ALEX BOIARSKI CEZAR

MONITORAMENTO DA TRANSIÇÃO DA FASE ESTRUTURAL CCC-CFC DA LIGA Co$_x$Fe$_{100-x}$ ELETRODEPOSITADA

Dissertação apresentada ao Curso de Pós-Graduação em Física da UFPR - Universidade Federal do Paraná, como requisito para obtenção do grau de Mestre em Ciências.

Orientador: Prof. Dr. Ney Mattoso

CURITIBA
2006
Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.
<table>
<thead>
<tr>
<th>Sumário</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumário.. i</td>
</tr>
<tr>
<td>Resumo.. iii</td>
</tr>
<tr>
<td>Abstract.. iv</td>
</tr>
</tbody>
</table>

CAPÍTULO 1 – INTRODUÇÃO .. 1

1.0 Introdução... 2

CAPÍTULO 2 – FUNDAMENTAÇÃO TEÓRICA... 7

2.1 Corrente Elétrica. Densidade de Corrente ... 8

2.2 Condutividade. Resistividade .. 9

2.3 Lei de Ohm ... 10

2.4 Teoria Microscópica de Condução ... 11

2.5 Condutividade AC de um Metal ... 13

2.6 Fatores que Elevam a Resistividade dos Metais................................. 14

2.7 Caracterização Elétrica de Filmes Finos ... 15

2.8 Eletroquímica ... 19

2.9 Nucleação ... 21

2.10 Voltametria Cíclica ... 22

2.11 Difração de Raios–X ... 23

2.12 Microscopia de Força Atômica ... 26

2.13 Microscópio Eletrônico de Varredura .. 27

2.14 Microscopia Eletrônica de Transmissão .. 28

2.15 Evaporação ... 29
CAPÍTULO 3 – RESULTADOS E DISCUSSÕES ... 31
3.1 Estudo dos Parâmetros de Eletrodeposição das Ligas de Co_xFe_{100-x} (1ª Parte)........ 31
 3.1.1 Polimento Eletroquímico... 32
 3.1.2 Medidas de AFM... 33
 3.1.3 Ciclovoltametria, Cronoamperometria e DRX da Liga Co_xFe_{100-x}.................... 35
 3.1.4 Microscopia Eletrônica de Varredura.. 44
 3.1.5 MET e Difração de Elétrons da Liga... 45
 3.1.6 Discussões ... 50

CAPÍTULO 4 – RESULTADOS E DISCUSSÕES ... 53
4.1 Estudo da Transição de Fase Ativada Por Temperatura (2ª Parte)........................... 53
 4.1.1 Porta-Amostra.. 54
 4.1.2 Sistema de Medida... 56
 4.1.3 Eficiência do Sistema de Medida ... 58
 4.1.4 Processo de Fabricação das Amostras para Tratamento Têrmico 60
 4.1.5 Análise do Substrato SiO_2/Cr/Cu ... 62
 4.1.6 Cronoamperometria, Difração de raios-X da liga Co_xFe_{100-x} Sobre SiO_2/Cr/Cu64
 4.1.7 Medida de Resistência Elétrica da Liga Co_xFe_{100-x} ... 67
 4.1.8 Discussões ... 73

CAPÍTULO 5 – CONCLUSÕES GERAIS E TRABALHOS FUTUROS 76
5.1 Caracterização Estrutural e Química da Liga Co_xFe_{100-x} (substrato de Cu) 77
5.2 Estudo da transição de fase ativada por temperatura (substrato de vidro-Cr-Cu).... 77
5.3 – Trabalhos Futuros... 78

ANEXO 1 – SOFTWARE DESENVOLVIDO PARA A REALIZAÇÃO DAS MEDIDAS DE RESISTIVIDADE ... 79

BIBLIOGRAFIA .. 83
RESUMO

Este trabalho tem como principal objetivo a ampla caracterização estrutural de filmes finos da liga eletrodepositada Co\textsubscript{x}Fe\textsubscript{100-x}. Foi feito, primeiramente, um estudo da transição de fase CCC-CFC desta liga em função dos parâmetros de eletro deposição. Para efetivar a referida transição em função da temperatura foi necessário: o desenvolvimento de um novo substrato para a eletrodeposição da liga; o desenvolvimento de um programa na plataforma HP-VEE, que monitora e registra as medidas durante a sua execução; o projeto e desenvolvimento de um porta-amostras para medidas elétricas em vácuo durante a realização do tratamento térmico. Consequentemente a pesquisa envolveu também a aprendizagem da produção de filmes finos magnéticos pela técnica de eletrodeposição e de todas as etapas que a compõem, tais como a preparação de substratos, o manuseio do potenciostato e a elaboração de soluções. Dentre os parâmetros a serem estudados focalizamos no efeito da concentração da solução na eletrodeposição da liga Co\textsubscript{x}Fe\textsubscript{100-x} sobre substratos de cobre. Resultados mostram que a concentração da liga Co\textsubscript{x}Fe\textsubscript{100-x} na solução, tem grande importância na transição de fase CCC-CFC. Aumentando-se a concentração de solução observa-se, através da análise por difração de raios-X (XRD), que a mudança de fase CCC-CFC ocorre com o aumento do percentual de Co na liga. Esta primeira parte do trabalho foi realizada utilizando-se como substrato uma chapa comercial de cobre policristalino. Com a implantação de uma evaporadora no laboratório, passou-se a fabricar um novo substrato produzido com 5 nm de Cr e 30 nm de Cu, evaporados sobre vidro. As vantagens deste novo substrato em relação ao anteriormente utilizado são: uma menor rugosidade, comprovada com a técnica de microscopia de força atômica (AFM); menor tempo de preparo das amostras; a utilização direta do sistema SiO\textsubscript{2}/Cr/Cu/Co\textsubscript{x}Fe\textsubscript{100-x} nas medidas de resistência, sem a necessidade de extração do filme depositado. O programa e o porta-amostra desenvolvidos foram testados através da caracterização de uma lâmina comercial de Pt, por medida de resistência elétrica com a temperatura, verificando-se um erro relativo percentual de 1,47 % em relação ao valor tabelado do coeficiente de temperatura da resistividade (\(\alpha\)). A transição de fase CCC-CFC após o tratamento térmico da liga eletrodepositada Co\textsubscript{74}Fe\textsubscript{26}, ocorreu a uma temperatura de 1019 K, sendo confirmada por difração de raios-X (XRD) \textit{ex situ}, em acordo com os resultados das medidas de resistência elétricas obtidas \textit{in situ}.

Abstract

This work has a main goal, the structural characterization of thin films Co$_x$Fe$_{100-x}$ electrodeposited. A study of the phase transition BCC-FCC was found to be in the alloys; the creation of a substrate for electrodeposition of the alloy; the development of a program in HP-VEE platform, which monitors and registers the measures during the execution; the project and development of a sample holder for electric measures in vacuum during thermal treatment. The research also involved the learning of the production of magnetic thin films by electrodeposition technique of all the stages that compose them such as the copper substrate polish, the handling of potenciostato and the solutions elaboration. Metals in the group of iron combine with binary alloys in this work have important industrial applications, such as microelectronic system. Among the parameters studied, the effect of the concentration of the solution in electrodeposition of Co$_x$Fe$_{100-x}$ alloy over copper substrate also was investigated. Results show that the concentration of Co-Fe alloy in the solution, has great importance in the phase transition BCC-FCC. Increasin the concentration of the solution, is observed through the analysis for X-ray diffraction (XRD), which the phase change BCC-FCC occurs with the increase of the percentile of Co in the alloy. This first part of work was accomplished using a copper substrate. With the implantation of evaporation in the laboratory, it passed to manufacture a new substrate produced with 50 Å of Cr and 300 Å of Cu, which evaporated over the glass. The advantages of this new substrate regarding the previously used are: a decrease in the rugones, with the microscopy technique of atomic force (AFM); smaller time to prepare the samples; the direct utilization of SiO$_2$/Cr/Cu/Co$_x$Fe$_{100-1}$ system in the resistance measures, without the need to extract the deposited film. The program and the sample holder developed were tried through the characterization of a commercial blade of Pt, by measure of electric resistance with the temperature. The results showed a 1.47 % deviation of the temperature resistivity coefficient (α). The phase transition BCC-FCC after the thermal treatment of the electrodeposition Co$_{74}$Fe$_{26}$ alloy, occurred to a temperature of 1019 K, characterized by X-ray diffraction (XRD) ex situ, confirming the results of measures of obtained electric resistance in situ.
CAPÍTULO 1

INTRODUÇÃO
1.0 Introdução

O contínuo e rápido aumento da densidade de área nos sistemas de armazenamento dos dados magnéticos, em função de computadores cada vez menores, levou à descoberta de novos fenômenos como a magnetoresistência gigante (GMR)\(^1\) e a magneto resistência túnel (TMR)\(^2\). A Figura (1-1) mostra a evolução da densidade de área do HD (Hard disk) em 47 anos, desde a sua criação pela IBM\(^3\).

![Figura 1-1 – Evolução da densidade de área do disco rígido\(^3\)](image)

A figura acima mostra oito ordens de aumento na magnitude da densidade de área (\(10^{-3}\) Mb/in.\(^2\) a \(10^5\) Mb/in.\(^2\)), desde a década de 50 até o início do século XXI. As diferentes tecnologias que foram implantadas ao longo das décadas para sustentar essa taxa de crescimento na densidade de área do HD também são representadas na Figura (1-1) como por exemplo: a tecnologia de filmes finos, a magnetoresistência (MR) e a magnetoresistência gigante (GMR)\(^1\).

Nosso trabalho concentra-se na tecnologia de filmes finos envolvendo ligas Co\(_x\)Fe\(_{1-x}\) eletrodepositadas\(^4\), que apresentam, em algumas concentrações, magnetização de saturação superior a do Fe puro\(^6\) acompanhada com efeito magnetostrictivo quase nulo na composição atômica de 90 at \% de Co, tornando esse sistema de grande interesse em aplicações na indústria de microeletrônicos como por exemplo em cabeçotes e dispositivos magnetoresistivos\(^7\). Para baixas temperaturas, a liga Co\(_x\)Fe\(_{1-x}\) (fase tipo B-2), apresenta propriedades ferromagnéticas, já em altas temperaturas, apresenta propriedades paramagnéticas (fase tipo A-1)\(^8\). Segundo o diagrama de fase
binário (Fig. 1-2), o sistema Co$_x$Fe$_{100-x}$ bulk9, a temperatura ambiente10, forma ligas com
estrutura cúbica de corpo centrado (CCC) nas composições em que x varia
aproximadamente de 0 a 75 at %, estrutura cúbica de corpo centrado e de face centrada
(CCC + CFC) quando x varia de 75 a 85 at %, estrutura cúbica de face centrada (CFC)
quando x varia de 85 a 95 at % e estrutura hexagonal compacta (HC) nas composições
quando x varia de 95 a 100 at %. Resultados anteriores obtidos pelo Laboratório
LANSEN10 da Universidade Federal do Paraná, mostram que para uma liga Co$_x$Fe$_{100-x}$
eletrodepositada com uma concentração de 1 mol/L o aparecimento da fase CFC na liga
Co$_x$Fe$_{100-x}$, ocorre quando x é igual a 87,5 at % de modo controverso ao diagrama de
fases Bulk como mostra a Fig. (1-2).

Para entendermos o que é uma transformação de fase da liga Co$_x$Fe$_{100-x}$
precisamos conhecer qual o significado das palavras liga binária e fase.
Resumidamente, as ligas binárias são sistemas de dois compostos ou simplesmente uma
mistura de dois elementos metálicos na qual não há uma ligação química entre os
metais. Já uma fase é definida como um corpo macroscópico homogêneo de matéria11.
Analisando a natureza das fases sólidas que ocorrem nas ligas encontramos basicamente
dois tipos: as soluções sólidas terminais que são fases com a estrutura cristalina dos
componentes; e as fases que são chamadas de fases intermediárias onde para algumas
ligas binárias, para determinadas razões entre os componentes, podem ocorrer estruturas
cristalinas diferentes das dos componentes puros. Quando nos referimos à transição de
fase CCC-CFC da liga Co$_x$Fe$_{100-x}$ estamos nos referindo a mudança de estrutura cristalina da Fig. (1-3.a) para a Fig. (1-3.b).

![Figura 1-3](image)

Figura 1-3 – (a) célula unitária cúbica de corpo centrado (CCC); (b) célula unitária cúbica de face centrada (CFC); (c) célula unitária hexagonal compacta (HC)

Analisando a estrutura CCC e CFC em função do número de estados por unidade de energia em função da energia (eV), chega-se a curva descrita pela Fig. 1-4 abaixo:

![Figura 1-4](image)

Figura 1-4 – Curva que mostra o número de estados por unidade de energia em função da energia (eV), chega-se a curva descrita pela Fig. 1-4 abaixo:

A Fig. 1-4 pode ser interpretada como: na região onde a curva $N(E)$ para a estrutura cúbica de corpo centrado é continuamente crescente, podemos notar um decaimento na curva de $N(E)$ para a estrutura cúbica de face centrada onde exatamente nesta região ocorre a mudança da fase α para a fase β na liga. Podemos também dizer que a estrutura CCC tem uma densidade de estados mais preenchida, comparando-se com a estrutura CFC. Isto explicando porque a resistividade nas ligas CCC são menores que nas ligas CFC. Segundo Hill11, um reticulado cúbico de corpo centrado pode ser obtido de uma estrutura de cúbica de face centrada por meio de uma compressão paralela ao eixo c e uma expansão nos dois eixos a. Qualquer distorção pura, simples e
homogênea dessa natureza, que converte um reticulado em outro por meio de uma expansão ou contração nos eixos cristalográficos, é chamada de distorção de Bain11. Esta distorção converte os reticulados com um mínimo de movimentos atômicos. Podemos ver a distorção de Bain para um reticulado cúbico de face centrada que se transforma em cúbico de corpo centrado na Fig. (1-5). A transformação que ocorre na liga Co\textsubscript{x}Fe\textsubscript{100-x} é de estrutura CCC para uma CFC, que pode ser considerada uma situação inversa da descrita acima e proposta por Hill11 para o sistema Ni-Fe.

![Figura 1-5 – Distorção de Bain para um reticulado cúbico de face centrada que se transforma em cúbico de corpo centrado. A célula tetragonal de corpo centrado é mostrada na estrutura cúbica de face centrada em (A) e sozinha em (B). A distorção de Bain converte (B) em (C).](image)

Uma forma de caracterização estrutural eficaz, nos estudos da cinética de formação de compostos intermetálicos em filmes finos, é a medida de resistência elétrica13,14,15,16 durante um dado tratamento térmico. A resistência elétrica ou resistividade de um sólido condutor pode ser determinada experimentalmente sem muitas dificuldades e por muitos anos ela tem sido usada como uma ferramenta de pesquisa para investigar microestruturas e fenômenos físicos17. O efeito da resistividade elétrica a 20 °C de alguns importantes materiais adicionado ao ferro pode ser visto na Fig. 1-6. Particularmente, podemos verificar que o aumento de cobalto na liga Co-Fe, diminui a resistividade elétrica desta liga quando se adiciona aproximadamente mais de dez por cento de Co na liga Co-Fe.
Figura 1-6 - Efeito da adição de alguns elementos na resistividade do ferro18.

A resistência elétrica ou resistividade da liga Co-Fe foi determinada experimentalmente nesta dissertação utilizando-se um porta-amostra projetado e desenvolvido para esta finalidade. Foi elaborado também um programa na plataforma HP-VEE que monitora e registra as medidas de tempo, tensão, corrente e temperatura, durante o tratamento térmico. Todo este sistema foi testado com amostras conhecidas para garantir a confiabilidade do sistema de medidas. Vale a pena ressaltar que para a realização das medidas elétricas houve a necessidade de projetarmos um novo substrato.

O trabalho está dividido em 5 capítulos e um anexo: o primeiro chamamos de introdução cuja função é motivar o porquê do estudo da liga Co-Fe; o segundo, uma introdução sobre as técnicas utilizadas nesta dissertação e algumas deduções matemáticas que explicam certas propriedades físicas; o terceiro, resultados e discussões (primeira parte), quando foram estudados alguns parâmetros do processo de eletrodeposição que influenciavam a transição de fase estrutural. Na segunda parte, porém, utilizou-se um substrato específico para a eletrodeposição da liga Co\textsubscript{x}Fe\textsubscript{100-x} com o objetivo principal de oferecer uma estrutura que permitisse realizar as medidas elétricas exclusivamente da amostra, sem a presença de artefatos e viabilizando a sua construção pela deposição eletroquímica; no quinto capítulo temos as conclusões gerais do trabalho e possíveis trabalhos futuros. Por fim, temos o anexo que descreve o programa desenvolvido para a realização das medidas elétricas AC durante os tratamentos térmicos.
CAPÍTULO 2

FUNDAMENTAÇÃO TEÓRICA E MÉTODOS DO PROCEDIMENTO EXPERIMENTAL
2.1 Corrente Elétrica. Densidade de Corrente

A carga em movimento constitui uma corrente e o processo por meio do qual a carga é transportada é chamado de condução19,20. A corrente \(I \) é definida como a taxa do fluxo de carga elétrica através da área da seção transversal de um condutor. Se \(dQ \) for a carga que passa pela área de uma seção, durante um intervalo de tempo \(dt \), então temos

\[
I = \frac{dQ}{dt}, \quad (2.1-1)
\]

onde \(Q = Q(t) \) é a carga líquida transportada em um tempo \(t \). Em um metal, a corrente é conduzida totalmente pelos elétrons, enquanto que os íons positivos estão fixos em posições regulares na estrutura cristalina. Somente os elétrons de condução, que são os elétrons mais externos, estão livres para participar do processo de condução.

Queremos calcular a corrente através de um elemento de área \(da \). Devemos então considerar um meio condutor que tem somente um tipo de portador de carga \(q \). Chamaremos de \(N \) o número de portadores por unidade de volume, de \(\hat{n} \) o vetor unitário normal à área \(da \) e \(\vec{v} \) a velocidade de cada portador. Durante o tempo \(\delta t \) cada portador percorre uma distância \(\vec{v} \delta t \) e a carga \(\delta Q \) que passa por \(da \) durante o tempo \(\delta t \) é a soma de todos os portadores de carga no volume \(\vec{v} \cdot \hat{n} \delta t da \). Da Eq. (2.1-1), temos

\[
\delta I = \frac{\delta Q}{\delta t} = \frac{qN\vec{v} \cdot \hat{n} \delta t da}{\delta t} = Nq\vec{v} \cdot \hat{n} da. \quad (2.1-2)
\]

Se houver mais de um portador de carga, então da Eq. (2.1-2) temos

\[
dI = \left[\sum_i N_i q_i \vec{v}_i \right] \cdot \hat{n} da, \quad (2.1-3)
\]

é a corrente através de \(da \). A quantidade entre colchetes é um vetor que tem dimensões de corrente por unidade de área e denominamos de densidade de corrente representada por \(\vec{J} 15,19 \).
\[\vec{J} = \sum_i N_i q_i \vec{v}_i . \] (2.1-4)

Podemos reescrever a equação Eq. (2.1-3) como sendo
\[dl = \vec{J} \cdot \hat{n} da . \] (2.1-5)

A corrente através de uma superfície \(S \) pode ser calculada por
\[I = \int_S \vec{J} \cdot \hat{n} da . \] (2.1-6)

2.2 Condutividade. Resistividade

Experimentalmente, a densidade de corrente \(\vec{J} \) num metal, à temperatura constante, é linearmente proporcional ao campo elétrico (lei de Ohm)\(^{19} \). Então
\[\vec{J} = \sigma \vec{E} \] (2.2-1)

onde \(\sigma \) é denominada de condutividade. A resistividade é definida como o inverso da condutividade, assim
\[\rho = \frac{1}{\sigma} \] (2.2-2)

a condutividade e a resistividade de qualquer metal dependem da temperatura. Se construirmos uma curva \(\rho \) contra \(T \) e calcularmos o coeficiente angular desta curva, temos o chamado coeficiente de temperatura da resistividade \(\alpha \), calculado como sendo
\[\alpha = \frac{1}{\rho} \frac{d\rho}{dT} \] (2.2-3)

Alguns valores para o coeficiente de resistividade e para a resistividade de matérias típicos são listados na Tab. (2.2-1). Essa tabela será útil quando mais tarde, no item (4.1.3), compararmos o coeficiente de temperatura da resistividade da platina (\(\alpha_{\text{tabelado}} \)) com o coeficiente da resistividade da platina (\(\alpha_{\text{calculado}} \)) encontrado, para termos certeza de que o sistema experimental proposto é confiável.
<table>
<thead>
<tr>
<th>Material</th>
<th>ρ, $\Omega \cdot m$</th>
<th>α (K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prata</td>
<td>$1,62 \times 10^{-8}$</td>
<td>$4,1 \times 10^{-3}$</td>
</tr>
<tr>
<td>Cobre</td>
<td>$1,69 \times 10^{-8}$</td>
<td>$4,3 \times 10^{-3}$</td>
</tr>
<tr>
<td>Alumínio</td>
<td>$2,75 \times 10^{-8}$</td>
<td>$4,4 \times 10^{-3}$</td>
</tr>
<tr>
<td>Tungstênio</td>
<td>$5,25 \times 10^{-8}$</td>
<td>$4,5 \times 10^{-3}$</td>
</tr>
<tr>
<td>Ferro</td>
<td>$9,68 \times 10^{-8}$</td>
<td>$6,5 \times 10^{-3}$</td>
</tr>
<tr>
<td>Platina</td>
<td>$10,6 \times 10^{-8}$</td>
<td>$3,9 \times 10^{-3}$</td>
</tr>
</tbody>
</table>

Tabela 2.2-1 – Resistividade ρ e coeficiente de temperatura da resistência α de alguns materiais a 20ºC. ¹⁹

2.3 Lei de Ohm

Sabe-se que a corrente num condutor é provocada por um campo elétrico no interior do condutor¹⁹, Eq. (2.2-1). Considerando-se um fio condutor com comprimento dl e área de seção reta A, cujas extremidades são mantidas a uma diferença de potencial constante $\Delta \phi$, podemos então relacionar $\Delta \phi$, \vec{E} e dl como

$$\Delta \phi = \int \vec{E} \cdot d\vec{l}. \quad (2.3-1)$$

Considerando que o campo elétrico deva ser o mesmo em todos os pontos do fio e puramente longitudinal, a Eq. (2.3-1) se reduz a

$$\Delta \phi = EI \quad (2.3-2)$$

Da Eq. (2.1-6) obtemos a corrente através de uma seção reta do fio

$$I = \int_A \vec{J} \cdot \hat{n} \, da = JA. \quad (2.3-3)$$

Combinando a Eq. (2.3-3) com as Eqs. (2.2-1) e (2.3-2), encontramos
\[I = \frac{\alpha A}{l} \Delta \varphi \]. \hspace{1cm} (2.3-4)

Na Eq. (2.3-4) notamos uma proporcionalidade entre \(I \) e \(\Delta \varphi \). Chamamos de resistência do fio, representando por \(R \), a quantidade

\[R = \rho \frac{l}{A}. \hspace{1cm} (2.3-5) \]

Reescrevendo a Eq. (2.3-4) obtemos

\[\Delta \varphi = RI \hspace{1cm} (2.3-6) \]

conhecida como a lei de Ohm.

2.4 Teoria Microscópica de Condução

Considerando-se uma partícula livre em um condutor, com carga \(q \) e massa \(m \), pode-se montar a equação de movimento para encontrar a velocidade dessa partícula. De acordo com a segunda lei de Newton \(\ddot{F} = m \ddot{x} / dt^2 \), e a força elétrica local \(q \vec{E} \), a velocidade de deslocamento aumentará com

\[q \vec{E} = m \frac{d\vec{v}}{dt}. \hspace{1cm} (2.4-1) \]

A partícula não está no vácuo, logo ela não continuará acelerando infinitamente. Pode-se então dizer que a velocidade da partícula será constante e que a força resultante sobre ela é nula. Supondo-se que uma força de retardamento \(G \), imposta pelo meio, atue sobre a partícula e seja proporcional à velocidade, a Eq. (2.4-1) ficará

\[q \vec{E} - G \vec{v} = m \frac{d\vec{v}}{dt}. \hspace{1cm} (2.4-2) \]

Como \(d\vec{v} / dt = 0 \), temos
como sendo a velocidade de estado estacionário para a velocidade de deslocamento.

Para encontrarmos o valor de G, devemos encontrar a solução completa da Eq. (2.4-2), que é

$$
\ddot{v}(t) = \frac{q}{G} \vec{E} \left(1 - e^{\frac{Gt}{m}} \right) .
$$

Fazendo $\ddot{v}(0) = 0$, mostramos que a velocidade local de deslocamento atinge seu valor estacionário exponencial, como $e^{-t/\tau}$, onde temos o tempo de relaxação τ (tempo para o estabelecimento local de uma corrente ôhmica após a aplicação do campo) definido como

$$
\tau = \frac{m}{G} .
$$

Combinando as Eqs. (2.4-3) e (2.4-5) obtemos

$$
\ddot{v} = \frac{q \tau}{m} \vec{E} ,
$$

Substituindo esta equação na Eq. (2.1-4), encontramos

$$
\vec{J} = \frac{Nq^2 \tau}{m} \vec{E} ,
$$

que é proporcional ao campo, segundo a lei de Ohm. Comparando as Eqs. (2.4-7) e (2.2-1) encontra-se a condutividade

$$
\sigma = \frac{Nq^2 \tau}{m} .
$$
Podemos interpretar fisicamente \(\tau \) como o tempo médio entre colisões de um elétron de condução. O tempo médio de colisão \(\tau \) está relacionado ao livre caminho médio \(l \) por

\[
l = v_T \tau ,
\]

onde \(v_T \) é a velocidade térmica dos elétrons. A demonstração do livre caminho médio faz sentido quando no item 2.6 falarmos dos fatores que elevam a resistividade dos metais.

2.5 Condutividade AC de um Metal

As demonstrações feitas até o item anterior se aplicam somente a um sistema com corrente contínua (DC). O que significa alterarmos todos os resultados até agora para um sistema elétrico com corrente alternada (AC)? Significa que para calcular a corrente induzida no metal pelo campo elétrico dependente do tempo, escreve-se o campo da seguinte forma

\[
\vec{E}(t) = \text{Re}(\vec{E}(\omega) e^{-i\omega t}).
\]

Podemos agora representar a equação de movimento (ver 2.4-2) do elétron em função do momento \(\vec{p} \) por

\[
\frac{d\vec{p}}{dt} = -\frac{p}{\tau} + q\vec{E}.
\]

Buscamos a solução de estado da forma

\[
\vec{p}(t) = \text{Re}(\vec{p}(\omega) e^{-i\omega t}).
\]

Substituindo (2.5-3) em (2.5-2), que satisfaça a parte real e imaginária de qualquer solução complexa do sistema, encontramos

\[
-i\omega\vec{p}(\omega) = -\frac{\vec{p}(\omega)}{\tau} + q\vec{E}(\omega).
\]
Podemos escrever a densidade de corrente da Eq. (2.1-4) na forma

\[j = \frac{Nq\bar{p}}{m}, \]

(2.5-5)

e para este problema AC na forma

\[\bar{J}(t) = \text{Re}\left(\bar{J}(\omega)e^{-i\omega t}\right), \]

(2.5-6)

Como na Eq. (2.2-1) podemos representar a densidade de corrente

\[\bar{J}(\omega) = \sigma(\omega)\bar{E}(\omega), \]

(2.5-7)

onde

\[\sigma(\omega) = \frac{\sigma_0}{1-i\omega\tau}, \quad \sigma_0 = \frac{Nq^2\tau}{m} \]

(2.5-8)

é a condutividade dependente da frequência. Se a frequência for igual a zero a condutividade se reduz ao sistema DC.

2.6 Fatores que Elevam a Resistividade dos Metais

Em um cristal perfeito, com um potencial periódico, uma onda eletrônica não realiza nenhuma colisão tornando seu tempo de colisão \(\tau \) infinito e consequentemente um livre caminho médio \(l \) infinito. Sabe-se que o condutor apenas em média é eletrostaticamente neutro, pois há variações de potencial da ordem de 0,1 nm fazendo com que um elétron colida sofra espalhamento devido as variações deste potencial. Pela regra de Matthiessen15,16,19,20 os fatores que elevam a resistividade dos metais são as impurezas, os defeitos cristalinos e a temperatura, de modo que

\[\rho_{\text{Total}} = \rho_{\text{impurezas}} + \rho_{\text{defeitos}} + \rho_{\text{temperatura}}, \]

(2.5-1)
As impurezas e defeitos cristalinos aumentam a resistividade elétrica dos metais pois ambos interrompem localmente o potencial elétrico periódico da rede. Já a temperatura induz os vários modos vibracionais dos átomos dificultando o movimento dos elétrons na rede cristalina. Se a contribuição das impurezas e defeitos forem baixos podemos representá-los, juntamente com a contribuição da temperatura, na Fig. (2.5-1).

![Figura 2.5-1 – Curva esquemática da dependência da resistividade elétrica em função da temperatura de um metal](image)

2.7 Caracterização Elétrica de Filmes Finos

Inicialmente, os métodos de estudo de formação de compostos intermetálicos, em função da resistência ou da resistividade elétrica, eram feitos através de medidas efetuadas antes e depois do tratamento térmico. Entretanto, este método foi aprimorado, e hoje é possível fazer medidas *in situ* da variação da resistividade elétrica durante tratamento térmico, através da observação da reação do estado sólido entre dois materiais (processo de interdifusão), ou da transformação de fase de um único material. Estas transformações alteram a rede cristalina do material, e consequentemente, sua resistividade. Os coeficientes de difusão e a energia de ativação também são estudados por este tipo de técnica. As técnicas analíticas e as propriedades medidas diferem para metais, semicondutores e isolantes (dielétricos). Para metais, a propriedade elétrica básica é a resistividade, como já foi visto em itens anteriores.

Algumas técnicas têm sido exploradas para medir as propriedades elétricas dos filmes finos, desde a metade do século passado. Uma das técnicas de medir resistência
Elétrica de filmes finos é chamada de resistência em folha R_s e sua unidade é expressa em Ω/\square (Ohms por quadrado). A resistência de um filme numa seção retangular (medida na direção paralela à superfície do filme) conforme a Fig. (2.7-1), é dada por:

$$R = \frac{\rho L}{db}.$$ \hspace{1cm} (2.7-1)

Figura 2.7-1 – Desenho da definição da resistência em folha14,15,16.

Para o caso $L = b$ temos

$$R = \frac{\rho}{d} = R_s.$$ \hspace{1cm} (2.7-2)

Para muitos metais condutores e filmes semicondutores, a técnica empregada para a medida de resistência é a utilização de quatro terminais dispostos sobre a superfície da amostra na qual se quer medir. Dois destes terminais têm a função da passagem de corrente sobre a amostra, os outros dois restantes tem a finalidade de medir a tensão15. A Fig. (2.7-2) mostra algumas configurações de contato para exemplificar esta técnica:
Figura 2.7-2 – Técnica para medida de resistência elétrica em filmes finos. (a) A corrente e as tensões são medidas através de extensões do próprio filme. (b) Método 4 pontas para medida de resistência de folha. (c) Método de Van der Paw para medida da resistividade em geometria arbitrária.°

O método mais comum é o método de 4 pontas em linha mostrado na Fig. (2.7-2.b). Quando as pontas são colocadas no material de volume semi infinito, a resistividade é dada por

\[
\rho = \frac{V}{I} \left(\frac{2\pi}{\frac{1}{S_1} + \frac{1}{S_3} - \frac{1}{(S_1 + S_2)} - \frac{1}{(S_2 + S_3)}} \right). \tag{2.7-3}
\]

Quando \(S_1 = S_2 = S_3 = S \) na Fig. (2.7-2.b) esta equação se reduz a

\[
\rho = \frac{V}{I} \frac{2\pi S}{2}. \tag{2.7-4}
\]

Se o material no qual o filme foi depositado for um isolante, e se o filme for infinitamente extenso em relação às pontas de contato, a Eq. (2.7-4) pode ser escrita como sendo
\[\rho = \frac{V d \pi}{I \ln 2} \] \hspace{1cm} (2.7-5)

ou

\[\frac{\rho}{d} = R_s = 4.532 \frac{V}{I} . \] \hspace{1cm} (2.7-6)

O método utilizado na Fig. (2.7-2.c) é conhecido como o método de Van der Pauw \(^{15,29}\). Neste método aplica-se uma corrente em BC e através da medida de diferença de potencial DA definimos

\[R_{CD,AB} = \frac{V_D - V_A}{I_{CD}} \] \hspace{1cm} (2.7-7)

analogamente

\[R_{DA,BC} = \frac{V_C - B_B}{I_{DA}} . \] \hspace{1cm} (2.7-8)

Esse método de medida baseia-se no teorema de que entre \(R_{BC,DA} \) e \(R_{CD,AB} \) existe a relação simples

\[\exp \left(-\frac{\pi d}{\rho} \frac{V_{CD}}{I_{AB}} \right) + \exp \left(-\frac{\pi d}{\rho} \frac{V_{DA}}{I_{BC}} \right) = 1 . \] \hspace{1cm} (2.7-9)

Para um caso geral a solução para a resistividade pode ser encontrada por

\[\rho = \frac{\pi \chi}{\ln 2} \left(\frac{R_{CD,AB} + R_{DA,BC}}{2} \right) f \left(\frac{R_{CD,AB}}{R_{DA,BC}} \right) . \] \hspace{1cm} (2.7-10)

Entre o fator \(f \) na Eq. (2.7-10) e a razão de \(R_{CD,AB} \,/ \, R_{DA,BC} \), existe a relação

\[\cosh \left[\left(\frac{R_{CD,AB}}{R_{DA,BC}} \right)^{-1} \frac{\ln 2}{f \left(\frac{R_{CD,AB}}{R_{DA,BC}} \right)} \right] = \frac{1}{2} \exp \left(\frac{\ln 2}{f \left(\frac{R_{CD,AB}}{R_{DA,BC}} \right)} \right) . \] \hspace{1cm} (2.7-11)
que é representada no gráfico abaixo

![Gráfico](image)

Figura 2.7-3 – Gráfico que determina a relação entre a função \(f \) e a razão entre as resistências.

2.8 Eletroquímica

As reações que convertem energia química em energia elétrica, e vice-versa, são produzidas em células chamadas eletroquímicas. Existem dois tipos de células eletroquímicas: as células galvânicas, onde a energia química é convertida em energia elétrica, e as células eletrolíticas, onde a energia elétrica é convertida em energia química através de uma fonte externa de corrente\(^{30,31,32}\). Neste estudo utilizaremos a célula eletroquímica do tipo eletrolítica.

Um sistema eletroquímico é formado por uma fonte e três eletrodos imersos em uma solução eletrolítica. Este sistema é o que se conhece por célula eletroquímica, e os três eletrodos são denominados eletrodo de trabalho, eletrodo auxiliar e eletrodo de referência. A fonte pode atuar tanto como fonte de corrente, quanto como fonte de tensão, dependendo do método que se quer utilizar. No método galvanostático, a fonte aplica uma corrente constante entre o eletrodo de trabalho e o eletrodo auxiliar, medindo-se o valor de tensão entre o eletrodo de trabalho e o eletrodo de referência em função do tempo. No método potenciostático, a tensão aplicada entre o eletrodo de trabalho e o eletrodo de referência é constante, obtendo-se como resultado um sinal de corrente entre o eletrodo de trabalho e o eletrodo auxiliar, em função do tempo.

As reações mais importantes, decorrentes da aplicação do potencial sobre a célula eletroquímica, ocorrem no eletrodo de trabalho. Ao ligarmos a fonte, há o aparecimento de uma corrente elétrica, devido à redução de íons no eletrodo negativo.
(eletrodo de trabalho) e à oxidação de espécies no eletrodo positivo (eletrodo auxiliar). Instantaneamente, inicia-se um processo de transporte de massa e transferência de elétrons, de forma a manter a neutralidade da solução. Do seio da solução, os íons se direcionam para a superfície do eletrodo, formando-se então, uma corrente anódica, de íons negativos (ânions), em direção ao eletrodo positivo (ânodo), e uma corrente catódica, de íons positivos (cátions), em direção ao eletrodo negativo (cátodo). No cátodo, os cátions se aproximam da superfície do mesmo e são adsorvidos. Neste momento recebem elétrons, se tornam neutros, desorvem e retornam à solução, como mostrado na Fig. (2.8.1).

![Diagrama da reação eletroquímica](image)

Figura 2.8.1 – Representação esquemática dos processos de transporte de massa e de transferência de carga que ocorrem na célula eletroquímica, na superfície do eletrodo de trabalho.

R, na figura representa o processo de redução e O o processo de oxidação.

É comum se ter um sobrepotencial \(\eta \) para aumentar a velocidade na qual uma reação ocorre no eletrodo, fornecendo-se também energia para íons que se movem na solução. Assim, a tensão total na célula \(V \), necessária para dar início a mudanças químicas por eletrólise, é dada por:

\[
V = E_e^C - E_e^A - |\eta_a| - |\eta_c| - iR ,
\]

onde \(\eta_a \) e \(\eta_c \) são os sobrepotenciais no ânodo e no cátodo, respectivamente. \(E_e^C \) e \(E_e^A \) são os potenciais de equilíbrio do cátodo e do ânodo e o termo \(iR \) é a queda de tensão.
ôhmica na solução. Em todas as células, os sobrepotenciais e a resistência do eletrólito são termos que devem ser minimizados, pois ambos variam com a corrente e de maneiras diferentes. Quando iR é pequeno, não há problema em se usar uma célula de dois eletrodos, pois esta contribuição pode ser minimizada através do seu desenho apropriado e da instrumentação. Mas quando a corrente ou a resistência da solução são altas, iR também é grande. Neste caso, o eletrodo de referência é colocado muito próximo da superfície do eletrodo de trabalho, e o potencial deste é controlado em função daquele, usando-se um potenciostato. O equipamento usado para monitorar a diferença de potencial entre os dois eletrodos possui uma impedância de entrada alta, de forma que uma corrente desprezível passa pelo eletrodo de referência. Como, essencialmente, nenhuma corrente passa pelo eletrodo de referência, seu potencial permanece constante e igual ao valor de circuito aberto. Assim, a contribuição da queda de potencial iR da solução, sobre o potencial medido, será mínima. O circuito direciona a corrente entre eletrodo de trabalho e o contra eletrodo. Este eletrodo pode ser qualquer eletrodo de interesse, escolhendo-se usualmente um que não produza, por eletrólise, substâncias que possam alcançar a superfície do eletrodo e causar possíveis reações de interferência.

2.9 Nucleação

Quando a solução está em repouso, sem aplicação de qualquer potencial, esta apresenta uma grande concentração de íons exatamente na frente do eletrodo, conhecida como dupla camada ou camada de Helmholtz (Fig. 2.9-1):

![Figura 2.9-1 – Dupla camada elétrica, (a) modelo, (b) potencial vs. distância](image)
Estes íons são responsáveis pela elevada taxa de recombinação quando o potencial é aplicado. No entanto, estes íons vão se esgotando, até o momento em que o deslocamento dos íons do seio da solução consiga equilibrar com a taxa de redução no eletrodo. Estabelecido um regime estacionário, a corrente passa a ser governada pela velocidade de migração dos íons. É equivalente a imaginar que, inicialmente temos uma alta concentração de íons à frente do eletrodo, e, à medida em que o processo ocorre, a concentração de íons na frente do eletrodo vai diminuindo. A análise de como os primeiros íons vão se incorporando ao eletrodo nos dá o perfil inicial da corrente e este processo inicial é conhecido como nucleação. Outro fator que influencia o perfil inicial da corrente é a rugosidade que será discutido mais detalhadamente na seção (3.1.2).

2.10 Voltametria Cíclica

A voltametria cíclica é uma técnica na qual varia-se a tensão aplicada a uma célula eletroquímica, enquanto se faz medidas de corrente. Esta técnica é uma ferramenta bastante eficiente na obtenção de informação qualitativa e quantitativa sobre processos de transferência de carga. A voltametria cíclica requer um gerador para produzir um sinal, um potenciostato para aplicar este sinal em uma célula eletroquímica, um conversor corrente-tensão para medir a corrente resultante, um coletor de dados e um osciloscópio ou microcomputador para registrar a voltametria. Os três primeiros itens, normalmente, estão incorporados em um único equipamento eletrôônico chamado potenciostato. O potenciostato aplica o potencial desejado entre o eletrodo de trabalho e um eletrodo de referência, e garante que o potencial do eletrodo de trabalho não será afetado por nenhuma outra reação que possa ocorrer na célula.

A tensão aplicada pela fonte ao eletrodo varia linearamente a partir de um valor inicial \(E_i \), onde normalmente não ocorrem reações no eletrodo \((j=0) \), até um limite pré determinado \(E_f \), conhecido como potencial de reversão. A partir deste ponto, a tensão aplicada é invertida e o processo passa a ocorrer no sentido inverso. As curvas de corrente vs potencial, resultantes desse processo, possuem uma forma característica que pode ser vista na Fig. (2.10-1):
À medida que o potencial é varrido na direção negativa, a taxa de transferência de elétrons no eletrodo aumenta, e a corrente, conseqüentemente, também. O principal meio de transporte dos reagentes à superfície do eletrodo é a difusão, uma vez que o experimento é realizado em uma solução sem agitação. O transporte de massa é um processo lento, não permitindo a manutenção de uma concentração constante próxima do eletrodo. Progressivamente, o transporte de massa se torna predominante e a corrente atinge um máximo. Quando a direção de varredura é invertida as espécimes reduzidas são oxidadas, e o material retorna à sua fase original. De modo geral, a corrente depende de dois fatores no processo, sendo estes a difusão das espécies eletroativas para a superfície do eletrodo, isto é, o transporte de massa, e a reação de transferência de elétrons.

2.11 Difração de Raios–X

O difratômetro é o instrumento utilizado para fazer a análise de difração de raios-x (técnica que examina a estrutura cristalina do material) e está representado esquematicamente na Fig. (2.11-1). Ele é sempre utilizado com radiação monocromática e as medidas podem ser feitas tanto em mono como em policristais.
Figura 2.11-1 – Representação esquemática de um Difratômetro.

Basicamente a fonte de raios-x funciona gerando radiação através da colisão de elétrons num alvo metálico. Esta colisão faz com que os elétrons mais internos sejam arrancados do átomo, por conseqüência, elétrons de camadas mais próximas decaidem emitindo o raios-X. O alvo metálico utilizado no difratômetro onde foram feitas as nossas medidas foi o cobalto, tendo como característica, quando bombardeado por elétrons com energia de 40 keV, o fato de possuir uma forte linha de emissão do CoKα com comprimento de onda de 0,17902 nm. Quando um feixe de raios-X entra num cristal ocorre a difração, e os elétrons deste são forçados a vibrar devido à oscilação dos campos do feixe incidente emitindo radiação em todas as direções formando um campo de ondas na amostra. Em certas direções, as ondas espalhadas sofrem interferência construtiva, e em outras, interferência destrutiva. Quando ocorre a interferência construtiva o feixe difratado permite identificar os planos cristalinos do metal analisado como mostrado na Fig. (2.11-2) abaixo:

Figura 2.11-2 – Representação esquemática dos planos cristalinos da difração de raios-X.
A equação que relaciona a estrutura cristalina e a condição geométrica para ocorrer a difração é dada por:

\[2d \sin \theta = n\lambda. \]

(2.11-1)

Essa equação é conhecida como a lei de Bragg, e mostra a dependência do ângulo de difração \(\theta \) como o comprimento de onde \(\lambda \) dos raios-X e da distância \(d \) entre os planos. Podemos ainda, analisando a difração de raios-X de um material, calcular a média do tamanho de grãos desse material. Isto é feito através da largura meia à altura \(B \) dos picos de difração como mostrado na Fig. (2.11-3).

![Figura 2.11.3 – Medida de \(B \) no pico de difração de um cristal\(^{13} \).](image)

A fórmula de Scherrer, que permite o cálculo direto da média do comprimento de coerência \(L \) do cristal (região cristalina livres de defeitos), é dada ao longo da direção de espalhamento por:

\[L = \frac{0.9\lambda}{B \cos \theta_b}, \]

(2.11-2)

onde \(B \) (usualmente medido em graus) deve ser considerado em radianos. Para amostras policristalinas cujo tamanho de grão é muito pequeno, é razoável correlacionar o comprimento de coerência com o tamanho de grão desde que \(B \) exceda a divergência instrumental. Para fins práticos, um dos métodos para a nossa determinação do tamanho de grão, será feito pela determinação do comprimento de coerência para grandes variações dos parâmetros de deposição. Para variações pequenas na composição é razoável supor que o tamanho de grão não seja alterado, neste caso, a variação da
largura meia altura é devido à variação de microdeformações nos grãos, a qual pode ser determinado pela expressão da dependência angular do parâmetro de rede expressa por:

\[
\frac{\Delta d}{d} = \frac{\Delta \theta}{\tan \theta}
\]

(2.11-3)

2.12 Microscopia de Força Atômica

O microscópio de força atômica\(^{36,37}\) (Atomic Force Microscope - AFM) pode ser operado de diversos modos. Seu princípio fundamental é a medida das deflexões de um “cantilever” (de 100 a 200 µm de comprimento) em cuja extremidade livre está fixada a ponta. Estas deflexões são causadas pelas forças que agem entre a ponta do cantilever e a amostra. As diferentes técnicas fornecem diversas possibilidades para fazer imagens de diferentes tipos de amostras, gerando uma ampla gama de informações. Os modos de fazer as imagens, também chamados modos de varredura (contato e dinâmico), referem-se fundamentalmente à distância mantida entre a ponteira e a amostra no momento da varredura, e às formas de movimentar a ponteira sobre a superfície a ser estudada.

O microscópio de força atômica opera medindo forças entre a ponta e a amostra, as quais dependem de diversos fatores como, por exemplo, dos materiais que compõem a amostra e a ponta, da distância entre elas, da geometria da ponteira e de qualquer tipo de contaminação que haja sobre a superfície da amostra. Um esquema de como funciona o AFM pode ser visto na Fig. (2.12-1)

Figura 2.12-1 – Esquema do princípio básico do AFM\(^{38}\).

Quando a ponta que está apoiada no cantilever, se aproxima da amostra, é primeiramente atraída pela superfície, devindo a uma ampla gama de forças atrativas existentes na região, como as forças de van der Waals. Esta atração aumenta até que, quando a ponteira aproxima-se muito da amostra, os átomos de ambas estão tão
próximos que seus orbitais eletrônicos começam a se repelir. Esta repulsão eletrostática enfraquece a força atrativa à medida em que a distância diminui. A força se anula quando a distância entre os átomos é da ordem de alguns Angströms. Quando as forças se tornam positivas pode-se dizer que os átomos da ponta e da amostra estão em contato e as forças repulsivas acabam por dominar. Neste momento o laser refletido pela parte traseira do cantilever é detectado por um fotodetector com a ajuda de um espelho, que tem como função centralizar o feixe de laser no fotodetector. Um sistema do tipo tripé piezoelétrico permite o posicionamento, aproximação, varredura e distanciamento da superfície da amostra em relação ao cantilever. A amostra é então varrida no plano xy indicado na Fig. (2.12-1) e a interação da ponta com a superfície da amostra (direção z, perpendicular ao plano da amostra), leva à formação da imagem, mostrada numa tela de computador através de um software produzido pelo próprio fabricante do AFM.

O mapeamento da superfície da amostra com o AFM pode ser feito de dois modos: modo contato ou modo dinâmico. No modo contato a ponteira é mantida em contato com a superfície da amostra durante a varredura, já no modo dinâmico o sistema haste-ponta vibra em uma frequência muito próxima à frequência de ressonância mecânica, tateando a superfície. A interação ponta-amostra altera a amplitude do movimento de vibração na direção z durante a varredura no plano xy, esta mudança de amplitude é detectada e a superfície da amostra é obtida por contraste de fase sendo mostrada na tela do computador. Neste trabalho utilizou-se o modo contato para realizar as medidas de rugosidade das amostras.

2.13 Microscópio Eletrônico de Varredura

O princípio de funcionamento do microscópio eletrônico de varredura (MEV) consiste na emissão de um feixe de elétron por um filament capilar de tungstênio (eletrodo negativo), mediante a aplicação de uma diferença de potencial que pode variar de 0,5 a 30kV (canhão de elétrons Fig. 2.13-1) que acelera os elétrons primários até a superfície da amostra. Como resultado da interação do feixe de elétrons com a superfície da amostra, uma série de processos ocorre tais como, emissão elétrons secundários, elétrons retroespalhados, raios-X característicos, elétrons Auger. Portanto, a topografia da superfície, composição, cristalografia da amostra podem ser obtidas. Depois de serem acelerados entre o cátodo e o ánodo, os elétrons passam por lentes
eletro-magnéticas convergindo sobre a amostra. O MEV possui ainda uma lente eletro-
magnética cuja função é varrer o feixe de elétrons sobre a amostra.

![Figura 2.13-1 – Desenho esquemático do MEV.]

2.14 Microscopia Eletrônica de Transmissão

O microscópio eletrônico de transmissão\(^{41}\) (MET) funciona basicamente com uma fonte de emissão de elétrons acelerados entre o cátodo e o ánodo. Uma vez acelerados, os elétrons divergentes passam por lentes condensadoras cuja função é torná-los paralelos para que incidam perpendicularly sobre a amostra. Ao incidirem sobre a amostra há três tipos de feixes que irão emergir: feixe diretamente transmitido sem mudanças relevantes em relação ao feixe incidente; feixe devido ao espalhamento elástico, ou seja, o feixe difratado que obedece a lei de Bragg; e o feixe espalhado inelasticamente devido à interação com os elétrons dos átomos da amostra. No modo imagem, como mostrado no lado esquerdo da Fig. (2.14-1), ao emergir da amostra, o feixe passa através de uma abertura na qual somente o feixe transmitido passará pelas outras lentes cuja função é ampliar a imagem. No modo difração, como mostrado no lado direito da Fig. (2.14-1), o MET não utiliza abertura como feito no modo imagem, gerando assim a imagem do plano focal a qual é amplificada pelas lentes projetoras. Uma vez que os feixes de elétrons são invisíveis ao olho, a imagem é revelada pela projeção dos elétrons sobre uma tela fluorescente ou sobre uma película fotográfica. O desenho esquemático do MET está representado na Fig. (2.14-1).
2.15 **Evaporação**

O processo de evaporação14,15,16 de um material consiste na emissão térmica de elétrons de um filamento quente, com sua posterior aceleração sobre a superfície do material que se deseja evaporar. Pode-se dizer que estes elétrons são direcionados do filamento até a superfície do material por um campo magnético \vec{B}, mostrado na Fig. (2.15-1).
Figura 2.15-1 – Desenho esquemático da geometria e do processo de evaporação.

O símbolo \otimes significa que o campo \vec{B} está entrando no papel.14

Embora os átomos evaporados partem da superfície do material do qual se deseja evaporar somente com energia térmica, vários outros tipos de energias ainda chegam na superfície do filme, como por exemplo, UV e os raios-X gerados pelo impacto dos elétrons na superfície. Os raios-X gerados pelos elétrons durante a colisão no material não têm energia suficiente para penetrar e ultrapassar as paredes da câmara de vácuo, ou a janela de observação, não oferecendo, assim, risco ao operador, porém podendo trazer risco a amostra. Materiais dielétricos para aplicação em eletrônica podem desenvolver indesejáveis defeitos ou até o acúmulo de cargas devido aos raios-X destrutivos.
Capítulo 3:
Resultados e Discussões

3.1 Estudo dos Parâmetros de
Eletrodeposição das Ligas de Co$_x$Fe$_{100-x}$

(1ª Parte)
A primeira parte do trabalho da dissertação, a qual trata da caracterização estrutural e química da liga Co$_x$Fe$_{100-x}$ por meio da eletrodeposição sobre substratos de cobre10, tornou-se um pouco mais abrangente. O estudo de formação da liga Co$_x$Fe$_{100-x}$ sobre chapas de cobre analisando a composição, potencial e aditivos na solução, já haviam sido estudados42,46 pelo laboratório LANSEN42,46. Na tentativa de reduzir a cinética de crescimento, com o intuito de aumentar o tamanho dos grãos, verificou-se que o efeito da concentração da solução na eletrodeposição da liga Co$_x$Fe$_{100-x}$ tinha resultados interessantes. Aumentando-se a concentração da liga Co$_x$Fe$_{100-x}$ na solução, reduz-se o volume médio de grão e a mudança de fase CCC-CFC ocorre sem uma larga faixa de composição na coexistência da fase, assim como o aumento do percentual de Co na liga. Observou-se também que a composição da liga na qual ocorre a transição de fase estrutural é inversamente proporcional ao volume médio do grão cristalino na eminência da transição. Todas essas conclusões serão explicadas em detalhes até o final deste capítulo. Essa primeira parte da dissertação foi realizada com o pH da solução mantendo-se constante em torno de 3 e a eletrodeposição das ligas Co$_x$Fe$_{100-x}$ foi feita sem a adição de aditivos orgânicos43,44,45. Utilizou-se como substrato uma folha de cobre comercial com texturização na direção [100], espessura 0,15mm, cortada em quadrados de aproximadamente 28mm de lado. A superfície do substrato já cortado era então polida eletroquimicamente46 verificando-se as medidas de rugosidade através do AFM.

3.1.1 Polimento Eletroquímico.

O sistema experimental usado para a realização do polimento eletroquímico pode ser visto na Fig. (3.1.1-1) com o objetivo de melhorar a superfície do substrato. O sistema utilizado era composto de um Potenciostato/Galvanostato (EGG273A), uma Becker (Pyrex® 400ml), uma tampa de Teflon® com orifícios destinados aos eletrodos e um computador para fazer a leitura das medidas.
Com a célula eletroquímica montada e com o substrato de cobre no eletrodo de trabalho, fez-se uma voltametria partindo-se do potencial 0 V até o potencial 2 V, com o objetivo de oxidar a superfície do substrato de cobre, realizando desse modo, o polimento eletroquímico. As soluções utilizadas eram compostas de 10, 20, 30 e 40% de ácido fosfórico (H2PO4) para um volume de 400ml de água bidestilada. Foi possível concluir, através de medidas AFM, que a melhor superfície, ou seja, aquela que apresentava menor rugosidade, foi obtida com a utilização da solução de 40% de H2PO4, como mostra o item 3.1.2.

3.1.2 Medidas de AFM

As medidas obtidas pelo microscópio de força atômica (operado em modo contato) feitas nos substratos polidos eletroquimicamente, mostrou que a menor média da rugosidade pode ser vista quando se utiliza 40% de H2PO4. A Fig (3.1.2-1) mostra a análise das diferentes amostras feitas por AFM:
Podemos plotar um gráfico que relaciona a rugosidade média em função da concentração de ácido fosfórico na solução:
Como o objetivo do trabalho era somente melhorar o método de polimento utilizado no LANSEN6,13, já que anteriormente o polimento era feito mecanicamente utilizando-se alumina de $\frac{1}{4}$ µm e posteriormente uma limpeza em ácidos, não examinamos minuciosamente qual seria o melhor ácido ou a melhor concentração para obter uma superfície com uma menor rugosidade através do método eletroquímico. Simplesmente ficamos satisfeitos com o resultado obtido com a solução de 40 % de ácido fosfórico, partindo assim, para o processo da deposição da liga Co-Fe.

3.1.3 Ciclovoltametria, Cronoamperometria e DRX da Liga Co\textsubscript{x}Fe\textsubscript{100-x}

O processo de eletrodeposição da liga Co\textsubscript{x}Fe\textsubscript{100-x}, utiliza os mesmos equipamentos do polimento eletroquímico, a única diferença está na solução (ver Fig. 3.1.3-1), que contém CoSO\textsubscript{4}7H\textsubscript{2}O e Fe(NH\textsubscript{4})\textsubscript{2}(SO\textsubscript{4})\textsubscript{2}6H\textsubscript{2}O em diferente concentrações.

Se dissolvermos sulfato de cobalto (CoSO\textsubscript{4}) em meio aquoso é possível obter íons de cobalto com números de oxidação +2 ou +3, também chamados de cobalto II e cobalto III, ou ainda cobáltico ou cobaltoso, respectivamente. Já com a dissolução do sulfato de ferro amoniacal Fe(NH\textsubscript{4})\textsubscript{2}(SO\textsubscript{4})\textsubscript{2}6H\textsubscript{2}O , obtêm-se íons de ferro com números de oxidação +2 e +3, também chamados de ferro II e ferro III ou ainda férrico ou ferroso respectivamente.

![Figura 3.1.3-1 – Esquema da montagem do equipamento para a eletrodeposição. A esquerda célula eletroquímica, no centro o eletrômetro e a direita, potenciostato e computador.](image)
Recentes trabalhos do LANSEN do Departamento de Física da UFPR6, caracterizaram química e estruturalmente, ligas de Co-Fe eletrodepositadas sobre Cu como uma função da concentração de Co. Resultados mostraram que o percentual de massa de Co e Fe na solução tem uma eficiência de 95\%. Como já dissemos, o intuito do trabalho era de simplesmente estudar a transição de fase CCC-CFC da liga Co\textsubscript{x}Fe\textsubscript{100-x}, contendo, em vez de 1mol/L como feito anteriormente no grupo LANSEN, 50mmol/L de solução, para que pudéssemos, no final do trabalho, fazer medidas de resistência elétrica, \textit{in situ}, em função da temperatura. Começamos o nosso trabalho com 50mmol/L de solução e fomos aumentando progressivamente, de 2,5 em 2,5 at \%, o percentual de Co na liga, partindo-se com 70 at \% até um máximo de 85 at \%, onde era esperada a transição de fase. Porém, para nossa surpresa, a transição ocorreu muito antes do esperado e passamos então a investigar outras concentrações como veremos.

Iniciou-se a ciclovoltametria com uma solução eletrolítica de 250 ml, contendo CoSO\textsubscript{4}7H\textsubscript{2}O e Fe(NH\textsubscript{4})\textsubscript{2}(SO\textsubscript{4})\textsubscript{2}6H\textsubscript{2}O na concentração de 50mmol/L (3,51 g de CoSO\textsubscript{4}7H\textsubscript{2}O e 4,90 g de Fe(NH\textsubscript{4})\textsubscript{2}(SO\textsubscript{4})\textsubscript{2}6H\textsubscript{2}O, sobre um substrato de cobre. Fig. (3.1.3-2).

![Figura 3.1.3-2 – Ciclovoltametria característica da solução de 50mmol/L de Co\textsubscript{70}Fe\textsubscript{30} sobre uma superfície de cobre.](image)

A análise da curva de ciclovoltametria nos possibilitou encontrar uma corrente de -14,1A, para um potencial de depósito de -1,2V. Conhecendo-se o potencial de depósito, passamos a deposição da solução para um tempo de 300 s como mostrado na Fig. (3.1.3-3):
A cronoamperometria serviu para calcular a quantidade de carga depositada no substrato, sendo esta de aproximadamente 3360mC. Esta quantidade de carga, a partir deste ponto, tornar-se-ia a mesma para todos os outros depósitos.

A análise de difração de raios-x fez-se com o filme da liga Co$_{70}$Fe$_{30}$ eletrodepositada. Podemos ver os picos Cu(111), CCC(110) e Cu(200) na Fig. (3.1.3-4):
As etapas de ciclovoltametria, cronoamperometria (potencial de -1.2V, tempo de 300s para uma carga de 3360mC) e difração de raios-x foram feitas também para 50mmol/L de Co_{72,5}Fe_{27,5}. A difração de raios-x nos mostrou o aparecimento do pico CFC(111), como mostrado na Fig. (3.1.3-5) abaixo:

![Difratograma de raios-x de uma amostra de Co_{72,5}Fe_{27,5} com 50mmol/L de solução, sobre cobre.](image)

Figura 3.1.3-5 - Difratograma de raios-x de uma amostra de Co_{72,5}Fe_{27,5}, com 50mmol/L de solução, sobre cobre.

A partir deste ponto, passou-se a investigar o efeito da concentração da solução na eletrodeposição da liga Co_xFe_{100-x}. Foram preparadas mais quatro soluções eletrolíticas de CoSO₄7H₂O e Fe(NH₄)₂(SO₄)₂6H₂O contendo 250ml de 10mmol/L, 100mmol/L, 250mmol/L e 500mmol/L da liga Co_xFe_{100-x}, todas sintetizadas em água bidestilada. Para cada concentração de solução, variou-se o percentual de Co, ou o valor de x, na liga Co_xFe_{100-x}, até o aparecimento da fase CFC. Na tabela (3.1.3-1), anexando também a anteriormente calculada de 50mmol/L, pode-se ver a massa utilizada em cada composição e a quantidade em volume para 250ml de solução em diferentes concentrações da liga Co_xFe_{100-x}.

38
| Tabela 3.1.3-1 – Massa de cada composição e quantidade em volume para 250ml de solução para diferentes concentrações da liga CoₓFe₁₀₀₋ₓ. |
|---|---|---|---|---|
| 10 mmol/L de Co₇₂,₅Fe₂₇,₅ | 0,70 | 0,98 | 181,25 | 68,75 |
| 10 mmol/L de Co₇₅Fe₂₅ | 0,70 | 0,98 | 187,50 | 62,50 |
| 50 mmol/L de Co₇₀Fe₃₀ | 3,51 | 4,90 | 175,00 | 75,00 |
| 50 mmol/L de Co₇₂,₅Fe₂₇,₅ | 3,51 | 4,90 | 181,25 | 68,75 |
| 100 mmol/L de Co₇₂₅Fe₂₇,₅ | 7,03 | 9,80 | 181,25 | 68,75 |
| 100 mmol/L de Co₇₅Fe₂₅ | 7,03 | 9,80 | 187,50 | 62,50 |
| 250 mmol/L de Co₈₀Fe₂₀ | 17,50 | 24,56 | 200,00 | 50,00 |
| 250 mmol/L de Co₈₂,₅Fe₁₇,₅ | 17,50 | 24,56 | 206,25 | 43,75 |
| 500 mmol/L de Co₈₀Fe₂₀ | 35,13 | 49,00 | 200,00 | 50,00 |
| 500 mmol/L de Co₈₂,₅Fe₁₇,₅ | 35,13 | 49,00 | 206,25 | 43,75 |

A análise das etapas de ciclovoltametria, cronoamperometria e difração de raios-x foram feitas também para 10mmol/L, 100mmol/L, 250mmol/L, 500mmol/L da liga CoₓFe₁₀₀₋ₓ. Iremos mostrar como a concentração de Co na liga influencia o aparecimento da fase CFC.
Para 10mmol/L encontramos:

![Ciclovoltametria e Cronoamperometria](image)

Figura 3.1.3-6 – Curva de ciclovoltametria, à esquerda, e cronooamperometria, à direita, para 10mmol/L de Co₇₂,₅Fe₂₇,₅ e Co₇₅Fe₂₅.

As curvas de ciclovoltametria fornecem para Co₇₂,₅Fe₂₇,₅ e Co₇₅Fe₂₅, para um potencial de -1,2V, uma corrente de -2,98mA e -3,11mA respectivamente. Como a carga depositada deve ser a mesma, aproximadamente 3360mC, o tempo de depósito foi 1127s e 1080s.

A análise por difração de raios-x nos mostrou o aparecimento de fase CFC, Fig. (3.1.3-7).

![Difratograma de raios-X](image)

Figura 3.1.3-8 – Difratograma de raios-X. À esquerda a fase CFC não aparece na liga Co₇₂,₅Fe₂₇,₅, à direita começa a surgir a fase CFC na liga Co₇₅Fe₂₅.
Para 100mmol/L as medidas resultaram em:

![Diagrama de Ciclovoltametria](image1)

Figura 3.1.3-8 – Curva de ciclovoltametria, à esquerda, e cronoamperometria, à direita, para 100mmol/L de Co₇⁰Fe₃₀.

As curvas de ciclovoltametria fornecem para Co₇₂,₅Fe₂₇,₅ e Co₇₅Fe₂₅, para um potencial de -1,2V, uma corrente de -22,1mA e -23,2mA respectivamente. Como a carga depositada deve ser a mesma, aproximadamente 3360mC, o tempo de depósito foi 152s para Co₇₂,₅Fe₂₇,₅ e de 146s para Co₇₅Fe₂₅.

A análise por difração de raios-x nos mostrou o aparecimento de fase CFC, Fig. (3.1.3-9).

![Diagrama de Difragrama de Raios-X](image2)

Figura 3.1.3-9 – Difragrama de raios-X. A esquerda a fase CFC não aparece para liga Co₇₂,₅Fe₂₇,₅, à direita começa a surgir a fase CFC para a liga Co₇₅Fe₂₅.
Para 250mmol/L encontramos:

As curvas de ciclovoltametria fornecem para Co_{80}Fe_{20} e Co_{82,5}Fe_{17,5}, para um potencial de -1,2V, uma corrente de -43,2mA e -41,5mA respectivamente. Como a carga depositada deve ser a mesma, aproximadamente 3360mC, o tempo de depósito foi 77s e 80s respectivamente.

A análise por difração de raios-x nos mostrou o aparecimento de fase CFC, Fig. (3.1.3-11).
E finalmente para 500mmol/L encontramos:

As curvas de ciclovoltametria fornecem para Co$_{80}$Fe$_{20}$ e Co$_{82.5}$Fe$_{17.5}$, para um potencial de -1,2V, uma corrente de –81,3mA e -72,1mA respectivamente. Como a carga depositada deve ser a mesma, aproximadamente 3360mC, o tempo de depósito foi 43s e 46s.

A análise por difração de raios-x nos mostrou o aparecimento de fase CFC, Fig. (3.1.3-13).

Resumidamente podemos montar a Tab. (3.1.3-2) que relaciona a porcentagem de Co antes e depois do aparecimento da fase CFC com a concentração da solução.
Tabela 3.1.3-2 – Relaciona a porcentagem de Co antes e depois da transição com a concentração da solução.

<table>
<thead>
<tr>
<th>Concentração mmol/L</th>
<th>Aparacimento da Fase (CCC-CFC) Co at %</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>50</td>
<td>72,5</td>
</tr>
<tr>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>250</td>
<td>82,5</td>
</tr>
<tr>
<td>500</td>
<td>82,5</td>
</tr>
</tbody>
</table>

3.1.4 Microscopia Eletrônica de Varredura

Algumas das imagens feitas por MEV e escolhidas de modo que o percentual de Co na liga seja 2,5 at % antes do aparecimento da fase CFC, são mostradas na Fig. (3.1.4). A figura nos mostra a morfologia dos depósitos da liga Co-Fe onde todas as imagens foram feitas através de elétrons secundários com o microscópio funcionando em 15kV e 25kV em ampliação de 10.000 vezes. Observa-se que o depósito segue a topologia do substrato, pois pode-se notar riscos que o polimento eletroquímico não eliminou por completo. Nota-se também estruturas esféricas (com diâmetro de aproximado de 0,5 µm) e tipo “grão de arroz”.

As imagens feitas por MEV tinham como objetivo observar a morfologia das diferentes ligas CoₙFe₁₀₀₋ₓ. Conseguiamos comparar as imagens obtidas, com outras já obtidas anteriormente em dissertação⁶ e artigos⁴⁷,⁴⁸.
3.1.5 MET e Difração de Elétrons da Liga

Para fazermos medidas com o MET, necessitamos de amostras em forma de disco de diâmetro de 3mm e finas o suficiente para que o feixe de elétrons possa atravessá-la. Como os filmes de Co\textsubscript{x}Fe\textsubscript{100-x} eram depositados sobre um substrato de cobre, este era removido usando o mesmo processo do polimento eletroquímico (item 3.1.1), até o aparecimento do filme depositado. Para isso a face do filme ficava isolada da solução, enquanto uma cratera formava-se no lado do substrato (ver Fig. 3.1.5-1). A análise da amostra era feita somente na borda da cratera formada, onde o filme eletrodepositado ficava exposto, e fino o suficiente para a análise com o MET.

Obteve-se dois tipos de imagens com o MET, uma feita em campo claro sendo as regiões escuras ricas em cobalto-ferro devido ao efeito da densidade eletrônica ou
devido ao efeito da espessura, e as por difração de elétrons em área selecionada, cujos padrões de franjas correspondem ao espaçamento interplanar do material.

Algumas das imagens feitas por MET (na coluna da esquerda em campo claro e na coluna da direita por difração de elétrons) podem ser vistas na Fig. (3.1.5-2). As Figs. (3.1.5-2.b) e (3.1.5-2.d) são imagens típicas de Co-Fe puro e Co-Fe superposto com Cu respectivamente, pois em (b) os grãos são pequenos e com contraste mais homogêneo e em (c) há uma mistura de grãos pequenos com regiões escuras que são resíduos do substrato de cobre. Estas considerações são consolidadas pela identificação de anéis de cobre em (d).

![Imagens MET com padrão SAED](a) (b) (c) (d)

Figura 3.1.5-2 – (a) Imagem por MET, com uma magnificação de 100.000 vezes, de um depósito contendo 70 at % de Co e 30 at % de Fe. A concentração da solução foi de 50mM. (b) Imagem padrão SAED para a composição de (a). (c) Imagem por MET, com uma magnificação de 80.000 vezes, de um depósito contendo 80 at % de Co e 20 at % de Fe. A concentração da solução utilizada foi de 250mM. (d) Imagem padrão SAED para a composição de (c)
Podemos a partir da Fig. (3.1.5-2a), como exemplo, determinar qual é o tamanho médio de grão com a ajuda de um programa próprio para este tipo de medida. A Fig (3.1.5-3) mostra a contagem em função do tamanho das partículas para a liga Co\textsubscript{70}Fe\textsubscript{30} numa concentração de 50 mmol/L.

![Figura 3.1.5-3 – Análise do tamanho médio de grão da Fig (3.1.5-2a).](image)

Esse procedimento é feito para todas as concentrações e para todos os depósitos da liga Co\textsubscript{x}Fe\textsubscript{100-x}, onde x deve estar 2,5 at % menor que o último percentual de Co antes do aparecimento da fase CFC. Com os resultados obtidos da seção 3.1.3, juntamente como os resultados obtidos nesta seção, podemos montar a Tab (3.1.5-1):

<table>
<thead>
<tr>
<th>IC (mmol/L)</th>
<th>Co (at %)</th>
<th>TG\textsubscript{DRX} (nm)</th>
<th>TG\textsubscript{MET} (nm)</th>
<th>D/H</th>
<th>Forma</th>
<th>Vol (nm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>70</td>
<td>27.6</td>
<td>18.6</td>
<td>0.67</td>
<td>cilindro</td>
<td>7499</td>
</tr>
<tr>
<td>100</td>
<td>75</td>
<td>19.9</td>
<td>11.7</td>
<td>0.59</td>
<td>cilindro</td>
<td>2140</td>
</tr>
<tr>
<td>250</td>
<td>80</td>
<td>12.7</td>
<td>11.8</td>
<td>0.93</td>
<td>esfera</td>
<td>962</td>
</tr>
<tr>
<td>1000</td>
<td>82.5</td>
<td>10.9</td>
<td>10.8</td>
<td>0.99</td>
<td>esfera</td>
<td>660</td>
</tr>
</tbody>
</table>

Tabela 3.1.5-1 – Tabela comparativa entre a concentração IC da solução, o percentual de Co na liga, o tamanho de grão por DRX, o tamanho de grão por MET, a forma do grão, e o volume.

A última linha da Tab. (3.1.5-1), são dados retirados de pesquisas anteriores do grupo, que usamos para comparar com os resultados encontrados neste trabalho. A 6a coluna nos informa qual é a geometria do grão, se o resultado de D/H for 1, temos uma forma esférica, caso esse valor se afaste de 1, começamos a obter uma forma cilíndrica.

Se através dos dados fornecidos pela Tab. (3.1.5-1) montarmos um gráfico que relaciona o volume do grão encontrado, com a concentração da solução e com o percentual de Co na liga Co\textsubscript{x}Fe\textsubscript{100-x}, encontramos a Fig. (3.1.5-4).
Figura 3.1.5-4 – Gráfico relacionando o volume do grão, a concentração da solução e o percentual de Co na solução. A curva é apenas um guia para os olhos.

Podemos dizer, através da análise da Fig. (3.1.5-4), que aumentando a concentração de solução observa-se, através da análise por difração de raios-X (XRD), que a mudança de fase CCC-CFC ocorre com o aumento do percentual de Co na liga. Já o volume do grão diminui com o aumento da concentração da solução.

Se plotarmos um gráfico que relaciona o inverso do volume do grão em função da concentração de Co na solução, encontramos uma relação linear entre o inverso do volume médio do grão com o percentual limite de Co para ocorrer a transição de fase, Fig. (3.1.5-5).

Figura 3.1.5-5 – Gráfico do inverso do volume de grão pela concentração de Co na liga Co$_x$Fe$_{100-x}$.
Analisando a Fig. (3.1.5-5), chegamos à conclusão que o inverso do volume do grão é diretamente proporcional ao percentual de Co na liga Co$_x$Fe$_{100-x}$. Isto nos possibilita dizer que quanto maior o percentual de Co na liga, antes de ocorrer a transição de fase CCC-CFC, menor será o volume do grão para esta concentração.
3.1.6 Discussões

Podemos observar primeiramente que a concentração da solução tem um papel importantíssimo na determinação do tamanho de grão na liga Co\textsubscript{x}Fe\textsubscript{100-x}, pois há uma relação direta entre concentração e cinética de crescimento dos grãos. Com uma concentração de solução alta a cinética de crescimento é alta, ou seja, a taxa de deposição aumenta acarretando também num aumento do número de centros de nucleação. Como a área é fixa, os núcleos logo se encontram permanecendo em tamanhos reduzidos. Já quando a concentração de solução é baixa a cinética de crescimento é lenta, ou seja, a taxa de deposição diminui acarretando também numa diminuição do número de centros de nucleação. Como a área é fixa, os núcleos levam um tempo maior para se encontrar tornando-os maiores.

A segunda observação é que a concentração de Co na liga Co\textsubscript{x}Fe\textsubscript{100-x} tem um papel fundamental no aparecimento da fase CFC dessa liga. O não aparecimento da fase CFC com baixas concentrações de Co na liga Co\textsubscript{x}Fe\textsubscript{100-x}, está relacionada ao processo de minimização da energia em função da deformação definido segundo Frederick Milstein, Jochen Marchall e Huei Eliot Fang49 pela Fig. (3.1.6-1):

![Figura 3.1.6-1 – Energia versus tensão. Comportamento tetragonal (—) e ortorrombica (—–).49](image)

Com menos Co na solução a fase CCC é formada devido ao processo de minimização de energia (ponto B na Fig. 3.1.6-1). Já com uma maior quantidade de Co na solução o aparecimento da fase CFC na liga Co\textsubscript{x}Fe\textsubscript{100-x}, está relacionado ao ponto F pela Fig. (3.1.6-1), visto que aumentado a concentração de Co na solução aumenta a deformação da estrutura CCC. Isto ocorre porque as estruturas estáveis do Co puro são CFC e a HC. Portanto, quanto um átomo de Co percebe uma maior vizinhança de outros átomos de Co, maior será a tensão na estrutura CCC para forçar a transição para CFC.
Essa observação empírica da influência da concentração da solução no deslocamento da transição da fase CCC-CFC com a composição pode ser extrapolada para qualquer parâmetro do processo de eletrodeposição que irá alterar o tamanho de grão.

Kadu e Entel50 colocam de forma muito clara uma relação entre a razão das variações das energias de superfície e volume que são aproximadamente inversas ao diâmetro da partícula a 100 K (Eq. 3.1.6-1). Nesse mesmo trabalho os seus cálculos com uma liga Fe\textsubscript{80}Ni\textsubscript{20}, mostram que a energia por átomo em função da razão c/a é extremamente dependente da temperatura, indicando que o mínimo da energia livre ocorre para a fase CCC em baixas temperaturas e na fase CFC para altas temperaturas.

\[
\frac{\Delta E^{\text{sup}}_{\text{CCC-CFC}}}{\Delta E^{\text{vol}}_{\text{CCC-CFC}}} \approx \frac{5}{d}. \quad \text{(Eq. 3.1.6-1)}.
\]

A equação acima permite-nos dizer que quanto maior o volume da partícula menor será a energia livre de superfície e maior será a energia livre de volume. Já quando a partícula tem um volume menor, maior será a energia livre de superfície e menor a energia livre de volume. Podemos então relacionar esta equação para explicar resultados obtidos nesta dissertação e resultados anteriores obtidos37, onde mostram que para uma concentração de 1 mol/L o aparecimento da fase CFC na liga Co\textsubscript{x}Fe\textsubscript{100-x}, ocorre quando x é igual a 82,5 at %, como mostra a Fig. (1-2).

Podemos compreender o porquê da ocorrência da fase CFC na liga Co\textsubscript{x}Fe\textsubscript{100-x}, quando x = 82,5 at % com 1mol/L de solução e quando x = 70 at % com 50mmol/L de solução. Este fato foi ressaltado Mattoso et al [37], como mostra a Fig. (1-2), uma vez que a transição nesta liga não procedia como em amostras massivas, pois em altas concentrações a taxa de deposição é tão grande que os grãos não tem como crescerem muito e o processo de cristalização é muito rápido. Como a energia de superfície para a estrutura CCC é menor que a energia da superfície da fase CFC51, isto explica o motivo pelo qual a estrutura CCC é estendida para composições de liga mais ricas em Co, quando comparados com os resultados de amostras massivas nas mesmas composições.

Podemos então concluir que a fase CCC está fortemente relacionada com a energia livre de superfície e a fase CFC é favorecida pela energia livre de volume.
Portanto verificamos experimentalmente que ao aumentarmos a cinética do processo de eletrodeposição reduzimos o tamanho de grãoo e que por sua vez aumenta a contribuição da energia livre de superfície favorecendo a presença da fase CCC mesmo em composições maiores que as de amostras massivas.
Capítulo 4: Resultados e Discussões

4.1 Estudo da Transição de Fase Ativada Por Temperatura

(2ª Parte)
Entramos agora numa segunda parte da dissertação. Neste capítulo vamos nos ater à transformação da fase CCC-CFC em função da temperatura T. Sabemos que hoje podemos caracterizar uma transformação de fase pelas propriedades óticas, por difração de raios-X, por difração de elétrons, por magnetização, por medida de resistência elétrica entre outras técnicas. Iremos a partir deste ponto mostrar como foram feitas as medidas, *in situ*, da resistência elétrica dos depósitos eletroquímicos da ligação Co$_x$Fe$_{100-x}$ em função da temperatura, com o intuito de caracterizar a transformação de fase CCC-CFC desta ligação. Paralelamente as medidas de resistividade, serão mostradas as medidas de difração de raios-X, *ex situ*, das amostras tratadas termicamente.

No processo de eletrodeposição da ligação Co$_x$Fe$_{100-x}$, para a análise do comportamento da resistência em função da temperatura, na iminência da transição de fase CCC-CFC, utilizamos os conhecimentos adquiridos no capítulo 3 desta dissertação. Sabendo que para uma concentração de 100 mmol/L, a qual utilizávamos para a medida da resistência em função da temperatura, a transição de fase CCC-CFC ocorre com 75 at % de Co na ligação (item 3.1.3), passamos a caracterizar a ligação Co$_x$Fe$_{100-x}$ por difração de raios-X, com $x = 0,70$ a $x = 0,75$ at %, onde houve o aparecimento da fase CFC. A principal diferença em relação a primeira parte desta dissertação está no substrato utilizado para o depósito eletroquímico da ligação Co$_x$Fe$_{100-x}$. Com a implantação de uma evaporadora no LANSEN pudemos fabricar um substrato formado por vidro, e evaporado sobre ele cromo e cobre (como será visto mais à frente). A utilização desse novo substrato trouxe grandes vantagens em relação ao anterior, que serão vistas no item (4.1.4). Como este foi o primeiro trabalho do LANSEN envolvendo um novo tipo de substrato, tivemos que testar sua confiabilidade mostrada no item (4.1.5).

4.1.1 Porta-Amostra

O método quatro pontas para medida de resistência elétrica, que utilizaremos, foi explicado no item 2.7 e representado esquematicamente na Fig. 2.7-2(b). Resumidamente ele consiste em pressionar, com quatro pontas metálicas, a superfície do filme depositado, de forma que seus espaçamentos sejam regulares e constantes. Dois dos contatos externos servem para que a corrente possa passar pelo filme depositado, sendo que os outros dois contatos centrais medem a queda de tensão no filme.
O porta-amostra foi projetado e construído de forma que as quatro pontas (agulhas) metálicas, exercessem sobre o filme depositado, a mesma pressão. Isso foi possível pois as agulhas metálicas foram dobradas em V, fixando e pressionando como se fossem molas, o filme no interior do porta-amostra Fig. (4.1.1-1).

As quatro agulhas metálicas passam por dentro de pequenos tubos, que servem como guia, para que o contato agulha-filme fosse perpendicular à superfície mantendo-se equidistantes durante a medida (aproximadamente 2,5mm de distância entre agulhas). Para que não houvesse curto-circuito entre o corpo do porta-amostra (feito de aço) e as agulhas metálicas, estas foram isoladas com cerâmica resistente a altas temperaturas. O contato, como pode ser visto na Fig. (4.1.1-2), entre as quatro agulhas e o filme eletrodepositado, foi feito através de um parafuso que se conectava à base do porta-amostra e se encaixava à base do suporte do substrato de vidro (mais tarde iremos detalhar o porquê de um novo substrato). Como o substrato é de vidro, não há perigo de ocorrer curto com o corpo do porta-amostra.
Podemos ver na Fig. (4.1.1-2) que as duas agulhas centrais medem a tensão no filme, enquanto que as duas agulhas mais externas têm a função de alimentar o circuito com uma corrente. Uma foto do porta-amôstra pode ser vista na Fig. (4.1.1-3).

Figura 4.1.1-3 – Foto do porta-amôstra.

4.1.2 Sistema de Medida

O sistema desenvolvido para a realização das medidas é apresentado esquematicamente na Fig. (4.1.2-1). O sistema foi desenvolvido para a realização de medidas elétricas AC durante tratamento térmico. Para que a amostra não oxídasse, o sistema conta com uma bomba mecânica e uma difusora com armadilha de nitrogênio líquido, com a função de reduzir a pressão de base do sistema.

Para o aquecimento do sistema, contamos com um forno cilíndrico com oito lâmpadas halógenas, contendo quatro lâmpadas de 500W e quatro de 250W ligadas alternadamente (500W-250W-500W,...). Isso é feito para que haja uma distribuição de calor uniforme dentro do forno. Um ventilador, situado na parte direita do forno como mostrado na Fig. (4.1.2-1), tem também a mesma função de distribuir o calor uniformemente dentro do forno. O forno é controlado por um controlador de temperatura (RobertShaw Series15), que controla a programação e o monitoramento dos tratamentos térmicos. Ligado ao controlador temos um termopar tipo K que mede a
temperatura dentro do tubo de quartzo onde se encontra o porta-amostra e a amostra. Para a refrigeração do forno utilizamos água, que circula dentro das paredes do forno através de entradas laterais.

As medidas elétricas são feitas com corrente alternada (AC), pois contamos com uma fonte de corrente bipolar que está conectada em série com a amostra e com uma resistência padrão de 125Ω. Em paralelo à resistência padrão existe um multímetro 6½ dígitos (Hewlett Packard 34401) que mede a tensão (AC) sobre o resistor, isto é feito para que possamos garantir que a corrente seja sempre a mesma. Os sinais de tensão DC do termopar, situado dentro do tubo de quartzo, também são monitorados por um multímetro 6½ dígitos (Keithley 2000). Os sinais de tensão (AC), registrados através das agulhas centrais do porta-amostra, são monitorados por um amplificador de sinais (Lock-in Amplifier MODEL 5210), que monitora, filtra e amplifica os sinais de tensão conforme uma frequência de referência gerada através de um gerador de função (Hewlett Packard 33120A) conectado ao Lock-in e a fonte de corrente bipolar. Todos
os equipamentos de medida estão conectados ao computados através de uma placa GPIB. Este possui um software (ver ANEXO 1) desenvolvido na plataforma HP-VEE, ao qual demos o nome de RESTEMP, especialmente desenvolvido para monitorar e registrar as medidas de tempo, tensão, corrente e temperatura durante tratamento térmico.

4.1.3 Eficiência do Sistema de Medida

Através de uma lâmina comercial de Pt recortada com 13mm de comprimento, 3,5mm de largura e 0,09mm de espessura posta sobre um pedaço de vidro (o mesmo a ser utilizado como substrato) de mesmo tamanho, testamos o sistema de medida elétrica. A corrente senoidal aplicada sobre a amostra foi de 10 mA ajustada para uma frequência de 100Hz pelo gerador de função. As medidas de tensão através do Lock-in são realizadas na mesma fase da fonte de corrente causada pela filtragem do sinal. Isto permite eliminar efeitos espúrios assim como os capacitivos nas medidas, além disso, como a frequência utilizada é baixa e, portanto, longe da faixa de frequência onde estes efeitos são normalmente vistos entre contornos de grãos. O aquecimento foi até 350 ºC com uma taxa de 10 ºC/min, sob uma pressão de 10⁻⁵ mbar.

A Fig. (4.1.3-1) mostra como a temperatura do sistema porta-amostra Pt, variou com o tempo, e a Fig. (4.1.3-2) mostra como a resistência da Pt variou em função da temperatura. Podemos notar que o forno se comportou de forma precisa, pois o aquecimento medido pelo termopar, mostra que o aumento da temperatura foi linear. Em relação à resistência pela temperatura, notamos um pequeno abaulamento na curva até aproximadamente 120 ºC. Isso pode ser explicado devido à inércia do porta-amostra, uma vez que a Pt absorve a energia através do porta-amostra. Além disso, o termopar não estava medindo diretamente a temperatura da amostra, por razões técnicas. Já a Fig. (4.1.3-2), que mostra a variação da corrente em função do tempo, nos possibilita dizer que houve uma estabilidade da corrente elétrica aplicada na lâmina de Pt, tornando o sistema elétrico confiável. Gostaríamos de salientar que a resistência da lâmina de Pt é muito baixa, o que tornou a sua medida muito difícil. Além da medida em si, este resultado mostra a sensibilidade do sistema.
Figura 4.1.3-1 – Curva $T \times t$.

Figura 4.1.3-2 – Curva $R \times T$.
Através do gráfico $R \times T$, Fig. (4.1.3-2), podemos calcular o coeficiente de temperatura da resistividade da Pt e compará-la com o tabelado. Se compararmos a Eq. (2.2-3) com o coeficiente angular da reta $R \times T$ dividido pela resistência inicial R_0, encontramos o coeficiente de temperatura da resistividade da Pt. A equação encontrada tem como coeficiente angular $2,04363 \times 10^{-6} \, \Omega/K$, se dividirmos pela resistência inicial $5,31845 \times 10^{-4} \, \Omega$ obteremos $\alpha_{\text{calculado}} = 3,8425 \times 10^{-3} \, \text{K}^{-1}$. O coeficiente de temperatura de resistividade mostrado na Tab. (2.2-1) é $\alpha_{\text{tabelado}} = 3,9 \times 10^{-3} \, \text{K}^{-1}$, portanto um erro de 1,47%. Mesmo sem fazer uma correção da temperatura real da amostra de Pt, podemos dizer que o sistema de medida elétrico é confiável.

4.1.4 Processo de Fabricação das Amostras para Tratamento Térmico

Com a implantação de uma evaporadora no laboratório passamos a fabricar um novo substrato. O novo substrato utilizado tem grandes vantagens em relação ao anterior, que era composto somente de uma folha de cobre comercial, polido eletroquimicamente.
Uma vantagem da utilização do sistema vidro-cromo-cobre, é que poderíamos depositar a liga Co_xFe_{100-x} sobre o substrato e levá-los diretamente ao forno para a análise da resistividade, sem a necessidade de remoção do filme, pois o novo substrato é mais resistivo que o filme fino de Co_xFe_{100-x} devido a sua espessura (como iremos ver). Como exemplo, se utilizássemos o antigo substrato de cobre com o depósito do filme fino Co_xFe_{100-x}, sem a remoção do substrato, não conseguiríamos medir verdadeiramente a resistividade do filme eletrodepositado, pois o cobre é menos resistivo que a liga Co_xFe_{100-x}, acarretando numa passagem de corrente i preferencialmente pelo substrato, em vez do filme eletrodepositado. Outro problema da utilização do antigo substrato de cobre está relacionado a espessura do filme Co_xFe_{100-x} eletrodepositado. O depósito, para a medida da resistividade, teria que ser mais espesso para que pudéssemos remover o substrato eletroquimicamente sobrando uma quantidade considerável de filme.

Outra vantagem é uma menor rugosidade como podemos ver através da análise por AFM na Fig. (4.1.4-1). Se compararmos com a chapa de cobre polida eletroquimicamente Fig. (3.1.2-1d), podemos observar um fator de redução de 250 vezes.

![Figura 4.1.4-1 – À esquerda, AFM do vidro antes da evaporação, RMS = 0,848 nm. À direita, vidro já com Cr e Cu evaporados, RMS = 0,370 nm.](image)

As medidas de AFM nos mostraram que quando evaporamos cromo e cobre sobre vidro, diminuímos ainda mais a rugosidade do agora formado substrato SiO_2/Cr/Cu. A utilização de cromo foi simplesmente para que o cobre tivesse uma maior aderência no vidro, visto que quando utilizamos um substrato de vidro-cobre, ao eletrodepositarmos a liga Co_xFe_{100-x}, o conjunto se descolava do vidro devido a tensões
superficiais. Como solução a este problema, foram colocados 5 nm de Cr para depois serem colocados 30 nm de Cu, e o substrato mostrou-se estável.

A terceira vantagem do novo substrato é em relação ao tempo e ao modo de preparo. O polimento eletroquímico não era então mais necessário, pois só limpávamos o vidro com álcool isopropílico e água bidestilada, apenas tornando o processo mais rápido e simples.

Em seguida o novo substrato de vidro era colocado dentro da evaporadora. Nesta fazíamos um “glow discharge” de 10 minutos para a limpeza final da superfície, onde seria evaporado primeiramente Cr. Passados 10 minutos, 5 nm de Cr eram evaporados sobre o vidro numa taxa de 0,2 nm por segundo. Terminado esse processo, trocava-se o cadinho dentro da evaporadora para realizar a deposição do Cu. Este era evaporado, agora sobre a superfície de Cr, numa taxa de 0,2 nm por segundo, até atingir uma espessura de 30 nm. Com o substrato pronto, fez-se o teste final levando-o ao forno onde foi aquecido até 450 °C, e mostrou-se resistente até esta temperatura, pois o vidro não deformou e nem houve descolamento do filme evaporado Cr/Cu.

Finalmente, depois de um longo processo de testes o novo substrato estava pronto para o processo de depósito eletroquímico da liga CoₓFe₁₀₀₋ₓ.

4.1.5 Análise do Substrato SiO₂/Cr/Cu

Antes do depósito da liga CoₓFe₁₀₀₋ₓ sobre o novo substrato, precisávamos conhecer um pouco mais sobre a espessura cristalina do novo substrato. Primeiramente fizemos a medida de difração de raios-X mostrada na Fig. (4.1.5).

![Difractograma do substrato SiO₂/Cr/Cu.](image-url)
Podemos ver através do difratograma do novo substrato, o aparecimento do pico do cobre(111) e nenhum pico do cromo, como era esperado, pois a quantidade de cromo evaporado, 5 nm, não era suficiente para ser observado através da difração de raios-X.

A segunda forma de análise do novo substrato, foi levá-lo ao forno para obter a curva resistência versus temperatura ($R \times T$). O aquecimento foi programado para até 450 ºC com uma taxa de 10 ºC/min, sob uma pressão de aproximadamente 10^{-5} mbar. As Figs. (4.1.5-2), (4.1.5-3) e (4.1.5-4) mostram, respectivamente as curvas de temperatura versus tempo ($T \times t$), corrente versus tempo ($i \times t$) e resistência versus temperatura ($R \times T$) do substrato SiO$_2$/Cr/Cu.

![Figura 4.1.5-2 Curva da temperatura em função do tempo para o substrato de SiO$_2$/Cr/Cu.](image1)

![Figura 4.1.5-3 Curva da corrente em função do tempo para o substrato de SiO$_2$/Cr/Cu.](image2)
Em relação às duas primeiras curvas a temperatura aumenta linearmente e a corrente é constante durante todo o processo de aquecimento. Já na Fig. (4.1.5-4) podemos notar um pequeno abaulamento na curva \(R \times T \), até temperaturas próximas de 120 °C, como já esperado, devido a inércia do sistema. Em torno de 260 °C, notamos que houve uma modificação na resistência, onde visivelmente ocorre uma diminuição do coeficiente de temperatura da resistividade \(\alpha \) (pois o coeficiente angular da curva \(R \times T \), aumenta) provavelmente devido ao processo da interdifusão do sistema Cr- Cu.

4.1.6 Cronoamperometria, Difração de raios-X da liga Co\(_x\)Fe\(_{100-x}\) Sobre SiO\(_2\)/Cr/Cu

No processo de eletrodeposição da liga Co\(_x\)Fe\(_{100-x}\), para a análise do comportamento da resistência em função da temperatura, na iminência da transição de fase CCC-CFC, utilizou-se o mesmo processo do item (3.1.3), porém, escolhemos uma concentração de 100 mmol/L. Sabendo que nesta concentração (item 3.1.3) a transição de fase CCC-CFC ocorre com 75 at % de Co na liga, fizemos um depósito, em -1,2V, da liga Co\(_x\)Fe\(_{100-x}\) com \(x = 0,70 \) até \(x = 0,75 \) at %, onde esperaríamos o aparecimento da fase CFC. O tempo de depósito para estas concentrações foram exatos 180 s como mostra a Fig. (4.1.6-1) representando a curva de cronoamperometria.
Comprovamos, por difração de raios-X, o aparecimento da fase CFC, dos depósitos eletroquímicos da liga $\text{Co}_x\text{Fe}_{100-x}$, como mostra a Fig. (4.1.6-2). Como era esperado, a fase CFC somente apareceu na liga $\text{Co}_{75}\text{Fe}_{25}$, confirmando os resultados obtidos no capítulo 3.
Considerando-se observar uma variação da largura a meia altura em função da composição na liga Co$_x$Fe$_{100-x}$ eletrodepositada sobre SiO$_2$/Cr/Cu, é razoável imaginar que este efeito seja devido à presença de microdeformações nos grãos, uma vez que a faixa de composição é razoavelmente estreita e os demais parâmetros da deposição foram mantidos constantes. Podemos considerar, em relação ao pico CCC(110), o valor constante do tamanho de grão na amostra de 70 at % de Co que era de aproximadamente 16,65 nm. Subtraindo o tamanho de grão da amostra de 70 at % de Co das amostras de 71, 72, 73, 74 e 75 at % de Co, podemos plotar um gráfico da variação da largura a meia altura em função do percentual de cobalto na liga como mostra a Fig. (4.1.6-3).

![Variação da largura a meia altura em função do percentual de cobalto na liga Co$_x$Fe$_{100-x}$](image)

Figura 4.1.6-3 – Variação da largura a meia altura em função do percentual de cobalto na liga Co$_x$Fe$_{100-x}$. A curva é apenas um guia para os olhos.

Ao investigarmos o nível de deformação dos cristais em função do percentual de cobalto na liga Co$_x$Fe$_{100-x}$, podemos construir o gráfico da Fig. (4.1.6-4)
Figura 4.1.6-4 – Gráfico $\Delta d/d$ em função do percentual de Co na solução em relação ao pico CCC(110). A curva é apenas uma guia para os olhos.

Na Fig. (4.1.6-4), consideramos, em relação ao pico CCC(110), o valor constante do tamanho de grão na amostra de 70 at % de Co que era de aproximadamente 16,65 nm, subtraindo sua correspondente largura a meia altura. Este efeito pode ser explicado devido a variações de microdeformações nos grãos.

4.1.7 Medida de Resistência Elétrica da Liga $\text{Co}_x\text{Fe}_{100-x}$

Em função das informações obtidas da difração de raios-X do sistema de ligas $\text{Co}_x\text{Fe}_{100-x}$ do item (4.1.6), começamos a investigar o sistema através da medida de resistência elétrica, durante aquecimento, para caracterizarmos a mesma transição de fase CCC-CFC com o aumento da temperatura.

Como já sabíamos que a transição de fase CCC-CFC para uma liga $\text{Co}_x\text{Fe}_{100-x}$ numa concentração de 100 mmol/L ocorreria com 75 at % de Co, começamos a investigar a medida da resistência elétrica em função da temperatura para uma composição próxima a essa transição. Escolhemos primeiramente a liga $\text{Co}_{73}\text{Fe}_{27}$, cujos parâmetros para a caracterização elétrica e térmica foram os seguintes: aplicou-se uma corrente elétrica na amostra de 10 mA, ajustada para uma freqüência de 100 Hz; a taxa de aquecimento programada foi de 10 °C/min; o aquecimento chegaria até o patamar
máximo de 750 °C. As Fig. (4.1.7-1) e (4.1.7-2) mostram respectivamente as curvas de aquecimento \((T \times t)\) e o comportamento da corrente \((i \times t)\) sobre a amostra durante o processo de aquecimento.

![Figura 4.1.7-1 – Curva Temperatura versus Tempo da amostra Co73Fe27.](image)

![Figura 4.1.7-2 – Curva da corrente contra tempo da amostra Co73Fe27.](image)

Mais uma vez o aquecimento mostrou-se linear e a corrente sobre a amostra mostrou-se estável, confirmando a viabilidade do sistema.
A curva da resistência normalizada em função da temperatura encontra-se mostrada na Fig. (4.1.7-3).

Figura 4.1.7-3 – Curva da resistência normalizada em função da temperatura da liga Co73Fe27 (escala 0 a 180). Em detalhe temos a curva na escala 0 à 5.5. \(R_0 = 0.1629 \, \Omega \).

Através do comportamento da curva de resistência normalizada em função da temperatura da Fig. (4.1.7-3), podemos dizer com certeza que não houve uma transformação de fase CCC-CFC para a liga estudada.

Como não encontramos a transição de fase CCC-CFC para a liga Co73Fe27, não havia sentido procurar uma transição de fase pela análise da resistência em função da temperatura para uma concentração mais baixa de Co na liga, portanto, passamos a investigar a amostra com um conteúdo maior de Co e que não continha a fase CFC, esta amostra era liga eletrodepositada Co74Fe26.

Os parâmetros para a caracterização elétrica e térmica para a liga eletrodepositada Co74Fe26 foram as seguintes: aplicou-se uma corrente elétrica na amostra de 10 mA, ajustada para uma frequência de 100 Hz; a taxa de aquecimento programada foi de 10 °C/min; o aquecimento chegaria até o patamar máximo de 800 ºC. As Fig. (4.1.7-4) e (4.1.6-5) mostram respectivamente as curvas de aquecimento \((T \times t)\) e o comportamento da corrente \((i \times t)\) sobre a amostra durante o processo de aquecimento.
Figura 4.1.6-4 – Curva Temperatura versus tempo da amostra Co$_{74}$Fe$_{26}$.

Podemos ver mais uma vez que o aquecimento mostrou-se linear e a corrente sobre a amostra mostrou-se estável, confirmando a confiabilidade do sistema.

A curva da resistência normalizada em função da temperatura encontra-se mostrada na Fig. (4.1.7-6).
Através do perfil da curva resistência em função da temperatura da liga Co$_{74}$Fe$_{26}$, verifica-se que a resistência elétrica aumenta suavemente até a temperatura aproximada de 700 ºC (973 K), depois deste ponto, notamos que ela aumenta abruptamente, com uma pequena oscilação em torno de 730 ºC (1003 K), até a temperatura final de 746 ºC (1119 K). Chegando ao patamar de 746 ºC, quando o forno acaba se desligando, a temperatura e a resistência caem, até que esta permanece decaindo muito suavemente, mostrando que sua resistividade aumentou de forma irreversível.

Analisando a Fig. (4.1.7-7) que mostra os resultados de DRX da liga Co$_{74}$Fe$_{26}$, antes e depois do tratamento térmico, numa varredura em 2θ entre 48 º e 62 º, notamos o aparecimento dos picos CFC(111) e CFC (200).
Através da análise por DRX da ligada Co$_{74}$Fe$_{26}$, como mostra a Fig. (4.1.7-7), pode-se calcular o tamanho de grão da fase CCC(110) antes e depois do tratamento térmico, esses valores são: $T_{G_{CCCantes}} = 11,52$ nm e $T_{G_{CCCdepois}} = 47,00$ nm. Portanto, o tamanho médio dos grãos da fase CCC da liga Co$_{74}$Fe$_{26}$ cresceu cerca de 408 %. Esse processo de crescimento dos grãos é normal e deve-se ao processo de coalescência causado pelo tratamento térmico.

Fazendo um “zoom” na curva da Fig. (4.1.7-6), entre 650 ºC e 800 ºC, e entre 0 e 25 no eixo y, podemos visualizar melhor a oscilação ocorrida na curva, Fig. (4.1.7-8).
4.1.8 Discussões

Analisando a Fig. (4.1.5-4), curva da resistência normalizada em função da temperatura do substrato de SiO$_2$/Cr/Cu, podemos ver, como já foi descrito no item (4.1.5) uma variação na curva $R/R_0 \times T$ entre as temperaturas de 260 °C e 280 °C. Logo em seguida a essa variação, há uma modificação na resistência onde, provavelmente, esteja associado a um aumento do coeficiente de temperatura da resistividade α (pois o coeficiente angular da curva $R \times T$ aumenta). Podemos explicar isso devido ao processo da interdifusão Cr/Cu, onde o termo difusão pode ser explicado como a movimentação de átomos em uma solução, no nosso caso, na solução sólida Cr/Cu. Do diagrama de fase binário Cr-Cu o cromo em pequenas concentrações numa matriz de cobre tende a formar pequenos precipitados. Portanto é razoável compreender as medidas uma vez que o sistema Cr/Cu foi submetido a um aumento linear da temperatura, um rearranjo morfológico do sistema ocorre devido ao processo da interdifusão, acarretando uma modificação na estrutura do sistema e consequentemente uma modificação no livre caminho médio dos elétrons que passam pela amostra modificando a resistência do sistema. De um modo simples podemos verificar que o processo de interdifusão ocorre.
simplesmente visualizando a parte de trás da amostra SiO₂/Cr/Cu que muda de cor escura, devido ao filme de Cr, para uma cor avermelhada associada ao filme de Cu, depois de um aquecimento até 300 °C.

Analisando o gráfico da Fig. (4.1.6-4) que relaciona o nível de tensão dos cristais em função do percentual de cobalto na solução, podemos notar que quando houve o aparecimento da fase CFC na liga Coₗ₅Fe₂₅ para uma concentração de 100 mmol/L, notamos que houve um diminuição na largura a meia altura do pico CCC(110) e consequentemente uma diminuição no nível de tensão dos cristais. Este fato se deve ao um processo de relaxação na estrutura cristalina a partir do momento em que ocorre o aparecimento da fase CFC na liga.

Analisando a medida elétrica apresentada na liga Coₗ₄Fe₂₆, supomos que existe uma fase termodinamicamente instável¹³ que provoca a transição de fase estrutural CCC-CFC nas ligas CoₓFe₁₀₀₋ₓ. Segundo Hill¹¹, a mudança de fase CFC-CCC apresenta uma estrutura tetragonal de corpo centrado como descrito na introdução desta dissertação. Porém, para o nosso caso em que há uma mudança de fase CCC-CFC, a estrutura intermediária é uma tetragonal de face centrada como mostra a Fig. (4.1.8-1).

Isso justifica a oscilação que se inicia em 700 °C e termina em 735 °C (Fig. 4.1.7-8), como sendo uma assinatura da sua formação e da sua destruição em alguns grãos inicialmente CCC, predispostos segundo seus níveis de tensões mecânicas⁴⁹. Em
temperaturas acima de 735 °C a fase instável se reduz aumentando a desordem do sistema para a formação da fase CFC produzindo um aumento abrupto na resistência devido a composição CCC-CFC. O aumento da resistência do filme pode ser visto pela sua medida pós tratamento térmico, em que encontramos uma resistência final de 3,3709 Ω, cuja característica pode ser vista na curva resistência normalizada versus temperatura da liga Co74Fe26, Fig. (4.1.7-6). A justificativa desse aumento abrupto se deve ao fato da resistividade elétrica de ligas ser extremamente sensível a rearranjos atômicos ou mudanças estruturais de qualquer tipo.

Fazendo uma análise dos resultados à luz do modelo desta transição de fase (CCC-CFC) podemos lembrar que o mínimo de energia livre a temperatura ambiente e temperaturas abaixo da ambiente, pertence à estrutura CCC e com o aumento da temperatura a energia livre do sistema tende para a fase CFC. Tudo isto devido ao termo energético oriundo da disputa entre as energias de superfície e volume. Com o aumento do tamanho de grão durante o tratamento térmico devido ao processo de coalescência, o termo da energia de superfície, que é favorável à estrutura CCC, perde importância e o termo da energia volume cresce, favorecendo a fase CFC.

Um outro aspecto interessante é o termo da energia elástica que provavelmente está associado a esta transição de fase. Pelos resultados obtidos na liga Co73Fe27 podemos concluir que aspectos termodinâmicos são necessários, porém não são suficientes para promover a transição de fase. Portanto pelos resultados na amostra Co74Fe26, ou seja, que a transição só é ativada pela temperatura numa composição muito próxima da eminência da transição à temperatura ambiente, podemos dizer que a energia elástica proveniente das deformações nos grãos é primordial para a transição de fase, visto que a pequena contribuição energética dada pelo aumento de temperatura favoreceu essa transição.

Podemos concluir que esta transição de fase é fortemente governada por temos termodinâmicos associados à morfologia dos grãos, mas há também uma condição estrutural necessária para a sua realização. Esta condição é dada pelo aumento de energia elástica do sistema observada nas deformações dos cristais.
Capítulo 5

Conclusões Gerais

e

Trabalhos Futuros
As conclusões deste trabalho podem ser apresentadas em diferentes etapas na forma de itens e divididas em dois grupos, como está dividida a dissertação. Primeiramente o grupo que consiste na utilização de um substrato de cobre (1ª parte) e o grupo onde utilizou-se um substrato de SiO₂/Cr/Cu. Acreditamos que em ambos os grupos os sistemas físicos estudados mostraram que o objetivo de caracterizar a transição de fase CCC-CFC em função da concentração e do percentual de Co na liga CoₓFe₁₀₀₋ₓ (1ª parte) e o de construir um sistema de medida elétrica capaz de caracterizar a transição de fase, durante tratamento térmico, foi alcançado. Isto foi mostrado durante toda a dissertação e será resumido nos itens 5.1 Caracterização Estrutural e Química da Liga Co-Fe (substrato de Cu) e 5.2 Medidas de Resistência AC (substrato de vidro).

5.1 Caracterização Estrutural e Química da Liga CoₓFe₁₀₀₋ₓ (substrato de Cu)

- Os resultados mostram que a concentração da liga CoₓFe₁₀₀₋ₓ, na solução, tem grande importância na transição de fase CCC-CFC;

- Aumentando-se a concentração de solução reduz o volume médio de grão;

- A composição da liga na qual ocorre a transição de fase estrutural é inversamente proporcional ao volume médio do grão cristalino na iminência da transição;

- Parâmetros de deposição que afetam a morfologia dos grãos podem alterar o balanço entre energias de superfície e volume, necessárias a transição de fase, deslocando a composição na qual ocorre a transição de fase estrutural.

5.2 Estudo da transição de fase ativada por temperatura (substrato de vidro-Cr-Cu)

- O sistema de medida proposto mostrou-se eficiente, pois a análise do coeficiente de temperatura da resistividade da lâmina comercial de Pt em relação ao coeficiente calculado apresentou um erro de 1,47%, mostrando a grande sensibilidade e confiabilidade do sistema;
O novo substrato desenvolvido de SiO₂/Cr/Cu mostrou-se apto para o depósito da liga Co₅Fe₁₀₀₋ₓ, pois o vidro não deformou em altas temperaturas e os filmes evaporados de Cr e Cu não descolavam do vidro;

Para a liga Co₇₄Fe₂₆ eletrodepositada sobre o substrato de SiO₂/Cr/Cu, conseguiu-se caracterizar, com clareza, a transição de fase CCC-CFC, ocorrendo entre os valores de temperatura 700 e 746 °C, como mostrou a análise de difração de raios-X;

A transição de fase ativada por temperatura ocorre no cenário de uma forte deformação dos cristais evidenciando a condição necessária para a competição entre as energias livres de superfície e volume das fases com o aumento da temperatura.

5.3 – Trabalhos Futuros

- Análise mais detalhada dos mecanismos de redução e nucleação envolvendo a liga CoₓFe₁₀₀₋ₓ;

- O estudo da influência dos aditivos em todas as soluções utilizadas, inclusive pesquisar aditivos para tentar reduzir a rugosidade dos depósitos eletroquímicos;

- Fazer medidas magnéticas das ligas CoₓFe₁₀₀₋ₓ, antes e depois do tratamento térmico, em todas as concentrações estudadas para estabelecer comparações nas curvas de magnetização contra campo magnético e temperatura;

- Fazer medidas MFM das ligas CoₓFe₁₀₀₋ₓ, antes e depois do tratamento térmico, em todas as concentrações estudadas;

- Estudar mais detalhadamente as medidas de resistividade em função da temperatura, in situ, possibilitando determinar a cinética da transição de fase em tratamentos isotérmicos, assim como a influência das taxas de aquecimento.
Anexo – 1

Software Desenvolvido para a Realização das Medidas de Resistividade
Este anexo refere-se a cópia (print screen) da tela de visualização do programa RESTEMP desenvolvido na plataforma HPVEE, que monitora e registra as medidas de tempo, corrente, tensão e resistência. A Fig. (A.1) mostra como a tela inicial do programa é visualizada no monitor.

![Figura A.1 – Visualização da tela inicial do programa RESTEMP no monitor do computador](image)

Após a confirmação do tempo de comunicação entre os aparelhos (multímetros e Lock-In), surge a segunda tela do programa RESTEMP representada pela Fig. (A.2). Nesta tela o programa começa a monitorar o sistema fornecendo a temperatura em que a amostra se encontra, a corrente que está passando na amostra, o tempo desde o início do monitoramento e a resistência da amostra.
A linguagem de programação do HPVEE é feita através de uma interface gráfica que está representada pela Fig. (A.3). Esta interface representa a tela inicial do programa.
A tela número dois do programa RESTEMP está representada pela interface gráfica na Fig. (A.4). Esta parte do programa está contida no quadrado UserObject da Fig. (A.3).

Figura A.4 - Representação da interface gráfica do programa RESTEMP (tela 2).
Bibliografia

37 - Available from http://www.cbpf.br/~nanos/
38 - Shimadzu. Scanning Probe Microscope, SPM-9500J3
39 - A. M. Maliska. Apostila de Microscopia Eletrônica de Varredura. UFSC, Departamento de Engenharia Mecânica, Laboratório de Materiais.
Livros Grátis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo