KARL FREDERICH ARNOLD

VALIDAÇÃO EXPERIMENTAL DE UMA METODOLOGIA DE CÁLCULO DA VIDA À FADIGA PARA MANCAIS HIDRODINÂMICOS

Trabalho de conclusão de curso apresentado à Escola Politécnica da Universidade de São Paulo para a obtenção do Título de Mestre em Engenharia.

São Paulo 2005

KARL FREDERICH ARNOLD

VALIDAÇÃO EXPERIMENTAL DE UMA METODOLOGIA DE CÁLCULO DA VIDA À FADIGA PARA MANCAIS HIDRODINÂMICOS

Trabalho de conclusão de curso apresentado à Escola Politécnica da Universidade de São Paulo para a obtenção do Título de Mestre em Engenharia.

Área de Concentração: Engenharia Automotiva

Orientador: Professor Doutor Marcelo Massarani

São Paulo 2005

FICHA CATALOGRÁFICA

Arnold, Karl Frederich

Validação experimental de uma metodologia de cálculo da vida à fadiga para mancais hidrodinâmicos / K.F. Arnold. -- São Paulo, 2005.

140 p.

Trabalho de conclusão de curso (Mestrado Profissional em Engenharia Automotiva). Escola Politécnica da Universidade de São Paulo.

1. Fadiga dos materiais 2. Mancais 3. Bronzinas 4. Motores I.Universidade de São Paulo. Escola Politécnica. II.t.

A Tatiana, minha esposa, com muito carinho, amor e gratidão. Espero um dia poder retribuir sua compreensão, afeto e incansável apoio.

"Se você quer ser bem sucedido, precisa ter dedicação total, buscar seu último limite e dar o melhor de si mesmo."

Ayrton Senna da Silva

AGRADECIMENTOS

Ao Professor Doutor Marcelo Massarani agradeço a paciência e o incentivo que me foram tão importantes e sem os quais o presente trabalho não teria sido completado.

À minha esposa Tatiana agradeço a paciência, o estímulo e o suporte pelas noites passadas em claro, bem como pelos finais-de-semana dedicados a este trabalho.

Ao amigo Luiz Imbrioli, com quem pude compartilhar as dificuldades tão comuns neste tipo de trabalho, agradeço a força e principalmente o apoio.

Ao amigo Haroldo Chacon agradeço sinceramente o apoio e a ajuda que me incentivaram a chegar a esta conclusão.

Agradeço à professora Noriko Tuchiya Dói pela ajuda na revisão gramatical.

À Lúcia Beatriz, à Elaine e ao Giovanni agradeço a ajuda. Aos demais colegas e amigos que, direta ou indiretamente ajudaram a tornar possível este trabalho, meus sinceros agradecimentos.

RESUMO

O presente trabalho propõe uma metodologia para o cálculo da vida e do coeficiente de segurança à fadiga, ou *"fatigue factor"*, para mancais hidrodinâmicos, mais comumente chamados de bronzinas. A metodologia proposta é confrontada com os resultados de um teste de fadiga dos referidos componentes, no qual se determina o limite de resistência à fadiga, ou *"endurance limit"*, pela análise estatística dos dados. Utilizou-se para tanto o método Staircase. Tal confrontação de resultados possibilita não só a validação experimental da metodologia proposta para a condição do teste efetuado, como também a proposição de futuros estudos com a finalidade de se estender o uso da metodologia não somente para bronzinas fabricadas com outros materiais, como também para a previsão da fadiga na condição de operação dos motores de combustão interna automotivos e também sua utilização em outros componentes mecânicos, como por exemplo molas de suspensão, desde que trabalhem em regime elástico.

ABSTRACT

The present work proposes a calculation methodology to predict the fatigue life as well as the fatigue safety factor, called fatigue factor, for the plain bearings. The proposed methodology is confronted with the results of a bearings fatigue test, performed to determine the endurance limit with the Staircase statistical analysis method. The results confrontation experimentally validates the proposed methodology, for the performed tests condition. Future studies are proposed to extend the methodology validation not only to bearings made with different materials, but also to predict fatigue on bearings under operation conditions of automotive internal combustion engines and its usage to other mechanical components under linear elastic behavior, such as suspension springs.

SUMÁRIO

	L	ISTA DE FIGURAS				
	L	LISTA DE TABELAS				
	LISTA DE ABREVIATURAS E SIGLAS LISTA DE SÍMBOLOS					
1	Π	NTROD	UÇÃO1			
2	F	ADIGA	EM MANCAIS HIDRODINÂMICOS7			
	2.1	Introdu	ıção7			
	2.2	Mancai	is7			
		2.2.1	Tipos de mancais			
		2.2.2	Fenômenos de auto-pressurização8			
	2.3	Órbita	de um mancal hidrodinâmico12			
	2.4	Tecnol	ogia de bronzinas15			
	2.5	Tensor	das tensões 16			
	2.6	Fadiga				
	2.7	Simula	ção 26			
		2.7.1	Simulação hidrodinâmica			
		2.7.2	Análise estrutural pelo método dos elementos finitos			
3	N	1ETOD(OLOGIA DE CÁLCULO PROPOSTA 28			
	3.1	Seleção	o do componente a ser estudado 29			
	3.2	Dados	do componente 29			
	3.3	Modelo	o 3D do componente 29			

	3.4	Modelo 3D do conjunto do alojamento	30
	3.5	Matriz de rigidez	30
	3.6	Condições de contorno	30
	3.7	Análise elastohidrodinâmica - EHL	31
	3.8	Cálculo do campo de pressões	31
	3.9	Carregamento na bronzina	31
	3.10	Engastamentos na bronzina	31
	3.11	Cálculo estrutural	32
	3.12	Determinação das tensões principais	32
	3.13	Cálculo do coeficiente de segurança	32
		3.13.1 O método Jacobi	33
		3.13.2 Diagrama de Goodman	36
	3.14	Cálculo da vida à fadiga	39
	3.15	Resultado dos cálculos	40
4	Μ	IETODOLOGIA EXPERIMENTAL	42
	4.1	Descrição do ensaio	44
		4.1.1 Dispositivos	47
	4.2	Análise estatística dos dados de ensaio – método <i>Staircase</i>	49
	4.3	Comparação dos resultados teórico e experimental	51
5	C	ASO ESTUDADO	52
	5.1	Resultados Experimentais	52

	5.2	Dados	s do material	56
		5.2.1	Propriedades mecânicas do material	56
	5.3	Matri	z de rigidez e massa	58
	5.4	Condi	ições de contorno	60
	5.5	Resul	tado da simulação – campo de pressões	62
	5.6	Engas	stamentos e reações	63
	5.7	Aplica	ação do carregamento	63
	5.8	Resul	tado das tensões principais e deformações no mancal	64
		5.8.1	Resultado das tensões de Von Mises	65
		5.8.2	Resultado das tensões principais	67
		5.8.3	Resultado das deformações	69
	5.9	Cálcu	lo do coeficiente de segurança à fadiga (" <i>fatigue factor</i> ")	70
	5.10) Cálcu	lo da vida à fadiga	73
	5.11	l Limit	e de resistência à fadiga (" <i>endurance limit</i> ")	76
	5.12	2 Comp	paração dos resultados obtidos	76
6	C	CONCL	USÕES	82
7	А	NEXO	9S	86
8	R	REFER	ÊNCIAS BIBLIOGRÁFICAS	136
9	A	PÊND	ICES	I

LISTA DE FIGURAS

Figura 1:	Fluxograma do processo atual de desenvolvimento de novos produtos	1
	na empresa (Arnold, 2005)	4
Figura 2:	Fluxograma do processo de desenvolvimento de novos produtos com a	
	metodologia proposta de análise da fadiga (Arnold, 2005)	5
Figura 3:	Mancais sujeitos ao atrito seco e ao viscoso (Arnold, 2005)	7
Figura 4:	Fenômeno "wedge" (adaptado de [15])	9
Figura 5:	Gradiente de pressões, efeito "wedge" (Arnold, 2005)	9
Figura 6:	Fenômeno "squeeze" (adaptado de [15]) 10	0
Figura 7:	Gradiente de pressões, efeito "squeeze" (Arnold, 2005) 10	0
Figura 8:	Distribuição axial de pressões [16]1	1
Figura 9:	Velocidades tangenciais de deslizamento (adaptado de [15]) 12	3
Figura 10:	Órbita do eixo de uma bronzina (adaptado de [15])12	3
Figura 11:	Esquema de uma bronzina bi-metálica [24]1	5
Figura 12:	Laminação a quente da tira de bronzina bimetálica (adaptado de [24]) 10	6
Figura 13:	O conceito de tensão [1]17	7
Figura 14:	Ponto O perto da superfície do elemento [1] 18	8
Figura 15:	Ponto O distante da superfície do corpo [1]20	0
Figura 16:	Carregamento senoidal com tensão média positiva (adaptado de [10]) 23	5
Figura 17:	Carregamento senoidal com tensão média nula (adaptado de [10]) 20	6
Figura 18:	Fluxograma da metodologia de cálculo proposta	8
Figura 19:	Diagrama genérico de Goodman modificado (adaptado de [39])	7
Figura 20:	Cálculo do coeficiente de segurança pelo diagrama de Goodman	
	(Arnold, 2005)	9
Figura 21:	Fluxograma do procedimento de validação experimental da	
	metodologia proposta	2
Figura 22:	Foto da máquina de teste	3

Figura 23: Carregamento aplicado pela máquina durante o ensaio (Arnold, 2005)	45
Figura 24: Equipamento de teste – máquina de ensaio de fadiga (Arnold, 2005)	46
Figura 25: Conjunto do eixo com as buchas (Arnold, 2005)	47
Figura 26: Alojamento da bronzina de teste (Arnold, 2005)	48
Figura 27: Exemplo de gráfico de dados: método Staircase (Arnold, 2005)	49
Figura 28: Resultados do ensaio de fadiga	52
Figura 29: Foto típica de uma bronzina que falhou no ensaio de fadiga	53
Figura 30: Foto típica de uma bronzina que não falhou no ensaio de fadiga	53
Figura 31: Foto geral dos corpos de prova para ensaio de tração (lado jateado)	57
Figura 32: Vista lateral dos corpos de prova para ensaio de tração	57
Figura 33: Matriz de rigidez e malha de elementos finitos	59
Figura 34: Matriz de rigidez e malha de elementos finitos	59
Figura 35: Perfil da bronzina	61
Figura 36: Carregamento aplicado	62
Figura 37: Resultado de pressão na bronzina obtido pelo software EXCITE [17]	62
Figura 38: Engastamentos e reações	63
Figura 39: Carregamento aplicado no software ANSYS [4]	64
Figura 40: Resultado das Tensões de Von Mises obtidas no software ANSYS [4]	65
Figura 41: Resultado das Tensões de Von Mises obtidas no software ANSYS [4]	66
Figura 42: Tensões de Von Mises obtidas em simulação preliminar (sem eixo)	67
Figura 43: Resultado das tensões Sigma 1 obtidas no software ANSYS [4]	68
Figura 44: Resultado das tensões Sigma 1 obtidas no software ANSYS [4]	68
Figura 45: Resultado das deformações na bronzina obtidas no software ANSYS	
[4]	69
Figura 46: Resultado das deformações na bronzina obtidas no software ANSYS	
[4]	70
Figura 47: Resultados dos cálculos do coeficiente de segurança à fadiga	71

Figura 48:	Resultados dos cálculos do coeficiente de segurança à fadiga	72
Figura 49:	Resultados dos cálculos do coeficiente de segurança - região de carga	72
Figura 50:	Comparação dos resultados obtidos analítica e experimentalmente	77
Figura 51:	Resultado do teste de fadiga – bronzina 13	86
Figura 52:	Resultado do teste de fadiga – bronzina 12	87
Figura 53:	Resultado do teste de fadiga – bronzina 11	88
Figura 54:	Resultado do teste de fadiga – bronzina 10	89
Figura 55:	Resultado do teste de fadiga – bronzina 9	90
Figura 56:	Resultado do teste de fadiga – bronzina 8	91
Figura 57:	Resultado do teste de fadiga – bronzina 7	92
Figura 58:	Resultado do teste de fadiga – bronzina 6	93
Figura 59:	Resultado do teste de fadiga – bronzina 5	94
Figura 60:	Resultado do teste de fadiga – bronzina 4	95
Figura 61:	Resultado do teste de fadiga – bronzina 3	96
Figura 62:	Resultado do teste de fadiga – bronzina 2	97
Figura 63:	Resultado do teste de fadiga – bronzina 1	98

LISTA DE TABELAS

Tabela 1:	Consequências para as bronzinas das tendências de mercado [24] 1
Tabela 2:	Parâmetros do teste efetuado
Tabela 3:	Resultado Staircase dos ensaios - determinação do limite de fadiga
	(força)
Tabela 4:	Resultados Staircase dos ensaios - determinação do limite de fadiga 55
Tabela 5:	Propriedades mecânicas da liga de alumínio 58
Tabela 6:	Condições de contorno inseridas no software EXCITE [17]60
Tabela 7:	Propriedades do óleo
Tabela 8:	Resultados dos cálculos do coeficiente de segurança - região de carga 73
Tabela 9:	Resultados de vida à fadiga na região de carga da bronzina73
Tabela 10:	Comparação entre os valores do coeficiente de segurança e de vida 77
Tabela 11:	Influência da tensão média no resultado da vida à fadiga 80

LISTA DE ABREVIATURAS E SIGLAS

- ASTM American Standard for Testing Materials norma Americana para teste de materiais
- CAD Computer Aided Design projeto auxiliado por computador
- EHL *Elasto Hidrodinamic Lubrication* teoria de lubrificação elastohidrodinâmica
- FEA Finit Element Analysis análise por elementos finitos
- FMLE Fracture Mechanic Linear Elastic mecânica da fratura linear elástica
- MEF Método dos Elementos Finitos
- MOFT Minimum Oil Film Thickness mínima espessura do filme de óleo
- PCP Peak Cylinder Pressure pressão máxima no cilindro
- POFP Peak Oil Film Pressure máxima pressão do filme de óleo
- SAE Society of Automotive Engineers sociedade dos engenheiros automotivos
- S_f *Fatigue factor* coeficiente de segurança à fadiga

LISTA DE SÍMBOLOS

Х	coordenada circunferencial (m)
Z	coordenada axial (m)
h	espessura do filme de óleo (m)
μ	viscosidade do óleo lubrificante (Pa*s)
р	pressão do filme de óleo (Pa)
t	tempo (s)
U_1	velocidade tangencial da superfície do alojamento do mancal (m/s)
U_2	velocidade tangencial da superfície do eixo do mancal (m/s)
V	velocidade radial
e	excentricidade (distância entre centro do mancal e centro do eixo)
R	raio do eixo (m)
ω	velocidade angular do eixo (r/s)
W	carregamento (carga)
α	ângulo de aplicação da carga (w)
F	força
А	área
ΔF_{n}	força normal ao plano
ΔF_{s}	força tangencial ao plano
lim	limite
$\sigma_{\scriptscriptstyle n}$	tensão normal ao plano
$\sigma_{\scriptscriptstyle s}$	tensão tangencial ao plano
$\sigma_{\scriptscriptstyle xx}$	tensão normal ao plano yz
$\sigma_{_{yy}}$	tensão normal ao plano xz
$\sigma_{\scriptscriptstyle zz}$	tensão normal ao plano xy

$\sigma_{_{xy}}$	tensão tangencial ao plano
$\sigma_{_{yx}}$	tensão tangencial ao plano
$\sigma_{_{xz}}$	tensão tangencial ao plano
σ_{zx}	tensão tangencial ao plano
$\sigma_{_{yz}}$	tensão tangencial ao plano
$\sigma_{_{zy}}$	tensão tangencial ao plano
T(v)	vetor de tração superficial
A _x	área do plano yz
Ay	área do plano xz
Az	área do plano xy
Δh	distância perpendicular da superfície S ao ponto O
Tx	tração superficial T(v) na direção do eixo x
Ту	tração superficial T(v) na direção do eixo y
Tz	tração superficial T(v) na direção do eixo z
$\sigma_{_a}$	tensão alternada
$\sigma_{\scriptscriptstyle m}$	tensão média
$\sigma_{\scriptscriptstyle m max}$	tensão máxima
$\sigma_{\scriptscriptstyle{ m min}}$	tensão mínima
М	matriz identidade
K	matriz simétrica
P _k	matriz ortogonal
σ_1	tensão alternada principal 1
σ_2	tensão alternada principal 2
σ_3	tensão alternada principal 3

- $\sigma_{\rm y}$ tensão de escoamento
- $\sigma_{\rm a}$ tensão alternada
- $\sigma_{\rm e}$ limite de resistência à fadiga
- $\sigma_{\rm R}$ tensão de ruptura
- σ_a amplitude de tensões = $(\sigma_{max} \sigma_{min})/2$
- N_f número de ciclos
- *b* expoente de Basquin
- $\widetilde{\sigma}_{f}$ coeficiente de resistência (aprox. tensão real de ruptura do material)
- S_R resistência à ruptura
- S'_L limite de fadiga
- m limite de resistência à fadiga para um dado nº de ciclos (kN);
- Xo menor nível de carga para o qual o evento menos freqüente acorreu (kN);
- d variação de carga entre 2 níveis subseqüentes de carregamento (kN);

ANEXOS

Anexo 1: Resultados experimentais	86
Anexo 2: Resultado das tensões principais para cada nó da malha de elementos	
finitos (região de carga)	99
Anexo 3: Listagem das tensões de Von Mises, médias, alternadas e dos cossenos	
diretores para cada nó da malha de elementos finitos da bronzina	
estudada1	02
Anexo 4: Listagem dos coeficientes de segurança para cada nó da malha de	
elementos finitos da bronzina estudada1	20
Anexo 5: Resultados da vida à fadiga calculados pela metodologia proposta para	
cada nó da malha de elementos finitos da bronzina estudada 1	25
Anexo 6: Desenho da bronzina testada1	35

1 INTRODUÇÃO

A crescente competitividade a que o setor automotivo está inserido, que acabou por provocar um grande aumento no carregamento dos componentes dos motores de combustão interna, devido ao crescente aumento da sua potência específica associado à redução de seu peso, propiciou um expressivo aumento da possibilidade de danos por fadiga em seus componentes.

Desta forma, o correto entendimento do comportamento dos componentes mecânicos à fadiga tornou-se mais relevante e, por conseqüência, um diferencial competitivo significativo para as empresas, uma vez que possibilita a otimização dos referidos produtos.

		Influência	Impacto nas características	Impacto nas bronzinas
		no motor	operacionais dos motores	
		Redução	Redução da viscosidade	Maior desgastre
		do atrito	do óleo	Reprojeto
(0	Redução na emissão de	Redução	Componentes mais leves	Distorção excessiva dos
AIS		do peso	Blocos de alumínio	alojamentos
LEG	poluentes e de materiais particulados	Tecnolodia GDI	Aumento no peso dos pistões	Maiores cargas de inércia
S₽		EGR	Contaminação do óleo	Aumento do desgaste
RETIV/		Aumento da PCP	Maiores carregamentos mecânicos	Maiores carregamentos
DIF	NVH	Redução nas vibrações	Blocos reforçados	Deformação nos alojamentos
	Materiais banidos	Componentes sem chumbo		Materiais sem chumbo
		Aumento da	Maiores temperaturas	Superaquecimento
S	Aumento de potência	ventilação	e rotações	Maiores cargas de inércia
ENTE	Admento de potencia	Aumento da PCP	Maiores carregamentos mecânicos	Maiores carregamentos
L .		Redução do	Redução da viscosidade	Maior desgastre
s C		atrito no motor	do óleo	Reprojeto
Q	Redução no consumo	Redução do	Componentes mais leves	Distorção excessiva
SI	neauşuo no concumo	peso do motor	Blocos de alumínio	dos alojamentos
2		Tecnolodia GDI	Aumento no peso dos	Maiores cargas
.IS			pistões	de inércia
Ω	Aumento nos intervalos de		Contaminação e	Maiores desgaste
КЕ С	tempo entre trocas de óleo		degradação do óleo	e corrosão
Ľ	Durabilidade e	Maior		Reprojeto
	confiabilidade	quilometragem		1.00103010

Tabela 1: Conseqüências para as bronzinas das tendências de mercado [24]

Além do exposto anteriormente, a busca pela redução das dimensões e do peso tem gerado uma redução na rigidez dos alojamentos das bronzinas, expondo as mesmas a

algumas condições de operação muito desfavoráveis e propiciando o surgimento de um maior número de falhas por desgaste e por fadiga, que não ocorriam [35].

A Tabela 1 mostra resumidamente as conseqüências para as bronzinas das tendências de mercado expostas.

Aliado a isso, melhorias no projeto de mancais hidrodinâmicos visando reduzir o desgaste vem sendo sucessivamente efetuadas e acabam por aumentar ainda mais as cargas a que estas peças estão submetidas, tornando ainda mais significativos os problemas por fadiga [25].

Essas alterações devem-se à globalização da economia mundial, exigindo constantes melhorias no desempenho aliadas à queda no preço final de mercado dos produtos [15], impondo uma competitividade acirrada entre as empresas e tornando não mais suficiente apenas ter um produto inicial no mercado, mas sim possuir a capacidade de atualizá-lo rapidamente [38].

Para atingir essas solicitações, as empresas estão utilizando as ferramentas chamadas de Projeto Virtual, que consistem em softwares de simulação e modelamento matemático extremamente poderosos e de grande valor estratégico para os engenheiros, pois propiciam a redução dos custos e dos prazos de desenvolvimento, possibilitando respostas muito ágeis às mudanças de mercado [14].

Desta forma, devido ao fato de o ciclo de vida dos produtos ter sofrido gradativas reduções, formas de reduzir o *"time to market"* de novos produtos melhoram a competitividade das empresas no mercado [8].

Dentro deste conceito, exige-se de uma forma crescente que as indústrias de autopeças reduzam seus prazos de desenvolvimento de novos produtos e conseqüentemente seus custos, mas, apesar do exposto anteriormente, os componentes mecânicos devem ser dimensionados para resistir, sem falhas, às solicitações a que estão submetidos [19].

Segundo Duarte [15], a substituição dos conhecimentos empíricos por um entendimento mais profundo dos princípios físicos dos fenômenos que regem a

utilização de seus produtos é essencial para se conseguir produtos melhores e a um custo mais baixo, de acordo com as novas necessidades dos mercados.

Nesse contexto, toda e qualquer iniciativa visando à redução nos prazos e melhoras no processo de desenvolvimento de novos produtos torna-se inquestionavelmente bem-vinda.

Desta forma, o presente trabalho tem como finalidade estudar o fenômeno da fadiga em mancais hidrodinâmicos, para validar experimentalmente uma metodologia de cálculo da vida e do coeficiente de segurança à fadiga (*"safety factor"*) para mancais hidrodinâmicos, buscando atender à demanda exposta e procurando, através da utilização dos conceitos técnicos disponíveis referentes ao assunto em questão, otimizar essa etapa importante da engenharia, que é o desenvolvimento de novos produtos e propiciando melhores condições de análise aos engenheiros que atuam nessa área.

O objeto de estudo da pesquisa é uma metodologia de cálculo da vida e do coeficiente de segurança à fadiga para mancais hidrodinâmicos, dentro da unidade Santo Amaro da empresa Mahle Metal Leve S/A, uma empresa metalúrgica do ramo de autopeças, na área de pesquisa e desenvolvimento do produto.

Pretende-se reunir conhecimentos suficientes sobre o assunto para poder responder às questões de como as áreas de pesquisa e desenvolvimento de produtos de empresas fabricantes de autopeças podem se beneficiar da metodologia de cálculo proposta, durante as fases de pesquisa e desenvolvimento, assim como poder dizer se a metodologia de cálculo da vida e do coeficiente de segurança à fadiga condizem com os resultados obtidos experimentalmente.

A hipótese base para o presente trabalho é provar que o método de cálculo da vida e do coeficiente de segurança consegue prever, com uma determinada precisão, o resultado do ensaio de fadiga.

Para o presente trabalho, foi utilizada uma metodologia de cálculo para prever quando a falha por fadiga ocorrerá nos referidos componentes mecânicos, usando, para este fim, os conceitos amplamente conhecidos da abordagem SN, facilmente encontrados na bibliografia básica de mecânica dos materiais.

Ensaios para a determinação experimental da vida à fadiga do componente são realizados para a comparação de seus valores com aqueles obtidos pela simulação numérica, de modo que se possa comprovar a metodologia proposta e aprimorar a análise de confiabilidade do produto que a empresa atualmente utiliza.

A metodologia consiste no emprego de aplicativos computacionais comerciais (softwares disponíveis no mercado) para a simulação de funcionamento dos componentes em questão e a obtenção dos seus carregamentos, passando pela análise por elementos finitos em aplicativos comerciais para a obtenção do tensor de tensões e para o posterior estudo da vida à fadiga da peça.

Figura 1: Fluxograma do processo atual de desenvolvimento de novos produtos na empresa (Arnold, 2005)

Desta forma, pretende-se comprovar a eficácia do método de cálculo proposto, uma vez que o ganho a ser conseguido é significativo pois propiciará o emprego de uma modelagem matemática que leve em consideração a vida à fadiga durante o processo

de desenvolvimento de novos produtos. Tal abordagem não é atualmente considera no projeto de bronzinas na empresa.

A Figura 1 ilustra a metodologia atualmente empregada pela empresa, enquanto que a Figura 2 ilustra resumidamente a metodologia proposta.

Análise EHL: Proposta

Figura 2: Fluxograma do processo de desenvolvimento de novos produtos com a metodologia proposta de análise da fadiga (Arnold, 2005)

O estudo da vida à fadiga durante o desenvolvimento de um novo produto é de extrema importância, especialmente para empresas certificadas de acordo com a norma ISO/TS 16949 [22], pois o conhecimento da vida dos componentes mecânicos desenvolvidos é uma das exigências da referida norma (requisito 7.3.2.1 – "*Product design input*", entradas do projeto do produto) e usualmente é questionada durante as auditorias de certificação e manutenção.

No Capítulo 2 são apresentados os conhecimentos teóricos necessários para o entendimento dos fenômenos físicos envolvidos durante o funcionamento do mecanismo estudado, bem como aqueles conhecimentos necessários para a execução e entendimento dos cálculos e ensaios efetuados.

O Capítulo 3 apresenta um algoritmo ilustrativo da metodologia de cálculo proposta, contendo todas as etapas necessárias para se obterem os valores do coeficiente de segurança e da vida à fadiga.

No Capítulo 4 é apresentada toda a descrição da metodologia experimental utilizada para a validação da metodologia proposta, juntamente com a descrição da máquina e da confecção dos dispositivos utilizados nos testes, do tipo de ensaio e da explanação sobre a forma de tratamento estatístico dos dados obtidos.

No Capítulo 5 são apresentados os dados de entrada utilizados para as fases de simulação e análise por elementos finitos como, por exemplo, a matriz de rigidez do conjunto do mancal, os engastamentos utilizados, o carregamento aplicado e também as condições de contorno empregadas na simulação, como as propriedades do óleo por exemplo.

Os resultados obtidos das tensões, através da análise por elementos finitos, são também apresentados neste capítulo juntamente com os comentários pertinentes a respeito dos mesmos.

O estudo realizado com os dados das tensões principais obtidas é ainda apresentado, juntamente com os cálculos do limite de resistência à fadiga, da vida à fadiga e do coeficiente de segurança à fadiga.

No Capítulo 6 as conclusões pertinentes à realização do trabalho e sugestões para futuros estudos que possam vir a ser executados são apresentados, de forma que o entendimento do fenômeno da fadiga nos mancais hidrodinâmicos possa ser ainda mais aprofundado, e também para que a metodologia possa ser extrapolada para outros mancais.

O capítulo 7 traz os anexos, como as listagens dos resultados obtidos, as fotos de todas as peças testadas, assim como o desenho da bronzina testada.

No Capítulo 8 é apresentada a bibliografia consultada e utilizada como base na elaboração do presente trabalho.

2 FADIGA EM MANCAIS HIDRODINÂMICOS

2.1 Introdução

No presente capítulo são apresentados, resumidamente, os conceitos necessários para o entendimento de todo o processo que envolve o presente estudo.

Aspectos básicos do funcionamento de um mancal hidrodinâmico, ou bronzina, seus tipos, processos de fabricação, materiais e os fenômenos físicos decorrentes de sua utilização, além dos fenômenos físicos abordados e utilizados na elaboração do trabalho, como conceitos de tensão, fadiga, mecânica dos fluidos, cálculo estrutural e simulação matemática são basicamente expostos, de tal forma que se tenha o mínimo de conhecimento necessário para o correto entendimento dos passos seguintes do presente estudo.

2.2 Mancais

Mancal de deslizamento, segundo Duarte [15], é um elemento de máquina utilizado para reduzir o atrito e o desgaste superficial entre as peças rígidas que estejam trabalhando em movimento relativo, que possui um fluido lubrificante entre as mesmas.

Figura 3: Mancais sujeitos ao atrito seco e ao viscoso (Arnold, 2005)

A Figura 3 mostra uma comparação entre os tipos de atrito seco e viscoso (com fluido lubrificante).

2.2.1 Tipos de mancais

Duarte [15] ainda divide os mancais em estáticos e dinâmicos:

- Mancais estáticos são externamente pressurizados. A pressão interna não é obtida pelo movimento relativo e, sim, por uma pressão de alimentação: sempre há um filme de fluido, mesmo com a velocidade relativa entre as peças sendo nula.
- Mancais dinâmicos são aqueles auto-pressurizáveis, pois não necessitam de pressurização externa. A pressurização é conseguida devido à velocidade relativa entre eixo e alojamento diferente de zero. Essa auto-pressurização ocorre devido a dois fenômenos distintos, que serão explicados a seguir.

Prosseguindo com as definições de mancais, Duarte [15] ainda define mancais hidrodinâmicos como sendo os mancais dinâmicos cujo fluido lubrificante seja um líquido. Esses mancais podem ainda ser classificados como mancais radiais, que suportam cargas radiais e que tem as bronzinas como exemplo, ou como mancais axiais, que possuem as arruelas de encosto como exemplo e suportam cargas de contato axiais.

2.2.2 Fenômenos de auto-pressurização

Os fenômenos de auto-pressurização dos mancais hidrodinâmicos, segundo Duarte [15], são o efeito cunha, comumente chamado de *"wedge"*, e o efeito de prensamento do fluido, usualmente chamado de *"squeeze"*.

2.2.2.1 "Wedge" (Efeito cunha)

A Figura 4 mostra o fenômeno "*wedge*" segundo o exposto por Duarte [15]. Ele ocorre basicamente devido ao arraste das partículas do fluido de uma região com maior volume para outra com menor volume, ocasionado pela rotação do eixo, causa um aumento da densidade e da pressão do fluido.

Figura 4: Fenômeno "wedge" (adaptado de [15])

Esse aumento de pressão proporciona o surgimento do gradiente de pressão hidrodinâmica mostrado na Figura 5.

Figura 5: Gradiente de pressões, efeito "wedge" (Arnold, 2005)

2.2.2.2 "Squeeze" (efeito de prensamento do fluido)

A Figura 6 ilustra o fenômeno "*squeeze*" segundo o exposto por Duarte [15]. A presença de uma velocidade radial "V" do eixo prensa as partículas do fluido lubrificante contra o alojamento, ocasionando um grande aumento na pressão hidrodinâmica e gerando o gradiente de pressões exposto na Figura 7.

Figura 6: Fenômeno "squeeze" (adaptado de [15])

Figura 7: Gradiente de pressões, efeito "squeeze" (Arnold, 2005)

2.2.2.3 Efeito conjunto

Ambos os efeitos descritos anteriormente podem ocorrer isolada ou conjuntamente, gerando um campo de pressão hidrodinâmica responsável pela capacidade de

sustentação de carga dos mancais e mantendo eixo e alojamento separados, evitando o contato metal-metal.

Desaki e Kamiya [13] classificam os carregamentos aos quais as bronzinas estão submetidas em rotativos, que são causados pela força de inércia, e em alternantes, que são resultantes das explosões durante o ciclo de funcionamento do motor de combustão interna.

Pode-se então dizer, a partir das definições propostas por Duarte [15] e por Desaki e Kamiya [13], que o efeito *"squeeze"* é causado pelas explosões durante o ciclo de funcionamento do motor, enquanto que o efeito *"wedge"* é causado pela força de inércia.

Duarte, Kaufmann e Tu [16] ampliam o conceito da distribuição de pressão em uma bronzina de biela típica dizendo que a pressão aumenta na direção circunferencial, conforme ilustrado na Figura 5 e na Figura 7, e que na direção axial o pico de pressão ocorre próximo ao centro da bronzina, cuja distribuição de pressão ilustrada na Figura 8 é aproximadamente uma parábola.

Figura 8: Distribuição axial de pressões [16]

2.3 Órbita de um mancal hidrodinâmico

A equação de Reynolds, que é a base para os estudos de tribologia, é obtida a partir das equações de conservação de massa e de Navier-Stoques, adotando-se quatro hipóteses simplificadoras [16]:

- ignorar efeitos de curvatura (uso de coordenadas cartesianas);
- fluido Newtoniano;
- fluido incompressível; e
- escoamento laminar.

A Eq. I representa a equação de Reynolds para mancais radiais com fluido lubrificante incompressível (bronzinas similares àquelas estudadas no presente trabalho).

$$\frac{\partial}{\partial x} \left(\frac{h^3}{12\mu} \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{h^3}{12\mu} \frac{\partial p}{\partial z} \right) = \left(\frac{U_1 + U_2}{2} \right) \frac{\partial h}{\partial x} + \frac{\partial h}{\partial t} \qquad \text{Eq. I}$$
Pressão na direção Pressão na direção axial "Wedge" "Squeeze"

onde: x = coordenada circunferencial (m);

z = coordenada axial (m);

h = espessura do filme de óleo (m);

 μ = viscosidade do óleo lubrificante (Pa*s);

p = pressão do filme de óleo (Pa);

t = tempo (s);

 U_1 = velocidade tangencial da superfície do alojamento do mancal (m/s);

 U_2 = velocidade tangencial da superfície do eixo do mancal (m/s).

A Figura 9 ilustra as duas velocidades tangenciais U1 e U2 que contribuem para arrastar partículas de fluido.

Figura 9: Velocidades tangenciais de deslizamento (adaptado de [15])

Cada termo da Eq. I representa um fenômeno distinto. Abaixo da Eq. I há uma descrição dos fenômenos que cada termo representa.

Quando um mancal hidrodinâmico radial (bronzina) está sujeito a um carregamento dinâmico, ou seja, quando o módulo da carga (w) e o ângulo (α) de aplicação desta variam com o tempo, a posição do centro do eixo se moverá dentro do alojamento formando uma trajetória chamada de órbita do mancal. A Figura 10 ilustra esquematicamente a órbita imaginária de uma bronzina.

Figura 10: Órbita do eixo de uma bronzina (adaptado de [15])

Desenvolvendo-se a equação de Reynolds, Eq. I, chega-se à Eq. II, que é a chamada Equação de Reynolds para mancais radiais com carregamento dinâmico.

$$\frac{\partial}{\partial x} \left[\frac{\rho h^3}{12\mu} \left(\frac{\partial \rho}{\partial x} \right) \right] + \frac{\partial}{\partial z} \left[\frac{\rho h^3}{12\mu} \left(\frac{\partial \rho}{\partial z} \right) \right] = \frac{R\omega}{2} \frac{\partial(\rho h)}{\partial x} + \frac{\partial h}{\partial t} \qquad \text{Eq. II}$$

onde: x = coordenada circunferencial (m);

- z = coordenada axial (m);
- h = espessura do filme de óleo (m);
- μ = viscosidade do óleo lubrificante (Pa*s);
- p = pressão do filme de óleo (Pa);
- t = tempo (s);
- R = raio do eixo (m);
- ω = velocidade angular do eixo (r/s).

Resolvendo-se esta equação pelo método das diferenças finitas, levando-se em conta os dados de projeto e do carregamento a que o mancal está submetido em função do ângulo do eixo, pode-se calcular a órbita da bronzina.

Pode-se obter alguns indicadores importantes do comportamento da bronzina a partir da análise da órbita do mancal, a saber:

- MOFT (*Minimum Oil Film Thickness*): a mínima espessura do filme de óleo ocorre no ponto onde a órbita mais se aproxima do alojamento. Neste ponto está a maior possibilidade de contato entre eixo e alojamento;
- POFP (*Peak Oil Film Pressure*): a máxima pressão do filme de óleo se dá próxima à região do MOFT.

Além das duas informações acima, pode-se, também, avaliar a possibilidade de surgimento de cavitação e do surgimento de vibração e de ruído durante o funcionamento do mancal através da análise da órbita de uma bronzina.

2.4 Tecnologia de bronzinas

Bronzinas, conforme já exposto anteriormente, são mancais hidrodinâmicos radiais cujo processo usual de fabricação é a estampagem de tiras para a obtenção de sua forma seguida por usinagem para a obtenção das dimensões finais desejadas (espessura da parede, acabamento superficial, etc).

Há diversos materiais disponíveis para compor as tiras utilizadas para a fabricação das bronzinas. Os mais comuns são as ligas de bronze e as ligas de alumínio.

As bronzinas fabricadas com ligas de alumínio são comumente chamadas de bronzinas bi-metálicas, enquanto que as bronzinas fabricadas com ligas de bronze são chamadas de bronzinas tri-metálicas.

As bronzinas bi-metálicas possuem uma camada de aço, para prover rigidez, uma camada intermediária de alumínio puro, para prover aderência, e uma última camada de liga de alumínio, que é a superfície de funcionamento, conforme esquematizado na Figura 11.

Figura 11: Esquema de uma bronzina bi-metálica [24]

O presente trabalho somente verificará experimentalmente a validade da metodologia proposta para as bronzinas bi-metálicas.

As bronzinas bi-metálicas são empregadas em motores de 4 tempos há muito tempo pelas montadoras de automóveis, conforme Mergen, Lang e Harreither [32] e, segundo Fukuoka et al. [18], seu uso vem crescendo de tal forma pelos fabricantes de veículos que estas são as bronzinas atualmente mais utilizadas nos motores dos automóveis de passeio.

As bronzinas estudadas no presente trabalho são estampadas em tiras produzidas por um processo chamado de "*hot cladding*" (laminação a quente) ilustrado na Figura 12, onde uma tira de liga de alumínio é sobreposta sobre uma tira de aço e ambas são então laminadas a quente (passam entre dois rolos aquecidos que as comprimem uma contra a outra), ocasionando uma redução da espessura da tira.

Figura 12: Laminação a quente da tira de bronzina bimetálica (adaptado de [24])

2.5 Tensor das tensões

De acordo com Allen e Haisler [1], se considerarmos que em um dado ponto O de um elemento estrutural há uma força F atuando em uma pequena área no plano A e, se chamarmos essa força de ΔF e a área de ΔA , teremos a condição ilustrada na
Figura 13. Como essa força nem sempre é normal ao plano A ela pode ser descrita por duas componentes, uma normal a A, chamada de ΔF_n e ilustrada pela Eq. III, e outra paralela a A, chamada de força tangencial ΔF_s e ilustrada pela Eq. IV [41].

$$\sigma_n = \lim_{\Delta A \to 0} \frac{\Delta F_n}{\Delta A} = \frac{dF_n}{dA}$$
 Eq. III

$$\sigma_s = \lim_{\Delta A \to 0} \frac{\Delta F_s}{\Delta A} = \frac{dF_s}{dA}$$
 Eq. IV

É importante notar que as duas componentes expostas acima são dependentes da orientação do plano A, além da localização do ponto O.

Figura 13: O conceito de tensão [1]

Suponha que o ponto O seja agora escolhido a uma distância infinitesimal da borda S e no interior V. Três planos perpendiculares aos eixos coordenados x, y e z são então construídos, conforme ilustrado na Figura 14. Para se obterem as componentes da tensão em cada um desses três planos pode-se utilizar a Eq. III e a Eq. IV. Para simplificar, a tensão tangencial pode ser decomposta em duas componentes paralelas aos eixos coordenados, conforme mostrado na Figura 14.

Figura 14: Ponto O perto da superfície do elemento [1]

Há, portanto, nove componentes da tensão nesses três planos perpendiculares. Três são tensões normais $(\sigma_{xx}, \sigma_{yy}, \sigma_{zz})$ e seis são tensões tangenciais $(\sigma_{xy}, \sigma_{yx}, \sigma_{xz}, \sigma_{zx}, \sigma_{yz}, \sigma_{zy})$.

Como a face frontal está na superfície S, ela geralmente pode estar sujeita a forças superficiais, que podem ser definidas em termos de um vetor de tração superficial T(v), que simplesmente é a força superficial dividida pela unidade de área S.

As componentes do vetor de tração superficial são definidas como positivas quando estão no sentido positivo do eixo coordenado e, ao contrário das componentes do tensor de tensões, elas não estão associadas a uma face do elemento em particular.

Assume-se também que o paralelepípedo pode estar sujeito a forças que afetem todos os pontos do corpo igualmente, como gravitacionais ou eletromagnéticas, que são chamadas de forças do corpo e sua resultante age no centro geométrico do

paralelepípedo. As componentes da força do corpo por unidade de volume X, Y e Z são também mostradas na Figura 14.

Da geometria analítica, as áreas das três faces A_x , A_y e A_z podem ser expressas em função da superfície A conforme abaixo:

$$Ax = v_x A$$
 $Ay = v_y A$ $Az = v_z A$

Onde v_x , v_y e v_z são as componentes do vetor unitário normal à superfície S. Enquanto que o volume do tetraedro pode ser calculado por:

$$V = 1/3 \Delta h A$$

Onde Δh é a distância perpendicular da superfície S ao ponto O.

Sendo Tx, Ty e Tz as componentes da tração superficial T(v) nas direções x, y e z, respectivamente, pode-se demonstrar a obtenção das Condições de Equilíbrio Limites, também chamadas de Equações de Cauchy, expressas em S pelas três equações apresentadas na Eq. V.

Essas são as condições que têm que ser satisfeitas para cada ponto da superfície para garantir o equilíbrio do limite S.

$$T_{x} = \sigma_{xx}v_{x} + \sigma_{yx}v_{y} + \sigma_{zx}v_{z}$$

$$T_{y} = \sigma_{xy}v_{x} + \sigma_{yy}v_{y} + \sigma_{zy}v_{z}$$

$$T_{z} = \sigma_{xz}v_{x} + \sigma_{yz}v_{y} + \sigma_{zz}v_{z}$$

Eq. V

Como exposto anteriormente, a superfície S do corpo em estudo pode ser escolhida aleatoriamente, podendo, portanto, ser escolhida num plano interior, como o plano A da Figura 13. Neste caso, o vetor T(v) terá componentes que são exatamente as componentes do tensor de tensões no plano A. Deste modo, as nove componentes de tensão mostradas nos três planos perpendiculares ao ponto O na Figura 14 são suficientes para descrever as componentes das tensões em qualquer outro plano no mesmo ponto O de um corpo, assim como para descrever o estado do carregamento interno em um ponto do corpo. Esses componentes, quando agrupados, formam o chamado tensor das tensões ilustrado na Eq. VI.

$$\begin{bmatrix} \sigma \end{bmatrix} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix}$$
 Eq. VI

Quando o ponto O é escolhido afastado da superfície S do corpo, o diagrama ilustrado na Figura 14 não é aplicável, porém, como é sabido que as nove componentes de tensão em três planos perpendiculares são suficientes para descrever o estado interno de carregamentos no ponto O, esses três planos ainda são aplicáveis, conforme ilustra a Figura 15.

Se construirmos outros três planos de tal forma que eles estejam a uma distancia Δx , $\Delta y \in \Delta z$ do ponto O, então, o estado de tensões nestes planos, passando pelo ponto O, não precisa ser equivalente ao estado de tensões do ponto O. A mudança nestas componentes é ilustrada na Figura 15.

Figura 15: Ponto O distante da superfície do corpo [1]

Como o paralelepípedo está em equilíbrio estático, pode-se demonstrar a obtenção das Equações Diferenciais do Equilíbrio de Cauchy, em V, apresentadas pela Eq. VII.

$$\frac{\partial \sigma_{xx}}{\partial_x} + \frac{\partial \sigma_{yx}}{\partial_y} + \frac{\partial \sigma_{zx}}{\partial_z} + X = 0$$

$$\frac{\partial \sigma_{xy}}{\partial_x} + \frac{\partial \sigma_{yy}}{\partial_y} + \frac{\partial \sigma_{zy}}{\partial_z} + Y = 0$$
Eq. VII
$$\frac{\partial \sigma_{xz}}{\partial_x} + \frac{\partial \sigma_{yz}}{\partial_y} + \frac{\partial \sigma_{zz}}{\partial_z} + Z = 0$$

Como a localização do ponto O é arbitrária, as condições expostas devem ser cumpridas para cada ponto do interior para garantir o equilíbrio das forças no corpo V.

As equações das condições limite (Eq. VI) e as equações de equilíbrio de força (Eq. VII) são mutuamente exclusivas. A Eq. VI deve ser satisfeita na superfície e a Eq. VII deve ser satisfeita no interior do corpo, de modo que nenhum ponto do corpo em estudo satisfaça as duas equações ao mesmo tempo.

As equações de simetria das tensões, ilustradas na Eq. VIII, podem ser demonstradas de forma a garantir o equilíbrio dos momentos do corpo paralelos aos três eixos e passantes pelo centro geométrico.

$$\sigma_{xy} = \sigma_{yx}$$

$$\sigma_{yz} = \sigma_{zy}$$

$$\sigma_{xz} = \sigma_{zx}$$
Eq. VIII

Essas condições são aplicáveis não somente ao interior V, como também à borda S, uma vez que a soma dos momentos nas três direções coordenadas no ponto O da Figura 14 resultará em equações iguais.

As três equações apresentadas (Eq. V, Eq. VII e Eq. VIII) formam todas as condições que devem ser satisfeitas para que o corpo esteja em equilíbrio estático. Há, portanto, seis equações de restrição e nove componentes do tensor de tensão.

2.6 Fadiga

Segundo Anderson [3], as falhas das estruturas construídas pelo Homem por fratura têm ocasionado dificuldades à sociedade desde seu surgimento. No entanto, esse problema é atualmente mais crítico devido à maior complexidade da tecnologia existente, comparada com aquela presente nos séculos passados.

Mitchell [33] afirma que o primeiro estudo sobre a falha de metais devido a carregamentos repetidos foi documentado em 1838 por Albert. Essas primeiras falhas ocorreram devido ao advento das máquinas reciprocadoras durante a Revolução Industrial, tornando as falhas de metais por carregamentos repetidos um reconhecido problema de engenharia.

Em 1860 Wöhler investigou a resistência à fadiga dos metais através de ensaios rotativos, que foram então reportados pela atualmente muito conhecida curva S-log N, onde S é a amplitude do carregamento e N o número de ciclos para a ruptura (vida), e acabaram por originar o conceito de limite de resistência à fadiga (*"endurance limit"*).

Porém, o entendimento de como os materiais falham, assim como a habilidade de prever essas falhas melhoraram consideravelmente depois da Segunda Guerra Mundial [3].

Segundo Castro e Meggiolaro [11], fadiga é um tipo de falha mecânica local, causada principalmente pela aplicação de cargas variáveis, gerando danos progressivos e cumulativos no local. Cargas variáveis são, na verdade, tensões dinâmicas e oscilantes, que possibilitam, segundo Callister [10], a ocorrência da falha na peça que esteja sujeita a tensões inferiores aos limites estáticos de resistência à tração e ao escoamento do material.

Esse fenômeno é muito influenciado pelos detalhes do ponto crítico, como o acabamento superficial, gradiente de tensões, tensões micro residuais e propriedades mecânicas do local [12] e é o responsável por cerca de 90% das falhas em componentes metálicos [37].

Castro e Meggliolaro [11] dividem as metodologias para projeto à fadiga em três:

- método SN (ou Vöhler), que relaciona a quantidade de ciclos necessários ao surgimento da trinca por fadiga com a história da variação das tensões atuantes;
- método *ɛ*N, que especifica o cálculo da quantidade de ciclos para o inicio da trinca por fadiga a partir da história das gamas de deformação elastoplástica atuantes;
- > método da/dN, para prever a propagação das trincas por fadiga.

Shigley [39] utiliza a mesma divisão, nomeando o método SN como sendo o método da vida à tensão e nomeando de método da vida à deformação o método ε N. Ao terceiro método ele atribui o nome de método da mecânica da fratura linear elástica (FMLE), o qual compreende o modelo da/dN.

A iniciação da fadiga em ligas de alumínio ocorre pela perda de coesão nas partículas de silício, segundo Mwanza [34]. Partículas maiores relativamente agrupadas iniciam a fadiga, devido às diferenças do módulo de elasticidade entre as partículas e as proximidades da matriz de alumínio, gerando as trincas.

A taxa de propagação das trincas por fadiga em mancais hidrodinâmicos, que determina a velocidade em que a falha por fadiga vai ocorrer, depende das condições de temperatura e da amplitude da pressão do filme de óleo, segundo Ushijima et al. [43].

Quando uma trinca por fadiga se forma na liga da bronzina, há uma quebra no filme de óleo, causando um contato metal-metal entre o eixo e a bronzina, ocasionando um aumento de temperatura na superfície da bronzina [23].

Como as trincas surgem em diversos e distintos pontos na superfície de contato da bronzina, o prosseguimento deste fenômeno acaba causando o desplacamento da liga quando essas trincas se unem, que, por sua vez, pode até gerar o engripamento do motor, ou seja, seu travamento.

Tendo em vista as definições apresentadas acima, associadas ao fato de que os mancais devem trabalhar antes do surgimento de trincas, segundo norma ISO 7905-1 [20], para reduzir a possibilidade de desplacamento da liga, o método da/dN deve ser descartado.

Prosseguindo, ainda, no estudo da fadiga, segundo Castro e Meggliolaro [11], o método SN é apropriado para prever o surgimento de trincas por fadiga em vidas longas, enquanto que o método ε N deve ser usado em particular para vidas curtas.

Shigley [39] classifica vidas compreendidas entre 1 e 10^3 ciclos como sendo curtas, enquanto que as vidas longas são consideradas acima de 10^3 ciclos.

Desta forma, o presente trabalho utilizará os conhecimentos da metodologia SN para os cálculos da vida.

A opção pelo método SN pode ser confirmada pelo exposto por Martin, Garner e Adams [28], que afirmam que o uso de tal método para o projeto de componentes à fadiga é uma prática comum no ambiente da engenharia mecânica.

Antes de prosseguir com qualquer estudo de fadiga em elementos estruturais de motores de combustão interna, é importante conhecer alguns conceitos básicos a respeito do assunto.

Durante o ciclo de trabalho de um motor de combustão interna [41], seus elementos estruturais estão submetidos a um conjunto de tensões oscilantes típicas da própria natureza termodinâmica de operação do motor. A origem dos termos tensão média e tensão alternada vem da tentativa de se decompor essas tensões em duas componentes, classificadas de acordo com seus respectivos fatores causadores.

$$\sigma_m = \frac{\sigma_{\max} + \sigma_{\min}}{2}$$
 Eq. IX

$$\sigma_a = \frac{\sigma_{\max} - \sigma_{\min}}{2} \qquad \qquad \text{Eq. X}$$

onde: σ_a = tensão alternada

$$\sigma_m$$
 = tensão média
 σ_{max} = tensão máxima
 σ_{min} = tensão mínima

Segundo Callister [10], tensão média pode ser definida como sendo a média entre as tensões máxima e mínima do ciclo, expressa pela Eq. IX, enquanto que tensão alternada, ou amplitude das tensões é a metade da diferença entre as tensões máxima e mínima, conforme expressa a Eq. X.

A Figura 16 ilustra o carregamento devido a tensões cíclicas, com tensão média positiva, ou seja, o carregamento aplicado possui características meramente trativas.

A Figura 17 ilustra o carregamento devido a tensões cíclicas cuja tensão média seja igual a zero, ou seja, os carregamentos máximo e mínimo são simétricos em relação ao nível zero de tensão.

Esses conceitos das tensões média e alternada serão empregados mais adiante, tanto para o cálculo do coeficiente de segurança à fadiga, quanto para o cálculo da vida.

Figura 17: Carregamento senoidal com tensão média nula (adaptado de [10])

2.7 Simulação

Para o desenvolvimento do presente trabalho foram utilizados softwares comercialmente disponíveis e largamente utilizados pelas empresas do ramo no desenvolvimento de seus mancais.

Por esse motivo, apesar de Duarte [14] estabelecer que a modelagem matemática e a simulação de um processo seguem algumas fases de desenvolvimento, muitas das etapas propostas já foram executadas por aqueles que desenvolveram o software e não serão abordadas no decorrer do trabalho. Somente será utilizada a ferramenta pronta, uma vez que não se pretende desenvolver softwares de modelamento matemático nem tampouco de simulação.

2.7.1 Simulação hidrodinâmica

A teoria de lubrificação elastohidrodinâmica [20], comumente chamada de EHL, gera um modelo muito próximo das condições reais de funcionamento, produzindo, segundo Okamoto et al. [35], análises altamente precisas.

Desta forma, para a simulação de operação no presente trabalho, optou-se pela utilização do software EXCITE [17], que utiliza os conceitos da teoria EHL para a simulação de operação da bronzina, resolvendo a equação de Reynolds através do método das diferenças finitas.

2.7.2 Análise estrutural pelo método dos elementos finitos

Para os cálculos estruturais, o software ANSYS [4], que utiliza o método da análise por elementos finitos (FEA), foi o escolhido. A idéia básica do conceito de elementos finitos, abordado por Martin e Carey [29], é a substituição de um problema real, geralmente de solução muito complicada, por outro mais simples.

Segundo ANSYS [5], FEA é um modo de simular condições de carregamento em um projeto e prever as respostas desse projeto às condições a que esteja submetido. Conforme exposto por Bathe e Wilson [9], o estabelecimento e a solução de um sistema de equações numéricas são necessários para a solução numérica de um problema contínuo.

Seguindo esse raciocínio, Arnold et al. [7] afirmam que o processo de simular condições de carregamento em um projeto é conseguido através de interpolações matemáticas, utilizando métodos numéricos para a solução de equações diferenciais complexas. Para facilitar a análise do comportamento do corpo este é discretizado, ou seja, dividido em pequenos elementos, cujos pontos de principal interesse e estudo são chamados de nós.

3 METODOLOGIA DE CÁLCULO PROPOSTA

O presente trabalho propõe, conforme já exposto anteriormente, uma metodologia para cálculo da vida e do coeficiente de segurança à fadiga, ilustrada pelo fluxograma da Figura 18.

Figura 18: Fluxograma da metodologia de cálculo proposta

Cada etapa exposta no fluxograma da Figura 18 será explicado a seguir.

3.1 Seleção do componente a ser estudado

Tendo em vista os diversos fatores que determinam a escolha da peça a ser testada (disponibilidade, material em que a mesma é produzido e interesses da empresa), optou-se pela realização dos estudos com a bronzina ilustrada pelo desenho do Anexo 6.

Esta peça é utilizada em um motor atualmente disponível no mercado de automóveis. Possui 1.0 litros, com 48 kW de potência, PCP (*Peak Cylinder Pressure*, ou seja, pressão máxima no cilindro) de 8,7 MPa, 95 Nm de torque, 70 mm de diâmetro dos cilindros e um curso de 64,8 mm.

3.2 Dados do componente

Tendo sido escolhido o componente estudado pelo presente trabalho no item 3.1, tem-se as informações básicas necessárias para o prosseguimento dos estudos. Essas informações são obtidas no desenho do Anexo 6: dimensões, material, acabamento superficial, dimensões do eixo em que a bronzina é montada, folgas, etc.

Além de servirem como dados de entrada na simulação, compondo as condições de contorno do item 3.6, essas informações são utilizadas para a confecção do mancal e do eixo do equipamento de teste, apresentados no item 4.4.1, e também para a elaboração do modelo 3D do componente estudado, explicado no item 3.3.

3.3 Modelo 3D do componente

Um modelo 3D da bronzina tem que ser confeccionado para o prosseguimento dos cálculos e simulações. Para tanto utilizam-se as informações contidas no desenho do Anexo 6 e comentadas anteriormente.

Com o auxílio de um software CAD (PRO-ENGINEER [36]) constrói-se o referido modelo tridimensional, cujo perfil da bronzina é utilizado como dado de entrada do

software EXCITE [17], de modo que se tenha todas as condições de contorno, item 3.6, necessárias.

3.4 Modelo 3D do conjunto do alojamento

A partir do modelo tridimensional da bronzina, dos dados referentes à montagem da peça em sua utilização normal no motor do veículo e das restrições da máquina de teste, gera-se o modelo 3D do conjunto do mancal da máquina de teste no software PRO-ENGINEER [36].

Esse modelo tridimensional será utilizado para a elaboração dos estudos de rigidez do conjunto do mancal, item 3.5, e que serão utilizados para compor as condições de contorno, item 3.6, para a simulação de operação.

3.5 Matriz de rigidez

O software EXCITE [17] necessita diversos dados de entrada, chamados de condições de contorno e expostas no item 3.6, para poder efetuar a simulação de operação da peça. Além do perfil da bronzina, já exposto anteriormente, ainda é necessária a matriz de rigidez e massa do conjunto do alojamento da bronzina, para que as deformações deste sejam consideradas nos cálculos.

Para a determinação da matriz de rigidez e massa foi utilizada a sub-estruturação, ou seja, a rigidez de toda a estrutura foi condensada em super-elementos, definidos através de "*master nodes*", utilizando o software ANSYS [4].

3.6 Condições de contorno

Conforme já comentado rapidamente anteriormente, para que o software EXCITE [17] efetue os cálculos da simulação de operação utilizando a teoria EHL, item 3.7, são necessários os dados da peça estudada, discutidas no item 3.2, além das informações relativas à execução dos ensaios de fadiga, como força aplicada, tipo e temperatura do óleo, rotação do eixo e tipo de carregamento, que serão apresentadas no item 4.1.

3.7 Análise elastohidrodinâmica - EHL

Para efetuar corretamente a simulação de operação do mancal, o software EXCITE [17] necessita que sejam inseridos os dados de entrada, conforme exposto anteriormente, e também a matriz de rigidez e massa do conjunto do alojamento da bronzina (item 3.5), de tal forma que se obtenha o campo de pressões na bronzina, item 3.8.

3.8 Cálculo do campo de pressões

Os resultados de POFP (*Peak Oil Film Pressure* = pressão máxima do filme de óleo) e MOFT (*Minimum Oil Film Thickness* = mínima espessura do filme de óleo) e a órbita do eixo durante o funcionamento do equipamento são fornecidos pelo software EXCITE [17] após a efetuação da simulação de operação, compondo os dados de saída desta etapa do trabalho e que são utilizados no item 3.9 para os cálculos do carregamento na bronzina.

3.9 Carregamento na bronzina

Para proceder-se os cálculos estruturais, item 3.11, o campo de pressões obtido no software EXCITE [17], item 3.8, deve ser inserido no modelo 3D do conjunto do alojamento, item 3.4, como sendo o carregamento a que a bronzina está sujeita, com o auxílio do software ANSYS [4].

Este modelo 3D já está pronto, uma vez que foi utilizado anteriormente para o cálculo da matriz de rigidez e massa do conjunto do mancal, item 3.5.

3.10 Engastamentos na bronzina

Além do carregamento que deve ser inserido no modelo 3D do conjunto do alojamento (item 3.9), para a confecção dos cálculos estruturais (item 3.14), deve-se também inserir no software ANSYS [4] os pontos de engastamento do conjunto do mancal, informando a relação de nós nesta condição.

3.11 Cálculo estrutural

Já com as informações relativas aos engastamentos e ao carregamento inseridas no software ANSYS [4], procede-se aos cálculos das tensões principais (σ_1 , σ_2 , σ_3) e deformações no mancal, item 3.12.

Todas as informações relativas aos carregamentos aplicados, bem como os cálculos efetuados das deformações e das tensões resultantes a que as peças estão sujeitas são efetuados e listados em função dos nós.

3.12 Determinação das tensões principais

Os valores das tensões principais (σ_1 , σ_2 , σ_3) e das deformações em cada nó da malha de elementos finitos da bronzina compõem a saída do software ANSYS [4]. Estes valores são fornecidos na forma do arquivo apresentada no Anexo 2 e são utilizados para a execução dos cálculos do coeficiente de segurança e da vida à fadiga, itens 3.13 e 3.14.

3.13 Cálculo do coeficiente de segurança

Ainda com os resultados obtidos no software ANSYS [4] para as tensões principais e deformações em cada nó da bronzina, item 3.12, e de acordo com o procedimento descrito abaixo calcula-se o coeficiente de segurança à fadiga para uma determinada vida, ou *fatigue factor*, para cada nó da bronzina estudada.

O critério a ser utilizado na obtenção dos valores das tensões principais é o proposto pela Teoria da Elasticidade, ou seja, obter os autovalores do tensor das tensões para o Estado Triplo de Tensões, utilizando o método numérico de Jacobi.

Antes de se iniciarem os cálculos do coeficiente de segurança à fadiga, dois tensores de tensões devem ser determinados: o tensor de tensão alternada e o tensor de tensão média; porém, devido ao carregamento mínimo em questão ser nulo, os dois tensores serão iguais.

Esses tensores são expressos em forma de matrizes simétricas que contenham três tensões normais e seis tensões tangenciais, conforme exposto anteriormente, ou de cisalhamento, que devem ser iguais duas a duas para garantir a simetria.

Procede-se, então, à resolução dos dois tensores de tensão, que proverá, para cada um dos tensores, suas tensões principais, que serão fundamentais para o cálculo do coeficiente de segurança à fadiga, através do Diagrama de Goodman.

Seja o tensor das tensões para um determinado nó, obtido do ANSYS [4], conforme a Eq. VI.

$$[\sigma] = \begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{bmatrix}$$
Eq. VI

Devido ao fato do carregamento mínimo ser nulo, para o cálculo dos tensores alternado e médio, que serão iguais, basta dividir o tensor das tensões exposto na Eq. VI por 2, gerando a Eq. XI.

As tensões principais alternadas e médias serão obtidas através do cálculo dos autovalores da Eq. XI pelo método numérico de Jacobi, conforme Bathe [9], exposto a seguir.

$$[\sigma_{a}] = [\sigma_{m}] = \begin{bmatrix} \frac{\sigma_{xx}}{2} & \frac{\tau_{xy}}{2} & \frac{\tau_{xz}}{2} \\ \frac{\tau_{yx}}{2} & \frac{\sigma_{yy}}{2} & \frac{\tau_{yz}}{2} \\ \frac{\tau_{zx}}{2} & \frac{\tau_{zy}}{2} & \frac{\sigma_{zz}}{2} \end{bmatrix}$$
Eq. XI

3.13.1 O método Jacobi

O método Jacobi foi proposto há mais de um século e desde então tem sido muito utilizado. A grande vantagem do método é sua simplicidade e estabilidade, podendo ser utilizado para calcular os auto valores negativos, zero ou positivos de todas as matrizes simétricas K, sendo M a matriz identidade.

Considerando o auto-problema básico $K\phi = \lambda\phi$, o késimo passo da iteração reduz para:

$$K_{k+1} = P_k^{\tau} K_k P_k$$
 Eq. XII

onde Pk é uma matriz ortogonal, então:

e

$$P_k^{\tau} P_k = I$$
 Eq. XIII

Na solução de Jacobi, a matriz P_k é a matriz rotação selecionada de tal forma que um elemento não diagonal K_k seja zerado. Se o elemento (i, j) for reduzido a zero, a correspondente matriz ortogonal P_k pode ser representada pela Eq. XIV.

$$P_{k} = \begin{bmatrix} 1 & & & & & \\ 1 & & & & & \\ & & \cos\theta & -sen\theta & - & \\ & & & \cos\theta & -sen\theta & - & \\ & & & & sen\theta & \cos\theta & - & \\ & & & & & & \\ & & & & & & 1 \end{bmatrix}$$
 iésima linha Eq. XIV

Onde θ é selecionado de modo que a condição de que o elemento (i, j) em K_{k+1} seja zero. Denominando o elemento (i, j) em K_k de $k_{ij}^{(k)}$, tem-se a Eq. XV e a Eq. XVI.

$$\tan 2\theta = \frac{2k_{ij}^{(k)}}{k_{ii}^{(k)} - k_{jj}^{(k)}} \qquad \text{para } k_{ii}^{(k)} \neq k_{jj}^{(k)} \qquad \text{Eq. XV}$$

 $\theta = \frac{\pi}{4}$ para $k_{ii}^{(k)} = k_{jj}^{(k)}$ Eq. XVI

A avaliação numérica do termo K_{k+1} na Eq. XII necessita apenas da combinação linear de duas linhas e duas colunas. Além disso, como para todos os valores k, a matriz K_k é simétrica, facilitando o trabalho, uma vez que se pode somente proceder aos cálculos no triângulo superior, ou inferior, da matriz, incluindo os elementos da diagonal.

Faz-se importante salientar que, apesar da transformação efetuada na Eq. XII reduzir os elementos não diagonais K_k para zero, este elemento novamente se tornará diferente de zero na transformação que será exposta a seguir. Portanto, para o desenvolvimento de um algoritmo, deve-se decidir qual elemento deve-se reduzir a zero. Uma opção é sempre reduzir a zero o maior elemento não diagonal em K_k .

No entanto, a procura por esse elemento consome algum tempo e pode ser preferível simplesmente proceder as transformações de Jacobi sistematicamente, linha por linha e coluna por coluna. Esse procedimento é conhecido como procedimento cíclico de Jacobi. Uma volta é considerada quando se procede o exposto acima por todos os elementos não diagonais.

A desvantagem desse procedimento é que, independente do tamanho do elemento, sempre um elemento não diagonal é zerado, mesmo que ele seja infinitamente pequeno, quase zero, e uma rotação é ainda assim aplicada.

Um outro procedimento que tem sido muito utilizado com bastante eficácia é o método comparativo de Jacobi. Neste método, os elementos não diagonais são testados seqüencialmente, linha por linha, ou coluna por coluna, e uma rotação somente é aplicada se o elemento for maior que um valor pré-estabelecido para aquela rotação.

Para a seleção do valor comparativo deve-se ter em mente que, fisicamente, na diagonalização de K se quer reduzir a ligação entre os graus de liberdade *i* e *j*. Uma medida desta ligação é dada por $(k_{ij}^2/k_{ii}k_{jj})^{1/2}$ e é esse fator que pode ser usado para decidir se efetivamente uma rotação será aplicada. Para que se tenha uma boa tolerância de comparação, é também necessário que se meça a convergência.

Apesar de $K_{k+1} \rightarrow \Lambda$ quando $k \rightarrow \infty$, a computação numérica procura apenas uma aproximação próxima o suficiente dos auto-valores que sejam correspondentes aos auto-vetores. Sendo *l* a última iteração, tem-se a precisão desejada quando:

$$K_{l+1} = \Lambda$$
 Eq. XVII

Então, diz-se que a convergência para a tolerância s foi atingida, pois:

$$\frac{\left|k_{ii}^{(l+1)} - k_{ii}^{(l)}\right|}{k_{ii}^{(l+1)}} \le 10^{-i}, \qquad i = 1, ..., n$$
 Eq. XVIII

e
$$\left[\frac{\left(k_{ij}^{(l+1)} - k_{ii}^{(l)}\right)^{2}}{k_{ii}^{(l+1)}k_{jj}^{(l+1)}}\right]^{1/2} \le 10^{-i}, \quad \text{todos i, j; } i < j \quad \text{Eq. XIX}$$

A relação exposta na Eq. XVIII tem que ser satisfeita pois o elemento $k_{li}^{(l+1)}$ é a aproximação atual do auto-valor e a relação impõe que a atual e a última aproximações ao auto-valor não mudam nos primeiros *s* dígitos.

A relação exposta na Eq. XIX assegura que os elementos não diagonais sejam realmente pequenos.

O procedimento descrito para o método comparativo de iterações de Jacobi pode então ser resumido da seguinte forma:

- [1] Inicialize o valor comparativo para a rotação. Normalmente, esse valor para rotação *m* deve ser 10^{-2m} .
- [2] Para todos os (i, j), com i < j, calcule o fator de ligação $\left[\left(k_{ij}^{(k)}\right)^2 / k_{ii}^{(k)} k_{jj}^{(k)}\right]^{1/2}$ e

aplique a transformação se o fator for maior que o valor de comparação.

[3] Use a Eq. XVIII para checar a convergência. Se a relação não for satisfeita, continue com mais uma rotação (volte para o item [1]). Se a Eq. XVIII for satisfeita, cheque se a Eq. XIX também foi satisfeita. Em caso positivo, a iteração convergiu e caso a resposta seja negativa, continue com mais uma rotação.

3.13.2 Diagrama de Goodman

Dentre as tensões alternadas e médias principais, que são seis valores, a escolha das tensões críticas seguirá o critério exposto a seguir:

Dentre as três tensões alternadas principais, a escolha da tensão crítica deve ser entre σ_1 ou σ_3 , pois o valor de σ_1 , que é positivo e, pela Teoria da Resistência dos

Materiais, corresponde ao estado de tensão trativa, certamente será maior que o valor de σ_3 , que é negativo e representa o estado de tensão compressiva.

Para determinar qual o estado de tensão mais prejudicial, o compressivo ou o trativo, deve-se comparar os valores das tensões em módulo.

O critério de Goodman modificado, que será utilizado para a determinação do coeficiente de segurança à fadiga (*"fatigue factor"*), exige como dados de entrada uma tensão alternada e outra média, além das propriedades do material estudado.

A Figura 19 ilustra o Diagrama de Goodman modificado, segundo Shigley, Mischke e Budynas [39]. O procedimento para sua construção será apresentado abaixo.

Onde: $\sigma_y = tensão de escoamento$

 $\sigma_{\rm a}$ = tensão alternada

 $\sigma_{\rm m}$ = tensão média

 $\sigma_{\rm e}$ = limite de resistência à fadiga

 $\sigma_{\rm R}$ = tensão de ruptura

A linha de Goodman modificada, ilustrada na Figura 19, pode ser construída pela Eq. XX, enquanto que para se construir a linha de escoamento, deve-se utilizar a Eq. XXI.

$$\sigma_a = -\left(\frac{\sigma_e}{\sigma_R}\right)\sigma_m + \sigma_e \qquad \text{Eq. XX}$$
$$\sigma_a = -\sigma_m + \sigma_y \qquad \text{Eq. XXI}$$

As duas linhas citadas se cruzam no ponto A. Desta forma, igualando-se a Eq. XX com a Eq. XXI pode-se calcular o valor da tensão média deste ponto pela Eq. XXII.

$$\sigma_m = \frac{\sigma_y - \sigma_e}{\left(1 - \frac{\sigma_e}{\sigma_R}\right)}$$
Eq. XXII

Pontos que estejam acima das linhas indicam que a peça falhará, enquanto que para valores de tensão média acima do valor calculado pela Eq. XXII, mas cujo ponto traçado no gráfico esteja abaixo da linha de escoamento calculada pela Eq. XXI, indicam que a peça não falhará.

Para aqueles valores de tensão média cujo valor esteja abaixo daquele calculado pela Eq. XXII e cujo ponto traçado no gráfico esteja abaixo da linha de Goodman modificada, calculada pela Eq. XX, indicam que a peça, também, não falhará.

Desta forma, conhecendo-se os valores das tensões média e alternada a que uma peça esteja submetida durante sua operação, pode-se inserir esses valores no Diagrama de Goodman, traçado com os valores de resistência da peça em questão.

No eixo da tensão média (abscissas), insere-se o valor conhecido da referida tensão para a peça em estudo. Traçando-se verticalmente uma linha pelo ponto da tensão média inserido, até que ela cruze a linha de escoamento, se a tensão média for maior do que o valor obtido pela Eq. XXII, ou até que ela cruze a linha de Goodman modificado, se a tensão média for menor que o obtido pela Eq. XXII. Desta forma, obtém-se o ponto B, cujo valor da ordenada será chamado de S₂.

O coeficiente de segurança à fadiga, ou "fatigue factor", será, então, o valor obtido pela razão entre S_2 e da tensão alternada, que será então chamada de S_1 , de acordo com a Eq. XXIII.

$$Sf = \frac{S_2}{S_1}$$
 Eq. XXIII

O procedimento para o cálculo do coeficiente de segurança à fadiga, descrito acima, pode ser melhor visualizado através do diagrama apresentado na Figura 20, para o caso da tensão média maior do que o valor calculado pela Eq. XXII.

Figura 20: Cálculo do coeficiente de segurança pelo diagrama de Goodman (Arnold, 2005)

3.14 Cálculo da vida à fadiga

Com os resultados obtidos no software ANSYS [4] para as tensões principais e deformações em cada nó da bronzina, item 3.12, calcula-se a vida à fadiga, ou seja, o número de ciclos teóricos até o surgimento da trinca por fadiga utilizando os fundamentos propostos por Basquin-Morrow, explicados por Mitchell [33] e por Magnabosco [27], cuja equação é descrita na Eq. XXIV.

$$\sigma_a = (\tilde{\sigma}_f - \sigma_m) \times (N_f)^b$$
 Eq. XXIV

Onde: σ_a = amplitude de tensões = $(\sigma_{max} - \sigma_{min})/2$

 σ_m = tensão média aplicada no ciclo de tensões = $(\sigma_{max} + \sigma_{min})/2$

 N_f = número de ciclos

b = expoente de Basquin

 $\tilde{\sigma}_{f}$ = coeficiente de resistência (aprox. tensão real de ruptura do material)

Devido ao carregamento imposto ao ensaio, cujo valor mínimo pode ser considerado nulo, os valores de σ_a e de σ_m tornam-se iguais e podem ser calculados pela Eq. XXV.

$$\sigma_m = \sigma_a = \frac{\sigma_{\max}}{2}$$
 Eq. XXV

Apesar de, segundo Castro e Meggiolaro [11], alguns autores, como Mitchell [33], não reconhecerem a existência de um limite de fadiga para as ligas de alumínio, Juvinall [23] propõe que, para esses metais, o limite de fadiga, S'_L , em 5×10^8 ciclos pode ser estimado pela Eq. XXVI.

$$S'_L = 0,4 \times S_R$$
 para: $S_R < 325MPa$ Eq. XXVI

Sendo S_R a resistência à ruptura.

3.15 Resultado dos cálculos

Efetuados todos os cálculos conforme procedimento descrito os resultados obtidos serão o número de ciclos até a falha e os valores de coeficiente de segurança à fadiga para cada nó da malha de elementos finitos da bronzina estudada.

Porém, esses resultados obtidos precisam ser confrontados com algum resultado experimental para que a eficácia do modelo de cálculo proposto possa ser verificada.

Para tanto, serão efetuados ensaios de fadiga em bronzinas produzidas usualmente pela empresa em uma máquina desenvolvida para esse fim, cujos dados serão analisados estatisticamente pelo método *Staircase*.

Todo o procedimento experimental, bem como as descrições da máquina de ensaio e da forma de tratamento estatístico dos dados pelo método *Staircase* serão apresentados no Capítulo 4.

4 METODOLOGIA EXPERIMENTAL

Segundo McCool [31], a distribuição de Weibull [40] e [37] tem sido amplamente utilizada no mundo todo desde 1947 para ensaios de vida à fadiga em mancais, porém, Lipson e Sheth [26] afirmam que os principais métodos para estimar a resistência à fadiga, ou limite de fadiga, são o método *Staircase* e o método Prot, de aumento da amplitude, apesar de o primeiro método ser mais utilizado para esse tipo de teste.

Arnold, Börder e Kemmelmeier [6] concordam com Lipson e Sheth [26], acrescentando também que o método *Staircase* é muito usado na determinação da resistência à fadiga em componentes de motores de combustão interna.

Portanto, conforme já adiantado no Capítulo 3, os ensaios para a validação da metodologia de cálculo da vida à fadiga proposta serão executados de acordo com a metodologia *Staircase*.

Figura 21: Fluxograma do procedimento de validação experimental da metodologia proposta

A Figura 21 apresenta o fluxograma do procedimento para a validação experimental da metodologia de cálculo proposta.

Devem ser realizados, de acordo com os procedimentos descritos a seguir, ensaios de fadiga em pelo menos treze corpos de prova (bronzinas fabricadas usualmente pela empresa), em uma máquina construída de acordo com a norma ISO 7905-4 [21] especialmente para este propósito. Veja foto na Figura 22.

Figura 22: Foto da máquina de teste

Onde:

- 1. Motor elétrico
- 2. Painel de controle e instrumentos
- 3. Unidade de teste
- 4. Aquecedor de óleo
- 5. Base
- 6. Software de controle e arquivamento de dados

Segundo Wilson [44], máquinas que aplicam carregamentos cíclicos, cujos valores oscilam entre zero e um valor máximo, como o caso da máquina a ser utilizada na execução dos ensaios deste trabalho, são as melhores opções para a obtenção do limite de resistência à fadiga em bronzinas.

Diversos fatores influenciam no limite de fadiga de uma bronzina, como cargas máxima e mínima aplicadas, freqüência de oscilação das cargas, rotação do eixo, temperatura do óleo, pressão de óleo, diâmetro, acabamento e material do eixo, características do óleo e folga entre eixo e alojamento, entre outras, os ensaios serão executados conforme exposto abaixo.

A única variável que será alterada durante o ensaio será a carga máxima aplicada. Todas as demais permanecerão constantes, exceto as características do óleo, que nesse caso são as características intervenientes, ou seja, aquelas que não têm como serem controladas durante o teste.

Consegue-se, apenas, controlar as variáveis que influenciam nas características do óleo, como a temperatura, por exemplo. Mantendo-se as outras características constantes, a variação nas características do óleo deve ser reduzida. O fator mais influente nesse caso é a carga máxima aplicada.

Conforme poderá ser visto mais adiante, o estímulo que será dado à variável independente (carga máxima), será a oscilação de seu valor (aumento/redução da carga).

4.1 Descrição do ensaio

O mancal (bronzina) é submetido a um carregamento cíclico senoidal conforme mostrado pela Figura 23. Observa-se que este carregamento apresenta valores mínimos próximos ao eixo do tempo, ou seja, o carregamento mínimo é levemente compressivo para a bronzina que está montada na parte inferior do alojamento.

O carregamento máximo também é compressivo na bronzina inferior, porém, pode ser ajustado entre 0 e 100 kN.

Figura 23: Carregamento aplicado pela máquina durante o ensaio (Arnold, 2005)

A força aplicada durante o teste é gerada por um atuador hidráulico, controlado por um sistema de servo-controle. Uma unidade lógica recebe a leitura da célula de carga continuamente, compara esses valores ao valor referência e corrige a aplicação da carga senoidal. quando necessário, além de ser, também, responsável pela contagem de ciclos e pelo ajuste da freqüência de aplicação de carga.

A Figura 24 apresenta uma vista geral do equipamento de teste, com os respectivos elementos da máquina.

Para que o teste seja executado em condições controladas, a máquina possui um sistema para aquecimento do óleo de lubrificação dos mancais, que é necessária pois existe um eixo para simular as condições de trabalho da bronzina, responsável por suportar toda a carga aplicada pelo atuador, cuja velocidade pode ser ajustada.

Adicionalmente, a máquina de teste também permite o controle da pressão de óleo que lubrifica todos os mancais, inclusive aquele onde é montada a bronzina de teste.

Figura 24: Equipamento de teste – máquina de ensaio de fadiga (Arnold, 2005)

A Tabela 2 indica os valores utilizados para os diversos parâmetros do teste.

Parâmetros	Faixa de trabalho
Força máxima (kN)	Variável (52 – 60)
Força mínima (kN)	0
Carregamento	Senoidal
Freqüência de força (Hz)	35
Pressão de óleo (Bar)	7,5
Temperatura do óleo (°C)	120
Velocidade do eixo (rpm)	1000
Tipo de óleo	SAE 20W30
Número de ciclos (milhões)	10

Tabela 2: Parâmetros do teste efetuado

4.1.1 Dispositivos

Para a execução dos testes de fadiga em bronzinas, é necessário obedecer à folga de montagem nominal entre o eixo e a bronzina. Desta forma, tem-se um eixo no qual são montadas 3 buchas, sendo que as buchas montadas nas extremidades do eixo são somente para apoio e a bucha montada na posição central é responsável por carregar a bronzina de teste.

Figura 25: Conjunto do eixo com as buchas (Arnold, 2005)

A Figura 25 apresenta o desenho do conjunto do eixo, mostrando a posição das três buchas que são montadas no eixo. A bucha central é construída de acordo com o desenho da bronzina que será testada, seguindo a especificação do diâmetro do virabrequim e das tolerâncias.

A confecção do alojamento de montagem da bronzina de teste, exemplificado na Figura 26, é efetuada de acordo com o olhal maior da biela do motor, que é o alojamento da bronzina.

Figura 26: Alojamento da bronzina de teste (Arnold, 2005)

48

4.2 Análise estatística dos dados de ensaio – método Staircase

Staircase, segundo Lipson e Sheth [26], é um método estatístico para a determinação da média e da variância da resistência à fadiga para um dado número de ciclos. Este método é igualmente válido para a determinação do limite de fadiga, desde que a resistência à fadiga seja dada para uma vida infinita.

O primeiro teste é executado com um carregamento estimado um pouco superior ao nível de resistência à fadiga. Caso a amostra não falhe ao final do teste, o próximo ensaio ocorrerá com um carregamento maior, ao passo que se a amostra falhar, o próximo teste será efetuado com um carregamento menor.

O procedimento citado acima é utilizado até que se acumulem, pelo menos, 13 testes válidos (considerado quando ocorrer a primeira inversão no nível de carregamento de montagem). Os valores são, então, lançados em um gráfico, conforme ilustrado na Figura 27.

A amplitude da variação dos carregamentos é muito importante e, normalmente, deve ser inferior a 5% do limite de resistência estimado inicialmente.

Após o final dos testes, é necessário determinar qual evento foi o menos freqüente: a suspensão ou a falha. Somente o evento menos freqüente será utilizado posteriormente.

Com os dados, deve-se, então, preencher a tabela ilustrada na Tabela 7. Cada coluna deve ser preenchida conforme exposto abaixo:

- Coluna I listar todos os níveis de cargas dos ensaios;
- Coluna II atribuir valores inteiros e consecutivos, a partir de zero, para todos os níveis de carga. O valor zero deverá ser atribuído à carga mais baixa em que o evento menos freqüente ocorreu;
- Coluna III número de vezes em que o evento menos freqüente ocorreu;
- Coluna IV produto da coluna II pela coluna III;
- Coluna V produto do quadrado da coluna II pela coluna III;

A soma dos valores da coluna IV é chamada de A, enquanto a soma dos valores da coluna V é chamada de B.

Portanto, o cálculo do limite de resistência à fadiga deve ser efetuado pela Eq. XXVII.

$$m = Xo + d\left[\frac{A}{F} \pm \frac{1}{2}\right]$$
 Eq. XXVII

Onde:

m = limite de resistência à fadiga para um dado nº de ciclos (kN);

Xo = menor nível de carga para o qual o evento menos freqüente acorreu (kN);

d = variação de carga entre 2 níveis subseqüentes de carregamento (kN);

 $F = n^{\circ}$ total do evento menos freqüente;

A = soma dos valores da coluna IV.

Na Eq. XXVII, o símbolo de adição será adotado caso o evento menos freqüente seja a suspensão, enquanto que o símbolo de subtração será utilizado caso o evento menos freqüente seja a falha.

O desvio padrão para a média deve ser calculado pela Eq. XXVIII.

$$\sigma = 1,62 \times d \left[\frac{F \times B - A^2}{F^2} + 0,029 \right]$$
 Eq. XXVIII

Onde:

d = variação de carga entre 2 níveis subseqüentes de carregamento (kN);

 $F = n^{o}$ total do evento menos freqüente;

A =soma dos valores da coluna IV;

B = soma dos valores da coluna V.

4.3 Comparação dos resultados teórico e experimental

Efetuados os ensaios, obtém-se o valor do limite de resistência à fadiga para uma determinada vida (número de ciclos limite dos testes). Esse valor da resistência à fadiga deve então ser inserido na simulação (como dado de entrada) como sendo o carregamento a que a bronzina está submetida.

Após todos os cálculos serem finalizados, obtém-se o resultado teórico do número de ciclos até que a peça falhe para cada nó da malha de elementos finitos da bronzina estudada, para as condições de carregamento realizadas nos experimentos.

Deve-se então comparar esses valores calculados com o número de ciclos efetuados nos teste para verificar se o procedimento teórico proposto consegue prever os fenômenos que ocorrem na prática, durante a execução dos ensaios.

As regiões de maior carga a serem observadas nas peças testadas devem apresentar menores valores de coeficiente de segurança calculados. Desta forma, uma confrontação dessas regiões possibilitará a validação da metodologia proposta para o cálculo do coeficiente de segurança.

5 CASO ESTUDADO

5.1 Resultados Experimentais

Um resumo dos resultados obtidos na realização dos ensaios de fadiga pelo método *Staircase* pode ser visualizado na Figura 28.

Como o procedimento adotado para os ensaios foi segundo o método Staircase, exposto no capítulo 3, a Figura 29 apresenta uma foto típica de uma bronzina que falhou no teste, enquanto que a Figura 30 mostra uma foto típica de uma bronzina que não falhou no teste.

O resultado do tratamento estatístico dos dados do ensaio pelo método Staircase é apresentado na Tabela e na Tabela para a vida estipulada de 10.000.000 de ciclos. Na primeira o resultado é mostrado em força (57 kN e desvio padrão de 1,09 kN), enquanto que na segunda o resultado está na forma de tensão (72 MPa e desvio padrão de 1,36 MPa).

Figura 28: Resultados do ensaio de fadiga

Mesmo não tendo falhado no teste, a bronzina apresentada na Figura 30 apresenta a região de maior carga como sendo próxima ao furo, da mesma maneira que a bronzina que falhou apresentada na Figura 29.
Esses resultados refletem a realidade a que as bronzinas estão sujeitas quando em funcionamento no motor de um automóvel. A região de maior carga nestes casos é exatamente a mesma apresentada nas fotos obtidas pela análise das peças submetidas ao ensaio na máquina de teste de fadiga.

As demais fotos de todas as bronzinas testadas para a realização do presente trabalho são apresentadas no Anexo .

Figura 29: Foto típica de uma bronzina que falhou no ensaio de fadiga

Figura 30: Foto típica de uma bronzina que não falhou no ensaio de fadiga

Tabela 3: Resultados Staircase dos ensaios - determinação do limite de fadiga (força)

Tabela 4: Resultados Staircase dos ensaios - determinação do limite de fadiga

5.2 Dados do material

A bronzina em questão, conforme já explicado anteriormente, possui sua superfície de trabalho em liga de alumínio, cuja composição química (%) é a seguinte:

- ➢ Sn: 8,0 a 11,0
- ➢ Si: 3,5 a 4,5
- ➤ Cu: 1,7 a 2,3
- ➢ Fe: 0,30 max.
- ➢ Mn: 0,1 max.
- ➢ Al: balance

Por esse motivo e também pela inexistência do valor do coeficiente de Basquin-Morrow (b) para a liga em questão, utilizar-se-á para os cálculos da vida à fadiga, um valor do referido coeficiente b para ligas de alumínio semelhantes, ou seja, ligas compostas por elementos que estejam presentes na liga da peça em estudo.

Ligas de alumínio laminadas, segundo Castro e Meggiolaro [11], que contenham Cu em sua composição são as da família 2xxx, enquanto aquelas que contenham Si são as da família 4xxx. A família 6xxx é composta por Mg e Si.

Segundo Mitchell [33], o coeficiente b para a liga 2014 T6 é -0,081, enquanto o valor do referido coeficiente para a liga 6061 T6, segundo Wong [45], é -0,082.

Logo, será utilizado para os cálculos da vida à fadiga o valor:

$$b = -0,081$$

5.2.1 Propriedades mecânicas do material

Não se conheciam as propriedades mecânicas da liga de alumínio da bronzina em estudo, necessárias para o prosseguimento do presente trabalho. Por esse motivo, as mesmas foram levantadas de acordo com a norma ASTM E 8M-04 [2], que rege os testes de tensão para materiais metálicos em qualquer forma à temperatura ambiente, especialmente os métodos para a determinação da tensão de escoamento, do ponto de alongamento de escoamento, alongamento, redução de área e tensão limite de resistência à ruptura.

Esta norma é a versão para o sistema métrico da original ASTM E 8-03, para o sistema imperial.

Os corpos de prova para os ensaios de tração foram confeccionados em forma retangular de acordo com a norma, conforme ilustram a Figura 31 e a Figura 32.

Figura 31: Foto geral dos corpos de prova para ensaio de tração (lado jateado)

Figura 32: Vista lateral dos corpos de prova para ensaio de tração

O processo produtivo das bronzinas, laminação a quente, conforme já exposto anteriormente, confere a resistência mecânica final da tira e também melhora a resistência da liga de alumínio, uma vez que a mesma sofre uma redução de espessura. Para se efetuarem os testes de tração, os corpos de prova tiveram que ser confeccionados removendo-se o aço da tira pronta pelo processo de eletroerosão.

Corpos de prova são cortados de acordo com a norma estipulada anteriormente para então passarem pelo processo de eletroerosão para a retirada do aço.

No processo de eletroerosão, um fio a uma temperatura de aproximadamente 1000°C corta as peças, que permanecem imersas em um tanque de água tratada a 23°C. Após o corte, as peças são submetidas a um jato d'água para limpá-las.

Tendo o aço sido removido, os corpos de prova estão prontos e podem ser submetidos aos ensaios de tração, para o levantamento das propriedades necessárias.

As propriedades mecânicas da liga utilizada na fabricação da peça estudada no presente trabalho, obtidas conforme o processo descrito acima, estão listadas na Tabela 5.

Tabela 5: Propriedades mecânicas da liga de alumínio

Propriedade	Valor
Tensão de ruptura (MPa)	150
Tensão de escoamento (MPa)	140
Módulo de elasticidade (GPa)	70

5.3 Matriz de rigidez e massa

O software EXCITE [17] efetua os cálculos da simulação de operação hidrodinâmica levando em consideração as deformações com as quais os componentes trabalham.

Portanto, conforme exposto anteriormente, foi gerada uma matriz de rigidez de modo que o mancal da máquina de testes onde a bronzina é montada fosse reproduzido. Para tanto, um modelo 3-D do conjunto do mancal foi desenhado no software PRO-ENGINEER [36] e exportado para o software ANSYS [4], onde o mesmo foi discretizado utilizando-se uma malha de elementos finitos com elementos TET10, ou seja, elementos tetraédricos com 10 nós para o corpo do mancal e elementos de casca com 4 nós para a discretização da bronzina.

Figura 33: Matriz de rigidez e malha de elementos finitos

Figura 34: Matriz de rigidez e malha de elementos finitos

Com base neste modelo, foi efetuado o cálculo da matriz de rigidez do conjunto, conforme mostra a Figura 33 e a Figura 34.

Após essa etapa, a matriz de rigidez foi então exportada para o software EXCITE [17] para as devidas simulações das condições de operação dos testes.

5.4 Condições de contorno

Diversas informações devem ser inseridas no software EXCITE [17], como diâmetro e largura da bronzina, rugosidade, módulo de elasticidade, entre outras, de modo que a simulação das condições de operação possa ser executada. Tais informações podem ser visualizadas na Tabela 6.

Característica	Valor Utilizado
Largura da bronzina	18,2 mm
Diâmetro	38,048 mm
Folga	21 microns
Tipo de contato	Contato áspero
Rugosidade	5x10 ⁻⁷ m
Módulo de elasticidade	6,8x10 ¹⁰ N/m ²
Fator de elasticidade	0,003
Coeficiente de atrito	0,01
Número de pontos axiais do modelo	21
Número de pontos circunferenciais	121

Tabela 6: Condições de contorno inseridas no software EXCITE [17]

Além dessas informações, o software ainda necessita do perfil da bronzina para efetuar as simulações, que foi inserida conforme a Figura 35, e, também, de informações sobre as propriedades do óleo utilizado, como o tipo de óleo e a temperatura de utilização, que são apresentadas na Tabela 7.

Tabela 7: Propriedades do óleo

Característica	Valor Utilizado
Tipo de óleo	SAE 20W30
Temperatura	120°C

Figura 35: Perfil da bronzina

O software EXCITE [17] necessita, ainda, que o carregamento seja inserido de acordo com as condições em que se queira efetuar a simulação. Desta forma, procedeu-se à inserção do mesmo carregamento utilizado na máquina de testes de fadiga, explicada no capítulo Metodologia deste trabalho, porém, o valor máximo do carregamento foi inserido como sendo de 57 kN, ou seja, o limite de resistência à fadiga encontrado no ensaio, conforme ilustra a Figura 36.

Com todas as informações necessárias inseridas no software EXCITE [17], procedeu-se a simulação de funcionamento, cuja finalidade é a de se conseguir reproduzir o funcionamento do conjunto do mancal, sob as condições de operação da máquina de ensaio de fadiga.

Figura 36: Carregamento aplicado

5.5 Resultado da simulação – campo de pressões

Portanto, os resultados obtidos através da utilização do software EXCITE [17] são apresentados na Figura 37, sob a forma de campo de pressões. Essas pressões são aquelas que o filme de óleo exerce sobre a bronzina durante o funcionamento do equipamento, provenientes dos já explicados fenômenos de auto-pressurização dos mancais. O equipamento pode ser o motor do automóvel ou a máquina de testes de fadiga, no caso do presente trabalho.

Figura 37: Resultado de pressão na bronzina obtido pelo software EXCITE [17]

O campo de pressões obtido constitui a saída do software EXCITE [17] e será inserido como carregamento no software ANSYS [4], conforme descrito posteriormente.

5.6 Engastamentos e reações

Com a finalidade de reproduzir o mais próximo possível o funcionamento da máquina de testes, estipulou-se no ANSYS [4] que os nós da parte inferior da Figura 38, cujos carregamentos estão marcados em amarelo, são os pontos de engastamento.

Figura 38: Engastamentos e reações

5.7 Aplicação do carregamento

Com o resultado do campo de pressões, procedeu-se aos cálculos para a obtenção das deformações e das tensões principais no software ANSYS [4], inserindo-se, para

tanto, o resultado das pressões apresentados na Figura 37 como carregamento, conforme descrito a seguir.

O carregamento aplicado no software ANSYS [4] foi em forma de pressão. O mesmo foi inserido nos nós do furo central, que representam a bronzina e foram construídos com elementos de casca (pode ser visualizado na Figura 39, região em vermelho). Esse carregamento foi aplicado nos pontos de acordo com o resultado da simulação no software EXCITE [17] (região de carga da bronzina) e previamente apresentados na Figura 37.

Figura 39: Carregamento aplicado no software ANSYS [4]

5.8 Resultado das tensões principais e deformações no mancal

Pela simulação no software EXCITE [17], obteve-se o carregamento real a que a bronzina está submetida, de acordo com os parâmetros pré-estabelecidos do teste.

Esses valores foram, então, inseridos no software ANSYS [4], para se obterem as distribuições das tensões e deformações, que são apresentados a seguir e formam a saída do software ANSYS [4].

5.8.1 Resultado das tensões de Von Mises

A distribuição das tensões de Von Mises é apresentada na Figura 40 e na Figura 41.

Figura 40: Resultado das Tensões de Von Mises obtidas no software ANSYS [4]

Pode-se observar pelas figuras que na região de carga da bronzina, parte superior da mesma, as tensões de Von Mises obtidas encontram-se de um modo geral abaixo do limite de escoamento da liga, que é 140 MPa.

Somente em uma pequena parte dos nós (região em vermelho bem na parte superior próximo à borda) esses valores encontram-se na casa de 142 MPa; porém, esses valores devem ser descartados, pois trata-se de pontos isolados de incorreção do modelo, onde houve claramente uma concentração do carregamento, que não ocorre na prática.

Faz-se importante salientar, também, que foram obtidos valores altos da tensão de Von Mises nas regiões laterais da bronzina, que são conhecidas como regiões de baixa solicitação.

Figura 41: Resultado das Tensões de Von Mises obtidas no software ANSYS [4]

Esses carregamentos devem ser desprezados, pois o carregamento foi inserido no ANSYS [4] sob forma de pressão somente na região de carga, o que não ocorre na realidade, onde a pressão é aplicada em toda a superfície da bronzina. Apesar de seus valores serem muito menores do que aqueles da região de carga, os mesmos contribuem para evitar a deformação da bronzina, agindo como restrição de movimento.

Esses valores altos obtidos nas regiões que não são de carga devem-se à deformação da bronzina. Quando a peça é carregada na parte superior, por um esforço aplicado no sentido vertical superior, a parte lateral se deforma, tendendo a "fechar" a bronzina no sentido do centro.

Como não havia carregamento nessa região, a peça não encontrou resistência a essa deformação e os valores altos foram obtidos nessa região.

Esse fenômeno pode ser facilmente visualizado através da Figura 42 que representa o primeiro cálculo efetuado no software ANSYS [4] não contendo, em seu interior, o eixo do equipamento que trabalha como mais uma restrição à deformação da bronzina.

Figura 42: Tensões de Von Mises obtidas em simulação preliminar (sem eixo)

Como pode ser observado na Figura 42, os valores obtidos nessa primeira avaliação foram mais altos nessa região lateral (144,653 MPa), comprovando que esses valores não devem ser considerados como válidos.

5.8.2 Resultado das tensões principais

A distribuição das tensões principais máximas, Sigma 1 (σ_1), calculadas pelo software ANSYS [4], pode ser observada na Figura 43 e na Figura 44.

Figura 43: Resultado das tensões Sigma 1 obtidas no software ANSYS [4]

Figura 44: Resultado das tensões Sigma 1 obtidas no software ANSYS [4]

5.8.3 Resultado de deformação

O resultados obtidos das deformações são apresentados na Figura 45 e na Figura 46. Observem que os maiores valores obtidos das deformações são da ordem de 10⁻³mm.

Figura 45: Resultado das deformações na bronzina obtidas no software ANSYS
[4]

Comparando-se os resultados obtidos no ensaio de fadiga (fotos das bronzinas apresentadas na Figura 29 e na Figura 30, que mostram a região próxima ao furo como sendo a mais solicitada) com os resultados obtidos pelo software ANSYS [4] (Figura 41 e Figura 42), pode-se observar que os mesmos apresentam a mesma região crítica de solicitação da bronzina.

Figura 46: Resultado das deformações na bronzina obtidas no software ANSYS
[4]

5.9 Cálculo do coeficiente de segurança à fadiga ("fatigue factor")

Os resultados obtidos pelos cálculos para o coeficiente de segurança à fadiga para cada nó da malha de elementos finitos da bronzina são apresentados no Anexo 4 e podem ser visualizados na Figura 47 e na Figura 48.

Conforme exposto durante a exposição dos resultados obtidos para as tensões principais, deve-se apenas considerar os resultados obtidos para a região de carga da bronzina, eliminando, desta forma, as imprecisões do modelo utilizado.

Descartando-se, assim, os nós das regiões que não sejam de carga comentados acima, os resultados do coeficiente de segurança obtidos podem ser visualizados na Figura 49 e também na Tabela 8.

De um modo geral, os resultados obtidos nesta região encontram-se com valores acima de 1. Excetuam-se dessa condição o nó número 32 e mais 4 nós, todos

assinalados em amarelo na referida tabela, que são os locais onde provavelmente surgirão as primeiras trincas.

Conforme exposto anteriormente (item 5.8.1 – resultado das tensões de Von Mises), alguns nós devem ser desprezados pois trata-se de concentração de carregamento devido à imprecisão do modelo utilizado para os cálculos. O nó 32 deve, portanto, ser desprezado, pois trata-se do nó cuja tensão de Von Mises calculada de 142 MPa encontra-se ligeiramente acima do limite de escoamento do material (140 MPa).

Figura 47: Resultados dos cálculos do coeficiente de segurança à fadiga

Figura 48: Resultados dos cálculos do coeficiente de segurança à fadiga

Figura 49: Resultados dos cálculos do coeficiente de segurança - região de carga

Node	S. Factor	Node	S. Factor		Node	S. Factor	Node	S. Factor
2	1.566093	345	1.871377		672	3.590141	814	2.349724
26	1.116914	347	2.106623		674	2.791365	816	2.660475
28	1.17905	349	1.674398		676	3.296911	818	1.875682
30	1.219298	351	1.756818		678	2.330679	1050	1.474701
32	0	353	1.620948		680	4	1052	0.869056
34	2.275987	361	0.77344		682	2.086908	1054	1.153449
36	2.212636	363	3.780783	1	692	0.894753	1085	2.553656
38	1.532531	365	3.205107		694	0.97044	1087	2.927542
40	1.954869	367	4		696	1.093908	1089	4
42	1.744439	369	2.738607		735	1.414351	1091	2.129262
44	1.492738	371	4		737	1.337612	1093	4
70	1.290885	373	4		739	1.279087	1095	1.97753
72	1.175771	399	1.341553		770	1.821384	1104	2.732961
74	1.230777	401	0.88878		772	1.796186	1106	2.975329
305	2.45358	403	1.447544	Ĩ	774	2.020839	1108	4
307	1.928416	634	3.574911		776	1.51705	1110	3.172633
309	2.182819	636	4		778	1.783533	1112	2.374236
311	2.297918	638	3.136134		780	1.551301	1114	4
313	2.210111	640	2.360645		789	2.494184	1123	2.735079
315	1.860883	642	3.579206		791	2.271218	1125	3.918095
324	2.608357	644	1.929236		793	1.783868	1127	3.707593
326	2.156582	653	2.293835		795	1.821658	1129	3.409287
328	1.735238	655	2.476094		797	1.627553	1131	2.52419
330	1.856041	657	3.206572		799	1.599329	1133	2.254582
332	1.856545	659	2.556288		808	2.47618		
334	1.688925	661	1.723031		810	2.118799		
343	1.750791	663	4		812	2.474055		

Tabela 8: Resultados dos cálculos do coeficiente de segurança - região de carga

5.10 Cálculo da vida à fadiga

Os resultados obtidos de vida à fadiga para cada nó da bronzina são apresentados no Anexo 3. A Tabela 9 apresenta os resultados de vida à fadiga para os nós na região de carga.

	Fabela 9: R	Resultados	de vida à f	adiga n	a regiã	io de carg	a da bronz	ina
10	64	см	NIF		lada	64	СM	NIE

Node	SA	SM	Nf	Node	SA	SM	Nf
2	35.189	35.189	2.19E+06	38	46.9811	-46.9811	4.84E+07
26	45.087	45.087	3.37E+04	40	36.8311	-36.8311	5.09E+08
28	43.3983	43.3983	6.58E+04	42	41.274	-41.274	1.67E+08
30	42.3704	42.3704	9.96E+04	44	48.2335	-48.2335	3.79E+07
32	47.9537	47.9537	1.12E+04	70	40.6576	40.6576	2.02E+05
34	31.6346	-31.6346	2.35E+09	72	43.4843	43.4843	6.36E+04
36	32.5404	-32.5404	1.76E+09	74	42.0861	42.0861	1.12E+05

Node	SA	SM	Nf]	Node	SA	SM	Nf
305	29.3449	-29.3449	5.08E+09		692	52.373	52.373	2.18E+03
307	37.3363	-37.3363	4.45E+08		694	49.6401	49.6401	5.95E+03
309	32.9849	-32.9849	1.54E+09		696	45.746	45.746	2.61E+04
311	31.3327	-31.3327	2.59E+09		735	38.0077	38.0077	6.22E+05
313	32.5776	-32.5776	1.74E+09		737	39.6124	39.6124	3.13E+05
315	38.6913	-38.6913	3.13E+08		739	40.9303	40.9303	1.80E+05
324	27.6036	-27.6036	9.58E+09		770	39.5304	-39.5304	2.54E+08
326	27.3081	27.3081	1.14E+08		772	40.0849	-40.0849	2.21E+08
328	41.4929	-41.4929	1.58E+08		774	35.6288	-35.6288	7.08E+08
330	38.7922	-38.7922	3.05E+08		776	47.4605	-47.4605	4.40E+07
332	38.7817	-38.7817	3.06E+08		778	40.3693	-40.3693	2.07E+08
334	42.6307	-42.6307	1.22E+08		780	46.4127	-46.4127	5.43E+07
343	41.1243	-41.1243	1.73E+08		789	28.8672	-28.8672	6.02E+09
345	38.4744	-38.4744	3.31E+08		791	31.7011	-31.7011	2.30E+09
347	34.1779	-34.1779	1.07E+09		793	40.3617	-40.3617	2.07E+08
349	43.0005	-43.0005	1.12E+08		795	39.5244	-39.5244	2.54E+08
351	40.9832	-40.9832	1.79E+08		797	44.2382	-44.2382	8.56E+07
353	44.4185	-44.4185	8.24E+07		799	45.0189	-45.0189	7.25E+07
361	57.4419	57.4419	3.61E+02		808	29.0771	-29.0771	5.58E+09
363	19.0437	-19.0437	5.09E+11		810	33.9815	-33.9815	1.14E+09
365	22.4641	-22.4641	8.48E+10		812	29.102	-29.102	5.53E+09
367	15.8931	-15.8931	3.76E+12		814	30.6419	-30.6419	3.25E+09
369	22.3699	22.3699	2.17E+09		816	27.0628	-27.0628	1.18E+10
371	15.508	15.508	3.82E+11		818	38.386	-38.386	3.38E+08
373	15.5529	15.5529	3.67E+11		1050	36.8343	36.8343	1.04E+06
399	39.5267	39.5267	3.24E+05		1052	53.3706	53.3706	1.52E+03
401	52.6016	52.6016	2.01E+03		1054	44.0785	44.0785	5.02E+04
403	37.3532	37.3532	8.29E+05		1085	28.1949	-28.1949	7.68E+09
634	20.1404	-20.1404	2.76E+11		1087	24.594	-24.594	3.23E+10
636	15.7057	-15.7057	4.30E+12		1089	16.7384	-16.7384	2.11E+12
638	22.9582	-22.9582	6.72E+10		1091	27.594	27.594	9.72E+07
640	25.3464	25.3464	3.47E+08		1093	13.3264	-13.3264	2.73E+13
642	17.7375	17.7375	5.92E+10		1095	29.2977	29.2977	3.90E+07
644	29.885	29.885	2.87E+07		1104	26.3451	-26.3451	1.56E+10
653	31.3885	-31.3885	2.54E+09		1106	24.199	-24.199	3.83E+10
655	29.0781	-29.0781	5.58E+09		1108	17.9735	-17.9735	9.61E+11
657	19.5303	19.5303	1.52E+10		1110	19.7118	19.7118	1.34E+10
659	28.1658	-28.1658	7.77E+09		1112	25.2257	25.2257	3.73E+08
661	32.6822	32.6822	7.12E+06		1114	12.2338	12.2338	9.60E+12
663	13.2951	13.2951	3.13E+12		1123	26.3247	-26.3247	1.57E+10
672	20.0549	-20.0549	2.89E+11		1125	18.3763	-18.3763	7.53E+11
674	25.7938	-25.7938	1.95E+10		1127	17.1936	17.1936	9.14E+10
676	21.8386	-21.8386	1.15E+11		1129	21.1188	-21.1188	1.65E+11
678	25.6166	25.6166	2.97E+08		1131	23.9665	23.9665	7.94E+08
680	13.6955	-13.6955	2.00E+13		1133	26.3294	26.3294	1.97E+08
682	28.0493	28.0493	7.58E+07					

Tabela 9: Resultados de vida à fadiga na região de carga da bronzina (cont.)

Analisando-se os dados apresentados na Tabela 9 percebe-se que os nós marcados em amarelo apresentam vida abaixo de 10^7 ciclos.

Analogamente ao exposto no item 5.9 – cálculo do coeficiente de segurança à fadiga, o nó 32 deve ser descartado.

O nó 661 apresentou um resultado de vida da ordem de 7.000.000 de ciclos. Esse valor, tendo em vista tratar-se de um teste longo, pode ser considerado como sendo de 10.000.000 de ciclos, e estaria bem próximo do limite de resistência à fadiga da peça.

Outro fator muito importante que deve ser levado em consideração é o fato de que a nucleação de uma trinca ocorre em um determinado instante. Continuando o uso do equipamento, a peça continua a ser submetida aos esforços e em conseqüência a trinca pode ou não propagar (aumentar suas dimensões), dependendo da natureza dos esforços a que esteja submetida.

Vale lembrar que esforços meramente compressivos são muito menos nocivos à propagação de trincas, enquanto que esforços trativos possibilitam grande propagação das trincas e a conseqüente falha da peça ocorrerá mais rapidamente.

Os valores encontrados de vida abaixo de 10^7 ciclos refletem, portanto, o surgimento da primeira micro-trinca na peça e não sua total falha.

O critério usado para a classificação das peças usadas é apenas visual. Quando o motor é desmontado, as bronzinas são analisadas visualmente e caso apresentem uma condição semelhante àquela ilustrada na Figura 62 a peça é considerada falhada, enquanto que se a peça apresentar uma condição semelhante à apresentada na Figura 61 ela será considerada boa.

Apesar da peça ter sido considerada não falhada, como a análise é apenas visual, micro-trincas podem estar presentes, porém, não se propagaram ao ponto de ser visualmente perceptíveis.

Desta forma, os valores obtidos de vida abaixo de 10^7 ciclos nos 19 nós assinalados em amarelo na Tabela 9 não significam necessariamente a falha da peça. Somente indicam quando a primeira micro-trinca surgirá.

5.11 Limite de resistência à fadiga ("endurance limit")

Diversos autores propuseram a Eq. XXVI, conforme já exposto anteriormente:

$$S'_L = k \times S_R$$
 Eq. XXVI

Segundo pode ser observado na Tabela 6, o limite de resistência à fadiga ("*endurance limit*") encontrado no teste foi de: S'_L = 72 MPa

Como o limite de resistência à ruptura do material é de: $S_R = 150$ MPa

Então, segundo a Eq. IV de Juvinall [23]:

$$72 = k \times 150 \Longrightarrow k = 0.48$$

Desta forma, propõe-se que o limite de resistência à fadiga para liga de alumínio estudada, em 10⁷ ciclos, pode ser estimado de acordo com a Eq. XXIX, apesar de, segundo Castro e Meggiolaro [11], diversos autores como Mitchell [33] não reconhecerem um limite de resistência à fadiga para ligas de alumínio.

$$S'_L = 0,48 \times S_R$$
 Eq. XXIX

Juvinall [23] propôs que o fator k para ligas de alumínio, em 5×10^8 ciclos fosse de 0,4. Como o ensaio foi realizado em um número menor de ciclos e tendo em vista que a liga de alumínio não está comercialmente disponível (é somente utilizada para a produção de bronzinas pela empresa), então o valor encontrado é aceitável.

5.12 Comparação dos resultados obtidos

Os resultados obtidos analítica e experimentalmente demonstraram-se coerentes, como pode ser observado pela confrontação da Figura 50. Pode-se observar claramente que o método de cálculo consegue prever onde ocorrerá nos testes a

maior solicitação na peça estudada, ou seja, a região com maior probabilidade de falha, a chamada região crítica.

A foto da esquerda ilustra uma bronzina fadigada no teste, enquanto que a ilustração da direita representa os resultados do coeficiente de segurança à fadiga calculados pela metodologia proposta.

Figura 50: Comparação dos resultados obtidos analítica e experimentalmente

Uma comparação entre os valores mais críticos do coeficiente de segurança e da vida à fadiga é apresentada na Tabela 10.

Node	SM	Nf	S. Factor
2	35.189	2.19E+06	1.566093
26	45.087	3.37E+04	1.116914
28	43.3983	6.58E+04	1.17905
30	42.3704	9.96E+04	1.219298
32	47.9537	1.12E+04	0
34	-31.6346	2.35E+09	2.275987
36	-32.5404	1.76E+09	2.212636
38	-46.9811	4.84E+07	1.532531
40	-36.8311	5.09E+08	1.954869
42	-41.274	1.67E+08	1.744439

Tabela 10: Comparação entre o	s valores do coeficiente	de segurança e de vida
-------------------------------	--------------------------	------------------------

Node	SM	Nf	S. Factor
44	-48.2335	3.79E+07	1.492738
70	40.6576	2.02E+05	1.290885
72	43.4843	6.36E+04	1.175771
74	42.0861	1.12E+05	1.230777
305	-29.3449	5.08E+09	2.45358
307	-37.3363	4.45E+08	1.928416
309	-32.9849	1.54E+09	2.182819
311	-31.3327	2.59E+09	2.297918
313	-32.5776	1.74E+09	2.210111
315	-38.6913	3.13E+08	1.860883

Tabela 10: Comparação entre os valores do coeficiente de segurança e de vida

Node	SM	Nf	S. Factor		
324	-27.6036	9.58E+09	2.608357		
326	27.3081	1.14E+08	2.156582		
328	-41.4929	1.58E+08	1.735238		
330	-38.7922	3.05E+08	1.856041		
332	-38.7817	3.06E+08	1.856545		
334	-42.6307	1.22E+08	1.688925		
343	-41.1243	1.73E+08	1.750791		
345	-38.4744	3.31E+08	1.871377		
347	-34.1779	1.07E+09	2.106623		
349	-43.0005	1.12E+08	1.674398		
351	-40.9832	1.79E+08	1.756818		
353	-44.4185	8.24E+07	1.620948		
361	57.4419	3.61E+02	0.77344		
363	-19.0437	5.09E+11	3.780783		
365	-22.4641	8.48E+10	3.205107		
367	-15.8931	3.76E+12	4		
369	22.3699	2.17E+09	2.738607		
371	15.508	3.82E+11	4		
373	15.5529	3.67E+11	4		
399	39.5267	3.24E+05	1.341553		
401	52.6016	2.01E+03	0.88878		
403	37.3532	8.29E+05	1.447544		
634	-20.1404	2.76E+11	3.574911		
636	-15.7057	4.30E+12	4		
638	-22.9582	6.72E+10	3.136134		
640	25.3464	3.47E+08	2.360645		
642	17.7375	5.92E+10	3.579206		
644	29.885	2.87E+07	1.929236		
653	-31.3885	2.54E+09	2.293835		
655	-29.0781	5.58E+09	2.476094		
657	19.5303	1.52E+10	3.206572		
659	-28.1658	7.77E+09	2.556288		
661	32.6822	7.12E+06	1.723031		
663	13.2951	3.13E+12	4		
672	-20.0549	2.89E+11	3.590141		
674	-25.7938	1.95E+10	2.791365		
676	-21.8386	1.15E+11	3.296911		
678	25.6166	2.97E+08	2.330679		
680	-13.6955	2.00E+13	4		
682	28.0493	7.58E+07	2.086908		
692	52.373	2.18E+03	0.894753		
694	49.6401	5.95E+03	0.97044		
696	45.746	2.61E+04	1.093908		

(cont.)

Node	SM	Nf	S. Factor
735	38.0077	6.22E+05	1.414351
737	39.6124	3.13E+05	1.337612
739	40.9303	1.80E+05	1.279087
770	-39.5304	2.54E+08	1.821384
772	-40.0849	2.21E+08	1.796186
774	-35.6288	7.08E+08	2.020839
776	-47.4605	4.40E+07	1.51705
778	-40.3693	2.07E+08	1.783533
780	-46.4127	5.43E+07	1.551301
789	-28.8672	6.02E+09	2.494184
791	-31.7011	2.30E+09	2.271218
793	-40.3617	2.07E+08	1.783868
795	-39.5244	2.54E+08	1.821658
797	-44.2382	8.56E+07	1.627553
799	-45.0189	7.25E+07	1.599329
808	-29.0771	5.58E+09	2.47618
810	-33.9815	1.14E+09	2.118799
812	-29.102	5.53E+09	2.474055
814	-30.6419	3.25E+09	2.349724
816	-27.0628	1.18E+10	2.660475
818	-38.386	3.38E+08	1.875682
1050	36.8343	1.04E+06	1.474701
1052	53.3706	1.52E+03	0.869056
1054	44.0785	5.02E+04	1.153449
1085	-28.1949	7.68E+09	2.553656
1087	-24.594	3.23E+10	2.927542
1089	-16.7384	2.11E+12	4
1091	27.594	9.72E+07	2.129262
1093	-13.3264	2.73E+13	4
1095	29.2977	3.90E+07	1.97753
1104	-26.3451	1.56E+10	2.732961
1106	-24.199	3.83E+10	2.975329
1108	-17.9735	9.61E+11	4
1110	19.7118	1.34E+10	3.172633
1112	25.2257	3.73E+08	2.374236
1114	12.2338	9.60E+12	4
1123	-26.3247	1.57E+10	2.735079
1125	-18.3763	7.53E+11	3.918095
1127	17.1936	9.14E+10	3.707593
1129	-21.1188	1.65E+11	3.409287
1131	23.9665	7.94E+08	2.52419
1133	26.3294	1.97E+08	2.254582

Analisando-se a Tabela 10 pode-se perceber que os cinco nós que apresentaram coeficiente de segurança à fadiga abaixo de 1 também apresentaram valores de vida abaixo do esperado (nós assinalados em rosa).

Deve-se ressaltar que as bronzinas estudadas foram projetadas tendo em vista sua utilização no motor de um automóvel de passeio, cujas condições usuais de operação são menos severas do que aquelas impostas pela máquina de ensaio de fadiga.

Como o motor da peça estudada é de quatro tempos [41] (cada ciclo, que é completado a cada 2 rotações, é composto pelas fases de admissão, compressão, combustão e exaustão), o maior esforço na bronzina é aplicado durante a fase de combustão, ou seja, uma vez por ciclo, a cada duas voltas do eixo.

O esforço na máquina de teste é aplicado na bronzina a cada volta do eixo, sendo, portanto, pelo menos duas vezes mais severo do que a condição de utilização do motor.

Como a intenção do teste é apenas validar uma metodologia de cálculo e não verificar a eficácia do projeto da peça em questão, não se deve considerar esses nós pois foram calculados de acordo com a solicitação mais severa imposta pela máquina de teste e não pela utilização ideal para a qual a peça foi projetada.

Além disso, o método StairCase determina o limite de resistência à fadiga como sendo um ponto em que 50% (metade) das peças falham e o restante não falha. Esses 4 nós são aqueles que apresentam uma maior possibilidade de nucleação de trincas e conseqüente início da falha.

Um segundo grupo de nós foi assinalado em azul na Tabela 10 e representa uma região de incerteza, uma vez que todos os 15 nós desse grupo apresentaram coeficientes de segurança maiores que 1 mas apresentaram vida abaixo de 10^7 ciclos.

Todos esses 15 nós apresentam valores de tensão média positivo, ou seja, suas tensões médias são trativas. Conforme exposto anteriormente, esse tipo de tensão média é mais crítica e ocasiona valores mais baixos de vida.

A Tabela 11 ilustra a influência do tipo de tensão média nos resultados da vida e do coeficiente de segurança à fadiga na bronzina estudada.

Os nós assinalados em verde apresentam tensão média positiva (trativa), enquanto que aqueles assinalados em amarelo apresentam tensão média negativa (compressiva). A vida dos nós sujeitos a uma tensão média trativa (nós 70 e 391) apresentam uma vida à fadiga muito inferior àqueles expostos a uma tensão média compressiva (nós 351 e 772).

Node	SA	SM	Nf	S. Factor
70	40.6576	40.6576	2.02E+05	1.290885
351	40.9832	-40.9832	1.79E+08	1.756818
391	40.7613	40.7613	1.93E+05	1.28638
772	40.0849	-40.0849	2.21E+08	1.796186

Tabela 11: Influência da tensão média no resultado da vida à fadiga

É importante salientar que os valores de vida e de coeficiente de segurança para os nós 351 e 772 são similares, assim como os valores obtidos para os nós 70 e 351, uma vez que suas tensões médias são equivalentes.

Ainda analisando a Tabela 10 pode-se perceber que para os 15 nós da chamada região de incerteza (assinalada em azul), os valores de seus coeficientes de segurança encontrados são no máximo por volta de 1,5.

Justamente por se tratar de uma região de incertezas, uma vez que durante o processo de produção das peças uma certa variação é impossível de ser eliminada, aliado ao fato já exposto que o teste StairCase representa o limite de resistência à fadiga para que 50% das peças falhem, esses nós podem estar representando justamente a variação do processo de produção, que proporciona a fabricação de materiais mais resistentes e menos resistentes, dentro de uma tolerância admitida como aceitável.

Por esses motivos, sugere-se a adoção de um critério de aprovação das peças quando da utilização da metodologia proposta. Para tanto, sugere-se que a peça seja considerada aprovada quando seus valores de coeficiente de segurança sejam iguais ou superiores a 1,5.

O terceiro grupo, composto pelos demais nós não assinalados de nenhuma cor, representa os pontos em que se tem certeza que a peça não apresentará falhas nessa região, desde que as condições de projeto assumidas sejam cumpridas durante o funcionamento usual do equipamento (presença de óleo e temperaturas compatíveis com as de projeto, ausência de contato metal-metal, e assim por diante).

6 CONCLUSÕES

Conforme exposto durante o transcorrer do trabalho, a empresa atualmente seleciona o material de uma bronzina apenas comparando os resultados de pressão do filme de óleo obtidos na simulação efetuada pelo software EXCITE [17] com os valores de uma tabela dos diversos materiais disponíveis.

Essa tabela é elaborada com base nos dados históricos de falhas computados pela companhia. Trata-se, portanto, de uma metodologia bastante empírica e não muito precisa.

Tendo em vista que o objetivo principal do presente trabalho era melhorar o projeto de novos mancais hidrodinâmicos, pode-se dizer que o mesmo conseguiu atingir sua principal meta, uma vez que a metodologia proposta apresenta um inegável avanço quando comparada com a prática atualmente empregada pela empresa na seleção de materiais além de propiciar um entendimento sobre a possibilidade de falha e uma previsão da vida de uma bronzina.

Seu emprego, portanto, propicia à empresa uma sensível vantagem competitiva, uma vez que utiliza conceitos importantes, como método dos elementos finitos, cálculo da tensão e análise da fadiga, além de possibilitar à companhia o cumprimento de um dos requisitos da norma de qualidade ISO/TS 16949 [22], que é o estudo da vida do componente.

Apesar de a informação do valor do expoente de Basquin (b) para a liga de alumínio estudada não ter sido encontrada na literatura disponível, o valor utilizado de uma outra liga, proposto durante o transcorrer do trabalho, mostrou-se coerente com a metodologia de cálculo da vida, conforme comparação efetuada.

Com relação ao coeficiente de segurança, a metodologia conseguiu prever os resultados obtidos nos experimentos. Os menores valores de coeficiente de segurança foram encontrados justamente na região em que as bronzinas testadas apresentaram maior solicitação.

Portanto, a metodologia mostrou-se perfeitamente adequada e pode ser considerada validada, tanto para o cálculo do coeficiente de segurança, quanto para o cálculo da vida, uma vez que conseguiu prever o resultado do experimento e demonstrou coerência entre os valores calculados.

Devido ao fato de algumas zonas de incerteza terem ocorrido, aliado ao fato das possíveis variações do processo produtivo do componente estudado, durante o transcorrer do trabalho foi proposta a adoção de um critério de aprovação de projeto quando da utilização da metodologia proposta.

Esse critério (aprovar o projeto caso o menor coeficiente de segurança seja pelo menos igual a 1,5) tem a única intenção de conferir uma segurança ao engenheiro que estiver utilizando a metodologia de que a peça por ele projetada não falhará durante seu uso, apesar das variações do processo de produção.

Pela prática atual, para se assegurar que uma bronzina projetada não venha a falhar por fadiga, faz-se necessária a execução dos ensaios de fadiga, que são altamente custosos e demandam uma grande quantidade de tempo.

O emprego da metodologia proposta possibilita a não execução dos referidos testes, pois a metodologia consegue prever de forma satisfatória os resultados dos mesmos, conforme pôde ser observado no transcorrer do trabalho.

Mesmo não tendo sido uma proposta inicial do trabalho, a execução do mesmo possibilitou a proposição de um limite de resistência à fadiga para a liga de alumínio da bronzina em estudo, de acordo com o proposto por Juvinall [23], apesar de diversos autores, como Mitchell [33], não reconhecerem tal limite de resistência para as ligas de alumínio.

6.1 Trabalhos futuros

Conforme já comentado, o valor do expoente de Basquin (b) não está disponível na literatura. Propõe-se, portanto, que a traçagem da curva SxN da liga de alumínio da bronzina estudada seja efetuada e que se determine o correto valor do referido

expoente, de modo que se possa conferir uma maior precisão aos cálculos da vida à fadiga pelo método proposto.

A metodologia apresentada foi validada exclusivamente para a condição de teste na máquina de ensaio de fadiga. Pressupõe-se que a mesma também seja válida para prever o funcionamento do motor, porém, há a necessidade de que ela seja confrontada com o resultado de um teste de motor, ficando como uma sugestão para futuros trabalhos.

Há a possibilidade de que a metodologia proposta, que foi validada para bronzinas bi-metálicas, também seja aplicável para os mancais fabricados com outros tipos de material, mas, para isso, outras validações experimentais são necessárias.

Além disso, a metodologia proposta tem a possibilidade de ser aplicável a quaisquer elementos mecânicos sujeitos a esforços alternados (como molas de suspensão, por exemplo), desde que se conheça os valores dos carregamentos a que o componente esteja submetido.

Porém, sua utilização para outros componentes mecânicos necessita de uma prévia validação experimental. Neste caso, não há a necessidade de se efetuar as etapas de simulação EHL, uma vez que as molas não estão sujeitas ao campo de pressão hidráulico.

É necessário, porém, que estudos para se determinar corretamente o carregamento a que as peças são submetidas quando ensaiadas em uma máquina de testes de fadiga sejam efetuados para que então esses valores sejam inseridos no modelo matemático proposto.

Os resultados então obtidos devem ser confrontados com aqueles obtidos nos experimentos para sua validação também na utilização da metodologia proposta para molas de suspensão.

Desta forma, o autor também sugere que trabalhos futuros visando a essas validações sejam efetuados.

Outra sugestão do autor seria a execução de outro modelo de elementos finitos para a aplicação das pressões, de modo que fique mais aproximada da real condição de operação. Somente foi inserida a pressão na região de carga e não em toda a superfície da bronzina, que, como foi exposto anteriormente, pode gerar alguns resultados incorretos (excessivo carregamento na região lateral da bronzina).

7 ANEXOS

Anexo 1: Resultados experimentais

		RELATÓRIO DE TESTE DE FADIGA I FATIGUE TEST REPORT						
MATERIAL/MATERIAL:						N°:		
Ensaio de Fadiga 13 - POLI						SE_1944/03_B		
NUMERO PROJETO /	PROJECT	NUMBER:		MAQUINA	/ MACHIN	E:		
SOLICITANTE / REOU	ESTED BY	<u>u</u>) MAU			DATA / DATE:		
	LÚ	CIA BEAT	RIZ			7/9/2004		
PROCEDIMENTO / PR		:	TECNICO	RESPONS	AVEL /			
TEST	TE 13		RESPONSABLE TECHNICIAN: RODRIGO ARAILIO			nio		
	PARÂME	TROSDO	TESTE / TE	ST PARAN	IETERS:			
CARGA / LOAD :	FREQU FREQU	ÊN CIA / ENCY :	ROTAÇÃO / ROTATION:		CICLOS / CYCLES:			
56 KN	35	Hz	1000	rpm	1,00E+07			
RESULTADO / RESULT:								
		Teste inte	errompido	sem falha.				
OBSERVAÇÕES/OBSERVATIONS:								

Figura 51: Resultado do teste de fadiga – bronzina 13

Anexo 1: Resultados experimentais (cont.)

Figura 52: Resultado do teste de fadiga – bronzina 12

Anexo 1: Resultados experimentais (cont.)

Figura 53: Resultado do teste de fadiga – bronzina 11

Figura 54: Resultado do teste de fadiga - bronzina 10

		F	RELATÓF FAT	NO DE TE NGUE TE	STE DE ST REPO	FADIGA I IRT		
MATERIAL/MATERIAL:								
	Ensaio	de Fadiga	9 - POLI			SE_1944/03_B		
	PROJECT	NUMBER:		MAQUINA	/ MACHIN			
SOLICITANTE / REQU	295204330 JESTED BY:				MAUI			
	LÚ	CIA BEATI	RIZ			9/8/2004		
PROCEDIMENTO / PP	OCEDURE	:	TECNICO RESPONSAVEL / RESPONSABLE TECHNICIAN:					
TESTE 09 RODRIGO ARAUJO						'nlo		
	PARÂME	etro s do	TESTE / TE	ST PARAN	IETERS:			
CARGA / LOAD :	FREQU FREQU	ÊN CIA / ENCY :	ROTA ROTA	ι ÇÃ Ο / ITION:	сіс	LOS / CYCLES:		
56 KN	35	Hz	1000 rpm 1,00E					
		RESU		SULT:				
		Teste inte	errom pido	sem falha.				
		BREBVAC	053/083		2.			
		-oochvaçi	023/083	INATION	J.			

Figura 55: Resultado do teste de fadiga – bronzina 9

Figura 56: Resultado do teste de fadiga – bronzina 8

		RELATÓF FA1	NO DE TI NGUE TE	ESTE DE ST REPO	FADIGA I PRT		
MATERIAL/MATERIA	I				N°:		
	Ensaio de Fadiga 7 - POLI S						
NÚMERO PROJETO	PROJECT NUME	BER:	MÁQUINA	A / MACHIN	E:		
	2952043300			MAUT			
SOLICITANTE / REQU	LÚCIA B	EATRIZ			2/8/2004		
	ROCEDIMENTO / PROCEDURE: TECNICO RESPONSAVEL / RESPONSABLE TECHNICIA						
TES	TE 07	RESPONS	ABLE TEC	HNICIAN:			
163	PARÂMETROS	DO TESTE / TE	ST PABAN	METERS			
CARGA/LOAD:	FREQUÊNCIA	ROTA	ÇÃO / TION:	сіс	LOS / CYCLES:		
56 KN	35 Hz	35 Hz 1000 rpm 1,00E+07					
		P					
	Ri	ESULTADO / RE	SULT:				
	reste						
	OBSER	VAÇÕES/OBSI	RVATION	S :			

Figura 57: Resultado do teste de fadiga – bronzina 7

Figura 58: Resultado do teste de fadiga – bronzina 6

Anexo 1: Resultados experimentais (cont.)

Figura 59: Resultado do teste de fadiga – bronzina 5

Figura 60: Resultado do teste de fadiga - bronzina 4

Figura 61: Resultado do teste de fadiga - bronzina 3

Anexo 1: Resultados experimentais (cont.)

Figura 62: Resultado do teste de fadiga – bronzina 2

Figura 63: Resultado do teste de fadiga - bronzina 1

Anexo 2: Resultado das tensões principais para cada nó da malha de elementos finitos (região de carga)

PRINT S NODAL SOLUTION PER NODE

***** POST1 NODAL STRESS LISTING *****

LOAD S	STEP=	1 S	UBSTE	IP=	1		
TIME=	= 1.	.0000	LC	DAD	CASE=	0	
SHELL	NODAL	RESULTS	ARE	ΑT	TOP		

NODE	S1	S2	S3	SINT	SEQV
2	70.378	-2.5248	-48.874	119.25	104.13
26	90.174	-1.1018	-33.436	123.61	111.03
28	86.797	-2.1544	-27.226	114.02	103.78
30	84.741	-1.1161	-37.048	121.79	108.39
32	95.907	0.16377	-68.076	163.98	142.68
34	47.687	0.77071	-63.269	110.96	96.472
36	45.744	1.3724	-65.081	110.83	96.611
38	1.0366	-8.1789	-93.962	94.999	90.743
40	25.930	0.72336	-73.663	99.593	89.687
42	1.4205	-2.0406	-82.548	83.968	82.292
44	3.2365	-17.118	-96.467	99.704	91.245
70	81.315	-0.76978	-52.278	133.59	116.70
72	86.968	0.20835	-61.506	148.47	129.19
74	84.172	-0.64671	-63.108	147.28	128.04
305	27.205	0.35463	-58.690	85.896	76.110
307	19.868	1.1203	-74.673	94.541	86.701
309	20.621	0.94748	-65.970	86.591	78.623
311	3.6211	0.83532	-62.665	66.286	64.938
313	4.0172	0.79926E-01	-65.155	69.172	67.290
315	1.1669	-24.675	-77.382	78.549	69.339
324	35.259	0.82988	-55.207	90.466	79.087
326	54.616	1.3133	-41.955	96.571	83.783
328	2.6154	-5.5259	-82.986	85.601	81.835
330	21.979	0.81645	-77.584	99.563	90.850
332	1.6886	-4.0434	-77.563	79.252	76.547
334	2.1216	-17.337	-85.262	87.383	79.462
343	32.376	0.83475	-82.248	114.62	102.56
345	46.049	1.3554	-76.949	123.00	107.84
347	29.518	0.85375	-68.356	97.874	87.152
349	0.93343	-21.380	-86.001	86.934	78.203
351	13.391	1.2281	-81.966	95.357	89.895
353	1.3578	-23.107	-88.837	90.195	80.790
361	114.88	42.480	-2.9476	117.83	102.93
363	14.044	-0.85372	-38.088	52.131	46.508
365	-1.1865	-18.114	-44.929	43.742	38.203
367	22.682	-1.0462	-31.787	54.468	47.301
369	44.740	-0.76913	-26.567	71.307	62.535
371	31.016	-1.1196	-28.295	59.312	51.425

Anexo 2: Resultado das tensões principais para cada nó da malha de elementos

finitos (região de carga) – cont.

***** POST1 NODAL STRESS LISTING *****

LOAD S	STEP=	1 S	UBSTEI	<u>P</u> =	1	
TIME=	- 1.	.0000	LOA	٩D	CASE=	0
SHELL	NODAL	RESULTS	ARE A	Υ	TOP	

NODE	S1	S2	S3	SINT	SEQV
373	31.106	-1.1906	-21.638	52.744	46.061
399	79.053	31.950	-2.1020	81.155	70.585
401	105.21	42.890	-2.9193	108.12	94.002
403	74.706	20.778	-2.5451	77.251	68.629
634	9.9897	-1.0561	-40.281	50.271	45.759
636	29.020	-0.75428	-31.412	60.431	52.337
638	19.293	-0.78933	-45.917	65.210	57.845
640	50.693	0.72824	-1.9176	52.611	51.339
642	35.475	-0.71566	-6.7951	42.270	39.582
644	59.770	17.878	-0.86127	60.631	53.769
653	3.7546	-5.6949	-62.777	66.532	62.346
655	6.2849	-1.4564	-58.157	64.442	60.941
657	39.060	-0.86302	-27.878	66.938	58.328
659	6.1980	-1.0099	-56.332	62.530	59.256
661	65.364	-0.43004	-5.5034	70.868	68.472
663	26.591	-0.94932	-18.796	45.387	39.604
672	5.3132	-3.4458	-40.110	45.423	41.739
674	-0.85089	-6.7409	-51.587	50.737	48.063
676	6.8186	-1.4505	-43.678	50.496	46.911
678	51.233	-0.82245	-12.005	63.238	58.454
680	27.053	-0.92104	-27.391	54.444	47.156
682	56.099	9.1148	-0.97290	57.072	52.756
692	104.74	-1.9874	-25.017	129.76	119.91
694	99.280	-2.5913	-33.159	132.44	120.11
696	91.492	-0.40662	-31.549	123.04	110.80
735	76.016	-0.62363	-65.576	141.59	122.76
737	79.225	0.45196	-60.913	140.14	121.67
739	81.861	-0.88755	-53.680	135.54	118.33
770	28.924	0.70879	-79.060	107.98	97.004
772	45.778	1.3160	-80.170	125.95	110.63
774	27.908	0.78992	-71.258	99.166	88.770
776	0.93727	-22.221	-94.922	95.859	86.633
778	13.850	1.0920	-80.739	94.588	88.899
780	1.0573	-21.573	-92.825	93.882	84.861
789	49.823	1.0692	-57.734	107.56	93.283
791	35.451	1.2759	-63.403	98.854	86.958
793	5.3214	-0.91694	-80.723	86.044	83.101
795	5.6538	0.57939	-79.049	84.702	82.283

Anexo 2: Resultado das tensões principais para cada nó da malha de elementos

finitos (região de carga) – cont.

***** POST1 NODAL STRESS LISTING *****

LOAD S	STEP=	1 S	UBSTI	EP=	1	
TIME=	= 1.	.0000	L(DAD	CASE=	0
SHELL	NODAL	RESULTS	ARE	AT	TOP	

NODE	S1	S2	S3	SINT	SEQV
797	21.634	1.2366	-88.477	110.11	101.46
799	0.90817	-26.984	-90.038	90.946	80.700
808	30.360	1.0425	-58.154	88.514	78.098
810	40.640	1.2203	-67.963	108.60	95.223
812	14.978	-0.13055	-58.204	73.182	66.919
814	3.1616	0.95755	-61.284	64.445	63.372
816	15.318	0.87011	-54.126	69.444	63.466
818	1.0219	-39.839	-76.772	77.794	67.400
1050	73.668	19.196	-2.4869	76.155	67.959
1052	106.74	43.426	-2.8569	109.60	95.299
1054	88.157	36.493	-2.2506	90.408	78.562
1085	-0.78666	-8.7388	-56.389	55.603	52.084
1087	-1.3392	-5.2392	-49.188	47.848	46.023
1089	21.642	-1.2940	-33.477	55.119	47.958
1091	55.188	-0.67436	-15.570	70.757	64.611
1093	17.977	-1.2040	-26.653	44.629	38.777
1095	58.596	15.113	-0.88134	59.477	53.311
1104	6.8650	-1.0737	-52.690	59.555	56.009
1106	-0.99487	-7.3117	-48.398	47.403	44.582
1108	20.253	-0.91052	-35.947	56.201	49.163
1110	39.424	-0.78298	-25.490	64.914	56.749
1112	50.452	-0.44600	-6.4439	56.895	54.146
1114	24.468	-1.0319	-20.399	44.867	38.976
1123	3.3987	-1.3814	-52.649	56.048	53.817
1125	18.255	-1.3951	-36.752	55.007	48.280
1127	34.387	-0.82925	-15.369	49.756	44.313
1129	18.544	-0.81295	-42.238	60.782	53.783
1131	47.933	-0.87677	-9.5867	57.520	53.697
1133	52.659	6.5633	-1.7654	54.425	50.775
MINIMUM	VALUES				
NODE	1087	818	44	642	365
VALUE	-1.3392	-39.839	-96.467	42.270	38.203
MAXIMUM	VALUES				
NODE	361	1052	644	32	32
VALUE	114.88	43.426	-0.86127	163.98	142.68

Anexo 3: Listagem das tensões de Von Mises, médias, alternadas e dos cossenos

diretores para cada nó da malha de elementos finitos da bronzina estudada

Node	Sa maior	Sa equiv	Sm proj	I	m	n	Sa von mises	Sm von mises	S1 von mises	S2 von mises
1	-48.3235	0	48.3235	-0.0001	-0.9999	0.0149	46.6176	46.6176	93.2352	0
2	-35.189	0	35.189	-0.0455	0.1887	0.981	52.0626	52.0626	104.1252	0
4	-49.8469	0	49.8469	-0.1045	0.9945	0.0074	48.5137	48.5137	97.0275	0
6	-47.7402	0	47.7402	-0.2077	0.9775	0.0376	46.3453	46.3453	92.6907	0
8	-46.9536	0	46.9536	-0.3078	0.9489	0.069	46.0462	46.0462	92.0924	0
10	-42.8947	0	42.8947	-0.405	0.909	0.0984	41.9527	41.9527	83.9053	0
12	-40.6532	0	40.6532	-0.4935	0.8564	0.1522	40.0903	40.0903	80.1806	0
14	-35.6606	0	35.6606	-0.5743	0.7918	0.208	34.9751	34.9751	69.9501	0
16	-32.931	0	32.931	-0.639	0.7119	0.2914	33.1482	33.1482	66.2963	0
18	-27.8389	0	27.8389	-0.6795	0.6113	0.4056	28.1332	28.1332	56.2663	0
20	-26.8821	0	26.8821	-0.6882	0.5048	0.521	29.573	29.573	59.1459	0
22	-26.7365	0	26.7365	-0.6143	0.3461	0.7091	30.6251	30.6251	61.2501	0
24	-33.6951	0	33.6951	-0.441	0.3013	0.8454	43.3271	43.3271	86.6541	0
26	-45.087	0	45.087	-0.2081	0.2078	0.9558	55.5157	55.5157	111.0314	0
28	-43.3983	0	43.3983	-0.1073	0.1974	0.9744	51.8919	51.8919	103.7838	0
30	-42.3704	0	42.3704	-0.0503	0.1285	0.9904	54.1932	54.1932	108.3864	0
32	-47.9537	0	47.9537	0.003	-0.1201	0.9928	71.3392	71.3392	142.6784	0
34	31.6346	0	-31.6346	-0.9996	-0.0138	0.0247	48.2361	48.2361	96.4722	0
36	32 5404	0	-32 5404	1	0.0038	0.004	48 305	48 305	96 6101	0
38	46.9811	0	-46 9811	1	0.0039	0.0067	45 3714	45 3714	90 7427	0
40	36 8311	0	-36 8311	-1	-0.0015	0.009	44 8431	44 8431	89 6862	0
42	41 274	0	-41 274	-1	-0.0031	0.0017	41 1463	41 1463	82 2926	0
44	48 2335	0	-48 2335	0 0088	0.0058	0.0017	45 6225	45 6225	01 245	0
46	-21 3565	0	21 3565		1	0.0402	21 22/1	21 22/1	12 1/81	0
40	-23 101	0	21.0000	-0.0004	0 00/5	0.0040	23 6350	21.2241	47 2718	0
50	-23.101	0	21 1881	-0.1040	0.3343	0.0000	21.0355	21.0355	47.2710	0
52	20.86	0	21.1001	-0.2000	0.970	0.0031	21.0755	21.07.00	42.1309	0
52	-20.00	0	20.00	-0.3067	0.9011	0.004	16 9/69	21.3930	42.7070	0
56	14 5260	0	14 5260	-0.4077	0.9131	0.001	15.0400	10.0400	20.0240	0
50	-14.5309	0	0 5444	-0.4997	0.0002	0.0004	15.0175	10.0170	10.0349	0
58	-8.5441	0	8.5441	0.5911	-0.8066	0.0035	8.4092	8.409Z	10.9385	0
00	-4.2704	0	4.2704	-0.0737	0.7300	0.0255	4.7045	4.7040	9.529	0
62	3.5118	0	-3.5118	-0.7128	0.701	0.0222	3.5008	3.5008	7.1330	0
64	8.8027	0	-8.8027	-0.7814	0.624	0.003	8.6491	8.6491	17.2982	0
66	15.5197	0	-15.5197	-0.8186	0.5741	0.0201	15.259	15.259	30.5181	0
68	-22.027	0	22.027	-0.0589	-0.1033	0.9929	37.3953	37.3953	74.7906	0
70	-40.6576	0	40.6576	-0.046	-0.1571	0.9865	58.3505	58.3505	116.701	0
72	-43.4843	0	43.4843	-0.0243	-0.1189	0.9926	64.5954	64.5954	129.1908	0
74	-42.0861	0	42.0861	-0.0217	-0.1581	0.9872	64.0185	64.0185	128.037	0
77	-46.5328	0	46.5328	0	-1	0.0099	45.1556	45.1556	90.3112	0
79	-41.8262	0	41.8262	0.0001	-1	0.0055	40.5584	40.5584	81.1169	0
81	-38.0448	0	38.0448	0.0002	-1	0.0029	37.2668	37.2668	74.5336	0
83	-33.7593	0	33.7593	0	1	0.0031	33.2184	33.2184	66.4368	0
85	-30.2011	0	30.2011	-0.0002	1	0.0059	30.101	30.101	60.2021	0
87	-25.9014	0	25.9014	-0.0002	1	0.0059	25.8276	25.8276	51.6552	0
96	-46.073	0	46.073	-0.1043	0.9945	0.0116	44.6541	44.6541	89.3082	0
98	-42.8021	0	42.8021	-0.1043	0.9944	0.0158	41.8194	41.8194	83.6388	0
100	-38.4988	0	38.4988	-0.1044	0.9944	0.017	37.6296	37.6296	75.2593	0
102	-34.7737	0	34.7737	-0.1043	0.9943	0.0199	34.4154	34.4154	68.8307	0
104	-30.3024	0	30.3024	-0.1045	0.9943	0.0233	29.9638	29.9638	59.9277	0
106	-26.4604	0	26.4604	-0.104	0.9945	0.0144	26.6461	26.6461	53.2922	0
115	-46.2144	0	46.2144	-0.2076	0.9774	0.0401	45.1723	45.1723	90.3445	0
117	-41.5291	0	41.5291	-0.2073	0.9774	0.0412	40.4523	40.4523	80.9046	0

Node	Sa maior	Sa equiv	Sm proj	I	m	n	Sa von mises	Sm von mises	S1 von mises	S2 von mises
119	-37.813	0	37.813	-0.2075	0.9774	0.0396	37.2109	37.2109	74.4218	0
121	-33.3413	0	33.3413	-0.2079	0.9773	0.0411	32.9836	32.9836	65.9672	0
123	-29.7705	0	29.7705	-0.2075	0.9777	0.0335	29.718	29.718	59.436	0
125	-25.7313	0	25.7313	-0.2075	0.9779	0.0265	25.6794	25.6794	51.3587	0
134	-43.2971	0	43.2971	-0.3078	0.9489	0.0704	42.1384	42.1384	84.2769	0
136	-40.0228	0	40.0228	-0.3079	0.9489	0.0695	39.3303	39.3303	78.6605	0
138	-35.8527	0	35.8527	-0.3082	0.9491	0.0653	35.1708	35.1708	70.3416	0
140	-32.0336	0	32.0336	-0.308	0.9491	0.0652	31.8558	31.8558	63.7116	0
142	-27.6672	0	27.6672	-0.3081	0.9496	0.0587	27.5376	27.5376	55.0752	0
144	-23.897	0	23.897	-0.3083	0.9502	0.045	24.0673	24.0673	48.1345	0
153	-41.2638	0	41.2638	-0.4046	0.9087	0.1031	40.5567	40.5567	81.1134	0
155	-36.822	0	36.822	-0.4037	0.9085	0.1081	36.0357	36.0357	72.0715	0
157	-33.051	0	33.051	-0.4043	0.9087	0.1041	32.663	32.663	65.326	0
159	-28.6295	0	28.6295	-0.4044	0.9095	0.0959	28.5168	28.5168	57.0336	0
161	-25.0488	0	25.0488	-0.4054	0.9102	0.0848	25.1615	25.1615	50.3231	0
163	-21.1774	0	21.1774	-0.4058	0.9119	0.0605	21.2009	21.2009	42.4017	0
172	-36.7452	0	36.7452	-0.4937	0.8566	0.1498	36.1155	36.1155	72.231	0
174	-33.4983	0	33.4983	-0.4941	0.8562	0.1508	33.1912	33.1912	66.3824	0
176	-29.2595	0	29.2595	-0.4943	0.8568	0.1468	28.858	28.858	57.7159	0
178	-25.4884	0	25.4884	-0.4941	0.8572	0.1454	25.5793	25.5793	51.1585	0
180	-21.3201	0	21.3201	-0.4946	0.8592	0.1313	21.3033	21.3033	42.6067	0
182	-17.4526	0	17.4526	-0.4965	0.8623	0.0997	17.7734	17.7734	35.5468	0
191	-33.3552	0	33.3552	-0.5745	0.7914	0.2091	32.9952	32.9952	65.9903	0
193	-29.1356	0	29.1356	-0.5732	0.7889	0.2213	28.9267	28.9267	57.8534	0
195	-24.793	0	24.793	-0.5728	0.7892	0.2215	24.8626	24.8626	49.7253	0
197	-20.4883	0	20.4883	-0.5733	0.7907	0.2145	20.6873	20.6873	41.3745	0
199	-16.6847	0	16.6847	-0.5769	0.793	0.1956	17.0345	17.0345	34.069	0
201	-12.7939	0	12.7939	-0.5799	0.7991	0.1589	12.9528	12.9528	25.9055	0
210	-28.7726	0	28.7726	-0.6348	0.707	0.3117	28.6681	28.6681	57.3361	0
212	-24.3467	0	24.3467	-0.6308	0.6999	0.335	24.6648	24.6648	49.3297	0
214	-19.9741	0	19.9741	-0.6317	0.7021	0.3287	20.3174	20.3174	40.6349	0
216	-15.5601	0	15.5601	-0.6292	0.7041	0.329	16.1973	16.1973	32.3947	0
218	-11.6974	0	11.6974	-0.6299	0.7013	0.3337	12.307	12.307	24.614	0
220	-7.4966	0	7.4966	-0.6325	0.7087	0.3127	8.1104	8.1104	16.2209	0
229	-24.6767	0	24.6767	-0.6746	0.6032	0.4255	25.5841	25.5841	51.1683	0
231	-20.0533	0	20.0533	-0.6546	0.5894	0.4734	20.9672	20.9672	41.9343	0
233	-15.2609	0	15.2609	-0.6521	0.5801	0.488	16.4372	16.4372	32.8745	0
235	-10.7658	0	10.7658	-0.6239	0.566	0.5389	12.2639	12.2639	24.5279	0
237	-6.6286	0	6.6286	-0.6156	0.5363	0.5774	8.3556	8.3556	16.7112	0
239	-2.7666	0	2.7666	-0.539	0.4705	0.6986	4.5959	4.5959	9.1918	0
248	-22.9861	0	22.9861	-0.6488	0.4642	0.603	25.0853	25.0853	50.1706	0
250	-16.3097	0	16.3097	-0.6245	0.4385	0.6463	18.9769	18.9769	37.9538	0
252	-12.0782	0	12.0782	-0.5929	0.4084	0.694	15.5666	15.5666	31.1332	0
254	-7.3705	0	7.3705	-0.5249	0.3678	0.7676	11.9652	11.9652	23.9305	0
256	6.7643	0	-6.7643	0.6661	-0.5253	0.5295	9.5392	9.5392	19.0784	0
258	8.2844	0	-8.2844	0.7525	-0.5721	0.3263	8.9476	8.9476	17.8951	0
267	-19.7773	0	19.7773	-0.6033	0.3249	0.7283	25.7153	25.7153	51.4307	0
269	-16.6848	0	16.6848	-0.558	0.2775	0.7821	22.4793	22.4793	44.9587	0
271	-10.6763	0	10.6763	-0.4887	0.2161	0.8453	17.9835	17.9835	35.9671	0
273	10.5812	0	-10.5812	0.7675	-0.4918	0.4112	15.6172	15.6172	31.2343	0
275	11.8016	0	-11.8016	0.7603	-0.5423	0.3576	14.1135	14.1135	28.227	0

Node	Sa maior	Sa equiv	Sm proj	I	m	n	Sa von mises	Sm von mises	S1 von mises	S2 von mises
277	13.478	0	-13.478	0.8268	-0.5423	0.1493	14.7	14.7	29.4	0
286	-26.0908	0	26.0908	-0.4249	0.1756	0.888	40.571	40.571	81.1419	0
288	16.9989	0	-16.9989	0.7545	-0.5166	0.4048	29.2724	29.2724	58.5449	0
290	19.3773	0	-19.3773	0.7977	-0.4684	0.3798	23.5673	23.5673	47.1346	0
292	23.4843	0	-23.4843	0.8317	-0.4584	0.3133	26.0682	26.0682	52.1363	0
294	27.1486	0	-27.1486	0.8667	-0.4694	0.1688	29.3681	29.3681	58.7363	0
296	27.9646	0	-27.9646	0.8681	-0.4633	0.1781	26.3982	26.3982	52.7964	0
305	29.3449	0	-29.3449	0.9211	-0.3328	0.2019	38.0546	38.0546	76.1093	0
307	37.3363	0	-37.3363	0.9277	-0.3269	0.1805	43.3503	43.3503	86.7006	0
309	32.9849	0	-32.9849	0.9109	-0.3358	0.2399	39.3109	39.3109	78.6218	0
311	31.3327	0	-31.3327	0.9238	-0.3448	0.1665	32.4693	32.4693	64.9385	0
313	32.5776	0	-32.5776	0.9418	-0.3128	0.1236	33.6452	33.6452	67.2903	0
315	38.6913	0	-38.6913	0.9421	-0.3277	0.0711	34.6696	34.6696	69.3393	0
324	27.6036	0	-27.6036	0.9428	-0.2047	0.2632	39.5437	39.5437	79.0874	0
326	-27.3081	0	27.3081	-0.1427	0.0301	0.9893	41.8919	41.8919	83.7838	0
328	41.4929	0	-41.4929	0.9792	-0.2023	0.0184	40.9174	40.9174	81.8349	0
330	38.7922	0	-38.7922	0.9738	-0.1931	0.1198	45.425	45.425	90.85	0
332	38.7817	0	-38.7817	0.9594	-0.2357	0.1552	38.2735	38.2735	76.5471	0
334	42.6307	0	-42.6307	0.9771	-0.2127	0.0028	39.7305	39.7305	79.461	0
343	41.1243	0	-41.1243	0.9911	-0.1153	0.0668	51.2791	51.2791	102.5582	0
345	38.4744	0	-38.4744	0.9917	-0.1194	0.0478	53.9181	53.9181	107.8362	0
347	34.1779	0	-34.1779	0.9898	-0.1093	0.0912	43.5759	43.5759	87.1519	0
349	43.0005	0	-43.0005	0.9886	-0.107	0.1057	39.1015	39.1015	78.203	0
351	40.9832	0	-40.9832	0.9926	-0.1206	0.012	44.9476	44.9476	89.8952	0
353	44.4185	0	-44.4185	-0.9949	0.1001	0.0154	40.395	40.395	80.79	0
361	-57.4419	0	57.4419	0.0045	-0.117	0.9931	51,4663	51,4663	102.9326	0
363	19.0437	0	-19.0437	-0.9937	-0.0177	0.1109	23.2537	23.2537	46.5075	0
365	22.4641	0	-22.4641	-0.9988	-0.0187	0.0462	19.1014	19.1014	38.2027	0
367	15.8931	0	-15.8931	0.9976	0.0077	0.0687	23.6502	23.6502	47.3004	0
369	-22.3699	0	22,3699	-0.0767	-0.0023	0.9971	31.2674	31.2674	62,5348	0
371	-15 508	0	15 508	-0.0086	0 0049	1	25 7125	25 7125	51 425	0
373	-15.5529	0	15.5529	-0.0039	-0.1092	0.994	23.03	23.03	46.06	0
375	-66.0011	0	66.0011	0.0009	-1	0.004	66.3593	66.3593	132,7187	0
377	-66 503	0	66 503	-0 1047	0 9945	0.0008	66 7122	66 7122	133 4243	0
379	-63.4978	0	63,4978	-0.2076	0.9782	0.0117	63.6542	63.6542	127.3083	0
381	-62.0711	0	62.0711	-0.308	0.9514	0.0043	62.3385	62.3385	124.677	0
383	-57.6504	0	57.6504	-0.4055	0.9137	0.0261	57.794	57.794	115.588	0
385	-54.826	0	54.826	-0.4981	0.8671	0.0084	54.8963	54.8963	109.7925	0
387	-49.6166	0	49.6166	-0.5856	0.8095	0.0423	49.865	49.865	99,7301	0
389	-46 1615	0	46 1615	-0.6656	0 7462	0.0121	46 16	46 16	92 32	0
391	-40.7613	0	40.7613	-0.7386	0.6715	0.0593	41.2641	41.2641	82.5282	0
393	-37.6282	0	37.6282	-0.8001	0.5998	0.0131	37.352	37.352	74,704	0
395	-30,4403	0	30,4403	-0.8547	0.5043	0.1229	33,156	33.156	66.3119	0
397	-35,308	0	35.308	-0.6488	0.2875	0.7046	32.523	32.523	65.046	0
399	-39 5267	0	39 5267	-0 2003	-0.0428	0 9788	35 2926	35 2926	70 5851	0
401	-52 6016	0	52 6016	-0.0288	-0 1195	0 9924	46 9998	46 9998	93 9997	0
403	-37,3532	0	37.3532	-0.0334	-0.1213	0.9921	34.3148	34.3148	68.6295	0
406	-50,9726	0	50,9726	0.0005	-0.9997	0.0239	49,618	49,618	99,236	0
408	-56.058	0	56.058	0.0003	-0.9997	0.025	54,3845	54,3845	108,769	0
410	-58,2981	0	58,2981	0.0001	-0.9996	0.0278	57.0871	57.0871	114,1742	0
412	-63.3723	0	63.3723	0.0002	-0.9997	0.0248	62.1005	62.1005	124.201	0
										-

Node	Sa maior	Sa equiv	Sm proj	I	m	n	Sa von mises	Sm von mises	S1 von mises	S2 von mises
414	-64.1483	0	64.1483	0.0006	-0.9997	0.0247	63.5524	63.5524	127.1048	0
416	-67.4714	0	67.4714	-0.0002	-0.9999	0.013	67.3069	67.3069	134.6138	0
425	-52.1499	0	52.1499	-0.1044	0.9945	0.0052	50.6769	50.6769	101.3539	0
427	-54.5252	0	54.5252	-0.1044	0.9945	0.0046	53.2208	53.2208	106.4416	0
429	-59.1238	0	59.1238	-0.1048	0.9945	0.0025	57.8815	57.8815	115.763	0
431	-60.8449	0	60.8449	0.1042	-0.9946	0.0004	60.0412	60.0412	120.0824	0
433	-65.2064	0	65.2064	-0.1048	0.9945	0.0024	64.496	64.496	128.9921	0
435	-65.2198	0	65.2198	-0.1043	0.9945	0.0026	65.0571	65.0571	130.1142	0
444	-50.0451	0	50.0451	-0.2076	0.9777	0.0307	49.0281	49.0281	98.0562	0
446	-54.7922	0	54.7922	-0.2077	0.9777	0.0307	53.59	53.59	107.18	0
448	-56.6957	0	56.6957	-0.2075	0.9779	0.0273	55.5598	55.5598	111.1196	0
450	-60.6634	0	60.6634	-0.2078	0.9778	0.0262	59.9197	59.9197	119.8394	0
452	-61.6763	0	61.6763	-0.2077	0.978	0.0212	61.1996	61.1996	122.3991	0
454	-64.3584	0	64.3584	-0.2077	0.978	0.0165	64.3898	64.3898	128.7796	0
463	-49.0543	0	49.0543	-0.3083	0.9493	0.0617	47.9447	47.9447	95.8894	0
465	-51.3813	0	51.3813	-0.308	0.9494	0.0611	50.3478	50.3478	100.6957	0
467	-55.651	0	55.651	-0.3083	0.9497	0.0544	54.8142	54.8142	109.6284	0
469	-57.4042	0	57.4042	-0.3084	0.95	0.0485	56.6916	56.6916	113.3831	0
471	-60.831	0	60.831	-0.3088	0.9503	0.0386	60.3024	60.3024	120.6047	0
473	-60.8222	0	60.8222	-0.3089	0.9507	0.0281	60.7441	60.7441	121.4881	0
482	-45.5481	0	45.5481	-0.4042	0.9096	0.0966	44.7727	44.7727	89.5454	0
484	-49.8382	0	49.8382	-0.405	0.9099	0.0899	48.9332	48.9332	97.8664	0
486	-51.6185	0	51.6185	-0.405	0.9103	0.0856	50.952	50.952	101.904	0
488	-55.2605	0	55.2605	-0.4055	0.9111	0.074	54.6082	54.6082	109.2164	0
490	-56.2212	0	56.2212	-0.4053	0.9122	0.0605	56.0045	56.0045	112.009	0
492	-58.6243	0	58.6243	-0.4065	0.9127	0.0413	58.5533	58.5533	117.1066	0
501	-43.0418	0	43.0418	-0.4946	0.8577	0.1407	42.2276	42.2276	84.4552	0
503	-45.3125	0	45.3125	-0.4948	0.8589	0.1321	44.6456	44.6456	89.2913	0
505	-49.4623	0	49.4623	-0.4963	0.8604	0.1161	48.8464	48.8464	97.6929	0
507	-50.7953	0	50.7953	-0.4959	0.8614	0.1096	50.5023	50.5023	101.0047	0
509	-53.8211	0	53.8211	-0.4979	0.8631	0.0843	53.4986	53.4986	106.9971	0
511	-53.7018	0	53.7018	-0.4984	0.8652	0.0543	53.7219	53.7219	107.4438	0
520	-38.3392	0	38.3392	-0.5753	0.7945	0.1945	38.078	38.078	76.1561	0
522	-42.896	0	42.896	-0.5783	0.7965	0.1764	42.3649	42.3649	84.7298	0
524	-44.7706	0	44.7706	-0.5786	0.7989	0.1644	44.3757	44.3757	88.7513	0
526	-48.6326	0	48.6326	-0.5815	0.8013	0.1403	48.3374	48.3374	96.6749	0
528	-48.8087	0	48.8087	-0.5827	0.8045	0.1154	48.6845	48.6845	97.3689	0
530	-50.8931	0	50.8931	-0.5857	0.8069	0.076	51.0448	51.0448	102.0895	0
539	-36.0148	0	36.0148	-0.6432	0.7175	0.2672	35.7894	35.7894	71.5788	0
541	-38.254	0	38.254	-0.6479	0.7212	0.2452	38.1192	38.1192	76.2383	0
543	-42.4857	0	42.4857	-0.653	0.7268	0.213	42.1666	42.1666	84.3333	0
545	-44.0081	0	44.0081	-0.6561	0.7314	0.1861	43.9478	43.9478	87.8956	0
547	-46.9945	0	46.9945	-0.6615	0.7364	0.1421	46.6962	46.6962	93.3924	0
549	-45.791	0	45.791	-0.6653	0.7407	0.0937	45.9486	45.9486	91.8973	0
558	-31.7027	0	31.7027	-0.6908	0.629	0.3566	32.4996	32.4996	64.9991	0
560	-36.4269	0	36.4269	-0.7031	0.6341	0.3218	36.2433	36.2433	72.4866	0
562	-38.6222	0	38.6222	-0.7088	0.6424	0.2913	38.7753	38.7753	77.5506	0
564	-42.5766	0	42.5766	-0.7173	0.6493	0.2529	42.4382	42.4382	84.8764	0
566	-42.0529	0	42.0529	-0.7258	0.6589	0.1978	42.3549	42.3549	84.7097	0
568	-43.4282	0	43.4282	-0.7362	0.6643	0.1295	43.4853	43.4853	86.9705	0
577	-31.7052	0	31.7052	-0.7095	0.5244	0.4708	32.5413	32.5413	65.0825	0

(cont.)

Node	Sa maior	Sa equiv	Sm proj	I	m	n	Sa von mises	Sm von mises	S1 von mises	S2 von mises
579	-32.6603	0	32.6603	-0.7342	0.536	0.4168	33.9966	33.9966	67.9932	0
581	-37.9562	0	37.9562	-0.7485	0.5521	0.3673	37.3286	37.3286	74.6572	0
583	-39,4344	0	39,4344	-0.7623	0.5633	0.3188	39,9597	39.9597	79,9193	0
585	-42.4509	0	42.4509	-0.7781	0.574	0.2553	41.594	41.594	83.1881	0
587	-39.9327	0	39.9327	-0.7958	0.5832	0.1628	40.0512	40.0512	80.1024	0
596	-22 6649	0	22 6649	-0 7143	0 4232	0 5574	29 798	29 798	59 5959	0
598	-33,4803	0	33,4803	-0.721	0.4261	0.5464	32.825	32.825	65.65	0
600	-29.8446	0	29.8446	-0.7566	0.4347	0.4885	33,4872	33.4872	66.9745	0
602	-36.0073	0	36.0073	-0.7477	0.4425	0.4951	35,1952	35.1952	70.3905	0
604	-32.6419	0	32.6419	-0.8087	0.4685	0.3557	35.4107	35.4107	70.8215	0
606	-37.5103	0	37.5103	-0.8232	0.4815	0.3008	36.4718	36.4718	72.9437	0
615	19 1808	0	-19 1808	0 7123	-0 2237	0.6653	32 295	32 295	64 59	0
617	15 8211	0	-15 8211	0.6777	-0 1583	0 7181	25 3573	25 3573	50 7145	0
619	-27 8068	0	27 8068	-0.6583	0.3621	0 6599	26 6179	26 6179	53 2359	0
621	-20 2545	0	20 2545	-0.5972	0.3579	0 7178	23 4166	23 4166	46 8332	0
623	-27 6596	0	27 6596	-0.6531	0.3547	0.6691	32 7743	32 7743	65 5486	0
625	-25 589	0	25 589	-0.6935	0.3494	0.63	29 4439	29 4439	58 8878	0
634	20.000	0	-20.000	0.0000	-0 2502	0.537	22 8703	20.4400	45 7585	0
636	15 7057	0	-15 7057	0.0020	-0.2002	0.007	26 1682	26 1682	52 3365	0
638	22 9582	0	-22 9582	0.7040	-0 2509	0.0002	28 9224	28 9224	57 8449	0
640	-25 3464	0	25 3/6/	-0.4882	0.2303	0.9000	25 6603	25 6603	51 3385	0
642	-17 7375	0	17 7375	-0.4002	0.145	0.0000	10 7000	10 7000	30 5818	0
644	-20.885	0	20.885	-0.4306	0.1170	0.0325	26 8846	26 8846	53 7603	0
653	21 2995	0	29.000	-0.4390	0.1090	0.0915	20.0040	20.0040	62 3450	0
655	20.0791	0	20 0791	0.0003	0.2104	0.4211	30.4701	30.4701	60 0401	0
657	10 5202	0	-29.0701	0.919	-0.1577	0.3013	20 1642	20.4701	50 220E	0
650	-19.0000	0	19.0000	-0.302	0.0773	0.9502	29.1042	29.1042	50.3203	0
661	20.1000	0	20.1000	0.935	-0.1020	0.3042	29.0270	29.0270	68 4725	0
662	12 2051	0	12 2051	-0.2937	0.0319	0.9547	10 0010	10 0010	20 6026	0
670	-13.2951	0	13.2901	-0.1997	-0.0373	0.9792	19.0010	19.0010	39.0030	0
674	20.0049	0	-20.0349	0.9340	-0.143	0.3231	20.0093	20.0093	41.7300	0
676	20.7930	0	-20.7900	0.9713	-0.0904	0.2174	24.0310	24.0310	40.0032	0
070	21.0300	0	-21.0300	0.9004	-0.1013	0.1131	23.4000	23.4000	40.9111	0
0/8	-25.0100	0	25.0100	-0.1082	0.0234	0.9939	29.2273	29.2273	58.4540	0
680	13.6955	0	-13.6955	0.978	-0.0446	0.2036	23.5779	23.5779	47.1557	0
682	-28.0493	0	28.0493	0.0048	-0.0562	0.9984	26.378	20.378	52.750	0
690	-48.3841	0	48.3841	0.0002	-0.9999	0.0138	46.7085	46.7085	93.4169	0
692	-52.373	0	52.373	0.0432	0.1434	0.9887	59.9591	59.9591	119.9182	0
694	-49.6401	0	49.6401	0.0791	0.1843	0.9797	60.0544	60.0544	120.1089	0
696	-45.746	0	45.746	0.2656	0.2056	0.9419	55.4012	55.4012	110.8024	0
698	-33.1353	0	33.1353	0.4551	0.3054	0.8364	43.9575	43.9575	87.9149	0
700	-26.6031	0	26.6031	0.6187	0.35	0.7034	30.5698	30.5698	61.1395	0
702	-26.9994	0	26.9994	0.6889	0.5038	0.5212	29.7084	29.7084	59.4169	0
704	-27.8684	0	27.8684	0.6799	0.6122	0.4038	28.1668	28.1668	56.3336	0
706	-33.0644	0	33.0644	0.6386	0.7114	0.2934	33.1905	33.1905	66.381	0
708	-35.6206	0	35.6206	0.5756	0.7918	0.2043	35.0076	35.0076	70.0152	0
710	-40.7197	0	40.7197	0.4935	0.8567	0.1499	40.1957	40.1957	80.3915	0
712	-43.1648	0	43.1648	0.4043	0.9089	0.1026	42.1534	42.1534	84.3068	0
714	-46.8487	0	46.8487	0.3081	0.9487	0.0708	45.8977	45.8977	91.7954	0
716	-47.8456	0	47.8456	0.2082	0.9773	0.0385	46.4421	46.4421	92.8842	0
718	-49.9569	0	49.9569	0.1046	0.9945	0.0102	48.7255	48.7255	97.451	0
720	-21 4005	0	21 4 9 9 5	0 0006	1	0 0048	21 3210	21 3210	42 6430	0

Node	Sa maior	Sa equiv	Sm proj	I	m	n	Sa von mises	Sm von mises	S1 von mises	S2 von mises
722	-46.7482	0	46.7482	-0.0001	-1	0.0097	45.3888	45.3888	90.7776	0
724	-41.9381	0	41.9381	-0.0001	-1	0.004	40.6697	40.6697	81.3393	0
726	-38.2462	0	38.2462	0	-1	0.0021	37.4771	37.4771	74.9543	0
728	-33.9543	0	33.9543	0.0002	1	0.005	33.3676	33.3676	66.7353	0
730	-30.033	0	30.033	-0.0002	1	0.0006	30.0014	30.0014	60.0028	0
732	-25.9362	0	25.9362	-0.0001	0.9999	0.0102	25.8784	25.8784	51.7569	0
735	-38.0077	0	38.0077	0.0202	-0.1658	0.986	61.3802	61.3802	122.7604	0
737	-39.6124	0	39.6124	0.0134	-0.1164	0.9931	60.8374	60.8374	121.6748	0
739	-40.9303	0	40.9303	0.0557	-0.1567	0.9861	59.167	59.167	118.3339	0
741	-21.7481	0	21.7481	0.062	-0.106	0.9924	37.473	37.473	74.946	0
743	15.2215	0	-15.2215	0.8165	0.5771	0.0171	15.0254	15.0254	30.0507	0
745	8.9386	0	-8.9386	0.7815	0.6239	0.0051	8.7748	8.7748	17.5496	0
747	3.4493	0	-3.4493	0.7116	0.7021	0.0259	3.5406	3.5406	7.0811	0
749	-4.2766	0	4.2766	0.6737	0.7388	0.0198	4.7973	4.7973	9.5946	0
751	-8.6026	0	8.6026	-0.5915	-0.8063	0.0034	8.5398	8.5398	17.0795	0
753	-14.5686	0	14.5686	0.4998	0.8661	0.0081	15.0461	15.0461	30.0923	0
755	-17.0279	0	17.0279	0.4078	0.9131	0.0011	16.863	16.863	33.7259	0
757	-20.9893	0	20.9893	0.3087	0.9511	0.0042	21.4667	21.4667	42.9334	0
759	-21.2907	0	21.2907	0.2085	0.978	0.0031	21.1404	21.1404	42.2809	0
761	-23.1819	0	23.1819	0.1047	0.9945	0.0062	23.7743	23.7743	47.5487	0
770	39.5304	0	-39.5304	-0.9844	-0.0946	0.1485	48.5026	48.5026	97.0053	0
772	40.0849	0	-40.0849	-0.9928	-0.1035	0.0605	55.3172	55.3172	110.6344	0
774	35.6288	0	-35.6288	-0.993	-0.1032	0.0575	44.3847	44.3847	88.7694	0
776	47.4605	0	-47.4605	-0.9854	-0.106	0.1335	43.3163	43.3163	86.6326	0
778	40.3693	0	-40.3693	-0.993	-0.1064	0.0507	44.4494	44.4494	88.8989	0
780	46.4127	0	-46.4127	0.9934	0.1144	0.0032	42.4308	42.4308	84.8616	0
789	28.8672	0	-28.8672	-0.9586	-0.1969	0.2058	46.6416	46.6416	93.2833	0
791	31.7011	0	-31.7011	-0.9547	-0.2148	0.2061	43.4788	43.4788	86.9576	0
793	40.3617	0	-40.3617	-0.9718	-0.226	0.0671	41.5508	41.5508	83.1016	0
795	39.5244	0	-39.5244	-0.9784	-0.1916	0.0776	41.1415	41.1415	82.283	0
797	44.2382	0	-44.2382	-0.9727	-0.2179	0.0798	50.7306	50.7306	101.4611	0
799	45.0189	0	-45.0189	-0.9737	-0.2153	0.0752	40.3498	40.3498	80.6997	0
808	29.0771	0	-29.0771	-0.9175	-0.3591	0.1711	39.0489	39.0489	78.0978	0
810	33.9815	0	-33.9815	-0.9274	-0.3333	0.1698	47.6117	47.6117	95.2233	0
812	29.102	0	-29.102	-0.9104	-0.3471	0.2251	33.4595	33.4595	66.919	0
814	30.6419	0	-30.6419	-0.9252	-0.308	0.2217	31.686	31.686	63.372	0
816	27.0628	0	-27.0628	-0.9292	-0.3519	0.1131	31.7325	31.7325	63.4651	0
818	38.386	0	-38.386	-0.949	-0.3122	0.0437	33.7	33.7	67.3999	0
827	-25.4468	0	25.4468	0.4617	0.1941	0.8656	38.2912	38.2912	76.5824	0
829	-18.7975	0	18.7975	0.3904	0.1194	0.9129	29.2614	29.2614	58.5229	0
831	22.9172	0	-22.9172	-0.8265	-0.4188	0.376	26.22	26.22	52.44	0
833	23.4067	0	-23.4067	-0.8475	-0.4943	0.1936	27.8187	27.8187	55.6375	0
835	25.4014	0	-25.4014	-0.8697	-0.4773	0.1258	24.3147	24.3147	48.6295	0
837	27.5799	0	-27.5799	-0.8647	-0.455	0.2126	27.0666	27.0666	54.1332	0
846	-20.0392	0	20.0392	0.6002	0.3233	0.7316	26.0682	26.0682	52.1364	0
848	-16.671	0	16.671	0.5749	0.274	0.771	22.3076	22.3076	44.6151	0
850	-10.9271	0	10.9271	0.4626	0.2243	0.8577	18.5076	18.5076	37.0153	0
852	10.6511	0	-10.6511	-0.7359	-0.5092	0.4464	15.5723	15.5723	31.1446	0
854	12.3818	0	-12.3818	-0.7644	-0.5398	0.3526	15.0126	15.0126	30.0253	0
856	13.6638	0	-13.6638	-0.8293	-0.5392	0.1471	14.8496	14.8496	29.6993	0
865	-22.9613	0	22.9613	0.6485	0.4656	0.6022	24.9783	24.9783	49.9567	0

Node	Sa maior	Sa	Sm proj	I	m	n	Sa von	Sm von	S1 von	S2 von
007	40.0407	equiv	40.0407	0.0007	0 4070	0.0407	10 4000	10 4200	00.0040	0
007	-10.0107	0	10.0107	0.0207	0.4370	0.0427	19.4300	19.4300	30.0012	0
869	-12.0280	0	7.0400	0.5945	0.4163	0.088	15.7105	15./105	31.4329	0
8/1	-7.6163	0	7.6163	0.5211	0.3544	0.7764	11.4546	11.4546	22.9092	0
873	6.9667	0	-6.9667	-0.6569	-0.5122	0.5533	9.5014	9.5014	19.0029	0
875	8.186	0	-8.186	-0.7505	-0.5669	0.3399	9.0086	9.0086	18.0173	0
884	-24.9044	0	24.9044	0.6708	0.6014	0.434	25.7991	25.7991	51.5981	0
886	-19.9532	0	19.9532	0.6592	0.5908	0.4653	20.9177	20.9177	41.8354	0
888	-15.5066	0	15.5066	0.6453	0.581	0.4961	16.9598	16.9598	33.9195	0
890	-10.3739	0	10.3739	0.6295	0.5609	0.5378	11.914	11.914	23.828	0
892	-6.6799	0	6.6799	0.6147	0.532	0.5823	8.3658	8.3658	16.7315	0
894	-2.7138	0	2.7138	0.5354	0.4674	0.7035	4.5328	4.5328	9.0657	0
903	-28.7216	0	28.7216	0.6368	0.7078	0.3059	28.717	28.717	57.434	0
905	-24.4381	0	24.4381	0.6313	0.7008	0.332	24.6649	24.6649	49.3298	0
907	-19.9741	0	19.9741	0.6293	0.7016	0.3343	20.3699	20.3699	40.7398	0
909	-15.7505	0	15.7505	0.6329	0.7028	0.3249	16.5344	16.5344	33.0688	0
911	-11.6616	0	11.6616	0.6317	0.7001	0.333	12.2355	12.2355	24.471	0
913	-7.5429	0	7.5429	0.6297	0.7056	0.3249	8.1616	8.1616	16.3232	0
922	-33.3922	0	33.3922	0.5743	0.7911	0.2105	33.0814	33.0814	66.1627	0
924	-29.1611	0	29.1611	0.5732	0.7891	0.2207	28.9533	28.9533	57.9066	0
926	-24.9377	0	24.9377	0.5727	0.7894	0.221	24.9806	24.9806	49.9612	0
928	-20.6322	0	20.6322	0.5739	0.7907	0.2131	20.8005	20.8005	41.6011	0
930	-16.7875	0	16.7875	0.5769	0.794	0.1915	17.1492	17.1492	34.2985	0
932	-12.9647	0	12.9647	0.5793	0.799	0.1615	13.1152	13.1152	26.2305	0
941	-36.9112	0	36.9112	0.4935	0.8563	0.1523	36.1922	36.1922	72.3844	0
943	-33.634	0	33.634	0.494	0.856	0.1522	33.3026	33.3026	66.6051	0
945	-29.2683	0	29.2683	0.4938	0.8568	0.1484	28.8904	28.8904	57.7808	0
947	-25.5398	0	25.5398	0.4946	0.8564	0.1482	25.6652	25.6652	51.3305	0
949	-21.3646	0	21.3646	0.4956	0.8596	0.1244	21.3107	21.3107	42.6214	0
951	-17.5352	0	17.5352	0.4958	0.8626	0.1	17.8609	17.8609	35.7218	0
960	-41.3834	0	41.3834	0.4041	0.9087	0.1048	40.6499	40.6499	81.2997	0
962	-36,7296	0	36,7296	0.4034	0.9084	0.1098	36.0168	36.0168	72.0336	0
964	-33.1902	0	33.1902	0.4043	0.9089	0.1023	32.9202	32.9202	65.8405	0
966	-28.876	0	28.876	0.4041	0.9095	0.0973	28.587	28.587	57,1739	0
968	-25 1075	0	25 1075	0 4041	0.9108	0.0849	25 2654	25 2654	50 5308	0
970	-21.1351	0	21.1351	0.4054	0.912	0.063	21.1675	21.1675	42.3351	0
979	-43.3976	0	43.3976	0.3076	0.949	0.0687	42.3907	42.3907	84,7814	0
981	-40 172	0	40 172	0.3081	0.9488	0.0693	39 4177	39 4177	78 8354	0
983	-35.5334	0	35.5334	0.3081	0.9487	0.0711	35.0185	35.0185	70.0369	0
985	-32 0288	0	32 0288	0.3076	0.9495	0.0617	31 8273	31 8273	63 6547	0
987	-27 7305	0	27 7305	0.3075	0 9494	0.0644	27 5597	27 5597	55 1195	0
989	-24 0569	0	24 0569	0.3089	0.9501	0.0425	24 2848	24 2848	48 5697	0
998	-46 1804	0	46 1804	0.0000	0.0001	0.0387	45 0527	45 0527	90 1053	0
1000	-41 6544	0	41 6544	0.2076	0.0773	0.0007	40.6369	40.6369	81 2730	0
1000	-38.0536	0	38 0536	0.2070	0.9773	0.0417	37 4558	37 4558	74 0116	0
1002	-33 6554	0	33 6554	0.2070	0.0774	0.0400	33 2125	33 2125	66 /2/0	0
1004	20 8831	0	20 9921	0.2072	0.9774	0.041	20 9762	20 9762	50 7524	0
1000	-23.0031	0	23.0031	0.2004	0.9112	0.0402	25.0102	23.0102	51 / 200	0
1017	-46 2391	0	16 2221	0.2070	0.0119	0.0232	11 7110	14 7440	80 1909	0
1017	40.2301	0	40.2301	0.1040	0.9944	0.0141	44.7449	44.7449	03.4030	0
1019	38 6501	0	42.0090	0.1043	0.9944	0.0109	37 605	37 605	75 20	0
1021	-30.001	0	24 704	0.1045	0.9943	0.0201	31.095	21.090	60 0046	0
1023	-34.721	U	34.721	0.1040	0.9943	0.0209	34.41/3	34.41/3	00.0340	U

(cont.)

Node	Sa maior	Sa equiv	Sm proj	I	m	n	Sa von mises	Sm von mises	S1 von mises	S2 von mises
1025	-30.5259	0	30.5259	0.1043	0.9944	0.0176	30.2239	30.2239	60.4477	0
1027	-26.502	0	26.502	0.104	0.9944	0.0158	26.6498	26.6498	53.2996	0
1035	-66.041	0	66.041	-0.0009	-1	0.0037	66.3477	66.3477	132.6954	0
1037	-50.8094	0	50.8094	-0.0004	-0.9997	0.0226	49.3618	49.3618	98.7237	0
1039	-55.8661	0	55.8661	-0.0002	-0.9997	0.0261	54.4155	54.4155	108.831	0
1041	-58.5339	0	58.5339	-0.0003	-0.9996	0.0265	57.1026	57.1026	114.2052	0
1043	-62.9111	0	62.9111	-0.0001	-0.9997	0.026	61.7699	61.7699	123.5398	0
1045	-64.0787	0	64.0787	-0.0006	-0.9997	0.0231	63.5037	63.5037	127.0073	0
1047	-67.3521	0	67.3521	0.0003	-0.9999	0.0134	67.2459	67.2459	134.4919	0
1050	-36.8343	0	36.8343	0.0316	-0.1196	0.9923	33.9799	33.9799	67.9598	0
1052	-53.3706	0	53.3706	0.035	-0.1154	0.9927	47.6481	47.6481	95.2961	0
1054	-44.0785	0	44.0785	0.1794	-0.056	0.9822	39.2806	39.2806	78.5612	0
1056	-34.8129	0	34.8129	0.6727	0.3084	0.6726	32.0757	32.0757	64.1515	0
1058	-30.5951	0	30.5951	0.8539	0.5036	0.1312	32.7229	32.7229	65.4459	0
1060	-37.5899	0	37.5899	0.8004	0.5993	0.0104	37.2408	37.2408	74.4815	0
1062	-40.7873	0	40.7873	0.7384	0.6717	0.0601	41.4531	41.4531	82.9061	0
1064	-46.2952	0	46.2952	0.6658	0.7461	0.0126	46.2996	46.2996	92.5991	0
1066	-49.6313	0	49.6313	0.5857	0.8095	0.0405	49.9674	49.9674	99.9348	0
1068	-54.8736	0	54.8736	0.498	0.8671	0.008	55.1301	55.1301	110.2602	0
1070	-57.6777	0	57.6777	0.4056	0.9137	0.0261	57.9051	57.9051	115.8102	0
1072	-62.1974	0	62.1974	0.308	0.9514	0.0044	62.4526	62.4526	124.9052	0
1074	-63.5135	0	63.5135	0.2075	0.9782	0.012	63.7339	63.7339	127.4678	0
1076	-66.5997	0	66.5997	0.1047	0.9945	0.001	66.8319	66.8319	133.6638	0
1085	28.1949	0	-28.1949	-0.9859	-0.0893	0.1413	26.0422	26.0422	52.0843	0
1087	24.594	0	-24.594	-0.9722	-0.0983	0.2127	23.0115	23.0115	46.0229	0
1089	16.7384	0	-16.7384	-0.9922	-0.0794	0.0962	23.9792	23.9792	47.9584	0
1091	-27.594	0	27.594	0.2943	0.0453	0.9546	32.3054	32.3054	64.6107	0
1093	13.3264	0	-13.3264	-0.9753	-0.1118	0.1906	19.3886	19.3886	38.7772	0
1095	-29.2977	0	29.2977	0.0746	-0.034	0.9966	26.6553	26.6553	53.3106	0
1104	26.3451	0	-26.3451	-0.8732	-0.2097	0.4399	28.0048	28.0048	56.0096	0
1106	24.199	0	-24.199	-0.811	-0.1905	0.5531	22.2907	22.2907	44.5813	0
1108	17.9735	0	-17.9735	-0.9195	-0.2195	0.3262	24.5812	24.5812	49.1624	0
1110	-19.7118	0	19.7118	0.2272	0.0444	0.9728	28.3744	28.3744	56.7488	0
1112	-25.2257	0	25.2257	0.1456	0.0199	0.9891	27.073	27.073	54.146	0
1114	-12.2338	0	12.2338	0.2398	-0.04	0.97	19.4881	19.4881	38.9762	0
1123	26.3247	0	-26.3247	-0.7782	-0.2918	0.5562	26.9087	26.9087	53.8174	0
1125	18.3763	0	-18.3763	-0.8057	-0.2642	0.5302	24.1404	24.1404	48.2809	0
1127	-17.1936	0	17.1936	0.4989	0.1623	0.8513	22.1565	22.1565	44.3131	0
1129	21.1188	0	-21.1188	-0.8449	-0.2612	0.4669	26.891	26.891	53.782	0
1131	-23.9665	0	23.9665	0.3451	0.1063	0.9325	26.8486	26.8486	53.6972	0
1133	-26.3294	0	26.3294	0.4611	0.0822	0.8835	25.3873	25.3873	50.7746	0
1142	-24.6456	0	24.6456	0.5842	0.3565	0.7291	31.9734	31.9734	63.9468	0
1144	15.2204	0	-15.2204	-0.6908	-0.1849	0.699	25.505	25.505	51.0099	0
1146	-15.2081	0	15.2081	0.6254	0.3815	0.6807	25.0573	25.0573	50.1146	0
1148	-30.3398	0	30.3398	0.6335	0.3269	0.7013	31.4789	31.4789	62.9579	0
1150	-31.6307	0	31.6307	0.6672	0.3512	0.6569	34.276	34.276	68.5519	0
1152	-25.5117	0	25.5117	0.7041	0.3618	0.611	29.3523	29.3523	58.7046	0
1161	-22.5301	0	22.5301	0.7199	0.4191	0.5533	29.4443	29.4443	58.8886	0
1163	-33.723	0	33.723	0.7251	0.4344	0.5344	32.8421	32.8421	65.6841	0
1165	-28.6077	0	28.6077	0.7466	0.4437	0.4957	32.8106	32.8106	65.6211	0
1167	-38.3495	0	38.3495	0.7577	0.446	0.4764	36.5729	36.5729	73.1459	0

Node	Sa maior	Sa equiv	Sm proj	I	m	n	Sa von mises	Sm von mises	S1 von mises	S2 von mises
1169	-32.9282	0	32.9282	0.8036	0.4749	0.3587	35.5177	35.5177	71.0354	0
1171	-37.3239	0	37.3239	0.8243	0.4835	0.2945	36.5407	36.5407	73.0814	0
1180	-31.3277	0	31.3277	0.7093	0.5235	0.472	32.2761	32.2761	64.5523	0
1182	-33.4498	0	33.4498	0.7326	0.538	0.417	34.5313	34.5313	69.0626	0
1184	-38.5228	0	38.5228	0.7473	0.5545	0.3661	38.0973	38.0973	76.1945	0
1186	-39.9894	0	39.9894	0.7639	0.5597	0.3214	40.2957	40.2957	80.5913	0
1188	-42.9219	0	42.9219	0.7766	0.5748	0.2578	42.0591	42.0591	84.1181	0
1190	-40.1077	0	40.1077	0.7951	0.5839	0.1639	40.3756	40.3756	80.7511	0
1199	-31.7172	0	31.7172	0.6911	0.6287	0.3565	32.5183	32.5183	65.0366	0
1201	-36.7367	0	36.7367	0.7023	0.635	0.3217	36.5778	36.5778	73.1556	0
1203	-38.7196	0	38.7196	0.7097	0.6445	0.2845	38.7947	38.7947	77.5895	0
1205	-42.1062	0	42.1062	0.7184	0.6488	0.2511	42.007	42.007	84.0139	0
1207	-42.1191	0	42.1191	0.7257	0.6592	0.197	42.3854	42.3854	84.7709	0
1209	-43.7365	0	43.7365	0.7362	0.6643	0.129	43.7011	43.7011	87.4021	0
1218	-36.0088	0	36.0088	0.6439	0.7171	0.267	35.7566	35.7566	71.5133	0
1220	-38.5654	0	38.5654	0.647	0.7212	0.2475	38.482	38.482	76.9641	0
1222	-42.6031	0	42.6031	0.652	0.7266	0.2169	42.3003	42.3003	84.6006	0
1224	-43.9891	0	43.9891	0.6556	0.73	0.1929	43.9534	43.9534	87.9069	0
1226	-47.0231	0	47.0231	0.6608	0.7367	0.1439	46.8006	46.8006	93.6012	0
1228	-45.9653	0	45.9653	0.6649	0.7409	0.0942	46.0551	46.0551	92.1101	0
1237	-38.5267	0	38.5267	0.5754	0.7941	0.1958	38.1616	38.1616	76.3231	0
1239	-42.6345	0	42.6345	0.5775	0.7956	0.183	42.2088	42.2088	84.4176	0
1241	-45.0562	0	45.0562	0.5795	0.7992	0.1596	44.7161	44.7161	89.4322	0
1243	-48.2836	0	48.2836	0.5815	0.8007	0.144	48.005	48.005	96.0099	0
1245	-49.0094	0	49.0094	0.5828	0.8048	0.1126	48.9281	48.9281	97.8562	0
1247	-50.9589	0	50.9589	0.5861	0.8067	0.0757	50.9695	50.9695	101.939	0
1256	-43.1152	0	43.1152	0.495	0.8579	0.1377	42.377	42.377	84.754	0
1258	-45.7109	0	45.7109	0.4948	0.8588	0.133	45.0586	45.0586	90.1173	0
1260	-49.3815	0	49.3815	0.4964	0.8601	0.1173	48.7008	48.7008	97.4015	0
1262	-51.1884	0	51.1884	0.4968	0.8617	0.103	50.7667	50.7667	101.5334	0
1264	-54.1162	0	54.1162	0.4982	0.8632	0.0818	53.7834	53.7834	107.5668	0
1266	-54.0612	0	54.0612	0.4987	0.865	0.0561	53.9821	53.9821	107.9642	0
1275	-45.3977	0	45.3977	0.4044	0.9095	0.0965	44.6138	44.6138	89.2276	0
1277	-49.7474	0	49.7474	0.4047	0.9099	0.0908	48.9365	48.9365	97.8731	0
1279	-52.0545	0	52.0545	0.405	0.9106	0.0825	51.2809	51.2809	102.5618	0
1281	-55.168	0	55.168	0.4057	0.9107	0.0774	54.6499	54.6499	109.2997	0
1283	-56.1156	0	56.1156	0.4054	0.912	0.0623	55.7937	55.7937	111.5875	0
1285	-58.6219	0	58.6219	0.4065	0.9127	0.042	58.661	58.661	117.322	0
1294	-49.3294	0	49.3294	0.3084	0.9493	0.061	48.1832	48.1832	96.3665	0
1296	-51.6339	0	51.6339	0.3079	0.9495	0.0608	50.6198	50.6198	101.2397	0
1298	-55.4218	0	55.4218	0.3085	0.9496	0.0563	54.5163	54.5163	109.0325	0
1300	-57.4309	0	57.4309	0.3082	0.9501	0.0488	56.7636	56.7636	113.5272	0
1302	-60.9224	0	60.9224	0.309	0.9503	0.0388	60.4184	60.4184	120.8368	0
1304	-60.9128	0	60.9128	0.3087	0.9507	0.0284	60.8058	60.8058	121.6115	0
1313	-50.1626	0	50.1626	0.2078	0.9776	0.0325	49.121	49.121	98.2419	0
1315	-54.7644	0	54.7644	0.2078	0.9777	0.031	53.5859	53.5859	107.1718	0
1317	-57.063	0	57.063	0.2076	0.9778	0.0284	55.9737	55.9737	111.9475	0
1319	-60.8424	0	60.8424	0.2077	0.9779	0.0258	60.0592	60.0592	120.1184	0
1321	-61.645	0	61.645	0.2076	0.978	0.0219	61.1212	61.1212	122.2424	0
1323	-64.5328	0	64.5328	0.2078	0.978	0.0161	64.5551	64.5551	129.1103	0
1332	-52.1392	0	52.1392	0.1044	0.9945	0.0052	50.6916	50.6916	101.3832	0

Node	Sa maior	Sa equiv	Sm proj	I	m	n	Sa von mises	Sm von mises	S1 von mises	S2 von mises
1334	-54.5528	0	54.5528	0.1046	0.9945	0.0049	53.2625	53.2625	106.5249	0
1336	-59.1269	0	59.1269	0.1046	0.9945	0.0031	57.954	57.954	115.9081	0
1338	-61.1867	0	61.1867	0.1044	0.9945	0.0019	60.2706	60.2706	120.5411	0
1340	-65.3043	0	65.3043	0.1046	0.9945	0	64.6054	64.6054	129.2108	0
1342	-65.2627	0	65.2627	0.1045	0.9945	0.0026	65.0825	65.0825	130.1651	0
1350	36.797	0	-36.797	1	-0.0001	0.0008	34.866	34.866	69.7319	0
1352	-47.9985	0	47.9985	0.1042	-0.9934	0.0479	46.3007	46.3007	92.6014	0
1354	-43.8266	0	43.8266	0.207	-0.9761	0.0668	41.8627	41.8627	83.7254	0
1356	-41.088	0	41.088	0.306	-0.9463	0.1044	39.1203	39.1203	78.2407	0
1358	-34.8572	0	34.8572	0.4042	-0.907	0.1182	32.4841	32.4841	64.9682	0
1360	-30.3194	0	30.3194	0.4941	-0.8571	0.1455	28.2127	28.2127	56.4255	0
1362	-23.6467	0	23.6467	0.579	-0.7992	0.1613	21.5834	21.5834	43.1669	0
1364	-18.4108	0	18.4108	0.6502	-0.7249	0.2275	17.0948	17.0948	34.1895	0
1366	-10.9193	0	10.9193	0.6823	-0.6155	0.3946	10.1377	10.1377	20.2753	0
1368	-5.8475	0	5.8475	0.595	-0.4404	0.6723	7.1737	7.1737	14.3474	0
1370	8.9603	0	-8.9603	-0.8018	0.4643	0.3762	9.9282	9.9282	19.8564	0
1372	16.8048	0	-16.8048	-0.8845	0.3912	0.2542	16.7297	16.7297	33.4593	0
1374	25.2476	0	-25.2476	-0.9408	0.3058	0.1461	24.2526	24.2526	48.5052	0
1376	31.2575	0	-31.2575	-0.9734	0.2053	0.1014	29.8704	29.8704	59.7408	0
1378	35.9066	0	-35.9066	-0.9936	0.1045	0.0417	33.8933	33.8933	67.7865	0
1380	37.1065	0	-37.1065	-1	0	0.0001	37.066	37.066	74.132	0
1382	38.7055	0	-38.7055	1	0	0.0009	36.5855	36.5855	73.171	0
1384	38.323	0	-38.323	1	0	0.0005	37.0485	37.0485	74.0971	0
1386	38.3221	0	-38.3221	-1	-0.0003	0.0013	36.8509	36.8509	73.7017	0
1388	38.0855	0	-38.0855	-1	0.0001	0.0001	37.4738	37.4738	74.9476	0
1390	37.56	0	-37.56	-1	-0.0001	0.0007	37.0023	37.0023	74.0046	0
1392	37.5955	0	-37.5955	-1	0	0.0001	37.7114	37.7114	75.4228	0
1395	-21.4848	0	21.4848	-0.1039	0.9945	0.0113	22.04	22.04	44.08	0
1397	-17.8784	0	17.8784	-0.2075	0.9782	0.0089	17.7097	17.7097	35.4193	0
1399	-16.2726	0	16.2726	-0.308	0.9512	0.0184	16.8177	16.8177	33.6355	0
1401	-11.3692	0	11.3692	-0.4059	0.9137	0.0176	11.2207	11.2207	22.4415	0
1403	-8.5313	0	8.5313	-0.497	0.8665	0.0462	9.0798	9.0798	18.1597	0
1405	-2.6658	0	2.6658	-0.5812	0.8079	0.0973	2.6149	2.6149	5.2297	0
1407	1.5963	0	-1.5963	0.5471	-0.5849	0.5989	1.4306	1.4306	2.8612	0
1409	7.9187	0	-7.9187	0.7442	-0.6669	0.0375	7.924	7.924	15.8481	0
1411	12.635	0	-12.635	0.8093	-0.5845	0.0586	12.3406	12.3406	24.6812	0
1413	19.7002	0	-19.7002	0.8661	-0.4995	0.0165	19.6491	19.6491	39.2983	0
1415	24.5033	0	-24.5033	0.9137	-0.4054	0.0274	24.3577	24.3577	48.7155	0
1417	30.4039	0	-30.4039	0.9511	-0.3088	0.0082	30.3725	30.3725	60.7449	0
1419	26 702	0	-33.1019	0.9762	-0.2073	0.0110	26 7160	26 7160	72 4220	0
1421	44 2210	0	-30.703	0.9943	-0.1045	0.0022	12 6497	12 6497	05 2072	0
1430	44.2210	0	44.2210	0.1041	-0.9939	0.0375	42.0407	42.0407	70 5567	0
1432	36 7915	0	36 7915	0.1045	-0.9942	0.0201	35.6979	35 6979	79.0007	0
1434	32 9/35	0	32 9/35	0.1041	-0.9943	0.0225	32 4225	32 4225	61 945	0
1430	-32.0433	0	22.0433	0.1047	-0.9944	0.0113	28 2877	20 2077	56 5755	0
1440	-20.0127	0	20.0127	-0 10/0	0.9940	0.0093	25 0270	20.2011	50.0755	0
1440	-42 1685	0	42 1685	0.2076	-0 9765	0.0000	40 5083	40 5083	81 0166	0
1451	-37 5154	0	37 5154	0.2070	-0.9772	0.0072	36 0827	36 0827	72 1655	0
1453	-34 1534	0	34 1534	0.2083	-0.9773	0.0397	33 2735	33 2735	66 5471	0
1455	-29 9308	0	29,9308	0 2063	-0.9781	0.0294	29 2436	29 2436	58 4872	0
	_0.0000	~	_0.0000	0.2000	0.0101					

Node	Sa maior	Sa equiv	Sm proj	I	m	n	Sa von mises	Sm von mises	S1 von mises	S2 von mises
1457	-26.5538	0	26.5538	0.2074	-0.9781	0.0191	26.4643	26.4643	52.9286	0
1459	-22.2771	0	22.2771	0.2071	-0.9783	0.0076	22.1461	22.1461	44.2923	0
1468	-37.4053	0	37.4053	0.3068	-0.9479	0.0856	35.5511	35.5511	71.1022	0
1470	-34.4516	0	34.4516	0.3076	-0.9488	0.0712	33.0376	33.0376	66.0751	0
1472	-30.1944	0	30.1944	0.3074	-0.9497	0.0592	29.1358	29.1358	58.2715	0
1474	-26.9192	0	26.9192	0.3083	-0.9503	0.0432	26.442	26.442	52.8841	0
1476	-22.8646	0	22.8646	0.3087	-0.9506	0.0317	22.5021	22.5021	45.0042	0
1478	-19.4807	0	19.4807	0.3078	-0.9513	0.0195	19.6031	19.6031	39.2062	0
1487	-33.2776	0	33.2776	0.404	-0.9086	0.1064	31.4395	31.4395	62.8789	0
1489	-29.3082	0	29.3082	0.4032	-0.9098	0.0981	27.8284	27.8284	55.6568	0
1491	-26.1298	0	26.1298	0.4052	-0.9106	0.0818	25.2123	25.2123	50.4247	0
1493	-22.397	0	22.397	0.4047	-0.9123	0.0624	21.786	21.786	43.572	0
1495	-18.9594	0	18.9594	0.4063	-0.9127	0.0435	18.8271	18.8271	37.6542	0
1497	-15.4044	0	15.4044	0.4053	-0.9139	0.0226	15.3763	15.3763	30.7525	0
1506	-27.1116	0	27.1116	0.4943	-0.8594	0.1306	25.2618	25.2618	50.5236	0
1508	-24.6178	0	24.6178	0.4958	-0.8598	0.1221	23.3458	23.3458	46.6916	0
1510	-21.1029	0	21.1029	0.4958	-0.8617	0.1075	20.0884	20.0884	40.1767	0
1512	-17.9666	0	17.9666	0.4982	-0.8622	0.0917	17.5337	17.5337	35.0673	0
1514	-14.5847	0	14.5847	0.4962	-0.8653	0.0715	14.2183	14.2183	28.4366	0
1516	-11.238	0	11.238	0.4982	-0.8657	0.0484	11.3706	11.3706	22.7412	0
1525	-21.9022	0	21.9022	0.579	-0.7987	0.164	20.3796	20.3796	40.7593	0
1527	-18.7058	0	18.7058	0.5782	-0.7976	0.172	17.5765	17.5765	35.1531	0
1529	-15.6004	0	15.6004	0.5787	-0.7995	0.161	14.8699	14.8699	29.7398	0
1531	-12.2806	0	12.2806	0.5808	-0.8025	0.1364	11.9113	11.9113	23.8226	0
1533	-9.3652	0	9.3652	0.5832	-0.8037	0.1182	9.2484	9.2484	18.4969	0
1535	-6.3068	0	6.3068	0.5834	-0.8095	0.0656	6.2627	6.2627	12.5254	0
1544	-15.4	0	15.4	0.6446	-0.7221	0.2512	14.24	14.24	28.4801	0
1546	-12.6467	0	12.6467	0.6418	-0.7134	0.2816	11.9379	11.9379	23.8757	0
1548	-9.631	0	9.631	0.6435	-0.7194	0.2616	9.1312	9.1312	18.2625	0
1550	-6.8224	0	6.8224	0.6363	-0.7159	0.2876	6.6556	6.6556	13.3112	0
1552	-4.0406	0	4.0406	0.629	-0.7159	0.3031	4.013	4.013	8.026	0
1554	-1.1778	0	1.1778	0.5826	-0.6899	0.4296	1.421	1.421	2.8419	0
1563	-9.0242	0	9.0242	0.6696	-0.6036	0.4328	8.7267	8.7267	17.4534	0
1565	-6.5889	0	6.5889	0.6254	-0.5704	0.5325	6.616	6.616	13.232	0
1567	-4.1328	0	4.1328	0.5817	-0.5281	0.6186	4.5809	4.5809	9.1619	0
1569	-2.0351	0	2.0351	0.4418	-0.4213	0.792	3.2094	3.2094	6.4187	0
1571	3.2016	0	-3.2016	-0.7009	0.6284	0.3373	3.5486	3.5486	7.0973	0
1573	4.8546	0	-4.8546	-0.744	0.6637	0.077	4.8887	4.8887	9.7774	0
1582	-4.0405	0	4.0405	0.475	-0.3553	0.8051	6.4804	6.4804	12.9609	0
1584	4.7054	0	-4.7054	-0.7089	0.5177	0.479	6.4301	6.4301	12.8602	0
1586	6.2011	0	-6.2011	-0.7612	0.5421	0.356	7.0826	7.0826	14.1653	0
1588	7.8054	0	-7.8054	-0.7847	0.5696	0.2447	8.1283	8.1283	16.2566	0
1590	9.3407	0	-9.3407	-0.8063	0.5775	0.1277	9.5235	9.5235	19.047	0
1592	11.4234	0	-11.4234	-0.8083	0.5865	0.0518	11.3936	11.3936	22.7871	0
1601	10.5443	0	-10.5443	-0.819	0.4718	0.3265	11.3095	11.3095	22.619	0
1603	12.1765	0	-12.1765	-0.8385	0.477	0.2636	12.462	12.462	24.9239	0
1605	13.6007	0	-13.6007	-0.8504	0.4896	0.1927	13.8227	13.8227	27.6454	0
1607	14.9326	0	-14.9326	-0.8599	0.4948	0.1252	14.9408	14.9408	29.8816	0
1609	16.3087	0	-16.3087	-0.8634	0.4983	0.0789	16.3629	16.3629	32.7258	0
1611	17.5667	0	-17.5667	-0.8669	0.4981	0.0222	17.506	17.506	35.0119	0
1620	18.7861	0	-18.7861	-0.8972	0.3951	0.1971	18.5062	18.5062	37.0124	0

Node	Sa maior	Sa	Sm proj	I	m	n	Sa von	Sm von	S1 von	S2 von
1622	20.0511	0	-20 0511	-0.9005	0 3998	0 1711	19 9916	19 9916	39 9833	0
1624	21.0234	0	-21.0234	-0.0000	0.0000	0.1711	20.682	20 682	41 3641	0
1626	21.0204	0	-21.0204	-0.0072	0.4045	0.1240	21.7661	20.002	13 5322	0
1620	21.9722	0	21.9722	-0.9103	0.4043	0.0070	21.7001	21.7001	45.5522	0
1620	22.9743	0	24 0421	-0.9134	0.4044	0.0470	22.7302	22.7302	40.4720	0
1620	24.0421	0	-24.0421	-0.9135	0.400	0.0205	24.1200	24.1200	40.207 51.4640	0
1641	20.000	0	-20.000	-0.9430	0.3079	0.1219	20.7320	20.7320	52 3100	0
16/3	28.0166	0	-28.0166	-0.940	0.3003	0.1039	20.1333	20.1555	54 0805	0
1645	28.5606	0	-28.5606	-0.9477	0.3079	0.0044	27.4302	27.4302	55 0822	0
1647	20.0000	0	-20.0000	-0.3430	0.3088	0.0368	28.8386	28.8386	57 6772	0
16/0	20.0207	0	-20.0207	-0.0004	0.0000	0.0000	20.0000	20.0000	58 7107	0
1659	23.4733	0	22 2701	0.0753	0.0002	0.0110	23.5555	23.5555	63 2211	0
1660	33.2791	0	-33.2791	-0.9755	0.207	0.0705	32 5004	32 5004	65 0190	0
1662	33 311	0	-33 311	-0.9759	0.200	0.0000	32.0004	32,0004	64 4520	0
1664	33 5226	0	23 5226	-0.9700	0.2000	0.0301	32.2204	32.2204	65 8001	0
1666	33 6105	0	-33.5220	-0.9775	0.200	0.0343	33 2074	32.9495	66 4148	0
1668	33 8605	0	-33 8605	-0.0781	0.2074	0.0223	33 0723	33 0723	67 9446	0
1677	37 0396	0	-37 0396	-0.0701	0.2075	0.0120	35 44 38	35 4438	70 8876	0
1679	37 0422	0	-37 0422	-0.9941	0 1038	0.0326	35 2812	35 2812	70.5624	0
1681	36 8974	0	-36 8974	-0.9941	0 1048	0.0262	35 9225	35 9225	71 845	0
1683	36 8545	0	-36 8545	-0.9943	0 1051	0.0165	35 9328	35 9328	71 8656	0
1685	36 882	0	-36 882	-0 9944	0 1049	0.0112	36 6955	36 6955	73 391	0
1687	36 5058	0	-36 5058	-0 9945	0 1045	0.0028	36 3015	36 3015	72 603	0
1607	24 2731	0	-24 2731	1	0.1040	0.0020	23 7018	23 7018	47 4036	0
1697	36 0774	0	-36 0774	-1	0.0001	0.0017	34 0014	34 0014	68 0028	0
1699	34 2451	0	-34 2451	1	-0.0002	0.0018	32 6228	32 6228	65 2455	0
1701	35 1111	0	-35 1111	1	-0 0001	0.0018	33 0592	33 0592	66 1184	0
1703	32 6431	0	-32 6431	. 1	0.0001	0.0015	31 5831	31 5831	63 1662	0
1705	32,5385	0	-32.5385	-1	0.0001	0.0002	31,3043	31.3043	62.6086	0
1707	28 0329	0	-28 0329	1	-0 0004	0.0057	27 9135	27 9135	55 827	0
1710	-67 4718	0	67 4718	0 1009	-0 9949	0.0004	67 6092	67 6092	135 2184	0
1712	-60 9531	0	60 9531	0 2047	-0.9778	0.0456	61 1403	61 1403	122 2806	0
1714	-66 723	0	66 723	0 3075	-0.951	0.0333	62 7614	62 7614	125 5229	0
1716	-57 3283	0	57 3283	0 403	-0.9127	0.0685	52 5118	52 5118	105 0237	0
1718	-56.4197	0	56.4197	0.4983	-0.8669	0.0113	51,1665	51.1665	102.3331	0
1720	-46.9089	0	46.9089	0.5849	-0.8093	0.055	41.8007	41.8007	83.6015	0
1722	-44.3144	0	44.3144	0.667	-0.7451	0.0008	39.6329	39.6329	79.2659	0
1724	-34.0176	0	34.0176	-0.7447	0.6673	0.0017	30.0497	30.0497	60.0994	0
1726	-20.8626	0	20.8626	0.8143	-0.5796	0.0325	19.8064	19.8064	39.6128	0
1728	-11.4836	0	11.4836	0.8322	-0.4942	0.2513	11.806	11.806	23.612	0
1730	0.8714	0	-0.8714	-0.5668	0.1995	0.7993	1.3654	1.3654	2.7308	0
1732	10.3417	0	-10.3417	-0.9285	0.2911	0.2307	11.5359	11.5359	23.0718	0
1734	17.5637	0	-17.5637	-0.9788	0.2025	0.0301	17.1265	17.1265	34.2529	0
1736	22.2546	0	-22.2546	-0.9937	0.1026	0.0442	23.4566	23.4566	46.9133	0
1745	-50.5956	0	50.5956	0.1043	-0.9933	0.0499	48.7719	48.7719	97.5439	0
1747	-53.2221	0	53.2221	0.1041	-0.9929	0.057	51.4533	51.4533	102.9066	0
1749	-58.3656	0	58.3656	0.1036	-0.9929	0.0586	56.7644	56.7644	113.5289	0
1751	-61.2048	0	61.2048	0.1033	-0.9926	0.0636	59.8283	59.8283	119.6565	0
1753	-66.0169	0	66.0169	0.104	-0.9933	0.0506	64.9939	64.9939	129.9879	0
1755	-66.3747	0	66.3747	0.1046	-0.9939	0.0357	66.0588	66.0588	132.1175	0
1764	-46.7259	0	46.7259	0.207	-0.9751	0.0795	44.7839	44.7839	89.5677	0

Node	Sa maior	Sa equiv	Sm proj	I	m	n	Sa von mises	Sm von mises	S1 von mises	S2 von mises
1766	-51.9191	0	51,9191	0.2068	-0.9742	0.0902	49.7362	49.7362	99.4725	0
1768	-54.8711	0	54.8711	0.2063	-0.9736	0.0978	52.8654	52.8654	105.7309	0
1770	-60.0828	0	60.0828	0.2061	-0.9732	0.1019	57,983	57.983	115,9661	0
1772	-60.7968	0	60.7968	0.21	-0.9736	0.0892	60.0867	60.0867	120.1734	0
1774	-64.7446	0	64.7446	0.2112	-0.9749	0.0708	64.183	64.183	128.3659	0
1783	-43.4732	0	43.4732	0.3075	-0.9446	0.1147	40.9935	40.9935	81.9869	0
1785	-45.109	0	45.109	0.3077	-0.9432	0.1252	42.9949	42.9949	85.9898	0
1787	-49.3249	0	49.3249	0.3055	-0.9431	0.1309	47.0702	47.0702	94.1405	0
1789	-52.1509	0	52.1509	0.3015	-0.942	0.1474	49.8141	49.8141	99.6282	0
1791	-58.0636	0	58.0636	0.3029	-0.9452	0.1218	55.7191	55.7191	111.4381	0
1793	-60.3981	0	60.3981	0.3017	-0.946	0.1184	58.0183	58.0183	116.0366	0
1802	-37.2146	0	37.2146	0.402	-0.9062	0.1315	34.7556	34.7556	69.5111	0
1804	-41.2551	0	41.2551	0.4017	-0.906	0.133	38.8328	38.8328	77.6656	0
1806	-44.2855	0	44.2855	0.4016	-0.9039	0.1473	41.4678	41.4678	82.9356	0
1808	-48.7057	0	48.7057	0.4036	-0.902	0.1531	45.3432	45.3432	90.6863	0
1810	-48.9963	0	48.9963	0.4025	-0.905	0.1377	46.2051	46.2051	92.4102	0
1812	-54.9804	0	54.9804	0.4038	-0.9079	0.1126	50.8647	50.8647	101.7295	0
1821	-32.3319	0	32.3319	0.493	-0.8573	0.1486	29.6091	29.6091	59.2182	0
1823	-33.765	0	33.765	0.4929	-0.8569	0.1507	31.5361	31.5361	63.0722	0
1825	-38.7538	0	38.7538	0.4967	-0.8571	0.1368	35.4957	35.4957	70.9914	0
1827	-40.0727	0	40.0727	0.4933	-0.8578	0.144	36.9379	36.9379	73.8759	0
1829	-44.7748	0	44.7748	0.4946	-0.8576	0.1414	40.9446	40.9446	81.8892	0
1831	-46.9088	0	46.9088	0.4972	-0.8627	0.092	42.9678	42.9678	85.9356	0
1840	-25.7371	0	25.7371	0.5797	-0.8005	0.1522	23.6244	23.6244	47.2488	0
1842	-29.4558	0	29.4558	0.5804	-0.8023	0.1394	26.6228	26.6228	53.2455	0
1844	-30.0246	0	30.0246	0.5808	-0.8014	0.1429	27.6815	27.6815	55.3629	0
1846	-36.1177	0	36.1177	0.586	-0.8033	0.1067	32.5112	32.5112	65.0225	0
1848	-37.7504	0	37.7504	0.584	-0.8072	0.0857	34.1372	34.1372	68.2745	0
1850	-42.9012	0	42.9012	0.5862	-0.8078	0.0619	38.7435	38.7435	77.4869	0
1859	-20.674	0	20.674	0.6546	-0.7285	0.2021	18.7861	18.7861	37.5723	0
1861	-22.6397	0	22.6397	0.6592	-0.7351	0.1586	20.4544	20.4544	40.9088	0
1863	-26.5626	0	26.5626	0.6649	-0.7389	0.1092	23.8414	23.8414	47.6828	0
1865	-27.0874	0	27.0874	0.6629	-0.7426	0.0957	24.9055	24.9055	49.8109	0
1867	-33.2904	0	33.2904	0.673	-0.7375	0.0566	29.706	29.706	59.412	0
1869	-36.0749	0	36.0749	0.6671	-0.745	0.0038	32.4982	32.4982	64.9965	0
1878	-13.3928	0	13.3928	0.7038	-0.6392	0.3101	12.3831	12.3831	24.7662	0
1880	-16.5065	0	16.5065	0.7199	-0.6502	0.2429	15.1019	15.1019	30.2039	0
1882	-19.054	0	19.054	0.7304	-0.6589	0.1799	17.271	17.271	34.5421	0
1884	-23.174	0	23.174	0.7399	-0.6665	0.0913	20.7117	20.7117	41.4233	0
1886	-24.4798	0	24.4798	0.7361	-0.674	0.0622	22.5631	22.5631	45.1263	0
1888	-28.2894	0	28.2894	-0.7438	0.6683	0.0123	26.3707	26.3707	52.7415	0
1897	-7.0392	0	7.0392	0.6477	-0.4721	0.598	7.4342	7.4342	14.8684	0
1899	-8.8711	0	8.8711	0.7122	-0.5227	0.4686	8.6973	8.6973	17.3947	0
1901	-11.4261	0	11.4261	0.7551	-0.5493	0.3578	10.682	10.682	21.3641	0
1903	-13.9107	0	13.9107	0.7842	-0.5729	0.2384	12.9581	12.9581	25.9162	0
1905	-17.812	0	17.812	0.8007	-0.5847	0.1307	16.3652	16.3652	32.7304	0
1907	-18.5733	0	18.5733	0.8037	-0.5934	0.0431	18.39	18.39	36.7799	0
1916	6.4449	0	-6.4449	-0.7613	0.4288	0.4864	8.3046	8.3046	16.6092	0
1918	5.3657	0	-5.3657	-0.7017	0.4068	0.5849	7.7306	7.7306	15.4612	0
1920	-4.6525	0	4.6525	0.5877	-0.3452	0.7317	6.8992	6.8992	13.7984	0
1922	-6.098	0	6.098	0.6981	-0.4032	0.5917	7.3795	7.3795	14.759	0

Node	Sa maior	Sa equiv	Sm proj	I	m	n	Sa von mises	Sm von mises	S1 von mises	S2 von mises
1924	-7.877	0	7.877	0.7687	-0.4537	0.4508	8.0638	8.0638	16.1276	0
1926	-10.3065	0	10.3065	0.8456	-0.4823	0.2289	10.403	10.403	20.806	0
1935	15.1872	0	-15.1872	-0.8777	0.3901	0.2783	15.1637	15.1637	30.3273	0
1937	13.0241	0	-13.0241	-0.8711	0.3834	0.307	13.4069	13.4069	26.8138	0
1939	11.9402	0	-11.9402	-0.8518	0.3797	0.3609	12.3309	12.3309	24.6617	0
1941	9.4108	0	-9.4108	-0.8344	0.3661	0.4121	10.3138	10.3138	20.6276	0
1943	7.6556	0	-7.6556	-0.8064	0.3606	0.4687	8.4599	8.4599	16.9198	0
1945	4.6603	0	-4.6603	-0.7614	0.3342	0.5555	6.2386	6.2386	12.4773	0
1954	22.3214	0	-22.3214	-0.9382	0.3027	0.1674	21.6527	21.6527	43.3054	0
1956	22.3124	0	-22.3124	-0.9347	0.304	0.1844	21.404	21.404	42.8079	0
1958	19.7697	0	-19.7697	-0.9305	0.2981	0.2128	19.5134	19.5134	39.0269	0
1960	19.2267	0	-19.2267	-0.9272	0.3007	0.2233	18.679	18.679	37.3579	0
1962	16.0982	0	-16.0982	-0.9262	0.2961	0.2335	16.2237	16.2237	32.4474	0
1964	14.0951	0	-14.0951	-0.9282	0.3039	0.2146	14.2873	14.2873	28.5746	0
1973	30.1853	0	-30.1853	-0.9734	0.2071	0.0982	28.6384	28.6384	57.2769	0
1975	28.2023	0	-28.2023	-0.9724	0.2053	0.1111	27.0479	27.0479	54.0959	0
1977	28.6122	0	-28.6122	-0.9715	0.2067	0.1164	27.1316	27.1316	54.2632	0
1979	25.9903	0	-25.9903	-0.9714	0.2053	0.1194	25.3323	25.3323	50.6646	0
1981	25.4337	0	-25.4337	-0.971	0.2069	0.1195	24.6236	24.6236	49.2473	0
1983	21.4038	0	-21.4038	-0.9721	0.205	0.1138	21.486	21.486	42.9721	0
1992	33,2644	0	-33,2644	-0.9935	0.1039	0.0466	31,7289	31,7289	63.4578	0
1994	34.2794	0	-34.2794	-0.9933	0.1046	0.0487	32.2149	32.2149	64.4299	0
1996	32 2723	0	-32 2723	-0.9931	0 104	0.0544	30 9167	30 9167	61 8334	0
1998	32 4368	0	-32 4368	-0.993	0 1044	0.0549	30 9012	30 9012	61 8024	0
2000	29 2359	0	-29 2359	-0 9933	0 104	0.0502	28 555	28 555	57 1101	0
2002	27 9865	0	-27 9865	-0 9934	0 1046	0.0466	27 6409	27 6409	55 2817	0
2011	35 8567	0	-35 8567	0.9936	0 1044	0.0427	33 834	33 834	67 668	0
2013	30 6385	0	-30 6385	0.9734	0 206	0 1001	29 2624	29 2624	58 5248	0
2015	24 473	0	-24 473	0.9411	0 3054	0 1451	23 4751	23 4751	46 9502	0
2017	15 9042	0	-15 9042	0.8835	0.39	0 2595	15 9048	15 9048	31 8096	0
2019	8 1522	0	-8 1522	0 7982	0 461	0.3878	9 245	9 245	18 4899	0
2021	-6 1138	0	6 1138	-0.6238	-0 4603	0.6316	6 9663	6 9663	13 9326	0
2023	-11 1155	0	11 1155	-0.686	-0.6206	0.3799	10 1542	10 1542	20 3085	0
2025	-18 7031	0	18 7031	-0.6516	-0 7268	0.217	17 196	17 196	34 3919	0
2027	-23 705	0	23 705	-0 5794	-0 7999	0 1566	21 5184	21 5184	43 0368	0
2029	-30 3417	0	30 3417	-0 4936	-0.8579	0 1424	28 0934	28 0934	56 1868	0
2031	-35 1709	0	35 1709	-0 4033	-0.9073	0 1189	32 2015	32 2015	64 4029	0
2033	-41.0826	0	41.0826	-0.306	-0.9457	0.1093	39.0098	39.0098	78.0197	0
2035	-43,7459	0	43,7459	-0.2076	-0.9757	0.0698	41.61	41.61	83.2201	0
2037	-47.9962	0	47.9962	-0.104	-0.9934	0.0489	46.3922	46.3922	92,7843	0
2040	-21.2702	0	21.2702	0.1041	0.9945	0.0114	21.8738	21.8738	43.7477	0
2042	-17 753	0	17 753	0 2071	0 9783	0.0087	17 5941	17 5941	35 1883	0
2044	-16 1404	0	16 1404	0.3078	0.9512	0.0203	16 6824	16 6824	33 3648	0
2046	-11,209	0	11,209	0.406	0.9137	0.0178	11,1065	11.1065	22,2131	0
2048	-8,4955	0	8,4955	0.4969	0.8666	0.0458	8,9844	8.9844	17,9687	0
2050	-2 6859	0	2 6859	0.5806	0.808	0 1002	2 5809	2 5809	5 1618	n n
2052	1 5992	0	-1 5992	-0 5314	-0 5652	0.6311	1 4263	1 4263	2 8526	0
2054	7 778	0	-7 778	-0 7441	-0.6668	0.0403	7 7774	7 7774	15 5548	
2056	12 4386	0	-12 4386	-0.8093	-0 5844	0.0593	12 1245	12 1245	24 2491	0
2058	19 4288	0	-19 4288	-0.8662	-0.4994	0.0169	19 3989	19 3989	38 7978	0
2060	24,2329	0	-24,2329	-0.9137	-0.4054	0.0287	24.0665	24.0665	48,133	0
		-								-

Node Sa maior equiv Sm proj I m n mises mises	mises	S2 von mises
2062 30.1885 0 -30.1885 -0.9511 -0.3087 0.0082 30.1274 30.1274	60.2547	0
2064 33.5476 0 -33.5476 -0.9782 -0.2073 0.0115 33.4566 33.4566	66.9133	0
2066 36.7293 0 -36.7293 -0.9945 -0.1045 0.0024 36.6678 36.6678	73.3355	0
2075 36.9173 0 -36.9173 0.9937 0.1045 0.0401 35.3309 35.3309	70.6618	0
2077 36.846 0 -36.846 0.994 0.1039 0.0337 35.0863 35.0863	70.1726	0
2079 36.6628 0 -36.6628 0.9942 0.1047 0.0252 35.7737 35.7737	71.5475	0
2081 36.5531 0 -36.5531 0.9944 0.1044 0.0151 35.6441 35.6441	71.2882	0
2083 36.5667 0 -36.5667 0.9945 0.104 0.0145 36.3773 36.3773	72.7547	0
2085 36.3518 0 -36.3518 0.9945 0.1043 0.0037 36.124 36.124	72.248	0
2094 32.5607 0 -32.5607 0.9752 0.2069 0.0784 31.0314 31.0314	62.0628	0
2096 32.8185 0 -32.8185 0.9761 0.2076 0.0648 31.8518 31.8518	63.7036	0
2098 32.9868 0 -32.9868 0.9769 0.2067 0.0536 31.8853 31.8853	63.7705	0
2100 33.1212 0 -33.1212 0.9774 0.2078 0.0377 32.6314 32.6314	65.2627	0
2102 33.2962 0 -33.2962 0.978 0.2071 0.0255 32.8982 32.8982	65.7963	0
2104 33.7176 0 -33.7176 0.9781 0.2078 0.0089 33.7921 33.7921	67.5843	0
2113 25.964 0 -25.964 0.9434 0.3069 0.1257 25.1799 25.1799	50.3598	0
2115 26.8701 0 -26.8701 0.9457 0.3056 0.1107 25.9548 25.9548	51.9097	0
2117 27.5006 0 -27.5006 0.9478 0.3083 0.0814 27.0492 27.0492	54.0984	0
2119 28.0096 0 -28.0096 0.9499 0.3072 0.058 27.4175 27.4175	54.8351	0
2121 28.7676 0 -28.7676 0.9504 0.3091 0.035 28.6487 28.6487	57.2973	0
2123 29.0879 0 -29.0879 0.9512 0.3083 0.0098 28.9345 28.9345	57.8689	0
2132 17.9965 0 -17.9965 0.8969 0.3958 0.1974 17.7957 17.7957	35.5913	0
2134 19.3178 0 -19.3178 0.8997 0.4011 0.1722 19.2676 19.2676	38.5352	0
2136 20.343 0 -20.343 0.9076 0.4018 0.122 20.0145 20.0145	40.029	0
2138 21.7543 0 -21.7543 0.9099 0.4053 0.0888 21.6522 21.6522	43.3045	0
2140 22.4903 0 -22.4903 0.9133 0.4047 0.0456 22.2565 22.2565	44.513	0
2142 23.8171 0 -23.8171 0.9135 0.4062 0.0242 23.8303 23.8303	47.6605	0
2151 9.8646 0 -9.8646 0.8167 0.4715 0.3327 10.7675 10.7675	21.535	0
2153 11.332 0 -11.332 0.838 0.4802 0.259 11.7224 11.7224	23.4449	0
2155 13.0192 0 -13.0192 0.8486 0.4887 0.2024 13.2873 13.2873	26.5745	0
2157 14.4142 0 -14.4142 0.8596 0.4953 0.1253 14.4214 14.4214	28.8427	0
2159 16.0856 0 -16.0856 0.8637 0.4989 0.0719 16.0765 16.0765	32.153	0
2161 17.1857 0 -17.1857 0.8664 0.499 0.0198 17.1654 17.1654	34.3308	0
2170 -4.3752 0 4.3752 -0.4961 -0.3695 0.7857 6.1809 6.1809	12.3618	0
2172 4.5005 0 -4.5005 0.7005 0.5107 0.4985 6.5521 6.5521	13.1042	0
2174 5.5514 0 -5.5514 0.7612 0.543 0.3545 6.3902 6.3902	12.7804	0
2176 7.3267 0 -7.3267 0.7851 0.571 0.2399 7.6678 7.6678	15.3356	0
2178 8.9467 0 -8.9467 0.8054 0.5793 0.126 9.1758 9.1758	18.3516	0
2180 11.0244 0 -11.0244 0.8085 0.586 0.054 11.0115 11.0115	22.0229	0
2189 -9.3631 0 9.3631 -0.6777 -0.6134 0.4056 8.8793 8.8793	17.7587	0
2191 -6.8873 0 6.8873 -0.6457 -0.5854 0.4904 6.7945 6.7945	13.589	0
2193 -4.4823 0 4.4823 -0.58 -0.5264 0.6217 4.7909 4.7909	9.5818	0
2195 -1.9471 0 1.9471 -0.4621 -0.4435 0.768 2.8433 2.8433	5.6866	0
2197 2.8651 0 -2.8651 0.6903 0.6159 0.3796 3.2639 3.2639	6.5279	0
2199 4.7009 0 -4.7009 0.7441 0.6643 0.0715 4.7749 4.7749	9.5498	0
2208 -15.3826 0 15.3826 -0.6479 -0.7244 0.2355 14.1284 14.1284	28.2567	0
2210 -12.9364 0 12.9364 -0.6467 -0.72 0.2518 12.1556 12.1556	24.3112	0
2212 -9.8897 0 9.8897 -0.6437 -0.7197 0.2602 9.3036 9.3036	18.6072	0
2214 -7.0039 0 7.0039 -0.6444 -0.7166 0.267 6.8394 6.8394	13.6788	0
2216 -4.2327 0 4.2327 -0.6304 -0.7222 0.2846 4.0783 4.0783	8.1566	0
2218 -1.2808 0 1.2808 -0.5911 -0.7034 0.3949 1.5062 1.5062	3.0125	0

Node	Sa maior	Sa equiv	Sm proj	I	m	n	Sa von mises	Sm von mises	S1 von mises	S2 von mises
2227	-22.04	0	22.04	-0.5793	-0.7988	0.1622	20.4412	20.4412	40.8823	0
2229	-18.674	0	18.674	-0.5771	-0.7992	0.1682	17.4522	17.4522	34.9044	0
2231	-15.673	0	15.673	-0.5804	-0.7989	0.1577	14.9208	14.9208	29.8416	0
2233	-12.5241	0	12.5241	-0.579	-0.805	0.1292	12.0141	12.0141	24.0283	0
2235	-9.1375	0	9.1375	-0.5815	-0.8034	0.128	9.0484	9.0484	18.0969	0
2237	-6.2655	0	6.2655	-0.5829	-0.8108	0.0539	6.2681	6.2681	12.5362	0
2246	-27.1576	0	27.1576	-0.4945	-0.8588	0.1337	25.2386	25.2386	50.4771	0
2248	-24.4662	0	24.4662	-0.4961	-0.8599	0.1207	23.0612	23.0612	46.1225	0
2250	-21.141	0	21.141	-0.4959	-0.8616	0.1082	20.0792	20.0792	40.1583	0
2252	-17.771	0	17.771	-0.497	-0.8643	0.0772	17.2746	17.2746	34.5493	0
2254	-14.5936	0	14.5936	-0.4968	-0.864	0.0818	14.2776	14.2776	28.5552	0
2256	-11.2547	0	11.2547	-0.4982	-0.8661	0.041	11.4121	11.4121	22.8242	0
2265	-33.1312	0	33.1312	-0.404	-0.9085	0.1073	31.2782	31.2782	62.5565	0
2267	-29.2764	0	29.2764	-0.4033	-0.9098	0.0984	27.7497	27.7497	55.4995	0
2269	-25.9509	0	25.9509	-0.4052	-0.9105	0.0832	25.0276	25.0276	50.0552	0
2271	-22.2348	0	22.2348	-0.4056	-0.9121	0.0604	21.5818	21.5818	43.1637	0
2273	-19.1298	0	19.1298	-0.4064	-0.912	0.0556	18.9298	18.9298	37.8596	0
2275	-15.2258	0	15.2258	-0.4053	-0.9141	0.0156	15.2153	15.2153	30.4306	0
2284	-37.3728	0	37.3728	-0.3067	-0.9477	0.0883	35.408	35.408	70.8161	0
2286	-34.3309	0	34.3309	-0.3077	-0.9486	0.0734	32.8835	32.8835	65.767	0
2288	-30.2682	0	30.2682	-0.3077	-0.9497	0.0577	29.1879	29.1879	58.3758	0
2290	-26.7495	0	26.7495	-0.3079	-0.9505	0.0425	26.1987	26.1987	52.3974	0
2292	-22.8253	0	22.8253	-0.3071	-0.951	0.0358	22.4702	22.4702	44.9404	0
2294	-19.2783	0	19.2783	-0.309	-0.9509	0.0173	19.4072	19.4072	38.8145	0
2303	-42.0626	0	42.0626	-0.2076	-0.9764	0.0592	40.4037	40.4037	80.8074	0
2305	-37.4181	0	37.4181	-0.2067	-0.9771	0.0504	35.9336	35.9336	71.8672	0
2307	-33.896	0	33.896	-0.2077	-0.9773	0.0419	32.9667	32.9667	65.9335	0
2309	-29.8772	0	29.8772	-0.2072	-0.9779	0.0288	29.2924	29.2924	58.5849	0
2311	-26.1701	0	26.1701	-0.208	-0.9779	0.0218	26.0146	26.0146	52.0292	0
2313	-22.1413	0	22.1413	-0.2077	-0.9782	0.0041	22.05	22.05	44.0999	0
2322	-44.2899	0	44.2899	-0.1041	-0.9938	0.0382	42.5064	42.5064	85.0128	0
2324	-40.8949	0	40.8949	-0.1044	-0.9941	0.0283	39.6471	39.6471	79.2943	0
2326	-36.6246	0	36.6246	-0.1041	-0.9943	0.0212	35.6452	35.6452	71.2904	0
2328	-32.7086	0	32.7086	-0.1045	-0.9944	0.014	32.2534	32.2534	64.5068	0
2330	-28.4594	0	28.4594	-0.104	-0.9945	0.0076	28.1031	28.1031	56.2061	0
2332	-24.6129	0	24.6129	-0.1045	-0.9945	0.0039	24.7079	24.7079	49.4157	0
2341	-67.5538	0	67.5538	-0.101	-0.9949	0	67.6959	67.6959	135.3918	0
2343	-60.8619	0	60.8619	-0.2047	-0.9777	0.046	61.0514	61.0514	122.1028	0
2345	-66.6438	0	66.6438	-0.3075	-0.9509	0.0341	62.6925	62.6925	125.385	0
2347	-57.5794	0	57.5794	-0.4029	-0.9127	0.0685	52.7539	52.7539	105.5078	0
2349	-56.544	0	56.544	-0.4982	-0.867	0.0104	51.3072	51.3072	102.6144	0
2351	-47.354	0	47.354	-0.5846	-0.8095	0.0544	42.188	42.188	84.3759	0
2353	-44.9176	0	44.9176	-0.6665	-0.7454	0.0082	40.2012	40.2012	80.4025	0
2355	-35.3032	0	35.3032	0.7403	0.6722	0.0082	31.1223	31.1223	62.2446	0
2357	-21.8425	0	21.8425	-0.8197	-0.5724	0.0233	20.4151	20.4151	40.8303	0
2359	-12.7755	0	12.7755	-0.8416	-0.495	0.2162	13.209	13.209	26.4181	0
2361	-1.6913	0	1.6913	-0.8224	-0.4483	0.3503	1.9731	1.9731	3.9461	0
2363	9.3778	0	-9.3778	0.9233	0.2887	0.2535	10.5859	10.5859	21.1717	0
2365	16.8428	0	-16.8428	0.9788	0.2021	0.0316	16.4106	16.4106	32.8212	0
2367	21.773	0	-21.773	0.9935	0.1024	0.0495	22.9517	22.9517	45.9034	0
2376	32.876	0	-32.876	0.9935	0.1039	0.0458	31.3294	31.3294	62.6589	0

Node	Sa maior	Sa equiv	Sm proj	I	m	n	Sa von mises	Sm von mises	S1 von mises	S2 von mises
2378	33 9909	0	-33 9909	0 9932	0 1046	0.052	31 9642	31 9642	63 9284	0
2380	31 7254	0	-31 7254	0.9928	0 1035	0.0607	30 4386	30 4386	60 8773	0
2382	31 9989	0	-31 9989	0.9929	0 1038	0.0582	30 4608	30 4608	60 9217	0
2384	28 8321	0	-28 8321	0.9932	0 1028	0.0538	28 2374	28 2374	56 4749	0
2386	27 7936	0	-27 7936	0.9933	0 1045	0.0489	27.381	27 381	54 762	0
2395	29 6254	0	-29 6254	0.973	0 2071	0.102	28 1076	28 1076	56 2151	0
2397	27.5786	0	-27 5786	0.9725	0.2048	0.1105	26 4515	26 4515	52 9029	0
2399	27 9183	0	-27 9183	0.0720	0 2064	0 1192	26 5207	26 5207	53 0415	0
2401	25 2134	0	-25 2134	0.0712	0.2004	0.134	24 5752	24 5752	49 1505	0
2403	24 7395	0	-24 7395	0.9705	0.2068	0.1237	23.9672	23,9672	47 9345	0
2405	20 4022	0	-20 4022	0.9719	0.205	0 1159	20 4976	20 4976	40 9951	0
2400	21 5575	0	-21 5575	0.0710	0.200	0.1717	20.9606	20.9606	41 9213	0
2416	21.3356	0	-21.3373	0.0070	0.3024	0.1717	20.0000	20.0000	40.9677	0
2410	18 0282	0	-18 0282	0.0000	0.0000	0.1000	18 7687	18 7687	37 5373	0
2410	18 2502	0	18 2502	0.3234	0.2307	0.217	17 7540	17 7540	35 5007	0
2420	15.0902	0	15 0909	0.9240	0.3	0.2339	15 2922	17.7049	30.5645	0
2422	13.0000	0	13 0907	0.9234	0.2900	0.2449	13 2025	13 2025	26 6160	0
2424	14.2767	0	-13.0097	0.9244	0.3033	0.2314	13.3003	13.3003	20.0109	0
2433	12.0076	0	12 0076	0.0701	0.3909	0.2024	12 5224	19.5107	29.0314	0
2435	12.0970	0	10 6757	0.0073	0.3703	0.3235	12.02.04	12.5254	20.0409	0
2437	0.5024	0	-10.0757	0.0409	0.3701	0.3730	0.0205	0.0205	10.950	0
2439	0.0931	0	-0.0901	0.0100	0.3500	0.404	9.9295	9.9290	19.009	0
2441	0.4452	0	-0.4452	0.7763	0.347	0.5262	7.53	7.53	15.0599	0
2443	3.7989	0	-3.7989	0.7139	0.3096	0.6281	5.8283	5.8283	11.6565	0
2452	5.7192	0	-5.7192	0.7419	0.418	0.5243	7.7184	7.7184	15.4367	0
2454	4.2061	0	-4.2061	0.6889	0.3998	0.6046	6.8628	6.8628	13.7255	0
2456	-5.0467	0	5.0467	-0.6188	-0.3623	0.6971	6.6589	6.6589	13.3178	0
2458	-6.6035	0	6.6035	-0.7348	-0.4201	0.5326	7.2665	7.2665	14.533	0
2460	-8.5337	0	8.5337	-0.794	-0.4659	0.3906	8.5434	8.5434	17.0868	0
2462	-11.6919	0	11.6919	-0.8538	-0.487	0.1839	11.5212	11.5212	23.0424	0
2471	-7.5383	0	7.5383	-0.6658	-0.4851	0.5669	7.5764	7.5764	15.1527	0
2473	-9.4567	0	9.4567	-0.7246	-0.5307	0.4397	8.9787	8.9787	17.9575	0
2475	-12.2931	0	12.2931	-0.769	-0.5595	0.3093	11.4403	11.4403	22.8806	0
2477	-14.7756	0	14.7756	-0.7921	-0.5764	0.2008	13.5989	13.5989	27.1977	0
2479	-19.0589	0	19.0589	-0.8031	-0.5871	0.1022	17.3817	17.3817	34.7634	0
2481	-19.4556	0	19.4556	-0.8026	-0.5957	0.0311	19.3264	19.3264	38.6528	0
2490	-13.8364	0	13.8364	-0.7103	-0.6441	0.2839	12.6854	12.6854	25.3707	0
2492	-17.054	0	17.054	-0.7253	-0.6535	0.2165	15.522	15.522	31.044	0
2494	-19.7436	0	19.7436	-0.7324	-0.6616	0.1609	17.7177	17.7177	35.4355	0
2496	-24.0295	0	24.0295	-0.7416	-0.6667	0.0739	21.5245	21.5245	43.0491	0
2498	-24.7299	0	24.7299	-0.7353	-0.6754	0.0563	22.6929	22.6929	45.3859	0
2500	-29.6008	0	29.6008	0.7462	0.6654	0.0206	27.2485	27.2485	54.497	0
2509	-21.044	0	21.044	-0.6569	-0.73	0.1885	19.0222	19.0222	38.0443	0
2511	-23.04	0	23.04	-0.6617	-0.7378	0.1333	20.7758	20.7758	41.5515	0
2513	-27.0141	0	27.0141	-0.6634	-0.7389	0.1184	24.2267	24.2267	48.4534	0
2515	-27.0365	0	27.0365	-0.6649	-0.7411	0.0932	24.6882	24.6882	49.3765	0
2517	-34.2796	0	34.2796	-0.6732	-0.7376	0.0518	30.6698	30.6698	61.3397	0
2519	-36.3538	0	36.3538	-0.6662	-0.7458	0.0072	32.6014	32.6014	65.2028	0
2528	-25.916	0	25.916	-0.5811	-0.801	0.1441	23.7327	23.7327	47.4655	0
2530	-29.7965	0	29.7965	-0.5797	-0.8023	0.1424	27.0218	27.0218	54.0437	0
2532	-30.9974	0	30.9974	-0.5839	-0.7998	0.139	28.4881	28.4881	56.9762	0
2534	-36.6334	0	36.6334	-0.5848	-0.8046	0.1033	32.8781	32.8781	65.7561	0

Node	Sa maior	Sa equiv	Sm proj	I	m	n	Sa von mises	Sm von mises	S1 von mises	S2 von mises
2536	-37.5683	0	37.5683	-0.585	-0.8063	0.087	34.013	34.013	68.0261	0
2538	-43.2946	0	43.2946	-0.5862	-0.8077	0.064	39.0882	39.0882	78.1765	0
2547	-32.1478	0	32.1478	-0.4925	-0.8585	0.1425	29.5383	29.5383	59.0767	0
2549	-33.3564	0	33.3564	-0.4963	-0.8552	0.1494	30.9827	30.9827	61.9655	0
2551	-37.8771	0	37.8771	-0.4954	-0.8578	0.1367	34.6838	34.6838	69.3675	0
2553	-40.7349	0	40.7349	-0.4921	-0.8558	0.1593	37.7094	37.7094	75.4187	0
2555	-44.7709	0	44.7709	-0.4955	-0.8577	0.1368	40.871	40.871	81.7421	0
2557	-46.991	0	46.991	-0.497	-0.863	0.0905	43.1059	43.1059	86.2119	0
2566	-35.7298	0	35.7298	-0.4015	-0.9064	0.1309	34.3352	34.3352	68.6705	0
2568	-42.1653	0	42.1653	-0.4031	-0.9049	0.137	38.8797	38.8797	77.7595	0
2570	-44.3127	0	44.3127	-0.4033	-0.9028	0.1496	41.8549	41.8549	83.7097	0
2572	-48.1879	0	48.1879	-0.4031	-0.9026	0.1507	44.9219	44.9219	89.8437	0
2574	-49.5687	0	49.5687	-0.4026	-0.9037	0.146	46.7301	46.7301	93.4603	0
2576	-54.9454	0	54.9454	-0.4038	-0.9081	0.1112	50.8029	50.8029	101.6057	0
2585	-43.3805	0	43.3805	-0.3079	-0.9428	0.1282	41.0365	41.0365	82.073	0
2587	-44.947	0	44.947	-0.3056	-0.944	0.1247	42.5062	42.5062	85.0124	0
2589	-49.2033	0	49.2033	-0.3032	-0.9433	0.1352	47.2628	47.2628	94.5257	0
2591	-52.7656	0	52.7656	-0.3009	-0.943	0.1419	50.7276	50.7276	101.4553	0
2593	-58.4919	0	58.4919	-0.3041	-0.9438	0.1296	56.0416	56.0416	112.0832	0
2595	-60.0894	0	60.0894	-0.3012	-0.9461	0.1186	57.6606	57.6606	115.3211	0
2604	-46.7686	0	46.7686	-0.2062	-0.9747	0.0868	45.0411	45.0411	90.0823	0
2606	-52.5638	0	52.5638	-0.206	-0.9743	0.0911	50.2263	50.2263	100.4526	0
2608	-54.7853	0	54.7853	-0.2051	-0.9738	0.0977	52.8205	52.8205	105.6411	0
2610	-59.9216	0	59.9216	-0.2069	-0.973	0.1019	57.8999	57.8999	115.7998	0
2612	-60.4102	0	60.4102	-0.209	-0.9729	0.0988	59.9529	59.9529	119.9059	0
2614	-65.3471	0	65.3471	-0.2112	-0.9756	0.0598	64.613	64.613	129.226	0
2623	-50.4885	0	50.4885	-0.1042	-0.993	0.0549	48.5967	48.5967	97.1933	0
2625	-53.1402	0	53.1402	-0.1037	-0.9929	0.059	51.5983	51.5983	103.1966	0
2627	-59.1705	0	59.1705	-0.1036	-0.993	0.0573	57.2413	57.2413	114.4827	0
2629	-60.8651	0	60.8651	-0.1034	-0.9927	0.062	59.6974	59.6974	119.3949	0
2631	-66.3915	0	66.3915	-0.1033	-0.9934	0.0498	65.2002	65.2002	130.4004	0
2633	-66.3321	0	66.3321	-0.105	-0.9938	0.036	66.1183	66.1183	132.2366	0

Anexo 4: Listagem dos coeficientes de segurança para cada nó da malha de

elementos finitos da bronzina estudada

Nó	S. Factor	Nó	S. Factor	Nó	S. Factor	Nó	S. Factor
1	1,00996	119	1,42411	286	2,27959	425	0,900635
2	1,56609	121	1,67948	288	4	427	0,840489
4	0,964423	123	1,9385	290	3,71569	429	0,737784
6	1,02816	125	2,31815	292	3,06588	431	0,703336
8	1,05343	134	1,18293	294	2,65207	433	0,624186
10	1,19853	136	1,31897	296	2,57469	435	0,623959
12	1,29108	138	1,52822	305	2,45358	444	0,958703
14	1,53904	140	1,76764	307	1,92842	446	0,834057
16	1,70639	142	2,12236	309	2,18282	448	0,789939
18	2,10631	144	2,53293	311	2,29792	450	0,706877
20	2,19836	153	1,26487	313	2,21011	452	0,687386
22	2,21295	155	1,47535	315	1,86088	454	0,638735
24	1,65681	157	1,69845	324	2,60836	463	0,987761
26	1,11691	159	2,03489	326	2,15658	465	0,921289
28	1,17905	161	2,39439	328	1,73524	467	0,813776
30	1,2193	163	2,91985	330	1,85604	469	0,774265
32	0	172	1,47944	332	1,85655	471	0,703607
34	2,27599	174	1,66937	334	1,68893	473	0,703778
36	2,21264	176	1,98074	343	1,75079	482	1,10075
38	1,53253	178	2,34481	345	1,87138	484	0,94674
40	1,95487	180	2,8971	347	2,10662	486	0,91485
42	1,74444	182	3,64545	349	1,6744	488	0,822919
44	1,49274	191	1,67859	351	1,75682	490	0,800655
46	2,89134	193	1,99121	353	1,62095	492	0,748159
48	2,63675	195	2,42404	361	0,77344	501	1,19279
50	2,91814	197	3,0342	363	3,78078	503	1,10897
52	2,97157	199	3,83534	365	3,20511	505	0,975655
54	3,76676	201	4	367	4	507	0,937455
56	4	210	2,02238	369	2,73861	509	0,857766
58	4	212	2,47727	371	4	511	0,860738
60	4	214	3,12466	373	4	520	1,39797
62	4	216	4	375	0,61089	522	1,19848
64	4	218	4	377	0,602658	524	1,1282
66	4	220	4	379	0,653898	526	1,00049
68	2,78871	229	2,43774	381	0,67996	528	0,995146
70	1,29089	231	3,11043	383	0,768908	530	0,934731
74	1,17577	200	4	200 207	0,033240	539	1,01910
74	1,23076	200	4	200	0,971120	541	1,40210
70	1,0073	237	4	309	1,07974	545	1,21409
81	1,24141	200	2 65233	303	1,20030	547	1,15000
83	1,41231	250	3 93456	305	1,40540	549	1,00200
85	1,00274	252	4	397	1,00525	558	1,00200
87	2 29977	254	4	399	1 34155	560	1 49656
96	1 08274	256	4	401	0.88878	562	1,38421
98	1,20216	258	4	403	1.44754	564	1,21107
100	1.39019	267	3.16054	406	0.932523	566	1.23213
102	1,59053	269	3,8353	408	0,804384	568	1,17791
104	1,89605	271	4	410	0,755032	577	1,79092
106	2,24105	273	4	412	0,656143	579	1,72451
115	1,07796	275	4	414	0,642399	581	1,41692
117	1,25373	277	4	416	0,587118	583	1,34582

S. Factor S. Factor S. Factor Nó Nó S. Factor Nó Nó 585 1,21608 730 1,91736 884 2,41105 1043 0,664473 587 1,32303 732 2,29604 886 3,12845 1045 0,643619 596 2.69672 735 1.41435 888 4 1047 0.589009 890 598 1,67052 737 1,33761 4 1050 1,4747 600 1,9325 739 1,27909 892 4 0,869056 1052 602 1,51959 741 2,83063 894 4 1054 1,15345 604 1,72576 743 4 903 2,02683 1056 1,5882 606 1,43947 745 4 905 2,46622 1058 1,87331 615 3,75375 747 4 907 3,12467 1060 1,43541 4 749 4 909 4 1062 1,28526 617 751 4 4 619 2,10929 911 1064 1,07524 3,07476 753 4 913 4 1066 0,970698 621 623 755 3,74836 922 1,67619 1068 0,832107 2,12308 625 2,33371 757 2,95031 924 1,98905 1070 0,768315 634 3,57491 759 2,90176 926 2,4072 1072 0,677605 636 4 761 2,62587 928 3,00969 1074 0,653617 638 3,13613 770 1,82138 930 3,8089 1076 0,601085 640 2.36064 772 1.79619 932 1085 2.55366 4 2,02084 1,47063 2,92754 642 3,57921 774 941 1087 1,51705 1,66069 644 1,92924 776 943 1089 4 2,12926 653 2,29383 778 1,78353 945 1,98 1091 655 2,47609 780 1,5513 947 2,33913 1093 4 3,20657 789 2,49418 2,89006 1095 1,97753 657 949 2,27122 659 2,55629 791 951 3,62602 1104 2,73296 661 1,72303 793 1,78387 960 1,25983 1106 2,97533 795 663 4 1,82166 962 1,48027 1108 4 672 3,59014 797 162755 964 1,68932 1110 3,17263 674 2,79137 799 1,59933 966 2,01342 2,37424 1112 676 3,29691 808 2,47618 968 2,38767 1114 4 678 2,33068 810 2,1188 970 2,92665 1123 2,73508 2,47406 3,91809 680 4 812 979 1,17908 1125 682 2.08691 814 2.34972 981 1.31229 1127 3.70759 690 1.00809 816 2.66048 983 1.54626 1129 3.40929 2,52419 985 692 0,894753 1,87568 1,76798 818 1131 694 0.97044 987 2.25458 827 2 34944 2,11642 1133 696 1,09391 829 3,35029 989 2,51291 1142 2,44141 698 1,69291 831 3,14174 998 1,0791 1144 4 700 2,22645 3,07604 1000 1,24851 1146 4 833 702 2,18672 835 2,83449 1002 1,41207 1148 1,89312 704 2,10357 837 2,61059 1004 1,65933 1150 1,79627 706 3,11296 2,34223 1,69757 846 1006 1,92939 1152 1,5413 3,83889 708 848 1008 2,31606 1161 2,71572 710 1,28818 850 4 1017 1,07716 1163 1,65504 712 1,18803 852 4 1019 1,19873 1165 2,03681 714 1,05686 854 1021 1,38286 1167 1,39747 4 1,70658 716 1,02484 856 4 1023 1,59367 1169 718 0.961242 865 2.6557 1025 1.87865 1171 1.44906 2,23677 720 2,86891 867 3,80299 1027 1180 1,81828 722 1,6017 869 1035 0,610233 1182 1.67248 4 1,38902 1,23682 871 4 1037 0,93706 724 1184 1,40254 4 0,808797 1,32048 726 873 1039 1186 728 1,6405 875 4 1041 0,750056 1188 1,19747

Anexo 4: Listagem dos coeficientes de segurança para cada nó da malha de

elementos finitos da bronzina estudada (cont.)

Nó S. Factor S. Factor Nó S. Factor Nó S. Factor Nó 1190 1,31517 1356 1,27233 1489 1,97665 1649 2.44239 1199 1,79006 1358 1,58557 1491 2,27547 1658 2,16352 1201 1.47989 1360 1.89471 1493 2.73472 1660 2,14942 1,37952 2,56483 2,16145 1203 1362 1495 3,31759 1662 1,22996 3,43075 1497 4 2,14781 1205 1364 1664 1207 1,22944 1366 4 1506 2,17569 1666 2,14161 1209 1,16622 1368 4 1508 2,44471 1668 2,12637 1218 1,51951 1370 4 1510 2,93185 1677 1,94386 1220 1,38696 1372 4 1512 3,52744 1679 1,94373 1222 1,21002 1374 2,85175 1,95136 1514 4 1681 1224 1376 2,30345 1516 4 1683 1,95363 1,15677 2,80734 1226 1,05116 1378 2,0052 1525 1685 1,95217 1228 1,94036 1527 3,36908 1,97229 1,0864 1380 1687 1237 1,38883 1382 1,8602 1529 4 1695 2,96625 1239 1,20877 1384 1,87877 1531 4 1697 1,99571 1241 1,118 1386 1,87881 1533 4 1699 2,10249 1243 1,01119 1388 1,89048 1535 4 1701 2,05063 1245 0.989107 1390 1.91693 1544 4 1703 2.20567 0,932904 1247 1392 1,91512 1546 4 1705 2,21276 2,87121 2,56841 1256 1,18994 1395 1548 4 1707 0,587113 1258 1.,9512 1397 3,5472 1550 4 1710 1260 0,978037 1399 3,94461 1552 4 1712 0,701236 1262 0,92657 1401 1714 0,599088 4 1554 4 1264 0,85047 1403 4 1563 4 1716 0,775924 1266 0,851825 1405 4 1565 4 1718 0,796149 1407 4 4 1720 1,05489 1275 1,10598 1567 1277 0,967311 1409 4 1569 4 1722 1,14475 1279 4 4 1724 1,63655 0,903165 1411 1571 1281 0,825105 1413 3,65479 1573 4 1726 2,97115 1283 0,803066 1415 2,9312 1582 4 1728 4 1285 0,74821 1417 2,36812 1584 4 1730 4 1294 0.979577 1419 2.13094 1586 4 1732 4 1296 0.914432 1421 1.95743 1588 4 1734 4 3,23529 0,819128 1298 1430 1,14816 1590 4 1736 1,27507 1300 0,773681 1432 1592 4 1745 0 943049 1302 0,701831 1434 1,4775 1601 4 1747 0,872821 1304 0,702017 1436 1,71222 1603 4 1749 0,753603 0,955332 2,03636 1605 1751 0,696378 1313 1438 4 1315 0,834724 1440 2,41563 1607 4 1753 0,610629 1317 0,781762 1449 1,22744 1609 4 0,60475 1755 1451 4 1319 0,703385 1,43921 1611 1764 1,0609 3,83262 1321 0,687979 1453 1,62814 1620 1766 0,906773 3,59082 1323 0,635712 1455 1,92554 1622 1768 0,832167 1332 0,90092 1457 2,23148 1624 3,42476 1770 0,718345 1334 0,839822 1459 2,75202 1626 3,27687 1772 0,704272 1,44486 1336 0,737719 1468 1628 3,13393 1774 0,632061 1338 0.696726 1470 1.60989 1630 2.99474 1783 1.17619 1340 0,622531 1472 1,90455 1639 2,71136 1785 1,11613 1342 0,623234 1474 2.19467 1641 2,65633 1787 0.979709 1789 0,900609 1350 1,95668 2,66897 1643 1476 2,5699 1,02005 1645 0,760019 1352 1478 3,21597 2,52095 1791 1354 1,16284 1487 1,68362 1647 2,48031 1793 0,712091

Anexo 4: Listagem dos coeficientes de segurança para cada nó da malha de

elementos finitos da bronzina estudada (cont.)

Nó S. Factor S. Factor Nó S. Factor Nó Nó S. Factor 1.45473 2,16241 2.29447 1,26524 2,13538 2,75817 1.14581 2.38526 2,77307 3,28376 2,55298 0,998265 2,67956 0,989499 2,61812 1,44653 2.51641 0,829558 2,77026 2,57055 1,61723 1,7469 2,83089 2,50282 1,89874 1,65238 3,36389 2,47526 2,21164 1,37788 2,16447 2,67439 2,10039 3,72714 3,25477 1,31673 2,23101 3,5393 1,23174 1,12805 1,05489 2,2197 3,30969 1,4442 2,31752 2,46273 3,20138 1,64414 1,96434 2,57267 3,02304 1,92987 1,91803 2,00799 2,27124 1,51348 2,34998 2,77184 1,42726 2,94202 1,14565 1.19828 1.28061 1,48589 3,00264 2,70026 1,72126 2,04992 2,23058 2,17807 3,36963 2,44529 1,68279 2,55733 0,585818 1,51585 1,89297 0,703006 1,56715 0,600371 1,27257 0,770447 3,88193 3,29873 1,16587 0,793344 2,62693 1,02012 1,04046 2,4612 2,90502 1,12293 2,06512 3,57565 1.55947 3,98085 2,81633 3,56222 3,39653 3,30684 2,19005 3,70583 2,11821 2,97117 2,78678 2,26948 2,38502 3,37562 2,25008 2,1462 2,49721 1,96029 2,59053 1,9503 2,43035 1,95408 2,61072 1,96384 2,17119 2,57895 1,96974 2,46284 2,85563 1.96901 0.9257 2.91032 1,98065 3,57154 3,52903 3.2256 2,21125 3,3399 2,19389 3,37464 3,22691 1,69318 364.194 2,18269 3,80385 3,74478 2,17383 1,97932 3,94516

Anexo 4: Listagem dos coeficientes de segurança para cada nó da malha de

elementos finitos da bronzina estudada (cont.)

Anexo 4: Listagem dos coeficientes de segurança para cada nó da malha de

elementos finitos da bronzina estudada (cont.)

Nó	S. Factor
2422	4
2424	4
2433	4
2435	4
2437	4
2439	4
2441	4
2443	4
2452	4
2452	4
2454	4
2450	4
2458	4
2460	4
2462	4
2471	4
2473	4
2475	4
2477	4
2479	3,29776
2481	3,22073
2490	4
2492	3,74188
2494	3,16675
2496	2,51631
2498	2,43146
2500	1.95237
2509	2.9414
2511	2 645
2513	2 18527
2515	2 18307
2517	1 62038
2510	1,02050
2519	2 20821
2520	1 03630
2000	1,93039
2032	1,042/0
2534	1,48542
2536	1,43651
2538	1,18303
2547	1,75965
2549	1,67851
2551	1,42088
2553	1,28753
2555	1,12819
2557	1,05221
2566	1,53513
2568	1,22757
2570	1,14482
2572	1,01415
2574	0.972531
2576	0,830391
2585	1 17973
2587	1 12189
2001	1,12100

Nó	S. Factor		
2589	0,983317		
2591	0,884527		
2593	0,75094		
2595	0,718214		
2604	1,0595		
2606	0,889764		
2608	0,834222		
2610	0,721571		
2612	0,711852		
2614	0,621809		
2623	0,946066		
2625	0,874905		
2627	0,736824		
2629	0,702944		
2631	0,604476		
2633	0,605447		
Node	SA	SM	Nf
------	---------	----------	----------
1	48.3235	48.3235	9.74E+03
2	35.189	35.189	2.19E+06
4	49.8469	49.8469	5.51E+03
6	47.7402	47.7402	1.21E+04
8	46.9536	46.9536	1.64E+04
10	42.8947	42.8947	8.06E+04
12	40.6532	40.6532	2.02E+05
14	35.6606	35.6606	1.77E+06
16	32.931	32.931	6.32E+06
18	27.8389	27.8389	8.50E+07
20	26.8821	26.8821	1.44E+08
22	26.7365	26.7365	1.56E+08
24	33.6951	33.6951	4.39E+06
26	45.087	45.087	3.37E+04
28	43.3983	43.3983	6.58E+04
30	42.3704	42.3704	9.96E+04
32	47.9537	47.9537	1.12E+04
34	31.6346	-31.6346	2.35E+09
36	32.5404	-32.5404	1.76E+09
38	46.9811	-46.9811	4.84E+07
40	36.8311	-36.8311	5.09E+08
42	41.274	-41.274	1.67E+08
44	48.2335	-48.2335	3.79E+07
46	21.3565	21.3565	4.24E+09
48	23.101	23.101	1.36E+09
50	21.1881	21.1881	4.76E+09
52	20.86	20.86	5.95E+09
54	16.9541	16.9541	1.11E+11
56	14.5369	14.5369	9.27E+11
58	8.5441	8.5441	1.12E+15
60	4.2754	4.2754	8.33E+18
62	3.5118	-3.5118	1.80E+20
64	8.8027	-8.8027	3.23E+15
66	15.5197	-15.5197	4.91E+12
68	22.027	22.027	2.72E+09
70	40.6576	40.6576	2.02E+05
72	43.4843	43.4843	6.36E+04
74	42.0861	42.0861	1.12E+05
77	46.5328	46.5328	1.93E+04
79	41.8262	41.8262	1.24E+05
81	38.0448	38.0448	6.12E+05
83	33.7593	33.7593	4.26E+06
85	30.2011	30.2011	2.44E+07
87	25.9014	25.9014	2.52E+08
96	46.073	46.073	2.30E+04
98	42.8021	42.8021	8.37E+04

Node	SA	SM	Nf
100	38.4988	38.4988	5.03E+05
102	34.7737	34.7737	2.65E+06
104	30.3024	30.3024	2.32E+07
106	26.4604	26.4604	1.83E+08
115	46.2144	46.2144	2.18E+04
117	41.5291	41.5291	1.40E+05
119	37.813	37.813	6.77E+05
121	33.3413	33.3413	5.19E+06
123	29.7705	29.7705	3.05E+07
125	25.7313	25.7313	2.77E+08
134	43.2971	43.2971	6.86E+04
136	40.0228	40.0228	2.63E+05
138	35.8527	35.8527	1.62E+06
140	32.0336	32.0336	9.76E+06
142	27.6672	27.6672	9.33E+07
144	23.897	23.897	8.29E+08
153	41.2638	41.2638	1.57E+05
155	36.822	36.822	1.05E+06
157	33.051	33.051	5.96E+06
159	28.6295	28.6295	5.55E+07
161	25.0488	25.0488	4.14E+08
163	21.1774	21.1774	4.79E+09
172	36.7452	36.7452	1.08E+06
174	33.4983	33.4983	4.82E+06
176	29.2595	29.2595	3.98E+07
178	25.4884	25.4884	3.20E+08
180	21.3201	21.3201	4.35E+09
182	17.4526	17.4526	7.42E+10
191	33.3552	33.3552	5.16E+06
193	29.1356	29.1356	4.25E+07
195	24.793	24.793	4.82E+08
197	20.4883	20.4883	7.70E+09
199	16.6847	16.6847	1.39E+11
201	12.7939	12.7939	5.26E+12
210	28.7726	28.7726	5.14E+07
212	24.3467	24.3467	6.30E+08
214	19.9741	19.9741	1.11E+10
216	15.5601	15.5601	3.65E+11
218	7 4060	7 4060	1./5E+13
220	1.4900	1.4900	0.10E+15
229	24.0/0/	24.0/0/	5.10E+U8
231	20.0533	20.0533	1.05E+10
200	10.2009	10.2009	4./0E+11 5.31E+12
200	6 6206	6 6206	3.03E+15
231	2 7666	2 7666	3.03E+10
239	2.7000	2.7000	2.045721

Anexo 5: Resultados da vida à fadiga calculados pela metodologia proposta para cada nó da malha de elementos finitos da bronzina estudada

lados pela metodolog os da bronzina estuda					
Node	SA	S			
381	62.0711	62.0			
383	57.6504	57.6			
385	54.826	54.8			
387	49.6166	49.6			
389	46.1615	46.1			
391	40.7613	40.7			
393	37.6282	37.6			
395	30.4403	30.4			
397	35.308	35.3			
399	39.5267	39.5			

Anexo 5: Resultados da vida à fadiga calculados gia proposta para

cada nó da malha de elementos finitos da b ada (cont.)

Node	SA	SM	Nf
248	22.9861	22.9861	1.46E+09
250	16.3097	16.3097	1.90E+11
252	12.0782	12.0782	1.14E+13
254	7.3705	7.3705	7.68E+15
256	6.7643	-6.7643	7.11E+16
258	8.2844	-8.2844	6.56E+15
267	19.7773	19.7773	1.27E+10
269	16.6848	16.6848	1.39E+11
271	10.6763	10.6763	5.93E+13
273	10.5812	-10.5812	3.82E+14
275	11.8016	-11.8016	1.09E+14
277	13.478	-13.478	2.40E+13
286	26.0908	26.0908	2.26E+08
288	16.9989	-16.9989	1.78E+12
290	19.3773	-19.3773	4.21E+11
292	23.4843	-23.4843	5.27E+10
294	27.1486	-27.1486	1.14E+10
296	27.9646	-27.9646	8.37E+09
305	29.3449	-29.3449	5.08E+09
307	37.3363	-37.3363	4.45E+08
309	32.9849	-32.9849	1.54E+09
311	31.3327	-31.3327	2.59E+09
313	32.5776	-32.5776	1.74E+09
315	38.6913	-38.6913	3.13E+08
324	27.6036	-27.6036	9.58E+09
326	27.3081	27.3081	1.14E+08
328	41.4929	-41.4929	1.58E+08
330	38.7922	-38.7922	3.05E+08
332	38.7817	-38.7817	3.06E+08
334	42.6307	-42.6307	1.22E+08
343	41.1243	-41.1243	1.73E+08
345	38.4744	-38.4744	3.31E+08
347	34.1779	-34.1779	1.07E+09
349	43.0005	-43.0005	1.12E+08
351	40.9832	-40.9832	1.79E+08
353	44.4185	-44.4185	8.24E+07
361	57.4419	57.4419	3.61E+02
363	19.0437	-19.0437	5.09E+11
365	22.4641	-22.4641	8.48E+10
367	15.8931	-15.8931	3.76E+12
369	22.3699	22.3699	2.17E+09
371	15.508	15.508	3.82E+11
373	15.5529	15.5529	3.67E+11
375	66.0011	66.0011	1.96E+01
377	66.503	66.503	1.66E+01
379	63.4978	63.4978	4.55E+01

Node	SA	SM	Nf
381	62.0711	62.0711	7.37E+01
383	57.6504	57.6504	3.36E+02
385	54.826	54.826	9.06E+02
387	49.6166	49.6166	6.00E+03
389	46.1615	46.1615	2.22E+04
391	40.7613	40.7613	1.93E+05
393	37.6282	37.6282	7.34E+05
395	30.4403	30.4403	2.16E+07
397	35.308	35.308	2.07E+06
399	39.5267	39.5267	3.24E+05
401	52.6016	52.6016	2.01E+03
403	37.3532	37.3532	8.29E+05
406	50.9726	50.9726	3.64E+03
408	56.058	56.058	5.86E+02
410	58.2981	58.2981	2.68E+02
412	63.3723	63.3723	4.74E+01
414	64.1483	64.1483	3.65E+01
416	67.4714	67.4714	1.20E+01
425	52.1499	52.1499	2.37E+03
427	54.5252	54.5252	1.01E+03
429	59.1238	59.1238	2.02E+02
431	60.8449	60.8449	1.12E+02
433	65.2064	65.2064	2.56E+01
435	65.2198	65.2198	2.55E+01
444	50.0451	50.0451	5.12E+03
446	54.7922	54.7922	9.17E+02
448	56.6957	56.6957	4.69E+02
450	60.6634	60.6634	1.19E+02
452	61.6763	61.6763	8.42E+01
454	64.3584	64.3584	3.40E+01
463	49.0543	49.0543	7.40E+03
465	51.3813	51.3813	3.13E+03
467	55.651	55.651	6.77E+02
469	57.4042	57.4042	3.66E+02
471	60.831	60.831	1.12E+02
473	60.8222	60.8222	1.13E+02
482	45.5481	45.5481	2.82E+04
484	49.8382	49.8382	5.53E+03
400	55.0605	55.0605	2.8/E+U3
400	56 2212	56 2242	1.11E+UZ
490	58 6242	58 6242	0.04E+02
49Z	13 0/19	13 0/19	2.40E+02
503	45 3125	45 3125	3 00E+04
505	40 4623	40 4623	6 36E+03
505	50 7053	50 7053	3.88E+03
507	50.7955	50.7955	3.00⊑±03

Node	SA	SM	Nf
509	53.8211	53.8211	1.30E+03
511	53.7018	53.7018	1.35E+03
520	38.3392	38.3392	5.39E+05
522	42.896	42.896	8.05E+04
524	44.7706	44.7706	3.82E+04
526	48.6326	48.6326	8.67E+03
528	48.8087	48.8087	8.11E+03
530	50.8931	50.8931	3.74E+03
539	36.0148	36.0148	1.50E+06
541	38.254	38.254	5.59E+05
543	42.4857	42.4857	9.51E+04
545	44.0081	44.0081	5.16E+04
547	46.9945	46.9945	1.61E+04
549	45.791	45.791	2.56E+04
558	31.7027	31.7027	1.15E+07
560	36.4269	36.4269	1.25E+06
562	38.6222	38.6222	4.77E+05
564	42.5766	42.5766	9.16E+04
566	42.0529	42.0529	1.13E+05
568	43.4282	43.4282	6.50E+04
577	31.7052	31.7052	1.15E+07
579	32.6603	32.6603	7.20E+06
581	37.9562	37.9562	6.36E+05
583	39.4344	39.4344	3.37E+05
585	42.4509	42.4509	9.64E+04
587	39.9327	39.9327	2.73E+05
596	22.6649	22.6649	1.80E+09
598	33.4803	33.4803	4.86E+06
600	29.8446	29.8446	2.94E+07
602	36.0073	36.0073	1.51E+06
604	32.6419	32.6419	7.26E+06
606	37.5103	37.5103	7.73E+05
615	19.1808	-19.1808	4.71E+11
617	15.8211	-15.8211	3.96E+12
619	27.8068	27.8068	8.65E+07
621	20.2545	20.2545	9.07E+09
623	27.6596	27.6596	9.37E+07
625	25.589	25.589	3.01E+08
634	20.1404	-20.1404	2.76E+11
636	15.7057	-15.7057	4.30E+12
638	22.9582	-22.9582	6.72E+10
640	25.3464	25.3464	3.47E+08
642	17.7375	17.7375	5.92E+10
644	29.885	29.885	2.87E+07
653	31.3885	-31.3885	2.54E+09

655

29.0781

-29.0781

5.58E+09

Node	SA	SM	Nf
657	19.5303	19.5303	1.52E+10
659	28.1658	-28.1658	7.77E+09
661	32.6822	32.6822	7.12E+06
663	13.2951	13.2951	3.13E+12
672	20.0549	-20.0549	2.89E+11
674	25.7938	-25.7938	1.95E+10
676	21.8386	-21.8386	1.15E+11
678	25.6166	25.6166	2.97E+08
680	13.6955	-13.6955	2.00E+13
682	28.0493	28.0493	7.58E+07
690	48.3841	48.3841	9.52E+03
692	52.373	52.373	2.18E+03
694	49.6401	49.6401	5.95E+03
696	45.746	45.746	2.61E+04
698	33.1353	33.1353	5.73E+06
700	26.6031	26.6031	1.69E+08
702	26.9994	26.9994	1.35E+08
704	27.8684	27.8684	8.36E+07
706	33.0644	33.0644	5.92E+06
708	35.6206	35.6206	1.80E+06
710	40.7197	40.7197	1.96E+05
712	43.1648	43.1648	7.23E+04
714	46.8487	46.8487	1.71E+04
716	47.8456	47.8456	1.17E+04
718	49.9569	49.9569	5.29E+03
720	21.4995	21.4995	3.86E+09
722	46.7482	46.7482	1.77E+04
724	41.9381	41.9381	1.19E+05
726	38.2462	38.2462	5.61E+05
728	33.9543	33.9543	3.88E+06
730	30.033	30.033	2.66E+07
732	25.9362	25.9362	2.47E+08
735	38.0077	38.0077	6.22E+05
737	39.6124	39.6124	3.13E+05
739	40.9303	40.9303	1.80E+05
741	21.7481	21.7481	3.27E+09
743	15.2215	-15.2215	6.10E+12
745	8.9386	-8.9386	2.70E+15
747	3.4493	-3.4493	2.23E+20
749	4.2766	4.2766	8.30E+18
751	8.6026	8.6026	1.02E+15
753	14.5686	14.5686	9.00E+11
755	17.0279	17.0279	1.05E+11
757	20.9893	20.9893	5.45E+09
759	21.2907	21.2907	4.44E+09
761	23.1819	23.1819	1.29E+09

Anexo 5: Resultados da vida à fadiga calculados pela metodologia proposta para

cada nó da malha de elementos finitos da bronzina estudada (cont.)

Node	SA	SM	Nf
770	39.5304	-39.5304	2.54E+08
772	40.0849	-40.0849	2.21E+08
774	35.6288	-35.6288	7.08E+08
776	47 4605	-47 4605	4 40F+07
778	40 3693	-40 3693	2 07E+08
780	46 4127	-46 4127	5 43E+07
789	28 8672	-28 8672	6.02E+09
791	31 7011	-31 7011	2 30E+09
703	40 3617	-40 3617	2.00E+08
705	30 5244	-30 5244	2.57E+08
707	14 2382	-33.3244	2.54E+00
700	45.0180	-44.2302	7.25E+07
000	40.0109	-45.0109	7.23L+07
000	29.0771	-29.0771	1.14E+00
010	33.9015	-33.9015	1.14E+09
012	29.102	-29.102	5.53E+09
814	30.6419	-30.6419	3.25E+09
816	27.0628	-27.0628	1.18E+10
818	38.380	-38.386	3.38E+08
827	25.4468	25.4468	3.27E+08
829	18.7975	18.7975	2.62E+10
831	22.9172	-22.9172	6.85E+10
833	23.4067	-23.4067	5.46E+10
835	25.4014	-25.4014	2.29E+10
837	27.5799	-27.5799	9.66E+09
846	20.0392	20.0392	1.06E+10
848	16.671	16.671	1.41E+11
850	10.9271	10.9271	4.35E+13
852	10.6511	-10.6511	3.54E+14
854	12.3818	-12.3818	6.30E+13
856	13.6638	-13.6638	2.06E+13
865	22.9613	22.9613	1.49E+09
867	16.8107	16.8107	1.25E+11
869	12.0286	12.0286	1.21E+13
871	7.6163	7.6163	5.01E+15
873	6.9667	-6.9667	5.02E+16
875	8.186	-8.186	7.55E+15
884	24.9044	24.9044	4.51E+08
886	19.9532	19.9532	1.12E+10
888	15.5066	15.5066	3.82E+11
890	10.3739	10.3739	8.68E+13
892	6.6799	6.6799	2.75E+16
894	2.7138	2.7138	2.60E+21
903	28.7216	28.7216	5.29E+07
905	24.4381	24.4381	5.96E+08
907	19.9741	19.9741	1.11E+10

909

15.7505

15.7505

3.08E+11

Node SA SM Nf 11.6616 911 11.6616 1.83E+13 7.5429 7.5429 913 5.69E+15 922 33.3922 33.3922 5.07E+06 924 29.1611 29.1611 4.19E+07 926 24.9377 24.9377 4.42E+08 928 20.6322 20.6322 6.97E+09 930 16.7875 16.7875 1.28E+11 12.9647 12.9647 4.39E+12 932 941 36.9112 36.9112 1.01E+06 943 33.634 33.634 4.52E+06 945 29.2683 29.2683 3.96E+07 3.10E+08 25.5398 947 25.5398 4.22E+09 949 21.3646 21.3646 17.5352 17.5352 6.95E+10 951 41.3834 41.3834 1.49E+05 960 962 36.7296 36.7296 1.09E+06 964 33.1902 33.1902 5.58E+06 966 28.876 28.876 4.87E+07 25.1075 968 25.1075 4.00E+08 970 21.1351 21.1351 4.93E+09 979 43.3976 43.3976 6.58E+04 981 40.172 40.172 2.47E+05 983 35.5334 35.5334 1.87E+06 985 32.0288 32.0288 9.78E+06 27.7305 27.7305 9.02E+07 987 24.0569 989 24.0569 7.51E+08 998 46.1804 46.1804 2.21E+04 1000 41.6544 41.6544 1.33E+05 38.0536 38.0536 1002 6.10E+05 1004 33.6554 33.6554 4.47E+06 1006 29.8831 29.8831 2.88E+07 1008 25.7505 25.7505 2.74E+08 1017 46.2381 46.2381 2.16E+04 1019 42.8896 42.8896 8.08E+04 1021 38.6501 38.6501 4.71E+05 1023 34.721 34.721 2.72E+06 1025 30.5259 30.5259 2.07E+07 1027 26.502 26.502 1.78E+08 1035 66.041 66.041 1.94E+01 1037 50.8094 50.8094 3.86E+03 1039 55.8661 55.8661 6.27E+02 1041 58.5339 58.5339 2.47E+02 1043 62.9111 62.9111 5.54E+01 1045 64.0787 64.0787 3.74E+01 1047 67.3521 67.3521 1.25E+01 1050 36.8343 36.8343 1.04E+06

Anexo 5: Resultados da vida à fadiga calculados pela metodologia proposta para

cada nó da malha de elementos finitos da bronzina estudada (cont.)

a malha de elementos finitos					
SM	Nf				
53.3706	1.52E+03				
44.0785	5.02E+04	Í			
34.8129	2.60E+06				
30.5951	2.00E+07	Í			
37.5899	7.47E+05				
40.7873	1.91E+05				
46.2952	2.11E+04	Í			
49.6313	5.97E+03				
54.8736	8.91E+02				
57.6777	3.33E+02	Í			
62.1974	7.06E+01				
63.5135	4.52E+01				
66.5997	1.61E+01				
-28.1949	7.68E+09				
-24.594	3.23E+10				
-16.7384	2.11E+12				
27.594	9.72E+07				
-13.3264	2.73E+13				
29.2977	3.90E+07				
-26.3451	1.56E+10				
-24.199	3.83E+10				
-17.9735	9.61E+11				
19.7118	1.34E+10				
25.2257	3.73E+08				
12.2338	9.60E+12] [
-26.3247	1.57E+10				
-18.3763	7.53E+11				
17.1936	9.14E+10				
-21.1188	1.65E+11				
23.9665	7.94E+08				
26.3294	1.97E+08				
24.6456	5.26E+08				
-15.2204	6.10E+12				
15.2081	5.00E+11				
30.3398	2.28E+07				

Node

1052

1054

1056

1058

1060

1062

1064

1066 1068

1070

1072

1074

1076

1085

1087

1089

1091

1093

1095

1104

1106

1108

1110

1112

1114 1123

1125

1127

1129

1131

1133

1142

1144

1146

1148

1150

1152

1161

1163

1165

1167

1169

1171

1180

1182

1184

SA

53.3706

44.0785

34.8129

30.5951

37.5899

40.7873 46.2952

49.6313

54.8736

57.6777

62.1974

63.5135

66.5997

28.1949

24.594 16.7384

27.594

13.3264

29.2977

26.3451

24.199

17.9735

19.7118

25.2257

12.2338

26.3247

18.3763

17.1936

21.1188

23.9665

26.3294

24.6456

15.2204

15.2081

30.3398

31.6307

25.5117

22.5301

33.723

28.6077

38.3495

32.9282

37.3239

31.3277

33.4498

38.5228

31.6307

25.5117

22.5301

33.723

28.6077

38.3495

32.9282

37.3239

31.3277

33.4498

38.5228

1.19E+07

3.15E+08

1.96E+09

4.33E+06

5.62E+07

5.37E+05

6.32E+06

8.39E+05 1.38E+07

4.93E+06

4.98E+05

Node	SA	SM	Nf
1186	39.9894	39.9894	2.67E+05
1188	42.9219	42.9219	7.97E+04
1190	40.1077	40.1077	2.54E+05
1199	31.7172	31.7172	1.14E+07
1201	36.7367	36.7367	1.09E+06
1203	38.7196	38.7196	4.57E+05
1205	42.1062	42.1062	1.11E+05
1207	42.1191	42.1191	1.10E+05
1209	43.7365	43.7365	5.75E+04
1218	36.0088	36.0088	1.51E+06
1220	38.5654	38.5654	4.89E+05
1222	42.6031	42.6031	9.07E+04
1224	43.9891	43.9891	5.20E+04
1226	47.0231	47.0231	1.60E+04
1228	45.9653	45.9653	2.40E+04
1237	38.5267	38.5267	4.97E+05
1239	42.6345	42.6345	8.95E+04
1241	45.0562	45.0562	3.41E+04
1243	48.2836	48.2836	9.88E+03
1245	49.0094	49.0094	7.53E+03
1247	50.9589	50.9589	3.66E+03
1256	43.1152	43.1152	7.37E+04
1258	45.7109	45.7109	2.65E+04
1260	49.3815	49.3815	6.55E+03
1262	51.1884	51.1884	3.36E+03
1264	54.1162	54.1162	1.17E+03
1266	54.0612	54.0612	1.19E+03
1275	45.3977	45.3977	2.99E+04
1277	49.7474	49.7474	5.72E+03
1279	52.0545	52.0545	2.45E+03
1281	55.168	55.168	8.03E+02
1283	56.1156	56.1156	5.75E+02
1285	58.6219	58.6219	2.40E+02
1294	49.3294	49.3294	6.68E+03
1296	51.6339	51.6339	2.86E+03
1298	55.4218	55.4218	7.34E+02
1300	57.4309	57.4309	3.63E+02
1302	60.9224	60.9224	1.09E+02
1304	60.9128	60.9128	1.09E+02
1313	50.1626	50.1626	4.90E+03
1315	54.7644	54.7644	9.26E+02
1317	57.063	57.063	4.12E+02
1319	60.8424	60.8424	1.12E+02
1321	61.645	61.645	8.51E+01
1323	64.5328	64.5328	3.21E+01
1332	52.1392	52.1392	2.38E+03

Anexo 5: Resultados da vida à fadiga calculados pela metodologia proposta para

cada nó da malha de elementos finitos da bronzina estudada (cont.)

130

Node SA SМ Nf 1334 54.5528 54.5528 9.98E+02 1336 59.1269 59.1269 2.02E+02 1338 61.1867 61.1867 9.95E+01 1340 65.3043 65.3043 2.48E+01 1342 65.2627 65.2627 2.51E+01 1350 36.797 -36.797 5.14E+08 1352 47.9985 47.9985 1.10E+04 1354 43.8266 43.8266 5.55E+04 1356 41.088 41.088 1.69E+05 1358 34.8572 34.8572 2.55E+06 1360 30.3194 30.3194 2.30E+07 1362 23.6467 23.6467 9.67E+08 18.4108 18.4108 1364 3.51E+10 10.9193 10.9193 1366 4.39E+13 1368 5.8475 5.8475 1.53E+17 1370 8.9603 -8.9603 2.63E+15 1372 16.8048 -16.8048 2.02E+12 1374 25.2476 -25.2476 2.44E+10 1376 31.2575 -31.2575 2.65E+09 1378 35.9066 -35.9066 6.55E+08 1380 37.1065 -37.1065 4.73E+08 1382 38.7055 -38.7055 3.12E+08 1384 38.323 -38.323 3.44E+08 1386 38.3221 -38.3221 3.44E+08 38.0855 -38.0855 1388 3.66E+08 37.56 -37.56 1390 4.19E+08 1392 37.5955 -37.5955 4.15E+08 1395 21.4848 21.4848 3.89E+09 17.8784 1397 17.8784 5.30E+10 1399 16.2726 16.2726 1.97E+11 1401 11.3692 11.3692 2.56E+13 1403 8.5313 8.5313 1.14E+15 1405 2.6658 2.6658 3.25E+21 1407 1.5963 -1.5963 2.60E+24 1409 7.9187 -7.9187 1.11E+16 12.635 -12.635 5.00E+13 1411 -19.7002 1413 19.7002 3.51E+11 1415 24.5633 -24.5633 3.27E+10 1417 30.4039 -30.4039 3.52E+09 1419 33.7879 -33.7879 1.20E+09 1421 36.783 -36.783 5.15E+08 1430 44.2218 44.2218 4.74E+04 1432 41.0239 41.0239 1.73E+05 1434 36.7815 36.7815 1.07E+06 1436 32.8435 32.8435 6.59E+06 1438 28.6127 28.6127 5.60E+07

Node	SA	SM	Nf
1440	24.8651	24.8651	4.61E+08
1449	42.1685	42.1685	1.08E+05
1451	37.5154	37.5154	7.72E+05
1453	34.1534	34.1534	3.54E+06
1455	29.9308	29.9308	2.81E+07
1457	26.5538	26.5538	1.73E+08
1459	22.2771	22.2771	2.31E+09
1468	37.4053	37.4053	8.10E+05
1470	34.4516	34.4516	3.08E+06
1472	30.1944	30.1944	2.45E+07
1474	26.9192	26.9192	1.41E+08
1476	22.8646	22.8646	1.58E+09
1478	19.4807	19.4807	1.58E+10
1487	33.2776	33.2776	5.35E+06
1489	29.3082	29.3082	3.88E+07
1491	26.1298	26.1298	2.21E+08
1493	22.397	22.397	2.13E+09
1495	18.9594	18.9594	2.32E+10
1497	15.4044	15.4044	4.19E+11
1506	27.1116	27.1116	1.27E+08
1508	24.6178	24.6178	5.35E+08
1510	21.1029	21.1029	5.04E+09
1512	17.9666	17.9666	4.94E+10
1514	14.5847	14.5847	8.87E+11
1516	11.238	11.238	2.99E+13
1525	21.9022	21.9022	2.95E+09
1527	18.7058	18.7058	2.80E+10
1529	15.6004	15.6004	3.52E+11
1531	12.2806	12.2806	9.12E+12
1533	9.3652	9.3652	3.35E+14
1535	0.3000	0.3000	0.77E+10
1544	10.4	10.4	4.20E+11
1540	0.631	0.631	0.14E+12
1540	6 8224	6 8224	2.32L+14
1552	4 0406	4 0406	1 71E+10
1554	1 1778	1 1778	8.82E+25
1563	9.0242	9.0242	5.46E+14
1565	6 5889	6 5889	3.28E+16
1567	4,1328	4,1328	1.28F+19
1569	2.0351	2.0351	9.60E+22
1571	3,2016	-3 2016	5.49F+20
1573	4.8546	-4.8546	3.67E+18
1582	4.0405	4.0405	1.71E+19
1584	4.7054	-4.7054	5.34E+18
1586	6.2011	-6.2011	1.99E+17
	I	I	L

Anexo 5: Resultados da vida à fadiga calculados pela metodologia proposta para

cada nó da malha de elementos finitos da bronzina estudada (cont.)

Nf

SМ

131

		-	
Node	SA	SM	Nf
1588	7.8054	-7.8054	1.32E+16
1590	9.3407	-9.3407	1.62E+15
1592	11.4234	-11.4234	1.58E+14
1601	10.5443	-10.5443	3.98E+14
1603	12.1765	-12.1765	7.63E+13
1605	13.6007	-13.6007	2.17E+13
1607	14.9326	-14.9326	7.56E+12
1609	16.3087	-16.3087	2.82E+12
1611	17.5667	-17.5667	1.24E+12
1620	18.7861	-18.7861	5.91E+11
1622	20.0511	-20.0511	2.90E+11
1624	21.0234	-21.0234	1.73E+11
1626	21.9722	-21.9722	1.08E+11
1628	22.9743	-22.9743	6.67E+10
1630	24.0421	-24.0421	4.11E+10
1639	26.555	-26.555	1.44E+10
1641	27.1051	-27.1051	1.16E+10
1643	28.0166	-28.0166	8.21E+09
1645	28.5606	-28.5606	6.72E+09
1647	29.0287	-29.0287	5.68E+09
1649	29.4793	-29.4793	4.84E+09
1658	33.2791	-33.2791	1.40E+09
1660	33.4974	-33.4974	1.31E+09
1662	33.311	-33.311	1.39E+09
1664	33.5226	-33.5226	1.30E+09
1666	33.6195	-33.6195	1.27E+09
1668	33.8605	-33.8605	1.18E+09
1677	37.0396	-37.0396	4.81E+08
1679	37.0422	-37.0422	4.81E+08
1681	36.8974	-36.8974	5.00E+08
1683	36.8545	-36.8545	5.06E+08
1685	36.882	-36.882	5.02E+08
1687	36.5058	-36.5058	5.56E+08
1695	24.2731	-24.2731	3.71E+10
1697	36.0774	-36.0774	6.25E+08
1699	34.2451	-34.2451	1.05E+09
1701	35.1111	-35.1111	8.19E+08
1703	32.6431	-32.6431	1.71E+09
1705	32.5385	-32.5385	1.76E+09
1707	28.0329	-28.0329	8.16E+09
1710	67.4718	67.4718	1.20E+01
1712	60.9531	60.9531	1.08E+02
1714	66.723	66.723	1.54E+01
1716	57.3283	57.3283	3.76E+02
1718	56.4197	56.4197	5.16E+02
1720	46.9089	46.9089	1.67E+04

Anexo 5: Resultados da vida à fadiga calculados pela metodologia proposta para

cada nó da malha de elementos finitos da bronzina estudada (cont.)

Node

SA

1722	44.3144	44.3144	4.57E+04
1724	34.0176	34.0176	3.77E+06
1726	20.8626	20.8626	5.94E+09
1728	11.4836	11.4836	2.24E+13
1730	0.8714	-0.8714	4.31E+27
1732	10.3417	-10.3417	4.98E+14
1734	17.5637	-17.5637	1.24E+12
1736	22.2546	-22.2546	9.38E+10
1745	50.5956	50.5956	4.18E+03
1747	53.2221	53.2221	1.61E+03
1749	58.3656	58.3656	2.62E+02
1751	61.2048	61.2048	9.89E+01
1753	66.0169	66.0169	1.95E+01
1755	66.3747	66.3747	1.73E+01
1764	46.7259	46.7259	1.79E+04
1766	51.9191	51.9191	2.57E+03
1768	54.8711	54.8711	8.92E+02
1770	60.0828	60.0828	1.45E+02
1772	60.7968	60.7968	1.14E+02
1774	64.7446	64.7446	2.99E+01
1783	43.4732	43.4732	6.39E+04
1785	45.109	45.109	3.34E+04
1787	49.3249	49.3249	6.69E+03
1789	52.1509	52.1509	2.37E+03
1791	58.0636	58.0636	2.91E+02
1793	60.3981	60.3981	1.30E+02
1802	37.2146	37.2146	8.81E+05
1804	41.2551	41.2551	1.57E+05
1806	44.2855	44.2855	4.62E+04
1808	48.7057	48.7057	8.43E+03
1810	48.9963	48.9963	7.56E+03
1812	54.9804	54.9804	8.58E+02
1821	32.3319	32.3319	8.44E+06
1823	33.765	33.765	4.25E+06
1825	38.7538	38.7538	4.51E+05
1827	40.0727	40.0727	2.57E+05
1829	44.7748	44.7748	3.81E+04
1831	46.9088	46.9088	1.67E+04
1840	25.7371	25.7371	2.77E+08
1842	29.4558	29.4558	3.59E+07
1844	30.0246	30.0246	2.68E+07
1846	36.1177	36.1177	1.44E+06
1848	37.7504	37.7504	6.96E+05
1850	42.9012	42.9012	8.04E+04
1859	20.674	20.674	6.77E+09
1861	22.6397	22.6397	1.83E+09
		-	

netodologia p ina estudada (
A	SM		
567	-35.8567		
385	-30.6385		
473	-24.473		
042	-15.9042		
522	-8.1522		
138	6.1138		

Anexo 5: Resultados da vida à fadiga calculados pela n oroposta para

cada nó da malha de elementos finitos da bronzi (cont.)

Node	SA	SM	Nf
1863	26.5626	26.5626	1.72E+08
1865	27.0874	27.0874	1.29E+08
1867	33.2904	33.2904	5.32E+06
1869	36.0749	36.0749	1.46E+06
1878	13.3928	13.3928	2.83E+12
1880	16.5065	16.5065	1.61E+11
1882	19.054	19.054	2.16E+10
1884	23.174	23.174	1.30E+09
1886	24.4798	24.4798	5.81E+08
1888	28.2894	28.2894	6.66E+07
1897	7.0392	7.0392	1.39E+16
1899	8.8711	8.8711	6.84E+14
1901	11.4261	11.4261	2.40E+13
1903	13.9107	13.9107	1.69E+12
1905	17.812	17.812	5.58E+10
1907	18.5733	18.5733	3.10E+10
1916	6.4449	-6.4449	1.26E+17
1918	5.3657	-5.3657	1.11E+18
1920	4.6525	4.6525	2.84E+18
1922	6.098	6.098	8.89E+16
1924	7.877	7.877	3.24E+15
1926	10.3065	10.3065	9.46E+13
1935	15.1872	-15.1872	6.26E+12
1937	13.0241	-13.0241	3.54E+13
1939	11.9402	-11.9402	9.54E+13
1941	9.4108	-9.4108	1.48E+15
1943	7.6556	-7.6556	1.66E+16
1945	4.6603	-4.6603	5.99E+18
1954	22.3214	-22.3214	9.08E+10
1956	22.3124	-22.3124	9.12E+10
1958	19.7697	-19.7697	3.38E+11
1960	19.2267	-19.2267	4.58E+11
1962	16.0982	-16.0982	3.26E+12
1964	14.0951	-14.0951	1.45E+13
1973	30.1853	-30.1853	3.80E+09
1975	28.2023	-28.2023	7.66E+09
1977	28.6122	-28.6122	6.60E+09
1979	25.9903	-25.9903	1.80E+10
1981	25.4337	-25.4337	2.26E+10
1983	21.4038	-21.4038	1.43E+11
1992	33.2644	-33.2644	1.41E+09
1994	34.2794	-34.2794	1.04E+09
1996	32.2723	-32.2723	1.92E+09
1998	32.4368	-32.4368	1.82E+09
2000	29.2359	-29.2359	5.28E+09
2002	27.9865	-27.9865	8.30E+09

Node	SA	SM	Nf
2011	35.8567	-35.8567	6.64E+08
2013	30.6385	-30.6385	3.26E+09
2015	24.473	-24.473	3.40E+10
2017	15.9042	-15.9042	3.73E+12
2019	8.1522	-8.1522	7.92E+15
2021	6.1138	6.1138	8.60E+16
2023	11.1155	11.1155	3.47E+13
2025	18.7031	18.7031	2.81E+10
2027	23.705	23.705	9.33E+08
2029	30.3417	30.3417	2.27E+07
2031	35.1709	35.1709	2.21E+06
2033	41.0826	41.0826	1.69E+05
2035	43.7459	43.7459	5.73E+04
2037	47.9962	47.9962	1.10E+04
2040	21.2702	21.2702	4.50E+09
2042	17.753	17.753	5.85E+10
2044	16.1404	16.1404	2.20E+11
2046	11.209	11.209	3.10E+13
2048	8.4955	8.4955	1.21E+15
2050	2.6859	2.6859	2.96E+21
2052	1.5992	-1.5992	2.54E+24
2054	7.778	-7.778	1.37E+16
2056	12.4386	-12.4386	5.98E+13
2058	19.4288	-19.4288	4.09E+11
2060	24.2329	-24.2329	3.77E+10
2062	30.1885	-30.1885	3.79E+09
2064	33.5476	-33.5476	1.29E+09
2066	36.7293	-36.7293	5.23E+08
2075	36.9173	-36.9173	4.97E+08
2077	36.846	-36.846	5.07E+08
2079	36.6628	-36.6628	5.33E+08
2081	36.5531	-36.5531	5.49E+08
2083	36.5667	-36.5667	5.47E+08
2085	36.3518	-36.3518	5.80E+08
2094	32.5607	-32.5607	1.75E+09
2096	32.8185	-32.8185	1.62E+09
2098	32.9868	-32.9868	1.54E+09
2100	33.1212	-33.1212	1.4/E+09
2102	33.2962	-33.2962	1.40E+09
2104	33./1/0	-33./1/6	1.235+09
2113	20.904	-20.904	1.020+10
2115	20.87U1	-20.0/U1	1.27E+10
2117	27.5000	-21.0000	9.90E+09
2119	20.0090	-20.0090	0.23E+U9
2121	20./0/0	-20./0/0	0.240+09
2123	29.0879	-29.0879	5.566+09

Node	SA	SM	Nf
2132	17.9965	-17.9965	9.48E+11
2134	19.3178	-19.3178	4.35E+11
2136	20.343	-20.343	2.48E+11
2138	21.7543	-21.7543	1.20E+11
2140	22.4903	-22.4903	8.38E+10
2142	23.8171	-23.8171	4.54E+10
2151	9.8646	-9.8646	8.59E+14
2153	11.332	-11.332	1.74E+14
2155	13.0192	-13.0192	3.56E+13
2157	14.4142	-14.4142	1.13E+13
2159	16.0856	-16.0856	3.29E+12
2161	17.1857	-17.1857	1.58E+12
2170	4.3752	4.3752	6.21E+18
2172	4.5005	-4.5005	9.10E+18
2174	5.5514	-5.5514	7.41E+17
2176	7.3267	-7.3267	2.77E+16
2178	8.9467	-8.9467	2.67E+15
2180	11.0244	-11.0244	2.38E+14
2189	9.3631	9.3631	3.36E+14
2191	6.8873	6.8873	1.85E+16
2193	4.4823	4.4823	4.57E+18
2195	1.9471	1.9471	1.67E+23
2197	2.8651	-2.8651	2.10E+21
2199	4.7009	-4.7009	5.40E+18
2208	15.3826	15.3826	4.27E+11
2210	12.9364	12.9364	4.53E+12
2212	9.8897	9.8897	1.63E+14
2214	7.0039	7.0039	1.49E+16
2216	4.2327	4.2327	9.46E+18
2218	1.2808	1.2808	3.11E+25
2227	22.04	22.04	2.69E+09
2229	18.674	18.674	2.87E+10
2231	15.673	15.673	3.30E+11
2233	12.5241	12.5241	7.01E+12
2235	9.1375	9.1375	4.64E+14
2237	6.2655	6.2655	6.27E+16
2246	27.1576	27.1576	1.24E+08
2248	24.4662	24.4662	5.86E+08
2250	21.141	21.141	4.91E+09
2252	17.771	17.771	5.76E+10
2254	14.5936	14.5936	8.79E+11
2256	11.2547	11.2547	2.94E+13
2265	33.1312	33.1312	5.74E+06
2267	29.2764	29.2764	3.94E+07
2269	25.9509	25.9509	2.44E+08
2271	22.2348	22.2348	2.37E+09

Node	SA	SM	Nf
2273	19.1298	19.1298	2.04E+10
2275	15.2258	15.2258	4.92E+11
2284	37.3728	37.3728	8.22E+05
2286	34.3309	34.3309	3.26E+06
2288	30.2682	30.2682	2.36E+07
2290	26.7495	26.7495	1.55E+08
2292	22.8253	22.8253	1.62E+09
2294	19.2783	19.2783	1.83E+10
2303	42.0626	42.0626	1.13E+05
2305	37.4181	37.4181	8.05E+05
2307	33.896	33.896	3.99E+06
2309	29.8772	29.8772	2.89E+07
2311	26.1701	26.1701	2.16E+08
2313	22.1413	22.1413	2.52E+09
2322	44.2899	44.2899	4.62E+04
2324	40.8949	40.8949	1.83E+05
2326	36.6246	36.6246	1.14E+06
2328	32.7086	32.7086	7.03E+06
2330	28.4594	28.4594	6.08E+07
2332	24.6129	24.6129	5.36E+08
2341	67.5538	67.5538	1.17E+01
2343	60.8619	60.8619	1.11E+02
2345	66.6438	66.6438	1.58E+01
2347	57.5794	57.5794	3.44E+02
2349	56.544	56.544	4.94E+02
2351	47.354	47.354	1.41E+04
2353	44.9176	44.9176	3.61E+04
2355	35.3032	35.3032	2.08E+06
2357	21.8425	21.8425	3.07E+09
2359	12.7755	12.7755	5.36E+12
2361	1.6913	1.6913	9.70E+23
2363	9.3778	-9.3778	1.55E+15
2365	16.8428	-16.8428	1.97E+12
2367	21.773	-21.773	1.19E+11
2376	32.876	-32.876	1.59E+09
2378	33.9909	-33.9909	1.13E+09
2380	31.7254	-31.7254	2.28E+09
2382	31.9989	-31.9989	2.09E+09
2384	28.8321	-28.8321	6.09E+09
2300	21.1930	-21.1930	0.92E+09
2090 2207	29.0204	-29.0204	4.000+09
2391	27.0100	-21.3/80	9.07 =+09
2399	21.9183	-21.9183	0.01E+U9
2401	25.2134	-25.2134	2.48E+10
2403	24.7395	-24./395	3.U3E+10
2405	20.4022	-20.4022	2.40E+11

Anexo 5: Resultados da vida à fadiga calculados pela metodologia proposta para

cada nó da malha de elementos finitos da bronzina estudada (cont.)

Node	SA	SM	Nf
2414	21.5575	-21.5575	1.32E+11
2416	21.3356	-21.3356	1.48E+11
2418	18.9282	-18.9282	5.44E+11
2420	18.2502	-18.2502	8.12E+11
2422	15.0808	-15.0808	6.77E+12
2424	13.0897	-13.0897	3.35E+13
2433	14.3767	-14.3767	1.16E+13
2435	12.0976	-12.0976	8.21E+13
2437	10.6757	-10.6757	3.45E+14
2439	8.5931	-8.5931	4.28E+15
2441	6.4452	-6.4452	1.26E+17
2443	3.7989	-3.7989	6.97E+19
2452	5.7192	-5.7192	5.20E+17
2454	4.2061	-4.2061	2.05E+19
2456	5.0467	5.0467	1.01E+18
2458	6.6035	6.6035	3.19E+16
2460	8.5337	8.5337	1.14E+15
2462	11.6919	11.6919	1.76E+13
2471	7.5383	7.5383	5.73E+15
2473	9.4567	9.4567	2.95E+14
2475	12.2931	12.2931	9.00E+12
2477	14.7756	14.7756	7.42E+11
2479	19.0589	19.0589	2.15E+10
2481	19.4556	19.4556	1.61E+10
2490	13.8364	13.8364	1.82E+12
2492	17.054	17.054	1.02E+11
2494	19.7436	19.7436	1.31E+10
2496	24.0295	24.0295	7.64E+08
2498	24.7299	24.7299	5.00E+08
2500	29.6008	29.6008	3.33E+07
2509	21.044	21.044	5.25E+09
2511	23.04	23.04	1.41E+09
2513	27.0141	27.0141	1.34E+08
2515	27.0365	27.0365	1.32E+08
2517	34.2796	34.2796	3.34E+06
2519	36.3538	36.3538	1.29E+06
2528	25.916	25.916	2.49E+08

Anexo 5: Resultados da vida à fadiga calculados pela metodologia proposta para

cada nó da malha de elementos finitos da bronzina estudada (cont.)

Node	SA	SM	Nf
2530	29.7965	29.7965	3.01E+07
2532	30.9974	30.9974	1.63E+07
2534	36.6334	36.6334	1.14E+06
2536	37.5683	37.5683	7.54E+05
2538	43.2946	43.2946	6.86E+04
2547	32.1478	32.1478	9.23E+06
2549	33.3564	33.3564	5.15E+06
2551	37.8771	37.8771	6.59E+05
2553	40.7349	40.7349	1.95E+05
2555	44.7709	44.7709	3.82E+04
2557	46.991	46.991	1.61E+04
2566	35.7298	35.7298	1.71E+06
2568	42.1653	42.1653	1.08E+05
2570	44.3127	44.3127	4.58E+04
2572	48.1879	48.1879	1.02E+04
2574	49.5687	49.5687	6.11E+03
2576	54.9454	54.9454	8.69E+02
2585	43.3805	43.3805	6.63E+04
2587	44.947	44.947	3.56E+04
2589	49.2033	49.2033	7.00E+03
2591	52.7656	52.7656	1.89E+03
2593	58.4919	58.4919	2.51E+02
2595	60.0894	60.0894	1.45E+02
2604	46.7686	46.7686	1.76E+04
2606	52.5638	52.5638	2.04E+03
2608	54.7853	54.7853	9.19E+02
2610	59.9216	59.9216	1.53E+02
2612	60.4102	60.4102	1.30E+02
2614	65.3471	65.3471	2.44E+01
2623	50.4885	50.4885	4.35E+03
2625	53.1402	53.1402	1.65E+03
2627	59.1705	59.1705	1.99E+02
2629	60.8651	60.8651	1.11E+02
2631	66.3915	66.3915	1.72E+01
2633	66.3321	66.3321	1.76E+01

SA _{max} :	67.5538	Nfm
SA _{min} :	0.8714	Nfn

hax: 4.31E+27

b: -0.081

SU: 150

Anexo 6: Desenho da bronzina testada

8 REFERÊNCIAS BIBLIOGRÁFICAS

- ALLEN, D. H., HAISLER, W. E., Introduction to aerospace structural analysis. New York: John Wiley & Sons, Inc, USA, 1985.
- [2] American Standard for Testing Materials (ASTM): Standard test methods for tension testing of metallic materials – ASTM E 8 M-04. West Conshohocken, USA, 2004.
- [3] ANDERSON, T. L. Fracture mechanics: fundamentals and applications. Boca Raton: CRC Press, Inc., USA, 1991, 793 p.
- [4] ANSYS version 8.0: ANSYS, Inc., 2003. Conjunto de programas.
- [5] ANSYS Training Manual, 2002: Introduction to ANSYS 7.0 Part 1. ANSYS, Inc., 2002. 1 CD-ROM.
- [6] ARNOLD, K. F., BÖRDER, C., KEMMELMEIER, P. C. Impacto da mudança de processo produtivo na confiabilidade de uma biela de motor de combustão interna. Seminário apresentado na conclusão da disciplina PMC 5613 – Confiabilidade de Produtos e Sistemas. Escola Politécnica da Universidade de São Paulo, São Paulo, 2003.
- [7] ARNOLD, K. F. et al. Elementos isoparamétricos. Seminário apresentado na conclusão da disciplina PMC 5609 – Análise Estrutural pelo Método dos Elementos Finitos. Escola Politécnica da Universidade de São Paulo, São Paulo, 2003.
- [8] ARNOLD, K. F. et al. Avaliação da gestão de projetos sob a ótica da análise do valor. In XIII Congresso e Exposição Internacionais de Tecnologia da Mobilidade, São Paulo, Brasil, 2004. Anais. São Paulo: Society of Automotive Engineers - SAE, 2004, paper n.132, 8p.
- [9] BATHE, K. J., WILSON, E., Numerical methods in finite element analysis. New Jersey: Prentice-Hall, Inc, USA, 1976, 528p.

- [10] CALLISTER Jr., W. D. Ciência e engenharia de materiais: uma introdução. Rio de Janeiro: LTC – Livros Técnicos e Científicos Editora S/A, Brasil, 2002, 589p.
- [11] CASTRO, J. T. P., MEGGIOLARO, M. A. Fadiga sob cargas reais de serviço. Departamento de Engenharia Mecânica da Pontificia Universidade Católica, Rio de Janeiro, 1039p.
- [12] CASTRO, J. T. P., MEGGIOLARO, M. A. Automation of the fatigue design under complex loading. In I Seminário Internacional de fadiga da SAE Brasil – Secção São Paulo, São Bernardo do Campo, Brasil, 2000. Anais. Society of Automotive Engineers – SAE Brasil, 2000, Paper 2, p. 1-17.
- [13] DESAKI, T., KAMIYA, S. Development of a new aluminum alloy bearing for small-sized diesel engines. Society of Automotive Engineers of Japan - JSAE, n.21, p.143-147, 2000.
- [14] DUARTE Jr., D. Fundamentos de modelamento matemático e simulação na engenharia. D Duarte Sistemas e Processos Industriais Ltda. São Carlos, SP, 2001, 57p.
- [15] DUARTE Jr., D. Tribologia e mancais de deslizamento. D Duarte Sistemas e Processos Industriais Ltda. São Carlos, SP, 2001, 148p.
- [16] DUARTE Jr., D., KAUFMANN Jr., M., TU, C. Sliding surface profiling for fatigue prevention in big end con-rod bearings. Society of Automotive Engineers -SAE, n.880570, 1988.
- [17] EXCITE: EXCITE Systems, 2003. Conjunto de programas.
- [18] FUKUOKA, T. et al. Fatigue and life of plain bearings under alternating or rotating loads. Journal of JSLE.
- [19] IE INSTITUTO DE ENGENHARIA, AEA ASSOCIAÇÃO BRASILEIRA DE ENGENHARIA AUTOMOTIVA (Org.). Análise da resistência mecânica de peças e componentes estruturais. São Paulo, 1988, 193p.

- [20] International Organization for Standardization (ISO): Plain Bearings Bearing fatigue – Part 1: Plain bearings in test rigs and in applications under conditions of hydrodynamic lubrication – ISO 7905-1. Genève, Switzerland, 1995.
- [21] Plain Bearings Bearing fatigue Part 4: Tests on half-bearings of a metallic multilayer bearing material – ISO 7905-4. Genève, Switzerland, 1995.
- [22] International Organization for Standardization (ISO): Technical Specification Quality management systems – Particular requirements for the application of ISO 9001:2000 for automotive production and relevant service part organizations – ISO/TS 16949:2002 (E), second edition. Genève, Switzerland, 2002.
- [23] JUVINALL, R. C. Stress, strain & strength. New York: McGraw-Hill, 1967.
- [24] KAUFMANN Jr., M. Bearings Manual. São Paulo: Mahle Metal Leve S/A, Brasil, 2002.
- [25] LANG, O. R. Surface fatigue of plain bearings. In 2nd. Israel Tribology Conference, Haifa, Israel, 1976. Anais. Elsevier Sequoia S.A. - Wear, 1977, Paper n.43, p.25-35.
- [26] LIPSON, C., SHETH, N. J. 9th Chapter, Fatigue experiments. In: Statistical design and analysis of engineering experiments. New York: McGraw-Hill, USA, 1973, p.262-310.
- [27] MAGNABOSCO, R. Mecânica da fratura e fadiga em materiais metálicos. Notas de aula, Fundação de Ciências Aplicadas – FEI, São Bernardo do Campo, SP, 2001.
- [28] MARTIN, F. A., GARNER, D. R., ADAMS, D. R., Hydrodynamic aspects of fatigue in plain journal bearings. Journal of Lubrication Technology – Transactions of the ASME, Vol. 103, 1981, p. 150-156.
- [29] MARTIN, H. C., CAREY, G. F. Introduction to finite element analysis: Theory and application. New York: McGraw-Hill, 1973, 386p.

[30] MATLAB V 5.2: The MathWorks, Inc., 1998. Conjunto de programas. 1 CD-ROM.

- [31] MCCOOL, J.I. Competing risk and multiple comparison analysis for bearing fatigue tests. In: 32nd ANNUAL MEETING IN MONTREAL, Quebec, Canada, 1977. Anais. Montreal: ASLE Transactions, 1977. p.271-284.
- [32] MERGEN, R., LANG, H., HARREITHER, L. Synthetic coated bearings as future alternative for large engines. In CIMAC Congress 2004, Kyoto, Japan, 2004.
 Anais. Kyoto: International Council on Combustion Engines, 2004, Paper n.65, p.1-7.
- [33] MITCHELL, M. R. Fatigue analysis for design. In I Seminário Internacional de fadiga da SAE Brasil – Secção São Paulo, São Bernardo do Campo, Brasil, 2000. Anais. Society of Automotive Engineers – SAE Brasil, 2000, Paper 1, p. 1-29.
- [34] MWANZA, M. C. et al. Microstructural characterization of fatigue crack initiation in Al-based plain bearing alloys. International Journal of Fatigue, n.25, p.1135-1145, 2000.
- [35] OKAMOTO, Y. et al. A study for wear and fatigue of engine bearings on rig test by using Elastohidrodynamic Lubrication Analysis. Society of Automotive Engineers - SAE, n.1999-01-0287, 1999.
- [36] PRO-ENGINEER version 2000i²: Parametric Technology Corporation PTC, 2000. Conjunto de programas.
- [37] RELIASOFT Corporation. Life data analysis (Weibull analysis). Disponível em: <<u>http://www.weibull.com/basics/lifedata.htm</u>>. Acesso em: 10 de jan. 2005.
- [38] SANDERSON, S. W. 3° Capítulo, Design for manufacturing in an environment of continue changes. In: SUSMAN, GERALD I. Integrating design and manufacturing for competitive advantage. New York, Oxford University Press, USA, 1992, p.36-55.

- [39] SHIGLEY, J. E., MISCHKE, C. R., BUDYNAS, R. G. 7° Capítulo, Fatigue failure resulting from variable loading. In: Mechanical engineering design. New York: McGraw-Hill, USA, 2003, p.306-393.
- [40] SOUZA, Gilberto F. Martha. de. PMC 5613 Confiabilidade de Produtos e Sistemas. Notas de aula. Escola Politécnica da Universidade de São Paulo, São Paulo, 2003.
- [41] TAYLOR, C. F. Análise dos motores de combustão interna. São Paulo: Edgard Blücher Ltda., Brasil, 1971.
- [42] TIMOSHENKO, S. P., GOODIER, J. N. Teoria da elasticidade. Rio de Janeiro: Guanabara Dois, Brasil, 1980.
- [43] USHIJIMA, K. et al. A study on engine bearing wear and fatigue using EHL Analysis and experimental analysis. Society of Automotive Engineers - SAE, n.1999-01-1514, 1999.
- [44] WILSON, W. H. A test machine for assessing the fatigue properties of impulsively loaded plain bearings. Proc Instn Mech Engrs, Vol. 182 Pt 3G, 1967-68, p. 129-131.
- [45] WONG, Winston A. Monotonic and cyclic fatigue properties of automotive aluminum alloys. Society of Automotive Engineers - SAE, n.840120, 1984.

9 APÊNDICES

Apêndice I: Programa para cálculo de Autovalor e Autovetor pelo método de Jacobi para software MatLab [30]

```
%
*****
% Programa para Resolucao de Autovalor e Autovetor atraves do Metodo
de Jacobi
2
clc;clear;close all;
disp('Programa para Resolucao de Autovalor e Autovetor atraves do
Metodo de Jacobi');
disp(' ');
disp(' ');
*****
% Dados de entrada
*****
load matriz.dat; % Leitura da matriz
a = matriz; % LEITURA ARQUIVO MATRICIAL
K = a;
     % INICIALIZACAO
l = size(a);
    % TAMANHO DO MATRIZ LIDA
 = 1(1);
m
 = 1(2);
n
toler = 1e-3;
2
2
% Procedimento para determinar a matriz de rotação
8
*******
```

Apêndice I: Programa para cálculo de Autovalor e Autovetor pelo método de Jacobi para software MatLab (cont.)

```
for i=1:m;
    for j=1:m;
      if (i~=j)
          while abs(K(i,j))>toler
              i;
              j;
              K(i,j);
              if K(i,i)~=K(j,j)
              thetal = (1/2)*atan( (2*K(i,j))/(K(i,i) - K(j,j)) );
              end
              if K(i,i) == K(j,j)
               thetal = pi/4;
              end
              cost = cos(theta1);
              sent = sin(theta1);
                 % MATRIZ DE ROTACAO
                 Pk = eye(m);
                 Pk(i,i) = cost;
                 Pk(i,j) = -sent;
                 Pk(j,i) = sent;
                 Pk(j,j) = cost;
                 % MATRIZ DE ROTACAO
                 Kp = Pk'*K*Pk;
                 K = Kp;
          end
      end
  end
  end
  for i = 1:m
     L(i) = K(i, i);
  end
 disp('Os autovalores da matriz são:')
 disp(' ')
 L
```

Apêndice II: Elementos utilizados no modelo de elementos finitos – software ANSYS [4]

Figura 64: Elemento de casca Shell 93 utilizado no modelo de elementos finitos – software ANSYS [4]

Figura 65: Elemento sólido Solid 92 utilizado no modelo de elementos finitos – software ANSYS [4]