Download PDF
ads:
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
DEPARTAMENTO DE BIOQUÍMICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS -
BIOQUÍMICA
CONSUMO DE DIETA HIPERPALATÁVEL, ALTERAÇÕES METABÓLICAS E
COMPORTAMENTAIS: UM MODELO DE OBESIDADE EM RATOS E SUAS
CONSEQUÊNCIAS
CAROLINA GUERINI DE SOUZA
Orientador :
Marcos Luiz Santos Perry
Co-orientador :
Luis Valmor Cruz Portela
Dissertação apresentada ao curso de Pós-Graduação em Ciências Biológicas-
Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS) como pré-
requisito parcial para obtenção do título de mestre em Bioquímica
Porto Alegre
2007
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
II
“Tudo posso Naquele que me fortalece”
Filipenses 4:13
ads:
III
AGRADECIMENTOS
Inicialmente agradeço a Deus pela sua bondade em me conceder as oportunidades
recebidas até hoje e pelas mesmas fazerem de mim uma pessoa privilegiada.
Ao professor Perry, que me deu a oportunidade de ser sua aluna mesmo ainda
quando pouco me conhecia; por todo conhecimento transmitido diariamente e pela
sabedoria de ensinar não só bioquímica, mas sobre todas as demais ciências que a
comem. Pela ajuda nos momentos de dúvidas e ignorância e por ser um verdadeiro
mestre.
Ao Roska, meu maior incentivador, que me fez não desistir das coisas que
acreditava, contribuindo científica e humanamente em minha formação e que muito mais
do que um co-orientador, tornou-se um grande amigo.
Ao professor Diogo, que me abriu as portas do departamento de bioquímica e que
me acolheu em seu grupo, de maneira especial e única.
À Júlia, amiga querida e parceira de bons e maus momentos. Pela amizade sincera e
parceria profissional diárias.
À Ana Elisa, que desde a iniciação científica contribuiu não só com sua amizade,
mas com sua inteligência e solicitude em ajudar, fundamentais para minha formação.
Ao Jean, Giordano e Alexandre, pessoas com as quais aprendi muito e que foram
fundamentais para construção deste trabalho.
À Andréa, bolsista de iniciação científica, por todo apoio e boa vontade em
trabalhar comigo.
À minha irmã Débora, que tanto cienfica quanto emocionalmente, teve uma
participação importante em minha formão.
Aos amigos do lab 27 Adriano, Daniel, Cíntia, Suli, Dé e Betina, pela amizade,
pela convivência e pelo ambiente amivel que proporcionaram.
Aos amigos do lab 26 e 28, que me acolheram, me ouviram, me ajudaram e sempre
me trataram como parte de seu grupo.
Ao professor Sarkis, pelo material fornecido para trabalharmos e pela boa vontade
de colaborar tecnicamente.
IV
Aos meus queridos pais, Olcei e Ângela, pelo exemplo, pelo amor, pela educação,
por tudo que me deram e por tudo que tenho, pois sem eles nada seria possível.
Ao Pablo, meu amado, meu amigo, meu parceiro, pela paciência extrema, pelo
apoio incondicional e pela sua presença, que me torna meus dias muito melhores.
Ao departamento de bioquímica e funcionários, pelo ensino e pelo ambiente de
apoio em todas as intercorrências do mestrado.
Ao CNPq, pelo fornecimento da minha bolsa, que foi decisiva para que pudesse
haver dedicação à este trabalho.
V
SUMÁRIO
RESUMO ........................................................................................................................ VI
ABSTRACT ...................................................................................................................VII
LISTA DE ABREVIATURAS.......................................................................................VIII
1. INTRODUÇÃO ............................................................................................................. 1
1.1.Obesidade e dieta hiperpalatável .................................................................................. 1
1.2. Resistência à insulina e Diabete Mellitus tipo 2........................................................... 2
1.3. Doenças cardiovasculares............................................................................................ 4
1.4. Alimentos palatáveis, obesidade e comportamento ...................................................... 6
1.5. OBJETIVOS............................................................................................................... 8
1.5.1. Objetivo geral...........................................................................................................8
1.5.2. Objetivos espeficos................................................................................................ 8
2 – ARTIGOS.................................................................................................................... 9
2.1 – CAPÍTULO 1............................................................................................................ 9
2.2 – CAPÍTULO 2.......................................................................................................... 29
3. DISCUSSÃO............................................................................................................... 51
4. REFERÊNCIAS........................................................................................................... 57
VI
RESUMO
A obesidade é a maior síndrome do século XXI, alcançando proporções epimicas
em todo mundo. Muitas são as causas para o seu desenvolvimento, porém a mais
importante, provavelmente, é o consumo aumentado e a grande disponibilidade de
alimentos altamente palatáveis, ricos em açúcar e gordura. A obesidade e o consumo destes
alimentos são associados ao aparecimento de doenças como hipertensão, diabetes tipo 2 e
doenças cardiovasculares. A resistência à insulina, a diminuição dos níveis de adiponectina
e do óxido nítrico circulanteso fatores de riscos importantes para o surgimento de
doenças cardiovasculares. Além disso, a diminuição dos níveis séricos de adenosina
também está associada com o aparecimento de doenças cardiovasculares e que esta
diminuição pode ser influenciada por alguns fatores ambientais. A hidrólise dos
nucleotídeos da adenina, ATP, ADP e AMP, é uma das formas de manter os níveis de
adenosina circulantes e por isso a atividade das enzimas ectonucleotidases, que regulam
esta hidrólise, é importante para homeostase cardiovascular. Em face disto, tivemos por
objetivo verificar a atividade destas enzimas em um modelo de indução de obesidade por
meio de dieta hiperpalatável, além de verificar as demais alterações na composição corporal
e no metabolismo da glicose, dos lipídios séricos, nos níveis de insulina, adiponectina e de
óxidotrico, focando nos possíveis efeitos dessas alterações no sistema caridiovascular.
Nossos resultados indicaram que a obesidade induzida pela dieta promove um perfil de
alterações semelhante a diabete mellitus tipo 2, acompanhada de diminuão dos níveis de
óxido nítrico e de diminuão acentuada da atividade das ectonucleotidases, promovendo
um ambiente pró-aterogênico, mesmo sem alteração dos níveis de insulina e adiponectina.
Além das alterações no metabolismo, a obesidade e o consumo de alimentos altamente
palatáveis está associado com alterações cognitivas e comportamentais, como ansiedade,
depressão e memória. Sabe-se também que estes alimentos geram um padrão de adição nos
centros neurais, que pode estar relacionado com doenças psiquiátricas como transtornos de
humor e ansiedade, e muitos estudos populacionais mostram que o estresse oxidativo
também pode ser associado à estes transtornos. Em indivíduos intolerantes à glicose, a
hiperglicemia é a maior fonte de produção de radicais livres e em função disto, decidimos
testar nossos animais submetidos à dieta hiperpalatável para avaliar possíveis alterações
comportamentais e após os testes, medir o estresse oxidativo no córtex frontal e hipocampo
destes animais. Nossos resultados mostraram que os animais que receberam a dieta
hiperpalatável são mais ansiosos dos que receberam a dieta controle, pom sem alterações
de locomoção ou meria. Am disso, os mesmos apresentam maior dano oxidativo nas
proteínas dortex frontal, uma área muito ligada ao comportamento emocional de
ansiedade e medo, mas sem alterações no hipocampo. Em função do exposto, propomos
que além de promover alterações no metabolismo da glicose e aumentar o risco de doenças
cardiovasculares, a obesidade promovida pelo consumo de uma dieta hiperpalatável
aumenta a ansiedade e a oxidação de proteínas no córtex frontal, afetando também o
sistema nervoso central e o comportamento emocional.
VII
ABSTRACT
Obesity is the major syndrome of 21st century, reaching epidemic proportions
worldwide. There are many causes for obesity but the most important is probably the
overeating and the ready availability of food rich in fat and sugar. Obesity and the
consumption of this type of food are associated to hypertension, type 2 diabetes and
cardiovascular diseases as consequences. Insulin resistance, decreased adiponectin levels
and nitric oxide circulating are strong risk factors to development of cardiovascular
diseases. Besides, decreased of serum adenosine levels are also associated to cardiovascular
diseases and those leveles can be affected by environmental factors. Adenine nucleotides
hydrolysis ATP, ADP and AMP is one way to keep the circulating adenosine levels by
ectonucleotidases activity, which regulates this hydrolysis. For that reason, this enzymes
activity is important for cardiovascular homeostases. Based on this, the aim of our study
was to verify the ectonucleotidases activity in a model of obesity induction through a
highly palatable diet consumption. We also intent to verify another alterations in body
composition, glucose metabolism, serum lipids, insulin, adiponectin and nitric oxide levels,
focusing in possible effects of these alterations in cardiovascular system. Our results
showed that obesity induced by this diet provokes alterations type 2 diabetes like, reduced
levels of nitric oxide and accentuated decreased of ectonucleotidases activity, promoting a
vascular pro-atherogenic environment, even without alterations in insulin and adiponectin
levels. Besides metabolic alterations, obesity and the consumption of palatable foods are
associated to cognition and behavioral alterations as anxiety, depression and memory
capacity. Is well known that in brain circuits palatable foods promote an addiction profile,
which may be related to psychiatry disorders like mood and anxiety. Populational studies
showed that oxidative stress also can be associated to these alterations. As glucose
intolerace is the main source of free radicals production in glucose intolerant individuals,
we decided to test our animals submitted to a highly palatable diet to search for possible
behavioral alterations. After behavioral tests, we decided to measure oxidative stress in
frontal cortex and hippocampus of the same animals. This other part of our results showed
that the animals submitted to a highly palatable diet are more anxious than the animals
submitted to a standard diet, but there were no alterations in locomotion and memory
capacity. The same animals also presented higher oxidative protein damage in frontal
cortex, an important brain structure involved in behavioral regulation and is part of several
well-defined anxiety and fear-related circuits in the forebrain, however no alterations was
observed in the hippocampus. Therefore, we propose that beyond alterations in glucose
metabolism and increasing cardiovascular diseases risk, obesity induced by consumption of
a highly palatable diet increases anxiety and frontal cortex protein oxidation, also affecting
central nervous system and emotional behavioral.
VIII
LISTA DE ABREVIATURAS
ATP – adenosina trifosfato
ADP – adenosina difosfato
AMP – adenosina monofosfato
TAG – triacilglicerol
NO – óxido nítrico
RL – radicais livres
SM – Síndrome Metabólica
DM2 – Diabete Mellitus tipo 2
ENOSóxido nítrico sintase endotelial
IRS1- substrato receptor de insulina 1
1
1. INTRODUÇÃO
1.1.Obesidade e dieta hiperpalatável
A obesidade pode ser considerada uma das principais síndromes do século XXI,
estando envolvida na etiologia de uma série de doenças como resistência à insulina,
diabetes, hipertensão e cardiopatias (Unger and Orci, 2001; Dube et al, 2005). Durante o
século XX uma mudança nos padrões de disponibilidade de calorias tomou conta de países
ocidentais. Contribuem para isso, os avanços tecnológicos do mundo moderno, que
tornaram o estilo de vida sedentário, e o maior acesso aos alimentos, que possibilita uma
maior ingestão calórica diária. Freentemente, muitos desses alimentos não são os mais
nutritivos e saudáveis, mas sim, os mais palatáveis” e baratos (Chakravarthy and Booth,
2004). Embora o alto consumo de uma dieta rica em lipídios, carboidratos simples e a
diminuição da atividade física seja facilmente capaz de induzir a obesidade, fatores
genéticos também precisam ser levados em conta, mesmo não justificando os níveis
epimicos de obesos na população mundial (Froguel et al., 2000; Saper et al., 2002).
Os alimentos hiperpalatáveis são capazes de estimular o consumo alimentar e
promover mudanças no metabolismo por alterarem a razão fisiológica entre moléculas
orexígenas/ anorexígenas, muitas das quais estão relacionadas com a utilização da glicose, a
oxidação dos ácidos graxos, o gasto energético, além do próprio mecanismo de saciedade
em si, as quais são bases da obesidade e de patologias relacionadas (Erlanson-Albertsson,
2005). Como os mecanismos de homeostasia que tentam controlar as conseqüências da
“superalimentação” foram incapazes de compensá-la, em função do aumento crônico no
2
balanço calórico, as doenças relacionadas à superalimentação tornaram-se incrivelmente
prevalentes (Neel, 1999).
Em indivíduos obesos alterações como intolerância à glicose, resistência periférica à
insulina, hipertensão, dislipidemias e aterosclerose estão freqüentemente presentes como
comorbidades (Takahashi et al., 2007; Wassink et al., 2007). O conjunto destes fatores é
denominado Síndrome Metabólica (SM) e na maior parte dos casos, esta evolui para o
Diabete Mellitus tipo 2 ou para doença cardiovascular ou, em alguns casos para ambos
(Naderali et al., 2004). Portanto, o tipo de dieta pode ser considerado um fator determinante
para a formação do percentual de gordura bem como para o aparecimento ou a prevenção
das patologias associadas à obesidade (Cnop et al., 2003).
1.2. Resistência à insulina e Diabete Mellitus tipo 2
O aumento de gordura corporal, especialmente da gordura visceral, promove o
aumento de ácidos graxos livres e acúmulo dos mesmos em tecidos que não sejam o
adiposo, como fígado, músculo esquelético e até mesmo nos vasos sangüíneos (Arner et al.,
2005; Yudkin et al., 2005). Ao acúmulo de ácidos graxos livres em tecidos não adiposos foi
atribuído o termo de lipotoxicidade e acredita-se que esta é a causa em comum das
complicações da obesidade, resistência à insulina, diabetes tipo 2 e doenças
cardiovasculares (Unger and Orci, 2001). Esses ácidos graxos acumulados inibem o
metabolismo de carboidratos nestes tecidos via competição de substrato e assim
impossibilitam as ações fisiológicas da insulina, causando resistência periférica à mesma,
promovendo hiperglicemia (Yudkin et al., 2005). À hiperglicemia promovida e à suas
conseqüências foi dado o nome de glicotoxicidade, caracterizadas pela alta capacidade de
3
produção de radicais livres e alteração na estrutura e função de proteínas, lipídios, citocinas
e até mesmo do DNA daslulas lesadas, sendo as células endoteliais dos capilares , as da
retina, dos glomérulos renais e dos nervos periféricos as mais suscetíveis à lesões
(Brownlee, 2005). O quadro de resistência periférica à insulina, por glicotoxicidade e/ou
lipotoxicidade, acrescido da diminuição da secreção pancreática deste hormônio caracteriza
a instalação da diabete mellitus tipo 2 (DM2) (Mc Garry, 2002). O DM2 tem por
conseqüências hipertensão, dislipidemias, esteatose hepática, complicações
cardiovasculares e ateroscleróticas, retinopatia, nefropatia, neuropatia periférica e até
mesmo desordens psiquiátricas (Pinhas-Hamiel and Zeitler, 2007).
O aumento do tecido adiposo é um fator determinante para todas estas alterações
pois além de desregular o metabolismo da glicose e dos ácidos graxos por meio da
lipotoxicidade e da glicotoxicidade, gerando resistência à insulina, ainda promove
alterações nas citocinas secretadas pelo mesmo. O tecido adiposo não é mais visto
atualmente somente por sua função energética, mas sim como um órgão ativo em secreções
que regulam desde à sensibilidade à insulina até o controle do peso corporal, saciedade e
resposta inflamatória (Prins, 2002). Dentre as citocinas secretadas por este tecido, as mais
relacionadas com a síndrome metabólica e com o DM2 são a adiponectina e a leptina, por
exercerem ações pró-insulina e também por aumentarem a oxidação de lipídios (Park et al.,
2003; Gil-Campos et al., 2004). Os níveis de adiponectina tem sido utilizados atualmente
como preditores da síndrome metabólica e de doenças cardiovasculares, em função de seu
papel antiaterogênico, protetor do sistema cardiovascular e por estarem diminuídos com o
aumento da gordura corporal (Rothenbacher et al., 2005).
4
Além de levar ao acúmulo de lipídios no fígado e no músculo, a inabilidade da
insulina também está associada à diminuição de uma vasodilatação-dependente do
endotélio vascular, em resposta a vários vasodilatadores afetados pela obesidade, inclusive
a própria insulina. A diminuição desta resposta é um dos fatores que viabiliza disfunções
endoteliais em indivíduos insulino-resistentes ou diabéticos (Yudkin et al., 2005).
1.3. Doenças cardiovasculares
Embora os estudos tenham mostrado que as causas clássicas para doenças
cardiovasculares (tabagismo, hipertensão e dislipidemia) tenham diminuído nos últimos 25
anos, o aumento da obesidade, do DM2 e da resistência à insulina manteve a prevalência
destas doenças aumentada como antes (Smith, 2007). A aterosclerose é a causa de morte de
¾ dos pacientes que vão à óbito por doenças cardiovasculares (Cheng, 2005).
Os mecanismos fisiopatológicos que aumentam o risco de doenças cardiovasculares
em indivíduos obesos e com resistência à insulina são a hipertensão, os estados pró-
inflamatório e pró-trombótico, dislipidemias, além da hiperglicemia, que gera metabólitos
pró-oxidantes (Rader, 2007). Estes fatores associados promovem disfunção endotelial, seja
por maior resposta inflamatória, agregação plaquetária, oxidação de LDL, vasoconstrição
ou todos juntos.
A resistência à insulina afeta também o endotélio vascular por diminuir a produção
de óxidotrico, que atua como vasodilatador engeno. A ativação da enzima óxido
trico sintase (e-NOS) ocorre por meio da ativação da cascata insulínica e em resposta à
mesma, ocorre diminuição dos níveis de endotelina, que atua como vasoconstrictor (Yudkin
et al., 2005). O aumento na ingestão calórica também afeta esse sistema, uma vez que em
5
situações de ingestão excessiva de calorias é formado um depósito de gordura local nos
vasos sangüíneos, com funções vasoregulatórias específicas, secretando citocinas e
regulando as funções deste endotélio, desde atividade enzimática até a transdução de sinais
(Mazurek et al., 2003).
Recentemente a diminuão dosveis de adenosina vem sendo muito associada à
um maior risco de doenças cardiovasculares, principalmente por desempenhar um efeito
vasodilatador e de melhora do fluxo sangüíneo durante situações de hixia (Berne, 1963).
Além disso, ela inibe a agregação plaquetária, a proliferação de células musculares lisas e a
adesão de neutrófilos ao endotélio vascular, sendo todos estes fatores associados a
fisiopatologia de doenças cardiovasculares (Mubgawa et al., 1996; Ralevick and Burnstock,
2003). Sua liberação na corrente sangüínea pode ocorrer por secreção celular ou pela
degradação dos nucleotídeos da adenina extracelulares ATP, ADP E AMP (Latini e Pedata,
2001). Esses nucleotídeos podem ser degradados por nucleotidases, que estão localizadas
em superfícies celulares e solúveis nos meios extracelulares, sendo o endotélio vascular um
de seus principais sítios de localização (Sarkis et al., 1995; Zimmermann et al., 2001).
Alguns fatores ambientais podem diminuir a atividade destas enzimas, como o uso de
imunosupressores e a hiperhomocisteinemia, fatores estes independentes para doenças
cardiovasculares (Chen et al., 2002; Koymada et al., 1996). Em função disto, tem-se
postulado que controle das atividades dessas nucleotidases são importantes para impedir
processos de formação de trombos vasculares pela formação e manutenção do equilíbrio
dos níveis da adenosina, mantendo sua homestase no sistema vascular.
6
1.4. Alimentos palatáveis, obesidade e comportamento
A obesidade pelo consumo de alimentos palatáveis, tem sido investigada não só por
suas alterações metabólicas, mas também por alterações comportamentais apresentadas por
indivíduos acima do peso. Estudos experimentais têm focado suas investigações em
mecanismos moleculares e alterações comportamentais específicas por consumo de dietas
ricas em açúcar e gordura, promovendo alterações nas células neuronais (Molteni et al,
2002, 2004).
A obesidade por consumo de alimentos altamente palatáveis está associada com
mecanismos de recompensa, promovendo uma resposta de adaptação e gerando padrões de
adição nos centros neurais estimulados por ela (Colantuani et al., 2002; Erlanson-
Albertsson, 2005). Estudos populacionais com pacientes sobrepreso e obesos mostraram
que existe uma prevalência maior de doenças psiquiátricas dentre estes, especialmente
ansiedade, depressão e transtornos de humor (Chakravarthy et al., 2004, Simon GE, 2006;
Becker et al., 2001; Teegarden and Bale, 2007).
A ansiedade é uma das desordens psiquiátricas mais prevalentes atualmente
(Gingrich,2005) e recentemente foi associada ao stress oxidativo, por meio de estudos que
mostraram que genes envolvidos na produção de RL e nas defesas antioxidantes poderiam
modular para mais ou para menos o nível de ansiedade em modelos animais, dependendo
do maior ou menor nível de estresse gerado (Hovatta et al., 2005; Berry et al., 2007).
A hiperglicemia presente na obesidade, na resistência à insulina e do DM2 é
responsável por altos níveis de stress oxidativo nestas situações, uma vez que causa
bloqueio da cadeia transportadora de elétrons, gerando elevados níveis de espécies reativas
7
de nitrogênio e oxinio (Nishikawa et al., 2000; Brownlee, 2005). Entretanto as razões
pelas quais as desordens psiquiátricas tem prevalência aumentada na obesidade e podem
ocorrer em conseqüência do DM2 ainda são desconhecidas.
8
1.5. OBJETIVOS
1.5.1. Objetivo geral
Em função das evidências atuais sobre o consumo de alimentos hiperpalatáveis e a
obesidade por eles desencadeada, procuramos :
avaliar os efeitos de ambos sobre o metabolismo intermediário, especificamente em
relação aos fatores de risco para doenças cardiovasculares;
verificar a ação destes alimentos e da obesidade gerada em aspectos
comportamentais e parâmetros bioquímicos associados ao estresse oxidativo.
1.5.2. Objetivos específicos
Avaliar a massa adiposa, tolerância à glicose, perfil lipídico, resistência à insulina,
níveis de insulina, de adiponectina e de óxidotrico em soro de ratos submetidos à
dieta hiperpalatável;
Avaliar a atividade das ectonucleotidases por meio da hidrólise de nucleotídeos da
adenina;
Avaliar o comportamento de ansiedade, locomoção, aprendizado e memória de ratos
submetidos à dieta hiperpalatável;
Investigar a existência de stress oxidativo em estruturas do sistema nervoso central
de ratos submetidos à dieta hiperpalatável.
9
2 – ARTIGOS
2.1 – CAPÍTULO 1
EFFECTS OF A HIGHLY PALATABLE DIET ON LIPIDIC METABOLIC
PARAMETERS, ADIPONECTIN LEVELS AND ADENINE NUCLEOTIDES
HYDROLISYS
Em processo de finalização para ser submetido ao Journal of Nutritional Biochemistry
10
Effects of a highly palatable diet on lipidic metabolic parameters, adiponectin levels
and adenine nucleotides hydrolisys.
Carolina Guerini de Souza
a
*, Ana Elisa Böhmer
a
, Jean Pierre Oses
a
, Giordanobert
Viola
a
, Alexandre Pastoris Müller
a
, Débora Guerini de Souza
a
, Daniel Neumann
Lesczinski
a
, Luis Valmor Portela
a
, Marcos Luiz Santos Perry
a
a
Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul – UFRGS
* Corresponding author:
Carolina Guerini de Souza
Departamento de Bioquímica, ICBS
Rua Ramiro Barcelos, 2600 anexo
CEP 90035003
Porto Alegre, RS, Brazil
Phone: 55 51 33085551
Fax: 55 51 33085560
Email: carolguerini@hotmail.com
11
Abstract
Obesity reached epidemic proportion worlwide and is stimulated by the ready
availability of food rich in fat and sugar (highly palatable diet), increasing the risks of
obesity-associated pathologies. Adiponectin, an adipocitokine, is inversily proportional to
body mass index and its serum levels are decreased in obesity and in cardiac patients, as the
same way nitric oxide levels are decreased in these two situations. ATP, ADP,AMP and
adenosine are molecules also linked to cardiovascular health and can be regulated by
soluble and cell surface located ectonucleotidases. Alterations in the phisiologic hydrolysis
of these nucleotides are related to cardiovascular complications. The aim of this study is
evaluate the effects of a highly palatable diet, as a model of obesity induction, in metabolic
parameteres, adiponectin levels and ectonucleotidases activity. Twenty male Wistar rats
received two diferent diets during four months: standard chow (SC) and highly palatable
(HP). Body weight, body fat mass, glucose intolerance, total cholesterol, HDL cholesterol,
serum triacylglycerol (TAG), liver triacylglycerol and free glycerol were higher in HP
group (p<0.05 and p <0.01), although insulin and adiponectin levels were not different
between groups. However, nitric oxide had a trend to be lower in the HP group (p=0.06)
and the hydrolysis of ATP, ADP and AMP were significantly lower in this same group
(p<0.05 and p <0.01). In conclusion, the consumption of a highly palatable promotes subtle
metabolic alterations involving cardiovascular system homeostasis and increasing the risk
of cardiovascular diseases even when conventional diagnosis markers as insulin and
adiponectin are not altered yet.
Key words : Highly Palatable Diet / Obesity / Adiponectin / Type 2 diabetes / Nucleotide
Hydrolysis / Ectonucleotidases / Cardiovascular Disease
12
Introduction
Obesity can be considered the major syndrome of 21st century and is envolved in
the etiology of several diseases as insulin resistance, hypertension, cardiovascular diseases
and type 2 diabetes [1,2]. The most important cause of obesity is probably over-eating
(coupled with inactivity) which is stimulated by the ready availability of food rich in fat
and sugar [3]. The consumption of palatable foods (highly palatable diet) is capable to
induce these metabolic alterations, being a decisive factor to increase adipose tissue as well
as to developing of obesity-associated pathologies [4,5].
Adipose tissue secretes bioactive peptides, termed 'adipokines', which act locally
and distally through autocrine, paracrine and endocrine effects [6]. Adiponectin, one of
these citokines, is a 244 amino-acid protein synthesized and secreted exclusively by
adipose tissue, displaying major insulin-sensitizing properties in skeletal muscle, liver and
adipose tissue, antiatherogeinc effects and stimulates nitric oxide production in vascular
endothelial cells, promoting vasodilatation [7,8]. Circulating adiponectin levels
concentrations are inversely correlated with body fat mass and these levels are
predominantly determined by visceral fat [9]. Obesity and insulin resistance negatively
correlates with adiponectin concentration but decreased adiponectin was originarally
described in patients with cardiovascular disease and for that reason changes in vascular
system could be attributed to changes in circulating adiponectin concentration [8].
In vascular system extracellular adenine nucleotides ATP, ADP, AMP and its
nucleoside adenosine have several biological roles [10]. Serum ATP can act as a
vasolidatator or a vasoconstrictor, depending of its concentration in blood flow. Besides,
13
this nucleotide is substrate for ADP and AMP formation, which are platelet aggregants, and
both can be hydrolised to adenosine, a pontent vasodilatator. In the extracellular space these
nucleotides can be hydrolyzed by soluble and cell surface located ectonucleotidases.Thus, it
has been postulated that the activity of these enzymes is essential for the maintenance of
ATP/ADP/AMP/adenosine appropriate levels contributing to vascular homeostasis [11,12].
Exploring the effects of a highly palatable diet in metabolism and vascular system,
the aim of this study is to verify the effects of this diet in metabolic parameters, adiponectin
levels, ectonucleotidases activity and a possible conection between adiponectin levels and
ectonucleotidases activity, acting together as regulators of vascular system.
Matherials and Methods
Animals and Diets
Twenty 60-day old male Wistar rats weighting from 210 to 230 g were
obtained from the Central Animal House of UFGRS Biochemistry Department, Federal
University of Rio Grande do Sul, Brazil. They were maintained under a standard dark-light
cycle (lights on between 7:00 a.m. and 7:00 p.m.), at a room temperature of 22 + 2°C.
Animal care followed the official governmental guidelines in compliance with the
Federation of Brazilian Societies for Experimental Biology and was approved by the Ethics
Committee of the Federal University of Rio Grande do Sul, Brazil.
Rats were divided into two groups: (1) the control group (SC, n=10), which received
standard laboratory rat chow (65 % carbohydrate totally from starch, 25 % protein and 10%
fat); and (2) the highly palatable diet group (HP, n=10), which received a enriched sucrose
14
diet (65 % carbohydrates being 34 % in condensed milk, 23% from starch and 8 % from
sucrose, 25 % protein, 10 % fat). All animals had free access to food and water. After four
months of diet, they were killed by decaptation and analyses were performed.
Glucose tolerance test
Glucose tolerance test was performed one week before the animals were sacrificed
in each time. A 50 % glucose solution was injected into the animals (i.p, 2 mg/g) after 6h of
starvation [13]. The blood was collected by a small puncture on tail immediately before and
30, 60, and 120 minutes after the injection. At each time, glucose was measured by a
glucosimeter (AccuChek Active, Roche Diagnostics
®
, USA).
Blood and Tissue preparation
Animals were anesthetized by sodium tiopenthal (40 mg/Kg) and blood samples
were collected by cardiac punction. Visceral and epididimal fat pads (which we will present
as fat mass) were dissected and weighted. The blood was imediatelly collected and
centrifuged at 5000 g by 10 minutes to obtain serum.
Metabolic parameters and nitric oxide determination
Serum metabolic parameters such as total cholesterol, LDL-cholesterol, HDL
cholesterol and triacilglycerol (TAG) were measured by commercial kits (Roche
Diagnostics, Indianapolis, USA). Serum glycerol was used as a marker of lipolysis by
15
indirect determination of free fatty acids and was measured with Free Glycerol Reagent Kit
from Sigma Chemical Co. (St. Louis, MO, USA).
Hepatic TAG, a marker of insulin resistance, was measure using a 100 mg liver
sample, homogenized in 1:20 saline solution (0.9%) and the assay was performed with an
aliquot of this mixture, by commercial kits (Roche Diagnostics, Indianapolis, USA). Nitric
oxide was determined with Greiss reagent, as described by Miranda et al., 2001 [14].
Measurement of ATP and ADP hydrolysis
ATP and ADP hydrolysis were evaluated using the method described by Oses et
al.(2004) [15]. The reaction mixture containing 3.0mM ATP or ADP as substrate, 1.0-1.5
mg serum protein and 112.5 mM Tris-HCl, pH 8.0, was incubated at 37ºC for 40 minutes in
a final volume of 2.0 mL. The reaction was stopped by the addition of 0.2 mL of 10%
TCA. All samples were centrifiged at 5000 g for 5 min and the supernatant was used for
measuring the amount of inorganic phosphate (Pi) released through a colorimetric assay
[16]. Incubation time and protein concentrations were chosen to ensure the linearity of the
reaction (results not shown). In order to correct non-enzymatic hydrolisys, we performed
controls by adding serum after TCA. All samples were assayed in duplicate. Enzyme
activities were expressed as nmol of Pi released per minute per miligram of protein.
Measurement of AMP hydrolysis
To evaluate the AMP hydrolysis we used a reaction mixture containing 3.0 mM
AMP in 100 mM Tris-HCl, pH 7.5, incubated with 1.0-1.5 mg of serum protein at 37ºC in a
16
final volume of 0.2 mL. All other procedures were the same as described above of ATP and
ADP hydrolysis.
Measurement of insulin and adiponectin levels
Serum insulin levels were measured by RIA (BioChem ImmunoSystems, Roma,
Italy) and adiponectin was measure by Elisa kit (Linco Research, St Charles, MO, USA).
Protein determination
Protein was measured by the Comassie Blue method using bovine albumin as
standard [17].
Statistical analysis
Data were analyzed using SPSS 10.0 software, with Student’s T test for independent
samples to parametric variables. Results are expressed as mean ± standard deviation.
Results
At the end of treatment, final body weight was different between SC and HP groups
(p<0.01, Figure 1A) and the same is observed in the fat mass (p<0.01, Figure 1B), which
were almost two fold higher in HP group. As we can observe in figure 1A and 1B, the gain
of body weight related to fat mass was higher in HP group than in SC group (fat mass to
body weight ratio : 0.04 in SC group ; 0.06 in HP group).
17
The glucose tolerance was lower in HP group and the higher glucose levels were
found at 30 and 60 minutes after the injection (p<0.01, Figure 1C), compared to SC
group.The glucose tolerance test was different between groups starting from 30 minutes
after the glucose injection until the end of the test (120 minutes after), once HP group
glucose levels remain statistically different from fasting glucose levels while SC group was
not different (p<0.05, Figure 1C).
Both total cholesterol and HDL cholesterol of HP group were different between
groups, being higher in HP group (p<0.05, Table 1). The serum TAG levels were two fold
higher in HP group (p<0.05, Table 1) and the same was observed in the liver TAG content
of this group (p<0.01, table1) and the free glycerol (p<0.01, Table 1). Altough glucose
tolerance was altered in HP group, serum insulin and adiponectin levels were not different
between the groups (Table 1). Nitric oxide was not statistically different between groups at
four months of diet, although there is a trend to be higher in SC group (p=0.07, Figure 2A).
The hydrolisys of adenine nucleotides was significantly lower in HP group. In HP
group ATP hydrolisys was 33% lower (p<0.01, figure 2B), ADP hydrolysis was 49% lower
(p<0.01, figure 2C) and AMP hydrolysis was 23 % lower (p<0.05, figure 2D) when
compared to SC group .
Discussion
The consumption of a highly palatable diet enriched with sucrose for four
months was able to alter body composition, promoting gain of weight and fat more
vigorously than a standard diet. As the same way, total cholesterol, HDL cholesterol, serum
TAG, hepatic TAG and free glycerol reached elevated levels on the animals of HP group.
18
The sucrose consumption also caused severe glucose intolerance, once animals submitted to
the diet had higher glucose plasmatic levels than control group, even 120 minutes after the
i.p. glucose injection, which leads to type 2 diabetes instalation, even without changes in
insulin and adiponectin levels between groups until this point. Associated to that, adenine
nucleotides hydrolisys was decreased in HP group, since the diet considerably lowered
ectonucleotidases activity. The trend to decrease nitric oxide levels in this same group
corroborates with the diet’s effect on ectonucleotidases activity.
Obesity, glucose intolerance and dyslipidemia are the most commom features of
metabolic syndrome, a complex of alterations that frequently leads to type 2 diabetes and/or
cardiovascular diseases [18,19] and is well know that consumption of diets enriched with
fat, sucrose or both is positively associated to the development of this syndrome [20,3],
although the most used models to induction of obesity and type 2 diabetes are high fat
diets. The increase of body fat mass, caused by these diets, also leads to alterations in
adipose tissue functions, including dysregulation of fatty acids metabolism, insulin
resistance and changes in adipocitokines secretion [21,22]. In our study, we used high
amounts of sugar, changing standard carbohydrate composition, without changes in dietary
fat content. Animals feeded with the highly palatable diet developed alterations on body
composition, glucose tolerance, lipid profile and fatty acids utilization, as the same way that
occurs in high fat diets, but without differences in insulin and adiponectin levels. However,
elevated hepatic TAG and free glycerol are indirect markers of insulin resistance, once
these elevations occur by impaired ability of insulin
to suppress endogenous glucose
production and fatty acid oxidation on liver and defect in insulin suppression of lipolysis at
19
the level of adipocyte [23,24]. Therefore, insulin resistance already exists even without
changes in serum insulin levels, as we can observe in our results.
Besides alterations in fatty acids metabolism and insulin actions, the increase of
body fat mass are related with changes in adiponectin secretion [25,26]. Adiponectin, an
adipocitokine, is the most abundant gene product in adipose tissue and exerts pro-insulin
actions in muscle and liver, antiaterogenic and antiinflamatory functions in vascular
endotelium and stimulate nitric oxide production and secretion [7,27,28]. Although obesity
decreases serum adiponectin levels, we could not observed that in the animals of HP group,
even they became obese. Our data corroborates with Barnea et al. (2006)[29] which also
did not find alterations in serum adiponectin levels in a model of diet-induced obesity and
insulin resistance in mice, although adiponectin and adiponectin receptors mRNA was
decreased in muscle and liver. However, this work showed in the same animals that they
had insulin sensitivity accompanied by impaired activity of adiponectin-related enzymes.
For this reason, we propose with our results that metabolic alterations maybe starts before
adiponectin levels decreases, as the same way occured with insulin parameters. We can
reinforce that with the lower nitric oxide levels in HP group, one of the most expressive
endogenous vasodilatator, which should follow adiponectin levels, once is stimulated by it,
and that did not occur.
The lower activity of ectonucleotidades is another evidence that changes in
metabolism may starts earlier than the most known alterations, based in the decreased
hydrolysis of adenine nucleotides in the HP group. On vascular system, ATP and their
metabolites (includind ADP, AMP and adenosine) are involved in the control of several
biologic processes and these molecules function on blood vessels, as vasoconstrictors or
20
vasodilatators, is well know [10]. The ectonucleotidases exerts an essential role in blood
flow regulation and in trombogenesis, by converting ATP, ADP and AMP, which stimulate
vasoconstriction and platelets agregation, in adenosine, which exert the opposite functions
[11,12]. Therefore, the homeostasis of ectonucletidases activity is important to avoid
vascular trombosis and atherogenic process through formation and maintenance of
adenosine levels [30,31].
Atherosclerosis is the cause of death of 80% of type 2 diabetic individuals as a
consequence of untreated hyperglicemia and its alterations in adipose tissue, inflamatory
response and vascular homeostasis [32,18]. Here we demonstrated that consumption of a
highly palatable diet leads to body fat mass increase, metabolic alterations and type 2
diabetes in association with lower ectonucleotidases activity, promoting an appropriate
environment to development of cardiovascular diseases, without changes in insulin and
adiponectin levels. We concluded that possibly cardiovascular disease, type 2 diabetes and
obesity complications have more subtle indicators and starts before most known markers
are altered, as conventional diagnosis.
21
Acknowledgments
This work was supported by grants from Brazilian agencies FAPERGS, CAPES,
CNPq and FINEP research grant "Rede Instituto Brasileiro de Neurociência (IBN-Net)"#
01.06.0842-00.
22
References
1- Unger RH, Orci L. Diseases of liporegulation : new perspective on obesity and related
disorders. Faseb J. 2001; 15: 312-21.
2- Dube N, Tremblay ML. Involvement of the small protein tyrosine phosphatases TC-PTP
and PTP1B in signal transduction and diseases: From diabetes, obesity to cell cycle, and
cancer. Biochim Biophys Acta 2005; in press.
3- Erlanson-Albertsson C. How palatable food disrupts appetite regulation. Basic Clin
Pharmacol Toxicol. 2005; 97(2): 61-73.
4- Dobbins RL, Szczepaniak LS, Myhill J, Tamura Y, Uchino H, Giacca A, McGarry JD.
The composition of dietary fat directly influences glucose-stimulated insulin secretion in
rats. Diabetes 2002; 51: 1825-33.
5- Holemans K, Caluwaerts S, Poston L, Van Assche FA. Diet-induced obesity in the rat: a
model for gestational diabetes mellitus. Am J Obstet Gynecol. 2004; 190(3):858-65
6- Ronti T, Lupatelli G, Mannarino E. The endocrine function of adipose tissue: an update.
Clin Endocrinol (Oxf) 2006; 64(4):355-65.
7- Gil-Campos M,Canete RR,Gil A. Adiponectin, the missing link in insulin resistance and
obesity. Clin Nutr.2004;23 (5): 963-74.
8- Real, JMF, Castro A, Vázquez G et al. Adiponectin is associated with vascular function
independent of insulin sensitivity. Diab Care 2004; 27(3): 739-44.
9- Park KG, Park KS, Kim MJ et al.Relationship between serum adiponectin and leptin
concentrations and body fat distribution. Diab Res Clin Pract. 2004; 63: 135-42.
10- Frassetto SS,Dias RD,Sarkis JJ. Characterization of an ATP diphosphohydrolase
activity (APYRASE, EC 3.6.1.5) in rat blood platelets. Mol Cell Biochem. 1993; 129(1):
47-55.
11- Kaczmarek E,Koziak K,Sevigny J,Siegel JB,Anrather J,Beaudoin AR,Bach FH,Robson
SC. Identification and characterization of CD39/vascular ATP diphosphohydrolase. J Biol
Chem. 1996; 271(51): 33116-22.
12- Zimmermann H. Ectonucleotidases: some recent developments and note on
nomenclature. Drug Development Research 2001; 52:44-56.
23
13- Kiraly MA,Bates HE,Yue JT,Goche-Montes D,Fediuc S,Park E,Matthews SG,Vranic
M,Riddell MC. Attenuation of type 2 diabetes mellitus in the male Zucker diabetic fatty rat:
the effects of stress and non-volitional exercise. Metabolism 2007; 56(6): 732-44.
14- Miranda KM, Espey MG, Wink DA. A Rapid, Simple Spectrophotometric Method For
Simultaneous Detection Of Nitrate And Nitrite. Nitric Oxide: Biology And Chemistry.
2001; 5: 62-71.
15- Oses JP, Cardoso CM, Germano RA, Kirst IB Fürstenau CR, et al. Soluble NTPDase :
an additional system of nucleotide hydrolysis in rat blood serum. Life Sci 2004; 74(26):
3275-84.
16- Chan K, Delfert D, Junger KD. A direct colorimetric assay for Ca+2-ATPase acitivity.
Anal Biochem 1986; 157:375-80.
17-Bradford, MM. A rapid and sensitive method for the quantification of microgram
quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976: 72,
18-54.
18- Cheng, T.O. All teas are not created equal : The chinese green tea and cardiovascular
health. Int J Cardiol. 2005; in press.
19- Jeppesen J,Hansen TW,Rasmussen S,Ibsen H,Torp-Pedersen C,Madsbad S. Insulin
resistance, the metabolic syndrome, and risk of incident cardiovascular disease: a
population-based study. J Am Coll Cardiol. 2007; 49(21): 2112-9.
20- Naderali EK,Fatani S,Williams G. Chronic withdrawal of a high-palatable obesity-
inducing diet completely reverses metabolic and vascular abnormalities associated with
dietary-obesity in the rat. Atherosclerosis 2004;172(1):63-9.
21- Yudkin JS,Eringa E,Stehouwer CD. “Vasocrine” signalling from perivascular fat: a
mechanism linking insulin resistance to vascular disease. Lancet 2005;365 (9473):1817-20.
22 - Yu YH, Ginsberg HN. Adipocyte signalling and lipid homeostasis : Sequelae of
insulin-resistant adipose tissue. Circ Res 2005; 96: 1042-52.
23- Utzschneider KM, Kahn SE. The role of insulin resistance in nonalcoholic fatty liver
disease. J Clin Endocrinol Metab 2006;91(12):4753-61
24- Parekh S,Anania FA. Abnormal lipid and glucose metabolism in obesity: implications
for nonalcoholic fatty liver disease. Gastroenterology 2007; 132 (6): 2191-207.
25- Gravila A.; Chan JL.; Yiannakouris N et al. Serum adiponectin levels are inversely
associated with overall and central fat distribuction but are not direclty regulated by acute
24
fasting or leptin administration in humans : cross-sectional and interventional studies. J
Clin Endocrinol Metabol. 2003; 88(10): 4823-31.
26- Kumada M,Kihara S, Ouchi N et al. Adiponectin specifically increased tissue inhibitor
of metalloproteinases-1 through interleukin-10 expression in human macrophages.
Circulation 2004; 109: 2046-49.
27- Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH, Pajvani UB, Scherer PE, Ahima
RS. Adiponectin acts in the brain to decrease body weight. Nat Med. 2004;10(5):524-9.
28- Rothenbacher D,Brenner H,Marz W,Koenig W. Adiponectin, risk of coronary heart
disease and correlations with cardiovascular risk markers. Eur Heart J 2005; 26(16):1640-6.
29- Barnea M,Shamay A,Stark AH,Madar Z. A high-fat diet has a tissue-specific effect on
adiponectin and related enzyme expression. Obesity 2006; 14(12): 2145-53.
30- Sarkis JJF, Battastini AMO, Oliveira EM et al. ATP diphosphohydrolases : An
overview. Journal of the Brazilian Association for the Advancement of Science 1995;
47(3):131-36.
31- Gayle RB ,Maliszewski CR,Gimpel SD,Schoenborn MA,Caspary RG,Richards
C,Brasel K,Price V,Drosopoulos JH,Islam N,Alyonycheva TN,Broekman MJ,Marcus AJ.
Inhibition of platelet function by recombinant soluble ecto-ADPase/CD39. Jour Clin
Invest. 1998; 101(9):1851-9.
32 - Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab
2004; 89: 2548-56.
25
Legends and figures
Figure 1. Characterization of the obesity model : body mass and glucose tolerance test after
four months of a highly palatable diet intake. A) Final body weight (g); B) Final body fat
mass (g); C) Glucose tolerance test : 0 (fasting), 30, 60 and 120 minutes after i.p. injection
of a 50% glucose solution (2mg/g). SC= starndard chow; HP= highly palatable. * = p<0.05;
**=p<0.01. Results are expressed as mean ± standard deviation.
Table 1. Metabolic parameteres of groups after four months of diets consumption. Results
are expressed as mean ± standard deviation.
Figure 2. Measure of NO levels and ectonucleotidases activity in rat serum after four
months of diets consumption. A) Serum NO levels; B) ATP hydrolysis; C) ADP
hydrolysis; D) AMP hydrolysis. B,C, D = ectonucleotidases specific activity (nmol
phosphate/min/protein mg). SC= standard chow; HP= highly palatable. * = p<0.05;
**=p<0.01. Results are expressed as mean ± standard deviation.
26
Figure 1
27
Table 1 - Metabolic parameteres of groups after four months of diets consumption.
Groups SC (n =10) HP (n=10)
Total cholesterol (mg/dl)
47.0 ± 9.0 52.0 ± 7.0*
HDL cholesterol (mg/dl)
29.0 ± 5.0 34.0 ± 5.0*
Serum TAG (mg/dl)
67.0 ± 14.0 128.0 ± 70.0*
Liver TAG (mg%)
1.0 ± 0.3 2.0 ±0.3**
Free Glycerol (mg/ml)
0.01 ± 0.002 0.02 ± 0.003**
Insulin (µUI/ml) 85.0 ± 31.0 80.0 ± 26.0
Adiponectin (ng/ml)
43.0 ± 14.0 39.0 ± 7.0
SC= starndard chow; HP= highly palatable. * = p<0.05; **=p<0.01.
28
Figure 2
29
2.2 – CAPÍTULO 2
HIGHLY PALATABLE DIET CONSUMPTION INCREASES PROTEIN OXIDATION
IN RAT FRONTAL CORTEX AND ANXIETY LIKE BEHAVIOR
Publicado na Revista Life Sciences
30
Highly palatable diet consumption increases protein oxidation in rat frontal cortex
and anxiety like behavior
C.G. Souza
a
*, J.D. Moreira
a
, I.R. Siqueira
b,c
, A.G. Pereira
a,
D.K. Rieger
a
, D. O. Souza
a
,
L.V. Portela
a
, T.M. Souza
a
, M.L.S. Perry
a
a
Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul – UFRGS
b
Programa de Pós Graduação em Ciências Biológicas-Neurociências, RS, Brazil
c
Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto
Alegre, RS, Brazil
* Corresponding author:
Carolina Guerini de Souza
Departamento de Bioquímica, ICBS
Rua Ramiro Barcelos, 2600 anexo
CEP 90035003
Porto Alegre, RS, Brazil
Phone: 55 51 33165551
Fax: 55 51 33165560
Email: carolguerini@hotmail.com
31
Abstract
Obesity is frequently associated with consumption of high amounts of sugar and/or
fat. Studies have demonstrated a high prevalence of overweigh and obesity associated or
not with increase rates of psychiatry disorders; in particular mood and anxiety disorders.
Recent works have demonstrated an association between specific genes involved in
oxidative stress metabolism and anxiety-like behavior. The aim of this study was to
investigate the effect of a highly palatable diet enriched with sucrose in body fat mass
composition, anxiety behavior and brain oxidative status. Twenty male wistar rats received
two diferent diets during four months: standard chow (SC) and highly palatable (HP).
Metabolic parameters, behavioral tests and oxidative stress status were evaluated. Body fat
mass, insulin sensitivity and glucose tolerance was altered in the HP group (p<0.01). The
same group spends less time in light compartment and had a lower risk assessment
behavior (p<0.05) but no differences was observed in the open field test habituation
(p>0.05). Protein degradation, DCF and TBARS levels was not different in the
hippocampus between groups however there was higher levels of protein degration in
frontal cortex of HP groups (p<0.05), although DCF and TBARS levels don’t differ from
SC group (p>0.05). In conclusion, our data suggest that the consumption of HP diet leads to
an obese phenotype, increases protein oxidation in frontal cortex and appears to induce
anxiety like behavior in rats.
Key words: obesity / highly palatable diet / anxiety / oxidative stress / frontal cortex
32
Introduction
In modern societies the consumption of high fat and high sugar diets as well as a
sedentary lifestyle has been associated with metabolic derangements and impairment of
brain function (Schrawen et al., 2000; Unger et al., 2001; Molteni et al., 2002, 2004;
McGarry, 2002). Accordingly, in human studies overweigh and obesity maybe associated
with increase rates of psychiatry disorders; in particular mood and anxiety disorders
(Chakravarthy et al., 2004, Simon GE, 2006; Becker et al., 2001; Teegarden and Bale,
2007). Also, experimental studies have focusing on the molecular and behavioral response
underlying the specific effects of high fat and sugar diet on neural cells (Molteni et al,
2002, 2004).
Colantuani et al., (2002) demonstrated that continuous excessive sugar consumption
leads to an addiction profile and increases anxiety behavior when rats are deprivated from
sugar, whereas when animals are refeeding they overeating. In addition to this altered
behavior induced by excessive sugar intake, elevated level of plasmatic glucose has been
considered the main source of free radicals production in glucose intolerant individuals
(Brownlee, 2005).
The imbalance between high cellular levels of reactive oxygen species (ROS) in
relation to cellular antioxidant defenses, namely oxidative stress, may be involved in the
pathogenesis of several brain diseases. If not effectively removed ROS may cause oxidative
cell injury (Gutteridge and Halliwell, 2000; Halliwell and Gutteridge, 2000). Protein
damage, lipid peroxidation and energy failure caused by oxidative stress are frequently
reported alterations that could affect neurons and consequently the brain functioning (Guix
33
et al., 2005; Moncada and Bolanos, 2006; Calabrese et al., 2006). Recently, a new insight
emerged from the contradictory works of Hovatta et al. (2005) and Berry et al., (2007) in
which they suggests a linking between different genes involved in oxidative stress
metabolism and anxiety like behavior.
Up to our knowledge, the association between the consumption of a highly palatable
diet sucrose enriched (HP), anxiety and brain oxidative damage has not yet been studied.
Thus, the aim of this study was to investigate the effect of a HP diet in anxiety behavior and
brain oxidative status.
Material and Methods
Chemicals
All reagents were of analytical grade. Thiobarbituric acid was obtained from Merck
(Rio de Janeiro, Brazil), while 2’-7’-dichlorofluorescein diacetate, sodium dodecylsulfate,
trichloroacetic acid and phenyl methyl sulfonyl fluoride were purchased from Sigma
Chemical Co. (St. Louis, MO, USA).
Animals and Diets
Twenty 60-day old male Wistar rats weighting from 210 to 220 g were obtained
from the Central Animal House of our Department. They were maintained under a standard
dark-light cycle (lights on between 7:00 a.m. and 7:00 p.m.), at a room temperature of 22 +
2°C. Animal care followed the official governmental guidelines in compliance with the
34
Federation of Brazilian Societies for Experimental Biology and was approved by the Ethics
Committee of the Federal University of Rio Grande do Sul, Brazil.
Rats were divided into two groups: (1) the control group (SC, n=10), which received
standard laboratory rat chow (50 % carbohydrate, from starch, 22 % protein and 4 % fat);
and (2) the highly palatable diet group (HP, n=10), which received a enriched sucrose diet
(65 % carbohydrates being 34 % in condensed milk and 8 % from sucrose), 25 % protein,
10 % fat). All animals had free access to food and water.
Behavioral tests
After four months animals were allowed to explore an open field (two 5-min
sessions on successive days) and a light-dark arena (one 5-min session). Behavioral testing
was carried out in a special room with constant temperature (21 + C) and light conditions
(60-W light), except for the light-dark exploration task (see details below). Before the
sessions, animals were allowed to adapt to the experimental room for at least 1 h. All tasks
were performed between 09:30 to 12:00 AM.
Open-field exploration
In two successive days, the rats were gently placed in the corner of a 40 x 50 x 60-
cm box, the floor of which was divided into 3 x 4 cm squares, and left free to explore it for
5 min. The number of crossings from one square to another, groomings and rearings was
counted. Latency to leave the first square was also measured.
Light-dark exploration task
35
The light-dark exploration task consisted of a 40 x 50 x 60-cm box divided equally
into two compartments that were connected by a small opening (10.0 cm x 7.5 cm). The
light compartment was illuminated under a 60-W light. The dark one received only part of
the room illumination (at 20 W). The floor of each compartment was divided into 3 x 2 cm
squares. Rodents are nocturnal animals preferring darker areas, and the decrease in the
exploratory activity in the light area is taken as a measure of anxiety. Animals were gently
placed in the corner of the light compartment and left free to explore it for 5 min. The
following parameters were recorded: (1) the frequency of crossings and rearings from one
square to another within the light or in the dark compartment; (2) the number of entries into
the light compartment, defined as placing the four paws into this compartment; and (3) the
total time spent in the light compartment. In addition, the risk assessment behavior index
(RA, i.e. the number of investigations of the light compartment by placing some but not all
paws) was recorded. After each trial, the apparatus was cleaned with an ethanol solution
(70 %).
Glucose tolerance test
Glucose tolerance test was performed two days before the animals were sacrificed.
A 50 %-glucose solution was injected into the animals (i.p, 2 mg/kg) after 6h of starvation.
The blood was collected by a small puncture on tail immediately before and 30, 60, and 120
minutes after the injection. At each time, glucose was measured by a glucosimeter
(AccuChek Active, Roche Diagnostics
®
, USA).
36
Tissue preparation and oxidative stress damage evaluation
One week after the behavioral tests, the rats were killed by decapitation. Visceral
and epididimal fat pads were dissected and weighted. Cerebral frontal cortices and
hippocampi were dissected out and immediately stored at -70°C until biochemical
measurements, when they were homogenized in 10 volumes of ice-cold phosphate buffer
(0.1 M, pH 7.4) containing 140 mM of KCl, 1 mM of ethylenediaminetetraacetic acid, and
1 mM of phenyl methyl sulfonyl fluoride. The homogenate was centrifuged at 960 g for 10
min and the supernatant was used for all subsequent analysis. All steps were carried out at
4°C.
In order to verify a possible impact of obesity and glucose levels in brain oxidative
stress, we evaluated oxidative damage to proteins and lipids in the hippocampus and frontal
cortex. The levels of oxidized fluorescent derivative (DCF), thiobarbituric acid-reactive
substances (TBARS) and the protein residues of tyrosine and tryptophan were quantified in
these structures, with all data expressed as percentages of the control group.
Free radical levels
An aliquot of the sample was incubated with 2’- 7’- dichlorofluorescein diacetate
(100 µM) at 37°C for 30 min. The formation of DCF was monitored at excitation and
emission wavelengths of 488 and 525 nm, respectively, using a fluorescence
spectrophotometer (Hitachi F-2000; Hitachi, Tokyo, Japan). The formation of reactive
oxygen species was quantified by using a DCF standard curve and results were expressed
as picomoles of DCF formed per milligram of protein (Sriram et al., 1997).
37
Lipid peroxidation assay (TBARS)
Sample aliquots were incubated with 10 % trichloroacetic acid and 0.67 %
thiobarbituric acid. The mixture was heated on a boiling water bath for 30 min, an equal
volume of n-butanol was added, and the final mixture was centrifuged. The organic phase
was collected for fluorescence measurements at excitation and emission wavelengths of
515 and 553 nm, respectively (Bromont et al., 1989). We used 1,1,3,3-tetramethoxypropane
as the standard. TBARS levels are expressed as picomoles of malondialdehyde per
milligram of protein.
Degradation of protein tyrosine residues and tryptophan residues
Sodium dodecylsulfate was added to sample aliquots (final concentration 0.1%).
The tyrosine residues within solubilized proteins were determined fluorometrically at
excitation and emission wavelengths of 277 and 320 nm, respectively (Gusow et al., 2002).
Sodium dodecylsulfate was added to sample aliquots (final concentration 0.1%).
Tryptophan residues within solubilized proteins were determined fluorometrically at
excitation and emission wavelengths of 280 and 345 nm, respectively (Bondy, 1996).
The determination of tyrosine and tryptophan residues is used as a tool for evaluates
oxidative stress in proteins.
Protein assay
Total protein concentration was determined according to the method described by
Lowry (1951) with bovine serum albumin as the standard.
38
Statistical analysis
Data were analyzed using SPSS 10.0 software. Body weight, glucose tolerance and
open field habituation test results were analyzed by repeated-measures ANOVA and post-
hoc Tukey’s test. The Student’s t test was used for body fat mass, light dark test and
analyses of oxidative stress parameters. The level of statistical significance was set at 95 (p
< 0.05). Results are expressed as mean ± standard error (S.E).
Results
Body Composition and Glucose Tolerance Test
There was no difference between groups in body weight (p>0.05) [F (1.18) = 2.79;
p = 0.112]. However, visceral and epididimal fat mass in the HP group was higher than in
the SC group (9 ± 3 vs. 5±1 and 7 ± 3 vs. 4 ± 1, respectively; p < 0.001), indicating that the
HP diet increases the gain of fat mass (Table 1).
Additionally, after four months HP diet triggered changes in the glucose
homeostasis, which is supported by an impaired glucose tolerance (p<0.001)[F (3,54) =
8.80; p=0.0000] (Figure 1A) and also by increased liver triacylglycerol (TAG)
concentration (HP, 1.9 ± 0.3 vs SC, 0.9 ± 0.3 mg%; p<0.01, Table 1), an indirect parameter
for demonstrate overall insulin resistance (Burget et al., 2006).
Behavioral Parameters
39
In the open field habituation test, there was no difference between groups in the
number of crossings, rearings, and in the latency for leaving the first square (p>0.05)[F
(1,18)= 0.35, 0.18, and 0.20, respectively, p = 0.56] (Fig. 1B). In the light-dark task, the HP
group spent less time in the light compartment than the SC group (p<0.05, Fig. 1C) and the
locomotion of this group was lower in the same compartment (p<0.05, Fig. 1D). The HP
group also had a trend to decrease the locomotion behavior on dark compartment (p= 0.07;
Fig. 1E) and higher risk assessment behavior index than controls (p < 0.01; Fig.1F).
Oxidative stress parameters
There was no difference between groups in hippocampus regarding the content of
tyrosine and tryptophan, DCF levels, and TBARS production (data not shown).
A significant lower content of tyrosine and tryptophan was observed in HP
compared to control group indicating the presence of high protein damage induced by diet
(p<0.05, Fig. 2A). There was no difference between groups in DCF and TBARS levels
(p>0.05, Fig.2B and Fig. 2C, respectively).
Discussion
The results presented here show that animals submitted to highly palatable diet
enriched wit sucrose (HP) had glucose intolerance, increased in insulin resistance and fat
body composition, despite no differences on total body weight. Taking together these
findings suggest that HP rats have obese like phenotype and impairment in glucose
metabolism. Furthermore, HP diet increased anxiety like behavior and oxidative damage in
proteins of the frontal cortex.
40
In the dark-light choice task, animals submitted to HP diet spent less time in the
light compartment and, at the same time, they showed a higher number of refusals for
entering the light compartment, which according to Gingrich (2005) and Hovatta et al.,
(2005) is a well-accepted feature of anxious behavior. Open field task was used to evaluate
the locomotion capacity of animals, plus anxiety like behavior as a complementary measure
of the light dark task. The anxiety like-behavior appears to be unrelated to any gross motor
alteration, since the locomotion in the open field task was normal.
Considerable evidence has been accumulated to demonstrate that feeding behavior
is closely related to emotions. Many obese patients tend to eat more when they are
emotionally tense or depressed or simply bored (Vaswani et al.,1983). Additionally, obese
patients frequently have psychiatric co-morbidities. Although depressive symptoms are
frequently attributed to obese patients, the associations between anxiety disorders and
obesity often go unrecognized. In an obese population of UK, Fifty-six percent of patients
met the minimum criteria for an anxiety disorder and forty-eight percent met the minimum
criteria for depression (Tuthill et al., 2006).
Chronic elevation of glucose levels is one metabolic alteration triggered by this diet
consumption is reported as the main source of free radical production in glucose intolerance
situations. An overload of glucose blocks the flux of electrons transport chain, generating
elevated levels of reactive nitrogen and oxygen species (Nishikawa et al., 2000; Brownlee,
2005). Recent data from several reports indicate that these free radicals are involved in the
biochemical mechanisms underlying neuropsychiatric disorders in human (Ozcan et al.,
2004). The free radicals usually affect biomolecules, such as, proteins, lipids and DNA, and
mitochondria (Griffiths, 2000; Murray et al., 2003).
41
The HP group had decreased tyrosine and tryptophan residues in frontal cortex
proteins, an important brain structure involved in behavioral regulation, and together with
hippocampus, amygdala and hypothalamus, which are limbic regions, form part of several
well-defined anxiety and fear-related circuits in the forebrain (Singewald et al., 2003;
Hovatta et al., 2005). The formation of reactive nitrogen and oxygen species can alter
protein conformation through reactions with aminoacids residues, being tyrosine and
tryptophan some of the most susceptible aminoacids because they have lowest potentials
reduction (Alvarez and Radi, 2003). Oxidation of proteins is a very common consequence
of oxidative stress, leading to changes in structure and function of these molecules (Alvarez
et al., 1999).
It has long been established that genetic contributions increase the vulnerability to
anxiety disorders, but the precise genes involved are unknown. In a recent work, Hovatta et
al., (2005) proposes that, in mouse brain, overexpression of genes related to antioxidant
enzymatic defenses (glyoxalase 1 and glutathione reductase 1) increases anxiety behavior
and that these genes have a causal role in the genesis of anxiety. Conversely, Berry et al
(2007) showed that deletion of gene p66
Shc
, which regulates reactive oxygen species
metabolism and apoptosis, reduced pain sensitivity and anxiety, which is in line with our
findings regarding ROS and anxiety. It is possible that genetic variability may at least in
part responsible for these inter-species and interindividual differences. Moreover, it has
been demonstrated that a high palatable diet was able to influence gene expression of
proteins involved in the mechanisms underlying neuroplasticity in hipocampus (Molteni et
42
al., 2002). Thus, the influence of high palatable diet on genes related to oxidative stress and
anxiety like behavior seems to be an interesting field for future investigations.
Considering the limitations of our methodological approach, and the many brain
systems involved in anxiety disorders this study was not able to establish a causal effect
among HP diet and/or behavioral and biochemical parameters. Additional oxidative stress,
molecular and behavioral parameters could be useful in order to search for more robust
associations.
In conclusion, our data suggest that the consumption of high sucrose diet leads to an
obese phenotype, increases protein oxidation in frontal cortex and appears to induce anxiety
like behavior in rats.
43
Acknowledgments
This work was supported by grants from Brazilian agencies FAPERGS, CAPES,
CNPq and FINEP research grant "Rede Instituto Brasileiro de Neurociência (IBN-Net)" #
01.06.0842-00.
44
References
Alvarez, B., Ferrer-Sueta, G., Freeman, B.A., Radi, R.,1999. Kinetics of peroxynitrite
reaction with amino acids and human serum albumin. The Journal of Biological Chemistry
274, 842-848 .
Alvarez, B., Radi, R.2003. Peroxynitrite reactivity with amino acids and proteins. Amino
Acids 25(3-4), 295-311.
Becker, E.S., Margraf, J., Turke, V., Soeder, U., Neumer, S., 2001. Obesity and mental
illness in a representative sample of young women. International Journal of Obesity and
Related Metabolic Disorders 25(1), S5-9.
Berry, A.,Capone, F.,Giorgio, M.,Pelicci, P.G.,de Kloet, E.R.,Alleva, E.,Minghetti,
L.,Cirulli, F., 2007. Deletion of the life span determinant p66Shc prevents age-dependent
increases in emotionality and pain sensitivity in mice. Experimental Gerontology 42(1-2),
37-45.
Bondy, S.C., 1996. Evaluation of free radical-initiated oxidant events within the nervous
system. In: Perez-Polo JR, Editor. Methods in Neuroscience. Volume 30. San Diego:
Academic Press, 243-259.
Bromont, C., Marie, C., Bralet, J.,1989. Increased lipid peroxidation in vulnerable brain
regions after transient forebrain ischemia in rats. Stroke 20, 918 - 924.
Brownlee, M.,2005. The pathobiology of diabetic complications. Diabetes 54.
Burgert, T.S., Taksali, S.E., Dziura, J., Goodman, T.R., Yeckel, C.W., Papademetris, X.,
Constable, R.T., Weiss, R., Tamborlane, W.V., Savoye, M., Seyal, A.A., Caprio, S., 2006.
Alanine aminotransferase levels and fatty liver in childhood obesity: associations with
insulin resistance, adiponectin, and visceral fat. The Journal of Clinical Endocrinology and
Metabolism 91(11), 4287-4294.
Calabrese, V., Butterfield, D.A., Scapagnini, G., Stella, A.M., Maines, M.D., 2006. Redox
regulation of heat shock protein expression by signaling involving nitric oxide and carbon
monoxide: relevance to brain aging, neurodegenerative disorders, and longevity.
Antioxidants & Redox Signaling 8(3-4), 444-477.
Chakravarthy, M.V., Booth, F.W., 2004. Eating, exercise, and Thrifty genotypes:
connecting the dots toward an evolutionary understanding of modern chronic diseases.
Journal of Applied Physiology 96, 3-10.
45
Colantuoni, C., Rada, P., McCarthy, J., Patten, C., Avena, N.M., Chadeayne, A., Hoebel,
B.G., 2002. Evidence that intermittent, excessive sugar intake causes endogenous opioid
dependence. Obesity Research 10 (6), 478-488.
Gingrich, J.A., 2005. Oxidative stress is the new stress. Nature Medicine 11(12), 1281-
1282.
Griffiths, H.R., 2000. Antioxidants and protein oxidation. Free Radical Research 33, S47-
58.
Guix, F.X., Uribesalgo, I., Coma, M., Munoz, F.J., 2005. The physiology and
pathophysiology of nitric oxide in the brain. Progress in Neurobiology 76 (2), 126-152.
Gusow, K., Szabelski, M., Rzeska, A., Karolczak, J., Sulowska, H., Wiczk, W., 2002.
Photophysical properties of tyrosine at low pH range. Chemical Physics Letters 362, 519-
526.
Gutteridge, J.M., Halliwell, B., 2000. Free radicals and antioxidants in the year 2000. A
historical look to the future. Annals of the New York Academy of Sciences 899, 136-147.
Halliwell, B., Gutteridge, J.M.C., 2000. Free Radicals in Biology and Medicine. 3ed,
Clarendon, Oxford.
Hovatta, I., Tennant, R.S., Helton, R., Marr, R.A., Singer, O., Redwine, J.M., Ellison, J.A.,
Schadt, E.E., Verma, I.M., Lockhart, D.J., Barlow, C., 2005. Glyoxalase 1 and glutathione
reductase 1 regulate anxiety in mice. Nature 438(7068), 662-666 .
Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with
the Folin phenol reagent. The Journal of Biological Chemistry 193, 265-275.
McGarry, J.D., 2002. Dysregulation of fatty acid metabolism in the etiology of type 2
diabetes. Diabetes 51, 7-18.
Molteni, R., Barnard, A R.J., Ying, A Z., Robertsa, A C. K., Mez-Pinilla, F.G., 2002. A
high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor,
neuronal plasticity and learning. Neuroscience 112(4), 803-814.
Molteni, R., Wu, A A., Vaynman, A S., Ying, A Z., Barnarda, R. J., Mez-Pinilla, F.G.,
2004. Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic
and behavioral plasticity associated to the action of brain-derived neurotrophic factor.
Neuroscience 123, 429-440.
Moncada, S., Bolanos, J.P.,2006. Nitric oxide, cell bioenergetics and neurodegeneration.
Journal of Neurochemistry 97(6), 1676-1689.
46
Murray, J., Taylor, S.W., Zhang, B., Ghosh, S.S. , Capaldi, R.A.,2003. Oxidative damage
to mitochondrial complex I due to peroxynitrite.The Journal of Biological Chemistry
278(39), 37223-37230.
Nishikawa, T., Edelstein, D., Du, X.L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek,
M.A., Beebe, D., Oates, P.J., Hammes, H.P., Giardino, I., Brownlee, M., 2000.
Normalizing mitochondrial superoxide production blocks three pathways of
hyperglycaemic damage. Nature 404, 787-790.
Ozcan, M.E., Gulec, M., Ozerol, E., Polat, R., Akyol, O., 2004. Antioxidant enzyme
activities and oxidative stress in affective disorders. International Clinical
Psychopharmacology 19(2), 89-95.
Schrawen, P., Westerterp, K.R., 2000. The role of high- fat diets and physical activity in the
regulation of body weight. The British Journal of Nutrition 84, 417-427.
Simon, G.E., Von Korff, M., Saunders, K., Miglioretti, D.L., Crane, P.K., van Belle,
G.,Kessler, R.C., 2006. Association between obesity and psychiatric disorders in the US
adult population. Archives of General Psychiatry 63 (7), 824-830.
Singewald, N., Salchner, P., Sharp, T, 2003. Induction of c-Fos expression in specific areas
of the fear circuitry in rat forebrain by anxiogenic drugs. Biological Psychiatry 53 (4), 275-
283.
Sriram, K., Pai, K.S., Boyd, M.R., Ravindranath, V., 1997. Evidence for generation of
oxidative stress in brain by MPTP: in vitro and in vivo studies in mice. Brain Research 21,
44 -52.
Teegarden, S.L.,Bale,T.L., 2007. Decreases in dietary preference produce increased
emotionality and risk for dietary relapse. Biological Psychiatry 61(9), 1021-1029.
Tuthill, A.,Slawik, H.,O'Rahilly, S.,Finer, N., 2006. Psychiatric co-morbidities in patients
attending specialist obesity services in the UK. QJM : monthly journal of the Association of
Physicians 99(5), 317-325.
Unger, R.H., Orci, L., 2001. Diseases of liporegulation : new perspective on obesity and
related disorders. The FASEB Journal 15, 312-321.
Vaswani, K., Tejwani, G.A., Mousa, S., 1983. Stress induced differential intake of various
diets and water by rat: the role of the opiate system. Life Science 32, 1983-1996.
47
48
Legend for figures
Table 1. Body weight and fat mass. SC= Standard Chow; HP = Highly Palatable.
* = p <0.01
Figure 1. Metabolic and behavioral parameters: A) Glucose tolerance test (GTT), * =
p<0.05; **= p<0.01; B) Open field habituation test (OF), first and second days; C) Light
dark task (LD): time in light compartment; D) Light dark task(LD): locomotion in light
compartment; E) Light dark task(LD): locomotion in dark compartment; F) Light dark task:
risk assessment behavioral index (RAB). SC= Standard Chow; HP= Highly Palatable.
Results are expressed as mean ± standard error. * = p <0.05, ** = p<0.01.
Figure 2. Oxidative stress in the frontal cortex: A) Tyrosine and tryptophan residues levels
(TIR/TRY); B) DCF levels; C) TBARS levels. SC= Standard Chow; HP= Highly Palatable.
Results are expressed as mean ± standard error. * = p<0.05.
49
Table 1
Groups SC (n =10) HP (n=10)
Initial Body Weight (g)
219.0 ± 18.0 225.0 ± 18.0
Final Body Weight (g)
350.0 ± 35.0 375.0 ± 40.0
Visceral fat mass (g)
5.0 ± 1.0 9.0 ± 3.0*
Epididimal fat mass (g)
4.0 ± 1.0 7.0 ± 3.0*
Liver TAG
(
m
g
%
)
0.9 ± 0.3 1.9 ± 0.3*
50
Figure 1
1st day 2nd day
0
25
50
75
SC
HP
OF
B)
Crossings
0 30 60 90 120
0
50
100
150
200
250
300
350
SC
HP
**
**
*
GTTA)
Minutes
Serum Glucose
(mg/dL)
SC HP
0
25
50
75
100
*
LD - Time in light box
C)
Seconds
SC HP
0
25
50
75
*
LD Locomotion in light box
D)
Crossings
SC HP
0
25
50
75
100
LD - Locomotion in dark box
E)
Crossings
SC HP
0
25
50
*
LD -Risk assessment behavior
E)
Number of refusal
1st day 2nd day
0
25
50
75
SC
HP
OF
B)
Crossings
0 30 60 90 120
0
50
100
150
200
250
300
350
SC
HP
**
**
*
GTTA)
Minutes
Serum Glucose
(mg/dL)
SC HP
0
25
50
75
100
*
LD - Time in light box
C)
Seconds
SC HP
0
25
50
75
*
LD Locomotion in light box
D)
Crossings
SC HP
0
25
50
75
100
LD - Locomotion in dark box
E)
Crossings
SC HP
0
25
50
*
LD -Risk assessment behavior
E)
Number of refusal
51
Figure 2
52
3. DISCUSSÃO
O aumento alarmante da obesidade nos últimos anos é atualmente um problema de
saúde pública mundial. Muitas são as causas envolvidas em sua etiologia, desde alterações
genéticas envolvidas com os genes das melanocortinas e da leptina até a inatividade sica,
porém o consumo exagerado de alimentos hiperpalatáveis e sua alta disponibilidade é,
provavelmente, a maior causa dos níveis epidêmicos da obesidade (Cheng 2005, Erlanson-
Albertsson, 2005).
O consumo de alimentos palatáveis estimula no SNC reges límbicas relacionadas
à sensação de prazer, euforia e recompensa, envolvendo ação de neurotransmissores e
opióides, modulados pela própria alimentação (Colantuani et al., 2002). Esses estímulos
afetam o comportamento alimentar de tal forma que o consumo a longo prazo deste tipo de
alimento pode ser comparado com padrões de adição, devido ao feedback positivo gerado
no sistema de recompensa, chamado “come back for more” (Kelley et al., 2002). A ingestão
excessiva e contínua de açúcar já é descrita como um promotor deste padrão de adição
(Colantuani et al., 2002).
O consumo regular de alimentos palatáveis promove obesidade e por conseqüência,
hiperglicemia e resistência à insulina. Em nossos resultados observamos que os animais
submetidos à dieta por 4 meses desenvolveram hiperglicemia severa, característica de
diabetes tipo 2, acompanhada de aumento do glicerol sérico (um indicador indireto de
ácidos graxos livres no sangue) e esteatose hepática (acúmulo de gordura nogado). Essas
alterações ocorrem por uma incapacidade da insulina de inibir a síntese endógena de
glicose e a oxidação de ácidos graxos no gado, bem como de inibir a lipólise à nível de
53
adipócito (Utzschneider and Kahn, 2006), embora os níveis séricos de insulina não
estivessem alterados em nosso estudo. A sinalização insulínica diminuída ou inexistente
também pode afetar o sistema cardiovascular, uma vez que este hormônio ativa a enzima
óxido nítrico sintase endotelial (eNOS). O óxido nítrico é o mais potente vasodilatador
endógeno e sua síntese ocorre pela via da fosforilação do susbstrato receptor de insulina1
(IRS1) PI3K Akt, que ativa a eNOS. Esta mesma sinalização inibe a produção de
moléculas vasoconstritoras, que geram uma resposta aumentada quando existe resistência
insulínica, caracterizando uma disfunção endotelial (Yudkin et al., 2005). A disfunção
endotelial é um marcador inicial da aterosclerose e muitos são os fatores de risco que
predispõe a esta, podendo antes mesmo disso, causar a própria disfunção endotelial (Cheng,
2005).
Alterações nas citocinas secretadas pelo tecido adiposo também influenciam a
funcionalidade do endotélio. A adiponectina é uma adipocitocina muito atuante no sistema
cardiovascular por diminuir a adesão de monócitos, os fatores de coagulação e promover
vasodilatação por meio de NO, além de sua ação pró-insulina. Não é à toa que pacientes
cardíacos possuem menores níveis circulantes de adiponectina, que tem sua secreção e
função também comprometidas em pacientes obesos, já que o aumento do tecido adiposo é
negativamente correlacionado com os níveis desta adipocitocina (Cnop et al., 2003, Real
2004). Não conseguimos observar isto em nosso trabalho, pois embora os níveis de NO
estivessem dimindos, o mesmo não ocorreu com a adiponectina, que aindao havia
sofrido nenhuma alteração sérica. Por esta razão, levantamos a hipótese de que alterações
mais sutis, porém já comprometedoras, possam já estar ocorrendo antes mesmo que
54
maiores marcadores e moduladores, como adiponectina e insulina séricas, estejam
alterados. Corrobora com isto, a resistência à insulina existente nogado e no tecido
adiposo mesmo sem hipo ou hiperinsulinismo nos animais. A dislipidemia apresentada, que
é um fator de risco clássico para doenças cardiovasculares, é mais uma alteração
complementar de nossa hipótese.
O sistema cardiovascular é um dos mais afetados pela instalação do DM2 e de suas
comorbidades associadas, uma vez que 80% das mortes de pacientes diabéticos ocorre por
aterosclerose e três quartos destas são por doenças coronarianas (Cheng, 2005). Ainda neste
sistema, o ATP extracelular e seus metalitos (incluindo ADP, AMP e adenosina) estão
envolvidos no controle de diversos processos biológicos. A importância destes nucleotídeos
e seus derivados na corrente sanínea atuando em processos de vasodilatação,
vasoconstrição, agregação plaquetária, inflamação e dor é bem estabelecida (Frassetto et
al., 1993; Ravelick e Burnstock, 2003). Sabe-se que o ATP liberado na corrente sangüínea,
dependendo da sua concentração, pode atuar como um vasodilatador ou vasoconstritor.
Além disso, é substrato para formação de ADP, um proagregante plaquetário, e ambos
podem ser hidrolisados até adenosina, um potente vasodilatador. Os nucleotídeos
extracelulares podem ser hidrolisados por várias nucleotidases, que estão localizadas em
superfícies celulares e solúveis nos meios extracelulares, sendo o endotélio vascular um de
seus principais sítios de localização e atuação. Estas enzimas exercem um papel importante
na regulação do fluxo saníneo e da trombogênese. As nucleotidases convertem o ADP,
um proagregante, em adenosina, uma molécula antiagregante, o que ajuda a controlar a
agregação plaquetária intravascular (Kaczmarek et al., 1996; Zimmermann et al., 2001).
Portanto, o controle das atividades dessas nucleotidases são importantes para impedir
55
processos de formação de trombos vasculares pela formação e manutenção do equilíbrio
dos níveis da adenosina (Gayle et al., 1998). A diminuição da hidrólise destes nucleotídeos
em nosso modelo de obesidade e DM2 é um fator importante a ser considerado para o
desenvolvimento da aterosclerose, em concordância com o conjunto de alterações
apresentadas, independente do decréscimo de insulina e adiponectina séricas. O perfil
apresentado por estes animais sugere que possivelmente as doenças cardiovasculares, o
DM2 e a própria obesidade tenham complicações que iniciem antes que alterações de
diagnóstico convencional apareçam.
Paralelamente com esses efeitos no metabolismo intermediário, algumas mudanças
nas fuões cerebrais e cognitivas tem sido descritas neste mesmo modelo de obesidade.
Estudos populacionais com indivíduos com sobrepeso e obesidade mostram uma possível
maior incidência de desordens psiquiátricas nos mesmos, especialmente transtornos de
humor e ansiedade (Chakravarhty et al., 2004, Simons, 2006, Teegarden and Bale, 2007).
Em concordância com estas afirmações, observamos nos animais submetidos à dieta
hiperpalatável, um comportamento mais aversivo e menos explorador, alterações estas,
características de ansiedade aumentada em modelos animais (Gingrich,2005). Muitas
evidências cienficas mostram que o comportamento alimentar é fortemente ligado à
emoções, indicando que uma grande maioria de indivíduos obesos alcançam critérios
mínimos de ansiedade e depressão apresentando freqüentemente maiores comorbidades
psiquiátricas do que pacientes não-obesos(Vaswani et al., 1983; Tuthill et al., 2006). Os
mecanismos ligando estas duas patologias ainda não foram elucidados, porém o estresse
pode ser um de seus fatores desencadeantes.
56
O estresse oxidativo está muito associado aos mecanismos bioquímicos de
desordens psiquiátricas (Ozcan et al., 2004) e trabalhos recentes mostram que a diminuição
da produção de RL é capaz de diminuir a ansiedade em modelos animais (Berry et al.,
2007). A oxidação de proteínas, lipídios e até mesmo do DNA promovida por radicais
livres (RL) ocasiona alteração da estrutura e perda da função destas moléculas e em nosso
trabalho constatamos uma maior oxidação nas proteínas do córtex frontal dos animais
submetidos à dieta, sendo que ortex frontal é uma importante estrutura envolvida na
regulação comportamental, fazendo parte de circuitos cerebrais relacionados à ansiedade e
medo (Singewald et al., 2003; Hovatta et al., 2005). É importante salientar que este
aumento de ansiedade e de proteínas oxidadas ocorreu em animais hiperglicêmicos e que a
hiperglicemia crônica é a principal fonte de produção de RL em indivíduos intolerantes à
glicose e diabéticos (Brownlee, 2005). Entretanto, considerando os muitos sistemas
envolvidos nas desordens de ansiedade, não é possível ainda estabelecer um efeito causal
entre esta alteração e os fatores associados citados.
Considerando todos os aspectos avaliados, concluímos que a obesidade induzida
pelo consumo de uma dieta hiperpalatável altera parâmetros metabólicos promotores de um
microambiente propício à doenças cardiovasculares, com alterações mais sutis do que as
tradicionalmente investigadas, além de aumentar os níveis de ansiedade e o estresse
oxidativo no SNC, promovendo também mudanças comportamentais, influenciadas
pelo tipo de alimentação adquirida.
57
4. REFERÊNCIAS
Arner P. Human fat cell lipolysis : biochemistry, regulation and clinical role. Best Pract Res
Clin Endocrinol and Metabol. 19(4): 417-82, 2005.
Becker ES, Margraf J, Turke V et al.. Obesity and mental illness in a representative sample
of young women. International Journal of Obesity and Related Metabolic Disorders 25(1):
S5-9, 2001.
Berne RM. Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood
flow. Am J Physiol 204: 317-22, 1963.
Berry A, Capone F, Giorgio M et al. Deletion of the life span determinant p66Shc prevents
age-dependent increases in emotionality and pain sensitivity in mice. Exp Ger 42(1-2): 37-
45, 2007.
Brownlee M. The pathobiology of diabetic complications. Diab 54, 2005.
Chakravarthy MV, Booth FW. Eating, exercise, and Thrifty genotypes: connecting the dots
toward an evolutionary understanding of modern chronic diseases. Journal of Applied
Physiology 96: 3-10, 2004.
Chen YF, Li PL, Zou AP. Effect of hyperhomocysteinemia on plasma or tissue adenosine
levels and renal function. Circulation 106: 1275-81, 2002.
Cheng TO. All teas are not created equal : The chinese green tea and cardiovascular health.
Int J Cardiol in press, 2005.
Cnop M, Havel PJ, Utzschneider KM. et al. Relationship of adiponectin to body fat
distribution, insulin sensitivity and plasma lipoproteins : evidence for independent roles of
age and sex. Diabetologia 46: 459-69, 2003.
Colantuoni C, Rada P, McCarthy J et al. Evidence that intermittent, excessive sugar intake
causes endogenous opioid dependence. Obesity Research 10 (6): 478-88, 2002.
Dube N, Tremblay ML. Involvement of the small protein tyrosine phosphatases TC-PTP
and PTP1B in signal transduction and diseases: From diabetes, obesity to cell cycle, and
cancer. Biochim Biophys Acta in press, 2005.
Erlanson-Albertsson C. How palatable food disrupts appetite regulation. Basic Clin
Pharmacol Toxicol 97(2): 61-73, 2005.
58
Frassetto SS, Dias RD, Sarkis JJ. Characterization of an ATP diphosphohydrolase activity
(APYRASE, EC 3.6.1.5) in rat blood platelets. Mol Cell Biochem 129 (1): 47-55,1993.
Froguel P, Guy-Grand B and Clement K. Genetics of obesity: towards the understanding of
a complex syndrome. Presse Med. 29: 564–571, 2000.
Gayle RB, Maliszewski CR,Gimpel SD et al. Inhibition of platelet function by recombinant
soluble ecto-ADPase/CD39. J Clin Invest 101(9): 1851-9,1998.
Gil-Campos M,Canete RR, Gil A. Adiponectin, the missing link in insulin resistance and
obesity. Clin Nutr.23(5): 963-74, 2004.
Gingrich JA. Oxidative stress is the new stress. Nature Medicine 11(12): 1281-82, 2005.
Hovatta I, Tennant RS, Helton R et al. Glyoxalase 1 and glutathione reductase 1 regulate
anxiety in mice. Nature 438(7068): 662-66, 2005.
Kaczmarek E, Koziak K, Sevigny J, Siegel JB et al. Identification and characterization of
CD39/vascular ATP diphosphohydrolase. J Biol Chem 271(51): 33116-22, 1996.
Kelley AE, Bakshi VP, Haber SN et al. Opioid modulation of taste hedonics within the
ventral striatum. Physiol. Behav. 76: 365–77, 2002.
Koyamada N,Miyatake T,Candinas D et al.. Apyrase administration prolongs discordant
xenograft survival. Transplantation 62(12): 1739-43, 1996.
Latini S, Pedata F. Adenosine in central nervous system : release mechanisms and
extracellular concentrations. Neurochem 79(3): 463-84, 2001.
Mazurek T, Zhang LF, Zalewski A, et al. Human epicardial adipose tissue is a source of
inflammatory mediators. Circulation; 108: 2460-66, 2003.
McGarry JD. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes.
Diab 51: 7-18, 2002.
Molteni R, Barnard ARJ, Ying AZ et al. A high-fat, refined sugar diet reduces hippocampal
brain-derived neurotrophic factor, neuronal plasticity and learning. Neurosc 112(4): 803-14,
2002.
Molteni R, Wu AA, Vaynman AS et al. Exercise reverses the harmful effects of
consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action
of brain-derived neurotrophic factor. Neuros 123: 429-40, 2004.
Mubagwa K,Mullane K,Flameng W. Role of adenosine in the heart and circulation.
Cardiovasc Res 32(5): 797-813, 1996.
59
Naderali EK,Fatani S,Williams G. Chronic withdrawal of a high-palatable obesity-inducing
diet completely reverses metabolic and vascular abnormalities associated with dietary-
obesity in the rat. Atherosclerosis 172(1):63-9, 2004.
Neel, JV. The “Thritty genotype”. Nutr Rev 57: S2-S9, 1998.
Nishikawa T, Edelstein D, Du XL et al.. Normalizing mitochondrial superoxide production
blocks three pathways of hyperglycaemic damage. Nature 404: 787-90, 2000.
Ozcan ME, Gulec M, Ozerol E et al. Antioxidant enzyme activities and oxidative stress in
affective disorders. Intern Clin Psyc 9(2): 89-95, 2004.
Park KG, Park KS, Kim MJ et al. Relationship between serum adiponectin and leptin
concentrations and body fat distribution. Diab Res Clin Pract.63: 135-42, 2004.
Pinhas-Hamiel O,Zeitler P. Acute and chronic complications of type 2 diabetes mellitus in
children and adolescents. Lancet. 369(9575): 1823-31, 2007.
Prins Jb. Adipose tissue as an endocrine organ. Best Pract Res Clin Endocrinol Metab
16(4):639-51, 2002.
Rader DJ. Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the
development of cardiovascular disease and diabetes mellitus. Am J Med. 120(3): S1: S12-8,
2007.
Ravelic V, Burnstock G. Involvement of purinergic signaling in cardiovascular disease.
Drug News Perspect. 16(3): 133-40, 2003.
Real JMF, Castro A, Vázquez G et al. Adiponectin is associated with vascular function
independent of insulin sensitivity. Diab Care 27(3): 739-44,2004.
Rothenbacher D, Brenner H, März W. Adiponectin, risk of coronary heart disease and
correlations with cardiovascular risk markers. Eur Heart J 26(16):1640-46, 2005.
Saper C, Chou BTC and Elmquist JK. The need to feed: homeostatic and hedonic control of
eating. Neuron. 36: 199– 211, 2002.
Sarkis JJF, Battastini AMO, Oliveira EM et al. ATP diphosphohydrolases : An overview.
Journal of the Brazilian Association for the Advancement of Science 47(3):131-36, 1995.
Simon GE, Von Korff M, Saunders K et al. Association between obesity and psychiatric
disorders in the US adult population. Arch Gen Psyc 63 (7): 824-30, 2006.
Singewald N, Salchner P, Sharp T. Induction of c-Fos expression in specific areas of the
fear circuitry in rat forebrain by anxiogenic drugs. Biol Psyc 53 (4): 275-83, 2003.
60
Smith, SC. Multiple risk factors for cardiovascular disease and diabetes mellitus. Am J
Med. 120:S3-S11, 2007.
Takahashi K,Bokura H,Kobayashi S,Iijima K,Nagai A,Yamaguchi S. Metabolic syndrome
increases the risk of ischemic stroke in women. Intern Med 46(10): 643-48, 2007.
Teegarden SL, Bale TL. Decreases in dietary preference produce increased emotionality
and risk for dietary relapse. Biological Psychiatry 61(9):1021-29, 2007.
Tuthill A, Slawik H, O'Rahilly S et al. Psychiatric co-morbidities in patients attending
specialist obesity services in the UK. QJM : monthly journal of the Association of
Physicians 99(5): 317-25, 2006.
Unger RH, Orci L. Diseases of liporegulation : new perspective on obesity and related
disorders. Faseb J.15: 312-21, 2001.
Utzschneider KM, Kahn SE. The role of insulin resistance in nonalcoholic fatty liver
disease. J Clin Endocrinol Metab 91(12): 4753-61, 2006.
Vaswani K, Tejwani GA, Mousa S. Stress induced differential intake of various diets and
water by rat: the role of the opiate system. Life Sci 32: 1983-96, 1983.
Wassink AM,Olijhoek JK,Visseren FL. The metabolic syndrome: metabolic changes with
vascular consequences. Eur J Clin Invest 37(1): 8-17, 2007.
Yudkin JS, Eringa E, Stehouwer CD. Vasocrine" signalling from perivascular fat: a
mechanism linking insulin resistance to vascular disease. Lancet 365 (9473):1817-20, 2005.
Zimmermann H. Ectonucleotidases: some recent developments and note on nomenclature.
Drug Development Research 52: 44-56, 2001.
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo