UNIVERSIDADE FEDERAL DE ITAJUBÁ

Programa de Pós-Graduação em Engenharia Elétrica

Nicolau Pereira Filho

Técnicas de Modulação por Largura de Pulso Vetorial para Inversores Fonte de Tensão

Tese submetida ao Programa de Pós-Graduação em Engenharia Elétrica como parte dos requisitos para a obtenção do Título de Doutor em Ciências em Engenharia Elétrica.

Área de concentração:

Sistemas Elétricos de Potência

Orientadores:

Luiz Eduardo Borges da Silva, Ph. D João Onofre Pereira Pinto, Ph. D.

> Outubro de 2007 Itajubá – MG

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Ficha catalográfica elaborada pela Biblioteca Mauá – Bibliotecária Margareth Ribeiro- CRB_6/1700

P436t

Pereira Filho, Nicolau

Técnicas de modulação por largura de pulso vetorial para inver_ sores fonte de tensão / Nicolau Pereira Filho. -- Itajubá, (MG) : [s.n.], 2007.

235 p. : il.

Orientador: Prof. PhD. Luiz Eduardo Borges da Silva. Co-orientador: Prof. PhD. João Onofre Pereira Pinto. Tese (Doutorado) – Universidade Federal de Itajubá.

1. Modulação por largura de pulso vetorial. 2. Inversor com diodo de grampeamento. 3. Rede neural artificial. 4. Coordenadas não-ortogonais. I. Silva, Luiz Eduardo Borges da, orient. II. Pinto, João Onofre Pereira, co-orient. III. Universidade Federal de Itaju_ bá. IV. Título.

CDU 004.032.26(043)

UNIVERSIDADE FEDERAL DE ITAJUBÁ

Nicolau Pereira Filho

Técnicas de Modulação por Largura de Pulso Vetorial para Inversores Fonte de Tensão

Tese aprovada por banca examinadora em 26 de outubro de 2007, conferindo ao autor o título de Doutor em Ciências em Engenharia Elétrica.

Banca Examinadora:

Prof. Luiz Eduardo Borges da Silva , Dr. – UNIFEI (Orientador)
Prof. João Onofre Pereira Pinto, Dr. – UFMS (Orientador)
Prof. Benjamim Rodrigures de Menezes, Dr. – UFMG
Prof. Walter Issamu Suemitsu, Dr. – COPPE/UFRJ
Prof. Ângelo José Junqueira Rezek, Dr. – UNIFEI
Prof. José Antônio Cortez, Dr. – UNIFEI

Itajubá 2007

A Deus,

Aos meus pais, Nicolau (in memorian) e Laudemira por conduzirem no caminho do bem e do saber.

À minha amada esposa Lídia pelo apóio e compreensão.

Agradecimentos

A Deus, pela força, paciência e persistência a mim concedidas, necessárias para vencer este desafio.

Aos professores Luiz Eduardo Borges da Silva e João Onofre Pereira Pinto, pela orientação e incentivo à realização desse trabalho.

Aos professores Ângelo José Junqueira Rezek, José Antônio Cortez e Valberto Ferreira da Silva pela amizade e incentivo.

Aos professores Benjamim Rodrigures de Menezes e Walter Issamu Suemitsu, membros da minha banca de Tese, pelas sugestões e críticas ao trabalho.

À Universidade Federal de Mato Grosso do Sul pela minha liberação para cursar o doutorado.

Às amigas Cristina Silva e Rubiane Heloisa de Oliveira pela amizade e apoio nos momentos difíceis.

À minha amada esposa Lídia pelo amor e dedicação.

SUMÁRIO:

Resumo	viii
Abstract	
Lista de Figuras	x
Lista de Tabelas	xiii
Lista de Símbolos	xiv
Lista de Símbolos	xiv
1 Modulação por Largura de Pulso	1
1.1 Introdução	1
1.2 Modulação por Largura de pulso	4
1.2.1 Modulação Senoidal	5
1.2.2 Modulação ótima/Eliminação de harmônicos	6
1.2.3 Modulação por Histerese	7
1.2.4 Técnica MLP aleatória	8
1.2.5 - Modulação Vetorial	8
1.3 Modulação Vetorial Bidimensional	9
1.3.1 Vetores de Chaveamento	10
1.3.2 Vetor Referência	10
1.3.3 Síntese do vetor de referência	12
1.4 Conclusões	
2 Modulação Vetorial para Inversores Fonte de Tensão de Dois Níveis	
2.1 Introdução	
2.2 Modulação vetorial	
2.2.1 Região Linear	
2.2.2. Região de Sobremodulação – Modo I	
2.2.3. Região de Sobremodulação – Modo II	
2 3 Algoritmo Simplificado e Ultra-rápido MLP vetorial	30
2 3 1 Estratégia de Simplificação da identificação do Sextante	33
2 3 2 Função de Saturação	35
2.4 Resultados de Simulação e Experimentais	35
2.4.1 Resultados de Simulação	37
2 4 2 Resultados Experimentais	39
2.5 Conclusões	41
3 Conversores Multiníveis	43
3 1 Introdução	43
3.2 Topologias de inversores multiníveis	45
3.2.1 Inversor multinível Com diodo de grampeamento	45
3.2.2.1. Inversor multinivel contrated de grampeanente	46
3.2.3. Configurações multiníveis com dois inversores de dois níveis em ponte com	leta
em cascata	47
3 3 Conclusões	1/ 49
4 Algoritmo da Modulação Vetorial usando Coordenadas Móveis Não-Ortogonais	
4 1 Introdução	50
4.2 Inversor multinível com diodo de grampeamento	51
4.2.1 Modulação vetorial (MV)	52
4 2 2 Coordenadas móveis não-ortogonais	
4 2 3 Identificação do sextante	
4 2 4 Identificação do triângulo	50 57
7.2.7 Identificação do trangulo	ر د ۵۱
- 5 - Sincese do paulao de chaveanento	

4.4 – Considerações da implementação utilizando DSP	64
4.5 Estudo de simulação	64
4.6 Conclusões	70
5 Algoritmo da Modulação Vetorial Via Redes Neurais Artificiais	71
5.1 Introdução	71
5.2. Inversor Multinível com MLP Vetorial	72
5.2.1 Identificação do triângulo	73
5.2.2 Síntese do padrão de chaveamento	76
5.2.3 Síntese dos sinais MLP	77
5.3 – Modulação Vetorial via Redes Neurais	78
5.3.1 Identificação do Triângulo Via Rede Neural	79
5.3.2 Cálculo das Razões Cíclicas Via Redes Neurais	80
5.4 Resultados de Simulação	86
5.5 Conclusões	88
6 Implementação do Algoritmo da MV Via Coordenadas Móveis Não-Ortogonais para	
Inversor de Três Níveis	89
6.1 Introdução	89
6.2 Inversor de três níveis do tipo com diodo de grampeamento	89
6.3 DSP TMS320F240	92
6.4 - Implementação do algoritmo MLP vetorial para Inversor Três Níveis usando o I) SP
TMS320F240	96
6.5 Simulação do Algoritmo Coordenadas Móveis Não-Ortogonais para Inversor de	Três
Níveis	103
6.6 – Descrição do protótipo do inversor de três níveis implementado	113
6.7 - Resultados Experimentais do Algoritmo MV Coordenadas Móveis Não-ortog	onais
para Inversor de Três níveis	117
6.8 Conclusões.	124
7 Implementação do Algoritmo da MV Via Redes Neurais para Inversor de Três Níveis	125
7.1 Introdução	125
7.2 Algoritmo da MV via Redes Neurais para Inversores de Três Niveis.	125
7.2.1 Identificação do Triângulo Via Rede Neural	126
7.2.2 Calculo das Razoes Ciclicas Via Redes Neurais	128
7.3 Analise Comparativa entre Algoritmo da MV via Redes Neurais e Algoritmo M	v via
Coordenadas Movels Nao-Ortogonals	129
7.4 Resultados Experimentais do Algoritmo MV via Redes Neurais para inver	sor de
7.5 Compluçãos	138
7.5 - Conclusões Carris	144
8 Conclusoes Gelais	143
Anava A Simulação de Inversor de Dais Níveis Usando a MatLah Simulink®	14/
Anexo A – Simulação do Inversor de Dois Niveis Osando o MatLao-Simulnik®	133
Anexo C Simulação do Inversor de Cinco Níveis Usando o Matl ab Simulink \mathbb{R}	104
Anexo D – Programa Assembler da MV usando Coordenadas Máveis Não Ortogonais r	1 / 0
Inversores de Três Níveis	199
Anevo E - Programa Assembler da MV via Redes Neurais Artificiais para Inversores de	100 2 Trêc
Niveis	2 1105 2015
Anevo E - Estratégia para Geração dos Sinais MI P com Inserção de Tempo Morto	205 222
miero i - Esualegia para Ociação dos sinais mier com miscição de Tempo Mono	

Resumo

Neste trabalho alguns algoritmos da modulação por largura de pulso vetorial para inversores fonte de tensão de dois níveis e para inversores multiniveis com diodo de grampeamento foram desenvolvidos.

Primeiramente, um algoritmo da modulação vetorial para o inversor de dois níveis cobrindo as regiões linear e de sobremodulação foi desenvolvido. O esforço computacional deste algoritmo foi suficientemente reduzido devido às simplificações realizadas como a extrapolação da estratégia da região linear para a região de sobremodulação, redução do número de equações para o cálculo dos tempos de chaveamentos, e simplificação da estratégia de identificação do setor.

A seguir, uma estrategia da modulação vetorial usando um sistema de coordenadas móveis não-ortogonais para inversores multiníveis com diodo de grampeamento foi desenvolvido. Os três vetores mais próximos para sintetizar o vetor de referência são determinados pela identificação do triângulo dentro do hexagono. As razões cíclicas são determinada usando um único conjuto de equações, independente da localização do vetor de referência.

Além disso, foi desenvolvido o algoritmo da modulação por largura de pulso vetorial via redes neurais artificiais. Basicamente, ele usa duas redes neurais artificiais perceptron multicamadas. primeira usa o vetor da tensão de referência para determinar os três vetores mais próximos pela identificação do triângulo em que se localiza o vetor de referência se localiza. A segunda rede é usada para calcular as razões cíclicas. Os conjuntos de dados de treinamento são significamente reduzido com as simplificações realizadas.

Os resultados de simulação e experimentais são apresentados para evidenciar a efetividade das técnicas propostas.

PALAVRAS CHAVE: Modulação por largura de pulso vetorial; Inversor com diodo de grampeamento; Rede neural artificial, Coordenadas não-ortogonais.

Abstract

In this work some algorithms of the space vector pulse width modulation for two levels inverters and diode-clamp multilevel inverters were developed.

Firstly, an algorithm of the space vector modulation for two-levels inverter covering the linear and overmodulation regions was developed. The computational cost of this algorithm sufficiently was reduced through simplifications as extrapolation of the strategy of the linear region for the overmodulation region, reduction of the number of equations for the calculation of the switching times and simplification of the sector identification strategy.

Next, a strategy of space vector modulation using non-orthogonal moving reference frame for diode-clamp multilevel inverters was developed. The nearest three vectors to generate the reference vector are determined by the triangle identification inside the hexagon. The duty-cycles are determined using a single calculation equation set, independently of the reference vector localization.

Furthermore, a Neural-Network-Based space vector modulation for diode-clamp multilevel inverters was developed. Basically, it uses two multilayer perceptron (MLP) Artificial Neural Networks (ANN). The first ANN uses the reference voltage vector to determine the nearest three vectors (NTV) of the inverter by identifying the triangle wherein the reference vector lies. The second ANN is used to calculate the duty cycles of the three space vectors. The training data are meaningfully reduced with regard to realized simplifications.

Finally, simulation and experimental results are presented to evidence the effectiveness of the proposals strategies.

KEY WORDS: Space vector modulation; Diode-clamp inverter; Articial Neural Network; non-orthogonal frame.

Lista de Figuras

Figura 1.1 - Princípio de Operação da MLP senoidal	6
Figura 1.2 – Modulação por histerese	7
Figura 1.3 – Rede de chaveamento Trifásica	9
Figura 1.4 - Combinações de chaveamento possíveis para um inversor trifásico	11
Figura 1.5 – Vetores de chaveamento para a rede trifásica	12
Figura 1.6 – Esquema de sequenciamento classe I	15
Figura 1.7 – Esquemas de sequenciamento classe II	16
Figura 2.1 – Inversor Trifásico	20
Figura 2.2 – Estados de chaveamento do inversor de dois níveis	21
Figura 2.3 - Trajetória de tensão na região linear	22
Figura 2.4 - Trajetória de tensão na região de sobremodulação I	24
Figura 2.5 - Curva do Ângulo de Cruzamento	26
Figura 2.6 - Trajetória de tensão na região de sobremodulação II	28
Figura 2.7 – Ângulo de manutenção	29
Figura 2.8 - Fluxograma para implementação do algoritmo convencional	30
Figura 2.9 – Gráfico do fator de compensação fc	33
Figura 2. 10 - Simplificação da identificação do Sextante	34
Figura 2.11 - Fluxograma para implementação do algoritmo simplificado	36
Figura 2.12 - Resultados de simulação	38
Figura 2.13 – Resultados Experimentais	41
Figura 3.1 - Perna de uma fase dos inversores PNG de três e quatro níveis	46
Figura 3.2 - Perna de uma fase dos inversores capacitores flutuantes de 3 e 4 níveis	47
Figura 3.3 - Perna de uma fase de inversor cascata de cinco níveis em ponte completa	48
Figura 3.4 - Perna de uma fase de inversor cascata de sete níveis em ponte completa	49
Figura 4.1 – Inversor com diodo de grampeamento de cinco níveis	52
Figura 4.2 – Estados de chaveamento no plano d-q de inversor de cinco níveis	54
Figura 4.3 – Numeração dos triângulos e seqüência de vetores para o sextante 1	58
Figura 4.4 - Tipo de triângulo para o cálculo de t _g , t _h e t _{gh}	59
Figura 4.5 - Sequência de chaveamento de uma tensão da fase A para o triângulo 1	61
Figura 4.6 - Lógica de geração das ondas para os sinais MLP no sextante impar	63
Figura 4.7 - Lógica de geração das ondas para os sinais MLP no sextante par	63
Figura 4.8 - Desempenho do sistema para $m = 0,20$ (f = 60 Hz)	66
Figura 4.9 - Desempenho do sistema para $m = 0,40$ (f = 60 Hz)	67
Figura 4.10 - Desempenho do sistema para $m = 0,60$ (f = 60 Hz)	68
Figura 4.11 - Desempenho do sistema para $m = 0.80$ (f = 60 Hz)	69
Figura 5.1 - Representação simplificada de um inversor de cinco níveis	73
Figura 5.2 - Estados de chaveamentos no plano dq do inversor de cinco níveis	74
Figura 5.3 - Numeração dos triângulos e seqüência dos vetores para o sextante 1	75
Figura 5.4 - Sequência de chaveamento de uma tensão de fase para o triângulo 1	77
Figura 5.5 - Lógica da geração de curvas para sinais MLP	78
Figura 5.6 - Diagrama de blocos da MV via RNAs para um inversor de cinco níveis	79
Figura 5.7- Identificação do triângulo baseado na RNA para trajetória do vetor tensão de	
referência $m = 0,53$	82

Figura 5.8 – Cálculo da razão cíclica usando RNA	83
Figura 5.9 – Cálculo da razão cíclica usando RNA	84
Figura 5.10 – Cálculo da razão cíclica usando RNA	85
Figura 5.11 - Desempenho do sistema para m = $0,53$ (f = $31,8$ Hz)	88
Figura 6.1 – Inversor de três níveis com diodo de grampeamento	90
Figura 6.2 – Estados de chaveamento no plano dq para inversor três níveis	91
Figura 6.3 – Diagrama do circuito do inversor de três níveis	97
Figura 6. 4 – Fluxograma do programa geral	98
Figura 6.5 – Algoritmo Volts/Hertz	99
Figura 6.6 – Algoritmo da MLP vetorial	100
Figura 6.7 – Trajetória descrita por V* para m = 0,30	104
Figura 6.8 - Forma de onda da tensão de linha para o índice de modulação m = 0,30	104
Figura 6.9 – Espectro Harmônico da tensão de linha para m = 0,30	105
Figura 6.10 – Trajetória descrita por V* para m = 0,48	106
Figura 6.11- Forma de onda da tensão Vab para o índice de modulação m = 0,48	106
Figura 6.12- Espectro harmônico da tensão Vab com índice de modulação m = 0,48	107
Figura 6.13 – Trajetória descrita por V* para m = $0,55$	108
Figura 6.14 - Forma de onda da tensão de linha para o índice de modulação m = $0,55$	108
Figura 6.15 – Espectro Harmônico da tensão de linha para m = 0,55	109
Figura 6.16 – Trajetória descrita por V* para m = $0,70$	110
Figura 6.17 - Forma de onda da tensão de linha para o índice de modulação m = $0,70$	110
Figura 6.18 – Espectro Harmônico da tensão Vab com índice de modulação m = 0,70	111
Figura 6.19 – Trajetória descrita por V* para m = 0,90	112
Figura 6.20 - Forma de onda da tensão de linha para o índice de modulação m = 0,90	112
Figura 6.21 – Espectro Harmônico da tensão de linha para m = 0,90	113
Figura 6.22 – Visão geral do protótipo do inversor 3 níveis	114
Figura 6.23 – DSP TMS320F240 ,Interface para geração dos sinais das chaves, e o Inve	ersor
de Três Níveis	114
Figura 6.24 – Cargas: Motor de indução trifásico, Carga resistiva trifásica	116
Figura 6.25– Retificador trifásico com filtro capacitivo	116
Figura 6.26 – Fontes Isoladas para alimentação do DSP e dos Drives	117
Figura 6.27 – Forma de onda da tensão de linha para m = $0,30$	118
Figura 6.28 – Espectro harmônico da tensão de linha para m = $0,30$	119
Figura 6.29 – Forma de onda da tensão de linha para m = $0,48$	119
Figura 6.30 – Espectro harmônico da tensão de linha para m $= 0,48$	120
Figura 6.31 – Forma de onda da tensão de linha para m = $0,55$	121
Figura $6.32 - \text{Espectro harmônico da tensão de linha para m} = 0,55$	121
Figura 6.33 – Forma de onda da tensão de linha para m = $0,70$	122
Figura 6.34 – Espectro harmônico da tensão de linha para m $= 0,70$	122
Figura 6.35 – Forma de onda da tensão de linha para $m = 0,90$	123
Figura 6.36 – Espectro harmônico da tensão de linha para m $= 0,90$	123

Figura 7.1 - Diagrama de blocos da MV via RNAs para um inversor de três níveis	126
Figura 7.2 - Mapeamento da região do sextante utilizando três Redes Neurais Adaline .	127
Figura 7.3 - Gráfico dos números dos triângulos percorridos por V* para $m = 0,30$	132
Figura 7.4 - Desempenho da razão cíclica t_a para $m = 0,30$	132
Figura 7.5 - Desempenho da razão cíclica t_b para $m = 0,30$	133
Figura 7.6 - Desempenho da razão cíclica t_c para $m = 0,30$	133

Figura 7.7 - Desempenho do comparador da chave S_{1A} para m = 0,30	134
Figura 7.8 - Desempenho do comparador da chave S_{2A} para m = 0,30	
Figura 7.9 - Gráfico dos números dos triângulos percorridos por V* para m = 0,70	135
Figura 7.10 - Desempenho da razão cíclica t_a para m = 0,70	136
Figura 7.11 - Desempenho da razão cíclica t_b para $m = 0,70$	
Figura 7.12 - Desempenho da razão cíclica t_c para $m = 0,70$	137
Figura 7.13 - Desempenho do comparador da chave S_{1A} para m = 0,70	137
Figura 7.14 - Desempenho do comparador da chave S_{2A} para m = 0,70	138
Figura 7.15 – Forma de onda da tensão fase-fase para m = 0,30	139
Figura 7.16 – Espectro harmônico da tensão fase-fase para m = 0,30	140
Figura 7.17 – Forma de onda da tensão fase-fase para $m = 0,48$	140
Figura 7.18 – Espectro harmônico da tensão fase-fase para m = 0,48	141
Figura 7.19 – Forma de onda da tensão fase-fase para m = 0,55	141
Figura 7.20 – Espectro harmônico da tensão de linha para m = 0,55	142
Figura 7.21 – Forma de onda da tensão fase-fase para $m = 0,70$.	142
Figura 7.22 – Espectro harmônico da tensão fase-fase para m = $0,70$	143
Figura 7.23 – Forma de onda da tensão fase-fase para $m = 0,90$.	143
Figura 7.24 – Espectro Harmônico da tensão fase-fase para m = 0,90	144

Lista de Tabelas

Tabela 2.1 - Parâmetros do sistema de acionamento	
Tabela 4.1 - Níveis de tensão e os estados das chaves de um inversor com diodo de	
grampeamento de cinco níveis	53
Tabela 4.2 - Relação entre o sextante e N _S	57
Tabela 4.3 - Parâmetros do sistema de acionamento	65
Tabela 5.1 - Parâmetros do sistema de acionamento	
Tabela 6. 1 - Estados de chaveamento de um inversor de 3 níveis	90
Tabela 6. 2 – Configuração dos sinais MLP	97
Tabela 6.3– Tempo computacional para a geração V*	101
Tabela 6.4 – Tempo computacional da MV coordenadas móveis	
Tabela 6.5 – Tempo computacional para a geração dos sinais MLP	
Tabela 7.1 – Decodificador para a obtenção da Triângulo onde se localiza V*	
Tabela 7.2 – Pesos e Bias para RNA triângulo 1	
Tabela 7.3 – Pesos e Bias para RNA triângulo 2	
Tabela 7.4 – Pesos e Bias para RNA triângulo 3	129
Tabela 7.5 – Pesos e Bias para RNA triângulo 4	129
Tabela 7.6 – Tempo computacional para a geração V*	
Tabela 7.7 – Tempo computacional da MV coordenadas móveis	
Tabela 7.8 – Tempo computacional para a geração dos sinais MLP	

Lista de Símbolos

AM	Amplitude modulada
ASIC	"Application-Specific Integrated Circuit"
CC	Corrente contínua
CA	Corrente alternada
DSP	Processador digital de Sinais
EPLD	"electrically programmable logic device"
FM	Freqüência modulada
IEM	Interferência eletromagnética
Ls	Triângulo onde está localizado o vetor de referência no sextante
L _H	Triângulo onde está localizado o vetor de referência no hexágono
Md	Modo de operação do inversor
MLP	Modulação por largura de pulso
MV	Modulação vetorial
m	Índice de modulação
mx	Índice de modulação normalizado
N*	Número do sextante em que se localiza o vetor tensão de referência
n	Número de níveis do conversor
Ns	Número de estados de chaveamentos
N _V	Número de vetores espaciais de tensão
N _T	Número de triângulos formados pelos vetores espaciais
PNG	Ponto neutro grampeado
RNA	Rede neural artificial
S	Sextante onde está localizado o vetor de referência no sextante

Triangle_type	Tipo do triângulo (0 ou 1)
TVP	Três vetores mais próximos ao vetor de referência
T _s	Período de amostragem
tg	Razão cíclica relativa ao eixo g
th	Razão cíclica relativa ao eixo h
tgh	Complemento das razões cíclicas dos eixos g e h
T _{4A}	Contribuição do nível de tensão 4
V*	Amplitude do vetor tensão de referência
V _d	Tensão de referência no eixo direto
V _d	Tensão de referência no eixo em quadratura
V _{CC}	Tensão em corrente contínua do elo CC
V_{1SW}	Componente fundamental da onda quadrada
V*m	Amplitude do vetor tensão de referência modificada
Vg	Componente da tensão de referência no eixo g
Vh	Componente da tensão de referência no eixo h
V_{GU}	Componente inteira da tensão de referência no eixo g
V_{HU}	Componente inteira da tensão de referência no eixo h
V_{GF}	Componente fracionária da tensão de referência no eixo g
V_{HF}	Componente fracionária da tensão de referência no eixo h
VSI	Inversor fonte de tensão
α*	Ângulo do vetor tensão de referência

Capítulo 1

1 Modulação por Largura de Pulso

1.1 Introdução

Com o desenvolvimento do tiristor comercial pela General Electric Company em 1958 começava uma revolução devido ao surgimento da eletrônica de potência. Com o surgimento de novos dispositivos semicondutores, ocorreu paralelamente, uma revolução na microeletrônica proporcionando uma capacidade de processar grandes quantidades de informações em alta velocidade utilizando microprocessadores, microcontroladores e processadores digitais de sinais (DSPs). Desde então, o desenvolvimento sempre crescente da eletrônica de potência e da microeletrônica possibilitou o aparecimento e desenvolvimento de novas aplicações industriais envolvendo o condicionamento da energia em várias formas com a manipulação das grandezas elétricas tais como: amplitude e freqüência de tensão/corrente.

Podem ser citadas algumas aplicações dentre as diversas da eletrônica de potência:

- Amplificadores de áudio;
- Aquecimento indutivo;
- Carregadores de baterias;
- Transmissão em corrente contínua;
- Acionamento de máquinas elétricas;
- Controladores de temperatura;
- Fontes de alimentação;
- Filtros ativos;
- Iluminação em alta freqüência;
- Sistemas ininterruptos de energia;

- Servos sistemas;
- Veículos elétricos.

De acordo com as características das aplicações, os condicionadores de energia podem ser classificados em quatro grupos de conversores:

- Conversor CC-CC;
- Conversor CC-CA;
- Conversor CA-CC;
- Conversor CA-CA.

O estudo destes conversores envolve o estudo da topologia e do controle. O controle é feito através de um tipo de modulação seja AM (amplitude modulada), FM (freqüência modulada) ou MLP (modulação por largura de pulso). Estas modulações podem ser implementadas analogicamente ou digitalmente.

O inversor fonte de tensão faz parte do grupo conversor CC-CA, geram um sinal de freqüência e amplitude variáveis a partir de uma fonte CC fixa. A saída CA pode ser monofásica ou trifásica. O inversor fonte de tensão é geralmente usado no controle de máquinas do tipo CA e sistemas ininterruptos de energia.

O comando da conversão da energia CC-CA nos inversores fonte de tensão pode ser feita usando um tipo de modulação por largura de pulso seja do tipo senoidal, histerese, modulação vetorial, modulação ótima, ou modulação aleatória.

A técnica MLP vetorial tem-se tornado bastante popular devido as suas características:

- Alto aproveitamento da tensão do elo CC;
- A faixa de operação linear estendida;
- Operação na faixa de sobremodulação;
- Baixa distorção harmônica;
- As perdas de chaveamento são passíveis de otimização.

No entanto, a modulação vetorial é uma técnica digital de computação intensiva, que exige processadores de alto desempenho.

Uma das aplicações da modulação vetorial é o comando do inversor de dois níveis, inversores multiníveis, os quais utilizam níveis de tensão mais elevados. As topologias dos inversores multinível são muito mais complexas que as estruturas do inversor de dois níveis; bem como a modulação vetorial para estes inversores.

Este trabalho propõe avanços e simplificações na implementação da MLP vetorial para inversores fonte de tensão de dois níveis e para inversores fonte de tensão multiníveis. Assim, os seguintes desenvolvimentos são propostos:

- Simplificação do algoritmo MV (Modulação Vetorial) para inversores fonte de tensão de dois níveis;
- Simplificação do algoritmo MV para inversores multiníveis do tipo diodo grampeado utilizando coordenadas móveis não-ortogonais;
- Desenvolvimento do algoritmo MV para inversores multiníveis via redes neurais artificiais.

Para o inversor fonte de tensão de dois níveis foi desenvolvido o algoritmo simiplificado e ultra-rápido da MLP vetorial. Sua eficiência foi comprovada através de simulações no programa MatLab-Simulink® de resultados experimentais obtidos em um prototipo desenvolvido no Laboratório.

Em um segundo estudo desenvolveu-se o algoritmo da MV via redes neurais artificiais (RNA's) para inversores multiníveis com a utilização de duas RNA's, onde primeira RNA usa a informação do vetor tensão de referência para a determinação dos três vetores mais próximos encontrando o triângulo onde o vetor de referência se localiza. A segunda RNA é usada para o cálculo das razões cíclicas dos três vetores espaciais. São apresentados os

resultados de simulações para o inversor de três niveis e resultados experimentais para o inversor de cinco níveis.

Em um ultimo estudo desenvolveu-se o algoritmo da MV via coordenadas móveis nãoortogonais para os inversores de três e cinco níveis com diodo de grampeamento, sendo que este algoritmo pode ser facilmente generalizado para inversores de ordem genérica. Os resultados de simulação para inversores de três e cinco níveis e os resultados experimentais obtidos com o protótipo do inversor de três com diodo de grampeamento comprovam a eficiência deste algoritmo.

1.2 Modulação por Largura de pulso

As estratégias da modulação por largura de pulso MLP podem ser classificados em pelo menos cinco categorias:

(1) Modulação senoidal;

- (2) Modulação de eliminação harmônica ou MLP ótima;
- (3) Modulação por histerese;
- (4) Modulação aleatória;
- (5) Modulação vetorial.

As estratégias MLP podem ser avaliadas para uma determinada razão entre freqüência de chaveamento das chaves semicondutoras e uma freqüência do sinal de referência, e a razão entre a tensão de saída e a tensão de entrada, a qual é chamada de índice de modulação m.

$$m = \frac{V^*}{V_{1SW}} \tag{1.1}$$

Onde V* é a amplitude da tensão do vetor de referência ou de comando, e V_{1SW} é valor de pico $\left(\frac{2V_{CC}}{\pi}\right)$ da componente fundamental da forma de onda da tensão de saída do inversor para operação de seis pulsos.

O desempenho de uma estratégia de modulação pode ser avaliado com base nos cinco aspectos a seguir:

(1) distorção da corrente de saída do inversor;

(2) distorção da tensão de saída do inversor;

(3) perdas de energia;

(4) espectro harmônico e interferência eletromagnética IEM;

(5) faixa dinâmica de operação; e

(6) complexidade.

1.2.1 Modulação Senoidal

A MLP senoidal um sinal de referência senoidal é comparado com a portadora triangular para a geração de um trem de pulsos de comando, como é apresentado na Figura 1.1. A freqüência do sinal de referência fr determina a freqüência do sinal de saída. A estratégia MLP senoidal apresenta uma distorção harmônica maior que as outras modulações especialmente para valores de índice de modulação elevados e quando a razão da freqüência de chaveamento é para a freqüência do sinal é baixa, o que na maioria das vezes inevitável nas aplicações de potência elevada [1].

A faixa dinâmica de um conversor usando MLP senoidal é baixa. O índice de modulação máximo é apenas 0,785.

A vantagem maior de uma MLP senoidal é sua simplicidade; necessitando de apenas três comparadores analógicos para ser implementada analogamente; ou, três comparadores digitais para sua implementação digital.

Figura 1.1 - Princípio de Operação da MLP senoidal

1.2.2 Modulação ótima/Eliminação de harmônicos

A modulação MLP ótima refere-se a uma técnica MLP específica usada em aplicações onde a razão entre a freqüência de chaveamento e a freqüência do sinal de referência é baixa. Em tais casos, é encontrada certas harmônicas, por exemplo, quinta e sétima, que podem ser completamente eliminadas se os ângulos de chaveamento de trem de pulsos em um período do sinal de referência ocorrem em posições otimizadas. Esta modulação pode ser implementada usando análise discreta de Fourier e Otimização. É também chamada estratégia MLP de eliminação harmônica [1,14]. A MLP de eliminação harmônica é estratégia MLP subotimizada é direcionada para a eliminação de certas harmônicas. Outras estratégias MLP ótimas são também propostas baseadas em diferentes objetivos de otimização, por exemplo, mínima distorção harmônica total [15] e oscilações mínimas de torque [16]. A maior desvantagem das estratégias modulação por largura pulso ótima é que os valores para a geração da modulação são pré-calculados e armazenados em forma tabela de consulta, resultando em uma performance dinâmica pobre.

1.2.3 Modulação por Histerese

Na modulação por histerese [18-22], uma onda triangular oscila dentro de um limite acima e abaixo da senóide de referência, como é apresentado na Figura 1.2. A modulação por histerese só é possível em malha fechada, pois é necessário medir instantaneamente a variável de saída. A modulação por histerese é geralmente usada como controlador de corrente em aplicações de acionamentos de alto desempenho e em retificadores com correção de fator de potência onde uma regulação rápida de corrente é crucial. A modulação por histerese tem como vantagens a estabilidade inerente e a simplicidade de implementação. Como desvantagens apresentam imprecisão da onda controlada, elevada distorção da forma de onda de saída, uma pobre utilização do elo CC e freqüência de chaveamento variável.

Figura 1.2 – Modulação por histerese

1.2.4 Técnica MLP aleatória

Existem diferentes versões de técnicas MLP aleatórias. Elas todas estão dirigidas para aliviar os problemas de interferência eletromagnética (IEM) e a redução de ruídos acústicos e vibrações para aplicações de acionamentos de motores [23-25]. Estes três problemas estão associados com componentes harmônicas distintas. Pela mudança aleatória da freqüência de chaveamento e/ou da localização dos pulsos, no entanto a energia total das componentes harmônicas permanece inalterada, a energia se distribui sobre uma ampla faixa de freqüência com acentuada redução da amplitude de cada componente harmônica individual. A MLP aleatória pode resultar em distorções elevadas de corrente ou tensão.

1.2.5 - Modulação Vetorial

A modulação Vetorial foi proposta primeiramente em [2] em 1982 e se tornou bem popular pelos seguintes motivos: alta utilização da tensão do elo CC, baixa distorção harmônica, as perdas de chaveamento podem ser otimizadas, e é adequada para implementação digital. A modulação vetorial tem sido amplamente utilizada em sistemas de acionamentos trifásicos de alto desempenho [3-7] e com sucesso em retificadores com correção do fator de potência [8]. Apresenta uma distorção harmônica de tensão/corrente inferior a MLP senoidal ou de qualquer outra estratégia, especialmente para valores elevados do índice de modulação m. As perdas de chaveamento, o espectro harmônico e a interferência eletromagnética podem ser minimizados. O índice de modulação pode atingir a unidade, o qual é 15% superior ao modulador MLP senoidal, significando que a tensão do elo CC é completamente utilizável e a faixa dinâmica é estendida.

A modulação vetorial tem sido pesquisada em várias linhas identificadas por: (1) otimização das estratégias da modulação vetorial em termos de distorção harmônica [13] e

perdas de chaveamento [10-12]; (2) implementação digital das estratégias MV [4, 14, 16], (3) Operação na região de sobremodulação [9, 28, 29, 30, 53, 55].

A Figura 1.3 apresenta uma rede trifásica de chaveamento. Existem oito combinações de chaveamento que correspondem a oito vetores espaciais de tensão no plano ortogonal dq.

Figura 1.3 – Rede de chaveamento Trifásica

Existem quatro etapas para obter a modulação vetorial. Na primeira etapa os sinais de referência das fases A, B, C são mapeados no sistema dq, sendo representado por um vetor de referência V*. Na segunda etapa, os vetores de chaveamento são selecionados para sintetizar o vetor de referência V* para um ciclo de chaveamento. Na terceira etapa, os tempos de duração de cada vetor de chaveamento selecionado são calculados. Na ultima etapa, os vetores de chaveamento selecionados para a rede de chaveamentos.

1.3 Modulação Vetorial Bidimensional

Para um sistema trifásico equilibrado com as tensões V_a , V_b , V_c existe a seguinte relação:

$$V_a + V_b + V_c = 0 (1.2)$$

As variáveis acima podem ser mapeadas em um vetor V no plano ortogonal d-q, onde: $V = V_d + jV_a$ (1.3)

A transformação para este sistema de coordenadas ortogonais é expressa como:

$$\begin{bmatrix} V_d & V_q \end{bmatrix}^T = T_1 \begin{bmatrix} V_a & V_b & V_c \end{bmatrix}^T$$
(1.4)

Onde T₁ é a matriz de transformação, que é expressa como:

$$T_{1} = \frac{2}{3} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{-\sqrt{3}}{2} \end{bmatrix}$$
(1.5)

1.3.1 Vetores de Chaveamento

Na rede de chaveamento apresentada na Figura 1.3, as chaves superiores de cada perna são complementares às chaves inferiores. Há um total de oito combinações possíveis conforme apresentado na Figura 1.4. Cada combinação refere-se a um estado de chaveamento. Onde "1" indica que a fase em análise está conectada ao terminal positivo do elo CC, e "0" indica que a fase está conectada ao terminal negativo do elo CC. Por exemplo, a combinação "010" representa a condição em que o terminal de saída da fase B V_b está conectado ao terminal positivo do elo CC e os terminais de saída fases A e C, V_a e V_c , estão conectados ao terminal negativo do elo CC.

Existem oitos estados de chaveamentos, sendo seis estados ativos (V_1 a V_6) e dois estados nulos (V_0 e V_7). A disposição dos estados de chaveamento no plano dq forma a Figura de um hexágono como é apresentado na Figura 1.5.

1.3.2 Vetor Referência

Um vetor referência V* pode ser obtido pela transformação da tensão de referência trifásica para o plano d-q, como mostrado na Figura 1.5. Em condições de regime permanente, para obter sistema trifásico senoidal equilibrado, o vetor de referência é girante no plano d-q. A trajetória do vetor de referência descreve um círculo.

Figura 1.4 - Combinações de chaveamento possíveis para um inversor trifásico

Figura 1.5 – Vetores de chaveamento para a rede trifásica

1.3.3 Síntese do vetor de referência

A síntese do vetor de referência é baseada no princípio do valor médio. Ela pode ser dividida nos seguintes passos:

A – Seleção dos vetores de chaveamento

Existem inúmeras associações de vetores espaciais de tensão capazes de sintetizar o vetor de referência. É provado que usando os vetores ativos adjacentes e os vetores nulos, a energia circulante é minimizada. Com essa estratégia a ondulação de corrente e o espectro harmônico podem ser também minimizados.

B – Projeção do vetor de referência

Através da projeção do vetor de referência, os tempos de chaveamentos t_a , t_b e t_0 podem ser obtidos. Se o vetor de referência se encontra no primeiro sextante, os vetores ativos V_1 e V_2 e vetores nulos V_0 e/ou V_7 são selecionados. Como os vetores nulos não contribuem para a posição do vetor de referência. O vetor de referência pode ser projetado nos dois vetores ativos. A projeção pode ser expressa como:

$$V^*T_S = t_a V_1 + t_b V_2$$

 t_a e t_b são as razões cíclicas para os dois vetores ativos correspondentes, e podem ser calculadas por um algoritmo geométrico simples, como mostrado abaixo:

$$\begin{bmatrix} t_a \\ t_b \end{bmatrix} = \frac{\sqrt{3}V^*}{2V_{CC}} \begin{bmatrix} sen(\frac{\pi}{3} - \alpha) \\ sen(\alpha) \end{bmatrix}$$

Onde V* é a amplitude do vetor de referência e α é o ângulo entre V₁ e o vetor de referência como apresentado na Figura 1.5. O tempo restante dentro do período de chaveamento é ocupado pelos vetores nulos. O tempo do vetor nulo pode ser obtido por

$$t_0 = T_s - t_a - t_b$$

Existem dois vetores nulos '111' e '000' disponíveis. Um deles ou ambos podem ser usados.

C - Seqüência dos vetores de chaveamento

Após selecionar os vetores e seus tempos, o próximo passo é seqüênciá-los. Existe um grande número de opções para sequenciar os vetores de chaveamento; embora a seqüência dos vetores de chaveamento não altere o valor médio dentro do período de chaveamento, ela tem um grande impacto nas perdas de potência por chaveamento e no conteúdo harmônico [10-13]. Os esquemas de sequenciamento podem ser sumarizados em duas classes. Os esquemas de seqüência classe I usam ambos os vetores de chaveamento nulos '000' e '111'. Os esquemas de seqüência classe II usam apenas um dos vetores de chaveamento nulos '111' ou

'000'. Os esquemas classe I incluem quatro esquemas, nominalmente MV alinhados pela borda de subida, MV alinhados pela borda de descida, MV simétrica, e MV de seqüência alternativa. Para cada um dos esquemas da classe I, existe um correspondente na classe II.

Exemplos de esquemas de seqüências para classe I para um vetor de referência situado no sextante 1 são apresentados na Figura 1.6.

Os esquemas de seqüências alinhados pela borda de subida e alinhado pela borda de descida são adequados para conversores com comutação suave, onde o alinhamento de todas as transições, ligar e desligar reduz o número de intervenções da rede de chaveamento suave e simplifica o circuito. Com esquema de seqüência de alinhamento simétrico obtêm-se a distorção e o espectro harmônico inferiores dentre os quatro esquemas de seqüências. O método alternativo aplica os vetores ativos de chaveamento em um caminho alternativo, como por exemplo | V1 V2 | V2 V1 |.

Para aplicações de potência elevada, as perdas de energia são de grande interesse. Estudos [10-12] têm mostrado que perdas de chaveamento podem ser minimizadas pelo não chaveamento da fase que transporta a corrente maior. Todos os esquemas de seqüência propostos de perdas mínimas recaem em esquemas de seqüência da classe II mostrados na Figura 1.7. Comparados com seus equivalentes da classe I, os esquemas de seqüência da classe II reduzem as ações de chaveamento por 1/3, e as perdas de chaveamento em 50% para uma carga com fator de potência unitário. Os conteúdos harmônicos usando os esquemas de chaveamento da classe II são superiores aos seus correspondentes da classe I. Exemplos de esquemas de seqüências para classe II para um vetor de referência situado no sextante 1 são apresentados na Figura 1.7.

Figura 1.6 – Esquema de sequenciamento classe I

Figura 1.7 – Esquemas de sequenciamento classe II

1.4 Conclusões

Neste capítulo foi ressaltada a importância da modulação por largura de pulso para o controle das topologias inversoras. Descreveram-se as características das diferentes estratégias de modulação por largura de pulso, com enfase para a modulação vetorial. As linhas gerais e a organização deste trabalho foram apresentadas neste capítulo.

Capítulo 2

2 Modulação Vetorial para Inversores Fonte de Tensão de Dois Níveis

2.1 Introdução

A conversão de energia de corrente contínua para corrente alternada em freqüência variável é a base das aplicações de modernos acionamentos de motores de CA em velocidade variável. Nestas aplicações, inversores fonte de tensão (VSI) operando com modulação por largura de pulso (MLP) são quase sempre usados. A freqüência de chaveamento fixa e seu correspondente conteúdo harmônico bem definido faz destes algoritmos MLP baseados na portadora muito popular. Dentre os algoritmos baseados na portadora MLP, o algoritmo baseado na modulação vetorial é bem aceita por causa de sua qualidade harmônica superior e porque sua operação na região linear é estendida [26,27]. Diferentemente dos outros algoritmos baseados na portadora MLP, os quais modulam cada uma das três fases individualmente, a MLP vetorial modula o vetor tensão comando de forma integral.

Basicamente, o algoritmo permite ter a média da tensão de saída obtida igual ao vetor referência de comando. Devido à natureza de sua estratégia, a MLP vetorial requer uma computação em tempo real muito complexa, a qual usualmente limita sua operação a uma freqüência de chaveamento até vários kHz. A dificuldade aumenta quando a operação nas regiões linear e de sobremodulação são requeridas. Neste caso, algoritmos diferentes são requeridos para cada região. Uma estratégia para cada região foi proposta em [9], onde a região de sobremodulação foi subdividida em duas regiões (região de sobremodulação I e região de sobremodulação II), e conseqüentemente dois algoritmos são necessários, que resultou num total de três algoritmos para varrer a região linear e de sobremodulação. As

simplificações destas propostas são apresentadas em [28] e [29]. Ambas as abordagens usam apenas um algoritmo para a região de sobremodulação. Porém, para conseguir tal simplificação, a qualidade harmônica nesta região é sacrificada. Apesar de qualquer simplificação mencionada para a região de sobremodulação, se ambas as faixas de operação linear e sobremodulação são requeridas, a implementação da MLP vetorial requer pelo menos dois algoritmos: um para a região linear e outro para a região de sobremodulação. No ano de 2000, uma outra abordagem [30] simplifica o algoritmo MLP vetorial propondo uma função de saturação, e usa uma rede neural artificial para unificar os algoritmos da região linear e de sobremodulação.

A proposta deste capítulo é apresentar um algoritmo simplificado da modulação vetorial para um inversor fonte tensão de dois níveis. Este algoritmo é mais rápido e flexível que qualquer outro proposto até agora na literatura. Uma outra vantagem relevante desta abordagem é que um algoritmo simples cobre a região linear e de sobremodulação e a operação de seis pulsos com quase nenhum esforço computacional adicional. Este algoritmo simplificado permite a implementação da modulação vetorial em freqüências elevadas (até 20 kHz) sem a perda de nenhuma das características positivas do algoritmo convencional da modulação vetorial. Neste caso, as freqüências de chaveamento são limitadas pelos semicondutores de potência.

2.2 Modulação vetorial

A Figura 2.1 apresenta um inversor trifásico fonte de tensão, em que as chaves superiores S_1 , S_3 e S_5 são complementares respectivamente às chaves inferiores S_4 , S_6 e S_2 . A Figura 2.2 apresenta os estados de chaveamento do inversor dos quais seis ($V_1(1 \ 0 \ 0)$ a $V_6(1 \ 0 \ 1)$) são vetores de estados ativos que formam a Figura de um hexágono e dois $V_0(0 \ 0 \ 0)$ e $V_7(1,1,1)$ são vetores de estado nulo e se localizam na origem. Um vetor tensão de comando é apresentado estando no sextante 1. De acordo com [26] a localização do vetor de referência

determina a operação em três regiões distintas: linear, de sobremodulação I e de sobremodulação II.

A operação na região linear ou de sobremodulação é determinada pelo índice de modulação m que é definido como:

$$m = \frac{V^*}{V_{1SW}} \tag{2.1}$$

Onde V* é a amplitude da tensão do vetor de referência ou de comando, e V_{1SW} é valor de pico $\left(\frac{2V_{CC}}{\pi}\right)$ da componente fundamental da forma de onda da tensão do inversor de seis pulsos. O índice de modulação varia entre 0 a 1.

Figura 2.1 – Inversor Trifásico

2.2.1 Região Linear

Na operação na região linear, o vetor girante de referência permanece dentro do hexágono. Este modo de operação termina quando V* descreve um círculo inscrito que tangência o hexágono, sendo neste caso o índice de modulação igual a m = 0,907. Portanto, a
operação na região linear ocorre quando 0 < m < 0,907. A operação na região linear é apresentada na Figura 2.3. A estratégia da modulação vetorial para esta região é baseada na geração de três vetores de tensão de chaveamento em um período de amostragem (Ts) tal que o valor médio da tensão de saída atinja o valor da tensão de referência. Os tempos efetivos dos estados de chaveamento do inversor são obtidos pelas seguintes equações:

$$t_{a} = 2\frac{\sqrt{3}T_{s}}{4V_{cc}}V^{*}sen(\pi/3 - \alpha^{*})$$
(2.2)

$$t_{b} = 2 \frac{\sqrt{3}T_{s}}{4V_{CC}} V^{*} sen(\pi/3)$$
(2.3)

$$t_0 = \frac{T_S}{2} - (t_a + t_b) \tag{2.4}$$

Figura 2.2 – Estados de chaveamento do inversor de dois níveis

Figura 2.3 - Trajetória de tensão na região linear

Onde:

- t_a tempo do vetor de chaveamento mais próximo e atrasado de V*
- t_b tempo do vetor de chaveamento mais próximo e adiantado de V*
- t_o tempo do vetor de chaveamento nulo;

T_S tempo de amostragem

 α^* ângulo de V* em um sextante

2.2.2. Região de Sobremodulação – Modo I

A operação na região não-linear tem início quando o vetor tensão de referência excede os limites do hexágono. Na operação na região de sobremodulação modo I, a tensão de referência cruza o hexágono em dois pontos em cada sextante. Como só é possível obter tensão de saída dentro do hexágono, neste caso, há uma perda da componente fundamental. Para compensar esta perda, para alinhar com a tensão de referência, uma trajetória modificada da tensão de referência é selecionada, parte permanece em trajetória circular e parte permanece em trajetória hexagonal. A trajetória circular tem seu raio estendido para V*_m, com (V*_m > V*) e cruza o hexágono em um ângulo θ . As equações anteriores permanecem válidas para a parte circular da trajetória (exceto que V* é trocado por V*_m). Contudo, a trajetória ao longo do hexágono, o tempo t₀ desaparece. As expressões de t_a e t_b são dadas por:

$$t_a = \frac{T_s}{2} \left(\frac{\sqrt{3} \cos \alpha^* - sen \alpha^*}{\sqrt{3} \cos \alpha^* + sen \alpha^*} \right)$$
(2.5)

$$t_b = \frac{T_s}{2} - t_a \tag{2.6}$$

A onda de tensão Van é obtida por segmentos aproximadamente lineares para trajetória hexagonal e segmentos senoidais para trajetória circular, como é apresentado na parte inferior da Figura 2.4.

Figura 2.4 - Trajetória de tensão na região de sobremodulação I

As equações para os quatro segmentos de tensão no primeiro quarto de ciclo são dadas por:

Segmento 1:
$$v_1 = m_1 \cdot \theta_e$$
 $0 < \theta_e < \frac{\pi}{6} - \theta$ (2.7)

Segmento 2:
$$v_2 = V_m^* \cdot sen\theta_e$$
 $\frac{\pi}{6} - \theta < \theta_e < \frac{\pi}{6} + \theta$ (2.8)

Segmento 3:
$$v_3 = A + \frac{m_1}{2} \cdot \theta_e$$
 $\frac{\pi}{6} + \theta < \theta_e < \frac{\pi}{2} - \theta$ (2.9)

Segmento $4: v_4 = V_m^* \cdot sen \theta_e$ $\frac{\pi}{2} - \theta < \theta_e < \frac{\pi}{2} + \theta$ (2.10) Onde: $\theta_e = \omega_e t, m_1 = \frac{2V_{CC}}{\pi}$ é a inclinação do segmento linear 1, $A = \frac{V_{CC}}{6}$, e V_m^* é a

tensão de referência modificada. A tensão Vm* pode ser definida como uma função do ângulo de cruzamento θ pelas equações 2.7 e 2.8 no ângulo ($\pi/6-\theta$) como:

$$V_m^* = \frac{2 \cdot V_d(\pi/6 - \theta)}{\pi \cdot sen(\pi/6 - \theta)}$$
(2.11)

Por causa da simetria de um quarto de onda, a componente fundamental da tensão de saída pode ser escrita através de 2.7 a 2.10 como:

$$V_{1} = \frac{4}{\pi} \left[\int_{0}^{\pi/6-\theta} v_{1} sen\theta_{e} d\theta_{e} + \int_{\pi/6-\theta}^{\pi/6+\theta} v_{2} sen\theta_{e} d\theta_{e} + \int_{\pi/6+\theta}^{\pi/2-\theta} v_{3} sen\theta_{e} d\theta_{e} + \int_{\pi/2-\theta}^{\pi/2} v_{4} sen\theta_{e} d\theta_{e} \right]$$
(2.12)

A Figura 2.5 mostra a relação entre o ângulo de cruzamento e o índice de modulação. Este modo de operação termina quando a trajetória toda é feita sobre o hexágono, isto é, com $\theta = 0$, e m = 0,9524.

Figura 2.5 - Curva do Ângulo de Cruzamento

2.2.3. Região de Sobremodulação - Modo II

Na operação de sobremodulação modo II, o vetor da tensão de referência é maior que o vetor de referência do modo I. Portanto, a trajetória atual é modificada a fim de que a componente fundamental da tensão de saída atinja a tensão de referência. A operação nesta região é explicada na Figura 2.6, é caracterizada pela manutenção parcial do vetor modificado no vértice do hexágono para um ângulo de manutenção α_h , e alinha parcialmente aos lados do hexágono em cada sextante. Durante o ângulo de manutenção, a amplitude de Van permanece constante, aonde se alinha ao hexágono, a tensão muda quase linearmente, como mostrado na parte inferior da Figura 2.6.

$$\alpha^{*}{}_{m} = \begin{cases} 0 & 0 < \alpha^{*} < \alpha_{h} \\ \frac{\alpha^{*} - \alpha_{h}}{\pi/6 - \alpha_{h}} \cdot \frac{\pi}{6} & \alpha_{h} < \alpha^{*} < \pi/3 - \alpha_{h} \\ \frac{\pi}{3} & \pi/3 - \alpha_{h} < \alpha^{*} < \pi/3 \end{cases}$$
(2.13)

Para a forma de onda Van, as equações para os quatro segmentos em um quarto de ciclo podem ser obtidas como:

Segmento 1:
$$v_1 = m_1 \cdot \theta_e$$
 $0 < \theta_e < \frac{\pi}{6} - \alpha_h$ (2.14)

Segmento 2:
$$v_2 = \frac{V_d}{3}$$
 $\frac{\pi}{6} - \alpha_h < \theta_e < \frac{\pi}{6} + \alpha_h$ (2.15)

Segmento 3:
$$v_3 = A + m_2 \cdot \theta_e$$
 $\frac{\pi}{6} + \alpha_h < \theta_e < \frac{\pi}{2} - \alpha_h$ (2.16)

Segmento 4:
$$v_4 = \frac{2 \cdot V_d}{3}$$
 $\frac{\pi}{2} - \alpha_h < \theta_e < \frac{\pi}{2}$ (2.17)

Onde:

$$m_1 = \frac{V_d}{3(\pi/6 - \alpha_h)}$$
(2.18)

$$m_2 = \frac{V_d}{3(\pi/3 - 2\alpha_h)}$$
(2.19)

$$A = \frac{V_d(\pi/6 - 3\alpha_h)}{3(\pi/3 - 2\alpha_h)}$$
(2.20)

Novamente, devido à simetria de um quarto de onda, a componente fundamental da tensão de saída V_1 pode ser obtida como:

$$V_{1} = \frac{4}{\pi} \left[\int_{0}^{\pi/6 - \alpha_{h}} v_{1} sen \theta_{e} d\theta_{e} + \int_{\pi/6 - \alpha_{h}}^{\pi/6 + \alpha_{h}} v_{2} sen \theta_{e} d\theta_{e} + \int_{\pi/6 + \alpha_{h}}^{\pi/2 - \alpha_{h}} v_{3} sen \theta_{e} d\theta_{e} + \int_{\pi/2 - \alpha_{h}}^{\pi/2} v_{4} sen \theta_{e} d\theta_{e} \right]$$
(2.21)

A relação entre ângulo de manutenção e o índice de modulação é apresentado pelo gráfico da Figura 2.7.

Figura 2.6 - Trajetória de tensão na região de sobremodulação II

Figura 2.7 – Ângulo de manutenção

A Figura 2.8 apresenta o fluxograma do algoritmo convencional MLP vetorial, onde Vd e Vq são a componente real e imaginária de V* e θ . Os passos computacionais deste algoritmo são:

- (1) a identificação do setor;
- (2) o cálculo de $\theta^* e \alpha^*$;
- (3) o cálculo do índice de modulação;
- (4) o cálculo dos tempos t_a , t_b e $t_{0;}$ e
- (5) o cálculo dos tempos em que as chaves permanecem ligadas T_{A-ON} , T_{B-ON} , e T_{C-ON} que dependem do sextante em que se localiza V*.

Observa-se que na Figura 2.8 há três algoritmos distintos para calcular t_a , t_b e t_0 na ordem de cobrir integralmente toda faixa de operação, isto é, a região linear, sobremodulação modo I e sobremodulação modo II. Este algoritmo é muito complexo e consume muito do tempo computacional porque (1) as equações para calcular os tempos efetivos dependem da região de operação (2). Os tempos de chaveamento são calculados usando tempos efetivos e a

informação do sextante, e (3) a estratégia usada para identificar o sextante onde o vetor de referência se localiza é complexo.

Figura 2.8 - Fluxograma para implementação do algoritmo convencional

2.3 Algoritmo Simplificado e Ultra-rápido MLP vetorial

O algoritmo proposto neste capítulo é baseado na abordagem apresentada em [30]. Neste trabalho é proposta a utilização de uma rede neural baseada na modulação vetorial para unificar os algoritmos da região linear e sobremodulação. Os principais pontos propostos em [30] são:

- Calcular os tempos de chaveamentos diretamente, ao invés de calcular os tempos efetivos (t_a, t_b e t₀), e identificar o sextante e para depois compô-los;
- Explorar o desacoplamento entre ângulo e amplitude do vetor tensão de referência no cálculo dos tempos de chaveamentos;
- Extrapolar a região linear para a região de sobremodulação usando uma função de saturação.

A equação resultante de [30] para a fase a é apresentada a seguir:

$$T_{A-ON} = \begin{cases} \frac{t_0}{2} = \frac{T_s}{4} + K \cdot V^* \left[-sen\left(\frac{\pi}{3} - \alpha^*\right) - sen(\alpha^*) \right] S = 1,6 \\ \frac{t_0}{2} + t_b = \frac{T_s}{4} + K \cdot V^* \left[-sen\left(\frac{\pi}{3} - \alpha^*\right) + sen(\alpha^*) \right] S = 2 \\ \frac{t_0}{2} + t_a + t_b = \frac{T_s}{4} + K \cdot V^* \left[sen\left(\frac{\pi}{3} - \alpha^*\right) + sen(\alpha^*) \right] S = 3,4 \\ \frac{t_0}{2} + t_a = \frac{T_s}{4} + K \cdot V^* \left[sen\left(\frac{\pi}{3} - \alpha^*\right) - sen(\alpha^*) \right] S = 5 \end{cases}$$

$$(2.22)$$

O primeiro passo à frente na simplificação do algoritmo MLP vetorial é obtido pela utilização das componentes d-q. Esta estratégia simplifica o cálculo dos termos sen(α^*) e sen($\pi/3$ - α^*), evitando o uso de tabelas de consulta, aumentando assim a resolução do algoritmo. O cálculo dos tempos de chaveamentos das fases tornou-se simples e é obtido pela seguinte equação:

$$T_{A-ON=} \begin{cases} \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[-V_{d} - \frac{V_{q}}{\sqrt{3}} \right] \right) & S = 1,4 \\ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[-2.V_{d} \right] \right) & S = 2,5 \\ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[-V_{d} + \frac{V_{q}}{\sqrt{3}} \right] \right) & S = 3,6 \end{cases}$$
(2.23)

$$\begin{aligned}
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[V_{d} - \sqrt{3} V_{q} \right] \right) & S = 1, 4 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[\frac{-2.V_{q}}{\sqrt{3}} \right] \right) & S = 2, 5 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[V_{d} - \frac{V_{q}}{\sqrt{3}} \right] \right) & S = 3, 6 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[V_{d} + \frac{V_{q}}{\sqrt{3}} \right] \right) & S = 1, 4 \\
& T_{C-ON=} \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[\frac{2.V_{q}}{\sqrt{3}} \right] \right) & S = 2, 5 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[\frac{2.V_{q}}{\sqrt{3}} \right] \right) & S = 2, 5 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[V_{d} + \sqrt{3} V_{q} \right] \right) & S = 3, 6 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[V_{d} + \sqrt{3} V_{q} \right] \right) & S = 3, 6 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[V_{d} + \sqrt{3} V_{q} \right] \right) & S = 3, 6 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[V_{d} + \sqrt{3} V_{q} \right] \right) & S = 3, 6 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[V_{d} + \sqrt{3} V_{q} \right] \right) & S = 3, 6 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[V_{d} + \sqrt{3} V_{q} \right] \right) & S = 3, 6 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[V_{d} + \sqrt{3} V_{q} \right] \right) & S = 3, 6 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[V_{d} + \sqrt{3} V_{q} \right] \right) & S = 3, 6 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[V_{d} + \sqrt{3} V_{q} \right] \right) & S = 3, 6 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[V_{d} + \sqrt{3} V_{q} \right] \right) & S = 3, 6 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[V_{d} + \sqrt{3} V_{q} \right] \right) & S = 3, 6 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[V_{d} + \sqrt{3} V_{q} \right] \right) & S = 3, 6 \\
& \left\{ \frac{T_{s}}{4} \left(1 + f_{c} \frac{3}{2V_{dc}} \left[V_{d} + \sqrt{3} V_{q} \right] \right\} \right\} \right\} \right\}$$

De forma genérica, a equação (2.23) pode ser reescrita como segue:

$$T_{A-ON} = \frac{T_S}{4} \left(1 + f_C g(V_d, V_q) \right)$$
(2.26)

O número de equações para o cálculo dos tempos de chaveamentos de cada fase é reduzido para três.

Para operação na região linear, o parâmetro fator de compensação f_C é unitário e a função g(V_d, V_q) é, de fato, o tempo de chaveamento normalizado. Embora, para a região de sobremodulação, f_C não seja unitário, ele assume valores para fazer a compensação de ângulo e amplitude. O fator de compensação f_C foi obtido baseado em [30], e pode ser armazenado em forma de tabela consulta. A Figura 2.9 mostra f_C como função do índice de modulação.

Figura 2.9 – Gráfico do fator de compensação fc

2.3.1 Estratégia de Simplificação da identificação do Sextante

A simplificação da estratégia da identificação do sextante é também um ponto chave do desenvolvimento do algoritmo MLP vetorial simples e ultra-rápido. Basicamente, a abordagem proposta é um melhoramento do método da identificação do sextante usado no algoritmo convencional obtido em [31]. O sextante é determinado por operações lógicas booleanas do bit de sinal das três funções das componentes d-q do vetor de referência, dados pelas seguintes equações.

$$A = Sign(V_q) \tag{2.27}$$

$$B = Sign(\sqrt{3V_d - V_q}) \tag{2.28}$$

$$C = Sign(-\sqrt{3}V_d - V_q) \tag{2.29}$$

A identificação do sextante é obtida de [31] é feita pelo uso da relação:

$$N = A + 2.B + 4.C \tag{2.30}$$

A simplificação usa as similaridades entre os sextantes 1 e 4, 2 e 5, e 3 e 6. Esta simplificação reduz o número total dos setores de 6 para 3, e assim, apenas 2 expressões condicionais são requeridas para o cálculo de $g(V_d, V_q)$ ao contrário de 6, como proposto em [31]. Por outro lado, a identificação do sextante utilizando a abordagem proposta é obtida usando a equação

$$N^* = (A \text{ XOR C}) + 2.(B \text{ XOR C})$$
 (2.31)

Na estratégia proposta, a função sign é implementada isolando o bit de sinal através da operação lógica AND. A operação de multiplicação por 2 é obtida deslocando o bit de sinal à esquerda e a soma é obtida usando uma operação lógica OR. A Figura 2.10 apresenta a idéia sobre a identificação do sextante.

Figura 2. 10 - Simplificação da identificação do Sextante

2.3.2 Função de Saturação

O ultimo estágio antes da geração dos sinais de gatilhos das chaves é a saturação dos tempos de chaveamento em 0 ou Ts/2. Contudo, diferente da abordagem proposta em [30], aqui a saturação será feita pela função $(1 + f_C.g(V_d, V_q))$, ou seja, em 0 ou 2. Portanto, desde que a multiplicação seja feita após a saturação, a freqüência de chaveamento pode ser facilmente mudada no código fonte pela alteração do período de chaveamento Ts.

A Figura 2.11 apresenta o fluxograma do algoritmo simplificado proposto para o inversor fonte de tensão de dois níveis. Este algoritmo é muito simples e consome menos tempo computacional por que: (1) é baseado no cálculo direto dos tempos de chaveamento; (2) as regiões de sobremodulação modo I e II são obtidas através da extrapolação da região linear; (3) usa uma pequena tabela de consulta para correção de fator de amplitude e ângulo na região de sobremodulação; e (4) o algoritmo para identificação do sextante é muito simples.

2.4 Resultados de Simulação e Experimentais

Para validar o algoritmo simplificado proposto, um sistema de acionamento de um motor de indução operando segundo o princípio Volts/Hertz em malha aberta com uma freqüência de chaveamento de 20 kHz foi simulado e implementado. Os parâmetros do sistema de acionamento são apresentados na Tabela 2.1.

Figura 2.11 - Fluxograma para implementação do algoritmo simplificado

Tensão do elo CC (V _{CC})	300 V
Tempo de amostragem (T_s)	50 μS
Motor de indução	1 Hp, 230 V, 4 pólos
	Faixa de freqüência: 0 – 60 Hz
	Fator de Potência (plena carga): 85%
	Eficiência: (plena carga): 85%
	Resistência do estator (Rs): 4,850 Ω
	Resistência do rotor (Rr): 5,386 Ω
	Indutância de dispersão do estator (Lls): 18,48 mH
	Indutância de dispersão do rotor (Llr): 20,53 mH
	Indutância de magnetização (Lm): 225 mH
	Momento de inércia do rotor (J): 0,01155 Kg.m ²
	Carga: ventilador $[T_L = k\omega r^2]$ com k = 1,65x10 ⁻⁵

 Tabela 2.1 - Parâmetros do sistema de acionamento

2.4.1 Resultados de Simulação

Um modelo de um acionamento de um motor de indução operando segundo princípio Volts/Hertz em malha aberta usando o algoritmo de modulação vetorial proposto foi desenvolvido usando o programa de simulação MATLAB/Simulink. A Figura 2.12 apresenta as correntes de fase do motor em diferentes freqüências de operação. A Figura 2.12(a) mostra o acionamento operando na região linear com uma freqüência de 50 Hz (m = 0,833). A Figura 2.12(b) mostra o acionamento operando na região de sobremodulação modo I com uma freqüência de 56 Hz (m = 0,933). A Figura 2.10(c) mostra o acionamento operando na região de sobremodulação modo I com uma freqüência de 59 Hz (m = 0,983).

⁽a)

(b)

Figura 2.12 - Resultados de simulação (a) corrente de fase – 50 Hz, m = 0,833 (b) corrente de fase – 56 Hz, m = 0,933 (c) corrente de fase – 59 Hz ,m = 0,983

2.4.2 Resultados Experimentais

O mesmo sistema de acionamento usado para simulação foi também implementado experimentalmente em laboratório. O inversor fonte de tensão foi construído usando seis IGBTs IRGPC50UD (600 V, 27 A) e um acionador da ponte trifásica IR2130, com tempo morto padrão de 2,5 μ S. O algoritmo simplificado MLP vetorial bem como o controle Volts/Hertz em malha aberta foi desenvolvido usando um DSP de ponto fixo de 16 bits do tipo da Texas Instrument TMS320F240.

O tempo de execução do algoritmo simplificado MLP vetorial tomou apenas 110 ciclos de máquina (5,5 μs). O algoritmo completo, que inclui o controle Volts/Hertz em malha aberta e o algoritmo simplificado MLP vetorial tomou 217 ciclos de máquina (10,85 μs).

A figura 2.13 apresenta as correntes de fase obtidas experimentalmente para os mesmos pontos estudados na simulação. A figura 2.13(a) apresenta o acionamento operando na região linear em 50 Hz (m = 0,833). A figura 2.13(b) apresenta o acionamento operando na região de sobremodulação modo I em 56 Hz (m = 0,933), e finalmente a figura 2.13(c) apresenta o acionamento operando na região de sobremodulação modo II em 59 Hz (m = 0,983). Os resultados experimentais são bem similares aos resultados de simulação exceto de alguns picos devido a ruídos. Portanto, a nova abordagem MLP vetorial é integralmente validada.

Figura 2.13 – Resultados Experimentais (a) corrente de fase – 50 Hz, m = 0,833 (b) corrente de fase – 56 Hz, m = 0,933 (c) corrente de fase – 59 Hz, m = 0,983 Escalas: 5ms/div, 1A/div

2.5 Conclusões

Neste capítulo foi proposto um novo simples e ultra-rápido algoritmo MLP vetorial para inversores de dois níveis. A simplificação do algoritmo foi alcançada pelos seguintes fatores: (1) a extrapolação da estratégia da região linear para a região de sobremodulação; (2) redução do número de equações para o cálculo dos tempos de chaveamentos, e (3) simplificação da estratégia de identificação do sextante. Como resultado tornou-se possível a implementação do algoritmo MLP vetorial em uma freqüência de chaveamento elevada (acima de 10 kHz). Os resultados de simulação e experimentais mostram que o algoritmo simplificado trabalha muito bem nas regiões linear e de sobremodulação com gasto computacional muito inferior quando comparado com o algoritmo convencional. O tempo de execução do algoritmo de modulação vetorial tomou apenas 110 ciclos de máquina (5,5 µs para o DSP TMS320F240). O tempo computacional estimado do controlador MLP de [30] foi

de 40 µs com um DSP do tipo TMS320C30. Embora que os resultados terem sido obtidos para um acionamento de motor de indução utilizando o controle Volts/Hz em malha aberta; este algoritmo é também adequado para acionamento de motor de indução usando o controle vetorial.

Capítulo 3

3 Conversores Multiníveis

3.1 Introdução

Nos anos recentes, cresceu na indústria a demanda por equipamentos de potência elevada, os quais atingem a ordem de megawatts. Acionamentos em CA controlados nesta faixa de potência são conectados a rede de média tensão. Atualmente é difícil conectar chaves semicondutoras diretamente a rede de média tensão porque as especificações em tensão das chaves não atingem este valor. Por esta razão, as topologias de conversores multiníveis têm emergido como solução para operar com níveis de tensão mais elevados.

Os inversores multiníveis incluem uma gama de semicondutores de potência, fontes de tensão a capacitores, sendo que na saída são geradas tensões com formas de onda com vários níveis [35]. A comutação das chaves permite a adição de tensões de capacitores, que podem atingir uma tensão elevada na saída, enquanto os semicondutores de potência devem suportar apenas as tensões reduzidas.

O interesse pela tecnologia de conversores multiníveis foi despertado por Nabae e outros em 1981 [33], com a introdução da topologia do conversor de três níveis com neutro grampeado. Aumentando o número de níveis do inversor, as tensões de saída são do tipo escada contendo mais níveis, possuindo uma distorção harmônica reduzida, embora, um número elevado de níveis aumente a complexidade do controle e introduza problemas de desequilíbrio de tensão.

As características mais atrativas dos inversores multiníveis [35] são as seguintes:

 podem gerar tensões de saída com distorção harmônica extremamente baixa e com menor dV/dt.

- (2) drenam corrente de entrada com distorção harmônica extremamente baixa;
- (3) geram tensão de modo comum inferior, assim reduzindo o estresse dos rolamentos do motor. Com a utilização de métodos sofisticados de modulação, as tensões de modo comum podem ser eliminadas.
- (4) podem operar com uma freqüência de chaveamento baixa.

Posteriormente, o conversor de três níveis com neutro grampeado proposto por Nabae foi generalizado para estruturas de n níveis por P. M. Bhagwat [42] e N. S. Choi [43]. Com o aumento do número de níveis, cresce o número de degraus na forma de onda de saída tornando-a mais próxima da onda senoidal. Além disso, o aumento de níveis permite a aplicação de conversores em barramentos CC de tensões mais elevadas. A principal desvantagem desta topologia é que a tensão de bloqueio reversa requerida dos diodos grampeadores é proporcional ao nível para os quais eles são usados na ação de grampeamento. Conseqüentemente, a conexão série de diodos pode ser requerida. Além disso, devido à elevada velocidade de chaveamento das chaves semicondutoras, principalmente IGBTs e IGCTs, os diodos grampeadores podem estar sujeitos a estresse severo de recombinação reversa.

Uma estrutura alternativa para o conversor com diodo de grampeamento é a topologia chamada de capacitor flutuante que foi proposta por Meynard em [44]. Nesta nova topologia, a tensão sobre as chaves é limitada usando capacitores grampeadores em lugar dos diodos. Esta topologia tem a vantagem de ter um número grande de estados de chaveamento redundantes, os quais permitem um grau de liberdade maior no balanço das tensões dos capacitores de grampeamento. A principal desvantagem é o potencial para ressonâncias entre os capacitores de desacoplamento, além disso, existem problemas com a redistribuição de tensões em caso de surtos de tensão.

A configuração multinível com inversores ponte completa em cascata apresenta uma outra alternativa no projeto de conversores multiníveis. Uma vantagem inicial desta topologia é que ela proporciona a flexibilidade para o aumento no número de níveis sem a introdução da complexidade no estágio de potência. Além disso, esta topologia requer o mesmo número de chaves primárias como a topologia com diodo de grampeamento, mas não requer os diodos de grampeamento. Contudo, esta configuração utiliza fontes de CC separadas obtidas freqüentemente por transformador de linha, torna esta solução cara, e a operação bidirecional é difícil de ser realizada.

3.2 Topologias de inversores multiníveis

3.2.1. Inversor multinível Com diodo de grampeamento

A primeira topologia multinível prática proposta foi a topologia MLP ponto neutro grampeado introduzida por Nabae, e outros em 1981. A versão de três níveis tem várias vantagens sobre a topologia de dois níveis. As vantagens são as seguintes:

- As chaves são submetidas à metade da tensão do elo CC;
- A primeira ordem de harmônicos de tensão é centrada em torno de duas vezes a freqüência de chaveamento;
- Esta topologia pode ser generalizada, e princípios usados na topologia básica de três níveis podem ser estendidos para uso em topologias com qualquer número de níveis.

A experiência prática com esta topologia revela várias dificuldades que complicam sua aplicação em conversores de potência elevada. Dentre as dificuldades, salientam-se as seguintes:

- Esta topologia requer diodos grampeadores de alta velocidade que sejam capazes de drenar a corrente de plena carga e são submetidos a estresse de recombinação reversa.
- Para topologias com mais três níveis os diodos grampeadores são sujeitos ao aumento do estresse de tensão para Vcc (n-1)/n. Portanto, as conexões de diodos em série

podem ser requeridas, o que torna o projeto mais complexo e aumentam as preocupações com a segurança e custos.

 O problema de manter o balanço de carga dos capacitores permanece um tema aberto para solução em topologias NPC com mais três níveis.

Na Figura 3.1 são apresentadas as pernas dos conversores NPC de três e quatro níveis.

Figura 3.1 - Perna de uma fase dos inversores PNG de três e quatro níveis

3.2.2. Inversor multinível capacitor flutuante

A topologia multinível capacitor flutuante, proposta em 1992 [44], é considerada como sendo uma melhor alternativa para a topologia com diodos grampeadores. A vantagem significativa desta topologia é que ela elimina os problemas do diodo de grampeamento presente nas topologias multiníveis com diodo de grampeamento. Adicionalmente, esta topologia naturalmente limita o estresse dV/dt sobre os dispositivos e introduz estados de chaveamentos adicionais, que podem ser usados para ajudar na manutenção do balanço de cargas dos capacitores. Diferentemente do conversor com diodo de grampeamento, a topologia capacitor flutuante possui vários estados de chaveamento para controlar o balanço

de cargas em uma perna isolada com conversores tendo qualquer número de níveis, mesmo que a corrente seja unidirecional.

Até o presente parece que esta topologia tem poucas desvantagens. Todavia, alguns possíveis pontos fracos que necessitam ser explorados são:

- O controlador de carga do capacitor do elo CC adiciona complexidade para o controle do circuito geral;
- A topologia de capacitor flutuante pode requerer mais capacitância do que a topologia equivalente com diodo de grampeamento. Em adição, correntes eficazes adicionais podem fluir através destes capacitores;
- Existe um potencial para ressonância entre os capacitores de desacoplamento.

Figura 3.2 - Perna de uma fase dos inversores capacitores flutuantes de 3 e 4 níveis

3.2.3. Configurações multiníveis com dois inversores de dois níveis em ponte completa em cascata

Uma das primeiras aplicações da conexão série de topologias inversoras em ponte completa monofásicas foi para estabilização de plasma em 1988 [45]. Esta abordagem modular tem sido proposta desde então para a inclusão de sistemas trifásicos, principalmente para acionamentos de média tensão.

Possivelmente, todas as complicações e custos de fontes isoladas para cada ponte completa não chega a ser um inconveniente e são compensados pelas vantagens da construção modular. A modularidade desta estrutura permite uma manutenção fácil e proporciona um caminho muito conveniente para adicionar redundância ao sistema. Uma perna de uma fase de conversor cinco níveis baseados em conversores de dois níveis em ponte completa em cascata é apresentada na Figura 3.3.

Uma das maiores vantagens desta abordagem híbrida é que o número de saídas pode ser adicionalmente aumentado, sem adição de nenhum novo componente, requerendo apenas fontes CC com diferentes níveis de tensão [46]. Provavelmente uma das maiores vantagens é uso de fontes CC com diferentes níveis de tensão, Vcc e 2Vcc, como apresentado na Figura 3.4.

Figura 3.4 - Perna de uma fase de inversor cascata de sete níveis em ponte completa

3.3 Conclusões

Neste capítulo foram mostrados os princípios de funcionamento das três principais topologias de conversores multiníveis descritas na literatura. A topologia com diodo de grampeamento é mais utilizada, mas, os diodos grampeadores são submetidos a diferentes níveis estresse de tensão. A topologia capacitor flutuante é uma topologia alternativa à topologia com diodo de grampeamento, não apresentando a limitação de tensão da topologia com diodo de grampeamento. Mas, apresenta um potencial de ressonância dos capacitores de acoplamento. A topologia de pontes H em cascada é uma outra alternativa à topologia com diodo de grampeamento. A modularidade é sua principal característica e a necessidade de fontes de tensão isoladas é sua desvantagem.

Capítulo 4

4 Algoritmo da Modulação Vetorial usando Coordenadas Móveis Não-Ortogonais

4.1 Introdução

O emprego de uma ótima estratégia de modulação é o principal requerimento para assegurar um alto desempenho de uma aplicação de conversor multinível. Assim, uma boa estratégia de chaveamento pode:

- Diminuir o número de chaveamentos;
- Assegurar um baixo conteúdo harmônico para as correntes e tensões;
- Aumentar o fator de potência;

A modulação por largura de pulsos vetorial é considerada uma das melhores, sendo objeto de estudo por diversos pesquisadores. Porém, é considerada de alta complexidade, sendo que tal complexidade aumenta com o número de níveis do inversor em análise.

O inversor com diodo de grampeamento é uma extensão do inversor de ponto neutro grampeado (PNG) [33] podendo ser estendido a um número de níveis maior do que 2 [34]. As principais vantagens do inversor com diodo de grampeamento são:

- As tensões em que as chaves são submetidas são reduzidas;
- O espectro harmônico da tensão de saída está centrado em torno de duas vezes a freqüência de chaveamento;
- Esta topologia pode ser generalizada para qualquer número de níveis.

Este inversor tem como desvantagens o desbalanço das tensões dos capacitores devido a sua conexão em série; os diodos de grampeamento apresentam tensões de bloqueio reverso diferentes.

No intuito de simplificar o algoritmo da MLP vetorial para inversor PNG multinível várias estratégias têm sido apresentadas nos últimos anos. Destaca-se o trabalho desenvolvido em [38] que foi o primeiro a utilizar as coordenadas não-ortogonais para selecionar os três vetores mais próximos (TVP) do vetor referência, necessários para sintetizá-lo. O trabalho [39] propõe uma estratégia utilizando também coordenadas não-ortogonais no sentido de evitar utilização de tabela consulta na escolha dos TVP. Uma estratégia diferente é apresentada por [37], em que os (TVP) são identificados determinando em qual triângulo localiza-se o vetor de referência, através do uso de transformações e rotações de coordenadas. O algoritmo desenvolvido neste capítulo baseia-se na utilização de coordenadas móveis não ortogonais, que variam de acordo com o sextante onde está localizado o vetor de referência. Os três vetores mais próximos (TVP) são determinados pela identificação do triângulo no hexágono, utilizando as informações do sextante e do triângulo onde se localiza o vetor de referência no sextante. As razões cíclicas são determinadas utilizando-se um único padrão de cálculo independente de onde se encontra o vetor de referência. Assim a utilização de testes lógicos para a definição dos TVP [38] e para o cálculo das razões cíclicas [39] não se faz necessárias. Os cálculos envolvidos na determinação da localização do triângulo onde está localizado o vetor de referência, bem como o cálculo das razões cíclicas referentes aos TVP são muito simples. O padrão de chaveamento adotado é produzido pela seleção dos coeficientes armazenados em forma de tabelas de consulta indexadas pelo número do triângulo no hexágono onde se encontra V*.

4.2 Inversor multinível com diodo de grampeamento

A Figura 4.1 apresenta a estrutura do inversor de cinco níveis do tipo com diodo de grampeamento. O divisor capacitivo consiste de 4 capacitores C_1 , C_2 . C_3 e C_4 , a tensão em cada capacitor é igual à tensão do barramento CC (V_{CC}) dividido por 4 e a tensão que cada

chave é submetida é limitada a $V_{CC}/4$ através dos diodos de grampeamento [35]. A tensão Van apresenta cinco níveis de tensão de saída (0, 1, 2, 3 e 4) de acordo com as chaves em condução conforme é apresentado na tabela 4.1. As chaves inferiores S'_{A1}, S'_{A2}, S'_{A3} e S'_{A4} são complementares às chaves superiores S_{A1}, S_{A2}, S_{A3} e S_{A4}.

Figura 4.1 – Inversor com diodo de grampeamento de cinco níveis

4.2.1 Modulação vetorial (MV)

A complexidade da MV aumenta com o número de níveis do inversor. Por exemplo, o inversor de cinco níveis para três fases, tem 125 estados de chaveamento dos quais apenas 61

são vetores espaciais efetivos, que dividem o plano dq em 96 triângulos, conforme pode ser visualizado na Figura 4.2.

No algoritmo proposto neste trabalho, os três vetores mais próximos (TVP) necessários para sintetizar o vetor de referência são encontrados determinando em qual triângulo está localizado o vetor de referência utilizando as informações do sextante e número do triângulo no sextante.

A tabela 4.1 apresenta a relação entre os níveis de tensão de fase e os estados das chaves, ligado ou desligado. Por exemplo, para obter-se o nível de tensão 4, as chaves superiores S_1 , S_2 , S_3 , e S_4 devem estar ligadas e as chaves inferiores S_1' , S_2' , S_3' , e S_4' desligadas. Pode-se observar também a relação entre o estado da chave e os níveis de tensão. Por exemplo, a chave S_2 estará no estado ligado para os níveis 4 ou 3.

Tabela 4.1 - Níveis de tensão e os estados das chaves de um inversor com diodo de grampeamento de cinco níveis

Nível de	Tensão	Estados das Chaves									
tonsão	de saída										
tensao	Van	S_1	S ₂	S ₃	S ₄	S' 1	S'2	S'3	S'4		
4	Vcc/2	Lig.	Lig.	Lig.	Lig.	Deslig.	Deslig.	Deslig.	Deslig.		
3	Vcc/4	Deslig.	Lig.	Lig.	Lig.	Lig.	Deslig.	Deslig.	Deslig.		
2	0	Deslig.	Deslig.	Lig.	Lig	Lig.	Lig.	Deslig.	Deslig.		
1	-Vcc/4	Deslig.	Deslig.	Deslig.	Lig.	Lig.	Lig.	Lig.	Deslig.		
0	-Vcc/2	Deslig.	Deslig.	Deslig.	Deslig.	Lig.	Lig.	Lig.	Lig.		

Figura 4.2 – Estados de chaveamento no plano d-q de inversor de cinco níveis

4.2.2 Coordenadas móveis não-ortogonais

O algoritmo proposto tem como elemento simplificador a utilização de coordenadas móveis não–ortogonais normalizadas ($V_g \in V_h$) que variam de acordo com o sextante em que o vetor de referência está localizado. A implementação da transformação do sistema dq0 para o novo sistema gh é relativamente simples. Primeiramente, identifica-se o sextante em que V* está localizado e aplica-se uma relação de transformação de coordenadas de acordo com o sextante, conforme equação (4.1).

$$\begin{bmatrix} V_g \\ V_h \end{bmatrix} = \frac{1}{V_{CC}} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} V_d \\ V_q \end{bmatrix}$$
(4.1)

Os coeficientes da matriz de transformação $(a_{11} \ a_{12} \ a_{21} \ a_{22})$ normalizam V_g e V_h segundo o passo de tensão do inversor. Estes coeficientes são obtidos através de consulta a tabelas indexadas pelo número do sextante. Assim a tabela consulta do coeficiente **Aij** possui 6 elementos aij previamente calculados de acordo com o sextante.

A seguir apresenta-se o desenvolvimento matemático para a obtenção dos coeficientes para o inversor de cinco níveis considerando que V* se encontra no sextante A. As componentes Vg e Vh são dadas pelas equações a seguir.

$$V_{g} = Vx^{*} \left[\cos(\theta) - \frac{1}{\sqrt{3}} sen(\theta) \right]$$

$$V_{h} = \frac{2}{\sqrt{3}} Vx^{*} sen(\theta)$$
(4.2)

onde, Vx* é o vetor de referência normalizado, dado por :

$$Vx^{*} = \frac{V^{*}}{V_{step5}}$$
(4.3)

Onde: V_{step5} é o passo de modulação para o inversor de cinco níveis.

$$V_{Step} = \frac{V_{\text{max}}}{(n-1)} \tag{4.4}$$

$$V_{Step5} = \frac{2V_{CC}}{3(5-1)} = \frac{V_{CC}}{6}$$
(4.5)

Assim:

$$Vx^* = \frac{6V^*}{V_{CC}}$$

Portanto, as projeções Vg e Vh são dadas por:

$$V_{G} = \frac{6V^{*}}{V_{CC}} \left[\cos(\theta) - \frac{1}{\sqrt{3}} \sin(\theta) \right]$$

$$V_{H} = \frac{6V^{*}}{V_{CC}} \frac{2\sin(\theta)}{\sqrt{3}}$$
(4.6)

As componentes do eixo d e q normalizadas são dadas por:

$$V_{d} = V^{*} \cos(\theta)$$

$$V_{q} = V^{*} \sin(\theta)$$
(4.7)

Portanto,

$$\begin{bmatrix} V_G \\ V_H \end{bmatrix} = \frac{1}{V_{CC}} \begin{bmatrix} 6 & -2\sqrt{3} \\ 0 & 4\sqrt{3} \end{bmatrix} \begin{bmatrix} V_d \\ V_q \end{bmatrix}$$
(4.8)

As matrizes Aij dos coeficientes são dadas por:

$$A_{11} = \begin{bmatrix} 6 & 6 & 0 & -6 & -6 & 0 \end{bmatrix}$$

$$A_{12} = \begin{bmatrix} -2\sqrt{3} & 2\sqrt{3} & 4\sqrt{3} & 2\sqrt{3} & -2\sqrt{3} & -4\sqrt{3} \end{bmatrix}$$

$$A_{21} = \begin{bmatrix} 0 & -6 & -6 & 0 & 6 & 6 \end{bmatrix}$$

$$A_{22} = \begin{bmatrix} 4\sqrt{3} & 2\sqrt{3} & -2\sqrt{3} & -4\sqrt{3} & -2\sqrt{3} & 2\sqrt{3} \end{bmatrix}$$
(4.9)

4.2.3 Identificação do sextante

A identificação do sextante onde o vetor de referência se localiza é determinado a partir de expressões envolvendo as componentes d e q de V*. As expressões usadas são apresentadas a seguir:

$$A = Sign(V_q)$$

$$B = Sign(\sqrt{3}V_d - V_q)$$

$$C = Sign(-\sqrt{3}V_d - V_q)$$
(4.10)

A variável que identifica o sextante Ns é obtida pela expressão matemática mostrada a seguir:

$$N_s = A + 2B + 4C \tag{4.11}$$

A identificação do sextante é obtida utilizando a expressão lógica correspondente à equação (4.11). A função Sign é feita obtendo o bit de sinal da expressão envolvida. A multiplicação pelas constantes 2 e 4 é obtida fazendo deslocamentos à esquerda do bit de sinal
das referidas expressões. E a somatória é feita utilizando a expressão lógica OU. A tabela 2 relaciona o sextante com a variável N_s .

Tabela 4.2 - Relação entre o sextante e N_S

Sextante	1	2	3	4	5	6
Ns	3	1	5	4	6	2

4.2.4 Identificação do triângulo

A disposição das razões cíclicas t_a , t_b e t_c no sextante é a mesma independente da localização do vetor de referência. Assim, quando se utiliza o sistema de coordenadas móveis, o cálculo das razões cíclicas é simplificado, pois este independe do sextante em que se encontra o vetor de referência. Portanto, o universo para o cálculo das razões cíclicas é reduzido para um sexto. Para o inversor de cinco níveis, este universo é reduzido de 96 triângulos para apenas 16 triângulos. A Figura 4.3 apresenta a disposição das razões cíclicas no sextante. O cálculo das razões cíclicas é feito utilizando o princípio do valor médio que é dado pelas equações a seguir:

$$V_{1}t_{a} + V_{2}t_{b} + V_{3}t_{c} = V * T_{S}$$

$$t_{a} + t_{b} + t_{c} = T_{S}$$
(4.12)

Onde V_1 , V_2 e V_3 são vetores no vértice do triângulo, t_a , t_b e t_c são os respectivos tempos de chaveamento e T_s é o tempo de amostragem.

As partes inteiras de V_G e V_H são dadas por:

$$V_{GU} = floor(V_g)$$

$$V_{HU} = floor(V_h)$$
(4.13)

Onde a função *floor* retorna a parte inteira da expressão.

E a partes fracionárias de V_G e V_H são dadas por:

$$V_{GF} = V_g - V_{GU}$$

$$V_{HF} = V_h - V_{HU}$$
(4.14)

Define-se o modo de operação (Md) que se relaciona instantaneamente com a região onde o inversor está operando. Por definição temos as seguintes relações: Md = 0, o conversor opera com 2 níveis, Md = 1, o conversor opera com 3 níveis, Md = 2, com 4 níveis e Md = 3, com 5 níveis. A Figura 4.3 apresenta os vários níveis possíveis de operação para o inversor de cinco níveis. A expressão para a obtenção do modo de operação (Md) é dada por:

$$Md = floor(V_g + V_h) \tag{4.15}$$

Figura 4.3 – Numeração dos triângulos e seqüência de vetores para o sextante 1

O triângulo (L_s) em que o vetor de referência está localizado é obtido por uma expressão muito simples, dada por:

$$L_s = Md^2 + Md + 1 + V_{HU} - V_{GU}$$
(4.16)

A Figura 4.3 mostra a ordenação da numeração dos triângulos no sextante (1 a 16); a ordem da numeração inicia-se no centro e desloca-se em direção a borda.

Observando a Figura 4.4 notamos que segundo a disposição dos vértices temos dois tipos diferentes de triângulo, os que têm a disposição igual ao triângulo número 1 com a variável triang_type = 0, e os que têm disposição diferente com a variável triang_type = 1. Com intuito de simplificar o cálculo das razões cíclicas definem-se novas razões cíclicas (t_g , t_h , t_{gh}) que tem suas disposições caracterizadas de acordo com o tipo de triângulo (triang_type) em que o vetor de referência se localiza, conforme pode ser visualizado na Figura 4.4.

Figura 4.4 - Tipo de triângulo para o cálculo de tg, th e tgh

As razões cíclicas são obtidas pelas relações listadas a seguir

$$t_{g} = |triang _type - V_{GF}| * T_{S}$$

$$t_{h} = |triang _type - V_{HF}| * T_{S}$$

$$t_{gh} = T_{S} - t_{g} - t_{h}$$

$$(4.17)$$

Sendo que o tipo triângulo (triang_type) é obtido pelas relações a seguir: Se (L_S +Md) é impar: faz-se triang type = 0

Caso contrário triang_type = 1.

Esta simplificação é muito significativa, pois, passa-se de um universo de 16 padrões de cálculo de t_a , t_b , t_c para um único padrão de cálculo de t_g , t_h , t_{gh} .

4.3 - Síntese do padrão de chaveamento

Para definir uma seqüência (padrão) de chaveamento a ser utilizada é necessário saber em qual triângulo dentro do hexágono (L_H), o vetor de referência está localizado. As informações necessárias para esta identificação são o sextante (S) e a localização do triângulo dentro do sextante (L_S) em que o V* está localizado. Esta relação é dada por:

$$L_{\mu} = (S-1).16 + L_{S} \tag{4.18}$$

A Figura 4.5 apresenta a forma de onda típica da tensão fase-neutro VAN, a qual apresenta as contribuições dos cinco níveis de tensão, que é obtida de acordo com um padrão de chaveamento pré-escolhido. O padrão de chaveamento tem como objetivo reduzir o número de chaveamentos, proporcionar uma saída com baixo conteúdo harmônico, bem como, garantir um melhor balanço das tensões do elo CC. Neste sentido, a utilização adequada dos estados de chaveamentos redundantes faz-se necessário. O algoritmo proposto é flexível quanto à escolha do padrão a ser utilizado. Neste trabalho utilizou-se o padrão completo em que todos estados de chaveamentos são usados. O padrão completo de chaveamento é mais fácil de ser implementado resultando em um melhor equilíbrio das tensões dos capacitores, porém o número de chaveamentos é mais elevado.

O correto padrão de chaveamento depende de onde o vetor de referência localiza em sextante impar (A, C, F) ou par (B, D, F) [40]. Se o vetor tensão de referência localiza-se em um sextante impar a seqüência de chaveamento tem de ser do nível inferior para o nível superior (0, 1, 2, 3, 4), como mostrado na Figura 4.5. Por outro lado, se o vetor tensão de referência localiza-se em um sextante par a seqüência tem de ser do nível superior para o nível inferior para o nível inferior (4, 3, 2, 1, 0). Conseqüentemente, o algoritmo usa um índice (S_type) para

identificar o sextante onde o vetor tensão de referência esta localizado. Sendo o sinal da onda portadora triangular e simétrica gerada por um contador simétrico "up/down" (crescente/decrescente), podem-se determinar os valores dos contadores das ondas modulantes para gerar os sinais de acionamento das chaves do inversor de acordo com a relação entre os estados das chaves e os níveis de tensão do inversor (apresentada na tabela 4.1) e de acordo com o sextante onde está localizado o vetor de referência V*. Se o vetor de referência localiza-se em um sextante impar, a função de ativação do comparador é dita alta ("'high"), ou seja, se o valor do contador é maior ou igual ao valor do sinal modulante, o sinal de saída recebe o nível lógico '1'. Em caso contrário, a função de ativação do comparador é dita baixa ('low"), ou seja, se o valor do contador é maior ou igual ao valor do sinal modulante, o sinal

Fase	Seqüência Direta												Seqüência Reversa													
Α	0	1	1	1	2	2	2	3	3	3	4	4	4	4	4	4	3	3	3	2	2	2	1	1	1	0
В	0	0	1	1	1	2	2	2	3	3	3	4	4	4	4	3	3	3	2	2	2	1	1	1	0	0
С	0	0	0	1	1	1	2	2	2	3	3	3	4	4	3	3	3	2	2	2	1	1	1	0	0	0
Razões Cíclicas	t _{gh} /10	t ₉ /8	t _h /8	t _{gh} /10	t ₉ /8	t _h /8	t _{gh} /10	t ₉ /8	t _h /8	t _{gh} /10	t _g /8	t _h /8	t _{gh} /10	t _{bh} /10	t _h /8	t ₉ /8	t _{gh} /10	t _h /8	t _g /8	t _{gh} /10	t _h /8	t ₉ /8	t _{gh} /10	t _h /8	t _g /8	t _{gh} /10
S _{A1}	T ₀		T ₁			T ₂			T ₃			T_4														
S _{A2}																										
S _{A3}		1 1 1																								
S _{A4}																										
	$ $ \leftarrow T_{s} \longrightarrow													s												\leftarrow

Figura 4.5 - Seqüência de chaveamento de uma tensão da fase A para o triângulo 1

Assim, considerando que V* está localizando em um sextante impar, tem-se os valores dos contadores determinados pelas expressões a seguir:

$$C_{S1} = T_0 + T_1 + T_2 + T_3$$

$$C_{S2} = T_0 + T_1 + T_2$$

$$C_{S3} = T_0 + T_1$$

$$C_{S4} = T_0$$
(4.19)

Se o vetor de referência localiza-se em um sextante par temos as seguintes expressões para os contadores:

$$C_{S1} = T_4$$

$$C_{S2} = T_4 + T_3$$

$$C_{S3} = T_4 + T_3 + T_2$$

$$C_{S4} = T_4 + T_3 + T_2 + T_1$$
(4.20)

Os valores dos comparadores T_{SAX} para a fase A são calculados a partir da soma do produto das razões cíclicas t_g , t_h e t_{gh} pelos seus respectivos pesos K_{gAx} , K_{hAx} e K_{ghAx} obtida pela seguinte equação.

$$T_{SAx} = K_{gAx}(L_H)t_g + K_{hAx}(L_H)t_h + K_{ghAx}(L_H)t_{gh}$$
(4.21)

Onde os coeficientes K_{gAx} , K_{hAx} e K_{ghAx} são pré-calculados e armazenados em forma de tabela consulta de acordo com o padrão de chaveamento pré-estabelecido. Os coeficientes para a fase A são indexados pelo número do triângulo no hexágono (L_H) onde o vetor de referência está localizado. Os coeficientes para as fases B e C são obtidos deslocando o índice usado para a determinação dos coeficientes da fase A, de 120° (2 sextantes) e 240° (4 sextantes) respectivamente, ou seja (L_H + 32) e (L_H +64).

A Figura 4.6 apresenta o diagrama lógico para obtenção dos sinais MLP para os níveis de uma fase do inversor de cinco níveis operando em sextante impar, e a Figura 4.7 apresenta o diagrama lógico para operação em sextante par.

Figura 4.6 - Lógica de geração das ondas para os sinais MLP no sextante impar

Figura 4.7 - Lógica de geração das ondas para os sinais MLP no sextante par

4.4 – Considerações da implementação utilizando DSP

A implementação deste algoritmo é considerada de esforço computacional reduzido, uma vez que todos os estágios são de fácil implementação.

O esforço computacional da estratégia da identificação do sextante onde V está localizado é muito baixo, uma vez que, utilizam-se o bit de sinal, operações lógicas booleanas e deslocamento de bits. A transformação do sistema dq0 para o sistema de coordenadas móveis é fácil, pois, envolve operações matemáticas simples.

Na identificação do triângulo, as partes inteiras e fracionárias são facilmente obtidas pela operação AND, isolando os bits desejados. A determinação das razões cíclicas apresenta um único padrão de cálculo, o esforço computacional é mínimo, uma vez que o DSP dispõe da função módulo (ABS).

O esforço computacional gasto na determinação dos valores dos comparadores para a geração dos tempos ON/OFF das chaves do inversor é proporcional à ordem deste. Pois, o número de chaves aumenta com a ordem do inversor. Esta etapa envolve consulta de tabelas, e a soma de produtos. O esforço computacional deste algoritmo é estimado em 550 ciclos de máquina para o DSP TMS320f240 da Texas Instruments®.

A geração dos sinais MLP das chaves do inversor são realizados por comparadores MLP externos ao DSP.

4.5. - Estudo de simulação

Um modelo MATLAB/Simulink de acionamento de um motor de indução controlado pelo princípio Volts/Hertz com um inversor de cinco níveis fonte de tensão foi construído e simulado com o algoritmo proposto. Os parâmetros do sistema de acionamento são dados pela tabela 4.3.

A performance do sistema foi estudada extensivamente usando diferentes índices de modulação (m) na faixa da região linear.

A Figura 4.8 ilustra desempenho (tensão de linha espectro da tensão de linha) do sistema com índice de modulação m = 0,20. Para este índice de modulação, a tensão de linha alterna entre -75 V e 0 V e entre 0 V e 75 V. O espectro harmônico da tensão de linha apresenta os harmônicos característicos, ou seja, múltiplos da freqüência de chaveamento, com ordem harmônica iguais a 96, 192, 288, e assim por diante.

300 V Tensão do elo CC (Vcc) Tempo de amostragem (T_s) 173,61 µS (f_s=5,760 kHz) Motor de Indução 1 Hp, 230 V, 4 pólos Faixa de freqüência: 0 – 60 Hz Fator de Potência (plena carga): 85% Eficiência: (plena carga): 85% Resistência do estator (Rs): $4,850 \Omega$ Resistência do rotor (Rr): $5,386 \Omega$ Indutância de dispersão do estator (Lls): 18,48 mH Indutância de dispersão do rotor (Llr): 20,53 mH Indutância de magnetização (Lm): 225 mH Momento de inércia do rotor (J): 0,01155 Kg.m² Carga: ventilador $[T_1 = k\omega r^2] \operatorname{com} k = 1.65 \times 10^{-5}$

Tabela 4.3 - Parâmetros do sistema de acionamento

Figura 4.8 - Desempenho do sistema para m = 0,20 (f = 60 Hz) (a) Tensão de linha (b) Espectro da tensão de linha

Com o aumento do indice de modulação para 0,40, a tensão de linha passa altenar entre -150 V e -75 V, -75 V e 0 V, 0 V e 75 V, e 75 V e 150 V, como pode ser veficar na Figura 4.9 (a). O espectro harmônico da tensão de linha é apresentado na Figura 4.9 (b).

(a) Tensão de linha

(b) Espectro da tensão de linha

A Figura 4.10 apresentam as formas de onda da tensão de linha e de seu espectro harmônico para o indice de modulação m = 0,60. Além das alternancias de tensão apresentadas para o indice de modulação m = 0,40, a forma de onda da tensão de linha apresenta as variações entre – 225 V e -150 V e 150 V e 225 V.

Figura 4.10 - Desempenho do sistema para m = 0,60 (f = 60 Hz) (a) Tensão de linha (b) Espectro da tensão de linha

Por fim, a Figura 4.11 apresentam-se as formas de onda para o indice de modulação 0,80. A forma de onda da tensão de linha apresenta todas as alternancias adjacentes possiveis para o inversor de cinco níveis, ou seja, -300 V e -225 V, -225 V e -150 V, -150 V e -75 V, -75 V e 0 V, 0 V e 75 V, 75 V e 150 V, 150 V e 225 V, e 225 V e 300 V.

Figura 4.11 - Desempenho do sistema para m = 0,80 (f = 60 Hz) (a) Tensão de linha (b) Espectro da tensão de linha

4.6 Conclusões

O novo algoritmo MLP vetorial utilizando coordenadas não-ortogonais para o inversor multinível com diodo de grampeamento VSI é proposto, sendo facilmente aplicável independentemente da ordem do inversor. O esforço computacional permanece o mesmo independentemente do número de níveis do inversor, exceto para a etapa de definição do padrão de chaveamento no cálculo dos tempos em que as chaves do inversor permanecem ligadas. O esforço computacional aumenta de acordo com a ordem do inversor.

O algoritmo tem a flexibilidade de usar qualquer padrão de chaveamento. O padrão de chaveamento completo proporciona um melhor equilíbrio das tensões dos capacitores do barramento CC.

As contribuições mais relevantes do algoritmo são a identificação do sextante e a identificação do triângulo onde a tensão de referência está localizada. As equações matemáticas envolvidas são de fácil implementação.

Os resultados de simulação comprovam o desempenho deste novo algoritmo.

Capítulo 5

5 Algoritmo da Modulação Vetorial Via Redes Neurais Artificiais

5.1 Introdução

Os inversores multiníveis fonte de tensão com diodo de grampeamento têm-se tornado recentemente, muito populares para aplicações de potência na ordem de multi-megawatts. A principal vantagem desta topologia inversora é a divisão de tensão, isto é, a tensão de saída é produzida através de pequenos degraus, portanto as chaves individuais são submetidas a apenas pequenos níveis de tensão. Outras vantagens são a baixa distorção harmônica na saída, baixa dV/dt e a faixa linear estendida. Na modulação vetorial para inversor multinível, a identificação dos três vetores mais próximos (TVP) pelo algoritmo convencional é muito complexa. Este envolve tarefas, tais como, identificação do setor e do triângulo onde o vetor de referência está localizado, pesquisa em tabelas, e muitas operações trigonométricas para o cálculo das razões cíclicas. Algumas simplificações deste algoritmo foram propostas em [38] e [39]. Basicamente, estes artigos propõem o uso de sistemas de coordenadas não ortogonais. Estas contribuições são importantes para a simplificação do algoritmo. Contudo, mesmo com estas simplificações, a complexidade do algoritmo é bem alta.

Este capítulo propõe uma MLP vetorial baseada em rede neural artificial (RNA) para acionar um inversor fonte de tensão de cinco níveis. Basicamente, esta abordagem usa duas redes neurais do tipo feed-forward multicamadas. A primeira RNA usa a amplitude e o ângulo do vetor tensão de referência para a determinação dos três vetores mais próximos encontrando o triângulo onde o vetor de referência localiza-se. A segunda RNA é usada para o cálculo das razões cíclicas dos três vetores espaciais. Os tempos dos estados de chaveamentos são calculados usando as razões cíclicas, as informações do sextante e do triângulo. Portanto, a parte mais complexa do algoritmo da MV é implementada por duas RNAs simples do tipo feed-forward multicamadas.

5.2. Inversor Multinível com MLP Vetorial

Como mencionado acima, o algoritmo MV convencional é muito complexo, e, portanto computacionalmente intensivo. A complexidade aumenta com o número de níveis (n) do inversor porque o número de estados de chaveamentos cresce com n.

Em um inversor de n-níveis, o número de estados de chaveamentos Ns é dado por:

$$N_s = n^3 \tag{5.1}$$

e o número de vetores espaciais de tensão N_v é dado por

$$N_V = n^3 - (n-1)^3 \tag{5.2}$$

Estes vetores de tensão dividem o plano d-q em N_T triângulos. A relação entre o número de triângulos e número de níveis do inversor é dado por:

$$N_T = 6.(n-1)^2 \tag{5.3}$$

Por exemplo, o inversor de cinco níveis apresentado pelo diagrama simplificado pela Figura 5.1, tem 125 estados de chaveamento dos quais 61 são vetores espaciais efetivos, e correspondentemente, o plano d-q é dividido em 96 triângulos, como pode ser visualizado pela Figura 5.2.

No algoritmo da MV, entre todos os vetores espaciais (N_v), apenas os três vetores mais próximos (TVP) do vetor de referência, isto é, os que se localizam nos vértices do triângulo que cercam o vetor de referência são usados para compor a tensão de saída. A Figura 5.2 apresenta os vetores espaciais e os triângulos correspondentes para o inversor de cinco níveis.

Figura 5.1 - Representação simplificada de um inversor de cinco níveis

5.2.1 Identificação do triângulo

Para assegurar alta qualidade harmônica na saída e o balanço da tensão nos capacitores mostrados na Figura 5.1, o uso da seqüência dos vetores para sintetizar a tensão de saída é importante. A seqüência correta é obtida pela identificação exata do triângulo onde o vetor de referência está localizado e a seleção apropriada entre os vetores de tensão redundantes apresentados na Figura 5.2. Por exemplo, o triângulo 1, apresentado na Figura tem conjunto de estados dados por 444/222/111/333/000, 332/221/443/110 e 322/211/433/100, respectivamente. Uma abordagem conveniente é identificar o triângulo equivalente considerando um sextante, independentemente do sextante aonde o vetor tensão de referência está localizado. O resultado deste método é uma simplificação significativa no cálculo das razões cíclicas (t_a , t_b , e t_c) do TVP. A simplificação é devido ao fato que o vetor tensão de referência pode ser considerado estando sempre no primeiro sextante o qual reduz consideravelmente o número de triângulos a serem identificados. Por exemplo, em um método MV convencional de um inversor de cinco níveis, a posição onde vetor de referência localiza, pode ser identificado no universo de 96 triângulos. No entanto, usando a simplificação proposta, este universo consiste em apenas 16 triângulos.

Uma estratégia para identificar o triângulo onde o vetor de referência localiza-se é obtida no capítulo anterior ou alternativamente em [37]. Esta estratégia [37] usa translação de coordenadas e um fator de rotação para determinar a seqüência de números de triângulos no primeiro sextante. A seqüência da ordenação é feita horizontalmente da esquerda para a direita. Outra estratégia foi desenvolvida no capítulo 4 onde a seqüência de ordenação é feita diagonalmente do centro para borda.

Figura 5.2 - Estados de chaveamentos no plano dq do inversor de cinco níveis

A principal vantagem desta ordenação é que ela generaliza a numeração dos triângulos para um inversor com qualquer número de níveis. Por exemplo, pelo uso deste esquema de ordenação, se o nível do inversor é três, certa numeração é adaptada. Após, se o número de níveis aumenta para quatro, a numeração que foi usada para o inversor de três níveis é definida e apenas o quarto nível dos triângulos é numerada. Isto é muito importante na generalização desta abordagem. Outra vantagem desta abordagem é que a seqüência de triângulos em que se faz através de dado índice de modulação (m) é de fácil previsão. Por exemplo, em um inversor de cinco níveis, se m = 0,90, os triângulos através no qual o vetor de referência deve passar são 10, 11, 12, 13, 14, 15, 16, (10+16), (11+16), e assim por adiante. Portanto, a seqüência de numeração permanece independente do número de níveis do inversor.

A Figura 5.3 apresenta a metodologia para numeração e seqüência correspondente de vetores para cada triângulo no sextante 1. A razão cíclica de cada vetor é obtida em acordo com o princípio do valor médio, que é dado por:

$$V_{1}t_{a} + V_{2}t_{b} + V_{3}t_{c} = V *$$

$$t_{a} + t_{b} + t_{c} = T_{S}$$
(5.4)

Onde V_1 , V_2 e V_3 são vetores dos vértices do triângulo, t_a , t_b e t_c são os respectivos tempos de chaveamento e T_s é o tempo de amostragem.

Figura 5.3 - Numeração dos triângulos e seqüência dos vetores para o sextante 1

5.2.2 Síntese do padrão de chaveamento

A estratégia do uso apropriado dos estados de chaveamentos redundantes (ver Figura 5.2) garante o número mínimo de chaveamentos, o conteúdo harmônico ótimo na saída, e melhor balanço das tensões dos capacitores do elo CC, como mencionado anteriormente. Na geração do padrão de chaveamento completo, todos os vetores redundantes são usados. No entanto, o algoritmo proposto é flexível no sentido que este possa usar o padrão de seqüência de chaveamento completo ou reduzido.

A seqüência dos estados em um período de amostragem (T_S) é predefinida e depende do número do triângulo no hexágono onde o vetor tensão de referência se localiza (L_H). Portanto, o número do triângulo pode ser obtido usando o número do sextante (*sext*) onde o vetor de referência localiza-se e número do correspondente triângulo no primeiro sextante (L_S). Esta relação é dada por

$$L_{H} = (S-1).16 + L_{S} \tag{5.5}$$

A equação (5.5) determina a posição (número) do triângulo no hexágono a partir do número do triângulo equivalente no sextante 1 mais um off-set de acordo com o número do sextante. No inversor de cinco níveis, para o sextante 1, 2, 3, 4, 5, e 6, os respectivos off-sets são 0, 16, 32, 48, 64 e 80. Esta relação simplifica consideravelmente o algoritmo para a determinação do número do triângulo.

No passo seguinte, o problema é a determinação do intervalo de tempo de cada nível de tensão no período de chaveamento da onda de tensão. A Figura 5.4 apresenta a síntese da forma de onda da tensão da fase A para o vetor de referência localizado no triângulo 1. Nesta forma de onda, por exemplo, para obter o valor do contador da chave S1A, segundo (4.19) devem-se somar os tempos $T_0 + T_1 + T_2 + T_3$. Como estes tempos são dependentes das razões cíclicas t_a , t_b e t_c , o valor do contador para geração do sinal de acionamento da chave S1A pode ser escrito como a somatória dos produtos das razões cíclicas pelos seus respectivos pesos, como é apresentado pela equação a seguir.

$$C_{S1A} = K_{aS1A}(L_H)t_a + K_{bS1A}(L_H)t_b + K_{cS1A}(L_H)t_c$$
(5.6)

Onde os coeficientes K_{aSIA} , K_{bSIA} e K_{cSIA} são os pesos das contribuições das razões cíclicas ta, tb e tc. Estes pesos são constantes para qualquer localização do vetor de referência V* em um determinado triângulo. Então, estes pesos são precalculados e armazenados em forma de tabelas consulta indexados por L_{H} . Na Figura 5.4, o coeficiente da razão cíclica t_a para o interruptor S1A, (K_{aSIA}) é obtido por (0 + 1/8 + 1/8 + 1/8) que totaliza (3/8) e o coeficiente da razão cíclica t_b (K_{bSIA}) é obtido por (1/10 + 1/10 + 1/10 + 1/10) que totaliza (2/5), e finalmente o coeficiente da razão cíclica t_c para o nível 4 (K_{cSIA}) é obtido por (0 + 1/8 + 1/8 + 1/8) que totaliza (3/8). Assim, para calcular os valores para os contadores das outras chaves usa-se o mesmo procedimento supracitado, baseado nas equações (4.19), (4.20) e (5.16).

_							_							-				-								
Fase					Se	equê	ncia	Dire	eta									Sec	luên	cia F	Reve	ersa				
Α	0	1	1	1	2	2	2	3	3	3	4	4	4	4	4	4	3	3	3	2	2	2	1	1	1	0
В	0	0	1	1	1	2	2	2	3	3	3	4	4	4	4	3	3	3	2	2	2	1	1	1	0	0
С	0	0	0	1	1	1	2	2	2	3	3	3	4	4	3	3	3	2	2	2	1	1	1	0	0	0
Razões cíclicas	t _b /10	t _a /8	$t_c/8$	t _b /10	t _a /8	t _c /8	t _b /10	t _a /8	t _c /8	t _b /10	t _a /8	t _c /8	t _b /10	t _b /10	t _c /8	t _a /8	t _b /10	t _c /8	t _a /8	t _b /10	$t_c/8$	t _a /8	t _b /10	$t_c/8$	t _a /8	t _b /10
S _{A1}	T ₀		\mathbf{T}_{1}			T_2			T ₃			T₄	T,	4A												
S _{A2}													T	3A												
S _{A3}													T	2A												
S _{A4}			T _{1A}																							
	\downarrow \leftarrow T_s \rightarrow													\rightarrow												

Figura 5.4 - Seqüência de chaveamento de uma tensão de fase para o triângulo 1

5.2.3 Síntese dos sinais MLP

As ondas MLP para as três fases podem ser geradas por palavras digitais correspondendo aos tempos ligados de cada interruptor com ajuda de um "electrically programmable logic device" (EPLD). Para assegurar o balanço das tensões, um padrão de chaveamento apropriado deve ser usado.

O padrão de chaveamento depende de onde o vetor de referência está localizado, se em um sextante impar (A, C, E) ou em um sextante par (B, D, F) [40]. Se o vetor de referência encontra-se em um sextante impar, a seqüência deve ser do nível inferior para o superior (0, 1, 2, 3, 4) como é apresentado na Figura 5.4. Por outro lado, se o vetor tensão de referência localiza-se em um sextante par, a seqüência de chaveamento deve ser do nível maior para o menor (4, 3, 2, 1, 0). Portanto, o algoritmo usa um índice para identificar o sextante em que está localizado o vetor tensão de referência. A Figura 5.5 apresenta o diagrama lógico de geração para obter os sinais MLP das chaves de uma fase do inversor de cinco níveis.

A síntese dos sinais MLP pode ser feita por um EPLD ou por um circuito lógico auxiliar.

Figura 5.5 - Lógica da geração de curvas para sinais MLP

5.3 – Modulação Vetorial via Redes Neurais

Conforme descrito na seção 5.2, o algoritmo MLP vetorial é muito complexo, e evidentemente a complexidade aumenta conforme o número de níveis do inversor aumenta. A

complexidade está localizada em duas etapas do algoritmo, isto é, (i) identificação do triângulo onde o vetor de referência está localizado e (ii) o cálculo das razões cíclicas.

As Redes Neurais Artificiais têm se mostrado muito úteis na implementação do algoritmo MV [40], [30]. Foi apresentado em [30] que os tempos de chaveamento podem ser determinados pelo uso de duas redes neurais. Uma RNA calcula a função amplitude de tensão, e a outra calcula a função ângulo. As saídas das duas RNAs são multiplicadas, e finalmente os tempos de chaveamento são obtidos pela somatória de uma constante ao produto. No entanto, esta estratégia é válida apenas para inversores de dois e três níveis, pois à medida que o número de níveis aumenta, a precisão desta estratégia se deteriora.

O trabalho proposto aqui é um melhoramento da estratégia sugerida em [46] e [47]. A Figura 5.6 apresenta o esquema de implementação com dois estágios da topologia de rede neural a qual é explicada a seguir:

Figura 5.6 - Diagrama de blocos da MV via RNAs para um inversor de cinco níveis

5.3.1 Identificação do Triângulo Via Rede Neural

A primeira RNA na Figura 5.6 mapeia a amplitude (V*) e o ângulo (θ *) do vetor tensão de referência para o número do triângulo equivalente (L_S) onde o vetor localiza-se, e L_S

é o número do triângulo no primeiro sextante. A identificação do triângulo é um caminho para determinar os três vetores de tensão que serão usados para sintetizar o vetor tensão de referência. A saída desta RNA alimenta dois blocos como apresentado na Figura 5.6, isto é, os vetores de pesos $\overline{W_1}$ e $\overline{W_2}$ da segunda RNA e bloco para determinação da seqüência de chaveamento na Figura 5.4. A RNA usada na identificação do triângulo é uma rede feedforward multicamadas. Para treinar esta RNA, um conjunto de dados de treinamento foi gerado usando o algoritmo desenvolvido no capitulo anterior. O toolbox de rede neural do MATLAB da MATH-WORKS foi usado no treinamento da RNA. O conjunto de dados de treinamento foi composto por 3361 padrões de entrada/saída. A topologia final da RNA é 2-3-3-1, isto é, 2 neurônios de entrada, duas camadas ocultas com 3 neurônios cada, e um neurônio de saída, a função de ativação usada para os neurônios das camadas ocultas foi do tipo tan-sigmoide, mas os neurônios das camadas de entrada e saída usaram a função de ativação linear. A RNA poderia ter apenas uma camada oculta para se obter um desempenho equivalente, mas o total de neurônios seria bastante elevado.

O critério de parada do treinamento usado foi o número máximo de épocas. Para esta RNA, o treinamento foi feito com 1250 épocas, e a soma do erro quadrático (SSE) após 1250 épocas foi 0,001. A RNA foi testada usando 200 padrões de entrada/saída escolhidos aleatoriamente, e os resultados foram muito bons. A Figura 5.7 apresenta a performance da RNA baseada na identificação do triângulo para um índice de modulação m = 0,53 (indicado pela curvas tracejadas nas Figuras 5.2 e 5.3). A RNA identificou os triângulos do primeiro sextante corretamente, o que demonstra o sucesso desta metodologia.

5.3.2 Cálculo das Razões Cíclicas Via Redes Neurais

A segunda RNA, apresentada na Figura 5.6, mapeia a amplitude e ângulo do vetor tensão de referência para as razões cíclicas dos TVP. Estas são palavras digitais correspondendo aos intervalos de tempo t_a , t_b e t_c , onde $t_a + t_b + t_c = T_s$. No entanto, dois problemas devem ser superados para treinar com sucesso a RNA para este mapeamento. O primeiro problema é relacionado ao tamanho do banco de dados para treinamento de todo hexágono porque as faixas de amplitude e ângulo do vetor tensão de referência em um inversor multinível são muito amplas. O segundo problema é a alta não linearidade entre as variáveis de entrada (amplitude e ângulo do vetor de referência) e variáveis de saída (razões cíclicas dos TVP).

A estratégia adotada foi o uso de uma RNA "quase dinâmica", isto é, a RNA tem um conjunto de pesos e bias para cada triângulo (L_S) no primeiro sextante que são atualizados pela primeira RNA de acordo com a posição (triângulo) do vetor tensão de referência.

A vantagem deste método é que ao invés do treinamento desta RNA para a faixa total do hexágono, é treinado para cada um dos 16 triângulos do primeiro sextante resultando em 16 conjuntos de pesos e bias.

Neste método, o treinamento é significantemente menos difícil (i) as não linearidades são muito menores em apenas um triângulo, o que aumenta a treinabilidade da RNA e (ii) o conjunto de dados de treinamento é muito menor do que para toda a faixa de operação.

Evidentemente, o treinamento para cada triângulo lida com um conjunto de dados que é 96 vezes menor, e, portanto o treinamento é muito mais fácil e consome menos tempo. O treinamento desta RNA usa 16 conjuntos de dados com 1327 padrões para cada triângulo. A topologia final da RNA é 2-10-2. A função de ativação dos neurônios ocultos é do tipo tansigmoide, e os neurônios das camadas de entrada e saída usam o tipo linear. O treinamento da RNA de cada triângulo, no pior caso, foi feito em 1500 épocas e a somatória do erro quadrático após 1500 épocas foi 1×10^{-10} . As Figura 5.8, 5.9 e 5.10 apresenta o desempenho da RNA para calcular as razões cíclicas t_a , t_b e t_c para o índice de modulação m = 0,53, e os erros correspondentes com os valores calculados usando as equações da MV. Observa se que os erros das razões cíclicas foram bastante insignificantes, indicando, assim, uma excelente performance da RNA.

Figura 5.7– Identificação do triângulo baseado na RNA para trajetória do vetor tensão de referência m = 0,53

Figura 5.9 – Cálculo da razão cíclica usando RNA (a) Razão cíclica *t_a* para m = 0,53 (b) Erros das razões cíclicas *t_a* e *t_b* para m = 0,53

Figura 5.10 – Cálculo da razão cíclica usando RNA (a) Razão cíclica *t_a* para m = 0,53 (b) Erros das razões cíclicas *t_a* e *t_b* para m = 0,53

Os sinais digitais correspondentes para t_a , t_b e t_c gerados por esta RNA são multiplicados pelos coeficientes dos sinais MLP para o EPLD mostrado na Figura 5.6. Os coeficientes são novamente obtidos de uma tabela consulta, onde o índice é L_H .

5.4 Resultados de Simulação

Um modelo MATLAB/Simulink de acionamento de um motor de indução controlado Volts/Hz com inversor de cinco níveis fonte de tensão foi construído para validar RNA proposta na abordagem MV. Após próprio treinamento e teste das duas redes neurais, o sistema é mostrado na Figura 5.6 foi incluído na simulação. Os parâmetros do sistema de acionamento são dados na Tabela 5.1.

A performance do sistema foi estudada extensivamente usando diferentes índices de modulação na região linear. A Figura 5.9 ilustra performances (tensão de linha, corrente de linha) do sistema com índice de modulação m = 0,53. As performances em outras condições de operação foram excelentes.

Tensão do elo CC (Vcc)	300 V
Tempo de amostragem (T_s)	500 μ S (f _s =2 kHz)
Motor de Indução	5 Hp, 230 V, 4 pólos
	Faixa de freqüência : 0 – 60 Hz
	Fator de Potência (plena carga): 0,85
	Eficiência (plena carga): 86%
	Resistência do estator (Rs): 0,5814 Ω
	Resistência do rotor (Rr): 0,4165 Ω
	Indutância de dispersão do estator (Lls): 3,479 mH
	Indutância de dispersão do rotor (Llr): 4,15 mH
	Indutância de magnetização (Lm): 78,25 mH
	Momento de inércia do rotor (J): 0,10 Kg.m ²
	Carga Ventilador $[T_L = \omega r^2]$: k= 8,25x10 ⁻⁵

Tabela 5.1 -	Parâmetros	do sistema d	e acionamento
---------------------	------------	--------------	---------------

5.5 Conclusões

Este capítulo propõe a modulação por largura de pulso vetorial baseada em RNA para um inversor de cinco níveis fonte de tensão. Esta abordagem usa duas RNAs para implementar o algoritmo MLP vetorial. Uma RNA foi usada para a identificação do triângulo, gerando a correspondente matriz pesos para a segunda RNA, e a matriz de coeficientes para ondas MLP. A segunda RNA foi usada para o cálculo das razões cíclicas dos três vetores mais próximos. A implementação da RNA baseada em MV, particularmente com "Application-Specific Integrated Circuit" ASIC, é consideravelmente mais simples do que a tradicional solução DSP. As RNAs foram projetadas, treinadas, e testadas e os resultados obtidos foram satisfatórios. A performance de um acionamento de um motor de indução controlado Volts/Hz com inversor cinco níveis foi avaliada extensivamente MV baseada RNA foi compatível aos resultados do modulador. A metodologia descrita pode ser facilmente estendida para inversores de ordem mais elevada.

Capítulo 6

6 Implementação do Algoritmo da MV Via Coordenadas Móveis Não-Ortogonais para Inversor de Três Níveis

6.1 Introdução

Neste capítulo propõe-se a implementação de um protótipo de um inversor de três níveis com MLP vetorial com coordenadas móveis não-ortogonais utilizando DSP TMS320F240 da Texas Instruments para confirmação com resultados experimentais para a abordagem teórica e dos resultados de simulação. Neste intuito, os seguintes tópicos são abordados neste capitulo: O inversor de três níveis do tipo grampeado, DSP TMS320F240, a implementação do algoritmo da MV em coordenadas móveis não-ortogonais usando o DSP TMS320F240, a descrição do protótipo implementado, resultados de simulação, resultados experimentais, e conclusões.

6.2 Inversor de três níveis do tipo com diodo de grampeamento

Como pode ser vista, a Figura 6.1 apresenta o inversor de três níveis do tipo com diodo de grampeamento. Este inversor possui os seguintes níveis de tensão 0, 1, 2; onde 0 é o nível conectado ao pólo negativo da fonte V_{CC} , 1 é o nível conectado ponto médio e 2 é o nível conectado ao pólo positivo da fonte V_{CC} .

Figura 6.1 – Inversor de três níveis com diodo de grampeamento

A Tabela 6.1 mostra a relação entre os estados de chaveamento (2, 1, 0) com estados ligado/desligado das chaves do inversor.

Nível de	Tensão de	S _{1X}	S _{2X}	S' _{1X}	S' _{2X}
Tensão	saída Van				
2	$V_{CC}/2$	Ligado	Ligado	Desligado	Desligado
		_	_	_	_
1	0	Desligado	Ligado	Ligado	Desligado
		_	_	_	_
0	- V _{CC} /2	Desligado	Desligado	Ligado	Ligado
		Ũ		-	-

 Tabela 6. 1 - Estados de chaveamento de um inversor de 3 níveis

A disposição dos vetores de chaveamento para o inversor de três níveis é apresentada na Figura 6.2, há 27 estados de chaveamento, sendo que 19 vetores são efetivos e 8 vetores são redundantes. Os vetores de chaveamento dividem o espaço em 24 regiões, sendo 4 regiões por sextante. De acordo com a amplitude dos vetores de chaveamento são divididos em nulos, médios e grandes. Existem 3 vetores nulos, 12 vetores médios e 12 vetores grandes.

Figura 6.2 – Estados de chaveamento no plano dq para inversor três níveis

6.2.1 Coordenadas móveis não ortogonais

Aplicando a transformação de coordenadas dq para coordenadas móveis não ortogonais (g, h), apresentada no capitulo 4, temos as seguintes equações para as componentes Vg e Vh:

$$V_{g} = Vx^{*} \left[\cos(\theta) - \frac{1}{\sqrt{3}} sen(\theta) \right]$$

$$V_{h} = \frac{2}{\sqrt{3}} Vx^{*} sen(\theta)$$
(6.1)

Onde, Vx* é o vetor de referência normalizado, dado por:

$$Vx^{*} = \frac{V^{*}}{V_{step3}}$$
(6.2)

Onde: V_{step3} é o passo de modulação para o inversor de três níveis.

$$V_{Step} = \frac{V_{\text{max}}}{(n-1)} \tag{6.3}$$

$$V_{Step3} = \frac{2V_{CC}}{3(3-1)} = \frac{V_{CC}}{3}$$
(6.4)

Assim:

$$Vx^* = \frac{3V^*}{V_{CC}}$$
(6.5)

Portanto, as projeções Vg e Vh são dadas por:

$$V_{G} = \frac{3V^{*}}{V_{CC}} \left[\cos(\theta) - \frac{1}{\sqrt{3}} \operatorname{sen}(\theta) \right]$$

$$V_{H} = \frac{3V^{*}}{V_{CC}} \frac{2\operatorname{sen}(\theta)}{\sqrt{3}}$$
(6.6)

As componentes do eixo d e q normalizadas são dadas por:

$$V_{d} = V^{*} \cos(\theta)$$

$$V_{q} = V^{*} sen(\theta)$$
(6.7)

Portanto,

$$\begin{bmatrix} V_G \\ V_H \end{bmatrix} = \frac{1}{V_{CC}} \begin{bmatrix} 3 & -\sqrt{3} \\ 0 & 2\sqrt{3} \end{bmatrix} \begin{bmatrix} V_d \\ V_q \end{bmatrix}$$
(6.8)

As matrizes Aij dos coeficientes são dadas por:

$$A_{11} = \begin{bmatrix} 3 & 3 & 0 & -3 & -3 & 0 \end{bmatrix}$$

$$A_{12} = \begin{bmatrix} -\sqrt{3} & \sqrt{3} & 2\sqrt{3} & \sqrt{3} & -\sqrt{3} & -2\sqrt{3} \end{bmatrix}$$

$$A_{21} = \begin{bmatrix} 0 & -3 & -3 & 0 & 3 & 3 \end{bmatrix}$$

$$A_{22} = \begin{bmatrix} 2\sqrt{3} & \sqrt{3} & -\sqrt{3} & -2\sqrt{3} & \sqrt{3} \end{bmatrix}$$
(6.9)

As equações para obtenção das partes inteiras ($V_{GU} e V_{HU}$), as partes fracionárias, o modo de operação, a localização do triângulo e o cálculo das razões cíclicas são iguais às desenvolvidas no capítulo 4.

6.3 DSP TMS320F240

O DSP TMS320C240 é um processador digital de sinais de 20 MHz, 16 bits ponto fixo desenvolvido pela Texas Instruments na década de 1990, direcionado para o acionamento e controle de máquinas, conversores estáticos, e outros, usando técnicas digitais. Neste intuito, ele é provido de conversores analógico-digital, temporizadores, unidade de geração de
modulação por largura de pulso, unidades de geração de tempo morto. A seguir são apresentadas algumas características do DSP TMS320C240:

- Núcleo da CPU TMS320Cxx:

- Unidade central lógica e aritmética de 32 bits;
- Acumulador de 32 bits;
- Multiplicador paralelo 16 bits x 16 bits com uma capacidade de produto de 32 bits;
- Três deslocadores de escala;
- Oito registros auxiliares de 16 bits com uma unidade aritmética dedicada para o endereçamento indireto da memória de dados.

- Memória:

- 544 palavras de 16 bits do chip de RAM de acesso dual dado/programa;
- 16 k palavras de 16 bits do chip ROM ou fash EEPROM.

- Controle de programa:

- operação pipeline de 4 níveis;
- pilha de hardware de 8 níveis,
- seis interrupções externas, interrupção proteção do acionamento de potência, Reset, interrupção não-mascarável e três interrupções mascaráveis.

Conjunto de instruções:

- código fonte compatível com a família DSP de ponto fixo TMS320;
- instruções simples para a operação de repetição;
- Instruções de multiplicação e acumulação em único ciclo;
- Instruções de movimento de bloco de memória para gerenciamento programa-dados;
- Capacidade de endereçamento indexado.

Potência:

• Tecnologia CMOS estática;

• Quatro modos de desligamento para reduzir o consumo de energia.

Velocidade: tempo do ciclo de instrução de 50 ns ou 20 milhões de instruções por segundo

(20 MIPS), com a maioria das instruções em ciclo único.

Gerenciador de eventos:

- 12 canais comparadores/MLP sendo 9 independentes;
- 3 contadores de 16 bits de uso geral com seis modos de contagem;
- 3 unidades de 16 bits comparação completa com capacidade de geração de tempo morto;
- 4 unidades capturas, duas das quais têm a capacidade de interface do pulso codificado em quadratura.

Dois conversores analógico-digitais de 10 bits:

- 28 pinos programáveis individualmente, pinos multiplexados de entrada e saída (I/O);
- Interface de comunicação serial (SCI);
- Interface de periféricos serial (SPI);

O DSP TMS320F240 possui três contadores de uso geral (GP timer), três unidades de comparação integral (Full compare units) e três unidades de comparação simples (Single compare units), unidades de tempo morto (dead-band) e um módulo dedicado para MLP vetorial. O DSP pode gerar até 12 saídas MLP das quais 9 são independentes.

Os contadores de uso geral podem ser configurados para operar em 6 modos selecionáveis:

- Pare/mantenha (Stop/hold) a operação do contador pára e mantém-se no seu estado corrente;
- Contagem crescente simples (Single up counting) o contador de uso geral conta até se igualar com o valor do registro do período, na próxima borda de subida do relógio de entrada, o contador reajusta para zero e desabilita a operação de contagem;

- Contagem crescente contínua (continuous up counting) o contador neste modo de operação apresenta o mesmo comportamento do modo contagem crescente simples repetido a cada vez que o contador é reajustado para zero;
- Contagem crescente/decrescente direcional (Directional up/down counting mode) neste modo de contagem o contador conta crescente ou decrescente de acordo com as entradas TMRDIR. Quando o pino TMRDIR permanece alto, ocontador conta até que seu valor atinja o período ou FFFFh. Quando TMRDIR permanece baixo o contador decresce até tornar zero, e quando o valor do contador é zero, o contador permanece em zero;
- Contagem crescente/decrescente simples (Single up/down counting) neste modo de operação, o contador conta no modo crescente até atingir o valor do registro de período. E depois muda a direção de contagem e conta decrescente até atingir zero, e permanece neste estado;
- Contagem crescente/decrescente contínua (continuous up/down counting) este modo é igual ao da contagem crescente/decrescente simples repetido cada instante que o contador é reajustado para zero.

As larguras de pulso das saídas MLP são determinadas pelos valores dos registros de comparação. Os registros de comparação são mascaráveis, permitindo à UCP escrever nestes registros em qualquer instante durante o período corrente. Os novos valores dos comparadores podem ser programados para tornarem ativos imediatamente ao underflow ou ao final do período.

As polaridades das saídas MLP podem ser controladas independemente pelo registro de ação do controle. As polaridades das saídas MLP podem ser ativa alta, ativa baixa, forçada alta, forçada baixa, permitindo o controle de diferentes tipos de dispositivos de potência, tais como IGBTs, MOSFETs de potência, e transitores bipolares.

Os registros de ação de controle são também mascaráveis, assim o usuário pode escrever nestes registros de ação de controle para alteração das polaridades das saídas MLP a qualquer instante durante um período de MLP.

A geração das saídas MLP é integralmente baseada em registros. Todos os registros são mapeados na memória de dados. Assim, a UCP tem acesso a eles como locações da memória de dados. Para gerar um determinado tipo de saída MLP, a UCP:

- Escreve nos registros de configuração de pinagem para configurá-la como saídas MLP;
- Escreve nos registros de controle dos contadores de uso geral, nos registros dos comparadores, nos registros de ação de controle, no registro de tempo morto, para configurar a freqüência da MLP, o tipo de forma de onda MLP a ser gerada, as saídas MLP, e o tempo morto;
- Continuamente faz atualizações dos registros dos comparadores baseados nas larguras de pulso normalmente calculadas.

6.4 - Implementação do algoritmo MLP vetorial para Inversor Três Níveis usando o DSP TMS320F240

A Figura 6.3 apresenta o diagrama de blocos do circuito para a implementação do algoritmo MLP para o inversor de três níveis. O programa de saída MLP é gerado em um computador pessoal e é transferido para o DSP. O DSP gera seis saídas MLP. Em um circuito lógico auxiliar as seis saídas são complementadas. As doze saídas MLP isoladas eletricamente com opto-acopladores e os sinais são enviados para o disparo das doze chaves do inversor que alimenta uma carga.

Figura 6.3 – Diagrama do circuito do inversor de três níveis

A Tabela 6.2 apresenta as configurações das polaridades das seis saídas MLP de acordo com o sextante que o vetor de referência está localizado.

rabela 0. 2 Configuração dos sinais MEL				
MLP Vetorial	Sextante A, C, e E	Sextante B, D e F		
MLP1	Ativo alto	Ativo baixo		
MLP2	Ativo alto	Ativo baixo		
MLP3	Ativo alto	Ativo baixo		
MLP4	Ativo alto	Ativo baixo		
MLP5	Ativo alto	Ativo baixo		
MLP6	Ativo alto	Ativo baixo		

Tabela 6. 2 – Configuração dos sinais MLP

O fluxograma geral é apresentado pela Figura 6.4. Primeiramente faz-se a configuração do sistema. Nesta etapa estabelece-se a forma em que o DSP deve operar. No próximo passo ajustam-se os temporizadores e as unidades de comparação. Após, inicializa-se as variáveis e reajustam-se os flags e depois limpa os flags de interrupção e habilita a interrupção. O DSP fica em estado de espera, aguardando o pedido de interrupção. Uma vez que a interrupção foi solicitada, o programa cancela o pedido de interrupção e executa os algoritmos Volts/Hertz e o MLP vetorial, e retorna ao loop e fica aguardando um novo pedido de interrupção.

Figura 6.4 – Fluxograma do programa geral

No algoritmo V/Hz, a tensão de referência Vout vária de acordo com o perfil volts/hertz desejado. O ângulo de fase θ do vetor de referência é obtido pela integração de 32 bits da velocidade de comando. A fim de obter as componentes d e q do vetor de referência tem-se que determinar o quadrante em que θ se encontra, mapear θ para o primeiro quadrante e gravar os sinais (+ ou -) do sen(θ) e cos(θ) de acordo com o quadrante aonde θ está localizado, usando uma tww2abela consulta baseada em θ obtêm-se sen(θ) e cos(θ) e as componentes dq do vetor tensão de referência. A Figura 6.5 apresenta o fluxograma do algoritmo V/Hz . Os valores de sen(θ) e cos(θ) são obtidos pela consulta a uma Tabela consulta, cujo índice resulta do produto do fator de indexação pelo ângulo θ . A precisão dos valores do sen(θ) e cos(θ) é garantida pelo uso de fator de indexação com 32 bits e pelo uso da interpolação.

Figura 6.5 – Algoritmo Volts/Hertz

O algoritmo da modulação MLP vetorial tem início a partir da obtenção das componentes d e q da tensão de referência. O passo seguinte é a obtenção do sextante em que o vetor de referência se encontra localizado para realizar a transformação dq para gh. Tendose os valores Vg e Vh são calculadas as componentes inteiras V_{GU} e V_{HU} , bem como as componentes fracionárias V_{GF} e V_{HF} . São também determinados o modo de operação Md, a localização do triângulo no sextante (L_S) em que V* se localiza no sextante, bem como a localização do triângulo no hexágono (L_H) e o tipo de triângulo (triang_type). A seguir determinam-se as razões cíclicas t_g , t_h e t_{gh} e os pesos das razões cíclicas para o cálculo dos valores dos contadores para a geração de sinais de acionamento das chaves do inversor. Os sinais MLP são transmitidos ao circuito lógico para a geração dos sinais complementares com

a inserção de tempo morto. Estes sinais complementares são isolados independemente por acopladores ópticos. Por ultimo, os sinais isolados são encaminhados para circuitos de gatilho para o acionamento dos interruptores do inversor.

Figura 6.6 – Algoritmo da MLP vetorial

O programa fonte do algoritmo da MV coordenadas móveis não-ortogonais para inversores de três níveis encontra-se no anexo D. Objetivando evitar perdas de performance do algoritmo devido a valores aproximados de constantes, erros de truncamento, tomou-se algumas precauções, tais como:

- uso da melhor representação em ponto fixo das variáveis e constantes;

uso de representação em 32 bits para variáveis e constantes consideradas sujeitas a erros
 e imprecisões, tais como a obtenção do ângulo (Θ), Vg e Vh;.

- Obtenção das variáveis seno(Θ) e cosseno(Θ) através interpolação de 32 bits.

Estimaram-se os tempos computacionais gastos nas diversas etapas do algoritmo MV coordenadas móveis não-ortogonais para o inversor de três níveis. O programa fonte foi dividido em três etapas:

- Geração do vetor de referência V* ;
- Modulação vetorial por coordenadas móveis não-ortogonais;
- Geração dos sinais de acionamentos dos interruptores.

A geração do vetor de referência engloba: o início da sub-rotina, a geração do ângulo (Θ) através integração de 32 bits, a obtenção do seno de (Θ) e cosseno de (Θ), e o cálculo de Vd e Vq. A Tabela 6.3 apresenta os tempos computacionais das tarefas envolvidas na geração do vetor de referência, sendo que o tempo computacional gasto nesta etapa é de 132 ciclos de máquina.

Geração do Vetor de Referência V*	Ciclos de máquina
Início Sub-rotina >	6
Geração do ângulo (Θ) através Int. de 32 bits,	53
Obtenção de sen (Θ) , cos (Θ)	66
Cálculo de Vd e Vq >	7
Total	132

Tabela 6.3– Tempo computacional para a geração V*

A etapa da MV por coordenadas móveis não-ortogonais envolve: a identificação do sextante, a normalização para o sistema de coordenadas móveis não-ortogonais, a

identificação do triângulo, o cálculo das razões cíclicas, o cálculo de Lh e triang_type, a obtenção dos pesos, obtenção dos valores dos contadores. A Tabela 6.4 apresenta os tempos computacionais das tarefas envolvidas na geração MV por coordenadas móveis não-ortogonais, sendo que o tempo total gasto nesta etapa é de 254 ciclos de máquina.

Tabela 6.4 – Tempo computacional da MV coordenadas móveis

MV por coordenadas móveis	Ciclos de máquina
Identificação do sextante	33
Normalização para o sist. coordenadas	39
Identificação do triângulo	28
Cálculo das razões cíclicas	14
Cálculo Lh e triang_type	8
Obtenção dos Pesos	75
Obtenção dos valores dos tempos	44
Obtenção dos valores dos contadores	13
Total	254

A etapa para a geração dos sinais MLP divide-se em: Tempo de condução mínimo, configuração do modo de contagem, e ativação dos registros para geração dos sinais MLP. O tempo computacional gasto nesta etapa é de 184 ciclos de máquina, como pode ser observado na Tabela 6.5.

Tusena ele Tempe comparacional para a geração aos s	
Geração dos sinais MLP	Ciclos de máquina
Tempo de condução mínimo	138
Configuração do modo de contagem	28
Ativação dos registros para Geração da MLP	18
Total	184

Tabela 6.5 – Tempo computacional para a geração dos sinais MLP

O tempo computacional gastos nas três etapas do algoritmo MV coordenadas móveis não-ortogonais totaliza 570 ciclos de máquina, ou seja 28,5 µs. Sendo que, cada ciclo de máquina é 50 ηs, e que o período de chaveamento para a frequencia de 10091 Hz é igual a 1802 ciclos de máquina. Portanto, para estas condições, este algoritmo utiliza cerca de 32 % da capacidade computacional do DSP TMS320F240.

6.5 Simulação do Algoritmo Coordenadas Móveis Não-Ortogonais para Inversor de Três Níveis

O algoritmo da MV coordenadas móveis não-ortogonais foi simulado no

MATLAB/Simulink. Os parâmetros de configuração do modelo da modulação vetorial para

inversores de três níveis e do Simulink foram:

Freqüência fundamental : 60 Hz
Freqüência de Chaveamento: 10091 Hz
Tensão do elo CC: 300 V
Valor máximo de contagem (geração de onda triangular simétrica): 991
Modelagem do Inversor ideal (interruptores ideais, sem necessidade de inserção de tempo morto)
Métodos de solução: ODE5.
Passo Fixo: 0,1 μs.

Para analisar o comportamento do inversor com a presente modulação varrendo toda faixa linear de operação, realizou-se simulações com os seguintes índices de modulações: m = 0,30, m = 0,48, m = 0,55, m = 0,70 e m = 0,90.

Índice de modulação 0,30

O vetor de referência com índice de modulação m = 0,30 descreve uma trajetória passando pelos triângulos (1, 5, 9, 13, 17, 21, 1) como pode ser verificado observando a Figura 6.7. A Figura 6.8 apresenta o gráfico da forma de onda da tensão Vab. Constata-se que esta forma de onda fase-fase apresenta os seguintes níveis de tensão ($-V_{CC}/2$, 0, e $V_{CC}/2$) caracterizando este modo de operação como similar ao inversor de dois níveis.

Figura 6.7 – Trajetória descrita por V* para m = 0,30

A Figura 6.9 apresenta o gráfico do espectro harmônico para a forma de onda apresentada na Figura 6.8. Nota-se a ocorrência de faixas de harmônicas localizadas em múltiplos da freqüência de chaveamento.

Figura 6.9 – Espectro Harmônico da tensão de linha para m = 0,30

Para o índice de modulação igual a 0,48, o vetor de referência descreve trajetória circular passando pelos triângulos (1, 3, 1, 5, 7, 5, 9, 11, 9, 13, 15, 13, 17, 19, 17, 21, 23, 21, 1, ...) como é apresentada na Figura 6.10. A Figura 6.11 apresenta a forma de onda da tensão Vab para o índice de modulação m = 0,48. Com a trajetória do vetor de referência cruzando os triângulos (3, 7, 11, 15, 19, e 23), nota-se o aparecimento na forma de onda da tensão Vab dos níveis de tensão ($-V_{CC}$ e V_{CC}). O espectro harmônico da tensão Vab apresentado na Figura 6.12, mostra-se a presença de todas as faixas harmônicas múltiplas da freqüência de chaveamento, destacando-se a terceira, a quarta e a primeira faixa.

Figura 6.11- Forma de onda da tensão Vab para o índice de modulação m = 0,48

Figura 6.12- Espectro harmônico da tensão Vab com índice de modulação m = 0,48

A Figura 6.13 apresenta a trajetória descrita pelo vetor de referência V* para o índice de modulação igual a 0,55, o vetor de referência descreve uma trajetória circular passando pelos triângulos (2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 2, ...) permanecendo intervalos de tempo maiores nos triângulos (3, 7, 11, 15, 19, e 23). A tensão de saída Vab apresenta todos os níveis de tensão possíveis como pode ser visto na Figura 6.14. O espectro harmônico da tensão de saída Vab é apresentado na Figura 6.15. Nota-se que, com o aumento do índice de modulação o conteúdo harmônico torna-se menor.

Figura 6.13 – Trajetória descrita por V* para m = 0,55

Figura 6.14 - Forma de onda da tensão de linha para o índice de modulação m = 0,55

Figura 6.15 – Espectro Harmônico da tensão de linha para m = 0,55

A trajetória percorrida pelo vetor de referência com índice de modulação igual a m = 0,70 apresentada na Figura 6.16 passa pelos mesmos triângulos vistos anteriormente; ressaltase que o vetor de referência não permanece a maior parte tempo nos triângulos (3, 7, 11, 15, 19, e 23) como no caso anterior. A tensão de saída no semiciclo negativo tem os pulsos entre os níveis ($-V_{CC}$ /2 e - V_{CC}) e no semiciclo positivo entre os níveis de tensão (V_{CC} /2 e V_{CC}) como pode ser notado na Figura 6.17. O espectro harmônico da tensão é apresentado na Figura 6.18.

Figura 6.16 – Trajetória descrita por V* para m = 0,70

Figura 6.17 - Forma de onda da tensão de linha para o índice de modulação m = 0,70

Figura 6.18 – Espectro Harmônico da tensão Vab com índice de modulação m = 0,70

<u>Índice de modulação 0,90</u>

A operação com índice de modulação igual a 0,90 está bem próxima da fronteira da região linear. A trajetória do vetor de referência passa pelos mesmos triângulos ditados para m = 0,55, e = 0,70. Ressalta-se que para este caso, o vetor de referência permanece intervalos de tempo nos triângulos (2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 2, ...) e uma parcela diminuta nos triângulos (3, 7, 11, 15, 19, e 23). A tensão de saída resultante é apresentada na Figura 6.20; a permanência do nível de tensão (+V_{CC}) no semiciclo positivo e do nível de tensão (-V_{CC}) no semiciclo são bem maiores do que nos casos anteriores. O conteúdo harmônico da tensão de saída é apresentado na Figura 6.21.

Figura 6.19 – Trajetória descrita por V* para m = 0,90

Figura 6.20 - Forma de onda da tensão de linha para o índice de modulação m = 0,90

Figura 6.21 – Espectro Harmônico da tensão de linha para m = 0,90

6.6 – Descrição do protótipo do inversor de três níveis

implementado

Foi implementado em laboratório um protótipo do inversor de três níveis com diodo de grampeamento. A Figura 6.22 apresenta todas as partes integrantes deste protótipo, kit do DSP TMS320F240, a interface para geração dos sinais das chaves, e o inversor de três níveis, o retificador trifásico com filtro capacitivo, motor de indução trifásico, carga resistiva trifásica, as fontes de alimentação isoladas.

A Figura 6.23 apresenta o kit do DSP TMS320F240, a interface lógica para geração dos sinais das chaves, e o inversor de três níveis. A interface lógica tem a função de receber os sinais MLP do DSP TMS320F240, padrão lógico (0 V e 5 V) e inserir tempo morto entre as chaves superiores e suas complementares, fornecer a isolação óptica dos sinais MLP provenientes da interface lógica e os sinais de acionamento das chaves.

Figura 6.22 – Visão geral do protótipo do inversor 3 níveis

Figura 6.23 – DSP TMS320F240 ,Interface para geração dos sinais das chaves, e o

Inversor de Três Níveis

O tempo morto inserido nos sinais MLP complementares foi de 1,4 μ s. A estratégia de inserção do tempo morto é apresentada no Anexo F. Os sinais MLP com inserção de tempo morto são isolados individualmente por meio de acopladores ópticos (HPCL 3180). O inversor de três níveis é composto 12 interruptores MOSFETs (k2740), seis diodos de grampeamento ultra-rápidos (MUR260). Associado a cada interuptor, há um circuito Snubber de tensão RCD com a finalidade de evitar picos de tensão sobre o interruptor no instante de bloqueio das chaves. Teve-se como parâmetro de projeto do circuito Snubber que o tempo de descarga do capacitor não fosse superior ao tempo morto (1,4 μ s). Os valores dos componentes foram resistor R = 100 Ω e 1 W de potência, capacitor de poliester C = 3,3 η F e tensão de 630 V e diodo rápido (1N4937). O circuito de gatilho das chaves é do tipo " totempole".

A Figura 6.24 apresenta as cargas utilizadas: motor de indução trifásico, carga resistiva trifásica. A carga resistiva trifásica está conectada em Y, obtida pela pela conexão de elementos resistivos de 270 Ω e 25 W, resultando em resistências por fase iguais a 135 Ω , 136,5 Ω , 137 Ω . A potência do motor de indução trifásico é ½ CV.

A Figura 6.25 apresenta retificador trifásico com filtro capacitivo para obtenção dos níveis de tensão 0 V, 1/2 V_{CC} e V_{CC}. O retificador trifásico é composto por seis diodos de uso geral (1N5408). O filtro capacitivo é composto por dois capacitores eletrolíticos 560 μ F e 450 V, ligados em série, sendo que conexão central fornece o nível de tensão (1/2 V_{CC}). Para equacionar as tensões nos capacitores foram utilizadas resistências em paralelo aos mesmos, de valores iguais a 10 k Ω e 5 W.

A Figura 6.26 apresenta as fontes de alimentação isoladas do DSP , da interface lógica, e dos circuitos de acionamento das chaves. A interface lógica é alimentada por uma fonte isolada 5 V, e o DSP e os circuitos de acionamentos dos interruptores são alimentados por fontes isoladas de 15 V.

Figura 6.24 – Cargas: Motor de indução trifásico, Carga resistiva trifásica

Figura 6.25- Retificador trifásico com filtro capacitivo

Figura 6.26 - Fontes Isoladas para alimentação do DSP e dos Drives

6.7 - Resultados Experimentais do Algoritmo MV Coordenadas Móveis Não-ortogonais para Inversor de Três níveis

Utilizando o protótipo do inversor de três níveis descrito na seção anterior, obtiveram-se os resultados experimentais para o algoritmo da MV coordenadas móveis não-ortogonais discutidos na seção 6.4. Os resultados foram obtidos através do osciloscópio Tektronix TDS TDS2024B para a seguinte configuração:

- Freqüência fundamental : 60 Hz
- Freqüência de Chaveamento: 10091 Hz
- Tensão do elo CC: 300 V
- Taxa de Amostragem do osciloscópio para a escala de tempo de 2,50 ms é 10 µs.

Foram realizados ensaios para diversos índices de modulação (m = 0,30, m = 0,48, m = 0,55, m = 0,70, e m = 0,90) objetivando levantar o desempenho do algoritmo proposto em toda faixa linear de operação.

A Figura 6.27 apresenta o gráfico da forma de onda da tensão Vab. Nota-se que esta forma de onda fase-fase apresenta os seguintes níveis de tensão ($-V_{CC}/2$, 0, e $V_{CC}/2$) caracterizando este modo de operação como similar ao inversor de dois níveis. O espectro harmônico da tensão Vab (ver Figura 6.28) mostra-se muito similar ao obtido pela simulação. A componente fundamental da tensão obtida na simulação foi 99,30 V e o valor obtido experimentalmente foi 93,70 V.

Figura 6.27 – Forma de onda da tensão de linha para m = 0,30

Figura 6.28 – Espectro harmônico da tensão de linha para m = 0,30

Para o índice de modulação igual a 0,48, a trajetória do vetor de referência cruza os triângulos (3, 7, 11, 15, 19, e 23). Pode-se notar na forma de onda da tensão Vab o aparecimento na forma de onda da tensão Vab , os níveis de tensão ($-V_{CC} e V_{CC}$), como pode ser visualizado na Figura 6.29.

Figura 6.29 – Forma de onda da tensão de linha para m = 0,48

O conteúdo harmônico da tensão Vab para o índice de modulação m = 0,48 é apresentado pela Figura Figura 6.30. O valor da componente fundamental é 152,35 V e o valor referente a simulação é 158,80 V.

Figura 6.30 – Espectro harmônico da tensão de linha para m = 0,48

Índice de modulação 0,55

A Figura 6.31 apresenta tensão de saída Vab. Nota-se que a presença de todos os níveis é mais bem caracterizado do que para o índice de modulação 0,48. O espectro harmônico da tensão de saída Vab é apresentado na Figura 6.32. O valor da componente fundamental para m = 0,55 obtido pela simulação é 181,90 V e o valor obtido experimentalmente é 174,80 V.

Figura 6.31 – Forma de onda da tensão de linha para m = 0,55

Figura 6.32 – Espectro harmônico da tensão de linha para m = 0,55

A forma de onda da tensão fase-fase para o índice de modulação igual a 0,70 é apresentada na Figura 6.33. Nota-se que as transições entre os níveis de tensão (1/2 V_{CC} e V_{CC}) e entre (-1/2 V_{CC} e - V_{CC}) são mais freqüentes que as transições entre os níveis de tensão (0 e V_{CC}) e entre (0 e - V_{CC}). O espectro harmônico da tensão é apresentado na Figura 6.34. Os valores de tensão das componentes fundamentais mostram-se bem próximos, o valor obtido na simulação é 231,50 V, enquanto que o valor obtido experimentalmente é 225,50 V.

Figura 6.33 – Forma de onda da tensão de linha para m = 0,70

Figura 6.34 – Espectro harmônico da tensão de linha para m = 0,70

A operação com índice de modulação igual a 0,90 é bem próxima da fronteira da região linear, ou seja, bem no início da operação na região denominada "square-wave" ou seis pulsos. A tensão de saída Vab é apresentada na Figura 6.35, a permanência do nível de tensão $(+V_{CC})$ no semíciclo positivo e do nível de tensão $(-V_{CC})$ no semíciclo são bem mais

evidenciados do que nos casos anteriores. O conteúdo harmônico da tensão de saída é apresentado na Figura 6.36.

Figura 6.35 – Forma de onda da tensão de linha para m = 0,90

Figura 6.36 – Espectro harmônico da tensão de linha para m = 0,90

6.8 Conclusões

Os resultados obtidos tanto pela simulação, como experimentalmente evidenciam a validação do algoritmo da modulação vetorial via coordenadas móveis não-ortogonais para o inversor de três níveis com diodo de grampeamento. Constata-se também que o algoritmo proposto é de fácil implementação e baixo esforço computacional. Ressalta-se que o algoritmo possui rotinas computacionais (identificação do sextante, normalização, identificação do triângulo, cálculo das razões cíclicas, determinação Lh) que são comuns aos inversores de três níveis, quatro níveis, cinco níveis, e até de n níveis. As rotinas de obtenção dos pesos das razões cíclicas, determinação dos contadores para geração dos sinais MLP dos interruptores dependem da ordem do inversor. Portanto, o algoritmo proposto pode ser generalizado para n níveis.

Capítulo 7

7 Implementação do Algoritmo da MV Via Redes Neurais para Inversor de Três Níveis

7.1 Introdução

Neste capítulo propõe-se a implementação de um protótipo de um inversor de três níveis com MLP vetorial via RNAs utilizando DSP TMS320F240 da Texas Instruments. Neste intuito, os seguintes tópicos são abordados neste capitulo: descrição do algoritmo da MV via Redes Neurais Artificiais para o inversor de três níveis, análise comparativa com o algoritmo MV tradicional, resultados experimentais, e conclusões.

7.2 Algoritmo da MV via Redes Neurais para Inversores de Três Níveis.

O algoritmo da MV via redes neurais proposto para inversores de três níveis utiliza-se dos conceitos desenvolvidos no capítulo 5, tais como: síntese do padrão de chaveamento, síntese dos sinais MLP, utilização de duas redes para obtenção da MV, ou seja, uma RNA para a identificação do triângulo onde se encontra o vetor de referência V* e outra para o cálculo das razões cíclicas. Ressalta-se, porém, que para o algoritmo desenvolvido para o inversor de três níveis, os dados de entrada são as componentes do vetor de referência referenciadas aos eixos dq, enquanto que para o inversor de cinco níveis, os dados de entrada são o módulo e ângulo do vetor de referência. A Figura 7.1 apresenta o diagrama de blocos do algoritmo da MV via redes neurais para o inversor de três níveis. Este algoritmo baseia-se no uso de duas RNAs, uma para a identificação do triângulo e outra RNA para o cálculo das razões cíclicas segundo a localização do vetor de referência no sextante.

Figura 7.1 - Diagrama de blocos da MV via RNAs para um inversor de três níveis

7.2.1 Identificação do Triângulo Via Rede Neural

Como o número de triângulos em um sextante para o inversor de três níveis é de apenas quatro, o mapeamento das grandezas Vd e Vq é menos complexo que para o inversor de cinco níveis. Como a rede neural Adaline divide a região em dois semiplanos, com o uso de três redes neurais deste tipo é possível mapear as quatro regiões contidas em um sextante, conforme é apresentado na Figura 7.2. A localização do vetor referência pode ser obtida com o uso da decodificação apresentada na Tabela 7.1.

Figura 7.2 – Mapeamento da região do sextante utilizando três Redes Neurais Adaline

Rede A	Rede B	Rede C	Saída	Triângulo
0	0	0	0	4
0	0	1	1	Externa
0	1	0	2	Externa
0	1	1	3	Externa
1	0	0	4	3
1	0	1	5	2
1	1	0	6	1
1	1	1	7	Externa

Tabela 7.1 – Decodificador para a obtenção da Triângulo onde se localiza V*

Sendo que as saídas (1, 2, 3 e 7) resultam em regiões caracterizadas como externas à região do sextante, inviáveis de ocorrência para vetores de referências válidos.

7.2.2 Cálculo das Razões Cíclicas Via Redes Neurais

O cálculo das razões cíclicas utiliza-se de estratégia apresentada na seção 5.3.2 que se baseia no uso de uma RNA quase dinâmica, ou seja, a topologia da rede se mantém comum, mas o conjunto de pesos e bias são ajustados de acordo com a localização (triângulo) do vetor de referência. O treinamento desta RNA usou 4 conjuntos de dados com 1327 padrões para cada triângulo. A topologia final da RNA Multi-Layer Percepton foi 2-3-2. A função de ativação dos neurônios ocultos é do tipo tan-sigmoide, e os neurônios de entrada e saída são do tipo linear. Os pesos e bias obtidos após o treinamento dos 4 conjuntos de dados são apresentados nas Tabelas 7,2, 7.3, 7.4 e 7.5.

Erro	1e-9	781 épocas	
Primeira	Pesos	[-0.17325977388969496 0.1966996300666746	
camada		-0.38663121006675366 -0.28151574495318521	
		12.072773893917754 7.8708516053226001];	
	Bias	[0.013560544514650446;0.1066979740193913;-	0.4716647332756167];
Segunda	Peso	[-12.133628435694941	-2.3233704815252971
camada		0.00056468992401360169	
		10.732655701930266	-4.8087258509472326
		0.0012346524377376243];	
	Bias	[0.41182905076725618;0.36630859276422395]	

Tabela 7.2 – Pesos e Bias para RNA triângulo 1

Tabela 7.3 – Pesos e Bias para RNA triângulo 2

Erro	1e-9	600 épocas
Primeira	Pesos	[-0.028981626839703085;0.29968593713059588]
camada		[0.26372770693730258; 0.12252424451552875]
		[-5.531335003091951;24.865053101890325]
	Bias	[-0.019439102892412866;-0.13521643408917269;-
		8.9639881422591365]
Segunda	Peso	[-1.0799704460051243;-11.497406659624081;-1.779499356797178]
camada		[11.065084670662136;1.2157450360639328;1.7908267666280551]
	Bias	[-1.3546768982898338;2.1702439735094385]
Erro	1e-9	536 épocas
----------	-------	---
Primeira	Pesos	[-0.26532001874924327 0.11158311066544528]
camada		[0.01980630122147458 0.321246863787992]
		[3.4865096873995833 30.474426636284907];
	Bias	[0.059751669850139029;-
		0.063571202851197578;2.4865166118614903]
Segunda	Peso	[-0.78468602160222201;-10.513790779059105;-0.69010128583284469]
camada		[11.416964870748368;1.4272805495867189;0.10218474029738138]
	Bias	[1.0688077767090463;0.30656667600588672]

Tabela 7.4 – Pesos e Bias para RNA triângulo 3

Tabela 7.5 – Pesos e Bias para RNA triângulo 4

Erro	1e-9	558 épocas
Primeira	Pesos	[-1.8135678390050789;1.4319663282191868]
camada		[-0.26043706816477452;-0.23424484980276125]
		[1.3724933710036038;-1.0821498133363585]
	Bias	[-0.67816515983983261;0.16886471615903867;-
		0.63221791413432205]
Segunda	Peso	[0.72617359002445592;-7.881589794835719;-1.2655074766985652]
camada		[-0.9290805720886709;-1.4442187084313849;1.6179340333546384]
	Bias	[0.050860398601016869;0.60066769670096132]

7.3 Análise Comparativa entre Algoritmo da MV via Redes Neurais e Algoritmo MV via Coordenadas Móveis Não-Ortogonais

O programa fonte do algoritmo da MV via Redes Neurais Artificiais para inversores de três níveis encontra-se no anexo E. Como a faixa de variação de pesos e bias apresentados nas Tabelas 7.2, 7.3, 7.4 e 7.5 é muito grande, foi necessário o desenvolvimento de um programa para cada triângulo no sentido de minimizar o erro por operações matemáticas sucessivas.

Para obter melhor precisão na obtenção do valor de ativação, a função tan-sigmoide foi dividida em oito segmentos e utilizou-se a interpolação em 32 bits.

Estimaram-se os tempos computacionais gastos nas diversas etapas do algoritmo MV via Redes Neurais para o inversor de três níveis. O programa fonte foi dividido em três etapas:

- Geração do vetor de referência V*;
- Modulação vetorial via RNA;
- Geração dos sinais de acionamentos dos interruptores.

A geração do vetor de referência engloba: o início da sub-rotina, a geração do ângulo (Θ) através integração de 32 bits, a obtenção do seno de (Θ) e cosseno de (Θ), e o cálculo de Vd e Vq como descrito na seção do capítulo anterior. A Tabela 7.6 apresenta os tempos computacionais das tarefas envolvidas na geração do vetor de referência, sendo que o tempo computacional gastos nesta etapa é de 137 ciclos de máquina.

Tabela 7.6 – Tempo computacional para a geração V*

Geração do Vetor de Referência V*	Ciclos de máquina
Início Sub-rotina >	6
Geração do ângulo (Θ) através Int. de 32 bits,	53
Obtenção de sen (Θ) , cos (Θ)	66
Cálculo de Vd e Vq >	12
Total	137

A etapa da MV via RNA envolve: a identificação do triângulo, o cálculo das razões cíclicas via RNA, o cálculo de Lh, a obtenção dos pesos, obtenção dos valores dos contadores. A Tabela 7.7 apresenta os tempos computacionais das tarefas envolvidas na geração MV via RNA, sendo que o tempo total gasto nesta etapa é de 347 ciclos de máquina.

MV via Redes Neurais	Ciclos de máquina
Identificação de triângulo	61
Rede cálculo das razões cíclicas Triângulo 1	272
Rede cálculo das razões cíclicas Triângulo 2	285
Rede cálculo das razões cíclicas Triângulo 3	286
Rede cálculo das razões cíclicas Triângulo 4	276
Obtenção dos Pesos	75
Obtenção dos valores dos tempos	44
Obtenção dos valores dos contadores	13
Total	347

Tabela 7.7 – Tempo computacional da MV coordenadas móveis

A etapa para a geração dos sinais MLP divide-se em: Tempo de condução mínimo, configuração do modo de contagem, e ativação dos registros para geração dos sinais MLP. O tempo computacional gasto nesta etapa é de 184 ciclos de máquina, como pode ser observado na Tabela 7.8.

Tabela 7.8 – Tempo computacional para a geração dos sinais MLP

Geração dos sinais MLP	Ciclos de máquina
Tempo de condução mínimo	138
Configuração do modo de contagem	28
Ativação dos registros para Geração da MLP	18
Total	184

Os tempos computacionais gastos nas três etapas do algoritmo MV via RNA totaliza 800 ciclos de máquina, ou seja, 40,0 µs. Sendo que, cada ciclo de máquina é 50 ηs, e que o período de chaveamento para a freqüência de 10091 Hz é igual a 1802 ciclos de máquina. Portanto, para estas condições, este algoritmo utiliza cerca de 44 % da capacidade computacional do DSP TMS320F240. Em relação ao algoritmo MV por Coordenadas móveis não-ortogonais o cálculo das razões cíclicas gastou um tempo computacional menor.

Utilizando o programa code-composer da Texas Instruments realizou-se uma análise comparativa entre o algoritmo Modulação Vetorial via Redes Neurais e o algoritmo da Modulação Vetorial utilizando coordenadas não-ortogonais móveis para os índices de modulação iguais a 0,30 0,70. A Figura 7.3 apresenta o gráfico dos números dos triângulos percorridos pelo vetor de referência para o índice de modulação igual 0,30 para os dois algoritmos propostos. Verifica-se que a identificação do triângulo via RNA é idêntica ao da MV por coordenadas móveis não-ortogonais.

Figura 7.3 - Gráfico dos números dos triângulos percorridos por V* para m = 0,30

A performance do cálculo das razões cíclicas via RNA pode ser visto pelas Figuras 7.4, 7.5 e 7.6 para ta, tb e tc respectivamente. Nota-se que os erros existentes são pouco significativos.

Figura 7.6 - Desempenho da razão cíclica t_c para m = 0,30
(a) Gráfico da razão cíclica t_c para m = 0,30
(b) Gráfico do erro da razão cíclica t_c para m = 0,30

As Figuras 7.7 e 7.8 apresentam respectivamente os gráficos para os valores dos contadores para os interruptores da fase A. Verifica-se que os erros entre os dois algoritmos são irrelevantes e que os erros ocorridos na determinação das razões cíclicas não foram transferidos integralmente para a geração da MLP.

 $\begin{array}{ll} Figura \ 7.7 & - \ Desempenho \ do \ comparador \ da \ chave \ S_{1A} \ para \ m = 0,30 \\ (a) \ Gráfico \ do \ comparador \ da \ chave \ S_{1A} \ para \ m = 0,30 \\ (b) \ Gráfico \ do \ erro \ do \ comparador \ da \ chave \ S_{1A} \ para \ m = 0,30 \\ \end{array}$

Figura 7.8 - Desempenho do comparador da chave S_{2A} para m = 0,30 (a) Gráfico do comparador da chave S_{2A} para m = 0,30 (b) Gráfico do erro do comparador da chave S_{2A} para m = 0,30

O gráfico dos números dos triângulos percorridos pelo vetor de referência para o índice de modulação igual 0,70 para os dois algoritmos propostos é apresentado na Figura 7.9. Verifica-se que a identificação do triângulo via RNA é idêntica ao da MV por coordenadas móveis não-ortogonais.

Figura 7.9 - Gráfico dos números dos triângulos percorridos por V* para m = 0,70

O desempenho do cálculo das razões cíclicas via RNA pode ser visto pelas Figuras 7.10, 7.11 e 7.12 para ta, tb e tc respectivamente. Nota-se que os erros existentes são pouco significativos.

Figura 7.11 - Desempenho da razão cíclica t_b para m = 0,70(a) Gráfico da razão cíclica t_b para m = 0,70(b) Gráfico do erro da razão cíclica t_b para m = 0,70

Figura 7.12 - Desempenho da razão cíclica t_c para m = 0,70
(a) Gráfico da razão cíclica t_c para m = 0,70
(b) Gráfico do erro da razão cíclica t_c para m = 0,70

Os gráficos para os valores dos contadores para os interruptores da fase A são apresentados pelas Figuras 7.13 e 7.14. Observa-se que os resultados aprsentados pelos dois algoritmos são muito próximos.

Figura 7.13 - Desempenho do comparador da chave S_{1A} para m = 0,70 (a) Gráfico do comparador da chave S_{1A} para m = 0,70 (b) Gráfico do erro do comparador da chave S_{1A} para m = 0,70

Figura 7.14 - Desempenho do comparador da chave S_{2A} para m = 0,70 (a) Gráfico do comparador da chave S_{2A} para m = 0,70 (b) Gráfico do erro do comparador da chave S_{2A} para m = 0,70

7.4 Resultados Experimentais do Algoritmo MV via Redes Neurais para Inversor de Três níveis

Utilizando o protótipo do inversor de três níveis, foram obtidos os resultados experimentais para o algoritmo da MV via redes neurais para a mesma configuração usada para o algoritmo MV por coordenadas móveis não ortogonais, ou seja:

- Freqüência fundamental: 60 Hz

- Freqüência de Chaveamento: 10091 Hz

- Tensão do elo CC: 300 V

Foram realizados ensaios para diversos índices de modulação (m = 0,30, m = 0,48, m = 0,55, m = 0,70, e m = 0,90) objetivando levantar o desempenho do algoritmo proposto em toda faixa linear de operação.

O gráfico da forma de onda da tensão fase-fase Vab é apresentado na Figura 7.15, sendo similar ao gráfico apresentado na Figura 6.27 obtido para o algoritmo MV por coordenadas móveis não-ortogonais. Ambos os gráficos apresentam os seguintes níveis de tensão ($-V_{CC}$ /2, 0, e V_{CC} /2) caracterizando este modo de operação como similar ao inversor de dois níveis. O espectro harmônico da tensão Vab é apresentado na Figura 7.16, sendo que o valor da componente fundamental obtida utilizando a MV via RNA (94,25 V) é muito próximo ao referido valor obtido experimentalmente utilizando a MV via coordenadas móveis não-ortogonais (93,70 V).

Figura 7.15 – Forma de onda da tensão fase-fase para m = 0,30

Figura 7.16 – Espectro harmônico da tensão fase-fase para m = 0,30

Para o índice de modulação igual a 0,48, nota-se na forma de onda da tensão Vab (ver Figura 7.17) o aparecimento os níveis de tensão (- V_{CC} e V_{CC}), que também foi constatato para o algoritmo da MV por coordenadas móveis (Figura 6.29). O conteúdo harmônico da tensão Vab para o índice de modulação m = 0,48 é apresentado pela Figura 7.18.

Figura 7.17 – Forma de onda da tensão fase-fase para m = 0,48

Figura 7.18 – Espectro harmônico da tensão fase-fase para m = 0,48

A Figura 7.19 apresenta tensão de saída Vab para o índice de modulação 0,48. O espectro harmônico da tensão de saída Vab é apresentado na Figura 7.19. Observa-se a similaridade de resultados para os dois algoritmos propostos.

Figura 7.19 – Forma de onda da tensão fase-fase para m = 0,55

Figura 7.20 – Espectro harmônico da tensão de linha para m = 0,55

Na forma de onda da tensão fase-fase para o índice de modulação igual a 0,70 apresentada na Figura 7.21, constata-se que o inversor opera durante o maior intervalo do tempo oscilando entre os níveis de tensão "1" e "2".

Figura 7.21 – Forma de onda da tensão fase-fase para m = 0,70.

O espectro harmônico da tensão fase-fase é apresentado na Figura 7.22. Os valores da tensão da componentes fundamentais para os dois algoritmos propostos mostram-se bem próximos, o valor obtido na simulação é 231,50 V, enquanto que o valor obtido

experimentalmente é 225,50 V para a MV por coordenadas móveis não-ortogonais e 222,85 V para a MV via RNA.

Figura 7.22 – Espectro harmônico da tensão fase-fase para m = 0,70

Índice de modulação 0,90

O gráfico da tensão Vab apresentado na Figura 7.23, nota-se a permanência por maior tempo nos níveis de tensão ($+V_{CC}$) no semíciclo positivo e do nível de tensão ($-V_{CC}$) no semiciclo negativo. O conteúdo harmônico da tensão de saída é apresentado na Figura 7.24.

Figura 7.23 – Forma de onda da tensão fase-fase para m = 0,90.

Figura 7.24 – Espectro Harmônico da tensão fase-fase para m = 0,90

7.5 - Conclusões

Neste capítulo apresentou-se o algoritmo da MV via RNA. Destaca-se a utilização de RNA "quase-dinâmica" em que os pesos e bias podem ser alterados, neste caso, segundo a região que se encontra o vetor de referência. A utilização das Redes Neurais Adaline mostrouse adequada para o mapeamento dos triângulos. Os valores das razões cíclicas obtidos pelo algoritmo proposto são pouco significativos, uma vez que, os sinais MLP gerados são muito próximos do padrão. De forma geral, a utilização de DSP de maior precisão (32 bits) diminuiria os erros em operações matemáticas sucessivas, os valores da função de ativação tan-sigmoide seriam mais precisos. Os resultados obtidos experimentalmente comprovam a viabilidade do algoritmo proposto.

Capítulo 8

8 Conclusões Gerais

A modulação por largura de pulso vetorial mostrou-se adequada para a implementação de inversores de dois níveis, bem como, para inversores multiníveis.

O algoritmo da MLP vetorial desenvolvido para o inversor de dois níveis foi bastante simplificado, apresentando as seguintes características: - cobre a região linear e de sobremodulação com um único algoritmo; - extrapola a estratégia da região linear para a região de sobremodulação; há redução do número de equações para o cálculo dos tempos de chaveamento. Como conseqüência o inversor pode operar em freqüências de chaveamento elevadas, superiores a 10 kHz.

O algoritmo da MLP vetorial desenvolvido para o inversor multinível com diodo de grampeamento utilizando coordenadas móveis não ortogonais é bem simples, pois as operações matemáticas são de fácil implementação. A estratégia da identificação do triângulo onde se localiza o vetor de referência para a escolha dos três vetores mais próximos, considerada de complexidade alta, tornou-se muito simples. Este algoritmo pode ser facilmente estendido para inversores multiníveis de ordem superior. Os resultados experimentais utilizando esta técnica de modulação foram satisfatórios comprovando a viabilidade do algoritmo proposto. A utilização do padrão de chaveamento completo teoricamente garante o equilíbrio das tensões dos capacitores do elo CC.

O algoritmo da modulação por largura de pulso vetorial utilizando redes neurais foi desenvolvido para um inversor fonte de tensão de com diodo de grampeamento de cinco níveis. Duas redes neurais foram utilizadas para realizar as partes mais complexas do algoritmo. A primeira rede neural faz a identificação do triângulo onde o vetor de referência está localizado. A segunda rede neural determina as razões cíclicas dos três vetores mais próximos. O desempenho da RNA quase-dinâmica para o cálculo das razões cíclicas mostrou

o potencial deste tipo de rede, uma vez, que possibilitou a diminuição das não linearidades, melhorando a convergência e treinabilidade das redes. Os resultados experimentais obtidos para o inversor de três níveis com a modulação vetorial usando redes neurais viabilizam esta estratégia.

Como sugestões para trabalhos futuros destacam-se:

- Análise e implementação com DSP da MLP vetorial usando redes neurais artificiais para o inversor com diodo de grampeamento de cinco níveis;
- Análise e implementação com DSP da MLP vetorial usando coordenadas não ortogonais para o inversor com diodo de grampeamento de cinco níveis;
- Desenvolvimento de uma MLP vetorial padrão de chaveamento reduzido para o inversor com diodo de grampeamento de cinco níveis.
- Implementação em FPGA da modulação vetorial usando coordenadas móveis nãoortogonais para inversores multiníveis.
- Utilização da modulação vetorial usando coordenadas móveis não-ortogonais para inversores multiníveis com capacitor flutuante e ponte em cascatas.

Publicações:

Como produtos deste trabalho foram publicados artigos nos principais congressos da área de Eletrônica de Potência e acionamentos de máquinas, descriminados abaixo:

- Industry Applications Society Meeting IAS ([56])
- Industrial Electronics Society Meeting IECON ([55])
- Congresso Brasileiro de Eletrônica de Potência COBEP ([53],[54])

Referências Bibliográficas

- [1] Joachim Holtz, "Pulsewidth modulation A survey", *IEEE Transactions on Industrial Electronics*, Vol.39, No. 5, Dec.1992, pp. 410-420
- [2] Alfred Busse and Joachin Holtz, "Multiloop control of a unity power factor fast switching AC to DC converter, *Conference Record of IEEE-PESC* 1982, pp. 171-179
- [3] Gerhard Pfaff, Alois Weschta, and Albert F. Wick, "Design and experimental results of a brushless AC servo drive", *IEEE Transactions on Industrial Applications*, Vol. IA-20, No. 4, Jul/Aug, 1984, pp. 814-821
- [4] Joachim Holtz, Peter Lammert and Wolfgang Lotzkat, "High-speed drive system with Ultrasonic MOSFET-PWM inverter and single-chip-microprocessor control", *IEEE Transactions on Industrial Applications*, Vol. IA-23, No. 6, Nov/Dec, 1987, pp. 1010-1015
- [5] Heinz W. Van Der Broeck, Hans-Chirstoph Skundelny, and Geor Viktor Stanke, "Analysis and realization of a pulsewidth modulator based on voltage space vector", *IEEE Transactions on Industrial Applications*, Vol. 24, No. 1, Jan/Feb, 1988, pp. 142-150
- [6] Yoshihiro Murai, Kazahuru Ohashi, and Isamu Hosono, "New PWM method for fully digitized inverters", *IEEE Transactions on Industrial Applications*, Vol. IA-23, No. 5, Sep/Oct, 1987, pp. 887-893
- [7] Shoji Fujuda, Yoshitaka Iwaji and Kirohazu Hasegawa, "PWM technique for inverter with sinusoidal output current" *IEEE Transactions on Power Electronics*, Vol.5, No. 11, Jan 1990
- [8] Thomas G. Habetler, "A space vector-based rectifier regulator for AC/DC/AC converters", Conference Record of EPE 1991, pp. 2101-2107
- [9] Joachim Holtz, Wolgang Lotzkat and Ashwin M. Khambadkone, "On continuous control of PWM inverters in the overmodulation range including the six-step mode", " *IEEE Transactions on Power Electronics*, Vol.8, No. 4, Oct 1993, pp. 546-553
- [10] Johann W. Kolar, Hans Ertl, and Franz C. Zach, "Influence of the modulation method on the conduction and switching losses of a PWM converter system," *IEEE Transactions* on *Industrial Applications*, Vol. 27, No. 6, Nov/Dec, 1991, pp. 1063-1075

- [11] Victor R. Stefannovic and Slobodan N. Vukosavic, "Space-vector PWM voltage control with optimized switching strategy", *IEEE-IAS Annual Meeting* 1992, pp.1025-1033
- [12] Andrzej M. Trzynadlowski, and Stanislaw Legowski, "Minimum-loss vector PWM strategy for three-phase inverters", *IEEE Transactions on Power Electronics*, Vol.9, No. 1, Jan 1994, pp. 26-34
- [13] Yoshihiro Murai, Yoichi Gohshi, Keiju Matsui, and Isamu Hosono, High-frequency split zero-vector PWM with harmonic reduction for induction motor drive", *IEEE Transactions on Industrial Applications*, Vol. 28, No. 1, Jan/Feb, 1992, pp. 105-112
- [14] H. S. Patel and R. G. Hoft, "Generalized techniques of harmonic elimination and voltage control in thyristors inverters: Part II Voltages control techniques", *IEEE Transactions on Industrial Applications*, Vol. IA_10, No. 5, Sep./Oct., 1974, pp. 666-673
- [15] G. S. Buja and G. B. Indri, "Optimal pulsewidth modulation for feeding AC motors", *IEEE Transactions on Industrial Applications*, Vol. IA_13, No. 1, Jan./Feb., 1977, pp. 38-44
- [16] K. Tanaguchi and H. Irie, "Trapezoidal modulating signal for three-phase PWM inverter", *IEEE Transactions on Industrial Electronics*, Vol IE-33, No. 2, May 1986, pp. 193-200
- [17] Joachim Holtz and Bernd Beyer, "Optimal synchronous pulsewidth modulation with a trajectory-tracking scheme for high-dynamic performance", *IEEE Transactions on Industrial Applications*, Vol. IA 29, No. 6, Nov./Dec., 1993, pp. 1098-1105
- [18] Phoivos D. Ziogas, "The delta modulation technique in static PWM inverters" *IEEE Transactions on Industrial Applications*, Vol. IA_17, No. 2, Mar./Apr., 1993, pp. 199-204
- [19] G. Venkataramanan and D. Divan, "Pulse width modulation with resonant DC link converters", *IEEE_IAS Annual Meeting Conference Record* 1990, pp. 984-990
- [20] M. H. Kleraluwala and D. M. Divan, "Delta modulation strategies for resonant DC link converters", *IEEE Transactions on Power Electronics*, Vol. 5, No. 2, pp. 220-288
- [21] R. D. Lorenz and D. M. Divan, "Dynamic analysis and experimental evaluation of delta modulators for field-oriented AC machine current regulators", *IEEE Transactions on Industrial Applications*, Vol. IA 26, No. 2, 1990, pp. 296-301

- [22] Géza Joos and Phoivos D. Ziogas, "On maximizing gain and minimizing switching frequency of delta modulated inverters", *IEEE Transactions on Industrial Electronics*, Vol IE-40, No. 4, Aug. 1993, pp. 436-444
- [23] A. M. Trzynadlowki, S. Legowski, and R. L. Kirlin, "Random pulse width modulation technique for voltage controlled power inverters," *IEEE-IAS Annual Meeting Conference Record 1987*, pp. 863-868
- [24] S. Legowski and A. M. Trzynadlowski, "Advanced randon pulse width modulation technique for voltage-controlled inverter drive systems", *IEEE-APEC Conference Record* 1991, pp. 100-106
- [25] Thomas G. Habetler and Deepakraj M. Divan, "Acoustic noise reduction in sinusoidal PWM drives using randomly modulated carrier," *IEEE-IAS Annual Meeting Conference Record 1989*, pp. 665-671
- [26] J. Holtz, "Pulsewidth modulation for electric power conversion", Proc. of IEEE, v. 82, 1994, pp 1194-1214.
- [27] H.W. Van Der Broeck, H.C. Skudelny and G. Stanke, "Analysis and realization of a pulse width modulator based on voltage space vectors", *IEEE Trans. on Ind. Appl.*, vol. 24, Jan./Feb. 1988, pp. 142-150.
- [28] S. Bolognani and M. Ziglitti, "Novel digital continuous control of SVM inverters in the overmodulation range", *IEEE Trans. on Ind. Appl.*, vol. 33, March/April 1997, pp. 525-530.
- [29] D.C.Lee and G.M.Lee, "A novel overmodulation technique for space vector PWM inverters", *IEEE Trans. Power Electronics*, vol. 13, , Nov. 1998, pp. 1144-1151.
- [30] J. O. P. Pinto, B. K. Bose, L. E. B. Silva and M. P. Kazmierkowski, "A neural-networkbased space-vector PWM controller for voltage-fed inverter induction motor drive" *IEEE Trans. Industry Applications*, vol. 36, no. 6, Nov. 2000, pp. 1628-1636.
- [31] Zhenyu Yu, Space-Vector PWM With TMS320C24x/F24x Using Hardware and Software Determined Switching Patterns; Texas Instruments Literature Number SPRA524.

- [32] B. K. Bose, *Modern Power Electronics and AC Drives*, Prentice-Hall, Upper Saddle River, 2002
- [33] A.Nabae, I. Takahashi and H. Akagi, "A New Neutral-Point Clamped PWM Inverter", IEEE Trans. on Industry Applications, vol.-17, pp. 518-523, Sept./Oct. 1981.
- [34] B. S Suh, G. Sinha, M. D. Manjrekar and T. A. Lipo, "Multilevel power conversion An overview of topologies and modulation strategies", Optimization of Electrical and Electronic Equipments, 1998. OPTIM '98. Proceedings of the 6th International Conference on ,Vol. 2, pp. AD-11 – AD-24 May 1998
- [35] J. Rodrigues, J. S. Lai and F. Z Peng, "Multilevel inverters: A survey of topologies,
- controls, and applications", IEEE Trans. Ind. Electronics, vol. 49, pp 724-738, August 2002
- [36] J. S. Lai and F. Z Peng, "Multilevel converters: A new breed of Power converters", IEEE Trans. Ind. Applications, vol. 32, pp 509-517, May/June 1996
- [37] O. Alonso, L. Marroyo and P. Sanchis, "A Generalized Methodology to Calculate Switching Times and Regions in SVPWM Modulation of Multilevel Converters", *Proc. EPE* '2001, 2001.
- [38] N. Celanovic and Boroyevich, "A Fast Space Vector Modulation Algorithm for Multilevel Three Phases Converters" *IEEE-IAS*, 1999.
- [39] D. Peng, F. C. Lee, and D. Boroyevich, "A Novel SVM Algorithm for Multilevel Three-Phase Converters", *IEEE PESC 02, 33rd Annual*, vol. 2, pp 509 –513,2002.
- [40] S. K. Mondal, J. O. P. Pinto and B. K. Bose, "A Neural-Network_based Space-Vector PWM Controller for a Three-Level Voltage-Fed Inverter Induction Motor Drive", *IEEE Transactions On Industry Applications*, vol: 38, pp 660-669, May/June 2002.
- [41] M. Cosan, H. Mão, D. Borojevic, and F. Lee, "Space Vector Modulation of Three Level Voltage Source Inverter," *VPEC Seminar Proc.*, pp 123-128, 1996.

- [42] P. M. Bhagwt and V. Stefanovic, "Generalized structure of a multilevel PWM inverters, IEEE Trans. on industry applications, vol.IA-19, 1983, pp. 1057-1069.
- [43] N. S. Choi, J. G. Cho, and G. H. Cho, A general circuit topology of multilevel inverter, in IEEE-PESC, 1991. 96-103.
- [44] T. Meynard and H. Foch, Multilevel conversion: High voltage chopper and voltage source inverters, in IEEE-PESC, 1992, pp.397-403.
- [45] M. Marchesoni, M Mazzucchelli, S. Tenconi, "A non conventional power converter for plasma stabilization", *IEEE Transactions on Power Electronics*, vol. 5, no. 2, April 1990
- [46] M. D. Manjrekar, P. Steimer , T. A. Lipo, "Hybrid multilevel power conversion system: A competitive solution for high power applications, " IEEE-IAS conference Record, 1999
- [47] M. Marchesoni, "High-performance current control techniques for applications multilevel high-power voltage source inverters," *IEEE Transactions on Power Electronics*, pp. 189-204, vol. 7, no. 1, January 1992
- [48] F. Z. Peng, J. S. Lai, J. McKeever, J. Van Coevering, "A multilevel voltage-source inverter with separate DC sources for static var generation," *IEEE-IAS Conference Record*, pp. 2541-2548, 1995
- [49] Bum-Seok Suh, Dong-Seok Hyun, "A novel n-level high voltage inversion system," IEEE Transactions on Industrial Electronics, vol. 44, no. 1, pp. 107-115, February 1997.
- [50] F. R. Dijkhuizen, J. L. Duarte, "Proper choice of flying capacitors based on distinct power dissipation models" *IEEE-IAS Conference Record*, vol.2, pp 1174-1180, 1998.
- [51] Y.Liang, C. O. Nwankpa, "A power line conditioner based on flying capacitor multilevel voltage source converter with phase shift SPWM," *IEEE-IAS Conference Record*, vol. 4, pp. 2337-2343, 1999.
- [52] G. Sinha, T. A. Lipo, "A Four Level inverter Based Drive with a passive front End." IEEE-PESC Conference Record, pp.590-596, Vol. 1 1997.

- [53] Nicolau P. Filho, J. O. P. Pinto, L. E. B. da Silva, "A simplified ultrafast DSP based space vector PWM algorithm with operation in under and overmodulation regions Analyses and implementation" Congresso Brasileiro de Eletrônica de Potência, pp. 174-179, 2003
- [54] Nicolau P. Filho, J. O. P. Pinto, L. E. B. da Silva, B. K. Bose, "Artificial neural networkbased space vector PWM for multi-level voltage fed inverters, Congresso Brasileiro de Eletrônica de Potência, pp. 438-443
- [55] Nicolau P. Filho, J. O. P. Pinto, B. K. Bose, L. E. B. da Silva, A simple and ultra-fast DSP-based space vector PWM algorithm and its implementation on a two-level inverter covering undermodulation and overmodulation, *IEEE-IECON Conference Record*, Nov/2004
- [56] Nicolau P. Filho, J. O. P. Pinto, B. K. Bose, L. E. B. da Silva, "A neural-network-based space vector PWM of a five-level voltage-fed inverter" *IEEE-IAS Conference Record*, Out/2004

Anexo A – Simulação do Inversor de Dois Níveis Usando o

MatLab-Simulink®

MLP Vetorial para o Inversor de Dois Níveis

Malha Aberta V/HZ

▶ <u>2</u> Vq1 0 Constant2 REF1 $\binom{2}{Vq}$ -1 ► >= Relational ► XOR Gain2 1 l Logical Operator Operator Gain REF2 0.5 Gain4 -► + + Relational Operator1 XOR Logical Operator1 2 Sum1 -→-K-Gain3 Gain1 (1 Vd REF3 Sum -Relational Operator2 2 Sum 2 ► 3 Sector Constant 3 Constant1 1 Constant3 TA-ON

Identificação do Sextante

Tempos de Chaveamento

PWM_A e Inversor

Geração dos Sinais dos Estados - Fase A

Anexo B – Programa Assembler da Modulação Vetorial para o Inversor de Dois Níveis

; File Name:	sv20k.asm						
: Include Files							
;							
	.include	c:\dsp\geral\F240.inc					
	.include	c:\dsp\geral\demos.inc					
	.include	C:\dsp\geral\vects.inc					
	.include	sv20k.inc					
,	data						
SORT32	.set 0ddbh	; $sqrt(3)/2$ no formato Q4.12					
SQRT3	.set 01bb6h	; sqrt(3) no formato Q4.12					
SQRT3inv	.set 093dh	; 1/sqrt(3) no formato Q4.12					
kv	.set 06c4h	; fator de tensão = 108.250 no formato Q12.4					
kvindex_	.set 049fbh	; fator * para obtenção de vindex da look_up Table em Q13.3					
ts_4	.set 07d0h	; ts/4 (125) no formato Q12.4					
PWMPRD	.set 500	; periodo = $500*2*50$ ns=50 us					
debug data	set 03fffh · 1	aa5h ·(25 Hz)					
A W .s	et 24151						
min_W_	.set 201						
* max_W_	.set						
A_Use	et 11597						
max_Us	set 5793						
min_Us	et 97						
T_sample_	.set 00346h	; D-9, $Ts = 50uS$, $Fs = 20KHz$					
	.include C:\	dsp\geral\fc20khz tab.inc					
	.include C:\	dsp\geral\theta.inc					

.bss valfa,1 .bss vbeta,1 .bss vsq,1 .bss fcv,1 .bss kvindex,1 .bss dx,1 .bss vindex,1 .bss vref1,1 .bss vref2,1 .bss vref3,1 .bss sector,1 .bss wa,1 .bss wb,1 .bss wc,1 .bss taon,1 .bss tbon,1 .bss tcon,1 .bss tmp,1

;=

```
.bss_stop,1
.bss index,1
.bss num amostras,1
.bss valfa1,1
.bss vbeta1,1
.bss adc0 7,1
.bss freq,1
.bss A_W,1
.bss S W,1
.bss min W,1
.bss max_U,1
.bss min U,1
.bss A U,1
.bss S U,1
.bss T_sample,1 ; sampling period: D-9
.bss THETAH,1 ; D3, angular position higher word
.bss THETAL,1; angular position lower word
.bss theta r,1; rounded THETAH
.bss one,1
.bss theta_90,1 ; 90: D3
.bss theta 120,1 ; 120: D3
.bss theta_180,1 ; 180: D3
.bss theta 240,1 ; 240: D3
.bss theta 270,1 ; 270: D3
.bss theta_300,1 ; 300: D3
.bss theta 360,1 ; 360: D3
.bss theta m, 1, 1;
.bss SS,1
.bss SC,1
.bss SP,1 ; sin table entry
.bss SIN 1stent,1; beginning of sin table
.bss SIN_lastent,1; end of sin table
.bss sin_theta,1; sin(THETA): D1
.bss cos_theta,1 ; cos(THETA): D1
.bss S UV,1
.bss Ud,1 ; voltage Ud: D4
.bss Uq,1; voltage Uq: D4
.bss GPR0,1 ; temporary storage
.bss theta 1stent,1; beginning of theta table
               ; fator adaptação de vhz e svpwm
.bss xk,1
       .text
```

_entry:

******	***************************************	*****
*	Atribuição de variáveis	*
*******	****************	*******
LDP	#_stop	

*

```
SPLK #0,_stop
     SPLK #0, index
     SPLK #024,num amostras ;número de amostras igual a
     SPLK #kvindex_,kvindex ;fator * para obtenção de vindex em Q13.3
       SPLK #1,one ; +1 => one
     SPLK #T_sample_,T_sample; sampling period
     SPLK #A W , A W ; D8, ADC to set W ratio
     SPLK #A_U_,A_U; D1, ADC to set U ratio
     SPLK #min W ,min W ; lower limit on set W
     SPLK #max U ,max U ; upper limit on set U
     SPLK #min_U_,min_U ; lower limit on set U
     SPLK #0,THETAL ; theta low byte
     SPLK #0,THETAH ; theta high byte
     SPLK #25736,theta 360 ; 2*pi
     SPLK #19302,theta_270;
     SPLK #12868,theta 180; pi
     SPLK #6434,theta 90 ; pi/2
     SPLK #1,SP
                             ; Init table 1st and last entries and table pointer
     SPLK #TB TH, theta 1stent
     SPLK #1,SP
     SPLK #TB_S,SIN_1stent
     SPLK #(TB S+180),SIN lastent
     SPLK #063cdh.xk
*****
                             *****
                                                                   *
                 Final Atribuição de variáveis
;Clear All EV Registers
  zac
  ldp #DP EV
  sacl GPTCON
  sacl T1CNT
  sacl T1CMP
  sacl T1PER
  sacl T1CON
  sacl T2CNT
  sacl T2CMP
  sacl T2PER
  sacl T2CON
  sacl T3CNT
  sacl T3CMP
  sacl T3PER
  sacl T3CON
  sacl COMCON
  sacl ACTR
  sacl SACTR
  sacl DBTCON
  sacl CMPR1
  sacl CMPR2
```

sacl CMPR3 sacl SCMPR1 sacl SCMPR2 sacl SCMPR3 sacl CAPCON sacl CAPFIFO sacl FIFO1 sacl FIFO2 sacl FIFO3 sacl FIFO4 ; timer will not start ADC automatically LDP #DP EV ; Event Manager Data Page Pointer LACC GPTCON AND #AND_T1TOADC_ ; AND mask for DISABLING ADC start on GPT1 SACL GPTCON ; configure GPTCON not to start ADC on GPT1 Event ; load and init timer and PWM registers: ; load GPT1 timer period with the PWM periode splk **#PWMPRD,T1PER** ; set GPT1 counter initial value zac SACL T1CNT SACL DBTCON ; set deadbeat parameters ; set action control register Active high/low states of PWM outputs in splk #666h,ACTR ; upper/lower legs (0x0666) ; set value for full compare unit 1 register LDP #DP EV splk #019h,CMPR1 ; set value for full compare unit 2 register splk #01Fh,CMPR2 ; set value for full compare unit 3 register splk #025h,CMPR3 ; set GPT1 control register splk #0A800h,T1CON ; timer in continuous up-down mode for symmetric PWM ; set FCU control register splk #0007h,COMCON ; full compare unit works in sym/asym PWM mode #07h ; carrega o endereço ISR p/ o vetor de interrupção no bloco B2 LACC #_t1uf ISR LDP #0 SACL tufint1vec ; carrega o endereço tluf ISR no vetor de Int. corresp. ; Desmascarar interrupções LDP #0 SETBIT IMR,SETB1 ; Desmascarar INT2 LDP #DP EV IMRA,SETB9; Habilita T1UFINT (ativa geração da int. por período SETBIT GPT1) ; start PWM generation COMCON, SETB15 ; enable FCU compare operation SETBIT SETBIT COMCON,SETB9 ;enable FCU output pins

SETBIT T1CON,SETB6 ;start GPT1 counter ldp #DP PF1 splk #0003h,ADCTRL2 spm 0 setc ovm setc sxm loop: ; call monitor CALL MON240 ; test if demo ends $(_stop =1)$ LDP #_stop BIT _stop,15 BCND loop,NTC END DEMO Interupção _t1uf_ISR - Space Vector PWM * ************ _tluf_ISR: ***** * Context Saving ****** mar *,ar7 ;context save mar *sst #1,*- ;status register 1 sst #0,*- ;status register 0 sach *- ;Accu. low saved for context save sacl *- ;Accu. high saved * END Context Saving * ; mar *,ar5 ; start A/D conversion LDP #DP PF1 splk #180bh,ADCTRL1 ; conversion bit ADCTRL1,8 bcnd conversion,tc Lacc ADCFIF01 splk #598bh,ADCTRL1 ldp #adc0_7 sfr sacl $adc0_7$

```
*
        splk #01aa5h,adc0_7 ;25hz
*
        splk #0354bh,adc0 7;50hz
*
        splk #03badh,adc0_7 ;56hz
*
        splk #03edfh,adc0_7 ;59hz
*
        splk #03ff0h,adc0 7;60hz
        Lacc adc0 7
        sacl freq
*
                 Calculate radian frequency
*****
        lt adc0 7
        MPY A W
        pac
        sach S W
        subh min W
        bgz nolimite
XXZ
        lacc min W
        sacl S W
nolimite
** Calculate magnitude of ref voltage Uout **
; Note const. V/Hz is implied
        MPY A_U; D0*D1=D(1+1)
        PAC;
        SACH S U,1; set U: D2
        lacc S U
        SUB max U; compare Uout with its upper
; limit
        BLEZ U_in_uplimit ; continue if within limit
        LACC max U; saturate if not
        SACL S_U;
U in uplimit
        LACC S U;
        SUB min U; compare Uout with its lower
; limit
        BGEZ U in lolimit; continue if within limit
        LACC min U; saturate if not
        SACLSU;
U_in_lolimit
**********
** Obtain theta (phase of Uout) through 32 bit integration **
LT S_W;
        MPY T sample ; D-9*D11=D(2+1)
        PAC;
```

ADDS THETAL ; ADDH THETAH ; SACH THETAH ; SACL THETAL ; accumulate: D3+D3=D3 SUBH theta 360; compare with 2*pi: D3-D3=D3 BLEZ Theta in limit; continue if within limit SACH THETAH ; mod(2*pi, THETA) if not Theta_in_limit ZALH THETAH; ADDS THETAL ; ADD one,15; SACH theta r; round up to upper 16 bits ************ ** Determine quadrant ** ; assume THETA (THETAH) is in quadrant 1 LACC one; assume THETA (THETAH) is in quadrant 1 SACL SS ; 1=>SS, sign of SIN(THETA) SACL SC ; 1=>SC, sign of COS(THETA) LACC theta r; SACL theta m; THETA=>theta m SUB theta 90; BLEZ E Q ; jump to end if 90 >= THETA ; assume THETA (THETAH) is in quadrant 2 if not splk #-1,SC ; -1=>SC LACC theta 180; SUB theta r; 180-THETA SACL theta_m ; =>theta_m BGEZ E Q ; jump to end if 180>=THETA ; assume THETA (THETAH) is in quadrant 3 if not splk #-1,SS ; -1=>SS LACC theta r; SUB theta_180; THETA-180 SACL theta m; =>theta m LACC theta 270; SUB theta r; BGEZ E_Q ; jump to end if 270>=THETA ; THETA (THETAH) is in quadrant 4 if not splk #1,SC ; 1=>SC LACC theta 360; SUB theta r; SACL theta m; 360-THETAH=>theta m ΕQ ** Obtain theta table entry ** ********************* ******* LACC theta 1stent; ADD SP;

	TBLR GPR0 ; get table(SP)
	LACC theta_m;
	SUB GPR0; compare theta m with
	; table(SP)
	BZ look end; end look-up if equal
	BGZ inc SP; increase SP if bigger
dec SP	LACC SP ; decrease SP other wise
_	SUB one :
	SACL SP : SP-1=>SP
	ADD theta 1stent : point to SP-1
	TBLR GPR0 : get table(SP-1)
	LACC theta m :
	SUB GPR0 · compare theta m with
	table(SP-1)
	BLZ dec. SP · decrease SP further if
	· smaller
	B look end imm to end if not
inc SP	LACC SP ·
	ADD one .
	SACL SP \cdot SP+1=>SP
	ADD theta 1stent point to SP+1
	TBLR GPR0 · get table(SP+1)
	LACC theta m
	SUB GPR0 compare theta m with
	· table(SP+1)
	BGZ inc. SP increase further if bigger
look end	· end if not
*******	******
** Obtenção d	le sin(theta) **
******	***************************************
	LACC SIN 1stent :
	ADD SP :
	TBLR sin theta : get sin(THETA)
	LT SS :
	MPY sin theta : modify sign: D15*D1=D(16+1)
	PAC :
	SACL sin theta ; left shift 16 bits and save:
	: D1
******	***************************************
** Obtenção d	le cos(theta) **
**********	****
	LACC SIN lastent;
	SUB SP;
	TBLR cos theta; get cos(THETA)
	LT SC ;
	MPY cos theta; modify sin: D15*D1=D(16+1)
	PAC;
	SACL cos theta; left shift 16 bits and save:
	; D1
********	******

** Calculate *********	Ud & Uq ** **********	*****	******
	LT S mpy pac sach	_U; ; Q3.13 xk ; Q2.14 ; Q5.25 S_UV,2; Q3.1	3
	lt S_V MPY PAC SAC zac MPY SPAC SAC	UV cos_theta;Ur ; H Ud,1; sin_theta;Ure C; H Uq,1;	ef*cos(THETA): D2*D1=D(3+1) ef*sin(THETA): D2*D1=D(3+1)
***********	*************************************	**************************************	**************************************
*********** **************************	lace l sacl v lace l sacl v lace l neg sacl v sacl v Região de Op	valta valfa Uq vbeta veração e Lê a L	**************************************
********** x1	***************** ldp splk #kv,fcv zac lt mpy sqra vbeta apac sach vsq,5	#********** #valfa ; transfere p/ valfa valfa	<pre>************************************</pre>
	lacc vsq sub #2000h sacl dx bcnd idsect,l lt kvindex mpy dx pac add #7fffh sach vindex	; eq ; ; ; ; ; ; ; ;	; r do index da lookup table
*	lacc #fcn add vindex tblr fcv	*****	*

Fim da Verificação da Região de Operação e Leitura da Lookup Table Identificação do Setor de Operação idsect lt valfa mpy #SQRT32 pac sub vbeta,11 sach vref2,3 ;xSxx xxxx xxxx Xxx Vref2 spac spac sach vref3.3 ;xSxx xxxx xxxx Xxxx Vref3 lacc vref2 ;xSxx xxxx xxxx xxxx xor vref3 XSxx xxxx xxxx xxxx; and #4000h ;0100 0000 0000 0000 sacl vref2,1 ;S000 0000 0000 0000 lacc vbeta Vref1 ;Sxxx xxxx xxxx xxxx ror XSxx xxxx xxxx xxxx; xor vref3 ;xSxx xxxx xxxx xxxx and #4000h ;0100 0000 0000 0000 or vref2 ;0\$00 0000 0000 0000 sach sector,2 ;SS00 0000 0000 0000 Final da Identificação do Setor de Operação * Cálculo do Termo g(valfa, vbeta) segundo o Setor de Operação * x5 Lacc #3 sub sector bcnd sec1 4,EQ ;verifica se sector = 1 ou 4sub #1 bcnd sec3_6,EQ ;verifica se sector = 3 ou 6; sector = 2 ou 5sec2 5 ldp #valfa lacc valfa,1 neg sacl wa ; wa no format Q4.12 lt vbeta mpy #SQRT3inv pac sach wc,5; wc no format Q4.12 lacc wc neg

sach

taon

*	sacl wb ; wb no format Q4.12 b taon_calc
*sec1_4	* ldp #valfa lt vbeta mpy #SQRT3inv pac add valfa,12 sach wc,4 lacc wc neg sacl wa lt vbeta mpy #SQRT32 pac sub valfa,11 neg sach wb,5 b taon_calc
*sec3_6	* ldp #valfa lt vbeta mpy #SQRT3inv pac sub valfa,12 sach wa,4 lacc wa neg sacl wb lt vbeta mpy #SQRT32 pac add valfa,11 sach wc,5 b taon_calc
* Final dc	*************************************
*******	**************************************
******	******
* Cálculo	o dos Tempos de Chaveamento e Grampeamento em Ts/2 e zero *
********	**************************************
*	*
taon_calc	lt fcv ;formato Q4.12 mpy wa ;formato Q12.4 pac add #ts_4,12 ; formato Q12.4

sat						
	bend	pstv_a,geq				
	zac					
	b	neg_a				
pstv_a	sub	#ts_4,13	;(#ts_2,12)			
	bend	tbon_calc,lt				
	lacc	#ts_4,13				
neg_a	sach	taon				
* *	Cálculo	e Grampeame	======================================	*	*	
*					*	
tbon_calc						
	mpy	wb ;form	ato Q12.4			
	pac					
	add	#ts_4,12	; formato Q12.4			
	sach	tbon				
	bend	pstv_b,geq				
	zac					
	b	neg_b				
pstv_b	sub	#ts_4,13	;(#ts_2,12)			
	bend	tcon_calc,lt				
	lacc	#ts_4,13				
neg_b	sach	tbon			*	
* <u>====</u> ================================	Cálculo	e Grampeame	nto de tcon em Ts/2 e zero	*	*	
*					*	
tcon_calc						
	mpy	wc	;formato Q12.4			
	pac					
	add	#ts_4	,12 ; formato Q12.4			
	sach	tcon				
	bend	pstv_c,geq				
	zac					
	b	neg_c				
nsty c sub		#ts 413	·(#ts 2 12)			
r***_• 540	bend	switch lt	,,_,_,			
	lace	#ts 4 13				
neg c	sach	tcon				
switch	Such	teon				
sie sie sie sie sie sie sie sie sie	in the state of a state of a	te ste ste ste ste ste ste ste ste ste	ale			
**********	• • • • • • • • •		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
*	SWII	CHING	ste			
*****	· · · · · · · · · · · · · · · · · · ·	*************	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
bldd	taon,#C	MPRI				
bldd	tbon,#C	MPK2				
bldd	tcon,#C	MPK3				
11111SN *********	******	*****	****			
* Context re	Context restore and Return					

END_ISR

Anexo C – Simulação do Inversor de Cinco Níveis Usando

o MatLab-Simulink®

Inverssor de cinco níveis

Malha aberta V/Hz

Identificação do Sextante

MLP, Inversor - Fase A

Tempos - Fase A

Cálculo de T4

Anexo D – Programa Assembler da MV usando Coordenadas Móveis Não-Ortogonais para Inversores de Três Níveis

; File Name:C:\work\1EX Vgh\EX1 vgh.asm versao:Final : Programador: Nicolau Pereira Filho ; Include Files .include c:\work\geraln\F240.inc .include c:\work\geraln\demos.inc .include C:\work\geraln\vects.inc .include mexp.inc .data T sample .set 013301; 10090.81 hz; ns=28 ;cont= 991 (dec) 00991; 10090.46 hz; ns=28 ;cont= 991 (dec) PWMPRD .set PWMPRDx .set 3964 *Vn .set 0517Dh; (0.6366), (20861d) = 1.00 pu *Vn_ .set 04957h; (0.5730), (18775d) = 0.90 pu*Vn_ .set 04131h; (0.5093), (16689d) = 0.80 pu*Vn .set 0390Bh; (0.4456), (14603d) = 0.70 pu(12516d) = 0.60 pu *Vn .set 030E4h; (0.3820), *Vn_ .set 02CD1h; (0.3), (11473d) = 0.55 pu *Vn_ .set 028BEh; (0.3183), (10430d) = 0.50 pu $Vn_$.set 02707h; (), (9991d) = 0.48 pu *Vn .set 02098h; (0.2546), (08344d) = 0.40 pu (06258d) = 0.30 pu *Vn .set 01872h; (0.1910), *Vn_ .set 0104Ch; (0.1273), (04172d) = 0.20 pu (02086d) = 0.10 pu *Vn .set 00826h; (0.0637), (02086d) = 0.10 pu.set Oddbh; sqrt(3)/2 no formato Q4.12 SQRT32 raiz3inv_ .set 049e7h ; 1/sqrt(3) no formato Q1.15 .set 06edah ; sqrt(3) no formato Q2.14 raiz3 theta_iH_ .set 023CFh; index p/ sen450_x1 449,75 .set 02995h; theta iL .set 01508; 05E4h (60 Hz) watual H .include C:\work\geraln\Sen450 x1.inc .include C:\work\geraln\coef xtab.inc .include C:\work\geraln\Sw1 gh tab.inc C:\work\geraln\Sw2 gh tab.inc .include ; variaveis space vector : inicio:a000: csla,1 .bss ;A000 .bss cs2a,1 ;A001 .bss cs1b,1 ;A002 .bss cs2b,1 ;A003 .bss cslc,1 ;A004 .bss cs2c,1 ;A005 ;A006 tsla,1 .bss .bss ts2a,1 ;A007 ts1b,1 .bss ;A008 .bss ts2b,1 ;A009 .bss ts1c,1 ;A00A .bss ts2c,1 ;A00B

.bss	kS1A g,1	;A00C
.bss	kS1B g,1	;A00D
.bss	kS1C g,1	;A00E
.bss	kS1A h,1	; A00F
.bss	kS1B h,1	:A010
bss	kS1C h.1	; A011
bss	$kS1A \alpha h_1$: A012
hss	$k S 1 R \ ah \ 1$	• 2013
hee	$k \leq 1C$ ah 1	• 2014
hee	$k \leq 2 \Delta q = 1$	• 2015
hee	kS2R = g	• 2016
.bss hee	$kg^{2}C \neq 1$	• 1 0 1 7
.uss hee	$k_{S2C} g_{I}$	• 7 0 1 8
.bss	k_{0}^{2} h 1	· 7 0 1 0
.bss	$k_{0}2D_{1}$, A013
.DSS	$K_{0} \geq C_{1} = 1$, AUIA
.DSS	KSZA_GII, I	;AUIB
.DSS	KSZB_gfl, I	;AUIC
.DSS	KSZC_gn,I	;AUID
.DSS	KSI, I;	;AULE
.bss	KSZ,1;	; AULF
.bss	tipo,l	; AU2U
.bss	actrx, 1	;A021
.bss	sactrx, 1	;A022
.bss	gptx, l	;A023
.bss	PWMPRD, 1	;A024
.bss	PWMPRDx,1	;A025
.bss	watual_H,1	;A026
.bss	watual_L,1	;A027
,		2.000
.bss	theta_60H,1	;AU28
.bss	theta_60L,1	;AU29
.bss	theta_90H,1	; AUZA
.bss	theta_90L,1	;A02B
.bss	theta_180H,1	;A02C
.bss	theta_180L,1	; A02D
.bss	theta_360H,1	; AUZE
.bss	theta_360L,1	; AU2E'
.bss	theta_1H,1	;A030 fator p/ obter th_index
.bss	theta_iL,1	;A031
.bss	T_sample,1	;A032; periodo de amostragem
.bss	THETAH,1	;A033; posiçao angular alta
.bss	THETAL, 1	;A034; posiçao angular baixa
.bss	theta_xH,1	;A035; posiçao angular alta
.bss	theta_xL,1	;A036; posiçao angular baixa
.bss	temp,1	;A037
.bss	ptemp2,1	;A038
.bss	temp1,1	;A039
.bss	semi_ciclo,1	;A03A
.bss	sext,1	;A03B
.bss	sector,1	;A03C
.bss	sin_indx,1	;A03D
.bss	sin_end,1	;A03E fim da tabela de senos
.bss	ss,1	;A03F sinal senos
.bss	sc,1	;A040 sinal cossenos
.bss	sin theta,1	;A041 sin(THETA)
.bss	cos_theta,1	;A042 cos(THETA)
	—	

.bss	sin_entry,	1 ;A043	início	da tab	ela c	los	senos
.bss	coef_entry	,1 ;A044					
.bss	sect_entry	,1 ;A045					
.bss	xH_temp,1	;A046					
.bss	xL_temp,1	;A047					
.bss	x1_dif,1	;A048					
.bss	Vn,1	;A049					
.bss	Ud,1	;A04A					
.bss	Uq , 1	;A04B					
.bss	vref1,1	;A04C					
.bss	vref2,1	;A04D					
.bss	vref3,1	;A04E					
.bss	A11,1	;A04F					
.bss	A12,1	;A050					
.bss	A21,1	;A051					
.bss	A22,1	;A052					
.bss	vg_H,1	;A053					
.bss	vg_L,1	;A054					
.bss	vh_H,1	;A055					
.bss	vh_L,1	;A056					
.bss	vgu,1	;A057					
.bss	vhu,1	;A058					
.bss	md,1	;A059					
.bss	vgf_H,1	;A05A					
.bss	vgf_L,1	;A05B					
.bss	vhf_H,1	;A05C					
.bss	vhf_L,1	;A05D					
.bss	Ls,1	;A05E					
.bss	Ls0,1	;A05F					
.bss	tria_type,	1 ;A060					
.bss	Lh,1	;A061					
.bss	tg,1	;A062					
.bss	th,1	;A063					
.bss	tgh,1	;A064					
.bss	txx,1	;A065					
.bss	raiz3,1	;A066					
.bss	xtmp,1	;A067					
.bss	_stop,1	;A068					
.bss	index,1	;A069					
.bss	num_amostr	as,1 ;A06A					
.bss	num_conver	soes,1	;AU6B				
.text							
; _entry:							
	strib war						
Call	atrib_var						
Call	clear_reg						
;=====================================		rts here	=======		=====		
; EV PWM T	est						
,==== ;EV_PWM:	E	;Resets WD	counter	=	=		=

191

config PWM LDP #DP PF2 ;DP-->7080h-70FFh SPLK #OFFFFh, OPCRA ;Set IOPA pins and IOPB pins ; to primary function. SPLK #0FFF3h, OPCRB ;Set IOPC pins to primary ;function LDP #DP EV ; change dp for EV control regs ; Initialize counter registers SPLK #00000H,T1CNT ; GP Timer 1 counter SPLK #00000H,T2CNT ; GP Timer 2 counter SPLK #00000H,T3CNT ; GP Timer 3 counter ; Initialize period registers LDP #cs1a BLDD PWMPRD, #T1PER BLDD PWMPRD, #T2PER BLDD PWMPRD, #T3PER LDP #DP EV ; Initialize compare registers ; F. Comp U 1 compare value SPLK #0005,CMPR1 SPLK #0005,CMPR2 ; F. Comp U 2 compare value SPLK #0005,CMPR3 ; F. Comp U 3 compare value SPLK #0010,SCMPR1; S. Comp U 1 compare valueSPLK #0010,SCMPR2; S. Comp U 2 compare value SPLK #0010, SCMPR3 ; S. Comp U 3 compare value SPLK #0500,T1CMP ; GP Timer 1 Compare Value SPLK #0500,T2CMP ; GP Timer 2 Compare Value SPLK #0500,T3CMP ; GP Timer 3 Compare Value ; Configure ACTR - PWM1-6 outputs active low SPLK #00555h, ACTR ; ; Configure SACTR - PWM7-9 outputs active low SPLK #00015h, SACTR ; Configure COMCON - GPT1, PWM mode, reload on UF, compare enabled, outputs enabled SPLK #00307h, COMCON ; Configure GPTCON - All 3 TxCMP outputs configured Active Low SPLK #00066h,GPTCON ;active high ; Configure T3CON, but wait for T1CON enable SPLK #0A8C3h,T3CON ;use T1 ena, int clk,tcmp ena, *reload on UF ; Configure T2CON SPLK #0A8C3h,T2CON ;use T1 ena,int clk,tcmp ena, reload on UF ; Configure T1CON and start GP Timers 1&2 SPLK #0A802h,T1CON ;C-U, ps=1,int clk,tcmp ena, reload on UF * SPLK #0A80Ah,T1CON ;C-U,ps=1, int clk, tcmp ena, reload imediato ; carrega o endereço ISR p/ o vetor de interrupção no bloco B2 LACC # tluf ISR LDP #0

```
SACL tufintlvec ; carrega endereço tluf ISR vetor de Int.
corresp.
; Desmascarar interrupções
   LDP #0
   SETBIT
           IMR,SETB1 ; Desmascara INT2
      #DP EV
   LDP
           IMRA, SETB9 ; Habilita T1UFINT (ativa geração da int.
   SETBIT
por período GPT1)
           COMCON, SETB15
   SETBIT
                      ;enable FCU compare operation
   SETBIT
           COMCON, SETB9
                      ;enable FCU output pins
                      ;start GPT1 counter
           T1CON, SETB6
   SETBIT
; Loop for operation to continue
LOOP
   LDP #xtmp
   LACC xtmp
loop add #1
   NOP
   NOP
   NOP
   SACL xtmp
   BGEZ loop
   SPLK #00, xtmp
   B LOOP
*
   Interupção tluf ISR - Modulação Vetorial GH
*****
tluf ISR:
   SPM
           \cap
   SETC
           ovm
   SETC
           sxm
   LDP
           #cs1a
   SPLK
           #watual_H_,watual_H
*****
                                              * *
** Obtenção de theta (fase de Uout) através de int de 32 bits
Obter theta
   LT
           watual H
   MPY
           T sample
   PAC
   ADDS
           THETAL ;
   ADDH
           THETAH ;
   SACH
           THETAH ;
   SACL
           THETAL ;
           theta 180L ; compara com pi
   SUBS
   SUB
           theta_180H,16 ;
           Theta_in_pi ; continue if within limit
   BLEZ
   SACH
           THETAH ; mod(pi, THETA) if not
           THETAL
   SACL
           semi ciclo
   LACC
   ADD
           #1
           #1
   AND
```

	SACL	semi ciclo
Theta	in pi	_
	LACC	THETAH,16
	ADDS	THETAL
	SACH	theta xH
	SACL	theta xI.
	SIIBS	theta 90L · compara com pi/2
	SUB	theta $90H$ 16 ·
		Theta jn 90
		theta_III_90
	SUBS	LIELA_90L ;
	SUB	tneta_90H,16;
	NEG	
	SACH	theta_xH ;2 ou 4 quadrante
	SACL	theta_xL
	SPLK	#OFFFFh,ss
	SPLK	#00001h,sc
	LACC	semi_ciclo
	BLEZ	sin_cos
	SPLK	#00001h,ss
	SPLK	#OFFFFh,sc
	В	sin cos
Theta	in 90	_
	SPLK	#OFFFFh,ss
	SPLK	#OFFFFh,sc
	LACC	semi ciclo
	BLEZ	sin cos
	SPLK	#00001b ss
	SDIK	#00001h sc
*****	*********	***************************************
*****	**************************************	(************************************
* * * * * * * * * * * *	sin(thet	<pre>call coll coll coll coll coll coll coll</pre>
*****	<pre>sin(thet ***********************************</pre>	<pre>called control co</pre>
***** * ***** sin_c	<pre>sin(thet ***********************************</pre>	<pre>content content c</pre>
***** * ***** sin_c	**************************************	<pre>theta_xL</pre>
***** * sin_c	**************************************	<pre>table i, i = 1; i</pre>
***** * sin_c	<pre>sin(thet ***********************************</pre>	<pre>theta_xL temp1</pre>
***** * sin_c	<pre>sin(thet ***********************************</pre>	<pre>theta_iL theta_iL</pre>
***** * sin_c	**************************************	<pre>theta_xL theta_iL theta_xH</pre>
***** * sin_c	**************************************	<pre>theta_xL theta_iL theta_xH</pre>
***** * sin_c	*********** sin(thet ***********************************	<pre>theta_xL theta_iL theta_xH ptemp2,1</pre>
***** * sin_c	**************************************	<pre>theta_iL theta_iL theta_iH</pre>
***** * sin_c	**************************************	<pre>theta_iL theta_iH temp1;</pre>
***** * sin_C	**************************************	<pre>theta_iL theta_iL theta_iH temp1;</pre>
***** * sin_c	************ sin(thet ***********************************	<pre>theta_iL theta_iL theta_iL theta_iH temp1; ptemp,1</pre>
***** ***** sin_c	************ sin(thet ***********************************	<pre>theta_iL theta_iL theta_iH theta_iH temp1; ptemp,1 ptemp</pre>
***** ***** sin_c	**************************************	<pre>theta_iL theta_iL theta_iL theta_iH theta_iH theta_iH theta_iH theta_iH theta_iA</pre>
***** ***** sin_c	**************************************	<pre>theta_iL theta_iL theta_iL theta_iH theta_iH temp1; ptemp1; ptemp2 theta_xH</pre>
***** * sin_c	**************************************	<pre>thetell, to thetell, to ta), cos(theta) theta_xL temp1 theta_iL theta_iL theta_xH ptemp2,1 theta_iH temp1; ptemp,1 ptemp2 theta_xH</pre>
***** * sin_c	**************************************	<pre>there is a second second</pre>
***** ***** sin_c	**************************************	<pre>theta_t</pre>
***** ***** sin_c	**************************************	<pre>sin indx</pre>
***** ***** sin_c	**************************************	<pre>should be should be s</pre>
***** ***** sin_c	**************************************	<pre>theta_iii theta_xiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii</pre>
***** ***** sin_c	**************************************	<pre>theta., for the talk the talk the</pre>
***** ***** sin_c	**************************************	<pre>there is a second second</pre>
***** ***** sin_c	**************************************	<pre>there is a construct of the second seco</pre>
***** ***** sin_c	**************************************	<pre>there is a second second</pre>

```
TBLR
            xL temp
    ADD
            #01
    TBLR
            xH temp
    LACC
            xH temp
    SUB
            xL temp
    SACL
            x1 dif
    LACC
            xL_temp,15
    LT
            temp1
    MPY
            x1 dif
    APAC
    SACH
            sin theta,1
    LACC
            sin end
                         ;
    SUB
            sin indx
    TBLR
            xH temp
            #01
    SUB
            xL temp
    TBLR
    LACC
            xH temp
            xL_temp
    SUB
    SACL
            x1 dif
            xH_temp,15
    LACC
    LT
            temp1
    MPY
            x1 dif
    SPAC
    SACH
            cos theta,1
    LT
            SS
    MPY
            sin theta
            sin_theta
    SPL
    LT
            SC
    MPY
            cos theta
    SPL
            cos theta
** Calculate Ud & Uq **
LT
            Vn ; (D1) Q1.15
    MPY
            cos_theta ; (D1) Q2.14 Uref*cos(THETA)
    PAC
            ;Q3.29
    sach
            Ud,2
                 ;Q1.15
    MPY
            sin theta ; Uref*sin(THETA): D2*D1=D(3+1)
    PAC
    Sach
            Uq,2 ; Q1.15
Identificação de sextante *
LDP
            #Ud
    LACC
            #0
    SACL
            vref1
    SACL
            vref2
    SACL
            vref3
    SUB
            Uq
    BGEZ
            ref2
    SPLK
            01, vref1
ref2 LACC
            Uq,14
                    ;Q1.15 (shift 14)
    LT
            raiz3
                    ;02.14
    MPY
            Ud
                    ;Q1.15 --> Q3.29
    SPAC
```

BGEZ ref3 SPLK #02, vref2 ref3 LACC Uq,14 APAC BGEZ ref SPLK #04, vref3 ref LACL vref1 Or vref2 vref3 Or SACL sext sect_entry LACC ADD sext TBLR sector Normalização para o sist. de coord. Não-ortogonais LACC coef entry ADD sector TBLR A11 #06 ADD TBLR A12 #06 ADD TBLR A21 #06 ADD TBLR A22 Norma #0 LACC LT ; Q1.15 Ud MPY ; Q3.13 --> Q4.28 A11 LT Uq MPYA A12 A22 MPYA SACH vg_H ;Q4.12 SACL ;Q0.16 vg L #00FFFh,16 AND ADDS vg L vgf H SACH SACL vgf L #0 LACC LTUd ; Q1.15 A21 ; Q3.13 --> Q4.28 MPYA APAC SACH vh H ;04.12 SACL vh L ;Q0.16 #00FFFh,16 AND ADDS vh L SACH vhf H SACL vhf L ***** * Identificação de triângulo * LACC mdu vh H,16 ADDS vh L

	ADD	vg_H,16
	ADDS	vg L
	SACH	md ; Q4.12
	LACC	vq H
	AND	#0F000h
	SACH	vau, 4
	LACC	vh H
	AND	#OFOODb
	SACH	
	IACC	md
	TACC	
	AND	
T C	SACH	ma, 4
XLS	т п	m d
	LT.	ma
	MPY	ma
	PAC	
	ADD	md
	ADD	vhu
	SUB	vgu
	SACL	LsO
	ADD	#01
	SACL	Ls
	LACC	Ls,12
	ADD	md,12
	ADD	#1,12
	AND	#01.12
	SACL	tria type : 04.12
*====		
*==== *	Cálculo da	s razões cíclicas *
*==== * *====	Cálculo da	s razões cíclicas *
*==== * *==== dutv	Cálculo da LACC	s razões cíclicas * ====================================
*==== * *==== duty	Cálculo da LACC SUB	s razões cíclicas * tria_type,16 vgf H.16
*==== * *==== duty	Cálculo da LACC SUB SUBS	s razões cíclicas * tria_type,16 vgf_H,16 vgf_L
*==== * *==== duty	Cálculo da LACC SUB SUBS ABS	s razões cíclicas * tria_type,16 vgf_H,16 vgf_L
*==== * *==== duty	Cálculo da LACC SUB SUBS ABS SACH	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tq 2</pre>
*==== * *==== duty	Cálculo da LACC SUB SUBS ABS SACH	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16</pre>
*==== * *==== duty	Cálculo da LACC SUB SUBS ABS SACH LACC SUB	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vbf_U_16</pre>
*==== * *==== duty	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vbf_L</pre>
*==== * *==== duty	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L</pre>
*==== * *==== duty	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS ABS	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L</pre>
*==== * *==== duty	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS ABS SACH	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L th,2 </pre>
*==== * * duty	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS ABS SACH LACC	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L th,2 #04000h</pre>
*==== * * duty	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS ABS SACH LACC SUB	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L th,2 #04000h tg</pre>
*==== * *==== duty	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS ABS SACH LACC SUB SUB SUB	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L th,2 #04000h tg th</pre>
*==== * *==== duty	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS ABS SACH LACC SUB SUB SUB SUB SUB	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L th,2 #04000h tg th tgh</pre>
*==== * duty	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS ABS SACH LACC SUB SUB SACL	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L th,2 #04000h tg th tg th tgh</pre>
*==== * duty *====	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS ABS SACH LACC SUB SUB SUB SUB SACL Cálculo Lh	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L th,2 #04000h tg th tgh e tipo</pre>
*==== * duty *==== *	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS ABS SACH LACC SUB SUB SUB SACL Cálculo Lh	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L th,2 #04000h tg th tgh e tipo</pre>
*==== duty *==== *	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS ABS SACH LACC SUB SUB SACL Cálculo Lh	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L th,2 #04000h tg th tgh e tipo Ls0</pre>
*==== * duty *==== *	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS ABS SACH LACC SUB SUB SACL Cálculo Lh LACC LT	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L th,2 #04000h tg th tgh e tipo Ls0 sector #04</pre>
*==== * duty *==== *	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS ABS SACH LACC SUB SUB SACL Cálculo Lh LACC LT MPY	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L th,2 #04000h tg th tgh e tipo Ls0 sector #04</pre>
*==== * duty *==== * *====	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS ABS SACH LACC SUB SUB SACL Cálculo Lh LACC LT MPY APAC	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L th,2 #04000h tg th tg th tgh e tipo Ls0 sector #04</pre>
*==== * duty *==== *	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS ABS SACH LACC SUB SUB SACL Cálculo Lh LACC LT MPY APAC SACL	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L th,2 #04000h tg th tgh e tipo Ls0 sector #04 Lh</pre>
*==== * duty *==== *	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS ABS SACH LACC SUB SUB SACL Cálculo Lh LACC LT MPY APAC SACL LACC	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L th,2 #04000h tg th tgh e tipo Ls0 sector #04 Lh sector</pre>
*==== * duty *==== *	Cálculo da LACC SUB SUBS ABS SACH LACC SUB SUBS ABS SACH LACC SUB SUB SACL Cálculo Lh LACC LT MPY APAC SACL LACC AND	<pre>s razões cíclicas * tria_type,16 vgf_H,16 vgf_L tg,2 tria_type,16 vhf_H,16 vhf_L th,2 #04000h tg th tgh e tipo Ls0 sector #04 Lh sector #01</pre>

*_____ * Obtenção das constantes Pesos *_____ temposdaschaves LDP #cs1a LACC ks1 ADD Lh kS1A g TBLR ADD #08 TBLR kS1B g ADD #08 TBLR kS1C g ADD #24 TBLR kS1A h ADD #08 TBLR kS1B h ADD #08 TBLR kS1C h #24 ADD kS1A_gh TBLR ADD #08 TBLR kS1B gh ADD #08 TBLR kS1C gh LACC ks2 ADD Lh kS2A g TBLR ADD #08 TBLR kS2B g #08 ADD TBLR kS2C g ADD #24 TBLR kS2A h ADD #08 TBLR kS2B h ADD #08 TBLR kS2C h ADD #24 TBLR kS2A gh #08 ADD TBLR kS2B gh ADD #08 TBLR kS2C_gh *______ * Obtenção dos valores dos tempos *______ LACC #0 LT;Q2.14 tg MPY ;Q2.14 kS1A_g LTth ;q4.28 MPYA kS1A h

tgh

kS1A gh

LT

MPYA

	SACH	ts1a,2 #0	;Q2.14	tsla		
	LT	ta ta	:02 14			
	MPYA	kS2A a	:02 14			
	т.т	th	/ <u>2</u> · · · ·			
	MPYA	kS2A h				
	MPYA	kS1B_h				
	SACH	ts2a,2	;Q2.14	ts2a		
	LACL	# O				
	LT	tgh				
	MPYA	kS1B_gh				
	LT	tg				
	MPYA	kS1B_g				
	MPYA	kS2B q				
	SACH	ts1b,2	;Q2.14	ts1b		
	LACL	#0				
	LT	th				
	MPYA	kS2B h				
	LT	tgh _				
	MPYA	kS2B_gh				
	MPYA	kS1C ah				
	SACH	ts2b,2	;02.14	ts2b		
	LACL	#0	~~			
	LT	tg				
	MPYA	kS1C q				
	LT	th				
	MPYA	kS1C_h				
	MPYA	kS2C h				
	SACH	ts1c,2	;Q2.14	ts1c		
	LACL	# O				
	LT	tgh				
	MPYA	kS2C_gh				
	LT	tg				
	MPYA	kS2C_g				
	APAC					
*=	SACH =========	ts2c,2 =============	;Q2.14 =========	ts2c ==========	 	
*	Obtenção do	s valores dos	contado	res		
× =		======================================	=======		 	
	MPY	tsla				
	SPH	csla				
	MPY	ts2a				
	SPH	cs2a				
	MPY	ts1b				
	SPH	cslb				
	MPY	ts2b				
	SPH	cs2b				
	MPY	ts1c				
	SPH	cslc				
	MPY	ts2c				
	SPH	cs2c				

*===	======	
*	Tempo	mínimo de condução
*===		1
	SIIR	CS1a #026
	BLZ	Hist L S1A
	SUB	#0939
	BLEZ	next_S2A
	SUB	#13
	SPLK	#0991,cs1a
	BGEZ	next_S2A
	SPLK	#0965,CS1a
Hist	в пез т. с1ъ	L_SZA
111.00	ADD	#013
	SPLK	#0,cs1a
	BLEZ	next_S2A
	SPLK	#026, cs1a
next	_S2A	
	LACC	cs2a
	SUB DT 7	#UZ6 High I S2D
	SUB	#0939
	BLEZ	next S1B
	SUB	#13
	SPLK	#0991,cs2a
	BGEZ	next_S1B
	SPLK	#0965,cs2a
II i at	B nez	t_SIB
HISU	אַבכ_נ_ חחב	#013
	SPLK	#0.cs2a
	BLEZ	next S1B
	SPLK	#026, cs2a
next	_S1B	
	LACC	cs1b
	SUB	#026
	BLZ	HIST_L_SIB
	BLEZ	next S2B
	SUB	#13
	SPLK	#0991,cs1b
	BGEZ	next_S2B
	SPLK	#0965,cs1b
	B nez	t_S2B
Hist	_L_SIE	4010
	S DT K	#013 #0_cs1b
	BLEZ	next S2B
	SPLK	#026,cs1b
next	_S2B	
	LACC	cs2b
	SUB	#026
	BLZ	Hist_L_S2B
	SUB	#U939 Devt S1C
	ப்பட்ட	next_ore
SUB #13 SPLK #0991,cs2b BGEZ next S1C SPLK #0965, cs2b B next_S1C Hist L S2B ADD #013 SPLK #0,cs2b BLEZ next S1C SPLK #026, cs2b next S1C LACC cslc SUB #026 Hist_L_S1C BLZ SUB #0939 BLEZ next_S2C SUB #13 SPLK #0991,cs1c BGEZ next S2C SPLK #0965,cs1c B next S2C Hist L S1C ADD #013 SPLK #0,cs1c BLEZ next S2C SPLK #026, cs1c next S2C LACC cs2c SUB #026 Hist L S2C BLZ #0939 SUB BLEZ next end SUB #13 SPLK #0991,cs2c BGEZ next end SPLK #0965,cs2c B next end Hist L S2C ADD #013 SPLK #0,cs2c BLEZ next end SPLK #026,cs2c next end *_____ C t2on t1on LDP #sector LACC sector AND #01h SACL tipo * Configuração do modo de contagem SPLK #0666h,actrx ; A H, sext impar ativo baixo nos chaves SPLK #002Ah, sactrx ; A H, sext impar ativo baixo nas chaves SPLK #006Eh,gptx ; A H, sext impar ativo baixo nas chaves

```
LACC tipo
    BLEZ impar
    SPLK #0999h,actrx ; A L; sext par ativo alto nas chaves
    SPLK #0015h, sactrx ; A L; sext par ativo alto nas chaves
    SPLK #0061h,gptx
                   ; A L; sext par ativo alto nas chaves
impar
    LDP #actrx
    LACC actrx
    LDP
            #DP EV
    SACL ACTR
    LDP
            #cs1a
    LACC sactrx
    LDP
            #DP EV
    SACL SACTR
    LDP
            #gptx
    LACC gptx
    LDP
            #DP EV
    SACL GPTCON
Ativação de contagem para Geração da MLP
LDP #cs1a
    BLDD cs1a, #CMPR2
   BLDD cs2a, #CMPR3
   BLDD cs1b, #SCMPR1
   BLDD cs2b, #SCMPR2
    BLDD cs1c, #SCMPR3
   BLDD cs2c, #T1CMP
   BLDD xtmp, #T2CMP
    LDP
        #xtmp
    SPLK #00, xtmp
    END ISR
*_____
* END Context Restore and Return
*_____
   Atribuição de variáveis
                        *
atrib var
        #cs1a
    LDP
    SPLK #0, stop
    SPLK #0, index
    SPLK #0168, num amostras
                       ;número de amostras
    SPLK #0,num_conversoes
    SPLK #watual_H_,watual_H
    SPLK #0, watual L
    SPLK #T sample , T sample; sampling period
    SPLK #PWMPRD_, PWMPRD
    SPLK #PWMPRDx_, PWMPRDx
    SPLK #Vn_, Vn ; D1, ADC to set U ratio
    SPLK #0, THETAL ; theta low byte
    SPLK #0, THETAH ; theta high byte
    SPLK #01, semi ciclo ;
    SPLK #02182h, theta 60H ;
    SPLK #0a470h, theta 60L ;
```

```
SPLK #06488h, theta 360H ;
    SPLK #012AFh, theta 360L ;
    SPLK #06487h, theta 180H ;
    SPLK #0ED51h, theta 180L ;
    SPLK #03243h, theta 90H
                      ;
    SPLK #0F6A9h, theta 90L ;
    SPLK #TB S, sin entry
    SPLK #coef, coef entry
    SPLK #sect, sect entry
    SPLK #TB C, sin end
    SPLK #theta_iH_,theta_iH
    SPLK #theta_iL_,theta_iL
    SPLK #raiz3 ,raiz3
    SPLK #ws1tg,ks1
    SPLK #ws2tg,ks2
    SPLK #00, xtmp
   RET
*
                                 *
   Final Atribuição de variáveis
Limpeza
          dos
               Registradoresdo
                             gerenciador
                                        de
                                            Eventos
                                                    ΕV
clear reg
    ZAC
    LDP
       #DP EV
    SACL GPTCON
    SACL T1CNT
    SACL T1CMP
    SACL T1PER
    SACL T1CON
    SACL T2CNT
    SACL T2CMP
    SACL T2PER
    SACL T2CON
    SACL T3CNT
    SACL T3CMP
    SACL T3PER
    SACL T3CON
    SACL COMCON
    SACL ACTR
    SACL SACTR
    SACL DBTCON
    SACL CMPR1
    SACL CMPR2
    SACL CMPR3
    SACL SCMPR1
    SACL SCMPR2
    SACL SCMPR3
    SACL CAPCON
    SACL CAPFIFO
    SACL FIF01
    SACL FIFO2
    SACL FIF03
```

Anexo E – Programa Assembler da MV via Redes Neurais Artificiais para Inversores de Três Níveis

; File Name:C:\work\4nabc\n4abc0.asm versao:Final ; Include Files .include c:\work\geraln\F240.inc .include c:\work\geraln\demos.inc .include C:\work\geraln\vects.inc .include mexp.inc .data T sample .set 013301; 10090.81 hz; ns=28 ;cont= 991 (dec) .set 991; 10090.81 hz; ns=28 ;cont= 991 (dec) PWMPRD PWMPRDx .set 3964 *Vn .set 0517Dh; (0.6366), (20861d) = 1.00 pu*Vn_ .set 04957h; (0.5730), (18775d) = 0.90 pu*Vn_ .set 04131h; (0.5093), (16689d) = 0.80 pu (14603d) = 0.70 pu*Vn .set 0390Bh; (0.4456), *Vn_.set 030E4h; (0.3820), (12516d) = 0.60 pu (10430d) = 0.50 pu*Vn_ .set 028BEh; (0.3183), *Vn_ .set 02098h; (0.2546), (08344d) = 0.40 pu Vn .set 01872h; (0.1910), (06258d) = 0.30 pu*Vn .set 0104Ch; (0.1273), (04172d) = 0.20 pu *Vn .set 00826h; (0.0637), (02086d) = 0.10 puSORT32 .set 0ddbh; sqrt(3)/2 no formato Q4.12 raiz3inv .set 049e7h ; 1/sqrt(3) no formato Q1.15 *raiz3 .set 06edah ; sqrt(3) no formato Q2.14 .set 24151 ΑW .set 500 ; 5 Hz ;ok min W max W .set 6000 ; 60 Hz ;ok .set 5500 ; max W-min W ; ok W dif theta_iH_ .set 023CFh; index p/ sen450_x1 449,75 theta_iL_ .set 02995h; watual H .set 01508 ; 1770h (60 Hz) * rede fat_a_ .set 000FA0h fat b .set 000FA0h .set 000C80h fat c fat_d_ .set 0007D0h .set 000320h fat_e_ fat f .set 000050h C:\work\geraln\Sen450 x1.inc .include .include C:\work\geraln\tsigx1 tab.inc .include C:\work\geraln\triang tab.inc .include C:\work\geraln\chaveS1 tab.inc .include C:\work\geraln\chaveS2 tab.inc

;======================================		
; variaveis space vector :	inicio	:a000:
.bss csla,1	;A000	
.bss cs2a,1	;A001	
.bss cs1b,1	;A002	
.bss cs2b,1	;A003	
.bss cslc,1	;A004	
.bss cs2c,1	;A005	
.bss tsla,1	;A006	
.bss ts2a,1	;A007	
.bss ts1b,1	;A008	
.bss_ts2b.1	;A009	
bss tslc.1	; A00A	
bss ts2c,1	;A00B	
bss kS1A a.1	; A00C	
$hss kS1B a_1$; A00D	
$hss kS1C a_1$: A00E	
$\frac{1}{1000} \text{ ksi}_{-4}$; A00F	
$\frac{1}{10000000000000000000000000000000000$	• A 010	
has $kS1C = h$	• A O 1 1	
$\frac{1}{2} \frac{1}{2} \frac{1}$	• A 0 1 2	
hee kgip c 1	,A012	
hee kS1C = 1	,A013	
hee k S = 1	• 7 0 1 5	
$has k^{2}P > 1$,AUIJ	
$bcc k^{2}C \rightarrow 1$,AUIU	
bcc k C 2 h 1	,AUI/	
$bcc k^{2}P b 1$, AUIO	
bcc kC2C b 1	,AU19	
$bss ks2c_b, 1$;AUIA	
$bss ks2A_c, 1$;AUIB	
$bss ks2B_c, 1$;AUIC	
$bss ks2c_c, r$;AUID	
bss ks1, 1;	;AULE	
.DSS KS2,1;	; AUIF	
bee tipe 1	• 7 0 2 0	
.bss cipo,i	;AUZU	
bag agetry 1	;AUZI	
.DSS SACUIX, I	;AUZZ	
.DSS gptx, I	;AUZ3	
.DSS PWMPRD, I	;AUZ4	
.DSS PWMPRDX, I	;AUZ5	
.DSS Watual_H,I	;AUZ0	
.bss watual_L,1	;AUZ/	
.bss theta_60H,1	;AU28	
.bss theta_60L,1	;AU29	
.bss theta_180H,1	;AUZA	
.bss theta_180L,1	;AU2B	
.bss theta_360H,1	;AU2C	
.bss theta_360L,1	;A02D	
bee thete it 1	• NOOP 4	Fator p/ abtor th inder
.pss theta_1H,1	;AUZE I	alor p/ obler th_index
.bss theta_lL, I	• 7 0 0 5	Compling ported. D. O
.uss T_sample,1	;AUZD	Sampiing period: D-9
.DSS THETAH, I	;AUZE	posicao angular alta
.DSS THETAL, I	;AUZE	posicao angular balxa
.bss theta_XH,1	;AU3U	posicao angular alta

.bss theta xL,1 ;A031 posicao angular baixa .bss ptemp,1 ;A032 .bss ptemp2,1 ;A033 .bss temp1,1 ;A034 .bss semi ciclo,1 ;A035 .bss sext,1 ;A036 .bss theta r,1 ;A037 rounded THETAH .bss theta m,1 ;A038 .bss sin_indx,1 ;A039 .bss sin end,1 ;A03A End of sin table .bss sin theta,1 ;A03B; sin(THETA): D1 .bss cos_theta,1 ;A03C; cos(THETA): D1 .bss sin entry,1 ;A03D beginning of sin table .bss xH_temp,1 ;A03E .bss xL temp,1 ;A03F .bss x1_dif,1 ;A040 .bss Vn,1 ;A041 .bss Ud,1 ;A042 .bss Uq,1 ;A043 .bss th indx,1 ;A044 ;A045 .bss th_entry,1 .bss th end,1 ;A046 .bss txx,1 ;A047 .bss theta s,1 ;A048 .bss xtmp,1 ;A049 .bss tsext,1 ;A04A .bss al1,1 ;A04B .bss a12,1 ;A04C .bss d1,1 ;A04D ;A04E .bss a4,1 .bss a5,1 ;A04F .bss b11,1 ;A050 ;A051 .bss b12,1 .bss d2,1 ;A052 .bss b5,1 ;A053 .bss b6,1 ;A054 .bss c11,1 ;A055 .bss c12,1 ;A056 .bss d3,1 ;A057 .bss c6,1 ;A058 .bss c7,1 ;A059 .bss tria,1 ;A05A .bss regiao,1 ;A05B .bss Ls0,1 ;A05C .bss Lh,1 ;A05D .bss ta,1 ;A05E .bss tb,1 ;A05F .bss tc,1 ;A060 .bss stop,1 ;A061 .bss index,1 ;A062 .bss num amostras,1 ;A063 .bss num conversoes,1 ;A064

.bss	wstep,1	;A065
.bss	wmeta,1	;A066
.bss	A_W,1	;A067
.bss	min_W,1	;A068
.bss	max_W,1	;A069
.bss	W_dif,1	;A070
.bss	tr_nro,1	;A071
.bss	tr_nrob,1	;A072
.bss	tr_nroc,1	;A073
.bss	tg2a,1	;A074
.bss	th2a , 1	;A075
.bss	tgh2a,1	;A076
.bss	tg2b , 1	;A078
.bss	th2b,1	;A079
.bss	tgh2b,1	;A07A
.bss	tg2c , 1	;A07B
.bss	th2c,1	;A07C
.bss	tgh2c,1	;A07D
.bss	tgla,1	;A07E
.bss	thla,1	;A07F

* PAGINA 2

.bss	Vd , 1	;A080
.bss	Vq,1	;A081
.bss	am11,1	;A082
.bss	am12,1	;A083
.bss	am21 , 1	;A084
.bss	am22,1	;A085
.bss	am31 , 1	;A086
.bss	am32 , 1	;A087
.bss	ab11 , 1	;A088
.bss	ab21 , 1	;A089
.bss	ab31,1	;A08A
.bss	ap11,1	;A08B
.bss	ap21,1	;A08C
.bss	ap31,1	;A08D
.bss	aq11,1	;A08E
.bss	aq21,1	;A08F
.bss	aq31,1	;A090
.bss	an11,1	;A091
.bss	an12 , 1	;A092
.bss	an13,1	;A093
.bss	an21 , 1	;A094
.bss	an22 , 1	;A095
.bss	an23,1	;A096
.bss	ac11 , 1	;A097
.bss	ac21 , 1	;A098
.bss	ar11 , 1	;A099
.bss	ar21,1	;A09A
.bss	bm11,1	;A09B
.bss	bm12,1	;A09C
.bss	bm21,1	;A09D
.bss	bm22,1	;A09E
.bss	bm31,1	;A09F

.bss	bm32.1	;A0A0
haa	hh11 1	• 7 0 7 1
.055	DDII,I	, AUAI
.bss	bb21,1	;AUA2
.bss	bb31,1	;A0A3
.bss	bp11.1	:A0A4
hee	$hp_{21} 1$	• 7 0 7 5
.055	DP21,1	, AUAJ
.bss	bp31,1	;AUA6
.bss	bq11,1	;A0A7
.bss	bg21.1	: A0A8
hac	bq_{21}	• 7 0 7 9
.055	DQJ1,1	, AUAJ
.bss	bnii,i	; AUAA
.bss	bn12,1	;AOAB
.bss	bn13,1	;AOAC
hss	bn21.1	• A0AD
	bn22 1	, 10112
.bss	DIIZZ, I	AUAL
.bss	bn23,1	;AOAF
.bss	bc11,1	;A0B0
bss	bc21.1	:A0B1
	b_{r11} 1	, 10021
.bss	DIII,I	; AUBZ
.bss	br21,1	;A0B3
haa	cm11 1	• 7 0 P /
.bss	CIIII,I	, AUD4
.bss	cm12,1	;A0B5
.bss	cm21,1	;A0B6
.bss	cm22.1	:A0B7
hac	cm31 1	· 7 0 P 8
.055	20 1	, AUBO
.bss	Cm32,1	;AUB9
.bss	cb11,1	;AOBA
.bss	cb21,1	;AOBB
hss	ch31.1	: AOBC
	cn^{11} 1	, 1020
.bss	cpii,i	, AUBD
.bss	cp21,1	;AUBE
.bss	cp31,1	;AOCF
.bss	ca11,1	;A0C0
hss	ca21 1	• AOC1
.000	cq21,1	,11001
.bss	cq31,1	;AUCZ
.bss	cn11,1	;A0C3
.bss	cn12,1	;A0C4
.bss	cn13.1	:A0C5
hee	cn^{21} 1	• 7006
.055	CIIZI, 1	, AUCU
.bss	cn22,1	; AUC /
.bss	cn23,1	;A0C8
.bss	cc11,1	;A0C9
hss		: AOCA
	221,1	,110011
.bss	crii,i	; AUCB
.bss	cr21,1	;AOCC
hee	dm11 1	• A ACD
	dm10 1	, 110 CD
.uss	unitz, 1	; AUCE
.bss	dm21,1	;AOCF
.bss	dm22,1	;A0D0
.bss	dm31.1	: A0D1
hee	dm 20 1	• 1 0 0 1
		; AUDZ
.bss	db11,1	;AUD3
.bss	db21,1	;A0D4
.bss	db31,1	;A0D5

```
.bss dp11,1
                  ;A0D6
   .bss dp21,1
                  ;A0D7
   .bss dp31,1
                  ;A0D8
   .bss dq11,1
                   ;A0D9
   .bss dq21,1
                  ;AODA
   .bss dq31,1
                  ;AODB
   .bss dn11,1
                  ;AODC
   .bss dn12,1
                   ;AODD
   .bss dn13,1
                  ;AODE
   .bss dn21,1
                  ;AODF
   .bss dn22,1
                  ;AOEO
   .bss dn23,1
                  ;A0E1
   .bss dc11,1
                  ;A0E2
                  ;A0E3
   .bss dc21,1
   .bss dr11,1
                  ;A0E4
   .bss dr21,1
                   ;A0E5
   .bss one,1
                  ;A0E6
   .bss tsig tab,1
                  ;A0E7
   .bss C frac,1
                  ;A0E8
   .bss c difer,1
                  ;A0E9
   .bss Termol,1
                  ;AOEA
                  ;AOEB
   .bss Termo2,1
   .bss xback,1
                  ;AOEC
   .bss n1,1
                  ;AOED
   .bss sinal x,1
                  ;AOEF
   .bss fator,1
                  ;AOFO
   .bss comp_H,1
                  ;AOF1
   .bss comp_L,1
                  ;AOF2
   .text
; ______
entry:
   Call atrib_var
   Call clear_reg
   CALL config PWM
; Loop for operation to continue
                               *
LOOP
   LDP #xtmp
   LACC xtmp
loop add #1
   NOP
   SACL xtmp
   BGEZ loop
   SPLK #00, xtmp
   B LOOP
* Interupção tluf ISR - Space Vector PWM *
*****
tluf ISR:
   SPM 0
```

```
SETC ovm
    SETC sxm
   LDP #cs1a
    SPLK #watual_H_,watual_H ;teste
*****
** Obtain theta (phase of Uout) through 32 bit integration **
Obter theta
   LT watual H
   MPY T sample ; D-9*D11=D(2+1)
   PAC ;
   ADDS THETAL ;
   ADDH THETAH ;
   SACH THETAH ;
   SACL THETAL ;
   SUBS theta 180L ; compara com pi
   SUB theta_180H,16 ;
   BLEZ Theta in pi ; continue if within limit
   SACH THETAH ; mod(pi, THETA) if not
   SACL THETAL
   LACC semi ciclo
   ADD
       #3
   SACL semi ciclo
   SUB #04
   BLEZ Theta_in_pi
   SPLK #01, semi ciclo
Theta_in_pi
   LACC THETAH, 16
   ADDS THETAL
    SACH theta xH
    SACL theta xL
*****
   LACC semi ciclo
    SUB #01
    SACL sext
theta_out_pi3
   LACC theta xH,16
   ADDS theta xL
   SUBS theta 60L
   SUB theta 60H,16
   BLEZ Theta in pi3 ; continue if within limit
   SACH theta xH
   SACL theta xL
   LACC sext
   ADD
       #01
   SACL sext
   В
       theta out pi3
Theta in pi3
    LACC
           sext
   AND
           #001h
    SACL
         tipo
*_____
* Obtenção sin(theta), cos(theta)
*_____
```

```
LACL
             theta xL
    SFR
    SACL
             temp1 ;
    LT
             theta iL
    MPY
             theta_xH
    PAC
    SACH
             ptemp2,1
    LT
             theta iH
                     ;
    MPY
             temp1 ;
    PAC
    SACH
             ptemp,1
    LACC
             ptemp
    ADDS
             ptemp2
    MPY
             theta xH
                     ;
    APAC
    SFR
    SFR
    SACH
          sin_indx;
    SFR
             #07FFFh
    AND
    SACL
             temp1
    LACC sin_entry ; Look up sin
    ADD sin indx ;
    TBLR xL temp
    ADD #01
    TBLR xH temp
    LACC xH_temp
    SUB xL temp
    SACL x1 dif
    LACC xL temp, 15
    LT
        temp1
    MPY x1 dif
    APAC
    SACH sin theta,1
    LACC sin end
                     ;
    SUB sin indx
    TBLR xH temp
    SUB #01
    TBLR xL temp
    LACC xH temp
    SUB xL temp
    SACL x1_dif
    LACC xH_temp,15
    LT
        temp1
    MPY
        x1 dif
    SPAC
    SACH cos_theta,1
*_____
* Calculate Ud & Uq
*______
                 ; (D1) Q1.15
    lt Vn
                ;(D1) Q2.14 Uref*cos(THETA)
    MPY cos_theta
                 ;Q3.29
    PAC
    sach Ud,2
                 ;Q1.15
```

```
LDP #Vd
    sach Vd,2
    LDP #Ud
    MPY sin theta ; Uref*sin(THETA): D2*D1=D(3+1)
    PAC ;
    sach Uq,2 ; Q1.15
    LDP #Vd
    sach Vq,2
*_____
* Obtenção das constantes (Pesos)
*_____
rededeidenttriangulos
    LDP
            #a4
    LACC d1,15; (shift 15) --> Q3.29
    LT
            all ; Q2.14
    MPY
                ; Q1.15 --> Q3.29
            Ud
    LT
            a12
    MPYA Uq
    APAC
    sach a4 ;
               Q3.13
   LACC d2,15
ri2
    LT
            b11
    MPY
            Ud
    LT
           b12
    MPYA Uq
    APAC
    sach b5 ;
               Q3.13
ri3
   LACC d3,15
    LT
            c11
    MPY
            Ud
    LT
            c12
    MPYA Uq
    APAC
    SACH c6
    LACC a4,3
    AND #4,16
    SACH a5
    LACC b5,2
    AND #2,16
    SACH b6
    LACC c6,1
    AND #1,16
    SACH c7
    LACC a5
    OR b6
    OR c7
    SACL tria
    LACC regiao
    ADD
            tria
    TBLR Ls0
    LACC Ls0
    LT
            sext
```

```
MPY
           #04
   APAC
   ADDH Ls0
   SACL Lh
                   ;016.0
   LACC #3
   SUB
           Ls0
   BCND redeD, eq
               ; rede D (Ls=3)
   SUB
           #1
   BCND redeC, eq ; rede C (Ls=2)
   SUB
           #1
   BCND redeB,eq
               ; rede B (Ls=1)
   SUB
           #1
   BCND redeA, eq ; rede A (Ls=0)
Erro B Erro
               ; Erro
*_____
* Obtenção das constantes (Pesos)
*_____
temposdaschaves
   LDP
           #cs1a
   LACC ks1
   ADD
           Lh
   TBLR kS1A_a
   ADD #08
   TBLR kS1B a
           #08
   ADD
   TBLR kS1C_a
   ADD
           #24
   TBLR kS1A b
   ADD
           #08
   TBLR kS1B b
   ADD
           #08
   TBLR kS1C b
   ADD
           #24
   TBLR kS1A c
          #08
   ADD
   TBLR kS1B c
   ADD
          #08
   TBLR kS1C c
   LACC ks2
   ADD
           Lh
    TBLR kS2A a
           #08
   ADD
   TBLR kS2B a
           #08
   ADD
   TBLR kS2C_a
           #24
   ADD
   TBLR kS2A b
   ADD
           #08
   TBLR kS2B b
           #08
   ADD
   TBLR kS2C b
           #24
   ADD
   TBLR kS2A c
           #08
   ADD
```

```
TBLR kS2B c
   ADD #08
   TBLR kS2C c
*_____
* Obtenção dos valores dos tempos
*_____
   LACC #0
            ;Q2.14
;Q2.14
   LT ta
   MPY kS1A_a
   LT tb
              ;q4.28
   MPYA kS1A b
   LT tc
   MPYA kS1A c
   MPYA kS2A c
   SACH tsla,2
             ;Q2.14 ts1a
   Lacl #0
             ;Q2.14
   LT ta
             ;Q2.14
   MPYA kS2A a
   LT tb
   MPYA kS2A b
   MPYA kS1B b
            ;Q2.14 ts2a
   SACH ts2a,2
   LACL #0
   LT tc
   MPYA kS1B c
   LT ta
   MPYA kS1B a
   MPYA kS2B a
            ;Q2.14 ts1b
   SACH ts1b,2
   LACL #0
   LT tb
   MPYA kS2B b
   LT tc
   MPYA kS2B c
   MPYA kS1C c
            ;02.14 ts2b
   SACH ts2b,2
   LACL #0
   LT ta
   MPYA kS1C a
   LT tb
   MPYA kS1C b
   MPYA kS2C b
   SACH tslc,2
            ;Q2.14 ts1c
   LACL #0
   LT tc
   MPYA kS2C c
   LT ta
   MPYA kS2C a
   APAC
   SACH ts2c,2 ;Q2.14 ts2c
*_____
```

```
* Obtenção dos valores dos contadores
*_____
    LT
            PWMPRDx
    MPY
            ts1a
            cs1a
    SPH
    MPY
            ts2a
    SPH
            cs2a
    MPY
            ts1b
    SPH
            cs1b
    MPY
            ts2b
    SPH
            cs2b
    MPY
            ts1c
    SPH
            cs1c
    MPY
            ts2c
    SPH
            cs2c
*_____
*
   Tempo mínimo de condução
*_____
    LACC csla
    SUB #026
    BLZ Hist L S1A
    SUB #0939
    BLEZ next S2A
    SUB #13
    SPLK #0991,cs1a
    BGEZ next_S2A
    SPLK #0965,cs1a
    B next S2A
Hist L S1A
    ADD #013
    SPLK #0,cs1a
    BLEZ next S2A
    SPLK #026,cs1a
next S2A
    LACC cs2a
    SUB #026
    BLZ Hist L S2A
    SUB #0939
    BLEZ next S1B
    SUB #13
    SPLK #0991,cs2a
    BGEZ next S1B
    SPLK #0965,cs2a
    B next S1B
Hist L S2A
    ADD #013
    SPLK #0,cs2a
    BLEZ next S1B
    SPLK #026,cs2a
next S1B
    LACC cs1b
    SUB #026
    BLZ Hist L S1B
    SUB #0939
    BLEZ next S2B
```

SUB #13 SPLK #0991,cs1b BGEZ next S2B SPLK #0965,cs1b B next_S2B Hist L S1B ADD #013 SPLK #0,cs1b BLEZ next S2B SPLK #026, cs1b next S2B LACC cs2b SUB #026 Hist_L_S2B BLZ SUB #0939 BLEZ next_S1C SUB #13 SPLK #0991,cs2b BGEZ next_S1C SPLK #0965,cs2b B next S1C Hist_L_S2B ADD #013 SPLK #0,cs2b BLEZ next S1C SPLK #026, cs2b next_S1C LACC cs1c SUB #026 BLZ Hist_L_S1C SUB #0939 BLEZ next S2C SUB #13 SPLK #0991,cs1c BGEZ next S2C SPLK #0965,cs1c B next_S2C Hist L S1C ADD #013 SPLK #0,cs1c BLEZ next S2C SPLK #026,cs1c next S2C LACC cs2c SUB #026 BLZ Hist L S2C SUB #0939 BLEZ next_end SUB #13 SPLK #0991,cs2c BGEZ next_end SPLK #0965,cs2c B next end Hist L S2C ADD #013 SPLK #0,cs2c

```
BLEZ next end
   SPLK #026,cs2c
next end
*______
C t2on t1on
   LDP #sector
   LACC sector
   AND
      #01h
   SACL tipo
* Configuração do modo de contagem
SPLK #0666h,actrx
                ; A H, sext impar ativo baixo nos chaves
   SPLK #002Ah, sactrx ; A H, sext impar ativo baixo nas chaves
   SPLK #006Eh,gptx ; A H, sext impar ativo baixo nas chaves
   LACC tipo
   BLEZ impar
   SPLK #0999h,actrx
                ; A L; sext par ativo alto nas chaves
   SPLK #0015h, sactrx ; A L; sext par ativo alto nas chaves
   SPLK #0061h,gptx
              ; A L; sext par ativo alto nas chaves
impar
   LDP #actrx
   LACC actrx
   TIDP
          #DP EV
   SACL ACTR
   LDP
          #cs1a
   LACC sactrx
   LDP
          #DP EV
   SACL SACTR
   LDP
          #gptx
   LACC gptx
   TIDP
          #DP EV
   SACL GPTCON
Ativação de contagem para Geração da MLP
LDP #cs1a
   BLDD cs1a, #CMPR2
   BLDD cs2a, #CMPR3
   BLDD cs1b, #SCMPR1
   BLDD cs2b, #SCMPR2
   BLDD cs1c, #SCMPR3
   BLDD cs2c, #T1CMP
   BLDD xtmp, #T2CMP
   LDP
       #xtmp
   SPLK #00, xtmp
   END ISR
*______
* END Context Restore and Return
*_____
                    *
* Rede A - Cálculo de ta e tb
* redeA 1 camada
redeA
```

```
LDP #Vd
    SPLK #fat a ,fator
    SPLK #rota a, tsig tab
    LACC ab11,11 ;Q-5.21 x(shift 11) --> Q0.32
    LT
        am12
    MPY
        Vq
    LT
        am11 ;Q-1.17
    MPYA Vd
            ;Q1.15 --> Q0.32
    SPAC
    SFR
                 ;Q1.31
    SACH ap11
                 ;01.15
    CALL xtsig1
    LACC xback
    SACL aq11
LACC ab21,13
                ;Q-2.18 x(shift 13) --> Q1.31
xA2
        am21 ;00.16
    LT
    MPY Vd ;Q1.15 ==> Q1.31
        am22 ;Q0.16
    LT
    MPYA Vq ;Q1.15 ==> Q1.31
    APAC
    SACH ap21 ;Q1.15
    CALL xtsig1
    LACC xback
    SACL aq21
;Q0.16 x(shift 11) --> Q5.27
xA3
    LACC ab31,11
        am32 ;Q4.12
    LT
    MPY Vq ;Q1.15 ==> Q5.27
    LT am31 ;Q5.11
    MPYA Vd
            ;Q1.15 ==> Q6.26
    SFR
             ;06.26
    APAC
    SACH
             ap31,2
                         ;Q4.12
    CALL xtsig2
    LACC xback
    SACL aq31
segcamA
    LDP #Vd
sA1
    LACC ac11,15 ;Q0.16 Shift 15 --> Q1.31
    LT
        an13 ;Q0.16
        aq31 ;Q1.15 --> Q1.31
    MPY
        an12 ;Q3.13
    LT
    MPYA aq21 ;Q1.15 --> Q4.28
    SFR
             ;--> Q2.30
    SFR
             ;--> Q3.29
    SFR
            ;--> Q4.28
        an11 ;Q5.11
    LT
    MPYA aq11 ;Q1.15 --> Q6.26
    SFR
            ;--> Q5.27
    SFR
            ;--> Q6.26
    APAC
    LDP
             #ta
    SACH ta, 4 ;Q2.14
* * *
```

```
sA2
    LDP
         #Vd
    LACC ac21,15 ;Q0.16 Shift15 --> Q1.31
    LT
         an23 ;Q0.16
         aq31 ;Q1.15 --> Q1.31
    MPY
         an22 ;Q4.12
    LT
    MPYA aq21 ;Q1.15 --> Q5.27
    SFR
             ;--> Q2.30
              ;--> Q3.29
    SFR
    SFR
              ;--> Q4.28
    SFR
             ;--> Q5.27
    LT an21 ;05.11
    MPYA aq11 ;Q1.15 --> Q6.26
    SFR
              ;--> Q6.26
    APAC
    LDP #tc
    SACH tc,4 ;Q2.14
sA3
    LACC
              #04000h
                      ;one Q2.14
    SUB
              ta
    SUB
              tc
    SACL
              tb
                       ;Q2.14
    В
              temposdaschaves
*
* Rede B - Cálculo de ta e tb
redeB
         #Vd
    LDP
    LACC bb11,11 ;Q-4.20 x(shift 11) --> Q1.31
         bm11 ;Q0.16
    LT
    MPY
         Vd
             ;Q1.15 --> Q1.31
    LT
         bm12
    MPYA Vq
    APAC
    SACH bp11 ;Q1.15
    CALL xtsig1
    SACL bq11
***
xB2
    LDP
         #Vd
    LACC bb21,14 ;Q-1.17 x(shift 14) --> Q1.31
         bm21 ;Q0.16
    LT
             ;Q1.15 --> Q1.31
    MPY
         Vd
    LT
         bm22
    MPYA Vq
    APAC
    SACH bp21 ;Q1.15
    CALL xtsig1
    LACC xback
    SACL bq21
***
xB3
    LACC bb31,16 ;Q5.11 x(shift 16) --> Q5.27
    LT
         bm31 ;Q4.12
    MPY
         Vd
             ;Q1.15 --> Q5.27
    LT
         bm32 ;Q6.10
             ;Q1.15 --> Q7.25
    MPYA Vq
    SFR
             ;--> Q6.26
    SFR
             ;--> Q7.25
    APAC
```

```
SACH bp31 ;Q7.9
    CALL xtsig3
    LACC xback
    SACL bq31
segcamB
sB1
    LDP #Vd
    LACC bc11,15 ;Q2.14 Shift15 --> Q3.29
    LT
        bn11 ;Q2.14
        bq11 ;Q1.15 --> Q3.29
    MPY
    LT
        bn13 ;02.14
    MPYA bq31 ;Q1.15 --> Q3.29
    LT
        bn12 ;Q5.11
    MPYA bq21 ;Q1.15 --> Q6.26
    SFR
            ;Q4.28
    SFR
             ;Q5.27
    SFR
             ;Q6.26
    APAC
    LDP #ta
    SACH ta,4 ;Q2.14
sB2
    LDP
        #Vd
    LACC bc21,16 ;Q3.13 Shift16 --> Q3.29
        bn22 ;Q2.14
    LT
    MPY
        bq21 ;Q1.15 --> Q3.29
        bn23 ;Q2.14
    LT
    MPYA bq31 ;Q1.15 --> Q3.29
        bn21 ;Q5.11
    LT
    MPYA bq11 ;Q1.15 --> Q6.26
    SFR
            ;Q4.28
            ;Q5.27
    SFR
    SFR
             ;Q6.26
    APAC
    LDP #tb
    SACH tb,4 ;Q2.14
    LACC #04000h ;one Q2.14
sB3
    SUB
        ta
    SUB
        tb
    SACL tc
            ;Q2.14
       temposdaschaves
    В
* Rede C - Cálculo de ta e tb
                         *
redeC
    LDP
        #Vd
    LACC cb11,12 ;Q-3.19 x(shift 12) --> Q1.31
    LT
        cm11 ;Q0.16
    MPY
        Vd
            ;Q1.15 --> Q1.31
    LT
        cm12
    MPYA Vq
    APAC
    SACH cp11 ;Q1.15
    CALL xtsig1
    LACC xback
               ;Q2.14
    SACL cq11
**
xC2
    LACC cb21,13 ;Q-2.18 x(shift 13) --> Q1.31
```

```
LT
         cm21 ;Q0.16
     MPY Vd ;Q1.15 --> Q1.31
     LT
          cm22
     MPYA Vq
     APAC
     SACH cp21 ;Q1.15
     CALL xtsig1
     LACC xback
     SACL cq21 ;Q2.14
* * *
xC3
    LACC cb31,15 ;Q3.13 x(shift 15) --> Q4.28
     LT cm31 ;Q3.13
     MPY Vd
               ;Q1.15 --> Q4.28
     LT cm32 ;Q6.10
     MPYA Vq ;Q1.15 --> Q7.25
     SFR
               ;Q5.27
     SFR
               ;06.26
     SFR
               ;Q7.25
    APAC
    SACH cp31 ;Q7.9
     CALL xtsig3
    LACC xback
     SACL cq31 ;Q2.14
segcamC
**
sC1
     LDP
          #Vd
     LACC cc11,16 ;Q2.14 Shift16 --> Q2.30
          cn11 ;Q1.15
     LT
     MPY cq11 ;Q1.15 --> Q2.30
     LT cn13 ;Q1.15
     MPYA cq31 ;Q1.15 --> Q2.30
        cn12 ;Q5.11
     LT
     MPYA cq21 ;Q1.15 --> Q6.26
               ;--> Q3.29
     SFR
               ;--> Q4.28
     SFR
     SFR
               ;--> Q5.27
     SFR
               ;--> Q6.26
     APAC
    LDP
              #Ud
     SACH ta, 4 ; Q2.14
***
     LDP #Vd
     LACC cc21,15 ;Q0.16 Shift15 --> Q1.31
          cn23 ;Q0.16
     LT
     MPY cq31 ;Q1.15 --> Q1.31
     LT
          cn22 ;Q2.14
     MPYA cq21 ;Q1.15 --> Q3.29
     SFR
               ;--> Q2.30
               ;--> Q3.29
     SFR
     LT cn21 ;Q5.11
     MPYA cq11 ;Q1.15 --> Q6.26
     SFR
               ;--> Q4.28
     SFR
               ;--> Q5.27
     SFR
               ;--> Q6.26
     APAC
     LDP #tc
```

```
SACH tc, 4 ;Q2.14
    LACC #04000h
                      ;one Q2.14
    SUB
         ta
    SUB
         tc
                       ;Q2.14
    SACL tb
             temposdaschaves
    В
* Rede D - Cálculo de ta e tb
                           *
redeD
    LDP #Vd
    LACC db11,14 ;Q1.15 x(shift 14) --> Q3.29
    LT
         dm11 ;Q2.14
         Vd
             ;Q1.15 --> Q3.29
    MPY
    LT
         dm12
    MPYA Vq
    APAC
    SFR
    SACH dp11 ;Q4.12
    CALL xtsig2
    LACC xback
    SACL dq11 ;Q2.14
****
    LACC db21,14 ;Q-1.17 x(shift 14) --> Q1.31
xD2
         dm21 ;Q0.16
    LT
    MPY
         Vd
             ;Q1.15 --> Q1.31
    LT
         dm22
    MPYA Vq
    APAC
    SACH dp21 ;Q1.15
    CALL xtsig1
    LACC xback
    SACL dq21 ;Q2.14
* * *
хDЗ
    LACC db31,14 ;Q1.15 x(shift 14) --> Q3.29
    LT
         dm31 ;Q2.14
    MPY Vd
             ;Q1.15 --> Q3.29
    LT
         dm32
    MPYA Vq
    APAC
    SFR
    SACH dp31 ;Q4.12
    CALL xtsig2
    LACC xback
    SACL dq31 ;Q2.14
seqcamD
sD1
    LDP #Vd
    LACC dc11,11 ;Q-3.19 x(shift 11) --> Q2.30
    LT
         dn11 ;Q1.15
         dq11 ;Q1.15 --> Q2.30
    MPY
         dn13 ;Q2.14
    LT
    MPYA dq31 ;Q1.15 --> Q3.29
    SFR
             ;--> Q3.29
    LT
         dn12 ;Q4.12
    MPYA dq21 ;Q1.15 --> Q5.27
```

```
SFR
           ;--> Q4.28
    SFR
            ;--> Q5.27
    APAC
       #ta
    LDP
    SACH ta, 3 ;Q2.14
sD2
   LDP #Vd
   LACC dc21,15 ;Q1.15 x(shift 15) --> Q2.30
        dn21 ;Q1.15
    LT
    MPY dq11 ;Q1.15 --> Q2.30
       dn22 ;Q2.14
    LT
    MPYA dq21 ;01.15 --> 03.29
    SFR
            ;--> Q3.29
        dn23 ;Q2.14
    LT
    MPYA dq31 ;Q1.15 --> Q3.29
    APAC
    LDP #tb
   SACH tb,1 ;Q2.14
   LACC #04000h
                   ;one Q2.14
sd3
    SUB
            ta
    SUB
            tb
    SACL
            tc
                    ;Q2.14
    B
            temposdaschaves
xtsig4
    SACH sinal x
                   ;07.9
    ABS
    SUB
       one,12
              ; (-2)
    BLZ
        abaixo8
    SPLK #07FFFh, xback
xtsig3
    SACH sinal x
                   ;Q7.9
    ABS
    SUB one,14
               ; (-8)
    BLZ abaixo8
    SPLK #07FFFh, xback
    B
        sinal
abaixo8
    ADD one,14 ; (-8)
    SACH Termol, 3
    SACL Termo2,3
    LACC Termol, 16
    ADDS Termo2
   B
       teste4
xtsiq2
   SACH sinal x
                   ;Q4.12
    ABS
teste4
    SUBH one ; (-4)
    BGEZ acima4
    ADD one,15
               ; (+2)
    BGEZ acima2
    ADD one,14
    BGEZ acimal
    ADD one,13
```

```
BGEZ acima05
    ADD one,12
    BGEZ acima025
    ADD one,12
    SACH comp H,4
                      ;Q0.16
    SACL comp L,4
                      ;Q0.16
    SPLK #fat_a_, fator
    SPLK #rota_a,tsig_tab
    В
      xtsig
acima025
    SACH comp H,4
                      ;00.16
    SACL comp L,4
                       ;Q0.16
    SPLK #fat_b_, fator
    SPLK #rota b,tsig tab
    В
       xtsig
acima05
    SACH comp H, 3
                       ;Q1.15
    SACL comp_L,3
                       ;Q0.16
    SPLK #fat c ,fator
    SPLK #rota_c,tsig_tab
    В
        xtsig
acimal
                      ;Q2.14
    SACH comp_H,2
    SACL comp L,2
                      ;Q0.16
    SPLK #fat d ,fator
    SPLK #rota_d,tsig_tab
    В
      xtsig
acima2
    SACH comp_H,1
                      ;Q3.13
    SACL comp_L,1
                       ;Q0.16
    SPLK #fat_e_, fator
    SPLK #rota e,tsig tab
    В
      xtsig
acima4
    SACH comp H
                       ;Q4.12
    SACL comp_L
                       ;Q0.16
    SPLK #fat_f_, fator
    SPLK #rota f,tsig_tab
    В
         xtsiq
xtsiq1
    SACH sinal x
                      ;Q1.15
    ABS
    SUBH one ; (-0,50)
    BGEZ acimax050
    ADD one,15
               ; (+0,25)
    BGEZ acimax025
    ADD one,15
    SACH comp_H,1
                       ;Q0.16
    SACL comp_L,1
                       ;Q0.16
    SPLK #fat a ,fator
    SPLK #rota_a,tsig_tab
    В
        xtsig
acimax025
                      ;Q0.16
    SACH comp H,1
    SACL comp L,1
                      ;Q0.16
```

```
SPLK #fat b ,fator
   SPLK #rota b, tsig tab
   В
      xtsiq
acimax050
   SACH comp H
                 ;Q1.15
   SACL comp L
                 ;Q0.16
   SPLK #fat_c_, fator
   SPLK #rota_c,tsig_tab
   В
      xtsig
xtsiq
   LACC comp L
   SFR
   AND #07FFFh
   SACL comp_L
   LT
      fator
   MPY comp L
   SPH c_difer
   LACC c_difer,1
   MPY
      comp H
   APAC
   SFR
   SACH n1
   SFR
   AND #07FFFh
   SACL C_frac
   LACC tsig_tab
   ADD n1 ;
   TBLR Termol
   ADD #01
   TBLR Termo2
   LACC Termo2
   SUB Termol
   SACL c difer
   LACC Termol, 15
   LT
      C frac
   MPY c difer
   APAC
   SACH xback,1
sinal
   LACC sinal x
   BCND positivo, geq
   LACC xback, 16
   NEG
   SACH xback
positivo
   RET
*
   Atribuição de variáveis
                    *
atrib var
   LDP #cs1a
   SPLK #0,_stop
```

```
SPLK #0, index
     SPLK #0170, num_amostras
                              ;número de amostras
     SPLK #0, num conversoes
     SPLK #watual_H ,watual_H ;
     SPLK #0, watual L
     SPLK #watual_H_,wmeta ;
     SPLK #T sample ,T sample; sampling period
     SPLK #PWMPRD_, PWMPRD
     SPLK #PWMPRDx , PWMPRDx
     SPLK #A_W_,A_W ; D8, ADC to set W ratio
     SPLK #Vn , Vn ; D1, ADC to set U ratio
     SPLK #min_W_,min_W ; lower limit on set W
     SPLK #max W , max W
     SPLK #W_dif_,W_dif
     SPLK #0, THETAL ; theta low byte
     SPLK #0, THETAH ; theta high byte
     SPLK #01, semi ciclo ;
     SPLK #02182h, theta 60H
                            ;
     SPLK #0a470h, theta 60L ;
     SPLK #06488h, theta 360H ;
     SPLK #012AFh, theta 360L ;
     SPLK #06487h, theta 180H ;
     SPLK #0ED51h, theta 180L ;
     SPLK #TB S, sin entry
     SPLK #TB C, sin end
     SPLK #theta_iH_,theta_iH
     SPLK #theta iL ,theta iL
     SPLK #aslaa,ksl
     SPLK #as2aa,ks2
     SPLK #31291, theta_s ; DO
     SPLK #00000h,a11
     SPLK #06EDAh,a12
     SPLK #0E000h,d1
     SPLK #0376Dh,b11
     SPLK #02000h,b12
     SPLK #0ED86h,d2
     SPLK #0A000h,c11
     SPLK #0376Dh, c12
     SPLK #02000h,d3
     SPLK #area, regiao
#Vd
                     ; coeficientes da RN A
     LDP
     SPLK #058B6h, am11
                        ; Q-1.17 (-0.173259773889695)
     SPLK #064B6h, am12
                          ; Q-1.17
                                     (0.196699630066675)
                                     (-0.386631210066754)
     SPLK #09D06h, am21
                         ; Q0.16
     SPLK #0B7EFh, am22
                          ; Q0.16
                                     (-0.281515744953185)
```

SPLK SPLK SPLK SPLK SPLK SPLK SPLK SPLK	<pre>#06095h,am31 #07DEFh,am32 #06F17h,ab11 #06D42h,ab21 #08741h,ab31 #09EEEh,an11 #0B5A7h,an12 #00029h,an13 #055DCh,an21 #0B30Fh,an22 #00054h,an23 #0696Eh,ac11 #05DC6h,ac21</pre>	; Q5.11 ; Q4.12 ; Q-5.21 ; Q-2,18 ; Q0.16 ; Q5.11 ; Q3.13 ; Q0.16 ; Q5.11 ; Q4.12 ; Q0.16 ; Q0.16 ; Q0.16 ; Q0.16	ou D5 ou D2
SPLK SPLK SPLK SPLK SPLK SPLK	<pre>#0F895h,bm11 #04CB8h,bm12 #04384h,bm21 #01F5Eh,bm22 #0A780h,bm31 #06376h,bm32 #0B061h,bb11</pre>	; Q0.16 ; Q0.16 ; Q0.16 ; Q0.16 ; Q4.12 ; Q6.10 ; Q-4,20	;coeficientes da RN B ou D4;
SPLK SPLK SPLK SPLK SPLK SPLK SPLK SPLK	<pre>#0BAC5h, bb21 #0BAC5h, bb21 #0BAE2h, bn11 #0A405h, bn12 #08E1Dh, bn13 #05885h, bn21 #04DCFh, bn22 #0729Dh, bn23 #0A94Dh, bc11 #04573h, bc21</pre>	; Q-1,17 ; Q5.11; ; Q2.14 ; Q5.11 ; Q2.14 ; Q5.11 ; Q2.14 ; Q2.14 ; Q2.14 ; Q2.14 ; Q2.14 ; Q2.14 ; Q3.13	ou D1; (-1.07997) (-11.4974) (-1.77949) (11.06508) (1.215745) (1.790826) (-1.35467) (2.170243)
SPLK SPLK SPLK SPLK SPLK SPLK SPLK SPLK	<pre>#0BC14h, cm11 #01C91h, cm12 #00512h, cm21 #0523Dh, cm22 #06F91h, cm31 #079E6h, cm32 #07A5Fh, cb11 #0BEE7h, cb21 #04F92h, cb31 #09B8Fh, cn11 #0ABE4h, cn12 #0A7ABh, cn13 #05B56h, cn21 #05B59h, cn22 #01A29h, cn23 #04467h, cc11 #04E7Bh, cc21</pre>	; Q0.16 ; Q0.16 ; Q0.16 ; Q0.16 ; Q3.13 ; Q6.10 ; Q-3,19 ; Q-2,18 ; Q3.13 ; Q1.15 ; Q5.11 ; Q1.15 ; Q5.11 ; Q2.14 ; Q0,16 ; Q0.16	;coeficientes da RN C ou D3 ou D2
SPLK SPLK SPLK SPLK SPLK SPLK	<pre>#08BEFh,dm11 #05BA5h,dm12 #0BD54h,dm21 #0C409h,dm22 #057D7h,dm31 #0BABEh,dm32</pre>	; Q2.14 ; Q2.14 ; Q0.16 ; Q0.16 ; Q2.14 ; Q2.14	;coeficientes da RN D

```
SPLK #0A932h,db11
                    ; Q1.15
    SPLK #05675h, db21
                    ; Q-1.17 ou D1
    SPLK #0AF13h, db31
                    ; Q1.15
    SPLK #05CF3h, dn11
                    ; 01.15
                    ; Q4.12
    SPLK #081E5h, dn12
    SPLK #0AF02h, dn13
                    ; Q2.14
    SPLK #08914h, dn21
                     ; Q1.15
    SPLK #0A392h,dn22
                     ; Q2.14
    SPLK #0678Ch, dn23
                    ; Q2.14
    SPLK #06829h, dc11
                    ; Q-3.19 ou D3
    SPLK #04CE3h,dc21
                    ; Q1.15
    SPLK #04000h, one
    RET
*
                                 *
   Final Atribuição de variáveis
Limpeza dos Registradores do gerenciador de Eventos EV
                                                 *
clear reg
    ZAC
    LDP
        #DP EV
    SACL GPTCON
    SACL T1CNT
    SACL T1CMP
    SACL T1PER
    SACL T1CON
    SACL T2CNT
    SACL T2CMP
    SACL T2PER
    SACL T2CON
    SACL T3CNT
    SACL T3CMP
    SACL T3PER
    SACL T3CON
    SACL COMCON
    SACL ACTR
    SACL SACTR
    SACL DBTCON
    SACL CMPR1
    SACL CMPR2
    SACL CMPR3
    SACL SCMPR1
    SACL SCMPR2
    SACL SCMPR3
    SACL CAPCON
    SACL CAPFIFO
    SACL FIF01
    SACL FIFO2
    SACL FIF03
    SACL FIF04
    CLRC SXM
                ; Clear Sign Extension Mode
    CLRC OVM
                ; Reset Overflow Mode
    RET
```

Final da limpeza dos Registradores * ; MAIN CODE - starts here ; EV PWM Test ;EV PWM: KICK DOG ;Resets WD counter config PWM LDP #DP PF2 ;DP-->7080h-70FFh SPLK #0FFFFh,OPCRA ;Set IOPA pins and IOPB pins ;to primary function. SPLK #OFFF3h,OPCRB ;Set IOPC pins to primary ;function LDP #DP EV ; change dp for EV control regs ; Initialize counter registers SPLK #00000H,T1CNT ; GP Timer 1 counter SPLK #00000H,T2CNT ; GP Timer 2 counter SPLK #00000H,T3CNT ; GP Timer 3 counter ; Initialize period registers LDP #csla BLDD PWMPRD, #T1PER BLDD PWMPRD, #T2PER BLDD PWMPRD, #T3PER LDP #DP EV ; Initialize compare registers for 50% duty cycle, 100KHz frequency SPLK #0005,CMPR1; F. Comp U 1 compare valueSPLK #0005,CMPR2; F. Comp U 2 compare value SPLK #0005,CMPR3 ; F. Comp U 3 compare value SPLK#0010,SCMPR1; S. Comp U 1 compare valueSPLK#0010,SCMPR2; S. Comp U 2 compare valueSPLK#0010,SCMPR3; S. Comp U 3 compare value SPLK #050, T1CMP; GP Timer 1 Comp Value SPLK #050, T2CMP ; GP Timer 2 Comp Value SPLK #050,T3CMP; GP Timer 3 Comp Value ; Configure ACTR - PWM1-6 outputs active low SPLK #00555h,ACTR ; ; Configure SACTR - PWM7-9 outputs active low SPLK #00015h, SACTR ; Configure COMCON - GPT1, PWM mode, reload on UF, compare enabled, outputs enabled SPLK #00307h, COMCON SPLK #08307h, COMCON ; Configure GPTCON - All 3 TxCMP outputs configured Active Low SPLK #00055h,GPTCON ; SPLK #0006Ah, GPTCON ;active high

```
; Configure T3CON, but wait for T1CON enable
     SPLK #0A8C3h,T3CON ;C-U,ps=1,use T1 ena,int clk,tcmp ena,
*reload on UF
; Configure T2CON
     SPLK #0A8C3h,T2CON ;C-U,ps=1,use T1 ena,int clk, tcmp ena,
reload on UF
; carrega o endereço ISR p/ o vetor de interrupção no bloco B2
     LACC # tluf ISR
     LDP #0
     SACL tufintlvec ; carrega o endereço _tluf_ISR no vetor de
Int. corresp.
; Desmascarar interrupções
     LDP #0
               IMR,SETB1 ; Desmascarar INT2
     SETBIT
     LDP #DP EV
     SETBIT
              IMRA, SETB9 ; Habilita T1UFINT (ativa geração da int.
por período GPT1)
; Configure T1CON and start GP Timers 1&2
     SPLK #0A802h,T1CON ;C-U,ps=1,int clk, tcmp ena, reload on UF
     SPLK #0A842h,T1CON ;C-U,ps=1,int clk, tcmp ena, reload on UF
```

RET

Anexo F - Estratégia para Geração dos Sinais MLP com Inserção de Tempo Morto

Estratégia para Geração dos sinais MLP com inserção de tempo morto

A estratégia para a geração de sinais MLP complementares com inserção de tempo morto baseia-se no uso de circuito combinacionais usando os sinais MLP de entrada e sinais MLP com atrasados. A Figura E.1 apresenta a estratégia usada. Os sinais 1 e 2 são os sinais MLP e complementar na origem, os sinais MLP e complementar são os sinais 3 e 4. Os sinais 5 e 6 são os sinais MLP e seu complementar com a inserção do tempo morto igual ao atraso dos sinais 3 e 4. O sinal de saída 5 pode ser obtido pela operação lógica AND entre os sinais 1 e 3, e sinal 6 pela operção lógica entre os sinais 2 e 4.

Figura F.1 – Estratégia para a Inserção do tempo Morto

A Figura E-2 apresenta o circuito utilizado para a geração de sinais MLP com inserção de tempo morto. O atraso Δt é obtido com o uso de malha RC. Neste circuito utiliza-se apenas uma malha RC. Os CI's usados foram Inversor Schimitt Triger 74HC14N e Porta NAND de 2 entradas 74HC00N. O valor do tempo morto foi ajustado experimentalmente, com valores malha RC foram R = 51 Ω e C = 15 η F, o tempo morto entre os sinais complementares é 1,40 μ F.

Figura F.2 – Circuito utilizado para Inserção do tempo morto

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas
Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo