Download PDF
ads:
Universidade Federal do Rio Grande do Sul
Instituto de Ciência Básicas da Saúde
Departamento de Bioquímica
Curso de Pós-Graduação em Ciências Biológicas: Bioquímica
Estudo das alterações comportamentais e neuroquímicas
induzidas pela sepse em modelo animal: possível papel
terapêutico de antioxidantes
TATIANA BARICHELLO
Orientador:
Prof. Dr. Felipe Dal-Pizzol
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
II
Universidade Federal do Rio Grande do Sul
Instituto de Ciência Básicas da Saúde
Departamento de Bioquímica
Curso de Pós-Graduação em Ciências Biológicas: Bioquímica
Estudo das alterações comportamentais e neuroquímicas
induzidas pela sepse em modelo animal: possível papel
terapêutico de antioxidantes
TATIANA BARICHELLO
Orientador:
Prof. Dr. Felipe Dal-Pizzol
Tese apresentada ao Programa de Pós-Graduação em Ciências Biológicas –
Bioquímica como requisito parcial para a obtenção do título de Doutor em
Ciências Biológicas: Bioquímica
PORTO ALEGRE 2007
ads:
III
“O sistema límbico é a zona limite onde a psiquiatria encontra a neurologia”
“The limbic system is the border zone where psychiatry meets neurology”
Michael S. Mega et al. (1997)
IV
Agradecimentos
Ao Prof. Dr. Felipe Dal-Pizzol pelo modelo de pesquisador, cuja busca incansável da
verdade científica é a força propulsora que motiva um grande número de
pesquisadores nos estudos da sepse em modelos animais e em estudos clínicos.
Além disso, pela confiança em mim depositada quando aceitou a minha orientação
e, mais recentemente, quando me convidou para integrar sua equipe de trabalho na
Universidade.
Ao Prof. João Quevedo pela colaboração no desenvolvimento dos desenhos
experimentais, na discussão dos resultados e no auxílio na preparação dos
manuscritos.
Aos colaboradores Márcio Rodrigo Martins Adalisa Reinke, Gustavo Feier, Cristiane
Ritter, Samira Valvassori, Gislaine Ziili Réus, Larissa Constantino, Roberta Machado,
Ângeles Vitali, José Cláudio Moreira e Fabrícia Petronilho pelo companherismo e
dedicação na realização dos diversos experimentos.
Aos orgãos de fomento (CNPq, FAPESC, UNESC e Instituto Cérebro e Mente) pelo
fundamental auxílio financeiro necessário a execução dos experimentos que
compõem essa Tese.
V
SUMÁRIO
Parte I.........................................................................................................................01
Resumo......................................................................................................................02
Abstract......................................................................................................................03
Lista de Abreviaturas..................................................................................................04
Introdução……………………….................……………...............................................05
Sepse…....…………………………………………………………………………………..05
Sepse e Sistema Nervoso Central.............................................................................07
Sepse e Cognição......................................................................................................09
Sepse e Estresse Oxidativo.......................................................................................12
Antioxidantes e Tratamento da Sepse.......................................................................15
Modelo Animal de Sepse............................................................................................18
Objetivos...............................……………………………………………………………...19
Parte II……………………………………………………………………………………….21
Capítulo 1. Cognitive impairment in sepsis survivors from cecal ligation and
perforation…………………………………………………………………………………...22
Capítulo 2. Behavioral deficits in sepsis-surviving rats induced by cecal ligation and
perforation …………………………………………………………………………….…….26
Capítulo 3. Long-Term Cognitive Impairment in Sepsis Survivors Behavioral deficits
in sepsis-surviving rats induced by cecal ligation and
perforation…………………………………………………………………………………...34
Capítulo 4. Oxidative variables in the rat brain after sepsis induced by cecal ligation
and perforation……………………………………………………………………………...36
VI
Capítulo 5. Antioxidant treatment reverses late cognitive impairment in an animal
model of sepsis……………………………………………………………………………..41
Parte III………………………………………………………………………………………63
Discussão...................................................................................................................64
Dano cognitivo em ratos sobreviventes a sepse........................................................64
Medidas de estresse oxidativo no cérebro de ratos sobreviventes a sepse..............69
Tratamento com antioxidantes e dano cognitivo........................................................73
Limitações do estudo e perspectivas futuras.............................................................77
Referências Bibliográficas..........................................................................................79
1
Parte I
2
RESUMO
(Tatiana Barichello - Estudo das alterações comportamentais e neuroquímicas
induzidas pela sepse em modelo animal: possível papel terapêutico de
antioxidantes) Este trabalho apresenta a compilação de 5 experimentos
carreados ao longo de 2004-2007. Na parte 1 apresenta sucintamente o marco
teórico dos quatro trabalhos. Inicialmente são discutidos aspectos gerais da sepse.
Após, são descritos alguns mecanismos conhecidos do envolvimento do sistema
nervoso central com a sepse, como a permeabilidade diminuída da barreira
sanguínea cerebral, alteração de alguns neurotransmissores, apoptose neuronal,
ativação de algumas cascatas imunológicas, enfim, o processo inflamatório no
sistema nervoso central. Os danos cognitivos ocasionados pela encefalopatia
séptica também foram relatados, e por fim o estresse oxidativo e as defesas
antioxidantes como um mecanismo que possa estar mediando os danos cognitivos
observados em pacientes sobreviventes as sepse. Os experimentos (Parte II)
comportamentais realizados 10 dias após a indução da sepse em ratos ocupam os
Capítulos 1 e 2. No capítulo 1 é apresentado um corpo de resultados que permite
observar os déficits cognitivos nos testes de Habituação ao Campo Aberto, Esquiva
Inibitória e Esquiva Inibitória de Múltiplos Treinos em ratos sobreviventes a sepse
após 10 dias da indução pelo modelo animal de CLP. Estes dados demonstram
uma incapacidade cognitiva no aprendizado e na memória dos animais sépticos. O
Capítulo 2 apresenta os resultados dos testes comportamentais de Reconhecimento
de Objeto, Labirinto de Cruz Elevada e Teste de Natação Forçada, onde foi possível
demonstrar que os ratos sépticos apresentaram uma incapacidade na memória e
comportamento compatível com “depressão”, mas não com ansiedade. O Capítulo 3
estende os achados comportamentais observados no Capítulo 1, realizando os
testes comportamentais de Habituação ao Campo Aberto, Esquiva Inibitória e
Esquiva Inibitória de Múltiplos Treinos após 30 dias da indução de sepse em ratos
pelo procedimento CLP. Os dados obtidos confirmam que a incapacidade de
aprendizado e memória demonstrados no Capítulo 1 persiste após 30 dias da
cirurgia de CLP. A mensuração do estresse oxidativo no hipocampo, cerebelo,
estriado e córtex de ratos submetidos à sepse foram descrito no Capítulo 4. Neste
experimento foi observado que nas horas iniciais após a indução de sepse em ratos,
houve danos oxidativos, avaliados pelo TBARS e carbonil em diversas regiões do
cérebro. Entretanto, a exceção do estriado, foi demonstrado um aumento na
atividade de SOD sem um proporcional aumento na atividade de CAT, com aumento
conseqüente na relação de SOD e CAT, também nos períodos iniciais após a
indução de sepse nos ratos (6 horas). O Capítulo 6 aborda os resultados do
experimento realizado com administração de antioxidantes NAC e DFX antes do
Teste de Esquiva Inibitória, Esquiva Inibitória de Múltiplos Treinos após 10 e 30 dias
da indução da sepse e Habituação ao Campo Aberto após 10 dias da cirurgia de
CLP, onde foi demonstrando que, DFX e NAC associado, porém não isoladamente,
revertem os danos cognitivos observados em ratos submetidos aos testes acima. A
discussão geral (parte III) busca integrar esses achados descritos nos capítulos
anteriores dentro de uma nova perspectiva para esclarecer os mecanismos
neurobiológicos do dano cognitivo em sobreviventes a sepse. Além disso, abre
discussões acerca de possíveis novas possibilidades de pesquisas.
3
ABSTRACT
(Tatiana Barichello – Investigation of behavioural and neurochemical sequelae in rats
submitted to sepsis: possible therapeutic role for antioxidant agents) - This work
presents the compilation of 5 experiments enters throughout 2004-2007. The part I
presents lightly the theoretical landmark of the four works. Initially general aspects of
sepsis are argued. After, some known mechanisms of the involvement of the central
nervous system with sepsis are described, as the diminished permeability of the brain
blood barrier, alteration of some neurotransmitters, neuronal apoptosis, activation of
some inflammatory cascades, at last, the inflammatory process in the central nervous
system. The cognitive damage caused by the septic encephalopathy had been also
discussed, and finally it stress oxidative and the antioxidants defenses as a
mechanism that can be causing the cognitive deficit in sepsis survivors patients. The
main experiments (part II) carried through 10 days after the induction of sepsis in rats
occupy chapters 1 and 2. In chapter 1 a body of results is presented that allows
observing the cognitive incapacities to the tests of Habituation to the Open Field,
Inhibitory Avoidance and Continuous Multiple Trials Step-down Inhibitory Avoidance
in rats surviving sepsis after 10 days of the induction for the animal model of CLP.
These data demonstrate a cognitive incapacity in the memory and the learning of the
septic animals. chapter 2 presents the results of the complementary behavioural
tests: Object Recognition, Elevated Plus-maze and Forced Swimming Test, where it
was possible to demonstrate that the septic rats had presented incapacity in the
memory and symptoms of depression, but not of anxiety. chapter 3 extends the
observed findings in chapter 1, carrying through the tests of Habituation to the Open
Field, Continuous Multiple Trials Step-down Inhibitory Avoidance after 30 days of the
induction of sepsis in rats for procedure CLP. The gotten data confirm that the
incapacity of demonstrated learning and memory in chapter 1 after persists 30 days
of the surgery of CLP. The measure of it stress oxidative in hippocampus,
cerebellum, striatum and cortex of rats submitted to sepsis was described in chapter
4. In this experiment it was observed that in the initial hours after the induction of
sepsis in rats, had oxidative damages, evaluated for the TBARS and carbonyl in
diverse regions of the brain. However, the exception of the striatum, was
demonstrated an increase in the activity of SOD without a proportional increase in the
activity of CAT, with consequent increase in the relation of SOD and CAT, also in the
initials periods after induction of sepsis in the rats (6 hours). chapter 5 approaches
the results of the experiment carried through with antioxidants substance
administration NAC and DFX before the Test of Inhibitory Avoidance and Continuous
Multiple Trials Step-down Inhibitory Avoidance after 10 and 30 days of the induction
of sepsis and Habituation to the Open Field after 10 days of the surgery of CLP,
where it was demonstrating that, DFX and NAC associated, but not separately,
above revert the observed cognitive damages in rats submitted to the tests. The
general quarrel (part III) searches to integrate these described findings in the
previous chapters inside of a new perspective to clarify the neurobiological
mechanisms underlying brain damage in sepsis survivors. Moreover, it opens
possible quarrels concerning new possibilities of research.
4
LISTA DE ABREVIATURAS
CAT - Catalase
CLP – Cecal Ligation and Perforation (Ligação e Perfuração Cecal)
CREB – (cAMP response element-binding)
DFX – Deferoxamina
DNA – Ácido Desoxirribonucléico
EAO – Espécies Reativas de Oxigênio
FAD - Flavina adenina dinucleotídeo
GABA – Ácido gama amino Butino
GPx – Glutationa Peroxidase
GSH – Glutationa
HO
2
- Hidroperoxila
IL-1 – Interleucina 1
IL-6 – Interleucina 6
O
2
Superóxido
OH - Hidroxila
NAC – N-acetilcisteína
NO – Óxido Nítrico
SOD – Peróxido Dismutase
TBARS – Ácido Tiobarbitúrico
TNF – Fator de Necrose Tumoral
TNFα
αα
α Fator α de necrose tumoral
VAChT – Vesículas Transportadoras de Acetilcolina
5
INTRODUÇÃO
Sepse
A Sepse é caracterizada por uma resposta inflamatória decorrente da
reação do sistema imunológico à infecção, sendo assim uma doença com
implicações clínicas relevantes (Vandijck et al, 2006). A incidência da sepse está
aumentando continuamente e esta tendência epidemiológica reflete o
envelhecimento da população e o aumentando do número de pacientes
cronicamente doentes. Uma resistência crescente dos agentes infecciosos que
causam a sepse também possui um papel importante no processo. O progresso no
diagnóstico e no tratamento da sepse foi crescente nas últimas décadas, porém
influenciando o prognóstico da doença somente ligeiramente. Um papel importante
na patogenia da sepse é realizado pela resposta inflamatória, que pode causar
danos aos tecidos que conduzem à falência orgânica. Esta reação é controlada pela
resposta antiinflamatória, que pode ser conduzida exageradamente e assim,
aumentando às infecções secundárias e levando a síndrome da respostas
antiinflamatória compensatória (Holub, 2007).
A síndrome da resposta inflamatória sistêmica é um estado fisiopatológico
multifatorial agressivo com uma taxa elevada de mortalidade de até 51% e a 1
causa principal de morte nas unidades de terapia intensiva (Martin et al, 2005). O
diagnóstico inclui uma exigência para dois ou mais dos seguintes sintomas: febre ou
hipotermia, taquicardia, e leucocitose ou leucopenia (Bone,1992). A diferença
principal entre a síndrome da resposta inflamatória sistêmica e a sepse é que a
sepse é produzida por microorganismos infecciosos, visto que a síndrome da
6
resposta inflamatória sistêmica pode ocorrer na ausência de uma fonte documentada
de infecção (Takala et al, 2002). Embora a causa seja difícil de verificar em doenças
médicas complexas, há ampla evidência clínica e experimental para suportar o
conceito da severidade da resposta inflamatória clínica e o resultado na
sobrevivência (Sasse et al, 1995). No fato, a resposta inflamatória produzida durante
a sepse pode estar dentro do espectro da resposta inflamatória sistêmica e envolve
a amplificação rápida dos sinais e respostas além do tecido invadido (Takala et al,
2002).
A Sepse e suas complicações conduzem à mortalidade em cerca de 10-
50% das ocorridas em unidades de terapia intensiva. Entretanto, os pacientes que
sobrevivem a sepse podem ter a função comprometida de alguns órgãos, que
podem resultar em sintomas tais como dispnéia, fadiga, depressão e alterações
funcionais (Brun-Buisson, 2000; Friedman et al, 1998; Hotchkiss e Karl, 2003; Tran
et al, 1990).
Um dos componentes principais que envolvem a fisiopatologia da sepse é
a exacerbada ativação da resposta imune inata. O papel central do sistema imune
inato durante a síndrome da resposta inflamatória sistêmica e a sepse é
documentado pelo aumento dos fatores pró-inflamatórios após a infecção (Williams
et al, 2000; Mastronardi et al, 2005; Mastronardi et al, 2001; Mastronardi et al, 2000;
Wong et al, 1997; Wong et al, 1996; Mastronardi et al, 2001; v et al, 2003), com
conseqüente aumento de citocinas pró-inflamatórias tais como o IL-1 e o TNF- para
o sistema nervoso central (Takala et al, 2002). Como a maioria dos estudos
envolvendo sepse focalizou órgãos periféricos como citados previamente, a
participação do cérebro durante este processo ainda não está muito clara (Young et
al, 1990).
7
Sepse e Sistema Nervoso Central
Os efeitos biológicos causados pela liberação de citocinas refletem no
sistema nervoso central como febre (Dinarello, 2004; Maier et al, 1998), anorexia
(Maier et al, 1998), e ativação do eixo hipotâlamo-pituitária-adrenal, tendo por
resultado o aumento da produção dos corticóides adrenais (Licinio e Wong, 1997).
As interações recíprocas entre o sistema nervoso central e sistema imunológico são
considerados como os componentes principais da resposta inflamatória à sepse, o
que acaba causando alterações nos sistemas neuroendócrino, autonômico
(Chrousos, 1995), comportamental (Gordon et al, 2004) e distúrbios em quaisquer
funções adaptáveis como as respostas imuno-inflamatórias e hemodinâmica
(Sharshar et al, 2003; Sharshar et al, 2004; Spyer, 1989; Saper e Breder, 1994).
No caso da sepse e da síndrome da resposta inflamatória sistêmica
alteração na permeabilidade da barreira cerebral sanguínea e o processo
inflamatório acaba afetando os sistemas de controle do sistema nervoso central,
causando alteração as funções fisiológicas cruciais à homeostase levando a
encefalopatia (Chrousos e Gold,1992). A encefalopatia séptica pode ocorrer em 8-
70% dos pacientes sépticos, dependendo dos critérios de inclusão empregados
(Sprung et al, 1990; Young et al, 1990), sendo a encefalopatia mais comum nas
unidades de terapia intensiva (Bleck et al, 1993). O conceito de encefalopatia séptica
como uma entidade que não possa ser explicada pela disfunção, hipotensão, ou
pela hipóxia hepática ou renal, é relativamente novo, porém está claro que a
sepse e suas reações podem ser associadas a um largo espectro de danos e
disfunções cerebrais (Papadopoulos et al, 2000). A disfunção da barreira
hematoencefálica parece ter efeito central na fisiopatologia da encefalopatia ptica,
8
uma vez que permite a passagem para o SNC de endotoxinas que parecem
influenciar diversos aspectos do metabolismo cerebral (Orlikowsk et al, 2003), além
de alterar a função de lulas endoteliais, astrócitos e neurônios (Papadopoulos et
al, 2000).
Além disto, o dano na estrutura da barreira hematoencefálica provoca
uma alteração severa dos fluxos diferenciais de numerosas substâncias entre o
plasma e o liquido cefalorraquidiano. Este fenômeno contribui para aumentar a
relação entre os aminoácidos aromáticos e os aminoácidos ramificados diminuindo
as concentrações intracerebrais de noradrenalina, dopamina e serotonina, enquanto
que as concentrações de GABA são inalteradas (Descamps et al, 2003; Freund et al,
1985). Nos doentes sépticos, acredita-se que a alteração do estado mental seja por
um excesso de ácidos aminos aromáticos, procedentes da parte proteolítica
muscular e pela diminuição dos ácidos aminos ramificados (Basler et al, 2002;
Komatsubara et al, 1995). A isto se associa a um aumento dos receptores
benzodiazepínicos em ratos sépticos (Soejima et al, 1990).
Além das alterações de permeabilidade da barreira hemato-encefálica as
modificações do débito sanguíneo cerebral e a sua auto-regulação (Bowie et al,
2003) foram implicadas na patogênese e a hipotensão foi associada
significativamente ao desenvolvimento de dano isquêmico cerebral (Bowton et al,
1989, Booke et al, 2003).
A análise histológica demonstra, em casos fatais, várias alterações como
proliferação de astrócitos e microglia no córtex, infartos cerebrais, púrpura cerebral,
múltiplas hemorragias pequenas em substância branca e disseminação de
microabsessos (Jackson et al, 1985). Nos sobreviventes, ao contrário, observam-se
alterações reversíveis tais como a redução do fluxo sanguíneo cerebral, constrição
9
capilar, e disfunção da barreira hematoencefálica como já mencionado anteriormente
(Bowton et al, 1989; Voigt et al, 2002).
Marcadores de danos cerebrais durante a sepse poderiam ter um valor
considerável, ambos para esclarecer os mecanismos envolvidos e quantificar o grau
de dado do cérebro. No estudo por Larsson e colaboradores (2005) a concentração
plasmática da proteína S-100β, como possível marcador de danos gliais, encontra-
se aumentada.
De qualquer maneira, a fisiopatologia da encefalopatia séptica está longe
ser conhecida perfeitamente e vários aspectos merecem ser esclarecidos, em
especial o início do desenvolvimento da encefalopatia. Tardiamente, as disfunções
ou as insuficiências dos órgãos contribuem para o seu agravamento. Além disso,
numerosos fatores de origem iatrogênicos também podem agravar o quadro.
Neste contexto, além dos estudos que envolvem humanos, os modelos de
ligação e perfuração cecal (CLP) são clinicamente relevantes, pois produzem uma
inflamação generalizada similar àquela observada durante a síndrome da resposta
inflamatória sistêmica e a sepse (Ritter et al, 2004).
Sepse e Cognição
Recentemente, diversos estudos foram realizados mostrando que os
sobreviventes de unidades de terapia Intensiva apresentam incapacidade cognitiva
em longo prazo, incluindo alterações na memória, atenção, na concentração e ou na
perda global da função cognitiva (Gordon et al, 2004; Granja et al, 2004; Hopkins et
al, 2005; Hough e Curtis, 2005; Jackson et al, 2004).
10
O termo incapacidade cognitiva resulta de anormalidades clínicas
significativas em uma ou mais funções do cérebro incluindo memória, atenção,
função executiva, anormalidades espaciais e visuais, e a função intelectual. A
incapacidade cognitiva pode ser suave, moderada, ou severa e pode limitar a
habilidade de um indivíduo de pensar, raciocinar, e executar tarefas diárias. O termo
declínio cognitivo relaciona-se a deterioração das habilidades cognitivas e não é
necessariamente sinônimo de incapacidade cognitiva, pois não implica em um nível
absoluto do funcionamento. Entretanto, este tipo de declínio pode causar
incapacidades significativas na vida diária de uma pessoa que deseja executar
níveis elevados da cognição em áreas ocupacionais e vocacionais. Alternativamente,
o rápido declínio cognitivo em uma pessoa com coeficiente de inteligência abaixo da
média poderia resultar no diagnóstico de incapacidade cognitiva, porém com impacto
menor na função diária (Gordon et al, 2004).
Estudos precedentes que envolveram pacientes sobreviventes das
unidades de terapia intensiva demonstraram algum grau de incapacidade cognitiva
(Gordon et al, 2004; Granja et al, 2004; Hopkins et al, 2005; Hough e Curtis, 2005;
Jackson et al, 2004). Em estudos em longo prazo a maioria dos pacientes mostrou
uma melhora na função cognitiva total, porém algumas habilidades cognitivas, tais
como a memória, não melhoraram completamente (Angus et al, 2001; Granja et al,
2005; Hopkins et al, 1994). É bem caracterizada a participação de vias inflamatórias
apoptóticas e danos neuronais secundários a encefalopatia séptica (Messaris et al.,
2004).
Muitos pacientes criticamente doentes possuem incapacidades
neurocognitivas crônicas significativas em 2 meses (Jones et al, 2006), 6 meses
(Weinert et al, 1997; Jackson et al, 2003b), 9 meses (Hopkins et al, 2006), 1 ano
11
(Hopkins et al, 1999), 2 anos (Hopkins et al, 2005), e em até 6 anos (Suchyta et al,
2004) após a alta hospitalar. As incapacidades neurocognitivas melhoram durante os
primeiros 6 a 12 meses da saída dos pacientes do ambiente hospitalar podendo ser
permanente ou não, e associados com as incapacidades na função diária, na baixa
qualidade de vida, e em uma inabilidade de retornar ao trabalho (Sukantarat et al,
2005; Jackson et al, 2004).
Estudos concluíram que sobreviventes da sepse que tiveram
incapacidades neurocognitivas na alta hospitalar, somente 45% mantiveram as
incapacidades neurocognitivas após 1 ano (Hopkins et al, 1999). Não havia
nenhuma melhoria adicional nas seqüelas neurocognitivas após 2 anos da alta
hospitalar (Hopkins et al, 2003).
Outros significativos sintomas que sobreviventes de unidades de terapia
intensiva apresentam são a depressão e a ansiedade (Scragg et al, 2001). A
prevalência e a severidade dos transtornos afetivos incluindo sintomas de depressão
e ansiedade variam de 10% a 58% (Jackson et al, 2003; Hopkins et al, 1999; Skozol
e Vender, 2001, Al-Saidi et al, 2003; Schelling et al, 1998). A depressão foi relatada
em até 30% dos sobreviventes (Jackson et al, 2003), e estima-se que 47% têm
ansiedade clinicamente significativa (Scragg et al, 2001). Certamente, taxas
elevadas de depressão entre sobreviventes de unidades de terapia intensiva sejam
relacionadas à incapacidade cognitiva. Em alguns casos a depressão severa pode
imitar sintomas de incapacidade cognitiva, embora as diferenças existam entre estas
circunstâncias. No geral, os indivíduos com depressão retêm a habilidade de
aprender, não se esquecem rapidamente e não indicam decréscimos significativos
na linguagem (Hart et al, 1997; McGlynn e Schacter, 1989; Jones et al, 1992).
12
A neurobiologia da depressão pode ser explicada na maior parte na
desregulação do eixo hipotalâmico-pituitário-adrenal e da sua ação no hipocampo
que implicam no fator liberador de corticotrofinas, glucocorticoides, fator neurotrofico
derivado do cérebro, e o CREB. Outras áreas do cérebro além do hipocampo
provavelmente também estão envolvidas. Por exemplo, os núcleos acumbens, a
amígdala, e o núcleo hipotalâmico são críticos na regulação da motivação como
comer, dormir, nível de energia, ritmo circadiano, e em respostas aos estímulos de
recompensa e aversivos, que estão anormais em pacientes deprimidos (Nestler et al,
2002)
Os sintomas de dano cognitivo como a memória, a depressão e a
ansiedade devem ser melhor entendidos para posteriormente justificar os
mecanismos que envolvem o dano cognitivo em sobreviventes de sepse. Neste
contexto, devido a grande incidência, associado à gravidade da sepse seria por si
o suficiente para justificar o aprofundamento no conhecimento de sua fisiopatologia
e a tentativa de novas possibilidades terapêuticas, pois como exposto nos
parágrafos acima, a maioria dos sobreviventes de unidades de terapia intensiva
apresentam algum dano cognitivo em longo prazo, portanto faz-se necessário a
realização de estudos que possam investigar as possíveis incapacidades cognitivas
apresentadas em curto e médio prazo em um modelo animal de ligação e perfuração
cecal (CLP).
Sepse e Estresse Oxidativo
Diversos mecanismos de inflamação e dano celular são implicados na
fisiopatologia da sepse, choque séptico e disfunção orgânica relacionada à sepse,
13
entre eles a geração de espécies ativas do oxigênio (EAO). O elemento oxigênio
existe na atmosfera na forma diatômica O
2
, com exceção de certos microorganismos
unicelulares anaeróbios e aeróbios tolerantes, todos os animais, plantas e bactérias
necessitam de O
2
para eficiente produção de energia através do uso do oxigênio
dependente da cadeia transportadora de elétrons nas mitocôndrias de eucariontes
(Halliwell & Gutteridge,1999).
A necessidade do O
2
obscurece o fato de que é um gás tóxico e
mutagênico oferecendo sérios riscos, as espécies aeróbicas sobrevivem devido às
defesas antioxidantes que as protegem. Os efeitos dos danos em organismos
aeróbicos variam consideravelmente com o tipo de organismo, a idade, estado
fisiológico e a dieta. A toxicidade do oxigênio é influenciada pela presença na dieta
de variadas quantidades de vitaminas A, E, e C, metais tais como Zinco, Cobre e
Ferro, antioxidantes sintéticos e ácidos graxos poliinsaturados (Halliwell &
Gutteridge, 1999).
Para formar o oxigênio molecular O
2
, os dois elétrons do subnível p de um
elemento oxigênio fazem intercâmbio com os dois elétrons de outro elemento
oxigênio, formando um composto estável com 12 elétrons na última camada (L).
Quando no metabolismo normal ocorrer uma redução do oxigênio molecular O
2
, este
ganhará um elétron, formando o radical superóxido (O
2
) (Mello et al.,1983). Em
condições fisiológicas do metabolismo celular aeróbico, o O
2
sofre redução
tetravalente, com aceitação de quatro elétrons, resultando na formação de água,
durante este processo são formados intermediários reativos como os radicais
superóxido (O
2
), hidroperoxila (HO
2
), hidroxila (OH), e o peróxido de hidrogênio
(H
2
O
2
) (Ferreira et al., 1997, Cuzzocrea et al,2001). Normalmente a redução
completa do O
2
ocorre na mitocôndria, e a reatividade das EAO é neutralizada pela
14
entrada de quatro elétrons (Cohen, 1989). Entre as espécies reativas de oxigênio
formadas o radical superóxido ocorre em quase todas as células aeróbicas e é
produzido durante a ativação máxima de neutrófilos, macrófagos, monócitos e
eosinófilos (Halliwell & Gutteridge, 1990). O radical superóxido reage com alvos
biológicos, sendo que o efeitos nos tecidos é resultado da formação secundaria de
novos radicais livres em adição a reação do superóxido com lipídios, catecolaminas
(Macarthur et al.,2000), e Dna (Dix et al.,1996).
Entre as EAO o oxigênio singlet que é a forma excitada do oxigênio
molecular e não possui elétrons desemparelhados na ultima camada (Halliwell &
Gutteridge, 1990) é reconhecido como um possível contribuinte para o estresse
oxidativo nos sistemas vivos, altamente energético e mutagênico, sendo capaz de
oxidar moléculas biogicas (Cuzzocrea et al.,2001; Ravanat et al.,1992).
O H
2
O
2
é capaz de atravessar camadas lipídicas, podendo reagir com a
membrana eritrocitária e com proteínas ligadas ao ferro, sendo assim é altamente
tóxico para as células, podendo ser aumentada esta toxicidade em presença de ferro
(Eaton,1991).
O radical mais reativo proposto muitos anos atrás é o HO
2
-
, produzido
pela interação do O
2
e H
2
O
2
pela reação química conhecida como Haber-Weiss,
traços do metal ferro na forma de íons, reage com H
2
O
2,
produzindo o radical
hidroxil, o íon ferro não esta presente em vivo, mas os íons são produzidos pela
ação do superóxido sobre os íons ferro armazenados em proteínas (Cuzzocrea et
al.,2001). A liberação do ferro intracelular, a baixa capacidade liquórica de ligação
ferro-proteína e a deficiência de enzimas antioxidantes no sistema nervoso central
ampliam o risco de lesão induzida pelo trauma com a liberação de ferro (Ferreira et
al.,1997). Estas espécies ativas de oxigênio são capazes de reagir
15
indiscriminadamente com qualquer tipo de molécula orgânica, extraindo elétrons e
gerando novos radicais livres em reação em cadeias altamente citotóxicas (Ames et
al.,1993).
Quando existe um aumento na produção ou diminuição das defesas
antioxidantes existe uma condição chamada de estresse oxidativo, em que os
radicais livres em excesso começam a produzir danos a lipídios, proteínas, DNA,
carboidratos (Halliwell & Gutteridge, 1999), inibição das enzimas da cadeia
respiratória mitocondrial, inativação do gliceraldeido-3-fosfato dehidrogenase,
inibição da atividade da ATPase na membrana sódio/potássio, inativação da
membrana no canal de sódio (Cuzzocrea et al., 2001).
A capacidade das células em diminuir os efeitos do estresse oxidativo é
determinada pelo balanço entre as quantidades de espécies oxidantes geradas, e, a
capacidade dos processos metabólicos de produzir antioxidantes (Beutler et al.,
1989).
Antioxidantes e tratamento de sepse
Intervenções que reduzem a produção das EAO exercem efeitos
benéficos em diversos modelos de endotoxemia e choque séptico. Estas
intervenções incluem a N-acetilcisteina (NAC) (Atis et al 2006, Victor et al 2003,
Ozdulger et al 2003), α-tocoferol (Durant et al 2004), alopurinol (Xiang et al 2003),
deferoxamina (DFX) (Messaris et al 2004b), catalase (Supinski et al 1993),
superoxide dismutase (Supinski e Callahan 2006), miméticos de superoxide
dismutase (Salvemini e Cuzzocrea 2003), magnolol (Kong et al 2000) e tempol
16
(Matejovic et al 2005). Geralmente estas intervenções são administradas antes ou
imediatamente após a indução da sepse o que pode limitar sua relevância clínica.
Entre os mais estudados antioxidantes no tratamento da sepse
encontra-se a NAC é bem conhecida como precursora artificial de glutationa e
utilizada clinicamente como droga mucolítica e no tratamento da intoxicação por
paracetamol, com raros efeitos adversos. O NAC é um scavenger de peróxido de
hidrogênio, ácido hipoclórico e radical hidroxil e por estas ações inibe a liberação de
TNFα, a ativação de citocinas pró-inflamatórias e apoptose celular.
As evidências sugerem que a expressão do gene TNF é controlada
pela transcrição do NF-kB, cuja a atividade pode ser induzida pelo peróxido de
hidrogênio. NAC mostrou inibir a atividade do NF-kB em várias linhagens celulares,
inclusive em macrófagos peritoneais de ratos (Pahan et al 1998). O peróxido de
hidrogênio diretamente ou indiretamente através de sua redução a radical hidroxil via
reação de Fenton, age como um mensageiro na síntese e ativação de mediadores
inflamatórios. O NAC como scavenger destes radicais mostrou inibir a liberação
destes mediadores.
Por estas razões é reconhecido o papel antioxidante da NAC na sepse,
mas quando utilizada antes da indução da sepse e não depois. Em contraste alguns
estudos demonstram um aumento no estresse oxidativo e mortalidade por sepse
após uso de altas doses da NAC, possivelmente relacionado à sua capacidade para
reduzir o ferro para sua forma catalicamente ativa (Sprong et al 1998), favorecendo a
reação de Fenton.
O DFX é um quelante de ferro empregado com segurança no tratamento
de várias doenças hematológicas. Experimentalmente, foi citada em alguns
estudos, como uma droga que diminuiu a injúria oxidativa, quando usada antes e
17
não depois da indução da sepse, melhorando mortalidade em um modelo animal de
sepse abdominal (Messaris et al 2004).
As propriedades pró-inflamatórias dos EAO incluem dano às lulas
endoteliais, formação de fatores quimiotáticos, recrutamento de neutrófilos, oxidação
e peroxidação de lipídeos, dano ao DNA, liberação de TNF-α e IL-1β e formação de
peroxinitrito (Azevedo et al 2006, Protti e Singer 2006). A hiperprodução de EAO e a
falha nos mecanismos de “scavengers” naturais são implicados no dano endotelial,
alterações miocárdicas e falência orgânica múltipla.
Os monócitos e polimorfonucleares sofrem alterações, descritas como
ativação de leucócitos, em resposta a estimulação por TNF e interleucinas (IL), com
um conseqüente aumento na produção de superóxido (O
2
-
) por estas células.
Primariamente o superóxido (O
2
-
) tem um efeito pró-inflamatório, que é perpetuado
pela formação de peroxinitrito (reação de superóxido com óxido nítrico). O
peroxinitrito possui vários efeitos citotóxicos e pró-inflamatórios independentes que
levam ao dano celular irreversível, como evidenciado no choque séptico (Alvarez e
Evelson 2007).
O choque séptico é caracterizado por severa hipotensão e diminuição da
perfusão tecidual em decorrência da hiporreatividade vascular a catecolaminas
endógenas e exógenas, que pelo menos em parte é explicado pelo grande aumento
na produção de óxido nítrico que ocorre na sepse (Fernandes et al 2006, Cuzzocrea
et al , 2006).
O peróxido de hidrogênio (H
2
O
2
), apesar de ser considerado um oxidante
estável, conta com um papel importante na fisiopatologia da sepse. O H
2
O
2
pode ser
metabolizado por duas enzimas antioxidantes, a glutationa peroxidase e a catalase,
mas em presença de metais de transição, ele é decomposto em radical hidroxil via
18
reação de Fenton, um radical altamente tóxico e reativo. Os danos às células
musculares e acidose aumentam a quantidade de ferro liberado da mioglobina e
hemoglobina, facilitando esta reação. Recentemente foi demonstrado que alterações
do metabolismo de ferro podem estar relacionadas com mortalidade em modelos
animais de sepse (Wizorek et al 2003).
Associada a grande mortalidade envolvida, os gastos direto e indireto com
a sepse atinge altas cifras em nosso país. A possibilidade de diminuir a mortalidade
por sepse e reduzir os gastos com internação em Unidades de Terapia Intensiva
(alto custo com antibióticos de largo espectro, recursos técnicos, humanos e
tecnológicos associados com o manejo do paciente) justificam a necessidade de
maior investimento no estudo desta patologia. Outrossim, são pouco conhecidos os
efeitos da sepse no Sistema Nervoso Central e, através da determinação do
Estresse Oxidativo, poderemos identificar e melhor compreender estes danos.
Modelo animal de sepse
Estudos de sepse em humanos são difíceis devido a severidade da
doença, a necessidade de intervenções terapêuticas imediatas, a heterogeneidade
dos pacientes. Assim, modelos animais têm sido usados extensivamente para
explorar a patogênese e gerarem dados pré-clínicos de intervenções terapêuticas.
Para estas propostas, deve-se utilizar um modelo animal que reproduza a
vasodilatação, hipotensão, aumento do débito cardíaco, resposta ao tratamento e
mortalidade vistos em pacientes pticos. Tem-se utilizado para isto modelo de
sepse abdominal, sepse cutânea, sepse induzida pela administração de
lipopolissacarídeo (LPS) ou fator de necrose tumoral. Porém os modelos que
19
induzem peritonite são mais amplamente usados. A peritonite pode ser induzida por
inoculação direta de bactérias ou de conteúdo fecal na cavidade peritoneal.
Entretanto o modelo mais aceito na literatura, e que parece simular mais
adequadamente o quadro clínico de sepse, é o chamado CLP. A CLP se baseia na
ligação do ceco logo abaixo da válvula ileo-cecal (mantendo desta maneira o trânsito
intestinal), perfuração do ceco com tamanho padronizado e liberação de conteúdo
fecal para a cavidade peritoneal, conforme classicamente descrito por Wichterman e
cols (1980). Desta maneira além da peritonite se induz isquemia mesentérica
simulando as grandes síndromes clínicas de sepse abdominal (p.ex. apendicite,
isquemia mesentérica). Recentemente este modelo foi modificado para melhor
simular as características clínicas dos pacientes com sepse abdominal, introduzindo
desta maneira a ressucitação volêmica e emprego de antibióticos de amplo espectro
(Hollenberg et al 2001).
2. OBJETIVOS
2.1 Objetivo Geral
Avaliar as alterações comportamentais e neuroquímicas induzidas pela sepse em
modelo animal com um possível papel terapêutico de antioxidantes.
2.2 Objetivos Específicos:
Avaliar os efeitos da sepse após 10 e 30 dias sobre o aprendizado e
memória;
Avaliar os efeitos da sepse leve e grave após 10 dias sobre a ansiedade;
20
Avaliar os efeitos da sepse leve e grave após 10 dias sobre sintomas
depressivos em ratos de diferentes idades;
Determinar uma relação temporal entre a indução da sepse e parâmetros
de estresse oxidativo nas estruturas cerebrais dissecadas: hipocampo,
estriado, córtex e cerebelo em um modelo animal de sepse.
Avaliar os efeitos do tratamento com antioxidantes na incapacidade
cognitiva precoce e tardia e no estresse oxidativo em hipocampo.
21
Parte II
22
Capítulo 1.
Cognitive impairment in sepsis survivors from cecal ligation
and perforation
Tatiana Barichello, Márcio R. Martins, Adalisa Reinke, Gustavo Feier,
Cristiane Ritter, João Quevedo, Felipe Dal-Pizzol
Critical Care Medicine (2005) 33:221-223
Brief Reports
Cognitive impairment in sepsis survivors from cecal ligation and
perforation*
Tatiana Barichello, PharmD, MSc; Márcio R. Martins, BSc; Adalisa Reinke, BSc; Gustavo Feier, Bsc;
Cristiane Ritter, MD, MSc; João Quevedo, MD, PhD; Felipe Dal-Pizzol, MD, PhD
D
espite major improvements
in intensive care and antibi-
otic therapy, the mortality
and morbidity rates due to
severe sepsis and septic shock remain
high. Critical illness survivors present
long-term cognitive impairment, includ-
ing alterations in memory, attention,
concentration, and/or global loss of cog-
nitive function (1– 4). The development
of an animal model that mimics the cog-
nitive alterations observed in patients is
of great value. In this context, murine
models of cecal ligation and perforation
(CLP) are clinically relevant since they
induce a polymicrobial sepsis that mim-
ics human sepsis (5). CLP models have
contributed to elucidate the pathogenesis
and to determine new therapies in sepsis
(5, 6). In this article, we evaluated learn-
ing and memory performance in rats af-
ter sepsis induced by CLP compared with
sham-operated rats.
MATERIALS AND METHODS
Under anesthesia (ketamine, 80 mg/kg,
and xylazine, 10 mg/kg), 105 male Wistar rats
(300 –350 g) underwent CLP (sepsis group)
and 40 rats underwent sham operation (con-
trol group) as previously described (5). After
surgery, the sepsis group received “basic sup-
port” (saline at 50 mL/kg immediately and 12
hrs after CLP plus ceftriaxone at 30 mg/kg and
clindamycin at 25 mg/kg every 6 hrs over a
total of 3 days). The sham-operated group re-
ceived only saline, 50 mL/kg, immediately and
12 hrs after surgery, and the volume of saline
corresponded to antibiotic administration.
Survival in the sham group was 100%, and in
the sepsis group, it was 40% (40 rats). The
number of survivals is in accordance with our
previous reports (5, 6). Ten days after surgery,
the animals separately underwent three be-
havioral tasks: a) the step-down inhibitory
avoidance task (single-training); b) continu-
ous multiple-trials step-down inhibitory
avoidance task; and c) the open-field task. The
behavioral tests were performed by the same
person, who was blinded as to group (sham or
CLP). All experimental procedures involving
animals were performed in accordance with
the National Institute of Health Guide for the
Care and Use of Laboratory Animals and with
the approval of the local ethics committee.
The step-down inhibitory avoidance appa-
ratus and procedures have been described in
previous reports (7). Briefly, the training ap-
paratus was a 50 ϫ 25 ϫ 25-cm acrylic box
(Albarsch, Porto Alegre, Brazil) whose floor
consisted of parallel caliber stainless steel bars
(1-mm diameter) spaced 1 cm apart. A 7-cm-
wide, 2.5-cm-high platform was placed on the
floor of the box against the left wall. In the
training trial, animals were placed on the plat-
form and their latency to step down on the
grid with all four paws was measured with an
automatic device. Immediately after stepping
down on the grid, the animals received a 0.4-
mA, 2.0-sed foot shock and returned to their
home cage. A retention test trial was per-
formed 24 hrs after training. The retention
test trial was procedurally identical to train-
ing, except that no foot shock was presented.
The retention test step-down latency (maxi-
*See also p. 262.
From the Laboratório de Fisiopatologia Experimen-
tal (TB, AR, CR, FD-P), the Laboratório de Neurotoxi-
cologia (MRM, GF, JQ), Universidade do Extremo Sul
Catarinense, Criciúma, Brazil.
Supported, in part, by UNESC (Brazil), CNPq (Bra-
zil), FUNCITEC (Brazil). None of the authors have any
financial interests to disclose.
Address requests for reprints to: Felipe Dal-Pizzol,
MD, PhD, Laboratório de Fisiopatologia Experimental,
Universidade do Extremo Sul Catarinense, Criciúma,
SC, Brazil, Avenida Universitária, 1105, 88006000.
Copyright © 2005 by the Society of Critical Care
Medicine and Lippincott Williams & Wilkins
DOI: 10.1097/01.CCM.0000150741.12906.BD
Objective: Critical illness survivors present long-term cognitive
impairment, including problems with memory and learning. We
evaluated cognitive performance in rats that survived from sepsis
induced by cecal ligation and puncture (CLP).
Design: Prospective, controlled experiment.
Setting: Animal basic science laboratory.
Subjects: Male Wistar rats, weighing 300 –350 g.
Interventions: The rats underwent CLP (sepsis group) with
“basic support” (saline at 50 mL/kg immediately and 12 hrs after
CLP plus ceftriaxone at 30 mg/kg and clindamycin at 25 mg/kg 6,
12, and 18 hrs after CLP) or sham-operated (control group).
Measurements and Main Results: Ten days after surgery, the
animals underwent three behavioral tasks: a) inhibitory avoidance
task; b) habituation to an open field; and c) continuous multiple-
trials step-down inhibitory avoidance task (CMSIA). In the habit-
uation to an open-field task, there were no differences in the
number of crossings and rearings. The sepsis group showed
significantly decreased performance in latency retention com-
pared with the sham group in inhibitory avoidance. Furthermore,
when tested by the habituation to an open-field task, the sepsis
group did not show any difference between training and test,
indicating memory impairment. In the CMSIA, the sepsis group
showed a significant increase in the number of training trials
required to reach the acquisition criterion.
Conclusion: Our data provide the first experimental demon-
stration that survivors from CLP show learning and memory
impairment after complete physical recovery from sepsis. (Crit
Care Med 2005; 33:221–223)
K
EY WORDS: sepsis; survivors; cecal ligation and puncture;
learning; memory; rat
221Crit Care Med 2005 Vol. 33, No. 1
mum, 180 secs) was used as a measure of
inhibitory avoidance retention.
Habituation to an open field was carried
out in a 40 ϫ 60-cm open field surrounded by
50-cm high walls made of brown plywood with
a frontal glass wall. The floor of the open field
was divided into 12 equal rectangles by black
lines. Animals were gently placed on the left
rear quadrant, and left to explore the arena for
5 mins (training session). Immediately follow-
ing this, the animals were taken back to their
home cage, and 24 hrs later submitted again
to a similar open-field session (test session).
Crossing of the black lines and rearing per-
formed in both sessions were counted. The
decrease in the number of crossings and rear-
ings between the two sessions was taken as a
measure of the retention of habituation (8).
Continuous multiple-trials step-down in-
hibitory avoidance task was performed in the
same step-down inhibitory avoidance appara-
tus described above. However, in the training
session, the animal was placed on the platform
and immediately after stepping down on the
grid, received a 0.3-mA, 2.0-sec foot shock.
This procedure continued until the rat re-
mained on the platform for 50 secs. The ani-
mal was then returned to the home cage. The
number of training trials required to reach the
acquisition criterion of 50 secs on the plat-
form was recorded. The retention test was
performed 24 hrs later.
Data from the inhibitory avoidance task
and retention test latencies from continuous
multiple-trials step-down inhibitory avoidance
were expressed as median and interquartile
ranges. Statistical significances were deter-
mined by the Mann-Whitney U test, p Ͻ .05.
Data from the open-field task and the number
of training trials from continuous multiple-
trials step-down inhibitory avoidance were ex-
pressed as mean Ϯ
SEM. Statistical signifi-
cances were determined by paired samples
Student’s t-test, p Ͻ .05.
RESULTS AND DISCUSSION
After 10 days, the animals seemed to
be free from infection. We performed
blood cultures that were all negative in
this period. The animals recovered their
weight and grooming habits, blood
counts returned to control levels, and
polymerase chain reaction values were
negative. In addition, we had previously
demonstrated that 5 days after CLP, or-
ganic oxidative stress, mitochondrial dys-
function, and neutrophil infiltration re-
turn to control levels in the present CLP
model (6).
No differences between groups were
demonstrated in the inhibitory avoidance
training session. In the test session, the
step-down latency was significantly de-
creased in the sepsis group compared
with the sham group (p Ͻ .01) (Fig. 1A).
In the habituation to the open-field train-
ing session, no difference in motor and
exploratory activity was demonstrated be-
tween groups, e.g., in the number of
crossings and rearings. This finding sup-
ports our hypothesis that no active infec-
tion remained in the CLP group.
In the open-field task, there were no
differences in the number of crossings
and rearings between groups in the ha-
bituation to the open-field training ses-
sion, demonstrating no difference in mo-
tor and exploratory activity between
groups, which reinforces the idea of no
active infection in the CLP group (Fig.
1B). In the test session, there was a sig-
nificant reduction in both crossings and
rearings of the sham group compared
with the sepsis group (p Ͻ .001) (Fig.
1B). In addition, the sepsis group did not
show a difference in crossings and rear-
ings between training test sessions, dem-
onstrating memory impairment in this
group (Fig. 1B). On the other hand, the
sham group showed a decreased number
of crossings (p Ͻ .005) and rearings (p Ͻ
.005), indicating habituation to the task
environment (Fig. 1B).
The continuous multiple-trials step-
down inhibitory avoidance showed a signif-
icant increase in the number of training
trials required to reach the acquisition cri-
terion (50 secs on the platform) in the
sepsis group compared with the sham
group (p Ͻ .05) (Fig. 2A). In the reten-
tion test, there was no difference between
groups (Fig. 2B). The results of this task
showed that the sepsis group required
approximately two times more stimulus
to reach the acquisition criterion com-
pared with the sham group, indicating a
learning impairment (acquisition of new
knowledge) in the sepsis group.
These results do not appear to be sec-
ondary to antibiotic administration since
we performed the open-field and inhibi-
tory avoidance in a sham-operated group
with antibiotic administration and did
Figure 1. A, inhibitory avoidance task. Data are
expressed as median (interquartile ranges) train-
ing and test session latencies, in seconds. *Sig-
nificant difference compared with Sham group
(Mann-Whitney U test, p Ͻ .01). Both groups (n
ϭ 14 in the sham group and n ϭ 13 in the sepsis
group) showed significant training test differ-
ences (Wilcoxon’s test, p Ͻ .01). B, Open-field
task. Data are expressed as mean Ϯ SEM of cross-
ings and rearings of training (white columns)
and test (gray columns) session (n ϭ 14 in the
sham group and n ϭ 17 in the sepsis group).
*Significant difference between training test
(paired samples Student’s t-test, p Ͻ .005). #Sig-
nificant difference between groups in training
and test sessions (Student’s t-test, p Ͻ .0001).
Figure 2. A, continuous multiple-trials step-down
inhibitory avoidance. Data are expressed as mean
Ϯ SEM of the number of training trials required to
reach acquisition criterion (50 secs on the plat-
form). *Significant difference between groups
(Student’s t-test, p Ͻ .0001). B, retention test
latencies, expressed as median (interquartile
ranges). No difference was observed between
groups (n ϭ 12 per group).
222 Crit Care Med 2005 Vol. 33, No. 1
not detect significant differences in com-
parison with the sham-operated group
(data not shown).
Previous reports describing human in-
tensive care unit sepsis survivors demon-
strated that the vast majority of such
patients experienced cognitive impair-
ment at hospital discharge (1, 4). At 1-yr
follow-up, most patients showed im-
provement in overall cognitive function;
however, some cognitive skills, such as
memory, did not completely improve (1,
2, 4). Our data provide the first experi-
mental demonstration in a clinically rel-
evant model of animal sepsis. The rats
showed impairment in learning and
memory. In this context, Shimizu et al.
demonstrated that 24 hrs after CLP, ani-
mals showed learning impairment in pas-
sive avoidance retention (9). Our results
are of greater significance since 10 days
after CLP, but not 24 hrs, the animals are
fully recovered, with no signs of infection
or motor alterations (5, 6). In addition,
our survival study design using fluids and
antibiotics replicates more closely the
supportive therapy performed in the clin-
ical setting, when compared with the
study of Shimizu et al. (9). The deficits
demonstrated here mimics, at least in
part, the cognitive alterations observed in
patients surviving sepsis, particularly
memory impairment. In this way, we be-
lieve that the CLP model of sepsis will
help us to investigate the biological
mechanisms involved in the cognitive
deficits associated with sepsis and to de-
termine therapeutic approaches to this
problem.
REFERENCES
1. Hopkins RO, Weaver LK, Pope D, et al: Neu-
ropsychological sequelae and impaired health
status in survivors of severe acute respiratory
distress syndrome. Am J Respir Crit Care Med
1999; 161:50–56
2. Angus DC, Musthafa AA, Clermont G, et al:
Quality-adjusted survival in the first year after
the acute respiratory distress syndrome. Am J
Respir Crit Care Med 2001; 163:1389–1394
3. Granja C, Dias C, Costa-Pereira A, et al: Qual-
ity of life of survivors from severe sepsis and
septic shock may be similar to that of others
who survive critical illness. Crit Care 2004;
8:R91–R98
4. Heyland DK, Hopman W, Coo H, et al: Long-
term health-related quality of life in survivors
of sepsis. Short Form 36: a valid and reliable
measure of health-related quality of life. Crit
Care Med 2000; 28:3599–3605
5. Ritter C, Andrades ME, Reinke A, et al: Treat-
ment with N-acetylcysteine plus deferoxamine
protects rats against oxidative stress and im-
proves survival in sepsis. Crit Care Med 2004;
32:342–349
6. Ritter C, Andrades M, Frota Junior ML, et al:
Oxidative parameters and mortality in sepsis
induced by cecal ligation and perforation. In-
tensive Care Med 2003; 29:1782–1789
7. Quevedo J, Vianna MR, Roesler R, et al: Two
time windows of anisomycin-induced amnesia
for inhibitory avoidance training in rats: Pro-
tection from amnesia by pretraining but not
pre-exposure to the task apparatus. Learn
Mem 1999; 6:600 607
8. Vianna MR, Alonso M, Viola H, et al: Role of
hippocampal signaling pathways in long-term
memory formation of a nonassociative learn-
ing task in the rat. Learn Mem 2000;
7:333–340
9. Shimizu I, Adachi N, Liu K, et al: Sepsis facil-
itates brain serotonin activity and impairs
learning ability in rats. Brain Res 1999; 830:
94 –100
O
ur data provide
the first experi-
mental demon-
stration that survivors from
cecal ligation and puncture
show learning and memory
impairment after complete
physical recovery from sepsis.
223Crit Care Med 2005 Vol. 33, No. 1
26
Capítulo 2.
Behavioral deficits in sepsis-surviving rats induced by
cecal ligation and perforation
Tatiana Barichello, Márcio Rodrigo Martins, Adalisa Reinke, Larissa S.
Constantino, Roberta Albino Machado, Samira S. Valvassori, José
Cláudio F. Moreira, João Quevedo, Felipe Dal-Pizzol
Brazilian Journal of Medical and Biological Research (2007) 40: 831-
7
831
Braz J Med Biol Res 40(6) 2007
Sepsis and cognition deficits
www.bjournal.com.br
Brazilian Journal of Medical and Biological Research (2007) 40: 831-837
ISSN 0100-879X
Behavioral deficits in sepsis-surviving
rats induced by cecal ligation and
perforation
1
Laboratório de Fisiopatologia Experimental,
2
Laboratório de Neurociências, Universidade do Extremo Sul Catarinense,
Criciúma, SC, Brasil
3
Centro de Estresse Oxidativo, Departamento de Bioquímica,
Instituto de Ciências Básicas da Saúde,
Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
T. Barichello
1
,
M.R. Martins
2
,
A. Reinke
1
,
L.S. Constantino
1
,
R.A. Machado
1
,
S.S. Valvassori
2
,
J.C.F. Moreira
3
,
J. Quevedo
2
and
F. Dal-Pizzol
1
Abstract
Sepsis and its complications are the leading causes of mortality in
intensive care units, accounting for 10-50% of deaths. Intensive care
unit survivors present long-term cognitive impairment, including
alterations in memory, attention, concentration, and/or global loss of
cognitive function. In the present study, we investigated behavioral
alterations in sepsis-surviving rats. One hundred and ten male Wistar
rats (3-4 months, 250-300 g) were submitted to cecal ligation and
puncture (CLP), and 44 were submitted to sham operation. Forty-four
rats (40%) survived after CLP, and all sham-operated animals sur-
vived and were used as control. Twenty animals of each group were
used in the object recognition task (10 in short-term memory and 10 in
long-term memory), 12 in the plus-maze test and 12 in the forced
swimming test. Ten days after surgery, the animals were submitted
individually to an object recognition task, plus-maze and forced
swimming tests. A significant impairment of short- and long-term
recognition memory was observed in the sepsis group (recognition
index 0.75 vs 0.55 and 0.74 vs 0.51 for short- and long-term memory,
respectively (P < 0.05). In the elevated plus-maze test no difference
was observed between groups in any of the parameters assessed. In
addition, sepsis survivors presented an increase in immobility time in
the forced swimming test (180 vs 233 s, P < 0.05), suggesting the
presence of depressive-like symptoms in these animals after recovery
from sepsis. The present results demonstrated that rats surviving
exposure to CLP, a classical sepsis model, presented recognition
memory impairment and depressive-like symptoms but not anxiety-
like behavior.
Correspondence
F. Dal-Pizzol
Laboratório de Fisiopatologia
Experimental
Universidade do Extremo Sul
Catarinense
88006-000 Criciúma, SC
Brasil
Research supported by FAPESC,
CNPq and UNESC.
Received October 4, 2006
Accepted April 18, 2007
Key words
Sepsis survivors
Recognition memory
Plus-maze test
Forced swimming test
Cecal ligation and puncture
Cognitive impairment
832
Braz J Med Biol Res 40(6) 2007
T. Barichello et al.
www.bjournal.com.br
Introduction
Sepsis and its complications are a lead-
ing cause of mortality, accounting for 10-
50% of deaths on intensive care units (1-4).
Several studies have been performed to in-
vestigate the role of peripheral organs such
as lungs, liver, gut, and kidneys in sepsis
development (5), but the participation of the
central nervous system during sepsis has
been studied less. Septic encephalopathy rep-
resents brain dysfunction due to sepsis or the
systemic inflammatory response syndrome,
and has been reported to occur in 8-70% of
septic patients depending on the inclusion
criteria employed (6-8).
Survivors of critical care, including sep-
tic patients, may have persistenty compro-
mised organ function, which may result in
symptoms such as dyspnea, fatigue, depres-
sion, and impaired functional status. Re-
cently, several studies have demonstrated
that critical care survivors present long-term
cognitive impairment, including alterations
in memory, attention, concentration, and/or
global loss of cognitive function (9-17).
However, the neurobiological mechanisms
involved in this cognitive impairment re-
main unclear.
A recent study evaluating apoptosis and
vulnerability of different brain regions in-
duced by systemic inflammation concluded
that the hippocampus is the most vulnerable
region during experimental sepsis (18). In
this context, murine models of cecal ligation
and perforation (CLP) are clinically relevant
since they induce a polymicrobial sepsis that
mimics human sepsis (19-22). The CLP
model has contributed to the elucidation of
the pathogenesis and to the determination of
new therapies in sepsis (19,20). Shimizu et
al. (23) demonstrated that 24 h after CLP
animals presented learning impairment in
passive avoidance retention. Moreover, we
recently reported that CLP-induced sepsis
survivors presented learning, aversive and
spatial memory impairment when submitted
to behavioral tasks 10 days after CLP (21)
and learning and aversive memory impair-
ment lasting up to 30 days after CPL (22).
Thus, CLP seems to be a good model for the
study of cognitive and emotional alterations
as late manifestation of sepsis.
Therefore, the objective of the present
study was to determine changes in recogni-
tion memory and the presence of anxiety- or
depressive-like symptoms in severe sepsis-
surviving rats.
Material and Methods
Subjects
Male Wistar rats (3-4 months, 220-310
g) were obtained from our breeding colony
(UNESC). The animals were housed 5 to a
cage with food and water available ad libi-
tum and were maintained on a 12-h light/
dark cycle (lights on at 7:00 am). All experi-
mental procedures involving animals were
performed in accordance with the NIH Guide
for the Care and Use of Laboratory Animals
and the Brazilian Society for Neuroscience
and Behavior (SBNeC) recommendations
for animal care.
Cecal ligation and perforation surgery
The animals were subjected to CLP as
previously described (19-22). Briefly, rats
were anesthetized with a mixture of keta-
mine (80 mg/kg) and xylazine (10 mg/kg),
given intraperitoneally. Under aseptic con-
ditions, a 3-cm midline laparotomy was per-
formed to allow exposure of the cecum with
the adjoining intestine. The cecum was tightly
ligated with a 3.0-silk suture at its base,
below the ileocecal valve, and was perfo-
rated once with a 14-gauge needle. The cecum
was then gently squeezed to extrude a small
amount of feces from the perforation site
returned to the peritoneal cavity, and the
laparotomy was closed with 4.0-silk sutures.
Animals were resuscitated with normal sa-
833
Braz J Med Biol Res 40(6) 2007
Sepsis and cognition deficits
www.bjournal.com.br
line (50 mL/kg subcutaneous) immediately
and 12 h after CLP. All animals were re-
turned to their cages with free access to food
and water. In this model septic rats become
bacteremic with Gram-negative enteric or-
ganisms. In the sham-operated group the
rats were submitted to all surgical proce-
dures but the cecum was neither ligated nor
perforated.
Treatment protocols
After surgery, the sepsis group received
“basic support” (50 mL/kg saline immedi-
ately and 12 h after CLP plus 30 mg/kg
ceftriaxone and 25 mg/kg clindamycin every
6 h for a total of 3 days). The sham-operated
group received only 50 mL/kg saline imme-
diately and 12 h after surgery and the vol-
ume of saline corresponding to antibiotic
administration. To perform behavior experi-
ments 44 animals were sham-operated and
the survival in this group was 100%; 10
animals were used as control to the short-
term memory in the object recognition task,
10 animals were used as control to the long-
term memory in the object recognition task,
12 animals were used as control to the plus-
maze test, and 12 animals were used as
control to the forced swimming test. One
hundred and ten animals were submitted to
CLP and 40% of these animals survived to
perform behavioral tests (N = 44). These
animals were divided as follows: 10 animals
were used in the short-term memory object
recognition task, 10 animals were used in the
long-term memory object recognition task,
12 animals were used in the plus-maze test,
and 12 animals were used in the forced
swimming test. The number of survivors
agreed with previous reports from our group
(19-20).
Behavioral tests
Ten days after surgery the animals were
submitted individually to the object recogni-
tion task, elevated plus-maze or forced swim-
ming tests. All behavioral procedures were
conducted between 13:00 and 16:00 h in a
sound-isolated room. All behavioral tests
were recorded by an observer who was blind
to the animal group.
Object recognition
The apparatus and procedures for the
object recognition task have been described
elsewhere (24,25). Briefly, the task took place
in a 40 x 50-cm open field surrounded by 50-
cm high walls made of plywood with a fron-
tal glass wall. The floor of the open field was
divided into 12 equal rectangles by black
lines. All animals were submitted to a ha-
bituation session where they were allowed
to freely explore the open field for 5 min. No
objects were placed in the box during the
habituation trial. Crossings of the black lines
and rearings performed in this session were
evaluated as locomotor and exploratory ac-
tivity, respectively.
Twenty-four hours after habituation,
training was conducted by placing individual
rats for 5 min in the field, in which two
identical objects (objects A1 and A2; both
being cubes) were positioned in two adja-
cent corners, 10 cm from the walls. In a
short-term recognition memory test given
1.5 h after training, the rats explored the
open field for 5 min in the presence of one
familiar (A) and one novel (B, a pyramid
with a square-shaped base) object. All ob-
jects had similar textures (smooth), colors
(blue), and sizes (weight 150-200 g), but
distinctive shapes. A recognition index cal-
culated for each animal is reported as the
ratio TB/(TA + TB) (TA = time spent explor-
ing the familiar object A; TB = time spent
exploring the novel object B). Between trials
the objects were washed with 10% ethanol
solution. In a long-term recognition memory
test given 24 h after training, the same rats
were allowed to explore the field for 5 min in
834
Braz J Med Biol Res 40(6) 2007
T. Barichello et al.
www.bjournal.com.br
the presence of the familiar object A and a
novel object C (a sphere with a square-
shaped base). Recognition memory was
evaluated as done for the short-term memo-
ry test. Exploration was defined as sniffing
(exploring the object 3-5 cm away from it) or
touching the object with the nose and/or
forepaws.
Elevated plus-maze
The elevated plus-maze task used in ani-
mal models of anxiety has been described in
detail elsewhere (26,27). Briefly, the appa-
ratus consisted of two open arms (50 x 10
cm) and two enclosed arms (50 x 10 x 40 cm)
arranged in such a way that the two arms of
each type were opposite to each other, and a
central platform (5 x 5 cm). The maze’s
height was 50 cm and the tests were con-
ducted under dim red light. Animals were
exposed for 5 min to the red light in their
own home cages before the testing proce-
dure. Next, they were placed individually on
the central platform of the plus-maze facing
an open arm. During a 5-min test period the
following measurements were recorded by
two observers: the number of entries, the
time spent in the open and closed arms, and
the total number of arm entries.
Forced swimming test
The forced swimming test was conducted
according to previous reports (28-30).
Briefly, the test involves two exposures to a
cylindrical water tank in which rats cannot
touch the bottom or from which they cannot
escape. The tank is made of transparent
Plexiglas and is 80 cm tall, 30 cm in diam-
eter, and filled with water (22-23ºC) to a
depth of 40 cm. Water in the tank was
changed after each rat. For the first expo-
sure, rats were placed in the water for 15 min
(pre-test session). Twenty-four hours later
the rats were placed in the water again for a
5-min session (test session). Behavior was
videotaped for later analysis, and the periods
of immobility, swimming, and struggling
time were recorded. The rats were judged to
be immobile whenever they stopped swim-
ming and remained floating in the water,
with their head just above water level.
Statistical analysis
Data for recognition indexes are reported
as median and interquartile ranges. Com-
parisons among groups were performed us-
ing Mann-Whitney U-tests. Recognition in-
dexes within individual groups were ana-
lyzed by Wilcoxon tests. The data for the
elevated plus-maze and forced swimming
tests are reported as means ± SEM and were
analyzed by the Student t-test. In all com-
parisons, P < 0.05 indicated statistical sig-
nificance.
Results
Object recognition
In the habituation session, no significant
differences were observed in the number of
crossings or rearings (P = 0.56; Figure 1A).
Figure 1. Object recognition
task. No significant difference
was observed in the numbers of
crossings and rearings in the
habituation session (Student t-
test). Data are reported as
means ± SEM (A). The sepsis
group presented a significant
impairment of novel object rec-
ognition memory compared to
the sham group (B). Results are
reported as median (interquar-
tile ranges) recognition indexes
in training, short-term (STM) and
long-term memory (LTM) reten-
tion test trials. N = 10 animals
per group. *P < 0.05 compared
to the sham group (Mann-Whit-
ney U-test).
835
Braz J Med Biol Res 40(6) 2007
Sepsis and cognition deficits
www.bjournal.com.br
In Figure 1B, Wilcoxon tests showed
that the sham group, but not the sepsis group,
spent a significantly higher percentage of
time exploring the novel object during either
short- or long-term retention test sessions in
comparison with the training trial. In addi-
tion, the sepsis group presented a significant
reduction in the recognition index in short-
and long-term recognition retention tests
compared to the sham group (Mann-Whit-
ney U-test, P < 0.05). The results indicate
that sepsis survivors presented an impair-
ment of novel object recognition memory.
Elevated plus-maze
No statistically significant difference was
observed in the number of entries (P = 0.65)
or in the time spent in the arms (P = 0.51)
between groups.
Forced swimming test
In the test session (5 min), 24 h after the
pretest session (15 min), we observed a sig-
nificant increase in the immobility time in
the sepsis group compared to the sham group
(P < 0.05), as shown in Figure 2.
Discussion
Previous reports involving intensive care
unit survivors demonstrated cognitive im-
pairment at discharge from the hospital (9-
17). In long-term follow-up studies most
patients showed improvement in overall cog-
nitive function; however, some cognitive
skills, such as memory, were not completely
recovered (9,13,14). The mechanisms in-
volved in these cognitive impairments re-
main unclear. In recent reports we demon-
strated that CLP, a clinically relevant model
of sepsis in rats, presented impairment in
learning and memory. Our results were clini-
cally relevant since 10 and 30 days after
CLP the animals had fully recovered with no
signs of infection or motor alterations (21,22).
We have recently reported aversive and
spatial memory impairments in severe sep-
sis-surviving rats (21,22). The present study
investigated this issue in rats trained in an
object recognition task. This task, originally
developed by Ennaceur and Delacour (31),
is based on the tendency of rodents to ex-
plore a novel object more than a familiar
one. Because no rewarding or aversive stim-
ulation is used during training, the learning
occurs under conditions of relatively low
stress or arousal (31). Here we found that
sepsis-surviving rats presented significant
impairment of novel object recognition
memory. These findings are relevant since the
novel object recognition task in rodents is a
nonspatial, nonaversive memory test, in con-
trast to our previous reports (21,22). In addi-
tion, the object recognition task has also been
increasingly used as a powerful experimental
tool to assess drug effects on memory and to
investigate the neural mechanisms underlying
learning and memory (24,25,32-35).
In the elevated plus-maze, a validated
test to evaluate anxiety-like behavior (26),
no differences were demonstrated between
groups, indicating that sepsis survivors did
not presented anxiety-like symptoms after
recovery from disease.
Sepsis survivors presented depressive-
like symptoms assessed in the forced swim-
ming test. The time of immobility was sig-
nificantly longer in the sepsis group. The
original view of the forced swimming test
offered by Porsolt (28) was that of a model
of depression with features similar to those
Figure 2. Forced swimming test.
The sepsis group showed a sig-
nificant increase in the time of
immobility compared to the
sham group. Data are reported
as means ± SEM for N = 12 ani-
mals per group. *P < 0.05 com-
pared to the sham group (Stu-
dent t-test).
836
Braz J Med Biol Res 40(6) 2007
T. Barichello et al.
www.bjournal.com.br
of the learned helplessness model but tech-
nically easier to produce. The internal affec-
tive state of rodents after exposure to the
initial swim in the forced swimming test was
labeled as ‘behavioral despair’. The pretest
swim induction procedure has been proposed
to be similar to the initial session that in-
duces learned helplessness by exposing rats
to inescapable stress. Induction of learned
helplessness produces broad-ranging behav-
ioral deficits in affect, cognition, sleep, and
motor performance that closely resemble
many of the symptoms of depression (36).
Additionally, as described above, the sepsis-
surviving group did not present locomotor
activity impairment, supporting the idea that
the longer immobility time in the sepsis
group was related to depressive-like symp-
toms. This finding agrees with clinical stud-
ies that show depressive symptoms in survi-
vors of severe diseases such as sepsis and
septic shock (9,11-13,15).
In summary, our results demonstrated
that survivors of CLP, a classical sepsis
model, presented recognition memory im-
pairment and depressive-like symptoms but
not anxiety-like behavior. These findings,
together with our previous reports (21,22),
indicate that the CLP model could be a good
research tool for the study of the biological
mechanisms involved in the behavioral al-
terations secondary to sepsis.
References
1. Brun-Buisson C. The epidemiology of the systemic inflammatory
response. Intensive Care Med 2000; 26 (Suppl 1): S64-S74.
2. Friedman G, Silva E, Vincent JL. Has the mortality of septic shock
changed with time. Crit Care Med 1998; 26: 2078-2086.
3. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sep-
sis. N Engl J Med 2003; 348: 138-150.
4. Tran DD, Groeneveld AB, van der Meulen J, Nauta JJ, Strack van
Schijndel RJ, Thijs LG. Age, chronic disease, sepsis, organ system
failure, and mortality in a medical intensive care unit. Crit Care Med
1990; 18: 474-479.
5. O’Brien JM Jr, Ali NA, Abraham E. Year in review in critical care,
2004: sepsis and multi-organ failure. Crit Care 2005; 9: 409-413.
6. Sprung CL, Peduzzi PN, Shatney CH, Schein RM, Wilson MF,
Sheagren JN, et al. Impact of encephalopathy on mortality in the
sepsis syndrome. The Veterans Administration Systemic Sepsis
Cooperative Study Group. Crit Care Med 1990; 18: 801-806.
7. Young GB, Bolton CF, Austin TW, Archibald YM, Gonder J, Wells
GA. The encephalopathy associated with septic illness. Clin Invest
Med 1990; 13: 297-304.
8. Bleck TP, Smith MC, Pierre-Louis SJ, Jares JJ, Murray J, Hansen
CA. Neurologic complications of critical medical illnesses. Crit Care
Med 1993; 21: 98-103.
9. Angus DC, Musthafa AA, Clermont G, Griffin MF, Linde-Zwirble WT,
Dremsizov TT, et al. Quality-adjusted survival in the first year after
the acute respiratory distress syndrome. Am J Respir Crit Care Med
2001; 163: 1389-1394.
10. Gordon SM, Jackson JC, Ely EW, Burger C, Hopkins RO. Clinical
identification of cognitive impairment in ICU survivors: insights for
intensivists. Intensive Care Med 2004; 30: 1997-2008.
11. Granja C, Dias C, Costa-Pereira A, Sarmento A. Quality of life of
survivors from severe sepsis and septic shock may be similar to that
of others who survive critical illness. Crit Care 2004; 8: R91-R98.
12. Granja C, Lopes A, Moreira S, Dias C, Costa-Pereira A, Carneiro A.
Patients’ recollections of experiences in the intensive care unit may
affect their quality of life. Crit Care 2005; 9: R96-R109.
13. Heyland DK, Hopman W, Coo H, Tranmer J, McColl MA. Long-term
health-related quality of life in survivors of sepsis. Short Form 36: a
valid and reliable measure of health-related quality of life. Crit Care
Med 2000; 28: 3599-3605.
14. Hopkins RO, Weaver LK, Pope D, Orme JF, Bigler ED, Larson-Lohr
V. Neuropsychological sequelae and impaired health status in survi-
vors of severe acute respiratory distress syndrome. Am J Respir Crit
Care Med 1999; 160: 50-56.
15. Hopkins RO, Weaver LK, Collingridge D, Parkinson RB, Chan KJ,
Orme JF Jr. Two-year cognitive, emotional, and quality-of-life out-
comes in acute respiratory distress syndrome. Am J Respir Crit
Care Med 2005; 171: 340-347.
16. Hough CL, Curtis JR. Long-term sequelae of critical illness: memo-
ries and health-related quality of life. Crit Care 2005; 9: 145-146.
17. Jackson JC, Gordon SM, Ely EW, Burger C, Hopkins RO. Research
issues in the evaluation of cognitive impairment in intensive care
unit survivors. Intensive Care Med 2004; 30: 2009-2016.
18. Semmler A, Okulla T, Sastre M, Dumitrescu-Ozimek L, Heneka MT.
Systemic inflammation induces apoptosis with variable vulnerability
of different brain regions. J Chem Neuroanat 2005; 30: 144-157.
19. Ritter C, Andrades M, Frota Junior ML, Bonatto F, Pinho RA,
Polydoro M, et al. Oxidative parameters and mortality in sepsis
induced by cecal ligation and perforation. Intensive Care Med 2003;
29: 1782-1789.
20. Ritter C, Andrades ME, Reinke A, Menna-Barreto S, Moreira JC,
Dal-Pizzol F. Treatment with N-acetylcysteine plus deferoxamine
protects rats against oxidative stress and improves survival in sep-
sis. Crit Care Med 2004; 32: 342-349.
21. Barichello T, Martins MR, Reinke A, Feier G, Ritter C, Quevedo J, et
al. Cognitive impairment in sepsis survivors from cecal ligation and
perforation. Crit Care Med 2005; 33: 221-223.
22. Barichello T, Martins MR, Reinke A, Feier G, Ritter C, Quevedo J, et
al. Long-term cognitive impairment in sepsis survivors. Crit Care
837
Braz J Med Biol Res 40(6) 2007
Sepsis and cognition deficits
www.bjournal.com.br
Med 2005; 33: 1671.
23. Shimizu I, Adachi N, Liu K, Lei B, Nagaro T, Arai T. Sepsis facilitates
brain serotonin activity and impairs learning ability in rats. Brain Res
1999; 830: 94-100.
24. Rosa RM, Flores DG, Appelt HR, Braga AL, Henriques JA, Roesler
R. Facilitation of long-term object recognition memory by pretraining
administration of diphenyl diselenide in mice. Neurosci Lett 2003;
341: 217-220.
25. Schröder N, O’Dell SJ, Marshall JF. Neurotoxic methamphetamine
regimen severely impairs recognition memory in rats. Synapse 2003;
49: 89-96.
26. Pellow S, Chopin P, File SE, Briley M. Validation of open:closed arm
entries in an elevated plus-maze as a measure of anxiety in the rat.
J Neurosci Methods 1985; 14: 149-167.
27. Rickels K, Schweizer EE. Current pharmacotherapy in anxiety and
panic. In: Meltzer HY (Editor), Psychopharmacology: The third gen-
eration of progress. New York: Raven Press; 1987. p 1193-1203.
28. Porsolt RD. Animal model of depression. Biomedicine 1979; 30:
139-140.
29. Einat H, Clenet F, Shaldubina A, Belmaker RH, Bourin M. The
antidepressant activity of inositol in the forced swim test involves 5-
HT(2) receptors. Behav Brain Res 2001; 118: 77-83.
30. Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, et al. The role of the
extracellular signal-regulated kinase signaling pathway in mood
modulation. J Neurosci 2003; 23: 7311-7316.
31. Ennaceur A, Delacour J. A new one-trial test for neurobiological
studies of memory in rats. 1: Behavioral data. Behav Brain Res
1988; 31: 47-59.
32. Baker KB, Kim JJ. Effects of stress and hippocampal NMDA recep-
tor antagonism on recognition memory in rats. Learn Mem 2002; 9:
58-65.
33. Okuda S, Roozendaal B, McGaugh JL. Glucocorticoid effects on
object recognition memory require training-associated emotional
arousal. Proc Natl Acad Sci U S A 2004; 101: 853-858.
34. Rampon C, Tang YP, Goodhouse J, Shimizu E, Kyin M, Tsien JZ.
Enrichment induces structural changes and recovery from nonspatial
memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci
2000; 3: 238-244.
35. Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M,
et al. Genetic enhancement of learning and memory in mice. Nature
1999; 401: 63-69.
36. Weiss J, Kilts C. Animal models of depression and schizophrenia.
In: Nemeroff C, Schatzberg AS (Editors), Textbook of psychophar-
macology. New York: American Psychiatric Association Press; 1998.
p 88-123.
34
Capítulo 3.
Long-Term Cognitive Impairment in Sepsis
Survivors
Tatiana Barichello, Márcio R. Martins, Adalisa Reinke, Gustavo Feier,
Cristiane Ritter, João Quevedo, Felipe Dal-Pizzol
Critical Care Medicine (2005) 33:1671
Letters to the Editor
Would Patients with More Subtle
Signs of Coagulopathy Have Benefited
from Treatment with Activated
Protein C?
To the Editor:
We read with great interest the article
by Dhainaut and colleagues (1) published
in the February issue of Critical Care Med-
icine. In this study including 840 patients
from the placebo arm of the PROWESS
trial (2), the authors nicely showed that
abnormalities in coagulation parameters
occurring early in the course of sepsis are
associated with an increased risk of organ
dysfunction in the following days and with
higher 28-day mortality, regardless of the
severity of illness as assessed by the Acute
Physiology and Chronic Health Evaluation
(APACHE) II score. Moreover, the authors
found a linear correlation between some
coagulation parameters, such as prothrom-
bin time and D-dimer levels, and 28-day
mortality, suggesting that subtle change in
these parameters, even within the normal
ranges, already may identify patients who
are at risk of developing subsequent organ
dysfunction. Dhainaut et al. subsequently
classified their patient population into
three groups according to increasing sever-
ity of septic coagulopathy by using a Com-
posite Coagulopathy Score based upon fac-
tors identified by logistic regression, with
notable outcome differences between the
groups. Since the authors wanted to assess
the natural evolution over time between
coagulation parameters within the 24 hrs
of sepsis and the subsequent development
of organ dysfunction in the following days,
unfortunately only the placebo arm of the
PROWESS trial was included in this study.
It would have been interesting to assess the
efficacy of activated protein C treatment
across the different groups with increasing
coagulopathy score. In particular, it would
have been relevant to know whether pa-
tients with the more subtle signs of coagu-
lopathy have benefited from this treatment.
Recombinant activated protein C has
been approved for the treatment of sepsis in
patients with two or more organ dysfunc-
tions in Europe and an APACHE II score of
more than 25 in the United States. Consid-
ering that activated protein C exerts its
effect through an anticoagulopathic rather
than antiinflammatory effect, septic pa-
tients with one organ failure and coagu-
lopathy may be more likely to benefit from
such a treatment than, for example, pneu-
monia patients with progressive renal dys-
function and hypotension (e.g., because of
dehydration and/or a low cardiac output)
without measurable coagulopathy. This is
also supported by data coming from a sub-
group analysis of the PROWESS trial (3),
which revealed that activated protein C was
only efficacious in the subset of patients
with overt diffuse intravascular coagulopa-
thy. Mortality in the treatment vs. placebo
arm was 32% vs. 46.2% (p Ͻ .05) among
patients with overt diffuse intravascular co-
agulopathy (n ϭ 378) and 22.6% versus
26.5% (p Ͼ .05) in patients without it (n ϭ
1,312). However, the definition of diffuse
intravascular coagulopathy used in this
study is less sensitive (4) than the Compos-
ite Coagulopathy Score identified by Dhain-
aut et al. (1). Should septic patients with
minor or intermediately severe coagulopa-
thy benefit from activated protein C, or
should its use be restricted to patients with
major coagulopathy or all patients with more
than two organ failures, regardless of the se-
verity of coagulopathy? By including the
treatment arm of the PROWESS trial in their
analysis, Dhainaut et al. might have been able
to address this intriguing question.
Dominique D. Benoit, Pieter O. Depuydt,
Jan J. De Waele, Eric A. Hoste, Kirsten E.
Colpaert, Vanessa D. Van Hende, Johan M.
Decruyenaere, Department of Intensive
Care Medicine, Ghent University Hospital,
Belgium
REFERENCES
1. Dhainaut JF, Shorr AF, Macias WL, et al: Dy-
namic evolution of coagulopathy in the first day
of severe sepsis: Relationship with mortality and
organ failure. Crit Care Med 2005; 33:341–347
2. Bernard GR, Vincent JL, Laterre PF, et al:
Efficacy and safety of recombinant human ac-
tivated protein C for severe sepsis. N Engl
J Med 2001; 344:699–709
3. Ely EW, Laterre PF, Angus DC, et al: Drotreco-
gin alfa (activated) administration across clin-
ically important subgroups of patients with
severe sepsis. Crit Care Med 2003; 31:12–19
4. Taylor FB Jr, Toh CH, Hoots WK, et al: Scientific
and standardization committee communica-
tions: Towards a definition, clinical and labora-
tory criteria, and a scoring system for dissemi-
nated intravascular coagulation. 2001. Available
online at: http://www.med.unc.edu/isth/dicdef.
htm. Accessed January 15, 2002
DOI: 10.1097/01.CCM.0000166875.23234.95
The authors reply:
We appreciate the comments of Dr.
Benoit and colleagues regarding our
study. Our goal in studying the placebo
population of PROWESS was to examine
the natural history of severe sepsis with-
out the influence of rhAPC. Specifically,
we wanted to explore the potential con-
tributions of sepsis-induced coagulopathy
on organ dysfunction and mortality.
Dr. Benoit and associates request infor-
mation regarding the PROWESS groups
treated with recombinant human activated
protein C (rhAPC) and their mortality in
relation to increasing coagulopathy score.
First of all, we need to point out that per-
forming such an analysis is not as straight-
forward as evaluating subgroups based
solely on baseline characteristics. This dif-
ficulty arises because the Composite Co-
agulopathy Score utilizes three biomarkers
(antithrombin, D-dimer, prothrombin
time) measured at baseline and on the first
day post-baseline. Therefore, a comparison
of the rhAPC- versus placebo-treated pa-
tients is confounded by the use of post-
baseline measures. Nonetheless, there is a
trend toward lower Composite Coagulopa-
thy Scores (Mantel-Haenszel chi-square
test, p ϭ .10) in rhAPC patients, indicating
a trend for improving coagulopathy. This
improvement was observed even though
rhAPC patients tend to have an increase in
prothrombin time (1), a pharmacodynamic
effect of the drug. There was no significant
evidence of a differential survival benefit
attributable to rhAPC among the three co-
agulopathy classes (Breslow-Day test, p ϭ
.70).
Dr. Benoit and colleagues suggest that
rhAPC was efficacious in PROWESS only
among the patients with DIC. However, we
are underpowered to make conclusions
about the interaction of Xigris and baseline
DIC on the basis of PROWESS. The infor-
mation that they reference (2) indicates
that the treatment effects of both DIC and
non-DIC patients were generally consistent
with the overall treatment effect, in that
both of their 95% confidence intervals for
the treatment effect encompass the overall
PROWESS treatment effect. In addition, a
recent article summarizes the findings with
Copyright © 2005 by the Society of Critical Care
Medicine and Lippincott Williams & Wilkins
1670 Crit Care Med 2005 Vol. 33, No. 7
an improved definition of DIC for the
PROWESS study (3). This publication indi-
cates a 19% relative risk reduction with
rhAPC for non-DIC patients and a 29%
relative risk reduction for DIC patients. The
Breslow-Day test indicates no statistical ev-
idence that the odds ratios differ (p ϭ .26).
However, as with patients having higher
Composite Coagulopathy Scores, the abso-
lute mortality reduction is higher among
DIC patients, because the placebo mortality
rate is higher among them, whereas the
relative risk reductions are similar between
patients with and without DIC.
Jean-Francois Dhainaut, MD, PhD,
Department of Intensive Care, Cochin
Hospital, AP-HP, Cochin Institute,
Cochin Port-Royal Medical School,
Paris V University, Paris, France;
William L. Macias, MD, Lilly Research
Laboratories, Eli Lilly and Company,
Indianapolis, IN; David R. Nelson, MS,
Lilly Research Laboratories, Eli Lilly
and Company, Indianapolis, IN
REFERENCES
1. Dhainaut JF, Yan SB, Margolis BD, et al: Dro-
trecogin alfa (activated) (recombinant human
activated protein C) reduces host coagulopa-
thy response in patients with severe sepsis.
Thromb Haemost 2003; 90:642–653
2. Ely EW, Laterre PF, Angus DC, et al: Drotreco-
gin alfa (activated) administration across clini-
cally important subgroups of patients with se-
vere sepsis. Crit Care Med 2003; 31:12–19
3. Dhainaut J-F, Yan SB, Joyce DE, et al: Treat-
ment effects of drotrecogin alfa (activated) in
patients with severe sepsis with or without
overt disseminated intravascular coagulation.
J Thromb Haemost 2004; 2:1924 –1933
DOI: 10.1097/01.CCM.0000166889.11063.07
Long-Term Cognitive Impairment in
Sepsis Survivors
To the Editor:
In the January issue of Critical Care
Medicine, Dr. Soriano wrote an editorial (1)
regarding our published article (2) on cog-
nitive deficits of survivors from cecal liga-
tion and perforation (CLP). Dr. Soriano (1)
stresses the major bias associated with our
results: the time after sepsis chosen to per-
form the cognitive parameters. As Dr. So-
riano (1) stated, “The 10 days after CLP
reported in the study may not be a suffi-
ciently long enough period for the animals
to be free from the systemic septic alter-
ations.” After 10 days, the animals seemed
to be free from infection. We performed
blood cultures that were all negative in this
period. The animals recovered their weight
and grooming habits, blood counts re-
turned to control levels, and reactive pro-
tein C values were negative. Because we
believe that the described model will be an
important tool in the study of these cogni-
tive deficits, we extended the results to a
later time point after CLP. Using the same
model described in the article on which Dr.
Soriano commented (2), we demonstrate in
Figure 1A that rats 30 days after the CLP
presented a significantly decreased step-
down latency in the inhibitory avoidance
task in the test session. No differences be-
tween groups were demonstrated in the
inhibitory avoidance training session (data
not shown). In addition, 30 days after the
CLP, the continuous multiple-trials step-
down inhibitory avoidance showed a signif-
icant increase in the number of training
trials required to reach the acquisition cri-
terion (50 secs on the platform) in the sep-
sis group compared with the sham group
(Fig. 1B). In the retention test, as demon-
strated previously (2), there was no differ-
ence between groups (data not shown).
These results indicate that the memory and
learning impairment demonstrated 10 days
after CLP (2) persist 30 days after CLP. The
persistency of the alterations 30 days after
CLP reinforces that this model could be an
important tool in the study of the late se-
quela of sepsis survivors. We hope that with
these extended results our work can be a
reference to the development of several
studies designed to understand the factors
and possible treatment options to the long-
term sequela of sepsis survivors.
Tatiana Barichello, PharmD, MSc,
Márcio R. Martins, BSc, Adalisa Reinke,
BSc, Gustavo Feier, Bsc, Cristiane
Ritter, MD, MSc, João Quevedo, MD,
PhD, Felipe Dal-Pizzol, MD, PhD,
Laboratório de Fisiopatologia Experi-
mental (TB, AR, CR, FD-P) and the
Laboratório de Neurociência (MRM,
GF, JQ), Universidade do Extremo Sul
Catarinense, Criciúma, Brazil
REFERENCES
1. Soriano FG: Quality of life: Late sequela in
sepsis. Crit Care Med 2005; 33:262–263
2. Barichello T, Martins MR, Reinke A, et al:
Cognitive impairment in sepsis survivors from
cecal ligation and perforation. Crit Care Med
2005; 33:221–223
DOI: 10.1097/01.CCM.0000170192.54682.C1
Table 1. Data on PROWESS placebo versus rhAPC-treated groups in relation to mortality and
increasing coagulopathy score
CCS
PLC
n (% of PLC)
rhAPC
n (% of rhAPC)
28-Day Mortality
Relative Risk
Reduction,
%PLC, % rhAPC, %
0–1 168 (24.9) 215 (29.9) 14.3 12.6 12
2 327 (48.4) 323 (44.9) 26.9 22.6 16
3–4 180 (26.7) 181 (25.2) 45.6 35.4 22
Mantel-Haenszel p ϭ .10 Breslow-Day p ϭ .70
CCS, composite coagulopathy score; PLC, placebo; rhAPC, recombinant human activated protein C.
Figure 1. A, inhibitory avoidance task. Data are
expressed as median (interquartile ranges) train-
ing and test session latencies, in seconds. *Sig-
nificant difference compared with sham group
(Mann-Whitney U test, p Ͻ .01). Both groups (n
ϭ 14 in the sham group and n ϭ 13 in the sepsis
group) showed significant training test differ-
ences (Wilcoxon’s test, p Ͻ .01). B, continuous
multiple-trials step-down inhibitory avoidance.
Data are expressed as mean Ϯ SEM of the number
of training trials required to reach acquisition
criterion (50 secs on the platform). *Significant
difference between groups (Student’s t-test, p Ͻ
.001).
1671Crit Care Med 2005 Vol. 33, No. 7
Elevated Body Temperature in the
Neuroscience Intensive Care Unit
To the Editor:
Elevated body temperature is a com-
monly encountered phenomenon in the
neuroscience intensive care unit and is
associated with worsened outcome. The
treatment of these temperature eleva-
tions is frequently suboptimal; thus, I
read with great interest the recent article
by Mayer and colleagues (1) regarding the
use of the Arctic Sun water-circulating
system for treatment of fever in these
patients. The authors are to be com-
mended for recognizing and attempting
to address this clinically significant and
often time-consuming problem. The au-
thors concluded that that the Arctic Sun
system was found to be “superior to con-
ventional water-circulating cooling blan-
ket methodology for reducing fever bur-
den in febrile neurocritical care patients.”
However, these results need to be in-
terpreted with caution. As pointed out in
the accompanying commentary (2), the
“conventional methodology” used as the
standard for comparison was not evi-
dence-based practice. As water-circulat-
ing cooling blankets rely on conduction
for heat exchange, the increased surface
area provided by two blankets provides
increased contact (3) and is used in most
institutions as the standard of care. In
addition, the authors report that they set
the SubZero water blanket temperature
at the lowest possible temperature of 4°C.
This is of significant concern as Caruso et
al. (3) compared four different water
blanket temperatures from 7 to 24°C in
reducing fever and promoting patient
comfort. They reported that the warmer
water blanket temperatures were as effec-
tive in reducing temperature as colder
temperatures and were better tolerated
by the patients. Unfortunately, the use of
lower water blanket temperatures to
manage fever is a frequent misconception
among clinicians and in patient care pro-
tocols. Due to the increased temperature
gradient at lower blanket temperatures,
patients are more likely to shiver (4),
leading to ineffective therapy. Therefore,
I must wonder if the lack of shivering
reported (and also the lack of effect) of
the standard therapy group could be re-
lated to use of the single overlay blanket.
The authors are to be praised for their
systematic shivering protocol as this aer-
obic activity can have a high metabolic
toll on the neurologically vulnerable pa-
tient. However, their protocol could have
gone a step further as there has long been
evidence supporting the use of protective
wraps on the hands and feet for preven-
tion of shivering (5), not just an interven-
tion to manage it when using conductive
cooling. In addition, although the use of
meperidine for control of shivering/rigors
is well established (5), its use in this pa-
tient population is of particular concern
due to the need for accurate serial neu-
rologic examinations and the increasing
numbers of older adults presenting with
neurologic insults. Lastly, the authors
point to lack of set-point elevation due to
neurogenic hyperthermia as a potential
cause of the lack of shivering seen in
some patients. However, the pioneering
work of Ackerman and Rudy (6) previ-
ously found experimental neurogenic hy-
perthermia to be a highly regulated tem-
perature response, which included
thermogenesis via shivering; thus, active
cooling in these patients should result in
shivering.
The authors can conclude that the
Arctic Sun demonstrated efficacy in re-
ducing fever burden in the neurologically
critically ill patient; however, they did not
demonstrate its superiority to conven-
tional therapy as the comparison protocol
was flawed.
Hilaire J. Thompson, PhD, RN, Uni-
versity of Washington, Seattle, WA
REFERENCES
1. Mayer SA, Kowalski RG, Presciutti M, et al:
Clinical trial of a novel surface cooling system
for fever control in neurocritical care patients.
Crit Care Med 2004; 32:2508 –2515
2. Polderman KH: Keeping a cool head: How to
induce and maintain hypothermia. Crit Care
Med 2004; 32:2558 –2560
3. Caruso CC, Hadley BJ, Shukla R, et al: Cooling
effects and comfort of four cooling blanket
temperatures in humans with fever. Nurs Res
1992; 41:68–72
4. Sund-Levander M, Wahren LK: Assessment
and prevention of shivering in patients with
severe cerebral injury: A pilot study. J Clin
Nurs 2000; 9:55– 61
5. Holtzclaw B: The febrile response in critical
care: State of the science. Heart Lung 1992;
21:482–501
6. Ackerman D, Rudy TA: Thermoregulatory
characteristics of neurogenic hyperthermia in
the rat. J Physiol 1980; 307:59–70
DOI: 10.1097/01.CCM.0000170193.61598.89
Chlorhexidine Body Washing Plus
Topical Polymyxin/tobramycin
To the Editor:
We read with interest the article
published in Critical Care Medicine by
Camus and colleagues (1) reporting the
benefit of a decontamination regimen
associating nasal mupirocin with chlo-
rhexidine body washing plus topical
polymyxin/tobramycin on acquired in-
fections. However, the potential risk of
both immediate and delayed hypersen-
sitivity reactions due to chlorhexidine
should be kept in mind.
The occurrence of life-threatening
immediate hypersensitivity reactions
has been described with chlorhexidine
after topical application, intraurethral
use, exposure to a disinfectant spray
containing chlorhexidine, and after in-
sertion of central catheters impreg-
nated with chlorhexidine. In the UK
during 1965–1996, the Committee on
Safety of Medicines received 182 re-
ported reactions to products containing
chlorhexidine, most of these being cu-
taneous or mucosal eruptions (2). In
Japan, between 1967 and 1989, 15 re-
ported cases of anaphylactic shock were
related to chlorhexidine, of which 13
cases followed application of the drug
to mucous membranes. In 1984, the
Japanese Ministry of Welfare recom-
mended a prohibition on the use of
chlorhexidine on mucous membranes.
Taken together, more than 60 pub-
lished case reports have confirmed the
diagnosis of anaphylaxis due to chlo-
rhexidine (3). In these reported cases,
diagnosis of anaphylaxis was supported
by the onset delay of the reaction (gen-
erally within a few minutes after the
exposure), by the clinical symptoms ob-
served (which were mainly severe, with
hypotension, cardiovascular collapse,
or circulatory arrest sometimes associ-
ated to a bronchospasm), and by the
positivity of the skin tests with chlo-
rhexidine. The severity of the reported
or published cases due to the topical or
intra-urethral use of chlorhexidine or
with chlorhexidine-impregnated cathe-
ters prompted the United States Food
and Drug Administration to issue in
1998 an alert to the medical commu-
nity about the potential for serious hy-
persensitivity reactions to chlorhexi-
dine. This alert stated that because of
reports of anaphylaxis (including one
potentially associated death), chlo-
1672 Crit Care Med 2005 Vol. 33, No. 7
rhexidine-impregnated medical devices
had been banned in Japan (4).
Furthermore, chlorhexidine is also
known to elicit contact dermatitis, occur-
ring predominantly after prolonged or re-
peated application (5). A few cases have
been published, and diagnosis in these
cases was supported by the positivity of the
skin tests with chlorhexidine.
Therefore, the prescription of chlo-
rhexidine should include consideration of
the potential threat of an anaphylactic
reaction and potential event of delayed
hypersensitivity reaction.
Pascale Dewachter, MD, PhD, Claudie
Mouton-Faivre, MD, Paul Michel
Mertes, MD, PhD, CHU Hôpital Cen-
tral, Nancy, France
REFERENCES
1. Camus C, Bellissant E, Sebille V, et al: Preven-
tion of acquired infections in intubated pa-
tients with the combination of two decontam-
ination regimens. Crit Care Med 2005; 33:
307–314
2. Chisholm DG, Calder I, Peterson D, et al:
Intranasal chlorhexidine resulting in anaphy-
lactic circulatory arrest. BMJ 1997; 315:785
3. Dewachter P, Mouton-Faivre C, Mertes PM:
Preventing complications of central venous
catheterization. N Engl J Med 2003; 348:
2684 –2686
4. FDA Public Health Notice: Potential Hyper-
sensitivity Reactions to Chlorhexidine-Im-
pregnated Medical Devices. March 11, 1998.
US Food and Drug Administration, Center for
Devices and Radiological Health, Department
of Health and Human Services. Available at:
http://www.fda.gov/cdrh/chlorhex.html. Ac-
cessed May 16, 2005
5. Ebo DG, Stevens WJ, Bridts CH, et al: Contact
allergic dermatitis and life-threatening ana-
phylaxis to chlorhexidine. J Allergy Clin Im-
munol 1998; 101:128 –129
DOI: 10.1097/01.CCM.0000170194.67542.1C
The authors reply:
Dr. Dewachter and colleagues empha-
size the potential risk of delayed and im-
mediate hypersensitivity reactions due to
chlorhexidine, especially anaphylaxis.
No case of anaphylaxis was reported
during the study (1). The toilet of pa-
tients was made by aid-nurses and con-
sisted of normally washing, then carefully
rinsing with water and wiping, the un-
covered skin and genitalia. Most reported
cases of chlorhexidine-associated anaphy-
laxis occurred after usual disinfection of
wounds, burns, mucous membranes, or
normal skin before surgery, which does
not include rinsing. The risk of this very
rare but potentially life-threatening com-
plication must be weighed against the
much greater risk of severe acquired in-
fections, which are also life-threatening.
Clearly, the overall benefit achieved by
the combination of polymyxin/tobramy-
cin and mupirocin/chlorhexidine favors
the use of this procedure.
Contact sensitivity to chlorhexidine is
less exceptional and is usually a mild ad-
verse event. Irritant contact dermatitis is
a common adverse reaction to chlorhexi-
dine in medical staff. A sensitization rate
of about 2% has been reported in other
studies (2). This rate is consistent with
the 1.9% rate of allergy reported in the
259 patients who were washed with chlo-
rhexidine (Hibiscrub) in our study but
was not different from the 1.2% rate of
allergy in the 256 patients who were
washed with the conventional liquid soap
without chlorhexidine (p ϭ .72). Body
washing with the study medication was
discontinued in all these cases. Chlo-
rhexidine should not be used for body
washing in patients with a history of sen-
sitization to chlorhexidine. We agree with
Dr. Dewachter and colleagues that all cli-
nicians should keep in mind the possibil-
ity of delayed or immediate hypersensi-
tivity reactions after skin application of
chlorhexidine and remove the drug in
any case of allergy with no other obvious
cause.
Christophe Camus, MD, Rémi Thomas,
MD, Service de Maladies Infectieuses
et Réanimation Médicale, Hôpital Pon-
tchaillou, Rennes, France
REFERENCES
1. Camus C, Bellissant E, Sébille V, et al: Preven-
tion of acquired infections in intubated pa-
tients with the combination of two decontam-
ination regimens. Crit Care Med 2005; 33:
307–314
2. Krautheim AB, Jerman TH, Bircher AJ: Chlo-
rhexidine anaphylaxis: Case report and review
of the literature. Contact Dermatitis 2004;
50:113–116
DOI: 10.1097/01.CCM.0000170184.33302.AC
Simpson’s Paradox
To the Editor:
The data reported by Topeli and col-
leagues (1) in the February 2005 issue of
Critical Care Medicine provides a classic
example of the statistical phenomenon
known as Simpson’s paradox. In their
study, the institution of a closed intensive
care unit system, run by an intensivist,
decreased hospital mortality for intu-
bated patients and likewise decreased
hospital mortality for nonintubated pa-
tients. When these samples are com-
bined, however, the remarkable result is
that the outcome is reversed, with an
apparent increase in mortality with the
closed intensive care unit system (Table
1, adapted from original article). The ex-
planation of this apparent paradox lies in
examination of the unequal sample sizes
within the subgroups.
In the open period, aggregate mortality
is weighted toward the large sample of pa-
tients not receiving mechanical ventilation,
a group with lower expected mortality to
begin with. In contrast, during the late
closed period, aggregate mortality is
weighted toward the large sample of pa-
tients treated with mechanical ventilation,
a group with higher expected mortality.
These unequal sample sizes result in aggre-
gate data essentially comparing mortality
between the mechanically ventilated pa-
tients and the nonmechanically ventilated
patients. Thus, although each subgroup ex-
periences improved mortality, data aggre-
gation obscures this trend and, in fact,
completely reverses it, with a highly signif-
icant p Ͻ .001 comparing the open period
with the late closed period.
Table 1. Combined results showing an apparent increase in mortality with the closed intensive care
unit system
Open Period
Early Closed
Period
Late Closed
Period Conclusion
Hospital mortality if mechanically
ventilated (%)
19/21 (90.5) 38/67 (56.7) 79/134 (59.0) Closed better
Hospital mortality if not
mechanically ventilated (%)
32/179 (17.9) 7/82 (8.5) 10/76 (13.2) Closed better
Combined total (%) 51/200 (25.5) 45/149 (30.2) 89/210 (42.4) Closed worse
Summary table adapted from Topeli et al (1).
1673Crit Care Med 2005 Vol. 33, No. 7
This statistical phenomenon, al-
though recognized for many years, was
brought to widespread attention by E. H.
Simpson in 1951 (2) and is thus popularly
referred to as Simpson’s paradox. It oc-
curs in the setting of unequal group sizes
and an unaccounted (or lurking) variable
in the aggregate data—in this case, intu-
bation status. Once the authors identified
this important variable and analyzed
their data by subgroups, they arrived at
the correct conclusion—implementation
of an intensivist-run, closed intensive
care unit system improved patient sur-
vival in this study—and thus avoided fall-
ing victim to Simpson’s paradox.
Ken Kunisaki, MD, University of Min-
nesota, Minneapolis, MN
REFERENCES
1. Topeli A, Laghi F, Tobin MJ: Effect of closed
unit policy and appointing an intensivist in a
developing country. Crit Care Med 2005; 33:
299 –306
2. Simpson EH: The interpretation of interaction
in contingency tables. J R Stat Soc B 1951;
13:238 –241
DOI: 10.1097/01.CCM.0000170197.42215.F6
The authors reply:
We thank Dr. Kunisaki for taking the
time to respond to our article (1). He has
taken into consideration an important,
yet often overlooked, methodologic issue
and has comprehensively discussed its
potential effects on study results.
In our study, the association between
the intensive care unit system (open or
closed) and intensive care unit mortality
was found to be different among sub-
groups when we stratified for use of me-
chanical ventilation. Unequal proportions
for use of mechanical ventilation in
closed and open systems led to different
mortality rates in the overall populations.
We agree that data aggregation obscures
the “real” association between intensive
care unit system and mortality. It even
reverses it, and it leads to a paradox when
ventilator use is overlooked.
The mixing of the effect of an extrane-
ous variable with the effects of exposure
(or disease) of interest is termed con-
founding (2). Confounding is not an all-
or-none property of an extraneous vari-
able, and it may occur to varying degrees
in different studies. Sometimes, it is pos-
sible that the confounding variable
changes the direction of an association.
This situation is termed Simpson’s para-
dox (3). As expressed by Rothman (4),
Simpson’s paradox is not really a paradox
but the logical consequence of failing to
recognize the presence of confounding
variables. A confounding variable, if ex-
pected before a study, can be considered in
designing a study and controlled for by
either a) restricting the sample to limited
levels of the potential confounder or b) by
matching the confounder variable (as in a
matched case-control study). In a situation
in which the confounder is detected in
analysis, as was the case in our study, con-
founding can be controlled for by a) strat-
ification (Table 3 of our original study (1):
the association between the system and
mortality was studied for different sub-
groups of mechanical ventilation) or b)
multivariate analysis techniques (Table 2 of
our original study (1): mechanical ventila-
tion was included in the system, and con-
trolled for as a potential confounder), in
order to obtain valid conclusions (4, 5).
As pointed out by Dr. Kunisaki, use of
stratified analysis in evaluating the effect
of the intensive care unit system on mor-
tality prevented our study from falling
victim to Simpson’s paradox.
Arzu Topeli, Medical Intensive Care
Unit, Hacettepe University Faculty of
Medicine, Ankara, Turkey; Franco
Laghi, Division of Pulmonary and
Critical Care Medicine, Edward Hines
Jr. Veterans Administration Hospital,
and Loyola University of Chicago
Stritch School of Medicine, Hines, IL;
Banu Cakir, MD, PhD, Department of
Public Health, Hacettepe University
Faculty of Medicine, Ankara, Turkey;
Martin J. Tobin, Division of Pulmo-
nary and Critical Care Medicine,
Edward Hines Jr. Veterans Adminis-
tration Hospital, and Loyola University
of Chicago Stritch School of Medicine,
Hines, IL
REFERENCES
1. Topeli A, Laghi F, Tobin MJ: Effect of closed
unit policy and appointing an intensivist in a
developing country. Crit Care Med 2005; 33:
299 –306
2. Greenberg RS, Daniels SR, Flanders WD, et al:
Medical Epidemiology. Third Edition. Stam-
ford, CT, Lange Medical Books, McGraw-Hill,
2001, pp 149 –150
3. Last J (Ed): A Dictionary of Epidemiology.
Fourth Edition. New York, Oxford University
Press, 2001, p 168
4. Rothman KJ: A pictorial presentation of con-
founding in epidemiologic studies. J Chronic
Dis 1975; 28:101–108
5. Rothman KJ, Greenland S: Modern Epidemi-
ology. Second Edition. Philadelphia, Lippin-
cott-Raven Publishers, 1998, pp 253–255
DOI: 10.1097/01.CCM.0000170185.05101.BE
Critical Illness Polyneuropathy
To the Editor:
We read with interest the article by
Garnacho-Montero and colleagues (1)
that added significantly to the under-
standing of critical illness polyneurop-
athy (CIP). This study found that patients
with CIP (diagnosed by neurophysiologic
studies) spent more time on the ventila-
tor in the liberation phase—the time af-
ter recovery of the acute insult leading to
respiratory failure. Because management
of mechanical ventilation is a complex
process, we believe that several questions
remain to properly interpret the conclu-
sions of the study. It is unclear what
practices were in place in the primary
ICU to evaluate patients for ventilator lib-
eration. Although the general criteria
provided for being eligible for ventilator
liberation are consistent with consensus
guidelines (2), it is unclear how uni-
formly these were applied in practice. For
example, those with CIP reached candi-
dacy for “weaning” 5 days later than those
without CIP. This might be due to differ-
ences in the severity of illness between
the groups, a delay in recovery due to
CIP, or differences in management strat-
egies. It is unclear if the clinicians mak-
ing ventilator management decisions re-
mained blinded to the results of the
neurodiagnostic testing. Being alert to
the presence of CIP could alter the ag-
gressiveness of ventilator management
and discontinuation by practitioners be-
cause of a perceived risk of failed ventila-
tor liberation. It might also prompt ear-
lier or more frequent consideration of
tracheostomy. We also wonder if ICU re-
admission rates were different between
patients with CIP and those without.
More than half of hospital deaths oc-
curred outside of the ICU and were more
common in the CIP patients. If ICU read-
mission rates were similar between the
groups, then the increased mortality of
CIP patients in the post-ICU period might
reflect a bias toward less aggressive care
(e.g., less likely to readmit to the ICU) in
these patients.
In addition to questions about pro-
cesses of care, we wonder about the
relative utility of routine neurophysio-
logic studies compared with a neuro-
1674 Crit Care Med 2005 Vol. 33, No. 7
muscular physical examination. Detec-
tion of subclinical neurologic dys-
function may explain why Garnacho-
Montero and colleagues (1) reported a
prevalence of CIP (53%) twice that of
ICU-acquired weakness (25%) observed
by De Jonghe et al. (3) when using
bedside neuromuscular exam as the
clinical discriminator. Some studies
suggest that ICU-acquired weakness is
often a combined pathology involving
both muscle and nerve (4). If a thor-
ough physical examination provides
data as useful as the more complex testing
employed by Garnacho-Montero and col-
leagues (1), it would allow clinicians to be
attentive to ICU-acquired weakness without
requiring routine neurophysiologic testing
in all patients with sepsis.
In conclusion, we feel this study raises
important questions about the natural
history of ICU-acquired weakness that de-
serve further clarification. Advancing our
understanding of the long-term conse-
quences of sepsis is critical for us to prop-
erly plan for patients’ return to their
home and workplaces.
Naeem A. Ali, MD, James O’Brien, MD,
Stephen Hoffmann, MD, The Ohio
State University Medical Center, Co-
lumbus, OH
REFERENCES
1. Garnacho-Montero J, Amaya-Villar R, Garcia-
Garmendia JL, et al: Effect of critical illness
polyneuropathy on the withdrawal from me-
chanical ventilation and the length of stay in
septic patients. Crit Care Med 2005; 33:349 –354
2. MacIntyre NR, Cook DJ, Ely EW Jr, et al:
Evidence-based guidelines for weaning and
discontinuing ventilatory support: a collective
task force facilitated by the American College
of Chest Physicians; the American Association
for Respiratory Care; and the American Col-
lege of Critical Care Medicine. Chest 2001;
120(6 Suppl):375S–395S
3. De Jonghe B, Sharshar T, Lefaucheur JP, et al:
Paresis acquired in the intensive care unit: A
prospective multicenter study. Groupe de Re-
flexion et d’Etude des Neuromyopathies en
Reanimation. JAMA 2002; 288:2859–2867
4. Bednarik J, Lukas Z, Vondracek P: Critical
illness polyneuromyopathy: The electrophysi-
ological components of a complex entity. In-
tensive Care Med 2003; 29:1505–1514
DOI: 10.1097/01.CCM.0000170196.25242.E6
The authors reply:
We appreciate the interesting com-
ments expressed by Dr. Ali and colleagues
regarding our recent contribution to
Critical Care Medicine. The main conclu-
sion of our study is that critical illness
polyneuropathy (CIP) significantly
lengthens the duration of mechanical
ventilation and is an independent risk
factor for weaning failure in a cohort of
critically ill septic patients (1). This find-
ing is in agreement with another recent
publication that reported similar results
in a heterogeneous cohort of mechani-
cally ventilated patients (2).
Apart from the presence of CIP, pro-
longed mechanical ventilation might be
due to other factors, such as the severity
of illness, the presence of co-morbidities,
or the total doses of sedatives adminis-
tered to the patients. These variables
were analyzed in our study, and we found
no differences between patients with CIP
and without CIP or between patients with
and without weaning failure according to
our reported definition. It is worth noting
that these variables were not recorded in
clinical trials comparing different wean-
ing modes, adding an extraordinary value
to our results. Obviously, prolonged me-
chanical ventilation can be explained by
the fact that the physicians in charge of
the patients were not blinded to the re-
sults of the neurophysiologic evaluation
(the investigator who performed all these
evaluations was unaware of the patient’s
medical condition). Nevertheless, daily,
the attending physicians assessed patient
readiness for liberation from mechanical
ventilation following an updated protocol
as it is done in clinical trials evaluating
different weaning approaches (3, 4).
It is true that more than half of the
deaths occurred after discharge from the
intensive care unit. This may be ex-
plained by the fact that these patients are
usually elderly patients with severe weak-
ness, which makes them extremely vul-
nerable in the post–intensive care unit
period (5). Interestingly, there is a lack of
information available in the medical lit-
erature about the evolution of patients
with CIP after being discharged from the
intensive care unit.
Finally, a very high rate of CIP has
been reported in adults with sepsis and
multiple organ dysfunction syndrome.
Witt et al. (6) carried out the first pro-
spective study in a cohort of 43 patients
with sepsis and multiple organ dysfunc-
tion syndrome, and 70% of these patients
were diagnosed with CIP. Subsequent
prospective studies have reported a wide
prevalence (085%), depending on the
group of critically ill patients evaluated,
the timing of the electrophysiologic in-
vestigation, and the definitions used for
identifying neuropathy (7). Very recently,
clinically relevant paresis was found in
60% of the patients in the recovery of an
episode of acute respiratory distress syn-
drome. The neurophysiologic evaluation
was consistent with CIP in all except two
of these patients (8).
To summarize, there is compelling ev-
idence that CIP can influence the man-
agement and course of critically ill pa-
tients. In fact, mechanical ventilation is
prolonged by the development of this
neurologic complication. Because of the
harmful consequences that this may cause,
further studies are warranted to assess var-
ious interventions (different weaning strat-
egies, early tracheostomy, early use of non-
invasive after extubation) that could help to
improve patient outcome.
Jose Garnacho-Montero, MD, PhD,
Rosario Amaya-Villar, MD, Carlos
Ortiz-Leyba, MD, PhD, Intensive Care
Unit, Hospital Universitario Virgen del
Rocío, Sevilla, Spain
REFERENCES
1. Garnacho-Montero J, Amaya-Villar R, García-
Garmendía JL, et al: Effect of critical illness
polyneuropathy on the withdrawal from me-
chanical ventilation and the length of stay in
septic patients. Crit Care Med 2005; 33:349 –354
2. De Jonghr B, Bastuji-Garin S, Sharshar T, et
al: Does ICU-acquired paresis lengthen wean-
ing from mechanical ventilation. Intensive
Care Med 2004; 30:1117–1121
3. Esteban A, Frutos F, Tobin MJ, et al: A com-
parison of four methods of weaning patients
from mechanical ventilation. N Engl J Med
1995; 332:345–350
4. Esteban A, Alia I, Tobin MJ, et al: Effect of
spontaneous breathing trial duration on out-
come of attempts to discontinue mechanical
ventilation. Am J Respir Crit Care Med 1999;
159:512–518
5. Garnacho-Montero J, Madrazo-Osuna J,
García Garmendia JL, et al: Critical illness
polyneuropathy: Risk factors and clinical con-
sequences. A cohort study in septic patients.
Intensive Care Med 2001; 27:1288 –1296
6. Witt NJ, Zochodne DW, Bolton CF, et al: Pe-
ripheral nerve function in sepsis and multiple
organ failure. Chest 1991; 99:176 –184
7. Garnacho-Montero J, Madrazo-Osuna J,
García Garmendia JL, et al: Neuromuscular
disorders of the critically ill patient. Clin Pulm
Med 2001; 8:354 –359
8. Bercker S, Weber-Carstens S, Deja M, et al:
Critical illness polyneuropathy and myopathy
in patients with acute respiratory syndrome.
Crit Care Med 2005; 33:711–715
DOI: 10.1097/01.CCM.0000170407.44717.89
1675Crit Care Med 2005 Vol. 33, No. 7
Mixing Up Old Data
To the Editor:
In their secondary analysis of an inter-
national study of mechanical ventilation
practices, Ferguson and colleagues (1)
demonstrated considerable interpatient
variability in tidal volumes. Indeed, mean
tidal volume was 8.8 mL/kg measured
body weight with an
SD of 2.2 mL/kg
measured body weight. Several com-
ments can and must be made regarding
the usefulness and adequacy of this new
analysis of old data.
First, it is questionable whether all
practitioners were aware of the role of
tidal volume settings in ventilator-
induced lung injury at the moment of
collecting data. Indeed, almost all studies
on lower tidal volumes have been pub-
lished at or directly after that time (2–5).
It would be far more interesting to see
how tidal volumes are set nowadays, sev-
eral years after the landmark study by the
Acute Respiratory Distress Syndrome
Network (6). Several studies (7–9) show
that tidal volumes are presently still too
large.
Second, concerns arise on the absence
of data on height of the studied subjects,
making it only possible to express tidal
volumes in milliliters per kilogram of ac-
tual body weight. Although actual body
weight exceeded predicted body weight by
approximately 20% in one study (6), it is
not correct to simply state that “mean
tidal volume of 8.8 mL/kg actual body
weight might be equivalent to 10 –11
mL/kg predicted body weight” in the
present analysis because weight was not
normally distributed among the several
groups. Indeed, significantly higher
weight values were registered in patients
mechanically ventilated with lower tidal
volumes, whereas weight values were sig-
nificantly lower in those mechanically
ventilated with higher tidal volumes. Did
actual body weight exceed predicted body
weight evenly in all groups?
This also raises a third concern. Were
the heavier patients just taller, or did
they have a higher body mass index? High
body mass index is associated with mor-
tality (10). Interestingly, from the present
analysis, one might also conclude that
patients with a higher risk of death (those
that were heavier) were mechanically
ventilated with a more lung-protective
strategy than patients with a lower risk of
death.
Thus, although the investigators were
able to examine patterns of tidal volume
use, it is hard to draw firm conclusions
because important information (height)
is missing.
Marcus J. Schultz, MD, PhD, Esther K.
Wolthuis, MD, MSc, Rogier M.
Determann, MD, MSc, Department of
Intensive Care Medicine, Academic
Medical Center, Amsterdam, The
Netherlands
REFERENCES
1. Ferguson ND, Frutos-Vivar F, Esteban A, et
al: Airway pressures, tidal volumes, and mor-
tality in patients with acute respiratory dis-
tress syndrome. Crit Care Med 2005; 33:
21–30
2. Brochard L, Roudot-Thoraval F, Roupie E, et
al: Tidal volume reduction for prevention of
ventilator-induced lung injury in acute respi-
ratory distress syndrome: The Multicenter
Trial Group on Tidal Volume reduction in
ARDS. Am J Respir Crit Care Med 1998;
158:1831–1838
3. Stewart TE, Meade MO, Cook DJ, et al: Eval-
uation of a ventilation strategy to prevent
barotrauma in patients at high risk for acute
respiratory distress syndrome: Pressure- and
Volume-Limited Ventilation Strategy Group.
N Engl J Med 1998; 338:355–361
4. Amato MB, Barbas CS, Medeiros DM, et al:
Effect of a protective-ventilation strategy on
mortality in the acute respiratory distress
syndrome. N Engl J Med 1998; 338:347–354
5. Brower RG, Shanholtz CB, Fessler HE, et al:
Prospective, randomized, controlled clinical
trial comparing traditional versus reduced
tidal volume ventilation in acute respiratory
distress syndrome patients. Crit Care Med
1999; 27:1492–1498
6. Ventilation with lower tidal volumes as com-
pared with traditional tidal volumes for acute
lung injury and the acute respiratory distress
syndrome: The Acute Respiratory Distress
Syndrome Network. N Engl J Med 2000; 342:
1301–1308
7. Weinert CR, Gross CR, Marinelli WA: Impact
of randomized trial results on acute lung
injury ventilator therapy in teaching hospi-
tals. Am J Respir Crit Care Med 2003; 167:
1304 –1309
8. Young MP, Manning HL, Wilson DL, et al:
Ventilation of patients with acute lung injury
and acute respiratory distress syndrome: Has
new evidence changed clinical practice? Crit
Care Med 2004; 32:1260–1265
9. Wolthuis EK, Korevaar JC, Spronk P, et al:
Feedback and education improve physician
compliance in use of lung-protective me-
chanical ventilation. Intensive Care Med
2005; 31:540–546
10. Goulenok C, Monchi M, Chiche JD, et al: In-
fluence of overweight on ICU mortality: A Pro-
spective study. Chest 2004; 125:1441–1445
DOI: 10.1097/01.CCM.0000170198.14613.F4
The authors reply:
We thank Dr. Schultz and colleagues
for their interest in our article that ex-
amined ventilation practices and out-
come associations in patients with acute
respiratory distress syndrome (1). They
point out that most of the clinical studies
of lung-protective ventilatory strategies
were published at or after the time the
data for this report were collected. We
agree wholeheartedly that determining
whether there has been a temporal
change in tidal volume prescriptions dur-
ing the intervening 7-yr period is an in-
teresting and important future research
question. Our data from the current pub-
lication may serve as a reference point
against which to judge this potential
change.
We also agree that it is difficult to
draw firm conclusions about the effect of
different tidal volumes without the ability
to standardize these for height. This is
why we instead focused on the observed
variability in tidal volume. We would
point out that when we stated that 8.8
mL/kg actual body weight might be
equivalent to 10 –11 mL/kg predicted
body weight, we qualified that this ex-
trapolation should be done cautiously. In
addition, we were referring to the global
mean tidal volume for all patients, in
which the distribution was approximately
normal (Fig. 1 in the original article), not
to individual tidal volume groups as Dr.
Schultz and colleagues imply.
Finally, in the absence of height data,
any statements regarding the influence of
body mass index are purely speculative.
Now that height-based predicted body
weights have become widely used (which
was not the case in 1998), this will be an
important variable to consider in future
studies.
Again, we thank Dr. Schultz and col-
leagues for the opportunity to clarify the
issues above and to reassert the conclu-
sions we drew from this work: 1) tidal
volumes varied considerably during the
study period, 2) late-onset acute respira-
tory distress syndrome and low levels of
positive end-expiratory pressure were in-
dependently associated with increased
mortality, and 3) no evidence of increased
mortality was observed at lower inspira-
tory pressures.
Niall D. Ferguson, MD, FRCPC, MSc,
Thomas E. Stewart, MD, FRCPC, In-
terdepartmental Division of Critical
Care Medicine, University Health Net-
1676 Crit Care Med 2005 Vol. 33, No. 7
work and Mount Sinai Hospital, Uni-
versity of Toronto, Toronto, Ontario,
Canada; Fernando Frutos Vivar, MD,
Andrés Esteban, MD, PhD, Unidad de
Cuidados Intensivos, Hospital Univer-
sitario de Getafe, Madrid, Spain
REFERENCES
1. Ferguson ND, Frutos Vivar F, Esteban A, et al:
Airway pressures, tidal volumes, and mortality
in patients with the acute respiratory distress
syndrome. Crit Care Med 2005; 33:21–30
DOI: 10.1097/01.CCM.0000170945.82570.FF
Clinical Relevance of the LRINEC
(Laboratory Risk Indicator for
Necrotizing Fasciitis) Score for
Assessment of Early Necrotizing
Fasciitis
To the Editor:
Early diagnosis of necrotizing fasciitis
with subsequent operative debridement
has been shown in many studies to im-
prove survival (1, 2). However, delayed
diagnosis is frequently seen because early
in the evolution of this disease, it is often
clinically indistinguishable from other
more benign soft-tissue infections such
as cellulitis. We developed the Laboratory
Risk Indicator for Necrotizing Fasciitis
(LRINEC) score (3) with the hope that
routine laboratory parameters for the as-
sessment of severe soft-tissue infection
may yield diagnostic clues of the presence
of necrotizing soft-tissue infection, even
early in the evolution of the disease when
clinical findings were nondiagnostic.
The LRINEC score was developed ret-
rospectively by comparing the laboratory
parameters (complete blood count, elec-
trolytes, erythrocyte sedimentation rate,
and C-reactive protein) of patients with
proven necrotizing fasciitis vs. patients
with severe soft-tissue infections. On val-
idation with our own data, at a cutoff of a
LRINEC score of Ն6, the score has a
positive predictive value of 92.0% and
negative predictive value of 96.0% (3).
One weakness of this study we acknowl-
edge is its retrospective nature that pre-
disposes the study to selection bias (4).
Prospective validation of the score is
needed before routine application can be
recommended.
Wang and Hung (5) recently per-
formed a prospective study using tissue
saturation monitoring for diagnosing ne-
crotizing fasciitis. A total of 234 consec-
utive patients who fulfilled the United
States Centers for Disease Control and
Prevention criteria of soft-tissue infec-
tions were enrolled into the study. Of
these 234 patients, 19 were later con-
firmed to have necrotizing fasciitis and
215 patients had cellulitis. Routine pa-
rameters for evaluation of soft-tissue in-
fection were taken at admission. In this
study, the majority of cases were early
necrotizing fasciitis. Early diagnosis was
possible because of a rigorous protocol
that combined tissue oxygen saturation
monitoring, computed tomographic
scanning, and tissue biopsy. As a second-
ary analysis, Dr. Wang (6) used the LRI-
NEC score in his study subjects and
found a positive predictive value of 40%
and a negative predictive value of 95%.
The performance of the LRINEC score
in this prospective model shows a high
specificity but a low sensitivity. The im-
plications are two-fold. First, the majority
Dr. Wang’s patients had early necrotizing
fasciitis. A negative predictive value of
95% (a low false-negative rate) shows
that the LRINEC score will not miss these
cases (early necrotizing fasciitis). Second,
from a clinical standpoint, specificity is
more important than sensitivity. To this
end, the LRINEC score seems to fulfil the
purpose for which it was originally de-
vised. When the score is Ͻ6, necrotizing
fasciitis is quite unlikely. From Dr.
Wang’s data of a positive predictive value
of 40%, a high false-positive rate is ex-
pected for early necrotizing fasciitis. For
patients classified as high risk based on
the LRINEC score, urgent further evalu-
ation is needed. The use of additional
tools, such as computed tomography,
magnetic resonance imaging, tissue bi-
opsy, or tissue oxygen monitoring can
exclude or confirm necrotizing fasciitis.
The LRINEC score therefore functions as
tool to limit and more importantly target
the use of these expensive (but more sen-
sitive) modalities to such high-risk pa-
tients. We hope that early diagnosis and
reduction in mortality is possible with
such an approach.
Chin-Ho Wong, MD, MRCS(Ed), De-
partment of Plastic, Reconstructive
and Aesthetic Surgery, Singapore
General Hospital, Singapore; Lay-Wai
Khin,MD, MSC, Clinical Trials and Ep-
idemiology Research Unit, National
Medical Research Council (NMRC),
Ministry of Health, Singapore
REFERENCES
1. Wong CH, Chang HC, Pasupathy S, et al: Ne-
crotizing fasciitis: Clinical presentation, mi-
crobiology and determinants of mortality.
J Bone Joint Surg (Am) 2003; 85-A:1454 –1460
2. McHenry CR, Piotrowski JJ, Petrinic D, et al:
Determinants of mortality in necrotizing soft
tissue infections. Ann Surg 1995; 221:
558 –563
3. Wong CH, Khin LW, Heng KS, et al: The
LRINEC (Laboratory Risk Indicator for Necro-
tizing Fasciitis) score: A tool for distinguish-
ing soft tissue infection from other soft tissue
infections. Crit Care Med 2004; 32:1535–1541
4. Barie PS: The laboratory risk indicator for
necrotizing fasciitis (LRINEC) score: Useful
tool or paralysis by analysis? Crit Care Med
2004; 32:1618–1619
5. Wang TL, Hung CR: Role of tissue oxygen
saturation monitoring in diagnosing necrotiz-
ing fasciitis of the lower limbs. Ann Emerg
Med 2004; 44:222–228
6. Wang TL: Tissue oxygen saturation monitor-
ing in the diagnosing necrotizing fasciitis: A
valuable tool but only for a select few. Reply.
Ann Emerg Med 2005; 45:462– 463
DOI: 10.1097/01.CCM.0000170199.43624.B8
1677Crit Care Med 2005 Vol. 33, No. 7
36
Capítulo 4.
Oxidative variables in the rat brain after sepsis induced
by cecal ligation and perforation
Tatiana Barichello, Jucélia J. Fortunato, Ângeles M. Vitali, Gustavo
Feier, Adalisa Reinke, José Cláudio F. Moreira, João Quevedo, Felipe
Dal-Pizzol
Critical Care Med (2006) 34:886-889
Brief Report
Oxidative variables in the rat brain after sepsis induced by cecal
ligation and perforation
Tatiana Barichello, PharmD, MSc; Jucélia J. Fortunato, MSc;
ˆ
Angeles M. Vitali, BSc; Gustavo Feier, BSc;
Adalisa Reinke, BSc; José Cláudio F. Moreira, PhD; João Quevedo, MD, PhD; Felipe Dal-Pizzol, MD, PhD
S
epsis and septic shock have be-
come some of the most fre-
quent causes of morbidity and
mortality in intensive care
units. Neurologic abnormalities during
sepsis development include agitation,
confusion, disorientation, lethargy, and
coma, which are early characteristic find-
ings in these patients (1). The concept of
septic encephalopathy as an entity that
cannot be explained by hepatic or renal
dysfunction, hypotension, or hypoxia is
relatively new and has been reported to
occur in a range of 8 –70% of septic pa-
tients, usually associated with a poor out-
come (1). In addition, sepsis survivors
present long-term cognitive deficits that
could be secondary to central nervous
system alterations during sepsis develop-
ment (2). The underlying mechanisms of
the changes in mental status, septic en-
cephalopathy, and long-term cognitive
symptoms in sepsis survivors have only
been defined in part (1).
The systemic inflammation resulting
from infection or other causes appears to
be the cause of septic encephalopathy (1).
Inflammatory mediators released by leu-
kocytes (such as tumor necrosis factor
and reactive oxygen species) in sepsis
have profound effects on endothelial
cells, astrocytes, and neurons; damage to
these cells results in impaired central
nervous system function (1).
Studies of sepsis in humans are diffi-
cult because the seriousness of the dis-
ease mandates immediate intervention
and because the heterogeneity of pa-
tients’ presentations imposes substantial
limitations on clinical trials. Thus, ani-
mal models have been used extensively to
explore the pathogenesis of sepsis and to
generate preclinical data for therapeutic
interventions. In this way we recently
demonstrated that oxidative stress might
have a major role in the development of
sepsis and severe hepatic failure (3, 4). In
addition, we demonstrated that oxidative
damage in the rat brain might be relevant
to the outcome after hepatic failure in an
animal model (4). To the best of our
knowledge there is no report that de-
scribes oxidative variables in different
brain regions after sepsis induction.
Thus, the aim of this study was to
investigate the temporal variation of dif-
ferent oxidative variables in several brain
structures after sepsis induction in rats.
MATERIALS AND METHODS
In vivo studies were performed in accor-
dance with National Institutes of Health
guidelines and approved by the Ethics Com-
mittee of Universidade do Extremo Sul Catari-
nense.
Cecal Ligation Puncture (CLP) Model.
Male Wistar rats 2–3 months old, weighing
250 –350 g, were subjected to CLP (14-gauge
From Laboratório de Neurociências (TB, JJF, AMV,
GF, JQ) and Laboratório de Fisiopatologia Experimental
(AR, JCFM, FD-P), Universidade do Extremo Sul Ca-
tarinense, Criciúma, SC, Brazil; and Centro de Estudos
em Estresse Oxidativo (JCFM), Universidade Federal do
Rio Grande do Sul, Porto Alegre, RS, Brazil.
Supported, in part, by grants from UNESC, CNPq,
and FUNCITEC.
Address requests for reprints to: Felipe Dal Pizzol,
MD, PhD, Laboratório de Fisiopatologia Experimental,
Universidade do Extremo Sul Catarinense, Criciúma,
SC, Brazil, Avenida Universitária, 1105, 88006-000.
Copyright © 2006 by the Society of Critical Care
Medicine and Lippincott Williams & Wilkins
DOI: 10.1097/01.CCM.0000201880.50116.12
Objective: The underlying mechanisms of the changes in men-
tal status, septic encephalopathy, and long-term cognitive symp-
toms in sepsis survivors have only been defined in part. The
present study was undertaken to assess different variables of
oxidative stress in several brain structures after cecal ligation and
perforation in the rat.
Design: Prospective animal study.
Setting: Animal basic science laboratory.
Subjects: Male Wistar rats, weighing 250 –350 g.
Interventions: Rats were subjected to cecal ligation and per-
foration (sepsis group) with saline resuscitation (at 50 mL/kg
immediately and 12 hrs after cecal ligation and perforation) or
sham operation (control group).
Measurements and Main Results: Oxidative damage, assessed
by the thiobarbituric acid reactive species and the protein car-
bonyl assays, occurred early (after 6 hrs) in the course of sepsis
development in the hippocampus, cerebellum, and cortex. At
longer times after sepsis induction (12–96 hrs), there was no
evidence of oxidative damage in all analyzed structures. Except
for the striatum, earlier in sepsis development (6 hrs) we dem-
onstrated an increase in superoxide dismutase activity without a
proportional increase in catalase activity with a consequent in-
crease in the relation of superoxide dismutase/catalase. The
balance between these enzymes was restored in the studied
structures 12–96 hrs after sepsis induction.
Conclusions: The short-term oxidative damage demonstrated
here could participate in the development of central nervous
system symptoms during sepsis development, or even septic
encephalopathy. The alterations in the superoxide dismutase/
catalase relation were temporally related to the occurrence or not
of oxidative damage in the central nervous system. (Crit Care Med
2006; 34:886–889)
K
EY WORDS: septic shock; oxidative stress; free radicals; rat
brain; septic encephalopathy
886 Crit Care Med 2006 Vol. 34, No. 3
Figure 1. Oxidative variables in the rat brain during sepsis development. Rats were submitted to cecal ligation and perforation (CLP) (14-gauge puncture)
or sham operation. Animals were killed, and brain structures (hippocampus, striatum, cortex, and cerebellum) were isolated 0 (immediately after), 6, 12,
24, 48, and 96 hrs after CLP to determine (A) thiobarbituric acid reactive species (TBARS), (B) protein carbonyls, (C) superoxide dismutase (SOD) activity,
and (D) catalase (CAT) activity as described in “Material and Methods.” Values are expressed as mean Ϯ SD (n ϭ 5 for each group). Oxidative variables were
not statistically different between the sham and 0-hr group (data not shown). Oxidative variables were not statistically different between sham groups when
comparing all time point analyzed; thus we presented in the graphs only one sham group. *Different from sham operated (p Ͻ .05).
887Crit Care Med 2006 Vol. 34, No. 3
needle) as previously described (3). A sham
operation (laparotomy and cecal exposure
without any more manipulation) was per-
formed as control. The sham and CLP groups
were allocated randomly during the proce-
dure. To avoid hypotension, animals were re-
suscitated immediately after CLP with normal
saline (50 mL/kg of body weight subcutane-
ously, bolus injection every 12 hrs in the first
day) (3). Several times (0, 6, 12, 24, 48, and 96
hrs) after CLP five rats were killed by decapi-
tation, and brain structures (cerebellum, hip-
pocampus, striatum, and cortex) were imme-
diately isolated and stored at Ϫ80°C for
posterior analyses. Sham animals (n ϭ 5) were
killed at the same times after operation. Four-
teen animals died during the 96 hrs and were
excluded from the oxidative variable analyses.
All animals presented signs of encephalopathy
at 6 hrs after sepsis (lethargy, mild ataxia, lack
of spontaneous movement, loss of righting
reflex). Animals gradually returned to their
normal awake status 24 –36 hrs after CLP, but
some remained lethargic up to 96 hrs.
Measurement of Thiobarbituric Acid Reac-
tive Species (TBARS). As an index of lipid
peroxidation, we used the formation of TBARS
during an acid-heating reaction as previously
described (3). Briefly, the samples were mixed
with 1 mL of trichloroacetic acid 10% and 1
mL of thiobarbituric acid 0.67% and then
heated in a boiling water bath for 15 mins.
TBARS were determined by the absorbance at
535 nm.
Measurement of Protein Carbonyls. The
oxidative damage to proteins was assessed by
the determination of carbonyl groups based
on the reaction with dinitrophenylhidrazine
as previously described (4). Briefly, proteins
were precipitated by the addition of 20%
trichloroacetic acid and redissolved in dini-
trophenylhidrazine, and the absorbance was
read at 370 nm.
Measurement of Catalase (CAT) and Su-
peroxide Dismutase (SOD) Activity. To deter-
mine CAT activity, samples were sonicated in
50 mM phosphate buffer, and the resulting
suspension was centrifuged at 3000 ϫ g for 10
mins. The supernatant was used for enzyme
assay. CAT activity was measured by the rate of
decrease in hydrogen peroxide absorbance at
240 nm (3). SOD activity was assayed by mea-
suring the inhibition of adrenaline auto-
oxidation, as previously described (3).
Protein Measurements. All the results were
normalized by protein concentration mea-
sured by the Lowry assay.
Reagents. Thiobarbituric acid, catalase, su-
peroxide dismutase, dinitrophenylhidrazine,
adrenaline, hydrogen peroxide, luminal, and
succinate were purchased from Sigma Chem-
ical (St. Louis, MO). We purchased 2,2'-azobis
(2-28 methylpropionamidine) dihydrochloride
from Aldrich Chemical (Milwaukee, WI).
Statistical Analysis. All data are presented
as mean Ϯ
SD. Data were analyzed by two-way
analysis of variance, and multiple comparisons
were performed by Newman-Keuls’ test. To
determine whether data were normally dis-
tributed, we performed Bartlett’s test for ho-
mogeneity of variance. We considered p Ͻ .05
to be significant.
RESULTS
We demonstrate in Figure 1, A and B,
that oxidative damage, assessed by
TBARS and the protein carbonyl assays,
occurred early in the course of sepsis
development in several brain regions.
The TBARS levels were elevated in the
hippocampus, the cortex, and the cere-
bellum 6 hrs after sepsis induction (p Ͻ
.05; Fig. 1A). In contrast, carbonyl levels
were increased only in the hippocampus
6 hrs after sepsis induction (p Ͻ .05; Fig.
1B). These suggest that oxidative damage
was more consistent in lipids compared
with proteins. In longer times after sepsis
induction (12–96 hrs), there was no evi-
dence of oxidative damage in all analyzed
structures. In contrast, both TBARS and
protein carbonyls levels tended to be
lower from 12 to 96 hrs after sepsis in-
duction.
To determine enzymatic antioxidant
status during sepsis development in the
rat brain, we determined the activity of
the main central nervous system antiox-
idant enzymes (CAT and SOD). We had
Table 1. Superoxide dismutase/catalase relation in the rat brain during sepsis development
Cerebellum Hippocampus Striatum Cortex
Sham 7.50 ϩ 1.2 12.39 ϩ 2.3 62.94 ϩ 5.4 31.62 ϩ 3.8
6 hrs 147.63 ϩ 17
a
133.18 ϩ 23
a
24.28 ϩ 4.7 172.42 ϩ 28
a
12 hrs 14.88 ϩ 1.8 13.60 ϩ 2.3 83.71 ϩ 6.9 56.87 ϩ 9.8
24 hrs 23.09 ϩ 3.9 31.82 ϩ 3.8 16.94 ϩ 1.3
a
30.65 ϩ 4.5
48 hrs 6.97 ϩ 2.1 1.57 ϩ 0.12
a
69.75 ϩ 6.3 44.47 ϩ 5.7
96 hrs 21.19 ϩ 6.7 26.47 ϩ 4.5 28.22 ϩ 4.8 13.99 ϩ 4.6
a
Different from sham (p Ͻ .05).
Figure 1. Continued.
888 Crit Care Med 2006 Vol. 34, No. 3
previously described that an imbalance
between SOD and CAT activities in heart,
kidney, lung, and diaphragm is, in part,
responsible for the oxidative damage and
outcome in the CLP model (3). Except for
the striatum, earlier in sepsis develop-
ment (6 hrs) we demonstrated an in-
crease in SOD activity without a propor-
tional increase in CAT activity (p Ͻ .05;
Fig. 1C and 1D) with consequent increase
in the relation of SOD and CAT (Table 1).
Thus, an imbalance in SOD and CAT ac-
tivity occurred at the same time and in
the same structures in which we demon-
strated oxidative damage. This early oxi-
dative damage and imbalance in antioxi-
dant enzymes seemed not to be secondary
to renal or hepatic failure since in this
early time we had no alterations in plas-
matic markers of renal and hepatic func-
tion (data not shown). In addition, it
seemed not to be secondary to hypoten-
sion since the study design with fluid
resuscitation was not associated with hy-
potension at 6 hrs after sepsis induction.
DISCUSSION
We demonstrate for the first time that,
differently from other organs involved in
septic response, central nervous system
oxidative stress is restricted to earlier
times after sepsis induction. These re-
sults are intriguing since oxidative dam-
age occurs in lung, liver, heart, and kid-
ney for longer times after sepsis
induction (3). Abd El-Gawad and Khalifa
(5) demonstrated that as early as 2 hrs
after lipopolysaccharide administration
there was an increase in free radicals gen-
eration in the rat brain, but these authors
did not analyze oxidative variables at
longer times after lipopolysaccharide ad-
ministration. In contrast, it was demon-
strated that oxidative stress occurred un-
til 48 hrs after sepsis induction the rat
brain (6, 7). However, in these reports
fluid resuscitation was administered only
once, and this could induce late hypoten-
sion (6, 7). Supporting our results, Mes-
saris et al. (8) recently demonstrated mi-
tochondrial-mediated apoptosis in the rat
brain early (6 –12 hrs), but not later, in
sepsis development. These mitochondrial
alterations could be one of the mecha-
nisms associated with brain oxidative
stress. In addition, the impairment of as-
trocytic clearance of dehydroascorbic
acid from the extracellular fluid and con-
sequent decrease of intracellular ascor-
bate concentration could be associated
with central nervous system oxidative
stress (9). This idea is reinforced by the
decrease in cerebrospinal fluid ascorbate
levels in patients with septic encephalop-
athy (10). Furthermore, sepsis induces
inducible nitric oxide synthase and inhib-
its glutamate uptake by astrocytes
through mechanisms that can be modu-
lated by intracellular ascorbate (9). The
protection of the central nervous system
from oxidative damage seems to be an
adaptation to minimize dysfunction and
could be related to central nervous sys-
tem antioxidant defenses adaptation,
diminution of central nervous system
metabolism, or several other unstudied
factors.
We believe that, as we demonstrated
for other organs (3), an imbalance be-
tween SOD and CAT could be responsible,
in part, for the occurrence of oxidative
damage in the rat brain. The balance be-
tween these enzymes was restored in the
studied structures 12–96 hrs after sepsis
induction. In these times we demon-
strated that both SOD and CAT activity
did not change or increase proportionally
or that the increase in CAT activity was
higher than SOD activity increase (Fig.
1C and 1D). In these later times we could
not demonstrate an increase in the rela-
tion of SOD and CAT (Table 1) and oxi-
dative damage in all analyzed structures.
Thus, the alterations in the SOD/CAT re-
lation were temporally related to the oc-
currence or not of oxidative damage in
the central nervous system. To the best of
our knowledge there are no reports in the
literature that describe SOD and CAT
modulation in the rat brain after sepsis
induction.
We cannot ascertain that the short-
term oxidative damage demonstrated
here can lead to central nervous system
symptoms during sepsis development, or
even septic encephalopathy. Further
studies must determine the relation be-
tween the demonstrated short-term oxi-
dative damage and the development of
septic encephalopathy or long-term cog-
nitive impairments in sepsis survivors.
REFERENCES
1. Papadopoulos MC, Davies DC, Moss RF, et al:
Pathophysiology of septic encephalopathy: A
review. Crit Care Med 2000; 28:3019–3024
2. Barichello T, Martins MR, Reinke A, et al:
Cognitive impairment in sepsis survivors
from cecal ligation and perforation. Crit Care
Med 2005; 33:221–223
3. Ritter C, Andrades ME, Reinke A, et al: Treat-
ment with N-acetylcysteine plus deferox-
amine protects rats against oxidative stress
and improves survival in sepsis. Crit Care
Med 2004; 32:342–349
4. Ritter C, Reinke A, Andrades M, et al: Pro-
tective effect of N-acetylcysteine and deferox-
amine on carbon tetrachloride-induced acute
hepatic failure in rats. Crit Care Med 2004;
32:2079 –2083
5. Abd El-Gawad HM, Khalifa AE: Quercetin,
coenzyme Q10, and L-canavanine as protec-
tive agents against lipid peroxidation and ni-
tric oxide generation in endotoxin-induced
shock in rat brain. Pharmacol Res 2001; 43:
257–263
6. Sener G, Toklu H, Kapucu C, et al: Melatonin
protects against oxidative organ injury in a
rat model of sepsis. Surg Today 2005; 35:
52–59
7. Czapski GA, Cakala M, Kopczuk D, et al:
Inhibition of nitric oxide synthase prevents
energy failure and oxidative damage evoked
in the brain by lipopolysaccharide. Pol
J Pharmacol 2004; 56:643–646
8. Messaris E, Memos N, Chatzigianni E, et al:
Time-dependent mitochondrial-mediated
programmed neuronal cell death prolongs
survival in sepsis. Crit Care Med 2004; 32:
1764 –1770
9. Korcok J, Wu F, Tyml K, et al: Sepsis inhibits
reduction of dehydroascorbic acid and accu-
mulation of ascorbate in astroglial cultures:
Intracellular ascorbate depletion increases
nitric oxide synthase induction and gluta-
mate uptake inhibition. J Neurochem 2002;
81:185–193
10. Voigt K, Kontush A, Stuerenburg HJ, et al:
Decreased plasma and cerebrospinal fluid
ascorbate levels in patients with septic en-
cephalopathy. Free Radic Res 2002; 36:
735–739
T
he short-term oxi-
dative damage
demonstrated here
could participate in the de-
velopment of central nervous
system symptoms during
sepsis development, or even
septic encephalopathy.
889Crit Care Med 2006 Vol. 34, No. 3
41
Capítulo 5.
Antioxidant treatment reverses late cognitive impairment
in an animal model of sepsis
Tatiana Barichello, Roberta A. Machado, Larissa Constantino, Samira S.
Valvassori, Gislaine Z. Reus, Fabricia Petronilho, Cristiane Ritter, João
Quevedo, Felipe Dal-Pizzol
Critical Care Med (2007) no prelo
For Peer Review
Antioxidant treatment reverses late cognitive impairment in an animal
model of sepsis
Journal: Critical Care Medicine
Manuscript ID: CCM-00016-2007
Manuscript Type: Original Articles - Laboratory Investigations
Date Submitted by the
Author:
04-Jan-2007
Complete List of Authors: Barichello, Tatiana; UNESC
Machado, Roberta; UNESC
Constantino, Larissa; UNESC
Valvassori, Samira; UNESC
Reus, Gislaine; UNESC
Petronilho, Fabricia; UNESC
Ritter, Cristiane; UNESC
Quevedo, Joao; UNESC
Dal-Pizzol, Felipe; Universidad do Extremo Sul Catarinese,
Department of Medicine
Key Words: septic shock, oxidative stress, memory, central nervous system
Critical Care Medicine
For Peer Review
Antioxidant treatment reverses late cognitive
impairment in an animal model of sepsis
Tatiana Barichello
1
,PharmD, MSc, Roberta Albino Machado
1
,BSc,
Larissa Constantino
1
,BSc, Samira S. Valvassori
2
,BSc, Gislaine Z. Réus
2
, BSc,
Fabricia Petronilho
1
,MSc, Cristiane Ritter
1
MD, MSc,
João Quevedo
2
, MD, PhD Felipe Dal-Pizzol
1
, MD, PhD
1
Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul
Catarinense, Criciúma, SC, Brazil.
2
Laboratório de Neurociências, Universidade do Extremo Sul Catarinense, Criciúma,
SC, Brazil.
Address for reprints: Felipe Dal-Pizzol. Laboratório de Fisiopatologia Experimental,
Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil. Avenida Universitária,
1105, 88806-000. phone: 55 48 4312641, fax: 55 48 431 2750, e-mail:piz@unesc.net
This work was supported by grants from UNESC and CNPq.
Key Words: septic shock, oxidative stress, memory, central nervous system
Page 1 of 20 Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
Abstract
Objective: Assess the effect of antioxidant treatment on late cognitive impairment and
early hippocampus oxidative stress after cecal ligation and perforation (CLP) in the rat.
Design: Prospective, controlled experiment.
Setting: Animal basic science laboratory.
Subjects: Male Wistar rats, weighing 300–350 g.
Interventions: Rats subjected to CLP were treated with either N-acetylcysteine (NAC)
plus deferoxamine (DFX) or vehicle with or without basic support” (saline at 50 mL/kg
immediately and 12 hrs after CLP plus ceftriaxone at 30 mg/kg and clindamycin 25
mg/kg every 6 hrs).
Measurements and Main Results: Ten and thirty days after surgery, the animals
underwent three behavioral tasks: a) inhibitory avoidance task; b) habituation to an open
field; and c) continuous multiple trials step-down inhibitory avoidance task. The sepsis
group showed significantly decreased performance in latency retention compared with
the sham group in inhibitory avoidance. In the open-field task the sepsis group
presented memory impairment after sepsis. In the continuous multiple trials step-down
inhibitory avoidance task, the sepsis group showed a significant increase in the number
of training trials required to reach the acquisition criterion. All these cognitive
impairments were reversed by NAC plus DFX treatment, but not its isolate use. In
addition, the combined use of antioxidants attenuated oxidative damage in hippocampus
6 hours after sepsis induction.
Conclusions: antioxidant treatment could significantly attenuate late cognitive deficits in
sepsis survivors from cecal ligation and perforation. This was associated with
attenuation on hippocampus oxidative damage in early periods of sepsis development.
Page 2 of 20Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
Introduction
Advances in critical care medicine have led to improved survival rates among
those patients admitted to the ICU. Critical illness often results in multiple system organ
dysfunctions, including neurological dysfunction, and is associated with poor
neurological outcomes (1). Investigations of the effects of critical illness on neurological
dysfunction have been relatively neglected compared to the effects on other organ
systems, mainly neurocognitive outcomes in survivors of critical illness (2-6).
The mechanisms associated to neuropsychological and intellectual impairments
secondary to direct brain injury is better understood when compared to the
neurocognitive impairment secondary to the general critical illness. It is well
characterized the participation of inflammatory and apoptotic pathways in neuronal
damage secondary to brain injury (7-9). But, to the best of our knowledge there is no
published study describing the mechanisms associated to the long-term cognitive deficit
in acute inflammatory diseases.
We had previously described oxidative damage in different brain regions in two
different models of acute inflammatory disease (10,11), and it is well known that
oxidative stress could participate in the development of several central nervous system
diseases (12). Thus we here determine the role of hippocampal oxidative stress in the
development of long-term cognitive impairment in sepsis survivors, using an animal
model recently described by our group (13,14).
Methods
In vivo studies were performed in accordance with National Institutes of Health
guidelines and approved by the Ethics Committee of Universidade do Extremo Sul
Catarinense.
Page 3 of 20 Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
Animal model of long-term congnitive impairment: this model was described in
detail elsewhere (13,14). Briefly, after sepsis induction using the cecal ligation and
perforation procedure, the sepsis group received “basic support” (saline at 50 mL/kg
immediately and 12 hrs after CLP plus ceftriaxone at 30 mg/kg and clindamycin at 25
mg/kg every 6 hrs over a total of 3 days). The sham-operated group received only
saline, 50 mL/kg, immediately and 12 hrs after surgery, and the volume of saline
corresponded to antibiotic administration. Survival in the sham group was 100%, and in
the sepsis group was 40%. The number of survivals is in accordance with our previous
reports (13,14). Ten or 30 days after surgery, different cohorts of animals each time and
each task underwent three behavioral tasks: a) the step-down inhibitory avoidance task
(single-training); b) continuous multiple-trials step-down inhibitory avoidance task; and c)
the open-field task. The behavioral tests were performed by the same person who was
blinded to the experimental group (sham or CLP). All experimental procedures involving
animals were performed in accordance with the National Institute of Health Guide for the
Care and Use of Laboratory Animals and with the approval of the local ethics committee.
The step-down inhibitory avoidance apparatus and procedures have been
described in previous reports (15). Briefly, the training apparatus was a 50x25x25-cm
acrylic box (Albarsch, Porto Alegre, Brazil) whose floor consisted of parallel caliber
stainless steel bars (1-mm diameter) spaced 1 cm apart. A 7-cmwide, 2.5-cm-high
platform was placed on the floor of the box against the left wall. In the training trial,
animals were placed on the platform and their latency to step down on the grid with all
four paws was measured with an automatic device. Immediately after stepping down on
the grid, the animals received a 0.4-mA, 2.0-sed foot shock and returned to their home
cage. A retention test trial was performed 24 hrs after training. The retention test trial
was procedurally identical to training, except that no foot shock was presented. The
retention test step-down latency (maximum, 180 seconds) was used as a measure of
Page 4 of 20Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
inhibitory avoidance retention. Habituation to an open field was carried out in a 40x60-
cm open field surrounded by 50-cm high walls made of brown plywood with a frontal
glass wall. The floor of the open field was divided into 12 equal rectangles by black lines.
Animals were gently placed on the left rear quadrant, and left to explore the arena for 5
min (training session). Immediately following this, the animals were taken back to their
home cage, and 24 hrs later submitted again to a similar open-field session (test
session). Crossing of the black lines and rearing performed in both sessions were
counted. The decrease in the number of crossings and rearings between the two
sessions was taken as a measure of the retention of habituation (16). Continuous
multiple-trials step-down inhibitory avoidance task was performed in the same step-down
inhibitory avoidance apparatus described above. However, in the training session, the
animal was placed on the platform and immediately after stepping down on the grid,
received a 0.3-mA, 2.0-sec foot shock. This procedure continued until the rat remained
on the platform for 50 seconds. The animal was then returned to the home cage. The
number of training trials required to reach the acquisition criterion of 50 seconds on the
platform was recorded. The retention test was performed 24 hrs later.
Antioxidant effects on the development of long-term cognitive impairment in
sepsis survivors: in the above described model 10 days after sepsis animals presented
deficits in the three cognitive skills (step-down inhibitory avoidance, open field and
continuous multiple-trials step-down inhibitory avoidance) (13), and 30 days in two of
three cognitive skills (step-down inhibitory avoidance and continuous multiple-trials step-
down inhibitory avoidance) (14). In addition we had previously determined that early
after sepsis development oxidative damage occurs, mainly in the hippocampus (11).
Thus, to assess the participation of oxidative damage in the observed cognitive deficits,
we determine the effects of early antioxidant administration on long-term cognitive tasks
and on early markers of oxidative damage in the hippocampus. Using an antioxidant
Page 5 of 20 Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
treatment protocol described in detail by our group elsewhere (17) we determined the
effects of the administration of N-acetylcysteine (NAC, administered 20 mg/kg, 3 hrs, 6
hrs, 12 hrs, 18 hrs, and 24 hrs after CLP, subcutaneously), deferoxamine (DFX, 20
mg/kg, 3 hrs and 24 hrs after CLP, subcutaneously) or both in the above described
parameters. To asses the effects of antioxidant administration on long-term cognitive
deficits in sepsis survivors we divided animals in six different groups: 1) sham-operated;
2) CLP - received antibiotics and fluid resuscitation as described above; 3) CLP plus
NAC - as the CLP group with the administration of NAC as described above; 4) CLP plus
DFX - as the CLP group with the administration of DFX as described above; 5) CLP plus
NAC and DFX - as the CLP group with the administration of both NAC and DFX as
described above; 6) NAC plus DFX - septic animals that did not receive antibiotics, but
only NAC and DFX as described above. To assess the participation of early
hippocampal oxidative damage on the long-term cognitive deficits we used, in a
separate cohort of animals, these six groups. Six hours after sepsis induction animals
were sacrificed by decapitation, hippocampus was removed to the determination of
thiobarbituric acid reactive substances (18) and protein carbonyls (19) as described in
detail elsewhere (11).
Data from the inhibitory avoidance task and retention test latencies from
continuous multiple-trials step-down inhibitory avoidance were expressed as median and
interquartile ranges. Statistical significances were determined by the Mann-Whitney U
test, p <.05. Data from the open-field task and the number of training trials from
continuous multiple trials step-down inhibitory avoidance were expressed as mean +
S.D.. Statistical significances were determined by paired samples Student’s t-test, p <
.05. Data from oxidative damage parameters are presented as means +
S.D. Statistical
significances were determined by 2-way ANOVA and multiple comparisons were
performed by a Newman-Keuls test, p < .05.
Page 6 of 20Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
Results
Effects of early antioxidant administration on the inhibitory avoidance test: we
had previously described that in the CLP model sepsis survivors presented alterations in
the inhibitory avoidance test 10 and 30 days after sepsis induction. No differences
between groups were demonstrated in the inhibitory avoidance training session. In the
test session, the step-down latency was significantly decreased in the sepsis group
compared to the sham group, and this alteration was not reversed with the isolate use of
NAC or DFX 10 (Figure 1A) or 30 (Figure 1B) days after sepsis induction. In contrast,
both 10 and 30 days after sepsis the combined use of NAC and DFX, with or without
antibiotics reversed the observed alteration (Figures 1A and 1B).
Effects of early antioxidant administration on the continuous multiple-trials step-
down inhibitory avoidance test: As demonstrated previously, sepsis survivors presented
an increase in the number of training trials required to reach the acquisition criterion (50
secs on the plataform) in the continuous multiple-trials step-down inhibitory avoidance
test compared to the sham group 10 (Figure 2A) and 30 (Figure 2B) days after sepsis.
As demonstrated previously, in the retention test, there was no difference between
groups (data not shown). Nor NAC or DFX could reverse the observed deficit in both
times tested (Figures 2A and 2B), but as demonstrated to the inhibitory avoidance the
combined use of NAC and DFX reversed the observed alteration (Figures 2A and 2B).
Effects of early antioxidant administration on the open-field task: In the open-field
task, there were no differences in the number of crossings and rearings between groups
in the habituation to the open-field training session, demonstrating no difference in motor
and exploratory activity between groups (Figure 3A and 3B), as we previously
demonstrated (13). As we previously demonstrated, the sepsis group did not show a
Page 7 of 20 Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
difference in crossings and rearings between training test sessions, demonstrating
memory impairment in this group (Figure 3A and 3B). The use of NAC plus DFX, but not
its isolated use, reversed the memory impairment in the open-field task 10 days after
sepsis induction. We did not investigate the effects of antioxidant administration 30 days
after sepsis in the open-field task since we demonstrated previously that at this period
sepsis survivors did not differ significantly from sham animals in this task (14).
Effects of antioxidant administration on hippocampus oxidative damage
parameters after sepsis: We demonstrated previously the occurrence of oxidative
damage 6 hours after sepsis induction in this model of rodent sepsis (11). Since
hippocampus is a major SNC structure responsible to memory formation we determined
if the reversal of late cognitive deficits in sepsis survivors was associated to the
attenuation of early oxidative damage. We demonstrated in figure 4A and 4B that NAC
plus DFX, but no other treatment reversed oxidative damage assessed by two different
oxidative damage parameters, and this correlates to an improve in cognitive
performance in sepsis survivors.
Discussion
We demonstrated for the first time that antioxidant treatment could significantly
attenuate late cognitive deficits in sepsis survivors from cecal ligation and perforation.
This was associated with attenuation on hippocampus oxidative damage in early periods
of sepsis development.
The evidence from 10 ongoing cohorts suggests that 25 to 78% of ICU survivors
experience cognitive impairments (for an excellent review see 20). In these patients
generally memory is the most frequently observed deficit, followed by executive function
and attention deficit (20). The mechanisms underlying these alterations are still obscure.
There is probably not a single cause of these impairments, but rather a number of
Page 8 of 20Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
several factors that interact dynamically with premorbid variables and result in adverse
outcomes (20). Several methodological issues limit the clear distinction between these
factors in the clinical setting. Thus, using a clinically relevant animal model of sepsis we
demonstrated that early hippocampus oxidative damage seems to be important in the
development of late cognitive deficits in sepsis survivors. We supposed that this early
alteration initiate a complex cascade of events that leads ultimately to SNC dysfunction
and late cognitive deficits observed in CLP survivors.
Some few studies were published in the intent to determine the molecular
mechanisms associated with late cognitive deficits in the context of critical care
medicine. Using an animal model of meningitis based on S. pneumoniae Irazuzta et al.
(21) reported that the dexamethasone treatment of rats with bacterial meningitis leads to
decreased activation of caspase 3 but not of caspase 1 and these was associated with a
preservation of neurobehavioral performance, but we need to be very cautious when
evaluating learning and memory performance in subjects treated with dexamethasone
(22). In addition, the administration of hydrocortisone during septic shock in a dosage
similar to the endogenous production rate was associated with a lower incidence of the
so-called posttraumatic stress disorder in long-term survivors (23). Irazuzta group
demonstrated that although hypothermia can reduce the inflammatory response and
biomarkers of brain injury it fails to improve neurobehavioral performance in an animal
model of bacterial meningitis (24). It is well known that neuronal and cerebral endothelial
cells undergone apoptosis via activation of toll-like receptor 2 (25,26), but its relation to
acute and chronic neurologic deficits is unknown. In the same way, LPS could trigger
CNS inflammation and neuronal death during chronic neurodegeneration (27), but the
relevance of this to chronic neurological deficits was never studied.
Since oxidative stress is associated to the development of neurodegenerative
disease (12) and is important to the development of multiple organ dysfunction
Page 9 of 20 Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
syndrome during sepsis (28) is reasonable suppose that it could contribute to long-term
cognitive deficits in sepsis survivors. Oxidative stress was demonstrated previously in
different animal models of critical care disease. We had demonstrated the occurrence of
oxidative damage in an animal model of sepsis (11) and acute hepatic failure (10). Sener
et al described oxidative damage and reduce antioxidant content in a murine model of
sepsis and determined an antioxidant effect to melatonin in this setting (29). None of
these previous studies correlate brain oxidative stress and long-term cognitive deficits in
survivors from critical care diseases.
The evaluation of molecular mechanisms and signaling cascades which underlie
the events that ultimately lead to brain damage during sepsis will improve our
pathophysiological knowledge of this disease. More importantly, it will also promote the
development of new and more efficient therapeutic strategies, especially to prevent
neurological sequelae. In this context our results suggested, for the first time, a role to
early SNC oxidative damage in the development of long-term cognitive deficits. In
addition we demonstrated a new role to antioxidant treatment in an animal model of
sepsis.
Page 10 of 20Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
References
1 - Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis related Organ Failure
Assessment) score to describe organ dysfunction/failure: on behalf of the Working
Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine.
Intensive Care Med 1996; 22:707– 710.
2 - Angus DC, Musthafa AA, Clermont G, Griffin MF, Linde-Zwirble WT, Dremsizov TT,
Pinsky M. Quality-adjusted survival in the first year after the acute respiratory distress
syndrome. Am J Respir Crit Care Med 2001; 163:1389–1394.
3 - Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Ali-Saidi
F, Cooper AB, Guest CB, Mazer CD, Mehta S, Stewart TE, Barr A, Cook D, Slutsky AS.
One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J
Med 2003; 348:683–693.
4 - Jackson JC, Hart RP, Gordon SM, Shintani A, Truman B, may L, Ely EW. Six-month
neuropsychological outcome of medical intensive care unit patients. Crit Care Med 2003;
31:1226–1234.
5 - Orme J Jr., Romney JS, Hopkins RO, Pope D, Chan KJ, Thomsen G, Crapo RO,
Weaver LK. Pulmonary function and health-related quality of life in survivors of acute
respiratory distress syndrome. Am J Respir Crit Care Med 2003; 167:690–694.
6 - Weinert CR, Gross CR, Kangas JR, Bury CL, Marinelli WA. Health-related quality of
life after acute lung injury. Am J Respir Crit Care Med 1997; 156:1120–1128.
7 - Leib SL, Chow LL, Kim YS, Sheldon RA, Tauber MG. Reactive oxygen intermediates
contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial
meningitis due to group B streptococci. J Clin Invest 1996; 98:2632–2639.
8 - Koedel U, Pfister HW. Oxidative stress in bacterial meningitis. Brain Pathol 1999;
9:57–67.
Page 11 of 20 Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
9 - Nau R, Bruck W, Soto A. Apoptosis of neurons in the dentate gyrus in humans
suffering from bacterial meningitis. J Neuropathol Exp Neurol 1999; 58:3265–3274.
10 - Ritter C, Reinke A, Andrades M, Martins MR, Rocha J, Menna-Barreto S, Quevedo
J, Moreira JCF, Dal-Pizzol F. Protective effect of N-acetylcysteine and deferoxamine on
carbon tetrachloride-induced acute hepatic failure in rats. Crit Care Med 2004; 32:2079 –
2084
11 - Barichello T, Fortunato JJ, Meller A, Feier G, Reinke A, Moreira JCF, Quevedo J,
Dal-Pizzol F. Oxidative variables in the rat brain after sepsis induced by cecal ligation
and perforation. Crit Care Med 2006; 34: 886-889.
12 - Halliwell B. Oxidative stress and neurodegeneration: where are we now?
J Neurochem 2006; 97:1634-1658.
13 - Barichello T, Martins MR, Reinke A, Ritter C, Quevedo J, Dal-Pizzol F. Cognitive
impairment in sepsis survivors from cecal ligation and perforation. Crit Care Med 2005;
33:221–223.
14 - Barichello T, Martins MR, Reinke A, Feier G, Ritter C, Quevedo J, Dal-Pizzol F.
Long-term cognitive impairment in sepsis survivors. Crit Care Med 2005; 33: 1671-1672.
15 - Quevedo J, Vianna MR, Roesler R, de-Paris F, Izquierdo I, Rose SP. Two time
windows of anisomycin-induced amnesia for inhibitory avoidance training in rats:
Protection from amnesia by pretraining but not pre-exposure to the task apparatus.
Learn Mem 1999; 6:600–607.
16 - Vianna MR, Alonso M, Viola H, Quevedo J, de Paris F, Furman M, de Stein ML,
Medina JH, Izquierdo I. Role of hippocampal signaling pathways in long-term memory
formation of a nonassociative learning task in the rat. Learn Mem 2000; 7:333–340.
17 - Ritter C, Andrades ME, Reinke A, Menna-Barreto S, Moreira JCF, Dal-Pizzol F.
Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress
and improves survival in sepsis. Crit Care Med 2004; 32:342–349.
Page 12 of 20Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
18 - Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation.
Methods Enzymol 1990; 186: 421.
19. Levine RL, Garland D, Oliver CN. Determination of carbonyl content in oxidatively
modified proteins. Methods Enzymol 1990; 186: 464.
20 - Hopkins RO, Jackson JC. Long-term Neurocognitive Function After Critical Illness.
Chest 2006; 130:869–878.
21 - Irazuzta J, Pretzlaff RK, Courten-Myers G, Zemlan F, Zingarelli B. Dexamethasone
decreases neurological sequelae and caspase activity. Intensive Care Med 2005;
31:146–150.
22 - Martins MR, Barichello T, Ritter C, Reinke A, Quevedo J, Dal-Pizzol F.
Dexamethasone therapy and memory performance. Intensive Care Med 2005; 31:1001.
23 - Schelling G, Briegel J, Roozendaal B, Stoll C, Rothenhausler HB, Kapfhammer HP.
The effect of stress doses of hydrocortisone during septic shock on posttraumatic stress
disorder in survivors. Biol Psychiatry 2001; 50:978–985.
24 - Irazuzta J, Pretzlaff R, Xue V, Zemlan F, Zingarelli B. Modulation of NF-kB
activation and decreased markers of neurological injury associated with hypothermic
therapy in experimental bacterial meningitis. Crit Care Med 2002; 30:2553–2559.
25 - Lehnardt S, Henneke P, Lien E, Kasper DL, Volpe JJ, Bechmann I, Nitsch R, Weber
JR, Golenbock DT, Vartanian T. A mechanism for neurodegeneration induced by group
B streptococci through activation of the TLR2/MyD88 pathway in microglia. J Immunol
2006;177:583-52.
26 - Bermpohl D, Halle A, Freyer D, Dagand E, Braun JS, Bechmann I, Schordcer NW,
Weber JR. Bacterial programmed cell death of cerebral endothelial cells involves dual
death pathways. J Clin Invest 2005;115:1607-1615.
Page 13 of 20 Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
27 - Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. Central and
systemic endotoxin challenges exacerbate the local inflammatory response and increase
neuronal death during chronic neurodegeneration. J Neurosci 2005; 25:9275-9284.
28 - Salvemini D, Cuzzocrea S. Oxidative stress in septic shock and disseminated
intravascular coagulation. Free Radic Biol Med 2002; 33:1173-1185.
29 - Sener G, Toklu H, Kapucu C, Ercan F, Erkanli G, Kacmaz A, Tilki M, Yegen BC.
Melatonin protects against oxidative organ injury in a rat model of sepsis. Surg Today
2005; 35:52-59.
Page 14 of 20Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
Figure Legends
Figure 1 - Inhibitory avoidance task. Rats were sham-operated or submitted to cecal
ligation and puncture (CLP). CLP animals were assigned to receive basic support (Sup),
Sup plus N-acetylcysteine (NAC), Sup plus deferoxamine (DFX), Sup plus NAC and
DFX or only NAC and DFX as described in Materials and Methods. Survivors from
sepsis were submitted to the inhibitory avoidance task A. 10 days or B. 30 days after
sepsis. Data are expressed as median (interquartile ranges) training and test session
latencies, in seconds. n = 15 each group. *Significant difference compared with Sham
group (Mann-Whitney U test, p < .01). Sup = basic support, NAC = N-acetylcysteine,
DFX = Deferoxamine
Figure 2 - Continuous multiple-trials step-down inhibitory avoidance. Rats were
sham-operated or submitted to cecal ligation and puncture (CLP). CLP animals were
assigned to receive basic support (Sup), Sup plus N-acetylcysteine (NAC), Sup plus
deferoxamine (DFX), Sup plus NAC and DFX or only NAC and DFX as described in
Materials and Methods. Survivors from sepsis were submitted to the continuous multiple-
trials step-down inhibitory avoidance task A. 10 days or B. 30 days after sepsis. Data
are expressed as mean +
SD of the number of training trials required to reach
acquisition criterion (50 secs on the platform). n = 15 each group *Significant difference
compared with Sham groups (Student’s t-test, p< .01). Sup = basic support, NAC = N-
acetylcysteine, DFX = Deferoxamine
Figure 3 - Open-field task. Rats were sham-operated or submitted to cecal ligation and
puncture (CLP). CLP animals were assigned to receive basic support (Sup), Sup plus N-
acetylcysteine (NAC), Sup plus deferoxamine (DFX), Sup plus NAC and DFX or only
NAC and DFX as described in Materials and Methods. Survivors from sepsis were
submitted to the open-field task 10 days after sepsis. Data are expressed as mean +
SD
of A. crossings and B. rearings of training (white columns) and test (gray columns)
Page 15 of 20 Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
session. n = 15 each group. *Significant difference between training test (paired samples
Student’s t-test, p < .01). # Significant difference between groups in training and test
sessions (Student’s t-test, p < .01). *Significant difference compared with Sham group
Sup = basic support, NAC = N-acetylcysteine, DFX = Deferoxamine
Figure 4 - Early oxidative damage in the hippocampus from septic rats. CLP
animals were assigned to receive basic support (Sup), Sup plus N-acetylcysteine (NAC),
Sup plus deferoxamine (DFX), Sup plus NAC and DFX or only NAC and DFX as
described in Materials and Methods. Six hours after sepsis induction animals were
sacrificed and hippocampus isolated to the determination of A. thiobarbituric acid
reactive substances and B. protein carbonyls. Data are expressed as mean +
SD n = 5
each group *Significant difference compared with Sham groups (ANOVA followed by
Newman-Keuls test, p< .01). Sup = basic support, NAC = N-acetylcysteine, DFX =
Deferoxamine
Page 16 of 20Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
Figure 1A
Figure 1B
0
30
60
90
120
150
180
Sham Sup Sup + Nac Sup + DFX Sup + Nac +
DFX
NAC + DFX
Seconds
Training
Test
*
*
*
0
10
20
30
40
50
60
Sham Sup Sup + Nac Sup + DFX Sup + Nac +
DFX
NAC + DFX
Seconds
Training
Test
*
*
*
Page 17 of 20 Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
Figure 2A
Figure 2B
Trials
0
1
2
3
4
5
6
7
Sham Sup Sup + Nac Sup + DFX Sup + Nac +
DFX
Nac + DFX
Number of trials
*
*
*
Trials
0
1
2
3
4
5
6
7
Sham Sup Sup+NAC Sup+DFX Sup + NAC +
DFX
NAC + DFX
Number of trials
*
*
*
Page 18 of 20Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
Figure 3A
Figure 3B
0
10
20
30
40
50
60
Sham Sup Sup+NAC Sup+DFX Sup+NAC+DFX NAC+DFX
Number of crossings
Training
Test
*
*
#
#
#
0
5
10
15
20
25
30
Sham Sup Sup+NAC Sup+DFX Sup+NAC+DFX NAC+DFX
Number of rearings
Training
Test
#
#
*
*
#
Page 19 of 20 Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
For Peer Review
Figure 4A
0
5
10
15
20
25
30
35
40
45
Sham CLP + Sup CLP + Sup +
NAC
CLP + Sup +
DFX
CLP + Sup +
NAC + DFX
NAC + DFX
MDA equivalents (nm/mg protein)
*
*
*
Figure 4B
0
2
4
6
8
10
12
Sham CLP + Sup CLP + Sup +
NAC
CLP + Sup +
DFX
CLP + Sup +
NAC + DFX
NAC + DFX
Protein carbonyls (nm/mg protein)
*
*
*
Page 20 of 20Critical Care Medicine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
64
DISCUSSÃO
Dano cognitivo em ratos sobreviventes a sepse
Os resultados dos experimentos do Capítulo 1 e 2 demonstraram que
ratos sobreviventes a sepse após 10 dias da indução nos testes de habituação ao
campo aberto, esquiva inibitória, esquiva inibitória de múltiplos treinos,
reconhecimento de objeto, labirinto de cruz elevada e natação forçada apresentaram
incapacidade na aprendizagem, na memória, e sintomas de depressão.
No Teste de Habituação ao Campo Aberto, os ratos submetidos à sepse
não apresentaram alteração na atividade locomotora e exploratória quando
comparados ao grupo sham, porém demonstraram incapacidade na habituação ao
local, sugerindo uma incapacidade na memória e aprendizagem.
No teste de esquiva inibitória o tempo de latência foi significativamente
menor no grupo sepse, demonstrando que estes possuem uma incapacidade na
memória aversiva. O teste de esquiva inibitória envolve vários estímulos, incluindo
percepção espacial e visual, sensibilidade à dor, acompanhados de um componente
emocional amplamente modulado por hormônios relacionados ao estresse (GoId,
1986). Os ratos submetidos á sepse que foram submetidos ao teste de esquiva
inibitória de múltiplos treinos mostraram um significativo aumento no número de
treinamentos requeridos para alcançar o critério de aquisição (50 segundos na
plataforma) e no teste de retenção não houve diferença entre os grupos. Os
resultados desta tarefa mostraram que o grupo sepse requereu aproximadamente
duas vezes mais estímulos para alcançar o critério da aquisição quando comparado
65
com o grupo sham, indicando uma incapacidade de aprendizagem (aquisição de
novo conhecimento).
A tarefa de reconhecimento de objetos, desenvolvida originalmente por
Ennaceur e por Delacour (Ennaceur e Delacour, 1988), é baseada na tendência dos
roedores explorarem o objeto novo. Nenhuma estimulação, recompensa ou
aversividade são utilizadas durante o treinamento, a aprendizagem ocorre sob
circunstâncias de estresse ou de medo relativamente baixo (Ennaceur e Delacour
1988). Os dados encontrados mostraram que os ratos sobreviventes a sepse
apresentaram incapacidade significativa da memória de reconhecimento do objeto
familiar. Estes achados são relevantes desde que à tarefa de reconhecimento do
objeto familiar nos roedores seja um teste não espacial e não aversivo para
memória. Além disso, a tarefa do reconhecimento do objeto está sendo usada
também cada vez mais como uma ferramenta experimental poderosa para avaliar os
efeitos de droga na memória e investigar a aprendizagem dos mecanismos neurais e
memórias subjacentes (Rosa et al, 2003; Schröder et al, 2003; Baker e Kim, 2002;
Okuda et al, 2004; Rampon et al, 2000).
No teste do labirinto de cruz elevada, um teste validado para avaliar
comportamento ansioso (Pellow et al, 1985), nenhuma diferença foi demonstrada
entre os grupos, indicando que os sobreviventes de sepse não apresentam sintomas
de ansiedade após a recuperação da doença.
Os sobreviventes de sepse apresentaram sintomas ligados à depressão
avaliados no teste forçado da natação. O tempo de imobilidade foi significativamente
mais longa no grupo dos sobreviventes de sepse. A origem do teste de natação
forçado relatada por Porsolt (1979) era aquela de um modelo da depressão com as
características similares àquelas do modelo instruído do comportamento
66
desamparado, mas tecnicamente mais fácil de reproduzir. O estado afetivo interno
dos roedores após a exposição ao nado inicial no teste de natação forçada é
caracterizado como comportamento de desespero. O teste preliminar ao
procedimento da indução da natação foi proposto para ser similar à sessão inicial
que induz o comportamento desesperado instruído para expor os ratos ao estresse
de não poder escapar daquela situação. A Indução do comportamento de desespero
produz um largo aspecto comportamental afetando a cognição, o sono e o
desempenho motor que se assemelham muitos dos sintomas de depressão (Weiss e
Kilts, 1998). Adicionalmente, como descrito acima, o grupo de sobreviventes de
sepse não apresentou incapacidade motora, suportando a idéia que o longo tempo
de imobilidade no grupo séptico foi relacionado aos sintomas ligados a depressão.
Estes resultados estão de acordo com estudos clínicos sobre sintomas depressivos
nos quais sobreviventes de doenças severas tais como o sepse e choque séptico
apresentam (Angus et al, 2001; Granja et al, 2004; Granja et al, 2005; Heyland et al,
2000 ; Hopkins et al, 2005).
Quando realizado os testes de esquiva inibitória, esquiva inibitória de
múltiplos treinos e habituação ao campo aberto após 30 dias, ratos sobreviventes a
sepse ainda demonstraram incapacidade de aprendizagem e memória, estes
resultados são apresentados no Capítulo 3
Estes resultados indicam que a incapacidade de memória e aprendizagem
demonstrada 10 dias após a indução da sepse, persistem após 30 dias do CLP. A
persistência das alterações 30 dias após CLP reforça a idéia que este modelo
poderia ser uma ferramenta importante no estudo das seqüelas cognitivas em
sobreviventes de sepse.
67
Os dados deste estudo fornecem a primeira demonstração experimental
em um modelo animal de sepse clinicamente relevante para demonstrar a
incapacidade na aprendizagem e memória. Neste contexto, Shimizu e colaboradores
(1999) demonstraram que 24 horas após CLP, os animais mostraram incapacidade
de aprendizagem na esquiva inibitória. Os resultados deste estudo podem ter um
significado maior, pois foram realizados os experimentos 10 dias e 30 dias após
CLP, e não 24 horas. Os animais após 10 dias da cirurgia estão recuperados
inteiramente, sem nenhum sinal de infecção ou alterações motoras (Ritter et al,
2004; Ritter et al, 2003). Além disso, este estudo utilizou reposição hídrica e
antibióticos para replicar o mais próximo a terapia de suporte executada no ajuste
clínico, quando comparado com o estudo de Shimizu e colaboradores (1999).
Em um modelo animal de sepse induzido por LPS, foi encontrado
mecanismos conhecidos de apoptoses no hipocampo após 24 horas após a indução,
sendo assim, o mais severamente afetado após a indução do sepsis (Semmler et al.,
2005).
Semmler e colaboradores (2007) mostraram que ratos submetidos à
sepse pelo modelo de LPS (injeções de polissacarídeos) apresentaram após 3
meses, alterações comportamentais, dano neuronal em sub-regiões hipocampais e
redução da inervação colinérgica em áreas corticais.
As incapacidades cognitivas parecem estar relacionadas diretamente aos
processos dependentes do hipocampo, danificando a memória (Squire e Zola-
Morgan, 1991; Jarrard, 1995). Similarmente, como indicou Semmler e colaboradores
(2007) em seu estudo, caracterizado por uma redução significativa na densidade dos
neurônios CA1/CA2 do hipocampo. Adicionalmente foi encontrado uma densidade
reduzida de células neuronais no rtex pré-frontal, onde as lesões podem conduzir
68
aos distúrbios de orientação e aos problemas amenésicos em tarefas complexas
(Heidbreder e Groenewegen, 2003; Mogensen et al., 2005). Além disso, foi
demonstrado uma densidade diminuída de VAChT após a indução da sepse
experimental, indicando uma inervação colinérgica diminuída nas áreas citadas
acima no estudo de Semmler e colaboradores (2007) , provavelmente relacionado
também as incapacidades cognitivas observadas, como mudanças na densidade
parietal de VAChT com incapacidades na memória foram encontrados também 1
ano após a indução experimental de trauma cerebral (Dixon et al., 1999).
Entretanto, ainda citando o estudo de Semmler e colaboradores (2007) a
VAChT é expressada excepcionalmente nos neurônios colinérgicos e concentrado
em seus terminais axônicos (Gilmor et al., 1996; Arvidsson et al., 1997), a redução
da imunoreatividade de VAChT dentro o córtex parietal junto com uma densidade
inalterada dos neurônios do córtex parietal indica reduzida inervação colinérfica
nessa área. Além disso, a maioria da inervação colinérgica hipocampal e cortical são
originadas fora do hipocampo e do córtex (Mesulam et al., 1983). Isto sugere que a
diminuição da imunoreatividade de VAChT reflete principalmente a retirada da fibra
colinérgica dos neurônios, como os neurônios colinérgicos representam 5- 10% dos
neurônios corticais e hipocampais (Gage et al., 1983; Eckenstein et al., 1988). Os
neurônios gabaérgicos e glutamatérgicos, a somatostatina e o neuropeptideo Y o
mais representativos nestas áreas.
As incapacidades observadas neste estudo, pelo menos parte delas,
como as alterações cognitivas o observadas em sobreviventes de sepse,
particularmente a incapacidade na memória. Nesta maneira, o modelo de CLP para
indução da sepse pode ajudar a investigar os mecanismos biológicos envolvidos na
incapacidade cognitiva associada à sepse e para determinar ações terapêuticas
69
para este problema. Estudos precedentes que descreveram os sintomas de
pacientes sobreviventes de sepse na unidade de terapia intensiva demonstram que
a maioria destes pacientes apresentou alguma incapacidade cognitiva na alta
hospitalar (Hopkins et al, 1999; Angus et al, 2001; Granja et al, 2004; Heyland et al,
2000). Após 1 ano, a maioria dos pacientes mostrou uma melhoria na função
cognitiva total; entretanto, algumas habilidades cognitivas, como a memória, não
melhorou completamente (Hopkins et al, 1999; Angus et al, 2001; Heyland et al,
2000). Entretanto os mecanismos envolvidos na incapacidade cognitiva ainda
permanecem obscuros.
Medidas de estresse oxidativo no cérebro de ratos sobreviventes a sepse
No Capítulo 4 foi realizada a mensuração do estresse oxidativo em ratos
submetidos à sepse para tentar esclarecer os mecanismos neurobiológicos
envolvidos na incapacidade cognitiva.
Foi demonstrado que, os danos oxidativos, avaliados pelo TBARS e
carbonil, e ocorrem precocemente no desenvolvimento do curso da sepse em
diversas regiões do cérebro. Os níveis de TBARS foram elevados no hipocampo,
córtex, e cerebelo 6 horas após a indução da sepse. Em contraste, níveis de carbonil
foram elevados somente no hipocampo 6 horas após a indução da sepse. Estes
sugerem danos oxidativos mais consistentes nos lipídios em comparação com
proteínas.
Para determinar a atividade enzimática antioxidante durante o
desenvolvimento da sepse no cérebro dos ratos, foi determinada a atividade
antioxidante enzimática do sistema nervoso central (CAT e SOD). À exceção do
70
estriado, foi demonstrado um aumento na atividade de SOD sem um proporcional
aumento na atividade de CAT, com aumento conseqüente na relação de SOD e
CAT. Assim, um desequilíbrio na atividade de SOD e CAT ocorrido ao mesmo tempo
e dentro das mesmas estruturas em que foi demonstrado o dano oxidativo. Foi
descrito previamente por Ritter e colaboradores (2004) que um desequilíbrio entre as
atividades de SOD e CAT no coração, fígado, pulmão, e diafragma são, em parte,
responsável pelos danos oxidativos em um modelo de. Os danos oxidativos e
desequilíbrio nas enzimas antioxidantes no início do curso da sepse pareceram não
ser secundários à falha renal ou hepática, pois no início o foi relatada nenhuma
alteração em marcadores plasmáticos da função renal e hepática. Além disso, o
dano não parece ser secundário a hipotensão, pois foi utilizado líquido de
ressuscitação não foi associado com a hipotensão em 6 horas após a indução de
sepse.
Foi demonstramos pela primeira vez que, diferentemente de outros
órgãos envolvidos na resposta séptica, no sistema nervoso central o estresse
oxidativo é restringido a períodos mais iniciais após a indução da sepse. Estes
resultados são intrigantes, pois os danos oxidativos no pulmão, no fígado, no
coração, e no rim ocorrem em períodos mais distantes após a indução da sepse
(Ritter et al, 2004). Abd El-Gawad e Khalifa (2001) demonstraram que 2 horas após
a administração de lipopolisacarideos havia um aumento na geração de radicais
livres no rebro de ratos, porém estes autores não analisaram variáveis oxidativas
em períodos mais distantes após a administração de lipopolisacarideos. Em
contraste, demonstrou-se que o estresse oxidativo ocorreu até 48 horas após a
indução da sepse no cérebro dos ratos (Sener et al, 2005; Czapski et al, 2004).
Entretanto, nestes estudos o fluído para ressuscitação foi administrado somente uma
71
vez, e isto poderia induzir posteriormente a uma hipotensão (Sener et al, 2005;
Czapski et al, 2004). Suportando os dados apresentados neste estudo, Messaris e e
colaboradores (2004) demonstraram recentemente a apoptose mediada pela
mitocôndria no cérebro de ratos em períodos iniciais após a indução da sepse (6-12
horas), porém não em períodos mais tardis. Estas alterações mitocondriais poderiam
ser um dos mecanismos associados ao estresse oxidativo no cérebro.
Estudos do grupo do Dr Boveris demonstraram que a produção de NO
durante a sepse leva a inativação transitória da atividade da cadeia de transporte de
elétrons, provavelmente complexo II e IV seriam os alvos principais. Esta inativação
levaria a produção de superóxido mitocondrial e, conseqüentemente, de peroxinitrito
que inativaria irreversivelmente a cadeia de transporte de elétrons levando efeito em
cascata (Boczkowski et al 1999).
Outra possibilidade é a de que os diferentes mediadores da resposta
inflamatória da sepse possam levar à disfunção mitocondrial e esta a liberação de
espécies reativas de oxigênio. Entre estes, o TNF-α tem capacidade de levar as
alterações celulares, inclusive morte, mediadas por vias de sinalização intracelulares
dependente de ativação do seu receptor. A ativação de receptores de TNF ativa
esfingomielinases, levando a um aumento intracelular de ceramida e fosfocolina. A
ceramida pode levar a formação do poro de permeabilidade transitória mitocondrial
(MPT), com conseqüente liberação de citocromo C (Siskind et al 2002), ativação de
caspase-3 (Von Haefen et al 2002) e apoptose. Em concentrações de milimolar
ceramida inibe a fosforilação oxidativa e leva a produção de EAO (Garcia-Ruiz et al
1997).
Além disso, a incapacidade da limpeza dos astrócitos de ácido
desidroascórbico do líquido extracelular e da diminuição conseqüente do ascorbato
72
intracelular, a concentração poderia ser associada com o estresse oxidativo do
sistema nervoso central (Korcok et al, 2002). Esta idéia é reforçada pela diminuição
do ascorbato nos níveis do fluído cerebrospinal nos pacientes com encefalopatia
séptica (Voigt et al, 2002). Entretanto, a sepse induz a óxido nítrico sintase e inibe a
recaptação de glutamato pelos astrocitos através dos mecanismos que podem ser
modulados pelo ascorbato intracelular (Korcok et al, 2002).
A proteção do sistema nervoso central aos danos oxidativos parece ser a
adaptação para minimizar a disfunção e também poderia estar relacionado a
adaptação das defesas antioxidantes do sistema nervoso central, diminuição do
metabolismo do sistema nervoso central, ou outros diversos fatores ainda não
esclarecidos. Os dados deste estudo demonstram que, como em outros órgãos
(Ritter et al, 2004), um desequilíbrio no meio SOD e CAT poderia ser responsáveis,
em parte, pela ocorrência de danos oxidativos no cérebro dos ratos. Em
contrapartida estas enzimas normalizaram-se nas estruturas estudadas 12-96 horas
após a indução da sepse. Neste período (12-96 horas após a indução da sepse) foi
demonstrado que a atividade da SOD e da CAT não mudou nem aumentou
proporcionalmente ou que, o aumento na atividade da CAT foi mais elevada do que
o aumento da atividade da SOD. Assim, as alterações na relação de SOD/CAT
foram relacionadas temporariamente à ocorrência ou não de danos oxidativos dentro
do sistema nervoso central. Em relação ao exposto acima, não nenhum estudo
que descreve a modulação da SOD e da CAT no cérebro de ratos após a indução da
sepse. Porém, não foi possível verificar em curto prazo os danos oxidativos
demonstrados neste estudo se podem conduzir ao sistema nervoso central sintomas
durante o desenvolvimento da sepse, ou mesmo a encefalopatia séptica.
73
Tratamento com antioxidantes e dano cognitivo
Baseado nos resultados apresentados no Capítulo 1, 2 e 4, foi realizada
a avaliação dos efeitos do tratamento com antioxidantes NAC e DFX na reversão da
incapacidade cognitiva demonstradas nos testes de habituação ao campo aberto,
esquiva inibitória, esquiva inibitória de múltiplos treinos e no estresse oxidativo em
hipocampo após a indução de sepse em ratos sobreviventes para tentar esclarecer
os possíveis mecanismos neurobiológicos que levam ao dano cognitivo.
Nos testes comportamentais citados acima, após 10 e 30 dias da indução
de sepse, DFX e NAC quando administrados concomitantemente reverteram à
incapacidade cognitiva apresentada nos Capítulo 1 e 3.
Foi demonstrada previamente no Capítulo 4, a ocorrência de dano
oxidativo 6 horas após a indução da sepse no hipocampo de cérebros de ratos
sépticos. O hipocampo é a estrutura principal do SNC responsável pela formação da
memória, devido a isso, a reversão dos danos cognitivos tardios em sobreviventes
de sepse poderia estar associada à atenuação dos danos oxidativos precoces. Foi
demonstrado que NAC e DFX administrados concomitantemente, mas não com o
seu uso isolado, reverteram os danos oxidativos avaliados por dois parâmetros
oxidativos diferentes de danos. Foi demonstrado pela primeira vez que o tratamento
com antioxidantes pode significativamente reverter danos cognitivos tardios em
sobreviventes de sepse em um modelo animal de CLP. Isto foi associado com a
atenuação nos danos oxidativos do hipocampo em períodos iniciais do
desenvolvimento da sepse.
A grande maioria dos estudos em animais (Andrades et al 2005, Jao et al
2005, Koksal et al 2004) e em humanos (Goode et al 1995, Cighetti et al 2005,
74
Mishra et al 2005, Winterbourn et al 2000) demonstram uma relação entre estresse
oxidativo e disfunção de múltiplos órgãos durante a sepse, mas não em SNC. Neste
sentido, diversos estudos utilizam antioxidantes para o tratamento de sepse em
animais (Victor et al 2003, Matejovic et al 2005, Supinski et al 2006, Carlson et al
2006) e humanos (Spapen et al 2005, Emet et al 2004, Hein et al 2004, Heller et al
2001, Rank et al 2000, Ortolani et al 2000, Spapen et al 1998, Angstwurm et al
2007). Tanto a NAC quanto a DFX já foram testados isoladamente para o tratamento
de sepse em animais. A NAC é efetiva em diferentes modelos de sepse, incluindo
endotoxemia (Hsu et al 2006) e CLP (Ozdulger et al 2003). Em modelo de CLP,
Messaris e colaboradores (2004) demonstraram que o uso profilático de DFX reduz
apoptose e mortalidade.
As evidências de 10 coortes sugerem que 25 a 78% dos sobreviventes de
centros de terapia intensiva têm experiências de danos cognitivos (Hopkins e
Jackson, 2006). Nestes pacientes geralmente a memória é o dano mais
freqüentemente observado, seguido pela função executiva e o dano na atenção
(Hopkins e Jackson, 2006).
Os mecanismos subjacentes a estas alterações ainda são obscuros.
provavelmente várias causa para estas incapacidades, mas sim diversos de fatores
que interagem dinamicamente com variáveis e resultados de p morbidagem
(Hopkins e Jackson, 2006). Assim, usando um modelo animal clinicamente relevante
de sepse foi possível demonstrar que os danos oxidativos do hipocampo em
períodos inicias parecem ser importantes no desenvolvimento das incapacidades
cognitivas tardias em sobreviventes de sepse.
Este estudo supõe que haja uma alteração em cascatas de complexos
eventos que conduzam finalmente a disfunção do SNC e danos cognitivos tardios
75
observados em ratos sobreviventes de CLP. Alguns poucos estudos foram
publicados na intenção de determinar os mecanismos moleculares associados os
danos cognitivos tardios no contexto da medicina do cuidado crítico. Usando um
modelo animal de meningite baseado em S. pneumoniae Irazuzta e colaboradores
(2005) relataram que o tratamento com dexametasona em ratos com meningite
bacteriana conduz a menor ativação da caspase 3 mas não da caspase 1 e estes
foram associados com a preservação do desempenho neurocomportamental, porém
neste estudo necessita-se ser muito cauteloso quando o desempenho da avaliação
da aprendizagem e da memória tratados com dexametasona (Martins et al, 2005).
Porém, a administração de hidrocortisona durante o choque séptico em uma
dosagem similar à taxa de produção endogenosa foi associada com uma menor
incidência de alterações pós-traumáticas de estresse em sobreviventes em longo
prazo (Schelling et al, 2001).
O Grupo de Irazuzta tem demonstrado isto, embora a hipotermia possa
estar reduzindo a resposta inflamatoria e biomarcadores de ferimento do cérebro
não melhoram o desempenho neurocomportamental em um animal modelo de
meningite bacteriana (Irazuzta et al, 2002).
Desde que o estresse oxidativo é associado ao desenvolvimento de
doenças neurodegenerativas (Halliwell, 2006) sendo importante para o
desenvolvimento da ndrome da disfunção dos múltiplos órgãos durante a sepse
(Salvemini e Cuzzocrea, 2002) e suponha-se que poderia contribuir a longo prazo
para os danos cognitivos em sobreviventes de sepse. O estresse Oxidativo foi
demonstrado previamente dentro de modelos animais diferentes de doença crítica.
Sener e colaboradores (2005) relataram que os danos oxidativos descritos reduzem
o índice antioxidante em um modelo animal de sepse e determinando um efeito
76
antioxidante no ajuste. Nenhum estudo precedente correlacionam o estresse
oxidativo do cérebro e danos cognitivos a longo prazo de sobreviventes de doenças
críticas. A avaliação dos mecanismos e das cascatas moleculares sinalizadoras dos
quais induzem eventos que conduzem finalmente aos danos no cérebro durante a
sepse aperfeiçoaram os conhecimentos sobre a fisiopatologia da sepse e, mais
importante, promoverá também o desenvolvimento de estratégias terapêuticas mais
eficientes, para impedir as seqüelas neurológicas.
Os antioxidantes utilizados podem interferir com NO e seus metabólitos ou
com espécies reativas de oxigênio que devem ter ligação com a disfunção
mitocondrial da sepse. NAC pode atuar como scavenger direto de NO e peroxinitrito
(Halliwell e Gutteridge 2007), além de o uso de NAC e DFX, como descrito
anteriormente, pode interferir na geração de EAO e com isto diminuir o estresse
oxidativo e preservar a função mitocondrial.
O uso de antioxidantes pode apresentar uma dupla face na sepse. Por um
lado pode reduzir a resposta inflamatória e minimizar o dano oxidativo, mas a
resposta inflamatória e necessária para a erradicação do patógeno, reparo dos
tecidos envolvidos e ativação do sistema imune adquirido. Neste sentido cada vez
mais se caracteriza e determina a importância da resposta antiinflamatória na sepse
(Hotchkiss RS et al 2003). Por isso o uso de antioxidantes não pode ser visto como
isento de risco. Reduzir a resposta inflamatória através de estratégias
farmacológicas específicas se mostrou ineficaz em estudos clínicos (Eichacker et
al 2002). Portanto o tempo e a dose da administração de antioxidantes devem ser
fundamentais na eficácia desta terapia, para que exista redução do dano oxidativo e
mitocondrial e atenuação da resposta inflamatória, sem prejuízo da erradicação dos
patógenos.
77
Neste contexto os resultados deste estudo sugerem uma incapacidade
cognitiva em curto e longo prazo incluindo alterações do aprendizado e memória,
além de sintomas ligados a depressão e, pela primeira vez, um papel dos danos
oxidativos em períodos iniciais no SNC no desenvolvimento do dano cognitivo em
curto e longo prazo. A associação de NAC e DFX pode ter um papel terapêutico
para o dano oxidativo em hipocampo. Entretanto, é difícil com nossos dados
determinar o exato mecanismo que leva ao estresse oxidativo e ao tratamento
adequado com antioxidantes para reverter e prevenir este processo.
Limitações do estudo e perspectivas futuras
Os modelos de doenças inflamatórias empregados apresentam algumas
limitações. O modelo de sepse, CLP, certamente é o mais empregado na literatura
por mimetizar sepse abdominal de humanos, ainda mais quando se utiliza reposição
volêmica e antibióticos, além de administrar as drogas de estudo após o
desenvolvimento de sepse como em nosso estudo. Entretanto, diferente da prática
clínica, em nosso modelo não removemos o foco infeccioso cirurgicamente por
dificuldades na realização de tal procedimento nestes animais. Existe modelo
recentemente desenvolvido, peritonite fecal por cateterização do cólon ascendente,
que facilita a remoção cirúrgica do foco infeccioso (Lustig et al 2007). Entretanto,
este modelo ainda não é bem estabelecido e o perfil de citocinas parece ser
diferente do CLP (Maier et al 2004), sendo uma das possibilidades de expansão de
nossos resultados no futuro.
A compreensão, mesmo que ainda não definitiva, dos fenômenos
neurobiológicos envolvidos no dano cognitivo em sobreviventes a sepse, evoluiu
78
sobremaneira nesta última década. Os conceitos, contudo, não foram alterados;
ocorreu, de fato, um aprofundamento do entendimento de seu substrato biológico.
Os resultados compilados nesta tese compreendem uma pequena fração desse
corpo de novos conhecimentos sobre os mecanismos que levam a incapacidade
cognitiva. O novo desafio é compreender os mecanismos que levam ao dano
cognitivo em sobreviventes a sepse e o surgimento de novas terapias que possam
impedir este dano a curto e longo-prazo.
79
REFERÊNCIAS BIBLIOGRÁFICAS
Agranoff BW, Davis RE, Brink JJ. Memory fixation in the goldfish. Proc Natl Acad Sci
USA 1965 54:788-93.
Al-Saidi F, McAndrews MP, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-
Granados N, Herridge M. Neuropsychological sequelae in ARDS survivors. Am J
Respir Crit Care Med 2003 167:A737.
Alvarez S, Evelson PA. Nitric oxide and oxygen metabolism in inflammatory
conditions: sepsis and exposition to polluted ambients. Front Biosci 2007 12: 964-74.
Ames BN, Shigenaga MK. Hagem, TM. Oxidants, antioxidants, and the degenerative
diseases of aging. Proceedings of the National Academy of Science 1993 90:7915–
7922.
Andrades M, Ritter C, Moreira JC, Dal-Pizzol F. Oxidative parameters differences
during non-lethal and lethal sepsis development. J Surg Res 2005 125:68-72.
Andreazza AC, Soares DG, Kehl LF, Lima Borella ML, Salvador M. Transtornos
neuropsiquiátricos e estresse oxidativo. in: Izquierdo I, Quevedo J, Kapczinski F.
Bases Biológicas dos Transtornos Psiquiátricos. 1ed. Porto Alegre: Artmed, 2004.
489-496.
Angus DC, Musthafa AA, Clermont G, Griffin MF, Linde-Zwirble WT, Dremsizov TT,
Pinsky MR. Quality-adjusted survival in the first year after the acute respiratory
distress syndrome. American Journal of Respiratory and Critical Care Medicine 2001
163:1389-1394.
Arvidsson, U., Riedl, M., Elde, R., Meister, B. Vesicular acetylcholine transporter
(VAChT) protein: a novel and unique marker for cholinergic neurons in the central
and peripheral nervous systems. J. Comp. Neurol 1997 378, 454–467.
80
Atis S, Nayci A, Ozge A, Comelekoglu U, Gunes S, Bagdatoglu O. N-acetylcysteine
protects the rats against phrenic nerve dysfunction in sepsis. Shock 2006 25:30-5.
Azevedo LC, Janiszewski M, Soriano FG, Laurindo FR. Redox mechanisms of
vascular cell dysfunction in sepsis. Endocr Metab Immune Disord Drug Targets 2006
6:159-64
Baker SK, Tarnoplski MA. Targeting cellular energy production in neurological
disorders, Expert. Opin Investig Drugs 2003 12-1655-1679.
Basler T, Meier-Hellmann A, Bredle D, Reinhart K. Amino-acid imbalance early in
septic encephalopathy. Intensive Care Med 2002 28:293–8.
Basu S, Eriksson M. Oxidative injury and survival during endotoxemia. FEBS Lett
1998 438:159-160
Beishuizen A, Thijs LG. Endotoxin and the hypothalamo-pituitary-adrenal (HPA axix).
J Endotoxin Res 2003 9:3–24.
Bermpohl D, Halle A, Freyer D, Dagand E, Braun JS, Bechmann I, Schordcer NW,
Weber JR. Bacterial programmed cell death of cerebral endothelial cells involves
dual death pathways. J Clin Invest 2005115:1607-1615.
Beutler, E. Nutritional and Metabolic aspects of Glutathione. Annual Review of
Nutrition 1989 9:287-302.
Bleck TP, Smith MC, Pierre-Louis SJ, Jares JJ, Murray J, Hansen CA. Neurologic
complications of critical medical illnesses. Critical Care Medicine 1993 21:98–103.
Bone RC. Modulators of coagulation. A critical appraisal of their role in sepsis J Am
Med Assoc 1992, 268:3452–3455.
Bone RC, Grodzin CJ, Balk RA. Sepsis: a new hypothesis for pathogenesis oh the
disease process. Chest 1997 112:235-243
81
Booke M, Westphal M, Hinder F, Traber LD, Traber DL. Cerebral blood flow is not
altered in sheep with Pseudomonas aeruginosa sepsis treated with norepinephrine or
nitric oxide synthase inhibit. Anesth Analg 2003 96:1122–8.
Bowie RA, O’connor PJ, Mahajan RP. Cerebrovascular reactivity to carbon dioxide in
sepsis syndrome. Anaesthesia 2003 58:261–79.
Bowton DL, Bertels NH, Prough DS, Stump DA. Cerebral blood flow is reduced in
patients with sepsis syndrome. Crit Care Med 1989 17:399–403.
Bromont C, Mareie C, Bralet J. Increased lipid peroxidation in vulnerable brains
regions after transient forebrain ischemia. Stroke 1989 20:918-924.
Brun-Buisson C. The epidemiology of the systemic inflammatory response. Intensive
Care Medicine 2000, 26:S64–S74.
Calabrese V, Scapagnini G, Colombrita C, Ravagna A, Pennisi G, Giuffrida SAM,
Galli F, Butterfield DA. Redox regulation of heat shock protein expression in aging
neurodegenerative disorders associated with oxidative stress: nutritional approach.
Amino Acids 2003 25:437-444.
Callahan LA, Nethery D, Stofan D, Dimarco A, Supinski G. Free radical induced
contractile protein dysfunction in endotoxin induced sepse. Am J Respir Cell Mol Biol
2001 24: 210- 217.
Chrousos GP. The hypothalamic-pituitary-adrenal-axis and immune-mediated
inflammation. N Engl J Med 1995, 332:1351-1362.
Chrousos GP, Gold PW. The concepts of stress and stress system disorders.
Overview of physical and behavorial homeostasis. JAMA 1992 267:1244-1252.
Cohen J. The immunopathogenesis of sepsis. Nature 2002 420:885–891.
Cohen MV. Free radicals in ischemic and reperfusion myocardial injury: is this time
for clinical trials?.Ann. International Med 1989 111:918-931.
82
Coyle JT, Puttfarcken P. Oxidative stress, glutamate and neurodegenerative
disorders. Science 1993 262:689-695.
Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. Central and
systemic endotoxin challenges exacerbate the local inflammatory response and
increase neuronal death during chronic neurodegeneration. J Neurosci 2005
25:9275-9284
Cuzzocrea S, Rilley DP, Caputi AP, Salvenini A. Antioxidant theraphy: A new
pharmacological approach in shock, inflammation, and ischemia/reperfusion injury.
The American Society for Pharmacology and Experimental Therapeutics 2001
53:135-159.
Cuzzocrea S, Mazzon E, Di Paola R, Esposito E, Macarthur H, Matuschak GM,
Salvemini D. A role for nitric oxide-mediated peroxynitrite formation in a model of
endotoxin-induced shock. J Pharmacol Exp Ther 2006 319:73-81.
Czapski GA, Cakala M, Kopczuk D, Kaminska M, Strosznajder JB. Inhibition of nitric
oxide synthase prevents energy failure and oxidative damage evoked in the brain by
lipopolysaccharide. Pol J Pharmacol 2004 56:643–646
Dal-Pizzol F, Klamt F, Vianna MMR, Schroder N, Quevedo J, Benfato MS, Moreira
JCF, Walz R. Lipid peroxidation in hippocampus early and late after status
epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci Lett 2002
91:179-182.
Dal-Pizzol F, Klamt F, Benfato MS, Bernanrd EA, Moreira JCF. Retinol
supplementation induces oxidative stress and modulates antioxidant enzyme
activities in rat Sertoli cells. Free Radic Res 2001 34: 395-404.
Dantzer R, Bluthe RM, Gheusi G, Cremona S, Laye S, Parnet P, Kelley KW.
Molecular basis of sickness behavior. Ann NY Acad Sci 1998 856:132–138.
83
Descamps L, Coisne C, Dehouck B, Cecchelli R, Torpier G. Protective effect of glial
cells against lipopolysaccharide-mediated blood barrier injury. Glia 2003 42:46–58.
Desidere A, Falconi M. Prokaryotic Cu, Zn Superoxide dismutases. Biochem Soc
Trans 2003 31:1322-1325.
Dinarello CA. Infection, fever, and exogenous and endogenous pyrogens: some
concepts have changed. J Endotoxin Res 2004 10:201–222.
Dix TA, Hess KM, Medina MA, Sullivan RW, Tilly SL, Webb LL. Mechanism of site-
selective DNA nicking by the hydrodioxyl (perhydroxyl) radical. Biochemistry 1996
35:4578-4583.
Dixon, C.E., Kochanek, P.M., Yan, H.Q., Schiding, J.K., Griffith, R.G., Baum, E.,
Marion, D.W., DeKosky, S.T. One-year study of spatial memory performance, brain
morphology, and cholinergic markers after moderate controlled cortical impact in rats.
J. Neurotrauma 1999 16, 109–122.
Durant R, Klouche K, Delbosc S, Morena M, Amigues L, Beraud JJ, Canaud B,
Cristol JP. Superoxide anion overproduction in sepsis: effects of vitamin e and
simvastatin. Shock 2004 22:34-9.
Eaton JW. Catalases and peroxidases and glutathione and hydrogen peroxide:
mysteries of the bestiary. Journal Lab. Clin. Méd 1991 118:.3-4.
Ferreira ALA, Matsubara LS. Radicais livres: conceitos doenças relacionadas,
sistema de defesa e estresse oxidativo. Revista da Associação Medica Brasileira
1997 43:61-68.
Eckenstein, F.P., Baughman, R.W., Quinn, J. An anatomical study of cholinergic
innervation in rat cerebral cortex. Neuroscience 1988 25: 457–474.
Eichacker PQ, Parent C, Kalil A, Espósito C, Cui X, Banks SM, Gerstenberger EP,
Fitz Y, Danner RL, Natanson C. Risk and the Efficacy of Antiinflammatory Agents:
84
Retrospective and Confirmatory Studies of Sepsis Am. J. Respir. Crit. Care Med
2002 166:1197-1205.
Emet S, Memis D, Pamukcu Z. The influence of N-acetyl-L-cystein infusion on
cytokine levels and gastric intramucosal pH during severe sepsis. Crit Care 2004
8:R172-9
Fernandes D, da Silva-Santos JE, Duma D, Villela CG, Barja-Fidalgo C, Assreuy J.
Nitric oxide-dependent reduction in soluble guanylate cyclase functionality accounts
for early lipopolysaccharide-induced changes in vascular reactivity. Mol Pharmacol
2006 69:983-90
Floyd RA. Antioxidants, oxidative stress, and degenerative neurological disorders.
Proc. Soc. Exp. Biol. Med 1999 222:236-245.
Floyd RA, Hensley K. Oxidative stress in brain aging implications for therapeutics of
neurodegenerative diseases, Neurobiology of Aging 2002 23:795-807.
Freund HR, Muggia-Sullam M, Peiser J, Melamed E. Brain neurotransmitter profiled
is deranged during sepsis and septic encephalopathy in the rat. J Surg Res 1985
38:267–71.
Frey U, Schollmeier K, Reymann KG, Seidenbecher T. Asymptotic hippocampal long-
term potentiation in rats does not preclude additional potentiation at later phases.
Neuroscience 1995 67:799-807.
Friedman G, Silva E, Vincent JL. Has the mortality of septic shock changed with
time? Critical Care Medicine1998 26:2078–2086.
Fijimura N, Sumita S, Aimono M, Masuda Y, Schichinoche Y, Narimatsu E, Namiki A.
Effect of free radical scavengers on diaphragmatic contractility in septic peritonitis.
Am J Respir Crit Care Med 2000 162: 2159-2165.
85
Gage, F.H., Bjorklund, A., Stenevi, U. Reinnervation of the partially deafferented
hippocampus by compensatory collateral sprouting from spared cholinergic and
noradrenergic afferents. Brain Res 1983 268, 27–37.
Garcia-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC. Direct effect of
ceramide on the mitochondrial electron transport chain leads to generation of reactive
oxygen species. J Biol Chem 1997 272:11369–77.
Gevich V, Ma XM, Jirikowski G, Verbalis J, Agulera G. Lipopolysaccharide endotoxin
potentiates the effect of osmotic stimulation on vasopressin synthesis and secretion
in the rat hypothalamus. J Neuroendocrinol 2003 15:141–9.
Cighetti G, Paroni R, Marzorati S, Borotto E, Giudici R, Magnanini G, Iapichino G.
Evaluation of oxidative stress in serum of critically ill patients by a commercial assay
and gas chromatography-mass spectrometry. Clin Chem 2005 51:1515-7.
Gilgum-Sherki Y, Rosenbaum Z, Melamed E, Offen D. Antioxidant theraphy in acute
central nervous injury: current state. Pharmacology Review 2002 54:271-284.
Gilmor, M.L., Nash, N.R., Roghani, A., Edwards, R.H., Yi, H., Hersch, S.M., Levey,
A.I. Expression of the putative vesicular acetylcholine transporter in rat brain and
localization in cholinergic synaptic vesicles. J. Neurosci 1996 16, 2179–2190.
Gold PE. The use of avoidance training is studies of modulation of memory storage.
Behav Neural Biol 1986 46:87-98
Goode HF, Cowley HC, Walker BE, Howdle PD, Webster NR. Decreased antioxidant
status and increased lipid peroxidation in patients with septic shock and secondary
organ dysfunction. Crit Care Med 1995 23:646-51.
Gordon SM, Jackson JC, Ely EW, Burger C, Hopkins RO. Clinical identification of
cognitive impairment in ICU survivors: insights for intensivists. Intensive Care
Medicine 2004 30:1997-2008
86
Granja C, Dias C, Costa-Pereira A, Sarmento A. Quality of life of survivors from
severe sepsis and septic shock may be similar to that of others who survive critical
illness. Critical Care 2004 8:91-98
Granja C, Lopes A, Moreira S, Dias C, Costa-Pereira A, Carneiro A. JMIP Study
Group: Patients' recollections of experiences in the intensive care unit may affect
their quality of life. Critical Care 2005 9:96-109.
Halliwell B, Gutterigde JMC. Role of free radicals and catalytic metal ions in human
disease: an overview. Methods Enzymol 1990 186:1-85.
Halliwell B, Gutterigde JMC, John MC. Free Radicals in Biology and Medicine. 2ed.
New York: Oxford University Press 1999.
Halliwell B. Oxidative stress and neurodegeneration: where are we now? J
Neurochem 2006, 97:1634-1658
Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine. Oxford University
Press. Fourth Edition, 2007.
Hart RP, Kwentus JA, Taylor JR, Harkins SW. Rate of forgetting in dementia and
depression. J Consult Clin Psychol 1997 55:101–105.
Heidbreder, C.A., Groenewegen, H.J. The medial prefrontal cortex in the rat:
evidence for a dorso-ventral distinction based upon functional and anatomical
characteristics. Neurosci. Biobehav 2003 27, 555–579.
Hein OV, Ohring R, Schilling A, Oellerich M, Armstrong VW, Kox WJ, Spies C. N-
acetylcysteine decreases lactate signal intensities in liver tissue and improves liver
function in septic shock patients, as shown by magnetic resonance spectroscopy:
extended case report. Crit Care 2004 8:R66-71.
Hensley K, Pye QN, Maidt ML, Stewart CA, Robinson KA, Jaffreyt F. Interaction of α-
phenyl-N-tert-butylnitrone and alternative electron acceptors with complex 1 indicates
87
a substrate reduction site upstream from the rotenone binding site. Journal
Neurochemistry 1998 71:2549-2557.
Hollenberg SM, Dumasius A, Easington C, Colilla SA, Neumann A, Parrillo JE.
Characterization of a hyperdynamic murine model of resuscitated sepsis using
echocardiography. Am J Respir Crit Care Med 2001 164:891-5.
Holub M .Sepsis: infection and systemic inflammatory response.
Cas Lek Cesk
,
2007
46:109-14.
Hopkins R.O, Weaver LK, Collingridge D, Parkinson RB, Chan KJ, Orme Jr JF. Two-
year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress
syndrome. American Journal of Respiratory and Critical Care 2005 171:340-347.
Hopkins RO, Weaver LK, Pope D, Orme JF, Bigler ED, Larson-Lohr V.
Neuropsychological sequelae and impaired health status in survivors of severe acute
respiratory distress syndrome. Am J Respir Crit Care Med 1999 160:50–56.
Hopkins RO, Weaver LK, Chan KJ, Orme Jr JF. Quality of life, emotional, and
cognitive function following acute respiratory distress syndrome. J Int Neuropsychol
Soc 2004 10:1005– 1017.
Hopkins RO, Jackson JC. Long-term Neurocognitive Function After Critical Illness.
Chest 2006a 130:869–878
Hopkins RO, Gale SD, Weaver LK. Brain atrophy and cognitive impairment in
survivors of acute respiratory distress syndrome. Brain Inj 2006b; 20:263–271
Hough CL, CurtisJR. Long-term sequelae of critical illness: memories and health-
related quality of life. Critical Care 2005 9:145-6.
Hotchkiss RS, Karl IK. The pathophysiology and treatment of sepsis. The New
England Journal of Medicine 2003 348:138–150.
88
Hsu BG, Lee RP, Yang FL, Harn HJ, Chen HI. Post-treatment with N-acetylcysteine
ameliorates endotoxin shock-induced organ damage in conscious rats. Life Sci 2006
79:2010-6
Irazuzta J, Pretzlaff R, Xue V, Zemlan F, Zingarelli B. Modulation of NF-kB activation
and decreased markers of neurological injury associated with hypothermic therapy in
experimental bacterial meningitis. Crit Care Med 2002 30:2553–2559.
Irazuzta J, Pretzlaff RK, Courten-Myers G, Zemlan F, Zingarelli B. Dexamethasone
decreases neurological sequelae and caspase activity. Intensive Care Med 2005
31:146–150.
Iwata-Ichikawa E, Kondo Y, Miyazaki I, Asanuma M, Ogawa N . Glial cells protect
neurons against oxidative stress via transcriptional up-regulation of glutathione
synthesis. Journal Neurochemistry 19997 2:2344-2344.
Jackson AC, Gilbert JJ, Young GB, Bolton CF. The encephalopathy of sepsis. Can J
Neurol Sci 1985 12:303–7.
Jackson JC, Gordon SM, Ely EW, Burger C, Hopkins RO. Research issues in the
evaluation of cognitive impairment in intensive care unit survivors. Intensive Care
Medicine 2004 30:2009-2016.
Jackson JC, Hart RP, Gordon SM, Shintani A, Truman B, May L, Ely EW . Six-month
neuropsychological outcome of medical intensive care unit patients. Crit Care Med
2003a 31:1226–1234
Jackson JC, Gordon SM, Burger C, et al. Acute respiratory distress syndrome and
long-term cognitive impairment: a case study. Arch Clin Neuropsychol 2003b; 18:688
Jao HC, Lin YT, Tsai LY, Wang CC, Liu HW, Hsu C. Early expression of heme
oxygenase-1 in leukocytes correlates negatively with oxidative stress and predicts
hepatic and renal dysfunction at late stage of sepsis. Shock 2005 23:464-9.
89
Jones RD, Tranel D, Benton A, Paulsen J. Differentiating dementia from pseudo-
dementia early in the clinical course: utility of neuropsychological tests.
Neuropsychology 1992 6:13–21.
Jarrard, L.E. What does the hippocampus really do? Behav. Brain Res 1995 71, 1–
10.
Jones C, Griffiths RD, Slater T. Significant cognitive dysfunction in non-delirious
patients identified during and persisting following critical illness. Intensive Care Med
2006 32:923–926
Kadoi Y, Saito S, Kunimoto F, Imai T, Fujita T. Impairment of the brain beta-
adrenergic system during experimental endotoxemia. J Surg Res 1996 61:496–502.
Koksal GM, Sayilgan C, Aydin S, Oz H, Uzun H. Correlation of plasma and tissue
oxidative stresses in intra-abdominal sepsis. J Surg Res 2004 122:180-3.
Kong CW, Tsai K, Chin JH, Chan WL, Hong CY. Magnolol attenuates peroxidative
damage and improves survival of rats with sepsis. Shock 2000 13:24-8.
Komatsubara T, Kadoi Y, Saito S. Augmented sensitivity to benzodiazepine in septic
shock rats. Can J Anesth 1995 42:937–43.
Kong CW, Tsai K, Chin JH, Chan WL, Hong CY. Magnolol attenuates peroxidative
damage and improves survival of rats with sepsis. Shock 2000 13:24-8.
Korcok J, Wu F, Tyml K, Hammond RR, Wilson JX. Sepsis inhibits reduction of
dehydroascorbic acid and accumulation of ascorbate in astroglial cultures:
Intracellular ascorbate depletion increases nitric oxide synthase induction and
glutamate uptake inhibition. J Neurochem 2002 81:185–193
Koutsilieri E, Scheller C, Tribl F, Riederer P. Degeneration of neuronal cells due to
oxidative stress-microglial contribuition. Parkinsonism and Related Disorders 2002
8:401-406.
90
Larsson A, Lipcsey M, Sjolin J, Hansson LO, Eriksson MB. Slight increase of serum
S-100B during porcine endotoxemic shock may indicate bloodbrain barrier damage.
Anesth Analg 2005 101:1465–9.
Lehnardt S, Henneke P, Lien E, Kasper DL, Volpe JJ, Bechmann I, Nitsch R, Weber
JR, Golenbock DT, Vartanian T. A mechanism for neurodegeneration induced by
group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J
Immunol 2006, 177:583-52.
Licinio J, Wong ML. Interleukin 1 receptor antagonist gene expression in rat pituitary
in the systemic inflammatory response syndrome: pathophysiological implications.
Mol Psychiatry 1997 2:99–103.
Lissi E, Salim-Hanna M, Pascual C, Castillo MD. Evaluation of total antioxidant
potential (TRAP) and total antioxidant reactivity from luminol-enhanced
chemiluminescence measurements. Free Radic Biol Med 1995 18:153-158.
Llesuy SF. Introducción y Especies Activas de Oxígeno. In Marrón N. P. Estresse
Oxidativo e Antioxidantes. 1ed. Canoas: ULTRA 2002 21-32.
Lustig MK, Bac VH, Pavlovic D, Maier S, Grundling M, Grisk O, Wendt M, Heidecke
CD, Lehmann C. Colon ascendes stent peritonitis - A model of sepsis adopted to the
rat: physiological, microcirculatory and laboratory changes.
Shock 2007 in press.
Macarthur H, Westffal TC Riley DP. Misko TP, Salvemini D. Inativaction of
catecholamines by superoxide gives new insigts on the pathogenesis of septic
shock. Proc. Natl. Acad. Science 2000 97:9753-9758.
Macarthur H, Westffal TC Riley DP. Misko TP, Salvemini D. Inactivation of
catecholamines by superoxide gives new insights on the pathogenesis of septic
shock. Proc Natl Acad Sci USA 2000 97:9753-9758.
91
Maier S, Traeger T, Entleutner M, Westerholt A, Kleist B, Huser N, Holzmann B, Stier
A, Pfeffer K, Heidecke CD. Cecal ligation and puncture versus colon ascendens stent
peritonitis: two distinct animal models for polymicrobial sepsis. Shock 2004 21:505-
11.
Magistrelli Pierre. Brain Energy Metabolism, in: Squire LR. Bloom FE, McConnel SK.
Fundamental Neuroscience 1999 2 ed., U.S.A, 339-360.
Maier SF, Goehler LE, Fleshner M, Watkins LR. The role of the vagus nerve in
cytokine-to-brain communication. Ann NY Acad Sci 1998 840:289–300.
Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United
States from 1979 through 2000. N Engl J Méd 2005 348:1546–1554
Martins MR, Barichello T, Ritter C, Reinke A, Quevedo J, Dal-Pizzol F.
Dexamethasone therapy and memory performance. Intensive Care Med 2005
31:1001.
Massman PJ, Delis DC, Butters N, Dupont RM, Gillin JC. The subcortical dysfunction
model of memory deficits in depression: neuropsychological validation in a subgroup
of patients. J Clin Exp Neuropsychol 1992 14:687–706.
Mastronardi CA, Yu WH, Rettori V, McCann S. Lipopolysaccharide-induced leptin
release is not mediated by nitric oxide, but is blocked by dexamethasone.
Neuroimmunomodulatio 2000 n 8:91–97
Mastronardi CA, Yu WH, McCann S. Lipopolysaccharide-induced tumor necrosis
factor-alpha release is controlled by the central nervous system.
Neuroimmunomodulation 2001 9:148– 156.
Mastronardi CA, Yu WH, Srivastava VK, Dees WL, McCann S. Lipopolysaccharide-
induced leptin release is neurally controlled. Proc Natl Acad Sci USA 2001
98:14720–14725.
92
Mastronardi CA, Srivastava V, Yu WH, Les Dees W, McCann SM.
Lipopolysaccharide-induced leptin synthesis and release are differentially controlled
by alpha-melanocyte-stimulating hormone. Neuroimmunomodulation 2005, 12:182–
188.
Matejovic M, Krouzecky A, Martinkova V, Rokyta R Jr, Radej J, Kralova H, Treska V,
Radermacher P, Novak I. Effects of tempol, a free radical scavenger, on long-term
hyperdynamic porcine bacteremia. Crit Care Med 2005 33:1057-63.
Matthies H. Plasticity in the nervous system: an approach to memory research. In:
Ajmone-Marsan C, Matthies H, editors. Neuronal plasticity and memory formation.
New York: Raven Press 1982 1982. p. 1-15.
Matthies H. In search of the cellular mechanisms of memory. Prog Neurobiol 1989
32:277-349.
McGlynn SM, Schacter DL. Unawareness of deficits in neuropsychological
syndromes. J Clin Exp Neuropsychol 1989 11:143–205.
Mello Filho AC, Hoffman ME, Meneghini R. Cell Killing and DNA damage by
hydrogen peroxide are mediate by intracellular iron. Journal Biochemistry 1993
218:273-275.
Mega MS, Cummings JL, Salloway S, Malloy P. The limbic system: an anatomic,
phylogenetic, and clinical perspective. J Neuropsychiatry Clin Neurosci 1997 9:315-
30.
Messaris E, Memos N, Chatzigianni E, Konstadoulakis MM, Menenakos E,
Katsaragakis S, Voumvourakis C, Androulakis G.Time-dependent mitochondrial-
mediated programmed neuronal cell death prolongs survival in sepsis. Crit Care Med
2004a 32:1764–1770.
93
Messaris E, Antonakis PT, Memos N, Chatzigianni E, Leandros E, Konstadoulakis
MM. Deferoxamine administration in septic animals: improved survival and altered
apoptotic gene expression. Int Immunopharmacol 2004b 4:455-9.
Mesulam, M.M., Mufson, E.J., Wainer, B.H., Levey, A.I., 1983. Central cholinergic
pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6).
Neuroscience 10, 1185–1201.
Mishra V, Baines M, Wenstone R, Shenkin A. Markers of oxidative damage,
antioxidant status and clinical outcome in critically ill patients. Ann Clin Biochem 2005
42:269-76
Mogensen, J., Moustgaard, A., Khan, U., Wortwein, G., Nielsen, K.S., 2005.
Egocentric spatial orientation in a water maze by rats subjected to transaction of the
fimbria-fornix and/or ablation of the prefrontal cortex. Brain Res. Bull. 65, 41–58.
Moosmann B, Behl C. Antioxidants as treatment for neurodegenerative disorders.
Expert. Opin Investig Drugs 2002 10:1407-1435.
Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM
(2002).Neurobiology of depression. Neuron, 28:13-25
Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA. Oxidative
damage to brain proteins, loss of glutamine synthetase activity, and production of
free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc. Natl.
Acad. Science USA 1990 87:5144-5157.
Orlikowski D, Sharshar T, Annane D. The brain in sepsis. Advances in sepsis 2003
3:4–8.
Ozdulger A, Cinel I, Koksel O, Cinel L, Avlan D, Unlu A, Okcu H, Dikmengil M, Oral
U. The protective effect of N-acetylcysteine on apoptotic lung injury in cecal ligation
and puncture-induced sepsis model. Shock 2003 19:366-72.
94
Pahan K, Sheikh FG, Namboodiri AM, Singh I. N-acetyl cysteine inhibits induction of
no production by endotoxin or cytokine stimulated rat peritoneal macrophages, C6
glial cells and astrocytes. Free Radic Biol Med 1998 24:39-48.
Papadopoulos MC, Davies DC, Moss RF, Tighe D, Bennett E.D. Pathophysiology of
septic encephalopathy: a review. Crit Care Med 2000 28:3019-3024.
Protti A, Singer M. Bench-to-bedside review: potential strategies to protect or reverse
mitochondrial dysfunction in sepsis-induced organ failure. Crit Care 2006 10:228.
Rao AV, Balachandran B. Role of oxidative stress and antioxidants in
neurodegenerative diseases. Nutr Neuroscience 2002 5:291-309.
Ravata JL, Berger M, Benard F, Langlois R, Ouellet R, Van Lier JE, Cadet J.
Photochem. Photobiology 1992 55:809-814.
Rice ME, Russo-Mema I. Differential compartmentalization of brain ascorbate and
glutathione between neurons and glia. Neuroscience 1998 82:1213-1222.
Richards PM, Ruff RM. Motivational effects on neuropsychological functioning:
comparison of depressed versus nondepressed individuals. J Consult Clin Psychol
1989 57:396–402.
Ritter C, Andrades ME, Reinke A, Menna-Barreto S, MoreiraJC, Dal-Pizzol F.
Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative
stress and improves survival in sepsis. Crit Care Med 2004 32:342-349.
Salvemini D, Cuzzocrea S. Oxidative stress in septic shock and disseminated
intravascular coagulation. Free Radic Biol Med 2002 33:1173-1185.
Saper CB, Breder CD. The neurologic basis of fever. N Engl J Méd 1994 330:1880-
1886.
Salvemini D, Cuzzocrea S. Therapeutic potential of superoxide dismutase mimetics
as therapeutic agents in critical care medicine. Crit Care Med 2003 31:S29-38.
95
Sammler A, Frisch C, Debeir T, Ramanathan, Okulla T, Klockgether, Heneka MT.
Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic
innervation after recovery from sepsis in a rodent model. Experimental Neurology
2007 204: 233-240
Sasse KC, Nauenberg E, Long A, Anton B, Tucker HJ, Hu TW. Long-term survival
after intensive care unit admission with sepsis Crit CareMed 1995 23:1040–1047.
Schelling G, Stoll C, Haller M, Briegel J, Manert W, Hummel T, Lenhart A, Heyduck
M, Polasek J, Meier M, Preuss U, Bullinger M, Schuffel W, Peter K. Health-related
quality of life and posttraumatic stress disorder in survivors of the acute respiratory
distress syndrome. Crit Care Med 1998 26:651–659.
Schelling G, Briegel J, Roozendaal B, Stoll C, Rothenhausler HB, Kapfhammer HP.
The effect of stress doses of hydrocortisone during septic shock on posttraumatic
stress disorder in survivors. Biol Psychiatry 2001 50:978–985.
Scragg P, Jones A, Fauvel N. Psychological problems following ICU treatment.
Anaesthesia 2001 56:9–14
Semmler, A., Okulla, T., Sastre, M., Dumitrescu-Ozimek, L., Heneka, M.T. Systemic
inflammation induces apoptosis with variable vulnerability of different brain regions. J.
Chem. Neuroanat 2005 30, 144–157.
Sener G, Toklu H, Kapucu C, Ercan F, Erkanli G, Kacmaz A, Tilki M, Yegen BC.
Melatonin protects against oxidative organ injury in a rat model of sepsis. Surg Today
2005 35:52-59.
Sharshar T, Annane D, Grandmaison G de la, Brouland JP, Hopkinson NS, Gray F .
The neuropathology of septic shock. Brain Pathol 2004 14:21-33.
Sharshar T, Gray F, Lorin de la Grandmaison G, Hopkinson NS, Ross E, Dorandeu
A, Orlikowski D, Raphael J-C, Gajdos P, Annane D. Apoptosis of neurons in
96
cardiovascular autonomic centres triggered by inducible nitric oxide synthase after
death from septic shock. Lancet 2003 362:1799-1805.
Siskind LJ, Kolesnick RN, Colombini M. Ceramide channels increase the permeability
of the outer mitochondrial membrane to small proteins. J. Biol. Chem 277 2002
24:26796–803.
Skozol JW, Vender JS. Anxiety, delirium, and pain in an intensive care unit. Crit Care
Clin 2001 17:821–842.
Soejima Y, Fujii Y, Ishikawa T, Takeshita H, Maekawa T. Local cerebral glucose
utilization in septic rats. Crit Care Med 1990 18:423–7.
Squire, L.R., Zola-Morgan, S., 1991. The medial temporal lobe memory system.
Science 253, 1380–1386.
Sprung CL, Peduzzi PN, Shatney CH, Schein RM, Wilson MF, Sheagren JN,
Hinshaw LB. Impact of encephalopathy on mortality in the sepsis syndrome. The
Veterans Administration Systemic Sepsis Cooperative Study Group. Critical Care
Medicine 1990 18:801–806.
Sprong RC, Winkelhuyzen-Janssen AM, Aarsman CJ, van Oirschot JF, van der
Bruggen T, van Asbeck BS. Low-dose N-acetylcysteine protects rats against
endotoxin-mediated oxidative stress, but high-dose increases mortality. Am J Respir
Crit Care Med 1998 157:1283-93.
Spyer KM. Neural mechanisms involved in cardiovascular control during affective
behaviour. Trends Neurosci 1989 12:506-513.
Suchyta MR, Hopkins RO, White J, et al. The incidence of cognitive dysfunction after
ARDS [abstract]. Am J Respir Crit Care Med 2004; 169:A18
Sukantarat KT, Burgess PW, Williamson RC, Brett SJ. Prolonged cognitive
dysfunction in survivors of critical illness. Anaesthesia 2005 60:847–853.
97
Supinski G, Nethery D, DiMarco A. Effect of free radical scavengers on endotoxin-
induced respiratory muscle dysfunction. Am Rev Respir Dis 1993 148:1318-24.
Supinski GS, Callahan LA. Polyethylene glycol-superoxide dismutase prevents
endotoxin-induced cardiac dysfunction. Am J Respir Crit Care Med 2006 173:1240-7.
Takala A, Nupponen I, Kylanpaa-Back ML, Repo H Markers of inflammation in sepsis
Ann Med 2002. 34:614–623.
Tran DD, Groeneveld AB, Van Der Meulen J, Nauta JJ, Strack RJ, Van Schijndel,
Thijs LG. Age, chronic disease, sepsis, organ system failure, and mortality in a
medical intensive care unit. Critical Care Medicine 1990 18:474–479.
Xiang L, Klintman D, Thorlacius H. Allopurinol inhibits CXC chemokine expression
and leukocyte adhesion in endotoxemic liver injury. Inflamm Res 2003 52:353-8.
Young GB, Bolton CF, Austin TW, Archibald YM, Gonder J, Wells GA. The
encephalopathy associated with septic illness. Clinical and Investigative Medicine
1990 13:297–304.
Weinert CR, Gross CR, Kangas JR. Health-related quality of life after acute lung
injury. Am J Respir Crit Care Med 1997 156:1120–1128
Wheeler AP, Bernard GR. Treating patients with severe sepsis. N Engl J d 1999
340:207-214.
Wichterman KA, Baue AE, Chaudry IH. Sepsis and septic shock--a review of
laboratory models and a proposal. J Surg Res 1980 29:189-201.
Williams KJ, Licinio J, Tabas I. Acute systemic inflammation up-regulates secretory
sphingomyelinase in vivo: a possible link between inflammatory cytokines and
atherogenesis. Proc Natl Acad Sci US 2000 97:8681–8686.
Wong ML, Bongiorno PB, Rettori V, McCann SM, Licinio J. Interleukin (IL) 1beta, IL-1
receptor antagonist, IL-10, and IL-13 gene expression in the central nervous system
98
and anterior pituitary during systemic inflammation: pathophysiological implications.
Proc Natl Acad Sci USA 1997 94:227–232.
Wong ML, Rettori V, al-Shekhlee A, Bongiorno PB, Canteros G, McCann SM, Gold
PW, Licinio J. Inducible nitric oxide synthase gene expression in the brain during
systemic inflammation. Nat Med 1996 2:581–584.
Wong ML, O’Kirwan F, Khan N, Hannestad J, Wu KH, Elashoff D, Lawson G, Gold
PW, McCann SM, Licinio J. Identification, characterization, and gene expression
profiling of endotoxin-induced myocarditis. Proc Natl Acad Sci USA 2003 100:14241–
1424
Vandijck D, Decruyenaere JM, Blot SI. The value of sepsis definitions in daily ICU-
practice. Acta Clin Belg 2006 5:220-6
Victor VM, Rocha M, De la Fuente M. N-acetylcysteine protects mice from lethal
endotoxemia by regulating the redox state of immune cells. Free Radic Res 2003
37:919-29.
Voigt K, Kontush A, Stuerenburg HJ, Muench-Harrach D, Hansen HC, Kunze K.
Decreased plasma and cerebrospinal fluid ascorbate levels in patients with septic
encephalopathy. Free Radic Res 2002 36:735–9.
Von Haefen C, Weider T, Gillissen B, Starck L, Graupner V, Dorken B, Daniel PT.
Ceramide induces mitochondrial activation and apoptosis via a Bax-dependent
pathway in human carcinoma cells. Oncogene 2002 21:4009-19.
Zhang H, Slursky AS, Vincent JL. Oxygen free radicals in ARDS, septic shock and
organ dysfunction. Intensive Care Med 2000 26:474 –476.
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo