Universidade do Vale do Paraíba Instituto de Pesquisa e Desenvolvimento

DEIDIMAR ALVES BRISSI

PROCURA POR OBJETOS ESTELARES JOVENS E SUBSTELARES EM TORNO DA NUVEM DE MUSCA

São José dos Campos, SP 2006

DEIDIMAR ALVES BRISSI

PROCURA POR OBJETOS ESTELARES JOVENS E SUBSTELARES EM TORNO DA NUVEM DE MUSCA

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Física e Astronomia da Universidade do Vale do Paraíba, como complemento dos créditos necessários para obtenção do título de Mestre em Física e Astronomia.

Orientador: Prof. Dr. Gabriel Hickel.

São José dos Campos, SP 2006 B873p

Brissi, Deidimar Alves

Procura por Objetos Estelares Jovens e Substelares em Torno da Nuvem de Musca. / Deidimar Alves Brissi. São José dos Campos: Univap, 2006.

119f.: il; 30 cm

Dissertação apresentada ao Programa de Pós-Graduação em Física e Astronomia do Instituto de Pesquisa e Desenvolvimento-Universidade do Vale do Paraíba, 2006.

1. Astrofísica 2. Meio interestelar 3. Evolução estelar 4. Protoestrelas I. Hickel, Gabriel, Orientador. II Título

CDU: 52

Autorizo, exclusivamente para fins acadêmicos e científicos, a reprodução total ou parcial desta dissertação, por processo fotocopiadores ou transmissão eletrônica.

Assinatura do aluno:

Data: 06/07/2006

"PROCURA POR OBJETOS ESTELARES JOVENS E SUBSTELARES EM TORNO DA NUVEM ESCURA DE MUSCA"

Deidimar Alves Brissi

Banca Examinadora:

1 La 2 Boch SAD	
Prof. Dr. WILTON DA SILVA DIAS (UNIVAP)	-
Prof. Dr. GABRIEL RODRIGUES HICKEL (UNIVAP)	
Prof. Dr. CASSIO LEANDRO DAL RI BSRBOSA (UNIVAP)	
Prof ^a . Dra. JANE GREGÓRIO HETEM (USP)	

Prof. Dr. Marcos Tadeu Tavares Pacheco Diretor do IP&D - UniVap

Dedico este trabalho à minha esposa Luciene, que pela sua colaboração, compreensão, garra e principalmente paciência, mostrou-se muito mais do que companheira, tornou-se <u>co-autora</u> deste trabalho!

Agradecimentos

João Cabral de Mello Neto disse que "um galo sozinho não tece uma manhã". Nada mais verdadeira esta afirmação do grande poeta pernambucano. Os livros de História registram os nomes dos heróis, teriam eles conseguido seus feitos sozinhos? Qual faraó que solitário conseguiria erguer uma pirâmide? "César bateu os gauleses, /Não tinha pelo menos um cozinheiro consigo?"⁽¹⁾ Quando concluímos uma dissertação, por mais simples que seja temos na retaguarda o esforço de muitas pessoas, que tornaram possível o desenvolvimento do nosso trabalho, desde aqueles que desenvolveram a ciência antes de nós, além da nossa família, professores, orientador, amigos e até trabalhadores anônimos que limpam as salas que utilizamos. Por tudo isso eu tenho muito a agradecer!

À Deus a quem agradeço a tudo!

Ao apoio constante do meu orientador Prof. Dr. Gabriel Hickel, sempre solícito, dedicado, participativo, paciente, coerente... o que tornou possível o desenvolvimento deste trabalho.

Aos meus colegas da Univap pelo companheirismo. Principalmente à aqueles com quem convivi mais de perto: Valdir Gil Pillat, Sarita Pereira de Carvalho e Paulo César Vieira.

A Secretaria de Educação do Estado de São Paulo pelo apoio através do programa Bolsa Mestrado.

A meus professores da UNIVAP a quem devo parte de minha formação.

Aos meus amigos Nelson Nogueira e Ana Maria Pereira que sempre estiveram do meu lado. À equipe do Departamento de Física e Astronomia/IPD/UNIVAP pelo apoio e infraestrutura. Principalmente ao apoio do Prof. Dr. José Ricardo Abalde.

Ao esforço e dedicação dos meus pais, que lutando contra todas as dificuldades tornaram possível a minha formação acadêmica. A eles também sou grato por quem eu sou, aos meus princípios e a meu caráter.

À minha sogra pelo apoio constante, sempre presente e otimista.

À minha esposa Luciene, que pela sua colaboração, compreensão, garra e principalmente paciência, mostrou-se muito mais do que companheira, mas coautora deste trabalho.

¹ Bertolt Brecht (1898-1956)

"Ora direis ouvir estrelas! Certo Perdeste o senso"! E eu vos direi, no entanto, Que, para ouvi-las, muita vez desperto E abro as janelas, pálido de espanto...

E conversamos toda a noite, enquanto A via láctea, como um pálio aberto, Cintila. E, ao vir do sol, saudoso e em pranto, Inda as procuro pelo céu deserto.

Direis agora! "Tresloucado amigo! Que conversas com elas? Que sentido Tem o que dizem, quando estão contigo?"

E eu vos direi: "Amai para entendê-las: Pois só quem ama pode ter ouvido Capaz de ouvir e de entender estrelas".

Olavo Bilac

PROCURA POR OBJETOS ESTELARES JOVENS E SUBSTELARES EM TORNO DA NUVEM DE MUSCA

Resumo

A nuvem escura de Musca possui a forma de um filamento de 3,8° x 0,2°, localizada cerca de 10° fora do plano galáctico, e distante entre 120 a 150 pc do Sol, com massa estimada entre 140 e 550 massas solares. Neste trabalho nós selecionamos 432 campos de 20' x 20' em torno da nuvem com dimensões de 6° x 8° ($-13^{\circ} < b_{gal} < -5^{\circ}$; 298° $< l_{gal} < 304^{\circ}$) totalizando uma área 48 graus² o que inclui a direção da nuvem e uma ampla região em torno, investigados através do catálogo fotométrico do 2MASS nas bandas J, H e K_s para extrair as magnitudes das fontes de cada campo, totalizando 1.459.012 fontes. Construímos diagramas cor-cor $[(J-H) \times (H-K_s)]$ e cor magnitude $[K_s \times (H-K_s)]$ e $[H \times (J-H)]$ e determinamos a magnitude limite para a completeza da amostra em cada banda, para cada campo. Com base nestes diagramas, selecionamos 299 fontes posicionadas fora da região de ocupação da seqüência principal. Procuramos informações adicionais de cada candidato a objeto estelar jovem em outros catálogos da literatura, a fim de confirmar a natureza destas fontes, através da análise de imagens (somente fontes puntiformes foram consideradas) e da distribuição espectral de energia. Após estes processos, obtivemos 284 candidatos a objetos estelares jovens. Construímos um diagrama Luminosidade x Temperatura e com base nele determinamos a classificação para cada fonte, de acordo com a temperatura de corpo negro ajustada (ou da temperatura bolométrica), sua luminosidade; bem como trajetórias evolutivas de objetos estelares jovens. Calculamos a massa de cada candidato e as respectivas idades usando o modelo evolutivo de MYERS et al. (1998) A maior parte destes objetos mostrou-se de classes II e III. Devido às incertezas na determinação da luminosidade dos objetos e das próprias limitações do uso da fotometria para classificações, uma futura investigação espectroscópica será necessária a fim de confirmar a real natureza destes objetos. Assim, verificaremos as seguintes possibilidades: objetos de seqüência principal com índices de cor avermelhados devido à extinção da nuvem; gigantes do fundo pertencentes ao ramo assintótico das gigantes; objetos extragalácticos como quasares ou se realmente são objetos estelares jovens.

Palavras-chave: Astrofísica, Formação Estelar, Objetos Estelares Jovens, Meio Interestelar,

Nuvens Escuras: Musca.

SEARCH FOR YOUNG STELLAR AND SUB-STELLAR OBJECTS AROUND THE MUSCA CLOUD

Abstract

The Musca dark cloud has a filamentary aspect (3,8° x 0,2°), located about 10° down the Galactic Plane, and distant 120-150 pc of the Sun, with mass between 140 and 550 solar masses. In this work we investigated 432 fields (20'x 20') around the cloud, totalizing an area of 6° x 8° = 48 degrees² (- 13° < b_{gal} <- 5°; 298° < l_{gal} <- 304°), using the photometric catalogue of 2MASS in the bands J, H and K_S for 1.459.012 sources. We ploted the color-color [(J-H) x (H-Ks)] and color-magnitude [Ks x (H-Ks) and H x (J-H)] diagrams and determined the completeness limit in each band, for all fields. Using the diagrams, we selected 299 candidate sources for Young Stellar Objects (YSOs). We searched other photometric catalogues for more data to trace the spectral energy distribution of each candidate, in order to confirm the nature of these sources. We looked the Digital Sky Survey and 2MASS images to verify if the candidates are point sources. After these processes, we have 284 candidates for YSOs. We calculated the bolometric temperatures and luminosities of these candidates, and plotted them in the Luminosity x Temperature diagram. We obtained the masses and ages of candidates using the evolution model from MYERS et al. (1998). The majority of them are class-II or III YSOs. These candidates are targets for a future spectroscopy survey to confirm if they are YSOs or other extremely red objects (red giants or very extincted main-sequence stars or peculiar objects (quasars, AGNs, etc)).

Keywords: Astrophysics, Stellar Formation, Young Stellar Objects, Interstellar Medium, Dark Clouds: Musca.

Lista de Ilustrações

Dependendo da massa da proto-estrela ela atinge a SPIZ em diferentes luminosidades, segundo a chamada *trajetória de Hayashi* (linha tracejada). A) Formação do caroço estelar; (B) Máxima luminosidade de uma proto-estrela convectiva; (C) Início do domínio da radiação no interior da proto-estrela atingindo o ponto (D); (E) Início das reações nucleares a proto-estrela atinge a SPIZ e torna-se uma estrela propriamente dita. Adaptado de (MACIEL, 1999).

Figura 2.7 - Mapa de extinção visual de Musca, obtido por Cambrésy (1999). Os tons de **Figura 2.8** – Diagrama *Densidade de Coluna* $x A_V$ obtido por Vilas-Boas, Myers e Fuller (1994). Os triângulos representam as densidades de coluna do C¹⁸O observadas. A linha tracejada representa o melhor ajuste dos dados e foi utilizada para determinar a equação de extinção visual. A linha pontilhada representa densidade de *coluna x extinção* obtida por Cernicharo & Guelin (1987) (CG) para nuvens difusas e densas com extinção variando de 1 à 5 mag. As linhas contínua (VDB) foram calculadas com base nos modelos com rotação de Figura 2.9 - Posição para as 1053 estrelas pré-selecionadas do SAO sobre a região ocupada pelas Nuvens Escuras ``Saco de Carvão" e ``Chamaeleon-Musca". O contorno da nuvem "Saco de Carvão" (ao norte) foi obtido de dados de emissão em CO (Nyman et al. 1989), enquanto que para as nuvens em ``Musca" (centro) e ``Chamaeleon" (ao sul) foram obtidos fotograficamente (Feitzinger & Stüwe 1984) (CORRADI;FRANCO, 1995)......22 Figura 2.10 – Representação esquemática das Bolhas Local e Loop I baseado no modelo de

Figura 2.11 – Representação esquemática da interação entre a região local e as bolhas de Lobo I com as nuvens da associação de Escorpião-Centauro (adaptado de Corradi, Franco, Knude, 2004). Os contornos foram obtidos do ROSAT ALL-SKY de Egger & Aschenbach (1995). Representa a região onde está concentrado o material neutro e denso, supostamente formada pela interação de duas bolhas......25 Figura 2.12 – Um dos mapas de polarização para a nuvem de Musca obtido obtido por Pereyra e Magalhães (2004). A região mostrada possui 1 grau quadrado. As coordenadas α e δ Figura 3.1 - Divisão da região de Musca ($-13^{\circ} < b_{gal} < -5^{\circ}$; 298° $< l_{gal} < 304^{\circ}$) totalizando 48 graus quadrados em 432 campos de 20' x 20' para facilitar a obtenção e o tratamento de Figura 3.2 - Regiões de ocupação das diferentes classes de luminosidades de estrelas no diagrama (J-H) x (H-K_s). Hachurado em preto está a região da SPIZ, em vermelho a região das gigantes vermelhas, em laranja as anãs tipo L e em verde as anãs tipo Figura 3.3 - Regiões de ocupação das diferentes classes de luminosidades de estrelas no diagrama K_s x (H–K_s). Hachurado em preto está a região da SPIZ, em vermelho a região das Figura 3.4 - Regiões de ocupação das diferentes classes de luminosidades de estrelas no diagrama H x (J-H). Hachurado em preto está a região da SPIZ, em vermelho a região das **Figura 3.5** – Diagrama (J–H) x (H–K_s) do campo 22 (coordenadas centrais $l_{gal} = 299$ 10' e $b_{gal} = 5$ 30'). À direita da região hachurada em vermelho (região das gigantes vermelhas) **Figura 3.6** – Diagrama K_s x (H–K_s) do campo 22 (coordenadas centrais $l_{gal} = 299$ 10' e $b_{gal} =$ 5 30'). À direita da região hachurada em vermelho (região das gigantes vermelhas) observa-

Figura 3.7 - Diagrama H x (J–H) do campo 22 (coordenadas centrais $l_{gal} = 299$ 10' e $b_{gal} =$ 5 30'). Observa-se que o objeto 880 está bem separado dos demais. Pode-se verificar também que há muitos objetos à direita da seqüência principal, o que indica a banda H sofreu uma Figura 3.8 – Esta figura demonstra um exemplo de construção das regiões de ocupação nos diagramas utilizados. Aqui é mostrado o diagrama H x (J-H) mostrando a posição da SPIZ (TOKUNAGA, 1999) para variadas distâncias. A magnitude é aparente e é calculada com base na distância e no avermelhamento intrínseco do meio interestelar (Av = 1,25 mag/kpc). O índice de cor também é aparente e é calculado com base no avermelhamento intrínseco do MI. A linha tracejada na magnitude 6 mostra o limite inferior de corte em magnitude utilizado neste trabalho. A região preenchida em cinza é a mesma que a região hachurada em preto na Figura 3.9 - Glóbulo Barnard 68, um bom exemplo de que a extinção é seletiva e que entre B $(0,44 \ \mu m)$, V $(0,55 \ \mu m)$, I $(0,90 \ \mu m)$, J $(1,2 \ \mu m)$, H $(1,65 \ \mu m)$ e K $(2,16 \ \mu m)$, é a banda K a menos sujeita à extinção. (ALVES et al 2001)......40 **Figura 3.10** - Histograma log (N) x magnitude H para o campo 16 (coordenadas centrais l_{gal} = 303° 10' e Figura 3.11 – Imagens obtidas no Virtual Observatory (MCGLYNN; SCOLLICK; WHITE, 1996) do candidato 072-225, coordenadas centrais α =194,963338°, δ =-69,035606°, um objeto considerado puntiforme. A) DSS2 Red; B) 2MASS J; C) 2MASS H; D) 2MASS K. .43 **Fígura 3.12** - Distribuição espectral do candidato 62 (coordenadas centrais $\alpha = 187,964547^{\circ}$, δ =-71,064293°). Para este objeto ajustou-se uma curva de corpo negro, pelo método dos Fígura 3.13 – Exemplo de um objeto em que se pode distinguir facilmente duas emissões,

Fígura 3.15 – Exemplo de diagrama *Luminosidade* x *Temperatura* (BRISSI; HICKEL, 2005) para candidatos a OEJs. A Luminosidade é dada em luminosidades solares. O gráfico mostra a Sequência Principal de Idade Zero (SPIZ) com a posição de diversas massas estelares (em massas solares). Trajetórias evolutivas de OEJs (MYERS et al., 1998) para 5 massas diferentes e 3 isócronas (linhas tracejadas) também são plotadas. As classes evolutivas, Figura 4.1 - Diagrama Luminosidade x Temperatura para os 278 candidatos a OEJs. A Luminosidade é dada em luminosidades solares. O gráfico mostra a Seqüência Principal de Idade Zero (SPIZ) com a posição de diversas massas estelares (em massas solares). Trajetórias evolutivas de OEJs (MYERS et al., 1998) para 5 massas diferentes e 3 isócronas (linhas tracejadas) também são apresentadas. As classes evolutivas, conforme suas Figura 4.2 – A quantidade de objetos por campo (Tabela 4.10) é mostrada em tons de cinza. A escala de cinza desta figura é mostrada na próxima página, sendo que o número de fontes é Figura 4.3 – A quantidade de candidatos a OEJ, por campo, é mostrada nesta imagem.......75 Figura 4.4 – A quantidade de candidatos a OEJ, por campo, é mostrada em tons de cinza, Figura 4.5 - Relação Sinal/Ruído x Paralaxe. A linha horizontal marca o nível de corte dos Figura 4.6 - Histograma Contagem x Paralaxe mostrando um pico (excesso de objetos) na

Não utilizamos esta estimativa de distância neste trabalho por haver outros trabalhos que realizaram estimativas mais elaboradas, usando métodos mais sofisticados, incluído observações, entre estes trabalhos optamos por Corradi, Franco e Knude (1997) que calcularam 150 \pm 30 pc. No entanto, o resultado obtido por nós está coerente com as outras estimativas de distâncias apresentadas neste trabalho. Inclusive com a que utilizamos como Figura 5.1 – O candidato classificado como galáxia (α =184,742399°, δ =-71,408020°) do campo 205 mostrado nas imagens A (no óptico, DSS2) e B (banda K_S). O outro candidato classificado como galáxia (α =190,177698°, δ =-68,791069°) do campo 048 é mostrado nas imagens C (no óptico, DSS2) e D (banda H). (MCGLYNN; SCOLLICK; WHITE, 1996)....82 Figura 5.2 - Candidatos eliminados por possuírem baixa qualidade de fotometria: (A) campo 325 (banda J), coordenadas centrais: $\alpha = 176,192576^{\circ}$ e $\delta = -73.509918^{\circ}$; (B) campo 393 (no óptico, DSS2) coordenadas centrais: α=192,588939° e δ-75,097160°......82 Figura 5.3 – Diagrama HxJ-H do campo 190 mostrando os 1245 objetos restantes após a eliminação dos objetos com baixa relação sinal/ruído (Antes desta eliminação este campo tinha 2439 objetos). Este campo possui 10 dos 284 candidatos à OEJ separados neste trabalho. Pode-se perceber uma gande quantidade de objetos à direita da sequência principal e um espalhamento na parte superior da coluna vertical o que sugere uma alta extinção na região Figura 5.4 – Diagrama HxJ-H do campo 414. Este campo não têm candidatos à OEJ. Os objetos formam uma bem comportada coluna praticamente vertical, sem espalhamento. Com isso podemos concluir que não há sinais de extinção intensa neste campo, ao contrário da Figura 6.1 – Distribuição espacial dos 284 candidatos a OEJs (estrelas pretas), na área de

 $6^{\circ} \times 8^{\circ}$ analisada neste trabalho, em torno da nuvem filamentar de Musca; apresentada contra a

Lista de Tabelas

Tabela 2.1 – Propriedades físicas das nuvens interestelares adaptado de (LOW;KLESSEN,
2004)
Tabela 2.2 - Alguns resultados obtidos por Gregório-Hetem, Sanzovo e Lépine (1988) para o
filamento de Musca
Tabela 2.3 . Dados de Musca obtidos por Cambrésy (1999)17
Tabela 2.4. Parâmetros obtidos para as condensações de Musca por Vilas-Boas, Myers e
Fuller (1994)
Tabela 3.1 – Trecho do campo 100 (coordenadas centrais $l_{gal} = 301^{\circ}$ 10' e $b_{gal} = 6^{\circ}$ 50')
mostrando as informações relativas aos objetos 190 à 210 como foram obtidas do 2MASS.
Coluna 1: Número da fonte no documento. Coluna 2: Distância do centro do campo até a
fonte em segundos de arco. Coluna 3: Longitude galáctica (em graus). Coluna 4: Latitude
galáctica (em graus). Coluna 5: Ascensão reta em graus (α)(em graus). Coluna 6: Declinação
(δ)(em graus). Coluna 7: Magnitude J (1,25 μ m). Coluna 8: Erro da magnitude J. Coluna 9:
Magnitude H (1,65µm). Coluna 10: Erro da magnitude H. Coluna 11: Magnitude K _s
(2,17µm). Coluna 12: Erro da magnitude K _S . Coluna 13: Qualidade da fotometria
Tabela 3.2 - Dados com todas as colunas completas, os erros bem determinados e boa relação
sinal ruído após eliminarmos as linhas em branco e candidatos com baixa relação sinal/ruído.
Coluna 1: Número da fonte no documento. Coluna 2: Distância do centro do campo até a
fonte em segundos de arco. Coluna 3: Longitude galáctica. Coluna 4: Latitude galáctica.
Coluna 5: Ascensão reta (α). Coluna 6: Declinação (δ). Coluna 7: Magnitude J (1,25µm).
Coluna 8: Erro da magnitude J. Coluna 9: Magnitude H (1,65µm). Coluna 10: Erro da
magnitude H. Coluna 11: Magnitude K _S (2,17µm). Coluna 12: Erro da magnitude K _S 30
Tabela 3.3 – Limite de completeza do 2MASS nas bandas J, H e K _S , nos campos da área de
estudo41
Tabela 4.1 – Candidatos que apareceram na divisa entre os campos 420 e 421. O candidato
que apareceu no campo 421 foi eliminado. Cp: campo da Figura 3.1; α : ascensão reta; δ ;
declinação54
Tabela 4.2 – Objetos classificados nos catálogos como variáveis de longo período. Cp:
campo da Figura 3.1; α : ascensão reta; δ ; declinação

Tabela 4.3 – Objetos classificados nos catálogos como variáveis semi-regulares tipo SR. Cp:
campo da Figura 3.1; α: ascensão reta; δ; declinação55
Tabela 4.4 – Objetos classificados nos catálogos como galáxias. Cp: campo da Figura 3.1; α:
ascensão reta; δ; declinação55
Tabela 4.5 – Objeto classificado nos catálogos como estrela carbonada. Cp: campo da Figura
3.1; α : ascensão reta; δ ; declinação
Tabela 4.6 – Objetos classificados nos catálogos como variáveis tipo L. Cp: campo da Figura
3.1); α : ascensão reta; δ ; declinação
Tabela 4.7 – Candidatos que ajustaram uma distribuição espectral de corpo negro (84).
Cand.: Número do candidato a OEJ; Cp.: Campo em que está o objeto na Figura 3.1; α :
ascenção reta; δ: declinação; B: magnitude banda B; R: magnitude banda R; I: magnitude
banda I; J: magnitude banda J; H: magnitude banda H; K: magnitude banda K; T:
temperatura; eT: erro da temperatura; L: luminosidade; eL: erro da luminosidade; R: raio; eR:
erro do raio
Tabela 4.8 – Candidatos que não ajustaram uma distribuição espectral de corpo negro. Cand.:
Número do candidato a OEJ; Cp.: Campo que está o objeto na Figura 3.1; α : ascenção reta; δ :
declinação; B: magnitude banda B; R: magnitude banda R; I: magnitude banda I; J: magnitude
banda J; H: magnitude banda H; K: magnitude banda K; T _B : temperatura bolométrica; eT _B :
erro da temperatura bolométrica; L: luminosidade; eL: erro da luminosidade; R: raio; eR: erro
do raio
Tabela 4.9 – Seis objetos não puderam ser analisados por só possuírem medidas fotométricas
no catálogo 2MASS, o que nos permite analisar apenas 3 bandas (J, H e K _S). Inviabilizando a
eliminação ou a classificação. Portanto são objetos que devem ser submetidos a futuras

1. INTRODUÇÃO1
1.1 Objetivos1
1.1.1 Objetivo Geral1
1.1.2 Objetivos Específicos1
2. REVISÃO DA LITERATURA
2.1 O Meio Interestelar (MI)
2.2 Formação Estelar
2.2.1 Introdução
2.2.2 Instabilidade e Colapso
2.2.3 A Fase Proto-Estelar7
2.2.4 A Fase Pré Seqüência Principal10
2.3 A Nuvem Escura de Musca11
3. MATERIAL E MÉTODOS
3.1 Introdução27
3.2 Escolha da Área Abrangida27
3.3 Fonte (catálogo) dos Dados27
3.4 Eliminação de dados com baixa qualidade fotométrica28
3.5 Separação dos candidatos a OEJ
3.6 Análise do limite de completeza 40
3.7 Verificação de fonte puntiforme 42
3.9 Distribuição Espectral
3.10 Temperatura Bolométrica
3.11 Determinação da luminosidade48
3.12 Determinação do Raio

Sumário

3.13 Determinação da idade	49
3.14 Estimativa do número de gigantes na região	49
4. RESULTADOS	53
4.1 Dados	53
4.2 A distribuição Espacial dos Objetos	70
4.3 Estimativa da distância da nuvem de Musca usando dados do Hiparcos	77
5. DISCUSSÃO	79
5.1 Incertezas da distância	79
5.2 Analisando os candidatos encontrados	79
5.3 Verificação de fonte puntiforme	80
5.4 Eliminação de candidatos com baixa qualidade de fotometria	80
5.5 Estimativa do número de gigantes da região	81
6. CONCLUSÃO	85
6.1 Resultados deste Trabalho	85
6.2 Perspectivas para o futuro	87
REFERÊNCIAS	88

1. INTRODUÇÃO

1.1 Objetivos

1.1.1 Objetivo Geral

Nosso objetivo neste trabalho é investigar fotometricamente a nuvem escura filamentar da constelação de Musca (Figura 1.1) usando o catálogo fotométrico 2MASS (*Two Micron All Sky Survey*) (CUTRI, 2003) para estudar a formação estelar nesta nuvem, identificando prováveis OEJs (Objetos Estelares Jovens).

1.1.2 Objetivos Específicos

Nossos objetivos específicos com esta investigação são:

- Descobrir candidatos a OEJs¹ na região de Musca;
- Investigar cada candidato individualmente ampliando os conhecimentos sobre cada objeto, caracterizando a massa, raio, temperatura e luminosidade;
- Contribuir para compreensão da região de Musca.

Este trabalho está estruturado nos

seguintes capítulos: o Capítulo 1, onde apresentamos nossos objetivos para a realização deste trabalho. O Capítulo 2 que se dedica à revisão de literatura, principalmente a caracterização da nuvem de Musca, bem como uma breve revisão dos fenômenos quem envolvem o meio interestelar (MI) e formação estelar. O Capítulo 3, onde é descrita a metodologia adotada neste trabalho para encontrarmos os candidatos a OEJ. O Capítulo 4, onde são apresentados os dados, bem como, os resultados obtidos. O Capítulo 5, onde apresentamos uma discussão a cerca dos resultados encontrados. O capítulo 6, onde é a conclusão deste trabalho e também perspectivas para futuros trabalhos.

¹ Resultado que servirá, inclusive, para futuras investigações espectroscópicas.

Figura 1.1 - Região de Musca em 100µm (IRAS) (MCGLYNN;SCOLLICK;WHITE, 1996). A emissão da poeira associada à nuvem filamentar é vista em tons de preto. As coordenadas galácticas são indicadas na figura.

2. REVISÃO DA LITERATURA

2.1 O Meio Interestelar (MI)

Interior de São Paulo, novembro de um ano há muito tempo atrás, três sertanejos caminham cautelosamente pelo *capim gordura*⁽²⁾, atentos às cascavéis e jararacas, para chegarem a uma lagoa a meia légua⁽³⁾ da fazenda e pescar traíras⁽⁴⁾. Durante a caminhada seu Zico, o mais velho do grupo, desenha no céu a constelação da Ema que lhe foi mostrada pelos antigos índios (Guaranis) que habitavam a região. Ele mostra que a cabeça da Ema é formada pelas estrelas vizinhas do Saco de Carvão, na constelação do Cruzeiro do Sul (Crux). O bico, formado por α Muscae e β Muscae. Ele vai desenhando a grande ave no céu, apontando para estrelas das constelações de Grux, Scorpius, Musca, Centaurus, Triangulum Australe, Ara, Telescopium, Lupus e Circinus. Na volta da pescaria, Chico, o mais jovem, pede para seu Zico falar sobre o Caminho da Anta (A Via Láctea) (Tapi'i rapé, em guarani) e sobre d'Abbeville (a constelação do Homem Velho) (AFONSO, 2005).

Desde a antiguidade o homem admira e cria mitologias a respeito das estrelas, além das manchas claras e escuras ao longo de uma saliente faixa esbranquiçada no céu (a Via Láctea). Mas, o estudo sistemático das nebulosas escuras foi iniciado no século XVIII, já no tempo dos telescópios. Edmond Halley (1656-1742) mencionou a presença de material interestelar, que pudesse atenuar a luz das estrelas distantes. O astrônomo alemão Willian Herschel (1738-1822), famoso pela descoberta do planeta Urano⁽⁵⁾ e por ter mapeado⁽⁶⁾ a Galáxia, chamou estas nebulosas "buracos no céu", acentuando o contraste entre a ausência de estrelas e as regiões brilhantes da Via Láctea. Frederick Georg Wilhelm Struve (1793-1864) apresentou em 1847 uma teoria detalhada sobre o fenômeno de absorção interestelar. Usando

⁵ O planeta Urano foi descoberto em 1781.

² Gramínea nativa do interior do Brasil, muito comum próximo a riachos em regiões de cerrado.

³ Uma légua brasileira é uma medida itinerante equivalente 3000 braças ou a 6600 m.

⁴ Peixe caracídeo carnívoro, muito comum em pântanos e lagoas no interior do Brasil.

⁶Willian Herschel realizou uma contagem de estrelas e concluiu que o Sol está em repouso próximo ao centro de um sistema plano de forma elíptica, aproximadamente cinco vezes maior na direção da Via Láctea que na direção perpendicular a ela. Ele também catalogou mais de 800 estrelas duplas e 2500 nebulosas.

a distribuição de estrelas no espaço, baseado nos catálogos de Herschel, Struve calculou uma taxa de extinção interestelar de 1 mag/kpc⁽⁷⁾, que é um valor semelhante às estimativas atuais. O padre Ângelo Secchi (1818-1878), conhecido por ter criado um sistema de classificação espectral, publicou em 1877 um trabalho sobre as "massas escuras", interpretando-as como regiões projetadas em um fundo brilhante de estrelas, cujos raios seriam interceptados pelas nuvens. Arthur Cowper Ranyard (1845-1894) e Heber Doust Curtis (1872-1942) apresentaram trabalhos semelhantes ao de Ângelo Secchi, antagonisando com a idéia de "buracos no céu". Utilizando técnicas fotográficas, que já eram utilizadas para nebulosas brilhantes (1880), Edward Emerson Barnard (1857-1923) publicou em 1927 um catálogo de nebulosas escuras, o único do gênero até 1960. Outro trabalho importante, contemporâneo ao trabalho de Barnard, é o trabalho de Max Wolf (1863-1932) sobre as nebulosas escuras. Comparando o número de estrelas por unidade de área do céu em função do brilho aparente das estrelas para regiões com ou sem obscurecimento, Wolf estimou grosseiramente a extinção interestelar e a distância até a nuvem. Apesar dos diversos estudos teóricos e observações realizados até o primeiro quarto do século XX, evidências realmente conclusivas sobre a extinção interestelar só foram apresentadas em 1930 por Robert Julius Trumpler (1886-1956), baseado em observações de aglomerados galácticos⁸. Ele obteve o valor médio de 0,67 mag/kpc para a extinção, resultado semelhante a Frederick Georg Wilhelm Struve. Trabalhos de Joel Stebbins (1878-1966) e colaboradores deram importantes contribuições ao estudo da não-uniformidade da distribuição de matéria interestelar e também do avermelhamento de estrelas distantes (absorção seletiva). Outro avanço importante na compreensão da poeira interestelar é a polarização da luz das estrelas, descoberto

 $^{^{7}}$ 1 kpc=1000 pc; 1 pc=3,086.10¹⁶ m.

⁸ "Comparando as distâncias de alguns aglomerados abertos, obtidas fotométrica e geometricamente, ele notou que existia uma diferença sistemática, que aumentava progressivamente para os aglomerados mais distantes. Como parecia improvável que os tamanhos dos aglomerados fossem aumentando com a distância, Trumpler concluiu que uma extinção geral diminuía a magnitude aparente das estrelas fazendo com que, em alguns casos, as suas distâncias fossem superestimadas. Ele também demonstrou que a extinção interestelar é seletiva, de forma que, mais luz é absorvida nos comprimentos de onda menores, provocando um progressivo avermelhamento". (CORRADI, 1998)

acidentalmente em 1949 por Willian Albert Hiltner (1914-1991) e John Scoville Hall (1908-1991). A polarização está diretamente relacionada à extinção, e requer a presença de campo magnético difuso para orientar as partículas de poeira dispersas no espaço interestelar (MACIEL, 2002; PEIMBERT, 1984; OLIVEIRA FILHO, 2000; CORRADI, 1998).

2.2 Formação Estelar

2.2.1 Introdução

A formação estelar é um dos processos astrofísicos mais importantes. Determina não apenas as características dos sistemas estelares, mas também modifica o MI em seu entorno⁽⁹⁾.

A vida de uma estrela inicia-se no MI. Este meio não é uniforme, ele é extremamente rico em objetos e fenômenos (raios cósmicos, campo magnético, diversos tipos de nuvens,...). As estrelas nascem neste meio em nuvens gigantes de hidrogênio, muito frias e densas chamadas nuvens moleculares. Estas nuvens são formadas de cerca de (em massa) 71% de H_2 (hidrogênio molecular), 27% de He e menos de 2% dos outros elementos químicos (metais) (MACIEL, 2002).

As nuvens moleculares são objetos gigantescos, possuem massas de $10^2 M_{\odot}$ até $10^6 M_{\odot}$. Os diâmetros destas nuvens variam de 1 a 60 pc. As temperaturas são baixíssimas, de 10 K a 30 K. Densidade de massa muito baixa se comparada a densidades terrestres, mas muito alta se comparada ao MI, variando de 100 a 10000 moléculas por centímetro cúbico (Tabela 2.1). Estas nuvens podem permanecer praticamente inalteradas no MI por um tempo que varia de 10 milhões de anos até bilhões de anos. Durante esta fase a pressão interna do gás vai contrabalancear a força de auto-atração gravitacional e a nuvem fica estável (LOW;KLESSEN, 2004; MACIEL, 1999).

⁹ A formação estelar também está relacionada com as características do MI onde a estrela formou-se.

	Complexo gigante de nuvens moleculares	Nuvem Molecular	Aglomeração de Formação estelar	Centro de uma Proto-estrela
Tamanho (pc)	10 - 60	2 - 20	0,1 – 2	≤ 0,1
Densidade $[n(H_2)/cm^3]$	100 - 500	$10^2 - 10^4$	$10^3 - 10^5$	> 10 ⁵
Massa (M_{\odot})	$10^4 - 10^6$	$10^2 - 10^4$	$10 - 10^3$	0,1 - 10
Largura de linha (km/s)	5 - 15	1 - 10	0,3 - 3	0, 1 - 0, 7
Temperatura (K)	7 - 15	10 - 30	10 - 30	7 - 15

Tabela 2.1 – Propriedades físicas das nuvens interestelares adaptado de (LOW;KLESSEN, 2004).

As pesquisas de formação estelar estão intimamente ligadas a observações no infravermelho ($1 < \lambda (\mu m) < 100$). Isto ocorre por três motivos:

 (i) a radiação infravermelha é menos sujeita à opacidade dos grãos interestelares do que a radiação no visível;

(ii) as proto-estrelas apresentam emissão mais intensa nesta região do espectro, porque a poeira em torno da estrela absorve radiação no visível e re-emite no infravermelho (LOW;KLESSEN, 2004);

(iii) Nos estágios iniciais a proto-estrela só emite no infra-vermelho.

2.2.2 Instabilidade e Colapso

Devido à auto-atração gravitacional a nuvem começa a se fragmentar criando glóbulos, porém estes glóbulos podem ficar estáveis por milhões de anos sem colapsar (Figuras 2.1 e 2.2 (*Pré Stellar Phase*)). Estes glóbulos tornam-se gravitacionalmente instáveis provavelmente quando passa uma onda de choque possivelmente proveniente de uma supernova próxima ou ondas de densidade como as que são responsáveis pelos braços espirais das galáxias (HESTER;DESCH, 2005; LADA;LADA, 2003).

Para uma nuvem infinita, homogênea e em repouso, as instabilidades induzem à contração gravitacional, se as perturbações aplicadas tiverem um comprimento de onda λ superiores ao comprimento de Jeans:

$$\boldsymbol{l}_{J} \sim \left(\frac{\boldsymbol{p}}{\boldsymbol{G}\boldsymbol{r}}\right)^{\frac{1}{2}} \boldsymbol{v}_{S} \tag{2.1}$$

$$v_{s} = \left(\frac{gkT}{mn_{H}}\right)^{\frac{1}{2}}$$
(2.2)

onde \mathbf{r} é a densidade do gás (g/cm³), v_s é a velocidade isotérmica do som no meio, G (6,67.10⁻¹¹ N.m².kg⁻¹) é a constante da gravitação universal, T é a temperatura do gás (K), **m** é o peso molecular médio, k é a constante de de Boltzmann (1,38.10⁻¹⁶ erg/K) e m_H é a massa do hidrogênio (MACIEL, 1999).

Se algum agente externo aplicar uma pequena pressão o glóbulo colapsa se possuir uma massa maior que a massa de Jeans:

$$M_{J} \sim 1, 4.10^{-10} \frac{T^{\frac{3}{2}}}{r^{\frac{1}{2}} m^{\frac{3}{2}}} \qquad (M_{\odot})$$
 (2.3)

Em condições interestelares típicas, temos $T \sim 100$ K, densidade de partículas $n \sim 1$ cm⁻³, $\mathbf{r} \sim nm_H \sim 10^{-24}$ g/cm³, $M_J \sim 10^5$ M_o e $t_{ql} \sim 10^8$ anos (tempo de queda livre). O t_{ql} é proporcional a densidade $(t_{ql} \mathbf{a} \mathbf{r}^{-1/2})$ e, à medida que o colapso ocorre, \mathbf{r} aumenta e t_{ql} diminui (MACIEL, 1999).

2.2.3 A Fase Proto-Estelar

Comumente os objetos protoestelares e estelares jovens são classificados de acordo com sua distribuição espectral de energia (LADA, 1999). Os objetos são classificados em Classe 0, I, II e III, dependendo da quantidade e da emissão do material circunstelar. O colapso inicial e a fragmentação formam objetos Classe 0, extremamente frios (T < 70 K), são de difícil detecção, possuem emissão essencialmente em comprimentos de ondas sub-milimétricos. Foram descobertos apenas na década de 90 com o desenvolvimento dos detectores nesta região do espectro. A massa do envelope que está caindo pode ser maior que a massa do embrião central e a luminosidade é dominada pela luminosidade de acreção:

$$L_{ac} \sim \frac{GM_*M}{R_*} \tag{2.4}$$

$$\dot{M} = \frac{dM}{dt} \tag{2.5}$$

Onde M_* é massa do embrião central, M é a taxa de acreção de matéria.

Com o colapso, o centro do glóbulo atinge equilíbrio hidrostático, enquanto as camadas mais externas continuam a cair. O material continuamente depositado no centro é aquecido e sua energia é perdida parcialmente por radiação (Figura 2.1). O centro fica cada vez mais denso e devido à conservação de massa o perfil de densidade tende para uma lei do tipo $r a R^{-2}$ em escalas de 10⁵ anos. A estrutura em que o caroço central atingiu equilíbrio hidrostático é uma proto-estrela. A temperatura central ainda não é alta o suficiente para iniciar a fusão nuclear do hidrogênio. Temos neste cenário um objeto Classe I, com temperatura bolométrica variando entre 70 K e 750 K, podendo ser estudados no infravermelho. A emissão infravermelha dos grãos de poeira da nuvem proto-estelar contribui para a dissipação da energia cinética.

Durante a contração a densidade aumenta da ordem de 10^{20} vezes e o raio diminui da ordem de 10^6 vezes. No processo de contração o momento angular é conservado, o que faz com que o objeto colapsado tenha uma rotação muito maior que a do glóbulo. Também, o fluxo magnético é conservado o que produz fenômenos de ejeção de matéria nos pólos da estrela. Esta ejeção é provocada pela parte da matéria que não é diretamente acretada no objeto central, escapando por seus pólos em virtude da força centrípeta e da configuração das linhas de campo. Com o aumento da densidade a nuvem torna-se opaca (LARSON, 1969).

Figura 2.1 – Evolução da fase pré-estelar e proto-estelar. São mostradas cinco diferentes fases desde uma fase pré-estelar até a formação de um disco e eventualmente a formação de planetas. Os diferentes estágios são caracterizados por diferentes temperaturas bolométricas. (REIPURTH, 2005).

2.2.4 A Fase Pré Seqüência Principal

Objetos proto-estelares com $M_* = 0,08 M_{\odot}$ não atingirão temperatura central suficiente para ignição do hidrogênio, tornando-se anãs marrons, de difícil detecção. Objetos com massa superior a 0,08 M_o podem ser observados como estrelas T Tauri (TT) na fase pré-seqüência principal. As T Tauris (TTs) são estrelas variáveis não pulsantes de baixa massa ($0,2 \le$ $M(M_{\odot}) \leq 2$). Têm grandes zonas de convecção, atividade magnética superficial, regiões fotosféricas ativas, vento estelar da ordem de 10⁻⁶ M_o/ano, linhas de emissão intensas da série de Balmer do He, as linhas H e K do CaII. Estes objetos estão localizados à direita da seqüência principal. Inicialmente estes objetos possuem grande quantidade de material circunstelar que vai sendo consumido pelo colapso, alimentando o objeto central e em pouco tempo desaparece. Assim este envelope desaparece à medida que a estrela fica madura. Nesta fase em que os objetos ainda possuem muito material circunstelar, eles são classificados como Classe II (650 \leq T_{bol} \leq 2880) (Figura 2.1). Quando a T Tauri fica com pouco ou nenhum material circunstelar ela é classificada como Classe III e também conhecidas como weak-line TT (TT de linha fraca). Este nome refere-se à baixa intensidade de emissão H_{α} nesta fase da evolução estelar. Nesta fase o material não está completamente desprovido de material circunstelar, mas deve coagular em corpos maiores, tornando-se os blocos que provavelmente darão origem aos planetas. Como estão desprovidos de seu envelope inicial, os objetos de Classe III, não possuem excesso de cor na emissão infravermelha (REIPURTH, 2005) (Figura 2.1).

A Figura 2.2 mostra de forma esquemática a trajetória típica no diagrama HR para a evolução de uma proto-estrela de 1 M_{\odot} . Nesta figura o ponto A corresponde à formação do caroço estelar, o ponto B corresponde à máxima luminosidade de uma proto-estrela convectiva. No ponto C a radiação começa a dominar o interior estelar atingindo o ponto D. A SPIZ é atingida no ponto E quando começam as reações nucleares (MACIEL, 1999).

Figura 2.2 – Trajetória típica no diagrama HR para a evolução de uma proto-estrela de 1 M_{\odot} . Dependendo da massa da proto-estrela ela atinge a SPIZ em diferentes luminosidades, segundo a chamada *trajetória de Hayashi* (linha tracejada). A) Formação do caroço estelar; (B) Máxima luminosidade de uma proto-estrela convectiva; (C) Início do domínio da radiação no interior da proto-estrela atingindo o ponto (D); (E) Início das reações nucleares a proto-estrela atinge a SPIZ e torna-se uma estrela propriamente dita. Adaptado de (MACIEL, 1999).

2.3 A Nuvem Escura de Musca

A nuvem escura de Musca (Figura 1.1) é citada na literatura como uma região que possui poucas evidências de formação estelar (GREGÓRIO-HETEM;SANZOVO;LÉPINE, 1988). Ela possui a forma de um filamento de 3,8° x 0,2°, localizada a 10° ao sul do plano galáctico, distante entre 120 e 250 pc do Sol, com massa estimada entre 140 e 550 massas solares (CORRADI;FRANCO;KNUDE, 2004; CORRADI;FRANCO, 1995; CORRADI, 1998; ARNAL;MORRAS;RIZZO, 1993; NEUHAUSER, 2000; MIZUNO, 1998; VILAS-BOAS;MYERS;FULLER, 1994; CAMBRÉSY, 1999). Musca foi catalogada pela primeira vez por Sandqvist (1977) examinando as placas o ESO(B).

Há poucos trabalhos na literatura que tratam do filamento de Musca, por isso apesar de estar relativamente próximo ele ainda é pouco conhecido. A Função Inicial de Massa (FIM) ainda não é determinada e taxa de formação estelar não está bem determinada. Talvez o motivo do desinteresse em torno da região sejam os indícios de que a região possui uma baixa taxa de formação estelar. Nuvens moleculares possuem baixa taxa de formação estelar (ZUCKERMAN; EVANS, 1974).

Portanto deve haver mecanismos para contrabalancear a força gravitacional provavelmente: campo magnético, rotação e/ou turbulência. (ARQUILLA;GOLDSMITH, 1986).

Covino et al. (1997) realizaram espectroscopia de alta resolução (linha LiI6708) em 74 fontes ROSAT na direção do complexo de Camaleão candidatas a *weak-line* TTs. Eles confirmaram que mais de 50% das fontes são realmente *weak-line* TTs, a maior parte delas estão entre as nuvens principais (Figura 2.3). A formação de estrelas de baixa massa consome grande parte do gás nas suas vizinhanças. Pode-se inferir da descoberta destas TTs que o complexo de nuvens do Camaleão era muito maior no passado, a formação estelar consumiu o gás e ficaram as estrelas jovens entre as nuvens que não colapsaram.

Figura 2.3 – Imagem em cor falsa do ¹³CO (J=1-0) da distribuição de intensidade do complexo Camaleão-Musca. As cruzes marcam as posições das fontes de raio-X identificadas como T-Tauris por Covino et al (1997). Os contornos indicam a detecção do ¹³CO, 0,9 K km.s⁻¹ (3σ). A linha contínua mostra a área observada. As linhas pontilhadas mostram as coordenadas equatoriais (MIZUNO, 1998)

Gregório-Hetem, Sanzovo e Lépine (1988) construíram mapas de extinção de nove nuvens (Vela, Carina, Camaleão I, Camaleão II, Camaleão III, Circinus, Saco de Carvão e Norma) (Figura 2.4) situadas no hemisfério sul, entre elas Musca. Usaram para isto contagem de estrelas em placas fotográficas do ESO (B), SRC-J e ESO (R). Identificaram uma provável T-Tauri associada à fonte IRAS12322-7023, sendo o único provável OEJ conhecido na literatura na direção da nuvem. Estimaram a distância entre 200 e 250 pc.

A extinção foi determinada seguindo a relação:

$$A_{I} = \frac{1}{b} \log \frac{n(0)}{n(1)} \tag{2.6}$$

onde n(0) é o número de estrelas por célula de referência e n(1) é o número de estrelas por célula da nuvem. O parâmetro *b* pode ser estimado para cada nuvem usando as tabelas de van Rhijn's¹⁰ (para Musca *b*=0,44).

Para calcular A_v , Gregório-Hetem, Sanzovo e Lépine (1988) usaram curvas de extinção de Bless e Savage (1972):

$$A_V = 0.76A_B \tag{2.7}$$

$$A_V = 1,21A_J \tag{2.8}$$

$$A_V = 0.83A_R \tag{2.9}$$

e estimaram a massa de Musca em 253 $\rm M_{\odot}$ usando:

$$M = (ad)^{2} \frac{N_{H_{2}}}{A_{V}} m \sum_{i} A_{V}^{i}$$
(DICKMAN, 1978) (2.10)

onde **a** é o tamanho (angular) de cada elemento da grade (em radianos), d é a distância da nuvem (em cm), **m** é a massa média das partículas. Adotaram a seguinte relação para determinar N_{H_2} :

$$N_{H_2} = 9,4.10^{20} A_V \text{ cm}^{-2} \text{mag}^{-1} \text{ (SAVAGE; MATHIS, 1979).}$$
 (2.11)

¹⁰ (VAN RHIJN, 1929)

Gregório-Hetem, Sanzovo e Lépine (1988) reforçam as suspeitas que Saco de Carvão, Musca e Camaleão fazem parte da mesma estrutura. Afirmam que a taxa de formação estelar é alta em Camaleão I e II e quase nula em Camaleão III, Musca e Saco de Carvão.

Figura 2.4 - Mapa de extinção obtido por Gregório-Hetem, Sanzovo e Lépne (1988) usando as bandas B e J.

Na Tabela 2.2 são apresentados alguns resultados obtidos por Gregório-Hetem, Sanzovo e Lépine (1988) para a nuvem de Musca.

 Tabela 2.2 - Alguns resultados obtidos por Gregório-Hetem, Sanzovo e Lépine (1988) para o

 filamento de Musca.

d (pc)	$M (M_{\odot})$	A _V (mag)	Área (graus ²)
200	253	$4,5\pm1,7$	0,83

Arnal, Morras e Rizzo (1993) observaram a polarização em ¹²CO (J=1→0) na região da nuvem (Figuras 2.4 e 2.5). Para isso utilizaram observações de polarimetria de 56 estrelas na direção da nuvem e vizinhanças. As observações foram feitas com o rádio telescópio Columbia Millimeter-Wave Telescope instalado em Cerro Toloro, Chile, durante o mês de janeiro de 1985 com λ ~2,6 mm. Usando a distância espectroscópica determinaram que a nuvem está 150 pc. Também determinaram que Musca possui massa de aproximadamente 170 M_{\odot} , densidade 300 $\frac{n(H_2)}{cm^3}$. Observar a polarização de uma região indica se há campo magnético presente e qual a sua orientação. Há evidências de que o campo magnético e a rotação pode alongar uma nuvem (VRBA; STROM; STROM, 1976; GOODMAN, 1990), talvez seja esta a explicação para a forma de filamento da nuvem de Musca. Arnal, Morras e Rizzo (1993) ainda determinaram que o filamento possui seu centro em $l=300,6^{\circ}$ e $b=-8,5^{\circ}$, com comprimento estimado em ~ 3°, área 5,6 x 1,3 pc². Determinaram ainda a extinção (A_v) em 3,72 mag para estrelas dentro da nuvem e 3,37 mag para estrelas fora da nuvem. Estimam o campo magnético em torno de 30µG, perpendicular ao eixo maior da nuvem e sugerem que Musca esteja colapsando ao longo das linhas de campo.

Cambrésy (1999) construiu mapas de extinção de várias nuvens moleculares da Galáxia (Lupus, ? Ophiuchus, Scorpius, Coalsack, Taurus, Chamaeleon, Musca (Figura 2.7), Corona Australis, Serpens, IC 5146, Vela, Orion, Monoceros R1 and R2, Rosette, Carina). Para isso ele usou um método de contagem de estrelas no infravermelho próximo com uma célula adaptável e calculou a massa utilizando a relação de Dickman (1978), com a distância
estimada por Knude e Hog (1998), ou seja 150 pc. Ele também utilizou a relação $N_{H_2} = 1,87.10^{21} A_V \text{ cm}^{-2} \text{mag}^{-1}$, baseado em Savage e Mathis (1979). Na tabela 2.3 são apresentados alguns resultados de Musca obtidos por Cambrésy (1999).

Tabela 2.3. Dados de Musca obtidos por Cambrésy (1999).

d (pc)	$\mathbf{A_V}^{(\mathbf{A})}$	M _{Tot}	Inclinação
150 ^(B)	5,7	550	- 0,27

^A Máxima extinção. ^{B (}KNUDE;HOG, 1998).

Figura 2.5 – Os número indicam as posições das 56 estrelas usadas por Arnal, Morras e Rizzo (1993) para estudar a polarização do campo magnético em Musca. Coordenadas centrais: α (1950)=12^h30^m e δ (1950) = 71°.

Figura 2.6 - Mapa de polarização óptica da nuvem de Musca obtido por Arnal, Morras e Rizzo (1993). Os segmentos de reta indicam a direção do campo eletromagnético. O comprimento é proporcional à porcentagem de polarização. Os círculos indicam estrelas com polarização menor que 0,5 %. A linha tracejada indica o limite da nuvem obtido do ESO(B). O triângulo preto indica a posição da fonte IRAS 12322-7023, uma provável T-Tauri de Musca.

Figura 2.7 - Mapa de extinção visual de Musca, obtido por Cambrésy (1999). Os tons de cinza são proporcionais à extinção visual, conforme a escala à direita da figura.

Vilas-Boas, Myers e Fuller (1994) estudaram condensações em Vela, Camaleão, Saco de Carvão e Musca, através de observações em 13 CO e C¹⁸O J = 1–0 (Tabela 2.4) (Figura 2.8). Em Musca observaram 16 condensações, e destas determinaram extinções visuais variando de 1,7 mag a 5,7 mag. Os autores calcularam as distâncias destas condensações em 225 pc. Com os dados das observações usaram a seguinte equação para determinar a extinção em Musca:

$$A_V = 1,8.10^{-15} N(C^{18}) + 2,2 \text{ mag}$$
 (2.12)

Para determinar a massa das condensações usaram:

$$M = 22, 2 \left[\frac{N(H_2)}{10^{21} cm^{-2}} \right] \left(\frac{L}{pc} \right)^2 (M_{\odot})$$
(2.13)

Estimaram eficiência de formação estelar em menos de 0,5 %.

Tabela 2.4. Parâmetros obtidos para as condensações de Musca por Vilas-Boas, Myers e Fuller (1994).

NC ^(*)	L	N(H ₂)	N ₁₈	T _{ex}	<m></m>
¹³ CO/C ¹⁸ O	(pc)	$(x10^{21} \text{ cm}^{-2})$	$(x10^{15} \text{ cm}^{-2})$	(K)	(M_{\odot})
16/13	0,3	4	0,8	10	13

(*) Número de condensações.

Figura 2.8 – Diagrama *Densidade de Coluna* $x A_V$ obtido por Vilas-Boas, Myers e Fuller (1994). Os triângulos representam as densidades de coluna do C¹⁸O observadas. A linha tracejada representa o melhor ajuste dos dados e foi utilizada para determinar a equação de extinção visual. A linha pontilhada representa densidade de *coluna x extinção* obtida por Cernicharo & Guelin (1987) (CG) para nuvens difusas e densas com extinção variando de 1 à 5 mag. As linhas contínua (VDB) foram calculadas com base nos modelos com rotação de campo de Draine (1978) com depleção do carbono entre 0,4 e 0,1.

Corradi e Franco (1995), Corradi, Franco e Knude (1997), Corradi (1988) e Corradi, Franco, Knude (2004) quatro trabalhos que se completam, investigaram as suspeitas levantadas em trabalhos anteriores de que o complexo Camaleão-Musca-Saco de Carvão estão fisicamente associados. Para investigar tal hipótese um programa fotométrico foi realizado, utilizando o telescópio dinamarquês de 50 cm instalado no European Southern Observatory (ESO), em La Silla (Chile). Foram selecionadas todas as estrelas dos tipos espectrais mais quentes que GO, com magnitude visual maior que 3, do catálogo do Smithsonian Astronomical Observatory (SAO) cobrindo a área definida pelas coordenadas Galácticas: $294^{?} = 1 = 307^{?}$ e $-20^{?} = b = 5^{?}$; foi selecionado um total de 1053 estrelas com dados uvbyß de alta qualidade (Figura 2.9). Analisando os diagramas de excesso de cor E(b- y) por distância verificaram que existe uma região local de baixa densidade, limitado por uma imensa estrutura de poeira interestelar que dista cerca de 150 ± 30 pc do Sol, e é seguida por uma segunda região onde é detectado pouco avermelhamento em torno de 350 pc. A presença dessa estrutura de poeira interestelar, à mesma distância das citadas nuvens sugere que as nuvens Saco de Carvão, Chamaleão e Musca podem ser regiões de maior densidade embebidas em uma estrutura de grande escala, provavelmente relacionada com a interface entre as Bolhas Local e Loop I.

Os trabalhos das últimas 3 décadas indicam que o MI local é caracterizado pela presença de uma cavidade (Bolha Local) permeada por um meio de baixa densidade e com alta temperatura (nH = 5.10-3 cm-3, T ~ 10^6 K). Os resultados fornecem indícios de que a Bolha Local é quase completamente livre de nuvens de poeira difusas (KNUDE, 1979), e tem dimensões muito incertas. Próximo à Bolha Local existem evidências da existência de uma bolha maior, que aparentemente está relacionada com a associação Scorpio-Centaurus. A distribuição da densidade de coluna do HI de alta latitude mostra a presença de arcos

concêntricos na direção 1 = 330° (HEILES;JENKINS, 1976). Estes resultados foram obtidos pela polarização interestelar da luz óptica, para as estrelas mais próximas (MATHEWSON;FORD, 1970). Do lado oposto aos arcos encontra-se o "North Polar Spur", que se acredita ser a envoltória de uma supernova superposta aos arcos de HI (IWAN, 1980), detectável em emissão contínua de rádio e observações de Raios-X. De acordo com Weaver

Figura 2.9 - Posição para as 1053 estrelas pré-selecionadas do SAO sobre a região ocupada pelas Nuvens Escuras ``Saco de Carvão" e ``Chamaeleon-Musca". O contorno da nuvem ``Saco de Carvão" (ao norte) foi obtido de dados de emissão em CO (Nyman *et al.* 1989), enquanto que para as nuvens em ``Musca" (centro) e ``Chamaeleon" (ao sul) foram obtidos fotograficamente (Feitzinger & Stüwe 1984) (CORRADI;FRANCO, 1995).

(1979) estes arcos podem ser o resultado da ação de ventos estelares fortes produzidos pelas estrelas, formando uma bolha de gás e poeira concêntrica com a associação Scorpio-Centaurus. Neste quadro, "Loop I" é uma envoltória de supernova produzida pela explosão de um dos membros mais massivos desta associação. Esta envoltória teria expandido no meio quente, uniforme e de baixa densidade da bolha, previamente varrido pelos ventos estelares. Das estimativas anteriores de distância, várias nuvens moleculares parecem estar nos limites da Bolha "Loop I". Algumas nuvens moleculares observadas parecem formar um grande complexo de nuvens praticamente à mesma distância. Entre estas nuvens estão as nuvens de Musca, Camaleão, Lupus, Crux, Oph (CORRADI, 1998). Também, pela variação do excesso de cor causado pela estrutura de poeira sugerem que esta não é homogênea estando praticamente na perpendicular do plano galáctico, ou que possui uma densidade mais ou menos uniforme e está curvada na direção oposta ao Sol.

Para investigar a cinemática do meio interestelar na direção das nuvens, CORRADI (1998) realizou uma investigação espectroscópica para obter espectros de alta resolução (R ~ 60000) das linhas de absorção interestelar do dubleto de sódio neutro usando o telescópio CAT ("Coudé Auxiliary Telescope") de 1.4 m, também instalado no ESO. Foram observadas 64 estrelas do tipo espectral B localizadas até 500 pc do Sol. A análise dos componentes do gás indicou que o material em duas estruturas tipo lâmina que se estendem por toda área estudada. Uma com distâncias inferiores a 60 pc e a outra com distâncias entre 120 e 150 pc. A lâmina mais próxima tem baixa densidade de coluna (log $N_{NaI} \sim 11.2 \text{ cm}^{-2}$), está se aproximando do Sol⁽¹¹⁾ a uma velocidade média de aproximadamente -7 km s¹ (velocidade de dispersão 5 km.s⁻¹). Já a estrutura mais distante tem densidade de coluna entre 12,3 = log $N_{NaI} = 13,2 \text{ cm}^{-2}$ e tem menor dispersão de velocidades, aproximadamente 2.5 km s⁻¹. A sua velocidade está centrada em torno de 0 km s⁻¹, em relação ao LSR, mas existe uma

¹¹ Em relação ao padrão local de repouso (LSR).

tendência de aumento desde -3 km.s⁻¹ (próximo ao plano Galáctico) para +3 km.s⁻¹ (próximo à latitude Galáctica b = -18°). A estrutura de menor densidade de coluna é consistente com outras observações de um fluxo de matéria vindo da direção da Associação Sco-Cen. Do ponto de vista das velocidades radiais, a componente densa em torno de 120 – 150 pc tem densidade de coluna que sugere o gás neutro associado com a lâmina de poeira observada na direção das nuvens. O fato de que as velocidades observadas por Corradi, Franco, Knude (1997) (-4 kms⁻¹ = VLSR = +3 km s¹) são também observadas em direções adjacentes, supostamente relacionadas com a interface entre as bolhas Local e Loop I, sugere que a lâmina densa de poeira e gás também faz parte da zona de interação entre as bolhas (Figura 2.10 e 2.11).

Figura 2.10 – Representação esquemática das Bolhas Local e Loop I baseado no modelo de Iwan (1980) (CORRADI, 1998).

Pereyra e Magalhães (2004) mediram a polarização de 2497 objetos para relação sinal

ruído de polarização maior do que 5 $\left(\frac{P}{s_{P}} > 5\right)$ na região de Musca. Verificaram que o

campo magnético está alinhado (Figura 2.12) com o eixo menor da nuvem o que está coerente com os resultados de Arnal, Morras e Rizzo (1993) (Figura 2.5).

Figura 2.11 – Representação esquemática da interação entre a região local e as bolhas de Lobo I com as nuvens da associação de Escorpião-Centauro (adaptado de Corradi, Franco, Knude, 2004). Os contornos foram obtidos do ROSAT ALL-SKY de Egger & Aschenbach (1995). Representa a região onde está concentrado o material neutro e denso, supostamente formada pela interação de duas bolhas.

Mizuno et al. (1998) realizaram um levantamento usando a linha ¹³CO (J=1-0) no complexo Camaleão (I, II e III) – Musca cobrindo uma área de 17° x ~16° (180 graus²). Encontraram 25 novas pequenas nuvens distribuídas ~11°x13° (~28 x 33 pc à 140 pc), a maioria delas coincidentes com as T-Tauris encontradas por Neuhäuser et. al. (1997). Estas pequenas nuvens possuem densidade $\geq 10^3$ cm⁻³ e massa em torno de 20 M_☉, grandes o suficiente para formar estrela. As estrelas estavam dentro de um raio de 4 pc do centro das nuvens, com idade média de 1,6.10⁶ anos. A dispersão de velocidade é da ordem de 3 km/s, pico da coluna de H₂ igual 2.10²¹ cm⁻² e a eficiência de formação estelar na área abrangida em torno de 2% (Figura 2.3). Determinaram a massa da região em torno de 3600 M_☉, sendo cerca

de 15% desta massa relacionada às 25 pequenas nuvens (~520 M_o). Afirmaram que um estudo de OEJs na região precisa levar em conta a deriva (movimento próprio) dos próprios OEJs).

Figura 2.12 – Um dos mapas de polarização para a nuvem de Musca obtido por Pereyra e Magalhães (2004). A região mostrada possui 1 grau quadrado. As coordenadas α e δ são mostradas na figura.

3. MATERIAL E MÉTODOS

3.1 Introdução

Para investigarmos fotometricamente a nuvem escura filamentar da constelação de Musca e separarmos os OEJ seguimos 12 procedimentos descritos a seguir, nas seções 3.2 à 3.14.

3.2 Escolha da Área Abrangida

Arnal, Morras e Rizzo (1993), determinaram que a nuvem de Musca possui seu centro em $l_{gal} = 300,6^{\circ}$ e $b_{gal} = 8,5^{\circ}$. Partindo destas informações e também levando em conta o formato e a extensão da nuvem, selecionamos uma área de 6° x 8° (–13° < $b_{gal} < -5^{\circ}$; 298° < $l_{gal} < 304^{\circ}$) totalizando 48 graus quadrados o que inclui a direção da nuvem e uma ampla região em torno. A escolha de uma área mais ampla que as dimensões da nuvem (< 1grau²) decorre do fato que OEJ s são encontrados fora de nuvens, como os encontrados por Covino et al. (1997) no complexo de nuvens do Camaleão. Assim podemos investigar se há indícios de formação estelar recente no filamento e nas vizinhanças deste onde eventualmente o gás pode ter existido no passado e foi dissipado após a formação estelar. Para facilitar o tratamento de dados dividimos a região em 432 campos (quadrados) de 20' x 20' (Figura 3.1).

3.3 Fonte (catálogo) dos Dados

Para investigarmos os campos, utilizamos os dados do catálogo fotométrico do 2MASS, no infravermelho próximo; nas bandas J (1,25 μ m), H (1,65 μ m) e K_s (2,17 μ m) para extrair as magnitudes das fontes de cada campo. O número de fontes em cada campo variou entre 1.544 e 6.426, totalizando 1.459.012 de fontes. Para facilitar o tratamento e a obtenção de dados realizamos o *download* dos dados das fontes catalogadas em cada campo, separadamente.

3.4 Eliminação de dados com baixa qualidade fotométrica

Obtivemos cada aquivo no formato txt (formato ASCII) em documentos com 13 colunas, sendo cada linha correspondente às informações de um objeto. Assim, cada arquivo possui no mínimo 1.544 linhas (número mínimo de objetos por campo) e no máximo 6.426 linhas (número máximo de objetos por campo). Na tabela 3.1 podemos verificar um trecho do campo 100 (coordenadas centrais $l_{gal} = 301^{\circ}$ 10' e $b_{gal} = 6^{\circ}$ 50') mostrando as informações relativas aos objetos 190 a 210.

Tabela 3.1 – Trecho do campo 100 (coordenadas centrais $l_{gal} = 301^{\circ}$ 10' e $b_{gal} = 6^{\circ}$ 50') mostrando as informações relativas aos objetos 190 à 210 como foram obtidas do 2MASS. <u>*Coluna 1*</u>: Número da fonte no documento. <u>*Coluna 2*</u>: Distância do centro do campo até a fonte em segundos de arco. <u>*Coluna 3*</u>: Longitude galáctica (em graus). <u>*Coluna 4*</u>: Latitude galáctica (em graus). <u>*Coluna 5*</u>: Ascensão reta em graus (α)(em graus). <u>*Coluna 6*</u>: Declinação (δ)(em graus). <u>*Coluna 7*</u>: Magnitude J (1,25µm). Coluna 8: Erro da magnitude J. <u>*Coluna 9*</u>: Magnitude H (1,65µm).<u>*Coluna 10*</u>: Erro da magnitude H. <u>*Coluna 11*</u>: Magnitude K_s (2,17µm). <u>*Coluna 12*</u>: Erro da magnitude K_s. <u>*Coluna 13*</u>: Qualidade da fotometria.

#	r (")	1 (°)	b (°)	α(°)	δ(°)	J	$\sigma_{\rm J}$	Н	$\sigma_{\rm H}$	Ks	σ_{Ks}	Q
190	8.5901	301.11	-06.96	187.616170	-69.760986	12.724	0.024	12.155	0.030	11.977	0.024	ААА
191	9.6330	301.09	-06.97	187.566429	-69.770905	16.106	0.121	15.573	0.156	15.486		BCU
192	10.1058	301.09	-06.98	187.562515	-69.779373	15.466	0.078	14.807	0.099	14.925	0.151	AAB
193	10.0897	301.10	-06.99	187.581200	-69.782860	15.669	0.079	15.635	0.152	14.942		ACU
194	10.0008	301.09	-06.98	187.566362	-69.778137	16.143	0.123	15.673		15.221		BUU
195	9.3940	301.13	-06.99	187.681447	-69.785263	16.403	0.161	15.659		15.103		CUU
196	9.2564	301.12	-06.98	187.642084	-69.777763	16.252	0.140	15.789	0.190	16.339		BCU
197	7.8563	301.13	-06.96	187.679022	-69.757790	14.303	0.041	14.052	0.053	13.966	0.080	AAA
198	8.5264	301.12	-06.97	187.643128	-69.764587	15.691	0.080	15.535	0.139	15.050	0.158	ACC
199	9.9263	301.12	-06.99	187.642985	-69.789963	15.084	0.047	14.426	0.065	14.323	0.094	ААА
200	8 7968	301 13	-06 98	187 685064	-69 775208	15 920	0 100	15 389	0 178	15 445	0 234	
201	9 1 2 2 3	301 13	-06.98	187 680729	-69 780426	15 905	0.095	15 367	0 112	15 138	0 197	ABC
202	7.6102	301.13	-06.95	187.685008	-69.754196	15.805	0.087	15.510	0.148	14.718	0.102	ABU
203	9.8394	301.13	-06.99	187.680985	-69.792984	14.923	0.053	14.401	0.054	14,190	0.095	AAA
204	8.7193	301.12	-06.97	187.643485	-69.768188	15.779	0.094	15.416	0.145	15.141	0.180	ABC
205	8.1241	301.12	-06.96	187.641837	-69.756912	15.488	0.080	14.696	0.089	14.385	0.097	AAA
206	10.1217	301.13	-07.00	187.660985	-69.795708	16.235	0.135	15.657	0.162	16.281		BCU
207	9.5782	301.13	-06.99	187.666849	-69.786827	15.664	0.088	15.236	0.106	15.054	0.160	ABC
208	8.4070	301.12	-06.97	187.658699	-69.764824	16.055	0.131	15.712	0.157	15.664		BCU
209	9.3614	301.12	-06.98	187.661424	-69.782318	15.487	0.066	15.125	0.086	14.971	0.171	AAC
210	9.1277	301.12	-06.98	187.656604	-69.777512	16.345	0.151	15.684	0.169	15.226		BCU

									l_g	al									
30	4°		30	3°		30	2°		30	1°		30	0°		29	9°	2	98°	- 5°
	018	017	016	015	014	013	012	011	010	009	008	007	006	005	004	003	002	001	
	036	035	034	033	032	031	030	029	028	027	026	025	024	023	022	021	020	019	
	054	053	052	051	050	049	048	047	046	045	044	043	042	041	040	039	038	037	- 6°
	072	071	070	069	068	067	066	065	064	063	062	061	060	059	058	057	056	055	Ŭ
	090	089	088	087	086	085	084	083	082	081	080	079	078	077	076	075	074	073	
	108	107	106	105	104	103	102	101	100	099	098	097	096	095	094	093	092	091	- 7°
	126	125	124	123	122	121	120	119	118	117	116	115	114	113	112	111	110	109	,
	144	143	142	141	140	139	138	137	136	135	134	133	132	131	130	129	128	127	
	162	161	160	159	158	157	156	155	154	153	152	151	150	149	148	147	146	145	- 80
	180	179	178	177	176	175	174	173	172	171	170	169	168	167	166	165	164	163	- 0
	198	197	196	195	194	193	192	191	190	189	188	187	186	185	184	183	182	181	$b_{\it gal}$
	216	215	214	213	212	211	210	209	208	207	206	205	204	203	202	201	200	199	- 0°
	234	233	232	231	230	229	228	227	226	225	224	223	222	221	220	219	218	217	- /
	252	251	250	249	248	247	246	245	244	243	242	241	240	239	238	237	236	235	
	270	269	268	267	266	265	264	263	262	261	260	259	258	257	256	255	254	253	10°
	288	287	286	285	284	283	282	281	280	279	278	277	276	275	274	273	272	271	- 10
	306	305	304	303	302	301	300	299	298	297	296	295	294	293	292	291	290	289	
	324	323	322	321	320	319	318	317	316	315	314	313	312	311	310	309	308	307	- 11°
	342	341	340	339	338	337	336	335	334	333	332	331	330	329	328	327	326	325	- 11
	360	359	358	357	356	355	354	353	352	351	350	349	348	347	346	345	344	343	
	378	377	376	375	374	373	372	371	370	369	368	367	366	365	364	363	362	361	- 12°
	396	395	394	393	392	391	390	389	388	387	386	385	384	383	382	381	380	379	- 12
	414	413	412	411	410	409	408	407	406	405	404	403	402	401	400	399	398	397	
	432	431	430	429	428	427	426	425	424	423	422	421	420	419	418	417	416	415	- 13°

Figura 3.1 - Divisão da região de Musca ($-13^{\circ} < b_{gal} < -5^{\circ}$; 298° $< l_{gal} < 304^{\circ}$) totalizando 48 graus quadrados em 432 campos de 20' x 20' para facilitar a obtenção e o tratamento de dados.

Para que os resultados obtidos fossem confiáveis realizamos uma pré-seleção nos dados. O catálogo 2MASS classifica a qualidade da fotometria de A até X (coluna 13). Nosso interesse é apenas em objetos com qualidade de fotometria A (excelente) e B (boa). Eliminamos os objetos que tinham uma ou mais medidas com qualidade C, D, E, F, U e X. Na tabela 2.1 o objeto 200, por exemplo, foi eliminado por este critério. Também eliminamos os objetos que não têm o erro determinado em uma ou mais banda (na coluna 13 representado pela letra U). Na tabela 3.1 o objeto 206, por exemplo, foi eliminado por este critério. Como realizar todas estas eliminações manualmente seria um trabalho muito demorado, já que são 1.459.012 linhas (objetos) separados em 432 arquivos, fizemos isto usando programação.

Dos objetoss mostrados na tabela 3.1, após o tratamento de dados, ficaram apenas os candidatos mostrados na tabela 3.2. Considerando todos os campos foram eliminados mais de 60% dos objetos.

Tabela 3.2 - Dados com todas as colunas completas, os erros bem determinados e boa relação sinal ruído após eliminarmos as linhas em branco e candidatos com baixa relação sinal/ruído. <u>*Coluna 1*</u>: Número da fonte no documento. <u>*Coluna 2*</u>: Distância do centro do campo até a fonte em segundos de arco. <u>*Coluna 3*</u>: Longitude galáctica. <u>*Coluna 4*</u>: Latitude galáctica. <u>*Coluna 5*</u>: Ascensão reta (α). <u>*Coluna 6*</u>: Declinação (δ). <u>*Coluna 7*</u>: Magnitude J (1,25µm). <u>*Coluna 8*</u>: Erro da magnitude J <u>*Coluna 9*</u>: Magnitude H (1,65µm). <u>*Coluna 10*</u>: Erro da magnitude H. <u>*Coluna 11*</u>: Magnitude K_s(2,17µm). <u>*Coluna 12*</u>: Erro da magnitude K_s.

#	r (")	1 (°)	b (°)	α(°)	δ(°)	J	$\sigma_{\rm J}$	Η	$\sigma_{\rm H}$	Ks	σ_{Ks}
190	8.5901	301.11	-06.96	187.616170	-69.760986	12.724	0.024	12.155	0.030	11.977	0.024
192	10.1058	301.09	-06.98	187.562515	-69.779373	15.466	0.078	14.807	0.099	14.925	0.151
197	7.8563	301.13	-06.96	187.679022	-69.757790	14.303	0.041	14.052	0.053	13.966	0.080
199	9.9263	301.12	-06.99	187.642985	-69.789963	15.084	0.047	14.426	0.065	14.323	0.094
203	9.8394	301.13	-06.99	187.680985	-69.792984	14.923	0.053	14.401	0.054	14.190	0.095
205	8.1241	301.13	-06.99	187.641837	-69.756912	15.488	0.080	14.696	0.089	14.385	0.097

3.5 Separação dos candidatos a OEJ

Construímos os diagramas cor-cor (J–H) x (H–K_s) (Figura 3.2) e cor magnitude K_s x (H–K_s) (Figura 3.3) e H x (J–H) (Figura 3.4). Em cada um destes diagramas representamos as regiões de ocupação dos diferentes classes de luminosidade de estrelas. Estas regiões de ocupação foram construídas conforme as cores intrínsecas das classes representadas (ver Figura 3.8). As cores e magnitudes no infravermelho próximo da Sequência Principal de Idade Zero (SPIZ) e das gigantes vermelhas evoluídas foram retiradas de TOKUNAGA (1999). Já as cores e magnitudes das anãs tipos T e L foram obtidas de STEPHENS & LEGGETT (2004). O avermelhamento utilizado para o cálculo das magnitudes e índices de cor aparentes foi Av = 1,25 mag/kpc, visto que os valores listados na literatura variam entre 1,0 e 1,5 mag/kpc.

Nestes diagramas inserimos os dados de cada um dos 432 campos (Figura 3.5, 3.6 e 3.7), totalizando 1296 diagramas. Hachurada em preto está a região da SPIZ, em vermelho a região das gigantes vermelhas, em laranja as anãs tipo L e em verde as anãs tipo T. A Figura 3.8 mostra o diagrama H x (J–H) (magnitudes aparentes) mostrando a SPIZ para distâncias de 10 pc, 50 pc, 500 pc, 5000 pc, 7500 pc e 10000 pc. Com base nestes gráficos, selecionamos fontes posicionadas à direita da SPIZ, ou seja, fontes com índice de cor "avermelhados". A escolha de objetos com índice de cor "avermelhado" é devida à presença de poeira que acompanha as fases de formação estelar, inclusive sua fase pré-SPIZ. Mas objetos com índice de cor "avermelhado" também podem ser gigantes vermelhas, já que à direita da SPIZ temos a região das gigantes (em vermelho). Portanto, OEJs e gigantes vermelhas ocuparão a mesma região em nossos diagramas, o que nos remete a uma ambigüidade. Por isso, apenas analizando os diagramas não chegamos a um bom candidato a OEJ. Para melhorar nossa selecão de candidatos seguimos outros critérios descritos nas próximas secões deste capítulo.

Definimos como critério que para um objeto ser selecionado deveria estar à direita da sequência principal no diagrama $K_s x$ (H–K_s) (Figuras 3.3 e 3.6). Seguimos este critério porque a banda K_s é menos sujeita à extinção do meio interestelar que as bandas J e H (Figura 3.9). Nota-se na Figura 3.7 [H x (J–H)] que há muitos objetos à direita da seqüência principal, todos estes objetos não são intrinsecamente avermelhados, mas estão à direita da SPIZ porque foram avermelhados pela extinção do MI. Se estes objetos fossem intrinsicamente avermelhados também deveriam aparecer à direita da SPIZ na Figura 3.6. Nota-se também, na Figura 3.7, que na parte superior os objetos apresentam-se em duas colunas. A coluna da esquerda, em menor número, são os objetos que estão na frente da nuvem (extinção menor) e na coluna direita, em maior número, estão os objetos com índice de cor maior (mais avermelhados/extinção maior). Na parte inferior do gráfico não percebemos este efeito porque estão os objetos de maior magnitude, com barras de erros maiores.

Figura 3.2 - Regiões de ocupação das diferentes classes de luminosidades de estrelas no diagrama $(J-H) \ge (H-K_s)$. Hachurado em preto está a região da SPIZ, em vermelho a região das gigantes vermelhas, em laranja as anãs tipo L e em verde as anãs tipo T.

Figura 3.3 - Regiões de ocupação das diferentes classes de luminosidades de estrelas no diagrama $K_s \propto (H-K_s)$. Hachurado em preto está a região da SPIZ, em vermelho a região das gigantes vermelhas, em laranja as anãs tipo L e em verde as anãs tipo T.

Figura 3.4 - Regiões de ocupação das diferentes classes de luminosidades de estrelas no diagrama H x (J–H). Hachurado em preto está a região da SPIZ, em vermelho a região das gigantes vermelhas, em laranja as anãs tipo L e em verde as anãs tipo T.

Figura 3.5 – Diagrama (J–H) x (H–K_s) do campo 22 (coordenadas centrais $l_{gal} = 299$ 10' e $b_{gal} = 5$ 30'). À direita da região hachurada em vermelho (região das gigantes vermelhas) observa-se em destaque o objeto 880 deste campo.

Figura 3.6 – Diagrama K_s x (H–K_s) do campo 22 (coordenadas centrais $l_{gal} = 299$ 10' e $b_{gal} = 5$ 30'). À direita da região hachurada em vermelho (região das gigantes vermelhas) observa-se isolado o objeto 880 deste campo.

Figura 3.7 - Diagrama H x (J–H) do campo 22 (coordenadas centrais $l_{gal} = 299$ 10' e $b_{gal} = 5$ 30'). Observa-se que o objeto 880 está bem separado dos demais. Pode-se verificar também que há muitos objetos à direita da seqüência principal, o que indica a banda H sofreu uma extinção maior que a banda K.

Figura 3.8 – Esta figura demonstra um exemplo de construção das regiões de ocupação nos diagramas utilizados. Aqui é mostrado o diagrama H x (J–H) mostrando a posição da SPIZ (TOKUNAGA, 1999) para variadas distâncias. A magnitude é aparente e é calculada com base na distância e no avermelhamento intrínseco do meio interestelar (Av = 1,25 mag/kpc). O índice de cor também é aparente e é calculado com base no avermelhamento intrínseco do MI. A linha tracejada na magnitude 6 mostra o limite inferior de corte em magnitude utilizado neste trabalho. A região preenchida em cinza é a mesma que a região hachurada em preto na Figura 3.4.

Figura 3.9 - Glóbulo Barnard 68, um bom exemplo de que a extinção é seletiva e que entre B (0,44 μ m), V (0,55 μ m), I (0,90 μ m), J (1,2 μ m), H (1,65 μ m) e K (2,16 μ m), é a banda K a menos sujeita à extinção. (ALVES et al 2001)

3.6 Análise do limite de completeza

Para cada campo construímos os histogramas log (*N*) x magnitude ⁽¹²⁾ (Figura 3.10) para as três bandas (J, H e K_S), com intervalos de 0,25 magnitude. Com estes gráficos determinamos a magnitude limite para a completeza da amostra em cada banda. O limite de completeza é o limite de magnitude no qual um instrumento detecta 100% dos objetos. Quando um telescópio observa em uma direção o número de fontes aumenta proporcionalmente ao ângulo sólido, então o que se espera é que quanto maior a magnitude, maior é o número de objetos. Em contrapartida, todo equipamento tem limites naturais de

 $^{^{12}}$ N é o número de objetos.

detecção (em função do limite de sensibilidade instrumental e do ruído) e a partir de uma magnitude limite, alguns objetos começam a não ser detectados e com isso o número de objetos começa a diminuir. Quando o equipamento deixa de detectar 100% dos objetos em uma dada magnitude, o limite de completeza é alcançado para este equipamento (magnitude limite). A tabela 3.3 mostra os limites de completeza que encontramos para cada banda.

Tabela 3.3 – Limite de completeza do 2MASS nas bandas J, H e K_S, nos campos da área de estudo.

Limite de Completeza (mag)
16 à 16,5
15,5 à 16
15 à 15,5

Como para separarmos os candidatos não consideramos fontes sem o erro fotométrico (do catálogo 2MASS) determinado em uma ou mais bandas e fontes com baixa relação sinal/ruído, todos os nossos candidatos acabaram ficando dentro do limite de completeza do seu campo.

Figura 3.10 - Histograma log (N) x magnitude H para o campo 16 (coordenadas centrais $l_{gal} = 303^{\circ} 10'$ e $b_{gal} = 5^{\circ} 10'$), com limite de completeza de 16,1.

3.7 Verificação de fonte puntiforme

Utilizamos o banco de dados do *Skyview Virtual Observatory* (MCGLYNN; SCOLLICK; WHITE, 1996), para através de <u>inspeção visual</u> de imagens no óptico (*Digital Sky Survey*-2 – banda R) e no infravermelho próximo (2MASS - J, H e K_S) verificar se as fontes são objetos puntiformes (fonte única, sem extensão). Somente utilizamos fontes sem extensão (Figura 3.11). Fizemos esta verificação para cada um dos candidatos selecionados.

Figura 3.11 – Imagens obtidas no *Virtual Observatory* (MCGLYNN; SCOLLICK; WHITE, 1996) do candidato 072-225, coordenadas centrais α =194,963338°, δ =-69,035606°, um objeto considerado puntiforme. A) DSS2 Red; B) 2MASS J; C) 2MASS H; D) 2MASS K.

3.8 Dados de outros catálogos

Após separarmos os candidatos procuramos informações adicionais de cada candidato a OEJ em outros catálogos da literatura (VizieR) (CUTRI, 2003), a fim de confirmar a natureza destas fontes. Assim pudemos verificar o brilho destes objetos em outras bandas (U, B, V, R, I, 12µ, 25µ e 60µ) e nos cercarmos de mais informações para determinarmos se o objeto em estudo é um bom candidado à OEJ.

3.9 Distribuição Espectral

Com base nas informações adicionais que obtivemos nos outros catálogos, efetuamos para cada candidato a OEJ, a distribuição espectral de energia (densidade de fluxo x freqüência) e ajustamos uma curva de emissão de corpo negro, pelo método dos mínimos quadrados, a fim de determinar a temperatura de cada fonte (Figura 3.12).

3.10 Temperatura Bolométrica

Para vários candidatos a OEJ não foi possível o ajuste de uma única função de corpo negro (Figura 313 e 3.14). Isto ocorre, no caso de um OEJ, principalmente porque estes objetos geralmente têm um disco de poeira em torno e em alguns casos, envoltória externa. Assim, a distribuição espectral do objeto é a soma de duas (ou mais) emissões distintas, uma emitida pela estrela central e outra emitida pelo disco, como mostra a Figura 3.13 (CHIANG;GOLDREICH, 1997; WILKING, 1989). Nestes casos que não foi possível ajustar o espectro de um único corpo negro nós calculamos a temperatura bolométrica (MYERS; LADD, 1993).

Fígura 3.12 - Distribuição espectral do candidato 62 (coordenadas centrais α =187,964547°, δ =-71,064293°). Para este objeto giustou-se uma curva de corpo negro, pelo método dos mínimos quadrados, obtendo-se a temperatura de 1882 ± 84 K.

Fígura 3.13 – Exemplo de um objeto em que se pode distinguir facilmente duas emissões, uma do corpo central e outra do disco (CHIANG;GOLDREICH, 1997).

Fígura 3.14 – Canditato 107 (coordenadas centrais α =185.268308°, δ =-68.333389°) que não foi possível ajustor uma distribuição espectral de corpo negro.

A temperatura bolométrica (T_{Bol}) (MYERS et al. 1998) de uma distribuição espectral de energia (densidade de fluxo x freqüência) é a mesma de um corpo negro que tenha igual freqüência média $\langle \boldsymbol{n} \rangle$ da distribuição considerada:

$$T_{Bol} = 1,25.10^{-11} \langle \boldsymbol{n} \rangle \qquad (\frac{K}{Hz}) \qquad (3.1)$$

$$\left\langle \boldsymbol{n} \right\rangle = \frac{\int_{n_1}^{n_2} \boldsymbol{n} . \boldsymbol{S}_{\boldsymbol{n}} . d\boldsymbol{n}}{\int_{n_1}^{n_2} \boldsymbol{S}_{\boldsymbol{n}} . d\boldsymbol{n}} = \frac{\boldsymbol{S}_1}{\boldsymbol{S}_2}$$
(3.2)

3.11 Determinação da luminosidade

Fluxo é por definição a razão entre uma quantidade (água, radiação, calor, fluído, etc) pela área que esta quantidade está passando, pelo tempo. O fluxo de radiação emitido por uma estrela é a razão entre sua luminosidade total e sua área:

$$F = \frac{L_*}{A_{Total}} = \frac{L_*}{4\mathbf{p}R^2}$$
(3.3)

Para grandes distâncias podemos considerar R = d.

$$L_* = 4\mathbf{p}d^2F \tag{3.4}$$

$$F = \int_{n_1}^{n_2} S_n d\mathbf{n} \tag{3.5}$$

onde $S_n \equiv$ Distribuição espectral de energia.

$$L_{*} = 4\mathbf{p}d^{2}\int_{\mathbf{n}_{1}}^{\mathbf{n}_{2}} S_{\mathbf{n}}d\mathbf{n}$$
(3.6)

Para a região de Musca adotamos d = 150 pc (CORRADI;FRANCO;KNUDE, 1997), obtive mos que:

$$L_* = 0.690 \int S_n d\mathbf{n} \qquad (L_{\odot}) \qquad (3.7)$$

3.12 Determinação do Raio

Da equação 2.23 temos:

$$R = \frac{1}{2T^2} \sqrt{\frac{L_*}{ps}}$$
(3.8)

Sabendo que 1 $R_{\odot} = 6,96.10^8$ m (MACIEL, 1999) obtemos que:

$$R = \frac{3,361.10^7.\sqrt{L_*}}{T^2} \quad (L_{\odot}, R_{\odot})$$
(3.9)

3.13 Determinação da idade

Determinamos a classificação para cada fonte, de acordo com a temperatura de corpo negro ajustada (ou da temperatura bolométrica), sua luminosidade; bem como trajetórias evolutivas de OEJs (MYERS et al., 1998) no diagrama Luminosidade x Temperatura (Figura 3.15).

Fígura 3.15 – Exemplo de diagrama *Luminosidade x Temperatura* (BRISSI; HICKEL, 2005) para candidatos a OEJs. A Luminosidade é dada em luminosidades solares. O gráfico mostra a Seqüência Principal de Idade Zero (SPIZ) com a posição de diversas massas estelares (em massas solares). Trajetórias evolutivas de OEJs (MYERS et al., 1998) para 5 massas diferentes e 3 isócronas (linhas tracejadas) também são plotadas. As classes evolutivas, conforme suas temperaturas, têm os limites indicados no alto do gráfico.

3.14 Estimativa do número de gigantes na região

As estrelas gigantes vermelhas possuem índices de cor "avermelhados" por isso tendem a ocupar a mesma região nos diagramas cor-magnitude e cor-cor que os OEJs como podemos verificar nas Figuras 3.2 a 3.7. Por isso, existe ambigüidade de classificação entre estrelas gigantes vermelhas e OEJs quando analisamos através de fotometria. A razão para isso é que além destes objetos terem temperaturas efetivas semelhantes, tanto os OEJs quanto as gigantes vermelhas têm envoltórias de gás e poeira, ocasionando excessos de emissão no infravermelho.

Em função desta ambigüidade de classificação é importante que, na impossibilidade de resolvê-la com fotometria, saibamos estimar quantas gigantes podem existir na nossa amostra de candidatos a OEJ. Ortiz e Maciel (1996) estabeleceram taxas de formação e densidades espaciais de gigantes vermelhas na vizinhança solar, utilizando modelos estelares para o AGB (ramo assintótico das gigantes). Conforme a análise dos dois autores e o volume da Galáxia que observamos, podemos estimar o número de estrelas gigantes na nossa amostra como descrito a seguir.

A densidade de estrelas (gigantes ou não) decresce exponencialmente, quando medida verticalmente ao Plano Galáctico. A densidade na altura h, a partir do Plano, é caracterizada pela densidade no Plano (h=0) e por uma escala de altura H, que depende da população estelar considerada:

$$\mathbf{r}(h) = \mathbf{r}_{h=0} \cdot \exp\left(\frac{-h}{H}\right)$$
(3.10)

A população de gigantes tem tipos variados, conforme o estágio evolutivo e a metalicidade, mas iremos considerar nesta análise volumétrica como se fosse uma população única. Conforme Ortiz e Maciel (1996), a densidade volumétrica local de estrelas no AGB é $r_{h=0} = 265$ estrelas/kpc³ e a escala de altura desta população de H = 330 pc.

Conforme nossa área de estudo, 6° x 8° (48 graus²; -13° < b_{gal} < -5°; 298° < l_{gal} < 304°), estabelecemos a altura *h* do Plano (por geometria simples) para região como:

$$h = D.sen(b_{gal}), \tag{3.11}$$

onde D é a distância a ser considerada como variável ao longo de toda a linha de visada (variável de integração). O número de estrelas do AGB para um dado ângulo sólido observado, é dependente da latitude e longitude galáctica e da distância considerada:

$$N_{AGB}(\boldsymbol{D}, \boldsymbol{b}_{gal}, \boldsymbol{l}_{gal}) = \int \boldsymbol{r}(\boldsymbol{b}_{gal}, \boldsymbol{D}) \cdot \boldsymbol{dVol}$$
(3.12)

onde
$$\mathbf{r}(\boldsymbol{b}_{gal}, \boldsymbol{D}) = \mathbf{r}_{h=0} \cdot \exp\left(\frac{-\boldsymbol{D}.sen(\boldsymbol{b}_{gal})}{H}\right)$$
 e $dVol = D^2 \cdot \cos(\boldsymbol{b}_{gal}) \cdot dD \cdot d\boldsymbol{b}_{gal} \cdot dl_{gal}$ é o

elemento de volume observado.

A distância D é dada em pc e depende da distância máxima (D_{max}) que é estabelecida conforme o menor valor; entre a máxima distância que podemos observar uma estrela do AGB ou a máxima distância que a linha de visada ainda intercepta a Galáxia.

As estrelas do AGB têm magnitude mínima absoluta J da ordem de -8. Para H e K, as magnitudes absolutas são ainda menores, mas só estamos considerando objetos detectados em J, H e K. Considerando a extinção interestelar de $A_V = 1,25$ mag/kpc, que $A_J/A_V = 0,274$ (MACIEL, 2000), que a região de Musca tem uma extinção média de fundo da ordem de $A_V = 4$ magnitudes e que $m_{max} = 16,0$ é a magnitude máxima da nossa amostra, então $D_{MAX-brilho} \approx 21$ kpc.

Para estabelecer a máxima distância que a linha de visada ainda intercepta a Galáxia, utilizamos como espessura do Disco Galáctico um valor três vezes maior que a escala de altura H, pois isto estabelece mais de 95% da população do AGB, em termos de escala de altura. Assim, $D_{MAX-galáctico} \approx 21$ kpc somente em $|b_{gal}| = 2,7^{\circ}$. Como o módulo de latitude mínimo de nossa amostra é $|b_{gal}| = 5^{\circ}$, utilizaremos a distância geométrica como fator limitante:

$$\boldsymbol{D}_{\max} = \frac{3 \cdot 330 \,\mathrm{pc}}{sen(\boldsymbol{b}_{gal})} \tag{3.13}$$

Substituindo os valores estabelecidos por Ortiz e Maciel (1996) para $\mathbf{r}_{h=0}$ e H, e utilizando os limites da região observada (Figura 3.1); e integrando conforme o b_{gal} de nossa região de estudo, estabelecemos:

$$N_{AGB} = \int_{298^{\circ}}^{304^{\circ}} \int_{-15^{\circ}}^{-5^{\circ}} \int_{0}^{\frac{990}{\operatorname{sen}(b)}^{pc}} 2,65 \times 10^{-7} \cdot \exp\left(\frac{-D \cdot \operatorname{sen}(b)}{330 \, \mathrm{pc}}\right) \cdot D^{2} \cdot \cos(b) \cdot dD \cdot db \cdot dl = 64$$
(3.14)

Desta forma, concluímos que podem estar incluídas até 64 estrelas do AGB entre nossos candidatos.
4. RESULTADOS

4.1 Dados

Com o tratamento de dados descrito no ítem 3.4, em média, metade dos objetos foram eliminados ficando apenas os dados com todos os dados completos, os erros determinados e boa relação sinal ruído.

Da separação dos OEJ descrito no item 3.4 separamos 299 candidatos. Destes 299 candidatos eliminamos um candidato que apareceu em dois campos (sobreposição) (Tabela 4.1). Após consultarmos outros catálogos da literatura (Seção 3.8) eliminamos mais 14 candidatos:

- Cinco foram eliminados por serem classificados pelos catálogos como variáveis de longo período (Tabela 4.2);
- Quatro foram eliminados por serem classificados pelos catálogos como variáveis tipo SR (Tabela 4.3);
- Dois foram eliminados por serem classificados pelos catálogos como galáxias (Tabela 4.4);
- Um foi eliminado por ser classificado pelos catálogos como uma estrela carbonada (Tabela 4.5);
- Dois foram eliminados por serem classificados pelos catálogos como variáveis tipo L (Tabela 4.6).

Portanto restaram 284 candidatos para análise:

- Oitenta e quatro tiveram sua distribuição espectral ajustada de maneira razoável uma distribuição espectral de corpo negro (Tabela 4.7).
- Para os 194 candidatos que não ajustaram uma distribuição espectral de corpo negro (Seção 3.8) nós determinamos a temperatura bolométrica (Tabela 4.9) (Seção 3.10).

Seis candidatos (Tabela 49) não puderam ter temperatura e luminosidade calculadas por só possuírem medidas fotométricas no catálogo 2MASS, o que limita a apenas 3 bandas (J, H e K_S), tornando a distribuição espectral de energia muito pobre.

Tabela 4.1 – Candidatos que apareceram na divisa entre os campos 420 e 421. O candidato que apareceu no campo 421 foi eliminado. Cp: campo da Figura 3.1; α : ascensão reta; δ ; declinação.

Ср	a (°)	d (°)
420	181.526766	-75.306976
421	181.526766	-75.306976

O fato de um candidato aparecer em dois campos ocorre porque cada campo possui suas bordas coincidentes com as bordas dos vizinhos.

Tabela 4.2 – Objetos classificados nos catálogos como variáveis de longo período. Cp: campo da Figura 3.1; α : ascensão reta; δ ; declinação.

Ср	a (°)	d (°)	Período (dias)	MagMax (V)	Variável
213	193.060885	-71.799309	260	14	М
017	194.258818	-68.035416	347,8	14,5	М
018	194.891451	-68.152893	253,3	14,1	М
045	187.193138	-68.585068	248,5	13,1	М
123	192.995486	-69.963989	349	12.8	М

Variáveis de longo período são variáveis do tipo Mira (Omicron) Ceti. São variáveis pulsantes gigantes de períodos longos com espectros de emissão característicos (Me, Ce, Se).

O período destas estrelas é bem pronunciado, variando entre 80 a 1000 dias. As amplitudes de variação no visível superiores a 2,5 mag e no infravermelho são geralmente menores do que no visível, na banda K, por exemplo, não excedem 0,9 mag.

Tabela 4.3 – Objetos classificados nos catálogos como variáveis semi-regulares tipo SR. Cp: campo da Figura 3.1; α : ascensão reta; δ ; declinação.

Ср	a (°)	d (°)	MagMax
069	192.660041	-68.941620	15
102	189.781464	-69.771332	15
170	185.535896	-70.744240	15,5.
183	180.155322	-70.930969	16

As variáveis tipo SR também são variáveis tipo Mira (Omicron) Ceti, mas são semiregulares (SR). São estrelas pulsantes gigantes ou supergigantes de tipos espectrais K a M, nas quais se detecta periodicidade, acompanhada ou por vezes interrompida por várias irregularidades.

Tabela 4.4 – Objetos classificados nos catálogos como galáxias. Cp: campo da Figura 3.1; α: ascensão reta; δ; declinação.

Ср	a (°)	d (°)
205	184.742399	-71.408020
048	190.177698	-68.791069

O núcleo de uma galáxia distante pode parecer com uma fonte pontual de emissão no infravermelho.

Tabela 4.5 – Objeto classificado nos catálogos como estrela carbonada. Cp: campo da Figura 3.1; α: ascensão reta; δ; declinação.

Ср	a (°)	d (°)	
359	194.640075	-74.395775	

Estrelas carbonadas são gigantes vermelhas (tipo espectral C) ricas em carbono. Possuem T_{ef}~2500 K, R~400 R_o, M~1,2-4 M_o, mag_{bol}~1-3 mag. Estes objetos aparecem a direita da SPIZ no diagrama HR, portanto semelhante à posição dos OEJ.

Tabela 4.6 – Objetos classificados nos catálogos como variáveis tipo L. Cp: campo da Figura 3.1); α : ascensão reta; δ ; declinação.

Ср	a (°)	d (°)	MagMax
366	180.907711	-74.476440	13
416	175.621625	-74.979836	14

As estrelas variáveis tipo L também são gigantes vermelhas como as variáveis de longo período e as semi-regulares (SR), porém as tipo L são irregulares. Algumas vezes, alguns OEJs são classificados como variáveis tipo L, por falta de uma base de dados maior na determinação da periodicidade, bem como de análise mais aprofundada do objeto.

Seis candidatos (Tabela 4.7) não puderam ser analisados por só possuírem medidas fotométricas no catálogo 2MASS, o que nos permite analisar apenas 3 bandas (J, H e K_S), inviabilizando a determinação da distribuição espectral (Seção 3.9) e da temperatura bolométrica (Seção 3.10) (por apresentarem apenas 3 pontos nos gráficos). Contudo, eles não foram eliminados, permanecendo como candidatos a OEJs.

Tabela 4.7 – Candidatos que ajustaram uma distribuição espectral de corpo negro (84). Cand.: Número do candidato a OEJ; Cp.: Campo em que está o objeto na Figura 3.1; α : ascenção reta; δ : declinação; B: magnitude banda B; R: magnitude banda R; I: magnitude banda I; J: magnitude banda J; H: magnitude banda H; K: magnitude banda K; T: temperatura; eT: erro da temperatura; L: luminosidade; eL: erro da luminosidade; R: raio; eR: erro do raio.

Cand.	Ср.	a (°)	d (°)	В	R	I	J	Н	К	T _{ef} (K)	eT _{ef} (K)	L (L $_{\odot}$)	eL (L $_{\odot}$)	R (R $_{\odot}$)	eR (R $_{\odot}$)
1	2	181,4748	67,49385	12,7	15	10,1	6,672	5,619	5,13	2256	99	8,804	3,908	17,099	1,498
2	3	181,7553	-67,572	15,4	14	-	6,575	5,577	5,1	2415	80	9,398	4,049	17,741	1,180
3	4	183,1129	67,62666	13,5	11,9	8,876	5,849	4,942	4,482	2410	97	16,867	7,297	23,012	1,845
4	7	185,9162	-67,8071	15,4	12	-	6,86	5,877	5,412	2449	96	7,145	3,084	19,434	1,522
5	7	185,4169	-67,9872	13,1	11,4	9,15	6,858	5,916	5,525	2150	252	7,615	3,450	16,855	3,949
6	7	185,9495	-67,9315	15,3	12,8	10,51	7,899	6,945	6,431	2346	75	2,689	1,141	9,551	0,612
7	8	186,638	-67,8627	14	11,65	9,3	6,823	5,855	5,413	2402	97	7,176	3,084	17,323	1,400
8	8	186,4393	-68,0682	15,8	12,3	9,31	5,582	4,951	4,458	2280	216	19,817	8,558	40,656	7,707
9	8	186,7216	-68,0374	14,6	12,8	-	6,104	5,18	4,496	1919	202	14,894	6,599	27,150	5,729
10	10	188,3289	-67,9609	12,8	11,1	9,15	6,808	5,873	5,461	2186	248	7,987	3,717	17,172	3,895
11	13	190,7978	-68,0108	16,4	13,8	11,2	8,555	7,581	7,087	2352	93	1,481	0,636	12,420	0,983
12	13	190,633	-68,1142	-	18,22	17,56	14,492	13,131	12,262	1815	20	0,010	0,004	0,656	0,014
13	13	190,5905	-68,0582	17,6	15,7	13,96	9,961	8,945	8,445	2267	103	0,416	0,183	5,206	0,473
14	14	192,1021	-68,0004	17,5	12,7	10,15	5,992	4,983	4,449	2040	169	18,019	8,082	33,805	5,587
15	19	180,0357	-67,8798	-	-	9,7	6,394	5,151	4,523	2055	64	13,945	6,055	44,640	2,781
16	22	183,1651	-68,1971	18,3	13,1	12,227	9,249	7,73	6,755	1677	15	1,619	0,691	8,023	0,143
17	22	183,1187	-68,2144	15,9	12,8	10,15	7,699	6,586	6,132	2309	115	3,554	1,568	11,918	1,182
18	24	184,8433	-68,1385	16,6	15,3	12,7	9,458	8,495	7,971	2306	105	0,640	0,275	4,354	0,398
19	26	186,7164	-68,1176	13,6	11,7	-	6,725	5,725	5,313	2485	112	8,088	3,525	19,281	1,741
20	27	186,7415	-68,4042	12,4	11	10,01	7,639	6,519	5,983	2227	74	3,902	1,743	11,548	0,762
21	27	187,0322	-68,2383	12,8	12	9,044	6,274	5,33	4,871	2398	89	11,720	5,063	21,973	1,635
22	29	189,322	-68,2674	16,3	13,9	9,921	7,138	6,029	5,569	2289	90	5,923	2,533	14,023	1,099
23	30	189,9956	-68,4652	16,8	15,7	11,187	9,913	8,963	8,319	2415	122	0,453	0,194	4,894	0,492

contir	nuaç	ção.	••	
	-			

Cand.	Ср.	a (°)	d (°)	В	R	I	J	Н	К	T _{ef} (K)	eT _{ef} (K)	L (L $_{\odot}$)	eL (L $_{\odot}$)	R (R $_{\odot}$)	eR (R $_{\odot}$)
24	33	192,5931	-68,2519	18	15,1	11,35	7,505	6,381	5,877	2150	120	4,337	1,899	12,201	1,358
25	33	192,8236	-68,4965	16,5	13,2	-	10,249	9,224	8,687	2395	106	0,332	0,146	6,075	0,539
26	35	194,6834	-68,4669	-	15,21	12,012	7,317	6,135	5,393	1786	131	6,233	2,702	15,131	2,225
27	36	195,5085	-68,4423	13,7	12	9,08	6,084	5,167	4,695	2355	114	13,732	6,019	171,602	16,540
28	38	180,4045	-68,4246	-	-	16,75	11,771	9,646	7,907	852	47	1,684	0,770	8,615	0,951
29	39	181,9257	-68,1992	17,1	14,3	10,02	7,413	6,363	5,845	2250	83	4,511	2,016	13,197	0,978
30	39	181,6531	-68,2738	15,7	13,6	12,665	8,97	8,035	7,526	2326	123	0,980	0,428	6,437	0,681
31	40	182,426	-68,2553	16,6	14,6	10,637	7,326	6,269	5,843	2274	131	4,511	1,950	35,254	4,068
32	43	185,0624	-68,4632	16,8	16	10,534	7,057	5,961	5,338	1423	135	8,060	3,656	16,045	3,044
33	43	185,2991	-68,5138	13,8	13,2	8,895	7,095	6,085	5,639	2439	89	5,841	2,464	15,758	1,155
34	44	186,5008	-68,4277	16,7	12,2	9,676	6,014	5,062	4,522	2271	84	15,243	6,451	22,945	1,700
35	48	190,0595	-68,6264	13,4	10,9	9,105	6,977	5,923	5,486	2392	82	6,647	2,857	21,333	1,456
36	49	190,5879	-68,5293	19,9	16,8	14,203	11,123	9,757	9,132	2016	91	0,197	0,083	2,844	0,256
37	52	193,6161	-68,7622	14,9	12,7	10,336	6,871	5,853	5,384	2291	106	7,098	3,041	15,464	1,430
38	52	193,878	-68,5925	15,1	13	11	8,271	7,373	6,9	2407	98	1,812	0,772	8,570	0,698
39	61	185,237	-68,9844	16,8	13,6	9,7	6,747	5,772	5,266	2298	86	7,830	3,421	26,622	1,981
40	84	189,2807	-69,476	-	17,58	16,394	13,339	11,646	10,994	1880	144	0,035	0,014	1,520	0,233
41	84	189,3127	-69,4609	-	16,77	15,338	12,812	11,468	10,83	2030	90	0,040	0,017	1,335	0,118
42	84	189,3246	-69,4637	16,4	12,7	10,954	8,734	7,506	7,03	2244	105	1,506	0,646	7,654	0,714
43	85	190,808	-69,1946	15,5	13	10,2	6,882	5,906	5,428	2321	93	6,837	2,935	17,511	1,406
44	102	189,3297	-69,5237	17	14,2	12,561	10,446	9,26	8,737	2240	81	0,307	0,130	3,742	0,272
45	103	190,558	-69,8025	15	12,7	11,198	7,561	6,435	5,976	2232	105	4,048	1,765	15,464	1,452
46	120	189,3825	-69,9942	18	16	14	11,476	10,139	9,572	2091	103	0,135	0,058	3,592	0,353
47	120	189,6356	-70,0708	17,2	12,9	11,6	7,254	6,126	5,445	1855	144	6,073	2,668	17,671	2,736
48	122	192,0082	-70,0952	17	13,9	12,138	10,191	9,032	8,397	2165	46	0,398	0,169	3,719	0,159
49	134	185,6817	-70,3701	15,9	13,4	10,485	7,794	6,825	6,395	2387	99	2,914	1,232	13,926	1,157
50	137	188,6903	-70,454	17,3	16,3	12,235	9,665	8,236	7,649	2030	99	0,783	0,329	9,711	0,945
51	155	188,8928	-70,6623	18,2	15,2	11,991	8,09	6,409	5,588	1750	71	0,066	0,126	2,299	0,187
52	155	188,9083	-70,6331	19,2	16,4	14,372	11,36	9,793	9,161	1935	116	0,189	0,079	1,936	0,231
53	155	188,7134	-70,5142	15	-	11,201	9,987	9,166	8,639	2746	124	0,392	0,168	3,614	0,327
54	169	184,5932	-70,9514	14,8	12,7	10,1	8,065	7,063	6,609	2414	80	2,367	1,024	13,320	0,880

		~
000	++++>	110000
(())		
$\mathbf{v}\mathbf{o}\mathbf{n}$	un	uacao

Cand.	Ср.	a (°)	d (°)	В	R	I	J	Н	K	T _{ef} (K)	eT _{ef} (K)	L (L $_{\odot}$)	eL (L $_{\odot}$)	R (R $_{\odot}$)	eR (R_{\odot})
55	172	187 6287	-71 0566	20.4	17.5	16.3	13 22	11 74	11 114	1971	106	0.030	0.013	1 602	0 172
56	172	187 9356	-71 0668	20.1	17	15,5	12 491	10 902	10 252	1914	112	0.069	0.029	2 505	0.293
57	172	187 6841	-71 0431	199	17.2	15 72	12 522	10 979	10 265	1877	85	0.067	0.028	2 202	0 199
58	172	187 8137	-71 0783	18.9	16 7	15.1	12 129	10 747	10,091	1986	80	0.080	0.034	2 643	0 214
59	172	187 9656	-71 0527	19.9	17.2	15.5	12 086	10,504	9 834	1896	106	0 121	0.050	2 635	0.294
60	172	187.9771	-70.9945	18.3	15.2	13.7	11.042	9.724	9,166	2104	104	0.198	0.084	3.861	0.383
61	172	187.5364	-71.083	18.8	15.6	13.9	10.822	9.338	8.712	1968	107	0.288	0.122	5.093	0.552
62	172	187.9645	-71.0643	18.5	14.8	11.8	8.221	6.568	5.865	1882	84	3.819	1.647	14.344	1.280
63	190	186.8956	-71.3896	18	15.7	14.096	11.344	10.122	9.553	2140	86	0.139	0.059	3.267	0.264
64	190	187.6308	-71.1579	18.7	15.7	13.13	10.022	8.58	7.925	1960	91	0.590	0.256	6.033	0.558
65	190	187,6688	-71,1456	17	13,6	11,964	9,225	7,892	7,304	2069	86	1,085	0,461	8,710	0,720
66	198	195,1342	-71,3373	16,2	12	10,905	6,429	5,401	4,729	2005	111	11,704	5,568	26,658	2,952
67	207	186,7468	-71,5147	19,6	17,1	15,586	12,677	11,315	10,758	2077	114	0,045	0,019	1,566	0,172
68	207	186,4796	-71,6508	18,9	16,6	14,973	12,22	11,028	10,439	2139	74	0,060	0,025	2,041	0,142
69	207	186,754	-71,476	19,2	16,7	15,263	12,165	10,765	10,147	2008	98	0,077	0,032	2,219	0,216
70	225	186,1617	-71,8772	18,7	15,7	14,094	11,307	9,928	9,34	2047	103	0,166	0,070	3,568	0,360
71	225	186,0035	-71,8774	18,1	14,4	12,6	9,717	8,208	7,577	1958	107	0,818	0,357	5,670	0,621
72	235	177,3274	-71,9502	15,3	12,3	9,7	6,505	5,531	5,047	2315	100	9,704	4,291	18,712	1,623
73	243	186,2319	-72,178	13,8	11,1	9,402	6,768	5,691	5,292	2366	124	8,020	3,445	16,220	1,699
74	264	189,2599	-72,6438	14,7	12,96	10,372	7,871	7,005	6,5	2423	78	2,600	1,105	14,336	0,918
75	283	189,7909	-73,1627	18	16,3	10,96	8,497	7,619	6,997	1945	260	1,551	0,709	19,679	5,271
76	287	195,2494	-72,9639	20,2	14,8	12,757	8,362	7,388	6,724	1459	146	2,189	0,985	8,593	1,719
77	292	180,1357	-72,939	13,9	11,8	9,57	7,046	6,05	5,619	2406	92	5,940	2,590	14,352	1,102
78	298	187,2905	-73,2946	14,4	12,8	9,21	6,858	5,849	5,426	2389	89	7,111	3,122	14,654	1,087
79	300	189,5817	-73,3592	15,5	13,6	-	9,392	8,552	7,99	2473	45	0,652	0,289	4,764	0,172
80	308	177,5039	-73,2254	14,2	12,3	9,6	7,095	6,151	5,673	2387	85	5,547	2,401	13,990	0,999
81	341	194,542	-74,1266	13,9	11,4	9,223	6,488	5,519	5,077	2379	90	9,736	4,175	17,717	1,344
82	397	175,0771	-74,6898	12,9	10,6	9,26	6,875	5,897	5,47	2433	105	6,893	3,043	15,423	1,332
83	410	191,533	-75,4643	15,3	13,7	10,93	8,473	7,517	7,051	2392	88	1,568	0,668	7,325	0,537
84	417	176,7744	-75,2099	13,9	12,3	9,2	6,862	5,867	5,452	2397	92	7,014	3,080	15,493	1,183

Tabela 4.8 – Candidatos que não ajustaram uma distribuição espectral de corpo negro. Cand.: Número do candidato a OEJ; Cp.: Campo que está o objeto na Figura 3.1; α : ascenção reta; δ : declinação; B: magnitude banda B; R: magnitude banda R; I: magnitude banda I; J: magnitude banda J; H: magnitude banda H; K: magnitude banda K; T_B: temperatura bolométrica; eT_B: erro da temperatura bolométrica; L: luminosidade; eL: erro da luminosidade; R: raio; eR: erro do raio.

Cand	Ср.	a (°)	d (°)	В	R	Ι	J	н	К	T _{Bol} (K)	eT _{Bol}	L (L $_{\odot}$)	eL (L $_{\odot}$)	R (R $_{\odot}$)	eR (R $_{\odot}$)
85	1	180,7036	-67,4703	15,9	14,4	9,2	7,274	5,713	4,506	1207	142	10,83841	0,938508	75,96442	17,83269
86	1	180,4076	-67,5737	17,9	15,8	12	7,436	6,539	5,923	1902	99	3,301007	0,249409	16,89091	1,761067
87	1	180,1913	-67,5268	-	13,1	-	7,436	6,539	5,923	2273	94	2,084281	0,167565	9,394304	0,777788
88	1	179,9978	-67,5037	15,1	16,7	15	13,063	12,285	11,563	3250	347	0,015894	0,003153	0,401226	0,085787
89	3	182,2412	-67,745	19,3	17,9	18	16,321	15,070	13,951	2645	361	0,001424	0,000262	0,181314	0,049489
90	3	181,6773	-67,6191	18,2	15,7	12	8,488	7,449	6,907	2295	155	1,120016	0,086141	6,751763	0,909894
91	3	181,9633	-67,5354	19	17,6	14	9,022	7,932	7,381	2090	123	0,850384	0,076251	7,096186	0,832351
92	5	183,5384	-67,7112	17,1	14,4	12	7,675	6,598	6,069	2271	83	2,057118	0,127894	9,347397	0,682175
93	6	184,807	-67,71	18,3	14,6	11	6,839	5,803	5,239	2258	89	5,075698	0,257953	14,84991	1,173918
94	6	184,5236	-67,877	-	17,1	13	9,576	8,609	8,042	2104	103	0,347747	0,046879	4,477136	0,439878
95	7	185,7408	-67,7387	16,7	13,4	11	7,908	6,952	6,409	1821	94	2,533413	0,1992	16,13736	1,672606
96	9	187,6068	-67,852	19,7	17,7	11	8,849	7,970	7,446	2181	157	0,906868	0,119674	6,732107	0,968413
97	11	189,4488	-67,8555	15,1	14,1	-	6,774	5,728	5,251	1893	58	8,543684	0,397874	27,41851	1,688372
98	12	190,1752	-68,0266	-	13,1	13	7,221	6,366	5,818	1767	94	2,990475	0,282576	18,62797	1,972538
99	12	190,2936	-68,0686	16,9	13,2	-	8,102	7,103	6,551	2270	84	1,536077	0,073241	8,086241	0,595864
100	13	190,5393	-67,8888	18	15,4	12	8,168	7,078	6,537	2267	90	1,546386	0,083002	8,135378	0,648472
101	14	191,9722	-68,0315	-	16,4	14	8,518	7,449	6,737	2218	88	0,843524	0,072363	6,277574	0,496703
102	17	194,3974	-67,9182	16,6	13,7	-	7,334	6,374	5,885	2280	69	2,956797	0,11727	11,12385	0,669542
103	21	182,0795	-68,0508	18,3	-	12	9,249	7,730	6,755	2240	130	4,03153	0,063211	20,75583	2,41489
104	21	182,2183	-68,1522	18,3	13,1	11	7,581	6,678	6,094	1803	114	1,446714	0,313255	7,599368	0,963064
105	22	182,3792	-68,0434	17,1	14	11	7,963	6,939	6,445	2307	106	1,764991	0,101379	8,393776	0,769284

Cand.	Ср.	a (°)	d (°)	В	R	I	J	Н	К	T _{Bol} (K)	eT _{Bol}	L (L $_{\odot}$)	eL (L $_{\odot}$)	R (R $_{\odot}$)	eR (R $_{\odot}$)
106	23	184,0505	-68,1379	18,3	16,1	12	9,277	8,298	7,791	2335	95	0,44295	0,03251	4,104396	0,335075
107	25	185,2683	-68,3334	-	17,8	-	9,517	7,588	6,174	498	102	5,81766	0,24628	327,336	133,6347
108	25	185,1155	-68,2699	-	15,5	12	8,352	7,195	6,654	2249	79	0,985916	0,07526	6,597119	0,461073
109	27	187,5373	-68,3486	17,1	15,6	15	12,887	10,846	9,013	558	125	0,485179	0,020481	75,24655	33,74282
110	27	187,2412	-68,3033	19	16,4	13	9,148	8,083	7,558	2278	112	0,61344	0,041309	5,071549	0,499996
111	28	187,6579	-68,3228	14,7	11,7	9,1	6,087	5,118	4,690	2356	88	8,085445	0,523037	17,21278	1,279887
112	29	189,404	-68,2963	17,2	15,9	11	8,234	7,142	6,655	2302	86	1,444043	0,072876	7,622235	0,569101
113	30	190,0923	-68,4659	17,6	15,2	12	8,677	7,535	7,029	2291	124	1,002392	0,067906	6,411293	0,693502
114	30	189,5593	-68,3152	18,8	14,9	12	8,653	7,648	7,033	2276	103	0,960144	0,056134	6,357122	0,572698
115	31	190,6266	-68,4527	17	14,2	11	7,823	6,789	6,215	2283	85	1,778919	0,112944	8,602299	0,636967
116	34	193,8121	-68,3625	16,8	13,2	10	6,388	5,375	4,919	2306	59	6,292361	0,273225	15,86245	0,812657
117	35	194,6674	-68,2933	17,5	13	11	6,984	5,952	5,424	2275	115	4,383622	0,293428	13,60134	1,376777
118	41	183,555	-68,5095	16	13,9	11	7,299	6,297	5,828	2324	103	2,729957	0,203388	10,28391	0,914245
119	44	185,868	-68,7237	17,4	15,2	15	12,985	11,746	10,986	2513	158	0,024606	0,001826	0,835152	0,104998
120	46	187,8862	-68,5017	16,8	14,2	-	8,141	7,180	6,734	2293	71	1,388265	0,057239	7,533688	0,469529
121	48	189,9183	-68,834	-	17	14	10,029	9,174	8,624	2316	71	0,171583	0,011589	2,594817	0,15938
122	49	191,1845	-68,5868	-	10,6	9	6,109	5,226	4,614	1949	117	8,255121	0,902658	25,43211	3,055208
123	49	190,7507	-68,5806	16,8	14,2	12	8,886	7,827	7,368	2349	100	0,664693	0,048952	4,965284	0,421334
124	50	191,3953	-68,8642	18,8	16,8	13	9,077	8,103	7,582	2294	80	0,612972	0,028176	4,999764	0,347694
125	53	194,7082	-68,7965	-	14,8	13	11,076	9,462	8,177	2117	69	0,147546	0,010846	2,880311	0,188288
126	55	179,7828	-68,6799	15,8	12,4	9,9	6,986	6,024	5,575	2358	88	3,548799	0,231068	11,38406	0,847248
127	56	180,9019	-68,8000	16,8	14,7	12	8,489	7,455	6,952	2292	101	1,093368	0,063944	6,689468	0,591817
128	60	184,2092	-68,8607	17,1	14,4	11	10,816	9,277	8,115	2429	217	0,246602	0,031578	2,829352	0,506466
129	62	185,8532	-68,9469	14,7	12,2	9,2	6,446	5,424	4,956	2347	83	7,159619	0,345503	16,32198	1,148021
130	62	186,1268	-68,7743	15,4	13,4	11	8,749	7,809	7,259	2055	121	0,968416	0,083262	7,83255	0,925586
131	63	186,8315	-68,8074	16,8	14,2	11	7,509	6,563	6,020	2295	120	2,198735	0,199096	9,462151	0,985319
132	68	191,7412	-69,1993	-	-	-	14,939	12,221	10,201	351	112	0,653951	0,026155	220,6553	141,3046

Cand	. Ср.	a (°)	d (°)	В	R	I	J	Н	K	T _{Bol} (K)	eT _{Bol}	L (L $_{\odot}$)	eL (L $_{\odot}$)	R (R $_{\odot}$)	eR (R $_{\odot}$)
133	69	192,8358	-68,9804	18,2	15,4	11	7,825	6,803	6,277	2298	113	2,023708	0,125783	9,053334	0,892605
134	70	193,8457	-69,1668	17,3	15,1	11	8,143	7,136	6,589	2298	107	1,505498	0,088866	7,811413	0,728705
135	72	194,9633	-69,0356	16	13,4	10	7,327	6,375	5,915	2362	101	2,589882	0,173635	9,694784	0,825976
136	74	180,1379	-68,8263	19	15,6	11	8,912	8,090	7,523	1070	127	1,493525	0,11008	35,90944	8,538137
137	75	181,9129	-68,9055	16,4	14,2	11	7,507	6,514	6,071	2328	102	2,217332	0,163364	9,23636	0,812309
138	77	183,0144	-69,0056	15,8	13,2	-	8,073	7,072	6,604	2290	87	1,534757	0,075195	7,940451	0,603696
139	77	183,0575	-69,2404	15,8	13,9	-	6,237	5,148	4,504	1803	98	11,03496	0,762635	34,34516	3,714507
140	78	183,9796	-69,0755	16,6	14,5	12	8,722	7,723	7,243	2339	95	0,741756	0,053847	5,289619	0,430471
141	81	186,9575	-69,4156	15,4	13,2	11	7,307	6,400	5,893	2333	95	2,566956	0,184485	9,897462	0,807689
142	81	186,6017	-69,2996	16	13,4	11	7,253	6,352	5,765	1971	92	3,183135	0,246176	15,4392	1,445788
143	84	189.3912	-69.4514	13,3	11,4	10	7,017	6,014	5,590	2395	96	3,543226	0,239508	11,03444	0,880241
144	84	189,9094	-69,2272	13,3	11,4	10	7,017	6,014	5,590	2395	96	3,543226	0,239508	11,03444	0,880241
145	85	190,6488	-69,3655	15	13,7	11	7,975	7,076	6,553	2377	118	1,411047	0,110361	7,064807	0,698723
146	86	191,7681	-69,4445	17	14,5	14	11,242	9,509	8,068	1252	105	0,4582	0,024489	14,5098	2,437972
147	86	191,9735	-69,2499	18,4	16,3	15	11,968	10,462	9,844	2234	103	0,066661	0,003547	1,738811	0,160988
148	87	192,3243	-69,481	15,5	12,4	9,9	6,717	5,773	5,301	2341	110	4,496594	0,347091	13,00196	1,226799
149	88	193,5957	-69,3017	16,6	13,5	11	6,981	5,902	5,432	2294	68	3,840227	0,197944	12,51648	0,744727
150	89	194,7946	-69,4079	17,1	14,5	11	8,277	7,295	6,789	2362	67	1,127291	0,058537	6,399708	0,363427
151	90	195,288	-69,2496	13,4	11,7	11	7,851	6,874	6,386	2394	114	1,929463	0,117143	8,149821	0,775902
152	90	195,2549	-69,326	-	15,7	10	7,591	6,463	5,722	1786	78	2,753096	0,227149	17,49437	1,523057
153	94	182,5495	-69,3293	16,9	13,8	12	8,999	8,104	7,547	2354	122	0,64332	0,044864	4,867205	0,5051
154	94	181,901	-69,4658	16	13,7	11	7,047	6,045	5,542	2104	83	3,639851	0,253006	14,49081	1,146038
155	96	184,5225	-69,4763	16	12,6	9,6	7,014	6,099	5,620	2389	105	3,421334	0,266918	10,89349	0,958814
156	97	185,1828	-69,4323	14,8	12,5	10	7,618	6,714	6,278	2432	135	1,939527	0,171605	7,913052	0,877297
157	97	184,7515	-69,5127	16,2	12,5	12	7,066	6,127	5,589	2290	79	3,819068	0,165776	12,52411	0,859841
158	99	187,0812	-69,4509	13,6	11,7	9,5	5,934	5,019	4,483	2088	111	11,15387	0,873537	25,75489	2,744034
159	102	189,7602	-69,6628	16,7	14,1	11	7,738	6,669	6,207	2324	78	1,913932	0,110331	8,609641	0,575436

62

Cand.	Ср.	a (°)	d (°)	В	R	I	J	Н	К	T _{Bol} (K)	eT _{Bol}	L (L $_{\odot}$)	eL (L $_{\odot}$)	R (R $_{\odot}$)	eR (R $_{\odot}$)
160	103	191,1053	-69,5853	14,9	12,1	10	6,790	5,810	5,378	2110	109	5,108381	0,363181	17,06073	1,757829
161	104	191,5345	-69,546	-	12,6	10	7,006	6,029	5,588	2343	66	2,941962	0,185729	10,50103	0,595899
162	106	194,0094	-69,8171	17,9	17,2	12	10,013	9,175	8,643	2443	77	0,249501	0,011436	2,813741	0,178518
163	106	193,6704	-69,8241	17,8	15,2	12	8,075	7,068	6,536	2156	97	1,761843	0,09982	9,598407	0,867098
164	108	195,0569	-69,7387	17	14,5	11	8,531	7,626	7,073	2344	125	0,85109	0,08021	5,643743	0,599976
165	109	178,8019	-69,5297	14,3	12,2	11	7,978	7,025	6,560	2401	96	1,681088	0,08923	7,55894	0,607063
166	113	182,6	-69,8093	16,3	12,9	10	7,038	6,021	5,518	2320	104	3,557343	0,27471	11,77718	1,052609
167	116	185,5161	-69,9177	17,5	15,1	12	8,405	7,342	6,852	2294	77	1,030611	0,058688	6,48382	0,433583
168	116	185,6184	-69,95	14,8	11,9	9,2	6,857	5,894	5,470	2414	131	4,724588	0,308105	12,53745	1,355913
169	117	187,1467	-70,0003	15,5	12,4	10	7,276	6,292	5,837	2349	116	2,757474	0,219527	10,11646	0,996606
170	119	189,1635	-70,0961	16,8	14,4	11	8,464	7,464	6,981	2346	92	0,945973	0,067259	5,941244	0,464977
171	119	188,5378	-69,9912	16	15,2	10	6,836	5,812	5,341	2048	74	4,618318	0,29621	17,22718	1,24269
172	120	189,4744	-69,8795	15,5	14,6	-	6,446	5,402	4,811	2014	97	7,663945	0,52183	22,94067	2,215036
173	121	191,057	-70,1821	18	15,7	13	8,951	7,902	7,408	2288	125	0,719221	0,050795	5,444454	0,593634
174	122	191,9349	-69,9933	-	14,2	11	8,005	6,968	6,486	2316	95	1,23598	0,110427	6,969434	0,569214
175	124	193,5071	-70,1217	17,9	14,6	11	7,404	6,451	5,929	2316	94	2,434594	0,174031	9,781069	0,79164
176	125	194,5504	-69,9624	-	16,3	12	7,900	6,910	6,290	1871	69	1,665202	0,124632	12,39766	0,918746
177	128	179,6259	-69,9606	18,1	14,7	12	8,887	7,972	7,454	2346	98	0,711365	0,041555	5,151885	0,429654
178	128	179,5696	-69,9309	15,4	12,3	9,7	6,513	5,553	5,066	2329	88	6,42297	0,328305	15,7121	1,184721
179	130	181,4581	-70,0511	-	14	11	7,429	6,344	5,608	1827	107	2,931727	0,302943	17,25136	2,011742
180	135	186,1584	-70,4001	18,9	17,5	15	12,051	10,469	9,254	976	106	0,237646	0,011458	17,21838	3,736463
181	136	187,3878	-70,1258	-	-	14	10,548	8,404	6,894	406	102	3,490258	0,156369	380,3642	190,3591
182	136	187,9209	-70,2311	19,8	14,3	9,4	6,710	5,756	5,243	2055	94	5,833118	0,385283	19,21993	1,759551
183	138	190,0268	-70,3715	17,3	16,1	14	10,180	9,131	8,541	2281	68	0,240842	0,009374	3,171596	0,190338
184	138	189,9034	-70,2691	16,5	13,7	10	7,380	6,401	5,934	2339	76	2,503021	0,137159	9,721465	0,634838
185	141	192,3109	-70,3717	17,5	15,8	13	7,699	6,744	6,246	2281	71	2,116263	0,089262	9,398414	0,583227
186	143	194,4612	-70,5133	13,4	11,7	9,4	7,144	6,136	5,661	1511	73	4,873346	0,28854	32,49982	3,122757

Cand.	Ср.	a (°)	d (°)	В	R	I	J	н	К	T _{Bol} (K)	eT _{Bol}	L (L $_{\odot}$)	eL (L $_{\odot}$)	R (R $_{\odot}$)	eR (R $_{\odot}$)
187	144	195,9733	-70,2509	-	13,9	11	8,624	7,680	7,184	2370	94	0,66878	0,063398	4,893761	0,387703
188	148	181,5766	-70,4984	17,1	14	13	11,017	9,878	9,333	2511	160	0,108439	0,010604	1,755659	0,224317
189	150	183,3987	-70,3483	18,1	15,6	12	8,760	7,789	7,307	2321	93	0,814192	0,04312	5,628539	0,451025
190	155	188,8424	-70,6463	-	-	18	13,121	10,815	9,757	2017	52	0,034955	0,002007	1,544919	0,079254
191	155	188,8004	-70,7186	19,5	16,5	13	8,243	6,858	6,152	2176	106	1,90911	0,117916	9,81057	0,958946
192	157	190,3933	-70,5549	16,2	12	10	7,290	6,254	5,820	2353	84	2,812669	0,169514	10,1812	0,723089
193	157	190,8207	-70,6624	17,7	12,6	11	7,006	5,880	5,379	1992	91	4,363214	0,336991	17,70067	1,618652
194	158	191,8296	-70,5723	17,1	14,5	11	8,251	7,240	6,758	2325	112	1,15076	0,089599	6,672839	0,641901
195	159	192,6338	-70,713	18,9	15,9	11	8,747	7,853	7,215	2173	164	0,906695	0,089463	6,776756	1,020202
196	160	193,1498	-70,7009	-	-	18	10,238	8,341	6,968	352	106	4,830818	0,195423	595,5555	357,2252
197	160	193,4969	-70,7416	15,5	12	10	7,316	6,374	5,920	2396	100	2,620065	0,190803	9,478637	0,790349
198	170	185,6968	-70,8282	16,8	13,2	9,8	6,532	5,449	4,878	1947	74	6,937435	0,425345	23,36694	1,775802
199	172	187,7065	-71,0719	-	-	18	14,108	12,398	11,686	2145	57	0,007267	0,000448	0,622833	0,033363
200	172	187,9046	-71,053	-	-	17	13,947	12,187	11,550	2153	60	0,008493	0,000554	0,668044	0,037467
201	172	187,9795	-71,0182	-	-	17	13,504	11,976	11,329	2184	61	0,010693	0,000714	0,728546	0,040526
202	172	187,9253	-71,0652	-	-	17	10,890	9,247	8,320	2093	69	0,146173	0,011613	2,934946	0,193426
203	172	187,0762	-70,9878	15,8	12,9	10	7,590	6,580	6,129	2357	95	2,110978	0,147714	8,792549	0,708439
204	173	187,9993	-71,0385	-	-	17	13,735	11,999	11,292	2136	55	0,010413	0,000639	0,751911	0,038898
205	173	188,7075	-70,8755	18,2	15,2	12	8,797	7,608	7,094	2262	78	0,923985	0,042269	6,313497	0,434804
206	178	193,3119	-71,0562	15,5	13,9	10	7,282	6,339	5,790	1991	89	3,138579	0,240134	15,02417	1,339293
207	181	178,6047	-70,7749	-	18	12	7,303	6,313	5,601	900	98	6,476429	0,503514	105,7002	22,9249
208	182	179,3701	-70,7488	14,4	12,9	11	7,178	6,196	5,714	2322	87	3,015061	0,194674	10,82207	0,812558
209	186	183,5077	-71,1192	16,4	13,4	11	8,133	7,152	6,661	2341	123	1,265191	0,116896	6,89658	0,725497
210	187	184,0431	-71,2019	-	14,2	12	8,658	7,789	7,122	2313	79	0,644433	0,050628	5,04351	0,345749
211	189	186,8675	-71,3892	-	-	17	13,853	12,143	11,503	2159	60	0,008909	0,000602	0,680951	0,037898
212	190	187,3973	-71,1548	-	-	18	14,078	12,288	11,518	2121	58	0,008165	0,000524	0,674916	0,036946
213	190	187,7176	-71,1772	-	-	17	13,585	12,042	11,343	2172	67	0,010261	0,000756	0,721804	0,044856

Cand.	Ср.	a (°)	d (°)	В	R	Ι	J	Н	К	T _{Bol} (K)	eT _{Bol}	L (L $_{\odot}$)	eL (L $_{\odot}$)	R (R $_{\odot}$)	eR (R $_{\odot}$)
214	190	187,4219	-71,1604	-	-	17	13,862	12,123	11,338	2128	93	0,00964	0,000984	0,72878	0,063644
215	190	187,2731	-71,2105	20,2	17,7	17	13,089	11,510	10,801	2178	84	0,025849	0,001152	1,13966	0,088195
216	190	186,9342	-71,3514	-	-	17	13,692	11,696	10,810	2077	61	0,014573	0,000996	0,940935	0,055632
217	190	187,3328	-71,1907	-	-	17	12,985	11,206	10,448	2122	54	0,022009	0,001333	1,107216	0,056309
218	190	187,2499	-71,2717	-	-	16	12,050	10,267	9,533	2128	57	0,051707	0,003295	1,688717	0,089756
219	197	194,8312	-71,4706	16,4	13,7	11	7,712	6,719	6,232	2323	61	1,866596	0,086007	8,508231	0,448365
220	197	195,1342	-71,3373	16,2	12	11	6,429	5,401	4,729	1916	91	7,569882	0,566857	25,20388	2,388428
221	200	179,3907	-71,4128	19	14,2	13	9,160	8,288	7,760	2317	93	0,530598	0,028738	4,55941	0,364531
222	202	181,4928	-71,4325	17,9	15,1	12	8,465	7,434	6,894	2300	138	1,137275	0,091426	6,778727	0,814516
223	206	185,6905	-71,6484	16,1	12,7	12	8,507	7,444	6,853	2321	261	0,987683	0,194625	6,202837	1,394012
224	206	184,8748	-71,4355	17,3	13,7	12	7,987	6,934	6,395	2282	119	1,782858	0,11618	8,615658	0,900143
225	207	186,3272	-71,739	-	18,3	16	12,907	11,172	10,423	2140	59	0,025343	0,001381	1,16902	0,064432
226	207	186,476	-71,6665	-	17,8	16	12,526	10,886	10,179	2165	56	0,032823	0,001726	1,299237	0,067647
227	208	187,0231	-71,4971	19,5	17,1	14	8,885	7,832	7,197	2237	288	0,800316	0,119197	6,008307	1,544868
228	208	187,3905	-71,5758	16,7	13,1	11	7,821	6,791	6,317	2354	78	1,748521	0,095598	8,021398	0,532579
229	209	188,1817	-71,6428	16,3	14	10	7,539	6,536	6,043	2228	124	2,545235	0,20805	10,80575	1,203062
230	209	188,8222	-71,7468	16,9	13,8	11	6,628	5,504	4,988	2264	87	5,552424	0,347986	15,45598	1,193387
231	220	180,9185	-71,519	16,9	13,9	10	7,900	6,930	6,417	2367	146	1,588334	0,159753	7,564323	0,930747
232	220	180,9751	-71,8155	16,8	13,4	10	7,394	6,408	5,933	2348	73	2,501437	0,135909	9,646017	0,600447
233	220	180,4781	-71,7655	14,6	11,8	9,6	7,140	6,143	5,739	2414	82	3,168754	0,175305	10,26836	0,697116
234	225	186,0844	-71,8495	-	-	18	14,313	12,729	11,955	2140	68	0,005577	0,000415	0,548104	0,034581
235	225	186,0869	-71,8286	-	-	18	14,296	12,530	11,767	2126	64	0,006533	0,000455	0,601061	0,036228
236	225	186,1043	-71,8713	-	-	17	12,826	10,933	10,071	2087	56	0,029318	0,001841	1,321041	0,071116
237	225	186,1838	-71,8466	-	-	16	12,175	10,301	9,494	2101	57	0,051259	0,003158	1,723661	0,092704
238	231	192,6876	-72,0469	16,9	18,7	10	6,975	5,999	5,544	2140	110	4,20777	0,31044	15,05339	1,543853
239	231	192,0191	-72,0598	17,1	14,4	11	6,701	5,699	5,078	1990	73	5,4947	0,346121	19,88842	1,463372
240	231	192,478	-71,8739	17,1	13,8	11	6,629	5,603	5,006	2011	110	5,847161	0,516162	20,10504	2,205723

65

Cand.	Ср.	a (°)	d (°)	В	R	I	J	Н	К	T _{Bol} (K)	eT _{Bol}	L (L $_{\odot}$)	eL (L $_{\odot}$)	R (R $_{\odot}$)	eR (R $_{\odot}$)
241	232	193,6014	-72,0015	16,7	14,4	11	8,305	7,379	6,850	2330	125	1,223671	0,083361	6,850687	0,734566
242	242	185,388	-72,3272	18,7	15,3	12	8,063	6,369	5,558	2122	81	3,017013	0,13304	12,97118	0,984722
243	242	185,3991	-72,341	-	-	18	14,694	13,138	12,362	2151	76	0,003853	0,000312	0,451093	0,031814
244	242	185,3813	-72,3308	-	-	16	13,045	11,516	10,834	2176	102	0,016563	0,001896	0,913669	0,085579
245	242	185,4495	-72,3004	-	17,6	16	12,549	11,131	10,524	2227	71	0,02605	0,001697	1,093561	0,069901
246	246	189,0718	-72,2672	17,5	17,3	17	15,907	15,654	14,341	3669	483	0,000856	0,000577	0,073084	0,019244
247	255	179,0848	-72,1824	16,2	1527	11	9,040	8,089	7,388	1717	183	1,076871	0,092149	11,83033	2,523303
248	261	185,7525	-72,6675	17,1	12,4	10	7,383	6,307	5,794	2324	93	3,182309	0,166158	11,10213	0,886267
249	262	187,0237	-72,7555	20,3	13,6	12	7,136	6,125	5,483	2007	70	3,660275	0,222643	15,96707	1,109721
250	268	194,011	-72,7634	19,7	17,6	18	16,445	15,260	14,089	2706	440	0,001275	0,000294	0,163962	0,053374
251	275	181,9203	-72,6733	18,2	16	12	8,673	7,665	7,180	2317	111	0,907586	0,055203	5,963099	0,569102
252	275	181,5513	-72,6358	17,7	16,5	12	8,390	7,471	6,746	1642	93	1,596934	0,103	15,74974	1,788083
253	277	183,8493	-72,7262	14,2	12,2	9,4	6,156	5,205	4,676	2141	101	8,077811	0,642807	20,84785	1,973952
254	294	182,0118	-73,0877	15,1	12,6	9,9	6,925	5,957	5,512	2267	96	3,756645	0,276668	12,67485	1,072991
255	297	185,8745	-73,1739	18,4	17,2	14	12,921	11,479	10,669	2325	92	0,029973	0,001493	1,076905	0,085299
256	302	191,2092	-73,3075	16,3	16,3	16	15,155	14,646	13,578	3960	789	0,003309	0,001411	0,12328	0,049096
257	303	192,5106	-73,2211	15,5	15,2	16	14,156	13,221	12,234	3501	595	0,009289	0,002643	0,264271	0,089844
258	303	192,1115	-73,4285	19	17	-	11,613	9,953	8,617	1149	125	0,304032	0,020417	14,04125	3,062893
259	306	195,6653	-73,3073	-	13,1	-	7,503	6,512	6,035	2155	81	2,33689	0,147043	11,061	0,830549
260	312	181,7946	-73,5319	15,5	13	9,8	6,550	5,558	5,038	1770	100	6,463769	0,597901	27,26412	3,079203
261	313	183,5523	-73,4029	15,6	13,1	9,9	7,691	6,713	6,225	2404	151	1,944544	0,196275	8,113582	1,017372
262	313	183,2998	-73,363	14,4	11,8	9,3	6,515	5,577	5,152	2186	84	5,672197	0,416997	16,75603	1,287565
263	325	176,1926	-73,5099	12,5	12,1	11	9,902	10,765	9,034	3784	494	0,204207	0,068733	1,061036	0,277217
264	327	178,6188	-73,6865	14,7	12,3	9,7	6,707	5,748	5,288	2354	108	4,590906	0,339595	12,99512	1,188717
265	328	179,9515	-73,5153	16,6	13,7	10	6,294	5,271	4,716	2072	82	7,577162	0,508683	21,54387	1,712771
266	329	181,2331	-73,7383	-	14	11	8,212	7,294	6,737	2176	105	1,075513	0,102899	7,363817	0,711747
267	330	181,7845	-73,7473	17,3	11,5	10	8,703	7,868	7,277	2626	216	0,778277	0,102906	4,299922	0,707023

66

Cand.	Ср.	a (°)	d (°)	В	R	I	J	Н	Κ	T _{Bol} (K)	\mathbf{eT}_{Bol}	L (L $_{\odot}$)	eL (L $_{\odot}$)	R (R $_{\odot}$)	eR (R $_{\odot}$)
268	333	185.777	-73.928	15.7	13.7	9.9	6.795	5.736	5.269	2083	72	4.871971	0.306427	17.10143	1.185783
269	377	195,532	-74,7566	17,3	16,6	17	15,980	15,132	13,961	3611	746	0,001892	0,000778	0,112122	0,046292
270	393	192,5889	-75,0972	-	14,5	-	6,941	6,025	5,544	2073	72	3,421593	0,246907	14,46983	1,011099
271	399	177,6071	-74,9362	17,8	15,1	11	7,812	6,868	6,271	2097	136	2,024749	0,182294	10,87692	1,41019
272	399	177,5926	-75,0325	14,7	12,3	9,4	6,327	5,366	4,889	2159	91	6,849181	0,51273	18,87054	1,594495
273	417	177,2534	-75,2875	14,2	12,8	9,9	7,384	6,432	5,977	2399	113	2,483932	0,190792	9,20408	0,86856
274	420	184,0808	-75,4802	16,4	13,6	10	7,383	6,391	5,924	2124	103	2,696823	0,214344	12,23695	1,19038
275	423	184,0808	-75,4802	16,4	13,6	10	7,383	6,391	5,924	2124	103	2,696823	0,214344	12,23695	1,19038
276	423	184,0808	-75,4802	16,4	13,6	10	7,383	6,391	5,924	2124	103	2,696823	0,214344	12,23695	1,19038
277	426	188,5889	-75,6682	20,2	15,4	11	8,414	7,473	6,968	2147	123	1,14768	0,093916	7,809974	0,893706
278	429	192,2919	-75,6666	17,7	14,8	12	8,792	7,695	7,236	2301	93	0,855807	0,042223	5,872824	0,473826

Tabela 4.9 – Seis objetos não puderam ser analisados por só possuírem medidas fotométricas no catálogo 2MASS, o que nos permite analisarapenas 3 bandas (J, H e K_S). Inviabilizando a eliminação ou a classificação. Portanto são objetos que devem ser submetidos a futuras observações

espectroscópicas para determinação da natureza do objeto.

Cand.	Ср	a (°)	d (°)	J	eJ	Н	eH	K	eK	J-H	H-K	Qual.
279	155	188,845710	-70,674835	15,222	0,069	12,751	0,030	11,487	0,023	2,471	1,264	AAA
280	172	187,721683	-71,053116	15,081	0,043	13,323	0,031	12,497	0,030	1,758	0,826	AAA
281	190	187,446628	-71,138260	14,989	0,054	13,145	0,034	12,296	0,030	1,844	0,849	AAA
282	207	186,453944	-71,714211	14,657	0,038	13,047	0,021	12,223	0,030	1,610	0,824	AAA
283	379	186,459491	-71,707176	14,803	0,047	12,768	0,021	11,872	0,026	2,035	0,896	AAA
284	225	186,139584	-71,799332	15,211	0,050	13,300	0,030	12,470	0,026	1,911	0,830	AAA

Com os dados mostrados nas Tabelas 4.8 e 4.9 construímos o diagrama *Luminosidade* x *Temperatura* (Brissi; Hickel, 2005) para os 278 candidatos das Tabelas 4.7 e 4.8 . Neste diagrama apresentamos as trajetórias evolutivas de OEJs (MYERS et al., 1998) para 5 massas diferentes e 3 isócronas (linhas tracejadas) também são mostradas. As classes evolutivas, conforme suas temperaturas, têm os limites indicados no alto do gráfico (Figura 4.1).

Figura 4.1 - Diagrama *Luminosidade* x *Temperatura* para os 278 candidatos a OEJs. A Luminosidade é dada em luminosidades solares. O gráfico mostra a Seqüência Principal de Idade Zero (SPIZ) com a posição de diversas massas estelares (em massas solares). Trajetórias evolutivas de OEJs (MYERS et al., 1998) para 5 massas diferentes e 3 isócronas (linhas tracejadas) também são apresentadas. As classes evolutivas, conforme suas temperaturas, têm os limites indicados no alto do gráfico.

4.2 A distribuição Espacial dos Objetos

Não apenas a análise dos candidatos individualmente nos fornece informações importantes, mas também a distribuição espacial destes objetos ao longo da região estudada. A tabela 4.10 mostra o número total de objetos por campo analisado. Pode-se perceber nesta tabela o grande que há mais objetos em baixas latitudes, próximas ao plano galáctico, e esta quantidade vai diminuindo conforme se afasta do plano galáctico. Os dados da tabela 4.10 são mostrados na figura 4.2 em tons de cinza.

A distribuição espacial dos candidatos mostra que os candidatos não estão igualmente distribuídos (Figura 4.3 e Figura 4.4). A maior parte deles está entre -5° e -7°, devem ser na sua maioria estrelas gigantes vermelhas de fundo pertencentes ao plano galáctico. Uma outra concentração de candidatos (43) ocorre nos campos: 155 (5 candidatos), 172 (13 candidatos), 190 (10 candidatos), 207 (5 candidatos), 225 (6 candidatos) e 242 (4 candidatos). São candidatos que estão na direção das partes mais densas da nuvem. Provavelmente a maior parte deles devem estar atrás dela, sujeitos à alta extinção, fazendo seus índices de cor exageradamente avermelhados. Uma parte destes objetos pode ser estrelas de seqüência principal muito avermelhadas, mas, a presença de OEJs nestas condensações também é provável.

Tabela 4.10 – Quantidade de objetos por campo obtido catálogo 2MASS (CUTRI, 2003). O número de fontes em cada campo variou entre 1.544 (campo 421) e 6.426 (campo 005), totalizando 1.459.012 fontes. **Cp**: campo; **Nf**: número de fontes.

Cp Nf	Cp Nf	Cp Nf	Cp Nf
001 - 5571	051 - 4962	101 - 4427	151 - 4085
002 - 6004	052 - 5193	102 - 4290	152 - 3653
003 - 6279	053 - 5214	103 - 4611	153 - 3811
004 - 6267	054 - 5157	104 - 4512	154 - 3549
005 - 6426	055 - 4773	105 - 4239	155 - 3102
006 - 5568	056 - 4862	106 - 4330	156 - 3335
007 - 5552	057 - 5313	107 - 4414	157 - 3606
008 - 6254	058 - 5275	108 - 4198	158 - 3648
009 - 6025	059 - 5324	109 - 3877	159 - 3469
010 - 5801	060 - 5356	110 - 3922	160 - 3547
011 - 5971	061 - 4881	111 – 4123	161 - 3850
012 - 6025	062 - 5139	112 - 4394	162 - 3630
013 - 5685	063 - 5156	113 - 4446	163 - 3369
014 - 5825	064 - 4900	114 - 4582	164 - 3231
015 - 5602	065 - 5019	115 - 4432	165 - 3293
016 - 6003	066 - 4998	116 - 4208	166 - 3664
017 - 5850	067 - 5031	117 – 4339	167 - 3709
018 - 5606	068 - 4934	118 - 4059	168 - 3671
019 - 5545	069 - 4625	119 – 3938	169 - 3832
020 - 5660	070 - 4672	120 - 3752	170 - 3478
021 - 5939	071 - 4798	121 - 3936	171 – 3567
022 - 5672	072 - 4607	122 - 3908	172 - 3022
023 - 6122	073 - 4365	123 - 3902	173 - 2764
024 - 5827	074 - 4470	124 - 3978	174 – 3375
025 - 5196	075 - 4978	125 - 4190	175 – 3574
026 - 5772	076 - 5054	126 - 3837	176 - 3492
027 - 5732	077 - 5142	127 - 3702	177 – 3296
028 - 5457	078 - 5047	128 - 3617	178 - 3378
029 - 5943	079 - 4782	129 - 4031	179 - 4105
030 - 6403	080 - 4798	130 - 4293	180 - 3209
031 - 5193	081 - 4835	131 - 4366	181 - 3130
032 - 5330	082 - 4729	132 - 4364	182 - 3079
033 - 5244	083 - 4770	133 - 4354	183 - 3102
034 - 5600	084 - 4714	134 - 3879	184 - 3507
035 - 5681	085 - 4940	135 - 4061	185 - 3475
036 - 5365	086 - 4750	136 - 3876	186 - 3438
037 - 5214	087 - 4524	137 – 3758	187 - 3522
038 - 5180	088 - 4437	138 - 3806	188 - 3219
039 - 5802	089 - 4436	139 – 3957	189 - 3274
040 - 5572	090-4321	140 - 3819	190 - 2439
041 - 5847	091 - 4022	141 - 3779	191 – 2983
042 - 5800	092 - 4108	142 - 3861	192 - 3283
043 - 5164	093 - 4621	143 - 3902	193 - 3335
044 - 5436	094 - 4906	144 - 3739	194 - 3297
045 - 5405	095 - 4716	145 - 3540	195 – 3157
046 - 5208	096 - 4925	146 - 3441	196 - 3390
047 - 5489	097 - 4742	147 – 3588	197 - 3194
048 - 4960	098 - 4502	148 - 4044	198 - 3189
049 - 5125	099 - 4594	149 - 3987	199 - 3063
050 - 5294	100 - 4366	150 - 4084	200 - 3007

Cp Nf	Cp Nf	Cn Nf	Cp Nf
201 - 3009	259 - 2332	$\frac{00}{317 - 2293}$	$\frac{375 - 2261}{375 - 2261}$
201 - 3121	260 - 2283	318 - 2489	376 - 2501
202 - 3163	261 - 3463	319 - 2433	377 - 2521
200 - 3259	262 - 3512	320 - 2566	378 - 2344
207 - 3322	262 - 2716	320 - 2600 321 - 2602	379 - 1947
200 - 3044	263 - 2833	322 - 2837	380 - 1927
207 - 2389	265 - 2926	323 - 2924	381 - 2042
207 - 2781	266 - 3028	323 - 2521 324 - 2519	382 - 2022
209 - 2922	267 - 3157	325 - 2202	383 - 1893
210 - 2952	268 - 3181	326 - 2333	384 - 1790
210 - 2902 211 - 3206	269 - 3183	327 - 2382	385 - 1744
212 - 3059	270 - 2897	328 - 2401	386 - 1810
213 - 3082	271 - 2635	329 - 2024	387 - 1826
214 - 3115	272 - 2769	330 - 2061	388 - 2001
215 - 3156	273 – 2665	331 - 2076	389 - 2013
216 - 2982	274 - 2440	332 - 2090	390 - 2079
217 - 2875	275 - 2394	333 - 1928	391 - 2068
218 - 2745	276 - 2122	334 - 2194	392 - 2141
219 - 2733	277 - 2184	335 - 2262	393 - 2187
220 - 2793	278 - 2155	336 - 2335	394 - 2342
221 - 3068	279 - 2237	337 - 2361	395 - 2318
222 - 3156	280 - 2558	338 - 2389	396 - 2087
223 - 3120	281 - 2614	339 - 2469	397 - 1845
224 - 2906	282 - 2713	340 - 2639	398 - 1884
225 - 2399	283 - 2811	341 - 2653	399 - 1961
226 - 2845	284 - 2849	342 - 2436	400 - 1950
227 - 2931	285 - 2973	343 - 2072	401 - 1813
228 - 3145	286 - 2997	344 - 2247	402 - 1637
229 - 3190	287 - 3134	345 - 2183	403 - 1695
230 - 3275	288 - 2779	346 - 2279	404 - 1762
231 - 3294	289 - 2372	347 - 1950	405 - 1766
232 - 3458	290 - 2576	348 - 1992	406 - 1988
233 - 3514	291 - 2640	349 - 1919	407 - 1948
234 - 3366	292 - 2401	350 - 1934	408 - 1979
235 - 2859	293 - 2232	351 - 1888	409 - 2007
236 - 2846	294 - 2192	352 - 2125	410 - 2041
237 - 2765	295 - 2184	353 - 2205	411 - 2078
238 - 2630	296 - 1992	354 - 2288	412 - 2196
239 - 2502	297 - 2160	355 - 2319	413 - 2124
240 - 2628	298 - 2510	356 - 2291	414 - 2038
241 – 2523	299 - 2569	357 – 2498	415 - 1700
242 - 2308	300 - 2640	358 - 2459	416 - 1848
243 - 2408	301 - 2696	359 – 2575	417 – 1854
244 - 2688	302 - 2545	360 - 2416	418 - 1940
245 - 2888	303 - 2727	361 - 2007	419 - 1842
246 - 3009	304 - 2894	362 - 2058	420 - 1562
247 - 3066	305 - 1943	363 - 2184	421 - 1544
248 – 3193	306 - 2673	364 - 2188	422 - 1754
249 - 3206	307 - 2207	365 - 1846	423 - 1709
250 - 3357	308 - 2512	366 - 1911	424 - 1829
251 - 5515	309 - 2491	30/ - 1898 269 - 1040	425 - 1899
252 - 5149	310 - 2398	368 - 1949	426 - 1900
255 - 2/14	311 - 2096	369 - 1912	427 - 1951
234 - 2833	512 - 1994 212 - 2055	5/0 - 2008	428 - 1889
255 - 2709	515 - 2055	$\frac{3}{1} - \frac{2103}{272}$	429 - 1929
230 - 2409	514 - 2120 215 2001	3/2 - 2181 272 2155	430 - 2011 421 - 2100
231 - 2348	315 - 2001	575 - 2155	431 - 2109
230 - 2389	310 - 2290	574-2125	432 - 184/

Figura 4.2 – A quantidade de objetos por campo (Tabela 4.10) é mostrada em tons de cinza. A escala de cinza desta figura é mostrada na próxima página, sendo que o número de fontes é tanto maior quanto mais claro o tom de cinza.

Legenda da figura 4.2.

Тс	ons de Cinza	N. de Fontes
	5%	6251 – 6500 Fontes
	10%	6001 – 6250 Fontes
	15%	5751 – 6000 Fontes
	20%	5501 – 5750 Fontes
	25%	5251 – 5500 Fontes
	30%	5001 – 5250 Fontes
	35%	4751 – 5000 Fontes
	40%	4501 – 4750 Fontes
	45%	4251 – 4500 Fontes
	50%	4001 – 4250 Fontes
	55%	3751 – 4000 Fontes
	60%	3501 – 3750 Fontes
	65%	3251 – 3500 Fontes
	70%	3001 – 3250 Fontes
	75%	2751 – 3000 Fontes
	80%	2501 – 2750 Fontes
	85%	2251 – 2500 Fontes
	90%	2001 – 2250 Fontes
	95%	1751 – 2000 Fontes
	100%	1500 – 1750 Fontes

3(04		30)3		30)2		3()1		3(00		29	99		298	- 5
		1			2	4	2	1	1	1	3	4	2	1	1	4	1	4	
	1	2	1	2		1	3	2	1	4	1	2	1	1	3	2		1	
		1	2		1	3	2		1		2	2		1	1	2	1		- 6
	1		1	1	1					1	2	1	1				1	1	
	2	1	1	1	2	2	5			2			1	2		1	1		
	1		2		1	2	2			1		2	1		2				- 7
		1	1		2	1	3	2		1	2			1				1	
	1	1		1			2	1	2	1	1				1		2		
			2	1	1	2		5				arananan	1		1				- 8
			1					2	13		1	1							
	1	2							10	1		1	1				1	1	
								2	2	5	2				1		1		- 9
			1	3						6					3				
							1			1	4							1	
			1	_		mananan	1		1	1		arararar				1			- 10
		1				1						1		2					
				2	1		1		1	2			1		1				
		1				mananan				1		2	1	1	1	1		1	- 11
		1												'					
		1																	
-				1															- 12
					1											2		1	
				1			1			2			1			2			- 13
			1	2	1	1	1		1	1		2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	1	1 1 2 2		1	- 10 - 11 - 12 - 13

Figura 4.3 – A quantidade de candidatos a OEJ, por campo, é mostrada nesta imagem.

Figura 4.4 – A quantidade de candidatos a OEJ, por campo, é mostrada em tons de cinza, sendo o número de

candidatos tanto maior quanto mais escuro o tom de cinza.

4.3 Estimativa da distância da nuvem de Musca usando dados do Hiparcos

Estimamos a distância da nuvem escura de Musca usando dados do Catálogo Hiparcos (Perryman, 1997). Selecionamos uma região de 4° x 8° ($-13^{\circ} < b_{gal} < -5^{\circ}$; 299° $< l_{gal} < 303^{\circ}$) e obtivemos as medidas de paralaxe e erro da paralaxe, ao todo foram obtidos 134 objetos na região selecionada. Calculamos a relação sinal/ruído (paralaxe/erro paralaxe) para cada objeto e eliminamos 40 deles que apresentaram a relação sinal/ruído menor que 3 (Figura 4.5).

Figura 4.5 - *Relação Sinal/Ruído* x *Paralaxe*. A linha horizontal marca o nível de corte dos objetos, eliminamos aqueles que possuem relação sinal/ruído menor que 3.

Após a eliminação dos objetos com baixa relação sinal/ruído construímos o histograma da *Contagem* x *Paralaxe* (Figura 4.6) e verificamos que há um excesso do número de objetos para a paralaxe (p'') 5,5 seg arc que corresponde a 182 pc.

Como eliminamos aqueles objetos com baixa relação sinal/ruído, ficamos apenas com objetos com qualidade confiável. Mesmo que o critério de corte favoreça objetos com grande

paralaxes (e maior S/R), esperávamos que o número de objetos aumentasse com a distância, mas o que foi observado foi um excesso de objetos a 182 pc, o que demonstra que realmente existe um excesso de objetos nesta distância.

Figura 4.6 - Histograma *Contagem* x *Paralaxe* mostrando um pico (excesso de objetos) na paralaxe 5,5 arc seg que corresponde a aproximadamente 182 parsec.

Não utilizamos esta estimativa de distância neste trabalho por haver outros trabalhos que realizaram estimativas mais elaboradas, usando métodos mais sofisticados, incluído observações, entre estes trabalhos optamos por Corradi, Franco e Knude (1997) que calcularam 150 ± 30 pc. No entanto, o resultado obtido por nós está coerente com as outras estimativas de distâncias apresentadas neste trabalho. Inclusive com a que utilizamos como padrão: 150 ± 30 pc, o que corresponde a um intervalo de 120 a 180 pc.

5. DISCUSSÃO

5.1 Incertezas da distância

Dos 284 candidatos selecionados a maioria mostrou-se objetos entre classe II e III (Figura 4.1), porém a incerteza na distância de cada objeto pode posicionar equivocadamente do objeto no diagrama *Luminosidade* x *Temperatura* (Figura 4.1). Os erros na determinação da Luminosidade e, consequentemente, do raio são principalmente afetados pela incerteza na distância, para os candidatos que foi possível ajustar uma distribuição espectral de corpo negro, o erro de luminosidade ficou em torno de 40%, dominado pela incerteza de 20% (150 \pm 30 pc) na distância. Portanto, as incertezas (luminosidade, raio, distância, temperatura) de cada candidato são altas, porque não sabemos onde ele realmente está, mas considerando todos os candidatos, os resultados encontrados devem refletir as características intrínsecas da população selecionada.

5.2 Analisando os candidatos encontrados

No diagrama *Luminosidade* x *Temperatura* (Figura 4.1) pode-se notar uma faixa vertical, à direita da SPIZ, onde está concentrada a maior parte dos candidatos. Do hdo esquerdo não há objetos. Estes dois efeitos são decorrentes de nossa seleção, porque nós não consideramos aqueles que estavam na região de ocupação da SPIZ nos diagramas (J–H) x (H–K_s) (Figura 3.2), cor magnitude K_s x (H–K_s) (Figura 3.3) e H x (J–H) (Figura 3.4); apenas os objetos à direita da seqüência principal, com índices de cor "avermelhados".

Nos campos com grande quantidade de candidatos percebemos um espalhamento na distribuição de objetos nos diagramas cor-magnitude (Figura 5.3) ao contrário dos campos com poucos ou nenhum candidatos (Figura 5.4). O espalhamento dos objetos indica extinção não uniforme na região, sobretudo para latitudes menores. Muitos dos candidatos podem ser apenas estrelas da SPIZ do Plano Galáctico sob alta extinção.

5.3 Verificação de fonte puntiforme

A verificação se a fonte é puntiforme (Seção 3.7) revelou-se mais um instrumento de apoio de seleção da fonte, mas não demonstrou ser um critério que isoladamente pudesse ser usado para eliminar um candidato. A figura 51 ilustra algumas dificuldades do uso deste critério. Nesta figura A e B mostram imagens do candidato do campo 205 (coordenadas centrais: α =184,742399° e δ =-71,408020°), respectivamente no óptico (DSS2) e no infravermelho próximo (banda K_S). Este candidato é classificado como galáxia pelos catálogos consultados no Vizier (CUTRI, 2003). Pela figura A poderíamos eliminar este candidato devido a seu aspecto nebuloso, mas a figura B mostra o objeto como uma fonte puntiforme. Como nem sempre nossos objetos estão bem resolvidos no óptico, é possível que nossa amostra contenha algumas galáxias.

Na figura 5.1 também apresentamos nas imagens C e D outro candidato classificado como galáxia pelos catálogos consultados no Vizier (CUTRI, 2003). Este candidato é do campo 048 (coordenadas centrais: α =190,177698°, δ =-68,791069°), mostrado respectivamente no óptico (DSS2) e no infravermelho próximo (banda H). Como a imagem mostra, visualmente não é possível considerá-lo uma fonte extensa e eliminá-lo. A dificuldade é que um quasar ou o bojo de uma galáxia distante pode ter aspecto estelar e apresentar-se como uma fonte puntiforme, principalmente no infravermelho.

5.4 Eliminação de candidatos com baixa qualidade de fotometria

A eliminação de objetos com baixa qualidade fotométrica proporcionou a utilização de dados realmente confiáveis. Eliminamos candidatos com erros não determinados, sem magnitude determinada, ou com erro e magnitude determinada, mas baixa relação sinal ruído. Eliminamos mais da metade das fontes, com estes critérios. Na Figura 5.2 apresentamos dois destes objetos eliminados. O objeto mostrado na Figura 5.2.A parece ser uma dupla e o

mostrado 5.2.B (objeto central) tem suas medidas afetadas pelo objeto de brilho intenso no canto superior esquerdo.

Contudo, nossos critérios de eliminação de candidatos também descartaram OEJs muito embebidos (Classe 0 e I), cujos brilhos para $\lambda < 2\mu$ m são geralmente pequenos. Quando detectados pelo 2MASS, de modo geral, apresentam fotometria pobre na banda J e não raro, na banda H. Um bom exemplo disto é que a fonte IRAS12322-7023, a única provável TT da região foi eliminada por não possuir o erro determinado na banda J. Apesar de perdermos bons candidatos trabalhamos com aqueles cujas cores no infravermelho próximo podiam ser determinadas pelos dados do 2MASS.

5.5 Estimativa do número de gigantes da região

Considerando que nós separamos 298 candidatos, eliminamos 2 galáxias e outros 12 objetos pré-classificados, restando 284 candidatos. Comparando este numero com a estimativa do número de gigantes na região (64) (Seção 3.14), concluímos que perto de 22,5% dos candidatos de nossa amostra devem ser estrelas gigantes vermelhas.

Figura 5.1 – O candidato classificado como galáxia (α =184,742399°, δ =-71,408020°) do campo 205 mostrado nas imagens A (no óptico, DSS2) e B (banda K_S). O outro candidato classificado como galáxia (α =190,177698°, δ =-68,791069°) do campo 048 é mostrado nas imagens C (no óptico, DSS2) e D (banda H). (MCGLYNN; SCOLLICK; WHITE, 1996).

Figura 5.2 - Candidatos eliminados por possuírem baixa qualidade de fotometria: (A) campo 325 (banda J), coordenadas centrais: α =176,192576° e δ =-73.509918°; (B) campo 393 (no óptico, DSS2) coordenadas centrais: α =192,588939° e δ -75,097160°.

Figura 5.3 – Diagrama HxJ-H do campo 190 mostrando os 1245 objetos restantes após a eliminação dos objetos com baixa relação sinal/ruído (Antes desta eliminação este campo tinha 2439 objetos). Este campo possui 10 dos 284 candidatos à OEJ separados neste trabalho. Pode-se perceber uma grande quantidade de objetos à direita da seqüência principal e um espalhamento na parte superior da coluna vertical o que sugere uma alta extinção na região que está avermelhando os índices de cor dos objetos atrás da nuvem.

Figura 5.4 – Diagrama HxJ-H do campo 414. Este campo não têm candidatos à OEJ. Os objetos formam uma bem comportada coluna praticamente vertical, sem espalhamento. Com isso podemos concluir que não há sinais de extinção intensa neste campo, ao contrário da figura 4.3.

6. CONCLUSÃO

6.1 Resultados deste Trabalho

A região de Musca mostrou-se como promissora na quantidade de candidatos a OEJs. Com a investigação mostrada neste trabalho separamos 284 candidatos a OEJs com índices de cor avermelhados, que deverão ser submetidos à invetigação espectroscópica, a despeito do grande número de falsos candidatos que a amostra deve ter. Cerca de 22,5% deles devem ser gigantes evoluídas, mas devido à distribuição do material interestelar ao longo da linha de visada, causando extinção em excesso e da proximidade com o Equador Galáctico, muitos dos candidatos também podem ser estrelas da SPIZ sob alta extinção (Figura 6.1). Também não efetuamos uma estimativa do número de objetos extragalácticos que a amostra possa conter. Apesar destas contaminações, é notório na Figura 6.1, que a distribuição dos candidatos a OEJs apresenta boa concentração na direção do filamento, o que pode ser um indício forte de que a formação estelar na região não é tão inexpressiva quanto se afirma na literatura.

Embora a figura 4.1 tenha mostrado poucos objetos classe 0 e classe I isto não significa que os objetos classes II e III mostrados neste diagrama não sejam bons candidatos a OEJs. O erro na distância pode superestimar ou subestimar nossas medidas de luminosidade e raio. Além disso, boa parte dos OEJs encontrados no complexo do Camaleão são TTaurii classe-II, e tendo em vista uma possível conexão com Musca, seria natural a presença destes objetos na região.

Um resultado importante mostrado em nosso trabalho é que cerca de 60% dos nossos candidatos apresentam magnitude na banda K_s menor do que 7. Isto possibilitará futuros trabalhos o uso de telescópios de porte médio para a realização das medidas espectroscópicas com tempos de integração curtos.

Figura 6.1 – Distribuição espacial dos 284 candidatos a OEJs (estrelas pretas), na área de $6^{\circ} \times 8^{\circ}$ analisada neste trabalho, em torno da nuvem filamentar de Musca; apresentada contra a emissão (densidade de fluxo) de poeira em 100 µm (IRAS), em tons de cinza. Quanto mais claro o tom, tanto maior a emissão de poeira. O filamento aparece na diagonal, da esquerda superior para à direita inferior. A emissão de poeira também aumenta para latitudes menores, por conta do material ao longo da linha de visada, junto ao Plano Galáctico. Existe uma clara tendência do aumento do número de candidatos para latitudes menores, mas tamb ém uma concentração deles na direção do filamento.

l_{gal} (graus)

6.2 Perspectivas para o futuro

Este trabalho propicia base para futuras investigações nesta região:

- Investigação espectroscópica de cada candidato a fim de verificar a natureza de cada objeto;
- Procura por mais candidatos a OEJ usando as fontes que foram descartadas;
- Aprimorar o método de procura por candidatos a OEJ, por exemplo:
 - Desavermelhamento de cada candidato usando mapas de extinção;
 - Usar candidatos que foram descartados, mas que possuem pelo menos duas bandas com os erros determinados e boa qualidade fotométrica;
 - Usar outros diagramas para investigação (por exemplo R x R-K) para investigar se é possível obter melhores resultados na separação dos candidatos.

REFERÊNCIAS

AFONSO, G. B. As Constelações Indígenas Brasileiras. Disponível em: <u>http://www.telescopiosnaescola.pro.br/indigenas.pdf</u>. Acesso em: 20 abr. 2005.

ALVES, J.F.; LADA, C. J.; LADA, E. A. Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight. **Nature**, v.409, p.159-161, 2001.

ARQUILLA, R.; GOLDSMITH, P. F. A detailed examination of the kinematics of rotating dark clouds. Astrophysical Journal. v.303, p.356-374, 1986.

ARNAL, E. M.; MORRAS, R.; RIZZO, J. R. Multicolour polarization and CO observations towards a dark filament in Musca. **Mon. Not. R. Astron. Soc.** v.265, p.1-11, 1993.

BLESS, R. C.; SAVAGE, B. D. Ultraviolet Photometry from the Orbiting Astronomical Observatory. II. Interstellar Extinction. **The Astrophysical Journal**. v.171, p.293-308, 1972.

BRISSI, D. A.; HICKEL, G. R. Procura por Objetos Estelares Jovens e Subestelares em torno da Nuvem da Musca. In: REUNIÃO ANUAL DA SAB, 31., 2005, Águas de Lindóia. **Boletim da Sociedade Astronômica Brasileira.** São Paulo : EDUSP, 2005. v.25. p.102-103.

CAMBRÉSY, L. Mapping of the extinction in giant molecular clouds using optical star counts. Astron. Astrophys. v.345, p.965–976, 1999.

CHIANG, E. I.; GOLDREICH, P. Spectral energy distributions of t tauri stars with passive circumstellar disks. **Astrophysical Journal.** v.490, p.368-376, 1997.

CORRADI, W. J. B.; FRANCO, G. A. P. uvbyβ photometry of 1017 stars earlier than G0 in the Centaurus-Crux-Musca-Chamaleon direction. Astronomy & Astrophysics. v.112, p.95-98, 1995.

CORRADI, W. J. B.; FRANCO, G.A.P.; KNUDE, J. Physical association between the southern Coalsack and Chamaeleon-Musca dark clouds. Astronomy & Astrophys. v.326, p.1215-1227, 1997.

CORRADI, W. J. B. **O meio interestelar local na direção das nuvens escuras saco de carvão e chamaeleon-musca.** Tese (doutorado em Astrofísica) - Universidade Federal de Minas Gerais, 1998.
CORRADI, W. J. B.; FRANCO, G. A. P.; KNUDE, J. Local interstellar medium kinematics towards the southern Coalsack and Chamaeleon-Musca dark clouds. **Mon. Not. Roy. Astron. Soc.** v.347, p.1065-1087, 2004.

COVINO, E.; ALCALÁ, J. M.; ALLAIN, S.; BOUVIER, J.; TERRANEGRA, L; KRAUTTER, J. A study of the Chamaeleon star-forming region from the ROSAT all-sky survey. **Astron. Astrophys**. v.328, p.187-202, 1997.

CERNICHARO, J.; GUELIN, M. Metals in IRC+10216 - Detection of NaCl, AlCl, and KCl, and tentative detection of AlF. **Astronomy and Astrophysics**. v.183, p.L10-L12, 1997.

CUTRI, R.M. et al. 2MASS All-Sky Catalog of Point Sources. VizieR On-line Data Catalog: II/246. Originally published in: University of Massachusetts and Infrared Processing and Analysis Center, (IPAC/California Institute of Technology), 2003. Disponível em: <u>http://vizier.u-strasbg.fr/viz-bin/VizieR</u>. Acessos entre: Agosto/2004 e Maio/2005.

D'ANTONNA, F.; MAZZITELLI, I. New pre-main-sequence tracks for M less than or equal to 2.5 solar mass as tests of opacities and convection model. **The Astrophys. Journal Supp. Series**, v.90, n.1, p.467-500, 1994.

DICKMAN, R.L. The ratio of carbon monoxide to molecular hydrogen in interstellar dark clouds. Astrophysical Journal Supplement Series. v.37, p. 407-427, 1978.

DRAINE, B.T. Photoelectric heating of interstellar gas. Astrophysical Journal Supplement Series. v.36, p.595-619, 1978.

EGGER,R. J.; ASCHENBACH, B. Interaction of the Loop I supershell with the Local Hot Bubble. Astronomy and Astrophysics. v.294, p.L25-L28.

FEITZINGER, J.V.; STUEWE, J.A. Catalogue of dark nebulae and globules for galactic longitudes 240 to 360 degrees. Astronomy and Astrophysics Supplement Series. v.58, p.365-369, 1984.

GOODMAN, A. A.; BASTIEN, P.; MENARD, F.; MYERS, P. C. Optical polarization maps of star-forming regions in Perseus, Taurus, and Ophiuchus. **Astrophysical Journal. v.**359, p.363-377, 1990.

GREGORIO-HETEM, J. C.; SANZOVO, G. C.; LEPNE, J. R. D. Star counts and IRAS sources in southem dark clouds. Astron. Astrophys. Suppl. Ser. v.76, p.347-363, 1988.

HEILES, C.; JENKINS, E. B. An almost complete survey of 21-cm line radiation for galactic latitudes of 10 deg and higher. V - Photographic presentation and qualitative comparison with other data. **Astronomy and Astrophysics**. v.46, p.333-360, 1976.

HERRMANN, J. Astronomia. São Paulo: Círculo do Livro. [s.d.]

HESTER, J. J.; DESCH, J. S. Understanding our origins: Star formation in HII region environments. In: KROT, A .N.; SCOTT, E.R.D.; REIPURTH, B.[Eds.]. Chondrites and the **Protoplanetary Disk.** [s.n.]2005. [ASP Conference Series ,v.341].

IWAN, D. X-ray observations of the North Polar Spur. **Astrophysical Journal**. v.239, p.316-327, 1980.

KNUDE, J. A Catalogue of Low Mass Clouds in the Solar Vicinity Results from a Photometric Survey of 84 Volumes. Astronomy and Astrophysics. Supp. Ser. v.38, p.407, 1979.

KNUDE J., HOG, E. Interstellar reddening from the HIPPARCOS and TYCHO catalogues. I. Distances to nearby molecular clouds and star forming regions. **Astronomy and Astrophysics.** v.338, p.897-904, 1998.

LADA,C. J. **The Formation of Low Mass Stars: An Observational Overview.** The Origin of Stars and Planetary Systems. [s.l.]: Kluwer Academic Publishers, 1999. p.143

LADA, C. J.; LADA, E. A. Embedded Clusters in Molecular Clouds. Annual Reviews of Astronomy & Astrophysics. v.41, p.57–115, 2003.

LARSON, R. Numerical Calculations of the dynamics of a collapsing proto-star. **Mon. Not. R. astr. Soc.** v.145, p.271-295, 1969.

LOW, M. M.; KLESSEN R. S. Control of star formation by supersonic turbulence. **Reviews** of Modern Physics, v.76, p.125-194, 2004.

MACIEL, J. M. Introdução à estrutura e evolução estelar. São Paulo: Edusp, 1999. 280 p.

MACIEL, J. M. Astrofísica do meio interestelar. São Paulo: Edusp, 2002. 360 p.

MCGLYNN, T., SCOLLICK, K., WHITE, N., SkyView: The Multi-Wavelength Sky on the Internet. In: MCLEAN, B.J. et al. **New Horizons from Multi-Wavelength Sky Surveys**. [s.l.]: Kluwer Academic Publishers, 1996. p465. [IAU Symposium No. 179].

MIZUNO, A. et al. CO (J 5 1–0) search for small molecular clouds toward the Chamaeleon-Musca dark cloud complex. **The Astrophys. Journal.** v.507, p.L83–L87, 1998.

MYERS, P.C.; LADD, E.F. Bolometric temperatures of young stellar objects. **The Astrophysics Journal.** v.413, n.1, p.L47-L50, 1993.

MYERS, P.C.; ADAMS, F.C.; CHEN, H.; SCHAFF, E. Evolution of the Bolometric Temperature and Luminosity of Young Stellar Objects. **The Astrophysics Journal**. v.492, p.703-726, 1998.

OLIVEIRA FILHO, K. S. O.; SARAIVA, M. F. O. Astronomia e Astrofísica. Porto Alegre: Editora da UFRGS, 2000.

ORTIZ, R.; MACIEL, W. J. AGB stars: densities and formation rates obtained from OH/IR stars. Astronomy & Astrophys. v.313, p.180-190, 1996.

PEIMBERT, M. **Temas selectos de Astrofísica**. México: Universidad Nacional Autónoma de México, 1984.

MATHEWSON, D.S.; FORD, V.L. Polarization observations of 1800 stars. Mem. R. Astron. Soc. v.74, p.139, 1970.

NYMAN, L.-A.; BRONFMAN, L.; THADDEUS, P. A CO survey of the Southern Coalsack. Astronomy and Astrophysics. v.216, p.185-192, 1989.

PEREYRA, A.; MAGALHÃES, M. Polarimetry toward the Musca dark cloud. I. The catalog. **The Astrophysical Journal**. v.603, p.584–594, 2004.

PERRYMAN, M. A. C et al. The Hipparcos catalogue. Astron. Astrophys. v.323, p.L49-L52, 1997.

REIPURTH, B, et al. The early Sun: Evolution and dynamic environment. In:CHONDRITES AND THE PROTOPLANETARY DISK, **Proceedings**... Kaua'i, Hawai'I : ASP,2005. [ASP Conference Series ,v.341].

SANDQVIST, A. More southern dark dust clouds. Astron. Astrophys. v.57, p.467-470, 1977.

SAVAGE, B. D.; MATHIS, J. S. Observed Properties of Interstellar Dust. Annual Review of Astronomy and Astrophysics. v.17, p.73-111, 1979.

STEPHENS, D.C.; LEGGETT, S.K.. JHK Magnitudes for L and T Dwarfs and Infrared Photometric Systems. **The Publications of the Astronomical Society of the Pacific**, v. 116(815), pp. 9-21, 2004.

TOKUNAGA, A.T.. Infrared Astronomy (cap.7), in: Allen's Astrophysical Quantities; Fourth Edition, Edited by Arthur N. Cox. ISBN: 0-387-98746-0. New York, Springer-Verlag, pp. 151-153, 1999.

VAN HIJN, P. J. Distribution of stars according to apparent magnitude, galactic latitude and galactic longitude. **Publication of Kapteyn Astronomical Laboratory at Groningen**, n.43, 1929.

VILAS-BOAS, J. W. S.; P. C. MYERS, P. C.; FULLER, G. A. Dense cores in dark clouds IX observations of ¹³CO and C¹⁸O in Vela, Chamaeleon, Musca, and the Coalsack. **The Astrophysics Journal.** v.433, p.96-116, 1994.

VRBA, F.J.; STROM,S.E.; STROM,K.M. Infrared surveys of dark- cloud complexes. III. The R CrA dark cloud. **Astron. J.** v.81, p.317-319, 1976.

WEAVER, H. Large supernova remnants as common features of the disk. In: THE LARGE-SCALE CHARACTERISTICS OF THE GALAXY;, College Park. **Proceedings...** Dordrecht, D. Reidel Publishing Co. 1979.p. 295-298.

WILKING, B. A. The formation of low-mass stars. **Publications of the Astronomical Society of the Pacific. v.**101, p.229-243, 1989.

ZUCKERMAN, B.; EVANS, N.J. Models of massive molecular clouds. Astrophysical Journal. v.192, p.L149-L152, 1974.