

DISSERTAÇÃO DE MESTRADO

Aplicação da Transformada Integral e da Transformação Conforme na Solução de uma Classe de Problemas Difusivo-Convectivos em Domínios de Geometrias Não-Convencionais

Thiago Antonini Alves

Orientador: *Prof. Dr. Cassio Roberto Macedo Maia* **Co-orientador:** *Prof. Dr. Ricardo Alan Verdú Ramos*

Ilha Solteira, 18 de agosto de 2006.

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

FICHA CATALOGRÁFICA

Elaborada pela Seção Técnica de Aquisição e Tratamento da Informação - Serviço Técnico de Biblioteca e Documentação da UNESP - Ilha Solteira.

A474a
Alves, Thiago Antonini Aplicação da transformada integral e da transformação conforme na solução de uma classe de problemas difusivo-convectivos em domínios de geometrias não-convencionais / Thiago Antonini Alves. -- Ilha Solteira : [s.n.], 2006 360 p. : il.
Dissertação (mestrado) - Universidade Estadual Paulista. Faculdade de Engenharia de Ilha Solteira, 2006
Orientador: Cassio Roberto Macedo Maia Co-orientador: Ricardo Alan Verdú Ramos Bibliografia: p. 229-243
1. Transformada integral. 2. Transformação conforme. 3. Escoamento laminar. 4. Convecção forçada.

DISSERTAÇÃO DE MESTRADO

Aplicação da Transformada Integral e da Transformação Conforme na Solução de uma Classe de Problemas Difusivo-Convectivos em Domínios de Geometrias Não-Convencionais

Thiago Antonini Alves

Dissertação apresentada à Faculdade de Engenharia de Ilha Solteira da Universidade Estadual Paulista "Júlio de Mesquita Filho", como parte dos requisitos exigidos para a obtenção do título de Mestre em Engenharia Mecânica.

Orientador: *Prof. Dr. Cassio Roberto Macedo Maia* **Co-orientador:** *Prof. Dr. Ricardo Alan Verdú Ramos*

Ilha Solteira, 18 de agosto de 2006.

CERTIFICADO DE APROVAÇÃO

TÍTULO: APLICAÇÃO DA TRANSFORMADA INTEGRAL E DA TRANSFORMAÇÃO CONFORME NA SOLUÇÃO DE UMA CLASSE DE PROBLEMAS DIFUSIVO-CONVECTIVOS EM DOMÍNIOS DE GEOMETRIAS NÃO-CONVENCIONAIS

AUTOR: THIAGO ANTONINI ALVES ORIENTADOR: Prof. Dr. CASSIO ROBERTO MACEDO MAIA

Aprovado como parte das exigências para obtenção do Título de MESTRE em ENGENHARIA MECÂNICA pela Comissão Examinadora:

Prof. Dr. CASSIO ROBERTO MACEDO MAIA Departamento de Engenharia Mecânica / Faculdade de Engenharia de Ilha Solteira

Prof. Dr. JOAO BATISTA CAMPOS SILVA Departamento de Engenharia Mecânica / Faculdade de Engenharia de Ilha Solteira

Prof. Dr. MARCELO MOREIRA GANZAROLLI Departamento de Energia / Universidade Estadual de Campinas

Data da realização: 18 de agosto de 2006.

Presidente da Comissão Examinadora Prof. Dr. CASSIO ROBERTO MACEDO MAIA

Dedicatória

Ao meu pai, *Umbelino*, exemplo de dignidade;

À minha mãe, *Audaci*, abençoada por Deus;

Aos meus irmãos, *Diego* e *Danilo*, eternos companheiros.

Agradecimentos

Agradecimentos

- Ao Prof. Dr. Cassio Roberto Macedo Maia, orientador e verdadeiro amigo, pelos valiosos ensinamentos e inúmeras oportunidades proporcionadas dentro e fora da Universidade;
- Ao Prof. Dr. *Ricardo Alan Verdú Ramos*, co-orientador e grande amigo, pelos momentos vividos;
- Ao Prof. Dr. Emanuel Rocha Woiski, tutor do PET/EM, por sua sabedoria;
- A Profa. Dra. Célia Aparecida dos Reis, pela orientação de IC por mais de 3 anos;
- Aos Profs. Drs. Antonio João Diniz, João Batista Campos Silva, Marcelo Moreira Ganzarolli e Rogério Ramos, por aceitarem a tarefa de julgar este trabalho;
- Ao Prof. Dr. *Gilberto Pechoto de Melo*, coordenador do PPGEM, por seu bom senso;
- Aos docentes do DEM, em especial, ao Prof. M.Sc. *Celso Riyots Sokei* e aos Profs.
 Drs. *André Luiz Seixlack* e *Edson Del Rio Vieira*, pelos ensinamentos;
- Aos funcionários do DEM, em especial, a Alex Sander Borges, Elaine do Nascimento Ferreira, Elias Amaral dos Santos, Érika Renata Bocchi Lomba e Reginaldo Cordeiro da Silva, pela costumeira cooperação;
- Às funcionárias da Secretaria de Pós-Graduação Adelaide Amaral dos Santos Passipieri, Maria Fátima Sabino e Onilda Naves de Oliveira Akasaki, pela colaboração;
- Aos inestimáveis amigos Marcelo Ferreira Pelegrini e Alcindo Fernando Moreira, que em palavras eu não conseguiria expressar minha gratidão;

Agradecimentos

- Aos colegas de Graduação e Pós-Graduação, em especial, a Marcel Eduardo Adami Barbosa, Odair Antonio Nunes Junior, Paulo Henrique Fulanete Guirão, Richardson Leandro Nunes e Tobias Souza Morais;
- Aos integrantes e ex-integrantes do PET/Engenharia Mecânica, em particular, a Anderson Henrique Beneduzzi, David José Saran, Flávio José dos Santos, Juliano Torteli de Godoi Zucato, Luis Antonio Duarte Junior, Marcos Hideo da Silva Mashiba, Murilo César Longhim Quenzer, Paulo Henrique de Lima, Ricardo Carvalhal, Rodrigo dos Santos Lima e Sérgio Machado Rutpaulis;
- Aos amigos do Centro Acadêmico de Engenharia Mecânica "Ozires Silva" CAOS, em especial, a Adriana Bruno Norcino e Augusto Salomão Bornschlegell;
- Aos meus colegas de república: Alysson José Tavares, Bruno do Vale Silva e William Hiroshi Kuvabara Pereira, pela paciência e o convívio harmonioso;
- Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq, pelo apoio financeiro na forma de bolsa de mestrado;
- À minha família, em especial, aos meus avós paternos, *Francisco* e *Maria* e aos meus avós maternos, *Mauro* e *Maria*;
- À *Carolina*, pelo amor, carinho e compreensão;
- Aos meus pais, *Umbelino* e *Audaci* e aos irmãos, *Diego* e *Danilo*, por todo apoio, confiança e incentivo;
- E, principalmente, a *Deus*, fonte de toda a vida.

Muito Obrigado!!

Epígrafe

"Falo a língua dos loucos porque não conheço a mórbida coerência dos lúcidos ".

Luis Fernando Veríssimo

Resumo

Resumo

Alves, Thiago Antonini, 2006. *Aplicação da Transformada Integral e da Transformação Conforme na Solução de uma Classe de Problemas Difusivo-Convectivos em Domínios de Geometrias Não-Convencionais*, Ilha Solteira, Departamento de Engenharia Mecânica, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista "Júlio de Mesquita Filho" – Unesp. 360p. Dissertação (Mestrado em Engenharia Mecânica).

O presente trabalho trata da solução de uma classe de problemas difusivo-convectivos, tanto de natureza elíptica como parabólica, em domínios de geometrias não-convencionais, através da aplicação da Transformada Integral. Para facilitar o tratamento analítico e a aplicação das condições de contorno, antes da aplicação da Técnica da Transformada Integral Generalizada - TTIG sobre a equação governante do problema estudado, emprega-se uma Transformação Conforme - TC visando efetuar uma mudança de coordenadas adequada. Analisa-se inicialmente o problema hidrodinâmico do escoamento laminar completamente desenvolvido de fluidos Newtonianos no interior de dutos. Para a obtenção do campo de velocidades do escoamento aplica-se a TTIG sobre a equação da quantidade de movimento. Os parâmetros hidrodinâmicos de interesse, tais como: velocidades média e máxima, fator de atrito de Fanning, fator de Hagenbach, número de Poiseuille, comprimento de entrada hidrodinâmico e queda de pressão são calculados para as diversas geometrias. Feito isso, efetua-se o estudo dos problemas difusivo-convectivos relacionados à transferência de calor do escoamento laminar hidrodinamicamente desenvolvido e termicamente em desenvolvimento de fluidos Newtonianos com perfil de temperatura de entrada uniforme em dutos submetidos a condições de contorno de Dirichlet. Para a obtenção do campo de temperatura aplica-se a TTIG sobre a equação da energia e então, calculam-se os parâmetros térmicos de interesse: temperatura média de mistura, números de Nusselt local e médio e comprimento de entrada térmica. Realiza-se, quando possível, a comparação dos resultados obtidos para os parâmetros termos-hidráulicos com os disponíveis na literatura.

Palavras-Chave: Transformada Integral, Transformação Conforme, Escoamento Interno, Escoamento Laminar, Convecção Forçada.

Abstract

Abstract

Alves, Thiago Antonini, 2006. *Application of Generalized Integral and Conformal Transforms on the Solution of a Class of Diffusive-Convective Problems on Unconventional Geometry Domains*, Ilha Solteira, Department of Mechanical Engineering, College of Engineering of Ilha Solteira, Sao Paulo State University – Unesp. 360p. Dissertation (Mechanical Engineering M.Sc.)

The present work describes the solution of a class of elliptical-parabolic diffusiveconvective problems, on unconventional geometries, employing the Generalized Integral Transform Technique (GITT). In order to facilitate the analytical treatment and the application of the boundary conditions, a Conformal Transform (CT) is used to change the domain into a more suitable coordinate system, just before GITT is to be applied. First of all, using this procedure, the hydrodynamic problem of fully developed Newtonian laminar flow inside ducts is analyzed. In order to obtain the velocity field, GITT is applied on the momentum equation. Interesting hydrodynamic parameters, such as: maximum and minimum velocity values, Fanning friction and Hagenbach factors, Poiseuille number, hydrodynamic entry length, as well as pressure loss, are evaluated for several geometries. Following that, diffusive-convective problems are studied in relationship to the heat transfer in hydrodynamically fully developed and thermally non-developed Newtonian laminar flow inside ducts under Dirichlet boundary conditions, considering uniform temperature entrance profile. In order to obtain the temperature field, GITT is applied on the energy equation, evaluating the relevant parameters: bulk mean temperature, average and local Nusselt numbers and thermal entry length. The results are compared, as much as possible, with the parameter values available in the literature.

Keywords: Integral Transform, Conformal Transform, Internal Flow, Laminar Flow, Forced Convection.

Sumário

Sumário

1. Introdução	
1.1. Considerações Gerais	
1.2. Motivação	
1.3. Objetivos	
1.3.1. Problemas Hidrodinâmicos	
1.3.2. Problemas Difusivo-Convectivos	
1.4. Organização do Trabalho	
- ,	

2. Transformada Integral: Histórico & Revisão da Literatura	043
2.1. Histórico	043
2.2. Revisão Bibliográfica	046
2.2.1. Problemas Multidimensionais e de Geometria Não-Convencional	046
2.2.2. Problemas de Desenvolvimento Simultâneo e de Camada Limite	046
2.2.3. Problemas de Condições de Contorno Variáveis e Fronteiras Móveis	046
2.2.4. Outras Aplicações	047

3. Fundamentação Teórica	
3.1. A Técnica da Transformada Integral Generalizada – TTIG	
3.1.1. Metodologia	
3.1.2. Remoção das Derivadas Parciais Espaciais pela TTIG	
3.1.2.1. Problema Difusivo Elíptico	
3.1.2.2. Problema Difusivo-Convectivo Parabólico	
3.2. Transformação Conforme	
3.2.1. Metodologia	
3.2.2. Sistema de Coordenadas das Geometrias Analisadas	
3.2.2.1. Geometria de Setor Anular	
3.2.2.2. Geometria Bicônica	

4. Problemas Hidrodinâmicos	075
4.1. Formulação Matemática	075
4.1.1. Adimensionalização	076
4.1.2. Transformação de Coordenadas	077
4.1.2.1. Geometrias de Setores Anular e Circular	077
4.1.2.2. Geometria Anular Concêntrica	078
4.1.2.3. Geometria Bicônica	078
4.1.3. Aplicação da TTIG	079
4.1.3.1. Geometrias de Setores Anular e Circular	079
4.1.3.2. Geometria Anular Concêntrica	082
4.1.3.3. Geometria Bicônica	085
4.2. Parâmetros Físicos de Interesse	087
4.2.1. Velocidade Adimensional Média	087
4.2.2. Velocidade Adimensional em Termos da Velocidade Média	087
4.2.3. Fator de Atrito de <i>Fanning</i>	088
4.2.4. Número de <i>Poiseuille</i>	088
4.2.5. Fator de <i>Hagenbach</i>	088
4.2.6. Comprimento de Entrada Hidrodinâmico	089
4.2.7. Queda de Pressão	089
4.3. Resultados & Discussão	090
4.3.1. Análise de Convergência em Função da Ordem de Truncamento da Série	090
4.3.1.1. Geometria de Setor Anular	091
4.3.1.2. Geometria de Setor Circular	091
4.3.1.3. Geometria Anular Concêntrica	092
4.3.1.4. Geometria Bicônica	092
4.3.2. Parâmetros Físicos de Interesse	093
4.3.2.1. Geometria de Setor Anular	093
4.3.2.2. Geometria de Setor Circular	132
4.3.2.3. Geometria Anular Concêntrica	137
4.3.2.4. Geometria Bicônica	140
4.3.3. Comparação de Resultados	144
4.3.3.1. Geometria de Setor Anular	144
4.3.3.2. Geometria de Setor Circular	149
4.3.3.3. Geometria Anular Concêntrica	153

5. Problemas Difusivo-Convectivos	
5.1. Formulação Matemática	
5.1.1. Adimensionalização	
5.1.2. Transformação de Coordenadas	
5.1.2.1. Geometrias de Setores Anular e Circular	
5.1.2.2. Geometria Anular Concêntrica	

Sumário

5.1.2.3. Geometria Bicônica	160
5.1.3. Aplicação da TTIG	
5.1.3.1. Geometria de Setores Anular e Circular	
5.1.3.2. Geometria Anular Concêntrica	
5.1.3.3. Geometria Bicônica	
5.2. Parâmetros Físicos de Interesse	
5.2.1. Temperatura Média de Mistura	
5.2.2. Número de <i>Nusselt</i>	
5.2.3. Comprimento de Entrada Térmica	
5.3. Resultados & Discussão	
5.3.1. Análise de Convergência em Função dos Termos da Série	
5.3.1.1. Geometria de Setor Anular	
5.3.1.2. Geometria de Setor Circular	
5.3.1.3. Geometria Anular Concêntrica	173
5.3.1.4. Geometria Bicônica	173
5.3.2. Parâmetros Físicos de Interesse	
5.3.2.1. Geometria de Setor Anular	
5.3.2.2. Geometria de Setor Circular	
5.3.2.3. Geometria Anular Concêntrica	
5.3.2.4. Geometria Bicônica	
5.3.3. Comparação de Resultados	
5.3.3.1. Geometria de Setor Anular	
5.3.3.2. Geometria de Setor Circular	
5.3.3.3. Geometria Anular Concêntrica	
6. Conclusões	227
7. Referências Bibliográficas	229
A. Análise de Convergência	
A.1. Problemas Hidrodinâmicos	
A.1.1. Geometria de Setor Anular	
A.1.2. Geometria de Setor Circular	
A.1.3. Geometria Anular Concêntrica	255
A.1.4. Geometria Bicônica	
A.2. Problemas Difusivo-Convectivos	
A.1.1. Geometria de Setor Anular	
A.1.2. Geometria de Setor Circular	
A.1.3. Geometria Anular Concêntrica	272
A.1.4. Geometria Bicônica	

Sumário

B. Parâmetros Hidrodinâmicos	
B.1. Geometria de Setor Anular	
B.2. Geometria de Setor Circular	
B.3. Geometria Anular Concêntrica	
B.4. Geometria Bicônica	

C. Parâmetros Térmicos	
C.1. Geometria de Setor Anular	
C.2. Geometria de Setor Circular	
C.3. Geometria Anular Concêntrica	
C.4. Geometria Bicônica	

Capítulo 3

3.1.	Curva C e sua imagem S	027
3.2.	Curva C_1 e C_2 e suas respectivas imagem S_1 e S_2	028
3.3.	Transformação do domínio de setor anular no plano (x,y) para o plano (u,v)	030
3.4.	Geometria de setor anular gerada através da Transformação Conforme dada pela	
	Eq. (3.128)	031
3.5.	Transformação do domínio de setor circular no plano (x,y) para o plano (u,v)	032
3.6.	Geometria de setor circular gerada através da Transformação Conforme dada pela	
	Eq. (3.128)	032
3.7.	Transformação do domínio anular concêntrico no plano (x,y) para o plano (u,v)	033
3.8.	Geometria anular concêntrica gerada através da Transformação Conforme dada pela	
	Eq. (3.128)	033
3.9.	Transformação do domínio bicônica no plano (<i>x</i> , <i>y</i>) para o plano (<i>u</i> , <i>v</i>)	034
3.10.	Geometria bicônica gerada através da Transformação Conforme dada pela Eq. (3.132)	035

Capítulo 4

4.1.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 5^{\circ}$	055
4.2.	Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 5^{\circ}$	056
4.3.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 10^{\circ}$	057
4.4.	Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 10^{\circ}$	058
4.5.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 15^{\circ}$	059
4.6.	Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 15^{\circ}$	060
4.7.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 30^{\circ}$	061
4.8.	Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 30^{\circ}$	062
4.9.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 45^{\circ}$	063
4.10.	Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 45^{\circ}$	064

4.11.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 60^{\circ}$	065
4.12.	Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 60^{\circ}$.066
4.13.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 90^{\circ}$	067
4.14.	Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 90^{\circ}$.068
4.15.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 120^{\circ}$	069
4.16.	Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 120^{\circ}$.070
4.17.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 150^{\circ}$	071
4.18.	Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 150^{\circ}$.072
4.19.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 180^{\circ}$	073
4.20.	Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 180^{\circ}$.074
4.21.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 210^{\circ}$	075
4.22.	Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 210^{\circ}$.076
4.23.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 240^{\circ}$	077
4.24.	Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 240^{\circ}$.078
4.25.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 270^{\circ}$	079
4.26.	Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 270^{\circ}$.080
4.27.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 300^{\circ}$.081
4.28.	Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 300^{\circ}$.082
4.29.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 330^{\circ}$	083
4.30.	Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 330^{\circ}$.084
4.31.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 350^{\circ}$	085
4.32.	Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 350^{\circ}$.086
4.33.	Comportamento do número de Poiseuille para o escoamento em dutos de setores anulares	.087
4.34.	Comportamento da velocidade adimensional média para o escoamento em dutos de setores anulares	.088
4.35.	Comportamento da velocidade adimensional máxima para o escoamento em dutos de setores anulares	.089
4.36.	Localização da posição da velocidade adimensional máxima para o escoamento em dutos de setores anulares	.090
4.37.	Comportamento do fator de Hagenbach para o escoamento em dutos de setores anulares	.091
4.38.	Comportamento do comprimento de entrada hidrodinâmico para o escoamento em dutos de setores anulares	.092
4.39.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores circulares	093
4.40.	Perfis de velocidades para o escoamento em dutos de setores circulares	094

4.41.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos anulares concêntricos	.098
4.42.	Perfis de velocidades para o escoamento em dutos anulares concêntricos	.099
4.43.	Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos bicônicos	.102
4.44.	Perfis de velocidades para o escoamento em dutos bicônicos	.103
4.45.	Localização da posição da velocidade adimensional máxima para o escoamento em dutos de setores circulares	.112

Capítulo 5

5.1.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 5^{\circ}$	136
5.2.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 5^{\circ}$	137
5.3.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 10^{\circ}$	138
5.4.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 10^{\circ}$	139
5.5.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 15^{\circ}$	140
5.6.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 15^{\circ}$	141
5.7.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 30^{\circ}$	142
5.8.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 30^{\circ}$	143
5.9.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 45^{\circ}$	144
5.10.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 45^{\circ}$	145
5.11.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 60^{\circ}$	146
5.12.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 60^{\circ}$	147
5.13.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 90^{\circ}$	148
5.14.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 90^{\circ}$	149
5.15.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 120^{\circ}$	150
5.16.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 120^{\circ}$	151
5.17.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 150^{\circ}$	152
5.18.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 150^{\circ}$	153
5.19.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 180^{\circ}$	154

5.20.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 180^{\circ}$	155
5.21.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 210^{\circ}$	156
5.22.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 210^{\circ}$	157
5.23.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 240^{\circ}$	158
5.24.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 240^{\circ}$	159
5.25.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 270^{\circ}$	160
5.26.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 270^{\circ}$	161
5.27.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 300^{\circ}$	162
5.28.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 300^{\circ}$	163
5.29.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 330^{\circ}$	164
5.30.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 330^{\circ}$	165
5.31.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 350^{\circ}$	166
5.32.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 350^{\circ}$	167
5.33.	Comportamento do número de Nusselt limite para o escoamento em dutos de setores anulares	168
5.34.	Comportamento do comprimento de entrada térmica o escoamento em dutos de setores anulares	169
5.35.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores circulares	171
5.36.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos de setores circulares	173
5.37.	Evolução dos parâmetros térmicos para o escoamento em dutos anulares concêntricos	174
5.38.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos anulares concêntricos	175
5.39.	Evolução dos parâmetros térmicos para o escoamento em dutos bicônicos	176
5.40.	Comportamento do número de <i>Nusselt</i> limite e do comprimento de entrada térmica para o escoamento em dutos bicônicos	178
5.41.	Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 1,00$	182
5.41.	Evolução dos parâmetros térmicos para o escoamento em dutos de circulares com temperatura prescrita na parede	185

Letras Latinas

а	Coeficiente do operador de contorno
a_{ij}^*	Coeficiente da matriz do sistema de EDO
A	Matriz do sistema de EDO
A_i	Coeficiente do termo transformado
A _{ij}	Coeficiente do termo não-transformado
A_S	Área da seção transversal do duto [m ²]
A_S^*	Área adimensionalizada da seção transversal do duto
b	Coeficiente do operador de contorno
В	Operador diferencial
B _{ij}	Coeficiente do termo transformado
B _{ijmn}	Coeficiente do termo não-transformado
c _p	Calor específico a pressão constante [kJ/kg.K]
d	Coeficiente de dissipação do operador diferencial L
D_h	Diâmetro hidráulico [m]
f	Fator de atrito de Fanning
f	Condição inicial do sistema de EDO

\bar{f}_i	Coeficiente do vetor inicial f
g	Vetor fonte do sistema de EDO
g_i	Coeficiente do vetor fonte g
\overline{g}_i	Termo transformado
\widetilde{g}_{ij}	Termo transformado
\widetilde{g}_{im}	Termo transformado
h _u	Coeficiente métrico do sistema de coordenadas transformado
h_{v}	Coeficiente métrico do sistema de coordenadas transformado
Н	Função definida
J	Jacobiano da transformação do sistema de coordenadas
k	Coeficiente do termo difusivo na equação da difusão
k	Condutividade térmica [W/m.K]
Κ	Número de incremento na queda de pressão
$K(\infty)$	Fator de Hagenbach
K _d	Fator de correção no fluxo da quantidade de movimento
K _e	Fator de correção de energia cinética
K _i	Autofunções normalizadas relativas às autofunções ψ_i
L	Operador diferencial
L _{hy}	Comprimento de entrada hidrodinâmico
L_{hy}^+	Comprimento de entrada hidrodinâmico adimensional
L _{th}	Comprimento de entrada térmica
М	Ordem de truncamento da expansão
M_{j}	Norma das autofunções ϕ_j
M_m	Norma das autofunções ϕ_m

N	Ordem de truncamento da expansão
N_i	Norma das autofunções ψ_i
Nu	Número de Nusselt
$Nu(\infty)$	Número de Nusselt limite
Nu_1	Número de Nusselt local 1
Nu_2	Número de Nusselt local 2
Nu _{1méd}	Número de Nusselt médio 1
Nu _{2 méd}	Número de Nusselt médio 2
$Nu_{2m\acute{e}d}^*$	Número de Nusselt médio 2 analítico
р	Pressão [Pa]
Р	Termo fonte na equação da difusão
Pe	Número de Pèclet
Per	Perímetro do duto [m]
Per*	Perímetro adimensional do duto
Ро	Número de Poiseuille
\dot{q}	Taxa de transferência de calor entre o fluido e a superfície do duto [W]
r	Variável raio dos dutos [m]
r*	Razão de aspecto
r _i	Raio interno dos dutos [m]
r _e	Raio externo dos dutos [m]
Re	Número de Reynolds
S	Comprimento de arco [m]
t	Variável tempo [s]
Т	Potencial temperatura [K]
T _{méd}	Temperatura média [K]

T_0	Temperatura de entrada do fluido [K]
T_p	Temperatura prescrita na parede do duto [K]
$\overline{T_i}$	Potencial transformado
\overline{T}_{ijk}	Potencial transformando do problema tridimensional
$\widetilde{\overline{T}}_{im}$	Potencial transformado
u	Coordenada do sistema transformado
и	Vetor velocidade do termo convectivo na equação da difusão
<i>u</i> ₀	Parâmetro que define contorno no plano (u, v)
v	Vetor velocidade do fluido [m/s]
v	Coordenada do sistema transformado
v ₀	Parâmetro que define contorno no plano (u, v)
$\overline{V_i}$	Potencial transformado
$\widetilde{\overline{V}}_{ij}$	Potencial transformado
W	Coeficiente do termo transiente na equação da difusão
W	Componente axial da velocidade do fluido [m/s]
W _{máx}	Velocidade máxima do fluido [m/s]
W _{méd}	Velocidade média do fluido [m/s]
W	Componente adimensional axial da velocidade do fluido
W^*	Velocidade adimensional do fluido em termos da velocidade média
W [*] _{máx}	Velocidade adimensional máxima do fluido em termos da velocidade média
W _{máx}	Velocidade adimensional máxima do fluido
W _{méd}	Velocidade adimensional média do fluido
$\overline{W_i}$	Potencial velocidade adimensional transformado

$\widetilde{\overline{W}}_{ij}$	Potencial velocidade adimensional transformado
x	Coordenada espacial [m]
<i>x</i> ₀	Parâmetro que define contorno no plano (x, y) [m]
x^+	Coordenada espacial adimensional
X	Coordenada espacial adimensional
X_i	Autofunções normalizadas do problema tridimensional
У	Coordenada espacial [m]
у	Vetor solução do sistema de EDO
\mathcal{Y}_0	Parâmetro que define contorno no plano (x, y) [m]
Y	Coordenada espacial adimensional
Y_j	Autofunções normalizadas do problema tridimensional
Ζ	Coordenada espacial [m]
Ζ	Coordenada espacial adimensional
Z_{j}	Autofunções normalizadas relativas às autofunções ϕ_j
Z_k	Autofunções normalizadas do problema tridimensional

Letras Gregas

Δp^*	Queda de pressão
ϕ_j	Autofunções relativa à coordenada v
ϕ_m	Autofunções relativa à coordenada v
Φ	Vetor função potencial
arphi	Função genérica no operador de contorno
η	Componente normal a uma dada superfície
λ_{j}	Autovalores associados as autofunções ϕ_j

λ_m	Autovalores associados as autofunções ϕ_m
Г	Contorno dos dutos
μ	Viscosidade dinâmica do fluido [N.s/m ²]
μ_i	Autovalores associado a autofunção ψ_i
θ	Potencial temperatura adimensional
$\theta_{m\acute{e}d}$	Temperatura adimensional média de mistura
$\overline{ heta}_i$	Potencial temperatura adimensional transformado
$\widetilde{\overline{ heta}}_{im}$	Potencial temperatura adimensional transformado
Θ	Ângulo de abertura dos dutos [°]
ρ	Massa específica do fluido [kg/m ³]
$\tau_{p,m\acute{e}d}$	Tensão de cisalhamento média na parede do duto $[N/m^2]$
\varOmega	Domínio referente à área de seção transversal dos dutos
ψ_i	Autofunções relativas à coordenada u
ζ	Variável complexa no plano (x, y)
ω	Variável complexa no plano (u, v)

Símbolos Especiais

∇	Operador Nabla
∂	Operador Del
$\langle \rangle$	Produto Interno

Sobrescritos

_	Transformação Integral em relação à coordenada u
~	Transformação Integral em relação à coordenada v

Subscritos

i	Ordem do autovalor e de funções relacionadas
j	Ordem do autovalor e de funções relacionadas
k	Ordem do autovalor e de funções relacionadas
т	Ordem do autovalor e de funções relacionadas
n	Ordem do autovalor e de funções relacionadas

Lista de Abreviações e Siglas

Abreviações

EDO	Equações Diferencias Ordinárias
EDP	Equações Diferencias Parciais
TC	Transformação Conforme
TTIC	Técnica da Transformada Integral Clássica
TTIG	Técnica da Transformada Integral Generalizada

Siglas

ABCM	Associação Brasileira de Engenharia e Ciências Mecânicas
Coppe	Coordenação dos Programas de Pós-Graduação de Engenharia
DEM	Departamento de Engenharia Mecânica
FE/IS	Faculdade de Engenharia de Ilha Solteira
FEM	Faculdade de Engenharia Mecânica
ITA	Instituto Tecnológico de Aeronáutica
PPGEM	Programa de Pós-Graduação em Engenharia Mecânica
UFC	Universidade Federal do Ceará
UFRJ	Universidade Federal do Rio de Janeiro
Unesp	Universidade Estadual Paulista "Júlio de Mesquita Filho"
Unicamp	Universidade Estadual de Campinas

Capítulo 1 Introdução

1

Introdução

1.1. Considerações Gerais

Desde os primórdios da humanidade, o homem sempre buscou retirar suas concepções e idéias em relação ao seu *habitat*, a partir da observação e compreensão dos fenômenos naturais. Graças ao espírito inquiridor de pensadores que defendiam arduamente uma descrição quantitativa e dedutiva desses fenômenos em detrimento às descrições apenas qualitativas e factuais da natureza, as ciências físicas progrediram substancialmente.

A Mecânica é um ramo das ciências físicas que está associada com o estado de inércia de corpos submetidos à ação de forças. Ela é a mais antiga e importante das ciências físicas. Suas origens históricas se confundem com o surgimento da Engenharia. Pesquisas científicas e avanços tecnológicos na área de ciências exatas estão fortemente vinculados aos princípios básicos da Mecânica. Estes princípios incorporam o rigor da Matemática e da Física, das quais são altamente dependentes, e são empregados em muitas áreas da Engenharia.

Neste contexto, uma importante linha de pesquisa no meio científico-tecnológico é a obtenção de técnicas e procedimentos que possibilitem a interpretação mais realista possível dos fenômenos naturais, proporcionando assim, resultados precisos e confiáveis. Em particular, a solução de problemas difusivos e difusivo-convectivos sempre representou um grande desafio à Engenharia Mecânica, uma vez que, as equações diferenciais fundamentais que regem os princípios de conservação são, via de regra, de difícil solução.

Com a evolução dos equipamentos e das ferramentas computacionais ocorrida nas últimas décadas, diversas técnicas e metodologias numéricas foram propostas e desenvolvidas para a obtenção de soluções mais precisas de problemas que apresentavam estruturas complexas. Entretanto, essas técnicas apresentam certas desvantagens, tais como: um esforço computacional muito grande, longo tempo de processamento, instabilidade numérica, convergência mais lenta e dificuldades na elaboração de algoritmos numéricos.

Capítulo 1 Introdução

Recentemente, as técnicas híbridas analítico-numéricas vêm ganhando destaque em diversas áreas de interesse da Engenharia por garantirem precisão e confiabilidade nos resultados por elas obtidos. Em particular, a Técnica da Transformada Integral Generalizada – TTIG (COTTA, 1998), é uma ferramenta com estas características e vêm demonstrando ser eficaz na solução de problemas de Mecânica dos Fluidos e Transferência de Calor e Massa, os quais, geralmente, não possuem solução pelas técnicas analíticas clássicas. A TTIG permite um tratamento analítico elegante e formal proporcionando um menor esforço numérico-computacional para a obtenção de solução de problemas.

1.2. Motivação

Como mencionado anteriormente, as técnicas numéricas apresentam, de maneira geral, uma estrutura que permite a obtenção de resultados, mesmo que aproximados, para problemas mais complexos. Apesar das dificuldades decorrentes do enorme esforço computacional, da instabilidade numérica e da convergência mais lenta, estas técnicas se desenvolveram rapidamente, uma vez que atendem satisfatoriamente as necessidades do engenheiro e/ou do projetista. Porém, diversos pesquisadores estão concentrando seus esforços no desenvolvimento de estruturas analíticas e/ou híbridas analítico-numérica que permitam a solução destes problemas com um alto grau de confiabilidade e um menor esforço computacional.

Neste contexto, propõe-se para o presente trabalho, a composição de duas ferramentas matemáticas para a obtenção de solução de uma classe de problemas difusivo-convectivos de difícil solução. Mais precisamente, analisa-se o problema de escoamento hidrodinamicamente desenvolvido e termicamente em desenvolvimento de fluidos *Newtonianos* em dutos cuja seção transversal apresenta um contorno de geometria não-convencional (bicônica e setor anular). Para facilitar a aplicação das condições de contorno, proceder-se-á uma mudança de variáveis através de um sistema de coordenadas que seja resultado de uma Transformação Conforme – TC. Este procedimento simplifica o tratamento dos operadores Laplacianos no novo sistema de coordenadas. Para a obtenção de solução das equações diferenciais que caracterizam os problemas hidrodinâmicos e térmicos utiliza-se a Transformada Integral.

Sendo assim, a grande motivação deste trabalho, reside justamente nesta composição, visto que permite um tratamento analítico formal e elegante e os resultados numéricos podem ser obtidos rapidamente, através de computadores pessoais comuns, com pouco esforço computacional.

1.3. Objetivos

O presente trabalho tem como objetivo a obtenção de solução de uma classe de problemas difusivo-convectivos em domínios de geometrias não-convencionais através da aplicação da Transformada Integral e da Transformação Conforme. Para tal, analisam-se os seguintes problemas:

1.3.1. Problemas Hidrodinâmicos

Determinação do perfil de velocidades, do fator de atrito de *Fanning*, do fator de *Hagenbach*, do número de *Poiseuille*, do comprimento de entrada hidrodinâmico e da queda de pressão, para o escoamento laminar interno hidrodinamicamente desenvolvido de fluidos *Newtonianos*.

1.3.2. Problemas Difusivo-Convectivos

Determinação da distribuição de temperatura, dos números de *Nusselt* local e médio e do comprimento de entrada térmica, para escoamento laminar hidrodinamicamente desenvolvido e termicamente em desenvolvimento, para fluidos *Newtonianos* no interior de dutos submetidos a condições de temperatura prescrita na parede e perfil de temperatura de entrada uniforme.

1.4. Organização do Trabalho

No Capítulo 2 apresenta-se um breve histórico da Transformada Integral e, uma revisão da literatura citando alguns trabalhos publicados recentemente referentes à aplicação da TTIG na solução de problemas na Engenharia.

O Capítulo 3 se dedica à apresentação dos fundamentos e formalismos matemáticos empregados na aplicação da TTIG e da Transformação Conforme.

No Capítulo 4, analisam-se os problemas hidrodinâmicos de escoamento laminar plenamente desenvolvido de fluidos *Newtonianos* no interior de dutos de geometrias não-convencionais.

O Capítulo 5 trata do estudo dos problemas difusivo-convectivos relacionados à transferência de calor do escoamento laminar hidrodinamicamente desenvolvido e termicamente em desenvolvimento de fluido *Newtonianos* no interior de dutos de geometrias

Capítulo 1 Introdução

não-convencionais submetidos a condições de contorno de *Dirichlet* e perfil de temperatura de entrada uniforme.

No Capítulo 6 efetuam-se as conclusões do trabalho e sugestões para futuras investigações.

No Apêndice A apresentam-se as tabelas provenientes da análise da taxa de convergência das séries resultantes da aplicação da TTIG na equação governante dos problemas estudados.

O Apêndice B fornece os resultados numéricos obtidos para o fator de atrito de *Fanning*, o número de *Poiseuille*, as velocidades adimensionais média e máxima, a posição da velocidade máxima, o fator de *Hagenbach* e o comprimento de entrada hidrodinâmico.

E, finalmente, no Apêndice C apresentam-se os resultados numéricos obtidos para a temperatura adimensional média de mistura e os números de *Nusselt* médio e local.

2

Transformada Integral: Histórico & Revisão da Literatura

2.1. Histórico

As premissas básicas que culminaram na concepção da Técnica da Transformada Integral foram sugeridas por Koshlyakov (1936). Entretanto, o desenvolvimento mais detalhado da teoria das transformações integrais foi realizado por Grinberg (1948), quando ele abordou a solução de uma classe de problemas de efeitos magnéticos e elétricos. Nesta mesma época, no Ocidente, apareceram os primeiros computadores, desenvolvidos prioritariamente para a execução de tarefas associadas ao cálculo numérico avançado, proveniente de inúmeros problemas de origem científico-tecnológica, utilizando a linguagem de programação *Formulae Translation – Fortran*. Pouco tempo mais tarde, durante a década de 1960 e início da de 1970, os conceitos da Transformada Integral já eram bem documentados em trabalhos científicos como os de Tranter (1962), Özisik (1968) e Sneddon (1972).

Além disso, devido à corrida tecnológica espacial os cientistas dos Estados Unidos e de alguns países da Europa Ocidental desenvolveram, com auxílio do computador, técnicas puramente numéricas de solução, como, por exemplo, Diferenças Finitas e Elementos Finitos, baseadas na discretização temporal e espacial das equações originais. Concomitantemente, nos países da Europa Oriental, principalmente na ex-URSS e na Bulgária, pesquisadores se concentraram no desenvolvimento de ferramentas analíticas, tal como a Técnica da Transformada Integral, buscando economizar ao máximo os recursos computacionais disponíveis nestes países, uma vez que os mesmos não eram tão abundantes quanto no Ocidente (ÖZISIK & MURRAY, 1974).

Durante a década de 1970, diversos pesquisadores norte-americanos, soviéticos e búlgaros trabalharam em conjunto visando desenvolver técnicas híbridas analítico-numéricas, que mesclassem as características positivas de cada abordagem do problema.

Em 1972, o Prof. *Aleksei Luikov* já afirmava, que a Técnica da Transformada Integral iria constituir numa das mais importantes ferramentas para a solução de equações parabólicas não-homogêneas (LUIKOV, 1972). Neste mesmo ano, *Mikhailov* deu uma contribuição definitiva para a consolidação da técnica ao propor um núcleo de transformação geral, unificando as diversas transformações individuais desenvolvidas até então, obtendo a solução geral para a equação da difusão linear em regiões finitas (MIKHAILOV, 1972).

Özisik & Murray (1974) desenvolveram uma nova técnica de características analíticonuméricas para a resolução de sistemas de equações diferenciais parciais – EDP, a princípio não tratáveis pela teoria clássica da Separação de Variáveis. Pela primeira vez, problemas de difusão com condições de contorno variáveis com a posição e com o tempo foram tratados pela teoria da Transformada Integral.

Outro trabalho que contribuiu indubitavelmente para a evolução da teoria da Transformada Integral foi publicado por *Mikhailov* em 1975. Neste trabalho, o referido autor tratou da solução de problemas difusivos com coeficientes dependentes do tempo, empregando um problema auxiliar de autovalor dependente do tempo. Aplicando o mesmo procedimento adotado por Özisik & Murray (1974), obteve um sistema infinito de equações diferenciais com coeficientes variáveis para o potencial transformado. Com estes trabalhos, as condições necessárias para o desenvolvimento de uma nova metodologia capaz de solucionar problemas de difusão, até então, não solucionáveis pelas técnicas clássicas, foram criadas.

Mikhailov & Özisik (1984) lançaram o primeiro livro generalizando os formalismos matemáticos da Transformada Integral, que postulava um tratamento unificado, segundo sete classes de EDP que foram definidas partindo de inúmeros problemas de transferência de calor e massa disponíveis na literatura. Desta forma, sistematizaram os conceitos da Transformada Integral para a solução de uma grande variedade de problemas lineares difusivos e difusivo-convectivos.

Durante a década de 1980, foi observada uma série de extensões da Transformada Integral para a resolução de diversos problemas abordados que anteriormente eram resolvidos apenas por métodos puramente numéricos, tais como: Diferenças Finitas, Elementos Finitos, Volumes Finitos e suas variações.

Comparando as características da abordagem da Transformada Integral com as técnicas genuinamente numéricas, observou-se o surgimento de inúmeras vantagens (COTTA, 1993b):

a) Metodologia sistemática de solução;

- b) Redução do tempo de processamento;
- c) Controle prescrito de erro;
- d) Aceleração da taxa de convergência numérica;
- e) Inexistência de malhas (fator que se acentua para os problemas multidimensionais);
- f) Obtenção de soluções *benchmark*;
- g) Determinação numérica direta da função em um ponto (para valores definidos de tempo e espaço) sem necessidade de cálculo numérico de estados temporais anteriores ou de outros pontos do domínio do espaço;
- h) Versatilidade do método em se associar com outros, devido às suas características analítico-numéricas.

Apesar do avanço da Transformada Integral para a solução de vários tipos de problemas, esta técnica ainda tinha aplicações limitadas. Uma limitação era a obtenção de uma solução exata de um determinado problema, caso não fosse possível à transformação de alguns termos, mesmos quando esses eram lineares.

O Prof. *Renato Machado Cotta*, em 1993, publicou um livro (COTTA, 1993b) onde apresentou uma revisão dos formalismos clássicos, estendidos com ênfase para a solução de problemas não-lineares e fortemente acoplados e, propôs técnicas para melhorar a eficiência da solução numérica, consolidando, assim, a Técnica da Transformada Integral Generalizada – TTIG. Posteriormente elaborou um segundo livro específico para aplicações da TTIG em problemas difusivos e difusivo-convectivos (COTTA, 1998).

Na aplicação da TTIG, é importante a escolha dos problemas auxiliares que tenham a melhor correspondência possível com o fenômeno estudado. Desta maneira, Mikhailov & Cotta (1994) utilizaram a TTIG para transformar problemas de autovalores caracterizados por EDP, mais complexas e realistas em relação ao problema físico original, em sistemas com equações algébricas, mais simples e de mais fácil resolução. A partir da comparação com resultados obtidos em trabalhos de outros autores, observou-se que, através deste procedimento, a técnica também apresenta bons resultados quando utilizada nesta aplicação.

Com o objetivo de aperfeiçoar o processo de resolução de equações pela TTIG, Mikhailov & Cotta (1996) propuseram converter somatórias duplas e triplas de funções em somatórias simples que usualmente aparecem quando da aplicação da TTIG, permitindo a eliminação de termos redundantes sem comprometer a precisão do método.

Nestes últimos anos observa-se que, devido a sua estrutura híbrida analítico-numérica, a TTIG vem evoluindo de tal forma que hoje pode ser considerada como uma ferramenta poderosa para a solução de problemas difusivos e difusivo-convectivos.

2.2. Revisão Bibliográfica

Apresentam-se a seguir, alguns trabalhos publicados pela comunidade científica que contribuíram para o desenvolvimento e disseminação da TTIG como uma importante ferramenta na solução de diversos problemas da Engenharia.

2.2.1. Problemas Multidimensionais e de Geometria Não-Convencional

Aparecido (1988), Aparecido *et al.* (1989) e Aparecido & Cotta (1990a, 1992), realizam a solução de problemas elípticos e parabólicos para escoamento de fluidos em dutos de seção triangular e hexagonal. Maia (2003) e Pelegrini (2005) apresentam a solução de problemas difusivos com propriedades termofísicas variáveis em geometrias elípticas e bicôncavas. Problemas de aletas longitudinais com seção variável foram solucionados por Aparecido & Cotta (1990b), Ramos (1993) e Cotta & Ramos (1998). Maia *et al.* (2005) estudaram o problema envolvido na transferência de calor no escoamento pistonado em dutos elípticos. Para a obtenção de solução de problemas tridimensionais em geometrias convencionais destacam-se os trabalhos de Mikhailov & Cotta (1996), Serfaty (1997), Neto *et al.* (2001), Meijas & Orlande (2001) e Neves (2003).

2.2.2. Problemas de Desenvolvimento Simultâneo e de Camada Limite

A solução de problemas que envolvem desenvolvimento simultâneo, camada limite e a equação de *Navier-Stokes*, tanto para escoamento laminar como para escoamento turbulento, foi apresentada nos seguintes trabalhos: Özisik *et al.* (1989), Campos Silva (1990), Cotta & Carvalho (1991), Pérez Guerrero & Cotta (1992), Campos Silva *et al.* (1992), Lage & Rangel (1994), Machado & Cotta (1995), Bolívar *et al.* (1996), Brown *et al.* (1997), Lima *et al.* (1997), Cotta & Pimentel (1998), Ramos (1999), Macêdo *et al.* (2000), Magno *et. al.* (2002), Santos *et al.* (2002) e Cenedese (2005).

2.2.3. Problemas de Condições de Contorno Variáveis e Fronteira Móveis

Cotta & Özisik (1986a) trataram do problema de escoamento laminar em dutos circulares e canais de placas paralelas, com condições de temperatura de parede variando com o tempo. Cotta (1986) apresentou a solução formal para um problema geral de difusão com condições de contorno que possuem parâmetros dependendo de uma das coordenadas. Para dutos e canais de mesma geometria, Cotta & Özisik (1986b) encontraram a solução do

problema com variações periódicas da temperatura na entrada. Problemas com condições de contorno variável na direção axial foram analisados por Vick & Wells (1986), Kim & Özisik (1987) e Santos *et al.* (1991), que entre outras análises, utilizaram uma variação periódica na forma de degraus do coeficiente de transferência de calor, permitindo, assim, a simulação de dutos aletados externamente. As soluções de problemas que envolvem mudança de fase e ablação foram apresentadas por Bogado Leite *et al.* (1980), Ruperti *et al.* (1992), Diniz *et al.* (1999, 2005) e Gomes (2005).

2.2.4. Outras Aplicações

Problemas de transferência de massa foram estudados em Macêdo et al. (2000b) e Antonio (2005). Problemas de transferência de calor e massa simultâneos foram apresentados em Ribeiro et al. (1993), Ribeiro & Cotta (1995), Duarte et al. (1995), Andrade (1996) e Duarte & Ribeiro (1997). Em Baohua & Cotta (1993), Leal & Cotta (1997), Alves et al. (2002) e Cotta et al. (2003) foram analisados o problema de convecção natural em cavidades. Macêdo & Quaresma (1997), Quaresma & Macêdo (1998) e Nascimento et. al. (2002) calcularam os parâmetros de transferência de calor para escoamento de fluidos de Herschel-Bulkley e de Bingham em canais de placas planas, dutos circulares e dutos anulares. Nos trabalhos de Maia et al. (2004, 2006) foi estudado o escoamento de fluidos Não-Newtonianos em dutos elípticos. Os parâmetros de transferência de calor em trocadores de calor duplo-tubo na região de desenvolvimento térmico foram determinados por Scofano Neto & Cotta (1992) e Cotta (1993a). Machado (1998) determinou os parâmetros termos-hidráulicos para escoamento compressível em canais de placas paralelas.
3

Fundamentação Teórica

Neste capítulo, apresentam-se os fundamentos e os formalismos matemáticos das técnicas aplicadas no presente trabalho, a saber: a Técnica da Transformada Integral Generalizada – TTIG e a Transformação Conforme – TC.

3.1. A Técnica da Transformada Integral Generalizada – TTIG

A Técnica da Transformada Integral Generalizada – TTIG vem sendo desenvolvida significativamente, pois é uma técnica que associa a precisão das técnicas analíticas a um custo computacional competitivo com a grande versatilidade das técnicas numéricas, consolidando-se como uma importante ferramenta híbrida analítico-numérica na solução de problemas de Transferência de Calor e Massa e Mecânica dos Fluidos.

A TTIG apresenta uma metodologia similar às idéias básicas da versão clássica da Transformada Integral, que por sua vez é uma extensão do método da Separação de Variáveis. Sendo que a distinção entre as técnicas se evidencia no fato de que através da Técnica da Transformada Integral Clássica – TTIC não era possível transformar um sistema de equações diferenciais parciais – EDP em um sistema de equações diferenciais ordinárias – EDO em razão de dificuldades de diversas naturezas, tais como: coeficientes variáveis nas equações governantes e/ou nas condições de contorno, geometrias não-convencionais, sistemas de autovalores não separáveis e/ou não-lineares.

As equações diferenciais que governam os processos difusivos e difusivo-convectivos dos problemas que serão tratados neste trabalho apresentam uma estrutura que, em geral, não permitem a obtenção de solução analítica pelas técnicas clássicas conhecidas. Neste sentido, para a obtenção de solução destes problemas aplica-se, como já mencionado anteriormente, a versão generalizada da Transformada Integral, a TTIG.

Para resolução de um problema utilizando o formalismo matemático da TTIG necessita-se de um par "transformada-inversa" da função potencial em termos de uma base ortogonal de autofunções proveniente de um problema auxiliar de autovalor escolhido apropriadamente, que incorpore características analíticas dos operadores do problema original. A eliminação de variáveis independentes, por meio de operadores adequados que promovem a remoção das derivadas parciais espaciais de segunda ordem, leva a obtenção de um sistema infinito de EDO acoplado e infinito, que é denominado sistema transformado. O sistema é, então, resolvido numericamente truncando-se a expansão em uma dada ordem que garanta a precisão desejada, no processo de reconstrução da função potencial. Este procedimento é que caracteriza a natureza híbrida analítico-numérica desta técnica.

Em síntese, a aplicação da TTIG envolve uma seqüência de procedimentos que pode ser sistematizada nas seguintes etapas:

 a) Escolher um problema auxiliar de autovalor, que guarde o máximo de informações do problema original relativo à geometria e aos operadores;

b) Desenvolver o par "transformada-inversa";

c) Transformar a EDP original, através do uso de operadores apropriados, em um sistema algébrico infinito ou EDO infinito e não-linear, que pode ou não ser acoplado;

d) Truncar e resolver o sistema de EDO, segundo a precisão pré-estabelecida;

e) Construir os potenciais originais, através do uso das fórmulas de inversão.

3.1.1. Metodologia

Considere um problema difusivo-convectivo multidimensional, transiente, não-linear e com termo fontes, definido em uma região Ω com superfície de contorno Γ , dado por:

$$w(\mathbf{x})\frac{\partial T(\mathbf{x},t)}{\partial t} + u(\mathbf{x},t,T) \cdot \nabla T(\mathbf{x},t) + LT(\mathbf{x},t) = P(\mathbf{x},t), \qquad \{\mathbf{x} \in \Omega, \quad t > 0\}, \quad (3.1)$$

 $\operatorname{com} w(x) > 0$.

As condições inicial e de contorno do referido problema são dadas por:

$$T(\mathbf{x},0) = f(\mathbf{x}), \qquad \{\mathbf{x} \in \Omega\}, \tag{3.2}$$

$$BT(\mathbf{x},t) = \varphi(\mathbf{x},t), \qquad \{\mathbf{x} \in \Gamma, t > 0\}.$$
(3.3)

Os operadores diferenciais L e B são definidos por:

$$L = -\nabla \cdot k(\mathbf{x})\nabla + d(\mathbf{x}), \qquad (3.4)$$

$$B = a(\mathbf{x}) + b(\mathbf{x})k(\mathbf{x})\frac{\partial}{\partial\eta}, \qquad (3.5)$$

sendo η a componente normal à superfície $\Gamma e k(x) > 0$.

A Equação (3.1) representa problemas definidos como de Classe I, por Mikhailov & Özisik (1984), e que são capazes de representar uma vasta quantidade de problemas difusivoconvectivos. Ressalta-se, que quando o termo convectivo u(x,t,T) se anula, a Eq. (3.1) representa problemas puramente difusivos. Quando o vetor u(x,t,T) é não-nulo, o problema apresentado é não transformável pela TTIC.

Para estabelecer o par transformada-inversa o potencial T(x,t) é escrito em termos de uma base ortogonal de autofunções provenientes do seguinte problema auxiliar de autovalor:

$$L \Psi_i(\mathbf{x}) = \mu_i^2 w(\mathbf{x}) \Psi_i(\mathbf{x}), \qquad \{ \mathbf{x} \in \Omega \},$$
(3.6)

$$B \Psi_i(\mathbf{x}) = 0, \qquad \{\mathbf{x} \in \Gamma, \quad t > 0\}.$$
(3.7)

Problemas representados pela Eq. (3.6) com a condição de contorno dada pela Eq. (3.7) são conhecidos como problemas de *Sturm-Liouville* (HONIG, 1978), sendo que as autofunções $\Psi_i(\mathbf{x})$ e os autovalores μ_i correspondentes são considerados conhecidos através da solução de tais equações. Nesse sentido, define-se o seguinte par transformada-inversa:

$$\overline{T}_{i}(t) = \int_{\Omega} w(\mathbf{x}) K_{i}(\mathbf{x}) T(\mathbf{x}, t) d\Omega, \qquad transformada, \qquad (3.8)$$

$$T(\mathbf{x},t) = \sum_{i=1}^{\infty} K_i(\mathbf{x})\overline{T}_i(t), \qquad inversa, \qquad (3.9)$$

sendo que o núcleo $K_i(\mathbf{x})$ representa as autofunções normalizadas e, é dado por:

$$K_i(\mathbf{x}) = \frac{\Psi_i(\mathbf{x})}{\sqrt{N_i}},\tag{3.10}$$

com a integral de normalização dada por:

$$N_i = \int_{\Omega} w(\mathbf{x}) \Psi_i^2(\mathbf{x}) d\Omega .$$
(3.11)

Obtém-se a Transformação Integral da equação diferencial que governa o problema efetuando-se o produto interno das autofunções normalizadas $K_i(\mathbf{x})$ com a Eq. (3.1). Por meio deste procedimento e utilizando-se das condições de contorno dadas pelas Eqs. (3.3) e (3.7) obtém-se que:

$$\frac{d\overline{T}_i(t)}{dt} + \int_{\Omega} K_i(\mathbf{x}) [\mathbf{u}(\mathbf{x},t,T) \cdot \nabla T(\mathbf{x},t)] d\Omega + \mu_i^2 \overline{T}_i(t) = \overline{g}_i(t), \qquad i = 1, 2, 3, \dots \quad (3.12)$$

com:

$$\overline{g}_{i}(t) = \int_{\Omega} K_{i}(\mathbf{x}) P(\mathbf{x}, t) d\Omega + \int_{\Gamma} k(\mathbf{x}) \left[K_{i}(\mathbf{x}) \frac{\partial T(\mathbf{x}, t)}{\partial \eta} - T(\mathbf{x}, t) \frac{\partial K_{i}(\mathbf{x})}{\partial \eta} \right] d\Gamma .$$
(3.13)

Utilizando-se da fórmula de inversão, Eq. (3.9), o termo não-transformável da Eq. (3.12) é reescrito como:

$$\int_{\Omega} K_i(\mathbf{x}) [\mathbf{u}(\mathbf{x}, t, T) \cdot \nabla T(\mathbf{x}, t)] d\Omega = \sum_{j=1}^{\infty} a_{ij}^*(t, T) \overline{T}_j(t), \qquad (3.14)$$

$$a_{ij}^{*}(t,T) = \int_{\Omega} K_{i}(\mathbf{x}) \left[u(\mathbf{x},t,T) \cdot \nabla K_{j}(\mathbf{x}) \right] d\Omega .$$
(3.15)

Dessa maneira, a Eq. (3.12) pode ser simplificada da seguinte forma:

$$\frac{d\overline{T}_{i}(t)}{dt} + \sum_{j=1}^{\infty} a_{ij}(t,T)\overline{T}_{i}(t) = \overline{g}_{i}(t), \qquad i = 1, 2, 3, \dots$$
(3.16)

com

$$a_{ij}(t,T) = \delta_{ij} \,\mu_i^2 + a_{ij}^*(t,T), \qquad (3.17)$$

$$\delta_{ij} = \begin{cases} 0, \ i \neq j \\ 1, \ i = j \end{cases}$$
(3.18)

A Transformação Integral da Eq. (3.1), como descrito anteriormente, exige também a Transformação Integral da condição inicial. Operando-se sobre a Eq. (3.2) com o operador $\int_{\Omega} w(\mathbf{x}) K_i(\mathbf{x}) d\Omega$, têm-se que:

$$\overline{T}_{i}(0) = \overline{f}_{i} = \int_{\Omega} w(\mathbf{x}) K_{i}(\mathbf{x}) f(\mathbf{x}) d\Omega.$$
(3.19)

Portanto, nota-se que a Eq. (3.16) representa um sistema infinito de EDO, acoplado e não-linear para os potenciais transformados $\overline{T_i}(t)$. Para obtenção de solução numérica, truncase a expansão do potencial T(x,t) para uma dada ordem N suficientemente alta a fim de garantir a exatidão desejada. Na forma matricial, o sistema truncado de ordem N é reescrito como

$$\frac{d\mathbf{y}(t)}{dt} + \mathbf{A}(t, \mathbf{y}) \mathbf{y}(t) = \mathbf{g}(t), \qquad \{t > 0\}, \qquad (3.20)$$

$$y(0) = f$$
, (3.21)

com:

$$\mathbf{y}(t) = \left\{\overline{T}_1(t), \ \overline{T}_2(t), \dots, \overline{T}_N(t)\right\}^T,$$
(3.22)

$$\boldsymbol{A}(t,\boldsymbol{y}) = \left\{ \boldsymbol{a}_{i\,j}(t,T) \right\}^{T}, \qquad (3.23)$$

$$\boldsymbol{g}(t) = \{ \overline{g}_1(t), \overline{g}_2(t), \dots, \overline{g}_N(t) \}^T, \qquad (3.24)$$

$$\boldsymbol{f} = \left\{ \bar{f}_1, \bar{f}_2, \dots, \bar{f}_N \right\}^T.$$
(3.25)

Portanto, para aplicações multidimensionais, o problema de autovalor torna-se um sistema de EDP que é resolvido através de expansões ordinárias em cada uma das coordenadas espaciais relacionadas ao problema analisado. Por exemplo, para um problema que seja descrito em coordenadas cartesianas e que o operador difusivo *L* seja tridimensional, a função potencial poderá, então, ser dada na seguinte forma:

$$T(x, y, z, t) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} X_i(x) Y_j(y) Z_k(z) \overline{T}_{ijk}(t) , \qquad (3.26)$$

sendo que cada uma das somatórias está associada com a expansão do potencial em autofunções na coordenada espacial correspondente, sendo $X_i(x)$, $Y_j(y)$ e $Z_k(z)$ as autofunções normalizadas associadas aos respectivos problemas de autovalor.

Obtém-se o sistema de EDO para o potencial transformado $\overline{T}_{ijk}(t)$ quando se aplica a Transformação Integral a cada problema de autovalor, necessário para a remoção das derivadas espaciais de segunda ordem. Do ponto de vista computacional, obtém-se o potencial $\overline{T}_{ijk}(t)$ através da solução do sistema resultante, truncando-se cada uma das expansões em uma dada ordem. A ordem deste sistema corresponde ao número total de termos da série e é dado pelo produto de cada ordem truncada individualmente.

Existem inúmeros métodos de solução para problemas de valor inicial descritos pela Eq. (3.20). Particularmente, o integrador numérico *DIVPAG* da Biblioteca *IMSL Fortran* (1994) desenvolvido a partir do método de *GEAR*, demonstra-se ser uma ferramenta computacional poderosa para a obtenção de resultados numéricos de sistemas com esta estrutura. Após o cálculo dos potenciais transformados $\overline{T}_i(t)$, aplica-se a fórmula de inversão para a reconstrução do potencial $T(\mathbf{x},t)$ que é a base de cálculo dos diversos parâmetros físicos de interesse do problema original.

Estes procedimentos formais, que permitem a obtenção da solução híbrida analíticonumérica para a classe de problemas representados pela Eq. (3.1), constituem-se na base metodológica para a resolução dos problemas difusivo-convectivos propostos para o presente trabalho.

O conhecimento do procedimento analítico de remoção das derivadas parciais espaciais de segunda ordem presentes na equação dos problemas analisados e sua conseqüente transformação em um sistema de EDO, ou algébricas, para o potencial transformado é de capital importância. Com este propósito, apresenta-se detalhadamente na seção a seguir tal procedimento para um problema difusivo elíptico e para um problema difusivo-convectivo parabólico.

3.1.2. Remoção das Derivadas Parciais Espaciais pela TTIG

3.1.2.1. Problema Difusivo Elíptico

Considere um problema difusivo elíptico multidimensional definido pela seguinte equação e condições de contorno:

$$\frac{\partial^2 V(x,y)}{\partial x^2} + \frac{\partial^2 V(x,y)}{\partial y^2} = H(x,y), \qquad (3.27)$$

$$V(x, y) = 0, \qquad \{x = 0, \quad 0 \le y \le y_0\},$$
 (3.28)

$$V(x, y) = 0, \qquad \{x = x_0, \quad 0 \le y \le y_0\}, \qquad (3.29)$$

$$V(x, y) = 0, \qquad \{ 0 \le x \le x_0, \ y = 0 \}, \qquad (3.30)$$

$$V(x, y) = 0, \qquad \{ 0 \le x \le x_0, \ y = y_0 \},$$
 (3.31)

com a função H(x, y) e os parâmetros x_0 e y_0 conhecidos e bem definidos.

Em virtude da estrutura bidimensional da equação da quantidade de movimento, a Transformada Integral será aplicada com o auxílio de um problema de autovalor para cada coordenada. Em função das características apresentadas pelas condições de contorno do problema, define-se para a coordenada *x*, o seguinte problema auxiliar de autovalor:

$$\frac{d^2\psi(x)}{dx^2} + \mu^2\psi(x) = 0, \qquad \{0 < x < x_0\}, \qquad (3.32)$$

 $\psi(0) = 0$, $\psi(x_0) = 0$. (3.33a,b)

As autofunções e os autovalores associados ao problema são dados, respectivamente, por:

$$\psi_i(x) = sen(\mu_i x), \qquad (3.34)$$

$$\mu_i = \frac{i\pi}{x_0}, \qquad i = 1, 2, 3, \dots$$
(3.35)

As autofunções normalizadas associadas a este problema permitem o desenvolvimento do seguinte par transformada-inversa:

$$\overline{V}_{i}(y) = \int_{0}^{x_{0}} K_{i}(x)V(x,y)dx, \qquad transformada, \qquad (3.36)$$

$$V(x, y) = \sum_{i=1}^{\infty} K_i(x) \overline{V_i}(y), \qquad inversa, \qquad (3.37)$$

com

$$K_i(x) = \frac{\psi_i(x)}{\sqrt{N_i}}, \qquad (3.38)$$

$$N_i = \int_{0}^{x_0} \psi_i^2(x) dx = \frac{x_0}{2}.$$
 (3.39)

sendo N_i as integrais de normalização das autofunções $\psi_i(x)$.

Para a remoção da derivada parcial de segunda ordem em x, efetua-se o produto interno da autofunção normalizada $K_i(x)$ com a equação da quantidade de movimento, a Eq. (3.27). Dispõe-se ainda de uma relação auxiliar proveniente do produto interno do potencial V(x, y) com a equação que define o problema de autovalor, Eq. (3.32):

$$\langle K_i(x) | H(x,y) \rangle = \langle K_i(x) | \left[\frac{\partial^2 V(x,y)}{\partial x^2} + \frac{\partial^2 V(x,y)}{\partial y^2} \right] \rangle,$$
 (3.40)

$$\left\langle V(x,y) \left| \left[\frac{d^2 K_i(x)}{dx^2} + \mu_i^2 K_i(x) \right] \right\rangle = 0, \qquad i = 1, 2, 3, \dots$$
 (3.41)

onde, define-se o produto interno, para este problema, como:

$$\langle f(X) | F(X,Y) \rangle = \int_{0}^{X_0} f(X)F(X,Y)dX.$$
 (3.42)

Desenvolvendo e somando as Eqs. (3.40) e (3.41), obtém-se que:

$$\mu_i^2 \int_0^{x_0} K_i(x) V(x, y) dx - \int_0^{x_0} K_i(x) \frac{\partial^2 V(x, y)}{\partial y^2} dx = -\int_0^{x_0} K_i(x) H(x, y) dx + \overline{g}_i(y)$$
(3.43)

com:

$$\overline{g}_{i}(y) = \int_{0}^{x_{0}} \left[K_{i}(x) \frac{\partial^{2} V(x, y)}{\partial x^{2}} - V(x, y) \frac{d^{2} K_{i}(x)}{dx^{2}} \right] dx , \ i = 1, 2, 3, \dots$$
(3.44)

Fazendo uso da fórmula de inversão e das propriedades de ortogonalidade das autofunções, desenvolvem-se os dois termos integrais do membro esquerdo da Eq. (3.43) da seguinte maneira:

$$\mu_i^2 \int_0^{x_0} K_i(x) V(x, y) dx = \mu_i^2 \int_0^{x_0} K_i(x) \sum_{j=1}^{\infty} K_j(x) \overline{V_j}(y) dx = \mu_i^2 \overline{V_i}(y), \qquad (3.45)$$

$$\int_{0}^{x_{0}} K_{i}(x) \frac{\partial^{2} V(x, y)}{\partial y^{2}} dx = \int_{0}^{x_{0}} K_{i}(x) \sum_{j=1}^{\infty} K_{j}(x) \frac{\partial \overline{V}_{j}^{2}(y)}{\partial y} dx = \frac{\partial \overline{V}_{i}^{2}(y)}{\partial y^{2}}.$$
(3.46)

O primeiro termo do lado direito da Eq. (3.43) pode ser escrito como:

$$\int_{0}^{x_{0}} K_{i}(x) H(x, y) dx = A_{i}(y).$$
(3.47)

Desenvolvendo o termo transformado $\overline{g}_i(y)$ da Eq. (3.43) através da segunda identidade de *Green*, obtém-se que:

$$\overline{g}_{i}(y) = \int_{0}^{x_{0}} \left[K_{i}(x) \frac{\partial^{2} V(x, y)}{\partial x^{2}} - V(x, y) \frac{d^{2} K_{i}(x)}{dx^{2}} \right] dx = \left[K_{i}(x) \frac{\partial V(x, y)}{\partial x} - V(x, y) \frac{dK_{i}(x)}{dx} \right]_{x=0}^{x=x_{0}}, (3.48)$$

Da Equação (3.48), observa-se que o termo transformado $\overline{g}_i(y)$ é determinado pelas condições de contorno do problema difusivo e do problema auxiliar de autovalor. Como estas condições são homogêneas, conclui-se que $\overline{g}_i(y)$ se anula. Desta forma, a equação da quantidade de movimento transformada em x, é escrita como:

$$A_i(y) + \mu_i^2 \overline{V_i}(y) = \frac{\partial^2 \overline{V_i}(y)}{\partial y^2}$$
. $i = 1, 2, 3, ...$ (3.49)

Para proceder à Transformação Integral relativa a coordenada *y*, define-se o seguinte problema de autovalor:

$$\frac{d^2\phi(y)}{dy^2} + \lambda^2\phi(y) = 0, \qquad \{ 0 < y < y_0 \}, \qquad (3.50)$$

$$\phi(0) = 0$$
, $\phi(y_0) = 0$. (3.51a,b)

Os autovalores e autofunções associados a este problema são:

$$\phi_j(y) = sen(\lambda_j y), \qquad (3.52)$$

$$\lambda_j = \frac{j \pi}{y_0}, \qquad j = 1, 2, 3, \dots$$
 (3.53)

As autofunções normalizadas associadas a este problema são dadas por

$$Z_j(y) = \frac{\phi_j(y)}{\sqrt{M}_j},\tag{3.54}$$

$$M_{j} = \int_{0}^{y_{0}} \phi_{j}^{2}(y) dy = \frac{y_{0}}{2}, \qquad (3.55)$$

sendo M_j as integrais de normalização das autofunções $\phi_j(y)$.

Estas autofunções permitem o desenvolvimento do seguinte par transformada-inversa:

$$\widetilde{\overline{V}}_{ij} = \int_{0}^{y_0} Z_j(y) \overline{V}_i(y) dy, \qquad transformada, \qquad (3.56)$$

$$\overline{V}_{i}(y) = \sum_{j=1}^{\infty} Z_{j}(y) \widetilde{V}_{ij}, \qquad inversa.$$
(3.57)

Das Equações (3.36) e (3.37), o par transformada-inversa constituído através do segundo problema de autovalor, pode ser reescrito como:

$$\widetilde{\overline{V}}_{ij} = \int_{0}^{y_0 x_0} K_i(x) Z_j(y) V(x, y) dx dy, \qquad transformada, \qquad (3.58)$$

$$V(x, y) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} K_i(x) Z_j(y) \widetilde{V}_{ij}, \qquad inversa.$$
(3.59)

Para a remoção da derivada de segunda ordem na coordenada y da equação transformada, efetua-se o produto interno da autofunção normalizada $Z_j(y)$ pela Eq. (3.49). Uma equação auxiliar também é fornecida, efetuando-se o produto interno do potencial transformado $\overline{V_i}(y)$ pela equação do problema de autovalor correspondente, Eq. (3.50):

$$\left\langle Z_{j}(y) \mid \left[A_{i}(y) + \mu_{i}^{2} \overline{V_{i}}(y) \right] \right\rangle = \left\langle Z_{j}(y) \mid \frac{\partial^{2} \overline{V_{i}}(y)}{\partial y^{2}} \right\rangle,$$
 (3.60)

$$\left\langle \overline{V}_{i}(y) \middle| \left[\frac{d^{2}Z_{j}(y)}{dy^{2}} + \lambda_{j}^{2} Z_{j}(y) \right] \right\rangle = 0, \quad i, j = 1, 2, 3, \dots$$
(3.61)

Desenvolvendo e somando as Eqs. (3.54) e (3.55), obtém-se que:

$$\mu_{i}^{2} \int_{0}^{y_{0}} Z_{j}(y) \overline{V_{i}}(y) dy + \lambda_{j}^{2} \int_{0}^{y_{0}} Z_{j}(y) \overline{V_{i}}(y) dy = -\int_{0}^{y_{0}} Z_{j}(y) A_{i}(y) dy + \widetilde{g}_{ij}$$
(3.62)

com:

$$\widetilde{g}_{ij} = \int_{0}^{y_0} \left[Z_j(y) \frac{\partial^2 \overline{V_i}(y)}{\partial y^2} - \overline{V_i}(y, z) \frac{d^2 Z_j(y)}{dy^2} \right] dy .$$
(3.63)

Utilizando-se da fórmula de inversão, Eq. (3.57), e das propriedades de ortogonalidade das autofunções normalizadas $Z_j(y)$, desenvolvem-se os dois primeiros termo da Eq. (3.62) da seguinte maneira:

$$\mu_{i}^{2} \int_{0}^{y_{0}} Z_{j}(y) \overline{V_{i}}(y) dy = \mu_{i}^{2} \int_{0}^{y_{0}} Z_{j}(y) \sum_{k=1}^{\infty} Z_{k}(y) \overline{\widetilde{V}_{ik}} dy = \mu_{i}^{2} \overline{\widetilde{V}_{ij}}, \qquad (3.64)$$

$$\lambda_j^2 \int_0^{y_0} Z_j(y) \overline{V_i}(y) dy = \lambda_j^2 \int_0^{y_0} Z_j(y) \sum_{k=1}^{\infty} Z_k(y) \overline{\widetilde{V_i}}_k dy = \lambda_j^2 \widetilde{\widetilde{V_i}}_j.$$
(3.65)

O primeiro termo do membro direito da Eq. (3.62) pode ser determinado como:

$$\int_{0}^{y_0} Z_j(y) A_i(y) dy = \int_{0}^{y_0} \int_{0}^{x_0} K_i(x) Z_j(y) H(x, y) dy = B_{ij}.$$
(3.66)

Empregando o Teorema de *Green*, o coeficiente transformado \tilde{g}_{ij} é desenvolvido da seguinte maneira:

$$\widetilde{g}_{ij} = \left[Z_j(y) \frac{d\overline{V}_i(y)}{dy} - \overline{V}_i(y) \frac{dZ_j(y)}{dy} \right]_{y=0}^{|y=y_0|} = \left\{ Z_j(y) \left[\sum_{k=1}^{\infty} \frac{dZ_k(y)}{dy} \widetilde{V}_{ik} \right] - \left[\sum_{k=1}^{\infty} Z_k(y) \widetilde{V}_{ik} \right] \frac{dZ_j(y)}{dy} \right\}_{y=0}^{|y=y_0|}.$$
(3.67)

Novamente se observa que a relação dada pela Eq. (3.67) têm condições de contorno homogêneas. Neste sentido, o coeficiente \tilde{g}_{ij} se anula.

Dos resultados acima, a equação da quantidade de movimento transformada em x e y é dada, finalmente, por:

$$B_{ij} + \left(\mu_i^2 + \lambda_j^2\right) \widetilde{V}_{ij} = 0, \qquad i, j = 1, 2, 3, \dots$$
(3.68)

A Equação (3.68) gera um sistema infinito de equações algébricas para \tilde{V}_{ij} , visto que se trata de um problema em regime permanente e que a equação da quantidade de movimento não apresenta nenhum outro operador diferencial. Como todos os termos envolvidos neste problema são transformáveis, gera-se um sistema de equações desacoplado que permite a obtenção de solução analítica para o potencial transformado. Conseqüentemente, o potencial velocidade também apresenta solução analítica:

$$\widetilde{\widetilde{V}}_{ij} = -\frac{B_{ij}}{\mu_i^2 + \lambda_j^2},\tag{3.69}$$

$$V(x,y) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} K_i(x) Z_j(y) \widetilde{V}_{ij} = -\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{B_{ij}}{\mu_i^2 + \lambda_j^2} K_i(x) Z_j(y).$$
(3.70)

podendo assim, verificar que as derivadas parciais de segunda ordem da equação original foram removidas, como resultado da transformação em x e y.

Em síntese, este procedimento analítico exemplifica a remoção de derivadas parciais de ordem superior de um problema difusivo elíptico multidimensional, do ponto de vista clássico da Transformada Integral.

3.1.2.2. Problema Difusivo-Convectivo Parabólico

Considere o problema difusivo-convectivo parabólico multidimensional definido pela seguinte equação e condições de entrada e de contorno:

$$H(x,y)\frac{\partial T(x,y,z)}{\partial z} = \frac{\partial^2 T(x,y,z)}{\partial x^2} + \frac{\partial^2 T(x,y,z)}{\partial y^2},$$
(3.71)

$$T(x, y, 0) = T_0(x, y), \qquad \left\{ 0 \le x \le x_0, \quad 0 \le y \le y_0 \right\}, \tag{3.72}$$

$$T(x, y, z) = 0, \qquad \{x = 0, \quad 0 \le y \le y_0, \quad z > 0\},$$
 (3.73)

$$T(x, y, z) = 0, \qquad \{x = x_0, \quad 0 \le y \le y_0, \quad z > 0\},$$
 (3.74)

$$T(x, y, z) = 0, \qquad \{ 0 \le x \le x_0, y = 0, z > 0 \}, \qquad (3.75)$$

$$T(x, y, z) = 0, \qquad \{ 0 \le x \le x_0, \ y = y_0, \ z > 0 \}, \qquad (3.76)$$

com as funções H(x, y) e $T_0(x, y)$ e os parâmetros x_0 e y_0 conhecidos e bem definidos.

Em função das características apresentadas pelas condições de contorno do problema, define-se para a coordenada x, o seguinte problema auxiliar de autovalor:

$$\frac{d^2\psi(x)}{dx^2} + \mu^2\psi(x) = 0, \qquad \left\{ 0 < x < x_0 \right\}, \qquad (3.77)$$

$$\psi(0) = 0, \qquad \psi(x_0) = 0.$$
 (3.78a,b)

As autofunções e os autovalores associados a este problema são:

$$\psi_i(x) = sen(\mu_i x), \qquad (3.79)$$

$$\mu_i = \frac{i\pi}{x_0}, \qquad i = 1, 2, 3, \dots$$
(3.80)

As autofunções normalizadas associadas a este problema permitem o desenvolvimento do seguinte par transformada-inversa:

$$\overline{T}_{i}(y,z) = \int_{0}^{x_{0}} K_{i}(x)T(x,y,z)dx, \quad transformada, \quad (3.81)$$

$$T(x, y, z) = \sum_{i=1}^{\infty} K_i(x) \overline{T}_i(y, z), \qquad inversa, \qquad (3.82)$$

com:

$$K_i(x) = \frac{\psi_i(x)}{\sqrt{N_i}},$$
(3.83)

$$N_i = \int_0^{x_0} \psi_i^2(x) dx = \frac{x_0}{2}, \qquad (3.84)$$

sendo N_i as integrais de normalização das autofunções $\psi_i(x)$.

Para a remoção da derivada parcial de segunda ordem em x da equação da difusãoconvecção, efetua-se o produto interno da autofunção normalizada $K_i(x)$ com a equação da energia, a Eq. (3.71). Dispõe-se ainda de uma relação auxiliar proveniente do produto interno do potencial T(x, y, z) com a equação que define o problema de autovalor, Eq. (3.77):

$$\left\langle K_{i}(x) \mid \left[H(x,y) \frac{\partial T(x,y,z)}{\partial z} \right] \right\rangle = \left\langle K_{i}(x) \mid \left[\frac{\partial^{2} T(x,y,z)}{\partial x^{2}} + \frac{\partial^{2} T(x,y,z)}{\partial y^{2}} \right] \right\rangle, \quad (3.85)$$

$$\left\langle T(x, y, z) \middle| \left[\frac{d^2 K_i(x)}{dx^2} + \mu_i^2 K_i(x) \right] \right\rangle = 0, \qquad i = 1, 2, 3, \dots$$
 (3.86)

Desenvolvendo e somando as Eqs. (3.85) e (3.86), obtém-se que:

$$\mu_i^2 \int_0^{x_0} K_i(x) T(x, y, z) dx - \int_0^{x_0} K_i(x) \frac{\partial^2 T(x, y, z)}{\partial y^2} dx + \int_0^{x_0} K_i(x) H(x, y) \frac{\partial T(x, y, z)}{\partial z} dx = \overline{g}_i(y, z), (3.87)$$

com:

$$\overline{g}_i(y,z) = \int_0^{x_0} \left[K_i(x) \frac{\partial^2 T(x,y,z)}{\partial x^2} - T(x,y,z) \frac{d^2 K_i(x)}{dx^2} \right] dx.$$
(3.88)

Fazendo uso da fórmula de inversão e das propriedades de ortogonalidade das autofunções, desenvolvem-se os dois primeiros termos integrais do membro esquerdo da Eq. (3.87) da seguinte maneira:

$$\mu_{i}^{2}\int_{0}^{x_{0}}K_{i}(x)T(x,y,z)dx = \mu_{i}^{2}\int_{0}^{x_{0}}K_{i}(x)\sum_{j=1}^{\infty}K_{j}(x)\overline{T}_{j}(y,z)dx = \mu_{i}^{2}\overline{T}_{i}(y,z), \qquad (3.89)$$

$$\int_{0}^{x_{0}} K_{i}(x) \frac{\partial^{2} T(x, y, z)}{\partial y^{2}} dx = \int_{0}^{x_{0}} K_{i}(x) \sum_{j=1}^{\infty} K_{j}(x) \frac{\partial \overline{T}_{j}^{2}(v, z)}{\partial y^{2}} dx = \frac{\partial \overline{T}_{i}^{2}(y, z)}{\partial y^{2}}.$$
(3.90)

Desenvolve-se o terceiro termo da Eq. (3.97) de forma análoga:

$$\int_{0}^{x_{0}} K_{i}(x) H(x, y) \frac{\partial T(x, y, z)}{\partial z} dx = \int_{0}^{x_{0}} K_{i}(x) H(x, y) \sum_{j=1}^{\infty} K_{j}(x) \frac{\partial \overline{T}_{j}(y, z)}{\partial z} dx = \sum_{j=1}^{\infty} A_{ij}(y) \frac{\partial \overline{T}_{j}(y, z)}{\partial z},$$
(3.91)

$$A_{ij}(y) = \int_{0}^{x_0} K_i(x) K_j(x) H(x, y) dx. \qquad (3.92)$$

Desenvolvendo o termo transformado $\overline{g}_i(y,z)$ através da segunda identidade de *Green*, obtém-se que:

$$\overline{g}_i(y,z) = \left[K_i(x) \frac{\partial T(x,y,z)}{\partial x} - T(x,y,z) \frac{dK_i(x)}{dx} \right]_{x=0}^{x=x_0},$$
(3.93)

onde o coeficiente $\overline{g}_i(y,z)$ se anula uma vez que todas as condições de contorno do problema difusivo-convectivo e do problema auxiliar de autovalor são homogêneas.

Dos resultados acima obtidos, escreve-se a equação transformada da energia como:

$$\sum_{j=1}^{\infty} A_{ij}(y) \frac{\partial \overline{T}_j(y,z)}{\partial z} + \mu_i^2 \overline{T}_i(y,z) = \frac{\partial^2 \overline{T}_i(y,z)}{\partial y^2}.$$
(3.94)

Desta forma, removeu-se a derivada parcial de segunda ordem em *x*. Para proceder à Transformação Integral relativa a coordenada *y*, define-se o seguinte problema de autovalor:

$$\frac{d^2\phi(y)}{dy^2} + \lambda^2\phi(y) = 0, \qquad \{0 < y < y_0\}, \qquad (3.95)$$

$$\phi(0) = 0$$
, $\phi(y_0) = 0$. (3.96a,b)

As autofunções e os autovalores associados a este problema são:

$$\phi_m(y) = sen(\lambda_m y), \tag{3.97}$$

$$\lambda_m = \frac{m\pi}{y_0}, \qquad m = 1, 2, 3, \dots$$
 (3.98)

As autofunções normalizadas associadas a este problema são dadas por

$$Z_m(y) = \frac{\phi_m(y)}{\sqrt{M_m}},\tag{3.99}$$

$$M_m = \int_0^{y_0} \phi_m^2(y) dy = \frac{y_0}{2}, \qquad (3.100)$$

sendo M_m as integrais de normalização das autofunções $\phi_m(y)$.

Estas autofunções permitem o desenvolvimento do seguinte par transformada-inversa:

$$\widetilde{\overline{T}}_{im}(z) = \int_{0}^{y_0} Z_m(y) \overline{T}_i(y, z) dy, \qquad transformada, \qquad (3.101)$$

$$\overline{T}_{i}(y,z) = \sum_{m=1}^{\infty} Z_{m}(y) \widetilde{T}_{im}(z), \qquad inversa.$$
(3.102)

Das Equações (3.81) e (3.82), reescreve-se o par transformada-inversa como:

$$\widetilde{\overline{T}}_{im}(z) = \int_{0}^{y_0} \int_{0}^{x_0} K_i(x) Z_m(y) T(x, y, z) dx dy, \qquad transformada, \qquad (3.103)$$

$$T(x, y, z) = \sum_{i=1}^{\infty} \sum_{m=1}^{\infty} K_i(x) Z_m(y) \widetilde{\overline{T}}_{im}(z), \qquad inversa. \qquad (3.104)$$

Para a remoção da derivada de segunda ordem na coordenada y da equação transformada, efetua-se o produto interno da autofunção normalizada $Z_m(y)$ pela Eq. (3.94). Utilizando-se do mesmo procedimento adotado para a transformação na coordenada x, uma equação auxiliar também é fornecida, efetuando-se o produto interno do potencial transformado $\overline{T_i}(y,z)$ pela equação do problema de autovalor correspondente, Eq. (3.95):

$$\left\langle Z_{m}(y) \middle| \left[\sum_{j=1}^{\infty} A_{ij}(y) \frac{\partial \overline{T}_{j}(y,z)}{\partial z} + \mu_{i}^{2} \overline{T}_{i}(y,z) \right] \right\rangle = \left\langle Z_{m}(y) \middle| \left[\frac{\partial^{2} \overline{T}_{i}(y,z)}{\partial y^{2}} \right] \right\rangle, \quad (3.105)$$
$$\left\langle \overline{T}_{i}(y,z) \middle| \left[\frac{d^{2} Z_{m}(y)}{dy^{2}} + \lambda_{m}^{2} Z_{m}(y) \right] \right\rangle = 0, \quad m = 1, 2, 3, \dots \quad (3.106)$$

Desenvolvendo e somando as Eqs. (3.105) e (3.106), obtém-se:

$$\int_{0}^{y_{0}} Z_{m}(y) \sum_{j=1}^{\infty} A_{ij}(y) \frac{\partial \overline{T}_{j}(y,z)}{\partial z} dy + \mu_{i}^{2} \int_{0}^{y_{0}} Z_{m}(y) \overline{T}_{i}(y,z) dy + \lambda_{m}^{2} \int_{0}^{y_{0}} Z_{m}(y) \overline{T}_{i}(y,z) dy = \widetilde{g}_{im}(z)$$

$$(3.107)$$

com:

$$\widetilde{g}_{im}(z) = \int_{0}^{y_0} \left[Z_m(y) \frac{\partial^2 \overline{T}_i(y,z)}{\partial y^2} - \overline{T}_i(y,z) \frac{d^2 Z_m(y)}{dy^2} \right] dy.$$
(3.108)

Utilizando-se da fórmula de inversão, Eq. (3.102), e das propriedades de ortogonalidade das autofunções normalizadas $Z_m(y)$, desenvolve-se o primeiro termo da Eq. (3.107) da seguinte maneira:

$$\int_{0}^{y_{0}} Z_{m}(y) \sum_{j=1}^{\infty} A_{ij}(y) \frac{\partial \overline{T}_{j}(y,z)}{\partial z} dy = \int_{0}^{y_{0}} Z_{m}(y) \sum_{j=1}^{\infty} \int_{0}^{x_{0}} K_{i}(x) K_{j}(x) H(x,y) \sum_{n=1}^{\infty} Z_{n}(y) \frac{d \widetilde{\overline{T}}_{jn}(z)}{dz} dx dy =$$
$$= \sum_{j=1}^{\infty} \sum_{n=1}^{\infty} B_{ijmn} \frac{d \widetilde{\overline{T}}_{jn}(z)}{dz}, \qquad (3.109)$$

com:

$$B_{ijmn} = \int_{0}^{y_0} \int_{0}^{x_0} K_i(x) K_j(x) Z_m(y) Z_n(y) H(x, y) dx dy.$$
(3.110)

Os outros dois termos integrais do membro esquerdo da equação são desenvolvidos como segue:

$$\mu_{i}^{2} \int_{0}^{y_{0}} Z_{m}(y) \overline{T}_{i}(y,z) dy = \mu_{i}^{2} \int_{0}^{y_{0}} Z_{m}(y) \sum_{n=1}^{\infty} Z_{n}(y) \widetilde{T}_{in}(z) dy = \mu_{i}^{2} \widetilde{T}_{im}(z), \qquad (3.111)$$

$$\lambda_m^2 \int_0^{y_0} Z_m(y) \overline{T_i}(y, z) dy = \lambda_m^2 \int_0^{y_0} Z_m(y) \sum_{k=1}^{\infty} Z_k(y) \overline{\widetilde{T}_i}_k(z) dy = \lambda_m^2 \overline{\widetilde{T}_i}_m(z).$$
(3.112)

Empregando o Teorema de *Green*, desenvolve-se o coeficiente transformado $\tilde{g}_{im}(z)$ da seguinte maneira:

$$\widetilde{g}_{im}(z) = \left[Z_m(y) \frac{d\overline{T}_i(y,z)}{dy} - \overline{T}_i(y,z) \frac{dZ_m(y)}{dy} \right] \Big|_{y=0}^{y=y_0} = \left\{ Z_m(y) \left[\sum_{n=1}^{\infty} \frac{dZ_n(y)}{dy} \widetilde{T}_{in}(z) \right] - \left[\sum_{n=1}^{\infty} Z_n(y) \overline{T}_{in}(z) \right] \frac{dZ_m(y)}{dy} \right\} \Big|_{y=0}^{y=y_0}.$$
(3.113)

Novamente se observa que a relação dada pela Eq. (3.113) têm condições de contorno homogêneas. Com isso, o coeficiente $\tilde{g}_{im}(z)$ se anula.

Dos resultados acima, escreve-se a Eq. (3.107), então, da forma:

$$\sum_{n=1}^{\infty}\sum_{j=1}^{\infty}B_{ijmn}\frac{d\widetilde{T}_{jn}(z)}{dz} + \left(\mu_i^2 + \lambda_m^2\right)\widetilde{T}_{im}(z) = 0.$$
(3.114)

podendo assim, verificar que as derivadas parciais de segunda ordem da equação original foram removidas, como resultado da transformação em x e y.

Desta forma, a Eq. (3.114) gera um sistema infinito de EDO para o potencial $\overline{T}_{im}(z)$, que deve satisfazer a condição de entrada. Além disso, o primeiro termo da equação transformada, que corresponde ao termo convectivo da equação original, introduz um acoplamento no sistema de equações ordinárias. Devido a este termo não-transformável, o sistema de equações diferenciais tem que ser resolvido numericamente, truncando-se a expansão do potencial para uma dada ordem $N \,\mathrm{e} \,M$. Caracterizando assim, a natureza híbrida analítico-numérica da TTIG.

3.2. Transformação Conforme

Para um dado problema difusivo-convectivo é conveniente, quando possível, que o tratamento analítico ocorra através de um sistema de coordenadas que abrigue naturalmente as posições de contorno. As dificuldades decorrentes da incorporação de coeficientes métricos e do Jacobiano da transformação, na estrutura das equações diferenciais que governam os processos de difusão e convecção, são compensadas analiticamente pela maior facilidade de aplicação das condições de contorno do problema.

Para a análise de problemas que apresentem domínios com contornos de geometria não-convencional, recomenda-se ainda, a definição por uma transformação de coordenadas que atenda alguns preceitos básicos, tais como: ortogonalidade, flexibilidade à geração de curvas, entre outros.

Neste contexto, emprega-se a Transformação Conforme para proceder uma mudança de coordenada que facilite a representação das geometrias não-convencionais analisadas e a aplicação das condições de contorno.

Sendo assim, apresentam-se a seguir a metodologia da Transformação Conforme e as transformações que geram as geometrias desejadas (CHURCHILL, 1975).

3.2.1. Metodologia

Considere o complexo $\zeta = x + iy$ e a transformação $\omega = f(\zeta)$, com $\omega = u + iv$, u = u(x, y) e v = v(x, y). Se a função f é analítica e $f'(\zeta_0) \neq 0$ a imagem de um arco suave numa vizinhança de ζ_0 é um arco suave no plano ω . A derivada

$$f'(\zeta_0) = \lim_{\Delta \zeta \to 0} \frac{\Delta \omega}{\Delta \zeta}, \qquad (3.115)$$

existe e é independente da maneira como $\Delta \zeta$ tende para zero sendo que $\Delta \omega = f(\zeta_0 + \Delta \zeta) - f(\zeta_0).$

Seja φ_0 um dos valores do argumento do número $f'(\zeta_0)$ e seja R_0 o número $|f'(\zeta_0)|$, assim

$$f'(\zeta_0) = R_0 \exp(i\varphi_0), \qquad R_0 > 0.$$
 (3.116)

Como conseqüência das Eqs. (3.115) e (3.116) tem-se:

$$\lim_{\Delta \zeta \to 0} \left| \frac{\Delta \omega}{\Delta \zeta} \right| = R_0, \qquad (3.117)$$

$$\lim_{\Delta \zeta \to 0} \left(\arg \frac{\Delta \omega}{\Delta \zeta} \right) = \varphi_0. \tag{3.118}$$

Seja agora *C* uma curva suave por ζ_0 , e seja *S* a sua imagem sob a transformação $\omega = f(\zeta)$ (Fig. 3.1). Quando $\zeta_0 + \Delta \zeta$ é um ponto sobre *C* no sentido positivo a partir de ζ_0 , o limite do argumento de $\Delta \zeta$ quando $\Delta \zeta$ tende para zero é o ângulo de inclinação α da reta tangente orientada a *C* em ζ_0 . Se $\omega_0 = f(\zeta_0)$ e se $\omega_0 + \Delta \omega$ é a imagem de $\zeta_0 + \Delta \zeta$, então o argumento de $\Delta \omega$ tende para o ângulo de inclinação β da tangente orientada a *S* em ω_0 .

Figura 3.1. Curva C e sua imagem S.

Como $\Delta \omega = \Delta \zeta (\Delta \omega / \Delta \zeta)$, um valor do argumento de $\Delta \omega$ é dado por

$$arg\Delta\omega = arg\,\Delta\zeta + arg\frac{\Delta\omega}{\Delta\zeta}.$$
 (3.119)

Quando $\Delta \zeta$ tende para zero, segue-se que

$$\beta = \alpha + \varphi_0 \,. \tag{3.120}$$

Assim, a tangente orientada à curva $C \text{ em } \zeta_0$ gira de um ângulo

$$\varphi_0 = \arg f'(\zeta_0), \tag{3.121}$$

sob a transformação $\omega = f(\zeta)$, desde que f seja analítica em ζ_0 e $f'(\zeta_0) \neq 0$.

Como o ângulo φ_0 é determinado pela função transformada f e pelo ponto ζ_0 , ele é o mesmo para todas as curvas por ζ_0 . Se α_1 e α_2 são os ângulos de inclinação em ζ_0 de dois arcos orientados C_1 e C_2 , e se β_1 e β_2 são os ângulos correspondentes para as imagens S_1 e S_2 desses arcos, então

$$\beta_1 = \alpha_1 + \varphi_0, \qquad \beta_2 = \alpha_2 + \varphi_0.$$
 (3.122a,b)

e, portanto, $\beta_2 - \beta_1 = \alpha_2 - \alpha_1$. Isto é, o ângulo $\gamma = \beta_2 - \beta_1$ de S_1 para S_2 é o mesmo, em valor absoluto e sentido, que o $\alpha_2 - \alpha_1$ de C_1 para C_2 (Fig. 3.2).

Figura 3.2. Curva C_1 e C_2 e suas respectivas imagem S_1 e S_2 .

Esta transformação preserva ângulos em valor absoluto e sentido entre os pares de curvas em cada ponto de um domínio e se diz *conforme* nesse domínio. Assim, resumindo, tem-se: *Em cada ponto \zeta de um domínio onde f é analítica e f'(\zeta) \neq 0 <i>a transformação* $\omega = f(\zeta)$ *é conforme*. A transformação *conforme* transforma curvas ortogonais em curvas ortogonais.

Como ω é analítica no ponto $\zeta_0 = x_0 + iy_0$, ela é analítica numa vizinhança desse ponto. As funções $u \in v$, assim como suas derivadas parciais, são contínuas na vizinhança. Como $f'(\zeta_0) \neq 0$, além da continuidade das funções $u \in v$ e das suas derivadas, o Jacobiano das funções $u \in v$,

Capítulo 3 Fundamentação Teórica

$$\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} \end{vmatrix}, \qquad (3.123)$$

é diferente de zero no ponto (x_0, y_0) . Em vista das condições de *Cauchy-Riemann*, os valores dos coeficientes métricos da transformação são determinados por:

$$h_{u}(x,y) = \sqrt{\left(\frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial v}{\partial x}\right)^{2}} = \left|f'(\zeta)\right|, \qquad (3.124)$$

$$h_{\nu}(x,y) = \sqrt{\left(\frac{\partial u}{\partial y}\right)^{2} + \left(\frac{\partial v}{\partial y}\right)^{2}} = |f'(\zeta)|. \qquad (3.125)$$

Assim, o Jacobiano da transformação pode ser determinado pela relação

$$J(u,v) = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2 = \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2 = |f'(\zeta)|^2.$$
(3.126)

Uma importante consequência destes resultados reside no fato do operador Laplaciano no sistema de coordenadas (u,v) poder ser determinado como:

$$\nabla^2 \mathbf{\Phi}(x, y) = \frac{1}{J(u, v)} \nabla^2 \mathbf{\Phi}(u, v)$$
(3.127)

sendo que Φ é uma função potencial.

Este resultado simplifica muito o tratamento analítico de problemas que envolvam esse operador, quando submetido a uma transformação de coordenadas.

3.2.2. Sistema de Coordenadas das Geometrias Analisadas

Como mencionado anteriormente, o presente trabalho trata da análise de uma classe de problemas difusivo-convectivos em domínios que apresentam as geometrias bicônicas e de setores anulares. Sendo assim, apresentam-se a seguir as Transformações Conforme que geram as geometrias estudadas.

3.2.2.1. Geometria de Setor Anular

A geometria de setor anular é proveniente da seguinte Transformação Conforme:

$$\zeta = r_{\rho} e^{i\omega}. \tag{3.128}$$

Esta relação permite transformar o domínio do setor anular no plano (x, y) em um domínio retangular no plano (u, v) conforme ilustrado na Fig. 3.3.

Figura 3.3. Transformação do domínio de setor anular no plano (x,y) para o plano (u,v).

As relações de transformação de coordenadas, os coeficientes métricos h_u e h_v e o Jacobiano J(u,v) são dadas por:

$$x = r_e e^{-v} \cos(u), \qquad y = r_e e^{-v} \sin(u).$$
 (3.129a,b)

$$h_u(u,v) = h_v(u,v) = \sqrt{\left(\frac{\partial x}{\partial u}\right)^2 + \left(\frac{\partial x}{\partial u}\right)^2} = r_e \ e^{-v}, \qquad (3.130)$$

$$J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = r_e^2 e^{-2v}.$$
(3.131)

Este novo sistema de coordenadas é ortogonal. Além disso, como pode ser observado, o arco externo do setor de anel é dado pela reta v = 0 no novo sistema de coordenadas e o arco interno pela reta $v = v_0$, com $v_0 = ln(r_e/r_i)$.

As Figuras 3.4 ilustram algumas geometrias de setor anular obtidas através da Transformação Conforme dada pela Eq. (3.128).

Figura 3.4. Geometria de setor anular gerada através da Transformação Conforme dada pela Eq. (3.128).

Quando $v \rightarrow \infty$ ou $u = 2\pi$ obtém-se a geometria de setor circular e a anular concêntrica, respectivamente. A Figura 3.5 mostra a transformação do domínio de setor circular no plano (x, y) para o plano (u, v) enquanto que a Fig. 3.7 mostra esta transformação para a geometria anular concêntrica. Já as Figuras 3.6 e 3.8 ilustram algumas geometrias de setor circular e anular concêntrica, respectivamente, obtidas através da Transformação Conforme dada pela Eq. (3.128).

Figura 3.5. Transformação do domínio de setor circular no plano (x,y) para o plano (u,v).

Figura 3.6. Geometria de setor circular gerada através da Transformação Conforme dada pela Eq. (3.128).

Figura 3.7. Transformação do domínio anular concêntrico no plano (x,y) para o plano (u,v).

Figura 3.8. Geometria anular concêntrica gerada através da Transformação Conforme dada pela Eq. (3.128).

3.2.2.2. Geometria Bicônica

A geometria bicônica é gerada a partir da Transformação Conforme:

$$\zeta = \frac{1}{2}i\,\overline{\omega}^2\,.\tag{3.132}$$

Esta relação permite transformar o domínio bicônico no plano (x, y) em um domínio retangular no plano (u, v) conforme ilustrado na Fig. 3.9.

Figura 3.9. Transformação do domínio bicônico no plano (*x*,*y*) para o plano (*u*,*v*).

As relações de transformação de coordenadas, os coeficientes métricos h_u e h_v e o Jacobiano J(u,v) são dadas por:

Capítulo 3 Fundamentação Teórica

$$x = uv$$
, $y = \frac{1}{2}(u^2 - v^2)$. (3.133a,b)

$$h_u(u,v) = h_v(u,v) = \sqrt{\left(\frac{\partial x}{\partial u}\right)^2 + \left(\frac{\partial y}{\partial u}\right)^2} = \sqrt{\left(u^2 + v^2\right)},$$
(3.134)

$$J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \left(u^2 + v^2\right).$$
(3.135)

Este novo sistema de coordenadas é ortogonal e gera parábolas confocais de eixo comum (SPIEGEL & LIU, 1999), aqui denominadas por geometrias bicônicas (Fig. 3.10).

Figura 3.10. Geometria bicônica gerada através da Transformação Conforme dada pela Eq. (3.132).

4

Problemas Hidrodinâmicos

Neste capítulo, analisa-se o problema hidrodinâmico de escoamento laminar completamente desenvolvido de fluidos *Newtonianos* no interior de dutos de geometrias nãoconvecionais. Para o escoamento interno com baixo número de *Reynolds*, o problema hidrodinâmico se caracteriza pela difusão da quantidade de movimento de forma análoga ao processo de difusão de calor. Neste sentido, os problemas hidrodinâmicos aqui investigados, se caracterizam pela natureza difusiva elíptica.

Para facilitar o tratamento analítico, utiliza-se uma Transformação Conforme apropriada para efetuar uma mudança de coordenadas e, então, aplica-se a Transformada Integral sobre a equação da quantidade de movimento visando a obtenção do campo de velocidades do escoamento. Os parâmetros hidráulicos de interesse, tais como: velocidades média e máxima, fator de atrito de *Fanning*, fator de *Hagenbach*, número de *Poiseuille*, comprimento de entrada hidrodinâmico e queda de pressão são, então, determinados para as diversas geometrias analisadas, e comparados, quando possível, com resultados disponíveis na literatura.

4.1. Formulação Matemática

Considera-se para a formulação matemática do presente problema um escoamento laminar em regime permanente no interior dos dutos analisados. Desta forma, para fluidos *Newtonianos* com propriedades físicas constantes, a equação da quantidade de movimento, pode ser escrita como:

$$\rho \frac{D \mathbf{v}(x, y, z)}{D t} = -\nabla p(x, y, z) + \mu \nabla^2 \mathbf{v}(x, y, z), \qquad \{ (x, y) \in \Omega, \quad z > 0 \}, \qquad (4.1)$$

$$\mathbf{v}(x, y, z) = \mathbf{0}, \qquad \{ (x, y) \in \Gamma, \ z > 0 \},$$
 (4.2)

sendo ρ a massa específica do fluido, μ a viscosidade dinâmica do fluido, p o campo de pressão, v o campo vetorial de velocidades, Ω e Γ o domínio e o contorno, respectivamente, da geometria analisada.

Para escoamento plenamente desenvolvido, a equação da quantidade de movimento, Eq. (4.1), se reduz a:

$$\nabla^2 \mathbf{v}(x, y) - \frac{1}{\mu} \nabla p(z) = 0, \qquad \{ (x, y) \in \Omega, \quad z > 0 \}, \qquad (4.3)$$

$$\boldsymbol{\nu}(x,y) = \boldsymbol{0}, \qquad \left\{ (x,y) \in \Gamma, \quad z > 0 \right\}, \tag{4.4}$$

com:

$$\mathbf{v}(x,y) = \mathbf{w}(x,y) \,\mathbf{k}, \qquad \nabla p(z) = \frac{dp(z)}{dz} \,\mathbf{k}. \tag{4.5a,b}$$

4.1.1. Adimensionalização

Reescrevendo a equação da quantidade de movimento para o escoamento completamente desenvolvido em regime permanente, Eq. (4.3), na forma adimensional, temse que:

$$\frac{\partial^2 W(X,Y)}{\partial X^2} + \frac{\partial^2 W(X,Y)}{\partial Y^2} + 1 = 0, \qquad \{ (X,Y) \in \Omega, \quad Z > 0 \}, \tag{4.6}$$

$$W(X,Y) = 0, \qquad \left\{ (X,Y) \in \Gamma, \quad Z > 0 \right\}, \tag{4.7}$$

com:

$$X = \frac{x}{D_h}, \qquad Y = \frac{y}{D_h}, \qquad Z = \frac{z}{D_h}, \qquad D_h = \frac{4A_s}{Per}.$$
(4.8a,b,c,d)

$$W(X,Y) = \frac{w(X,Y)}{\left[\frac{D_h}{\mu} \left(-\frac{dp(Z)}{dZ}\right)\right]},$$
(4.9)

onde D_h representa o diâmetro hidráulico, A_S a área da seção transversal, *Per* o perímetro do contorno analisado e *w* a componente axial da velocidade. Desta maneira, a equação da quantidade de movimento, Eq. (4.6), se apresenta na forma da equação de *Poisson* para o potencial W(X,Y).

4.1.2. Transformação de Coordenadas

Apresentam-se a seguir, os procedimentos adotados para transformar os domínios originais das geometrias analisadas em retângulos no novo sistema de coordenadas através da utilização de Transformações Conformes convenientes.

4.1.2.1. Geometrias de Setores Anular e Circular

A equação da quantidade de movimento, Eq. (4.6), reescrita no sistema de coordenadas gerado pela Transformação Conforme $\zeta = r_e e^{i\omega}$ é dada por:

$$\frac{\partial^2 W(u,v)}{\partial u^2} + \frac{\partial^2 W(u,v)}{\partial v^2} = H(u,v), \qquad \left\{ (u,v) \in \Omega \right\}, \tag{4.10}$$

com: H(u,v) = -J(u,v).

As relações de transformação de coordenadas, os coeficientes métricos e o Jacobino são dados, respectivamente, por:

$$X = r_e e^{-v} \cos(u), \qquad Y = r_e e^{-v} \sin(u), \qquad Z = z$$
 (4.11a,b,c)

$$h_u(u,v) = h_v(u,v) = \sqrt{\left(\frac{\partial X}{\partial u}\right)^2 + \left(\frac{\partial Y}{\partial u}\right)^2} = r_e e^{-v}, \qquad (4.12)$$

$$J(u,v) = \frac{\partial(X,Y)}{\partial(u,v)} = r_e^2 e^{-2v}.$$
(4.13)

As condições de contorno no novo sistema de coordenadas são dadas por:

$$W(u,v) = 0, \qquad \{ u = 0, \quad 0 \le v \le v_0 \},$$
 (4.14)

$$W(u,v) = 0, \qquad \{u = u_0, \quad 0 \le v \le v_0\},$$
 (4.15)

$$W(u,v) = 0, \qquad \{0 \le u \le u_0, v = 0\},$$
 (4.16)

$$W(u,v) = 0, \qquad \{0 \le u \le u_0, \quad v = v_0\}. \tag{4.17}$$

4.1.2.2. Geometria Anular Concêntrica

Para os dutos anulares concêntricos a equação da quantidade de movimento reescrita no sistema de coordenadas proveniente da Transformação Conforme apropriada, bem como as relação de transformação de coordenadas, os coeficientes métricos e o Jacobiano, são os mesmos apresentados para os dutos de setores anulares e circulares. Entretanto, as condições de contorno são dadas por:

$$\frac{\partial W(u,v)}{\partial u} = 0, \qquad \left\{ u = 0, \quad 0 \le v \le v_0 \right\},\tag{4.18}$$

$$\frac{\partial W(u,v)}{\partial u} = 0, \qquad \left\{ u = 2\pi, \quad 0 \le v \le v_0 \right\}, \tag{4.19}$$

$$W(u,v) = 0, \qquad \{ 0 \le u \le 2\pi, v = 0 \},$$
 (4.20)

$$W(u,v) = 0, \qquad \{ 0 \le u \le 2\pi, v = v_0 \}.$$
 (4.21)

4.1.2.3. Geometria Bicônica

A equação da quantidade de movimento, Eq. (4.6), reescrita no sistema de coordenadas de parábolas confocais com eixo comum gerado pela Transformação Conforme $\zeta = 1/2i\overline{\omega}^2$ é dada por:

$$\frac{\partial^2 W(u,v)}{\partial u^2} + \frac{\partial^2 W(u,v)}{\partial v^2} = H(u,v), \qquad \{(u,v) \in \Omega\}, \qquad (4.22)$$

 $\operatorname{com}: H(u, v) = -J(u, v).$

As relações de transformação de coordenadas, os coeficientes métricos e o Jacobino são dados, respectivamente, por:

$$X = uv$$
, $Y = \frac{1}{2}(u^2 - v^2)$, $Z = z$ (4.23a,b,c)

$$h_u(u,v) = h_v(u,v) = \sqrt{(u^2 + v^2)},$$
 (4.24)

$$J(u,v) = \frac{\partial(X,Y)}{\partial(u,v)} = \left(u^2 + v^2\right). \tag{4.25}$$

As condições de contorno no novo sistema de coordenadas são dadas por:

$$\frac{\partial W(u,v)}{\partial u} = 0, \qquad \left\{ u = 0, \quad 0 \le v \le v_0 \right\}, \tag{4.26}$$

Capítulo 4 Problemas Hidrodinâmicos

$$\frac{\partial W(u,v)}{\partial u} = 0, \qquad \left\{ u = u_0, \quad 0 \le v \le v_0 \right\}, \tag{4.27}$$

$$\frac{\partial W(u,v)}{\partial v} = 0, \qquad \left\{ 0 \le u \le u_0, \quad v = 0 \right\}, \tag{4.28}$$

$$W(u,v) = 0, \qquad \{0 \le u \le u_0, \quad v = v_0\}.$$
 (4.29)

4.1.3. Aplicação da TTIG

Realiza-se a determinação dos perfis de velocidades do escoamento através da aplicação da Transformada Integral sobre a equação da quantidade de movimento. Neste sentido, apresenta-se a seguir o formalismo matemático desta metodologia para os diversos formatos dos dutos estudados.

4.1.3.1. Geometrias de Setores Anular e Circular

Para a obtenção da solução da equação da quantidade de movimento, no novo sistema de coordenadas, aplica-se a TTIG sobre a Eq. (4.6) visando proceder a remoção das derivadas de segunda ordem. Devido a sua característica bidimensional, o potencial W(u,v) é escrito em termos de uma expansão em autofunções normalizadas obtidas de problemas auxiliares de autovalor para cada coordenada espacial. Sendo assim, realiza-se a aplicação da Transformada Integral por partes. Considera-se, inicialmente, o seguinte problema auxiliar de autovalor:

$$\frac{d^2\psi(u)}{du^2} + \mu^2\psi(u) = 0, \qquad \{ 0 \le u \le u_0 \},$$
(4.30)

com,

$$\psi(0) = 0, \qquad \psi(u_0) = 0.$$
 (4.31a,b)

Os autovalores e as autofunções associados a este problema são dados, respectivamente, por:

$$\mu_i = \frac{i\pi}{u_0}, \qquad i = 1, 2, 3...$$
(4.32)

$$\psi_i(u) = sen(\mu_i u). \tag{4.33}$$

Essas autofunções são ortogonais, o que permite o desenvolvimento do seguinte par transformada-inversa:

$$\overline{W}_{i}(v) = \int_{0}^{u_{0}} K_{i}(u) W(u, v) du, \qquad transformada, \qquad (4.34)$$

$$W(u,v) = \sum_{i=1}^{\infty} K_i(u) \overline{W_i}(v), \quad inversa, \quad (4.35)$$

cujo, $\overline{W}_i(v)$ é o potencial transformado em $u \in K_i(u)$ são as autofunções normalizadas, dadas por:

$$K_i(u) = \frac{\Psi_i(u)}{\sqrt{N_i}}, \qquad (4.36)$$

com:

$$N_i = \int_0^{u_0} \psi_i^2(u) du = \frac{u_0}{2} .$$
 (4.37)

sendo que, N_i são as integrais de normalização das autofunções $\psi_i(u)$.

Efetuando-se o produto interno das autofunções normalizadas $K_i(u)$ com a equação da quantidade de movimento e, fazendo uso das condições de contorno e das equações que definem o problema auxiliar de autovalor, obtém-se a primeira transformação da equação diferencial que, em termos dos potenciais $\overline{W_i}(v)$, é dada por:

$$A_i(v) + \mu_i^2 \overline{W}_i(v) = \frac{\partial^2 \overline{W}_i(v)}{\partial v^2}, \qquad i = 1, 2, 3 \dots$$
(4.38)

$$A_{i}(v) = \int_{0}^{u_{0}} K_{i}(u) H(u,v) du .$$
(4.39)

Para proceder a Transformação Integral relativa à coordenada *v*, considera-se agora o seguinte problema de autovalor:

$$\frac{d^2\phi(v)}{dv^2} + \lambda^2\phi(v) = 0, \qquad \{ \ 0 \le v \le v_0 \},$$
(4.50)

com,

$$\phi(0) = 0, \qquad \phi(v_0) = 0.$$
 (4.51a,b)

Os autovalores e as autofunções para este novo problema são dados por:

$$\lambda_j = \frac{j\pi}{v_0}, \qquad j = 1, 2, 3...$$
 (4.52)

$$\phi_j(v) = sen(\lambda_j v). \tag{4.53}$$

Essas autofunções são ortogonais e permitem o desenvolvimento do seguinte par transformada-inversa:

$$\widetilde{\overline{W}}_{ij} = \int_{0}^{v_0} \int_{0}^{u_0} K_i(u) Z_j(v) W(u,v) du dv, \quad transformada, \quad (4.54)$$

$$W(u,v) = \sum_{i=0}^{\infty} \sum_{j=1}^{\infty} K_i(u) Z_j(v) \widetilde{W}_{ij}, \quad inversa, \qquad (4.55)$$

cuja, $Z_j(v)$ são as autofunções normalizadas e são dadas por:

$$Z_{j}(v) = \frac{\phi_{j}(v)}{\sqrt{M_{j}}}, \qquad (4.56)$$

$$M_{j} = \int_{0}^{v_{0}} \phi_{j}^{2}(v) dv = \frac{v_{0}}{2}.$$
(4.57)

sendo M_j as integrais de normalização das autofunções $\phi_j(v)$.

Efetuando-se o produto interno das autofunções normalizadas $Z_j(v)$ com a equação diferencial transformada em u e fazendo uso das condições de contorno e das relações de ortogonalidade relativas ao segundo problema de autovalor, obtém-se a Transformação Integral da equação da quantidade de movimento, que é dada pela seguinte equação:

$$B_{ij} + \left(\mu_i^2 + \lambda_j^2\right) \widetilde{\overline{W}}_{ij} = 0, \qquad i, j = 1, 2, 3 \dots$$
(4.58)

$$B_{ij} = \int_{0}^{v_0} Z_j(v) A_i(v) dv = \int_{0}^{v_0} \int_{0}^{u_0} K_i(u) Z_j(v) H(u,v) du dv, \qquad (4.59)$$

sendo os parâmetros B_{ij} integráveis e, portanto, conhecidos.

Nota-se que o sistema dado pela Eq. (4.58) é algébrico, linear e desacoplado, tendo em vista que no problema original não há dependência temporal e que todos os termos da

equação da quantidade de movimento tratada pela TTIG são transformáveis. Portanto, o potencial transformado pode ser obtido de forma direta, por:

$$\widetilde{\overline{W}}_{ij} = -\frac{B_{ij}}{\mu_i^2 + \lambda_j^2}, \qquad (4.60)$$

permitindo, assim, a obtenção da solução analítica do potencial velocidade adimensional:

$$W(u,v) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} K_i(u) Z_j(v) \widetilde{W}_{ij} = -\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{B_{ij}}{\mu_i^2 + \lambda_j^2} K_i(u) Z_j(v)$$
(4.61)

Para fins computacionais, o potencial transformado W(u,v) pode ser determinado numericamente truncando-se a expansão para uma dada ordem i = M e j = N, isto é:

$$W(u,v) = \sum_{i=1}^{M} \sum_{j=1}^{N} K_i(u) Z_j(v) \overline{W}_{ij} = -\sum_{i=1}^{M} \sum_{j=1}^{N} \frac{B_{ij}}{\mu_i^2 + \lambda_j^2} K_i(u) Z_j(v).$$
(4.62)

Obviamente, quanto maior M e N maior será a precisão dos resultados.

Da definição da velocidade W(u,v) determina-se, então, o perfil de velocidades para o escoamento laminar hidrodinamicamente desenvolvido em dutos cuja seção transversal apresenta a geometria de setores anular e circular.

4.1.3.2. Geometria Anular Concêntrica

A aplicação da Transformada Integral sobre a equação da quantidade de movimento para os dutos de geometria anular concêntrica segue os mesmos procedimentos descritos anteriormente para os problemas hidrodinâmicos.

Primeiro Problema Auxiliar de Autovalor

$$\frac{d^2\psi(u)}{du^2} + \mu^2\psi(u) = 0, \qquad \{ 0 \le u \le 2\pi \},$$
(4.63)

$$\frac{d\psi(0)}{du} = 0$$
, $\frac{d\psi(2\pi)}{du} = 0$. (4.64a,b)

Autovalores e Autofunções associados

$$\mu_i = 2(i-1), \qquad i = 1, 2, 3...$$
(4.65)

$$\psi_i(u) = \cos(\mu_i u). \tag{4.66}$$

Autofunções Normalizadas e Integral de Normalização

$$K_i(u) = \frac{\psi_i(u)}{\sqrt{N_i}},\tag{4.67}$$

$$N_{i} = \int_{0}^{2\pi} \psi_{i}^{2}(u) du = \begin{cases} 2\pi, & i=1, \\ \pi, & i\neq 1. \end{cases}$$
(4.68)

Par Transformada-Inversa

$$\overline{W_i}(v) = \int_0^{2\pi} K_i(u) W(u, v) du, \qquad transformada, \qquad (4.69)$$

$$W(u,v) = \sum_{i=1}^{\infty} K_i(u) \overline{W_i}(v), \qquad inversa, \qquad (4.70)$$

Primeira Transformada

$$A_i(v) + \mu_i^2 \overline{W_i}(v) = \frac{\partial^2 \overline{W_i}(v)}{\partial v^2}, \qquad i = 1, 2, 3 \dots$$
(4.71)

$$A_{i}(v) = \int_{0}^{2\pi} K_{i}(u) H(u,v) du .$$
 (4.72)

Segundo Problema Auxiliar de Autovalor:

$$\frac{d^2\phi(v)}{dv^2} + \lambda^2\phi(v) = 0, \quad \{0 \le v \le v_0\},$$
(4.73)

$$\phi(0) = 0, \ \phi(v_0) = 0.$$
 (4.74a,b)

Autovalores e Autofunções associados

$$\lambda_j = \frac{j\pi}{v_0}, \qquad j = 1, 2, 3...$$
 (4.75)

$$\phi_j(v) = sen(\lambda_j v). \tag{4.76}$$

Autofunções Normalizadas e Integral de Normalização

$$Z_j(v) = \frac{\phi_j(v)}{\sqrt{M_j}}, \qquad (4.77)$$

$$M_{j} = \int_{0}^{v_{0}} \phi_{j}^{2}(v) \, dv = \frac{v_{0}}{2} \,. \tag{4.78}$$

Par Transformada-Inversa

$$\widetilde{\overline{W}}_{ij} = \int_{0}^{v_0} \int_{0}^{2\pi} K_i(u) Z_j(v) W(u,v) du dv, \qquad transformada, \qquad (4.79)$$

$$W(u,v) = \sum_{i=0}^{\infty} \sum_{j=1}^{\infty} K_i(u) Z_j(v) \widetilde{W}_{ij}, \quad inversa, \quad (4.80)$$

Segunda Transformada

$$B_{ij} + \left(\mu_i^2 + \lambda_j^2\right) \widetilde{\overline{W}}_{ij} = 0, \qquad i, j = 1, 2, 3...$$
(4.81)

$$B_{ij} = \int_{0}^{v_0} Z_j(v) A_i(v) dv = \int_{0}^{v_0} \int_{0}^{2\pi} K_i(u) Z_j(v) H(u,v) du dv, \qquad (4.82)$$

Todos os parâmetros B_{ij} são integráveis e, conseqüentemente, conhecidos. Portanto, o potencial transformado pode ser obtido de forma direta,

$$\widetilde{\overline{W}}_{ij} = -\frac{B_{ij}}{\mu_i^2 + \lambda_j^2}, \qquad (4.83)$$

permitindo, assim, a obtenção da solução analítica do problema como:

$$W(u,v) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} K_i(u) Z_j(v) \overline{W}_{ij} = -\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{B_{ij}}{\mu_i^2 + \lambda_j^2} K_i(u) Z_j(v)$$
(4.84)

Para fins computacionais, o potencial transformado pode ser determinado numericamente quando a expansão é truncada em uma dada ordem $N \in M$, conforme a precisão desejada,

$$W(u,v) = \sum_{i=1}^{M} \sum_{j=1}^{N} K_i(u) Z_j(v) \widetilde{W}_{ij} = -\sum_{i=1}^{M} \sum_{j=1}^{N} \frac{B_{ij}}{\mu_i^2 + \lambda_j^2} K_i(u) Z_j(v).$$
(4.85)

Da definição da velocidade W(u,v) determina-se, o campo de velocidades para o escoamento laminar plenamente desenvolvido em dutos anulares concêntricos.

4.1.3.3. Geometria Bicônica
A aplicação da Transformada Integral sobre a equação da quantidade de movimento para os dutos de geometria bicônica segue os mesmos procedimentos descritos anteriormente para os problemas hidrodinâmicos.

Primeiro Problema Auxiliar de Autovalor

$$\frac{d^2\psi(u)}{du^2} + \mu^2\psi(u) = 0, \qquad \{ 0 \le u \le u_0 \}, \qquad (4.86)$$

$$\frac{d\psi(0)}{du} = 0$$
, $\frac{d\psi(u_0)}{du} = 0$. (4.87a,b)

Autovalores e Autofunções associados

$$\mu_i = \frac{(i-1)\pi}{u_0}, \qquad i = 1, 2, 3...$$
(4.88)

$$\psi_i(u) = \cos(\mu_i u). \tag{4.89}$$

Autofunções Normalizadas e Integral de Normalização

$$K_i(u) = \frac{\psi_i(u)}{\sqrt{N_i}} \tag{4.90}$$

$$N_{i} = \int_{0}^{u_{0}} \psi_{i}^{2}(u) du = \begin{cases} u_{0}, & i=1, \\ u_{0}/2, & i\neq 1. \end{cases}$$
(4.92)

Par Transformada-Inversa

$$\overline{W_i}(v) = \int_0^{u_0} K_i(u) W(u, v) du, \qquad transformada, \qquad (4.93)$$

$$W(u,v) = \sum_{i=1}^{\infty} K_i(u) \overline{W_i}(v), \quad inversa, \quad (4.94)$$

Primeira Transformada

$$A_i(v) + \mu_i^2 \overline{W}_i(v) = \frac{\partial^2 \overline{W}_i(v)}{\partial v^2}, \qquad i = 1, 2, 3...$$
(4.95)

$$A_{i}(v) = \int_{0}^{u_{0}} K_{i}(u) H(u,v) du .$$
(4.96)

Segundo Problema Auxiliar de Autovalor:

$$\frac{d^2\phi(v)}{dv^2} + \lambda^2\phi(v) = 0, \qquad \left\{ 0 \le v \le v_0 \right\}, \tag{4.97}$$

$$\frac{d\phi(0)}{dv} = 0, \qquad \phi(v_0) = 0.$$
 (4.98a,b)

Autovalores e Autofunções associados

$$\lambda_j = \frac{(2j-1)\pi}{2\nu_0}, \qquad j = 1, 2, 3...$$
 (4.99)

$$\phi_j(v) = \cos(\lambda_j v). \tag{4.100}$$

Autofunções Normalizadas e Integral de Normalização

$$Z_j(v) = \frac{\phi_j(v)}{\sqrt{M_j}}, \qquad (4.101)$$

$$M_{j} = \int_{0}^{v_{0}} \phi_{j}^{2}(v) \, dv = \frac{v_{0}}{2} \,. \tag{4.102}$$

Par Transformada-Inversa

$$\widetilde{\overline{W}}_{ij} = \int_{0}^{v_0} \int_{0}^{u_0} K_i(u) Z_j(v) W(u,v) du \, dv, \qquad transformada, \qquad (4.103)$$

$$W(u,v) = \sum_{i=0}^{\infty} \sum_{j=1}^{\infty} K_i(u) Z_j(v) \widetilde{W}_{ij}(Z), \qquad inversa, \qquad (4.104)$$

Segunda Transformada

$$B_{ij} + \left(\mu_i^2 + \lambda_j^2\right) \widetilde{W}_{ij} = 0, \qquad i, j = 1, 2, 3...$$
(4.105)

$$B_{ij} = \int_{0}^{v_0} Z_j(v) A_i(v) dv = \int_{0}^{v_0 u_0} K_i(u) Z_j(v) H(u, v) du dv, \qquad (4.106)$$

Todos os parâmetros B_{ij} são integráveis e, conseqüentemente, conhecidos. Portanto, o potencial transformado pode ser obtido de forma direta,

$$\widetilde{\overline{W}}_{ij} = -\frac{B_{ij}}{\mu_i^2 + \lambda_j^2}, \qquad (4.107)$$

permitindo, assim, a obtenção da solução analítica do problema como:

$$W(u,v) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} K_i(u) Z_j(v) \widetilde{W}_{ij} = -\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{B_{ij}}{\mu_i^2 + \lambda_j^2} K_i(u) Z_j(v)$$
(4.108)

Para fins computacionais, o potencial transformado pode ser determinado numericamente quando a expansão é truncada em uma dada ordem i = M e j = N, conforme a precisão desejada,

$$W(u,v) = \sum_{i=1}^{M} \sum_{j=1}^{N} K_i(u) Z_j(v) \overline{W}_{ij} = -\sum_{i=1}^{M} \sum_{j=1}^{N} \frac{B_{ij}}{\mu_i^2 + \lambda_j^2} K_i(u) Z_j(v).$$
(4.109)

Da definição da velocidade W(u,v) determina-se, então, o campo de velocidades para o escoamento laminar plenamente desenvolvido em dutos bicônicos.

4.2. Parâmetros Físicos de Interesse

4.2.1. Velocidade Adimensional Média

O valor médio da velocidade adimensional, definida pela Eq. (4.9), é dado por:

$$W_{m\acute{e}d} = \frac{1}{A_S} \int_{A_S} W(X, Y) dA_S .$$
 (4.110)

4.2.2. Velocidade Adimensional em Termos da Velocidade Média

A velocidade adimensional $W^*(u,v)$ definida em termos da velocidade média é determinada por:

$$W^{*}(X,Y) = \frac{w(X,Y)}{w_{m\acute{e}d}(X,Y)} = \frac{W(X,Y)}{W_{m\acute{e}d}(X,Y)}.$$
(4.111)

Conseqüentemente, a velocidade adimensional máxima $W^*_{máx}$ definida em termos da velocidade média, é dada por:

$$W_{m\acute{a}x}^* = \frac{w_{m\acute{a}x}}{w_{m\acute{e}d}(X,Y)} = \frac{W_{m\acute{a}x}}{W_{m\acute{e}d}(X,Y)},$$
(4.112)

sendo que $w_{m \dot{a}x}$ e $W_{m \dot{a}x}$ são os valores máximos da velocidade e da velocidade adimensional, respectivamente.

4.2.3. Fator de Atrito de Fanning

O fator de atrito de $Fanning^1$, f, também conhecido como coeficiente de atrito, é definido como a razão entre a tensão de cisalhamento média na parede do duto e o fluxo de energia cinética por unidade de volume, logo:

$$f = \frac{2\tau_{p,m\acute{e}d}}{\rho w_{m\acute{e}d}^2},$$
(4.113)

cuja, $\tau_{p, méd}$ é a tensão de cisalhamento média na parede e é dada por:

$$\tau_{p,m\acute{e}d} = -\frac{dp}{dz} \left(\frac{A_S}{Per} \right). \tag{4.114}$$

4.2.4. Número de Poiseuille

Combinando as Eqs. (4.113) e (4.114) obtém-se que o fator *f Re* para escoamento laminar plenamente desenvolvido no interior de dutos é igual a uma constante, ou seja:

$$f Re = Po = constante, \tag{4.115}$$

sendo que, *Re* é o número de *Reynolds* baseado no diâmetro hidráulico. Este fator *f Re* é também conhecido como número de *Poiseuille*, *Po*.

Das relações de adimensionalização, obtém-se ainda que:

$$f Re = Po = \frac{1}{2W_{m\acute{e}d}},\tag{4.116}$$

4.2.5. Fator de Hagenbach

O número de incremento na queda de pressão, K(x), aumenta monotonicamente de zero para um valor constante na região hidrodinamicamente desenvolvida. Este valor constante é definido como fator de *Hagenbach*, $K(\infty)$.

De acordo com Lundgren et al. (1964), o fator de Hagenbach é definido como:

$$K(\infty) = \frac{2}{A_S} \int_{A_S} \left\{ \left[\frac{w(u,v)}{w_{m\acute{e}d}} \right]^3 - \left[\frac{w(u,v)}{w_{m\acute{e}d}} \right]^2 \right\} dA_S , \qquad (4.117)$$

¹ O fator de atrito de *Fanning* ou coeficiente de atrito, *f*, não deve ser confundido com o fator de atrito de *Darcy-Weisback*, f_D , publicado por Moody (1944) para escoamento laminar completamente desenvolvido em dutos circulares. Prova-se que $f_D = 4 f$.

ou,

$$K(\infty) = 2[K_e(\infty) - K_d(\infty)], \qquad (4.118)$$

onde, $K_e(\infty)$ e $K_d(\infty)$, são respectivamente, o fator de correção de energia cinética e o fator de correção no fluxo da quantidade de movimento, dados por:

$$K_e(\infty) = \frac{1}{A_S} \int_{A_S} \left[\frac{w(u, v)}{w_{m\acute{e}d}} \right]^3 \, dA_S , \qquad (4.119)$$

$$K_d(\infty) = \frac{1}{A_S} \int_{A_S} \left[\frac{w(u,v)}{w_{m\acute{e}d}} \right]^2 \, dA_S \,. \tag{4.120}$$

4.2.6. Comprimento de Entrada Hidrodinâmico

O comprimento de entrada hidrodinâmico, L_{hy} , é definido, com sendo a posição em que a velocidade máxima atinge 99% da velocidade correspondente à região hidrodinamicamente desenvolvida quando o escoamento de entrada é uniforme (SHAH & LONDON, 1978). O comprimento de entrada hidrodinâmico adimensional de acordo com McComas (1967) pode ser expresso por:

$$L_{hy}^{+} = \frac{L_{hy}}{D_{h}Re} = \frac{\left(W_{máx}^{*}\right)^{2} - 1 - K(\infty)}{4 f Re}.$$
(4.121)

4.2.7. Queda de Pressão

A queda de pressão na região hidrodinamicamente desenvolvida, de acordo com Shah & London (1978), é dada por:

$$\Delta p^* = (f Re)4x^+ + K(\infty) = 4(f Re)\frac{X}{Re} + K(\infty), \qquad (4.122)$$

cuja $x^+ = x/D_h Re$ e esta expressão é válida somente para o regime laminar e para $X > L_{hy}$.

4.3. Resultados & Discussão

Nesta seção, efetua-se uma análise de convergência em função da ordem de truncamento da série, apresentam-se os resultados obtidos para os parâmetros hidráulicos de interesse para os diversos dutos estudados e, quando possível, realiza-se a comparação com os resultados disponíveis na literatura.

4.3.1. Análise de Convergência em Função da Ordem de Truncamento da Série

Quando os processos de resolução de equações envolvem expansões em séries, é de fundamental importância que se promova um estudo detalhado de quantos termos são necessários nesta expansão para atender os critérios de precisão pré-estabelecidos. Obtendo-se assim, um parâmetro efetivo para tomada de decisões e análises.

Além disso, como já é de conhecimento, uma maior ordem de truncamento da série aumenta a exatidão dos resultados obtidos, porém, o tempo de processamento computacional envolvido se torna bastante elevado e muitas vezes impraticável.

Visando a obtenção de resultados numéricos, utiliza-se o Método de Quadratura de *Gauss* para efetuar o cálculo das integrais envolvidas nos coeficientes B_{ij} e demais parâmetros físicos de interesse. Desta forma, é necessária, também, a determinação das autofunções e do Jacobiano da transformação nos pontos de quadraturas.

Feito isso, o sistema de equações algébrico, linear e desacoplado para a determinação dos coeficientes do potencial transformado \widetilde{W}_{ij} é resolvido numericamente truncando a expansão da série, que representa a equação da quantidade de movimento, em diversas ordens $M \in N$.

Para avaliação da evolução da convergência da série em função da ordem de truncamento realiza-se, através das tabelas apresentadas no Apêndice A, uma análise do comportamento do número de *Poiseuille*, *f Re*, da velocidade adimensional máxima, $W_{máx}^*$ e do fator de *Hangebach*, $K(\infty)$, para as diversas geometrias analisadas.

Destaca-se, que o tempo máximo de processamento gasto no cômputo dos parâmetros hidrodinâmicos de interesse é pequeno, cerca de 40 a 45 segundos em um computador pessoal comum (512 MB RAM e 2,4 GHz). Este tempo é muito menor do que o tempo necessário para simular este mesmo problema com o auxílio de *softwares* comerciais, como por exemplo, o *software ANSYS* que resolve o problema através da técnica de Elementos Finitos.

4.3.1.1. Geometria de Setor Anular

Nas Tabelas A.1, A.2 e A.3 do Apêndice A apresentam-se os resultados obtidos para a análise de convergência do número de *Poiseuille*, da velocidade adimensional máxima e do fator de *Hagenbach* em função do ângulo Θ e da ordem de truncamento da série para as razões de aspecto $r^* = 0,25, 0,50 \text{ e } 0,75$, respectivamente. Já as Tabelas A.4, A.5 e A.6 do Apêndice A apresentam a convergência dos parâmetros hidrodinâmicos em função da razão de aspecto e da ordem N = M de truncamento da série para ângulos Θ iguais a 30°, 180° e 330°, respectivamente.

Desta análise, observa-se que a convergência é, de uma maneira geral, mais lenta quando $5^{\circ} \le \Theta \le 90^{\circ}$ e/ou $0.01 \le r^* \le 0.20$.

Para o número de *Poiseuille* é necessária a utilização de até 100 termos da série em cada coordenada para a obtenção de três casas decimais de precisão na região de convergência mais lenta, enquanto que nas demais regiões obtêm-se a mesma precisão com uma ordem N = M = 75 de truncamento na série, ou menos.

Em relação à velocidade adimensional média e o fator de *Hagenbach* constata-se que na região onde a convergência é mais lenta, necessita-se de uma ordem de truncamento de até 75 para a obtenção de uma acurácia de quatro casas decimais enquanto que nas demais regiões, a série atinge esta mesma precisão com N = M = 50 termos, ou menos.

4.3.1.2. Geometria de Setor Circular

Como mencionado anteriormente, obtém-se a geometria de setor circular fazendo o valor da razão r^* da geometria de setor anular tender a zero. Para a determinação deste valor, realiza-se na Tab. A.7 do Apêndice A um estudo de convergência dos parâmetros hidrodinâmicos do escoamento laminar interno em dutos circulares considerando-se razões de aspecto iguais a 10^{-2} , 10^{-3} , 10^{-4} e 10^{-5} . Uma vez que estes valores são bem conhecidos, desta análise pode-se concluir que $r^* = 10^{-3}$ é um excelente valor para a obtenção da geometria circular e será o valor adotado para a razão de aspecto do setor circular em todo o trabalho.

Nas Tabelas A.8 do Apêndice A efetua-se a análise de convergência do número de *Poiseuille*, da velocidade adimensional máxima e do fator de *Hagenbach*, em função do ângulo Θ e da ordem de truncamento da série que representa a equação da quantidade de movimento para dutos de setores circulares e conclui-se que a convergência dos parâmetros hidrodinâmicos apresenta praticamente o mesmo comportamento dos dutos de setores anulares, ou seja, ela é mais lenta quando o ângulo Θ está compreendido entre 5° e 90°.

Para o número de *Poiseuille* é necessária a utilização de até 150 termos da série em cada coordenada para a obtenção de três casas decimais de precisão, enquanto que para o intervalo $90^{\circ} < \Theta \le 360^{\circ}$ obtém-se a mesma precisão com uma ordem N = M = 125 de truncamento na série, ou menos. Em relação à velocidade adimensional média e o fator de *Hagenbach* nota-se que na região onde a convergência é mais lenta, necessita-se de uma ordem de truncamento de até 125 para a obtenção de uma acuracidade de quatro casas decimais enquanto que nos demais ângulos, a série atinge esta mesma precisão com N = M = 100 termos, ou menos.

Ressalta-se ainda, que o aumento do número de termos na série em ambos os casos é necessário devido ao fato de que para a geração do problema de geometria do setor circular a razão de aspecto considerada é igual 10⁻³.

4.3.1.3. Geometria Anular Concêntrica

A análise de convergência do número de *Poiseuille*, da velocidade adimensional máxima e do fator de *Hagenbach* em função da razão de aspecto e da ordem de truncamento da série que representa a equação da quantidade de movimento para dutos anulares concêntricos é apresentada nas Tabs. A.9 do Apêndice A. Verifica-se que convergência destes parâmetros é, de modo geral, mais devagar quando $0,00 < r^* \le 0,20$.

Para o número de *Poiseuille* é necessária a utilização de até 100 termos da série em cada coordenada para a obtenção de três casas decimais de precisão na região de convergência mais lenta, enquanto que para o intervalo $0,20 < r^* \le 1,00$ obtém-se a mesma precisão com uma ordem N = M = 75 de truncamento na série, ou menos. Em relação à velocidade adimensional média e o fator de *Hagenbach* nota-se que na região onde a convergência é mais lenta, necessita-se de uma ordem de truncamento de até 75 para a obtenção de uma acuracidade de quatro casas decimais enquanto que nos demais ângulos, a série atinge esta mesma precisão com N = M = 50 termos, ou menos.

4.3.1.4. Geometria Bicônica

De modo análogo aos estudos realizados anteriormente, nas Tabs. A.10 do Apêndice A apresenta-se a análise de convergência em função da razão u_0/v_0 e da ordem N = M de truncamento da série para o número de *Poiseuille*, a velocidade adimensional máxima e o fator de *Hagenbach* para diversos dutos bicônicos. Conclui-se que a convergência é mais lenta quando $u_0/v_0 \le 0,20$, ou seja, quando a geometria bicônica torna-se mais delgada. Para o fator f Re é necessário o uso de até 50 termos da série em cada coordenada para a obtenção de três casas decimais de precisão na região de lenta convergência, enquanto que para $u_0/v_0 > 0,20$ obtém-se a mesma precisão com uma ordem N = M = 40 de truncamento na série, ou menos. Em relação à velocidade adimensional média e o fator de *Hagenbach* nota-se que na região onde a convergência é mais lenta, necessita-se de uma ordem de truncamento de até 40 para a obtenção de uma acuracidade de quatro casas decimais enquanto que nos demais ângulos, a série atinge esta mesma precisão com N = M = 30termos.

4.3.2. Parâmetros Físicos de Interesse

Apresentam-se a seguir, os resultados obtidos para os parâmetros hidrodinâmicos de interesse, a saber: velocidades média e máxima, fator de atrito de *Fanning*, fator de *Hagenbach*, número de *Poiseuille* e comprimento de entrada hidrodinâmico, para as diversas configurações das geometrias estudadas.

4.3.2.1. Geometria de Setor Anular

Apresentam-se, nas Tabelas B.1 a B.16 do Apêndice B, os resultados numéricos obtidos para os parâmetros hidrodinâmicos de interesse no escoamento laminar completamente desenvolvido de fluidos *Newtonianos* no interior de diversos dutos de setores anulares para diversas razões de aspecto.

Para ilustrar o comportamento destes parâmetros, nas figuras ímpares de Fig. 4.1 a Fig. 4.31, apresentam-se os resultados encontrados para o número de *Poiseuille*, as velocidades adimensionais média e máxima, a localização desta velocidade máxima em relação ao raio, o fator de *Hagenbach* e o comprimento de entrada hidrodinâmico, para diversos dutos de geometria de setor anular em função da razão r^* . Além disso, apresentam-se nas figuras pares de Fig. 4.2 a 4.32, os perfis de velocidades tridimensionais e os mapas de isovelocidades para o escoamento nos dutos estudados.

Figura 4.1. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta=5^{\circ}$.

Figura 4.2. Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 5^{\circ}$.

Figura 4.3. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta=10^\circ$.

Figura 4.4. Perfís de velocidades para o escoamento em dutos de setores anulares com $\Theta = 10^{\circ}$.

Figura 4.5. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com Θ =15°.

Figura 4.6. Perfís de velocidades para o escoamento em dutos de setores anulares com $\Theta = 15^{\circ}$.

Figura 4.7. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com Θ =30°.

Figura 4.8. Perfís de velocidades para o escoamento em dutos de setores anulares com $\Theta = 30^{\circ}$.

Figura 4.9. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com Θ =45°.

Figura 4.10. Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 45^{\circ}$.

Figura 4.11. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com Θ=60°.

Figura 4.12. Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 60^{\circ}$.

Figura 4.13. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com Θ=90°.

0.50

0.50

0.75

0.75

1.00

1.00 *X*

X

Figura 4.14. Perfís de velocidades para o escoamento em dutos de setores anulares com $\Theta = 90^{\circ}$.

Figura 4.15. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com Θ =120°.

Figura 4.16. Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 120^{\circ}$.

Figura 4.17. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com Θ =150°.

Figura 4.18. Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 150^{\circ}$.

Figura 4.19. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com Θ =180°.

Figura 4.20. Perfís de velocidades para o escoamento em dutos de setores anulares com $\Theta = 180^{\circ}$.

Figura 4.21. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com Θ =210°.

Figura 4.22. Perfís de velocidades para o escoamento em dutos de setores anulares com $\Theta = 210^{\circ}$.

Figura 4.23. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com Θ =240°.

Figura 4.24. Perfís de velocidades para o escoamento em dutos de setores anulares com $\Theta = 240^{\circ}$.

Figura 4.25. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com Θ =270°.

Figura 4.26. Perfís de velocidades para o escoamento em dutos de setores anulares com $\Theta = 270^{\circ}$.

Figura 4.27. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com Θ =300°.

Figura 4.28. Perfís de velocidades para o escoamento em dutos de setores anulares com $\Theta = 300^{\circ}$.

Figura 4.29. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com Θ =330°.

Figura 4.30. Perfís de velocidades para o escoamento em dutos de setores anulares com $\Theta = 330^{\circ}$.

Figura 4.31. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com Θ =350°.

Figura 4.32. Perfis de velocidades para o escoamento em dutos de setores anulares com $\Theta = 350^{\circ}$.

Nas Figuras 4.33a e 4.33b apresenta-se o comportamento do número de *Poiseuille* parametrizado em Θ e r^* , respectivamente, para os diversos formatos dos dutos de setores anulares.

Figura 4.33. Comportamento do número de Poiseuille para o escoamento em dutos de setores anulares.

As Figuras 4.34a e 4.34b ilustra o comportamento da velocidade adimensional média parametrizado em Θ e r^* , respectivamente, para os diversos formatos dos dutos de setores anulares.

Figura 4.34. Comportamento da velocidade adimensional média para o escoamento em dutos de setores anulares.

As Figuras 4.35a e 4.35b ilustra o comportamento da velocidade adimensional máxima parametrizado em Θ e r^* , respectivamente, para os diversos formatos dos dutos de setores anulares.

Figura 4.35. Comportamento da velocidade adimensional máxima para o escoamento em dutos de setores anulares.

As Figuras 4.36a e 4.36b ilustra a posição da localização da velocidade adimensional máxima parametrizada em Θ e r^* , respectivamente, para os diversos formatos dos dutos de setores anulares.

Figura 4.36. Localização da posição da velocidade adimensional máxima para o escoamento em dutos de setores anulares.

Nas Figuras 4.37a e 4.37b apresenta-se o comportamento do fator de *Hagenbach* parametrizado em Θ e r^* , respectivamente, para os diversos formatos dos dutos de setores anulares.

Figura 4.37. Comportamento do fator de Hagenbach para o escoamento em dutos de setores anulares.

Nas Figuras 4.38a e 4.38b apresenta-se o comportamento do comprimento de entrada hidrodinâmico parametrizado em Θ e r^* , respectivamente, para os diversos formatos dos dutos de setores anulares.

Figura 4.38. Comportamento do comprimento de entrada hidrodinâmico para o escoamento em dutos de setores anulares.

Quando parametrizado em Θ , nota-se que o comportamento de todos os parâmetros hidrodinâmicos de interesse se aproximam de um valor para $r^* \rightarrow 1,00$. Estes valores, conforme mostrado posteriormente, correspondem ao caso do escoamento em canais de placas planas.

4.3.2.2. Geometria de Setor Circular

Apresentam-se, na Tabela B.17 do Apêndice B, os resultados numéricos obtidos para os parâmetros hidrodinâmicos de interesse no escoamento laminar plenamente desenvolvido de fluidos *Newtonianos* no interior de diversos dutos de setores circulares para diversos ângulos Θ .

Para ilustrar o comportamento destes parâmetros, a Fig. 4.39 mostra os resultados encontrados para o número de *Poiseuille*, as velocidades adimensionais média e máxima, a localização desta velocidade máxima em relação ao raio, o fator de *Hagenbach* e o comprimento de entrada hidrodinâmico, para diversos dutos de geometria de setor circular em função do ângulo Θ . Além disso, apresentam-se na Fig. 4.40 os perfis de velocidades tridimensionais e os mapas de isovelocidades para o escoamento nos dutos analisados.

Figura 4.39. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos de setores circulares.

a 1.00 0.75 0.50 0.25 0.00 0.25 0.00 0.25 0.50 0.75 1.00 X (b) mapa de isovelocidades para $\Theta = 90^{\circ}$

1.00 0.75 0.50 0.25 0.00 -1.00 -0.50 0.00 0.50 1.00 X (d) mapa de isovelocidades para $\Theta = 120^{\circ}$

(c) perfil de velocidades tridimensional para $\Theta = 120^{\circ}$

(i) perfil de velocidades tridimensional para $\Theta = 210^{\circ}$

Figura 4.40. Perfis de velocidades para o escoamento em dutos de setores circulares.

4.3.2.3. Geometria Anular Concêntrica

Na Tabela B.18 do Apêndice B encontram-se os resultados numéricos obtidos para os parâmetros hidrodinâmicos de interesse no escoamento laminar plenamente desenvolvido de fluidos *Newtonianos* no interior de diversos dutos anulares concêntricos para várias razões de aspecto.

Para ilustrar o comportamento destes parâmetros, na Fig. 4.41 apresentam-se os resultados encontrados para o número de *Poiseuille*, as velocidades adimensionais média e máxima, a localização desta velocidade máxima em relação ao raio, o fator de *Hagenbach* e o comprimento de entrada hidrodinâmico, para diversos dutos de geometria anular concêntrica em função da razão r^* . Além disso, a Fig. 4.42 ilustra os perfis de velocidades tridimensionais e os mapas de isovelocidades para o escoamento nos dutos analisados.

Figura 4.41. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos anulares concêntricos.

Capítulo 4 Problemas Hidrodinâmicos

Figura 4.42. Perfis de velocidades para o escoamento em dutos anulares concêntricos.

4.3.2.4. Geometria Bicônica

Encontram-se na Tabela B.19 do Apêndice B os resultados numéricos obtidos para os parâmetros hidráulicos de interesse no escoamento laminar completamente desenvolvido de fluidos *Newtonianos* no interior de inúmeras configurações geométricas dos dutos bicônicos.

Para ilustrar o comportamento destes parâmetros, a Fig. 4.43 mostra os resultados obtidos para o número de *Poiseuille*, as velocidades adimensionais média e máxima, a posição da localização desta velocidade máxima, o fator de *Hagenbach* e o comprimento de entrada hidrodinâmico, para diversos dutos de geometria bicônica em função da razão u_0/v_0 . Além disso, a Fig. 4.44 ilustra os perfis de velocidades tridimensionais e os mapas de isovelocidades para o escoamento nos dutos analisados.

Figura 4.43. Comportamento dos parâmetros hidrodinâmicos para o escoamento em dutos bicônicos.

(g) perfil de velocidades tridimensional para $u_0/v_0 = 0,70$

(i) perfil de velocidades tridimensional para $u_0/v_0 = 0,90$

(**h** mapa de isovelocidades para $u_0/v_0 = 0,70$

(j) mapa de isovelocidades para $u_0/v_0 = 0,90$

(k) perfil de velocidades tridimensional para $u_0/v_0 = 1,00$

Figura 4.44. Perfís de velocidades para o escoamento em dutos bicônicos.

4.3.3. Comparação de Resultados

Nesta seção realiza-se a comparação, quando possível, dos resultados obtidos para os parâmetros hidrodinâmicos de interesse nos diversos casos analisados com os disponíveis na literatura. Ressalta-se que para o caso do escoamento em dutos bicônicos nenhum resultado foi encontrado na literatura.

4.3.3.1. Geometria de Setor Anular

Nas Tabelas 4.1 realiza-se a comparação dos resultados obtidos com os encontrados em Sparrow *et al.* (1964), Shah & London (1971) e Schenkel (1981) para o número de *Poiseuille*, fator f Re, nos diversos dutos de setores anulares analisados.

Tabela 4.1a. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Poiseuille* no escoamento em dutos de setores anulares com $\Theta = 5^{\circ}$ e 10°.

		5'	b			10°				
r*	Presente Trabalho	Sparrow <i>et al.</i> (1964)	Shah & London (1971)	Schenkel (1981)	Presente Trabalho	Sparrow <i>et al.</i> (1964)	Shah & London (1971)	Schenkel (1981)		
0,01	12,530	-	12,50	-	12,727	-	12,735	-		
0,10	14,429	14,47	14,490	-	14,463	14,49	14,470	-		
0,20	16,299	16,34	16,335	-	16,018	16,04	16,023	-		
0,30	17,759	17,80	17,779	-	17,050	17,07	17,052	-		
0,40	18,712	18,75	18,754	-	17,496	17,51	17,502	-		
0,50	19,112	19,14	19,139	-	17,355	17,37	17,358	-		
0,60	18,918	18,94	18,935	-	16,667	16,68	16,669	-		
0,70	18,058	18,08	18,069	-	15,548	15,56	15,549	-		
0,80	16,404	16,42	16,411	-	14,411	14,42	14,412	14,960		
0,90	14,336	14,35	14,342	15,061	14,967	14,98	14,971	17,490		

Tabela 4.1b. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Poiseuille* no escoamento em dutos de setores anulares com $\Theta = 15^{\circ}$ e 30°.

		15	j°		30°				
r*	Presente Trabalho	Sparrow <i>et al.</i> (1964)	Shah & London (1971)	Schenkel (1981)	Presente Trabalho	Sparrow <i>et al.</i> (1964)	Shah & London (1971)	Schenkel (1981)	
0,01	12,930	-	12,939	-	13,466	-	13,466	-	
0,10	14,496	14,51	14,500	-	14,576	14,59	14,576	-	
0,20	15,773	15,79	15,775	-	15,200	15,21	15,200	-	
0,30	16,461	16,47	16,462	-	15,236	15,24	15,236	-	
0,40	16,552	16,56	16,554	-	14,894	14,90	14,894	14,984	
0,50	16,123	16,13	16,124	-	14,467	14,47	14,467	14,960	
0,60	15,337	15,35	15,338	-	14,283	14,29	14,283	15,724	
0,70	14,509	14,52	14,510	14,885	14,703	14,71	14,703	17,044	
0,80	14,317	14,33	14,319	16,146	16,141	16,15	16,141	18,853	
0,90	16,350	16,36	16,352	19,051	19,058	19,07	19,058	21,156	

	4		60°					
r*	Presente Trabalho	Schenkel (1981)	Presente Trabalho	Sparrow <i>et al.</i> (1964)	Shah & London (1971)	Schenkel (1981)		
0,01	13,901	-	14,256	-	14,256	15,606		
0,10	14,633	-	14,682	14,69	14,682	14,896		
0,20	14,830	15,092	14,641	14,65	14,641	14,960		
0,30	14,635	14,870	14,467	14,47	14,467	15,483		
0,40	14,392	15,308	14,486	14,49	14,486	16,283		
0,50	14,392	16,146	14,873	14,88	14,873	17,273		
0,60	14,850	17,273	15,711	15,72	15,711	18,409		
0,70	15,926	18,640	17,034	17,04	17,034	19,664		
0,80	17,741	20,222	18,847	18,86	18,847	21,022		
0,90	20,398	22,009	21,169	21,18	21,169	22,469		

Tabela 4.1c. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Poiseuille* no escoamento em dutos de setores anulares com $\Theta = 45^{\circ}$ e 60°.

Tabela 4.1d. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Poiseuille* no escoamento em dutos de setores anulares com $\Theta = 90^\circ$ e 120°.

		90°			120°	
r*	Presente Trabalho	Shah & London (1971)	Schenkel (1981)	Presente Trabalho	Shah & London (1971)	Schenkel (1981)
0,01	14,800	14,800	14,995	15,190	15,190	15,793
0,10	14,804	14,804	15,444	15,007	15,007	16,461
0,20	14,687	14,687	16,146	15,066	15,066	17,273
0,30	14,821	14,821	16,977	15,505	15,505	18,122
0,40	15,306	15,306	17,889	16,251	16,251	18,986
0,50	16,129	16,129	18,853	17,225	17,225	19,852
0,60	17,247	17,247	19,852	18,367	18,367	20,712
0,70	18,619	18,619	20,874	19,637	19,637	21,559
0,80	20,213	20,213	21,910	21,012	21,012	22,391
0,90	22,031	22,031	22,954	22,499	22,499	23,205

Tabela 4.1e. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Poiseuille* no escoamento em dutos de setores anulares com $\Theta = 150^{\circ}$ e 180°.

		150°			180°	
r*	Presente Trabalho	Shah & London (1971)	Schenkel (1981)	Presente Trabalho	Shah & London (1971)	Schenkel (1981)
0,01	15,479	15,479	16,627	15,704	15,704	17,353
0,10	15,288	15,288	17,347	15,616	15,616	18,072
0,20	15,572	15,572	18,160	16,095	16,095	18,853
0,30	16,216	16,216	18,968	16,863	16,863	19,608
0,40	17,082	17,082	19,760	17,776	17,776	20,331
0,50	18,088	18,088	20,532	18,764	18,764	21,022
0,60	19,181	19,181	21,278	19,793	19,793	21,679
0,70	20,335	20,335	21,999	20,841	20,841	22,304
0,80	21,533	21,533	22,692	21,900	21,900	22,899
0,90	22,795	22,795	23,359	23,000	23,000	23,463

		210°			240°	
r*	Presente Trabalho	Shah & London (1971)	Schenkel (1981)	Presente Trabalho	Shah & London (1971)	Schenkel (1981)
0,01	15,888	15,888	17,967	16,047	16,047	18,486
0,10	15,960	15,960	18,664	16,301	16,301	19,154
0,20	16,591	16,591	19,405	17,043	17,043	19,852
0,30	17,429	17,429	20,106	17,917	17,917	20,504
0,40	18,350	18,350	20,768	18,828	18,828	21,112
0,50	19,304	19,304	21,391	19,742	19,742	21,679
0,60	20,266	20,266	21,977	20,643	20,643	22,208
0,70	21,223	21,223	22,529	21,523	21,523	22,701
0,80	22,172	22,172	23,049	22,382	22,382	23,163
0,90	23,152	23,152	23,538	23,269	23,269	23,595

Tabela 4.1f. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Poiseuille* no escoamento em dutos de setores anulares com $\Theta = 210^{\circ}$ e 240°.

Tabela 4.1g. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Poiseuille* no escoamento em dutos de setores anulares com $\Theta = 270^{\circ}$ e 300°.

r [*] Presente Shah & Schenkel Presente Shah & Schenke	
$\underline{\qquad \qquad \text{Trabalho} \qquad \underbrace{(1971)}_{(1971)} \qquad \underbrace{(1981)}_{(1981)} \qquad \underbrace{\text{Trabalho} \qquad \underbrace{(1971)}_{(1971)} \qquad \underbrace{(1981)}_{(1971)}$	iel)
0,01 16,191 16,191 18,927 16,324 16,324 19,305	5
0,10 16,627 16,627 19,564 16,932 16,932 19,912	2
0,20 17,449 17,449 20,222 17,811 17,811 20,532	2
0,30 18,338 18,338 20,830 18,704 18,704 21,100	0
0,40 19,231 19,231 21,391 19,574 19,574 21,621	1
0,50 20,104 20,104 21,910 20,408 20,408 22,099	9
0,60 20,949 20,949 22,391 21,203 21,203 22,540	0
0,70 21,763 21,763 22,837 21,960 21,960 22,948	8
0,80 20,530 20,530 22,155 20,810 20,810 22,324	4
0,90 21,360 21,360 22,618 21,587 21,587 22,748	8

Tabela 4.1h. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Poiseuille* no escoamento em dutos de setores anulares com $\Theta = 330^{\circ}$ e 350°.

		330°			350°	
<i>r</i> *	Presente Trabalho	Shah & London (1971)	Schenkel (1981)	Presente Trabalho	Shah & London (1971)	Schenkel (1981)
0,01	16,451	16,451	19,632	16,532	16,532	19,826
0,10	17,215	17,215	20,209	17,391	17,391	20,385
0,20	18,133	18,133	20,795	18,329	18,329	20,950
0,30	19,023	19,023	21,328	19,214	19,214	21,461
0,40	19,868	19,868	21,813	20,043	20,043	21,925
0,50	20,666	20,666	22,257	20,818	20,818	22,349
0,60	21,417	21,417	22,664	21,542	21,542	22,736
0,70	22,125	22,125	23,039	22,221	22,221	23,091
0,80	21,047	21,047	22,465	21,186	21,186	22,547
0,90	21,776	21,776	22,856	21,887	21,887	22,918

Como observado, os resultados para f Re apresentam uma excelente concordância quando comparados com os obtidos por Sparrow *et al.* (1964) e Shah & London (1971).

Para a obtenção destes resultados, Sparrow *et al.* (1964) determinaram o perfil de velocidades do escoamento laminar em dutos de setores anulares através do Método de Separação de Variáveis e da utilização da Superposição Linear. A velocidade local, w, e a velocidade média, $w_{méd}$, foram expressas como:

$$\frac{w}{-0.25(c_{1}r_{i}^{2})} = -\left(\frac{r}{r_{i}}\right)^{2} + \frac{2}{\pi}\sum_{n=1}^{\infty}\frac{1/n}{1+(2\beta^{*}/n\pi)^{2}}\left[1-\frac{(-1)^{n}}{r^{*2}}\right] \times \frac{\cosh\left[(n\pi/\beta^{*})(\Theta/2-\theta)\right]}{\cosh(n\pi/\beta^{*})\Theta/2}sen\frac{n\pi X}{\beta^{*}} + \frac{2}{\pi}\sum_{n=1}^{\infty}\frac{1}{n}\left[1-(-1)^{n}\right] \times \left[\frac{\sinh(n\pi/\Theta)(\beta^{*}-X)+(1/r^{*2})\sinh(n\pi X/\Theta)}{\sinh(n\pi\beta^{*}/\Theta)}\right]sen\frac{n\pi\theta}{\Theta}, \quad (4.123)$$

e,

$$\frac{w_{m\acute{ed}}}{-\left[c_{1}r_{i}^{4}/2\Theta\left(r_{e}^{2}-r_{i}^{2}\right)\right]}=\frac{\Theta}{4}\left[1-\frac{1}{r^{*4}}\right]+\frac{4}{\pi}\sum_{n=1}^{\infty}\frac{\left(n\pi/\beta^{*}\right)^{2}\left\{1-\left[\left(-1\right)^{n}/r^{*2}\right]\right\}^{2}}{n\left[4+\left(n\pi/\beta^{*}\right)^{2}\right]^{2}}\times tgh\frac{n\pi\Theta}{2\beta^{*}}+\frac{2}{\beta^{*}}+\frac{2}{\pi}\sum_{n=1}^{\infty}\frac{\left(1/n\right)\left[1-\left(-1\right)^{n}\right]^{2}}{\left[4-\left(n\pi/\Theta\right)^{2}\right]senh\left(n\pi\beta^{*}/\Theta\right)}\times\left\{\frac{2\Theta}{n\pi}\left[\frac{1}{r^{*4}}-1\right]senh\frac{n\pi\beta^{*}}{\Theta}-\left[\frac{1}{r^{*4}}-1\right]cosh\frac{n\pi\beta^{*}}{\Theta}+\frac{2}{r^{*2}}\right\},$$

$$(4.124)$$

com:

$$c_1 = \left(\mu \frac{dp}{dx}\right), \qquad X = ln \frac{r}{r_i}, \qquad \beta^* = ln \frac{1}{r^*}.$$
 (4.125)

Feito isso, determinaram o valor do número de *Poiseuille* para $5^{\circ} \le \Theta \le 60^{\circ}$ e $0.05 \le r^* \le 0.95$, através da expressão:

$$f Re = -\frac{c_1 D_e^2}{2w_{méd}},$$
 (4.126)

com:

$$\frac{D_e}{r_i} = \frac{2\Theta[(r_e/r_i)^2 - 1]}{\Theta(r_e/r_i + 1) + (r_e/r_i - 1)}.$$
(4.127)

Shah & London (1971) estenderam estes resultados para os dutos de setores anulares com $5^{\circ} \le \Theta \le 350^{\circ}$ e $0,05 \le r^* \le 0,95$ utilizando-se de até 1200 termos na série dada pela Eq. (4.124). Na comparação dos resultados com os de Schenkel (1981) verifica-se uma certa discordância, uma vez que os mesmos são provenientes de uma correlação baseada na analogia da torção de uma barra prismática, dada por:

$$f Re = \frac{24}{\left[1 - \frac{0.63}{\Theta} \left(\frac{1 - r^*}{1 + r^*}\right)\right] \left[1 - \frac{1}{\Theta} \left(\frac{1 - r^*}{1 + r^*}\right)\right]^2},$$
(4.128)

sendo que, $\Theta \ge \Theta_{min}(r^*)$. Os valores de Θ_{min} para $r^* = 0,00, 0,10, 0,20, 0,30, 0,40, 0,50, 0,60, 0,70, 0,80$ e 0,90 são iguais a 60°, 50°, 42°, 35°, 28,5°, 22,5°, 17,5°, 13°, 8,5° e 4°, respectivamente.

Destaca-se ainda, que a velocidade adimensional média apresenta o mesmo comportamento, pois ela é inversamente proporcional ao dobro do número de *Poiseuille*.

A Tabela 4.2 trata da comparação do fator de *Hagenbach* encontrado para alguns dutos de geometria de setor anular. Para a obtenção dos resultados, Niida (1980) obteve a solução analítica para a distribuição da velocidade em termos de um diâmetro equivalente, enquanto que Lin *et al.* (2000) utilizaram o Método de Diferenças Finitas proposto por Patankar & Spalding (1972).

Θ	r*	Presente Trabalho	Niida (1980)	Lin <i>et al.</i> (2000)
	0,20	1,9755	1,77	-
15°	0,50	1,4311	1,32	-
	0,80	1,5404	1,42	-
000	0,25	1,6331	-	1,565
30°	0,50	1,5327	-	1,498
	0,20	1,5929	1,46	-
45°	0,50	1,5346	1,42	-
	0,80	1,1276	1,07	-

Tabela 4.2. Comparação dos resultados obtidos com os disponíveis na literatura para o fator de *Hagenbach* no escoamento em dutos de setores anulares.

Uma boa concordância para estes resultados numéricos é encontrada.

4.3.3.2. Geometria de Setor Circular

Na Tabela 4.3 apresenta-se a comparação dos resultados obtidos para o número de *Poiseuille* para os dutos de setores circulares com os fornecidos em Shah & London (1978), Schenkel (1981), Lei & Trupp (1989), Ben-Ali *et al.* (1989), Etemad & Bakhtiari (1999) e Lin *et al.* (2000).

	o nun	iero de <i>Polse</i>	eutite no escoa	imento em du	tos de setore	es circulares.	
Θ	Presente Trabalho	Shah & London (1978)	Schenkel (1981)	Lei & Trupp (1989)	Ben-Ali et al. (1989)	Etemad & Bakhtiari (1999)	Lin <i>et al.</i> (2000)
0°	12,000	12,000	12,000	12,0000	-	-	-
10° 15° 20° 30°	12,504 12,728 12,936 13,310	12,504 12,728 12,936 13,310	12,457 12,676 12,887 13,286	12,5042 12,7284 12,9364 13,3099	12,56 12,78 12,98 13,35	- - 13,026	- - 12,757 13,163
40° 45° 50° 60°	13,635 13,782 13,920 14,171	13,635 13,782 - 14,171	13,649 13,815 13,969 14,233	13,6351 13,7822 13,9200 14,1711	13,67 - 13,95 14,20	- - -	13,509 - - -
90° 120° 150° 180°	14,769 15,200 15,522 15,767	- 15,200 - 15,767	- - -	14,7688 15,2004 15,5218 15,7668	14,79 15,22 15,54 15,79	14,569 - - 15,356	- - -
210° 240° 270° 300°	15,957 16,108 16,228 16,325	- - -	- - -	15,9573 16,1078 16,2281 16,3253	15,98 16,15 16,29 16,42	- - -	- - -
360°	16,470	-	-	16,4696	-	-	-

Tabela 4.3. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Poiseuille* no escoamento em dutos de setores circulares.

Uma excelente concordância é verificada a partir dos resultados obtidos por Shah & London (1978). Para tal, os autores utilizaram o perfil de velocidade apresentado por Eckert & Irvine (1956) e Eckert *et al.* (1958) proveniente do desenvolvimento analítico baseado na analogia de torção de uma barra, dada por:

$$w = \frac{c_1}{4} \left\{ r^2 \left(1 - \frac{\cos 2\theta}{\Theta} \right) - \frac{16r_e^2 \Theta^2}{\pi^3} \sum_{n=1,3,\dots}^{\infty} (-1)^{(n+1)/2} \left(\frac{r}{r_e} \right)^{\frac{n\pi}{\Theta}} \frac{\cos(n\pi\theta/\Theta)}{n[n+(2\Theta/\pi)][n-(2\Theta/\pi)]} \right\}, \quad (4.129)$$

onde os resultados do número de *Poiseuille* para o escoamento em dutos de setores circulares de $11^{\circ} \le \Theta \le 60^{\circ}$ foram apresentados nestes trabalhos. Posteriormente, Sparrow & Haji-Sheikh (1965) estenderam estes resultados para $11^{\circ} \le \Theta \le 180^{\circ}$.

Entretanto, Chiranjivi & Vidyanidhi (1973) apresentaram uma expressão para a velocidade média $w_{méd}$, corrigindo um erro que os autores detectaram na fórmula apresentada por Eckert & Irvine (1956), dada por:

$$w_{m\acute{e}d} = -\frac{c_1}{16} \frac{2r_e^2}{\Theta} \left\{ (tg \,\Theta - \Theta) - \frac{2048(\Theta/2)^4}{\pi^5} \sum_{n=1,3,\dots}^{\infty} \frac{1}{n^2 [n + (2\Theta/\pi)]^2 [1 - (2\Theta/\pi)]} \right\}.$$
(4.130)

Feito isso, através da Eq. (4.130) e da seguinte expressão, Shah & London (1978) obtiveram os resultados por eles apresentados:

$$f Re = -\frac{c_1 r_e^2 \Theta^2}{2 w_{méd} \left[1 + (\Theta/2)^2\right]},$$
(4.131)

Na comparação dos resultados com os de Schenkel (1981) uma certa discordância é verificada, uma vez que os mesmos são provenientes da seguinte correlação:

$$f Re = 14.4 \left[1 - \frac{1}{6} \left(1 - \frac{\Theta}{70} \right)^{1.371} \right], \tag{4.132}$$

para $\Theta \leq 70^\circ$.

Quando se realiza a comparação com os resultados obtidos analiticamente por Lei & Trupp (1989) constata-se uma excelente concordância.

E, finalmente, os resultados obtidos para *f Re* por Ben-Ali *et al.* (1989) e Lin *et al.* (2000) através do Método de Diferenças Finitas e por Etemad & Bakhtiari (1999) através de uma solução analítica, apresentaram uma boa concordância.

Novamente, ressalta-se que a velocidade adimensional média apresenta o mesmo comportamento, pois ela é inversamente proporcional ao dobro do número de *Poiseuille*.

Na Tabela 4.4 comparam-se os resultados obtidos para a velocidade adimensional máxima e sua posição em relação ao raio nos dutos de setores circulares com os encontrados em Lei & Trupp (1989). Uma excelente concordância é verificada. Além disso, apresenta-se na Fig.4.45 a localização da posição da velocidade adimensional máxima para o escoamento em dutos de setores circulares.

	r _m	láx	W ^{**} _{máx}			
Θ	Presente Trabalho	Lei & Trupp (1989)	Presente Trabalho	Lei & Trupp (1989)		
0°	-	-	3,0000	3,00000		
10°	0,8699	0,87003	2,5182	2,51826		
15°	0,8334	0,83350	2,4249	2,42489		
20°	0,8034	0,80342	2,3586	2,35858		
30°	0,7551	0,75510	2,2701	2,27013		
40°	0,7168	0,71682	2,2142	2,21417		
45°	0,7003	0,70026	2,1934	2,19344		
50°	0,6850	0,68504	2,1761	2,17612		
60°	0,6579	0,65787	2,1490	2,14902		
90°	0,5943	0,59427	2,1023	2,10234		
120°	0,5473	0,54731	2,0801	2,08013		
150°	0,5104	0,51039	2,0682	2,06824		
180°	0,4802	0,48022	2,0613	2,06130		
210°	0,4549	0,45488	2,0570	2,05696		
240°	0,4332	0,43317	2,0541	2,05406		
270°	0,4143	0,41428	2,0520	2,05201		
300°	0,3976	0,39764	2,0505	2,05047		
360°	0,3695	0,36952	2,0482	2,04823		

 Tabela 4.4. Comparação dos resultados obtidos com os disponíveis na literatura para a velocidade adimensional máxima e sua posição em relação ao raio no escoamento em dutos de setores circulares.

Figura 4.45. Localização da posição da velocidade adimensional máxima para o escoamento em dutos de setores circulares.

Na Tabela 4.5 mostra a comparação dos resultados obtidos para o fator de *Hagenbach* e do comprimento de entrada hidrodinâmico para os dutos de setores circulares estudados.

			$K(\infty)$			L_{L}	+ hy
Θ	Presente Trabalho	Shah & London (1978)	Lei & Trupp (1989)	Etemad & Bakhtiari (1999)	Lin <i>et al.</i> (2000)	Presente Trabalho	Lei & Trupp (1989)
0°	2,9711	2,971	2,9710	-	-	0,10477	0,10477
10°	2,4110	-	2,4110	-	-	0,05859	0,05859
15°	2,2375	2,235	2,2375	-	-	0,05191	0,05190
20°	2,1048	-	2,1048	-	1,922	0,04751	0,04750
30°	1,9177	1,855	1,9177	1,908	1,792	0,04199	0,04199
40°	1,7952	-	1,7952	-	1,698	0,03864	0,03864
45°	1,7494	1,657	1,7494	-	-	0,03740	0,03740
50°	1,7109	-	1,7109	-	-	0,03636	0,03636
60°	1,6508	1,580	1,6508	-	-	0,03471	0,03471
90°	1,5484	-	1,5484	1,538	-	0,03168	0,03168
120°	1,5012	1,488	1,5012	-	-	0,03003	0,03003
150°	1,4769	-	1,4769	-	-	0,02900	0,02900
180°	1,4632	1,463	1,4632	1,480	-	0,02831	0,02832
210°	1,4549	-	1,4549	-	-	0,02783	0,02783
240°	1,4494	-	1,4494	-	-	0,02747	0,02747
270°	1,4454	-	1,4454	-	-	0,02720	0,02720
300°	1,4423	-	1,4423	-	-	0,02699	0,02698
360°	1,4372	-	1,4372	-	-	0,02668	0,02669

 Tabela 4.5. Comparação dos resultados obtidos com os disponíveis na literatura para o fator de Hagenbach e o comprimento de entrada hidrodinâmico no escoamento em dutos de setores circulares.

Constata-se ainda, através das Tab. 4.6 que para $\Theta \le 20^{\circ}$ os resultados encontrados para os parâmetros hidráulicos de escoamento laminar em dutos de setores circulares se aproximam dos resultados apresentados por Shah (1975a) para o escoamento em dutos de formato de triângulo isósceles com os mesmos ângulos.

 Tabela 4.6a. Comparação dos resultados obtidos com os disponíveis na literatura para o número de Poiseuille e para a velocidade adimensional máxima no escoamento em dutos triangulares isósceles.

0	fŀ	Re	W_m^*	áx
•	Presente Trabalho	Shah (1975a)	Shah Presente 1975a) Trabalho	Shah (1975a)
0°	12,000	12,000	3,0000	3,000
10°	12,504	12,474	2,5182	2,521
20°	12,936	12,822	2,3586	2,368
30°	13,310	13,065	2,2701	2,290
40°	13,635	13,222	2,2142	2,249
50°	13,920	13,307	2,1761	2,228
60°	14,171	13,333	2,1490	2,222
70°	14,394	13,311	2,1291	2,227
80°	14,592	13,248	2,1140	2,241
90°	14,769	13,153	2,1023	2,264

0	$K(\cdot)$	$K(\infty)$		ıy	
Θ	Presente Trabalho	Shah (1975a)	Presente Trabalho	Shah (1975a)	
0°	2,9711	2,971	0,10477	0,1048	
10°	2,4110	2,409	0,05859	0,0590	
20°	2,1048	2,128	0,04751	0,0484	
30°	1,9177	1,966	0,04199	0,0436	
40°	1,7952	1,876	0,03864	0,0412	
50°	1,7109	1,831	0,03636	0,0401	
60°	1,6508	1,818	0,03471	0,0398	
70°	1,6067	1,829	0,03346	0,0400	
80°	1,5736	1,860	0,03247	0,0408	
90°	1,5484	1,909	0,03168	0,0421	

Tabela 4.6b. Comparação dos resultados obtidos com disponíveis na literatura para o fator de *Hagenbach* e o comprimento de entrada hidrodinâmico no escoamento em dutos triangulares isósceles.

/

4.3.3.3. Geometria Anular Concêntrica

Na Tabela 4.7 realiza-se a comparação dos resultados obtidos para o número de *Poiseuille* para os dutos anulares concêntricos com os apresentados em Shah & London (1971), Natarajan & Lakshmanan (1973), Lee & Kuo (1989) e Park & Lee (2002).

r*	Presente Trabalho	Shah & London (1971)	Natarajan & Lakshmanan (1973)	Lee & Kuo (1998)	Park & Lee (2002)		
0,00	18,708	16,000	-	16,0000	-		
0,01	20,028	20,028	20,427	-	-		
0,10	22,343	22,343	22,142	22,7928	22,3387		
0,20	23,088	23,088	22,685	23,1136	23,0839		
0,30	23,461	23,461	23,010	23,4622	23,4571		
0,40	23,678	23,678	23,243	23,6784	23,6743		
0,50	23,813	23,813	23,425	23,8125	23,8086		
0,60	23,879	23,897	23,575	23,8970	23,8932		
0,70	23,950	23,949	23,702	23,9495	23,9457		
0,80	23,980	23,980	23,813	23,9769	23,9765		
0,90	23,996	23,996	23,912	23,9916	23,9920		
1,00	24,000	24,000	24,000	-	-		

 Tabela 4.7. Comparação dos resultados obtidos com disponíveis na literatura para o número de *Poiseuille* no escoamento em dutos anulares concêntricos.

Dos resultados apresentados, verifica-se uma excelente concordância para os valores de *f Re* quando comparados com os dados obtidos analiticamente Shah & London (1971), exceto para $r^* = 0,00$.

Para a obtenção da solução deste problema, os autores utilizaram das fórmulas do perfil de velocidades, da velocidade média e do fator f Re, fornecidas em Lundberg *et al.* (1963a,b), dadas por:

Capítulo 4 Problemas Hidrodinâmicos

$$w = -\frac{c_1 r_e^2}{4} \left[1 - \left(\frac{r}{r_e}\right)^2 + 2 r_{max}^{*2} \ln\left(\frac{r}{r_e}\right) \right], \qquad (4.133)$$

$$w_{m\acute{e}d} = -\frac{c_1 r_e^2}{8} \Big[1 + r^{*2} - 2 r_{m\acute{a}x}^{*2} \Big], \qquad (4.134)$$

$$f Re = \frac{16 \left(1 - r^*\right)^2}{1 + r^{*2} - 2r_{max}^{*2}},$$
(4.135)

com,

$$r_{max}^{*} = \frac{r_{max}}{r_{e}} = \left[\frac{1 - r^{*2}}{2\ln(1/r^{*})}\right]^{\frac{1}{2}}.$$
(4.136)

Entretanto para o caso $r^* = 0,00$, diferentemente do que afirma Shah & London (1978): "As condições de contorno para os dutos anulares concêntricos com $r^* = 0$ não são idênticas às dos dutos circulares. Entretanto, fortuitamente para muitos casos, os resultados para o escoamento e a transferência de calor para os dutos anulares concêntricos com $r^* = 0$ são idênticos aos dos dutos circulares"; os resultados para os parâmetros hidrodinâmicos são diferentes dos encontrados nos dutos circulares (Tab. 4.11). O perfil de velocidades pode ser observado na Fig. 4.32a e 4.32b.

Na comparação dos resultados com os de Natarajan & Lakshmanan (1973) uma certa discordância é notada, uma vez que os mesmos são provenientes da seguinte correlação:

$$f Re = 24 \left(r^* \right)^{0.035}, \tag{4.137}$$

 $com r^* \ge 0,005$.

Para os resultados obtidos numericamente para f Re por Lee & Kuo (1989) através do Método Integral de *Galerkin* e por Park & Lee (2002), constata-se uma boa concordância, exceto para $r^* = 0,00$ pelos motivos já explicados.

Ressalta-se novamente, que a velocidade adimensional média apresenta o mesmo comportamento, pois ela é inversamente proporcional ao dobro do número de *Poiseuille*.

Na Tabela 4.8 compara-se os resultados obtidos para a velocidade adimensional máxima e sua posição em relação ao raio nos dutos anulares concêntricos com os encontrados analiticamente em Lundgren *et al.* (1964). Uma excelente concordância é verificada, exceto novamente, para $r^* = 0,00$.

*	W	r* máx	r,	máx
r	Presente	Lundgren	Presente	Lundgren
	Trabalho	<i>et al.</i> (1964)	Trabalho	<i>et al</i> . (1964)
0,00	1,7233	2,000	0,2512	0,000000
0,01	1,6613	1,661	0,3295	0,329489
0,10	1,5673	1,567	0,4637	0,463655
0,20	1,5374	1,537	0,5461	0,546114
0,30	1,5222	1,522	0,6147	0,614748
0,40	1,5133	1,513	0,6770	0,677030
0,50	1,5078	1,508	0,7355	0,735534
0,60	1,5043	1,504	0,7915	0,791478
0,75	1,5014	1,501	0,8720	0,872002
0,80	1,5008	1,501	0,8981	0,898140
0,90	1,5002	1,500	0,9496	0,949561
1,00	1,5000	1,500	0,9950	-

 Tabela 4.8. Comparação dos resultados obtidos com os disponíveis na literatura para a velocidade adimensional máxima e sua posição em relação ao raio no escoamento em dutos anulares concêntricos.

Na Tabela 4.9 efetua-se a comparação dos resultados obtidos para o fator de *Hagenbach* nos dutos anulares concêntricos com os fornecidos, através de solução analítica, em Liu (1974), Sparrow & Lin (1964), Heaton (1964), Sugino (1962) e Lundgren *et al.* (1964). Constata-se uma boa concordância nestes resultados, exceto, para $r^* = 0,00$.

ingensuen no escountento en dutos ununes concentricos.							
		$K(\infty)$					
r*	Presente Trabalho	Liu (1974)	Sparrow & Lin (1964)	Heaton (1964)	Sugino (1962)	Lundgren <i>et al.</i> (1964)	
0,00	1,0727	1,25	-	-	-	1,333	
0,01	0,9734	-	0,914	-	-	0,973	
0,05	0,8644	0,830	0,820	0,80	-	0,864	
0,10	0,8088	0,784	0,766	0,76	-	0,809	
0,20	0,7542	-	0,714	-	0,718	0,754	
0,40	0,7101	-	0,672	-	-	0,711	
0,50	0,7000	0,688	-	-	0,672	-	
0,75	0,6882	0,678	-	-	-	-	
0,80	0,6865	-	0,650	-	-	0,694	
1,00	0,6860	0,674	-	0,68	-	0,686	

 Tabela 4.9. Comparação dos resultados obtidos com os disponíveis na literatura para o fator de Hagenbach no escoamento em dutos anulares concêntricos.

E, finalmente, realiza-se a comparação dos resultados obtidos para o comprimento de entrada hidrodinâmico com os encontrados em Lundgren *et al.* (1964) e McComas (1964) na Tab. 4.10. Verifica-se, exceto para o caso da razão de aspecto igual a zero, uma excelente concordância.

*	L_{hy}^+					
r	Presente	Lundgren	McComas			
	Trabalho	<i>et al.</i> (1964)	(1967)			
0,00	0,011988	0,02605	0,0260			
0,01	0,009818	0,00981	0,00982			
0,10	0,007246	0,00724	0,00725			
0,20	0,006599	0,00659	0,00660			
0,30	0,006294	-	0,00630			
0,40	0,006124	0,00612	0,00613			
0,60	0,005961	-	0,00596			
0,80	0,005892	0,00589	0,00589			
1,00	0,005878	0,00588	0,00588			

 Tabela 4.10. Comparação dos resultados obtidos com os disponíveis na literatura para o comprimento de entrada hidrodinâmico no escoamento em dutos anulares concêntricos.

Na Tabela 4.11 apresentam-se os resultados obtidos para o escoamento hidrodinâmico laminar plenamente desenvolvido no interior de dutos circulares e realiza-se a comparação com os disponíveis em Rohsenow & Hartnett (1973), Shah & London (1978) e Kakaç *et al.* (1987).

 Tabela 4.11. Comparação dos resultados obtidos com os disponíveis na literatura para os parâmetros hidrodinâmicos no escoamento em dutos circulares.

Fonte Bibliográfica	f Re	W _{méd}	W [*] _{máx}	$K(\infty)$	L_{hy}^+
Presente Trabalho	16,000	0,03125	2,0000	1,3333	0,02604
Rohsenow & Hartnett (1973)	16,000	0,03125	2,0000	1,3333	0,02604
Shah & London (1978)	16,000	0,03125	2,0000	1,3333	0,02604
Kakaç et al. (1987)	16,000	0,03125	2,0000	1,3333	0,02604

Das observações do comportamento dos parâmetros físicos de interesse, tanto para os dutos de setores anulares como os anulares concêntricos, para $r^* = 1,00$ no escoamento laminar interno plenamente desenvolvido pode-se concluir que estes resultados correspondem aos mesmos encontrados no escoamento em canais de placas planas, conforme mostra a Tab. 4.12.

 Tabela 4.12. Comparação dos resultados obtidos com os disponíveis na literatura para os parâmetros hidrodinâmicos no escoamento em canais de placas planas.

Fonte Bibliográfica	f Re	W _{méd}	W [*] _{máx}	r _{máx}	$K(\infty)$	L^+_{hy}
Presente Trabalho (Setor Anular $r^* \rightarrow 0$)	24,000	0,02083	1,5000	1,0000	0,6860	0,00588
Presente Trabalho (Anular $r^* \rightarrow 0$)	24,000	0,02083	1,5000	1,0000	0,6860	0,00588
Rohsenow & Hartnett (1973)	24,000	0,02083	1,5000	1,0000	0,6860	0,00588
Kakaç <i>et al.</i> (1987)	24,000 24,000	0,02083	1,5000	1,0000	0,6860 0,6860	0,00588
5

Problemas Difusivo-Convectivos

Neste capítulo, analisam-se uma classe de problemas difusivo-convectivos relacionados à transferência de calor no escoamento interno em regime laminar de fluidos *Newtonianos* em dutos de geometrias não-convencionais submetidos a condições de contorno de *Dirichlet* (primeiro tipo). Para tal, considera-se o escoamento hidrodinamicamente desenvolvido e termicamente em desenvolvimento com perfil de temperatura de entrada uniforme. Esta análise trata-se de uma classe de problemas difusivo-convectivos de natureza parabólica.

Neste contexto, inicialmente realiza-se uma mudança de coordenadas, através de uma Transformação Conforme adequada, para facilitar a aplicação das condições de contorno e, em seguida, aplica-se a Transformada Integral sobre a equação da energia resultante para a obtenção do campo de temperatura no escoamento. Os parâmetros físicos de interesse, tais como: temperatura média de mistura, números de *Nusselt* local e médio, comprimento de entrada térmica são, então, calculados para as inúmeras geometrias estudadas e comparados, quando possível, com aqueles encontrados na literatura.

5.1. Formulação Matemática

Para a formulação matemática do problema considera-se o escoamento laminar em regime permanente, termicamente em desenvolvimento, com perfil de temperatura de entrada uniforme e temperatura prescrita na parede. Além disso, considera-se ainda que as propriedades do fluido permanecem constantes em todo o domínio e que os efeitos da dissipação viscosa e da condução axial são desprezíveis. Desta forma, a equação da energia é dada por:

$$\rho c_p w(x, y) \frac{\partial T(x, y, z)}{\partial z} = k \nabla^2 T(x, y, z), \qquad \{(x, y) \in \Omega, \quad z > 0\}, \qquad (5.1)$$

sendo ρ a massa específica, c_p o calor específico a pressão constante, k a condutividade térmica, w a velocidade, T a temperatura e, Ω e Γ o domínio e o contorno, respectivamente, da geometria em questão.

As condições de entrada e de contorno são dadas por:

$$T(x, y, z) = T_0, \qquad \{(x, y) \in \Omega, \ z = 0\},$$
 (5.2)

$$T(x, y, z) = T_p, \qquad \{(x, y) \in \Gamma, z > 0\},$$
 (5.3)

onde T_0 representa o perfil de temperatura uniforme de entrada e T_p a temperatura prescrita na parede do duto.

Os perfis de velocidades w(x, y) para o escoamento laminar plenamente desenvolvido no interior dos dutos estudados foram obtidos através da aplicação da TTIG, conforme apresentado no Capítulo 4.

5.1.1. Adimensionalização

Reescrevendo a equação da energia e as condições de entrada e de contorno na forma adimensional, tem-se, respectivamente, que:

$$W(X,Y)\frac{\partial\theta(X,Y,Z)}{\partial Z} = \frac{\partial^2\theta(X,Y,Z)}{\partial X^2} + \frac{\partial^2\theta(X,Y,Z)}{\partial Y^2},$$
(5.4)

$$\theta(X,Y,Z)=1, \qquad \{(X,Y)\in \Omega, Z=0\},$$
(5.5)

$$\theta(X,Y,Z) = 0, \qquad \{(X,Y) \in \Gamma, Z > 0\}, \tag{5.6}$$

com:

$$X = \frac{x}{D_h}, \qquad Y = \frac{y}{D_h}, \qquad Z = \frac{z}{D_h Pe},$$
 (5.7a,b,c)

$$D_h = \frac{4A_S}{Per}, \qquad Pe = \frac{\rho c_p w_{m\acute{ed}} D_h}{k}, \qquad W(X,Y) = \frac{w(x,y)}{w_{m\acute{ed}}}, \qquad (5.8a,b,c)$$

$$\theta(X, Y, Z) = \frac{T(X, Y, Z) - T_p}{T_0 - T_p},$$
(5.9)

com D_h representando o diâmetro hidráulico, Pe o Número de *Pèclet*, A_S a área da seção transversal, *Per* o perímetro do contorno estudado e $w_{méd}$ a velocidade média do fluido.

5.1.2. Transformação de Coordenadas

Apresentam-se a seguir, os procedimentos adotados para transformar os domínios originais dos problemas analisados em retângulos no novo sistema de coordenadas por meio da aplicação das Transformações Conformes convenientes.

5.1.2.1. Geometrias de Setores Anular e Circular

A equação da energia, Eq. (5.4), reescrita no sistema de coordenadas gerado pela Transformação Conforme $\zeta = r_e e^{i\omega}$ é dada por:

$$H(u,v)\frac{\partial\theta(u,v,Z)}{\partial Z} = \frac{\partial^2\theta(u,v,Z)}{\partial u^2} + \frac{\partial^2\theta(u,v,Z)}{\partial v^2},$$
(5.11)

sendo que H(u,v) = J(u,v) W(u,v) e que as relações de transformação de coordenadas, os coeficientes métricos e o Jacobino são idênticos aos apresentados anteriormente no estudo do problema hidrodinâmico, Eqs. (4.11) a (4.13).

As condições de entrada e de contorno no novo sistema de coordenadas são dadas por:

$$\theta(u,v,Z)=1, \qquad \{(u,v)\in\Omega, \quad Z=0\}, \qquad (5.12)$$

$$\theta(u,v,Z) = 0, \qquad \{ u = 0, \quad 0 \le v \le v_0, \quad Z > 0 \},$$
 (5.13)

$$\theta(u,v,Z) = 0, \qquad \{ u = u_0, \ 0 \le v \le v_0, \ Z > 0 \}, \qquad (5.14)$$

$$\theta(u,v,Z) = 0, \qquad \left\{ 0 \le u \le u_0, \quad v = 0, \quad Z > 0 \right\}, \tag{5.15}$$

$$\theta(u,v,Z) = 0, \qquad \left\{ 0 \le u \le u_0, \ v = v_0, \ Z > 0 \right\}.$$
(5.16)

5.1.2.2. Geometria Anular Concêntrica

Para os dutos anulares concêntricos a equação da energia reescrita no sistema de coordenadas proveniente da Transformação Conforme dada pela Eq. (3.128), bem como a condição de entrada, as relações de transformação de coordenadas, os coeficientes métricos e o Jacobiano, são as mesmas apresentadas para os dutos de setores anulares e circulares. Entretanto, as condições de contorno para este problema são dadas por:

$$\frac{\partial \theta(u,v,Z)}{\partial u} = 0, \qquad \left\{ u = 0, \quad 0 \le v \le v_0, \quad Z > 0 \right\}, \tag{5.17}$$

$$\frac{\partial \theta(u,v,Z)}{\partial u} = 0, \qquad \left\{ u = 2\pi, \quad 0 \le v \le v_0, \quad Z > 0 \right\}, \tag{5.18}$$

$$\theta(u,v,Z) = 0, \qquad \{ 0 \le u \le 2\pi, v = 0, Z > 0 \},$$
 (5.19)

$$\frac{\partial \theta(u,v,Z)}{\partial v} = 0, \qquad \left\{ 0 \le u \le 2\pi, \quad v = v_0, \quad Z > 0 \right\}.$$
(5.20)

onde, estas condições visam simular o processo de transferência de calor que ocorre nos trocadores de calor duplo-tubo.

5.1.2.3. Geometria Bicônica

A equação da energia, Eq. (5.4), reescrita no sistema de coordenadas de parábolas confocais com eixo comum gerado pela Transformação Conforme $\zeta = 1/2i\overline{\omega}^2$ é dada por:

$$H(u,v)\frac{\partial\theta(u,v,Z)}{\partial Z} = \frac{\partial^2\theta(u,v,Z)}{\partial u^2} + \frac{\partial^2\theta(u,v,Z)}{\partial v^2},$$
(5.21)

sendo H(u,v) = J(u,v) W(u,v) e que as relações de transformação de coordenadas, os coeficientes métricos e o Jacobino são idênticos aos apresentados para a análise do problema hidrodinâmico nestas geometrias, Eqs. (4.23) a (4.25).

As condições de entrada e de contorno no novo sistema de coordenadas são dadas por:

$$\theta(u,v,Z)=1, \qquad \{(u,v)\in\Omega, \quad Z=0\}, \qquad (5.22)$$

$$\frac{\partial \theta(u,v,Z)}{\partial u} = 0, \qquad \left\{ u = 0, \quad 0 \le v \le v_0, \quad Z > 0 \right\}, \tag{5.23}$$

$$\theta(u,v,Z) = 0, \qquad \{ u = u_0, \quad 0 \le v \le v_0, \quad Z > 0 \},$$
 (5.24)

$$\frac{\partial \theta(u,v,Z)}{\partial v} = 0 , \qquad \left\{ 0 \le u \le u_0, \quad v = 0, \quad Z > 0 \right\}.$$
(5.25)

$$\theta(u,v,Z) = 0, \qquad \left\{ 0 \le u \le u_0, \quad v = v_0, \quad Z > 0 \right\}.$$
(5.26)

5.1.3. Aplicação da TTIG

Realiza-se a determinação da distribuição da temperatura do fluido durante escoamento por meio da aplicação da Transformada Integral sobre a equação da energia. Neste contexto, apresenta-se a seguir o formalismo matemático desta metodologia para as diversas geometrias dos dutos estudados.

5.1.3.1. Geometria de Setores Anular e Circular

Para a obtenção da solução da equação da energia, no novo sistema de coordenadas, aplica-se a TTIG sobre a Eq. (5.11) visando proceder a remoção das derivadas de segunda ordem. Para tal, representa-se o potencial $\theta(u,v,Z)$ em termos de uma expansão em autofunções normalizadas obtidas de problemas auxiliares de autovalor para cada coordenada espacial. Neste sentido, realiza-se, por partes, a aplicação da Transformada Integral. Considera-se, inicialmente, o seguinte problema auxiliar de autovalor:

$$\frac{d^2\psi(u)}{du^2} + \mu^2\psi(u) = 0, \qquad \{ 0 \le u \le u_0 \},$$
(5.27)

com,

$$\psi(0) = 0, \qquad \psi(u_0) = 0.$$
 (5.28a,b)

Os autovalores e as autofunções associados a este problema são dados, respectivamente, por:

$$\mu_i = \frac{i\pi}{u_0}, \qquad i = 1, 2, 3 \dots,$$
(5.29)

$$\psi_i(u) = sen(\mu_i u). \tag{5.30}$$

Estas autofunções são ortogonais, o que permitem o desenvolvimento do seguinte par transformada-inversa:

$$\overline{\theta}_i(v,Z) = \int_0^{u_0} K_i(u) \theta(u,v,Z) du, \qquad transformada, \qquad (5.31)$$

$$\theta(u,v,Z) = \sum_{i=1}^{\infty} K_i(u)\overline{\theta}_i(v,Z), \qquad inversa, \qquad (5.32)$$

sendo $\overline{\theta}_i(v)$ o potencial transformado em $u \in K_i(u)$ as autofunções normalizadas, dadas por:

$$K_i(u) = \frac{\psi_i(u)}{\sqrt{N_i}},\tag{5.33}$$

com:

$$N_i = \int_0^{u_0} \psi_i^2(u) du = \frac{u_0}{2} , \qquad (5.34)$$

onde, N_i são as integrais de normalização das autofunções $\psi(u)$.

Efetuando-se o produto interno das autofunções normalizadas $K_i(u)$ com a equação da energia e, fazendo uso das condições de contorno e das equações que definem o problema auxiliar de autovalor, obtém-se a primeira transformação da equação diferencial que, em termos dos potenciais $\overline{\theta}_i(v)$, é dada por:

$$\sum_{j=1}^{\infty} A_{ij}(v) \frac{\partial \overline{\theta}_j(v,Z)}{\partial Z} + \mu_i^2 \overline{\theta}_i(v,Z) = \frac{\partial^2 \overline{\theta}_i(v,Z)}{\partial v^2}, \qquad i = 1, 2, 3 \dots$$
(5.35)

$$A_{ij}(v) = \int_{0}^{u_0} K_i(u) K_j(u) H(u, v) du .$$
 (5.36)

Para proceder a Transformação Integral relativa à coordenada *v*, considera-se agora o seguinte problema de autovalor:

$$\frac{d^2\phi(v)}{dv^2} + \lambda^2\phi(v) = 0, \qquad \{0 \le v \le v_0\},$$
(5.37)

com,

$$\phi(0) = 0, \qquad \phi(v_0) = 0.$$
 (5.38a,b)

Os autovalores e as autofunções para este novo problema são dados por:

$$\lambda_m = \frac{j\pi}{v_0}, \qquad m = 1, 2, 3...$$
 (5.39)

$$\phi_m(v) = sen(\lambda_m v). \tag{5.40}$$

Estas autofunções são ortogonais e permitindo assim, o desenvolvimento do seguinte par transformada-inversa:

$$\widetilde{\overline{\theta}}_{im}(Z) = \int_{0}^{v_0} \int_{0}^{u_0} K_i(u) Z_m(v) \theta(u, v, Z) \, du \, dv \,, \qquad \text{transformada}, \tag{5.41}$$

$$\theta(u,v,Z) = \sum_{i=1}^{\infty} \sum_{m=1}^{\infty} K_i(u) Z_m(v) \overline{\overline{\theta}}_{im}(Z), \quad inversa, \quad (5.42)$$

sendo $Z_m(v)$ as autofunções normalizadas e são dadas por:

$$Z_m(v) = \frac{\phi_m(v)}{\sqrt{M_m}},\tag{5.43}$$

$$M_m = \int_0^{v_0} \phi_m^2(v) dv = \frac{v_0}{2}.$$
 (5.44)

com M_m representando as integrais de normalização das autofunções $\phi_m(v)$.

Efetuando-se o produto interno das autofunções normalizadas $Z_m(v)$ com a equação diferencial transformada em u e fazendo uso das condições de contorno e das relações de ortogonalidade relativas ao segundo problema de autovalor, obtém-se a Transformação Integral da equação da energia, dada pela seguinte equação:

$$\sum_{n=1}^{\infty}\sum_{j=1}^{\infty}B_{ijmn}\frac{d\overline{\widetilde{\theta}}_{jn}(Z)}{dZ} + \left(\mu_i^2 + \lambda_m^2\right)\widetilde{\overline{\theta}}_{im}(Z) = 0, \qquad i,m = 1, 2, 3 \dots$$
(5.45)

$$B_{ijmn} = \int_{0}^{v_0} Z_m(v) Z_n(v) A_{ij}(v) dv = \int_{0}^{v_0 u_0} K_i(u) K_j(u) Z_m(v) Z_n(v) H(u,v) du dv, \quad (5.46)$$

sendo que os parâmetros B_{ijmn} são integráveis e, portanto, conhecidos.

A solução deste sistema infinito e acoplado de equações diferenciais ordinárias permite a obtenção do potencial transformado $\tilde{\theta}_{im}(Z)$, quando submetido à condição de entrada transformada dada por:

$$\widetilde{\overline{\theta}}_{im}(0) = \int_{0}^{v_0} \int_{0}^{u_0} K_i(u) Z_m(v) \,\theta(u,v,0) \,du \,dv = \int_{0}^{v_0} \int_{0}^{u_0} K_i(u) Z_m(v) \,du \,dv \,.$$
(5.47)

O potencial transformado $\tilde{\theta}_{im}(Z)$ pode ser obtido numericamente resolvendo o sistema de equações diferenciais correspondente e truncando-se a expansão para uma dada ordem *M* e *N*, de acordo com a precisão estabelecida:

$$\sum_{n=1}^{N} \sum_{j=1}^{M} B_{ijmn} \frac{d\overline{\widetilde{\theta}}_{jn}(Z)}{dZ} + \left(\mu_i^2 + \lambda_m^2\right) \widetilde{\widetilde{\theta}}_{im}(Z) = 0.$$
(5.48)

O potencial temperatura $\theta(u,v,Z)$ pode, então, ser reconstruído fazendo uso da transformada inversa, para a expansão truncada até a ordem *M* e *N*,

$$\theta(u,v,Z) = \sum_{i=1}^{N} \sum_{m=1}^{M} K_i(u) Z_m(v) \widetilde{\overline{\theta}}_{im}(Z), \qquad (5.49)$$

e, finalmente, realiza-se a determinação dos parâmetros térmicos de interesse.

5.1.3.2. Geometria Anular Concêntrica

A aplicação da Transformada Integral sobre a equação da energia para os dutos anulares concêntricos segue os mesmos procedimentos descritos anteriormente para os problemas difusivo-convectivos.

Primeiro Problema Auxiliar de Autovalor

$$\frac{d^2\psi(u)}{du^2} + \mu^2\psi(u) = 0, \qquad \{ 0 \le u \le 2\pi \},$$
(5.50)

$$\frac{d\psi(0)}{du} = 0, \qquad \frac{d\psi(2\pi)}{du} = 0.$$
(5.51a,b)

Autovalores e Autofunções associados

$$\mu_i = 2(i-1), \qquad i = 1, 2, 3...,$$
 (5.52)

$$\psi_i(u) = \cos(\mu_i u). \tag{5.53}$$

Autofunções Normalizadas e Integral de Normalização

$$K_i(u) = \frac{\psi_i(u)}{\sqrt{N_i}},\tag{5.54}$$

$$N_i = \int_{0}^{2\pi} \psi_i^{2}(u) du = \pi .$$
 (5.55)

Par Transformada-Inversa

$$\overline{\theta}_i(v,Z) = \int_0^{2\pi} K_i(u) \theta(u,v,Z) du, \qquad transformada, \qquad (5.56)$$

$$\theta(u,v,Z) = \sum_{i=1}^{\infty} K_i(u)\overline{\theta}_i(v,Z), \qquad inversa.$$
(5.57)

Primeira Transformada

$$\sum_{j=1}^{\infty} A_{ij}(v) \frac{\partial \overline{\theta}_j(v, Z)}{\partial Z} + \mu_i^2 \overline{\theta}_i(v, Z) = \frac{\partial^2 \overline{\theta}_i(v, Z)}{\partial v^2}, \qquad i = 1, 2, 3...$$
(5.58)

$$A_{ij}(v) = \int_{0}^{2\pi} K_i(u) K_j(u) H(u, v) du .$$
 (5.59)

Segundo Problema Auxiliar de Autovalor:

$$\frac{d^2\phi(v)}{dv^2} + \lambda^2 \phi(v) = 0, \qquad \left\{ 0 \le v \le v_0 \right\},$$
(5.60)

$$\phi(0) = 0, \qquad \frac{d\phi(v_0)}{dv} = 0.$$
 (5.61a,b)

Autovalores e Autofunções associados

$$\lambda_m = \frac{(2m-1)}{4}, \qquad m = 1, 2, 3...$$
 (5.62)

$$\phi_m(v) = sen(\lambda_m v). \tag{5.63}$$

Autofunções Normalizadas e Integral de Normalização

$$Z_m(v) = \frac{\phi_m(v)}{\sqrt{M_m}},\tag{5.64}$$

$$M_m = \int_0^{v_0} \phi_m^2(v) \, dv = \frac{v_0}{2} \,. \tag{5.65}$$

Par Transformada-Inversa

$$\widetilde{\overline{\theta}}_{im}(Z) = \int_{0}^{v_0} \int_{0}^{2\pi} K_i(u) Z_m(v) \theta(u, v, Z) du dv, \qquad transformada, \qquad (5.66)$$

$$\theta(u,v,Z) = \sum_{i=1}^{\infty} \sum_{m=1}^{\infty} K_i(u) Z_m(v) \overline{\overline{\theta}}_{im}(Z), \qquad inversa.$$
(5.67)

Segunda Transformada

$$\sum_{n=1}^{\infty}\sum_{j=1}^{\infty}B_{i\,j\,m\,n}\frac{d\widetilde{\overline{\theta}}_{j\,n}(Z)}{dZ} + \left(\mu_i^2 + \lambda_m^2\right)\widetilde{\overline{\theta}}_{i\,m}(Z) = 0, \qquad i,m = 1, 2, 3...$$
(5.68)

$$B_{ijmn} = \int_{0}^{v_0} Z_m(v) Z_n(v) A_{ij}(v) dv = \int_{0}^{v_0} \int_{0}^{2\pi} K_i(u) K_j(u) Z_m(v) Z_n(v) H(u,v) du dv, \quad (5.69)$$

sendo os parâmetros B_{ijmn} integráveis e, portanto, conhecidos.

A Equação (5.68) define um sistema infinito e acoplado de equações diferenciais ordinárias para o potencial transformado $\tilde{\theta}_{im}(Z)$, que deve satisfazer a condição de entrada transformada:

$$\widetilde{\overline{\theta}}_{im}(0) = \int_{0}^{v_0} \int_{0}^{2\pi} K_i(u) Z_m(v) \theta(u, v, 0) du dv = \int_{0}^{v_0} \int_{0}^{2\pi} K_i(u) Z_m(v) du dv.$$
(5.70)

Quando se trunca a expansão para uma dada ordem $M \in N$, o potencial transformado $\widetilde{\overline{\theta}}_{im}(Z)$ pode ser obtido numericamente resolvendo o sistema de equações diferenciais correspondente:

$$\sum_{n=1}^{N} \sum_{j=1}^{M} B_{ijmn} \frac{d\widetilde{\overline{\theta}}_{jn}(Z)}{dZ} + \left(\mu_i^2 + \lambda_m^2\right) \widetilde{\overline{\theta}}_{im}(Z) = 0.$$
(5.71)

Fazendo uso da transformada inversa, determina-se o potencial temperatura $\theta(u,v,Z)$ com a expansão truncada nas ordens *M* e *N*,

$$\theta(u,v,Z) = \sum_{i=1}^{N} \sum_{m=1}^{M} K_i(u) Z_m(v) \widetilde{\overline{\theta}}_{im}(Z).$$
(5.72)

5.1.3.3. Geometria Bicônica

A aplicação da Transformada Integral sobre a equação da energia para os dutos de geometria bicônica segue a mesma metodologia apresentada anteriormente para os problemas difusivo-convectivos.

Primeiro Problema Auxiliar de Autovalor

$$\frac{d^2\psi(u)}{du^2} + \mu^2\psi(u) = 0, \qquad \{ 0 \le u \le u_0 \}, \qquad (5.76)$$

$$\frac{d\psi(0)}{du} = 0, \qquad \psi(u_0) = 0.$$
(5.77a,b)

Autovalores e Autofunções associados

$$\mu_i = \frac{(2i-1)\pi}{2u_0}, \qquad i = 1, 2, 3..., \tag{5.78}$$

$$\psi_i(u) = \cos(\mu_i u). \tag{5.79}$$

Autofunções Normalizadas e Integral de Normalização

$$K_i(u) = \frac{\psi_i(u)}{\sqrt{N_i}},\tag{5.80}$$

Capítulo 5 Problemas Difusivo-Convectivos

$$N_i = \int_0^{u_0} \psi_i^2(u) du = \frac{u_0}{2} .$$
 (5.81)

Par Transformada-Inversa

$$\overline{\theta}_i(v,Z) = \int_0^{u_0} K_i(u) \theta(u,v,Z) du, \qquad transformada, \qquad (5.82)$$

$$\theta(u,v,Z) = \sum_{i=1}^{\infty} K_i(u) \overline{\theta}_i(v,Z), \qquad inversa.$$
(5.83)

Primeira Transformada

$$\sum_{j=1}^{\infty} A_{ij}(v) \frac{\partial \overline{\theta}_j(v, Z)}{\partial Z} + \mu_i^2 \overline{\theta}_i(v, Z) = \frac{\partial^2 \overline{\theta}_i(v, Z)}{\partial v^2}, \qquad i = 1, 2, 3...$$
(5.84)

$$A_{ij}(v) = \int_{0}^{u_0} K_i(u) K_j(u) H(u, v) du .$$
 (5.85)

Segundo Problema Auxiliar de Autovalor:

$$\frac{d^2\phi(v)}{dv^2} + \lambda^2 \phi(v) = 0, \qquad \left\{ 0 \le v \le v_0 \right\}, \tag{5.86}$$

$$\frac{d\phi(0)}{dv} = 0, \qquad \phi(v_0) = 0.$$
 (5.87a,b)

Autovalores e Autofunções associados

$$\lambda_m = \frac{(2m-1)\pi}{2v_0}, \qquad m = 1, 2, 3...$$
(5.88)

$$\phi_m(v) = \cos(\lambda_m v). \tag{5.89}$$

Autofunções Normalizadas e Integral de Normalização

$$Z_m(v) = \frac{\phi_m(v)}{\sqrt{M_m}},\tag{5.90}$$

$$M_m = \int_0^{v_0} \phi_m^2(v) \, dv = \frac{v_0}{2} \,. \tag{5.91}$$

Par Transformada-Inversa

$$\widetilde{\overline{\theta}}_{im}(Z) = \int_{0}^{v_0} \int_{0}^{u_0} K_i(u) Z_m(v) \theta(u, v, Z) \, du \, dv, \qquad \text{transformada}, \qquad (5.92)$$

$$\theta(u,v,Z) = \sum_{i=1}^{\infty} \sum_{m=1}^{\infty} K_i(u) Z_m(v) \widetilde{\overline{\theta}}_{im}(Z), \qquad inversa.$$
(5.93)

Segunda Transformada

$$\sum_{n=1}^{\infty}\sum_{j=1}^{\infty}B_{ijmn}\frac{d\overline{\overline{\theta}}_{jn}(Z)}{dZ} + \left(\mu_i^2 + \lambda_m^2\right)\overline{\overline{\theta}}_{im}(Z) = 0, \qquad i,m = 1, 2, 3 \dots$$
(5.94)

$$B_{ijmn} = \int_{0}^{v_0} Z_m(v) Z_n(v) A_{ij}(v) dv = \int_{0}^{v_0 u_0} K_i(u) K_j(u) Z_m(v) Z_n(v) H(u,v) du dv, \quad (5.95)$$

sendo que os parâmetros $B_{i jm n}$ são integráveis e, portanto, conhecidos.

A solução do sistema infinito e acoplado de equações diferenciais ordinárias dado permite a obtenção do potencial transformado $\tilde{\overline{\theta}}_{im}(Z)$, quando submetido à condição de entrada transformada dada por:

$$\widetilde{\overline{\theta}}_{im}(0) = \int_{0}^{v_0} \int_{0}^{u_0} K_i(u) Z_m(v) \,\theta(u, v, 0) \,du \,dv = \int_{0}^{v_0} \int_{0}^{u_0} K_i(u) Z_m(v) \,du \,dv \,.$$
(5.96)

O potencial transformado $\tilde{\theta}_{im}(Z)$ pode ser obtido numericamente resolvendo o sistema de equações diferenciais correspondente e truncando-se a expansão para uma dada ordem *M* e *N*, de acordo com a precisão estabelecida:

$$\sum_{n=1}^{N} \sum_{j=1}^{M} B_{ijmn} \frac{d\widetilde{\overline{\theta}}_{jn}(Z)}{dZ} + \left(\mu_i^2 + \lambda_m^2\right) \widetilde{\overline{\theta}}_{im}(Z) = 0.$$
(5.97)

O potencial temperatura $\theta(u,v,Z)$ pode, então, ser reconstruído fazendo uso da transformada inversa, para a expansão truncada até a ordem *M* e *N*,

$$\theta(u,v,Z) = \sum_{i=1}^{N} \sum_{m=1}^{M} K_i(u) Z_m(v) \widetilde{\overline{\theta}}_{im}(Z).$$
(5.98)

5.2. Parâmetros Físicos de Interesse

5.2.1. Temperatura Média de Mistura

A determinação da temperatura média de mistura em sua forma adimensional é dada por:

$$\theta_{m\acute{ed}}(Z) = \frac{T_{m\acute{ed}}(Z) - T_p}{T_0 - T_p} = \frac{1}{A_S} \int_{\Omega} \theta(X, Y, Z) W(X, Y) d\Omega .$$
(5.99)

Dessa forma, em termos do potencial transformado $\tilde{\overline{\theta}}_{im}(Z)$, determina-se a temperatura média de mistura no plano (u, v) por:

$$\theta_{m\acute{e}d}(Z) = \frac{1}{A_S} \int_0^{v_0} \int_0^{\xi} \left[\sum_{i=1}^N \sum_{m=1}^M K_i(u) Z_m(v) \widetilde{\overline{\theta}}_{im}(Z) \right] W(u,v) J(u,v) du dv$$
(5.100)

sendo $\xi = u_0$ para os problemas de escoamento em dutos bicônicos e de setores anulares e circulares enquanto que para os dutos anulares concêntricos ξ vale 2π . Além disso, determinam-se a distribuição de temperatura $\theta(u,v,Z)$, o perfil de velocidades W(u,v) e o Jacobiano da transformação J(u,v) para cada caso estudado.

5.2.2. Número de Nusselt

A taxa de transferência de calor que ocorre em um elemento de área do duto pode ser determinada pelo gradiente de temperatura do fluido na parede (Eq. (5.101)) ou pela conservação de energia, através do balanço de entalpia do fluido (Eq. (5.102)), da seguinte maneira:

$$\delta \dot{q}(z) = \left\{ \int_{\Gamma} \left[-k \frac{\partial T(x, y, z)}{\partial \eta} \right]_{\Gamma} ds \right\} dz , \qquad (5.101)$$

$$\delta \dot{q}(z) = -\rho c_p w_{m\acute{e}d} A_S \frac{dT_{m\acute{e}d}(z)}{dz} dz$$
(5.102)

Da definição do coeficiente de transferência de calor, bem como das relações de adimensionalização que foram estabelecidas para o presente problema, o Número de *Nusselt* pode ser determinado, então, de duas diferentes formas:

$$Nu_1(Z) = -\frac{1}{Per^* \theta_{m\acute{e}d}(Z)} \int_0^{\xi} \frac{\partial \theta(u, v, Z)}{\partial v} \bigg|_{v=v_0} du, \qquad (5.103)$$

$$Nu_2(Z) = -\frac{1}{4\theta_{m\acute{e}d}(Z)} \frac{d\theta_{m\acute{e}d}(Z)}{dZ},$$
(5.104)

sendo que $Per^* = Per/D_h$.

O termo integral da Eq. (5.103) pode ser desenvolvido analiticamente, de maneira que $Nu_1(Z)$ pode ser escrito como:

$$Nu_1(Z) = -\frac{4\xi}{Per^* \theta_{m\acute{e}d}(Z)} \sum_{m=1}^M \frac{(-1)^{m+1} \lambda_m}{\sqrt{M_m}} \frac{\widetilde{\overline{\theta}}_{1m}(Z)}{\sqrt{N_1}}$$
(5.105)

Com relação à Equação (5.104), a derivada do potencial temperatura média de mistura pode ser obtida da solução do sistema de equações diferenciais para o potencial transformado. Assim, determina-se $Nu_2(Z)$ por:

$$Nu_{2}(Z) = -\frac{1}{4} \frac{\int_{0}^{v_{0}} \int_{0}^{\xi} \left[\sum_{i=1}^{N} \sum_{m=1}^{M} K_{i}(u) Z_{m}(v) \frac{d\widetilde{\theta}_{im}(Z)}{dZ} \right] W(u,v) J(u,v) du dv}{\int_{0}^{v_{0}} \int_{0}^{\xi} \left[\sum_{i=1}^{N} \sum_{m=1}^{M} K_{i}(u) Z_{m}(v) \widetilde{\theta}_{im}(Z) \right] W(u,v) J(u,v) du dv}$$
(5.106)

Os resultados obtidos para $Nu_1(Z)$ e $Nu_2(Z)$ permitem a avaliação da convergência ao truncar-se a expansão do potencial temperatura em uma dada ordem M e N.

O número de *Nusselt* médio pode ser obtido por integração numérica a partir dos resultados obtidos para $Nu_1(Z)$ e $Nu_2(Z)$:

$$Nu_{1\,m\acute{e}d}(Z) = \frac{1}{Z} \int_{0}^{Z} Nu_{1}(Z') dZ'$$
(5.107)

$$Nu_{2\,m\acute{e}d}(Z) = \frac{1}{Z} \int_{0}^{Z} Nu_{2}(Z') dZ'$$
(5.108)

O número de *Nusselt* médio $Nu_{2méd}(Z)$ pode ser obtido também por integração analítica dada por:

$$Nu_{2\,m\acute{e}d}^{*}(Z) = \frac{1}{Z} \int_{0}^{Z} Nu_{2}(Z') dZ' = -\frac{1}{4\,Z} \ln \theta_{m\acute{e}d}(Z).$$
(5.109)

5.2.3. Comprimento de Entrada Térmica

De acordo com Shah & London (1978), define-se o comprimento de entrada térmica como sendo a posição em que o número de *Nusselt* local é 5% maior que o número de *Nusselt* na região em que o fluido está desenvolvido termicamente (número de *Nusselt* limite). Desta forma,

$$L_{th} = raiz \ positiva \ de \ \left\{ 1,05 \ Nu(\infty) - Nu(Z) = 0 \right\}.$$
(5.110)

5.3. Resultados & Discussão

Nesta seção, efetua-se uma análise de convergência em função da ordem de truncamento da série que representa a equação da energia, apresentam-se os resultados obtidos para os parâmetros térmicos de interesse para os diversos dutos estudados e, quando possível, realiza-se a comparação com os resultados disponíveis na literatura.

5.3.1. Análise de Convergência em Função dos Termos da Série

Visando a obtenção de resultados numéricos, utiliza-se o Método de Quadratura de *Gauss* para o cálculo das integrais envolvidas nos coeficientes B_{ijmn} e demais parâmetros físicos de interesse. Conseqüentemente, é necessária, também, a determinação das autofunções e do Jacobiano da transformação nos pontos de quadraturas.

Feito isso, resolve-se o sistema de equações diferenciais para a determinação dos coeficientes do potencial transformado $\tilde{\overline{\theta}}_{im}(Z)$ fazendo uso da rotina *DIVPAG* da biblioteca *IMSL Fortran* (1994) e do truncamento da expansão para diversas ordens *M* e *N* da série que representa a equação da energia.

Para avaliação da evolução da convergência da série em função da ordem de truncamento, realiza-se uma análise do comportamento da temperatura adimensional média

de mistura, $\theta_{m\acute{e}d}(Z)$ e dos números de *Nusselt* local e médio, Nu(Z) e $Nu_{m\acute{e}d}(Z)$, para as diversas geometrias analisadas.

Ressalta-se, que o tempo máximo de processamento necessário para o cálculo dos parâmetros térmicos de interesse é de aproximadamente 3 minutos em um computador pessoal comum (512 MB RAM e 2,4 GHz). Este tempo, por exemplo, é muito menor do que o tempo gasto para simular este mesmo problema com o auxílio de *softwares* comerciais, tal como: o *software ANSYS*, que resolve o problema através da técnica de Elementos Finitos.

5.3.1.1. Geometria de Setor Anular

Nas Tabelas A.11 a A.14 do Apêndice A apresentam-se os resultados obtidos para a análise de convergência da temperatura adimensional média de mistura e dos números de *Nusselt* local e médio, em função do ângulo Θ e da ordem de truncamento da série para as razões de aspecto $r^* = 0,20, 0,40, 0,60$ e 0,80, respectivamente, para alguns valores da coordenada axial adimensionalizada, *Z*. Já as Tabelas A.15 a A.18 apresentam a convergência dos parâmetros térmicos em função da razão de aspecto e da ordem N = M de truncamento da série para ângulos Θ iguais a 30°, 120°, 240° e 330°, respectivamente.

Desta detalhada análise, verifica-se que a convergência da série que determina o potencial temperatura é mais lenta na região próxima a entrada dos dutos e/ou para $5^{\circ} \le \Theta \le 90^{\circ}$ e $0,00 < r^* \le 0,20$.

Para o cômputo da temperatura adimensional média de mistura e dos números de *Nusselt* local e médio é necessário truncar a expansão em uma ordem N = M de até 30 termos para a obtenção de uma convergência de pelo menos 4, 3 e 2 casas decimais, respectivamente. Para a região onde o escoamento já se encontra termicamente desenvolvido observa-se que a série que determina o potencial temperatura converge mais rapidamente, sendo necessário considerar-se menos de 25 termos em cada direção.

5.3.1.2. Geometria de Setor Circular

Como mencionado anteriormente, obtém-se a geometria de setor circular considerando $r^* = 10^{-3}$. Para validação deste valor, na Tab. A.19 do Apêndice A, mostra-se um estudo de convergência dos parâmetros térmicos do escoamento laminar interno em dutos circulares com temperatura prescrita na parede, uma vez que estes valores são bem conhecidos.

Nas Tabelas A.20 do Apêndice A apresentam-se os resultados obtidos para a análise de convergência da temperatura adimensional média de mistura e dos números de *Nusselt* local e médio, em função do ângulo Θ para alguns valores de *Z*.

Desta análise, verifica-se que a convergência da série que determina o potencial temperatura é mais lenta, principalmente na região próxima a entrada dos dutos e/ou para $5^{\circ} \leq \Theta \leq 90^{\circ}$.

Para a determinação da temperatura adimensional média de mistura e dos números de *Nusselt* local e médio necessita-se o truncamento da expansão em uma ordem N = M de até 35 termos para a obtenção de uma convergência de pelo menos 4, 3 e 2 casas decimais, respectivamente. Para a região onde o escoamento já se encontra termicamente desenvolvido observa-se que a série que determina o potencial temperatura converge mais rapidamente, sendo necessário considerar-se menos de 30 termos em cada direção.

5.3.1.3. Geometria Anular Concêntrica

Nas Tabelas A.21, Apêndice A, apresentam-se os resultados obtidos para a análise de convergência da temperatura adimensional média de mistura e dos números de *Nusselt* local e médio para o escoamento laminar hidrodinamicamente desenvolvido e termicamente em desenvolvimento em dutos anulares concêntricos, em função do ângulo de abertura Θ e da ordem de truncamento da série, para alguns valores de *Z*.

A partir deste estudo, constata-se que a convergência da série que determina o potencial temperatura é mais lenta na região próxima a entrada dos dutos anulares concêntricos e/ou para $0,00 < r^* \le 0,20$.

Para o cômputo da temperatura adimensional média de mistura e dos números de *Nusselt* local e médio necessita-se o truncamento da expansão em uma ordem N = M de até 30 termos para a obtenção de uma convergência de pelo menos 4, 3 e 2 casas decimais, respectivamente. Para a região de escoamento termicamente desenvolvido verifica-se que a série que determina o potencial temperatura converge mais rapidamente, sendo necessário considerar-se menos de 25 termos em cada direção.

5.3.1.4. Geometria Bicônica

Nas Tabelas A.22 do Apêndice A apresentam-se os resultados obtidos para a análise de convergência da temperatura adimensional média de mistura e dos números de *Nusselt*

local e médio, em função da razão u_0/v_0 e da ordem de truncamento da série para alguns valores da coordenada axial adimensionalizada, *Z*.

Verifica-se a partir deste estudo, que a convergência dos parâmetros térmicos de interesse ocorre mais lentamente na região próxima a entrada dos dutos e/ou para $u_0/v_0 \le 0.20$.

Para o cálculo da série que determina os potenciais temperatura adimensional média de mistura e números de *Nusselt* local e médio o truncamento da expansão deve ser igual a uma ordem N = M de até 30 termos para a obtenção de uma convergência de pelo menos 4, 3 e 2 casas decimais, respectivamente. Para a região de escoamento termicamente desenvolvido observa-se que a série que determina o potencial temperatura converge mais rapidamente, sendo necessário considerar-se menos de 25 termos em cada direção.

5.3.2. Parâmetros Físicos de Interesse

Apresentam-se a seguir os resultados obtidos para os parâmetros térmicos analisados, a saber: temperatura adimensional média de mistura, números de *Nusselt* local e médio e comprimento de entrada térmica, para as diversas configurações geométricas estudadas.

5.3.2.1. Geometria de Setor Anular

Apresentam-se, nas Tabelas C.1 a C.16, Apêndice C, os resultados numéricos obtidos para os parâmetros térmicos de interesse no escoamento laminar completamente desenvolvido e termicamente em desenvolvimento de fluidos *Newtonianos* no interior de diversos dutos de setores anulares submetidos a condições de contorno de primeiro tipo e perfil temperatura de entrada uniforme.

Para ilustrar o comportamento destes parâmetros, nas figuras ímpares de Fig. 5.1 a Fig. 5.31, apresentam-se os resultados encontrados para a temperatura adimensional média de mistura e para os números de *Nusselt* local e médio, em diversos dutos de geometria de setor anular em função da razão r^* . Além disso, apresenta-se nas figuras pares de Fig. 5.2 a 5.32 e nas Tabs. 5.1 a 5.16, o comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento nos dutos estudados.

(c) Número de Nusselt médio

Figura 5.1. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 5^{\circ}$.

r*	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	Nu _{méd} (10 ⁻¹)	Nu _{méd} (10 ⁰)	L _{th}
0,05	1,567	13,04	5,67	2,69	1,74	0,3350
0,10	1,715	13,81	6,04	2,90	1,91	0,3242
0,15	1,878	14,50	6,42	3,12	2,07	0,3096
0,20	2,055	15,02	6,79	3,34	2,25	0,2901
0,25	2,246	15,44	7,18	3,58	2,44	0,2678
0,30	2,453	15,73	7,51	3,81	2,64	0,2461
0,35	2,671	15,95	7,79	4,05	2,86	0,2277
0,40	2,901	16,13	7,98	4,28	3,08	0,2097
0,45	3,136	16,25	8,10	4,50	3,31	0,1914
0,50	3,372	16,34	8,14	4,69	3,54	0,1731
0,55	3,596	16,40	8,12	4,84	3,75	0,1509
0,60	3,790	16,40	8,03	4,93	3,94	0,1321
0,65	3,928	16,36	7,89	4,93	4,06	0,1131
0,70	3,978	16,24	7,70	4,82	4,09	0,0955
0,75	3,891	16,03	7,46	4,59	3,97	0,0782
0,80	3,649	15,73	7,16	4,26	3,71	0,0617
0,85	3,303	15,33	6,83	3,87	3,36	0,0491
0,90	3,009	14,80	6,53	3,55	3,06	0,0438
0,95	3,225	15,22	6,75	3,78	3,28	0,0473
1,00	7,597	18,93	9,92	7,86	7,64	0,0080

Tabela 5.1. Parâmetros térmicos relevantes para o escoamento em dutos de setores anulares com $\Theta = 5^{\circ}$.

Figura 5.2. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 5^{\circ}$.

(c) Número de Nusselt médio

Figura 5.3. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 10^{\circ}$.

r*	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	Nu _{méd} (10 ⁻¹)	<i>Nu_{méd}</i> (10 ⁰)	L _{th}
0,05	1,847	12,82	5,72	2,83	1,98	0,2086
0,10	2,005	13,58	6,12	3,03	2,14	0,2049
0,15	2,174	14,21	6,50	3,23	2,31	0,1864
0,20	2,352	14,69	6,86	3,42	2,48	0,1699
0,25	2,538	15,05	7,17	3,62	2,67	0,1563
0,30	2,731	15,33	7,40	3,81	2,86	0,1435
0,35	2,926	15,55	7,54	3,99	3,05	0,1326
0,40	3,111	15,71	7,59	4,15	3,23	0,1203
0,45	3,281	15,82	7,58	4,27	3,39	0,1104
0,50	3,422	15,87	7,51	4,34	3,53	0,0987
0,55	3,514	15,84	7,40	4,34	3,61	0,0873
0,60	3,539	15,74	7,25	4,27	3,62	0,0791
0,65	3,477	15,58	7,08	4,13	3,55	0,0687
0,70	3,349	15,37	6,90	3,94	3,41	0,0601
0,75	3,179	15,13	6,71	3,74	3,23	0,0521
0,80	3,030	14,87	6,56	3,57	3,08	0,0461
0,85	2,984	14,76	6,50	3,52	3,04	0,0433
0,90	3,202	15,19	6,73	3,76	3,26	0,0469
0,95	4,150	16,15	7,53	4,75	4,23	0,0568
1,00	7,597	18,93	9,92	7,86	7,64	0,0080

Tabela 5.2. Parâmetros térmicos relevantes para o escoamento em dutos de setores anulares com $\Theta = 10^{\circ}$.

Figura 5.4. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 10^{\circ}$.

(c) Número de Nusselt médio

Figura 5.5. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 15^{\circ}$.

r*	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	Nu _{méd} (10 ⁻¹)	<i>Nu_{méd}</i> (10 ⁰)	L _{th}
0,05	2,061	12,75	5,82	2,94	2,17	0,1494
0,10	2,219	13,47	6,22	3,13	2,32	0,1372
0,15	2,384	14,13	6,60	3,30	2,49	0,1260
0,20	2,553	14,59	6,89	3,48	2,66	0,1163
0,25	2,724	14,93	7,10	3,65	2,82	0,1061
0,30	2,891	15,10	7,21	3,80	2,99	0,0979
0,35	3,029	15,37	7,27	3,93	3,14	0,0899
0,40	3,180	15,48	7,25	4,02	3,27	0,0821
0,45	3,279	15,51	7,18	4,06	3,36	0,0739
0,50	3,330	15,41	7,07	4,04	3,40	0,0666
0,55	3,322	15,37	6,96	3,97	3,39	0,0608
0,60	3,258	15,25	6,83	3,85	3,32	0,0546
0,65	3,158	15,37	6,96	3,97	3,39	0,0491
0,70	3,056	14,84	6,58	3,60	3,11	0,0448
0,75	2,988	14,82	6,52	3,52	3,04	0,0419
0,80	3,004	14,84	6,53	3,54	3,06	0,0423
0,85	3,180	15,16	6,71	3,73	3,23	0,0464
0,90	3,673	15,67	7,13	4,26	3,73	0,0538
0,95	4,848	16,64	8,04	5,42	4,93	0,0534
1,00	7,597	18,93	9,92	7,86	7,64	0,0080

Tabela 5.3. Parâmetros térmicos relevantes para o escoamento em dutos de setores anulares com $\Theta = 15^{\circ}$.

Figura 5.6. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 15^{\circ}$.

(c) Número de *Nusselt* médio

Figura 5.7. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 30^{\circ}$.

r*	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	Nu _{méd} (10 ⁻¹)	<i>Nu_{méd}</i> (10 ⁰)	L_{th}
0,05	2,489	13.01	6,23	3,20	2,56	0,0774
0,10	2,626	13,85	6,51	3,33	2,70	0,0715
0,15	2,757	14,10	6,69	3,47	2,83	0,0671
0,20	2,879	14,79	6,80	3,57	2,95	0,0633
0,25	2,981	15,00	6,83	3,66	3,05	0,0596
0,30	3,055	15,10	6,82	3,70	3,12	0,0562
0,35	3,095	15,13	6,77	3,71	3,16	0,0529
0,40	3,098	15,11	6,71	3,68	3,16	0,0498
0,45	3,072	15,09	6,65	3,63	3,13	0,0468
0,50	3,033	15,07	6,59	3,58	3,09	0,0448
0,55	3,000	15,04	6,55	3,54	3,05	0,0439
0,60	2,991	15,02	6,54	3,53	3,04	0,0436
0,65	3,024	15,08	6,62	3,58	3,08	0,0441
0,70	3,118	15,16	6,66	3,67	3,17	0,0454
0,75	3,296	15,38	6,82	3,86	3,35	0,0484
0,80	3,596	15,67	7,08	4,18	3,66	0,0528
0,85	4,074	16,08	7,46	4,67	4,14	0,0567
0,90	4,817	16,61	8,01	5,38	4,89	0,0497
0,95	5,944	17,20	8,77	6,39	6,01	0,0213
1,00	7,597	18,93	9,92	7,86	7,64	0,0080

Tabela 5.4. Parâmetros térmicos relevantes para o escoamento em dutos de setores anulares com $\Theta = 30^{\circ}$.

Figura 5.8. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 30^{\circ}$.

(c) Número de Nusselt médio

Figura 5.9. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 45^{\circ}$.

r*	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	Nu _{méd} (10 ⁻¹)	Nu _{méd} (10 ⁰)	L _{th}
0,05	2,747	13,36	6,42	3,37	2,81	0.0571
0,10	2,850	14,17	6,58	3,47	2,91	0,0541
0,15	2,937	14,80	6,68	3,55	3,00	0,0522
0,20	3,002	14,91	6,69	3,60	3,06	0,0503
0,25	3,037	14,98	6,67	3,62	3,10	0,0484
0,30	3,044	15,02	6,64	3,61	3,10	0,0466
0,35	3,032	15,03	6,62	3,58	3,09	0,0450
0,40	3,014	15,04	6,60	3,56	3,07	0,0442
0,45	3,007	15,06	6,56	3,55	3,06	0,0439
0,50	3,021	15,07	6,57	3,57	3,08	0,0441
0,55	3,069	15,19	6,63	3,62	3,12	0,0449
0,60	3,160	15,24	6,70	3,72	3,22	0,0464
0,65	3,305	15,35	6,83	3,87	3,36	0,0488
0,70	3,517	15,50	7,01	4,10	3,58	0,0519
0,75	3,814	15,74	7,24	4,40	3,88	0,0555
0,80	4,222	16,09	7,56	4,81	4,29	0,0568
0,85	4,769	16,49	7,97	5,33	4,84	0,0506
0,90	5,486	16,88	8,47	5,99	5,56	0,0322
0,95	6,410	17,48	9,05	6,79	6,46	0,0152
1,00	7,597	18,93	9,92	7,86	7,64	0,0080

Tabela 5.5. Parâmetros térmicos relevantes para o escoamento em dutos de setores anulares com $\Theta = 45^{\circ}$.

Figura 5.10. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 45^{\circ}$.

Figura 5.11. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 60^{\circ}$.

r*	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	Nu _{méd} (10 ⁻¹)	Nu _{méd} (10 ⁰)	L_{th}
0,05	2,911	14,08	6,60	3,50	2,97	0,0497
0,10	2,979	14,78	6,67	3,56	3,04	0,0481
0,15	3,024	15,09	6,69	3,60	3,08	0,0469
0,20	3,043	15,22	6,67	3,61	3,10	0,0458
0,25	3,042	15,31	6,65	3,60	3,10	0,0448
0,30	3,032	15,39	6,63	3,58	3,09	0,0444
0,35	3,030	15,46	6,63	3,58	3,08	0,0442
0,40	3,045	15,50	6,65	3,60	3,10	0,0446
0,45	3,087	15,51	6,68	3,64	3,14	0,0453
0,50	3,162	15,51	6,74	3,72	3,22	0,0467
0,55	3,277	15,54	6,83	3,84	3,33	0,0485
0,60	3,437	15,62	6,96	4,01	3,50	0,0511
0,65	3,651	15,81	7,17	4,25	3,73	0,0536
0,70	3,937	15,97	7,35	4,52	3,99	0,0554
0,75	4,279	16,24	7,62	4,87	4,35	0,0567
0,80	4,718	16,55	7,94	5,29	4,79	0,0514
0,85	5,251	16,85	8,32	5,78	5,33	0,0394
0,90	5,924	17,18	8,75	6,35	5,97	0,0205
0,95	6,666	17,68	9,19	7,01	6,71	0,0122
1,00	7,597	18,93	9,92	7,86	7,64	0.0080

Tabela 5.6. Parâmetros térmicos relevantes para o escoamento em dutos de setores anulares com $\Theta = 60^{\circ}$.

Figura 5.12. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 60^{\circ}$.

Figura 5.13. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 90^{\circ}$.

r*	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	Nu _{méd} (10 ⁻¹)	Nu _{méd} (10 ⁰)	L_{th}
0,05	3,094	14,69	6,72	3,66	3,15	0,0458
0,10	3,102	15,20	6,72	3,67	3,16	0,0453
0,15	3,095	15,45	6,70	3,66	3,15	0,0452
0,20	3,090	15,59	6,71	3,65	3,15	0,0453
0,25	3,054	15,70	6,72	3,66	3,16	0,0458
0,30	3,133	15,77	6,73	3,70	3,19	0,0466
0,35	3,194	15,80	6,81	3,77	3,25	0,0478
0,40	3,287	15,77	6,88	3,86	3,35	0,0494
0,45	3,413	15,74	6,97	4,00	3,47	0,0512
0,50	3,573	15,84	7,08	4,16	3,63	0,0534
0,55	3,769	15,89	7,25	4,36	3,83	0,0559
0,60	4,005	15,97	7,42	4,60	4,07	0,0573
0,65	4,284	16,15	7,63	4,87	4,35	0,0568
0,70	4,607	16,38	7,86	5,18	4,68	0,0536
0,75	4,976	16,70	8,13	5,53	5,05	0,0462
0,80	5,401	16,92	8,41	5,91	5,47	0,0334
0,85	5,865	17,15	8,73	6,32	5,93	0,0228
0,90	6,378	17,42	9,03	6,77	6,44	0,0138
0,95	6,932	17,92	9,33	7,24	6,97	0,0093
1,00	7,597	18,93	9,92	7,86	7,64	0,0080

Tabela 5.7. Parâmetros térmicos relevantes para o escoamento em dutos de setores anulares com $\Theta = 90^{\circ}$.

Figura 5.14. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 90^{\circ}$.

(c) Número de *Nusselt* médio

Figura 5.15. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 120^{\circ}$.

r*	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	Nu _{méd} (10 ⁻¹)	<i>Nu_{méd}</i> (10 ⁰)	L _{th}
0,05	3.182	15.38	6.85	3.76	3.24	0.0451
0,10	3,164	15,73	6,83	3,74	3,22	0.0459
0,15	3,162	15,93	6,83	3,74	3,22	0,0473
0,20	3,188	16,08	6,86	3,77	3,25	0,0485
0,25	3,245	16,16	6,91	3,83	3,30	0,0496
0,30	3,334	16,15	6,97	3,92	3,39	0,0509
0,35	3,450	16,09	7,05	4,04	3,51	0,0532
0,40	3,601	16,04	7,15	4,20	3,66	0,0546
0,45	3,778	16,04	7,28	4,38	3,84	0,0564
0,50	3,984	16,11	7,42	4,58	4,05	0,0576
0,55	4,219	16,24	7,59	4,81	4,29	0,0575
0,60	4,483	16,40	7,78	5,07	4,55	0,0555
0,65	4,776	16,59	7,99	5,34	4,85	0,0506
0,70	5,097	16,77	8,21	5,64	5,17	0,0429
0,75	5,443	16,95	8,45	5,95	5,52	0,0337
0,80	5,823	17,13	8,70	6,28	5,89	0,0236
0,85	6,219	17,36	8,95	6,63	6,28	0,0178
0,90	6,617	17,66	9,17	6,99	6,69	0,0132
0,95	7,070	18,06	9,41	7,36	7,11	0,0090
1,00	7,597	18,93	9,92	7,86	7,64	0.0080

Tabela 5.8. Parâmetros térmicos relevantes para o escoamento em dutos de setores anulares com $\Theta = 120^{\circ}$.

Figura 5.16. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 120^{\circ}$.

(c) Número de *Nusselt* médio

Figura 5.17. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 150^{\circ}$.

r*	Nu_{∞}	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	Nu _{méd} (10 ⁻¹)	<i>Nu_{méd}</i> (10 ⁰)	L_{th}
0,05	3,236	15,70	6,93	3,83	3,30	0,0491
0,10	3,228	16,03	6,92	3,82	3,29	0,0499
0,15	3,260	16,24	6,96	3,86	3,32	0,0509
0,20	3,330	16,37	7,02	3,93	3,39	0,0525
0,25	3,433	16,38	7,09	4,04	3,49	0,0538
0,30	3,566	16,31	7,17	4,17	3,63	0,0552
0,35	3,725	16,24	7,27	4,33	3,79	0,0569
0,40	3,909	16,22	7,39	4,52	3,97	0,0581
0,45	4,116	16,26	7,54	4,72	4,18	0,0583
0,50	4,346	16,36	7,69	4,94	4,41	0,0570
0,55	4,595	16,49	7,87	5,18	4,67	0,0540
0,60	4,864	16,64	8,05	5,43	4,94	0,0489
0,65	5,151	16,80	8,25	5,69	5,22	0,0415
0,70	5,453	16,95	8,46	5,96	5,53	0,0332
0,75	5,774	17,11	8,67	6,24	5,84	0,0248
0,80	6,086	17,29	8,88	6,53	6,17	0,0195
0,85	6,456	17,51	9,08	6,83	6,51	0,0147
0,90	6,806	17,80	9,26	7,13	6,85	0,0110
0,95	7,154	18,15	9,46	7,42	7,19	0,0086
1,00	7,597	18,93	9,92	7,86	7,64	0,0080

Tabela 5.9. Parâmetros térmicos relevantes para o escoamento em dutos de setores anulares com $\Theta = 150^{\circ}$.

Figura 5.18. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 150^{\circ}$.

Figura 5.19. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 180^{\circ}$.

r*	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	<i>Nu_{méd}</i> (10 ⁻¹)	<i>Nu_{méd}</i> (10 ⁰)	L _{th}
0,05	3,284	15,80	6,96	3,89	3,35	0,0520
0,10	3,308	16,12	6,99	3,92	3,37	0,0530
0,15	3,381	16,46	7,07	4,00	3,44	0,0542
0,20	3,492	16,51	7,15	4,11	3,55	0,0554
0,25	3,632	16,47	7,23	4,25	3,70	0,0569
0,30	3,798	16,26	7,33	4,41	3,86	0,0581
0,35	3,985	16,28	7,46	4,60	4,05	0,0589
0,40	4,191	16,29	7,60	4,80	4,26	0,0584
0,45	4,414	16,34	7,74	5,01	4,48	0,0567
0,50	4,652	16,44	7,91	5,23	4,72	0,0532
0,55	4,903	16,62	8,07	5,46	4,98	0,0482
0,60	5,165	16,76	8,25	5,70	5,24	0,0416
0,65	5,439	16,89	8,44	5,95	5,51	0,0337
0,70	5,727	17,03	8,63	6,20	5,83	0,0256
0,75	5,974	17,22	8,82	6,45	6,08	0,0201
0,80	6,316	17,39	9,00	6,71	6,37	0,0165
0,85	6,608	17,62	9,15	6,97	6,67	0,0130
0,90	6,914	17,88	9,31	7,23	6,96	0,0100
0,95	7,207	18,22	9,49	7,46	7,21	0,0084
1,00	7,597	18,93	9,92	7,86	7,64	0,0080

Tabela 5.10. Parâmetros térmicos relevantes para o escoamento em dutos de setores anulares com $\Theta = 180^{\circ}$.

Figura 5.20. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 180^{\circ}$.

Figura 5.21. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 210^{\circ}$.

r*	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	Nu _{méd} (10 ⁻¹)	Nu _{méd} (10 ⁰)	L _{th}
0,05	3,335	16,13	7,08	3,96	3,40	0,0550
0,10	3,400	16,49	7,13	4,03	3,46	0,0560
0,15	3,513	16,69	7,22	4,14	3,58	0,0570
0,20	3,658	16,72	7,32	4,29	3,72	0,0584
0,25	3,828	16,65	7,42	4,45	3,89	0,0594
0,30	4,017	16,56	7,53	4,64	4,08	0,0596
0,35	4,222	16,51	7,65	4,83	4,29	0,0591
0,40	4,441	16,53	7,79	5,04	4,51	0,0569
0,45	4,670	16,59	7,94	5,25	4,74	0,0533
0,50	4,909	16,69	8,10	5,47	4,98	0,0484
0,55	5,156	16,80	8,26	5,69	5,23	0,0416
0,60	5,410	16,93	8,43	5,92	5,48	0,0342
0,65	5,671	17,05	8,60	6,15	5,73	0,0269
0,70	5,942	17,19	8,77	6,38	6,02	0,0212
0,75	6,192	17,34	8,93	6,61	6,26	0,0175
0,80	6,460	17,52	9,08	6,84	6,52	0,0143
0,85	6,736	17,74	9,22	7,07	6,78	0,0116
0,90	6,992	17,98	9,36	7,29	7,04	0,0095
0,95	7,235	18,27	9,52	7,49	7,29	0,0084
1,00	7,597	18,93	9,92	7,86	7,64	0,0080

Tabela 5.11. Parâmetros térmicos relevantes para o escoamento em dutos de setores anulares com $\Theta = 210^{\circ}$.

Figura 5.22. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 210^{\circ}$.

Figura 5.23. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 240^{\circ}$.

r*	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	Nu _{méd} (10 ⁻¹)	Nu _{méd} (10 ⁰)	L _{th}
0,05	3,393	16,30	7,15	4,04	3,46	0.0576
0,10	3,500	16,67	7,24	4,14	3,57	0,0586
0,15	3,648	16,85	7,35	4,29	3,71	0,0597
0,20	3,821	16,85	7,45	4,46	3,89	0,0605
0,25	4,013	16,75	7,56	4,64	4,08	0,0605
0,30	4,219	16,66	7,68	4,83	4,29	0,0597
0,35	4,436	16,62	7,81	5,04	4,51	0,0572
0,40	4,660	16,64	7,95	5,24	5,24	0,0538
0,45	4,891	16,71	8,10	5,46	4,96	0,0486
0,50	5,127	16,80	8,25	5,67	5,20	0,0425
0,55	5,365	16,91	8,41	5,88	5,44	0,0360
0,60	5,609	17,02	8,57	6,10	5,68	0,0289
0,65	5,847	17,05	8,60	6,15	5,74	0,0241
0,70	6,092	17,28	8,88	6,53	6,16	0,0199
0,75	6,348	17,44	9,02	6,74	6,42	0,0161
0,80	6,583	17,62	9,15	6,95	6,64	0,0133
0,85	6,791	17,82	9,27	7,15	6,87	0,0110
0,90	7,046	18,05	9,40	7,34	7,10	0,0092
0,95	7,273	18,31	9,54	7,52	7,31	0,0082
1,00	7,597	18,93	9,92	7,86	7,64	0,0080

Tabela 5.12. Parâmetros térmicos relevantes para o escoamento em dutos de setores anulares com $\Theta = 240^{\circ}$.

Figura 5.24. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 240^{\circ}$.

Figura 5.25. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 270^{\circ}$.

r*	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	Nu _{méd} (10 ⁻¹)	Nu _{méd} (10 ⁰)	L_{th}
0,05	3,457	16,27	7,19	4,11	3,52	0,0599
0,10	3,604	16,68	7,30	4,26	3,67	0,0607
0,15	3,782	16,89	7,46	4,43	3,85	0,0613
0,20	3,978	16,86	7,58	4,61	4,05	0,0614
0,25	4,186	16,72	7,69	4,81	4,26	0,0607
0,30	4,403	16,61	7,81	5,01	4,47	0,0584
0,35	4,626	16,63	7,92	5,22	4,70	0,0548
0,40	4,852	16,65	8,06	5,42	4,93	0,0498
0,45	5,080	16,69	8,22	5,63	5,16	0,0442
0,50	5,312	16,79	8,37	5,84	5,39	0,0372
0,55	5,538	16,95	8,53	6,04	5,62	0,0316
0,60	5,779	17,06	8,68	6,24	5,85	0,0257
0,65	6,003	17,18	8,82	6,44	6,31	0,0215
0,70	6,223	17,32	8,95	6,64	6,29	0,0183
0,75	6,453	17,49	9,08	6,84	6,51	0,0149
0,80	6,683	17,66	9,20	7,03	6,73	0,0121
0,85	6,899	17,87	9,31	7,21	6,94	0,0101
0,90	7,105	18,08	9,42	7,38	7,14	0,0088
0,95	7,293	18,34	9,56	7,53	7,33	0,0081
1,00	7,597	18,93	9,92	7,86	7,64	0,0080

Tabela 5.13. Parâmetros térmicos relevantes para o escoamento em dutos de setores anulares com $\Theta = 270^{\circ}$.

Figura 5.26. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 270^{\circ}$.

Figura 5.27. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 300^{\circ}$.

r*	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	Nu _{méd} (10 ⁻¹)	Nu _{méd} (10 ⁰)	L _{th}
0,05	3,524	16,58	7,30	4,19	3,59	0,0615
0,10	3,707	16,98	7,44	4,37	3,78	0,0627
0,15	3,911	17,11	7,57	4,56	3,98	0,0624
0,20	4,125	17,04	7,69	4,76	4,20	0,0618
0,25	4,345	16,92	7,80	4,96	4,42	0,0598
0,30	4,569	16,82	7,93	5,17	4,64	0,0564
0,35	4,792	16,79	8,06	5,37	4,87	0,0522
0,40	5,020	16,82	8,20	5,58	5,10	0,0459
0,45	5,246	16,88	8,34	5,78	5,33	0,0394
0,50	5,463	16,96	8,48	5,98	5,54	0,0342
0,55	5,695	17,06	8,63	6,17	5,77	0,0276
0,60	5,909	17,18	8,76	6,37	5,98	0,0228
0,65	6,136	17,30	8,90	6,55	6,19	0,0188
0,70	6,356	17,44	9,02	6,74	6,40	0,0157
0,75	6,557	17,59	9,13	6,92	6,61	0,0131
0,80	6,756	17,76	9,23	7,09	6,80	0,0105
0,85	6,953	17,94	9,34	7,26	7,00	0,0093
0,90	7,140	18,14	9,45	7,41	7,18	0,0087
0,95	7,308	18,36	9,57	7,55	7,35	0,0081
1,00	7,597	18,93	9,92	7,86	7,64	0,0080

Tabela 5.14. Parâmetros térmicos relevantes para o escoamento em dutos de setores anulares com $\Theta = 300^{\circ}$.

Figura 5.28. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 300^{\circ}$.

Figura 5.29. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 330^{\circ}$.

r*	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	<i>Nu_{méd}</i> (10 ⁻¹)	<i>Nu_{méd}</i> (10 ⁰)	L _{th}
0,05	3,594	16,70	7,37	4,27	3,66	0.0630
0,10	3,809	17,10	7,53	4,47	3,88	0,0640
0,15	4,034	17,21	7,67	4,68	4,11	0,0630
0,20	4,262	17,12	7,79	4,89	4,33	0,0613
0,25	4,491	16,98	7,91	5,10	4,56	0,0574
0,30	4,720	16,89	8,03	5,31	4,79	0,0533
0,35	4,947	16,86	8,16	5,51	5,01	0,0476
0,40	5,170	16,88	8,30	5,71	5,25	0,0414
0,45	5,391	16,94	8,44	5,91	5,47	0,0349
0,50	5,604	17,03	8,57	6,10	5,68	0,0297
0,55	5,826	17,13	8,71	6,29	5,88	0,0237
0,60	6,037	17,24	8,84	6,47	6,09	0,0201
0,65	6,241	17,37	8,96	6,65	6,30	0,0174
0,70	6,441	17,51	9,07	6,82	6,49	0,0148
0,75	6,574	17,65	9,17	6,99	6,68	0,0125
0,80	6,821	17,82	9,27	7,15	6,87	0,0108
0,85	7,003	17,99	9,37	7,30	7,04	0,0094
0,90	7,174	18,18	9,47	7,44	7,21	0,0085
0,95	7,319	18,38	9,58	7,56	7,44	0,0081
1,00	7,597	18,93	9,92	7,86	7,64	0,0080

Tabela 5.15. Parâmetros térmicos relevantes para o escoamento em dutos de setores anulares com $\Theta = 330^{\circ}$.

Figura 5.30. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 330^{\circ}$.

(c) Número de *Nusselt* médio

Figura 5.31. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $\Theta = 350^{\circ}$.

r*	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	Nu _{méd} (10 ⁻¹)	Nu _{méd} (10 ⁰)	L _{th}
0,05	3.639	16.57	7.38	4.32	3.71	0.0641
0,10	3,875	16,94	7,54	4,54	3,95	0,0646
0,15	4,112	17,09	7,72	4,76	4,19	0,0632
0,20	4,348	16,97	7,83	4,98	4,42	0,0607
0,25	4,582	16,82	7,95	5,19	4,66	0,0564
0,30	4,812	16,73	8,08	5,39	4,89	0,0511
0,35	5,037	16,82	8,23	5,60	5,11	0,0454
0,40	5,257	16,84	8,36	5,79	5,34	0,0394
0,45	5,478	16,92	8,49	5,98	5,55	0,0324
0,50	5,685	16,99	8,62	6,17	5,76	0,0277
0,55	5,898	17,11	8,75	6,35	5,97	0,0227
0,60	6,106	17,22	8,87	6,53	6,17	0,0193
0,65	6,304	17,37	8,98	6,70	6,35	0,0166
0,70	6,493	17,51	9,09	6,87	6,55	0,0143
0,75	6,682	17,66	9,19	7,03	6,73	0,0120
0,80	6,857	17,83	9,29	7,18	6,90	0,0105
0,85	7,028	18,00	9,38	7,32	7,07	0,0093
0,90	7,192	18,18	9,48	7,45	7,23	0,0084
0,95	7,326	18,39	9,59	7,56	7,37	0,0081
1,00	7,597	18,93	9,92	7,86	7,64	0,0080

Tabela 5.16. Parâmetros térmicos relevantes para o escoamento em dutos de setores anulares com $\Theta = 350^{\circ}$.

Figura 5.32. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores anulares com $\Theta = 350^{\circ}$.

As Figuras 5.33a e 5.33b ilustram o comportamento do número de *Nusselt* limite parametrizado em Θ e r^* , respectivamente, para diversas geometrias dos dutos de setores anulares.

Figura 5.33. Comportamento do número de Nusselt limite para o escoamento em dutos de setores anulares.

As Figuras 5.34a e 5.35b ilustram o comportamento do comprimento de entrada térmica parametrizado em Θ e r^* , respectivamente, para diversas geometrias dos dutos de setores anulares.

Figura 5.34. Comportamento do comprimento de entrada térmica para o escoamento em dutos de setores anulares.

Nota-se do comportamento do número de *Nusselt* limite, $Nu(\infty)$, e do comprimento de entrada térmica, L_{th} , que quando parametrizados em Θ , os resultados obtidos para diversos dutos de setores anulares convergem para um mesmo valor quando $r^* \rightarrow 1,00$, valores estes, conforme demonstrado posteriormente, correspondem ao caso do problema térmico do escoamento laminar em canais de placas planas com temperatura uniforme em ambas as placas.

5.3.2.2. Geometria de Setor Circular

Apresentam-se, nas Tabelas C.17 do Apêndice C os resultados numéricos obtidos para os parâmetros térmicos de interesse no escoamento laminar completamente desenvolvido e termicamente em desenvolvimento de fluidos *Newtonianos* no interior de diversos dutos de setores circulares submetidos a condições de contorno de *Dirichlet* e perfil de temperatura de entrada uniforme.

Para ilustrar o comportamento da temperatura adimensional média de mistura e dos números de *Nusselt* local e médio nas Fig. 5.35 apresentam-se os resultados encontrados para estes parâmetros térmicos, em diversos dutos de geometria de setor circular em função do ângulo Θ .

Além disso, apresenta-se na Fig. 5.36 e na Tab. 5.17, o comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento nos dutos analisados.

(c) Número de Nusselt médio

Figura 5.35. Evolução dos parâmetros térmicos para o escoamento em dutos de setores circulares.

\bigcirc	Νζ	Nu _{méd}	Nu _{méd}	Nu _{méd}	Nu _{méd}	•
Θ	$N u_{\infty}$	(10^{-3})	(10^{-2})	(10^{-1})	(10^{0})	L_{th}
5°	1,451	12,07	5,25	2,49	1,61	0,3122
8°	1,601	12,99	5,72	2,68	1,77	0,2007
10°	1,703	13,64	5,97	2,86	1,88	0,1799
15°	1,916	12,26	5,39	2,73	2,02	0,1390
20° 25°	2,091	12,20	5,40	2,83	2,17	0,1108
20	2,203	12,34	5,64	2,95	2,32	0,0001
30°	2,365	12,29	5,72	3,03	2,43	0,0743
36°	2,400 2 /01	12,30	5,04 5,87	3 13	2,00	0,0001
40°	2,568	12,00	5.94	3.19	2,63	0.0626
45°	2,646	12,46	6,01	3,24	2,70	0.0588
50°	2,712	12,63	6,19	3,36	2,82	0,0558
55°	2,773	12,70	6,28	3,41	2,87	0.0535
60°	2,840	12,77	6,36	3,45	2,93	0,0518
65°	2,915	12,84	6,43	3,49	2,97	0,0504
70°	2,957	12,92	6,49	3,53	3,01	0,0493
72°	2,972	12,95	6,51	3,55	3,03	0,0489
75°	2,994	13,00	6,54	3,57	3,05	0,0484
80°	3,019	12,53	6,44	3,58	3,08	0,0478
85° 00°	3,051	12,58	6,50 6,55	3,61	3,11	0,0473
90 100°	3,070	12,03	0,00	3,03	3 18	0,0469
100°	3.167	12,74	6,70	3,03	3.22	0.0471
120°	3,200	12,94	6,76	3,77	3,26	0,0476
130°	3,227	13,04	6,81	3,81	3,28	0,0481
140°	3,250	13,12	6,85	3,83	3,31	0,0488
150°	3,270	13,21	6,89	3,86	3,33	0,0495
160°	3,286	13,29	6,93	3,88	3,35	0,0503
170°	3,301	13,36	6,96	3,90	3,36	0,0511
180°	3,313	13,47	6,97 7.01	3,92	3,37	0,0520
2000	2,524	12,50	7,01	2.05	2,39	0,0529
200 210°	3,334 3 343	13,50	7,03	3,95	3,40	0,0538
220°	3.352	13.67	7,00	3.98	3.41	0.0556
230°	3,360	13,72	7,09	4,00	3,42	0,0564
240°	3,367	13,77	7,10	4,01	3,43	0,0573
250°	3,375	13,82	7,12	4,02	3,44	0,0580
260°	3,383	13,86	7,13	4,03	3,45	0,0590
270°	3,390	13,89	7,14	4,05	3,46	0,0598
280°	3,398	13,94	7,17	4,06	3,47	0,0605
290°	3,406	13,98	7,18 7.20	4,07	3,41	0,0613
300 310°	3 4 2 2	14,01	7,20 7,21	4,00 4 10	3,40 3,40	0,0020
3200	3/20	11 09	י ב, י די ב, י	-, 10 // 11	3, 1 3 3 50	0.0624
320°	3,439	14 11	7.24	4,11	3,50	0.0641
340°	3.448	14.13	7.25	4.13	3.52	0.0648
350°	3,457	14,17	7,26	4,14	3,53	0,0654
360°	3,466	14 19	7.28	4.16	3.54	0.0660

Tabela 5.17. Parâmetros térmicos relevantes para o escoamento em dutos de setores circulares.

Figura 5.36. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos de setores circulares.

5.3.2.3. Geometria Anular Concêntrica

Nas Tabelas C.18, Apêndice C, os resultados numéricos obtidos para os parâmetros térmicos de interesse no escoamento laminar completamente desenvolvido e termicamente em desenvolvimento de fluidos *Newtonianos* no interior de diversos dutos anulares concêntricos submetidos a condições de contorno de primeiro tipo e perfil temperatura de entrada uniforme são apresentados.

Para ilustrar o comportamento destes parâmetros, na Fig. 5.37, apresentam-se os resultados encontrados para a temperatura adimensional média de mistura e para os números de *Nusselt* local e médio, em diversos dutos de geometria de anular concêntrica em função da razão r^* .

Além disso, apresenta-se na Fig. 5.38 e na Tab. 5.18, o comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento nos dutos anulares concêntricos estudados.

Figura 5.37. Evolução dos parâmetros térmicos para o escoamento em dutos anulares concêntricos.

r*	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	Nu _{méd} (10 ⁻¹)	Nu _{méd} (10 ⁰)	L_{th}
0,00	335,823	494,86	395,85	345,41	336,79	0,0669
0,01	53,535	96,14	68,12	55,83	53,77	0,0732
0,05	17,460	39,74	24,59	18,51	17,57	0,0949
0,10	11,560	30,03	17,26	12,38	11,64	0,1101
0,15	9,331	26,19	14,40	10,05	9,40	0,1218
0,20	8,130	24,17	12,95	8,81	8,20	0,1322
0,25	7,371	22,77	11,93	8,01	7,43	0,1401
0,30	6,845	21,91	11,32	7,47	6,91	0,1478
0,35	6,459	21,16	10,77	7,06	6,52	0,1545
0,40	6,163	20,70	10,46	6,76	6,22	0,1603
0,45	5,928	20,21	10,09	6,50	5,99	0,1660
0,50	5,738	19,93	9,90	6,31	5,80	0,1721
0,55	5,581	19,58	9,65	6,14	5,64	0,1777
0,60	5,449	19,40	9,53	6,01	5,50	0,1831
0,65	5,337	19,13	9,34	5,89	5,39	0,1876
0,70	5,240	19,01	9,26	5,79	5,29	0,1925
0,75	5,156	18,80	9,10	5,70	5,21	0,1982
0,80	5,082	18,72	9,06	5,63	5,14	0,2018
0,85	5,017	18,53	8,92	5,55	5,07	0,2074
0,90	4,959	18,47	8,87	5,50	5,01	0,2109
0,95	4,907	18,32	8,78	5,44	4,96	0,2163
1,00	4,861	18,28	8,74	5,40	4,91	0,2201

Tabela 5.18. Parâmetros térmicos relevantes para o escoamento em dutos anulares concêntricos.

Figura 5.38. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos anulares concêntricos.

5.3.2.4. Geometria Bicônica

Apresentam-se, nas Tabelas C.18, Apêndice C, os resultados numéricos encontrados para os parâmetros térmicos de interesse no escoamento laminar hidrodinamicamente desenvolvido e termicamente em desenvolvimento de fluidos *Newtonianos* no interior de diversos dutos bicônicos submetidos de temperatura prescrita na parede e perfil de temperatura de entrada uniforme.

Para ilustrar o comportamento da temperatura adimensional média de mistura e dos números de *Nusselt* local e médio nas Fig. 5.37 apresentam-se os resultados encontrados para estes parâmetros térmicos, em diversos dutos de geometria bicônica em função da razão u_0/v_0 . Além disso, apresenta-se na Fig. 5.38 e na Tab. 5.19, o comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento nestes dutos.

215

Figura 5.39. Evolução dos parâmetros térmicos para o escoamento em dutos bicônicos.

u_0/v_0	$Nu(\infty)$	Nu _{méd} (10 ⁻³)	Nu _{méd} (10 ⁻²)	Nu _{méd} (10 ⁻¹)	Nu _{méd} (10 ⁰)	L_{th}
0,05	2,820	14.79	7.16	3.92	2.95	0,1633
0,10	3,049	14,51	6,96	3,84	3,14	0,0856
0,15	3,141	14,69	6,85	3,80	3,21	0,0593
0,20	3,175	14,76	6,75	3,77	3,23	0,0489
0,25	3,188	14,92	6,71	3,75	3,24	0,0445
0,30	3,197	15,01	6,68	3,74	3,25	0,0426
0,35	3,205	15,01	6,68	3,75	3,26	0,0420
0,40	3,214	15,01	6,68	3,76	3,27	0,0419
0,45	3,222	15,05	6,69	3,77	3,28	0,0423
0,50	3,230	14,94	6,71	3,79	3,30	0,0427
0,55	3,239	14,90	6,72	3,80	3,31	0,0433
0,60	3,247	14,83	6,73	3,82	3,33	0,0438
0,65	3,256	14,80	6,73	3,83	3,34	0,0442
0,70	3,264	14,75	6,74	3,84	3,35	0,0447
0,75	3,272	14,71	6,74	3,85	3,35	0,0450
0,80	3,281	14,68	6,75	3,86	3,36	0,0453
0,85	3,290	14,63	6,75	3,86	3,36	0,0455
0,90	3,298	14,60	6,75	3,87	3,37	0,0457
0,95	3,306	14,58	6,76	3,87	3,37	0,0457
1,00	3,315	14,55	6,76	3,87	3,37	0,0458

Tabela 5.19. Parâmetros térmicos relevantes para o escoamento em dutos bicônicos.

Figura 5.40. Comportamento do número de *Nusselt* limite e do comprimento de entrada térmica para o escoamento em dutos bicônicos.

5.3.3. Comparação de Resultados

Nesta seção realiza-se a comparação, quando possível, dos resultados obtidos para os parâmetros térmicos nos diversos casos analisados com os disponíveis na literatura. Ressaltase que para o caso do escoamento em dutos bicônicos nenhum resultado foi encontrado na literatura.

5.3.3.1. Geometria de Setor Anular

Nas Tabelas 5.20 realiza-se a comparação dos resultados do presente trabalho com os obtidos numericamente pelo Método de Diferenças Finitas em Ben-Ali *et al.* (1989), para o número de *Nusselt* limite, denotado na literatura como Nu_T , para o escoamento em dutos de setores anulares.

	5°		10)0	15º	
r*	Presente Trabalho	Ben-Ali <i>et al.</i> (1989)	Presente Trabalho	Ben-Ali <i>et al.</i> (1989)	Presente Trabalho	Ben-Ali <i>et al.</i> (1989)
0,05	1,567	1,559	1,847	1,839	2,061	2,051
0,10	1,715	1,707	2,005	1,996	2,219	2,208
0,20	2,055	2,045	2,352	2,341	2,553	2,541
0,30	2,453	2,440	2,731	2,717	2,891	2,876
0,40	2,901	2,886	3,111	3,096	3,180	3,166
0,50	3,372	3,355	3,422	3,405	3,330	3,316
0,60	3,790	3,773	3,539	3,523	3,258	3,249
0,70	3,978	3,962	3,349	3,337	3,056	3,051
0,80	3,649	3,634	3,030	3,026	3,004	3,000
0,90	3,009	3,005	3,202	3,197	3,673	3,662

Tabela 5.20a. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Nusselt* limite no escoamento em dutos de setores anulares com $\Theta = 5^{\circ}$, 10° e 15°.

Tabela 5.20b. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Nusselt* limite no escoamento em dutos de setores anulares com $\Theta = 30^\circ$, 60° e 90° .

	300		60	90	90	90°	
r*	Presente Trabalho	Ben-Ali <i>et al.</i> (1989)	Presente Trabalho	Ben-Ali <i>et al.</i> (1989)	Presente Trabalho	Ben-Ali <i>et al.</i> (1989)	
0,05	2,489	2,478	2,911	2,906	3,094	3,089	
0,10	2,626	2,615	2,979	2,973	3,102	3,097	
0,20	2,879	2,868	3,043	3,038	3,090	3,086	
0,30	3,055	3,045	3,032	3,029	3,133	3,128	
0,40	3,098	3,090	3,045	3,041	3,287	3,280	
0,50	3,033	3,029	3,162	3,157	3,573	3,562	
0,60	2,991	2,988	3,437	3,426	4,005	3,987	
0,70	3,118	3,113	3,937	3,910	4,607	4,576	
0,80	3,596	3,582	4,718	4,686	5,401	5,342	
0,90	4.817	4,782	5,924	5,812	6,378	6,238	

Tabela 5.20c. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Nusselt* limite no escoamento em dutos de setores anulares com $\Theta = 120^{\circ}$, 150° e 180°.

	120º		15	0º	18	180º	
r*	Presente Trabalho	Ben-Ali <i>et al.</i> (1989)	Presente Trabalho	Ben-Ali <i>et al.</i> (1989)	Presente Trabalho	Ben-Ali <i>et al.</i> (1989)	
0,05	3,182	3,175	3,236	3,231	3,284	3,278	
0,10	3,164	3,157	3,228	3,222	3,308	3,301	
0,20	3,188	3,180	3,330	3,322	3,492	3,480	
0,30	3,334	3,326	3,566	3,553	3,798	3,782	
0,40	3,601	3,590	3,909	3,892	4,191	4,169	
0,50	3,984	3,966	4,346	4,322	4,652	4,621	
0,60	4,483	4,457	4,864	4,828	5,165	5,118	
0,70	5,097	5,055	5,453	5,396	5,727	5,651	
0,80	5,823	5,744	6,086	5,997	6,316	6,175	
0,90	6,617	6,488	6,806	6,646	6,914	6,755	

	210º		24	240°		270°	
r*	Presente Trabalho	Ben-Ali <i>et al.</i> (1989)	Presente Trabalho	Ben-Ali <i>et al.</i> (1989)	Presente Trabalho	Ben-Ali <i>et al.</i> (1989)	
0,05	3,335	3,330	3,393	3,388	3,457	3,451	
0,10	3,400	3,392	3,500	3,491	3,604	3,594	
0,20	3,658	3,641	3,821	3,807	3,978	3,961	
0,30	4,017	3,999	4,219	4,198	4,403	4,379	
0,40	4,441	4,415	4,660	4,631	4,852	4,818	
0,50	4,909	4,874	5,127	5,080	5,312	5,263	
0,60	5,410	5,352	5,609	5,539	5,779	5,700	
0,70	5,942	5,843	6,092	5,989	6,223	6,099	
0,80	6,460	6,323	6,583	6,437	6,683	6,528	
0,90	6,992	6,834	7,046	6,894	7,105	6,941	

Tabela 5.20d. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Nusselt* limite no escoamento em dutos de setores anulares com $\Theta = 210^{\circ}$, 240° e 270°.

Tabela 5.20e. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Nusselt* limite no escoamento em dutos de setores anulares com $\Theta = 300^{\circ}$, 330° e 350°.

	300°		33	330°		350°	
r*	Presente Trabalho	Ben-Ali <i>et al.</i> (1989)	Presente Trabalho	Ben-Ali <i>et al.</i> (1989)	Presente Trabalho	Ben-Ali <i>et al.</i> (1989)	
0,05	3,524	3,519	5,594	3,589	3,639	3,638	
0,10	3,707	3,699	3,809	3,798	3,875	3,864	
0,20	4,125	4,107	4,262	4,241	4,348	4,327	
0,30	4,569	4,542	4,720	4,688	4,812	4,776	
0,40	5,020	4,982	5,170	5,124	5,257	5,208	
0,50	5,463	5,413	5,604	5,540	5,685	5,620	
0,60	5,909	5,825	6,037	5,926	6,106	5,993	
0,70	6,356	6,205	6,441	6,295	6,493	6,347	
0,80	6,756	6,601	6,821	6,664	6,857	6,699	
0,90	7,140	6,979	7,174	7,010	7,192	7,075	

Das Tabelas 5.20 verifica-se que os resultados obtidos para os ângulos $\Theta = 5^{\circ}$, 10° , 15° e 30° e/ou para $r^* \ge 0.50$ apresentam uma excelente concordância, enquanto que o restante dos resultados apresenta um erro em torno de 2%.

Comparando-se os resultados obtidos para os dutos de setores anulares com razão de aspecto igual a 1,00 (Fig. 5.41) e com os disponíveis na literatura para o escoamento em canais de placas planas com temperatura prescrita em ambas as placas (BROWN, 1960 e SHAH, 1975), na Tab. 5.21, verifica-se uma boa concordância. Além disso, o comprimento de entrada térmica para estes casos é igual a 0,0080.

7	$oldsymbol{ heta}_{m \acute{e} d}(oldsymbol{Z})$			Nu(Z)			
Z	Presente Trabalho	Brown (1960)	Shah (1975)	Presente Trabalho	Brown (1960)	Shah (1975)	
0,001	0,9284	0,92774	0,92774	12,839	12,8217	12,822	
0,002	0,8871	0,88604	0,88604	10,619	10,5448	10,545	
0,003	0,8527	0,85137	0,85137	9,584	9,5132	9,5132	
0,005	0,7945	0,79258	0,79258	8,580	8,5166	8,5166	
0,007	0,7432	0,74191	0,74191	8,115	8,0532	8,0532	
0,010	0,6769	0,67503	0,67503	7,796	7,7405	7,7405	
0,020	0,5002	0,49804	0,49804	7,602	7,5495	7,5495	
0,030	0,3699	0,36832	0,36832	7,599	7,5411	7,5411	
0,050	0,2022	0,20148	0,20148	7,597	7,5407	7,5407	
0,070	0,1117	0,11022	0,11022	7,597	7,5407	7,5407	
0,100	0,0455	0,04459	0,04459	7,597	7,5407	7,5407	
0,200	0,0023	0,00218	0,00218	7,597	7,5407	7,5407	

Tabela 5.21a. Comparação dos resultados obtidos para a temperatura adimensional média de mistura e o número de *Nusselt* local no escoamento em dutos de setores anulares com $r^* = 1,00$ com os disponíveis na literatura para o escoamento em canais de placas planas com temperatura uniforme em ambas as placas.

Tabela 5.21b. Comparação dos resultados obtidos para o número de *Nusselt* médio no escoamento em dutos de setores anulares com $r^* = 1,00$ com os disponíveis na literatura para o escoamento em canais de placas planas com temperatura uniforme em ambas as placas.

7		$Nu_{m\acute{e}d}(Z)$	
Z	Presente Trabalho	Brown (1960)	Shah (1975)
0,001	18,93	18,7521	18,752
0,002	15,27	15,1246	15,125
0,003	13,54	13,4086	13,409
0,005	11,73	11,6229	11,623
0,007	10,76	10,6617	10,662
0,010	9,92	9,8249	9,8249
0,020	8,80	8,7133	8,7133
0,030	8,40	8,3234	8,3234
0,050	8,09	8,0103	8,0103
0,070	7,95	7,8761	7,8761
0,100	7,85	7,7755	7,7755
0,200	7,73	7,6581	7,6581
0,300	7,69	7,6190	-
0,500	7,66	7,5877	-
0,700	7,65	7,5742	-
1,000	7,64	7,5642	-

(b) Números de *Nusselt* local e médio

Figura 5.41. Evolução dos parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 1,00$.

5.3.3.2. Geometria de Setor Circular

Para o problema difusivo-convectivo analisado no escoamento laminar interno em dutos de setor circular, vários trabalhos são encontrados na literatura (TRUPP & LAU, 1984; BEN-ALI *et al.*, 1989; ETEMAD & BAKHTIARI, 1999 e LIN *et al.*, 2000) possibilitando assim, a comparação dos resultados na Tab. 5.22.

Desta análise, verifica-se uma boa concordância entre resultados apresentados e os disponíveis na literatura, principalmente com os obtidos numericamente pelo Método de Diferenças Finitas apresentados em Trupp & Lau (1984).

Θ	Presente Trabalho	Trupp & Lau (1984)	Ben-Ali <i>et al.</i> (1989)	Etemad & Bakhtiari (1999)	Lin <i>et al.</i> (2000)
5°	1,451	-	1,423	-	-
8°	1,601	1,586	-	-	-
10°	1,703	1,686	1,692	-	-
15°	1,916	1,898	1,901	-	-
20°	2,091	2,072	2,073	-	2,117
30°	2,365	2,342	2,341	2,266	2,383
36°	2,491	2,469	-	-	-
40°	2,568	2,543	2,543	-	2,622
45°	2,646	2,625	-	-	-
50°	2,712	-	2,700	-	-
60°	2,827	2,819	2,822	-	-
72°	2,972	2,932	-	-	-
80°	3,019	2,993	-	-	-
90°	3,079	-	3,060	3,052	-
100°	3,127	3,108	-	-	-
120°	3,200	3,188	3,191	-	-
150°	3,270	-	3,268	-	-
160°	3,286	3,285	-	-	-
180°	3,313	3,316	3,316	3,239	-
210°	3,343	-	3,347	-	-
240°	3,367	-	3,370	-	-
270°	3,390	-	3,389	-	-
300°	3,414	-	3,407	-	-
330°	3,439	-	3,427	-	-
350°	3,457	-	3,443	-	-

 Tabela 5.22. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Nusselt* limite no escoamento em dutos de setores circulares.

Nota-se ainda, a partir da Tab. 5.23, que para $\Theta \le 20^{\circ}$ os resultados para o número de *Nusselt* limite no escoamento em dutos de setores circulares se aproximam dos resultados apresentados por Schmidt & Newell (1967) para o escoamento em dutos de formato de triângulo isósceles com os mesmos ângulos.

		Nu(∞)			
Θ		Presente Trabalho	Schmidt & Newell (1967)		
	10°	1,703	1,61		
	20°	2,091	2,00		
	30°	2,365	2,26		
	40°	2,568	2,39		
	50°	2,712	2,45		
	60°	2,840	2,47		
	70°	2,957	2,45		
80°		3,019	2,40		
	90°	3,078	2,34		

 Tabela 5.23. Comparação dos resultados obtidos com os disponíveis na literatura para o número de Nusselt limite no escoamento em dutos triangulares isósceles.

E adicionalmente, apresenta-se na Tab. 5.24, a comparação dos resultados obtidos (Fig. 5.42) com os disponíveis em Brown (1960) e Shah (1975) para escoamento em dutos de circulares com temperatura prescrita na parede, verifica-se uma boa concordância. Além disso, o comprimento de entrada térmica para estes casos é igual a 0,0335.

	com temperatura prescrita na parede						
		$\theta_{m\acute{e}d}(Z)$		Nu(Z)			
Z	Presente	Brown	Shah	Presente	Brown	Shah	
	Trabalho	(1960)	(1975)	Trabalho	(1960)	(1975)	
0,001	0,9449	0,94030	0,94032	10,172	10,1035	10,130	
0,002	0,9118	0,90736	0,90736	8,090	8,0360	8,0362	
0,003	0,8850	0,88057	0,88057	7,074	7,0431	7,0432	
0,005	0,8404	0,83622	0,83622	6,019	6,0015	6,0015	
0,007	0,8029	0,79890	0,79890	5,441	5,4301	5,4301	
0,010	0,7545	0,75111	0,75111	4,920	4,9161	4,9161	
0,020	0,6303	0,62803	0,62803	4,175	4,1724	4,1724	
0,030	0,5365	0,53487	0,53487	3,899	3,8942	3,8942	
0,050	0,3967	0,39530	0,39530	3,713	3,7100	3,7100	
0,070	0,2953	0,29438	0,29438	3,671	3,6688	3,6688	
0,100	0,1905	0,18971	0,18971	3,660	3,6580	3,6580	
0,200	0,0442	0,04393	0,04393	3,660	3,6568	3,6568	
0,300	0,0103	0,01022	-	3,660	3,6568	-	
0,500	0,0006	0,00055	-	3,660	3,6568	-	
0,700	0,0000	0,00003	-	3,660	3,6568	-	
1,000	0,0000	0,00000	-	3,660	3,6568	-	

 Tabela 5.24a. Comparação dos resultados obtidos com os disponíveis na literatura para a temperatura adimensional média de mistura e o número de *Nusselt* local no escoamento em dutos circulares

Tabela 5.24b. Comp	aração dos resultados	obtidos com os	disponíveis na	literatura para número de
Nusselt médio	no escoamento em du	tos circulares co	m temperatura	prescrita na parede.

_		Nu _{méd} (Z)	
<i>Z</i>	Presente	Brown	Shah
	Trabalho	(1960)	(1975)
0,001	15,40	15,3898	15,384
0,002	12,18	12,1515	12,152
0.003	10.62	10,5987	10,599
0,005	8,96	8,9432	8,9432
0,007	8,03	8,0145	8,0145
0,010	7,16	7,1552	7,1552
0,020	5,81	5,8146	5,8146
0,030	5,21	5,2145	5,2145
0,050	4,64	4,6406	4,6406
0,070	4,37	4,3674	4,3674
0,100	4,16	4,1556	4,1556
0,200	3,91	3,9063	3,9063
0,300	3,82	3,8224	-
0,500	3,76	3,7566	-
0,700	3,73	3,7281	-
1,000	3,71	3,7067	-

Figura 5.42. Evolução dos parâmetros térmicos para o escoamento em dutos circulares com temperatura prescrita na parede.

5.3.3.3. Geometria Anular Concêntrica

Na Tabela 5.25 realiza-se a comparação dos resultados obtidos para o número de *Nusselt* local para os dutos anulares concêntricos com os apresentados em Lundberg *et al.* (1963b) através de uma solução analítica. Enquanto que a Tab. 5.26 mostra a comparação do número de *Nusselt* limite e do comprimento de entrada térmica para esses dutos.

7	r*	= 0,05	r*	<i>r</i> [*] = 0,10		
Ζ	Presente Trabalho	Lundberg <i>et al</i> . (1963b)	Presente Trabalho	Lundberg <i>et al.</i> (1963b)		
0,010	20,329	20,332	13,761	13,762		
0,050	17,593	17,592	11,649	11,648		
0,100	17,465	17,464	11,562	11,562		
0,500	17,461	17,460	11,560	11,560		
1,000	17,461	17,460	11,560	11,560		

 Tabela 5.25a. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Nusselt* local no escoamento em dutos anulares concêntricos.

 Tabela 5.25b. Comparação dos resultados obtidos com os disponíveis na literatura para o número de Nusselt local no escoamento em dutos anulares concêntricos.

-	r*	= 0,50	<i>r</i> [*] = 1,00		
Z	Presente Trabalho	Lundberg <i>et al</i> . (1963b)	Presente Trabalho	Lundberg <i>et al</i> . (1963b)	
0,010	7,246	7,246	6,260	6,260	
0,050	5,785	5,785	4,902	4,902	
0,100	5,739	5,739	4,861	4,861	
0,500	5,738	5,738	4,861	4,861	
1,000	5,738	5,738	4,861	4,861	

Tabela 5.26. Comparação dos resultados obtidos com os disponíveis na literatura para o número de *Nusselt* limite e o comprimento de entrada térmica no escoamento em dutos anulares concêntricos.

r*	$Nu(\infty)$		L_{th}	
	Presente Trabalho	Lundberg <i>et al.</i> (1963b)	Presente Trabalho	Shah & London (1978)
0,05	17,461	17,460	0,0949	0,09493
0,10	11,560	11,560	0,1101	0,1101
0,50	5,738	5,738	0,1721	0,1721
1,00	4,861	4,861	0,2201	0,2201

Em ambos os casos, verifica-se uma excelente concordância entre os resultados.

6 Conclusões

No presente trabalho analisou-se uma classe de problemas difusivo-convectivos, de natureza elíptica e parabólica, em domínios de geometrias não-convencionais. Para tal, calcularam-se os parâmetros termos-hidráulicos do escoamento laminar hidrodinamicamente desenvolvido e termicamente em desenvolvimento de fluidos *Newtonianos* no interior de dutos submetidos à condição de contorno de *Dirichlet* (primeiro tipo) e perfil de temperatura de entrada uniforme.

Diante da necessidade da implantação de um sistema de coordenadas que facilitasse o tratamento analítico e a aplicação das condições de contorno dos problemas de geometrias bicônica e de setor anular, estabeleceram-se Transformações Conformes capazes de gerar os domínios analisados. Este procedimento simplificou o tratamento dos operadores Laplacianos no novo sistema de coordenadas.

A Técnica da Transformada Integral Generalizada – TTIG foi aplicada na equação governante dos problemas analisados visando à remoção das derivadas espaciais de segunda ordem, transformando assim, a equação que representa o fenômeno num problema de estrutura mais simples, que pode ser resolvido analítica ou numericamente.

A aplicação da TTIG nos problemas de natureza elíptica gerou sistemas desacoplados de equações algébricas para o potencial transformado de forma que foi possível a obtenção de soluções analíticas da função potencial, através da fórmula de inversão. Para os problemas de natureza parabólica, a aplicação da TTIG gerou sistemas de equações diferenciais ordinárias – EDO acoplados para o potencial transformado que foram resolvidos numericamente com a utilização da rotina *DIVPAG* da biblioteca *IMSL Fortran*.

De uma maneira geral, observou-se que a convergência das séries que determinam a função potencial (velocidade ou temperatura, dependendo do caso) foi lenta. Uma atenção especial foi necessária aos problemas de natureza parabólica, uma vez que quando as expansões foram truncadas em um número de termos elevado e sistemas de EDO acoplados de alta ordem foram gerados, trazendo como conseqüência um maior tempo de processamento computacional. Observou-se ainda, que este quadro foi mais delicado quando da busca de soluções precisas na região de entrada dos problemas difusivo-convectivos.

Para os problemas difusivos elípticos o tempo máximo de processamento gasto no cômputo dos parâmetros físicos de interesse foi, utilizando-se de um computador pessoal comum (512 MB RAM e 2,4 GHz), de 45 segundos, enquanto que para os problemas difusivo-convectivos de natureza parabólica este tempo foi de aproximadamente 3 minutos.

Os parâmetros termos-hidráulicos de interesse foram devidamente calculados e apresentaram-se coerentes para os mais diversos casos. Quando comparados com aqueles disponíveis na literatura constatou-se uma excelente concordância.

Com isso, conclui-se que a aplicação da TTIG e da Transformação Conforme foram eficientes para a obtenção de solução formal de uma classe de problemas difusivoconvectivos de natureza complexa que, *a priori*, não possuem solução pelas técnicas analíticas clássicas.

228

7

Referências Bibliográficas

- ALVES, L.S.B.; COTTA, R.M. & PONTES, J. 2002. Stability Analysis of Natural Convection in Porous Cavities Through Integral Transforms. *International Journal of Heat and Mass Transfer*, vol. 45, n° 6, pp. 1185-1195.
- ANDRADE, F.E., 1996. Solução de Equações Diferenciais Acopladas pela Técnica de Transformada Integral e Computação Simbólica. Dissertação de Mestrado em Ciência da Computação, Universidade Federal do Ceará – UFC, Fortaleza, CE, 82p.
- ANTONIO, R.N., 2005. Soluções Híbridas para Problemas de Migração de Contaminantes no Solo. Dissertação de Mestrado em Engenharia Civil, Coordenação dos Programas de Pós-Graduação de Engenharia – Coppe, Universidade Federal do Rio de Janeiro – UFRJ, Rio de Janeiro, RJ, 122p.
- APARECIDO, J.B., 1988. Transformada Integral Generalizada no Escoamento Laminar e Transferência de Calor em Dutos Retilíneos de Geometria Arbitrária. Tese de Doutorado em Engenharia Aeronáutica e Mecânica, Instituto Tecnológico de Aeronáutica – ITA, são José dos Campos, SP.
- APARECIDO, J.B, COTTA, R.M. & ÖZISIK, M.N., 1989. Analytical Solutions to Two-Dimensional Diffusion Type Problems in Irregular Geometries. *Journal of the Franklin Institute*, vol. 326, pp. 421-434
- APARECIDO, J.B. & COTTA, R.M., 1990a. Laminar Flow Inside Hexagonal Ducts. *Computational Mechanics*, vol. 6, pp. 93-100.
- APARECIDO, J.B. & COTTA, R.M., 1990b. Improved One-Dimensional Fin Solutions. *Heat Transfer Engineering*, vol. 11, pp. 49-59.
- APARECIDO, J.B. & COTTA, R.M., 1992. Laminar Thermally Developing Flow Inside Right Triangular Ducts. *Applied Scientific Research*, vol. 49, pp. 355-368.
- APARECIDO, J.B., 2002. Flowfield Solution for a Family of Wind Tunnel Contraction using Generalized Integral Transform Technique. In: 23th Iberian Latin American Congress on Computational Methods – CILAMCE, Giulianova, Italia, 10p.
- BAOHUA, C. & COTTA, R.M., 1993. Integral Transform Analysis of Natural Convection in Porous Enclosures. *International Journal of Numerical Methods in Fluids*, vol. 17, pp. 787-801.
- BEN-ALI, T.M.; SOLIMAN, H.M. & ZARIFFEH, E.K., 1989. Further Results for Laminar Heat Transfer in Annular Sector and Circular Sector Ducts, *Journal of Heat Transfer*, vol. 111, pp. 1090-1093.
- BOGADO LEITE, S., ÖZISIK, M.N. & VERGHESE, K., 1980. On the Solution of Linear Diffusion Problems in Media with Moving Boundaries. *Nuclear Science Engineering*, vol. 76, pp. 345-350.
- BOLIVAR, M.A.H., LAGE, P.L.C. & COTTA, R.M., 1996. Generalized Integral Transform Solution to the Laminar Thermal Boundary-Layer Problem for a Flow Past a Cylinder.
 In: 6th Brazilian Congress of Thermal Engineering and Sciences – Encit, Florianópolis, SC, Brazil, pp. 723-728.
- BROWN, G.M., 1960. Heat or Mass Transfer in a Fluid in Laminar Flow in Circular or Flat Conduit, *American Institute of Chemical Engineers Journal*, vol.6, pp. 179-183.
- BROWN, D.M., SANTOS, C.A.C., COTTA, R.M. & KAKAÇ, S., 1997. Analysis of Steady Forced Convection in Thermally Developing Turbulent Duct Flows. *International Journal of Numerical Methods in Heat and Fluid Flow*, vol. 7, pp. 425-437.

- CAMPOS SILVA, J.B., 1990. Técnica de Transformada Integral Generalizada no Desenvolvimento dos Perfis de Velocidade e Temperatura em Escoamento Laminar em Dutos de Geometria Simples. Dissertação de Mestrado em Engenharia Mecânica, Instituto Tecnológica de Aeronáutica – ITA, São José dos Campos, SP.
- CAMPOS SILVA, J.B., COTTA, R.M. & APARECIDO, J.B., 1992. Analytical Solutions to Simultaneously Developing Flow Inside Parallel-Plates Channel. *International Journal* of Heat and Mass Transfer, vol. 35, pp. 887-895.
- CENEDESE, E., 2005. Solução das Equações de Navier-Stokes e Equação de Burgers Utilizando a Técnica da Transformada Integral Generalizada. Dissertação de Mestrado em Engenharia Mecânica, Faculdade de Engenharia de Ilha Solteira – FEIS, Universidade Estadual Paulista "Júlio de Mesquita Filho" – Unesp, Ilha Solteira, SP, 157p.
- CHIRANJIVI, C. & VIDYANIDHI, V., 1973. Heat Transfer in Wedge-Shaped Ducts. *Indian Chemical Engineer*, vol. 15, pp. 49-51.
- CHURCHILL, R.V., 1975. Variáveis Complexas e Suas Aplicações. São Paulo: McGraw-Hill, 276p.
- COTTA, R.M., 1986. Steady-State Diffusion with Space-Dependent Boundary Condition Parameters. In: 1st Brazilian Congress of Thermal Engineering and Sciences – Encit, Rio de Janeiro, SP, Brazil, pp. 163-166.
- COTTA, R.M. & ÖZISIK, M.N., 1986a. Laminar Forced Convection in Ducts with Periodic Variation of Inlet Temperature. *International Journal of Heat and Mass Transfer*, vol. 29, n° 10, pp. 1495-1501.
- COTTA, R.M. & ÖZISIK, M. N., 1986b. Transient Forced Convection in Laminar Channel Flow with Stepwise Variations of Wall Temperature. *Canadian Journal of Chemical Engineering*, vol. 64, pp. 734-743.

- COTTA, R.M. & CARVALHO, T.M.B., 1991. *Hybrid Analysis of Boundary Layer Equations for Internal Flow Problem*. In: 7th International Conference on Numerical Methods in Laminar and Turbulent Flow, Stanford, USA, pp. 106-114, Part 1.
- COTTA R.M., 1993a. Improved Hybrid Lumped-Differential Formulation for Double-Pipe Heat Exchanger Analysis. *International Journal of Heat Transfer*, vol. 115, p. 921-927.
- COTTA, R.M., 1993b. Integral Transform Method in Computational Heat and Fluid Flow. Boca Raton: CRC Press, 337p.
- COTTA, R.M. & MIKHAILOV, M.D., 1997. Integral Transform Method. *Applied Mathematical Modeling*, vol. 17, n° 3, pp. 156-161.
- COTTA, R.M., 1998. *The Integral Transform Method in Thermal and Fluids Science and Engineering*. New York: Begell House Inc., 430p.
- COTTA, R.M. & PIMENTEL, L.C.G., 1998. Developing Turbulent Duct Flow: Hybrid Solution Via Integral Transforms and Algebric Models. *International Journal of Numerical Methods in Heat and Fluid Flow*, vol. 8, pp. 10-26.
- COTTA, R.M. & RAMOS, R., 1998. Integral Transform in the Two-Dimensional Non-Linear Formulation of Longitudinal Fins with Variable Profile. *International Journal of Numerical Methods in Heat and Fluid Flow*, vol. 8, pp. 27-42.
- COTTA, R.M.; UNGS, M.J. & MIKHAILOV, M.D., 2003. Contaminant Transport in Finite Fractured Porous Medium: Integral Transforms and Lumped-Differential Formulations. *Annals of Nuclear Energy*, vol. 30, n° 3, pp. 261-285.
- DINIZ, A.J.; CAMPOS SILVA, J.B. & ZAPAROLLI, E.L., 1999. Analytical Solution of Ablation Problem with Non Linear Coupling Equation. *Hybrid Methods in Engineering Modeling Programming Analysis Animation*, vol. 1, pp. 265-277.
- DINIZ, A.J., SILVA, J.B.C. & GOMES, F.A.A., 2005. Heat Transfer with Ablation in a Finite Plate. *Engenharia Térmica*, vol. 4, n° 2, pp. 191-196.

- DUARTE, J.B.F., RIBEIRO, J.W. & COTTA, R.M., 1995. An Integral Transform Solution of Two Dimensional Drying of Moist Porous Media. In: 3rd International Congress on Industrial and Applied Mathematics – ICIAM'95, Hamburg, Germany.
- DUARTE, J.B.F. & RIBEIRO, J.W., 1997. *Integral Transform Technique in 2D Problems*. In: 14th Brazilian Congress of Mechanical Engineering - Cobem, Bauru, SP, Brazil.
- ERKERT, E.R.G. & IRVINE, T.F, 1956. Flow in Corners of Passages with Noncircular Cross Sections. *Journal of Heat Transfer*, vol. 78, pp. 709-718.
- ECKERT, E.R., IRVINE JR., T.F. & YEN, J.T., 1958. Local Laminar Heat Transfer on Wedge-Shaped Passages. *Journal of Heat Transfer*, vol. 80, pp. 1433-1438.
- ETEMAD, S.G. & BAKHTIARI, F., 1999. General Equations for Fully Developed Fluid Flow and Heat Transfer Characteristics in Complex Geometries, *International Communication of Heat and Mass Transfer*, vol. 26, n° 2, pp. 229-238.
- FERREIRA, A.B.H., 1999. Novo Aurélio Século XXI: Dicionário da Língua Portuguesa. Rio de Janeiro: Nova Fronteira, 2128 p.
- GOMES, F.A.A., 2006. Estudo Analítico/Numérico do Problema de Ablação Bidimensional em Corpos Rombudos com Simetria Axial. Dissertação de Mestrado em Engenharia Mecânica, Faculdade de Engenharia de Ilha Solteira – FEIS, Universidade Estadual Paulista "Júlio de Mesquita Filho" – Unesp, Ilha Solteira, SP.
- GRIMNBERG, G.A., 1948. Selected Problems of Mathematical Theory of Electrical and Magnetic Effects. Nauk: Akad, p.
- GRAETZ, L., 1883. Uber die Wärmeleitungsfähigkeit von Flüssigkeiten (On the Thermal Conductivity of Liquids), Part I. *Annalen der Physik und Chemie*, vol. 18, pp. 79-94.
- GRAETZ, L., 1885. Uber die Wärmeleitungsfähigkeit von Flüssigkeiten (On the Thermal Conductivity of Liquids), Part II. *Annalen der Physik und Chemie*, vol. 25, pp. 337-357.

- GRINBERG, G.A., 1948. Selected Problems of Mathematical Theory of Electrical and Magnetic Effects (in russian). Akad: Nauk SSSR.
- HAUSER JR., A.A., 1972. *Variáveis Complexas: Com Aplicação à Física*. Rio de Janeiro: Livros Técnicos e Científicos Editota Ltda., 416p.
- HEATON, H.S., REYNOLDS, W.C. & KAYS, W.M., 1964. Heat Transfer Annular Passages: Simultaneous Development of Velocity and Temperature Fields in Laminar Flow. *International Journal of Heat and Mass Transfer*, vol.7, pp. 763-781.
- HONIG, C.S., 1978. *Análise Funcional e o Problema de* Sturm-Lioville. São Paulo: Editora Edgard Blucher, p.
- IMSL Math/Library, Visual Numerics, Edition 10, Version 2.0, Houston, TX-77042, 1994.
- INCROPERA, F.P. & DEWITT, D.P., 1996. *Fundamentals of Heat and Mass Transfer*. New York: John Wiley & Sons Inc., 497p.
- KIM, W.S. & ÖZISIK, M.N., 1987. Transient Laminar Forced Convection in Ducts with Applied Uniform Wall Heat Flux. *International Journal of Heat and Mass Transfer*, vol. 30, pp. 1753-1756.
- LAGE, P.L.C. & RANGEL, R.H., 1994. Generalized Integral Transform Technique Solution for Boundary Layer Flow Over a Sphere. *International Journal of Numerical Methods in Fluids*, vol. 18, pp. 721-731.
- LEAL, M.A. & COTTA, R.M., 1997. Transient Integral Transform Solution of Natural Convection in Enclosures. In: International Symposium on Advances in Computational Heat Transfer – CHT'97, Cesme, Turkey.
- LEE, Y.M. & KUO, Y.M., 1998. Laminar Flow in Annuli Ducts with Constant Wall Temperature. *International Communication of Heat and Mass Transfer*, vol. 25, n° 2, pp. 227-236.

- LEI, Q.M. & TRUPP, A.C., 1989. Maximum Velocity Location and Pressure Drop of Fully Developed Laminar Flow in Circular Sector Ducts, *Journal of Heat Transfer*, vol. 111, pp. 1085-1087.
- LIMA, J.A., PÉREZ GUERRERO, J.S. & COTTA, R.M., 1997. Hybrid Solution of the Averaged Navier-Stokes Equations for Turbulent Flow. *Computational Mechanics*, vol. 19, pp. 297-307.
- LIN, M.J.; WANG, Q.W. & TAO, W.Q, 2000. Developing Laminar Flow and Heat Transfer in Annular-Sector Ducts, *Heat Transfer Engineering*, vol. 21, pp. 53-61.
- LIU, J., 1974. *Flow of a Bingham Fluid in the Entrance Region of an Annular Tube*, M.Sc. Thesis. University of Wisconsin Milwaukee.
- LUNDBERG, R.E., McCUEN, P.A. & REYNOLDS, W.C., 1963a. Heat Transfer in Annular Passages: Hydrodynamically Developed Laminar Flow with Arbitrarily Prescribed Wall Temperatures or Heat Fluxes. *International Journal of Heat and Mass Transfer*, vol. 6, pp. 495-529.
- LUNDBERG, R.E., REYNOLDS, W.C. & KAYS, W.M., 1963b. Heat Transfer with Laminar Flow in Concentric Annuli with Constant and Variable Wall Temperature and Heat Flux. NASA Technology Note TN D-1972.
- LUNDGREN, T.S., SPARROW, E.M. & STARR, J.B., 1964. Pressure Drop Due to the Entrance Region in Ducts of Arbitrary Cross Section. *Journal of Basic Engineering*, vol. 86, pp. 620-626.
- LUIKOV, A.V., 1972. Heat and Mass Transfer. Moscow: Mir Publishers.
- KAKAÇ, S.; SHAH, R.K. & AUNG, W., 1987. *Handbook of Single-Phase Convective Heat Transfer*. New York: John Wiley, p.
- KOSHLYAKOV, N.S., 1936. Fundamental Differential Equations of Mathematical Physics (in russian). Moscow: Gostekhizdat.

- MACÊDO, E.N. & QUARESMA, J.N.N., 1997. Transient Laminar Forced Convection Heat Transfer in Circular and Parallel-Plates Ducts of Herschel-Bulkley Fluids. In: 14th Brazilian Congress of Mechanical Engineering - Cobem, Bauru, SP, Brazil.
- MACÊDO, E.N.; MANESCHYA, C.E. & QUARESMA, J.N.N., 2000a. Analysis of the Mass Transfer Entry Region for Drag-Reducing Viscoelastic Fluids in Turbulent Pipe Flow. *International Communications in Heat and Mass Transfer*, vol. 27, n° 1, pp. 59-68.
- MACÊDO, E.N.; MANESCHYA, C.E. & QUARESMA, J.N.N., 2000b. Forced Convection in Thermally Developing Turbulent Flow of Drag-Reducing Fluids within Circular Tubes. *International Journal of Heat and Mass Transfer*, vol. 43, pp. 3785-3794.
- MACHADO, H.A. & COTTA, R.M.,1995. Integral Transform Method for Boundary Layer Equations in Simultaneous Heat and Fluid Flow Problems. *International Journal of Numerical Methods in Heat and Fluid Flow*, vol. 5, pp. 225-237.
- MACHADO, H.A., 1998. *Compressible Boundary Layers*. In: The Integral Transform Method in Thermal and Fluids Science and Engineering, COTTA, R.M., New York: Begell House Inc., pp. 313-333.
- MAGNO, R.N.O.; MACÊDO, E.N. & QUARESMA, J.N.N., 2002. Solutions for the Internal Boundary Layer Equations in Simultaneously Developing Flow of Power-Law Fluids within Parallel Plates Channels. *Chemical Engineering Journal*, vol. 87, pp. 339-350.
- MAIA, C.R.M., 2003. Solução de Problemas Difusivos e Difusivos-Convectivos em Domínio de Geometria Elíptica e Bicôncava pela Técnica da Transformada Integral Generalizada. Tese de Doutorado em Engenharia Mecânica, Faculdade de Engenharia Mecânica FEM, Universidade Estadual de Campinas Unicamp, Campinas, SP, 251p.
- MAIA, C.R.M.; APARECIDO, J.B. & MILANEZ, L.F., 2004. Thermally Developing Forced Convection of Non-Newtonian Fluids Inside Elliptical Ducts. *Heat Transfer Engineering*, vol. 27, n° 7, pp. 13-22.

- MAIA, C.R.M., RAMOS, R.A.V., PELEGRINI, M.F. & ALVES, T.A., 2005. Heat Transfer Study in Slug Flow on Elliptical Ducts Cross Section by Generalized Integral Transform Technique. *Engenharia Térmica*, vol. 4, n° 2, pp. 154-163.
- MAIA, C.R.M.; APARECIDO, J.B. & MILANEZ, L.F., 2006. Heat Transfer in Laminar Flow of Non-Newtonian Fluids in Ducts of Elliptical Section. *International Journal of Thermal Sciences*, vol. 45, nº 11, pp. 1066-1072.
- MIKHAILOV, M.D. & COTTA, R.M., 1996. Ordering Rules for Double and Triple Eigenseries in the Solution of Multidimensional Heat and Fluid Flow Problems. *International Comm. of Heat and Mass Transfer*, vol. 23, pp. 299-303.
- McCOMAS, S.T., 1967. Hydrodynamic Entrance Lengths for Ducts of Arbitrary Cross Section. *Journal of Basic Engineering*, vol. 89, 847-850.
- MEIJAS, M.M. & ORLANDE, H.R.B., 2001. A Hybrid Numerical-Analytical Method for the Solution of 3D Transient Diffusion Problems. In: 2nd International Conference on Computational Heat and Mass Transfer – ICCHMT, Rio de Janeiro, RJ, Brazil.
- MIKHAILOV, M.D., 1972. General Solution of the Heat Equation in Finite Region. International Journal Engineering Sciences, vol. 7, pp. 577-591.
- MIKHAILOV, M.D., 1975. On the Solution of the Heat Equation with Time Dependent Coefficient. *International Journal Heat and Mass Transfer*, vol. 18, pp. 344-345.
- MIKHAILOV, M.D. & COTTA, R.M., 1994. Integral Transform Solution of Eigenvalue Problems. *Communications in Numerical Methods in Engineering*, vol. 10, n° 10, pp. 827-835.
- MIKHAILOW, M.D & ÖZISIK, M.N., 1984. Unified Analysis and Solutions of Heat and Mass Diffusion. New York: John Wiley, 357p.

- MIKHAILOV, M.D. & COTTA, R.M., 1996. Ordering Rules for Double and Triple Eigenseries in the Solution of Multidimensional Heat and Fluid Flow Problems. *International Communications of Heat and Mass Transfer*, vol. 23, n° 2, pp. 299-303.
- MOODY, L.F., 1944. Friction Factors for Pipe Flow. *Transactions of the ASME*, vol. 66, nº 8, pp. 671-684.
- NASCIMENTO, U.C.S., MACÊDO, E.N. & QUARESMA, J.N.N., 2002. Thermal Entry Region Analysis Through the Finite Integral Transform Technique in Laminar Flow of Bingham Fluids within Concentric Annular Ducts. *International Journal of Heat and Mass Transfer*, vol. 45, nº 4, pp. 923-929.
- NATARAJAN & LAKSHMANAN, 1973. Laminar Flow Through Anuuli: Analytical Method for Calculation of Pressure Drop. *Indian Chemical Engineer*, vol. 15, n° 3, pp. 50-53.
- NETO, H.L.; QUARESMA, J.N.N. & COTTA, R.M., 2001. Integral Transform Algorithm for Heat and Fluid Flow in Three Dimensional Porous Media. In: 2nd International Conference on Computational Heat and Mass Transfer – ICCHMT, Rio de Janeiro, RJ, Brazil.
- NEVES, O.A., 2003. *Difusão Tridimensional Não-Linear Transiente*. Dissertação de Mestrado em Engenharia Mecânica, Faculdade de Engenharia de Ilha Solteira FEIS, Universidade Estadual Paulista "Júlio de Mesquita Filho" Unesp, Ilha Solteira, SP, 81p.
- NIIDA, T., 1980. Analytical Solution for the Velocity Distribuition in Laminar Flow and Pressure Drop in Internally Finned Annular Ducts. *International Chemical Engineering*, vol. 20, n° 2, pp. 256-265.
- NUSSELT, W., 1910. Die Abhängigkeit der Wärmeübergangszahl von der Rohrlänge (The Dependence of the Heat-Transfer Coefficient on the Tube Length). *Verein Deutscher Ingenieure Zeitschrift*, vol. 54, pp. 1154-1158.

- OLIVEIRA, M.C. & SPHAIER, S.H., 2001. Numerical Simulation of Three Dimensional Flow Over Cylinders Using an Hybrid Method. In: 2nd International Conference on Computational Heat and Mass Transfer – ICCHMT, Rio de Janeiro, RJ, Brazil.
- ÖZISIK, M.N., 1968. *Boundary value problems of heat conduction*. Scranton: International Textbook.
- ÖZISIK, M.N. & MURRAY, R.L., 1974. On the Solution of Linear Diffusion Problems with Variable Boundary Conditions. *Journal Heat Transfer*, vol. 96, pp.48-51.
- ÖZISIK, M.N., COTTA, R.M. & KIM, W.S., 1989. Heat Transfer in Turbulent Forced Convection Between Parallel-Plates. *The Canadian Journal of Heat and Mass Transfer*, vol. 20, pp. 565-573.
- ÖZISIK, M.N., 1993. Heat Conduction. New York: John Wiley & Sons, 2.ed., p.
- PARK, S. & LEE, D.S., 2002. Predictions of Pressure Drop for Modified Power Law Fluids in Conduits of Three Different Cross-Sectional Shapes. *Chemical Engineering Science*, vol. 57, pp. 1057-1067.
- PATANKAR, S.V. & SPALDING, D.B., 1972. A Calculation Procedure for Heat, Mass and Momentum Transfer in 3-D Parabolic Flows. International Journal of the Heat and Mass Transfer, vol. 15, n° 10, pp. 1787-1806.
- PELEGRINI, M.F., 2005. Aplicação da Técnica da Transformada Integral para a Solução de Problemas Difusivos Transientes com Propriedades Termofísicas Variáveis. Dissertação de Mestrado em Engenharia Mecânica, Faculdade de Engenharia de Ilha Solteira – FEIS, Universidade Estadual Paulista "Júlio de Mesquita Filho" – Unesp, Ilha Solteira, SP, 128p.
- PÉREZ GUERRERO, J.S. & COTTA, R.M., 1992. Integral Transform Method for Navier-Stokes Equations in Stream Function-Only Formulation. *International Journal of Numerical Methods in Fluids*, vol. 15, pp. 399-409.

- QUARESMA, J.N.N. & MACÊDO, E.N., 1998. Integral Transform Solution for the Convection of Herschel-Bulkley Fluids in Circular Tubes and Parallel-Plates Ducts. *Brazilian Journal of Chemical Engineering*, vol. 15, pp.77-89.
- RAMOS, R., 1993. Análise Bidimensional e Não-Linear de Aletas Longitudinais de Perfil Variáveis via Técnica de Transformada Integral Generalizada. Dissertação de Mestrado em Engenharia Mecânica, Coordenação dos Programas de Pós-Graduação de Engenharia – Coppe, Universidade Federal do Rio de Janeiro – UFRJ, Rio de Janeiro, RJ.
- RAMOS, R., 1999. Benchmarks em Escoamentos Governados pelas Equações de Navier-Stokes: Co-validação com Método de Elementos Finitos. Tese de Doutorado em Engenharia Mecânica, Coordenação dos Programas de Pós-Graduação de Engenharia – Coppe, Universidade Federal do Rio de Janeiro – UFRJ, Rio de Janeiro, RJ.
- RIBEIRO, J.W. & COTTA, R.M., 1995. On the Solution of a Nonlinear Drying Problem in Capillary Porous Media Through Integral Transform of Luikov Equations, *International Journal of Numerical Methods Engineering*, vol. 38, pp. 1001-1020.
- RIBEIRO, J.W., COTTA, R.M. & MIKHAILOV, M.D., 1993. Integral Transform Solution of Luikov's Equations for Heat and Mass Transfer in Capillary Porous Media. *International Journal of Heat and Mass Transfer*, vol. 36, p. 4467-4475.
- ROHSENOW, W.M. & HARTNETT, J.P., 1973. *Handbook of Heat Transfer*. New York: McGraw-Hill, 1334p.
- RUPERTI, N.J., ZAPAROLLI, E.L. & COTTA, R.M., 1992. Hybrid Solution for Phase-Change Problems in Multiregion Media. In: 30th Eurotherm Seminar - Heat Transfer in Phase-Change Processes, Orsay, France, pp. 181-184.
- SANTOS, C.A.C., COTTA, R.M. & ÖZISIK, M.N., 1991. Heat Transfer Enhancement in Laminar Flow with Externally Finned Tubes. *International Journal of Heat and Technology*, vol. 9, pp. 46-68.

- SANTOS, C.A.C.; QUARESMA, J.N.M. & LIMA, J.A. (Eds.), 2002. Convective Heat Transfer in Ducts: the Integral Transform Approach. Rio de Janeiro: Mechanical Sciences Series of the Brazilian Society of Mechanical Sciences – ABCM, 345 p.
- SCHENKEL, G., 1981. Laminar Durchströmte Profikanäle: Ersatzradien und Widerstandsbeiwerte. Fortschritt-Berichte der VDI Zeitschriften, Reihe: Stromungstechnik, p.
- SCHMIDT, F.W. & NEWELL, M.E., 1967. Heat Transfer in Fully Developed Laminar Flow Through Rectangular and Isosceles Triangular Ducts. *International Journal of Heat and Mass Transfer*, vol. 10, pp. 1121-1123.
- SCOFANO NETO, F. & COTTA, R.M., 1992. Counterflow Double Pipe Heat Exchanger Analysis Using a Mixed Lumped-Differential Formulation. *International Journal of Heat and Mass Transfer*, vol. 35, pp. 1723-1731.
- SERFATY, R., 1997. Problemas Não Lineares Multidimensionais em Difusão e Convecção-Difusão: Benchmarks Via Transformada Integral. Tese de Doutorado em Engenharia Mecânica, Coordenação dos Programas de Pós-Graduação de Engenharia – Coppe, Universidade Federal do Rio de Janeiro – UFRJ, Rio de Janeiro, RJ, 206p.
- SHAH, R.K., 1972. Laminar Flow Forced Convection Heat Transfer and Flow Friction in Straight and Curved Ducts: A Summary of Analytical Solutions. Ph.D. Thesis, Department of Mechanical Engineering of Stanford University, Stanford, California, USA.
- SHAH, R.K., 1975a. Laminar Flow Friction and Forced Convection Heat Transfer in Ducts of Arbitrary Geometry. *International Journal of Heat and Mass Transfer*, vol. 18, pp. 849-862.
- SHAH, R.K., 1975b. Thermal Entry Length Solution for the Circular Tube and Parallel Plates, *Proceedings of 3rd National Heat Transfer and Mass Conference*, Indian Institute Technology, Bombay, vol. I, paper nº HMT 11-75.

- SHAH, R.K. & BHATTI, M.S., 1987. Laminar Convective Heat Transfer in Ducts. Handbook of Single-Phase Convective Heat Transfer, KAKAÇ, S., SHAH, R.K. & AUNG, W. (Eds.). New York: Wiley & Sons.
- SHAH, R.K. & LONDON, A.L., 1971. Laminar Flow Forced Convection Heat Transfer and Flow Friction in Straight and Curved Ducts – A Summary of Analytical Solutions. TR n° 75, Mechanical Engineering Department, Stanford University, Stanford, USA.
- SHAH, R.K. & LONDON, A.L., 1978. *Laminar Flow Forced Convection in Ducts*. Advances in Heat Transfer, Supplement 1. New York: Academic Press Inc., 477p.

SNEDDON, I. M., 1972. The Use of Integral Transforms. New York: McGraw-Hill, 355p.

- SOLIMAN, H.M., 1978. Laminar Heat Transfer in Annular Sector Ducts, *Journal Heat Transfer*, vol. 109, pp. 247-249.
- SPARROW, E.M. & LIN, S.H., 1964. The Developing Laminar Flow and Pressure Drop in the Entrance Region of Annular Ducts. *Journal of Basic Engineering*, vol. 86, pp. 827-834.
- SPARROW, E.M., CHEN, T.S. & JONSSON, V.K., 1964. Laminar Flow and Pressure Drop in Internally Finned Annular Ducts. *International Journal of Heat and Mass Transfer*, vol. 7, pp. 583-585.
- SPARROW, E.M. & HAJI-SHEIKH, A., 1965. Laminar Heat Transfer and Pressure Drop in Isosceles Triangular, Right Triangular and Circular Sector Ducts. *Journal of Heat Transfer*, vol. 87, pp. 426-427.
- SPIEGEL, M.R. & LIU, J., 1999. *Mathematical Handbook of Formulas and Tables*. New York: McGraw-Hill, Schaum's Outline Series, 278p.
- SUGINO, E., 1962. Velocity Distribution and Pressure Drop in the Laminar Inlet of a Pipe with Annular Space. *Bulletin of the Japan Society of Mechanical Engineering*, vol. 5, pp. 651-655.

- TRANTER, C.J., 1962. Integral Transform in Mathematical Physics. New York: John Wiley.
- TRUPP, A.C. & LAU, A.C.Y., 1984. Fully Developed Laminar Heat Transfer in Circular Sector Ducts with Isothermal Walls, *Journal of Heat Transfer*, vol. 106, pp. 467-469.
- VICK, B. & WELLS, R.G., 1986. Laminar Flow with an Axially Varying Heat Transfer Coefficient. *International Journal of Heat and Mass Transfer*, vol. 29, pp. 1881-1889.

Análise de Convergência

A.1. Problemas Hidrodinâmicos

A.1.1. Geometria de Setor Anular

unu	unumers com 7 0,25 cm runção da ordem de trancamento da serie e do angulo 0.								
	Ordem N = M de Truncamento da Série								
Θ	10	25	50	75	100	Valor Convergido			
5°	17,8467	17,1780	17,0962	17,0905	17,0898	17,090			
10°	16,9451	16,6351	16,6090	16,6067	16,6061	16,606			
15°	16,3858	16,2085	16,1954	16,1935	16,1928	16,193			
30°	15,3524	15,2866	15,2836	15,2819	15,2812	15,281			
45°	14,8036	14,7637	14,7617	14,7608	14,7603	14,760			
60°	14,5804	14,5489	14,5477	14,5468	14,5463	14,546			
90°	14,7408	14,7145	14,7131	14,7124	14,7119	14,712			
120°	15,2719	15,2441	15,2423	15,2420	15,2419	15,242			
150°	15,8932	15,8616	15,8596	15,8594	15,8593	15,859			
180°	16,4941	16,4574	16,4551	16,4549	16,4548	16,455			
210°	17,0405	16,9975	16,9943	16,9941	16,9940	16,994			
240°	17,5255	17,4759	17,4724	17,4723	17,4722	17,472			
270°	17,9534	17,8958	17,8915	17,8915	17,8914	17,891			
300°	18,3306	18,2647	18,2593	18,2593	18,2592	18,259			
330°	18,6647	18,5893	18,5830	18,5830	18,5829	18,583			
350°	18,8660	18,7852	18,7793	18,7793	18,7792	18,779			

Tabela A.1a. Convergência do número de *Poiseuille*, fator *f Re*, para o escoamento em dutos de setores anulares com $r^* = 0.25$ em função da ordem de truncamento da série e do ângulo Θ .

	(Ordem N = M de Truncamento da Série							
Θ	10	25	50	75	100	Valor Convergido			
5°	2,8682	2,5946	2,5112	2,5093	2,5093	2,5093			
10°	2,6057	2,3843	2,3777	2,3766	2,3766	2,3766			
15°	2,4037	2,2990	2,2921	2,2912	2,2912	2,2912			
30°	2,1500	2,1634	2,1617	2,1609	2,1609	2,1609			
45°	2,1257	2,1143	2,1145	2,1137	2,1137	2,1137			
60°	2,1110	2,0980	2,0982	2,0976	2,0976	2,0976			
90°	2,0843	2,0783	2,0777	2,0777	2,0777	2,0777			
120°	2,0483	2,0439	2,0433	2,0433	2,0433	2,0433			
150°	2,0044	1,9988	1,9984	1,9984	1,9984	1,9984			
180°	1,9590	1,9516	1,9511	1,9511	1,9511	1,9511			
210°	1,9165	1,9068	1,9062	1,9062	1,9062	1,9062			
240°	1,8788	1,8667	1,8660	1,8660	1,8660	1,8660			
270°	1,8466	1,8319	1,8309	1,8309	1,8309	1,8309			
300°	1,8195	1,8020	1,8009	1,8009	1,8009	1,8009			
330°	1,7969	1,7766	1,7753	1,7753	1,7753	1,7753			
350°	1,7841	1,7618	1,7603	1,7603	1,7603	1,7603			

Tabela A.1b. Convergência da velocidade adimensional máxima, $W^*_{máx}$, para o escoamento em dutos de setores anulares com $r^* = 0,25$ em função da ordem de truncamento da série e do ângulo Θ .

Tabela A.1c. Convergência do fator de *Hagenbach*, $K(\infty)$, para o escoamento em dutos de setores anulares com $r^* = 0,25$ em função da ordem de truncamento da série e do ângulo Θ .

	Ordem N = M de Truncamento da Série							
Θ	10	25	50	75	100	Valor Convergido		
5°	2,6755	2,2735	2,2002	2,1930	2,1930	2,1930		
10°	2,2681	2,0181	1,9983	1,9967	1,9967	1,9967		
15°	2,0103	1,8667	1,8584	1,8572	1,8572	1,8572		
30°	1,6817	1,6358	1,6340	1,6331	1,6331	1,6331		
45°	1,5862	1,5605	1,5598	1,5590	1,5590	1,5590		
60°	1,5579	1,5390	1,5385	1,5378	1,5378	1,5378		
90°	1,5242	1,5092	1,5087	1,5083	1,5083	1,5083		
120°	1,4681	1,4534	1,4525	1,4525	1,4525	1,4525		
150°	1,3997	1,3840	1,3830	1,3830	1,3830	1,3830		
180°	1,3323	1,3150	1,3139	1,3139	1,3139	1,3139		
210°	1,2722	1,2527	1,2515	1,2515	1,2515	1,2515		
240°	1,2210	1,1990	1,1976	1,1976	1,1976	1,1976		
270°	1,1793	1,1534	1,1519	1,1519	1,1519	1,1519		
300°	1,1420	1,1150	1,1133	1,1133	1,1133	1,1133		
330°	1,1138	1,0826	1,0806	1,0806	1,0806	1,0806		
350°	1,0972	1,0637	1,0616	1,0616	1,0616	1,0616		

	nto da Sér	ie				
Θ	10	25	50	75	100	Valor Convergido
5°	19,3224	19,1281	19,1144	19,1132	19,1123	19,112
10°	17,4268	17,3605	17,3564	17,3556	17,3548	17,355
15°	16,1617	16,1264	16,1245	16,1235	16,1229	16,123
30°	14,4836	14,470	14,4687	14,4678	14,4672	14,467
45°	14,4071	14,3951	14,3939	14,3927	14,3923	14,392
60°	14,8895	14,8749	14,8741	14,8736	14,8732	14,873
90°	16,1534	16,1317	16,1305	16,1294	16,1290	16,129
120°	17,2618	17,2272	17,2254	17,2252	17,2251	17,225
150°	18,1381	18,0913	18,0881	18,0879	18,0878	18,088
180°	18,8326	18,7694	18,7647	18,7645	18,7644	18,764
210°	19,3904	19,3107	19,3048	19,3045	19,3044	19,304
240°	19,8477	19,7509	19,7425	19,7423	19,7422	19,742
270°	20,2305	20,1138	20,1040	20,1038	20,1037	20,104
300°	20,5546	20,4194	20,4082	20,4081	20,4080	20,408
330°	20,8341	20,6791	20,6664	20,6663	20,6662	20,666
350°	21,0004	20,8322	20,8184	20,8183	20,8182	20,818

Tabela A.2a. Convergência do número de *Poiseuille*, fator *f Re*, para o escoamento em dutos de setores anulares com $r^* = 0,50$ em função da ordem de truncamento da série e do ângulo Θ .

Tabela A.2b. Convergência da velocidade adimensional máxima, $W^*_{máx}$, para o escoamento em dutos de setores anulares com $r^* = 0,50$ em função da ordem de truncamento da série e do ângulo Θ .

	Ordem <i>N</i> = <i>M</i> de Truncamento da Série							
Θ	10	25	50	75	100	Valor Convergido		
5°	2,3263	2,1814	2,1677	2,1672	2,1672	2,1672		
10°	2,0707	2,0950	2,0925	2,0920	2,0920	2,0920		
15°	2,0818	2,0693	2,0688	2,0684	2,0684	2,0684		
30°	2,0915	2,0908	2,0910	2,0905	2,0905	2,0905		
45°	2,0910	2,0888	2,0891	2,0886	2,0886	2,0886		
60°	2,0579	2,0537	2,0536	2,0533	2,0533	2,0533		
90°	1,9618	1,9540	1,9536	1,9534	1,9534	1,9534		
120°	1,8751	1,8624	1,8623	1,8623	1,8623	1,8623		
150°	1,8111	1,7933	1,7932	1,7932	1,7932	1,7932		
180°	1,7667	1,7432	1,7431	1,7431	1,7431	1,7431		
210°	1,7362	1,7068	1,7066	1,7066	1,7066	1,7066		
240°	1,7152	1,6797	1,6795	1,6795	1,6795	1,6795		
270°	1,7006	1,6589	1,6587	1,6587	1,6587	1,6587		
300°	1,6904	1,6425	1,6423	1,6423	1,6423	1,6423		
330°	1,6831	1,6294	1,6292	1,6292	1,6292	1,6292		
350°	1,6795	1,6220	1,6218	1,6218	1,6218	1,6218		

	Ordem N = M de Truncamento da Série							
Θ	10	25	50	75	100	Valor Convergido		
5°	1,5425	1,4275	1,4197	1,4192	1,4192	1,4192		
10°	1,4433	1,4050	1,4035	1,4028	1,4028	1,4028		
15°	1,4517	1,4322	1,4316	1,4311	1,4311	1,4311		
30°	1,5421	1,5332	1,5332	1,5327	1,5327	1,5327		
45°	1,5428	1,5351	1,5351	1,5346	1,5346	1,5346		
60°	1,4852	1,4770	1,4768	1,4765	1,4765	1,4765		
90°	1,3340	1,3232	1,3227	1,3225	1,3225	1,3225		
120°	1,2100	1,1943	1,1942	1,1942	1,1942	1,1942		
150°	1,1233	1,1021	1,1020	1,1020	1,1020	1,1020		
180°	1,0638	1,0364	1,0362	1,0362	1,0362	1,0362		
210°	1,0227	0,9882	0,9880	0,9880	0,9880	0,9880		
240°	0,9936	0,9517	0,9515	0,9515	0,9515	0,9515		
270°	0,9729	0,9233	0,9231	0,9231	0,9231	0,9231		
300°	0,9578	0,9005	0,9003	0,9003	0,9003	0,9003		
330°	0,9468	0,8820	0,8817	0,8817	0,8817	0,8817		
350°	0,9412	0,8714	0,8711	0,8711	0,8711	0,8711		

Tabela A.2c. Convergência do fator de *Hagenbach*, $K(\infty)$, para o escoamento em dutos de setores anulares com $r^* = 0,50$ em função da ordem de truncamento da série e do ângulo Θ .

Tabela A.3a. Convergência do número de *Poiseuille*, fator *f Re*, para o escoamento em dutos de setores anulares com $r^* = 0,75$ em função da ordem de truncamento da série e do ângulo Θ .

	Ordem N = M de Truncamento da Série							
Θ	10	25	50	75	100	Valor Convergido		
5°	17,3761	17,3400	17,3391	17,3384	17,3371	17,337		
10°	14,9421	14,9307	14,9297	14,9287	14,9277	14,928		
15°	14,2774	14,2695	14,2678	14,2669	14,2660	14,266		
30°	15,2817	15,2691	15,2674	15,2665	15,2657	15,266		
45°	16,7628	16,7382	16,7368	16,7360	16,7351	16,735		
60°	17,9219	17,8813	17,8805	17,8799	17,8793	17,879		
90°	19,4714	19,3944	19,3909	19,3895	19,3889	19,389		
120°	20,4425	20,3208	20,3128	20,3125	20,3124	20,312		
150°	21,1095	20,9427	20,9297	20,9294	20,9293	20,929		
180°	21,5981	21,3876	21,3797	21,3694	21,3693	21,369		
210°	21,9753	21,7232	21,6998	21,6995	21,6994	21,699		
240°	22,2744	21,9651	21,9557	21,9554	21,9553	21,955		
270°	22,5196	22,1960	22,1592	22,1590	22,1589	22,159		
300°	22,7233	22,3700	22,3265	22,3263	22,3262	22,326		
330°	22,8957	22,5164	22,4651	22,4649	22,4648	22,465		
350°	22,9966	22,6019	22,5451	22,5449	22,5448	22,545		

	Série					
Θ	10	25	50	75	100	Valor Convergido
5°	1,9421	1,9234	1,9245	1,9234	1,9234	1,9234
10°	2,0509	2,0503	2,0508	2,0499	2,0499	2,0499
15°	2,0985	2,0947	2,0953	2,0946	2,0946	2,0946
30°	2,0232	2,0167	2,0170	2,0164	2,0164	2,0164
45°	1,9058	1,8953	1,8953	1,8948	1,8948	1,8948
60°	1,8189	1,8031	1,8025	1,8022	1,8022	1,8022
90°	1,7264	1,6978	1,6962	1,6960	1,6960	1,6960
120°	1,6884	1,6436	1,6433	1,6433	1,6433	1,6433
150°	1,6719	1,6134	1,6129	1,6129	1,6129	1,6129
180°	1,6645	1,5940	1,5934	1,5934	1,5934	1,5934
210°	1,6612	1,5806	1,5797	1,5797	1,5797	1,5797
240°	1,6599	1,5708	1,5697	1,5697	1,5697	1,5697
270°	1,6595	1,5634	1,5621	1,5621	1,5621	1,5621
300°	1,6595	1,5577	1,5560	1,5560	1,5560	1,5560
330°	1,6597	1,5532	1,5512	1,5512	1,5512	1,5512
350°	1,6600	1,5506	1,5485	1,5485	1,5485	1,5485

Tabela A.3b. Convergência da velocidade adimensional máxima, $W^*_{máx}$, para o escoamento em dutos de setores anulares com $r^* = 0,75$ em função da ordem de truncamento da série e do ângulo Θ .

Tabela A.3c. Convergência do fator de *Hagenbach*, $K(\infty)$, para o escoamento em dutos de setores anulares com $r^* = 0,75$ em função da ordem de truncamento da série e do ângulo Θ .

	Ordem N = M de Truncamento da Série							
Θ	10	25	50	75	100	Valor Convergido		
5°	1,2278	1,2112	1,2114	1,2103	1,2103	1,2103		
10°	1,4761	1,4688	1,4694	1,4684	1,4684	1,4684		
15°	1,5538	1,5479	1,5484	1,5476	1,5476	1,5476		
30°	1,4283	1,4209	1,4211	1,4205	1,4205	1,4205		
45°	1,2522	1,2408	1,2407	1,2402	1,2402	1,2402		
60°	1,1318	1,1148	1,1143	1,1139	1,1139	1,1139		
90°	1,0062	0,9744	0,9730	0,9727	0,9727	0,9727		
120°	0,9518	0,9031	0,9002	0,9002	0,9002	0,9002		
150°	0,9264	0,8573	0,8569	0,8569	0,8569	0,8569		
180°	0,9140	0,8288	0,8283	0,8283	0,8283	0,8283		
210°	0,9078	0,8087	0,8080	0,8080	0,8080	0,8080		
240°	0,9048	0,7939	0,7929	0,7929	0,7929	0,7929		
270°	0,9033	0,7825	0,7813	0,7813	0,7813	0,7813		
300°	0,9027	0,7735	0,7720	0,7720	0,7720	0,7720		
330°	0,9025	0,7663	0,7645	0,7645	0,7645	0,7645		
350°	0,9025	0,7623	0,7603	0,7603	0,7603	0,7603		

		Ordem N = M de Truncamento da Série							
r*	10	25	50	75	100	Valor Convergido			
0,05	14,5301	14,0626	14,0251	14,0206	14,0199	14,020			
0,10	14,3832	14,5965	14,5785	14,5769	14,5760	14,576			
0,20	15,3045	15,2074	15,2011	15,2005	15,1998	15,200			
0,30	15,2867	15,2408	15,2378	15,2369	15,2362	15,236			
0,40	14,9218	14,8962	14,8955	14,8944	14,8938	14,894			
0,50	14,4839	14,4780	14,4688	14,4677	14,4672	14,467			
0,60	14,2964	14,2841	14,2839	14,2835	14,2830	14,283			
0,70	14,7152	14,7042	14,7039	14,7038	14,7032	14,703			
0,80	16,1610	16,1424	16,1421	16,1419	16,1412	16,141			
0,90	19,1200	19,0618	19,0589	19,0587	19,0581	19,058			

Tabela A.4a. Convergência do número de *Poiseuille*, fator *f Re*, para o escoamento em dutos de setores anulares com $\Theta = 30^{\circ}$ em função da ordem de truncamento da série e da razão *r**.

Tabela A.4b. Convergência da velocidade adimensional máxima, $W^*_{máx}$, para o escoamento em dutos de setores anulares com $\Theta = 30^{\circ}$ em função da ordem de truncamento da série e da razão r^* .

	Ordem N = M de Truncamento da Série							
r*	10	25	50	75	100	Valor Convergido		
0,05	2,4988	2,2644	2,2655	2,2648	2,2648	2,2648		
0,10	2,3808	2,2594	2,2487	2,2483	2,2483	2,2483		
0,20	2,1980	2,1937	2,1935	2,1931	2,1931	2,1931		
0,30	2,1352	2,1348	2,1317	2,1313	2,1313	2,1313		
0,40	2,1060	2,0942	2,0938	2,0936	2,0936	2,0936		
0,50	2,0935	2,0923	2,0909	2,0905	2,0905	2,0905		
0,60	2,0977	2,0957	2,0951	2,0948	2,0948	2,0948		
0,70	2,0670	2,0622	2,0619	2,0616	2,0616	2,0616		
0,80	1,9528	1,9444	1,9441	1,9438	1,9438	1,9438		
0,90	1,7430	1,7182	1,7168	1,7166	1,7166	1,7166		

Tabela A.4c. Convergência do fator de *Hagenbach*, $K(\infty)$, para o escoamento em dutos de setores anulares com $\Theta = 30^{\circ}$ em função da ordem de truncamento da série e da razão r^* .

	Ordem N = M de Truncamento da Série							
r*	10	25	50	75	100	Valor Convergido		
0,05	2,3165	1,9360	1,9035	1,9017	1,9017	1,9017		
0,10	2,0756	1,8692	1,8561	1,8546	1,8546	1,8546		
0,20	1,7847	1,7119	1,7082	1,7074	1,7074	1,7074		
0,30	1,6057	1,5756	1,5744	1,5739	1,5739	1,5739		
0,40	1,5360	1,5213	1,5207	1,5204	1,5204	1,5204		
0,50	1,5421	1,5332	1,5330	1,5327	1,5327	1,5327		
0,60	1,5536	1,5470	1,5468	1,5466	1,5466	1,5466		
0,70	1,4996	1,4930	1,4929	1,4926	1,4926	1,4926		
0,80	1,3205	1,3111	1,3107	1,3106	1,3106	1,3106		
0,90	1,0286	1,0016	1,0004	1,0001	1,0001	1,0001		

Ordem N = M de Truncamento da Série								
r*	10	25	50	75	100	Valor Convergido		
0,05	15,6815	15,5840	15,5766	15,5759	15,5750	15,575		
0,10	15,6814	15,6211	15,6171	15,6167	15,6161	15,616		
0,20	16,1377	16,0983	16,0959	16,0954	16,0949	16,095		
0,30	16,9036	16,8665	16,8637	16,8632	16,8630	16,863		
0,40	17,8248	17,7797	17,7768	17,7764	17,7763	17,776		
0,50	18,8327	18,7689	18,7650	18,7646	18,7644	18,764		
0,60	19,8965	19,8005	19,7938	19,7934	19,7933	19,793		
0,70	21,0142	20,8541	20,8423	20,8414	20,8413	20,841		
0,80	22,2061	21,9262	21,9011	21,9003	21,9002	21,900		
0,90	23,5211	23,0464	23,0153	23,0003	23,0001	23,000		

Tabela A.5a. Convergência do número de *Poiseuille*, fator *f Re*, para o escoamento em dutos de setores anulares com $\Theta = 180^{\circ}$ em função da ordem de truncamento da série e da razão *r**.

Tabela A.5b. Convergência da velocidade adimensional máxima, $W^*_{máx}$, para o escoamento em dutos de setores anulares com $\Theta = 180^\circ$ em função da ordem de truncamento da série e da razão r^* .

		Ordem N = M de Truncamento da Série							
r*	10	25	50	75	100	Valor Convergido			
0,05	2,0755	2,0587	2,0583	2,0579	2,0579	2,0579			
0,10	2,0636	2,0452	2,0448	2,0445	2,0445	2,0445			
0,20	1,9968	1,9896	1,9890	1,9888	1,9888	1,9888			
0,30	1,9195	1,9103	1,9098	1,9098	1,9098	1,9098			
0,40	1,8393	1,8250	1,8239	1,8239	1,8239	1,8239			
0,50	1,7667	1,7433	1,7431	1,7431	1,7431	1,7431			
0,60	1,7103	1,6742	1,6739	1,6739	1,6739	1,6739			
0,70	1,6744	1,6179	1,6175	1,6175	1,6175	1,6175			
0,80	1,6596	1,5727	1,5716	1,5716	1,5716	1,5716			
0,90	1,6601	1,5387	1,5350	1,5350	1,5350	1,5350			

Tabela A.5c. Convergência do fator de *Hagenbach*, $K(\infty)$, para o escoamento em dutos de setores anulares com $\Theta = 180^{\circ}$ em função da ordem de truncamento da série e da razão r^* .

	(Ordem <i>N</i> = <i>M</i> de Truncamento da Série							
r*	10	25	50	75	100	Valor Convergido			
0,05	1,5268	1,4651	1,4615	1,4611	1,4611	1,4611			
0,10	1,4795	1,4465	1,4446	1,4443	1,4443	1,4443			
0,20	1,3869	1,3678	1,3667	1,3665	1,3665	1,3665			
0,30	1,2753	1,2573	1,2572	1,2572	1,2572	1,2572			
0,40	1,1631	1,1426	1,1425	1,1425	1,1425	1,1425			
0,50	1,0638	1,0364	1,0362	1,0362	1,0362	1,0362			
0,60	0,9849	0,9435	0,9433	0,9433	0,9433	0,9433			
0,70	0,9307	0,8640	0,8636	0,8636	0,8636	0,8636			
0,80	0,9043	0,7960	0,7957	0,7957	0,7957	0,7957			
0,90	0,9008	0,7394	0,7387	0,7387	0,7387	0,7387			

	Ordem N = M de Truncamento da Série								
r*	10	25	50	75	100	Valor Convergido			
0,05	16,8820	16,7743	16,7661	16,7659	16,7651	16,765			
0,10	17,2981	17,2215	17,2163	17,2157	17,2150	17,215			
0,20	18,2095	18,1394	18,1339	18,1334	18,1329	18,133			
0,30	19,1137	19,0307	19,0242	19,0234	19,0232	19,023			
0,40	19,9879	19,8778	19,8690	19,8684	19,8682	19,868			
0,50	20,8345	20,6790	20,6680	20,6663	20,6662	20,666			
0,60	21,6624	21,4391	21,4196	21,4174	21,4172	21,417			
0,70	22,4836	22,1632	22,1293	22,1249	22,1248	22,125			
0,80	23,3108	22,8672	22,8022	22,7970	22,7968	22,797			
0,90	24,1534	23,5864	23,4591	23,4533	23,4532	23,453			

Tabela A.6a. Convergência do número de *Poiseuille*, fator *f Re*, para o escoamento em dutos de setores anulares com $\Theta = 330^{\circ}$ em função da ordem de truncamento da série e da razão *r**.

Tabela A.6b. Convergência da velocidade adimensional máxima, $W^*_{máx}$, para o escoamento em dutos de setores anulares com $\Theta = 330^\circ$ em função da ordem de truncamento da série e da razão r^* .

	Ordem <i>N</i> = <i>M</i> de Truncamento da Série								
r*	10	25	50	75	100	Valor Convergido			
0,05	2,0166	1,9897	1,9879	1,9878	1,9878	1,9878			
0,10	1,9465	1,9267	1,9259	1,9258	1,9258	1,9258			
0,20	1,8375	1,8204	1,8192	1,8190	1,8190	1,8190			
0,30	1,7634	1,7374	1,7371	1,7371	1,7371	1,7371			
0,40	1,7141	1,6761	1,6758	1,6758	1,6758	1,6758			
0,50	1,6831	1,6596	1,6292	1,6292	1,6292	1,6292			
0,60	1,6665	1,5935	1,5928	1,5928	1,5928	1,5928			
0,70	1,6603	1,5649	1,5636	1,5636	1,5636	1,5636			
0,80	1,6602	1,5432	1,5415	1,5415	1,5402	1,5402			
0,90	1,6620	1,5311	1,5290	1,5290	1,5241	1,5241			

Tabela A.6c. Convergência do fator de *Hagenbach*, $K(\infty)$, para o escoamento em dutos de setores anulares com $\Theta = 330^{\circ}$ em função da ordem de truncamento da série e da razão r^* .

	(ento da S	Série			
r*	10	25	50	75	100	Valor Convergido
0,05	1,4152	1,3797	1,3572	1,3569	1,3569	1,3569
0,10	1,3138	1,2967	1,2756	1,2753	1,2753	1,2753
0,20	1,1692	1,1504	1,1376	1,1373	1,1373	1,1373
0,30	1,0671	1,0310	1,0308	1,0308	1,0308	1,0308
0,40	0,9951	0,9480	0,9478	0,9478	0,9478	0,9478
0,50	0,9468	0,8821	0,8817	0,8817	0,8817	0,8817
0,60	0,9182	0,8287	0,8281	0,8281	0,8281	0,8281
0,70	0,9050	0,7849	0,7838	0,7838	0,7838	0,7838
0,80	0,9017	0,7500	0,7471	0,7471	0,7471	0,7471
0,90	0,9025	0,7281	0,7199	0,7199	0,7199	0,7199

A.1.2. Geometria de Setor Circular

N = M		r	*	
	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁵
25	16,0534	16,0454	16,1123	16.1237
50	16,0078	16,0046	16,0179	16,0209
75	16,0068	16,0014	16,0032	16,0063
100	16,0066	16,0006	16,0014	16,0027
125	16,0065	16,0004	16,0007	16,0014
150	16,0064	16,0002	16,0004	16,0008
175	16,0064	16,0001	16,0002	16,0005
200	16,0063	16,0000	16,0001	16,0003
Valor Convergido	16,006	16,000	16,000	16,000

Tabela A.7a. Convergência do número de *Poiseuille*, fator f Re, para o escoamento em dutos circulares em função da ordem de truncamento da série e da razão r^* .

Tabela A.7b. Convergência da velocidade adimensional máxima, W^*_{max} , para o escoamento em dutos circulares em função da ordem de truncamento da série e da razão r^* .

N = M		r	*	
	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁵
25	2,0008	2,0021	2,0054	2,0106
50	1,9990	2,0006	2,0015	2,0030
75	1,9988	2,0002	2,0004	2,0009
100	1,9988	2,0001	2,0002	2,0004
125	1,9988	2,0000	2,0001	2,0002
150	1,9988	2,0000	2,0001	2,0001
175	1,9988	2,0000	2,0001	2,0001
200	1,9988	2,0000	2,0001	2,0001
Valor Convergido	1,9988	2,0000	2,0001	2,0001

Tabela A.7c. Convergência do fator de *Hagenbach*, $K(\infty)$, para o escoamento em dutos circulares em função da ordem de truncamento da série e da razão r^* .

N = M		r	*	
11 101	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁵
25	1,3457	1,3549	1,3870	1,4048
50	1,3340	1,3353	1,3382	1,3430
75	1,3336	1,3339	1,3335	1,3361
100	1,3335	1,3336	1,3347	1,3345
125	1,3335	1,3335	1,3339	1,3340
150	1,3335	1,3334	1,3336	1,3337
175	1,3335	1,3333	1,3336	1,3335
200	1,3335	1,3333	1,3336	1,3335
Valor Convergido	1,3335	1,3333	1,3336	1,3335

		Ordem 2	$\mathbf{V} = \mathbf{M} \mathbf{d} \mathbf{e} \mathbf{T}$	runcamente	o da Série	
Θ	10	25	50	75	100	Valor Convergido
5°	12,8581	12,5276	12,4061	12,2918	12,2905	12,291
10°	12,7975	12,6228	12,5695	12,5051	12,5039	12,504
15°	23,9077	12,8017	12,7717	12,7289	12,7281	12,728
30°	13,3889	13,3455	13,3349	13,3106	13,3099	13,310
45°	13,8325	13,8062	13,7995	13,7827	13,7820	13,782
60°	14,2084	14,1893	14,1844	14,1718	14,1713	14,171
90°	14,7912	14,7781	14,7752	14,7698	14,7693	14,769
120°	15,2153	15,2046	15,2021	15,2005	15,2003	15,200
150°	15,5304	15,5250	15,5227	15,5224	15,5223	15,522
180°	15,7822	15,7690	15,7674	15,7671	15,7670	15,767
210°	15,9754	15,9584	15,9576	15,9570	15,9569	15,957
240°	16,1175	16,1117	16,1096	16,1084	16,1083	16,108
270°	16,2416	16,2366	16,2312	16,2282	16,2281	16,228
300°	16,3344	16,3282	16,3271	16,3255	16,3251	16,325
330°	16,4148	16,4087	16,4079	16,4055	16,4053	16,405
350°	16,4888	16,4825	16,4778	16,4706	16,4704	16,470

Tabela A.8a. Convergência do número de *Poiseuille*, fator f Re, para o escoamento em dutos de setorescirculares em função da ordem de truncamento da série e do ângulo Θ .

Tabela A.8b. Convergência da velocidade adimensional máxima, $W^*_{máx}$, para o escoamento em dutos desetores circulares em função da ordem de truncamento da série e do ângulo Θ .

		Ordem N	$f = M \operatorname{de} f$	Fruncam	ento da S	Série
Θ	10	25	50	75	100	Valor Convergido
5°	3,0405	2,9718	2,8651	2,7232	2,7232	2,7232
10°	2,7698	2,6029	2,4931	2,5182	2,5182	2,5182
15°	2,5550	2,5066	2,4355	2,4249	2,4249	2,4249
30°	2,3162	2,2816	2,2771	2,2701	2,2701	2,2701
45°	2,2017	2,1984	2,1957	2,1934	2,1934	2,1934
60°	2,1601	2,1506	2,1499	2,1490	2,1490	2,1490
90°	2,1028	2,1028	2,1027	2,1023	2,1023	2,1023
120°	2,0813	2,0809	2,0803	2,0801	2,0801	2,0801
150°	2,0716	2,0690	2,0683	2,0682	2,0682	2,0682
180°	2,0637	2,0623	2,0614	2,0613	2,0613	2,0613
210°	2,0576	2,0575	2,0572	2,0570	2,0570	2,0570
240°	2,0548	2,0547	2,0543	2,0541	2,0541	2,0541
270°	2,0524	2,0521	2,0521	2,0520	2,0520	2,0520
300°	2,0512	2,0507	2,0506	2,0505	2,0505	2,0505
330°	2,0503	2,0496	2,0494	2,0493	2,0493	2,0493
350°	2,0486	2,0484	2,0483	2,0482	2,0482	2,0482

	Ordem N = M de Truncamento da Série							
Θ	10	25	50	75	100	Valor Convergido		
5°	3,1543	2,8571	2,7383	2,7259	2,7259	2,7259		
10°	2,6646	2,5139	2,4252	2,4110	2,4110	2,4110		
15°	2,4219	2,2861	2,2414	2,2375	2,2375	2,2375		
30°	1,9740	1,9336	1,9221	1,9177	1,9177	1,9177		
45°	1,7778	1,7564	1,7516	1,7494	1,7494	1,7494		
60°	1,6692	1,6550	1,6524	1,6505	1,6508	1,6508		
90°	1,5592	1,5515	1,5497	1,5484	1,5484	1,5484		
120°	1,5092	1,5035	1,5014	1,5012	1,5012	1,5012		
150°	1,4834	1,4788	1,4770	1,4569	1,4769	1,4769		
180°	1,4689	1,4649	1,4633	1,4632	1,4632	1,4632		
210°	1,4600	1,4564	1,4551	1,4549	1,4549	1,4549		
240°	1,4540	1,4507	1,4495	1,4494	1,4494	1,4494		
270°	1,4496	1,4465	1,4456	1,4454	1,4454	1,4454		
300°	1,4459	1,4429	1,4424	1,4423	1,4423	1,4423		
330°	1,4484	1,4425	1,4399	1,4397	1,4397	1,4397		
350°	1,4498	1,4451	1,4373	1,4372	1,4372	1,4372		

Tabela A.8c. Convergência do fator de *Hagenbach*, $K(\infty)$, para o escoamento em dutos de setores circulares em função da ordem de truncamento da série e do ângulo Θ .

A.1.3. Geometria Anular Concêntrica

	Ordem N = M de Truncamento da Série								
r*	10	25	50	75	100	Valor Convergido			
0,00	19,2840	18,7538	18,7140	18,7091	18,7078	18,708			
0,01	20,2457	20,0444	20,0304	20,0289	20,0282	20,028			
0,10	22,3869	22,3461	22,3434	22,3437	22,3430	22,343			
0,20	23,1094	23,0896	23,0883	23,0887	23,0881	23,088			
0,30	23,4742	23,4621	23,4613	23,4613	23,4610	23,461			
0,40	23,6873	23,6789	23,6784	23,6785	23,6783	23,678			
0,50	23,8192	23,8140	23,8135	23,8136	23,8134	23,813			
0,60	23,9024	23,8974	23,8971	23,8971	23,8970	23,897			
0,70	23,9540	23,9497	23,9496	23,9496	23,9495	23,950			
0,80	23,9843	23,9804	23,9803	23,9802	23,9801	23,980			
0,90	23,9995	23,9958	23,9956	23,9956	23,9955	23,996			
1,00	24,0038	24,0002	24,0001	24,0001	24,0000	24,000			

Tabela A.9a. Convergência do número de *Poiseuille*, fator f Re, para o escoamento em dutos anulares
concêntricos em função da ordem de truncamento da série e da razão r^* .

Tabela A.9b. Convergência da velocidade adimensional máxima, $W^*_{máx}$, para o escoamento em dutos
anulares concêntricos em função da ordem de truncamento da série e da razão r^* .

	Ordem <i>N</i> = <i>M</i> de Truncamento da Série							
r*	10	25	50	75	100	Valor Convergido		
0,00	1,7549	1,7314	1,7252	1,7233	1,7233	1,7233		
0,01	1,6810	1,6616	1,6624	1,6613	1,6613	1,6613		
0,10	1,5717	1,5675	1,5682	1,5673	1,5673	1,5673		
0,20	1,5368	1,5375	1,5380	1,5374	1,5374	1,5374		
0,30	1,5217	1,5222	1,5223	1,5222	1,5222	1,5222		
0,40	1,5135	1,5133	1,5133	1,5133	1,5133	1,5133		
0,50	1,5084	1,5078	1,5078	1,5078	1,5078	1,5078		
0,60	1,5051	1,5043	1,5043	1,5043	1,5043	1,5043		
0,70	1,5030	1,5021	1,5021	1,5021	1,5021	1,5021		
0,80	1,5018	1,5008	1,5008	1,5008	1,5008	1,5008		
0,90	1,5012	1,5002	1,5002	1,5002	1,5002	1,5002		
1,00	1,5010	1,5001	1,5000	1,5000	1,5000	1,5000		

	Ordem N = M de Truncamento da Série								
r*	10	25	50	75	100	Valor Convergido			
0,00	1,3049	1,0895	1,0747	1,0727	1,0727	1,0727			
0,01	1,0523	0,9782	0,9742	0,9734	0,9734	0,9734			
0,10	0,8205	0,8095	0,8096	0,8088	0,8088	0,8088			
0,20	0,7593	0,7545	0,7549	0,7542	0,7542	0,7542			
0,30	0,7293	0,7266	0,7265	0,7264	0,7264	0,7264			
0,40	0,7120	0,7102	0,7101	0,7101	0,7101	0,7101			
0,50	0,7013	0,7000	0,7000	0,7000	0,7000	0,7000			
0,60	0,6946	0,6936	0,6936	0,6935	0,6935	0,6935			
0,70	0,6905	0,6896	0,6896	0,6896	0,6896	0,6896			
0,80	0,6881	0,6872	0,6872	0,6872	0,6872	0,6872			
0,90	0,6868	0,6863	0,6863	0,6863	0,6863	0,6863			
1,00	0,6868	0,6860	0,6860	0,6860	0,6860	0,6860			

Tabela A.9c. Convergência do fator de Hagenbach, $K(\infty)$, para o escoamento em dutos anularesconcêntricos em função da ordem de truncamento da série e da razão r^* .

A.1.4. Geometria Bicônica

Tabela A.10a. Convergência do número de *Poiseuille*, fator *f Re*, para o escoamento em dutos bicônicos em função da ordem de truncamento da série e da razão u_0 / v_0 .

1	Ordem N = M de Truncamento da Série								
$\boldsymbol{u}_0/\boldsymbol{v}_0$	10	20	30	40	50	Valor Convergido			
0,01	19,0656	18,0987	17,7591	17,6999	17,6987	17,699			
0,10	16,4355	16,2876	16,2697	16,2549	16,2541	16,254			
0,20	15,4498	15,3948	15,3889	15,3867	15,3862	15,386			
0,30	15,1414	15,1084	15,1054	15,1041	15,1038	15,104			
0,40	15,1331	15,1103	15,1082	15,1071	15,1069	15,107			
0,50	15,2312	15,2124	15,2114	15,2100	15,2098	15,210			
0,60	15,3422	15,3279	15,3259	15,3247	15,3246	15,325			
0,70	15,4334	15,4197	15,4185	15,4177	15,4176	15,418			
0,80	15,4949	15,4828	15,4817	15,4804	15,4803	15,480			
0,90	15,5278	15,5161	15,5151	15,5144	15,5143	15,514			
1,00	15,5375	15,5265	15,5256	15,5244	15,5243	15,524			

Tabela A.10b. Convergência da velocidade adimensional máxima, $W^*_{máx}$, para o escoamento em dutos bicônicos em função da ordem de truncamento da série e da razão u_0 / v_0 .

1	Ordem N = M de Truncamento da Série								
u_0/v_0	10	20	30	40	50	Valor Convergido			
0,01	2,7200	2,7567	2,7017	2,5788	2,5788	2,5788			
0,10	2,2552	2,1791	2,1656	2,1678	2,1678	2,1678			
0,20	2,0922	2,1025	2,1035	2,1036	2,1036	2,1036			
0,30	2,0918	2,0862	2,0844	2,0847	2,0847	2,0847			
0,40	2,0851	2,0747	2,0761	2,0751	2,0751	2,0751			
0,50	2,0726	2,0702	2,0695	2,0693	2,0693	2,0693			
0,60	2,0630	2,0641	2,0642	2,0642	2,0642	2,0642			
0,70	2,0632	2,0607	2,0605	2,0605	2,0605	2,0605			
0,80	2,0592	2,0583	2,0581	2,0580	2,0580	2,0580			
0,90	2,0586	2,0568	2,0567	2,0567	2,0567	2,0567			
1,00	2,0578	2,0563	2,0563	2,0563	2,0563	2,0563			

Tabela A.10c. Convergência do fator de *Hagenbach*, $K(\infty)$, para o escoamento em dutos bicônicos em função da ordem de truncamento da série e da razão u_0 / v_0 .

1	Ordem N = M de Truncamento da Série								
u_0/v_0	10	20	30	40	50	Valor Convergido			
0,01 0,10 0,20 0,30 0,40	2,2016 1,7603 1,5768 1,5275 1,5054	2,0465 1,6468 1,5398 1,5074 1,4919	1,9803 1,6357 1,5365 1,5056 1,4907	1,9308 1,6324 1,5354 1,5051 1,4903	1,9308 1,6324 1,5355 1,5051 1,4903	1,9308 1,6324 1,5355 1,5051 1,4903			
0,50 0,60 0,70 0,80 0,90	1,4902 1,4786 1,4703 1,4649 1,4621	1,4801 1,4706 1,4635 1,4589 1,4564	1,4792 1,4699 1,4629 1,4583 1,4559	1,4789 1,4696 1,4627 1,4581 1,4557	1,4789 1,4696 1,4627 1,4581 1,4557	1,4789 1,4696 1,4627 1,4581 1,4557			
1,00	1,4612	1,4557	1,4552	1,4550	1,4550	1,4550			

A.2. Problemas Difusivo-Convectivos

A.2.1. Geometria de Setor Anular

Tabela A.11a. Convergência da temperatura adimensional média de mistura, $\theta_{méd}(Z)$, para o escoamento em dutos de setores anulares com $r^* = 0,20$ em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-3}$.

~	Ordem <i>N</i> = <i>M</i> de Truncamento da Série								
•	10	15	20	25	30	Valor Convergido			
5°	0,9397	0,9403	0,9414	0,9416	0,9416	0,9416			
10°	0,9431	0,9436	0,9437	0,9433	0,9433	0,9433			
15°	0,9454	0,9455	0,9450	0,9440	0,9440	0,9440			
45°	0,9494	0,9478	0,9459	0,9444	0,9444	0,9444			
60°	0,9495	0,9475	0,9456	0,9444	0,9444	0,9444			
90°	0,9489	0,9464	0,9449	0,9441	0,9441	0,9441			
150°	0,9472	0,9446	0,9432	0,9426	0,9426	0,9426			
180°	0,9465	0,9438	0,9423	0,9417	0,9417	0,9417			
210°	0,9457	0,9431	0,9416	0,9409	0,9409	0,9409			
270°	0,9445	0,9420	0,9405	0,9396	0,9396	0,9396			
300°	0,9440	0,9416	0,9400	0,9390	0,9390	0,9390			
350°	0,9432	0,9409	0,9394	0,9382	0,9382	0,9382			

Tabela A.11b. Convergência do número de *Nusselt* local, $Nu_1(Z)$, para o escoamento em dutos de setores anulares com $r^* = 0,20$ em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-2}$.

~	Ordem <i>N</i> = <i>M</i> de Truncamento da Série								
Θ	10	15	20	25	30	Valor Convergido			
5°	4,4033	4,4227	4,4595	4,5096	4,5106	4,510			
10°	4,4327	4,4940	4,5613	4,6110	4,6118	4,611			
15°	4,5180	4,5925	4,6333	4,6141	4,6148	4,615			
45°	4,5966	4,5470	4,5200	4,5112	4,5106	4,511			
60°	4,5287	4,4933	4,4791	4,4734	4,4729	4,473			
90°	4,5160	4,4978	4,4889	4,4847	4,4841	4,484			
150°	4,7466	4,7336	4,7260	4,7220	4,7215	4,722			
180°	4,8956	4,8822	4,8745	4,8705	4,8703	4,870			
210°	5,0439	5,0279	5,0199	5,0157	5,0153	5,016			
270°	5,3204	5,2925	5,2826	5,2787	5,2777	5,278			
300°	5,4447	5,4101	5,3976	5,3929	5,3920	5,392			
350°	5,6287	5,5863	5,5670	5,5611	5,5601	5,561			

0	Ordem N = M de Truncamento da Série							
Θ	10	15	20	25	30	Valor Convergido		
5°	3,244	3,266	3,291	3,335	3,344	3,34		
10°	3,294	3,375	3,410	3,415	3,424	3,42		
15°	3,384	3,466	3,481	3,482	3,487	3,48		
45°	3,615	3,616	3,612	3,606	3,601	3,60		
60°	3,625	3,619	3,615	3,611	3,606	3,61		
90°	3,669	3,658	3,655	3,656	3,650	3,65		
150°	3,949	3,936	3,932	3,934	3,931	3,93		
180°	4,127	4,114	4,111	4,112	4,109	4,11		
210°	4,306	4,292	4,289	4,291	4,287	4,29		
270°	4,635	4,622	4,619	4,617	4,614	4,61		
300°	4,913	4,768	4,765	4,766	4,760	4,76		
350°	4,995	4,984	4,982	4,983	4,976	4,98		

Tabela A.11c. Convergência do número de *Nusselt* médio, $Nu_{1 \ méd}(Z)$, para o escoamento em dutos de setores anulares com $r^* = 0,20$ em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-1}$.

Tabela A.12a. Convergência da temperatura adimensional média de mistura, $\theta_{méd}(Z)$, para o escoamento em dutos de setores anulares com $r^* = 0,40$ em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-2}$.

•		Ordem N = M de Truncamento da Série							
Θ	10	15	20	25	30	Valor Convergido			
5°	0,7332	0,7316	0,7286	0,7274	0,7274	0,7274			
10°	0,7448	0,7422	0,7403	0,7391	0,7391	0,7391			
15°	0,7527	0,7506	0,7495	0,7490	0,7490	0,7490			
45°	0,7712	0,7707	0,7704	0,7703	0,7703	0,7703			
60°	0,7703	0,7698	0,7696	0,7694	0,7694	0,7694			
90°	0,7629	0,7624	0,7621	0,7620	0,7620	0,7620			
150°	0,7466	0,7459	0,7455	0,7453	0,7453	0,7453			
180°	0,7402	0,7393	0,7389	0,7386	0,7386	0,7386			
210°	0,7350	0,7339	0,7333	0,7330	0,7330	0,7330			
270°	0,7273	0,7257	0,7248	0,7244	0,7244	0,7244			
300°	0,7244	0,7225	0,7215	0,7210	0,7210	0,7210			
350°	0,7205	0,7184	0,7170	0,7164	0,7164	0,7164			

Tabela A.12b. Convergência do número de *Nusselt* local, $Nu_1(Z)$, para o escoamento em dutos de setores anulares com $r^* = 0,40$ em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-1}$.

~		Ordem N = M de Truncamento da Série								
Θ	10	15	20	25	30	Valor Convergido				
5°	3,2800	3,3305	3,3376	3,3271	3,3262	3,327				
10°	3,3564	3,3449	3,3415	3,3392	3,3380	3,338				
15°	3,3256	3,3129	3,3114	3,3104	3,3099	3,310				
45°	3,0250	3,0216	3,0212	3,0209	3,0207	3,021				
60°	3,0587	3,0551	3,0547	3,0545	3,0543	3,054				
90°	3,3222	3,3192	3,3188	3,3185	3,3184	3,318				
150°	4,0029	3,9995	3,9991	3,9989	3,9988	3,999				
180°	4,3051	4,3014	4,3010	4,3008	4,3007	4,301				
210°	4,5680	4,5640	4,5637	4,5636	4,5635	4,564				
270°	4,9903	4,9853	4,9852	4,9851	4,9850	4,985				
300°	5,3074	5,1542	5,1541	5,1540	5,1539	5,154				
350°	5,3955	5,3894	5,3891	5,3892	5,3894	5,389				

0	Ordem N = M de Truncamento da Série								
Θ	10	15	20	25	30	Valor Convergido			
5°	3,063	3,090	3,091	3,082	3,083	3,08			
10°	3,245	3,234	3,232	3,227	3,228	3,23			
15°	3,283	3,273	3,272	3,270	3,269	3,27			
45°	3,074	3,070	3,069	3,068	3,068	3,07			
60°	3,104	3,101	3,100	3,098	3,099	3,10			
90°	3,350	3,346	3,345	3,342	3,345	3,35			
150°	3,978	3,975	3,975	3,971	3,974	3,97			
180°	4,261	4,260	4,259	4,256	4,259	4,26			
210°	4,512	4,511	4,511	4,508	4,510	4,51			
270°	4,924	4,925	4,926	4,924	4,926	4,93			
300°	5,235	5,099	5,099	5,093	5,095	5,10			
350°	5,331	5,333	5,334	5,333	5,336	5,34			

Tabela A.12c. Convergência do número de *Nusselt* médio, $Nu_{1 \ méd}(Z)$, para o escoamento em dutos de setores anulares com $r^* = 0,40$ em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^0$.

Tabela A.13a. Convergência da temperatura adimensional média de mistura, $\theta_{méd}(Z)$, para o escoamento em dutos de setores anulares com $r^* = 0,60$ em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-1}$.

•	Ordem N = M de Truncamento da Série							
Θ	10	15	20 25 30	Valor Convergido				
5°	0,1398	0,1392	0,1390	0,1388	0,1388	0,1388		
10°	0,1810	0,1808	0,1807	0,1806	0,1806	0,1806		
15°	0,2136	0,2134	0,2134	0,2133	0,2133	0,2133		
45°	0,2258	0,2257	0,2256	0,2256	0,2256	0,2256		
60°	0,2004	0,2002	0,2002	0,2001	0,2001	0,2001		
90°	0,1585	0,1583	0,1582	0,1582	0,1582	0,1582		
150°	0,1142	0,1139	0,1138	0,1137	0,1137	0,1137		
180°	0,1024	0,1021	0,1019	0,1018	0,1018	0,1018		
210°	0,0940	0,0936	0,0934	0,0933	0,0933	0,0933		
270°	0,0830	0,0825	0,0822	0,0821	0,0821	0,0821		
300°	0,0792	0,0787	0,0784	0,0782	0,0782	0,0782		
350°	0,0746	0,0739	0,0735	0,0733	0,0733	0,0733		

Tabela A.13b. Convergência do número de *Nusselt* local, $Nu_1(Z)$, para o escoamento em dutos de setores anulares com $r^* = 0,60$ em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^0$.

•	Ordem N = M de Truncamento da Série								
Θ	10	15	20	25	30	Valor Convergido			
5°	3,8083	3,7952	3,7914	3,7913	3,7918	3,792			
10°	3,5438	3,5397	3,5392	3,5389	3,5387	3,539			
15°	3,2614	3,2587	3,2584	3,2582	3,2580	3,258			
45°	3,1624	3,1605	3,1602	3,1603	3,1600	3,160			
60°	3,4394	3,4375	3,4376	3,4375	3,4374	3,437			
90°	4,0029	4,0054	4,0055	4,0054	4,0056	4,006			
150°	4,8576	4,8618	4,8628	4,8637	4,8639	4,864			
180°	5,1562	5,1633	5,1649	5,1663	5,1668	5,167			
210°	5,3942	5,4061	5,4085	5,4109	5,4111	5,411			
270°	5,7533	5,7691	5,7728	5,7776	5,7785	5,778			
300°	6,0046	5,9074	5,9121	5,9175	5,9184	5,918			
350°	6,0709	6,0933	6,0994	6,1066	6,1074	6,107			

	Ordem N = M de Truncamento da Série							
•	10	15	20	25	30	Valor Convergido		
5°	16,680	17,341	16,990	16,395	16,404	16,40		
10°	15,266	16,426	16,502	15,735	15,741	15,74		
15°	14,603	16,018	16,274	15,241	15,248	15,25		
45°	14,315	16,025	16,170	15,336	15,342	15,34		
60°	14,655	16,269	16,406	15,618	15,622	15,62		
90°	15,375	16,706	16,781	16,051	16,056	16,06		
150°	16,478	17,395	17,268	16,639	16,641	16,64		
180°	16,870	17,662	17,455	16,799	16,804	16,80		
210°	17,187	17,887	17,619	16,922	16,927	16,93		
270°	17,665	18,242	17,887	17,100	17,106	17,10		
300°	18,006	18,383	17,998	17,172	17,182	17,18		
350°	18,099	18,578	18,155	17,281	17,292	17,28		

Tabela A.13c. Convergência do número de *Nusselt* médio, $Nu_{1 \ méd}(Z)$, para o escoamento em dutos de setores anulares com $r^* = 0,60$ em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-3}$.

Tabela A.14a. Convergência da temperatura adimensional média de mistura, $\theta_{méd}(Z)$, para o escoamento em dutos de setores anulares com $r^* = 0,80$ em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-4}$.

0	Ordem N = M de Truncamento da Série							
•	10	15	20	25	30	Valor Convergido		
5°	0,9928	0,9899	0,9888	0,9879	0,9875	0,988		
10°	0,9938	0,9909	0,9896	0,9883	0,9876	0,988		
15°	0,9939	0,9910	0,9896	0,9884	0,9877	0,988		
45°	0,9923	0,9893	0,9883	0,9876	0,9870	0,987		
60°	0,9917	0,9887	0,9877	0,9872	0,9868	0,987		
90°	0,9909	0,9879	0,9870	0,9866	0,9863	0,986		
150°	0,9902	0,9871	0,9863	0,9860	0,9858	0,986		
180°	0,9900	0,9868	0,9861	0,9858	0,9856	0,986		
210°	0,9898	0,9867	0,9859	0,9856	0,9855	0,986		
270°	0,9896	0,9864	0,9857	0,9854	0,9853	0,985		
300°	0,9894	0,9863	0,9856	0,9854	0,9852	0,985		
350°	0,9894	0,9862	0,9855	0,9853	0,9851	0,985		

Tabela A.14b. Convergência do número de *Nusselt* local, $Nu_1(Z)$, para o escoamento em dutos de setores anulares com $r^* = 0,80$ em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-3}$.

•	Ordem <i>N</i> = <i>M</i> de Truncamento da Série								
Θ	10	15	20	25	30	Valor Convergido			
5°	10,9178	10,5350	10,4442	10,0655	10,0646	10,065			
10°	11,0920	9,8204	9,4820	9,3660	9,3651	9,365			
15°	11,1166	9,7876	9,4157	9,3344	9,3339	9,334			
45°	10,9898	10,8413	10,9147	10,5745	10,5740	10,574			
60°	11,1076	11,0101	11,1575	11,0796	11,0791	11,079			
90°	11,3758	11,2607	11,3959	11,6200	11,6204	11,620			
150°	11,7631	11,6145	11,6931	11,9283	11,9279	11,928			
180°	11,8922	11,7373	11,8006	12,0001	12,0013	12,001			
210°	11,9938	11,8356	11,8885	12,0607	12,0614	12,061			
270°	12,1422	11,9820	12,0224	12,1548	12,1551	12,155			
300°	12,2450	12,0378	12,0742	12,1933	12,1937	12,194			
350°	12,2726	12,1130	12,1449	12,2479	12,2490	12,248			

•	Ordem N = M de Truncamento da Série							
	10	15	20	25	30	Valor Convergido		
5° 10°	7,341 6 790	7,341 6 693	7,303	7,168 6 563	7,159 6 555	7,16		
15° 45°	6,765 7,706	6,664 7,788	6,670 7,726	6,527 7,586	6,535 7,575	6,53 7,58		
40°	7,986	8,155	5,7622	7,951	7,940	7,94		
90° 150°	8,348 8,748	8,569 8,944	8,520 8,889	8,418 8,874	8,414 8,879	8,41 8,88		
180° 210°	8,872 8,967	9,053 9,137	8,989 9,066	8,991 9,078	8,999 9,083	9,00 9,08		
270° 300°	9,106 9,201	9,260 9,306	9,178 9,220	9,191 9,229	9,199 9,234	9,20 9,23		
350°	9,226	9,368	9,277	9,282	9,287	9,29		

Tabela A.14c. Convergência do número de *Nusselt* médio, $Nu_{1 \ méd}(Z)$, para o escoamento em dutos de setores anulares com $r^* = 0,80$ em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-2}$.

Tabela A.15a. Convergência da temperatura adimensional média de mistura, $\theta_{méd}(Z)$, para o escoamento em dutos de setores anulares com $\Theta = 30^{\circ}$ em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-4}$.

	Ordem <i>N</i> = <i>M</i> de Truncamento da Série							
r*	10	15	20	25	30	Valor Convergido		
0,05	0,9699	0,9853	0,9872	0,9885	0,9890	0,989		
0,10	0,9811	0,9882	0,9888	0,9890	0,9889	0,989		
0,20	0,9886	0,9898	0,9896	0,9890	0,9886	0,989		
0,30	0,9914	0,9904	0,9897	0,9889	0,9885	0,989		
0,40	0,9928	0,9907	0,9898	0,9888	0,9880	0,988		
0,50	0,9935	0,9910	0,9898	0,9887	0,9879	0,988		
0,60	0,9938	0,9911	0,9898	0,9885	0,9877	0,988		
0,70	0,9937	0,9908	0,9896	0,9884	0,9876	0,988		
0,80	0,9930	0,9901	0,9889	0,9880	0,9875	0,987		
0,90	0,9916	0,9885	0,9876	0,9871	0,9867	0,987		

Tabela A.15b. Convergência do número de *Nusselt* local, $Nu_1(Z)$, para o escoamento em dutos de setores anulares com $\Theta = 30^\circ$ em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-3}$.

	Ordem N = M de Truncamento da Série							
r*	10	15	20	25	30	Valor Convergido		
0,05	8,1528	8,1985	8,4958	8,8925	8,8937	8,893		
0,10	8,6896	8,8091	9,1491	9,5326	9,5333	9,533		
0,20	9,4264	9,6303	9,9227	10,0507	10,0514	10,051		
0,30	9,8131	9,9891	10,0629	9,8648	9,8651	9,865		
0,40	9,9882	9,9827	9,7989	9,5705	9,5709	9,571		
0,50	9,9748	9,7080	9,4716	9,3948	9,3952	9,395		
0,60	9,8982	9,4740	9,3529	9,3276	9,3279	9,328		
0,70	10,0339	9,6197	9,4894	9,4658	9,4660	9,466		
0,80	10,5146	10,3356	10,0604	9,9615	9,9619	9,962		
0,90	11,0427	11,1950	11,2779	11,1717	11,1724	11,172		

	Ordem N = M de Truncamento da Série							
r*	10	15	20	25	30	Valor Convergido		
0,05	5,784	5,934	6,088	6,223	6,238	6,23		
0,10	6,194	6,939	6,458	6,504	6,517	6,51		
0,20	6,756	6,848	6,836	6,794	6,806	6,80		
0,30	6,926	6,351	6,867	6,817	6,825	6,82		
0,40	6,850	6,834	6,756	6,709	6,715	6,71		
0,50	6,717	6,704	6,643	6,590	6,594	6,59		
0,60	6,656	6,650	6,613	6,541	6,543	6,54		
0,70	6,783	6,773	6,725	6,657	6,659	6,66		
0,80	7,248	7,213	7,103	7,079	7,080	7,08		
0,90	8,228	8,158	8,019	8,010	8,011	8,01		

Tabela A.15c. Convergência do número de *Nusselt* médio, $Nu_{1 \ méd}(Z)$, para o escoamento em dutos de setores anulares com $\Theta = 30^{\circ}$ em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-2}$.

Tabela A.16a. Convergência da temperatura adimensional média de mistura, $\theta_{méd}(Z)$, para o escoamento em dutos de set<u>ores anulares com $\Theta = 120^{\circ}$ em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-1}$.</u>

		Ordem N = M de Truncamento da Série							
r*	10	15	20	25	30	Valor Convergido			
0,05	0,2247	0,2234	0,2228	0,2225	0,2225	0,2225			
0,10	0,2252	0,2245	0,2242	0,2240	0,2240	0,2240			
0,20	0,2220	0,2217	0,2215	0,2215	0,2215	0,2215			
0,30	0,2084	0,2083	0,2082	0,2081	0,2081	0,2081			
0,40	0,1864	0,1863	0,1862	0,1861	0,1861	0,1861			
0,50	0,1596	0,1595	0,1594	0,1593	0,1593	0,1593			
0,60	0,1316	0,1314	0,1313	0,1312	0,1312	0,1312			
0,70	0,1050	0,1047	0,1045	0,1045	0,1045	0,1045			
0,80	0,0817	0,0812	0,0809	0,0808	0,0808	0,0808			
0,90	0,0632	0,0622	0,0614	0,0610	0,0610	0,0610			

Tabela A.16b. Convergência do número de *Nusselt* local, $Nu_1(Z)$, para o escoamento em dutos de setores anulares com $\Theta = 120^\circ$ em função da ordem de truncamento da série e da razão r^* para $Z = 10^0$.

		Ordem <i>N</i> = <i>M</i> de Truncamento da Série							
r*	10	15	20	25	30	Valor Convergido			
0,05	3,1990	3,1871	3,1855	3,1835	3,1826	3,183			
0,10	3,1758	3,1666	3,1656	3,1646	3,1641	3,164			
0,20	3,1940	3,1893	3,1888	3,1883	3,1881	3,188			
0,30	3,3374	3,3344	3,3341	3,3339	3,3338	3,334			
0,40	3,6030	3,6012	3,6010	3,6009	3,6008	3,601			
0,50	3,9847	3,9842	3,9846	3,9842	3,9841	3,984			
0,60	4,4808	4,4826	4,4836	4,4832	4,4831	4,483			
0,70	5,0877	5,0940	5,1141	5,0965	5,0970	5,097			
0,80	5,7981	5,8143	5,8199	5,8229	5,8230	5,823			
0,90	6,5850	6,6197	6,6294	6,6445	6,6446	6,645			

	Ordem N = M de Truncamento da Série							
r*	10	15	20	25	30	Valor Convergido		
0,05	12,643	13,595	14,518	15,371	15,385	15,38		
0,10	13,622	14,570	15,246	15,726	15,735	15,73		
0,20	14,783	15,512	15,772	16,080	16,086	16,08		
0,30	15,513	15,964	16,078	16,149	16,154	16,15		
0,40	16,036	16,326	16,306	16,040	16,036	16,04		
0,50	16,515	16,694	16,660	16,109	16,112	16,11		
0,60	17,078	17,051	16,452	16,405	16,402	16,40		
0,70	17,803	17,383	16,537	16,766	16,769	16,77		
0,80	18,691	17,754	16,804	17,129	17,135	17,13		
0,90	19,683	18,301	17,386	17,657	17,664	17,66		

Tabela A.16c. Convergência do número de *Nusselt* médio, $Nu_{1 \ méd}(Z)$, para o escoamento em dutos de setores anulares com $\Theta = 120^{\circ}$ em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-3}$.

Tabela A.17a. Convergência da temperatura adimensional média de mistura, $\theta_{méd}(Z)$, para o escoamento em dutos de set<u>ores anulares com $\Theta = 240^{\circ}$ em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-2}$.</u>

	Ordem N = M de Truncamento da Série						
r*	10	15	20	25	30	Valor Convergido	
0,05	0,7598	0,7571	0,7556	0,7549	0,7549	0,7549	
0,10	0,7555	0,7539	0,7531	0,7526	0,7526	0,7526	
0,20	0,7476	0,7466	0,7460	0,7457	0,7457	0,7457	
0,30	0,7392	0,7382	0,7376	0,7373	0,7373	0,7373	
0,40	0,7308	0,7294	0,7287	0,7284	0,7284	0,7284	
0,50	0,7232	0,7208	0,7198	0,7193	0,7193	0,7193	
0,60	0,7150	0,7128	0,7112	0,7103	0,7103	0,7103	
0,70	0,7076	0,7053	0,7033	0,7017	0,7017	0,7017	
0,80	0,6999	0,6979	0,6959	0,6940	0,6940	0,6940	
0,90	0,6916	0,6900	0,6884	0,6868	0,6868	0,6868	

Tabela A.17b. Convergência do número de *Nusselt* local, $Nu_1(Z)$, para o escoamento em dutos de setores anulares com $\Theta = 240^{\circ}$ em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-1}$.

	Ordem N = M de Truncamento da Série						
r*	10	15	20	25	30	Valor Convergido	
0,05	3,4597	3,4483	3,4469	3,4454	3,4447	3,445	
0,10	3,5722	3,5638	3,5629	3,5621	3,5617	3,562	
0,20	3,9166	3,9112	3,9106	3,9102	3,9101	3,910	
0,30	4,3386	4,3341	4,3338	4,3335	4,3334	4,333	
0,40	4,7947	4,7902	4,7900	4,7899	4,7899	4,790	
0,50	5,2639	5,5950	5,2583	5,2583	5,2584	5,258	
0,60	5,7330	5,7284	5,7279	5,7280	5,7283	5,728	
0,70	6,1805	6,1941	6,1934	6,1935	6,1937	6,194	
0,80	6,5726	6,6418	6,6498	6,6515	6,6516	6,652	
0,90	6,9081	7,0196	7,0549	7,0972	7,0974	7,097	

	Ordem N = M de Truncamento da Série						
r*	10	15	20	25	30	Valor Convergido	
0,05	3,467	3,461	3,460	3,455	3,458	3,46	
0,10	3,573	3,567	3,567	3,567	3,566	3,57	
0,20	3,894	3,890	3,889	3,885	3,889	3,89	
0,30	4,291	4,289	4,289	4,286	4,288	4,29	
0,40	4,732	4,732	4,733	4,730	4,732	4,73	
0,50	5,195	5,542	5,200	5,198	5,200	5,20	
0,60	5,668	5,678	5,681	5,679	5,681	5,68	
0,70	6,135	6,155	6,159	6,160	6,162	6,16	
0,80	6,574	6,619	6,627	6,632	6,637	6,64	
0,90	6,940	7,008	7,068	7,095	7,099	7,10	

Tabela A.17c. Convergência do número de *Nusselt* médio, $Nu_{1 méd}(Z)$, para o escoamento em dutos de setores anulares com $\Theta = 240^{\circ}$ em função da ordem de truncamento da série e da razão r^* para $Z = 10^{\circ}$.

Tabela A.18a. Convergência da temperatura adimensional média de mistura, $\theta_{méd}(Z)$, para o escoamento em dutos de set<u>ores anulares com $\Theta = 330^{\circ}$ em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-3}$.</u>

	Ordem <i>N</i> = <i>M</i> de Truncamento da Série						
r*	10	15	20	25	30	Valor Convergido	
0,05	0,9507	0,9469	0,9433	0,9412	0,9412	0,9412	
0,10	0,9474	0,9439	0,9414	0,9401	0,9401	0,9401	
0,20	0,9435	0,9412	0,9396	0,9385	0,9385	0,9385	
0,30	0,9411	0,9395	0,9382	0,9371	0,9371	0,9371	
0,40	0,9377	0,9381	0,9370	0,9359	0,9359	0,9359	
0,50	0,9393	0,9368	0,9358	0,9349	0,9349	0,9349	
0,60	0,9361	0,9353	0,9346	0,9338	0,9338	0,9338	
0,70	0,9345	0,9339	0,9333	0,9327	0,9327	0,9327	
0,80	0,9329	0,9323	0,9319	0,9314	0,9314	0,9314	
0,90	0,9313	0,9308	0,9304	0,9300	0,9300	0,9300	

Tabela A.18b. Convergência do número de *Nusselt* local, $Nu_1(Z)$, para o escoamento em dutos de setores anulares com $\Theta = 330^\circ$ em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-2}$.

	Ordem N = M de Truncamento da Série								
r*	10	15	20	25	30	Valor Convergido			
0,05	5,1455	5,0933	5,0696	5,0586	5,0579	5,058			
0,10	5,2571	5,2192	5,2041	5,1975	5,1967	5,197			
0,20	5,5586	5,5187	5,5023	5,4970	5,4965	5,497			
0,30	5,8803	5,8384	5,8113	5,8042	5,8037	5,804			
0,40	6,1882	6,1619	6,1250	6,1094	6,1091	6,109			
0,50	6,4621	6,4666	6,4411	6,4109	6,4107	6,411			
0,60	6,6997	6,7318	6,7391	6,7141	6,7139	6,714			
0,70	6,9140	6,9579	6,9929	7,0038	7,0036	7,004			
0,80	7,1220	7,1642	7,2058	7,2437	7,2434	7,243			
0,90	7,3376	7,3735	7,4088	7,4449	7,4445	7,445			
	Ordem N = M de Truncamento da Série								
------	-------------------------------------	-------	-------	-------	-------	---------------------	--	--	--
r*	10	15	20	25	30	Valor Convergido			
0,05	4,271	4,270	4,271	4,271	4,265	4,27			
0,10	4,478	4,474	4,475	4,474	4,469	4,47			
0,20	4,902	4,899	4,900	4,893	4,890	4,89			
0,30	5,322	5,321	5,319	5,309	5,307	5,31			
0,40	5,729	5,728	5,721	5,711	5,709	5,71			
0,50	6,117	6,115	6,114	6,098	6,096	6,10			
0,60	6,481	6,480	6,479	6,467	6,466	6,47			
0,70	6,813	6,820	6,825	6,821	6,819	6,82			
0,80	7,101	7,120	7,142	7,149	7,145	7,15			
0,90	7,352	7,375	7,384	7,442	7,436	7,44			

Tabela A.18c. Convergência do número de *Nusselt* médio, $Nu_{1 méd}(Z)$, para o escoamento em dutos de setores anulares com $\Theta = 330^{\circ}$ em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-1}$.

A.2.2. Geometria de Setor Circular

Tabela A.19. Convergência dos parâmetros térmicos para o escoamento em dutos circulares em função da ordem de truncamento da série para $r^* = 0,001$.

Parâmetro	-	,	Ordem	$N = M \mathrm{de}$	Fruncamen	to da Série	
Físico	Z	10	20	30	35	40	Valor Convergido
$ heta_{m \acute{e} d}$	10 ⁻⁴	0,9457	0,9840	0,9902	0,9923	0,9923	0,9923
	10 ⁻³	0,9244	0,9406	0,9423	0,9449	0,9449	0,9449
	10 ⁻²	0,7404	0,7494	0,7529	0,7545	0,7545	0,7545
	10 ⁻¹	0,1807	0,1869	0,1897	0,1905	0,1905	0,1905
Nu	10 ⁻³	5,7693	8,9034	9,6806	10,1721	10,1724	10,172
	10 ⁻²	4,5215	4,7615	4,8769	4,9201	4,9203	4,920
	10 ⁻¹	3,6076	3,6257	3,6522	3,6602	3,6605	3,660
	10 ⁰	3,5949	3,6214	3,6515	3,6599	3,6600	3,660
Nu _{méd}	10 ⁻³	6,5181	10,6067	13,8031	15,3901	15,4015	15,40
	10 ⁻²	5,1574	6,6978	7,0846	7,1591	7,1633	7,16
	10 ⁻¹	3,8729	4,1231	4,1418	4,1596	4,1621	4,16
	10 ⁰	3,6277	3,6906	3,7010	3,7091	3,7109	3,71

•	Ordem N = M de Truncamento da Série								
•	15	20	25	30	35	Valor Convergido			
5°	0,9511	0,9776	0,9812	0,9839	0,9847	0,984			
15°	0,9623	0,9819	0,9844	0,9869	0,9874	0,987			
30°	0,9598	0,9840	0,9851	0,9878	0,9884	0,988			
45°	0,9630	0,9837	0,9853	0,9886	0,9892	0,989			
60°	0,9636	0,9842	0,9856	0,9890	0,9896	0,989			
90°	0,9666	0,9826	0,9868	0,9890	0,9895	0,989			
150°	0,9645	0,9854	0,9888	0,9902	0,9905	0,990			
180°	0,9665	0,9861	0,9894	0,9905	0,9908	0,991			
210°	0,9680	0,9866	0,9898	0,9907	0,9909	0,991			
270°	0,9700	0,9874	0,9903	0,9910	0,9912	0,991			
300°	0,9706	0,9878	0,9905	0,9911	0,9913	0,991			
350°	0,9715	0,9879	0,9907	0,9912	0,9913	0,991			

Tabela A.20a. Convergência da temperatura adimensional média de mistura, $\theta_{méd}(Z)$, para o escoamento em dutos de setores circulares em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-4}$.

Tabela A.20b. Convergência da temperatura adimensional média de mistura, $\theta_{méd}(Z)$, para o escoamento em dutos de setores circulares em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-3}$.

0		Ordem N = M de Truncamento da Série								
Θ	15	20	25	30	35	Valor Convergido				
5°	0,9276	0,9298	0,9212	0,9187	0,9187	0,9187				
15°	0,9443	0,9479	0,9393	0,9261	0,9261	0,9261				
30°	0,9479	0,9503	0,9413	0,9322	0,9322	0,9322				
45°	0,9485	0,9509	0,9417	0,9334	0,9334	0,9334				
60°	0,9493	0,9612	0,9546	0,9518	0,9518	0,9518				
90°	0,9487	0,9580	0,9534	0,9515	0,9515	0,9515				
150°	0,9514	0,9541	0,9517	0,9503	0,9503	0,9503				
180°	0,9522	0,9528	0,9494	0,9482	0,9482	0,9482				
210°	0,9527	0,9499	0,9481	0,9475	0,9475	0,9475				
270°	0,9533	0,9522	0,9471	0,9467	0,9467	0,9467				
300°	0,9536	0,9521	0,9467	0,9464	0,9464	0,9464				
350°	0,9537	0,9519	0,9460	0,9458	0,9458	0,9458				

Tabela A.20c. Convergência da temperatura adimensional média de mistura, $\theta_{méd}(Z)$, para o escoamento em dutos de setores circulares em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-2}$.

0	Ordem N = M de Truncamento da Série								
Θ	15	20	25	30	35	Valor Convergido			
5°	0,7799	0,7909	0,7782	0,7713	0,7713	0,7713			
15°	0,7812	0,7938	0,7825	0,7751	0,7751	0,7751			
30°	0,7849	0,7924	0,7785	0,7731	0,7731	0,7731			
45°	0,7869	0,7933	0,7756	0,7705	0,7705	0,7705			
60°	0,7862	0,7837	0,7743	0,7727	0,7727	0,7727			
90°	0,7884	0,7851	0,7762	0,7745	0,7745	0,7745			
150°	0,7807	0,7758	0,7659	0,7646	0,7646	0,7646			
180°	0,7800	0,7727	0,7615	0,7602	0,7602	0,7602			
210°	0,7794	0,7703	0,7608	0,7599	0,7599	0,7599			
270°	0,7780	0,7666	0,7563	0,7555	0,7555	0,7555			
300°	0,7773	0,7636	0,7541	0,7537	0,7537	0,7537			
350°	0,7762	0,7627	0,7526	0,7523	0,7523	0,7523			

•	Ordem N = M de Truncamento da Série								
•	15	20	25	30	35	Valor Convergido			
5°	0,3304	0,3273	0,3185	0,3115	0,3115	0,3115			
15°	0,3270	0,3242	0,3113	0,3047	0,3047	0,3047			
30°	0,3100	0,2957	0,2932	0,2896	0,2896	0,2896			
45°	0,2888	0,2777	0,2663	0,2631	0,2631	0,2631			
60°	0,2731	0,2617	0,2577	0,2538	0,2538	0,2538			
90°	0,2867	0,2430	0,2369	0,2354	0,2354	0,2354			
150°	0,2298	0,2201	0,2158	0,2152	0,2152	0,2152			
180°	0,2232	0,2141	0,2107	0,2099	0,2093	0,2093			
210°	0,2182	0,2096	0,2063	0,2058	0,2058	0,2058			
270°	0,2105	0,2027	0,1993	0,1989	0,1989	0,1989			
300°	0,2072	0,1966	0,1967	0,1964	0,1964	0,1964			
350°	0,2019	0,1946	0,1916	0,1913	0,1913	0,1913			

Tabela A.20d. Convergência da temperatura adimensional média de mistura, $\theta_{méd}(Z)$, para o escoamento em dutos de setores circulares em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-1}$.

Tabela A.20e. Convergência do número de *Nusselt* local, $Nu_1(Z)$, para o escoamento em dutos de setores circulares em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-3}$.

	Ordem N = M de Truncamento da Série							
•	15	20	25	30	35	Valor Convergido		
5°	9,0157	8,3457	7,3157	7,2497	7,2485	7,249		
15°	8,3266	7,7967	7,4531	7,5988	7,5971	7,597		
30°	8,3199	8,0399	8,0638	8,0841	8,0832	8,083		
45°	8,1039	8,0074	8,1854	8,3230	8,3221	8,322		
60°	7,9475	8,1213	8,3721	8,7528	8,7521	8,752		
90°	8,1538	8,1800	8,4121	8,9979	8,9969	8,997		
150°	7,3385	8,7300	9,2353	9,8696	9,8693	9,869		
180°	7,2505	8,9202	9,5420	10,4494	10,4491	10,449		
210°	7,1844	9,0676	9,7883	10,4152	10,4150	10,415		
270°	7,1043	9,2775	10,1448	10,9077	10,9074	10,907		
300°	7,0837	9,4212	10,2743	11,0045	11,0042	11,004		
350°	7,0693	9,4603	10,4418	11,1523	11,1521	11,152		

Tabela A.20f. Convergência do número de *Nusselt* local, $Nu_1(Z)$, para o escoamento em dutos de setores circulares em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-2}$.

		Ordem N = M de Truncamento da Série							
Θ	15	20	25	30	35	Valor Convergido			
5°	3,3354	3,4268	3,2787	3,2677	3,2665	3,267			
15°	3,6567	3,7298	3,5646	3,5547	3,5535	3,554			
30°	3,6425	3,9175	4,0646	4,0549	4,0540	4,054			
45°	3,7643	4,0653	4,2391	4,2318	4,2310	4,231			
60°	3,8766	4,2381	4,4294	4,4243	4,4232	4,423			
90°	3,8072	4,4237	4,6357	4,6306	4,6300	4,630			
150°	4,3672	4,7768	4,7746	4,7695	4,7693	4,769			
180°	4,5083	4,8704	4,8107	4,8085	4,8083	4,808			
210°	4,6254	4,9383	4,8613	4,8571	4,8569	4,857			
270°	4,8078	5,0384	4,9253	4,9218	4,9217	4,922			
300°	4,8802	5,0818	4,9615	4,9582	4,9581	4,958			
350°	4,9806	5,1083	5,0137	5,0108	5,0107	5,011			

		Ordem N = M de Truncamento da Série							
Θ	15	20	25	30	35	Valor Convergido			
5°	1,5301	1,5242	1,5168	1,5009	1,4994	1,499			
15°	2,1576	2,2134	2,0964	2,0876	2,0865	2,087			
30°	2,4134	2,5219	2,4267	2,3742	2,3731	2,373			
45°	2,6612	2,7214	2,6615	2,6499	2,6487	2,649			
60°	2,8353	2,8852	2,8506	2,8470	2,8461	2,846			
90°	2,6846	3,0935	3,0968	3,0893	3,0876	3,089			
150°	3,2741	3,2983	3,2974	3,2925	3,2919	3,292			
180°	3,3330	3,3489	3,3276	3,3241	3,3236	3,324			
210°	3,3759	3,3866	3,3727	3,3712	3,3707	3,371			
270°	3,4448	3,4498	3,4459	3,4440	3,4436	3,444			
300°	3,4780	3,5145	3,4300	3,4292	3,4289	3,429			
350°	3,5358	3,5374	3,4745	3,4726	3,4723	3,472			

Tabela A.20g. Convergência do número de *Nusselt* local, $Nu_1(Z)$, para o escoamento em dutos de setores circulares em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-1}$.

Tabela A.20h. Convergência do número de *Nusselt* local, $Nu_1(Z)$, para o escoamento em dutos de setores circulares em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{\circ}$.

0	Ordem N = M de Truncamento da Série								
•	15	20	25	30	35	Valor Convergido			
5°	1,4746	1,4653	1,4589	1,4523	1,4511	1,451			
15°	2,0342	2,0649	1,9201	1,9163	1,9155	1,916			
30°	2,3661	2,4708	2,3736	2,3655	2,3649	2,365			
45°	2,6440	2,7020	2,6491	2,6466	2,6461	2,646			
60°	2,8269	2,8740	2,8422	2,8403	2,8399	2,840			
90°	2,6695	3,0826	3,0795	3,0787	3,0784	3,078			
150°	3,2518	3,2744	3,2709	3,2697	3,2695	3,270			
180°	3,3020	3,3175	3,3140	3,3131	3,3129	3,313			
210°	3,3360	3,3473	3,3437	3,3433	3,3431	3,343			
270°	3,3869	3,3939	3,3904	3,3900	3,3897	3,390			
300°	3,4113	3,4422	3,4149	3,4144	3,4141	3,414			
350°	3,4551	3,4599	3,4571	3,4568	3,4566	3,457			

Tabela A.20i. Convergência do número de *Nusselt* médio, $Nu_{1 \ méd}(Z)$, para o escoamento em dutos de setores circulares em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-3}$.

•	Ordem N = M de Truncamento da Série								
Θ	15	20	25	30	35	Valor Convergido			
5°	11,759	11,844	11,959	12,056	12,077	12,07			
15°	11,885	11,998	12,102	12,249	12,264	12,26			
30°	11,683	12,087	12,156	12,279	12,291	12,29			
45°	11,016	12,088	12,248	12,447	12,465	12,46			
60°	10,504	11,842	12,597	12,763	12,775	12,77			
90°	11,074	11,288	11,856	12,615	12,629	12,63			
150°	8,697	11,042	11,998	13,208	13,214	13,21			
180°	8,399	10,963	12,068	13,462	13,469	13,47			
210°	8,174	10,905	12,130	13,617	13,624	13,62			
270°	7,881	10,839	12,237	13,888	13,894	13,89			
300°	7,787	10,822	12,484	14,006	14,009	14,01			
350°	7,684	10,824	12,658	14,171	14,175	14,17			

	Ordem N = M de Truncamento da Série							
Θ	15	20	25	30	35	Valor Convergido		
5°	4,794	4,995	5,154	5,237	5,249	5,25		
15°	5,156	5,238	5,299	5,382	5,394	5,39		
30°	5,422	5,592	5,669	5,713	5,724	5,72		
45°	5,415	5,740	5,927	6,005	6,013	6,01		
60°	5,432	5,868	6,215	6,356	3,364	6,36		
90°	5,462	5,963	6,258	6,545	6,552	6,55		
150°	5,588	6,371	6,777	6,890	6,895	6,89		
180°	5,665	6,503	6,897	6,969	6,973	6,97		
210°	5,729	6,606	6,887	7,050	7,053	7,05		
270°	5,828	6,764	7,022	7,141	7,143	7,14		
300°	5,869	6,884	7,077	7,196	7,200	7,20		
350°	5,928	6,919	7,158	7,261	7,264	7,26		

Tabela A.20j. Convergência do número de *Nusselt* médio, $Nu_{1 méd}(Z)$, para o escoamento em dutos de setores circulares em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-2}$.

Tabela A.20k. Convergência do número de *Nusselt* médio, $Nu_{1 \ méd}(Z)$, para o escoamento em dutos de setores circulares em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{-1}$.

•	Ordem <i>N</i> = <i>M</i> de Truncamento da Série							
Θ	15	20	25	30	35	Valor Convergido		
5°	2,126	2,285	2,394	2,475	2,488	2,49		
15°	2,581	2,645	2,699	2,720	2,734	2,73		
30°	2,905	2,955	2,997	3,019	3,029	3,03		
45°	2,992	3,043	3,175	3,234	3,243	3,24		
60°	3,235	3,342	3,400	3,447	3,454	3,45		
90°	3,122	3,576	3,606	3,627	3,633	3,63		
150°	3,674	3,784	3,827	3,859	3,863	3,86		
180°	3,755	3,891	3,878	3,920	3,921	3,92		
210°	3,817	3,926	3,944	3,968	3,970	3,97		
270°	3,915	4,004	4,034	4,047	4,049	4,05		
300°	3,958	4,012	4,069	4,082	4,084	4,08		
350°	4,027	4,101	4,128	4,146	4,144	4,14		

Tabela A.201. Convergência do número de *Nusselt* médio, $Nu_{1 \ méd}(Z)$, para o escoamento em dutos de setores circulares em função da ordem de truncamento da série e do ângulo Θ para $Z = 10^{0}$.

•	Ordem <i>N</i> = <i>M</i> de Truncamento da Série							
Θ	15	20	25	30	35	Valor Convergido		
5°	1,364	1,498	1,583	1,599	1,614	1,61		
15°	1,866	1,951	2,003	2,011	2,024	2,02		
30°	2,221	2,342	2,397	2,414	2,425	2,43		
45°	2,489	2,625	2,687	2,694	2,704	2,70		
60°	2,770	2,875	2,914	2,918	2,927	2,93		
90°	2,714	2,971	3,097	3,127	3,134	3,13		
150°	3,193	3,283	3,309	3,324	3,330	3,33		
180°	3,277	3,304	3,359	3,369	3,373	3,37		
210°	3,384	3,399	3,404	3,407	3,409	3,41		
270°	3,390	3,438	3,449	3,455	3,457	3,46		
300°	3,437	3,449	3,475	3,482	3,484	3,48		
350°	3,510	3,519	3,524	3,527	3,529	3,53		

A.2.3. Geometria Anular Concêntrica

Tabela A.21a. Convergência da temperatura adimensional média de mistura, $\theta_{méd}$	(Z), para o escoamento em
dutos anulares concêntricos em função da ordem de truncamento da série e da n	razão r^* para $Z = 10^{-3}$.

ste	_	Ordem N	$V = M \operatorname{de} \mathbf{T}$	`runcame r	nto da Sér	ie
r	10	15	20	25	30	Valor Convergido
0,00	1,0027	1,0002	0,9993	0,9985	0,9985	0,9985
0,01	1,0000	0,9975	0,9969	0,9964	0,9964	0,9964
0,10	0,9907	0,9895	0,9893	0,9891	0,9891	0,9891
0,20	0,9850	0,9842	0,9840	0,9839	0,9839	0,9839
0,30	0,9806	0,9800	0,9799	0,9798	0,9798	0,9798
0,40	0,9771	0,9766	0,9765	0,9765	0,9765	0,9765
0,50	0,9742	0,9737	0,9737	0,9736	0,9736	0,9736
0,60	0,9717	0,9713	0,9712	0,9711	0,9711	0,9711
0,70	0,9696	0,9691	0,9690	0,9690	0,9690	0,9690
0,80	0,9677	0,9672	0,9671	0,9671	0,9671	0,9671
0,90	0,9661	0,9656	0,9655	0,9654	0,9654	0,9654
1,00	0,9646	0,9641	0,9640	0,9639	0,9639	0,9639

Tabela A.21b. Convergência da temperatura adimensional média de mistura, $\theta_{méd}(Z)$, para o escoamento em dutos anulares concêntricos em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-2}$.

.4		Ordem <i>N</i> = <i>M</i> de Truncamento da Série								
r*	10	15	20	25	30	Valor Convergido				
0,00	0,9890	0,9864	0,9856	0,9847	0,9847	0,9847				
0,01	0,9770	0,9745	0,9739	0,9734	0,9734	0,9734				
0,10	0,9403	0,9391	0,9389	0,9387	0,9387	0,9387				
0,20	0,9176	0,9168	0,9167	0,9166	0,9166	0,9166				
0,30	0,9006	0,9000	0,8999	0,8999	0,8999	0,8999				
0,40	0,8869	0,8865	0,8864	0,8863	0,8863	0,8863				
0,50	0,8755	0,8751	0,8751	0,8750	0,8750	0,8750				
0,60	0,8658	0,8655	0,8654	0,8654	0,8654	0,8654				
0,70	0,8575	0,8571	0,8571	0,8570	0,8570	0,8570				
0,80	0,8502	0,8498	0,8497	0,8497	0,8497	0,8497				
0,90	0,8437	0,8433	0,8433	0,8432	0,8432	0,8432				
1,00	0,8380	0,8376	0,8376	0,8375	0,8375	0,8375				

Tabela A.21c. Convergência da temperatura adimensional média de mistura, $\theta_{méd}(Z)$, para o escoamento em dutos anulares concêntricos em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-1}$.

		Ordem <i>N</i> = <i>M</i> de Truncamento da Série								
<i>r</i> *	10	15	20	25	30	Valor Convergido				
0,00	0,8748	0,8728	0,8721	0,8713	0,8713	0,8713				
0,01	0,8045	0,8025	0,8020	0,8016	0,8016	0,8016				
0,10	0,6381	0,6373	0,6371	0,6370	0,6370	0,6370				
0,20	0,5558	0,5553	0,5553	0,5552	0,5552	0,5552				
0,30	0,5015	0,5012	0,5011	0,5011	0,5011	0,5011				
0,40	0,4614	0,4612	0,4611	0,4611	0,4611	0,4611				
0,50	0,4302	0,4300	0,4300	0,4300	0,4300	0,4300				
0,60	0,4051	0,4049	0,4049	0,4049	0,4049	0,4049				
0,70	0,3843	0,3842	0,3841	0,3841	0,3841	0,3841				
0,80	0,3668	0,3667	0,3666	0,3666	0,3666	0,3666				
0,90	0,3519	0,3517	0,3517	0,3517	0,3517	0,3517				
1,00	0,3391	0,3389	0,3389	0,3389	0,3389	0,3389				

		Ordem <i>N</i> = <i>M</i> de Truncamento da Série							
r*	10	15	20	25	30	Valor Convergido			
0,00	0,2608	0,2607	0,2606	0,2605	0,2605	0,2605			
0,01	0,1190	0,1190	0,1190	0,1189	0,1189	0,1189			
0,10	0,0145	0,0145	0,0145	0,0145	0,0145	0,0145			
0,20	0,0042	0,0042	0,0042	0,0042	0,0042	0,0042			
0,30	0,2608	0,2607	0,2606	0,2605	0,2605	0,2605			
0,40	0,1190	0,1190	0,1190	0,1189	0,1189	0,1189			
0,50	0,0145	0,0145	0,0145	0,0145	0,0145	0,0145			
0,60	0,0042	0,0042	0,0042	0,0042	0,0042	0,0042			
0,70	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002			
0,80	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001			
0,90	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001			
1,00	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001			

Tabela A.21d. Convergência da temperatura adimensional média de mistura, $\theta_{méd}(Z)$, para o escoamento em dutos anulares concêntricos em função da ordem de truncamento da série e da razão r^* para $Z = 10^0$.

Tabela A.21e. Convergência do número de *Nusselt* local, $Nu_1(Z)$, para o escoamento em dutos anulares concêntricos em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-3}$.

*	Ordem <i>N</i> = <i>M</i> de Truncamento da Série							
r	10	15	20	25	30	Valor Convergido		
0,00	474,2504	450,1752	443,9387	441,1141	441,1138	441,114		
0,01	82,1626	80,7694	80,2753	80,0610	80,0595	80,060		
0,10	22,3957	22,2915	22,2623	22,2562	22,2559	22,256		
0,20	17,3616	17,2718	17,2601	17,2587	17,2581	17,258		
0,30	15,4591	15,3716	15,3638	15,3608	15,3603	15,360		
0,40	14,4153	14,3555	14,3475	14,3434	14,3431	14,343		
0,50	13,7504	13,7181	13,7101	13,7045	13,7040	13,704		
0,60	13,3026	13,2824	13,2722	13,2647	13,2642	13,264		
0,70	12,9959	12,9658	12,9526	12,9433	12,9429	12,943		
0,80	12,7872	12,7244	12,7084	12,6976	12,6973	12,697		
0,90	12,6491	12,5357	12,5172	12,5045	12,5044	12,504		
1,00	12,5624	12,3843	12,3641	12,3491	12,3488	12,349		

Tabela A.21f. Convergência do número de *Nusselt* local, $Nu_1(Z)$, para o escoamento em dutos anulares concêntricos em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-2}$.

*	Ordem <i>N</i> = <i>M</i> de Truncamento da Série							
r	10	15	20	25	30	Valor Convergido		
0,00	363,1071	363,5294	363,9160	364,0700	364,0707	364,070		
0,01	59,7465	59,9483	59,9638	59,9809	59,9815	59,981		
0,10	13,7487	13,7574	13,7592	13,7611	13,7616	13,761		
0,20	9,9195	9,9245	9,9249	9,9252	9,9255	9,925		
0,30	8,4843	8,4864	8,4869	8,4873	8,4875	8,487		
0,40	7,7216	7,7219	7,7221	7,7224	7,7225	7,722		
0,50	7,2479	7,2474	7,2469	7,2465	7,2463	7,246		
0,60	6,9245	6,9234	6,9229	6,9224	6,9222	6,922		
0,70	6,6901	6,6886	6,6879	6,6875	6,6872	6,687		
0,80	6,5142	6,5113	6,5107	6,5103	6,5099	6,510		
0,90	6,3763	6,3721	6,3717	6,3714	6,3710	6,371		
1,00	6,2676	6,2620	6,2616	6,2606	6,2601	6,260		

	Ordem N = M de Truncamento da Série							
r*	10	15	20	25	30	Valor Convergido		
0,00	338,4901	336,8340	336,3961	335,9986	335,9977	335,998		
0,01	53,8485	53,6355	53,5917	53,5555	53,5548	53,555		
0,10	11,5907	11,5699	11,5651	11,5626	11,5620	11,562		
0,20	8,1448	8,1347	8,1320	8,1317	8,1312	8,131		
0,30	6,8549	6,8480	6,8471	6,8464	6,8460	6,846		
0,40	6,1694	6,1653	6,1649	6,1645	6,1641	6,164		
0,50	5,7435	5,7406	5,7399	5,7394	5,7392	5,739		
0,60	5,4533	5,4515	5,4507	5,4502	5,4499	5,450		
0,70	5,2412	5,2442	5,2415	5,2410	5,2407	5,241		
0,80	5,0852	5,0839	5,0837	5,0835	5,0830	5,083		
0,90	4,9624	4,9612	4,9604	4,9601	4,9598	4,960		
1,00	4,8656	4,8633	4,8625	4,8617	4,8610	4,861		

Tabela A.21g. Convergência do número de *Nusselt* local, $Nu_1(Z)$, para o escoamento em dutos anulares concêntricos em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-1}$.

Tabela A.21h. Convergência do número de *Nusselt* local, $Nu_1(Z)$, para o escoamento em dutos anulares concêntricos em função da ordem de truncamento da série e da razão r^* para $Z = 10^0$.

	Ordem N = M de Truncamento da Série							
r*	10	15	20	25	30	Valor Convergido		
0,00	338,4023	336,7494	336,3064	335,9025	335,9017	335,902		
0,01	53,8366	53,6225	53,5774	53,5416	53,5410	53,541		
0,10	11,5888	11,5677	11,5632	11,5604	11,5601	11,560		
0,20	8,1436	8,1333	8,1311	8,1305	8,1304	8,130		
0,30	6,8536	6,8474	6,84510	6,8449	6,8448	6,845		
0,40	6,1682	6,1645	6,1638	6,1634	6,1633	6,163		
0,50	5,7421	5,7399	5,7392	5,7385	5,7384	5,738		
0,60	5,4534	5,4501	5,4495	5,4490	5,4489	5,449		
0,70	5,2429	5,2412	5,2405	5,2400	5,2399	5,240		
0,80	5,0853	5,0836	5,0829	5,0824	5,0823	5,082		
0,90	4,9614	4,9605	4,9599	4,9594	4,9592	4,959		
1,00	4,8637	4,8621	4,8615	4,8612	4,8610	4,861		

Tabela A.21i. Convergência do número de *Nusselt* médio, $Nu_{1 méd}(Z)$, para o escoamento em dutos anulares concêntricos em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-3}$.

	Ordem <i>N</i> = <i>M</i> de Truncamento da Série								
r	10	15	20	25	30	Valor Convergido			
0,00	552,167	521,746	510,107	501,037	501,030	501,03			
0,01	103,085	99,542	96,880	96,584	96,573	96,58			
0,10	30,736	30,704	30,583	30,008	30,000	30,00			
0,20	26,203	24,632	24,236	24,105	24,098	24,10			
0,30	25,359	22,167	22,012	21,848	21,841	21,84			
0,40	24,214	20,957	20,796	20,634	20,627	20,63			
0,50	23,122	20,427	20,025	19,865	19,861	19,86			
0,60	22,269	20,274	19,540	19,341	19,337	19,34			
0,70	21,623	20,300	19,068	18,956	18,949	18,95			
0,80	21,121	20,378	18,748	18,663	18,657	18,66			
0,90	20,718	20,437	18,619	18,427	18,421	18,42			
1,00	20,386	20,049	18,555	18,235	18,230	18,23			

r*	10	15	20	25	30	Valor Convergido
0,00	403,604	398,056	396,816	395,859	395,847	395,85
0,01	68,953	68,469	68,222	68,206	68,197	68,20
0,10	17,263	17,261	17,183	17,205	17,197	17,20
0,20	13,083	12,935	12,908	12,893	12,885	12,89
0,30	11,607	11,291	11,274	11,266	11,259	11,26
0,40	10,756	10,425	10,413	10,399	10,390	10,39
0,50	10,186	9,908	9,872	9,857	9,851	9,85
0,60	9,784	9,576	9,499	9,486	9,481	9,48
0,70	9,486	9,348	9,224	9,218	9,210	9,21
0,80	9,257	9,181	9,017	9,013	9,007	9,01
0,90	9,076	9,051	8,868	8,851	8,847	8,85
1,00	8,929	8,944	8,752	8,723	8,718	8,72

Tabela A.21j. Convergência do número de *Nusselt* médio, $Nu_{1 méd}(Z)$, para o escoamento em dutos anulares concêntricos em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-2}$.

Tabela A.21k. Convergência do número de *Nusselt* médio, $Nu_{1 méd}$ (Z), para o escoamento em dutos anulares concêntricos em função da ordem de truncamento da série e da razão r^* para $Z = 10^{-1}$.

	Ordem N = M de Truncamento da Série								
r*	10	15	20	25	30	Valor Convergido			
0,00	348,694	346,462	346,087	345,788	345,775	345,78			
0,01	56,079	55,898	55,847	55,832	55,825	55,83			
0,10	12,392	12,379	12,370	12,369	12,368	12,37			
0,20	8,825	8,803	8,799	8,798	8,797	8,80			
0,30	7,498	7,462	7,460	7,459	7,458	7,46			
0,40	6,787	6,751	6,748	6,747	6,746	6,75			
0,50	6,341	6,310	6,306	6,305	6,304	6,30			
0,60	6,035	6,012	6,004	6,003	6,002	6,00			
0,70	5,814	5,798	5,786	5,785	5,784	5,78			
0,80	5,646	5,637	5,621	5,620	5,619	5,62			
0,90	5,516	5,511	5,493	5,492	5,491	5,49			
1,00	5,412	5,412	5,392	5,390	5,389	5,39			

Tabela A.211. Convergência do número de *Nusselt* médio, $Nu_{1 méd}$ (*Z*), para o escoamento em dutos anulares concêntricos em função da ordem de truncamento da série e da razão r^* para $Z = 10^0$.

	Ordem <i>N</i> = <i>M</i> de Truncamento da Série								
r*	10	15	20	25	30	Valor Convergido			
0,00	339,430	337,719	337,283	336,896	336,888	336,89			
0,01	54,060	53,849	53,804	53,776	53,769	53,77			
0,10	11,668	11,648	11,644	11,642	11,641	11,64			
0,20	8,211	8,200	8,198	8,197	8,196	8,20			
0,30	6,918	6,909	6,908	6,907	6,906	6,91			
0,40	6,230	6,223	6,222	6,221	6,220	6,22			
0,50	5,802	5,798	5,7957	5,796	5,795	5,80			
0,60	5,511	5,506	5,505	5,504	5,503	5,50			
0,70	5,300	5,296	5,295	5,294	5,293	5,29			
0,80	5,141	5,138	5,137	5,136	5,135	5,14			
0,90	5,017	5,015	5,014	5,013	5,012	5,01			
1,00	4,919	4,917	4,916	4,915	4,914	4,91			

Apêndice A Análise de Convergência

A.2.4. Geometria Bicônica

Tabela A.22a. Convergência da temperatura adimensional média de mistura, $\theta_{méd,}(Z)$, para o escoamento em dutos bicônicos em função da ordem de truncamento da série e da razão u_0 / v_0 para $Z = 10^{-4}$.

,	Ordem <i>N</i> = <i>M</i> de Truncamento da Série							
u_0/v_0	10	15	20	25	30	Valor Convergido		
0,10	0,9859	0,9876	0,9880	0,9881	0,9882	0,988		
0,20	0,9887	0,9889	0,9889	0,9886	0,9884	0,989		
0,30	0,9900	0,9894	0,9891	0,9887	0,9884	0,989		
0,40	0,9908	0,9897	0,9892	0,9885	0,9882	0,988		
0,50	0,9914	0,9898	0,9892	0,9883	0,9880	0,988		
0,60	0,9919	0,9898	0,9891	0,9881	0,9878	0,988		
0,70	0,9922	0,9899	0,9890	0,9879	0,9876	0,988		
0,80	0,9925	0,9899	0,9890	0,9878	0,9875	0,988		
0,90	0,9926	0,9899	0,9890	0,9877	0,9874	0,988		
1,00	0,9926	0,9900	0,9890	0,9877	0,9874	0,988		

Tabela A.22b. Convergência da temperatura adimensional média de mistura, $\theta_{méd}(Z)$, para o escoamento em dutos bicônicos em função da ordem de truncamento da série e da razão u_0 / v_0 para $Z = 10^{-3}$.

,	Ordem N = M de Truncamento da Série							
u_0/v_0	10	15	20	25	30	Valor Convergido		
0,10	0,9454	0,9451	0,9440	0,9436	0,9436	0,9436		
0,20	0,9471	0,9461	0,9443	0,9436	0,9436	0,9436		
0,30	0,9469	0,9455	0,9438	0,9433	0,9433	0,9433		
0,40	0,9461	0,9446	0,9434	0,9431	0,9431	0,9431		
0,50	0,9452	0,9438	0,9430	0,9428	0,9428	0,9428		
0,60	0,9445	0,9433	0,9427	0,9426	0,9426	0,9426		
0,70	0,9439	0,9429	0,9425	0,9424	0,9424	0,9424		
0,80	0,9435	0,9427	0,9423	0,9422	0,9422	0,9422		
0,90	0,9433	0,9426	0,9423	0,9422	0,9422	0,9422		
1,00	0,9432	0,9426	0,9423	0,9422	0,9422	0,9422		

Tabela A.22c. Convergência da temperatura adimensional média de mistura, $\theta_{méd,}(Z)$, para o escoamento em dutos bicônicos em função da ordem de truncamento da série e da razão u_0 / v_0 para $Z = 10^{-2}$.

u_0/v_0	Ordem N = M de Truncamento da Série							
	10	15	20	25	30	Valor Convergido		
0,10	0,7613	0,7586	0,7558	0,7549	0,7549	0,7549		
0,20	0,7636	0,7618	0,7608	0,7606	0,7606	0,7606		
0,30	0,7704	0,7633	0,7628	0,7626	0,7626	0,7626		
0,40	0,7636	0,7629	0,7626	0,7625	0,7625	0,7625		
0,50	0,7623	0,7619	0,7616	0,7615	0,7615	0,7615		
0,60	0,7611	0,7608	0,7605	0,7605	0,7605	0,7605		
0,70	0,7602	0,7599	0,7597	0,7596	0,7596	0,7596		
0,80	0,7596	0,7593	0,7591	0,7591	0,7591	0,7591		
0,90	0,7592	0,7590	0,7588	0,7588	0,7588	0,7588		
1,00	0,7591	0,7589	0,7587	0,7587	0,7587	0,7587		

,	Ordem N = M de Truncamento da Série							
u_0/v_0	10	15	20	25	30	Valor Convergido		
0,10	0,2164	0,2151	0,2144	0,2141	0,2141	0,2141		
0,20	0,2213	0,2209	0,2206	0,2205	0,2205	0,2205		
0,30	0,2234	0,2231	0,2229	0,2229	0,2229	0,2229		
0,40	0,2218	0,2216	0,2215	0,2215	0,2215	0,2215		
0,50	0,2188	0,2187	0,2186	0,2186	0,2186	0,2186		
0,60	0,2158	0,2157	0,2156	0,2156	0,2156	0,2156		
0,70	0,2135	0,2134	0,2133	0,2133	0,2133	0,2133		
0,80	0,2120	0,2119	0,2118	0,2118	0,2118	0,2118		
0,90	0,2111	0,2110	0,2110	0,2110	0,2110	0,2110		
1,00	0,2109	0,2108	0,2108	0,2107	0,2107	0,2107		

Tabela A.22d. Convergência da temperatura adimensional média de mistura, $\theta_{méd,}(Z)$, para o escoamento em dutos bicônicos em função da ordem de truncamento da série e da razão u_0 / v_0 para $Z = 10^{-1}$.

Tabela A.22e. Convergência do número de *Nusselt* local, $Nu_2(Z)$, para o escoamento em dutos bicônic<u>os em função da ordem de truncamento da série e da razão u_0 / v_0 para $Z = 10^{-3}$.</u>

1	Ordem <i>N</i> = <i>M</i> de Truncamento da Série								
u_0/v_0	10	15	20	25	30	Valor Convergido			
0,10	9,0571	9,4195	9,6244	9,9631	9,9618	9,962			
0,20	8,8032	9,4654	9,7155	9,9208	9,9201	9,920			
0,30	8,9274	9,6774	9,8287	9,7818	9,7810	9,781			
0,40	9,1895	9,8547	9,8895	9,7287	9,7280	9,728			
0,50	9,4927	9,9619	9,9089	9,7371	9,7367	9,737			
0,60	9,7889	10,0036	9,8971	9,7675	9,7671	9,767			
0,70	10,0506	10,0003	9,8762	9,7959	9,7958	9,796			
0,80	10,2564	9,9780	9,8610	9,8166	9,8161	9,816			
0,90	10,3841	9,9591	9,8557	9,8278	9,8274	9,827			
1,00	10,4240	9,9527	9,8545	9,8307	9,8300	9,830			

Tabela A.22f. Convergência do número de *Nusselt* local, $Nu_2(Z)$, para o escoamento em dutos bicônicos em função da ordem de truncamento da série e da razão u_0 / v_0 para $Z = 10^{-2}$.

,	Ordem N = M de Truncamento da Série							
u_0/v_0	10	15	20	25	30	Valor Convergido		
0,10	4,6054	4,7944	4,8487	4,8384	4,8396	4,839		
0,20	4,6275	4,6893	4,6726	4,6600	4,6589	4,659		
0,30	4,6387	4,6145	4,6047	4,6009	4,6000	4,600		
0,40	4,6502	4,6117	4,6061	4,6047	4,6042	4,604		
0,50	4,6671	4,6361	4,6332	4,6316	4,6312	4,631		
0,60	4,6860	4,6650	4,6635	4,6625	4,6620	4,662		
0,70	4,7045	4,6890	4,6889	4,6868	4,6861	4,686		
0,80	4,7179	4,7065	4,7048	4,7034	4,7030	4,703		
0,90	4,7247	4,7156	4,7137	4,7127	4,7121	4,712		
1,00	4,7263	4,7172	4,7160	4,7153	4,7148	4,715		

	Ordem N = M de Truncamento da Série							
u_0/v_0	10	15	20	25	30	Valor Convergido		
0,10	3,1171	3,1545	3,1586	3,1603	3,1612	3,161		
0,20	3,1802	3,1907	3,1915	3,1927	3,1934	3,193		
0,30	3,1934	3,1991	3,2004	3,2010	3,2013	3,201		
0,40	3,2178	3,2222	3,2228	3,2230	3,2234	3,223		
0,50	3,2499	3,2523	3,2528	3,2531	3,2534	3,253		
0,60	3,2798	3,2820	3,2822	3,2827	3,2830	3,283		
0,70	3,3034	3,3050	3,3056	3,3061	3,3062	3,306		
0,80	3,3191	3,3211	3,3213	3,3214	3,3215	3,321		
0,90	3,3270	3,3297	3,3308	3,3305	3,3303	3,330		
1,00	3,3302	3,3318	3,3329	3,3326	3,3323	3,332		

Tabela A.22g. Convergência do número de *Nusselt* local, $Nu_2(Z)$, para o escoamento em dutos bicônicos em função da ordem de truncamento da série e da razão u_0 / v_0 para $Z = 10^{-1}$.

Tabela A.22h. Convergência do número de *Nusselt* local, $Nu_2(Z)$, para o escoamento em dutos bicônicos em função da ordem de truncamento da série e da razão u_0 / v_0 para $Z = 10^0$.

,	Ordem N = M de Truncamento da Série								
u_0/v_0	10	15	20	25	30	Valor Convergido			
0,10	3,0061	3,0402	3,0452	3,0473	3,0486	3,048			
0,20	3,1615	3,1712	3,1733	3,1741	3,1746	3,174			
0,30	3,1887	3,1924	3,1946	3,1952	3,1957	3,195			
0,40	3,2119	3,2165	3,2168	3,2170	3,2173	3,217			
0,50	3,2402	3,2441	3,2447	3,2449	3,2452	3,245			
0,60	3,2668	3,2707	3,2709	3,2712	3,2714	3,271			
0,70	3,2887	3,2899	3,2912	3,2914	3,2915	3,291			
0,80	3,3025	3,3050	3,3051	3,3053	3,3054	3,305			
0,90	3,3101	3,3116	3,3119	3,3120	3,3123	3,312			
1,00	3,3124	3,3141	3,3147	3,3150	3,3158	3,315			

Tabela A.22i. Convergência do número de *Nusselt* médio, $Nu_{2 méd}(Z)$, para o escoamento em dutos bicônicos em função da ordem de truncamento da série e da razão u_0 / v_0 para $Z = 10^{-3}$.

1	Ordem <i>N</i> = <i>M</i> de Truncamento da Série							
u_0/v_0	10	15	20	25	30	Valor Convergido		
0,10	13,440	13,664	13,928	14,440	14,459	14,45		
0,20	13,042	13,553	14,059	14,791	14,805	14,81		
0,30	13,250	13,914	14,517	15,012	15,022	15,02		
0,40	13,659	14,391	14,942	15,053	15,060	15,06		
0,50	14,136	14,865	15,274	15,000	14,991	14,99		
0,60	14,634	15,287	15,504	14,861	14,853	14,86		
0,70	15,049	15,666	15,637	14,721	14,718	14,72		
0,80	15,321	15,966	15,716	14,560	14,589	14,59		
0,90	15,462	16,143	15,768	14,521	14,507	14,51		
1,00	15,503	16,198	15,786	14,492	14,474	14,48		

,	Ordem N = M de Truncamento da Série									
u_0/v_0	10	15	20	25	30	Valor Convergido				
0,10	6,417	6,663	6,794	6,899	6,914	6,91				
0,20	6,416	6,666	6,749	6,714	6,710	6,71				
0,30	6,538	6,673	6,687	6,640	6,633	6,63				
0,40	6,668	6,698	6,679	6,637	6,632	6,63				
0,50	6,778	6,734	6,703	6,659	6,650	6,65				
0,60	6,862	6,769	6,737	6,681	6,666	6,67				
0,70	6,917	6,802	6,768	6,687	6,675	6,68				
0,80	6,946	6,830	6,790	6,684	6,678	6,68				
0,90	6,957	6,847	6,802	6,686	6,679	6,68				
1,00	6,960	6,853	6,807	6,690	6,679	6,68				

Tabela A.22j. Convergência do número de *Nusselt* médio, $Nu_{2 \ méd}(Z)$, para o escoamento em dutos bicônicos em função da ordem de truncamento da série e da razão u_0 / v_0 para $Z = 10^{-2}$.

Tabela A.22k. Convergência do número de *Nusselt* médio, $Nu_{2 \ méd}(Z)$, para o escoamento em dutos bicônicos em função da ordem de truncamento da série e da razão u_0 / v_0 para $Z = 10^{-1}$.

1	Ordem N = M de Truncamento da Série								
u_0/v_0	10	15	20	25	30	Valor Convergido			
0,10	3,763	3,830	3,839	3,837	3,837	3,84			
0,20	3,758	3,766	3,766	3,760	3,758	3,76			
0,30	3,746	3,739	3,737	3,731	3,731	3,73			
0,40	3,767	3,754	3,751	3,746	3,746	3,75			
0,50	3,803	3,787	3,783	3,779	3,778	3,78			
0,60	3,838	3,821	3,817	3,811	3,809	3,81			
0,70	3,865	3,848	3,844	3,837	3,834	3,83			
0,80	3,882	3,867	3,862	3,853	3,851	3,85			
0,90	3,892	3,877	3,872	3,862	3,859	3,86			
1,00	3,894	3,880	3,875	3,865	3,862	3,86			

Tabela A.221. Convergência do número de *Nusselt* médio, $Nu_{2 \ méd}(Z)$, para o escoamento em dutos bicônicos em função da ordem de truncamento da série e da razão u_0 / v_0 para $Z = 10^0$.

1	Ordem N = M de Truncamento da Série							
$\boldsymbol{u}_0 / \boldsymbol{v}_0$	10	15	20	25	30	Valor Convergido		
0,10	3,125	3,135	3,135	3,134	3,134	3,13		
0,20	3,236	3,235	3,234	3,233	3,233	3,23		
0,30	3,253	3,250	3,250	3,249	3,249	3,25		
0,40	3,274	3,271	3,271	3,270	3,270	3,27		
0,50	3,302	3,299	3,299	3,298	3,298	3,30		
0,60	3,329	3,326	3,326	3,325	3,325	3,33		
0,70	3,350	3,347	3,347	3,346	3,346	3,35		
0,80	3,364	3,362	3,361	3,360	3,360	3,36		
0,90	3,371	3,369	3,369	3,368	3,367	3,37		
1,00	3,373	3,372	3,371	3,370	3,370	3,37		

B

Parâmetros Hidrodinâmicos

B.1. Geometria de Setor Anular

Tabela B	.1. Parâmetros	hidrodinâmicos	para o	escoamento	em dutos	de setores	anulares of	$\operatorname{com} \Theta$	= 5°.	

r	f Re	W _{méd}	W [*] _{máx}	r _{máx}	$K(\infty)$	L_{hy}^+
0,01	12,530	0,03990	2,6842	0,9351	2,7048	0,06983
0,05	13,382	0,03736	2,6678	0,9150	2,6402	0,06496
0,10	14,429	0,03465	2,6391	0,9236	2,5698	0,05882
0,15	15,408	0,03245	2,6080	0,9141	2,4691	0,05407
0,20	16,299	0,03068	2,5634	0,9227	2,3403	0,04955
0,25	17,090	0,02926	2,5093	0,9130	2,1930	0,04540
0,30	17,759	0,02815	2,4531	0,9176	2,0296	0,04206
0,35	18,302	0,02732	2,3816	0,9204	1,8627	0,03837
0,40	18,712	0,02672	2,3123	0,9160	1,7006	0,03535
0,45	18,983	0,02634	2,2392	0,9192	1,5507	0,03244
0,50	19,112	0,02616	2,1672	0,9170	1,4192	0,02979
0,55	19,092	0,02619	2,0969	0,9173	1,3116	0,02731
0,60	18,918	0,02643	2,0332	0,9182	1,2322	0,02513
0,65	18,578	0,02691	1,9785	0,9175	1,1856	0,02326
0,70	18,058	0,02769	1,9388	0,9176	1,1764	0,02191
0,75	17,337	0,02884	1,9234	0,9178	1,2103	0,02147
0,80	16,404	0,03048	1,9477	0,9197	1,2924	0,02288
0,85	15,300	0,03268	2,0167	0,9304	1,4177	0,02695
0,90	14,336	0,03488	2,0583	0,9506	1,5379	0,02962
0,95	15,039	0,03325	1,9615	0,9749	1,4077	0,02393
1,00	24,000	0,02083	1,5000	1,0000	0,6860	0,00588

r [*]	f Re	W _{méd}	$W^*_{m \acute{a} x}$	r _{máx}	$K(\infty)$	L_{hy}^+
0,01	12,727	0,03929	2,5336	0,8695	2,4257	0,05880
0,05	13,527	0,03696	2,5146	0,8672	2,3957	0,05410
0,10	14,463	0,03457	2,4922	0,8695	2,3365	0,04969
0,15	15,300	0,03268	2,4633	0,8674	2,2457	0,04611
0,20	16,018	0,03121	2,4240	0,8692	2,1294	0,04286
0,25	16,606	0,03011	2,3766	0,8702	1,9967	0,03992
0,30	17,050	0,02933	2,3204	0,8694	1,8558	0,03707
0,35	17,348	0,02882	2,2630	0,8707	1,7174	0,03464
0,40	17,496	0,02858	2,2030	0,8716	1,5907	0,03233
0,45	17,497	0,02858	2,1451	0,8696	1,4836	0,03026
0,50	17,355	0,02881	2,0920	0,8698	1,4028	0,02843
0,55	17,075	0,02928	2,0477	0,8698	1,3533	0,02694
0,60	16,667	0,03000	2,0172	0,8704	1,3378	0,02597
0,65	16,147	0,03097	2,0061	0,8713	1,3561	0,02583
0,70	15,548	0,03216	2,0185	0,8755	1,4035	0,02687
0,75	14,928	0,03349	2,0499	0,8859	1,4684	0,02903
0,80	14,411	0,03470	2,0839	0,9032	1,5294	0,03146
0,85	14,249	0,03509	2,0949	0,9254	1,5490	0,03228
0,90	14,967	0,03341	2,0391	0,9497	1,4571	0,02841
0,95	17,611	0,02839	1,8228	0,9749	1,1416	0,01677
1,00	24,000	0,02083	1,5000	1,0000	0,6860	0,00588

Tabela B.2. Parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 10^{\circ}$.

Tabela B.3. Parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 15^{\circ}$.

r*	f Re	W _{méd}	$W^*_{m \acute{a} x}$	r _{máx}	$K(\infty)$	L^+_{hy}
0,01	12,930	0,03867	2,4215	0,8354	2,2436	0,05066
0,05	13,665	0,03659	2,4179	0,8331	2,2209	0,04803
0,10	14,496	0,03449	2,4007	0,8339	2,1662	0,04479
0,15	15,204	0,03289	2,3727	0,8344	2,0819	0,04189
0,20	15,773	0,03170	2,3353	0,8340	1,9755	0,03928
0,25	16,193	0,03088	2,2912	0,8341	1,8572	0,03694
0,30	16,461	0,03037	2,2421	0,8348	1,7371	0,03478
0,35	16,578	0,03016	2,1918	0,8322	1,6263	0,03284
0,40	16,552	0,03021	2,1436	0,8335	1,5341	0,03113
0,45	16,395	0,03050	2,1011	0,8335	1,4677	0,02969
0,50	16,123	0,03101	2,0684	0,8337	1,4311	0,02864
0,55	15,760	0,03173	2,0496	0,8350	1,4243	0,02818
0,60	15,337	0,03260	2,0473	0,8381	1,4433	0,02850
0,65	14,898	0,03356	2,0590	0,8471	1,4793	0,02954
0,70	14,509	0,03446	2,0796	0,8593	1,5198	0,03110
0,75	14,266	0,03505	2,0946	0,8778	1,5476	0,03224
0,80	14,317	0,03492	2,0899	0,9001	1,5404	0,03191
0,85	14,896	0,03357	2,0450	0,9245	1,4664	0,02879
0,90	16,350	0,03058	1,9256	0,9496	1,2843	0,02177
0,95	19,177	0,02607	1,7102	0,9749	0,9916	0,01217
1,00	24,000	0,02083	1,5000	1,0000	0,6860	0,00588

r	f Re	W _{méd}	$W^*_{m \acute{a} x}$	r _{máx}	$K(\infty)$	L_{hy}^+
0,01	13,466	0,03713	2,2693	0,7545	1,9189	0,04142
0,05	14,020	0,03566	2,2648	0,7558	1,9017	0,03972
0,10	14,576	0,03430	2,2483	0,7548	1,8546	0,03774
0,15	14,969	0,03340	2,2236	0,7550	1,7857	0,03605
0,20	15,200	0,03289	2,1931	0,7545	1,7074	0,03458
0,25	15,281	0,03272	2,1609	0,7549	1,6331	0,03332
0,30	15,236	0,03282	2,1313	0,7552	1,5739	0,03230
0,35	15,095	0,03312	2,1080	0,7562	1,5362	0,03159
0,40	14,894	0,03357	2,0936	0,7587	1,5204	0,03127
0,45	14,671	0,03408	2,0886	0,7636	1,5218	0,03136
0,50	14,467	0,03456	2,0905	0,7723	1,5327	0,03175
0,55	14,323	0,03491	2,0945	0,7857	1,5439	0,03217
0,60	14,283	0,03501	2,0948	0,8036	1,5466	0,03223
0,65	14,393	0,03474	2,0857	0,8248	1,5322	0,03158
0,70	14,703	0,03401	2,0616	0,8482	1,4926	0,02988
0,75	15,266	0,03275	2,0164	0,8730	1,4205	0,02694
0,80	16,141	0,03098	1,9438	0,9015	1,3106	0,02273
0,85	17,384	0,02876	1,8405	0,9240	1,1653	0,01758
0,90	19,058	0,02624	1,7166	0,9496	1,0001	0,01242
0,95	21,288	0,02349	1,5987	0,9749	0,8362	0,00845
1,00	24,000	0,02083	1,5000	1,0000	0,6860	0,00588

Tabela B.4. Parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 30^{\circ}$.

Tabela B.5. Parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 45^{\circ}$.

r	f Re	W _{méd}	W^*_{max}	r _{máx}	$K(\infty)$	L_{hy}^+
0,01	13,901	0,03597	2,1932	0,7014	1,7497	0,03706
0,05	14,297	0,03497	2,1880	0,7007	1,7343	0,03590
0,10	14,633	0,03417	2,1734	0,7006	1,6935	0,03468
0,15	14,801	0,03378	2,1530	0,7003	1,6412	0,03368
0,20	14,830	0,03372	2,1316	0,7006	1,5929	0,03289
0,25	14,760	0,03388	2,1137	0,7010	1,5590	0,03233
0,30	14,635	0,03416	2,1020	0,7043	1,5420	0,03205
0,35	14,499	0,03449	2,0966	0,7109	1,5383	0,03203
0,40	14,392	0,03474	2,0952	0,7196	1,5407	0,03212
0,45	14,347	0,03485	2,0939	0,7339	1,5418	0,03211
0,50	14,392	0,03474	2,0886	0,7513	1,5346	0,03175
0,55	14,553	0,03436	2,0756	0,7724	1,5140	0,03082
0,60	14,850	0,03367	2,0520	0,7959	1,4760	0,02920
0,65	15,303	0,03267	2,0152	0,8207	1,4180	0,02684
0,70	15,926	0,03140	1,9631	0,8463	1,3388	0,02378
0,75	16,735	0,02988	1,8948	0,8722	1,2402	0,02017
0,80	17,741	0,02818	1,8125	0,8992	1,1276	0,01631
0,85	18,955	0,02638	1,7235	0,9240	1,0093	0,01268
0,90	20,398	0,02451	1,6388	0,9496	0,8937	0,00971
0,95	22,107	0,02262	1,5643	0,9749	0,7853	0,00748
1,00	24,000	0,02083	1,5000	1,0000	0,6860	0,00588

r*	f Re	W _{méd}	$W^*_{m \acute{a} x}$	r _{máx}	$K(\infty)$	L_{hy}^+
0,01	14,256	0,03507	2,1492	0,6581	1,6508	0,03452
0,05	14,518	0,03444	2,1439	0,6578	1,6368	0,03374
0,10	14,682	0,03406	2,1313	0,6578	1,6038	0,03301
0,15	14,704	0,03400	2,1167	0,6584	1,5702	0,03248
0,20	14,641	0,03415	2,1048	0,6602	1,5476	0,03215
0,25	14,546	0,03437	2,0976	0,6641	1,5378	0,03200
0,30	14,467	0,03456	2,0939	0,6720	1,5356	0,03195
0,35	14,438	0,03463	2,0908	0,6841	1,5338	0,03182
0,40	14,486	0,03452	2,0838	0,6931	1,5262	0,03134
0,45	14,626	0,03419	2,0732	0,7204	1,5080	0,03060
0,50	14,873	0,03362	2,0533	0,7432	1,4765	0,02924
0,55	15,233	0,03282	2,0237	0,7677	1,4301	0,02733
0,60	15,711	0,03182	1,9835	0,7933	1,3686	0,02491
0,65	16,312	0,03065	1,9323	0,8194	1,2932	0,02208
0,70	17,034	0,02935	1,8710	0,8458	1,2069	0,01899
0,75	17,879	0,02797	1,8022	0,8721	1,1139	0,01586
0,80	18,847	0,02653	1,7309	0,8982	1,0193	0,01296
0,85	19,940	0,02508	1,6629	0,9240	0,9274	0,01050
0,90	21,169	0,02362	1,6020	0,9496	0,8407	0,00857
0,95	22,560	0,02216	1,5476	0,9749	0,7602	0,00704
1,00	24,000	0,02083	1,5000	1,0000	0,6860	0,00588

Tabela B.6. Parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 60^{\circ}$.

Tabela B.7. Parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 90^{\circ}$.

r*	f Re	W _{méd}	$W^*_{m \acute{a} x}$	r _{máx}	$K(\infty)$	L^+_{hy}
0,01	14,800	0,03378	2,1023	0,5948	1,5782	0,03111
0,05	14,849	0,03367	2,0984	0,5946	1,5382	0,03140
0,10	14,804	0,03377	2,0919	0,5957	1,5243	0,03127
0,15	14,729	0,03395	2,0871	0,5996	1,5177	0,03120
0,20	14,687	0,03404	2,0833	0,6080	1,5146	0,03107
0,25	14,712	0,03399	2,0777	0,6210	1,5083	0,03073
0,30	14,821	0,03374	2,0672	0,6394	1,4934	0,03002
0,35	15,020	0,03329	2,0498	0,6571	1,4674	0,02887
0,40	15,306	0,03267	2,0254	0,6825	1,4297	0,02732
0,45	15,678	0,03189	1,9930	0,7122	1,3809	0,02537
0,50	16,129	0,03100	1,9534	0,7376	1,3225	0,02315
0,55	16,654	0,03002	1,9073	0,7647	1,2568	0,02073
0,60	17,247	0,02899	1,8562	0,7947	1,1863	0,01825
0,65	17,904	0,02793	1,8022	0,8188	1,1138	0,01584
0,70	18,619	0,02685	1,7480	0,8456	1,0420	0,01361
0,75	19,389	0,02579	1,6960	0,8720	0,9727	0,01165
0,80	20,213	0,02474	1,6482	0,8981	0,9070	0,01001
0,85	21,090	0,02371	1,6053	0,9240	0,8456	0,00867
0,90	22,031	0,02270	1,5671	0,9496	0,7886	0,00757
0,95	22,993	0,02175	1,5310	0,9749	0,7357	0,00661
1,00	24,000	0,02083	1,5000	1,0000	0,6860	0,00588

r*	f Re	W _{méd}	$W^*_{m \acute{a} x}$	r _{máx}	$K(\infty)$	L^+_{hy}
0,01	15,190	0,03292	2,0801	0,5475	1,5010	0,03005
0,05	15,105	0,03310	2,0779	0,5467	1,4968	0,03014
0,10	15,007	0,03332	2,0751	0,5530	1,4944	0,03018
0,15	14,988	0,03336	2,0703	0,5636	1,4901	0,02996
0,20	15,066	0,03319	2,0603	0,5803	1,4770	0,02933
0,25	15,242	0,03280	2,0433	0,6017	1,4525	0,02825
0,30	15,505	0,03225	2,0189	0,6263	1,4163	0,02676
0,35	15,845	0,03156	1,9875	0,6528	1,3711	0,02491
0,40	16,251	0,03077	1,9500	0,6802	1,3161	0,02287
0,45	16,713	0,02992	1,9078	0,7081	1,2566	0,02069
0,50	17,225	0,02903	1,8623	0,7362	1,1942	0,01849
0,55	17,778	0,02812	1,8152	0,7639	1,1311	0,01637
0,60	18,367	0,02722	1,7684	0,7915	1,0691	0,01440
0,65	18,988	0,02633	1,7234	0,8187	1,0095	0,01265
0,70	19,637	0,02546	1,6814	0,8455	0,9531	0,01113
0,75	20,312	0,02462	1,6433	0,8720	0,9002	0,00985
0,80	21,012	0,02380	1,6089	0,8981	0,8509	0,00878
0,85	21,736	0,02300	1,5780	0,9240	0,8052	0,00788
0,90	22,499	0,02222	1,5505	0,9496	0,7631	0,00712
0,95	23,309	0,02145	1,5226	0,9749	0,7239	0,00638
1,00	24,000	0,02083	1,5000	1,0000	0,6860	0,00588

Tabela B.8. Parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 120^{\circ}$.

Tabela B.9. Parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 150^{\circ}$.

r*	f Re	W _{méd}	W [*] _{máx}	r _{máx}	$K(\infty)$	L_{hy}^+
0,01	15,479	0,03230	2,0682	0,5099	1,4770	0,02908
0,05	15,339	0,03260	2,0667	0,5131	1,4764	0,02925
0,10	15,288	0,03271	2,0614	0,5233	1,4716	0,02907
0,15	15,374	0,03252	2,0485	0,5398	1,4549	0,02832
0,20	15,572	0,03211	2,0273	0,5656	1,4247	0,02706
0,25	15,859	0,03153	1,9984	0,5920	1,3830	0,02539
0,30	16,216	0,03083	1,9632	0,6203	1,3329	0,02345
0,35	16,628	0,03007	1,9235	0,6492	1,2773	0,02139
0,40	17,082	0,02927	1,8809	0,6783	1,2188	0,01930
0,45	17,571	0,02846	1,8369	0,7071	1,1598	0,01728
0,50	18,088	0,02764	1,7932	0,7357	1,1020	0,01539
0,55	18,626	0,02684	1,7511	0,7641	1,0465	0,01369
0,60	19,181	0,02607	1,7116	0,7915	0,9911	0,01223
0,65	19,752	0,02531	1,6754	0,8187	0,9450	0,01091
0,70	20,335	0,02459	1,6425	0,8455	0,8893	0,00994
0,75	20,929	0,02389	1,6129	0,8723	0,8569	0,00889
0,80	21,533	0,02322	1,5863	0,8981	0,8176	0,00811
0,85	22,149	0,02257	1,5623	0,9240	0,7813	0,00744
0,90	22,795	0,02193	1,5410	0,9496	0,7482	0,00687
0,95	23,491	0,02128	1,5174	0,9749	0,7172	0,00623
1,00	24,000	0,02083	1,5000	1,0000	0,6860	0,00588

r	f Re	W _{méd}	W^*_{max}	r _{máx}	$K(\infty)$	L_{hy}^+
0,01	15,704	0,03184	2,0612	0,4807	1,4635	0,02842
0,05	15,575	0,03210	2,0579	0,4869	1,4611	0,02847
0,10	15,616	0,03202	2,0445	0,5048	1,4443	0,02779
0,15	15,806	0,03163	2,0208	0,5294	1,4115	0,02645
0,20	16,095	0,03107	1,9888	0,5574	1,3665	0,02468
0,25	16,455	0,03039	1,9511	0,5872	1,3139	0,02268
0,30	16,863	0,02965	1,9098	0,6178	1,2572	0,02061
0,35	17,307	0,02889	1,8668	0,6477	1,1994	0,01857
0,40	17,776	0,02813	1,8239	0,6776	1,1425	0,01665
0,45	18,264	0,02738	1,7824	0,7068	1,0878	0,01491
0,50	18,764	0,02665	1,7431	0,7356	1,0362	0,01335
0,55	19,275	0,02594	1,7069	0,7638	0,9880	0,01200
0,60	19,793	0,02526	1,6739	0,7915	0,9433	0,01085
0,65	20,315	0,02461	1,6442	0,8187	0,9019	0,00986
0,70	20,841	0,02399	1,6175	0,8455	0,8636	0,00903
0,75	21,369	0,02340	1,5934	0,8720	0,8283	0,00831
0,80	21,900	0,02283	1,5716	0,8981	0,7957	0,00770
0,85	22,436	0,02229	1,5521	0,9240	0,7657	0,00717
0,90	23,000	0,02174	1,5350	0,9496	0,7387	0,00671
0,95	23,486	0,02129	1,5138	0,9749	0,7132	0,00616
1,00	24,000	0,02083	1,5000	1,0000	0,6860	0,00588

Tabela B.10. Parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 180^{\circ}$.

Tabela B.11. Parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com Θ = 210°.

r	f Re	W _{méd}	$W^*_{m \acute{a} x}$	r _{máx}	$K(\infty)$	L_{hy}^+
0,01	15,888	0,03147	2,0566	0,4558	1,4549	0,02793
0,05	15,818	0,03161	2,0477	0,4675	1,4446	0,02763
0,10	15,960	0,03133	2,0236	0,4917	1,4121	0,02636
0,15	16,237	0,03079	1,9894	0,5212	1,3649	0,02452
0,20	16,591	0,03014	1,9492	0,5524	1,3098	0,02245
0,25	16,994	0,02942	1,9062	0,5846	1,2515	0,02033
0,30	17,429	0,02869	1,8624	0,6161	1,1932	0,01829
0,35	17,883	0,02796	1,8196	0,6471	1,1368	0,01641
0,40	18,350	0,02725	1,7789	0,6773	1,0835	0,01473
0,45	18,825	0,02656	1,7411	0,7067	1,0339	0,01325
0,50	19,304	0,02590	1,7066	0,7356	0,9880	0,01197
0,55	19,785	0,02527	1,6755	0,7641	0,9457	0,01089
0,60	20,266	0,02467	1,6476	0,7915	0,9069	0,00996
0,65	20,746	0,02410	1,6226	0,8187	0,8712	0,00918
0,70	21,223	0,02356	1,6000	0,8456	0,8383	0,00850
0,75	21,699	0,02304	1,5797	0,8720	0,8080	0,00792
0,80	22,172	0,02255	1,5614	0,8982	0,7801	0,00742
0,85	22,648	0,02208	1,5450	0,9240	0,7547	0,00698
0,90	23,152	0,02160	1,5311	0,9496	0,7321	0,00661
0,95	23,637	0,02115	1,5111	0,9749	0,7106	0,00606
1,00	24,000	0,02083	1,5000	1,0000	0,6860	0,00588

r [*]	f Re	W _{méd}	W^*_{max}	r _{máx}	$K(\infty)$	L_{hy}^+
0,01	16,047	0,03116	2,0526	0,4340	1,4479	0,02750
0,05	16,063	0,03113	2,0353	0,4523	1,4253	0,02673
0,10	16,301	0,03067	1,9999	0,4830	1,3772	0,02488
0,15	16,645	0,03004	1,9571	0,5148	1,3190	0,02270
0,20	17,043	0,02934	1,9116	0,5500	1,2579	0,02048
0,25	17,472	0,02862	1,8660	0,5833	1,1976	0,01838
0,30	17,917	0,02791	1,8220	0,6178	1,1403	0,01646
0,35	18,371	0,02722	1,7812	0,6468	1,0868	0,01478
0,40	18,828	0,02656	1,7436	0,6771	1,0376	0,01331
0,45	19,286	0,02593	1,7098	0,7066	0,9926	0,01207
0,50	19,742	0,02533	1,6795	0,7356	0,9515	0,01101
0,55	20,195	0,02476	1,6524	0,7638	0,9140	0,01011
0,60	20,643	0,02422	1,6283	0,7915	0,8797	0,00935
0,65	21,085	0,02371	1,6067	0,8187	0,8482	0,00869
0,70	21,523	0,02323	1,5873	0,8455	0,8194	0,00813
0,75	21,955	0,02277	1,5697	0,8700	0,7929	0,00764
0,80	22,382	0,02234	1,5539	0,8982	0,7686	0,00722
0,85	22,810	0,02192	1,5399	0,9240	0,7466	0,00685
0,90	23,269	0,02149	1,5284	0,9496	0,7275	0,00654
0,95	23,692	0,02110	1,5090	0,9749	0,7089	0,00600
1,00	24,000	0,02083	1,5000	1,0000	0,6860	0,00588

Tabela B.12. Parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 240^{\circ}$.

Tabela B.13. Parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 270^{\circ}$.

r	f Re	W _{méd}	W [*] _{máx}	r _{máx}	$K(\infty)$	L_{hy}^+
0,01	16,191	0,03088	2,0486	0,4175	1,4410	0,02711
0,05	16,306	0,03066	2,0208	0,4416	1,4037	0,02576
0,10	16,627	0,03007	1,9750	0,4769	1,3418	0,02344
0,15	17,021	0,02938	1,9257	0,5184	1,2760	0,02104
0,20	17,449	0,02865	1,8770	0,5485	1,2119	0,01879
0,25	17,891	0,02795	1,8309	0,5825	1,1519	0,01677
0,30	18,338	0,02727	1,7885	0,6150	1,0968	0,01502
0,35	18,786	0,02662	1,7501	0,6466	1,0466	0,01352
0,40	19,231	0,02600	1,7159	0,6770	1,0013	0,01226
0,45	19,671	0,02542	1,6855	0,7066	0,9602	0,01119
0,50	20,104	0,02487	1,6587	0,7356	0,9231	0,01030
0,55	20,530	0,02435	1,6348	0,7638	0,8893	0,00954
0,60	20,949	0,02387	1,6136	0,7915	0,8586	0,00889
0,65	21,360	0,02341	1,5946	0,8187	0,8305	0,00834
0,70	21,763	0,02297	1,5775	0,8455	0,8048	0,00785
0,75	22,159	0,02256	1,5621	0,8720	0,7813	0,00743
0,80	22,549	0,02217	1,5482	0,8992	0,7598	0,00706
0,85	22,939	0,02180	1,5361	0,9240	0,7404	0,00675
0,90	23,363	0,02140	1,5265	0,9495	0,7222	0,00651
0,95	23,726	0,02107	1,5073	0,9749	0,7078	0,00594
1,00	24,000	0,02083	1,5000	1,0000	0,6860	0,00588

r*	f Re	W _{méd}	$W^*_{m \acute{a} x}$	r _{máx}	$K(\infty)$	L_{hy}^+
0,01	16,324	0,03063	2,0436	0,3981	1,4334	0,02669
0,05	16,541	0,03023	2,0048	0,4332	1,3805	0,02477
0,10	16,932	0,02953	1,9500	0,4732	1,3075	0,02207
0,15	17,364	0,02880	1,8962	0,5113	1,2370	0,01956
0,20	17,811	0,02807	1,8462	0,5482	1,1719	0,01736
0,25	18,259	0,02738	1,8009	0,5821	1,1133	0,01547
0,30	18,704	0,02673	1,7605	0,6148	1,0608	0,01388
0,35	19,143	0,02612	1,7250	0,6466	1,0139	0,01256
0,40	19,574	0,02554	1,6938	0,6771	0,9719	0,01146
0,45	19,995	0,02501	1,6664	0,7066	0,9342	0,01054
0,50	20,408	0,02450	1,6423	0,7356	0,9003	0,00976
0,55	20,810	0,02403	1,6210	0,7641	0,8696	0,00911
0,60	21,203	0,02358	1,6021	0,7915	0,8417	0,00855
0,65	21,587	0,02316	1,5851	0,8187	0,8164	0,00806
0,70	21,960	0,02277	1,5698	0,8456	0,7932	0,00764
0,75	22,326	0,02240	1,5560	0,8720	0,7720	0,00727
0,80	22,684	0,02204	1,5438	0,8982	0,7528	0,00695
0,85	23,043	0,02170	1,5332	0,9240	0,7357	0,00667
0,90	23,440	0,02133	1,5251	0,9495	0,7218	0,00644
0,95	23,784	0,02102	1,5060	0,9749	0,7070	0,00590
1,00	24,000	0,02083	1,5000	1,0000	0,6860	0,00588

Tabela B.14. Parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 300^{\circ}$.

Tabela B.15. Parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com Θ = 330°.

r	f Re	W _{méd}	$W^*_{m \acute{a} x}$	r _{máx}	$K(\infty)$	L_{hy}^+
0,01	16,451	0,03039	2,0379	0,3981	1,4247	0,02626
0,05	16,765	0,02982	1,9878	0,4270	1,3569	0,02378
0,10	17,215	0,02904	1,9258	0,4700	1,2753	0,02082
0,15	17,675	0,02829	1,8692	0,5100	1,2020	0,01827
0,20	18,133	0,02757	1,8190	0,5469	1,1373	0,01615
0,25	18,583	0,02691	1,7753	0,5819	1,0806	0,01441
0,30	19,023	0,02628	1,7371	0,6178	1,0308	0,01297
0,35	19,452	0,02570	1,7044	0,6457	0,9868	0,01180
0,40	19,868	0,02517	1,6758	0,6770	0,9478	0,01083
0,45	20,273	0,02466	1,6510	0,7066	0,9130	0,01002
0,50	20,666	0,02419	1,6292	0,7356	0,8817	0,00935
0,55	21,047	0,02376	1,6099	0,7638	0,8536	0,00877
0,60	21,417	0,02335	1,5928	0,7915	0,8281	0,00828
0,65	21,776	0,02296	1,5774	0,8187	0,8049	0,00784
0,70	22,125	0,02260	1,5636	0,8455	0,7838	0,00747
0,75	22,465	0,02226	1,5512	0,8723	0,7645	0,00714
0,80	22,797	0,02193	1,5402	0,8982	0,7471	0,00686
0,85	23,130	0,02162	1,5309	0,9240	0,7319	0,00661
0,90	23,453	0,02132	1,5241	0,9495	0,7199	0,00643
0,95	23,754	0,02105	1,5048	0,9749	0,7055	0,00588
1,00	24,000	0,02083	1,5000	1,0000	0,6860	0,00588

r*	f Re	W _{méd}	W^*_{max}	r _{máx}	$K(\infty)$	L_{hy}^+
0,01	16,532	0,03024	2,0341	0,3837	1,4184	0,02600
0,05	16,908	0,02957	1,9762	0,4237	1,3410	0,02313
0,10	17,391	0,02875	1,9102	0,4687	1,2551	0,02004
0,15	17,866	0,02799	1,8526	0,5087	1,1808	0,01751
0,20	18,329	0,02728	1,8029	0,5469	1,1169	0,01546
0,25	18,779	0,02663	1,7603	0,5819	1,0616	0,01381
0,30	19,214	0,02602	1,7239	0,6146	1,0135	0,01247
0,35	19,635	0,02546	1,6927	0,6467	0,9713	0,01138
0,40	20,043	0,02495	1,6657	0,6770	0,9340	0,01048
0,45	20,437	0,02447	1,6423	0,7066	0,9008	0,00974
0,50	20,818	0,02402	1,6218	0,7356	0,8711	0,00912
0,55	21,186	0,02360	1,6036	0,7632	0,8444	0,00858
0,60	21,542	0,02321	1,5875	0,7915	0,8203	0,00812
0,65	21,887	0,02284	1,5730	0,8187	0,7983	0,00772
0,70	22,221	0,02250	1,5601	0,8456	0,7784	0,00737
0,75	22,545	0,02218	1,5485	0,8720	0,7603	0,00707
0,80	22,862	0,02187	1,5383	0,8992	0,7440	0,00681
0,85	23,180	0,02157	1,5297	0,9240	0,7298	0,00658
0,90	23,488	0,02129	1,5236	0,9495	0,7190	0,00641
0,95	23,763	0,02104	1,5042	0,9749	0,7053	0,00586
1,00	24,000	0,02083	1,5000	1,0000	0,6860	0,00588

Tabela B.16. Parâmetros hidrodinâmicos para o escoamento em dutos de setores anulares com $\Theta = 350^{\circ}$.

B.2. Geometria de Setor Circular

Θ	f Re	W _{méd}	W [*] _{máx} r _{máx}		$K(\infty)$	L_{hy}^+
0°	12,000	0,04167	3,0000	-	2,9711	0,10477
2°	12,107	0,04130	2,8092	0,9572	2,8188	0,08410
5°	12,291	0,04068	2,7232	0,9339	2,7259	0,07505
8° 10°	12,410	0,04029	2,5678	0,8872	2,4957	0,06241
10	12,504	0,03999	2,0102	0,0099	2,4110	0,05659
15 20º	12,720	0,03920	2,4249	0,0004	2,2373	0,05191
20 25°	13,130	0.03808	2,3088	0,000+ 0.7777	2,1040	0.04436
<u> </u>	13,310	0.03757	2,2701	0,7551	1,9177	0,04199
35°	13,482	0,03709	2,2387	0,7350	1,8524	0,04004
40°	13,635	0,03667	2,2142	0,7168	1,7952	0,03864
45°	13,782	0,03628	2,1934	0,7003	1,7494	0,03740
50°	13,920	0,03592	2,1761	0,6850	1,7109	0,03636
55°	14,050	0,03559	2,1615	0,6710	1,6784	0,03547
60°	14,171	0,03528	2,1490	0,6579	1,6508	0,03471
65° 70°	14,280	0,03500	2,1383	0,6456	1,6271	0,03404
70 75°	14,394	0,03449	2,1291	0,0341	1,5890	0.03293
80°	14.592	0.03427	2,1210	0.6131	1,5736	0.03247
85°	14,684	0,03405	2,1077	0,6039	1,5607	0,03204
90°	14,769	0,03385	2,1023	0,5943	1,5484	0,03168
100°	14,928	0,03349	2,0932	0,5772	1,5288	0,03103
110°	15,071	0,03318	2,0860	0,5616	1,5134	0,03049
120°	15,200	0,03289	2,0801	0,5473	1,5012	0,03003
130	15,318	0,03264	2,0754	0,5341	1,4914	0,02964
140° 150°	15,425	0,03241	2,0715	0,5218	1,4834	0,02930
160°	15,522	0.03203	2,0002	0.4997	1,4715	0.02874
170°	15,692	0,03186	2,0632	0,4897	1,4670	0,02851
180°	15,767	0,03171	2,0613	0,4802	1,4632	0,02831
190°	15,836	0,03157	2,0596	0,4713	1,4600	0,02813
200°	15,899	0,03145	2,0582	0,4629	1,4573	0,02797
210°	15,957	0,03133	2,0570	0,4549	1,4549	0,02783
220°	16,011	0,03123	2,0559	0,4473	1,4528	0,02770
230	10,001	0,03113	2,0049	0,4401	1,4510	0,02756
240 250°	16,100	0,03104	2,0541	0,4332	1,4494 1 <i>1</i> / 182	0,02747
250°	16,191	0.03088	2,0526	0,4202	1,4466	0.02728
270°	16,228	0,03081	2,0520	0,4143	1,4454	0,02720
280°	16,262	0,03075	2,0515	0,4091	1,4445	0,02712
290°	16,295	0,03068	2,0509	0,4030	1,4432	0,02705
300°	16,325	0,03063	2,0505	0,3976	1,4423	0,02699
310°	16,353	0,03056	2,0500	0,3924	1,4415	0,02692
320°	16,380	0,03053	2,0496	0,3876	1,4404	0,02687
330°	16,405	0,03048	2,0493	0,3826	1,4397	0,02682
340° 350°	10,428	0,03044	2,0489 2.0485	U,3/82 0 37/2	1,4300 1 /220	0,02677
360°	16.470	0.03036	2.0482	0.3695	1.4372	0.02668

Tabela B.17. Parâmetros hidrodinâmicos para o escoamento em dutos de setores circulares.

B.3. Geometria Anular Concêntrica

r*	f Re	W _{méd}	W [*] _{máx}	r _{máx}	$K(\infty)$	L_{hy}^+
0,00	18,708	0,02673	1,7233	0,2512	1,0727	0,01199
0,01	20,028	0,02496	1,6613	0,3295	0,9734	0,00982
0,05	21,567	0,02318	1,5983	0,4080	0,8644	0,00800
0,10	22,343	0,02238	1,5673	0,4637	0,8088	0,00725
0,15	22,790	0,02194	1,5494	0,5076	0,7762	0,00685
0,20	23,088	0,02166	1,5374	0,5461	0,7542	0,00656
0,25	23,302	0,02146	1,5287	0,5815	0,7382	0,00642
0,30	23,461	0,02131	1,5222	0,6147	0,7264	0,00629
0,35	23,583	0,02120	1,5172	0,6465	0,7173	0,00620
0,40	23,678	0,02112	1,5133	0,6770	0,7101	0,00612
0,45	23,753	0,02105	1,5102	0,7067	0,7044	0,00607
0,50	23,813	0,02100	1,5078	0,7355	0,7000	0,00602
0,55	23,860	0,02096	1,5058	0,7638	0,6964	0,00598
0,60	23,879	0,02094	1,5043	0,7915	0,6935	0,00596
0,65	23,927	0,02090	1,5031	0,8187	0,6913	0,00594
0,70	23,950	0,02088	1,5021	0,8455	0,6896	0,00592
0,75	23,967	0,02086	1,5014	0,8720	0,6882	0,00590
0,80	23,980	0,02085	1,5008	0,8981	0,6872	0,00589
0,85	23,990	0,02084	1,5004	0,9240	0,6865	0,00589
0,90	23,996	0,02084	1,5002	0,9496	0,6863	0,00588
0,95	23,999	0,02083	1,5001	0,9749	0,6861	0,00588
1,00	24,000	0,02083	1,5000	0,9950	0,6860	

Tabela B.18. Parâmetros hidrodinâmicos para o escoamento em dutos anulares concêntricos.

B.4. Geometria Bicônica

Tabela B.19. Parâmetros hidrodinâmicos para o escoamento em dutos bicônicos.

u_0/v_0	f Re	W _{méd}	$W^*_{m \acute{a} x}$	U _{máx}	V _{máx}	$K(\infty)$	L_{hy}^+
0,01	17,699	0,02825	2,5788	9,7500	0,0000	1,9308	0,05254
0,05	16,960	0,02948	2,2507	4,0249	0,0000	1,7407	0,03427
0,10	16,254	0,03076	2,1678	2,7077	0,0000	1,6324	0,03179
0,15	15,754	0,03174	2,1256	2,1120	0,0000	1,5699	0,03092
0,20	15,386	0,03250	2,1036	1,7583	0,0000	1,5355	0,03070
0,25	15,193	0,03291	2,0915	1,5211	0,0000	1,5165	0,03057
0,30	15,104	0,03310	2,0847	1,3465	0,0000	1,5051	0,03047
0,35	15,084	0,03315	2,0796	1,2073	0,0000	1,4970	0,03029
0,40	15,107	0,03310	2,0751	1,1068	0,0000	1,4903	0,03005
0,45	15,153	0,03300	2,0724	0,9992	0,0000	1,4843	0,02987
0,50	15,210	0,03287	2,0693	0,9148	0,0000	1,4789	0,02964
0,55	15,269	0,03275	2,0667	0,8364	0,0000	1,4740	0,02943
0,60	15,325	0,03263	2,0642	0,7645	0,0000	1,4696	0,02922
0,65	15,375	0,03252	2,0622	0,6958	0,0000	1,4658	0,02905
0,70	15,418	0,03243	2,0605	0,6250	0,0000	1,4627	0,02891
0,75	15,453	0,03236	2,0591	0,5629	0,0000	1,4601	0,02879
0,80	15,480	0,03230	2,0580	0,4935	0,0000	1,4581	0,02870
0,85	15,501	0,03226	2,0572	0,4186	0,0000	1,4567	0,02863
0,90	15,514	0,03223	2,0567	0,3376	0,0000	1,4557	0,02859
0,95	15,522	0,03221	2,0564	0,2373	0,0000	1,4552	0,02857
1,00	15,524	0,03221	2,0563	0,0000	0,0000	1,4550	0,02856

C

Parâmetros Térmicos

C.1. Geometria de Setor Anular

Tabela C.1a. Parâmetros térmicos	para o escoamento em dutos de setores	anulares com $r^* = 0.05 e \Theta = 5^\circ$
----------------------------------	---------------------------------------	--

Ζ	$ heta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9476	8,320	8,261	13,04	12,99	13,10
0,002	0,9207	6,484	6,436	10,10	10,07	10,23
0,003	0,8990	5,609	5,566	8,72	8,70	8,87
0,005	0,8634	4,681	4,643	7,25	7,24	7,34
0,007	0,8338	4,164	4,128	6,44	6,42	6,49
0,010	0,7959	3,687	3,654	5,67	5,66	5,69
0,020	0,6997	2,945	2,914	4,44	4,42	4,46
0,030	0,6273	2,610	2,580	3,88	3,87	3,89
0,050	0,5180	2,279	2,249	3,29	3,28	3,29
0,070	0,4359	2,110	2,079	2,97	2,96	2,97
0,100	0,3429	1,965	1,933	2,69	2,68	2,69
0,200	0,1663	1,759	1,723	2,26	2,24	2,24
0,300	0,0851	1,676	1,638	2,07	2,06	2,05
0,500	0,0237	1,610	1,598	1,90	1,88	1,87
0,700	0,0068	1,586	1,572	1,81	1,80	1,78
1,000	0,0011	1,574	1,560	1,74	1,74	1,72

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9458	8,850	8,796	13,81	13,78	13,85
0,002	0,9172	6,905 5 978	6,859 5 936	10,71	10,69 9.25	10,75 9 30
0,005 0,007	0,8565 0,8251	4,996 4,450	4,959 4,415	7,71 6,85	7,70 6,84	7,74 6,87
0,010 0,020 0,030 0,050 0,070	0,7851 0,6836 0,6077 0,4939 0,4094	3,946 3,166 2,815 2,470 2,294	3,913 3,135 2,786 2,442 2,266	6,04 4,74 4,15 3,53 3,20	6,03 4,73 4,14 3,52 3,19	6,05 4,76 4,15 3,53 3,19
0,100 0,200 0,300 0,500 0,700	0,3151 0,1425 0,0681 0,0166 0,0042	2,142 1,922 1,834 1,766 1,743	2,114 1,894 1,806 1,744 1,721	2,90 2,45 2,25 2,07 1,98	2,89 2,43 2,25 2,06 1,97	2,90 2,44 2,24 2,05 1,96
1,000	0,0005	1,722	1,708	1,92	1,91	1,90

Tabela C.1b. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.10$ e $\Theta = 5^\circ$.

Tabela C.1c. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.30$ e $\Theta = 5^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9392	10,669	10,598	15,75	15,73	15,71
0,002	0,9045	8,589	8,529	12,54	12,51	12,54
0,003	0,8761	7,555	7,501	11,02	11,00	11,02
0,005	0,8293	6,411	6,363	9,37	9,35	9,36
0,007	0,7904	5,749	5,706	8,42	8,40	8,40
0,010	0,7410	5,129	5,090	7,52	7,51	7,50
0,020	0,6182	4,157	4,129	6,01	5,99	6,01
0,030	0,5291	3,724	3,701	5,30	5,30	5,31
0,050	0,4010	3,299	3,284	4,57	4,56	4,57
0,070	0,3113	3,081	3,069	4,17	4,17	4,17
0,100	0,2180	2,891	2,882	3,81	3,81	3,81
0,200	0,0732	2,631	2,624	3,26	3,26	3,27
0,300	0,0262	2,540	2,533	3,03	3,03	3,04
0,500	0,0036	2,481	2,474	2,82	2,82	2,82
0,700	0,0005	2,465	2,458	2,72	2,72	2,72
1,000	0,0000	2,459	2,451	2,64	2,64	2,64

	Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	$Nu^*_{2m\acute{e}d}$
0,	001	0,9373	11,193	11,072	16,38	16,35	16,29
0,	002	0,9010	9,086	9,001	13,10	13,05	13,03
0,	003	0,8710	8,086	8,021	11,56	11,54	11,51
0,	005	0,8207	7,033	6,990	9,92	9,90	9,88
0,	007	0,7780	6,449	6,420	9,00	8,99	8,97
0,	010	0,7228	5,910	5,892	8,14	8,14	8,13
0,	020	0,5823	5,055	5,049	6,75	6,75	6,76
0,	030	0,4800	4,651	4,647	6,11	6,11	6,12
0,	050	0,3373	4,224	4,221	5,42	5,42	5,43
0,	070	0,2431	3,989	3,987	5,04	5,04	5,05
0,	100	0,1527	3,781	3,779	4,69	4,69	4,70
0,	200	0,0360	3,511	3,509	4,14	4,14	4,16
0,	300	0,0090	3,430	3,428	3,91	3,91	3,92
0,	500	0,0006	3,386	3,384	3,71	3,70	3,72
0,	700	0,0000	3,377	3,375	3,61	3,61	3,62
1,	000	0,0000	3,373	3,371	3,54	3,54	3,55

Tabela C.1d. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.50$ e $\Theta = 5^{\circ}$.

Tabela C.1e. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0,70$ e $\Theta = 5^\circ$.

Ζ	$\theta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9385	10,802	10,712	16,32	16,23	16,17
0,002	0,9037	8,576	8,552	12,81	12,79	12,66
0,003	0,8752	7,559	7,549	11,19	11,19	11,11
0,005	0,8277	6,528	6,523	9,49	9,49	9,45
0,007	0,7875	5,982	5,979	8,55	8,55	8,53
0,010	0,7353	5,510	5,508	7,70	7,70	7,69
0,020	0,5988	4,885	4,884	6,39	6,39	6,41
0,030	0,4951	4,661	4,660	5,84	5,84	5,86
0,050	0,3442	4,453	4,452	5,32	5,32	5,33
0,070	0,2423	4,335	4,334	5,05	5,05	5,06
0,100	0,1451	4,222	4,222	4,82	4,82	4,83
0,200	0,0279	4,061	4,060	4,47	4,47	4,48
0,300	0,0056	4,012	4,012	4,32	4,32	4,33
0,500	0,0002	3,988	3,987	4,19	4,19	4,20
0,700	0,0000	3,980	3,980	4,13	4,13	4,14
1,000	0,0000	3,978	3,978	4,09	4,09	4,09

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9446	9,339	9,330	14,86	14,79	14,75
0,002	0,9142	7,353	7,350	11,43	11,43	11,32
0,003	0,8895	6,411	6,409	9,89	9,89	9,76
0,005	0,8488	5,420	5,419	8,26	8,26	8,20
0,007	0,8147	4,873	4,872	7,36	7,36	7,32
0,010	0,7710	4,376	4,376	6,54	6,54	6,52
0,020	0,6585	3,639	3,639	5,21	5,21	5,22
0,030	0,5731	3,343	3,343	4,62	4,62	4,64
0,050	0,4435	3,115	3,115	4,05	4,05	4,07
0,070	0,3468	3,045	3,045	3,77	3,77	3,78
0,100	0,2412	3,017	3,017	3,55	3,55	3,56
0,200	0,0723	3,009	3,009	3,27	3,27	3,28
0,300	0,0217	3,009	3,009	3,19	3,19	3,19
0,500	0,0020	3,009	3,009	3,12	3,12	3,12
0,700	0,0002	3,009	3,009	3,09	3,09	3,09
1,000	0,0000	3,009	3,009	3,06	3,06	3,06

Tabela C.1f. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.90$ e $\Theta = 5^\circ$.

Tabela C.2a. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.05$ e $\Theta = 10^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9494	8,278	8,210	12,81	12,78	12,87
0,002	0,9225	5,660	5,605	9,90 8,66	8,64	8,70
0,005	0,8646	4,762	4,711	7,24	7,22	7,28
0,007	0,8344	4,261	4,213	6,45	6,44	6,47
0,010	0,7956	3,798	3,753	5,72	5,71	5,72
0,020	0,6963	3,077	3,037	4,53	4,51	4,53
0,030	0,6210	2,751	2,714	3,98	3,96	3,97
0,050	0,5070	2,433	2,400	3,41	3,39	3,40
0,070	0,4213	2,272	2,242	3,10	3,09	3,09
0,100	0,3247	2,138	2,111	2,84	2,83	2,82
0,200	0,1456	1,958	1,936	2,42	2,41	2,41
0,300	0,0680	1,900	1,878	2,25	2,25	2,24
0,500	0,0154	1,868	1,845	2,10	2,09	2,09
0,700	0,0035	1,861	1,838	2,03	2,03	2,02
1,000	0,0004	1,858	1,836	1,98	1,98	1,97

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9473	8,838	8,760	13,60	13,58	13,56
0,002	0,9180	6,065	6,001	9,22	9,20	9,21
0,005 0,007	0,8570 0,8249	5,111 4,577	5,053 4,523	7,73 6,90	7,70 6,88	7,72 6,87
0,010 0,020 0,030 0,050 0,070	0,7839 0,6791 0,6005 0,4827 0,3955	4,082 3,306 2,954 2,608 2,435	4,033 3,267 2,921 2,584 2,415	6,14 4,85 4,26 3,66 3,33	6,12 4,83 4,25 3,64 3,32	6,11 4,84 4,25 3,64 3,31
0,100 0,200 0,300 0,500 0,700	0,2987 0,1256 0,0551 0,0109 0,0022	2,291 2,107 2,050 2,021 2,015	2,275 2,095 2,039 2,009 2,003	3,03 2,60 2,42 2,26 2,19	3,03 2,59 2,42 2,26 2,19	3,02 2,59 2,42 2,26 2,19
1,000	0,0002	2,009	2,000	2,14	2,14	2,13

Tabela C.2b. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.10$ e $\Theta = 10^\circ$.

Tabela C.2c. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.30$ e $\Theta = 10^\circ$.

Ζ	O méd	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9412	10,494	10,351	15,39	15,34	15,26
0,002	0,9072	8,472	8,363	12,28	12,21	12,18
0,003	0,8792	7,462	7,375	10,81	10,78	10,73
0,005	0,8329	6,337	6,278	9,21	9,18	9,14
0,007	0,7942	5,682	5,640	8,28	8,27	8,23
0,010	0,7452	5,064	5,037	7,43	7,41	7,36
0,020	0,6228	4,106	4,096	5,92	5,91	5,92
0,030	0,5334	3,694	3,688	5,23	5,23	5,24
0,050	0,4041	3,312	3,308	4,52	4,52	4,53
0,070	0,3126	3,128	3,125	4,14	4,14	4,15
0,100	0,2170	2,977	2,975	3,81	3,81	3,82
0,200	0,0690	2,799	2,797	3,33	3,33	3,34
0,300	0,0228	2,755	2,753	3,14	3,14	3,15
0,500	0,0025	2,736	2,734	2,98	2,98	2,99
0,700	0,0003	2,733	2,731	2,91	2,91	2,91
1,000	0,0000	2,732	2,730	2,86	2,86	2,86

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9399	10,658	10,524	15,95	15,86	15,80
0,002	0,9056	8,435	8,387	12,56	12,52	12,46
0,003	0,8777	7,402	7,381	10,98	10,97	10,87
0,005	0,8312	6,355	6,347	9,29	9,29	9,24
0,007	0,7920	5,795	5,791	8,36	8,36	8,33
0,010	0,7412	5,295	5,292	7,51	7,51	7,50
0,020	0,6104	4,549	4,547	6,16	6,15	6,17
0,030	0,5125	4,228	4,227	5,55	5,55	5,57
0,050	0,3706	3,918	3,917	4,95	4,95	4,96
0,070	0,2728	3,757	3,756	4,63	4,63	4,64
0,100	0,1754	3,621	3,620	4,34	4,34	4,35
0,200	0,0429	3,467	3,466	3,92	3,92	3,94
0,300	0,0108	3,435	3,435	3,76	3,76	3,77
0,500	0,0007	3,424	3,423	3,63	3,63	3,64
0,700	0,0000	3,422	3,422	3,57	3,57	3,57
1,000	0,0000	3,422	3,421	3,53	3,53	3,53

Tabela C.2d. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.50$ e $\Theta = 10^{\circ}$.

Tabela C.2e. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.70$ e $\Theta = 10^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9426 0 9108	9,760 7,726	9,747 7 720	15,40 11 91	15,38 11 91	15,33
0,002	0,8850	6,764 5,758	6,760 5,756	10,33	10,33	10,18
0,003	0,8062	5,208	5,207	8,00 7,74	7,74	7,70
0,010 0,020 0,030 0,050	0,7598 0,6399 0,5483 0,4104	4,716 4,010 3,744 3,535	4,715 4,010 3,743 3,535	6,90 5,57 4,99 4,44	6,90 5,57 4,99 4,44	6,89 5,58 5,01 4,45
0,070 0,100	0,3105 0,2060	3,451 3,394	3,451 3,394	4,17 3,94	4,17 3,94	4,18 3,95
0,200 0,300 0,500	0,0536 0,0140 0.0010	3,353 3,349 3,349	3,353 3,349 3 349	3,65 3,55 3 47	3,65 3,55 3 47	3,66 3,56 3 47
0,700	0,0001	3,349	3,348	3,43	3,43	3,44
0,500 0,700 1,000	0,0010 0,0001 0,0000	3,349 3,349 3,349	3,349 3,348 3,348	3,47 3,43 3,41	3,47 3,43 3,41	3,47 3,44 3,41

	Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
_	0,001	0,9436	9,554	9,544	15,22	15,19	15,17
	0,002	0,9124	7,542	7,538	11,73	11,73	11,65
	0,003	0,8872	6,590	6,588	10,15	10,14	10,05
	0,005	0,8454	5,591	5,590	8,48	8,48	8,41
	0,007	0,8104	5,042	5,041	7,57	7,57	7,52
	0,010	0,7653	4,548	4,547	6,73	6,73	6,72
	0,020	0,6490	3,828	3,827	5,40	5,40	5,40
	0,030	0,5603	3,552	3,552	4,82	4,82	4,83
	0,050	0,4260	3,342	3,342	4,25	4,25	4,27
	0,070	0,3272	3,268	3,267	3,98	3,98	3,99
	0,100	0,2217	3,225	3,225	3,76	3,76	3,77
	0,200	0,0614	3,203	3,203	3,48	3,48	3,49
	0,300	0,0171	3,202	3,202	3,39	3,39	3,39
	0,500	0,0013	3,202	3,202	3,31	3,31	3,32
	0,700	0,0001	3,202	3,202	3,28	3,28	3,28
	1,000	0,0000	3,202	3,202	3,26	3,26	3,26

Tabela C.2f. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.90$ e $\Theta = 10^\circ$.

Tabela C.3a. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.05$ e $\Theta = 15^\circ$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9501	8,357	8,262	12,75	12,72	12,79
0,002	0,9229	6,628	6,544	10,00	9,96	10,03
0,003	0,9007	5,799	5,720	8,71	8,69	8,72
0,005	0,8638	4,912	4,840	7,34	7,31	7,32
0,007	0,8328	4,412	4,346	6,56	6,54	6,54
0,010	0,7928	3,947	3,887	5,84	5,82	5,81
0,020	0,6902	3,210	3,164	4,66	4,63	4,64
0,030	0,6125	2,873	2,836	4,11	4,09	4,09
0,050	0,4953	2,544	2,518	3,53	3,52	3,51
0,070	0,4077	2,385	2,364	3,22	3,22	3,20
0,100	0,3095	2,259	2,243	2,95	2,94	2,93
0,200	0,1307	2,117	2,104	2,55	2,54	2,54
0,300	0,0568	2,083	2,070	2,40	2,39	2,39
0,500	0,0109	2,067	2,060	2,27	2,26	2,26
0,700	0,0021	2,063	2,059	2,21	2,21	2,20
1,000	0,0002	2,063	2,059	2,17	2,17	2,16

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9478	8,961	8,840	13,52	13,48	13,40
0,002	0,9187	7,121	7,014	10,66	10,60	10,60
0,003	0,8950	6,230	6,134	9,30	9,27	9,24
0,005	0,8558	5,269	5,188	7,85	7 81	7,79
0,003	0,8229	4,722	4,652	7,02	7,00	6,96
0,010	0,7807	4,210	4,151	6,25	6,23	6,19
0,020	0,6736	3,396	3,362	4,97	4,95	4,94
0,030	0,5934	3,031	3,008	4,37	4,36	4,35
0,050	0,4737	2,687	2,674	3,75	3,74	3,74
0,070	0,3851	2,527	2,517	3,42	3,42	3,41
0,100	0,2870	2,403	2,396	3,13	3,13	3,12
0,200	0,1139	2,267	2,260	2,71	2,71	2,72
0,300	0,0465	2,236	2,230	2,56	2,56	2,56
0,500	0,0079	2,225	2,218	2,42	2,42	2,42
0,700	0,0013	2,223	2,217	2,37	2,37	2,36
1,000	0,0001	2,222	2,216	2,32	2,32	

Tabela C.3b. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.10$ e $\Theta = 15^{\circ}$.

Tabela C.3c. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.30$ e $\Theta = 15^{\circ}$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9421	10,419	10,228	15,19	15,12	14,99
0,002	0,9086	8,307	8,196	12,14	12,07	11,98
0,003	0,8812	7,258	7,189	10,66	10,63	10,54
0,005	0,8360	6,130	6,099	9,03	9,01	8,96
0,007	0,7983	5,501	5,485	8,10	8,09	8,05
0,010	0,7502	4,927	4,918	7,22	7,22	7,19
0,020	0,6290	4,047	4,043	5,79	5,79	5,80
0,030	0,5396	3,666	3,664	5,13	5,13	5,14
0,050	0,4090	3,319	3,318	4,46	4,46	4,47
0,070	0,3158	3,160	3,159	4,11	4,10	4,12
0,100	0,2180	3,039	3,038	3,80	3,80	3,81
0,200	0,0667	2,919	2,918	3,37	3,37	3,38
0,300	0,0209	2,899	2,898	3,21	3,21	3,23
0,500	0,0021	2,893	2,891	3,09	3,09	3,09
0,700	0,0002	2,892	2,891	3,03	3,03	3,03
1,000	0,0000	2,892	2,891	2,99	2,99	2,99

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9417	10,076	10,014	15,47	15,44	15,31
0,002	0,9092	7,938	7,925	12,08	12,07	11,91
0,003	0,8827	6,961	6,955	10,50	10,50	10,40
0,005	0,8387	5,947	5,944	8,84	8,84	8,80
0,007	0,8016	5,395	5,392	7,93	7,92	7,90
0,010	0,7539	4,899	4,897	7,08	7,08	7,06
0,020	0,6305	4,173	4,173	5,75	5,75	5,77
0,030	0,5371	3,880	3,879	5,16	5,16	5,18
0,050	0,3985	3,624	3,623	4,58	4,58	4,60
0,070	0,2997	3,508	3,507	4,29	4,29	4,30
0,100	0,1979	3,421	3,421	4,04	4,04	4,05
0,200	0,0514	3,344	3,343	3,70	3,70	3,71
0,300	0,0135	3,333	3,333	3,58	3,58	3,59
0,500	0,0009	3,330	3,330	3,48	3,48	3,48
0,700	0,0001	3,330	3,330	3,44	3,44	3,44
1,000	0,0000	3,330	3,330	3,40	3,40	3,40

Tabela C.3d. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.50$ e $\Theta = 15^{\circ}$.

Tabela C.3e. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.70$ e $\Theta = 15^{\circ}$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9443	9,401	9,391	14,95	14,95	14,62
0,002	0,9137	7,407	7,403	11,54	11,54	11,28
0,003	0,8889	6,462	6,459	9,98	9,97	9,82
0,005	0,8479	5,468	5,467	8,33	8,33	8,25
0,007	0,8135	4,920	4,919	7,42	7,42	7,37
0,010	0,7694	4,424	4,424	6,59	6,59	6,56
0,020	0,6559	3,690	3,690	5,26	5,26	5,27
0,030	0,5696	3,398	3,398	4,68	4,68	4,69
0,050	0,4388	3,172	3,172	4,11	4,11	4,12
0,070	0,3416	3,099	3,099	3,82	3,82	3,84
0,100	0,2361	3,066	3,066	3,60	3,60	3,61
0,200	0,0695	3,056	3,056	3,32	3,32	3,33
0,300	0,0205	3,056	3,055	3,23	3,23	3,24
0,500	0,0018	3,056	3,055	3,16	3,16	3,17
0,700	0,0002	3,056	3,055	3,13	3,13	3,14
1,000	0,0000	3,056	3,055	3,11	3,11	3,11

Ζ	$ heta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9412	10,034	10,021	15,74	15,73	15,54
0,002	0,9086	7,971	7,965	12,22	12,22	11,99
0,003	0,8820	6,998	6,994	10,61	10,61	10,47
0,005	0,8378	5,984	5,982	8,92	8,92	8,85
0,007	0,8005	5,434	5,433	7,99	7,99	7,95
0,010	0,7524	4,948	4,947	7,14	7,14	7,11
0,020	0,6273	4,279	4,279	5,82	5,82	5,83
0,030	0,5314	4,049	4,048	5,25	5,25	5,27
0,050	0,3876	3,875	3,875	4,72	4,72	4,74
0,070	0,2852	3,799	3,799	4,47	4,47	4,48
0,100	0,1815	3,739	3,739	4,26	4,26	4,27
0,200	0,0413	3,681	3,681	3,97	3,97	3,98
0,300	0,0095	3,674	3,674	3,87	3,87	3,88
0,500	0,0005	3,673	3,673	3,79	3,79	3,80
0,700	0,0000	3,673	3,673	3,76	3,76	3,76
1,000	0,0000	3,673	3,673	3,73	3,73	3,73

Tabela C.3f. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.90$ e $\Theta = 15^{\circ}$.

Tabela C.4a. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.05$ e $\Theta = 30^\circ$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9501	8,893	8,681	13,09	13,05	12,89
0,002	0,9213	7,162	6,988	10,41	10,31	10,25
0,003	0,8975	6,291	6,144	9,16	9,10	9,04
0,005	0,8580	5,320	5,212	7,78	7,73	7,69
0,007	0,8249	4,756	4,674	6,99	6,96	6,92
0,010	0,7824	4,226	4,168	6,27	6,22	6,20
0,020	0,6746	3,409	3,385	4,96	4,95	4,92
0,030	0,5936	3,063	3,049	4,37	4,37	4,35
0,050	0,4715	2,760	2,752	3,77	3,77	3,76
0,070	0,3805	2,633	2,627	3,46	3,46	3,45
0,100	0,2792	2,553	2,547	3,20	3,20	3,19
0,200	0,1023	2,498	2,493	2,85	2,85	2,85
0,300	0,0378	2,492	2,488	2,73	2,73	2,73
0,500	0,0052	2,492	2,488	2.63	2,63	2,63
0,700	0,0007	2,492	2,488	2,59	2,59	2,59
1,000	0,0000	2,492	2,488	2,56	2,56	2,56

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9474	9,533	9,277	13,97	13,85	13,73
0,002	0,9169	7,581	7,405	11,08	10,98	10,89
0,003	0,8919	6,587	6,459	9,72	9,67	9,53
0,005	0,8509	5,496	5,424	8,21	8,17	8,12
0,007	0,8168	4,885	4,840	7,34	7,32	7,28
0,010	0,7734	4,333	4,308	6,53	6,52	6,48
0,020	0,6633	3,519	3,510	5,15	5,15	5,13
0,030	0,5808	3,180	3,174	4,54	4,54	4,53
0,050	0,4568	2,882	2,878	3,92	3,92	3,92
0,070	0,3648	2,759	2,756	3,60	3,60	3,60
0,100	0,2635	2,682	2,679	3,33	3,33	3,33
0,200	0,0915	2,632	2,630	2,98	2,98	2,99
0,300	0,0320	2,628	2,626	2,86	2,86	2,87
0,500	0,0039	2,628	2,625	2,77	2,77	2,77
0,700	0,0005	2,628	2,625	2,73	2,73	2,73
1,000	0,0000	2,628	2,625	2,70	2,70	

Tabela C.4b. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.10$ e $\Theta = 30^\circ$.

Tabela C.4c. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.30$ e $\Theta = 30^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9435	9,865	9,758	15,23	15,11	14,97
0,002	0,9118	7,693	7,670	11,78	11,76	11,66
0,003	0,8861	6,715	6,704	10,22	10,22	10,13
0,005	0,8436	5,700	5,695	8,57	8,57	8,52
0,007	0,8080	5,141	5,137	7,66	7,66	7,63
0,010	0,7622	4,630	4,628	6,83	6,83	6,80
0,020	0,6450	3,859	3,858	5,47	5,47	5,48
0,030	0,5568	3,535	3,534	4,87	4,87	4,88
0,050	0,4251	3,259	3,259	4,26	4,26	4,28
0,070	0,3291	3,153	3,152	3,96	3,96	3,97
0,100	0,2265	3,091	3,091	3,70	3,70	3,71
0,200	0,0664	3,058	3,058	3,38	3,38	3,39
0,300	0,0196	3,056	3,055	3,27	3,27	3,28
0,500	0,0017	3,055	3,055	3,18	3,18	3,19
0,700	0,0001	3,055	3,055	3,15	3,15	3,15
1,000	0,0000	3,055	3,055	3,12	3,12	3,12
Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	$Nu_{1m\acute{e}d}$	Nu _{2 méd}	Nu [*] _{2méd}
-------	------------------------	-----------------	-----------------	---------------------	---------------------	---------------------------------
0,001	0,9444	9,395	9,382	15,16	15,06	14,99
0,002	0,9138	7,401	7,395	11,59	11,59	11,46
0,003	0,8890	6,455	6,452	10,01	10,01	9,96
0,005	0,8481	5,461	5,459	8,35	8,35	8,29
0,007	0,8138	4,913	4,912	7,44	7,43	7,39
0,010	0,7697	4,416	4,415	6,60	6,60	6,57
0,020	0,6564	3,679	3,679	5,26	5,26	5,26
0,030	0,5704	3,382	3,381	4,67	4,67	4,68
0,050	0,4401	3,148	3,147	4,09	4,09	4,10
0,070	0,3433	3,073	3,073	3,81	3,81	3,82
0,100	0,2380	3,042	3,042	3,58	3,58	3,59
0,200	0,0707	3,034	3,033	3,30	3,30	3,31
0,300	0,0210	3,033	3,033	3,21	3,21	3,22
0,500	0,0019	3,033	3,033	3,14	3,14	3,15
0,700	0,0002	3,033	3,033	3,11	3,11	3,11
1,000	0,0000	3,033	3,033	3,09	3,09	3,09

Tabela C.4d. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.50$ e $\Theta = 30^\circ$.

Tabela C.4e. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.70$ e $\Theta = 30^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9440	9,466	9,456	15,28	15,16	15,04
0,002	0,9132	7,465	7,461	11,67	11,67	11,55
0,003	0,8882	6,516	6,514	10,08	10,08	9,99
0,005	0,8468	5,520	5,519	8,42	8,42	8,36
0,007	0,8122	4,972	4,971	7,50	7,50	7,45
0,010	0,7676	4,476	4,475	6,66	6,66	6,65
0,020	0,6530	3,747	3,747	5,33	5,33	5,33
0,030	0,5657	3,462	3,462	4,74	4,74	4,75
0,050	0,4334	3,244	3,244	4,17	4,17	4,18
0,070	0,3355	3,170	3,170	3,89	3,89	3,90
0,100	0,2299	3,133	3,133	3,67	3,67	3,68
0,200	0,0660	3,118	3,118	3,39	3,39	3,40
0,300	0,0190	3,118	3,118	3,30	3,30	3,31
0,500	0,0016	3,118	3,118	3,23	3,23	3,23
0,700	0,0001	3,118	3,118	3,20	3,20	3,20
1,000	0,0000	3,118	3,118	3,17	3,17	3,17

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9369	11,172	11,067	16,69	16,60	16,55
0,002	0,9009	8,883	8,857	13,16	13,13	13,07
0,003	0,8715	7,853	7,843	11,53	11,52	11,49
0,005	0,8223	6,820	6,815	9,80	9,80	9,78
0,007	0,7805	6,281	6,278	8,86	8,86	8,85
0,010	0,7260	5,829	5,827	8,01	8,01	8,00
0,020	0,5827	5,305	5,304	6,73	6,73	6,75
0,030	0,4728	5,165	5,164	6,22	6,22	6,24
0,050	0,3144	5,056	5,056	5,77	5,77	5,79
0,070	0,2103	4,999	4,999	5,56	5,56	5,57
0,100	0,1158	4,947	4,947	5,38	5,38	5,39
0,200	0,0163	4,871	4,871	5,14	5,14	5,15
0,300	0,0023	4,842	4,842	5,04	5,04	5,05
0,500	0,0000	4,823	4,823	4,96	4,96	4,96
0,700	0,0000	4,819	4,818	4,92	4,92	4,92
1,000	0,0000	4,818	4,817	4,89	4,89	4,89

Tabela C.4f. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.90$ e $\Theta = 30^\circ$.

Tabela C.5a. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.05$ e $\Theta = 45^\circ$.

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9489	9,452	9,143	13,54	13,44	13,11
0,002	0,9186	7,550	7,340	10,91	10,78	10,61
0,003	0,8938	6,565 5,470	6,415 5,205	9,60	9,54	9,35
0,005	0,8530	5,479	5,395	8,13	8,09	7,95
0,007	0,8190	4,872	4,820	7,27	7,26	7,13
0,010	0,7756	4,327	4,298	6,46	6,45	6,35
0,020	0,6651	3,532	3,521	5,13	5,12	5,10
0,030	0,5819	3,205	3,198	4,53	4,53	4,51
0,050	0,4565	2,926	2,922	3,93	3,93	3,92
0,070	0,3630	2,823	2,819	3,62	3,62	3,62
0,100	0,2598	2,770	2,767	3,37	3,37	3,37
0,200	0,0865	2,749	2,746	3,06	3,05	3,06
0,300	0,0288	2,749	2,745	2,95	2,95	2,96
0,500	0,0032	2,749	2,745	2,87	2,87	2,87
0,700	0,0004	2,749	2,745	2,84	2,84	2,84
1,000	0,0000	2,749	2,745	2,81	2,81	2,81

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9464	9,877	9,580	14,36	14,26	13,88
0,002	0,9150	7,696	7,551 6,544	11,44	11,34	11,10
0,003 0,005 0,007	0,8898 0,8484 0,8140	6,624 5,519 4,929	6,544 5,487 4,912	9,98 8,37 7,46	9,95 8,35 7,46	9,73 8,22 7,35
0,010 0,020 0,030 0,050 0,070	0,7700 0,6578 0,5734 0,4464 0,3523	4,404 3,621 3,294 3,019 2,919	4,394 3,616 3,291 3,017 2,917	6,61 5,25 4,64 4,03 3,72	6,61 5,25 4,64 4,03 3,72	6,53 5,24 4,64 4,03 3,73
0,100 0,200 0,300 0,500 0,700	0,2491 0,0796 0,0255 0,0026 0,0003	2,870 2,851 2,851 2,851 2,851	2,868 2,850 2,849 2,849 2,849	3,47 3,16 3,05 2,97 2,94	3,47 3,16 3,05 2,97 2,94	3,48 3,16 3,06 2,98 2,94
1,000	0,0000	2,851	2,849	2,91	2,91	2,91

Tabela C.5b. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0,10$ e $\Theta = 45^\circ$.

Tabela C.5c. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.30$ e $\Theta = 45^{\circ}$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9443	9,501	9,467	15,16	15,15	14,74
0,002	0,9134	7,470	7,459	11,67	11,67	11,32
0,003	0,8884	6,518	6,512	10,08	10,08	9,86
0,005	0,8471	5,519	5,515	8,42	8,42	8,30
0,007	0,8124	4,969	4,966	7,50	7,50	7,42
0,010	0,7679	4,469	4,467	6,66	6,66	6,60
0,020	0,6536	3,723	3,722	5,32	5,32	5,32
0,030	0,5671	3,417	3,417	4,72	4,72	4,73
0,050	0,4366	3,170	3,170	4,14	4,13	4,14
0,070	0,3401	3,089	3,088	3,84	3,84	3,85
0,100	0,2354	3,054	3,054	3,61	3,61	3,62
0,200	0,0696	3,045	3,044	3,32	3,32	3,33
0,300	0,0206	3,044	3,044	3,23	3,23	3,24
0,500	0,0018	3,044	3,044	3,16	3,16	3,16
0,700	0,0002	3,044	3,044	3,12	3,12	3,12
1,000	0,0000	3,044	3,044	3,10	3,10	3,10

	Ζ	$ heta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
_	0,001	0,9445	9,370	9,359	15,27	15,27	14,67
	0,002	0,9140	7,378	7,373	11,69	11,68	11,24
	0,003	0,8893	6,433	6,430	10,06	10,06	9,78
	0,005	0,8484	5,440	5,438	8,37	8,37	8,22
	0,007	0,8143	4,892	4,891	7,45	7,45	7,34
	0,010	0,7703	4,395	4,394	6,60	6,60	6,52
	0,020	0,6575	3,656	3,656	5,25	5,25	5,24
	0,030	0,5719	3,359	3,359	4,66	4,66	4,66
	0,050	0,4420	3,130	3,130	4,08	4,08	4,08
	0,070	0,3452	3,058	3,058	3,79	3,79	3,80
	0,100	0,2397	3,029	3,029	3,57	3,57	3,57
	0,200	0,0715	3,021	3,021	3,29	3,29	3,30
	0,300	0,0214	3,021	3,021	3,20	3,20	3,21
	0,500	0,0019	3,021	3,021	3,13	3,13	3,13
	0,700	0,0002	3,021	3,021	3,10	3,10	3,10
	1,000	0,0000	3,021	3,021	3,08	3,08	3,08

Tabela C.5d. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.50$ e $\Theta = 45^\circ$.

Tabela C.5e. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.70$ e $\Theta = 45^\circ$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001 0,002 0,003 0,005 0,007	0,9420 0,9098 0,8836 0,8401 0,8035	9,888 7,840 6,872 5,862 5,312	9,876 7,835 6,869 5,861 5,311	15,63 12,10 10,49 8,80 7 87	15,62 12,10 10,49 8,80 7 87	15,25 11,82 10,32 8,71 7,81
0,010 0,020 0,030 0,050 0,070	0,7563 0,6340 0,5404 0,3994 0,2981	4,822 4,134 3,889 3,703 3,625	4,821 4,134 3,888 3,703 3,625	7,02 5,69 5,12 4,58 4,31	7,02 5,69 5,12 4,58 4,31	6,98 5,70 5,13 4,59 4,32
0,100 0,200 0,300 0,500 0,700	0,1937 0,0471 0,0115 0,0007 0,0000	3,568 3,521 3,517 3,517 3,517 3,517	3,568 3,521 3,517 3,517 3,517 3,517	4,10 3,81 3,71 3,63 3,60	4,10 3,81 3,71 3,63 3,60	4,10 3,82 3,72 3,64 3,60
1,000	0,0000	3,517	3,517	3,58	3,58	3,58

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9352	11,672	11,528	16,97	16,92	16,76
0,002	0,8975	9,412	9,339	13,61	13,56	13,51
0,003	0,8666	8,345	8,305	12,00	11,98	11,93
0,005	0,8147	7,275	7,260	10,28	10,27	10,25
0,007	0,7705	6,738	6,730	9,33	9,33	9,31
0,010	0,7128	6,310	6,306	8,48	8,47	8,46
0,020	0,5602	5,871	5,869	7,22	7,22	7,24
0,030	0,4440	5,771	5,769	6,74	6,74	6,77
0,050	0,2808	5,692	5,691	6,33	6,33	6,35
0,070	0,1785	5,650	5,649	6,14	6,14	6,16
0,100	0,0908	5,611	5,610	5,99	5,99	6,00
0,200	0,0098	5,552	5,551	5,78	5,78	5,79
0,300	0,0011	5,526	5,526	5,70	5,70	5,70
0,500	0,0000	5,504	5,503	5,62	5,62	5,63
0,700	0,0000	5,494	5,494	5,59	5,59	5,59
1,000	0,0000	5,486	5,486	5,56	5,56	5,56

Tabela C.5f. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.90$ e $\Theta = 45^\circ$.

Tabela C.6a. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.05$ e $\Theta = 60^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9477	9,832	9,481	14,21	14,09	13,94
0,002	0,9165	7,723	7,529	11,31	11,18	11,04
0,003	0,8912	6,656	6,539	9,91	9,86	9,70
0,005	0,8498	5,536	5,484	8,34	8,31	8,24
0,007	0,8153	4,937	4,908	7,44	7,43	7,39
0,010	0,7713	4,409	4,392	6,61	6,59	6,59
0,020	0,6588	3,632	3,625	5,25	5,24	5,22
0,030	0,5739	3,313	3,309	4,64	4,64	4,63
0,050	0,4459	3,051	3,048	4,04	4,04	4,04
0,070	0,3509	2,962	2,959	3,74	3,74	3,74
0,100	0,2467	2,923	2,921	3,50	3,50	3,50
0,200	0,0770	2,912	2,910	3,20	3,20	3,21
0,300	0,0240	2,912	2,910	3,10	3,10	3,11
0,500	0,0023	2,912	2,910	3,03	3,03	3,03
0,700	0,0002	2,912	2,910	3,00	2,99	2,99
1,000	0,0000	2,912	2,910	2,97	2,97	2,97

Z	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,00	0,9455	9,948	9,684	14,91	14,78	14,65
0,00	0,9141	7,654	7,562	11,64	11,57	11,43
0,00	0,8888	6,601	6,560	10,10	10,08	9,97
0,00	0,8473	5,544	5,528	8,44	8,44	8,39
0,00	0,8126	4,975	4,964	7,52	7,52	7,51
0,01	0 0,7681	4,460	4,453	6,67	6,67	6,66
0,02	0 0,6545	3,689	3,686	5,31	5,31	5,30
0,03	0,5688	3,371	3,369	4,71	4,70	4,70
0,05	0,4398	3,112	3,110	4,10	4,10	4,11
0,07	0 0,3443	3,025	3,024	3,80	3,80	3,81
0,10	0 0,2402	2,989	2,988	3,56	3,56	3,57
0,20	0,0729	2,980	2,978	3,27	3,27	3,27
0,30	0,0222	2,979	2,978	3,17	3,17	3,18
0,50	0,0020	2,979	2,978	3,09	3,09	3,10
0,70	0 0,0002	2,979	2,978	3,06	3,06	3,06
1,00	0,0000	2,979	2,978	3,04	3,04	3,04

Tabela C.6b. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0,10$ e $\Theta = 60^\circ$.

Tabela C.6c. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.30$ e $\Theta = 60^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9445	9,419	9,399	15,51	15,39	15,27
0,002	0,9138	7,416	7,407	11,76	11,76	11,63
0,003	0,8890	6,467	6,461	10,13	10,12	9,99
0,005	0,8480	5,470	5,467	8,42	8,42	8,25
0,007	0,8136	4,920	4,918	7,49	7,49	7,47
0,010	0,7695	4,422	4,421	6,63	6,63	6,62
0,020	0,6561	3,680	3,680	5,28	5,28	5,27
0,030	0,5702	3,379	3,379	4,69	4,69	4,68
0,050	0,4401	3,142	3,142	4,10	4,10	4,10
0,070	0,3435	3,068	3,068	3,81	3,81	3,82
0,100	0,2382	3,039	3,039	3,58	3,58	3,59
0,200	0,0708	3,032	3,032	3,30	3,30	3,31
0,300	0,0210	3,032	3,032	3,21	3,21	3,22
0,500	0,0019	3,032	3,032	3,14	3,14	3,14
0,700	0,0002	3,032	3,032	3,11	3,11	3,11
1,000	0,0000	3,032	3,032	3,09	3,09	3,09

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9437	9,533	9,521	15,62	15,62	15,29
0,002 0,003	0,9127 0,8875	7,522 6,569	7,516 6,566	11,88	10,24	10,11
0,005 0,007	0,8458 0,8109	5,570 5,020	5,568 5,019	8,53 7,60	8,53 7,60	8,47 7,59
0,010 0,020 0,030 0,050 0,070	0,7660 0,6503 0,5623 0,4289 0,3305	4,524 3,797 3,515 3,298 3,223	4,523 3,797 3,515 3,298 3,223	6,74 5,39 4,80 4,23 3,95	6,74 5,39 4,80 4,23 3,95	6,73 5,38 4,80 4,23 3,95
0,100 0,200 0,300 0,500 0,700	0,2252 0,0634 0,0179 0,0014 0,0001	3,182 3,163 3,162 3,162 3,162 3,162	3,182 3,163 3,162 3,162 3,162	3,72 3,44 3,35 3,27 3,24	3,72 3,44 3,35 3,27 3,24	3,73 3,45 3,35 3,28 3,24
1,000	0,0000	3,162	3,162	3,22	3,22	3,22

Tabela C.6d. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.50$ e $\Theta = 60^\circ$.

Tabela C.6e. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.70$ e $\Theta = 60^\circ$.

Ζ	O méd	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9401	10,290	10,269	16,09 12.45	15,99 12.45	15,83
0,002	0,8793	7,208	7,204	10,84	10,83	10,77
0,005 0,007	0,8339 0,7955	6,189 5,640	6,186 5,638	9,14 8,21	9,14 8,21	9,11 8,19
0,010 0,020 0,030 0,050 0,070	0,7458 0,6163 0,5168 0,3688 0,2654	5,159 4,520 4,311 4,153 4,078	5,158 4,519 4,311 4,153 4,078	7,35 6,04 5,48 4,97 4,73	7,35 6,04 5,48 4,97 4,73	7,34 6,05 5,50 4,99 4,74
0,100 0,200 0,300 0,500 0,700	0,1634 0,0334 0,0069 0,0003 0,0000	4,016 3,945 3,941 3,937 3,937	4,016 3,945 3,941 3,937 3,937	4,52 4,24 4,14 4,05 4,02	4,52 4,24 4,14 4,05 4,02	4,53 4,25 4,15 4,06 4,02
1,000	0,0000	3,937	3,937	3,99	3,99	3,99

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9342	11,855	11,727	17,29	17,16	17,10
0,002	0,8958	9,664	9,579	13,82	13,77	13,76
0,003	0,8640	8,625	8,565	12,23	12,21	12,18
0,005	0,8106	7,566	7,533	10,53	10,51	10,50
0,007	0,7649	7,028	7,009	9,59	9,59	9,57
0,010	0,7052	6,609	6,599	8,75	8,75	8,74
0,020	0,5471	6,215	6,211	7,52	7,52	7,53
0,030	0,4276	6,135	6,132	7,06	7,06	7,07
0,050	0,2625	6,073	6,071	6,67	6,67	6,68
0,070	0,1617	6,039	6,038	6,50	6,50	6,51
0,100	0,0785	6,009	6,007	6,35	6,35	6,36
0,200	0,0072	5,962	5,961	6,17	6,17	6,17
0,300	0,0007	5,941	5,940	6,09	6,09	6,10
0,500	0,0000	5,924	5,924	6,03	6,03	6,03
0,700	0,0000	5,924	5,924	6,00	6,00	6,00
1,000	0,0000	5,924	5,924	5,97	5,97	5,97

Tabela C.6f. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.90$ e $\Theta = 60^\circ$.

Tabela C.*7a.* Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.05$ e $\Theta = 90^\circ$.

Ζ	$ heta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9458	10,125	9,796	14,88	14,76	14,44
0,002	0,9139	7,778	7,654	11,77	11,67	11,25
0,003	0,8883	6,696	6,637	10,22	10,20	9,87
0,005	0,8464	5,619	5,596	8,55	8,54	8,34
0,007	0,8113	5,046	5,031	7,62	7,61	7,47
0,010	0,7663	4,531	4,521	6,76	6,76	6,65
0,020	0,6511	3,768	3,763	5,39	5,39	5,36
0,030	0,5640	3,459	3,456	4,79	4,79	4,77
0,050	0,4327	3,215	3,213	4,19	4,19	4,19
0,070	0,3359	3,137	3,135	3,90	3,90	3,90
0,100	0,2311	3,104	3,102	3,66	3,66	3,66
0,200	0,0670	3,094	3,093	3,37	3,37	3,38
0,300	0,0195	3,094	3,093	3,28	3,28	3,28
0,500	0,0016	3,094	3,093	3,21	3,21	3,21
0,700	0,0001	3,094	3,093	3,17	3,17	3,17
1,000	0,0000	3,094	3,093	3,15	3,15	3,15

Ζ	$ heta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9445	9,835	9,676	15,35	15,29	14,97
0,002	0,9131	7,596	7,558	11,86	11,83	11,36
0,003	0,8878	6,608	6,589	10,24	10,23	9,91
0,005	0,8461	5,589	5,579	8,54	8,54	8,36
0,007	0,8111	5,029	5,023	7,61	7,60	7,48
0,010	0,7662	4,522	4,517	6,75	6,75	6,66
0,020	0,6510	3,768	3,765	5,39	5,38	5,37
0,030	0,5638	3,462	3,461	4,78	4,78	4,78
0,050	0,4324	3,221	3,220	4,19	4,19	4,19
0,070	0,3354	3,144	3,143	3,90	3,90	3,90
0,100	0,2306	3,111	3,111	3,67	3,66	3,67
0,200	0,0666	3,102	3,101	3,38	3,38	3,39
0,300	0,0193	3,102	3,101	3,29	3,29	3,29
0,500	0,0016	3,102	3,101	3,21	3,21	3,22
0,700	0,0001	3,102	3,101	3,18	3,18	3,18
1,000	0,0000	3,102	3,101	3,16	3,16	3,16

Tabela C.7b. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0,10$ e $\Theta = 90^\circ$.

Tabela C.7c. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.30$ e $\Theta = 90^\circ$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9438	9,538	9,520	15,88	15,87	15,55
0,002	0,9128	7,520	7,513	12,07	12,06	11,41
0,003	0,8876	6,566	6,561	10,36	10,36	9,94
0,005	0,8460	5,564	5,561	8,60	8,60	8,36
0,007	0,8111	5,013	5,011	7,65	7,64	7,48
0,010	0,7663	4,514	4,513	6,77	6,77	6,66
0,020	0,6509	3,780	3,780	5,40	5,40	5,37
0,030	0,5632	3,491	3,491	4,80	4,80	4,78
0,050	0,4306	3,267	3,266	4,22	4,22	4,21
0,070	0,3327	3,190	3,189	3,93	3,93	3,93
0,100	0,2276	3,150	3,150	3,70	3,70	3,70
0,200	0,0649	3,133	3,133	3,41	3,41	3,42
0,300	0,0185	3,133	3,133	3,32	3,32	3,32
0,500	0,0015	3,133	3,133	3,25	3,25	3,25
0,700	0,0001	3,133	3,133	3,21	3,21	3,21
1,000	0,0000	3,133	3,133	3,19	3,19	3,19

Ζ	$ heta_{m\acute{e}d}$	Nu ₁	Nu ₂	$Nu_{1m\acute{e}d}$	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9416	9,967	9,952	15,84	15,83	15,54
0,002	0,9092	7,908	7,902	12,24	12,24	11,90
0,003	0,8828	6,936	6,932	10,61	10,60	10,39
0,005	0,8389	5,923	5,921	8,89	8,89	8,78
0,007	0,8020	5,372	5,370	7,96	7,95	7,88
0,010	0,7544	4,882	4,881	7,10	7,10	7,05
0,020	0,6309	4,198	4,197	5,76	5,76	5,76
0,030	0,5363	3,955	3,954	5,18	5,18	5,19
0,050	0,3943	3,769	3,769	4,64	4,64	4,65
0,070	0,2927	3,690	3,690	4,38	4,38	4,39
0,100	0,1887	3,630	3,630	4,16	4,16	4,17
0,200	0,0448	3,579	3,579	3,87	3,87	3,88
0,300	0,0107	3,573	3,573	3,77	3,77	3,78
0,500	0,0006	3,573	3,573	3,69	3,69	3,70
0,700	0,0000	3,573	3,573	3,66	3,66	3,66
1,000	0,0000	3,573	3,573	3,63	3,63	3,64

Tabela C.*7d.* Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.50$ e $\Theta = 90^\circ$.

Tabela C.*Te.* Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.70$ e $\Theta = 90^\circ$.

Ζ	$\boldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001 0,002 0,003 0,005	0,9375 0,9021 0,8732 0,8248 0,7837	10,977 8,724 7,710 6,681 6,138	10,894 8,707 7,703 6,677 6,136	16,48 13,00 11,37 9,66 8 72	16,44 12,98 11,37 9,65 8 72	16,22 12,87 11,30 9,63 8 70
0,010 0,020 0,030 0,050 0,070	0,7303 0,5900 0,4824 0,3259 0,2217	5,679 5,126 4,970 4,850 4,788	5,677 5,125 4,970 4,850 4,788	7,86 6,57 6,05 5,59 5,37	7,86 6,57 6,05 5,59 5,37	7,86 6,60 6,08 5,61 5,38
0,100 0,200 0,300 0,500 0,700	0,1253 0,0192 0,0030 0,0001 0,0000	4,732 4,653 4,626 4,610 4,608	4,732 4,653 4,625 4,610 4,607	5,18 4,93 4,83 4,75 4,71	5,18 4,93 4,83 4,75 4,71	5,19 4,94 4,84 4,75 4,71
1,000	0,0000	4,607	4,607	4,68	4,68	4,68

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9329	12,027	11,933	17,46	17,43	17,37
0,002	0,8938	9,869	9,795	14,05	14,01	14,03
0,003	0,8614	8,866	8,804	12,46	12,44	12,44
0,005	0,8064	7,856	7,810	10,78	10,75	10,76
0,007	0,7592	7,350	7,314	9,86	9,85	9,84
0,010	0,6972	6,960	6,935	9,04	9,03	9,02
0,020	0,5330	6,612	6,601	7,85	7,84	7,87
0,030	0,4099	6,550	6,543	7,42	7,42	7,43
0,050	0,2433	6,504	6,500	7,06	7,06	7,07
0,070	0,1448	6,470	6,466	6,90	6,90	6,90
0,100	0,0667	6,447	6,445	6,77	6,77	6,77
0,200	0,0051	6,414	6,412	6,60	6,60	6,60
0,300	0,0004	6,399	6,398	6,54	6,54	6,54
0,500	0,0000	6,385	6,894	6,48	6,48	6,48
0,700	0,0000	6,377	6,376	6,46	6,46	6,46
1,000	0,0000	6,378	6,377	6,44	6,44	6,44

Tabela C.7f. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.90$ e $\Theta = 90^\circ$.

Tabela C.8a. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.05$ e $\Theta = 120^\circ$.

Ζ	$\theta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9447	10,146	9,882	15,65	15,38	15,11
0,002	0,9127	7,773	7,696	12,00	11,93	11,72
0,003	0,8869	6,732	6,696	10,38	10,36	10,27
0,005	0,8446	5,686	5,670	8,67	8,66	8,55
0,007	0,8091	5,119	5,109	7,72	7,72	7,67
0,010	0,7635	4,608	4,601	6,86	6,86	6,84
0,020	0,6465	3,853	3,850	5,48	5,48	5,46
0,030	0,5580	3,552	3,549	4,88	4,88	4,86
0,050	0,4248	3,316	3,314	4,28	4,28	4,28
0,070	0,3271	3,237	3,235	3,99	3,99	3,99
0,100	0,2225	3,198	3,196	3,76	3,76	3,76
0,200	0,0622	3,183	3,182	3,47	3,47	3,47
0,300	0,0174	3,183	3,181	3,37	3,37	3,37
0,500	0,0014	3,183	3,181	3,30	3,30	3,30
0,700	0,0001	3,183	3,181	3,26	3,26	3,26
1,000	0,0000	3,183	3,181	3,24	3,24	3,24

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9439	9,778	9,682	15,89	15,71	15,59
0,002	0,9124	7,630	7,605	12,04	12,03	11,86
0,003	0,8870	6,656	6,642	10,38	10,37	10,26
0,005	0,8449	5,640	5,632	8,64	8,64	8,53
0,007	0,8096	5,082	5,076	7,70	7,69	7,64
0,010	0,7643	4,577	4,573	6,83	6,83	6,82
0,020	0,6478	3,831	3,830	5,46	5,45	5,43
0,030	0,5595	3,534	3,532	4,85	4,85	4,84
0,050	0,4265	3,300	3,299	4,26	4,26	4,26
0,070	0,3288	3,220	3,220	3,97	3,97	3,97
0,100	0,2240	3,181	3,180	3,74	3,74	3,74
0,200	0,0631	3,165	3,164	3,45	3,45	3,45
0,300	0,0178	3,164	3,164	3,35	3,35	3,36
0,500	0,0014	3,164	3,164	3,28	3,28	3,28
0,700	0,0001	3,164	3,164	3,25	3,25	3,25
1,000	0,0000	3,164	3,164	3,22	3,22	3,22

Tabela C.8b. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.10$ e $\Theta = 120^\circ$.

Tabela C.8c. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.30$ e $\Theta = 120^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9427	9,770	9,751	16,22	16,22	16,01
0,002	0,9109	7,727	7,719	12,31	12,30	12,17
0,003	0,8851	6,762	6,757	10,59	10,59	10,51
0,005	0,8423	5,752	5,749	8,82	8,82	8,73
0,007	0,8063	5,199	5,197	7,85	7,85	7,79
0,010	0,7601	4,702	4,701	6,97	6,97	6,96
0,020	0,6406	3,986	3,986	5,60	5,60	5,59
0,030	0,5495	3,716	3,715	5,00	5,00	4,99
0,050	0,4123	3,506	3,506	4,43	4,43	4,43
0,070	0,3126	3,424	3,424	4,15	4,15	4,15
0,100	0,2081	3,370	3,370	3,92	3,92	3,93
0,200	0,0546	3,336	3,336	3,63	3,63	3,64
0,300	0,0144	3,334	3,334	3,53	3,53	3,54
0,500	0,0010	3,334	3,334	3,45	3,45	3,45
0,700	0,0001	3,334	3,334	3,42	3,42	3,42
1,000	0,0000	3,334	3,334	3,39	3,39	3,39

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9398	10,377	10,347	16,19	16,19	15,95
0,002	0,9061	8,257	8,249	12,56	12,55	12,43
0,003	0,8786	7,270	7,265	10,93	10,93	10,89
0,005	0,8328	6,248	6,245	9,22	9,22	9,20
0,007	0,7941	5,698	5,696	8,28	8,28	8,27
0,010	0,7440	5,217	5,216	7,42	7,42	7,41
0,020	0,6132	4,582	4,581	6,10	6,10	6,11
0,030	0,5130	4,375	4,375	5,55	5,55	5,56
0,050	0,3642	4,216	4,216	5,04	5,04	5,05
0,070	0,2608	4,141	4,141	4,79	4,79	4,80
0,100	0,1593	4,078	4,078	4,58	4,58	4,59
0,200	0,0318	4,004	4,004	4,30	4,30	4,31
0,300	0,0064	3,989	3,988	4,20	4,20	4,21
0,500	0,0003	3,984	3,984	4,11	4,11	4,12
0,700	0,0000	3,984	3,984	4,08	4,08	4,08
1,000	0,0000	3,984	3,984	4,05	4,05	4,05

Tabela C.8d. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.50$ e $\Theta = 120^\circ$.

Tabela C.8e. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.70$ e $\Theta = 120^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9361	11,420	11,288	16,86	16,77	16,68
0,002	0,8994	9,120	9,073	13,36	13,32	13,28
0,003	0,8693	8,063	8,043	11,74	11,73	11,69
0,005	0,8190	7,014	7,007	10,01	10,01	9,99
0,007	0,7761	6,477	6,472	9,07	9,06	9,05
0,010	0,7202	6,036	6,032	8,21	8,21	8,21
0,020	0,5729	5,546	5,544	6,94	6,94	6,96
0,030	0,4602	5,422	5,421	6,44	6,44	6,47
0,050	0,2996	5,326	5,325	6,01	6,01	6,03
0,070	0,1961	5,275	5,274	5,81	5,81	5,82
0,100	0,1045	5,228	5,227	5,64	5,64	5,65
0,200	0,0131	5,158	5,158	5,41	5,41	5,42
0,300	0,0017	5,130	5,130	5,32	5,32	5,33
0,500	0,0000	5,107	5,107	5,24	5,24	5,24
0,700	0,0000	5,099	5,099	5,20	5,20	5,20
1,000	0,0000	5,097	5,097	5,17	5,17	5,17

	Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	$Nu^*_{2m\acute{e}d}$
-	0,001	0,9321	12,136	12,061	17,68	17,63	17,68
	0,002	0,8926	9,969	9,907	14,20	14,17	14,20
	0,003	0,8598	8,972	8,918	12,59	12,57	12,59
	0,005	0,8042	7,983	7,938	10,90	10,88	10,90
	0,007	0,7563	7,498	7,459	9,99	9,97	9,98
	0,010	0,6932	7,136	7,104	9,17	9,16	9,17
	0,020	0,5259	6,833	6,814	8,02	8,01	8,03
	0,030	0,4008	6,781	6,768	7,61	7,61	7,62
	0,050	0,2336	6,741	6,733	7,27	7,26	7,27
	0,070	0,1364	6,721	6,715	7,11	7,11	7,11
	0,100	0,0610	6,693	6,689	6,99	6,99	6,99
	0,200	0,0042	6,646	6,643	6,84	6,84	6,84
	0,300	0,0003	6,632	6,630	6,78	6,78	6,78
	0,500	0,0000	6,623	6,622	6,73	6,73	6,73
	0,700	0,0000	6,617	6,617	6,71	6,71	6,71
	1,000	0,0000	6,617	6,617	6,69	6,69	6,69

Tabela C.8f. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.90$ e $\Theta = 120^\circ$.

Tabela C.9a. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.05$ e $\Theta = 150^\circ$.

Ζ	$\theta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9439	10,124	9,917	15,84	15,69	15,57
0,002	0,9118	7,796	7,741	12,15	12,11	11,94
0,003	0,8859	6,781	6,754	10,49	10,48	10,39
0,005	0,8432	5,745	5,731	8,76	8,75	8,69
0,007	0,8074	5,179	5,170	7,80	7,80	7,77
0,010	0,7613	4,670	4,663	6,93	6,93	6,92
0,020	0,6430	3,921	3,918	5,55	5,55	5,54
0,030	0,5534	3,624	3,622	4,95	4,95	4,94
0,050	0,4188	3,390	3,389	4,36	4,35	4,35
0,070	0,3206	3,306	3,305	4,06	4,06	4,06
0,100	0,2163	3,259	3,258	3,83	3,83	3,83
0,200	0,0592	3,237	3,236	3,53	3,53	3,53
0,300	0,0162	3,237	3,235	3,43	3,43	3,44
0,500	0,0012	3,237	3,235	3,35	3,35	3,36
0,700	0,0001	3,237	3,235	3,32	3,32	3,32
1,000	0,0000	3,237	3,235	3,30	3,30	3,30

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9433	9,814	9,747	16,12	16,07	14,90
0,002	0,9116	7,707	7,685	12,23	12,22	12,07
0,003	0,8859	6,732	6,719	10,53	10,52	10,40
0,005	0,8433	5,712	5,705	8,76	8,76	8,66
0,007	0,8076	5,154	5,149	7,80	7,80	7,77
0,010	0,7617	4,649	4,646	6,92	6,92	6,92
0,020	0,6437	3,910	3,908	5,54	5,54	5,53
0,030	0,5542	3,618	3,617	4,94	4,94	4,93
0,050	0,4195	3,388	3,387	4,35	4,35	4,34
0,070	0,3212	3,303	3,302	4,06	4,06	4,06
0,100	0,2168	3,254	3,253	3,82	3,82	3,82
0,200	0,0595	3,229	3,229	3,52	3,52	3,53
0,300	0,0163	3,228	3,228	3,42	3,42	3,43
0,500	0,0012	3,228	3,228	3,35	3,35	3,35
0,700	0,0001	3,228	3,228	3,31	3,31	3,31
1,000	0,0000	3,228	3,228	3,29	3,29	3,29

Tabela C.9b. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.10$ e $\Theta = 150^\circ$.

Tabela C.9c. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.30$ e $\Theta = 150^\circ$.

Ζ	O méd	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9415	10,019	9,997	16,39	16,36	16,18
0,002	0,9089	7,947	7,938	12,50	12,50	12,29
0,003	0,8824	6,971	6,966	10,79	10,79	10,63
0,005	0,8384	5,953	5,950	9,02	9,02	8,92
0,007	0,8013	5,399	5,398	8,05	8,05	7,99
0,010	0,7535	4,907	4,905	7,18	7,18	7,15
0,020	0,6296	4,215	4,215	5,81	5,81	5,78
0,030	0,5349	3,966	3,965	5,22	5,22	5,21
0,050	0,3931	3,771	3,771	4,67	4,67	4,67
0,070	0,2918	3,688	3,687	4,40	4,40	4,40
0,100	0,1883	3,626	3,626	4,17	4,17	4,18
0,200	0,0448	3,572	3,572	3,88	3,88	3,88
0,300	0,0107	3,567	3,566	3,77	3,77	3,78
0,500	0,0006	3,566	3,566	3,69	3,69	3,69
0,700	0,0000	3,566	3,566	3,65	3,65	3,66
1,000	0,0000	3,566	3,566	3,63	3,63	3,63

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9384	10,748	10,686	16,40	16,39	16,29
0,002	0,9036	8,543	8,530	12,84	12,83	12,72
0,003	0,8752	7,541	7,534	11,20	11,20	11,15
0,005	0,8279	6,513	6,510	9,49	9,49	9,46
0,007	0,7877	5,966	5,964	8,55	8,55	8,53
0,010	0,7356	5,497	5,495	7,69	7,69	7,68
0,020	0,5991	4,907	4,906	6,39	6,39	6,41
0,030	0,4943	4,729	4,728	5,85	5,85	5,87
0,050	0,3408	4,591	4,590	5,37	5,37	5,38
0,070	0,2368	4,522	4,522	5,13	5,13	5,15
0,100	0,1382	4,462	4,462	4,94	4,94	4,95
0,200	0,0236	4,382	4,381	4,67	4,67	4,68
0,300	0,0041	4,357	4,357	4,57	4,57	4,58
0,500	0,0001	4,347	4,347	4,48	4,48	4,49
0,700	0,0000	4,346	4,345	4,44	4,44	4,45
1,000	0,0000	4,346	4,345	4,41	4,41	4,42

Tabela C.9d. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.50$ e $\Theta = 150^\circ$.

Tabela C.9e. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.70$ e $\Theta = 150^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9352	11,654	11,511	17,00	16,96	16,88
0,002	0,8977	9,395	9,322	13,59	13,54	13,49
0,003	0,8668	8,328	8,289	11,98	11,96	11,91
0,005	0,8150	7,259	7,244	10,26	10,25	10,23
0,007	0,7709	6,720	6,712	9,31	9,31	9,29
0,010	0,7133	6,291	6,286	8,46	8,46	8,45
0,020	0,5611	5,846	5,843	7,20	7,20	7,22
0,030	0,4452	5,742	5,741	6,72	6,72	6,74
0,050	0,2823	5,662	5,661	6,31	6,31	6,32
0,070	0,1798	5,619	5,618	6,12	6,12	6,13
0,100	0,0919	5,579	5,578	5,96	5,96	5,97
0,200	0,0100	5,519	5,519	5,75	5,75	5,76
0,300	0,0011	5,494	5,493	5,67	5,67	5,67
0,500	0,0000	5,471	5,470	5,59	5,59	5,60
0,700	0,0000	5,459	5,458	5,56	5,56	5,56
1,000	0,0000	5,453	5,452	5,53	5,53	5,52

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9315	12,218	12,152	17,82	17,80	17,77
0,002	0,8918	10,037	9,983	14,31	14,28	14,32
0,003	0,8588	9,039	8,991	12,69	12,67	12,69
0,005	0,8027	8,057	8,015	10,99	10,97	10,99
0,007	0,7544	7,581	7,543	10,07	10,06	10,06
0,010	0,6908	7,235	7,201	9,26	9,25	9,26
0,020	0,5216	6,965	6,941	8,12	8,11	8,14
0,030	0,3955	6,924	6,906	7,72	7,72	7,73
0,050	0,2279	6,891	6,885	7,40	7,39	7,40
0,070	0,1315	6,873	6,869	7,25	7,25	7,25
0,100	0,0578	6,858	6,855	7,13	7,13	7,13
0,200	0,0037	6,835	6,832	6,99	6,99	6,99
0,300	0,0002	6,825	6,823	6,94	6,93	6,93
0,500	0,0000	6,813	6,811	6,89	6,89	6,89
0,700	0,0000	6,807	6,805	6,87	6,87	6,87
1,000	0,0000	6,807	6,805	6,85	6,85	6,85

Tabela C.9f. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.90$ e $\Theta = 150^\circ$.

Tabela C.10a. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.05$ e $\Theta = 180^\circ$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9433	10,123	9,956 7,700	15,94	15,87 12 25	15,59
0,002	0,8850	6,840	6,816	10,59	10,59	10,18
0,005 0,007	0,8419 0,8057	5,804 5,239	5,792 5,231	8,84 7,88	8,84 7,88	8,61 7,72
0,010 0,020 0,030 0,050	0,7592 0,6396 0,5490 0,4131	4,730 3,986 3,694 3,460	4,725 3,984 3,692 3,458	7,00 5,62 5,01 4,42	7,00 5,62 5,01 4,42	6,89 5,59 5,00 4,42
0,070 0,100 0,200	0,3146 0,2108 0.0565	3,370 3,316 3,285	3,369 3,315 3,284	4,13 3,89 3,59	4,13 3,89 3,59	4,13 3,89 3,59
0,300 0,500 0,700	0,0152 0,0011 0,0001	3,283 3,284 3,284 3,284	3,283 3,283 3,283 3,283	3,49 3,41 3,37	3,49 3,40 3,37	3,49 3,41 3,37
1,000	0,0000	3,284	3,283	3,35	3,34	3,35

Ζ	$ heta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9427	9,900	9,844	16,27	16,25	15,85
0,002	0,9107	7,803	7,782	12,40	12,39	11,70
0,003	0,8846	6,823	6,811	10,67	10,67	10,22
0,005	0,8415	5,800	5,794	8,89	8,88	8,63
0,007	0,8054	5,240	5,236	7,91	7,91	7,73
0,010	0,7588	4,737	4,734	7,03	7,03	6,90
0,020	0,6389	4,004	4,002	5,64	5,64	5,60
0,030	0,5479	3,719	3,718	5,03	5,03	5,01
0,050	0,4113	3,491	3,490	4,45	4,45	4,44
0,070	0,3124	3,401	3,400	4,16	4,16	4,16
0,100	0,2085	3,345	3,344	3,92	3,92	3,92
0,200	0,0553	3,310	3,309	3,61	3,61	3,62
0,300	0,0147	3,308	3,307	3,51	3,51	3,52
0,500	0,0010	3,308	3,307	3,43	3,43	3,43
0,700	0,0001	3,308	3,307	3,40	3,40	3,40
1,000	0,0000	3,308	3,307	3,37	3,37	3,37

Tabela C.10b. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0,10$ e $\Theta = 180^\circ$.

Tabela C.1<u>0c.</u> Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.30$ e $\Theta = 180^\circ$.

Ζ	$ heta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9404	10,262	10,230	16,44	16,43	16,26
0,002	0,9071	8,150	8,141	12,67	12,66	12,19
0,003	0,8799	7,166	7,160	10,97	10,96	10,66
0,005	0,8348	6,142	6,139	9,20	9,20	9,03
0,007	0,7967	5,589	5,587	8,24	8,24	8,12
0,010	0,7474	5,101	5,099	7,36	7,36	7,28
0,020	0,6193	4,436	4,435	6,00	6,00	5,99
0,030	0,5214	4,206	4,206	5,43	5,43	5,43
0,050	0,3755	4,027	4,027	4,89	4,89	4,90
0,070	0,2731	3,945	3,945	4,63	4,63	4,64
0,100	0,1709	3,880	3,880	4,41	4,41	4,42
0,200	0,0368	3,812	3,811	4,12	4,12	4,13
0,300	0,0080	3,800	3,800	4,01	4,01	4,02
0,500	0,0004	3,798	3,798	3,93	3,93	3,93
0,700	0,0000	3,798	3,798	3,89	3,89	3,89
1,000	0,0000	3,798	3,798	3,86	3,86	3,86

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9374	11,055	10,959	16,55	16,51	16,27
0,002	0,9018	8,786	8,762	13,07	13,05	12,93
0,003	0,8726	7,761	7,751	11,44	11,43	11,35
0,005	0,8240	6,727	6,723	9,71	9,71	9,68
0,007	0,7827	6,184	6,181	8,77	8,77	8,75
0,010	0,7289	5,725	5,723	7,92	7,92	7,90
0,020	0,5878	5,174	5,173	6,62	6,62	6,64
0,030	0,4796	5,018	5,017	6,10	6,10	6,12
0,050	0,3229	4,897	4,896	5,64	5,64	5,65
0,070	0,2188	4,835	4,835	5,41	5,41	5,43
0,100	0,1229	4,780	4,780	5,23	5,23	5,24
0,200	0,0185	4,701	4,701	4,98	4,98	4,99
0,300	0,0028	4,673	4,673	4,88	4,88	4,89
0,500	0,0001	4,656	4,655	4,79	4,79	4,80
0,700	0,0000	4,652	4,652	4,75	4,75	4,76
1,000	0,0000	4,652	4,652	4,72	4,72	4,72

Tabela C.10d. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.50$ e $\Theta = 180^\circ$.

Tabela C.10e. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.70$ e $\Theta = 180^\circ$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9346	11,783	11,646	17,08	17,04	16,97
0,002	0,8965	9,569	9,485	13,73	13,68	13,66
0,003	0,8651	8,517	8,463	12,14	12,11	12,08
0,005	0,8123	7,448	7,422	10,43	10,41	10,40
0,007	0,7672	6,907	6,893	9,49	9,48	9,46
0,010	0,7083	6,483	6,476	8,64	8,64	8,62
0,020	0,5525	6,069	6,065	7,39	7,39	7,42
0,030	0,4344	5,979	5,977	6,93	6,93	6,95
0,050	0,2701	5,910	5,908	6,53	6,53	6,54
0,070	0,1687	5,873	5,871	6,35	6,35	6,36
0,100	0,0836	5,838	5,837	6,20	6,20	6,21
0,200	0,0082	5,767	5,766	6,00	6,00	6,01
0,300	0,0008	5,744	5,746	5,93	5,93	5,93
0,500	0,0000	5,729	5,730	5,86	5,86	5,86
0,700	0,0000	5,727	5,727	5,85	5,85	5,85
1,000	0,0000	5,727	5,727	5,83	5,83	5,83

Ζ	$ heta_{meta d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9311	12,281	12,219	17,90	17,88	17,85
0,002	0,8912	10,089	10,039	14,39	14,36	14,40
0,003	0,8580	9,088	9,043	12,76	12,74	12,76
0,005	0,8017	8,107	8,067	11,05	11,03	11,05
0,007	0,7531	7,635	7,599	10,13	10,12	10,13
0,010	0,6891	7,298	7,265	9,32	9,31	9,31
0,020	0,5188	7,049	7,023	8,19	8,18	8,20
0,030	0,3920	7,018	6,996	7,80	7,79	7,81
0,050	0,2242	6,992	6,976	7,48	7,47	7,48
0,070	0,1284	6,977	6,964	7,34	7,33	7,33
0,100	0,0557	6,959	6,953	7,23	7,22	7,22
0,200	0,0035	6,943	6,936	7,09	7,09	7,08
0,300	0,0002	6,930	6,928	7,04	7,04	7,03
0,500	0,0000	6,920	6,919	6,99	6,99	6,99
0,700	0,0000	6,914	6,914	6,97	6,97	6,97
1,000	0,0000	6,914	6,914	6,96	6,96	6,96

Tabela C.10f. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.90$ e $\Theta = 180^\circ$.

Tabela C.11a. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.05$ e $\Theta = 210^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9428	10,151	10,009	16,29	16,14	15,97
0,002	0,9104	7,905	7,866	12,39	12,37	12,24
0,003	0,8841	6,904	6,882	10,69	10,69	10,63
0,005	0,8406	5,868	5,856	8,93	8,92	8,88
0,007	0,8040	5,302	5,294	7,96	7,96	7,93
0,010	0,7571	4,794	4,789	7,09	7,09	7,06
0,020	0,6361	4,055	4,052	5,69	5,69	5,66
0,030	0,5444	3,766	3,764	5,08	5,08	5,07
0,050	0,4073	3,532	3,530	4,50	4,49	4,49
0,070	0,3084	3,437	3,436	4,20	4,20	4,20
0,100	0,2051	3,377	3,376	3,96	3,96	3,96
0,200	0,0537	3,337	3,336	3,65	3,65	3,66
0,300	0,0142	3,335	3,334	3,54	3,54	3,55
0,500	0,0010	3,335	3,334	3,46	3,46	3,46
0,700	0,0001	3,335	3,334	3,43	3,43	3,43
1,000	0,0000	3,335	3,334	3,40	3,40	3,40

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9421	10,009	9,956	16,61	16,56	16,31
0,002	0,9097	7,906	7,886	12,56	12,55	12,33
0,003	0,8833	6,922	6,910	10,81	10,81	10,74
0,005	0,8397	5,895	5,888	9,01	9,01	8,94
0,007	0,8030	5,334	5,330	8,03	8,03	7,99
0,010	0,7557	4,831	4,828	7,13	7,13	7,12
0,020	0,6338	4,106	4,105	5,74	5,74	5,74
0,030	0,5412	3,829	3,828	5,14	5,14	5,14
0,050	0,4026	3,605	3,604	4,55	4,55	4,55
0,070	0,3031	3,512	3,511	4,27	4,27	4,27
0,100	0,1997	3,449	3,448	4,03	4,03	4,03
0,200	0,0509	3,404	3,403	3,72	3,72	3,72
0,300	0,0131	3,401	3,400	3,61	3,61	3,62
0,500	0,0009	3,400	3,400	3,53	3,53	3,53
0,700	0,0001	3,400	3,400	3,49	3,49	3,49
1,000	0,0000	3,400	3,400	3,46	3,46	3,46

Tabela C.11b. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0,10$ e $\Theta = 210^\circ$.

Tabela C.11c. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.30$ e $\Theta = 210^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9395	10,494	10,445	16,63	16,57	16,48
0,002	0,9055	8,333	8,321	12,82	12,82	12,71
0,003	0,8778	7,339	7,333	11,13	11,13	11,06
0,005	0,8316	6,312	6,308	9,37	9,36	9,32
0,007	0,7926	5,759	5,757	8,40	8,40	8,37
0,010	0,7420	5,277	5,275	7,53	7,53	7,52
0,020	0,6102	4,638	4,637	6,18	6,18	6,17
0,030	0,5094	4,427	4,426	5,62	5,62	5,62
0,050	0,3602	4,261	4,261	5,10	5,10	5,10
0,070	0,2571	4,183	4,182	4,85	4,85	4,85
0,100	0,1563	4,118	4,117	4,64	4,64	4,64
0,200	0,0307	4,040	4,040	4,35	4,35	4,35
0,300	0,0061	4,023	4,022	4,24	4,24	4,25
0,500	0,0002	4,018	4,017	4,15	4,15	4,16
0,700	0,0000	4,017	4,017	4,11	4,11	4,12
1,000	0,0000	4,017	4,017	4,08	4,08	4,09

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9366	11,288	11,166	16,77	16,69	16,61
0,002	0,9003	8,995	8,956	13,26	13,22	13,19
0,003	0,8706	7,947	7,931	11,63	11,62	11,62
0,005	0,8209	6,903	6,896	9,90	9,90	9,89
0,007	0,7787	6,362	6,358	8,95	8,95	8,95
0,010	0,7236	5,912	5,909	8,10	8,10	8,10
0,020	0,5787	5,394	5,393	6,81	6,81	6,81
0,030	0,4679	5,256	5,255	6,31	6,31	6,31
0,050	0,3089	5,147	5,147	5,86	5,86	5,87
0,070	0,2051	5,092	5,091	5,65	5,65	5,66
0,100	0,1117	5,041	5,041	5,47	5,47	5,48
0,200	0,0151	4,968	4,967	5,23	5,23	5,24
0,300	0,0021	4,939	4,938	5,14	5,14	5,15
0,500	0,0000	4,915	4,914	5,05	5,05	5,06
0,700	0,0000	4,910	4,910	5,01	5,01	5,02
1,000	0,0000	4,909	4,909	4,98	4,98	4,98

Tabela C.11d. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.50$ e $\Theta = 210^\circ$.

Tabela C.11e. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.70$ e $\Theta = 210^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9341	11,863	11,738	17,24	17,19	17,15
0,002	0,8957	9,680	9,594	13,83	13,78	13,77
0,003	0,8639	8,646	8,584	12,24	12,22	12,21
0,005	0,8103	7,591	7,556	10,55	10,53	10,52
0,007	0,7645	7,055	7,033	9,62	9,61	9,60
0,010	0,7046	6,636	6,624	8,77	8,77	8,76
0,020	0,5461	6,241	6,236	7,54	7,54	7,56
0,030	0,4263	6,161	6,158	7,09	7,08	7,11
0,050	0,2612	6,100	6,098	6,70	6,70	6,71
0,070	0,1606	6,067	6,065	6,52	6,52	6,53
0,100	0,0777	6,037	6,036	6,38	6,38	6,39
0,200	0,0070	5,981	5,980	6,19	6,19	6,20
0,300	0,0006	5,961	5,960	6,12	6,12	6,13
0,500	0,0000	5,952	5,952	6,06	6,06	6,06
0,700	0,0000	5,942	5,942	6,03	6,03	6,03
1,000	0,0000	5,942	5,942	6,02	6,02	6,03

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9308	12,331	12,292	17,99	17,96	17,98
0,002 0,003	0,8907 0,8574	9,126	10,102 9,099	14,45 12,81	14,42	14,47 12,82
0,005 0,007	0,8009 0,7521	8,145 7,676	8,127 7,650	11,09 10,17	11,08 10,16	11,10 10,17
0,010 0,020 0,030 0,050 0,070	0,6878 0,5168 0,3895 0,2216 0,1262	7,343 7,107 7,073 7,054 7,042	7,330 7,093 7,059 7,045 7,036	9,36 8,24 7,85 7,54 7,40	9,35 8,22 7,84 7,53 7,40	9,36 8,25 7,86 7,54 7,39
0,100 0,200 0,300 0,500 0,700	0,0543 0,0033 0,0002 0,0000 0,0000	7,020 7,002 6,995 6,993 6,992	7,017 7,000 6,993 6,992 6,991	7,29 7,16 7,11 7,07 7,05	7,29 7,16 7,11 7,07 7,05	7,29 7,16 7,11 7,06 7,05
1,000	0,0000	6,992	6,991	7,04	7,04	7,04

Tabela C.1<u>1f.</u> Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.90$ e $\Theta = 210^\circ$.

Tabela C.12a. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.05$ e $\Theta = 240^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9424	10,202	10,074	16,41	16,38	16,12
0,002	0,9097	7,972	7,937	12,50	12,49	12,34
0,003	0,8831	6,972	6,951	10,79	10,78	10,66
0,005	0,8392	5,934	5,923	9,01	9,01	8,94
0,007	0,8024	5,368	5,360	8,04	8,04	7,99
0,010	0,7549	4,860	4,855	7,15	7,15	7,14
0,020	0,6325	4,126	4,124	5,76	5,76	5,75
0,030	0,5398	3,841	3,840	5,16	5,16	5,15
0,050	0,4014	3,608	3,606	4,57	4,57	4,56
0,070	0,3021	3,510	3,509	4,28	4,28	4,28
0,100	0,1992	3,445	3,444	4,04	4,04	4,04
0,200	0,0509	3,397	3,396	3,72	3,72	3,72
0,300	0,0131	3,393	3,392	3,61	3,61	3,61
0,500	0,0009	3,393	3,392	3,52	3,52	3,52
0,700	0,0001	3,393	3,392	3,49	3,49	3,49
1,000	0,0000	3,393	3,392	3,46	3,46	3,46

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9416	10,130	10,075	16,75	16,73	16,52
0,002	0,9088	8,009	7,989	12,71	12,70	12,56
0,003	0,8821	7,020	7,008	10,95	10,94	10,86
0,005	0,8378	5,990	5,984	9,13	9,12	9,04
0,007	0,8006	5,429	5,424	8,14	8,14	8,11
0,010	0,7526	4,927	4,924	7,25	7,25	7,23
0,020	0,6286	4,212	4,211	5,84	5,84	5,83
0,030	0,5344	3,943	3,942	5,24	5,24	5,24
0,050	0,3939	3,723	3,722	4,66	4,66	4,66
0,070	0,2937	3,629	3,628	4,38	4,38	4,38
0,100	0,1909	3,562	3,561	4,14	4,14	4,14
0,200	0,0466	3,507	3,506	3,83	3,83	3,83
0,300	0,0115	3,501	3,501	3,72	3,72	3,72
0,500	0,0007	3,500	3,500	3,63	3,63	3,63
0,700	0,0000	3,500	3,500	3,59	3,59	3,59
1,000	0,0000	3,500	3,500	3,57	3,57	3,57

Tabela C.12b. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0,10$ e $\Theta = 240^\circ$.

Tabela C.12c. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.30$ e $\Theta = 240^\circ$.

Ζ	O méd	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9387	10,707	10,637	16,72	16,70	15,56
0,002	0,9042	8,497	8,481	12,97	12,96	12,89
0,003	0,8759	7,492	7,484	11,28	11,27	11,24
0,005	0,8288	6,461	6,457	9,51	9,51	9,48
0,007	0,7890	5,910	5,907	8,55	8,55	8,52
0,010	0,7373	5,433	5,431	7,68	7,68	7,67
0,020	0,6023	4,819	4,818	6,34	6,34	6,34
0,030	0,4989	4,624	4,623	5,79	5,79	5,79
0,050	0,3471	4,471	4,470	5,28	5,28	5,28
0,070	0,2436	4,396	4,396	5,04	5,04	5,04
0,100	0,1443	4,333	4,333	4,83	4,83	4,84
0,200	0,0260	4,252	4,252	4,56	4,56	4,56
0,300	0,0048	4,229	4,229	4,45	4,45	4,45
0,500	0,0002	4,220	4,220	4,36	4,36	4,36
0,700	0,0000	4,219	4,219	4,32	4,32	4,32
1,000	0,0000	4,219	4,219	4,29	4,29	4,29

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9360	11,456	11,319	16,84	16,81	16,75
0,002	0,8992	9,170	9,115	13,40	13,36	13,35
0,003	0,8690	8,108	8,082	11,78	11,77	11,76
0,005	0,8184	7,050	7,041	10,05	10,05	10,04
0,007	0,7754	6,510	6,505	9,11	9,10	9,09
0,010	0,7193	6,068	6,065	8,25	8,25	8,24
0,020	0,5714	5,578	5,576	6,97	6,97	7,00
0,030	0,4585	5,453	5,451	6,48	6,48	6,50
0,050	0,2977	5,355	5,354	6,04	6,04	6,06
0,070	0,1944	5,304	5,303	5,84	5,84	5,85
0,100	0,1032	5,258	5,258	5,67	5,67	5,68
0,200	0,0128	5,190	5,190	5,44	5,44	5,45
0,300	0,0016	5,162	5,162	5,35	5,35	5,36
0,500	0,0000	5,139	5,139	5,27	5,27	5,27
0,700	0,0000	5,130	5,130	5,23	5,23	5,23
1,000	0,0000	5,127	5,127	5,20	5,20	5,20

Tabela C.12d. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.50$ e $\Theta = 240^\circ$.

Tabela C.12e. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.70$ e $\Theta = 240^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9336	11,922	11,809	17,31	17,26	17,28
0,002	0,8950	9,755	9,672	13,91	13,86	13,87
0,003	0,8629	8,736	8,672	12,32	12,30	12,29
0,005	0,8088	7,698	7,657	10,64	10,62	10,61
0,007	0,7625	7,170	7,142	9,71	9,70	9,69
0,010	0,7017	6,759	6,742	8,89	8,88	8,87
0,020	0,5411	6,378	6,372	7,66	7,65	7,68
0,030	0,4201	6,305	6,301	7,21	7,21	7,23
0,050	0,2544	6,250	6,247	6,83	6,83	6,85
0,070	0,1545	6,221	6,218	6,66	6,66	6,67
0,100	0,0734	6,184	6,182	6,53	6,52	6,53
0,200	0,0062	6,143	6,142	6,35	6,35	6,35
0,300	0,0005	6,125	6,124	6,28	6,28	6,28
0,500	0,0000	6,108	6,107	6,22	6,22	6,22
0,700	0,0000	6,093	6,092	6,19	6,19	6,19
1,000	0,0000	6,092	6,091	6,16	6,16	6,16

Z	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9305	12,371	12,354	18,07	18,05	18,04
0,002	0,8903	10,163	10,146	14,50	14,47	14,52
0,003	0,8569	9,157	9,145	12,85	12,84	12,87
0,005	0,8002	8,174	8,167	11,13	11,12	11,14
0,007	0,7513	7,707	7,702	10,21	10,20	10,21
0,010	0,6868	7,377	7,373	9,40	9,39	9,41
0,020	0,5152	7,150	7,145	8,27	8,26	8,29
0,030	0,3877	7,130	7,126	7,89	7,88	7,90
0,050	0,2197	7,116	7,112	7,58	7,57	7,58
0,070	0,1246	7,107	7,104	7,45	7,44	7,44
0,100	0,0532	7,097	7,094	7,34	7,34	7,34
0,200	0,0031	7,082	7,079	7,22	7,21	7,21
0,300	0,0002	7,075	7,073	7,17	7,17	7,17
0,500	0,0000	7,063	7,062	7,13	7,13	7,13
0,700	0,0000	7,052	7,051	7,11	7,11	7,11
1,000	0,0000	7,046	7,045	7,10	7,10	7,10

Tabela C.12f. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.90$ e $\Theta = 240^\circ$.

Tabela C.13a. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.05$ e $\Theta = 270^\circ$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9419	10,270	10,148	16,45	16,40	15,96
0,002	0,9090	8,043	8,008	12,61	12,60	11,93
0,003	0,8822	7,041	7,020	10,89	10,88	10,44
0,005	0,8379	6,000	5,989	9,10	9,09	8,84
0,007	0,8007	5,434	5,427	8,12	8,12	7,94
0,010	0,7527	4,927	4,922	7,23	7,23	7,10
0,020	0,6289	4,199	4,196	5,83	5,83	5,80
0,030	0,5351	3,919	3,917	5,23	5,23	5,21
0,050	0,3954	3,687	3,685	4,64	4,64	4,64
0,070	0,2957	3,587	3,586	4,35	4,35	4,35
0,100	0,1932	3,518	3,517	4,11	4,11	4,11
0,200	0,0480	3,463	3,462	3,79	3,79	3,80
0,300	0,0120	3,458	3,457	3,68	3,68	3,68
0,500	0,0008	3,457	3,456	3,59	3,59	3,59
0,700	0,0000	3,457	3,456	3,55	3,55	3,55
1,000	0,0000	3,457	3,456	3,52	3,52	3,52

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9410	10,256	10,193	16,83	16,81	16,39
0,002	0,9079	8,109	8,089	12,84	12,83	12,08
0,003	0,8809	7,116	7,104	11,07	11,06	10,57
0,005	0,8360	6,083	6,076	9,24	9,24	8,95
0,007	0,7983	5,521	5,517	8,25	8,24	8,05
0,010	0,7496	5,021	5,019	7,34	7,34	7,21
0,020	0,6237	4,317	4,315	5,94	5,94	5,90
0,030	0,5279	4,055	4,054	5,35	5,35	5,32
0,050	0,3855	3,842	3,841	4,77	4,77	4,77
0,070	0,2847	3,747	3,747	4,49	4,49	4,49
0,100	0,1825	3,678	3,677	4,26	4,26	4,25
0,200	0,0426	3,614	3,613	3,94	3,94	3,94
0,300	0,0101	3,605	3,605	3,83	3,83	3,83
0,500	0,0006	3,604	3,603	3,74	3,74	3,74
0,700	0,0000	3,604	3,603	3,70	3,70	3,70
1,000	0,0000	3,604	3,603	3,67	3,67	3,67

Tabela C.13b. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0,10$ e $\Theta = 270^\circ$.

Tabela C.13c. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.30$ e $\Theta = 270^\circ$.

Ζ	$ heta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9381	10,894	10,804	16,75	16,72	16,37
0,002	0,9030	8,646	8,624	13,10	13,08	12,76
0,003	0,8743	7,627	7,617	11,41	11,41	11,19
0,005	0,8264	6,592	6,587	9,65	9,64	9,53
0,007	0,7859	6,043	6,040	8,68	8,68	8,61
0,010	0,7332	5,572	5,570	7,81	7,81	7,76
0,020	0,5954	4,980	4,979	6,48	6,48	6,48
0,030	0,4899	4,799	4,799	5,94	5,94	5,95
0,050	0,3359	4,657	4,656	5,45	5,44	5,46
0,070	0,2322	4,587	4,586	5,21	5,21	5,22
0,100	0,1344	4,527	4,526	5,01	5,01	5,02
0,200	0,0224	4,445	4,445	4,74	4,74	4,75
0,300	0,0038	4,419	4,418	4,64	4,64	4,64
0,500	0,0001	4,405	4,405	4,55	4,55	4,55
0,700	0,0000	4,404	4,403	4,50	4,50	4,50
1,000	0,0000	4,403	4,403	4,47	4,47	4,47

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9356	11,576	11,433	16,89	16,84	16,65
0,002	0,8983	9,310	9,243	13,51	13,47	13,41
0,003	0,8677	8,245	8,209	11,90	11,89	11,83
0,005	0,8164	7,177	7,163	10,18	10,17	10,15
0,007	0,7727	6,636	6,629	9,23	9,23	9,21
0,010	0,7157	6,200	6,195	8,38	8,37	8,36
0,020	0,5653	5,732	5,730	7,11	7,11	7,13
0,030	0,4507	5,618	5,616	6,62	6,62	6,64
0,050	0,2887	5,529	5,528	6,20	6,20	6,21
0,070	0,1859	5,482	5,481	6,00	6,00	6,01
0,100	0,0966	5,431	5,430	5,84	5,84	5,84
0,200	0,0111	5,367	5,367	5,62	5,62	5,62
0,300	0,0013	5,341	5,340	5,53	5,53	5,54
0,500	0,0000	5,327	5,326	5,45	5,45	5,46
0,700	0,0000	5,317	5,316	5,42	5,42	5,42
1,000	0,0000	5,312	5,312	5,39	5,39	5,38

Tabela C.13d. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.50$ e $\Theta = 270^\circ$.

Tabela C.13e. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.70$ e $\Theta = 270^\circ$.

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9333	11,970	11,867	17,37	17,33	17,26
0,002	0,8944	9,810	9,731	13,98	13,93	13,95
0,003	0,8622	8,800	8,737	12,39	12,36	12,36
0,005	0,8076	7,778	7,733	10,70	10,68	10,68
0,007	0,7609	7,260	7,227	9,78	9,77	9,76
0,010	0,6995	6,858	6,836	8,95	8,95	8,94
0,020	0,5372	6,491	6,482	7,75	7,75	7,77
0,030	0,4151	6,422	6,417	7,31	7,31	7,33
0,050	0,2490	6,372	6,368	6,94	6,94	6,95
0,070	0,1498	6,345	6,342	6,78	6,77	6,78
0,100	0,0701	6,310	6,308	6,64	6,64	6,65
0,200	0,0056	6,273	6,272	6,47	6,47	6,47
0,300	0,0005	6,257	6,256	6,40	6,40	6,41
0,500	0,0000	6,241	6,240	6,35	6,35	6,35
0,700	0,0000	6,232	6,231	6,32	6,32	6,32
1,000	0,0000	6,223	6,223	6,29	6,29	6,29

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9303	12,405	12,349	18,10	18,08	18,05
0,002	0,8900	10,190	10,145	14,54	14,52	14,56
0,003	0,8565	9,182	9,141	12,89	12,87	12,90
0,005	0,7997	8,199	8,162	11,16	11,15	11,18
0,007	0,7507	7,732	7,698	10,24	10,23	10,24
0,010	0,6860	7,404	7,382	9,43	9,42	9,42
0,020	0,5140	7,182	7,169	8,30	8,29	8,32
0,030	0,3862	7,165	7,154	7,92	7,91	7,93
0,050	0,2183	7,156	7,142	7,62	7,61	7,61
0,070	0,1234	7,141	7,134	7,48	7,48	7,47
0,100	0,0525	7,136	7,128	7,38	7,38	7,37
0,200	0,0030	7,128	7,122	7,26	7,26	7,25
0,300	0,0002	7,121	7,119	7,21	7,21	7,21
0,500	0,0000	7,113	7,112	7,18	7,18	7,17
0,700	0,0000	7,107	7,107	7,16	7,16	7,16
1,000	0,0000	7,105	7,105	7,14	7,14	7,14

Tabela C.1<u>3f.</u> Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.90$ e $\Theta = 270^\circ$.

Tabela C.14a. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.05$ e $\Theta = 300^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9415	10,348	10,226	16,67	16,61	16,46
0,002	0,9083	8,113	8,079	12,72	12,70 10.07	12,52
0,005	0,8366	6,066	6.055	9,18	9,17	9,07
0,007	0,7990	5,499	5,492	8,20	8,20	8,14
0,010	0,7505	4,993	4,989	7,31	7,31	7,27
0,020	0,6254	4,272	4,269	5,91	5,90	5,87
0,030	0,5305	3,996	3,995	5,30	5,30	5,28
0,050	0,3895	3,767	3,766	4,72	4,72	4,72
0,070	0,2895	3,667	3,666	4,43	4,43	4,43
0,100	0,1874	3,595	3,594	4,19	4,19	4,19
0,200	0,0452	3,533	3,532	3,87	3,86	3,87
0,300	0,0110	3,525	3,524	3,75	3,75	3,75
0,500	0,0007	3,524	3,523	3,66	3,66	3,66
0,700	0,0000	3,524	3,523	3,62	3,62	3,62
1,000	0,0000	3,524	3,523	3,59	3,59	3,59

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9406	10,382	10,308	17,09	17,07	16,78
0,002	0,9070	8,206	8,184	12,97	12,96	12,80
0,003	0,8797	7,207	7,194	11,18	11,18	10,98
0,005	0,8344	6,171	6,164	9,34	9,34	9,25
0,007	0,7961	5,609	5,605	8,35	8,34	8,27
0,010	0,7468	5,112	5,109	7,45	7,45	7,41
0,020	0,6190	4,418	4,417	6,04	6,04	6,00
0,030	0,5217	4,165	4,164	5,45	5,45	5,42
0,050	0,3775	3,957	3,956	4,88	4,88	4,87
0,070	0,2762	3,864	3,863	4,60	4,60	4,60
0,100	0,1746	3,793	3,793	4,37	4,37	4,36
0,200	0,0390	3,722	3,721	4,05	4,05	4,06
0,300	0,0088	3,710	3,710	3,94	3,94	3,94
0,500	0,0005	3,708	3,707	3,85	3,85	3,85
0,700	0,0000	3,708	3,707	3,81	3,81	3,81
1,000	0,0000	3,707	3,707	3,78	3,78	3,78

Tabela C.14b. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0,10$ e $\Theta = 300^\circ$.

Tabela C.14c. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.30$ e $\Theta = 300^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001 0,002 0,003 0,005	0,9376 0,9020 0,8729 0,8244	11,053 8,782 7,749 6,708	10,945 8,751 7,736 6,702	16,89 13,21 11,53 9,76	16,84 13,19 11,52 9,76	16,73 13,07 11,43 9,71
0,010 0,020 0,030 0,050 0,070	0,7296 0,5893 0,4820 0,3263 0,2225	5,695 5,124 4,955 4,822 4,756	5,692 5,123 4,954 4,821 4,756	8,80 7,93 6,61 6,07 5,59 5,36	8,80 7,93 6,61 6,07 5,59 5,36	8,77 7,92 6,61 6,07 5,59 5,36
0,100 0,200 0,300 0,500 0,700	0,1262 0,0196 0,0031 0,0001 0,0000	4,699 4,619 4,590 4,572 4,569	4,699 4,618 4,590 4,572 4,569	5,17 4,91 4,80 4,71 4,67	5,17 4,91 4,80 4,71 4,67	5,17 4,91 4,81 4,72 4,68
1,000	0,0000	4,569	4,569	4,64	4,64	4,64

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9352	11,662	11,520	17,00	16,97	16,91
0,002	0,8976	9,421	9,345	13,60	13,55	13,53
0,003	0,8666	8,360	8,315	12,00	11,98	11,95
0,005	0,8147	7,288	7,269	10,28	10,27	10,25
0,007	0,7705	6,745	6,735	9,34	9,33	9,31
0,010	0,7127	6,312	6,307	8,48	8,48	8,47
0,020	0,5601	5,864	5,861	7,22	7,22	7,25
0,030	0,4442	5,758	5,756	6,74	6,74	6,76
0,050	0,2813	5,676	5,675	6,33	6,33	6,34
0,070	0,1790	5,634	5,632	6,13	6,13	6,15
0,100	0,0913	5,595	5,594	5,98	5,98	5,99
0,200	0,0099	5,537	5,536	5,77	5,77	5,77
0,300	0,0011	5,502	5,501	5,69	5,69	5,69
0,500	0,0000	5,479	5,479	5,61	5,61	5,61
0,700	0,0000	5,469	5,469	5,57	5,57	5,58
1,000	0,0000	5,463	5,463	5,54	5,54	5,54

Tabela C.14d. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.50$ e $\Theta = 300^\circ$.

Tabela C.14e. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.70$ e $\Theta = 300^\circ$.

Ζ	O méd	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9330	12,011	11,977	17,51	17,45	17,36
0,002	0,8940	9,853	9,819	14,03	13,99	14,01
0,003	0,8615	8,849	8,828	12,44	12,42	12,42
0,005	0,8067	7,839	7,813	10,76	10,74	10,74
0,007	0,7596	7,330	7,294	9,84	9,83	9,82
0,010	0,6977	6,938	6,923	9,02	9,02	9,01
0,020	0,5340	6,584	6,573	7,83	7,82	7,84
0,030	0,4111	6,519	6,513	7,40	7,39	7,41
0,050	0,2447	6,472	6,468	7,03	7,03	7,04
0,070	0,1460	6,447	6,444	6,87	6,87	6,87
0,100	0,0675	6,425	6,422	6,74	6,74	6,74
0,200	0,0052	6,399	6,394	6,57	6,57	6,57
0,300	0,0004	6,385	6,383	6,51	6,51	6,51
0,500	0,0000	6,372	6,370	6,45	6,45	6,45
0,700	0,0000	6,364	6,363	6,43	6,42	6,42
1,000	0,0000	6,356	6,355	6,40	6,40	6,40

Z	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9302	12,432	12,407	18,16	18,13	18,14
0,002	0,8898	10,213	10,191	14,57	14,55	14,60
0,003	0,8562	9,203	9,187	12,92	12,90	12,94
0,005	0,7993	8,219	8,207	11,19	11,17	11,20
0,007	0,7502	7,752	7,739	10,26	10,25	10,27
0,010	0,6853	7,426	7,414	9,45	9,44	9,45
0,020	0,5130	7,208	7,199	8,33	8,31	8,34
0,030	0,3851	7,193	7,186	7,95	7,94	7,95
0,050	0,2171	7,186	7,181	7,64	7,63	7,64
0,070	0,1224	7,181	7,178	7,51	7,51	7,50
0,100	0,0519	7,175	7,173	7,41	7,41	7,41
0,200	0,0030	7,165	7,163	7,29	7,28	7,28
0,300	0,0002	7,159	7,157	7,25	7,24	7,24
0,500	0,0000	7,153	7,152	7,21	7,21	7,21
0,700	0,0000	7,145	7,144	7,19	7,19	7,19
1,000	0,0000	7,140	7,139	7,18	7,18	7,18

Tabela C.1<u>4f.</u> Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.90$ e $\Theta = 300^\circ$.

Tabela C.15a. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.05$ e $\Theta = 330^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9412	10,431	10,355	16,79	16,74	15,57
0,002	0,9077	8,183	8,168	12,82	12,80	12,60
0,003	0,8805	7,174	7,164	11,07	11,06	10,91
0,005	0,8354	6,130	6,123	9,26	9,25	9,13
0,007	0,7975	5,563	5,556	8,27	8,27	8,18
0,010	0,7485	5,058	5,053	7,38	7,38	7,34
0,020	0,6220	4,343	4,341	5,98	5,97	5,94
0,030	0,5260	4,073	4,072	5,37	5,37	5,35
0,050	0,3838	3,847	3,846	4,79	4,79	4,79
0,070	0,2834	3,748	3,746	4,51	4,51	4,51
0,100	0,1817	3,675	3,673	4,27	4,27	4,27
0,200	0,0426	3,608	3,606	3,94	3,94	3,94
0,300	0,0101	3,598	3,596	3,83	3,83	3,83
0,500	0,0006	3,595	3,593	3,73	3,73	3,73
0,700	0,0000	3,595	3,593	3,69	3,69	3,69
1,000	0,0000	3,595	3,593	3,66	3,66	3,66

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9401	10,502	10,457	17,23	17,12	16,95
0,002	0,9063	8,298	8,274	13,09	13,07	12,82
0,003	0,8787	7,292	7,279	11,29	11,29	11,08
0,005	0,8328	6,254	6,247	9,44	9,44	9,35
0,007	0,7941	5,692	5,688	8,44	8,44	8,38
0,010	0,7442	5,197	5,194	7,54	7,54	7,51
0,020	0,6145	4,514	4,513	6,13	6,13	6,09
0,030	0,5159	4,269	4,268	5,54	5,54	5,52
0,050	0,3701	4,068	4,067	4,98	4,98	4,97
0,070	0,2684	3,977	3,976	4,70	4,70	4,70
0,100	0,1673	3,906	3,905	4,47	4,47	4,47
0,200	0,0358	3,829	3,828	4,16	4,16	4,16
0,300	0,0078	3,814	3,813	4,05	4,05	4,05
0,500	0,0004	3,810	3,809	3,95	3,95	3,95
0,700	0,0000	3,809	3,809	3,91	3,91	3,91
1,000	0,0000	3,809	3,809	3,88	3,88	3,88

Tabela C.15b. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0,10$ e $\Theta = 330^\circ$.

Tabela C.15c. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.30$ e $\Theta = 330^\circ$.

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9371	11,185	11,064	16,95	16,89	16,84
0,002	0,9012	8,905	8,865	13,31	13,28	13,24
0,003	0,8717	7,859	7,841	11,63	11,62	11,59
0,005	0,8225	6,810	6,804	9,87	9,86	9,83
0,007	0,7808	6,264	6,260	8,90	8,90	8,88
0,010	0,7265	5,804	5,801	8,03	8,03	8,02
0,020	0,5840	5,252	5,250	6,72	6,72	6,72
0,030	0,4751	5,093	5,092	6,19	6,19	6,19
0,050	0,3180	4,968	4,967	5,72	5,72	5,72
0,070	0,2143	4,906	4,906	5,49	5,49	5,49
0,100	0,1194	4,853	4,852	5,31	5,31	5,31
0,200	0,0175	4,775	4,775	5,05	5,05	5,05
0,300	0,0026	4,746	4,745	4,96	4,96	4,96
0,500	0,0001	4,726	4,726	4,87	4,87	4,87
0,700	0,0000	4,721	4,721	4,83	4,83	4,83
1,000	0,0000	4,720	4,720	4,79	4,79	4,79

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	$Nu_{1m\acute{e}d}$	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9349	11,727	11,679	17,07	17,04	16,99
0,002	0,8970	9,508	9,476	13,67	13,62	13,59
0,003	0,8657	8,455	8,433	12,08	12,06	12,01
0,005	0,8133	7,384	7,366	10,37	10,35	10,33
0,007	0,7686	6,840	6,831	9,43	9,42	9,40
0,010	0,7101	6,411	6,403	8,57	8,57	8,56
0,020	0,5558	5,977	5,974	7,32	7,32	7,34
0,030	0,4387	5,879	5,877	6,85	6,85	6,87
0,050	0,2751	5,803	5,801	6,44	6,44	6,45
0,070	0,1732	5,763	5,762	6,25	6,25	6,26
0,100	0,0870	5,728	5,727	6,10	6,10	6,11
0,200	0,0089	5,663	5,663	5,90	5,90	5,90
0,300	0,0009	5,640	5,639	5,82	5,82	5,82
0,500	0,0000	5,618	5,618	5,74	5,74	5,74
0,700	0,0000	5,608	5,608	5,71	5,71	5,71
1,000	0,0000	5,604	5,604	5,68	5,68	5,68

Tabela C.15d. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.50$ e $\Theta = 330^\circ$.

Tabela C.15e. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.70$ e $\Theta = 330^\circ$.

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9327	12,048	12,010	17,55	17,50	17,48
0,002	0,8936	9,888	9,866	14,08	14,05	14,07
0,003	0,8610	8,888	8,869	12,49	12,47	12,47
0,005	0,8059	7,886	7,874	10,80	10,78	10,79
0,007	0,7585	7,386	7,378	9,89	9,87	9,87
0,010	0,6963	7,004	6,995	9,07	9,07	9,06
0,020	0,5313	6,663	6,655	7,89	7,88	7,90
0,030	0,4078	6,601	6,595	7,46	7,46	7,48
0,050	0,2411	6,556	6,552	7,11	7,10	7,11
0,070	0,1429	6,533	6,529	6,95	6,94	6,95
0,100	0,0654	6,512	6,510	6,82	6,82	6,82
0,200	0,0049	6,481	6,479	6,66	6,65	6,66
0,300	0,0004	6,467	6,465	6,59	6,59	6,59
0,500	0,0000	6,453	6,452	6,54	6,54	6,54
0,700	0,0000	6,444	6,444	6,51	6,51	6,51
1,000	0,0000	6,441	6,441	6,49	6,49	6,49

Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9300	12,456	12,411	18,20	18,18	18,15
0,002	0,8896	10,232	10,208	14,60	14,58	14,62
0,003	0,8560	9,221	9,191	12,94	12,93	12,96
0,005	0,7989	8,236	8,220	11,21	11,20	11,23
0,007	0,7497	7,769	7,756	10,28	10,27	10,29
0,010	0,6848	7,445	7,440	9,47	9,46	9,47
0,020	0,5122	7,230	7,227	8,35	8,33	8,36
0,030	0,3841	7,216	7,214	7,97	7,96	7,97
0,050	0,2162	7,211	7,209	7,66	7,65	7,66
0,070	0,1217	7,207	7,206	7,53	7,53	7,52
0,100	0,0514	7,191	7,190	7,45	7,44	7,43
0,200	0,0029	7,184	7,183	7,32	7,31	7,30
0,300	0,0002	7,179	7,179	7,28	7,27	7,26
0,500	0,0000	7,175	7,175	7,24	7,23	7,22
0,700	0,0000	7,174	7,174	7,22	7,22	7,21
1,000	0,0000	7,174	7,174	7,21	7,21	7,21

Tabela C.15f. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.90$ e $\Theta = 330^\circ$.

Tabela C.16a. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.05$ e $\Theta = 350^\circ$.

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9410	10,487	10,357	16,78	16,72	16,22
0,002	0,9073	8,229	8,193	12,88	12,86	12,36
0,003	0,8800	7,216	7,196	11,13	11,12	10,65
0,005	0,8346	6,171	6,160	9,31	9,30	9,04
0,007	0,7965	5,604	5,597	8,32	8,32	8,13
0,010	0,7472	5,100	5,095	7,42	7,42	7,29
0,020	0,6198	4,390	4,388	6,02	6,02	5,98
0,030	0,5232	4,123	4,122	5,42	5,42	5,40
0,050	0,3801	3,900	3,899	4,84	4,84	4,84
0,070	0,2795	3,801	3,800	4,56	4,56	4,55
0,100	0,1780	3,727	3,726	4,32	4,32	4,31
0,200	0,0409	3,654	3,653	3,99	3,99	4,00
0,300	0,0095	3,641	3,640	3,88	3,88	3,88
0,500	0,0005	3,639	3,638	3,78	3,78	3,78
0,700	0,0000	3,639	3,638	3,74	3,74	3,74
1,000	0,0000	3,639	3,638	3,71	3,71	3,71

Ζ	$ heta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9399	10,578	10,485	17,18	17,14	16,51
0,002	0,9058	8,357	8,331	13,16	13,14	12,57
0,003	0,8780	7,346	7,332	11,36	11,35	10,84
0,005	0,8318	6,306	6,299	9,50	9,50	9,21
0,007	0,7929	5,745	5,740	8,50	8,49	8,29
0,010	0,7425	5,251	5,247	7,59	7,59	7,44
0,020	0,6118	4,576	4,574	6,19	6,19	6,14
0,030	0,5123	4,336	4,335	5,60	5,60	5,57
0,050	0,3655	4,139	4,138	5,04	5,04	5,03
0,070	0,2635	4,049	4,048	4,77	4,77	4,76
0,100	0,1629	3,978	3,978	4,54	4,54	4,54
0,200	0,0339	3,898	3,897	4,23	4,23	4,23
0,300	0,0071	3,880	3,879	4,11	4,11	4,12
0,500	0,0003	3,875	3,874	4,02	4,02	4,02
0,700	0,0000	3,875	3,874	3,98	3,98	3,98
1,000	0,0000	3,875	3,874	3,95	3,95	3,95

Tabela C.16b. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0,10$ e $\Theta = 350^\circ$.

Tabela C.16c. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.30$ e $\Theta = 350^\circ$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9369	11,260	11,132	16,92	16,88	16,40
0,002	0,9007	8,980	8,933	13,37	13,33	13,08
0,003	0,8710	7,927	7,906	11,69	11,68	11,51
0,005	0,8215	6,873	6,865	9,93	9,93	9,83
0,007	0,7794	6,327	6,322	8,97	8,96	8,90
0,010	0,7247	5,870	5,867	8,10	8,09	8,05
0,020	0,5808	5,329	5,328	6,78	6,78	6,79
0,030	0,4710	5,176	5,175	6,26	6,26	6,27
0,050	0,3131	5,057	5,056	5,80	5,80	5,81
0,070	0,2094	4,997	4,997	5,58	5,58	5,58
0,100	0,1154	4,946	4,945	5,39	5,39	5,40
0,200	0,0162	4,870	4,870	5,14	5,14	5,15
0,300	0,0023	4,841	4,841	5,05	5,05	5,05
0,500	0,0000	4,820	4,819	4,96	4,96	4,96
0,700	0,0000	4,814	4,814	4,92	4,92	4,92
1,000	0,0000	4,812	4,812	4,89	4,89	4,89
Ζ	$ heta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
-------	-----------------------	-----------------	-----------------	--------------------	---------------------	---------------------------------
0,001	0,9347	11,762	11,627	17,07	17,02	16,89
0,002	0,8967	9,556	9,472	13,71	13,66	13,64
0,003	0,8652	8,509	8,453	12,12	12,10	12,06
0,005	0,8125	7,441	7,413	10,42	10,40	10,38
0,007	0,7675	6,898	6,882	9,48	9,47	9,45
0,010	0,7086	6,469	6,461	8,63	8,62	8,61
0,020	0,5532	6,044	6,041	7,38	7,38	7,40
0,030	0,4354	5,950	5,948	6,91	6,91	6,93
0,050	0,2715	5,877	5,876	6,51	6,51	6,52
0,070	0,1699	5,830	5,828	6,32	6,32	6,33
0,100	0,0845	5,786	5,785	6,17	6,17	6,18
0,200	0,0084	5,744	5,743	5,97	5,97	5,98
0,300	0,0008	5,722	5,721	5,89	5,89	5,90
0,500	0,0000	5,701	5,700	5,82	5,82	5,83
0,700	0,0000	5,696	5,695	5,79	5,79	5,79
1,000	0,0000	5,685	5,685	5,76	5,76	5,76

Tabela C.16d. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.50$ e $\Theta = 350^\circ$.

Tabela C.16e. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.70$ e $\Theta = 350^\circ$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9325	12,070	11,986	17,55	17,52	17,47
0,002	0,8933	9,909	9,841	14,12	14,08	14,10
0,003	0,8607	8,910	8,852	12,51	12,49	12,50
0,005	0,8054	7,913	7,867	10,83	10,81	10,82
0,007	0,7579	7,417	7,379	9,91	9,90	9,90
0,010	0,6954	7,040	7,011	9,10	9,09	9,08
0,020	0,5299	6,709	6,694	7,93	7,92	7,94
0,030	0,4059	6,649	6,640	7,50	7,50	7,51
0,050	0,2391	6,605	6,599	7,15	7,15	7,16
0,070	0,1411	6,583	6,579	6,99	6,99	6,99
0,100	0,0642	6,563	6,560	6,87	6,86	6,87
0,200	0,0047	6,533	6,531	6,70	6,70	6,70
0,300	0,0003	6,520	6,518	6,65	6,64	6,64
0,500	0,0000	6,508	6,506	6,59	6,59	6,59
0,700	0,0000	6,500	6,498	6,57	6,57	6,57
1,000	0,0000	6,492	6,493	6,55	6,55	6,50

Ζ	$\boldsymbol{ heta}_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9300	12,470	12,415	18,20	18,18	18,15
0,002	0,8895	10,244	10,200	14,62	14,60	14,64
0,003	0,8558	9,232	9,192	12,96	12,94	12,98
0,005	0,7987	8,246	8,211	11,22	11,21	11,24
0,007	0,7495	7,780	7,746	10,29	10,28	10,30
0,010	0,6845	7,455	7,450	9,48	9,47	9,48
0,020	0,5117	7,242	7,237	8,36	8,34	8,38
0,030	0,3836	7,229	7,225	7,98	7,97	7,99
0,050	0,2157	7,225	7,218	7,68	7,67	7,67
0,070	0,1213	7,222	7,215	7,55	7,54	7,54
0,100	0,0511	7,218	7,210	7,45	7,44	7,43
0,200	0,0029	7,211	7,204	7,33	7,32	7,31
0,300	0,0002	7,207	7,200	7,29	7,28	7,27
0,500	0,0000	7,203	7,199	7,26	7,25	7,24
0,700	0,0000	7,200	7,195	7,24	7,24	7,23
1,000	0,0000	7,192	7,191	7,23	7,23	7,22

Tabela C.16f. Parâmetros térmicos para o escoamento em dutos de setores anulares com $r^* = 0.90$ e $\Theta = 350^\circ$.

C.2. Geometria de Setor Circular

i	Z	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
	0,001	0,9261	7,711	7,678	12,30	12,27	12,22
	0,002	0,8999	6,099	6,069	9,48	9,44	9,40
	0,003	0,8786	5,326	5,301	8,19	8,17	8,13
	0,005	0,8432	4,509	4,485	6,84	6,81	6,79
	0,007	0,8135	4,062	4,029	6,09	6,08	6,04
	0,010	0,7751	3,633	3,608	5,40	5,39	5,37
	0,020	0,6763	2,973	2,950	4,29	4,27	4,26
	0,030	0,6012	2,672	2,655	3,79	3,77	3,76
	0,050	0,4870	2,381	2,369	3,26	3,25	3,23
	0,070	0,4012	2,246	2,230	2,98	2,97	2,96
	0,100	0,3047	2,127	2,118	2,74	2,73	2,71
	0,200	0,1286	1,960	1,950	2,38	2,37	2,36
	0,300	0,0558	1,951	1,943	2,24	2,23	2,22
	0,500	0,0107	1,938	1,930	2,12	2,11	2,10
	0,700	0,0020	1,924	1,916	2,07	2,06	2,05
	1,000	0,0002	1,919	1,912	2,03	2,03	2,01

Tabela C.17a. Parâmetros térmicos para o escoamento em dutos de setores circulares com $\Theta = 15^{\circ}$.

Tabela C.17b. Parâmetros térmicos para o escoamento em dutos de setores circulares com $\Theta = 30^{\circ}$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9303	8,084	8,045	12,36	12,28	12,24
0,002	0,9035	6,454	6,421	9,84	9,79	9,75
0,003	0,8804	5,708	5,693	8,58	8,54	8,50
0,005	0,8443	4,927	4,904	7,34	7,30	7,27
0,007	0,8131	4,433	4,411	6,60	6,57	6,54
0,010	0,7725	4,055	4,034	5,75	5,72	5,69
0,020	0,6703	3,165	3,149	4,77	4,73	4,70
0,030	0,5957	2,936	2,922	4,24	4,21	4,19
0,050	0,4834	2,610	2,599	3,58	3,56	3,53
0,070	0,3918	2,496	2,487	3,28	3,27	3,25
0,100	0,2896	2,409	2,403	3,04	3,03	3,02
0,200	0,1089	2,374	2,368	2,69	2,68	2,67
0,300	0,0413	2,367	2,362	2,57	2,57	2,56
0,500	0,0059	2,367	2,362	2,50	2,50	2,49
0,700	0,0009	2,367	2,362	2,46	2,46	2,45
1,000	0,0000	2,367	2,362	2,43	2,43	2,42

Ζ	$\boldsymbol{ heta}_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9334	8,322	8,284	12,52	12,48	12,39
0,002	0,9061	6,809	6,774	9,92	9,83	9,70
0,003	0,8834	6,051	6,022	8,74	8,68	8,54
0,005	0,8451	5,205	5,171	7,46	7,40	7,30
0,007	0,8126	4,708	4,693	6,74	6,70	6,59
0,010	0,7705	4,231	4,218	6,05	6,02	5,97
0,020	0,6621	3,464	3,450	4,90	4,86	4,82
0,030	0,5803	3,128	3,119	4,35	4,34	4,29
0,050	0,4570	2,837	2,832	3,79	3,78	3,74
0,070	0,3651	2,727	2,725	3,50	3,49	3,46
0,100	0,2631	2,649	2,648	3,25	3,25	3,23
0,200	0,0897	2,647	2,646	2,95	2,94	2,93
0,300	0,0307	2,646	2,646	2,85	2,84	2,83
0,500	0,0036	2,646	2,646	2,77	2,76	2,75
0,700	0,0004	2,646	2,646	2,73	2,73	2,72
1,000	0,0000	2,646	2,646	2,71	2,70	2,69

Tabela C.17c. Parâmetros térmicos para o escoamento em dutos de setores circulares com $\Theta = 45^{\circ}$.

Tabela C.17d. Parâmetros térmicos para o escoamento em dutos de setores circulares com $\Theta = 60^{\circ}$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9426	8,753	8,717	12,88	12,77	12,67
0,002	0,9141	7,211	7,180	10,26	10,16	10,08
0,003	0,8999	6,417	6,388	9,11	9,04	8,88
0,005	0,8496	5,501	5,479	7,82	7,75	7,62
0,007	0,8174	4,971	4,953	7,07	7,03	6,95
0,010	0,7724	4,456	4,341	6,39	6,36	6,32
0,020	0,6599	3,640	3,629	5,14	5,12	5,08
0,030	0,5754	3,299	3,290	4,58	4,56	4,52
0,050	0,4440	3,019	3,015	3,99	3,98	3,95
0,070	0,3547	2,903	2,898	3,70	3,69	3,66
0,100	0,2493	2,845	2,842	3,46	3,45	3,43
0,200	0,0779	2,840	2,840	3,16	3,15	3,14
0,300	0,0258	2,840	2,840	3,06	3,06	3,05
0,500	0,0026	2,840	2,840	2,98	2,98	2,97
0,700	0,0003	2,840	2,840	2,95	2,95	2,94
1,000	0,0000	2,840	2,840	2,93	2,93	2,92

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9515	8,997	8,937	12,73	12,63	12,53
0,002	0,9221	7,490	7,455	10,35	10,21	10,14
0,003	0 8973	6 682	6,656	9 24	9 16	9.03
0,005 0,007	0,8555 0,8201	5,738 5,171	5,698 5,157	8,00 7,26	7,92 7,22	9,03 7,81 7,09
0,010	0,7745	4,630	4,615	6,61	6,55	6,48
0,020	0,6580	3,802	3,791	5,32	5,29	5,23
0,030	0,5702	3,469	3,459	4,74	4,73	4,68
0,050	0,4383	3,208	3,202	4,16	4,15	4,12
0,070	0,3409	3,125	3,121	3,87	3,87	3,84
0,100	0,2354	3,082	3,080	3,64	3,64	3,62
0,200	0,0691	3,080	3,079	3,36	3,35	3,34
0,300	0,0203	3,079	3,078	3,26	3,26	3,25
0,500	0,0017	3,078	3,078	3,19	3,18	3,17
0,700	0,0002	3,078	3,078	3,16	3,15	3,14
1,000	0,0000	3,078	3,078	3,13	3,13	3,12

Tabela C.17e. Parâmetros térmicos para o escoamento em dutos de setores circulares com $\Theta = 90^{\circ}$.

Tabela C.17f. Parâmetros térmicos para o escoamento em dutos de setores circulares com $\Theta = 120^{\circ}$.

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9509	9,488	9,447	13,06	12,94	12,83
0,002	0,9202	7,862	7,835	10,72	10,63	10,55
0,003	0,8944	6,966	6,939	9,59	9,52	9,45
0,005	0,8512	5,918	5,893	8,30	8,26	8,20
0,007	0,8149	5,302	5,281	7,52	7,48	7,42
0,010	0,7684	4,734	4,721	6,79	6,77	6,72
0,020	0,6498	3,905	3,895	5,47	5,45	5,40
0,030	0,5605	3,584	3,575	4,88	4,87	4,82
0,050	0,4264	3,337	3,332	4,30	4,29	4,26
0,070	0,3281	3,255	3,252	4,01	4,00	3,98
0,100	0,2230	3,203	3,202	3,78	3,77	3,75
0,200	0,0622	3,201	3,200	3,49	3,48	3,47
0,300	0,0174	3,200	3,200	3,39	3,39	3,38
0,500	0,0014	3,200	3,200	3,31	3,31	3,30
0,700	0,0001	3,200	3,200	3,28	3,28	3,27
1,000	0,0000	3,200	3,200	3,26	3,26	3,25

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9503	9,870	9,826	13,31	13,21	13,10
0,002	0,9187	8,100	8,069	11,00	10,91	10,81
0,003	0,8923	7,126	7,099	9,85	9,77	9,70
0,005	0,8483	6,007	5,983	8,50	8,45	8,37
0,007	0,8116	5,369	5,345	7,68	7,65	7,59
0,010	0,7646	4,796	4,782	6,92	6,90	6,85
0,020	0,6446	3,980	3,970	5,57	5,55	5,50
0,030	0,5541	3,668	3,659	4,97	4,97	4,92
0,050	0,4185	3,425	3,420	4,39	4,38	4,36
0,070	0,3198	3,339	3,335	4,10	4,09	4,07
0,100	0,2152	3,283	3,281	3,87	3,86	3,84
0,200	0,0583	3,271	3,270	3,57	3,56	3,55
0,300	0,0158	3,270	3,270	3,46	3,46	3,45
0,500	0,0012	3,270	3,270	3,39	3,39	3,38
0,700	0,0001	3,270	3,270	3,35	3,35	3,34
1,000	0,0000	3,270	3,270	3,33	3,33	3,32

Tabela C.17g. Parâmetros térmicos para o escoamento em dutos de setores circulares com $\Theta = 150^{\circ}$.

Tabela C.17h. Parâmetros térmicos para o escoamento em dutos de setores circulares com $\Theta = 180^{\circ}$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9482	10,449	10,394	13,57	13,48	13,36
0,002	0,9152	8,313	8,281	11,62	11,53	11,42
0,003	0,8883	7,186	7,154	10,30	10,23	10,15
0,005	0,8441	5,992	5,975	8,77	8,72	8,64
0,007	0,8073	5,359	5,333	7,87	7,84	7,77
0,010	0,7602	4,808	4,783	7,03	7,01	6,95
0,020	0,6395	4,028	4,013	5,65	5,64	5,59
0,030	0,5483	3,726	3,715	5,05	5,04	5,01
0,050	0,4120	3,485	3,479	4,45	4,45	4,43
0,070	0,3132	3,395	3,391	4,16	4,16	4,15
0,100	0,2093	3,324	3,323	3,92	3,92	3,91
0,200	0,0556	3,313	3,312	3,62	3,61	3,61
0,300	0,0148	3,313	3,313	3,51	3,51	3,51
0,500	0,0011	3,313	3,313	3,43	3,43	3,43
0,700	0,0001	3,313	3,313	3,40	3,40	3,39
1,000	0,0000	3,313	3,313	3,37	3,37	3,37

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9494	10,415	9,969	13,74	13,62	13,51
0,002	0,9145	8,364	8,333	11,40	11,32	11,23
0,003	0,8875	7,278	7,251	10,18	10,10	10,02
0,005	0,8428	6,090	6,072	8,73	8,66	8,59
0,007	0,8064	5,443	5,420	7,87	7,82	7,74
0,010	0,7584	4,878	4,860	7,08	7,06	7,02
0,020	0,6379	4,086	4,073	5,70	5,68	5,64
0,030	0,5458	3,782	3,771	5,10	5,09	5,06
0,050	0,4084	3,537	3,531	4,50	4,50	4,48
0,070	0,3094	3,441	3,437	4,21	4,21	4,20
0,100	0,2058	3,381	3,379	3,97	3,97	3,96
0,200	0,0540	3,345	3,344	3,66	3,66	3,65
0,300	0,0142	3,343	3,343	3,55	3,55	3,56
0,500	0,0010	3,343	3,343	3,47	3,47	3,46
0,700	0,0001	3,343	3,343	3,43	3,43	3,42
1,000	0,0000	3,343	3,343	3,41	3,41	3,40

Tabela C.17i. Parâmetros térmicos para o escoamento em dutos de setores circulares com $\Theta = 210^{\circ}$.

Tabela C.17j. Parâmetros térmicos para o escoamento em dutos de setores circulares com Θ = 240°.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9490	10,615	10,569	13,87	13,77	13,66
0,002	0,9138	8,448	8,407	11,54	11,43	11,34
0,003	0,8865	7,320	7,295	10,28	10,21	10,11
0,005	0,8417	6,116	6,097	8,82	8,75	8,66
0,007	0,8047	5,472	5,456	7,94	7,88	7,81
0,010	0,7568	4,913	4,892	7,13	7,11	6,06
0,020	0,6355	4,128	4,116	5,74	5,72	5,68
0,030	0,5428	3,826	3,814	5,14	5,13	5,09
0,050	0,4047	3,579	3,572	4,55	4,55	4,53
0,070	0,3056	3,478	3,474	4,25	4,25	4,24
0,100	0,2024	3,413	3,411	4,01	4,01	4,00
0,200	0,0525	3,369	3,368	3,69	3,69	3,68
0,300	0,0137	3,367	3,367	3,59	3,59	3,58
0,500	0,0009	3,367	3,367	3,50	3,50	3,49
0,700	0,0001	3,367	3,367	3,46	3,46	3,45
1,000	0,0000	3,367	3,367	3,43	3,43	3,42

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9467	10,907	10,842	13,98	13,89	13,80
0,002	0,9129	8,441	8,399	12,02	11,93	11,85
0,003	0,8856	7,255	7,231	10,59	10,53	10,43
0,005	0,8408	6,071	6,051	8,97	8,94	8,85
0,007	0,8035	5,457	5,441	8,04	8,02	7,94
0,010	0,7555	4,922	4,908	7,17	7,16	7,08
0,020	0,6323	4,159	4,149	5,79	5,78	5,73
0,030	0,5392	3,862	3,854	5,19	5,18	5,15
0,050	0,4007	3,616	3,609	4,59	4,59	4,57
0,070	0,3016	3,513	3,509	4,29	4,29	4,28
0,100	0,1989	3,444	3,442	4,05	4,05	4,04
0,200	0,0510	3,394	3,393	3,72	3,72	3,72
0,300	0,0132	3,390	3,390	3,61	3,61	3,61
0,500	0,0009	3,390	3,390	3,52	3,52	3,52
0,700	0,0001	3,390	3,390	3,48	3,48	3,48
1,000	0,0000	3,390	3,390	3,46	3,46	3,45

Tabela C.17k. Parâmetros térmicos para o escoamento em dutos de setores circulares com $\Theta = 270^{\circ}$.

Tabela C.171. Parâmetros térmicos para o escoamento em dutos de setores circulares com Θ = 300°.

Ζ	$ heta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9464	10,915	10,857	14,12	14,00	13,91
0,002	0,9124	8,579	8,547	11,77	11,66	11,57
0,003	0,8851	7,388	7,357	10,47	10,38	10,30
0,005	0,8324	6,167	6,139	8,94	8,87	8,80
0,007	0,8039	5,529	5,504	8,05	8,00	7,93
0,010	0,7545	4,978	4,966	7,25	7,21	7,15
0,020	0,6313	4,203	4,192	5,83	5,81	5,76
0,030	0,5375	3,905	3,896	5,23	5,22	5,18
0,050	0,3982	3,655	3,659	4,64	4,63	4,60
0,070	0,2989	3,549	3,545	4,33	4,33	4,31
0,100	0,1964	3,476	3,473	4,08	4,08	4,07
0,200	0,0498	3,420	3,419	3,75	3,75	3,74
0,300	0,0127	3,414	3,414	3,64	3,64	3,63
0,500	0,0008	3,414	3,414	3,55	3,55	3,54
0,700	0,0001	3,414	3,414	3,51	3,51	3,50
1,000	0,0000	3,414	3,414	3,48	3,48	3,47

Z	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	$Nu_{1m\acute{e}d}$	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9461	11,028	10,967	14,24	14,11	13,99
0,002	0,9119	8,636	8,305	11,86	11,75	11,64
0,003	0,8846	7,421	7,398	10,55	10,47	10,38
0,005	0,8392	6,193	6,174	9,00	8,93	8,86
0,007	0,8016	5,558	5,541	8,09	8,05	7,99
0.010	0.7533	5.010	4.987	7.30	7.27	7.21
0,020	0,6294	4,240	4,229	5,87	5,85	5,79
0,030	0,5350	3,943	3,936	5,27	5,26	5,21
0,050	0,3952	3,692	3,686	4,67	4,66	4,64
0,070	0,2957	3,585	3,581	4,37	4,37	4,35
0,100	0,1935	3,509	3,506	4,12	4,12	4,11
0,200	0,0485	3,446	3,445	3,79	3,78	3,77
0,300	0,0123	3,441	3,441	3,67	3,67	3,66
0,500	0,0008	3,439	3,439	3,58	3,58	3,57
0,700	0,0001	3,439	3,439	3,54	3,54	3,53
1,000	0,0000	3,439	3,439	3,51	3,51	3,50

Tabela C.17m. Parâmetros térmicos para o escoamento em dutos de setores circulares com Θ = 330°.

Tabela C.17n. Parâmetros térmicos para o escoamento em dutos de setores circulares com Θ = 350°.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9458	11,152	11,092	14,31	14,17	14,02
0,002	0,9115	8,525	8,469	12,25	12,14	11,99
0,003	0,8840	7,316	7,281	10,77	10,69	10,58
0,005	0,8387	6,146	6,126	9,10	9,04	8,94
0,007	0,8009	5,541	5,529	8,15	8,11	8,03
0,010	0,7523	5,011	4,999	7,30	7,28	7,20
0,020	0,6272	4,257	4,251	5,89	5,89	5,83
0,030	0,5327	3,965	3,961	5,29	5,28	5,25
0,050	0,3926	3,716	3,713	4,69	4,69	4,68
0,070	0,2932	3,608	3,606	4,39	4,39	4,38
0,100	0,1913	3,532	3,528	4,14	4,14	4,14
0,200	0,0475	3,466	3,465	3,81	3,81	3,81
0,300	0,0119	3,458	3,458	3,69	3,69	3,69
0,500	0,0008	3,457	3,457	3,60	3,60	3,60
0,700	0,0000	3,457	3,457	3,56	3,56	3,56
1,000	0,0000	3,457	3,457	3,53	3,53	3,52

C.3. Geometria Anular Concêntrica

Z	$ heta_{meta d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2 méd}
0,001	0,9985	441,114	439,679	501,03	500,43	494,96
0,002	0,9968	413,289	412,998	462,33	462,16	456,24
0,003	0,9960	399,259	398,885	447,11	446,83	440,78
0,005	0,9921	382,946	382,903	419,82	419,96	416,62
0,007	0,9891	373,333	373,312	407,71	407,70	403,95
0,010	0,9847	364,070	364,058	395,85	395,85	392,87
0,020	0,9709	349,201	349,159	375,55	375,54	373,13
0,030	0,9575	342,860	342,772	365,53	365,51	362,95
0,050	0,9319	337,927	337,790	355,13	355,08	353,08
0,070	0,9071	336,498	336,346	349,93	349,89	348,46
0,100	0,8713	335,998	335,840	345,78	345,73	344,73
0,200	0,7619	335,903	335,744	340,83	340,79	340,24
0,300	0,6663	335,902	335,744	339,19	339,14	338,74
0,500	0,5095	335,902	335,744	337,87	337,81	337,54
0,700	0,3896	335,902	335,744	337,31	337,27	337,03
1,000	0,2605	335,902	335,744	336,89	336,84	336,64

Tabela <u>C.18b.</u> Parâmetros térmicos para o escoamento em dutos anulares concêntricos com $r^* = 0.05$.

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9925	30,689	30,688	39,86	39,86	39,51
0,002	0,9872	26,697	26,697	34,01	34,02	33,95
0,003	0,9826	24,738	24,737	31,14	31,14	30,74
0,005	0,9736	22,627	22,627	27,81	27,81	28,13
0,007	0,9654	21,432	21,432	26,13	26,13	26,38
0,010	0,9540	20,329	20,329	24,53	24,53	24,71
0,020	0,9195	18,673	18,672	21,93	21,93	22,03
0,030	0,8880	18,029	18,028	20,72	20,72	20,79
0,050	0,8299	17,593	17,591	19,52	19,52	19,58
0,070	0,7763	17,492	17,490	18,95	18,94	18,99
0,100	0,7025	17,465	17,463	18,50	18,50	18,54
0,200	0,5038	17,461	17,459	17,98	17,98	18,00
0,300	0,3612	17,461	17,459	17,81	17,81	17,82
0,500	0,1858	17,461	17,459	17,67	17,67	17,68
0,700	0,0955	17,461	17,459	17,61	17,61	17,61
1,000	0,0352	17,461	17,459	17,57	17,57	17,57

Z	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9891	22,256	22,256	30,00	30,00	30,08
0,002	0,9818	18,933	18,933	25,08	25,08	25,21
0,003	0,9756	17,322	17,322	22,67	22,67	22,67
0,005	0,9639	15,603	15,603	19,89	19,89	20,24
0,007	0,9534	14,641	14,641	18,51	18,51	18,77
0,010	0,9387	13,761	13,761	17,20	17,20	17,39
0,020	0,8954	12,461	12,461	15,09	15,09	15,19
0,030	0,8566	11,969	11,969	14,11	14,11	14,19
0,050	0,7864	11,649	11,648	13,16	13,16	13,22
0,070	0,7227	11,579	11,579	12,71	12,71	12,76
0,100	0,6370	11,562	11,561	12,37	12,37	12,40
0,200	0,4184	11,560	11,559	11,96	11,96	11,98
0,300	0,2748	11,560	11,559	11,83	11,83	11,84
0,500	0,1186	11,560	11,559	11,72	11,72	11,73
0,700	0,0512	11,560	11,559	11,68	11,68	11,68
1,000	0,0145	11,560	11,559	11,64	11,64	11,64

Tabela C.18c. Parâmetros térmicos para o escoamento em dutos anulares concêntricos com $r^* = 0,10$.

Tabela C.18d. Parâmetros térmicos para o escoamento em dutos anulares concêntricos com $r^* = 0,20$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9839	17,258	17,258	24,10	24,10	24,31
0,002	0,9738	14,357	14,357	19,76	19,76	19,94
0,003	0, 9651	12,964	12,964	17,66	17,66	17,78
0,005	0,9495	11,488	11,488	15,22	15,22	15,55
0,007	0,9356	10,668	10,668	14,02	14,02	14,27
0,010	0,9166	9,925	9,925	12,89	12,89	13,07
0,020	0,8616	8,844	8,843	11,08	11,08	11,17
0,030	0,8135	8,444	8,444	10,25	10,25	10,32
0,050	0,7284	8,193	8,193	9,45	9,45	9,51
0,070	0,6533	8,143	8,143	9,08	9,08	9,12
0,100	0,5552	8,131	8,131	8,80	8,80	8,83
0,200	0,3229	8,130	8,130	8,46	8,46	8,48
0,300	0,1878	8,130	8,130	8,35	8,35	8,36
0,500	0,0635	8,130	8,130	8,26	8,26	8,27
0,700	0,0215	8,130	8,130	8,23	8,23	8,23
1,000	0,0042	8,130	8,130	8,20	8,20	8,20

Z	$\boldsymbol{ heta}_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9798	15,361	15,360	21,84	21,84	22,06
0,002	0,9675	12,629	12,629	17,73	17,73	17,92
0,003	0,9569	11,322	11,322	15,76	15,76	15,89
0,005	0,9384	9,940	9,940	13,45	13,45	13,77
0,007	0,9221	9,177	9,177	12,32	12,32	12,56
0,010	0,8999	8,487	8,487	11,26	11,26	11,43
0,020	0,8366	7,488	7,488	9,57	9,57	9,66
0,030	0,7823	7,124	7,124	8,80	8,80	8,87
0,050	0,6876	6,900	6,900	8,06	8,06	8,11
0,070	0,6057	6,856	6,856	7,72	7,72	7,76
0,100	0,5011	6,846	6,846	7,46	7,46	7,49
0,200	0,2664	6,845	6,845	7,15	7,15	7,17
0,300	0,1416	6,845	6,845	7,05	7,05	7,06
0,500	0,0400	6,845	6,845	6,97	6,97	6,97
0,700	0,0113	6,845	6,845	6,93	6,93	6,94
1,000	0,0017	6,845	6,845	6,91	6,91	6,91

Tabela C.18e. Parâmetros térmicos para o escoamento em dutos anulares concêntricos com $r^* = 0,30$.

Tabela C.18f. Parâmetros térmicos para o escoamento em dutos anulares concêntricos com $r^* = 0,40$.

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9765	14,343	14,342	20,63	20,63	20,84
0,002	0,9623	11,705	11,705	16,65	16,65	16,83
0,003	0,9503	10,446	10,446	14,74	14,74	14,87
0,005	0,9294	9,117	9,116	12,51	12,51	12,82
0,007	0,9110	8,384	8,384	11,41	11,41	11,65
0,010	0,8863	7,722	7,722	10,39	10,39	10,60
0,020	0,8167	6,768	6,768	8,77	8,77	8,86
0,030	0,7577	6,423	6,423	8,03	8,03	8,09
0,050	0,6562	6,213	6,212	7,32	7,32	7,37
0,070	0,5697	6,172	6,172	7,00	7,00	7,03
0,100	0,4611	6,164	6,163	6,75	6,75	6,77
0,200	0,2280	6,163	6,163	6,45	6,45	6,47
0,300	0,1127	6,163	6,163	6,36	6,36	6,37
0,500	0,0276	6,163	6,163	6,28	6,28	6,29
0,700	0,0067	6,163	6,163	6,25	6,25	6,25
1,000	0,0008	6,163	6,163	6,22	6,22	6,22

Z	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9736	13,704	13,703	19,86	19,86	20,07
0,002	0,9579	11,127	11,127	15,96	15,96	16,14
0,003	0,9447	9,900	9,899	14,10	14,10	14,23
0,005	0,9218	8,603	8,603	11,91	11,91	12,22
0,007	0,9018	7,890	7,890	10,85	10,85	11,07
0,010	0,8750	7,246	7,246	9,85	9,85	10,01
0,020	0,8003	6,321	6,321	8,27	8,27	8,35
0,030	0,7375	5,987	5,987	7,55	7,55	7,61
0,050	0,6308	5,785	5,785	6,86	6,86	6,91
0,070	0,5410	5,747	5,747	6,55	6,55	6,58
0,100	0,4300	5,739	5,739	6,30	6,30	6,33
0,200	0,2001	5,738	5,738	6,02	6,02	6,03
0,300	0,0931	5,738	5,738	5,93	5,93	5,94
0,500	0,0202	5,738	5,738	5,85	5,85	5,86
0,700	0,0044	5,738	5,738	5,82	5,82	5,82
1,000	0,0004	5,738	5,738	5,80	5,80	5,80

Tabela C.18g. Parâmetros térmicos para o escoamento em dutos anulares concêntricos com $r^* = 0,50$.

Tabela C.18h. Parâmetros térmicos para o escoamento em dutos anulares concêntricos com $r^* = 0,60$.

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	$Nu^*_{2m\acute{e}d}$
0,001	0,9711	13,264	13,263	19,34	19,34	19,53
0,002	0,9541	10,731	10,730	15,49	15,49	15,66
0,003	0,9398	9,526	9,524	13,66	13,66	13,79
0,005	0,9153	8,252	8,252	11,51	11,51	11,81
0,007	0,8939	7,553	7,552	10,46	10,46	10,68
0,010	0,8654	6,922	6,922	9,48	9,48	9,64
0,020	0,7864	6,016	6,016	7,93	7,93	8,01
0,030	0,7205	5,690	5,690	7,22	7,22	7,28
0,050	0,6097	5,494	5,494	6,55	6,55	6,60
0,070	0,5174	5,458	5,457	6,24	6,24	6,28
0,100	0,4049	5,450	5,450	6,00	6,00	6,03
0,200	0,1788	5,449	5,449	5,73	5,73	5,74
0,300	0,0790	5,449	5,449	5,63	5,63	5,64
0,500	0,0154	5,449	5,449	5,56	5,56	5,57
0,700	0,0030	5,449	5,449	5,53	5,53	5,53
1,000	0,0003	5,449	5,449	5,50	5,50	5,51

Z	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9690	12,943	12,941	18,95	18,95	19,13
0,002	0,9508	10,442	10,442	15,15	15,15	15,31
0,003	0,9356	9,254	9,252	13,35	13,35	13,46
0,005	0,9096	7,998	7,998	11,21	11,21	11,50
0,007	0,8871	7,308	7,308	10,18	10,18	10,40
0,010	0,8570	6,687	6,687	9,21	9,21	9,37
0,020	0,7744	5,796	5,796	7,68	7,68	7,76
0,030	0,7060	5,475	5,475	6,99	6,99	7,05
0,050	0,5919	5,284	5,284	6,32	6,32	6,37
0,070	0,4977	5,248	5,248	6,02	6,02	6,05
0,100	0,3841	5,241	5,241	5,78	5,78	5,81
0,200	0,1620	5,240	5,240	5,51	5,51	5,53
0,300	0,0684	5,240	5,240	5,42	5,42	5,43
0,500	0,0122	5,240	5,240	5,35	5,35	5,35
0,700	0,0022	5,240	5,240	5,32	5,32	5,32
1,000	0,0002	5,240	5,240	5,29	5,29	5,29

Tabela C.18i. Parâmetros térmicos para o escoamento em dutos anulares concêntricos com $r^* = 0,70$.

Tabela C.18j. Parâmetros térmicos para o escoamento em dutos anulares concêntricos com $r^* = 0,80$.

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9671	12,697	12,695	18,66	18,66	18,83
0,002	0,9479	10,223	10,222	14,90	14,90	15,05
0,003	0,9320	9,047	9,045	13,13	13,13	13,21
0,005	0,9046	7,805	7,804	10,99	10,99	11,27
0,007	0,8810	7,123	7,123	9,96	9,96	10,18
0,010	0,8497	6,510	6,510	9,01	9,01	9,16
0,020	0,7639	5,629	5,629	7,49	7,49	7,57
0,030	0,6934	5,314	5,313	6,81	6,81	6,87
0,050	0,5765	5,125	5,125	6,15	6,15	6,20
0,070	0,4808	5,090	5,090	5,85	5,85	5,88
0,100	0,3666	5,083	5,083	5,62	5,62	5,64
0,200	0,1485	5,082	5,082	5,35	5,35	5,36
0,300	0,0602	5,082	5,082	5,26	5,26	5,27
0,500	0,0099	5,082	5,082	5,19	5,19	5,19
0,700	0,0016	5,082	5,082	5,16	5,16	5,16
1,000	0,0001	5,081	5,081	5,14	5,14	5,14

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9654	12,504	12,501	18,42	18,42	18,58
0,002	0,9453	10,050	10,048	14,68	14,68	14,83
0,003	0,9287	8,885	8,882	12,98	12,98	13,02
0,005	0,9002	7,654	7,653	10,81	10,81	11,09
0,007	0,8757	6,978	6,978	9,80	9,80	10,01
0,010	0,8432	6,371	6,371	8,85	8,85	9,00
0,020	0,7548	5,500	5,500	7,34	7,34	7,43
0,030	0,6824	5,187	5,187	6,67	6,67	6,72
0,050	0,5631	5,001	5,001	6,02	6,02	6,06
0,070	0,4663	4,967	4,967	5,72	5,72	5,75
0,100	0,3517	4,960	4,960	5,49	5,49	5,52
0,200	0,1374	4,959	4,959	5,23	5,23	5,24
0,300	0,0537	4,959	4,959	5,14	5,14	5,14
0,500	0,0082	4,959	4,959	5,07	5,07	5,07
0,700	0,0013	4,959	4,959	5,04	5,04	5,04
1,000	0,0001	4,959	4,959	5,01	5,01	5,01

Tabela C.18k. Parâmetros térmicos para o escoamento em dutos anulares concêntricos com $r^* = 0.90$.

Tabela C.181. Parâmetros térmicos para o escoamento em dutos anulares concêntricos com $r^* = 1,00$.

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9639	12,349	12,345	18,23	18,23	18,39
0,002	0,9431	9,911	9,910	14,51	14,51	14,66
0,003	0,9258	8,755	8,753	12,86	12,86	12.86
0,005	0,8963	7,533	7,533	10,67	10,67	10,95
0,007	0,8710	6,863	6,863	9,66	9,66	9,87
0,010	0,8375	6,260	6,260	8,72	8,72	8,87
0,020	0,7467	5,397	5,397	7,23	7,23	7,31
0,030	0,6727	5,087	5,087	6,55	6,55	6,61
0,050	0,5515	4,902	4,902	5,91	5,91	5,96
0,070	0,4537	4,869	4,869	5,61	5,61	5,65
0,100	0,3389	4,861	4,861	5,39	5,39	5,41
0,200	0,1282	4,861	4,862	5,13	5,13	5,14
0,300	0,0485	4,861	4,861	5,04	5,04	5,05
0,500	0,0069	4,861	4,861	4,97	4,97	4,97
0,700	0,0010	4,861	4,861	4,94	4,94	4,94
1,000	0,0001	4,861	4,861	4,91	4,91	4,91

l	ETA C.174. I atallet os termicos para o escoamento em dutos bicom cos com $u_0/v_0 = 0,0$									
	Ζ	$\theta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}			
	0,001 0,002 0,003 0,005 0,007	0,9426 0,9102 0,8835 0,8393 0,8019	9,979 8,033 7,375 6,056 5,613	9,872 7,961 7,326 5,987 5,586	14,84 11,87 10,66 8,94 8,01	14,72 11,75 10,56 8,79 8,03	14,81 11,84 10,66 8,96 8,05			
	0,010 0,020 0,030 0,050 0,070	0,7539 0,6311 0,5394 0,4053 0,3105	4,961 4,139 3,785 3,449 3,267	4,943 4,126 3,775 3,443 3,263	7,16 5,70 5,12 4,50 4,13	7,14 5,69 5,12 4,50 4,13	7,18 5,73 5,14 4,52 4,15			
	0,100 0,200 0,300 0,500 0,700	0,2122 0,0643 0,0204 0,0021 0,0002	3,119 2,912 2,853 2,826 2,821	3,116 2,910 2,851 2,824 2,819	3,92 3,44 3,25 3,09 3,01	3,92 3,44 3,25 3,09 3,01	3,93 3,45 3,26 3,10 3,01			
	1,000	0,0000	2,821	2,819	2,95	2,95	2,95			

C.4. Geometria Bicônica

Tabela C.19a. Parâmetros térmicos para o escoamento em dutos bicônicos com $u_0/v_0 = 0.05$.

Tabela C.19b. Parâmetros térmicos para o escoamento em dutos bicônicos com $u_0/v_0 = 0,10$.

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9436	10,151	9,948	14,56	14,45	14,53
0,002	0,9108	8,150	8,000	11,70	11,61	11,68
0,003	0,8839	7,213	7,031	10,27	10,24	10,30
0,005	0,8395	6,047	5,980	8,65	8,59	8,75
0,007	0,8024	5,415	5,382	7,84	7,82	7,86
0,010	0,7549	4,863	4,839	6,93	6,91	7,03
0,020	0,6340	4,035	4,027	5,64	5,64	5,70
0,030	0,5438	3,696	3,691	5,04	5,04	5,08
0,050	0,4103	3,398	3,395	4,43	4,43	4,45
0,070	0,3146	3,264	3,261	4,11	4,11	4,13
0,100	0,2141	3,163	3,161	3,84	3,84	3,85
0,200	0,0620	3,069	3,067	3,47	3,47	3,48
0,300	0,0182	3,055	3,052	3,33	3,33	3,34
0,500	0,0016	3,051	3,048	3,22	3,22	3,22
0,700	0,0001	3,050	3,048	3,17	3,17	3,17
1,000	0,0000	3,050	3,048	3,14	3,13	3,14

Ζ	$ heta_{meta d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9436	10,171	9,935	14,96	14,81	14,51
0,002	0,9113	7,886	7,802	11,82	11,75	11,61
0,003	0,8853	6,814	6,788	10,34	10,28	10,23
0,005	0,8425	5,755	5,743	8,46	8,46	8,57
0,007	0,8066	5,197	5,175	7,79	7,77	7,68
0,010	0,7606	4,664	4,659	6,71	6,71	6,84
0,020	0,6428	3,893	3,890	5,45	5,45	5,52
0,030	0,5541	3,579	3,577	4,87	4,87	4,92
0,050	0,4212	3,326	3,324	4,29	4,29	4,32
0,070	0,3242	3,237	3,236	4,00	4,00	4,02
0,100	0,2205	3,194	3,193	3,76	3,76	3,78
0,200	0,0618	3,176	3,175	3,47	3,47	3,48
0,300	0,0174	3,175	3,174	3,37	3,37	3,38
0,500	0,0014	3,175	3,174	3,29	3,29	3,30
0,700	0,0001	3,175	3,174	3,26	3,26	3,26
1,000	0,0000	3,175	3,174	3,23	3,23	3,23

Tabela C.19c. Parâmetros térmicos para o escoamento em dutos bicônicos com $u_0/v_0 = 0,20$.

Tabela C.19d. Parâmetros térmicos para o escoamento em dutos bicônicos com $u_0/v_0 = 0.30$.

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9433	9,924	9,792	15,13	15,02	14,88
0,002	0,9116	7,694	7,668	11,76	11,74	11,57
0,003	0,8860	6,715	6,693	10,28	10,26	10,18
0,005	0,8436	5,679	5,673	8,36	8,38	8,50
0,007	0,8082	5,126	5,110	7,70	7,67	7,61
0,010	0,7626	4,603	4,600	6,63	6,63	6,78
0,020	0,6459	3,843	3,841	5,37	5,39	5,46
0,030	0,5577	3,537	3,536	4,81	4,81	4,87
0,050	0,4251	3,299	3,299	4,24	4,24	4,28
0,070	0,3276	3,228	3,227	3,96	3,96	3,99
0,100	0,2229	3,202	3,201	3,73	3,73	3,75
0,200	0,0621	3,197	3,196	3,46	3,46	3,48
0,300	0,0173	3,197	3,196	3,37	3,37	3,38
0,500	0,0013	3,197	3,196	3,30	3,30	3,31
0,700	0,0001	3,197	3,196	3,27	3,27	3,28
1,000	0,0000	3,197	3,196	3,25	3,25	3,25

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9431	9,785	9,726	15,11	15,06	14,85
0,002	0,9115	7,673	7,660	11,70	11,70	11,59
0,003	0,8858	6,701	6,692	10,19	10,17	10,13
0,005	0,8435	5,678	5,674	8,36	8,36	8,51
0,007	0,8080	5,117	5,113	7,67	7,66	7,61
0,010	0,7625	4,606	4,604	6,63	6,63	6,78
0,020	0,6456	3,851	3,850	5,39	5,39	5,47
0,030	0,5572	3,549	3,548	4,82	4,82	4,87
0,050	0,4242	3,318	3,317	4,25	4,25	4,29
0,070	0,3264	3,249	3,249	3,97	3,97	4,00
0,100	0,2215	3,221	3,221	3,75	3,75	3,77
0,200	0,0611	3,214	3,214	3,48	3,48	3,49
0,300	0,0169	3,214	3,214	3,39	3,39	3,40
0,500	0.0013	3,214	3,214	3,32	3,32	3,33
0,700	0,0001	3,214	3,214	3,29	3,29	3,30
1,000	0,0000	3,214	3,214	3,27	3,27	3,27

Tabela C.19e. Parâmetros térmicos para o escoamento em dutos bicônicos com $u_0/v_0 = 0.40$.

Tabela C.19f. Parâmetros térmicos para o escoamento em dutos bicônicos com $u_0/v_0 = 0.50$.

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9428	9,762	9,733	14,99	14,99	14,83
0,002	0,9111	7,699	7,689	11,66	11,66	11,64
0,003	0,8854	6,733	6,720	10,30	10,27	10,20
0,005	0,8429	5,704	5,701	8,37	8,37	8,55
0,007	0,8073	9,740	9,737	7,73	7,72	7,65
0,010	0,7615	4,633	4,631	6,65	6,65	6,81
0,020	0,6440	3,881	3,881	5,41	5,41	5,50
0,030	0,5552	3,582	3,582	4,84	4,84	4,90
0,050	0,4214	3,354	3,354	4,28	4,28	4,32
0,070	0,3234	3,283	3,283	4,00	4,00	4,03
0,100	0,2186	3,245	3,244	3,78	3,78	3,80
0,200	0,0596	3,230	3,230	3,51	3,51	3,52
0,300	0,0163	3,230	3,230	3,42	3,42	3,43
0,500	0,0012	3,230	3,230	3,35	3,35	3,36
0,700	0,0001	3,230	3,230	3,32	3,32	3,32
1,000	0,0000	3,230	3,230	3,30	3,30	3,30

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}
0,001	0,9426	9,786	9,766	14,85	14,86	14,79
0,002	0,9107	7,730	7,721	11,61	11,61	11,69
0,003	0,8849	6,766	6,751	10,15	10,14	10,22
0,005	0,8422	5,734	5,731	8,37	8,37	8,59
0,007	0,8064	5,173	5,170	7,62	7,59	7,68
0,010	0,7605	4,663	4,662	6,67	6,67	6,85
0,020	0,6424	3,914	3,913	5,44	5,44	5,53
0,030	0,5530	3,618	3,617	4,87	4,87	4,94
0,050	0,4186	3,390	3,390	4,31	4,31	4,36
0,070	0,3202	3,317	3,316	4,03	4,03	4,07
0,100	0,2156	3,263	3,263	3,81	3,81	3,84
0,200	0,0582	3,247	3,247	3,54	3,54	3,56
0,300	0,0157	3,247	3,247	3,45	3,45	3,46
0,500	0,0011	3,247	3,247	3,38	3,38	3,38
0,700	0,0001	3,247	3,247	3,35	3,35	3,35
1,000	0,0000	3,247	3,247	3,33	3,33	3,33

Tabela C.19g. Parâmetros térmicos para o escoamento em dutos bicônicos com $u_0/v_0 = 0.60$.

Tabela C.19h. Parâmetros térmicos para o escoamento em dutos bicônicos com $u_0/v_0 = 0.70$.

Ζ	$ heta_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9424	9,814	9,796	14,70	14,72	14,84
0,002	0,9105	7,755	7,747	11,56	11,56	11,73
0,003	0,8846	6,780	6,776	10,22	10,21	10,27
0,005	0,8417	5,758	5,755	8,36	8,36	8,62
0,007	0,8058	5,196	5,194	7,63	7,63	7,71
0,010	0,7596	4,688	4,686	6,68	6,68	6,87
0,020	0,6410	3,940	3,940	5,45	5,45	5,56
0,030	0,5512	3,646	3,645	4,89	4,89	4,96
0,050	0,4162	3,419	3,419	4,33	4,33	4,38
0,070	0,3178	3,343	3,343	4,06	4,06	4,09
0,100	0,2133	3,293	3,293	3,83	3,83	3,86
0,200	0,0571	3,264	3,264	3,56	3,56	3,58
0,300	0,0153	3,264	3,264	3,47	3,47	3,48
0,500	0,0011	3,264	3,264	3,40	3,40	3,41
0,700	0,0001	3,264	3,264	3,37	3,37	3,37
1,000	0,0000	3,264	3,264	3,35	3,35	3,35

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2 méd}	Nu [*] _{2méd}	
0,001 0,002 0,003 0,005	0,9422 0,9103 0,8843 0,8414 0,8054	9,832 7,772 6,795 5,774 5,213	9,816 7,765 6,793 5,772	14,58 11,51 10,24 8,35 7 56	14,59 11,51 10,23 8,35 7,56	14,87 11,75 10,30 8,64 7,73	
0,010 0,020 0,030 0,050 0,070	0,7591 0,6401 0,5500 0,4147 0,3161	4,704 3,958 3,665 3,438 3,361	4,703 3,958 3,664 3,438 3,361	6,68 5,46 4,90 4,35 4,07	6,68 5,46 4,90 4,35 4,07	6,89 5,58 4,98 4,40 4,11	
0,100 0,200 0,300 0,500 0,700	0,2118 0,0564 0,0150 0,0011 0,0001	3,307 3,281 3,281 3,281 3,281 3,281	3,307 3,281 3,281 3,281 3,281 3,281	3,85 3,58 3,49 3,42 3,38	3,85 3,58 3,49 3,42 3,38	3,88 3,60 3,50 3,43 3,39	
1,000	0,0000	3,281	3,281	3,36	3,36	3,36	

Tabela C.19i. Parâmetros térmicos para o escoamento em dutos bicônicos com $u_0/v_0 = 0.80$.

Tabela C.19j. Parâmetros térmicos para o escoamento em dutos bicônicos com $u_0/v_0 = 0.90$.

Ζ	$ heta_{m\acute{e}d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9422	9,842	9,827	14,51	14,51	14,79
0,002	0,9102	7,781	7,775	11,48	11,47	11,77
0,003	0,8842	6,803	6,802	10,20	10,19	10,34
0,005	0,8412	5,783	5,781	8,35	8,35	8,65
0,007	0,8051	5,220	5,220	7,59	7,59	7,74
0,010	0,7588	4,713	4,712	6,68	6,68	6,90
0,020	0,6396	3,968	3,967	5,47	5,47	5,59
0,030	0,5493	3,675	3,675	4,91	4,91	4,99
0,050	0,4139	3,448	3,448	4,36	4,36	4,41
0,070	0,3152	3,370	3,370	4,08	4,08	4,12
0,100	0,2110	3,311	3,311	3,86	3,86	3,89
0,200	0,0560	3,298	3,298	3,59	3,59	3,60
0,300	0,0149	3,298	3,298	3,50	3,50	3,51
0,500	0,0011	3,298	3,298	3,42	3,42	3,43
0,700	0,0001	3,298	3,298	3,39	3,39	3,40
1,000	0,0000	3,298	3,298	3,37	3,37	3,37

Ζ	$oldsymbol{ heta}_{m \acute{e} d}$	Nu ₁	Nu ₂	Nu _{1méd}	Nu _{2méd}	Nu [*] _{2méd}
0,001	0,9422	9,845	9,830	14,48	14,48	14,70
0,002	0,9101	7,784	7,778	11,47	11,46	11,77
0,003	0,8841	6,809	6,805	10,24	10,24	10,39
0,005	0,8411	5,786	5,784	8,34	8,34	8,65
0,007	0,8051	5,223	5,222	7,59	7,59	7,75
0,010	0,7587	4,716	4,715	6,68	6,68	6,91
0,020	0,6394	3,971	3,970	5,47	5,47	5,59
0,030	0,5491	3,678	3,678	4,91	4,91	5,00
0,050	0,4136	3,452	3,451	4,36	4,36	4,41
0,070	0,3150	3,373	3,373	4,08	4,08	4,13
0,100	0,2107	3,333	3,332	3,86	3,86	3,89
0,200	0,0559	3,315	3,315	3,59	3,59	3,61
0,300	0,0148	3,315	3,315	3,50	3,50	3,51
0,500	0,0010	3,315	3,315	3,43	3,43	3,43
0,700	0,0001	3,315	3,315	3,39	3,39	3,39
1,000	0,0000	3,315	3,315	3,37	3,37	3,37

Tabela C.19k. Parâmetros térmicos para o escoamento em dutos bicônicos com $u_0/v_0 = 1,00$.

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo