr — dy — dy — as — ag — cabyr + 612

—3dyr — 2a9r — 0,27“2 + aody + asdy — coby — coby + ardar — Clbl’I“Q + 47“3 + 7“4

73d17‘2 - 27‘d2 - 3(117’ - 3(117’2 + a1d1 + a1d2 - le‘S - T2d2 - CL1T3 — Clbl — Clbg

In this case, the optimal current account is given by

AZi — paz
AZi 1 — paz
CAt — poa
CAi-1— pioa

(CAY —poa) =K(Xe —p)=| a1 s By ﬂz]

and the Wald test analyzes the joint restrictions: a; = ag = 5 = 0 and §; = 1. Again, one should note that
if the Granger causality is not verified (e.g., by = by = 0) then 8; = 0. In this manner, the implication of
Granger causality becomes a necessary condition for the validation of the VAR(2) model. The generalization

of this result to a VAR(p) framework is straightforward, as presented in the proof of Proposition 1.
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Appendix B. Proof of Propositions

Proof of Proposition 1. The VAR(p) can be rewritten as a VAR(1), in the following way

AZy [ ap - - ap by - -+ b, 1| AZi—s [ ey ]
: 1 0 0 0 0 0 0 0 : 0
: 0 .0 0 0 0 0 : :
AZypyr | O 0 1 0 0 0 0 0 AZ;, N 0
CAt N C1 s tee Cp d1 dp CAt,1 Eot
: 0O 0 0 0 1 0 0 0 : 0
: 0 0 0 0 0 0 0 : :
| CA i 0 0 0 0 0 0 1 0 | oa, | L 0 |

or in the same compact form X; = AX; | + ;. Supposing that the Granger causality is not provided by

the data set, it follows that b(L) = 0, and the companion matrix A becomes:

A 0
A— 11
Agr Az
a1 e - ap c1 .. - Cp dl e [ dp
1 0 0 O 0 0 0 0 1 0 0 O
where Ay = ) ; Ao = ; Agg = )
0o . 0 0 0 0 0 0 0o . 0 0
0 0 1 0 0 0 0 0 0 0 1 0
In this case, vector K can be written as K = —h/BC~!, where the matrices B and C are defined as
B = (1@) and C = (I — ﬁ) It should be noted that matrices B and C are also partitioned matrices

with a null upper-right block. According to Simon & Blume (1994, p.182), in this case, the inverse of the

partitioned matrix C' will also result in a null upper-right block matrix (see Theorem reproduced below).

Cn Cia 1
where
Ca1 Ca
(11 and Coy are square submatrices. If both Cog and D = C11 — 01202_21021 are nonsingular, then C' is nonsingular and
D! —D71C,C5t

~03'Co1 D71 C3,' (I 4 Co1D71C1205))

Thus, in our case, C12 = 0 and the term —D’lClgC{; becomes a null submatrix, suggesting that C~! and
the following product BC~! are also NURB matrices. Finally, the vector K = [ ar .ooap By B, ]
is given by selecting (through the vector —h’) the first line from the matrix (BC'~!), suggesting that all 3,

Theorem 8.15 (Simon & Blume, 1994): Let C be a square matrix partitioned as C' = [

c'=

(i=1,...,p) coefficients are zero. m
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Proof of Proposition 2. (i) Consider the system of equations for any country i:
{ AZiy = pp? + a;(L)AZyy + bi(L)C A, + D7

CAit:/JJzA+CZ( )AZzt+d( )CAlt+€CA
AZ (AZ+6AZ+€

; where a;(L), b;(L), ¢;(L) and d;(L) are polynomials

of order p, and €, Z). The equatlon for AZ;+—1 can be expressed by: (a; QAZ»L' t—2 +
a;30Z; 43+ ... + i p+1AZ; p—py1) + b (L)YCAi -1+ 61 t 1- Note that E(e ftZAzz 1) =FE UZ Z 4 GtAZ +
GiA,tZ)(ai72AZi7t_2 +ai)3AZi,t_3 +...+ai7p+1AZi,t_p+1 +b ( )CAZ t—1 +’UAZ+€tAzl +61 t— 1) E(Ul z lAZ) =
02 Az > 0. E(X'e) # 0 and 8, becomes inconsistent;
(i) Recall that Var(Bors) = o2(X'X)™" and Var(Bors) = *(X'X)™ = (X'X) " [535%]; where
e is the estimated OLS residual and k = 4Np. Thus, Var(Borg) = %[Y’(I - X(X'X)7' XY =
’ -1
(QXN‘)TQk tr[Y'MY]; where M = I — X (X'X)~ !X’ is an idempotent and symmetric matrix, in which M X = 0.
This way, tr[Y’MY] = tr[Y'M'MY] = tr[e/M'Me] = tr[Mee'); and Var(Bopg) = (QXN)T() tr[Mee']. There-
T X'x)7! X'x)7! —1 tr[MQ
fore, E[Var(ﬁOLS) | X] = BISF s tr(Mee') | X] = SqlptrM(Blee’ | X)) = (X'X) 4B =

(X'X)~ 1y, where p = Z\ygﬂ}g One can also rewrite last expression as E[@"(BOLS) | X]= (X'X)"HpX'X}
(X'X)™ = (X'X) " HoX Mo X + X' My X +pX' Mo X + X' M. X)}HX'X)™!, where the decomposition

of X, based on the idempotent and symmetric matrices {Mq; M7 ; M o; M}, was applied in last equality.

—_~

Now, assume that the considered bias in the variance estimator is zero, i.e., E[@"(ﬂOLS) | X]=Var(Borg)-
Note that this is true if and only if ¢ = v, = v, = 53 = 7,. But this is a contradiction since, by assumption,
(6%;06%) > 0 and 02 = 0, and thus v, = v, and 3 = v, , but v, # v3;

(iif) Tt follows that X5 0ess) — (X' X)~H2N(X'(Mo+M. ) X)H(X'X) ™! = (X'X) 12N (X' (L520r) X))
(X'X)™' = (X'X) 71X/ TX}(X'X)™"; where J = Jony®@Ip. Recall that E[Var(Bopg) | X] = (X' X)~! M€

OE[Var X 'X)7  otr[MQ dvec (2 'x)t
and, thus, [ (BOLS)\ 1 _ (éXN)T{’)—k ( ta[i‘/g[ ]) — (XN;’{) - ( < 2( ))vec(M’) _ (éXN;’() - (2N (ved' (M5 +
'x)t T oVar
M,))wec(M') = < ;9 —ved (J)vee(M') = K2 ir(MJ) = (X'X)~ Nﬂ%")) Therefore, 28oks — SVarors)
OE[Var X — — —1tr(MJ r(MJ
— 2BV erfous)IX] | (X)X () 1Z£<M9 = (X'X)THXIX - Gl XX ()
= B'AB, where A = X'JX — UMD XX and B = (X'X)~". Now, let a = 7O — trlU=X0X0 X))
trlJ =X (X'X)"'X"J] _ tr[J]=tr[X(X'X)” YX'J] _ tr[Jen®Ir]—tr[X(X'X)TIX'J] _ 2NT—tr[X(X'X) "1 X'J] B .
= 2NT—F INT—F = INT—F = INT—F - Dy as-

sumption A2(ii), it follows that T > 2p . 2NT > 4Np = k .. 2NT — k > 0. By A2(i), we have that
tr[(X'X) 1 X' JX] — tr(Ian7) > 0 . tr[X(X'X)"1X'J] > 2NT. Thus, by A2 it follows that the scalar
a < 0. Now, recall that A = X'JX — "WMD x1x — X' JX —aX'X = X'JX 4+ 6X'X; where § = (—a) > 0.

tr(M)
By Al we have that (X'X) > 0 and (X'JX) > 0, thus, it follows that 6X'X > 0 and A > 0. Therefore,
since B is non-singular, and A is a positive definite matrix, then, agofﬁs =B'AB >0 diag(aggés) > 0;

(iv) If 02 = 02 = 0, then, Q = 0> My5+ (02 +T02) M. +(0%+No? )M2+(U +To%2+No?)M = o?(Mia+

My +Mo+M.) = 0?l,,.; and thus tr(MQ) = otr(M). Therefore, E[Var(ﬁOLS) | X] = (X' X)*I;f;\[,g{?i =
1

o2(X'X) " gty = o2(XX) 7 g0 N = o2 (0 X) T BT = 02(XX) ! = Var(Bos) -

2NT—k
Bors=0. m

Proof of Proposition 3. (i) Since the OLS estimator is inconsistent, the OLS residuals would lead to
a feasible GLS estimator (and thus SUR) to be inconsistent as well, since the model contains variables that

are correlated with the residuals;
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(ii) From the Fuller & Battese (1974) two-way random error decomposition, it follows that Q = v; M2 +
YoMy +v3M 2+v,M. . By applying the definition of the previous M;; matrices, it follows that Q = v, (lay7—
PAIL — ST S (BRI — ) s (PR — ) +u(5F) = [ v A b @ I
F[2Z N [y B2 T 7, ] @ Jr. By assumption, it follows that (02;02) > 0;02 = 0; and thus v, = 7,
and v3 = vy, , but 7, # 5. Therefore, Q = [y, oy + 5+ Jon] ® Ir = ®1 ® Ip. On the other hand, in
the SUR approach, it follows that Q= Ip, in Wthh S is the estimated (2NT x 2NT) matrix, with
ij-th element given by 7;; = e;:,?j, and e; is a (T x 1) vector containing the residuals of the i-th equation
estimated by OLS. By assumption A3, it follows that [02[on + 02 Jan — EA]] > 0. [y on + 552 Jon — E] >0
(@ =) >0 ST >0 X{E =R I)IX >0 X{(E @) — (97 ®IT)}X >0 ..

X{E@Ip) " —(®1017) 11X > 0. (X’(i ® IT)*lX) —(X(@y @ Ir)1X) > 0. (X(@y @ Ir)1X) -

(X’(EAJ®IT)_1X>71 >0 - (X'Q71X) T = Var(Bsyr) > 0 . Var(Bsyr) — EVar(Bsyr) | X] > 0
. Bsyr > 0.

Now, we must show that (Bors — Bsyr) = 0. First, define C = [Var(B,,;) — Var(B,,,)] and D =
[E(Var( sur) | X) — (Var( o1s) | X). In other words, we must prove that (C'+ D) > 0, i.e., C > 0 and
D > 0. The first part is just the well-known result that the GLS estimator will in most cases be more efficient,

and will never be less efficient than the OLS estimator. Regarding the second part, define A = iff’me] Thus,

it follows that D = [E(Var( sur) | X) — (Var( ols) | X) = (X'(i ®IT)*1X)_1 —(X'AIX)"1>0
& (X'NX) — (X'(i ® Ip)~? X) >0 XN -EI)NX208M - Eel) ' 20s (S0 l) -
Ly ®Ir) > 0< (£ - 1Ly)®Ir 20 (£ - +I,n) > 0. By assumption A5, we have that $ >0 and
U > e v an - Now, if we define w = (tr(X (X'X)"LX"J)~2NT)/(2NT~k), it fol-

_ (r(X(X'X)"IX'J)—2NT)+2N(2NT—k) . oON 2N(2NT—k
lows that (7T+2N) i @ ]\)ink) . S e T (tr(X(X’X)*1X’.(])72NT))+2N(2NT7k) and,

thus, ¥ > 2555 +2N) This way, 2N (62 42No2) < 2No2(7+2N) . (62 +2No2) < 62(m+2N) . 02 +2No? <
702 + 2No? - 02 < wo? - 02(2NT — k) < o2(tr(X(X'X)"'X"J) — 2NT) - 02(2NT — k) + 02(2NT —

tr(X(X'X)"1X'J)) <0..2NTo? + 022NT — 02k — o2tr(X (X'X) "' X'J) <0 .. 2NT~, + (L724)tr(J) —
b (X(X'X)1X) — (M)tr(X(X’X)*lX’J) <0 tr{yfony + BT — X(X'X) X! (4 Tanr) —

IN
XOOX) X (G409} <0 20T © T+ o 1 = X(OCUX) X (o & I+ (5
IT)} <0 t’r‘{(’}/lng + ’73 ’yl JQN) ® IT - X(X/X) ¢ ([’leQN + V‘? ’Yl JQN] ® IT)} < 0. t’/‘{([ —
X(X'X)"1x’ )([fyllgN—i—%’ " JQN]@IT)} s tr[MQ] < 0. Therefore, by A2(11) T>2p.. (2NT—k)>0
and, thus, A = 2=k <0 (8 - hon) > (C + D) > 0;

(iii) By assumption A4, it follows that O'EI2N + 02 Jon = S or &, = 3 where ®; = o2l + 02 Jan.
This way, (&1 @ Iy) = (S @ Ir) . X'(®1 @ Ir)'X = X'(E @ Ip)"'X - E[(X'(®1 @ Ir) "' X)) | X]
= B(X'E e Ir) ' X)"" | X] - (X/(® @ Ir)'X)! = B(X'E @ Ir) ' X)"" | X] . Var(Bgyr) =
E[Var(Bsyr) | X) .. Bsur = 0;

(iv) If 02 = 02 = 0, then, v; = 75 = 73 = v, = 02; and the covariance matrix is simplified to
Q = o%(Ianr), which is a diagonal matrix. By assumption A4, it follows that S = 02Iyn, which is a
diagonal matrix. According to Wooldridge (2002, Theorem 7.5), if 0= Ir is a diagonal matrix, then
OLS equation by equation is identical to Feasible GLS. In addition, it follows that (02Iyy ® I7) = (S ® Ir)
X0 Lon © Ir) X = XS @ I) X - B(X (02 (Bnr) X)L | X] = B(X'(S @ Ir) 1 X) ! | X]
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L (XQTX) T = B(X' (S @ Ir) T X) T | X] . Var(Bsyg) = EIVar(Bsyg) | X] . Bsur =0. =

Proof of Proposition 4. (ia) Following Greene (2003, p. 207), since Q > 0 and Q' = 2, then, it can be
factored into Q = CAC’, where the columus of C' are the eigenvectors of Q, and A is a diagonal matrix with
the eigenvalues of Q. Let A'/2 be a diagonal matrix with i-th diagonal element /X;, and let T = CA'/2.
Therefore, @ = TT’; and if we define P’ = CA~'/2, then, Q~' = P'P. This way, pre-multiplying the
considered model Y = X8 4 ¢ by P, it follows that PY = PXS + Pe or Y. = X0 + ¢, in which E(e.e,, |
X) = PQP’. By considering (at this point) that Q is known, it follows that Y. and X, are observed data.
The FB estimator of the transformed model is given by 8,5 = (X’Q7'X)"1X'Q71Y = (X! X,)" XY, =
(XIX.)VXL(X.B +2,) = B+ (X[X.) ' Xleo. Thus, E(Bpp | X.) = A+ E[(X/X.) Xle, | X.] = 3 if
E(e. | X&) = E(Pe | PX) = 0. However, note that since P is a matrix of known constants, we in fact
just required that E(e | X) = 0. By applying the error decomposition €;, = v; + €, + €;¢, it follows that
EEit| X)=Ew | X)+ E(e; | X)+ E(e;r | X). Now, recall that vector X is composed of lagged values
of AZ;; and C'A;;, which could generate a correlation between ¢; ; and these lagged variables through the
v; random effect. However, since E(v;) = 0 and, by assumption 02 = 0, it follows that E(e | X) = 0 indeed
holds, since e; and ¢; ; are assumed to be uncorrelated with the regressors;

(ib) By considering T — oo with fixed N, note that plim(Bpp) = 8 + plim((X.X,)"'X'e,) = B+

plim((X/QI:IX )1 X/%Z:IE) = ﬁJrQ;lplim(X/%fla), since by assumption A6 we have that plim[(1/T)X'Q~1X]~1 =

Q. Thus, in order to obtain consistency, and apply the product rule of White (1984, Lemma 4.6), we need

! — 7 —_ ’ T
to show that plim(%) = 0. Following Greene (2003, p. 67), let 2L e = XTE = %t;wt = w, which is
‘ _2NT B
a k x 1 vector; where wy = {¢(L)(AZ; +CA}) > si €54} ¢(L) is a lag polynomial of order p; and s; ; is the
j=1

ij-th element of Q~!, which is a (2NT x 2NT) matrix. This way, plim(BFB) = B+ Q; plim(w). Now, note

, _2NT 4 _2NT

that Efus] = E(Ew: | X]) = BE{S(LAZi+CAD 3 siyeia} | X)) = BOLIAZ+CA) Y. si,El |
Jj= j=

X]) =0, since from the exogeneity assumptions, it follows that E(e;; | X) = 0;Vj,t .". E{w] = 0 and, thus,

E[w] = 0. On the other hand, note that Var(w) = E(Var(w | X))+ Var(E(w | X)), where the second term
T T _ _2NT

is zero, since E(g;4 | X) = 0 and, thus, B | X) = + > E(w; | X) = £ > E({¢(L)(AZ{+CAL) Y sijejil |
t=1 j=1

t=1
T 2NT
X) = LS G(L)(AZ + CANY. si;E(e;4 | X) = 0. Now, note that Var(w | X) = E@w | X)
=1

t=1 J

T T / ’
= [(%t;wt)(%t;w;) | X] = B[(AXle.)(Ae'X.) | X) = 22 B(ene, | Xu)32 = 2eB(Pee’ P! | X)X =

XiPE(ee' | X)P'2%e = 2:pap'Xe — X ppop PX = X0-10071X = X0-1X Thus, it follows that
Var(w) = E(Var(w | X)) = E(XT/Q*I% | X) = %E(% | X). The variance of w will collapse to zero if

the conditional expectation in parentheses converges to a constant matrix, so that the leading scalar (1/7")

will dominate the product as T increases. Thus, by considering assumption A6 (and a WLLN), it follows
that plim[Var(w)] = plim(+)Q. = 0. Therefore, since E[w] = 0 and plim[Var(w)] = 0 .. plim(w) = 0 and,

thus, plim(Bpp) = B
(ii) Given that 02 = 0 and assumption A7 holds, it follows that €; ; = e; +¢; + is also normally distributed,
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ie, e~ N(0,Q), where E(ee’) = Q is finite and nonsingular. Therefore, by applying White (1984, Theorem
1.3), the result is straightforward: 85 ~ N(3; (X'Q71X)~1);

(iii) By assumptions A6-A7, and Theorem 1 of Fuller & Battese (1974), it follows that (when T'— oo and
N is fixed), 32 and 52 are consistent estimators of o2 and o2 respectively. Thus, Q= 2 LNy +02(Jon @ I7)
is asymptotically equivalent to (2. Based on assumption A8, we can apply the asymptotic equivalence Lemma
4.7 of White (1984), in which BFB is asymptotically equivalent to BFB. See also Greene (2003, p. 210) for
further details. m

Appendix C. Further results of the empirical exercise

Table 10 - ADF Unit Root test

USA CAN JPN UK GER ITA FRA

Ct -0.99 -2.19 -1.13 -1.17 -2.43 -2.04 -1.32

Act -5.44 -14.02 -16.65 -15.76 -15.25 -9.78 -16.18

GNI} -1.51 -1.23 -1.85 -1.34 -1.15 -0.52 -2.14

AGNIf -6.08 -16.74 -14.58 -20.10 -12.01 -5.58 -15.62

CA; -3.20 2,58 3.21 9.82 -2.02 1.87 124
() (+) () (+)

AZt -14.29 -15.41 -14.68 -18.61 -13.35 14.11 -17.32

Notes: a) GNIt* =Y+rBy — I; — Gy
b) (**) indicates rejection of the null hypothesis of unit root at 1% level; (*) at 5% level and (+4) at 10% level
c) CA, =Yy +rBy — I, — Gy — 0C,

d) The USA, CAN, JPN, UK and GER series range from 1960:1-2007:1, whereas ITA and FRA range from 1980:1-2007:1.
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The cointegration vector between (Yt+7’Bt —I; — Gt) and C} is given by (1, 79)

Table 11 - Johansen ‘s Cointegration Test

Ho: p=0 Ho: p<1
Country 0 trace stat Amax. Stat. trace stat. Amaxs. Stat.

USA 0.895 13.72 10.63 3.09 3.09
(0.018)

CAN 1.024 9.54 8.41 1.13 1.13
(0.049)

JPN 1.105 15.06 12.83 2.23 2.23
(0.016)

UK 0.921 13.59 10.89 2.70 2.70
(0.026)

GER 1.114 5.61 4.05 1.56 1.56
(0.077)

ITA 1.120 13.16 9.23 3.93 3.93

(0.058) (*) (*)

FRA 1.267 4.64 4.60 0.03 0.03
(0.149)

Notes: a) p is the number of cointegrating relations; (*) indicates rejection of Ho at 5% level.

b) In column 0 the standard deviation is presented in parentheses.

¢) The USA, CAN, JPN, UK and GER series range from 1960:1-2007:1, whereas ITA and FRA range from 1980:1-2007:1.

Table 12 - Comparison of § with the literature

Country  IG Ghosh (95) Agénor et al.(99)
USA 0.895 0.994 -

CAN 1.024 0.96 -

JPN 1.105 1.04 -

UK 0.921 0.98 -

GER 1.114 1.08 -

ITA 1.120 - -

FRA 1.267 - 0.982

Note: IG means Issler & Gaglianone (our results).
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Table 13 - Wald test (p-value) - Per capita time series, in 2000 U.S. dollars

Country OLS SUR FB.1 FB.2
USA(1) 0.1369 0.0201 (*) 0.0351 (*) 0.0586
CAN(1) 0.3238 0.1430 0.0620 0.0734
JPN(1) 0.0042 (*¥*) 0.0001 (**) 0.0002 (**) 0.0004 (**)
UK (1) 0.1685 0.1049 0.7692 0.7088
GER(l) 0.1363 0.2351 0.6118 0.6690
ITA (1) 0.1596 0.0301 (¥) 0.9850 0.9652
FRA (1) 0.0078 (**) 0.0000 (**) 0.0149 (¥) 0.0139 (¥)
USA(2) 0.0256 (*) 0.0039 (**) 0.0120 (¥) 0.0158 (*)
CAN(2) 0.1932 0.0531 0.0509 0.2274
JPN(2) 0.0015 (**) 0.0001 (**) 0.0000 (**) 0.0019 (**)
UK (2) 0.0078 (**) 0.0001 (**) 0.5571 0.2576
GER(2) 0.0174 (*) 0.0096 (**) 0.4876 0.1167

Notes: a) Ho: (C’fl;K — M*CA) = (CAt — /J’CA)

b) (**) means rejection at 1% level, (*) at 5% level;

c) USA(1) indicates sample 1 (1980:1-2007:1), and USA(2) means sample 2 (1960:1-2007:1);
d) FB.1 means Fuller & Battese (1974) error decomposition, with a unique global shock,

whereas FB.2 considers distinct global shocks for CAt and AZt equations.

Table 14 - Wald test (p-value) - Time series in U.S. dollars (not per capita)

Country OLS SUR FB.1 FB.2
USA(1) 0.1400 0.0207 (*) 0.0340 (*) 0.0394 (*)
CAN(1) 0.2402 0.0312 (¥) 0.8692 0.8766
JPN(1) 0.0291 (¥) 0.0205 (¥) 0.0032 (**) 0.0051 (**)
UK (1) 0.1796 0.1550 0.9970 0.9979
GER(1) 0.0480 (¥) 0.0097 (**) 0.6667 0.6898
ITA (1) 0.1425 0.0789 0.9771 0.9594
FRA(1) 0.0295 (¥) 0.0000 (**) 0.7957 0.7525
USA(2) 0.0291 (¥) 0.0069 (**) 0.0000 (**) 0.0000 (**)
CAN(2) 0.1499 0.0123 (¥) 0.8288 0.8361
JPN(2) 0.0201 (*) 0.0160 (*) 0.0363 (*) 0.3019
UK (2) 0.0139 (¥) 0.0001 (**) 0.8727 0.6861
GER (2) 0.0143 (¥) 0.0078 (**) 0.7161 0.3260

Notes: a) Ho: (C’A;< — M*CA) = (CAt — /’(’CA)

b) (**) means rejection at 1% level, (*) at 5% level;

c) USA(1) indicates sample 1 (1980:1-2007:1), and USA(2) means sample 2 (1960:1-2007:1);
d) FB.1 means Fuller & Battese (1974) error decomposition, with a unique global shock,

whereas FB.2 considers distinct global shocks for CAt and AZt equations.
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Appendix D. Some details of the Monte Carlo simulation

Generating a covariance-stationary VAR

An initial idea to design the Monte Carlo experiment could consist on constructing the companion matrix,
sorting it values from uniform distributions, in order to satisfy the restrictions imposed by the null hypothesis,
and then verifying whether or not the eigenvalues of the companion matrix all lie inside the unit circle.
However, this strategy could lead to a wide spectrum of search for adequate values for the companion
matrix. This way, we propose an analytical solution to generate a covariance-stationary VAR, based initially
on the choice of the eigenvalues, and then on the generation of the respective companion matrix. According
to Hamilton (1994, page 259), if the eigenvalues of the companion matrix (F') all lie inside the unit circle,
then the VAR turns out to be covariance-stationary. The eigenvalue vector (\) of the companion matrix (F)

for a VAR(p) is obtained from the following equation:
|F'— XI| =0, (39)

where [ is the identity matrix. Two important properties of the eigenvalue vector, presented in Simon&Blume

(1994, page 599), are reproduced below:

n n

trace(F) =Y X ;  det(F) =[]\, (40)

i=1 i=1

where 7 is the number of eigenvalues (equal to 2p). The companion matrix for a VAR(1) is given by

F:[ZZ] (41)

The restrictions imposed to a VAR(1) to consider the optimal current account equal to the observed one
(i.e., a true null hypothesis) are given by ¢ = a; and d = b+ (14 ). This way, in order to impose a false null
hypothesis into the model we multiply the restrictions above by a gamma factor, resulting in the following

companion matrix

(42)

| a b
ya b+ (1+71))
It should be mentioned that setting the gamma factor equal to unity we consider a true Ho, but imposing

gamma less than unity we generate a false null hypothesis. This way, the eigenvalues of the companion

matrix are given by

A1 A2

F) = 147) —yab = . a= 212 4

det(F) =va(b+147)—vab=XX2 .. a Y47 (43)

trace(F) = a+ b+ (1+7) =\ + Ay -, b= atAeza=al4r) (44)
Y

Therefore, to construct a covariance-stationary VAR(1) we sort from a uniform distribution (-1;1) the

values of \; and Ay and calculate the parameters a and b from the equations above. In a VAR(2) case, the
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companion matrix (considering the restrictions implied by the null hypothesis) is given by

ar  as by bo
1 0 0 0
F= (45)
yar vaz y(bi+(1+7)) b2
0 0 1 0
The eigenvalue vector is obtained from
aL— X as b1 by
1 = 0 0
|FF — | = =0. (46)
yar  yaz y(bi+(1+7) =X b
0 0 1 —-A

Since det(F') = 0, at least one eigenvalue is null (A\; = 0). Thus, from the last equation, it follows that
|F = M| =X = X(a1 + 901 +v(1 4+ 7)) + N (ya1 (1 +7) — ag — vbg) + Myas(1 +7) =0 (47)
Ayar(1+7) = b2 — Mar + b1 + (1 +7)) +2?)

A—y(1+7)
The equation above must be valid for all values of \;. In particular, one can construct a system of 2

LAy =

. (48)

equations, with the expression above, setting A = Ay and A = A3. This way, we can explicit by as a function
of ay, by, 7, Ay and A3, as it follows:
by = ((=A2y? +~2a1 — A3y?)r? + ()\57 + 20073 — Aav2by — A372by — a1 dey — 2002 + 2924y (49)
—a1 A3y + A5y — 223727 + 20073 — A3As + Aoybi Az + a1t dads — 3o + A3y — Aoy2hy
—A372b1 — a1 dey + A3y — A3y — a1 dgy + v2ar — Aey?) /(1 +7)72).

On the other hand, the trace of the companion matrix is given by

trace(F) =a1 +v(b1 +(14+7)) = A2+ A3+ M4 (50)

... bl — ()\2+)\3+)\4)ry_ a’l _’Y(l—’_r)’ (51)

Therefore, to construct a covariance-stationary VAR(2) we set Ay = 0 and sort (independently) from

uniform distributions (-1;1) the values of a1, Ay, A3 and A\y. Then, we choose a gamma factor in order to
simulate the false (or true) null hypothesis. Thus, we obtain b; by the last expression and calculate by and
as from the previous equations. This way, we construct the companion matrix with all eigenvalues inside

the unit circle. A VAR(p) can be constructed in a similar way by following the presented methodology.

Besides the proper construction of the companion matrix, another important issue of the Monte Carlo
simulation is the generation of the residuals for the VAR. Since the current accounts for different countries are
nowadays expected to be globally linked, we construct the residuals of the VAR based on two components:
an idiosyncratic shock, and a global shock, which is assumed to be common among the considered countries.

The construction of these residuals is detailed in next section.
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Constructing Global Shocks

A key issue regarding the Monte Carlo experiment is the generation of the residuals for the VAR. Inspired by
Glick & Rogoff (1995), which study the current account response to different productivity shocks in the G-7
with a structural model including global and country-specific shocks, and based on the 'common sense’ that
the current account fluctuations have become more closely linked across countries in the last decades, we

decompose the residuals of the VAR into an idiosyncratic shock and a global (common) component among

+| e (52)
€at

where the residuals €¢ can be decomposed into an idiosyncratic shock (v¢) and a global (common) component

i i
€1t | | Vit
i i
€at Vo

or in a reduced form: &} = vi + scale * &,. The parameter scale is used to measure the importance of the

countries. Thus, the VAR(p) for a country i can be written as:

Azi || air) b
cai | | ¢

AZ
CAL

among countries (§,), as it follows:

+ scale l S1e 1 , (53)

Eo

global shock into the residuals of a country i. The numerical procedure adopted to construct the residuals
in the Monte Carlo experiment first drops (independently) from a normal standard distribution the v}, and
Vét series of shocks, resulting on a I covariance matrix:

Y= Var(vi) = [ (1) (1) 1 . (54)

However, this covariance matrix does not represent a bivariate shock, and we must transform the co-
variance matrix >’ into a covariance matrix €', in a framework of a bivariate normal distribution, with

parameters as close as possible to the data of the countries.

2 i
i 01, T
Q=] ] (55)
rt o3

Thus, we must find a symmetric matrix X to make the following transformation: Q@ = X3 X'. In our

case, X is a diagonal and symmetric matrix, as it follows:
Q= XR2R2X = w2 X2 - XX = no2an 12, (56)

To obtain X we must calculate the square root of the matrix (XX). Adopting the eigenvalue decom-
position, according to Simon&Blume (1994),%7 one could rewrite the (X X) matrix as a function of the eigen-
vectors (V) and the eigenvalue matrix (D), as it follows: XX = VDV ~'= vV DY2p1/2y-1= (VDY2v-1y(vD'Py -1y,
where D is a diagonal matrix filled with the eigenvalues of (X X). This way, the matrix X can be obtained

2TFor further details see Simon&Blume (1994), pages 590-595, and page 866 of Ruud (2000).
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by (VDl/ 2y =1). Finally, after calculating X, one could use the constructed vector of residuals v} to obtain

the i?i residuals (following a bivariate normal distribution with covariance matrix Q):

’I;t =Vt X (57)
Tx2 Tx2 2x2

where Var(¥)) = Q' , Var(vi) = %% , and T is the number of observations. The next step is to construct
the global shocks, common to all countries. The procedure adopted in the Monte Carlo experiment drops
(independently) from a normal standard distribution the &;, and &,, series of shocks, resulting in a covariance
matrix equal to an I matrix. However, this covariance matrix also does not represent a bivariate shock,
and must be transformed, in the same way presented above (adopting the eigenvalue decomposition), into a

covariance matrix I', representing a bivariate normal distribution:

I'=Var(,) = [ i} lf ] ) (58)

where the parameter w represents the covariance between the global shocks on AZ} and C' A% equations.
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