Download PDF
ads:
PROGRAMA DE PÓS-GRADUAÇÃO EM CIENCIAS MEDICAS
Dissertação de Mestrado
Diversidade fenotípica e genotípica de
Staphylococcus spp. coagulase
negativos não-epidermidis isolados de
Hemoculturas de Pacientes do
Complexo Hospitalar Santa Casa de
Porto Alegre
Carina Secchi
Biblioteca Paulo Lacerda de Azevedo
2007
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
PROGRAMA DE PÓS-GRADUAÇÃO EM CIENCIAS MEDICAS
Dissertação de Mestrado
Diversidade fenotípica e genotípica de
Staphylococcus spp. coagulase
negativos não-epidermidis isolados de
Hemoculturas de Pacientes do
Complexo Hospitalar Santa Casa de
Porto Alegre
Carina Secchi
Orientador: Pedro Alves d’Azevedo
Biblioteca Paulo Lacerda de Azevedo
2007
Área de concentração: Métodos diagnósticos e Epidemiologia das Doenças
ads:
3
S444d
Secchi, Carina
Diversidade fenotípica e genotípica de staphylococcus spp. coagulase
negativos não – epidermidis isolados de hemoculturas de pacientes do
Complexo Hospitalar Santa Casa de Porto Alegre / Carina Secchi ; orient.
Pedro Alves d’Azevedo. Porto Alegre: 2007.
140 fls.
Dissertação (Mestrado). Fundação Faculdade Federal de Ciências Médicas de
Porto Alegre. Programa de Pós-Graduação em Ciências Médicas. Área de
concentração: Métodos diagnósticos e epidemiologia das doenças.
1. Staphylococcus coagulase - negativos. 2. Cefoxitina. 3. Oxacilina.
4. Resistência bacteriana. 5. Detecção de biofilme. I. d’Azevedo, Pedro Alves.
II. Título
CDD 6l6.929 7
CDU 6l4.4
Ruth Oliveira. CRB10 / 501
Bibliotecária
4
AGRADECIMENTOS___________________________________________________
Ao Prof. Pedro Alves d’Azevedo pela sua orientação, no qual foi possível melhorar
meus conhecimentos científicos, e por todos os seus conselhos, incentivos, cobranças
necessárias e amizade desenvolvida durante a realização do trabalho.
A colega Ana Lucia de Souza Antunes, pelo seu carinho, dedicação e apoio
demonstrados durante toda a execução do trabalho, uma parceria fiel para todas as horas,
sem a qual este não teria findado no tempo devido. Também gostaria de agradecer ao
colega Leandro Réus Rodrigues Perez, pelo coleguismo, amizade e apoio durante os
experimentos realizados.
As colegas de pós-graduação Juliana Caierão e Silvana Vargas Superti pelo
incentivo, coleguismo e apoio na execução do trabalho e tradução do artigo científico.
As colegas do laboratório Maria Beatriz, Rosângela, Mara e Sandra pelo carinho,
amizade e apoio técnico.
As bolsistas, Ananda Cristine Galvão e Letícia Ganassini pelo suporte técnico
durante a realização do trabalho.
Ao meu chefe, Dr. Vlademir Vicente Cantarelli, pelo exemplo de dedicação a
ciência e incentivo a busca de novos conhecimentos.
Aos colegas do Setor de Bacteriologia do Laboratório Weinmann, em especial as
analistas Teresa Brodt e Bianca Cavalcante pelo apoio, amizade e profissionalismo nos
momentos de ausência.
Aos colegas do setor de Biologia Molecular do Laboratório Weinmann, Fabiana de
Souza Pereira, Lila P. Maciel, Diogo Pilger, Luciano Pereira dos Santos e Lisiane Turatti
pelo apoio técnico na realização da técnica da PCRs.
Ao Dr. Julio Roberto Diehl, pelo apoio técnico, permitindo a realização dos testes
genotípicos no setor de Biologia Molecular do Laboratório Weinmann.
A Profa. Dra Kátia Regina dos Santos pela doação da cepa ATCC biofilme positivo.
Ao prof. Cícero Armídio Gomes Dias e a Profa Dra. Ana Paula Frazon pelo apoio
na realização da técnica da PCRs.
A todos que de uma forma ou outra auxiliaram a realização deste trabalho.
5
SUMÁRIO
RESUMO……………………………………………………………….………………07
ABSTRACT....................................................................................................................09
INTRODUÇÃO..............................................................................................................11
REVISÃO DA LITERATURA......................................................................................15
Aspectos Gerais do Gênero
Staphylococcus
..................................................................15
Epidemiologia.................................................................................................................16
Patogenicidade................................................................................................................19
Resistência aos antimicrobianos.....................................................................................23
Caracterização Fenotípica...............................................................................................29
Caracterização Genotípica..............................................................................................31
REFERÊNCIAS BIBLIOGRÁFICAS...........................................................................34
JUSTIFICATIVAS DO ESTUDO.................................................................................43
OBJETIVOS DO ESTUDO...........................................................................................44
Geral...............................................................................................................................44
Específicos.....................................................................................................................44
DELINEAMENTO DO ESTUDO................................................................................45
HIPÓTESES DO ESTUDO...........................................................................................45
ARTIGOS PRINCIPAIS DO ESTUDO........................................................................46
ARTIGO I: Coagulase-negative staphylococci: identification and detection
of methicillin resistance…………………......................................................................47
ARTIGO II:
Detection of biofilm production in non-epidermidis
6
coagulase-negative
Staphylococcus
spp.
isolates...........................................................63
CONSIDERAÇÕES FINAIS.........................................................................................75
PERSPECTIVAS...........................................................................................................75
ANEXO I…...................................................................................................................76
Staphylococcus epidermidis
: a simple phenotypic method for identification…...…….77
ANEXO II……………………………………………………………………………..91
Evaluation of oxacillin and cefoxitin disks for detection of resistance in Coagulase
Negative Staphylococci ……………………………..….….……….………........….....92
ANEXO III……………………………………………………………………..…….104
Detection of biofilm production in
Staphylococcus
spp. isolates by the Congo Red
agar test …………………………………………………………...……….….............105
ANEXO IV…………………………………………………………………………...117
Bacteremias of Coagulase-Negative staphylococci (CoNS) in Intensive Care Unit in
hospital geral of São Paulo city, SP, Brasil……………………………….....……......118
ANEXO V……………………………………………………………………………128
Bacteremia por
Rhodococcus equi
em paciente com síndrome da
imunodeficiência adquirida: relato de caso...................................................................129
ANEXO VI...................................................................................................................136
Identification and Detection of Methicilin Resistance among Coagulase-
negative Staphylococci Others than
S.epidermidis
……………….……………..…....137
Staphylococcus hominis
subsp
. novobiosepticus
Strains Causing Nosocomial
Infection in Brazil………………………………………..……………….......….........138
ANEXO VII..................................................................................................................139
APROVAÇÃO COMITÊ DE ÉTICA...........................................................................140
7
RESUMO______________________________________________________________
Staphylococcus
spp. coagulase-negativos (SCoN) têm emergido como patógenos,
principalmente, em ambiente hospitalar, em surtos nosocomiais e em infecções
relacionadas a cateteres. Além de se tornarem importantes reservatórios de genes de
resistência, podem contribuir na formação de biofilme na superfície de dispositivos
médicos (biomateriais) o que pode levar a septicemia e colonização dos implantes. A
identificação correta das espécies, bem como a detecção da resistência a oxacilina, não é
tarefa de fácil execução pelos laboratórios clínicos, em função da diversidade de espécies
de SCoN e da provável expressão heterogênea de resistência neste grupo de bactérias. O
objetivo deste estudo foi identificar espécies de
Staphylococcus
coagulase-negativos
não-
epidermidis (SCoNne) e comparar o uso do disco de cefoxitina (30 µg) com o disco de
oxacilina (1
µ
g), ágar diluição com oxacilina e a detecção do gene
mecA
, bem como
detectar a presença de biofilme por método genotípico (detecção dos genes
icaA
e
icaD
) e
comparar com a detecção de biofilme por teste fenotípico em CRA (ágar Congo red) nestes
isolados. Um total de 238 amostras de SCoNne provenientes de hemoculturas foram
avaliadas, com identificação de 16 diferentes espécies, sendo que a resistência a oxacilina
foi detectada em 71% das amostras através da detecção do gene
mecA
. Comparando o
método de disco difusão para cefoxitina, oxacilina e ágar diluição (MIC da oxacilina) com
a detecção do gene
mecA
, a sensibilidade dos todos os métodos foi de 100%, com
especificidade de 100% para disco difusão cefoxitina, 91% para disco difusão oxacilina e
88% para ágar diluição. A detecção do gene
icaA
foi observada em 13 amostras envolvendo
as espécies:
S. capitis-capitis, S. capitis urealyticum, S. hominis-hominis
e
S. caprae
,
sendo
8
que nenhum isolado apresentou o gene
icaD.
O teste fenotípico de produção de biofilme no
CRA foi observado em três amostras dentre as positivas, sendo que destas, os resultados de
apenas duas amostras de
S. capitis-capitis
mostraram concordância entre os métodos
avaliados. Os resultados deste experimento mostraram o bom desempenho do disco de
difusão de cefoxitina, uma técnica de fácil execução nos laboratórios clínicos, para
detecção de resistência a oxacilina e a baixa sensibilidade entre os métodos de detecção de
biofilme (presença dos genes
icaA
and
icaD
e colônias positivas no CRA) em amostras de
SCoNne.
.
Palavras-chaves:
Staphylococcus
coagulase-negativos, cefoxitina, oxacilina, resistência
bacteriana, detecção de biofilme.
9
ABSTRACT___________________________________________________________
The coagulase-negative staphylococci (SCoN) have emerged as important nosocomial
pathogens, associated with outbreaks and catheter related infections. Besides if they turn
important reservoirs of resistance genes, these can contribute in the biofilm formation in the
surface of medical devices (biomaterials) what can take the septicemia and colonization of
the implants. The correct identification of species and the detection of oxacillin-resistance
are not easy task to be made by clinical laboratory, once there are several different species
of coagulase-negative Staphylococci and the expression of oxacillin resistance is not
always homogeneous.
The aim of this study was to identify isolates of coagulase-negative
other
than
Staphylococcus epidermidis
(SCoNne) and to compare the use of cefoxitin disk (30
µ
g)
with oxacillin disk (1 µg), agar dilution of oxacillin and gene
mecA
detection as well as to
detect the biofilm presence for genotypic method (
icaA
and
icaD
genes) and to compare
with the biofilm detection by phenotypic test in CRA (Congo red agar) in these strains. A
total of 238 SCoNne, isolates from blood cultures, was identified with 16 different species
and the oxacillin resistance was detected in 71% of isolates (
mecA
gene detection by PCR).
Comparing the three methods evaluated (cefoxitin disk difusion, oxacillin disk difusion and
agar dilution) with the presence of
mecA
gene, all methods presented sensitivity of 100%.
The specificity of cefoxitin disk diffusion was 100% while oxacillin disk presented a
specificity of 91% and the agar dilution presented a specificity of 88%. The detection of the
gene
icaA
was observed in 13 strains, involving the species:
S. capitis-capitis, S. capitis
urealyticum, S. hominis-hominis
e
S. caprae.
The
icaD
gene was not detected in any isolate.
10
The phenotypic biofilm production test carried out by CRA was positive in only three
samples, however, only two
S. capitis-capitis
samples showed concordance among the two
methods evaluated. In our study, the use of the cefoxitin disk showed to be a useful tool to
detection of oxacilin resistance in samples of SCoN others than the
S. epidermidis
. The
biofilm results showed a low sensitivity among the biofilm detection methods (presence of
the
icaA
and
icaD
genes and positive colonies in the CRA) for SCoNne samples.
Keywords: Coagulase-negative staphylococci, cefoxitin, oxacillin, bacterial resistance,
biofilm detection.
11
INTRODUÇÃO___________________________________________________________
O gênero
Staphylococcus
é amplamente distribuído na natureza, podendo ser
encontrado no homem colonizando pele e mucosas, em uma relação simbiótica ou benigna
com o seu hospedeiro. Entretanto, os microrganismos podem desenvolver um potencial
patogênico quando ocorre acesso aos demais tecidos do hospedeiro, principalmente através
de traumas que provoquem a ruptura da barreira cutânea. As espécies mais comumente
associadas ao homem são
Staphylococcus aureus, Staphylococcus epidermidis,
Staphylococcus capitis, Staphylococcus caprae, Staphylococcus sacharolyticus,
Staphylococcus warneri, Staphylococcus pasteuri, Staphylococcus haemolyticus,
Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus auricularis,
Staphylococcus saprophyticus, Staphylococcus cohnii, Staphylococcus xylosus
e
Staphylococcus simulans
(BANNERMAN, 2003).
O
Staphylococcus aureus
(espécie coagulase-positiva) tem maior importância em
infecções humanas sendo considerado mais patogênico deste gênero estando relacionado
com morbidade e mortalidade (BANNERMAN, 2003). Os
Staphylococcus
coagulase-
negativos (SCoN) estão entre as bactérias mais frequentemente isoladas nos laboratórios de
microbiologia clínica (KLOOS & BANNERMAN, 1994). A capacidade dos SCoN
causarem infecções tem sido melhor evidenciada nas últimas décadas, principalmente, em
infecções nosocomiais e naquelas associadas ao uso de dispositivos médicos como
válvulas, próteses e cateteres (POYART
et al
. 2001). Os SCoN possuem a habilidade de
produzir biofilme, uma substância polisacarídica que coloniza e infecta biomateriais como
cateteres vasculares, podendo levar o paciente a importantes infecções como bacteremia
12
(SCHULIN & VOSS, 2001; ARCIOLA
et al
. 2001a). Estudos de vigilância epidemiológica
produzem importantes informações sobre a prevalência de patógenos responsáveis por
bacteremia e índices de resistência aos antimicrobianos no mundo (MARSHALL
et al.
1998; SADER
et al
. 2003; BIENDENBACH
et al.
2004; POTTUMARTHY
et al.
2005).
Dentre estes, o SENTRY (
The SENTRY Antimicrobial Surveillance Program
)
tem
monitorado a prevalência de bacteremia em diversos países desde 1997 (BIENDENBACH
et al.
2004). De acordo com levantamento de dados realizado por este programa, durante o
período de 1997 a 2002, envolvendo países da América do Norte, América Latina e Europa,
os SCoN, juntamente com
Staphylococcus aureus
e
Escherichia coli
,
foram os patógenos
mais frequentemente isolados em hemoculturas nas três regiões estudadas. As taxas de
prevalência entre os SCoN foram de 11,5% na América do Norte, 13,3% na América Latina
e 14,6% na Europa e quando relacionados ao diagnóstico primário, os SCoN foram os
patógenos mais isolados de hemoculturas entre neonatos prematuros (BIENDENBACH
et
al
. 2004).
A identificação das espécies de SCoN vem ganhando importância nos laboratórios
clínicos e os métodos empregados devem permitir que a identificação seja realizada de
forma rápida e acurada, a fim de predizer o potencial patogênico da espécie isolada. A
identificação fenotípica das espécies de SCoN, baseados em provas bioquímicas manuais
ou automatizadas, continua ser uma técnica demorada, cara e com baixa acurácia (SKOW
et al
. 2005). Métodos genotípicos de identificação, baseados na detecção de genes espécie-
específicos utilizando a reação em cadeia da polimerase (PCR), vêm sendo testados a fim
de identificar com maior rapidez e acurácia as diferentes espécies de SCoN (MARTINEAU
et al
. 2001; HEIKENS
et al
., 2005; LAYER
et al
., 2006).
13
O aumento da resistência aos antimicrobianos, em SCoN, tem sido demonstrada em
hospitais do mundo todo, inclusive no Brasil, com taxas de resistência a oxacilina variando
de 50 a 80%, dependendo da espécie isolada e da região estudada (MARSHALL
et al.
1998; HUSSAIN
et al.
2000; FERREIRA
et al
. 2003, PALAZZO & DARINI, 2006). O
tratamento das infecções por SCoN pode ser um problema terapêutico, pois muitos isolados
clínicos desenvolvem resistência a múltiplos antibióticos, sendo que estes microrganismos
podem atuar como reservatórios de genes de resistência no ambiente hospitalar (MONSEN
et al
. 1998). Amostras resistentes a oxacilina apresentam resistência cruzada para toda a
classe dos β-lactâmicos incluindo cefalosporinas e carbapenêmicos, aumentando desta
forma o uso de glicopeptídeos em terapias empíricas e profiláticas (GOLDSTEIN
et al
.
2004; NUNES
et al
. 2006). A resistência a oxacilina em SCoN é resultado da produção de
uma proteína ligadora de penicilina (PBP2a) adicional, codificada pelo gene
mecA,
que
possui baixa afinidade pelos agentes
β
-lactâmicos, dessa forma, diversos estudos têm sido
realizados a fim de detectar corretamente a expressão heterogênea desta resistência
(CHAMBERS, 1997; FREBOURG
et al.
, 1998; HUSSAIN
et al
., 2002; FERREIRA
et al
.,
2003; SWENSON
et al
., 2005). Métodos fenotípicos, para detectar a resistência a oxacilina,
podem ser inadequados para SCoN, apesar do uso de uma padronização internacional, o
CLSI (
Clinical and Laboratory Standards Institute
), nos laboratórios clínicos
(CHAMBERS, 1997, PALAZZO & DARINI, 2006). Desta forma, o padrão-ouro de
detecção de resistência a oxacilina é o gene
mecA
, detectado
por PCR ou pela técnica de
aglutinação em látex do seu produto (PBP2a). Em 2004, o CLSI recomendou o uso do
disco de cefoxitina como um marcador da resistência a oxacilina em
Staphylococcus
spp. e,
desde então, muitos experimentos tem sido realizados para avaliar o uso dos discos de
14
cefoxitina (30
µ
g) e oxacilina (1
µ
g) em comparação com o gene
mecA
em amostras de
Staphylococcus
spp
.
(NCCLS, 2004; POTTUMARTHY
et al
. 2005).
A correta identificação das espécies de SCoN, bem como, a avaliação da resistência
a oxacilina e a detecção da produção de biofilme, são desafios dos laboratórios clínicos, que
procuram métodos alternativos para melhor caracterizar espécies de SCoN de forma rápida
e confiável.
15
REVISÃO DA LITERATURA_______________________________________________
ASPECTOS GERAIS DO GÊNERO Staphylococcus spp.
Os estafilococos são cocos Gram positivos, pertencentes a família
Micrococaceae
,
do gênero
Staphylococcus
spp., que ocorrem isolados, aos pares, em tétrades ou
aglomerados (tipo “cacho de uva”), imóveis, não formadores de esporos, não-capsulados,
geralmente catalase positiva e anaeróbios facultativos
(BANERMANN, 2003).
O gênero
Staphylocococcus
é composto por aproximadamente 38 espécies e 17
subespécies, metade das quais são nativas do ser humano (KLOOS & BANERMANN,
1994; HEIKENS
et al.
2005). A grande maioria destas espécies pertence ao grupo dos
Staphylococcus
spp. coagulase-negativos (SCoN) que representam o maior componente da
microbiota da pele e das mucosas humanas (KRAUSE
et al
2003; MINTO
et al
. 1999).
Entretanto, espécies relacionadas com animais, também podem ser encontradas no homem
devido ao contato direto com estes (KLOOS & BANNERMAN, 1994). Geralmente, os
SCoN, têm uma relação benigna ou simbiótica com seu hospedeiro, entretanto podem se
transformar em patógenos se houver um rompimento da barreira cutânea do hospedeiro,
ocasionado por traumas, inoculação por agulhas ou implantação de equipamentos médicos
(HEIKENS
et al.
2005). Este grupo de bactérias tem emergido como causa importante do
aumento de infecções sanguíneas, estando associado com significativa morbidade e
mortalidade (BANERMANN, 2003; DIAS,
et al.
2004; RUHE
et al.
2004),
As infecções nosocomiais por SCoN estão relacionadas, principalmente, com
neonatos, com pacientes imunocomprometidos e com aqueles que possuem implantação de
dispositivos médicos (biomateriais) como cateteres intravasculares, marcapasso
transvenoso, válvula cardíaca, prótese articular entre outros (LOUIE
et al
. 2001;
GHOSHAL
et al
. 2004; RUHE
et al
. 2004).
16
EPIDEMIOLOGIA
Historicamente, o
S. aureus
era considerado um patógeno oportunista, enquanto os
SCoN como microrganismos não-patogênicos devido a sua natureza ubíqua e relativa baixa
virulência (KLOOS & SCHLEIFER, 1975; PFALLER & HERWALDT, 1988). Numerosos
estudos, envolvendo os SCoN, evidenciam que este grupo de bactérias pode causar uma
variedade de infecções de importância médica, principalmente infecções nosocomiais
(PFALLER & HERWALDT, 1988; POYART
et al
. 2001; MARTINEAU
et al
. 2001;
HEIKENS
et al
. 2005; LAYER
et al.
2006). Infecções nosocomiais são a maior causa de
morbidade e mortalidade nos EUA, principalmente em pacientes imunocomprometidos,
visto que são mais susceptíveis a infecções por microrganismos, inclusive pelos que
normalmente não causam infecções em indivíduos imunocompetentes (EMORI &
GAYNES, 1993). Estima-se que aproximadamente 30% de todas as infecções nosocomiais
e 50% das septicemias estão relacionadas com o gênero
Staphylococcus
spp. (SKOW
et al
.
2005). Além disso, o ambiente hospitalar propicia aos microorganismos a aquisição de
resistência aos antimicrobianos, o que complica o tratamento das infecções e eleva a
permanência do paciente no hospital, bem como, os custos com a internação (EMORI &
GAYNES, 1993).
Em um levantamento epidemiológico na América Latina realizado através do
programa SENTRY no período de 1997 a 2000, em isolados de hemoculturas, foi
observada a prevalência de 13,9 % de SCoN e 21,3% de
S. aureus.
Os índices de resistência
a oxacilina foram de 75,3% em SCoN e 30,6% em
S. aureus
. Todos os isolados de
Staphylococcus
spp. foram susceptíveis a vancomicina e linezolida, embora os SCoN
apresentassem reduzida susceptibilidade a teicoplanina e quinupristin/dalfopristin (SADER
et al.
2003). Em um estudo realizado em hospitais do Rio de Janeiro, Brasil, por Ferreira
et
17
al
. (2003), foi mostrado que a resistência a oxacilina em SCoN, isolados de diversos
materiais clínicos, foi de 67,8% no período de 1994 a 2000. Caierão
et al
. (2004), em um
estudo realizado em um hospital de Porto Alegre, Brasil, encontraram uma porcentagem de
69,1% de resistência a oxacilina em SCoN isolados de hemoculturas. Pallazzo & Darini
(2006) avaliaram amostras de SCoN, isoladas de diversos materiais clínicos em um hospital
de Ribeirão Preto, Brasil, encontrando uma porcentagem de 53% de resistência a oxacilina.
Os SCoN representam um grupo heterogêneo de microrganismos, a espécie mais
prevalente em infecções humanas é o
S. epidermidis
, patógeno que está envolvido com
bacteremia, endocardite, infecções de feridas cirúrgicas, trato urinário, sistema nervoso
central, infecções relacionadas com diálise peritonial e próteses médicas (JEONG
et al.
2002; SHARMA
et al.
2001; VUONG & OTTO, 2002; HEIKENS
et al
. 2005). O
S.
haemolyticus
é a segunda espécie entre SCoN mais isolada em infecções humanas,
implicado em endocardite, septicemia, peritonite, meningites, infecções do trato urinário,
feridas, ossos e articulações (BANERMANN, 2003). O
S. saprophyticus
é um patógeno
oportunista, geralmente, associado a infecções do trato urinário especialmente em mulheres
jovens sexualmente ativas. Esta espécie pode também estar envolvida com uretrites em
homens, prostatites, infecções de ferida cirúrgica, septicemia (PATEL
et al.
2000, SECHI
et al
. 1999) e meningite em crianças (HERVÁS
et al.
1994).
S. lugdunensis
foi descrito primeiramente por Freney
et al.
(1988), apresentando
características muito mais parecidas com
S. aureus,
no que diz respeito a natureza rápida e
agressiva da infecção (PATEL
et al.
2000; HELLBACHER
et al.
2006). Ambas as
espécies,
S lugdunensis e S. aureus
, parecem compartilhar os mesmos fatores de virulência
(MATEO
et al.
2005).
S. lugdunensis
é uma espécie raramente encontrada como
contaminante/colonizante, portanto o seu isolamento tem importância como um verdadeiro
18
patógeno (POUTANEN & BARON, 2001), sendo relacionado a infecções de pele e tecidos
moles (EBRIGHT
et al
. 2004), artrite, bacteremia, infecções associadas ao uso de cateter e
próteses, infecções urinárias e respiratórias, peritonite, abscessos cerebrais, osteomielite
crônica e endocardite (SCHNITZLER
et al.
1998; HAILE
et al.
2002). As regiões
perianais, inguinais e peitorais podem ser os locais de colonização do
S. lugdunensis
(MATEO
et al.
2005; HELLBACHER
et al.
2006).
S. warneri
já foi descrito em casos de osteomielite vertebral e infecções do trato
urinário (KLOOS & BANERMANN, 1994), endocardites e bacteremia (CENTER
et al
.
2003). Outro componenete deste grupo, o
S. hominis
já foi descrito em endocardite,
peritonite, septicemia, infecções urinárias e artrite (CENTER
et al.
2003). Recentemente
uma nova subespécie de
S. hominis,
S. hominis subsp. novobiosepticus,
foi isolada em
bebês prematuros internados no Centro de Tratamento Intensivo Neonatal da cidade de
Madri, Espanha, causando bacteremia (CHAVES
et al.
2005).
Espécies menos prevalentes de SCoN como
S. simulans
,
S. capitis
,
S. schleiferi,
S. sciuri, S. caprae, S. cohnii, S. auricularis, S. xylosus, S. equorum
podem causar uma
série de infecções em humanos como por exemplo: septicemia, infecções urinárias,
endocardite, abscessos, infecções de próteses, osteomielite entre outros (MALES
et al
.
1985; PFALLER & HERWALDT, 1988; KAWAMURA
et al.
1998; KAMALESH &
ASLAM, 2000; CALVO
et al.
2000; COUTO
et al.
2000; RAZONABLE
et al.
2001; EIFF
et al
. 2002; DAKIÉ
et al
. 2005).
Tendo em vista o exposto acima, tem se tornado importante a identificação acurada
das espécies de SCoN para definir seu significado clínico e sua relação patógeno-
hospedeiro, bem como, a realização de um controle da emergência e disseminação da
19
multiresistência entre estes microrganismos, principalmente, no ambiente hospitalar
(JONES, 2001; HEIKENS
et al
. 2005; POYART
et al
. 2001).
PATOGENICIDADE
A aquisição de infecção por SCoN é facilitada pela presença de alguns fatores de risco,
tais como: quebra da barreira muco-cutânea do hospedeiro, estado de imunossupressão e
idade (idosos e neonatos), que somados à implantação de dispositivos médicos aumentam a
susceptibilidade do indivíduo a infecção (RUPP & ARCHER, 1994).
A capacidade dos SCoN de colonizar tecidos e desenvolver infecções está relacionada
ao seu poder de aderência aos biomateriais que compõem os dispositivos médicos. Fatores
de virulência são descritos, principalmente, para as espécies de
S. epidermidis
e
S. aureus
,
mas outros SCoN também podem produzir estes mesmos fatores (CAMPOCCIA
et al.
2
006). A produção de “slime” ou biofilme, um composto extracelular mucóide de natureza
polissacarídica, é considerado o principal fator de virulência dos SCoN. Formado durante a
fase estacionária do crescimento, permite o acúmulo (agregação) das células bacterianas e
maior aderência e persistência destas na superfície dos dispositivos médicos. Além disso,
atua como uma barreira física à ação do sistema imunológico e aos antimicrobianos
(KLOOS & BANNERMANN, 1994; ARCIOLA
et al.
2002).
O mecanismo pelo qual os SCoN atacam os biomateriais e elaboram o biofilme tem
sido caracterizado por muitos pesquisadores como um processo complexo e com muitos
passos onde a relevância de cada componente ainda requer maior investigação (SILVA
et
al.
2002). O processo de formação do biofilme ocorre em duas etapas: primeiro passo - um
ataque inicial da bactéria a superfície plástica inerte (biomaterial) ou material protéico do
hospedeiro presente no plástico (a adesão direta a superfície do material está relacionada a
20
uma proteína celular de superfície -autolisina- codificada pelo gene
atlE
); segundo passo –
formação de biofilme, que inclui a agregação celular e o acúmulo deste em multicamadas
com maior aderência e persistência na superfície dos dispositivos médicos ou nas células do
hospedeiro, sendo mediada pelos produtos do operon
ica
(O’GARA & HUMPHREYS,
2001; VUONG & OTTO, 2002; MORETRO
et al.
2003). A ativação do lócus
ica
que
contém um operon com os genes
ica
ADBC, desencadeia a síntese da adesina polisacarídica
intercelular (PIA), principal componente do biofilme, responsável pela adesão célula a
célula. A PIA consiste em um polímero linear
β
-1,6 glicosaminoglicano codificado pelo
lócus intercelular de adesão e em particular pelo gene
icaA.
Apenas a expressão do gene
icaA
induz a baixa atividade enzimática, porém a co-expressão dos genes
icaA
com
icaD
leva a um significativo aumento na atividade enzimática da proteína sendo relatado como a
expressão fenotípica total do polisacarídeo capsular (ARCIOLA
et al.
2001). O papel dos
genes
icaB, icaC
e
icaR
(regulador) não está bem estabelecido (O’GARA &
HUMPHREYS, 2001; GÖTZ, 2002).
Alguns experimentos têm mostrado que a bactéria que cresce dentro do biofilme,
geralmente, exibe uma maior resistência aos antimicrobianos por baixa difusão ou falha na
penetração destes no biofilme, apesar de susceptibilidade demonstrada
in vitro
através de
métodos convencionais. Outros fatores que podem justificar o aumento na resistência aos
antimicrobianos são: baixo crescimento bacteriano dentro do biofilme pela limitação de
nutrientes, indução das características fenotípicas do biofilme com ativação do mecanismo
de efluxo de drogas e alteração da composição protéica da membrana celular (ARCIOLA
et
al.
2001; ARCIOLA
et al.
2005).
21
Nos EUA, artroplastias totais de joelho e quadril caracterizam aproximadamente meio
milhão de intervenções a cada ano. Com este grande número de pacientes com implantes
ortopédicos, o risco de infecção, estimado em 0,5 a 5% do total de próteses, deve ser
considerado relevante pela suas sérias conseqüências (CAMPOCCIA
et al.
2006). Os
SCoN são causadores de 15 a 37,5% de infecções pós-artroplastias, sendo que o
S.
epidermidis
é a principal espécie responsável por estas infecções e por outras
relacionadas com articulações e ossos. Existem alguns relatos de outras espécies de SCoN
também relacionadas com este tipo de infecção, como
S. caprae, S. lugdunensis,
S. simulans
,
S. hominis e S. haemolyticus
(SIVADON
et al.
2005, CAMPOCCIA
et al.
2006).
No tratamento clínico das infecções por
Staphylococcus
spp. após cirurgias de
implantação de próteses, a rápida identificação de propriedades virulentas das bactérias é
crucial na tomada de decisão entre o uso de antimicrobianos ou tratamentos cirúrgicos. Às
vezes, a remoção da prótese e a recolocação de uma prótese nova representam a única
opção para erradicar definitivamente as infecções severas (ARCIOLA
et al.
2001;
CAMPOCCIA
et al.
2006). Os SCoN são os principais microorganismos capazes de
produzir colonização ou de infectar cateteres vasculares nos quais podem levar a
bacteremia, podendo ser uma importante complicação em pacientes hematológicos,
hemodialisados e naqueles internados em unidades de tratamento intensivo onde o uso de
cateteres é parte do tratamento médico (SCHULIN & VOSS, 2001). Saginur
et al.
(2006)
demonstraram o aumento da resistência aos antimicrobianos em amostras de
Staphylococcus
obtidas em biofilme em relação a bactérias sob forma livre. Rifampicina,
vancomicina e ácido fusídico foram os antibióticos mais comumente incluídos em
combinações ativas contra
Staphylococcus
produtores de biofilme. Em outro experimento, a
22
eritromicina, rifampicina e tetraciclina apresentaram maior efeito que a vancomicina,
clindamicina, cefalotina, teicoplanina e ofloxacina em isolados clínico de
S. epidermidis
produtores de biofilme. Estes estudos salientam a relevância do teste de susceptibilidade na
presença de biofilme e o potencial dano do uso indiscriminado da monoterapia com
vancomicina, inadequada frente a infecções com microrganismos produtores de biofilme
(AMORENA
et al.
1999; MONZÓN
et al.
2001).
O método qualitativo mais utilizado para detecção de biofilme, principalmente em
S. epidermidis
, é o teste em placa de ágar Congo red (CRA) descrita por Freeman
et al
.
(1989). A análise direta das colônias formadas neste meio permite o reconhecimento das
amostras produtoras de biofilme ou PIA-positivas (colônias pretas no ágar vermelho) das
não-produtoras de biofilme (colônias bordô/vermelhas). A correta classificação do teste
qualitativo pode ser dificultada pelo caráter subjetivo de avaliação cromática do observador
(ARCIOLA
et al
. 2001). Novos métodos moleculares têm sido empregados na avaliação da
produção de biofilme, como por exemplo a técnica de PCR, através da detecção dos
principais genes envolvidos,
icaA e icaD,
pertencentes ao operon
ica
(ARCIOLA
et al
.
2001a; ARCIOLA
et al.
2002). A correlação entre a detecção genotípica dos genes
icaA
e
icaD
e a formação de colônias biofilme-positivas no CRA tem sido demonstrada
principalmente em amostras de
S. epidermidis
(ARCIOLA
et al.
2001).
Outros fatores de virulência em potencial, relacionados aos SCoN, podem ser melhor
estudados como: exoproteínas, hemolisinas, citotoxinas, deoxitibonuclease, fibrinolisina,
proteinase e lipase-esterase. Similaridade entre exoproteínas produzidas por
S. aureus,
S. epidermidis, S. haemolyticus
e
S. saprophyticus
sugerem que este pode ser um
importante fator de virulência em infecções humanas (PFALLER & HERWALDT, 1988).
23
RESISTÊNCIA AOS ANTIMICROBIANOS
O aumento da complexidade dos pacientes que requerem hospitalização, da idade da
população e do uso de dispositivos médicos tem elevado o risco de bacteremia. O
tratamento de pacientes com bacteremia vem se tornando cada vez mais complicado em
uma era com aumento de resistência aos antimicrobianos entre diferentes patógenos.
Levantamentos epidemiológicos mostraram taxas de mortalidade em pacientes com
bacteremia de 17,5% em adultos, 14% em pacientes pediátricos e entre 20 a 40% entre
pacientes idosos (LEIBOVICI
et al.
1995; WEINSTEIN
et al.
1997; WISPLINGHOFF
et
al.
2003). O uso de agentes antimicrobianos tende a exercer uma pressão seletiva na
população bacteriana o que promove a emergência de microrganismos resistentes e
predispõe o paciente à colonização por estes. Geralmente, a resistência dos microrganismos
aos antimicrobianos também está relacionada com o aumento do uso de drogas
imunossupressoras e procedimentos invasivos como resultados de novos avanços
tecnológicos (EMORI & GAYNES, 1993). Outro fator que contribui com o aumento da
resistência é o tratamento médico empírico, que pode levar a uma terapia antimicrobiana
inadequada com pobres resultados clínicos (BIENDENBACH
et al.
2004).
Embora, geralmente não seja considerado um fator de virulência, a multirresistência
é uma das principais características observadas entre amostras clínicas de SCoN e tem
incluído além da resistência a oxacilina e conseqüentemente resistência a todos
β
-
lactâmicos, a resistência a aminoglicosídeos, clindamicina, cloranfenicol, eritromicina,
tetraciclina, trimetoprim/sulfametoxazol e quinolonas (PFALLER & HERWALDT, 1988;
SANTOS
et al.
1997). Os primeiros surtos de
S. aureus
oxacilina-resistentes ocorreram em
hospitais europeus no início dos anos 60 (OLIVEIRA
et al.
2002). Desde então, amostras
24
de
S. aureus
e SCoN resistentes a oxacilina têm sido isoladas em todo mundo, tanto no
ambiente hospitalar quanto fora dele, principalmente, em pacientes com doenças crônicas e
usuários de drogas injetáveis (HACKBART & CHAMBERS, 1989; CHAMBERS, 1997).
S. epidermidis
e
S. haemolyticus
são espécies que apresentam mais freqüentemente
resistência a oxacilina entre os isolados clínicos de SCoN (FERREIRA
et al
. 2002).
Recentemente, foram descritas infecções ocasionadas por
S. aureus
resistentes a
meticilina adquiridos na comunidade (CA-MRSA), que causam infecções de pele e tecidos
moles, furunculoses e abscessos, podendo causar pneumonias necrotizantes, estando mais
relacionados com populações jovens que não apresentaram fatores de risco para infecções
nosocomiais (RIBEIRO
et al.
2005). Recentes relatos de isolados de CA-MRSA
demonstraram que estes são geneticamente distintos do MRSA, associado infecções
nosocomiais (HA-MRSA), apresentando freqüentemente fatores de virulência diferentes do
HA-MRSA, como o gene Panton-Valentine Leucocidin (PVL) associado a infecções de
pele. Em adição, a resistência a meticilina é conferida pelo cassete cromossômico mec
(SCCmec) tipo IV ou V diferentes do tipo I e II encontrados no HA-MRSA (PATEL
et al.
2006).
Semelhante ao que acontece com o
S. aureus
, a resistência a oxacilina entre os
SCoN tem aumentado nos últimos anos. Estima-se que dependendo da espécie, 50 a 80%
das amostras isoladas de SCoN, em diversos países, são
mecA
positivas, ou seja, resistentes
a oxacilina (MARSHALL
et al.
1998; HUSSAIN
et al.
2000; FERREIRA
et al
. 2003,
PALAZZO & DARINI, 2006). Muitos dos SCoN adquirem genes de resistência devido a
plasmídeos (DNA extra-cromossômico) ou através de elementos genéticos móveis
(transposons), representando uma via importante de transmissão de determinantes de
resistência para outros gêneros e espécies, justificando a importância dos SCoN como
25
reservatórios de genes de resistência (ARCHER & NIEMEYER, 1994). A resistência a
oxacilina está associada com a produção de uma única PBP que não está presente em
amostras de
Staphylococcus
spp.
suscetíveis a oxacilina. Esta proteína induzível (PBP2a ou
PBP2’) é produzida em amostras de
Staphylococcus
spp. meticilina resistentes, possuindo
baixa afinidade aos
β
-lactâmicos, sendo codificada pelo gene
mecA
(HACKBARTH &
CHAMBERS, 1989; MAES
et al
. 2002). A origem do gene
mecA,
tem sido atribuída a um
espécie de SCoN, o
S. sciuri,
possivelmente por uma evolução de um gene ancestral
homólogo ao
mecA,
com 88% de similaridade na seqüência de aminoácidos das PBP2a
(CHAMBERS, 1997; JUUTI
et al
. 2005; DAKIÉ
et al.
2005). O gene
mecA
é
produzido
por um elemento genético móvel de DNA,
staphylococcal cassette chomosome mec
(SCCmec) com 21 a 67 kb que integram o cromossomo da resistência a meticilina em
S.
aureus
(MRSA) em um único local (
attBscc
) localizado próximo ao seu local de replicação
(HANSSEN
et al.
2004). Cinco tipos de elementos SCCmec, contendo diferentes
combinações de
mecA
, de seus reguladores e genes recombinantes específicos, vem sendo
caracterizados em alguns estudos (HANSSEN et al. 2004; JUUTI et al. 2005), sendo que o
mecanismo responsável pela transferência do gene
mecA
não é conhecido, porém
evidências suportam uma transferência horizontal entre espécies de SCoN para
S. aureus
e
também entre diferentes gêneros de bactérias Gram-positivas (HANSSEN
et al
. 2004).
A resistência a oxacilina pode ser de difícil detecção por métodos fenotípicos
devido à sua expressão heterogênea (heteroresistência), onde a maioria das células
apresenta susceptibilidade a baixas concentrações do antimicrobiano
β
-lactâmico, com
apenas uma pequena parcela da população bacteriana (1 UFC em 10
6
UFC) crescendo em
concentrações elevadas da droga. Este tipo de resistência é mais comum em SCoN do que
26
em
S. aureus
e pode levar a liberação de resultados falso-negativos quando utilizados
métodos convencionais para determinação da susceptibilidade à oxacilina (CHAMBERS,
1997; GRADELSKI
et al
. 2001; HUSSAIN
et al.
2002; GHOSHAL
et al
. 2004). A
expressão fenotípica da resistência a oxacilina pode variar dependendo das condições de
crescimento do microrganismo (ex. temperatura, osmolaridade, meio de cultura
suplementado com NaCl ou sacarose), dessa forma, pode gerar problemas aos métodos de
avaliação deste antimicrobiano, apesar do uso de uma padronização internacional como o
CLSI pelos laboratórios clínicos (PALAZZO & DARINI, 2006).
Na avaliação da resistência a oxacilina, os métodos moleculares de detecção do
gene
mecA
através da
PCR, são considerados padrão-ouro, sendo utilizados,
principalmente, em laboratórios de pesquisa devido ao custo e/ou o uso de equipamentos
especializados (MAES
et al.
2002; BANNERMANN, 2003). Um método alternativo de
rápida execução na detecção da resistência a oxacilina é a detecção da produção da PBP2a
através do teste comercial de aglutinação em látex. Este método tem demonstrado boa
correlação com o da detecção do gene
mecA
(LOUIE
et al.
2001; HUSSAIN
et al.
2002).
Embora, o PCR seja considerado o melhor método para detectar resistência dos
Staphylococcus
a oxacilina, alguns estudos têm demonstrado discrepâncias em amostras
que não carregam o gene
mecA
, porém, mostram resistência a oxacilina (VELASCO
et al
.
2005; PALAZZO & DARINI 2006). O baixo nível de resistência a oxacilina nos
Staphylococcus mecA
negativos pode ser resultado da modificação ou hiperprodução de
PBPs normais. A expressão da resistência a oxacilina pode ser mediada por β-lactamase, no
qual, quando hiperproduzida pode hidrolisar o anel
β
-lactâmico das penilicinas e a levar a
27
alterações nas PBPs (PBPs 1, 2 e 4) outras que a PBP2a (TENOVER
et al.
1999;
PETINAKI
et al
. 2002).
Outro método alternativo na detecção da resistência a oxacilina, é o teste de triagem
em ágar contendo oxacilina que pode ser utilizado em laboratórios clínicos. Caierão
et al
.
(2004) avaliaram diferentes concentrações de oxacilina (0,6 e 4
µ
g/mL) no teste de triagem
em ágar. A concentração de 4
µ
g/mL de oxacilina resultou em especificidade de 100% para
os SCoN quando correlacionada com a presença ou ausência do gene
mecA.
O método fenotípico de disco de difusão (DD) é amplamente utilizado nos
laboratórios clínicos para detecção de resistência aos antimicrobianos. A fim de obter
resultados mais precisos, na detecção da resistência a oxacilina em
Staphylococcus
spp., o
CLSI em 2004, recomendou o uso de disco de difusão de cefoxitina (30 µg) para melhor
predizer a resistência a oxacilina nestes isolados
(POTTUMARTHY
et al.
2005) A
cefoxitina, uma cefamicina, é mais potente indutora do sistema regulador do gene
mecA
do
que as penicilinas. Alguns grupos de estudo têm observado melhores resultados de testes
com disco de cefoxitina correlacionando-a com a presença do gene
mecA
do que com disco
de oxacilina entre isolados de
Staphylococcus
spp
.
(FERNANDES
et al.
2005; SWENSON
& TENOVER, 2005; VELASCO
et al
. 2005),
Infecções por
Staphylococcus
spp
.
susceptíveis a oxacilina são mais efetivamente
tratadas com antimicrobianos β-lactâmicos do que com vancomicina devido a sua alta
atividade intrínseca, melhor concentração nos tecidos, baixa incidência de efeitos
colaterais, rápida ação bactericida e baixo custo terapêutico. Entretanto, o uso inicial de
vancomicina, como terapia empírica, parece ser uma prática comum aos clínicos
(GHOSHAL
et al.
2004). Dessa forma, a detecção rápida e acurada da resistência a
28
oxacilina em
Staphylococcus
spp.
é um importante guia para tratar infecções severas
(LOUIE et al 2001; STEPANOVIC
et al.
2006).
Os SCoN que se apresentam como resistentes a oxacilina, geralmente, são
susceptíveis aos glicopeptídeos (vancomicina e teicoplanina). Entretanto, atualmente, os
SCoN já mostraram fenótipos de susceptibilidade reduzida e de resistência aos
glicopeptídeos. O mecanismo de resistência aos glicopeptídeos em
Staphylococcus
spp. não
é totalmente entendido. A maioria dos estudos é focada em
S. aureus
, demonstrando um
complexo mecanismo relacionado a mudanças que afetam a parede da célula bacteriana
(espessamento) evitando que moléculas de vancomicina alcancem os sítios de síntese dos
peptideoglicanos (NUNES
et al.
2006). O gene
vanA
envolvido na resistência aos
glicopeptídeos em
Enterococcus
spp. não tem sido associado com a resistência a
vancomicina em
Staphylococcus
spp.,
apesar de três isolados de VRSA portadores do gene
vanA
já terem sido isolados nos EUA (PALAZZO
et al.
2005).
Apesar do amplo uso de vancomicina, a maioria dos SCoN tem permanecido
susceptível as concentrações séricas deste antimicrobiano, entretanto, o mecanismo de
resistência já foi relatado em isolados de
S. epidermidis, S. haemolyticus
,
S. hominis
,
S. warneri e S. sciuri
como sendo similar ao descrito em amostras VISA e hetero-VISA
(STEPANOVIC
et al.
2006; NUNES
et al.
2006). A emergência da resistência a
teicoplanina em SCoN tem sido reportada antes da resistência a vancomicina, podendo a
teicoplanina ser considerada um marcador da heteroresistência a vancomicina em
Staphylococcus
spp. (BOISSON
et al.
2002; NUNES
et al.
2006; STEPANOVIC
et al.
2006). O mecanismo de resistência a vancomicina em SCoN pode ser atribuída a seleção de
subpopulações, uma composta de bactérias susceptíveis a vancomicina e teicoplanina e
outra composta de um pequeno número de bactérias com variável grau de resistência aos
29
glicopeptídeos (PALAZZO
et al.
2005; NUNES
et al.
2006). A exposição individual a
glicopeptídeos e β-lactâmicos, em associação com a história prévia de hospitalização e
pneumonia pode ser um fator de risco para desenvolvimento de resistência aos
glicopeptídeos (TACCONELLI
et al
. 2001; CENTER
et al
. 2003).
CARACTERIZAÇÃO FENOTÍPICA
Staphylococcus
spp. podem ser identificados por uma variedade de características
fenotípicas convencionais ou moleculares (BANERMANN, 2003). A identificação
convencional das espécies e subespécies de SCoN é realizada a partir da combinação de um
grupo de testes laboratoriais como: morfologia colonial, resistência ou susceptibilidade a
certos antimicrobianos, produção de hemólise, análise da atividade enzimática sobre
diferentes substratos e produção de ácido a partir de diferentes carboidratos
(BANERMANN, 2003).
A preocupação de identificar corretamente as espécies de
Staphylococcus
spp.
coagulase-negativos pelos laboratórios clínicos tem aumentado nos últimos tempos.
Entretanto, o método convencional proposto por Kloss & Schleifer (1975) e modificado por
Bannerman (2003) é trabalhoso e demorado, sendo que a exata identificação das espécies
não é tarefa fácil, pois as provas bioquímicas utilizadas para identificação, apresentam
muitas vezes características similares entre as diferentes espécies. Muitos laboratórios
clínicos utilizam rotineiramente sistemas comerciais para identificar as espécies de SCoN,
entretanto, estes podem não incluir em seus bancos de dados todas as espécies de
Staphylococcus
spp. gerando resultados que variam de 50 a 95% na identificação das
amostras (KAWAMURA
et al.
1998; POYART
et al
. 2001; DE PAULIS
et al
. 2003).
Resultados discrepantes entre os sistemas convencionais de identificação e os sistemas
30
automatizados mais conhecidos e disponíveis no mercado, MicroScan (Dade Behring,
Deerfield, IL, USA) e VITEK (bioMérieux, Marcy L’Etoile, France), são relatados para
espécies menos freqüentemente isoladas de SCoN, já para espécies com maior freqüência
de isolamento e com maior relevância clínica como
S. epidermidis e S. haemolyticus
os
sistemas têm performances similares aos métodos convencionais (CAIERÃO
et al
. 2006).
Métodos convencionais ou sistemas comerciais de identificação além de possuírem
uma baixa acurácia (50 a 70%), precisam de maior tempo de incubação para obter os
resultados esperados. O custo, o tempo e a baixa acurácia na identificação das espécies
pode resultar na decisão de alguns laboratórios não identificarem os SCoN a não ser que
sejam considerados clinicamente significantes (POYART
et al
. 2001; SKOW
et al
. 2005).
A realização de testes fenotípicos simples e de fácil execução é um desafio nos
laboratórios clínicos. Esquemas simplificados de identificação já foram descritos por
muitos autores, como Lindsay & Riley (1991) que utilizaram discos impregnados com o
medicamento Desferal
®
(Ciba-Geigy), composto de mesilato de desferroxamina B, um
sideróforo utilizado como agente quelante de ferro, para realização de um teste simples de
identificação de SCoN baseado na técnica de disco de difusão. Como resultado, no teste de
disco de difusão, houve a susceptibilidade ou formação de halo apenas nas espécies de
S.
epidermidis e S. hominis,
sendo que os demais SCoN foram resistentes a desferrioxamina.
Ieven
et al.
(1995) propôs um esquema simples de identificação de SCoN
envovendo duas etapas: a primeira avaliando a produção de urease, fermentação da trealose
e fosfatase alcalina com leitura em 4hs e a segunda, quando necessária, utilizando testes
complementares como a descarboxilação da ornitina, crescimento em anaerobiose e
suscetibilidade a novobiocina e fosfomicina. Desta forma, o esquema identificou 97,7% dos
isolados com resultados semelhantes aos métodos convencionais e comerciais
31
comparativos. Monsen
et al
. (1998) propuseram um painel de testes no qual foi avaliado:
produção de urease e
β
-galactosidade, fementação de maltose, manose, trealose, manitol,
sacarose e ribose, testes de suscetibilidade a furazolidona, desferroxamina, polimixina B,
novobiocina e bacitracina. Este esquema identificou 96,9% das espécies quando comparado
a método convencional ou sistemas comerciais.
Métodos fenotípicos de avaliação de resistência aos antimicrobianos em
Staphylococcus
envolvem principalmente a detecção de resistência a oxacilina e são
recomendados pelo CLSI os seguintes testes para SCoN: teste de difusão em ágar (Kirby-
Bauer) com utilização de discos de oxacilina (1
µ
g) e cefoxitina (30
µ
g) com leitura após
24hs de incubação a 35°C e interpretação dos halos obtidos conforme “breakpoints”
padronizados; determinação da concentração inibitória mínima (CIM) através da técnica de
microdiluição ou diluição em ágar para oxacilina com leituras conforme “breakpoints” do
CLSI. O teste de triagem em ágar Mueller Hinton suplementado com NaCl e oxacilina é
recomendado apenas para amostras de
S. aureus
(NCCLS, 2003; CLSI, 2005 e 2006).
Sistemas comerciais automatizados, como VITEK ou Microscan, podem ser
utilizados na avaliação de resistência a oxacilina em SCoN com excelente especificidade,
entretanto, estes podem perder em sensibilidade e acurácia na detecção de isolados com
resistência heterogênea a oxacilina principalmente em SCoN (CHAMBERS, 1997;
FREBOURG
et al.
1998; JAFFE
et al.
2000).
CARACTERIZAÇÃO GENOTÍPICA
Métodos genotípicos, baseados na análise dos produtos de PCR derivados de
seqüências de DNA específicas, têm sido desenvolvidos para a identificação das espécies
32
dos SCoN, mostrando maior estabilidade e rapidez (POYART
et al
. 2001; FUJITA
et al
.
2005). O uso de alvos moleculares (de ácidos nucléicos) aumenta a sensibilidade e
especificidade da técnica e podem ser uma alternativa na identificação acurada das espécies
de SCoN. Vários genes tem sido pesquisados, como o 16S rRNA, gene conservado
presente no cromossomo de todas as bactérias, o gene que codifica o tRNA da região
intergênica (ITS-PCR), o gene
sodA,
o qual codifica uma proteína superóxido dismutase
(manganês- dependente), o gene
tuf
, que codifica o alongamento do fator Tu envolvido na
formação da cadeia peptídica e é parte do ribossomo, além de outros genes como, o gene
hsp60,
o gene
fem,
o gene
rpoB,
o
gene gap
(POYART
et al.
2001; COUTO
et al.
2001;
DRANCOURT & RAOULT 2002; HEIKENS
et al.
2005; LAYER
et al.
2006).
Poyart
et al.
(2001) avaliaram o uso do gene
sodA
, na identificação 40 espécies de
SCoN. Os resultados obtidos mostraram que o gene
sodA
pode constituir um alvo com
melhor poder discriminatório em relação a diferenciação das espécies relacionadas do que o
16S rRNA. A limitação do método, assim como gene
hsp60,
foi não discriminar as espécies
no nível de subespécies. Martineau
et al.
(2001) desenvolveram um método de
identificação de SCoN baseados na reação de PCR específica para
Staphylococcus
tendo
como alvo o gene
tuf.
Os resultados mostraram ser altamente sensíveis e específicos,
principalmente, paras as cinco sondas espécie-específicas desenvolvidas neste estudo:
S. aureus, S. epidermidis,
S. haemolyticus, S. hominis
e
S. saprophyticus.
Heikens
et al
. (2005) avaliaram 57 amostras de SCoN através de métodos
fenotípicos de identificação das espécies com os sistemas comerciais API Staph ID
(bioMérieux) e Sistema Automatizado BD Phoenix (Becton Dickinson, Franklin Lakes, NJ,
USA) comparados comtodos genotípicos envolvendo sequenciamento de amplicons das
seqüências dos
Staphylococcus
16S rRNA e genes
tuf
e
sodA.
Os resultados dos métodos
33
fenotípicos de identificação indicaram que os resultados do API Staph ID foram mais
confiáveis do que os obtidos nos sistema BD Phoenix, já os métodos genotípicos,
mostraram superioridade aos fenotípicos na identificação das espécies de SCoN. O
sequenciamento do gene 16S rRNA apresentou poder discriminatório limitado para as
espécies de
Staphylococcus
em comparação com o gene
tuf
que apresentou um melhor
desempenho na identificação destas espécies. Skow
et al.
(2005) desenvolveram um
método de identificação de SCoN baseado na técnica de PCR em tempo-real (Real time-
LightCycler, Roche, Indianápolis, IN, USA) que permitiu distinguir várias espécies de
Staphylococcus
spp. através de um único perfil da curva de fusão (melt curve) de cada
espécie. A obtenção dos resultados ocorreu em apenas 2 horas, sendo avaliado um total de
110 amostras que mostraram 98% de identificações corretas por PCR em tempo real
quando comparados com 79% do sistema comercial API Staph ID (bioMérieux). O uso do
PCR em tempo real, apesar do alto custo e da necessidade de equipamentos específicos,
demonstrou ser um método rápido e acurado para identificação de
Staphylococcus
que pode
ser utilizado diretamente dos isolados clínicos incluindo amostras de sangue e outros sítios
estéreis.
Métodos moleculares também são utilizados para detectar genes de resistência
específicos e quando associados com métodos fenotípicos têm contribuído para o
entendimento da genética de resistência antimicrobiana e da disseminação dos
determinantes de resistência (BIENDENBACH
et al.
2004). O método genotípico
considerado como padrão-ouro na detecção de resistência a oxacilina em
Staphylococcus
é
a detecção do gene
mecA
, através da reação de PCR que consiste na amplificação de um
fragmento deste gene, a partir de seqüências de oligonucleotídeos complementares
(CHAMBERS, 1997).
34
REFERÊNCIAS BIBLIOGRÁFICAS_________________________________________
AMORENA, B. et al. Antibiotic susceptibility assay for
Staphylococcus aureus
in biofilms
developed
in vitro.
J. Antimicrob. Chemother
, v. 44, p. 43-55, 1999.
ARCHER, G.L.; NIEMEYER, D.M. Origin and evolution of DNA associated with
resistance to methicillin in staphylococci.
Trends Microbiol,
v. 2, p. 325-34, 1994.
ARCIOLA, C.R. et al. A Rapid PCR Method for the detection of Slime-producing Strains
of
Staphylococcus epidermidis
and
S. aureus
in periprosthesis Infections.
Diagn. Mol.
Pathol
, v. 10, p. 130-137, 2001.
ARCIOLA, C.R. et al. Presence of
icaA
and
icaD
Genes and Slime production in a
Collection of
Staphylococcal
Strains from Catheter-Associated infections.
J. Clin.
Microbiol
, v. 39, p. 2151-2156, 2001a.
ARCIOLA, C.R. et al. Detection of slime production by means of an optimized Congo red
agar plate test based on a colourimetric scale in
Staphylococcus epidermidis
clinical isolates
genotyped for
ica
locus.
Biomaterials
, v. 23, p. 4233-4239, 2002.
ARCIOLA, C.R. et al. Antibiotic resistance in exopolysaccharide-forming
Staphylococcus
epidermidis
clinical isolates from orthopaedic implant infections.
Biomaterials,
v. 26, p.
6530-6535, 2005.
BANERMANN, T. L.
Staphylococcus, Micrococcus
and other catalase-positive cocci that
grow aerobically. In Murray P.R., Baron E.J., Jorgensen, J. H.; Pfaller, M.A. and Yolken,
R. H. (Ed).
Manual of Clinical Microbiology
. Eight Edition. Washington, DC: ASM Press,
v. 1, p. 384-404, 2003.
BIEDENBACH, D.J.; MOET, G.J.; JONES, R.N. Occurrence and antimicrobial resistance
pattern comparisons among bloodstream infection isolates from the SENTRY antimicrobial
Surveillance program (1997-2002).
Diagn. Microb. Infect
.
Dis
, v. 50, p. 59-69, 2004.
BOISSON, K. et al. Characterization of coagulase-negative Staphylococci isolated from
blood infections: Incidence, Susceptibility to Glycopeptides and Molecular Epidemiology.
Eur. J. Clin. Microbiol. Infect. Dis,
v. 21, p. 660-665, 2002.
CAIERÃO, J. et al. Evaluation of phenotypic methods for methicillin resistance
characterization in coagulase-negative staphylococci (CNS).
J. Med. Microbiol
, v.53, p.
1195-1199, 2004.
CAIERÃO, J. et al. Automated systems in the identification and determination of
methicilin resistance among coagulase-negative S
taphylococci
.
Mem. Inst. Oswaldo Cruz,
v. 10, p. 277-279, 2006.
35
CALVO, J. et al. Osteomyelitis caused by
S. scheileferi
and evidence of misindentification
of this staphylococcus species by an automated bacterial identification system.
J. Clin.
Microbiol
, v. 38, p.3887-3889, 2000.
CAMPOCCIA, D.; MONTANARO, L.; ARCIOLA, C. R. The significance of infection,
related to orthopedic devices and issues of antibiotic resistance.
Biomaterials,
v. 27, p.
2331-2339, 2006.
CENTER, et al. Decreased vancomycin susceptibility of coagulase-negative staphylococci
in a neonatal intensive care unit evidence of spread of S. warneri. J. Clin. Microbiol, v. 41,
p. 4660-4665, 2003.
CHAMBERS, H.F. Methicillin resistance in Staphylococci molecular and biochemical
basis and clinical implications.
Clin. Microbiol. Rev
, v. 10, p. 781-791, 1997.
CHAVES, F. et al. Nosocomial spread of a
Staphylococcus hominis subsp. novobiosepticus
strain causing sepsis in a neonatal intensive care unit
. J. Clin. Microbiol,
v. 43, p. 4877-
4879, 2005.
CLINICAL AND LABORATORY STANDARDS INSTITUTE. (CLSI).
Performance
Standards for Antimicrobial Susceptibility Testing
. Fifteenth Informational supplement.,
M100-S15. Clinical and Laboratory Standards Institute, Wayne, PA., 2005.
CLINICAL AND LABORATORY STANDARDS INSTITUTE. (CLSI).
Performance
Standards for Antimicrobial Disks Susceptibility Tests; Approved Standard –Ninth Edition.
M2-A9. Clinical and Laboratory Standards Institute, Wayne, PA, 2006.
COUTO, I. et al. Molecular characterization of
S. sciuri
strains isolated from humans.
J.
Clin. Microbiol
, v. 38, p. 1136-1143, 2000.
COUTO, I. et al. Identification of clinical staphylococcal isolates from humans by internal
transcribed spacer PCR.
J. Clin. Microbiol,
v. 39, p. 3099-3103, 2001.
DAKIÉ, I. et al. Isolation and Molecular characterization of
Staphylococcus sciuri
in the
hospital Environment.
J. Clin. Microbiol,
v. 43, p. 2782-2785, 2005.
De PAULIS, A N. et al. Five-test simple scheme for species level identification of
clinically significant coagulase-negative Staphylococci.
J. Clin. Microbiol
, v. 41, p. 1219-
1224, 2003.
DIAS, C. A. et al. Use of a novel selective medium to detect methicilin-resistant
Staphylococcus aureus
in colonized patients of an intensive care unit.
Infection Control and
Hospital Epidemiology,
v. 25, p. 130-132, 2004.
DRANCOURT, M.; RAOULT, D.
rpo B
Gene Sequence-Based identification of
Staphylococcus
species.
J. Clin. Microbiol
, v. 40, p. 1333-1338, 2002.
36
EBRIGHT, J.; PENUGONDA, N.; BROWN, W. Clinical experience with
Staphylococcus
lugdunensis
bacteremia: a retrospective analysis.
Diagnostic Microbiology and Infectious
Disease
, v. 48, p. 17-21, 2004.
EIFF, VON C.; PETERS, G.; HEILMANN, C. Pathogenesis of infections due to coagulase-
negative staphylococci.
The Lancet Infect Dis.
v. 2, p. 677-685, 2002.
EMORI, T.G.; GAYNES, R.P. An overview of nosocomial infections, including the role of
the microbiology laboratory.
Clin. Microbiol. Rev
, v. 6, p. 428-442, 1993.
FERNANDES, C.J.; FERNANDES, L. A.; COLLIGNON, P. Cefoxitin resistance as a
surrogate marker for detection the detection of methicilin-resistant
Staphylococcus aureus
.
J. Antim. Chem
. v. 55, p. 506-510, 2005.
FERREIRA, R. B. R. et al. Simultaneous detection of the
mec A
and
ileS
-2 genes in
coagulase-negative staphylococci isolated from Brazilian hospitals by multiplex PCR.
Diagn. Microbiol. Infec. Dis,
v. 42, p. 205-212, 2002.
FERREIRA, R.B.R. et al. Coagulase-negative Staphylococci: comparison of phenotypic
and genotypic oxacilin sucseptibility tests and evaluation of the Agar screening test by
using different concentration of oxacilin.
J. Clin. Microbiol
, v. 41, p. 3609-3614, 2003.
FREBOURG, N.B. et al. Comparison of ATB staph, rapid ATB staph, Vitek and E–test
methods for detection of oxacilin heteroresistance in Staphylococci possessing
mecA.
J.
Clin. Microbiol,
v.
36, p. 52-57, 1998.
FREEMAN, D.J.; FALKINER, F.R.; KEANE, C.T. New method for detecting slime
production by coagulase negative staphylococci.
J. Clin. Pathol,
v. 42, p. 872-874, 1989.
FRENEY, J. et al.
Staphylococcus lugdunensis sp. nov.
and
Staphylococcus schleiferi sp
.
nov.,
two species from human clinical specimens.
Int. Syst. Bacteriol
. v. 38, p. 168-172,
1988.
FUJITA, S-I. et al. Rapid identification of staphylococcal strains from positive-testing
blood culture bottles by internal transcribed spacer PCR Followed by Microchip Gel
Electrophoresis.
J. Clin. Microbiol,
v.
43, p. 1149-1157, 2005.
GHOSHAL, U. et al. A comparative evaluation of phenotypic and molecular methods for
the detection of oxacillin resistance in coagulase-negative staphylococci.
J. Infect.
Chemother
, v.10, p. 86-89, 2004.
GOLDSTEIN, F.W. et al. False synergy between vancomycin and ß-lactams against
glycopeptides-intermediate
Staphylococcus aureus
(GISA) caused by inappropriate testing
methods.
Clin. Microbiol. Infec,
v. 10, p. 332-348, 2004.
GOTZ, F.
Staphylococcus
and biofilms.
Molecular Microbiology,
v. 43, p. 1367-1378,
2002.
37
GRADELSKI, E. et al. Correlation between genotype and phenotypic categorization of
staphylococci based on methicillin susceptibility and resistance.
J. Clin. Microbiol
, v. 39, p.
2961-2963, 2001.
HACKBARTH, C.; CHAMBERS, H. Methicillin-resistant staphylococci: genetics and
mechanisms of resistance.
Antimicrobial Agents and Chemotherapy,
v. 33, p. 991-994,
1989.
HAILE, D.T. et al. Frequency of isolation of Staphylococcus lugdunensis in consecutive
urine cultures and relationship to urinary tract infection.
J. Clin. Microbiol
, v. 40, p. 654-
656, 2002.
HANSSEN, A.M.; KJELDSEN, G.; SOLLID, J.U.E. Local variants of Staphylococcal
cassette chromosome
mec
in sporadic methicillin-resistant
Staphylococcus aureus
and
methicillin-resistant coagulase-negative Staphylococci: Evidence of Horizontal gene
transfer?
Antimicrobial Agents and Chemotherapy,
v. 48, p. 285-296, 2004.
HEIKENS, E. et al. Comparison of Genotypic and Phenotypic methods for Species-level
identification of Clinical Isolates of coagulase-negative Staphylococci.
J. Clin. Microbiol
,
v. 43, p. 2286-2290, 2005.
HELLBACHER, C.; TORNQVIST, E.; SODERQUIST, B.
Staphylococcus lugdunensis
:
clinical spectrum, antibiotic susceptibility, and phenotypic and genotypic patterns of 39
isolates.
Clinical Microbiology and Infection
, v. 12, p. 43-49, 2006
.
HERVÁS, J.A. et al. Sepsis and meningitis caused by methicillin-resistant
Staphylococcus
saprophyticus.
Clinical Microbiology Newsletter
, v. 16, p. 71-72, 1994
.
HUSSAIN, Z et al. Correlation of oxacilin MIC with mecA gene carriage in coagulase-
negative staphylococci.
. J
.
Clin. Microbiol,
v. 38, p. 752-754, 2000.
HUSSAIN, Z. et al. Detection of methicillin resistance in primary blood culture isolates of
coagulase-negative staphylococci by PCR, slide agglutination, disk diffusion, and a
commercial method
. J
.
Clin. Microbiol,
v. 40, p. 2251-2253, 2002.
IEVEN, M. et al. Rapid and economical methods for species identification of clinically
significant coagulase-negative Staphylococci.
J. Clin. Microbiol,
v. 33, p. 1060-1063, 1995.
JAFFE, R.I. et al. Rapid extraction from and direct identification in clinical samples of
Methicilin-resistant Staphylococci using the PCR.
J. Clin. Microbiol,
v. 38, p. 3407-3412,
2000.
JEONG, J. et al. Early screening of oxacillin-resistant
Staphylococcus aureus
and
Stpahylococcus epidermidis
from blood culture.
J. Korean Med. Sci
, v. 17, p. 168-172,
2002.
38
JONES, R.N. Global aspects of antimicrobial resistance among key bacterial pathogens.
Results from the 1997-1999 SENTRY Antimicrobial Program.
Clin Infect Dis
, v.32 n.2
p.S81-S156, 2001.
JUUTI, K. et al. The
pls
Gene Found in Methicillin-resistant
Staphylococcus aureus
Strains is Common in clinical Isolates of
Staphylococcus sciuri.
J. Clin. Microbiol
, v. 43, p.
1415-1419, 2005.
KAMALESH, M.; ASLAM, S. Aortic endocarditis due to
Staphylococcus capitis
.
Echocardiography, v. 17, p. 685-687, 2000.
KAWAMURA, Y. et al. Distribuition of
Staphylococcus
Species among human clinical
specimens and emended description of Staphylococcus
caprae
.
J. Clin. Microbiol
, v. 36, p.
2038-2042, 1998.
KLOOS, W.E.; SCHLEIFER, K.H. Simplified scheme for routine identification of human
Staphylococcus
species.
J. Clin. Microbiol,
v. 1, p. 82-88, 1975.
KLOOS, W.; BANNERMAN, T.L. Update and clinical significance of coagulse-negative
staphylococci.
Clin. Microbiol. Rev,
v. 7, p. 117-140, 1994.
KRAUSE, R. et al. Molecular Typing of coagulase-negative Staphylococcal blood and skin
culture isolates to differentiate between bacteremia and contamination.
Eur. J. Microbiol.
Infect Dis,
v. 22, p. 760-763, 2003.
LAYER, F. et al. Comparative study using various methods for identification of
Staphylococcus
species in clinical specimens.
J. Clin. Microbiol,
v. 44, p. 2824-2830, 2006.
LEIBOVICI, l. et al. Departmental consumption of antibiotic drugs and subsequent
resistance: A quantitative link.
J. Antimicrob Chemoter
v.48, p. 535-540, 2001.
LINDSAY, J.A; RILEY, T.V. Susceptibility to desferrioxamine: a new test for the
identification of
Staphyloccus epidermidis. J. Med. Microbiol.
v. 35, p. 45-48, 1991.
LOUIE, L. et al. Evaluation of a latex agglutination test (MRSA-screen) for detection of
oxacillin resistance in coagulase-negative staphylococci.
J. Clin. Microbiol
, v. 39, p. 4149-
4151, 2001.
MAES, N. et al. Evaluation of a triplex PCR assay to discriminate
Staphylococcus aureus
from coagulase-negative Staphylococci and determine methicilin resistance from blood
culture.
J. Clin. Microbiol
, v. 40, p. 1514-1517, 2002.
MALES, B.M.; BARTHOLOMEW, W.R.; AMSTERDAM, D.
Staphylococcus simulans
septicemia in a patient with chronic osteomyelitis and pyarthrosis.
J. Clin. Microbiol,
v.
21, p. 255-257, 1985.
39
MARTINEAU, F. et al. Development of PCR Assay for Identification of Staphylococci at
Genus and species Levels.
J. Clin. Microbiol,
v. 39, p. 2541-2547, 2001.
MARSHALL, S. et al.
Staphylococcus aureus
and Coagulase-negative Staphylococci from
Blood stream Infections: frequency of occurrence, antimicrobial susceptibility and
moleuclar (
mecA
) characterization of oxacilin resistance in the SCOPE Program.
Diagn
Microbiol Infect Dis,
v30, p.205-214, 1998.
MATEO, M. et al. Genotypic versus phenotypic characterization whit respect to
susceptibility and identification, of 17 clinical isolates of Staphylococcus lugdunensis, J.
Antimicrobiol Chemother,
v. 56, p. 287-291, 2005.
MINTO, E. et al. Identification and medical importance of coagulase-negative
staphylococci species.
Rev. Paul. Med
, v. 117, p. 175-178, 1999.
MONSEN, T. et al. An inexpensive and reliable method for routine identification of
staphylococcal species.
Eur. J. Clin. Microbiol Infect. Dis
, v. 17, p. 327-335, 1998.
MONZÓN, M. et al. Synergy of different antibiotic combinations in biofilms of
Staphylococcus epidermidis
.
J. Antimicrobiol Chemother,
v.
48, p. 793-801, 2001.
MORETRO, T et al. Biofilm formation and the presence of the intercellular adhesion locus
ica
among staphylococci from food and food processing environments.
Applied and
Environmental Microbiol
, v. 69, p. 5648-5655, 2003.
NATIONAL COMITEE FOR CLINICAL LABORATORY STANDARDS. (NCCLS)
Methods for Diluition Antimicrobial Susceptibility Tests for Bacteria that grow
Aerobically; Approved Standards
. Sixth Edition. M7-A6. Clinical and Laboratory
Standards Institute, Wayne, PA, 2003
NATIONAL COMITTEE FOR CLINCAL LABORATORY STANDARDS. (NCCLS).
Performance Standards for Antimicrobial Susceptibility Testing.
Fourteenth Informational.
supplement, M100-S14. Clinical and Laboratory Standards Institute, Wayne, PA, 2004.
NUNES, A.P.F. et al. Heterogeneous resistance to vancomycin in
Staphylococcus
epidermidis, Staphylococcus haemolyticus and Staphylococcus warneri
clinical strains:
characterisation of glycopeptide susceptibility profiles and cell wall thickening.
Int. J.
Antim. Agents
, v. 27, p. 307-3015, 2006.
O’GARA, J.; HUMPRHREYS, H.
Staphyloccus epidermidis
biofilms: importance and
implications
. J. Med. Microbiol
, v. 50, p. 582-587, 2001.
OLIVEIRA, D.C.; TOMASZ, A.; LENCASTRE, H. Secrets of success of a human
pathogen: molecular evolution of pandemic clones of meticilin-resistant
Staphylococcus
aureus. The Lancet Infect Dis
, v. 2, p. 180-189, 2002.
40
PALAZZO, I.C.V.; ARAUJO, M.L.C.; DARINI, A.L.C. First report of vancomycin-
resistant Staphylococci isolated from healthy carriers in Brazil.
J. Clin. Microb
, v. 43, p.
179-185, 2005.
PALAZZO, I.C.V.; DARINI, A.L.C. Evaluation of methods for detecting oxacillin
resistance in coagulase-negative staphylococci including cefoxitin disc diffusion.
FEMS
, v.
257, p. 299-305, 2006.
PATEL, R. et al. Frequency of isolation of
Staphylococcus lugdunensis
among
Staphylococal Isolates Causing Endocarditis: a 20-Year Experience. J. Clin. Microbiol, v.
38, p. 4262-4263, 2000.
PATEL, M. et al. Prevalence of inducible clindamycin resistance among Community and
Hospital-Associated
Staphylococcus aureus
isolates.
J. Clin. Microbiol,
v. 44, p. 2481-
2484, 2006.
PETINAKI, E. et al. Presence of
mec
Genes and Overproduction of Beta-Lactamase in the
Expression of Low-Level Methicilin Resistance among Staphylococci.
Chemotherapy,
v.
48, p. 174-181, 2002.
PFALLER, M.A.; HERWALDT, L.A. Laboratory Clinical and Epidemiological Aspects of
Coagulase-negative Staphylococci.
Clin. Microbiol. Rev,
v. 1, p. 281-299, 1988.
POTTUMARTHY, S.; FRITSCHE, T.R.; JONES, R.N. Evaluation of alternative disk
diffusion methods for detecting
mecA
-mediated oxacillin resistance in a international
collection of staphylococci: Validation report from the SENTRY Antimicrobial
Surveillance Program.
Diag. Microbiol. Infec. Dis,
v. 51, p. 57-62, 2005.
POUTANEN, S.M.; BARON, E. J.
Staphylococcus lugdunensis
: A Notably Distinct
Coagulase-Negative
Staphylococcus. Clinical Microbiology Newsletter,
v. 23, p. 147-150,
2001.
POYART, C. et al. Rapid and Accute Species-Level identification of Coagulase-Negative
Staphylococci
by using the
sodA
Gene as a Target.
J. Clin. Microbiol,
v. 39, p. 4296-4301,
2001.
RAZONABLE, R.R. et al. Vertebral Ostemyelitis and Prosthetic Joint Infection Due to
Staphylococcus simulans
.
Mayo Clin. Proc,
v. 76, p. 1067-1070, 2001.
RIBEIRO, A. et al. First report of with community-acquired methicillin-resistant
Staphylococcus aureus
in South America.
J. Clin. Microbiol,
v. 43, p. 1985-1988, 2005.
RUHE, J. et al. Non-epidermidis coagulase-negative staphylococcal bacteremia: clinical
predictors of true bacteremia.
Eur. J. Microbiol. Infect. Dis,
v.
23, p. 495-498, 2004.
RUPP, M.E.; ARCHER, G.L. Coagulase-negative staphylococci: pathogens associated with
medical progress.
Clin. Infect. Dis
, v. 19, p. 231-245, 1994.
41
SADER, H.S. et al. The SENTRY participants Group (Latin America). Four-year
evaluation of frequency of occurrence and antimicrobial susceptibility patterns of bacteria
from bloodstream infections in Latin American medical centers.
Diagnostic Microbiol.
Infect. Dis
, v. 44, p. 273-280, 2003.
SAGINUR, R. et al. Multiple combination bactericidal testing of Staphylococcal biofilms
from implant-associated infections.
Antimicrob. Agents and Chemother,
v. 50, p. 55-61,
2006.
SANTOS, K.R.N. et al. Surgical site infection: rates, etiology and resistance patterns to
antimicrobials among strains isolated at Rio de Janeiro University Hospital
. Infection
, v.
25, p. 217-220, 1997.
SCHULIN, T.; VOSS, A. Coagulase-negative staphylococci as a cause of infections related
to intravascular prosthetic devices; limitations of present therapy.
Clinical Microbiology
and Infection,
v.
7, p. 1-7, 2001.
SCHNITZLER, N. et al.
Staphylococcus lugdunensis:
Report of a Case of Peritonitis and
an Easy-to-Perform Screening Strategy
. J. Clin. Microbiol,
v. 36, p. 812-813, 1998.
SECHI, L.A. et al. Molecular characterization and antibiotic susceptibilities of ocular
isolates of
Staphylococcus epidermidis
.
J. Clin. Microbiol
, v. 37, p. 3031-3033, 1999.
SHARMA, M. et al. Molecular Analysis of Coagulase-Negative Staphylococcus Isolates
from Blood Cultures: Prevalence of Genotypic Variation and Polyclonal Bacteremia.
CID,
v. 33, p. 1317-1323, 2001.
SILVA, G.D.I. et al. The
ica
Operon and Biofilm Production in Coagulase-Negative
Staphylococci
associated with Carriage and Disease in a Neonatal intensive Care Unit.
J.
Clin. Microbiol
, v. 40, p. 3821-388, 2002.
SIVADON, V. et al. Use of Genotypic identification y sod A Sequencing in a prospective
study to Examine the Distribuition of Coagulase-Negative
Staphylococcus
Species among
Strains Recovered during Septic orthopedic Surgery and Evaluate Their Significance.
J.
Clin. Microbiol,
v.
43, p. 2952-2954, 2005.
SKOW, A et al. Species-level identification of Staphylococcal isolates by Real-Time PCR
and Melt Curve Analysis
. J. Clin. Microbiol
, v. 43, p. 2876-2880, 2005.
STEPANOVIC, S. et al. Evaluation of phenotypic and molecular methods for detection of
oxacillin resistance in members of the
Staphylococcus sciuri
Group.
J. Clin. Microbiol,
v.
44, p. 934-937, 2006.
SWENSON, J.M.; TENOVER, F.C. Results of disk diffusion testing with Cefoxitin
correlate with presence of
mec A
in
Staphylococcus spp. J. Clin. Microiol,
v. 43, p. 3818-
3823, 2005.
42
TACCONELLI, E. et al. Glycopeptide resistance among coagulase-negative staphylococci
that cause bacteremia: epidemiological and clinical findings from a case-control study.
Clin. Infect. Dis
, v. 33, p. 1628-1635, 2001.
TENOVER, F.C. et al. For the NCCLS
Staphylococcus
Working Group.
Methods for
Improved Detection of Oxacillin Resistance in Coagulase-negative Staphylococci: Results
of Multicenter Study.
J. Clin. Microbiol,
v. 37, p. 4051-4058, 1999.
VELASCO, D. et al. Evaluation of different methods for detecting methicillin (oxacillin)
resistance in
Staphylococcus aureus. J. Clin. Chem,
v.
55, p. 379-382, 2005.
VUONG, C.; OTTO, M.
Staphylococcus epidermidis
infections.
Microbes and Infection,
v. 4, p. 481-489, 2002.
WEINSTEIN, MP et al. The clinical significance of positive blood cultures in the 1990s: A
prospective comprehensive evaluation of the microbiology, epidemiology and outcome of
bacteremia and fungemia in adults.
Clin Infect Dis
, v. 24, p. 584-602, 1997.
WISPLINGHOFF, H et al. Nosocomial bloodstream infections in pediatric patients in
United States hospitals: Epidemiology, clinical features and susceptibilities.
Pediatr Infect
Dis
v. 22, p. 686-691, 2003.
JUSTIFICATIVA DO ESTUDO_____________________________________________
43
A rápida emergência e disseminação de bactérias resistentes a numerosos
antimicrobianos têm aumentado nas últimas décadas, principalmente no ambiente
hospitalar, havendo assim uma necessidade de monitorar os microrganismos envolvidos.
A importância dos SCoN como patógenos nosocomiais tem induzido a um maior
interesse na sua caracterização detalhada e no desenvolvimento de métodos mais acurados
para distinguir espécies e para classificá-los epidemiologicamente. Os SCoN possuem alto
índice de resistência a oxacilina, desta forma é importante distinguir entre os isolados
sensíveis e resistentes a oxacilina devido à emergência da resistência a vancomicina pelos
Enterococcus
spp.
e recentemente também pelos
Staphylococcus
spp
.
O perfil de
multirresistência aos antimicrobianos, entre os SCoN resistentes a oxacilina, refletem o
aumento da pressão seletiva pelo uso indiscriminado de antimicrobianos e confirmam o
papel destes como reservatórios de genes de resistência que podem ser transferidos paras
outras espécies.
A capacidade das bactérias de produzir uma substância chamada adesina
polissacarídica intercelular (PIA), levando a formação de biofilme, representa um
importante fator de virulência em SCoN associado ao uso de biomateriais, contribuindo
assim, para uma maior resistência aos antimicrobianos pela baixa penetração destes no
biofilme.
Devido ao aumento da resistência a oxacilina em SCoN, estudos que melhor
definam técnicas mais sensíveis, específicas e de fácil execução na detecção desta
resistência, se fazem necessários para realizar o correto diagnóstico clínico-laboratorial e
para o controle das infecções hospitalares, bem como a investigação de fatores de
virulência envolvidos neste gênero bacteriano.
44
OBJETIVOS DO ESTUDO_________________________________________________
OBJETIVO GERAL
Identificar as espécies de
Staphylococcus
coagulase-negativos
não-epidermidis
(SCoNne) e caracterizar o perfil de susceptibilidade aos antimicrobianos de amostras
provenientes de isolados de hemoculturas de pacientes do Complexo Hospitalar Santa
Casa de Misericórdia de Porto Alegre entre o período de 2002 a 2004.
OBJETIVOS ESPECÍFICOS
Identificar SCoNne de hemoculturas através de métodos fenotípicos e genotípicos.
Determinar a susceptibilidade de amostras de SCoNne aos antimicrobianos através do
teste de disco de difusão de acordo com os padrões do CLSI.
Determinar e comparar a susceptibilidade de amostras de SCoNne através dos testes de
disco de difusão, ágar diluição e detecção do gene
mecA.
ADBC
Analisar a presença dos genes
icaA
e
icaD
em amostras de SCoNne associadas com a
formação de biofilme.
Comparar a identificação dos genes
icaA
e
icaD
de amostras de SCoNne com o teste
qualitativo de formação de PIA em meio de ágar Congo red (CRA).
45
DELINEAMENTO DO ESTUDO____________________________________________
Estudo transversal de amostras consecutivas de hemoculturas com enfoque
diagnóstico.
HIPÓTESES DO ESTUDO__________________________________________________
O uso do disco de cefoxitina para detecção de resistência a oxacilina em SCoN não-
epidermidis têm correlação com a presença do determinante genético (gene
mec A
).
O método de qualitativo de detecção da presença de biofilme (CRA) tem correlação
com a detecção genotípica dos genes
icaA
e
icaD
em SCoN não-epidermidis.
46
ARTIGOS PRINCIPAIS DO ESTUDO________________________________________
47
ARTIGO I________________________________________________________________
Coagulase-negative staphylococci non-epidermidis: identification and detection of
methicillin resistance
Running tittle: Resistance in staphylococci
Carina Secchi
1 3
Ana Lúcia de Souza Antunes
1
Leandro Reus Rodrigues Perez
1
Vlademir Vicente Cantarelli
3,4
Pedro Alves d’Azevedo
2
Será submetido para publicação no “
Diagnostic Microbiology and Infectious Disease
”.
1
Pós-Graduação em Ciências Médicas, Fundação Faculdade Federal de Ciências Médicas
de Porto Alegre, Rs, Brasil
2
Departamento de Microbiologia e Parasitologia, Fundação Faculdade Federal de Ciências
Médicas de Porto Alegre, RS, Brasil
3
Laboratório Weinmann, Porto Alegre, RS, Brasil
4
Centro Universitário Feevale, NH, RS, Brasil
Corresponding author:
Prof. Dr. Pedro Alves d’Azevedo
Rua Sarmento Leite 245/211 – Porto Alegre, RS, Brazil
Cep: 90050-170
Fone/Fax: + 55-051- 33039000 -217
48
Abstract
The coagulase-negative staphylococci (SCoN) have emerged as important nosocomial
pathogens, associated with outbreaks and catheter related infections and becoming
important reservoir of genes of resistance. The correct identification of species and the
detection of oxacillin-resistance are not easy task to be made by clinical laboratory, once
there are several different species of coagulase-negative Staphylococci and the expression
of oxacillin resistance is not always homogeneous. The NCCLS (2004) presented a new
methodology to detect, by disk-diffusion agar, the oxacillin-resistance using a cefoxitin
disk (30 µg). The aim of this study was to evaluate the proposed methodology, comparing it
with oxacillin disk (1 µg), agar dilution (MIC of oxacillin) and gene
mecA
detection in
isolates of coagulase-negative
other
than
Staphylococcus epidermidis
(SCoNne). A total of
490 SCoN were evaluated, being 238 SCoNne, with 16 different species. The oxacillin-
resistance was detected in 71% of isolates (
mecA
gene detection by PCR). Comparing the
three methods evaluated (cefoxitin- disk difusion, oxacillin disk-difusion and agar dilution)
with the presence of
mecA
gene, all methods presented 100% fo sensitivity. The specifity of
cefoxitin disk-diffusion was 100% while oxacillin- disk presented a specificity of 91 % and
the agar dilution (oxacillin MIC) presented a specificity of 88%. The cefoxitin disk showed
the same sensitivity with better specificity than oxacillin- disk in the detection of oxacillin-
resistance
mecA
gene mediated in SCoNne isolates. Discrepancies between the oxacillin
disk-difusion or the agar dilution and the gene
mecA
detection were detected in 9 isolates,
all of them belonging to
S. sciuri, S. saprophyticus and S. cohnii cohnii species.
The results
of this study showed a good performance of cefoxitin disk, an easy method to be used in the
clinical laboratories to detect the oxacillin-resistance in Staphylococci.
Key-words: coagulase-negative
Staphylococcus,
cefoxitin, oxacillin,
mecA
gene,
susceptibility diagnostic.
49
Introduction
Coagulase negative staphylococci (SCoN) are common pathogens of blood stream,
being frequently related to nosocomial infections, especially in neonates and
immunocompromised patients, usually involving medical devices as catheteres and
prosthesis (Rupp & Archer, 1994, Marshall, et al., 1998; Campoccia, et al., 2006). In a
study performed by SENTRY program, in American hospitals, from 1997 to 2001, the
SCoN were between the most common organisms isolated in blood stream infections
(Pottumarthy et al., 2005).
The correct identification of species of SCoN had achieved importance in the
clinical laboratories, considering that several species have been recognized as potential
pathogens, especially in the nosocomial setting (Layer et al., 2006).
Although
Staphylococcus epidermidis
accounts for the majority of infections caused
by SCoN, many others species have been identified in association with human infections,
for example,
S. lugdunensis
has been associated with native valve endocarditis with high
mortality and
S. haemolyticus
is recognized as important nosocomial pathogens that may
exhibit stains multiresistant including reduced susceptibility to vancomycin (Patel et al.,
2000; Couto et al., 2001; Nunes et al., 2005).
Methicillin-resistant staphylococci are considered an important agent of nosocomial
infections and have been recovered frequently in hospitals throughout the world, including
Brazilian Hospitals (Ferreira et al, 2002). In a study performed by Sader et al (2004), the
authors showed that 80% of SCoN recovered from blood In Latin America were oxacillin
resistant. Methicillin-resistant SCoN (MRSCoN) produce an additional penicillin-binding
protein (PBP), named PBP2a. This protein encoded by
mecA
gene has a lower affinity than
PBP2, resulting in resistance to beta-lactamics agents (Chambers, 1997).
The phenotypic expression of methicillin resistance in many strains tend to be
heterogeneous, with levels according to growth conditions and nature of beta-lactamics
agents used (Chambers, 1997). Susceptibility testing by phenotypic methods can be
problematic in the detection of methicillin resistance in SCoN, despite the “Clinical and
Laboratory Standards Institute” (CLSI) standardized recommendations, used in the clinical
laboratories (Chambers, 1997; Palazzo & Darini, 2006). It is known that the heterogeneus
expression of resistance can be problematic to phenotypic methods used in the clinical
50
laboratories. For this reason, the gene
mecA
detection by PCR is able to detect this
heterogeneous expression and than is considered the gold standard in methicillin resistance
detection in
Staphylococcus spp
. (Skov et al., 2005; Swenson et al., 2005).
To obtain a better accuracy on the detection of this resistance, the NCCLS (2004)
recommended that clinical laboratory should use cefoxitin disk (30
µ
g) tests as a marker for
detection of oxacillin resistance in
Staphylococcus spp.
(Pottumarthy et al., 2005). Several
studies have been performed to evaluate the results obtained with the utilization of cefoxitin
and oxacillin disks and the correlation with the presence of the
mec
A gene in
Staphylococcus
spp. (Fernandes et al, 2005; Swenson et al., 2005; Velasco et al, 2005). The
aim of this study was to evaluate the performance of cefoxitin disk test (30
µ
g), comparing
with oxacillin disk (1
µ
g), agar dilution (MIC of oxacillin) and gene
mecA
detection in
isolates of coagulase-negative
Staphylococcus
non-epidermidis (SCoNne).
Material and methods
Bacterial isolates:
A total of 238 samples of ScoNne were analyzed, starting from a
collection of 490 samples of SCoN of Laboratory of Gram-positive Cocci of the
FFFCMPA, stored in Skim Milk (Difco, Detroit) at temperature of – 20°C. The samples
were obtained of collected blood cultures in a consecutive way, among from 2002 to 2004,
in the Complexo Hospitalar Santa Casa, Porto Alegre, RS, Brasil. The quality control of
tests was done using
Staphylococcus aureus
ATCC 25923,
Staphylococcus aureus
ATCC
33591,
S. epidermidis
ATCC 12228 of the American Type Culture Collection (ATCC).
Identification of isolates
: To identification of the strains to the species level the isolates
were cultured in agar Tryptic Soy Agar (Oxoid, UK) supplemented with 5% sheep blood
for 24hs at 35°C, where colony morphology, hemolysis production and purity were
evaluated. Subsequently, phenotypic tests were evaluated by the conventional method
proposed by Kloss & Bannerman (1994) and modified by Banermann (2003) that consist of
a set of biochemical tests that determine the utilization of coagulase, catalase, alkaline
phospatase, ornithine decarboxylase, urease, PYR (pyrrolidinyl-β-naphthylamide
hydrolysis), acid production from carbohydrates (trehalose, mannitol, mannose, sucrose,
maltose, lactose, cellobiose). Anaerobic growth in thioglicolate and susceptibilities to
51
novobiocin, polymyxin B, bacitracin, desferrioxamine e fosfomycin using disk diffusion
tests were performed. (Antunes et al.
in press
).
The samples that presented results variables in the phenotypic tests identification or in
order to confirm less frequent species, they were submitted to an automated method of
identification (Microscan Walkway; Dade Behringer, Deerfield, IL, USA). The automated
results with low percentage in the identification of the species, they were submitted to
determination of the sodA gene by PCR amplification and sequencing with specific primers
according to Poyart et al, (2001).
Disk diffusion test:
A suspension were adjusted to a 0.5 McFarland standard for each
sample to perform the disk diffusion tests on Mueller-Hinton agar plates (Difco,
Laboratories, Detroit, Mich) with cefoxitin (30
µ
g) and oxacillin (1
µ
g) disks (Oxoid,
Basingstoke, UK), according to the criteria recommended by CLSI (2005). The plates were
incubated at 35° C and screened after 24h.
Agar diluition test (MIC) to oxacillin
: A suspension were adjusted to a 0.5 McFarland
standard for each sample, diluted at 1:10 in saline solution and inoculated on Mueller-
Hinton agar plates supplemented with 2% NaCl by using Steers replicator. The
concentrations of 0.125 a 4 µg/mL of oxacillin (Sigma Chemical Co, St. Louis, USA) was
used for determination of MIC oxacillin. The plates were incubated at 35° C and screened
after 24h.
Detection of
mecA
gene (PCR):
Staphylococcal DNA was extracted by guanidine
isothiocyanate solution (Invitrogen, Carlsbad, USA) and the
mecA
gene was detected by
PCR with specific primers: mecA
1
: 5’ TGG CTA TCG TGT CAC AAT CG, mecA
2
: 5’
CTG GAA CTT GAG CAG AG (Vannuffel et al, 1998). A positive result was indicated by
the presence of a 310-bp amplified DNA fragment, which was revealed by electrophoresis
on 1.5% agarose gel under ultraviolet light by the addition of ethidium bromide.
Slide latex agglutination test:
Detection of PBP2a was performed by latex agglutination test
Slidex MRSA Detection (bioMérieux, l’Etoile, France) following the manufactures
instructions. This test was performed only for samples that showing discrepant results
between cefoxitin and oxacillin by the proposed tests.
52
Results
A total of 490 isolates of SCoN were avaliated in the study. From these, 238
(48.5%) were identified as ScoNne. The most frequent organism was
S. haemolyticus
42%
(100/238), followed by
S. hominis-hominis
29.4% (70/238) and
S. warneri
7.5% (18/238).
The prevalence of the species of SCoN non-epidermidis and the presence of
mecA
gene are
showed in Table 1. Different phenotypic methods were employed to the identification of
SCoN, including morphology of the colonies, antimicrobial resistance, hemolysis
production, enzymatic activity in different substrates and acid production from
carbohydrates. The tests were followed by 24h, 48h, 72h to 7 days at 35ºC, identifying 238
strains of SCoNne. The most prevalent specie,
S. haemolyticus,
was easily identified by a
simple scheme using the hemolisis production, PYR test and urea and mannose proves. The
Microscan Walkway system was employed to confirm the biochemical identification of
25% (60/238) strains. In 3% (8/238) of these isolates, the
sodA gene
was also detected.
The
mecA
gene was detected in 71% (169/238) of isolates of ScoNne. Concordance
between cefoxitin disk, oxacillin disk and agar dilution was achieved in 96% (229/238)
strains. However, in 4% (9/238) of isolates discrepancies between the phenotypic methods
and the
mecA
gene detection was observed (Table 2). Disagreement between oxacillin disk
test and
mecA
gene detection was observed in 2.5% (6/238) of the total of isolates
evaluated.
The cefoxitin disk showed both sensitivity and specificity of 100%. The oxacillin
disk also showed a sensitivity of 100%, but a specificity of 91%. The sensitivity of agar
dilution was 100%, with a specificity of 88%. When the results obtained in the disk
diffusion test using cefoxitin or oxacillin and the results of the minimal inhibitory
concentrations of oxacillin obtained by agar dilution are compared, we realize that all of
them presented the same sensibility. The specificity, VPP and VPN, however, the results
were better with the cefoxitin disk (Table 3).
Among the species that showed discrepancies between the tests, susceptibility to
cefoxitin disk with resistance with oxacillin disk was observed in 44% (4/9) isolates of
S.
sciuri
, all of them presenting negative results in PCR for
mecA
gene
.
Oxacillin resistance
was observed in three of these isolates and oxacillin susceptibility in one of them by agar
dilution test. Resistance to oxacillin was observed in 33% (2/6) isolates of
S. saprophyticus
53
by agar dilution test. The result of PCR to
mecA
gene was negative in these isolates, which
presented susceptibility to cefoxitin and oxacillin by disk diffusion. Seventy-five percent
(3/4) of the isolates identified as
S. cohnii-cohnii
that
showed not harbour the
mecA
gene by
PCR, had results of oxacillin disk and/or agar dilution in disagreement. Two of these
isolates were resistant to oxacillin by disk and agar diluition and one of them was resistant
only by agar dilution. All of them were susceptible by cefoxitin disk. The results obtained
with others species were in concordance between the methods evaluated (Table 2).
Discussion
The cefoxitin disk test was proposed as an option to the detection of oxacillin
resistance mediated by
mecA
gene, considering that many laboratories do not have the latex
agglutination test available nor a PCR technique either to use in routine. The cefoxitin disk
test was first proposed by Mougeot et al. (2001), who described a sensitivity of 97% in the
detection of oxacillin resistance
mecA
gene mediated in
Staphylococcus aureus.
Earlier
studies point out the cefoxitin disk as a helpful tool in the detection of oxacillin resistance
in
S. aureus
, with sensitivity of 100% (Felten et al., 2002; Cauwelier et al., 2004; Velasco
et al., 2005; Fernandes et al., 2005). Swenson et al. (2005) compared cefoxitin disk test to
PCR and described high sensitivity (99%) and high specificity (96%) of this method to
predict the
mecA
gene presence in
S. aureus
and ScoN.
Our study showed a sensitivity and specificity of 100% in the cefoxitin disk when
compared to
mecA
gene detection by PCR, with better performance than the others
phenotypic methods evaluated (oxacillin disk and oxacillin MIC). We evaluated in our
study a higher number of isolates of SCoNne than others performed in Brazil and it is
important to consider the high rates of resistance to oxacillin by PCR (71%) in these
isolates, despite the fact that the earlier studies also included isolates of
S. epidermidis
(Ferreira et al., 2003; Caierão et al., 2004; Palazzo & Darini, 2006). Perez et al (in press)
detected the presence of
mecA
gene in 79% of 176 isolates evaluated, including
S.
epidermidis.
In study, between the isolates of SCoNne, 100 isolates were identified as
S.
haemolyticus,
with 91% presenting result of PCR to
mecA
gene positive. These results are
in agreement with the literature that show
S. haemolyticus
and
S. epidermidis
as the most
frequent species associated with antimicrobial agent’s resistance (Ferreira et al., 2002;
54
Nunes et al., 2005).A study performed by Palazzo & Darini (2006) described a sensitivity
of 92.5% to both cefoxitin and oxacillin disk tests, while describe a specificity of 98.6% to
cefoxitin disk and 96% to oxacillin disk. In this study, six isolates showed a false negative
result in the cefoxitin disk test (five isolates of
S. epidermidis
and one isolate of
S. caprae
).
Perazzi et al. (2006) showed a sensitivity of cefoxitin disk (84%) lower than that obtained
in the oxacillin disk (87%), in a study performed with isolates of SCoN others than
S.
saprophyticus. The specificity of cefoxitin disk was 100%.
Pottumarthy et al. (2005) demonstrated the presence of 3% of very major errors in
the cefoxitin disk test and 4% in the oxacillin disk test. In our study we only found major
error (false-resistance) with oxacillin disk in 2.5% of isolates, on
S. sciuri, S. saprophyticus
and
S. cohnii-cohnii
species.
Detection of oxacillin resistance in SCoN is a challenge to clinical laboratories due the
fact that a considerable number of false negative results can be attributed to heterogeneous
resistance to oxacillin expressed by this organism (Tenover et al., 1999; Ferreira et al.,
2003; Caierão et al., 2004; Palazzo & Darini, 2006). The cefoxitin disk test is considered a
better predictor for resistance than oxacillin, especially when the heteroresistance to
oxacillin is present. This is explained by the fact that the cefoxitin has a strong ability to
induce the PBP2a and also has a high affinity for PBP4, a protein involved in the resistance
in
Staphylococcus
spp. Nine isolates showed discrepancies between the results of oxacillin
resistance of phenotypic methods. Several species were involved:
S. sciuri, S.
saprophyticus, S. cohnii-cohnii.
Similar results were
described by Louie et al, (2001),
where species of SCoN others than
S. epidermidis
, like
S. saprophyticus, S. cohnii, S.
warneri, S. capitis, S. lugdunensis
and
S. xylosus
showed discrepancies between phenotypic
and genotypic results.
These organisms, although less frequent in the laboratory routine, could be more
affected by the lower specificity of the disk diffusion test using oxacillin e/or the agar
dilution oxacillin test (Hussain et al., 2000; Louie et al., 2001). According to NCCLS
(2001), the disk diffusion test with oxacillin is not recommended to
S. saprophyticus
, once
the majority of isolates
mecA
negative could express resistance by phenotypic methods.
The isolates of
S. saprophyticus
evaluated in our study showed concordance between
cefoxitin/oxacillin disk diffusion and
mecA
gene detection. The agar dilution, however,
55
showed a poor concordance with the
mecA
gene, once two isolates were resistant to
oxacillin by agar dilution (MICs de 0.5 µg).
Studies performed to detect resistance in
Staphylococcus spp
. have demonstrated
discrepancies between the phenotypic methods and the gold-standard, especially in ScoN
(Tenover et al., 1999; Ferreira et al., 2003; Palazzo & Darini, 2006). False positive results
(isolates resistant that do not harbor the
mecA
gene) can be associated with the
hiperproduction of β-lactamases, resulting in the hydrolysis of beta-lactamic agent and
changes in the PBPs others than PBP2a (Tenover et al., 1999). Total concordance between
the latex agglutination test for PBP2a and
mecA
gene detection by PCR was observed in
isolates that showed false resistance with the oxacillin disk diffusion or dilution. The
PBP2a test was performed with and without induction according to Louie et al, (2001) and
Hussain et al, (2002), respectively. An identical result was observed with the different
methods. When we analyze the false positive results obtained with the agar dilution (Table
2), we can see that eight isolates showed MICs of 0.5 µg/mL (low level of resistance or
borderline resistance). This strains are characterized by presenting oxacillin resistance
between 0.5 e 2.0
µ
g/mL, near to the breakpoint for resistance (Chambers, 1997; Swenson
et al., 2005).
The species identification by conventional or commercial methods, in addition to
have a low accuracy (50 a 70%), are more troublesome and require more incubation time to
obtain the expected results (Poyart et al, 2001). From the total of isolates included in this
study, 75% (178/238) were identified only by phenotypic methods and 25% by a
commercial method. Molecular methods based on the analysis of products from PCR have
been developed to SCoN identification, presenting more stability and quickness (Poyart et
al, 2001; Fujita et al, 2005). Species more difficult to identify by phenotypic methods or
commercial methods as S. caprae e S. equorum were identified by PCR and sodA gene
sequencing. Although only 3% (8/38) of isolates had been identified by s
odA,
the
concordance between this method and the commercial one was 62.5% (5/8).
In conclusion, despite the phenotypic methods (manual or automated) being
troublesome and time consuming, they are the most used at clinical laboratories considering
that they are, on the other hand, of easy approach and performance. Molecular methods of
56
identification of SCoN are still restricted to research laboratories and must be employed
specially among less prevalent species.
The cefoxitin disk test (30
µ
g) showed the same sensitivity and better specificity
than the oxacillin disk (1
µ
g) to detection of oxacillin resistance
mecA
gene mediated in
isolates of SCoNne. Despite the best performance of cefoxitin disk the concomitant use of
cefoxitin (30
µ
g) and oxacillin (1
µ
g) could, at moment, be employed in the clinical
laboratory routine, to reduce the mistake in the detection of oxacillin resistance, restricting
the PCR or agglutination test to PBP2a to solve discrepancies between the disk tests.
Acknowledgment:
We are grateful to Laboratory of Gram-positive Cocci of the FFFCMPA team for phenotypic
methods and to Bacteriologia/Biologia Molecular Sections of Laboratório Weinmann for
commercial and molecular tests. This study had the support of Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq), and Fundação Faculdade Federal de Ciências Médicas de Porto Alegre
(FFFCMPA).
57
References
Antunes ALS, Secchi C, Reiter KC, Perez LRR, Freitas A.L.P, d’Azevedo P.A.
S
taphylococcus epidermidis
: a simple phenotypic method for identification.
(in press)
Banermann T.
(2003)
Staphylococcus, Micrococcus
and other catalase-positive cocci that
grow aerobically. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA and Yolken RH
(Eds).
Manual of Clinical Microbiology
. 8th. Washington, DC:American Society for
Microbiology Press.
Caierão J, Musskopf M, Roesch E, Superti S, Dias C, dAzevedo P.
(2004). Evaluation
of phenotypic methods for methicilin resistance characterization in coagulase-negative
staphylococci (CNS).
J Med Microbiol.
53(Pt 12):1195-1199.
Campoccia D, Montanaro L, Arciola CR
. (2006). The significance of infection, related to
orthopedic devices and issues of antibiotic resistance.
Biomaterials
27:2331-2339.
Cauwelier B, Gordts B, Descheemaeecker P, Van Landuyt H.
(2004). Evaluation of
disk diffusion method with cefoxitin (30
µ
g) for detection of methicilin-resistant
Staphylococcus aureus. Eur J Clin Microbiol Infect Dis.
23:389-392.
Chambers HF.
(1997). Methicilin Resistance in Staphylococci: molecular and biochemical
basis and clinical implications.
Clin Microbiol Rev.
10:781-791
Clinical and Laboratory Standards Institute/NCCLS.
(2005).
Performance standards for
antimicrobial susceptibility testing. Fifteenth informational supplement. CLSI/NCCLS
document M100-S15. Clinical and Laboratory Standards Institute, Wayne, PA.
Couto I, Pereira S, Miragaia M, Sanches IS, Lencastre H.
(2001). Identification of
Clinical Staphylococcal isolates from humans by internal transcribed spacer PCR.
J. Clin
Microbiol
39:3099-3103.
Felten A, Grandry B, Lagrange PH, Casiro I.
(2002). Evaluation of three techniques for
detection of Low Level methicilin-resistant
Staphylococcus aureus
(MRSA); a Disk
Diffusion Method with Cefoxitin and Moxalactam, Vitek 2 System, and the MRSA-Screen
látex Agglutination Test.
J. Clin Microbiol
. 40:2766-2771.
Fernandes CJ, Fernandes LA, Collignon P.
(2005). Cefoxitin resistance as a surrogate
marker for detection the detection of methicilin-resistant
Staphylococcus aureus
.
J
Antimicrob Chemother
55:506-510.
58
Ferreira RBR, Nunes APF, Kokis VM, Krepsky N, Fonseca LS, Bastos MCF, Marval
MG, Santos KR N.
(2002). Simultaneous detection of the
mec A
and ileS-2 genes in
coagulase-negative staphylococci isolated from Brazilian hospitals by multiplex PCR.
Diagn Microbiol Infect Dis.
42:205-212.
Ferreira R, Iorio N, Malvar K, Nunes A, Fonseca L, Bastos C, Santos
KRN (2003).
Coagulase-negative Staphylococci: comparison of phenotypic and genotypic oxacillin
sucseptibility tests and evaluation of the Agar screening test by using different
concentration of oxacillin..
J Clin. Microbiol
, 41: 3609-3614.
Fujita SI, Senda Y, Iwagami T, Hashimoto T.
(2005). Rapid identification of
Staphylococcal Strains from positive-testing blood, culture bottles by internal transcribed
spacer PCR followed by microchip gel electrophoresis.
J. Clin. Microbiol
43: 1149-1157.
Hussain Z, Stoakes L, Massey V, Diagre D, Fitzgerald V, El Sayed S, Lannigan R.
(2000). Correlation of oxacillin MIC with
mec
A gene carriage in Coagulase-negative
Staphylococci.
J Clin Microbiol
, 38:752-54.
Hussain Z, Stoakes L, John MA, Garrow S, Fitzgerald V. (
2002). Detection of
methicilin in primary blood cultures isolates of Coagulase-negative Staphylococci by PCR,
Slide Agglutination, Disk Diffusion, and a commercial method.
J Clin Microbiol
, 40: 2251-
2253.
Kloos, W.; Bannerman, T.L.
(1994). Update and clinical significance of coagulse-
negative staphylococci.
Clin. Microbiol. Rev,
v. 7, p. 117-140.
Layer F, Ghebremedhin B, Moder KA, König W, König B.
(2006). Comparative study
using various methods for identification of Staphylococcus species in clinical specimens.
J
Clin Microbiol
, 44: 2824-2830.
Louie L, Majury A, Goodfellow J, Louie M, Simor AE.
(2001). Evaluation of a latex
agglutination test (MRSA-screen) for detection of oxavilin resistance in coagulase-negative
staphylococci.
J Clin Microbiol
, 39; 4149-4151.
Mougeot C, Guillaumat-Tailliet J, Libert JM
. (2001). Staphylococcus aureus: nouvelle
detection de la résistance ontrinseque par la méthode de diffusion.
Pathol Biol
. 49:199-204.
Marshall AS, Wilke WW, Pfaller MA, Jones RN.
(1998). Staphylococcus aureus and
Coagulase-Negative Staphylococci from blood stream infections: frequency of occurrence,
59
antimicrobial susceptibility, and molecular (
mecA
) characterization of oxacillin resistance
in the SCOPE Program.
Diagn Microbiol Infect
Dis,
30: 205-214.
National Committe for Clinical Laboratory Standards.
(2001). Performance standards
for antimicrobial susceptibility testing. Eleventh informational supplement. NCCLS
document M100-S11. National Comitte for Clinical Laboratory Standards, Wayne, Pa.
National Committe for Clinical Laboratory Standards.
(2004). Performance standards
for antimicrobial susceptibility testing. Fourteenth informational supplement. NCCLS
document M100-S14. National Comitte for Clinical Laboratory Standards, Wayne, Pa
Nunes APF, Teixeira LM, Iorio NLP, Bastos CCR, Fonseca LS, Souza-Padrón T,
Santos KRN.
(2006) Heterogeneous resistance to vancomycin in
Staphylococcus
epidermidis, Staphylococcus haemolyticus and Staphylococcus warneri
clinical strains:
characterisation of glycopeptide susceptibility profiles and cell wall thickening.
Int J
Antimicrob Agents
. 27: 307-3015.
Nunes APF, Teixeira LM, Bastos CCR, Silva MG, Ferreira RBR, Fonseca LS, Santos
KRN.
(2005) Genomic characterization of oxacilin-resistant
Staphylococcus epidermidis
and
Staphylococcus haemolyticus
isolated from Brazilian medical centres.
Journal of
Hospital Infection
59:19-26.
Palazzo ICV & Darini ALC.
(2006). Evaluation of methods for detecting oxacillin
resistance in coagulase-negative staphylococci including cefoxitin disc diffusion.
FEMS
Microbiol Lett
, 257: 299-305.
Patel R, Piper KE, Rouse M, Uhl JR, Cockerill III FR, Steckelber JM.
(2000).
Frequency of isolation of
Staphylococcus lugdunensis
among Staphylococcal isolates
causing endocarditis: a 20-years experience.
J. Clin Microbiol
38: 4262-4263.
Perazzi R, Fermepin MR, Malimovka A, García SD, Orgambi M, Vay C A., Torres R,
Famiglietti A MR.
(2006). Accuracy of cefoxitin disk testing fro characterization of
oxacillin resistance mediated by Pecicilin-Binding Protein 2a in coagulase-negative
Staphylococci.
J. Clin Microbiol
44:3634-3639.
Perez LRR, Antunes ALS, Barth AL, d’Azevedo PA.
Variations of agar screen for
detection on methicilin resistance in staphylococci: focus on cefoxitin.
Eur J Clin Microb
Infect Dis (in press)
60
Pottumarthy S, Fritsche TR, Jones RN
. (2005)
.
Evaluation of alternative disk diffusion
methods for detecting
mec A
-mediated oxacillin resistance in an international collection of
staphylococci: Validation report from the SENTRY Antimicorbial Surveillance Program
Diagn Microbiol Infect
Dis
. 51:57-62.
Poyart C, Quesne G, Boumaila C, Trieu-Cuot P.
(2001). Rapid and Accute Species-
Level identification of Coagulase-Negative
Staphylococci
by using the
sodA
Gene as a
Target. J. Clin Microbiol 39: 4296-4301.
Rupp ME & Archer GL
(1994). Coagulase-negative staphylococci: pathogens associated
with medical progress.
Clin Infect Dis
, 19:231-245.
Sader HS, Jones RN, Gales A.C, Silva JB, Pignatari AC.
(2004). SENTRY
Antimicrobial Surveillance Program Report: Latin American and Brazilian Results for 1997
trough 2001.
Braz J Infect Dis;
8: 25-79.
Skov R, Syth R, Larsen AR, Frimodt-Moller N, Kahlmeter G
. (2005). Evaluation of
cefoxitin 5 and 10 ug discs for the detection of methicilin resistance in staphylococci.
J
Antimicrob Chemother
13:1-5.
Swenson JM, Tenover FC and Cefoxitin disk Study Group
. (2005). Results of disk
diffusion testing with Cefoxitin correlate with presence of
mec A
in
Staphylococcus spp. J.
Clin Microbiol.
43:3818-3823.
Tenover FC, Jones RN, Swenson JM, Zimmer B, McAllister S, Jorgensen JH for the
NCCLS Staphylococcus Working Group.
Methods for Improved Detection of Oxacillin
Resistance in Coagulase-negative
Staphyloccci:
Results of Multicenter Study.
J. Clin
Microbiol
. 37:4051-4058.
Vannuffel P, Gigi J, Ezzedine H, Vandercam B, Delmme M, Wanters G, Gala JL
.
(1998). Specific detection of methicilin resistant Staphylococcus species by multiplex PCR
.
J. Clin Microbiol
. 33:2864-2867.
Velasco D, Tomas MM, Cartelle M, Beceiro A, Perez A, Molina F, Moure R,
Villanueva R, Bou G.
(2005). Evaluation of differet methods for detecting methicilin
(oxacillin) resistance in
Staphylococcus aureus. J Antimicrob Chemother.
55: 379-382.
61
Table 1. Occurence of the mecA gene among 238 SCoNne isolates
Species Occurrence
N %
Isolates mecA Pos
N %
Isolates mecA Neg
N %
S. haemolyticus 100 42.0 91 91.0 9 9.0
S. hominis-hominis 70 29.4 53 76.0 17 24.0
S. warneri 18 7.6 7 39.0 11 61.0
S. capitis-capitis 9 3.7 1 11.0 8 89.0
S. sciuri 9 3.7 1 11 .0 8 89.0
S. saprophyticus 6 2.5 4 67.0 2 33.0
S. hominis novobiosepticus 6 2.5 5 83.0 1 17.0
S. capitis urealyticus 5 2.1 2 40.0 3 60.0
S. cohnii cohnii 4 1.6 0 0. 0 4 100.0
S. xylosus 3 1.3 3 100.0 0 0.0
S. cohnii urealyticus 3 1.3 1 33.0 2 67.0
S. lugdunensis 1 0.4 0 0.0 1 100.0
S. simulans 1 0.4 1 100.0 0 0.0
S. auricularis 1 0.4 0 0.0 1 100.0
S. caprae 1 0.4 0 0.0 1 100.0
S. equorum 1 0.4 0 0.0 1 100.0
Total 238 100 169 71.0 68 29.0
62
Table 2.Discrepant results between nine SCoNne isolates, mecA and latex (PBP2a) negative, by
phenotypic methods (DD and MIC)
Species Isolate
number
DD
Cefoxitin
DD
Oxacillin
Agar dilution
(MIC µg/mL)
Error
S. sciuri 224 S R 0.5 (R) Major
S. sciuri 247 S R 0.5 (R) Major
S. sciuri 201 S R 0.5 (R) Major
S. sciuri 216 S R 0.25 (S) Major
S. saprophyticus 327 S S 0.5 (R) Major
S. saprophyticus 633 S S 0.5 (R) Major
S. cohnii cohnii 226 S S 0.5 (R) Major
S. cohnii cohnii 244 S R 0.5 (R) Major
S. cohnii-cohnii 605 S R 0.5 (R) Major
R: resistant, S: susceptible
Table 3. Sensitivity, Specificity and positive and negative predictive values for phenotypic methods in
comparison with the results of PCR for detection of oxacillin resistance among SCoNne
DD Cefoxitin
N %
DD Oxacillin
N %
MIC Oxacillin
N %
Sensitivity 169/169 100 169/169 100 169/169 100
Specificity 69/69 100 63/69 91 61/69 88
VPP 169/169 100 169/175 97 169/177 95
VPN 69/69 100 69/69 100 69/69 100
Accuracy 238/238 100 232/238 97 230/238 97
63
ARTIGO II_______________________________________________________________
Detection of biofilm production in non-epidermidis coagulase-negative Staphylococcus
spp. isolates
Carina Secchi
1,3
Ana Lúcia de Souza Antunes
1
Leandro Reus Rodrigues Perez
1
Vlademir Vicente Cantarelli
3, 4
Pedro Alves d’Azevedo
1 2
Será submetido para publicação no “
Journal of Medical Microbiology
”.
1
Programa de Pós-Graduação em Ciências Médicas da Fundação Faculdade Federal de
Ciências Médicas de Porto Alegre (FFFCMPA), RS, Brasil
1, 2
Departamento de Microbiologia e Parasitologia da Fundação Faculdade Federal de
Ciências Médicas de Porto Alegre (FFFCMPA), RS, Brasil
3
Weinmann Laboratório de Porto Alegre, RS, Brasil
4
Centro Universitário Feevale, NH, RS, Brasil
Mail Address:
Prof. Pedro Alves d’Azevedo
Rua Sarmento Leite 245/211 – Porto Alegre, RS, Brazil
Cep [Zip Code]: 90050-170
Phone/Fax: + 55-051- 33039000
E-mail: [email protected].br
64
Abstract:
The
Staphylococcus
spp. has been related to nosocomial infections and biofilm production
on the surface of medical implants (biomaterials), which may lead to septicemia. Although
the main species involved in the biofilm formation be
S. epidermidis
and
S. aureus
, also
other coagulase-negative
Staphylococcus
spp. (SCoN) may be related. The purpose of this
study was compare the detection of the icaA and icaD genes by PCR in 238 Staphylococcus
coagulase-negative non-epidermidis samples (SCoNne) derived from blood cultures with
biofilm detection by Congo red agar test (CRA). Our study detected the presence of the
icaA
gene in 13 samples involving the species:
S. capitis-capitis, S. capitis urealyticum, S.
hominis-hominis
and
S. caprae.
The
icaD
was not detected in any isolate
.
The phenotypic
biofilm production test carried out by CRA was positive in only three samples, however,
only two
S. capitis-capitis
samples showed concordance among the two methods evaluated.
Our results showed a low sensitivity among the biofilm detection methods in SCoNne
samples.
Key-words: Biofilm,
Staphylococcus
spp., blood cultures.
65
Introduction:
The coagulase-negative
Staphylococcus
(SCoN) has become an important cause of
hospital infections, being among the bacteria most frequently isolated in clinical
laboratories (von Eiff et al, 2002).
The SCoN are widely distributed on the human skin surface, constituting the
commensal skin bacteria.
S.
epidermidis
is the species most frequently isolated among the
SCoN, being most commonly related to colonization and infections due to the use of
medical devices like catheters, valves and prostheses (O’Gara & Humphreys, 2001).
Although the
S. epidermidis
and the
S. aureus
cause most of the infections related to
medical implants, also
S. hominis
and
S. haemolyticus
may be related to this type of
infection beside other related species (Cramton et al, 1999; Campoccia et al, 2006).
The bacterium adhesion to the biomaterials surface represents a fundamental step
towards the development of infections related to implants. Among the various mechanisms
involving the bacterium adherence, the production of an extracellular polysaccharide
substance called slime or biofilm seems to have a relevant role in the adhesion and
colonization of artificial materials, becoming the SCoN main virulence factor (Arciola et al,
2001; Arciola et al, 2002). The biofilm is formed in two phases: first step – initial bacterial
attach to the biomaterial being related to a surface cellular protein (autolysin) codified by
the atlE gene, second step – biofilm formation, which includes the cellular aggregation and
the biofilm accumulation in multilayers, resulting in an increased adherence and persistence
on the medical devices surface, which is mediated by the
ica
operon products (O’Gara &
Humphreys, 2001; Moretro et al, 2003).
The
ica
locus activation, containing the
ica
ADBC operon, triggers the polysaccharide
intercellular adhesin synthesis (PIA), the main biofilm component, which consists in a
linear
β
-1,6 glycosaminoglycan polymer codified by the intercellular adhesion locus and
particularly by the
icaA
gene
.
When induced isolatedelly, the
icaA
gene expression in only
a low enzymatic activity, but the co-expression of
icaA
with
icaD
genes results in a
significant increase of the enzymatic activity, being reported as the total phenotypic
expression of the capsular polysaccharide (Arciola, et al, 2001). The roles of the
icaB
and
icaC
genes are not well established. Another gene, called
icaR
, may be involved in the
regulation of the structural gene
ica
(O’Gara & Humphreys, 2001). The biofilm formation
66
may act as a physical barrier to the immune system action and to the antimicrobial agents
(Arciola et al, 2002; Moretro et al, 2003).
The biofilm production by the SCoN may be detected by different methods (Fitzpatrick
et al, 2005). The Christensen method is based on the quantitative measurement of bacterial
adherence to plastic surfaces (Christensen et al, 1985). However, this method ca not to
detect a low biofilm production and the results can be affected by medium variation
(Freeman et al, 1989). Alternative method is the qualitative biofilm detection using the
Congo red agar (CRA), which is a highly nutritive culture medium, able to detect the
production of polysaccharide intercellular adhesin (PIA) through the visualization of color
variations produced by the bacteria in this medium (Freeman et al, 1989). The detection of
the
icaA
and
icaD
genes by PCR, mainly in isolates of
S. epidermidis
and
S. aureus
, has
shown to be a fast and highly specific method in the biofilm detection, which may be used
in the laboratorial routine (Arciola et al, 2001a; Arciola et al, 2002). The correlation
between the detection of
icaA
and
icaD
genes by PCR and the formation of biofilm-positive
colonies in the CRA has been shown in
S. epidermidis
samples
(Arciola et al, 2001).
The treatment of infections related to medical devices may be hampered by the
limitation of the usual antimicrobial agents, which act against the planktonic bacteria (free-
living) and not against bacteria in biofilm. The bacteria in biofilm are intrinsically more
resistant to antimicrobial agents for several reasons, including diffusion limitation, altered
metabolic activity, biofilm formation stages and microenvironmental conditions
(Fitzpatrick et al, 2005).
The purpose of this study was to compare the presence of the
icaA
and
icaD
genes in non-
epidermidis coagulase-negative
Staphylococcus
samples (SCoNne) isolated from blood
cultures with the biofilm detection phenotypic test in CRA.
Material and methods:
Samples:
238 SCoNne samples were evaluated from a collection of 490 CoNS samples of
the FFFCMPA Gram-positive Cocci laboratory, preserved in Skim Milk (Difco, Detroit) at
-20°C. The samples were taken from blood cultures collected in a consecutive manner,
between 2002 and 2004, at the Complexo Hospitalar Santa Casa Porto Alegre, RS, Brazil.
67
Quality Control:
S. epidermidis
ATCC 35984 was used as positive control and
S. epidermidis
ATCC 12228 was used as negative control.
Bacterial identification:
For the class and species identification, the samples were grown in
Tryptic Soy Agar (Oxoid, UK) supplemented with 5% sheep blood for 24hs at 35°C, after
which the colonial morphology, hemolysis production and purity were observed. In order to
identify the
Staphylococcus
spp. species, manual phenotypic tests were carried out
according to the conventional method proposed by Kloss & Banermann (1994) and
modified by Banermann (2003). Samples not identifiable by this method and less frequent
(rare) species were further submitted to an automated method of identification (Microscan
Walkway; Dade Behringer, Deerfield, IL) and/or to PCR technique with
sodA
gene
sequencing with specific
primers
(Poyart et al, 2001).
Detection of the
icaA
and
icaD
genes through the PCR:
the DNA from the samples was
extracted with guanidine isothiocyanate (Invitrogen, Carlsbad, USA) to lyse the bacteria
followed by ethanol precipitation. The detection of the
icaA
and
icaD
genes was performed
in a multiplex PCR reaction, using the following primers:
icaA
: 5’-
ACAGTCGCTACGAAAAGAAA and 5’ GGAAATGCCATAATGACAAC, with
amplification of 103pb, and
icaD
: 5’-ATGGTCAAGCCCAGACAGAG and 5’-
CGTGTTTCAACATTTAATGCAA, with amplification of 198pb. The primers used to
determine the presence of the
ica
operon,
icaA
and
icaD
genes, were based on the
S.
epidermidis
sequence
.
The amplification products were visualized under a UV light after
the addition of ethidium bromide following the electrophoresis in agarose gel at 3.0%
(Arciola et al, 2003).
Biofilm production in CRA
: The biofilm production was evaluated through the direct
inoculation of the isolates in CRA. CRA plates were prepared by adding 0.8g of Congo red
and 36g of sucrose (both from Sigma, Missouri, USA) for 11g of BHI agar (Oxoid,
Basingstoke, Hampshire, England). The plates were incubated for 24h at 35°C and,
subsequently, for additional 24h at room temperature. The interpretation of the results was
the following: red or wine colonies were considered as biofilm-negative, black or almost
black colonies were considered as biofilm-positive (Freeman et al, 1989; Arciola et al,
2002).
68
Results:
A total of 238 SCoNne samples were identified and evaluated including the
following species:
S. haemolyticus
(100/238),
S. hominis-hominis
(70/238),
S. warneri
(18/238),
S. capitis-capitis
(9/238),
S. sciuri
(9/238),
S. saprophyticus
(6/238),
S. hominis novobiosepticus
(6/238),
S. capitis-urealyticus
(5/238),
S. cohnii-cohnii
(4/238),
S. xylosus
(3/238),
S. cohnii-urealyticus
(3/238). Other isolates that presented only one
sample of each species were: S. lugdunensis, S. simulans, S. auricularis, S. caprae and
S. equorum
.
The primers were evaluating for the amplification of bacterial DNA from 16
SCoNne species. No PCR product was obtained from the
S. haemolyticus, S. warneri, S.
saprophyticus, S. hominis-novobiosepticus, S. cohnii, S. sciuri, S. xylosus, S. lugdunensis, S.
simulans, S. auricularis, S. equorum
samples
.
However, 13 samples presented a positive PCR result for the
icaA
gene (7
S.
capitis-capitis
samples, 3
S. capitis urealyticum
samples, 2
S. hominis-hominis
samples and
1
S. caprae
sample) The phenotypic test of biofilm production in the CRA was visualized
in three samples (2
S. capitis-capitis
samples and one
S. warneri
sample), however, only
two of the
S. capitis-capitis
samples showed the
icaA
gene concordance and the presence of
biofilm in CRA (Table 1). The two reference samples ATCC 35984 and ATCC 12228
presented positive (black colonies) and negative (red colonies) results in the CRA,
respectively, as expected.
Discussion:
Bacterial infections related to medical device implants became an important issue in
the modern medicine (Arciola et al, 2002). The use of medical prostheses increase the risk
of infections by commensal skin bacteria, particularly SCoN, where the prosthesis
colonization can occur at the moment of the surgery or in the post-operative period (Frank
et al., 2004). Arciola et al. (2002, 2003) showed 100% of concordance between the biofilm
production, detected in the CRA, and the presence of the
icaA and icaD
genes isolated from
infections caused by
S. epidermidis
associated to biomaterials.
In our study, 13 SCoNne samples presented the
icaA
gene and were identified as
S.
capitis-capitis
,
S. capitis-urealyticum
,
S. hominis-hominis
and
S. caprae
, but only two
69
S. capitis-capitis
samples showed a concordance between the two proposed methods
(presence of
icaA
and characteristic growth in the CRA medium). No sample showed the
presence of the
icaD
gene.
Silva et al (2002), in samples of neonate blood culture, showed that the
icaA, icaB,
icaC
and
icaD
genes were found in
S. epidermidis
. None of them were found in the
S. haemolyticus, S. hominis, S. warneri
and
S. auricularis
species. However, 12 of 29
S.
capitis strains yielded a positive PCR result for the icaC and icaD genes, suggesting that a
homolog of the
S. epidermidis
operon exists in some members of this species. Biofilm
production by CRA was expressed by
S. epidermidis, S. capitis
and
S. hominis
strains.
Also, Frank et al. (2004) showed the presence of the
icaA
gene in samples derived
from materials of medical prostheses involving the
S. epidermidis, S.caprae/capitis, S.
pasteuri
and
S. saprophyticus
species
.
However, the
icaA
gene was not observed in any
other SCoN species
.
Allignet et al. (2001) performed the
S. caprae
samples sequencing and
showed the presence of the
icaA, icaB, icaC
and
icaD
genes with 68% of similarity to the
S. epidermidis
and
S. aureus
species
,
indicating that the biofilm can contribute to the
S.
caprae
virulence, protecting the bacteria against the antimicrobial agents as well as in
S.
epidermidis.
The quantitative evaluation of biofilm formation on a polymer surface was
performed in
S. sciuri
samples, showing that the biofilm formation can be considered a
virulence factor to this bacteria (Stepanovic et al, 2001).
Moretro et al. (2003) detected the presence of biofilm through a quantitative method
in the
S. capitis, S. cohnii, S. epidermidis
and
S. saprophyticus
samples isolated from
industrially processed foods. Although the a correlation between biofilm production and the
presence of the
icaA
gene
,
not all the SCoN positive for the
ica
operon produced biofilm,
mainly in the case of
S. epidermidis
, indicating that an additional mechanism may be
involved in the biofilm formation. In this same study, the
icaA
gene was partially
sequenced in some
Staphylococcus
spp
.
species, being found in many clusters. Although
the similarity among the
icaA
sequences
,
in the different samples, have not always been
consistent in relation to the 16SrDNAs, indicating that the
icaA
gene was horizontally
transferred (Moretro et al, 2003).
70
According to Gerke et al. (1998), the PIA and the intercellular adherence formation
in vivo
depends on the
icaD
gene
,
in addition to the
icaA
and
icaC
genes
to
form a complex
in the bacterial membrane in a coordinate way. Cramton et al (1999) detected the
icaA
gene
among SCoNne like
S. capitis, S. auricularis
and
S. lugdunensis,
showing that the
ica
locus
is preserved in some members of the specie, suggesting that the intercellular adherence is
mediated by the
ica
locus and may be a general phenomenon conserved among
Staphylococcus spp.
In our study, the detection of biofilm by the phenotypic assay (CRA) proved to be
difficult and prone to subjective interpretations, mainly due to the variation of the colors
(red, bordeaux, almost black and black) obtained by directly inoculating the samples onto
the culture medium. To improve the biofilm detection by this method, colonies suspected to
be positive for biofilm production in the original plates, and/or positive for the
icaA
gene,
were subcultured to a new CRA plate, with a standardized 0.5 MacFarland inoculum using
the Steers replicator (Figure 1), which resulted in a better view of colors for reading and
interpretation of results.
In conclusion, the results obtained in this study showed a low sensitivity among the
biofilm detection methods (presence of the
icaA
and
icaD
genes and positive colonies in the
CRA) for SCoNne. In the evaluation of 238 SCoNne samples derived from positive blood
cultures, none of the species showed the presence of the
icaD
gene and only 13 samples,
involving four different SCoNne species, showed the presence of the
icaA
gene. The
primers
used in the genotypic biofilm detection in SCoNne may have contributed to the
low detection rate of these genes, since they were based on sequences found in
S.
epidermidis
, well known biofilm-producing specie.
Despite few studies involving the biofilm detection through the
ica
operon genes
and their products (PIA) in SCoNne species, the presence of the
icaA
gene in
Staphylococcus
species other than
S. epidermidis
and
S. aureus
supports the idea that the
ica
locus may have a general function in this species survival in a variety of environments
(Cramton et al, 1999). Experiments that taking in account the quantitative detection of
biofilm as well as other virulence factors among the SCoNne are presented as alternative
methods of pathogenicity evaluation and must also be investigated.
71
Acknowledgments:
We are grateful to Laboratory of Gram-positive Cocci of the FFFCMPA team for phenotypic
methods and to Bacteriologia/Biologia Molecular Sections of Laboratório Weinmann for
commercial and molecular tests. This study had the support of Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq), and Fundação Faculdade Federal de Ciências Médicas de Porto Alegre
(FFFCMPA). The authors are grateful to Dra. Kátia Regina Netto dos Santos of the Institute of
Microbiology Professor Paulo Goés of the Universidade Federal do Rio de Janeiro, Brasil, for their
collaboration in kindly providing the S. epidermidis ATCC 35984 strain used as control.
72
References:
Allignet, J; Aubert, S; Dyke, KGH, Solh, N.
2001. Staphylococcus caprae strains carry
determinants known to be involved in pathogenicity: a gene enconding an autolysin-
binding fivronectin and
ica
operon involved in biofilm formation.
Infect and Immun
.
69:712-718.
Arciola, CR; Baldassari, L; Montanaro, L
. 2001. Presence of
icaA
and
icaD
genes and
slime production in a collection of Staphylococcal strains from catheter-associated
infections.
J. Clin. Microbiol.
39:2151-2156.
Arciola, CR; Collamati, S; Donati, E; Montanaro, L
. 2001. A Rapid PCR method for
Detection of Slime-producing Strains of
Staphylococcus epidermidis and S. aureus
in
periprosthesis infections.
Diagn Mol Pathol.
10:130-137.
Arciola, CR; Campoccia, D; Gamberini, S; Cervellati, M; Donati, E.; Montanaro, L.
2002. Detection of slime production by means of an optimized Congo red agar plate test
based on a colourimetric scale in
Staphylococcus epidermidis
clinical isolates genotyped
for
ica
locus.
Biomaterials
, 23:4233-4239.
Arciola, CR; Campoccia, D; Gamberini, S; Donati, ME; Baldassari, L; Montanaro, L
.
2003. Occurrence of
ica
genes for slime synthesis in a collection of
Staphylococcus
epidermidis
strains from orthopedic prosthesis infections. Acta Orthop Scand. 74:617-621.
Banermann, T.
Staphylococcus, Micrococcus
and other catalase-positive cocci that grow
aerobically. 2003. p. 384-404. In: Murray P.R., Baron E.J., Jorgensen, J. H.; Pfaller, M.A.
and Yolken, R. H. (ed).
Manual of Clinical Microbiology
. 8 ed. American Society for
Microbiology.
Campoccia, D; Montanaro, L; Arciola, CR.
2006. the significance of infection related to
orthopedic devices and issues of antibiotic resistance.
Biomaterials
. 27:2331-2339.
Christensen, GD; Simpson, WA; Younger, JJ; Baddour, LM; Barret, FF; Melton,
DM; Beachey, WH.
1985 Adherence of coagulase-negative Staphylococci to plastic tissue
culture plates: a quantitative model for the adherence of Staphylococci to medical devices.
J. Clin Microbiol
. 22:996-1006.
Cramton, SE; Gerke, C; Schnell, NF; Nichols, WW; Gotz, F.
1999. The intercellular
adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm
formation.
Infect Immun.
57:5427-5433.
73
Fitzpatrick, F; Humphreys, H; O’Gara, JP.
2005. The genetics of staphylococcal
biofilm formation-will a greater understanding of pathogenesis lead to a better management
of device-related infection?
Clin Microbiol Infection
11:967-973.
Frank, KL; Hanssen, AD; Patel, R.
2004.
icaA
is not a useful diagnostic marker fro
prosthetic joint infection.
J. Clin Microbiol
. 42:4846-4849.
Freeman, DJ; Falkiner, FR; Keane, CT.
1989. New method for detecting slime
production by coagulase negative staphylococci. J Clin Pathol. 42:872-874.
Gerke, C; Kraft, A; Submuth, R; Schweitzert, O.
1998. Characterization of the N-
acetylglucosaminyltranferase activity involved in the biosynthesis of the Staphylococcus
epidermidis polysaccharide intercellular adhesin.
. Biological Chemistry
. 273:18586-18593.
Kloos, WE & Bannerman, TL.
1994. Update on Clinical Significance of Coagulase-
negative Staphylococci.
Clin Microbiol. Rev
. 7:117-140.
Moretro, T; Hermansen, L; Holck, AL; Sidhu, MS; Rudi, K.
2003. Biofilm formation
and the presence of the intercellular adhesion locus ica among staphylococci from food and
food processing environments.
Applied and Environmental Microbiol.
69:5648-5655.
O’Gara, J and Humphreys, H
. 2001.
Staphylococcus epidermidis
biofilms: importance
and implications.
J. Med. Microbial
. 50:582-587.
Poyart, C; Quesne, G; Boumaila, C; Trieu-Cuot, P.
2001. Rapid and Accute Species-
Level identification of Coagulase-Negative
Staphylococci
by using the
sodA
Gene as a
Target. 39(12), 4296-4301.
Silva, GDI; Kantzanou, M; Justice, A; Massey, RC; Wilkinson, AR; Day, NPJ;
Peacock, SJ.
2002. The
ica
operon and biofilm production in coagulase-negative
staphylococci associated with carriage and disease in a neonatal intensive care unit.
J. Clin
Microbiol
40:382-388.
Stepanovic, S; Vukovic, D; Trajkovic, V; Samardzie, T; Cupic, M; Svabic-Vlahovic,
M.
2001. Possibel virulence factors of Staphylococus sciuri.
FEMS Microbiol
Letters
.199:47-53.
Von Eiff, C; Peters, G; Hellmann, C.
2002. Pathogenesis of infections due to coagulase-
negative staphylococci.
The Lancet Infec Diss
. 2:677-685.
74
Table 1. Occurrence of the
icaA
and
icaD
genes and biofilm production in CRA
among 238
non-epidermidis SCoN samples:
Species No.
icaA/icaD
CRA 24hs CRA 48hs
S. capitis capitis
331 +/- Red Red
S. capitis capitis
381 +/- Red Red
S. capitis capitis
552 +/- Almost Black Black
S. capitis capitis
599 +/- Red Red
S. capitis capitis
601 +/- Red Red
S. capitis capitis
649 +/- Black Black
S. capitis capitis
664 +/- Red Red
S. capitis urealyticus
487 +/- Red Red
S. capitis urealyticus
534 +/- Red Red
S. capitis urealyticus
787 +/- Red Red
S. hominis hominis
671 +/- Red Red
S. hominis hominis
712 +/- Red Red
S. caprae
519 +/- Red Red
S. warneri
558 -/- Bordeaux Almost Black
Figure 1. Congo red agar (CRA) using the Steers’ replicator.
Black colonies are positive and red colonies are negative for biofilm production.
75
CONSIDERAÇÕES FINAIS________________________________________________
As amostras SCoNne avaliadas, foram identificadas na sua maioria, 75%, por
métodos fenotípicos manuais, sendo 25% identificadas e/ou confirmadas por
método automatizado e 3% por método genotípico. As espécies mais
freqüentemente isoladas foram
S. haemolyticus, S. hominis e S. warneri.
O uso do disco de cefoxitina mostrou uma sensibilidade e especificidade de 100%
quando comparadas com a detecção do gene
mecA
. Na comparação entre os
métodos de avaliação da resistência a oxacilina, o disco de cefoxitina mostrou a
mesma sensibilidade e superior especificidade que o disco de oxacilina (91%) e ágar
diluição para oxacilina (88%). As taxas de resistência à oxacilina entre os SCoNne
foram de 71% pelo método de PCR, sendo o
S. haemolyticus
a espécie mais
resistente (91%).
Os resultados deste estudo mostraram uma baixa sensibilidade entre os métodos de
detecção da formação de biofilme (detecção dos genes
icaA
and
icaD
e colônias
positivas no meio CRA) em amostras de SCoNne.
PERSPECTIVAS__________________________________________________________
Nossos resultados demonstraram o bom desempenho do disco de difusão de
cefoxitina,
podendo ser utilizado na rotina laboratorial para avaliar a resistência a
oxacilina, principalmente entre os SCoNne, conforme recomendações do CLSI.
A baixa correlação dos resultados encontrados na determinação da produção de
biofilme em SCoNne, sugere que mais pesquisas sejam desenvolvidas na busca de
outros métodos de detecção, bem como de novos marcadores de virulência para este
grupo de bactérias.
76
ANEXO I_________________________________________________________________
Os trabalhos a seguir foram desenvolvidos durante a realização do Mestrado.
77
Staphylococcus epidermidis: a simple phenotypic method for identification.
Ana Lúcia Souza Antunes
1,2
, Carina Secchi
1
, Keli Cristine Reiter
2
, Leandro Reus Rodrigues
Perez
1
, Ana Lúcia Peixoto de Freitas
2
, Pedro Alves d’Azevedo
1
From Fundação Faculdade Federal de Ciências Médicas de Porto Alegre, RS, Brazil
¹
Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS, Brazil
2
.
Running title:
Staphylococcus epidermidis
: identification.
Submetido para publicação no jornal “
Journal Medical of Microbiology”
Address reprint request to Profº Pedro Alves d’Azevedo, Microbiologia da Fundação
Faculdade Federal de Ciências Médicas de Porto Alegre – FFFCMPA. Rua Sarmento Leite,
245/211, Porto Alegre, RS, 90050-170, Brazil.
Telefone: (+55) 51 33039000 Fax: (+55) 51 33098810
Subject category: Diagnostics, type and identification
78
Abstract
The emergence of coagulase negative Staphylococcus spp (CoNS) as human pathogens as
well as reservoirs of antimicrobial resistance, increases the necessity of developing reliable methods
for identification of the most frequent species among them, to establish the pathogen-host
relationship. The conventional method proposed by Bannerman (2003) is laborious and thus not
applicable to use in clinical laboratory. Moreover, the available commercial techniques of
automation are expensive and most often provide unreliable results. The aim of this study was to
propose a method easy to perform, associated with low costs and time-consuming for identification
of Staphylococcus epidermidis. At first, 490 CoNS isolates from blood culture were identified by
Bannerman's technique. Distinct approaches resulted in the use of two disks containing each
desferrioxamine and fosfomycin. Considering susceptibility to desferrioxamine, as a major marker,
320 isolates had been selected for further investigation in this study. Bannerman's technique
identified 238 isolates as S. epidermidis, 73 as S. hominis and 9 as others SCoN, while the method
proposed in this study identified 239 S. epidermidis and 76 S. hominis. Both techniques were
compared with the tuf gene species-specific method for S. epidermidis, using Polymerase Chain
Reaction (PCR). Considering the presence of the tuf gene as a gold standard, the sensitivity
presented by Bannerman's and the method here described were 96.3% and 98.3%, respectively. The
positive predictor value of the latter was 99.2%. This method proposed has proved to be a useful
tool for identifying S. epidermidis, the most frequent CoNS isolated from blood cultures in
laboratories of clinical microbiology.
Keywords
: Staphylococcus epidermidis, identification techniques, desferrioxamine, fosfomycin,
coagulase negative Staphylococcus spp.
Abbreviations
: CoNS, Coagulase Negative Staphylococcus spp; PCR, Polymerase Chain Reaction.
Introduction
The genus Staphylococcus currently include about 40 different species (Monsen et al., 1998;
Bannerman, 2003; Cunha et al., 2004). The identification of species among the coagulase negative
Staphylococcus spp (CoNS), is not regularly made in clinical laboratories of microbiology, because
it is expensive, even with automation, and is time-consuming when carried out manually (Edwards
et al., 2001). Historically, only S. aureus was considered pathogenic, but in the last two decades,
79
CoNS have also emerged as significant pathogens, especially in patients with medical devices,
immunocompromised patients, and premature newborns (Wieser & Busse, 2000). S. epidermidis
appears to be the most frequent isolated species among the CoNS and is responsible for infections
associated with temporary or permanent medical devices (De Paulis et al., 2003). The most
important mechanism of pathogenicity in S. epidermidis is their ability of to form a biofilm
(Ziebuhr et al., 2006).
The emergence of CoNS as pathogens and reservoirs of antimicrobial resistance require fast
and reliable methods for their identification, and to establish the pathogen-host relationship, leading
to a better understanding of the mechanisms of pathogenicity and susceptibility profiles and more
reliable epidemiological surveys (Couto et al., 2001; Kontos et al., 2003).
The conventional method proposed by Kloos & Bannerman (1994) and modified by
Bannerman (2003) appears to be unreliable, and irreproducible in laboratory routine. Furthermore,
commercial identification systems and automated systems are not able to make a reliable distinction
between the different species of CoNS, because of the variable expression of the phenotypic
characters (Couto et al., 2001; Kontos et al., 2003; Caierão et al., 2006). Other tests, such as
enzyme electrophoresis or analysis of cellular fatty acid composition, have also failed to make a
reliable identification (Heikens et al., 2005). Therefore, methods based on sequencing of
Polymerase Chain Reaction (PCR) amplicons were valuated and compared to phenotypic
identifications of CoNS. A number of PCR amplicon-sequencing-based methods for identification
of CoNS have been reported, i.e., targeting the 16S region of the ribosomal RNA, the sodA and tuf
genes. Multiple copies of the 16S rRNA gene are present on the chromosome of most bacteria and
are better conserved than the tuf gene. But the latter is a target with a better discriminatory power to
differentiate related species. Both the sodA and tuf genes are essentially constituents of the bacterial
genome and thus are preferential for identification of Staphylococcus spp (Martineau et al., 2001;
Heikens et al., 2005).
80
The difficulties to identification of Staphylococcus spp using tests that evaluate acid
production has previously been reported in several works, which evaluated manual and automated
systems (Ieven et al., 1995; Cunha et al., 2004; Caierão et al., 2006). S. epidermidis and S. hominis
presents variable results in traditional biochemical tests and similar phenotypic identification.
Susceptibility to desferrioxamine, besides being of easily performance, has been described as
capable of identification of S. epidermidis (Lindsay & Riley, 1991; Lindsay et al., 1993; Mulder,
1995).
The aim of this study was to propose a method for identification of S. epidermidis combining
accuracy, rapidity and easy to perform, to allow their use in routine laboratories of clinical
microbiology. We used the phenotypic method according to Bannerman (2003) and the tuf gene
assay through PCR to evaluate the accuracy of the approach.
Methods
A total of 490 isolates, from consecutive blood cultures obtained from Jan 2002 to Jul 2004,
were used. The samples were stored in skim-milk at temperature of 20 ºC at the Laboratory of
Gram-positive Cocci of the FFFCMPA. The quality control of the tests was done using the S.
aureus 25923, S. epidermidis 12228, and S. hominis 27844 of the American Type Culture
Collection (ATCC).
Identification of S. epidermidis: The isolates were cultured in agar supplemented with 5%
sheep blood (Tryptic Soy Agar- Oxoid, Basingstoke, England) for 24 h at 35 ºC, where colony
morphology, hemolysis production and purity were evaluated. Subsequently coagulase and catalase
tests were performed. The method proposed by Bannerman (2003) consist of a set of biochemical
tests that determine the utilization of carbohydrates such as sucrose, trehalose, maltose, mannose,
mannitol, lactose, cellobiose; and production of hemolysis; the activity of pyrrolidonyl arylamidase;
the presence of urease and ornithine decarboxylase; the resistance to novobiocin 5 µg (Oxoid
Basingstoke, England); alkaline phosphatase; and anaerobic growth in thioglycolate. Test readings
were obtained after 24 h, 48 h, and 72 h and in up to 7 days of incubation at 35 ºC. The novobiocin
81
susceptibility test was performed by disk diffusion in Mueller-Hinton Agar (Oxoid Basingstoke,
England).
Genotypic method through PCR: The detection of the tuf gene was according to Martineau et
al. (1996), using S. epidermidis species-specific primers 5’- ATC AAA AAG TTG GCG AAC CTT
TTC A-3’ and 5’- CAA AAG AGC GTG GAG AAA AGT ATC A-3’. Following amplification, 10
µl of DNA were electrophoreses. The primer sequence was selected because it presents 100%
ubiquity among S. epidermidis (Martineau et al., 1996).
Proposed method for identification of S. epidermidis: The following tests were performed:
susceptibility to desferrioxamine 100 µg (Desferal Novartis, Ciba-Geigy-Sandoz Basileia,
Switzerland), to fosfomycin 200 µg (Oxoid Basingstoke, England) and resistance to polymyxin B
(300 UI Oxoid Basingstoke, England). Using disk diffusion, resistance to polymyxin B, according
to Bannerman (2003), was of inhibition zone <10 mm, and according to Monsen et al. (1998) 16
mm. Susceptibility to fosfomycin according to Ieven et al. (1995) and Rosco diatabs diagnostic
(2000) was established as an inhibition zone >30 mm. The disks were prepared using 0.5 g
desferrioxamine diluted in 5 ml of sterile distilled water at a final concentration of 100 mg ml
-1
, and
3 µl of this suspension were used to impregnate the paper disk (Lyndsay & Riley, 1991; Lindsay et
al., 1993). The disks were maintained at –10 ºC for up to 12 months, and consistence of results was
confirmed by duplicate tests performed throughout the period of study. Susceptibility to
desferrioxamine was defined as zone 20 mm. Those isolates with borderline inhibition values for
desferrioxamine were submitted to identification through automated system MicroScan (Dade
Behring, USA).
Results and Discussion
The 490 samples were identified through the technique proposed by Bannerman (2003). The
use of susceptibility to desferrioxamine, which included all isolates identified as S. epidermidis,
allowed the selection of 320 isolates for the continuation of the study.
82
Using the tests proposed by Bannerman (2003) in those 320 isolates, 238 S. epidermidis and
73 S. hominis were identified, and nine isolates were classified as other CoNS (Table 1). The same
isolates were tested using the method proposed by this study and evaluating the presence of the tuf
gene for S. epidermidis through PCR. In the genotypic technique, 241 isolates presented the tuf
gene, while the proposed method identified 239 S. epidermidis (Table 2).
Among the 320 CoNS, the tuf gene for S. epidermidis was found in 241 cases, and the
proposed method identified 239 of them. In two isolates (1 S. hominis and 1 S. warneri), fosfomycin
resistance was observed despite the presence of the tuf gene. In 239 isolates identified as S.
epidermidis by the proposed method, 237 presented the tuf gene. On the other hand, four isolates
with the tuf gene were identified as S. hominis.
In the 238 isolates identified as S. epidermidis with Bannerman's method (2003), only 232
presented the tuf gene; therefore, six samples were misidentified. On the other hand, among the 82
isolates identified as S. hominis, nine were also misidentified, since they presented the tuf gene.
Evaluating polymyxin B resistance using two cut-points (Bannerman, 2003 and Monsen,
1998), resistance was detected in 100 and 275 isolates, respectively. Together with the other
biochemical and enzymatic tests, 98 isolates were identified as S. epidermidis according to
Bannerman (2003); among those, 96 isolates presented the tuf gene. It is of worth that 11 isolates
not S. epidermidis by phenotypic tests also presented tuf gene, all of them identified as S. hominis.
On the other hand, the zones proposed by Monsen et al. (1998), in conjunction with other tests
identified 235 S. epidermidis, and the tuf gene were present in 227 of them. All tests for polymyxin
B were done in duplicate, and results were discrepant in 60% of the cases.
Fosfomycin, together with the other tests, showed to be highly sensitive (99.2%) and specific
(96.2%) for the identification of these two CoNS. Susceptibility to fosfomycin was observed in
99.2% (239/241) isolates with the tuf gene and a positive predictor value of 98.8%.
The measure of the susceptibility zone to desferrioxamine showed variations even within the
same species (Table 3). Most isolates (89.7%) presented zones between 25 and 35 mm of wide.
83
Only three isolates presented a zone of 19 mm, which were identified by automated system
MicroScan as S. warneri (two cases) and S. hominis (one case). In the 320 isolates susceptible to
desferrioxamine, 317 presented a zone >20 mm, this value being set as cut-off point for
susceptibility to desferrioxamine. The three isolates with smaller halos presented a very close
inhibition zone (19 mm). These samples did not present the tuf gene and were submitted to
identification by the automated system MicroScan (Dade Behring, USA), with two being identified
as S. warneri and one as S. hominis. The same isolates had also presented discrepancy in the
biochemical identification and in the tests of urea and mannitol.
Considering the presence of the tuf gene as standard, the values for sensitivity and predictive
positive value were of 98.3% and 99.2% for the method here proposed while for Bannerman's
method (2003) we observed values of 96.3%. The accuracy of the method presented was 98.1%.
The method using desferrioxamine and fosfomycin disk to identify S. epidermidis among the CoNS
showed specificity of 97.5% (Table 4).
CoNS are microorganisms frequently isolated from blood cultures. Since CoNS are the
etiological agents of a series of infectious processes, identification of these microorganisms is
important for the determination of their physiopathological characteristics. Their clinical and
epidemiological importance, have led to the publication of various studies analyzing identification
methods for these bacteria (Ieven et al., 1995; Monsen et al., 1998; Bannerman 2003; De Paulis et
al., 2003). The frequency with which S. epidermidis was found ranges from 43% to 92%, depending
on the geographical region where the study was conducted (Ieven et al., 1995; Couto et al., 2001;
Vuong & Otto, 2002; De Paulis et al., 2003; Ferreira et al., 2003; Spanu et al., 2003; Cunha et
al., 2004; Caierão et al., 2006). In our study, we identified 241 samples with the tuf gene for
S. epidermidis, which corresponds to a prevalence of 49.2 % of all 490 CoNS studied.
Due to the difficulty of identification of non-coagulase positive Staphylococcus many clinical
laboratories don’t distinguing between S. epidermidis and other CoNS. Although the interpretation
of the susceptibility tests independs of this identification, the choice of the antimicrobial agent may
84
be influenced. For instance, even with susceptibility in vitro, the use of vancomicin is not
appropriate in treating infections due to S. epidermidis; since biofilm formation may protect the
microorganism with failure of treatment. Our proposed method to S. epidermidis identification
proved to be a useful tool. This approach using desferrioxamine and fosfomycin disks is easier,
cheap and showed the same accuracy than the conventional phenotypic method. Therefore, we can
propose our method to the routine of clinical microbiology laboratory.
In the analysis of carbohydrate fermentation we evaluated the relevant data for identification
of S. epidermidis. Fermentation of mannose and threalose have being pointed as important to
identification, but we find that, mannose did not contribute consistently to the identification of S.
epidermidis, since the response was smaller than expected. In the case of threalose, in almost half of
isolates without tuf gene gave positive results. It must be emphasized that Freney (1999) was one
that refers to the possibility of fermentation of threalose by S. epidermidis. Also, in a recent study
Caierão et al. (2006) demonstrated the failure of automated systems to evaluate the fermentation of
mannose and threalose among the CoNS.
We defined the use of Christensen's Urea Agar more appropriate than Rustigian & Stuart's
broth (data not shown). This choice was based on a sharper and faster results and the routine use of
this medium. The totality of S. epidermidis isolates (tuf gene) was positive for urease production
when Christensen's Urea Agar was used.
As regards to the tests of alkaline phosphatase and growth in anaerobiosis (Bannerman's), we
observed that while alkaline phosphatase was simple and easily executed, the visualization of
growth in anaerobiosis is not. The positive predictor and negative predictor values for alkaline
phosphatase were 96.2% and 85.4%, while to growth in anaerobiosis the values were 96.6% and
96.3% respectively. The final method of this work did not elected those two testes, although the
conventional method of Bannerman includes both of them.
Desferrioxamine is a siderophore, unavailable in disks and thus must be prepared (Lindsay &
Riley, 1991). In Lindsay & Riley's study (1991), several inhibition zones were considered to
85
evaluate the susceptibility to desferrioxamine. Using disks of 100 µg, these authors observed zones
>16 mm, but they concluded that any halo was meaningful. We decided that a zone >20 mm was
more exact. Desferrioxamine is an excellent marker for identification of S. epidermidis when we use
the proposed breakpoint.
About 6% of the cases (20/320) presented a double zone of inhibition, particularly in
S. epidermidis rather than in S. hominis, as previously reported by Monsen et al. (1998). Since the
other proofs indicated S. epidermidis, it was considered that the formation of internal zone should
not be considered at the moment of reading, even when the internal zone was < 20 mm. It was not
in the scope of this study to investigate the causes of this double zone.
Polymyxin B disks were also used for phenotypic identification of S. epidermidis, since this
species is resistant to this antimicrobial. Concording to our results, this variability had been reported
that the reproduction of the disk-diffusion technique is unsatisfactory (Gales et al., 2001; Sejas et
al., 2003). Due this great variability the polymyxin B disks were replaced by fosfomycin ones. This
test turned out to be imperative in the phenotypic sorting of S. epidermidis and S. homins.
Two isolates selected by the desferrioxamine disk, presented resistance to novobiocin, which
led to further analysis, since S. epidermidis and S. hominis are both susceptible to novobiocin. The
subspecies S. hominis subsp. novobiosepticus is an exception, and outbreaks have already been
reported in neonates in Spain (Chaves et al., 2005) and, more recently, in a Hospital Geral de São
Paulo (d’Azevedo et al., 2006). In this case the use of susceptibility testes such as desferrioxamine
(100 µg), fosfomycin (200 µg) and novobiocin (5 µg) disks were finding to be the best way to
identify S. epidermidis.
Based on our results, we proposed a simplified method for identification of S. epidermidis
among the SCoN. The proposed method comprises susceptibility tests to desferrioxamine ( 20
mm) and fosfomycin ( 30 mm). So, we propose that both disks should be included in the routine
susceptibility tests in laboratories of clinical microbiology (Fig. 1).
86
Heikens et al. (2005) demonstrated the superiority of the tuf gene for identification of CoNS
species because of its excellent discriminatory power and its high specificity, concerning the ATCC
CoNS samples and the sequences stored in the GenBank. The authors also reported the limited
discriminating power of 16S rRNA sequences for identification of CoNS species.
The use of PCR for the identification of the tuf gene supports the evidence that the proposed
phenotypic characterization can solve the problem of S. epidermidis identification. Until the
moment, all phenotypic techniques were laborious, unsatisfactory and irreproducible. The
sequencing of the tuf gene showed that S. warneri is closely related to S. epidermidis, which may
perhaps account for their occasionally similar phenotypic behavior.
In conclusion, a method using only desferrioxamine and fosfomycin disks showed great
correlation with Bannerman's method and with gen tuf. This simple, low cost system can be a useful
tool for identifying S. epidermidis that today is the most frequently CoNS isolated from blood
cultures in laboratories of clinical microbiology.
Acknowledgements
The authors wish to tank Tiza and Rosângela for their support, bacteriology of the Complexo
Hospitalar Santa Casa de Misericórdia de Porto Alegre (CHSCMPA), Fundação Faculdade Federal
de Ciências Médicas de Porto Alegre (FFFCMPA), Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES), Brasília, Brazil.
87
References
Bannerman, T.L. (2003).
Staphylococcus, Micrococcus, and other catalase-positive cocci that
grow aerobically. In PR Murray, E.J., Jorgensen, M.A., Jolken (eds). Manual of Clinical
Microbiology, ASM, Washington, p. 384-404.
Caierão, J., Superti, S., Dias, C.A.G. & d’Azevedo, P.A. (2006).
Automated systems in the
identification and determination of methicillin resistance among coagulase negative staphylococci.
Mem Inst Osvaldo Cruz
101
(3), 277-279.
Chaves, F., Garcia-Álvarez, M., Sanz, F., Alba, C. & Otero, J.R. (2005).
Nosocomial spread of a
Staphylococcus hominis subsp. novobiosepticus strain causing sepsis in a neonatal intensive care
unit. J Clin Microbiol
43
, 4877-4879.
Couto, I., Pereira, S., Miragaia, M., Sanches, I.S. & Lencastre, H. (2001).
Identification of
clinical staphylococcal isolates from humans by internal transcribed spacer PCR. J Clin Microbiol
39
, 3099-3103.
Cunha, M.L.R.S., Sinzato, Y.K. & Silveira L.V.A. (2004).
Comparison of methods for the
identification of coagulase-negative staphylococci. Mem Inst Osvaldo Cruz
99
(8), 855-860.
D’Azevedo, P.A., Monteiro, J., Sales, T., Tranchesi, R., Pignatari, A.C.C. (2006).
Disseminação
nosocomial de Staphylococcus hominis subsp. novobiosepticus com suscetibilidade diminuída à
vancomicina em um Hospital Geral de São Paulo, SP, Brasil. VI Congresso Pan-Americano e X
Congresso Brasileiro de Controle de Infecção e Epidemiologia Hospitalar, Porto Alegre, RS, Brasil.
De Paulis, A.N., Predari, S.C., Chazarreta, C.D., Santoianni, J.E. (2003).
Five-Test Simple
Scheme for Species–Level Identification of Clinically Significant Coagulase-Negative
Staphylococci. J Clin Microbiol
41
, 1219-1224.
Edwards, K.J., Kaufmann, M.E., Saunders, N.A. (2001).
Rapid and accurate identification of
coagulase-negative Staphylococci by real-time PCR. J Clin Microbiol
39
, 3047-3051.
Ferreira, R.B.R., Iorio, N.L.P., Malvar, K.L., Nunes, A.P.F., Fonseca, L.S., Bastos, C.C.R.,
Santos, K.R.N. (2003).
Coagulase-Negative Staphylococci: Comparison of Phenotypic and
Genotypic Oxacillin Susceptibility Tests and Evaluation of the Agar Screening Test by Using
Different Concentrations of Oxacillin. J Clin Microbiol
41
, 3609-3614.
Freney, J., Kloos, W.E., Hajek, V., Webster, J.A. (1999).
Recommended minimal standards for
description of new staphylococcal species. International Journal of Systematic Bacteriology 49,
489-502.
Gales, A.C. Reis, A.O., Jones, R.N. (2001).
Contemporary Assessment of Antimicrobial
Susceptibility Testing Methods for Polymyxin B and Colistin: Review of Available Interpretative
Criteria and Quality Control Guidelines. J Clin Microbiol
39
, 183-190.
Heikens, E.,Fleer, A., Paauw, A., Florijn, A., Fluit A.C. (2005). Comparison of genotypíc and
phenotypic methods for species-level identification of clinical isolates of coagulase-negative
Staphylococci. J Clin Microbiol
43
, 2286-2290.
Ieven, M., Verhoen, J., Pattyn, S.R.; Goossens, H. (1995).
Rapid and economical methods for
species identification of clinically significant coagulase-negative Staphylococci. J Clin Microbiol
33, 1060-1063.
Kloos, W.E., Bannerman, T.L. (1994)
. Update on clinical significance of coagulase-negative
staphylococci. Clin Microbiol Rev
7
, 117-140.
Kontos, F., Petinaki, E., Spiliopoulou, I., Maniati, M., Maniatis, A.N. (2003).
Evaluation of a
novel method base don PCR Restriction Fragment Length Polymorphism Analysis of the tuf gene
for the identification of Staphylococcus species. J Microbiol Methods 55, 465-469.
Lindsay, J.A., Riley, T.V. (1991).
Susceptibility to desferrioxamine: a new test for the
identification of Staphylococcus epidermidis. J Med Microbiol
35
, 45-48.
Lindsay, J.A., Aravena-Román, M.A., Riley, T.V. (1993).
Identification of
Staphylococcus epidermidis and Staphylococcus hominis from blood cultures by testing
susceptibility to desferrioxamine. Eur J Clin Microbiol Infect Dis 12, 127-131.
88
Martineau, F., Picardi, F.J., Roy, P.H., Ouellette, M., Bergeron, M.G. (1996). Species-specific
and ubiquitous DNA-based assays for rapid identification of Staphylococcus epidermidis. J Clin
Microbiol
34
, 2888-2893.
Martineau, F., Picardi, F.J.,Ke, D., Paradis, S., Roy, P.H., Ouellette, M., Bergeron, M.G.
(2001).
Development of a PCR assay for identification of Staphylococci at genus and species levels.
J Clin Microbiol 39, 2541-2547.
Monsen, T., Rönnmark, K.M., Olofsson, C., Wiström, J. (1998).
An Inexpensive and Reliable
Method for Routine Identification of Staphylococcal Species. Eur J Clin Microbiol Infect Dis
17
,
327-335.
Mulder, J.G. (1995).
A simple and inexpensive method for the identification of Staphylococcus
epidermidis and Staphylococcus hominis. Eur J Clin Microbiol Infect Dis 14, 1052-1056.
Rosco Diatabs Diagnostic Tablets for identification
(2000).
Guideline A/S Rosco.
Taastrupgaardsvej 3 DK 2630, Taastrup p. 17-31.
Sejas, L.M., Silbert, S., Reis, A.O., Sader, H.S. (2003).
Avaliação da qualidade dos discos com
antimicrobianos para testes de disco-difusão disponíveis comercialmente no Brasil. Jornal
Brasileiro de Patologia e Medicina Laboratorial 39, 27-35.
Spanu, T., Sanguinetti, M., Ciccaglione, D’Inzeo, T., Romano, L., Leone, F., Fadda, G. (2003).
Use of the Vitek 2 system for rapid identification of clinical isolates of staphylococci from
bloodstream infections. J Clin Microbiol
41
, 4259-4263.
Vuong, C., Otto, M. (2002).
Staphylococcus epidermidis infections (review). Microbes and
Infection 4, 481-489.
Wieser, M., Busse, H.-J. (2000).
Rapid identification of Stphylococcus epidermidis. International
Journal of Systematic and Evolutionary Microbiology
50
, 1087-1093.
Ziebuhr, W., Hennig, S., Eckart, M., Kränzler, H., Batzilla, C., Kozitskaya, S. (2006).
Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a
pathogen. Antimicrobial Agents 285, 514-520.
89
T Table 1: Results in the biochemical tests of 320 isolates of CoNS susceptible to desferrioxamine.
Species
reaction
mannitol maltose mannose sucrose trehalose lactose cellobiose urea ornithine alkaline p*
S. epidermidis pos 1 234 74 237 7 222 0 238 34 226
n= 238 neg 237 4 164 1 231 16 238 0 204 12
S. hominis pos 2 73 5 73 45 63 0 70 2 9
n= 73 neg 71 0 68 0 28 10 73 3 71 64
other CoNS pos 2 9 7 9 6 9 0 7 4 3
n= 9 neg 7 0 2 0 3 0 9 2 5 6
*alkaline phosphatase
Table 2: Prevalence of S. epidermidis
Identification Method
N / nº total %
Bannerman 238 / 490 48.6
Proposed 239 / 490 48.8
tuf 241 / 490 49.2
Table 3: Behavior of species regarding the desferrioxamine disk (100 µg)
Inhibition zone (in mm)
Species 19-24 25-29 30-35 36-41
S. epidermidis 3 63 158 17
S. hominis 2 21 48 6
S. warneri 2 0 0 0
Total = 320 7 84 206 23
Table 4: Comparison of the two phenotypic methods with the genotypic.
sensitivity specificity PPV*
Bannerman's method 96.3% 92.4% 97.5%
Proposed method 98.3% 97.5% 99.2%
* predictive positive value
90
Figure 1: Susceptibility test with both disks for identification of S. epidermidis
.
91
ANEXO II________________________________________________________________
92
Evaluation of oxacillin and cefoxitin disks for detection of resistance in
Coagulase Negative Staphylococci
Ana Lúcia Souza Antunes¹ ³
Carina Secchi¹
Keli Cristine Reiter³
Leandro Reus Rodrigues Perez¹
Ana Lúcia Peixoto de Freitas³
Pedro Alves d’Azevedo¹ ²
¹ Programa de Pós-Graduação Ciências Médicas, Fundação Faculdade Federal de Ciências
Médicas de Porto Alegre, RS, Brasil.
² Departmento de Microbiologia e Parasitologia, Fundação Faculdade Federal de Ciências
Médicas de Porto Alegre, RS, Brasil.
³ Departmento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande
do Sul, RS, Brasil.
Submetido para publicação no jornal “
Memórias do Instituto Oswaldo Cruz
”.
Corresponding author:
Ana Lúcia Souza Antunes
Faculdade de Farmácia – UFRGS
Av. Ipiranga 2752, sala 302, Porto Alegre, RS, Brasil, 90610-000
Telefone: (+55) 51 33165412 Fax: (+55) 51 33165437
93
Abstract
Coagulase-negative
Staphylococcus
spp was considered nonpathogenic until the emergence
of its multiresistance and the demonstration of their participation as infectious agents. In
Brazil, oxacillin resistance may be present in over 80% of isolates, thus increasing the use
of vancomycin. Recently the Clinical and Laboratory Standards Institute (CLSI)
standardized a new method to predict oxacillin resistance in the Staphylococcus genus. The
aim of this study was to evaluate the variability among commercial disks of oxacillin (1µg)
and cefoxitin (30µg) widely used in clinical laboratories of microbiology, using oxacillin
MIC as the reference standard. Polymerase Chain Reaction (PCR) assays for the
mecA
gene
were performed in isolates with discrepant results. The use of oxacillin and cefoxitin disks
simultaneously allowed the detection of important differences, particularly, in less frequent
species such as
S. cohnii, S. warneri
and
S. sciuri
, where false resistance was observed. The
cefoxitin disk of brand 2 showed good correlation with the
mecA
gene and oxacillin MIC
(97.8%). One of the critical points in the diffusion disk test is the quality of the disks. The
use of better quality disks, according to CLSI guidelines, associated with molecular
methods lead to results that can define the best antibiotic therapy.
Keywords: CoNS,
mecA
gene, methicillin resistance, cefoxitin, susceptibility tests
94
Introduction
Coagulase-negative
Staphylococcus
spp (CoNS) were considered nonpathogenic
until recently, when the implication on nosocomial infections and the emergence of
multiresistance changed this picture (Beekmann et al. 2003). Hospital infections caused by
these microorganisms are responsible for high morbidity and mortality rates worldwide.
The use of empirical treatment has not contributed to reduce these infections (Frigatto et al.
2005). The emergence of CoNS populations with heterogeneous resistance to oxacillin led
to a great difficulty to detect then in clinical laboratories (Cauwelier et al. 2004). In Brazil,
oxacillin resistance may be present in over 80% of isolates in some health institutions
(Sader et al. 2001). On this account, vancomycin has been widely used in treating these
infections and it is a major cause for the emergence of glycopeptide-resistant isolates
(Oliveira et al. 2001, Nunes et al. 2006).
Recently, CLSI (2006) standardized a new method to predict resistance in
Staphylococcus
spp mediated by the
mecA
gene, through diffusion test with cefoxitin disk (30µg). Others
studies indicate that this is the best phenotypic test to predict resistance to beta-lactam
agents among CoNS (Felten et al. 2002, Pottumarthy et al. 2005). Despite the CLSI
guidelines, the detection of oxacillin resistance through phenotypic methods remains a
challenge for clinical laboratories of microbiology (Sejas et al. 2003). Several errors was
observed among the laboratories that participated in the Antimicrobial Surveillance
Program (SENTRY), suggesting non-observance of the interpretation criteria currently
recommended (Mendes et al. 2003). The quality of the antimicrobial disks affected the
results, particularly failing in detect heteroresistance, what is especially importat in the case
of oxacillin and cefoxitin, which predict susceptibility to a large group of antimicrobial
agents (Sejas et al. 2003).
The aim of this study was to evaluate two brands of oxacillin (1µg) and cefoxitin
(30µg) disks, commonly used in clinical laboratories of microbiology.
Materials and methods
1-Isolates - CoNS isolates from blood cultures, from the collection of the
Laboratory of Gram-positive Cocci of the FFFCMPA, where were maintained in “Skim-
Milk” (Difco, Detrot) at -20°C. Strains of
Staphylococcus aureus
ATCC 25923 (susceptible
95
to oxacillin and penicillin) and ATCC 33591 (resistant to oxacillin and penicillin) were
used as quality control.
2-Bacterial identification - The species identification was performed with the
combination of a group of laboratory tests: colony morphology; oxygen requirement;
susceptibility to novobiocin (Oxoid, UK), fosfomycin (Oxoid, UK), and desferrioxamine
(Desferal, Ciba Geigy, Switzerland); enzymatic activity of coagulase (Laborclin, Brazil),
catalase, alkaline phosphatase (phenolphthalein diphosphate, Sigma-Aldrich, Germany),
ornithine decarboxilase (Oxoid,UK), urease (Oxoid,UK) and PYR (pyrrolidinyl
arylamidase, Probac, Brazil); hemolysis production in agar supplemented with sheep blood
at 5% (Trypticasein agar, Oxoid,UK); and acid production from carbohydrates: trehalose
(Sigma-Aldrich, Germany), mannitol (Nuclear, Brazil), mannose (Vetec, Brasil), sucrose
(Vetec, Brasil), maltose (Sigma-Aldrich, Germany), lactose (Vetec, Brasil), and cellobiose
(Sigma-Aldrich, Germany).
3-Susceptibility test -
Oxacillin (1µg) and cefoxitin (30µg) disks from two different
brands widely used in clinical microbiology laboratories were tested. Strains were
cultivated in agar supplemented with sheep blood at 5% (Trypticasein agar - Oxoid, UK)
for 24h and a 0.5 Mcfarland standard suspension was prepared for each sample. The disks
diffusion tests were performed by using Mueller Hinton (Oxoid, UK) agar plates. The disks
were distributed maintaining a distance of 30 mm from one to another and of 15 mm from
the plate border. The diameters of the inhibition zones were interpreted according to the
criteria recommended by the CLSI. Mueller-Hinton agar plates (Oxoid, UK) supplemented
wiyh 2% NaCl and concentrations of 0.125 to 4 µg of oxacillin (Sigma Chemical
Company, St. Louis, MO) was used for determination of MIC for oxacillin. Steers
replicator was used to inoculate the plates that were incubated at 35ºC and screened after
24h. The presence of
mecA
gene was checked through the technique of Polymerase Chain
Reaction (PCR), according to Bignardi (1996). MRSA-slidex Latex test (bioMèrieux,
Marcy-I’Étoile, France) according to Chambers (1997) was also performed to verify
discrepant results between the disk diffusion and the MIC.
Results
A total of 302 coagulase-negative
Staphylococcus
spp. isolates were studied. Table
96
1 shows the distribution and resistance in each species and the table 2 shows the
percentages of oxacillin and cefoxitin resistance observed with the disks of different brands
and the percentage of oxacillin resistance MIC.
The determination of oxacillin MIC showed results that are consistent with
resistance in 91.7% (277/302) isolates. Such resistance was detected by oxacillin disk of
brand 1 in 239 cases (79.1%) and of brand 2 in 273 cases (90.4%). Using cefoxitin disks,
we observed that brand 1 showed similar results in only 149 cases (49.3%) and brand 2 in
264 cases (87.4%). The disks of brand 2 showed good correspondence between oxacillin
MIC and disk diffusion tests with both substrates (98.5% for the oxacillin disk and 97.8%
for the cefoxitin disk). However, brand 1 showed correspondence for oxacillin in 86.3% of
the isolates and in only 55.0% for cefoxitin.
Disks of oxacillin and/or cefoxitin of brand 2 failed in 13 situations, 11 cases with
MIC resistant e two susceptibles. To elucidate these results, we performed MRSA Latex
test and search the presence of
mecA
gene by PCR (Figure 1). Both tests were positive in 4
cases and negative in the other 9. Almost half of the cases (6/13) were identified as
S. sciuri
(Table 3).
Among isolates with oxacillin MIC and
mecA
gene not concordant, we observed
concordance with gene and disks of oxacillin in three cases and disks of cefoxitin in eigth
out of nine cases (Table 3).
Discussion
Detection of oxacillin resitance among CoNS isolates is dificult, mainly because it
is often heterogeneous (Chambers 1997). To overcome this problem, different methods
have been used. Several studies have demonstrated that PCR is a sensitive method;
however, most laboratories are not in a position to perform the test. Phenotypically, none of
the individual tests or combinations were able to detect all methicillin-resistant strains.
Due to the emergence of vancomycin resitance, used in oxacillin resistant isolates, it
is essencial that clinical laboratories can distinguish between oxacillin-susceptible and
oxacillin-resistant CoNS strain. Recently the CLSI advises the use of disks of cefoxitin as a
better predictor of
mecA
gene-mediated resistance in staphylococci species. Cefoxitin is a
stronger inducer of the expression of penicillin-binding protein 2a (PBP2a). Several
97
investigators reported that cefoxitin disk diffusion tests correlate better with the presence of
mecA than do the results of disk diffusion tests using oxacillin. Our results highlight the
importance of testing the oxacillin disks concomitant with cefoxitin disks of excellent
quality, and to make PCR when there is discrepancy.
In disk diffusion tests, the main variable not directly controled by the laboratory is
the quality of the disk. Since disk diffusion test with cefoxitin in considered to be a good
test to discriminate between resistant and susceptible isolates, laboratory is dependent of
the quality of the disk, and so, it is essencial to recopgnize that not ever they are confiable.
The most frequent CoNS species found was
S. epidermidis
, with 157 isolates (52%),
followed by
S. hominis
(56 isolates; 18.5%),
S. haemolyticus
(52 isolates; 17.2%),
S. sciuri
(10 isolates; 3.3%) and
S. warneri
(9 isolates; 3%); other species were present at a lower
rate. Concerning to oxacillin MIC, the percentage of resistance in the 3 prevalent species
was very similar, about 90%.
It is important to point out that oxacillin tests were similar with both commercial
disks, while cefoxitin results showed a great difference between the two brands. Resistance
results of oxacillin MIC and diffusion were concordant in 86.3% with oxacillin disks, and
54.2% with cefoxitin, showing a great variability among cefoxitin commercial disks.
Considering that the treatment of infections caused by
Staphylococcus
genus depends
primarily on determining whether the bacteria is a methicillin resistant
Staphylococcus
spp
(MRS) or not (Chandran & Rennie 2005), and that this is determined by the result of
susceptibility to oxacillin and cefoxitin, the high variability of the tests may lead to an
inadequate therapy. A study in the United States reported a mortality rate of 17.5% in adult
patients with bacteraemia, while patients receiving adequate antimicrobial therapy had a
lower mortality rate (Weinstein et al. 1997). False-positive resistance results account for
increased costs regarding additional clinical work, request of more cultures, and
unnecessary use of antimicrobials like vancomycin (Chandran & Rennie 2005).
The brands of the disks used for the susceptibility tests in this study are among those
most frequently used in the microbiology laboratories. It was already pointed that brand 1 is
cheaper but less reproductible (Sejas et al. 2003), while brand 2 is significantly more
expensive but with a better performance (Skov et al. 2005).
Most of the isolates (85.7%) in which there were similar results among all methods,
98
presented a high oxacillin MIC ( 4 µg/ml), making its detection easier than for isolates
with MIC values close to susceptibility levels. However, even in isolates with a high MIC
of 2 µg/ml, there was discrepancy: among 253 isolates, the oxacillin disk of brand 1
displayed less sensitivity (86.6%), than brand 2 (98.8%).The discrepant results were much
greater with cefoxitin disks, as brand 1 failed to detect 96 (34.7%) cases of resistance
detected by brand 2.
In cases of resistance with MIC 0.5 µg/ml (18 cases), oxacillin disk of brand 1
detected 55.5% of the cases, while brand 2 detected all cases. Cefoxitin disks showed a
greater discrepancy between the brands; even considering the superior results of brand 2
had in comparison to brand 1 (38% greater).This percentage is quite smaller than expected.
There was a total agreement between MIC results and disk test of brand 2 in
susceptible isolates. On the other hand, with brand 1 there were major discrepancies of false
resistance: 40% with oxacillin disks and 20% with cefoxitin disks. Even if these results do
not lead to a treatment failure, the unnecessary use of drugs other than the beta-lactam
antimicrobials, may lead to a increase of resistance.
In concordance to CLSI guidelines and the results of other studies (Swenson &
Tenover 2005, CLSI 2006), the
mecA
gene was not detected in seven isolates resistant to
oxacillin by the disk diffusion test. The cefoxitin disk showed greater sensitivity in these
isolates, an evidence of a greater correlation of this substrate and the presence of the gene.
Most of these isolates were of
S. sciuri
.
As the
mecA
gene is detected in most of the MRS, this is considered the best method
of resistance detection, although discrepancies have already been reported, particularly in
CoNS isolates (Swenson & Tenover 2005, Darini & Palazzo 2006). Isolates with absence
of the
mecA
gene and MIC for oxacillin >0.5 ug/ml had controversial results in disk
diffusion tests. For such uncommon staphylococcal
species as
S. cohnii cohnii
and
S.
warneri
, this is not a surprise (Darini & Palazzo 2006, Hussain et al. 2000). Oxacillin
resistance in the absence of the
mecA
gene may be due to overproduction or overexpression
of penicillinase, or alteration of other PBPs (Caierão et al. 2004).
The disk diffusion test proposed by Kirby-Bauer in 1966 is one of the most popular
methods used in brazilian clinical laboratories. In this test the quality of the disks is crucial
(Sejas et al. 2003). Our study indicated that the use disks of good quality (brand 2) and
99
antimicrobial susceptibility test according to CLSI led to a reliable result, although in a few
cases only one of the disks had provided the adequate response.
In our study, the discrepancy of MIC and oxacillin disks was detected in less
frequent CoNS, showing that these species present a certain difficulty to express resistance
to oxacillin, as yet dercribed (Hussain et al. 2000; Skov et al. 2005).
Also, Frigatto et al. (2005) obtained discrepant results between oxacillin and
cefoxitin resistance using the disk diffusion method among S. epidermidis. They
emphasized the importance of testing both disks concomitantly and using molecular
techniques for confirmation of results. In our study, cefoxitin disks (brand 2) showed a
better concordance with presence of
mecA
gene (PCR) than oxacillin disks, hence the
importance of performing tests using both disks.
Although no technique alone, shows 100% of sensitivity and specificity to detect
oxacillin resistance among CoNS, the combination of disk diffusion and oxacillin MIC can
reduce errors in the detection of such resistance and while molecular techniques are suitable
for confirmation of results (Skov et al. 2005).
Microbiology laboratories require rapid, sensitive and specific techniques to
perform susceptibility tests. In the last decades, new molecular methods have been
developed and introduced in clinical laboratories of microbiology to improve the credibility
of these tests. However, for most clinical laboratories these techniques are still very
expensive and susceptibility by disk-diffusion tests is the most common method used. To
ensure the phenotypic results that will guide the antimicrobial therapy we must use
antibiogram disks of excellent quality.
Acknowledgments
The authors wish to thank the technical team of the Laboratory of Gram-positive
Cocci of the FFFCMPA. This study was supported by the following agencies: Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPQ), Faculdade de Farmácia da
Universidade Federal do Rio Grande do Sul (UFRGS), and Fundação Faculdade Federal de
Ciências Médicas de Porto Alegre (FFFCMPA).
100
References:
Beekmann SE, Diekema DJ, Chapin KC 2003. "Effects of rapid detection of bloodstream
infections on length of hospitalization and hospital charges.
Journal of Clinical
Microbiology
41(7): 3119-25.
Bignardi GE, Woodford N, Chapman A, Johnson AP, Speller DC 1996. Detection of the
mecA
gene and phenotypic detection of resistance in
Staphylococcus aureus
isolates
with borderline or low-level methicillin resistance.
Journal Antimicrobial
Chemotherapy
37: 53-63.
Caierão J, Musskopf M, Superti S, Roesch E, Dias CG, d'Azevedo PA 2004. Evaluation of
phenotypic methods for methicillin resistance characterization in coagulase-negative
Staphylococci (CNS).
Journal of Medical Microbiology
53: 1195-1199.
Cauwelier B, Gordts B, Descheemaecker, Van Landuyt H 2004. Evaluation of a disk
diffusion method with cefoxitin (30µg) for detection of methicillin-resistant
Staphylococcus aureus.
European Journal of Clinical Microbiology
6(5): 389-92.
Chambers HF 1997. Methicillin resistance in Staphylococci: molecular and biochemical
basis and clinical implications.
Clinical Microbiology Rev
10: 781-791.
Chandran AU, Rennie R 2005. Routine antimicrobial susceptibility testing of coagulase-
negative Staphylococci isolated from blood cultures: is it necessary?
Clinical
Microbiology and Infectious Diseases
11(12): 1037-40.
Clinical and Laboratory Standards Institute (CLSI/NCCLS) 2006. Performance Standards
for Antimicrobial Susceptibility Testing - Sixteenth Informational Supplement M1000-
S16. S, Wayne, PA, USA.
Darini ALC, Palazzo ICV 2006. Evaluation of methods for detecting oxacillin resistance in
coagulase-negative Staphylococci
including cefoxitin disc diffusion.
Federation of
European Microbiological Societies
257: 299-305.
Felten A, Grandry B, Lagrange PH, Casin I 2002. Evaluation of three techniques for
detection of low-level methicillin-resistant
Staphylococcus aureus
(MRSA): a Disk
Diffusion Method with cefoxitin and moxalactam the Vitek 2 System, and the MRSA-
Screen Látex Agglutination Test.
Journal of Clinical Microbiology
40(8): 2766-2771.
Frigatto EAM, Machado AMO, Pignatari ACC, Gales AC 2005. Is the cefoxitin disk test
reliable enough to detect oxacillin resistance in coagulase-negative Staphylococci?
Journal of Clinical Microbiology
43: 2028-2029.
Mendes ER, Reis AO, Gales AC, Jones RN, Sader HS 2003. Ability of Latin America
laboratories to detect antimicrobial resistance patterns: experience of the SENTRY
Antimicrobial Surveillance Program (1997-2000).
Brazilian Journal Infectious
Diseases
7(5): 282-9.
101
Hussain Z, Stoakes L, Massey V, Diagre D, Fitzgerald V, Sayed S, Lannigan R 2000.
Correlation of oxacillin MIC with
mecA
carriage in coagulase-negative Staphylococci.
Journal of Clinical Microbiology
38(2): 752-754.
Nunes APF, Teixeira LM, Iorio NLP, Bastos CCR, Fonseca LS, Souto-Padrón T, Santos
KRN 2006. Heterogeneous resistance to vancomycin in
Staphyloccus epidermidis
,
Staphylococcus haemolyticus
and
Staphylococcus warneri
clinical strains:
characterization of glycopeptide susceptibility profiles and cell wall thickening.
International Journal of Antimicrobial Agents
27: 307-315.
Oliveira GA, Dell'Aquila AM, Masiero RL, Levy CE, Gomes MS, Cui L, Hiramatsu K,
Mamizuka EM 2001. Isolation in Brazil of nosocomial
Staphylococcus
aureus
with
reduced susceptibility to vancomycin.
Infection Control and Hospital Epidemiology
22(7): 443-448.
Pottumarthy S, Fritsche TR, Jones RN 2005. Evaluation of alternative disk diffusion
methods for detecting
mecA
-mediated oxacillin resistance in an international collection
of Staphylococci: validation report from the SENTRY Antimicrobial Surveillance
Program.
Diagnostic Microbiology and Infectious Disease
51(1): 57-62.
Sader HS, Gales AC, Pfaller MA, Mendes RE, Zocolli C, Barth AL, Jones RN 2001.
Pathogen frequency and resistance patterns in Brazilian hospitals: summary of results
from three years of the SENTRY Antimicrobial Surveillance Program.
Brazilian
Journal Infectious Diseases
5(4): 200-14.
Sejas LM, Silbert S, Reis AO, Sader HS 2003. Avaliação da qualidade dos discos com
antimicrobianos para testes de disco-difusão disponíveis comercialmente no Brasil.
Jornal Brasileiro de Patologia e Medicina Laboratorial
39(1): 27-35.
Skov R, Smyth R, Larsen AR, Frimodt-Møller N, Kahlmeter G 2005. Evaluation of
cefoxitin 5 and 10µg discs for the detection of methicillin resistance in Staphylococci.
Journal of Antimicrobial Chemotherapy
55: 157-161.
Swenson JM, Tenover FC 2005. Results of disk diffusion testing with cefoxitin correlate
with presence of
mecA
in
Staphylococcus
spp.
Journal of Clinical Microbiology
43(8):
3818-3823.
Weinstein MP, Towns ML, Quartey SM, Mirret S, Reimer LG, Parmigiani G, Reller LB
1997. The clinical significance of positive blood cultures in the 1990s: a prospective
comprehensive evaluation of the microbiology, epidemiology, and outcome of
bacteremia and fungemia in adults.
Clinical Infectious Diseases
24(4): 584-602.
102
Table 1: Prevalence and oxacillin MIC for each Staphylococcus spp
Total % resistance
Species n % (MIC)
S.epidermidis 157 52 94.2
S.hominis 56 18.5 94.3
S.haemolyticus 52 17.2 94.1
S.saprophyticus 6 2.0 83.3
S.sciuri 10 3.3 90.0
S.simulans 3 1.0 66.6
S.warneri 9 3.0 75.0
S.xylosus 2 0.7 100
S.capitis capitis 3 1.0 66.6
S.capitis ureolyticus 1 0.3 0.0
S.cohnii cohnii 2 0.7 50.0
S.cohnii urealyticum 1 0.3 100
Table 2: Resistance of coagulase-negative Staphylococcus spp
Resistance
Tested disk n / total %
Oxacillin, brand 1 239 / 302 79.1
Oxacillin, brand 2 273 / 302 90.4
Cefoxitin, brand 1 149 / 302 49.3
Cefoxitin, brand 2 264 / 302 87.4
Oxacillin MIC 277 / 302 91.7
Table 3: Results of susceptibility tests with brand 2 disks, discordant from oxacillin MIC
Isolates Gene MIC Oxacillin Cefoxitin
Species
mecA µg/ml
708 positive >4 S R
S.epidermidis
328 positive 0.5 S R
S.haemolyticus
605 positive 1.0 R S
S.haemolyticus
244 positive 0.25 R S
S.saprophyticus
322 negative >4 S S
S.epidermidis
226 negative 0.5 R S
S.cohnii cohnii
327 negative 0.5 R S
S.warneri
400 negative 0.5 S S
S.sciuri
201 negative 0.5 R S
S.sciuri
216 negative 0.5 R S
S.sciuri
202 negative 1.0 R S
S.sciuri
235 negative 1.0 R S
S.sciuri
229 negative 0.25 R S
S.sciuri
R = resistant; S= susceptible
103
Figure 1: PCR detection of
mecA
gene of 4 isolates with discrepancy regarding oxacillin
disk. Lane 1-(MW) = molecular size markers (λ 100 bp); lane 2-(CP) = positive controls:
310-bp band obtained with DNA from
S. aureus
reference strain ATCC 33591; isolates:
322 – absence of band with DNA from
S. epidermidis
; 328 - 310-bp band obtained with
DNA from
S. haemolyticus
; 400- absence of band with DNA from
S. sciuri
; 708 - 310-bp
band obtained with DNA from
S. epidermidis.
M
M
W
W
C
C
P
P
3
3
2
2
2
2
3
3
2
2
8
8
4
4
0
0
0
0
7
7
0
0
8
8
104
ANEXO III_______________________________________________________________
105
Detection of biofilm production in Staphylococcus spp. isolates by the Congo red agar
test
Ana Lúcia Souza Antunes *’ **
Leandro Reus Rodrigues Perez *
Carina Secchi *
Keli Cristine Reiter **
Letícia Filippon **
Paula Eidt Fornari **
Ana Lúcia Peixoto de Freitas **
Pedro Alves d’Azevedo *
* Programa de Pos Graduação em Ciências Médicas e Departamento de Microbiologia
e Parasitologia, Fundação Faculdade Federal de Ciências Médicas de Porto Alegre, RS,
Brasil.
** Departmento de Análises, Faculdade de Farmácia, Universidade Federal do Rio
Grande do Sul, Porto Alegre, Brasil.
Financial support: CAPES, CNPQ, UFRGS, FFFCMPA
Submetido para publicação no “
Memórias do Instituto Oswaldo Cruz
”.
Corresponding author:
Ana Lúcia Souza Antunes
Faculdade de Farmácia – UFRGS
Av. Ipiranga, 2752,sala 302, Porto Alegre, RS, Brasil, 90610-000
Telefone:(+55) 51 33165412 Fax: (+55) 51 33165437
106
Abstract
Staphylococci
are an increasing cause of bloodstream infections associated with medical
devices. The formation of biofilm, or slime, on the surface of biomaterials, required for the
establishment of infection, has also led to an increase in antimicrobial resistance. This study
evaluated the formation of biofilm in 28 isolates obtained from catheters and blood cultures
using evaluation of the phenotypic appearance of colonies in Congo red agar (CRA).
Overall, sixteen isolates (57.2%) were considered as biofilm producers. Among
S. aureus
isolates,
43.8% were considered as biofilm producers (7/16), while 12
S. epidermidis
,
8
(66.6%) were positive. Greater antimicrobial resistance was observed among biofilm-
producing
S. epidermidis
isolates, differently from
S. aureus
, in which producers of this
virulence factor showed less resistance than nonproducers. The use of CRA proved to be
practical and easily to perform in the Laboratory of Clinical Microbiology. However, a
larger number of isolates must be studied to prove its effectiveness and thus be used in
laboratory routines.
Keywords: biofilm production,
Staphylococcus
spp, implant materials, antimicrobial
resistance.
107
Introduction
Staphylococcus aureus
and
Staphylococcus epidermidis
, are important causes of
infections associated with catheters and other medical devices, such as articular prosthesis,
cardiac valves, pacemakers, contact lenses and intrauterine devices (O'Gara & Humphreys
2001,Arciola et al. 2002, Curtin et al. 2003).
S. epidermidis
is one of the most frequently agent isolated among the group of
coagulase-negative Staphylococcus (CoNS). This group is distinguished from S. aureus by
its inability to produce coagulase. Together with other staphylococci,
S. epidermidis
are
normal inhabitants of human skin and mucous membranes (O'Gara & Humphreys 2001,
Arciola et al. 2002, Donlan & Costerton 2002, Vuong & Otto 2002). The port of entry of
these microorganisms into the human body usually is an intravascular catheter (Vuong &
Otto 2002).
S. epidermidis
become one of the major infectious agents in
immunocompromised patients.
Microorganism adherence and fixation to the surface of biomaterials are the first
step for the development of device-related infections. Several mechanisms are involved in
bacterial adhesion, and the production of a natural polysaccharide extracellular substance,
the so-called biofilm (or slime), seems to play an important role. This substance mediates
adhesion to the surface acting as a matrix and allowing the bacterial cells to agglomerate
into biofilm multilayer, thus rendering the bacteria less accessible to the defense system and
to antimicrobials (Arciola et al. 2002, Hume et al. 2004). Biofilm production is frequently
observed in clinical isolates of
S. aureus
and coagulase-negative
s
taphylococci, especially
S. epidermidis
, isolated from catheter-associated infections (Arciola et al. 2001, 2002) .
Molecular techniques, as polymerase chain reaction (PCR), provide direct evidence
for the genetic basis of biofilm production. The synthesis of the capsular polysaccharide is
mediated by the
ica
operon
. On activation of this
operon,
a polysaccharide intercellular
adhesin (PIA) is synthesized, and this supports cell-to-cell bacterial contacts by means of a
multilayered biofilm (Arciola et al. 2001, 2002).
Treatment of nosocomial infections associated to
S. aureus
and
S. epidermidis
is
usually complex, due to the increased resistance against antimicrobials and the
impermeable barrier created by biofilm formation. In addition to the low diffusion or failure
of the antimicrobial to penetrate, the resistance to antimicrobials may be associated with
108
physiological alterations and low bacterial growth within the biofilm (Donlan & Costerton
2002, Vuong & Otto 2002, Curtin et al. 2003). The prevalence of methicillin-resistant
S. aureus
(MRSA) and the emergence of vancomycin-resistant isolates make treatment of
infections related to medical devices even more difficult. Oxacillin resistance encoded by
the
mecA
gene is disseminated in the
Staphylococcus
spp. As the
S. aureus
and
S. epidermidis
resistance profile are similar, so it is assumed that resistance occurring in
one species can rapidly be transferred to another (Vuong & Otto 2002). Failure of treatment
usually results in the need of device replacement, increasing risk to the patient’s health, and
also development of bacterial resistance (Monzon et al. 2002).
The most frequently test used to observe biofilm production in the laboratory of
clinical microbiology is the Congo red agar (CRA), as described by Freeman et al. (1989).
The direct analysis of the colonies in the surface of the CRA allow the recognition of
biofilm-producing (characterized by black colonies on the red agar) and non-producing
(rose/red colonies) (Freeman et al. 1989). A comparative study between the CRA test and
presence of gene
ica
by PCR technique, demonstrated concordance between both methods,
showing that the phenotypic analysis of colonies may be a reliable test that can be used
routinely in microbiology laboratories (Arciola et al. 2002).
Considering the importance of
Staphylococcus
species in hospital infections and the
importance to determine the ability of produce biofilm, this study evaluated a practical
method using the CRA, testing isolates from catheters and blood cultures. In addition,
resistance rate of these isolates were determined through diffusion disk testing, as well as
their relationship to biofilm production.
Materials and methods
1- Bacterial isolates - A total of 28 isolates were analyzed, 16 of
S. aureus
and 12 of
S. epidermidis
, isolated from catheter and blood cultures obtained from patients
hospitalized in two institutions: Hospital Mãe de Deus and Hospital de Clínicas of Porto
Alegre, south of Brazil, from August to September 2005. The identification was made by
acid production from carbohydrates, and susceptibility to desferrioxamine along with
classical tests (Monsen et al. 1998, Kloos & Bannerman 1999).
109
2- Characterization of the ability to produce biofilm - Production of biofilm from all
strains was studied by culturing each isolate in CRA (Oxoid, Basingstoke, UK). CRA
plates were prepared adding 0.8 g of CRA and 36 g of sucrose (both from Sigma, Missouri,
US) to 1l of agar trypticaseina (Oxoid, Basingstoke, UK) according by Arciola et al.
(2002). After the inoculation of a pure culture, the plates were incubated for 24h at 35ºC,
and then overnight at room temperature. A four-color scale ranging from black to red was
used. Black (B) colonies were considered as biofilm-producing, while almost black (AB)
colors were considered as indicative of a weak biofilm production activity. Conversely, red
(R) to bordeaux (BR) colonies were taken as unable to produce this virulence factor.
S. epidermidis
ATCC 35984 was used as positive control of CRA and
S.
epidermidis
ATCC 12228 was used as negative control.
3- Antimicrobial susceptibility test - The susceptibility to 5 antimicrobial agents,
including vancomycin 30
µ
g, oxacillin 1
µ
g, linezolide 30
µ
g, gentamicin 10
µ
g, and
rifampicin 5
µ
g disks (Oxoid), was determined by the disk diffusion method according to
the guidelines of the Clinical and Laboratory Standards Institute (CLSI
-
2005),
S. aureus
ATCC25923 was used as a control.
Results
Phenotypic detection of biofilm production by the CRA test - The phenotypic
production of biofilm in all isolates of the study was analyzed through observation of
colonial morphology in CRA. Definition of biofilm production was considered by
observation of the color of the colony at the end of the period of incubation (Table I).
Overall, 16 isolates (16/28) were considered as biofilm producers: 12 strong (B) and 4weak
(AB). Analyzing staphylococcal species alone, we find that among the 16
S. aureus
isolates
8 were considered as producers, and among the S. epidermidis 8 were considered
producers. Among the patients with
S. aureus
biofilm producers, five (5/8) were using
catheter in the moment of the culture, while in the 8 patients with
S. epidermidis
and
catheter we observed 6 positive cases.
Concerning to length of the incubation, we detect change in the category only in 3
cases, from nonproducer to producer. It is important to outstand, however, that the color
110
became more characteristic in other cases. We also observed that more clear results were
obtained when small amount of bacteria was used.
Antimicrobial resistance pattern - As shown in table II, the frequency of
antimicrobial resistance tested in this study depends on the antimicrobial agent. Gentamicin
resistance was greater than to other antimicrobials (78.6%). All isolates were susceptible to
vancomycin and linezolid. For oxacillin, the rate of resistance was 83.3% for
S. epidermidis
isolates and 68.8% for S. aureus.
Biofilm formation and antimicrobial resistance - Generally it was observed a greater
resistance among biofilm nonproducers. Analyzing species separately, we observed a
greater resistance among biofilm-producing
S. epidermidis
; among
S. aureus
, however,
greater resistance was detected among nonproducers of this virulence factor (Figure 1).
Discussion and Conclusions
Arciola et al. (2002) described a six-color scale to classify CRA colonies, using the
categories "very black" and "very red". In our study, however, only four colors were
considered because the differences were subtle and could lead to an inadequate
interpretation.
Concerning the technique, 48-h incubation was not found required, since in some
isolates there was alteration of the color. However, in only 3 cases this change implicates in
an alteration of category, while in the others there were only an intensification of
pigmentation. Another reading after additional 24h of incubation did not affect the results
of 20 samples, mostly being nonproducers. These situations are comparable to from those
reported as well by Arciola et al. (2001, 2002), where almost all samples were classified
after 24 hours, even that they had incubated until 72 h.
Most isolates (82%) were obtained from patients using catheters, and almost half of
them were biofilm producers. Several
S. aureus
isolates from patients using catheters were
not biofilm producers, in agreement with the reports that
S. epidermidis
is the most
frequently isolated pathogen in patients with infections associated with medical devices due
to biofilm production (Vuong & Otto 2002, Cafiso et al. 2004). On the other hand, these
data might change if the incubation time is extended (Arciola et al. 2001).
111
The oxacillin resistance rate (75%) is in agreement with the literature, since about
80% of nosocomial infections are resistant to oxacillin, a first choice antimicrobial against
microorganisms of
Staphylococcus
(Vuong & Otto 2002). At the same time, the
susceptibility to vancomycin and linezolid agrees with studies reporting that these
antimicrobials as effective against almost all
Staphylococcus spp
, despite their production
of biofilm (Monzon et al. 2001, Curtin et al. 2003, Caierao et al. 2004, Appelbaum &
Jacobs 2005) .
In
S. epidermidis
, resistance to the tested antimicrobials was greater in biofilm
producers, as expected. Silva et al. (2002) found no association between phenotypic
expression of biofilm based on CRA and any of the antimicrobial resistances examined, but
they reported the existence of a significant association between a series of antimicrobial
resistances (including oxacillin, rifampicin and ciprofloxacin) and the presence of
ica
genes. We found 50% of resistance to oxacillin among biofilm producers and 33% among
nonproducers in agreement to Arciola et al. (2005) that found rates of oxacillin resistance in
S. epidermidis
of 44% among biofilm producers and 34% among nonproducers. The same
authors observed a percentage of gentamicin resistance of 39% among biofilm producers
and 27% among nonproducers, similarly to our (figure I). Curtin et al (2003), also, reported
low effectiveness of gentamicin against biofilm in
S. epidermidis
isolated from catheters.
Studies on rifampicin resistance among biofilm-producing
S. epidermidis
have suggested
that the slow growth of the bacteria on the biofilm accounts for its protection against the
antimicrobial (Zheng & Stewart 2002). Despite the well-known tendency of rifampicin to
cause emergence of resistance, its efficacy against bacteria attached to biomaterials has
been clearly demonstrated. Nevertheless, there are many studies showing greater efficacy if
it is used together with other antimicrobial agents (Monzon et al. 2001, 2002). Authors
have suggested the existence of association could be indirect and mediated by the presence
of transposons. It is known that antimicrobial resistance genes are often associated to
transposons. Some transposons are flanked by insertion sequences such as IS256 that are
often associated with biofilm formation, the presence of the
icaADBC
operon, as well as
gentamicin and oxacillin resistance in the clinical strains (Arciola et al. 2005).
Surprisingly, biofilm-producing
S. aureus
isolates were more susceptible to the
tested antimicrobials than nonproducers, contradicting idea that microorganisms that form
112
biofilm would be more resistant to these drugs. Amorena et al. (1999) reported that in
S. aureus
gentamicin does not affect significantly the viability of biofilm cells. In our work,
gentamicin resistance among biofilm-producing
S. aureus
was relatively low (25%). In that
study, like ours, rifampicin showed a good response against biofilm-producing
S. aureus
isolates a result (Figure I).
There are some ideas about the mechanisms responsible for the increase of
antimicrobial resistance among biofilm producers. These include low penetration of the
antimicrobial; slow bacterial growth rate within mature biofilm because of limited
nutrients; slow growth as a general stress response initiated with the formation of biofilm;
and finally, induction of a phenotype characterized by an efflux pump and alteration of
protein membrane makeup. Specific antimicrobial characteristics, such as hydrophobic
properties, distribution, size, and water solubility could also affect their diffusion across the
biofilm matrix (Donlan & Costerton 2002, Monzon et al. 2002, Arciola et al. 2005) .
The importance of
S. epidermidis
infections is well-established and is probably
related to increased virulence due to biofilm production. Simple methods of detection of
biofilm are thus necessary. The use of CRA proved to be practical and easily to implement
at Clinical Microbiology Laboratories. However, studies using a larger number of isolates
must be carried out to demonstrate the best time of incubation of the plates and the
effectiveness use of this medium in laboratory routine.
Acknowledgments
To Dr. Kátia Regina Netto dos Santos of the Institute of Microbiology Professor
Paulo Góes of the Universidade Federal do Rio de Janeiro, Brazil, for their collaboration.
113
References
Amorena B, Gracia E, Monzón M, Leiva J, Oteiza C, Pérez M, Alabart
JL, Hernández-
Yago J 1999. Antibiotic susceptibility assay for
Staphylococcus aureus
in biofilms
developed
in vitro.
J Antimicrob Chemother
44: 43-55.
Appelbaum PC, Jacobs MR 2005. Recently approved and investigational antibiotics for
treatment of severe infections caused by Gram-positive bacteria.
Curr Opin Microbiol
8: 510-517.
Arciola CR, Baldassarri L, Montanaro L 2001. Presence of
icaA
and
icaD
genes and slime
production in a collection of staphylococcal strains from catheter-associated
infections.
J
Clin Microbiol
39: 2151-2156.
Arciola CR, Campoccia D, Gamberini S, Cervellati M, Donati E, Montanaro L 2002.
Detection of slime production by means of an optimised Congo red agar plate test
based on a colourimetric scale in
Staphylococcus epidermidis
clinical isolates
genotyped for
ica
locus
. Biomaterials
23: 4233-4239.
Arciola CR, Campoccia D, Gamberini S, Donati ME, Pirini V, Visai L, Speziale P,
Montanaro L 2005. Antibiotic resistance in exopolysaccharide-forming
Staphylococcus epidermidis
clinical isolates from orthopaedic implant infections.
Biomaterials
26: 6530-6535.
Cafiso V, Bertuccio T, Santagati M, Campanile F, Amicosante G, Perilli MG, Selan L,
Artini M, Nicoletti G, Stefani S 2004. Presence of the
ica
operon in clinical isolates of
Staphylococcus epidermidis
and its role in biofilm production.
Clin Microbiol Infect
10: 1081-1088.
Caierão J, Musskopf M, Superti S, Roesch E, Dias CG, d’Azevedo PA 2004. Evaluation of
phenotypic methods for methicillin resistance characterization in coagulase-negative
S
taphylococci
(CNS).
J Medical Microbiology
53: 1195-1199.
Clinical and Laboratory Standards Institute (CLSI) 2005. Performance Standards for
Antimicrobial Susceptibility Testing – Sixteenth Information Supplement M-S16.S 8ª
ed. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, USA, CLSI
2005.
Curtin J, Cormican M, Fleming G, Keelehan J, Colleran E 2003. Linezolid compared with
esperezolid, vancomycin, and gentamicin in an
in vitro
model of antimicrobial lock
therapy for
Staphylococcus epidermidis
central venous catheter-related biofilms
infections.
Antimicrob Agents Chemother
47 (10): 3145-3148.
Donlan RM, Costerton JW 2002. Biofilms: Survivel Mechanisms of Clinically Relevant
Microorganisms.
Clin Microbiol Rev
15 (2): 167-193.
114
Freeman DJ, Falkiner FR, Keane CT 1989. New method for detecting slime production by
coagulase-negative
staphylococci.
J Clin Pathol
42:872-874.
Hume EBH, Baveja J, Muir B, Schubert TL, Kumar N, Kjelleberg S, Griesser HJ, Thissen
H, Read R, Poole-Warren LA, Schindhelm K, Willcox MDP 2004. The control of
Staphylococcus
epidermidis
biofilm formation and in vivo infection rates by
covalently bound furanones.
Biomaterials
25: 5023-5030.
Kloos WE, Bannerman TL 1999.
Staphylococcus
and
Micrococcus
, In PR Murray, EJ
Baron, MA Pfaller, FC Tenover, RH Yolken (eds),Manual of Clinical Microbiology,
7
th
ed. American Society for Microbiology, Washington, p. 264-282.
Monsen T, Ronnmark M, Olofsson O, Wistrom J 1998. An inexpensive and reliable
method for routine identification of staphylococcal species.
Err J Clin Microbiol
17:
327-335.
Monzón M, Oteiza C, Leiva J, Amorena B 2001. Synergy of different antibiotic
combinations in biofilms of
Staphylococcus epidermidis
.
J Antimicrob Chemother
48:
793-801.
Monzón M, Oteiza C, Leiva J, Lamata M, Amorena B 2002. Biofilm testing of
Staphylococcus epidermidis
clinical isolates: low performance of vancomycin in
relation to other antibiotics.
Diagn Microbiol Infect Dis
44: 319-324.
O’Gara JP, Humphreys H 2001.
Staphylococcus
epidermidis
: importance and implications.
J Med Microbiol
50: 582-587.
Silva GD, Kantzanou M, Justice A, Massey RC, Wilkinson AR, Day NP, Peacock SJ 2002.
The
ica
operon and biofilm production in coagulase-negative Staphylococci
associated with carriage and disease in a neonatal intensive care unit.
J Clin Microbiol
40 (2): 382-8.
Vuong C, Otto M 2002.
Staphylococcus
epidermidis
infections.
Microbes Infect
4: 481-
489.
Zheng Z, Stewart PS 2002. Penetration of rifampin through
Staphylococcus epidermidis
biofilms.
Antimicrob Agents Chemother
46: 900-903.
115
Table I. Characterization of Staphylococcus aureus and Staphylococcus epidermidis isolates
through Congo Red Agar.
CRA Use of
Isolate
Biofilm
24h 48h Catheter
S. epidermidis
P BR AB Yes
S. epidermidis
P AB B Yes
S. epidermidis
P B B Yes
S. epidermidis
P B B Yes
S. epidermidis
P B B Yes
S. epidermidis
P B B Yes
S. epidermidis
P B B No
S. epidermidis
P B B No
S. epidermidis
N BR BR Yes
S. epidermidis
N R R No
S. epidermidis
N R R Yes
S. epidermidis
N R BR Yes
S. aureus
P B B No
S. aureus
P AB AB Yes
S. aureus
P R AB No
S. aureus
P R AB Yes
S. aureus
P B B Yes
S. aureus
P AB B Yes
S. aureus
P AB B Yes
S. aureus
P R B Yes
S. aureus
N R R Yes
S. aureus
N R R Yes
S. aureus
N BR BR Yes
S. aureus
N R R Yes
S. aureus
N BR BR Yes
S. aureus
N BR BR Yes
S. aureus
N R R Yes
S. aureus
N R R Yes
R: red; B: black; BR: bordeaux; AB: almost black; P: biofilm producer
;
N: biofilm nonproducer
116
Table II. Percentage of antimicrobial resistance among Staphylococcus epidermidis and
Staphylococcus aureus isolates
Antimicrobial
Percentage (%)
S. aureus
Oxacillin 68.8
Rifampicin 6.2
Gentamicin 75.0
S. epidermidis
Oxacillin 83.3
Rifampicin 33.3
Gentamicin 83.3
Table III. Percentage of antimicrobial resistance among CRA-positive and CRA- negative among
S. epidermidis and S. aureus isolates
CRA-positive CRA-negative
Antimicrobial
No. % No. %
Oxacillin
10
66.7
11
84.6
Rifampicin 2 13.3 3 23.1
Gentamicin
11
73.3
12
92.3
CRA-positive: biofilm producer; CRA-negative: biofilm nonproducer; No.: number of samples
Figure 1. Antimicrobial resistance rates among biofilm-producing (CRA-positive) and non-
producing (CRA- negative) in
Staphylococcus epidermidis
and
Staphylococcus aureus
isolates.
117
ANEXO IV_______________________________________________________________
118
Bacteremias of Coagulase-Negative staphylococci (CoNS) in Intensive Care Unit in
hospital geral of São Paulo city, SP, Brasil.
Bacteremias por
Staphylococcu
s spp coagulase negativos em um hospital geral na cidade de
São Paulo, SP, Brasil.
d’Azevedo, PA.
1,2
Secchi, C
2
Antunes, ALS
2
Sales, TC
3
Silva, FM
1
Tranchesi, R
3
Pignatari, ACC
1,3
1
Laboratório Especial de Microbiologia Clínica (LEMC), Disciplina de Infectologia da
Universidade Federal de São Paulo (UNIFESP), SP, Brasil.
2
Laboratório de Cocos Gram Positivos da Fundação Faculdade Federal de Ciências
Médicas de Porto Alegre (FFFCMPA), RS, Brasil.
3
Hospital 9 de Julho, São Paulo, SP, Brasil.
4
Laboratório Bioclínico, São Paulo, Brasil.
This study was presented in part at the 40
th
Congresso Brasileiro de Patologia Clínica e
Medicina Laboratorial, Curitiba, PR, 2006 (abstract).
Corresponding author:
Profº Pedro A. d’Azevedo
Laboratório Especial de Microbiologia Clínica
Rua Leandro Dupret 188 – Vila Clementino – São Paulo, SP.
Cep: 04025-010
Tel: 11 50812819
119
Abstract
Coagulase negative staphylococci (CoNS), especially
S. epidermidis
have become an
important cause of bloodstream infections, during the last decades. In addition, rates of
methicillin-resistance among CoNS have increased substantially, leading to difficulties in
therapy. The objective of this study was evaluate 11 consecutives cases of bacteremias by
CoNS methicillin-resistance in hospital localized in São Paulo city, Brazil and
characterized phenotypic/genotypic this isolates. Five differents species were identified
inclued
S. epidermidis
(5),
S. haemolyticus
(3),
S. hominis
(1),
S. warneri
(1) and
S. cohnii
subsp
urealyticus
(1). Macrorestriction of DNA was realized of PFGE and analysis of
profiles second Tenover and collaborators.
A variety of PFGE profiles was observed. None
have the predominant PFGE type. These data indicated the heterogeneity of CoNS isolates
included in the study, suggesting that horizontal dissemination of these microorganisms
was not frequent in the hospital investigated.
Key words:
Coagulase negative staphylococci; methicillin-resistant; bacteremia;
identification;
PFGE (“Pulsed-Field Gel Electrophoresis”)
120
Introduction
Coagulase-negative staphylococci (CoNS) are major causes of nosocomial
bloodstream infection and have significantly high associates morbidity and mortality
mainly in patients hospitalized (Marshall et al. 1998). Members of the genera
Staphylococcus
are catalase-positive, gram-positive cocci, coagulase-negative, aerobe and
when present in human infections can show multiresistant profiles (Kloss & Bannermann
1999, Szewczyk & Rozalska 2000). These strains may constitute a dangerous reservoir of
resistance genes in a hospital (Szewczyk & Rozalska 2000).
Staphylococci generally has a benign or symbiotic relationship with their host,
however, they may develop into a pathogen if they gain entry into the host tissue through
breaking of cutaneous barrier, inoculation by needles or implantation of medical devices
(Heikens et al. 2005). CoNS has become increasingly important to accurately identify these
isolates to the species level in order to define the clinical significance of these bacteria, to
carry out a proper epidemiological surveillance, and to manage patients infected with CoNS
in case of relapse (Poyart et al. 2001).
A substantial increase in the frequency of oxacilin resistance (methicillin-resistant)
in CoNS isolates has occurred over the last decades (Ferreira et al. 2003). Between 50%
and 80%, depending on the species, are
mecA
positive or oxacilin resistance (John et al.
2002, Caierão et al. 2006).
The SENTRY Program, in Latin American and in Brazil, realized antimicrobial
surveillance program over a five-year period from 1997 to 2001. The results demonstrated
the resistance of
Staphylococcus
spp, in isolates of bloodstreams infections, in Brazil,
showed oxacilin susceptibility in
S. aureus
of 68.2% and 19.2% in CoNS (Sader et al.
2004).
S. epidermidis
and
S. haemolyticus
are the most frequent species in nosocomial
infection presenting a higher frequency of oxacilin resistance among CoNS clinical isolates
(Ferreira et al. 2002).
S. haemolyticus
have been reported to show multiple resistance to
antimicrobials and quite frequently with reduced susceptibility or fully resistant to
teicoplanin from clinical isolates (Raponi et al. 2005).
121
Vancomycin is usually considered the treatment of choice for infections caused by
these microorganisms. However, due to the emergence of vancomycin-resistant enterococci
(Marshall et al, 1998) and vancomycin-resistant staphylococci (Szarapinska-Kwaszewska
& Farkas 2003), reduction in the use of this drug has been recommended (Szewczyk &
Rozalska 2000).
A few reports have show that the mechanism of glycopeptide resistance in
S. epidermidis, S. haemolyticus, S. hominis is similar to that describe in VISA and hetero-
VISA strains (Nunes et al. 2006). In 09 de Julho Hospital, where study was occurred
therapy of teicoplanin is recommended. The objective of this study was evaluate 11
consecutives cases of bacteremias by CoNS methicillin-resistant in 09 de Julho Hospital
localized in São Paulo city, Brazil, occurred in 2005, and characterized
phenotypic/genotypic this isolates.
Materials and Methods
Bacterial isolates:
We tested 11 CoNS clinical isolates obtained from bloodstream,
from patients at in hospital localized in São Paulo City, Brazil between June and July 2005.
Identification:
Identification of the staphylococcal to the species level was carried
out by oxidation-fermentation test, detection of enzyme production: coagulase (Laborclin,
Paraná, Brazil), catalase, alkaline phospatase (diphosphato de fenoftaleína, Sigma Sigma-
Aldrich, Germany), ornithine (Merck) and urease (Oxoid, UK), PYR (pyrrolidinyl-
β
-
naphthylamide hydrolysis, Probac do Brasil, São Paulo), hemolytics properties on sheep
blood agar, acid production (aerobically) from carbohydrates: trehalose (Sigma-Aldrich,
Germany), mannitol (Nuclear, São Paulo), mannose (Vetec, Rio de Janeiro), sucrose
(Reagen), maltose (Sigma-Aldrich, Germany), lactose (Difco Detroit, Mich), cellobiose
(Sigma-Aldrich, Germany) and anaerobic growth in thioglicolate (Merck). Susceptibilities
to novobiocin (Oxoid, UK), polymyxin B (Oxoid, UK), bacitracina (CECON, São Paulo,
Brazil), desferrioxamine (Desferal, Ciba Geigy, Switzerland) and fosfomycin (Oxoid,UK)
were also determined. Isolates were kept frozen at –20°C in Skim Milk. (Difco, Detroit,
Mich). Bacteria to be tested were suspended in 0.5 ml of saline to a McFarland standard
and 50ul was added to each sugar carbohydrate tube. The acid production from
122
carbohydrates was evaluated after 24, 48 and 72hs of incubation at 35-37°C. The final
evaluation was at 7
th
day.
Antimicrobial susceptibility:
The isolates were tested by the agar disk diffusion
method with Mueller-Hinton agar plates (Difco, Laboratories, Detroit, Mich) according to
Clinical Laboratory and Standards Institute (CLSI 2005; formerly NCCLS)
recommendations and confirmed by E-test (AB Biodisk, Solna, Sweden). Also determined
susceptibility for novobiocin, polymyxin B, bacitracina, desferrioxamine and fosfomycin to
the according Monsen et al. (1998).
PFGE typing:
Chromosomal DNA from CoNS was prepared in agarose blocks and
cleaved with SmaI (New England BioLabs), as described elsewhere (Pfaller et al. 1992).
The isolates were run on a 1% agarose gel (Invitrogen) in a CHEF DRIII system (Bio-Rad)
under the following conditions: run time, 23 h; temperature, 13°C; voltage, 200 V; initial
forward time, 5’; final forward time, 60 s. The molecular weight markers (New England
BioLabs) were run in the first and in the last line. The gels were stained with ethidium
bromide, washed in water, and photographed under UV light by using the Gel Doc 1000
system (Bio-Rad). The gel patterns were read by visual inspection. The isolates were
classified as identical if they shared the same
band profile, and isolates differing by more
than six bands were considered to represent distinct DNA types (Tenover et al. 1995).
Results and discussion
A total of 11 CoNS strains belongings to five species were identified including
S.
epidermidis
(5),
S. haemolyticus
(3),
S. hominis
(1),
S. warneri
(1)
and
S. cohnii
subsp
urealyticus
(1)
(Table 1). All isolates, except the number 20994, were identified to the
species level by the conventional method of Kloos and Banermann (Kloss & Banermann
1994, 1999). The isolate number 20994 could not be identified by the conventional method,
so it was identified for Vitek-2 (bioMèrieux S/A, Paris, France) at Hospital Albert Einstein,
São Paulo, Brazil) like
S. cohnii
subsp
urealyticus.
The two species most frequently encountered were
S. epidermidis
and
S. haemolyticus
, all the tests of the phenotypic tests were accomplished at least twice for
confirmation of the species of CoNS. All the phenotypic tests were accomplished in parallel
with a control positive
S. epidermidis
ATCC 12228.
123
The species of
S. epidermidis
and
S. hominis
were identified through the proof of
diffusion disk for desferrioxamine, this susceptibility testing just the two species. All the
other species of CoNS presented resistance the desferrioxamine through the diffusion disk,
turning like this, this proof of easy execution, a guide in the differentiation of species. The
reading of the halos of diffusion disk for desferrioxamine was 26 mm on average (25-
30mm) and of fosfomycin it was of 43 mm (40-45mm), for
S. epidermidis
.
To differentiate the two species with susceptibility of desferrioxamine,
S. epidermidis
and
S. hominis
, other phenotypic tests were used, as fermentation of the
trehalose (negative for
S. epidermidis
), alkaline phospatase (positive for
S. epidermidis
) and
growth in thioglicolate (positive for
S. epidermidis
).
The production of the enzyme urease test allowed the differentiation of
S. haemolyticus
(negative urease), of
S. epidermidis, S. hominis and S. warneri
that are
positive urease. Besides this proof the test of positive PYR together with the hemolytic
properties in sheep blood agar and fermentation of negative mannose also allowed the
differentiation of the second species more prevalent
S. haemolyticus
.
The clinical isolate 20994,
S. cohnii
subsp
urealyticus
, for being a species less
common of being isolated at the clinical laboratory, it was identified for the automated
system VITEK 2 (bioMèrieux S/A, Paris, France), and after for methods conventional,
confirming his identification. Classic proofs of resistance to the disk diffusion of
novobiocin, positive urease and fermentation negative of sucrose confirmed the
identification of the specie. There was discrepancy in the proof of the production of the
enzyme alkaline phospatase that negative stayed in the conventional test and positive in the
automated system.
All isolates were methicillin-resistant by disk diffusion test, with MICs 256
µg/ml confirmed by E-Test. In spite of
S. epidermidis
to be the species more prevalent
among
Staphylococcus spp,
other species see increasing her prevalence in the isolated ones
clinical, as well as the resistance to the used antimicrobials. In this study, two species (
S.
epidermidis
and
S. haemolyticus
) presented reduced susceptibility to teicoplanin (Table 1),
the according with has also been reported in this species (Nunes et al. 2006). Strains with
this characteristic may be associated with treatment failures or may become precursors of
glycopeptide-resistant strains (Sieradzki et al. 1998).
124
S. cohnii
subsp
urealyticus
, is an unusual species that has been found in hospital
environment like pediatric ICUs, and this isolates may constitute a dangerous reservoirs of
resistance genes in a hospital (plasmids), presenting resistance to multiple antimicrobials
commonly used (Waldon et al. 2002, Szewczyk et al. 2004), as well as strains opportunist
in severe infections (Yamashita et al. 2005).
Among the five clinical isolates of
S. epidermidis
were found five different
patterns of PFGE, but the same not occurred between the three clinical isolates of
S. haemolyticus
where two isolates presented similar profile. These results demonstrated a
clonal diversity between the clinical isolates of
S. epidermidis
, evidencing that there was
not clonal dissemination among the clinical isolates of this same species (Figure 1). The
other isolates were not classified by PFGE because they belong to different species.
In the last years, CoNS has been winning a larger importance due to her
pathogenicity and involvement in human diseases. The importance of identifying all species
of CoNS in the clinical laboratories has been increasing; however it is not an easy task,
since phenotypic tests can present similar results, hindering the obtaining of a result, as well
as a great expense of time in the identification of the species than in commercial kits. Many
clinical laboratories use automated systems for identification of the species of
Staphylococcus
spp although the reliability for certain species not always it is satisfactory,
particularly for species of CoNS no-
epidermidis
.
Acknowledgement
The authors tank to Dra. Marines Martino of Laboratory Microbiology of Albert
Eistein to support technique and Fundação Faculdade Federal de Ciências Médicas de Porto
Alegre (FFFCMPA) of financial support.
125
References
Caierão J, Superti S, Dias CAG, d’Azevedo PA 2006. Automated systems in the identification
and determination of methicillin resistance among coagulase negative staphylococci.
Mem Inst Osw Cruz 101(3):277-279.
Drozenova J, Petras P 2000. Characteristics of coagulase-negative staphylococci isolated from
hemocultures. Epidemiol Mikrobiol Imunol 49 (2):51-58.
Ferreira RBR, Nunes APF, Kokis VM, Krepsky N, Fonseca LS, Bastos MCF, Marval
MG,Santos KRN 2002. Simultaneous detection of the mec A and ileS-2 genes in
coagulase-negative staphylococci isolated from Brazilian hospitals by multiplex PCR.
Diagn Microbiol Infect Dis 42: 205-212.
Ferreira RBR, Iorio N, Malvar K, Nunes A, Fonseca L, Bastos C, Santos K 2003. Coagulase-
negative Staphylococci: comparison of phenotypic and genotypic oxacilin sucseptibility
tests and evaluation of the Agar screening test by using different concentration of
oxacilin. J Clin Microbiol 41 (8): 3609-3614.
Heikens E, Paauw A, Florijn A, Fluit AC 2005. Comparison of genotypic and phenotypic
methods for species-level identification of clinical isolates of coagulase-negative.
Staphylococci. J Clin Microbiol 43 (5): 2286-2290.
John MA, Pletch C, Hussain Z 2002. In vitro activity of quinupristin/dalfopristin, linezolid,
telithromicyn and comparator antimicorbial agents against 13 species of coagulse-
negative Staphylococci. J Antimicrob Chemother 50: 933-938.
Kloos WE, Bannerman TL 1994. Update on clinical significance of coagulase-negative
staphylococci. Clin Microbiol Rev 7:117-140.
Kloos WE, Bannerman TL 1999. Staphylococcus and Micrococcus, In Murray PR, Baron EJ,
Pfaller MA, Tenover FC, Yolken RH (eds), Manual of Clinical Microbiology, 7th ed.,
ASM Press, Washington DC, 264 pp.
Marshall SA, Wilke WW, Pfaller MA, Jones RN 1998. Staphylococcus aureus and coagulase-
negative staphylococci from blood stream infections: frequency of occurrence,
antimicrobial susceptibility, and molecular (mecA) characterization of oxacillin
resistance in the SCOPE Program. Diag Microbiol Infect Dis 30:205-214.
Monsen T, Ronnmark M, Olofsson C, Wistrom J 1998. An inexpensive and reliable method for
routin identification of Staphylococcal species. Eur J Clin Microbiol Infect Dis 17: 327-
335.
NCCLS-National Committee for Clinical Laboratory Standards 2000. Performance Standards
for Antimicrobial Susceptibility Testing, 7
th
ed.M2-A7. Wayne, Pennsylvania.
Nunes APF, Teixeira LM, Iorio NLP, Bastos CC, Fonseca LS, Souto-Padrón T, Santos KRN
2006. Heterogeneous resistance to vancomycin in Staphylococcus epidermidis,
Staphylococcus haemolyticus and Staphylococcus warneri clinical strains:
126
characterisation of glycopeptide susceptibility profiles and cell wall thickening. Int J of
Antimicrol Agents 27: 307-315.
Pfaller MA, Hollis RJ, Sader HS 1992. Molecular biology–PFGE analysis of chromosomal
restriction fragments. In: HD Isenberg (ed). Clinical Microbiology Procedures
Handbook, American Society of Microbiology, Washington, D.C., p.10.5.c.1-10.5.c.11.
Poyart C, Quesne G, Boumaila C, Trieu-Cuot P 2001. Rapid and accurate species-level
identification of coagulase-negative Staphylococci by using the sod A gene as a target. J
Clin Microbiol 39(12): 4296-4301.
Raponi G, Ghezzi MC, Gherardi G, Dicuonzo G, Caputo D, Vendittu M, Rocco M, Micozzi A,
Mancini C 2005. Antimicrobial Susceptibility, Biochemical and Genetic profiles of
Staphylococccus haemolyticus strains isolates from the bloodstreams of patients
hospitalized in critical care units. J Chemother 17(93): 264-269.
Sader HS, Jones RN, Gales AC, Silva JB, Pignatari AC 2004. SENTRY Antimicrobial
Surveillance Program Report: Latin American and Brazilian Results for 1997 trough
2001. Braz J Infect Dis 8(1): 25-79.
Sieradzki K, Villari P, Tomasz A 1998. Decreased susceptibilities to teicoplanin and
vancomycin among coagulase-negative methicillin- resistant clinical isolates of
staphylococci. Antimicrob Agents Chemother 42:100-107.
Szarapinska-Kwaszewska J, Farkas LI 2003. Synthesis of siderophores by strains of
Staphylococcus cohnii isolated from various environments. Acta Microbiol Pol
52(3):261-269.
Szewczyk EM, Rozalska M 2000. Staphylococcus cohnii--resident of hospital environment:
cell-surface features and resistance to antibiotics. Acta Microbiol Pol49(2):121-133.
Szewczyk EM, Rozalska M, Cieslikowski T, Nowak T 2004. Plasmids of Staphylococcus
cohnii isolated from the intensive-care unit. Folia Microbiol, 49(2):123-131.
Tenover FC, Arbeit RD, Goering RV et al. 1995. Interpreting chromosomal DNA restriction
patterns produced by Pulsed-field gel electrophoresis: criteria for bacterial strain typing.
J Clin Microbiol 33:2233-2239.
Waldon E, Szewczyk EM 2002. Ability of Staphylococcus cohnii strains to adhere to epithelial
cells and solid surfaces in the hospital environment. Med Dosw Mikrobiol 54(2):109-
118.
Yamashita S, Yonemura K, Sumimoto R, Tokunaga M, Uchino M 2005. Staphylococcus cohnii
as a cause of multiple brain abscesses in Weber-Christian disease. J Neurol Sci 15(1-
2):97-100.
127
Table1. Coagulase-negative staphyloccci methicillin resistant isolates of patients with
bloodstream infections hospitalized in 09 de Julho Hospital (June/July 2005), São
Paulo, SP, Brazil.
Lane Specie
Clinical
isolate
Isolation
date
Unid
MIC Vanco
(µg/ml)
MIC Teico
(µg/ml)
Profile
1
S. epidermidis
21170 17/07/05 Leito 145 2.0 16.0 “A”
2
S. epidermidis
21169 11/07/05 Leito 1005 1.5 4.0 “B”
3
S. epidermidis
21168 20/07/05 Leito 307 1.5 4.0 “C”
4
S. epidermidis
20944 29/06/05 CTC 2.0 4.0 “D”
5
S. epidermidis
21171 01/07/05 onco 2.0 4.0 “E
6
S. haemolyticus
20995 07/07/05 Leito 532 2.0 12.0 “G”
7
S. haemolyticus
21172 13/07/05 onco 1.5 4.0 “F”
8
S. hominis
20947 20/06/05 CTI 0.75 0.75 NC
9
S. warneri
20993 08/07/05 Leito 543 1.0 2.0 NC
10
S. haemolyticus
20946 24/06/05 onco 2.0 3.0 “F”
11
S. cohnii spp urealyticus
20994 06/07/05 Leito 394 1.0 3.0 NC
Figure 1 – PFGE profile of SmaI-digested chromosomal DNA of CoNS isolates, obtained from
patients in 9 de Julho Hospital in São Paulo city, Brazil. λ Lamba ladder DNA markers; lanes 1-5 S.
epidermidis; lanes 6,7 and 10: S. haemolyticus; lane 8: S. hominis; lane 9: S. warneri; lane 11: S.
cohnii subsp urealyticus.
128
ANEXO V________________________________________________________________
129
Bacteremia por Rhodococcus equi em paciente com síndrome da imunodeficiência
adquirida: relato de caso
Rhodococcus equi
bacteremia in a patient with acquired immunedeficiency syndrome: case
report
Carina Secchi
1,2
, Fabiana Pereira
1
, Leandro Réus Rodrigues Perez
2
, Pedro Alves
d’Azevedo
2
, Silvia da Silva Rios
3
Artigo publicado na revista “Revista da Sociedade Brasileira de Medicina Tropical”,
v.39(6), p.570-572, nov-dez 2006.
1. Weinmann Laboratório, Porto Alegre, RS. 2. Programa de Pós-Graduação em Ciências
Médicas da Fundação Faculdade Federal de Ciências Médicas de Porto Alegre, Porto
Alegre, RS. 3. Grupo Hospitalar Nossa Senhora da Conceição, Porto Alegre, RS.
Address to:
Dra.Carina Secchi,. Weinmann Laboratório. Rua Ramiro Barcellos 910, 5º andar, CEP:
90035001. Porto Alegre, RS.
Tel: 55 51 3314-3838
e-mail: csecchi@weinmann.com.br
130
Resumo
Rhodococcus equi
é um importante agente de infecções zoonóticas, podendo causar sérias
infecções em humanos, principalmente em pacientes imunocomprometidos. Neste estudo,
nós relatamos o caso de uma bacteremia fatal devido a R. equi em paciente com síndrome
da imunodeficiência adquirida (HIV positivo).
Palavras-chaves: Rhodococcus equi. Bacteremia. Imunocomprometidos. HIV.
Abstract
Rhodococcus equi
is an important agent of zoonotic infections, being able to cause serious
infections in humans, mainly in immunocompromissed patients. In this study, we related a
fatal bacteremia due R. equi in patient with human immunodeficiency virus (positive HIV).
Key words: Rhodococcus equi. Bacteremia. Imunocompromissed. HIV.
131
O
Rhodococcus equi
(R. equi) é reconhecido como um microrganismo intracelular
facultativo, ubíquo, de caráter oportunista, associado as diferentes afecções no homem e
animais. É um cocobacilo pleomórfico, gram-positivo, aeróbio, parcialmente ácido-
resistente, não formador de esporos, imóvel e amplamente distribuído na natureza. Foi
primariamente relatado em infecções zoonóticas em 1923, em eqüinos que apresentaram
pneumonia granulomatosa crônica
5
. O primeiro caso em humanos foi relatado em 1967 em
paciente com abscesso pulmonar
3
, desde então muitos casos foram descritos na literatura
1 8
.
No homem, a rodococose é apontada como doença emergente, freqüentemente relacionada
a indivíduos severamente comprometidos, incluindo pacientes convalescentes de
transplantes, com neoplasias malignas, sob terapia imunossupressiva ou em alcoólatras. Em
anos recentes, grande parte da casuística de infecções humanas pelo R. equi tem sido
relatada em pessoas acometidas pela síndrome da imunodeficiência adquirida (HIV
positivos) ou mesmo em pessoas saudáveis
1 7
. A mortalidade, associada à infecção, varia
segundo a condição do hospedeiro, sendo de aproximadamente 11% em imunocompetentes,
20 a 25% em pacientes imunocomprometidos não-HIV e 50 a 55% em pacientes HIV
positivos (AIDS)
7
. A transmissão do R. equi, para o homem, deriva da exposição ao agente
no ambiente, geralmente secundária a lesões transcutâneas, ou do contato recente com
animais, principalmente eqüinos
1 6
. Pode causar infecções pulmonares, feridas, abscessos,
peritonite, meningite, pericardite, osteomielite, entre outras. O início da doença pode ser
insidioso e com características semelhantes ao observado para os gêneros Mycobacterium,
Actinomyces e Nocardia
2.
.
Determinados fatores de virulência conferem ao R. equi mecanismos de evasão do
sistema imune, possibilitando ao microrganismo multiplicar-se no interior de fagócitos,
como neutrófilos e macrófagos, dificultando assim o estabelecimento de resposta imune
adequada e induzindo lesões do tipo piogranulomatosa
7
. Esse tipo especial de inflamação
na rodococose leva a processos de difícil resolução tecidual, refratários à terapia
antimicrobiana convencional
2 10
. Considerando a disseminação hematogênica, o R. equi
pode infectar qualquer órgão, mas, o pulmão é afetado com maior freqüência, apresentando
algum comprometimento em 80-97% dos pacientes imunocomprometidos e em torno de
40% em imunocompetentes
7
. As limitações do sucesso terapêutico nas infecções por R.
equi, no homem e em animais, fundamentado na utilização de antimicrobianos, têm
132
motivado diferentes estudos de suscetibilidade do agente, ensaios com novas drogas e suas
associações. A refratariedade do agente à terapia antimicrobiana convencional decorre do
desenvolvimento de resistência natural (simples ou múltipla), de resistência adquirida ao
longo da terapia, da descontinuidade do tratamento ou da limitação de certas drogas ao
acesso intracelular e/ou do foco piogranulomatoso. Os diferentes estudos conduzidos na
investigação da suscetibilidade do R. equi, de origem animal, apontam que as drogas de
maior efetividade, in vitro, incluem antimicrobianos do grupo dos macrolídeos
(eritromicina), quinolonas (enrofloxacina, ciprofloxacina), aminoglicosídeos (gentamicina,
neomicina, amicacina), cefalosporinas, vancomicina, imipenem e rifampicina, além de
associações, como a rifampicina e eritromicina, considerada de eleição no tratamento de
infecções causadas pelo R. equi
6 10
Relato de Caso
Paciente masculino de 34 anos, internado no serviço de Infectologia do Hospital Nossa
Senhora da Conceição de Porto Alegre, RS, com queixa de perda ponderal, astenia, febre e
icterícia há 30 dias. Vinha fazendo uso da associação RHZ (Rifampicina, Isoniazida e
Pirazinamida) há duas semanas devido a diagnóstico preliminar de tuberculose pulmonar
realizado em posto de saúde na capital. Apresentava lesões ulceradas de pele há
aproximadamente um mês. Foram solicitadas hemoculturas e biópsia de pele, bem como
outros exames laboratoriais complementares como hemograma com resultados de: 8,9g/dL
de hemoglobina, 27% de hematócrito, 5.200 leucócitos/µL e diferencial (6% de bastões,
86,5% de segmentados, 0,5% de basófilos e 3,6% de linfócitos). O resultado do teste anti-
HIV foi positivo (Abbott, Illinois, USA) com CD4+ 01 células/mL e carga viral de 112.194
cópias/mL. Apresentava látex criptocócico (IMMY, Norman, USA) não-reagente no
sangue, Anti-HCV (Abbott, Illinois, USA) não-reagente e pesquisa para bacilo álcool-
resistente (BAAR) negativo no escarro. Também foram realizados outros exames
complementares como Raios-X de tórax com ampla lesão cavitada no lobo inferior direito e
ecografia abdominal com aumento do fígado e baço. Os frascos de hemocultura positivos
foram enviados ao Weinmann Laboratório, setores de Bacteriologia/Biologia Molecular
para identificação de bacilos gram-positivos com ramificações. O microrganismo
observado pela coloração de Gram, a partir dos frascos de hemocultura com crescimento,
133
foi um bacilo gram-positivo com ramificações e com coloração de Ziehl-Neelsen negativa
para bacilos álcool-ácido resistente (BAAR). A amostra de sangue foi semeada em agar-
sangue de carneiro (bioMérieux, Marcy l’Etoile, France) incubado a 35°C em
microaerofilia e em anaerobiose por aproximadamente 48 horas. Após incubação, houve
crescimento em aerobiose de colônias lisas, irregulares, brilhosas, mucóides que com o
passar do tempo adquiriram cor vermelho-alaranjado. A coloração de Gram, a partir das
colônias, revelou cocobacilos gram-positivos. Testes adicionais foram realizados como a
prova da oxidase (negativa), da urease (positiva) e teste de suscetibilidade aos
antimicrobianos. O microrganismo foi submetido também ao sistema automatizado VITEK,
cartão GPI (bioMérieux, Marcy l’Etoile, France), que não identificou a bactéria e ao kit
API Coryne (bioMérieux, Marcy l’Etoile, France) cujos resultados de algumas provas
foram duvidosos, não possibilitando uma correta identificação. Posteriormente, a
identificação da bactéria foi realizada pela técnica da reação da polimerase em cadeia
(PCR) através da amplificação do gene 16S rRNA (ca. 1.500bp) utilizando “primers” 285 e
261
4
. Os produtos do PCR obtidos com diferentes “primers” foram purificados e as
primeiras 500 bases determinadas pelo seqüenciamento utilizando o “primer” 16S (5’
TATTACCGCRGCTGCTGG – 3’) e o kit BigDye Terminator (Applied Biosystems, Foster
City, USA) conforme instruções do fabricante.
Discussão
R. equi
é um patógeno oportunista emergente, especialmente em pacientes
infectados pela síndrome da imunodeficiência adquirida, conforme paciente relatado neste
caso. Outros problemas relatados neste paciente foram: pneumonia cavitada, hepatite
medicamentosa ao RHZ e lesões de pele que foram identificadas como Paracoccidiodes
brasiliensis. Como tratamento, o paciente recebeu benzilpenicilina potássica, oxacilina e
anfotericina B, mas seu quadro evoluiu a óbito.
R. equi
é usualmente suscetível a eritromicina, ciprofloxacina, vancomicina,
aminoglicosídeos, rifampicina, carbapenêmicos, embora o organismo pareça suscetível aos
β
-lactâmicos in vitro, estudos demonstram resistência adquirida durante o tratamento com
estas drogas. No teste realizado no laboratório o microrganismo apresentou concordância
com a literatura: suscetibilidade aos antimicrobianos acima citados e resistência aos
β
-
134
lactâmicos (teste de suscetibilidade não-padronizado). A diferenciação clínica de lesões
pulmonares com micobacterioses e nocardioses deve envolver também a suspeita de R.
equi, como também laboratorialmente entre difteróides e outros microrganismos álcool-
ácido-resistentes a fim de realizar a correta identificação do germe para melhor escolha dos
antimicrobianos já que R. equi apresenta alta taxa de mortalidade.
R. equi deve ser suspeitado em pacientes imunocomprometidos ou HIV positivos
que apresentam infecção respiratória de curso não-habitual (pneumonia lentamente
evolutiva)
9
. É importante o estudo da suscetibilidade aos antimicrobianos para o correto
manejo do paciente, visto que, em geral, o tratamento específico desta infecção é
prolongado.
Agradecimentos
Os autores desejam agradecer aos médicos, Renato Cassol F. da Silva e Teresinha
Joana Dossin, ao serviço de Controle de Infecção e ao Laboratório de Bacteriologia do
Grupo Hospitalar Conceição pelo envio da amostra e dados do paciente relatado nesse caso.
135
Referências Bibliográficas
1. Barsotti M, Cupisti A, Morelli E, Meola M, Barsotti G. Sepsis from Rhodococcus
equi successfully treated in a kidney transplant recipient. Nephrology Dialysis
Transplantation 12:2002-2004, 1997.
2. Brown JM, MacNeil M.M. Nocardia, Rhodococcus, Gordonia, Actinomadura,
Streptomyces, and other Aerobic Actinomycetes. In: Murray P, Baron EJ,
Jorgensen JH, Pfaller MA, Yolken RH. (eds). Manual of Clinical Microbiology
8ed., American Society of Microbiology, Washington DC, p.502-531, 2003.
3. Golub B, Falk G, Spink WW. Lung abscess due to Corynebacterium equi: report of
the first human infection. Annals Internal Medicine. 66: 1174-11747, 1967.
4. Kirschner P, Meier A, Böttger EC. Genotypic identification and detection of
mycobacteria – facing novel and uncultured pathogens. In: Persing DH, Smith TF,
Tenover FC, White TJ (eds.). Diagnostic molecular microbiology principles and
applications. American Society for Microbiology, Washington. p.173-190, 1993.
5. Magnusson H. Pneumonie beim Fohlen Ein neuer Eitererreger beim Pferd. Archiv
fur Wissenschaftliche und Praktische Tierheilkunde. 50:22-37, 1923.
6. Napoleão F, Damasco PV, Ferreira TC, Camello TCF, Vale MD, Andrade AFB,
Hirata R, Guaraldi ALM. Pyogenic Liver abscess due to Rhodococcus equi in an
Immunocompetent Host. Journal Clinical Microbiology. 43:1002-1004, 2005.
7. Rabagliati BR, Morales SA, Baudrand BR, Jorquera JA, oddó DB, Garcia PC,
Carmona MCP, Cisternas MM, Huete AG. Neumonía cavitada por Rhodococcus
equi em paciente inmunocomprometido no infectado por vírus de
inmunodeficiencia humana. Caso clínico y revisión. Revista Chilena de Infetologia.
22: 155-160, 2005.
8. Sellon DC, Besser TE, Vivrette SL, McConnico RS Comparison of nucleic acid
amplification, serology, and microbiologic culture for diagnosis of Rhodococcus
equi pneumonia in foals. Journal Clinical Microbiology. 39:1289-1293, 2001.
9. Severo LC, Ritter P, Petrillo VF, Dias CAG, Porto NS. Infecção pulmonar por
Rhodococcus equi: relato dos dois primeiros casos brasileiros. Jornal de
Pneumologia. 27:158-162, 2001.
10. Tortosa-Torres M., Arrizabalaga, J, Villanueva JL, Gálvez J, Leyes M, Valencia E,
Flores J, Peña JM, Pérez-Cecilia E, Quereda C. Prognosis and Clinical Evaluation
of infection caused by Rhodococcus equi in HIV-infected patients. Chest 123:1970-
1976, 2003.
136
ANEXO VI_______________________________________________________________
Abstracts enviados e aceitos para ASM Meeting of American Society of Microbiology,
Toronto, Canadá, maio de 2007.
137
Identification and Detection of Methicilin Resistance among Coagulase-negative
Staphylococci Others than S.epidermidis
Author Block
C. Secchi
1,2
,
V. V. Cantarelli
2
, A. L. S. Antunes
1
, L. R. R. Perez
1
, P. A.
d'Azevedo
1
;
1
Fundacao Faculdade Federal de Ciencias Medicas Porto Alegre, Porto
Alegre-RS, BRAZIL,
2
Weinmann Laboratory, Porto Alegre-RS, BRAZIL.
Abstract:
In 2004 the Clinical and Laboratory Standards Institute (CLSI) proposed the use of
cefoxitin disks to predict resistance mediated by the mecA gene in coagulase-negative
staphylococci (CoNS). Since then, several studies have been performed to validate this
method. Our main goal was to identify all CoNS to the species level and compare the use of
cefoxitin disks with oxacillin disk and oxacillin agar dilution to detect
mecA-
mediated
oxacillin resistance in "non-epidermidis” CoNS. The sample consists of 238 "non-
epidermidis" CoNS isolated from positive blood cultures, representing 16 different species.
Species identification was performed by conventional phenotipic methods and, whenever
necessary, complemented with automated and/or molecular (sodA sequencing) methods.
Susceptibility of cefoxitin and oxacillin was detected by the disk-diffusion (DD) and agar
dilution (oxacillin only) tests and interpreted according to the CLSI (2005). The mecA gene
was detected by PCR and was considered the "gold standard".The most common "non-
epidermidis" staphylococci species detected were
Staphylococcus haemolyticus
(42%),
S.
hominis-hominis
(29.4%),
S. warneri
(7.5%). Others species accounted for 21% of the
isolates. The mecA gene was detected in 71% (169/238) of the strains. The sensitivities of
the cefoxitin and oxacillin disks for all "non-epidermidis" CoNS were both 100%, whereas
the specificities were 100% and 91%, respectively. The sensitivity and specificity of the
agar dilution test for oxacillin were 100% and 88%, respectively. Nine strains, representing
S. sciuri
(4
), S. saprophyticus
(2) and
S. cohnii-cohnii
(3) showed false resistance for
oxacillin with the oxacillin DD and agar dilution tests. In this study, cefoxitin DD test
demonstrated equal sensitivity and a superior specificy, PPV, NPV, and accuracy to that of
oxacillin DD and agar dilution tests, when compared to the presence of mecA gene in these
strains. Overall, our results indicate that the cefoxitin DD test is an excellent alternative to
detect mecA-mediated oxacillin resistance in species of "non-epidermidis" CoNS.
Financial support: CNPq
138
Staphylococcus hominis subsp. novobiosepticus Strains Causing Nosocomial Infection
in Brazil
Author Block
I. C. V. Palazzo1, P. A. d'Azevedo2, C. Secchi2, A. C. C. Pignatari3,
A. C.
Darini
4;
1
Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP e Faculdade de Medicina de
Ribeirão Preto - USP, Ribeirao Preto, BRAZIL,
2
Fundação Faculdade de Ciências Médicas
de Porto Alegre - FFCMPA, Porto Alegre, BRAZIL,
3
Universidade Federal de São Paulo,
UNIFESP, Laboratório Especial de Microbiologia Clínica, São Paulo, BRAZIL,
4
Faculdade
de Ciências Farmacêuticas de Ribeirão Preto - USP, Ribeirao Preto, BRAZIL.
Abstract:
The role of coagulase-negative staphylococci (CoNS) strains in nosocomial infections has
increased dramatically. Although
Staphylococcus epidermidis
accounts for a majority of
CoNS infections, many others species are associated with human infections. Six
S.
hominis
subsp.
novobiosepticus
(SHN) were recovered from 6 patients at different hospitals in the
cities of São Paulo and Porto Alegre, Brazil. Biochemical methods and
sodA
gene
sequencing were employed for species identification. Susceptibility profiles indicated that
the majority of strains (five) are multi drug resistant including gentamicin, ofloxacin,
ciprofloxacin, clindamycin, cefoxitin, oxacillin and show low-level resistance to
vancomycin (MIC = 4 and 6 µg/mL) as determined by agar dilution and the Etest. In
addition, these strains showed vancomycin MIC values of 12 to 24 µg/mL after growing for
10 days in BHI broth with 4 µ g/mL of vancomycin. Overlapping and multiplex PCR
indicated that five out of six strains harbored SCC
mec
type IIIA with class A
mec
and type
3
ccr
. Only one SHN strain was oxacillin susceptible. Molecular epidemiology indicated
that the nosocomial infection in at least 5 patients in both hospitals was caused by a single
clone of SHN and just one strain was unrelated. Data about the horizontal transfer of SCC
mec
in nosocomial strains was emphasized by molecular epidemiology because the
unrelated SHN strain harbored the same type of SCC
mec
as the other SHN strains isolated.
A predominant PFGE profile encountered in part of these isolates was also shown by the
oxacillin susceptible SHN strain. A vertical and horizontal transfer during this period was
probably responsible for the strains acquirement of the resistance element. In summary, our
data shows that SHN is an important cause of nosocomial infection. Furthermore, the
pattern of multi drug resistance showed by these strains has important clinical implications
complicated by emergence of vancomycin resistance. Financial support: FAPESP (Process
nº 2005/50273-7), CNPq and Pró-Reitoria de Pesquisa USP.
139
ANEXO VII______________________________________________________________
140
COMITÊ DE ÉTICA_______________________________________________________
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo