
 

 
 
 
 

Adrian Heringer Pizzinga 
 
 
 
 
 

Filtro de Kalman Restrito: Teoria,  
Métodos e Aplicações  

 
 
 
 
 

Tese de Doutorado 
 
 
 

Tese apresentada ao Programa de Pós-graduação em 
Engenharia Elétrica do Departamento de Engenharia 
Elétrica da PUC-Rio como parte dos requisitos parciais para 
obtenção do título de Doutor em Engenharia Elétrica. 

 

 
Orientador: Prof. Cristiano Augusto Coelho Fernandes  

                 

 
 
 
 
 
 
 
 
 

Rio de Janeiro 

Janeiro de 2008 



 
 
 
 
 

Livros Grátis 
 

http://www.livrosgratis.com.br 
 

Milhares de livros grátis para download. 
 



 

  

 A d r i a n  H e r i n g e r  P i z z i n g a  

 

 

F i l t r o  d e  K a l m a n  R e s t r i t o :  T e o r i a ,   

M é t o d o s  e  A p l i c a ç õ e s    

 

Tese apresentada como requisito parcial para obtenção do 

grau de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica do De

partamento de Engenharia 

Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.  

 

Dr. Cristiano Augusto Coelho Fernandes  

Orientador  

Departamento de Engenharia Elétrica – PUC-Rio    

Dr. Caio Ibsen Rodrigues de Almeida  IBMEC  

 Dr. Carlos Kubrusly  Departamento de Engenharia Elétrica – PUC-Rio   Dr. Eduardo Lima Campos  ENCE   Dr. Pedro Alberto Morettin  Universidade de São Paulo   Prof. José Eugenio Leal 

Coordenador Setorial do Centro T é c n i c o  C i e n t í f i c o    

 

                 

Rio de Janeiro, 184de janeiro4de 2002.



 

Todos os direitos reservados. É proibida a reprodução total 
ou parcial do trabalho sem autorização do autor, do 
orientador e da universidade. 
                  

 
 
 
                                                                                                    

Adrian Heringer Pizzinga 
 
 
 
 
 
 
 

          Ficha Catalográfica 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

CDD: 621.3 

 

Pizzinga, Adrian Heringer 
 
     Filtro de Kalman Restrito: Teoria, Métodos e 

Aplicações / Adrian Heringer Pizzinga; orientador: 
Cristiano Augusto Coelho Fernandes. – 2008. 

 
      70 f. ; 30 cm 
       
      Tese (Doutorado em Engenharia Elétrica) –

Pontifícia Universidade Católica do Rio de Janeiro, Rio 
de Janeiro, 2007. 

 
       Inclui bibliografia 
        
       1. Engenharia elétrica – Teses. 2. Filtro de 

Kalman. 3. Modelos em espaço de estado. 4. 
Restrições lineares. I. Fernandes, Cristiano Augusto 
Coelho. II.  Pontifícia Universidade Católica do Rio de 
Janeiro. Departamento de Engenharia Elétrica. III. 
Título. 



Agradecimentos

Primeiramente, eu registro que a realiza»c~ao deste Doutorado, que durou

quase quatro anos, n~ao teria sido poss¶‡vel sem o apoio flnanceiro proveniente

do CNPq e da FAPERJ .

Eu dedico agradecimentos aos meus Amigos e Colegas que sempre

estiveram presentes - n~ao vou listar um a um porque cada um deles sabe que

est¶a sendo lembrado aqui -, e aos ilustres Membros da Banca Avaliadora, que

muito contribu¶‡ram, com seus coment¶arios e sugest~oes, para o aprimoramento

da vers~ao flnal da Tese.

Por ¶ultimo, o agradecimento mais importante de todos: µa minha m~ae
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Resumo 
 
 

Pizzinga, Adrian Heringer; Fernandes, Cristiano Augusto Coelho 
(Orientador). Filtro de Kalman Restrito: Teoria, Métodos e Aplicações. 
Rio de Janeiro, 2008. 70p. Tese de Doutorado – Departamento de 
Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.  

 
 
Nesta Tese, eu me concentro em desenvolvimentos sobre o filtro de Kalman 

sujeito a restrições lineares gerais. Há essencialmente três tipos de contribuições: 

(i) provas alternativas para resultados previamente estabelecidos na literatura 

sobre o filtro de Kalman com restrições; (ii) resultados que presumidamente 

destacam aspectos teóricos e metodológicos para modelagens em espaço de estado 

sob restrições; e (iii) aplicações que parecem ser inéditas até então em finanças 

(análise de investimentos) e em macroeconomia, nas quais os métodos propostos 

são ilustrados e avaliados. No final, eu sugiro algumas extensões adicionais sobre 

o tema, as quais, novamente, dividem-se em teoria, métodos e aplicações. 
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Abstract 
 
 

Pizzinga, Adrian Heringer; Fernandes, Cristiano Augusto Coelho 
(Advisor). Restricted Kalman Filtering: Theory, Methods and 
Applications. Rio de Janeiro, 2008. 70p. PhD Thesis – Departamento de 
Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.  

 
 
In this Thesis, I bring the attention to developments on Kalman filtering subject to 

general linear constraints. There are essentially three kinds of contributions: (i) 

new proofs for already established results within the restricted Kalman filtering 

literature; (ii) new results which are supposed to shed light on theoretical and 

methodological frameworks for linear state space modeling under linear 

restrictions; and (iii) applications that seem to be new in investment analysis and 

in macroeconomics, where the proposed methods are illustrated and evaluated. At 

the end, I suggest some further extensions in the subject, which, again, step into 

theory, methods and applications.  
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1
Introduction

1.1
Motivation

In some relevant practical situations from areas like economics, flnance,

actuary, engineering etc, some state space models (Harvey, 1989; Brockwell

and Davis, 1991; and Durbin and Koopman, 2001) would make more sense if

estimated under some meaningful restrictions on the state vector.

Some examples:

{ One may consider state space models to conduct time-varying economet-

ric models where well-established economic restrictions on the coe–cients

should be at least attested.

{ Statistical models raised from physical considerations sometimes make

sense only if considered under symmetry constraints on their parameters,

whenever they are flxed or stochastically varying (cf. Pizzinga, Ruggeri

and Guedes, 2005).

{ In the claims reserving issue, some dynamic models for runofi data (cf.

de Jong and Zehnwirth, 1983) may have columns and/or nonnegativity

restrictions in the development/delay efiect.

{ Dynamic factor models for portfolio on-line recovering should be at least

subject to accounting restrictions (eg. the portfolio allocations must add

up to one, for every time period; cf. Pizzinga and Fernandes, 2006).

And, whenever one attempts to perform such constrained state estima-

tion, some questions naturally arise. How should one implement this con-

strained estimation? When should this estimation be done? Which statistical

properties do these methods of estimation share? Which theoretical and/or

computational complications could emerge? Are all possible types of restric-

tions handleable? Are the imposed restrictions checkable for their plausibility

under a speciflc method? And what could be said about the initialization of

the recursions from these restricted estimations?
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This Doctorate Thesis concentrates on additional developments concern-

ing the restricted Kalman flltering, appropriate to problems that demand linear

restrictions in the setting of linear state space models. By ranging from theo-

retical results and new methods to illustrative applications, the contributions

address most - if not all - of the previous questions.

In the sequel, I will detail each one of the presumed novelties of the

Thesis. But, flrst, let me review some literature on the subject.

1.2
A glimpse at the literature

There are essentially two directions the literature about linear state space

models under restrictions has taken, one more \statistical-like"and another

more \engineering-like". One very interesting point I have noticed was the

absence of cross-references between these two flelds. The result: an unavoidable

overlapping between contributions coming from both \worlds".

1.2.1
Statistical papers

From the statistical/econometric side, I understand that Doran (1992)

is the most seminal paper on the subject, in which the restricted Kalman

flltering by augmentation was proved, under lots of matrix operations, for

update and smoothing equations. At the end of his paper, Doran also made

an attempt to further extend his approach for cases of nonlinear restrictions,

but at least flrst-order difierentiable. During the next flve years, Doran have

published two more papers. In Doran (1996), his previous approach was used

in a problem of estimating Australian provincial populations according to

annual national population. And, in Doran and Rambaldi (1997), the same

approach was once more evoked to solve the problem of estimating time-

varying econometric models (demand systems to be exact) also under time-

varying and quite interpretable restrictions; in that same paper, the authors

also discussed the relevant question concerning numerical optimization for the

maximum likelihood estimation of unknown parameters. Some of those Doran’s

three important papers have been mentioned in the literature - mainly the very

flrst one -, and his approach has been revisited as well. See for instance the

book by Durbin and Koopman (2001), subsection 6.5.

Another more recent work on the subject is the paper due to Pandher

(2002), which again cited Doran in his bibliographic review. In his paper,

Pandher was fully concerned about forecasting multivariate time series under

linear restrictions. His approach difiered from the one proposed by Doran,
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although we can note again some augmentation strategy under a structural

modeling framework. Pandher also gave some results on statistical e–ciency of

the state prediction under restrictions and on observability of the state vector

under his method. At last, Pandher recognized another previous and related

work when he cites Leybourne (1993), who had tackled univariate state space

models under time invariant restrictions over a random walk state vector.

1.2.2
Engineering papers

Now, I take a quick look at engineering articles on restricted Kalman

flltering. For instance, I can cite the papers by Wen and Durrant-Whyte (1991),

Massicotte et al. (1995) and Geeter et al. (1997), none of which has referred to

or has been referred to by the statisticians previously revisited in subsection

1.2.1. But two speciflc and much more recent papers deserve a little bit of

attention.

The flrst paper was written by Simon and Chia (2002), who derived at

least two difierent versions of the restricted Kalman flltering by alternative per-

spectives, even though making use of the same type of solution, the Lagrange

multipliers approach. Their flrst version of the Kalman flltering is, in fact, al-

most the same as that originally obtained by Doran (1992) for the updating

equations. So, this serves as an example of the aforementioned overlapping

among the literature. Simon and Chia also presented flve theorems that un-

cover good properties of their developed restricted Kalman flltering; four of

them relate to mean square error e–ciency. The methodological/theoretical

part of the paper is closed by a discussion on how nonlinear restrictions could

be encompassed by their restricted Kalman flltering. And the outcome is an-

other material previously released by Doran (1992), although apparently not

perceived by Simon and Chia.

The second paper, by Simon and Simon (2004), clearly continues the flrst

paper’s leitmotiv by trying to incorporate inequality constraints in the Kalman

flltering. The authors solved the task by using quadratic programming and

the interesting flnd was that the problem actually remains as a special case of

imposing equality constraints.

1.3
This Thesis’s contributions

The speciflc contributions of my research consist of investigation and

development of the following topics:
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1. A more general and more elegant proof of the restricted Kalman flltering

(updating and smoothing equations) which uses Hilbert space geometry.

This new proof is compared with those previous from Doran (1992).

2. An alternative proof based on Kalman recursions of the restricted

Kalman flltering. The importance of this alternative proof lies on its

idea of re-writing the augmented model in a useful and equivalent way,

which would be the building block for other methods and results to be

also presented.

3. An alternative and \constructive"proof of the statistical e–ciency from

the restricted Kalman flltering, which is compared with the proof already

presented in my Master dissertation (cf. Pizzinga, 2004).

4. An alternative approach for imposing time-invariant restrictions to the

estimation of random-walk state vectors.

5. A comparison between the restricted Kalman flltering and the restricted

recursive least squares, and the establishment of the equivalence between

both techniques under a particular albeit relevant case.

6. Development and implementation of a new restricted Kalman flltering

under a reduced modeling approach, followed by detailed confrontations

with the usual restricted Kalman flltering by augmentation.

7. Development of a restricted Kalman predictor which is applicable to

general situations and which encompasses the method by Pandher (2002)

as a particular case.

8. An alternative, \parametric", very short and quite general proof of the

restricted Kalman flltering under a conditional expectation framework,

followed by comparisons with previous demonstrations.

9. The proof that the initial exact Kalman smoother (cf. Durbin and Koop-

man, 2001, ch. 5) still yields restricted smoothed state vectors within the

\difiuse" period, whenever applied to an appropriate augmented model.

10. A practical illustration in flnance, in which a dynamic factor model under

a linear and interpretable restriction is used to understand the style of

Brazilian exchange rate funds.

11. An application in macroeconomics, in which dynamic models for ex-

change rate past-through are proposed and estimated with Brazilian price

indexes.
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12. A practical illustration in macroeconomics, in which a univariate bench-

marking model, recognized as a linear state space model under restric-

tions, is used to predict the Brazilian GNP.

If I have to classify the above contributions into three kinds, I might do

as follows:

{ Contributions 1, 2, 3, 5, 8 and 9 bear theory ;

{ Contributions 4, 6 and 7 bear methods ;

{ Contributions 10, 11 and 12 ofier three applications.

1.4
Thesis’s organization

This Thesis is arranged as follows. Chapter 2 revisits the essentials of

linear state space models and the Kalman flltering. Chapter 3 is entirely ded-

icated to the theoretical issues concerning the imposition of linear restrictions

to the Kalman equations, in which new proofs for already established results

are given and, in addition, new results are derived. Chapter 4 focuses on some

new methods that can be potentially useful in situations of linear state space

modeling under linear restrictions on the state vector. Chapter 5 ofiers the

aforementioned applications in flnance and macroeconomics, which illustrate

the performance of some methods discussed in chapter 4. Finally, chapter 6

closes the Thesis by suggesting some additional research topics.



2
Linear state space models and the Kalman filtering

2.1
The model

A linear wide sense state space model for an observable p-variate stochas-

tic process Yt, deflned on an appropriate probability space (›;F ;P), is de-

scribed by the following set of equations:

Yt = Ztfit + dt + "t

fit+1 = Ttfit + ct + Rt·t

fi1 ∼ (a1; P1):

(2-1)

The flrst equation is usually called the measurement equation and the second

is known as the state equation. The unobservable m-variate process fit is

termed state. The error terms "t and ·t are respectively p-variate and r-

variate second-order processes that are uncorrelated in time and from each

other, with var("t) = Ht and var(·t) = Qt. The remaining system matrices

Zt; dt; Ht; Tt; ct; Rt and Qt evolve deterministically.

2.2
The Kalman equations

In this Thesis, I will adopt the following notation:

{ at|j is a (an equivalence class of) random vector(s) with coordi-

nates ati|j, i = 1; : : : ; m, representing the unique linear orthog-

onal projection (cf. Kubrusly, 2001, Theorem 5.52), evaluated on

each (equivalence class of) coordinate(s) fiti of fit, onto S ′ ≡
span{1; Y11; : : : ; Y1p; : : : ; Yj1; : : : ; Yjp} ⊆ L2 ≡ L2(›;F ;P) - the subja-

cent topology is that induced by the usual inner product, which is given

by < X; Y >≡ E(XY ) =
∫

Ω
X(!)Y (!)P(d!); ∀X; Y ∈ L2.

{ Pt|j ≡ E
[
(fit − at|j)(fit − at|j)′

]
;

{ Àt ≡ Yt − Ztat|t−1 − dt and Ft ≡ E(ÀtÀ
′
t) = ZtPt|t−1Z

′
t + Ht.



Caṕıtulo 2. Linear state space models and the Kalman filtering 14

The Kalman flltering (prediction, updating and smoothing) gives the above

orthogonal projections evaluations and the corresponding mean square error

matrices. The corresponding equations are given as follows:

{ Prediction equations

at+1|t = Ttat|t + ct

Pt+1|t = TtPt|tT
′
t + RtQtR

′
t

(2-2)

{ Updating or flltering equations

at|t = at|t−1 + Pt|t−1Z
′
tF

−1
t Àt

Pt|t = Pt|t−1 − Pt|t−1Z
′
tF

−1
t ZtPt|t−1

(2-3)

{ Smoothing equations (for a given n ≥ t)

at|n = at|t−1 + Pt|t−1rt−1

rt−1 = Z
′
tF

−1
t Àt + (Tt − TtPt|t−1Z

′
tF

−1
t Zt)

′rt

Pt|n = Pt|t−1 − Pt|t−1Nt−1Pt|t−1

Nt−1 = Z
′
tF

−1
t Zt + (Tt − TtPt|t−1Z

′
tF

−1
t Zt)

′Nt(Tt − TtPt|t−1Z
′
tF

−1
t Zt)

rn = 0 and Nn = 0

(2-4)

Details concerning the derivations of these formulae are found in Harvey

(1989), Brockwell and Davis (1991), Harvey (1993), de Jong (1989), Hamilton

(1994), Tanizaki (1996), Durbin and Koopman (2001), Brockwell and Davis

(2003) and Shumway and Stofier (2006).

2.3
Introducing linear restrictions

From now on, it is assumed that the process fit in (2-1) satisfles linear

restrictions as follows:

Assumption 1 The random vectors fit satisfy the following (possibly time

varying) linear restrictions
Atfit = qt; (2-5)

where, for each t, At is a k × m matrix and qt is a k × 1 (possibly random)

vector.

Observe that the restrictions enunciated in eq.(2-5) are rather general. In

fact, it encapsulates a–ne restrictions of the kind Atfit + bt = qt by deflning

q′t = qt − bt and allows the number of restrictions k to be time-varying. In
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practical situations, justiflcation of such constraints in (2-5) arises naturally

from the characteristics of the problem being modeled; see for instance the

restrictions imposed on a demand system problem in Doran and Rambaldi

(1997).

In the remaining of the Thesis, Assumption 1 will be considered in almost

every topic to be discussed and, in due course, it may be added with some

further structure on the linear restrictions.



3
Restricted Kalman filtering: theoretical issues

During all this chapter, I will discuss several topics concerning the

theory of imposing the linear restrictions enunciated under a quite general

form in (2-5) from Assumption 1. In section 3.1, I will present and compare

three difierent derivations of the restricted Kalman updating and smoothing

equations under an augmented modeling approach. In section 3.2, I prove

the statistical e–ciency due to the imposition of restrictions, and this shall

be done using a geometrical framework. Stepping forward, I try in section

3.3 to establish the equivalence between the restricted Kalman flltering and

something that could be termed recursive restricted least squares estimator.

Finally, in section 3.4, I investigate how initial difiuse state vectors afiect the

use of the Kalman smoother under linear restrictions.

3.1
Augmented restricted Kalman filtering: alternative proofs

3.1.1
Geometrical proof

When estimating state space models under linear restrictions as given

in eq. (2-5), the natural task is to impose these very restrictions on the

state estimators given by the Kalman equations in order to obtain a more

meaningful result. The following theorem guarantees that such task is possible

for the updating and smoothing equations, whenever one adopts an augmented

measurement equation:

Theorem 1 If the measurement vectors Yt are replaced by Y ∗
t = (Y ′

t ; q′t)
′,

the matrices Zt are replaced by Z∗
t = [Z ′

t A′
t]
′, the vectors dt are replaced by

d∗t = (d′t; 0′)′, and the measurement equation error vectors "t are replaced by

"∗t = ("′t; 0′)′, then the Kalman updating and smoothing equations applied to

this new linear state space models satisfy the same linear restrictions given in

(2-5), that is,
Atat|t = qt (3-1)

Atat|n = qt (3-2)
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First proof of Theorem 1: Denote the subspace generated by the aug-

mented measurements up to time j, where j ∈ {t; t + 1; : : : ; n}, by S ′′ =

span{1; Y11; : : : ; Y1p; q11; : : : ; q1k; : : : ; Yj1; : : : ; Yjp; qj1; : : : ; qjk}, the unique lin-

ear orthogonal projection onto S ′′ by …S′′ and the ith row from At by Ati =

[cti1 : : : ctim]. Then, by making use of linearity of …S′′ and of the linear restric-

tions established in Assumption 1, it follows that

Atiat|j = cti1at1|j + · · ·+ ctimatm|j = cti1…S′′(fit1) + · · ·+ ctim…S′′(fitm)

= …S′′(cti1fit1 + · · ·+ ctimfitm) = …S′′(Atifit) = …S′′(qti)

= qti ;

where the last equality comes from the fact that qti belongs to R(…S′′) = S ′′.

Since i is arbitrary, the theorem is proved. ¤

Theorem 1 was originally due to Doran (1992, p.570, 571), but our proof

also reveals some gains:

1. It does not presume that Ft is invertible for all t.

2. It unifles in a single argument both updating and (any type of ) smoothing

equations.

3. It does not make any explicit use of Kalman updating or smoothing

equations.

4. It is a shorter and consequently more elegant proof.

The flrst methodological contribution of this proof, namely the guarantee

that the augmented measurement procedure is able to deal with any type of

linear restriction, is directly related to item 1. Many examples of restrictions

that would decrease the rank of Ft are of deterministic nature, whether they

originate from economic theories or not (to be even more speciflc: consider

for instance the portfolio accounting restriction in time-varying extensions of

the asset class factor models due to Sharpe, 1992). The second contribution,

related to item 2, is that any set of state smoothing - from which we mention

the traditional flxed-interval, flxed-point and flxed-lag estimators (cf. Anderson

and Moore, 1979) - must yield restricted estimated states.

The following consequence from Theorem 1 has already proved to be

useful, once it was conveniently used by Doran (1996) in a state space

estimation of population totals.
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Corollary 1 If some univariate equations of the measurement vector Yt have

errors with zero variance, then

Zt2at|t = Yt2 and Zt2at|n = Yt2 (3-3)

where Zt2 is the block from Zt that corresponds to the block Yt2 from Yt whose

coordinates have null variance errors.

Proof: It is enough to see that Yt can be written as [Y ′
t1 Y ′

t2]
′ and that Zt, in

turn, can be written as [Z ′
t1 Z ′

t2]
′. Establishing that At = Zt2 and qt = Yt2,

Theorem 1 guarantees the desired result. ¤

3.1.2
Computational proof

During this subsection, I shall consider the following additional structure

to the restrictions in (2-5):

Assumption 2 The linear restrictions in (2-5) are such that the coordinates

of qt are linearly independent in L2 and from 1; Y11; : : : ; Y1p; : : : ; Yt1; : : : ; Ytp.

Also, suppose that Ft > 0 for all t.

For the Kalman updating and smoothing equations, it is in fact an at-

tainable task, as Theorem 1 says, to carry out Kalman flltering estimations

under the above these linear restrictions. Here, this is now proved by explic-

itly using updating and smoothing equations, even though under strategies

somewhat difierent from those tackled by Doran (1992).

Second proof of Theorem 1: Uncouple the augmented model by recognizing

that, for all t, qt is a \new" measurement vector that is observed \after" Yt and

\before" Yt+1. This recognition leads to a new linear state space representation

entirely equivalent to the augmented model. The measurement equation for

this representation is deflned by

Yt,j = Zt,jfit,j + dt,j + "t,j ; "t,j ∼ (0; Ht,j) (3-4)

When j = 1, nothing is changed from the measurement equation from (2-1) of

section 2.1. But for j = 2 we must have

Yt,2 = qt; Zt,2 = At; dt,2 = 0 and Ht,2 = 0: (3-5)

Regarding the state equation, just notice that, for all t, fit,2 = fit,1 and

fit+1,1 = Ttfit,2 + ct + Rt·t, ·t ∼ (0; Qt). Within this equivalent framework,

it becomes possible to treat the imposing of the linear restriction in time t as

a new update of the state vector. Implementing: consider the state updating
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equation given in (2-3), already applied to the above equivalent model for t

flxed and j = 2:

at,2|t,2 = at|t−1,2 + Pt|t−1,2Z
′
t,2F

−1
t,2 (Yt,2 − Zt,2at|t−1,2)

= at|t−1,2 + Pt|t−1,2Z
′
t,2(Zt,2Pt|t−1,2Z

′
t,2 + Ht,2)

−1(Yt,2 − Zt,2at|t−1,2)

= at|t−1,2 + Pt|t−1,2A
′
t(AtPt|t−1,2A

′
t)
−1(qt − Atat|t−1,2);

where the second equality comes from the very expression of Ft (cf. the

established notation in section 2.2) and the third comes from (3-5). Now, since

(AtPt|t−1,2A
′
t)
−1 is a genuine inverse (cf. Assumption 2) and at,2|t,2 = at|t, this

last updated state vector being the one associated with the augmented model,

pre-multiply both sides of the last identity by At in order to get (3-1).

Now, rephrase the state smoothing equations in (2-4) for the augmented model

as follows:

at|n = at|t−1 + Pt|t−1rt−1

rt−1 = Z∗′
t F−1

t Àt +
(
Tt − TtPt|t−1Z

∗′
t F−1

t Z∗
t

)′
rt; where Z∗

t =

[
Zt

At

]
:

Of course, other quantities would also have deserved asterisks, but they are

suppressed for ease of notation. Placing the expression of rt in at|n, it follows

that

at|n = at|t−1 + Pt|t−1(Z
∗′
t F−1

t Àt + (Tt − TtPt|t−1Z
∗′
t F−1

t Z∗
t )′rt)

= at|t−1 + Pt|t−1Z
∗′
t F−1

t Àt + Pt|t−1(Tt − TtPt|t−1Z
∗′
t F−1

t Z∗
t )′rt

= at|t + (Pt|t−1T
′
t − Pt|t−1Z

∗′
t F−1

t Z∗
t Pt|t−1T

′
t )rt;

where the last equality follows from the Kalman updating equation in (2-3).

Pre-multiplying both sides by At, it follows that

Atat|n = Atat|t + (AtPt|t−1T
′
t − AtPt|t−1Z

∗′
t F−1

t Z∗
t Pt|t−1T

′
t )rt:

According to Doran (1992), eq. (22) (from Assumption 2, Ft from the aug-

mented model is invertible), it follows that AtPt|t−1Z
∗′
t F−1

t =

[
0

kxp
I

kxk

]
: Use

this together with (3-1) already proved to obtain

Atat|n = qt +

(
AtPt|t−1T

′
t − [0 I]

[
Zt

At

]
Pt|t−1T

′
t

)
rt

= qt +
(
AtPt|t−1T

′
t − AtPt|t−1T

′
t

)
rt = qt;

which gives identity (3-2) ¤
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It is worth to be noticed that there is no methodological novelty here. In

turn, the contribution ofiered here comes from this second proof, which cer-

tainly deserves some qualiflcation. Even though not encompassing signiflcant

generalizations like those verifled in the flrst proof, and besides being consid-

erably longer, this second proof makes use of simple matrix operations, which

illustrate potentially useful strategies that can be evoked more times in future

research. Indeed, one should recall that quite the same decomposition used

in the part of the proof related to the updating equations has been the great

responsible for the well-known treatment of multivariate state space models

under an univariate framework; cf. Durbin and Koopman (2001), section 6.4.

On the other hand, the part related to the smoothing equation is entirely

based on de Jong (1989)’s smoothing recursions, which are mathematically

transparent and computationally e–cient.

3.1.3
Conditional expectation proof

The main goal of this subsection is to give a third and last proof for the

augmented restricted Kalman flltering. For such, I must add other structure

(quite \traditional", we would say) to the linear state space model in (2-1).

Assumption 3 "t and ·t are independent (in time, between each other and of

fi1) Gaussian stochastic processes. Also, fi1 is a Gaussian random vector.

Besides considering this new \parametric"framework, denote by Fj the ¾-fleld

generated by the measurement vectors up to time j; that is Fj ≡ ¾ (Y1; : : : ; Yj).

Also set ât|j ≡ E (fit|Fj) and P̂t|j ≡ V (fit|Fj). Under Assumption 3, the

Kalman recursions are versions of these conditional moments when j = t− 1,

j = t and j = n; see Anderson and Moore (1979), Harvey (1989), Harvey

(1993), Tanizaki (1996) and Durbin and Koopman (2001). Consequently, all

the properties of the conditional expectation can be conveniently used in order

to allow a very quick proof for Theorem 1:

Third proof of Theorem 1: Let t be an arbitrary time instant. Deflne F∗
j ≡

¾ (Y1; q1; : : : ; Yj; qj). Fixing j in {t; t + 1; : : : ; n}, it follows with probability 1

that
Atât|j = AtE

(
fit|F∗

j

)
= E

(
Atfit|F∗

j

)
= E

(
qt|F∗

j

)
= qt; (3-6)

where the third equality is due to the restrictions in (2-5) and the fourth

equality naturally comes from the very F∗
j -measurability of qt. Finally make

j = t and j = n. ¤
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The most evident comparison between this third proof and the previous proofs

is concerned with length and elegance. Besides, it maintains the same generality

in terms of linear restrictions and state smoothing, which has been guaranteed

already by the flrst proof given in subsection 3.1.1.

Now, on the potentially usefulness from this third proof:

1. The additional normality and independence assumptions, although re-

stricting a little the scope of Theorem 1, can be considered an asset

because these are straightforwardly generalizable to other types of state

space models - the non-Gaussian and/or nonlinear state space models.

The only drawback is that most of statistical techniques designed to

handle more general state space models do require the existence of an

expression for the conditional laws p (yt|fit), which are obscured by the

\singularity" incurred in the augmenting procedure.

2. Finally, the third proof plainly reveals that the Bayesian approach for

state space modeling (cf. West and Harisson, 1997; Durbin and Koop-

man, 2001; and Shumway and Stofier, 2006) can also deal with linear

restrictions by adopting augmented measurement equations as well. Yet,

one in such case shall be aware of some unavoidable singularities.

3.2
Statistical efficiency

In this section I demonstrate the statistical e–ciency - in terms of mean

square estimation error - of the restricted Kalman flltering discussed so far.

For this, I shall make use of a geometrical perspective, something that might

be general enough, while still grasping at intuition and simplicity. For what

follows, it is important to bear in mind that the Kalman recursions, in addition

to being recursive computational formulae from an operational standpoint, give

linear orthogonal projections evaluations onto some speciflc subspaces spanned

by the model measurements.

I begin by quoting the well-established and useful fact:

Lemma 1 Take a Hilbert space H, two subspaces M;N of H and the linear

orthogonal projections …M and …N . If M ⊆ N , then, for each x ∈ H,

…M (…N (x)) = …M (x).

Proof : N is, by its own, a Hilbert space (because it is closed) and M is a closed

subspace of N . Then, using the Orthogonal Projection Theorem (cf. Theorem

5.20 of Kubrusly, 2001), we get N = M +
(M⊥ ∩N )

. So, from Proposition
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5.58 of Kubrusly (2001), it follows that …N = …M + …M⊥∩N ; tautologically, for

each x ∈ H,

…N (x) = …M (x) + …M⊥∩N (x) : (3-7)

Now, apply …M on both sides of (3-7). ¤

Some additional notation must also be set:

{ at|j, Pt|j and S ′ are deflned as previously and relate to the standard state

space model;

{ a∗t|j, P ∗
t|j and S ′′ are obtained with the augmented state space model,

associated with Theroem 1

Now, everything needed for formally guaranteeing the statistical e–-

ciency has been gathered. Two demonstrations are given. Both are based on a

strong geometrical appeal and have an inductive style, in the sense that, flrstly,

individual coordinates of the state vector are tackled and then, in a second

moment, the strategy is generalized for arbitrary linear combinations of these

coordinates. But they do difier in some aspects. The flrst proof concentrates

on the optimality of the linear orthogonal projection that comes directly from

flrst principles, while the second proof is rather \constructive", uses Lemma 1

and focuses on a standard decomposition.

Theorem 2 P ∗
t|j ≤ Pt|j in the usual ordering of symmetric matrices.

First proof of Theorem 2: Let i = 1; : : : ; m. Since the set containing

the original model measurements until time j is contained in the cor-

respondent set the from augmented model, it follows that S ′ ⊆ S ′′ ≡
span{1; Y11; : : : ; Y1p; q11; : : : ; q1k; : : : ; Yj1; : : : ; Yjp; qj1; : : : ; qjk}. Therefore, from

Theorem 5.53 of Kubrusly (2001),

E
[(

fiti − a∗ti|j
)2

]
= inf

Y ∈S′′
E

[
(fiti − Y )2] ≤ E

[(
fiti − ati|j

)2
]

:

Generalizing: take x = (x1; : : : ; xm)′ ∈ Rm. Using linearity, the linear orthog-

onal projections onto S ′ and onto S ′′, both evaluated in x′fit = x1fit1 + · · · +
xmfitm, are given by

x′at|j = x1at1|j + · · ·+ xmatm|j

and

x′a∗t|j = x1a
∗
t1|j + · · ·+ xma∗tm|j :
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Observing that x′at|j ∈ S ′′ (because ati|j ∈ S ′ ⊆ S ′′∀i = 1; : : : ; m and S ′′ is a

linear manifold), it follows that

x′P ∗
t|jx = x′E

[
(fit − a∗t|j)(fit − a∗t|j)

′] x = E
[
x′(fit − a∗t|j)(fit − a∗t|j)

′x
]

= E
[
(x′fit − x′a∗t|j)(x

′fit − x′a∗t|j)
′] = E

[(
x′fit − x′a∗t|j

)2
]

= inf
Y ∈S′′

E
[
(x′fit − Y )

2
]
≤ E

[(
x′fit − x′at|j

)2
]

= E
[
(x′fit − x′at|j)(x

′fit − x′at|j)
′] = E

[
x′(fit − at|j)(fit − at|j)

′x
]

= x′E
[
(fit − at|j)(fit − at|j)

′] x = x′Pt|jx:

Since x is arbitrary, the conclusion is that P ∗
t|j is, in fact, \less than or equal

to" Pt|j. ¤

Second proof of Theorem 2: Consider again an arbitrary i = 1; : : : ; m. Recall

once more that S ′ and S ′′ already deflned are subspaces (closed linear mani-

folds) of L2 and that S ′ ⊆ S ′′. Theorem 5.20 of Kubrusly (2001) asserts the

existence of » ∈ S ′′⊥ such that

fiti = a∗ti|j + »: (3-8)

Also, Theorem 5.20 of Kubrusly (2001) and Lemma 1 (make H = L2, M = S ′,

N = S ′′ and x = fiti) assure the existence of ” ∈ S ′′ ∩ S ′⊥ such that

a∗ti|j = ati|j + ”: (3-9)

From the decomposition (3-8), obtain

E
[(

fiti − a∗ti|j
)2

]
= E

(
»2

)
: (3-10)

Now, add both decompositions (3-8) and (3-9) in order to get fiti−ati|j = »+”,

and evoke Pythagorean theorem - which is licit since » and ” are orthogonal -

to have
E

[(
fiti − ati|j

)2
]

= E
(
»2

)
+ E

(
”2

)
: (3-11)

Identities (3-10) and (3-11) assert the claimed e–ciency for each coordinate

estimation of the state vector. The case of an arbitrary linear combinations

x′fit is dealt with in a similar fashion. ¤

Looking at cases in which j ≥ t, the last theorem shows that Kalman

updating and smoothing equations, when used with the augmented model, be-

sides respecting the linear restrictions from equation (3-1), give more accurate

estimators.
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3.3
Restricted Kalman filtering versus restricted recursive least squares

Consider the following univariate special case of model (2-1) where the

state vector is time invariant and Zt ≡ x′t is a row vector of exogenous

explanatory variables:

Yt = x′tflt + "t ; "t ∼ (0; ¾2)

flt+1 = flt:
(3-12)

This model can and should be viewed as a linear regression model written in

a linear state space representation. It is known (see Harvey, 1981 and 1993)

that application of the Kalman state updating equation to (3-12) numerically

coincides with the method of recursive least squares. Back in the days when

matrix inversion was a computational burden, this equivalence proved useful

since it turned out to be possible to estimate a regression model with no need

to invert a \big" X ′X matrix. In addition, this made attainable the updating

of ordinary least squares (OLS) estimates whenever new observations added

to the data set. Nowadays this equivalence still deserves its merits in statistics

and econometrics. Firstly, depending on the ill-conditioning of the regressors,

it still may be di–cult to invert \big" X ′X matrices, a problem that justifles

recursive estimation. Secondly, this equivalence is in full connection with the

traditional coe–cients stability test by Brown et al. (1975).

The purpose of this section is to generalize the above parallel in the

context of linear restrictions. I shall admit that the coe–cient vector of a

regression model is supposed to obey certain linear restrictions which are

enunciated as
Afl = q; (3-13)

where A is a known k×m matrix, k ≤ m, and q = (q1; :::; qk)′ is a known k×1

vector. Since the main objective is to bridge the restricted recursive estimation

to the restricted Kalman flltering, structures (3-12) and (3-13) are now taken

together to generate the following augmented measurement equation:

(
Yt

q

)
=

(
x′t
A

)
βt +

(
εt

0

)
,

(
εt

0

)
∼

( (
0

0

)
,

(
σ2 0

0 0

) )
. (3-14)

From Theorem 1, the application of the Kalman updating equation to the

model in (3-14) produces updated state vectors which satisfy Abt|t = q. But,

in fact, there is more: the terms of the sequence
(
bt|t

)
are the output from on

line successive applications of restricted least squares. In order to establish this

link, the restricted least square (RLS) estimator and its covariance matrix for

a linear regression model Y = Xfl + ", " ∼ (0; ¾2I), where fl obeys (3-13), is
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recalled below:

fl̂RLS = fl̂OLS + (X ′X)−1A′[A(X ′X)−1A′]−1(q − Afl̂OLS) (3-15)

V ar
(

fl̂RLS

)
= ¾2(X ′X)−1 − (X ′X)−1A′[A(X ′X)−1A′]−1A(X ′X)−1:

The derivation of the expression in (3-15) is presented in almost any book on

econometrics. See for instance Johnston and Dinardo (1997) or Greene (2003).

This section’s result:

Theorem 3 Under the state space model in (3-14), the Kalman state updating

equation is identical to a recursive application of (3-15).

Proof : The model in (3-14) can be decomposed in a way that recognizes q

as a \new" measurement vector obtained/observed just \after"Yt and right

\before" Yt+1. Thus, the measurement equation is recast as

Yt,j = Zt,jflt,j + "t,j ; "t,j ∼ (0; Ht,j): (3-16)

Notice that Yt,1 = Yt, Zt,1 = x′t and Ht,1 = ¾2; on the other hand Yt,2 = q,

Zt,2 = A and Ht,2 = 0. The new state equation is written in the same way as

before.

It now becomes possible to regard the imposing of the linear restrictions

as a new updating of the state vector. In fact, for an arbitrary t, denote

the output of the Kalman updating using all the measurements from eq.(3-

16) up to Yt,1 by fl̂t,1|t,1, which, as already discussed, equals the output of

the recursive least squares - and consequently the OLS estimator - applied

to the \observations"{Y1; q1; :::; qk; :::; Yt−1; q1; :::; qk; Yt}. The state equation

implies that fl̂t,2|t,1 = fl̂t,1|t,1. Then, as Yt,2 = q arrives, and by noticing

that Pt,2|t,1 = Pt,1|t,1 = ¾2 (X ′
tXt)

−1, Zt,2 = A and Àt,2 = q − Afl̂t,2|t,1 and

Ft,2 = A¾2 (X ′
tXt)

−1 A′, the Kalman state updating equation in (2-3) becomes

fl̂t,2|t,2 = fl̂t,1|t,1 + (X ′
tXt)

−1
A′

(
A (X ′

tXt)
−1

A′
)−1 (

q − Afl̂t,1|t,1
)

: (3-17)

But, as just mentioned, fl̂t,1|t,1 = fl̂MQO. Therefore, the conclusion is that

the Kalman updating in (3-17) is indeed an application of RLS estimator

of (3-15). The equivalence between covariance matrices can be also established

analogously. ¤

Some conceptual and practical consequences follow. First of all, it now

becomes clear that the restricted Kalman flltering is indeed a generalization

of the RLS estimator, a statement that, albeit intuitive, was lacking a proper

formalization. In addition, Theorem 3 also shows that a regression model with
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random walk time-varying coe–cients under restrictions (set flt+1 = flt + ·t,

·t ∼ (0; Q), as the state equation for model (3-14)) does encapsulate the

regression model with static coe–cients, still under the same restrictions. Then,

whenever the restricted Kalman flltering is applied to the time-varying version,

both models can be compared as usual - to estimate the static model, just

set Q ≡ 0. Finally, note that the recursive residuals obtained from recursive

application of (3-15) are automatically uncorrelated - indeed, Theorem 3 says

they are innovations. This is a desirable property in paving the way towards

the development of a generalization of the stability test by Brown et al. (1975).

3.4
Initialization

3.4.1
Motivation

Besides considering the linear restrictions in equation (2-5), in this section

I will also admit that some coordinates of the initial state vector fi1 have inflnity

variances. This is the basic set-up of the so-called difiuse initialization of the

Kalman recursions, a subject extensively studied in Ansley and Kohn (1985),

de Jong (1988), Harvey (1989), de Jong (1991), Koopman (1997), Durbin

and Koopman (2001), Koopman and Durbin (2003), and de Jong and Chu-

Chun-Lin (2003). Under this at least partially unspecifled initial conditions,

a question that comes is whether the methods of imposing linear restrictions

can be derived from the very beginning. Observe that, once some elements

of P1 explode, there shall be no L2 theory available anymore, nor could even

the traditional Kalman equations be tackled, at least in the period when the

efiect of difiuseness - which lasts for an initial portion of the data - has not

vanished yet. So, the strategies used in proofs by Doran (1992) and by Pizzinga

(2008) to achieve the augmented restricted Kalman flltering (cf. Theorem 1)

unfortunately become useless here. The purpose of this section is to address

this theoretical issue precisely, by exploring the conditions which allow one to

extend the restricted estimation to difiuse initializations, and by working out

appropriately the modifled versions of the Kalman equations; that is, the proof

shall be \computational" instead of \geometrical".

3.4.2
Reviewing the initial exact Kalman smoother

From now on, the initial state vector is modeled as

fi1 = a + B– + R0·0;
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in which a is flxed and known, – ∼ (0; •Iq), ·0 ∼ (0; Q0), and B and R0 are

m × q and m × (m − q) selection matrices respectively, such that B′R0 = 0

and B′fi1 = –. In general, – consists of initial conditions for the non-stationary

terms of the m-variate process fit. Under this flx, the exact initial Kalman

smoother, obtained when • −→ +∞, is, in Durbin and Koopman (2001)’s

notation,

À
(0)
t = Yt − Zta

(0)
t − dt; F∗,t = ZtP∗,tZ ′

t + Ht; F∞,t = ZtP∞,tZ
′
t

L
(0)
t = Tt − TtP∞,tZ

′
tF

−1
∞,tZt; L

(1)
t = −TtP∗,tZ ′

tF
−1
∞,tZt + TtP∞,tZ

′
tF

−1
∞,tF∗,tF

−1
∞,tZt;

(3-18)

a
(0)
t+1 = Tta

(0)
t + ct + TtP∞,tZ

′
tF

−1
∞,tÀ

(0)
t ; P∗,t+1 = TtP∞,tL

(1)′
t + TtP∗,tL

(0)′
t + RtQtR

′
t;

P∞,t+1 = TtP∞,tL
(0)′
t ; t = 1; : : : ; n;

r
(0)
t−1 = L

(0)′
t r

(0)
t ; r

(1)
t−1 = ZtF

−1
∞,tÀ

(0)
t + L

(0)′
t r

(1)
t + L

(1)′
t r

(0)
t ;

at|n = a
(0)
t + P∗,tr

(0)
t−1 + P∞,tr

(1)
t−1; r(0)

n = 0; r(1)
n = 0; t = n; : : : ; 1;

(3-19)

whenever F∞,t just deflned above is nonsingular. Otherwise, changes must

take place in the recursions (3-18) and (3-19) (cf. Koopman and Durbin,

2003). According to Koopman (1997), there exists a time instant d after which

the above recursions collapse to the traditional Kalman smoother; therefore,

P∞,t = 0 for t > d necessarily.

The presented recursions constitute the paradigm proposed in Koop-

man (1997), Durbin and Koopman (2001, sec. 5.3), and Koopman and Durbin

(2003) for the treatment of state smoothing difiuse initialization. An alterna-

tive approach, based on the augmentation of the measurement equation, is

proposed in de Jong and Chu-Chun-Lin (2003)

3.4.3
Combining exact initialization with linear restrictions

Before going to the main result of the paper, some preliminary steps must

me addressed. The flrst is to list and to discuss the conditions under which it

will be possible to combine difiuse initial conditions for the Kalman smoothing

equations with the imposition of linear restrictions. Let them be enunciated

and, without any loss of generality, consider them valid for all t = 1; : : : ; n.

Assumption 4 {qti; : : : ; qtk} is a linearly independent subset of L2 (›;F ;P).

Assumption 5 ∀i = 1; : : : ; k : qti =∈ span{1; Y11; : : : ; Y1p; q11; : : : ; q1k; : : : ;

Yt−1,1; : : : ; Yt−1,p; qt−1,1; : : : ; qt−1,k; Yt,1; : : : ; Yt,p}.
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Assumption 6 The matrices Zt and At are such that the rank of [Z ′
t A′

t]
′ is

p + k.

Each Assumption should be examined in terms of generality and plau-

sibility. Assumption 4 guarantees non-redundance of the linear restrictions.

Assumption 5, in turn, deflnitively moves the focus towards the augmented

restricted Kalman flltering, since this is actually the appropriate way of han-

dling \stochastic" restrictions; indeed, if one faces some qti flxed or perfectly

predictable given the past, the corresponding linear restrictions would be much

better dealt with by the reduced restricted Kalman flltering (section 4.2), un-

der which the exact initial Kalman smoother in (3-18) and (3-19) are straight-

forwardly applicable. Notice also that, under any state equation chosen, As-

sumptions 4 and 5 necessarily imply AtPt|t−1A
′
t > 0. Finally, Assumption 6,

besides reinforcing that the linear restrictions are distinct, should be under-

stood as an impossibility of repeated signals along the lines of the augmented

measurement equation proposed in Theorem 1, something quite natural from

a practical perspective.

The second preliminary step is to quote the following auxiliary result:

Lemma 2 Consider a state space model with the augmented measurement

proposed in Theorem 1. If Ft > 0, then AtPt|t−1 [Z ′
t A′

t] F−1
t = [0k×p Ik×k].

Notice that Lemma 2 is actually a rephrasing of eq.(22) from Doran (1992),

which has already proved to be key in the second proof of Theorem 1.

Finally, here is the main result concerning initialization:

Theorem 4 (The initial exact restricted Kalman smoother) Suppose the aug-

mented state space model associated to Theorem 1 satisfles Assumptions 4, 5

and 6. Then the initial exact Kalman smoother in (3-18) and (3-19) yields

Atat|n = qt: (3-20)

Proof : Fix an arbitrary t ∈ {1; : : : ; d}, where d is the length of the difiuse pe-

riod associated with the augmented model. Deflne ~Zt = [Z ′
t A′

t]
′. Other quan-

tities would also have deserved tildes, but they are suppressed for conserving

notation. From the Assumptions 4 and 5, F∞,t cannot be a zero matrix. Sup-

posing flrst that F∞,t is nonsingular, take the recursive formulae of r
(0)
t−1 and

r
(1)
t−1 in (3-19) and place them in the expression of at|n, which gives

at|n = a
(0)
t +P∞,t

~Z ′
tF

−1
∞,tÀ

(0)
t +P∞,tL

(0)′
t r

(1)
t +P∞,tL

(1)′
t r

(0)
t +P∗,tL

(0)′
t r

(0)
t : (3-21)

From (3-21), identity (3-20) will be proved whenever the following three claims

are established.
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Claim 1. At

(
a

(0)
t + P∞,t

~Z ′
tF

−1
∞,tÀ

(0)
t

)
= qt.

Proof: Deflne a
(0)
t|t ≡ a

(0)
t + P∞,t

~Z ′
tF

−1
∞,tÀ

(0)
t . Looking at the recursion in (3-18),

it follows that a
(0)
t|t is the Kalman updating equation given in (2-3) applied

to an augmented state space model with system matrices given by Z†
t = ~Zt,

d†t = (d′t 0′)′, H†
t = 0(p+k)×(p+k), T †

t = Tt, c†t = ct, and Q†
t = 0; and also a†1 = 0

and P †
1 = P∞,1 = BB′. ¤

Claim 2 : AtP∞,tL
(0)′
t = 0.

Proof: Still considering the auxiliary state space model from the previous claim,

use the expression of L
(0)′
t in (3-18) and Lemma 2 to get

AtP∞,tL
(0)′
t = AtP∞,tT

′
t − AtP∞,t

~Z ′
tF

−1
∞,t

~ZtP∞,tT
′
t

= AtP∞,tT
′
t − [0k×p Ik×k] ~ZtP∞,tT

′
t

= 0: ¤

Claim 3 : At

(
P∞,tL

(1)′
t + P∗,tL

(0)′
t

)
= 0.

Proof: From the expression of L
(1)′
t in (3-18), it follows that

AtP∞,tL
(1)′
t = −AtP∞,t

~Z ′
tF

−1
∞,t

~ZtP∗,tT ′
t + AtP∞,t

~Z ′
tF

−1
∞,tF∗,tF

−1
∞,t

~ZtP∞,tT
′
t

= − [0k×p Ik×k] ~ZtP∗,tT ′
t + [0k×p Ik×k]

[
~ZtP∗,t ~Z ′

t + diag (Ht; 0k×k)
]

F−1
∞,t

~ZtP∞,tT
′
t

= −AtP∗,tT ′
t + AtP∗,t ~Z ′

tF
−1
∞,t

~ZtP∞,tT
′
t ; (3-22)

where the second equality comes from Lemma 2 combined with the auxiliary

state space model flrstly evoked in Claim 1, and from the expression of F∗,t in

(3-18) associated with the the augmented model.

On the other hand, the expression of L
(0)
t implies

AtP∗,tL
(0)′
t = AtP∗,tT ′

t − AtP∗,t ~Z ′
tF

−1
∞,t

~ZtP∞,tT
′
t : (3-23)

Add (3-22) and (3-23). ¤

In case of F∞,t being singular, uncouple the augmented measurement (Y ′
t ; q′t)

′

in such a way that

Yt,1; : : : ; Yt,p−1; (Yt,p; q′t)
′
:

Without losing generality, assume that Zt,pP∞,tZ
′
t,p > 0, where Zt,p is the pth-

row of Zt (recall: P∞,t > 0 for t ≤ d). Since F∞,t associated with (Yt,p; q′t)
′ is

nonsingular (cf. Assumption 6), proceed exactly as before in order to attain

(3-20). This completes the proof. ¤
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From a practical perspective, a point coming from this last result, which

must be reinforced, is that, under quite general conditions, it is always possible

to yield restricted smoothed state vectors, even when the estimation lies in

the \difiuse" period (that is, for t = 1; : : : d, whatever d may be). Said in

other words: the beginning of the series is not critical anyhow to get more

interpretable results (which is certainly the case whenever estimated state

vectors under meaningful restrictions are achieved).



4
Restricted Kalman filtering: methodological issues

This chapter is concerned with some presumed new methods about

imposing linear restrictions in state space modeling. The plan I will follow

is this. In section 4.1, I propose an alternative restricted Kalman flltering that

is indicated to situations in which the linear restrictions are time-invariant

and the state vector follows a general random walk. In section 4.2, I present

another alternative restricted Kalman flltering under a reduced linear state

space model, which will be confronted with the previous augmented restricted

Kalman flltering from several standpoints. At last, section 4.3 deals with the

imposition of linear restrictions in the prediction of the state vector.

4.1
Random walk state vectors under time-invariant restrictions

In this section, the paradigm of augmenting the measurement equation,

in order to accomplish linear restrictions in state vector estimation, changes.

Actually, this brief change in course deserves some attention because it may

highlight a potential framework in restricted Kalman flltering.

The result of this section, the proof of which is still carried out by

elementary Hilbert space theory, is the following:

Theorem 5 If the linear state space model in (2-1) is such that ct = 0 and

Tt = Rt = I, then (i)Afi1 = q (with q deterministic) and (ii)AQtA
′ = 0 for all

t=1,2,. . . are su–cient to

Aat|j = q for all t; j = 1; 2; ::: (4-1)

Proof : Fix t and j. Once again, denote by …S′ the linear orthogonal projection

onto S ′. Now observe that, from a trivial recursion on the state equation,

fit = fi1 +
t−1∑
j=1

·t−j: (4-2)

Pre-multiplying both sides of (4-2) by A implies

Afit = Afi1 +
t−1∑
j=1

A·t−j = q + 0 = q; (4-3)
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where the second equality comes from hypotheses (i) and (ii). Denoting the ith

row from A by Ai = [ci1 : : : cim], it follows that

Aiat|j = ci1at1|j + · · ·+ cimatm|j = ci1…S′(fit1) + · · ·+ cim…S′(fitm)

= …S′(ci1fit1 + · · ·+ cimfitm) = …S′(Aifit) = …S′(qi)

= qi;

where the third, flfth and sixth equalities come respectively from the linearity

of …S′ , from (4-3), and from the fact that qi ∈ R(…S′) = S ′. Since t, j and i

were taken arbitrarily, the theorem is proved. ¤

I should make explicit some practical gains from this last proposition, ap-

plicable to models in which the state vector evolves as (possibly heteroscedas-

tic) random walks. The flrst bonus is that there is no need to increase the

dimension of the measurement equation any longer. The second is that, by

imposing the enunciated restrictions on the initial state vector and on the

covariance matrices of the error terms from the state equation, maximum like-

lihood estimation can be sharply enhanced whenever some of the unknown

parameters belong to those matrices. The third advantage is that the restric-

tions are satisfled by any type of state estimation, whether it is a prediction,

updating or smoothing.

4.2
Reduced restricted Kalman filtering

4.2.1
Motivation

In dealing with a linear regression model under linear restrictions, there

are two ways of estimation. Actually, both prove to be numerically equivalent

and are known by the name of restricted least squares. The flrst way was

already revisited in section 3.3 (cf. expressions in (3-15)), while the second is

implemented by rewriting a reduced model with transformed data and then

applying usual OLS estimation to the transformed data (cf. Davidson and

MacKinnon, 1993).

My aim in this section is to propose a restricted Kalman flltering under

a reduced modeling framework. While the usual restricted Kalman flltering by

augmentation discussed so far can be viewed as a generalization of the flrst

way to impose linear restrictions in a static linear regression model, the new

approach to be now developed, in turn, resembles the second. One feature to

be listed among others is that, even though both approaches of restricted least
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squares produce exactly the same result, the two restricted Kalman flltering

(the augmented and the reduced) do not always result in the same estimated

state vectors.

4.2.2
The method

In the remaining of this section 4.2, consider the measurement equation

in (2-1), the restrictions in (2-5) and the following

Assumption 7 The (possibly random) vector qt = (qt1; : : : ; qtk)′ is lin-

early predeterminate to 1; Y1; : : : Yt, for all t = 1; 2; : : : ; that is, qti ∈
span{1; Y11; : : : ; Y1p; : : : ; Yt1; : : : ; Ytp}, for all i = 1; : : : ; k and t = 1; 2; : : : .

The basic perspective behind the alternative restricted Kalman flltering

is much the same as that of the reduced modeling in linear regression under

linear restrictions: some state coordinates are rewritten as an a–ne function of

the others and the result is appropriately placed in the measurement equation.

The method :

Let t be an arbitrary time index.

1. Without any loss of generality write the linear restrictions in (2-5) as

At,1fit,1 + At,2fit,2 = [At,1 At,2]
(
fi′t,1; fi′t,2

)′
= qt; (4-4)

where At,1 is a k × k full rank matrix.

2. Solve (4-4) for fit,1 which should result in

fit,1 = A−1
t,1 qt − A−1

t,1 At,2fit,2: (4-5)

3. Take (4-5) and put it in the measurement equation of the model in (2-1)

- from which we drop dt without loosing generality at all - aiming to

obtain

Yt = Zt,1fit,1 + Zt,2fit,2 + "t

= Zt,1

(
A−1

t,1 qt − A−1
t,1 At,2fit,2

)
+ Zt,2fit,2 + "t

= Zt,1A
−1
t,1 qt − Zt,1A

−1
t,1 At,2fit,2 + Zt,2fit,2 + "t

⇒ Y ∗
t ≡ Yt − Zt,1A

−1
t,1 qt =

(
Zt,2 − Zt,1A

−1
t,1 At,2

)
fit,2 + "t

≡ Z∗
t,1fit,2 + "t:

4. Now, postulate a transition equation for the unrestricted state vector

fit,2. This equation leads to the following reduced linear state space model
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when it is put together with the measurement equation derived in the

last step:

Y ∗
t = Z∗

t,2fit,2 + "t ; "t ∼ (0; Ht)

fit+1,2 = Tt,2fit,2 + ct,2 + Rt,2·t,2 ; ·t,2 ∼ (0; Qt,2)

fi1,2 ∼ (a1,2; P1,2):

(4-6)

5. For the reduced model in (4-6), apply the usual Kalman flltering to obtain

at,2|j and Pt,2|j, for all j ≥ t.

6. Reconstitute the estimate at,1|j and its mean square error matrix Pt,1|j
by means of the a–ne relation given in (4-5):

at,1|j = A−1
t,1 qt − A−1

t,1 At,2at,2|j
Pt,1|j = (A−1

t,1 At,2)Pt,2|j(A
−1
t,1 At,2)

′:
(4-7)

The above algorithm deserves some qualiflcation. First, I must say that

the approach is not completely new, since a particular case was conveniently

used in Doran and Rambaldi (1997); what I am doing here is to put it in a

more general framework. In addition, observe that j does have to be greater

than or equal to t due to steps 5 and 6 (cf. Assumption 7). Another aspect is

that the speciflcation for the state equation in step 4 could be extracted from

the complete state equation in (2-1), but if one does not want to think or worry

about a full transition system, then one could concentrate only in modeling

the block fit,2.

4.2.3
Reducing versus augmenting

Among the advantages of the reduced model approach over the aug-

mented model, I cite:

{ Mathematical consistency : Once the state equation is chosen after the

reducing task, the method avoids any risk of obtaining measurement

and state equations theoretically inconsistent with each other.

{ Computational e–ciency : While the augmenting approach increases the

dimension of the practical problem (indeed, the length of the measure-

ment vectors increases from p to p + k!), the reduced model approach

goes in an opposite direction by not altering the size of the measurement

equation and shortening the size of the state equation (from m to m−k).

In other words, the augmenting approach \augments" the dimensions of

the practical problem while the reduced model approach \reduces" them.
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{ Model selection: The reduced model approach enables one to investigate

the plausibility of the assumed linear restrictions by using information

criteria (e.g. AIC and BIC). The competing model would be the

unrestricted one as given by (2-1), the (quasi) likelihood function of

which is surely comparable with that one from the restricted model in

equations (4-6).

Stepping further towards the comparison between the reducing and the

augmenting approaches, I present two results. Both are related to the aug-

mented model suggested in Theorem 1, and reveal that, for certain types of

state restrictions, it is much less °exible. The flrst proposition concerns limi-

tations on the state equation. Note that the flrst three conditions listed below

are quite general, since they are verifled for several state space speciflcations

(e.g. zero-mean initial state vectors, whatever difiuse or non-difiuse) and for

many types of linear restrictions (e.g., all the deterministic ones):

Proposition 1 Suppose the partition in (4-4) is such that At,1 ≡ A1. Also,

admit the following conditions:

(i) Tt = diag (Tt,1; Tt,2), where Tt,1 is k × k.

(ii)
(
A−1

1 At,2Tt,2 − Tt,1A
−1
1 At,2

)
E (fit,2) = 0.

(iii) E (qt) = E (qt+1) = „q.

Then, (i), (ii) and (iii) are su–cient for Tt,1 = Ik×k. Now, suppose (i), (ii) and

(iii) valid for all t ≥ 1 and consider the additional conditions:

(iv) ∀t ≥ 1 : At,2 ≡ A2, such that A2 has null kernel.

(v) ∀t ≥ 1 : qt ≡ q (possibly random).

Now, (i) to (v) are su–cient for Tt = Im×m.

Proof : For ease of notation, set ct = 0 and Rt = I in the augmented version

of model (2-1). From (4-5) and from condition (i), I have

A−1
1 qt+1 − A−1

1 At,2Tt,2fit,2 − A−1
1 At,2·t,2 = Tt,1A

−1
1 qt − Tt,1A

−1
1 At,2fit,2 + ·t,1,

which is equivalent to

A−1
1 qt+1−Tt,1A

−1
1 qt =

(
A−1

1 At,2Tt,2 − Tt,1A
−1
1 At,2

)
fit,2+·t,1+A−1

1 At,2·t,2: (4-8)

Taking expectations on both sides of (4-8) and using conditions (ii) and (iii),

I arrive at
(I − Tt,1) A−1

1 „q = 0: (4-9)

From (4-9), I necessarily have Tt,1 = Ik×k. Finally, under (i), (ii) and (iii) valid

for all t ≥ 1, the conditions (iv) and (v) imply Tt,2 = I(m−k)×(m−k) (indeed:

get A2fit,2 = q − A1fit,1 from (4-4), pre-multiply this latter identity by a left

inverse of A2, and recall that a–ne functions of random walks are also random

walks). ¤
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It becomes clear from Proposition 1 that, if one chooses the augmenting

approach for dealing with important types of restrictions, there would be no

possibility left but a random walk evolution for at least a block of the state

vector.

The second proposition is stated below. Its condition (vii), as one can

directly see, is a quite natural set-up, since this avoids some pathological

behaviors from the measurement equation, such as non-ergodic stationarity:

Proposition 2 Suppose conditions (i), (ii) and (iii) of Proposition 1 are valid

for all t ≥ 1, as well as (iv) and (v), with q degenerated. Also assume that:

(vi) ∀t ≥ 1 : Qt ≡ diag (¾2
t1; : : : ; ¾2

tm).

(vii)∀t ≥ 1 and ∀i = 1; : : : ; m : ¾2
1i = · · · = ¾2

ti = 0 ⇒ V ar (fi1i) = 0.

Then, Qt = Om×m for all t ≥ 1.

Proof : Take an arbitrary t ≥ 1. From (i) to (v), the decomposition in (4-

4) collapses to A1fit+1,1 + A2fit+1,2 = q. This implies rank (V (fit+1)) ≤
m − k. But, as Ts = I for all s = 1 : : : t (cf. Proposition 1), I must have

max {rank (P1) ; rank (Q1) ; : : : ; rank (Qt)} ≤ m − k. Then, using (vi), there

exist i1; : : : ; ik ∈ {1; : : : ; m} such ¾2
s ij

= 0 for all s = 1; : : : ; t and j = 1; : : : ; k.

Conveniently rearranging fit+1, I get a partition
(
fi∗′t+1,1; fi∗′t+1,2

)′
such that

V ar
(
fi∗t+1,1

)
= Ok×k (cf. Proposition 1 again and condition (vii)). Than,

Ok×k = V ar (q∗) = V ar
(
A∗

1fi
∗
t+1,1 + A∗

2fi
∗
t+1,2

)
= A∗

2V ar
(
fi∗t+1,2

)
A∗′

2 : (4-10)

From (4-10) I flnally obtain Q∗
s,2 = O(m−k)×(m−k) for all s = 1; : : : t. ¤

This last result rules out any possibility of non-degenerated state vectors

under contemporaneously uncorrelated errors ·t1; : : : ; ·tm. This limitation, as

the previously raised from Proposition 1, surely does not arise under the

reducing approach.

4.2.4
Geometrical considerations

Let me now grasp some intuitive insight from the described method and

therefore geometrically understand what this alternative restricted Kalman

flltering, as well as the previous one by augmentation, is in fact \doing" to the

state vector.

I in the flrst place defend that one could work in an equivalent way with

the model
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Yt = Z∗
t,2fit,2 + d∗t + "t ; "t ∼ (0; Ht)

fit+1,2 = Tt,2fit,2 + ct,2 + Rt,2·t,2 ; ·t,2 ∼ (0; Qt,2)

fi1,2 ∼ (a1,2; P1,2);

(4-11)

where d∗t ≡ Zt,1A
−1
t,1 qt, since (4-6) and (4-11) are equivalent linear state

space representations. Indeed, by Assumption 7, d∗t just deflned is neces-

sarily deterministic - or linearly predeterminate to Y1; : : : ; Yt. So the sets

{1; Y11; : : : ; Y1p : : : ; Yj1; : : : ; Yjp} and {1; Y ∗
11; : : : ; Y ∗

1p : : : ; Y ∗
j1; : : : ; Y ∗

jp} produce

the same univariate innovations in L2(›;F ;P), which implies they span the

same subspace. Therefore, the Kalman flltering (updating or smoothing equa-

tions) applied to (4-6) - or, as already argued, to (4-11) - is projecting each

fitj, j = k + 1; : : : ; m onto span{1; Y11; : : : ; Y1p; : : : ; Yj1; : : : ; Yjp}, j ≥ t, as it

is done in a regular state space estimation. But (4-6) - or equivalently (4-11)

- together with (4-5) make explicit the fact that fit,1 = (fit1; : : : ; fitk)′ can be

a–nely extracted from fit,2 = (fit,k+1; : : : ; fitm)′. Then, it becomes possible to

project each coordinate of fit,2 flrst and subsequently obtain the projections of

each coordinate of fit,1 using (4-7). In light of such considerations, one could

consider the reduced model approach as some kind of a \two-stage" state es-

timation.

Within the previous augmenting procedure, one in turn has to project

directly (by means of the Kalman equations applied to an augmented model)

each coordinate of the entire fit = (fit1; : : : ; fitm)′ onto the bigger subspace

span{1; Y11; : : : ; Y1p; q11; : : : ; q1k; : : : ; Yj1; : : : ; Yjp; qj1; : : : ; qjk} - strictly bigger if

at least one of the q1; : : : ; qt is not linearly predeterminate to the measurements.

Figures 4.1 and 4.2 illustrate these highlighted geometrical difierences.

Figura 4.1: Geometrical meaning of this section’s reduced model approach:
Here only part of the coordinates of the state vector are directly projected onto
the original spanned subspace. The other coordinates projections are obtained
by formula (4-7).

4.3
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Figura 4.2: Geometrical meaning of the previous augmenting approach: Here
each coordinate of the state vector is directly projected onto an augmented
subspace.

Predictions from a restricted state space model

The original proposal for adopting an augmented model, which I re-evoke

again in this section, does not, in general, guarantee that linear restrictions on

the state vector are carried over to the Kalman prediction equations (immediate

example: except for the local level model, there is no extension of Corollary 1 for

the prediction equations when one is dealing with any of the structural models

- cf. Harvey, 1989 - put in their respective state space forms). However, there is

one exception. This particular case is described by a state vector that follows

a possibly heteroscedastic random walk, and is considered in the following

Corollary 2 Under the conditions presented in Theorem 1, in addition to

(i) ct = 0 and (ii) Tt = Rt = I , it follows that

Atat+1|t = qt:

In this section I propose a simple strategy to further extend (namely,

for any type of linear state space model) the restricted Kalman flltering and

smoothing up to schemes aimed at prediction. As a matter of fact, what I seek

certainly difiers from the method by Pandher (2002). In turn, the grounds of

my proposal are built up on the ideas of missing values state space treatment

and of the decomposition used in the second proof of Theorem 1 and in the

proof of Theorem 3.

Consider that one is willing to extrapolate the state vector and/or

the measurements up to h steps ahead in the future; that is, one wants to

obtain an+1|n; : : : ; an+h|n and/or Ŷn+1|n; : : : ; Ŷn+h|n. But, similarly to everything

that has been done so far in this Thesis, it is known a priori that, for all

j = 1; : : : ; h, An+jfin+j = qn+j, where An+j is a k × m matrix and qt+j is



Caṕıtulo 4. Restricted Kalman filtering: methodological issues 39

a k × 1 (possibly random) vector; this knowledge is nothing more than the

conflrmation that Assumption 1 is not conflned to a particular time series of

size n. So the question is how to make an+1|n; : : : ; an+h|n satisfy those same

theoretical constraints.

The proposed answer starts again from adopting an augmented model.

Then, the augmented version of (
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the original Kalman equations due to missing observations are discussed in

Durbin and Koopman (2001), section 4.8. If the researcher wants to treat the

series in (4-14) under a univariate framework, he or she shall refer to section

6.4 of that same book - this univariate choice brings some gains exclusively

on the computational side since the whole vectors Yn+1; Yn+2; : : : ; Yn+k are

lacking. Finally, notice that Theorem 1 is doing its job by guaranteeing that,

for all j = 1; : : : ; h, An+jan+j|n = qn+j. For the reasons just explained in this

paragraph, \n + j|n" is an abuse of notation.

It is now time to harvest the resuming computational algorithm:

1. Decompose the model in (4-12) striving to get the series in (4-14).

2. Store the \new" observations while respecting the missing values posi-

tions.

3. Apply the Kalman smoothing equation to the stored observations, ap-

propriately modifled to account for the missing values.

4. Take the smoothed states corresponding to the missing values positions

as the predicted state vectors under linear restrictions.



5
Applications

After presenting and discussing several theoretical and methodological

issues, I entirely dedicate some practical examples to this chapter. In those,

two methods from chapter 4 - namely: the reduced restricted Kalman flltering

and the restricted Kalman prediction equations - are considered, implemented

and evaluated. The remaining of this chapter is structured as follows. Section

5.11 presents an application in time-varying factor modeling for dynamic style

analysis, in which an accounting restriction on the coe–cients is tackled

by the reduced restricted Kalman flltering. In section 5.22, time-varying

econometric models are considered for the estimation and interpretation of the

dynamic exchange rate pass-through over Brazilian price indexes; again, the

reduced restricted Kalman flltering is key for testing some economic hypothesis

imposed under two speciflc restrictions. And, in section 5.3, the material

concerning restricted predictions from section 4.3 is conveniently implemented

for obtaining predictions of quarterly GNP that must be somehow consistent

with the annual GNP (that is: for each year, the sum of quarterly GNP data

is restricted to equal the annual GNP).

The models to be discussed in the sequel have been implemented using

the Ox 3.0 language (cf. Doornick, 2001) with occasional use of the Ssfpack 3.0

library for linear state space modeling (Koopman et al., 2002). My computer

was an Athlon XP 2200 Mhz, with 378 Mb-RAM. The computational e–ciency

of the estimations are separately analyzed and discussed in the appropriate

sections. All the estimations were carried under the exact maximum likelihood

estimation and the exact initial Kalman fllter (cf. Durbin and Koopman, 2001,

chapters 5 and 7).

1I am in great debt with Luciano Vereda, who was the sole responsible for the economic
interpretations of the proposed models and of the corresponding empirical results.

2Most of the conception, theory, and results and their interpretations have been carried
out by Rafael Martins de Souza and Luiz Felipe Pires Maciel, to whom I am grateful.
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5.1
Case I: Semi-strong dynamic style analysis

5.1.1
Motivation

Depending on the type of an investment fund under investigation, de-

tailed information on the actual portfolio composition is not usually available.

Return-based style analysis, or simply style analysis, is a statistical method for

the estimation/approximation of the unknown composition of an investment

fund portfolio. Standard practice of style analysis only uses the so-called ex-

ternal information, which is represented by the fund returns and some market

indexes returns, and is implemented by the asset class factor model (cf. Sharpe,

1988 and 1992). Later, this has been modifled by the add of an intercept term

(cf. de Roon, Nijman and ter Horst, 2004), as follows:

RP
t = fi + fl1Rt1 + fl2Rt2 + · · ·+ flmRtm + "t: (5-1)

Assumptions: RP
t is the portfolio return; Rt = (Rt1; Rt2; : : : ; Rtm)′ represents

some asset class indexes returns, which should satisfy the assumptions of

exhaustiveness, of mutual exclusiveness and of difierent behavior (cf. Sharpe,

1988 and 1992); fl1; fl2; : : : ; flm are the unknown allocations/exposures which

are sometimes supposed to satisfy an accounting constraint, known as the

portfolio restriction3:
∑m

i=1 fli = 1; fi is the Jensen’s measure or Jensen’s alpha

(cf. de Roon, Nijman and ter Horst, 2004), and represents the idiosyncratic

fund return, i.e., it measures how much the fund aggregates - or looses - by

means of its selectivity strategies4; and "t is a typical random error process

with flnite second moments.

Even though being a much used tool in investment analysis, model (5-1)

has a drawback: it ignores the fact that asset class exposures and selectivity do

change over time, re°ecting the very plausible and possible reallocations of the

assets by the portfolio manager - an idea that was also evoked in Pizzinga and

Fernandes (2006) and in Swinkels and Van der Sluis (2006). Later, in Pizzinga

et al. (2008) a class of semi-strong5 style analysis models was proposed, the

3There is also a short-sale restriction, which is sometimes considered and is implemented
by forcing non-negativeness of β1, β2, . . . , βm. But, as this restriction is not always meaningful
(e.g., most of hedge funds take positions in derivative markets), this is not adopted here.

4In fact, the actual Jensen’s measure emerges in the context of equilibrium models, such
as the CAPM or the APT model - cf. Elton et al. (2006) - or the multi-factor model of Carhart
(1997). However, I shall retain the intercept term of (5-1) as the selectivity measure, since
this and the former are used to achieve the same ends of the measure proposed in Jensen
(1968).

5This means that only the portfolio restriction is imposed; cf. the style analysis taxonomy
proposed by de Roon, Nijman and ter Horst (2004).
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exposures and Jensen’s measure of which were both made stochastically time-

varying as a (vector) random walk. This represented a direct generalization of

the static model (5-1), and its estimation was carried out by an appropriate

restricted linear state space model. Empirical illustrations were presented using

return series of Brazilian US Dollar/Real exchange rate funds. Among several

points, there was clearly a visual evidence that the time-varying exposures onto

US Dollar-Real exchange rate markets behaved under difierent autoregressive

regimes, one of those directly associated to the 2002 Brazilian presidential

election, a period of some political turbulence and high volatility.

This sections’s exercise aims at, flrstly, uncovering evidence on switching

regimes for the time-varying exposures of Brazilian US Dollar-Real exchange

rate funds under an econometrically more compelling way and, secondly,

interpreting the estimated exposures from the \more appropriate" model.

In it, I empirically evaluate several sounding dynamics: (1)random walk;

(2)simply autoregressive; (3)autoregressive with abrupt switching regimes; and

(4)nonlinear under a general smoothing transition function. The elected regime

switching variable for the 3rd and the 4th models is the AR(1)-GARCH(1,1)

volatility of US Dollar/Real exchange rate. As it will be seen, the adoption of

time-varying portfolio-restricted exposures following such processes makes it

necessary to use the reduced restricted Kalman flltering of section 4.2.

5.1.2
Competing models

I now present the analytical expressions of several time-varying asset

class factor models for semi-strong dynamic style analysis. In what follows,

the reducing method from the subsection 4.2.2 has been evoked in order to

make the portfolio restriction attainable.

Let me flrst obtain the expression corresponding to the portfolio restric-

tion on the state vector, which I shall denote in this section by °t and whose

coordinates represent the exposures and the Jensen’s measure. To do this, we

use steps 1 and 2 of the algorithm of subsection 4.2.2:

1 = [1 1 : : : 1 0] (flt1; flt2; : : : ; fltm; fit)
′

⇒ 1 = flt1 + [1 : : : 1 0] (flt2; : : : ; fltm; fit)
′

⇒ flt1 = 1− [1 : : : 1 0] (flt2; : : : ; fltm; fit)
′

⇒ °t,1 = 1− [1 : : : 1 0] °t,2:

I now move on to the measurement equation of the reduced model by making

use of step 3 of the algorithm in conjunction with the last equality obtained



Caṕıtulo 5. Applications 44

above:

Rc
t = Rt1flt,1 + [Rt2 : : : Rtm 1] (flt2; : : : ; fltm; fit)

′ + "t

= Rt1 −Rt1 [1 : : : 1 0] (flt2; : : : ; fltm; fit)
′ + [Rt2 : : : Rtm 1] (flt2; : : : ; fltm; fit)

′ + "t

⇒ Rc
t −Rt1 = [Rt2 −Rt1 : : : Rtm −Rt1 1] (flt2; : : : ; fltm; fit)

′ + "t

⇒ Rc
t −Rt1 = [Rt2 −Rt1 : : : Rtm −Rt1 1] °t,2 + "t:

Finally, combining a rather encompassing state equation with the expression

above, I arrive at the following general structure:

RP
t −Rt,1 = [Rt2 −Rt1 : : : Rtm −Rt1 1] °t,2 + "t; "t ∼ NID(0; ¾2Xt)

°t+1,2 = diag
(

T β
t ; 1

)
°t,2 + ·t ; ·t ∼ NID(0; Q)

°t,1 = 1− [1 : : : 1 0] °t,2:

(5-2)

I enumerate some features of model (5-2). Firstly, it should be reinforced that

the last coordinate of °t is the time-varying Jensen’s measure fit and the re-

maining coordinates are the time-varying exposures flt1; flt2; : : : ; fltm. Secondly,

as can be directly seen from the second line of (5-2), the Jensen’s measure

follows a random walk And thirdly, Xt in the measurement error’s variance

is some nonnegative variable that must respond for occasional heteroscedastic

behavior, and Q can be set full6.

The decision towards the random walk for the evolution of the Jensen’s

measure deserves some justiflcation. Although such choice seems too simple

and perhaps \unrealistic" in flrst glance, three reasons support such recogni-

tion. The flrst is that of parsimony and simplicity, as there is no additional

clue to guide one in choosing a more complex transition equation. The second

is the allowance for the possibility of fundamental selectivity changes along

time due to non-stationarity. The third comes from the next result:

Proposition 3 For the model in (5-2), set F∞ ≡ ¾
{

RP
s : s ≥ 1

}
and ât|∞ ≡

E (fit|F∞). Then, lim supt−→+∞ ât|∞ = +∞ and lim inft−→+∞ ât|∞ = −∞
P − a:s.

Proof : Without loss of generality, suppose the underlying probability space is

complete. Take an arbitrary i ∈ {1; : : : ; m}. According to Chung (2001), ch.8,

I have lim supt−→+∞ fit = +∞ P − a:s. It means that there is a subsequence

6The impacts on the exposures, represented by the components of ηt, \communicate"
among themselves. Note that it would be unreasonable to assume that investment decisions
(and hence the exposures) are related only by the portfolio restriction (which is an accounting
constraint), since they re°ect the same underlying shocks. In other words, shocks that lead
investors to augment their exposures onto some asset classes can also make them decide to
reduce their positions on others.
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fitj such that limj−→+∞fitj = +∞ P − a:s. Taking such subsequence as

nondecreasing, I obtain

lim supt−→+∞ ât|∞ ≥ limj−→+∞âtj |∞ = +∞ P − a:s,

where the equality follows from the Monotone Convergence Theorem for

conditional expectations (cf. Chung, 2001, ch.9). The liminf case is dealt with

under the same fashion. ¤

The interpretation: although non-stationary, the choice of a random walk has

the advantage that, for\large" series, the smoothed Jensen’s measure must

intercept the time x-line inflnitely often P − a:s: (in other simple words: with

probability 1, the estimated Jensen’s measures never explode).

The remaining part of model (5-2)’s speciflcation lies on the transition

sub-matrix T β
t ≡ diag (`t2; : : : ; `tm), which drives the evolution of the unre-

stricted block of time-varying exposures in °t,2. Let me flrst enumerate the

possibilities I am going to investigate empirically and, in the sequel, give ap-

propriate rationalities to each of them:

1. Random walk (RW ): T β
t ≡ I(m−1)×(m−1).

2. Purely autoregressive (AR): T β
t ≡ diag (`2; : : : ; `m), where |`i| < 1 for

all i.

3. Autoregressive with abrupt switching regimes : some diagonal entries of

T β
t take the form `i1 + `i2dti, where dti = 1 if some exogenous variable

zt assumes certain values and dti = 0 otherwise.

4. Nonlinear under a general smoothing transition function: some diagonal

entries of T β
t take the form `i,1+`i,2zt+`i,3z

2
t , where zt is some exogenous

variable.

The flrst model is clearly the most parsimonious and had already been

used by Pizzinga et al. (2008) within this same style analysis framework7.

In the occasion, two Brazilian US Dollar/Real exchange rate funds had

their time-varying Jensen’s measures and exposures analyzed. As already

told, exposures estimated under this framework seem to follow two difierent

patterns, one during the months near the 2002 Brazilian presidential election

7According to Swinkels and van der Sluis (2006), this speciflcation should be used if one
believes that exposures can increase or decrease over time when responding to shocks (that
turn out to exert a permanent efiect). In contrast, if one believes that exposures can deviate
for some time from normal (or \steady-state") levels but will forcefully come back to them
(which means that shocks exert a transitory efiect), then a variant like the second model
should be used.
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(when exposures onto US Dollar/Real markets appeared to be more erratic and

less persistent), and the other during the remaining months (in which exposures

were much more stable). This \stylized fact" was interpreted as suggesting

that linear models should be abandoned in favor of more sophisticated ones

(specially regime switching models), in which the consequences from changes

in the decision making process (which possibly varies with the state of the

economy, perhaps with market volatility) could be better captured.

The second model captures situations in which managers try to target

\steady-state" exposures. When compared with the flrst model, the number of

parameters grows by m−1 autoregressive coe–cients. Since the eigenvalues of

T β
t have absolute values strictly smaller than 1 (one), non-stationarity and/or

\explosive" behaviors for the exposures are ruled out, something that brings

some inferential attractiveness. Besides, this second model can be understood

as a bridge to the nonlinear third and fourth versions.

The third and fourth models undoubtedly add complexity to the process

of parameter estimation but are justifled by their ability of capturing the

state-dependent behavior of managers and investors (which generates the

aforementioned possibility of multiple regimes in exposures’ dynamics). One

might recall that the nonlinear processes8 used here are respectively the

threshold autoregressive (TAR) model and a general smoothing transition

autoregressive (STAR) model, in which the second-order polynomial on zt

is an attempt to approximate a more general \smooth" transition function.

For a comprehensive treatment of these types of switching-regime proposals

outside the state space framework, see Enders (2004). Once these dynamics are

postulated to the state equation, parameter estimation can be accomplished

under the usual paradigm of maximizing the prediction error decomposition

form of the likelihood (see, for example, Harvey, 1989, ch.3; and Durbin and

Koopman, 2001, ch.7).

5.1.3
Model Selection

As there are four alternatives to describe the time-varying exposures, I

must discuss how to decide in practice which model seems to be the most

appropriate. I actually adopt the following selection mechanism:

{ Likelihood-ratio (LR) tests to validate or to refuse the nonlinear propos-

als (3) and (4).

8Even though being nonlinear processes (i.e., there is no corresponding Gaussian nor
i.i.d Wold decomposition - cf. Brockwell and Davis, 1991 and 2003), these choices for the
state equation still provide us with a Gaussian \linear" space model.
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{ Information criteria, such as AIC and BIC.

{ Predictive power by comparing Pseudo R2 and MSE measures.

{ Diagnostic tests over the standardized innovations.

The listed strategies had been fully discussed in Harvey (1989), ch. 5.

Here, the null for the LR test shall be H0: \The parameters associated to the

switching regimes are all zero". Consequently, our test aims at comparing the

\reduced"model (2) to the \complete"model (3) or (4). There are strong theo-

retical evidences that, asymptotically, LR = 2 [logLMax,Comp − logLMax,Red] ∼
´2

k, where k is the number of parameters set to zero under the null, since at least

the reduced model maintains the standards for good properties of maximum

likelihood estimation9 (cf. Pagan, 1980).

5.1.4
Reducing versus Augmenting

This subsection is dedicated to some discussion concerning the type of

restricted Kalman flltering that would be the most appropriate to obtain

portfolio-restricted estimated exposures. As discussed in previous chapters, two

major possibilities could a priori be evoked for such task, and so far we have

concentrated only in the details of the reduced restricted Kalman flltering.

But, as we will show, the use of the augmented restricted Kalman flltering

considerably limits the choices of models for the exposures’ evolution. Observe

that, even though Propositions 1 and 2 from section 4.2 could be evoked here,

I shall make use of the rather special structure of the portfolio restriction in

order to uncover more drawbacks of the augmented restricted Kalman flltering.

The time-varying asset class factor model corresponding to the augment-

ing approach shall have its measurement equation displayed as
(

RP
t

1

)
=

(
R′

t 1

1 · · · 1 0

)
°t+

(
"t

0

)
;

(
"t

0

)
∼ NID

( (
0

0

)
;

(
¾2Xt 0

0 0

) )
:

(5-3)
The state equation retains its general form as presented in the second line

of (5-2), but with the dimension increased by an unit. In addition, I use the

following presupposition for the remaining of this section:

Assumption 8 The state equation associated to model (5-3) is such that:

1. ∀t ≥ 1 and ∀i = 1; : : : ; m :
∑

j 6=i (`ti − `tj) E (fltj) = 0;

9Analytical and/or Monte Carlo investigations for the LR test about its asymptotic
properties would deserve some special attention, but I rather leave this important issue for
future research.
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2. ∀i = 1; : : : ; m + 1 : ¾2
i ≡ V ar (·ti) = 0 ⇒ V ar (°1i) = 0.

Note that, even though the flrst statement of Assumption 8 looks artiflcial in

flrst glance, this includes standard zero-mean setups for the initial state vector

as particular cases, whatever difiuse or non-difiuse (in other words: it is more

stringent to suppose the initial state vector °1 is at least integrable with uncon-

ditional expectation given by a1 ≡ E
[
(fl11; : : : ; fl1m; fi1)

′] = (01×m; a1,m+1)
′).

The next two propositions, which are related to the augmented model (5-

3) reveal that the augmented restricted Kalman flltering looses much °exibility

in terms of the possible choices for the state equation.

Proposition 4 For all t, each diagonal entry of the matrix T β
t must be equal

to one. That is, T β
t ≡ T β = Im×m.

Proof : Take an arbitrary t ≥ 1. From the second line of the measurement

equation (5-3), I obtain the portfolio restriction

flt1 = 1− flt2 − · · · − fltm: (5-4)

From the state equation given in (5-2), I have

flt+1,1 = `t1flt1 + ·t1: (5-5)

Now, put (5-4) into (5-5) and make use of the state equation again to get

1− `t2flt2 − · · · − `tmfltm −
m∑

j=2

·tj = `t1 − `t1flt2 − · · · − `t1fltm + ·t1; (5-6)

which is equivalent to

(1− `t1) + (`t1 − `t2) flt2 + · · ·+ (`t1 − `tm) fltm =
m∑

j=1

·tj: (5-7)

Taking unconditional expectations on both sides of (5-7) and evoking the flrst

item of Assumption 8, I flnally get 1− `t1 = 0. The other exposures are dealt

with analogously. ¤

The message is clear. If one chooses the augmented Kalman flltering

for estimating the time-varying asset class factor model under the portfolio

restriction, there is no possibility left but a random walk evolution for every

coordinate the state vector. Therefore, proposals 2, 3 and 4 listed in subsection

5.1.2, or any other non-random walk speciflcation, whether time-varying or

flxed, would not be even checkable for a given data set. Note that Proposition

1 from section 4.2 would at the most reveal that only one coordinate of the

state vector is a random walk.
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The second proposition, stated below, rules out any possibility of time-

varying exposures under contemporaneously independent errors ·t,1; : : : ; ·t,m:

Proposition 5 Let Qβ be the covariance matrix associated to the exposures’

random error. If Qβ ≡ diag (¾2
1; : : : ; ¾2

m), then Qβ = O.

Proof : From the portfolio restriction imposed in the second line of (5-2), flt

is in fact a singular random vector. This is, by Proposition 4, equivalent to

max
{

rank
(
Qβ

)
; rank

(
P β

1

)}
< m, where P β

1 is the block of P1 associated

to the initial exposures (fl11; : : : ; fl1m)′. Then, as Qβ is diagonal, it must follow

that there exists i ∈ {1; : : : ; m} such that ¾2
i = 0, which in turn implies in

V ar (fl1i) = 0 (cf. the second item of Assumption 8). But, as flti = 1−∑
j 6=i fltj,

I must have
0 = V ar (flti) =

∑

j 6=i

V ar (fltj) ; (5-8)

where both equalities follow from the state equation being a random walk (cf.

Proposition 4) and from Qβ being diagonal. The conclusion from (5-8) is that

¾2
j = 0 for all j = 1; : : : ; m. ¤

From this last result, one should learn that the adoption of the augmented

restricted Kalman flltering also forces one to always consider exposures whose

impacts, which are represented by the components of ·t, are correlated. Such

limitation, like the former, certainly does not arise under the reduced restricted

Kalman flltering.

5.1.5
Empirical results

The asset class indexes were the CDI (the average rate charged in

overnight transactions between depository institutions), the US Dollar/Real

exchange rate (in percentage points) and observed variations in two flnancial

indicators, Quantum Cambial and Quantum Fixed Income10. The data com-

prise 209 observations on weekly returns from 2001 to 2004 and were obtained

from Quantum Axis (www.quantumfundos.com.br). Two US Dollar/Real ex-

change rate funds inside the Brazilian industry were considered11: HSBC Cam-

bial FIF and Itau Matrix US Hedge FIF.

10The Quantum Fixed Income indicator approximately tracks variations in the market
price of a certain fund’s share, whose objectives are such that its market value increases
whenever the six-month swap rate decreases. The Quantum Cambial indicator, in turn,
follows variations in the market price of another fund’s share, whose value increases whenever
the premium from a swap contract - the so called DI-Dollar - decreases. For additional
discussion on these two indicators, see Varga (1999).

11Since the fund Itau Matrix US Hedge FIF has been bought by another fund - namely
Itau B Cambial FI - at the end of 2004, I made the corresponding estimation with the data

www.quantumfundos.com.br
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The covariance matrix Q (cf. the state equation in (5-2)) was consid-

ered full in all the estimations12. The Xt heteroscedastic variable (cf. the

measurement equation of (5-2)) was chosen to be the US Dollar/Real AR(1)-

GARCH(1,1)13 volatility in the analyzed period, and its standardized version

was used as the zt switching regime variable for the exposures onto the US

Dollar/Real exchange rate and the Quantum Cambial. The dummy variable

dt from the TAR speciflcation takes 1 whenever zt ≥ 1:3, and 0 otherwise. This

calibration was chosen to capture the period of high volatility, which took place

from the last week of September 2002 (which is located around the 90th obser-

vation) to the third week of February 2003 (which is located around the 110th

observation)14. Figure 5.1, which helps recognizing these patterns, also illus-

trates what happened throughout the period. Note that the 2nd half of 2002

was marked by a confldence crisis that surged on the eve of the Brazilian pres-

idential elections. This crisis found a very fertile ground to grow due to fears

about the macroeconomic policies that could be followed by the candidate who

was leading the polls, Luis Inacio Lula da Silva. When agents perceived that

Lula administration would not change economic fundamentals like the °oat-

ing exchange rate and in°ation targeting regimes, expectations about future

economic developments became favorable, flnancial market indicators turned

positive and volatility dropped.

If one makes careful inspection on the information depicted in tables 5.1

and 5.2, several points emerge. Looking flrst at computational e–ciency, it

is clear that the computational times, even though larger for the nonlinear

proposals, remain essentially negligible. This could be of great value, should

one try to use/implement these dynamic style-analysis proposals in practice.

Stepping further, one should note that the predictive power from the

competing proposals gives us no clue about which model is the most adequate

- it seems that, for these particular estimations, all models can reproduce the

data almost under similar capabilities (cf. Pseudo R2 and MSE measures).

Also, the use of AIC and BIC criteria is of no help in deciding which model

should be considered.

The diagnostic tests in the last three lines of these tables15, though,

uncover important aspects. They actually tell that, in terms of model basic

until the flrst week of 2003 November (149 observations). Additional information can be
obtained at the National Association of Investment Banks (ANBID) (www.anbid.com).

12But it must be remarked that, from what was discussed in subsection 5.1.3, there would
be no problem in attempting diagonal speciflcations under the reduced restricted Kalman
flltering, on which the estimations are based.

13The corresponding implementation has been made using EViews (www.eviews.com)
14I could have tried to estimate the value of the limiar, but it would demand more periods

of high volatility in the data.
15The three tests were applied to the standardized innovations.

www.anbid.com
www.eviews.com
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Figura 5.1: US Dollar/Real volatility obtained under the AR(1)-GARCH(1,1)
model.

Tabela 5.1: Results from the estimations with HSBC FIF Cambial.
Attribute RW AR TAR STAR

Log-likelihood -149.462 -148.124 -143.421 -143.657
Computational time 0.61 3.85 6.76 10.66
Pseudo R2 0.905 0.907 0.905 0.905
MSE 0.549 0.534 0.545 0.550
AIC 1.516 1.561 1.554 1.576
BIC 1.756 1.801 1.858 1.912
Linearity LR test - - 9.406 (0.009) 8.935 (0.063)
Ljung-Box test (30 lags) 54.984 (0.004) 52.910 (0.006) 61.172 (0.001) 51.236 (0.009)
Homoscedasticity F test 0.435 (0.010) 0.481 (0.02) 0.384 (0.003) 0.442 (0.011)
Jarque-Bera test 18.694 (0.000) 18.478 (0.000) 60.247 (0.000) 11.182 (0.004)

assumptions, the STAR proposal systematically behaves better than the

others. This is an indication that, in the analyzed period, exchange rate

exposures were driven by some switching regime nonlinear process.

Finally, looking at the results from the LR linearity test, there is

evidence, at least under a 10% signiflcance level, that the STAR speciflcation

is supported by the data.

Taking into account these flndings, there is no option left but to accept,

amongst the four considered proposals, the STAR model as the best descrip-

tion for the exposures onto the exchange rate markets.

Figures 5.2 and 5.3 depict time plots for the restricted Kalman smoothing

estimates of Jensen’s measure and of the exposures onto U.S. Dollar/Real

exchange rate spot markets and Quantum Cambial. Visual inspection suggests

that the investment strategy followed by the managers of HSBC FIF Cambial
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Tabela 5.2: Results from the estimations with Itau Matrix US Hedge FIF.
Attribute RW AR TAR STAR

Log-likelihood -243.201 -242.417 -234.786 -233.996
Computational time 0.33 0.77 11.1 5.44
Pseudo R2 0.697 0.679 0.761 0.684
MSE 3.008 3.029 2.366 3.009
AIC 3.489 3.479 3.430 3.446
BIC 3.793 3.782 3.814 3.871
Linearity LR test - - 15.262 (0.000) 16.841 (0.002)
Ljung-Box test (30 lags) 32.144 (0.361) 37.576 (0.161) 31.757 (0.379) 37.376 (0.166)
Homoscedasticity F test 0.670 (0.210) 0.899 (0.738) 0.944 (0.857) 0.779 (0.434)
Jarque-Bera test 6.286 (0.043) 4.242 (0.120) 7.412 (0.024) 2.618 (0.270)

is such that exposures onto U.S. Dollar/Real exchange rate spot markets

were negligible throughout the sample, except during the period of higher

volatility, when a signiflcant long position was taken. Furthermore, exposures

onto Quantum Cambial were always signiflcant, wandering around a share

of approximately 75% of the portfolio throughout the period. This outcome

probably re°ects preventive measures taken by fund managers during the crisis,

which protected the portfolio against the losses caused by the decrease in

the market value of dollar-indexed bonds issued by the Brazilian government.

Managers of Itau Matrix US Hedge FIF, in turn, followed an investment

strategy in which the exposures onto U.S. Dollar/Real exchange rate spot

markets wandered around 75%-80% of the portfolio throughout the sample

(even though the large confldence intervals observed during the period avoid

ascertaining this); on the other hand, exposures onto Quantum Cambial were

negative and signiflcant at several occasions.

I now look at information extracted by the model on selectivity skills

by analyzing the time path of Jensen’s measure. The graphs on the top of

Figures 5.2 and 5.3 suggest that managers of HSBC FIF Cambial and Itau

Matrix US Hedge FIF revealed a slight tendency of generating gains during

the period marked by the confldence crisis. One can understand these facts

concerning HSBC and Itau funds by recalling that it is precisely during periods

of increased volatility that managers have signiflcant proflt opportunities by

engaging in high-frequency operations (e.g., day-trade transactions).
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Figura 5.2: Smoothed STAR exposures and Jensen’s measure for the HSBC
FIF Cambial with respective 95% confldence intervals.
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Figura 5.3: Smoothed STAR exposures and Jensen’s measure for the Itau
Matrix US Hedge FIF with respective 95% confldence intervals.
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Tabela 5.3: Pairwise correlation summary

for the smoothed exposures onto exchange

rate markets.

Fund Correlation

HSBC FIF Cambial -0.9592

Itau Matrix US Hedge FIF -0.6230

Table 5.3, which shows pairwise relations for smoothed exposures onto

U.S. Dollar/Real exchange rate and Quantum Cambial, allows a better un-

derstanding of the funds’ behavior. Each series was tested individually for

unit root (cf. Enders, 2004, ch.4) and all results indicated stationarity. In the

sequel, pairwise correlations were estimated. The information in Table 5.3 sug-

gests that the positions in the U.S. Dollar/Real exchange rate spot market and

Quantum Cambial were negatively related, re°ecting the fact that managers

engaged in hedge operations to avoid a devaluation in their funds’ shares. These

results can even reveal a tendency to incur in some degree of leverage. One can

see this by looking at what would happen if the U.S. Dollar/Real exchange

rate has increased during the period (event that actually happened). Note that

Itau Matrix US Hedge FIF would proflt from this movement from two sources:

(i) the long position in the U.S. Dollar/Real exchange rate market and; (ii)

the short position in the Quantum Cambial. This outcome can be understood

by recalling that there is a positive relationship between the U.S. Dollar/Real

exchange rate and the premium in the DI-Dollar swap contract.

5.2
Case II: Estimation of dynamic exchange rate past-through

5.2.1
Motivation

In this section, linear state space models are proposed to estimate the

pass-through of Brazilian price indexes against the US Dollar/Real exchange

rate from 1996 to 2005. The methodological framework encompasses the

reduced restricted Kalman flltering from section 4.2, which permits verifying

the plausibility of some economic hypothesis.

There are three main targets. The flrst is to decide whether models of

null (or of full) pass-through are acceptable to the price indexes investigated

here. The second is to carry out likelihood ratio tests for the signiflcance of

some economic exogenous variables, which shall be termed determinants in
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this paper and are theoretically associated with the pass-through. The third is

to analyze the behavior of the estimated pass-through from the best models.

Basic concepts and some review of the literature

In an open economy, domestic prices can be afiected by external shocks,

whether from currency relative prices adjustment or from movements of inter-

national supply and demand. The exchange rate is a quite volatile economic

variables in macroeconomic policy. How much the exchange rate afiects the

economy? One of the faster channels is into prices. This channel is called (ex-

change rate) pass-through. There are few studies for this efiect in Brazil in

which the response of the prices to a change in exchange rate is suitably tack-

led.

The importance of past-through estimation has increased since the

adoption of in°ation targeting regime (cf. Fraga, Goldfajn and Minella, 2003),

and the recognition that it is crucial for in°ation forecasting. In addition to

these motivations above, there is some evidence of a time-varying pass-through,

even though only few studies have considered this assumption. Indeed, as

Parsley (1995) points out, the stability of exchange rate pass-through is not

well tested in common econometric speciflcations of pass-through equations.

Pass-Through Determinants

According to Menon (1996), Taylor (2000), and Campa and Goldberg

(2002), the main drivers of price sensibility to exchange rate changes can

be inferred. In face of literature with macroeconomic approach, the pass-

through depends on: in°ation persistence, openness degree of the economy,

the output gap, and real exchange rate disalignments. From the standpoint of

disaggregated analysis, the exchange rate pass-through is also associated with

the competition degree of each industry and with flrm’s market power (with

the elasticity price-demand).

5.2.2
The model setting and inference

I now present the state space model for the exchange rate pass-through

for a given index price as follows:

¢log pt =
m∑

k=1

flkt¢log et−k + ˆ0 + ˆ1¢log(apt) + †t; †t ∼ NID(0; ¾2) (5-9)



Caṕıtulo 5. Applications 56

flt+1 = flt + °1¢log(IPAt)1q×1 + °2¢log(ipt)1q×1 + °3¢log(ret)1q×1

+°4¢log(ot)1q×1 + »t; »t ∼ NID(0; Q)

(5-10)
The former equation linearly relates the observed monthly log-variation of price

to the log-variation of exchange rate until time t − m and to an exogenous

variable, the American price index, apt. The coe–cients of ¢log et−k in

equation (5-9) are the state coordinates, which represent the components of

the past-through (the sum of them is termed long run past-through) and

whose dynamics are given in equation (5-10), which also sets the impact

from the following determinants: IPA series that represents the in°ationary

environment; ipt is the industrial production index, ret is the exchange rate

disalignment, and ot is the openness of the economy. The matrix Qm×m is set

diagonal, even though the components from the past-through (i.e. the state

coordinates) do maintain degrees of dependency due to the presence of common

determinants in the state equation.

The reduced restricted Kalman flltering has to be evoked in order to make

the restrictions of full past-through (
∑m

i=1 flit = 1) and of null past-through

(
∑m

i=1 flit = 0) attainable. The completeness of the exchange rate passing-

through (the flrst restriction) means that all the variation of the exchange rate

is passed to the domestic prices. This is key for Economic Theory standpoint,

since it means that the PPP hypothesis is acceptable. On the other hand, the

acceptance that null exchange rate passing-through model is the most adequate

scenario implies the exchange rate movements do not have any efiect in the

domestic prices, and so, the monetary authority needs not be concerned with

exchange rate movements to make monetary policy with such price indexes.

Besides checking the hypotheses of completeness (or absence) of exchange

rate passing-through, another purpose of this application is to identify the most

adequate number of lags of the exchange rate, that is the value of m. For such,

quite the same steps listed in subsection 5.1.3 shall be used.

Finally, the signiflcance of the parameters ˆ0, ˆ1, °1, °2, °3 and °4 will be

tested under a likelihood ratio (LR) testing approach. Since both the reduced

and the complete model maintain the standards for good properties of max-

imum likelihood estimation (cf. Pagan, 1980), it follows that, asymptotically,

LR ≡ 2 [logLMax,Comp − logLMax,Red] ∼ ´2
1, in which logLMax,Red represents

the maximum of the log-likelihood for a model with a particular explanatory

variable dropped from the speciflcation.

5.2.3
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Empirical results

The analyzed data contain monthly observations from August of 1999 to

January of 2007 of the Brazilian wholesale price index (IPA), the Brazilian

consumer price index (IPC), the American price index, the exchange rate

between the Brazilian Real and the American Dollar, the Brazilian industrial

production index and a measure of openness, which is the sum of imports and

exports as a proportion of GNP. The decision of using data since August

of 1999 is justifled by the in°ation target system adopted by the Banco

Central (institution corresponding to the American Federal Reserve in Brazil)

in June of 1999. The data has been obtained from IPEA Data (www.ipeadata.

gov.br), and each estimation has taken less than 2 seconds, something that

highlights the computational e–ciency of the adopted state space framework.

Overall IPA

The most adequate model for the IPA series is the model with 7 lags

on the exchange rate. Even though only the 4 flrst states have a confldence

interval that does not contain zero, this decision has been based on the lack

of serial correlation for the residuals. Figure 5.4 shows the evolution of the

coe–cients along time. The PseudoR2 = 0:64 suggests that the model provides

a reasonable adjustment for the IPA. The long run pass-through given in

Figure 5.5 has some variation when we compare the beginning of the sample

to the end with a edge at the 2002, the year of elections preceding the Lula’s

administration in Brazil, a period of great volatility in the exchange rate.

The restricted models were estimated to verify whether the hypothesis

of null and full exchange rate pass-through have some support from the data.

The information criteria shown in table 5.4 do not provide any evidence that

these extremes allow a better flt. The LR signiflcance tests are given in table

5.5. The p-values reveal no evidence that the proposed determinants help to

explain the behavior of the pass-through.

Criterium unrestricted
∑7

i=1 fli,t = 0
∑7

i=1 fli,t = 1
AIC 3.000

www.ipeadata.gov.br
www.ipeadata.gov.br
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Figura 5.4: IPA smoothed betas.
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Figura 5.5: IPA long run exchange rate pass-through.
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ˆ1 °1 °2 °3 °4

0.001 0.000 0.001 0.001 0.000
(1.000) (1.000) (1.000) (0.505) (1.000)

Tabela 5.5: IPA estimated parameters and corresponding p-values in paren-
thesis.

level of disaggregation splits the overall IPA into two main groups: consumption

and production goods.

The more adequate model for the IPA consumption series has only a lag

of the exchange rate, since it has the lower information criteria values and

its residuals shows no serial correlation. The PseudoR2 = 0:615434 provides

evidence in favor of goodness-of-flt. Since the decision of having only one lag for

the exchange rate, the short and long run exchange rate pass-through are the

same. Its variation over time can be seen at flgure 5.6. During the year of 2002,

the exchange rate pass-through presented higher values compared to the rest of

the sample period, probably due to the same explanations already given. Also,

there is some indication of seasonal patterns, since the pass-through seems to

be close to zero in the very begging of each year.

As shown in table 5.6, the LR signiflcance tests reveal that three proposed

determinants are supported by the data. One might also observe that the

inertial parameter ˆ1 is statistically signiflcant for the measurement equation.

2000 2001 2002 2003 2004 2005 2006 2007

−0.1

0.0

0.1

0.2

0.3

0.4

Figura 5.6: IPA consumption smoothed betas.

As it happened to the IPA consumption series, the most adequate model

to the IPA production series was the model with only one lag of exchange

rate pass-through. Again, the high value of the PseudoR2 = 0:729 provides



Caṕıtulo 5. Applications 60

ˆ1 °1 °2 °3 °4

0.561 -0.0004 0.012 0.005 -0.002
(0.000) (0.000) (0.061) (0.006) (0.347)

Tabela 5.6: IPA consumption estimated parameters and corresponding p-values
in parenthesis.

us some confldence that the model flts the data in a proper way. The pass-

through variation over time can be seen in flgure 5.7. This remarks some aspects

similar to those found in the previous analysis, except for the lack of evidence

on seasonality.

The LR signiflcance tests shown in table 5.7 provide us with two

statistically signiflcant determinants. Still, the inertial parameter ˆ1 is again

statistically signiflcant at the measurement equation.
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Figura 5.7: IPA production smoothed betas.

ˆ1 °1 °2 °3 °4

0.590 -0.001 0.002 0.002 -0.001
(0.000) (0.699) (0.000) (0.000) (0.823)

Tabela 5.7: IPA production estimated parameters and corresponding p-values
in parenthesis.

IPC

The model adjusted with 2 lags of the exchange rate shows that the IPC

seems to be not responding to the exchange rate movements. As can be seen in

flgure 5.8, the states corresponding to all lags are varying around zero within
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the whole sample period. The long-run pass-through presented in flgure 5.9

is also oscillating around zero. This shall be taken as the flrst symptom of

absence of passing-through, and this is reinforced by the application of the

restricted Kalman flltering, since the model which has the null pass-through

restriction has the best information criteria; see table 5.8.
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Figura 5.8: IPC smoothed betas.

Criterium unrestricted
∑2

i=1 fli,t = 0
∑2

i=1 fli,t = 1
AIC 2.838 2.801 5.291
BIC 3.144 3.051 5.541

Tabela 5.8: IPC information criteria of the unrestricted and the restricted
models.

5.3
Case III: GNP benchmarking estimation and prediction

5.3.1
Motivation

I close the applications of this Thesis by facing GNP quarterly prediction.

Here is the setting. There are two series, a quarterly series of GNP which is

subject to measurement error and an annual total series of the same economic

variable that is \accurately" recorded. The goal is to produce a quarterly GNP
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Figura 5.9: IPC long run pass-through.

free from those measurement errors, and this is supposed to be accomplished

by conveniently using the information from the annual totals. This is in fact a

benchmarking problem and its general formulation was examined in a rather

comprehensive state space fashion by Durbin and Quenneville (1997). Later,

Durbin and Koopman (2001), ch.3, quickly revisited the corresponding state

space forms.

5.3.2
Model setup

Here the focus is to make predictions under this benchmarking frame-

work, which shall generate quarterly predictions from the GNP free from mea-

surement error and under consistency (that is, the estimated quarterly GNP

must sum up to the annual totals GNP). For this purpose, I use the restricted

Kalman predictor of section 4.3 with an alternative state space form that

evinces the consistency restriction. This representation is an augmented state

space model, the augmentations of which only appear in time periods multiple

of 4 (four): that is, in these time periods the information from the annually

totals GNP is attached to the measurement equation (this is making use of

the time- and size-varying °exibility of the augmenting restricted Kalman fll-

tering!). In this sense, the measurements would be Yt if we \are not" in 4i, and

would be (Yt; Xt)
′ if we \are" in 4i, where Yt represents some quarterly GNP,

Xt represents some totally GNP of some year and i = 1; 2; ::: . The state vec-

tor would be fit ≡ („t; „t−1; „t−2; „t−3; °t; °t−1; °t−2; °t−3; "t; "t−1; "t−2; "t−3; »t)
′,

where „t is a local level, °t is a dummy seasonal efiect, "t is a Gaussian white
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noise irregular component and »t represents the AR(1) measurement error. In

addition, one must set Ht ≡ 0, dt ≡ 0 and ct ≡ 0. Finally, check below the Zt

matrices for this alternative restricted state space form:

Zt =





[
1 0 0 0 1 0 0 0 1 0 0 0 1

]
; if t 6= 4i; i = 1; 2; : : :

[
1 0 0 0 1 0 0 0 1 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 0

]
; if t = 4i; i = 1; 2; : : :

The matrices Tt ≡ T , Rt ≡ R and Qt ≡ Q are obvious and are omitted to save

space. Observe that the speciflcation is purely based on the structural modeling

framework (see Harvey, 1989, chapter 2) for the quarterly GNP series. Also see

that the theoretical consistency correction acts in the time indexes multiple of

four. From Theorem 1 and from the computational algorithm described in the

end of section 4.3, the empirical consistency correction is achieved in-sample

and out-of-sample periods (the latter would be the prediction) whenever the

Kalman updating and smoothing equations actuate on a series extended in the

way proposed in 4-14 (notice that qt = Xt for every t multiple of 4).

5.3.3
Empirical results

To illustrate the proposed benchmarking prediction model, I applied

it to the Brazilian GNP series constructed by the methodology proposed in

Cerqueira et al. (2007). The very original series had been obtained from IBGE

(www.ibge.gov.br) and IPEADATA (www.ipeadata.gov.br). I estimated the

model with 140 observations ranging from the flrst quarter of 1960 to the fourth

quarter of 1994, a 21.7-second task. In the sequel, I used the restricted Kalman

predictor to the next two years using the annual totals of 1995 and 1996 to get

the consistency restrictions satisfled. Table 5.9 presents the prediction results.

The reader can easily conflrm that the predicted quarterly GNP is consistent

with the annual totals.

Tabela 5.9: Results of the benchmarking prediction.

Year/Quarter 1st 2nd 3rd 4th Annual total
1995 1,066 1,153 1,129 1,096 4,444
1996 1,030 1,165 1,167 1,139 4,502



6
Further extensions

At the end of this Thesis, I list some additional points in my research

about restricted Kalman flltering. Some of them are already under investiga-

tion.

Firstly, I cite additional theoretical points that sound interesting within

the theme. Here they are:

{ A study about state observability and parameters identiflcation, which

are two important issues to flrmly establish the inferential grounds for

state space models under linear restrictions.

{ A formal investigation about possible connections between the results in

Simon and Chia (2002) and the new proofs of restricted Kalman flltering

presented in this Thesis.

{ Analytical and/or Monte Carlo formal investigations into how the pre-

sumed additional information due to the use of the augmented restricted

Kalman flltering translates to improvements for (quasi) maximum like-

lihood estimators.

{ Derivation of results about combining difiuse initialization and linear

restrictions under the approach by de Jong and Chun-Chun-Lin (2003),

and, consequently, the analysis of how the new assumptions needed are

more or less stringent than those considered in section 3.4.

Now, I concentrate on additional methods, so far not explored:

{ Implementation of an extended restricted Kalman flltering in order to

accomplish not only nonlinear equality constraints but also inequality

constraints. In this respect, speciflc topics of interest would be the

investigation of convergence of this extended approach and how this

should be combined with quasi maximum likelihood estimation for the

flxed parameters.

{ Derivation of new tests for coe–cients stability under linear restrictions,

to which the material from section 3.3 could be of some value.
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Lastly, I believe the following applications would be relevant to further

illustrate and value already developed methodologies.

{ Estimation of dynamic factor model with an exact smoothing transition

coe–cients under the same linear and interpretable portfolio restriction

and also under some linear restriction about leverage/hedge.

{ Formulation and estimation of multivariate benchmarking models aimed

at prediction.
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