
Thesis submitted to the Graduate Division of the Electrical Engeneering Faculty of the Federal

University of Uberlândia as a fulfillment of the requirements for the PhD degree in the area of

Artificial Intelligence of the course of Graduation in Electrical Engineering.

José Romildo Malaquias

Computer Algebra in Modern Functional

Languages

Prof. Dr. Antônio Eduardo Costa Pereira

Thesis Supervisor

Universidade Federal de Uberlândia

Uberlândia, MG

Brazil

February 26 2007

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

 Dados Internacionais de Catalogação na Publicação (CIP)

M237c Malaquias, José Romildo, 1967-
 Computer algebra in modern functional languages / José Romildo
Malaquias. - 2007.
 140 f. : il.

 Orientador: Antonio Eduardo Costa Pereira.

 Tese (doutorado) – Universidade Federal de Uberlândia, Programa de
 Pós-Graduação em Engenharia Elétrica.
 Inclui bibliografia.

 1. Inteligência artificial - Teses. 2. Programação funcional (Computa-
ção) - Teses. I. Pereira, Antonio Eduardo Costa. II. Universidade Federal
de Uberlândia. Programa de Pós-Graduação em Engenharia Elétrica. III.
Título.

 CDU: 681.3:007.52

 Elaborado pelo Sistema de Bibliotecas da UFU / Setor de Catalogação e Classificação

Computer Algebra in Modern Functional

Languages

José Romildo Malaquias

Composition of the Examining Board

Prof. Dr. Antônio Eduardo Costa Pereira FEELT – UFU Supervisor

Prof. Dr. Luciano Vieira Lima FEELT – UFU

Prof. Dr. Carlos Roberto Lopes FACOM – UFU

Prof. Dr. José Lopes de Siqueira Neto DCC – UFMG

Prof. Dr. Claudio Cesar de Sá DCC – UDESC

UFU

Contents

Sumário x

Abstract xi

Acknownledgments xii

1 Introduction 1

1.1 Computer Algebra . 1

1.2 Motivation . 3

1.3 Objectives . 4

1.4 Features of the Haskell Language . 6

1.5 History . 7

1.6 Text Structure . 10

2 Algebraic Formulas 12

2.1 Kinds of Formulas . 12

2.2 Trivial Representation of Formulas . 14

2.3 Extensible Union Types . 19

2.4 An Extensible Type Representation for Formulas 21

2.5 Formula Representation with Existentially Quantified Type Variables 23

2.6 Abstract Data Types . 30

2.7 Basic Functions over Formulas . 31

iv

CONTENTS v

2.7.1 Integer Formulas . 31

2.7.2 Constant Formulas . 32

2.7.3 Variable Formulas . 33

2.7.4 Indeterminate Formulas . 34

2.7.5 Application Formulas . 35

2.8 Canonical Form . 39

2.9 Representing Success and Failure . 41

3 Context 43

3.1 Formula Manipulation . 43

3.2 Controlling the Evaluation of Formulas . 45

3.2.1 The Need of Controllers . 45

3.2.2 Representing Contexts . 46

3.2.3 The Meaning of Some Controllers 46

3.2.4 Referential Transparency . 53

3.2.5 Passing the Context as Input to Algorithms 54

3.3 Implicit Parameters . 56

3.4 Alternative Solutions for Passing a Context Around 57

4 Addition 59

4.1 Basic Addition Rules . 59

4.2 Addition of Integer and Rational Numbers 60

4.3 Handling of Special Cases . 61

4.4 The Core of Addition . 64

5 Multiplication and Subtraction 74

5.1 Basic Multiplication Rules . 74

5.2 Multiplication of Integers . 75

5.3 Handling of Special Cases . 76

5.4 The Main Part of the Multiplication Algorithm 78

vi CONTENTS

5.5 Additive Inverse and Subtraction . 85

6 Exponentiation and Division 88

6.1 Mathematical Background . 88

6.2 Basic Algorihtms for Powers . 89

6.3 Special properties of exponentiation . 93

6.4 Division . 99

7 System Organization 104

7.1 Module Organization . 104

7.2 Extending the Library . 107

7.3 Comparison to Other Systems . 109

8 Conclusions 113

8.1 Conclusions . 113

8.2 Future Work . 115

A Using the System 116

Listings

1.1 An opaque C program. 4

2.1 A first attempt in building a type representation for formulas. 14

2.2 Selectors. 16

2.3 Building a value of a data type. 16

2.4 Addition of two formulas . 17

2.5 Examples of addition of formulas . 17

2.6 Adding logarithms to the formula representation. 17

2.7 Addition od formulas, including derivatives. 18

2.8 Disjoint union of two types. 19

2.9 Example of an extesible union type . 20

2.10 Subtyping relationship . 20

2.11 Subtyping relationship . 21

2.12 Representing the groups of application formulas 21

2.13 Addition of formulas . 22

2.14 Extending the library of logarithms . 23

2.15 Existential type variables in data type declarations 24

2.16 Context with existential type variables . 24

2.17 The general type of a formula using existential an type variable 25

2.18 Integer formulas . 26

2.19 Constant formulas . 27

vii

viii LISTINGS

2.20 Sums . 28

2.21 Addition of formulas . 29

2.22 Integer functions. 32

2.23 Functions for handling constant values. 33

2.24 Selectors, constructors and predicates for variables. 34

2.25 Selectors, constructors and predicates for variables. 35

2.26 Functions for handling applications. 36

2.27 Constructors and selectors for basic applications. 38

3.1 Solutions of the quadratic equation. 45

3.2 One may represent contexts as records. 47

3.3 State changing. 47

3.4 Procedural languages are not transparent. 54

3.5 Context as argument. 56

3.6 Implicit context. 57

3.7 Passing contexts around. 58

4.1 Addition of two terms. 62

4.2 An overloaded function for special addition rules. 63

4.3 Addition of logarithms. 64

4.4 The multiplication operator for formulas. 65

4.5 The add function. 66

4.6 The foldr function. 66

4.7 The mergeSum function. 69

4.8 The mergeTerm function. 71

5.1 The mulFactors function. 76

5.2 An overloaded function for special multiplication rules. 77

5.3 Multiplication of logarithms. 77

5.4 The multiplication operator for formulas. 78

5.5 The mul function. 79

5.6 The mergePro function. 81

LISTINGS ix

5.7 The mergeFactor function. 86

5.8 The negate function. 86

5.9 The subtraction operation. 87

6.1 Overloaded functions for special exponentiation rules. 92

6.2 Power of two terms. 94

6.3 Power of two terms (continued). 94

6.4 Power of two terms (continued). 95

6.5 Power of two terms (continued). 95

6.6 Power of two terms (continued). 96

6.7 Power of two terms (continued). 96

6.8 Product of power. 97

6.9 Product of power: division . 97

6.10 Product of power: division by an integer . 98

6.11 Product of power: division by a sum . 100

6.12 Product of power: overloaded functions . 100

6.13 Prower of a product. 101

6.14 Power of a power. 101

6.15 Radical. 102

6.16 Radical (continuation). 103

6.17 The division operation. 103

7.1 TDeriv in MatLab. 110

7.2 TDeriv in Mapple. 110

7.3 TDeriv in Haskell (part one). 111

7.4 TDeriv in Haskell (part two). 112

Resumo

Muitos sistemas de computação algébrica foram propostos e implementados. A maioria deles

são implementados ou até mesmo implementam linguagens sem a propriedade da referência

transparencial, o que torna difícil e até mesmo impraticável a prova de correção de programas.

Esta tese apresenta um sistema de computação algébrica implementado como uma biblioteca

na linguagem de programação Haskell, que é uma linguagem funcional moderna com a pro-

priedade da referência transparencial desejada.

O autor apresenta os fundamentos e algoritmos básicos para manipulação de expressões

algébricas em um contexto declarativo, compatível com a Matemática.

Examina-se a adequação de construções oferecidas pela linguagem Haskell para a imple-

mentação da biblioteca de uma forma modular, de forma que ela possa ser facilmente estendida

com a inclusão de novas fórmulas algébricas e novas operações sobre fórmulas. Tais extensões

devem ser compatíveis com versões anteriores da biblioteca.

Esta tese também contribui por mostrar que linguagens funcionais modernas como Haskell

são viáveis para a programação de sistemas práticos, até mesmo podendo ser melhores que

linguagens convencionais em alguns aspectos, como nível de abstração.

Palavras Chave

Inteligência Artificial, Computação Algébrica, Linguagens Funcionais, Programação Funcional,

Haskell.

Abstract

Many computer algebra systems have already been proposed and implemented. Most of them

are implemented in or even implement languages without the referential transparency property,

making it difficult, if not impractical, to reason about algebra programs. This thesis presents

a computer algebra system implemented as a library in the Haskell programming language, a

modern functional language with the desired referential transparency property.

The author presents the foundations and basic algorithms for manipulation of algebraic ex-

pressions in a declarative context, compatible with Mathematics.

The adequacy of the constructs provided by the Haskell programming language is consid-

ered when implementing such a library in a modular way, so that it can be easily extended

with the inclusion of new algebraic formulas and manipulations. Such extensions should keep

compatibility with prior versions of the library.

This work also contributes for showing that modern functional languages like Haskell are

viable for day to day programming, even beating conventional languages in some aspects, like

level of abstraction.

Keyworkds

Artificial Intelligence, Computer Algebra, Functional Languages, Functional Programming,

Haskell.

Acknownledgments

I am grateful to all the persons who, in different ways, have supported me in this project.

• First I am grateful to God for keeping me alive and for providing all the necessary condi-

tions for the development of this work.

• I am grateful to my wife Neli, for the encouragement when needed, and for the love all

the time.

• I am grateful to my children, Ana Carolina, Felipe e Luíza, who have understood why I

have stayed so many hours in front of a computer screen, instead of being with them for

more time.

• I am grateful to my parents, Dírcia Rosa and José Augusto, for bringing me to life and

for teaching me how to be a good person.

• I am grateful to Prof. Antônio Eduardo Costa Pereira, who helped me in the most difficult

momments when developing this work.

• I am grateful to all my friends and co-workers from the Computer Science Department at

the Federal University of Ouro Preto, for the friendship and for the years I was allowed

to be out doing this work.

José Romildo Malaquias

Chapter 1
Introduction

1.1 Computer Algebra

Computers have been used for numerical computations since its beginnings. However these

general purpose machines can be used for transforming and combining symbolic expressions

as well. That is, computers can be used not only to deal with numbers, but also with abstract

symbols representing mathematical formulas. This fact has been realized much later and is only

now gaining acceptance among mathematicians and engineers.

Winkler [1] draws a good short introduction to Computer Algebra. Before 1850 mathe-

maticians solved the majority of their problems by extensive calculations. However in the 19th

century the style of mathematical research changed from quantitative to qualitative aspects. The

advent of modern digital computers in general and by the development of program systems in

Computer Algebra, in particular. played a role on this shift. Although even in our days many

mathematicians think that the role of computers is number crunching and their role is the appli-

cation of the appropriate algebraic transformations to the problem, underestimating the power

of computing systems for algebraic manipulation, already in 1844 Lady Augusta Ada Byron,

countess of Lovelace, recognized that this division of labor is not inherent in mathematical

problem solving. In describing the possible applications of the Analytical Engine developed by

Charles Babbage she wrote [1]:

"Many persons who are not conversant with mathematical studies imagine that be-

1

2 1 Introduction

cause the business of [Babbage’s Analytical Engine] is to give its results in nu-

merical notation, the nature of its process must consequently be arithmetical and

numerical rather than algebraic and analytical. This is an error. The engine can

arrange and combine its numerical quantities exactly as if they were letters or any

other general symbols; and in fact it might bring out its results in algebraic notation

were provisions made accordingly."

And indeed computer is a "universal" machine capable of carrying out an arbitrary algorithm,

being it numerical, symbolic or of any other nature.

But what does one mean by Computer Algebra or symbolic algebra computation? R. Loos

wrote[2]:

"Computer Algebra is that part of computer science which designs, analyzes, im-

plements, and applies algebraic algorithms."

Algebraic algorithms are algorithms that transforms algebraic formulas (built from numbers,

variables and function applications) following the rules from Algebra, a field in the Mathemat-

ics.

So Computer Algebra systems deal not only with integers and reals, but also with vari-

ables representing unknown quantities and any expression combining numbers and variables by

means of mathematical operations. Numbers are represented exactly. The approximations of

floating point numbers for reals are not acceptable anymore. So there is no need to concern

about aproximation errors.

Computer Algebra software find its applications in any field dealing with the formulation of

laws in mathematical terms, using algebraic equations and/or analytic concepts such as ordinary

and partial differential equations and integral theorems. After the formulation of a law it should

be solved. Then enters the Computer Algebra to assist the scientist in that.

1.2 Motivation 3

1.2 Motivation

Nowadays there are many programs which perform Computer Algebra. These said programs

find applications in areas like Mathematics, Computer Sciences, Engineering, Economics, etc.

With these programs one can perform algebraic simplifications and handle literals, as shown in

the following examples.

5× a2−2ab+b2

a−b
= 5a+5b

d
dx

(ax2 +bx+ c) = 2ax+b

sin2 a+ cos2 a = 1

Most of these programs suffer from the drawback that their programming languages are not

referentially transparent, that is, they do not allow substitution of equals for equals, invalidating

the use of certain Mathematical laws. Even if other areas of thought are able to do without

substitution of equals for equals, this is not true of Mathematics, the main subject of Computer

Algebra. Therefore, the absence of referential transparency is a mortal sin, when it occurs in a

Computer Algebra language.

The notion of transparency is due to Whitehead and Russel [3]. Antoni Diller [4] illustrates

the invalidation of substitution in natural languages with the following sentence drawn from

Russell [5]:

George IV wished to know whether Scott was the author of Waverley.

In chapter 3 the reader will find a full account of this discovery of Russell’s. For the time

being, it should be noticed that the above sentence is true, since the mad king really wished

to know whether Scott was the author of Waverley. However, we do know that Scott and the

author of Waverley are indeed the same person. Therefore, we may feel entitled to substitute

Scott for the author of Waverley in Russell’s sentence. In doing so, we get

George IV wished to know whether Scott was Scott.

The result is obviously false, for even being mad, the King knew well that Scott was Scott.

4 1 Introduction

Imperative computer languages suffer from the same lack of transparency as a natural lan-

guage. For example, one cannot make use of the commutative property of multiplication

to conclude that the C program of listing 1.1 will print the same number twice, although

f (2)×g(5) = g(5)× f (2) in Mathematics. This happens in C because C functions may change

the state of the computing system (by means of assignments to variables) besides (maybe) com-

puting a value. In program 1.1 function g changes the contents of the global variable k before

returning a value and function f needs the value of k in order to compute a result value. So calls

to g has an effect on calls to f. The return value of f depends on the previous calls to g. This

program outputs -6=99.

Listing 1.1: An opaque C program.
#include <stdio.h>

int k = 1;

int g(int x)
{ k = k + x;
return k;

}

int f(int x)
{ return k - x;
}

void main()
{ printf("%d=%d\n", f(x)*g(x), g(x)*f(x));
}

So it is highly desirable that the language used to express the Computer Algebra algorithms

be referentially transparent.

1.3 Objectives

As has been noted, current Computer Algebra systems are implemented and/or support imper-

ative programming languages, which are based on state changing and consequently lack refer-

ential transparency. The author proposes to develop a new Computer Algebra system withouth

this restriction, as a library in the Haskell language, a modern functional language without side

1.3 Objectives 5

effects.

The purposes of this work are:

• to provide the basics for implementing a Computer Algebra system embeded in a modern

functional language, by implementing a small library of data types and functions for the

manipulation of algebraic formulas;

• to examine the adequacy of the Haskell language for the construction of a modular and

easily extendable library;

• to provide fundamental algorithms for manipulation of algebraic expressions in a declar-

ative context, compatible with Mathematics, that uses transparent languages.

Currently there is plenty of Computer Algebra systems, as the reader can find in section 1.5.

Many of them are comercial products that resulted from many years of work of many skilled

developers. Those systems are very broad and complex, and find applications in many areas

and are too broad and complex, being already stablished tools for professional development.

It is not the intent of this work to provide a system that competes with them nor to provide a

complete package, since this would require many hours of several dedicated programmers. In a

first step, we hope to provide instead the implementation of a small library that can be used for

the development of such system in the Haskell programming language.

A Computer Algebra system, due to its characteristics, is constructed in the following steps:

1. A group of people stablishes a core system capable of reading expressions of the domain

and comparing them for equality. The comparison should be semantic and not syntatic,

that is, expressions like 2 ∗ y and y + y are considered equal. The same group of people

also stablishes a programming language. The core system built in this way is proposed to

the comunity, together with simple examples like elementary integrations and derivatives,

etc.

2. If the proposed system is accepted, specialists from many areas of knowledge that require

symbolic manipulation start to add packages to the core system: more complex integrals,

differential equations, topology, tensorial calculus, series, etc. The amount of knowledge

6 1 Introduction

is so broad that it is not feasible for the group who started the system to develop all the

packages. Also they would not have all the knowledge and ability to take this task.

A final user of a Computer Algebra system reading this text should keep in mind that it

describes only a starting core system, which is implemented by making use of some inovative

techniques related to the implementation language. Therefore users of Macsyma or Mathe-

matica (to mention a few successfull products) should not expect a description in this text of

a Computer Algebra system of the same level of those products, which are really products for

the final user. What is described here is only a core system embeded in a modern programming

language, which is not ready for the users, but should be further developed by the comunity if

accepted by the comunity. Then after some years of development it could become a system as

complete as Macsyma or Mathematica systems.

This project consist not only the design of a library in a given language, but also a study of

language constructs offered or even missing in the programming language in face of the needs

of the library. To accomplish this task some advanced knowledge of type systems and language

constructs that goes beyound undergraduate level are needed.

In a second step, the library will be reimplemented in the Clean programming language[6],

another modern functional language with a very good compiler, which will bring more effi-

ciency to the system. More specific algorithms, like derivatives, integrals, differential equations,

vectors and trigonometry, will also be implemented, making it suitable for application on real

world problems.

1.4 Features of the Haskell Language

The Haskell programming language have the following features:

• It is a modern functional language.

• It is strongly typed.

• It does type inference.

1.5 History 7

• Its type system is polymorphic, with

– parametric polymorphism and

– overloading polymorphism.

• A program is made up of a set of algebraic data type definitions and functions.

• There are high order functions.

• Functions can be defined by pattern matching.

• Lazy evaluation of expressions.

1.5 History

According to Nilsson [7], research in Computer Algebra had its beginnings when James Slagle

created the program SAINT, that was able to integrate functions by elementary methods. After

this first step, Joel Moses improved the algorithms of SAINT, creating another program of

symbolic integration which was named SIN.

In the sixties, Carl Engleman, Joel Moses and William Martin (at the Massachusetts Institute

of Technology, as part of the MAC project) started the project Macsyma1[8], which is one of the

finest systems of Symbolic Mathematics. It is quite large, and written in Lisp. After Macsyma,

many other systems of Computer Algebra came to light. Each of these systems tried to correct

a real or imaginary weakness of Maclisp, the original computer language of Macsyma. A few

of these systems are:

• Reduce2. In the beginning, Lisp had many dialects. In general, every machine had its

own dialect. Macsyma was developed in Maclisp. Therefore, one could not build the

system in a machine running Franz Lisp, Interlisp, etc. The designers of Reduce [9][10]

proposed a standard dialect of Lisp, which should be portable to any machine. Although

Reduce became very popular, Standard Lisp was badly beaten by Common Lisp in the

1http://www.macsyma.com/
2http://www.rrz.uni-koeln.de/REDUCE

http://www.macsyma.com/
http://www.rrz.uni-koeln.de/REDUCE

8 1 Introduction

struggle to become the standard dialect of the main AI language. In the mean time,

Macsyma migrated from MACLISP to Common Lisp. The result is that Macsyma runs in

a standard language, while Reduce is built on top of an obscure dialect known as Standard

Lisp.

• Maple3. Lisp always had a bad reputation for being slow. Therefore, Maple [11] was

developed (at the University of Waterloo, Canada) in a procedural language (C) with a

view to greater efficiency. Since procedural languages like C are not fit for symbolic

computation, the implementors of Maple were forced to invent a symbolic language. Not

being experts in compiler construction, they wrote an interpreter for the Maple language.

The result is that Maple is much slower than Macsyma and other Lisp based systems.

Maple’s source code is not in the public domain.

• Derive4. This package (and its precursor MuMATH) was designed to offer a small and

fast Computer Algebra system [12]. It was the only competitor to Macsyma that really

delivered its promises. The system is indeed very small and reasonably fast. However, it

did not meet the commercial success of Reduce and Maple.

Maple, Reduce and Derive were designed to be worthy competitors of Macsyma. There are

also systems designed to offer limited functionality in a friendly environment. Among these

systems, MatLab5 [13] and Mathematica6 [14] became imensily popular.

It is interesting to note that these two systems that promised limited functionality failed to

deliver their promise too. Due to demands from the market, the developers of both MatLab

and Mathematica increased the functionality of their systems, which became as fat as Reduce.

However, neither MatLab nor Mathematica have the well designed architecture of Reduce. In

fact, these system suffered from a chaotic growth.

Other systems are:

• Magma7. Magma is a large software package designed to solve computationally hard
3http://www.maplesoft.com/
4http://www.derive.com/
5http://www.mathworks.com/
6http://www.mathematica.com/
7http://www.maths.usyd.edu.au/u/magma/

http://www.maplesoft.com/
http://www.derive.com/
http://www.mathworks.com/
http://www.mathematica.com/
http://www.maths.usyd.edu.au/u/magma/

1.5 History 9

problems in algebra, number theory, geometry and combinatorics. It provides a mathe-

matically rigorous environment for computing with algebraic, number-theoretic, combi-

natoric and geometric objects. Magma’s language is imperative with standard imperative-

style statements and procedures, but offers a functional subset providing closures, higher-

order functions, and partial evaluation.

• Axiom8. Axiom was originally developed as a research tool by IBM in collaboration

with experts around the world. The unique strength of AXIOM is derived from its object-

oriented approach and its overall structure which is strongly typed and hierarchical. AX-

IOM’s algebra library is built on Common LISP.

• Yacas9. Yacas, standing for Yet Another Computer Algebra System, is a small and

highly flexible Computer Algebra system and language. It is written in C++ and can be

embedded into other applications. Things implemented include arbitrary precision inte-

ger arithmetic, rationals, complex numbers, vectors, matrices, derivatives, Taylor series,

equation solving. It is being developed by Ayal Pinkus towards a symbolic calculator and

there are plans to have a user interface through an internet browser.

• Ginac10. Ginac is a C++ library for doing computer algebra. It allows symbolic ma-

nipulation from within a C++ program. It is currently in active development, and looks

very promising. GiNaC is an iterated and recursive acronym for GiNaC is Not a CAS,

where CAS stands for Computer Algebra System. It is designed to allow the creation

of integrated systems that embed symbolic manipulations together with more established

areas of computer science (like computation- intense numeric applications, graphical in-

terfaces, etc.) under one roof.

• HartMath11. HartMath is a Computer Algebra system written in Java. All math func-

tionality is written in Java itself. HartMath has roughly the same functionality as Yacas.

Some of the main implemented features are big rational number arithmetic, symbolic

8http://www.iec.co.uk/symbolic_software.asp
9http://www.xs4all.nl/~apinkus/yacas.html

10http://www.ginac.de/
11http://home.t-online.de/home/khartlage/hartmath.htm

http://www.iec.co.uk/symbolic_software.asp
http://www.xs4all.nl/~apinkus/yacas.html
http://www.ginac.de/
http://home.t-online.de/home/khartlage/hartmath.htm

10 1 Introduction

derivatives, linear algebra, plot functions, numeric functions, pattern matching rules and

pure functions.

• Jacal12. JACAL is an interactive symbolic mathematics program. JACAL can manipu-

late and simplify equations, scalars, vectors, and matrices of single and multiple valued

algebraic expressions containing numbers, variables, radicals, and algebraic differential,

and holonomic functions. It is written in Scheme, a dialect of Lisp.

• Maxima13. Maxima is a Macsyma clone, licensed under the GPL (GNU General Public

License). It can be found in the GNU repositories, and is written in Common Lisp. It

seems there is currently no maintainer for Maxima.

• MockMMA14. MockMMA is a Mathematica-style parser and pattern matcher, written in

Lisp, with some additional mathematical functionality. One can manipulate polynomials

in several variables over the integers, rational functions, and a variety of other mathemati-

cal objects. Manipulations include simplification, differentiation, integration, evaluation,

pattern matching, etc. It is implemented in Common Lisp.

1.6 Text Structure

This text is organized in six chapters.

Chatper one: Introduction Presents the motivation of this work and its objectives as well as

a brief history on the subject.

Chapter two: Formulas Explains how the data is organized in abstract types that describe

algebraic expressions or formulas.

Chapter three: Context Justifies the need of keeping a set of flags, called the context, which

are checked while doing the simplification of an algebraic formula, and provides infor-

mation to decide what kind of transformations should be applied.

12http://swissnet.ai.mit.edu/~jaffer/JACAL.html
13http://www.gnu.org/software/maxima/maxima.html
14http://www.cs.berkeley.edu/~fateman/

http://swissnet.ai.mit.edu/~jaffer/JACAL.html
http://www.gnu.org/software/maxima/maxima.html
http://www.cs.berkeley.edu/~fateman/

1.6 Text Structure 11

Chapter three: Addition Explains the fundamental algorithms of the system for addition.

Chapter four: Multiplication and Subtraction. Discusses the algorithms used in symbolic

multiplication and the use of the multiplication by -1 to achieve the subtraction.

Chapter five: Exponentiation and Division Presents the algorithms used both in exponentia-

tion and in division.

Chapter six: System Organization Presents the module structure of the system and the re-

sults of a benchmarking program.

Chapter seven: Conclusion and Future Work Presents the conclusion and suggestions for

future works.

Chapter 2
Algebraic Formulas

In this chapter, the reader will find descriptions abstract representations of the algebraic expres-

sions in our Computer Algebra library. The author will be specially concerned with the basic

manipulations of the foresaid expressions, but he will also discuss the result of computations

that may fail or succeed.

For the sake of clarity, the term formula will be used for algebraic expression, as expres-

sion is already used when discussing programming languages and denotes a construct of the

language not necessarily related to Algebra. This avoids ambiguity in terminology.

2.1 Kinds of Formulas

Formulas are expressions that can be manipulated in Algebra. They can be added and multi-

plied. They can be squared. Trignometric transformations may be applied to them. They can be

diferentiated and integrated. A large number of operations can be applied to formulas. Formulas

may be composed by numbers and variables, which can be combined in different ways.

Formulas can be grouped, according to their structure, in several groups, including:

• Integers, corresponding to the integer numbers, as defined in axiomatic theories like

Peano’s axioms, Church’s numbers, or in one of the many brands of the Set Theory. A

few examples of this group are 416, 7453 and −3291.

• Constants, representing known mathematical entities. They are expressed by a symbol or

12

2.1 Kinds of Formulas 13

a name, like π, e (neperian number) and ı (imaginary unit). In general, a constant formula

stands for a number without an exact representation in a given numeric system.

• Variables, corresponding closely to mathematical variables. Logicians call them literals

more often than not. Examples of literals: x, y, a, b, α, β.

• Applications, which are formulas built from simpler formulas by applying a functional

operator to its arguments, which are themselves formulas. Exemplos: sinx, cothx, lnx,

log10 x, x + 2, −a, π2 and 5× sin[3π(α + 2)]. Applications may have different forms,

depending on the operator. The basic arithmetic applications are

– Sum, denoting the sum of two formulas. Examples are a+b and 13+ y×4x.

– Product, denoting the product of two formulas. For example 4× x and (a + b)×

(a+ c).

– Power, denoting the power of two formulas, as in x2 and (a+b)
1
2 .

There is no need for special forms for differences and quotients: they can be expressed

using the above formulas. Basicaly, for any formulas x and y,

x− y = x+(−1)× y

x
y

= x× y−1

Other common applications are

– Logarithm of a formula in a given base. Examples are log10 y, loge(x + y) and

logb bc.

– Trigonometric formulas, like sine, cosine and tangent of a formula. Examples:

sinx, cosa2, tan(x2 + y2).

There are many other possible forms of applications (hyperbolic formulas, derivatives,

integrals, vectors, matrices, series, . . .)

14 2 Algebraic Formulas

• Indeterminates, which are formulas whose value cannot be determined, like those ob-

tained by dividing by zero. Examples are 3/0, 00 and log0x.

2.2 Trivial Representation of Formulas

The representation of formulas in the implementation language is tricky. One could simply use

an algebraic data type to obtain the disjoint union of the relevant groups of formulas. Listing

2.1 is a first attempt in defining the type of formulas using this approach. It includes only the

Listing 2.1: A first attempt in building a type representation for formulas.
module Formula where

data Fn = Sum -- sum
| Pro -- product
| Pow -- power

data Formula = Int Integer -- an integer
| Cte String -- a known constant
| Var String -- a literal
| App Fn [Formula] -- an operator application
| Ind Formula -- an indeterminate formula

most basic groups of formulas: integers, named constants, variables, sums, products, powers

and indeterminates.

The declaration of an algebraic data type defines a possibly recursive type and the set of its

value constructors, specifying the types of the arguments of each constructor. For instance, type

Formula has the following value constructors: Int, Cte, Var, App and Ind. For example, the

contructor Cte has a sole argument, of type String. Constructor App has two arguments of

types Fn and Formula.

Application formulas have a commom representation: an operator followed by a list of

arguments. The type of the operator, Fn, is simply an enumeration of all possible operators: in

this case sum, product and power. Each argument is a formula.

Table 2.1 exemplifies mathematical formulas and their corresponding representation by a

value of the data type declared in listing 2.1. In the representation, operators (that is, the value

2.2 Trivial Representation of Formulas 15

Math Haskell

831 Int 831
π Cte "pi"
x Var "x"
4+ x Sum App [Int 4, Var "x"]
a× x App Pro [Var "a", Var "x"]
x2×a App Pow [Var "x", App Pro [Int 2, Var "a"]]
x− y× z App Sum [Var "x", App Pro [Int (-1), Var "y", Var "z"]]
π/2 App Pro [Cte "pi", App Pow [Int 2, Int (-1)]]
m/0 Ind (App Pro [Var "m", App Pow [Int 0, Int (-1)]])

Table 2.1: Representing mathematical formulas.

constructors) take a prefix form. This prefix form is somewhat harder to read, but it eases the

handling of expressions.

Note that the mapping between the integer representation and the integer field is constrained

only by the amount of memory available in the computer, as Hasekll’s Integer type represents

arbitrary precision integers: its values can be as large as there is room for storing them in

memory. There is no fixed number of bits for representing them as it happens in conventional

languages like C, Pascal and Java.

One may deploy a constructor and its arguments as a pattern on the left hand side of equa-

tions used to define functions in Haskell, as in any other language that uses Landin’s notation.

Listing 2.2 shows an example of using a constructor in a pattern. The patterns of listing 2.2 play

the role of selectors: they select components of a value of type Formula. In this example the

selected component is one of the contructor arguments. Of course, this constructors can also be

used to build a value of the corresponding type. This is shown in listing 2.3.

A naive addition operation is defined in listing 2.4. It is based in the following rules from

16 2 Algebraic Formulas

Listing 2.2: Selectors.
module Main where

import Formula

getName :: Formula→ String
getName (Int i) = show i
getName (Cte name) = name
getName (Var v) = v
getName (Ind x) = getName x
getName (App fn args) = fnToString fn

where
fnToString Sum = "+"
fnToString Pro = "*"
fnToString Pow = "^"

main :: IO ()
main = print (getName (Cte "pi"))

Listing 2.3: Building a value of a data type.
module Main where

import Formula

mkSum :: Formula→ Formula→ Formula
mkSum x y = App Sum [x,y]

main :: IO ()
main = print (mkSum (Cte "pi") (Int 23))

Mathematics:

m+n = the sum of m and n m,n ∈ Z

x+0 = x

0+ x = x

(x+ y)+ z = x+ y+ z

x+(y+ z) = x+ y+ z

Listing 2.5 shows examples of application of the function add to some formulas.

The main drawback of the proposed representation for formulas is that it does not allow

2.2 Trivial Representation of Formulas 17

Listing 2.4: Addition of two formulas
add :: Formula→ Formula→ Formula
add (Int m) (Int n) = Int (m + n)
add x (Int 0) = x
add (Int 0) x = x
add (App Sum xs) (App Sum ys) = App Sum (xs ++ ys)
add x (App Sum ys) = App Sum (x:ys)
add (App Sum xs) y = App Sum (y:xs)
add x y = App Sum [x,y]

Listing 2.5: Examples of addition of formulas
x1, x2, x3, x4, x5, x6 :: Formula
x1 = add (Int 81) (Int 12) -- Int 93
x2 = add (Cte "pi") (Int 0) -- Cte "pi"
x3 = add (Int 0) (Var "alfa") -- Var "alfa"
x4 = add (App Sum [Int 5, Var "x"])

(App Sum [Cte "e", Var "y"]) -- App Sum [Int 5, Var "x", Cte "e", Var "y"]
x5 = add (Var "x")

(App Sum [Int 7, Var "y"]) -- App Sum [Var "x", Int 7, Var "y"]
x6 = add (App Sum [Int 5, Var "x"])

(Cte "pi") -- App Sum [Int 5, Var "x", Cte "pi"]

easy extension of the type Formula without affecting all programs alreading using this type.

Certainly the library will not offer all possible groups of formulas and someone probably would

like to extended it. For example, suppose the library does not deal with logarithms and the user

wishes to add support for them (effectively extending the library). A new value constructor for

logarithms should be added in the definition of type Fn. Also new rules may need to be added

in the relevant function definitions. Listing 2.6 shows an updated definition for the type of

operators. Listing 2.7 shows an extended addition operation capable of adding two logarithms

Listing 2.6: Adding logarithms to the formula representation.
data Fn = Sum -- sum

| Pro -- product
| Pow -- power
| Log -- logarithms

in the same base, according to the following mathematical law.

logb x+ logb y = logb(x× y)

18 2 Algebraic Formulas

Listing 2.7: Addition od formulas, including derivatives.
add :: Formula→ Formula→ Formula
add (Int m) (Int n) = Int (m + n)
add x (Int 0) = x
add (Int 0) x = x
add (App Log x b1) (App Log y b2) = if b1 == b2

then App Log [mul x y, y1]
else App Sum [App Log [x,b1], App Log [y,b2]]

add (App Sum xs) (App Sum ys) = App Sum (xs ++ ys)
add x (App Sum ys) = App Sum (x:ys)
add (App Sum xs) y = App Sum (y:xs)
add x y = App Sum [x,y]

mul :: Formula→ Formula→ Formula
mul = . . .

Many kinds of formulas and the related operations may be implemented in the library:

sums, products, powers, logarithms, trigonometric formulas (sine, cosine, tangent, etc.), in-

verse trigonometric formulas (arc sine, arc cosine, etc.), hyperbolic formulas, vectors, matrices,

equations, derivatives and integrals, among others. Extending the type of formulas with a new

constuctor for each new kind of formula will force the extension of the functions that manipulate

formulas. The source code of the library would have to be changed in many points to accom-

plish that, and the level of modularization would be less then acceptable. So an alternative

representation for formulas which make the library more modular is desirable.

Haskell 98, the current definition of Haskell, does not easily support data type extension

with new constructors and corresponding extensions of functions defined on this type with new

rules. Nonetheless most of Haskell implementations extends the language with new features

that are useful in solving this problem: instance overlapping and multiparameter type classes.

These and other common extensions to Haskell will be extensively used in the library. There is

hope that most of these extensions will be integrated in the next language revision.

2.3 Extensible Union Types 19

2.3 Extensible Union Types

Subtyping is a relation between two types which stablishes that every value of the subtype is

also a value of the supertype. With the help of type classes we can introduce some kind of

subtyping in Haskell, as is suggested by Liang, Hudak and Jones in [15].

We begin with a discussion of a key idea in our framework: how formulas may be expressed

as extensible union types.

The disjoint union of two types is captured by the data type constructor Either of listing

2.8. It is a polimorphic data type constructor pre-defined in Haskell.

Listing 2.8: Disjoint union of two types.
data Either a b = Left a

| Right b

Basicaly the type Either a b is the disjoint union of types a and b, where values of type a

are labeled with Left and values of type b are labeled with Right. For example Left True

and Right ’A’ are instances of the type Either Bool Char.

The union Either a b can be viewed as a supertype, and the summands types a and b as

the subtypes.The operations that characterize the subtype relationship are

• injection of a value of a subtype into the supertype, which is accomplished by applying

one of the value constructors Left or Right to the original value, and

• projection of a value of the supertype into a subtype, which is done by pattern matching

the value of the supertype with one of the patterns Left x or Right x; if the matching

succeeds, then the projection also succeeds binding x to the projected value; otherwise

the projection fails.

The projection may fail, as the target subtype may not be the correct type for the original value.

An extensible union may be arbitrarily nested to accomodate a set of the subtypes. For

example, the union of the types Integer, Char, [(Char,String)] and Int →Bool,

may be expressed by the type declaraction in listing 2.9.

20 2 Algebraic Formulas

Listing 2.9: Example of an extesible union type
type T = Either Integer

(Either Char
(Either [(Char,String)]

(Int→ Bool)))

The injections and projections discussed above only work if the exact structure of the union

is known. In order to have a single pair of injection and projection functions to work on all such

constructions, a type class is used to capture the summand/union type relationship, refered here

as a subtype relationship. The subtyping relationship between two types sub and sup will be

expressed making both sub and sup an instance of the class SubType, defined in listing 2.10,

which introduces the functions inj and prj. The success or failure of the projection function

Listing 2.10: Subtyping relationship
class SubType sub sup where

inj :: sub→ sub -- injection
prj :: sup→ Maybe sub -- projection

is represented by a value of type Maybe sub:

• Just x for a successful projection resulting in x, and

• Nothing for a projection that fails.

The partial function fromJust of type Maybe a →a defined in the standard Haskell library,

can be used to access a successful result. Section 2.9 further discusses the representation of

success and failure.

Note that listing 2.10 is not valid Haskell 98 code, as SubType is a multiparameter type

class. However most Haskell implementations extend the language to include this feature.

Every type a is a subtype of the type Either a b, as listing 2.11 shows. Also, every type

a which is a subtype of type b, is also a subtype of the type Either c b.

The instance declarations appearing in listing 2.11 overlaps and are not allowed in Haskell

98. Again most Haskell implmentations extend the language to allow overlapping instances.

Now that we have the means to stablish the subtyping relationship between two types, we

can redefine the data type for formulas using this mechanism.

2.4 An Extensible Type Representation for Formulas 21

Listing 2.11: Subtyping relationship
instance SubType a (Either a b) where

inj = Left
prj (Left x) = Just x
prj _ = Nothing

instance SubType a b => SubType a (Either c b) where
inj = Right . inj
prj (Right x) = prj x
prj _ = Nothing

2.4 An Extensible Type Representation for Formulas

The representation introduced earlier for formulas will be kept, but the representation of opera-

tors of application formulas will be made an extensible union type, in order to easily accomodate

new kinds of application formulas. Listing 2.12 redefines the Fn data type from listing 2.1 as

an extensible union type. Each operator has its own type, distinct from the types of all other

Listing 2.12: Representing the groups of application formulas
newtype Sum = Sum
newtype Pro = Pro
newtype Pow = Pow

type Fn = Either Sum (Either Pro Pow)

instance SubType Pow Pow where
inj = id
prj = Just

operators. The type Fn is a supertype of all operator types.

Listing 2.13 reimplements addition of formulas using this new types. Note how the rules

for specific kinds of applications being added are implemented: there is an overloaded function

called addApp which should be defined for each possible kind of application. It has three argu-

ments: the operator of the first formula, its arguments, and the second formula. This function

may succeed returning the sum of the formulas, or it may fail. The instance for Sum knows how

to sum two formulas where the first of them is a sum.

To extend the library with logarithms:

1. Define a new type for the operator of logarithms.

22 2 Algebraic Formulas

Listing 2.13: Addition of formulas
add :: Formula→ Formula→ Formula
add (Int m) (Int n) = Int (m + n)
add (Int 0) x = x
add x (Int 0) = x
add (App op xs) y

| isJust u = fromJust u
where
u = addApp op xs y

add x (App op ys)
| isJust u = fromJust u
where
u = addApp op ys x

add x y = App Sum [x,y]

class AddApp a where
addApp :: a→ [Formula]→ Formula→ Maybe Formula
addApp _ _ _ = Nothing

instance (AddApp a, AddApp b) => AddApp (Either a b) where
addApp (Left x) = addApp x
addApp (Right x) = addApp x

instance AddApp Sum where
addApp Sum xs y@(App op ys)

| prj op == Just Sum = Just (App (inj Sum) (xs ++ ys))
addOp Sum xs y = Just (App (inj Sum) (xs ++ [y])

instance AddApp Pro

instance AddApp Pow

2.5 Formula Representation with Existentially Quantified Type Variables 23

2. Extend the type of operators, redefining the Fn type.

3. Define versions of any overloaded functions for operators.

Listing 2.14 extends our small library with logarithms following the above steps.

Listing 2.14: Extending the library of logarithms
newtype Log = Log

type Formula = Either Log (Either Sum (Either Pro Pow))

instance AddApp Log where
addApp Log [x1,b1] y@(App op [x2,b2])

| prj op == Just Log &&
b1 == b2 = Just (App (inj Log) [mul x1 x2,b1])

addApp _ _ _ = Nothing

In the next section the author introduces auxiliary functions for manipulating formulas,

turning them into abstract data types.

2.5 Formula Representation with Existentially Quantified Type

Variables

An alternative for representing extensible data types and functions relies on existentially quan-

tified type variables [16] and type classes. These combination leads to a style of programming

with similarities with the object oriented paradigm. Existential type variables are not part of

Haskell 98, although most Haskell implementations have it as an extension to the language.

An existential type variable is mentioned only in the value constructors and is not part of

the type constructor, allowing the construction of values of the same declared type, based on

arguments of unrelated types. Listing 2.15 shows an example of a data type declaration with

existential type variables. The components of the values cannot be accessed outside of the scope

of the type variable. This means that to have access to the components, functions have to be

attached to the value.

Arbitrary contexts are allowed before the constructors in the data type declaration. This way

24 2 Algebraic Formulas

Listing 2.15: Existential type variables in data type declarations
data Item = forall a . MkItem a (a→ Bool)

f :: Item→ Bool
f (MkItem a f) = f a

x, y :: Item
x = MkItem 5 even
y = MkItem ’B’ isUpper
z = MkItem False not

results :: [Bool]
results = [f x, f y, f z]

the functions defined by classes in the context can be used to handle the values. Listing 2.16

illustrates this technique.

Listing 2.16: Context with existential type variables
data Item = forall a . (Eq a) => MkItem a (a→ Bool)

f :: Item→ Item→ Bool
f (MkItem a f) (MkItem b g)

| a == b = False
| otherwise = f a || f b

x, y :: Item
x = MkItem 4 odd
y = MkItem ’a’ isLower

result :: Boolean
result = f x y

In order to represent the formulas, each kind of formula has its own data type declaration

and does not have to concern about how the other kinds of formulas are represented. Functions

handling each kind of expression should be also defined, again without concerning with every

other kind of formulas. These functions should be overloaded in order to keep the same interface

for handling any kind of formulas. In our example of addition of basic formulas, this means

that there should be a data type for integers, constants, variables, sums, another for products

and another for powers, toghether with one function for adding integers, another for adding

constants, and so on. Consider the class CFormula is made up of the set of overloaded functions

2.5 Formula Representation with Existentially Quantified Type Variables 25

over the types of each kind of formula. The general type of a single formula can then be

expressed with an existential type variable and a context restricting the variable to instances of

class CFormula, as appears in listing 2.17.

Listing 2.17: The general type of a formula using existential an type variable
class (Eq f

, Show f
, CInt f
, CCte f
, CSum f
, CAdd f
, . . . {- classes for other formulas and operations -}
) => CFormula f where

where
isEqual :: f→ Formula→ Bool
isEqual _ _ = False

data Formula = forall f . (CFormula f) => Formula f

instance Show Formula where
showsPrec p (Formula f) = showsPrec p f

instance Eq Formula where
(Formula x) == y = isEqual x y

instance CFormula Formula where
isEqual (Formula f) = isEqual f

Each specific type of a formula should be an instance of class CFormula. In order to interact

with formulas of different kinds (like adding an integer to another integer, or to a constant, or to

a sum, and so on), each kind of formula may have corresponding type classes with overloaded

functions specific for the operations related to the kind of formula.

Listings 2.18, 2.19 and 2.20 shows how some integers, constants and sums can be repre-

sented. Listing 2.21 has code for the addition operation.

To extend the library with a new kind formula or a new operation is done by

1. defining a new data type for the formula or a new function for the operation

2. defining a new type class for the formula or operation, with all relevant instance defini-

tions; defaults may be used for the kinds of formulas without a specific behaviour related

to new kind of formula or operation

26 2 Algebraic Formulas

Listing 2.18: Integer formulas
newtype FInt = FInt Integer

deriving (Eq,Show)

mkInt :: Integer→ Formula
mkInt = Formula . FInt

class CInt f where
isInt :: f→ Bool
intVal :: f→ Integer
--
isInt _ = False
intVal = error "bug: intVal"

instance CInt FInt where
isInt _ = True
intVal (FInt x) = x

instance CInt Formula where
isInt (Formula x) = isInt x
intVal (Formula x) = intVal x

instance (CFormula a) => CInt a

instance CFormula FInt where
isEqual (FInt m) x = isInt x && intVal x == m

-- Some useful formulas

zero = mkInt 0
one = mkInt 1
two = mkInt 2
three = mkInt 3
four = mkInt 4
mOne = mkInt (-1)

isZero x = isInt x && intVal x == 0
isOne x = isInt x && intVal x == 1
isMOne x = isInt x && intVal x == -1

2.5 Formula Representation with Existentially Quantified Type Variables 27

Listing 2.19: Constant formulas
newtype FCte = FCte String

deriving (Eq,Show)

mkCte :: String→ Formula
mkCte = Formula . FCte

class CCte f where
isCte :: f→ Bool
cteName :: f→ String
--
isCte _ = False
cteName = error "bug: cteName"

instance CCte FCte where
isCte _ = True
cteName (FCte x) = x

instance CCte Formula where
isCte (Formula x) = isCte x
cteName (Formula x) = cteName x

instance (CFormula a) => CCte a

instance CFormula FCte where
isEqual (FCte n) x = isCte x && cteName x == n

-- Some useful formulas

pi = mkCte ":pi"
e = mkCte ":e"
i = mkCte ":i"

isPi x = isCte x && cteName x == ":pi"
isE x = isCte x && cteName x == ":e"
isI x = isCte x && cteName x == ":i"

28 2 Algebraic Formulas

Listing 2.20: Sums
newtype FSum = FSum [Formula]

deriving (Eq,Show)

mkSum :: [Formula]→ Formula
mkSum = Formula . FSum

class CSum f where
isSum :: f→ Bool
terms :: f→ [Formula]
--
isSum _ = False
terms = error "bug: terms"

instance CSum FSum where
isSum _ = True
terms (FSum xs) = xs

instance CSum Formula where
isSum (Formula x) = isSum x
terms (Formula x) = terms x

instance (CFormula a) => CSum a

instance CFormula FSum where
isEqual (FSum xs) y = isSum y && terms y == xs

2.5 Formula Representation with Existentially Quantified Type Variables 29

Listing 2.21: Addition of formulas
add :: Formula→ Formula→ Formula
add x y

| isJust u = fromJust u
| isJust v = fromJust v
| otherwise = mkSum [x,y]
where
u = addT x y
v = addT y x

class CAdd a where
addT :: a→ Formula→ Maybe Formula
addT _ _ = Nothing

instance CAdd FInt where
addT (FInt 0) x = Just x
addT (FInt m) x | isInt x = Just (mkInt (m + intVal x))
addT _ _ = Nothing

instance CAdd FSum where
addT (FSum xs) y | isSum y = Just (mkSum (xs ++ terms y))

| otherwise = Just (mkSum (xs ++ [y]))

instance CAdd Formula where
addT (Formula x) = addT x

instance (CFormula a) => CAdd a

30 2 Algebraic Formulas

3. adding the new type classes to the context of the CFormula type class, making the new

functions available to all formulas through the general Formula data type.

Prior examples already ilustrates this process.

This solution is also based on other Haskell extensions: multiparametric type classes, over-

lapping instance declarations and undecidable instance declaractions. Some Haskell implemen-

tations provide all of them.

In a modular design, each kind of formula or specific operation should be definied in its

own module, making almost all of the modules of the library mutually recursive. The major

difficult found with this are related to deficiencies in the module system implementation. No

Haskell implementation correctly provides support for mutually recursive module definitions,

although it is a feature of Haskell. This was the reason why this solution to data type and

function extendibility was not adopted.

2.6 Abstract Data Types

Section 2.6 describes an algebraic data type that one can use to represent formulas. During

the development of a project, the programmer often has to add constructors, or to modify the

representation of a given type. When this happens, one must modify every single module which

happens to use the representation. For instance, if somebody renames Var to V, an application

which makes use of the old name must undergo the appropriate changes. Besides this, in a

collective project, all participants would have to understand well the definition of every single

component of the whole. This may decrease productivity, since programmers must worry not

only about their own chores, but also with their collaborators decisions.

With abstract data types, one avoids the shortcomings of algebraic types by hiding the type

representation and other implementation details. A set of constructor functions, selectors and

predicates replace the constructor patterns of algebraic types. Haskell programmers should

resort to the module system in order to implement abstract data types. Only identifiers listed

in the export list of a module are visible outside of a module. Any other identifiers defined

in the module are kept hidden, serving as auxiliary definitions for the exported identifiers. In

2.7 Basic Functions over Formulas 31

order to hide the data type representation, the constructors should not be exported in the module

interface. This has the disadvantage of not being possible to define functions on the abstract data

type in client modules by pattern matching. In the absence of contructors to serve as patterns,

one cannot access the components of a structure through pattern matching. In fact, one cannot

even recognize the structure. The solution for this drawback is to export functions, which play

the role of constructors, predicates, and selectors.

The theory of abstract data types is quite old, from a time when pattern match and equational

definitions didn’t exist. Therefore, this otherwise powerful tool does not provide the handy

resources of pattern match, and forces the programmer to adopt a style that is at once old

fashioned and difficult to read. Nevertheless, the necessity of preserving contributions even

after modifying type declarations forces us to adopt abstract data types, and to make sure that

users of the library do not manipulate formulas directly, but only through exported functions.

Such functions are predicates for checking the kind of a formula, constructors for building a

new formula from its constituent parts, and selectors for accessing components of a formula.

The type abstract hides the implementation details from the users and keeps future changes in

the representation from propagating to contributed code.

2.7 Basic Functions over Formulas

2.7.1 Integer Formulas

In Section 2.1, we have seen that integer formulas correspond to the mathematical integers. The

basic operations on integer formulas are:

mkInt :: Int →Formula

constructs an integer formula from an integer value;

intVal :: Formula →Int

selects the integer value from the integer formula, and

isInt :: Formula →Bool

32 2 Algebraic Formulas

checks whether a formula is an integer formula.

In listing 2.22, the reader will find the Haskell definition of these three functions. Some

Listing 2.22: Integer functions.
mkInt :: Integer→ Formula
mkInt = Int

isInt :: Formula→ Bool
isInt (Int _) = True
isInt _ = False

intVal :: Formula→ Integer
intVal (Int x) = x

zero, one, two, three, four, mOne :: Formula
zero = mkInt 0
one = mkInt 1
two = mkInt 2
three = mkInt 3
four = mkInt 4
mOne = mkInt (-1)

isZero, isOne, isMOne :: Formula→ Bool
isZero (Int 0) = True
isZero _ = False

isOne (Int 1) = True
isOne _ = False

isMOne (Int (-1)) = True
isMOne _ = False

useful integers like zero and one are defined at this point, together with predicates for them.

2.7.2 Constant Formulas

Constant formulas correspond to special entities found in Mathematics for which there is no

direct and exact representation in the commonly used number systems. Examples of constants

are π, e (neperian number) and ı (imaginary unit). Listing 2.23 shows the definitions of the

functions used to handle constants. These functions are:

mkCte :: String →Formula

constructs a constant formula from the name that identifies it;

2.7 Basic Functions over Formulas 33

cteName :: Formula →String

selects the name of the constant formula, and

isCte :: Formula →Bool

checks whether a formula is a constant formula

Listing 2.23: Functions for handling constant values.
mkCte :: String→ Formula
mkCte = Cte

isCte :: Formula→ Bool
isCte (Cte _) = True
isCte _ = False

cteName :: Formula→ String
cteName (Cte x) = x

pi, e, i, mI :: Formula
isPi, isE, isI, isMI :: Formula→ Bool

pi = mkCte ":pi"
isPi (Cte ":pi") = True
isPi _ = False

e = mkCte ":e"
isE (Cte ":e") = True
isE _ = False

i = mkCte ":i"
isI (Cte ":i") = True
isI _ = False

mI = mkPro [mOne, i]
isMI x = isPro x && appArgs x == [mOne, i]

Some common constants are also defined, together with predicates for them.

2.7.3 Variable Formulas

Among other kinds of formulas, section 2.1 introduces the concept of a formula variable. It was

said in the previous section that variable values correspond to mathematical variables. There-

fore, they are primarily used to represent fixed, but unknown quantities. The basic constructors,

selectors and predicates that one needs to work with variables are:

34 2 Algebraic Formulas

mkVar :: String →Formula

constructs a variable formula from a name that identifies the variable;

varName :: Formula →String

selects the name of the variable formula, and

isVar :: Formula →Bool

checks whether a formula is a variable formula.

In listing 2.24, the reader will find the definitions that must be added to the implementation

module of the algebraic data types in order to handle formula variables.

Listing 2.24: Selectors, constructors and predicates for variables.

mkVar :: String→ Formula
mkVar = Var

isVar :: Formula→ Bool
isVar (Var _) = True
isVar _ = False

varName :: Formula→ String
varName (Var x) = x

2.7.4 Indeterminate Formulas

Another kind of formula introduced in section 2.1 is the indeterminate formula. Such formula

arises as the result of undefined operations, like division by zero, and do not represent any

mathematical object. Corresponding constructor, selector, and predicate functions are defined

for indeterminate formulas:

mkInd :: Formula →Formula

constructs an indeterminate formula from the original formula;

indFor :: Formula →Formula

selects the formula which is indeterminated;

2.7 Basic Functions over Formulas 35

isInd :: Formula →Bool

checks whether a formula is an indeterminate one

Listing 2.25, defines these functions.

Listing 2.25: Selectors, constructors and predicates for variables.
mkInd :: Formula→ Formula
mkInd = Ind

isInd :: Formula→ Bool
isInd (Ind _) = True
isInd _ = False

indFor :: Formula→ Formula
indFor (Ind x) = x

2.7.5 Application Formulas

Representation

Integer, variable and constant formulas are atomic and cannot be decomposed into constituent

parts. Application formulas are made of simpler formulas, combined by means of functions.

They represent mathematical operations that have not been carried out (simplified), possibly

because there is no way to simplify them or the user does not want it in a simplified form. Some

basic application formulas are sums, products and powers, which are essentials to any treatment

of applied Algebra.

Their representation is discussed in section 2.4. Basically, an application formula has an

operator and a list of arguments. The type of the operator is an extensible union type. See

listing 2.12.

The constructor, the two selectors, and the predicate associated to application formulas are

given below. Their definitions are given in Listing 2.26.

mkApp :: Fn →[Formula] →Formula

constructs an application formula from an operator and a list of formulas (the arguments

of the application);

36 2 Algebraic Formulas

appFn :: Formula →Fn

selects the operator of an application formula;

appArgs :: Formula →[Formula]

selects the arguments (list of formulas to which the operator is applied) of the application

formula, and

isApp :: Formula →Bool

checks whether a formula is an application formula

Listing 2.26: Functions for handling applications.
mkApp :: Fn→ [Formula]→ Formula
mkApp = App

isApp :: Formula→ Bool
isApp (App _ _) = True
isApp _ = False

appFn :: Formula→ Fn
appFn (App fn _) = fn

appArgs :: Formula→ [Formula]
appArgs (App _ args) = args

From listing 2.12, the reader can see that there are special operators for additions, products,

powers, and for functions like sine, cosine and logarithm. However, there is no corresponding

operator for the subtraction and division, since addition, product and power form a set of basic

operations that can be used to represent these others. On the other hand, differences, quotients

and roots are not basic, being thus expressed as sums, products and powers.

In the next section, special constructors, selectors and predicates for the basic arithmetic

application formulas are discussed. Other applications, like logarithms, trigonometric functions

and derivatives are similar.

Functions for basic operations

Besides the predicates and constructors for the four kinds of general formulas, the user will also

need predicates to recognize the basic operations, to wit, addition, product, and power. These

2.7 Basic Functions over Formulas 37

functions, specifically designed for the basic operations, are described below. The reader can

find their definitions in listing 2.27.

mkSum :: [Formula] →Formula

builds a sum from the terms of the sum;

isSum :: Formula →Bool

checks whether a formula is a sum;

mkPro :: [Formula] →Formula

builds a product from the factors of the product;

isPro :: Formula →Bool

checks whether a formula is a product;

mkPow :: Formula →Formula →Formula

builds a power from the base and the exponent of the power;

isPow :: Formula →Bool

checks whether a formula is a power;

basePow :: Formula →Formula

selects the base of a power formula

exponentPow :: Formula →Formula

selects the exponent of a power formula

A sum of some formulas (called terms) is an application of the addition operation to the

terms. The corresponding function is Sum. There is a constructor and a predicate for sums. The

terms of a sum may be selected using appArgs.

A product is an application of the multiplication operation to a list of formulas called factors.

The corresponding function is Prod. There is a constructor and a predicate for products. The

factors of a product may be selected using appArgs.

38 2 Algebraic Formulas

Listing 2.27: Constructors and selectors for basic applications.
-- Sums

mkSum [] = mkInt 0
mkSum [x] = x
mkSum xs = mkApp (inj Sum) xs

isSum x = isApp x &&
case prj (appFn x) of
Just Sum→ True
_ → False

-- Products

mkPro [] = mkInt 1
mkPro [x] = x
mkPro xs = mkApp (inj Pro) xs

isPro x = isApp x &&
case prj (appFn x) of
Just Pro→ True
_ → False

-- Powers

mkPow x y = mkApp (inj Pow) [x,y]

isPow x = isApp x &&
case prj (appFn x) of
Just Pow→ True
_ → False

basePow :: Formula→ Formula
basePow x

| isPow x = head (appArgs x)

exponentPow :: Formula→ Formula
exponentPow x

| isPow x = head (tail (appArgs x))

half, pi2 :: Formula
half = mkPow two mOne
pi2 = mkPro [half,pi]

2.8 Canonical Form 39

A power is an application of the power operation to two formulas, the base and the exponent

of the power. The corresponding function if called Pow. There is a constructor, a predicate and

two selectors for powers.

2.8 Canonical Form

The algorithms employed for the transformation of formulas consider that they are in a canoni-

cal form. This is important in order to have simpler algorithms.

Using the representation of formulas discussed in this chapter, the reader may notice that

there is more than one possible representation for the same formula. See for example the for-

mula

3+ x

Although it is a simple formula, it can be represented as

App Sum [Int 3, Var "x"]

or as

App Sum [Var "x", Int 3]

due to the comutative law of addition. To avoid introducing additional complexity to the algo-

rithms for algebraic transformations, a formula will be always represented uniquely, in what is

called its canonical form. Every formula build by functions in the library will be in the canon-

ical form. To achieve a canonical representation of formulas, an ordering among them should

be stablished. The rules for this ordering follows.

Given to formulas x and y, x preceds y if and only if,

1. x is an integer and

(a) y is an integer greater than x, or

(b) y is not an integer

2. x is a constant and

40 2 Algebraic Formulas

(a) y is a constant and the name of x lexicographicaly preceds the name of y, or

(b) y is neither an integer nor a constant

3. x is a variable and

(a) y is a variable and the name of x lexicographicaly preceds the name of y, or

(b) y is neither an integer nor a constant nor a variable

4. x is an application formula with operator fx and arguments ax and

(a) y is an application formula with operator fy and arguments ay and

i. fx precedes fy or

ii. fx = fy and the ax precedes ay.

(b) y is an indeterminate formula

5. x is an indeterminate formula encapsulating the formula x′ and y is also an indeterminate

formula encapsulating the formula y′ and x′ preceds y′.

The precedence of operators is given by the rules:

1. a sum does not precede any other operator

2. a product only precedes a sum

3. a power only precedes a product or a sum

4. any other operator precedes a power, a product or a sum

5. the precedence of non-sum, non-product and non-power operators is stablished, but irrel-

evant for the algorithms.

For example the ordering of terms in a sum is: first the integers (in increasing orders), than

the constants (in increasing lexicographic order), than the variables (in increasing lexicagraphic

order, then the operators other than sum, product or power, and then the powers finally followed

by the products. The example above, 3+ x, is thus represented by

App Sum [Int 3, Var "x"]

2.9 Representing Success and Failure 41

2.9 Representing Success and Failure

Some computations may succeed and produce a resulting value, or they may fail and no value

is produced. This behaviour may be denoted using a parametric algebraic data type Maybe a

for its result type, where a is the type of the successful value it produces. The Maybe a data

type has two value constructors:

• one nullary constructor Nothing :: Maybe a for indication of failure and

• one constructor Just :: a →Maybe a of arity one for indication of success and whose

argument is the resulting value.

The Maybe data type constructor is predefined as

data Maybe a = Just a
| Nothing

Two other functions are defined for easy manipulation of Maybe values:

• a function isJust :: Maybe a →Bool that converts a Maybe value into a boolean

value. Failure is converted to False and success is converted to True.

isJust :: Maybe a→ Bool
isJust (Just x) = True
isJust Nothing = False

• a partial function fromJust :: Maybe a →a to access the resulting value in the case

of success. When applied to a failure value the result is undefined.

fromJust :: Maybe a→ a
fromJust (Just x) = x

As an example, consider the computation of the real roots of the quadratic equation ax2 +

bx + c = 0, where a, b and c are real numbers. It is known that this equation has real roots

only when the discriminant b2− 4ac is not negative. In this case the computation fails. The

42 2 Algebraic Formulas

solve2 :: (Float, Float, Float)→ Maybe (Float, Float)
solve2 (a, b, c)

| d >= 0 = Just (r + s, r - s)
| d < 0 = Nothing
where
d = b^2 - 4*a*c
r = -b / (2*a)
s = sqrt d / (2*a)

function solve2 below has a triple formed by the coefficients of the equation as its input and a

failure/success indication as its output. The function useRoots below tries to solve an equation

when that is not possible it submits an error.

useRoots :: (Float, Float, Float)→ Float
useRoots (a, b, c)

| isJust roots = (x1 + x2)/(x1 - x2)
| otherwise = error "no real roots"
where
roots = solve2 (a, b, c)
(x1, x2) = fromJust roots

Chapter 3
Context

3.1 Formula Manipulation

In this work, arithmetic formulas are restricted to those formulas involving operations, such as

addition, multiplication, exponentiation, logarithms, trigonometric functions, derivatives over

algebraic values, and symbolic integration. These operations are expressed as functions in the

implementation language. The application of a function may be written in prefix or infix (when

binary) notation. Table 3.1 shows some of these functions.

operation function
name

notation association precedence example

addition + infix left 6 x +y +z
subtraction - infix left 6 x - y
multiplication * infix left 7 x * y
division / infix left 7 x / y
exponentiation ^ infix right 8 x ^ y
logarithm log prefix log x e
natural logarithm ln prefix ln (x+y)
sin sin prefix sin (pi*e^x)
cos cos prefix cos pi

Table 3.1: Some operations, where x and y are variables, and pi and e are constants.

The implementation language allows an identifier to be overloaded, which means that an

identifier may name unambiguously more than one function within the same scope. Therefore,

we reuse (with formulas) some names already bound in the implementation language standard

43

44 3 Context

environment, like + and sin, for the addition operation and the sine function respectively.

In Haskell, these two functions are defined for the builtin numeric types, i.e., for Int and

Float. When the overloaded names have an infix notation, the association and precedence

are defined in the implementation language standard environment. By doing so, we make sure

that the notation used to express operations over formulas resembles the mathematical notation

as far as possible, and the mathematical notation should be preferred in computational algebra

systems. In this thesis the implementation language notation is used only when it illuminates

the discussion, or simplifies handling of formulas by the machine. When feasible, the author

prefers the pure mathematical notation over the implementation language notation.

A few examples of evaluation of formulas applying arithmetic operations follow.

2+
3
5

+
8x3

x
− x2 ⇒ 13

5
+7x2 (3.1)

a(a+b)⇒ a2 +ab (3.2)

lnx5− lnx⇒ 4lnx (3.3)

sin2(x+ y)+ cos2(x+ y)⇒ 1 (3.4)

The examples show that a computer algebra system is supposed to symplify any formula

that cannot be reduced to a number. In general, a formula can be simplified in different ways,

producing different results. For example, the formula

b2 · a
b

+aa+bb+ab

can be simplified to result in

a2 +2ab+b2

or in

(a+b)2

This issue is investigated in the next section. For the time being, we will take a look at listing

3.2 Controlling the Evaluation of Formulas 45

3.1, which presents an example of using operations over formulas in a program. The example

shows the symbolic solution of a quadratic equation. Note that symbolic variables are used

exactly like numerical ones (like integers or doubles), making computation over formulas both

easy and natural.

Listing 3.1: Solutions of the quadratic equation.
quadratic :: Formula→ Formula→ Formula→ (Formula, Formula)
quadratic a b c = (r + s, r - s)

where
r = - b / k
s = (b^two - four * a * c)^(one/two) / k
k = two * a

3.2 Controlling the Evaluation of Formulas

3.2.1 The Need of Controllers

An algorithm may need to evaluate a formula in many ways, depending on the desired form of

the result. For example, the formula

b2 · a
b

+aa+bb+ab

can be simplified to yield

a2 +2ab+b2

or

(a+b)2

depending on whether we need to expand or to factor it. So the algorithms discussed in this

thesis would produce different results. Therefore, when invoking an algorithm, one must state

which kind of simplification is to be carried out. This is done by means of controllers, i.e.,

identifiers associated to values that control evaluation of formulas. The system may check these

controllers during the application of functions, and build the result of the function application

46 3 Context

according to the values of the controllers. The set of all controllers forms the context in which

formulas are calculated.

3.2.2 Representing Contexts

The contexts are states represented as records in the implementation language. Each controller

is a field in the record. The value of a controller is the value of the corresponding field. Listing

3.2 shows an example of context. This initial context is bound to a global variable, since it may

be used whenever one needs to restart a chain of state changes.

From listing 3.2, the reader can see that the notation to access a given controller is function

application, to wit:

controller context

At the beginning of this section, it was said that context is a state representation. This means

that the programmer may change one or more fields of the initial context. If we were dealing

with a procedural language, or even with a functional language with mutable data structures, we

would change the global context directly. Haskell, as well as other purely functional languages,

does not allow this, in order to guarantee referential transparency. However, one may pass the

context as argument to a function and change it in the context of a new call. Listing 3.3 gives

an example of a function which changes the context. From that listing, the reader can see that

the syntax for changing a set of selcted fields, while maintaining the others, has the following

form:

context { controller1 =value1, controller2 =value, . . . }

From listing 3.3, it is clear that the initial context binds default values to the controllers. The

user can change these default values whenever a change of state is needed.

3.2.3 The Meaning of Some Controllers

The algebraic controllers described in this section enable the user of the library to have fine

control over the transformations used to simplify an expression.

3.2 Controlling the Evaluation of Formulas 47

Listing 3.2: One may represent contexts as records.
data Context = Context { num_num :: Int

, den_den :: Int
, num_den :: Int
, den_num :: Int
, bas_exp :: Int
, exp_bas :: Int
, log_base :: Formula
, zero_base :: Bool
, zero_exponent :: Bool
, pow_expd :: Int
, log_expd :: Int
, trig_expd :: Int
, branch :: Bool
, bar :: Bool
, point :: Bool
}

iC :: Context
iC = Context { num_num = 6

, den_den = 6
, num_den = 0
, den_num = 6
, bas_exp = -30
, exp_bas = 30
, log_base = e
, zero_base = False
, zero_exponent = True
, pow_expd = 0
, log_expd = 0
, trig_expd = 0
, branch = True
, bar = False
, point = False
}

Listing 3.3: State changing.
data Context = . . .

iC :: Context
iC = . . .

f1 x ctxt = f2 x (ctxt {den_num= 3})

f2 x ctxt = . . . ctxt . . .

48 3 Context

The kinds of subformulas that are distributed over a formula or factored from a formula can

be precisely controlled by setting an appropriate value for the appropriate controller. Positive

integer values cause distribution whereas negative values cause factoring. The exact type of

formula which is distributed or factored can be determined from table 3.2.

Prime Type Examples

2 numerical formulas 4, −1/3, 5/7
3 other nonsums x, sin(x), z3

5 sums r + s, x2− x, lnx+ z

Table 3.2: Meaning of controllers.

If the value of the controllers num_num, den_num, num_den, den_den, base_exp or exp_base

is an integer multiple of one of the primes listed in table 3.2. Then formulas of the type associ-

ated with that prime are distributed (or factored if the controller is negative) in accordance with

the transformations associated with that control variable.

• num_num

Default value: 6

Controls the distribution (factoring) of factors in the numerator of a formula over (from)

the terms of a sum in the numerator using the transformation:

a× (b+ c)≡ a×b+a× c

Table 3.3 have an example of the use of num_num to control the distribution of factors

over a sum. Note that differences are internally represented as sums involving negative

coefficients.

• den_den

Default value: 6

Controls the distribution (factoring) of factors in the denominator of a formula over (from)

3.2 Controlling the Evaluation of Formulas 49

num_num result

0 3x× (1+ x)(1− x)
2 x× (1+ x)(3−3x)
3 3(1+ x)(x− x2)
5 3x× (1+ x− x× (1+ x))
6 (1+ x)(3x−3x2)
10 x× (3+3x+ x× (−3−3x))
15 3(x− x3)
30 3x−3x3

Table 3.3: Transforming 3x× (1− x)(1+ x) with different values for num_num

the terms of a sum in the denominator using the transformation:

1
a× (b+ c)

≡ 1
a×b+a× c

For example, if den_den is 15, the formula

y
x
× 1

1+ x
× 1

1− x

is transformed to
y

x− x3

• den_num

Default value: 6

Controls the distribution (factoring) of factors in the denominator of a formula over (from)

the terms of a sum in the numerator using the transformation:

b+ c
a

≡ b
a

+
c
a

For example, if den_num is 6, the formula

x+3
3
x

50 3 Context

is transformed to
1
3

+
1
x

• num_den

Default value: 0

Controls the distribution (factoring) of factors in the numerator of a formula over (from)

the terms of a sum in the denominator using the transformation:

a
b+ c

≡ 1
b
a + c

a

This transformation yelds a kind of continuation-fraction expansion. For example, if

num_den is 5, the formula
3+ x
1+ x

is transformed to
1

x
3+x + 1

3+x

If num_den is 30, the result is
1

1
1+ 3

x
+ 1

3+x

• bas_exp

Default value: -30

Controls the distribution (factoring) of the base of a formula over (from) the terms of an

exponent which is a sum using the transformation:

ab+c ≡ ab×ac

If bas_exp is 3, the formula

x1+y

is transformed to

x× xy

3.2 Controlling the Evaluation of Formulas 51

If bas_exp is a negative integer, common bases are collected under an exponent. Since

this transformation is usually more desirable, the default value for bas_exp is -30.

• exp_bas

Default value: 0

Controls the distribution (factoring) of the exponent of a formula over (from) the base

using the transformation:

(a×b)c ≡ ac×bc

• pow_expd

Default value: 0

Controls the expansion of integer powers of sums in numerators and denominators. When

it is a positive integer multiple of 2, then multinomial expansion occurs for positive ex-

ponents. When pow_expd is a positive integer multiple of 3, then multinomial expansion

occurs for negative exponents. If the value of the pow_expd controller is 6, the formula

(1+ x)3

(1+ x+ y)2

yelds
1+3× x+3× x2 + x3

1+2× x+2× y+2× x× y+ x2 + y2

• branch

Default value: True

Controls the application of the transformation

(ab)c ≡ ab×c

when the formula c is not an integer. If c is a fraction, the transformation can effectively

selects a particular branch (i.e. root) of a multiply-branched function. When branch is

52 3 Context

false, the transformation is disable. For example, if branch is true,

(x2)
1
2

yelds

x

If branch is false, the same formula is not transformed.

• zero_exponent

Default value: True

Controls the application of the transformation

a0 ≡ 1

when the formula a is not a number. Since the transformation is valid for all a not equal

to 0, the default value of zero_exponent is true. If a is a number, not equal to zero, the

transformation is automatically applied irrespective of the vale of zero_exponent. If a

is zero, the transformation results in an indeterminate formula.

• zero_base

Default value: False

Controls the application of the transformation

0a ≡ 0

when the formula a is not a number. Since the transformation is not valid if a is zero or

negative, the default value of zero_base is false. If a is a positive number, the transfor-

mation is automatically applied irrespective of the vale of zero_base. If a is zero or a

negative number, the transformation results in an indeterminate formula.

3.2 Controlling the Evaluation of Formulas 53

3.2.4 Referential Transparency

In section 3.2.2, we have said that Haskell does not allow changing in a global value. This

means that Haskell does not allow destructive updates of the value refered by a given vari-

able. Although possible in other languages, destructive updating should be avoided, because it

obscures the meaning of the program. To understand this, one must refer to books of Philos-

ophy, where one discusses the concept of referential transparency. Bertrand Russel says that a

language has referential transparency if one can substitute an expression’s subexpression with

another of equal meaning, preserving the meaning of the original expression. Since substitu-

tion is a fundamental operation in logic reasoning, a computer language must exhibit referential

transparency if we ever want to reason about programs. An example from Russel will make

clear what is referential transparency. Consider the following sentence:

George IV wanted to know whether Scott was the author of Waverley.

Historians say that this sentence is true, i. e., George IV really wanted to know whether Scott

had written Waverley. We know that Walter Scott was the author of Waverley. Therefore, the

name Scott and the noun phrase author of Waverley are equivalent expressions, i.e., they refer

to the same person. Therefore, if English is transparent, one can substitute Scott for author of

Waverley. With this substitution, Russel’s sentence becomes:

George IV wanted to know whether Scott was Scott.

After the substitution, the sentence, which was true, becomes false. Of course, George IV

did not want to know whether Scott was Scott. Even being mad, George IV knew perfectly well

that Scott was indeed Scott. The replacement of an expression for its equivalent may falsify

a true sentence! The conclusion we reach is that, if a language is not transparent, one cannot

substitute equals for equals. Although acceptable in a natural language, this is undesirable

in a programming language, because programmers must use substitutions to prove their code

correct, or to perform source to source transformation. To understand this, consider the small

program of listing 3.4. One cannot substitute g(2)+h(5) for h(5)+g(2), even though the

commutative property of the addition operation warranties this equivalence.

54 3 Context

Listing 3.4: Procedural languages are not transparent.
program (input,output);
var y = 5;

function g(integer x): integer;
begin

y := 512;
g := 2 * x

end;

function h(integer x): integer;
begin

h := x + y
end;

begin
writeln(h(5)+ g (2))

end.

3.2.5 Passing the Context as Input to Algorithms

It was said that the algorithms we are using make use of contexts to control simplification of

formulas. Basically the controller’s values are set with the desired values (the ones that will

produce the desired result form) and then the simplification of formulas takes place in this

customized context. The implementation of the algorithms may use the context in two ways:

• consult the value of some controller in the context and conduct simplification of the for-

mulas according to the controllers value,

• create a new context on which formulas are simplified and their results are used to build

the final result

Imperative programming languages are based on state changing. In such languages a vari-

able is a placeholder that contains a value. The value is stored in the variable using assignment

commands. Pascal, C, Java, Lisp, Scheme and ML are examples of imperative programming

languages. In section 3.2.4, we have learned that this kind of destructive update leads to an un-

desirable situation, where reasoning about programs becomes very difficult. On the other hand,

the use of contexts in procedural languages is trivial: the context may be stored as a value in

a global variable. This variable could be accessed directly from any function that requires the

3.2 Controlling the Evaluation of Formulas 55

value of a controller. To produce a new context, first the original context should be stored in

a temporary variable and then it can be changed as desired. Further simplification of formulas

will use this modified context. When it is not needed anymore, the original context saved in

the temporary variable is restored, and simplification can continue. This technique of saving

and restoring the context is accomplished automatically in languages with dynamic scope for

variables (like Lisp and some Scheme dialects).

Declarative languages do not support the concept of state changing and variables are just

names for unknown, but otherwise fixed values. The values they represent cannot be changed.

Logic and (pure) functional languages like Mercury, and Haskell are declarative. A solution to

our problem would be to pass the context as an extra argument to the functions which manipulate

formulas, as hinted in listing 3.3. If a new context is needed, it can be created and passed as an

argument to the desired function. The original context is not changed.

As our implementation language is a pure functional programming language, we cannot

expect to perform changes in a global context. So the algorithms should receive the context

among their inputs. Thus if we need an algorithm to compute logarithms as a function named

log of type

log :: Formula →Formula →Formula

that maps two formulas (the logarithmand and the base) to the corresponding logarithm, we

will not be able to express this with only two arguments. After all, the function also needs the

context for the algorithm that computes the logarithm. If Context is the type for contexts, the

type of log should be

log :: Context →Formula →Formula →Formula

This means that log should map a context and two formulas to the logarithm. As an example,

listing 3.5 contains the definition of a function that changes a controller in order to simplify its

arguments.

Passing the context as an extra argument is an acceptable solution, but it has a drawback:

the arity of each function will be incremented by one. For instance, the binary functions will

become ternary. The deleterious consequence of this increase in arity is that one cannot overload

56 3 Context

Listing 3.5: Context as argument.
f :: Context→ Formula→ Formula→ Formula
f ctxt x y

| isInt y = log ctxt x y
| isInt x = log ctxt y x
| isSum x = log ctxt x + sin ctxt y
| otherwise = g newCtxt (log ctxt x y)
where
newCtxt = ctxt { num_num = 0, den_den = 14 }

g ctxt x
| num_num ctxt == 2 = x
| otherwise = expand ctxt x

operators belonging to Haskell’s primitive environment. For example, there will be no way of

writing x+y as the + function now needs a third argument.

A solution to this problem is to incorporate the context into the representation of formulas.

Thus there will be no need of an extra argument as the context will be passed on together with

the algebraic formulas, and the binary operators can be used without any problems. However,

if we adopt this last solution, we will have to revise the represention of formulas to accomo-

date contexts. A drawback of this solution comes with functions with more than one formula

as arguments: each formula comes packed with a context, so there is more than one context

available to the function. How to choose one of them? This question has to be answered, as the

formulas may have been created at different situations, in different contexts, possibly making

each context distinct from the others. For this reason this solution will not be adopted1.

3.3 Implicit Parameters

The context may be implicitely passsed as an additional parameter to the functions, simulating

dynamic scope from other languages. This way the additional parameter does not have to be

written explcitly in the function calls, allowing one to use infix notation as it is desired.

Implicit parameters [17] are a language feature that provides dynamically scoped variables

within a statically typed Hindley-Milner framework. Implicit parameters are lexically distinct

1An earlier version of the library has adopted this solution. But later it was realized it is a poor solution and the
author searched for better solutions for passing the context environment around.

3.4 Alternative Solutions for Passing a Context Around 57

from regular identifiers, and are bound by a special with construct whose scope is dynamic,

rather static as with let. Implicit parameters are treated by the type system as parameters that

are not explicitly declared, but are inferred from their use.

Although Haskell 98 does not provide implicit parameters, most Haskell implementations

extend the language with this feautre, making it a feasable solution to the problem of passing

the context to function calls without explicitly adding a new parameter to them. Thus, we can

keep using binary operators to represent common binary arithmetic functions.

With implicit parameters, the example from listing 3.5 can be rewritten as in listing 3.6. The

Listing 3.6: Implicit context.
f :: (?ctxt :: Context) => Formula→ Formula→ Formula
f x y

| isInt y = log x y
| isInt x = log y x
| isSum x = log x + sin y
| otherwise = g (log x y)

with ?ctxt = newCtxt
where
newCtxt = ctxt { num_num = 0, den_den = 14 }

g x
| num_num ?ctxt == 2 = x
| otherwise = expand x

types of some functions used in this reworked example are

log :: (?ctxt :: Context) => Formula→ Formula→ Formula

sin :: (?ctxt :: Context) => Formula→ Formula

expand :: (?ctxt :: Context) => Formula→ Formula

g :: (?ctxt :: Context) => Formula→ Formula

3.4 Alternative Solutions for Passing a Context Around

An alternative solution is the generation of all possible simplifications for a formula. The list

data structure, in conjunction with the lazy evaluation of Haskell can be used to generate a list

of all simplifications, being each one calculated only if really needed. Wadler [18] discusses

58 3 Context

backtracking in functional languages.

Another solution is to make the type of function arguments not formulas, but a more elabo-

rate construct: functions having the context as input and the resulting formula as output. Then,

the function would be called with some functional arguments which should be applied to a con-

text, in order to find out the values on which to operate, and its result would be another function,

also to be applied to an enviroment, to produce the desired result value. The definition would

be something like the example from listing 3.7.

Listing 3.7: Passing contexts around.
:: (Context→ Formula)→ (Context→ Formula)→ (Context→ Formula)
v1 v2 = h
where h env | x == zero = y

| y == zero = x
| get env num_num == 5 =

-- the result depends on the context
g v1 v2 env

| otherwise = (mul (add v1 v2) v1) env
where x = v1 env -- the value of the first arg

y = v2 env -- the value of the second arg

The major problem with this solution is the loss of sharing among intermediate results [19].

To avoid that one has to make the functional values memoize their results, but this generaly

imposes drastic performance penalties to the system. This is the case unless there is a good li-

brary for function memoization that could be implemented independently of the specific Haskell

implementation being used.

Chapter 4
Addition

In this chapter the algorithms employed to find the sum of any formulas are presented.

4.1 Basic Addition Rules

The addition of two arbitrary formulas may be reductible or not, depending on the formulas

being added. When it is reductible, the resulting sum is a formula computed by applying known

rules to the terms of the addition. For example, the sum of two rational numbers is a rational

number given by the rules for adding rational numbers, e.g.

3
4

+
5
6

=

12
4
×3+

12
6
×5

12
=

19
12

But the addition may fail to produce a sum that is simpler than the stated addition. In this case

there is no option but to pack the terms being added in an application formula for sums. For

example, when adding an integer to a literal, e.g.

45+ x

there is no way to simplify the resulting sum and the result is left as an indication of the desired

addition. Sections 2.1 and 2.7.5 discuss the representation of unreductible formulas, like the

one above.

59

60 4 Addition

The algorithms used to implement addition make use of a function that tries to add two

terms producing a reduced formula when it is possible, or an indication of failure when not. This

function handles the cases of addition to zero and addition of integers and rational numbers, with

the proviso of handling special cases when necessary. Section 2.9 discusses the representation

of success and failure by means of the Maybe data type.

4.2 Addition of Integer and Rational Numbers

The most basic rules handle addition of zero and any formula, and addition of integer and

rational numbers.

Zero is the identity value of the addition operation, so that

0+ x = x+0 = x

for any formula x.

Integer addition is carried out following the arithmetic rules taught at elementary levels of

Mathematics. The implementation makes use of the function

(+) :: Integer →Integer →Integer

from the standard library to handle it.

Mixed integer and rational addition is accomplished following the rule

n+
p
q

=
n×q+ p

q

where n, p and q are integers and q > 0.

Rational addition is carried out by following the rule

m
n

+
p
q

=
m× k

n
+ p× k

q
k

4.3 Handling of Special Cases 61

where

k = lcm(n,q)

m, n, p and q are integer numbers, n > 0, q > 0 and lcm(n,q) is the least common multiple of

n and q. In the most general case the result is a rational number. When k = 1, the result is an

integer number.

Listing 4.1 shows the implementation code for the basic rules discussed in the above sec-

tions.

4.3 Handling of Special Cases

Besides the basic rules for addition, it is possible to specify special rules. For example, there

is no provision for the addition of two logarithms in the core addition functions. How is it

supposed to be achieved? The library offers a mechanism to attach special rules for addition

into the algorithm that adds two formulas. The rules are triggered when none of the explicit

rules shown above is adequate to handle the addition. For this scheme to work, at least one of

the formulas being added must be an application formula.

The core addition algorithm has a hook for calling customized functions when none of the

basic rules apply. The hook is an overloaded function called sumT, introduced by the class SumC

defined in listing 4.2. sumT is a function with three explicit arguments:

1. the operator of the application formula (the formula corresponding to the first formula to

be added),

2. the arguments of this application formula,

3. the second formula to be added.

The function may fail or succeed. If it succeeds the result is a formula corresponding to the

sum of the two argument formulas. This listing also declares an instance Either a b of class

SumC. This is important, as the type of the operator in application formulas is an extensible

62 4 Addition

Listing 4.1: Addition of two terms.
addTerms :: (?ctxt :: Context) => Formula→ Formula→ Maybe Formula
-- Try to add two terms using simple addition rules:
-- 1) zero addition: at least one of terms is zero
-- 2) integer addition: both terms are integers
-- 3) rational addition: both terms are rationals (integer or fraction)
-- 4) specific rules for the kinds of terms involved (via a table)
addTerms x y

| isInt x = addInt1
| isInt y = addInt2
| isFrac x && isFrac y = addFracs
| isApp x && isJust u = u
| isApp y && isJust v = v
| isInd x || isInd y = Just (mkInd (mkSum [x,y]))
| otherwise = Nothing
where
u = sumT (appFn x) ?ctxt (argList x) y
v = sumT (appFn y) ?ctxt (argList y) x
addInt1

| isInt y = Just (mkInt (intVal x Prelude.+ intVal y))
| isZero x = Just y
| isFrac y = let nx = intVal x

(ny,dy) = numDenFrac y
n = nx Prelude.* dy Prelude.+ ny
d = dy

in Just (mkRat n d)
| isApp y && isJust v = v
| otherwise = Nothing

addInt2
| isZero y = Just x
| isFrac x = let ny = intVal y

(nx,dx) = numDenFrac x
n = ny Prelude.* dx Prelude.+ nx
d = dx

in Just (mkRat n d)
| isApp x && isJust u = u
| otherwise = Nothing

addFracs =
let (nx,dx) = numDenFrac x

(ny,dy) = numDenFrac y
n = nx Prelude.* (div d dx) Prelude.+

ny Prelude.* (div d dy)
d = lcm dx dy
k = gcd n d

in Just (mkRat (div n k) (div d k))

4.3 Handling of Special Cases 63

Listing 4.2: An overloaded function for special addition rules.
class SumC a where

sumT :: (?ctxt :: Context) => a→ [Formula]→ Formula→ Maybe Formula
sumT _ _ _ _ = Nothing

instance (SumC a, SumC b) => SumC (Either a b) where
sumT (Left x) = sumT x
sumT (Right x) = sumT x

64 4 Addition

union type, as discussed in sections 2.3 and 2.4. Applying sumT to a value of the union type is

as simple as to apply the appropriate sumT function to the summand of the union.

The type of each possible operator of an application formula should be an instance of class

SumcC, overloading the function sumT to work according to its own rules. Consider the addition

of logarithms according to the rule

logb x+ logb y = logb(x× y)

Listing 4.3 implements this rule by making Log, the type of the operator for logarithm formulas,

an instance of SumC. Basicaly the arguments of the logarithm are always the logarithmand (x)

Listing 4.3: Addition of logarithms.
instance SumC Log where

sumT Log ctxt [x,b] y
| isLog y && logBase y == b = Just (mkLog (x * logLog y) b)
| otherwise = Nothing

and the base (b). The second formula taking part in the addition is y. It is checked to find if it is

a logarithm with the same base as the first formula. If it is, then the rule can be applied and the

function succeeds. Otherwise the function fails and it is not possible to apply the transformation

to the addition of both formulas.

Other operations like multiplication 5 and exponentiation 6 have similar hooks for handling

special rules.

Trying to keep the lenght of this dissertation not too long, not all special rules are presented.

The interested reader can reach them at the source code, available as free software from the

URL http://iceb.ufop.br/~romildo/calg/.

4.4 The Core of Addition

The addition operation is named +, an overloaded operator of the implementation language.

It is a binary infix operator which associates to the left and has a precedence binding of 6. It

wil be redefined to work with formulas. In order to accomplish that and still be able to use

http://iceb.ufop.br/~romildo/calg/

4.4 The Core of Addition 65

the predefined operator, the Prelude1 should be imported hiding it and it can be used with the

notation (Prelude.+).

import Prelude hiding ((+))

The redefiniton of the operator + for formulas is shown in listing 4.4, where add is an

auxiliary function that computes the addition.

Listing 4.4: The multiplication operator for formulas.
infixl 6 +
(+) :: (?ctxt :: Context) => Formula→ Formula→ Formula
x + y = add [x,y]

The function add has as input the list of the formulas to be added and produces their sum

as the output. In general the resulting formula may be a sum of terms that cannot be further

reduced. For example, the following additions result in irreductible sums:

7+2x = 7+2x

(2+3y)+5y = 2+8y

xy
2

+(
4
3

+ xy+ z)+(z−1) =
1
3

+2z+
3xy
2

In order to build the resulting formula, first the list of resulting terms is built and then a new

formula is constructed from this list. In the last example the input list is

[
xy
2

,
4
3

+ xy+ z,z−1
]

and the list of resulting terms is [
1
3
,2z,

3xy
2

]
from which the sum

1
3

+2z+
3xy
2

is built.
1The basic standard library of Haskell.

66 4 Addition

The implementation code for add is shown in listing 4.5.

Listing 4.5: The add function.
add :: (?ctxt :: Context) => [Formula]→ Formula
-- add [x1,...,xn]
-- Add the formulas in the list.
-- (Note: each formula can be any formula, including a sum)
-- Merge the formulas trying to add each one with any of the
-- others, to obtain a list of terms that cannot be added
-- together; then make a sum formula out of these terms.
add = mkSum . foldr mergeSum []

Function add defined using foldr, a function from the standard library of the implemen-

tation language that may be informaly defined as

foldr f e [x1,x2,...,xn] =f x1 (f x2 (... (f xn e) ...))

Basically foldr f e xs folds the binary operation f into the list xs with right association,

and e is the rightmost argument. As an example consider the expression

foldr (+) 0 [1,10,48,5]

that finds the sum of the elements of the given list of integers. It is equivalent to

1 +(10 +(48 +(5 +0)))

and is evaluated to 64. Listing 4.6 shows one possible definition for foldr. The first argument

Listing 4.6: The foldr function.
foldr :: (a→ b→ b)→ b→ [a]→ b
foldr f e [] = e
foldr f e (x:xs) = f x (foldr f e xs)

of foldr is a binary function that takes a value of type a and a value of type b and delivers a

value of type b. The second argument of foldr is a value of type b. The third argument is of

type [a], and the result is a value of type b.

The list of resulting terms is built by evaluating the expression

foldr mergeSum [] xs

4.4 The Core of Addition 67

(from the definition of add). If xs =[x0,x1,...,xn], it is equivalent to

mergeSum x0 (mergeSum x1 (... (mergeSum xn []) ...))

The function mergeSum takes care of combining a value (from the input list) with the values

of the (partialy built) result list and is discussed next. The function mkSum constructs a new

formula that is the sum of the elements found in its argument list, as discussed in section 2.7.5.

As an example of addition consider the reduction steps2 in the evaluation of

(5+ x+ y)+2x

(5+x+y) + 2x

= add [5+x+y, 2x]

= mkSum (foldr mergeSum [] [5+x+y,2x])

= mkSum (mergeSum (5+x+y) (mergeSum (2x) []))

= mkSum (mergeSum (5+x+y) [2x]))

= mkSum [5,3x,y]

= 5+3x+y

As another example consider the addition

(2+ x+3y)+5x+7+(x+2y)+ y

which can be simplified according to the following reduction steps:

(2 + x + 3y) + 5x + 7 + (x + 2y) + y

= add [2+x+3y, 5x, 7, x+2y,y]

= mkSum (foldr mergeSum [2+x+3y,5x,7,x+2y,y])

= mkSum

(mergeSum

(2+x+3y)

2In these reduction steps the formulas were writen in mathematic notation, not in the implementation language.

68 4 Addition

(mergeSum

(5x)

(mergeSum 7 (mergeSum (x+2y) (mergeSum y [])))))

= mkSum

(mergeSum

(2+x+3y)

(mergeSum (5x) (mergeSum 7 (mergeSum (x+2y) [y]))))

= mkSum

(mergeSum (2+x+3y) (mergeSum (5x) (mergeSum 7 [x,3y])))

= mkSum (mergeSum (2+x+3y) (mergeSum (5x) [7,x,3y]))

= mkSum (mergeSum (2+x+3y) [7,6x,3y])

= mkSum [9,7x,6y]

= 9+7x+6y

mergeSum works with two arguments. Its first argument x is a term from the addition that is

being carried out. The second argument ys is a list of the terms of the sum that will be the result

of the addition, which has been partially built so far. mergeSum checks if x is a sum or not. If x

is a sum x1 + x2 + . . .+ xn then it should be split in its constituent terms x1, x2, . . . , xn and each

term should be dealt separately. Otherwise it is dealt as a single term x. Each term taken from x

in this way is then merged with the terms in ys:

• if ys is the empty list then the result is the list of terms from x, that is, [x] if x is not a sum

or [x1,x2, . . . ,xn] if x is the sum x1 + x2 + . . .+ xn.

• if ys is not empty then the result is obtained by combining each term from x, that is, x

itself if it is not a sum, or x1, x2, . . . , xn if x is the sum x1 + x2 + . . .+ xn, with the list ys

using the function mergeTerm that is discussed in the sequence. This is accomplished by

evaluating the expression

mergeTerm x ys

in the first case, and

4.4 The Core of Addition 69

foldr mergeTerm ys [x1,x2,...,xn]

in the second case.

Listing 4.7 shows the implementation of mergeSum.

Listing 4.7: The mergeSum function.
mergeSum :: (?ctxt :: Context) => Formula→ [Formula]→ [Formula]
-- mergeSum x ys
-- ys is a list [y1, y2, ..., yn] of formulas whose sum
-- y1 + y2 + ... + yn
-- cannot be simplified in the current context.
-- xs is a formula, possibly a sum, to be added to the formula
-- y1 + y2 + ... + yn
-- whose terms are the elements of ys.
-- Basicaly there is a check whether x is a sum. In this case
-- its terms should be merged with ys, one at a time.
-- Otherwise x should be merged directly with ys.
mergeSum x []

| isSum x = appArgs x
| otherwise = [x]

mergeSum x ys
| isSum x = foldr mergeTerm ys (appArgs x)
| otherwise = mergeTerm x ys

As examples of how mergeSum simplifies consider the following reductions:

mergeSum (5x) []

= [5x]

mergeSum (2+x+3y) []

= [2,x,3y]

mergeSum (5x) [7,x,3y]

= mergeTerm (5x) [7,x,3y]

= [7,6x,3y]

mergeSum (2+x+3y) [7,x,3y]

= foldr mergeTerm [7,x,3y] [2,x,3y]

70 4 Addition

= mergeTerm 2 (mergeTerm x (mergeTerm (3y) [7,x,3y]))

= mergeTerm 2 (mergeTerm x [7,x,6y])

= mergeTerm 2 [7,2x,6y]

= [9,2x,6y]

mergeTerm is applied to two arguments. The first argument x is a formula (but it is not

a sum) that must be added to the sum of the formulas that appear as the second argument

ys = [y1,y2, . . . ,yn], a list of terms. So the expression mergeTerm (2x) [5,8x,3y] finds the

sum (2x) +(5+8x+3y). The algorithm for mergeTerm has its fundaments in the comutative

and associative laws of addition. It has three phases:

1. An attempt is made to add x to one of the the terms yi in ys. Each term yi in ys is tried out

starting with i = 1 until the x and yi can be successfuly added using addTerms. In this

case the result is given by combining the sum x+ yi computed by addTerms with the list

of terms that is obtained by dropping yi from ys, that is, [y1, . . . ,yi−1,yi+1, . . . ,yn] using

mergeSum. If there is no yi such that x and yi could be added using addTerms then the

second phase starts.

2. Two terms x and y with a common literal part can be added by adding their coefficients.

So if x = cxlx and y = cyly where cx and lx are respectively the coefficient and literal part

of x and cy and ly are respectively the coefficient and literal part of y and lx = ly = l then

the sum can be computed as

x+ y = cxlx + cyly = (cx + cy)l

In this phase a term yi from the list ys with the same literal part l of x is searched for by

starting with i = 1. If found the result is obtained by replacing yi with the sum of x and yi

computed as explained above in the list ys, if the sum is not equal to 0, in which case yi

is simply removed from ys. If there is no yi in ys with the same literal part as x then starts

the third phase.

3. In this phase x will be inserted into ys to build the result, as there is no way to merge it

4.4 The Core of Addition 71

with the terms in ys. The insertion is carried out using the criteria of maintaining the result

list ordered according to the predicate sorted. This criteria keeps the simplest terms at

the beginning of the list.

The implementation code for mergeTerm is shown in listing 4.8

Listing 4.8: The mergeTerm function.
mergeTerm :: (?ctxt :: Context) => Formula→ [Formula]→ [Formula]
-- mergeTerm x ys
-- Merge using addition rules the formula x, not a sum, with the
-- terms ys (already merged among themselves), resulting in the list
-- of simplified terms.
mergeTerm x ys = mergeWithTerms ys []

where
-- Try to merge the term x and one of the terms of the list
-- ys (the first that succeeds) using addTerms
mergeWithTerms (y:ys1) ys2 =

case addTerms x y of
Just z → mergeSum z (reverse ys2 ++ ys1)
Nothing→ mergeWithTerms ys1 (y:ys2)

mergeWithTerms [] _ =
mergeLiterals ys []

-- Try to merge the term x with the terms of the list ys using a broader
-- rule that checks the literal part of terms and add their coefficients
-- when the literal parts are the same
mergeLiterals (y:ys1) ys2

| litX == litY =
reverse ys2 ++
case addTerms coefX coefY of

Just c → if isZero c
then ys1
else mkPro [c,litX] : ys1

Nothing→ error "bug in mergeLiterals"
| sorted litX litY =

reverse ys2 ++ x:y:ys1
| otherwise =

mergeLiterals ys1 (y:ys2)
where
(coefY, litY) = coefLit y

mergeLiterals [] ys =
reverse (x:ys)

(coefX, litX) = coefLit x

Note that in the implementation the second and third phase are merged such that only one

scan of the list of terms is carried out.

See the examples of applying mergeTerm below.

72 4 Addition

mergeTerm (7xy) []

= mergeWithTerms [] []

= mergeLiterals [] []

= reverse [7xy]

= 7xy

mergeTerm 5 [6,4x,8y]

= mergeWithTerms [6,4x,8y] []

= mergeSum 9 [4x,8y]

= [9,4x,8y]

mergeTerm (3x) [6,4x,8y]

= mergeWithTerms [6,4x,8y] []

= mergeWithTerms [4x,8y] [6]

= mergeWithTerms [8y] [4x,6]

= mergeWithTerms [] [8y,4x,6]

= mergeLiterals [6,4x,8y]

= mergeLiterals [4x,8y] [6]

= reverse [6] ++ (3+4)x:[8y]

= [6,7x,8y]

mergeSum z [6,4x,8y]

= mergeWithTerms [6,4x,8y] []

= mergeWithTerms [4x,8y] [6]

= mergeWithTerms [8y] [4x,6]

= mergeWithTerms [] [8y,4x,6]

= mergeLiterals [6,4x,8y]

= mergeLiterals [4x,8y] [6]

4.4 The Core of Addition 73

= mergeLiterals [8y] [4x,6]

= mergeLiterals [] [8y,4x,6]

= reverse (z:[8y,4x,6])

= [6,4x,8y,z]

Chapter 5
Multiplication and Subtraction

In this chapter, the author presents the algorithms employed to find the product and the differ-

ence of formulas. The framework of the multiplication algorithms follows the general guide-

lines presented for addition. However, specific multiplication rules replaces those for addition.

Therefore, one is advised to brush up on his/her knowledge of addition before reading this

chapter.

5.1 Basic Multiplication Rules

Like addition, the multiplication of two arbitrary formulas may be reductible or not, depending

on the formulas being multiplied. When it is reductible, the resulting product is a formula

computed applying known rules to the factors of the multiplication. For example, the product

of two rational numbers is a rational number given by the rules for multiplying rational numbers,

e.g.
3
4
× 5

6
=

3×5
4×6

=
12
30

=
2
5

But the multiplication algorithm may fail in producing a product that is simpler than the stated

multiplication. In this case there is no option unless to pack the factors being multiplied in an

application formula for products. For example, when multiplying an integer and a literal, e.g.

5×a

74

5.2 Multiplication of Integers 75

there is no way to simplify the resulting product and the result is left as an indication of the de-

sired multiplication. Sections 2.1 and 2.7.5 discuss the representation of unreductible formulas,

like the one above.

The algorithms used to implement multiplication makes use of a function that tries to mul-

tiply two factors producing a reduced formula when possible, or an indication of failure other-

wise. This function handles the cases of multiplication by zero, by one, and multiplication of

integers, and makes proviso for the handling of special cases when necessary.

5.2 Multiplication of Integers

The most basic rules deal with multiplication by zero, by one, and multiplication of integer

numbers.

Zero is the zero value of the multiplication operation, that is

0× x = x×0 = 0

for any formula x.

One is the unit value of the multiplication operation, so

1× x = x×1 = x

for any formula x.

Integer multiplication is carried out following rules from elementary school Arithmetics.

The implementation makes use of the function

(*) :: Integer →Integer →Integer

which is taken from the standard library.

Listing 5.1 shows the implementation code for the basic rules discussed in the above sec-

tions.

76 5 Multiplication and Subtraction

Listing 5.1: The mulFactors function.
mulFactors :: (?ctxt :: Context) => Formula→ Formula→ Maybe Formula
-- Try to multiply two factors using simple multiplication rules:
-- 1) multiplication by 0: at least one of the factors is zero
-- 2) multiplication by 1: at least one of the factors is one
-- 3) integer multiplication: both factors are integers
-- 4) proviso for specific rules for the specific kind of involved
-- factors (via a table)
mulFactors x y

| isInt x = mulInt1
| isInt y = mulInt2
| isApp x && isJust u = u
| isApp y && isJust v = v
| isInd x || isInd y = Just (mkInd (mkPro [x,y]))
| otherwise = Nothing
where
u = proT (appFn x) ?ctxt (argList x) y
v = proT (appFn y) ?ctxt (argList y) x
mulInt1

| isInt y = Just (mkInt (intVal x Prelude.* intVal y))
| isZero x = Just zero
| isOne x = Just y
| isApp y && isJust v = v
| otherwise = Nothing

mulInt2
| isZero y = Just zero
| isOne y = Just x
| isApp x && isJust u = u
| otherwise = Nothing

5.3 Handling of Special Cases

Besides the basic rules for multiplication, it is possible to specify special rules. For example,

there is no provision for the multiplication of two logarithms in the core multiplication func-

tions. How is it supposed to be achieved? The library offers a mechanism to attach special rules

for multiplication into the algorithm that multiplies two formulas. The rules are triggered when

none of the explicit rules shown above is adequate to handle the multiplication. For this scheme

to work, at least one of the formulas being muliplied should be an application formula.

The core multiplication algorithm has a hook for calling customized functions when none of

the basic rules apply. The hook is an overloaded function called proT, introduced by the class

ProC defined in listing 5.2. proT is a function with three explicit arguments:

5.3 Handling of Special Cases 77

Listing 5.2: An overloaded function for special multiplication rules.
class ProC a where

proT :: (?ctxt :: Context) => a→ [Formula]→ Formula→ Maybe Formula
proT _ _ _ _ = Nothing

instance (ProC a, ProC b) => ProC (Either a b) where
proT (Left x) = proT x
proT (Right x) = proT x

1. the operator of the application formula (the formula corresponding to the first formula to

be multiplied),

2. the arguments of this application formula,

3. the second formula to be multiplied.

The function may fail or succeed. If it succeeds the result is a formula corresponding to the

product of the two argument formulas. This listing also instantiates the Either a b data type

to the class. This is important, as the type of the operator in application formulas is an extensible

union type, as discussed in sections 2.3 and 2.4. Applying proT to a value of the union type is

as simple as to apply the appropriate proT function to the summand of the union.

The type of each possible operator of an application formula should be an instance of the

class ProcC, overloading the function proT to work with it according to its own rules. Let be

the case of multiplying a logarithm and another formula following the rule

a× logb x = logb(x
a)

Listing 5.3 implements this rule by making Log, the type of the operator for logarithm formulas,

an instance of ProC.

Listing 5.3: Multiplication of logarithms.
instance ProC Log where

proT Log ctxt [x,b] a =
Just (mkLog (x ^ a) b)

Not all special rules are covered in this dissertation.

78 5 Multiplication and Subtraction

5.4 The Main Part of the Multiplication Algorithm

The multiplication operation is named *, which is an overloaded operator of the implementation

language. It is a binary infix operator with left association and a precedence binding of 7.

The redefiniton of the operator * for formulas is shown in listing 5.4, where mul is an

auxiliary function that computes the product.

Listing 5.4: The multiplication operator for formulas.
infixl 7 *

(*) :: (?ctxt :: Context) => Formula→ Formula→ Formula
x * y = mul [x,y]

The function mul has as input the list of the formulas to be multiplied and produces their

product as the output. In general the resulting value may be a product of factors that cannot be

further reduced. For example, the following multiplications result in irreductible products:

7× y = 7× y

(2×a)× (5×a) = 10×a2

2× (a×b)× (4×a× c) = 8×a2×b× c

In order to build the resulting formula, first the list of resulting factors is built and then a new

formula is constructed from this list. In the last example the input list is

[2,a×b,4×a× c]

and the list of resulting factors is

[8,a2,b,c]

from which the product

8×a2×b× c

is built.

5.4 The Main Part of the Multiplication Algorithm 79

The implementation code for mul is shown in listing 5.5.

Listing 5.5: The mul function.
mul :: (?ctxt :: Context) => [Formula]→ Formula
-- mul [x1,...,xn]
-- (Note: each formula can be of any form, including a product.)
-- Multiplies the formulas in the list reducing it to the shortest
-- list of formulas that cannot be further simplified under
-- multiplication and then constructs a product from the new list.
mul = mkPro . foldr mergePro []

The list of resulting factors is built by evaluating the expression

foldr mergePro [] xs

(from the definition of mul). If xs =[x0,x1,...,xn], it is equivalent to

mergePro x0 (mergePro x1 (... (mergePro xn []) ...))

The function mergePro takes care of combining a formula (from the input list) with the

formulas of the (partialy built) result list and is analyzed in the sequence. The function mkPro

constructs a new formula that is the product of the elements found in its argument list, as ana-

lyzed in section 2.7.5.

As an example of multiplication consider the reduction steps of the evaluation of

(5xy)× (2x)

mul [5xy,2x]

= mkPro (foldr mergePro [5xy,2x])

= mkPro (mergePro (5xy) (mergePro (2x) []))

= mkPro (mergePro (5xy) [2,x]))

= mkPro [10,x^2,y]

= 10 x^2 y

As another example consider the multiplication

(2xy3)× (5x)×7× (3xy)× y

80 5 Multiplication and Subtraction

which can be simplified according to the following reduction steps:

mul [2 x y^3, 5 x, 7, 3 x y, y]

= mkPro (foldr mergePro [2 x y^3, 5 x, 7, 3 x y, y])

= mkPro

(mergePro

(2 x y^3)

(mergePro

(5 x)

(mergePro 7 (mergePro (3 x y) (mergePro y [])))))

= mkPro

(mergePro

(2 x y^3)

(mergePro (5 x) (mergePro 7 (mergePro (3 x y) [y]))))

= mkPro

(mergePro

(2 x y^3)

(mergePro (5 x) (mergePro 7 [3,x,y^2])))

= mkPro (mergePro (2 x y^3) (mergePro (5 x) [21,x,y^2]))

= mkPro (mergePro (2 x y^3) [105,x^2,y^2])

= mkPro [210,x^3,y^5]

= 210 x^3 y^5

mergePro works with two arguments. Its first argument x is a factor from the multiplication

that is being carried out. The second argument ys is a list of the factors of the product that will

be the result of the multiplication and that has so far been partialy built. mergePro checks if x

is a product or not. If x is a product x1× x2× . . .× xn then it should be split in its constituent

factors x1, x2, . . . , xn and each factor should be treated separately. Otherwise, it is treated as a

single factor x. Each factor taken from x in this way is then merged with the factors in ys:

• if ys is the empty list then the result is the list of factors from x, that is, [x] if x is not a

5.4 The Main Part of the Multiplication Algorithm 81

product or [x1,x2, . . . ,xn] if x is the product x1× x2× . . .× xn.

• if ys is not empty then the result is obtained by combining each factor from x, that is, x

itself if it is not a product, or x1, x2, . . . , xn if x is the product x1×x2× . . .×xn, with the list

ys using the function mergeFactor that is analyzed in the sequence. This is accomplished

by evaluating the expression

mergeFactor x ys

in the first case, and

foldr mergeFactor ys [x1,x2,...,xn]

in the second case.

The implementation of mergePro follows in listing 5.6.

Listing 5.6: The mergePro function.
mergePro :: (?ctxt :: Context) => Formula→ [Formula]→ [Formula]
-- mergePro x ys
-- ys is a list [y1, y2, ..., yn] of formulas whose product
-- y1 * y2 * ... * yn
-- cannot be simplified in the current context.
-- xs is a formula, possibly a product, to be multiplied
-- with the formula
-- y1 * y2 * ... * yn
-- whose factors are the elements of ys.
-- Basicaly there is a check whether x is a product. In this
-- case its factors should be merged with ys, one at a time.
-- Otherwise x should be merged directly with ys.
mergePro x []

| isPro x = appArgs x
| otherwise = [x]

mergePro x ys
| isPro x = foldr mergeFactor ys (appArgs x)
| otherwise = mergeFactor x ys

As examples of how mergePro simplifies expressions, consider the following reductions:

mergePro (2+x) []

= [2+x]

82 5 Multiplication and Subtraction

mergePro (2 x y^2) []

= [2,x,y^2]

mergePro 2 [7,5x,3y]

= mergeFactor 2 [7,5x,3y]

= [14,5x,3y]

mergePro (2 x y^3) [7,x,y]

= foldr mergeFactor [7,x,y] [2,x,y^3]

= mergeFactor 2 (mergeFactor x (mergeFactor (y^3) [7,x,y]))

= mergeFactor 2 (mergeFactor x [7,x,y^4])

= mergeFactor 2 [7,x^2,y^4]

= [14,x^2,y^4]

mergeFactor is applied to two arguments. The first argument x is a value (but it is not a

product) that must be multiplied to the product of the values that appear as the second argument

ys = [y1,y2, . . . ,yn], a list of factors. So the expression mergeFactor (x^2) [5,8x,3y] finds

the product (x^2) * (5*8x*3y). The fundaments of mergeFactor are the comutative and

associative laws of multiplication. It works in three phases:

1. An attempt is made to multiply x to one of the the factors yi in ys. Each factor yi

in ys is tried starting with i = 1 until x and yi can be successfully multiplied using

multiplyFactors. In this case the result is given by combining the product x× yi com-

puted by multiplyFactors with the list of factors that is obtained by dropping yi from

ys, that is, [y1, . . . ,yi−1,yi+1, . . . ,yn] using mergePro. If there is no yi such that x and yi

could be multiplied using multiplyFactors and x is not a reciprocal then the second

phase starts. If x is a reciprocal the result is obtained by inserting x as the first or second

element in ys, depending on the head of ys being an integer or not, respectively.

2. Two factors x and y with a common base can be multiplied by adding their exponents. So

5.4 The Main Part of the Multiplication Algorithm 83

if x = bx
ex and y = by

ey where bx and ex are respectively the base and the exponent of x

and by and ey are respectively the base and the exponent of y and bx = by = b then the

product can be computed as

x× y = bx
ex ×by

ey = bex+ey

In this phase a factor yi from the list ys with the same base b of x is searched for starting

with i = 1. If found the result is obtained by replacing yi with the product of x and yi

computed as explained above in the list ys. If there is no yi in ys with the same base as x

then starts the third phase.

3. In this phase x will be inserted into ys to build the result, as there is no way of combining

it with the factors in ys. The insertion is carried out using the criteria of maintaining the

result list ordered according to the precedence of formulas (section 2.8) and keeping num-

bers at the beginning of the list. This criteria keeps the simplest factors at the beginning

of the list.

Listing 5.7 presents the implementation code for mergeFactor.

Note that in the implementation the second and third phases are merged such that, only one

scan of the list of factors is completed.

See the examples of applying mergeFactor in the sequence.

mergeFactor (a+b) []

= mergeWithFactors [] []

= mergeBases [] []

= reverse [a+b]

= a+b

mergeFactor 5 [6,x,y]

= mergeWithFactors [6,x,y] []

= mergePro 30 [x,y]

84 5 Multiplication and Subtraction

= [30,x,y]

mergeFactor (x^2) [6,x^3,y+1]

= mergeWithFactors [6,x^3,y+1] []

= mergeWithFactors [x^3,y+1] [6]

= mergeWithFactors [y+1] [x^3,6]

= mergeWithFactors [] [y+1,x^3,6]

= mergeBases [6,x^3,y+1] []

= mergeBases [x^3,y+1] [6]

= reverse [6] ++ x^(2+3):[y+1]

= [6,x^5,y+1]

mergePro z [6,x,y]

= mergeWithFactors [6,x,y] []

= mergeWithFactors [x,y] [6]

= mergeWithFactors [y] [x,6]

= mergeWithFactors [] [y,x,6]

= mergeBases [6,x,y]

= mergeBases [x,y] [6]

= mergeBases [y] [x,6]

= mergeBases [] [y,x,6]

= reverse (z:[y,x,6])

= [6,x,y,z]

mergePro (5^(-1)) [2,x]

= mergeWithFactors [2,x] []

= mergeWithFactors [x] [2]

= mergeWithFactors [] [x,2]

5.5 Additive Inverse and Subtraction 85

= [2,5^(-1),x]

5.5 Additive Inverse and Subtraction

The additive inverse of a number x is defined as the product of −1 and x. Our implementation

language provides an overloaded identifier named negate for the additive inverse functions.

The library redefines it to invert formulas, as shown in listing 5.8.

The subtraction operation is named -, and overloaded infix operator of the implementation

language. This operator is non associative and has precedence 6. It is also redefine to calculate

the difference of two formulas. Listing 5.9 shows its new definition, based on the rule

x− y = x× (−y)

86 5 Multiplication and Subtraction

Listing 5.7: The mergeFactor function.
mergeFactor :: (?ctxt :: Context) => Formula→ [Formula]→ [Formula]
-- mergeFactor x ys
-- Merge, using multiplication rules, the formula x, not a product,
-- with the factors ys (already merged among themselves), resulting in
-- the list of simplified factors.
mergeFactor x ys = mergeWithFactors ys []

where
mergeWithFactors (y:ys1) ys2 =

case mulFactors x y of
Just z → mergePro z (reverse ys2 ++ ys1)
Nothing→ mergeWithFactors ys1 (y:ys2)

mergeWithFactors [] _
| isInt x = x:ys
| isReciprocal x = case ys of

y:ys’→ if isInt y
then y:x:ys’
else x:ys

[] → error "bug in mergeWithFactors"
| otherwise = mergeBases ys []

mergeBases (y:ys1) ys2
| bX == bY =

if isRat eX && isRat eY
then mergePro

(bX ^ (case addTerms eX eY of
Just e → e
Nothing→ error "bug in mergeBases"))

(reverse ys2 ++ ys1)
else reverse ys2 ++ (if sorted eX eY

then x:y:ys1
else y:x:ys1)

| sorted bX bY && not (isInt y) && not (isReciprocal y) =
reverse ys2 ++ x:y:ys1

| otherwise =
mergeBases ys1 (y:ys2)

where
bY = base y
eY = exponent y

mergeBases [] ys =
reverse (x:ys)

bX = base x
eX = exponent x

Listing 5.8: The negate function.
negate :: (?ctxt :: Context) => Formula→ Formula
negate x = mOne * x

5.5 Additive Inverse and Subtraction 87

Listing 5.9: The subtraction operation.
infixl 6 -
(-) :: (?ctxt :: Context) => Formula→ Formula→ Formula
x - y = x + mOne * y

Chapter 6
Exponentiation and Division

6.1 Mathematical Background

The definition of the natural exponentiation function ex for x ∈ R is given by

ex =
Z +∞

0

1
x

dx

The natural exponential function ez is defined for all complex numbers z = x+ ıy as

ez = ex(cosy+ ısiny)

The generalized exponential function za for z ∈ C∗ and a ∈ C is defined as

za = ea logz

and can also be written as

za = eaLogz ei2kπa, k = 0,±1,±2, . . .

As the logarithm function is multi-valued, the generalized exponential function is also multi-

valued. Each branch of the logarithm function determines a branch for za. The principal value

88

6.2 Basic Algorihtms for Powers 89

of za is defined as

eaLogz

In the particular case where a is integer, the value of za is unique and can be given by

za =

1 if a = 0,

z · za−1 if a > 0,

1
z−a if a < 0.

If a = p
q is rational, then za has a finite number of values given by

z
p
q = e

p
q Logz eı p

q 2kπ, k = 0,1, . . . ,q−1

If a is not rational, then za has an infinity of distinct values.

6.2 Basic Algorihtms for Powers

The exponentiation operation is named ^, an overloaded right associativite infix operator of the

implementation language, with precedence 8. The redefiniton of the operator ^ for formulas is

shown in listing 6.2.

The implementation algorithm for the exponentiation functions on formulas is guided by

the structure of the arguments — the base and exponent — with simple case analysis. The

most basic cases to be considered in the implementation of the exponentiation function are the

following:

Zero exponent

z0 =

⊥ if z = 0

1 if z 6= 0

z0 if it is unknown whether z 6= 0

90 6 Exponentiation and Division

Note that:

• The value of 00 is undefined.

• The value of z0 is 1 only if z is known to be different to 0.

• When the base z is not a number, it is not possible to check whether it is zero or not.

In this case, it is not possible to simplify the formula z0. Nonetheless, simplification of

z0 = 1 may be forced by setting the zero_exponent controller to True in the context in

which the operation is performed.

Zero base

0a =

⊥ if a = 0

⊥ if a < 0

0 if a > 0

0a if it is unknown whether a > 0

Note that

• The value of 00 is undefined.

• The value of 0a is undefined for a < 0, since it would mean division by zero: 0a = 1
0−a = 1

0 .

• The value of 0a is 0 only if a is known to be a positive number.

• When the exponent a is not a real number, it is not possible to check whether it is positive

or not. In this case it is not possible to simplify the formula 0a. But it is possible to force

the simplification 0a = 1 by setting the zero_base controller to True in the context in

which the operation is performed.

Unit exponent or unit base

z1 = z

1a = 1

6.2 Basic Algorihtms for Powers 91

These two simplifications are valid for any z and a.

Non zero integer base and exponent

xa =

x if a = 1

x · xa−1 if a > 1

1
x−a if a < 0

When a > 0, the power xa can be obtained numerically by means of the standard power function

of the implementation library. When the exponent is negative, xa is the reciprocal of x−a.

Integer powers of the imaginary unit

ıa =

1 if a mod 4 = 0

ı if a mod 4 = 1

−1 if a mod 4 = 2

−ı if a mod 4 = 3

Here the remainder of the division of the integer exponent a by 4 is checked and the apropriate

value for ıa is obtained.

The power eı

eı = cos1+ ısin1

This property is applied only when the controller trig_exp 1 is a negative multiple of 7 in the

context in which the operation is performed, meaning that the power eı should be expressed

using trigonometric functions.

Conversion from power to logarithmic

za = ba logb z, b 6= 0

1The controller trig_exp controlls simplifications related to trigonometric functions.

92 6 Exponentiation and Division

In the implementation the value used for b is the value of the controller log_base2 defined in

the context in which the operation is performed. Its default value is the neperian number e.

This property is applied only when the controller log_exp3 is a positive multiple of 7 in

the context in which the operation is performed, meaning that the power za should be expressed

using the logarithmic function. Another condition for applying this property in the implemented

algorithm is that a should not be a number and z should not be zero or a negative number.

Other properties of exponentiation

Any other property of exponentiation considered when simplifying xy is applied indirectly using

two overload functions over the operator types, similarly to the technique use for addition 4.3

and multiplication 5.3. There is an overloaded function for the base of the power, and another

for the exponent of the power. Listing 6.1 introduces them. baseT and exponentT are functions

Listing 6.1: Overloaded functions for special exponentiation rules.
class BaseC a where

baseT :: (?ctxt :: Context) => a→ [Formula]→ Formula→ Maybe Formula
baseT _ _ _ _ = Nothing

instance (BaseC a, BaseC b) => BaseC (Either a b) where
baseT (Left x) = baseT x
baseT (Right x) = baseT x

class ExponentC a where
exponentT :: (?ctxt :: Context) => a→ Formula→ [Formula]→ Maybe Formula
exponentT _ _ _ _ = Nothing

instance (ExponentC a, ExponentC b) => ExponentC (Either a b) where
exponentT (Left x) = exponentT x
exponentT (Right x) = exponentT x

with three explicit arguments:

1. the operator of the application formula which is the base (for baseT) or the exponent (for

exponentT) of the exponentiation,

2The controller log_base holds a formula that is used as the common base for the logarithmic function. Its
default value is the neperian number e.

3The controller log_exp controls simplifications related to the logarithmic function.

6.3 Special properties of exponentiation 93

2. the arguments of this application formula,

3. the second formula, which is the exponent (for baseT) or the base (for exponentT).

The functions may fail or succeed. If baseT succeeds the result is a formula corresponding

to the power of the first formula to the second formula. If exponentT succeeds the result is

a formula corresponding to the power of the second formula to the first formula. This listing

also instantiates the Either a b data type to the classes. This is important, as the type of the

operator in application formulas is an extensible union type, as discussed in sections 2.3 and

2.4. Applying baseT or exponentT to a value of the union type is as simple as to apply the

appropriate proT or exponentT function to the summand of the union.

Non simplifiable powers

When it is not possible to simplify a power, the result will be a new formula representing the

exponentiation operation, built using the function mkPow.

Implementation code

Listings 6.2 – 6.7 shows the code that implements these basic properties of exponentiation.

6.3 Special properties of exponentiation

Product where a factor is a power

This rule will be triggered when simplifying a product and one of the factors is a power.

x · ya

Two cases of simplification are handled here. Other cases of products where a factor is a power

are not handled at this point.

94 6 Exponentiation and Division

Listing 6.2: Power of two terms.
infixr 8 ^
(^) :: (?ctxt :: Context) => Formula→ Formula→ Formula
x ^ y

| isInt y = powAnyInt x (intVal y)
| isOne x = one
| isZero x = powZeroAny y
| isE x && isI y &&

negMult (trig_expd ?ctxt) 7 = cos one + i * sin one
| x /= logBase &&
not (less x zero) &&
not (isRat x) &&
posMult (log_expd ?ctxt) 7 = logBase ^ y * log x logBase

| isApp x && isJust u = fromJust u
| isApp y && isJust v = fromJust v
| isInd x || isInd y = mkInd (mkPow x y)
| otherwise = mkPow x y
where
logBase = log_base ?ctxt
u = baseT (appFn x) ?ctxt (arguments x) y
v = exponentT (appFn y) ?ctxt x (arguments y)

Division of two integers. The division of two integer numbers x and y is handled by building a

fraction x
y followed by its simplification. The result may be an integer, a reciprocal or a fraction.

x · y−1 = x · 1
y

=
x
y

=

x
m
y
m

where

m = gcd(x,y)

Listing 6.3: Power of two terms (continued).
powAnyInt x yVal

| yVal == 1 = x
| isInt x = powIntInt (intVal x) yVal
| yVal == 0 &&

zero_exponent ?ctxt = one -- 0^0 already considered in powIntInt
| isI x = powI (mod yVal 4)
| isApp x && isJust u = fromJust u
| otherwise = mkPow x (mkInt yVal)
where
u = baseT (appFn x) ?ctxt (arguments x) (mkInt yVal)

6.3 Special properties of exponentiation 95

Listing 6.4: Power of two terms (continued).
powIntAny xVal y

| xVal == 1 = one
| xVal == 0 = powZeroAny y
| isApp y && isJust v = fromJust v
| otherwise = mkPow (mkInt xVal) y
where
v = exponentT (appFn y) ?ctxt (mkInt xVal) (arguments y)

Listing 6.5: Power of two terms (continued).
powZeroAny y

| less y zero = mkInd (mkPow zero y)
| greater y zero = zero
| zero_base ?ctxt = zero
| otherwise = mkPow zero y

Product of two reciprocal numbers. The product of two reciprocal numbers x = 1
p and y = 1

q

is simplified using the property

p−1 ·q−1 =
1
p
· 1

q
=

1
p ·q

= (p ·q)−1

and the result is a reciprocal number. Listing 6.8 shows the function pro_pow, which imple-

ments these rules.

Power of a product

The power is distributed over the product.

(x · y)z = xz · yz

The function base_pro, defined in listing 6.13, implements this rule.

Power of a power

In the case of power of a power, the exponents are multiplied, as can be seen below.

(xy)z = xy·z

96 6 Exponentiation and Division

Listing 6.6: Power of two terms (continued).
powIntInt xVal yVal

| yVal == 0 = if xVal == 0
then mkInd (mkPow zero zero)
else one

| yVal < 0 = if xVal == 0
then mkInd (mkPow zero (mkInt yVal))
else let k = xVal Prelude.^ (negate yVal)

in if k < 0
then mkPro [mOne, mkPow (mkInt (negate k)) mOne]
else if k == 1

then one
else mkPow (mkInt k) mOne

| otherwise = mkInt (xVal Prelude.^ yVal)

Listing 6.7: Power of two terms (continued).
-- Integer powers of the imaginary unit
-- i^n, where i is the imaginary unit, and 0 <= n < 4
powI 0 = one
powI 1 = i
powI 2 = mOne
powI 3 = mI

This property is applied when z is an integer number or when the controller branch4 is set

to True in the context in which the operation is performed. Figure 6.14 shows the function

base_pow that implements this rule.

Power where the exponent is a product

This rule handles formulas that are powers with a product as the exponent

zx·y

Three cases are considered: the base is e, ı or the power is a radical.

The base is the neperian number e. It may be possible to simplify powers of e to a product

involving ı, as shown by the equalities below.

4The branch controller controls the simplification of formulas that are multi-valued, like the logarithmic func-
tion in the complex domain, by choosing an appropriate branch.

6.3 Special properties of exponentiation 97

Listing 6.8: Product of power.
-- x * (y ^ a)
-- (y^n) * (y^a) = ŷ (n+a) when bas_exp < 0 && bas_exp’ y
-- (k^a) * (y^a) = (k*y) â when exp_bas < 0 && exp_bas’ a
-- x * (ŷ -1) = x/y

pro_pow :: (?ctxt :: Context) => [Formula]→ Formula→ Maybe Formula
pro_pow [y,a] x

| isPow x &&
bas_exp ?ctxt < 0 &&
bas_exp’ y &&
basePow x == y = -- y^n * y^a = ŷ (n+a)

Just (y ^ (exponentPow x + a))
| isPow x &&

exp_bas ?ctxt < 0 &&
exp_bas’ a &&
exponentPow x == a = -- k^a * y^a = (k*y) â

Just ((basePow x * y) ^ a)
| isMOne a = divide x y
| otherwise = Nothing

Listing 6.9: Product of power: division
-- x/y, for any x and y

divide x y
| isInt y = divByInt x y
| isSum y &&

(den_den ?ctxt > 0 ||
num_den ?ctxt > 0) = divBySum x (appArgs y)

| otherwise = Nothing

eı π

2 k = ık, k ∈ Z

eı π

2
p
q = eı π

2
p mod (4q)

q , p ∈ Z,q ∈ Z∗+

eıy = cosy+ ısiny

The use of the third property is controlled by the trig_exp controller setting in the context

in which the simplification is performed. Exponentials are converted to trigonometric functions

only when trig_exp is a negative multiple of 7.

98 6 Exponentiation and Division

Listing 6.10: Product of power: division by an integer
-- (x/y), where y is integer

divByInt x y
| isInt x = divIntByInt (intVal x) (intVal y) -- x/y
| isReciprocal x = Just (mkPow (basePow x * y) mOne) -- (1/u)/y
| otherwise = Nothing
where

divIntByInt p q
| k == 1 = Nothing
| d == 1 = Just (mkInt n)
| n == 1 = Just (mkPow (mkInt d) mOne)
| otherwise = Just (mkPro [mkInt n, mkPow (mkInt d) mOne])
where
k = gcd p q
n = div p k
d = div q k

The base is the imaginary unit ı or its symmetric −ı. The applicability of the following

properties is checked.

ı
p
q = eı π

2
p
q , p ∈ Z,q ∈ Z∗+

(−ı)
p
q = eı3 π

2
p
q , p ∈ Z,q ∈ Z∗+

These properties are used only when the controller branch is set to True in the context in

which the simplification is performed.

The base is an integer number and the exponent is a rational number. In this case, we

have the power k
p
q ,k, p ∈ Z,q ∈ Z∗+ that can be rewritten as the radical q

√
kp. The sign of the

radicand k should be checked. If k > 0, then the radical is simplified by extracting as many

factors out of the base as possible. However, if k < 0, the index q is checked whether it is even

or not. The simplification is then carried out as

q
√

kp =

 ı2
p
q q
√

(−x)p if q is even

(−1)p q
√

(−x)p if q is odd

6.4 Division 99

These properties are implemented in the code shown on listings 6.15 and 6.16, and must be

used only when the controller branch is set to True in the context in which the simplification

is performed.

6.4 Division

The division operation is named /, an overloaded infix operator of the implementation language.

This operator is left associative and has precedence 7.

It is redefined to calculate the quotient of two formulas. Listing 6.17 shows its new defini-

tion, based on the rule
x
y

= x× y−1

100 6 Exponentiation and Division

Listing 6.11: Product of power: division by a sum
-- x / (y1 + y2 + ... + yn)
--
-- a) (x1 * x2 * ... * xm) / y = (x1/y) * (x2/y) * ... * (xm/y)
-- b) (1/u) / (y1 + y2 + .. + yn) = 1 / (u*y1 + u*y2 + ... + u*yn)
-- b) x / (y1 + y2 + ... + yn) = 1 / (y1/x + y2/x + ... + yn/x)

divBySum x ys
| isPro x = Just (distribFactors (appArgs x) [] [])
| isDen x = distribDen (x ^ mOne)
| num_den ?ctxt > 0 &&

num_den’ x = Just (mkPow (distrib’ (x ^ mOne) ys) mOne)
| otherwise = Nothing
where
distribFactors [] l1 l2 =

mkPro (mergeFactor
(mkPow (distrib’ (mkPro (reverse l1)) ys) mOne)
(reverse l2))

distribFactors (u:us) l1 l2
| isDen u = if den_den ?ctxt > 0 && den_den’ v

then distribFactors us (v:l1) l2
else distribFactors us l1 (u:l2)

| num_den ?ctxt > 0 &&
num_den’ u = distribFactors us (v:l1) l2

| otherwise = distribFactors us l1 (u:l2)
where
v = u ^ mOne

distribDen u
| den_den ?ctxt > 0 &&

den_den’ u = Just (mkPow (distrib’ u ys) mOne)
| otherwise = Nothing

distrib’ x ys = distrib x ys
with ?ctxt = ?ctxt { num_num = den_den ?ctxt

, den_num = num_den ?ctxt
}

-- distrib x ys
-- multiply x and each element of ys and then add the results
distrib x ys =

mkSum (foldr (\y zs→ mergeSum (x * y) zs) [] ys)

Listing 6.12: Product of power: overloaded functions
instance ProC FnArith where

proT Pow ctxt xs y = pro_pow xs y with ?ctxt = ctxt
. . .

6.4 Division 101

Listing 6.13: Prower of a product.
-- (x * y) ^ z = x^z * y^z
-- when exp_bas > 0, distributes the exponent over a product
base_pro :: (?ctxt :: Context) => [Formula]→ Formula→ Maybe Formula
base_pro [x,y] z

| exp_bas ?ctxt > 0 && exp_bas’ z = Just (x^z * y^z)
| otherwise = Nothing

instance BaseC FnArith where
baseT Pro ctxt xs y = base_pro xs y with ?ctxt = ctxt
. . .

Listing 6.14: Power of a power.
-- (x ^ y) ^ z
base_pow :: (?ctxt :: Context) => [Formula]→ Formula→ Maybe Formula
base_pow [x,y] z

| isInt z || branch ?ctxt = Just (x ^ (y * z))
| otherwise = Nothing

instance BaseC FnArith where
baseT Pow ctxt xs y = base_pow xs y with ?ctxt = ctxt
. . .

102 6 Exponentiation and Division

Listing 6.15: Radical.
radical :: (?ctxt :: Context) => Integer→ Integer→ Integer→ Formula
radical radicand exp index =

simplify radicand 1 1 firstPrime otherPrimes
where
firstPrime : otherPrimes = primes
simplify rad root counter p ps

| mod rad p == 0 = if counter == index
then simplify x (root Prelude.* p) 1 p ps
else simplify x root (counter Prelude.+ 1) p ps

| x > p = let p’:ps’ = ps
in simplify rad root 1 p’ ps’

| y == 1 = mkInt (root Prelude.^ exp)
| otherwise = mkInt (root Prelude.^ exp) *

mkPow (mkInt y) (mkRat exp index)
where
x = div rad p
y = div radicand (root Prelude.^ index)

primes :: [Integer]
primes = 2 : filter isPrime [3..]

isPrime :: Integer→ Bool
isPrime n = verify primes

where
verify (p:ps)

| p Prelude.* p > n = True
| mod n p == 0 = False
| otherwise = verify ps

6.4 Division 103

Listing 6.16: Radical (continuation).
-- x ^ (a * b)
exponent_pro :: (?ctxt :: Context) => Formula→ [Formula]→ Maybe Formula
exponent_pro x [a,b]

| isE x =
let k = a * b / pi2 / i
in if isInt k

then Just (i ^ k)
else if negMult (trig_expd ?ctxt) 7

then let r = k * pi2
in if free r i

then Just (cos r + i * sin r)
else Nothing

else if isRat k && (less k zero || greater k four)
then let (n,d) = observe "numDenDrac" numDenFrac k

a = mod n (4 Prelude.* d)
in Just (e ^ (i * pi2 * mkInt a / mkInt d))

else Nothing
| isInt x =

if isInt a && isReciprocal b && branch ?ctxt
then Just (radicalInt (intVal x) (intVal a) (intVal (basePow b)))
else Nothing

| isI x && isInt a && isReciprocal b && branch ?ctxt =
Just (e ^ (i * pi * a * b / two))

| isMI x && isInt a && isReciprocal b && branch ?ctxt =
Just (e ^ (three * i * pi * a * b / two))

| otherwise = Nothing
where
radicalInt xVal p q -- x ^ (p/q) p and q integers

| xVal > 0 = radical xVal p q
| mod q 2 == 0 = i ^ (two * a * b) * radical (negate xVal) p q
| otherwise = mOne ^ b * radical (negate xVal) p q

Listing 6.17: The division operation.
infixl 7 /

(/) :: (?ctxt :: Context) => Formula→ Formula→ Formula
x / y = x * y ^ mOne

Chapter 7
System Organization

In this chapter the author presents the module organization of the library. He also explains how

to extend the system with new modules. Another discussed topic is performance comparison of

the library against similar systems implemented with different approaches.

7.1 Module Organization

The library is organized as collection of modules, described in the following.

SubType Introduces the subtype relationship among two types, based on type classes.

FnClass Introduces the class of operators, FnC.

FnArithmetic Defines the data type for the basic arithmetic operators and instantiates it to

the FnC class.

FnLogarithm Defines the data type for the logarithm operator and instantiates it to the FnC

class.

Fn Defines the data type for all operators, the supertype Fn, using union types and the sub-

typing relationship introduced in module SugType.

104

7.1 Module Organization 105

Formula Defines the data type for algebraic formulas (the type Formula), which is based on

the Fn type.

Context Defines the data type of contexts (the type Context) and a suitable context (iC for

initial context) for use a top level simplifications. Depends on the Formula module, as some

controller values are formulas.

Basic Defines basic functions over formulas, needed in almost all other modules. This in-

cludes

• checking for canonical form

• finding the arguments of an application formula

• dealing with rational numbers (reciprocals and fractions, numerators and denominators)

• inequalities (checking if a formula is lesser than another formula)

• checking if a formula has a negative coefficient

• getting the coefficient and the literal parts of a formula

• getting the base and the exponent of a power

CBasic Defines type classes for overloading functions that implement special cases of basic

operations defined in module Basic:

• Class ArgumentsC has the funciton argumentsT which handles special ways of finding

the arguments of an application formula.

• Class NumeratorC has the funciton numeratorT which handles special ways of finding

the numerator of a formula.

• Class DenominatorC has the funciton denominatorT which handles special ways of find-

ing the denominator of a formula.

106 7 System Organization

Eval Defines functions for dynamic evaluation of formulas.

CEval Defines type classes (with the function evalT) to handle special cases of dynamic

evaluation of formulas.

Ari Defines basic arithmetic operations with formulas, including

• finding the minum of two formulas

• finding the absolute value of a formula

• addition of formulas

• multiplication of formulas

• exponentation of formulas

CAri Defines tupe classes for overloading the functions that implement special cases of oper-

ations like additons and multiplication.

• Class SumC has the funciton sumT which handles special cases of addition.

• Class ProC has the funciton proT which handles special cases of multiplication.

• Class BaseC has the funciton baseT which handles special cases of the base of an expo-

nentiation.

• Class ExponentC has the funciton exponentT which handles special cases of the expo-

nent of an exponentiation.

Logarithm Defines functions over logarithm formulas. The function log evalutes the loga-

rithm of a formula.

IBasicLog Defines instances of classes ArgumentsC, numeratorC, and DenominatorC for

sums, products and powers, to deal with special cases of basic functions defined in module

Basic over logarithms.

7.2 Extending the Library 107

IBasic Defines instances of classes ArgumentsC, numeratorC, and DenominatorC for sums,

products and powers, to deal with special cases of basic functions defined in module Basic.

IAriLog Defines instances of classes SumC, ProC, BaseC and ExponentC for logarithms, to

deal with special cases of the basic arithmetic operations (addition, multiplication and exponen-

tiation) when one argument is a logarithm.

IAri Defines all instances of classes SumC, ProC, BaseC and ExponentC, to deal with special

cases of the basic arithmetic operations (addition, multiplication and exponentiation).

IEvalAri Defines instances of the classes defined in CEval to deal with special cases of dy-

namic evaluation of basic arithmetic formulas (sums, products and powers).

IEvalLog Defines instances of the classes defined in CEval to deal with special cases of

dynamic evaluation of arithmetic formulas.

IEval Defines instances of the classes defined in CEval to deal with all special cases of dy-

namic evaluation of formulas.

FormulaParser Defines a parser for formulas, based on monadic parser combinators.

ShowFormula Defines a print printer for formulas.

Main Defines an interactive evaluator of algebra formulas, with a read–eval–print loop.

7.2 Extending the Library

In order to extend the library with new kinds of formulas and/or new operations over formulas,

the user should provide the new data type and/or function definition, toghether with instances

of any relevant classes that deal with special cases.

108 7 System Organization

Consider the extension of the library with derivatives. The following modules should be

added to system to complete the support for the derivative operation:

• FnDer with a data type declaration for the operator used with derivative formulas.

• Der with the definition of the function der for finding derivatives of formulas.

• CDer with the definition of a type classe CDer that overloads a function derT to deal with

special rules for finding the derivates. For example, the derivative of a sum is the sum of

the derivatives, is a special rule.

• IDerAri with instances of class CDer that defines the overloaded function derT for the

basic arithmetic formulas (sums, products and powers).

• IDerLog with instances of class CDer that defines the overloaded function derT for log-

arithm formulas.

• IDer with alls instances of class CDer

Some modules should be added or modified to implement special rules concerning derivatives

for the operations already defined, like addition, multiplication and exponentiation. For exam-

ple, the sum of a derivative is the derivative of the summands.

• IAriDer with instance definitions of the classes defined in module CAri, specifying the

rules for adding, multiplying and exponentiating derivatives.

• IAri should be modified to include the new instances from IAriDer|.

• Similarly, if the other operations have special rules for operating on derivatives, the cor-

responding classes should be instantiated accordingly.

As can be noted, the extension of the library with a new kind of formula is reflected in a

set of new modules, and the modification of few ones. If the actual Haskell implementations

had good support for mutually recursive modules, these modules could be reduced in number,

making the system organization simpler.

7.3 Comparison to Other Systems 109

7.3 Comparison to Other Systems

Most successfull Computer Algebra systems available today have been crafted by a large group

of dedicated programmers. This means that special attention could be devoted to the issues

of performance of the system, finding most bottlenecks as well as ways of solving them. For

instance, the Mathematica system is capable to analyse the code to be processed, seeking for

common patterns of simplifications and achieve good performance by handling them as very

special cases. If a problem does not fall in such cases, its performance might not be so good.

As a consequence, the implementation of those systems has a very high level of complexity.

This, added to the low level of abstraction of their implementation language (mostly are written

in C or Lisp), greatly difficults their implementation and mantainability.

Also, in most of those computer algebra systems, the implementation language and the

language used for develepment in the system are distinct languages. The last one is usually an

interpreted language and, as a consequence, programs developed in these systems have lower

performance than programs written in compiled languages.

The computer algebra system developed in this work is implemented in and uses as the

language for development, the same language — Haskell. The choice of this language as the

implementation language contributes for easing the system development and maintanability, due

to the higher level of abstraction found in modern functional languages. It is also expected that

program development and maintenance in our system be easier than in other existing algebraic

system, for the same reason.

To compare the performance of our system to some other successfull Computer Algebra sys-

tems, we run the classical benchmark TDeriv (the Takeuchi derivative). Listing1 7.1 shows its

implementaion in MatLab. It was run using the derivative implementation provided by MatLab.

This program took about 14 minutes to run in a Pentium III 300MHz computer.

Listing 7.2 shows its implementaion in Mapple. When run with the call

tDiff(’x^24’, ’x^16’, ’x^8’), this program took about 14 minutes to complete, in the

same Pentium III 300 MHz computer.

1The MatLab and Mapple tests were conducted with the help of Antônio Cláudio Pascoareli Veiga, from the
Electrical Engeneering Faculty at the Universidade Federal de Uberlândia.

110 7 System Organization

Listing 7.1: TDeriv in MatLab.
function saida = tDeriv(x, y, z);
% Bench mark for the Symbolic Module
if coeff(x, 2) <= coeff(y, 2),

saida= z;
else

saida= tDeriv(tDeriv(ddt(x), y, z),
tDeriv(ddt(y), z, x), tDeriv(ddt(z), x, y));

end

Listing 7.2: TDeriv in Mapple.
function saida = tDiff(x, y, z);

s = ’x’ ;
x = eval (’sym(x)’) ;
y = eval(’sym(y)’) ;
z = eval(’sym(z)’) ;

polx = sym2poly(x) ;
valx = polx(1) ;
expx = size(polx, 2) - 1 ;

poly = sym2poly(y) ;
valy = poly(1) ;
expy = size(poly, 2) - 1 ;

if expx <= expy,
saida = z

else
saida = tDiff(tDiff(diff(x, s), y, z),

tDiff(diff(y,s), z, x),
tDiff(diff(z, s), x, y)) ;

end

Listings 7.3 and 7.4 show the implementaion in Haskell. The program run in 3 minutes and

30 seconds in the same Pentium III 300 MHz machine.

As the numbers show, our system outperforms the other two used in the tests. This validates

the assertion that professional compilers for general purpose languages have better performance

than script (domain specific) language implementations found in classic systems like MatLab

and Mapple.

7.3 Comparison to Other Systems 111

Listing 7.3: TDeriv in Haskell (part one).
-- Benchmark: Takeuchi derivative

module Main where

import Prelude hiding ((+),(-),(*),(/),(^))
import Formula
import Context
import Basic
import Ari hiding ((+),(*),(^))
import ShowFormula

x = mkVar "x"

-- Polinomial for test: x̂ 24 + x̂ 16 + x̂ 8
-- The result should be: 57657600*x̂ 9

main = putStr (showE result with ?ctxt = iC)

result :: (?ctxt :: Context) => Formula
result = dt y

y = x^mkInt 24 + x^mkInt 16 + x^mkInt 8 with ?ctxt=iC

-- Detection of the steady state of the Takeuchi derivative
-- for the tetrahedron
end :: Formula→ Formula→ Bool
end x y = expon x <= expon y

expon x
| isPow x = exponentPow x
| isPro x && isPow x’ = exponentPow x’
where
:x’: = argList x

-- The test itself
dt :: (?ctxt :: Context) => Formula→ Formula
dt k

| end x y = z
| otherwise = dt (dt (deriv x + y + z) +

(dt (deriv y + z + x)) +
(dt (deriv z + x + y)))

where
[x,k’] = argList k
[y,z] = argList k’

112 7 System Organization

Listing 7.4: TDeriv in Haskell (part two).

-- A simple function to find a derivative of a basic formula (a variable,
-- an integer, a contant, a sum, a product or a power) in relation to
-- the variable x
deriv :: (?ctxt :: Context) => Formula→ Formula
deriv y

| isVar y = if varName y == "x" then one else zero
| isPow y = let [b,e] = appArgs y

in (e * b ^ (e - one)) * deriv b
| isPro y = let [y1,y2] = arguments y

in deriv y1 * y2 + deriv y2 * y1
| isSum y = let [y1,y2] = arguments y

in deriv y1 + deriv y2
| otherwise = zero

-- Functions for addition, multiplication and exponentiation redefined
-- so that the arguments are not reordered
infixr 8 ^
(^) :: Formula→ Formula → Formula
(^) = mkPow

infixr 8 *
(*) :: Formula→ Formula → Formula
x * y

| isInt x && isInt y = mkInt (intVal x Prelude.* intVal y)
| isZero x = zero
| isZero y = y
| isOne x = y
| isOne y = x
| isInt x && isPro y =

let y1:ys = argList y
in if isInt y1

then mkPro (mkInt (intVal x Prelude.* intVal y1) : ys)
else mkPro [x,y]

| isInt y && isPro x =
let x1:xs = argList x
in if isInt x1

then mkPro (mkInt (intVal y Prelude.* intVal x1) : xs)
else mkPro [y,x]

| otherwise = mkPro [x,y]

infixr 6 +
(+) :: Formula→ Formula → Formula
x + y

| isZero x = y
| isZero y = x
| isInt x && isInt y = mkInt (intVal x Prelude.+ intVal y)
| otherwise = mkSum [x, y]

Chapter 8
Conclusions

8.1 Conclusions

We feel our objective of constructing a library of functions for high level manipulation of al-

gebraic formulas in a pure functional language has been achieved. Although these days the

scenario for programming languages is still dominated by the imperative languages, there is

nothing that forbides the use of declarative languages for solving real world problems. In par-

ticular, the functional languages are ready for use by the software industry and our system is

just an example of how that can be done. One can benefit from the higher level of these lan-

guages for the description of data and algorithms without making sacrifices to the efficiency of

the resulting system, as there are good implementations of functional languages. For instance,

the implementation of the Haskell language, the language we have been using in this project, is

very good, sometimes better than implementations of conventional languages like C.

One could argue the point that functional languages lack good libraries for general use.

This is not always the case. Good libraries are being constantly developed by the functional

programming community. We have just added our contribution to the community of functional

programmers with a new library of Computer Algebra that can be used with no restrictions.

We worked out algorithms for manipulation of algebraic formulas based on earlier works

with non pure functional languages like Scheme and Lisp. Again, it was a new contribution

since there was no such system that was not based on any kind of change of state. Even the

113

114 8 Conclusions

ones programmed in the (non pure) functional languages are not declarative since they rely on

some sort of state changing.

We developed a library of functions for algebraic manipulation in Haskell, a modern func-

tional language, leading to an embedded domain specif language for Computer Algebra. The

library provides types for the representation of algebraic formulas, as well as basic functions

(core) for algebraic manipulation. The library is also easily extensible. Our approach was the

design and language adequacy analisys.

One difficulty we found was how to express some characteristics of the original algorithms

without relying on state changing. The solution was to use implicit parameter passing, which

provides a kind of dynamic scoped parameters. This way the context (set of controllers telling

in which ways the formulas should be transformed) is not explicitly passed in function appli-

cations, keeping the intended arity of operators like +. If the transformation of the algebraic

formula demanded an auxiliary transformation on (possibly part of) the formula with a differ-

ent set of controllers, the appropriate function is called with the usual explicitly parameters

(the formulas to be manipulated) and a new set of controllers, implicitly passed. The prior set

of controllers does not have to be changed. When returning from the auxiliary function, the

original controllers are still intact. There is really no change in state during computation. If

the user needs or wants to prove correctness of the algorithms she/he implemented, referential

transparency allows the substitution of equals for equals, making the reasoning much simpler

than in the absence of referential transparency. Undoubtedly this is one of the most appealing

advantages of functional programming.

Other major difficult that we dealt with was how to achieve a modular, easily extensible

system. It should be easy to add new kind for algebraic formulas and/or operations to the

system without breaking any working programs. Two solutions were investigated. The one

adopted is based on extensible union data types and is based on a mechanism that permits the

extension of a data type with new value constructors (a kind of restricted subtyping). Function

extensions is based on overloading with type classes. Another solution is to use existentially

quantified type variables and type classes to build an object oriented approach. Each kind of

formula has its own data type, which is a subtype of a more general type for all formulas, and a

8.2 Future Work 115

set of specialized functions.

All solutions to these difficulties are based on concepts not incorparated into the Haskell

standard yet. The extended Haskell has shown adequate to the implementation of the library,

offering a high level of abstraction.

It is interesting to note that the author’s proposal is an embeded system for Computer Al-

gebra aplications development. Building it on top of a well-stablished and high-level language

make all the facilities of the hosting language available for the programmer, adding new fea-

tures to it. Few implementations of Computer Algebra systems take this approach. Most of

them have their own programming language.

The reasearch has started with a prototype of the library in Scheme1. It helped to better

understand the algorithms. Then entered Haskell to provide a modern functional language with

static type checking. Finally Clean has been targeted, as a more efficient functional language

with all the properties of modern functional languages. This work describes just the Haskell

part of the research.

8.2 Future Work

Our system uses a context that carries information on how to produce a unique simplification of

an expression. This may be restrictive and a more general solution would compute all the pos-

sible simplications, eliminating the need of the context. It may be desirable that the algorithms

be revised or even redesigned to be free of the need for context. This would be a major work.

A major ambitious project is to extend this system to the context of Pure Algebra and treat

things like groups and rings. In this direction there is already DoCon, a work being developed

by Sergey Mechveliani [20]. “DoCon joins the categorial approach to the mathematical compu-

tation expressed via the Haskell type classes, and explicit processing of the domain description

terms.”

1Appendix A has a short review of what have been implemented in Scheme.

Appendix A
Using the System

This system was first implemented in Scheme as a testbed for the algorithms. This implementa-

tion is more complete than what is presented in the thesis body. The following topics have been

covered by it:

• Basic arithmetic

• Basic algebra

• Arrays

• Matrixes

• Absolute value

• Differentiation

• Logarithms

• Trignometry

• Equation solving

• Ordinary differential equation solving

• Integrals

• Limits

116

117

An interactive system where the user is offered a read-eval-print loop where algebraic ex-

pressions can be entered, evaluated, and then the result can be printed. This system is similar to

the one implemented in Haskell and Clean, but it covers more algorithms.

In the sequence there is some examples of interaction with the system.

--

ICAS-0.1

An Interactive Computer Algebra System

Copyright (C) 2007

José Romildo Malaquias <romildo@iceb.ufop.br>

--

Type an algebraic expression followed by ; and RETURN to evaluate it.

The function quit finishes the interactive session.

--

[1] 2 + 5 - 3 - 9;

> -5

[2] john = mary;

> #f

[3] age := 34;

> 34

[4] age;

> 34

[5] 5 + 16 - 3;

> 18

[6] - - - 456;

> -456

[7] 4 3 * -5 ;

> -60

118 A Using the System

[8] 4/6;

> 2/3

[9] 5/9 + 7/12;

> 41/36

[10] 3^4;

> 81

[11] 6 + 3*2;

> 12

[12] 6/3*2;

> 4

[13] 2^2^3;

> 256

[14] (7+8)/6;

> 5/2

[15] 7+8/6;

> 25/3

[16] 2/27 - 0.366 + 7.23 10^-2;

> -59299/270000

[17] foo := 20 - 7;

> 13

[18] foo + 2;

> 15

[19] foo := -foo;

> -13

[20] foo*(7 - 5);

> -26

[21] 12345679012345679 9;

> 111111111111111111

[23] @(21)^2;

119

> 12345679012345678987654320987654321

[24] abs(26-41);

> 15

[25] den(4/6);

> 3

[26] gcd(-15,25);

> 5

[27] gcd(0,7);

> 7

[28] lcm(-15,25);

> 75

[29] min(-56,-78);

> -78

[30] min(3/5, 2/3);

> 3/5

[31] mod(8,3);

> 2

[32] num(4/6);

> 2

[33] 5/3;

> 5/3

[34] point := 20;

> 20

[35] 5/3;

> 1.66666666666666666666

[36] 1/4;

> 0.25

[37] point := -10;

> -10

120 A Using the System

[38] 5342900000;

> 5342900000

[39] point := 1 = 2;

> #f

[40] 0.25;

> 1/4

[41] 4^(1/2);

> 2

[42] (-8)^(1/3);

> -2

[43] 6^(1/2);

> 6^(1/2)

[44] (4 i)^(1/2);

> 2 e^(i pi/4)

[45] 24 ^ (1/3);

> 2 3^(1/3)

[46] 24334 ^ (1/3);

> 23 2^(1/3)

[47] e^(15 i pi / 7);

> e^(i pi/7)

[48] 5!;

> 120

[49] 3^5!;

> 1797010299914431210413179829509605039731475627537851106401

[50] x + (y + z);

> x + y + z

[51] z*(y x);

> x y z

[52] x y + sin(x) - 3 x/2 + 5 - x^2;

121

> 5 - 3/2 x + x y - x^2 + sin x

[53] 3 x + 2 x;

> 5 x

[54] x^5 / x^2;

> x^3

[55] i^2;

> -1

[56] i^7;

> -i

[57] foo := x^2 - 3 x + 5;

> 5 - 3 x + x^2

[58] 2 foo + 6 x;

> 10 + 2 x^2

[59] foo := ’foo;

> foo

[60] 2 foo + 6 x;

> 2 foo + 6 x

[61] expand((3 x y - 2 y + 5)^2 / x);

> 30 y + 9 x y^2 + 4 y^2/x - 20 y/x + 25/x - 12 y^2

[62] expd(2 + x/(1 + x));

> (2 + 3 x)/(1 + x)

[63] fctr(6 x^2 y - 4 x y^2 / z);

> 2 x y*(-2 y + 3 x z)/z

[64] divout((x^2 - y^2)/(x^2 + 2 x y + y^2), x);

> (x - y)/(x + y)

[65] parfrac(1 / ((x + 1)(x - 1)), x);

> 1/(-2 + 2 x) - 1/(2 + 2 x)

[66] rationalize((2 + i)/(3 - 2 i));

> 4/13 + 7/13 i

122 A Using the System

[67] pgcd(x^2 + 2 x + 1, x^2 - 1, x);

> 2 + 2 x

[68] fctr(pgcd(x^2 + 2 x y + y^2, x^2 - y^2, x));

> 2 y*(x + y)

[69] pquot(x^3 + 3, x^2 + 1, x);

> x

[70] prem(x^3 + 3, x^2 + 1, x);

> 3 - x

[71] numnum := 0;

> 0

[72] 3 x*(1 - x) (1 + x);

> 3 x*(1 + x) (1 - x)

[73] numnum := 2;

> 2

[74] 3 x*(1 - x) (1 + x);

> x*(1 + x) (3 - 3 x)

[75] numnum := 3;

> 3

[76] 3 x*(1 - x) (1 + x);

> 3 (1 + x) (x - x^2)

[77] numnum := 5;

> 5

[78] 3 x*(1 - x) (1 + x);

> 3 x*(1 + x - x*(1 + x))

[79] numnum := 6;

> 6

[80] 3 x*(1 - x) (1 + x);

> (1 + x) (3 x - 3 x^2)

[81] numnum := 10;

123

> 10

[82] 3 x*(1 - x) (1 + x);

> x*(3 + 3 x + x*(-3 - 3 x))

[83] numnum := 15;

> 15

[84] 3 x*(1 - x) (1 + x);

> 3 (x - (x^2 + x^3) + x^2)

[85] numnum := 30;

> 30

[86] 3 x*(1 - x) (1 + x);

> 3 x - 3 x^3

[87] denden := 15;

> 15

[88] y/x 1/(1+x) 1/(1-x);

> y/(x - x^3)

[89] dennum := 6;

> 6

[90] (x + 3) / 3 / x;

> 1/3 + 1/x

[91] numden := 0;

> 0

[92] (3 + x)/(1 + x);

> (3 + x)/(1 + x)

[93] numden := 30;

> 30

[94] numden := 5;

> 5

[95] (3 + x)/(1 + x);

> 1/(x/(3 + x) + 1/(3 + x))

124 A Using the System

[96] numden := 30;

> 30

[97] (3 + x)/(1 + x);

> 1/(1/(1 + 3/x) + 1/(3 + x))

[98] basexp := 3;

> 3

[99] x^(1+y);

> x^(1 + y)

[100] baseexp := 3;

> 3

[101] x^(1+y);

> x x^y

[102] pwrexpd := 6;

> 6

[103] pwrexpd := 6;

> 6

[104] (1+x)^3 / (1+x+y)^2;

> (1 + 3 x + 3 x^2 + x^3)/(1 + 2 x + 2 y + 2 x y + x^2 + y^2)

[105] (x^2)^(1/2);

> x

[106] pickbranch := 1=2;

> #f

[107] (x^2)^(1/2);

> x

[108] pickbranch? := 1=2;

> #f

[109] (x^2)^(1/2);

> (x^2)^(1/2)

[110] solve(x^2 == 4 a, x);

125

{ x==-2 a^(1/2),

x==2 a^(1/2) }

[111] [3,p] + [2, abs q];

[5, p + abs q]

[112] log(200,10);

2 + log(2, 10)

[113] logexpd(ln(x y^2/z), 15);

ln x + 2 ln y - ln z

[114] sin(11 pi/15);

(7/16 - 5^(1/2)/16 + (30 - 6 5^(1/2))^(1/2)/16)^(1/2)

[115] dif(a x^3, x);

3 a x^2

[116] integral(4 + a x^2, x);

4 x + a x^3/3 + ARB(1)

Bibliography

[1] WINKLER, F. Polynomial algorithms in computer algebra. Springer-Verlag, 1996.

[2] BUCHBERGER, B., COLLINS, G. E., LOOS, R. (Eds.). Computer algebra, symbolic

and algebraic computation. 2nd. ed. Springer, 1983.

[3] WHITEHEAD, A. N., RUSSELL, B. Principia mathematica. Cambridge University

Press, 1925. v. 1, Cap. Appendix 3.

[4] DILLER, A. Compiling functional languages. John Willey & Sons Ltda, 1988.

[5] RUSSEL, B. Logic and knowledge: Essays. George Allen & Unwin, 1956.

[6] PLASMEIJER, R., VAN EEKELEN, M. The Clean language report, version 2.1. Techni-

cal report, University of Nijmegen, 2002.

[7] NILSSON, N. J. Principles of artificial intelligence. Morgan Kaufmann, 1980. p. 35–47.

[8] CHANG, C. M. Mathematical analysis in engineering. Cambridge University Press,

1994.

[9] HEARN, A. Reduce: A user-oriented interactive system for algebraic simplification. In:

KLERER, M., REINFELDS, J. (Eds.) Interactive Systems for Experimental Applied

Mathematics. : Academic Press, 1968. p. 79–80.

[10] BRACKX, F., CONSTALES, D. Computer algebra with lisp and reduce. Kluwer Aca-

demic Publishers, 1992.

126

BIBLIOGRAPHY 127

[11] ANDERSSON, G. Applied mathematics with maple. Chartwell-Bratt, 1997.

[12] ARNEY, D. C. Exploring calculus with derive. Addison-Wesley Publishing Company,

1992.

[13] BRADLEY, G. L., SMITH, K. J. Calculus. Prentice Hall, 1995.

[14] ANDREW, A. D., CAIN, G. L., CRUM, S., MORLEY, T. D. Calculus projects using

mathematica. McGraw-Hill, 1996.

[15] LIANG, S., HUDAK, P., JONES, M. Monad transformers and modular interpreters. In:

Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Prici-

ples of Programming Languages. San Francisco, CA: ACM Press, January 1995.

[16] JONES, S. P. Explicit quantification in haskell. http://research.microsoft.com/

users/simonpj/Haskell/quantification.html, February 2007.

[17] LEWIS, J., SHIELDS, M., MEIJER, E., LAUNCHBURY, J. Implicit parameters: Dy-

namic scoping with static types. 27th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL’00), 2000.

[18] WADLER, P. How to replace failure by a list of successes: A method for exception

handling, backtracking, and pattern matching in lazy functional languages. In: Proc. of

2nd International Conference on Functional Programming Languages and Computer

Architecture. Nancy, France: Springer-Verlag, 1985. p. 113–128.

[19] JONES, S. P., MARLOW, S., ELLIOTT, C. Stretching the storage manager: weak pointers

and stable names in haskell. IFL, 1999.

[20] MECHVELIANI, S. Docon: the algebraic domain constructor. http://haskell.org/

docon/, February 2007.

[21] KLERER, M., REINFELDS, J. (Eds.). Interactive systems for experimental applied math-

ematics. New York: Academic Press, 1968.

http://research.microsoft.com/users/simonpj/Haskell/quantification.html
http://research.microsoft.com/users/simonpj/Haskell/quantification.html
http://haskell.org/docon/
http://haskell.org/docon/

128 BIBLIOGRAPHY

[22] JONES, M. P., JONES, S. P. Lightweight extensible records for haskell. Proceedings of

the 1999 Haskell Workshop, October 1999.

[23] NORDLANDER, J. Polymorphic subtyping in o’haskell. In: Science of Computer Pro-

gramming. : Elsevier, 2002. v. 43, p. 93 – 127. Extended version.

[24] DAVIE, A. J. T. Algebraic formula manipulation in a functional language: A first attempt.

Functional Programming, 1995.

Livros Grátis
(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas

http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1

Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo

http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1

