

Fabrício Broseghini Barcelos

Modelagem e Previsão do Volume de Óleo Recuperável: Metodologia e Aplicação em Bacias Brasileiras

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Engenharia de Produção da PUC/Rio como requisito parcial para obtenção do título de Doutor em Engenharia de Produção.

Orientador: Sílvio Hamacher

VOLUME I

Rio de Janeiro, Agosto de 2006.

Fabrício Broseghini Barcelos

Modelagem e Previsão do Volume de Óleo Recuperável: Metodologia e Aplicação em Bacias Brasileiras

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pósgraduação em Engenharia de Produção da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Sílvio Hamacher

Orientador Departamento de Engenharia Industrial - PUC/Rio

Prof. Cláudio Bettini

Departamento de Geologia - UFRJ

Prof. Leonardo Junqueira Lustosa

Departamento de Engenharia Industrial - PUC/Rio

Reneu Rodrigues da Silva

Empresa de Pesquisa Energética - EPE

Prof. Virgílio José Martins Ferreira Filho

Departamento de Engenharia Industrial - UFRJ

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 28 de Agosto de 2006.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Fabrício Broseghini Barcelos

Graduou-se em Engenharia Civil na UFES (Universidade Federal do Espírito Santo) em 1999. Obteve o Mestrado em Engenharia de Produção na PUC/Rio em 2002 cuja dissertação rendeu o prêmio de terceiro colocado no Development Prize Competition na XV Triennial Conference IFORS (International Federation of Operation Research Societies) sediado em Edimburgo. Publicou artigos em revistas nacionais e internacionais na área de Pesquisa Operacional. Participou de um projeto da Petrobras em parceria com a PUC/Rio e a UFRJ. Bolsista de intercâmbio universitário na Universidade de Tulsa (Oklahoma/USA) durante o ano de 2005. Atualmente trabalha como Engenheiro Pleno na Diretoria de Logística da Companhia Vale do Rio Doce.

Ficha Catalográfica

Barcelos, Fabrício Broseghini

Modelagem e previsão do volume de óleo recuperável: metodologia e aplicação em bacias brasileiras / Fabrício Broseghini Barcelos ; orientador: Sílvio Hamacher. - 2006.

262 f. : il. ; 30 cm

Tese (doutorado em Engenharia Industrial)-Pontifícia Universidade Católica do Rio de Janeiro. Rio de Janeiro, 2006. Inclui bibliografia

1. Engenharia Industrial - Teses. 2. Evolução das descobertas. 3. Volume do óleo recuperável. 4. Bacia petrolífera, 5. Previsão, I. Hamacher, Sílvio, II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Industrial. III. Título.

Agradecimentos

Ao professor Sílvio Hamacher, orientador da tese, pela oportunidade, receptividade, críticas e conhecimento adquirido.

Aos professores Cláudio Bettini, Leonardo Junqueira Lustosa, Reneu Rodrigues da Silva e Virgílio José Martins Ferreira Filho por terem aceitado o convite para participar da banca examinadora e por suas contribuições ao trabalho.

À Petrobras, em especial aos engenheiros da E&P-ENGP Juan Antonio Molina, Fábio de Oliveira Andrade Jr. e Olavo Colela pelo fornecimento dos conjuntos de dados e contribuições ao trabalho.

À CAPES pela bolsa de estudo concedida ao longo desses anos.

Aos colegas e funcionários do DEI pela atenção e amizade.

Aos meus familiares que sempre contribuíram de alguma forma para este trabalho. Agradeço em especial à minha mãe, ao meu pai e à Suzani pelo apoio e incentivo, fundamental para mais esta vitória.

Resumo

Barcelos, Fabrício Broseghini; Hamacher, Silvio. **Modelagem e Previsão do Volume de Óleo Recuperável: Metodologia e Aplicação em Bacias Brasileiras**. Rio de Janeiro, 2006. 262p. Tese de Doutorado - Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

A presente tese apresenta e discute metodologias para prever o volume de óleo recuperável em bacias petrolíferas e explicar a evolução do processo de descoberta. A evolução do processo de descoberta é modelada pelo produto de duas funções matemáticas de tendências opostas: a função seleção de controle, crescente, que representa o grau de conhecimento e informação adquiridos na região de exploração, e a função seleção de condições, decrescente, indicando que a condição de exploração piora em conseqüência da depleção da área considerada. São propostas três novas metodologias que utilizam funções de controle nãolineares para explicar a influência do progresso tecnológico no acréscimo dos volumes recuperáveis. Além disso, utiliza-se o esforço exploratório, representado pela quantidade de poços já perfurados, como variável explicativa para as funções de controle e condição. As metodologias acima mencionadas foram testadas utilizando dados históricos referentes a cinco bacias petrolíferas. Após avaliar a capacidade explicativa dos modelos através do ajuste aos dados históricos, foram feitas previsões (out of sample) para um horizonte de 3 e 10 anos com o objetivo de avaliar a capacidade preditiva. Os testes feitos com dados de quatro diferentes bacias indicam que o uso do esforço de perfuração como variável explicativa pode melhorar a previsão a longo prazo. A análise nos resíduos dos modelos propostos indica que os modelos têm boa capacidade explicativa, pois capturaram a informação contida nos dados descrevendo satisfatoriamente o processo de evolução de descobertas nas séries observadas.

Palavras-chave

Evolução das Descobertas, Volume de Óleo Recuperável, Bacia Petrolífera, Previsão.

Abstract

Barcelos, Fabrício Broseghini; Hamacher, Silvio. Modeling and Forecast of the Recoverable Oil Volume: Methodology and Application in Brazilian Basins. Rio de Janeiro, 2006. 262p. D.Sc. Dissertation -Industrial Engineering Department, Catholic University of Rio de Janeiro.

This dissertation presents methodologies to forecast the recoverable oil volume in sedimenary basins and to explain the evolution of the discovery process. The evolution of the discovery process is modeled as the product of two mathematical functions of opposing trends, namely, the control function, increasing, which represents the degree of knowledge and information acquired in the exploration region, and the condition function, decreasing, indicating that the exploration condition worsens with time as a consequence of the area depletion. Three new methodologies are proposed using nonlinear control functions to explain the influence of technological progress in the reserves accrual. Acting as a proxy for exploratory effort, the drilling footage is used as an explanatory variable for both the control and the condition functions. The aforementioned methodologies were tested using a dataset of five petroliferous basins. After evaluating the explicative capacity by fitting the models to the historical data, out of sample forecast were made for a horizon of 3 and 10 years. The results using a dataset of four different basins indicate that the drilling footage can improve the long-term forecast. The analysis in the residues of the proposed models indicates that the models captured the information contained in the data and satisfactorily describes the process of evolution of discoveries in the observed series.

Keywords

Evolution of Discoveries, Recoverable Oil Volume, Petroleum Basin, Forecast.

Sumário

1. Introdução	1
1.1. O problema	1
1.2. Objetivos	3
1.3. Motivação e justificativa	3
1.4. Contribuição	4
1.5. Apresentação dos capítulos	5
2. Metodologia de pesquisa	6
2.1. Limitações	6
2.2. Abordagem da revisão bibliográfica	6
2.3. Validação analítica da bibliografia de referência	7
2.4. Necessidade de novos modelos	7
2.5. Dados	8
2.6. Planejamento de experimentos	9
3. Revisão bibliográfica	11
3.1. O Método "Creaming"	12
3.1.1. Modelo de probabilidade de sucesso	13
3.1.2. Modelo de probabilidade de volume de campo	14
3.1.3. Predição do volume total para "m" futuros poços pioneiros	15
3.2. Métodos baseados no princípio da exaustão física	18
3.3. Metodologias propostas pelo USGS	21
3.3.1. Recursos não descobertos (descobertas de novos campos)	21
3.3.2. Crescimento de reservas dos campos existentes	23
3.4. O Pico de Hubbert	25
3.5. Metodologia baseada nas funções de controle e de condição	29
3.5.1. Modelos determinísticos: evolução com o tempo (t)	31
3.5.2. Modelos estocásticos: evolução com o tempo (t)	35
3.5.3. Modelos determinísticos: evolução com o volume de perfuração	37
3.6. Considerações	40
4. Metodologias propostas	42
4.1. Utilizando uma função de controle não linear	42

4.2. Considerando novos objetivos exploratórios	50
4.3. Utilizando controle e condição em função do esforço explorat	ório 55
5. Análise de resíduos	58
5.1. A integral de correlação	59
5.2. A estatística BDS	62
5.3. Escolha de parâmetros	64
6. Resultados dos ajustes " <i>in sample</i> "	65
6.1. Evolução das descobertas em função do volume do ano ante	rior 66
6.1.1. Metodologia I	66
6.1.1.1. Bacia de Campos	66
6.1.1.2. Bacia do Recôncavo	69
6.1.1.3. Bacia do Rio Grande do Norte/Ceará	72
6.1.1.4. Bacia de Sergipe/Alagoas	/4
6.1.1.5. Golto do México	76
6.1.2. Metodologia II	78
6.1.2.1. Bacia de Campos	78
6.1.2.2. Bacia do Reconcavo	80
6.1.2.3. Bacia do Rio Grande do Norte/Ceara	83
6.1.2.4. Bacia de Sergipe/Alagoas	85
6.1.2.5. Golto do México	87
6.1.3. Metodologia III	89
6.1.3.1. Bacia do Recôncavo	89
6.2. Evolução das descobertas em função do volume de perfuraç	ão 99
6.2.1. Metodologia IV	99
6.2.1.1. Bacia de Campos	99
6.2.1.2. Bacia do Reconcavo	103
6.2.1.3. Bacia do Rio Grande do Norte/Ceará	105
6.2.1.4. Bacia do Sergipe/Alagoas	108
6.2.2. Metodologia V	111
6.2.2.1. Bacia de Campos	111
6.2.2.2. Bacia do Reconcavo	114
6.2.2.3. Bacia do Rio Grande do Norte/Ceará	117
6.2.2.4. Bacia de Sergipe/Alagoas	120

6.3. Sumário das metodologias	123
7. Resultados das previsões "out of sample"	126
7.1. Previsões a curto prazo: modelos R(t) - metodologias I, II e III	126
7.1.1. Metodologia I	126
7.1.1.1. Bacia de Campos	127
7.1.1.2. Bacia do Recôncavo	127
7.1.1.3. Bacia do Rio Grande do Norte/Ceará	128
7.1.1.4. Bacia de Sergipe/Alagoas	128
7.1.1.5. Golfo do México	129
7.1.2. Metodologia II	130
7.1.2.1. Bacia de Campos	130
7.1.2.2. Bacia do Recôncavo	130
7.1.2.3. Bacia do Rio Grande do Norte/Ceará	131
7.1.2.4. Bacia de Sergipe/Alagoas	132
7.1.2.5. Golfo do México	132
7.1.3. Metodologia III	133
7.1.3.1. Bacia do Recôncavo	133
7.2. Previsões a longo prazo: modelos R(L) - metodologias IV e V	134
7.2.1. Metodologia IV	134
7.2.1.1. Bacia de Campos	134
7.2.1.2. Bacia do Recôncavo	135
7.2.1.3. Bacia do Rio Grande do Norte/Ceará	136
7.2.1.4. Bacia do Sergipe/Alagoas	137
7.2.2. Metodologia V	138
7.2.2.1. Bacia de Campos	138
7.2.2.2. Bacia do Recôncavo	139
7.2.2.3. Bacia do Rio Grande do Norte/Ceará	140
7.2.2.4. Bacia de Sergipe/Alagoas	141
7.3. Análise das Previsões	144
7.3.1. Bacia de Campos	144
7.3.2. Bacia do Recôncavo	145
7.3.3. Bacia do RN/CE	146
7.3.4. Bacia de SE/AL	147
7.3.5. Golfo do México	149

7.4. Sumário das metodologias	149
8. Conclusões	152
Referências bibliográficas	158
Bibliografia	163
Apêndice A: definições	167
Apêndice B: demonstração das fórmulas de Knoring et al. (1999)	171
Apêndice C: metodologia USGS para volumes não descobertos	198
Apêndice D: aplicações de crescimento de reservas	210
Apêndice E: simplificação dos modelos propostos	217
Apêndice F: equações no formato do E-Views 4.1	233
Apêndice G: resultados do Teste BDS	234
Apêndice H: análise dos dados do recôncavo	239

Lista de figuras

Figura 1 – Previsão de descobertas pelo Método de Creaming.	12
Figura 2 – Curvas simétricas: Gaussiana, Lorentziana e Logística.	25
Figura 3 – Produção anual dos EUA - Ajuste com curva Gaussiana.	26
Figura 4 – Produção anual mundial - Ajuste com Curvas Gaussianas.	26
Figura 5 – Produção e Descoberta acumulada (dados dos EUA): Curva Gaussiana.	27
Figura 6 – Produção e Descoberta acumulada (dados mundiais): Curva Gaussiana.	28
Figura 7 – Descobertas acumuladas vs. tempo: simetria em	
relação ao ponto de inflexão.	29
Figura 8 – Descobertas acumuladas vs. tempo: assimetria em relação ao ponto de inflexão.	29
Figura 9 – Princípio da modelagem do acréscimo de descobertas (ΔR)	. 30
Figura 10 – Diferentes formas da função seleção de condições f(R).	33
Figura 11 – Influência da função seleção de condições no gráfico (ΔR).	. 33
Figura 12 – Seleção de campos devido à restrição de investimentos.	34
Figura 13 – Modelagem dos Componentes Aleatórios: $Z_t = R_t - P_t e Z_t' = \Delta R_t - \Delta P_t.$	36
Figura 14 – "k" muda de acordo com o aumento no volume de perfuração (L).	38
Figura 15 – Forma específicas da função "k" divididas em 3 grupos.	39
Figura 16 – Influência do preço do petróleo nos resultados subseqüentes e vice-versa.	43
Figura 17 – Acréscimo no volume (Rt) devido ao progresso tecnológico.	44
Figura 18 – φ(R) não linear. Grandes descobertas: a) no início; b) no final da exploração.	45
Figura 19 – Efeito cascata devido ao aumento no preço do petróleo.	46
Figura 20 – Curva de crescimento populacional.	48
Figura 21 – Curva de aprendizagem.	48
Figura 22 – Curva logística.	48
Figura 23 – Função Seleção de Condições considerando novos objetivos exploratórios.	51
Figura 24 – Função seleção de controle considerando novos objetivos exploratórios.	52
Figura 25 – Funções de controle e de condição propostas com	

grandes descobertas: a) no início; b) no final do processo exploratório. 52

Figura 26 – Curva ΔR proposta considerando novos objetivos exploratórios com grandes descobertas: a) no início; b) no final do processo exploratório.	53
Figura 27 – Controle e condição em função do volume exploratório (L).	55
Figura 28 – Região de aceitação e crítica do Teste BDS para o intervalo de confiança 95%.	63
Figura 29 – Bacia de Campos: Gráfico R(t) vs. tempo.	67
Figura 30 – Bacia de Campos: Resultado do Modelo Knoring_8.	68
Figura 31 – Bacia de Campos: Função seleção de condições: Modelo Knoring_8.	68
Figura 32 – Bacia do Recôncavo: Gráfico R(t) vs. tempo.	70
Figura 33 – Bacia do Recôncavo: Resultado do Modelo Knoring_7.	71
Figura 34 – Bacia do Recôncavo: Função seleção de condições: Modelo Knoring_7.	71
Figura 35 – Bacia do RN/CE: Gráfico R(t) vs. tempo.	72
Figura 36 – Bacia do RN/CE: Resultado do Modelo Knoring_8.	73
Figura 37 – Bacia do RN/CE: Função seleção de condições: Modelo Knoring_8.	73
Figura 38 – Bacia de SE/AL: Gráfico R(t) vs. tempo.	74
Figura 39 – Bacia de SE/AL: Resultado do Modelo Knoring_8.	75
Figura 40 – Bacia de SE/AL: Função seleção de condições: Modelo Knoring_8.	75
Figura 41 – Golfo do México: Gráfico R(t) vs. tempo.	76
Figura 42 – Golfo do México: Resultado do Modelo Knoring_9.	77
Figura 43 – Golfo do México: Função seleção de condições: Modelo Knoring_9.	77
Figura 44 – Bacia de Campos: Resultado do Modelo 6x7.	80
Figura 45 – Bacia do Recôncavo: Resultado do Modelo 7x8.	82
Figura 46 – Função seleção de controle e função seleção de condição: Modelo 7x8.	82
Figura 47 – Bacia do RN/CE: Resultado do Modelo 1x2.	85
Figura 48 – Bacia de SE/AL: Resultado do Modelo 7x9.	87
Figura 49 – Golfo do México: Resultado do Modelo 7x8.	89
Figura 50 – Curvas "S" no gráfico R(t) vs. tempo.	90
Figura 51 – Distribuição dos campos de óleo e gás na Bacia do Recôncavo.	92
Figura 52 – Seção geológica esquemática do campo de Riacho da Barra.	93

Figura 53 – Bacia do Recôncavo: Resultado do ajuste de curvas nos três intervalos sugeridos.	98
Figura 54 – Bacia de Campos: Número de poços acumulado (L) vs. tempo.	100
Figura 55 – Defasagem entre o esforço exploratório anual (Δ L) e o acréscimo de volume (Δ R).	100
Figura 56 – Bacia de Campos: Influência dos poços injetores nos acréscimos recuperáveis.	101
Figura 57 – Bacia de Campos: Resultado do Modelo L_9.	102
Figura 58 – Bacia de Campos: Eficiência da exploração - k(L) vs. L – Modelos L_9.	102
Figura 59 – Bacia do Recôncavo: Número de poços acumulado (L) vs. tempo.	103
Figura 60 – Bacia do Recôncavo: Influência dos poços injetores nos acréscimos recuperáveis.	103
Figura 61 – Bacia do Recôncavo: Resultado do Modelo L_9.	104
Figura 62 – Bacia do Recôncavo: Eficiência da exploração - k(L) vs. L – Modelo L_2.	105
Figura 63 – Bacia do RN/CE: Número de poços acumulado (L) vs. tempo.	106
Figura 64 – Bacia do RN/CE: Influência dos poços injetores nos acréscimos recuperáveis.	106
Figura 65 – Bacia do RN/CE: Resultado do Modelo L_9.	107
Figura 66 – Bacia do RN/CE: Eficiência da exploração - k(L) vs. L – Modelos L_9.	108
Figura 67 – Bacia de SE/AL: Número de poços acumulado (L) vs. tempo.	108
Figura 68 – Bacia de SE/AL: Influência dos poços injetores nos acréscimos recuperáveis.	109
Figura 69 – Bacia de SE/AL: Resultado do Modelo L_9.	110
Figura 70 – Bacia de SE/AL: Eficiência da exploração - k(L) vs. L – Modelos L_9.	110
Figura 71 – Bacia de Campos: Resultado do Modelo 1x8.	113
Figura 72 – Função Seleção de Controle: Modelo 1x8.	113
Figura 73 – Bacia do Recôncavo: Resultado do Modelo 7x3.	116
Figura 74 – Função Seleção de Controle: Modelo 7x3.	116
Figura 75 – Bacia do RN/CE: Resultado do Modelo 1x8.	119
Figura 76 – Função Seleção de Controle: Modelo 1x8.	119
Figura 77 – Bacia do SE/AL: Resultado do Modelo 4x8.	122

Figura 78 – Função Seleção de Controle: Modelo 4x8.	122
Figura 79 – Bacia de Campos: Previsão 3 anos utilizando o Modelo Knoring_8.	127
Figura 80 – Bacia do Recôncavo: Previsão 3 anos utilizando o Modelo Knoring_7.	128
Figura 81 – Bacia do RN/CE: Previsão 3 anos utilizando o Modelo Knoring_8.	128
Figura 82 – Bacia do SE/AL: Previsão 3 anos utilizando o Modelo Knoring_8.	129
Figura 83 – Golfo do México: Previsão 3 anos utilizando o Modelo Knoring_9.	129
Figura 84 – Bacia de Campos: Previsão 3 anos utilizando o Modelo 6x7.	130
Figura 85 – Bacia do Recôncavo: Previsão 3 anos utilizando o Modelo 7x8.	131
Figura 86 – Bacia do RN/CE: Previsão 3 anos utilizando o Modelo 1x2.	131
Figura 87 – Bacia de Sergipe/Alagoas: Previsão 3 anos utilizando o Modelo 7x9.	132
Figura 88 – Golfo do México: Previsão 3 anos utilizando o Modelo 7x8.	133
Figura 89 – Bacia do Recôncavo: Previsão 3 anos utilizando o Modelo 1x2.	133
Figura 90 – Bacia de Campos: Previsão 10 anos utilizando o Modelo L_9.	135
Figura 91 – Bacia do Recôncavo: Previsão 10 anos utilizando o Modelo L_2.	136
Figura 92 – Bacia do RN/CE: Previsão 10 anos utilizando o Modelo L 9.	137
Figura 93 – Bacia do SE/AL: Previsão 10 anos utilizando o Modelo L 9.	138
Figura 94 – Bacia de Campos: Previsão 10 anos utilizando o Modelo 1x8.	139
Figura 95 – Bacia do Recôncavo: Previsão 10 anos utilizando o Modelo 7x3.	140
Figura 96 – Bacia do RN/CE: Previsão 10 anos utilizando o Modelo 1x8.	141
Figura 97 – Bacia de SE/AL: Previsão 10 anos utilizando o Modelo 4x8	142
Figura 98 – Bacia de SE/AL: Previsão 5 anos utilizando o Modelo 4x8.	143

Figura 99 – Bacia de SE/AL: Previsão 5 anos utilizando o Modelo 1x8.	143
Figura 100 – Volume recuperável em quatro dos principais campos da Bacia de Campos.	145
Figura 101 – Volume recuperável na Bacia RN/CE: Reavaliação em 1994.	147
Figura 102 – Volume recuperável no Campo W.	148
Figura 103 – Volume recuperável no Campo Y.	148
Figura 104 – Sistema de classificação de recursos.	167
Figura 105 – Formulários dos dados de entrada USGS.	203
Figura 106 – Estimativa média dos volumes mundiais (BBOE).	206
Figura 107 – Sessão estratigráfica na Península Arábica.	207
Figura 108 – Três TPS no Iraque.	207
Figura 109 – Resultados estimados para a Bacia San Joaquin.	209
Figura 110 – CGF vs. anos desde a primeira produção na bacia Siberiana Ocidental.	214
Figura 111 – CGF vs. YSFP - Siberiana Ocidental. Ajuste de curva para um e dois segmentos.	215
Figura 112 – CGF vs. YSFP a) Volga-Ural; b) Volga-Ural (sem Romashkino); c) ajuste "a"; d) ajuste "b"; e) EUA onshore (Attanasi et al. 1999); f) Colfa de Máxica (Lore et al. 1996)	216
(Altanasi et al., 1999), i) Golio do Mexico (Lore et al., 1990).	210

Lista de tabelas

Tabela 1 – Previsões do suprimento mundial de óleo.	41
Tabela 2 – Série histórica proposta composta por 10 observações.	59
Tabela 3 – Cálculo dos pares Its.	60
Tabela 4 – Cálculo das normas dos pares Its.	61
Tabela 5 – Valores da soma dos quadrados dos resíduos aplicando a primeira metodologia proposta por Knoring <i>et al.</i> (1999) aos dados da Bacia de Campos.	67
Tabela 6 – Teste BDS – Bacia de Campos: Resíduos do Modelo Knoring_8.	69
Tabela 7 – Valores da soma dos quadrados dos resíduos aplicando a primeira metodologia proposta por Knoring et al. (1999) aos dados da Bacia do Recôncavo.	70
Tabela 8 – Valores da soma dos quadrados dos resíduos aplicando a primeira metodologia proposta por Knoring et al. (1999) aos dados da Bacia do Rio Grande do Norte/Ceará.	72
Tabela 9 – Valores da soma dos quadrados dos resíduos aplicando a primeira metodologia proposta por Knoring et al. (1999) aos dados da Bacia de SE/AL.	74
Tabela 10 – Valores da soma dos quadrados dos resíduos aplicando a primeira metodologia proposta por Knoring et al. (1999) aos dados do Golfo do México.	76
Tabela 11 – Metodologia II - Campos: Resultados utilizando controle não linear.	79
Tabela 12 – Metodologia II - Recôncavo: Resultados utilizando controle não linear.	81
Tabela 13 – Metodologia II - RN/CE: Resultados utilizando controle não linear.	84
Tabela 14 – Metodologia II - SE/AL: Resultados utilizando controle não linear.	86
Tabela 15 – Metodologia II - Golfo do México: Resultados utilizando controle não linear.	88
Tabela 16 – Análise do volume adicionado nos três intervalos (Resumo do Apêndice H).	91
Tabela 17 – Metodologia III – Recôncavo: Resultados utilizando somente os 11 anos iniciais.	95
Tabela 18 – Metodologia III – Recôncavo: Resultados utilizando os anos 12-26.	96
Tabela 19 – Metodologia III – Recôncavo: Resultados utilizando os anos 27-39.	97

Tabela 20 – Bacia de Campos: soma dos quadrados dos resíduos (SS) - Metodologia IV.	101
Tabela 21 – Bacia do Recôncavo: soma dos quadrados dos resíduos (SS) - Metodologia IV.	104
Tabela 22 – Bacia do RN/CE: soma dos quadrados dos resíduos (SS) - Metodologia IV.	107
Tabela 23 – Bacia do SE/AL: soma dos quadrados dos resíduos (SS) - Metodologia IV.	109
Tabela 24 – Metodologia V - Campos: Resultados dos modelos empíricos.	112
Tabela 25 – Metodologia V - Recôncavo: Resultados dos modelos empíricos.	115
Tabela 26 – Metodologia V - RN/CE: Resultados dos modelos empíricos.	118
Tabela 27 – Metodologia V - SE/AL: Resultados dos modelos empíricos.	121
Tabela 28 – Resumo das Metodologias – Capítulo 6.	124
Tabela 29 – Bacia de Campos: previsão 3 anos - Metodologia I.	127
Tabela 30 – Bacia do Recôncavo: previsão 3 anos - Metodologia I.	127
Tabela 31 – Bacia do RN/CE: previsão 3 anos - Metodologia I.	128
Tabela 32 – Bacia de SE/AL: previsão 3 anos - Metodologia I.	129
Tabela 33 – Golfo do México: previsão 3 anos - Metodologia I.	129
Tabela 34 – Bacia de Campos: previsão 3 anos - Metodologia II.	130
Tabela 35 – Bacia do Recôncavo: previsão 3 anos - Metodologia II.	131
Tabela 36 – Bacia do RN/CE: previsão 3 anos - Metodologia II.	131
Tabela 37 – Bacia de Sergipe/Alagoas: previsão 3 anos - Metodologia II.	132
Tabela 38 – Golfo do México: previsão 3 anos - Metodologia II.	132
Tabela 39 – Bacia do Recôncavo: previsão 3 anos - Metodologia III.	133
Tabela 40 – Bacia de Campos: Previsão 10 anos - Metodologia IV.	135
Tabela 41 – Bacia do Recôncavo: Previsão 10 anos - Metodologia IV.	136
Tabela 42 – Bacia do Rio Grande do Norte/Ceará: Previsão 10 anos - Metodologia IV.	137
Tabela 43 – Bacia do Sergipe/Alagoas: Previsão 10 anos - Metodologia IV.	138
Tabela 44 – Bacia de Campos: Previsão 10 anos - Metodologia V.	139
Tabela 45 – Bacia do Recôncavo: Previsão 10 anos - Metodologia V.	140
Tabela 46 – Bacia do RN/CE: Previsão 10 anos - Metodologia V.	141

Tabela 47 – Bacia de SE/AL: Previsão 10 anos - Metodologia V.	142
Tabela 48 – Bacia de SE/AL: Previsão 5 anos – Modelo 4x8.	143
Tabela 49 – Bacia de SE/AL: Previsão 5 anos – Modelo 1x8.	143
Tabela 50 – Bacia do Recôncavo: análise do ano 2001.	146
Tabela 51 – Resumo das Metodologias – Capítulo 7.	150
Tabela 52 – Estimativa de recursos não descobertos para o Iraque.	208
Tabela 53 – Histórico de reservas totais na Bacia Siberiana Ocidental, com relação à data de descobrimento e YSFP.	213
Tabela 54 – Teste BDS – Metodologia I – Bacia do Recôncavo: Resíduos do Modelo Knoring_7.	234
Tabela 55 – Teste BDS – Metodologia I – Bacia do RN/CE: Resíduos do Modelo Knoring_8.	234
Tabela 56 – Teste BDS – Metodologia I – Bacia de SE/AL: Resíduos do Modelo Knoring_8.	234
Tabela 57 – Teste BDS – Metodologia I – Golfo do México: Resíduos do Modelo Knoring_9.	234
Tabela 58 – Teste BDS – Metodologia II – Bacia de Campos: Resíduos do Modelo 6x7.	235
Tabela 59 – Teste BDS – Metodologia II – Bacia do Recôncavo: Resíduos do Modelo 7x8.	235
Tabela 60 – Teste BDS – Metodologia II – Bacia do RN/CE: Resíduos do Modelo 1x2.	235
Tabela 61 – Teste BDS – Metodologia II – Bacia de SE/AL: Resíduos do Modelo 7x9.	235
Tabela 62 – Teste BDS – Metodologia II – Golfo do México: Resíduos do Modelo 7x8.	235
Tabela 63 – Metodologia III – Recôncavo: Teste BDS nos resíduos dos três ajustes propostos.	236
Tabela 64 – Teste BDS – Metodologia IV – Bacia de Campos: Resíduos do Modelo L_9.	237
Tabela 65 – Teste BDS – Metodologia IV – Bacia do Recôncavo: Resíduos do Modelo L_2.	237
Tabela 66 – Teste BDS – Metodologia IV – Bacia do RN/CE: Resíduos do Modelo L_9.	237
Tabela 67 – Teste BDS – Metodologia IV – Bacia de SE/AL: Resíduos do Modelo L_9.	237
Tabela 68 – Teste BDS – Metodologia V – Bacia de Campos: Resíduos do Modelo 1x8.	238
Tabela 69 – Teste BDS – Metodologia V – Bacia do Recôncavo: Resíduos do Modelo 7x3.	238

Tabela 70 – Teste BDS – Metodologia V – Bacia do RN/CE: Resíduos do Modelo 1x8.	238
Tabela 71 – Teste BDS – Metodologia V – Bacia de SE/AL: Resíduos do Modelo 4x8.	238

Lista de abreviaturas e siglas

- AGF Annual Growth Factor
- ANP Agência Nacional do Petróleo, Gás e Biocombustíveis
- AU Assessment Units
- BBO Bilhões de barris de óleo
- Gb Bilhões de barris de óleo
- BBOE Bilhões de barris de óleo equivalente
- CGF_n Cumulative Growth Factor in the year "n"
- DEI Departamento de Engenharia Industrial
- EOR Enhanced oil recovery
- EUA Estados Unidos da América
- EUR Estimated Ultimate Recovery
- f(R) Função seleção de condição
- FR Fator de recuperação
- i.i.d. Independentes e identicamente distribuídos
- IOR Improved oil recovery
- K(L) Indicador de eficiência
- L Esforço exploratório, número de poços exploratórios
- NGL Natural Gas Liquid

OIP – Oil in-place

- OPEC Organization of the Petroleum Exporting Countries
- Petrobras Petróleo Brasileiro S.A.
- R² Coeficiente de correlação ou *R-squared*
- Rt = Volume de Óleo Recuperável no ano "t"
- SPE Society of Petroleum Engineers

- SS Soma dos quadrados dos resíduos
- TPS Total Petroleum System
- US\$ Dólar Americano
- USGS United States Geological Survey
- WPC World Petroleum Council
- YSFP Years since first production
- Z_{i+1} Resíduo, erro ou diferença entre os valores reais e ajustados.
- ^ºAPI Grau API American Petroleum Institute
- $\phi(R)$ Função seleção de controle
- ΔR_{t+1} = Acréscimo do volume recuperável entre os anos "t" e "t+1"

1. INTRODUÇÃO

Utilizado há milhares de anos para impermeabilizar barcos e cisternas, iluminar ruas e cidades, unir pedras nas construções e até para preservar seus mortos, ninguém poderia imaginar que o petróleo transformaria o mundo, seria motivo para guerras, dominações, poder e glória, mas, principalmente, se tornaria um produto indispensável ao desenvolvimento das nações.

Os chamados "Choques do Petróleo" ocorridos nos anos 70 e 80 são o melhor exemplo da importância da energia nos dias atuais. Durante este período, a oferta do óleo foi controlada no mercado internacional, fazendo subir o preço do barril de petróleo. Mercadorias tornavam-se mais caras devido ao aumento nos custos de transporte, ocasionando inflação em diversos países.

Devido à influência que decisões políticas têm no abastecimento mundial, pode-se afirmar que, apesar de serem considerados por alguns como *"commodities"*, o petróleo e o gás natural são de grande importância estratégica para uma nação.

A atividade petrolífera tornou-se tão estratégica que alguns países altamente industrializados, mesmo não sendo produtores, criaram suas empresas de petróleo, como França (1924), Alemanha (1935), Itália (1953), Japão (1967), Suécia (1969) e Canadá (1975).

Assim sendo, o investimento contínuo em pesquisa e tecnologia no setor petrolífero é peça-chave para o desenvolvimento da nação e, conseqüentemente, para a melhoria de indicadores sociais.

1.1. O PROBLEMA

A estimação de recursos é uma atividade fundamental nas empresas que exploram e produzem petróleo, pois é base para muitas decisões estratégicas. Uma estimativa adequada é essencial para a tomada de decisões na exploração, no projeto de desenvolvimento de uma concessão, na aquisição de direitos, nos investimentos e em diversas decisões a serem feitas pelos *stakeholders* de uma companhia petrolífera.

O presente estudo trata da modelagem do processo de acréscimo do volume de óleo recuperável (R_t), representado pela soma das reservas provadas, mais as quantidades já produzidas até a data de referência.

Segundo a ANP (2000), reservas provadas são as reservas de petróleo e gás natural que, com base na análise de dados geológicos e de engenharia, se estima recuperar comercialmente de reservatórios descobertos e avaliados, com elevado grau de certeza, e cuja estimativa considere as condições econômicas vigentes, os métodos operacionais usualmente viáveis e os regulamentos instituídos pela legislação petrolífera e tributária brasileiras. Demais definições de classificação de recursos são apresentadas no Apêndice A.

Três pontos serão abordados:

- Modelagem da evolução do processo de descobertas;
- Previsão dos recursos recuperáveis;
- Determinação de como as estratégias de desenvolvimento da região podem afetar os resultados do processo de acréscimo do volume de óleo recuperável.

Como veremos no capítulo referente à revisão bibliográfica, as metodologias existentes que tratam da evolução e previsão de descobertas foram testadas principalmente com dados de bacias americanas. Por esta razão, estas metodologias não consideram características específicas das bacias brasileiras, como por exemplo:

- Diferentes ambientes regulatórios;
- Nos EUA, o ambiente é competitivo, com várias pequenas empresas, enquanto que, no Brasil, o mercado é mais concentrado;
- O pequeno número de campos que compõem as bacias brasileiras, se comparado às bacias americanas, pode inviabilizar a utilização de alguns métodos;
- Diferenças nas condições políticas e econômicas entre os EUA e o Brasil;

Assim sendo, devido às diferenças de ambiente e da estratégia de exploração adotada, procura-se desenvolver e testar novos modelos matemáticos que melhor representem a realidade brasileira.

1.2. OBJETIVOS

O presente trabalho tem como objetivo principal fornecer procedimentos para estimar o volume de óleo recuperável agregado entre a data de avaliação e uma data futura. Além deste objetivo principal, em função dos aspectos discutidos nos itens anteriores, pode-se destacar, ainda, os seguintes objetivos a serem atingidos:

- Compreender o processo de acréscimo de reservas de óleo e gás, sua natureza e relacionar a evolução do volume de óleo recuperável com a estratégia de exploração adotada;
- Desenvolver modelos matemáticos para representar o processo de acréscimo do volume recuperável de uma região;
- Utilizar os modelos desenvolvidos em contextos: i) descritivo (ajuste *in sample*); ii) preditivo (previsão *out of sample*).

Avaliações de reserva são fortemente influenciadas pelos dados disponíveis. Portanto, o alcance dos objetivos da pesquisa passa necessariamente pela análise dos dados disponíveis e pelo estudo das suposições e simplificações que serão feitas.

1.3. MOTIVAÇÃO E JUSTIFICATIVA

Reservas representam o principal ativo das companhias de petróleo, com elevado valor econômico e, por esta razão, a correta e precisa determinação dos volumes recuperáveis futuros torna-se atividade de extrema importância nestas companhias.

Estas estimativas servem de base para decisões estratégicas em diversas áreas da companhia, tanto da gerência quanto de seus acionistas, influenciando,

por exemplo, os setores financeiro, de produção e de logística de uma companhia petrolífera.

Além disso, devido aos altos custos, investimentos em exploração são geralmente feitos para longos períodos. Como as estimativas do volume recuperável são afetadas pelo processo de exploração e essenciais para a tomada de decisão, a relevância do estudo é dada pelo fato de que erros nestas estimativas têm grande efeito e podem causar sérios problemas a longo prazo.

Outra motivação é o fato de existirem poucas publicações considerando dados de bacias brasileiras. Como veremos no Capítulo 3 (Revisão Bibliográfica), existem alguns modelos propostos nesta área, a maioria lidando com dados de bacias norte-americanas.

Pelo acima exposto, no Brasil, a descoberta de grandes campos petrolíferos em águas profundas torna mais evidente a necessidade da criação de novos modelos na estimação de recursos. É relevante observar que esta proposta não irá eliminar as incertezas envolvidas no processo, mas permitirá que elas sejam consideradas de forma mais realista e precisa na tomada de decisões, seja a estimação de recursos feita por empresas detentoras de reservas, ou pelos órgãos normativos e reguladores.

O panorama atual de crescente competitividade requer a existência de instrumentos para análise da adoção de diferentes estratégias na exploração de petróleo. Assim sendo, devido à sua relevância e complexidade, a estimativa de reservas tem demandado mais pesquisas, tanto teóricas quanto empíricas. A possibilidade de ampliação dos estudos abre um leque de possíveis temas a serem abordados futuramente.

1.4. CONTRIBUIÇÃO

O presente estudo fornece metodologias inéditas para a estimação de recursos, alcançando, para os conjuntos de dados analisados, melhores resultados do que os modelos propostos por Hubbert (1956) e Knoring *et al.* (1999) a serem discutidos no Capítulo 3.

As metodologias testadas têm a vantagem de conseguir modelar a intervenção humana (conhecimento) através da função seleção de controle e o declínio natural do número de campos a serem descobertos através da função seleção de condições.

Além disso, a aplicação desta metodologia em novas regiões brasileiras colabora na divulgação de uma abordagem ainda pouco explorada no Brasil e no exterior e abre uma frente para estudos sobre o potencial das bacias brasileiras.

Dessa forma, espera-se que este estudo contribua para um melhor entendimento do processo de descoberta de óleo e gás, servindo de ferramenta para as empresas do setor petrolífero e agências governamentais no processo de tomada de decisão, fornecendo estimativas mais padronizadas e precisas, identificando oportunidades, evitando o desperdício de recursos e fornecendo as informações requeridas pela sociedade.

1.5. APRESENTAÇÃO DOS CAPÍTULOS

O restante do trabalho está dividido em oito capítulos: o segundo capítulo apresenta a metodologia de pesquisa proposta e procura-se dar uma visão geral do trabalho; o terceiro capítulo refere-se à revisão bibliográfica pertinente; o quarto capítulo apresenta os modelos propostos; o quinto capítulo mostra o procedimento adotado para a análise dos resíduos; no sexto capítulo aplicam-se as metodologias propostas e ilustram-se os resultados do ajuste *"in sample"* alcançados; o sétimo capítulo refere-se às previsões *"out of sample"*; por fim, o oitavo capítulo mostra as conclusões do estudo.

2. METODOLOGIA DE PESQUISA

O presente capítulo apresenta a metodologia de pesquisa proposta e procura-se dar uma visão geral do que será feito para atingir os objetivos. Está dividido em seis partes: i) limitações; ii) abordagem da revisão bibliográfica; iii) validação analítica da bibliografia de referência; iv) necessidade de novos modelos; v) material necessário para a aplicação dos modelos propostos; vi) planejamento dos experimentos.

2.1. LIMITAÇÕES

É relevante observar que a metodologia proposta não utiliza uma abordagem verdadeiramente probabilística para a estimação dos recursos. O que se propõe aqui é desenvolver modelos determinísticos acrescidos de um termo aleatório caracterizado como ruído branco.

Outra limitação diz respeito à série histórica necessária para a aplicação do estudo. Embora os modelos possam ter bons ajustes com altos valores de R², regiões em estágio inicial de exploração apresentam poucos dados históricos e, por esta razão, podem não ter um bom desempenho para fins de previsão.

2.2. ABORDAGEM DA REVISÃO BIBLIOGRÁFICA

O capítulo referente à revisão bibliográfica irá abordar a bibliografia existente para estimar volumes de recursos descobertos e não descobertos. Em relação aos recursos já descobertos, procura-se apresentar somente uma breve descrição das metodologias mais conhecidas.

Em relação à estimação de recursos ainda não descobertos, descrevem-se cinco metodologias que foram escolhidas devido à relevância no meio acadêmico ou corporativo e por considerarem diferentes aspectos para a previsão dos recursos.

2.3. VALIDAÇÃO ANALÍTICA DA BIBLIOGRAFIA DE REFERÊNCIA

A presente pesquisa tem a mesma abordagem do trabalho de Knoring *et al.* (1999), que modela o processo de acréscimo de reservas de acordo com a estratégia adotada na exploração. Portanto, o entendimento desta metodologia passa, necessariamente, pelo conhecimento das suposições e simplificações feitas e pelo entendimento das fórmulas matemáticas apresentadas.

Entretanto, os autores simplesmente apresentam as fórmulas como, por exemplo, as equações diferenciais que dão origem aos modelos, os equivalentes discreto e contínuo destas equações diferenciais e os pontos de inflexão das curvas. Os autores explicam o princípio dos modelos, porém, não demonstram como as fórmulas procedem a partir de uma equação inicial.

Dessa forma, para um melhor entendimento dos conceitos, torna-se relevante demonstrar matematicamente as fórmulas propostas por Knoring *et al.* (1999). Além disso, este trabalho de verificação serviu para constatar erros em algumas fórmulas. As principais demonstrações e erros constatados são apresentados no Apêndice B.

2.4. NECESSIDADE DE NOVOS MODELOS

Conforme veremos no Capítulo 3, as metodologias propostas por Deffeyes (2001), Knoring *et al.* (1999) e Verma & Henri (2004) foram construídas sob **condições limitadas de tecnologia e informação**, baseando-se em **condições de operação e fatores econômicos atuais** e considerando somente os volumes recuperáveis por **meios convencionais de produção**.

Entretanto, o sucesso de um campo maduro depende da energia disponível para recuperar o óleo, pois, a partir de meios convencionais, grande parte do óleo originalmente *in situ* não consegue ser recuperado, sendo abandonado dentro do reservatório.

Além disso, as metodologias citadas acima supõem que os objetivos exploratórios não mudam com o passar dos anos. Por exemplo, volumes descobertos em regiões mais profundas (inviáveis no início da exploração) não podem ser considerados no ajuste da curva. Surge, então, a necessidade de considerar modelos mais realistas que considerem o progresso tecnológico na estimação dos recursos.

2.5. **DADOS**

O material e as informações básicas para aplicação das metodologias propostas (Capítulo 6) foram fornecidos pela companhia Petróleo Brasileiro S.A. (Petrobras). O material fornecido para a aplicação inclui:

- ⇒ Produção anual de cada campo pertencente à bacia escolhida desde o início da produção;
- ⇒ Reservas provadas anuais de cada campo pertencente à bacia escolhida. A utilização das reservas provadas em vez de recursos (reservas provadas, prováveis e possíveis) deve-se ao fato de que, ao final do processo exploratório, menor será a incerteza e, conseqüentemente, praticamente todo o volume classificado como provável e possível terá sido transferido para a categoria provada;
- ⇒ Esforço exploratório dado pelo número de poços exploratórios perfurados anualmente pertencentes à bacia escolhida. Os poços exploratórios incluem: pioneiro, pioneiro adjacente, estratigráfico, extensão, jazida mais rasa, jazida mais profunda;
- ⇒ Poços injetores perfurados anualmente pertencentes à bacia escolhida. Consideram-se estes poços por entender que eles têm papel fundamental no fator de recuperação de bacias maduras, afetando, conseqüentemente, os volumes a serem recuperados.

A fim de validar a metodologia proposta, propõe-se testar os modelos com dados de regiões com características exploratórias distintas.

O primeiro conjunto de dados é constituído por 31 observações anuais (de 1974 a 2004) e refere-se à Bacia de Campos, *offshore*, localizada nos estados do Rio de Janeiro e Espírito Santo. Teve seu primeiro campo descoberto em 1974 e hoje representa a principal bacia petrolífera do país, responsável por aproximadamente 80% da produção nacional.

O segundo conjunto de dados é constituído por 39 observações anuais (de 1964 a 2002) e refere-se à bacia sedimentar do Recôncavo, *onshore*, localizada no estado da Bahia. Com a exploração iniciada no ano de 1939, é a mais antiga província petrolífera do país.

O terceiro conjunto de dados é constituído por 26 observações anuais (de 1979 a 2004) e refere-se à bacia *onshore* localizada nos estados do Rio Grande do Norte e Ceará.

O quarto conjunto de dados é constituído por 39 observações anuais (de 1966 a 2004) e refere-se à bacia *onshore* localizada nos estados de Sergipe e Alagoas.

Além destas quatro bacias petrolíferas, utiliza-se o conjunto de dados do Golfo do México para validar duas metodologias, pois é composto somente dos dados de volumes recuperáveis. É constituído por 28 observações anuais (de 1975 a 2002) e pode ser obtido em MMS (2002), *website* do *Minerals Management Service*, agência federal que controla os recursos minerais dos EUA e pertence ao *U.S. Department of the Interior*.

2.6. PLANEJAMENTO DE EXPERIMENTOS

A metodologia proposta começa com a análise dos conjuntos de dados disponíveis. Verifica-se, para cada campo, se existem quedas relevantes nos volumes recuperáveis, de forma a comprometer o formato da curva R_t .

A seguir, estimam-se os parâmetros dos modelos no *software* econométrico (E-Views 4.1), que utiliza Marquardt como algoritmo de otimização. Marquardt é uma variação do método Gauss-Newton (adiciona uma matriz de correção ao Hessiano).

O E-Views 4.1 fornece ainda os valores da soma dos quadrados dos resíduos (SS) e *R*-squared (R^2) para a escolha do modelo que melhor se ajusta à série de dados.

O valor R² mede o sucesso da regressão em prever os valores da variável dependente dentro da amostra. Este valor será igual a 1 caso a regressão se ajuste

perfeitamente aos dados, e zero caso o ajuste não for melhor do que a média simples da variável dependente.

Após investigar qual o melhor modelo que se ajusta aos dados históricos, analisa-se ainda o resíduo, que é a diferença entre os dados observados e os valores ajustados pelo modelo (calculado). O objetivo principal deste teste é verificar se o modelo proposto captura toda a estrutura de dependência na variável a ser modelada, ou seja, se o modelo captura toda a informação contida nos dados.

Se o modelo for adequado, espera-se que os resíduos não apresentem nenhuma estrutura, i.e., possam ser classificados como ruído branco. Caso contrário, se existir estrutura de dependência no resíduo e este puder ser modelado, não podemos classificá-lo como ruído branco e, conseqüentemente, o modelo deverá ser modificado.

Depois de verificada sua adequabilidade aos dados, utilizam-se os modelos num contexto preditivo. Dependendo da metodologia utilizada, são feitas previsões (*out of sample*) para um horizonte de 3 e 10 anos.

3. REVISÃO BIBLIOGRÁFICA

Conforme se pode observar no Apêndice A, a classificação de recursos proposta pela SPE divide o petróleo inicialmente *in situ* em dois grupos: recursos descobertos e recursos não descobertos.

Recursos descobertos - Alguns dos métodos mais conhecidos para a estimação de recursos descobertos são:

- Analogia: a previsão de uma determinada reserva é feita a partir de uma analogia com outros reservatórios localizados nas proximidades e que possuam características semelhantes;
- Método Volumétrico: utiliza-se o volume da rocha reservatório obtido através de métodos sísmicos, a porosidade da rocha, o fator volume de formação e a saturação para estimar o volume de óleo;
- Análise de Declínio da Produção: baseia-se na observação da série histórica da produção analisando o declínio da vazão proporcionado pelo declínio da pressão no interior do reservatório;
- 4. Balanço dos Materiais: consiste na obtenção de volumes *in-situ* originais através da aplicação direta da equação de balanço de materiais ou do uso de simuladores matemáticos de fluxo de fluidos em reservatórios, utilizando-se, para tanto, o histórico de produção e as propriedades físicas dos fluidos e das rochas (ANP, 2000);
- 5. Simulação Matemática de Reservatórios: refere-se à utilização de simuladores numéricos. Difere do balanço de materiais, pois a simulação permite a subdivisão de células com propriedades diferentes. Embora mais sofisticada, a simulação necessita de informações geológicas e histórico de produção não só em quantidade, mas com boa qualidade (Thomas, 2001).

Recursos não descobertos – apresentam-se os seguintes trabalhos encontrados na literatura: i) Meisner & Demirmen (1981); ii) Drew (1990); iii) USGS (2000); iv) Deffeyes (2001); v) Knoring *et al.* (1999).

3.1. O MÉTODO "CREAMING"

O método "*Creaming*" é um procedimento estatístico proposto por Meisner & Demirmen (1981) para prever as descobertas futuras de óleo e gás. Entende-se por descobertas futuras a quantidade recuperável de óleo ou gás que será encontrada através da perfuração de um dado número de poços exploratórios.

É aplicável em províncias de avançado estágio exploratório, cujas descobertas seguem uma tendência de declínio, ou para estimativas a curto prazo, onde a evolução das descobertas segue uma tendência constante.

Baseia-se na projeção da tendência passada, considerando o número de poços exploratórios a serem perfurados no futuro. Dessa forma, o método utiliza o número de poços exploratórios a serem perfurados como sendo um indicador para a previsão (Figura 1).

Figura 1 – Previsão de descobertas pelo método de creaming. Fonte: Adaptado de Meisner & Demirmen (1981).

O nome *creaming* refere-se à diminuição da eficiência exploratória com o avanço da exploração. Em regiões maduras, assume-se que os tamanhos dos campos e a taxa de sucesso tendem a declinar com o avanço da exploração. Entende-se por taxa de sucesso a proporção dos poços exploratórios que resultam em descobertas.

Como existe um número finito de campos comerciais, após uma nova descoberta, a chance de fazer outra descoberta é reduzida. Além disso, assume-se que os grandes campos são descobertos no início da exploração.

Segundo Silva (1983), o método consiste no ajuste de modelos probabilísticos à seqüência histórica de descobertas de campos petrolíferos, com a finalidade de representar o comportamento da probabilidade de sucesso (através de um modelo logístico) e do volume dos campos (por um modelo loglinear) em função do número de poços pioneiros.

Considera-se ainda que os poços futuros (utilizados para previsão) serão perfurados em áreas similares da região explorada que serviram de base para o ajuste dos modelos e que estes poços não foram perfuradas anteriormente por estarem disponíveis outras áreas consideradas mais promissoras.

Os resultados, tanto do volume quanto do número de descobertas, são expressos através de distribuições de probabilidade preditivas. A seguir, com base no trabalho de Silva (1983), descreve-se o procedimento para aplicação do método.

3.1.1. Modelo de Probabilidade de Sucesso

O presente item trata do resultado da perfuração de um poço pioneiro em termos de descoberta ou não de um campo petrolífero.

Seja x_i = variável binária que representa o resultado da perfuração do iésimo poço: x_i =1 (sucesso) e x_i =0 (poço seco). Então, a função de probabilidade de x_i é expressa por:

$$p(x_{i} = x / p_{i}) = \begin{cases} p_{i}^{x} (1 - p_{i})^{1 - x} & x = 0 \text{ ou } 1\\ 0 & x \neq 0 \text{ ou } 1 \end{cases}$$
(1)

A relação entre a probabilidade de sucesso (p_i) e o número de poços pioneiros (i) é dada pelo modelo logístico abaixo:

$$p_i = \{1 + \exp(\alpha_1 + \alpha_2 . i)\}^{-1}, \ i = 1,...,n$$
 (2)

Onde,

 $0 \le p_i \le 1$

Como $\alpha_2 \ge 0$ na expressão acima implica que "p_i" decresce com o aumento de "i", então a $P(\alpha_2 \ge 0/x)$ mede a "probabilidade do declínio".

3.1.2. Modelo de Probabilidade de Volume de Campo

O presente item trata da predição do volume de campo, caso o resultado da perfuração (item 3.1.1) seja um sucesso.

Seja v_j = volume do campo em caso de descoberta (sucesso). O modelo proposto para representar o volume de campo em função do esforço exploratório é o loglinear, expresso por:

$$Z_{j} = \beta_{1} + \beta_{2} \cdot X_{j} + \varepsilon_{j}$$
, $j = 1,...,k$ (3)

Onde,

k é o número de campos;

 X_{i} é o número de poços pioneiros perfurados até a descoberta do j-ésimo campo;

 Z_{j} é o logaritmo natural de v_j, o volume do j-ésimo campo;

 $\beta = (\beta_1, \beta_2)$ são parâmetros desconhecidos estimados de dados históricos pelo método da máxima verossimilhança;

 $\varepsilon_j \sim N[0, \sigma^2]$ é o resíduo do modelo com distribuição normal de média zero e variância σ^2 .

Reescrevendo a Equação 3, o volume de campo (v_j) segue uma distribuição log-normal (LN) com média $\beta_1 + \beta_2 X_i$ e variância σ^2 .

$$v_j \sim LN[\beta_1 + \beta_2 X_j, \sigma^2]$$
(4)

Colocando a Equação 3 na forma matricial:

$$Z = X\beta + \varepsilon \tag{5}$$

Onde,

$$Z = \begin{bmatrix} Z_1 \\ Z_k \end{bmatrix}, \ X = \begin{bmatrix} 1 & X_1 \\ 1 & X_k \end{bmatrix}, \ \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} e \ \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_k \end{bmatrix}$$

Sendo o estimador de máxima verossimilhança para β ,

$$\hat{\boldsymbol{\beta}} = (X'X)^{-1}X'z \tag{6}$$

a estimativa da média de \hat{Z}_i é dada por:

$$\hat{Z}_j = \hat{\beta}_1 + \hat{\beta}_2 \cdot X_j \tag{7}$$

Neste caso, a hipótese de maior interesse é $\beta_2 < 0$, pois implica numa tendência declinante do volume de campo com o avanço exploratório.

3.1.3. Predição do Volume Total para "m" Futuros Poços Pioneiros

O presente item trata da predição do volume de petróleo a ser descoberto pela perfuração de um dado número "m" de poços pioneiros. A predição é feita com base nos modelos de probabilidade de sucesso e volume de campo (itens 3.1.1 e 3.1.2, respectivamente) admitindo-se que sejam representativos das tendências exploratórias verificadas no passado.

A contribuição (em volume) do ℓ -ésimo futuro poço no total a ser descoberto é dado por:

$$r_{\ell} = x_{\ell} v_{\ell} , \ell = 1,...,m$$
 (8)

Onde,

 x_{ℓ} é o resultado da perfuração do ℓ -*ésimo* futuro poço: $x_{\ell}=1$ (sucesso); $x_{\ell}=0$ (poço seco);

 v_{ℓ} = volume do campo descoberto pelo ℓ -*ésimo* futuro poço em caso de sucesso.

Seja "*m*" o número de poços exploratórios adicionais a serem perfurados. A previsão do volume total (T) a ser descoberto considerando "*m*" poços adicionais é representada por $T = \sum_{\ell=1}^{m} r_{\ell}$.

As distribuições de probabilidade do volume total "T" e de seus componentes " r_{ℓ} " são obtidas a partir dos dados da história exploratória passada e
dos modelos de probabilidade de sucesso (logístico) e de volume de campo (loglinear) a eles ajustados.

Silva (1983) mostra que a distribuição preditiva do componente " r_{ℓ} " pode ser representada por:

$$P(\mathbf{r}_{\ell} > r) = P(\mathbf{v}_{\ell} > r) \cdot P(\mathbf{x}_{\ell} = 1)$$
(9)

Onde,

$$P(v_{\ell} > r) = \int_{r}^{\infty} f(v_{\ell}) = \int_{\beta,H} P(v_{\ell} > r \mid \beta, H) . f(\beta \mid H) . f(H);$$

$$P(x_{\ell} = 1) = \int_{\alpha} P(x_{\ell} = 1 \mid \alpha) . f(\alpha);$$

$$H = \frac{1}{\sigma^{2}};$$

 σ^2 é a variância do resíduo do modelo de probabilidade de volume de campo (Equação 3);

 $f(\alpha), f(H), f(\beta | H)$ representam as densidades a posteriori de $\alpha, H, \beta | H$, respectivamente;

$$P(x_{\ell} = 1 \mid \alpha) = \{1 + \exp[\alpha_1 + \alpha_2 \cdot (\ell + n)]\}^{-1}$$

Segundo DeGroot, 1970 (apud Silva, 1983), a *posteriori* de " α " pode ser considerada como sendo aproximadamente Normal de parâmetros $(\hat{\alpha}, F^{-1})$, sendo F^{-1} a matriz de variância-covariância.

A *posteriori* de "H" segue uma distribuição Gama de parâmetros $(k-2, \hat{\sigma}^2)$, sendo "k" o número de campos descobertos pelos "n" poços pioneiros já perfurados.

A *posteriori* de " β " condicional em "H" segue uma distribuição Normal de parâmetros $(\hat{\beta}, (H.(X'X))^{-1})$, conforme a Equação 6.

Para
$$r = 0, P(v_{\ell} > 0) = 1$$
. Logo, $P(r_{\ell} > r) = \int_{\alpha} P(x_{\ell} = 1 | \alpha) f(\alpha)$

Assim sendo, a distribuição preditiva do componente " r_{ℓ} " pode ser reescrita da seguinte forma:

$$P(\mathbf{r}_{\ell} > r) = \begin{cases} 1 & , r < 0 \\ \int_{\alpha} P(x_{\ell} = 1 \mid \alpha) f(\alpha) & , r = 0 \\ \left(\int_{\alpha} P(x_{\ell} = 1 \mid \alpha) f(\alpha) \right) \int_{r}^{\infty} f(v_{\ell}) & , r > 0 \end{cases}$$
(10)

A distribuição preditiva do volume total "T" é a de maior interesse a nível prático. Teoricamente, é representada pela equação:

$$P(T > t) = \int_{\alpha,\beta,H} P(T > t \mid \alpha,\beta,H) f(\alpha) f(\beta \mid H) f(H)$$
(11)

Onde,

 $P(T > t | \alpha, \beta, H)$ expressa a distribuição condicional de T= $\sum_{\ell=1}^{m} r_{\ell}$ dados α, β, H ;

Considerando a dificuldade em expressar a Equação 11, em especial quando "m" torna-se grande, avalia-se a distribuição preditiva de "T" através de simulação (Método de Monte Carlo). Uma aplicação deste método pode ser encontrada em Silva (1983).

3.2. MÉTODOS BASEADOS NO PRINCÍPIO DA EXAUSTÃO FÍSICA

Drew (1990) apresenta dois modelos para prever as descobertas futuras de óleo e gás e descreve uma aplicação prática de uma área produtora bastante explorada dos EUA (Bacia Permiana).

O primeiro é utilizado na escala de *plays* de exploração. Os campos pertencentes a uma bacia são agrupados por faixas (classes) de tamanho dos campos. O modelo proposto, representado pela Equação 12, é então aplicado para as diferentes classes de tamanho dos campos. Drew (1990) preconiza que cada poço pioneiro tenha uma área de influência e que os grandes campos sejam descobertos antes dos menores.

$$f = 1 - \left(1 - \frac{A}{B}\right)^c \tag{12}$$

Onde:

f = fração dos campos que já foram encontrados;

A =Área que já foi explorada;

B =Área efetiva da bacia;

c = eficiência da perfuração exploratória para uma determinada classe do tamanho dos campos.

O parâmetro "c" deve ser estimado e caracteriza a exaustão física da área pesquisada. Para o caso de um processo de exploração aleatória (c = 1), o número de campos descobertos numa dada classe por unidade de área explorada permanecerá constante durante todo o processo. Entretanto, se o processo de exploração for mais eficiente que o aleatório (c > 1), para cada classe de tamanho, espera-se, nos estágios iniciais da exploração, encontrar um maior número de campos por unidade de área explorada.

Trabalhar ao nível de *plays* de exploração resultou num conjunto de problemas como, por exemplo, dados incompletos e descontinuidade na definição dos poços pioneiros ocorridos entre 1962 e 1963, pois os dados não se encontravam na forma requerida pelo modelo. Ou seja, a informação disponível

não era suficiente para separar os campos em *plays* de exploração ou os poços pioneiros que descobriram estes campos.

Para superar este problema, Drew (1990) aplicou os dados da Bacia Permiana ao modelo proposto por Arps & Roberts (1958), apresentado na Equação 13, adotando uma única premissa: a de que toda a bacia seria vista como um único grande "*play*" de exploração.

$$F_A(w) = F_A(\infty) \left(1 - e^{-cAw/B}\right) \tag{13}$$

Onde:

 $F_A(w)$ = previsão do número de descobertas acumuladas a serem feitas na classe de tamanho A através da perfuração de w poços;

 $F_A(\infty)$ = número final de campos a serem descobertos na classe de tamanho A;

A = Área média dos campos pertencentes a uma determinada classe;

B =Área da bacia;

w = número acumulado de poços pioneiros;

c = eficiência da exploração (estimado).

O modelo é solucionado para cada faixa (classe) de tamanho dos campos. Primeiramente, calcula-se o valor $F_A(\infty)$. Ilustra-se abaixo o exemplo da Bacia Permiana para os campos com volumes entre 1,52 e 3,04 milhões boe (Classe 10).

A área média dos campos pertencentes à Classe 10 é de 2,2 milhas quadradas, a área da bacia é de 100.000 milhas quadradas e a eficiência da exploração é igual a 2. Foram perfurados 14.243 poços e descobertos 59 campos pertencentes à classe 10 até o ano de 1960. Aplicando a Equação 13, o número final de campos a serem descobertos na Classe 10 será de aproximadamente 127 campos.

$$F_{10}(\infty) = \frac{59}{1 - e^{\frac{-2x^2, 2x^{14.243}}{100.000}}} = 126,7 \ campos$$

Considerando que 25.055 poços foram perfurados na bacia até 1974, então o número previsto de campos na classe 10 a serem descobertos será de 84,5

campos. Dessa forma, o número previsto de campos na classe 10 a serem descobertos entre 1960 e 1974 será de 84,5 - 59,0 = 25,5 campos.

$$F_{10}(25.055) = 126,71 \left(1 - e^{\frac{-2x2,2x25.055}{100.000}} \right) = 84,5 \text{ campos}$$

Deve-se considerar ainda o fato de que os modelos propostos neste item foram aplicados somente nos EUA, cujas bacias apresentam uma grande quantidade do número de campos e poços. Entretanto, é relevante observar que estes modelos não retratam a realidade de outras regiões como, por exemplo, o Brasil, cujas bacias são caracterizadas por um número muito menor de campos e poços.

3.3. METODOLOGIAS PROPOSTAS PELO USGS

As reservas adicionais de um país não vêm somente da "descoberta de novos campos", mas também do "crescimento de reservas dos campos existentes". Com o aumento da maturidade exploratória, como ocorre nos EUA, a contribuição do "crescimento de reservas" aumenta, enquanto a contribuição da "descoberta de novos campos" diminui.

Dessa forma, a análise de recursos energéticos engloba tanto os campos descobertos quanto os não descobertos. A metodologia utilizada pelo USGS (2000) para prever recursos não descobertos considera os **aspectos geológicos**. Para o acréscimo de reservas devido aos campos já descobertos, o USGS (2000) propõe o modelo de crescimento de reservas.

3.3.1. Recursos não descobertos (descobertas de novos campos)

O presente item mostra, de forma sucinta, a metodologia utilizada pelo USGS para prever recursos não descobertos. Aplicação prática, definições e detalhes desta metodologia encontram-se no Apêndice C.

O modelo de avaliação utilizado pelo USGS foi denominado "Seventh Approximation". Este modelo é conduzido em subdivisões do "Total Petroleum System" (TPS), chamadas "Assessment Units" (AU), como sendo o nível básico de avaliação.

TPS refere-se aos elementos essenciais (rocha fonte, rocha reservatório, etc.), os processos de geração e migração, como também todo o petróleo geneticamente relacionado cuja proveniência está relacionada à mesma rocha geradora.

O procedimento de avaliação proposto pela "Seventh Approximation" está dividido em sete etapas:

- Divide-se um TPS geologicamente definido em AU's homogêneas. AU's são então consideradas individualmente;
- Escolhe-se, para cada AU, um tamanho de campo mínimo que reflita o horizonte de previsão. Recursos em campos menores que este tamanho mínimo são excluídos da avaliação;

- 3. Atribui-se à AU uma probabilidade de ocorrência para pelo menos um campo não descoberto de tamanho maior ou igual ao tamanho mínimo (risco geológico). A seguir, é também atribuída uma probabilidade de que as atividades necessárias para a descoberta deste campo sejam possíveis durante o horizonte de previsão (risco de acesso);
- Estima-se, para cada AU, o número e o tamanho dos campos não descobertos maiores ou iguais ao tamanho de campo mínimo;
- Estimam-se as relações gás/óleo e Gás Natural Liquefeito NGL/gás para campos não descobertos de óleo e NGL/gás e óleo/gás para campos não descobertos de gás. Estas relações são usadas para avaliar os co-produtos associados ao óleo e gás;
- 6. Calculam-se distribuições de probabilidade para o volume de óleo convencional, gás e NGL não descobertos através da combinação das probabilidades de risco geológico e de acesso, das quantidades e tamanhos dos campos não descobertos e das relações gás/óleo, NGL/gás e óleo/gás;
- 7. Cada AU pode incluir dentro de suas fronteiras países, estados, parques e áreas *offshore* que serão chamadas aqui de "entidades". Para alocar os recursos não descobertos de uma AU a entidades, utilizam-se porcentagens de distribuição a serem estimadas pelo geólogo avaliador.

Recursos não descobertos são calculados através do método de simulação de Monte Carlo. A cada iteração, sorteia-se aleatoriamente um valor do número de campos não descobertos (n) em sua respectiva distribuição de probabilidade. A seguir, selecionam-se "n" valores aleatoriamente na distribuição do tamanho dos campos. Estes "n" valores adicionados (Ss) representam um valor na distribuição de probabilidade do volume de óleo e gás não descoberto. Este procedimento é repetido 50.000 vezes a fim de prover a distribuição de probabilidade do volume não descoberto.

3.3.2. Crescimento de reservas dos campos existentes

O presente item mostra, de forma sucinta, a metodologia utilizada pelo USGS para prever as reservas adicionais devidas ao crescimento de reservas dos campos existentes. Aplicações práticas desta metodologia encontram-se no Apêndice D.

Segundo Klett & Gautier, 2003 (apud Verma & Henri, 2004), crescimento de reservas é o aumento sucessivo das estimativas de volume recuperável em acumulações descobertas e acontece como resultado de aplicação de tecnologia na área de caracterização de reservatório e técnicas de recuperação melhoradas (*improved recovery techniques*).

Os modelos propostos por Verma & Henri (2004) baseiam-se nos métodos *"Arrington Modificado"* e de *"Crescimento do Grupo"*, que requerem a soma desde o primeiro ano de produção dos volumes recuperáveis.

Define-se Fator de Crescimento Anual (AGF) como sendo a razão entre o volume recuperável do ano "t" pelo volume recuperável do ano anterior "t-1" e Fator de Crescimento Acumulado do ano "n" (CGF_n) como sendo o produto da AGF do ano "n" pelas AGF's dos anos anteriores, conforme mostrado na Equação 14.

$$CGF_n = AGF_0 \ x \ AGF_1 \ x \ AGF_2 \ x \dots x \ AGF_n$$
(14)

Onde:

 $AGF_0 = 1$ é o valor referente ao primeiro ano considerado.

No método *Arrington Modificado*, os CGF's são calculados considerando os volumes recuperáveis de todos os campos descobertos. Em relação ao método *Crescimento do Grupo*, considera-se que as acumulações sejam agrupadas começando numa mesma data de referência, que pode ser tanto o ano de descoberta, quanto o primeiro ano de produção.

Durante o período entre a descoberta do campo e a primeira produção, os acréscimos de reservas são incertos devido à falta de precisão no delineamento dos reservatórios. Por esta razão, Verma & Ulmishek (2003) consideram o crescimento de reservas baseado no primeiro ano de produção como sendo mais confiável.

Com relação aos modelos de previsão, Verma & Henri (2004) testam as funções potência, recíproca e hiperbólica e Verma & Ulmishek (2003) testam as funções exponencial, potência, recíproca e logarítmica. Em ambos os métodos, Arrington Modificado e Crescimento do Grupo, a função escolhida é a que melhor se ajusta aos dados históricos, segundo o coeficiente de correlação (R²).

Além disso, para o estudo feito na Bacia Siberiana Ocidental, Verma & Ulmishek (2003) dividem os dados em dois segmentos: o primeiro corresponde ao estágio de rápido crescimento durante os primeiros quatro anos após o início da produção; o segundo referente ao crescimento gradual dos anos posteriores.

Assim como acontece nos EUA, a Bacia Siberiana Ocidental apresenta um rápido crescimento nos primeiros 4-5 anos. Porém, as duas regiões divergem significativamente nos anos seguintes. Enquanto os dados dos EUA apresentam um crescimento contínuo, a Bacia Siberiana Ocidental mostra um crescimento gradual, mantendo um nível quase que constante após os primeiros cinco anos.

Verma *et al.* (2000) apontam diferenças nas condições políticas e econômicas e a falta de investimentos como as principais causas dos diferentes padrões de crescimento. Devido à estratégia de desenvolvimento similar, o mesmo resultado pode ser esperado para outras bacias em países que tiveram suas economias centralizadas, tais como os países da antiga URSS e a China.

É relevante observar que o crescimento de reservas é o principal componente do acréscimo de reservas em bacias maduras, tal como a maioria das bacias nos EUA. Entretanto, em bacias jovens, com programa exploratório ativo e intenso, a contribuição do crescimento de reservas é muito inferior, se comparada com o acréscimo de reservas devido às novas descobertas.

3.4. O PICO DE HUBBERT

Hubbert (1956) apresenta uma metodologia para prever a produção e as descobertas de óleo e gás. Para tanto, assume que os dados históricos anuais seguem a forma de um "sino" (curva simétrica).

A metodologia utilizada por Hubbert é relativamente simples. Basta estimar a totalidade do petróleo existente (em condições de ser extraído de forma econômica) e a taxa de crescimento da produção. No momento em que a produção acumulada atingir a metade do total existente, a produção estará no máximo e tenderá a declinar a partir desse ponto.

Hubbert (1956) utiliza a Curva Logística para fazer suas análises sem justificar sua escolha. Não se sabe nem mesmo se ele estava preocupado com todas as alternativas disponíveis.

Segundo Deffeyes (2001), Hubbert primeiro chegou a suas conclusões e depois procurou métodos para explicá-las. De qualquer forma, este método ganhou prestígio após prever corretamente, em 1956, que a produção dos EUA atingiria o pico em 1972.

Deffeyes (2001) sugere três curvas simétricas para ajustar os dados de produção e de acréscimo de reservas: Gaussiana, Lorentziana e Logística. A Figura 2 ilustra as três curvas simétrica propostas.

Figura 2 - Curvas simétricas: Gaussiana, Lorentziana e Logística. Fonte: Deffeyes, 2001.

Dentre as três curvas sugeridas, a Curva Gaussiana foi a que melhor se ajustou aos dados de produção dos EUA (Figura 3) e, por esta razão, Deffeyes passa a utilizá-la em todas as suas análises, inclusive para os dados mundiais como veremos a seguir.

Figura 3 - Produção anual dos EUA - Ajuste com curva Gaussiana. Fonte: Deffeyes, 2001.

Segundo Rosa & Gomes (2004), a grande dificuldade para efetuar esse cálculo consiste em conhecer a totalidade do petróleo existente. Deffeyes (2001) aplica a metodologia de Hubbert aos dados de produção mundial e assume o valor de 1,8 trilhão de barris de óleo proposto por Campbell (1997) para o total a ser produzido a partir de **poços convencionais**. Como resultado, a curva gaussiana que melhor se ajustou encontrou o pico de produção em 2003, mesmo resultado previsto por Hubbert em 1956.

Muitos acreditaram que o valor de 1,8 trilhão era baixo e, a fim de verificar quanto tempo poderíamos postergar o pico de produção, Deffeyes ajusta a Curva Gaussiana para um valor total a ser produzido de 2,1 trilhões de barris de óleo. O resultado está ilustrado na Figura 4 e tem como pico de produção o ano de 2009.

Figura 4 - Produção anual mundial - Ajuste com Curvas Gaussianas. Fonte: Deffeyes, 2001.

Em 1962, Hubbert tenta melhorar seu trabalho original de 1956. Em vez de utilizar as curvas de produção anual, passa a utilizar curvas acumuladas. Além disso, define **Produção Acumulada** como sendo toda a produção de óleo do EUA desde 1859 e **Descobertas Acumuladas** como sendo o somatório da produção acumulada mais as reservas conhecidas até a data de análise.

Em seguida, restringe as duas curvas (produção e descobertas) como tendo formas idênticas; a única diferença é que as duas curvas são deslocadas (defasadas) por um número constante de anos. Deffeyes chama isto de "*mágica*" de Hubbert, sendo a curva de descobertas um preditor da curva de produção.

Para o trabalho revisado de Hubbert, Deffeyes novamente utiliza a Curva Gaussiana para ajustar os dados americanos. Utiliza como intervalo os anos de 1859 a 1999 para os dados de produção e de 1946 a 1999 para as descobertas (produção + reservas). O melhor ajuste resultou numa diferença de 11 anos entre as duas curvas para o conjunto de dados americano (Figura 5).

Figura 5 - Produção e Descoberta acumulada (dados dos EUA): Curva Gaussiana. Fonte: Deffeyes, 2001.

Para o conjunto de dados mundiais, o melhor ajuste resultou numa diferença de 21 anos entre as duas curvas (Figura 6). O total a ser recuperado é 2,12 trilhões de barris e pico de produção novamente é o ano de 2003, mesmo resultado encontrado para o modelo original (recuperação de 1,8 trilhão de barris). Em ambos os casos, dados americanos e mundiais, as restrições da metodologia

proposta por Hubbert são o formato gaussiano e o espaçamento constante entre as curvas.

Figura 6 - Produção e Descoberta acumulada (dados mundiais): Curva Gaussiana. Fonte: Deffeyes, 2001.

Segundo o autor, nenhuma iniciativa a ser iniciada em 2001 teria efeito no pico do ano de produção. Nenhum projeto de energia renovável, exploração e perfuração evitaria uma guerra de apostas pelo óleo remanescente.

Nada impede que um conjunto de dados se ajuste a uma curva simétrica (Curva Logística) como aconteceu com os dados de produção dos EUA na análise feita por Hubbert. Porém, nada também nos garante que os dados mundiais irão melhor se ajustar a esta mesma curva. Isto seria afirmar que todas as regiões seguem um único padrão de desenvolvimento (curvas simétricas). Além disso, o método só funcionou nos EUA porque estava no fim do ciclo exploratório do país.

Segundo Fryer & Greenman (1990), o modelo proposto por Hubbert perdeu sua credibilidade após 1970, pois foi mostrado que outras curvas se ajustam tão bem quanto a curva logística, porém com valores significativamente diferentes.

Hubbert teve o mérito de abrir a discussão, mas a insistência no modelo não se justifica. Dessa forma, pode-se dizer que a metodologia proposta por Hubbert tornou-se base para trabalhos futuros. Trabalhos como o que veremos no item a seguir, proposto por Knoring *et al.* (1999) e a presente tese, ambos baseados em curvas não simétricas, geralmente se ajustam melhor aos dados históricos do que as curvas gaussiana e logística.

3.5. METODOLOGIA BASEADA NAS FUNÇÕES DE CONTROLE E DE CONDIÇÃO

No item anterior, Deffeyes (2001) utiliza curvas simétricas (Gaussiana, Lorentziana e Logística) para ajustar as curvas de produção e de acréscimo de reservas. De acordo com Knoring *et al.* (1999), os modelos geralmente utilizados para descrever o processo de acréscimo de reservas são as funções Logística e Gomperz.

A Figura 7 ilustra uma curva Logística utilizando dados acumulados. Pode-se observar que esta função é simétrica com relação ao ponto de inflexão (R_{INFL},t_{INFL}). O valor "A" representa o total a ser recuperado na região.

Entretanto, Knoring *et al.* (1999) afirmam que não há uma função (modelo) universal para descrever o processo de acréscimo de reservas em qualquer região e propõem funções assimétricas (Figura 8) que podem melhor se ajustar aos dados do que as funções Logística, Gaussiana, Lorentziana e de Gomperz.

Figura 7 - Descobertas acumuladas vs. tempo: simetria em relação ao ponto de inflexão. Fonte: o autor.

Figura 8 - Descobertas acumuladas vs. tempo: assimetria em relação ao ponto de inflexão. Fonte: o autor.

Diferentemente de Hubbert, Knoring *et al.* (1999) procuram modelar o processo de acréscimo de reservas de acordo não só com o potencial de

descobertas, mas também com a estratégia de exploração, pois sua principal característica é ser um processo controlado com *feedback*. Assim sendo, a estratégia aplicada é refletida nos resultados e, conseqüentemente, os resultados subseqüentes irão direcionar as novas estratégias.

A Figura 9 ilustra o princípio da modelagem do acréscimo de reservas (ΔR) como sendo o produto de duas funções matemáticas de tendências opostas: a função seleção de controle $\varphi(R)$ e a função seleção de condições f(R).

$$\Delta R = \varphi(R).f(R) \tag{15}$$

Figura 9 – Princípio da Modelagem do Acréscimo de Descobertas (ΔR). Fonte: adaptado de Knoring *et al.*, 1999.

A função seleção de condições considera que o número dos campos decresce com a primeira descoberta. A condição no instante (t+1) é pior do que a condição no instante (t). Em outras palavras, temos menos campos a serem descobertos no instante (t+1) do que no instante (t).

A função seleção de controle baseia-se na informação obtida e, segundo os modelos propostos pelos autores, a função cresce linearmente com a evolução do volume recuperável (R_t). Quanto maior o conhecimento da região, maior a quantidade de informação acumulada, maior será a experiência adquirida na exploração e, conseqüentemente, melhor será o controle. Em outras palavras, o controle no instante (t+1) é melhor do que o controle no instante (t).

A exploração termina quando todo o potencial da região for transferido para a categoria avaliada (descoberto). Isto significa que o volume recuperável (R_t) tem um limite superior "A" quando não há mais nenhum campo a ser encontrado, ou seja, quando a função seleção de condição estiver próxima de zero.

3.5.1. Modelos Determinísticos: Evolução com o tempo (t)

Knoring *et al.* (1999) propõem alternativas de estratégia possíveis para representar a função seleção de condição através do desenvolvimento de nove modelos matemáticos (Equação 16 a Equação 24).

Modelo 1:
$$\frac{\Delta R}{R_{t+1}} = a - bR_t$$
 (16)

Modelo 2:
$$\frac{\Delta R}{R_{t+1}} = 1 - a' R_t^{b'}$$
 (17)

Modelo 3:
$$\frac{\Delta R}{R_{t+1}} = e^{a-bR_t}$$
 (18)

Modelo 4:
$$\frac{\Delta R}{R_{t+1}} = 1 - (1 - c + a R_t^{1/b})^b$$
 (19)

Modelo 5:
$$\frac{\Delta R}{R_{t+1}} = c - a R_t^b$$
 (20)

Modelo 6:
$$\frac{\Delta R}{R_{t+1}} = b \ln \frac{A}{R_t}$$
 (21)

Modelo 7:
$$\frac{\Delta R}{R_{t+1}} = a \left(\frac{A - R_t}{A}\right)^b$$
 (22)

Modelo 8:
$$\frac{\Delta R}{R_{t+1}} = e^{a-bR_t} - c$$
 (23)

Modelo 9:
$$\frac{\Delta R}{R_{t+1}} = e^{a-bR_t} - \frac{c}{R_t}$$
 (24)

Entretanto, os autores utilizam somente a equação linear para representar a função seleção de controle (Figura 9). Esta equação, combinada às nove funções seleção de condições, dá origem aos nove modelos matemáticos para representar a evolução do processo de descoberta (Equação 25 a Equação 33).

Modelo 1:
$$R_{t+1} = \frac{R_t}{1 - a + bR_t}$$
 (25)

Modelo 2:
$$R_{t+1} = aR_t^b$$
 (26)

Modelo 3:
$$R_{t+1} = \frac{R_t}{1 - e^{a - bR_t}}$$
 (27)

Modelo 4:
$$R_{t+1} = \frac{R_t}{\left(1 - c + aR_t^{\frac{1}{b}}\right)^b}$$
 (28)

Modelo 5:
$$R_{t+1} = \frac{R_t}{1 - c + aR_t^b}$$
 (29)

Modelo 6:
$$R_{t+1} = \frac{R_t}{1 - b \ln \frac{A}{R_t}}$$
 (30)

Modelo 7:
$$R_{t+1} = \frac{R_t}{1 - c(A - R_t)^b}$$
 (31)

Modelo 8:
$$R_{t+1} = \frac{R_t}{1 + c - e^{a - bR_t}}$$
 (32)

Modelo 9:
$$R_{t+1} = \frac{R_t}{1 - \left(e^{a-bR_t} - \frac{c}{R_t}\right)}$$
 (33)

As funções contínuas R(t) que correspondem às Equações 25 e 26 (Modelos 1 e 2) são, respectivamente, as funções Logística e Gomperz. Os demais modelos foram desenvolvidos baseando-se nestas duas equações iniciais e descrevem diferentes variantes da família de curvas tipo sigmóide.

Knoring *et al.* (1999) propõem diferentes interpretações para os modelos que descrevem a evolução do processo de descobertas. Assim sendo, os nove modelos acima descritos são divididos em três grupos principais: i) interpretando a função de seleção de condições; ii) baseando-se na transferência do potencial não descoberto para reservas avaliadas; iii) considerando uma quota de deficiência nos modelos.

i. Interpretando a função de seleção de condições: Modelos 1 a 5.

A função seleção de condições pode assumir diferentes formas conforme ilustrado na Figura 10. A curva central, cuja função seleção de condições decresce linearmente, representa a função logística (Modelo 1). A curva pontilhada representa o caso onde os grandes campos são descobertos no início do processo exploratório, pois as condições caem drasticamente no início. Por outro lado, a curva tracejada representa o caso em que os grandes campos são descobertos em estágios avançados, pois as condições caem mais drasticamente no final do processo exploratório. A Figura 11 mostra como as diferentes formas da função seleção de condições podem afetar o gráfico do acréscimo de descobertas (ΔR).

É relevante observar ainda que alguns modelos, dependendo do valor dos parâmetros "b" e "c" nas Equações 25 a 33, podem assumir a forma de qualquer uma das três curvas abaixo ilustradas. Por exemplo, quando b=1 e c<1, os Modelos 4 e 5 assumem o formato da curva central e se tornam idênticos ao Modelo 1. Quando b<1, o Modelo 5 assume o formato da curva pontilhada representando que os grandes campos foram descobertos no início. Por outro lado, para o caso b>1, o Modelo 5 assume o formato da curva tracejada, representando que os grandes campos foram descobertos no final.

Função Seleção de Condições

Figura 10 - Diferentes formas da função seleção de condições f(R). Fonte: o autor.

Figura 11 – Influência da função seleção de condições no gráfico (ΔR). Fonte: o autor.

ii. Baseando-se na transferência do potencial não descoberto em reservas avaliadas: Modelos 6 a 8.

O acréscimo do volume recuperável no ano "t" (ΔR_t) pode ser entendido como sendo uma parte dos recursos não descobertos (Ut) transferida para a categoria avaliada através de uma função intensidade de transferência (μ).

$$\Delta R_t = \mu U_t \tag{34}$$

$$U_t = A - R_t \tag{35}$$

Onde:

A = potencial final da região;

 R_t = volume recuperável já descoberto.

Para diferentes equações da função intensidade de transferência (μ), temos diferentes modelos de acréscimo de reservas (ΔR_t). Por exemplo, se a função intensidade de transferência variar linearmente com o volume recuperável, então ΔR_t seguirá a equação do Modelo 1.

Seja
$$\mu = kR_{t+1}$$
 $kA = a$ $k = b$
Então: $\frac{\Delta R}{R_{t+1}} = \frac{\mu U_t}{R_{t+1}} = \frac{kR_{t+1}(A - R_t)}{R_{t+1}} = kA - kR_t \Rightarrow \boxed{\frac{\Delta R}{R_{t+1}} = a - bR_t}$
Modelo 1

iii. Considerando quotas de deficiência: Modelo 9.

A idéia de quotas de deficiência é aplicada ao processo de incorporação de reservas quando limitações interferem na evolução das descobertas. Por exemplo, a Figura 12 ilustra uma região onde somente a área da direita é selecionada para ser explorada devido a limitações causadas por restrições de investimentos. Outro exemplo seria uma região onde a exploração é conduzida em áreas de baixo potencial devido à restrição tecnológica (ex. águas ultraprofundas).

Figura 12 – Seleção de campos devido à restrição de investimentos. Fonte: o autor.

3.5.2. Modelos Estocásticos: Evolução com o tempo (t)

Em avaliação de reservas de petróleo, o termo "determinístico" associado a um modelo não significa que não haja incerteza quanto aos seus resultados. No caso das estimativas determinísticas, a incerteza associada ao valor fornecido é omitida.

Vimos que o processo de acréscimo de reservas é um reflexo da estratégia da exploração. Ao contrário de um sistema técnico, o *feedback* em exploração não pode ser precisamente estabelecido com antecedência. Por exemplo, a velocidade e o posicionamento no espaço podem ser precisamente avaliados ao se controlar um avião (sistema técnico).

Entretanto, o controle da exploração é realizado sob condições de incerteza e uma decisão pode não conduzir a um único resultado possível. Por exemplo, o tempo em que o maior campo de uma bacia sedimentar será descoberto não pode ser previsto antecipadamente com exatidão.

Numerosas soluções possíveis nos conduzem a flutuações, isto é, variações aleatórias das reservas acumuladas em torno de algum valor médio. Estas flutuações são consideradas eventos aleatórios governados por leis probabilísticas.

Dessa forma, uma descrição determinística é insuficiente para tratar problemas de acréscimo de reservas de óleo e gás. Isto nos leva a considerar elementos de chance (Z_t), que podem interagir de duas maneiras:

- A modelagem é composta apenas por componentes determinístico e aleatório. Neste caso, o termo aleatório (Z_t) possui uma distribuição normal com média zero e variância σ², proveniente de um mecanismo puramente aleatório (**ruído branco**);
- O componente aleatório é uma complicação do determinístico e requer a modelagem dos resíduos. A hipótese estabelecida por Knoring *et al.* (1999) é de que os resíduos sejam gerados por um processo autoregressivo (AR) de ordem um ou dois.

Assim sendo, Knoring *et al.* (1999) apresentam mais nove modelos que diferem dos modelos determinísticos (Equações 25 a 33) apenas por apresentarem

um componente aleatório (Z_{t+1}). A Equação 36 representa o primeiro modelo estocástico proposto por Knoring *et al.* (1999).

Modelo 1:
$$\frac{\Delta R}{R_{t+1}} = a - bR_t + Z_{t+1}$$
(36)

O componente aleatório (Z_t) é o desvio do valor real (R_t) em relação ao estabelecido pelo modelo determinístico (P_t), ou seja, Z_t = R_t - P_t. Além disso, para o acréscimo de reservas, o componente aleatório é dado por Z_t[']= Δ R_t - Δ P_t, onde Δ R_t = (R_{t+1} - R_t) e Δ P_t = (P_{t+1} - P_t).

A Figura 13 mostra, para a segunda hipótese (modelagem dos resíduos), a natureza rítmica dos componentes aleatórios. Os movimentos oscilatórios começam pequenos, atingem uma amplitude máxima e depois voltam a diminuir.

Figura 13 – Modelagem dos Componentes Aleatórios: $Zt = Rt - Pt e Zt'=\Delta Rt - \Delta Pt$. Fonte: Knoring *et al.*, 1999.

Entretanto, é relevante observar que a modelagem dos resíduos (Z_t) através de um modelo auto-regressivo significa que as informações contidas nos dados não foram capturadas adequadamente. Em outras palavras, se o modelo for adequado, espera-se que os resíduos não apresentem nenhuma estrutura, i.e., possam ser classificados como ruído branco, não necessitando nenhuma re-modelagem.

3.5.3. Modelos Determinísticos: Evolução com o volume de perfuração

Os modelos determinísticos que descrevem a evolução do processo de acréscimo de reservas podem ser vistos sob um outro ângulo: em função do volume de perfuração (L).

Knoring *et al.* (1999) definem "k" como sendo um valor adimensional que representa a eficiência de como as descobertas são desenvolvidas numa dada região. k>1 indica uma exploração eficiente, pois a taxa ou velocidade relativa do acréscimo de reservas é maior do que a taxa de aumento na perfuração. O contrário ocorre quando k<1, indicando uma exploração ineficiente.

$$k = \frac{\frac{1}{R} \frac{dR}{dt}}{\frac{1}{L} \frac{dL}{dt}}$$
(37)

Onde:

 $\frac{1}{R}\frac{dR}{dt} =$ velocidade relativa do acréscimo;

L = esforço exploratório dado pelo número de poços exploratórios;

 $\frac{dL}{dt}$ = velocidade exploratória.

Além disso, "k" não é uma constante, devendo evoluir com o tempo, sendo expressa como k(t) e, conseqüentemente, com o aumento no volume de perfuração, sendo também k(L). A partir da Equação 37, a dependência do volume de óleo recuperável (R) com o volume de perfuração (L) é dada pela Equação 38.

$$R(L) = \mu e^{\left(\int \frac{1}{L}k(L)dL\right)}$$
(38)

A Figura 14 mostra as nove curvas k(L) vs. L propostas por Knoring *et al.* (1999). Ao aplicarmos as equações das nove curvas ilustradas na Figura 14 na Equação 38, encontram-se as equações R em função da variável explicativa L (Equações 39 a 47). " μ ", "a", "b" e "c" são os parâmetros das equações.

Figura 14 – "k" muda de acordo com o aumento no volume de perfuração (L). Fonte: adaptado de Knoring et al. (1999).

Modelo 1:
$$k(L) = \frac{a}{\ln(L)} \Rightarrow R(L) = \mu (\ln L)^a$$
 (39)

Modelo 2:
$$k(L) = aL^{-b} \Rightarrow R(L) = \mu e^{\frac{-a}{b}L^{-b}}$$
 (40)

Modelo 3:
$$k(L) = ae^{-bL} \Rightarrow R(L) = \mu L^a e^{aP}$$
 (41)

Modelo 4:
$$k(L) = a - bL \Longrightarrow R(L) = \mu L^a e^{-bL}$$
 (42)

Modelo 5:
$$k(L) = c - aL^b \Rightarrow R(L) = \mu L^c e^{\frac{-a}{b}L^b}$$
 (43)

Modelo 6:
$$k(L) = a \implies R(L) = \mu L^a$$
 (44)

Modelo 7:
$$k(L) = ae^{-bL}L \implies R(L) = \mu e^{\frac{-a}{b}e^{-bL}}$$
 (45)

Modelo 8:
$$k(L) = (a - bL)L \implies R(L) = \mu e^{\left(a - \frac{1}{2}bL\right)L}$$
 (46)

Modelo 9: $k(L) = a + bL \implies R(L) = \mu L^a e^{bL}$ (47)

A forma específica de mudança da função "k" é determinada pela estratégia de exploração e pela geologia da região (distribuição de tamanho dos campos). De acordo com a Figura 15, três casos podem ocorrer:

- i. "k" decresce com o aumento em L (Equações 39 a 43). Refere-se a um habitat concentrado sem restrições;
- ii. "k" não muda com o aumento em L (Equação 44). Refere-se a um habitat disperso;
- iii. "k" cresce com o aumento em L. Refere-se a um *habitat* concentrado com restrições, por exemplo, tecnológica, econômica, ambiental, etc.

Nas Equações 45 e 46, "k" cresce, alcança seu máximo, e começa a declinar com o crescimento em L. Na Equação 47, "k" é uma função monótona crescente.

Figura 15.a – 1º caso: grandes campos descobertos no início da exploração.

Figura 15.b – 2° caso: uniformidade no tamanho dos campos.

Figura 15.c – 3º caso: grandes campos descobertos em estágios avançados da exploração.

Figura 15 – Forma específicas da função "k" divididas em 3 grupos. Fonte: adaptado de Knoring *et al.* (1999).

3.6. CONSIDERAÇÕES

O presente capítulo apresentou 5 metodologias para estimar as descobertas futuras de óleo e gás.

A vantagem do método Creaming é avaliar probabilisticamente as novas descobertas. No entanto, sua aplicação limita-se às províncias sem restrição e em avançado estágio exploratório.

Os modelos propostos em Drew (1990) baseiam-se no princípio da exaustão física. Deve-se considerar o fato de que estes modelos foram testados em bacias com uma grande quantidade de campos e poços, fato este que não retrata a realidade brasileira, cujas bacias são caracterizadas por um número muito menor de campos e poços.

A vantagem da metodologia proposta pelo USGS é avaliar probabilisticamente as novas descobertas considerando dados geológicos. Utilizase especialistas para definir os valores máximo, provável e mínimo do número e tamanho dos campos a serem descobertos.

Deffeyes (2001) e Knoring *et al.* (1999) utilizam dados históricos para prever recursos através do ajuste de curva. Não utilizam uma abordagem probabilística para a estimação dos recursos e sua aplicação restringe-se às regiões em avançado estágio exploratório. Além disso, consideram a modelagem da evolução do volume de óleo recuperável sob condições limitadas de tecnologia e informação.

Em relação ao crescimento de reservas dos campos existentes, segundo Verma & Ulmishek (2003), outros estudos podem ser encontrados em: Marsh (1971), Attanasi & Root (1994), Root *et al.* (1995), Lore *et al.* (1996), Schmoker & Attanasi (1997), Klett & Gautier (2003), Sem & Ellerman (1999), Watkins (2000).

Segundo Drew (1990), experiências nos EUA mostraram que estimativas de recursos não descobertos podem flutuar bastante, de acordo com o método utilizado. A Tabela 1 proposta por Bentley (2002) mostra que o mesmo ocorre para estimativas do pico da produção mundial.

Data	Fonte	Data de Previsão do Pico	Potencial Final Assumido
1972	ESSO	"Oil to become increasingly scarce from about the year 2000."	2100 Gb *
1972	Report for the UN Confr. on Human Environment	"likely that peak production will have been reached by the year 2000."	2500 Gb
1974	SPRU, Sussex University-UK	n/a	1800 – 2480 Gb
1976	UK Dept. of Energy	Peak: "about 2000."	n/a
1977	Hubbert	Peak: 1996.	2000 Gb (Nehring)
1977	Ehrlich et al.	Peak: 2000.	1900 Gb
1978	WEC / IFP	n/a	1803 Gb
1979	Shell	" plateau within the next 25 years."	n/a
1979	BP (Oil Crisis again?)	Peak (non-communist world): 1985.	n/a
1981	World Bank	plateau around the turn of the century	1900 Gb
1995	Petroconsultants	Peak: 2005.	1800 Gb, (excl. NGLs)
1997	Ivanhoe	Peak: 2010.	~ 2000 Gb
1997	Edwards	Peak: 2020.	2836 Gb
1998	IEA: WEO 1998	Peak: 2014.	2300 Gb refnce. case
1999	USGS (Magoon)	Peak: ~2010.	~ 2000 Gb
1999	Campbell	Peak: ~2010.	2000 Gb incl. polar and deepwater oil
2000	Bartlett	Peak: 2004, or 2019.	2000, or 3000 Gb
2000	IEA: WEO 2000	Peak: "Beyond 2020."	3345 Gb (from USGS)
2000	US EIA	Peak: 2016 - 2037.	3003 Gb (from USGS)
2001	Deffeyes	Peak: 2003 - 2008.	~ 2000 Gb
2002	Smith	Peak: 2011 - 2016	2180 Gb
2002	'Nemesis'	Peak: 2004 - 2011	1950 - 2300 Gb equiv.

Tabela 1 – Previsões do suprimento mundial de óleo.

Fonte: adaptado de Bentley, 2002.

* Gb – Bilhões de barris de óleo.

A tabela acima mostra uma diversidade de técnicas com níveis variáveis de precisão. A escolha da técnica a ser utilizada dependerá da finalidade e dos recursos disponíveis no momento da avaliação.

4. METODOLOGIAS PROPOSTAS

O presente capítulo apresenta as metodologias propostas nesta tese que consideram: i) funções de controle não lineares; ii) novos objetivos exploratórios; iii) o esforço exploratório. Conforme visto no Capítulo 3, as metodologias propostas por Deffeyes (2001), Knoring *et al.* (1999) e Verma & Henri (2004) foram construídas considerando somente os volumes recuperáveis por meios convencionais de produção.

4.1. UTILIZANDO UMA FUNÇÃO DE CONTROLE NÃO LINEAR

O sucesso de um campo maduro depende da energia disponível para recuperar o óleo do reservatório para o poço. Geralmente, a partir de meios convencionais, grande parte do óleo originalmente *in situ* não consegue ser recuperado, sendo abandonado dentro do reservatório. Dessa forma, três fontes de energia diferem enormemente na eficiência:

- I. Recuperação Primária: quando a pressão natural do reservatório é suficiente para elevar o óleo à superfície;
- II. Recuperação Secundária: quando água ou gás são introduzidos artificialmente por um poço injetor para aumentar a pressão no reservatório;
- III. Recuperação Terciária: quando técnicas "enhanced oil recovery" (EOR) são utilizadas para recuperar o óleo. Ex.: injeção de vapor, fluidos miscíveis, dióxido de carbono, etc.

Além das técnicas acima descritas, destaca-se ainda a aplicação de técnicas *"improved oil recovery* (IOR)", como por exemplo, a perfuração de poços horizontais e sísmica 3-D. Segundo Stalkup, 1984; Farouq, 1995; Taber *et al.*, 1996; Moritis, 2000 (apud Verma *et al.*, 2004), aplicando as técnicas IOR e EOR, pode-se alcançar um acréscimo na recuperação, além da obtida com a injeção de água, de até 15% do volume inicialmente *in-place*.

Melhorias na tecnologia de recuperação ao longo dos anos têm proporcionado acréscimos significativos nos volumes recuperáveis. Por esta

razão, procura-se considerar a influência do progresso tecnológico utilizando funções de controle não lineares.

Conforme proposto por Knoring *et al.* (1999), a exploração é um processo com *feed-back* onde a estratégia adotada afeta os resultados subseqüentes. Entretanto, o que deixou de ser considerado por Knoring *et al.* (1999) é que a estratégia está relacionada ao preço do petróleo. Quanto maior o preço do petróleo, maior será o investimento disponível em pesquisas e exploração, melhor será a tecnologia utilizada que, por sua vez, afetará na estratégia a ser adotada (Figura 16).

Figura 1 – Influência do preço do petróleo nos resultados subseqüentes e vice-versa. Fonte: o autor.

Segundo Knoring *et al.* (1999), controle pode ser entendido como sendo a seleção de uma ação particular, dado um conjunto de ações possíveis. Por exemplo, considere um conjunto de opções possíveis para recuperar óleo de um reservatório. A escolha entre diferentes técnicas de recuperação primária, secundária, terciária ou, ainda, a injeção de um novo produto que possa surgir nos próximos anos devido ao avanço tecnológico. Este conjunto de opções possíveis é diretamente influenciado pelo preço do petróleo.

Cada uma destas técnicas de recuperação é econômica sob diferentes circunstâncias e a escolha inevitavelmente deverá considerar o preço do petróleo. Técnicas que são economicamente inviáveis poderiam se tornar viáveis em períodos de alta no preço do petróleo.

Se esta situação viesse a ocorrer, muitas reservas seriam reavaliadas considerando um melhor fator de recuperação (FR) e, conseqüentemente, aumentando o volume recuperável sem a descoberta de novos campos. Ou seja, teremos um acréscimo no volume (R_t) considerando somente os campos já descobertos (Figura 17). Este acréscimo no volume pode ser dado ainda pela viabilidade de campos não considerados anteriormente, devido ao baixo preço do petróleo ou indisponibilidade tecnológica.

Figura 2 - Acréscimo no volume (Rt) devido ao progresso tecnológico. Fonte: o autor.

Em outras palavras, caso o preço do óleo suba a um valor extremamente alto, desde que ainda não tenhamos qualquer outra fonte alternativa de energia para substituir o petróleo, a tecnologia mudará a fim de atingir uma recuperação máxima, mesmo que isto seja altamente custoso para os padrões atuais.

Vimos também na Figura 9 que o princípio da modelagem do acréscimo de reserva (ΔR) proposto por Knoring *et al.* (1999) foi construído como sendo o produto de duas funções que representam tendências opostas: a função seleção de controle $\varphi(R)$ e a função seleção de condições f(R). Dessa forma, se os resultados (ΔR) são influenciados pelo preço do petróleo, é de se esperar que $\varphi(R)$ e f(R) também sejam influenciados.

A função seleção de controle baseia-se na informação obtida. Quanto maior o conhecimento da região, maior será a experiência adquirida na exploração e, conseqüentemente, melhor será o controle.

Assumir uma função de controle linear $\varphi(R) = k \ge R_t$, conforme os modelos propostos por Knoring *et al.* (1999), significa considerar o acréscimo de informação constante entre iguais intervalos de tempo. Por exemplo, seria assumir que o acréscimo de informação seja igual entre os instantes [t; t+1] e [t+1; t+2].

Define-se "conhecimento instantâneo" o acréscimo de conhecimento entre os instantes [t; t+1] como sendo a primeira derivada da função seleção de controle. Para os modelos propostos por Knoring *et al.* (1999), $\phi(R) = k \ge R_t$, a derivada de uma reta é constante e igual a "k" para todo intervalo t. Será que este acréscimo de conhecimento é o mesmo em 40 anos de exploração? Historicamente, após períodos de grande impacto no preço do petróleo, novas tecnologias tornaram-se viáveis. Conforme dito anteriormente, quando o preço do petróleo sobe a um patamar muito elevado, a tecnologia empregada para explorar e produzir o petróleo muda e, conseqüentemente, muda a informação adquirida da região de interesse (controle).

Dessa forma, o acréscimo de conhecimento (primeira derivada da função de controle) também irá mudar ao longo do tempo e não permanecerá a constante proposta por Knoring *et al.* (1999). A Figura 18.a mostra um exemplo para o caso de uma função de controle não linear onde os grandes campos são descobertos nos estágios iniciais do processo de exploração. Analogamente, a Figura 18.b ilustra um caso onde os grandes campos são descobertos em estágios avançados da exploração.

Figura 18.a - Grandes campos descobertos no início do processo de exploração.

Figura 18.b - Grandes campos descobertos no final do processo de exploração.

Figura 3 - ϕ (R) não linear. Grandes descobertas: a) no início; b) no final da exploração. Fonte: o autor.

É relevante observar que o objetivo aqui não é usar o preço do petróleo de forma quantitativa, mas sim qualitativamente, para alavancar o acréscimo de descobertas. A Figura 19 ilustra que controle relacionado qualitativamente ao preço do petróleo significa um "*Efeito Cascata*" no processo de descoberta.

O aumento no preço do petróleo estimula novos investimentos em pesquisa e exploração que possibilitam o desenvolvimento de novas tecnologias. O surgimento de novas tecnologias muda a estratégia adotada (ex. meios de recuperação e objetivos exploratórios). Além disso, melhorias na tecnologia de perfuração podem permitir a redução nos custos de perfuração. Custos mais baixos possibilitam perfurar mais poços e, conseqüentemente, maior chance de encontrar novas descobertas. Perfurar mais poços significa mais informação (controle) que, segundo Knoring *et al.* (1999), resulta em mais descobertas.

Figura 4 - Efeito Cascata devido ao aumento no preço do petróleo. Fonte: o autor.

Deste modo, não temos porque considerar que o controle seja linear conforme os modelos propostos por Knoring *et al.* (1999).

O principal objetivo desta nova metodologia passa a ser encontrar o formato da função seleção de controle, seja exponencial, potência, logarítmica, etc., que melhor explica o processo de descoberta de uma dada região. Esta nova função de controle dará origem a um novo modelo matemático, que melhor

representa a evolução do processo de descoberta, considerando-se as mudanças tecnológicas ao longo do tempo.

Propõem-se, empiricamente, sete funções matemáticas não lineares que melhor representem a função seleção de controle (Equações 48 a 54). Estas funções, quando combinadas (multiplicadas) com as nove funções seleção de condições propostas por Knoring *et al.* (1999), dão origem a 7x9 = 63 novos modelos empíricos que representam o processo de evolução de descobertas.

Crescimento Exponencial:

1.
$$\varphi(R) = \exp(\alpha \cdot R_i^{\beta})$$
 (1)

2.
$$\varphi(R) = \exp(\alpha + \beta R_i)$$
 (2)

3.
$$\varphi(R) = \exp(\alpha + R_i^{\beta})$$
 (3)

Potência:

4.
$$\varphi(R) = \alpha R_i^{\beta}$$
 (4)

Crescimento Logarítmico:

5.
$$\varphi(R) = \alpha + \beta . Ln(R_t)$$
 (5)

Curva de Aprendizagem:

6.
$$\varphi(R) = c - a \cdot \exp(-k \cdot R_t)$$
 (6)

Função Logística:

7.
$$\varphi(R) = \frac{c}{1 + \exp(\alpha - \beta . R_t)}$$
(7)

A segunda função proposta (Equação 49) pode ser reescrita da seguinte forma: $\varphi(R) = \exp(\alpha) . \exp(\beta . R_t) = k . \exp(\beta R_t)$. Esta equação apresenta o mesmo formato da curva de Crescimento Populacional proposta por Thomas Malthus (1798), ilustrada na Figura 20. N₀ representa a população presente no instante inicial t=0 e r é uma constante que varia com a espécie de população.

Figura 5 - Curva de Crescimento Populacional. Fonte: <u>http://pessoal.sercomtel.com.br/matematica/medio/expolog/exponenc.htm#exp05</u>

Devido ao seu uso por psicólogos e educadores na descrição do processo de aprendizagem, a Equação 53 é chamada de Curva de Aprendizagem. A Figura 21 mostra que a função cresce rapidamente no início e, a seguir, de forma mais suave, aproxima-se de sua assíntota y=c.

Fonte: http://pessoal.sercomtel.com.br/matematica/medio/expolog/exponenc.htm#exp05

A Figura 22 ilustra através de um exemplo o formato da Curva Logística (Equação 54).

Figura 7 - Curva Logística. Fonte: o autor.

A fim de padronizar os nomes dos 63 modelos propostos, adotou-se a nomenclatura – Modelo i x j – onde,

"i" refere-se à Função Seleção de Controle i=1, 2, ..., 7;

"j" refere-se à Função Seleção de Condições j=1, 2, ..., 9.

Por exemplo, o Modelo 2x9 refere-se ao modelo construído a partir da segunda Função Seleção de Controle (Equação 49) e da nona Função Seleção de Condições (Equação 24).

O Apêndice E mostra as 63 novas funções criadas. Ao combinar as Funções Seleção de Controle com as Funções Seleção de Condições, algumas equações puderam ser simplificadas. Por exemplo, ilustra-se para o Modelo 2x9 o cálculo realizado para chegar ao modelo final.

$$\Delta R = \varphi(R) \cdot f(R)$$

$$R_{t+1} - R_t = \left[e^{(\alpha + \beta R_t)}\right] \cdot \left[e^{\alpha - bR_t} - \left(\frac{c}{R_t}\right)\right], 5 \text{ parâmetros } (\alpha, \beta, a, b, c)$$

$$Equação 49 \qquad Equação 24$$

$$R_{t+1} = R_t + \left[e^{(\alpha + \beta R_t)}\right] \cdot \left[e^{\alpha - bR_t} - \left(\frac{c}{R_t}\right)\right]$$

$$R_{t+1} = R_t + \left[e^{(\alpha)} \cdot e^{(\beta R_t)}\right] \cdot \left[e^{(\alpha)} \cdot e^{(-bR_t)} - \left(\frac{c}{R_t}\right)\right]$$

$$R_{t+1} = R_t + \left[e^{(\alpha)} \cdot e^{(\alpha)} \cdot e^{(\beta R_t)} \cdot e^{(-bR_t)}\right] - \left[e^{(\alpha)} \cdot e^{(\beta R_t)} \cdot \left(\frac{c}{R_t}\right)\right]$$

$$R_{t+1} = R_t + \left[e^{(\alpha)} \cdot e^{(\alpha)} \cdot e^{(\beta R_t - bR_t)}\right] - \left[e^{(\alpha)} \cdot e^{(\beta R_t)} \cdot \left(\frac{c}{R_t}\right)\right]$$
Seja c(1) = exp(\alpha).exp(a) c(2) = \beta-b c(3) = c.exp(\alpha) c(4) = \beta, então:

$$R_{t+1} = R_t + \left[c(1) \cdot e^{(c(2) \cdot R_t)}\right] - \left\lfloor \frac{c(3)}{R_t} \cdot e^{(c(4) \cdot R_t)} \right\rfloor$$
 Modelo 2x9

Total = 4 parâmetros: c(1), c(2), c(3), c(4).

4.2. CONSIDERANDO NOVOS OBJETIVOS EXPLORATÓRIOS

Entende-se por novos objetivos exploratórios os diferentes alvos (*targets*) a serem explorados dentro de uma região ao longo do tempo. Dessa forma, o presente item propõe uma metodologia para considerar as mudanças nos objetivos exploratórios como, por exemplo, a exploração em regiões polares e em águas profundas.

Economides (2004) critica o chamado "Pico de Hubbert", pois o método considera que todo o volume *in-place* esteja "ativo". Segundo o autor, certamente os volumes *offshore* irão repetir o formato da curva proposta por Hubbert (1956). Entretanto, isto levará muito tempo até chegar ao declínio final, visto que novas áreas, tais como águas profundas e ultra profundas, são adicionadas.

Além disso, a metodologia proposta por Knoring *et al.* (1999) baseia-se num único objetivo exploratório. Por esta razão, os modelos por eles propostos pecam por não considerarem as mudanças e acréscimos de novos objetivos exploratórios ocorridos durante o processo exploratório.

Por exemplo, vamos assumir que alvos mais profundos sejam acrescentados no processo de exploração. Estas regiões podem não ter sido consideradas por muitos anos por requererem diferentes técnicas de desenvolvimento e produção. Todavia, considerar estes novos objetivos exploratórios propiciados pelo desenvolvimento tecnológico criaria mudanças na função seleção de condições.

Pensando conforme Knoring *et al.* (1999), ou seja, com as bacias sendo exploradas e avaliadas utilizando tecnologia atual e sob específica seleção de condição, o gráfico de reserva acumulada (R) vs. tempo (t) tem um único ponto de inflexão. Portanto, a curva de acréscimo de reserva (ΔR) vs. tempo (t) tem um único máximo (Figura 9).

Dois ou mais máximos locais no gráfico ΔR vs. tempo podem ocorrer em regiões com diferentes funções seleção de condições, como por exemplo, regiões onde os *plays* mais profundos começaram a ser explorados enquanto a exploração em *plays* menos profundos ainda estava sendo realizada. Uma nova seleção e

ampliação dos objetivos acarretam o aumento do esforço exploratório e, conseqüentemente, novas descobertas e novos picos na curva ΔR .

Para superar este problema, propõe-se criar uma nova função seleção de condições f(R) que permita a superposição dos objetivos exploratórios considerando os avanços tecnológicos. A Figura 23 ilustra o formato da função seleção de condições f(R) proposta.

Ao acrescentarmos novas regiões num instante (i+1) qualquer, admite-se que a função seleção de condição cresça no momento em que estes novos objetivos possam ser explorados. Em outras palavras, a condição no instante (i+1) é melhor do que a condição no instante (i), deixando a função de ser monotonamente decrescente, conforme visto na Figura 9.

Figura 8 - Função Seleção de Condições considerando novos objetivos exploratórios. Fonte: o autor.

Por outro lado, menor será a informação adquirida na exploração destas novas regiões e, conseqüentemente, pior será o controle no instante (i+1). A Figura 24 ilustra o que acontece com a função seleção de controle no momento em que novos objetivos exploratórios são adicionados. O controle no instante (i+1) é pior do que o controle no instante (i), deixando a função de ser monotonamente crescente conforme visto na Figura 9.

As Figuras 23 e 24 representam o caso em que os grandes campos são descobertos no início do processo de exploração. Quando isto ocorre, a condição cai drasticamente no início e, a seguir, de forma mais suave, até que um novo alvo seja adicionado. Inversamente, a função de controle cresce mais rapidamente no início e, em seguida, de forma mais suave.

Figura 9 – Função Seleção de Controle considerando novos objetivos exploratórios. Fonte: o autor.

A proposta desta metodologia é combinar esta nova função de controle (Figura 24) e de condição (Figura 23). O produto destas novas funções (Figura 25) dará origem a um novo modelo, que considera as mudanças tecnológicas e, conseqüentemente, permite a superposição dos objetivos exploratórios não considerada anteriormente em Knoring *et al.* (1999) e Hubbert (1956).

Figura 25.a - Grandes campos descobertos no início do processo de exploração.

Figura 25.b - Grandes campos descobertos no final do processo de exploração.

Figura 10 – Funções de Controle e de Condição propostas com grandes descobertas: a) no início;
b) no final do processo exploratório.
Fonte: o autor.

A Figura 26.a e a Figura 26.b mostram, respectivamente, os gráficos do acréscimo no volume recuperável (ΔR) para os casos onde os grandes campos foram descobertos no início e no final do processo de exploração. Os valores x1, x2 e x3 referem-se aos instantes em que novos objetivos exploratórios são acrescentados.

Figura 26.a – Grandes campos descobertos no início do processo de exploração.

Figura 26.b - Grandes campos descobertos no final do processo de exploração.

Figura 11 - Curva ΔR proposta considerando novos objetivos exploratórios com grandes descobertas: a) no início; b) no final do processo exploratório. Fonte: o autor.

É relevante observar que, se os grandes campos são descobertos no início do processo de exploração, então o benefício adquirido pelo incremento de novas regiões será inferior ao benefício adquirido pelo incremento das regiões anteriores. Isto é, $\Delta_1 > \Delta_2 > ... > \Delta_n$ (Figura 25.a) e, conseqüentemente, na Figura 26.a, o primeiro pico será o maior, representando as grandes descobertas no início do processo de exploração.

Analogamente, se os grandes campos são descobertos no final do processo de exploração, então $\Delta_1 < \Delta_2 < ... < \Delta_n$ (Figura 25.b). Conseqüentemente, na Figura 26.b, o primeiro pico será o menor, representando as grandes descobertas no final do processo de exploração.

Quando admitimos estas novas formas para as funções de controle e condição, confrontamo-nos com um novo problema: determinar os pontos x1, x2 e x3 na Figura 25.

Conforme visto na Figura 19, os acréscimos no volume de óleo recuperável (ΔR) são indiretamente afetados pelo avanço tecnológico. Uma vez que ΔR é o produto das funções de controle e condição, espera-se que os incrementos de novas regiões em f(R) e $\varphi(R)$ também sejam afetados pela tecnologia disponível.

A metodologia sugere que o aparecimento de uma nova curva sigmóide no gráfico R_t (um novo pico na curva ΔR) esteja atrelado às novas tecnologias. Isto porque novas tecnologias possibilitam a exploração em novas áreas e, por conseguinte, o acréscimo de novos volumes recuperáveis.

Por exemplo, o avanço tecnológico tornou viável a exploração e produção de campos localizados em águas profundas após o "Choque do Petróleo". A sísmica 3-D proporcionou o reconhecimento de novas áreas promissoras. Técnicas IOR/EOR melhoraram a recuperação do óleo possibilitando aumento no volume dos campos existentes.

Resumindo, a presente metodologia propõe que os ajustes sejam feitos pelos mesmos modelos apresentados no item 4.1. A única diferença é a divisão da curva de recursos recuperáveis (R_t) obtendo-se diferentes ajustes para cada intervalo x1, x2 e x3 na Figura 25.

4.3. UTILIZANDO CONTROLE E CONDIÇÃO EM FUNÇÃO DO ESFORÇO EXPLORATÓRIO

As duas metodologias anteriores nos dão confiança em fazer previsões apenas para o curto prazo, pois o ajuste depende do valor do ano imediatamente anterior. Por exemplo, se estamos no ano (t), a estimativa do segundo ano (R_{t+2}) se baseará no valor do ano anterior (R_{t+1}), valor este que pode ser diferente do valor real. Na medida em que nos afastamos da data atual (t), aumentamos a incerteza dos valores calculados e, conseqüentemente, menos confiáveis serão as previsões.

Dessa forma, surge a necessidade de criar novos modelos. A metodologia proposta nesta seção segue o mesmo princípio proposto por Knoring *et al.* (1999) e ilustrado na Figura 9. Entretanto, a fim de fazer previsões a longo prazo, propõese modificar as funções seleção de controle e de condição.

Em vez de utilizar funções seleção de controle e de condição em função dos volumes recuperáveis (R_t), propõe-se utilizar a condição e o controle em função do esforço exploratório acumulado (L). As Figuras 27.a e 27.b mostram as mudanças de eixos propostas.

Figura 27.a – Controle em função do volume exploratório (L).

Figura 27.b – Condição em função do volume exploratório (L).

Figura 12 – Controle e Condição em função do volume exploratório (L). Fonte: o autor.

Dessa forma, o ajuste e as previsões do volume recuperável dependeriam simplesmente do número de poços "L" referente ao ano em que se deseja fazer a previsão. Por exemplo, para um horizonte de 10 anos (R_{t+10}), necessitamos somente do número total (acumulado) de poços exploratórios a serem perfurados nos próximos 10 anos.

Pelo fato de esta metodologia lidar com número de poços acumulados ao longo do tempo, deve-se usar o volume recuperável acumulado (R_t), não os acréscimos (ΔR), como sendo o produto das funções seleção de controle e de condição.

$$R(L) = \varphi(L).f(L) \tag{8}$$

Quanto mais exploramos a região através da perfuração de poços exploratórios (L), melhor será o conhecimento da região e, conseqüentemente, melhor será o controle. Por outro lado, menor é a chance de encontrar um novo campo, pois temos menos campos a serem descobertos no instante (t+1) do que o instante (t).

Foram testadas as 7 funções seleção de controle (Equações 48 a 54) e as 9 funções seleção de condição (Equações 16 a 24) apresentadas no item 4.1. A única diferença é a troca de " R_t " para "L".

As Equações 56 a 62 representam as novas equações da função seleção de controle em função de "L".

Controle 1:
$$\varphi(L) = \exp(\alpha . L_t^{\beta})$$
 (9)

Controle 2:
$$\varphi(L) = \exp(\alpha + \beta L_t)$$
 (10)

Controle 3:
$$\varphi(L) = \exp(\alpha + L_t^{\beta})$$
 (11)

Controle 4:
$$\varphi(L) = \alpha . L_t^{\beta}$$
 (12)

Controle 5:
$$\varphi(L) = \alpha + \beta . Ln(L_t)$$
 (13)

Controle 6:
$$\varphi(L) = c - \alpha . \exp(-\beta . L_t)$$
 (14)

Controle 7:
$$\varphi(L) = \frac{c}{1 + \exp(\alpha - \beta . L_t)}$$
 (15)

As Equações 63 a 71 representam as novas equações da função seleção de condição em função de "L".

Condição 1:
$$f(L) = a - bL_t$$
 (16)

Condição 2: $f(L) = 1 - a' L_t^{b'}$ (17)

Condição 3:
$$f(L) = e^{a - bL_t}$$
 (18)

Condição 4:
$$f(L) = 1 - (1 - c + a \cdot L_t^{\frac{1}{b}})^b$$
 (19)

Condição 6:
$$f(L) = b \cdot Ln\left(\frac{A}{L_t}\right)$$
 (21)

Condição 7:
$$f(L) = a \left(\frac{A - L_t}{A}\right)^b$$
 (22)

Condição 8:
$$f(L) = e^{a-bL_t} - c$$
 (23)

Condição 9:
$$f(L) = e^{a - bL_t} - \frac{c}{L_t}$$
 (24)

Novamente, estas funções quando combinadas (multiplicadas) dão origem a 7x9 = 63 novos modelos empíricos que representam o processo de evolução de descobertas. O Apêndice F mostra as equações no formato a ser inserido no *software* econométrico (E-Views 4.1) de todos os modelos testados.

5. ANÁLISE DE RESÍDUOS

No Capítulo 4 foram propostas metodologias para estimar o volume de óleo recuperável. Porém, após investigar o modelo que melhor se ajusta aos dados históricos, deve-se analisar ainda o resíduo, que é a diferença entre os dados observados e os valores ajustados pelo modelo (calculado).

O objetivo principal deste capítulo é fornecer uma metodologia para verificar se os modelos propostos no Capítulo 4 capturam toda a estrutura de dependência na variável a ser modelada, ou seja, se os modelos capturam toda a informação contida nos dados.

Se o modelo for adequado, espera-se que os resíduos não apresentem nenhum padrão bem definido, i.e., possam ser classificados como ruído branco. Caso contrário, se existir estrutura de dependência no resíduo e este puder ser modelado, não podemos classificá-lo como ruído branco e, conseqüentemente, o modelo deverá ser modificado para incluir esta explicação adicional.

Para classificar o resíduo como sendo ruído branco, deve-se investigar se os resíduos são independentes e identicamente distribuídos (i.i.d.) de média zero. Para tanto, utiliza-se o Teste BDS (Brock *et al.*, 1987) que tem como hipótese nula (H_0) a classificação do resíduo como sendo i.i.d. e hipótese alternativa (H_1) a presença de dependência linear ou não linear nos resíduos.

Em Estatística, define-se hipótese nula como sendo uma hipótese que é presumida verdadeira até que provas estatísticas sob a forma de testes de hipóteses indiquem o contrário. Por outro lado, a hipótese alternativa representa a negação da hipótese nula.

A necessidade de caracterizar dependência não linear em séries temporais estimulou o desenvolvimento do Teste BDS que levou o nome dos pesquisadores que o criaram: William Brock, Davis Dechert e José Alexandre Sheinkman.

Segundo Gazola & Caratori (2003), o BDS passou a ser amplamente utilizado em diversas áreas e tornou-se o teste mais conhecido para detectar estruturas não lineares presentes em uma série temporal.

5.1. A INTEGRAL DE CORRELAÇÃO

O Teste BDS utiliza o conceito da correlação espacial dos termos da série dentro de um espaço de dimensão "m". Baseia-se numa integral de correlação definida pela expressão:

$$C_{m,T}(\varepsilon) = \sum_{t < s} I_{\varepsilon}(x_t^m, x_s^m) \cdot \left[\frac{2}{T_m(T_m - 1)}\right]$$
(1)

Onde:

T é o tamanho da amostra;

 $T_m=T-m+1$ representa o número de vetores x_t^m ;

$$\begin{aligned} x_t^m &= (x_t, x_{t+1}, \dots, x_{t+m-1}); \\ I_{\varepsilon}(x_t^m, x_s^m) &= 1, se \left\| x_t^m - x_s^m \right\| < \varepsilon; \\ &= 0, caso \ contrário. \end{aligned}$$

 ε = distância arbitrária;

t e s são instantes de tempo com s=t+1.

Para uma melhor compreensão, considere o exemplo proposto por Gazola & Caratori (2003), cuja série histórica está apresentada na Tabela 2.

Tabela 1 – Série histórica proposta composta por 10 observações.

t=1	-0,617527
t=2	1,492318
t=3	-1,931585
t=4	-0,782284
t=5	0,461741
t=6	-0,244256
t=7	0,454955
t=8	-1,970666
t=9	-2,166198
t=10	0,385075
	1 0 0 1 (0000)

Fonte: Gazola & Caratori (2003).

Da tabela, obtém-se o tamanho da amostra T = 10. Considerando um espaço de dimensão m=3, calcula-se o valor $T_m = (T - m + 1) \Rightarrow$ $T_m = (10 - 3 + 1) \Rightarrow T_m = 8$ vetores $x_t^m = (x_t, x_{t+1}, ..., x_{t+m-1})$. Por exemplo, para t=1 e s=2, temos:

$$x_t^m = x_1^3 = (x_1, x_2, x_{1+3-1}) \Longrightarrow x_1^3 = (x_1, x_2, x_3)$$
$$x_s^m = x_2^3 = (x_2, x_3, x_{2+3-1}) \Longrightarrow x_2^3 = (x_2, x_3, x_4)$$

Analogamente,

 $\begin{aligned} x_{t}^{m} &= x_{1}^{3} = (x_{1}, x_{2}, x_{3}) & \implies & x_{s}^{m} = x_{2}^{3} = (x_{2}, x_{3}, x_{4}) \\ x_{t}^{m} &= x_{2}^{3} = (x_{2}, x_{3}, x_{4}) & \implies & x_{s}^{m} = x_{3}^{3} = (x_{3}, x_{4}, x_{5}) \\ x_{t}^{m} &= x_{3}^{3} = (x_{3}, x_{4}, x_{5}) & \implies & x_{s}^{m} = x_{4}^{3} = (x_{4}, x_{5}, x_{6}) \\ \vdots & \vdots & \vdots \\ x_{t}^{m} &= x_{7}^{3} = (x_{7}, x_{8}, x_{9}) & \implies & x_{s}^{m} = x_{8}^{3} = (x_{8}, x_{9}, x_{10}) \\ x_{t}^{m} &= x_{8}^{3} = (x_{8}, x_{9}, x_{10}) & \implies & --- \end{aligned}$

Calcula-se $I_{ts} = \|x_t^m - x_s^m\| = \|x_t - x_s, x_{t+1} - x_{s+1}, \dots, x_{t+m-1} - x_{s+m-1}\|$. Para t=1 e s=2, temos:

$$I_{12} = \left\| x_1^3 - x_2^3 \right\| = \left\| x_1 - x_2 x_2 - x_3 x_3 - x_4 \right\| = \left\| -2,1098; \ 3,4239; \ -1,1493 \right\|$$

Repete-se este procedimento para todos os pares I_{ts} (de I_{12} a I_{78}). A Tabela 3 mostra o cálculo realizado para alguns destes pares.

I _{t,s}	I _{1,3}	I _{1,4}	 I _{1,8}	I _{2,3}	 I _{2,8}	I _{3,4}	 I _{7.8}
$x_t - x_s$	1,3140	0,1647	 1,3531	3,4239	 3,4629	-1,1493	 2,4256
$x_{t+1} - x_{s+1}$	2,2746	1,0305	 3,6585	-1,1493	 0,2346	-1,2440	 0,1955
$x_{t+m-1} - x_{s+m-1}$	-2,3933	-1,6873	 -2,3166	-1,2440	 -1,1673	0,7059	 -2,5512

Tabela 2 – Cálculo dos pares Its.

Fonte: o autor.

Em seguida, calcula-se a norma de cada um dos vetores I_{ts} . Por exemplo, para a norma I_{12} , temos:

$$I_{12} = \sqrt[2]{(-2,10985)^2 + (3,42390)^2 + (-1,14930)^2} = 4,182756$$

Analogamente, a Tabela 4 mostra o cálculo realizado da norma de alguns pares I_{ts}.

Tabela 3 - Cálculo das normas dos pares Its.

I _{1,3}	I _{1,4}	 I _{1,8}	I _{2,3}	 I _{2,8}	I _{3,4}	 I _{7.8}
3,5536	1,9840	 4,5368	3,8198	 3,6619	1,8349	 3,5257
Fonte: o au	tor.					

O próximo passo refere-se à escolha da distância arbitrária de tamanho " ε ". Esta distância deve atender à seguinte condição: $0 < \varepsilon < \max x_t - \min x_t$. Caso a norma seja menor do que " ε ", então $I_{\varepsilon}(x_t^m, x_s^m) = 1$. Caso contrário, $I_{\varepsilon}(x_t^m, x_s^m) = 0$.

Finalmente, calcula-se a integral de correlação definida anteriormente (Equação 72). Para a série dada, o valor da integral de correlação é 0,29. Este valor representa a razão entre o número de pares de pontos onde a distância entre eles é menor do que " ε "e o número de pares total.

Quanto maior o valor da integral de correlação $C_{m,T}(\varepsilon)$, maior a estrutura de dependência na série. Processos com estrutura de dependência geram séries cujos termos encontram-se mais espacialmente correlacionados do que em séries geradas por processos aleatórios, como o ruído branco.

Se o valor de " ϵ " é escolhido tal que todos os pares atendam à condição acima, então C_{m,T} (ϵ) =1. Da mesma forma, se " ϵ " for escolhido tal que nenhum par atenda a condição, então C_{m,T} (ϵ) = 0.

Além disso, se $x_t^m e x_s^m$ estiverem muito "próximos", então a integral de correlação assumirá um valor próximo a 1. Caso contrário, se $x_t^m e x_s^m$ estiverem "longe", então a integral de correlação assumirá um valor próximo de zero.

5.2. A ESTATÍSTICA BDS

Considere a probabilidade de qualquer par de observações (x_i, x_j) diste ao máximo de " ϵ " um do outro. Então,

$$\mathbf{P}_{1} \equiv \mathbf{P}(\|\mathbf{x}_{i} - \mathbf{x}_{j}\| \le \varepsilon) \qquad \text{para todo inteiro } i \neq j \qquad (2)$$

Definindo a probabilidade " P_2 " como sendo a probabilidade de duas observações estarem próximas uma da outra, assim como pela probabilidade de seus predecessores estarem próximos um do outro, temos:

$$P_{2} \equiv P(||x_{i} - x_{j}|| \le \varepsilon, ||x_{i-1} - x_{j-1}|| \le \varepsilon) \quad \text{para todo inteiro } i \ne j \quad (3)$$

Quando a série x_t for i.i.d, $P_1 = P(||x_i - x_j|| \le \varepsilon) = P(||x_{i-1} - x_{j-1}|| \le \varepsilon)$, então:

$$P_2 = P_1^2 \text{ (se } x_t = \text{i.i.d)}$$
 (4)

A partir deste princípio, o teste BDS sobre uma dimensão "m" tem como hipótese nula que as probabilidades acima são iguais. Logo, temos:

$$H_0: P_m = P_1^m \qquad H_1: P_m \neq P_1^m$$
 (5)

que equivale a testar:

$$H_0: x_t = i.i.d. \tag{6}$$

A probabilidade P_m é estimada pela integral de correlação $C_{m,T}$ (ε). Conforme visto anteriormente, este valor representa a fração dos pares de pontos (x_t^m, x_s^m) que distam no máximo " ε " um do outro, isto é, $\|x_t^m, x_s^m\| < \varepsilon$.

Brock *et al.* (1987) demonstraram, que sob a hipótese nula das observações i.i.d., $C_m(\varepsilon) = [C_1(\varepsilon)]^m$ e que $C_{m,T}(\varepsilon) - [C_{1,T}(\varepsilon)]^m$ possui uma distribuição assintótica normal com média 0 e variância:

$$\sigma_{m,T}^{2}(\varepsilon) = 4 \left[K^{m} + 2 \sum_{j=1}^{m-1} K^{m-j} C^{2j} + (m-1)^{2} C^{2m} - m^{2} K C^{2m-2} \right]$$
(7)

Onde:

 $C = C_{1,T}(\varepsilon) \Rightarrow C$ é estimado pela integral de correlação de tamanho 1.

$$K_{T}(\varepsilon) = \frac{2}{T_{m}(T_{m}-1)(T_{m}-2)} \sum_{t < s < r} \{I_{\varepsilon}(X_{t}, X_{s})I_{\varepsilon}(X_{s}, X_{r}) + I_{\varepsilon}(X_{t}, X_{r})I_{\varepsilon}(X_{r}, X_{s}) + I_{\varepsilon}(X_{s}, X_{t})I_{\varepsilon}(X_{t}, X_{r})\} (8)$$

Portanto, sob a hipótese nula (i.i.d.), a estatística do teste BDS tem uma distribuição assintótica normal definida como sendo:

$$BDS_{m,T}(\varepsilon) = \frac{\sqrt{T} \left[C_{m,T}(\varepsilon) - (C_{1,T}(\varepsilon))^m \right]}{\sigma_{m,T}(\varepsilon)}$$
(9)

Caso $C_{m,T}(\varepsilon) - [C_{1,T}(\varepsilon)]^m$ seja significativo, implica num valor "grande" da estatística $BDS_{m,T}(\varepsilon)$, caindo na região crítica (RC) da distribuição normal ilustrada na Figura 28, na qual rejeita-se H₀. Por outro lado, para $C_{m,T}(\varepsilon) - [C_{1,T}(\varepsilon)]^m$ pouco significativo, a estatística $BDS_{m,T}(\varepsilon)$ é "pequena", caindo na região de aceitação (RA), logo não há evidência para rejeitar H₀.

Figura 1 – Região de aceitação e crítica do Teste BDS para o intervalo de confiança 95%. Fonte: Gazola & Caratori (2003).

Para mostrar os limites da região de aceitação (RA), utilizou-se na Figura 28 um intervalo de confiança de 95,0% (Z= \pm 1,96). Assim sendo, se os valores da estatística BDS_{m,T}(ε) encontram-se no intervalo [-1,96; 1,96], para diferentes valores de "m" e " ε ", então o teste aceita a hipótese nula (H₀) com um nível de significância α =5%.

Em Estatística, um resultado é significante se for improvável que tenha ocorrido por acaso. A significância de um teste, também chamada de *p-value*, é a probabilidade máxima de rejeitar acidentalmente uma hipótese verdadeira (uma decisão conhecida como erro de tipo I).

É relevante observar que um resultado "significante ao nível de 1%" é mais significante do que um resultado ao nível de 5%. No entanto, um teste ao nível de 1% é mais susceptível de padecer do erro de tipo II (falsamente aceitar uma hipótese inválida) do que um teste de 5%. O melhor resultado que se pode obter é um equilíbrio entre significância e poder, em outras palavras, entre os erros de tipo I e tipo II.

5.3. ESCOLHA DE PARÂMETROS

Nota-se pela Equação 80 que a estatística BDS é uma função de dois parâmetros a serem arbitrados: "m" e "ɛ". Segundo Gazola & Caratori (2003), não existe qualquer teoria totalmente satisfatória para a escolha destes parâmetros.

Brock *et. al.* (1991) realizaram estudos empíricos através da simulação de Monte Carlo, buscando estabelecer um conjunto de valores viáveis para as escolhas dos parâmetros "m" e " ε ". Escolhe-se o parâmetro " ε " em unidades do desvio padrão da série, usualmente entre 0,5 σ e 2,0 σ . Em relação à dimensão "m", Brock *et. al.* (1991) recomendam usar "m" entre 2 e 10. Para séries com 200 a 500 observações, "m" deve ser escolhido entre 2 e 5.

Entretanto, segundo Brock *et. al.* (1991), a Equação 80 é somente adequada para valores T/m> 200. Em amostras pequenas, a estatística BDS pode apresentar uma distribuição diferente da distribuição normal. Como o presente estudo trata de séries anuais, dificilmente encontraremos um valor T/m> 200.

Neste caso, Brock *et. al.* (1991) propõem a utilização da técnica *bootstrap*¹ para o cálculo da estatística BDS. O *software* utilizado no Capítulo 6 para a execução do Teste BDS oferece uma opção de cálculo dos *p-values* através da técnica *bootstrap*.

Quando a técnica *bootstrap* é solicitada, realiza-se uma série de repetições onde, para cada repetição, um conjunto de observações é extraído aleatoriamente sem substituição dos dados originais.

¹Utilizou-se Bootstrap com 10000 repetições para os conjuntos de dados testados.

6. RESULTADOS DOS AJUSTES "IN SAMPLE"

O Capítulo 6 mostra os resultados dos ajustes "*in sample*" e o Capítulo 7 refere-se às previsões "*out of sample*". A análise *in sample* é importante para verificar se os modelos conseguem explicar a evolução do processo de descoberta através da análise dos valores de R^2 e da soma dos quadrados dos resíduos. Além disso, serve para verificar se o modelo pode ser reproduzido para uma outra bacia que possui padrão de crescimento semelhante.

Para uma melhor compreensão dos resultados, as metodologias testadas foram divididas em dois grupos:

- Evolução das descobertas em função do volume do ano anterior (Metodologias I, II e III);
- Evolução das descobertas em função do volume de perfuração (Metodologias IV e V).

As Metodologias I e IV propostas por Knoring *et al.* (1999) – itens 3.5.1 e 3.5.3 – foram aplicadas a fim de compará-las com os resultados obtidos utilizando as metodologias propostas no Capítulo 4 (Metodologias II, III e V).

Conforme mencionado no Capítulo 2, foram utilizados cinco conjuntos de dados para validar as metodologias propostas: Bacia de Campos, Bacia do Recôncavo, Bacia do Rio Grande do Norte/Ceará, Bacia de Sergipe/Alagoas e a do Golfo do México. Estes conjuntos de dados são constituídos por 31, 39, 26, 39 e 28 observações anuais, respectivamente.

Por se tratar de dados confidenciais, os eixos verticais das figuras que mostram os volumes recuperáveis (R_t) e os esforços exploratórios (L) foram modificados.

Após determinar qual o melhor modelo que se ajusta aos dados históricos em cada uma das metodologias propostas, analisa-se ainda o resíduo, conforme proposto no Capítulo 5.

Foi utilizado a soma dos quadrados dos resíduos (SS) para comparar os modelos, pois a diferença entre os R^2 ajustados mostrou-se pequena tanto para os

modelos propostos nesta pesquisa quanto para os modelos de Knoring *et al.* (1999).

A estimação dos parâmetros dos modelos propostos e a execução do Teste BDS (técnica *bootstrap*) foram realizadas através do *software* econométrico E-Views 4.1, que utiliza o algoritmo de otimização Marquardt como padrão na estimação de parâmetros.

Sempre que possível, os parâmetros foram inicializados com um valor igual a zero. Além disso, na linguagem do E-Views, a expressão "@log(número)" refere-se ao ln(número).

É relevante observar que, apesar do resultado a ser apresentado neste capítulo ser coerente com a hipótese do modelo, sua significância não é garantida. Isso porque tratando-se de uma regressão não-linear é difícil demonstrar a identificabilidade das funções que compõem o modelo. Ou seja, a identificabilidade das curvas $\varphi(R)$ e f(R) não foi investigada nesta pesquisa, podendo existir diferentes combinações de parâmetros para o mesmo resultado.

6.1. Evolução das descobertas em função do volume do ano anterior

Três metodologias são aplicadas nesta seção: a metodologia de Knoring *et al.* (1999), item 3.5.1 (Metodologia I), e duas metodologias propostas na presente tese, itens 4.1 (Metodologia II) e 4.2 (Metodologia III).

6.1.1. Metodologia I

Adotou-se a nomenclatura "Knoring_1" a "Knoring_9" para representar os nove modelos propostos por Knoring *et al.* (1999) que evoluem com o tempo (Equações 25 a 33). Os ajustes *"in sample"* para os cinco conjuntos de dados considerados são mostrados abaixo.

6.1.1.1. Bacia de Campos

A Figura 29 ilustra a evolução do volume recuperável (R_t) com o tempo.

Figura 1 – Bacia de Campos: Gráfico R(t) vs. tempo. Fonte: o autor.

A Tabela 5 mostra os valores da soma dos quadrados dos resíduos encontrados aplicando a primeira metodologia proposta por Knoring *et al.* (1999). Após estimar os parâmetros dos nove modelos, o modelo que melhor se ajustou aos dados foi o Knoring 8 (Figura 30). O valor R^2 é 0,9925.

Tabela 1 – Valores da soma dos quadrados dos resíduos aplicando a primeira metodologia proposta por Knoring *et al.* (1999) aos dados da Bacia de Campos.

Knoring_1	Knoring_2	Knoring_3	Knoring_4	Knoring_5	Knoring_6	Knoring_7	Knoring_8	Knoring_9
118.810	114.476	118.152	114.477	111.744	114.209	117.197	105.625	112.980

Figura 2 – Bacia de Campos: Resultado do Modelo Knoring_8. Fonte: o autor.

Conforme discutido no Capítulo 3, o Modelo Knoring_8 é construído considerando uma taxa de transferência do potencial não descoberto em reservas avaliadas. Através da utilização de diferentes taxas, o modelo pode representar diferentes estratégias de exploração. Por esta razão, o Modelo Knoring_8 pode assumir a forma de qualquer uma das três curvas ilustradas na Figura 11.

A Figura 31 ilustra a função seleção de condição - f(R) encontrada utilizando os dados acima. Pode-se observar que a condição cai rapidamente após os grandes incrementos de volume entre os anos 14 e 15.

Figura 3 – Bacia de Campos: Função Seleção de Condições: Modelo Knoring_8. Fonte: o autor.

A seguir, analisa-se o resíduo do modelo que melhor se ajustou aos dados, Modelo Knoring_8. A Tabela 6 mostra os *p-values* do Teste BDS utilizando-se um espaço de dimensão m = 2, 3 e 4, uma distância arbitrária de tamanho ε = 0,5, 1,0, 1,5, 2,0 e 2,5 e 10.000 repetições para o *bootstrap*.

Т	este BDS	- Resíduo	do Model	o Knoring	8
		Bootstra	ap Prob		
» س	0,5	1,0	1,5	2,0	2,5
2	0,0016	0,0204	0,2984	0,7140	0,8124
3	0,0176	0,0340	0,7814	0,4718	0,7794
4	0,0258	0,1902	0,0924	0,0912	0,3720

Tabela 2 - Teste BDS – Bacia de Campos: Resíduos do Modelo Knoring_8.

Fonte: o autor.

Observa-se que o menor *p-value* (coluna *bootstrap probability*) equivale a um nível de significância α =0,16%. Conforme discutido anteriormente, este valor representa a probabilidade de rejeitar acidentalmente uma hipótese verdadeira (Erro de Tipo I).

No entanto, num teste ao nível de 0,16% é muito provável aceitar falsamente uma hipótese inválida (Erro de Tipo II). Assim sendo, neste contexto, é preferível rejeitar uma hipótese verdadeira a aceitar uma hipótese falsa.

Em outras palavras, a prática usual sugere que valores de *p-value* menores que 0,05 (nível de significância de 5%) devem ser interpretados como evidência da presença de dependência nos resíduos. Ou seja, para ser independente, os *p-values* devem ser maiores que 5%.

Dessa forma, considerando o nível de significância de 5%, o resultado do Teste BDS indica a evidência de dependência nos resíduos que não foi capturada pelo Modelo Knoring_8.

6.1.1.2. Bacia do Recôncavo

A Figura 32 ilustra a evolução do volume recuperável (R_t) com o tempo.

Figura 4 - Bacia do Recôncavo: Gráfico R(t) vs. tempo. Fonte: o autor.

A Tabela 7 mostra os valores da soma dos quadrados dos resíduos encontrados aplicando a primeira metodologia proposta por Knoring *et al.* (1999). O modelo que melhor se ajustou aos dados foi o Knoring_7 (Figura 33). O valor R^2 é 0,9764.

Tabela 3 – Valores da soma dos quadrados dos resíduos aplicando a primeira metodologia proposta por Knoring *et al.* (1999) aos dados da Bacia do Recôncavo.

Knoring_1	Knoring_2	Knoring_3	Knoring_4	Knoring_5	Knoring_6	Knoring_7	Knoring_8	Knoring_9
864,64	819,39	785,55	819,43	773,33	813,44	737,12	760,21	757,76

Figura 5 - Bacia do Recôncavo: Resultado do Modelo Knoring_7. Fonte: o autor.

A Figura 34 ilustra a função f(R) encontrada para o modelo Knoring_7, indicando que os grandes campos foram descobertos no início do processo de exploração. Pode-se observar que a função f(R) cai mais significativamente nos anos iniciais e próximo ao vigésimo ano. O mesmo pode ser verificado através da análise do valor do coeficiente "b", que é maior que 1 (b=2,18). Se o valor de "b" fosse igual a 1, f(R) seguiria um formato linear e, se "b" fosse menor do que 1, f(R) cairia rapidamente no final do processo.

Figura 6 – Bacia do Recôncavo: Função Seleção de Condições: Modelo Knoring_7. Fonte: o autor.

O Apêndice G mostra que alguns *p-values* do Teste BDS são menores que 0,05, indicando a evidência de dependência nos resíduos que não foi capturada pelo Modelo Knoring_7.

6.1.1.3. Bacia do Rio Grande do Norte/Ceará

A Figura 35 ilustra a evolução do volume recuperável (R_t) com o tempo, na Bacia do Rio Grande do Norte/Ceará.

Figura 7 - Bacia do RN/CE: Gráfico R(t) vs. tempo. Fonte: o autor.

A Tabela 8 mostra os valores da soma dos quadrados dos resíduos encontrados aplicando a primeira metodologia proposta por Knoring *et al.* (1999). O modelo que melhor se ajustou aos dados foi o Knoring_8 (Figura 36). O valor $R^2 \neq 0.99$.

Tabela 4 – Valores da soma dos quadrados dos resíduos aplicando a primeira metodologia proposta por Knoring *et al.* (1999) aos dados da Bacia do Rio Grande do Norte/Ceará.

Knoring_1	Knoring_2	Knoring_3	Knoring_4	Knoring_5	Knoring_6	Knoring_7	Knoring_8	Knoring_9
481,27	421,74	397,46	421,78	339,71	417,09	397,46	316,00	337,21

Figura 8 - Bacia do RN/CE: Resultado do Modelo Knoring_8. Fonte: o autor.

A Figura 37 ilustra a função seleção de condição - f(R) encontrada utilizando os dados acima. Pode-se observar que a condição cai rapidamente durante os 11 primeiros anos.

Figura 9 – Bacia do RN/CE: Função Seleção de Condições: Modelo Knoring_8. Fonte: o autor.

O Apêndice G mostra os *p-values* do Teste BDS aplicado nos resíduos do modelo que melhor se ajustou aos dados, Modelo Knoring_8. Ao contrário do ocorrido no Recôncavo e em Campos, os valores são maiores que 0,05. Conforme explicado anteriormente, *p-values* maiores que 0,05 indicam que o modelo capturou a informação contida nos dados e que não existe evidência de estrutura de dependência (linear ou não linear) nos resíduos.

6.1.1.4. Bacia de Sergipe/Alagoas

A Figura 38 ilustra a evolução do volume recuperável (R_t) com o tempo, na Bacia Sergipe/Alagoas.

Figura 10 – Bacia de SE/AL: Gráfico R(t) vs. tempo. Fonte: o autor.

A Tabela 9 mostra os valores da soma dos quadrados dos resíduos encontrados aplicando a primeira metodologia proposta por Knoring *et al.* (1999). O modelo que melhor se ajustou aos dados foi o Knoring_8 (Figura 39). O valor R^2 é 0,9946.

Tabela 5 – Valores da soma dos quadrados dos resíduos aplicando a primeira metodologia proposta por Knoring *et al.* (1999) aos dados da Bacia de SE/AL.

Knoring_1	Knoring_2	Knoring_3	Knoring_4	Knoring_5	Knoring_6	Knoring_7	Knoring_8	Knoring_9
165,22	157,10	156,04	157,10	152,66	156,72	156,04	151,39	152,57

Figura 11 - Bacia de SE/AL: Resultado do Modelo Knoring_8. Fonte: o autor.

A Figura 40 ilustra a função seleção de condição - f(R) encontrada utilizando os dados acima e o modelo Knoring_8. Pode-se observar que a condição cai rapidamente entre o terceiro e sétimo ano.

Figura 12 – Bacia de SE/AL: Função Seleção de Condições: Modelo Knoring_8. Fonte: o autor.

O Apêndice G mostra os *p-values* do Teste BDS aplicado nos resíduos do modelo que melhor se ajustou aos dados, Modelo Knoring_8. Assim como na Bacia do Rio Grande do Norte/Ceará, os valores são maiores que 0,05. Conforme explicado anteriormente, *p-values* maiores que 0,05 indicam que o modelo capturou a informação contida nos dados e que não existe evidência de estrutura de dependência (linear ou não linear) nos resíduos.

6.1.1.5. Golfo do México

O conjunto de dados do Golfo do México pode ser obtido em MMS (2002). A Figura 41 ilustra a evolução do volume de óleo recuperável (Rt) com o tempo.

Figura 13 – Golfo do México: Gráfico R(t) vs. tempo. Fonte: o autor.

A Tabela 10 mostra os valores da soma dos quadrados dos resíduos encontrados aplicando a primeira metodologia proposta por Knoring et al. (1999). O modelo que melhor se ajustou aos dados foi o Knoring 9 (Figura 42). O valor $R^2 \neq 0.9874.$

Tabela 6 - Valores da soma dos quadrados dos resíduos aplicando a primeira metodologia proposta por Knoring et al. (1999) aos dados do Golfo do México.

Knoring_1	Knoring_2	Knoring_3	Knoring_4	Knoring_5	Knoring_6	Knoring_7	Knoring_8	Knoring_9
4.373.041	4.772.468	3.416.170	3.495.166	3.695.489	4.745.787	3.033.680	2.891.427	2.775.010
Fonte: o an	utor.							

Figura 14 – Golfo do México: Resultado do Modelo Knoring_9. Fonte: o autor.

A Figura 43 ilustra a função seleção de condição - f(R) encontrada utilizando os dados acima. Pode-se observar que a condição cai rapidamente no início, permanece quase que constante e, a seguir, começa a cair novamente.

Figura 15 – Golfo do México: Função Seleção de Condições: Modelo Knoring_9. Fonte: o autor.

O Apêndice G mostra que alguns *p-values* do Teste BDS são menores que 0,05, indicando a evidência de dependência nos resíduos que não foi capturada pelo Modelo Knoring_9.

6.1.2. Metodologia II

Conforme visto anteriormente, a aplicação proposta no item 6.1.1 considera uma estimativa sob condições limitadas de tecnologia. Knoring *et al.* (1999) apenas sugerem o uso de uma função de controle linear. Entretanto, se os grandes campos são descobertos no início do processo exploratório, maior será o investimento e mais informação (controle) será adquirida no início do processo.

Assim sendo, o presente item mostra aplicações práticas da metodologia proposta no item 4.1. As sete funções seleção de controle propostas combinadas com as nove funções seleção de condições propostas por Knoring *et al.* (1999) totalizam os 63 novos modelos empíricos a serem testados nesta sessão.

Adotou-se a nomenclatura "Modelo 1x1" a "Modelo 7x9" para representar os 63 modelos. Os ajustes "*in sample*" para os cinco conjuntos de dados considerados são mostrados abaixo.

6.1.2.1. Bacia de Campos

A Tabela 11 mostra o resultado (soma dos quadrados dos resíduos) das 7 funções de controle testadas e da função de controle linear. Dentre as funções testadas, pode-se observar que os modelos criados a partir da função de controle exponencial (Linhas 1 e 6) ajustam os dados um pouco melhor que o Modelo Knoring_8.

Embora o ajuste tenha apresentado praticamente o mesmo resultado do Modelo Knoring_8, a maior contribuição da utilização de um controle não linear neste conjunto de dados refere-se à análise dos resíduos.

O Teste BDS quando aplicado aos resíduos dos modelos Knoring_8, Modelo 1x9, Modelo 6x4 e Modelo 6x8 apresenta resultados de *p-values* menores que 0,05, indicando a existência de dependência na estrutura dos resíduos. Por esta razão, analisa-se o Modelo 6x7.

Ao contrário da Metodologia I, o Apêndice G mostra que os *p-values* do Teste BDS são maiores que 0,05, indicando que o modelo capturou a informação contida nos dados e que não existe evidência de estrutura de dependência (linear ou não linear) nos resíduos podendo classificá-lo como sendo ruído branco.

PUC-Rio - Certificação Digital Nº 0220979/CA

N. S. 112.980,40 107.951,40 109.126,80 109.008,90 102.682,70 109.232,30 107.950,80 107.959,80 = e^{a-bR} ດ $\frac{\Delta R}{R_{i+1}}$ - *c* 106.975,80 109.009,40 108.921,90 113.363,90 109.356,30 104.097,80 104.920,00 105.624,90 $= e^{a-bR_{i}}$ ω $\frac{\Delta R}{R_{l+1}}$ $\left(\frac{A-R_i}{A-R_i}\right)^b$ 107.379,60 105.305,70 109.461,40 109.163,00 109.013,20 104.786,60 105.569,60 117.197,20 7 = 1 $\frac{\Delta R}{R_{i+1}}$ $\frac{A}{R}$ 111.922,60 114.208,70 115.689,20 110.448,00 111.620,90 126.134,20 108.921,90 109.008,90 $- \ln d = -$ ဖ Função Seleção de Condições $\frac{\Delta R}{R_{i+1}}$ $= c - aR_{i}^{b}$ 105.946,30 108.821,20 111.743,50 109.008,50 110.375,20 108.600,50 108.823,20 109.008,60 S $\frac{\Delta R}{R_{i+1}}$ $\frac{\Delta R}{R_{i+1}} = 1 - (1 - c + aR_i^{\mathcal{V}})^b$ 339.570,70 114.476,70 109.008,60 108.718,30 108.036,90 107.721,30 104.617,30 109.277,30 4 $=e^{a-bR_i}$ 118.152,40 109.532,40 106.000,40 107.603,70 113.363,90 109.259,40 109.013,20 113.363,90 m ΔR R_{i+1} $= 1 - a R_i^b$ 108.884,50 109.013,20 110.448,30 108.600,50 114.476,00 113.477,80 108.922,00 165.622,70 $\frac{\Delta R}{R_{i+1}}$ $= a - bR_i$ 109.798,10 111.293,10 109.846,10 109.805,30 118.810,00 109.795,20 111.275,30 111.278,00 ΔR $\varphi(R) = \exp(\alpha + \beta R_{i})$ $\varphi(R) = c - a \cdot \exp(-k \cdot R_t)$ $\varphi(R) = \frac{}{1 + \exp(\alpha - \beta . R_{i})}$ $\varphi(R) = \exp(\alpha + R_i^\beta)$ $\varphi(R) = \exp(\alpha * R_i^\beta)$ $\varphi(R) = \alpha + \beta^* Ln(R_i)$ Função Seleção de X $\varphi(R) = \alpha R_i^\beta$ k c П Controle φ (R) knoring *et al.* (1999) 2 ო 4 Ŋ ဖ ~ ~

Tabela 7 – Metodologia II - Campos: Resultados utilizando controle não linear.

A Figura 44 ilustra o resultado do Modelo 6x7, pois é o modelo que melhor se ajusta aos dados de evolução das descobertas e consegue classificar o resíduo como sendo ruído branco. O valor da soma dos quadrados dos resíduos (SS) é 104.786,60 e o valor R^2 é 0,9926.

Figura 16 – Bacia de Campos: Resultado do Modelo 6x7. Fonte: o autor.

6.1.2.2. Bacia do Recôncavo

A Tabela 12 mostra o resultado das 7 funções de controle testadas e da função de controle linear. Assim como Knoring *et al.* (1999), os modelos são avaliados segundo a soma dos quadrados dos resíduos (SS). Dentre as funções testadas, pode-se observar que os modelos criados a partir da função de controle logística (Linha 7) superam em muito os modelos referentes ao controle linear, reduzindo em aproximadamente 46% a soma dos quadrados dos resíduos (SS). O valor R^2 é 0,9873.

A Figura 45 ilustra o ajuste do modelo que melhor se ajustou aos dados de evolução das descobertas (Modelo 7x8) aplicando a metodologia que utiliza a função seleção de controle não linear.

PUC-Rio - Certificação Digital Nº 0220979/CA

Tabela 8 - Metodologia II - Recôncavo: Resultados utilizando controle não linear.

					Função (Seleção de Cor	ndições			
Ē	inção Seleção de	1	2	3	4	5	9	7	8	თ
	Controle	$\frac{\Delta R}{R_{i+1}} = \alpha - bR_i$	$\frac{\Delta R}{R_{i+1}} = 1 - a^{'} R_{i}^{b'}$	$\frac{\Delta R}{R_{i+1}} = e^{a-bR_i}$	$\frac{\Delta R}{R_{1,4}} = 1 - \left(1 - c + a R_i^{\frac{1}{2}}\right)^{5}$	$\frac{\Delta R}{R_{i+1}} = c - \alpha R_i^b$	$\frac{\Delta R}{R_{i+1}} = b \ln \frac{A}{R_i}$	$\frac{\Delta R}{R_{i+1}} = a \left(\frac{A-R_i}{A} \right)^b$	$rac{\Delta R}{R_{i+1}}=e^{lpha-bR_{i}}-c$	$\frac{\Delta R}{R_{i+1}} = e^{a-bR_i} - \frac{c}{R_i}$
Knoring et al. (1999)	$\int_{0}^{g} \varphi \left(R \right) = k R_{z}$	864,64	819,39	785,55	819,43	773,33	813,44	737,12	760,21	757,76
-	$\varphi(R) = \exp(\alpha * R_j^{\beta})$	767,96	867,36	457,95	766,92	766,89	766,89	698,19	458,08	458,08
2	$\varphi(R) = \exp(\alpha + \beta R_1)$	759,82	644,14	788,20	521,17	519,40	763,38	685,36	521,11	522,28
ю	$\varphi(R) = \exp(\alpha + R_i^\beta)$	782,78	862,18	690,80	768,33	767,04	768,26	700,36	719,51	695,99
4	$\varphi(R) = \alpha R_i^{\beta}$	767,67	766,86	698,38	766,86	766,86	766,86	703,13	723,06	678,56
5	$\varphi(R) = \alpha + \beta^{**} Ln(R_{\gamma})$	760,00	750,00	522,43	747,98	657,44	765,72	505,49	519,75	509,00
9	$\varphi(R) = c - a \cdot \exp(-k \cdot R_i)$	750,65	740,61	521,11	416,50	511,54	519,75	521,11	517,50	518,47
7	$\varphi(R) = \frac{c}{1 + \exp(\alpha - \beta . R_{\gamma})}$	448,77	450,07	434,83	450,05	444,85	560, 19	427,77	395,52	396,45

Figura 17 – Bacia do Recôncavo: Resultado do Modelo 7x8. Fonte: o autor.

A Figura 46 ilustra a função seleção de controle e a função seleção de condição encontrada utilizando o Modelo 7x8. Pode-se observar que a condição cai e o controle cresce rapidamente nos 5 anos iniciais (1964-1968).

Figura 18 – Função Seleção de Controle e Função Seleção de Condição: Modelo 7x8. Fonte: o autor.

É relevante observar que a série histórica testada não está completa. Os dados são considerados a partir do ano de 1964. Porém, o campo de Água Grande, maior campo da Bacia do Recôncavo, foi descoberto em 1951. Dessa forma, considerando os dados desde 1951, a curva provavelmente cairá mais rapidamente nos anos logo após 1951 e mais lentamente entre 1964 e 1968.

O Apêndice G mostra que os *p-values* do Teste BDS são maiores que 0,05, indicando que o modelo capturou a informação contida nos dados e que não existe evidência de estrutura de dependência (linear ou não linear) nos resíduos.

A Metodologia II apresenta melhor ajuste "*in sample*" e melhor resíduo que a Metodologia I. Na Metodologia II, o resíduo é classificado como sendo ruído branco.

6.1.2.3. Bacia do Rio Grande do Norte/Ceará

A Tabela 13 mostra o resultado das 7 funções de controle testadas e da função de controle linear. Dentre as funções testadas, pode-se observar que diferentes modelos alcançam resultados de ajuste (soma dos quadrados dos resíduos) bem próximos.

A Figura 47 ilustra o modelo que melhor se ajustou aos dados de evolução das descobertas (Modelo 1x2). O valor R^2 é 0,9904.

O Apêndice G mostra que os *p-values* do Teste BDS são maiores que 0,05, indicando que o modelo capturou a informação contida nos dados e que não existe evidência de estrutura de dependência (linear ou não linear) nos resíduos.

Dessa forma, a Metodologia II não apresenta ganhos significativos quando comparada com a Metodologia I, visto que ambas classificam o resíduo como sendo ruído branco e apresentam praticamente os mesmos valores da soma dos quadrados dos resíduos. PUC-Rio - Certificação Digital Nº 0220979/CA

 $-\frac{c}{R_i}$ 320,56 325,96 337,21 321,44 320,51 319,01 325,37 325,81 $=e^{a-bR_{\rm f}}$ ດ $\frac{\Delta R}{R_{i+1}}$ - *C* $\frac{\Delta R}{R_{i+1}} = e^{a-bR_i} -$ 315,96 387,75 330,53 315,22 384,80 307,57 346,24 316,00 ω $\left|\frac{\Delta R}{R_{i+1}} = a \left(\frac{A - R_i}{A}\right)^b \left|\frac{L}{R_i}\right|$ 397,46 335,33 381,41 343,40 334,42 322,74 384,70 311,73 $\frac{A}{R_i}$ $\frac{\Delta R}{R_{i+1}} = b \ln \frac{1}{2}$ 307,53 495,89 370,52 332,39 312,68 407,17 417,09 322,74 ဖ Função Seleção de Condições $\frac{\Delta R}{R_{i+1}} = c - \alpha R_i^{b}$ 305,47 339,71 308,30 322,74 373,07 391,05 312,68 307,57 ഹ $\frac{\Delta R}{R_{i+1}} = 1 - (1 - c + aR_i^{1/5})^b \left| \right.$ 387,75 421,78 391,77 322,76 345,37 309,90 312,49 387,07 4 $\frac{\Delta R}{R_{i+1}} = e^{a - bR_i}$ 397,46 334,80 387,75 343,40 334,42 322,74 387,75 387,75 ო $\frac{\Delta R}{R_{i+1}} = 1 - \alpha' R_i^b$ 304,69 334,42 391,05 333,40 315,22 395,55 421,74 349,54 \sim $\frac{\Delta R}{R_{i+1}} = a - bR_i$ 384,39 346,84 346,38 335,47 382,74 481,27 353,51 315,57 $\varphi(R) = \frac{}{1 + \exp(\alpha - \beta . R_{t})}$ $\varphi(R) = \exp(\alpha * R_i^\beta)$ $\varphi(R) = \exp(\alpha + \beta R_i)$ $\varphi(R) = \alpha + \beta^* Ln(R_t)$ $\varphi(R) = c - a \cdot \exp(-k \cdot R_t)$ $\varphi(R) = \exp(\alpha + R_i^\beta)$ Função Seleção de × $\varphi(R) = \alpha R_i^{\beta}$ k С П Controle φ (R) Anoring et al. (1999) 2 ო 4 ß ဖ ~ ~

Tabela 9 - Metodologia II - RN/CE: Resultados utilizando função de controle não linear.

Figura 19 – Bacia do RN/CE: Resultado do Modelo 1x2. Fonte: o autor.

6.1.2.4. Bacia de Sergipe/Alagoas

A Tabela 14 mostra o resultado das 7 funções de controle testadas e da função de controle linear. A Figura 48 ilustra o ajuste do modelo que melhor se ajustou aos dados de evolução das descobertas (Modelo 7x9). O valor da soma dos quadrados dos resíduos (SS) é 110,48 e o valor R^2 é 0,9961.

O Apêndice G mostra que os *p-values* do Teste BDS são maiores que 0,05, indicando que o modelo capturou a informação contida nos dados e que não existe evidência de estrutura de dependência (linear ou não linear) nos resíduos.

Dessa forma, as Metodologias I e II classificam o resíduo como sendo ruído branco. Entretanto, a Metodologia II apresenta melhor ajuste "*in sample*", reduzindo em 27% a soma dos quadrados dos resíduos, quando comparada com a Metodologia I.

PUC-Rio - Certificação Digital Nº 0220979/CA

 $-\frac{c}{R_i}$ 148,48 151,98 110,48 152,57 143,54 152,24 143,95 140,66 $=e^{a-bR_{i}}$ တ $\frac{\Delta R}{R_{i+1}}$ - C $-=e^{a-bR_{i}}$ 151,39 147,37 148,47 151,35 142,70 145,43 148,47 150,51 ω $\frac{\Delta R}{R_{i+1}}$ $\frac{R}{4} = a \left(\frac{A - R_i}{A}\right)^b \left(\frac{1}{A}\right)^{b}$ 152,48 149,25 152,48 152,48 152,48 149,25 156,04 148,63 $\frac{\Delta R}{R_{i+1}}$ $\frac{A}{R_i}$ $\frac{\Delta R}{R_{i+1}} = b \ln \frac{\Delta R}{l}$ 148,15 152,49 152,49 156,72 152,47 152,44 152,39 142,70 ဖ Função Seleção de Condições $\frac{\Delta R}{R_{i+1}} = c - \alpha R_i^{b}$ 152,48 152,47 152,66 152,44 152,39 142,70 144,90 152,51 ß $\frac{\Delta R}{R_{i+1}} = 1 - (1 - c + aR_i^{1/6})^b$ 157,10 288,55 152,46 152,44 152,37 152,39 144,88 114,24 4 $rac{\Delta R}{R_{i+1}}=e^{a-bR_i}$ 156,04 152,48 152,48 152,48 152,48 152,48 148,47 152,37 e $\frac{\Delta R}{R_{i+1}} = 1 - a^{i} R_{i}^{b}$ 157,10 147,33 152,48 152,39 151,35 152,51 152,51 152,51 \sim $\frac{\Delta R}{R_{i+1}} = a - bR_i$ 152,49 152,48 152,49 152,48 165,22 152,49 147,98 152,40 $\varphi(R) = \frac{}{1 + \exp(\alpha - \beta . R_{i})}$ $\varphi(R) = \exp(\alpha + \beta R_i)$ $\varphi(R) = \exp(\alpha * R_i^\beta)$ $\varphi(R) = \alpha + \beta^* Ln(R_t)$ $\varphi(R) = c - a \cdot \exp(-k \cdot R_t)$ $\varphi(R) = \exp(\alpha + R_i^\beta)$ Função Seleção de X $\varphi(R) = \alpha R_i^\beta$ k С П Controle φ (R) Anoring et al. (1999) 2 ო 4 ß ဖ ~ ~

Tabela 10 - Metodologia II - SE/AL: Resultados utilizando controle não linear.

Figura 20 – Bacia de SE/AL: Resultado do Modelo 7x9. Fonte: o autor.

6.1.2.5. Golfo do México

A Tabela 15 mostra o resultado das 7 funções de controle testadas e da função de controle linear. A Figura 49 ilustra o modelo que melhor se ajustou aos dados de evolução das descobertas (Modelo 7x8). O valor da soma dos quadrados dos resíduos (SS) é 2.247.707 e o valor R^2 é 0,9898.

O Apêndice G mostra que os *p-values* do Teste BDS são maiores que 0,05, indicando que o modelo capturou a informação contida nos dados e que não existe evidência de estrutura de dependência (linear ou não linear) nos resíduos.

Dessa forma, a Metodologia II apresenta melhor ajuste "*in sample*" (reduz a soma dos quadrados dos resíduos em 19%) e melhor resíduo que a Metodologia I. Na Metodologia II, o resíduo é classificado como sendo ruído branco.
					Função S	Seleção de Co	ndições			
ção Seleção de 1	-		2	Э	4	5	9	7	8	6
Controle $\frac{\Delta R}{R_{i+1}} = a - bR_i = \frac{\Delta R}{2}$	$\frac{\Delta R}{R_{i+1}} = a - bR_i$	- 1.4	$\frac{\Delta R}{R_{i+1}} = 1 - \alpha' R_i^b$	$\frac{\Delta R}{R_{i+1}} = e^{a-bR_i}$	$\frac{\Delta R}{R_{i+1}} = 1 - (1 - c + aR_i^{\mathcal{H}})^{b}$	$\frac{\Delta R}{R_{i+1}} = c - \alpha R_i^b$	$\left(\frac{\Delta R}{R_{i+1}} = b \ln \frac{A}{R_i}\right)$	$\frac{\Delta R}{R_{i+1}} = a \left(\frac{A - R_i}{A} \right)^b$	$\frac{\Delta R}{R_{i+1}} = e^{a-bR_i} - c$	$\frac{\Delta R}{R_{i+1}} = e^{a-bR_i} - \frac{c}{R_i}$
φ (<i>R</i>) = <i>k R</i> _i 4.373.041	4.373.041		4.772.468	3.416.170	3.495.166	3.695.489	4.745.787	3.033.680	2.891.427	2.775.010
$\varphi(R) = \exp(\alpha * R_j^\beta)$ 3.058.749	3.058.749		3.395.312	2.766.597	3.455.974	3.676.805	3.761.963	2.754.543	2.770.561	2.770.485
$\varphi(R) = \exp(\alpha + \beta R_{\rm s}) \qquad 3.383.989$	3.383.989		3.367.080	3.383.989	3.367.150	3.340.339	3.367.010	2.754.602	3.383.989	3.383.989
$\varphi(R) = \exp(\alpha + R_i^\beta) \qquad 3.584.761$	3.584.761		3.590.653	3.381.026	3.547.770	3.588.524	3.591.153	2.928.741	2.767.215	2.724.151
$\varphi(R) = \alpha R_i^{\beta} \qquad 3.785.860$	3.785.860		3.766.809	3.203.470	3.718.602	4.078.257	3.804.228	2.791.900	2.724.886	3.201.263
$\varphi(R) = \alpha + \beta^* Ln(R_i) \qquad 3.763.101$	3.763.101		4.295.546	3.367.010	4.060.999	3.730.660	3.911.360	2.887.793	2.591.557	2.722.927
$\varphi(R) = c - a \cdot \exp(-k \cdot R_q)$ 2.468.169	2.468.169		2.590.785	3.383.989	3.733.676	3.367.006	2.578.133	2.716.180	2.318.876	2.724.151
$p(R) = \frac{c}{1 + \exp(\alpha - \beta \cdot R_i)} 2.938.185$	2.938.185		2.934.550	3.383.989	2.938.188	3.369.719	2.939.461	2.795.668	2.247.707	3.383.989

Tabela 11 - Metodologia II - Golfo do México: Resultados utilizando controle não linear.

Figura 21 – Golfo do México: Resultado do Modelo 7x8. Fonte: o autor.

6.1.3. Metodologia III

Novamente, adota-se a nomenclatura "Modelo 1x1" a "Modelo 7x9" para representar os 63 modelos propostos no item 4.2. Esta metodologia foi aplicada somente para os dados do Recôncavo, pois os outros conjuntos de dados não apresentam mais de uma curva "S" bem definida. Os ajustes e as previsões utilizando dados do Recôncavo são mostrados abaixo.

6.1.3.1. Bacia do Recôncavo

Com relação aos dados do Recôncavo, pode-se observar na Figura 50 que duas curvas "S" podem ser traçadas, além dos anos iniciais de uma terceira curva.

Figura 22 - Curvas "S" no gráfico R(t) vs. tempo. Fonte: o autor.

A seguir, procura-se explicar o que aconteceu em cada uma destas três curvas sigmóides. O Apêndice H apresenta os volumes dos campos nos períodos de grandes incrementos. Pode-se observar que:

- Entre os Anos 1 e 6 (entre 1964 e 1969): a maior parte do volume recuperável adicionado foi devida às novas descobertas (57,02% do total adicionado);
- Entre os Anos 18 e 23 (de 1981 a 1986): parece ficar numa posição intermediária com 38,71% do volume adicionado devido às novas descobertas;
- Entre os Anos 30 e 39 (de 1993 a 2002): poucos campos foram descobertos e a maior parte do volume adicionado deve-se à aplicação de técnicas IOR/EOR e extensões de acumulações nos campos descobertos anteriormente (72,00% do total adicionado).

A Tabela 16 representa um resumo do Apêndice H. A tabela mostra os volumes adicionados na Bacia do Recôncavo referentes às novas descobertas e devido à variação no volume dos campos já existentes.

Intervalo	Novas Descobertas (milhões m ³)	Variação nos Campos já Existentes (milhões m ³)	Acréscimo Total (milhões m ³)
Entre 1964	43,16	32,54	75 70
e 1969	(57,02%)	(42,98%)	73,70
Entre 1981	11,85	18,76	30.61
e 1986	(38,71%)	(61,29%)	30,01
Entre 1993	4,77	12,28	17.05
e 2002	(28,00%)	(72,00%)	17,03

Tabela 12 - Análise do volume adicionado nos três intervalos (Resumo do Apêndice H).

Fonte: o autor.

Observa-se na tabela acima a importância das novas descobertas no início da exploração e das melhorias na recuperação no final do processo. Entretanto, uma análise mais detalhada é necessária para entender o que ocorreu entre os anos de 1981 e 1986.

O Apêndice H mostra que as maiores descobertas entre 1981 e 1986 referem-se aos campos de Fazenda Bálsamo (3,779 milhões m³), Riacho da Barra (2,337 milhões m³) e Fazenda Alvorada (1,358 milhões m³). Estes três campos localizam-se na borda leste e nordeste da Bacia do Recôncavo (Figura 51).

Figura 23 – Distribuição dos campos de óleo e gás na Bacia do Recôncavo. Fonte: DESTRO, 2002 (apud Antunes, 2003).

Surge então a necessidade de entender um pouco da geologia da região. A Bacia do Recôncavo é considerada uma bacia madura. No entanto, segundo Figueiredo (1995), com a utilização de avançada tecnologia, foi possível definir importantes prospectos estratigráficos nos grandes baixos da bacia, onde a atividade exploratória ainda era relativamente pequena. Deste esforço, resultou a descoberta de diversas acumulações. O campo de Riacho da Barra, segunda maior descoberta entre 1981 e 1986, é um exemplo de acumulação de hidrocarboneto identificada com a utilização de avançada tecnologia. A Figura 52 mostra a seção geológica esquemática do campo de Riacho da Barra.

Figura 24 – Seção geológica esquemática do campo de Riacho da Barra. Fonte: Figueiredo, 1995.

Pode-se observar na Figura 52 a existência de conglomerados em camadas acima dos reservatórios. Esta é uma característica da borda leste/nordeste da Bacia do Recôncavo, onde as maiores descobertas foram feitas entre os anos de 1981 e 1986.

Dessa forma, o avanço tecnológico através da sísmica proporcionou o reconhecimento de áreas prospectáveis, antes relegadas, pois não havia condição de identificar prospectos abaixo destes conglomerados na borda leste/nordeste. Em outras palavras, a sísmica conseguiu identificar acumulçãoes "escondidas" abaixo das camadas de conglomerados.

Para aplicar a Metodologia III, dividiram-se os dados nos seguintes intervalos: a primeira curva-S com os 11 anos iniciais (1964 a 1974); a segunda entre os anos 12-26 (1975 a 1989); a terceira entre os anos 27-39 (1990 a 2002). Embora esta divisão não seja exata, o importante aqui é separar os picos das curvas ΔR (Figura 26). As Tabelas 17, 18 e 19 mostram, respectivamente, os valores da soma dos quadrados dos resíduos para os três intervalos propostos. O modelo que melhor se ajusta aos dados no primeiro intervalo é o Modelo 7x2, no segundo intervalo é o Modelo 6x9 e no terceiro intervalo é o Modelo 1x2. Os valores R^2 são 0,9935, 0,9574 e 0,9015, respectivamente.

Os valores observados, ajustados e os resíduos para cada uma das três curvas "S" analisadas são ilustrados na Figura 53.

		0								
	0	$\left \frac{\Delta R}{R_{i+1}} = e^{a-bR_i} - \frac{C}{R}\right $	41,28	65,66	41,50	248,06	86,42	41,55	41,32	37,46
	00	$\frac{\Delta R}{R_{i+1}} = e^{a-bR_i} - c$	349,83	65,8	227,08	95,25	101,11	41,44	41,42	44,35
	7	$\frac{\Delta R}{R_{i+1}} = a \left(\frac{A - R_i}{A} \right)^b$	276,84	315,15	82,48	309,57	293,78	57,74	54,54	82,49
ndição	9	$\frac{\Delta R}{R_{i+1}} = b \ln \frac{A}{R_i}$	390,71	90,60	106,31	95,99	87,51	42,03	41,44	40,45
Seleção de Co	5	$\frac{\Delta R}{R_{i+1}} = c - \alpha R_i^b$	390,72	705,07	223,49	95,99	104,37	42,04	41,39	47,67
Função	4	$\frac{\Delta R}{R_{rH}} = 1 - (1 - c + aR_r^{1/6})^{b}$	229,71	199,26	220,70	95,97	87,48	41,52	37,85	56,92
	e	$\frac{\Delta R}{R_{i+1}} = e^{a - bR_i}$	502,17	96,95	505,31	407,42	417,79	106,31	227,08	91,74
	2	$\frac{\Delta R}{R_{i+1}} = 1 - a^{'}R_{i}^{b^{'}}$	380,25	284,30	368,09	534,30	271,43	41,45	41,46	35,77
	-	$\frac{\Delta R}{R_{i+1}} = a - bR_i$	349,74	91,03	104,73	95,25	87,77	41,65	41,42	90,28
	io Seleção de	Controle	$(R) = k R_i$	$(R) = \exp(lpha * R_i^{\beta})$	$(R) = \exp(\alpha + \beta R_i)$	$(R) = \exp(\alpha + R_i^{\beta})$	$(R) = \alpha R_i^{\beta}$	$(R) = \alpha + \beta^* Ln(R_i)$	$R) = c - a \cdot \exp(-k \cdot R_t)$	$R) = \frac{c}{1 + \exp(\alpha - \beta . R_{t})}$
	Funçã	J	$(1999) \varphi$	1 9(2 <i>φ</i> (3 p(4 Ø	5 Ø(6 Ø(1	7 <i>ф</i> (1
			nX Je							

Tabela 13 - Metodologia III - Recôncavo: Resultados utilizando somente os 11 anos iniciais.

					Função	Seleção de Co	ndição			
Ц	inção Seleção de	-	2	m	4	2	9	7	∞	0
	Controle	$\frac{\Delta R}{R_{i+1}} = a - bR_i$	$\frac{\Delta R}{R_{i+1}} = 1 - a^{i} R_{i}^{b^{i}}$	$\frac{\Delta R}{R_{i+1}} = e^{a-bR_i}$	$\frac{\Delta R}{R_{i+1}} = 1 - (1 - c + a R_i^{1/6})^{b}$	$\frac{\Delta R}{R_{i+1}} = c - \alpha R_i^b$	$\frac{\Delta R}{R_{i+1}} = b \ln \frac{A}{R_i}$	$\frac{\Delta R}{R_{i+1}} = a \left(\frac{A - R_i}{A} \right)^b$	$\frac{\Delta R}{R_{i+1}} = e^{a-bR_i} - c$	$\frac{\Delta R}{R_{i+1}} = e^{a-bR_i} - \frac{c}{R_i}$
Knoring al. (199	$ \begin{cases} e^{it} \\ y \end{cases} \begin{pmatrix} \rho & (R) = k R \\ i \end{cases} $	197,10	198,07	202,42	198,06	198,15	198,14	186,00	197,10	153,22
+	$\varphi(R) = \exp(\alpha * R_i^{\delta})$	145,43	204,79	199,71	196,33	111,79	111,70	186,71	112,18	187,07
2	$\varphi(R) = \exp(\alpha + \beta R_i)$	111,86	201,00	202,52	194,08	193,62	111,87	167,06	193,09	111,35
ŝ	$\varphi(R) = \exp(\alpha + R_i^{\beta})$	116,44	204,29	200,93	189,00	115,80	111,67	188,35	139,15	175,15
4	$\varphi(R) = cR_i^\beta$	185,39	196,74	201,58	194,59	189,52	186,72	187,68	188,84	166,78
5	$\varphi(R) = \alpha + \beta^* Ln(R_{\uparrow})$	151,99	154,44	111,87	110,61	141,98	154,43	138,78	111,76	111,79
9	$\varphi(R) = c - a \cdot \exp(-k \cdot R_t)$	149,62	143,06	193,09	110,57	137,34	152,01	154,18	149,64	103,73
7	$\varphi(R) = \frac{c}{1 + \exp(\alpha - \beta . R_i)}$	172,83	170,55	187,84	132,27	164,33	132,24	165,34	172,95	138,49

Tabela 14 - Metodologia III - Recôncavo: Resultados utilizando os anos 12-26.

					Função	Seleção de Cc	ndição			
Ē	nção Seleção de	-	2	en	4	2 D	9	7	∞	o
	Controle	$\frac{\Delta R}{R_{i+1}} = \alpha - bR_i$	$\frac{\Delta R}{R_{i+1}} = 1 - a^{'} R_{i}^{b^{'}}$	$\frac{\Delta R}{R_{i+1}} = e^{a-bR_i}$	$\frac{\Delta R}{R_{i+1}} = 1 - (1 - c + aR_i^{1/6})^{b}$	$\frac{\Delta R}{R_{i+1}} = c - \alpha R_i^b$	$\frac{\Delta R}{R_{i+1}} = b \ln \frac{A}{R_i}$	$\frac{\Delta R}{R_{i+1}} = a \left(\frac{A - R_i}{A} \right)^b$	$\frac{\Delta R}{R_{i+1}} = e^{a-bR_i} - c$	$\frac{\Delta R}{R_{i+1}} = e^{a-bR_i} - \frac{c}{R_i}$
Knoring e al. (1999	$\oint_{i}^{t} \varphi(R) = k R_{i}$	64,06	64,06	64,06	64,06	64,06	64,15	64,06	64,06	64,06
-	$\varphi(R) = \exp(\alpha * R_i^{\beta})$	64,06	51,32	64,06	64,08	58,01	52,99	60,83	64,06	54,60
2	$\varphi(R) = \exp(\alpha + \beta R_i)$	64,06	64,06	64,06	64,06	64,06	60,07	58,40	64,06	64,06
n	$\varphi(R) = \exp(\alpha + R_i^{\beta})$	64,06	64,06	64,06	64,07	64,06	64,26	64,06	64,06	64,06
4	$\varphi(R) = cR_i^\beta$	64,06	64,06	64,06	64,07	64,06	64,06	64,06	64,06	63,98
£	$\varphi(R) = \alpha + \beta^* Ln(R_i)$	64,06	64,06	64,06	64,06	64,06	64,07	64,06	56,73	64,06
9	$\varphi(\bar{R}) = c - a \cdot \exp(-\bar{k} \cdot \bar{R}_t)$	64,06	64,06	64,06	64,32	64,06	64,26	58,76	60,17	64,06
7	$\varphi(R) = \frac{c}{1 + \exp(\alpha - \beta . R_i)}$	63,76	63,94	64,03	64,07	63,92	63,96	60,69	64,03	64,06

Tabela 15 - Metodologia III - Recôncavo: Resultados utilizando os anos 27-39.

Figura 53-a: Modelo 7x2: 11 anos iniciais.

Figura 53-b: Modelo 6x9: intervalo entre os anos 12-26.

Figura 53-c: Modelo 1x2: intervalo entre os anos 27-39.

Figura 25 – Bacia do Recôncavo: Resultado do ajuste de curvas nos três intervalos sugeridos. Fonte: o autor.

O Apêndice G mostra que os *p-values* do Teste BDS nos três intervalos são maiores que 0,05, indicando que o modelo capturou a informação contida nos dados e que não existe evidência de estrutura de dependência nos resíduos.

Dessa forma, a Metodologia III apresenta melhor ajuste "*in sample*" e melhor resíduo que a Metodologia I. Na Metodologia III, o resíduo é classificado como sendo ruído branco.

6.2. Evolução das descobertas em função do volume de perfuração

O presente item investiga o desempenho do número de poços (L) como variável explicativa para prever o volume de óleo recuperável. Duas metodologias são aplicadas nesta seção: a metodologia de Knoring *et al.* (1999), item 3.5.3 (Metodologia IV) e a metodologia proposta no item 4.3 (Metodologia V).

A presente aplicação considera o número de poços (L) como sendo o número de poços exploratórios mais os poços injetores perfurados em cada ano. Não estão inclusos os poços de produção e os poços especiais.

Entende-se por poços exploratórios o conjunto dos poços pioneiro, pioneiro adjacente, estratigráfico, extensão, jazida mais rasa e jazida mais profunda.

Consideram-se ainda os poços injetores por entender que estes têm papel fundamental no fator de recuperação de bacias maduras, afetando, conseqüentemente, os volumes recuperáveis. A seguir, para cada conjunto de dados, analisa-se a influência dos poços injetores nos acréscimos recuperáveis.

6.2.1. Metodologia IV

Os nove modelos propostos por Knoring *et al.* (1999) que evoluem com o volume de perfuração (L), Equações 39 a 47, receberão nesta seção o nome de L 1 a L 9.

6.2.1.1. Bacia de Campos

A Figura 54 ilustra a evolução do número de poços perfurados (L) da Bacia de Campos. O conjunto de dados analisado é constituído por 31 observações anuais (1974-2004).

Figura 26 – Bacia de Campos: Número de poços acumulado (L) vs. tempo. Fonte: o autor.

A Figura 55.a mostra que os acréscimos anuais (Δ R) estão um pouco atrasados em relação ao número de poços anuais (Δ L). Esta defasagem pode ser explicada, pois um aumento do esforço exploratório demanda um certo tempo para alcançar os resultados esperados. Ou seja, existe um intervalo de tempo (*gap*) entre o aumento do esforço exploratório e surgimento de novas descobertas. Dessa forma, desloca-se a curva Δ L três anos para a direita (Figura 55.b).

Figura 55.a – $\Delta R e \Delta L vs.$ Anos.Figura 55.b – $\Delta R e \Delta L$ Defasado vs. Anos.Figura 27 – Defasagem entre o esforço exploratório anual (ΔL) e o acréscimo de volume (ΔR).Fonte: o autor.

Conforme dito anteriormente, consideram-se na modelagem os poços injetores por entender que estes têm papel fundamental no fator de recuperação de bacias maduras. A Figura 56 mostra a influência dos poços injetores nos acréscimos recuperáveis, principalmente nos estágios mais avançados da exploração (últimos seis anos). Novamente, por se tratar de dados confidenciais, as escalas verticais da figura foram alteradas.

Figura 28 – Bacia de Campos: Influência dos poços injetores nos acréscimos recuperáveis. Fonte: o autor.

Nos últimos seis anos, pode-se observar grandes incrementos no volume recuperável quando aumentamos significativamente o número de poços injetores. Neste mesmo período, o número de poços exploratórios cresce 7,62% (de 66,90 para 72,00), o número de poços injetores aumenta 110% (de 4,6 para 9,7), correspondendo a um acréscimo no volume acumulado de 788,15 milhões de m³ (2.187,48-1.399,33).

A Tabela 20 mostra os resultados da soma dos quadrados dos resíduos (SS) encontrados. Após estimar os parâmetros dos nove modelos, o modelo que melhor se ajustou aos dados foi o Modelo L_9. O valor R^2 é 0.9961.

Bacia de Camp	oos - 31 observações anuais
Modelo	SS
Modelo L_1	266,205.70
Modelo L_2	274,496.10
Modelo L_4	233,088.80
Modelo L_5	233,088.80
Modelo L_6	233,088.80
Modelo L_7	79,542.21
Modelo L_8	59,090.71
Modelo L_9	57,809.14

Tabela 16 - Bacia de Campos: soma dos quadrados dos resíduos (SS) - Metodologia IV.

Fonte: o autor.

A Figura 57 ilustra o ajuste do modelo que melhor se ajustou aos dados de evolução das descobertas (Modelo L 9) considerando 31 observações anuais.

Figura 29 – Bacia de Campos: Resultado do Modelo L_9. Fonte: o autor

Conforme mostrado na Figura 14, a função k(L) indica a eficiência da exploração na região, podendo assumir diferentes formas com o aumento no volume de perfuração (L). A fim de verificar os valores dos parâmetros estimados e os resultados obtidos, construiu-se ainda o gráfico k(L) vs. L para o Modelo L_9 (Figura 58). Observa-se que a curva k(L) da presente aplicação segue a mesma forma (linear) da teoria proposta por Knoring *et al.* (1999), indicando que a eficiência exploratória ainda não atingiu seu ponto máximo.

Figura 30 - Bacia de Campos: Eficiência da exploração - k(L) vs. L – Modelos L_9. Fonte: o autor.

O Apêndice G mostra os *p-values* do Teste BDS aplicado nos resíduos do modelo que melhor se ajustou aos dados, Modelo L_9. Considerando o nível de significância de 5%, o resultado do Teste BDS indica a evidência de dependência nos resíduos que não foi capturada pelo Modelo L_9.

6.2.1.2. Bacia do Recôncavo

A Figura 59 ilustra a evolução do número de poços perfurados (L) da Bacia do Recôncavo. O conjunto de dados analisado é constituído por 39 observações anuais (1964-2002).

Figura 31 - Bacia do Recôncavo: Número de poços acumulado (L) vs. tempo. Fonte: o autor.

A Figura 60 mostra a influência dos poços injetores nos acréscimos recuperáveis.

Figura 32 – Bacia do Recôncavo: Influência dos poços injetores nos acréscimos recuperáveis. Fonte: o autor.

Pode-se observar incrementos consideráveis no volume recuperável entre o décimo oitavo e o vigésimo quarto ano, quando o número de poços injetores cresce mais rapidamente. Neste mesmo período, o número de poços exploratórios cresce 19,88% (de 96,10 para 115,20), o número de poços injetores aumenta 47,50% (de 24,20 para 35,70), correspondendo a um acréscimo no volume acumulado de 35,19 milhões de m³ (237,83-202,64).

A Tabela 21 mostra os resultados da soma dos quadrados dos resíduos (SS) encontrados. O modelo que melhor se ajustou aos dados foi o Modelo L_2. O valor R^2 é 0.9885.

Bacia do Recônca	avo - 39 observações anuais
Modelo	SS
Modelo 01	871.67
Modelo 02	762.44
Modelo 04	828.64
Modelo 05	828.64
Modelo 06	1,026.90
Modelo 07	961.31
Modelo 08	1,260.54
Modelo 09	1,026.90

Tabela 17 - Bacia do Recôncavo: soma dos quadrados dos resíduos (SS) - Metodologia IV.

Fonte: o autor.

A Figura 61 ilustra o ajuste do modelo que melhor se ajustou aos dados de evolução das descobertas (Modelo L 2) considerando 39 observações anuais.

Figura 33 – Bacia do Recôncavo: Resultado do Modelo L_9. Fonte: o autor.

A fim de verificar os valores dos parâmetros estimados e os resultados obtidos, construiu-se ainda o gráfico k(L) vs. L para o Modelo L_2 (Figura 62). Observa-se que a curva k(L) da presente aplicação segue a forma da teoria proposta por Knoring *et al.* (1999), caindo mais rapidamente no início do processo exploratório.

Figura 34 - Bacia do Recôncavo: Eficiência da exploração - k(L) vs. L – Modelo L_2. Fonte: o autor.

O Apêndice G mostra que alguns *p*-values do Teste BDS são menores que 0,05, indicando a evidência de dependência nos resíduos que não foi capturada pelo Modelo L_2.

6.2.1.3. Bacia do Rio Grande do Norte/Ceará

A Figura 63 ilustra a evolução do número de poços perfurados (L) da Bacia do Rio Grande do Norte/Ceará. O conjunto de dados analisado é constituído por 26 observações anuais (1979-2004).

Figura 35 - Bacia do RN/CE: Número de poços acumulado (L) vs. tempo. Fonte: o autor.

A Figura 64 mostra a influência dos poços injetores nos acréscimos recuperáveis.

Figura 36 – Bacia do RN/CE: Influência dos poços injetores nos acréscimos recuperáveis. Fonte: o autor.

Pode-se observar incrementos consideráveis no volume recuperável a partir do décimo segundo ano, quando o número de poços injetores cresce mais rapidamente. Neste mesmo período, o número de poços exploratórios permanece quase que constante. O número de poços injetores aumenta de 1,8 para 9,1 correspondendo a um acréscimo no volume acumulado de 55,27 milhões de m³ (117,83-62,56).

A Tabela 22 mostra os resultados da soma dos quadrados dos resíduos (SS). Após estimar os parâmetros dos modelos, o modelo que melhor se ajustou aos dados foi o Modelo L_9 . O valor R^2 é 0,9858.

Bacia RN/CE	- 26 observações anuais
Modelo	SS
Modelo L_1	576.94
Modelo L_2	571.62
Modelo L_4	539.64
Modelo L_5	539.64
Modelo L_6	539.64
Modelo L_7	588.10
Modelo L_8	631.73
Modelo L_9	504.69
Fonte: o autor.	

Tabela 18 - Bacia do RN/CE: soma dos quadrados dos resíduos (SS) - Metodologia IV.

A Figura 65 ilustra o ajuste do modelo que melhor se ajustou aos dados de evolução das descobertas (Modelo L_9) considerando 26 observações anuais.

Figura 37 – Bacia do RN/CE: Resultado do Modelo L_9. Fonte: o autor.

A fim de verificar os valores dos parâmetros estimados e os resultados obtidos, construiu-se ainda o gráfico k(L) vs. L para o Modelo L_9 (Figura 66). Observa-se que a curva k(L) da presente aplicação segue a mesma forma (linear) da teoria proposta por Knoring *et al.* (1999), indicando que a eficiência exploratória ainda não atingiu seu ponto máximo.

Figura 38 - Bacia do RN/CE: Eficiência da exploração - k(L) vs. L – Modelos L_9. Fonte: o autor.

O Apêndice G mostra que alguns *p-values* do Teste BDS são menores que 0,05, indicando a evidência de dependência nos resíduos que não foi capturada pelo Modelo L_9.

6.2.1.4. Bacia do Sergipe/Alagoas

A Figura 67 ilustra a evolução do número de poços perfurados (L) da Bacia do Sergipe/Alagoas. O conjunto de dados analisado é constituído por 39 observações anuais (1966-2004).

Figura 39 – Bacia de SE/AL: Número de poços acumulado (L) vs. tempo. Fonte: o autor.

A Figura 68 mostra a influência dos poços injetores nos acréscimos recuperáveis.

Figura 40 – Bacia de SE/AL: Influência dos poços injetores nos acréscimos recuperáveis. Fonte: o autor

Pode-se observar incrementos consideráveis no volume recuperável entre o décimo quarto e o vigésimo terceiro ano, quando o número de poços injetores cresce mais rapidamente. Neste mesmo período, o número de poços exploratórios cresce 53,43% (de 53,90 para 82,70), o número de poços injetores aumenta 547,50% (de 4,00 para 25,90), correspondendo a um acréscimo no volume acumulado de 35,13 milhões de m³ (80,03-44,90).

A Tabela 23 mostra os resultados da soma dos quadrados dos resíduos (SS). Após estimar os parâmetros dos modelos, o modelo que melhor se ajustou aos dados foi o Modelo L 9. O valor R^2 é 0.9835.

SEAL - 39	observações anuais
Modelo	SS
Modelo 01	826.03
Modelo 02	740.49
Modelo 04	689.36
Modelo 05	689.36
Modelo 06	689.36
Modelo 07	634.69
Modelo 08	668.26
Modelo 09	503.02

Tabela 19 - Bacia do SE/AL: soma dos quadrados dos resíduos (SS) - Metodologia IV.

Figura 41 – Bacia de SE/AL: Resultado do Modelo L_9. Fonte: o autor

A fim de verificar os valores dos parâmetros estimados e os resultados obtidos, construiu-se ainda o gráfico k(L) vs. L para o Modelo L_9 (Figura 70). Observa-se que a curva k(L) da presente aplicação segue a mesma forma (linear) da teoria proposta por Knoring *et al.* (1999), indicando que a eficiência exploratória ainda não atingiu seu ponto máximo.

Figura 42 - Bacia de SE/AL: Eficiência da exploração - k(L) vs. L – Modelos L_9. Fonte: o autor.

A Figura 69 ilustra o ajuste do modelo que melhor se ajustou aos dados de evolução das descobertas (Modelo L_9) considerando 39 observações anuais.

O Apêndice G mostra que alguns *p-values* do Teste BDS são menores que 0,05, indicando a evidência de dependência nos resíduos que não foi capturada pelo Modelo L_9.

6.2.2. Metodologia V

Conforme visto no item 4.3, a Metodologia V considera o controle e a condição em função do esforço exploratório. Para poder comparar os resultados das Metodologias IV e V, utiliza-se nesta seção os mesmos dados do item 6.2.1.

Novamente, adota-se a nomenclatura "Modelo 1x1" a "Modelo 7x9" para representar os 63 modelos propostos neste item.

6.2.2.1. Bacia de Campos

A Tabela 24 mostra os resultados da soma dos quadrados dos resíduos (SS) encontrados. Após estimar os parâmetros dos 63 modelos, o modelo que melhor se ajustou aos dados foi o Modelo 1x8. O valor R^2 é 0.9973.

cos.
empíri
odelos (
s dos m
esultado
pos: Ro
- Cam
gia V
etodolc
M - 0
Tabela 2
-

	თ	$e^{a-bL_t} - \frac{c}{L_t}$	48.060,83	51.927,42	52.219,44	51.228,04	50.929,07	52.219,27	52.217,09
	ω	$e^{a-bL_t}-c$	39.818,59	59.090,71	59.080,10	40.579,86	40.348,13	43.857,02	41.309,51
	7	$lpha igg(rac{A-L_t}{A} igg)^b$	40.032,83	55.160,42	44.120,69	42.940,87	40.984,69	40.132,59	40.901,50
ndições	9	$b.Ln\left(rac{A}{L_t} ight)$	57.599,72	57.390,84	159.074,20	235.497,20	3.563.005,00	40.348,13	42.883,05
Seleção de Cor	S	$c-a \cdot L_t^b$	41.150,44	59.090,71	40.929,59	40.597,77	56.793,68	40.348,58	57.640,22
Função	4	$1-(1-c+a \cdot L_t^{j_k})^b$	146.542,70	57.882,59	49.251,92	84.892,90	775.362,20	40.603,12	42.947,90
	c	e^{a-bL_t}	49.555,97	59.090,71	59.090,71	57.809,14	57.390,84	59.090,71	59.090,71
	2	$1-a'L_t^{b'}$	40.589,97	52.420,73	159.077,00	40.597,77	51.654,59	40.349,35	57.811,76
	~	$a - bL_t$	44.331,45	59.090,71	156.976,60	215.211,80	952.530,20	43.855,96	49.444,98
	nção Seleção de	Controle	$\exp(\alpha \cdot L_t^{\beta})$	$\exp(\alpha + \beta L_t)$	$\exp(\alpha + L_i^{\beta})$	$lpha . L_t^eta$	$\alpha + \beta . Ln(L_t)$	$c - \alpha \cdot \exp(-\beta \cdot L_t)$	$\frac{c}{1+\exp(\alpha-\beta.L_i)}$
	Ē		-	2	ო	4	5	9	7

A Figura 71 ilustra o ajuste do modelo que melhor se ajustou aos dados de evolução das descobertas (Modelo 1x8) considerando 31 observações anuais.

Figura 43 – Bacia de Campos: Resultado do Modelo 1x8. Fonte: o autor.

A Figura 72.a e a Figura 72.b ilustram, respectivamente, os gráficos da função seleção de controle versus o esforço exploratório e versus o ano. A primeira curva é importante, pois mostra o acréscimo de controle (informação) que se consegue ao perfurar um poço adicional. A função seleção de condição não foi traçada devido à combinação dos parâmetros (Apêndice E), pois, ao simplificar os modelos, diminuímos o número de parâmetros.

Figura 44 – Função Seleção de Controle: Modelo 1x8. Fonte: o autor.

O Apêndice G mostra que os *p-values* do Teste BDS são maiores que 0,05, indicando que o modelo capturou a informação contida nos dados e que não existe evidência de estrutura de dependência (linear ou não linear) nos resíduos.

Dessa forma, a Metodologia V apresenta melhor ajuste "*in sample*" e melhor resíduo que a Metodologia IV. Na Metodologia V, o resíduo é classificado como sendo ruído branco.

Além disso, comparando-se o ajuste das cinco metodologias testadas, observa-se que o melhor ajuste é fornecido pela Metodologia V. O valor da soma dos quadrados dos resíduos igual a 39.819 é muito menor que o encontrado pelas Metodologias I, II e IV, cujos valores são 105.625, 104.787 e 57.809, respectivamente.

Esta diferença entre os ajustes acontece devido ao grande acréscimo ocorrido no décimo quinto ano. As Metodologias I e II não conseguem captar esta mudança de patamar rapidamente, ficando a curva do ajuste defasada em relação aos dados reais e, conseqüentemente, resultando em grandes resíduos próximo ao décimo quinto ano.

6.2.2.2. Bacia do Recôncavo

A Tabela 25 mostra os resultados da soma dos quadrados dos resíduos (SS) encontrados. O modelo que melhor se ajustou aos dados foi o Modelo 7x9. O valor R^2 é 0.9919.

Entretanto, é relevante observar que o Modelo 7x3 se ajusta tão bem quanto o Modelo 7x9 utilizando um parâmetro a menos. O número de parâmetros do Modelo 7x9 é cinco enquanto que no Modelo 7x3 é quatro.

Por esta razão, a Figura 73 mostra o resultado do Modelo 7x3 considerando 39 observações anuais. O valor R^2 do Modelo 7x3 é 0.9918.

 $e^{a-bL_t} - rac{c}{L_t}$ 626,13 618,43 625,95 576,61 613,07 585,61 530,84 တ с Т 3.425,67 610,14 583,89 578,11 620,56 578,82 542,96 e^{a-bL_t} ω 1.265,67 $(A - L_t)$ 586,81 871,97 828,65 600,36 854,29 543,75 Z a 705,11 731,19 733,43 737,42 766,22 620,56 620,11 $b.Ln\left(rac{A}{L_t}
ight)$ ശ Função Seleção de Condições c-a. L_t^b 645,13 729,40 539,10 705,27 620,80 581,52 675,57 ß $1 - (1 - c + a \cdot L_t^{\frac{1}{b}})^b$ 1.428,03 1.193,71 731,73 729,49 591,49 711,33 567,97 4 3.425,67 3.425,67 e^{a-bL_t} 605,70 828,64 705,11 591,24 545,73 က 1.026,90 $1-a'L_t^{b'}$ 623,42 660,33 658,66 597,14 669,87 596,61 $a - bL_t$ 1.740,55 654,48 853,12 716,73 795,19 581,16 636,80 $c - \alpha \cdot \exp(-\beta \cdot L_t)$ Função Seleção de $\alpha + \beta . Ln(L_t)$ $1 + \exp(\alpha - \beta . L_i)$ $\exp(\alpha + \beta L_t)$ $\exp(\alpha + L_t^{\beta})$ $\exp(\alpha \cdot L_t^{\beta})$ Controle С $\alpha . L_t^{\beta}$. 2 ო 4 Ð ဖ ~

Tabela 21 - Metodologia V - Recôncavo: Resultados dos modelos empíricos.

Figura 45 – Bacia do Recôncavo: Resultado do Modelo 7x3. Fonte: o autor

A Figura 74 ilustra o gráfico da função seleção de controle vs. o esforço exploratório utilizando o Modelo 7x3. Pode-se observar que o controle cresce rapidamente nos anos iniciais do processo exploratório.

Figura 46 – Função Seleção de Controle: Modelo 7x3. Fonte: o autor.

O Apêndice G mostra os *p-values* do Teste BDS aplicado nos resíduos do modelo que melhor se ajustou aos dados, Modelo 7x3. Os valores são menores que 0,05, indicando a evidência de dependência nos resíduos que não foi capturada pelo modelo proposto.

Embora a Metodologia V não possa classificar o resíduo como sendo ruído branco, o ajuste "*in sample*" do Modelo 7x3 consegue reduzir em 28% o valor da soma dos quadrados dos resíduos obtido com a Metodologia IV.

6.2.2.3. Bacia do Rio Grande do Norte/Ceará

A Tabela 26 mostra os resultados da soma dos quadrados dos resíduos (SS) encontrados. O modelo que melhor se ajustou aos dados foi o Modelo 1x8. O valor R^2 é 0.9903.

Tabela 22 - Metodologia V - RN/CE: Resultados dos modelos empíricos.

	6	$e^{a-bL_t} - rac{c}{L_t}$	425,93	542,23	573,43	475,52	453,44	465,23	463,94
	8	$e^{a-bL_t}-c$	347,08	907,36	473,97	470,13	468,51	374,68	364,69
	7	$lpha igg(rac{A-L_t}{A} igg)^b$	366,02	632,82	470,60	408,57	484,65	394,76	378,94
ndições	6	$b.Ln\left(rac{A}{L_t} ight)$	664,93	484,65	512,71	539,72	1.762,47	478,83	483,91
Seleção de Cor	5	$c - a \cdot L^b_t$	490,15	907,36	512,73	539,64	512,16	353,88	525,33
Função (4	$1-(1-c+a \cdot L_{i}^{j_{k}})^{b}$	559,06	474,24	512,78	551,99	539,76	403,69	593,92
	3	e^{a-bL_t}	426,91	907,36	907,36	504,69	484,65	907,36	434,07
	2	$1-a'L_t^{b'}$	471,78	484,66	499,57	473,84	3.060,05	463,26	504,69
	ſ	$a - bL_t$	476,30	481,56	523,01	520,66	690,24	445,94	430,58
	inção Seleção de	Controle	$\exp(\alpha \cdot L_t^{\beta})$	$\exp(\alpha + \beta L_t)$	$\exp(\alpha + L_t^{\beta})$	$lpha$. L_t^eta	$\alpha + \beta . Ln(L_t)$	$c - \alpha \cdot \exp(-\beta \cdot L_t)$	$\frac{c}{1+\exp(\alpha-\beta.L_i)}$
	ш		1	7	ю	4	5	9	7

Figura 47 – Bacia do RN/CE: Resultado do Modelo 1x8. Fonte: o autor

A Figura 76 ilustra a função seleção de controle encontrada utilizando o Modelo 1x8. Pode-se observar que o esforço exploratório continua melhorando a informação (controle) nos últimos anos.

Figura 48 – Função Seleção de Controle: Modelo 1x8. Fonte: o autor.

O Apêndice G mostra que os *p-values* do Teste BDS são maiores que 0,05, indicando que o modelo capturou a informação contida nos dados e que não existe evidência de estrutura de dependência (linear ou não linear) nos resíduos.

6.2.2.4. Bacia de Sergipe/Alagoas

A Tabela 27 mostra os resultados da soma dos quadrados dos resíduos (SS) encontrados. Os Modelos 1x8, 4x8, 6x4, 6x5, 7x4 são os modelos que melhor se ajustam aos dados. Entretanto, o Modelo 4x8 é escolhido por apresentar o menor número de parâmetros. O valor R^2 é 0.9978.

Tabela 23 - Metodologia V - SE/AL: Resultados dos modelos empíricos .

	თ	$e^{a-bL_t} - rac{c}{L_t}$	394.26	407.80	415.05	406.86	404.21	330.57	420.41
Função Seleção de Condições	ω	$e^{a-bL_t}-c$	67.78	777.72	553.29	66.97	258.15	243.56	110.02
	2	$lpha igg(rac{A-L_t}{A} igg)^b$	88.83	668.93	175.32	118.38	144.66	202.35	98.36
	9	$b.Ln\left(rac{A}{L_t} ight)$	743.80	465.43	576.01	689.93	1,287.88	258.15	221.20
	S	$c-a \cdot L_t^b$	303.06	777.72	550.53	689.36	313.57	66.60	466.43
	4	$1 - (1 - c + a \cdot L_i^{j_k})^b$	569.28	465.58	415.45	384.82	397.31	66.54	68.51
	с	e^{a-bL_t}	409.77	777.72	777.72	503.02	465.43	394.43	383.50
	2	$1-a'L_t^{b'}$	406.63	417.48	565.42	360.37	336.23	258.18	503.02
	-	$a - bL_t$	424.25	556.29	543.57	562.90	598.73	150.61	102.54
ção Seleção de Controle			$\exp(\alpha \cdot L_t^{\beta})$	$\exp(\alpha + \beta L_t)$	$\exp(\alpha + L_i^{\beta})$	$lpha$. L^{eta}_t	$\alpha + \beta . Ln(L_t)$	$c-lpha$. $\exp(-eta$. $L_t)$	$\frac{c}{1+\exp(\alpha-\beta.L_i)}$
Eun			۲.	2	ю	4	5	9	7

Figura 49 – Bacia do SE/AL: Resultado do Modelo 4x8. Fonte: o autor

A Figura 78 ilustra a função seleção de controle encontrada utilizando o Modelo 4x8. Assim como na Bacia RN/CE, pode-se observar que o esforço exploratório continua melhorando a informação (controle) nos últimos anos.

Figura 50 – Função Seleção de Controle: Modelo 4x8. Fonte: o autor.

O Apêndice G mostra que os *p-values* do Teste BDS são maiores que 0,05, indicando que o modelo capturou a informação contida nos dados e que não existe evidência de estrutura de dependência (linear ou não linear) nos resíduos.

A Figura 77 ilustra o ajuste do Modelo 4x8 considerando 39 observações anuais.

6.3. Sumário das Metodologias

A Tabela 28 resume os resultados das cinco metodologias e dos cinco conjuntos de dados testados neste capítulo.
Tabela 24 - Resumo das Metodologias - Capítulo 6.

Resultado Final

Parte 1: Evolução das descobertas er	n função do tempo	Campos	Recôncavo	RN/CE	SE/AL	Golfo do México
	Modelo	Modelo Knoring_8	Modelo Knoring_7	Modelo Knoring_8	Modelo Knoring_8	Modelo Knoring_9
Metodologia I. Funçao Seleção de Controle Linear pronosto nor Knoring et al (1999)	Soma Residuos ² (SS)	105.625	737	316	151	2.775.010
	Residuo (Teste BDS)	p-value < 0,05	p-value < 0,05	ok	k	p-value < 0,05
	Modelo	Modelo 6x7	Modelo 7x8	Modelo 1x2	Modelo 7x9	Modelo 7x8
Metodologia II: Funçao Seleçao de Controle Nao- 1 inear	Soma Residuos ² (SS)	104.787	396	305	110	2.247.707
	Residuo (Teste BDS)	ok	ok	ok	ok	ok
	Modelo	Gráfico não apresenta	Mod. 7x2, 6x9, 1x2	Gráfico não apresenta	Gráfico não apresenta	Gráfico não apresenta
Metodologia III: Função Seleção de Controle Não- Il inear considerando novos obietivos exploratórios	Soma Residuos ² (SS)	mais de uma curva-S bem	191	mais de uma curva-S	mais de uma curva-S bem	mais de uma curva-S bem
	Residuo (Teste BDS)	definida	ok	bem definida	definida	definida
Parte 2: Evolucão das descobertas e	em funcão de "L"	Campos	Recôncavo	RN/CE	SE/AL	Golfo do México

Parte 2: Evolução das descobertas	em função de "L"	Campos	Recôncavo	RN/CE	SE/AL	Golfo do México
	Modelo	Modelo L_9	Modelo L_2	Modelo L_9	Modelo L_9	-
Metodologia IV: em tunção do Indicador de Eficiência proposto por Knoring et al. (1999)	Soma Residuos ² (SS)	57.809	762	505	503	INao tem dados de volume exnloratório disnonível
	Residuo (Teste BDS)	p-value < 0,05	p-value < 0,05	p-value < 0,05	p-value < 0,05	
	Modelo	Modelo 1X8	Modelo 7x3	Modelo 1X8	Modelo 4x8	
Metodologia V: Controle e Condição em runção do esforco evoloratório (L)	Soma Residuos ² (SS)	39.819	546	347	67	INao tem dados de volume evnloratório dicnonível
	Residuo (Teste BDS)	k	p-value < 0,05	ş	k	

Fonte: o autor.

Analisando-se os resultados da Metodologia I, três das quatro séries brasileiras testadas são melhor ajustadas pelo mesmo modelo (Knoring_8), alcançando um bom ajuste "*in sample*" devido aos altos valores de R². As funções seleção de condições caem rapidamente no início do processo exploratório, apresentando formatos bem parecidos. Considerando o nível de significância de 5%, o resultado do Teste BDS indica a existência de dependência nos resíduos em três das cinco séries testadas.

Na Metodologia II, três das cinco séries testadas são melhor ajustadas pela função de controle logística, alcançando bons ajustes "*in sample*". Somente para a Bacia do RN/CE a Metodologia II não apresenta ganhos significativos quando comparada com a Metodologia I. O resultado do Teste BDS indica que não existe estrutura de dependência nos resíduos em todas as cinco séries testadas.

O ajuste dos dados do Recôncavo pela Metodologia III apresenta melhor ajuste *"in sample"* e melhor resíduo que a Metodologia I. Na Metodologia III, o resíduo é classificado como sendo ruído branco. O melhor ajuste já era esperado, uma vez que se divide a curva em três segmentos (três ajustes de curva).

Na Metodologia IV, três das quatro séries brasileiras testadas são melhor ajustadas pelo Modelo L_9, alcançando bons ajustes "*in sample*". O gráfico k(L) vs. L destas três séries indica que a eficiência exploratória ainda não atingiu seu ponto máximo. O resultado do Teste BDS indica que existe estrutura de dependência nos resíduos de todas as séries testadas.

Na Metodologia V, duas das quatro séries brasileiras testadas são melhor ajustadas pelo Modelo 1x8. Em todas as séries a Metodologia V apresenta ganhos significativos quando comparada com a Metodologia IV, alcançando ótimos ajustes "*in sample*". O resultado do Teste BDS indica que não existe estrutura de dependência nos resíduos em três das quatro séries. Com exceção da Bacia do Recôncavo, o gráfico da função de controle indica que o esforço exploratório continua melhorando a informação (controle) nos últimos anos.

7. RESULTADOS DAS PREVISÕES "OUT OF SAMPLE"

O Capítulo 7 mostra os resultados das previsões "*out of sample*". É importante para verificar a adequação dos modelos escolhidos no Capítulo 6 num contexto preditivo.

Considera-se nas previsões "*out of sample*" o melhor modelo utilizando toda a série histórica. Ou seja, as previsões foram feitas com o melhor modelo do ajuste "*in sample*" escolhido no Capítulo 6.

Para uma melhor compreensão, as metodologias foram divididas em dois grupos:

- i. Item 7.1: Previsões a curto prazo: Metodologias I, II e III;
- ii. Item 7.2: Previsões a longo prazo: Metodologias IV e V;

Além disso, o Item 7.3 apresenta uma análise dos resultados das previsões dos cinco conjuntos de dados: Bacia de Campos, Bacia do Recôncavo, Bacia do Rio Grande do Norte/Ceará, Bacia de Sergipe/Alagoas e a do Golfo do México. Estes conjuntos de dados são constituídos por 31, 39, 26, 39 e 28 observações anuais, respectivamente.

7.1. Previsões a curto prazo: Modelos R(t) - Metodologias I, II e III

Três metodologias são aplicadas nesta seção: a metodologia de Knoring *et al.* (1999), item 3.5.1, e duas metodologias propostas, itens 4.1 e 4.2.

Estas metodologias nos dão confiança em fazer previsões apenas para o curto prazo, pois o ajuste depende do valor do ano imediatamente anterior. A previsão piora na medida em que nos afastamos da data atual. Por esta razão, utilizou-se um horizonte de planejamento de três anos nas Metodologias I, II e III.

7.1.1. Metodologia I

Novamente, adota-se a nomenclatura "Knoring_1" a "Knoring_9" para representar os nove modelos propostos por Knoring *et al.* (1999) que evoluem com o tempo (Equações 25 a 33). As previsões para os cinco conjuntos de dados considerados são mostradas abaixo.

7.1.1.1. Bacia de Campos

Para testar a capacidade preditiva (*out of sample*), utilizam-se somente 28 das 31 observações anuais para estimar os parâmetros do Modelo Knoring_8. A Tabela 29 e a Figura 79 mostram o resultado da previsão. O valor observado é $R_{2004} = 2.316,57$ e o valor previsto utilizando as primeiras 28 observações é 2.006,81, resultando num erro percentual de -13,37%.

Tabela 1 - Bacia de Campos: previsão 3 anos - Metodologia I.

Ano	Valores Reais	Previsão	Erro (%)
2002	1953.69	1801.64	-7.78%
2003	2187.48	1902.37	-13.03%
2004	2316.57	2006.81	-13.37%

Fonte: o autor.

Figura 1 – Bacia de Campos: Previsão 3 anos utilizando o Modelo Knoring_8. Fonte: o autor.

7.1.1.2. Bacia do Recôncavo

A Tabela 30 e a Figura 80 mostram o resultado da previsão utilizando-se somente 36 das 39 observações anuais para estimar os parâmetros do Modelo Knoring_7. O valor observado é $R_{2002} = 258,00$ e o valor previsto utilizando as primeiras 36 observações é 249,25, resultando num erro percentual de -3,39%.

Tabela 2 - Bacia do Recôncavo: previsão 3 anos - Metodologia I.

Ano	Valores Reais	Previsão	Erro (%)
2000	253.00	249.09	-1.55%
2001	258.00	249.17	-3.42%
2002	258.00	249.25	-3.39%

Fonte: o autor.

Figura 2 – Bacia do Recôncavo: Previsão 3 anos utilizando o Modelo Knoring_7. Fonte: o autor.

7.1.1.3. Bacia do Rio Grande do Norte/Ceará

A Tabela 31 e a Figura 81 mostram o resultado da previsão utilizando-se somente 23 das 26 observações anuais para estimar os parâmetros do Modelo Knoring_8. O valor observado é $R_{2004} = 117,83$ e o valor previsto utilizando as primeiras 23 observações é 126,13, resultando num erro percentual de 7,05%.

Ano	Valores Reais	Previsão	Erro (%)
2002	110.84	114.30	3.12%
2003	115.15	120.08	4.28%
2004	117 83	126 13	7.05%

Tabela 3 - Bacia do RN/CE: previsão 3 anos - Metodologia I.

Fonte: o autor.

Figura 3 – Bacia do RN/CE: Previsão 3 anos utilizando o Modelo Knoring_8. Fonte: o autor

7.1.1.4. Bacia de Sergipe/Alagoas

A Tabela 32 e a Figura 82 mostram o resultado da previsão utilizando-se somente 29 das 39 observações anuais para estimar os parâmetros do Modelo Knoring_8. O valor observado é $R_{2004} = 111,45$ e o valor previsto utilizando as primeiras 36 observações é 109,44, resultando num erro percentual de -1,80%.

Ano	Valores Reais	Previsão	Erro (%)
2002	103.51	104.93	1.37%
2003	107.55	107.18	-0.35%
2004	111.45	109.44	-1.80%

Tabela 4 - Bacia de SE/AL: previsão 3 anos - Metodologia I.

Figura 4 – Bacia do SE/AL: Previsão 3 anos utilizando o Modelo Knoring_8. Fonte: o autor

7.1.1.5. Golfo do México

A Tabela 33 e a Figura 83 mostram o resultado da previsão utilizando-se somente 25 das 28 observações anuais para estimar os parâmetros do Modelo Knoring_9. O valor observado é $R_{2002} = 18.754,36$ e o valor previsto utilizando as primeiras 25 observações é 15.694,25, resultando num erro percentual de - 16,32%.

Tabela 5 - Golfo do México: previsão 3 anos - Metodologia I.

Ano	Valores Reais	Previsão	Erro (%)
2000	14928.18	14793.50	-0.90%
2001	16549.80	15229.91	-7.98%
2002	18754.36	15694.25	-16.32%

Fonte: o autor.

Figura 5 – Golfo do México: Previsão 3 anos utilizando o Modelo Knoring_9. Fonte: o autor

7.1.2. Metodologia II

Fonte: o autor.

Adotou-se a nomenclatura "Modelo 1x1" a "Modelo 7x9" para representar os 63 modelos. Os ajustes e as previsões para os cinco conjuntos de dados considerados são mostrados abaixo.

7.1.2.1. Bacia de Campos

A Tabela 34 e a Figura 84 mostram o resultado da previsão utilizando-se somente 28 das 31 observações anuais para estimar os parâmetros do Modelo 6x7. O valor observado é $R_{2004} = 2.316,57$ e o valor previsto utilizando as primeiras 28 observações é 1.971,58, resultando num erro percentual de -14,89%.

Tabela 6 - Bacia de Campos: previsão 3 anos - Metodologia II.

Ano	Valores Reais	Previsão	Erro (%)
2002	1953.69	1793.12	-8.22%
2003	2187.48	1882.23	-13.95%
2004	2316.57	1971.58	-14.89%

Figura 6 – Bacia de Campos: Previsão 3 anos utilizando o Modelo 6x7. Fonte: o autor

7.1.2.2. Bacia do Recôncavo

A Tabela 35 e a Figura 85 mostram o resultado da previsão utilizando-se somente 36 das 39 observações anuais para estimar os parâmetros do Modelo 7x8. O valor observado é $R_{2002} = 258,00$ e o valor previsto utilizando as primeiras 36 observações é 253,04, resultando num erro percentual de -1,92%.

Ano	Valores Reais	Previsão	Erro (%)
2000	253.00	250.35	-1.05%
2001	258.00	251.70	-2.44%
2002	258.00	253.04	-1.92%

Tabela 7 - Bacia do Recôncavo: previsão 3 anos - Metodologia II.

Figura 7 – Bacia do Recôncavo: Previsão 3 anos utilizando o Modelo 7x8. Fonte: o autor

7.1.2.3. Bacia do Rio Grande do Norte/Ceará

A Tabela 36 e a Figura 86 mostram o resultado da previsão utilizando-se somente 23 das 26 observações anuais para estimar os parâmetros do Modelo 1x2. O valor observado é $R_{2004} = 117,83$ e o valor previsto utilizando as primeiras 23 observações é 120,23, resultando num erro percentual de 2,04%.

Tabela 8 – Bacia do RN/CE: previsão 3 anos - Metodologia II

Ano	Valores Reais	Previsão	Erro (%)
2002	110.84	112.64	1.62%
2003	115.15	116.46	1.14%
2004	117.83	120.23	2.04%

Fonte: o autor.

Figura 8 – Bacia do RN/CE: Previsão 3 anos utilizando o Modelo 1x2. Fonte: o autor

7.1.2.4. Bacia de Sergipe/Alagoas

A Tabela 37 e a Figura 87 mostram o resultado da previsão utilizando-se somente 36 das 39 observações anuais para estimar os parâmetros do Modelo 7x9. O valor observado é $R_{2004} = 111,45$ e o valor previsto utilizando as primeiras 36 observações é 109,29, resultando num erro percentual de -1,94%.

Ano	Valores Reais	Previsão	Erro (%)
2002	103.51	104.89	1.34%
2003	107.55	107.09	-0.43%
2004	111.45	109.29	-1.94%

Tabela 9 - Bacia de Sergipe/Alagoas: previsão 3 anos - Metodologia II.

Fonte: o autor.

Figura 9 – Bacia de Sergipe/Alagoas: Previsão 3 anos utilizando o Modelo 7x9. Fonte: o autor

7.1.2.5. Golfo do México

A Tabela 38 e a Figura 88 mostram o resultado da previsão utilizando-se somente 25 das 28 observações anuais para estimar os parâmetros do Modelo 7x8. O valor observado é $R_{2002} = 18.754,36$ e o valor previsto utilizando as primeiras 25 observações é 16.154,79, resultando num erro percentual de -13,86%.

Tabela 10 - Golfo do México: previsão 3 anos - Metodologia II.

Ano	Valores Reais	Previsão	Erro (%)
2000	14928.18	14932.96	0.03%
2001	16549.80	15523.21	-6.20%
2002	18754.36	16154.79	-13.86%

Fonte: o autor.

Figura 10 – Golfo do México: Previsão 3 anos utilizando o Modelo 7x8. Fonte: o autor

7.1.3. Metodologia III

Novamente, adota-se a nomenclatura "Modelo 1x1" a "Modelo 7x9" para representar os 63 modelos propostos no item 4.2. As previsões utilizando dados do Recôncavo são mostrados abaixo.

7.1.3.1. Bacia do Recôncavo

A Tabela 39 e a Figura 89 mostram o resultado da previsão utilizando-se somente 10 das 13 observações anuais para estimar os parâmetros do Modelo 1x2 (3^a curva-S). O valor observado é $R_{2002} = 258,00$ e o valor previsto utilizando as primeiras 10 observações é 252,96, resultando num erro percentual de -1,96%.

Tabela 11 - Bacia do Recôncavo: previsão 3 anos - Metodologia III.

Ano	Valores Reais	Previsão	Erro (%)
2000	253.00	250.32	-1.06%
2001	258.00	251.64	-2.46%
2002	258.00	252.96	-1.96%

Figura 11 – Bacia do Recôncavo: Previsão 3 anos utilizando o Modelo 1x2. Fonte: o autor.

7.2. Previsões a longo prazo: Modelos R(L) - Metodologias IV e V

O presente item investiga o desempenho do número de poços (L) como variável explicativa para prever o volume de óleo recuperável. Duas metodologias são aplicadas nesta seção: a metodologia de Knoring *et al.* (1999), item 3.5.3, e a metodologia proposta na presente tese, item 4.3.

Estas metodologias são importantes para previsões a longo prazo, pois os modelos não dependem do valor imediatamente anterior, conforme descrito nas três metodologias anteriores (item 6.1). Necessita-se somente do número acumulado de poços a serem perfurados.

7.2.1. Metodologia IV

Os nove modelos propostos por Knoring *et al.* (1999), que evoluem com o esforço exploratório (L), Equações 39 a 47, receberão nesta seção o nome de L_1 a L_9.

7.2.1.1. Bacia de Campos

Para testar sua capacidade preditiva (*out of sample*), utilizam-se somente 21 das 31 observações anuais para estimar os parâmetros do Modelo L_9. A Tabela 40 e a Figura 90 mostram o resultado da previsão.

O valor observado é $R_{2004} = 2.316,57$ e o valor previsto utilizando as primeiras 21 observações é 1.818,08, resultando num erro percentual de -21,52%. Além disso, apenas com o propósito comparativo, sugere-se o cálculo de limites "máximo" e "mínimo" para as previsões.

A previsão máxima é calculada com base no esforço exploratório máximo $(L_{máx})$. Adotou-se o valor " $L_{máx}$ " como sendo a soma do número de poços a serem perfurados no futuro (μ) mais três vezes o desvio padrão do volume perfurado anualmente (3 σ). Em outras palavras, $L_{máx} = \mu + 3.\sigma_{L}$.

Analogamente, a previsão mínima é calculada com base no esforço exploratório mínimo (L_{min}), onde $L_{min} = \mu - 3.\sigma_L$, desde que este valor seja maior que o valor do ano anterior L_{1994} . O desvio padrão do esforço exploratório anual calculado é igual a $\sigma_L = 19,37$.

Ano	Valores Reais	Previsão	Erro	Previsão (máxima)	Previsão (mínima)
1995	1096.74	1028.45	-6.23%	1256.49	966.09
1996	1201.30	1117.47	-6.98%	1363.91	966.09
1997	1324.61	1172.68	-11.47%	1430.53	966.09
1998	1399.33	1230.45	-12.07%	1500.22	1006.88
1999	1562.82	1322.15	-15.40%	1610.84	1082.86
2000	1640.80	1396.32	-14.90%	1700.28	1144.33
2001	1704.25	1509.87	-11.41%	1837.19	1238.45
2002	1953.69	1626.65	-16.74%	1977.97	1335.27
2003	2187.48	1740.24	-20.45%	2114.87	1429.46
2004	2316.57	1818.08	-21.52%	2208.68	1494.02

Tabela 12 - Bacia de Campos: Previsão 10 anos - Metodologia IV.

Figura 12 – Bacia de Campos: Previsão 10 anos utilizando o Modelo L_9. Fonte: o autor.

7.2.1.2. Bacia do Recôncavo

Para testar sua capacidade preditiva (*out of sample*), utilizam-se somente 29 das 39 observações anuais para estimar os parâmetros do Modelo L_2. A Tabela 41 e a Figura 91 mostram o resultado da previsão.

O valor observado é $R_{2004} = 261,00$ e o valor previsto utilizando as primeiras 29 observações é 251,92, resultando num erro percentual de -3,48%. O desvio padrão do esforço exploratório anual utilizado para calcular os limites "máximo" e "mínimo" é igual a $\sigma_L = 22,09$.

Ano	Valores Reais	Previsão	Erro	Previsão (máxima)	Previsão (mínima)
1993	245.87	245.60	-0.11%	250.29	240.70
1994	246.64	246.53	-0.04%	251.19	241.68
1995	248.23	247.60	-0.25%	252.21	242.80
1996	249.53	248.52	-0.40%	253.10	243.76
1997	252.76	249.08	-1.45%	253.64	244.34
1998	252.04	249.71	-0.92%	254.24	245.00
1999	253.75	250.06	-1.45%	254.58	245.36
2000	256.10	250.55	-2.17%	255.04	245.87
2001	260.76	251.51	-3.54%	255.97	246.87
2002	261.00	251.92	-3.48%	256.36	247.30

Tabela 13 – Bacia do Recôncavo: Previsão 10 anos - Metodologia IV.

Figura 13 – Bacia do Recôncavo: Previsão 10 anos utilizando o Modelo L_2. Fonte: o autor.

7.2.1.3. Bacia do Rio Grande do Norte/Ceará

Para testar sua capacidade preditiva (*out of sample*), utilizam-se somente 16 das 26 observações anuais para estimar os parâmetros do modelo L_9. A Tabela 42 e a Figura 92 mostram o resultado da previsão.

O valor observado é $R_{2004} = 117,83$ e o valor previsto utilizando as primeiras 16 observações é 112,05, resultando num erro percentual de -4,90%. O desvio padrão do esforço exploratório anual utilizado para calcular os limites "máximo" e "mínimo" é igual a $\sigma_L = 29,11$.

Ano	Valores Reais	Previsão	Erro	Previsão (máxima)	Previsão (mínima)
1995	74.79	81.11	8.46%	94.47	78.47
1996	78.69	88.03	11.87%	101.88	78.47
1997	82.98	91.90	10.75%	106.02	78.71
1998	89.06	95.85	7.63%	110.23	82.39
1999	98.33	98.74	0.42%	113.31	85.09
2000	105.90	101.18	-4.46%	115.91	87.37
2001	108.77	106.13	-2.43%	121.18	92.01
2002	110.84	107.47	-3.04%	122.60	93.26
2003	115.15	109.16	-5.20%	124.39	94.84
2004	117.83	112.05	-4.90%	127.46	97.56

Tabela 14 - Bacia do Rio Grande do Norte/Ceará: Previsão 10 anos - Metodologia IV.

Figura 14 – Bacia do RN/CE: Previsão 10 anos utilizando o Modelo L_9. Fonte: o autor.

7.2.1.4. Bacia do Sergipe/Alagoas

Para testar sua capacidade preditiva (*out of sample*), utilizam-se somente 29 das 39 observações anuais para estimar os parâmetros do modelo L_9. A Tabela 43 e a Figura 93 mostram o resultado da previsão.

O valor observado é $R_{2004} = 111,45$ e o valor previsto utilizando as primeiras 29 observações é 92,23, resultando num erro percentual de -17,25%. O desvio padrão do esforço exploratório anual utilizado para calcular os limites "máximo" e "mínimo" é igual a $\sigma_L = 20,30$.

Ano	Valores Reais	Previsão	Erro	Previsão (máxima)	Previsão (mínima)
1995	87.34	86.50	-0.96%	90.22	82.77
1996	89.15	86.75	-2.70%	90.46	83.02
1997	89.60	86.99	-2.91%	90.70	83.26
1998	91.15	87.48	-4.03%	91.19	83.75
1999	94.53	88.94	-5.91%	92.65	85.22
2000	99.67	90.34	-9.36%	94.04	86.63
2001	102.69	90.71	-11.67%	94.41	87.00
2002	103.51	90.83	-12.25%	94.53	87.12
2003	107.55	91.50	-14.92%	95.20	87.79
2004	111.45	92.23	-17.25%	95.92	88.52

Tabela 15 - Bacia do Sergipe/Alagoas: Previsão 10 anos - Metodologia IV.

Figura 15 – Bacia do SE/AL: Previsão 10 anos utilizando o Modelo L_9. Fonte: o autor.

7.2.2. Metodologia V

Conforme visto no item 4.3, a Metodologia V considera o controle e a condição em função do esforço exploratório. Para poder comparar os resultados das Metodologias IV e V, utilizam-se nesta seção os mesmos dados do item 7.2.1.

Novamente, adota-se a nomenclatura "Modelo 1x1" a "Modelo 7x9" para representar os 63 modelos propostos neste item.

7.2.2.1. Bacia de Campos

Para testar sua capacidade preditiva (*out of sample*), utilizam-se somente 21 das 31 observações anuais para estimar os parâmetros do Modelo 1x8. A Tabela 44 e a Figura 94 mostram o resultado da previsão. O valor observado é $R_{2004} = 2.316,57$ e o valor previsto utilizando as primeiras 21 observações é 1.927,65, resultando num erro percentual de -16,79%. O desvio padrão do esforço exploratório anual utilizado para calcular os limites "máximo" e "mínimo" é igual a $\sigma_L = 19,37$.

Ano	Valores Reais	Previsão	Erro	Previsão (máxima)	Previsão (mínima)
1995	1096,74	1041,13	-5,07%	1290,51	974,03
1996	1201,30	1137,75	-5,29%	1410,00	974,03
1997	1324,61	1198,15	-9,55%	1484,70	974,03
1998	1399,33	1261,73	-9,83%	1563,33	1017,85
1999	1562,82	1363,41	-12,76%	1689,07	1100,07
2000	1640,80	1446,29	-11,85%	1791,57	1167,09
2001	1704,25	1574,25	-7,63%	1949,83	1270,56
2002	1953,69	1707,15	-12,62%	2114,18	1378,02
2003	2187,48	1837,59	-15,99%	2275,51	1483,50
2004	2316,57	1927,65	-16,79%	2386,88	1556,31

Tabela 16 - Bacia de Campos: Previsão 10 anos - Metodologia V.

Fonte: o autor.

Figura 16 – Bacia de Campos: Previsão 10 anos utilizando o Modelo 1x8. Fonte: o autor.

7.2.2.2. Bacia do Recôncavo

Para testar sua capacidade preditiva (*out of sample*), utilizam-se somente 29 das 39 observações anuais para estimar os parâmetros do Modelo 7x3. A Tabela 45 e a Figura 95 mostram o resultado da previsão.

O valor observado é $R_{2002} = 261,00$ e o valor previsto utilizando as primeiras 29 observações é 258,91, resultando num erro percentual de -0,80%. O desvio padrão do esforço exploratório anual utilizado para calcular os limites "máximo" e "mínimo" é igual a $\sigma_L = 22,09$.

Ano	Valores Reais	Previsão	Erro	Previsão (máxima)	Previsão (mínima)
1993	245.87	249.29	1.39%	256.34	242.42
1994	246.64	250.66	1.63%	257.75	243.75
1995	248.23	252.25	1.62%	259.38	245.30
1996	249.53	253.63	1.65%	260.80	246.65
1997	252.76	254.49	0.68%	261.68	247.48
1998	252.04	255.45	1.36%	262.67	248.42
1999	253.75	255.99	0.88%	263.22	248.95
2000	256.10	256.75	0.25%	264.00	249.68
2001	260.76	258.26	-0.96%	265.55	251.16
2002	261.00	258.91	-0.80%	266.22	251.80

Tabela 17 - Bacia do Recôncavo: Previsão 10 anos - Metodologia V.

Figura 17 – Bacia do Recôncavo: Previsão 10 anos utilizando o Modelo 7x3. Fonte: o autor.

7.2.2.3. Bacia do Rio Grande do Norte/Ceará

Para testar sua capacidade preditiva (*out of sample*), utilizam-se somente 16 das 26 observações anuais para estimar os parâmetros do Modelo 1x8. A Tabela 46 e a Figura 96 mostram o resultado da previsão.

O valor observado é $R_{2004} = 117,83$ e o valor previsto utilizando as primeiras 16 observações é 118,18, resultando num erro percentual de 0,30%. O desvio padrão do esforço exploratório anual utilizado para calcular os limites "máximo" e "mínimo" é igual a $\sigma_L = 29,11$.

Ano	Valores Reais	Previsão	Erro	Previsão (máxima)	Previsão (mínima)
1995	74,79	81,60	9,11%	96,74	68,34
1996	78,69	89,32	13,51%	105,56	75,10
1997	82,98	93,75	12,98%	110,62	78,98
1998	89,06	98,35	10,44%	115,88	83,01
1999	98,33	101,78	3,51%	119,79	86,01
2000	105,90	104,70	-1,13%	123,13	88,57
2001	108,77	110,76	1,83%	130,05	93,87
2002	110,84	112,42	1,43%	131,95	95,33
2003	115,15	114,53	-0,54%	134,36	97,17
2004	117,83	118,18	0,30%	138,53	100,37

Tabela 18 - Bacia do RN/CE: Previsão 10 anos - Metodologia V.

Figura 18 – Bacia do RN/CE: Previsão 10 anos utilizando o Modelo 1x8. Fonte: o autor.

7.2.2.4. Bacia de Sergipe/Alagoas

Para testar sua capacidade preditiva (*out of sample*), utilizam-se somente 29 das 39 observações anuais para estimar os parâmetros do Modelo 4x8. A Tabela 47 e a Figura 97 mostram o resultado da previsão.

O valor observado é $R_{2004} = 111,45$ e o valor previsto utilizando as primeiras 29 observações é 92,60, resultando num erro percentual de -16,91%. O desvio padrão do esforço exploratório anual utilizado para calcular os limites "máximo" e "mínimo" é igual a $\sigma_L = 20,30$.

Tabela 19 – Bac	ia de SE/A	L: Previsão	10 ano	s - Me	todol	ogi	ia V.	 	

Ano	Valores Reais	Previsão	Erro	Previsão (máxima)	Previsão (mínima)
1995	87.34	86.62	-0.82%	90.49	82.79
1996	89.15	86.88	-2.55%	90.74	83.04
1997	89.60	87.13	-2.76%	91.00	83.29
1998	91.15	87.64	-3.86%	91.51	83.80
1999	94.53	89.16	-5.68%	93.04	85.31
2000	99.67	90.62	-9.08%	94.53	86.76
2001	102.69	91.00	-11.38%	94.91	87.14
2002	103.51	91.13	-11.96%	95.04	87.26
2003	107.55	91.83	-14.61%	95.75	87.96
2004	111.45	92.60	-16.91%	96.53	88.72

Figura 19 – Bacia de SE/AL: Previsão 10 anos utilizando o Modelo 4x8. Fonte: o autor.

Pode-se observar no gráfico acima que, para este conjunto de dados, a previsão *out of sample* não retrata os valores reais observados. Por esta razão, testa-se a capacidade preditiva utilizando-se 34 das 39 observações anuais (previsão 5 anos).

As Tabelas 48 e 49 e as Figuras 98 e 99 mostram, respectivamente, os resultados da previsão utilizando os Modelos 4x8 e 1x8. O valor previsto utilizando o Modelo 4x8 é 118,27 e utilizando o Modelo 1x8 é 113,86.

Ano	Valores Reais	Previsão	Erro
2000	99.67	101.79	2.12%
2001	102.69	104.17	1.44%
2002	103.51	105.04	1.48%
2003	107.55	110.53	2.77%
2004	111.45	118.27	6.12%

Tabela 20 – Bacia de SE/AL: Previsão 5 anos – Modelo 4x8.

Tabela 21 – Bacia de SE/AL: Previsão 5 anos – Modelo 1x8.

Ano	Valores Reais	Previsão	Erro
2000	99.67	100.83	1.16%
2001	102.69	102.82	0.13%
2002	103.51	103.54	0.03%
2003	107.55	107.95	0.37%
2004	111.45	113.86	2.16%

Fonte: o autor.

Figura 21 – Bacia de SE/AL: Previsão 5 anos utilizando o Modelo 1x8. Fonte: o autor.

7.3. Análise das previsões

O presente item apresenta a análise das previsões para os conjuntos de dados testados.

7.3.1. Bacia de Campos

Conforme as Figuras 79 e 84, as Metodologias I e II resultam em previsões de 3 anos inadequadas, resultando num erro de -13,37% e -14,89%, respectivamente.

Em relação às previsões de 10 anos, a Metodologia V alcança um resultado melhor que a Metodologia IV, diminuindo em aproximadamente 5% o erro na previsão. Porém, a Figura 94 mostra que os valores previstos se afastam dos valores reais nos três últimos anos de previsão (2002, 2003 e 2004).

Após analisar os gráficos de volume recuperável ao nível de cada campo pertencente à bacia, observam-se grandes acréscimos em quatro dos principais campos. Por se tratar de dados confidenciais, estes quatro campos serão chamados de A, B, C, D. Somente os campos A, B e D são responsáveis por aproximadamente 73% do volume total acrescentado (249,44 milhões de m³) entre os anos de 2001 e 2002.

A Figura 100 mostra a evolução destes quatro campos. Pode-se observar um acréscimo de volume entre os anos de 2001 e 2002 de 69,85 milhões de m³ no campo de A, de 46,87 milhões de m³ no campo B. No campo C, o acréscimo entre os anos de 2001 e 2003 é de 57,42 milhões de m³. Além disso, mais 64,73 milhões de m³ foram acrescentados devido à descoberta do campo D em 2002.

Figura 22 – Volume recuperável em quatro dos principais campos da Bacia de Campos. Fonte: o autor.

Os grandes incrementos no Campo A, ao serem analisados com especialistas da Petrobras, devem-se principalmente à transferência de reservas não provadas para a categoria provada. Esta transferência foi possível devido aos novos projetos "Piloto de Produção".

Em relação aos Campos B e C, os grandes incrementos devem-se principalmente às perfurações de poços de delimitação (ADR – Aquisição de Dados de Reservatório), que aumentaram significativamente o volume dos campos. A perfuração destes poços confirmou uma espessura dos reservatórios maior que a prevista. Além disso, no Campo B foram feitos estudos de reavaliação e otimização do número e distribuição dos poços, que resultaram no aumento do fator de recuperação do campo.

7.3.2. Bacia do Recôncavo

Conforme as Figuras 80, 85 e 89, as Metodologias II e III resultam em previsões de 3 anos um pouco melhores que a Metodologia I. O erro na previsão nas Metodologias I, II e III são -3,39%, -1,92% e -1,96%, respectivamente.

Nas previsões de 10 anos, a Metodologia V alcança um resultado melhor que a Metodologia IV, diminuindo para menos de 1% o erro na previsão.

A Figura 95 ilustra um acréscimo de volume relevante em 2001. A princípio, pensou-se que este incremento fosse devido à transferência de recursos prováveis e possíveis para a categoria provada.

Após analisar os gráficos de volume recuperável ao nível de cada campo pertencente à bacia, observa-se que os acréscimos mais significativos referem-se aos campos listados na Tabela 50. A coluna "recursos descobertos" refere-se à soma das reservas provadas, prováveis e possíveis. Pode-se observar nesta tabela que, com exceção com campo "U", os incrementos em 2001 não se devem à transferência de recursos para a categoria provada.

l	Campo	ANO	Provada *	Provável *	Possível *	Recursos Descobertos *	Produção Acumulada *	Volume Recuperável (R) *	Delta R *
	D	2000	2,13	0,29	0,05	2,46	47,22	49,35	0.45
l	F	2001	2,28	0,23	0,07	2,58	47,52	49,80	0,45
	0	2000	3,59	1,76	0,25	5,59	32,60	36,19	0.00
l	G	2001	4,26	2,77	0,28	7,31	32,83	37,09	0,30
[2000	2,78	0,63	0,00	3,41	21,45	24,23	0.70
l	ĸ	2001	3,29	1,00	0,00	4,29	21,66	24,95	0,72
	0	2000	1,34	0,43	0,00	1,77	15,53	16,87	1.04
l	3	2001	2,17	0,28	0,00	2,45	15,74	17,91	1,04
	т	2000	4,01	0,17	0,35	4,53	15,94	19,95	0.44
	1	2001	4,24	0,17	0,38	4,79	16,12	20,36	0,41
	Ш	2000	0,65	0,22	0,07	0,94	0,82	1,47	0.32
l	0	2001	0,87	0,00	0,05	0,92	0,92	1,79	0,52
	~	2000	1,10	0,53	0,08	1,71	2,65	3,75	0.16
	v	2001	1,15	0,52	0,08	1,76	2,76	3,91	0,10
[~	2000	0,26	0,00	0,00	0,26	0,52	0,78	0.16
	^	2001	0,38	0,00	0,00	0,38	0,56	0,93	0,10
[7	2000	0,16	0,11	0,00	0,26	3,30	3,46	0.25
	7	2001	0,32	0,25	0,00	0,57	3,38	3,70	0,20

Tabela 22 – Bacia do Recôncavo: análise do ano 2001.

* milhões de m3

Fonte: o autor.

7.3.3. Bacia do RN/CE

Conforme as Figuras 81 e 86, a Metodologia II alcança um resultado melhor que a Metodologia I, diminuindo o erro na previsão de 7,05% para 2,04%. Em relação às previsões de 10 anos, a Metodologia V prevê melhor que a Metodologia IV, diminuindo para menos de 1% o erro na previsão.

Além disso, a Figura 96 mostra que, utilizando a Metodologia V, os quatro primeiros valores previstos (R_{1995} a R_{1998}) começam muito acima dos valores reais. Isto pode levar à falsa impressão que a previsão de 10 anos já começou errada no primeiro ano de previsão (1995). Entretanto, é relevante observar que isto ocorre porque as reavaliações no último ano dos dados (1994) mudaram de patamar os volumes R_{1995} a R_{1998} (Figura 101).

Dessa forma, o melhor ajuste para previsão considera que o histórico de dados (16 anos) é mais importante que o valor do último ponto (1994). A reavaliação pontual no ano de 1994 não afeta o ajuste como um todo. O modelo continua seguindo na previsão a mesma tendência do passado. A previsão (*out of sample*) baseia-se no melhor ajuste global e não pontual considerando somente o último ponto.

Bacia RN/CE

Figura 23 – Volume Recuperável na Bacia RN/CE: Reavaliação em 199 Fonte: o autor.

7.3.4. Bacia de SE/AL

Conforme as Figuras 82 e 87, as Metodologias I e II resultam em previsões de 3 anos bem próximas, resultando num erro de -1,80% e -1,94%, respectivamente.

Em relação às previsões de 10 anos, a Figura 97 mostra que os grandes acréscimos ocorridos nos últimos anos resultaram em previsões inadequadas. Isto se deve principalmente aos dois maiores campos da bacia (W e Y) que têm um forte crescimento nos últimos anos (Figuras 102 e 103).

Nos últimos 10 anos, o acréscimo total foi de 24,11 milhões de m³. Somente estes dois campos são responsáveis por aproximadamente 84% do volume total acrescentado entre os anos de 1995 e 2004.

Figura 24 – Volume Recuperável no Campo W. Fonte: o autor.

Verifica-se que os grandes incrementos nestes campos, ao serem analisados com especialistas da Petrobras, devem-se principalmente ao aumento no volume de água injetada, resultando num maior fator de recuperação. Dessa forma, os modelos não capturaram o incremento de volume, pois não houve um maior esforço exploratório.

Embora o modelo resulte numa previsão de 10 anos inadequada, as Figuras 98 e 99 (previsão de 5 anos) mostram que, após iniciado um novo ciclo de

crescimento, o modelo se adapta bem a este novo padrão de crescimento, resultando em excelentes previsões.

Isto acontece porque o modelo consegue se adaptar a uma nova tendência de crescimento após um período praticamente constante do volume recuperável. Porém, conforme mostrado na previsão de 10 anos, o modelo não consegue se antecipar ao novo período de crescimento.

Se, por um lado, isto mostra que os modelos podem resultar em previsões destoantes, por outro, mostra também a flexibilidade dos modelos que, através da combinação de diferentes parâmetros, adaptam-se às mudanças no controle e nas condições do processo exploratório.

7.3.5. Golfo do México

Conforme as Figuras 83 e 88, as Metodologias I e II resultam em previsões de 3 anos inadequadas, resultando num erro de -16,32% e -13,86%, respectivamente. Os modelos não conseguem captar os grandes incrementos a partir do ano 25, que se devem principalmente à incorporação de reservatórios profundos.

7.4. Sumário das Metodologias

A Tabela 51 resume os resultados das cinco metodologias e dos quatro conjuntos de dados testados neste capítulo.

PUC-Rio - Certificação Digital Nº 0220979/CA

Tabela 23 - Resumo das Metodologias - Capítulo 7.

Resultado Final

Parte 1: Evolução das descobertas en	i função do tempo	Campos	Recôncavo	RN/CE	SE/AL	Golfo do México
	Modelo	Modelo Knoring_8	Modelo Knoring_7	Modelo Knoring_8	Modelo Knoring_8	Modelo Knoring_9
Metodologia I: Função Seleção de Controle Linear		Valor Real 2.317	Valor Real 258	Valor Real 118	Valor Real 111	Valor Real 18.754
proposto por Knoring et al. (1999)	Previsao 3 Arios (ourt of sample)	Previsão 2.007	Previsão 249	Previsão 126	Previsão 109	Previsão 15.694
	(out of sample)	Erro (%) -13,37%	Erro (%) -3,39%	Erro (%) 7,05%	Erro (%) -1,80%	Erro (%) -16,32%
	Modelo	Modelo 6x7	Modelo 7x8	Modelo 1x2	Modelo 7x9	Modelo 7x8
Metodologia II: Função Seleção de Controle Não-	Draviné 2 Anno	Valor Real 2.317	Valor Real 258	Valor Real 118	Valor Real 111	Valor Real 18.754
Linear	Previsao 3 Arios	Previsão 1.972	Previsão 253	Previsão 120	Previsão 109	Previsão 16.155
	(out of sample)	Erro (%) -14,89%	Erro (%) -1,92%	Erro (%) 2,04%	Erro (%) -1,94%	Erro (%) -13,86%
	Modelo		Modelo 1x2			
Metodologia III: Função Seleção de Controle Não-	Drovieão 3 Ance	Gráfico não apresenta mais do uma subra S hom	Valor Real 258	Gráfico não apresenta mais do uma cuma S	Gráfico não apresenta mais do uma cupia S hom	Gráfico não apresenta mais do uma cupra S hom
Linear considerando novos objetivos exploratórios	(out of sample)	inais de una cuiva-o penir definida	Previsão 253	bem definida	inais ue unia cuiva-o penn definida	illiais de uilla cuiva-o pelli definida
	(ant at adultate)		Erro (%) -1.96%			

Parte 2: Evolução das descobertas e	em função de "L"	Campos	Recôncavo	RN/CE	SE/AL	Golfo do México
	Modelo	Modelo L_9	Modelo L_2	Modelo L_9	Modelo L_9	
Metodologia IV: em função do Indicador de		Valor Real 2.317	Valor Real 261	Valor Real 118	Valor Real 111	Não tem dados de volume
Eficiência proposto por Knoring et al. (1999)	(out of sample)	Previsão 1.818	Previsão 252	Previsão 112	Previsão 92	exploratório disponível
		Erro (%) -21,52%	Erro (%) -3,48%	Erro (%) -4,90%	Erro (%) -17,25%	
	Modelo	Modelo 1X8	Modelo 7x3	Modelo 1X8	Modelo 4x8	
Metodologia V: Controle e Condição em função do		Valor Real 2.317	Valor Real 261	Valor Real 118	Valor Real 111	Não tem dados de volume
ssforço exploratório (L)	/out of sample)	Previsão 1.928	Previsão 259	Previsão 118	Previsão 93	exploratório disponível
		Erro (%) -16,79%	Erro (%) -0,80%	Erro (%) 0,30%	Erro (%) -16,91%	

Fonte: o autor.

A Metodologia I alcança boa previsão de 3 anos somente para a Bacia SE/AL. A Metodologia II tem bons resultados nas Bacias de SE/AL e do RN/CE.

Embora a Metodologia II apresente previsões um pouco melhores que a Metodologia I nas demais bacias, as duas metodologias não foram capazes de capturar a mudança no padrão de crescimento dos últimos anos, principalmente em Campos e no Golfo do México.

Em se tratando de previsão, as Metodologias II e III apresentaram o mesmo resultado para os dados do Recôncavo. Dessa forma, as três primeiras metodologias não são adequadas para a previsão.

Isto ocorre porque não existe uma variável explicativa que consiga captar a mudança no crescimento quando esta acontecer no horizonte de previsão.

Na Metodologia IV, embora exista uma variável explicativa, os modelos se mostraram inadequados para a previsão de 10 anos. Em todas as quatro séries testadas, os erros na previsão *out of sample* são maiores que nas Metodologias II e V. Somente na Bacia do RN/CE obteve-se um resultado aceitável.

Quando comparada com a Metodologia IV, a Metodologia V apresenta ganhos significativos nas previsões de 10 anos em duas das quatro séries brasileiras testadas. Nas Bacias do Recôncavo e do RN/CE, os erros nas previsões *out of sample* são menores que 1%.

Nas outras duas bacias, embora apresente previsões um pouco superiores à Metodologia IV, a Metodologia V não foi capaz de se antecipar às mudanças no padrão de crescimento dos últimos 10 anos.

Conforme visto no Capítulo 3, pelo fato de estarmos tratando aqui de volumes acumulados, esperava-se que os gráficos R(t) ao longo do tempo seguissem o formato da curva sigmóide com valores sempre crescentes. Entretanto, estimativas de reservas são geralmente revisadas à medida que dados geológicos ou de engenharia tornam-se disponíveis ou na ocorrência de mudanças das condições econômicas.

Revisões podem resultar em decréscimos nos volumes acumulados. Dessa forma, poderíamos obter melhores resultados na previsão, caso eliminássemos estas variações nas curvas R(t).

8. CONCLUSÕES

A presente tese fornece metodologias para prever o volume de óleo recuperável e apresenta aplicações práticas em cinco bacias petrolíferas. As metodologias têm a vantagem de conseguir modelar:

- A intervenção humana (conhecimento) através da função seleção de controle;
- O declínio natural do número de campos a serem descobertos através da função seleção de condições.

Para os conjuntos de dados analisados, as metodologias propostas alcançam melhores resultados de ajuste (*in sample*), análise de resíduo e previsão (*out of sample*) do que os modelos propostos por Hubbert (1956) e Knoring *et al.* (1999).

Cinco trabalhos para estimar as descobertas futuras de óleo e gás foram abordados na revisão bibliográfica: i) o método Creaming tem a vantagem de avaliar probabilisticamente as novas descobertas; ii) os modelos propostos em Drew (1990) baseiam-se no princípio da exaustão física; iii) o USGS (2000) considera os dados geológicos em suas estimativas; Deffeyes (2001) e Knoring *et al.* (1999) utilizam dados históricos para prever recursos através do ajuste de curva.

Para uma melhor compreensão dos resultados, as metodologias foram divididas em dois grupos: i) previsões a curto prazo (Metodologias I, II e III); ii) previsões a longo prazo (Metodologias IV e V). As diferenças entre as cinco metodologias são expostas a seguir:

- Metodologia I: refere-se aos modelos propostos por Knoring *et al.* (1999). Estes modelos procuram reproduzir o processo de descoberta através da modelagem de duas funções: função seleção de controle (linear) e função de seleção de condições;
- Metodologia II: baseia-se na Metodologia I, porém sugere funções seleção de controle não lineares para explicar o processo de descoberta;

- Metodologia III: fundamenta-se na Metodologia II, porém considera mudanças nos objetivos exploratórios para explicar a evolução do processo de descobertas;
- Metodologia IV: refere-se aos modelos propostos por Knoring *et al.* (1999) construídos a partir de indicadores de eficiência em função do esforço exploratório;
- 5. Metodologia V: baseia-se na Metodologia II, mas usa o esforço exploratório como variável explicativa para prever o volume de óleo recuperável.

As Metodologias I, II e III são relevantes para o planejamento a curtoprazo (1-3 anos), pois os modelos dependem do valor imediatamente anterior para o cálculo dos volumes recuperáveis.

As Metodologias IV e V são relevantes para o planejamento a longo prazo, pois os modelos dependem somente do número de poços exploratórios para estimar os volumes recuperáveis.

As três metodologias propostas atingem o objetivo principal da tese, que é desenvolver novos procedimentos para melhorar a estimação dos volumes recuperáveis de óleo e gás, servindo de ferramenta para as empresas do setor petrolífero na tomada de decisão. As principais contribuições para os conjuntos de dados testados são:

1. Bacia de Campos:

Metodologia II: Bom desempenho "*in sample*". Ao contrário da Metodologia I (Knoring *et al.*, 1999), os resultados do Teste BDS nos resíduos não rejeitam a hipótese nula (i.i.d.), indicando que não existe estrutura de dependência (linear ou não linear) nos resíduos. Todavia, a previsão de 3 anos "*out of sample*" não acompanhou o crescimento dos últimos anos.

Pode-se observar que o ajuste utilizado nas três primeiras metodologias fica um pouco defasado no ano 15, devido ao forte crescimento neste ano. Este crescimento deve-se à mudança no modelo geológico para águas profundas, possibilitada pelo progresso tecnológico (sísmica) e tecnologias de perfuração e produção.

Metodologia V: Além de classificar o resíduo como sendo ruído branco, apresenta melhor ajuste "*in sample*" que a Metodologia IV (Knoring *et al.*, 1999). Em relação à previsão de 10 anos, embora o Modelo 1x8 não tenha acompanhado o acréscimo dos últimos três anos devido principalmente à reavaliação dos parâmetros de engenharia de reservatório e à perfuração de poços de delimitação, os resultados são melhores que os fornecidos utilizando a Metodologia IV.

2. Bacia do Recôncavo:

Metodologias II e III: Além de classificar o resíduo como sendo ruído branco, apresentam melhores ajustes "*in sample*" e previsões de 3 anos "*out of sample*" que a Metodologia I (Knoring *et al.*, 1999).

Metodologia V: apresenta melhor ajuste "*in sample*" e previsões de 10 anos "*out of sample*" que a Metodologia IV (Knoring *et al.*, 1999).

3. Bacia do RN/CE:

Metodologia II: Assim como a Metodologia I (Knoring *et al.*, 1999), a Metodologia II classifica o resíduo como sendo ruído branco e apresenta bom desempenho "*in sample*". Entretanto, apresenta melhor previsão de 3 anos "*out of sample*" que a Metodologia I (Knoring *et al.*, 1999).

Metodologia V: Além de classificar o resíduo como sendo ruído branco, apresenta melhor ajuste "*in sample*" e previsão de 10 anos "*out of sample*" que a Metodologia IV (Knoring *et al.*, 1999). Além disso, pode-se observar nas Figuras 64 e 76 que os poços injetores são os maiores responsáveis pelo acréscimo do controle (informação) nos anos finais da exploração.

4. Bacia do SE/AL:

Metodologia II: Apresenta melhor desempenho "*in sample*" que a Metodologia I (Knoring *et al.*, 1999). Assim como a Metodologia I, a Metodologia II apresenta bom desempenho "*out of sample*" nas previsões de 3 anos.

Metodologia V: Além de classificar o resíduo como sendo ruído branco, apresenta ajuste "*in sample*" muito melhor que a Metodologia IV (Knoring *et al.*, 1999). Assim como a Metodologia IV, a previsão de 10 anos "*out of sample*" não acompanhou o crescimento dos últimos anos devido ao aumento no volume de água injetada, resultando num maior fator de recuperação. Os modelos não capturaram o incremento de volume, pois não houve um maior esforço exploratório.

5. Golfo do México:

Metodologia II: Além de classificar o resíduo como sendo ruído branco, apresenta melhor ajuste "*in sample*" e previsões de 3 anos "*out of sample*" que a Metodologia I (Knoring *et al.*, 1999). A previsão de 3 anos "*out of sample*" não acompanhou o crescimento dos últimos anos.

Foram feitos testes utilizando-se somente os poços exploratórios nas Metodologias IV e V para explicar a evolução das descobertas. Entretanto, os resultados utilizando o esforço exploratório como sendo a soma do número de poços injetores e exploratórios foram melhores sucedidos. Por esta razão, os Capítulos 6 e 7 apresentaram somente os resultados considerando os poços injetores e exploratórios.

Apesar de os poços injetores conseguirem explicar o aumento no volume recuperável em algumas bacias, nada nos garante que os poços injetores a serem perfurados no futuro continuarão explicando o comportamento nos próximos anos.

É relevante observar que as altas no preço do petróleo e o fim do monopólio a partir de 1998 aceleraram a incorporação de reservas nos últimos anos. Ou seja, a definição dos tempos de exploração dos blocos pela ANP mudou o ritmo das atividades das empresas petrolíferas e, conseqüentemente, o ritmo do aumento do volume recuperável nos últimos anos.

Esta mudança pode ser observada nos gráficos da função seleção de controle (Figuras 72, 76 e 78). Três das quatro séries testadas apresentam uma função de controle ainda crescente. A única exceção é a Bacia do Recôncavo, que nos últimos anos permanece num nível quase que constante.

Os resultados das previsões de 10 e 5 anos utilizando os dados de SE/AL mostram uma limitação importante dos modelos que utilizam séries temporais para previsão: a estimação dos parâmetros e, conseqüentemente, as previsões de longo prazo são afetadas pelos dados do passado. Ou seja, irá depender de onde cortamos a curva para testar a capacidade preditiva do modelo.

A previsão de 5 anos em SE/AL mostra que, após iniciado um novo ciclo de crescimento, o modelo se adapta bem a este novo padrão, resultando em excelentes previsões. Porém, conforme mostrado na previsão de 10 anos, o modelo não consegue se antecipar ao novo período de crescimento.

Se, por um lado, isto mostra que os modelos podem resultar em previsões destoantes, por outro, mostra também a flexibilidade dos modelos que, através da combinação de diferentes parâmetros, se adaptam às mudanças no controle e nas condições do processo exploratório.

Outra possível explicação para a mudança de comportamento entre as previsões de 5 e 10 anos na Bacia SE/AL diz respeito aos dados de esforço exploratório. Isto porque a estimativa do número de poços a serem perfurados com 10 anos de antecedência pode não ser uma tarefa fácil, tornando-se "ambiciosa" demais para os métodos baseados em séries temporais.

De acordo com especialistas da Petrobras, baseando-se nos modelos vigentes dos contratos de concessão das operadoras que exploram e produzem petróleo no Brasil, é possível planejar, com certa precisão, o número de poços num horizonte de até 5 anos.

Isto mostra que, devido às estimativas mais confiáveis do esforço exploratório, um horizonte mais adequado para as Metodologias IV e V é de 5 anos.

Dessa forma, para trabalhos futuros, sugere-se:

- 1. Aplicar as metodologias para um horizonte de 5, em vez de 10 anos;
- Na Metodologia V, fazer uma análise multi-variável, dividindo-se a variável esforço exploratório (L) em dois componentes: poços exploratórios e poços injetores. Além disso, pode-se analisar os dados referentes às novas descobertas e de crescimento de reservas dos campos existentes separadamente;
- 3. Considerar somente os poços exploratórios como variável explicativa nas Metodologias IV e V, excluindo os poços injetores;
- 4. Considerar novas variáveis explicativas que influenciam o fator de recuperação como, por exemplo, o volume a ser injetado. Dessa forma,

os modelos podem capturar o incremento de volume mesmo que não haja aumento no número de poços perfurados;

- Fazer analogia entre os padrões de crescimento de diferentes bacias petrolíferas como, por exemplo, a Bacia de Campos e a Bacia do Espírito Santo;
- 6. Validar a Metodologia III com dados de outras bacias petrolíferas;
- 7. Modelar a descontinuidade no momento em que novos objetivos exploratórios são adicionados (Metodologia III);
- 8. Propor diferentes cenários para a função seleção de controle;
- 9. Aplicar as Metodologias II, III e V com dados de bacias petrolíferas internacionais;
- 10. Verificar se as metodologias são adequadas para séries históricas de gás e óleo equivalente.

REFERÊNCIAS BIBLIOGRÁFICAS

ANP, 2000, **Agência Nacional do Petróleo - Portaria nº. 009 de 21 de Janeiro de 2000**. Último acesso ao site em 12 de Julho de 2006. Disponível na Internet: <u>http://nxt.anp.gov.br/NXT/gateway.dll/leg/folder portarias anp/portarias anp tec/2000/janeiro/pa</u> <u>np%209%20-%202000.xml?f=templates\$fn=default.htm&sync=1&vid=anp:10.1048/enu</u>

ANTUNES, P.T.S., 2003, Modelagem Numérica Tridimensional Visando o Estudo de Tensões na Bacia do Recôncavo via Método dos Elementos Finitos, Tese de Doutorado, Programa de Pós-Graduação em Engenharia Civil, UFRJ, Rio de Janeiro, Brasil.

ARPS, J.J. & ROBERTS, T.G., 1958, Economics of drilling for Cretaceous oil on east flank of Denver Julesburg basin, American Association of Petroleum Geologists Bulletin 42(11), 2549-66.

BENTLEY, R.W., 2002, **Oil Forecasts, Past and Present**, International Workshop on Oil Depletion, Uppsala, Sweden, May 23-24, 2002. Último acesso ao *site* em 05 de Maio de 2005. Disponível na Internet: http://www4.tsl.uu.se/isv/IWOOD2002/ppt/UppsalaRB.doc

BP, 2004, **Statistical review of world energy june 2004**. Último acesso ao *site* em 25 de Maio de 2005. Disponível na Internet: <u>http://www.zawya.com/oilgas/</u>

BROCK, W., DECHERT, W.D., SCHEINKMAN, J., 1987, A Test for Independence Based on the Correlation Dimension, Econometric Reviews, 15 (3), 197-235. BROCK, W., HSIEH, D., LEBARON, B., 1991, Non Linear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence, Cambridge, MA: MIT Press.

CAMPBELL, C.J., 1997, **The Coming Oil Crisis**. Multi-Science Publishing Company and Petroconsultants.

DEFFEYES, K.S., 2001, **Hubbert's Peak**. The impending world oil shortage. Princeton University Press.

DREW, L.J., 1990, **Oil and Gas Forecasting** – Reflections of a Petroleum Geologist. New York, Oxford University Press.

ECONOMIDES, M.J., 2004, Is There an Impending World Oil Shortage?, World Energy, Vol. 7, nº 4, pp. 126-129.

FIGUEIREDO, A.M., 1995, Geologia das Bacias Brasileiras *in*: VIRO, E.J., 1995, Avaliação de Formações no Brasil, Schlumberger, Rio de Janeiro.

FRYER, M.J. & GREENMAN, J.V., 1990, Estimating the Oil Reserve Base in the UK Continental Shelf, J. Opl. Res. Soc., Vol. 41, n°.8, pp. 725-733.

GAZOLA, L.M. & CARATORI, P.M., 2003, O Poder da Estatística BDS em modelos de volatilidade estocástica: uma investigação utilizando simulação de Monte Carlo, Trabalho de Fim de Curso, Departamento de Engenharia Elétrica, PUC/Rio.

HUBBERT, M.K., 1956, Nuclear energy and the fossil fuels, American Petroleum Institute Drilling and Production Practice, Proceedings of Spring Meeting, San Antonio, pp. 7-25; also Shell Development Company Publication 95, June 1956.
KNORING, L.D., CHILLINGAR, G.V., GORFUNKEL, M.V., 1999, Strategies for Optimizing Petroleum Exploration. Gulf Publishing Company.

MALTHUS, T., 1798, **An Essay on the Principle of Population**, London, J. Johnson, First edition.

MEISNER, J. & DEMIRMEN, F., 1981, *The Creaming Method: A Bayesian Procedure to Forecast Future Oil and Gas Discoveries in Mature Exploration Provinces*, J. R. Statist. Soc., 144, Part 1, pp. 1-31.

MMS - Minerals Management Service, 2002, "Reserve History for Proved

Fields - Gulf of Mexico Outer Continental Shelf, December 31, 2002. Último acesso ao *site* em 24 de Junho de 2006. Disponível na Internet:

http://www.gomr.mms.gov/homepg/offshore/fldresv/2002-HIST.pdf

PETROBRAS, 2005, **História – Setor Petróleo**. Último acesso ao *site* em 30 de Maio de 2005. Disponível na Internet:

http://www2.petrobras.com.br/portal/Petrobras.htm

ROSA, S.E.S. & GOMES, G.L., 2004, **O Pico de Hubbert e o Futuro da Produção Mundial de Petróleo**. Revista do BNDES, Rio de Janeiro, Dezembro, Vol. 11, nº. 22, pp. 21-49.

SILVA, R.R., 1983, **Contribuição à Avaliação Probabilística de Potencial Petrolífero**. Dissertação de Mestrado, Instituto de Matemática, Universidade Federal do Rio de Janeiro (UFRJ).

SPE - Society of Petroleum Engineers. **Petroleum resources classification system and definitions**. Último acesso ao *site* em 30 de Maio de 2005. Disponível na Internet: <u>http://www.spe.org/spe/jsp/basic/0,,1104_12171,00.html</u> e http://www.spe.org/spe/jsp/basic/0,2396,1104_12169_0,00.html

THOMAS, J.E. Fundamentos de engenharia de petróleo. Rio de Janeiro: Interciência, 2001.

USGS, 1995, **1995 National Assessment of United States oil and gas resources:** U.S., by U.S. Geological Survey National Oil and Gas Resource Assessment Team – Geological Survey Circular 1118, 20 p.

USGS, 2000, United States Geological Survey World Petroleum Assessment 2000 – Description and Results, by United States Geological Survey World Energy Assessment Team – United States Geological Survey Digital Data Series DDS-60, version 1.1, 4 CD-ROM set.

USGS, 2003, United States Geological Survey, Assessment of Undiscovered Oil and Gas Resources of the San Joaquin Basin Province of California, USGS Fact Sheet FS-2004-3043. Último acesso ao *site* em 05 de Maio de 2005. Disponível na Internet: <u>http://energy.cr.usgs.gov/oilgas/noga/</u>

VERGARA, S. Projetos e Relatórios de Pesquisa em Administração. São Paulo: Atlas, 1997.

VERMA, M.K., ULMISHEK, G.F., GILBERSHTEIN, A.P., 2000, Oil and gas reserve growth-A model for the Volga-Ural Province, Russia, SPE 62616, presented at the 2000 SPE/AAPG Western Regional Meeting held in Long Beach, California, 19-23 June 2000.

VERMA, M.K. & ULMISHEK, G.F., 2003, Reserve growth in oil fields of West Siberian Basin, Russia, Natur. Resour. Resear., Vol.12, n°.2, p105-119.

VERMA, M.K., AHLBRANDT, T.S., AL-GAILANI, M., 2004, Petroleum reserves and undiscovered resources in the total petroleum systems of Iraq: reserve growth and production implications, GeoArabia, Vol. 9, n°.3, Gulf Petrolink, Bahrain.

VERMA, M.K. & HENRI, M.E., 2004, **Historial and potential reserve growth in oil and gas pools in Saskatchewan**, in Summary of Investigations 2004, Vol.1, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2004-4.1, CD-ROM, Paper A-1, 20p. ARRINGTON, J.R., 1960, Size of crude reserve is key to evaluating exploration programs. Oil & Gas Journal, 58, n° 9, p. 130-134.

ATTANASI, E.D. & ROOT, D.H., 1994, The enigma of oil and gas growth. Amer Assoc. Petrol. Geol. Bull., v. 78, n° 3, p. 321-332.

ATTANASI, E.D., MAST, R.F., ROOT, D.H., 1999, **Oil, gas field growth** projections: wishful thinking or reality. Oil & Gas Journal, 97, nº 14, 79-81.

BUYALOV, N.I., KORNIYENKO, V.N., LAVRUSHKO, N.P., 1979, "Methodological Basics of the Forecast for a Quantity of the Discovered Oil and Gas", Sovetskaya Geologiya, nº 8: 3-13.

CROMWELL, J.B., LABYS, W.C. AND TERRAZA, M., 1994, "Univariate Tests for Time Series Models", SAGE University Papers, number 99.

DANESHY, A. & BATES, T., 2005, "*Technology's Value in the Upstream Oil and Gas Industry*", Journal of Petroleum Technology - JPT, Junho de 2005, pp. 24-26.

DE GROOT, M.H., 1970, "Optimal Statistical Decisions", Mc Graw-Hill.

DESTRO, N., 2002, "Falhas de Alívio e de Transferência: O Significado Tectônico e Econômico no Rifte do Recôncavo-Tucano-Jatobá, NE Brasil", Tese de Doutorado, Universidade Federal de Ouro Preto, 173 p.

FAROUQ, A., 1995, "Improved / enhanced oil recovery – what is the reality", Presented at the Regional Symposium on Improved Oil Recovery, Abu Dhabi, UAE, December 17-19, 7p.

GAVURA, V.E., ed., 1996, "Geology and production of the largest and unique oil and oil-gas fields of Russia", (Geologiya i razrabotka krupneyshikh i unikalnykh neftyanykh I neftegazovykh mestorozhdeniy Rossii), v. 2, West Siberia: Moscow, VNIIOENG, 350p. (in Russian).

HUBBERT, M.K., 1967, "Degree of Advancement of Petroleum Exploration in the United States", Bull. Am. Assoc. Petrol. Geol., 51/11: 2207-2227.

KLETT, T.R. & GAUTIER, D.L., 2003, "*Characteristics of reserve growth in oil fields of the North Sea Graben area*", 65th European Association of Geoscientists and Engineers Conference and Exhibition, 2-5 June, Stavanger, Norway, extended abstract and exhibitor's catalogue, 4p.

LORE, G.L., BROOKE, J.P., COOKE, D.W., KLAZYNSKI, R.J., OLSON, D.L., ROSS, K.M., 1996, "Summary of the 1995 assessment of the conventionally recoverable hydrocarbon resources of the Gulf of Mexico and Atlantic Shelf". Mineral Management Service, Outer Continental Shelf Rep. MMS 96-003, Appendix A, 4p.

MARSH, R.G., 1971, "*How much oil are we really finding*". Oil & Gas Journal, v. 69, nº 14, p. 100-104.

MCMICHAEL, C.L., 2001, "Guidelines for the evaluation of petroleum reserves and resources", Supplement to the SPE/WPC Petroleum Reserves Definition and the SPE/WPC/AAPG Petroleum Resources Definitions. Society of Petroleum Engineers.

MELO, L.C., 2004, "Modelagem da Evolução e Projeção do Volume de Óleo Recuperável Acumulado: Metodologia e Aplicação", Dissertação M.Sc.,
Programa de Engenharia de Produção, UFRJ, Rio de Janeiro, Brasil.

MENARD, H.W. & SHARMAN, G., 1975, "Scientific use of random drilling models", Science 190: 337-43.

MORITIS, G., 2000, "*EOR weathers low oil prices*", Oil and Gas Journal, v. 98, nº 12, p. 39-61.

Revista Amanhã, 2005, "A potência do petróleo verde", Agosto/Setembro de 2005, Número 213, Ano 19, pp. 72 a 74.

Revista Veja, 2003, "Suplemento Publicitário da Revista Veja – Petrobras 50 anos", Ano 36, Edição 1827, pp. 6 e 23.

ROOT, D.H., ATTANASI, E.D., MAST, R.F., GAUTIER, D.L., 1995, "Estimates of inferred reserves for the 1995 USGS National Oil and Gas Resources Assessment", U. S. Geol. Surv., Open File Rep. 95-75-L, 29p.

ROSE, R.E., 2004, "*Listening to the Whispers of History*", World Energy, Vol. 7, nº 4, pp. 135-139.

SCHMOKER, J.W. & ATTANASI, E.D., 1997, "*Reserve growth important to U.* S. gas supply", Oil Gas J., v. 95, nº 4, p. 95-96. SEM, T. & ELLERMAN, D., 1999, "North Sea reserve appreciation, production and depletion", Mass Inst. Tech., MIT-CEEPR 99-011 WP, 39p.

STALKUP, F.I., 1984, "*Miscible Displacement*", Society of Petroleum Engineers Monograph Series, Dallas, 204 p.

TABER, J.J., MARTIN, F.D., SERIGHT, R.S., 1996, "*EOR Screening Criteria Revisited*", SPE/DOE 35385, presented at the SPE/DOE 10th Symposium on Improved Oil Recovered held in Tulsa, Oklahoma, 21-24 April, p. 387-415.

URI, N.D., 1979, "New Look at U.S. Reserves Shows Higher Potential", World Oil, 188 (2): 61-66.

USGS, 1998, United States Geological Survey, "Arctic National Wildlife Refuge, 1002 Area, Petroleum Assessment, Including Economic Analysis", USGS Fact Sheet FS-0028–01. Último acesso ao site em 05 de Maio de 2005. Disponível na Internet: <u>http://pubs.usgs.gov/fs/fs-0028-01/fs-0028-01.htm</u>

YOUNGQUIST, W.L., 1997, "GeoDestinies—the inevitable control of Earth resources over nations and individuals", Portland, Oregon, National Book Company, 499 p.

WATKINS, G.C., 2000, "*Characteristics of North Sea oil reserves appreciation*", Mass Inst. Tech., MIT-CEEPR 2000-008 WP, 33p. As definições da classificação de recursos abaixo foram baseadas na página da Internet da SPE - *Society of Petroleum Engineers*. O eixo horizontal da Figura 104 representa a incerteza do volume calculado e o eixo vertical representa o grau de maturidade da acumulação.

Figura 1 - Sistema de Classificação de Recursos. Fonte: SPE.

Petróleo inicialmente *in-place*: é a quantidade total de petróleo inicialmente *in-place* estimada numa dada data a ser contida em acumulações conhecidas (recursos descobertos), mais a quantidade já produzida até esta data, mais as quantidades estimadas em acumulações não conhecidas (recursos não descobertos). Conseqüentemente, o petróleo inicialmente *in-place* pode ser subdividido em dois grupos: recursos descobertos e em recursos não descobertos.

As quantidades totais de petróleo inicialmente *in-place* englobam porções potencialmente recuperáveis e irrecuperáveis. Estas proporções mudarão, podendo uma parte da porção irrecuperável tornar-se recuperável no futuro de acordo com circunstâncias comerciais, desenvolvimentos tecnológicos e disponibilidade de dados.

Petróleo não descoberto inicialmente *in-place*: é a quantidade de petróleo estimada numa determinada data a ser contida em acumulações ainda a serem descobertas. McMichael, 2001 (apud Verma & Henri, 2004) define recursos não descobertos como sendo hidrocarbonetos potenciais que ainda não foram comprovados através da perfuração e testes de produção.

Recursos Prospectivos: parte potencialmente recuperável do petróleo ainda não descoberto inicialmente *in-place*.

Petróleo descoberto inicialmente *in-place*: é a quantidade de petróleo estimada numa dada data a ser contida em acumulações conhecidas (recursos descobertos), mais a quantidade já produzida até esta data. O petróleo descoberto inicialmente *in-place* pode ser subdividido em duas categorias: comercial e sub-comercial. Sua parte potencialmente recuperável pode ainda ser classificada como reservas e recursos contingentes.

Recursos contingentes: quantidades potencialmente recuperáveis e estimadas de acumulações conhecidas que não cumprem os requisitos de comercialidade numa dada data devem ser classificadas como Recursos Contingentes. Entretanto, é reconhecida alguma ambigüidade entre as definições de recursos contingentes e reservas não provadas. É recomendado que, se o grau de comprometimento não é tal que a acumulação seja desenvolvida e colocada em produção dentro de um prazo razoável, então os volumes recuperáveis devem classificados como recursos contingentes. Englobam, por exemplo, acumulações onde a recuperação depende do desenvolvimento de novas tecnologias.

Os recursos contingentes e os recursos prospectivos são ainda categorizados com valores "baixo", "melhor" e "alto". Para melhor entendimento, considere uma acumulação que não seja comercial atualmente devido à falta de mercado. Os volumes recuperáveis são classificados como recursos contingentes e subdivididos nas categorias "baixo", "melhor" e "alto". Uma vez que o mercado seja desenvolvido, as acumulações que eram classificadas como recursos contingentes passam para a categoria acima (Reservas). Além disso, espera-se que os valores das reservas provadas sejam relativamente próximos dos valores antes considerados "baixo".

Recuperação final estimada: definida pela SPE como sendo *Estimated Ultimate Recovery* (EUR), é um termo que pode ser aplicado a acumulações em qualquer *status*/maturidade (descobertas ou não). É a quantidade de petróleo estimada numa determinada data que pode ser ' das acumulações, acrescida da quantidade já produzida anteriormente.

Reservas: segundo a ANP (2000), reservas são recursos descobertos de petróleo e gás natural comercialmente recuperáveis a partir de uma determinada data em diante. Como a estimativa de reservas sempre envolve incertezas quanto às informações geológicas, de engenharia e econômicas, esses recursos podem ser classificados como provados, prováveis e possíveis.

Reservas Prováveis: reservas de petróleo e gás natural cuja análise dos dados geológicos e de engenharia indica uma maior incerteza na sua recuperação quando comparada com a estimativa de reservas provadas. Podem incluir:

- Reservas previstas de serem provadas através da perfuração de poços, porém localizadas onde não exista um controle geológico de sub-superfície adequado para classificá-las como provadas;
- Reservas em formações que devem ser produtoras com base em suas características de perfis, mas que não têm dados de testemunhos ou testes de poços, bem como correlação com reservatórios provados na área;
- Incremento de reservas que poderiam ser classificadas como provadas devido a adensamento de malha de perfuração se espaçamento mais refinado estivesse sido aprovado pela ANP, na data da estimativa;
- Reservas relativas a métodos de recuperação suplementar de comprovada aplicação comercial quando:
 - 1. projeto ou o piloto estiver planejado, mas não em operação;
 - as características geológicas e hidrodinâmicas dos reservatórios são favoráveis à aplicação comercial do método em questão.
- Reservas de uma área da formação que deve estar separada da porção provada devido a falhamento e a interpretação geológica indica ser essa área estruturalmente mais alta que a provada;

- Reservas atribuídas a trabalhos futuros de restauração, tratamento ou re-tratamento de poços, mudança de equipamentos, ou outros procedimentos mecânicos, onde essas técnicas não tenham sido testadas com sucesso em poços que apresentem comportamento similar em reservatórios análogos;
- Reservas que excedam àquelas classificadas como provadas quando se utiliza uma interpretação alternativa de desempenho ou de dados volumétricos.

Reservas Possíveis: reservas de petróleo e gás natural cuja análise dos dados geológicos e de engenharia indica uma maior incerteza na sua recuperação quando comparada com a estimativa de reservas prováveis. Podem incluir:

- Reservas além do limite do provável, quando o controle geológico de sub-superfície for inadequado para classificá-las como prováveis;
- Reservas em formações que podem ser portadoras de hidrocarbonetos, baseadas nas características de perfis e análise de testemunhos, mas onde existam incertezas elevadas quanto a sua capacidade de produzir com vazões comerciais;
- Incremento de reservas atribuído a adensamento de malha de perfuração, porém sujeito a incertezas técnicas;
- Reservas relativas a métodos de recuperação suplementar quando:
 - 1. projeto ou o piloto estiver planejado, porém não em operação;
 - 2. as características geológicas e hidrodinâmicas dos reservatórios são tais que exista uma razoável dúvida de que o projeto será comercial.
- Reservas de uma área da formação que parecem estar separadas da porção provada devido a falhamento e a interpretação geológica indica ser esta área estruturalmente mais baixa que a provada;
- Recursos descobertos onde as avaliações de projeto indiquem alto risco econômico, principalmente devido à insuficiência de mercado;

APÊNDICE B: DEMONSTRAÇÃO DAS FÓRMULAS DE

KNORING ET AL. (1999)

Modelo 01:

A partir da equação diferencial logística (Equação 81), Knoring *et al.* (1999) desenvolvem equações para encontrar: i) os equivalentes contínuo e discreto; ii) o ponto de inflexão.

$$\frac{r}{R} = k - \varepsilon.R \tag{1}$$

Onde, $r = \frac{dR}{dt}$ é o Acúmulo Instantâneo. Assim sendo, tem-se:

$$\frac{1}{R}\frac{dR}{dt} = k - \varepsilon R$$

$$\frac{dR}{dt} - kR = -\varepsilon R^{2}$$
(2)

Sabe-se que uma equação diferencial linear de 1^a ordem segue a forma:

$$\frac{dy}{dx} + P(x)y = Q(x) \tag{3}$$

Entretanto, pode-se observar na Equação 82 a existência de um termo não linear (\mathbb{R}^2). Por esta razão, a Equação 82 segue o formato de uma equação diferencial não-linear de 1^a ordem. Tal função conhecida como Bernoulli segue a forma:

$$\frac{dy}{dx} + P(x)y = Q(x) y^{2}$$
Termo
Não-Linear
(4)

As equações no formato acima têm uma característica importante. Podem ser facilmente reduzidas para equações diferenciais lineares de 1^a ordem. Primeiramente, dividem-se ambos os lados da Equação 82 por R².

$$\frac{1}{R^2}\frac{dR}{dt} - k\frac{1}{R} = -\varepsilon$$
 (5)

A seguir, chama-se
$$u = \frac{1}{R}$$
. Conseqüentemente, $\frac{du}{dR} = -R^{-2}$ e

 $\frac{du}{dt} = \frac{du}{dR}\frac{dR}{dt} = -\frac{1}{R^2}\frac{dR}{dt}$. Dessa forma, consegue-se reduzir a Equação 82 para a

seguinte equação diferencial linear de 1ª ordem:

$$-\frac{du}{dt} - ku = -\varepsilon \tag{6}$$

Multiplicando ambos os lados por $e^{\int kdt}$, tem-se:

$$e^{kt} \frac{du}{dt} + k \left(\frac{1}{R}\right) e^{kt} = \varepsilon e^{kt}$$
$$\frac{d}{dt} \left(ue^{kt}\right) = \varepsilon e^{kt}$$
$$ue^{kt} = \int \varepsilon e^{kt} dt$$
$$ue^{kt} = \varepsilon \frac{1}{k} e^{kt} + c$$
$$u = \frac{\varepsilon}{k} + \frac{c}{e^{kt}}$$
$$R(t) = \frac{1}{\frac{\varepsilon}{k} + \frac{c}{e^{kt}}}$$

Em t = 0, então:

$$R_0 = \frac{1}{\frac{\varepsilon}{k} + c} \qquad \qquad c = \frac{1}{R_0} - \frac{\varepsilon}{k}$$

$$R(t) = \frac{1}{\frac{\varepsilon}{k} + \left(\frac{1}{R_0} - \frac{\varepsilon}{k}\right)}e^{-kt}$$

Multiplicando-se o numerador e denominador por $\frac{k}{\varepsilon}$, temos:

$$R(t) = \frac{\frac{k}{\varepsilon}}{1 + \left(\frac{k}{\varepsilon R_0} - 1\right)}e^{-kt}$$

Em t = ∞ , então:

$$\lim_{t \to \infty} R(t) = \frac{k}{\varepsilon} = A \text{ (Assintota)}$$

$$R(t) = \frac{A}{1 + \left(\frac{A}{R_0} - 1\right)e^{-kt}} \tag{7}$$

A equação acima é chamada Função Logística e é o equivalente continuo da Equação 81. (Equação 2-3 proposta por Knoring *et al.*, 1999). O equivalente discreto é determinado considerando $a = 1 - e^{-kt}$, $A = \frac{a}{b}$ e $\Delta t = 1$. Dessa forma, tem-se:

$$R(t) = \frac{A}{1 + \frac{A}{R_0}e^{-kt} - e^{-kt}}$$
$$R_1 = \frac{1}{\frac{a}{A} + \frac{1}{R_0}e^{-k}} = \frac{1}{b + \frac{e^{-k}}{R_0}} = \frac{1}{\frac{bR_0 + e^{-k}}{R_0}}$$
$$R_1 = \frac{R_0}{bR_0 + e^{-k}} = \frac{R_0}{(1 - 1) + bR_0 + e^{-k}} = \frac{R_0}{1 - a + bR_0}$$

Finalmente, o equivalente discreto é fornecido pela Equação 88 (Equação 2-2 proposta por Knoring *et al.*, 1999). Além disso, a Equação 89 mostra que o Acúmulo de Reservas Relativo $\frac{\Delta R}{R_{i+1}}$ (Função Seleção de Condições) decresce linearmente com o aumento em R_t.

$$R_{i+1} = \frac{R_i}{1 - a + bR_i}$$

$$\frac{R_i}{R_{i+1}} = 1 - a + bR_i$$
(8)

$$1 - \frac{R_i}{R_{i+1}} = a - bR_i$$

$$\frac{R_{i+1} - R_i}{R_{i+1}} = a - bR_i$$

$$\frac{\Delta R}{R_{i+1}} = a - bR_i$$
(9)

A seguir, calcula-se ainda o ponto de inflexão da curva R(t). Para calcular o ponto de inflexão, deve-se igualar a segunda derivada da função R(t)=0. Este ponto representa a mudança de concavidade da curva R(t) conforme ilustrado na Figura 08.

Da Equação 87, temos:

$$R(t) = \frac{A}{1 + \left(\frac{A}{R_0} - 1\right)e^{-kt}}$$

$$R(t) = \frac{A}{1 + Be^{-kt}}, \text{ onde } B = \left(\frac{A}{R_0} - 1\right)$$

$$R'(t) = \frac{u(t)}{v(t)} = \frac{u'(t)v(t) - u(t)v'(t)}{v^2}$$

$$R''(t) = \frac{ABke^{-kt}}{(1 + Be^{-kt})^2}$$

$$R''(t) = \frac{\left[-ABk^2e^{-kt}(1 + Be^{-kt})^2\right] - \left\{ABke^{-kt}\left[2\left(1 + Be^{-kt}\right)\left(-kBe^{-kt}\right)\right]\right\}}{\left[1 + Be^{-kt}\right]^4} = 0$$

$$R''(t) = \frac{-ABk^2e^{-kt}(1 + Be^{-kt}) + 2AB^2k^2e^{(-kt)^2}}{\left[1 + Be^{-kt}\right]^3} = 0$$

$$ABk^2e^{-kt}\left(1 + Be^{-kt}\right) = 2AB^2k^2e^{(-kt)^2}$$

$$(1 + Be^{-kt}) = 2Be^{-kt}$$

$$1 = e^{-kt}(2B - B) = Be^{-kt}$$

$$\ln\left(\frac{1}{B}\right) = -kt$$

$$t_{INFL} = -\frac{1}{k}\ln\left(\frac{1}{B}\right) = \frac{1}{k}\ln(B)$$

$$t_{INFL} = \frac{1}{k}\ln\left(\frac{A}{R_0} - 1\right)$$
(10)

A Equação 90 mostra o tempo em que irá ocorrer o acréscimo de reservas máximo e representa a Equação 2-5 proposta por Knoring *et al.* (1999). O valor do volume recuperável neste instante será dado por:

$$R_{INFL} = \frac{A}{1 + \left(\frac{A}{R_0} - 1\right)} e^{-kt_{INFL}} = \frac{A}{1 + \left(\frac{A}{R_0} - 1\right)} e^{-k\left[\frac{1}{k}\ln\left(\frac{A}{R_0} - 1\right)\right]} = \frac{A}{1 + \left(\frac{A}{R_0} - 1\right)} e^{\ln\left(\frac{A}{R_0} - 1\right)^{-1}}$$

$$R_{INFL} = \frac{A}{1 + \left(\frac{A}{R_0} - 1\right)\left(\frac{A}{R_0} - 1\right)^{-1}} = \frac{A}{1 + 1}$$

$$R_{INFL} = \frac{A}{2}$$
(11)

Modelo 02:

A partir da equação diferencial (Equação 92), calcula-se o equivalente contínuo do Modelo 02.

$$\frac{r}{R} = \varepsilon \, e^{-kt} \tag{12}$$

Onde, $r = \frac{dR}{dt}$ é o Acúmulo Instantâneo. Assim sendo, tem-se:

$$\frac{1}{R}\frac{dR}{dt} = \varepsilon e^{-kt}$$
$$\int \frac{1}{R} dR = \int \varepsilon e^{-kt} dt$$
$$\ln R = \int \varepsilon e^{-kt} dt$$

Chamando u = -kt, du = -kdt, então:

$$\ln R = -\frac{\varepsilon}{k} \int e^u du$$

Se $m = \frac{\varepsilon}{k}$,

$$\ln R = -me^{-kt} + c$$
$$R = e^{-me^{-kt}}e^{c}$$

Logo, se $A = e^{c}$ (assíntota), então:

$$R(t) = Ae^{-me^{-kt}} \tag{13}$$

A equação acima é chamada Função Gomperz e é o equivalente continuo da Equação 92. (Equação 2-14 proposta por Knoring *et al.*, 1999). O ponto de inflexão da curva R(t) é calculado igualando-se a segunda derivada da função R(t)=0.

$$R = Ae^{-me^{-kt}} = Ae^{-mu(t)}, onde \ u = e^{-kt}$$

$$R'(t) = -mAe^{-mu(t)}(-k)u(t)$$

$$R'(t) = (mkAe^{-kt})e^{-me^{-kt}}$$

$$R''(t) = (-mk^{2}Ae^{-kt})e^{-me^{-kt}} + mkAe^{-kt}(-me^{-me^{-kt}})(-ke^{-kt}) = 0$$

$$(mk^{2}Ae^{-kt})e^{-me^{-kt}} = m^{2}k^{2}A(e^{-kt})^{2}(e^{-me^{-kt}})$$

$$1 = m(e^{-kt}) \Rightarrow \ln\left(\frac{1}{m}\right) = -kt$$

$$t_{INFL} = \frac{1}{k}\ln(m)$$
(14)

A Equação 94 mostra o tempo em que irá ocorrer o acréscimo de reservas máximo e representa a Equação 2-15 proposta por Knoring *et al.* (1999). O valor do volume recuperável neste instante será dado por:

$$R_{INFL} = Ae^{-me^{-kt_{INFL}}} = Ae^{-me^{-k_{k}^{1}\ln(m)}} = Ae^{-me^{-\ln(m)}}$$
$$R_{INFL} = Ae^{-me^{\ln(\frac{1}{m})}} = Ae^{-m(\frac{1}{m})} = Ae^{-1}$$
$$R_{INFL} = \frac{A}{e}$$
(15)

Modelo 03:

O Modelo 03 é criado a partir de modificações no Modelo 01. A Equação 89 mostra que o Acúmulo de Reservas Relativo do Modelo 01 decresce linearmente com o aumento em R_t . Entretanto, Knoring *et al.* (1999) criam um terceiro modelo assumindo que seja linear o logaritmo do Acúmulo de Reservas Relativo. Dessa forma,

$$Ln\left(\frac{\Delta R}{R_{i+1}}\right) = a - bR_i \tag{16}$$

Logo,

$$\frac{\Delta R}{R_{i+1}} = s.e^{-bR_i} \tag{17}$$

Conforme visto nos Modelos 01 e 02, a determinação do equivalente contínuo é essencial para o cálculo do ponto de inflexão (2^a derivada da função R(t) = 0). Porém, não existe o equivalente contínuo para os Modelos 03, 05, 06, 07 e 09.

Então, como os autores calcularam o ponto de inflexão dos modelos que não apresentam uma função contínua R(t)? Novamente, os autores não demonstraram o cálculo destas equações. Simplesmente apresentaram a fórmula sem sequer comentar o caminho de como chegar lá.

Após várias tentativas, descobriu-se que, diferentemente dos dois primeiros modelos, os pontos de inflexão dos Modelos 03, 05, 06, 07 e 09 são calculados assumindo-se o Acréscimo Instantâneo $r = \frac{dR}{dt}$ (1^a derivada) igual ao Acréscimo de Reserva $\Delta R = R_{t+1} - R_t$. Então, para o Modelo 03, temos:

$$\frac{\Delta R}{R_{t+1}} = s \cdot e^{-bR_t}$$
1ª derivada:
$$\Delta R = r = R_{INFL} \left(s \cdot e^{-bR_{INFL}} \right)$$

2^a derivada:

$$r' = \left[R_{INFL}\left(s.e^{-bR_{INFL}}\right)\left(-b\right)\right] + \left[\left(s.e^{-bR_{INFL}}\right)\right] = 0$$

$$\left(s.e^{-bR_{INFL}}\right)\left[-bR_{INFL}+1\right] = 0 \Longrightarrow -bR_{INFL}+1 = 0$$

$$R_{INFL} = \frac{1}{b}$$
(18)

Modelo 04:

O Modelo 04 é também considerado um desenvolvimento do Modelo 01. Ao invés de considerar um decréscimo linear conforme visto na Equação 81, Knoring *et al.* (1999) consideram um comportamento não-linear baseando-se na seguinte equação diferencial:

$$\frac{r}{R} = k - \varepsilon . R^{\frac{1}{b}}$$
(19)

Onde, $r = \frac{dR}{dt}$ é o Acúmulo Instantâneo. Assim sendo, tem-se:

$$\frac{1}{R}\frac{dR}{dt} = k - \varepsilon R^{\frac{1}{b}}$$
$$\frac{dR}{dt} - kR = -\varepsilon R^{\left(\frac{1}{b}+1\right)}$$

Que é uma equação diferencial não-linear devido à existência do termo $R^{\left(\frac{1}{b}+1\right)}$. Dividindo-se ambos os lados por $R^{\left(\frac{b+1}{b}\right)}$, temos:

$$\frac{1}{R^{\left(\frac{b+1}{b}\right)}}\frac{dR}{dt} - \frac{kR}{R^{\left(\frac{b+1}{b}\right)}} = -\varepsilon$$
$$\frac{1}{R^{\left(\frac{b+1}{b}\right)}}\frac{dR}{dt} - k\left(\frac{1}{R^{\frac{1}{b}}}\right) = -\varepsilon$$

Substituindo-se $u = R^{-\frac{1}{b}}$, então:

$$\frac{du}{dR} = -\frac{1}{b}R^{-\frac{1}{b}-1} = -\frac{1}{b}R^{-\left(\frac{1}{b}+1\right)}$$
$$\frac{du}{dt} = \frac{du}{dR}\frac{dR}{dt} = -\frac{1}{b}R^{-\left(\frac{1}{b}+1\right)}\frac{dR}{dt}$$
$$-b\frac{du}{dt} - ku = -\varepsilon$$
$$\frac{du}{dt} + \frac{k}{b}u = \frac{\varepsilon}{b}$$

Multiplicando ambos os lados por $e^{\int \frac{k}{b} dt}$, tem-se:

$$e^{\left(\frac{kt}{b}\right)}\frac{du}{dt} + \frac{k}{b}ue^{\left(\frac{kt}{b}\right)} = \frac{\varepsilon}{b}e^{\left(\frac{kt}{b}\right)}$$
$$\frac{d}{dt}\left(ue^{\frac{kt}{b}}\right) = \frac{\varepsilon}{b}e^{\frac{kt}{b}}$$
$$ue^{\left(\frac{kt}{b}\right)} = \int \frac{\varepsilon}{b}e^{\left(\frac{kt}{b}\right)}dt$$

Chamando $z = \frac{kt}{b}$, então:

$$\frac{dz}{dt} = \frac{k}{b}$$
$$ue^{z} = \int \frac{\varepsilon}{b} e^{z} \left(\frac{b}{k}\right) dz$$
$$ue^{z} = \frac{\varepsilon}{k} e^{z} + c$$
$$ue^{\left(\frac{kt}{b}\right)} = \frac{\varepsilon}{k} e^{\left(\frac{kt}{b}\right)} + c$$
$$\frac{1}{R^{\frac{1}{b}}} e^{\left(\frac{kt}{b}\right)} = \frac{\varepsilon}{k} e^{\left(\frac{kt}{b}\right)} + c$$

$$R^{\frac{1}{b}} = \frac{1}{\frac{\varepsilon}{k} + \frac{c}{e^{\left(\frac{kt}{b}\right)}}}$$

$$R = \left(\frac{1}{\frac{\varepsilon}{k} + ce^{\left(\frac{-kt}{b}\right)}}\right)^{b}$$

$$R = \left(\frac{\frac{k}{\varepsilon}}{1 + c\frac{k}{\varepsilon}e^{\left(\frac{-kt}{b}\right)}}\right)^{b}$$
(20)

Para t = 0, temos:

$$R_{0} = \left(\frac{\frac{k}{\varepsilon}}{1 + \frac{ck}{\varepsilon}}\right)^{b}$$
$$\left(1 + \frac{ck}{\varepsilon}\right)R_{0}^{\left(\frac{1}{b}\right)} = \frac{k}{\varepsilon}$$
$$c = \frac{\left(\frac{k}{\varepsilon} - R_{0}^{\left(\frac{1}{b}\right)}\right)\varepsilon}{kR_{0}^{\left(\frac{1}{b}\right)}}$$
$$c = \frac{1}{R_{0}^{\left(\frac{1}{b}\right)}} - \frac{\varepsilon}{k}$$

Para t = ∞ , temos:

$$\lim_{t \to \infty} R(t) = \left(\frac{k}{\varepsilon}\right)^b = A \text{ (Assintota)}$$

Substituindo-se os valores "A" e "c" na Equação 100, temos:

A equação acima é o equivalente contínuo da Equação 99. (Equação 2-34 proposta por Knoring *et al.*, 1999). O equivalente discreto e o Acúmulo de Reservas Relativo são determinados considerando $c = 1 - e^{-\frac{k}{b}}$, $A = \left(\frac{c}{a}\right)^{b}$ e $\Delta t = 1$. Dessa forma, temos:

$$R_{t+1} = \frac{\frac{R_t}{a^b}}{\left\{R_t^{\frac{1}{b}} + \left(\frac{1}{a}\right) - \left(\frac{c}{a}\right)\right\}^b} = \frac{\frac{R_t}{a^b}}{\left\{R_t^{\frac{1}{b}} + \left(\frac{1}{a}\right)(1-c)\right\}^b}$$

$$\frac{R_t}{R_{t+1}} = \frac{R_t \left\{R_t^{\frac{1}{b}} + \left(\frac{1}{a}\right)(1-c)\right\}^b}{\frac{R_t}{a^b}} = a^b \left\{R_t^{\frac{1}{b}} + \left(\frac{1}{a}\right)(1-c)\right\}^b$$

$$\frac{R_t}{R_{t+1}} = \left\{aR_t^{\frac{1}{b}} + 1-c\right\}^b$$

$$1 - \frac{R_t}{R_{t+1}} = 1 - \left\{aR_t^{\frac{1}{b}} + 1-c\right\}^b$$

$$\frac{R_{t+1} - R_t}{R_{t+1}} = 1 - \left\{aR_t^{\frac{1}{b}} + 1-c\right\}^b$$

$$\frac{AR_t}{R_{t+1}} = 1 - \left\{aR_t^{\frac{1}{b}} + 1-c\right\}^b$$

$$(22)$$

A equação acima representa o Acúmulo de Reservas Relativo. Diferentemente do Modelo 01, a equação acima mostra que o Acúmulo de Reservas Relativo $\frac{\Delta R}{R_{i+1}}$ (Função Seleção de Condições) não decresce linearmente com o aumento em R_t. De posse desta equação, pode-se ainda determinar o equivalente discreto.

$$\frac{\Delta R}{R_{t+1}} = 1 - \left\{ 1 - c + a R_t^{\frac{1}{b}} \right\}^b$$

$$1 - \frac{R_t}{R_{t+1}} = 1 - \left\{ 1 - c + a R_t^{\frac{1}{b}} \right\}^b$$

$$R_{t+1} = \frac{R_t}{\left\{ 1 - c + a R_t^{\frac{1}{b}} \right\}^b} \quad (\text{Equivalente Discreto}) \quad (23)$$

A seguir, calcula-se ainda o ponto de inflexão da curva R(t). Da Equação 101, temos:

$$\begin{split} R(t) &= \frac{A}{\left\{1 + \left[\left(\frac{A}{R_{0}}\right)^{\frac{1}{b}} - 1\right]e^{\left(\frac{-k}{b}\right)}\right\}^{\frac{b}{b}}} \\ \text{Chamando } z &= \left[\left(\frac{A}{R_{0}}\right)^{\frac{1}{b}} - 1\right], \text{ então:} \\ R(t) &= \frac{A}{\left\{1 + ze^{\left(\frac{-k}{b}\right)}\right\}^{\frac{b}{b}}} \\ R^{*}(t) &= \frac{-Ab\left\{1 + ze^{\left(\frac{-k}{b}\right)}\right\}^{\frac{b-1}{2}} ze^{\left(\frac{-k}{b}\right)}\left(-\frac{k}{b}\right)}{\left\{1 + ze^{\left(\frac{-k}{b}\right)}\right\}^{\frac{2b}{b}}} = \frac{Akze^{\left(\frac{-k}{b}\right)}\left\{1 + ze^{\left(\frac{-k}{b}\right)}\right\}^{\frac{b-1}{b}}}{\left\{1 + ze^{\left(\frac{-k}{b}\right)}\right\}^{\frac{2b}{b}}} \\ R^{*}(t) &= \frac{\left[Akze^{\left(\frac{-k}{b}\right)}\left[(b - 1)\left(1 + ze^{\left(\frac{-k}{b}\right)}\right]^{\frac{2b}{b}} - \left(-\frac{kz}{b}\right)e^{\left(\frac{-k}{b}\right)}\right] + \left[\left(1 + ze^{\left(\frac{-k}{b}\right)}\right)^{\frac{b-1}{b}} - \left\{1 + ze^{\left(\frac{-k}{b}\right)}\right]\right]\left(1 + ze^{\left(\frac{-k}{b}\right)}\right)^{\frac{2b}{b}}}{\left\{1 + ze^{\left(\frac{-k}{b}\right)}\right\}^{\frac{4b}{b}}} \\ &= \frac{\left[\left(Akze^{\left(\frac{-k}{b}\right)}\left(1 + ze^{\left(\frac{-k}{b}\right)}\right)^{\frac{b-1}{b}}\right] - \left(2b\left(1 + ze^{\left(\frac{-k}{b}\right)}\right)^{\frac{2b-1}{b}} ze^{\left(\frac{-k}{b}\right)}\left(-\frac{k}{b}\right)\right]\right]}{\left\{1 + ze^{\left(\frac{-k}{b}\right)}\right\}^{\frac{4b}{b}}} \\ &= \frac{\left[\left(Akze^{\left(\frac{-k}{b}\right)}\left(1 + ze^{\left(\frac{-k}{b}\right)}\right)^{\frac{b-1}{b}}\right]\left(2b\left(1 + ze^{\left(\frac{-k}{b}\right)}\right)^{\frac{2b-1}{b}} ze^{\left(\frac{-k}{b}\right)}\left(-\frac{k}{b}\right)\right)\right]}{\left\{1 + ze^{\left(\frac{-k}{b}\right)}\right\}^{\frac{4b}{b}}} \\ &= \frac{\left[\left(Akze^{\left(\frac{-k}{b}\right)}\left(b - 1\right)\left(1 + ze^{\left(\frac{-k}{b}\right)}\right)^{\frac{b-1}{b}}\right]\left(2b\left(1 + ze^{\left(\frac{-k}{b}\right)}\right)^{\frac{2b-1}{b}} ze^{\left(\frac{-k}{b}\right)}\left(-\frac{k}{b}\right)\right]\right]} \\ &= 0 \end{split}$$

$$\begin{split} R^{*}(t) = \begin{cases} \left[\frac{-Ak^{2}z^{2}}{b} (b-1)e^{\left(\frac{-2k}{b}\right)} \left(1 + ze^{\left(\frac{-k}{b}\right)} \right)^{b-2} \right] = \left[\left(1 + ze^{\left(\frac{-k}{b}\right)} \right)^{b-1} \frac{Ak^{2}z}{b} e^{\left(\frac{-k}{b}\right)} \right]^{b} \\ R^{*}(t) = \left[\frac{Ak^{2}z}{b} e^{\left(\frac{-2k}{b}\right)} \left(1 + ze^{\left(\frac{-k}{b}\right)} \right)^{b-2} \right] \left\{ -z(b-1)e^{\left(\frac{-k}{b}\right)} - \left(1 + ze^{\left(\frac{-k}{b}\right)} \right) + 2zbe^{\left(\frac{-k}{b}\right)} \right\} = 0 \\ -z(b-1)e^{\left(\frac{-k}{b}\right)} - \left(1 + ze^{\left(\frac{-k}{b}\right)} \right) + 2zbe^{\left(\frac{-k}{b}\right)} \right\} = 0 \\ (-zb+z)e^{\left(\frac{-k}{b}\right)} - 1 - ze^{\left(\frac{-k}{b}\right)} + 2b\left(ze^{\left(\frac{-k}{b}\right)} \right) = 0 \\ -zbe^{\left(\frac{-k}{b}\right)} - 1 - zbze^{\left(\frac{-k}{b}\right)} = 0 \\ -zbe^{\left(\frac{-k}{b}\right)} - 1 + 2bze^{\left(\frac{-k}{b}\right)} = 0 \\ -zbe^{\left(\frac{-k}{b}\right)} - 1 + 2bze^{\left(\frac{-k}{b}\right)} = 0 \\ e^{\left(\frac{-k}{b}\right)} = 1 \\ \frac{-kt}{b} = Ln\left(\frac{1}{bz}\right) \\ t_{INFL} = -\frac{b}{k}Ln\left(\frac{1}{bz}\right) = Ln(bz)^{b'k} \end{split}$$

$$(24)$$

A Equação 104 mostra o tempo em que irá ocorrer o acréscimo de reservas máximo e representa a Equação 2-38 proposta por Knoring *et al.* (1999). O valor do volume recuperável neste instante será dado por:

$$R_{INFL} = \frac{A}{\left\{1 + ze^{\left(\frac{-kt}{b}\right)}\right\}^{b}} = \frac{A}{\left\{1 + ze^{\left(\frac{-k}{b}\right)\left(Ln(bz)^{\frac{1}{b}}\right)}\right\}^{b}} = \frac{A}{\left\{1 + ze^{\left(\frac{-kt}{b}\right)\left(Ln(bz)^{\frac{1}{b}}\right)}\right\}^{b}} = \frac{A}{\left\{1 + ze^{\left(\frac{-kt}{b}\right)\left(\frac{1}{b}\right)^{-1}\right\}^{b}}}$$

- 206 -

$$R_{INFL} = \frac{A}{\left\{1 + \frac{1}{b}\right\}^{b}}$$
(25)

Modelo 05:

Assim como o Modelo 03, o Modelo 05 é criado a partir de modificações no Modelo 01. Conforme a Equação 106, assume-se um Acúmulo de Reservas Relativo não-linear com o aumento em R_t.

$$\frac{\Delta R}{R_{i+1}} = c - aR_i^b \tag{26}$$

Assim como o Modelo 03, o ponto de inflexão do Modelo 05 é calculado assumindo-se o AcréscimoInstantâneo $r = \frac{dR}{dt}$ (1^a derivada) igual ao Acréscimo de Reserva $\Delta R = R_{t+1} - R_t$.

$$\frac{\Delta R}{R_{i+1}} = c - aR_t^b$$
1ª derivada:
$$\Delta R = r = R_{INFL} \left(c - aR_{INFL}^b \right) \Longrightarrow \left[cR_{INFL} \right] - \left[\left(aR_{INFL}^{b+1} \right) \right] = 0$$

2^a derivada:

$$r' = c - a(b+1)R^b_{INFL} = 0$$

$$c = a(b+1)R_{INFL}^{b} \Longrightarrow \frac{c}{a(b+1)} = R_{INFL}^{b}$$

$$R_{INFL} = \left(\frac{c}{a(b+1)}\right)^{\frac{1}{b}}$$
(27)

Modelo 06:

O Modelo 06 é definido pelo declínio logarítmico do Acúmulo de Reservas Relativo com o aumento em R_t .

$$\frac{\Delta R}{R_{i+1}} = b Ln \left(\frac{A}{R_i}\right)$$
(28)

A seguir, determina-se o ponto de inflexão do Modelo 06:

1^a derivada: $\Delta R = r = R_{INFL} \left[b Ln \left(\frac{A}{R_{INFL}} \right) \right] = b R_{INFL} Ln \left(\frac{A}{R_{INFL}} \right)$

2^a derivada:
$$r' = \left[bR_{INFL} \left(\frac{1}{\frac{A}{R_{INFL}}} \right) \left(\frac{-A}{R_{INFL}^2} \right) \right] + \left[bLn \left(\frac{A}{R_{INFL}} \right) \right] = 0$$

$$-b + \left[bLn \left(\frac{A}{R_{INFL}} \right) \right] = 0 \Rightarrow Ln \left(\frac{A}{R_{INFL}} \right) = 1 \Rightarrow \frac{A}{R_{INFL}} = e^1$$
$$R_{INFL} = \frac{A}{e^1}$$
(29)

Modelo 07:

No Modelo 07, o Acúmulo de Reservas Relativo decresce exponencialmente com a variável independente sendo o grau de imaturidade dos recursos $\left(\frac{A-R_t}{A}\right)$.

$$\frac{\Delta R}{R_{t+1}} = a \left(\frac{A - R_t}{A}\right)^b \tag{30}$$

A seguir, determina-se o ponto de inflexão do Modelo 07:

1^a derivada:
$$\Delta R = r = R_{INFL} \left[a \left(\frac{A - R_{INFL}}{A} \right)^b \right] = a R_{INFL} \left(\frac{A - R_{INFL}}{A} \right)^b$$
2^a derivada:
$$r' = \left[a R_{INFL} b \left(\frac{A - R_{INFL}}{A} \right)^{b-1} \left(\frac{-1}{A} \right) \right] + \left[a \left(\frac{A - R_{INFL}}{A} \right)^b \right] = 0$$

$$\left(\frac{A - R_{INFL}}{A} \right) = R_{INFL} b \left(\frac{1}{A} \right) \Rightarrow 1 - \left(\frac{R_{INFL}}{A} \right) = R_{INFL} b \left(\frac{1}{A} \right) \Rightarrow A - R_{INFL} = R_{INFL} b$$

$$R_{INFL} = \frac{A}{b+1}$$
(31)

Modelo 08:

O Modelo 08 também se baseia no grau de imaturidade dos recursos $\left(\frac{A-R_t}{A}\right)$ como variável independente. Entretanto, diferentemente do modelo anterior, o Acúmulo de Reservas Relativo segue uma função exponencial (base e).

$$\frac{\Delta R}{R_{t+1}} = c e^{p\left(\frac{A-R_t}{A}\right)} - c$$

Chamando-se $b = \frac{p}{A}$; a = p + Ln(c), então:

$$\frac{\Delta R}{R_{t+1}} = c \left[e^{p - \frac{pR_t}{A}} - 1 \right] = c \left[e^{p - bR_t} - 1 \right] = c \left[e^{a - Ln(c) - bR_t} - 1 \right]$$

$$\frac{\Delta R}{R_{t+1}} = c \Big[e^{a - Ln(c) - bR_t} - 1 \Big] = c \Big[e^{a - bR_t} \cdot e^{-Ln(c)} - 1 \Big] = c \Big[\frac{e^{a - bR_t}}{c} - 1 \Big]$$

Logo,

$$\frac{\Delta R}{R_{t+1}} = e^{a - bR_t} - c \tag{32}$$

Que é a equação do Acúmulo de Reservas Relativo referente ao Modelo 08. Pode-se observar que esta equação equivale a Equação 97 (Modelo 03) com uma Assíntota "c".

Modelo 09:

O Modelo 09 pode ser visto como uma variação do Modelo 08. No Modelo 08, a cota " cR_{t+1} " é pequena no início e aumenta com o crescimento em R_{t+1} . Entretanto, no Modelo 09, $c\frac{R_{t+1}}{R_t}$ tem comportamento oposto. É grande no início e aproximadamente igual a constante "c" no final do processo exploratório.

$$\frac{\Delta R}{R_{t+1}} = e^{a - bR_t} - \frac{c}{R_t}$$
(33)

A seguir, determina-se o ponto de inflexão do Modelo 09:

1^a derivada:
$$\Delta R = r = R_{INFL} \left[e^{a - bR_{INFL}} - \frac{c}{R_{INFL}} \right] = R_{INFL} e^{a - bR_{INFL}} - c$$

2^a derivada:
$$r' = [R_{INFL}e^{a-bR_{INFL}}(-b)] + [e^{a-bR_{INFL}}] = 0 \Longrightarrow 1 = R_{INFL}(b)$$

$$R_{INFL} = \frac{1}{b} \tag{34}$$

Com relação aos Modelos citados no item 3.5.3, evolução com o volume de perfuração (L), temos:

Modelo L_1:

 $k(L) = \frac{a}{\ln L} \tag{35}$

Logo,

$$R(L) = \mu e^{\int k(L) \frac{dL}{L}} = \mu e^{\int \frac{1}{L} \frac{a}{\ln L} dL}$$
$$u = \ln L \Longrightarrow du = \frac{1}{L} dL$$
$$R(L) = \mu e^{a \int \frac{1}{u} du} = \mu e^{a \ln u} = \mu u^{a}$$
$$R(L) = \mu (\ln L)^{a}$$
(36)

Para o cálculo do ponto de inflexão deve-se igualar a segunda derivada da função R(L)=0. Assim sendo, temos:

$$R'(L) = \mu a (\ln L)^{a-1} \frac{1}{L}$$

$$R''(L) = \frac{u(L)}{v(L)} = \frac{u'(L)v(L) - u(L)v'(L)}{v^{2}(L)}$$

$$R''(L) = \mu a \left[\frac{(a-1)(\ln L)^{a-2} \frac{1}{L} L - (\ln L)^{a-1}}{L^{2}} \right] = 0$$

$$R''(L) = \mu a \left[\frac{(a-1) - (\ln L)}{L^{2}} \right] (\ln L)^{a-2} = 0$$

$$(a-1) - (\ln L) = 0 \Rightarrow a - 1 = \ln L$$

$$L_{INFL} = e^{(a-1)}$$

$$R_{INFL} = \mu (\ln L_{INFL})^{a} = \mu (\ln e^{a-1})^{a}$$
(37)

$$R_{INFL} = \mu (a-1)^a \tag{38}$$

As Equações 117 e 118 mostram, respectivamente, quando irá ocorrer o acréscimo de reservas máximo e o valor do volume recuperável neste instante. Os autores calculam ainda a Eficiência Máxima do processo $\left(\max \frac{dR}{dL}\right)$.

$$R(L) = \mu (\ln L)^{a}$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu a (\ln L_{INFL})^{a-1} \frac{1}{L_{INFL}}$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu a (\ln e^{a-1})^{a-1} \frac{1}{e^{a-1}}$$

$$\max \frac{dR}{dL} = \mu a (\ln e^{a-1})^{a-1} e^{(a-1)^{-1}}$$

$$\max \frac{dR}{dL} = \mu a (\ln e^{a-1})^{a-1} e^{1-a}$$

$$\max \frac{dR}{dL} = \mu a (a-1)^{a-1} e^{1-a}$$
(39)

Modelo L_2:

$$k(L) = aL^{-b} \tag{40}$$

Logo,

$$R(L) = \mu e^{\int k(L) \frac{dL}{L}} = \mu e^{\int \frac{1}{L} aL^{-b} dL}$$

$$R(L) = \mu e^{a \int \frac{1}{L^{b+1}} dL} = \mu e^{a \int L^{-(b+1)} dL} = \mu e^{\frac{aL^{-b}}{-b}}$$

$$R(L) = \mu e^{\frac{-a}{b}L^{-b}}$$
(41)

O ponto de inflexão é dado pela equação:

$$R'(L) = \mu e^{\frac{-a}{b}L^{-b}} a L^{-b-1}$$
$$R''(L) = \mu \left[\left(a L^{-(b+1)} e^{\frac{-a}{b}L^{-b}} a L^{-b-1} \right) + \left(e^{\frac{-a}{b}L^{-b}} a (-b-1)L^{-b-2} \right) \right] = 0$$
$$\left[\left(a L^{-b-1} \right) - (b+1)L^{-1} \right] = 0$$

)

$$(a L^{-b}) = (b+1)$$

$$L^{-b} = \frac{(b+1)}{a}$$

$$L_{INFL} = \left(\frac{b+1}{a}\right)^{-\frac{1}{b}}$$

$$(42)$$

$$R_{INFL} = \mu e^{\frac{-a}{b}L_{NFL}^{-b}} = \mu e^{\frac{-a(b+1)}{b}}$$

$$R_{INFL} = \mu e^{-\frac{a(b+1)}{b}}$$

$$(43)$$
A Eficiência Máxima do processo $\left(\max \frac{dR}{dL}\right)$ é dada pela equação:

$$R(L) = \mu e^{\frac{-a}{b}L^{-b}}$$

$$u = \frac{-a}{b}L^{-b} \Rightarrow \frac{du}{dL} = aL^{-(b+1)}$$

$$R(L) = \mu e^{u}$$

$$\frac{dR}{dL} = \frac{dR}{du}\frac{du}{dL} = \mu e^{u}aL^{-(b+1)} = \mu e^{\frac{-a}{b}L^{-b}}aL^{-(b+1)}$$

$$\max \frac{dR}{dL} = R^{i}(L_{DNFL}) = \mu e^{\frac{-a}{b}L_{NFL}^{-b}}aL_{INFL}^{-(b+1)}$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu e^{\frac{-a}{b}\left(\frac{b+1}{a}\right)^{-\frac{1}{b}(-b)}} a\left(\frac{b+1}{a}\right)^{-\frac{1}{b}(-b-1)}$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu e^{-\left(\frac{b+1}{b}\right)} a \left(\frac{b+1}{a}\right)^{\frac{(b+1)}{b}} = \mu e^{-\left(\frac{b+1}{b}\right)} a \left(\frac{b+1}{a}\right) \left(\frac{b+1}{a}\right)^{\frac{1}{b}}$$
$$\max \frac{dR}{dL} = \mu e^{-\left(\frac{b+1}{b}\right)} \left(\frac{b+1}{a}\right)^{\frac{1}{b}} (b+1)$$
(44)

Que é diferente da fórmula que consta na Tabela 4.1 proposta por Knoring

et al. (1999):
$$\max \frac{dR}{dL} = \mu e^{-\left(\frac{b+1}{b}\right)} \left(\frac{b+1}{a}\right)^{\frac{1}{2}} (b+1).$$

Modelo L_4:

$$k(L) = a - bL \tag{45}$$

Logo,

$$R(L) = \mu e^{\int k(L) \frac{dL}{L}} = \mu e^{\int \frac{1}{L}(a-bL)dL}$$
$$R(L) = \mu e^{\int \frac{a}{L}(-b)dL} = \mu e^{aLn(L)-bL}$$
$$R(L) = \mu L^a e^{-bL}$$
(46)

O ponto de inflexão é dado pela equação:

$$R'(L) = \mu \left[\left(aL^{a^{-1}}e^{-bL} \right) + \left(-bL^{a}e^{-bL} \right) \right]$$

$$R''(L) = \mu \left[\left(-abL^{a^{-1}}e^{-bL} \right) + \left(a(a-1)L^{a^{-2}}e^{-bL} \right) + \left(-abL^{a^{-1}}e^{-bL} \right) + \left(-b(-b)L^{a}e^{-bL} \right) \right] = 0$$

$$R''(L) = \mu e^{-bL}L^{a^{-2}} \left[\left(-2abL \right) + \left(a(a-1) \right) + \left(b^{2}L^{2} \right) \right] = 0$$

$$\left[\left(-2abL \right) + \left(a(a-1) \right) + \left(b^{2}L^{2} \right) \right] = 0$$

Chamando bL = z, então:

$$z^{2} - 2az + a(a - 1) = 0$$

$$\Delta = 4a, \ z = a - \sqrt{a}$$

$$L_{INFL} = \frac{z}{b} = \frac{a}{b} - \frac{a^{\frac{1}{2}}}{b}$$

$$L_{INFL} = \frac{a}{b} \left(1 - a^{\frac{-1}{2}}\right)$$

$$R_{INFL} = \mu \left[\frac{a}{b} \left(1 - a^{\frac{-1}{2}}\right)\right]^{a} e^{-b\frac{a}{b} \left(1 - a^{\frac{-1}{2}}\right)}$$

$$R_{INFL} = \mu \left[\frac{a}{b} \left(1 - a^{\frac{-1}{2}}\right)\right]^{a} e^{-a \left(1 - a^{\frac{-1}{2}}\right)}$$

$$(47)$$

$$(47)$$

$$(47)$$

Que é diferente da fórmula que consta na Tabela 4.1 proposta por Knoring

et al. (1999):
$$R_{INFL} = \mu \left[\frac{a}{b} \left(1 - a^{\frac{1}{2}} \right) \right]^a e^{-a \left(1 - a^{\frac{-1}{2}} \right)}$$

A Eficiência Máxima do processo $\left(\max \frac{dR}{dL}\right)$ é dada pela equação:

$$R(L) = \mu L^a e^{-bL}$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu \left[\left(a \left(\frac{a}{b} \left(1 - a^{\frac{-1}{2}} \right) \right)^{a-1} e^{-b\frac{a}{b} \left(1 - a^{\frac{-1}{2}} \right)} \right) + \left(-b \left(\frac{a}{b} \left(1 - a^{\frac{-1}{2}} \right) \right)^{a} e^{-b\frac{a}{b} \left(1 - a^{\frac{-1}{2}} \right)} \right) \right] \right]$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu e^{-a\left(1-a^{\frac{1}{2}}\right)} \left[\frac{a}{b}\left(1-a^{\frac{-1}{2}}\right)\right]^{a-1} \left[a-a\left(1-a^{\frac{-1}{2}}\right)\right]$$
$$\max \frac{dR}{dL} = \mu e^{-a\left(1-a^{\frac{-1}{2}}\right)} \left[\frac{a}{b}\left(1-a^{\frac{-1}{2}}\right)\right]^{a-1} \left(a^{\frac{1}{2}}\right)$$
(49)

Modelo L_5:

$$k(L) = c - aL^b \tag{50}$$

Logo,

$$R(L) = \mu e^{\int k(L) \frac{dL}{L}} = \mu e^{\int \frac{1}{L}(c-aL^{b})dL}$$

$$R(L) = \mu e^{\int \frac{c}{L}dL - \int \frac{aL^{b}dL}{L}} = \mu e^{c\ln L - a\int L^{b-1}dL}$$

$$R(L) = \mu e^{\left[c\ln L\right] - \frac{aL^{b}}{b}} = \mu L^{c} e^{-\frac{aL^{b}}{b}}$$

$$R(L) = \mu L^{c} e^{\frac{-a}{b}L^{b}}$$
(51)

O ponto de inflexão é dado pela equação:

$$R'(L) = \mu \left[\left(c \, L^{c-1} e^{\frac{-a}{b} L^{b}} \right) + \left(L^{c} e^{\frac{-a}{b} L^{b}} - \frac{a}{b} b L^{b-1} \right) \right] = \mu \left\{ e^{\frac{-a}{b} L^{b}} \left[c L^{c-1} - a L^{b+c-1} \right] \right\}$$

$$R^{"}(L) = \mu \left\{ e^{\frac{-a}{b}L^{b}} \left[c(c-1)L^{c-2} - a(b+c-1)L^{b+c-2} \right] + \left[cL^{c-1} - aL^{b+c-1} \right] e^{\frac{-a}{b}L^{b}} - \frac{a}{b}bL^{b-1} \right\} = 0$$
$$\left[c(c-1)L^{c-2} - a(b+c-1)L^{b+c-2} \right] + \left[\left(cL^{c-1} - aL^{b+c-1} \right) \left(- aL^{b-1} \right) \right] = 0$$
$$\left[c(c-1) - a(b+c-1)L^{b} - \left(acL^{b} \right) + a^{2}L^{2b} \right] = 0$$

Chamando $-aL^b = z$, então:

$$\begin{bmatrix} c(c-1) + z(b+c-1) + (zc) + z^2 \end{bmatrix} = 0$$

$$z^2 + z(b+2c-1) + c(c-1) = 0$$

$$\Delta = (b-1)^2 + 4c(b-1) + 4c$$

$$z = \frac{-(b+2c-1) \pm \sqrt{(b-1)^2 + 4c(b-1) + 4c}}{2}$$

$$z = \frac{-b-2c+1 \pm \sqrt{b^2 - 2b + 1 + 4cb}}{2}$$

$$L_{INFL} = \left(\frac{-z}{a}\right)^{\frac{1}{b}} = \left(\frac{b+2c-1 \pm \sqrt{b^2 - 2b + 1 + 4cb}}{2a}\right)^{\frac{1}{b}}$$
(52)

Que é diferente da fórmula que consta na Tabela 4.1 proposta por Knoring et al. (1999): $L_{INFL} = \frac{1}{2a} \left(b + 2c - 1 \pm \sqrt{b^2 - 2b + 1 + 4cb} \right)^{\frac{1}{b}}$.

$$R_{INFL} = \mu L_{INFL}^{c} e^{\frac{-a}{b} L_{INFL}^{b}}$$
(53)

A Eficiência Máxima do processo $\left(\max \frac{dR}{dL}\right)$ é dada pela equação:

$$R(L) = \mu L^{c} e^{\frac{-a}{b}L^{b}}$$
$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu \left[\left(e^{\frac{-a}{b}L^{b}} cL^{c-1} \right) + \left(L^{c} e^{\frac{-a}{b}L^{b}} - \frac{a}{b} bL^{b-1} \right) \right]$$
$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu e^{\frac{-a}{b}L^{b}} \left[(cL^{c-1}) + (-aL^{c+b-1}) \right] = \mu e^{\frac{-a}{b}L^{b}} \left[c - aL^{b} \right] L^{c-1}$$

- 215 -

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu L_{INFL}^{c-1} e^{\frac{-a}{b} L_{INFL}^{b}} \left[c - a L_{INFL}^{b} \right]$$
(54)

Que é diferente da fórmula que consta na Tabela 4.1 proposta por Knoring

et al. (1999):
$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu L_{INFL}^{c-1} e^{\frac{-a}{b} L_{INFL}^{b} \left[c - a L_{INFL}^{b}\right]}.$$

Modelo L_6:

$$k(L) = a \tag{55}$$

Logo,

$$R(L) = \mu e^{\int k(L) \frac{dL}{L}} = \mu e^{\int \frac{1}{L}(a)dL} = \mu e^{a\ln L}$$
$$R(L) = \mu L^a$$
(56)

Este modelo não apresenta ponto de inflexão.

Modelo L_7:

$$k(L) = ae^{-bL}L \tag{57}$$

Logo,

$$R(L) = \mu e^{\int k(L) \frac{dL}{L}} = \mu e^{\int \frac{1}{L} a e^{-bL} L dL} = \mu e^{\int a e^{-bL} dL}$$
$$R(L) = \mu e^{\left(\frac{-a}{b}\right) e^{-bL}}$$
(58)

O ponto de inflexão é dado pela equação:

$$u(L) = \left(\frac{-a}{b}\right)e^{-bL}$$
$$\frac{du}{dL} = \left(\frac{-a}{b}\right)e^{-bL}(-b) = ae^{-bL}$$
$$R'(L) = \mu e^{\left(\frac{-a}{b}\right)e^{-bL}}ae^{-bL} = \mu a\left(e^{-bL}\right)e^{\left(\frac{-a}{b}\right)e^{-bL}}$$
$$R''(L) = \mu a\left\{\left[\left(e^{-bL}\right)e^{\left(\frac{-a}{b}\right)e^{-bL}}ae^{-bL}\right] + \left[e^{\left(\frac{-a}{b}\right)e^{-bL}}\left(e^{-bL}\right)(-b)\right]\right\} = 0$$

$$R^{"}(L) = \mu a e^{-bL} e^{\left(\frac{-a}{b}\right)e^{-bL}} \left[a\left(e^{-bL}\right) - b\right] = 0$$

$$\left[ae^{-bL}\right] - b = 0 \Rightarrow ae^{-bL} = b \Rightarrow -bL = Ln\left(\frac{b}{a}\right)$$

$$L_{INFL} = -\frac{Ln\left(\frac{b}{a}\right)}{b}$$

$$(59)$$

$$R_{INFL} = \mu e^{\left(\frac{-a}{b}\right)e^{-bL_{INFL}}} = \mu e^{\left(\frac{-a}{b}\right)e^{-b\left(\frac{Ln\left(\frac{b}{a}\right)}{b}\right)}} = \mu e^{\left(\frac{-a}{b}\right)e^{Ln\left(\frac{b}{a}\right)}} = \mu e^{\left(\frac{-a}{b}\right)\left(\frac{b}{a}\right)}$$

$$R_{INFL} = \mu e^{-1} \tag{60}$$

A Eficiência Máxima do processo $\left(\max \frac{dR}{dL}\right)$ é dada pela equação:

$$R(L) = \mu e^{\left(\frac{-a}{b}\right)e^{-bL}}$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu \left[e^{\left(\frac{-a}{b}\right)e^{-bL_{INFL}}} ae^{-bL_{INFL}}\right] = \mu a \left[\left(e^{-bL_{INFL}}\right)e^{\left(\frac{-a}{b}\right)e^{-bL_{INFL}}}\right]$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu a \left[\left(e^{-b\left(\frac{Ln\left(\frac{b}{a}\right)}{b}\right)}\right)e^{\left(\frac{-a}{b}\right)e^{-b\left(\frac{-Ln\left(\frac{b}{a}\right)}{b}\right)}}\right] = \mu a \left[\left(e^{Ln\left(\frac{b}{a}\right)}\right)e^{\left(\frac{-a}{b}\right)e^{Ln\left(\frac{b}{a}\right)}}\right]$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu a \left(\frac{b}{a}\right)e^{\left(\frac{-a}{b}\right)\left(\frac{b}{a}\right)} = \mu b e^{-1}$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu b e^{-1}$$

$$(61)$$

Que é diferente da fórmula que consta na Tabela 4.1 proposta por Knoring

et al. (1999):
$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu e^{-1} \left(\frac{a^2}{b}\right).$$

Modelo L_8:

$$k(L) = (a - bL)L \tag{62}$$
Logo,

$$R(L) = \mu e^{\int k(L) \frac{dL}{L}} = \mu e^{\int \frac{1}{L} (a-bL)LdL} = \mu e^{\int (a-bL)dL} = \mu e^{aL - \frac{bL^2}{2}}$$
$$R(L) = \mu e^{L\left(a - \frac{bL}{2}\right)}$$
(63)

O ponto de inflexão é dado pela equação:

$$R^{i}(L) = \mu e^{\left[aL - \frac{bL^{2}}{2}\right]} (a - bL)$$

$$R^{i}(L) = \mu \left\{ \left[e^{\left[aL - \frac{bL^{2}}{2}\right]} (-b) \right] + \left[e^{\left[aL - \frac{bL^{2}}{2}\right]} (a - bL)(a - bL) \right] \right\} = 0$$

$$(a - bL)(a - bL) - b = 0 \Rightarrow (a - bL)^{2} - b = 0$$

$$bL = t \Rightarrow t^{2} - 2at + a^{2} - b = 0$$

$$\Delta = 4a^{2} - 4(a^{2} - b) \Rightarrow \Delta = 4a^{2} - 4a^{2} + 4b \Rightarrow \Delta = 4b$$

$$t = \frac{2a \pm \sqrt{4b}}{2} \Rightarrow t = a \pm \sqrt{b} \Rightarrow bL = a \pm \sqrt{b}$$

$$L_{INFL} = \frac{a}{b} - b^{-\frac{1}{2}} \qquad (64)$$

$$R_{INFL} = \mu e^{a\left[\frac{a}{b} - \left(\frac{1}{b}\right)^{\frac{1}{2}}\right] - \frac{1}{2}b\left[\frac{a}{b} - \left(\frac{1}{b}\right)^{\frac{1}{2}}\right]^{\frac{2}{2}}}$$

$$\left(\frac{1}{b}\right)^{\frac{1}{2}} = t \Rightarrow R_{INFL} = \mu e^{a\left[\frac{a}{b} - t\right] - \frac{1}{2}b\left[\frac{a}{b} - t\right]^{-\frac{1}{2}}} R_{INFL} = \mu e^{a\left[\frac{a}{b} - t\right] - \frac{1}{2}b\left[\frac{a}{b} - t\right]^{\frac{1}{2}}} = \mu e^{\left[\frac{a^{2}}{b} - t\right]^{\frac{1}{2}}}$$

$$R_{INFL} = \mu e^{a\left[\frac{a}{b} - t\right] - \frac{1}{2}b\left[\frac{a}{b}\right]^{\frac{1}{2}} - \frac{1}{2}b\left[\frac{a}{b}\right]^{\frac{1}{2}} - \frac{1}{2}b\left[\frac{a}{b}\right]^{\frac{1}{2}}} = \mu e^{\left[\frac{a^{2}}{b} - t\right]^{\frac{1}{2}}}$$

$$R_{INFL} = \mu e^{a\left[\frac{a}{b} - t\right] - \frac{1}{2}b\left[\frac{a}{b}\right]^{\frac{1}{2}} - \frac{a}{b}} = \mu e^{\left[\frac{a^{2}}{b} - t\right]^{\frac{1}{2}}} = \mu e^{\left[\frac{a^{2}}{b} - \frac{a}{b}\right]}$$

$$R_{INFL} = \mu e^{a\left[\frac{a}{b} - t\right] - \frac{1}{2}b^{2}} = \mu e^{\left[\frac{a^{2}}{b} - \frac{a}{b}\right]}$$

$$R_{INFL} = \mu e^{\frac{1}{2b} \left[a^2 - b \right]}$$
(65)

Que é diferente da fórmula que consta na Tabela 4.1 proposta por Knoring et al. (1999): $R_{INFL} = \mu e^{\frac{1}{2b} \left[a^2 - b\right]_{2b}^2}$.

A Eficiência Máxima do processo $\left(\max \frac{dR}{dL}\right)$ é dada pela equação:

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu e^{\left(aL_{INFL} - \frac{bL_{INFL}^2}{2}\right)} (a - bL_{INFL})$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu e^{\left[a\left(\frac{a}{b}-b^{-\frac{1}{2}}\right)-\frac{b\left(\frac{a}{b}-b^{-\frac{1}{2}}\right)^{2}}{2}\right]} \left[a - b\left(\frac{a}{b}-b^{-\frac{1}{2}}\right)\right]$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu \left[a - b \left(\frac{a}{b} - b^{-\frac{1}{2}} \right) \right] e^{\left[\frac{a^2}{b} - a \left(\frac{1}{b} \right)^{\frac{1}{2}} - b \left(\frac{a^2}{b^2} - 2 \left(\frac{a}{b} \right) \left(\frac{1}{b} \right)^{\frac{1}{2}} + \left(\frac{1}{b} \right)^{\frac{1}{2}} \right) \right]}$$
$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu b^{\frac{1}{2}} e^{\frac{1}{2b} \left[2a^2 - 2a \left(\frac{1}{b} \right)^{\frac{1}{2}} - a^2 + 2a \left(\frac{1}{b} \right)^{-\frac{1}{2}} - b \right]}$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu \left(b^{\frac{1}{2}}\right) e^{\frac{1}{2b}\left[a^2 - b\right]}$$
(66)

Que é diferente da fórmula que consta na Tabela 4.1 proposta por Knoring

et al. (1999):
$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu \left(b^{1/2} \right) e^{\frac{1}{2b} \left(a^2 - b \right) / (2b)}$$

Modelo L_9:

$$k(L) = a + bL \tag{67}$$

Logo,

$$R(L) = \mu e^{\int k(L) \frac{dL}{L}} = \mu e^{\int \frac{1}{L} (a+bL) dL} = \mu e^{aLn(L)+bL} = \mu e^{Ln(L)^{a}+bL}$$
$$R(L) = \mu (L)^{a} e^{bL}$$
(68)

APÊNDICE C: METODOLOGIA USGS PARA VOLUMES NÃO DESCOBERTOS

A USGS (2000) fornece estimativas das quantidades de óleo, gás e gás natural líquido em regiões fora dos EUA que tem potencial de ser adicionado às reservas nos próximos 30 anos (1995 a 2025).

Ao contrário dos demais estudos aqui apresentados, onde os dados são analisados estatisticamente, as avaliações são baseadas em extensos estudos geológicos. A USGS contou com a presença de mais de 40 geocientistas durante o período de cinco anos (de 1995 a 2000) para a realização deste trabalho.

O modelo de avaliação utilizado pela USGS foi batizado "Seventh Approximation" e tem como precedente o modelo de avaliação de acumulações não descobertas – USGS (1995) – que utiliza plays como sendo o nível básico de avaliação.

Ao contrário, a "Seventh Approximation" é conduzida em subdivisões do "Total Petroleum System" (TPS) chamadas "Assessment Units" (AU) como sendo o nível básico de avaliação. Assim sendo, tanto os formulários para coleta de dados quanto os resultados da avaliação e as previsões do número e tamanho dos campos não descobertos são preenchidos ao nível de AU ao invés de TPS.

I. Definições segundo a USGS (2000):

- ⇒ TPS: são os elementos essenciais (rocha de origem, rocha reservatório, etc.), processos de geração e migração, como também todo o petróleo geneticamente relacionado cuja proveniência está relacionada com a mesma rocha de origem. O conceito de TPS presume que existe caminho de migração, seja no presente ou no passado, conectando as rochas de origem com as acumulações;
- ⇒ AU: é o volume de rocha dentro do TPS que engloba campos suficientemente homogêneos em termos de geologia, estratégia de exploração e de risco. Os campos dentro de uma AU devem constituir uma população suficientemente homogênea para que a metodologia de avaliação de recursos seja aplicável.

Para a USGS (2000) um AU é considerado "*estabelecido*" se contiver mais de que 13 campos descobertos, "*fronteira*", se contiver entre 1-13 campos descobertos e, "*hipotético*", caso ainda não tenha nenhum campo descoberto. Além disso, códigos numéricos de oito dígitos identificam cada AU's. O primeiro dígito indica a região, os próximos três dígitos a província, os dois seguintes representam o TPS, e os dois dígitos finais representam o AU. Por exemplo:

Região	3
Província Geológica	3162
Total Petroleum System (TPS)	316205
Assessment Unit (AU)	31620504

II. Horizonte de previsão:

Segundo a USGS (2000), horizontes de previsão entre 5-10 anos são curtos para avaliações baseadas geologicamente. Para tal horizonte de previsão, a projeção estatística de tendências de dados históricos é a melhor aproximação. Por outro lado, o horizonte de previsão acima de 50 anos parece ser longo quando aplicado às indústrias altamente influenciadas pela tecnologia, como o caso da indústria de petróleo. Assim sendo, para a avaliação do petróleo mundial (USGS, 2000), um horizonte de previsão de 30 anos foi adotado por representar um equilíbrio entre fatores tais como confiabilidade da avaliação, necessidade de um planejamento a longo prazo e relevância para a condição humana.

Dentro de um determinado prazo, o acesso a uma AU pode ser inviabilizado por diversos motivos, como por exemplo: i) razões políticas (ex.: áreas sensíveis ecologicamente); ii) razões físicas (ex.: profundidade de lâmina d'água). Devido ao fato de que as acumulações possam estar indisponíveis para a sociedade, a "*Seventh Approximation*" atribui, para cada AU, probabilidades de acesso durante o horizonte de previsão.

III. Aproximação Probabilística:

Parâmetros numéricos que constituem o conjunto de dados da "Seventh Approximation" são representados através de distribuições de probabilidade ao

Valores mínimo (F100), máximo (F0), e mediana (F50) são fornecidos para todos os parâmetros representados por distribuições de probabilidade. Estes valores não são especificamente atrelados a uma distribuição de probabilidade particular (ex.: lognormal). A escolha de tipo da distribuição de probabilidade na USGS (2000) é uma decisão operacional que não deve ser restringida.

As informações necessárias para a estimação de recursos não descobertos são fornecidas por geólogos que conhecem a região avaliada. Estas informações são fornecidas através de três formulários e devem ser preenchidos para cada AU pertencente ao TPS. A Bacia de Campos foi utilizada como exemplo para ilustrar estes três formulários (Figura 105).

	4415100					
Date:	<u>11/5/99</u>	28				
Assessment Geologist:	C.J. Schenk Control and South Amor	Number	e			
Region.	Campos Pasin	Number.	6035			
Priority or Boutigue	Priority	- Number.				
Total Petroleum System:	Lagoa Feia-Caranebus	Number	603501			
Assessment Unit:	Late Cretaceous-Tertian	Number:	60350101			
 Notes from Assessor 	MMS growth function. C	Sas fields an	e mainly sin	gle-well f	ields.	
19 19	CHARACTERISTICS	OF ASSES	SMENT UN	п		1
Oil (<20,000 cfg/bo overall)	or Gas (>20,000 cfg/bo ov	verall):	Oil			
		1999 (1997) - 199 7 -				
What is the minimum field s	ize? <u>6</u> r	mmboe grow	n (≥1mmbo	e)		
(the smallest field that has p	potential to be added to rese	rves in the r	iext 30 year	5)		
Number of discourses (C.1.)			01			
Established (>13 fields)	s exceeding minimum size:	13 fields)	OII:	40 Iunofination	Gas:	
Communed (~13 lields)	A Fronber (1-	is lieus)		ypoureuca	(no neus)	
Median size (grown) of disc	overed oil fields (mmboe)					
(areas) of a size	1st 3rd	60	2nd 3rd	201	3rd 3rd	271
Median size (grown) of disc	overed gas fields (bcfg):		1			
	1st 3rd	43	2nd 3rd	77	3rd 3rd	l
Assessment-Unit Probabi	lities:					
Attribute			<u> </u>	robability	of occurren	ice (0-1.0)
1. CHARGE: Adequate pet	roleum charge for an undisc	covered field	≥ minimum	1 size		1.0
2. ROCKS: Adequate resel	rvoirs, traps, and seals for a	n undiscove	red field <u>></u> h	ninimum s Id > minin	5IZE	1.0
2 TIMING OF GEOLOGIC	LVLNIK: Lawarable timuna	TOP TO UDDIE				
3. TIMING OF GEOLOGIC	EVENTS: Favorable timing	tor an undis	covered he	<u>∼</u> наза	num size	1.9
3. TIMING OF GEOLOGIC	EVENTS: Favorable timing	tor an undis		<u>~ 110100</u>	1.0	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLO	EVENTS: Favorable timing	for an undis 1, 2, and 3)			1.0	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLO 4. ACCESSIBILITY: Adeq	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor	for an undis 1, 2, and 3) ation for an	undiscovere	ed field	1.0	
 TIMING OF GEOLOGIC Assessment-Unit GEOLOG ACCESSIBILITY: Adeq ≥ minimum size 	EVENIS: Favorable timing GIC Probability (Product of uate location to allow explor	tor an undis 1, 2, and 3) ation for an	undiscovere	ed field	1.0	- 1.0
 TIMING OF GEOLOGIC Assessment-Unit GEOLOG ACCESSIBILITY: Adeq <u>≥</u> minimum size 	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor	tor an undis 1, 2, and 3) ation for an	undiscovere	ed field	<u>1.0</u>	- 1.0
3. TIMING OF GEOLOGIC Assessment-Unit GEOLO 4. ACCESSIBILITY: Adeq ≥minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor	tor an undis 1, 2, and 3) ation for an	undiscovere	ed field	<u>1.0</u>	- 1.0
 TIMING OF GEOLOGIC Assessment-Unit GEOLOG ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCO	for an undis 1, 2, and 3) ation for an	undiscovere DS	ed field	1.0	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size Number of Undiscovered	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco	for an undis 1, 2, and 3) ation for an /ERED FIEL	undiscovere DS exist that ar	ed field e ≥ minin	<u>1.0</u>	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size Number of Undiscovered	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe	for an undis 1, 2, and 3) ation for an /ERED FIEL vered fields d but unkno	undiscovered ner DS exist that ar wn values)	ed field e ≥ minin	1.0 	1.0
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size Number of Undiscovered Oil fields:	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe min. po. (20)	VERED FIEL vered fields d but unknov	DS exist that ar wn values)	ed field e ≥ minin 70	1.0 1.0	1.0
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe min. no. (>0) min. no. (>0)	tor an undis 1, 2, and 3) ation for an /ERED FIEL vered fields d but unknow 5 m	undiscovered her DS exist that ar win values) redian no.	ed field e ≥ minim 72 12	1.0 1.0 num size?: 	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size Number of Undiscovered Oil fields: Gas fields:	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undiscor (uncertainty of fixe 	For an undis 1, 2, and 3) ation for an VERED FIEL vered fields d but unknov 5 n 1 n	DS exist that ar wn values) redian no.	ed field ed field e ≥ minin 72 12	1.0 	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	r an undis 1, 2, and 3) ation for an /ERED FIEL vered fields d but unknow 5 m 1 m d sizes (gro	undiscovered me DS exist that ar wn values) redian no wn) of the a	ed field e ≥ minin 72 12 above fiel	1.0 1.0 num size?: max no. max no.	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	In the second se	Undiscovered here DS exist that ar win values) redian no win) of the a ered fields)	ed field ee ≥ minim 72 12 above fiel	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size Number of Undiscovered Oil fields: Gas fields: Size of Undiscovered Fiel	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	In the second se	undiscovered ner DS exist that ar wn values) redian no redian no wn) of the a	ed field e ≥ minin 72 12 above fiel	1.0 1.0 num size?: max no. ds?:	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size Number of Undiscovered Oil fields: Gas fields: Size of Undiscovered Fiel Oil in oil fields (mmbo)	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undiscor (uncertainty of fixe 	In the second se	Undiscovered me DS exist that ar wn values) redian no wn) of the a ered fields) redian size	ed field e ≥ minin 72 12 sbove fiel 60	1.0 	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undiscor (uncertainty of fixe 	for an undis 1, 2, and 3) ation for an //ERED FIEL vered fields // d but unknov 5 m n d sizes (gro of undiscov 6 m 36 m	undiscovered ner DS exist that ar wn values) redian no wn) of the a ered fields) redian size	ed field e ≥ minin 72 12 above fiel 60 120		1.0 160 36 4200 4800
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	In the second se	undiscovered ner DS exist that ar wn values) redian no tedian no wn) of the a ered fields) redian size	ed field e ≥ minim 72 12 above fiel 80 120	1.0 	1.0 100 36 4200 4800
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	for an undis 1, 2, and 3) ation for an /ERED FIEL vered fields d but unknow 5 m 1 m d sizes (gross of undiscov 6 m 36 m	undiscovered ner DS exist that ar win values) redian no win) of the a ered fields) redian size	ed field e ≥ minin 72 12 above fiel 120	1.0 	1.0 180 36 4200 4800
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	In the second se	undiscovered ner DS exist that ar wn values) redian no redian no wn) of the a ered fields) redian size	ed field e≥ minim 72 12 above fiel 60 120	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 160 36 4200 4800
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	In the second se	Undiscovered the US exist that ar win values) redian no win) of the a ered fields) redian size	ed field e ≥ minim 72 12 above fiel 60 120	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 160 36 4200 4800
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undiscor (uncertainty of fixe 	In the second se	undiscovered ner DS exist that ar wn values) redian no wn) of the a ered fields) redian size	ed field e ≥ minin 72 12 above fiel 60 120	1.0 	1.0 160 36 4200 4800
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undiscov (uncertainty of fixe 	In the second se	undiscovere DS exist that ar wn values) redian no tedian no wn) of the a ered fields) redian size	ed field e ≥ minim 72 12 above fiel 80 120	1.0 num size?: max no. ds?: max. size max. size	1.0 1.0 160 36 4200 4800
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	In the second se	undiscovered ner DS exist that ar wn values) redian no wedian no wedian size redian size	ed field e ≥ minim 72 12 sbove fiel 60 120	1.0 	1.0 1.0 160 36 4200 4800
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	in undis 1, 2, and 3) ation for an /ERED FIEL vered fields d but unknow 5 m 1 m d sizes (gross of undiscov 6 m 36 m	undiscovered ner DS exist that ar win values) redian no edian no win) of the a ered fields) redian size	ed field e ≥ minin 72 12 above fiel 120	1.0 	1.0 1.0 180 36 4200 4800

Figura 105.a - Dados de entrada USGS (página 1).

AVEDACE DATION FO	D UNDIRCOVEDED FIELDR TO		OTO
AVERAGE RATIOS FO	R UNDISCOVERED FIELDS, 10	DASSESS COPRODU	CIS
(ur	certainty of fixed but unknown v	alues)	2017/2017
Oil Fields:	minimum	median	maximur
Gas/oil ratio (cfg/bo)		1000	1500
NGL/gas ratio (bngl/mmcfg)	<u>15</u>		45
Gas fields:	minimum	median	maximum
Liquids/gas ratio (bngl/mmcfg)		22	33
Oil/gas ratio (bo/mmcfg).			
0			
	243		
		19 Ni	
SELECTED A	NCILLARY DATA FOR UNDISC	OVERED FIELDS	
SELECTED A (variatio	NCILLARY DATA FOR UNDISC	OVERED FIELDS ered fields)	
SELECTED A (variation)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum	OVERED FIELDS ered fields) median	maximur
SELECTED A (variation <u>Oil Fields:</u> API gravity (degrees)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 10	OVERED FIELDS ered fields) median 24	maximun 32
SELECTED A (variation Oil Fields: API gravity (degrees). Sulfur content of oil (%)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 10 0.2	OVERED FIELDS median 24 0.5	maximur 32 1.8
SELECTED A (variation <u>Oil Fields:</u> API gravity (degrees) Sulfur content of oil (%) Drilling Depth (m)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 10 0.2 4500	OVERED FIELDS ered fields) 24 0.5 7000	maximur 32 1.8 10000
SELECTED A (variation <u>Oil Fields:</u> API gravity (degrees). Sulfur content of oil (%). Drilling Depth (m) Depth (m) of water (if applicable)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 10 0.2 4500 300	OVERED FIELDS ered fields) 24 0.5 7000 2500	maximun 32 1.8 10000 7500
<u>Oil Fields:</u> API gravity (degrees). Sulfur content of oil (%). Drilling Depth (m) Depth (m) of water (if applicable)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 10 0.2 4500 300	OVERED FIELDS ered fields) 24 0.5 7000 2500	maximun 32 1.8 10000 7500
SELECTED A (variation <u>Oil Fields:</u> API gravity (degrees) Sulfur content of oil (%) Drilling Depth (m) Depth (m) of water (if applicable) Gas Fields:	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 0.2 4500 300 minimum	OVERED FIELDS ered fields) 24 0.5 7000 2500 median	maximun 32 1.8 10000 7500 maximun
SELECTED A (variation Oil Fields: API gravity (degrees) Sulfur content of oil (%) Drilling Depth (m) Depth (m) of water (if applicable) Gas Fields: Inert gas content (%)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 10 0.2 4500 300 minimum	OVERED FIELDS ered fields) 24 0.5 7000 2500 median	maximur 32 1.8 10000 7500 maximur
SELECTED A (variation Oil Fields: API gravity (degrees). Sulfur content of oil (%). Drilling Depth (m) Depth (m) of water (if applicable) Gas Fields: Inert gas content (%)CO2 content (%)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 10 0.2 4500 300 minimum	OVERED FIELDS ered fields) 24 0.5 7000 2500 median	maximur 32 1.8 10000 7500 maximur
SELECTED A (variation (variation) Oil Fields: API gravity (degrees). Sulfur content of oil (%). Drilling Depth (m) Depth (m) of water (if applicable). Depth (m) of water (if applicable). Gas Fields: Inert gas content (%). CO2 content (%). Hydrogen-sulfide content(%).	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 10 0.2 4500 300	OVERED FIELDS ered fields) 24 0.5 7000 2500 median	maximur 32 1.8 10000 7500 maximur
SELECTED A (variation (variation) Oil Fields: API gravity (degrees). Sulfur content of oil (%). Drilling Depth (m). Depth (m) of water (if applicable) Gas Fields: Inert gas content (%). Hydrogen-sulfide content(%). Drilling Depth (m)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 0.2 4500 300 minimum 5000	OVERED FIELDS ered fields) 24 0.5 7000 2500 median 7500	maximur 32 1.8 10000 7500 maximur 13000

Page 2

U.S. GEOLOGICAL SURVEY WORLD PETROLEUM ASSESSMENT 2000— DESCRIPTION AND RESULTS U.S. Geological Servey World Energy Assessment Team

Figura 105.b - Dados de entrada USGS (página 2).

		Assessment Unit Late Cretaceous-	(name, no.) Tertiary Turbidites, 60	350101
ALLO TO COUN	CATION OF UNDISCOVER	RED RESOURCES IN PARCELS (uncertaint	THE ASSESSMENT U	NIT values)
1. Brazil	repres	ents <u>100</u> areal	% of the total assessm	ient unit
Oil in Oil Fields: Richness factor (unit) Volume % in parcel (;	ess multiplier): areal % x richness factor):.	minimum	median 	maximum
Portion of volume % t	that is offshore (0-100%)		100	2
Gas in Gas Fields: Richness factor (unit) Volume % in parcel (a Portion of volume % t	ess multiplier): areal % x richness factor):. that is offshore (0-100%)	minimum	median 100 100	maximum

Figura 105.c - Dados de entrada USGS (página 3).

Figura 2 - Formulários dos dados de entrada USGS. Fonte: USGS (2000). O campo "*Undiscovered Fields*", parte inferior da página 1, representa a parte central e mais importante da "Seventh Approximation", pois captura as suposições feitas pelo geólogo com relação ao número e tamanho dos campos não descobertos de tamanho maior ou igual ao tamanho mínimo escolhido. Estas suposições consideram percentis que representam valores mínimo (F100), mediano (F50), e máximo (F0) das distribuições de probabilidade.

Uma combinação de conhecimento geológico da AU, análise do histórico de exploração e descoberta, e o conhecimento e experiência do time de avaliação foram utilizados para fazer as estimativas finais do número e tamanhos de campos não descobertos.

Os tamanhos dos campos não descobertos em uma AU podem ser estimados através do conhecimento geológico e tendências observadas no histórico de descobertas. Distribuições do número e tamanhos de campos não descobertos mudam com o tempo na medida em que a AU é explorada.

Os tamanhos dos campos tendem a diminuir com o tempo, ou seja, os campos maiores são geralmente encontrados primeiro no histórico de exploração. Entretanto, campos grandes podem ser descobertos em estágio avançados caso novas áreas sejam abertas para a exploração ou sejam desenvolvidos novos conceitos de exploração. Diferente de Knoring *et al.* (1999), a possibilidade de ocorrência de novos conceitos de exploração, não consideradas no histórico de descobertas, é considerada pelo time de avaliação da USGS.

IV. Programas Computacionais:

Os programas utilizados pela USGS são chamados de EMCEE e Emc2. O EMCEE permite uma ampla variedade de distribuições para os dados de entrada, enquanto o Emc2 trabalha com um conjunto específico de distribuições. Ambos são executados como planilhas eletrônicas do Microsoft Excel e requerem o programa de simulação *Crystal Ball (Decisioneering, Inc.)*.

Recursos não descobertos são calculados através do método de simulação de Monte Carlo cujas distribuições de probabilidade são baseadas nos dados dos formulários apresentados. Assim sendo, EMCEE e Emc2 são utilizados para simular tamanhos e números de campos não descobertos. O programa sorteia valores destas distribuições e calcula a previsão dos recursos não descobertos. Repete-se este procedimento um número específico de vezes.

V. Distribuições de Probabilidade:

Distribuições triangulares, calculadas a partir dos percentis F100, F50, e F0, foram usadas para representar o número de campos não descobertos e as relações dos co-produtos. Uma distribuição triangular precisa somente dos valores destes percentis para ser determinada.

O valor esperado ou médio do número de campos não descobertos descrito pela distribuição triangular é computado como sendo ¹/₃ da soma dos valores mínimo, moda, e máximo. Define-se valor esperado incondicional como sendo o produto do número médio de campos não descobertos e do risco geológico. Seja x igual ao número de campos não descobertos, então o valor médio e o valor esperado incondicional podem ser calculados através da Equação 149.

$$E[x] = \frac{1}{\chi} = \frac{1}{3} (F100 + F0 + F50)$$

$$E[x] incondicional = \frac{1}{\chi} * risco_geológico$$
(69)

Distribuições lognormais foram utilizadas para representar os tamanhos de campos não descobertos. Distribuições do tamanho dos campos apresentam grande assimetria que não podem ser representadas pelas distribuições triangulares.

As distribuições lognormais foram calculadas a partir dos percentis F100, F50, e F0 com o valor máximo usado para truncar a distribuição lognormal (à direita) referente ao percentil 0,1 (F0,1). Além disso, a origem foi modificada no eixo horizontal para coincidir com o tamanho de campo mínimo. Esta nova distribuição foi chamada de "distribuição lognormal truncada modificada".

VI. Resultado Final:

Para este estudo, aproximadamente 32.000 campos foram alocados a províncias geológicas. A alocação contou ainda com a aplicação de um de sistema de informação geográfica (GIS) baseando-se na localização do centro dos campos.

A Figura 106 mostra que, excluindo os EUA, o volume médio dos recursos não descobertos é 649 bilhões de barris de óleo equivalente (BBOE). O valor médio do acréscimo devido aos campos descobertos (crescimento de reserva) é de 612 BBOE. A figura mostra ainda o intervalo de incerteza destas estimativas, as reservas remanescentes e a produção acumulada.

Figura 3 – Estimativa média dos volumes mundiais (BBOE). Fonte: USGS, 2000.

VII. Aplicação prática:

Verma *et al.* (2004) apresenta um estudo feito para prever recursos não descobertos no Iraque, segundo país mais rico em petróleo no Oriente Médio, cujas reservas provadas somaram 113 bilhões de barris de óleo (BBO) em Janeiro de 2003 e cujos recursos são estimados em 184 bilhões de barris de óleo (BBO), incluindo reservas de óleo e gás mais os recursos não descobertos. O Iraque encontra-se atrás somente da Arábia Saudita com 259 BBO de reservas provadas.

Verma chama de "reservas recuperáveis" o que chamamos de volume de óleo recuperável, ou seja, o somatório de reservas provadas mais a produção acumulada. Assim sendo, 88% das reservas recuperáveis do Iraque encontram-se distribuídas em 6 campos supergigantes (volume maior do que 5 BBO) e 11 campos gigantes (volume entre 1 e 5 BBO).

Para prever os recursos não descobertos do Iraque, foi utilizada a metodologia proposta pela USGS (2000) que considera os aspectos geológicos. No Iraque, encontram-se reservatórios em rochas Paleozóicas, Mesozóicas e

Cenozóicas, estando a principal fonte de recursos localizada na Zagros-Mesopotamian Cretaceous-Tertiary (Figura 107). O potencial destas rochas forma três "Total Petroleum Systems" - TPS (Paleozóico, Jurássico e Cretáceo/Terciário), conforme ilustrados na Figura 108.

Figura 4 - Sessão Estratigráfica na Península Arábica.

Fonte: Verma et al., 2004.

Figura 5 - Três TPS no Iraque. Fonte: Verma *et al.*, 2004.

Na Figura 108, o TPS 202301, paleozóico, é a região mais velha geologicamente e produz óleo leve (°API > 40). Já o TPS 203001, cretáceo/terciário, é o maior na USGS *World Petroleum Assessment* (2000). A Tabela 52 abaixo mostra os resultados das avaliações feitas para cada TPS e o potencial de recursos não descobertos no Iraque. O potencial estimado para os três TPS (paleozóico, jurássico e cretáceo/terciário) varia entre 14.2 e 84.0 BBO (média de 45.1 BBO).

TDS	Probabilidade					
11-3	95%	50%	5%			
202301.0	0.5	1.6	3.1			
202302.0	1.7	5.3	9.2			
203001.0	12.0	38.2	71.7			
Total (BBO)	14.2	45.1	84.0			

Tabela 1 - Estimativa de recursos não descobertos para o Iraque.

Fonte: o autor.

Outros trabalhos publicados pela USGS utilizando aspectos geológicos para a avaliação de recursos não descobertos podem ser encontrados nas páginas da Internet:

http://water.usgs.gov/wid/index-resources.html

http://water.usgs.gov/wid/index-resources.html.

Um exemplo destes trabalhos é o da Bacia *San Joaquin*, Província da Califórnia, USGS (2003). Para esta região, é estimado 393 milhões de barris de óleo (MMBO) a serem descobertos em dez unidades de avaliação dentro de cinco TPS. Dos cinco TPS, o TPS Mioceno é responsável por 83% (328 MMBO) do total a ser descoberto. Devido à estimativa de 3,5 bilhões de barris de óleo (BBO) que podem ser acrescentados às reservas através dos campos existentes, USGS indica que a maioria do óleo a ser produzido no futuro virá dos campos existentes ao invés das novas descobertas. A Figura 109 mostra os resultados estimados para a bacia.

Total Petroleum Systems (TPS)	Field	d Oil (MMBO)				Total undiscovered resources Gas (BCFG)				NGL (MMBNGL)			
and Assessment Units (AU)	type	F95	F50	F5	Mean	F95	F50	F5	Mean	F95	F50	F5	Mea
Winters-Domengine TPS		ar i	с	50	19. 	08				2	30 	9	
Northern Nonassociated Gas	Oil	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AU	Gas					33.17	98.76	199.64	105.78	0.00	0.00	0.00	0.00
Eocene-Miocene Composite TPS													
Deep Fractured Pre-Monterey	Oil	1.16	3.82	21.25	6.60	2.58	9.43	53.75	16.49	0.14	0.55	3.23	0.99
AU	Gas		ļ			164.51	847.52	2,738.31	1,063.22	8.34	44.81	150.92	57.30
Eocene Composite TPS													
	Oil	10.84	41.45	96.52	46.03	25.53	100.69	254.07	115.31	1.14	4.70	12.85	5.54
Eocene West Side Fold Belt AU	Gas				-	8.84	29.43	114.10	41.38	0.77	2.78	11.13	3.97
North and East of Eocene West Side Fold Belt AU	Oil	2.77	10.59	27.77	12.33	2.32	9.30	26.07	11.10	0.06	0.23	0.70	0.29
	Gas	1			1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Miocene TPS													
Couthoost Stable Shalf All	Oil	5.41	21.39	50.08	23.78	2.43	10.65	29.98	12.67	0.09	0.42	1.24	0.51
Sourceast Stable Stiell MO	Gas					0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Laurer Daharafiald Arab All	Oil	14.24	66.78	162.89	75.01	15.80	82.68	274.50	105.06	0.89	4.83	16.87	6.31
Lower bakersneid Arch AU	Gas					17.29	58.34	169.58	71.25	0.80	2.86	8.76	3.57
Miccopy West Side Fold Polt All	Oil	19.69	79.79	188.31	88.79	20.59	88.10	239.71	103.56	1.16	5.16	14.93	6.23
WIDCENE WEST SIDE FOID BEILAU	Gas		Ì			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
South of White Wolf Foult All	Oil	5.07	17.18	41.44	19.45	8.00	28.46	73.90	33.08	0.14	0.51	1.36	0.60
South of white woon Fault AO	Gas					0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Central Basin Monterey	Oil	20.99	107.36	265.01	120.93	8.30	42.76	107.31	48.39	0.06	0.31	0.81	0.35
Diagenetic Traps AU	Gas					0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Neogene Nonassociated Gas TPS		50						ñ.					9.
Neogene Nonassociated Gas	Oil	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AU	Gas					11.83	27.30	49.81	28.62	0.00	0.00	0.00	0.00
Total Conventional		80.17	348.36	853.27	392.92	321.19	1,433.42	4,330.73	1,755.91	13.59	67.16	222.80	85.66

Figura 6 – Resultados estimados para a Bacia San Joaquin.

Fonte: USGS, 2003.

APÊNDICE D: APLICAÇÕES DE CRESCIMENTO DE RESERVAS

I. Aplicação prática Saskatchewan (Canadá)

Verma & Henri (2004) apresentam um estudo feito na região de Saskatchewan (Canadá), região escolhida pela falta de publicações de crescimento de reservas no Canadá e por apresentar longa série histórica (35 anos). Duas bacias contribuíram para as acumulações em Saskatchewan: as bacias de Williston e Alberta.

Embora possa ser positivo ou negativo, o crescimento de reservas é geralmente positivo, fornecendo meios para estimar as reservas futuras. Entretanto, sua avaliação é complexa, sendo afetada pela aplicação de métodos de recuperação secundária/terciária, por extensões das acumulações em campos descobertos e por leis e políticas locais que controlam a exploração. Neste estudo, além dos volumes recuperáveis, Verma investiga outras características, tais como tipo de óleo, tamanho e porosidade da acumulação.

Aproximadamente 51% dos 34 bilhões de barris de óleo (OIP) estão localizados em rochas "*Lower Cretaceous*". Estas rochas geralmente são rasas, produzem óleo pesado (<20°API), contribuindo para os baixos fatores de recuperação (aproximadamente 9%) se comparado com as rochas "*Lower Carboniferous*" e "Jurássica", com fatores de recuperação de 22% e 28%, respectivamente.

Para *Arrington modificado*, CGF's foram calculadas considerando os volumes recuperáveis de todos os campos descobertos. Em relação ao método de *crescimento do grupo*, considerou-se ainda que: i) todas as acumulações consideradas se estendam até o ano de 2001; ii) acumulações tenham pelo menos 10 anos de dados; iii) acumulações sejam agrupadas começando com a mesma data de referência que pode ser tanto o ano de descoberta, quanto o primeiro ano de produção.

Dados de acumulações apresentam diferentes datas de início e diferentes períodos (número de anos) são disponíveis para cada campo. Por esta razão,

grupos de campos com um período mínimo de crescimento de 10, 15, 20, 25, 30 e 35 anos foram formados.

Por exemplo, o grupo com pelo menos 10 anos de dados são os que tiveram suas reservas divulgadas antes de 1991 (dados até 2001). O grupo com pelo menos 15 anos de dados são os que tiveram suas reservas divulgadas antes de 1986 (dados até 2001) e, assim por diante, até chegar ao grupo com pelo menos 35 anos de dados.

Em seguida, Verma assume o resultado do grupo com o mínimo de 25 anos de dados históricos (154 *pools*) como sendo o mais representativo de toda a província. Este grupo apresenta um fator de crescimento acumulado igual a 3,27 (227%) para o período de 25 anos, isto é, crescimento equivalente a 4,9% ao ano.

Para o mesmo período de 25 anos, o maior crescimento foi atingido pelo método de *Arrington modificado*, CGF igual a 4,0 ou 300%, que representa um equivalente de 5,7% ao ano.

Com relação aos modelos de previsão, Verma testa três funções matemáticas: potência, recíproca e hiperbólica. Para o método de *crescimento do grupo*, utilizaram-se os dados do grupo com o mínimo de 25 anos de dados históricos (154 *pools*) e para o método de *Arrington modificado*, consideraram-se os volumes recuperáveis de todas as acumulações.

Para ambos os métodos, a função que melhor se ajustou foi a função potência. As equações, os valores do coeficiente de correlação (R^2) do gráfico do melhor ajuste são mostrados abaixo.

Arrington modificado:	$CGF = 0.989 (YSFP)^{0.4278}$	$R^2 = 0.956$
Crescimento do grupo:	$CGF = 1.0191(YSFP)^{0.3485}$	$R^2 = 0.938$

Onde YSFP = anos desde a primeira produção (years since first production).

Resultados mostram que para os próximos 5, 10 e 15 anos, a partir de 2001, reservas irão aumentar 0.4, 0.7 e 0.9 BBO de acordo com o método de *crescimento do grupo* e, 0.5, 0.8 e 1.2 BBO, assumindo o método de *Arrington Modificado*.

No meu ponto de vista, estes modelos mostram uma evolução da metodologia de Hubbert (1956), porém, com um leque de opções bastante limitado se comparado aos modelos matemáticos propostos por Knoring (1999), pois consideram somente três modelos (potência, *recíproca* e hiperbólica) com um número máximo de dois parâmetros.

II. Aplicação prática: Bacia Siberiana Ocidental

Verma & Ulmishek (2003) apresentam um estudo feito na bacia Siberiana Ocidental, região mais rica em petróleo da Rússia, e utiliza a mesma metodologia de crescimento de reservas. A região foi escolhida pela falta de publicações do crescimento de reservas em regiões fora dos EUA.

Segundo Verma & Ulmishek (2003), além de seus trabalhos aqui comentados, outros estudos de crescimento de reservas são: nos EUA (Marsh, 1971; Attanasi & Root, 1994; Root *et al.*, 1995; Lore *et al.*, 1996; Schmoker & Attanasi, 1997; Klett & Gautier, 2003); no Mar do Norte (Sem & Ellerman, 1999; Watkins, 2000).

A primeira descoberta de óleo ocorreu em 1960, rochas Jurássicas de Trekhozer, e o primeiro ano de produção em 1964. Durante esta década os dois principais campos (Samotlor e Fedorov) foram descobertos. Para este estudo foram utilizados dados dos 42 principais campos, representando 55% do total de reservas da bacia Siberiana Ocidental.

Pode-se observar na Tabela 53 que existe uma grande diferença entre os valores referentes ao ano de descoberta e ao primeiro ano de produção. Esta diferença é atribuída à intensa atividade exploratória entre a descoberta e o primeiro ano de produção.

Tabela 2 – Histórico de reservas totais na bacia Siberiana Ocidental, com relação à data de descobrimento e YSFP.

Vears since	Total r	eserves in mi fo	llion barrels r individual	Total reserves in million barrels since first production for individual set					
discovery/first prod.	42 Fields	37 Fields	32 Fields	24 Fields	14 Fields	42 Fields	30 Fields	23 Fields	9 Fields
0	6,888.1	5,904.0	5,240.2	3,993.2	3,113.4	48,027.1	37,574.2	30,797.8	17,038.2
1	17,381.0	14,091.0	12,464.3	9,557.1	7,268.6	59,878.4	48,082.6	40,136.7	23,271.0
2	26,964.3	22,093.5	19,400.3	15,708.4	11,694.4	64,741.8	51,976.9	43,537.9	25,736.9
3	38,057.6	32,005.1	28,748.7	24,124.8	16,588.5	70,552.8	57,467.0	48,830.3	29,429.5
4	47,643.6	39,804,4	35,756.7	30,249.4	20,380.0	74,604.6	60,761.4	52,112.6	32,529.2
5	55,637.8	47.652.5	43,270.0	37,345.5	25,785.3	77,294.4	63,581.4	54,963.9	33,760.0
6	61.385.6	53,217.6	48,561.3	42,229.3	28,605.7	76,849.3	62,880.3	55,142.9	34,140.7
7	68,788.5	60,056.8	55,524.8	48,873.9	32,049.8	77,530.0	63,493.5	55,828.3	34,358.7
8	72,857.9	63,905.4	59,151.0	52,122.2	35,093.6	75,459.0	61,391.2	53,664.9	32,204.4
9	76,488,6	67,500.4	62,930.2	55,491.6	36,338.8	76,076.8	61,626.3	54.312.7	32,812.1
10	76,512.0	67,523.8	63.082.1	55,854.5	36,895.2		61,950.7	54,637.5	32,946.9
11	77,058.9	68,003.7	63,455.7	55,998.1	37,253.6		64,951.7	57,644.6	35,768.8
12		65,390.1	60,797.3	53,762.9	34,853.6		65,499.6	58,962.8	37,094.5
13		66,157,7	61,564.9	54,262.2	35,194,4		65,419.3	59,455.5	37,153.5
14		66,788,1	61,844.8	54,405.5	35,341.8		65,614.5	59,599.3	37.257.3
15		68,578.0	64,435.1	57,307.1	38,194.6			58,461.1	37,537.1
16			65,046,1	57.807.7	38,654.5			58,042.2	37,496.8
17			65.027.2	57.765.5	38,786.4			58,058,5	37.451.9
18	1		66,561,4	59,264.7	38,930.9			58,707.5	38,804.6
19			66,883,2	59,586.1	39,117,5			58,601.1	38,880.5
20			65.017.2	58,587.2	39,243.1				39,215.0
21				57.078.1	39,292.5				39.322.5
22				58,221.0	40,734.0				39,554.7
23				58,714.8	41,161,4				38,251.1
24				59,420,4	41,610.3				37,888.6
25				59.572.4	41,656.3				37.607.7
26					41,264.0				
27					41,442.0				
28					41 763.9				
29					41,778.5				
30					41,918.9				
31					42 462 3				
32					42 853 0				

Fonte: Verma & Ulmishek, 2003.

Durante o período entre a descoberta do campo e a primeira produção, os acréscimos de reservas são incertos devido à falta de precisão no delineamento dos reservatórios. Por esta razão, Verma considera o crescimento de reservas baseado no primeiro ano de produção como sendo mais confiável. Sem & Ellerman, 1999 (apud Verma & Ulmishek, 2003), justificam o uso do primeiro ano de produção devido aos grandes investimentos iniciais necessários para desenvolver os campos do Mar do Norte.

Utilizando o primeiro ano de produção como referência, a Figura 110 mostra um rápido crescimento das reservas no início e, a seguir, permanece quase que constante. Este rápido crescimento inicial reflete a contínua exploração da bacia nos estágios iniciais onde os campos gigantes foram descobertos.

A segunda fase, que pode se estender por algumas décadas, deve-se principalmente à aplicação de técnicas IOR/EOR e extensões de acumulações nos campos descobertos na primeira fase. É relevante observar que este padrão é bem parecido com o da curva do Recôncavo (Figura 32).

Figura 7 - CGF vs. Anos desde a primeira produção na bacia Siberiana Ocidental. Fonte: Verma & Ulmishek, 2003.

Dessa forma, para os quatro grupos criados, os CGF's das curvas variam de 1,6 a 2,3 (60 a 130%). Pode-se observar ainda na Figura 110 uma queda no volume de reservas entre os anos 8 e 10, relacionados principalmente à revisão feita no campo de Samotlor, principal campo desta bacia.

Segundo Gavura, 1996 (apud Verma & Ulmishek, 2003), o resultado da revisão é devido às novas informações geológicas obtidas durante a exploração. Estas novas informações mostram que a espessura de alguns reservatórios é menor do que a estimada anteriormente, apresentam maior viscosidade e menor saturação de óleo.

Verma assume o resultado para o grupo com 23 campos como o mais representativo para toda a bacia, baseando-se no critério deste grupo apresentar mais de 50% do total de 42 campos e razoável tamanho do histórico de dados (19 anos).

Com relação aos modelos preditivos, Verma testa quatro funções matemáticas: exponencial, potência, recíproca e logarítmica. Novamente, a função potência foi a que melhor se ajustou ao conjunto de dados.

Entretanto, diferentemente do artigo anterior, Verma divide os dados em dois segmentos: o primeiro corresponde ao estágio de rápido crescimento durante

Todos os 19 anos - 1º ao 19º ano: $R^2 = 0.85$ Para o ajuste de 2 segmentos:

1° ao 4° ano:
$$CGF = 1.2823 (YSFP)^{0.1899}$$
5° ao 19° ano: $CGF = 1.5230 (YSFP)^{0.0833}$

Onde YSFP = anos desde a primeira produção (years since first production).

Figura 8 - CGF vs. YSFP - Siberiana Ocidental. Ajuste de curva para um e dois segmentos. Fonte: Verma & Ulmishek, 2003.

Situação similar a da Siberiana Ocidental ocorre na província Volga-Ural, também na Rússia (Verma *et al.*, 2000). Novamente, Verma utiliza um leque de opções bastante limitado e afirma que nenhuma equação apresentou ajuste satisfatório para os dados com rápido crescimento nos primeiros cinco anos seguido de um crescimento suave nos anos seguintes. Por esta razão, dividiram-se os dados em dois segmentos (1º ao 5º ano e do 6º em diante). A Figura 112 compara os resultados da província Volga-Ural com dados *onshore* e *offshore* dos EUA.

Figura 9 – CGF vs. YSFP a) Volga-Ural; b) Volga-Ural (sem Romashkino); c) ajuste "a"; d) ajuste "b"; e) EUA *onshore* (Attanasi *et al.*, 1999); f) Golfo do México (Lore *et al.*, 1996). Fonte: Verma *et al.*, 2000.

Novamente, Verma aqui considera uma região madura e bastante explorada, onde o crescimento de reservas geralmente ocorre devido às melhorias na tecnologia em **campos já descobertos**, não considerando a descoberta de novos campos, como acontece em algumas regiões do Brasil.

O crescimento de reservas é o principal componente do acréscimo de reservas em bacias maduras, tal como a maioria das bacias nos EUA. Entretanto, em bacias jovens, com programa exploratório ativo e intenso, a contribuição do crescimento de reservas é muito inferior se comparada com o acréscimo de reservas devido às novas descobertas.

PROPOSTOS

Função de Controle 1: $\varphi(R) = \exp(\alpha . R_t^{\beta})$

Modelo 1x1:

$$\Delta R = \left\{ \exp(\alpha . R_t^{\beta}) . (a - b . R_t) \right\}$$

$$R_{t+1} = R_t + \left\{ \exp(c(1) . R_t^{c(2)}) . (c(3) - c(4) . R_t) \right\}$$

$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = a \qquad c(4) = b$$

Modelo 1x2:

$$\Delta R = \left\{ \exp(\alpha . R_t^{\beta}) . (1 - a . R_t^{\beta}) \right\}$$

$$R_{t+1} = R_t + \left\{ \exp(c(1) . R_t^{c(2)}) . (1 - c(3) . R_t^{c(4)}) \right\}$$

$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = a \qquad c(4) = b$$

Modelo 1x3:

$$\Delta R = \left\{ e^{\alpha \cdot R_t^{\beta}} \right\} \cdot \left(e^{a - bR_t} \right) \right\}$$

$$\Delta R = \left\{ e^{\alpha \cdot R_t^{\beta}} \right\} \cdot e^a \cdot \left(e^{-bR_t} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) \cdot e^{c(2) \cdot R_t^{c(3)} - c(4) \cdot R_t} \right\}$$

$$c(1) = \exp(a) \qquad c(2) = \alpha \qquad c(3) = \beta \qquad c(4) = b$$

Modelo 1x4:

$$\Delta R = \left\{ \exp(\alpha . R_t^{\beta}) . \left(1 - (1 - c + a R_t^{\frac{1}{b}})^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \exp(c(1) . R_t^{c(2)}) . \left(1 - (1 - c(3) + c(4) R_t^{\frac{1}{c(5)}})^{c(5)} \right) \right\}$$

$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = c \qquad c(4) = a \qquad c(5) = b$$

$$\Delta R = \left\{ \exp(\alpha . R_t^{\beta}) . \left(c - a . R_t^{b} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \exp(c(1) . R_t^{c(2)}) . \left(c(3) - c(4) . R_t^{c(5)} \right) \right\}$$

$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = c \qquad c(4) = a \qquad c(5) = b$$

Modelo 1x6:

$$\Delta R = \left\{ \exp(\alpha \cdot R_t^{\beta}) \cdot \left(b \cdot Ln\left(\frac{A}{R_t}\right) \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \exp(c(1) \cdot R_t^{c(2)}) \cdot \left(c(3) \cdot Ln\left(\frac{c(4)}{R_t}\right) \right) \right\}$$

 $c(1) = \alpha$ $c(2) = \beta$ c(3) = b c(4) = A

Modelo 1x7:

$$\Delta R = \left\{ \exp(\alpha \cdot R_t^{\beta}) \cdot \left(a \left(\frac{A - R_t}{A} \right)^b \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \exp(c(1) \cdot R_t^{c(2)}) \cdot \left(c(3) \left(1 - \frac{R_t}{c(4)} \right)^{c(5)} \right) \right\}$$
$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = a \qquad c(4) = A \qquad c(5) = b$$

Modelo 1x8:

$$\Delta R = \left\{ e^{\alpha \cdot R_{t}^{\beta}} \right) \cdot \left(e^{a - bR_{t}} - c \right) \right\}$$

$$R_{t+1} = R_{t} + \left\{ e^{a - bR_{t} + \alpha \cdot R_{t}^{\beta}} \right) - \left(c \cdot e^{\alpha \cdot R_{t}^{\beta}} \right) \right\}$$

$$R_{t+1} = R_{t} + \left\{ c(1) \cdot \left(e^{-c(2) \cdot R_{t} + c(3) \cdot R_{t}^{c(4)}} \right) - c(5) \cdot e^{\alpha \cdot R_{t}^{\beta}} \right\}$$

$$c(1) = \exp(a) \qquad c(2) = b \qquad c(3) = \alpha \qquad c(4) = \beta \qquad c(5) = c$$

Modelo 1x9:

$$\Delta R = \left\{ \left(e^{\alpha \cdot R_t^{\beta}} \right) \cdot \left(e^{a - bR_t} - \frac{c}{R_t} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(e^{a - bR_t + \alpha \cdot R_t^{\beta}} \right) - \left(\frac{c}{R_t} \cdot e^{\alpha \cdot R_t^{\beta}} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) \cdot \left(e^{-c(2) \cdot R_t + c(3) \cdot R_t^{c(4)}} \right) - \left(\frac{c(5)}{R_t} \cdot e^{\alpha \cdot R_t^{\beta}} \right) \right\}$$

 $c(1) = \exp(a)$ c(2) = b $c(3) = \alpha$ $c(4) = \beta$ c(5) = c

Função de Controle 2: $\varphi(R) = e^{\alpha + \beta \cdot R_t}$

Modelo 2x1:

$$\Delta R = \{ e^{\alpha + \beta R_t} \} . (a - b . R_t) \}$$

$$\Delta R = \{ e^{\alpha} . (e^{\beta R_t}) . (a - b . R_t) \}$$

$$R_{t+1} = R_t + \{ c(1) . (e^{c(3) . R_t}) - (c(2) . R_t . e^{c(3) . R_t}) \}$$

$$R_{t+1} = R_t + \{ e^{c(3) . R_t} \} . (c(1) - c(2) . R_t) \}$$

 $c(1) = exp(\alpha) . a$ $c(2) = exp(\alpha) . b$ $c(3) = \beta$

Modelo 2x2:

$$\Delta R = \left\{ \left(e^{\alpha + \beta \cdot R_t} \right) \cdot \left(1 - a \cdot R_t^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) \cdot \left(e^{c(3) \cdot R_t} \right) - c(2) \cdot \left(e^{c(3) \cdot R_t} \right) \cdot \left(R_t^{c(4)} \right) \right\}$$

$$c(1) = \exp(\alpha) \qquad c(2) = \exp(\alpha) \cdot a \qquad c(3) = \beta \qquad c(4) = b$$

Modelo 2x3:

$$\begin{split} \Delta R &= \left\{ \left(e^{\alpha + \beta \cdot R_t} \right) \cdot \left(e^{a - bR_t} \right) \right\} \\ \Delta R &= \left\{ e^{\alpha} \cdot \left(e^{\beta \cdot R_t} \right) \cdot e^a \cdot \left(e^{-bR_t} \right) \right\} \\ R_{t+1} &= R_t + \left\{ e^{\alpha} \cdot e^a \cdot \left(e^{\beta \cdot R_t - b \cdot R_t} \right) \right\} \\ R_{t+1} &= R_t + \left\{ c(1) \cdot \left(e^{c(2) \cdot R_t} \right) \right\} \end{split}$$

$$c(1) = \exp(\alpha) \cdot \exp(\alpha)$$
 $c(2) = \beta - b$

Modelo 2x4:

$$\Delta R = \left\{ e^{\alpha + \beta \cdot R_t} \cdot \left(1 - (1 - c + a R_t^{\frac{1}{b}})^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) \cdot e^{c(2) \cdot R_t} \cdot \left(1 - (1 - c(3) + c(4) R_t^{\frac{1}{c(5)}})^{c(5)} \right) \right\}$$

$$c(1) = \exp(\alpha) \qquad c(2) = \beta \qquad c(3) = c \qquad c(4) = a \qquad c(5) = b$$

Modelo 2x5:

$$\Delta R = \left\{ e^{\alpha + \beta \cdot R_t} \cdot \left(c - a \cdot R_t^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ e^{\alpha} \cdot e^{\beta \cdot R_t} \cdot \left(c - a \cdot R_t^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ e^{c(4) \cdot R_t} \cdot \left(c(3) - c(1) \cdot R_t^{c(2)} \right) \right\}$$

$$c(1) = \exp(\alpha) \cdot a \qquad c(2) = b \qquad c(3) = \exp(\alpha) \cdot c \qquad c(4) = \beta$$

Modelo 2x6:

$$\Delta R = \left\{ e^{\alpha + \beta \cdot R_t} \cdot \left(b \cdot Ln\left(\frac{A}{R_t}\right) \right) \right\}$$
$$\Delta R = \left\{ e^{\alpha} \cdot e^{\beta \cdot R_t} \cdot \left(b \cdot Ln\left(\frac{A}{R_t}\right) \right) \right\}$$
$$R_{t+1} = R_t + \left\{ c(1) \cdot Ln\left(\frac{c(2)}{R_t}\right) \cdot e^{c(3) \cdot R_t} \right\}$$

 $c(1) = \exp(\alpha) \cdot b$ c(2) = A $c(3) = \beta$

Modelo 2x7:

$$\Delta R = \left\{ e^{\alpha + \beta \cdot R_t} \cdot \left(a \left(\frac{A - R_t}{A} \right)^b \right) \right\}$$
$$\Delta R = \left\{ a \cdot e^{\alpha} \cdot e^{\beta \cdot R_t} \cdot \left(\frac{A - R_t}{A} \right)^b \right\}$$
$$R_{t+1} = R_t + \left\{ c(1) \cdot e^{c(2) \cdot R_t} \cdot \left(1 - \frac{R_t}{c(3)} \right)^{c(4)} \right\}$$

$$\Delta R = \left\{ e^{\alpha + \beta . R_t} . \left(e^{a - bR_t} - c \right) \right\}$$

$$\Delta R = \left\{ e^{\alpha} . e^{\beta . R_t} . \left(e^a . e^{-bR_t} - c \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(e^{\alpha} . e^{\beta . R_t} . e^a . e^{-bR_t} \right) - \left(c . e^{\alpha} . e^{\beta . R_t} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(c(1) . e^{c(2) . R_t} \right) - \left(c(3) . e^{c(4) . R_t} \right) \right\}$$

$$c(1) = \exp(\alpha) . \exp(\alpha) \qquad c(2) = \beta - b \qquad c(3) = c . \exp(\alpha) \qquad c(4) = \beta$$

Modelo 2x9:

$$\Delta R = \left\{ e^{\alpha + \beta \cdot R_{l}} \cdot \left(e^{a - bR_{l}} - \frac{c}{R_{l}} \right) \right\}$$

$$\Delta R = \left\{ e^{\alpha} \cdot e^{\beta \cdot R_{l}} \cdot \left(e^{a} \cdot e^{-bR_{l}} - \frac{c}{R_{l}} \right) \right\}$$

$$\Delta R = \left\{ e^{\alpha} \cdot e^{\beta \cdot R_{l}} \cdot \left(e^{a} \cdot e^{-bR_{l}} - \frac{c}{R_{l}} \right) \right\}$$

$$R_{t+1} = R_{t} + \left\{ \left(e^{\alpha} \cdot e^{\beta \cdot R_{l}} \cdot e^{a} \cdot e^{-bR_{l}} \right) - \left(\frac{c}{R_{l}} \cdot e^{\alpha} \cdot e^{\beta \cdot R_{l}} \right) \right\}$$

$$R_{t+1} = R_{t} + \left\{ \left(c(1) \cdot e^{c(2) \cdot R_{l}} \right) - \left(\frac{c(3)}{R_{l}} \cdot e^{c(4) \cdot R_{l}} \right) \right\}$$

$$c(1) = \exp(a) \cdot \exp(\alpha) \qquad c(2) = \beta \cdot b \qquad c(3) = c \cdot \exp(\alpha) \qquad c(4) = \beta$$

Função de Controle 3: $\varphi(R) = \exp(\alpha + R_t^{\beta})$

Modelo 3x1:

$$\Delta R = \left\{ \left(e^{\alpha + R_t^{\beta}} \right) \cdot \left(a - b \cdot R_t \right) \right\}$$

$$\Delta R = \left\{ e^{\alpha} \cdot \left(e^{R_t^{\beta}} \right) \cdot \left(a - b \cdot R_t \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(e^{R_t^{c(2)}} \right) \cdot \left(c(1) - c(3) \cdot R_t \right) \right\}$$

$$c(1) = \exp(\alpha) \cdot a \qquad c(2) = \exp(\alpha) \cdot b \qquad c(3) = \beta$$

Modelo 3x2:

$$\Delta R = \left\{ \left(e^{\alpha + R_t^{\beta}} \right) \cdot \left(1 - a \cdot R_t^{b} \right) \right\}$$

$$\Delta R = \left\{ e^a \cdot \left(e^{R_t^{\beta}} \right) \cdot \left(1 - a \cdot R_t^{b} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) \cdot \left(e^{R_t^{c(3)}} \right) - c(2) \cdot \left(e^{R_t^{c(3)}} \right) \cdot \left(R_t^{c(4)} \right) \right\}$$

$$c(1) = \exp(\alpha) \qquad c(2) = \exp(\alpha) \cdot a \qquad c(3) = \beta \qquad c(4) = b$$

Modelo 3x3:

$$\Delta R = \left\{ \left(e^{\alpha + R_t^{\beta}} \right) \cdot \left(e^{a - bR_t} \right) \right\}$$
$$\Delta R = \left\{ e^{\alpha} \cdot \left(e^{R_t^{\beta}} \right) \cdot e^a \cdot \left(e^{-bR_t} \right) \right\}$$
$$R_{t+1} = R_t + \left\{ e^{\alpha} \cdot e^a \cdot \left(e^{R_t^{\beta} - b \cdot R_t} \right) \right\}$$
$$R_{t+1} = R_t + \left\{ c(1) \cdot \left(e^{R_t^{c(2)} - c(3) \cdot R_t} \right) \right\}$$

 $c(1) = \exp(\alpha) . \exp(\alpha)$ $c(2) = \beta$ c(3) = b

Modelo 3x4:

$$\Delta R = \left\{ \left(e^{\alpha + R_t^{\beta}} \right) \cdot \left(1 - \left(1 - c + a R_t^{\frac{1}{b}} \right)^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) \cdot e^{R_t^{c(2)}} \cdot \left(1 - \left(1 - c(3) + c(4) R_t^{\frac{1}{c(5)}} \right)^{c(5)} \right) \right\}$$
(1)

$$c(1) = \exp(\alpha)$$
 $c(2) = \beta$ $c(3) = c$ $c(4) = a$ $c(5) = b$

Modelo 3x5:

$$\Delta R = \left\{ \left(e^{\alpha + R_t^{\beta}} \right) \cdot \left(c - a \cdot R_t^{b} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ e^{\alpha} \cdot e^{R_t^{\beta}} \cdot \left(c - a \cdot R_t^{b} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ e^{R_t^{C(4)}} \cdot \left(c(3) - c(1) \cdot R_t^{c(2)} \right) \right\}$$

$$c(1) = \exp(\alpha) \cdot a \qquad c(2) = b \qquad c(3) = \exp(\alpha) \cdot c \qquad c(4) = \beta$$

Modelo 3x6:

$$\Delta R = \left\{ e^{\alpha + R_t^{\beta}} \cdot \left(b \cdot Ln\left(\frac{A}{R_t}\right) \right) \right\}$$
$$\Delta R = \left\{ e^{\alpha} \cdot e^{R_t^{\beta}} \cdot \left(b \cdot Ln\left(\frac{A}{R_t}\right) \right) \right\}$$
$$R_{t+1} = R_t + \left\{ c(1) \cdot Ln\left(\frac{c(2)}{R_t}\right) \cdot e^{R_t^{c(3)}} \right\}$$

 $c(1) = \exp(\alpha) . b$ c(2) = A $c(3) = \beta$

Modelo 3x7:

$$\Delta R = \left\{ e^{\alpha + R_t^{\beta}} \cdot \left(a \left(\frac{A - R_t}{A} \right)^b \right) \right\}$$
$$\Delta R = \left\{ a \cdot e^{\alpha} \cdot e^{R_t^{\beta}} \cdot \left(\frac{A - R_t}{A} \right)^b \right\}$$
$$R_{t+1} = R_t + \left\{ c(1) \cdot e^{R_t^{c(2)}} \cdot \left(1 - \frac{R_t}{c(3)} \right)^{c(4)} \right\}$$
$$c(1) = \exp(\alpha) \cdot a \qquad c(2) = \beta \qquad c(3) = A \qquad c(4) = b$$

Modelo 3x8:

$$\Delta R = \left\{ e^{\alpha + R_{t}^{\beta}} \cdot \left(e^{a - bR_{t}} - c \right) \right\}$$

$$\Delta R = \left\{ e^{\alpha} \cdot e^{R_{t}^{\beta}} \cdot \left(e^{a} \cdot e^{-bR_{t}} - c \right) \right\}$$

$$R_{t+1} = R_{t} + \left\{ \left(e^{\alpha} \cdot e^{R_{t}^{\beta}} \cdot e^{a} \cdot e^{-bR_{t}} \right) - \left(c \cdot e^{\alpha} \cdot e^{R_{t}^{\beta}} \right) \right\}$$

$$R_{t+1} = R_{t} + \left\{ \left(c(1) \cdot e^{R_{t}^{c(3)} - c(4) \cdot R_{t}} \right) - \left(c(2) \cdot e^{R_{t}^{c(3)}} \right) \right\}$$

 $c(1) = exp(\alpha) . exp(\alpha)$ $c(2) = exp(\alpha) . c$ $c(3) = \beta$ c(4) = b

Modelo 3x9:

$$\Delta R = \left\{ e^{\alpha + R_t^{\beta}} \cdot \left(e^{a - bR_t} - \frac{c}{R_t} \right) \right\}$$

$$\Delta R = \left\{ e^{\alpha} \cdot e^{R_t^{\beta}} \cdot \left(e^a \cdot e^{-bR_t} - \frac{c}{R_t} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(e^{\alpha} \cdot e^{R_t^{\beta}} \cdot e^a \cdot e^{-bR_t} \right) - \left(\frac{c}{R_t} \cdot e^{\alpha} \cdot e^{R_t^{\beta}} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(c(1) \cdot e^{R_t^{c(3)} - c(4) \cdot R_t} \right) - \left(\frac{c(2)}{R_t} \cdot e^{R_t^{c(3)}} \right) \right\}$$

$$c(1) = \exp(\alpha) \cdot \exp(\alpha) \qquad c(2) = \exp(\alpha) \cdot c \qquad c(3) = \beta \qquad c(4) = b$$

Função de Controle 4: $\varphi(R) = \alpha R_t^{\beta}$

Modelo 4x1:

$$\Delta R = \{ (\alpha . R_t^{\beta}) . (a - b . R_t) \}$$

$$R_{t+1} = R_t + \{ c(1) . R_t^{c(2)} - c(3) . R_t^{c(2)+1} \}$$

$$c(1) = \alpha . a \qquad c(2) = \beta \qquad c(3) = \alpha . b$$

Modelo 4x2:

$$\Delta R = \left\{ \alpha . R_t^{\beta} . \left(1 - a . R_t^{b} \right) \right\}$$

$$\Delta R = \left\{ \alpha . R_t^{\beta} - \alpha . R_t^{\beta} . a . R_t^{b} \right\}$$

$$\Delta R = \left\{ c(1) . R_t^{c(2)} - c(3) . R_t^{c(4)} \right\}$$

 $c(1) = \alpha$ $c(2) = \beta$ $c(3) = \alpha \cdot a$ $c(4) = b + \beta$

Modelo 4x3:

$$\Delta R = \left\{ \alpha . R_t^{\beta} . \left(e^{a - bR_t} \right) \right\}$$

$$\Delta R = \left\{ \alpha . R_t^{\beta} . e^a . \left(e^{-bR_t} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) . \left(R_t^{c(2)} e^{-c(3) . R_t} \right) \right\}$$

 $c(1) = \alpha \cdot exp(a)$ $c(2) = \beta$ c(3) = b

Modelo 4x4:

$$\Delta R = \left\{ \alpha \cdot R_t^{\beta} \cdot \left(1 - (1 - c + a R_t^{\frac{1}{b}})^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) \cdot R_t^{c(2)} \cdot \left(1 - (1 - c(3) + c(4) R_t^{\frac{1}{c(5)}})^{c(5)} \right) \right\}$$

$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = c \qquad c(4) = a \qquad c(5) = b$$

Modelo 4x5:

$$\Delta R = \left\{ \alpha . R_t^{\beta} . (c - a . R_t^{b}) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) . R_t^{c(2)} - c(3) . R_t^{c(4)} \right\}$$

$$c(1) = \alpha . c \qquad c(2) = \beta \qquad c(3) = \alpha . a \qquad c(4) = \beta + b$$

Modelo 4x6:

$$\Delta R = \left\{ \alpha \cdot R_t^{\beta} \cdot \left(b \cdot Ln\left(\frac{A}{R_t}\right) \right) \right\}$$
$$R_{t+1} = R_t + \left\{ c(1) \cdot R_t^{c(2)} \cdot Ln\left(\frac{c(3)}{R_t}\right) \right\}$$

$$c(1) = \alpha \cdot b$$
 $c(2) = \beta$ $c(3) = A$

Modelo 4x7:

$$\Delta R = \left\{ \alpha \cdot R_t^{\beta} \cdot \left(a \left(\frac{A - R_t}{A} \right)^b \right) \right\}$$
$$R_{t+1} = R_t + \left\{ c(1) \cdot R_t^{c(2)} \cdot \left(1 - \frac{R_t}{c(3)} \right)^{c(4)} \right\}$$

 $c(1) = \alpha . a$ $c(2) = \beta$ c(3) = A c(4) = b

Modelo 4x8:

$$\begin{split} \Delta R &= \left\{ \alpha . R_t^{\beta} . \left(e^{a - bR_t} - c \right) \right\} \\ \Delta R &= \left\{ \alpha . R_t^{\beta} . \left(e^a . e^{-bR_t} - c \right) \right\} \\ R_{t+1} &= R_t + \left\{ \left(\alpha . R_t^{\beta} . e^a . e^{-bR_t} \right) - \left(c . \alpha . R_t^{\beta} \right) \right\} \\ R_{t+1} &= R_t + \left\{ \left(c(1) . R_t^{c(2)} . e^{-c(3) . R_t} \right) - \left(c(4) . R_t^{c(2)} \right) \right\} \end{split}$$

$$c(1) = \exp(a) \cdot \alpha$$
 $c(2) = \beta$ $c(3) = b$ $c(4) = c \cdot \alpha$

Modelo 4x9:

$$\Delta R = \left\{ \alpha \cdot R_t^{\beta} \cdot \left(e^{a - bR_t} - \frac{c}{R_t} \right) \right\}$$

$$\Delta R = \left\{ \alpha \cdot R_t^{\beta} \cdot \left(e^a \cdot e^{-bR_t} - \frac{c}{R_t} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(\alpha \cdot R_t^{\beta} \cdot e^a \cdot e^{-bR_t} \right) - \left(\frac{c}{R_t} \cdot \alpha \cdot R_t^{\beta} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) \cdot R_t^{c(2)} \cdot e^{-c(3) \cdot R_t} \right\} - \left(c(4) \cdot R_t^{c(2)} \right) \right\}$$

$$c(1) = \exp(a) \cdot \alpha \qquad c(2) = \beta - 1 \qquad c(3) = b \qquad c(4) = c \cdot \alpha$$

Função de Controle 5: $\varphi(R) = \alpha + \beta . Ln(R_{,})$

Modelo 5x1:

$$\Delta R = \{ (\alpha + \beta . Ln(R_t)) . (\alpha - b . R_t) \}$$

$$R_{t+1} = R_t + \{ (c(1) - c(2) . R_t) + (c(3) . Ln(R_t)) - (c(4) . R_t . Ln(R_t)) \}$$

$$c(1) = \alpha . a \qquad c(2) = \alpha . b \qquad c(3) = \beta . a \qquad c(4) = \beta . b$$

$$c(1)$$
 $u \cdot u = c(2)$ $u \cdot v = c(3)$ $v \cdot u = c(1)$

Modelo 5x2:

$$\Delta R = \{ (\alpha + \beta . Ln(R_t)) . (1 - a . R_t^b) \}$$

$$R_{t+1} = R_t + \{ (c(1) + c(2) . Ln(R_t)) . (1 - c(3) . R_t^{c(4)}) \}$$

$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = a \qquad c(4) = b$$

Modelo 5x3:

$$\Delta R = \{ (\alpha + \beta . Ln(R_t)) . (e^{a - bR_t}) \}$$

$$\Delta R = \{ (\alpha + \beta . Ln(R_t)) . (e^a . e^{-bR_t}) \}$$

$$R_{t+1} = R_t + \{ c(1) . e^{-c(2)R_t} + c(3) . Ln(R_t) . e^{-c(2)R_t} \}$$

$$R_{t+1} = R_t + \{ [c1 + c(3) . Ln(R_t)] . [e^{-c(2)R_t}] \}$$

$$c(1) = \alpha . \exp(\alpha) \qquad c(2) = b \qquad c(3) = \beta . \exp(\alpha)$$

Modelo 5x4:

$$\Delta R = \left\{ \left(\alpha + \beta . Ln(R_t) \right) \cdot \left(1 - (1 - c + aR_t^{\frac{1}{b}})^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ (c(1) + c(2) . Ln(R_t)) \cdot \left(1 - (1 - c(3) + c(4) . R_t^{\frac{1}{b}c(5)})^{c(5)} \right) \right\}$$

$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = c \qquad c(4) = a \qquad c(5) = b$$

Modelo 5x5:

$$\Delta R = \{ (\alpha + \beta . Ln(R_t)) . (c - a . R_t^b) \}$$

$$R_{t+1} = R_t + \{ (c(1) - c(2) . R_t^{c(3)}) + (c(4) . Ln(R_t)) - (c(5) . Ln(R_t) . R_t^{c(3)}) \}$$

$$c(1) = \alpha . c \qquad c(2) = \alpha . a \qquad c(3) = b \qquad c(4) = \beta . c \qquad c(5) = \beta . a$$

Modelo 5x6:

$$\Delta R = \left\{ \left(\alpha + \beta . Ln(R_t) \right) \cdot \left(b . Ln\left(\frac{A}{R_t}\right) \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \left(c(1) \cdot Ln\left(\frac{c(2)}{R_t}\right) \right) + \left(c(3) \cdot Ln(R_t) \cdot Ln\left(\frac{c(2)}{R_t}\right) \right) \right\}$$

$$c(1) = \alpha . b$$
 $c(2) = A$ $c(3) = \beta . b$

Modelo 5x7:

$$\Delta R = \left\{ \left(\alpha + \beta . Ln(R_t) \right) \cdot \left(a \left(\frac{A - R_t}{A} \right)^b \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \left(c(1) + c(2) . Ln(R_t) \right) \cdot \left(1 - \frac{R_t}{c(3)} \right)^{c(4)} \right\}$$

 $c(1) = \alpha . a$ $c(2) = \beta . a$ c(3) = A c(4) = b

Modelo 5x8:

$$\Delta R = \left\{ (\alpha + \beta . Ln(R_t)) . (e^{a - bR_t} - c) \right\}$$

$$\Delta R = \left\{ (\alpha + \beta . Ln(R_t)) . (e^a . e^{-bR_t} - c) \right\}$$

$$R_{t+1} = R_t + \left\{ (c(1) . e^{-c(2)R_t}) - c(3) + (c(4) . Ln(R_t) . e^{-c(2)R_t}) - (c(5) . Ln(R_t)) \right\}$$

$$c(1) = \alpha .exp(a)$$
 $c(2) = b$ $c(3) = \alpha .c$ $c(4) = \beta .exp(a)$ $c(5) = \beta .c$

Modelo 5x9:

$$\Delta R = \left\{ \left(\alpha + \beta . Ln(R_t) \right) \cdot \left(e^{\alpha - bR_t} - \frac{c}{R_t} \right) \right\}$$
$$\Delta R = \left\{ \left(\alpha + \beta . Ln(R_t) \right) \cdot \left(e^{\alpha} . e^{-bR_t} - \frac{c}{R_t} \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \left(c(1) + c(2) . Ln(R_t) \right) \cdot \left(c(3) . e^{-c(4)R_t} - \frac{c(5)}{R_t} \right) \right\}$$
$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = \exp(\alpha) \qquad c(4) = b \qquad c(5) = c$$

Função de Controle 6: $\varphi(R) = \gamma - \alpha . e^{-\beta . R_t}$

Modelo 6x1:

$$\Delta R = \{ (\gamma - \alpha . e^{-\beta . R_t}) . (a - b . R_t) \}$$

$$R_{t+1} = R_t + \{ (c(1) - c(2) . e^{-c(3) . R_t}) . (c(4) - c(5) . R_t) \}$$

$$c(1) = \gamma \qquad c(2) = \alpha \qquad c(3) = \beta \qquad c(4) = a \qquad c(5) = b$$

Modelo 6x2:

$$\Delta R = \{ (\gamma - \alpha . e^{-\beta . R_t}) . (1 - a . R_t^b) \}$$

$$R_{t+1} = R_t + \{ (c(1) - c(2) . e^{-c(3) . R_t}) . (1 - c(4) . R_t^{c(5)}) \}$$

$$c(1) = \gamma \qquad c(2) = \alpha \qquad c(3) = \beta \qquad c(4) = a \qquad c(5) = b$$

Modelo 6x3:

$$\Delta R = \{ (\gamma - \alpha . e^{-\beta . R_t}) . (e^{a - b R_t}) \}$$

$$\Delta R = \{ (\gamma . e^a . e^{-b . R_t}) - (\alpha . e^a . e^{-b R_t} . e^{-\beta R_t}) \}$$

$$R_{t+1} = R_t + \{ (c(1) . e^{-c(2) . R_t}) - (c(3) . e^{-c(4) R_t}) \}$$

$$c(1) = \gamma . \exp(a) \qquad c(2) = b \qquad c(3) = \alpha . \exp(a) \qquad c(4) = b + \beta$$

Modelo 6x4:

$$\Delta R = \left\{ \left(\gamma - \alpha . e^{-\beta . R_{t}} \right) . \left(1 - (1 - c + a R_{t}^{\frac{1}{b}})^{b} \right) \right\}$$

$$R_{t+1} = R_{t} + \left\{ \left(c(1) - c(2) . e^{-c(3) . R_{t}} \right) . \left(1 - (1 - c(4) + c(5) R_{t}^{\frac{1}{c}(6)})^{c(6)} \right) \right\}$$

$$c(1) = \gamma \qquad c(2) = \alpha \qquad c(3) = \beta \qquad c(4) = c \qquad c(5) = a \qquad c(6) = b$$

Modelo 6x5:

$$\Delta R = \left\{ \left(\gamma - \alpha . e^{-\beta . R_t} \right) . \left(c - a . R_t^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(c(1) - c(2) . e^{-c(3) . R_t} \right) . \left(c(4) - c(5) . R_t^{c(6)} \right) \right\}$$

$$c(1) = \gamma \qquad c(2) = \alpha \qquad c(3) = \beta \qquad c(4) = c \qquad c(5) = a \qquad c(6) = b$$

Modelo 6x6:

$$\Delta R = \left\{ \left(\gamma - \alpha . e^{-\beta . R_t} \right) \cdot \left(b . Ln \left(\frac{A}{R_t} \right) \right) \right\}$$
$$\Delta R = \left\{ c(1) \cdot Ln \left(\frac{c(2)}{R_t} \right) - c(3) \cdot Ln \left(\frac{c(2)}{R_t} \right) \cdot e^{-c(4) \cdot R_t} \right\}$$
$$R_{t+1} = R_t + \left\{ \left[c(1) - c(3) \cdot e^{-c(4) \cdot R_t} \right] \cdot Ln \left(\frac{c(2)}{R_t} \right) \right\}$$

 $c(1) = \gamma.b$ c(2) = A $c(3) = \alpha.b$ $c(4) = \beta$

Modelo 6x7:

$$\Delta R = \left\{ \left(\gamma - \alpha . e^{-\beta . R_t} \right) \left(a \left(1 - \frac{R_t}{A} \right)^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(c(1) - c(2) . e^{-c(3) . R_t} \right) \left(1 - \frac{R_t}{c(4)} \right)^{c(5)} \right\}$$

$$c(1) = \gamma \qquad c(2) = \alpha \qquad c(3) = \beta \qquad c(4) = A \qquad c(5) = b$$

Modelo 6x8:

$$\Delta R = \{ (\gamma - \alpha . e^{-\beta . R_t}) . (e^{a - b R_t} - c) \}$$

$$R_{t+1} = R_t + \{ (c(1) - c(2) . e^{-c(3) . R_t}) . (c(4) . e^{-c(5) R_t} - c(6)) \}$$

$$c(1) = \gamma$$
 $c(2) = \alpha$ $c(3) = \beta$ $c(4) = exp(a)$ $c(5) = b$ $c(6) = c$

Modelo 6x9:

$$\Delta R = \left\{ \left(\gamma - \alpha . e^{-\beta . R_t} \right) \cdot \left(e^{a - bR_t} - \frac{c}{R_t} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(c(1) - c(2) . e^{-c(3) . R_t} \right) \cdot \left(c(4) . e^{-c(5)R_t} - \frac{c(6)}{R_t} \right) \right\}$$

$$c(1) = \gamma \qquad c(2) = \alpha \qquad c(3) = \beta \qquad c(4) = \exp(a) \qquad c(5) = b \qquad c(6) = c$$

Função de Controle 7: $\varphi(R) = \frac{c}{1 + e^{\alpha - \beta \cdot R_t}}$

Modelo 7x1:

$$\Delta R = \left\{ \left(\frac{c}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot (a - b \cdot R_t) \right\}$$
$$R_{t+1} = R_t + \left\{ \frac{c(1) - c(2) \cdot R_t}{1 + c(3) \cdot e^{-c(4) \cdot R_t}} \right\}$$

$$c(1) = c \cdot a$$
 $c(2) = c \cdot b$ $c(3) = \alpha$ $c(4) = \beta$

Modelo 7x2:

$$\Delta R = \left\{ \left(\frac{c}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot \left(1 - a \cdot R_t^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(\frac{c(1)}{1 + c(2) \cdot e^{-c(3) \cdot R_t}} \right) \cdot \left(1 - c(4) \cdot R_t^{c(5)} \right) \right\}$$

$$c(1) = c \qquad c(2) = \exp(\alpha) \qquad c(3) = \beta \qquad c(4) = a \qquad c(5) = b$$

Modelo 7x3:

$$\Delta R = \left\{ \left(\frac{c}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot \left(e^{a - bR_t} \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \frac{c(1) \cdot e^{-c(2)R_t}}{1 + c(3) \cdot e^{-c(4) \cdot R_t}} \right\}$$

$$c(1) = c \cdot exp(a)$$
 $c(2) = b$ $c(3) = exp(a)$ $c(4) = \beta$

Modelo 7x4:

$$\Delta R = \left\{ \left(\frac{\gamma}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot \left(1 - (1 - c + aR_t^{\frac{1}{b}})^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(\frac{c(1)}{1 + c(2) \cdot e^{-c(3) \cdot R_t}} \right) \cdot \left(1 - (1 - c(4) + c(5)R_t^{\frac{1}{c(6)}})^{c(6)} \right) \right\}$$

$$c(1) = \gamma \qquad c(2) = \exp(\alpha) \qquad c(3) = \beta \qquad c(4) = c \qquad c(5) = a \qquad c(6) = b$$

Modelo 7x5:

$$\Delta R = \left\{ \left(\frac{\gamma}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot \left(c - a \cdot R_t^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \frac{c(1) - c(2) \cdot R_t^{c(3)}}{1 + c(4) \cdot e^{-c(5) \cdot R_t}} \right\}$$

$$c(1) = \gamma \cdot c \qquad c(2) = \gamma \cdot a \qquad c(3) = b \qquad c(4) = \exp(\alpha) \qquad c(5) = \beta$$

Modelo 7x6:

$$\Delta R = \left\{ \left(\frac{c}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot \left(b \cdot Ln\left(\frac{A}{R_t}\right) \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \frac{c(1) \cdot Ln\left(\frac{c(4)}{R_t}\right)}{1 + c(2) \cdot e^{-c(3) \cdot R_t}} \right\}$$

c(1) = b.c $c(2) = exp(\alpha)$ $c(3) = \beta$ c(4) = A

Modelo 7x7:
$$\Delta R = \left\{ \left(\frac{c}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot \left(a \left(\frac{A - R_t}{A} \right)^b \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \left(\frac{c(1) \cdot \left(1 - \frac{R_t}{c(4)} \right)^{c(5)}}{1 + c(2) \cdot e^{-c(3) \cdot R_t}} \right) \right\}$$

$$c(1) = c$$
. a $c(2) = exp(\alpha)$ $c(3) = \beta$ $c(4) = A$ $c(5) = b$

Modelo 7x8:

$$\Delta R = \left\{ \left(\frac{\gamma}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot \left(e^{a - bR_t} - c \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \frac{c(1) \cdot e^{-c(2) \cdot R_t} - c(3)}{1 + c(4) \cdot e^{-c(5) \cdot R_t}} \right\}$$

 $c(1) = \gamma$. exp (a) c(2) = b c(3) = c $c(4) = exp(\alpha)$ $c(5) = \beta$

Modelo 7x9:

$$\Delta R = \left\{ \left(\frac{\gamma}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot \left(e^{a - bR_t} - \frac{c}{R_t} \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \frac{c(1) \cdot e^{-c(2) \cdot R_t} - \frac{c(3)}{R_t}}{1 + c(4) \cdot e^{-c(5) \cdot R_t}} \right\}$$

$$c(1) = \gamma$$
. exp (a) $c(2) = b$ $c(3) = c$ $c(4) = exp(\alpha)$ $c(5) = \beta$

APÊNDICE F: EQUAÇÕES NO FORMATO DO E-VIEWS 4.1

Modelo	Equação no E-Views
1x1	R=(EXP(C(1)*L^C(2)))*(C(3)-C(4)*L)
1x2	R=(ÈXP(C(1)*L^C(2)))*(1-C(3)*L^C(4))
1x3	R=(EXP(C(1)*L^C(2)))*(C(3)*EXP(-C(4)*L))
1x4	$R=(EXP(C(1)^* ^C(2)))^*(1-(1-C(3)+C(4)^* ^(1/C(5)))^*((5)))$
1x5	$R = (F X P (C(1)^{*} A C(2))) * (C(3) - C(4)^{*} A C(5))$
1x6	R=(EXP(C(1)*L^C(2)))*(C(3)*@L_C(C(4)/L_))
1×0	R=(EXP(C(1)*L^C(2)))*(C(3)*(1 (L/C(4)))^C(5))
1/1	D=/C(1)*EVD(-(C(1)*E-C(2)*EAC(4))) (C(5)*EVD(C(3)*EAC(4)))
1x0	$\frac{1}{2} = \frac{1}{2} \left[\frac{1}{2} \left[$
129	
2X1	R=(U(T)-U(Z)*L)*(EXP(U(3)*L))
2X2	R=(1-U(2)"L^U(4))"(U(1)"EXP(U(3)"L))
2X3	$R=(U(1)^{*}EXP(U(2)^{*}L))$
2x4	R=(C(1)"EXP(C(2)"L))"(1-(1-C(3)+C(4)"(L)"(1/C(5)))"C(5))
2x5	R=(C(3)-C(1)*L*C(2))*(EXP(C(4)*L))
2x6	R=(C(1)*(@LOG(C(2)/L))*EXP(C(3)*L))
2x7	R=(EXP(C(2)*L))*C(1)*((1-(L/C(3)))^C(4))
2x8	R=(C(1)*EXP(C(2)*L))-(C(3)*EXP(C(4)*L))
2x9	R=(C(1)*EXP(C(2)*L))-((C(3)/L)*EXP(C(4)*L))
3x1	R=(C(1)*EXP(L^C(2)))-(C(3)*L*EXP(L^C(2)))
3x2	R=(C(1)*EXP(L^C(2)))*(1-C(3)*L^C(4))
3x3	R=(C(1)*EXP((L^C(2))-C(3)*L))
3x4	R=(C(1)*EXP(L^C(2)))*(1-(1-C(3)+C(4)*(L)^(1/C(5)))^C(5))
3x5	R=(C(3)-C(1)*L^C(2))*(EXP(L^C(4)))
3x6	$R=(C(1)*EXP(L^{C}(2)))*@LOG(C(3)/L)$
3x7	$R = (FXP(1 ^C(2))) * C(1) * ((1 - (1 / C(3))) * C(4))$
3x8	$R=(C(1)*EXP((^{C}(3))-C(4)*L))-(C(2)*EXP(^{C}(3)))$
3x9	$R = (C(1)^* E \times P(1 \land C(3)) - C(4)^* I) + ((C(2)^{l} I)^* E \times P(1 \land C(3)))$
4v1	$P = (C(1)^{*} A(C(2)) C(3)^{*} A(C(2) + 1))$
4x1	
472	
423	$\frac{R_{-}(O(1) \perp O(2)) \perp R_{-}(O(3) \perp C(3) \perp$
484	$\frac{1}{10000000000000000000000000000000000$
4,0	
4x0	$R=(C(1)^{-1}C(2))^{-1}(C(3)/L)$
4X/	
4x8	R=(U(1)*(L^U(2))*EXP(-U(3)*L))-(U(4)*L^U(2))
4x9	$R=(U(1)^{*}(L^{*}U(2))^{*}E^{*}P(-U(3)^{*}L))-(U(4)^{*}L^{*}(U(2)^{*}1))$
5x1	R=(C(1)+C(2)*@LOG(L))*(C(3)-C(4)*L)
5x2	
5x3	R=(C(1)+C(3)*@LOG(L))*(EXP(-C(2)*L))
5x4	R=(C(1)+C(2)*(@LOG(L)))*(1-(1-C(3)+C(4)*(L^(1/C(5))))^C(5))
5x5	R=(C(1)+C(2)*@LOG(L))*(C(3)-C(4)*L^C(5))
5x6	R=(C(1)*@LOG(C(2)/L))+(C(3)*@LOG(L)*@LOG(C(2)/L))
5x7	R=(C(1)+C(2)*@LOG(L))*((1-(L/C(3)))^C(4))
5x8	R=(C(1)+C(2)*@LOG(L))*(C(3)*EXP(-C(4)*L)-C(5))
5x9	R=(C(1)+C(2)*@LOG(L))*(C(3)*EXP(-C(4)*L)-(C(5)/L))
6x1	R=(C(1)-C(2)*EXP(-C(3)*L))*(C(4)-C(5)*L)
6x2	R=(C(1)-C(2)*EXP(-C(3)*L))*(1-C(4)*L^C(5))
6x3	R=(C(1)*EXP(-C(2)*L))-(C(3)*EXP(-C(4)*L))
6x4	R=(C(1)-C(2)*EXP(-C(3)*L))*(1-(1-C(4)+C(5)*(L)^(1/C(6)))^C(6))
6x5	R=(C(1)-C(2)*EXP(-C(3)*L))*(C(4)-C(5)*(L)^(C(6)))
6x6	R=(C(1)-C(2)*EXP(-C(3)*L))*(@LOG(C(4)/L))
6x7	R=(C(1)-C(2)*EXP(-C(3)*L))*(1-(L/C(4)))^C(5)
6x8	R=(C(1)-C(2)*EXP(-C(3)*L))*(-C(4)+C(5)*EXP(-C(6)*L))
6x9	R=(C(1)-C(2)*EXP(-C(3)*L))*(-(C(4)/L)+C(5)*EXP(-C(6)*L))
7x1	R=(C(1)-C(2)*L)/(1+C(3)*EXP(-C(4)*L))
7x2	$R = (C(1)/(1+C(2))*EXP(-C(3)*L)))*(1-C(4)*L^{(C(5))})$
7x3	R=(C(1)*FXP(-C(2)*L))/(1+C(3)*FXP(-C(4)*L))
7\1	$R_{(C(1)/(1+C(2))*EXP(-C(3)*[-)))*(1_{(1-C(4)+C(5)*(-)}*(1)*(1)(C(6)))*(2))}$
7×5	$\frac{1}{R} = \frac{1}{(1+C(2)^{k} + C(3))} + \frac{1}{(1+C(2)^{k} +$
7\6	R=(C(1)*@LOG(C(4)/L))/(1+C(2)*FXP(-C(3)*L))
7.0	
7/2	
7.0	
189	N=(O(1) LAF(-O(2) L)-(O(3)/L))/(1+O(4) EAF(-O(3) L))

APÊNDICE G: RESULTADOS DO TESTE BDS

O Apêndice G mostra o resultado do Teste BDS aplicado nos resíduos dos modelos analisados nos Capítulos 6. Para os conjuntos de dados testados, utilizouse m = 2, 3 e 4, ϵ = 0,5, 1,0, 1,5, 2,0 e 2,5 e 10.000 repetições para o *bootstrap*.

Metodologia I:

As Tabelas 54 a 57 mostram, respectivamente, os *p-values* do Teste BDS aplicado nos resíduos dos modelos que melhor se ajustaram aos dados da Bacia do Recôncavo, do Rio Grande do Norte/Ceará, de Sergipe/Alagoas e do Golfo do México.

Bootstrap Prob.							
٣	0,5	1,0	1,5	2,0	2,5		
2	0,1088	0,0456	0,0062	0,0322	0,0456		
3	0,0984	0,1010	0,0100	0,0512	0,0780		
4	0,1110	0,0766	0,0040	0,0132	0,0102		

Fonte: o autor.

Tabela 4 - Teste BDS - Metodologia I - Bacia do RN/CE: Resíduos do Modelo Knoring_8.

	Teste BDS - Residuo do Modelo Knoring 8						
		Bootstra	ap Prob				
" Е	0,5	1,0	1,5	2,0	2,5		
2	0,7584	0,7774	0,9218	0,5978	0,7194		
3	0,9144	0,5738	0,4330	0,8522	0,6130		
4	0,8978	0,4038	0,6802	0,9316	0,7712		

Fonte: o autor.

Tabela 5 - Teste BDS - Metodologia I - Bacia de SE/AL: Resíduos do Modelo Knoring_8.

T(Teste BDS - Resíduo do Modelo Knoring_8							
	Bootstrap Prob.							
۶ m	0.5	1.0	1.5	2.0	2.5			
2	0.2904	0.2706	0.8334	0.5414	0.7606			
3	0.2556	0.5414	0.1788	0.5162	0.9030			
4	0.1874	0.1646	0.4606	0.6440	0.9458			

Fonte: o autor.

Tabela 6 - Teste BDS - Metodologia I - Golfo do México: Resíduos do Modelo Knoring_9.

BDS Test - Resíduo do Modelo Knoring_9							
	Bootstrap Prob.						
» ۳	0,5	1,0	1,5	2,0	2,5		
2	0.6336	0.4338	0.4732	0.9416	0.7220		
3	0.8170	0.3694	0.0444	0.1230	0.0382		
4	0.4400	0.8202	0.1180	0.2350	0.1864		

Fonte: o autor.

As Tabelas 58 a 62 mostram, respectivamente, os *p-values* do Teste BDS aplicado nos resíduos dos modelos que melhor se ajustaram aos dados da Bacia de Campos, do Recôncavo, do Rio Grande do Norte/Ceará, de Sergipe/Alagoas e do Golfo do México.

Tabela 7 - Teste BDS - Metodologia II - Bacia de Campos: Resíduos do Modelo 6x7.

Teste BDS - Residuo do Modelo 6x7							
Bootstrap Prob.							
" Е	0,5	1,0	1,5	2,0	2,5		
2	0,3088	0,3516	0,4874	0,5236	0,8516		
3	0,0916	0,2840	0,4616	0,6138	0,7856		
4	0,0938	0,6416	0,4836	0,4000	0,6760		
n .							

Fonte: o autor.

Tabela 8 - Teste BDS - Metodologia II - Bacia do Recôncavo: Resíduos do Modelo 7x8.

	Teste BDS - Residuo do Modelo 7x8						
Bootstrap Prob.							
β m	0,5	1,0	1,5	2,0	2,5		
2	0.2138	0.1458	0.2442	0.5566	0.9838		
3	0.4388	0.3822	0.3240	0.9234	0.5688		
4	0.5252	0.3366	0.2746	0.9784	0.5706		

Fonte: o autor.

Tabela 9 - Teste BDS - Metodologia II - Bacia do RN/CE: Resíduos do Modelo 1x2.

	Teste BDS - Resíduo do Modelo 1×2						
	Bootstrap Prob.						
" Е	0,5	1,0	1,5	2,0	2,5		
2	0,7674	0,6964	0,4352	0,9110	0,7258		
3	0,3920	0,8746	0,2866	0,5800	0,6400		
4	0,3894	0,7300	0,4232	0,7650	0,7012		

Fonte: o autor.

 Tabela 10 - Teste BDS - Metodologia II - Bacia de SE/AL: Resíduos do Modelo 7x9.

 Teste BDS - Resíduo do Modelo 7x9

_							
$\sum_{i=1}^{n}$	Bootstrap Prob.						
Ì	<u>з</u> У у	0.5	1.0	1.5	2.0	2.5	
Γ	2	0.8198	0.8686	0.2300	0.3258	0.6600	
Γ	3	0.7544	0.7130	0.0396	0.1176	0.5738	
Ľ	4	0.8936	0.4404	0.4020	0.5050	0.9002	

Fonte: o autor.

 Tabela 11 - Teste BDS – Metodologia II – Golfo do México: Resíduos do Modelo 7x8.

 BDS Test - Resíduo do Modelo 7x8.

Bootstrap Prob.							
з , ,	0,5	1,0	1,5	2,0	2,5		
2	0.6810	0.4504	0.9812	0.5728	0.7496		
3	0.5588	0.1516	0.7064	0.7724	0.4440		
4	0.3142	0.2338	0.7680	0.7406	0.3322		

Fonte: o autor.

Metodologia III

As Tabelas 63.a, 63.b e 63.c mostram, para as curvas-S definidas no item 6.1.3.1, os *p*-values do Teste BDS aplicado nos resíduos dos modelos que melhor se ajustaram aos dados da Bacia do Recôncavo.

Tabela 12 - Metodologia III - Recôncavo: Teste BDS nos resíduos dos três ajustes propostos.

Tabela 63-a: Modelo 7x2: 11 anos iniciais.

Teste BDS - Resíduo do Modelo 7x2							
Bootstrap Prob.							
ω m	0,5	1,0	1,5	2,0	2,5		
2	0.6220	0.4797	0.9144	0.6220	0.6427		
3	0.7932	0.2985	0.6760	0.5462	0.5639		
4	0.8616	0.4816	0.8921	0.9180	0.7930		

Tabela 63-b: Modelo 6x9: anos 12 a 26.

Teste BDS - Resíduo do Modelo 6x9												
Bootstrap Prob.												
е С	ε 0,5 1,0 1,5 2,0 2,5											
2	0.5615	0.6352	0.9110	0.5082	0.6716							
3	0.4930	0.8206	0.9362	0.7488	0.7475							
4	0.3076	0.5759	0.8198	0.6864	0.6180							

Tabela 63-c: Modelo 1x2: anos 27 a 39.

Teste BDS - Resíduo do Modelo 1×2											
Bootstrap Prob.											
°,	ε 0,5 1,0 1,5 2,0 2,5										
2	0.4470	0.1693	0.4022	0.3876	0.7113						
3	0.8202	0.0614	0.0784	0.0988 0.	0.1997						
4	0.7365	0.1087	0.0608	0.0904	0.0960						

Fonte: o autor.

Metodologia IV

As Tabelas 64 a 67 mostram, respectivamente, os *p-values* do Teste BDS aplicado nos resíduos dos modelos que melhor se ajustaram aos dados da Bacia de Campos, do Recôncavo, do Rio Grande do Norte/Ceará e de Sergipe/Alagoas.

	Teste BDS - Residuo do Modelo L_9										
	Bootstrap Prob.										
	з ~	0.5	1.0	1.5	2.0	2.5					
I	2	0.0684	0.0860	0.9352	0.6096	0.4468					
	3	0.0762	0.0216	0.4600	0.9216	0.6636					
	4	0.0642	0.0098	0.2392	0.7448	0.5314					

 Tabela 13 - Teste BDS - Metodologia IV - Bacia de Campos: Resíduos do Modelo L_9.

Fonte: o autor.

Tabela 14 - Teste BDS - Metodologia IV - Bacia do Recôncavo: Resíduos do Modelo L_2.

Teste BDS - Resíduo do Modelo L_2											
	Bootstrap Prob.										
μ Έ	m ^ε 0.5 1.0 1.5 2.0 2.5										
2	0.0006	0.0016	0.0094	0.0090	0.1244						
3	0.0006	0.0006	0.0018	0.0048	0.1614						
4	0.0014	0.0002	0.0004	0.0016	0.1778						

Fonte: o autor.

Tabela 15 - Teste BDS - Metodologia IV - Bacia do RN/CE: Resíduos do Modelo L_9.

Teste BDS - Resíduo do Modelo L_9											
Bootstrap Prob.											
ω E	ε 0.5 1.0 1.5 2.0 2.5										
2	0.0832	0.0054	0.0144	0.0714	0.2279						
3	0.7438 0.0218 0.0580 0.4582 0.44										
4	0.8476	0.0888	0.0550	0.3596	0.4263						

Fonte: o autor.

Tabela 16 - Teste BDS - Metodologia IV - Bacia de SE/AL: Resíduos do Modelo L_9.

Teste BDS - Resíduo do Modelo L_9											
Bootstrap Prob.											
μ m	m ^ε 0.5 1.0 1.5 2.0 2.5										
2	0.0000	0.0000	0.0026	0.1414	0.4116						
3	0.0000 0.0000 0.0258 0.9926 0.104										
4	0.0000	0.0000	0.0600	0.4146	0.1130						

Fonte: o autor.

Metodologia V

As Tabelas 68 a 71 mostram, respectivamente, os *p-values* do Teste BDS aplicado nos resíduos dos modelos que melhor se ajustaram aos dados da Bacia de Campos, do Recôncavo, do Rio Grande do Norte/Ceará e de Sergipe/Alagoas.

	Teste BDS - Resíduo do Modelo 1X8											
	Bootstrap Prob.											
ε 0,5 1,0 1,5 2,0 2,5												
ľ	2	0,3148	0,8344	0,7742	0,8340	0,5272						
	3	0,2030	0,4786	0,5302	0,8310	0,6406						
	4	0,2920	0,4632	0,4130	0,9056	0,7760						

Tabela 17 - Teste BDS – Metodologia V – Bacia de Campos: Resíduos do Modelo 1x8.

Fonte: o autor.

Tabela 18 - Teste BDS - Metodologia V - Bacia do Recôncavo: Resíduos do Modelo 7x3.

Teste BDS - Resíduo do Modelo 7x3												
Bootstrap Prob.												
» ۳	m ^ε 0.5 1.0 1.5 2.0 2.5											
2	0.0004	0.0002	0.0026	0.0198	0.1336							
3	0.0010 0.0002 0.0004 0.0050 0.0											
4	0.0022 0.0000 0.0000 0.0010 0.0222											

Fonte: o autor.

Tabela 19 - Teste BDS - Metodologia V - Bacia do RN/CE: Resíduos do Modelo 1x8.

Teste BDS - Resíduo do Modelo 1X8											
Bootstrap Prob.											
٣	ε 0,5 1,0 1,5 2,0 2,5										
2	0,9714	0,0656	0,2376	0,4418	0,6664						
3	0,5982	0,0944	0,2186	0,3528	0,8668						
4	0,5330	0,1670	0,2680	0,2846	0,9922						

Fonte: o autor.

Tabela 20 - Teste BDS - Metodologia V - Bacia de SE/AL: Resíduos do Modelo 4x8.

Teste BDS - Resíduo do Modelo 4X8										
Bootstrap Prob.										
β m	0.5	1.5	2.0	2.5						
2	0.2424	0.2946	0.2072	0.5810	0.7456					
3	0.4498	0.1352	0.2620	0.6348	0.5700					
4	0.1254	0.0930	0.2186	0.7784	0.5132					

Fonte: o autor.

APÊNDICE H: ANÁLISE DOS DADOS DO RECÔNCAVO

ANO = 1964	Provada	Prod. Acum.	SOMA 1964	ANO = 1969	Provada	Prod. Acum.	SOMA 1969	Descobertas entre 1964 e 1969
AGUA GRANDE1964	21,107	19,060	40,167	AGUA GRANDE1969	11,686	29,350	41,036	
				ARACAS1969	11,146	1,770	12,916	12,916
ARATU1964	0,000	0,010	0,010	ARATU1969	0,000	0,010	0,010	
				BOM LUGAR1969	0,160	0,000	0,160	0,160
BREJ./CANABRAVA1964	0,200	0,050	0,250	BREJ./CANABRAVA1969	0,250	0,180	0,430	
BURACICA1964	12,766	2,720	15,486	BURACICA1969	25,480	7,960	33,440	
				CAMACARI1969	0,040	0,000	0,040	0,040
CANDEIAS1964	8,631	6,320	14,951	CANDEIAS1969	7,509	8,600	16,109	
CASSARONGONGO1964	0,777	0,200	0,977	CASSARONGONGO1969	2,100	0,460	2,560	
DOM JOAO1964	35,060	3,200	38,260	DOM JOAO1969	33,263	6,700	39,963	
FZ. AZEVED01964	0,010	0,000	0,010	FZ. AZEVED01969	0,130	0,020	0,150	
				FZ.B.ESPERANCA1969	2,701	0,320	3,021	3,021
FZ.CARUACU1964	0,024	0,000	0,024	FZ.CARUACU1969	0,025	0,000	0,025	
FZ.IMBE1964	0,184	0,000	0,184	FZ.IMBE1969	1,661	0,430	2,091	
				FZ.ONCA1969	0,025	0,010	0,035	0,035
FZ.PANELAS1964	0,150	0,150	0,300	FZ.PANELAS1969	0,010	0,370	0,380	
				FZ.S.ESTEVA01969	0,480	0,020	0,500	0,500
GOM01964	0,050	0,000	0,050	GOM01969	0,050	0,000	0,050	
ITAPARICA1964	0,000	0,120	0,120	ITAPARICA1969	0,000	0,120	0,120	
JACUIPE1964	0,022	0,000	0,022	JACUIPE1969	0,022	0,000	0,022	
JIRIBATUBA1964	0,020	0,000	0,020	JIRIBATUBA1969	0,040	0,000	0,040	
	•			LAMARAO1969	0,037	0,000	0,037	0,037
				LG.DO PAULO1969	0,078	0,000	0,078	0,078
LOBATO1964	0,000	0,010	0,010	LOBATO1969	0,000	0,010	0,010	
				MALOMBE1969	0,060	0,000	0,060	0,060
MASSAPE1964	0,010	0,000	0,010	MASSAPE1969	7,265	0,120	7,385	
MASSUI1964	0,000	0,000	0,000	MASSUI1969	0,061	0,010	0,071	
MATA DE SAO JOAO1964	0,545	0,680	1,225	MATA DE SAO JOAO1969	0,230	0,850	1,080	
				MIRANGA1969	18,230	8,050	26,280	26,280
MORRO DO BARRO1964	0,012	0,000	0,012	MORRO DO BARRO1969	0,012	0,000	0,012	
PARAMIRIM1964	0,040	0,040	0,080	PARAMIRIM1969	0,020	0,060	0,080	
PEDRINHAS1964	0,000	0,060	0,060	PEDRINHAS1969	0,000	0,070	0,070	
POJUCA1964	0,280	0,050	0,330	POJUCA1969	0,260	0,070	0,330	
QUERERA1964	0,016	0,000	0,016	QUERERA1969	0,016	0,000	0,016	
				R.JOANES1969	0,013	0,000	0,013	0,013
ROCA GRANDE1964	0,004	0,000	0,004	ROCA GRANDE1969	0,004	0,000	0,004	
SANTANA1964	0,040	0,170	0,210	SANTANA1969	0,031	0,340	0,371	
SAO PEDRO1964	0,020	0,000	0,020	SAO PEDRO1969	0,010	0,010	0,020	
SAUIPE1964	0,060	0,000	0,060	SAUIPE1969	0,060	0,000	0,060	
				SESMARIA1969	0,020	0,000	0,020	0,020
SEMPRE VIVA1964	0,002	0,000	0,002					
SOCORRO1964	0,150	0,030	0,180	SOCORRO1969	0,190	0,030	0,220	
TAQUIPE1964	9,630	3,660	13,290	TAQUIPE1969	6,060	6,660	12,720	
				•				
Total	89,809	36,530	126.34	Total	129,43	72,60	202.03	Total = 43,16

ANO = 1981	Provada	Prod. Acum	SOMA	ANO = 1986	Provada	Prod. Acum	SOMA	Descobertas entre 1986 e 1981
AGUA GRANDE1981	2 352	41 133	43 485	AGUA GRANDE1986	3 598	43 192	46 790	chae 1500 e 1501
APRAIUS1981	2,002	0,062	0,091	APRAIUS1986	0,073	0,121	0,194	
ARACAS1981	8,093	14,202	22,295	ARACAS1986	7,040	16,947	23,987	
			0,000	ARACASLESTE1986	0,011	0,001	0,012	0,012
ARATU1981	0,005	0,009	0,014	ARATU1986	0,004	0,021	0,025	
AREA BAS-0371981	0,243	0,089	0,332	AREA BAS-0371986	0,150	0,142	0,292	0.043
BIRIBA1981	0.036	0.003	0.039	BIRIBA1986	0,035	0,007	0,043	0,043
BOM LUGAR1981	0,017	0,025	0,042	BOM LUGAR1986	0,001	0,028	0,029	
BREJ./CANABRAVA1981	0,227	0,476	0,703	BREJINHO1986	0,216	0,399	0,615	
BURACICA1981	14,920	18,787	33,707	BURACICA1986	14,015	21,164	35,179	
BURIZINHO1981	0,001	0,002	0,003	BURIZINHO1986	0,004	0,005	0,009	
CAMACARI1981	0,007	0,018	0,025	CAMACARI1986	0,011	0,022	0,033	
CAMPOS FEQUENOS1301	0,000	0,004	0,004	CANABRAVA1986	0,000	0,002	0,002	0.200
CANDEIAS1981	0,029	0,818	0,847	CANDEIAS1986	0,436	1,067	1,503	0,200
CANDEIAS1981	3,457	11,368	14,825	CANDEIAS1986	2,797	12,146	14,943	
				CARACATU1986	0,002	0,001	0,003	0,003
CASSARONGONGO1981	2,375	1,937	4,312	CASSARONGONGO1986	1,249	2,228	3,477	0.770
CONCEICAO1991	0.002	0.009	0.010	CONCEICA 01996	0,202	0,355	0,000	000,0
DOM JOAO MAR1981	11.864	10,000	22,786	DOM JOAO MAR1986	10,032	12,628	22,874	
DOM JOAO TERRA1981	0,901	2,855	3,756	DOM JOAO TERRA1986	1,840	3,181	5,021	
FZ. AZEVEDO1981	0,186	0,026	0,212	FZ. AZEVEDO1986	0,207	0,063	0,270	
				FZ.ALVORADA1986	0,974	0,384	1,358	1,358
			2.004	FZ.AZEVEDO OESTE1986	0,007	0,001	0,008	800,0
FZ.B.ESPERANCA1981	1,052	2,032	J,U84	FZ.B.ESPERANCA1986	2,927	2,364	5,291	3 779
				FZ.CARUACU1986	0,012	0,017	0.020	0.020
FZ.IMBE1981	1,827	1,804	3,631	FZ.IMBE1986	2,053	2,229	4,282	
				FZ.MAMOEIRO1986	0,006	0,016	0,022	0,022
FZ.ONCA1981	0,067	0,041	0,108	FZ.ONCA1986	0,082	0,058	0,140	
FZ.PANELAS1981	0,200	0,759	0,959	FZ.PANELAS1986	0,473	0,997	1,470	
FZ.S.ESTEVA01981	0,198	0,152	0,350	FZ.S.ESTEVA01986	0,048	0,351	0,399	0.013
GOM01981	0.190	0.312	0.502	GOMO1986	0,013	0,000	0,013	0,013
ITAPARICA1981	0,286	0,159	0,445	ITAPARICA1986	0,075	0,220	0,295	
			·	JACUMIRIM1986	0,006	0,003	0,009	0,009
JIRIBATUBA1981	0,056	0,024	0,080	JIRIBATUBA1986	0,056	0,024	0,080	
LAMARAO1981	0,012	0,003	0,015	LAMARAO1986	0,058	0,006	0,064	0.040
	0.007	0.004	0.000	LEODORIO1986	0,003	0,007	0,010	0,010
LG PALLO NORTE1981	0,055	0,034	0,003	LG PALLO NORTE1986	0,060	0,055	0,110	
LG PAULO SUL1981	0,004	0,010	0,002	LG.PAULO SUL1986	0,003	0,011	0,014	
				LG.VERDE1986	0,003	0,000	0,003	0,003
LOBATO1981	0,029	0,017	0,046	LOBATO1986	0,029	0,017	0,046	
MALOMBE1981	1,044	0,879	1,923	MALOMBE1986	0,825	1,060	1,885	
MANDACARU1981	0,014	0,005	0,019	MANDACARU1986	0,037	0,011	0,048	
MASSAPE1981	0,010	0,000	0,395	MASSAPE1986	0,015	0,000	0,414	
MASSUI1981	0,060	0,007	0,067	MASSUI1986	0,025	0,019	0,044	
MATA DE SAO JOAO1981	0,714	1,219	1,933	MATA DE SAO JOAO1986	0,805	1,392	2,197	
MIRANGA1981	6,175	24,492	30,667	MIRANGA1986	5,437	27,897	33,334	
MIRANGALESTE1981	0,004	0,002	0,006	MIRANGALESTE1986	0,002	0,006	0,008	
MIRANGANORTET961	0,324	0,677	1,001	MORRO DO BARRO1986	0,150	0,749	0,905	0.002
NORDESTE TAQUIPE1981	0.002	0.003	0.005	NORDESTE TAQUIPE1986	0.002	0,000	0.012	0,002
	. –			NORTE FZ.CARUACU1986	0,018	0,065	0,083	0,083
				NORTE ROSARIO1986	0,004	0,008	0,012	0,012
PARAMIRIM1981	0,002	0,076	0,078	PARAMIRIM1986	0,001	0,081	0,082	
PEDRINHAS1981	0,002	0,085	0,087	PEDRINHAS1986	0,005	0,000	U,UU5 D 121	
QUERERA1981	0,133	0,116	0,249	QUERERA1986	0,011	0,120	0,131	
	5,022	5,000	0,020	QUIAMBINA1986	0,003	0,004	0,007	0,007
				R.DA SERRA1986	0,078	0,112	0,190	0,190
				R.DO_BU/ITARIRI1986	1,776	0,148	1,924	1,924
R.DOS OVOS1981	0,159	0,176	0,335	R.DOS OVOS1986	0,400	0,282	0,682	0.000
R UNA1981	0.004	0.002	0.003	R INA1986	0,490	0,478	0,968	0,966
REMANSO1981	0,001	1 002	1 656	REMANSO1986	1 508	1 581	3 089	
	212.11	.,		RIACHO DA BARRA1986	0,920	1,417	2,337	2,337
		•		RIACHO OURICURI1986	0,127	0,111	0,238	0,238
RIACHO QUIRICO1981	0,001	0,002	0,003	RIACHO QUIRICO1986	0,001	0,002	0,003	
RIACHO SAO PEDRO1981	0,027	0,009	0,036	RIACHO SAO PEDRO1986	0,018	0,014	0,032	0.000
ROCA GRANDE1094	0.000	0.004	0.012	RIACHO SESMARIA1986	0,003	0,006	0,009	0,009
NOCH ORANDET801	0,009	0,004	0,013	SALGADO1986	0,007	0,006	0.003	0,003
SANTANA1981	0,197	0,763	0,960	SANTANA1986	0,203	0,866	1,069	
			·	SAO DOMINGOS1986	0,001	0,028	0,029	0,029
SAO PEDRO1981	0,021	0,052	0,073	SAO PEDRO1986	0,080	0,140	0,220	
SAUIPE1981	0,005	0,049	0,054	SAUIPE1986	0,003	0,075	0,078	
SEMPRE VIVA1981	0,002	0,001	0,003	SEMPRE VIVA1986	0,002	0,001	U,UU3 1 916	
SOCORRO1981	0,610	0,062	0,072	SOCORRO1986	0,916	0,400	0.127	
	5,000	5,007	U,122	SUBAUMA MIRIM1986	0,007	0,001	0,008	0,008
SUSSUARANA1981	0,014	0,010	0,024	SUSSUARANA1986	0,009	0,036	0,045	
TAQUIPE1981	1,340	11,830	13,170	TAQUIPE1986	2,016	13,118	15,134	
Total	60,739	150,029	210,77	Total	69,06	172,32	241,37	Total = 11,849

ANO = 1993	Provada	Prod. Acum	SOMA 1993	ANO = 2002	Provada	Prod. Acum	SOMA 2002	Descobertas entre 1993 e 2002	Variação dos Campos Existentes em 1993
AGUA GRANDE1993	2,353	45,216	47,569	AGUA GRANDE2002	2,134	47,825	49,959	CILIC 1555 C 2002	2,390
APRAIUS1993	0,131	0,167	0,298	APRAIUS2002	0,017	0,189	0,206		-0,092
ARACASISSS ARACASLESTE1993	0,001	0,001	0,002	ARACAG2002	3,007	21,053	24,340		-0,002
ARATU1993	0,000	0,023	0,023	ARATU2002	0,000	0,027	0,027		0,004
AREA BAS-0391993	0,000	0,142	0,142						-0,142
AREA BAS-0481993	0,000	0,000	0,000						0,000
AREA BAS-0641993 AREA BAS-0971993	0,000	0,000	2,373						-2.373
				AREA BAS-1282002	0,083	0,000	0,083	0,083	
ARRAIA1993 RELA VISTA1993	0,000	0,000	0,000	ARRAIA2002	0,220	0,000	0,220		-0,220
BIRIBA1993	0,015	0,024	0,039	BIRIBA2002	0,041	0,027	0,068		0,029
BOM LUGAR1993	0,009	0,031	0,040	PONELICESSOODD	0.407	0.040	0 000		-0,040
BREJINHO1993	0,244	0,008	0,252	BREJINHO2002	0,000	0,342	0,486		0,047
BURACICA1993	5,062	23,523	28,585	BURACICA2002	5,651	26,717	32,368		3,783
CAMACARI1993	0,000	0,005	0.005	CAMACARI2002	0.000	0.023	0.023		-0,005
CAMPOS PEQUENOS1993	0,001	0,001	0,002						-0,002
CANABRAVA1993	0,032	0,175	0,207	CANABRAVA2002	0,025	0,217	0,242		0,035
0/11020/01000	2,020	14,491		CANTA GALO2002	0,000	0,001	0,001	0,001	0,100
CARACATU1993	0,000	0,001	0,001	CARDE AL 2002	0.040	0.000	0.000	0.000	-0,001
CASSARONGONGO1993	0,593	3,137	3,730	CARDEAL2002 CASSARONGONGO2002	0,013	3,544	3,813	0,022	0,083
CEXIS1993	0,248	1,513	1,761	CEXIS2002	0,372	2,286	2,658		0,897
CONCEICAO1993	0,483	0,076	0,559	CONCEICAO2002	0,765	1,037	1,802		-0.082
				CURIO2002	0,018	0,004	0,022	0,022	
DIAS D'AVILA1993	0,001	0,000	0,001	DIAS D'AVILA2002	0,000	0,000	0,000		-0,001
DOM JOAO TERRA1993	1,843	3,454	4,678	DOM JOAO TERRA2002	0,000	3,666	4,101		-0,577
FZ. AZEVED01993	0,000	0,080	0,080	FZ. AZEVEDO2002	0,001	0,118	0,119	0.004	0,039
FZ.ALVORADA1993	1,248	2,060	3,308	FZ.ALVORADA2002	0,009	0,012 2,804	0,021 3,800	0,021	0,492
FZ AZEVEDO OESTE1993	0,014	0,014	0,028		,,				-0,028
FZ BALSAM01993	0,809	3,066	3,875	FZ.B.ESP/SALGAD02002 FZ BALSAM02002	0,737	3,721	4,458		0,583
FZ BELEM1993	0,077	0,133	0,210	FZ.BELEM2002	0,000	0,143	0,143		-0,067
FZ FLORESTA1993	0,000	0,000	0,000	E7 IMBE2002	0.000	0.400	3 35 4		0,000
FZ MAMOEIRO1993	0,024	0,016	0,016	FZ. IIVIDE2002	U,220	3,120	3,334		-0,202
FZ ONCA1993	0,040	0,077	0,117	FZ.ONCA2002	0,006	0,087	0,093		-0,024
FZ PANELAS1993 FZ S.ESTEVA01993	0,176	1,134	0,713	FZ.PANELAS2002	0,059	1,216	1,2/5		-0,035
FZ SANTA ROSA1993	0,004	0,000	0,004	FZ SANTA ROSA2002	0,000	0,000	0,000		-0,004
FZ SAO PAULO1993	0,000	0,001	0,001	GOM02002	0.039	0.457	0.496		-0,001
000000000	0,000	0,721	0,510	ILHA DE BIMBARRA2002	0,000	0,002	0,002	0,002	0,014
ITAPARICA1993	0,162	0,232	0,394	ITAPARICA2002	0,000	0,234	0,234		-0,160
JACUMIRIM1993	0,380	0,057	0,003	JACUIPEZUUZ	0,003	0,019	0,022		-0,415
JIRIBATUBA1993	0,000	0,024	0,024	1 41 44 12 4 2 2 2 2 2 2			0.000		-0,024
LAMARAO1993 LEODORIO1993	0,026	0,041	0,067	LAMARAO2002 LEODORIO2002	0,001	0,035	0,036		-0,031
LG.DO PAULO1993	0,149	0,075	0,224						-0,224
LG.PAULO NORTE1993	0,063	0,134	0,197						-0,197
LG.VERDE1993	0,003	0,001	0,004	LG.VERDE2002	0,000	0,000	0,000		-0,004
LOBATO1993 MALOMBE1993	0,000	0,017	0,017	MALOMBE2002	0.141	1 262	1 /9/		-0,017
MANDACARU1993	0,001	0,019	0,020	MANDACARU2002	0,023	0,043	0,066		0,046
MAPELE1993	0,000	0,000	0,000	MAPELE2002	0,001	0,002	0,003		0,003
MASSUI1993	0,022	0,361	0,383	MASSUI2002	0,130	0,425	0,087		0,055
			E 555	MATA DE SAO JOAO2002	0,163	1,721	1,884	1,884	
MIRANGA1993	4,354	3,000	35,463	MIRANGA2002	4,358	33,053	37,411		1,948
MIRANGALESTE1993	0,000	0,008	0,008	MIRANGALESTE2002	0,000	0,008	0,008		0,000
MORRO DO BARRO1993	0,057	0,804	0.00N	WIRANGANURTEZUU2	0,159	0,831	u,990		0,129
NORTE FZ CARUACU1993	0,144	0,307	0,451	NORTE FZ CARUACU2002	0,056	0,388	0,444		-0,007
PEDRINHAS1993	0,002	0,082	0,084	PARAMIRIM2002 PEDRINHAS2002	0,003	0,083	0,086		0,002
POJUCA1993	0,005	0,132	0,137	POJUCA2002	0,009	0,131	0,140		0,003
POJUCANORTE1993	0,018	0,000	0,018	POJUCANORTE2002	0,000	0,000	0,000		-0,018
QUIAMBINA1993	0,007	0,006	0,006		0,000	0,006	0,000		-0,007
R.DA SERRA1993	0,001	0,130	0,131	R.DA SERRA2002	0,011	0,134	0,145		0,014
R.DOS OVOS1993	1,736	1,433 0,413	0,709	R.DOS 0V0S2002	1,062	2,850	0,527		-0,182
R.ITARIRI1993	0,186	0,348	0,534	R.ITARIRI2002	0,516	0,604	1,120		0,586
R.JOANES1993	0,001	0,002	U,003	R.JOANES2002 R.PIPIRI2002	0,000	0,000	U,000 0.011	0.011	-U,003
R.POJUCA1993	0,793	1,240	2,033	R.POJUCA2002	1,439	1,869	3,308		1,275
R.SAUIPE1993 R.SUBALIMA1993	0,000	0,008	0,008	R.SAUIPE2002 R.SLIBALIMA2002	0,006	0,010	0,016		0,008
R.UNA1993	0,006	0,002	0,008	N. SOLMONIA2002	0,000	0,036	0,030		-0,002
	0.15		2.070	REMANSO2002	0,278	2,451	2,729	2,729	0.055
RIACHO OURICURI1993	0,458	2,514	2,972	RIACHO OURICURI2002	0,395	3,432 0,547	0,888		0,222
RIACHO QUIRICO1993	0,000	0,002	0,002				0.000		-0,002
RIACHO SAU PEDRO1993 RIACHO SESMARIA1993	0,012	0,020	0,032	RIACHU SAU PEDRO2002	0,000	0,025	U,U25		-u,UU/ -0,007
SANTANA1993	0,062	0,918	0,980	240 001 002000000					-0,980
SAO DOMINGOS1993	0,026	0,151 0.239	0,177	SAO DOMINGOS2002	0,000	0,188 0.274	0,188 0 299		0,011
SAUIPE1993	0,232	0,099	0,198		0,020	0,2(1	5,233		-0,198
SEMPRE VIVA1993	0.000	0.004	0.004	SARDINHA2002	0,000	0,000	0,000	0,000	_0 001
SESMARIA1993	0,000	0,001	1,429	SESMARIA2002	0,259	1,037	1,296		-0,133
SETE GALHOS1993	0,000	0,000	0,000	SOCOBBOOD	0.000	0.107	0.140		0,000
SOCORROEXTENSA01993	0,001	0,0124	0,125	SOCORROEXTENSA02002	0,003	0,137	0,140		-0,010
SUBAUMA MIRIM1993	0,000	0,001	0,001				0.051		-0,001
TAQUIPE1993	0,019	0,076	15.312	TAQUIPE2002	0,004	0,047	0,051 17,710		-u,U44 2,398
VALE DO QUIRICO1993	0,136	0,006	0,142	VALE DO QUIRICO2002	0,000	0,011	0,011		-0,131
Total	40,401	200.734	241.14	Total	33.87	224.32	258.19	4,775	12.277