UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE AGRONOMIA PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOTECNIA

Efeito da Temperatura Ambiental, do Nível Energético da Dieta e do Peso à Desmama no Desempenho e Metabolismo de Leitões RecémDesmamados

VALENTINO ARNAIZ PERALES
Zootecnista/UNALM

Dissertação apresentada como um dos requisitos à obtenção do Grau de Mestre em Zootecnia Área de Concentração Produção Animal

Porto Alegre (RS), Brasil Fevereiro de 2007

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

AGRADECIMENTOS

Aos professores Andréa Machado Leal Ribeiro e Alexandre de Mello Kessler. Agradeço infinitamente pelo apoio, confiança e orientação. Cresci muito como profissional durante estes dois anos.

Aos meus pais Jorge Arnaiz Guerrini e Maria Rosário Perales Lazo pela compreensão, incentivo, e apoio incondicional.

Aos meus colegas, especialmente ao Zootecnista Marcos Raber pela amizade e ajuda inestimável. Obrigado também ao Luciano Trevizan, Laurício Rubin, Isabel Silva, Taiane Machinsky, Rodrigo Krás, Adilson Dos Santos, Mariana Moraes, Vicente Lemur, e Thomaz Aguiar pelo apoio e amizade. A equipe humana faz sempre a diferença e o LEZO destaca-se por isso.

Ao colega Zootecnista Sioji Kuana pelo apoio econômico e constante assessoramento antes, durante e depois da realização do presente experimento. Agradeço a tua preocupação com o meu futuro.

À Ione Borcelli Morão, pela amizade, hospitalidade e competência.

Devo grande parte da minha presença no PPG em Zootecnia à sua boa disposição e eficiente trabalho. Muito obrigado também às gurias do laboratório de Nutrição Animal da UFRGS (Ângela, Débora e Mônica).

Efeito da Temperatura Ambiental, do Nível Energético da Dieta e do Peso à Desmama no Desempenho e Metabolismo de Leitões RecémDesmamados¹

Autor: Valentino Arnaiz Perales

Orientadora: Andréa Machado Leal Ribeiro Co-orientador: Alexandre de Mello Kessler

RESUMO

Foram avaliados os efeitos de duas temperaturas ambientais (TA de 29±1,7°C e TA de 25±1,3°C), da EM da dieta (EMD) (3250, 3400, 3550 ou 3700 kcal EM/kg), e do peso à desmama (PD) $(4.0\pm0.7 \text{ kg e } 6.3\pm0.6\text{kg})$ no desempenho, digestibilidade dos nutrientes, metabolizabilidade da energia bruta (MEB) e retenção de nitrogênio (CRN), em leitões desmamados entre 17 e 21 dias de idade. No período pré-inicial (PPI, 1-14 dias pós-desmame) foram utilizados 64 leitões de linhagem comercial Agroceres (32 machos e 32 fêmeas), alojados em dois animais/gaiola metabólica. No período inicial (PIN, 15-28 dias pós-desmame), permaneceram 32 machos (um animal/gaiola). Houve interação do PD e temperatura para GP no PPI: leitões leves e na TA de 25 °C apresentaram menor ganho de peso (P<0.10). No período total, a CA apresentou interação significativa entre PD e EMD (P<0.06), verificando-se melhor CA para leitões pesados em resposta à EMD. O PD afetou o desempenho (P<0,01): leitões leves apresentaram pior CA, menor GP e CR. A TA de 25 °C melhorou o GP (P<0,05) e CR (P<0,01). Os níveis de energia não foram significativos (P>0,10) para nenhum dos parâmetros de desempenho avaliados. No período total, a digestibilidade aparente da MS, PB, EB, GB, CRN e MEB responderam linearmente (P<0,00) à EMD. A TA de 25 °C piorou todos os parâmetros de metabolismo avaliados (P>0,10). Não houve influência do PD no metabolismo (P>0,10). O aumento da EM da dieta aumentou linearmente (P<0,00) o consumo de energia, a percentagem e a taxa de deposição diária de GB e EB da carcaça e do corpo vazio, sem afetar a taxa de deposição de proteína (P>0,10). Houve interação significativa (P<0,10) entre PD e EMD para produção diária de calor e eficiência energética. Os leitões mais pesados melhoraram estes parâmetros com o aumento da EM, enquanto os leves não responderam à EMD. Os leitões mais pesados e na TA de 25 °C retiveram mais nutrientes do que os leves ou em TA de 29 °C (P<0.05). A maior deposição de gordura corporal com o aumento da EMD pode ser benéfica para leitões no período de transição entre as fases de creche e crescimento.

Dissertação de Mestrado em Zootecnia – Produção Animal, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, (139p.) Fevereiro de 2007.

Effect of Environmental Temperature, Dietary Energy Level and Weanling Weight on Perfomance and Metabolism of Newly-Weaned Piglets¹

Author: Valentino Arnaiz Perales Advisor: Andréa Machado Leal Ribeiro Co-advisor: Alexandre de Mello Kessler

ABSTRACT

It was evaluated the effect of environmental temperature (ET, 29±1,7°C and 25±1,3°C), dietary ME level (DME) (3250,3400,3550 or 3700 Kcal of ME/kg) and weaning weight (WW) (4,0±0,7 kg and 6,3±0,6 kg) on 17 to 21 d-old newly-weaned piglets performance, digestibility of nutrients, gross energy metabolizability (GEM) and nitrogen retention (NR). Experiment was divided into two periods (PS-pre-starter, 1-14 days and SP- starter, 15-28 days after weaning). Sixty four hybrid piglets (32 males and 32 females) were allotted on 32 metabolic cages (2 animals/cage) during PS. At the beginning of SP, only the 32 male piglets were kept and individually housed in the same cages. There was significant interaction between WW and temperature on WG in PS: lighter piglets housed at 25 °C had less WG (P<0.10). In the total period, there was a significant effect (P<0,01) of WW on perforance: lighter animals had worst feed; gain ratio and less WG and FI. Piglets allotted at 25 °C evidenced greater WG (P<0,05) and FI (P<0,01). There was no effect of DME on perforance (P>0,10). On the other hand, apparent fecal DM, CP, GE and CF digestibility, NR and GEM were linearly improved (P<0,00) by increased DME.25 °C worsted all metabolism parameters (P>0,10).WW had no influence on metabolism (P>0.10). Increasing DME affected linearly (P<0.00) energy intake, carcass and body composition and daily crude fat and gross energy deposition rates on empty body, without affecting protein deposition rate (P>0,10). There was a significant interaction (P<0,10) between WW and DME on daily heat production and energy efficiency(retained energy/ME intake). Heavier piglets improved these parameters as ME concentration increased, while lighter piglets did not respond to DME. Piglets housed at 25 °C and heavier ones, retained more nutrients when compared to those housed on CE and weaned lighter (P<0,05). The greater fat deposition encountered in response to DME may be beneficial for piglets to make a better transition from nursery to growing phase.

⁻

¹ Master of Science dissertation in Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, (139p). February, 2007.

SUMÁRIO

CAPÍTULO I	Página
1.1. Introdução e revisão bibliográfica	2
1.2.Importância da temperatura ambiental no período pós desmame	3
1.3. Conceitos gerais sobre energia para suínos	9
1.4. Relação entre a concentração energética da dieta e consumo diário de energia	11
1.5. Limitações físicas no consumo de alimento em leitões recém-desmamados	13
1.6. Impacto de consumo de energia no ganho de proteína corporal	15
1.7. Impacto do consumo energético sobre a deposição de gordura corporal	18
1.8. Importância do fator peso a desmama no período pós- desmame dos leitoes	20
Hipóteses e Objetivos	22
CAPÍTULO II Efeito da temperatura ambiental, do nível energético da dieta e do peso a desmama no desempenho e digestibilidade dos nutrientes em leitões recém-desmamados	23
CAPÍTULO III Efeito da temperatura ambiental, do nível energético da dieta e do peso a desmama na composição e deposição de nutrientes corporais em leitões recém-desmamados	48
Considerações Finais	70
Referencias bibliográficas	
Apêndices e Vita	

LISTA DE TABELAS

Número	CAPÍTULO II	Página
1.	Variação da temperatura máxima e mínima por período experimental	28
2.	Composição em ingredientes e nutricional das dietas experimentais, na matéria natural	29
3.	Dados de desempenho e metabolismo de leitões com diferentes pesos à desmama, temperaturas ambientais e nível de energia na dieta no período préinicial	34
4.	(1 a 14 dias pós-desmame) Dados de desempenho e metabolismo de leitões com diferentes pesos à desmama, temperaturas ambientais e nível de energia na dieta no período inicial	37
5.	(15 a 28 dias pós-desmame) Dados de desempenho e metabolismo de leitões com diferentes pesos à desmama, temperaturas ambientais e nível de energia na dieta no período total (1 a 28 dias pós-desmame)	39
	CAPÍTULO III	
1.	Variação da temperatura máxima e mínima por período experimental	53
2.	Composição em ingredientes e nutricional das dietas experimentais, na matéria natural	54
3.	Desempenho de leitões com diferentes pesos à desmama, temperaturas ambientais e nível de energia na dieta no período de 1 a 28 dias pós-desmame	57
4.	Composição química corporal de leitões com diferentes pesos à desmama, temperaturas ambientais e nível de energia na dieta no período de 1	01
_	a 28 dias pós-desmame	59
5.	Taxa de deposição diária de nutrientes no corpo vazio de leitões com diferentes pesos à desmama, temperaturas ambientais e nível de energia na dieta	
6.	no período de 1 a 28 dias pós-desmame Eficiência de utilização da energia metabolizável de leitões com diferentes pesos à desmama,	62
	temperaturas ambientais e nível de energia na dieta	65

RELAÇÃO DE ABREVIATURAS

GB: gordura bruta
GP: ganho de peso
CR: consumo de ração
CA: conversão alimentar
CE: consumo de energia
CC: conversão calórica

CEMT: consumo total de energia metabolizável

CED: consumo de energia digestível **CEM**: consumo de energia metabolizável

CDMS: coeficiente de digestibilidade da matéria seca CDEB: coeficiente de digestibilidade da energia bruta CDPB: coeficiente de digestibilidade da proteína bruta CDGB: coeficiente de digestibilidade da gordura bruta CMPB: coeficiente de metabolizabilidade da gordura bruta CMEB: coeficiente de metabolizabilidade da energia bruta

CRN: coeficiente de retenção de nitrogênio

CZ: cinzas

DP: deposição de proteína **DG**: deposição de gordura

EB: energia bruta ED: energia digestível EM: energia metabolizável

EMD: energia metabolizável da dieta

ERT: energia retida total

EE: extrato etéreo ER: energia retida

ERG: energia retida como gordura **ERP**: energia retida como proteína

MS: matéria seca PPI: período pré-inicial PIN: período inicial PT: período total

PD: peso ao desmame PC: produção de calor PB: proteína bruta PV: peso vivo

TDP: taxa de deposição de proteína **TDG**: taxa de deposição de gordura

TGI: trato gastrointestinal

TDP: taxa de deposição de proteína bruta

TDCZ: taxa de deposição de cinzas **TDA:** taxa de deposição de água

TDE: taxa de deposição de energia
TDG:TDP: relação entre a taxa de deposição de gordura e de proteína
TDMS: taxa de deposição de matéria seca
TCZ: TDP: relação entre a taxa de deposição de cinzas e de proteína

TN: temperatura termoneutra

CAPÍTULO I

1.1 INTRODUÇÃO E REVISÃO BIBLIOGRÁFICA

A temperatura ambiente na qual o suíno é mantido influencia seu consumo de alimento como forma de modificar a quantidade de calor proveniente de processos digestivos e metabólicos, afetando, conseqüentemente, o ganho de peso, a taxa de eficiência alimentar e a composição do ganho (Collin et al. 2001). Nas integrações suínas brasileiras as grandes variações do fator temperatura ambiente, sobretudo nas fases de vida nas quais os suínos são mais exigentes a esse respeito, como na fase do desmame, constitui-se em um grave problema prático.

O fornecimento de dietas com alta densidade energética é considerado benéfico para o leitão desmamado, porque a limitada ingestão de energia pode ser o fator de maior restrição à deposição protéica neste estágio produtivo (Batterhan, 1994). Em decorrência disto, esperar-se-ia que o aumento da concentração energética da dieta melhorasse o consumo de energia e o ganho de peso. Entretanto, essa hipótese, estudada em trabalhos precedentes, (Moita, 1996; Orensaya, 2005), não conseguiu ser confirmada quando mensurados os parâmetros de desempenho.

Torna-se importante entender o metabolismo energético no leitão desmamado através de uma avaliação simultânea e detalhada do impacto da concentração energética da dieta e do consumo de energia sobre o crescimento e ganho de nutrientes corporais de modo a encontrarmos respostas que o desempenho por si só não consegue fornecer.

Segundo Orensaya (2005), a avaliação do desempenho dos suínos difere quando é medida através da mudança no peso vivo ou através da composição do ganho. Por isso é importante medir o ganho de peso e a

composição corporal do ganho para se estudar efetivamente o metabolismo energético no leitão desmamado.

A técnica do abate comparativo descrita pelo NRC (1998) fornece uma estimativa da energia retida pelo animal ao longo de um determinado período de tempo. Esta técnica se baseia no fato que toda a energia metabolizável consumida que não é retida pelo animal é perdida na forma de calor (Kleiber, 1975), sendo que a energia que fica no corpo (principalmente na forma de proteína e gordura) pode ser medida diretamente pela diferença na composição química corporal.

Bartels (1999) estudando a curva de crescimento de leitões desmamados aos 14 ou 21 dias, observou que a evolução do peso dos animais foi dependente do peso ao desmame e do número de dias após o desmame, sendo que os leitões mais pesados apresentam um maior ganho de peso do que os mais leves.

Diante do exposto, o objetivo do presente estudo foi o de avaliar os efeitos e definir as interações entre a concentração energética da dieta, a temperatura ambiental e o peso à desmama de leitões desmamados criados em gaiolas metabólicas dos 21 até 49 dias de idade. As variáveis avaliadas foram o ganho de peso, o consumo de ração, a conversão alimentar, a digestibilidade dos nutrientes, a retenção de nitrogênio, a eficiência energética, o ganho de nutrientes e as relações entre as taxas de deposição dos mesmos no corpo vazio dos leitões.

1.2. Importância da temperatura ambiente no período pós-desmame

O suíno porta-se como um sistema termodinâmico, que continuamente troca energia com o ambiente. Neste processo, os fatores externos do

ambiente tendem a produzir variações internas no animal, influindo na quantidade de energia trocada entre ambos, havendo, então, necessidade de ajustes fisiológicos para a ocorrência do balanço de calor (Baêta & Souza 1997).

A faixa de temperatura no qual acontece o mínimo desperdício de energia é chamada de zona termoneutra. Os limites superior e inferior são chamados de temperatura crítica superior e inferior, respectivamente. O conceito de conforto térmico tem sido definido como a faixa de temperatura ambiente, dentro da qual a taxa metabólica está em seu nível mínimo. A zona de conforto térmico pode ser considerada como a faixa de temperatura ambiente na qual o esforço termorregulatório é mínimo. Nesta faixa de temperatura não há sensação de frio ou calor, e o desempenho do animal é otimizado (NRC 1998).

Os suínos, como animais homeotérmicos, possuem um sistema de controle do ambiente interno, que é acionado quando o ambiente externo apresenta situações desfavoráveis. Quando eles são submetidos a um ambiente com temperatura inferior à temperatura corporal, ocorre dissipação do seu corpo para o ambiente, processo normal quando tomadas como base as leis físicas de transferência de calor, pelas quais se pode concluir que há tendência ao equilíbrio. Essas situações são percebidas pelos termorreceptores periféricos (células localizadas na pele) e analisadas por mecanismos neurais, que tomam a decisão adequada e ativam os agentes específicos (Ferreira 2001).

O ambiente térmico envolve a interação de um complexo de fatores que interagem para determinar a magnitude dos processos de troca de calor entre o

animal e o ambiente. O efeito que a temperatura exerce sobre os animais pode ser modificado por umidade relativa, vento, precipitação, radiação térmica e superfícies de contato (Ferreira 2001). Na fase de creche é necessário dispor de um sistema de aquecimento, que pode ser elétrico, a gás ou a lenha, para manter a temperatura ambiente ideal para os leitões,principalmente nas primeiras semanas após o desmame. Em regiões frias é recomendado o uso de abafadores sobre as baias, com o objetivo de criar um microclima confortável (Baeta & Souza, 1997).

Além do agrupamento correto dos leitões e da adequação de espaço para os animais, é importante que nesta fase inicial de crescimento, o leitão tenha condições de temperatura e renovação de ar compatíveis com as suas exigências. Sabe-se que um leitão desmamado precocemente necessita de um ambiente protegido e que um número excessivo de animais em pequenas salas causam problemas de concentração de gases nocivos e odores desagradáveis. Baias para 4 a 5 leitegadas é o recomendável, respeitando-se a uniformidade dos leitões nas baias, em salas com um sistema de renovação de ar, preferentemente com ventilação natural (Baêta & Souza, 1997).

Quanto maior for o consumo de alimento, menor será a temperatura crítica inferior em função do calor fornecido ao animal pelo alimento, possibilitando-o suportar temperaturas efetivas ambientais mais baixas. O tipo de alojamento, individual ou em grupo afeta a dissipação de calor do animal para o ambiente. A temperatura da ração e da água consumida pode ter efeito, principalmente quando grande quantidade de água fria é consumida no período de inverno. A temperatura e o tipo de cama utilizada influenciam a troca de

calor animal-ambiente, modificando a troca de calor (Ferreira 2001).

O leitão desmamado, quando comparado ao suíno adulto, é mais susceptível de sofrer de estresse térmico, seja tanto em temperaturas frias quanto quentes. Isto se deve à sua maior superfície corporal em relação ao volume. Por outro lado, sabe-se também, que o metabolismo do alimento ingerido é a principal fonte de calor em qualquer animal (Kleiber, 1975). Na prática, o baixo consumo ou até mesmo anorexia comumente encontrada nos primeiros dias pós-desmame, podem agravar a susceptibilidade do leitão às mudanças na temperatura ambiente (Ferreira, 2001).

A temperatura ambiente tem efeito direto sobre o ganho de energia e consumo voluntário e, portanto, sobre o desempenho produtivo dos leitões. A temperatura ambiente acima da temperatura crítica superior reduz significativamente o consumo voluntário de alimentos, com menor ganho e normalmente reduzida eficiência alimentar (Collin et al. 2001). A retenção de energia, proteína e gordura é afetada pelas condições ambientais, sugerindo que a composição corporal e da carcaça podem ser alteradas (Jensen, 1991).

Vários autores, segundo o NRC (1998), sugerem que o ambiente acima da temperatura termoneutra diminui a atividade da tireóide e que as temperaturas frias aumentam a atividade da glândula nos suínos, modificando da taxa metabólica e, conseqüentemente, da produção de calor interna, diminuindo o desempenho do animal.

Alguns estudos com monogástricos têm mostrado que a motilidade do trato gastrointestinal é reduzida pelo hipotiroidismo e aumentada pela administração de hormônios da tireóide. Tal fato evidencia que a mudança na atividade da tireóide, por causa da exposição do animal às diferentes

temperaturas ambientais, pode estar associada à mudança da motilidade intestinal, o que influencia a taxa de passagem da digesta e resulta em alteração na digestibilidade dos nutrientes da ração (Ferreira 2001).

Segundo Mount (1976), quanto maior for o consumo de alimento, menor será a temperatura crítica inferior em função do calor fornecido ao animal pelo alimento, possibilitando-o suportar temperaturas efetivas ambientais mais baixas.

Brumm et al. (1995) desmamaram leitões entre 3 e 4 semanas para testar o efeito da redução da temperatura diurna. Um tratamento controle, com a temperatura constante começando com 30°C na primeira semana e diminuindo 2°C para cada semana subseqüente, foi comparado com outro tratamento, que teve a temperatura reduzida em 6°C durante 16 horas (período noturno). A redução da temperatura noturna melhorou o ganho de peso, mas não apresentou diferença quanto ao consumo de ração ou conversão alimentar nas 5 semanas experimentais.

Ao contrário de climas frios, em condições de temperaturas mais elevadas, o suíno necessita de menor produção interna de calor para manter a temperatura corporal constante. Nessas condições, o animal reduz o consumo para minimizar a produção de calor metabólico e evitar o estresse térmico proveniente do incremento calórico da dieta que se torna prejudicial. Em ambas as condições de temperatura, o suíno necessitará de dietas que propiciem diferentes incrementos calóricos. Em ambiente frio, os suínos aumentam o consumo de ração, numa tentativa de atender à necessidade de mantença que fica aumentada em função da maior demanda de energia exigida para manutenção da homeotermia. Desta forma, grande parte dos nutrientes

ingeridos será direcionada para mantença e o restante (menor quantidade) será utilizado para o crescimento. No entanto, maior eficiência de utilização da energia pode ser verificada nesse ambiente, uma vez que os suínos utilizam o incremento calórico dos alimentos para manutenção da temperatura corporal (Ferreira, 2001).

Avaliando os efeitos da temperatura ambiente (22 e 30°C) sobre o desempenho e composição de carcaça de leitões dos 15 aos 30 kg, consumindo dietas com diferentes níveis de energia, observaram que leitões expostos a temperatura de 32°C apresentaram menor (P<0,01) ganho de peso e consumo de ração e maior (P<0,01) taxa de deposição de proteína. A conversão alimentar não variou. Entretanto, constataram interação (P<0,04) entre os níveis de energia e a temperatura ambiente; Nos animais mantidos em ambiente de conforto (22°C), os níveis de energia digestível da dieta influenciaram linearmente a CA enquanto que naqueles em ambiente de alta temperatura (32°C) a CA variou quadráticamente (Oliveira et al. 1997).Os mesmos autores observaram efeito da temperatura ambiente sobre a taxa de deposição de proteína bruta (TDP): animais mantidos em alta temperatura apresentaram TDP 5,19% maior (P<0,01). No caso da taxa de deposição de gordura (TDG) embora os animais mantidos a 22°C tenham apresentado um maior consumo de ED este parâmetro não diferiu daqueles expostos a 32°C (P>0,10).

Existem evidências que o aumento da temperatura ambiente aumenta a digestibilidade da energia da dieta (Fuller & Boyne,1972). Resultados obtidos em suínos em crescimento expostos a uma temperatura ambiente de 34°C mostraram um aumento na percentagem de energia digerida quando

comparado com uma redução de 6°C (Holmes, 1974). Aparentemente, o estresse térmico pode também influenciar a utilização efetiva da proteína. Entretanto, não existe ainda um completo acordo a respeito do efeito da temperatura ambiente sobre a digestibilidade aparente da proteína e da energia em leitões recém-desmamados.

1.3. Conceitos gerais sobre energia para suínos

Na física, a energia é definida como a capacidade de realizar trabalho, sendo o trabalho a ação de uma força movimentando uma massa através de uma distância. Nas ciências biológicas, é conceitualmente mais fácil ver a energia como unidade de calor ou caloria. Uma caloria é a quantidade de energia requerida para elevar a temperatura de 1g de água pura de 14 para 15 °C a uma pressão de 1 atmosfera (Kleiber, 1975).

Em termos gerais, a energia é uma abstração que só pode ser medida na sua transformação de uma forma para outra. A energia contida nos alimentos como energia química é liberada pela oxidação parcial ou total após digestão e absorção no trato gastrointestinal. A quantidade máxima que qualquer molécula pode fornecer a partir da sua oxidação no corpo para as atividades vitais de manutenção e produção é medida a través do seu calor de combustão (Kleiber, 1975).

A energia bruta (EB) é a energia potencial total de um material orgânico quando o mesmo é completamente oxidado. É usualmente determinada numa bomba calorimétrica adiabática. O conteúdo em EB de um alimento não fornece informação sobre a quantidade dessa energia que é acessível ao suíno através do trato digestório nem das perdas durante o metabolismo.

O suíno em crescimento raramente retém mais do que 50% da EB

consumida, embora na maioria das dietas entre 80 e 90% da EB seja digerida, nem toda esta energia fica disponível para o metabolismo devido à perda de energia na urina, na forma de metano e como calor (Morgan et al. 1975).

A energia digestível (ED) é a medida da quantidade de energia presente no alimento ingerido que não é eliminada através das fezes. O termo mais correto é o de energia digestível aparente porque não representa uma medição verdadeira dos valores energéticos dos nutrientes absorvidos no trato gastrointestinal (TGI). Uma parte da energia das fezes tem como origem fontes (secreções celulares endógenas digestivas е detritos do intestino. microorganismos, etc.). Uma pequena quantidade de gases é produzida a partir da fermentação no intestino posterior. A ED pode ser determinada também pelos métodos de marcadores indigestíveis (Orensaya, 2005).

A energia metabolizável (EM) é obtida através da diferença entre a ED e o calor de combustão da urina e dos gases produzidos pelo trato gastrintesinal.

A EM é estimada como a ED diminuída da energia urinária e da energia dos gases (na sua maioria energia proveniente do metano).

A EM é a energia disponível ao suíno para mantença, termogênese (quando necessário) e propósitos produtivos. Em suínos e outros não-ruminantes, a energia proveniente dos gases é geralmente ignorada porque constitui somente uma pequena fração da ED, entre 0,1 e 3% Por isso a concentração de EM estimada é usualmente 0,5 a 3% maior do que o valor real dependendo da quantidade de paredes celulares vegetais do alimento ingerido pelo animal e da idade do suíno (Morgan et al. 1975).

Conhecidas as características energéticas dos alimentos, a determinação da fração metabolizável de energia da dieta torna-se um

referencial na elaboração de dietas para suínos sob diferentes condições climáticas, visto a necessidade de controlar-se a ingestão de energia e de nutrientes, necessários às demandas de manutenção e produção. O valor de EM obtido em experimentos com gaiolas metabólicas também não leva em consideração as perdas endógenas relacionadas à energia fecal e urinária endógena. Devido a isto, o valor obtido é o valor de energia metabolizável aparente (Collin et al. 2001).

A EM oferece é melhor que a ED na avaliação de alimentos e na formulação de dietas porque ela é ajustada para a energia urinária que é atribuída à desaminação e excreção de nitrogênio. Contudo, existem controvérsias, porque a maior parte dos valores de EM disponível para ingredientes e dietas são estimados como uma relação fixa de 0,96 dos valores de ED (Whittemore, 1993). Este mesmo autor indicou que os valores de EM variam de 0,90 da ED em dietas com baixa qualidade de proteina a 0,99 da ED em dietas com alta qualidade protéica.

A quantidade de energia na urina é dependente da qualidade da proteína e do nível de inclusão na dieta relativo a exigência. Dado que a ED não permite fazer uma correção por perda de nitrogênio urinário, o valor energético dos ingredientes ricos em proteína comparados com cereais, por exemplo, é superestimado com ED vs EM (NRC, 1998).

1.4. Relação entre a concentração energética da dieta e consumo diário de energia

Quando não existem fatores que estejam interferindo (ex: ambientais, sociais e animais), a concentração de energia da dieta representa o maior determinante do consumo voluntário de alimento (Lewis 2001). Devido a que o

suíno geralmente comerá para satisfazer a sua exigência energética, sua resposta em crescimento à energia da dieta é ajustada através do consumo de alimento. A magnitude da redução no consumo de alimento determinará o efeito sobre o consumo de energia. Estudos recentes sugerem que para suínos em crescimento alimentados com densidades energéticas baixas, o consumo de energia, o crescimento e a qualidade da carcaça podem ser influenciados (Chadd & Cole, 1999). Isto porque a relação entre energia consumida e deposição de proteína ou carne total determina, em grande parte, o consumo energético ótimo. Uma restrição energética não somente reduz a deposição lipídica, mas também a retenção de água e proteína. Contudo, para suínos que alcançaram o platô de deposição protéica, uma restrição energética, irá, primeiramente, reduzir a retenção de gordura sem diminuir a retenção de proteína, uma vez que o nível de consumo energético nessa fase possui maior influência sobre a taxa lipogênica (Mersmann, et al.1981).

Quando a energia não é o principal fator limitante, o consumo de alimento será modulado de forma a satisfazer o primeiro nutriente limitante. A relação aminoácidos:energia próximo do nível ótimo para crescimento influenciará o consumo de alimento (Orensaya, 2005). Um fornecimento elevado de proteínas produz uma limitante própria no consumo de alimento, resultando em carcaça mais magra, enquanto uma deficiência marginal no aminoácido limitante ou fornecimento de proteína resulta num incremento compensatório no consumo de alimento para conseguir satisfazer a exigência e produz em decorrência um incremento na gordura da carcaça (Henry 1985).

É conhecido que os suínos consomem energia extra quando lhes é fornecida uma dieta baixa em proteína depositando essa energia extra na

forma de gordura. Por outro lado consomem proteína em excesso em dietas relativamente baixas em energia; neste caso a proteína extra é desaminada e o nitrogênio eliminado na forma de uréia através da urina.

1.5. Limitações físicas no consumo de alimento em leitões recémdesmamados

Pode ser possível que mediante a diminuição da concentração energética da dieta através da dilução dietética, o consumo de energia diminua, o que pode ser atribuído a uma progressiva limitação da capacidade do trato gastrintesinal, antes da exigência de energia ser atingida. Nesse contexto, assume-se que suínos jovens até os 70 kg de peso vivo (PV) apresentam uma capacidade física limitada para ingerirem nutrientes (Quiniou et al. 1996). Eles responderão a concentrações crescentes de energia na dieta com um aumento na taxa de crescimento durante a chamada "fase dependente da energia". Esta fase acredita-se que se estenda até os 90 kg PV, entretanto, a maior limitação na ingestão de nutrientes ocorre no leitão do desmame até aproximadamente 25 kg PV (Whittemore, 1993). Esta limitação impossibilitaria o leitão de atingir sua capacidade genética para crescimento, especialmente no que diz respeito à deposição protéica (Van Lunen & Cole, 1998).

Está bem documentado na literatura que as mudanças na concentração energética da dieta podem ter um impacto no consumo (NRC,1998). A diminuição do consumo médio de ração em resposta ao aumento da concentração dietética de ED pode ser mediada hormonalmente. A colecistoquinina é um hormônio de saciedade de ação local e periférica segregada no duodeno e é liberada em resposta aos ácidos graxos de cadeia longa (Matzinger et al. 2000).

As dietas de alta ED são geralmente formuladas com a inclusão de altos conteúdos de gordura por essa razão a presença de ácidos graxos de cadeia longa podem influenciar a secreção de colecistoquinina, interferindo na saciedade e diminuindo o consumo levemente (Smith et al.1999).

O leitão desmamado apresenta uma resposta particular a respeito da sua regulação do consumo de alimento em resposta a energia da dieta, existindo poucas informações disponíveis que permitam entendemos a sua resposta à concentração energética da dieta. Reis de Souza et al. (2000) avaliou o efeito do incremento da concentração de ED da dieta de 3,24 a 3,50 Mcal/kg sobre o crescimento e utilização energética em leitões de 7 a 25 kg PV. Os autores não acharam efeito no consumo de ração (CR), no entanto, o consumo de energia digestível (CED) aumentou aproximadamente 5% (de 2,22 a 2,34 Mcal/d com o aumento da ED dietética).

Este estudo sugere que o leitão desmamado pode responder ao aumento do nivel energético da dieta com o aumento no consumo de energia devido a sua incapacidade de regular completamente o seu consumo de ração para conseguir satisfazer as suas exigências para deposição de tecidos (Orensaya, 2005).

Nos trabalhos de Reis de Souza et al. (2000) e Levesque (2002), a taxa de crescimento não melhorou com o incremento da concentração energética da dieta o que sugeriria que o consumo de energia no caso das menores densidades energéticas não estaria limitando o desempenho nestes estudos.

Levesque (2002) não observou nenhum benefício com o fornecimento de uma maior concentração de ED em leitões criados em dois tamanhos de grupo e espaço disponível nas baias (1 suíno/ 0,32 m² ou 0,26 m²). Segundo o

autor, a impossibilidade de melhorar-se o crescimento e ganho de peso com o aumento da concentração de ED da dieta poderia se explicar pelo decorrente acréscimo no conteúdo de PB das rações com o aumento da ED (menor energia líquida). A formulação das dietas neste experimento foi feita aumentando a proteína para atingir valores de ED crescentes.

Moita (1996) com leitões de 12 a 28 dias de idade, não observou efeitos dos níveis de ED sobre nenhuma das variáveis de desempenho avaliadas. Este autor concluiu que os níveis de ED, entre 3250 e 3850 kcal/kg de ração, podem ser utilizados para leitões desta idade.

1.6. Impacto do consumo de energia no ganho de proteína corporal

A proteína corporal encontra-se em estado dinâmico e a homeostase alcançada é conhecida como "turnover protéico". A síntese de proteína é regulada a través da concentração plasmática de aminoácidos e outros fatores de origem genética enquanto que a degradação protéica depende de hormônios catabólicos, especialmente o nível de glucocorticoides o que por sua vez varia de acordo com a concentração plasmática de glicose (Campbell & Teverner, 1988).

A deposição de proteína corporal envolve uma série de reações bioquímicas que demandam gasto energético. Além disso, há a deposição de gordura mínima associada com a deposição de proteína, a qual ocorre mesmo em condições de restrição de energia. Portanto, para cada nível de deposição de proteína corporal há uma necessidade de energia associada, ou seja, há uma relação ideal entre a energia e os aminoácidos da dieta, que maximiza a taxa de deposição de proteína corporal e a eficiência do crescimento. (Marks et al. 1996).

Consumos de energia abaixo do mínimo necessário para atingir o potencial de deposição de proteína corporal e gordura mínima associada, irão limitar a deposição de proteína, mesmo com dietas não limitantes em aminoácidos. Isto é mais crítico nas fases mais jovens de crescimento, quando o consumo de alimento não é elevado, mas a capacidade para deposição da proteína corporal é alta, ou seja, quando o suíno atinge o pico da curva de deposição de proteína corporal. Nestas fases, linhagens de baixo consumo e alta taxa de deposição de proteína corporal nem sempre conseguem consumir energia suficiente para máxima deposição de proteína corporal. Em conseqüência disso, o nível de energia por kg da dieta na fase dos 20 aos 50 ou 60 kg de peso vivo deve ser elevado (Marks et al. 1996).

A eficiência com que a proteína da dieta é utilizada não é determinada somente por sua composição de aminoácidos, mas também por fatores como sua quantidade, qualidade e pelos lipídeos e carboidratos fornecidos. Tanto as gorduras, como os carboidratos presentes na dieta atuam como estimulantes para a deposição protéica, fenômeno este chamado de "efeito poupador da proteína".

O efeito poupador da proteína tem origem em pelo menos três hipóteses: de que a reposição de proteínas corporais necessita quantidades consideráveis de energia; que a maior dilução da proteína da dieta por outras fontes de energia torna menos provável que os aminoácidos sejam desaminados e que muitos efeitos dos carboidratos podem ser atribuídos às ações anabolizantes da insulina, liberada em resposta a absorção dos carboidratos. A insulina provoca a captação de aminoácidos e a síntese geral de proteína. A queda dos níveis de insulina leva a proteólise e a liberação de

aminoácidos (Mersmann et al.1981).

A relação entre o consumo de energia e a deposição de proteína em suínos do nascimento até os 50 kg de peso é linear, e uma das explicações para isto se deve ao potencial genético de deposição de proteína do animal nesta fase estar acima da capacidade de consumo do animal (Snizek, 2002).

A deposição de proteína corporal (DP), quando associada ao conteúdo de água, é caracterizada de diferentes formas: crescimento muscular, crescimento de tecido magro, e rendimento de carne magra. Apenas um terço da proteína fornecida na dieta ao suíno é depositada como proteína corporal e, menos de um quinto é recuperada nas partes comestíveis da carcaça. O custo energético de deposição protéica tende a ser menor (ou seja, maior eficiência) em suínos jovens recebendo dietas de alta qualidade (Pophal, 2000).

Após o consumo de uma dieta com alta concentração protéica, os altos níveis de aminoácidos que chegam ao pâncreas estimulam a liberação de glucagon, consequentemente aumentando a captação de aminoácidos pelo fígado e estimulando a gliconeogênese. Quanto maior a quantidade de carboidratos na dieta, maior a relação insulina/glucagon a maior quantidade de aminoácidos que são desviados da gliconeogênese para a síntese de proteína (Marks et al. 1996).

A maior limitação para a deposição de proteína no suíno é o consumo de energia (Batterhan 1994). Em ambientes não estressantes e quando os suínos recebem um fornecimento e consumo adequado de nutrientes, a DP é determinada tanto pelo consumo energético quando pelo limite superior para DP determinado genéticamente (DP Max).

Em termos absolutos, o crescimento de tecido magro é pequeno no

início, aumenta rapidamente e alcança o máximo entre os 40 e 75 kg de peso corporal, para então diminuir com diferentes intensidades (Schinckel & De Lange 1996).

A energia é utilizada primariamente para a síntese de tecido magro até o máximo potencial de deposição deste tecido seja alcançado. Após, a energia será depositada basicamente como tecido gordo em suínos com livre acesso a alimento que contenha suficiente quantidade de proteína. A proporção de energia que é utilizada para a deposição de tecido magro ou gordo na carcaça varia de acordo com o peso vivo e genótipo (Orensaya 2005).

Weis et al. (2004) em um estudo de balanço de nitrogênio acharam um incremento linear na DP corporal com o aumento do consumo de energia digestível (CED) em suínos pesando 22 kg comparados com animais pesando 84 kg. De acordo com os autores, este fato sugere uma maior necessidade de deposição de mais gordura por unidade de DP com o aumento do PV.

De Greef et al. (1994), utilizando a técnica de abate comparativo, alimentaram suínos com dietas de alta e baixa energia (3,01 e 3,89 Mcal/d, respectivamente) e abateram-nos com um PV de 25, 45, 65, 85 ou 105 kg de PV. A relação DG: DP (deposição de gordura:deposição de proteína) aumentou de 0,74 nos animais com 25 kg de PV para 0,99 nos de 105 kg, com baixo consumo de energia. Por alta energia a relação aumentou de 0,82 (25 kg) para 1,32 (105 kg). Este fato demonstra que a relação DG:DP é influenciada tanto pelo PV quanto pelo consumo de energia.

1.7. Impacto do consumo energético sobre a deposição de gordura corporal

O conteúdo de gordura do corpo se origina do "pool" de gordura

exógena e da síntese *de novo* de ácidos graxos. A gordura exógena provém principalmente da gordura dietética, mas inclui também ácidos graxos modificados e ácidos graxos sintetizados pelos microorganismos no TGI. Os ácidos graxos sintetizados provém dos carboidratos, ácidos graxos voláteis e aminoácidos desaminados.

Em situações nas quais tanto o consumo de proteína (ou qualidade da mesma) quanto a capacidade de DP dos suínos estejam limitando a DP, toda a energia de produção não utilizada para a DP é derivada para a deposição de gordura (DG). Considerando-se que a energia é retida nos suínos em crescimento como tecido magro ou tecido adiposo e devido ao maior conteúdo de água do tecido magro (80% comparado com 15% do tecido adiposo), uma menor quantidade de energia é requerida por grama de ganho de tecido magro quando comparado com o tecido adiposo (1,12 vs. 7,83 kcal; Collin et al. 2001).

Tanto o conteúdo de gordura quanto as taxas de deposição aumentam com o PV e com o consumo energético. Foi reportado um aumento de 4 % no conteúdo de gordura do corpo vazio (carcaça + vísceras sem conteúdo do TGI) em suínos de 85 kg quando comparado com suínos de 45 kg de PV (Bikker 1994). Parte do acréscimo no conteúdo de gordura com o aumento do PV pode ser explicado pelo aumento do consumo de energia.

A formação de gordura corporal diária aumenta quase que linearmente com o aumento do peso corporal. A deposição de gordura envolve componentes regulatórios metabólicos que determinam o grau de deposição, o qual ocorre somente quando existe um balanço positivo entre as taxas de lipogênese e lipólise. Quando a deposição de proteína é limitada pelo consumo

de proteína, o excesso de energia relativo ao consumo protéico é depositado como gordura (Snizek 2002).

1.8. Importância do peso à desmama, no período pós-desmame dos leitões

Leitões mais leves ao desmame, comparativamente com os mais pesados possuem menor trato gastrintesinal e fígado, e contém menos proteína e DNA, menor relação proteína: DNA, assim como menor massa muscular e fibras musculares que por sua vez são de menor tamanho, (Mavromichalis, 2006). Segundo este autor a correlação entre o peso ao desmame e o peso ao nascimento é de 56%, sendo que existe um aumento de 0,7 kg na creche a cada 0,1 kg de acréscimo no peso ao nascimento do leitão.

Alguns estudos têm demonstrado que o consumo de ração e taxa de ganho de peso aumentam em decorrência do maior peso à desmama (Mahan & Lepine,1991; Bartels, 1999). Mahan (1991) mediu a influência do peso ao desmame sobre o desempenho até o abate avaliando três intervalos de peso ao desmame (4,1-5,0, 5,5-6,8 e 7,3-8,6). Encontrou um aumento de 10,2 dias entre os intervalos extremos avaliados para atingir-se o peso de abate de 150 kg. Os leitões intermediários, por outro lado, necessitaram de 5,1 dias a mais do que os mais pesados.

O peso dos leitões ao desmame também tem sido considerado importante na formulação de dietas. Mahan & Lepine (1991) mostraram que leitões com menos do que cinco kg ao momento do desmame e alimentados com produtos lácteos tiveram boa resposta ao crescimento, ainda que apresentassem menor ganho de peso e necessitassem mais tempo para atingirem o peso de mercado do que leitões desmamados mais pesados e

alimentados com dietas menos complexas. Os leitões desmamados com baixo peso (4,1 a 5,0 kg), responderam melhor às rações complexas contendo farelo de soja e soro de leite seco com suplementação de aminoácidos e dextrose que os alimentados com ração simples. Os autores sugeriram que a ração destinada a leitões mais pesados por ocasião do desmame (7,3 a 8,6 kg) pode conter menor concentração de produtos lácteos.

Becker (2000) concluiu que existe uma grande variação no comportamento e no desempenho de leitões alojados em gaiolas metabólicas e recomenda que neste tipo de trabalho, sejam alojados dois leitões por gaiola se não for previsto um período de adaptação antes do início das coletas de dados.

Ball & Aherne (1982) desmamaram leitões com 3 e 4 semanas de idade e determinaram a digestibilidade das dietas por 3 semanas após o desmame. As digestibilidades da energia e da proteína não apresentaram diferença quando foram comparados os leitões desmamados às 3 e às 4 semanas. A digestibilidade da energia aumentou com o tempo pós-desmame da primeira até a terceira semana após o desmame. Já a digestibilidade da proteína aumentou da primeira para a segunda semana, porém não aumentou da segunda para a terceira. Os autores verificaram que a vantagem no crescimento obtida com dietas com alta densidade não foi devida, primariamente, ao aumento da digestibilidade, mas devido ao aumento de consumo de nutrientes.

Não existem dados na literatura sobre o efeito do peso à desmama na digestibilidade dos nutrientes e retenção corporal de tecidos, mas conhece-se que no geral, tanto o conteúdo em gordura quanto as taxas de deposição de nutrientes corporais aumentam com o PV, acompanhando a evolução do

melhor desempenho de animais mais pesados ao momento do desmame (Mavromichalis, 2006).

1.9. Hipóteses e Objetivos

Em função do reportado, as hipóteses do presente trabalho são as seguintes:

-Há uma interação entre o nível de energia da dieta, a temperatura da sala de criação e o peso ao desmame sobre os parâmetros de desempenho do leitão desmamado assim como no aproveitamento dos nutrientes das dietas iniciais.

-Devido à reportada falta de melhora nos parâmetros de desempenho encontrados na literatura em leitões desmamados que receberam níveis crescentes de energia na dieta, espera-se que exista uma diferenciação no ganho e taxa de deposição de nutrientes corporais e na eficiência energética desse ganho, em resposta direta ao maior nível de inclusão de energia na dieta.

O objetivo do trabalho foi o de estudar os efeitos da concentração energética da dieta, temperatura ambiental e peso à desmama sobre os parâmetros de desempenho, digestibilidade e metabolizabilidade dos nutrientes em leitões desmamados criados em gaiolas metabólicas dos 21 até 49 dias de idade. - Avaliar os efeitos dos três fatores sobre a eficiência energética, ganho de nutrientes e as relações entre as taxas de deposição dos mesmos no corpo vazio dos leitões.- Definir as interações entre a concentração energética da dieta, temperatura ambiental e peso à desmama nas variáveis estudadas.

CAPÍTULO II

Efeito da temperatura ambiental, do nível energético da dieta e do peso à desmama no desempenho e digestibilidade de leitões recém-desmamados

Valentino Arnaiz¹, Andréa Machado Leal Ribeiro², Alexandre de Mello Kessler², Marcos Raber¹, Sioji Kuana⁴

RESUMO- Foi avaliado o efeito da temperatura ambiental (TA) (29±1,7°C e 25±1,3°C), da EM da dieta (EMD) (3250, 3400, 3550 ou 3700 kcal EM/kg), e do peso à desmama (PD) (4,0±0,7 kg e 6,3±0,6 kg) no desempenho, digestibilidade dos nutrientes, metabolizabilidade da energia bruta (MEB) e retenção de nitrogênio (CRN), em leitões desmamados entre 17 a 21 dias de idade. No período pré-inicial (PPI, 1 a 14 dias pósdesmame) foram utilizados 64 leitões de linhagem comercial (32 machos e 32 fêmeas), alojados dois animais/gaiola metabólica. No período inicial (PIN, 15 a 28 dias pósdesmame), permaneceram 32 machos (um animal/gaiola). Houve interação do PD e temperatura ambiental para GP no PPI: leitões leves na TA de 29°C apresentaram menor ganho de peso (P<0,10). No período total, a CA apresentou interação significativa entre PD e EMD (P<0,06), verificando-se melhor CA para leitões pesados em resposta ao incremento de EMD. Houve efeito (P<0,01) do PD sobre o desempenho: leitões leves apresentaram pior CA, menor GP e CR. A TN melhorou o GP (P<0,05) e CR (P<0,01). Os níveis de energia não foram significativos (P>0,10) para nenhuma das respostas de desempenho avaliadas. No período total, houve um aumento linear (P<0,001) da digestibilidade aparente da MS, PB, EB, GB, do CRN e da MEB ao incremento da EMD. A TA de 25°C piorou todos os parâmetros de metabolismo avaliados (P<0,10). Não houve influência do PD no metabolismo (P>0,10).

Palavras-chave: ambiência, energia, metabolismo, peso à desmama, suínos.

Artigo escrito de acordo às normas da RBZ

¹Mestrando em Zootecnia da UFRGS, Av. Bento Gonçalves, 7712,Cep: 91540-000-Porto Alegre/RS. Email: <u>valentinoarnaiz@gmail.com</u>, <u>marcosrraber@yahoo.com.br</u>

²Professor Adjunto do Departamentode Zootecnia da UFRGS. Email: <u>aribeiro@ufrgs.br,akessler@ufrgs.br</u>
³ Zootecnista Mg Sc Email: <u>oriente@formatto.com.br</u>

Effect of environmental temperature, dietary energy level and weaning weight on performance and digestibility of newly-weaned piglets

ABSTRACT- It was evaluated the effect of environmental temperature (ET) (29±1,74°C and 25±1,3°C), dietary ME level (DME) (3250,3400,3550 or 3700 Kcal of ME/kg) and weaning weight (WW) (4,0±0,7 kg and 6,3±0,6 kg) on 17 to 21 d-old newly-weaned piglets performance, digestibility of nutrients, gross energy metabolizability (GEM) and nitrogen retention (NR). Experiment was divided into two periods (PS-pre-starter, 1-14 days and SP- starter, 15-28 days after weaning). Sixty four hybrid piglets (32 males and 32 females) were allotted on 32 metabolic cages (2 animals/cage) during PS. At the beginning of SP, only the 32 male piglets were kept and individually housed in the same cages. There was significant interaction between WW and temperature on WG in PS: lighter piglets housed at 29°C had less WG (P<0,10). In the total period, there was a significant effect (P<0,01) of WW on perfomance: lighter animals had worst feed;gain ratio and less WG and FI. Piglets allotted at 25°C evidenced greater WG (P<0,05) and FI (P<0,01). There was no effect of DME on perfomance (P>0,10). On the other hand, apparent DM, CP, GE and CF digestibility, NR and GEM were linearly improved (P<0,01) by increased DME. The 25°C temperature worsted all metabolism parameters (P<0,10). WW had no influence on metabolism (P>0,10).

Keywords: energy, environmental conditions, perfomance, pigs, weaning weight

Introdução

Com os avanços nos sistemas de produção suína, tanto do ponto de vista genético quanto gerencial, a determinação de um meio ambiente adequado tornou-se condição indispensável para que os animais possam expressar seu máximo desempenho produtivo, associado ao bem-estar (Sampaio 2004). A variação da temperatura ambiente piora o desempenho do leitão em decorrência da possível aparição de transtornos fisiológicos e metabólicos que levam à queda do consumo de alimento (Collin et al. 2001). As condições ambientais que afetam a transferência de calor afetarão também a forma na qual a proteína e energia da dieta serão utilizados para propósitos produtivos (Fialho & Tildford,1991). Portanto é importante que as instalações tenham temperaturas ambientais próximas às de conforto dos animais. Nas integrações suínas brasileiras as grandes variações do fator temperatura ambiente existentes, sobretudo nas fases de vida nas quais os suínos são mais exigentes a esse respeito, como na fase do desmame, constituem-se em um grave problema prático.

Existem evidências de que o aumento da temperatura ambiente melhora a digestibilidade da energia da dieta (Holmes, 1974). No entanto, sua influência sobre a digestibilidade da proteina e retenção de nitrogênio é menos clara. A limitada capacidade do estômago do leitão desmamado limita seu consumo energético, restringindo seu crescimento (Batterham, 1994). A esse respeito, diversos trabalhos precedentes testaram a hipótese que o aumento da concentração energética da dieta leva a um maior consumo energético e crescimento do leitão desmamado. No entanto, estes estudos não obtiveram melhora no ganho de peso com concentrações energéticas elevadas (Moita, 1996; Orensaya, 2005). As razões para a falta de resposta não se encontram claras.

Os especialistas e produtores de suínos bem sabem que leitões mais pesados ao

desmame crescem mais rapidamente e chegam mais cedo ao peso de abate. Bartels (1999) estudando a curva de crescimento de leitões desmamados aos 14 ou 21 dias, observou que a evolução do peso dos animais foi dependente do peso ao desmame e do número de dias após o desmame em que o peso foi medido, sendo que os leitões mais pesados apresentam um maior ganho de peso do que os mais leves.

Com base no exposto, o presente trabalho teve como objetivo avaliar o efeito e definir a interação entre a temperatura ambiental, o nível energético da dieta e o peso à desmama sobre o desempenho, retenção de nitrogênio e digestibilidade dos nutrientes em leitões desmamados e alojados em gaiolas metabólicas dos 21 aos 49 dias de idade.

Material e Métodos

Um experimento foi conduzido nas instalações do Laboratório de Ensino Zootécnico da UFRGS, em 2005. Foram utilizados 64 leitões recém-desmamados (32 machos e 32 fêmeas) procedentes da linhagem comercial Agroceres, com idade entre 17-21 dias, e classificados segundo o seu peso à desmama como leves (4,0±0,7 kg) e pesados (6,0±0,6 kg). Os leitões foram alojados em 32 gaiolas de metabolismo, semelhantes ao modelo descrito por Pekas (1968), divididas igualmente em duas salas com temperatura controlada. Os períodos de creche avaliados foram: pré-inicial (PPI, 1-14 dias pós desmame) e inicial (PIN, 15-28 dias pós desmame). O alojamento foi feito em duplas de ambos os sexos por gaiola durante o PPI. Ao início do PIN todas as fêmeas foram retiradas e os machos continuaram no experimento, alojados individualmente. Os leitões receberam água e alimentação à vontade durante todo o período experimental.

As salas de alojamento foram condicionadas para permanecer nas seguintes temperaturas: I: TA de 29±1,7°C e II: TA de 25±1,3°C. No interior de cada sala foi instalado um termômetro de máxima e mínima, na altura das gaiolas. Os dados de

temperatura máxima e mínima estão apresentados na Tabela 1.

Tabela 1 – Variação da temperatura máxima e mínima por período experimental Table 1 – Maximal and minimum temperature variations per experimental period

Período	Pré-i	nicial	Inicial				
Period	Pre-s	starter	Starter				
Temperatura	I	II	I	II			
Máxima/ Maximum	28±1,5	32±1,4	27±1,3	30±1,4			
Mínima/ Minimum	23±1,9	28±2,7	23±1,8	27±2,1			

Os leitões receberam uma dieta pré-inicial nos primeiros 14 dias e uma dieta inicial nos 14 dias subsequentes, totalizando 28 dias de período experimental. Foram avaliados 16 tratamentos, nos quais relacionaram-se duas temperaturas ambientais, dois pesos à desmama e quatro níveis de energia metabolizável (EM) da ração (I-3250, II-3400, III-3550 e IV-3700 kcal/kg).

A variação do nível de EM das dietas tanto para PPI quanto para PIN foi realizada pela substituição isoproteica de soja micronizada por farelo de soja + caulim, respeitando-se as necessidades nutricionais iguais ou superiores às recomendadas por Rostagno et al. (2005) para leitões desmamados. A composição das dietas experimentais encontra-se na Tabela 2.

Tabela 2 – Composição em ingredientes e nutricional das dietas experimentais, na matéria natural

Table 2 – Ingredient and nutritional composition of the experimental diets, as-fed basis

Ingredient and nutritional Ingrediente (%)	PPI	PPI	PPI	PPI	PIN	PIN	PIN	PIN
Ingredient	I	II	III	IV	I	II	III	IV
Milho Moído/ Milled corn	43,40	43,40	43,40	43,40	51,56	51,56	51,56	51,56
Mistura Farelo de Soja + Caulim /	26,50	17,67	8,80	0,000	27,50	18,20	9,30	0,00
Soybean meal + inert mixture ¹								
Soro de leite/Whey	17,15	17,15	17,15	17,15	11,40	11,40	11,40	11,40
Soja Micronizada/ <i>Micronized</i> soybean	0,00	8,80	17,67	26,40	0,00	9,30	18,20	27,50
Açúcar/ Sugar	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00
Far. Gluten de milho/ <i>Corn gluten meal</i>	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
Fosfato bicálcico/ <i>Dicalcium</i> phosphate	1,18	1,22	1,25	1,29	1,25	1,25	1,28	1,28
Plasma suíno/ Swine plasma	4,00	4,00	4,00	4,00	1,00	1,00	1,00	1,00
Calcário/ Limestone	0,64	0,64	0,60	0,60	0,76	0,75	0,74	0,74
L- Lisina HCl/ L-lysine HCl	0,42	0,42	0,42	0,42	0,42	0,42	0,42	0,43
DL- Metionina/ DL- Methionine	0,32	0,32	0,32	0,32	0,24	0,24	0,24	0,24
L- Treonina/ L-Threonine	0,16	0,16	0,16	0,16	0,13	0,13	0,13	0,13
L- Triptofano/ L- Tryptophan	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Premix mineral <i>Mineral premix</i> ²	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Premix vitamínico/Vitamin premix ³	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Sal comum/ Salt	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Colina/ Choline	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07
Óxido de zinco /Zinc Oxide	0,40	0,40	0,40	0,40	0,00	0,00	0,00	0,00
Acidificante/ Acidifier	0,40	0,40	0,40	0,40	0,30	0,30	0,30	0,30
Aromatizante/ Flavorizer	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Total	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
	Nutrie	entes/ <i>Ni</i>	ıtrients					
EM (kcal/kg)/ME	3250	3400	3550	3700	3250	3400	3550	3700
Proteína bruta (%) Crude protein	21,00	21,00	21,00	21,00	19,00	19,00	19,00	19,00
Gordura (%) <i>Fat</i>	2,80	4,95	7,00	9,20	2,80	4,95	7,20	8,40
Cálcio (%)/ Calcium	0,75	0,75	0.75	0,75	0,74	0,74	0,74	0,75
Fósforo disponível (%)/ Available P	0,5	0,5	0.50	0,5	0,43	0,43	0,43	0,43
Lisina total (%)/ Total lysine	1,5	1,5	1.50	1,5	1,3	1,3	1,3	1,3
Metionina (%) / Methionine	0,61	0,61	0,61	0,61	0,52	0,52	0,52	0,53

¹ Mistura Farelo de soja: caulim na proporção 89:11. Soybean meal: inert mixture 89:11

As fezes foram coletadas diariamente e conservadas a -15°C. Ao final do período experimental, foram descongeladas, homogeneizadas, tendo sido retirada uma amostra de 400 g para análises químicas. A urina foi coletada diariamente em baldes

²Conteúdo/kg (content/kg): Fe 80,000 mg,Cu 12,000 mg,Mn 70,000 mg,Zn 100,000 mg, I 1000 mg, Se 120 mg

³ Conteúdo/kg (content/kg): Vit. A 2.250,000 UI,vit. D3 450,000 UI, vit. E 4,500 UI, vit.K3 400mg, vit. B1 350 mg, vit.B2 1000mg, vit. B6 350 mg, vit. B12 4500 mcg, Niacina (*Niacin*) 7500 mg, Ác. Pantotênico (Pantothenic *acid*) 4000mg, Ac. Fólico (*folic acid*) 100 mg, Biotina (*Biotin*) 25 mg e Antioxidante (*Anthioxidant*) 25,000 mg

PPI:dieta pré-inicial (1-14 dias pós-desmame). Pre- starter diet (1-14 days after weaning)

PIN: dieta inicial (15-18 dias pós-desmame). Starter diet (15-28 days after weaning)

⁵ Análises realizadas no Laboratório de Nutricão Animal do Departamento de Zootecnia da UFRGS. Analyses were performed at the Laboratory of Animal Nutrition, Department of Animal Science, UFRGS

plásticos contendo 5 mL de ácido sulfúrico a 98%, para evitar contaminação bacteriana e perdas de nitrogênio (N). Diariamente o volume total de urina de cada animal foi filtrado, quantificado e homogeneizado. Uma alíquota de 10% da urina, por repetição, foi armazenada a -15°C. Ao final de cada período de coleta, a urina foi descongelada e homogeneizada, sendo retirada uma amostra de 100 mL para as análises de N.

As amostras de ração e de fezes foram submetidas às análises de matéria seca (MS), proteína bruta (PB,), extrato etéreo (EE) e energia bruta (EB) (AOAC 1993). Na urina foram determinados os teores de N e EB considerando o valor de 9,17 kcal/g de N (Morgan et al. 1975).

Os leitões foram pesados no início e aos 7,14,21 e 28 dias do experimento. Foram determinados por período experimental o ganho de peso (GP), o consumo de ração (CR) e a conversão alimentar (CA). Os coeficientes de digestibilidade aparente da matéria seca (CDMS), da energia bruta (CDEB), de proteína bruta (CDPB), de gordura bruta (CDGB) e os coeficientes de metabolizabilidade da energia bruta (CMEB) e proteína bruta (CMPB) assim como a energia digestível (ED) e metabolizável (EM) foram calculadas segundo as fórmulas desenvolvidas por Matterson et al. (1965). Os coeficientes de retenção de nitrogênio (CRN) foram calculados de acordo com a fórmula descrita por Fialho & Tildford (2001).

O experimento foi conduzido em delineamento completamente casualizado em arranjo fatorial 2 x 2 x 4. Cada tratamento teve duas repetições, constituídas por uma gaiola com 2 animais no período pré-inicial e um animal no inicial.

A análise de variância foi realizada utilizando-se o procedimento GLM (SAS 1996) e foram considerados os efeitos principais e interações de cada um dos três fatores avaliados. Na presença de uma probabilidade significativa as médias foram comparadas pelo teste de LS Means a 10% de significância. No caso de análise de

variância significativa para os níveis de EM, a soma de quadrados foi decomposta em efeitos linear e quadrático. Neste caso, temperatura e peso à desmama foram usados como co-variáveis no modelo.

As fezes foram coletadas diariamente e acondicionadas em sacos plásticos, pesadas e conservadas a -15°C. Ao final do período experimental, as fezes foram descongeladas e homogeneizadas, Logo após foi retirada uma amostra de 400 g para análises químicas. A urina foi coletada diariamente em baldes plásticos contendo 5 mL de ácido sulfúrico a 98%, para evitar contaminação bacteriana e perdas de nitrogênio (N). Diariamente o volume total de urina de cada animal foi filtrado, quantificado e homogeneizado. Uma alíquota de 10% da urina, por repetição, foi armazenada em garrafa plástica a -15°C. Ao final de cada período de coleta, a urina foi descongelada e homogeneizada, sendo retirada uma amostra de 100 mL para as análises de N.

As amostras de ração e de fezes foram submetidas às análises de matéria seca (MS), proteína bruta (PB,), extrato etéreo (EE) e energia bruta (EB) (AOAC 1993). Na urina foram determinados os teores de N e EB considerando o valor de 9,17 kcal/g de N (Morgan et al. 1975).

Os leitões foram pesados no início e aos 7,14,21 e 28 dias do experimento. Foram determinados por repetição e período experimental o ganho de peso (GP), o consumo de ração (CR) e a conversão alimentar (CA). Os coeficientes de digestibilidade aparente da matéria seca (CDMS), da energia bruta (CDEB), de proteína bruta (CDPB), de gordura bruta (CDGB) e os coeficientes de metabolizabilidade da energia bruta (CMEB) e proteína bruta (CMPB) assim como a energia digestível (ED) e metabolizável (EM) foram calculadas segundo as fórmulas desenvolvidas por Matterson et al. (1965). Os coeficientes de retenção de nitrogênio (CRN) foram calculados de acordo com a fórmula descrita por Fialho & Tildford (2001).

O experimento foi conduzido em delineamento completamente casualizado em arranjo fatorial 2 x 2 x 4. Cada tratamento teve duas repetições, constituída por uma gaiola com 2 animais no período pré-inicial e um animal no inicial.

A análise de variância foi realizada utilizando-se o procedimento GLM (SAS 1996) e foram considerados os efeitos principais e interações de cada um dos três fatores avaliados. Na presença de uma probabilidade significativa as médias foram comparadas pelo teste de LS Means a 10% de significância. No caso de análise de variância significativa para os níveis de EM, a soma de quadrados foi decomposta em efeitos linear e quadrático. Neste caso, temperatura e peso à desmama foram usados como co-variáveis no modelo.

Resultados e Discussão

No período pré-inicial observou-se a existência de uma interação (P<0,08) entre o peso à desmama e a temperatura ambiente para a variável GP (Tabela 3). Os animais leves, alojados em TA de 29°C, apresentaram menor GP do que os leves em TA de 25°C (3,8 vs 4,5 kg, respectivamente). Quanto aos efeitos principais, o peso à desmama e a temperatura ambiente afetaram significativamente o GP dos leitões. Os leitões mais pesados no início do experimento ganharam mais peso do que os leves (P<0,05), concordando com os achados de Mahan & Lepine (1991) e Bartels (1999). Os leitões alojados na TA de 25°C também apresentaram melhor GP (P<0,08). Brumm et al. (1995) também observaram que uma redução de 6°C da temperatura noturna (em comparação com o controle de 30°C) melhorou o GP, mas não apresentou diferença quanto ao CR ou CA em leitões entre 3 e 4 semanas. No presente experimento, também não houve efeito da temperatura ambiente no CR e CA (P>0,10). Quanto ao fator peso, a CA foi melhor nos leitões pesados (P<0,08). O CR, por outro lado, não foi afetado pelo peso ao desmame (P>0,10). A concentração energética da dieta não influenciou o

desempenho (P>0,10).

Tabela 3 – Dados de desempenho e metabolismo de leitões com diferentes pesos à desmama, temperaturas ambientais e nível de energia na dieta no período pré-inicial (1 a 14 dias pós-desmame)¹

Table 3 – Perfomance and metabolism data of piglets with different weaning weights, environmental temperatures and dietary energy levels, during pre-starter phase (1 to 14 days after weaning)¹

	Ener	gia Metab	olizável (k	cal/kg)	Tempe	eratura	Peso ao o	lesmame	Prol	oabilidad	e	CV
	M	letabolizable	Energy (kca	l/kg)	Tempe	erature	Weaning	g weight	Pi	robability		CV
							Pesados	Leves	Energia	Temp	Peso	%
					0		Heavy	Light				
Item	3250	3400	3550	3700	25±1,3°C	29±1,7°C	6,3±0,6 kg	$4,0\pm0,7 \text{ kg}$	Energy	Temp	Weight	
No Leitões/ number piglets	16	16	16	16	32	32	32	32				
Desempenho / perfomance												
Peso inicial,kg / initial weight	5,3	5,1	5,2	5,1	5,4	4,9	6,3	3,9				
Ganho de peso,kg/ weight gain ²	4,5	4,7	4,8	4,3	4,8 ^a	4,3 ^b	4,9 ^a	4,2 ^b	0,499	0,053	0,006	14,3
Consumo racão kg/ feed intake	5,3	5,1	5,4	4,9	5,3	5,1	5,4	4,9	0,469	0,500	0,102	14,8
CA (kg/kg)/feed:gain ratio	1,19	1,12	1,13	1,17	1,10	1,20	1,10 ^a	1,17 ^b	0,771	0,135	0,076	14,9
Metabolismo / Metabolism												
CDPB,%/ <i>CPD</i> ³	78,9 ^b	$80,2^{b}$	$82,3^{ab}$	85,6 ^a	$78,1^{b}$	85,4 ^b	81,2	82,3	0,012	0,001	0,427	4,9
CDGB,%/ <i>CFD</i> 4	63,8 ^b	$76,2^{\rm b}$	80,5 ^{ab}	86,5 ^a	$72,2^{b}$	81,3 ^a	76,4	77,1	0,001	0,001	0,782	8,9
CDEB,%/GED ⁵	86,1 ^b	86,7 ^b	87,8 ^{ab}	90,1 ^{ab}	85,7 ^b	89,6 ^a	87,2	88,1	0,011	0,001	0,307	2,8
CDMS,%/ <i>DMD</i> ⁶	$85,2^{b}$	$85,9^{b}$	87.3^{b}	90,2 ^a	85,2 ^b	89,1 ^a	86,6	87,7	0,006	0,001	0,233	3,3
CMEB,%/ <i>GEM</i> ⁷	85,7 ^a	86,3 ^{ab}	87,4 ^{ab}	89,8 ^a	85,3 ^b	89,2 ^a	86,8	87,8	0,021	0,001	0,281	2,8
CRN, %/ NR 8	$73,7^{b}$	74,7 ^{ab}	$77,3^{ab}$	80,7 ^a	72,9 ^b	80,3 ^a	$75,3^{b}$	77,9 ^a	0,025	0,001	0,105	5,6
ED, kcal/kg/ DE	3229 ^d	3421 ^c	3565 ^c	3732 ^a	3408 ^b	3566 ^a	3471	3503	0,001	0,001	0,318	2,8
EM, kcal/kg/ ME	3215 ^d	3406 ^c	3551 ^b	3717 ^a	3393 ^b	3551 ^a	3454	3491	0,001	0,001	0,295	2,8

Médias com letras diferentes na linha diferem entre si pelo teste do LS Means a 10%. Means, within a row, with different letters differ (P<0.10) by the LS Means test

¹Valores individuais. *Individual values* ²Interação peso x temperatura (P<0,08). *Weight x Temperature interaction*

³ Digestibilidade da proteína bruta. *Crude protein digestibility*. Efeito linear. *Linear effect* (P < 0.001) $Y = 10.287 + 0.021*EM (<math>r^2 = 0.67$)

⁴ Digestibilidade da gordura bruta. *Crude fat digestibility*. Efeito linear. *Linear effect* (P < 0.001) $Y = -81.74 + 0.046*EM (r^2 = 0.79)$

⁵ Digestibilidade da energia bruta. Gross energy digestibility. Efeito linear. Linear effect (P < 0.001) $Y = 43.677 + 0.013*EM (r^2 = 0.72)$

⁶ Digestibilidade da matéria seca. *Dry matter digestibility*. Efeito linear. *Linear effect* (P<0,001) Y=37,031+0,014*EM ($r^2=0,75$)

⁷ Metabolizabilidade da energia bruta *Gross energy metabolizability*. Efeito linear. *Linear effect* (P<0.001) Y=42.686+0.013*EM ($r^2=0.71$)

⁸ Retenção de nitrogênio. *Nitrogen retention*. Efeito linear. *Linear effect* (P<0,001) Y =0,733 + 0,022*EM (r²= 0,72)

Para as variáveis de metabolismo não houve interação (P>0,10) entre os fatores avaliados. Quanto aos fatores principais, o peso à desmama não influenciou nenhuma das respostas (P>0,10), ao contrário da temperatura do ambiente. Leitões criados na TA de 29°C apresentaram melhor CDMS, CDGB, CDPB, CDEB, CMEB e CRN (P<0,02). Esses resultados assemelham-se ao reportado na literatura para suínos em crescimento que apresentaram melhoria na digestibilidade da MS e PB com o aumento da temperatura ambiente de 17 para 29°C (Fialho & Tildford, 1991), apesar da comparação envolver uma temperatura mínima mais baixa do que a usada no presente experimento. A energia da dieta também afetou linearmente (P<0,00) todos os parâmetros de metabolismo Os coeficientes aumentaram em resposta ao incremento de EM. Verificouse uma boa capacidade dos leitões de digerirem nutrientes, sobretudo em sendo animais recém-desmamados, apesar da reportada deficiência enzimática do leitão nesta idade (Gu et al. 2003).

Para o período inicial (15 a 28 dias, Tabela 4), não houve nenhuma interação significativa entre os fatores. Porém o peso à desmama e a temperatura ambiente continuaram influenciando significativamente o GP (P<0,08) e também, neste período, o CR (P<0,01): os leitões mais pesados ganharam mais peso do que os leves. Por outro lado, os animais alojados na TA de 25°C consumiram mais alimento e apresentaram maior GP. A CA não foi afetada nem pelo peso à desmama nem pela temperatura ambiente (P>0,10). A mesma CA dos leitões nos diferentes ambientes evidencia que a variação observada no GP ocorreu em função direta da variação no consumo de ração e não em função de um acréscimo na eficiência de transformação dos nutrientes. O nível de energia não influenciou nenhuma resposta de desempenho (P>0,10), ratificando os dados obtidos por Moita (2000), Levesque (2002) e Reis de Souza et al. (2000) os quais observaram que o GP não foi melhorado com o incremento da concentração energética

da dieta. Isto sugere que o consumo de energia em dietas com menor densidade energética não estaria limitando o desempenho dos animais.

Assim como ocorreu no período anterior, não houve efeito do peso à desmama sobre as respostas de metabolismo (P>0,10), ao contrário da temperatura que continuou influente.Os leitões alojados na TA de 29°C mantiveram melhores coeficientes de digestibilidade, de metabolizabilidade e de retenção de N (P<0,05). O nível energético também afetou linear e positivamente (P<0,01) as respostas de metabolismo, com exceção do CDPB, que não foi afetado.

Os maiores valores de digestibilidade de todos os nutrientes encontrados no PIN quando comparados com os valores encontrados no PPI são congruentes com o maior desenvolvimento da capacidade enzimática do leitão, com o avanço da idade (Bertol et al. 2000). No caso específico do PPI, o incremento de soja micronizada, mais digestível que o farelo de soja, confundindo-se com o aumento da EM das dietas, pode ter afetado positivamente o CDPB. Entretanto, no PIN não evidenciou-se esta vantagem, provavelmente devido à maior maturidade do trato gastrintestinal dos leitões, já acostumados a consumir ração sólida como única fonte de alimentação e mais capazes de digerir o farelo de soja.

Tabela 4 – Dados de desempenho e metabolismo de leitões com diferentes pesos à desmama, temperaturas ambientais e nível de energia na dieta no período inicial (15 a 28 dias pós-desmame)

Table 4 – Performance and metabolism data of piglets with different weaning weights, environmental temperatures and dietary energy levels, during starter phase (15) to 28 days after weaning)

	Ene	ergia Meta	bolizável (kcal/kg)	Temp	eratura	Peso ao d	lesmame	Prol	oabilidad	e	CV
		Metabolizab	le Energy (kc	al/kg)	Temp	erature	Weaning	g weight	P		CV	
							Pesados	Leves	Energia	Temp	Peso	%
Item	3250	3400	3550	3700	25±1,3°C	29±1,7°C	Heavy 6,3±0,6 kg	<i>Light</i> 4,0±0,7kg	Energy	Тетр	Weight	
No Leitões/ number piglets Desempenho/ performance	8	8	8	8	16	16	16	16				
Ganho de peso,kg/ weight gain	7,1	6,9	7,8	7,7	7,8	6,9	8,0°	6,7 ^b	0,602	0,099	0,021	19,7
Consumo ração kg/ Feed intake	10,6	11,5	10,9	10,7	11,6 ^a	$10,3^{b}$	11,4 ^a	$10,4^{\rm b}$	0,344	0,001	0,007	8,6
CA (kg/kg)/ feed:gain ratio	1,53	1,69	1,45	1,44	1,51	1,55	1,59	1,46	0,167	0,683	0.142	15,9
Metabolismo/ metabolism		•	•				•		·			
CDPB,%/ CPD ²	84,7	85,5	88,4	88,5	84,4 ^b	89,1 ^a	85,9	87,7	0,173	0,004	0,228	5,1
CDGB,%/ <i>CFD</i> ³	68,7°	78,1 ^{bc}	85,6 ^a	89,3 ^a	$77,6^{b}$	83,7 ^a	80,2	80,7	0,001	0,003	0,803	7,1
CDEB,%/GED ⁴	88,3	89,7	91,3	91,9	$88,7^{b}$	91,9 ^a	89,8	90,9	0,052	0,003	0,254	3,1
CDMS,%/ <i>DMD</i> 5	86,2°	87,7 ^{bc}	90,4 ^{ab}	91,4 ^a	$87,0^{\rm b}$	90,9 ^a	89,6	88,3	0,011	0,002	0,231	3,6
CMEB,%/ <i>GEM</i> ⁶	87,6	88,9	90,6	91,3	88,1 ^b	91,1 ^a	89,0	90,2	0,062	0,006	0,251	3,08
CRN, %/ <i>NR</i> ⁷	74,4	76,0	77,0	78,9	74,8 ^b	78,4 ^a	75,2 ^b	77,9 ^a	0,252	0,035	0,089	5,67
ED, kcal/kg/ <i>DE</i>	3308 ^d	3478 ^c	3692 ^b	3897 ^a	3533 ^b	3655, ^a	3572	3616	0,001	0,003	0,234	2,98
EM, kcal/kg/ ME	3278^d	3452 ^c	3661 ^b	3870 ^a	3506 ^b	3624 ^a	3542	3588	0,001	0,006	0,229	2,95

Médias com letras diferentes na linha diferem entre si pelo teste do LS Means a 10%. Means, within a row, with different letters differ (P<0.10) by LS Means test

¹Valores individuais. *Individual values*

² Digestibilidade da proteína bruta. *Crude protein digestibility*. Efeito linear. *Linear effect* (P<0,001) Y=35,858+0,014*EM ($r^2=0,51$)

³ Digestibilidade da gordura bruta. Crude fat digestibility Efeito linear. Linear effect (P<0,001) Y = -51,533 + 0,037*EM (r²= 0,86)

⁴ Digestibilidade da energia bruta. *Gross energy digestibility*. Efeito linear. *Linear effect* (P < 0.001) $Y = 52.362 + 0.011*EM (<math>r^2 = 0.62$)

⁵ Digestibilidade da matéria seca . *Dry matter digestibility*. Efeito linear. *Linear effect* (P < 0.001) $Y = 40.416 + 0.014*EM (r^2 = 0.69)$

⁶ Metabolizabilidade da energia bruta. *Gross energy metabolizability*. Efeito linear. *Linear effect* (P<0,001) Y = 51,341 + 0,011*EM (r²= 0,64) Retenção de nitrogênio. *Nitrogen retention*. Efeito linear. *Linear effect* (P<0,001) Y =29,712 + 0,013*EM (r²= 0,45)

A Tabela 5 apresenta os dados de desempenho e metabolismo no período total do experimento (28 dias). Para CA houve uma interação significativa entre peso à desmama e níveis de energia (P<0,06), verificando-se melhor CA, no nível mais alto de energia, para leitões pesados comparados aos leves (1,18 x 1,48, respectivamente). Esta melhora na CA não encontra-se associada a uma melhor taxa de crescimento em resposta aos maiores níveis de energia, uma vez que não houve efeito para energia e sim, provavelmente, ao aumento da digestibilidade aparente dos nutrientes encontrado com o aumento da EM da dieta.

Para os efeitos principais, mais uma vez ficou evidenciada a significância do fator peso à desmama (P<0,01) no desempenho: os animais leves apresentaram pior CA e menor GP e CR. Também o fator temperatura teve efeito significativo no GP e CR (P<0,05), confirmando-se um maior GP e CR dos animais alojados na TA de 25 °C.

O GP observado no presente estudo, no período total, para os animais leves e pesados (390 g/d e 462 g/d, respectivamente) encontra-se dentro de intervalos considerados normais (Van Lúmen & Cole, 1998). O mesmo estudo também reporta um CR diário similar ao observado no presente trabalho (549 e 600 g/d para os animais leves e pesados, respectivamente).

Tabela 5 – Dados de desempenho e metabolismo de leitões com diferentes pesos à desmama, temperaturas ambientais e nível de energia na dieta no período total (1 a 28 dias pós-desmame)

Table 5 – Performance and metabolism data of piglets with different weaning weights, environmental temperatures and dietary energy levels, during total period (1 to 28 days after weaning)

	Ener	gia Metabo	olizável (k	cal/kg)	Temp	eratura	Peso ao d	esmame	Pr	obabilidado	e	CV
	M	letabolizable l	Energy (kcal	/kg)	Temp	erature	Weaning	weight		Probability		CV
							Pesados	Leves	Energia	Temp	Peso	%
Item	3250	3400	3550	3700	25±1,3°C	29±1,7°C	<i>Heavy</i> 6,3±0,6 kg	<i>Light</i> 4,0±0,7 kg	Energy	Temp	Weight	
No Leitões/ number piglets	8	8	8	8	16	16	16	16				
Desempenho/ Perfomance												
Ganho de peso,kg/ Weight gain	11,6	11,6	12,6	11,9	12,6 ^a	11,3 ^b	12,9 ^a	10,9 ^b	0,566	0,026	0,002	13,3
Consumo racão, kg/ Feed intake	15,9	16,6	16,3	15,6	16,8 ^a	15,4 ^b	16,8 ^a	15,4 ^b	0,504	0,006	0,007	8,1
CA (kg/kg) ¹ /feed:gain ratio ¹	1,39	1,45	1,31	1,33	1,34	1,39	1,31 ^b	1,43 ^a	0,165	0,351	0,013	9,3
N consumido, g/ N intake)	506,9	516,6	501,5	481,8	524,1 ^a	479,4 ^b	524,1 ^a	479,4 ^b	0,391	0,006	0,006	7,9
N fezes, g/fecal N ²	$88,7^{a}$	84,3 ^a	$69,0^{b}$	$60,7^{b}$	93,1 ^a	58,3 ^b	82,9 ^a	$68,5^{b}$	0,066	0,001	0,077	28,5
N urina, g/ urinary N	43,0	42,6	46,4	38,4	42,7	42,5	47,3 ^a	37,9 ^b	0,474	0,969	0,076	23,3
GB consumida,g/ fat intake ³	$489,5^{d}$	$783,9^{c}$	$1026,4^{b}$	$1337,5^{a}$	951,3 ^a	867,3 ^b	945,6 ^a	$873,1^{b}$	0,001	0,006	0,015	8,2
GB fezes, g/ fecal fat	161,2	176,7	163,8	154,0	197,4 ^a	$130,5^{b}$	174,9 ^a	$152,9^{b}$	0,564	0,001	0,069	19,5
Consumo total EM, kcal/ total ME intake	51627 ^b	56921 ab	58778 ^a	59186 ^a	57960 ^a	55255 ^b	58766 ^a	54516 ^b	0,030	0,115	0,024	8,6
Metabolismo/ Metabolism												
CDPB,%/ <i>CPD</i> 4	81,8	82,3	85,3	87,1	$81,2^{b}$	87,3 ^a	83,5	84,9	0,057	0,001	0,302	4,6
CDGB,%/ <i>CFD</i> ⁵	66,2°	$77,1^{\rm b}$	83,1 ^{ab}	87,9 ^a	$74,7^{\rm b}$	82,5 ^a	78,3	78,9	0,001	0,001	0,752	6,3
CDEB,%/ <i>GED</i> 6	$87,2^{b}$	88,2 ^{ab}	89,6 ^{ab}	$91,0^{a}$	$87,2^{b}$	90,8 ^a	88,5	89,5	0,020	0,001	0,241	2,5
CDMS,%/ <i>DMD</i> 7	85,7 ^b	86,9 ^b	88,3 ^{ab}	90,8 ^a	86,1 ^b	89,9 ^a	87,4	88,7	0,008	0,001	0,208	3,0
CMEB,%/ <i>GEM</i> ⁸	86,6 ^b	87,7 ^{ab}	88,9 ^{ab}	$90,5^{a}$	86,7 ^a	90,2 ^b	87,9	88,9	0,017	0,001	0,204	2,6
CRN, %/ <i>NR</i> 9	$74,2^{b}$	$75,6^{ab}$	77,3 ^a	$79,6^{a}$	79,1 ^a	$74,2^{b}$	75,3	78,0	0,087	0,004	0,070	5,3
ED/ <i>DE</i>	3269^{d}	3450°	3629 ^b	3814 ^a	3471 ^b	3610 ^a	3521	3559	0,001	0,001	0,191	2,5
EM, kcal/kg/ ME	3247^{d}	3429 ^c	3606 ^b	3794 ^a	3450^{b}	3588 ^a	3498	3540	0,001	0,001	0,194	2,5

Médias com letras diferentes na linha diferem entre si pelo teste do LS Means a 10%. Means, within a row, with different letters differ (P < 0.10) by the LS Means test

1 Interação peso x energia (P < 0.06). Weight x energy interaction

2 Efeito linear. Linear effect (P < 0.001) Y = 388,756 - 0.089*EM (P = 0.52)

3 Efeito linear. Linear effect (P < 0.001) Y = 28,145 + 0.0016*EM (P = 0.52)

6 Efeito linear. Linear effect (P < 0.001) Y = 28,145 + 0.0016*EM (P = 0.52)

6 Efeito linear. Linear effect (P < 0.001) Y = 28,145 + 0.0016*EM (P = 0.001) Y = 42,127 + 0.013*EM (P = 0.001) Refeito linear. Linear effect (P < 0.001) Y = 22,418 + 0.015*EM (P = 0.001) Y = 22,418 + 0.015*EM (P = 0.54)

Quanto aos dados de metabolismo, como no caso dos períodos anteriores, não foi verificada interação entre os fatores (P<0,10). Também o peso à desmama não teve efeito em nenhuma das variáveis de metabolismo avaliadas (P>0,10). A temperatura ambiente, no entanto, afetou todas as variáveis (P<0,05), como já havia sido observado nos dois períodos experimentais, com melhoria para os leitões criados na TA de 29°C.

Na TA de 25°C observou-se que a MS das fezes dos leitões foi menor (40,9% vs 47,2%, P<0,01). O maior conteúdo de água nas fezes desses leitões e também o maior consumo de ração, pode ter aumentado a taxa de passagem da digesta no intestino, prejudicando a absorção dos nutrientes, explicando em parte, o decréscimo dos coeficientes de metabolismo encontrados na TA de 25°C. A esse respeito, Kennedy et al. (1976) indicaram que pode existir uma redução no tempo de retenção da digesta em temperaturas menores, assim, a efetividade na digestão dos nutrientes e sua absorção pode se ver reduzida devido ao menor tempo de exposição às enzimas digestivas e área absortiva.

A menor digestibilidade da proteína e retenção de nitrogênio encontrada na TA de 25°C (P<0,01) está de acordo como o citado por Fuller & Boyne (1972), para leitões em crescimento alojados a 13 e 23°C. Devido às possíveis diferenças no processo de absorção e utilização metabólica da proteína, a retenção de nitrogênio vê-se reduzida em temperaturas inferiores. Fialho & Tildford (1991), também observaram que suínos em crescimento expostos a temperatura ambiental de 17°C digerem o nitrogênio dietético menos eficientemente do que os animais alojados em temperatura de 29°C. É interessante ressaltar que no presente trabalho, mesmo com menores diferenças entre as temperaturas ambientais usadas, o mesmo efeito foi observado.

A falta de melhora no desempenho dos leitões da TA de 29°C, apesar dos melhores parâmetros de metabolismo, pode ter acontecido devido a diferenças na

produção de calor e mantença. Segundo Mount (1976), suínos alojados em temperatura quente e submetidos a planos nutricionais intensivos vêem a sua temperatura crítica diminuída pela maior produção de calor em decorrência do efeito extracalórico da dieta concentrada. Este postulado permite inferir que a TA de 29°C foi elevada para os leitões visto o maior GP e CR dos animais alojados na outra sala. Desta forma, os leitões alojados em TA de 29°C estariam usando a energia consumida para aumentar as perdas de calor.

O nível de energia da dieta, como já havia sido observado nos períodos PPI e PIN, melhorou linearmente (P<0,00) o CDMS, CDGB, CDEB, CMEB, CRN e CDPB. A diminuição da velocidade de passagem do alimento pelo TGI devido à maior adição de soja micronizada (que também aumentou a gordura da dieta), utilizada para elevar os níveis energéticos da dieta, pode ter beneficiado a digestibilidade dos nutrientes. O decréscimo linear (P<0,01) da proteína eliminada nas fezes com o aumento da concentração energética da dieta, observado na Tabela 5, é um exemplo do que está sendo discutido.

A ausência de correspondência entre crescimento corporal e aumento da concentração energética da dieta com melhora nos parâmetros metabólicos, sugere que com os menores níveis de EM os leitões estariam sendo capazes de alcançar um consumo de energia suficiente para um crescimento adequado. Alternativamente, é possível que os leitões alimentados com dietas de maior concentração energética, sem alterações no CR, mas com efeito linear sobre o consumo de EM (P<0,01), tenham consumido energia extra superior à requerida para a máxima taxa de deposição protéica. Desta forma, a energia "extra" não foi utilizada para deposição de tecido magro e sim para deposição de gordura corporal. De fato, Endres et al. (1988), demonstraram que existe um aumento na gordura da carcaça quando o leitão desmamado é alimentado

com dietas de elevado conteúdo de ED. Orensaya (2005) também concluiu que o fornecimento de dietas com maior conteúdo energético proporcionou um acréscimo da taxa de deposição de gordura sem afetar a taxa de deposição protéica e o desempenho no leitão desmamado. Segundo Quiniou (1996), no suíno de tipo magro, a deposição de 1 g de proteína é acompanhada da retenção de 3,5 a 4 g d'água e minerais apresentando ao todo maior ganho de peso associado do que a deposição de 1 g de gordura corporal, que é acompanhada de um ganho de peso de 1 g.

No presente trabalho, a excreção de nitrogênio urinário não foi afetada pelos níveis de EM da dieta (P>0,10). Estes achados confirmam que os menores níveis energéticos não afetaram a utilização metabólica e deposição de proteína. Por outro lado, a temperatura ambiente também não afetou a excreção de nitrogênio urinário (P>0,10), isto indica que a piora na retenção de nitrogênio na TA de 25°C tem relação com a menor digestibilidade aparente da proteína encontrada nos leitões ali alojados. Também é importante observar que apesar do aumento da ingestão de GB, não houve um aumento corresponde nas fezes (Tabela 5) mostrando uma grande capacidade digestiva, dos leitões nessa idade, para aproveitarem a gordura da dieta.

Os leitões alojados em TA de 29°C tiveram dietas com mais ED e EM, nos dois períodos, e no período total, o que é uma resposta congruente com os melhores parâmetros de metabolismo encontrado para estes animais.

Conclusões

Leitões alojados em TA de 25°C apresentaram maior consumo de ração e ganho de peso.

Leitões alojados em TA de 29°C comparados com os alojados em TA de 25°C apresentaram melhora na digestibilidade e retenção dos nutrientes consumidos.No entanto, esta melhora não se traduziu em maior ganho de peso ou conversão alimentar.

Foi evidenciada melhora na digestibilidade dos nutrientes com níveis crescentes de EM da dieta, embora o aumento da energia não tenha melhorado o desempenho dos leitões. Portanto, os menores níveis de inclusão de energia testados não limitaram as taxas de crescimento.

Ficou evidente a vantagem dos leitões entrarem na creche com maior peso corporal.

Literatura Citada

- ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS AOAC. **Official methods and recommended pratices of American oil Chemists Society.** 4.ed. Washington, D.C.: 1993. 1094p.
- BARTELS, H. Substituição do farelo de soja pela proteína texturizada de soja e do amido de milho pela lactose em leitões desmamados aos 14 ou aos 21 dias de idade. Universidade Federal do Rio Grande do Sul, 1999. 250p. Tese (Doutorado em Zootecnia). Faculdade de Agronomia-Universidade Federal do Rio Grande do Sul, Porto Alegre, 1999.
- BATTERHAM, E.S. Protein and energy relationships for growing pigs. In: COLE, D.J.; WISEMAN, J.; VARLEY, M.A. (Ed) **Principles of pig science.** Nottinghan: Redwood Books, 1994 p.107-121.
- BERTOL, T.M; LUDKE, J.V; MORES N; Efeito de diferentes fontes protéicas sobre desempenho, composição corporal e morfologia intestinal em leitões. **Revista Brasileira de Zootecnia,** v. 29, n.6, p. 1735-1742, 2000.
- BRUMM, M.C.; SHELTON, D. P.; DAHLQUIST, J. M. Interaction of diet composition and a reduced nocturnal temperature regimen in weanling pigs. Journal of Animal Science, Champaign, v. 73, n.9, p. 2518-2523, 1995.
- COLLIN, A., VAN MILGEN, J.; DUBOIS, S.; et al. Effect of high temperature and feeding level on energy utilization in piglets. **Journal of Animal Science,** v.79, n.9, p.1849-1857, 2001.
- ENDRES, B., F. AHERNE X.; OZIMEK, L. et al. The effects of fat supplementation on ileal versus fecal fat digestibilities, perfomance and body composition of weaned pigs. **Canadian Journal of Animimal Science,**v. 68, p.225-231, 1988.
- FIALHO E.T; TILFORD, R.C. Influence of environmental temperature on nitrogen retention apparent digestibility of protein and amino acids and energy balance in growing pigs. **Pesquisa Agropecuária Brasileira,** v.26 n.8, p.1237-1253, 1991.
- FULLER, M.F; DOYNE, A. W. The effects of environmental temperature on the growth and metabolism of pigs given different amounts of food. **British Journal of Nutrition**, v. 28, n.3, p. 373. 1972.
- GU, X. & Li, D. Fat Nutrition and metabolism in piglets: a review. **Animal Feed Science and Technology**, v.109, n.1, p.171-171, 2003.

- HOLMES, C.W. Further studies on the energy and protein metabolism of pigs growing at a high ambient temperature including measurements with fasting pigs. **Animal Production**, v.19, n.3, p. 211, 1974.
- KENNEDY, P.M; CHRISTOPHERSON, R.J; MILLIGAN; L.P. The effect of cold exposure of sheep on digestion, rumen turnover time and efficiency of microbial synthesis. **British Journal of Nutrition,** v. 36, n.2, p.231, 1976.
- LEVESQUE, C. L. The effects of dietary digestible energy content and site of weaning on weanling pig performance. Saskatchewan: University of Saskatchewan, 2002. 125 p. Dissertação de Mestrado-University of Saskatchewan, 2002.
- MAHAN, D. C.; LEPINE, A. J. Effect of pig weaning weight and associated nursery feeding programs on subsequent perfomance to 105 kilograms body weight. **Journal of Animal Science**, v. 69, n.4, p. 1370-1378, 1991.
- MATTERSON, L.D.; POTTER, L.M.; STUTZ, N.W. et al. **The metabolizable energy of feed ingredients for chickens.** Storrs, Connecticut: The University of Connecticut, 1965. p.3-11 (Agricultural Experiment Station, Research, Report 7).
- MOITA, A.M. S.; COSTA, P. M. A; DONZELE, J. L. et al. Níveis de energia digestível para leitões de 12 a 28 dias de idade. **Revista Brasileira de Zootecnia**, Viçosa, v.25, n.5, p.964-972, 1996.
- MORGAN, D.J.; COLE, D.J.A.; LEWIS, D. Energy values in pig nutrition. I. The relationship between digestible energy, metabolizable energy and total digestible nutrient values of a range of feedstuffs. **Journal of Agricultural Science**, v.84, n.2, p.7-17, 1975.
- MOUNT L. E. Heat loss in relation to plane of nutrition and thermal environment. **Proceedings Nutrition Society** v. 35, n.1, p. 81-86, 1976.
- NATIONAL RESARCH COUNCIL NRC. **Nutrient requirements of swine.** 10. rev.ed. Washington, D.C.: National Academy Press, 1998. 211p.
- ORENSAYA, T. F. Energy metabolism in the weanling pig: effects of energy concentration and intake on growth, body composition and nutrient accretion in the empty body. Saskatchewan: University of Saskatchewan, 2005. 261 p. PhD. Thesis. University of Saskatchewan, Canada, 2005.
- PARR INSTRUMENTS CO. **Instructions for the 1241 and 1242 adiabatic calorimeters.** Moline: 1994. 29p. (Parr Manual, 153).

- PEKAS, J.C. Versaible swine laboratory apparatus for physiologic and metabolic studies. **Journal of Animal Science**, v.27, n.5, p.1303-1306, 1968.
- QUINIOU N. Apports énergétiques et croissance du porc. **INRA Production Animale,** v.9, n.2, p. 141-150. 1996.
- ROSTAGNO, H.S.; ALBINO, L.F.T.; DONZELE, J.L. et al. **Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais.** 1.ed. Viçosa, MG: Universidade Federal de Viçosa, 2005. 186p.
- SAMPAIO, C.A. Caracterização dos ambientes térmico, aéreo e acústico em sistemas de produção de suínos nas fases de creche e terminação. Universidade Estadual de São Paulo 1999. 250p. Tese (Doutorado em Engenharia Agrícola). Faculdade de Engenharia Agrícola-Universidade Estadual de São Paulo, Campinas, 2004.
- SAS INSTITUTE. The SAS-system for windows: Release 6.08 (software). Cary, 1996.
- VAN LUMEN, T. A., and COLE D. J. A. The effect of dietary energy concentration and lysine/digestible energy ratio on growth perfomance and nitrogen deposition of young hybrid pigs. **Animal Science**, v.67,n.4,p.117-129. 1998.

CAPÍTULO III

Efeito da temperatura ambiental, do nível energético da dieta e do peso à desmama na composição e deposição de nutrientes corporais em leitões recém-desmamados³

Valentino Arnaiz⁴, Andréa Machado Leal Ribeiro⁵, Alexandre de Mello Kessler³, Marcos Raber², Sioji Kuana⁴

RESUMO- Foi avaliado o efeito de duas temperaturas ambientais (TA) (29±1,7°C e 25±1,3°C), da EM da dieta (EMD) (3250, 3400, 3550 ou 3700 kcal EM/kg), e do peso à desmama (PD) (4,0±0,7 kg e 6,3±0,6 kg) na composição e deposição de nutrientes corporais, assim como na eficiência energética desse ganho em leitões desmamados entre 17 a 21 dias de idade, através da técnica de abate comparativo. O experimento foi divido em 2 períodos (PPI-pré-inicial,1 a 14 dias e PIN- inicial, 15 a 28 pós-desmame). No PPI foram utilizados 64 leitões de linhagem comercial Agroceres (32 machos e 32 fêmeas), dois animais/gaiola metabólica e no PIN, 32 machos (um animal/gaiola). No período total houve significância (P<0,001) do PD sobre o GP, CR e CA: leitões leves apresentaram pior CA, menor GP e CR. A TA de 25°C melhorou o GP (P<0,05) e CR (P<0,01). O aumento da EMD incrementou linearmente (P<0,001) o consumo de energia, a percentagem e a taxa de deposição diária de GB e EB da carcaça e do corpo vazio (média ponderada do somatório carcaça + vísceras + sangue, sem conteúdo intestinal) (P<0,0001), sem afetar a taxa de deposição de proteína (P>0,10). Houve interação significativa (P<0,10) entre PD e EMD para a conversão calórica (CC), produção diária de calor e eficiência energética. Os leitões mais pesados melhoraram estes parâmetros com o aumento da EMD, enquanto os leves não responderam à EMD. Os leitões mais pesados e alojados na TA de 25°C retiveram mais nutrientes do que os leves ou em TA de 29°C (P<0.05). A maior deposição de gordura corporal com o aumento da EMD pode ser benéfica para leitões no período de transição entre creche e crescimento.

Palavras-chave: ambiência, deposição, energia, peso à desmama, suínos

¹Mestrando em Zootecnia da UFRGS, Av. Bento Gonçalves,7712,Cep: 91540-000-Porto Alegre/RS. Email: <u>valentinoarnaiz@gmail.com</u>, <u>marcosrraber@yahoo.com.br</u>

²Professor Adjunto do Departamentode Zootecnia da UFRGS. Email: <u>aribeiro@ufrgs.br,akessler@ufrgs.br</u>
³ Zootecnista Mg Sc Email: <u>oriente@formatto.com.br</u>

Effect of environmental temperature, dietary energy level and weaning weight on body composition and nutrient deposition rates of newly-weaned piglets

ABSTRACT- It was evaluated the effect of environmental temperature (ET) (29±1,7°C and 25±1,3°C), dietary ME level (DME) (3250, 3400, 3550 or 3700 Kcal of ME/kg) and weaning weight (WW) (4,0±0,7 kg or 6,3±0,6 kg) on newly-weaned piglets. It was measured: body composition, nutrient deposition rates and energy efficiency of gain through comparative slaughter procedure. Experiment was divided into two periods (PS-pre-starter, 1-14 days and SP- starter, 15-28 days after weaning). Sixty four Agroceres hybrid piglets (32 males and 32 females), weaned between 17 to 21 days of age, were allotted on 32 metabolic cages (2 animals/cage) during PS. At the beginning of SP, only the 32 male piglets were kept and individually housed in the same cages. On total period there was a significant effect (P<0,01) of WW on WG, FI and FC. Lighter animals had a worst FC and less WG (P<0,05) and FI (P<0,01). Increasing DME affected linearly (P<0,001) energy intake, carcass and body composition and daily crude fat and gross energy deposition rates on empty body (P<0.001), without affecting protein deposition rate (P>0.10). There was a significant interaction (P<0,10) between WW and DME on caloric conversion (CC, kcal ME/kgWG), daily heat production and energy efficiency (retained energy/ME intake). Heavier piglets improved these parameters as ME concentration increased, while lighter piglets did not respond to DME. Piglets on 25°C and heavier ones, retained more nutrients when compared to those housed at 29°C and weaned lighter (P<0,05). The greater fat deposition encountered in response to DME may be beneficial for piglets to make a better transition from nursery to growing phase.

Keywords: deposition, energy, environmental conditions, pigs, weaning weight

Introdução

A retenção da energia da dieta para formação de tecido magro, cinzas e gordura é consequência da diferença entre o consumo de energia metabolizável (EM) e a produção de calor. Em decorrência disso, os fatores climáticos que afetam o consumo de EM terão influência sobre a produtividade e a utilização da energia da dieta (Fialho & Tildford,1991). Apesar desta relação, a maioria de pesquisas realizadas com leitões desmamados foram conduzidas em situações de termoneutralidade ambiental, situação nem sempre compatível com a realidade prática das integrações suínas brasileiras.

A relação entre a temperatura ambiente e utilização de energia é dada pela quantidade de incremento calórico da dieta, o qual em parte é utilizado para a termorregulação, sob condições ambientais mais frias. No caso de temperaturas maiores, esse calor é dissipado (Noblet & Le Dividich 1982).

A pequena capacidade do trato gastrintestinal do leitão desmamado limita seu consumo energético, restringindo seu crescimento (Batterhan 1994). Em decorrência disso, seria esperado que o aumento da concentração energética da dieta melhorasse o consumo de energia e o ganho de peso. Entretanto, essa hipótese, testada em trabalhos precedentes (Moita 1996, Orensaya 2005), não conseguiu ser confirmada através da mensuração de parâmetros de desempenho.

Segundo Orensaya (2005), a avaliação do desempenho dos suínos difere quando é medida através da mudança no peso vivo ou através da composição do ganho. Desta forma medir a composição corporal do ganho de peso seria uma maneira mais adequada de encontrar-se respostas que somente o desempenho não consegue fornecer.

Trabalhos com suínos em crescimento claramente demonstram que existe um aumento na relação entre a deposição de gordura e proteína com o aumento do consumo energético (Quiniou et al. 1996). Verifica-se, entretanto, a carência de informações na

literatura nacional sobre esse efeito no caso de leitões recém- desmamados.

O peso ao desmame explica 78% da variação do peso uma semana após o mesmo (Pluske & Williams 1991) e é a maior limitação para um satisfatório crescimento pós-desmame (Campbell 1989). Os leitões mais pesados apresentam uma maior taxa de crescimento do que os mais leves (Bartels 1999).

O objetivo do presente trabalho foi o de avaliar a interação entre a temperatura da sala de criação, o nível energético da dieta e o peso à desmama sobre o consumo energético, eficiência energética e o ganho e deposição de proteína, gordura, matéria seca, energia e cinzas no corpo vazio de leitões desmamados, alojados em gaiolas metabólicas de 21 a 49 dias de idade.

Material e Métodos

Um experimento foi conduzido nas instalações do Laboratório de Ensino Zootécnico da UFRGS em 2005. Foram utilizados 64 leitões recém-desmamados (32 machos e 32 fêmeas) procedentes de linhagem comercial Agroceres, com idade entre 17-21 dias, classificados segundo o peso à desmama como leves (4,0±0,7 kg) e pesados (6,3±0,6 kg). Os leitões foram alojados em 32 gaiolas de metabolismo, semelhantes ao modelo descrito por Pekas (1968), divididos igualmente em duas salas com temperatura controlada. Os períodos de creche avaliados foram: pré-inicial (PPI, 1 a14 dias pós desmame) e inicial (PIN, 15 a 28 dias pós desmame). O alojamento foi feito em duplas de ambos os sexos por gaiola durante o PPI. Ao início do PIN todas as fêmeas foram retiradas e os machos continuaram no experimento alojados individualmente. Os leitões receberam água e alimentação à vontade durante todo o período experimental.

As salas de alojamento foram condicionadas para as seguintes temperaturas: I: TA de 29±1,7°C e II: TA de 25±1,3°C. No interior de cada sala foi instalado um termômetro de máxima e mínima, na altura das gaiolas. Os dados de temperatura

máxima e mínima estão apresentados na Tabela 1.

Tabela 1 – Variação da temperatura máxima e mínima por período experimental *Table 1 – Maximal and minimum temperature variations per experimental period*

Período	Pré-in	icial	Inicial				
Period	Pre-sta	urter	Start	ter			
°C	Termoneutra Thermoneutral	Quente Hot	Termoneutra Thermoneutral	Quente Hot			
Máxima/ Maximum	28±1,5	32±1,4	27±1,3	30±1,4			
Mínima/ Minimum	23±1,9	28±2,7	23±1,8	27±2,1			

Os leitões receberam uma dieta pré-inicial nos primeiros 14 dias e uma dieta inicial nos 14 dias subseqüentes, totalizando 28 dias de período experimental. Foram avaliados 16 tratamentos, nos quais relacionaram-se duas temperaturas ambientais, dois pesos à desmama e 4 níveis de energia metabolizável da dieta (EMD) (I-3250, II-3400, III-3550 e IV-3700 kcal/kg).

A variação do nível de EMD tanto no PPI quanto no PIN foi realizada pela substituição isoproteica de soja micronizada por farelo de soja + caulim, respeitando-se as necessidades nutricionais iguais ou superiores às recomendadas por Rostagno et al. (2005) para leitões desmamados. A composição das dietas experimentais encontra-se na Tabela 2.

Tabela 2 – Composição em ingredientes e nutricional das dietas experimentais, na matéria natural

Table 2 - Ingredient and nutritional composition of the experimental diets, as-fed basis

Ingrediente (%)	PPI	PPI	PPI	PPI	PIN	PIN	PIN	PIN
Ingredient	I 42.40	II	III	IV	l	II	III	IV
Milho Moído/ Milled corn	43,40	43,40	43,40	43,40	51,56	51,56	51,56	51,56
Mistura Farelo de Soja + Caulim /	26,50	17,67	8,80	0,000	27,50	18,20	9,30	0,00
Soybean meal + inert mixture 1								
Soro de leite/Whey	17,15	17,15	17,15	17,15	11,40	11,40	11,40	11,40
Soja Micronizada/ <i>Micronized</i> soybean	0,00	8,80	17,67	26,40	0,00	9,30	18,20	27,50
Açúcar/ Sugar	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00
Far. Gluten de milho/ Corn gluten	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
meal								
Fosfato bicálcico/ <i>Dicalcium</i> phosphate	1,18	1,22	1,25	1,29	1,25	1,25	1,28	1,28
Plasma suíno/ <i>Swine plasma</i>	4,00	4,00	4,00	4,00	1,00	1,00	1,00	1,00
Calcário/ Limestone	0,64	0,64	0,60	0,60	0,76	0,75	0,74	0,74
L- Lisina HCl/ <i>L-lysine HCl</i>	0,42	0,42	0,42	0,42	0,42	0,42	0,42	0,43
DL- Metionina/ DL- Methionine	0,32	0,32	0,32	0,32	0,24	0,24	0,24	0,24
L- Treonina/ <i>L-Threonine</i>	0,16	0,16	0,16	0,16	0,13	0,13	0,13	0,13
L- Triptofano/ <i>L- Tryptophan</i>	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Premix mineral Mineral premix ²	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Premix vitamínico/ <i>Vitamin premix</i> ³	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Sal comum/ Salt	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Colina/ Choline	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07
Óxido de zinco /Zinc Oxide	0,40	0,40	0,40	0,40	0,00	0,00	0,00	0,00
Acidificante/ Acidifier	0,40	0,40	0,40	0,40	0,30	0,30	0,30	0,30
Aromatizante/ Flavorizer	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Total	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
	Nutrie	entes/ Ni	utrients					
EM (kcal/kg)/ME	3250	3400	3550	3700	3250	3400	3550	3700
Proteína bruta (%) <i>Crude protein</i>	21,00	21,00	21,00	21,00	19,00	19,00	19,00	19,00
Gordura (%) Fat	2,80	4,95	7,00	9,20	2,80	4,95	7,20	8,40
Cálcio (%)/ Calcium	0,75	0,75	0.75	0,75	0,74	0,74	0,74	0,75
Fósforo disponível (%)/ $Available P$	0,5	0,5	0.50	0,5	0,43	0,43	0,43	0,43
Lisina total (%)/ Total lysine	1,5	1,5	1.50	1,5	1,3	1,3	1,3	1,3
Metionina (%) / Methionine	0,61	0,61	0,61	0,61	0,52	0,52	0,52	0,53
, and the control of	-,	- ,	-,	-,	- ,	-,	-,	-,

¹ Mistura Farelo de soja: caulim na proporção 89:11. Soybean meal: inert mixture 89:11

Os 32 leitões machos mantidos até o final do experimento foram sacrificados após 12 horas de jejum, com acesso somente à água, por atordoamento elétrico e sangria total. O sangue foi coletado e pesado em sacos plásticos. As vísceras foram retiradas, esvaziadas e pesadas. Considerou-se como vísceras o trato digestório e urinário vazios e

²Conteúdo/kg (*content/kg*): Fe 80,000 mg,Cu 12,000 mg,Mn 70,000 mg,Zn 100,000 mg, I 1000 mg, Se 120 mg ³ Conteúdo/kg (content/kg): Vit. A 2.250,000 UI,vit. D3 450,000 UI, vit. E 4,500 UI, vit.K3 400mg, vit. B1 350 mg, vit.B2 1000mg, vit. B6 350 mg, vit. B12 4500 mcg, Niacina (*Niacin*) 7500 mg, Ac. Pantotênico (Pantothenic *acid*) 4000mg, Ac. Fólico (*folic acid*) 100 mg, Biotina (Biotin) 25 mg e Antioxidante (Anthioxidant) 25,000 mg

PPI: dieta pré-inicial (1-14 dias pós-desmame). Pre- starter diet (1-14 days after weaning)

PIN: dieta inicial (15-18 dias pós-desmame). Starter diet (15-28 days after weaning)

glândulas anexas, órgãos reprodutivos, coração, figado, baço, pulmão, rins e gordura perirenal. A carcaça, que incluiu cabeça, pêlos, pés e unhas, foi serrada ao meio no sentido longitudinal e as metades pesadas individualmente. Em separado, as vísceras junto com o sangue por um lado e a metade esquerda da carcaça por outro, foram embaladas em sacos plásticos para prevenir a perda de umidade e, em seguida, mantidas a 15°C negativos até o processamento. Neste, as frações carcaça e vísceras + sangue foram cortadas em serra de açougueiro e moídas por separado em picador de 3CV, e após homogeneização foram coletadas duas sub-amostras representativas de cada fração para análise de matéria seca (MS), energia bruta (EB), proteína bruta (PB), extrato etéreo (EE) e cinza. A MS foi determinada por pré-secagem das amostras em estufa de ar forçado a 60°C até peso constante e posterior secagem a 105°C por 12 horas (AOAC 1993). O conteúdo de nitrogênio (N) e o EE foram determinados no material seco, utilizando o método de Micro-Kjeldahl e o método de extração de Soxhlet, respectivamente. A EB das carcaças e vísceras + sangue foi determinada pela queima pressurizada com oxigênio em bomba calorimétrica Parr (Parr Instruments Co 1994).

Três leitões recém-desmamados provenientes do mesmo grupo dos demais e com peso vivo de 4,8±1,1 kg foram abatidos no início do experimento para estimar a composição corporal inicial. Destes animais foram obtidos os valores iniciais de MS, EE, PB e EB do corpo vazio. Descontando o conteúdo inicial (composição x peso da fração por animal) foi obtido o ganho individual de cada componente para os animais submetidos aos tratamentos. Os ganhos de PB, EE, cinza, água e energia (EB) foram estimados como taxa de deposição ou retenção por dia (g/d ou kcal/d) de acordo com a seguinte fórmula: (conteúdo final em g ou kcal) – (conteúdo inicial em g ou kcal)/ número de dias do experimento. Para fins do cálculo da retenção de nutrientes, o corpo vazio foi definido como a média ponderada da carcaça + vísceras + sangue, sem

conteúdo intestinal. O consumo diário de EM foi determinado pelo consumo de ração (kg) multiplicado pelo valor determinado de EM (kcal/kg MN), que foi calculado mediante a coleta total e análise bromatológica de fezes e urina e análise bromatológica das dietas experimentais (AOAC 1993).

A energia retida como proteína (ERP) e a energia retida como gordura (ERG) foram calculadas como: deposição diária de proteína (g/d) multiplicada por 5,66 kcal/g e deposição diária de gordura (g/d) multiplicada por 9,46 kcal/g, respectivamente (Orensaya 2005). A conversão calórica (kcal EM/kg GP) foi calculada como consumo de EM (kcal/d) dividido pelo ganho diário de peso (kg). A produção diária de calor (PC) foi obtida pela diferença entre o consumo de energia metabolizável (kcal/d) e a retenção de energia (kcal/d). A eficiência de utilização de energia foi obtida a partir da divisão da retenção de energia (kcal/d) pelo consumo de EM (kcal/d).

O experimento foi conduzido em delineamento completamente casualizado em arranjo fatorial 2 x 2 x 4. Cada tratamento teve duas repetições. Uma gaiola constituiu uma repetição. A análise de variância foi realizada utilizando-se o procedimento GLM (SAS 1996) e foram considerados os efeitos principais e interações de cada um dos três fatores em avaliação. Na presença de uma probabilidade significativa as médias foram comparadas pelo teste de LSMeans a 10% de significância. No caso de análise de variância significativa para os níveis de EM, a soma de quadrados foi decomposta em efeitos linear e quadrático. Neste caso, temperatura e peso à desmama foram usados como co-variáveis no modelo.

Resultados e Discussão

A Tabela 3 mostra os resultados de desempenho durante o período total do experimento. Verificou-se interação significativa somente para a CA, entre os fatores peso à desmama e níveis de energia (P<0,06), verificando-se melhor CA para leitões

pesados, recebendo os maiores níveis de EMD, em relação aos leves (1,18 x 1,48, para pesados e leves, respectivamente).

Para os efeitos principais o peso à desmama foi significativo no desempenho: leitões leves apresentaram pior CA e menor GP e CR. Por outro lado o fator temperatura teve efeito significativo no GP e CR , obtendo-se um maior GP e CR para os animais alojados na TA de 25°C.

O GP observado no presente estudo no período total para os animais leves e pesados (390 g/d e 462 g/d, respectivamente) encontra-se dentro de intervalos considerados normais (Van Lúmen & Cole 1998). Esse estudo também reporta um CR diário similar ao observado no presente trabalho (549 g/d e 600 g/d para os animais leves e pesados, respectivamente).

Tabela 3 - Desempenho de leitões com diferentes pesos à desmama, temperaturas ambientais e nível de energia na dieta no período de 1 a 28 dias pós-desmame¹

Table 3 - Perfomance of piglets with different weaning weights, environmental temperatures and dietary energy levels from 1 to 28 days after weaning¹

	Ener	gia M	etabol	izável								
		(kca	ıl/kg)		Tempe	eratura	Peso ao desmame		Probabilidade			\mathbf{CV}
	Me	Metabolizable Energy										
	(kcal/kg)			Tempe	erature	Weaning	Weaning weight		robability	V	CV	
							Pesados	Leves	Energia	Temp	Peso	%
					0	0	Heavy	Light				
Item	3250	3400	3550	3700	25±1,3°C	29±1,7°C	6,3±0,6 kg	4,0±0,7kg	Energy	Temp	Weight	
No Leitões	8	8	8	8	16	16	16	16				
Consumo de ração, kg/ Feed intake	15,9	16,6	16,3	15,6	16,8 ^a	15,4 ^b	16,8 ^a	15,4 ^b	0,500	0,006	0,007	8,1
Ganho de peso,kg/ Weight gain	11,6	11,7	12,6	11,9	12,6°	11,3 ^b	12,9ª	10,9 ^b	0,560	0,030	0,002	13,3
CA (kg/kg) ¹ /Feed:gain ratio ²	1,39	1,44	1,31	1,33	1,35	1,39	$1,30^{b}$	1,43 ^a	0,160	0,350	0,010	9,3

Médias com letras diferentes na linha diferem entre si pelo teste do LS Means a 10%. Means, within a row, with different letters differ (P<0.10) by the LS Means test

A composição química da carcaça, vísceras + sangue e corpo vazio dos leitões encontra-se na Tabela 4. Houve interação significativa entre peso ao desmame e EMD para MS da carcaça (P<0,03) e MS (P<0,001), proteína (P<0,003) e EB (P<0,0001) do corpo vazio (Tabela 4). As equações de regressão conferem que houve acréscimo na percentagem ou valor calórico desses componentes nos leitões pesados, com maiores

¹ Valores individuais. *Individual values*

² Interação peso x temperatura (P<0.06). Weight x temperature interaction

níveis de energia. O mesmo não aconteceu com leitões leves sobre os quais não houve efeito da EMD. Na carcaça, em decorrência do maior conteúdo de gordura, a percentagem de MS aumentou com o aumento da EMD. A mesma resposta foi observada nos leitões pesados quando comparados aos leves.

Com relação aos efeitos principais, os leitões alojados na TA de 25°C retiveram mais gordura e EB na carcaça, associados ao maior CR e GP obtidos. Já a concentração de proteína da carcaça não foi afetada por nenhum dos fatores (P>0,10).

Para a fração vísceras + sangue foi evidente a melhora no conteúdo de proteína e EB (P<0,001) nos leitões mais pesados e acréscimo na MS, PB e EB em resposta ao incremento da EMD (P<0,07; P<0,06 e P<0,04, respectivamente).

Tabela 4 – Composição química corporal de leitões com diferentes pesos à desmama, temperaturas ambientais e nível de energia na dieta no período de 1 a 28 dias pós-desmame

Table 4 – Body chemical composition of piglets with different weaning weights, environmental temperatures and dietary energy levels from 1 to 28 days after weaning

	Ene	ergia Metal	oolizável (k	cal/kg)	Temp	eratura	Peso ao	desmame	Prob	abilidad	e	CV
		Metabolizable	Energy (kcal/	(kg)	Tem	perature	Weanin	g weight	Probability			CV
							Pesados	Leves	Energia	Temp	Peso	
Item, %	3250	3400	3550	3700	25±1,3°C	29±1,7°C	<i>Heavy</i> 6,3±0,6 kg	<i>Light</i> 4,0±0,7 kg	Energy	Temp	Weight	%
No Leitões												
Number of piglets	8	8	8	8	16	16	16	16				
Carcaça, carcass												
Matéria seca(%)/dry matter ¹	28,6	29,3	30,1	30,7	30,2	29,1	$30,5^{a}$	28,9 ^b	0,169	0,109	0,022	6,2
Proteína (%)/ <i>protein</i>	15,9	15,7	15,5	14,9	15,7	15,4	15,7	15,4	0,218	0,422	0,393	6,0
Gordura (%)/fat	9,8 °	10,9 ^{bc}	11,9 ab	13,2 ^a	11,9 ^a	10,9 ^b	12,1 ^a	10,8 ^b	0,001	0,027	0,009	10,9
EB, kcal/kg/ <i>GE</i>	1810 ^b	1896 ab	1968 ab	2078 ^a	2004 ^a	1873 ^b	2011 ^a	1865 ^b	0,009	0,016	0,008	7,1
Vísceras + sangue, organ + l	blood											
Matéria seca (%)/dry matter	19,8	20,1	21,4	22,4	20,6	21,2	21,4	20,5	0,069	0,416	0,189	9,7
Proteína (%)/Protein	14,9	14,7	14,9	14,5	15,7	14,7	16,5 ^a	13,9 ^b	0,062	0,134	0,000	11,7
Gordura (%)/fat	3,3	3,7	3,9	3,9	3,8	3,7	3,9	3,4	0,470	0,710	0,082	21,6
EB, kcal/kg/ <i>GE</i>	1364 ^b	1405 ^b	1655 ^a	1377 ^b	1477	1423	1614 ^a	1285 ^b	0,039	0,474	0,000	14,2
Corpo Vazio, empty body												
Matéria seca (%)/dry matter ²	$27,5^{b}$	$28,0^{ab}$	28,9 ^{ab}	29,6°	28,7	28,3	29,3°	$27,7^{\mathrm{b}}$	0,032	0,377	0,003	4,8
Proteína (%)/ <i>protein</i> ³	16,1	15,8	15,8	15,4	15,7	15,9	15,9	15,7	0,466	0,579	0,344	5,1
Gordura (%)/Fat	8,4°	9,5 ^{bc}	10,3 ^{ab}	11,4 ^a	10,4 ^a	9,5 ^b	10,6°	9,2 ^b	0,001	0,042	0,004	11,7
EB, kcal/kg/ <i>gE</i> ⁴	1686°	1770 ^{bc}	1860 ^{ab}	1942 ^a	1862 ^a	1767 ^b	1890 ^a	1739 ^b	0,003	0,036	0,002	6,4

Médias com letras diferentes na linha diferem entre si pelo teste do LS Means a 10%. Means, within a row, with different letters differ (P<0.10) by the LS Means test

¹ Interação significativa EM x Peso. Significant interaction ME x Weight (P<0,03). Para peso=leve (weight=light): Y=35,38-0,002*EM; para peso=pesado(weight=heavy): Y=7,38+0,007*EM ($r^2=0,38$). ² Interação significativa EM x Peso. Significant interaction ME x Weight (P<0,001). Para peso=leve (weight=light): Y=33,62-0,002*EM; para peso=pesado: Y=2,79+0,008*EM ($r^2=0,54$). ³ Interação significativa EM x Peso. Significant interaction ME x Weight (P<0,003). Para peso=leve(weight=light): Y=27,45-0,003*EM; para peso=pesado(weight=heavy): Y=10,62+0,002*EM ($r^2=0,39$). ⁴ Interação significativa EM x Peso. Significant interaction ME x Weight (P<0,001). Para peso=leve (weight=light): Y=1433,85+0,09*EM; para peso=pesado(weight=heavy): Y=-179,29+0,59*EM ($r^2=0,48$)

As taxas de deposição diária de nutrientes no corpo vazio dos leitões são apresentadas na Tabela 5. Não foi observada interação entre os fatores avaliados. Para os efeitos principais houve efeito significativo (P<0,05) do peso à desmama e da temperatura ambiente. Tanto os leitões pesados, quanto na TA de 25°C exerceram um efeito positivo na deposição corporal diária de nutrientes. Estes achados estão em concordância com o maior ganho de peso observado nos leitões mais pesados, assim como do maior CR e GP encontrado nos leitões alojados nessa temperatura.

Por outro lado, observou-se que a EMD não teve influência sobre a taxa de deposição de MS, de PB, de água e de cinza, somente tendo afetado linearmente e positivamente (P<0,001) a taxa de deposição de gordura e de energia no corpo vazio dos leitões. A maior contribuição para este ganho foi oriunda da carcaça e não das vísceras, demonstrando que a deposição de gordura subcutânea muito contribui para estas respostas. A maior deposição de gordura corporal explica a ausência de melhora no desempenho em resposta ao aumento da EMD, devendo-se às diferenças na deposição de água associada entre o tecido magro e adiposo (Quiniou, 1996).

Os leitões alimentados com as dietas de maior concentração energética não conseguiram regular o consumo de ração, tendo ingerido energia extra. Especula-se que leitões desmamados não conseguem regular o seu consumo de energia porque encontram-se em déficit energético em relação ao seu potencial de crescimento (Orensaya 2005). Além do mais, muito provavelmente, o efeito da dieta palatável incentivou o consumo de ração. A energia extra consumida, sem o corresponde acréscimo em proteína dietética, não alterou a taxa de deposição protéica, tendo sido utilizada para a deposição de gordura, semelhantemente ao observado por Orensaya (2005).

Segundo, Gu & Li (2003), o tecido hepático do leitão possui uma baixa

capacidade de β-oxidação, tendo uma maior propensão para a esterificação de ácidos graxos circulantes no sangue. Este fato favorece a armazenagem de gordura no tecido adiposo quando existe energia em excesso disponível, como o ocorrido no presente experimento.

No presente estudo, houve um acréscimo de 39% de deposição de gordura no corpo vazio dos leitões, comparados os níveis extremos de EMD (3,25 Mcal EM/kg vs 3,70 Mcal EM/kg), concordando com o reportado por Endres et al. (1988).

A relação gordura:proteína (taxa de deposição diária de gordura: taxa de deposição diária de proteína) foi afetada significativamente pela temperatura (P<0,04) e pela energia da dieta (P<0,001). Leitões na TA de 25°C apresentaram uma maior relação (0,69 vs. 0,60), em virtude da maior deposição de gordura. O aumento na relação gordura:proteína é um indicativo de que a eficiência de utilização de energia para o crescimento magro está sendo cada vez menor com o aumento do consumo de energia metabolizável. Levando em conta o maior conteúdo de água do tecido magro (80% comparado com 15% do tecido adiposo), uma menor quantidade de energia é requerida por grama de ganho deste tecido, quando comparado com o segundo (1,12 vs. 7,83 kcal; Collin et al. 2001). No presente trabalho houve um acréscimo de 60% nesta relação (0,81 vs. 0,49) entre os níveis de EM extremos. Reis de Souza et al. (2000) observaram um aumento de 20% na relação gordura:proteína (de 0,65 a 0,78) em leitões desmamados e alimentados com dietas variando de 3,24 a 3,50 Mcal ED/kg. A maior amplitude entre os níveis energéticos do presente experimento explicam as diferenças entre ambos os trabalhos.

Tabela 5 – Taxa de deposição diária de nutrientes no corpo vazio de leitões com diferentes pesos à desmama, temperaturas ambientais e nível de energia na dieta no período de 1 a 28 dias pós-desmame

Table 5 – Daily nutrient deposition rates on empty body of piglets with different weaning weights, environmental temperatures and dietary energy levels, from 1 to 28 days after weaning

	Ene	rgia Metab	olizável (]	kcal/kg)	Tempe	eratura	Peso ao	desmame	Pro	babilidad	de	CV
	1	Metabolizable	Energy (kca	l/kg)	Tempe	erature	Weanin	g weight	P	robability		CV
							Pesados Heavy	Leves <i>Light</i>	Energia	Temp	Peso	
Taxa de deposição por dia No Leitões	3250	3400	3550	3700	25±1,3°C	29±1,7°C	6,3±0,6 kg	4,0±0,7 kg	Energy	Temp	Weight	%
Number of piglets	8	8	8	8	16	16	16	16				
Corpo vazio/ empty body												
MS/dry matter, g/d	107,6	113,2	128,8	126,6	127,9 ^a	110,1 ^b	131,6 ^a	$106,5^{b}$	0,104	0,016	0,002	15,7
Água/ <i>water, g/d</i>	286,2	285,8	301,9	283,3	$306,0^{a}$	$272,6^{b}$	313,9 ^a	$264,7^{b}$	0,758	0,025	0,002	13,2
Proteina/ protein, g/d	64,8	63,8	70,1	64,1	69,6 ^a	61,8 ^b	72,9 ^a	58,4 ^b	0,593	0,047	0,001	15,7
Gordura/ fat, g/d ¹	31,8 ^b	39,2ab	$47,0^{a}$	52,3 ^a	47,7 ^a	37,4 ^b	46,7 ^a	38,4 ^b	0,004	0,009	0,031	23,3
Cinzas/ ash, g/d	9,4	8,5	9,9	9,0	10,1 ^a	8,3 ^b	10,1 ^a	8,3 ^b	0,378	0,011	0,009	18,4
Gordura:Proteína/ fat:protein ²	0,496 ^c	0,611 ^{bc}	$0,665^{b}$	0,813 ^a	0,688 ^a	$0,606^{b}$	0,635	0,658	0,001	0,038	0,532	15,8
Cinzas: Proteína/ ash:protein	0,145	0,133	0,143	0,144	0,146	0,136	0,14	0,142	0,489	0,107	0,767	12,5
Energia/ <i>RE, kcal/d</i> ³	652 ^b	721 ^{ab}	835 ^{ab}	844 ^a	838 ^a	687 ^b	846 ^a	680^{b}	0,027	0,005	0,003	17,2
ERP /ERP, kcal/d ⁴	367	361	397	363	394 ^a	350	413	331	0,593	0,047	0,001	15,7
ERG/ ERL, kcal/d 5	300^{b}	371 ^{ab}	445 ^a	495 ^a	452 ^a	354 ^b	442 ^a	363 ^b	0,004	0,009	0,031	23,3
ERP, % da ER, % of RE ⁶	55,4 ^a	$49,7^{ab}$	47,9 ^{bc}	42,6°	47,1 ^b	50,5 ^a	49,4	48,2	0,001	0,034	0,427	8,4
ERG,% da ER, % of RE ⁷	44,7°	50,3 ^{bc}	52,5 ^{ab}	57,4 ^a	52,9 ^a	49,5 ^b	50,6	51,8	0,001	0,034	0,427	8,00

Médias seguidas de letras diferentes na linha, diferem entre si pelo teste do LS Means a 10%. Means, within a row, with different letters differ (P<0.10) by the LS Means test

¹ Efeito linear. *Linear effect* (P< 0,001) Y = -78,53 + 0,03 *EM (r^2 = 0,54)

² Relação deposição gordura: proteína. *Fat: protein deposition rate.* Efeito linear *Linear effect* (P< 0,0000) Y = -1,18 + 0,001 *EM (r² = 0,84)

³ Efeito linear. *Linear effect* (P< 0,007). Y = -422,92 + 0,34 * EM (r^2 = 0,52)

⁴ ERP: Energia retida como proteína. *Energy retained as protein*

⁵ ERG: Energia retida como gordura. *Energy retained as lipids* / Efeito linear. *Linear effect* (P <0,001) Y= -742,73 + 0,33* EM (r² = 0,54)
6-7 Percentagem da energia total retida como proteína (Y= 101,36 - 0,02*EM, r² =0,37), ou como gordura. *% of total retained energy as protein or fat* (Y = -1,36 + 0,02*EM, r²=0,38).

A maior retenção de gordura corporal encontrada nos leitões alimentados com maior EMD pode, em condições práticas, trazer benefícios à criação. Leitões que depositarem mais gordura subcutânea durante a creche provavelmente conseguirão utilizar melhor estas reservas para realizar uma adequada transição para a fase de crescimento aonde as condições ambientais são variáveis e geralmente não controladas, podendo surgir problemas sanitários e de estresse em função da mistura de animais.

Não houve efeito (P>0,10) de nenhum dos fatores avaliados na relação cinzas: proteína (taxa de deposição diária de cinza: taxa de deposição diária de proteína), a qual permaneceu quase constante em resposta aos três fatores avaliados, indicando que o crescimento em massa muscular em relação ao crescimento de osso não foi alterado pelos fatores estudados.

Ao desdobrarmos a energia retida (kcal/d) na forma de energia retida como proteína (ERP) ou gordura (ERG), evidenciou-se um efeito linear positivo do nível de EMD (P<0,001) na ERG, mas não na ERP (P>0,10). Por outro lado, leitões pesados e os criados na TA de 25°C, aumentaram significativamente a ERG (P<0,01) e a ERP (P<0,05). O maior ganho de peso, ocorrido como resposta a ambas as situações, são congruentes com estes achados.

Um ponto interessante é a análise da retenção de energia corporal como percentagem do total retido como gordura e proteína. Neste caso, observa-se que maior EMD e ambiente termoneutro ocasionaram um decréscimo na contribuição da ERP, mas claramente aumentaram na ERG (P<0,00 e P<0,05, respectivamente). Já para os leitões alojados a 29°C, o maior aporte da energia retida foi em ERP. Pode-se especular que esta TA estava acima da zona de conforto fazendo com que os animais dissipassem mais calor (Noblet e Le Dividich, 1982). Não houve efeito do peso ao desmame para as respostas discutidas acima(P>0,10).

A Tabela 6 apresenta os dados da eficiência de utilização energética. A conversão calórica (kcal EM/kg GP) foi afetada significativamente pela temperatura ambiente (P<0,07). Os leitões alojados na TA de 29°C foram menos eficientes em transformar a energia consumida em ganho de peso. Já os leitões alojados a 25°C, ao terem apresentado maior consumo de ração e melhor ganho de peso, melhoraram a conversão calórica. Acredita-se que a diminuição da TA evitou excesso de produção de calor para termorregulação, o que resultou no melhor aproveitamento da energia do alimento para retenção. Por outro lado, o menor CR encontrado na TA de 29°C, indica que a temperatura esteve acima da zona de conforto dos leitões. A maior taxa de tecido magro:tecido gordo dos leitões ali alojados pode ter aumentado as exigências de mantença pela maior atividade metabólica do primeiro tecido, afetando negativamente a conversão calórica. O fator peso ao desmame também afetou a conversão calórica dos animais (P<0,01): leitões leves precisaram consumir mais EM por quilograma de peso ganho. Estes resultados são coerentes com os achados de interação significativa entre o peso à desmama e o nível de EMD para produção diária de calor (P<0,02) e eficiência energética (P<0,03). Com o aumento da EMD, leitões leves produziram mais calor e foram menos eficientes na retenção da energia. Contrariamente, leitões pesados responderam positivamente ao aumento de energia havendo apresentado menores perdas energéticas na forma de calor e em decorrência disto, apresentaram maior retenção energética. A mantença dos leitões leves pode ter sido maior (já que comparativamente com os pesados ficaram mais inquietos e consumiram menos ração),o que confirma os piores desempenhos e menor eficiência de utilização energética (P<0,01) de leitões desmamados com baixo peso (Bartels 1999).

Tabela 6 – Eficiência de utilização da energia metabolizável de leitões com diferentes pesos à desmama, temperaturas ambientais e nível de energia na dieta no período de 1 a 28 dias pós-desmame

Table 6 -Efficiency of metabolizable energy utilization of piglets with different weaning weights, environmental temperatures and dietary energy levels, from 1 to 28 days after weaning

	Ener	Energia Metabolizável (kcal/kg)			Temperatura		Peso ao desmame		Probabilidade			CV
	M	Metabolizable Energy (kcal/kg)		Temperature		Weaning weight		Probability		CV		
							Pesados	Leves	Energia	Temp	Peso	
Item № Leitões	3250	3400	3550	3700	25±1,3°C	29±1,7°C	<i>Heavy</i> 6,3±0,6 kg	<i>Light</i> 4,0±0,7 kg	Energy	Temp	Weight	%
Number of piglets	8	8	8	8	16	16	16	16				
Consumo diário de EM, kcal/d¹	1848 ^b	2031 ^{ab}	2092 ^a	2114 ^a	2073 ^a	1970 ^b	2098 ^a	1944 ^b	0,030	0,094	0,024	8,6
Daily ME intake Conversão calórica ² Kcal EM/kg GP Caloric conversion Kcal EM/ kg WG	4526	4961	4718	5064	4644 ^b	4991 ^b	4561 ^b	5074 ^a	0,163	0,064	0,009	10,2
Produção diária calor, kcal/d³	1196	1258	1270	1310	1283	1234	1252	1264	0,307	0,257	0,779	9,3
Daily heat production Eficiência energética ⁴ Energy efficiency	0,352	0,353	0,395	0,398	0,402 ^a	0,347 ^b	0,401 ^a	0,348 ^b	0,109	0,004	0,006	12,5

Médias seguidas de letras diferentes na linha diferem entre si pelo teste do LS Means a 10%. Means, within a row, with different letters differ (P < 0.10) by the LS Means test ¹ Efeito linear. Linear effect. (P < 0.02).Y = 681,101 + 0.365 *EM ($r^2 = 0.17$). ² Efeito Linear. Linear effect. (P < 0.02).Y = 1468,993 + 0.928 *EM ($r^2 = 0.69$).

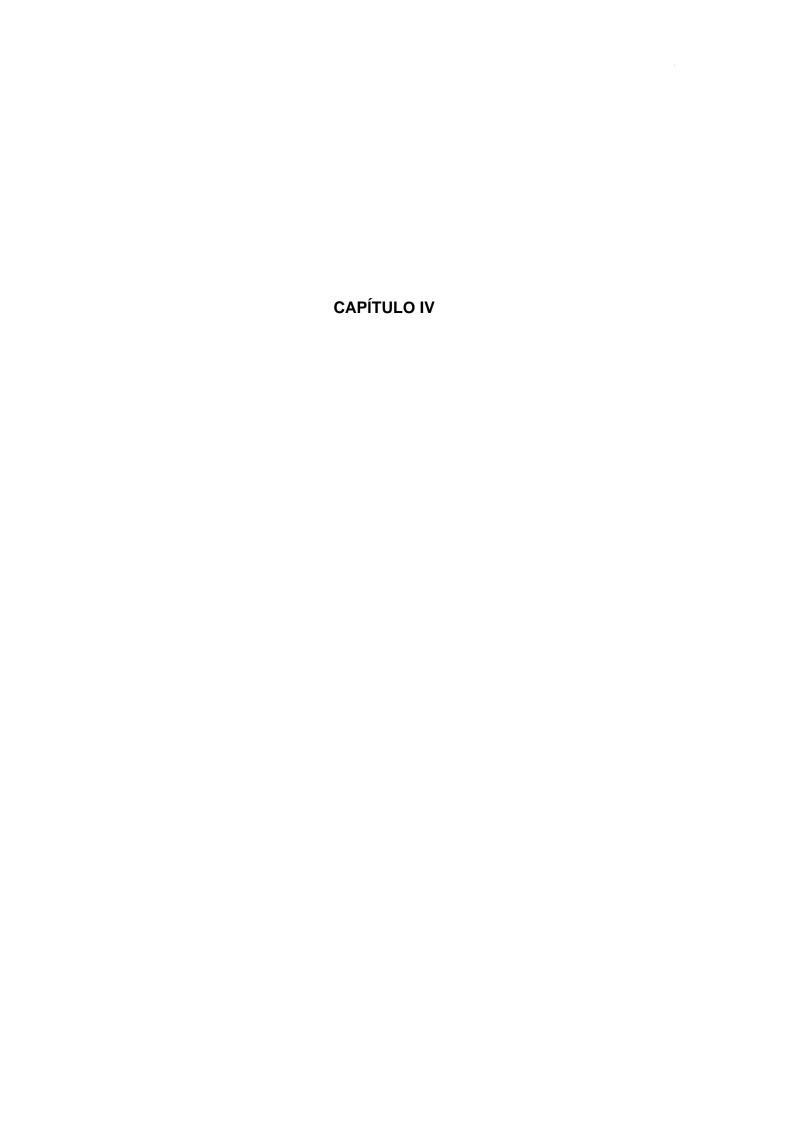
³ Interação significativa EM x Peso. Significant interaction ME x Weight (P<0,02). Para peso=leve (weight=light): Y = -466,273+0,474011*EM; para peso=pesado (weight =heavy): $Y = 1498,31-0,0868958*EM(r^2=0,32)$.

⁴ Interação significativa EM x Peso. Significant interaction ME x Weight (P<0,03). Para peso=leve (weight=light): Y = 0,724-0,000103*EM; para peso=pesado (weight=heavy): $Y = -0.129 + 0.000154 *EM (r^2 = 0.34).$

Conclusões

Leitões criados em temperatura de 25°C consumiram mais ração, ganharam mais peso e tiveram maior retenção de nutrientes corporais do que leitões alojados em temperatura de 29°C. Portanto, pode-se afirmar que leitões desmamados são muito sensíveis à temperatura de criação.

O fornecimento de maior energia metabolizável na dieta aumentou a relação entre a deposição de gordura e proteína corporal sem afetar a deposição desta última, porém estes resultados não se traduziram em ganho de peso.


O maior peso à desmama afetou positivamente o ganho de peso, retenção de nutrientes corporais, eficiência de retenção, também aumentando a deposição, principalmente, de gordura corporal.

O acréscimo na deposição de gordura encontrada para os leitões alimentados com maiores níveis de EMD pode ser benéfica para uma adequada transição da creche para a fase de crescimento.

Literatura Citada

- ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS AOAC. **Official methods and recommended pratices of American oil Chemists Society.** 4.ed. Washington, D.C.: 1993. 1094p.
- BARTELS, H. Substituição do farelo de soja pela proteína texturizada de soja e do amido de milho pela lactose em leitões desmamados aos 14 ou aos 21 dias de idade. Universidade Federal do Rio Grande do Sul, 1999. 250p. Tese (Doutorado em Zootecnia). Faculdade de Agronomia-Universidade Federal do Rio Grande do Sul, Porto Alegre, 1999.
- BATTERHAM, E.S. Protein and energy relationships for growing pigs. In: COLE, D.J.; WISEMAN, J.; VARLEY, M.A. (Ed) **Principles of pig science.** Nottinghan: Redwood Books, 1994 p.107-121.
- CAMPBELL, R. G. The nutritional management of weaner pigs. In: BARNETT, J.L.; HENNESSY D.P. (Ed.) **Manipulating Pig Production II**. Albury: APSA, p. 170 Proceedings of the Second Biennial Conference of the Australasian Pig Science Association (APSA). 1989.
- COLLIN, A., VAN MILGEN, J.; DUBOIS, S.; et al. Effect of high temperature and feeding level on energy utilization in piglets. **Journal of Animal Science,** v.79, n.9, p.1849-1857, 2001.
- ENDRES, B., F. AHERNE X.; OZIMEK, L. et al. The effects of fat supplementation on ileal versus fecal fat digestibilities, perfomance and body composition of weaned pigs. **Canadian Journal of Animal Science,** v. 68, n.5, p. 225-231, 1988.
- FIALHO E.T; TILFORD, R.C; Influence of environmental temperature on nitrogen retention apparent digestibility of protein and amino acids and energy balance in growing pigs. **Pesquisa Agropecuária Brasileira**, v.26 n.8, p. 1237-1253, 1991.
- GU, X. & LI, D. Fat Nutrition and metabolism in piglets: a review. **Animal Feed Science and Technology,** v.109 n.1, p.171-171, 2003.
- MOITA, A. M. S.; COSTA, P. M. A; DONZELE, J. L. et al. Níveis de energia digestível para leitões de 12 a 28 dias de idade. **Revista Brasileira de Zootecnia**, Viçosa, v.25, n.5, p.964-972, 1996.
- NETO, M.A.T.; PETELINCAR, I.M.; BENTO, D.A.; et al. Níveis de lisina para leitões na fase

- inicial-1 do crescimento pós-desmame, composição corporal aos 11,9 e 19 kg. **Revista Brasileira de Zootecnia,** v. 33, n.6, p.1777-1789, 2004.
- NOBLET, J; LE DIVIDICH, J. Effect of environmental temperature and feeding level on energy balance traits of early weaned-piglets. **Livestock Production Science**, v.9, n.2, p. 619, 1982.
- ORENSAYA, T. F. Energy metabolism in the weanling pig: effects of energy concentration and intake on growth, body composition and nutrient accretion in the empty body. Saskatchewan: University of Saskatchewan, 2005. 261 p. PhD. Thesis-University of Saskatchewan, Canada, 2005.
- PARR INSTRUMENTS CO. **Instructions for the 1241 and 1242 adiabatic calorimeters.** Moline: 1994. 29p. (Parr Manual, 153).
- PEKAS, J.C. Versaible swine laboratory apparatus for physiologic and metabolic studies. **Journal of Animal Science,** v.27,n.5, p.1303-1306, 1968.
- PLUSKE, J. R.; WILLIAMS, I H. Which piglets perform the best after weaning? In: BATTERHAM, E.S (Ed.) **Manipulating Pig Production III.** Albury: APSA, p. 148 Proceedings of the Third Biennial Conference of the Australasian Pig Science Association (APSA). 1991.
- QUINIOU, N., DOURMAND J. Y, and NOBLET. J. Effect of energy intake on the perforance of different types of pig from 45 to 100 kg body weight. 1. Protein and lipid deposition. **Journal of Animal Science**, v 63, n.3, p. 277-288. 1996.
- REIS DE SOUZA, T. C., AUMAITRE, A.; MOUROT J.; et al. 2000. Effect of graded level of tallow in the diet on performance, digestibility of fat, lipogenesis and body lipid deposition of the weaned piglet. **Asian Australian Journal or Animal Science,** v. 13 n.2, p. 497-505, 2000.
- ROSTAGNO, H.S.; ALBINO, L.F.T.; DONZELE, J.L. et al. **Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais.** 1.ed. Viçosa, MG: Universidade Federal de Viçosa, 2005. 186p.
- SAS INSTITUTE. The SAS-system for windows: Release 6.08 (software). Cary, 1996.
- VAN LUMEN, T. A., and COLE D. J. A. The effect of dietary energy concentration and lysine/digestible energy ratio on growth perfomance and nitrogen deposition of young hybrid pigs. **Journal of Animal Science**, v.67, n.4, p.117-129, 1998.

4.1. CONSIDERAÇÕES FINAIS

- 1. Trabalhos internacionais atuais, já consideram temperaturas ótimas de desmame em torno de 27°C, seguindo o padrão de diminuição gradativa da temperatura semanal.
- 2. Os resultados do presente estudo indicam que o leitão recémdesmamado deposita maior quantidade de proteína do que gordura, sendo que a taxa de deposição de proteína, não foi afetada pelo nível de EM da dieta no intervalo usado neste estudo. Este fato ajuda a entender a falta de melhora no desempenho dos leitões.
- 3. Esperava-se que a maior inclusão de gordura na dieta tivesse exercido um efeito de diminuição do consumo voluntário; porém, os leitões não foram capazes de regular a ingestão de energia, pois à medida que a concentração de EM da dieta aumentou, não houve redução no consumo voluntário. Pode-se pensar que a alta palatabilidade da fonte de gordura utilizada possa ter influenciado o padrão de consumo.
- 4. Na prática, é a concentração energética da dieta e não o consumo diário de alimento que encontra-se sob controle do nutricionista. Seria interessante avaliar se a restrição alimentar, que na prática ocorre naqueles animais dominados, poderia ser compensada pela maior concentração energética da dieta.
- 5. A relação entre a taxa de deposição de gordura:taxa de deposição de proteína aumentou concomitantemente ao aumento do consumo de energia metabolizável, vendo-se acrescida a deposição de gordura corporal.
- 6. Seria interessante comprovar em condições práticas o benefício do acréscimo na deposição de gordura encontrada em leitões alimentados com

maiores níveis de EM sobre a adequada transição para a fase de crescimento aonde as condições ambientais variáveis e remanejo de animais, podem trazer problemas e piora do desempenho logo após a mudança.

7. A maior retenção de nutrientes e melhor eficiência energética encontrada para leitões pesados são congruentes com a evolução do crescimento dos animais que entram na creche com maior peso e que apresentam, ao longo da curva de crescimento, melhores parâmetros de desempenho. Podemos afirmar, portanto, que existe um efeito benéfico dos leitões entrarem na creche com maior peso corporal como já foi amplamente reportado na literatura.

4.2. REFERÊNCIAS BIBLIOGRÁFICAS

- ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS AOAC. Official methods and recommended pratices of American oil Chemists Society. 4.ed. Washington, 1993. 1094p.
- BAÊTA, F.C., SOUZA, C.F. **Ambiência em edificações rurais:** conforto animal. Viçosa : Ed. UFV, 1997. 246p.
- BALL, R. O.; AHERNE, F. X. Effect of diet complexity and feed restriction on the incidence and severity of diarrhea in early-weaned pigs. **Canadian Journal of Animal Science**, Ottawa, v.62, n.3, p.907-913, 1982.
- BARTELS, H. Substituição do farelo de soja pela proteína texturizada de soja e do amido de milho pela lactose em leitões desmamados aos 14 ou aos 21 dias de idade. 1999. 250f. Tese (Doutorado) Programa de Pós-Graduação em Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 1999.
- BATTERHAM, E.S. Protein and energy relationships for growing pigs. In: COLE, D.J.; WISEMAN, J.; VARLEY, M.A. (Ed) **Principles of pig science.** Nottinghan: Redwood Books, 1994. p.107-121.
- BECKER, G. B. Efeito do isolamento, da idade ao desmame, da alimentação forçada e da adição de triptofano sobre o comportamento e desempenho de leitões em gaiolas metabólicas. 2000. 224 f. Tese (Doutorado) Programa de Pós-Graduação em Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2000.
- BERTOL, T.M; LUDKE, J.V; MORES N; Efeito de diferentes fontes protéicas sobre desempenho, composição corporal e morfologia intestinal em leitões. **Revista Brasileira de Zootecnia,** Viçosa, v. 29 n.6, p. 1735-1742, 2000.
- BIKKER. P. Protein and lipidic accretion in body components of growing pigs: effects of body weight and nutrient intake. 1994. 203f. Thesis(PhD) Departament of Animal Nutrition, Wageningen Agricultural University, Netherlands, 1994.
- BRUMM, M.C.; SHELTON, D. P.; DAHLQUIST, J. M. Interaction of diet composition and a reduced nocturnal temperature regimen in weanling pigs. Journal of Animal Science, Champaign, v. 73, n.9, p.2518-2523, 1995.

- CAMPBELL, R.G.; TAVERNER, M.R. Relationships between energy intake and protein and energy metabolism, growth and body composition of pigs kept at 14 or 32 oC from 9 to 20 kg. **Livestock Production Science**, New York, v. 18, n.34, p.289-303, 1988.
- CAMPBELL, R. G. The nutritional management of weaner pigs. In: BIENNIAL CONFERENCE OF THE AUSTRALASIAN PIG SCIENCE ASSOCIATION (APSA), 2., Albury, 1989. **Proceedings**...: Manipulating Pig Production II. Albury, 1989. p.170.
- CHADD, S. A..; COLE, D. J. A. The performance response of growing and finishing pigs fed differing proportions oat feed as a dietary fibre source. In: EAAP ANNUAL MEETING, 1999, Zurich. [**Proceedings...**]. Zurich, 1999.
- COLLIN, A.; VAN MILGEN, J.; DUBOIS, S. et al. Effect of high temperature and feeding level on energy utilization in piglets. **Journal of Animal Science,** Champaign, v.79, n.9, p.1849-1857, 2001.
- DE GREEF, K. H.; VERSTEGEN, B.; KEMP, ;VAN DER TOGT, P.L. The effect of body weight and energy intake in the composition of deposited tissue in pigs. **Animal Production**, Cambridge, v. 58, n.1, p. 263-270,2004
- ENDRES, B., F.; AHERNE X.; OZIMEK, L. et al. The effects of fat supplementation on ileal versus fecal fat digestibilities, perfomance and body composition of weaned pigs. **Canadian Journal of Animal Science,** Ottawa, v.68, n.5, p.225-231, 1988.
- FERREIRA, R.A. **Efeitos do clima sobre a nutrição de suínos.2001** Dísponível em: http://www.cnpsa.embrapa.br/abravessc/pdf/Memorias2000/1_RonyFerreira.pdf . Acesso em: 18/01/2006.
- FIALHO E.T; TILFORD, R.C; Influence of environmental temperature on nitrogen retention apparent digestibility of protein and amino acids and energy balance in growing pigs. **Pesquisa Agropecuária Brasileira,** Brasília, v.26, n.8, p. 1237-1253, 1991.
- FULLER, M.F; BOYNE, A. W. The effects of environmental temperature on the growth and metabolism of pigs given different amounts of food. **British Journal of Nutrition,** Cambridge, v. 28, n.3, p 373. 1972.

- GU, X.; LI, D. Fat Nutrition and metabolism in piglets: a review. **Animal Feed Science** and **Technology**, New York, v.109, n.1, p.151-170, 2003.
- HENRY, Y. Dietary factors involved in feed intake regulation in growing pigs: a review. **Livestock Production Science**, New York, v.2, n.4, p.339-354, 1985.
- HOLMES, J.G.; BAYLEY, H.S.; HORNEY, F.D. Digestion of dry and high-moisture maize diets in stomach of the pig. **British Journal of Nutrition**,London, v.32, n.3, p.639-646, 1974.
- JENSEN, A.H. Environment and management factors that influence swine nutrition. In: MILLER, E.R.; ULLREY, E.D.; LEWIS, A.J. (Eds.) **Swine nutrition.** Local: Butterworth-Heinemann, 1991. p.387-399.
- KENNEDY, P.M; CHRISTOPHERSON, R.J; MILLIGAN; L.P. The effect of cold exposure of sheep on digestion, rumen turnover time and efficiency of microbial synthesis. **British Journal of Nutrition**, London, v.36, n.2, p.231, 1976.
- KERR, D.E; LAARVELD, B.; MANNS, J.G. Effects of passive immunization of growing guinea-pigs with an insulin-like growth factor-I monoclonal antibody. **Journal of Endocrinology**, Bristol, UK, v.124, n.3, p.403-415, 1990.
- KLEIBER, M. **The fire of life**: an introduction to animal energetics. 2.ed. New York: Robert E. Krieger, 1975. 453p.
- LEVESQUE, C. L. The effects of dietary digestible energy content and site of weaning on weanling pig performance. 2002. 125 f. Dissertação (Mestrado) University of Saskatchewan, Saskatchewan, 2002.
- LEWIS A.J. Amino acids in swine nutrition. In: LEWIS, A.J.; SOUTHERN, L.L. (Eds.) **Swine nutrition**. 2.ed. Boca raton: CRC Press, 2001. p. 131-141.
- MAHAN, D. C.; LEPINE, A. J. Effect of pig weaning weight and associated nursery feeding programs on subsequent perfomance to 105 kilograms body weight. **Journal of Animal Science,** Champaing, v.69, n.4, p. 1370-1378, 1991.
- MARKS, D.B.; MARKS, A.D.; SMITH, C.M. **Basic Medical Biochemistry:** a clinical approach. Naltimore: Williams & Wilkins, 1996. 806p.

- MATTERSON, L.D.; POTTER, L.M.; STUTZ, N.W. et al. **The metabolizable energy of feed ingredients for chickens.** Storrs, Connecticut: The University of Connecticut, 1965. p.3-11 (Agricultural Experiment Station, Research, Report 7).
- MATZINGER, D.; DEGEN L.; DREWE J. et al. The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans. **Gut**, London, v.46, n.1, p.688-693, 2000..
- MAVROMICHALIS I. **Applied Nutrition for Young Pigs.** Madrid, Spain : Nutral, 2006. 272 p.
- MERSMANN, H.J.; ALLEN, C.D.; CHAI, E.Y. et al. Factors influencing the lipogênic rate in swine adipose tissue. **Journal of Animal Science,** Champaign, v. 52, n.6, p.1298-1305, 1981.
- MOITA, A. M. S.; COSTA, P. M. A; DONZELE, J. L. et al. Níveis de energia digestível para leitões de 12 a 28 dias de idade. **Revista Brasileira de Zootecnia**, Viçosa, v.25,n.5,p.964-972, 1996.
- MORGAN, D.J.; COLE, D.J.A.; LEWIS, D. Energy values in pig nutrition. I. The relationship between digestible energy, metabolizable energy and total digestible nutrient values of a range of feedstuffs. Journal of Agricultural Science, Madison, v.84, n.2, p.7-17, 1975.
- MOUNT L. E. Heat loss in relation to plane of nutrition and thermal environment. **Proceedings Nutrition Society**, Aberystwyth, UK, v. 35, n.1, p. 81-86. 1976.
- NATIONAL RESEARCH COUNCIL NRC. **Nutrient requirements of swine.** 10.rev.ed. Washington, D.C.: National Academy Press, 1998 211p,
- NETO, M.A.T.; PETELINCAR, I.M.; BENTO, D.A. et al. Níveis de lisina para leitões na fase inicial-1 do crescimento pós-desmame, composição corporal aos 11,9 e 19 kg. **Revista Brasileira de Zootecnia**, Viçosa, v. 33, n.6, p.1777-1789, 2004.
- NOBLET, J; LE DIVIDICH, J. Effect of environmental temperature and feeding level on energy balance traits of early weaned- piglets. **Livestock Production Science**, New York, v.9, n.2, p. 619, 1982.

- OLIVEIRA, R.F.M.; DONZELE, J.L.; FREITAS, R.T.F. Efeito da temperatura sobre o desempenho e sobre os parâmetros fisiológicos e hormonais de leitões consumindo dietas com diferentes níveis de energia. **Revista Brasileira de Zootecnia**, Viçosa, v. 26, n.6, p.1174-1182, 1997.
- ORENSAYA, T. F. Energy metabolism in the weanling pig: effects of energy concentration and intake on growth, body composition and nutrient accretion in the empty body. 2005. 261 f. Thesis (PhD.) University of Saskatchewan, Saskatchewan, Canada, 2005.
- PARR INSTRUMENTS CO. Instructions for the 1241 and 1242 adiabatic calorimeters. Moline, 1994. 29p. (Parr Manual, 153).
- PEKAS, J.C. Versatile swine laboratory apparatus for physiologic and metabolic studies. **Journal of Animal Science,** Champaign, v.27, n.5, p.1303-1306, 1968.
- PLUSKE, J. R.; WILLIAMS, I H. Which piglets perform the best after weaning? In: BIENNIAL CONFERENCE OF THE AUSTRALASIAN PIG SCIENCE ASSOCIATION (APSA), 3., 1991, Albury. **Proceedings...**: Manipulating pig production III. Albury: APSA, 1991. p. 148.
- POPHAL, S. Eficiência de diferentes fontes energéticas, do nível de ingestão calórica e da suplementação com carnitina sobre a retenção de nitrogênio em suínos em crescimento. 1999. 113f. Dissertação (Mestrado) Programa de Pós-Graduação em Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2000.
- QUINIOU N. Apports énergétiques et croissance du porc. **INRA Production Animale**, Paris, v.9, n.2, p. 141-150, 1996.
- QUINIOU, N.; DOURMAD, J.Y.; NOBLET, J. Effect of energy intake on the performance of different types of pig from 45 to 100 kg body weight. 1. Protein and lipid deposition. **Journal of Animal Science, Champaign**, v.63, n.3, p.227-288,1996.
- REIS DE SOUZA, T. C.; AUMAITRE, A.; MOUROT J. et al. Effect of graded level of tallow in the diet on performance, digestibility of fat, lipogenesis and body lipid deposition of the weaned piglet. **Asian Australian Journal of Animal Science**, New Jersey, v.13, n.2, p.497-505, 2000.

- ROSTAGNO, H.S.; ALBINO, L.F.T.; DONZELE, J.L. et al. **Tabelas brasileiras para aves e suínos:** composição de alimentos e exigências nutricionais. Viçosa, MG: Universidade Federal de Viçosa, 2005. 186p.
- SAMPAIO, C.A. Caracterização dos ambientes térmico, aéreo e acústico em sistemas de produção de suínos nas fases de creche e terminação. 1999. 250f. Tese (Doutorado em Engenharia Agrícola) Faculdade de Engenharia Agrícola, Universidade Estadual de São Paulo, Campinas, 2004.
- SAS INSTITUTE. **The SAS-system for windows:** Release 6.08 (software). Cary, 1996.
- SCHINCKEL, A.P.; LANGE, C.F.M. Characterization of growth parameters needed as inputs for pig growth models. **Journal of Animal Science,** Champaign, v..74, p. 2021-2036, 1996.
- SNIZEK JUNIOR, P. N. **Utilização do conceito de Energia Líquida para Suínos em Crescimento.** 1999. 149f. Tese (Doutorado) Programa de Pós-Graduação em Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2002.
- VAN LUMEN, T. A.,; COLE D. J. A. The effect of dietary energy concentration and lysine/digestible energy ratio on growth perfomance and nitrogen deposition of young hybrid pigs. **Animal Science,** Wallingford, UK, v. 67,n.4, p. 117-129, 1998.
- WEIS, R.; BIRKETT, P.C.H.; LANGE, C.F.M. Effect of energy intake and body weight on physical and chemical body composition in growing entire male pigs. **Journal of Animal Science,** Champaign, v. 82, n.1, p. 109-121, 2004.
- WHITTEMORE, C.T. **The Science and Practice of Pig Production.** 2.nd Ed. Oxford: Blackwell Science, 1998. 40p.

Apêndice e Vita

Apêndice 01- Desempenho dos leitões no período pré-inicial (PI), inicial (I) e Total (T)

Peso desmama	Temperatura	Energia	GPPI	CRPI	CAPI	GPI	CRI	CAI	GPT	CRT	CAT
		kcal/kg	kg	kg	kg/kg	kg	kg	kg/kg	kg	kg	kg/kg
Pesado	Quente	3550	4,94	5,62	1,14	6,25	10,11	1,62	11,19	15,72	1,40
Pesado	Quente	3250	4,63	5,32	1,15	9,85	11,63	1,18	14,48	16,95	1,17
Pesado	Quente	3400	5,78	6,39	1,11	7,77	12,19	1,57	13,55	18,58	1,37
Pesado	Quente	3400	4,53	5,16	1,14	9,30	11,97	1,29	13,83	17,13	1,24
Pesado	Quente	3700	4,44	4,26	0,96	7,91	10,12	1,28	12,35	14,38	1,16
Pesado	Quente	3550	5,57	6,22	1,12	5,28	10,61	2,01	10,85	16,83	1,55
Pesado	Quente	3700	4,37	4,67	1,07	9,46	10,72	1,13	13,83	15,38	1,11
Pesado	Quente	3250	5,28	6,23	1,18	5,40	9,10	1,69	10,68	15,33	1,44
Leve	Quente	3400	3,82	3,64	0,95	4,07	10,02	2,46	7,89	13,66	1,73
Leve	Quente	3400	3,33	5,02	1,51	6,46	10,42	1,61	9,79	15,44	1,58
Leve	Quente	3550	4,17	4,96	1,19	7,53	9,76	1,30	11,70	14,72	1,26
Leve	Quente	3700	3,79	4,45	1,17	5,63	9,83	1,75	9,42	14,28	1,52
Leve	Quente	3550	4,26	5,76	1,35	7,64	9,97	1,30	11,9	15,72	1,32
Leve	Quente	3700	2,92	5,03	1,72	6,20	9,69	1,56	9,12	14,72	1,61
Leve	Quente	3250	3,62	4,56	1,26	6,22	9,94	1,60	9,84	14,49	1,47
Leve	Quente	3250	3,66	4,39	1,20	5,98	8,35	1,40	9,64	12,74	1,32
Pesado	Termoneutra	3700	3,67	4,14	1,13	8,92	11,77	1,32	12,59	15,91	1,26
Pesado	Termoneutra	3250	4,92	5,90	1,20	8,14	11,89	1,46	13,06	17,79	1,36
Pesado	Termoneutra	3400	4,30	4,16	0,97	7,64	11,51	1,51	11,94	15,67	1,31
Pesado	Termoneutra	3400	5,62	6,26	1,11	7,30	12,81	1,75	12,92	19,06	1,48
Pesado	Termoneutra	3550	4,87	5,89	1,21	10,53	13,23	1,26	15,40	19,12	1,24
Pesado	Termoneutra	3250	4,99	5,29	1,06	6,88	11,8	1,72	11,87	17,10	1,44
Pesado	Termoneutra	3550	5,13	5,06	0,99	9,02	11,55	1,28	14,15	16,60	1,17
Pesado	Termoneutra	3700	5,66	5,68	1,00	8,99	11,95	1,33	14,65	17,63	1,20
Leve	Termoneutra	3250	4,92	5,42	1,10	7,69	11,1	1,44	12,61	16,52	1,31
Leve	Termoneutra	3400	5,29	5,41	1,02	7,09	11,4	1,61	12,38	16,82	1,36
Leve	Termoneutra	3700	5,60	5,71	1,02	8,16	11,03	1,35	13,76	16,74	1,22
Leve	Termoneutra	3250	3,86	5,51	1,43	6,37	11,25	1,77	10,23	16,76	1,64
Leve	Termoneutra	3700	4,03	5,18	1,28	6,11	10,74	1,76	10,14	15,92	1,57
Leve	Termoneutra	3550	4,44	4,54	1,02	5,54	9,07	1,64	9,98	13,61	1,36
Leve	Termoneutra	3400	4,54	5,11	1,13	6,35	11,24	1,77	10,89	16,36	1,5
Leve	Termoneutra	3700	4,98	5,00	1,00	10,59	12,78	1,21	15,57	17,79	1,14

Apêndice 2- ANOVA do Desempenho dos leitões, ganho de peso pré-inicial

Ganho de peso durante o período pré-inicial

Source	DF	Type III SS	Mean Square	F Value	Pr > F
PES0	1	4.11127813	4.11127813	9.67	0.0068
TEMP	1	1.85762812	1.85762812	4.37	0.0530
ENERGIA	3	1.05340937	0.35113646	0.83	0.4989
PESO*TEMP	1	2.24190313	2.24190313	5.27	0.0355
PESO*ENERGIA	3	0.26568437	0.08856146	0.21	0.8892
TEMP*ENERGIA	3	0.58713437	0.19571146	0.46	0.7140
PESO*TEMP*ENERGIA	3	0.21870938	0.07290313	0.17	0.9141

Consumo de racão durante o período pré-inicial

Source	DF	Type III SS	Mean Square	F Value	Pr > F
PES0	1	1.33252813	1.33252813	3.00	0.1024
TEMP	1	0.21125000	0.21125000	0.48	0.5001
ENERGIA	3	1.17851538	0.39283846	0.89	0.4698
PESO*TEMP	1	0.97161800	0.97161800	2.19	0.1584
PESO*ENERGIA	3	1.77321938	0.59107313	1.33	0.2990
TEMP*ENERGIA	3	1.37794300	0.45931433	1.03	0.4037
PESO*TEMP*ENERGIA	3	0.88311600	0.29437200	0.66	0.5866

Conversão alimentar durante o período pré-inicial

Source	DF	Type III SS	Mean Square	F Value	Pr > F
PES0	1	0.10706878	0.10706878	3.61	0.0758
TEMP	1	0.07363203	0.07363203	2.48	0.1349
ENERGIA	3	0.03352659	0.01117553	0.38	0.7713
PESO*TEMP	1	0.04197753	0.04197753	1.41	0.2518
PESO*ENERGIA	3	0.06109609	0.02036536	0.69	0.5737
TEMP*ENERGIA	3	0.02550284	0.00850095	0.29	0.8346
PESO*TEMP*ENERGIA	3	0.04921884	0.01640628	0.55	0.6538

Ganho de peso durante o período inicial

Source	DF	Type III SS	Mean Square	F Value	Pr > F
PES0	1	13.79437812	13.79437812	6.53	0.0212
TEMP	1	6.45302813	6.45302813	3.06	0.0996
ENERGIA	3	4.03648437	1.34549479	0.64	0.6020
PESO*TEMP	1	0.12127812	0.12127812	0.06	0.8136
PESO*ENERGIA	3	6.83593438	2.27864479	1.08	0.3860
TEMP*ENERGIA	3	5.14523437	1.71507812	0.81	0.5056
PESO*TEMP*ENERGIA	3	10.28163438	3.42721146	1.62	0.2235

Consumo de racão durante o período inicial

Source	DF	Type I SS	Mean Square	F Value	Pr > F
PES0	1	8.36507253	8.36507253	9.45	0.0073
TEMP	1	13.39160628	13.39160628	15.13	0.0013
ENERGIA	3	3.16848234	1.05616078	1.19	0.3439
PESO*TEMP	1	0.01098903	0.01098903	0.01	0.9127
PESO*ENERGIA	3	0.31156534	0.10385511	0.12	0.9486
TEMP*ENERGIA	3	1.54430209	0.51476736	0.58	0.6356
PESO*TEMP*ENERGIA	3	1.18425934	0.39475311	0.45	0.7235

Conversão alimentar durante o período inicial

Source		DF	Type III SS	Mean Square	F Value	Pr > F
PES0		1	0.14257800	0.14257800	2.39	0.1419
TEMP	1		0.01036800	0.01036800	0.17 0.	6825
ENERGIA		3	0.34381937	0.11460646	1.92	0.1673
PESO*TEMP		1	0.00270113	0.00270113	0.05	0.8343
PESO*ENERGIA		3	0.37950850	0.12650283	2.12	0.1381
TEMP*ENERGIA		3	0.12451750	0.04150583	0.69	0.5686
PESO*TEMP*ENERGIA		3	0.39633638	0.13211213	2.21	0.1264

Ganho de peso durante o período total

Source	DF	Type III SS	Mean Square	F Value	Pr > F
PES0	1	32.96720000	32.96720000	13.02	0.0024
TEMP	1	15.23520000	15.23520000	6.02	0.0260
ENERGIA	3	5.30767500	1.76922500	0.70	0.5664
PESO*TEMP	1	3.40605000	3.40605000	1.35	0.2631
PESO*ENERGIA	3	6.32667500	2.10889167	0.83	0.4952
TEMP*ENERGIA	3	3.50602500	1.16867500	0.46	0.7130
PESO*TEMP*ENERGIA	3	12.60192500	4.20064167	1.66	0.2157

Consumo de ração durante o período total

Source	DF	Type III SS	Mean Square	F Value	Pr > F
PES0	1	16.37493378	16.37493378	9.68	0.0067
TEMP	1	16.96676878	16.96676878	10.03	0.0060
ENERGIA	3	4.13770809	1.37923603	0.82	0.5040
PESO*TEMP	1	1.18849653	1.18849653	0.70	0.4142
PESO*ENERGIA	3	3.01153709	1.00384570	0.59	0.6283
TEMP*ENERGIA	3	2.60702909	0.86900970	0.51	0.6786
PESO*TEMP*ENERGIA	3	4.10366584	1.36788861	0.81	0.5074

Conversão alimentar durante o período total

Sum of

Sull 01								
R-Square	Coeff	Var	Root	MSE	CATOT	Mean		
0.681661	9.261246		0.126859		1.369781			

Source	DF	Type III SS	Mean Square	F Value	Pr > F
PES0	1	0.12437578	0.12437578	7.73	0.0134
TEMP	1	0.01483503	0.01483503	0.92	0.3513
ENERGIA	3	0.09346509	0.03115503	1.94	0.1645
PESO*TEMP	1	0.01688203	0.01688203	1.05	0.3210
PESO*ENERGIA	3	0.14686134	0.04895378	3.04	0.0593
TEMP*ENERGIA	3	0.05959159	0.01986386	1.23	0.3299
PESO*TEMP*ENERGIA	3	0.09535609	0.03178536	1.98	0.1584

Apêndice 3- Dados de metabolismo durante o período pré-inicial (1-14 dias pósdesmame

Peso desmama	Temperatura	EM Kcal/kg	CDMS (%)	CDEB (%)	CDGB%	CDPB%	CRN%	ED	ЕМ	CMEB %
Pesado	Quente	3550	89,82	90,73	85,04	86,71	81,69	3686,17	3669,75	90,32
Pesado	Quente	3250	86,98	87,61	71,83	82,53	76,66	3287,14	3267,99	87,1
Pesado	Quente	3400	86,61	87,33	80,60	83,00	75,75	3448,28	3424,24	86,72
Pesado	Quente	3400	85,88	87,12	79,27	83,57	78,14			86,66
Pesado	Quente	3700	93,83	93,36	87,35	90,52	82,74	3866,61	3840,76	92,73
Pesado	Quente	3550	88,46	89,28	84,06	85,23	80,43	3627,5	3611,79	88,90
Pesado	Quente	3700	89,69	90,16	86,35	86,43	82,21	3734,36		89,83
Pesado	Quente	3250	83,16	84,40	65,05	74,64	68,00	3166,7	3145,06	83,82
Leve	Quente	3400	82,25	83,66	72,18	78,78	72,53	3303,23	3282,48	83,13
Leve	Quente	3400	91,00	91,42	86,30	86,92	83,24	3609,84	3597,61	91,11
Leve	Quente	3550	88,09	88,90	85,96	85,03	81,57	3612,07	3600,76	88,62
Leve	Quente	3700	93,37	92,88	86,77	89,09	84,76	3846,93	3832,56	92,54
Leve	Quente	3550	92,11	92,75	89,02	90,58	87,04	3768,39	3756,83	92,47
Leve	Quente	3700	95,85	95,77	92,87	93,55	90,06	3966,4	3954,81	95,49
Leve	Quente	3250	89,62	89,75	74,22	84,82	80,98	3367,37	3354,88	89,41
Leve	Quente	3250	87,93	88,67	74,26	84,60	78,82	3326,95	3308,13	88,17
Pesado	Termoneutra	3700	88,01	87,58	81,65	79,17	71,94	3627,49	3603,49	87,00
Pesado	Termoneutra	3250	78,79	82,24	51,94	72,33	67,02	3085,87	3068,59	81,78
Pesado	Termoneutra	3400	87,23	87,26	75,96	78,71	71,68	3445,42	3422,08	86,67
Pesado	Termoneutra	3400	84,47	85,02	75,60	77,24	71,9	3357,1	3339,4	84,57
Pesado	Termoneutra	3550	85,40	86,31	80,60	80,31	74,11	3506,65	3486,38	85,81
Pesado	Termoneutra	3250	84,56	85,14	54,67	80,99	75,24	3194,38	3175,66	84,64
Pesado	Termoneutra	3550	84,19	84,70	79,17	77,06	70,71	3441,38	3420,61	84,19
Pesado	Termoneutra	3700	87,70	87,44	83,47	80,42	76,25	3621,43	3607,57	87,1
Leve	Termoneutra	3250	81,80	82,18	42,98	70,08	65,35	3083,31	3067,9	81,76
Leve	Termoneutra	3400	84,69	86,19	67,69	78,08	73,95	3403,35	3389,64	85,85
Leve	Termoneutra	3700	84,40	84,71	82,7	80,81	77,89	3508,51	3498,84	84,48
Leve	Termoneutra	3250	88,48	88,66	75,07	81,02	77,84	3326,57	3316,2	88,38
Leve	Termoneutra	3700	88,68	88,98	91,19	84,55	79,69	3685,3	3669,16	88,59
Leve	Termoneutra	3550	87,10	86,23	74,17	81,29	75,88	3503,57	3485,88	85,8
Leve	Termoneutra	3400	84,87	85,27	71,68	74,98	70,41	3366,82	3351,66	84,89
Leve	Termoneutra	3700	83,04	83,18	65,87	72,11	66,9	3379,36	3362,33	82,76

Apêndice 4- Dados de Metabolismo durante o período inicial (15-28 dias pós-desmame

Peso desmama	Temperatura	Energia	CDMS (%)	CDEB (%)	CDGB%	CDPB%	CRN%	ED	EM	CMEB %
	1	kcal/kg	90,57	91,2	84,95	87,79	78,06	3687,17	3660,18	90,53
Pesado	Quente	3550	94,76	95,32	87,68	93,88	85,66	3569,84	3545,85	94,68
Pesado	Quente	3250	89,15	90,89	82,19	87,7	71,58	3526,5	3481,31	89,72
Pesado	Quente	3400	90,55	91,63	82,86	89,06	78,27	3555,53	3525,28	90,85
Pesado	Quente	3400	92,33	92,66	89,25	90,53	77,44	3926,99	3891,04	91,81
Pesado	Quente	3700	89,03	89,27	85,2	85,16	72,65	3609,3	3574,58	88,42
Pesado	Quente	3550	90,44	91,1	86,83	87,1	73,5	3860,73	3823,38	90,22
Pesado	Quente	3700	87,73	89,62	69,2	87,21	75,03	3356,24	3320,67	88,67
Pesado	Quente	3250	91,57	93,03	84,04	90,25	81,01	3609,82	3583,93	92,37
Leve	Quente	3400	93,53	94,63	87,87	93,35	84,11	3671,9	3645,99	93,97
Leve	Quente	3400	91,77	92,85	88,83	89,8	80,45	3753,72	3727,77	92,2
Leve	Quente	3550	92,44	92,68	89,96	89,99	83,98	3927,85	3911,36	92,29
Leve	Quente	3700	92,32	93,14	87,67	91,38	80,07	3765,4	3734,02	92,36
Leve	Quente	3550	92,31	92,59	90,38	90,12	81,31	3924,02	3899,83	92,02
Leve	Quente	3700	90,07	91,29	78,53	87,68	74,66	3418,73	3380,72	90,27
Leve	Quente	3250	86,23	88,56	63,28	84,97	76,03	3316,67	3290,58	87,87
Leve	Quente	3250	92,55	93,22	90,59	89,26	79,25	3950,57	3923,06	92,57
Pesado	Termoneutra	3700	76,66	80,77	57,96	73,97	65,93	3024,75	3001,29	80,14
Pesado	Termoneutra	3250	77,74	80,46	65,26	71,45	69,94	3121,94	3117,72	80,35
Pesado	Termoneutra	3400	86,03	88,32	76,02	82,53	73,45	3426,87	3401,41	87,66
Pesado	Termoneutra	3400	88,67	90,11	84,06	85,23	72,77	3642,95	3608,37	89,25
Pesado	Termoneutra	3550	88,1	90,45	69,44	89,09	79,1	3387,42	3358,24	89,67
Pesado	Termoneutra	3250	88,96	90,26	83,98	88,53	72,84	3649,3	3605,75	89,19
Pesado	Termoneutra	3550	89,73	91,11	87,36	85,18	77,72	3861,05	3840,54	90,62
Pesado	Termoneutra	3700	80,54	82,61	59,99	75,53	63,85	3093,6	3059,51	81,7
Leve	Termoneutra	3250	87,56	89,97	79,33	86,94	73,92	3490,85	3454,37	89,03
Leve	Termoneutra	3400	89,06	89,96	89,92	84,92	76,14	3812,5	3788,39	89,39
Leve	Termoneutra	3700	85,83	88,13	63,65	84,83	75,19	3300,57	3272,44	87,38
Leve	Termoneutra	3250	92,17	92,36	89,85	90,94	82,01	3914,04	3889,51	91,78
Leve	Termoneutra	3700	91,9	92,81	87,33	91,47	82,26	3752,18	3726,62	92,18
Leve	Termoneutra	3550	86,75	88,29	66,91	82,82	75,73	3425,85	3405,98	87,78
Leve	Termoneutra	3400	89,98	91,07	82,88	87,66	77,01	3681,94	3652,84	90,35

Apêndice 5- Dados de Metabolismo durante o período total (1-28 dias pósdesmame)

Peso	Temperatura	EM								
	•	Kcal/kg	CDMS (%)	CDEB (%)	CDGB%	CDPB%	CRN%	ED	EM	CMEB %
Pesado	Quente	3550	90,2	90,96	84,99	87,25	79,88	3664,96	3664,96	90,43
Pesado	Quente	3250	90,87	91,46	79,75	88,21	81,16	3406,92	3406,92	90,89
Pesado	Quente	3400	87,88	89,11	81,39	85,35	73,67	3452,78	3452,78	88,22
Pesado	Quente	3400	88,21	89,38	81,07	86,32	78,2	3473,56	3473,56	88,76
Pesado	Quente	3700	93,08	93,01	88,3	90,53	80,09	3865,9	3865,9	92,27
Pesado	Quente	3550	88,75	89,28	84,63	85,2	76,54	3593,18	3593,18	88,66
Pesado	Quente	3700	90,06	90,63	86,59	86,76	77,86	3771,87	3771,87	90,02
Pesado	Quente	3250	85,45	87,01	67,12	80,92	71,51	3232,87	3232,87	86,24
Leve	Quente	3400	86,91	88,35	78,11	84,51	76,77	3433,21	3433,21	87,75
Leve	Quente	3400	92,26	93,03	87,09	90,14	83,67	3621,8	3621,8	92,54
Leve	Quente	3550	89,93	90,87	87,4	87,41	81,01	3664,26	3664,26	90,41
Leve	Quente	3700	92,9	92,78	88,37	89,54	84,37	3871,96	3871,96	92,41
Leve	Quente	3550	92,21	92,94	88,35	90,98	83,56	3745,42	3745,42	92,41
Leve	Quente	3700	94,08	94,18	91,63	91,83	85,68	3927,32	3927,32	93,75
Leve	Quente	3250	89,85	90,52	76,37	86,25	77,82	3367,8	3367,8	89,84
Leve	Quente	3250	87,08	88,62	68,77	84,78	77,43	3299,36	3299,36	88,02
Pesado	Termoneutra	3700	90,28	90,4	86,12	84,22	75,6	3763,28	3763,28	89,79
Pesado	Termoneutra	3250	77,72	81,51	54,95	73,15	66,48	3034,94	3034,94	80,96
Pesado	Termoneutra	3400	82,48	83,86	70,61	75,08	70,81	3269,9	3269,9	83,51
Pesado	Termoneutra	3400	85,25	86,67	75,81	79,88	72,68	3370,4	3370,4	86,12
Pesado	Termoneutra	3550	87,03	88,21	82,33	82,77	73,44	3547,38	3547,38	87,53
Pesado	Termoneutra	3250	86,33	87,79	62,05	85,04	77,17	3266,95	3266,95	87,15
Pesado	Termoneutra	3550	86,58	87,48	81,58	82,8	71,78	3513,18	3513,18	86,69
Pesado	Termoneutra	3700	88,71	89,27	85,41	82,8	76,98	3724,06	3724,06	88,86
Leve	Termoneutra	3250	81,17	82,39	51,49	72,8	64,6	3063,71	3063,71	81,73
Leve	Termoneutra	3400	86,13	88,08	73,51	82,51	73,94	3422,01	3422,01	87,44
Leve	Termoneutra	3700	86,73	87,34	86,31	82,86	77,02	3643,62	3643,62	86,93
Leve	Termoneutra	3250	87,16	88,4	69,36	82,92	76,51	3294,32	3294,32	87,88
Leve	Termoneutra	3700	90,42	90,67	90,52	87,74	80,85	3779,34	3779,34	90,18
Leve	Termoneutra	3550	89,5	89,52	80,75	86,38	79,07	3606,25	3606,25	88,99
Leve	Termoneutra	3400	85,81	86,78	69,3	78,9	73,07	3378,82	3378,82	86,33
Leve	Termoneutra	3700	86,51	87,12	74,37	79,89	71,96	3507,58	3507,58	86,55

Apêndice 6- Anova dos dados de Metabolismo

Digestibilidade da Matéria Seca do período pré-inicial

R-Square	e Co	oeff Var	Root MSE	DMSPI	Mean	
0.699043	3 3	3.257544	2.838196	87.1	2688	
	5.5			•	- w 1	
Source	DF	Type III	S Mean	Square	F Value	Pr > F
nivelenerg	3	118.630812	5 39.5	436042	4.91	0.0132
sala	1	117.198050	0 117.1	980500	14.55	0.0015
peso	1	10.695312	10.6	953125	1.33	0.2661
nivelenerg*sala	3	25.666825	8.5	556083	1.06	0.3927
nivelenerg*peso	3	17.187912	5.7	293042	0.71	0.5594
sala*peso	1	5.346450	0 5.3	464500	0.66	0.4272
nivelenerg*sala*peso	3	4.641825	0 1.5	472750	0.19	0.9002
Digestibilidade da	a Energ:	ia Bruta dura	inte o perío	odo pré-i	nicial	
		Sum	of			
Source	DF	Square	s Mean	Square	F Value	Pr > F
Madal	4.5	045 000000		050007	0.74	0.0000
Model	15	245.938600	16.3	959067	2.71	0.0282
Error	16	96.830400	0 6.0	519000		
Organizated Tabal	0.4	040 700000				
Corrected Total	31	342.769000	00			
R-Square	e Co	eff Var	Root MSE	DENPI	Mean	
0.717505	5 2	2.806607	2.460061	87.6	5250	
Source	DF	Type III S	S Mean	Square	F Value	Pr > F
		31		•		
nivelenerg	3	76.057825	0 25.3	526083	4.19	0.0229
sala	1	122.852812	122.8	528125	20.30	0.0004
peso	1	5.712200	0 5.7	122000	0.94	0.3457
nivelenerg*sala	3	25.161862	8.3	872875	1.39	0.2832
nivelenerg*peso	3	8.274625	0 2.7	582083	0.46	0.7169
sala*peso	1	6.212812	5 6.2	128125	1.03	0.3260
nivelenerg*sala*peso	3	1.666462	5 0.5	554875	0.09	0.9635

Energia Digestível durante o período pré-inicial

Source		DF	Sum (Square:	= -	e F Value	Pr > F
Source		DF	Square	s mean square	e r value	PI > F
Model		15	1370677.44	91378.496	9.72	<.0001
Error		16	150462.92	9403.933	3	
Corrected Total		31	1521140.36	6		
	R-Square		Coeff Var	Root MSE EDF	PI Mean	
	0.901085		2.780755	96.97388 34	187.322	
Source		DF	Type III	S Mean Square	e F Value	Pr > F
nivelenerg		3	1093515.64	6 364505.215	38.76	<.0001
sala		1	198653.22	7 198653.227	21.12	0.0003
		1	8503.05			0.3558
peso		-				
nivelenerg*sala		3	45224.72			0.2280
nivelenerg*peso		3	11717.80			0.7443
sala*peso		1	10063.90	3 10063.903	1.07	0.3163
nivelenerg*sala*;	oeso	3	2999.08	4 999.695	0.11	0.9552
Dig	estibilidad	de da	a Gordura Bruta Sum (período pré-inio	cial	
Source		DF	Square		F Value	Pr > F
Model		15	3296.46748	3 219.764499	4.70	0.0019
Error		16	747.62270	46.726419)	
Corrected Total		31	4044.09018	3		
	R-Square		Coeff Var	Root MSE DGBF	PI Mean	
	0.815132		8.908082	6.835673 76	5.73563	
Source		DF	Type III S	S Mean Square	e F Value	Pr > F
		DF	Type III S			FI > F
nivelenerg		3	2233.27506	2 744.425021	15.93	<.0001
sala		1	672.71120	672.711200	14.40	0.0016
peso		1	3.32820	3.328200		0.7930
nivelenerg*sala		3	152.47982			0.3826
nivelenerg*peso		3	137.10487			0.4276
sala*peso		1	35.57461			0.3958
nivelenerg*sala*¡	peso	3	61.99371	2 20.664571	0.44	0.7260

Digestibilidade da Proteína Bruta período pré-inicial

_			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		15	718.0929719	47.8728648	2.97	0.0189
Error		16	257.6663500	16.1041469		
Corrected Total		31	975.7593219			
	R-Square		Coeff Var Ro	oot MSE DPBPI	Mean	
	0.735932		4.910461 4	.012997 81.	72344	
Source		DF	Type III SS	Mean Square	F Value	Pr > F
nivolonona		0	005 1000044	60 2062001	4 05	0.0010
nivelenerg		3 1	205.1889844	68.3963281	4.25 26.50	0.0219 <.0001
sala		-	426.6850781	426.6850781	0.59	0.4538
peso		1	9.4939031	9.4939031		
nivelenerg*sala		3	21.4692344	7.1564115	0.44	0.7246
nivelenerg*peso		3	21.2761094	7.0920365	0.44	0.7273
sala*peso		1	18.0750781	18.0750781	1.12	0.3051
nivelenerg*sala*;	oeso	3	15.9045844	5.3015281	0.33	0.8043
	Datasaãa					
	нетепсао	de i	nitrogênio períod	o pré-inicial		
Source	кетепсао		Sum of		F Value	Pr > F
Source	нетепсао	de i		o pré-inicial Mean Square	F Value	Pr > F
Source Model	нетепсао		Sum of		F Value 2.90	Pr > F 0.0210
Model	нетепсао	DF 15	Sum of Squares 829.875488	Mean Square 55.325033		
	нетепсао	DF	Sum of Squares	Mean Square		
Model	нетепсао	DF 15	Sum of Squares 829.875488	Mean Square 55.325033		
Model Error	нетепсао	DF 15 16	Sum of Squares 829.875488 305.060900	Mean Square 55.325033		
Model Error		DF 15 16	Sum of Squares 829.875488 305.060900 1134.936388	Mean Square 55.325033 19.066306	2.90	
Model Error	R-Square	DF 15 16	Sum of Squares 829.875488 305.060900 1134.936388	Mean Square 55.325033 19.066306	2.90	
Model Error		DF 15 16	Sum of Squares 829.875488 305.060900 1134.936388	Mean Square 55.325033 19.066306 oot MSE CRNPI	2.90	
Model Error	R-Square	DF 15 16	Sum of Squares 829.875488 305.060900 1134.936388	Mean Square 55.325033 19.066306 oot MSE CRNPI	2.90 Mean	
Model Error	R-Square	DF 15 16	Sum of Squares 829.875488 305.060900 1134.936388	Mean Square 55.325033 19.066306 oot MSE CRNPI	2.90 Mean	
Model Error	R-Square	DF 15 16	Sum of Squares 829.875488 305.060900 1134.936388	Mean Square 55.325033 19.066306 oot MSE CRNPI	2.90 Mean	
Model Error Corrected Total Source	R-Square	DF 15 16 31	Sum of Squares 829.875488 305.060900 1134.936388 Coeff Var Ro 5.699971 4 Type III SS	Mean Square 55.325033 19.066306 oot MSE CRNPI .366498 76.0	2.90 Mean 60563 F Value	0.0210 Pr > F
Model Error Corrected Total Source nivelenerg	R-Square	DF 15 16 31 DF 3	Sum of Squares 829.875488 305.060900 1134.936388 Coeff Var Ro 5.699971 4 Type III SS 232.1840625	Mean Square 55.325033 19.066306 Oot MSE CRNPI .366498 76.4 Mean Square 77.3946875	2.90 Mean 60563 F Value 4.06	0.0210 Pr > F 0.0254
Model Error Corrected Total Source nivelenerg sala	R-Square	DF 15 16 31 DF 3 1	Sum of Squares 829.875488 305.060900 1134.936388 Coeff Var Ro 5.699971 4 Type III SS 232.1840625 434.0931125	Mean Square 55.325033 19.066306 OOT MSE CRNPI .366498 76.4 Mean Square 77.3946875 434.0931125	2.90 Mean 60563 F Value 4.06 22.77	0.0210 Pr > F 0.0254 0.0002
Model Error Corrected Total Source nivelenerg sala peso	R-Square	DF 15 16 31 DF 3 1 1	Sum of Squares 829.875488 305.060900 1134.936388 Coeff Var Ro 5.699971 4 Type III SS 232.1840625 434.0931125 56.2860500	Mean Square 55.325033 19.066306 OOT MSE CRNPI .366498 76.4 Mean Square 77.3946875 434.0931125 56.2860500	2.90 Mean 60563 F Value 4.06 22.77 2.95	0.0210 Pr > F 0.0254 0.0002 0.1051
Model Error Corrected Total Source nivelenerg sala peso nivelenerg*sala	R-Square	DF 15 16 31 DF 3 1 1 3	Sum of Squares 829.875488 305.060900 1134.936388 Coeff Var Ro 5.699971 4 Type III SS 232.1840625 434.0931125 56.2860500 47.0738125	Mean Square 55.325033 19.066306 OOT MSE CRNPI .366498 76.4 Mean Square 77.3946875 434.0931125 56.2860500 15.6912708	2.90 Mean 60563 F Value 4.06 22.77 2.95 0.82	0.0210 Pr > F 0.0254 0.0002 0.1051 0.5002
Model Error Corrected Total Source nivelenerg sala peso nivelenerg*sala nivelenerg*peso	R-Square	DF 15 16 31 1 1 3 3 3	Sum of Squares 829.875488 305.060900 1134.936388 Coeff Var Ref 5.699971 4 Type III SS 232.1840625 434.0931125 56.2860500 47.0738125 25.7227750	Mean Square 55.325033 19.066306 OOT MSE CRNPI .366498 76.4 Mean Square 77.3946875 434.0931125 56.2860500 15.6912708 8.5742583	2.90 Mean 60563 F Value 4.06 22.77 2.95 0.82 0.45	0.0210 Pr > F 0.0254 0.0002 0.1051 0.5002 0.7210
Model Error Corrected Total Source nivelenerg sala peso nivelenerg*sala	R-Square 0.731209	DF 15 16 31 DF 3 1 1 3	Sum of Squares 829.875488 305.060900 1134.936388 Coeff Var Ro 5.699971 4 Type III SS 232.1840625 434.0931125 56.2860500 47.0738125	Mean Square 55.325033 19.066306 OOT MSE CRNPI .366498 76.4 Mean Square 77.3946875 434.0931125 56.2860500 15.6912708	2.90 Mean 60563 F Value 4.06 22.77 2.95 0.82	0.0210 Pr > F 0.0254 0.0002 0.1051 0.5002

Energia Metabolizável Período Pré-inicial

Source		DF	Sum (Square:		Square	F Value	Pr > F
Model		15	1380535.40	5 9203	5.694	9.69	<.0001
						9.09	1.0001
Error		16	151889.84	2 949	3.115		
Corrected Total		31	1532425.24	7			
	R-Square	(Coeff Var	Root MSE	EMPI	Mean	
	0.900883		2.807471	97.43262	3470	0.476	
Source		DF	Type III S	S Mean S	Sauare	F Value	Pr > F
0041 00		D,	Type III o	s mean e	,quui c	1 Value	11 - 1
nivelenerg		3	1097630.56		6.856	38.54	<.0001
sala		1	199151.49		1.494	20.98	0.0003
peso nivelenerg*sala		1 3	11404.653 47282.21		04.653 0.737	1.20 1.66	0.2893 0.2154
nivelenerg*peso		3	11845.37		8.458	0.42	0.7439
sala*peso		1	10097.98		7.981	1.06	0.7403
nivelenerg*sala*	peso	3	3123.12		1.042	0.11	0.9532
Coeficiente	de Metaboli	izabi.	lidade da Ener	gia Bruta pe	eríodo	pré-inicial	
			Sum				
Source		DF	Square	s Mean S	Square	F Value	Pr > F
Model		15	252.061996	9 16.80	41331	2.74	0.0268
Error		16	98.017550	6.12	60969		
Corrected Total		31	350.0795469	9			
	R-Square	Co	oeff Var I	Root MSE	CMEBPI	Mean	
	0.720013	2	2.837507	2.475095	87.	22781	
Source		DF	Type III S	S Mean S	Square	F Value	Pr > F
nivelenerg		3	78.636509	4 26.21	21698	4.28	0.0213
nivelenerg sala			78.636509 123.048828	4 26.21 1 123.04	21698 88281		0.0213 0.0004
nivelenerg sala peso		3 1	78.636509	4 26.21 1 123.04 1 7.61	21698	4.28 20.09	0.0213
nivelenerg sala		3 1 1	78.636509 123.048828 7.614753	4 26.21 1 123.04 1 7.61 4 8.81	21698 88281 47531	4.28 20.09 1.24	0.0213 0.0004 0.2814
nivelenerg sala peso nivelenerg*sala		3 1 1 3	78.636509 123.048828 7.614753 26.442684	4 26.21 1 123.04 1 7.61 4 8.81 4 2.78	21698 88281 47531 42281	4.28 20.09 1.24 1.44	0.0213 0.0004 0.2814 0.2685
nivelenerg sala peso nivelenerg*sala nivelenerg*peso	peso	3 1 1 3 3	78.636509 123.048828 7.614753 26.442684 8.356809	4 26.21 1 123.04 1 7.61 4 8.81 4 2.78 1 6.22	21698 88281 47531 42281 856031	4.28 20.09 1.24 1.44 0.45	0.0213 0.0004 0.2814 0.2685 0.7176

Digestibilidade da Matéria Seca período inicial

Source		DF	Sum Square		n Square	F Value	Pr > F
Model		15	377.430446		1620298	2.47	0.0412
MOGCI		10	077.400440			2147	010412
Error		16	162.932050	0 10.	1832531		
Corrected Total		31	540.362496	9			
	R-Square		Coeff Var	Root MSE	DMSI	Mean	
	0.698476		3.586751	3.191121	88.	96969	
Source		DF	Type III S	S Mear	n Square	F Value	Pr > F
nivelenerg		3	132.255809	44.	0852698	4.33	0.0205
sala		1	122.343903	122.	3439031	12.01	0.0032
peso		1	13.820653	13.	8206531	1.36	0.2611
nivelenerg*sala		3	66.729409	4 22.	2431365	2.18	0.1297
nivelenerg*peso		3	30.218409	10.	0728031	0.99	0.4229
sala*peso		1	2.922153	1 2.	9221531	0.29	0.5995
nivelenerg*sala*¡	peso	3	9.140109	4 3.	0467031	0.30	0.8255
	-		ade da Energia Sum				
Source		DF	Square	s Mear	Square	F Value	Pr > F
Model		15	245.915050	0 16.	3943367	2.09	0.0778
Error		16	125.669100	0 7.	8543188		
Corrected Total		31	371.584150	0			
	R-Square		Coeff Var	Root MSE	DENT	Mean	
	0.661802		3.102789	2.802556	90.	32375	
Courses		DE	Tura III (No Moon	0	F	D= > F
Source		DF	Type III S	o wear	n Square	F Value	Pr > F
nivelenerg		3	64.6281250	0 21.5	4270833	2.74	0.0774
sala		1	79.8848000	0 79.8	8480000	10.17	0.0057
peso		1	9.6580125	9.6	55801250	1.23	0.2839
nivelenerg*sala		3	53.5173250	0 17.8	33910833	2.27	0.1194
nivelenerg*peso		3	31.1620125	0 10.3	88733750	1.32	0.3018
sala*peso		1	0.3655125	0.3	86551250	0.05	0.8319
nivelenerg*sala*¡	peso	3	6.6992625	0 2.2	23308750	0.28	0.8360

Energia Digestível durante o Período Inicial

	Sum	of		
DF	Squares	Mean Square	F Value	Pr > F
15	1839933.452	122662.230	10.72	<.0001
16	183107.342	11444.209		
31	2023040.794			
R-Sauare	Coeff Var	Root MSE	FDT Mean	
n oquare	oocii vai	HOOC MOL	LDI WCAN	
0.909489	2.976334	106.9776	3594.275	
			- w 1	B . F
	• .	•		Pr > F
_				<.0001 0.0054
-				0.0034
•				0.2027
				0.1240
1	384.130	384.130	0.03	0.8569
3	10478.948	3492.983	0.31	0.8212
	15 16 31 R-Square 0.909489 DF 3 1 1 1 3 3	DF Squares 15 1839933.452 16 183107.342 31 2023040.794 R-Square Coeff Var 0.909489 2.976334 DF Type III SS 3 1572150.991 1 118101.645 1 15421.631 3 76441.826 3 46954.281 1 384.130	15 1839933.452 122662.230 16 183107.342 11444.209 31 2023040.794 R-Square Coeff Var Root MSE 0.909489 2.976334 106.9776 DF Type III SS Mean Square 3 1572150.991 524050.330 1 118101.645 118101.645 1 15421.631 15421.631 3 76441.826 25480.609 3 46954.281 15651.427 1 384.130 384.130	DF Squares Mean Square F Value 15 1839933.452 122662.230 10.72 16 183107.342 11444.209 31 2023040.794 R-Square Coeff Var Root MSE EDI Mean 0.909489 2.976334 106.9776 3594.275 DF Type III SS Mean Square F Value 3 1572150.991 524050.330 45.79 1 118101.645 118101.645 10.32 1 15421.631 15421.631 1.35 3 76441.826 25480.609 2.23 3 46954.281 15651.427 1.37 1 384.130 384.130 0.03

Digestibilidade da Gordura Bruta durante o período inicial

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	2675.534822	178.368988	5.48	0.0008
Error	16	521.049150	32.565572		
Corrected Total	31	3196.583972			
	R-Square	Coeff Var	Root MSE [OGBI Mean	
	0.836998	7.096551	5.706625	80.41406	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	1982.300284	660.766761	20.29	<.0001
sala	1	339.236128	339.236128	10.42	0.0053
peso	1	1.800253	1.800253	0.06	0.8171
nivelenerg*sala	3	259.149634	86.383211	2.65	0.0840
nivelenerg*peso	3	73.679509	24.559836	0.75	0.5359
sala*peso	1	0.243253	0.243253	0.01	0.9322
nivelenerg*sala*peso	3	19.125759	6.375253	0.20	0.8977

Digestibilidade da Proteína Bruta durante o período inicial

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	502.9423000	33.5294867	1.74	0.1420
Error	16	308.8129000	19.3008062	!	
Corrected Total	31	811.7552000			
	R-Square	Coeff Var	Root MSE D	PBI Mean	
	0.619574	5.063702	4.393268	86.76000	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	93.5265000	31.1755000	1.62	0.2252
sala	1	178.6995125	178.6995125	9.26	0.0078
peso	1	26.2450125	26.2450125	1.36	0.2607
nivelenerg*sala	3	110.9527375	36.9842458	1.92	0.1677
nivelenerg*peso	3	78.2467375	26.0822458	1.35	0.2932
sala*peso	1	3.6180500	3.6180500	0.19	0.6708
nivelenerg*sala*peso	3	11.6537500	3.8845833	0.20	0.8940

Retenção de Nitrogênio durante o período inicial

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	468.0119500	31.2007967	1.65	0.1639
Error	16	301.6554000	18.8534625		
Corrected Total	31	769.6673500			
	R-Square	Coeff Var	Root MSE	CRNI Mean	
	0.608070	5.669130	4.342057	76.59125	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	84.8757000	28.2919000	1.50	0.2524
sala	1	100.4653125	100.4653125	5.33	0.0347
peso	1	61.9941125	61.9941125	3.29	0.0886
nivelenerg*sala	3	58.0741375	19.3580458	1.03	0.4070
nivelenerg*peso	3	126.9112375	42.3037458	2.24	0.1226
sala*peso	1	6.4082000	6.4082000	0.34	0.5680
nivelenerg*sala*peso	3	29.2832500	9.7610833	0.52	0.6760

Energia Metabolizável durante o período inicial

	Sum of						
Source	DF	Squares	Mean Square	F Value	Pr > F		
Model	15	1839483.231	122632.215	11.06	<.0001		
Error	16	177376.274	11086.017				
Corrected Total	31	2016859.506					
	R-Square	Coeff Var	Root MSE	EMI Mean			
	0.912053	2.952857	105.2902	3565.704			
Source	DF	Type III SS	Mean Square	F Value	Pr > F		
nivelenerg	3	1580732.655	526910.885	47.53	<.0001		
sala	1	111681.288	111681.288	10.07	0.0059		
peso	1	17353.379	17353.379	1.57	0.2289		
nivelenerg*sala	3	71877.354	23959.118	2.16	0.1325		
nivelenerg*peso	3	47950.784	15983.595	1.44	0.2677		
sala*peso	1	53.484	53.484	0.00	0.9455		
nivelenerg*sala*peso	3	9834.289	3278.096	0.30	0.8279		

Coeficiente de Metabolizabilidade da Energia Bruta período inicial

		Sum	of		
Source	DF	Squares	s Mean Square	F Value	Pr > F
Model	15	243.5486969	16.2365798	2.13	0.0722
Error	16	121.8723500	7.6170219		
Corrected Total	31	365.4210469)		
	R-Square	Coeff Var	Root MSE CMEBI	Mean	
	n oquare	oocii vai	HOOT MOL OMEDI	MCarr	
	0.666488	3.080144	2.759895 89.	60281	
Source	DF	Type III S	SS Mean Square	F Value	Pr > F
	_				
nivelenerg	3	68.43895937	22.81298646	3.00	0.0618
sala	1	75.67575313	75.67575313	9.94	0.0062
peso	1	10.79962813	10.79962813	1.42	0.2511
nivelenerg*sala	3	50.46175938	16.82058646	2.21	0.1268
nivelenerg*peso	3	31.91613438	10.63871146	1.40	0.2801
sala*peso	1	0.08925312	0.08925312	0.01	0.9151
nivelenerg*sala*peso	3	6.16720938	2.05573646	0.27	0.8462

Digestibilidade da Matéria Seca no período total

Sum of				
DF	Squares	Mean Square	F Value	Pr > F
15	265.6513969	17.7100931	2.50	0.0393
16	113.3027500	7.0814219		
31	378.9541469			
R-Square	Coeff Var	Root MSE	DMSt Mean	
0.701012	3.022328	2.661094	88.04781	
DF	Type III SS	Mean Square	F Value	Pr > F
3	119.9585344	39.9861781	5.65	0.0078
1	119.7765031	119.7765031	16.91	0.0008
1	12.2141531	12.2141531	1.72	0.2076
3	5.9242844	1.9747615	0.28	0.8398
3	1.8238844	0.6079615	0.09	0.9668
1	0.0871531	0.0871531	0.01	0.9130
3	5.8668844	1.9556281	0.28	0.8417
	15 16 31 R-Square 0.701012 DF 3 1 1 1 3 3 1	DF Squares 15 265.6513969 16 113.3027500 31 378.9541469 R-Square Coeff Var 0.701012 3.022328 DF Type III SS 3 119.9585344 1 119.7765031 1 12.2141531 3 5.9242844 3 1.8238844 1 0.0871531	DF Squares Mean Square 15 265.6513969 17.7100931 16 113.3027500 7.0814219 31 378.9541469 R-Square Coeff Var Root MSE 0.701012 3.022328 2.661094 DF Type III SS Mean Square 3 119.9585344 39.9861781 1 119.7765031 119.7765031 1 12.2141531 12.2141531 3 5.9242844 1.9747615 3 1.8238844 0.6079615 1 0.0871531 0.0871531	DF Squares Mean Square F Value 15 265.6513969 17.7100931 2.50 16 113.3027500 7.0814219 31 378.9541469 R-Square Coeff Var Root MSE DMSt Mean 0.701012 3.022328 2.661094 88.04781 DF Type III SS Mean Square F Value 3 119.9585344 39.9861781 5.65 1 119.7765031 119.7765031 16.91 1 12.2141531 12.2141531 1.72 3 5.9242844 1.9747615 0.28 3 1.8238844 0.6079615 0.09 1 0.0871531 0.0871531 0.01

Digestibilidade da Energia no período total

Sum of					
DF	Squares	Mean Square	F Value	Pr > F	
15	183 6750875	12 2450058	2 30	0.0470	
			2.03	0.0470	
31	265.6364875	011220070			
R-Square	Coeff Var	Root MSE	DENt Mean		
0.691453	2.543388	2.263313	88.98813		
95			5 W 1		
DF	Type III SS	Mean Squar	e F Value	Pr > F	
3	66.7630375	22.2543458	4.34	0.0203	
1	100.2528000	100.2528000	19.57	0.0004	
1	7.5660500	7.5660500	1.48	0.2419	
3	2.3604000	0.7868000	0.15	0.9258	
3	2.4314500	0.8104833	0.16	0.9228	
1	0.8911125	0.8911125	0.17	0.6822	
3	3.4102375	1.1367458	0.22	0.8798	
	15 16 31 R-Square 0.691453 DF 3 1 1 3 3 3	DF Squares 15 183.6750875 16 81.9614000 31 265.6364875 R-Square Coeff Var 0.691453 2.543388 DF Type III SS 3 66.7630375 1 100.2528000 1 7.5660500 3 2.3604000 3 2.4314500 1 0.8911125	DF Squares Mean Square 15 183.6750875 12.2450058 16 81.9614000 5.1225875 31 265.6364875 R-Square Coeff Var Root MSE 0.691453 2.543388 2.263313 DF Type III SS Mean Squar 3 66.7630375 22.2543458 1 100.2528000 100.2528000 1 7.5660500 7.5660500 3 2.3604000 0.7868000 3 2.4314500 0.8104833 1 0.8911125 0.8911125	DF Squares Mean Square F Value 15	

Digestibilidade da Gordura Bruta no período total

	Sum of					
Source	DF	Squares	Mean Square	e F Value	Pr > F	
Model	15	2787.797200	185.853147	7.56	0.0001	
Error	16	393.304800	24.581550)		
Corrected Total	31	3181.102000				
	R-Square	Coeff Var	Root MSE	DGBt Mean		
	·					
	0.876362	6.309868	4.957978	78.57500		
Source	DF	Type III SS	Mean Square	F Value	Pr > F	
nivelenerg	3	2092.621775	697.540592	28.38	<.0001	
sala	1	491.881612	491.881612	20.01	0.0004	
peso	1	2.531250	2.531250	0.10	0.7524	
nivelenerg*sala	3	151.444263	50.481421	2.05	0.1469	
nivelenerg*peso	3	12.555625	4.185208	0.17	0.9149	
sala*peso	1	7.507813	7.507813	0.31	0.5881	
nivelenerg*sala*peso	3	29.254862	9.751621	0.40	0.7572	

Digestibilidade da proteína bruta no período total

		Sum	of		
Source	DF	Squares	Mean Squar	re F Value	Pr > F
Model	15	467.1811500	31.145410	00 2.11	0 0747
Model	15	467.1811500	31.145410	2.11	0.0747
Error	16	236.0788000	14.754925	50	
Corrected Total	31	703.2599500			
	R-Square	Coeff Var	Root MSE	DPBt Mean	
			0.044044	04.04405	
	0.664308	4.559778	3.841214	84.24125	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	137.1052750	45.7017583	3.10	0.0565
sala	1	289.4418000	289.4418000	19.62	0.0004
peso	1	16.7620500	16.7620500	1.14	0.3023
nivelenerg*sala	3	9.2765250	3.0921750	0.21	0.8883
nivelenerg*peso	3	7,2398250	2.4132750	0.16	0.9193
sala*peso	1	1.3778000	1.3778000	0.09	0.7639
nivelenerg*sala*peso	3	5.9778750	1.9926250	0.14	0.9377
3 p	_				

Retenção de Nitrogênio no período total

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	482.6767875	32.1784525	2.00	0.0909
Error	16	258.0058000	16.1253625		
Corrected Total	31	740.6825875			
	R-Square	Coeff Var	Root MSE	CRNt Mean	
	0.651665	5.242392	4.015640	76.59938	
Saunaa	DF	Type III CC	Maan Cauana	F Value	Do > F
Source	DF	Type III SS	Mean Square	r value	Pr > F
nivelenerg	3	147.7813125	49.2604375	3.05	0.0587
sala	1	237.9471125	237.9471125	14.76	0.0014
peso	1	59.0784500	59.0784500	3.66	0.0737
nivelenerg*sala	3	3.5693625	1.1897875	0.07	0.9732
nivelenerg*peso	3	21.3544750	7.1181583	0.44	0.7266
sala*peso	1	11.6644500	11.6644500	0.72	0.4076
nivelenerg*sala*peso	3	1.2816250	0.4272083	0.03	0.9939

The SAS System 15:38 Saturday, December 8,

2001 103

Energia Metabolizável no período total

Source	DF	Sum Squares	of Mean Square	e F Value	Pr > F
3041 00	ы	oquui co	mean oquan	, value	11 - 1
Model	15	1504834.331	100322.289	9 13.13	<.0001
Error	16	122229.946	7639.372	2	
Corrected Total	31	1627064.276			
	R-Square	Coeff Var	Root MSE	Emt Mean	
	0.924877	2.484401	87.40350	3518.091	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	1325341.557	441780.519	57.83	<.0001
sala	1	152273.350	152273.350	19.93	0.0004
peso	1	14223.519	14223.519	1.86	0.1913
nivelenerg*sala	3	1654.674	551.558	0.07	0.9740
nivelenerg*peso	3	3525.472	1175.157	0.15	0.9257
sala*peso	1	2170.252	2170.252	0.28	0.6014
nivelenerg*sala*peso	3	5645.505	1881.835	0.25	0.8627

Metabolizabilidade da Energia Bruta no período Total

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	186.1152875	12.4076858	2.41	0.0452
Error	16	82.2155000	5.1384688		
Corrected Total	31	268.3307875			
	R-Square	Coeff Var	Root MSE C	MEBt Mean	
	0.693604	2.563858	2.266819	88.41438	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	70.23363750	23.41121250	4.56	0.0172
sala	1	97.93001250	97.93001250	19.06	0.0005
peso	1	9.09511250	9.09511250	1.77	0.2020
nivelenerg*sala	3	1.98103750	0.66034583	0.13	0.9418
nivelenerg*peso	3	2.33073750	0.77691250	0.15	0.9274
sala*peso	1	1.20901250	1.20901250	0.24	0.6342
nivelenerg*sala*peso	3	3.33573750	1.11191250	0.22	0.8836
	Enongio Dig	estível durante	o Domíado Toto	7	
	Ellergia Dig	estivei durante	o Periodo Tota	1	
		Sum	of		
Source	DF	Sum Squares	of Mean Square	F Value	Pr > F
Source Model	DF 15				Pr > F <.0001
		Squares	Mean Square	13.09	
Model	15	Squares	Mean Square 99951.424	13.09	
Model Error	15 16	Squares 1499271.365 122214.056	Mean Square 99951.424	13.09	
Model Error	15 16 31	Squares 1499271.365 122214.056 1621485.421	Mean Square 99951.424 7638.378	13.09	
Model Error	15 16 31 R-Square	Squares 1499271.365 122214.056 1621485.421 Coeff Var	Mean Square 99951.424 7638.378 Root MSE	13.09 Edt Mean	
Model Error	15 16 31 R-Square	Squares 1499271.365 122214.056 1621485.421 Coeff Var	Mean Square 99951.424 7638.378 Root MSE	13.09 Edt Mean	
Model Error Corrected Total	15 16 31 R-Square 0.924628	Squares 1499271.365 122214.056 1621485.421 Coeff Var 2.468308	Mean Square 99951.424 7638.378 Root MSE 87.39782	13.09 Edt Mean 3540.798	<.0001
Model Error Corrected Total Source	15 16 31 R-Square 0.924628	Squares 1499271.365 122214.056 1621485.421 Coeff Var 2.468308 Type III SS	Mean Square 99951.424 7638.378 Root MSE 87.39782 Mean Square	13.09 Edt Mean 3540.798 F Value	<.0001
Model Error Corrected Total Source nivelenerg	15 16 31 R-Square 0.924628	Squares 1499271.365 122214.056 1621485.421 Coeff Var 2.468308 Type III SS 1318653.333	Mean Square 99951.424 7638.378 Root MSE 87.39782 Mean Square 439551.111	13.09 Edt Mean 3540.798 F Value 57.55 20.39	<.0001 Pr > F <.0001
Model Error Corrected Total Source nivelenerg sala peso	15 16 31 R-Square 0.924628 DF 3 1	Squares 1499271.365 122214.056 1621485.421 Coeff Var 2.468308 Type III SS 1318653.333 155769.897	Mean Square 99951.424 7638.378 Root MSE 87.39782 Mean Square 439551.111 155769.897	13.09 Edt Mean 3540.798 F Value 57.55 20.39 1.53	<.0001 Pr > F <.0001 0.0004
Model Error Corrected Total Source nivelenerg sala peso nivelenerg*sala	15 16 31 R-Square 0.924628 DF 3 1	Squares 1499271.365 122214.056 1621485.421 Coeff Var 2.468308 Type III SS 1318653.333 155769.897 11707.178	Mean Square 99951.424 7638.378 Root MSE 87.39782 Mean Square 439551.111 155769.897 11707.178	13.09 Edt Mean 3540.798 F Value 57.55 20.39 1.53	<.0001 Pr > F <.0001 0.0004 0.2336
Model Error Corrected Total Source nivelenerg sala peso nivelenerg*sala nivelenerg*peso	15 16 31 R-Square 0.924628 DF 3 1 1 3	Squares 1499271.365 122214.056 1621485.421 Coeff Var 2.468308 Type III SS 1318653.333 155769.897 11707.178 2113.007 3684.483	Mean Square 99951.424 7638.378 Root MSE 87.39782 Mean Square 439551.111 155769.897 11707.178 704.336 1228.161	13.09 Edt Mean 3540.798 F Value 57.55 20.39 1.53 0.09 0.16	<.0001 Pr > F <.0001 0.0004 0.2336 0.9633 0.9212
Model Error Corrected Total Source nivelenerg sala peso nivelenerg*sala	15 16 31 R-Square 0.924628 DF 3 1 1 3 3 3	Squares 1499271.365 122214.056 1621485.421 Coeff Var 2.468308 Type III SS 1318653.333 155769.897 11707.178 2113.007	Mean Square 99951.424 7638.378 Root MSE 87.39782 Mean Square 439551.111 155769.897 11707.178 704.336	13.09 Edt Mean 3540.798 F Value 57.55 20.39 1.53 0.09 0.16 0.21	<.0001 Pr > F <.0001 0.0004 0.2336 0.9633

Apêndice 7- Retenção diária de nutrientes corporais por parte dos leitões

Peso	Temperatura	EM	MS	РВ	GB	Cinzas	Água	EB
		Kcal/kg	Taxa g/d	Taxakcal/d				
Pesado	Quente	3550	107,99	64,34	33,44	8,43	269,62	682,09
Pesado	Quente	3250	123,73	79,63	33,38	10,49	366,13	717,75
Pesado	Quente	3400	132,85	73,73	47,54	8,94	321,65	851,43
Pesado	Quente	3400	128,75	74,54	38,62	10,83	348,54	808,888
Pesado	Quente	3700	143,72	80,4	49,4	8,65	294,92	851,26
Pesado	Quente	3550	118,53	65,05	40,6	7,96	260,58	745,79
Pesado	Quente	3700	161,38	75,11	71,8	12,56	312,62	1094,77
Pesado	Quente	3250	86,76	58,4	19,02	8,31	273,53	481,92
Leve	Quente	3400	80,5	50,14	24,78	5,66	183,04	446,94
Leve	Quente	3400	92,1	53,08	29,65	6,05	243,15	562,29
Leve	Quente	3550	109,14	58,68	38,96	8,58	284,31	679,47
Leve	Quente	3700	91,13	47,45	34,3	6,63	226,19	570,8
Leve	Quente	3550	97,52	52,7	37,84	7,49	304,88	670,9
Leve	Quente	3700	90,66	45,56	36,2	7,12	212,34	635,7
Leve	Quente	3250	110,41	57,94	40,6	8,78	228,52	706,55
Leve	Quente	3250	86,54	51,58	22,04	7,00	231,5	488,56
Pesado	Termoneutra	3700	136,16	66,01	58,25	9,32	292,55	972,43
Pesado	Termoneutra	3250	110,33	66,9	31,9	12,49	338,31	676,98
Pesado	Termoneutra	3400	108,8	58,21	41,84	8,64	300,41	736,49
Pesado	Termoneutra	3400	138,5	78,9	50,42	9,86	311,04	879,83
Pesado	Termoneutra	3550	182,75	97,23	70,34	12,42	349	1210,5
Pesado	Termoneutra	3250	114,01	65,68	39,29	9,45	295,6	750,06
Pesado	Termoneutra	3550	157,51	84,14	55,35	13,04	334,13	1051,08
Pesado	Termoneutra	3700	152,97	79,08	66,1	9,9	353,53	1018,1
Leve	Termoneutra	3250	126,94	80,11	34,27	10,64	307,84	765,25
Leve	Termoneutra	3400	120,79	63,73	47,57	8,87	303,68	801,23
Leve	Termoneutra	3700	137,66	68	59,62	9,69	324,12	941,58
Leve	Termoneutra	3250	101,69	57,91	33,47	8,11	247,95	628,22
Leve	Termoneutra	3700	98,72	51,03	42,51	8,14	250,42	666,72
Leve	Termoneutra	3550	95,73	51,47	33,91	7,5	240,73	592,33
Leve	Termoneutra	3400	103,32	58,41	33,05	8,76	274,57	680,36
Leve	Termoneutra	3700	161,34	86,97	65,82	14,06	372,27	1043,64

Apêndice 8- Total de energia retida como proteína (ERP), Energia retida como Gordura (ERG) e total de Energia retida por parte dos leitões

Peso	Temperatura	EM	ERP	ERG	Total
		Kcal/kg	Kcal/d	Kcal/d	Kcal/d
Pesado	Quente	3550	364,19	316,31	680,5
Pesado	Quente	3250	450,73	315,8	766,53
Pesado	Quente	3400	417,29	449,73	867,02
Pesado	Quente	3400	421,92	365,38	787,3
Pesado	Quente	3700	455,05	467,33	922,38
Pesado	Quente	3550	368,17	384,11	752,28
Pesado	Quente	3700	425,11	679,22	1104,33
Pesado	Quente	3250	330,56	179,95	510,51
Leve	Quente	3400	283,78	234,41	518,19
Leve	Quente	3400	300,41	280,53	580,94
Leve	Quente	3550	332,14	368,6	700,73
Leve	Quente	3700	268,59	324,46	593,05
Leve	Quente	3550	298,29	357,96	656,25
Leve	Quente	3700	257,87	342,41	600,28
Leve	Quente	3250	327,92	384,11	712,04
Leve	Quente	3250	291,95	208,55	500,49
Pesado	Termoneutra	3700	373,6	551,03	924,63
Pesado	Termoneutra	3250	378,63	301,8	680,43
Pesado	Termoneutra	3400	329,45	395,79	725,24
Pesado	Termoneutra	3400	446,6	476,98	923,58
Pesado	Termoneutra	3550	550,33	665,41	1215,75
Pesado	Termoneutra	3250	371,74	371,66	743,4
Pesado	Termoneutra	3550	476,21	523,57	999,77
Pesado	Termoneutra	3700	447,57	625,28	1072,85
Leve	Termoneutra	3250	453,45	324,17	777,62
Leve	Termoneutra	3400	360,72	450,05	810,77
Leve	Termoneutra	3700	384,86	564,03	948,9
Leve	Termoneutra	3250	327,8	316,62	644,42
Leve	Termoneutra	3700	288,83	402,16	691
Leve	Termoneutra	3550	291,33	320,78	612,11
Leve	Termoneutra	3400	330,61	312,61	643,23
Leve	Termoneutra	3700	492,28	622,65	1114,92

Apêndice 9 ANOVA da retenção de nutrientes

Taxa de retenção de matéria seca

	Sum of						
Source	DF	Squares	Mean Square	F Value	Pr > F		
Model	15	15021.70852	1001.44723	2.85	0.0225		
Error	16	5612.58275	350.78642				
Corrected Total	31	20634.29127					
	R-Square	Coeff Var	Root MSE	TMS Mean			
	0.727997	15.73506	18.72929	119.0291			
Source	DF	Type III SS	Mean Square	e F Value	Pr > F		
nivelenerg	3	2544.065509	848.021836	2.42	0.1042		
sala	1	2547.373753	2547.373753	7.26	0.0159		
peso	1	5013.759453	5013.759453	14.29	0.0016		
nivelenerg*sala	3	1439.412734	479.804245	1.37	0.2883		
nivelenerg*peso	3	1772.313634	590.771211	1.68	0.2104		
sala*peso	1	258.042403	258.042403	0.74	0.4037		
nivelenerg*sala*peso	3	1446.741034	482.247011	1.37	0.2863		

Taxa de retencão de proteína

	Sum of				
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	3555.942022	237.062801	2.23	0.0617
Error	16	1704.696850	106.543553		
Corrected Total	31	5260.638872			
	D. 0	0	D+ MOE	TDD Mass	
	R-Square	Coeff Var	Root MSE	TPB Mean	
	0.675953	15.71296	10.32199	65.69094	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	208.482884	69.494295	0.65	0.5930
sala	1	491.803203	491.803203	4.62	0.0473
peso	1	1690.565878	1690.565878	15.87	0.0011
nivelenerg*sala	3	393.472009	131.157336	1.23	0.3310
nivelenerg*peso	3	270.831934	90.277311	0.85	0.4880
sala*peso	1	178.368828	178.368828	1.67	0.2141
nivelenerg*sala*peso	3	322.417284	107.472428	1.01	0.4146

Taxa de retenção de Gordura

	Sum of							
Source	DF	Squares	Mean Square	F Value	Pr > F			
Model	15	4240.727450	282.715163	2.87	0.0219			
Error	16	1574.439100	98.402444					
Corrected Total	31	5815.166550						
	D. Sauono	Coeff Var	Root MSE	TGB Mean				
	R-Square	Coerr var	ROOL MSE	IGB Weall				
	0.729253	23.30849	9.919801	42.55875				
Source	DF	Type III SS	Mean Square	F Value	Pr > F			
nivelenerg	3	1941.377275	647.125758	6.58	0.0042			
sala	1	856.359113	856.359113	8.70	0.0094			
peso	1	550.290313	550.290313	5.59	0.0310			
nivelenerg*sala	3	191.791012	63.930337	0.65	0.5946			
nivelenerg*peso	3	422.538113	140.846038	1.43	0.2705			
sala*peso	1	1.185800	1.185800	0.01	0.9140			
nivelenerg*sala*peso	3	277.185825	92.395275	0.94	0.4449			

Taxa de retenção de cinzas

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	83.3642219	5.5576148	1.94	0.1008
Error	16	45.9410500	2.8713156		
Corrected Total	31	129.3052719			
	R-Square	Coeff Var	Root MSE	TCZ Mean	
	0.644709	18.42031	1.694496	9.199063	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
		31	•		
nivelenerg	3	9.47140938	3.15713646	1.10	0.3781
sala	1	23.47837813	23.47837813	8.18	0.0114
peso	1	24.86887812	24.86887812	8.66	0.0095
nivelenerg*sala	3	10.93615938	3.64538646	1.27	0.3183
nivelenerg*peso	3	1.93610937	0.64536979	0.22	0.8778
sala*peso	1	2.82625313	2.82625313	0.98	0.3359
nivelenerg*sala*peso	3	9.84703438	3.28234479	1.14	0.3618

Taxa de retenção de água

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	46828.78230	3121.91882	2.13	0.0728
Error	16	23487.68385	1467.98024		
Corrected Total	31	70316.46615			
	R-Square	Coeff Var	Root MSE	TAG Mean	
	0.665972	13.24367	38.31423	289.3022	
Source	DF	Type III SS	S Mean Squa	re F Value	e Pr > F
nivelenerg	3	1741.19001	580.39667	0.40	0.7581
sala	1	8932.16365	8932.16365		0.0253
peso	1	19338.06945	19338.06945		0.0233
nivelenerg*sala	3	882.45546	294.15182		0.8946
nivelenerg*peso	3	5820.48801	1940.16267		
sala*peso	1	2461.73903	2461.73903		0.2137
nivelenerg*sala*peso		7652.67668	2550.89223		0.1996
	Tax	a de retencão de			
Source	DF	Sum Squares	of Mean Square	F Value	Pr > F
Model	15	816633.204	54442.214	3.16	0.0144
Error	16	275947.430	17246.714		
Corrected Total	31	1092580.634			
	R-Square	Coeff Var	Root MSE	TEN Mean	
	0.747435	17.21619	131.3267	762.8094	
Source	DF	Type III SS	Mean Squar	e F Value	Pr > F
nivelenera	3	206136.5342	68712.1781	3.98	0.0269
nivelenerg sala	ა 1	182967.1278	182967.1278	3.98 10.61	0.0269
		182967.1278 219257.7310			
peso nivelenerg*sala	1 3	44128.2559	219257.7310 14709.4186	12.71 0.85	0.0026 0.4853
nivelenerg*sala nivelenerg*peso	3	77201.5796	25733.8599	1.49	0.4853
sala*peso	3 1	2747.9991	2747.9991	0.16	0.6950
nivelenerg*sala*peso	3	84193.9762	28064.6587	1.63	0.0930
haverenery sara pesu	3	07130.3702	20004.0007	1.00	0.2220

Relação retenção de Gordura: retenção de proteína

		Sum	0.5		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	0.53177188	0.03545146	3.39	0.0103
Error	16	0.16735000	0.01045938		
Corrected Total	31	0.69912188			
	R-Square	Coeff Var	Root MSE	GBPB Mean	
	0.760628	15.81766	0.102271	0.646563	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	0.41705937	0.13901979		0.0001
sala	1	0.05362813	0.05362813		0.0378
peso	1	0.00427813	0.00427813		0.5315
nivelenerg*sala	3	0.00460937	0.00153646		0.9302
nivelenerg*peso	3	0.02095937	0.00698646		0.5839
sala*peso	1	0.00877813	0.00877813	0.84	0.3732
nivelenerg*sala*pes	0 3	0.02245937	0.00748646	0.72	0.5569
	Ener	gia retida como	proteína		
		Sum			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	113911.7637	7594.1176	2.22	0.0618
Error	16	54619.8882	3413.7430		
Corrected Total	31	168531.6519			
	R-Square	Coeff Var	Root MSE	ERP Mean	
	0.675907	15.71420	58.42725	371.8119	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	6682.49384	2227.49795	0.65	0.5929
sala	1	15754.90005	15754.90005	4.62	0.0473
peso	1	54146.82320	54146.82320	15.86	0.0011
nivelenerg*sala	3	12604.01485	4201.33828	1.23	0.3311
nivelenerg*peso	3	8674.89820	2891.63273	0.85	0.4882
sala*peso	1	5719.68601	5719.68601	1.68	0.2139
	_				

nivelenerg*sala*peso 3 10328.94754 3442.98251 1.01 0.4146

Energia retida como gordura

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	379448.1005	25296.5400	2.87	0.0220
Error	16	140913.0855	8807.0678		
Corrected Total	31	520361.1859			
	R-Square	Coeff Var	Root MSE	ERG Mean	
	0.729201	23.30953	93.84598	402.6078	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	173698.2436	57899.4145	6.57	0.0042
sala	1	76609.7010	76609.7010	8.70	0.0094
peso	1	49239.1426	49239.1426	5.59	0.0310
nivelenerg*sala	3	17163.5216	5721.1739	0.65	0.5946
nivelenerg*peso	3	37813.5129	12604.5043	1.43	0.2706
sala*peso	1	106.3976	106.3976	0.01	0.9138
nivelenerg*sala*peso	3	24817.5811	8272.5270	0.94	0.4447

Apêndice 10- Composição química das carcaças dos leitões

Peso	Temperatura	EM						
		Kcal/kg	MS (%)	Cinzas (%)	PB (%)	GB (%)	EB (kcal/kg)	UMIDADE (%)
Pesado	Quente	3550	29,69	2,69	15,98	10,93	1919,58	70,31
Pesado	Quente	3250	27,34	2,66	15,45	9,36	1717,87	72,67
Pesado	Quente	3400	30,6	2,46	15,74	12,02	1993,94	69,41
Pesado	Quente	3400	28,86	2,68	15,64	10,35	1843,02	71,15
Pesado	Quente	3700	31,58	2,54	15,22	13,13	2099,53	68,43
Pesado	Quente	3550	31,5	2,55	16,06	12,46	2026,62	68,5
Pesado	Quente	3700	34,64	2,99	15,78	15,74	2347,72	65,36
Pesado	Quente	3250	26,18	2,81	16,03	7,82	1601,53	73,82
Leve	Quente	3400	29,22	2,78	16,78	9,67	1778,45	70,78
Leve	Quente	3400	27,95	2,37	15,7	9,28	1722,98	72,05
Leve	Quente	3550	27,99	2,69	14,45	10,76	1787,28	72,01
Leve	Quente	3700	28,41	2,58	14,44	11,08	1806,58	71,59
Leve	Quente	3550	24,99	2,34	13,28	10,09	1726,23	75,01
Leve	Quente	3700	28,8	2,75	14,55	12,13	1975,47	71,2
Leve	Quente	3250	32,44	3,03	17,09	12,06	2075,15	67,57
Leve	Quente	3250	25,81	2,73	14,32	7,87	1546,49	74,2
Pesado	Termoneutra	3700	31,68	2,57	14,99	14,49	2235,79	68,33
Pesado	Termoneutra	3250	27,66	3,18	14,84	9,88	1790,89	72,35
Pesado	Termoneutra	3400	28,76	2,65	14,18	12,09	1978,69	71,25
Pesado	Termoneutra	3400	32,24	2,66	17,11	12,62	2083,78	67,76
Pesado	Termoneutra	3550	33,21	2,65	16,55	14,04	2234,87	66,8
Pesado	Termoneutra	3250	30,22	2,82	15,76	11,8	2029,86	69,78
Pesado	Termoneutra	3550	32,33	3,02	16,42	12,9	2140,21	67,68
Pesado	Termoneutra	3700	31,5	2,47	15,25	14,27	2145,63	68,5
Leve	Termoneutra	3250	30,17	2,81	18,17	9,1	1861,3	69,84
Leve	Termoneutra	3400	29,58	2,66	15,48	11,64	1968,16	70,42
Leve	Termoneutra	3700	29,47	2,51	14,41	12,76	2025	70,53
Leve	Termoneutra	3250	29,14	2,81	16,08	10,21	1864,04	70,87
Leve	Termoneutra	3700	29,46	2,84	15,08	12,19	1989,71	70,55
Leve	Termoneutra	3550	28,73	2,81	15,02	11,13	1826,64	71,28
Leve	Termoneutra	3400	27,4	2,78	14,96	9,49	1806,27	72,6
Leve	Termoneutra	3700	32,08	3,07	16,56	13,36	2087,85	67,93

Apêndice 11- ANOVA da composição da carcaça dos leitoes

Matéria seca das carcaças dos leitões

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	100.7486219	6.7165748	1.99	0.0925
Error	16	54.1207500	3.3825469		
Corrected Total	31	154.8693719			
	R-Square	Coeff Var	Root MSE	MS Mean	
	0.650539	6.197513	1.839170	29.67594	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	19.37643438	6.45881146	1.91	0.1688
sala	1	9.71302813	9.71302813	2.87	0.1095
peso	1	21.69757813	21.69757813	6.41	0.0222
nivelenerg*sala	3	12.94868437	4.31622813	1.28	0.3163
nivelenerg*peso	3	30.93153438	10.31051146	3.05	0.0590
sala*peso	1	0.32200313	0.32200313	0.10	0.7617
nivelenerg*sala*peso	3	5.75935937	1.91978646	0.57	0.6443

Cinza das carcaças dos leitões

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	0.64140000	0.04276000	1.17	0.3788
Error	16	0.58500000	0.03656250		
Corrected Total	31	1.22640000			
	R-Square	Coeff Var	Root MSE	CZ Mean	
	0.522994	7.036365	0.191213	2.717500	

Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	0.24607500	0.08202500	2.24	0.1226
sala	1	0.08611250	0.08611250	2.36	0.1444
peso	1	0.00080000	0.00080000	0.02	0.8843
nivelenerg*sala	3	0.19176250	0.06392083	1.75	0.1975
nivelenerg*peso	3	0.00417500	0.00139167	0.04	0.9897
sala*peso	1	0.00451250	0.00451250	0.12	0.7299
nivelenerg*sala*peso	3	0.10796250	0.03598750	0.98	0.4250

Proteína Bruta das carcaças dos leitões

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	18.3128968	8 1.22085979	1.40	0.2547
Error	16	13.9307500	0 0.87067188	3	
Corrected Total	31	32.2436468	8		
	R-Square	Coeff Var	Root MSE F	PB Mean	
	n-oquar e	oceri vai	HOOL WOL I	D Weall	
	0.567954	6.003405	0.933098 15	5.54281	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	4.30840937	1.43613646	1.65	0.2177
sala	1	0.59132813	0.59132813	0.68	0.4220
peso	1	0.66990312	0.66990312	0.77	0.3934
nivelenerg*sala	3	3.32048438	1.10682813	1.27	0.3178
nivelenerg*peso	3	5.95340938	1.98446979	2.28	0.1186
sala*peso	1	1.10632812	1.10632812	1.27	0.2763
nivelenerg*sala*pes	0 3	2.36303437	0.78767812	0.90	0.4606

Gordura Bruta das carcaças dos leitões

Pr > F
0.0063

R-Square Coeff Var Root MSE GB Mean
0.778398 10.91195 1.250510 11.46000

Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	52.48237500	17.49412500	11.19	0.0003
sala	1	9.26651250	9.26651250	5.93	0.0270
peso	1	13.88645000	13.88645000	8.88	0.0088
nivelenerg*sala	3	1.96321250	0.65440417	0.42	0.7422
nivelenerg*peso	3	6.57922500	2.19307500	1.40	0.2785
sala*peso	1	0.34861250	0.34861250	0.22	0.6432
nivelenerg*sala*peso	3	3.36021250	1.12007083	0.72	0.5566

Energia Bruta das carcaças dos Leitões

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	791936.184	52795.746	2.79	0.0248
Error	16	302554.384	18909.649		
Corrected Total	31	1094490.568			
	R-Square	Coeff Var	Root MSE	EB Mean	
	0.723566	7.093164	137.5124	1938.660	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	307466.3456	102488.7819	5.42	0.0091
sala	1	137845.3145	137845.3145	7.29	0.0158
peso	1	171394.8789	171394.8789	9.06	0.0083
nivelenerg*sala	3	28541.8844	9513.9615	0.50	0.6855
nivelenerg*peso	3	115405.8211	38468.6070	2.03	0.1496
nivelenerg*sala*peso	3	31084.0833	10361.3611	0.55	0.6567

Umidade das carcaças dos Leitões

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	100.5707219	6.7047148	1.98	0.0935
Error	16	54.1987500	3.3874219		
Corrected Total	31	154.7694719			
	R-Square	Coeff Var	Root MSE	HAG Mean	
	0.649810	2.616976	1.840495	70.32906	

Source	DF	Type III SS	Mean Square	F Value	e Pr > F
nivelenerg	3	19.43208437	6.47736146	1.91	0.1683
sala	1	9.66900313	9.66900313	2.85	0.1105
peso	1	21.66465313	21.66465313	6.40	0.0223
nivelenerg*sala	3	12.87780937	4.29260312	1.27	0.3191
nivelenerg*peso	3	30.85335937	10.28445312	3.04	0.0596
sala*peso	1	0.31800312	0.31800312	0.09	0.7633
nivelenerg*sala*peso	3	5.75580937	1.91860312	0.57	0.6450

Apêndice 12- Consumo de EM, conversão calórica, produção diária de calor e eficiência do ganho de peso

Peso	Temperatura	EM	CDEM	СТЕМ	СС	PDC	EFCEN
		Kcal/kg	kcal/d	kcal	kcal EM/kg GP	kcal	
Pesado	Quente	3550	1984,14	55555,93	4741,18	1302,05	0,34
Pesado	Quente	3250	2025,23	56706,54	4669,83	1307,48	0,35
Pesado	Quente	3400	2215,60	62036,74	4898,81	1364,17	0,38
Pesado	Quente	3400	2072,29	58024,01	4928,29	1263,41	0,39
Pesado	Quente	3700	1935,67	54198,70	5067,90	1084,40	0,44
Pesado	Quente	3550	2076,76	58149,28	4648,32	1330,97	0,36
Pesado	Quente	3700	2025,56	56715,57	4944,64	930,78	0,54
Pesado	Quente	3250	1701,87	47652,34	4431,26	1219,95	0,28
Leve	Quente	3400	1664,64	46609,84	4871,05	1217,70	0,27
Leve	Quente	3400	1934,71	54171,98	5138,62	1372,42	0,29
Leve	Quente	3550	1873,72	52464,20	4740,28	1194,25	0,36
Leve	Quente	3700	1924,40	53883,29	5075,85	1353,60	0,30
Leve	Quente	3550	2025,14	56703,88	4845,27	1354,24	0,33
Leve	Quente	3700	1993,36	55814,09	5148,42	1357,66	0,32
Leve	Quente	3250	1686,15	47212,25	4616,20	979,60	0,42
Leve	Quente	3250	1443,45	40416,55	4522,39	954,88	0,34
Pesado	Termoneutra	3700	2131,48	59681,46	4933,37	1159,05	0,46
Pesado	Termoneutra	3250	1849,78	51793,79	4159,96	1172,80	0,37
Pesado	Termoneutra	3400	1737,03	48636,94	4639,35	1000,54	0,42
Pesado	Termoneutra	3400	2224,67	62290,64	4440,37	1344,84	0,40
Pesado	Termoneutra	3550	2365,38	66230,70	4589,07	1154,88	0,51
Pesado	Termoneutra	3250	1949,72	54592,14	4477,98	1199,66	0,38
Pesado	Termoneutra	3550	2043,40	57215,28	4544,83	992,32	0,51
Pesado	Termoneutra	3700	2301,74	64448,84	5101,02	1283,64	0,44
Leve	Termoneutra	3250	1741,73	48768,56	4199,39	976,48	0,44
Leve	Termoneutra	3400	1993,56	55819,78	4855,15	1192,33	0,40
Leve	Termoneutra	3700	2138,76	59885,19	4776,51	1197,18	0,44
Leve	Termoneutra	3250	1895,68	53079,12	4515,49	1267,46	0,33
Leve	Termoneutra	3700	2106,36	58977,97	4954,43	1439,64	0,32
Leve	Termoneutra	3550	1716,54	48063,06	4665,23	1124,21	0,35
Leve	Termoneutra	3400	1915,73	53640,32	4793,88	1235,37	0,36
Leve	Termoneutra	3700	2207,94	61822,24	4537,58	1164,30	0,47

Apêndice 13- ANOVA da Eficiência e Consumo Energético

Consumo total de Energia Metabolizável

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	616802107.4	41120140.5	1.73	0.1445
Error	16	380872014.1	23804500.9		
Corrected Total	31	997674121.5			
	R-Square	Coeff Var	Root MSE	CTEM Mean	
	0.618240	8.621310	4878.986	56592.16	
Source	DF	Type III SS	Mean Square	e F Value	Pr > F
nivelenerg sala peso nivelenerg*sala nivelenerg*peso	3 1 1 3 3	274417042.6 66156427.5 148247798.4 27956083.9 26398465.4	91472347.5 66156427.5 148247798.4 9318694.6 8799488.5	3.84 2.78 6.23 0.39 0.37	0.0302 0.1149 0.0239 0.7608 0.7759
sala*peso	1	9415250.4	9415250.4	0.40	0.7739
nivelenerg*sala*peso	3	64211039.1	21403679.7	0.90	0.4632

Consumo diario de Energia Metabolizável

		Sum	of		
Source	DF	Squares	Mean Square	e F Value	Pr > F
Model	15	786738.201	52449.213	3 1.73	0.1445
Error	16	485809.651	30363.10	3	
Corrected Total	31	1272547.852			
	R-Square	Coeff Var	Root MSE	CDEM Mean	
	0.618239	8.621341	174.2501	2021.149	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	350024.6266	116674.8755	3.84	0.0302
sala	1	84384.4821	84384.4821	2.78	0.1149
peso	1	189087.9008	189087.9008	6.23	0.0239
nivelenerg*sala	3	35658.8673	11886.2891	0.39	0.7608
nivelenerg*peso	3	33672.0408	11224.0136	0.37	0.7759
sala*peso	1	12008.6253	12008.6253	0.40	0.5383

		04004 0500	07000 5507	0.00	0. 4000
nivelenerg*sala*peso	3	81901.6580	27300.5527	0.90	0.4632
		Conversão	o Calórica		
		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	8754410.10	583627.34	2.41	0.0456
Error	16	3877587.97	242349.25		
Corrected Total	31	12631998.07			
	R-Square	Coeff Var	Root MSE	CC Mean	
	0.693034	10.21907	492.2898	4817.366	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	1412854.539	470951.513	1.94	0.1633
sala	1	959050.176	959050.176	3.96	0.0640
peso	1	2109252.605	2109252.605	8.70	0.0094
nivelenerg*sala	3	628584.958	209528.319	0.86	0.4796
nivelenerg*peso	3	2043769.363	681256.454	2.81	0.0728
sala*peso	1	300359.002	300359.002	1.24	0.2820
nivelenerg*sala*peso	3	1300539.458	433513.153	1.79	0.1898
		Producão	Diária de Calo	r	
		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	419841.9133	27989.4609	2.05	0.0829
Error	16	218480.5399	13655.0337		
Corrected Total	31	638322.4531			
	R-Square	Coeff Var	Root MSE	PDC Mean	
	0.657727	9.286438	116.8548	1258.338	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	53464.7825	17821.5942	1.31	0.3071
sala	1	18838.8608	18838.8608	1.38	0.2574
peso	1	1116.1631	1116.1631	0.08	0.7786
nivelenerg*sala	3	107989.8537	35996.6179	2.64	0.0852
nivelenerg*peso	3	171919.0910	57306.3637	4.20	0.0227
sala*peso	1	3268.1591	3268.1591	0.24	0.6313
nivelenerg*sala*peso	3	63245.0030	21081.6677	1.54	0.2418

Eficiencia Energética

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	0.11249288	0.00749953	3.43	0.0097
Error	16	0.03500900	0.00218806		
Corrected Total	31	0.14750188			
	R-Square	Coeff Var	Root MSE	EFEN Mean	
	0.762654	12.49253	0.046777	0.374438	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	0.01553363	0.00517788	2.37	0.1093
sala	1	0.02409013	0.02409013	11.01	0.0044
peso	1	0.02194513	0.02194513	10.03	0.0060
nivelenerg*sala	3	0.01115162	0.00371721	1.70	0.2074
nivelenerg*peso	3	0.02530412	0.0084347	3.85	0.0299
sala*peso	1	0.00019012	0.00019012	0.09	0.7720
nivelenerg*sala*peso	3	0.01427812	0.00475937	2.18	0.1308

Apêndice 14- Composição química do corpo vazio, em % ou kcal/d

Peso	Temperatura	EM	%	%	%	%	%	Kcal/kg
		Kcal/kg	MS	РВ	GB	CINZAS	UMIDADE	EB
Pesado	Quente	3550	28,78	16,26	9,67	2,43	71,69	1838,14
Pesado	Quente	3250	26,83	15,93	8,39	2,35	74,25	1627,07
Pesado	Quente	3400	28,89	15,82	10,36	2,22	71,38	1853,65
Pesado	Quente	3400	27,67	15,38	9,08	2,42	72,58	1760,21
Pesado	Quente	3700	32,28	17,66	11,39	2,29	70,78	1967,18
Pesado	Quente	3550	30,83	16,29	11,24	2,35	69,75	1973,1
Pesado	Quente	3700	32,33	15,55	13,72	2,68	67,94	2165,26
Pesado	Quente	3250	25,3	15,88	6,65	2,48	75,61	1480,46
Leve	Quente	3400	28,98	18,18	8,34	2,42	73,5	1642,85
Leve	Quente	3400	26,58	15,69	8,02	2,10	74,00	1617,38
Leve	Quente	3550	27,04	15,05	9,03	2,36	73,73	1674,5
Leve	Quente	3700	27,51	15,04	9,48	2,32	73,04	1709,92
Leve	Quente	3550	24,28	13,62	8,60	2,11	76,05	1620,37
Leve	Quente	3700	28,19	15,05	10,18	2,5	72,03	1905,71
Leve	Quente	3250	30,25	16,51	10,38	2,66	70,06	1914,56
Leve	Quente	3250	26,7	16,15	6,73	2,42	75,11	1534,76
Pesado	Termoneutra	3700	30,6	15,24	12,48	2,37	69,69	2120,03
Pesado	Termoneutra	3250	26,08	14,95	8,38	2,78	74,51	1634,46
Pesado	Termoneutra	3400	27,46	14,5	10,49	2,34	73,08	1830,99
Pesado	Termoneutra	3400	30,36	16,66	11,3	2,38	70,04	1946,43
Pesado	Termoneutra	3550	32,92	17,37	12,61	2,47	67,84	2169,74
Pesado	Termoneutra	3250	28,34	15,62	10,19	2,46	71,98	1858,48
Pesado	Termoneutra	3550	31,01	16,44	11,07	2,68	69,3	2051,54
Pesado	Termoneutra	3700	29,79	15,45	12,33	2,2	70,78	1966,27
Leve	Termoneutra	3250	28,39	17,53	7,92	2,55	72,14	1727,26
Leve	Termoneutra	3400	27,5	15,07	10	2,27	72,91	1790,46
Leve	Termoneutra	3700	28,71	14,85	11,48	2,28	71,74	1921,31
Leve	Termoneutra	3250	27,92	16,32	8,61	2,48	73,15	1714,46
Leve	Termoneutra	3700	27,11	14,76	10,46	2,47	73,13	1784,18
Leve	Termoneutra	3550	27,36	15,3	8,99	2,41	73,25	1684,18
Leve	Termoneutra	3400	26,7	15,41	8,17	2,46	73,85	1725,38
Leve	Termoneutra	3700	29,17	15,99	11,24	2,67	70,94	1872,23

Apêndice 15- ANOVA da composição do corpo vazio

Matéria Seca do corpo vazio dos leitões

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
		•	·		
Model	15	100.7185875	6.7145725	3.64	0.0072
Ennan	16	00 4070000	1 0406105		
Error	10	29.4978000	1.8436125		
Corrected Total	31	130.2163875			
	R-Square	Coeff Var	Root MSE	MS Mean	
	0.773471	4.764931	1.357797	28.49563	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	20.75666250	6.91888750	3.75	0.0325
sala	1	1.52251250	1.52251250	0.83	0.0323
	1	22.91645000	22.91645000	12.43	0.0028
peso	3		4.09097083	2.22	
nivelenerg*sala		12.27291250			0.1255
nivelenerg*peso	3	38.86542500	12.95514167	7.03	0.0031
sala*peso	1	0.00320000	0.00320000	0.00	0.9673
nivelenerg*sala*peso	3	4.38142500	1.46047500	0.79	0.5159
	Cinza	do corpo vazio d	dos leitões		
		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	0.40748750	0.02716583	1.10	0.4263
Error	16	0.39600000	0.0247500	0	
Corrected Total	31	0.80348750			
	R-Square	Coeff Var	Root MSE	CZ Mean	
	0.507149	6.505922	0.157321	2.418125	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	0.16386250	0.05462083	2,21	0.1269
sala	1	0.04205000	0.04205000	1.70	0.1209
	· ·				
peso	1	0.00551250	0.00551250	0.22	0.6433
nivelenerg*sala	3	0.13232500	0.04410833	1.78	0.1911
nivelenerg*peso	3	0.01436250	0.00478750	0.19	0.8993
sala*peso	1	0.00180000	0.00180000	0.07	0.7909
nivelenerg*sala*peso	3	0.04757500	0.01585833	0.64	0.5998

Proteína Bruta do corpo vazio dos leitões

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	19.08980000	1.27265333	1.93	0.1019
	• =			1.93	0.1019
Error	16	10.55560000	0.65972500		
Corrected Total	31	29.64540000			
	R-Square	Coeff Var	Root MSE	PB Mean	
	0.643938	5.141539	0.812235	15.79750	
Source	DF	Type III SS	Mean Square	e F Value	Pr > F
		1 70700500	0. 5000000	0.00	0.4000
nivelenerg	3	1.76762500	0.58920833	0.89	0.4660
sala	1	0.21125000	0.21125000	0.32	0.5793
peso	1	0.62720000	0.62720000	0.95	0.3441
nivelenerg*sala	3	4.26647500	1.42215833	2.16	0.1332
nivelenerg*peso	3	9.32492500	3.10830833	4.71	0.0153
sala*peso	1	0.19220000	0.19220000	0.29	0.5968
nivelenerg*sala*peso	3	2.70012500	0.90004167	1.36	0.2894

Gordura Bruta do Corpo Vazio dos Leitões

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	69.87668750	4.65844583	3.47	0.0091
Error	16	21.45690000	1.34105625		
Corrected Total	31	91.33358750			
		0. 66.11	B	00.44	
	R-Square	Coeff Var	Root MSE	GB Mean	
	0.765071	11.69073	1.158040	9.905625	
1					
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	39.62161250	13.20720417	9.85	0.0006
sala	1	6.53411250	6.53411250	4.87	0.0422
peso	1	14.74245000	14.74245000	10.99	0.0044
nivelenerg*sala	3	0.81156250	0.27052083	0.20	0.8937
nivelenerg*peso	3	5.18332500	1.72777500	1.29	0.3124
sala*peso	1	0.15680000	0.15680000	0.12	0.7368
nivelenerg*sala*peso	3	2.82682500	0.94227500	0.70	0.5642

Energia Bruta do Corpo Vazio dos Leitões

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	749179.2723	49945.2848	3.69	0.0068
Error	16	216763.6865	13547.7304		
Corrected Total	31	965942.9588			
	R-Square	Coeff Var	Root MSE	EB Mean	
	0.775594	6.412654	116.3947	1815.079	
Source	DF	Type III SS	Mean Squar	e F Value	Pr > F
nivelenerg	3	294327.1218	98109.0406	7,24	0.0028
sala	1	71468.4625	71468.4625	5.28	0.0028
peso	1	180525.3828	180525.3828	13.33	0.0033
nivelenerg*sala	3	24953.4150	8317.8050	0.61	0.6158
nivelenerg*peso	3	152470.1011	50823.3670	3.75	0.0136
sala*peso	1	3070.5366	3070.5366	0.23	0.6405
nivelenerg*sala*peso	3	22364.2525	7454.7508	0.55	0.6552
Ç .					
	Umidade	do Corpo Vazio	dos Leitões		
		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	95.6953969	6.3796931	2.71	0.0283
Error	16	37.7039500	2.3564969		
Corrected Total	31	133.3993469			
	R-Square	Coeff Var	Root MSE	HAG Mean	
	0.717360	2.126686	1.535089	72.18219	
Source	DF	Type III SS	Mean Square	e F Value	Pr > F
nivelenerg	3	24.49673438	8.16557813	3.47	0.0412
sala	1	5.42027812	5.42027812	2.30	0.1489
peso	1	23.51265312	23.51265312	9.98	0.0061
nivelenerg*sala	3	8.73890937	2.91296979	1.24	0.3293
nivelenerg*peso	3	31.31973438	10.43991146	4.43	0.0190
sala*peso	1	0.00382812	0.00382812	0.00	0.9683
nivelenerg*sala*peso	3	2.20325938	0.73441979	0.31	0.8167
•					

Apêndice 16- Composição química da fração vísceras + Sangue dos leitões, em % ou Kcal/g

Peso	Temperatura	EM	%	%	%	%	Kcal/kg	%
		Kcal/kg	MS	CZ	PB	GB	Kcal/kg	Agua
Pesado	Quente	3550	22,73	1,27	16,18	4,23	1573,04	77,27
Pesado	Quente	3250	20,94	1,29	20,08	5	1956,66	79,06
Pesado	Quente	3400	20,7	1,19	18,09	3,54	1547,93	79,3
Pesado	Quente	3400	20,98	1,2	15,16	3,25	1613,51	79,02
Pesado	Quente	3700	21,71	1,26	16,37	4,13	1638,3	78,29
Pesado	Quente	3550	24,49	1,36	13,94	5,14	1644,71	75,51
Pesado	Quente	3700	19,93	1,2	14,57	4,02	1442,71	80,07
Pesado	Quente	3250	18,83	1,38	13,69	2,62	1227,84	81,17
Leve	Quente	3400	18,23	1,11	10,09	3,5	870,31	81,77
Leve	Quente	3400	19,98	1,2	13,61	3,91	1280,38	80,02
Leve	Quente	3550	20,82	1,22	15,68	3,06	1427,36	79,18
Leve	Quente	3700	21,62	1,27	12,9	3,14	1133,98	78,38
Leve	Quente	3550	20,53	1,3	15,1	3,39	1401,05	79,47
Leve	Quente	3700	25,04	1,54	14	2,94	1441,87	74,96
Leve	Quente	3250	20,31	1,19	11,68	3,73	1159,15	79,69
Leve	Quente	3250	22,98	1,39	14,67	2,93	1416,72	77,02
Pesado	Termoneutra	3700	24,2	1,41	15,86	3,11	1673,58	75,8
Pesado	Termoneutra	3250	17,65	1,27	16,75	2,67	1346,1	82,35
Pesado	Termoneutra	3400	19,98	1,11	15,79	4,09	1459,98	80,02
Pesado	Termoneutra	3400	20,08	1,15	14,85	5,4	1551,21	79,92
Pesado	Termoneutra	3550	27,6	1,55	20,52	5,49	2163,79	72,4
Pesado	Termoneutra	3250	19,47	1,04	16,33	3,78	1400,94	80,53
Pesado	Termoneutra	3550	24,34	1,31	19,90	3,66	2213,36	75,66
Pesado	Termoneutra	3700	19,27	0,96	16,48	3,45	1381,82	80,73
Leve	Termoneutra	3250	18,31	1,42	12,98	2,83	1210,94	81,69
Leve	Termoneutra	3400	19,29	1,00	15,05	4,69	1490,86	80,71
Leve	Termoneutra	3700	23,00	1,2	14,77	5,48	1449,78	77,00
Leve	Termoneutra	3250	19,72	1,34	12,98	3,12	1197,55	80,28
Leve	Termoneutra	3700	16,69	0,97	11,04	3,52	856,64	83,31
Leve	Termoneutra	3550	21,28	1,23	15,58	2,67	1403,19	78,72
Leve	Termoneutra	3400	21,76	1,23	14,91	3,13	1421,67	78,24
Leve	Termoneutra	3700	17,56	1,16	17,94	3,14	1410,75	82,44

Apêndice 17- ANOVA da composição da fração Vísceras + Sangue

Matéria seca das Vísceras + Sg

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	115.4510875	7.6967392	1.86	0.1157
Error	16	66.3834000	4.1489625		
Corrected Total	31	181.8344875			
	R-Square	Coeff Var	Root MSE	MS Mean	
	0.634924	9.728188	2.036900	20.93813	
Source	DF	Type III SS	Mean Squar	e F Value	Pr > F
nivelenerg	3	35.58226250	11.86075417	2.86	0.0697
sala	1	2.89201250	2.89201250		0.4161
peso	1	7.78151250	7.78151250	1.88	0.1898
nivelenerg*sala	3	9.02801250	3.00933750	0.73	0.5516
nivelenerg*peso	3	40.61521250	13.53840417	3.26	0.0490
sala*peso	1	6.28351250	6.28351250	1.51	0.2362
nivelenerg*sala*peso	3	13.26856250	4.42285417	1.07	0.3912
	Ci	nzas das Víscera	ıs + Sg		
		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	0.34765000	0.02317667	1.28	0.3139
Error	16	0.28950000	0.01809375		
Corrected Total	31	0.63715000			

Coeff Var

10.83690

Root MSE

0.134513

CZ Mean

1.241250

R-Square

0.545633

Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	0.11687500	0.03895833	2.15	0.1336
sala	1	0.03251250	0.03251250	1.80	0.1988
peso	1	0.00101250	0.00101250	0.06	0.8160
nivelenerg*sala	3	0.04491250	0.01497083	0.83	0.4979
nivelenerg*peso	3	0.06156250	0.02052083	1.13	0.3651
sala*peso	1	0.00320000	0.00320000	0.18	0.6797
nivelenerg*sala*peso	3	0.08757500	0.02919167	1.61	0.2256
	Prote:	ína Bruta das Ví	sceras + Sg		
		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	127.7843875	8.5189592	2.68	0.0298
Error	16	50.9412000	3.1838250		
Corrected Total	31	178.7255875			
	R-Square	Coeff Var	Root MSE	PB Mean	
	0.714975	11.71155	1.784328	15.23563	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	28.60011250	9.53337083	2.99	0.0619
sala	1	7.92020000	7.92020000	2.49	0.1343
peso	1	54.02801250	54.02801250	16.97	0.0008
nivelenerg*sala	3	15.15812500	5.05270833	1.59	0.2316
nivelenerg*peso	3	4.31286250	1.43762083	0.45	0.7197
sala*peso	1	0.02420000	0.02420000		0.9316
nivelenerg*sala*peso	3	17.74087500	5.91362500	1.86	0.1775
	Gordu	ra Bruta das Vís	sceras + Sg		
		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	12.22705000	0.81513667	1.27	0.3198
Error	16	10.26930000	0.64183125		
Corrected Total	31	22.49635000			
	R-Square	Coeff Var	Root MSE	GB Mean	
	0.543513	21.58690	0.801144	3.711250	

Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	1.69632500	0.56544167	0.88	0.4718
sala	1	0.09031250	0.09031250	0.14	0.7125
peso	1	2.20500000	2.20500000	3.44	0.0823
nivelenerg*sala	3	1.87406250	0.62468750	0.97	0.4297
nivelenerg*peso	3	3.11482500	1.03827500	1.62	0.2247
	1	0.15961250	0.15961250	0.25	0.6248
sala*peso nivelenerg*sala*peso		3.08691250	1.02897083	1.60	0.0248
niverenerg-sara-pesc	, 3	3.06091230	1.02697063	1.00	0.2279
	Energ:	ia Bruta das Vís	sceras + Sg		
		Sum			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	1951552.542	130103.503	3.05	0.0168
Error	16	682304.863	42644.054		
Corrected Total	31	2633857.405			
	R-Square	Coeff Var	Root MSE	EB Mean	
	0.740948	14.23932	206.5044	1450.240	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	452387.9740	150795.9913	3.54	0.0389
sala	1	22932.2528	22932.2528	0.54	0.4740
peso	1	865691.1362	865691.1362		0.0004
nivelenerg*sala	3	244291.1297	81430.3766		0.1688
nivelenerg*peso	3	73466.2566	24488.7522		0.6401
sala*peso	1	1733.4272	1733.4272		0.8428
nivelenerg*sala*pesc		291050.3658	97016.7886	2.28	0.1190
	Um	idade das Víscer	as + Sg		
		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	115.4510875	7.6967392	1.86	0.1157
Error	16	66.3834000	4.1489625		
Corrected Total	31	181.8344875			
	R-Square	Coeff Var	Root MSE	HAG Mean	
	0.634924	2.576337	2.036900	79.06188	

Apêndice 18- Consumo e excreção de nitrogênio por animal durante o período total

(1 a 28 dias pós-desmame)

Peso	Temperatura	EM	Ningerido	Nfecal	Nurinario
		Kcal/kg	g	g	g
Pesado	Quente	3550	486,32	61,33	38,81
Pesado	Quente	3250	538,39	52,03	40,31
Pesado	Quente	3400	579,76	81,04	75,08
Pesado	Quente	3400	533,27	67,52	48,58
Pesado	Quente	3700	442,91	41,94	50,56
Pesado	Quente	3550	520,85	77,16	49,77
Pesado	Quente	3700	474,24	62,21	50,12
Pesado	Quente	3250	486,62	86,99	48,38
Leve	Quente	3400	424,24	54,90	35,66
Leve	Quente	3400	481,28	42,47	35,43
Leve	Quente	3550	454,71	53,98	33,13
Leve	Quente	3700	440,32	45,41	23,99
Leve	Quente	3550	486,68	43,44	40,66
Leve	Quente	3700	455,33	39,34	31,32
Leve	Quente	3250	460,53	60,85	46,73
Leve	Quente	3250	404,78	61,36	31,78
Pesado	Termoneutra	3700	488,34	66,14	45,11
Pesado	Termoneutra	3250	565,00	150,12	40,32
Pesado	Termoneutra	3400	486,68	129,17	14,78
Pesado	Termoneutra	3400	594,42	114,58	46,38
Pesado	Termoneutra	3550	589,63	96,40	61,62
Pesado	Termoneutra	3250	543,06	72,80	47,17
Pesado	Termoneutra	3550	511,94	77,33	65,16
Pesado	Termoneutra	3700	544,24	89,51	34,50
Leve	Termoneutra	3250	524,84	137,78	49,37
Leve	Termoneutra	3400	523,99	83,98	52,60
Leve	Termoneutra	3700	517,75	85,79	34,46
Leve	Termoneutra	3250	532,37	87,42	40,05
Leve	Termoneutra	3700	491,54	55,39	36,97
Leve	Termoneutra	3550	420,47	50,73	33,18
Leve	Termoneutra	3400	509,40	100,52	31,93
Leve	Termoneutra	3700	541,69	91,81	48,93

Mean Square F Value Pr > F

Apendice 19- ANOVA do consumo e excreção de nitrogênio

Total de Nitrogênio ingerido

Squares

Source

Sum of

Model	15	48526.86690	3235.12446	2.01	0.0888
Error	16	25762.49335	1610.15583	1	
Corrected Total	31	74289.36025			
	R-Square	Coeff Var	Root MSE	NING Mean	
	0.653214	7.997563	40.12675	501.7372	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	5161.14758	1720.38253	1.07	0.3902
sala	1	15981.59115	15981.59115	9.93	0.0062
peso	1	16009.31445	16009.31445	9.94	0.0062
nivelenerg*sala	3	2835.80633	945.26878	0.59	0.6322
nivelenerg*peso	3	3187.88943	1062.62981	0.66	0.5886
sala*peso	1	1166.80728	1166.80728	0.72	0.4072
nivelenerg*sala*peso	3	4184.31066	1394.77022	0.87	0.4788
	То	tal de Nitrogêni	o Fecal		
		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	17286.59260	1152.43951	2.48	0.0409
Error	16	7445.82760	465.36423	1	
Corrected Total	31	24732.42020			
	R-Square	Coeff Var	Root MSE	NFEC Mean	
	0.698945	28.50839	21.57230	75.67000	
Source	DF	Type III SS	Mean Squar	e F Value	Pr > F
nivelenerg	3	4086.195225	1362.065075	2.93	0.0656
sala	1	9712.695313	9712.695313	20.87	0.0003
peso	1	1668.975313	1668.975313	3.59	0.0003
nivelenerg*sala	1				
HILVETCHELY SALA	વ	1071 688312	357 220427	η 77	() 52×7
nivelenera*neso	3	1071.688312	357.229437	0.77	0.5287
nivelenerg*peso	3	678.124562	226.041521	0.49	0.6969
nivelenerg*peso sala*peso nivelenerg*sala*peso					

Nitrogênio urinário

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	2785,287650	185.685843	1.88	0.1109
Error	16			1.00	0.1109
		1580.367700	98.772981		
Corrected Total	31	4365.655350			
	R-Square	Coeff Var	Root MSE	NUR Mean	
	0.638000	23.33588	9.938460	42.58875	
Source	DF	Type III SS	Mean Square	e F Value	Pr > F
nivelenerg	3	259.9097250	86.6365750	0.88	0.4736
sala	1	0.1540125	0.1540125	0.00	0.9690
peso	1	707.4441125	707.4441125	7.16	0.0166
nivelenerg*sala	3	586.0685625	195.3561875	1.98	0.1580
nivelenerg*peso	3	208.0304625	69.3434875	0.70	0.5645
sala*peso	1	284.1728000	284.1728000	2.88	0.1092
nivelenerg*sala*peso	3	739.5079750	246.5026583	2.50	0.0969

Apêndice 20 - Consumo e excreção de gordura por animal durante o período total (1 a 28 dias pós-desmame)

Peso	Temperatura	EM	Consumida	Excretada
		Kcal/kg	g	g
Pesado	Quente	3550	988,66	148,52
Pesado	Quente	3250	521,04	87,92
Pesado	Quente	3400	874,56	160,19
Pesado	Quente	3400	810,50	146,95
Pesado	Quente	3700	1234,58	138,87
Pesado	Quente	3550	1056,25	160,41
Pesado	Quente	3700	1319,58	175,48
Pesado	Quente	3250	465,83	150,76
Leve	Quente	3400	648,77	122,28
Leve	Quente	3400	728,41	91,77
Leve	Quente	3550	928,09	111,82
Leve	Quente	3700	1222,71	133,55
Leve	Quente	3550	987,62	117,31
Leve	Quente	3700	1254,85	111,12
Leve	Quente	3250	445,67	101,21
Leve	Quente	3250	390,31	129,75
Pesado	Termoneutra	3700	1373,50	157,52
Pesado	Termoneutra	3250	545,66	239,39
Pesado	Termoneutra	3400	744,38	239,26
Pesado	Termoneutra	3400	899,18	216,74
Pesado	Termoneutra	3550	1210,37	204,63
Pesado	Termoneutra	3250	525,81	182,69
Pesado	Termoneutra	3550	1051,65	182,41
Pesado	Termoneutra	3700	1507,26	207,45
Leve	Termoneutra	3250	507,07	228,80
Leve	Termoneutra	3400	793,49	191,38
Leve	Termoneutra	3700	1427,11	175,29
Leve	Termoneutra	3250	514,31	169,26
Leve	Termoneutra	3700	1360,26	132,73
Leve	Termoneutra	3550	858,74	143,06
Leve	Termoneutra	3400	772,65	245,05
Leve	Termoneutra	3700	1129,70	242,12

Apêndice 21 - ANOVA do consumo e excreção de gordura

Consumo Total de Gordura

		Sum o	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	3243114.414	216207.628	38.71	<.0001
Error	16	89372.551	5585.784		
Corrected Total	31	3332486.965			
	R-Square	Coeff Var	Root MSE	GCT Mean	
	0.973181	8.219027	74.73811	909.3303	
Source	DF	Type III SS	Mean Squar	e F Value	Pr > F
nivelenerg	3	3112108.579	1037369.526	185.72	<.0001
sala	1	56423.643	56423.643	10.10	0.0058
peso	1	41981.153	41981.153	7.52	0.0145
nivelenerg*sala	3	16535.028	5511.676	0.99	0.4239
nivelenerg*peso	3	5516.019	1838.673	0.33	0.8043
sala*peso	1	904.082	904.082	0.16	0.6928
nivelenerg*sala*peso	3	9645.911	3215.304	0.58	0.6393

Total de Gordura nas fezes

		Sum	of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	49252.57800	3283.50520	3.22	0.0131
Error	16	16321.47775	1020.09236		
Corrected Total	31	65574.05575			
	R-Square	Coeff Var	Root MSE	GFT Mean	
	0.751099	19.48351	31.93888	163.9278	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
nivelenerg	3	2152.54716	717.51572	0.70	0.5638
sala	1	35769.43178	35769.43178	35.06	<.0001
peso	1	3887.19488	3887.19488	3.81	0.0687
nivelenerg*sala	3	5291.74998	1763.91666	1.73	0.2013
nivelenerg*peso	3	663.20708	221.06903	0.22	0.8834
sala*peso	1	683.48288	683.48288	0.67	0.4251
nivelenerg*sala*peso	3	804.96423	268.32141	0.26	0.8510

Apêndice 22- Análises de Regressão

DIGESTIBILIDADE	E ENERGIA BRUTA	ΓΟΤΑL			
Parâmetro	Estimate	Erro	Estati	T stica	Pr
CONSTANTE EMT	52,0226 0,0105073	4,67942 0,00132738	11,11 ¹ 7,9	73 1581	0,0000 0,0000
	ANO	/A			
Fonte	SQ	GL	QM	F	Pr
Modelo Resíduo	179,633		179,633 2,86679	62,66	0,0000
Total (Corr.)	265,6	336 31			
R-quadrado = 67	7,6236 %				
DIGESTIBILIDADE	GORDURA BRUTA				
Parâmetro	Estimate	Erro	Estati	T stica	Pr
CONSTANTE EMT	-66,6228 0,0412718	10,2124 0,002896	-6,5%	2372 247 0,00	0,0000
	ANOVA	A			
Source	SQ	GL	QM	F	Pr
Modelo Resíduo	2771,48 409,626	1 2 30 1	2771,48 3,6542	202,98	0,0000
Total (Corr.)	3181,1	31			
R-quadrado = 87	7,1232 %				
DIGESTIBILIDADE	E MATÉRIA SECA TO	OTAL			
Parâmetro	Estimate	Err	o Sta	T atistic	Pr
CONSTANTE EMT	42,1274 0,0130527		974 8 44377 9	3,27691 9,04067	0,0000

	ANOV	A			
Fonte		SQ	GL	QM	F
Modelo Resíduo	277,207	1		81,73	0,0000
Total (Corr.)	378,9	54 31			
R-quadrado = 73	,1505 %				
DIGESTIBILIDADE	PROTEÍNA BRUTA	TOTAL			
			т		
Parâmetro	Estimate	Erro	Estatist	ica	Pr
CONSTANTE EMT	28,1448 0,0159452	8,58657 0,0024356	9 6,5	777 54646	0,0026 0,0000
	ANOV	A			
Source			QM	F	Pr
Modelo Resíduo	289,582	1	413,678		0,0000
Total (Corr.)	703,	26 31			
R-quadrado = 58	,8229				
METABOLIZABILID	ADE ENERGIA BRUT	A TOTAL			
			T		
Parâmetro	Estimate	Er	ro Est	atistica	Pr
CONSTANTE EMT	50,939 0,0106522	0,00130		3,13424	0,0000 0,0000
	ANOV				
- onte		GL	QM	F	Pr
Modelo	184,622	1			0,0000
Resíduo	83,7088				

R-quadrado = 68,8039 %

RETENCAO DE NIT	ROGÊNIO TOTAL					
Parâmetro	Estimate		Erro	T Estatist	ica	Pr
CONSTANTE EMT	19,7372 0,0161628	,	96451 0025429	2,20171 6,35604	•	
	AN	IOVA				
Source	S	Q	GL	QM	F	
Model Residual		,047 ,635	1 30	425,047 10,5212	40,40	0,0000
Total (Corr.)	740	,683	31			

R-quadrado = 57,3859 %

Variável dependente: MATÉRIA SECA DA CARCACA

Variável independente: EMT

					Т	
Parâmetro	Estimat	e	Erro	Estat	istica	Pr
CONSTANT	35,3796	7,2295	5	4,89375	(0,0000
EMT	-0,00184424	0,0020	3854	-0,90469	0	,3733
peso=pesado	-28,0017	10,275		-2,72524	0,0	0110
EMT*peso=pesado	0,00845603	0,00291	501	2,90086	0,00	072
	ANOVA					
Fonte	 SQ	GL	QM		 F	Pr
					' 	
Modelo	58,9821	3	19,66	507 5.	74	0,0034
Resíduo	95,8873	28	3,42	,		-,
Total (Corr.)	154,869	31				
(/	,					

R-quadrado = 38,085 %

peso=leve, MSCAR = 35,3796 - 0,00184424*EMT

When peso=pesado, MSCAR = 7,37789 + 0,00661179*EMT

Variável dependente: UMIDADE DA CARCACA

Variável independente: EMT

Estimate Error Estatistica Pr -----
 CONSTANTE
 64,6615
 7,22749
 8,94661
 0,0000

 EMT
 0,00183386
 0,00203795
 0,899852
 0,3759

 peso=pesado
 27,9726
 10,272
 2,72319
 0,0110

 EMT*peso=pesado
 -0,00844749
 0,00291418
 -2,89876
 0,0072

ANOVA

Fonte	SQ	GL	QM	F	Pr	
Modelo	58,9369	3	19,6456	5,74	0,0034	
Resíduo	95,8326	28	3,42259			
Total (Co	rr.)	154	,769 31			

R-quadrado = 38,0804 %

peso=leve, UMICAR = 64,6615 + 0,00183386*EMT

When peso=pesado, UMICAR = 92,6342 - 0,00661363*EM

Variável dependente MATÉRIA SECA CORPO VAZIO Variável independente: EMT

Estimate Erro Estatistica Pr

-----CONSTANTE 33,6188 5,69542 5,90279 0,0000

EMT -0,00168669 0,00160595 -1,05027 0,3026

peso=pesado -30,8211 8,09457 -3,80762 0,0007

EMT*peso=pesado 0,0092772 0,00229643 4,03983 0,0004

ANOVA

Fonte	SQ	GL	SQ		F	Pr
Model Residual	70,7065 59,5099	3 28	23,5688 2,12535	11,09	0,	0001
Total (Corr.)	130,216	31				

R-quadrado = 54,2992 %

peso=leve, MSCOR = 33,6188 - 0,00168669*EMT

When peso=pesado, MSCOR = 2,79779 + 0,00759051*EMT

Variável dependente: PROTEÍNA BRUTA CORPO VAZIO

Variável independente: EMT

			T		
Parâmetro	Estimate	e Erro	Estatistica	Pr	
CONSTANTE	27,4453	3,13693	8,74908	0,0000	
EMT	-0,00333066	0,00088453	-3,76546	0,0008	
peso=pesado	-16,8249	4,45835	-3,7738	0,0008	
EMT*peso=pesado	0.00485113	0.00126483	3.83539	0.0007	

ANOVA

Fonte	SQ	GL	QM	F	Pr
Model Residual	11,5924 18,053	3 28	3,86414 0,64475	5,99	0,0027
Total (Corr.)	29,6454	31			

R-quadrado = 39,1036 %

peso=leve, PBCORP = 27,4453 - 0,00333066*EMT

When peso=pesado, PBCORP = 10,6204 + 0,00152047*EMT

Variável dependente: ENERGIA BRUTA CORPO VAZIO

Variável independente: EMT

T
Parâmetro Estimate Erro Estatistica Pr

CONSTANTE 1433,85 523,628 2,7383 0,0106
EMT 0,0864944 0,147649 0,585812 0,5627
peso=pesado -1613,14 744,202 -2,16761 0,0388
EMT*peso=pesado 0,505291 0,21113 2,39326 0,0236

Δ	N	n	V	Δ

Fonte	SQ	GL	QM	F	Pr
Modelo Resíduo	462925,0 503018,0	3 28	154308,0 17964,9	8,59	0,0003
Total (Corr.)	965943,0	31			

,

R-quadrado = 47,9246 %

peso=leve, EBCORP = 1433,85 + 0,0864944*EMT

When peso=pesado, EBCORP = -179,289 + 0,591785*EMT

Variável dependente: UMIDADE CORPO VAZIO

Variável independente: EMT

			T	
Parâmetro	Estimate	Erro	Estatistica	Pr
CONSTANT	70,4086	6,35797	11,0741	0,0000
EMT	0,00074333	0,00179278	0,414625	0,6816
peso=pesado	24,3008	9,03623	2,68927	0,0119
EMT*peso=pesado	-0,00743031	0,00256358	-2,89841	0,0072

ANOVA

Fonte	SQ	Df		QM	F	Pr
Model Residual	59,2383 74,1611	3 28	19,7461 2,64861		7,46	0,0008
Total (Corr.)	133,399	31				

R-quadrado = 44,4067 %

peso=leve, UMICORP = 70,4086 + 0,00074333*EMT

When peso=pesado, UMICORP = 94,7094 - 0,00668698*EMT

Variável dependente: EFICIENCIA ENERGÉTICA

Variável independente: EMT

			Т		
Parâmetro	Estimate	Erro	Estatistica	Pr	
CONSTANT	0,579575	0,189728	3,05477	0,0049	
EMT	-0,0000851753	0,0000534981	-1,59212	0,1226	
peso=pesado	-0,712409	0,269649	-2,64198	0,0133	
EMT*peso=pesado	0,000214667	0,0000764997	2,80612	0,0090	

ANOVA

Fonte	SQ	GL	QM	F	Pr	
Modelo Resíduo	0,0332328 0,066039	3 28	0,0110776 0,00235854	4,70	0,0089	
Total (Corr.)	0,0992719	31				

R-Squared = 33,4766 %

peso=leve, EFICIENCIA = 0,579575 - 0,0000851753*EMT

When peso=pesado, EFICIENCIA = -0,132834 + 0,000129492*EMT

Variável dependente:PROD CALOR POR DIA

Variável independente: EMT

			T		
Parâmetro	Estimate	Erro	Estatistica	Pr	
CONSTANT	-524,498	676,658	-0,775129	0,4448	
EMT	0,648148	0,190799	3,39701	0,0021	
peso=pesado	2545,15	961,696	2,64652	0,0132	
EMT*peso=pesado	-0,714419	0,272834	-2,61852	0,0141	

ANOVA

Fonte	SQ	GL	QM	F	Pr
Model Residual	352692,0 839997,0	3 28	117564,0 29999,9	3,92	0,0187
Total (Corr.)	1,19269E6	31			

R-Squared = 29,5712 %

peso=leve, PCdia = -524,498 + 0,648148*EMT

When peso=pesado, PCdia = 2020,65 - 0,0662717*EMT

Vaiável dependente: CC (conversão calórica kcal EM/ kg GP)

Variável independente: EMT

 Parâmetro
 Estimate
 Erro
 Estatistica
 Pr

 CONSTANT
 -2132,31
 2673,63
 -0,797532
 0,4319

 EMT
 2,40803
 0,753892
 3,19413
 0,0035

 peso=pesado
 6354,59
 3799,88
 1,67231
 0,1056

 EMT*peso=pesado
 -1,97633
 1,07803
 -1,83328
 0,0774

Fonte	SQ	GL	QM	F	Pr
Model Residual	8,39115E6 1,31142E7	3 28	2,79705E6 468365,0	5,97	0,0028
Total (Corr.)	2,15054E7	31			

R-quadrado = 39,0189 %

peso=leve, CC = -2132,31 + 2,40803*EMT peso=pesado, CC = 4222,28 + 0,4317*EMT

Apêndice 23- Temperaturas Máxima, Mínima e Atual durante o período experimental

	SALA QUENTE					SALA TERMONEUTRA			
	Data	Data máxima mínima		atual		máxima	mínima	atual	
	19/nov	33	22	33		28	26	21	
	20/nov	33	28	33		28	22	20	
	21/nov	32	29	32		26	24	26	
	22/nov	33	29	33		28	25	28	
PERÍODO PRÉ-INICIAL	23/nov	32	31	33		29	21	28	
	24/nov	30	28	33		29	25	25	
	25/nov	28	25	25		26	22	22	
	26/nov	32	24	27		25	24	24	
	27/nov	33	25	31		28	19	20	
	28/nov	32	28	31		28	24	21	
	29/nov	33	31	32		28	22	25	
	30/nov	33	30	31		30	21	25	
	1/dez	32	29	32		31	25	26	
	2/dez	32	30	31		28	24	25	
	3/dez	31	28	30		28	19	22	
	4/dez	31	29	29		25	19	24	
	5/dez	31	28	30		28	24	26	
	6/dez	30	28	28		27	24	25	
	7/dez	32	27	31		26	25	25	
	8/dez	31	29	29		26	23	24	
PERÍODO INICIAL	9/dez	30	27	28		28	23	24	
	10/dez	29	26	27		27	25	25	
	11/dez	28	21	28		26	21	22	
	12/dez	28	27	28		25	21	22	
	13/dez	31	29	29		26	24	24	
	14/dez	28	28	28		24	23	23	
	15/dez	28	27	28		28	23	23	
	16/dez	30	24	27		28	22	24	

Apêndice 24 - Normas para preparação de trabalhos científicos submetidos à publicação na Revista Brasileira de Zootecnia

1. Preparo do artigo

1.1. Apresentação

Os artigos científicos devem ser submetidos em três vias (uma original e duas cópias) e um disquete 3½ (devidamente identificado). Nas duas cópias, devem ser **omitidos** o nome dos autores e o rodapé. Em anexo, o autor deve enviar uma carta informando o título do trabalho, o nome completo de todos os autores, endereço, telefone, fax e endereço eletrônico (quando pertinentes) do responsável pelo trabalho junto à Revista Brasileira de Zootecnia e a seção (Aqüicultura; Forragicultura; Melhoramento, Genética e Reprodução; Monogástricos; Produção Animal; e Ruminantes) em que deseja publicar o trabalho.

1.2. Tamanho

Os artigos devem ter, no máximo, **25 páginas** de tamanho A4, fonte "Times New Romans", 12 cpi, com margens superior, inferior, esquerda e direita de 2,5; 2,5; 3,5; e 2,5 cm, respectivamente. Todo parágrafo é iniciado a 1,0 cm a partir da margem esquerda. Os números de página devem ser centralizados na margem inferior da página. As páginas devem apresentar linhas numeradas (no menu Arquivo, escolha a opção Configurar página...Layout...Número de linhas).

1.3. Originalidade

Os trabalhos já publicados ou sob consideração em qualquer outra publicação não serão aceitos . Deve-se ressaltar que isto não se aplica a resumos expandidos.

1.4. Linguagem

Só serão aceitos trabalhos escritos em português (língua oficial da Revista), porém Figuras e Tabelas deverão ser apresentadas em forma bilíngüe (Português/Inglês).

2. Apresentação

2.1. Geral

O artigo deve ser dividido em seções com cabeçalho, em negrito, na seguinte ordem: Resumo, Abstract, Introdução, Material e Métodos, Resultados e Discussão, Conclusões, Agradecimento e Literatura Citada. Cabeçalhos de 3º ordem devem ser digitados em caixa baixa, parágrafo único e itálico.

2.2. Título

Deve ser preciso e informativo. Quinze palavras são o ideal e 25, o máximo. Digitá-lo em negrito e centralizado, no qual somente a primeira letra de cada palavra deve ser maiúscula (Ex.: Valor Nutritivo da Cana-de-Açúcar para Bovinos em Crescimento). Quando necessário, indicar a entidade financiadora da pesquisa, como primeira chamada de rodapé numerada.

2.3. Autores

Todos os autores devem estar em dia com a anuidade da SBZ, exceto co-autores que não militam na área zootécnica, como estatísticos, químicos, biólogos, entre outros, desde que não sejam o primeiro autor.

No original, devem ser listados com o nome completo, em que somente a primeira letra de cada palavra deve ser maiúscula (Ex.: **Anacleto José Benevenutto**), centralizado e em negrito. Não listá-los apenas com as iniciais e o último sobrenome (Ex.: **A.J. Benevenutto**).

Digitá-los separados por vírgula, com chamadas de rodapé numeradas e em sobrescrito, que indicarão o cargo e o endereço profissional dos autores (inclusive endereço eletrônico).

2.4. Resumo

Deve conter entre **150 e 300** palavras. O texto deve ser justificado e digitado em parágrafo único e **espaço 1,5**, começando por RESUMO, iniciado a 1,0 cm da margem esquerda.

2.5. Abstract

Deve aparecer obrigatoriamente na **segunda** página. O texto deve ser justificado e digitado em **espaço 1,5**, começando por ABSTRACT, em parágrafo único, iniciado a 1,0 cm da margem esquerda. Deve ser redigido em inglês, refletindo fielmente o RESUMO.

2.6. Palavras-chave e Key Words

Apresentar até seis (6) Palavras-chave e Key Words imediatamente após o RESUMO e ABSTRACT, em ordem alfabética, que deverão ser retiradas exclusivamente do artigo como um todo. Digitá-las em letras minúsculas, com alinhamento justificado e separado por vírgulas. Não devem conter ponto final.

2.7. Texto

Todo o texto deve ser justificado e digitado em **espaço duplo**, com parágrafos iniciados a 1,0 cm da margem esquerda. Os cabeçalhos **Introdução**, **Material e Método**s, **Resultados e Discussão**, **Conclusões** e **Agradecimento** devem ser digitados em negrito e centralizados, em que somente a primeira letra deve ser maiúscula.

2.7.1. Introdução

Deve começar obrigatoriamente na terceira página.

Evitar a citação de várias referências para o mesmo assunto.

2.7.2. Material e Métodos

Devem começar logo após o final da Introdução.

Nas cópias, deve-se omitir o local onde se realizaram as análises e o experimento, a fim de se manter o caráter confidencial do trabalho durante o parecer dos revisores *ad hoc*.

2.7.3. Resultados e Discussão

Símbolos e unidades devem ser listados conforme os exemplos abaixo:

- Usar 36%, e não 36 % (sem espaço entre o nº e %)
- Usar 88 kg, e não 88Kg (com espaço entre o nº e kg, que deve vir em minúsculo)
- Usar **136,22**, e não 136.22 (usar vírgula, e não ponto)
- Usar **42 mL**, e não 42 ml (litro deve vir em L **maiúsculo**, conforme padronização internacional)
 - Usar **25°C**, e não 25 °C (sem espaço entre o nº e °C)

Devem ser evitadas abreviações não-consagradas, como por exemplo: "o T3 foi maior que o T4, que não diferiu do T5 e do T6". Este tipo de redação é muito cômoda para o autor, mas é de difícil compreensão para o leitor.

2.7.4. Conclusões

Devem iniciar em página separada e não podem apresentar marcadores.

Evitar expressões do tipo: "Concluiu-se que...."; Com base nas condições..."; "Considerando-se...". Não devem ter resumo de resultados, mas podem conter inferência.

2.7.5. Agradecimento

Deve iniciar logo após as Conclusões.

Nas cópias, o texto de Agradecimento deve ser omitido, a fim de se manter o caráter confidencial do trabalho durante o parecer dos revisores *ad hoc*.

2.7.6. Citações do texto

As citações de autores no texto são em letras minúsculas, seguidas do ano de publicação. Quando houver dois autores, usar & (e comercial) e, no caso de três ou mais autores, citar apenas o sobrenome do primeiro, seguido de et al.

3. Tabelas

Prepará-las, em espaço simples, por meio do menu Tabela do Win Word, em que os valores de resultado devem estar centralizados na página (no menu Tabela, escolha a opção Tamanho de Célula...Linha Centralizado) e alinhados de acordo com a casa decimal.

Devem ser numeradas seqüencialmente em algarismos arábicos e apresentadas logo após a chamada no texto.

São expressas em forma bilíngüe (português e inglês), em que o correspondente expresso em inglês deve ser digitado em tamanho menor e italizado.

O título da Tabela deve ser o menor possível e digitado em caixa baixa (espaço simples), sem ponto final. Descrever as abreviações da Tabela adequadamente em notas do rodapé, que devem ser referenciadas por números sobrescritos (1,2,3), e não letras (a,b,c). Colocar unidades de medida nos cabecalhos das colunas.

Não devem conter linhas nas bordas esquerda e direita.

4. Figuras

São expressas em forma bilíngüe (português e inglês), em que o correspondente expresso em inglês deve ser digitado em tamanho menor e italizado.

Devem ser numeradas seqüencialmente em algarismos arábicos e apresentadas logo após a chamada no texto. Digitar os títulos na mesma página em espaço simples. Devem conter ponto final.

A edição das Figuras deve ser monocromática. Dessa forma, a distinção entre tratamentos, estruturas, espécies etc deve ser feita mediante símbolos apropriados. Para facilitar a diagramação dos textos, os gráficos devem ser preparados por meio do editor de gráficos do Win Word ou do Excel. Neste último caso, deverão ser inseridos no trabalho mediante a opção Gráfico do Excel.

Usar sempre o mesmo tipo de letra e o estilo para todas as Figuras.

5. Literatura Citada

5.1. Geral

São normalizadas segundo a Associação Brasileira de Normas Técnicas – ABNT (NBR 6023), à exceção das exigências de local dos periódicos e citação de todos os autores. Devem ser redigidas em página separada e ordenadas alfabeticamente pelo(s) sobrenome(s) do(s) autor(es). Os destaques deverão ser em NEGRITO e os nomes científicos, em ITÁLICO. NÃO ABREVIAR O TÍTULO DOS PERIÓDICOS.

Indica-se o(s) autor(es) com entrada pelo último sobrenome seguido do(s) prenome(s) abreviado (s), exceto para nomes de origem espanhola, em que entram os dois últimos sobrenomes.

Em obras com dois e três autores, mencionam-se os autores separados por ponto e vírgula e naquelas com mais de três autores, os três primeiros, seguidos de et al. O termo et al. não deve ser italizado e nem precedido de vírgula.

Digitá-las em espaço simples e formatá-las segundo as seguintes instruções: no menu FORMATAR, escolha a opção PARÁGRAFO... ESPAÇAMENTO...ANTES...6 pts.

5.2. Obras de responsabilidade de uma entidade coletiva (a entidade é tida como autora)

Exemplo: ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS - AOAC. Official

methods of analysis. 12.ed. Washington, D.C.: 1975. 1094p.

UNIVERSIDADE FEDERAL DE VIÇOSA - UFV. **SAEG - Sistema de análises estatísticas e genéticas.** Versão 7.1.Viçosa, MG: 1997. 150p. (Manual do usuário).

5.3. Livros

NEWMANN, A.L.; SNAPP, R.R. Beef cattle. 7.ed. New York: John Wiley, 1997. 883p.

5.4. Teses e Dissertações

Exemplo: CASTRO, F.B. **Avaliação do processo de digestão do bagaço de cana-de-açúcar auto-hidrolisado em bovinos**. Piracicaba: Escola Superior de Agricultura "Luiz de Queiroz", 1989. 123p. Dissertação (Mestrado em Zootecnia) - Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo, 1989.

OSPINA, H. Influência do nível de consumo de feno sobre a digestibilidade, cinética digestiva e degradação ruminal em bovinos. Porto Alegre: Universidade Federal do Rio Grande do Sul, 1995. 249p. Tese (Doutorado em Zootecnia) - Universidade Federal do Rio Grande do Sul, 1995.

5.5. Boletins e Relatórios

BOWMAN, V.A. **Palatability of animal, vegetable and blended fats by equine**. [S.L.]: Virgínia Polytechnic Institute and State University, 1979. p.133-141 (Research division report, 175).

5.6. Capítulo de livro

LINDHAL, I.L. Nutrición y alimentación de las cabras In: CHURCH, D.C. (Ed.) **Fisiologia digestiva y nutrición de los ruminantes**. 3.ed. Zaragoza: Acríbia, 1974. p.425-434.

5.7. Artigos de periódicos

LUCY, M.C.; De La SOTA, R.L.; STAPLES, C.R. et al. Ovarian follicular populations in lactating dairy cows treated with recombinant bovine somatotropin (Sometribove) or saline and fed diets differing in fat content and energy. **Journal of Dairy Science**, v.76, n.4, p.1014-1027, 1993.

5.8. Artigos apresentados em congressos, reuniões, seminários etc

RESTLE, J.; SOUZA, E.V.T.; NUCCI, E.P.D. et al. Performance of cattle and buffalo fed with different sources of roughage. In: WORLD BUFFALO CONGRESS, 4., 1994, São Paulo. **Proceedings...** São Paulo: Associação Brasileira dos Criadores de Búfalos, 1994. p.301-303.

CASACCIA, J.L.; PIRES, C.C.; RESTLE, J. Confinamento de bovinos inteiros ou castrados de diferentes grupos genéticos. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 30., 1993, Rio de Janeiro. **Anais...** Rio de Janeiro: Sociedade Brasileira de Zootecnia, 1993. p.468.

5.9. Citação de trabalhos publicados em CD ROM

Na citação de material bibliográfico publicado em CD ROM, o autor deve proceder como o exemplo abaixo:

EUCLIDES, V.P.B.; MACEDO, M.C.M.; OLIVEIRA, M.P. Avaliação de cultivares de Panicum maximum em pastejo. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 36., 1999, Porto Alegre. **Anais...** São Paulo: Gmosis, 1999, 17par. CD-ROM. Forragicultura. Avaliação com animais. FOR-020.

5.10. Citação de trabalhos disponíveis em meios eletrônicos

Na citação de material bibliográfico obtido via Internet, o autor deve procurar sempre usar artigos assinados, sendo também sua função decidir quais fontes têm realmente credibilidade e confiabilidade.

Usenet News

Autor, < e-mail do autor, "Assunto", "Data da publicação", <newsgroup (data que foi acessado)

Mailing List

Autor [se conhecido], < e-mail do autor, "Assunto", "Data da postagem", < endereço do mailing list (data que foi acessado).=

Alguns exemplos são dados a seguir:

E.mail

Autor, < e-mail do autor. "Assunto", Data de postagem, e-mail pessoal, (data da leitura)

Web Site

Autor [se conhecido], "Título"(título principal, se aplicável), última data da revisão [se conhecida], < URL (data que foi acessado)

FTP

Autor [se conhecido] "Título do documento" (Data da publicação) [se disponível], Endereço FTP (data que foi acessado)

VITA

Valentino Arnaiz Perales, filho de Maria Perales Lazo e Jorge Arnaiz Guerrini, nasceu na cidade de Lima-Peru, em 14 de fevereiro de 1979.

Ingressou na Universidade Nacional Agrária La Molina em Agosto de 1998, concluindo o curso de bacharelado em Zootecnia em Novembro de 2003. Em Dezembro de 2004 defendeu a tese de graduação obtendo o título profissional de Engenheiro Zootecnista de acordo à legislação peruana.

Em 2004 trabalhou como editor convidado para assuntos de pecuária na revista LEISA de agroecologia com sede em Lima no Peru e Amsterdã na Holanda em parceria com a Associação Ecologia, Tecnologia e Cultura dos Andes, No mesmo ano participou de um grupo de pesquisa multidisciplinar que elaborou por encargo do grupo INCAGRO do Ministério da Agricultura do Peru estudos de caso sobre a realidade da investigação agrária no Peru.

Ingressou na Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Zootecnia, nível mestrado em Março de 2005, sob a orientação da professora Dra. Andréa Machado Leal Ribeiro.

Desde Setembro de 2006, cursa especialização *lato sensu* em nutrição e alimentação de cães e gatos na Universidade Federal de Lavras, sob a orientação da professora Dra. Flávia Borges Saad.

Livros Grátis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

<u>Baixar</u>	livros	de	Adm	inis	tra	ção

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciência da Computação

Baixar livros de Ciência da Informação

Baixar livros de Ciência Política

Baixar livros de Ciências da Saúde

Baixar livros de Comunicação

Baixar livros do Conselho Nacional de Educação - CNE

Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos

Baixar livros de Economia

Baixar livros de Economia Doméstica

Baixar livros de Educação

Baixar livros de Educação - Trânsito

Baixar livros de Educação Física

Baixar livros de Engenharia Aeroespacial

Baixar livros de Farmácia

Baixar livros de Filosofia

Baixar livros de Física

Baixar livros de Geociências

Baixar livros de Geografia

Baixar livros de História

Baixar livros de Línguas

Baixar livros de Literatura

Baixar livros de Literatura de Cordel

Baixar livros de Literatura Infantil

Baixar livros de Matemática

Baixar livros de Medicina

Baixar livros de Medicina Veterinária

Baixar livros de Meio Ambiente

Baixar livros de Meteorologia

Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Música

Baixar livros de Psicologia

Baixar livros de Química

Baixar livros de Saúde Coletiva

Baixar livros de Serviço Social

Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo