Download PDF
ads:
UNIVERSIDADE FEDERAL DE SANTA MARIA
CENTRO DE CIÊNCIAS NATURAIS E EXATAS
PROGRAMA DE PÓS-GRADUAÇÃO EM BIOQUÍMICA
TOXICOLÓGICA
EXPOSIÇÃO MATERNA AO DITELURETO
DE DIFENILA CAUSA ALTERAÇÕES
COMPORTAMENTAIS E BIOQUÍMICAS EM
FILHOTES DE RATO
TESE DE DOUTORADO
Eluza Curte Stangherlin
Santa Maria, RS, Brasil
2007
PDF created with pdfFactory trial version www.pdffactory.com
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
2
EXPOSIÇÃO MATERNA AO DITELURETO
DE DIFENILA CAUSA ALTERAÇÕES
COMPORTAMENTAIS E BIOQUÍMICAS EM
FILHOTES DE RATO
por
Eluza Curte Stangherlin
Tese apresentada ao Programa de Pós-Graduação em Bioquímica Toxicológica,
Área de Concentração em Bioquímica Toxicológica, da Universidade Federal de
Santa Maria (UFSM, RS), como requisito parcial
para a obtenção do grau de
Doutora em Bioquímica Toxicológica.
Orientadora: Dra. Cristina Wayne Nogueira
Santa Maria, RS, Brasil
2007
PDF created with pdfFactory trial version www.pdffactory.com
ads:
3
UNIVERSIDADE FEDERAL DE SANTA MARIA
CENTRO DE CIÊNCIAS NATURAIS E EXATAS
PROGRAMA DE PÓS-GRADUAÇÃO EM BIOQUÍMICA
TOXICOLÓGICA
A Comissão Examinadora, abaixo assinada,
aprova a Tese de Doutorado
EXPOSIÇÃO MATERNA AO DITELURETO DE DIFENILA CAUSA
ALTERAÇÕES COMPORTAMENTAIS E BIOQUÍMICAS EM
FILHOTES DE RATO
elaborada por
Eluza Curte Stangherlin
como requisito parcial para a obtenção do grau de
Doutora em Bioquímica Toxicológica
COMISSÃO EXAMINADORA:
_________________________________________
Cristina Wayne Nogueira, Dra. (Orientadora)
_________________________________________
Diogo Onofre Gomes de Souza, Dr. (UFRGS)
________________________________________
Luiz Valmor Cruz Portela, Dr. (UFRGS)
_________________________________________
Aldo Bolten Lucion, Dr. (UFRGS)
_________________________________________
Susana Tchernin Wofchuk, Dra. (UFRGS)
Santa Maria, 28 de agosto de 2007.
PDF created with pdfFactory trial version www.pdffactory.com
4
À Yasmin,
minha filha amada
PDF created with pdfFactory trial version www.pdffactory.com
5
AGRADECIMENTOS
Agrado à Deus, por estar sempre ao meu lado, por ter criado a ciência e tudo mais que
nos cerca.
Aos meus pais, pelo exemplo de responsabilidade, amor e dedicação que norteiam a
minha vida. A vos, que sacrificaram os seus sonhos em favor dos meus, não sei se palavras
conseguiriam traduzir o que eu sinto! Muito obrigado, eu amo muito vos!
Ao Alberto, minha porção melhor, meu chão, por existir, pelo amor incondicional, pelo
carinho, pelo apoio e por ter me dado o melhor presente do mundo, nossa filha Yasmin. À
Yasmin, minha razão de viver. Ao Bruno, pelo carinho e pela paciência comigo.
À Cadinha e ao Marcos, ao Fi e a Ana, por fazerem parte da minha família, pelo
companheirismo, pelo ombro amigo, em todas as horas, amo muito vos também!
Aos meus orientadores, Cris e GZ por me darem a oportunidade de tentar ser alguém,
por acreditarem nos meus sonhos, e por serem pessoas tão maravilhosas, compreensivas e
dedicadas. Agrado por terem me ensinado muito mais do que eu poderia imaginar. Muito
obrigado a vos, meus amigos...
À Cristiane, à Fran, à Ana Ardais, à Simone Pinton, à Aninha e à Bibi, pelo
companherismo, humor, trabalho e principalmente pela amizade.
À todo o pessoal do laboratório, em especial à Marina, à Ethel, ao Ricardo, ao Cristiano
e à Lucielli.
À Nilda e ao Prof. João Batista, pelo apoio, pelo exemplo de trabalho, de dedicação e
pela sabedoria.
Ao pessoal dos laboratórios dos Professores João, Gilson e Braga, por terem
compartilhado os momentos especiais.
À CAPES, pela bolsa concedida. À UFSM, pela infra-estrutura e pela qualidade do
ensino público e gratuito, fundamental para a minha formação profissional e pessoal.
PDF created with pdfFactory trial version www.pdffactory.com
6
Aprendi que para crescer como
pessoa eu preciso me cercar de
gente mais inteligente do que eu.
Willian Shakespeare
PDF created with pdfFactory trial version www.pdffactory.com
7
RESUMO
Tese de Doutorado
Programa de Pós-Graduação em Bioquímica Toxicológica
Universidade Federal de Santa Maria
EXPOSIÇÃO MATERNA AO DITELURETO DE DIFENILA CAUSA
ALTERAÇÕES COMPORTAMENTAIS E BIOQUÍMICAS EM
FILHOTES DE RATO
AUTORA: ELUZA CURTE STANGHERLIN
ORIENTADORA: CRISTINA WAYNE NOGUEIRA
Data e Local da Defesa: Santa Maria, 28 de agosto de 2007.
O rebro de roedores apresenta um rápido desenvolvimento após o nascimento. Sendo
assim, o funcionamento do sistema nervoso pode ser alterado pela ação de xenobióticos
durante esse período. As alterões podem ser avaliadas pelo desempenho dos animais em
vários testes comportamentais, os quais são as manifestões finais das funções neurais ou
ainda pela análise de parâmetros bioquímicos. O xenobiótico alvo desse estudo é um
composto orgânico que contém o elemento telúrio na sua estrutura, o ditelureto de difenila.
Esse estudo teve como objetivo avaliar o efeito da exposição materna ao ditelureto de difenila,
durante o período de amamentação, sob aspectos comportamentais e bioquímicos, nos filhotes
de ratos. Os resultados obtidos revelaram tendências comportamentais desinibitórias,
determinadas pelo desempenho dos animais no labirinto em cruz-elevado. Os resultados
obtidos revelaram, ainda, que os animais expostos ao ditelureto de difenila apresentaram um
prejuízo cognitivo, observado no teste do reconhecimento do objeto. Sendo assim, sugere-se
que esse composto consegue passar para os filhotes através do leite materno, provavelmente
por ter uma natureza lipídica. Uma vez nos tecidos do filhote, ele tem a capacidade de injuriar
o tecido cerebral, a ponto de causar alterões que se revelam nas mudanças comportamentais
observadas. A investigação dos possíveis mecanismos pelos quais o ditelureto de difenila atua
revelou que ele causou uma inibição da captação de glutamato em sinaptossomas de rebro
total e não interferiu no processo de liberação de glutamato, no mesmo ensaio. Esses eventos
poderiam promover um aumento de glutamato na fenda sináptica. Porém, o favorecimento da
neurotransmissão glutamatérgica parece estar mais relacionado com eventos inibitórios ou
ainda, de facilitação dos processos relacionados com a cognição/memória, ou seja,
comportamentos contrários aos observados nesse estudo. Dessa forma, a alteração da
homeostase do sistema glutamatérgico ocasionada pelo ditelureto de difenila parece não estar
diretamente relacionada com as alterões comportamentais observadas. Ainda, foi observada
uma inibição na atividade da enzima Na
+
,K
+
-ATPase cerebral. Vários estudos relacionam a
inibição da atividade da Na
+
,K
+
-ATPase com o prejuízo da memória. Sendo assim, esse é um
dos prováveis mecanismos relacionados com o prejuízo cognitivo dos animais. Além disso, a
avaliação bioquímica revelou que a exposição ao ditelureto de difenila causou uma série de
alterões no status oxidativo cerebral dos filhotes. As estruturas cerebrais mais afetadas
foram o hipocampo e o estriado. Nessas regiões, foi observado um aumento da peroxidação
lipídica e uma inibição da atividade das enzimas superóxido dismutase, catalase e δ-
aminolevulinato desidratase. Provavelmente a inibição da atividade das enzimas foi uma
conseência do estresse oxidativo. Ainda, no estriado houve um aumento dos níveis de ácido
ascórbico e de grupos tióis não-protéicos. No córtex, por sua vez, houve um aumento somente
PDF created with pdfFactory trial version www.pdffactory.com
8
dos níveis de grupos tióis não-protéicos. O aumento dos níveis desses dois antioxidantes não-
enzimáticos pode ter sido uma resposta adaptativa dos tecidos cerebrais ao estresse. Sendo
assim, as alterões oxidativas localizadas estão entre os prováveis mecanismos envolvidos
nas alterões comportamentais observadas. Isso porque o hipocampo e o estriado, as duas
regiões mais afetadas pelo estresse oxidativo, são as regiões mais relacionadas com
desinibição e cognição.
Palavras-chave: Ditelureto de difenila, estresse oxidativo, comportamento, rato.
PDF created with pdfFactory trial version www.pdffactory.com
9
ABSTRACT
Thesis of Doctors Degree
Federal University of Santa Maria, RS, Brazil
MATERNAL EXPOSURE TO DIPHENYL DITELLURIDE CAUSES
BEHAVIORAL AND BIOCHEMISTRY ALTERATIONS IN PUP RATS
AUTHOR: ELUZA CURTE STANGHERLIN
ADVISOR: CRISTINA WAYNE NOGUEIRA
Date and Place of the defense: Santa Maria, 2007
The brain of rodents presents a rapid development after birth. Thus, the functioning of
the nervous system can be modified by action of xenobiotics during this period. The
alterations can be evaluated by the performance of animals in several behavioral tests, which
are the end point of neural functions or still by analysis of biochemical parameters. Diphenyl
ditelluride, an organottelurium compound, was the xenobiotic target of this study. The
objective of the present was to evaluate the effects of maternal exposure to diphenyl
ditelluride, during the suckling period, in behavioral and biochemical parameters in rat pups.
The results obtained revealed disinhibitory tendencies, evidenced by performance of animals
in the elevated plus-maze. Data of this study also showed that animals exposed to diphenyl
ditelluride presented cognitive impairment, observed in the object recognition memory task.
Therefore, we assume that diphenyl ditelluride can pass for pups through maternal milk,
probably in view of its liposolubility. The investigation of the possible mechanisms of action
by which diphenyl ditelluride induced behavioral changes revealed that this compound
inhibited glutamate uptake and did not alter glutamate release in sinaptossomas of total brain.
These events could promote an increase of glutamate in the synaptic cleft. However, the
aiding of the glutamatergic neurotransmission seems to be more related to inhibitory events or
still, of facilitation of the processes related with the cognition/memory, that are, contrary
behaviors to the observed ones in this study. Thus, the alteration of the homeostasis of the
glutamatergic system caused by diphenyl ditelluride seems not to be directly related to the
observed behavioral alterations. An inhibition in the activity of cerebral Na
+
,K
+
-ATPase was
observed. Some studies have reported the inhibition of Na
+
,K
+
-ATPase activity with the
impairment of memory. Thus, this is one of the probable mechanisms related to the cognitive
impairment of animals. Moreover, the biochemistry evaluation revealed that the exposure to
diphenyl ditelluride caused a series of alterations in the cerebral oxidative status of the pups.
The most affected cerebral structures by oxidative stress were hippocampus and the striatum.
In these regions, it was observed an increase in lipid peroxidation and an inhibition of
enzymes superoxide dismutase, catalase and d-aminolevulinate dehydratase activities.
Probably the inhibition of the activity of these enzymes was a consequence of oxidative stress.
Striatum had an increase of the levels of ascorbic acid and non-protein thiols. An increase of
the levels of non-protein thiols was found only in the cortex. The increase of the levels of
these two non-enzymatic antioxidants can have been an adaptive response of cerebral tissues
to oxidative stress. The oxidative stress found in specific cerebral regions probably is
involved in the mechanisms by which diphenyl ditelluride caused behavioral alterations. In
PDF created with pdfFactory trial version www.pdffactory.com
10
fact, hippocampus and striatum, the most affected cerebral regions related to disinhibition and
cognition.
Keywords: Diphenyl ditelluride, oxidative stress, behavior, rat.
PDF created with pdfFactory trial version www.pdffactory.com
11
LISTA DE ILUSTRAÇÕES
Revisão Bibliográfica
Figura 1 Estrutura química do ditelureto de difenila.................................................... 18
Figura 2 Curva de Velocidade, comparando os índices relativos, durão e
tempo do processo desenvolvimental específico em rebro de ratos e humanos............. 20
Artigo 1
Figura 1 Structure of diphenyl ditelluride.................................................................... 35
Figura 2 Weight (g) of pups during the first 30 days postnatal..................................... 36
Figura 3 Effect of diphenyl ditelluride via maternal milk on on the coat-hanger
test.................................................................................................................................. 37
Artigo 2
Figure 1 - Behavioral analysis: object recognition task.................................................. 60
Figure 2 - Evaluation of exploratory preference on object recognition task in
young rats during Training, STM and LTM.................................................................... 60
Figure 3 - Evaluation of synaptosomal [
3
H]glutamate uptake of young rats
exposed to (PhTe)
2
......................................................................................................... 61
Figure 4 - Evaluation of synaptosomal [
3
H]glutamate release of young rats
exposed to (PhTe)
2
.......................................................................................................... 61
Figure 5 - Determination of Na
+
, K
+
-ATPase activity in brain of young rats
exposed to (PhTe)
2
.......................................................................................................... 62
Artigo 3
Figure 1 - Effect of exposure to (PhTe)
2
via maternal milk on TBARS levels in
cerebral structures of pups ............................................................................................. 79
Figure 2 - Effect of exposure to (PhTe)
2
via maternal milk on NPSH levels in
cerebral structures of pups ............................................................................................. 79
Figure 3 - Effect of exposure to (PhTe)
2
via maternal milk on ascorbic acid levels
in cerebral structures of pups ......................................................................................... 80
PDF created with pdfFactory trial version www.pdffactory.com
12
Figure 4 - Effect of exposure to (PhTe)
2
via maternal milk on catalase activity in
cerebral structures of pups ............................................................................................. 80
Figure 5 - Effect of exposure to (PhTe)
2
via maternal milk on SOD activity in
cerebral structures of pups ............................................................................................. 81
Figure 6 - Effect of exposure to (PhTe)
2
via maternal milk on δ-ALA-D activity
in cerebral structures of pups.......................................................................................... 81
PDF created with pdfFactory trial version www.pdffactory.com
13
LISTA DE TABELAS
Artigo 1
Tabela 1 - Biohavioral evaluation of diphenyl ditelluride via maternal milk on T-
maze, open-field and rotorod tasks.................................................................................. 37
Tabela 2 - Effect of diphenyl ditelluride via maternal milk on exploratory activity
of pups in the elevated plus-maze................................................................................... 38
Tabela 3 - Ratio of entries in open arms/total, entries in closed arms/total and
time spent in open arms/total of diphenyl ditelluride exposure, via maternal milk,
on exploratory activity of pups in the elevated plus-maze................................................ 38
PDF created with pdfFactory trial version www.pdffactory.com
14
LISTA DE ABREVIATURAS
δ-ALA-D- delta aminolevulinato desidratase ou porfobilinogênio sintase
(PhTe)
2
- ditelureto de difenila
ALA - ácido 5-aminolevulínico ou ácido delta-aminolevulínico
AMPA ácido α-amino-3-hidroxi-5-metil-4-isoxazol-propiônico
ANOVA - análise de variância
CAT enzima catalase
DL
50
- dose letal para 50 % dos animais
DNA ácido desoxirribonucléico
EROs- espécies reativas de oxigênio
GPx- enzima glutationa peroxidase
GSH- glutationa reduzida
KA ácido caínico
LTM memória de longo prazo (long-term memory)
mGluR- receptores glutamatérgicos metabotrópicos
Mk-801- (+)-5-metil-10,11-diidro-5H-dibenzo[a,d]ciclohepten-5,10-imina ou dizolcilpina
NMDA- N-metil-D-aspartato
PBG porfobilinogênio
rpm rotões por minuto
SNC- sistema nervoso central
SOD enzima superóxido dismutase
STM memória de curto prazo (short-term memory)
NPSH grupos tióis não-protéicos
PDF created with pdfFactory trial version www.pdffactory.com
15
SUMÁRIO
APRESENTAÇÃO..................................................................................... 17
1. INTRODUÇÃO...................................................................................... 18
2. REVISÃO BIBLIOGFICA .............................................................. 19
2.1 Desenvolvimento Cerebral.................................................................. 19
2.2 Análise Comportamental .................................................................... 21
2.2.1 Campo aberto (open-field)............................................................... 21
2.2.2 Cilindro giratório (rotarod)............................................................... 21
2.2.3 Malabarismo (coat-hanger)........................................................... 22
2.2.4 Labirinto em T (T-maze”).............................................................. 22
2.2.5 Labirinto em cruz elevado (elevated plus-maze”)........................... 22
2.2.6 Reconhecimento ao objeto................................................................... 23
2.3 Estresse oxidativo................................................................................ 23
2.3.1 Defesas Antioxidantes......................................................................... 24
2.4 Enzima delta-aminolevulinato desidratase (δ-ALA-D)..................... 24
2.5 Enzima Na
+
,K
+
,ATPase....................................................................... 25
2.6 Glutamato ........................................................................................... 26
2.7 Organocalcogênios............................................................................... 27
2.7.1 Telúrio ................................................................................................ 28
2.7.1.1 Potencial farmacológico................................................................... 28
2.7.1.2 Propriedades toxicológicas............................................................... 29
2.7.1.3 O telúrio e a toxicidade desenvolvimental........................................ 31
3. OBJETIVOS........................................................................................... 32
4. ARTIGO E MANUSCRITOS CIENTÍFICOS
4.1 Artigo 1: Exposure of mothers to diphenyl ditelluride during
the suckling period changes behavioral tendencies in their
offspring...................................................................................................... 33
PDF created with pdfFactory trial version www.pdffactory.com
16
4.2 Manuscrito 1: Diphenyl ditelluride
induces impairment of
recognition memory ................................................................................... 41
4.3 Manuscrito 2: Exposure to diphenyl ditelluride, via maternal
milk, causes oxidative stress in cerebral cortex, hippocampus and
striatum of rat pups .................................................................................. 63
5. DISCUSSÃO........................................................................................... 82
6. CONCLUSÕES ...................................................................................... 85
7. REFERÊNCIAS BIBLIOGFICAS.................................................. 86
8. APÊNDICE
A- Demais trabalhos desenvolvidos durante o Curso de Doutorado.............. 97
PDF created with pdfFactory trial version www.pdffactory.com
17
APRESENTAÇÃO
Os resultados que fazem parte desta tese estão apresentados sob a forma de artigos, os
quais se encontram no item ARTIGO E MANUSCRITOS CIENTÍFICOS. As sões
Materiais e Métodos, Resultados, Discussão dos Resultados e Referências Bibliográficas
encontram-se nos próprios artigos e representam a íntegra deste estudo.
Os itens DISCUSSÃO E CONCLUSÕES, encontrados no final desta tese, apresentam
interpretões e comentários gerais sobre o artigo e os manuscritos científicos contidos neste
trabalho.
As REFERÊNCIAS BIBLIOGRÁFICAS referem-se somente às citões que
aparecem nos itens INTRODUÇÃO, REVISÃO BIBLIOGRÁFICA, e DISCUSSÃO desta
tese.
No item APÊNDICE encontram-se os demais trabalhos desenvolvidos durante o Curso
de Doutorado.
PDF created with pdfFactory trial version www.pdffactory.com
18
1. INTRODUÇÃO
O rebro é sensível à influência de fatores ambientais durante os primeiros períodos de
desenvolvimento, tais como a gestação e a lactação. O rebro de roedores, em particular,
apresenta um rápido desenvolvimento após o nascimento, caracterizado por uma intensa
síntese de proteínas e de ácido desoxirribonucléico (DNA). Dentro deste contexto, o
funcionamento normal do sistema nervoso pode ser alterado pela ação de xenobióticos. Essas
alterões podem ser avaliadas pelo desempenho dos animais em vários testes
comportamentais, os quais são as manifestões finais das funções neurais. Pela análise
comportamental podem ser identificadas, por exemplo, alterões na atividade motora
espontânea, na coordenação motora, no estado de ansiedade e na memória dos animais. Outra
forma de avaliar as conseências de uma intervenção química (como é o caso do uso de
xenobióticos) sobre o desenvolvimento normal do rebro jovem é analisar parâmetros
bioquímicos nesse tecido. Seguindo esse raciocínio, várias são as ferramentas experimentais
validadas na literatura para tal fim: (a) avalião do status oxidativo, (b) determinação da
atividade da enzima Na
+
,K
+
,ATPase, como marcador cerebral e (c) determinação de
parâmetros glutamatérgicos. Nesse contexto, o glutamato é importante por ser o principal
neurotransmissor excitatório do SNC. Ele é encontrado em altas concentrões no rebro de
mamíferos e está envolvido em vários processos fisiológicos, tais como o aprendizado, a
memória e a formação de redes neuronais durante o desenvolvimento.
O xenobiótico alvo desse estudo é um composto orgânico que contém o elemento
químico telúrio na sua estrutura, o ditelureto de difenila (Figura 1). Como o telúrio pertence
ao grupo dos calcogênios (grupo 16) da tabela periódica, compostos orgânicos contendo esse
elemento podem ser chamados genericamente de organocalcogênios. Compostos dessa
natureza são reagentes muito utilizados em laboratórios de química como intermediários em
reações de síntese orgânica. Recentemente, em virtude do uso de compostos contendo telúrio
em diversos níveis industriais, inclusive na nanotecnologia, o risco de contaminação
ocupacional motiva estudos toxicológicos. Os organocalcogênios podem afetar um grande
número de processos neurais, e, além disso, se sabe que o ditelureto de difenila pode ser
potencialmente teratogênico. Sendo assim, torna-se interessante o estudo dos efeitos desse
organocalcogênio sobre o rebro em desenvolvimento.
Figura 1 Estrutura química do ditelureto de difenila.
PDF created with pdfFactory trial version www.pdffactory.com
19
2. REVISÃO BIBLIOGFICA
2.1 Desenvolvimento Cerebral
O termo desenvolvimento cerebral é freentemente confundido na literatura com
crescimento total ou ganho no peso total do cérebro. O desenvolvimento cerebral inclui a
síntese de componentes celulares em paralelo à neurogênese e à gliogênese, migração de
neurônios e células gliais, e diferenciação celular com aumento no tamanho da célula
(Morgane, 2002). Todos estes processos são o resultado de várias reações químicas, incluindo
passos críticos e limitantes.
A maturação do sistema nervoso e desenvolvimento da capacidade cognitiva dependem
de três fatores essenciais: potencial genético do indivíduo, estimulação ambiental e nutrição
adequada. Alterões no desenvolvimento cerebral pré-natal em humanos, a partir de um ou da
combinação desses fatores, pode resultar em vários graus de disfunção cerebral (Morgane et al,
2002). Os dois maiores tipos de desordens envolvendo o desenvolvimento do SNC são:
patologias causadas por lesões ou agentes tóxicos (resultando em processos destrutivos, com
rápido crescimento e diferenciação) e desordens causadas por nutrição inadequada,
considerando que nutrientes em quantidades apropriadas são essenciais para a formação celular
e organização tecidual (Morgane et al., 2002).
Além disso, o crescimento de um órgão, incluindo o rebro, ocorre por aumento no
número de células (hiperplasia), aumento no tamanho das células (hipertrofia) ou por ambos
os fenômenos. Entretanto, o rebro não é um órgão homogêneo e o tempo de duração destas
três fases difere nas várias regiões. Estas apresentam diferentes tipos celulares com
características específicas de divisão e de possível migração para outros locais do sistema
nervoso central (Winick, 1970). Portanto, a maturação do rebro envolve uma série de fases
que se sobrepõem temporariamente, em seência precisa, as quais são diferentes nas várias
regiões cerebrais e dentro de uma região particular, além de variar de uma espécie animal para
outra (Morgane, 2002).
No rato, a hiperplasia neuronal prevalece na vida pré-natal, ocorrendo principalmente
durante a última semana de gestação (Dobbing e Sands, 1971). A neurogênese pós-natal é
pequena quantitativamente, com produção de microneurônios com axônios curtos,
especialmente no córtex cerebelar e hipocampo (Altman e Das, 1966; Croskerry et al., 1973).
As células gliais apresentam proliferação pós-natal principalmente, ocorrendo durante o
período de lactação (Figura 2). A mielinização, no rato, se dá principalmente nas duas semanas
PDF created with pdfFactory trial version www.pdffactory.com
20
iniciais de vida, quando declina abruptamente aos níveis adultos (Davidson e Dobbing, 1966).
A sinaptogênese no rebro do rato ocorre principalmente entre o 7º e 21º dia de vida pós-natal,
podendo diferir de região a região. O aumento nos contatos sinápticos e a diferenciação destas
conexões representam o como do desenvolvimento químico e funcional do sistema nervoso
central.
Figura 2 Curva de Velocidade, comparando os índices relativos, duração e tempo do processo
desenvolvimental específico em cérebro de ratos e humanos. As curvas de rápido crescimento cerebral (índices
de mudança no peso cerebral) são sobrepostas em relação aos eventos desenvolvimentais no rebro. Note que a
gênese precoce de astroglia e células piramidais em humanos, resultando na aquisição de aproximadamente 27%
do peso cerebral adulto no tempo do nascimento, comparado à aproximadamente 12% do peso cerebral adulto
visto em ratos ao nascimento. A curva de rápido crescimento cerebral em ratos é alterada para a direita,
comparado aos humanos. Fonte: adaptado de Morgane et al., 2002.
Sendo assim, o rebro é extremamente sensível à influência de fatores ambientais
durante os primeiros períodos de desenvolvimento, tais como a gestação e a lactação
(Almeida et al., 1996; Annau e Cuomo, 1988; Rice, 1999; Rocha e Vendite, 1990). O rebro
de roedores apresenta rápido desenvolvimento após o nascimento caracterizado por uma
intensa síntese de proteínas e de DNA (Gottlieb et al., 1977). Desse modo, o rebro é
sensível a alterões no seu desenvolvimento, provocadas por fatores externos durante os
PDF created with pdfFactory trial version www.pdffactory.com
21
períodos de rápido crescimento cerebral, após o nascimento (Annau e Cuomo, 1988; Rice,
1999; Rocinholi et al., 1997).
2.2 Análise Comportamental
O funcionamento normal do sistema nervoso pode ser alterado pela ação de
xenobióticos. Essas alterões podem ser avaliadas pelo desempenho dos animais em vários
testes comportamentais (Genn et al., 2003; Graeff et al., 1998; Lalonde et al., 2003), que são
as manifestões finais das funções neurais.
2.2.1 Campo aberto (“open-field)
O teste do campo aberto é uma medida da atividade motora espontânea e atividade
exploratória dos animais. O aparato consiste em uma arena quadradra (45 x 45 cm) dividida
em nove quadrantes. Cada animal é colocado individualmente no centro da arena e o número
de segmentos atravessados (com todas as patas) é registrado durante um período de quatro
minutos. Esse procedimento é repetido no dia seguinte. A exploração é um comportamento
muito importante, onde o animal capta informações a respeito do ambiente que o cerca. As
informões adquiridas são essenciais para a preservação da vida desse animal (Sutherland e
Rudy, 1989).
2.2.2 Cilindro giratório (rotarod)
Esse é um teste comportamental que mede a coordenação motora dos animais.
Consiste de um cilindro (7,5 cm de diâmetro) que gira a uma velocidade de 10 rpm. Os
animais são colocados em cima do cilindro e o aparelho é ligado. O movimento locomotor é
forçado no sentido de que se os animais não se movimentarem, eles caem do aparelho.
Durante a realização do teste (que tem uma duração de quatro minutos por animal), são
registrados o tempo que o animal leva para cair pela primeira vez (após, ele é imediatamente
recolocado em cima do cilindro) e o número de quedas durante o tempo de observação do
teste.
PDF created with pdfFactory trial version www.pdffactory.com
22
2.2.3 Malabarismo” (coat-hanger)
Esse é um teste comportamental que também mede a coordenação motora dos animais.
O aparelho consiste em um fio de aço horizontal (2 mm diâmetro x 40 cm comprimento),
dividido em oito segmentos e suspenso a cerca de 50 cm de altura. Em cada uma das
extremidades do fio se encontra uma plataforma. Os animais são colocados no centro do fio e
o tempo para que atinjam uma das plataformas ou o tempo que levam para cair do aparelho,
bem como o número de segmentos atravessados é registrado. Alterões no desempenho dos
animais nesse teste são compatíveis com disfunções cerebelares (Lalonde e Strazielle, 1999).
2.2.4 Labirinto em T (T-maze)
É também chamado de teste da alternação espontânea. Consiste de um labirinto em
formato de T, com dois bros (com 30 cm de comprimento) perpendiculares a um eixo
central (com 45 cm de comprimento). Os animais são colocados na extremidade do eixo
central, contrária aos bros. A latência decorrida até o animal atingir uma das extremidades
de um dos bros é registrada e o animal é então retirado do aparelho. Passados dez segundos,
o mesmo animal é testado novamente nas mesmas condições experimentais. Nesse teste se
avalia a tendência natural que animal tem em alternar para o lado desconhecido conforme a
repetição do teste. Esse é, portanto, um teste que mede a atividade exploratória dos animais. A
alternação espontânea é uma conseência de processos cerebrais que se desenvolvem entre a
segunda e a quarta semana de vida pós-natal (Egger et al., 1973). Alterões na performance
dos animais nesse teste são compatíveis com retardo psicomotor (Lalonde e Strazielle, 1999).
2.2.5 Labirinto em cruz elevado (elevated plus-maze)
Esse é um teste que avalia a ansiedade dos animais. O aparato consiste de quatro
bros (comprimento: 50 cm, largura: 10 cm) que se cruzam em uma área comum, elevados a
50 cm do chão. Dois dos bros são fechados (com três paredes de 50 cm de altura) e os
outros dois são abertos (sem paredes). Os animais são colocados para explorarem o aparato
por cinco minutos. O número de entradas e o tempo gasto nos bros abertos e fechados são
registrados. Esse é um teste amplamente usado para avaliação da ansiedade em modelos
animais. E o aparato é farmacologicamente e etologicamente validado na literatura (Pellow et
al., 1985). Nesse contexto, é avaliada a aversão natural que as animais têm ao espo elevado.
PDF created with pdfFactory trial version www.pdffactory.com
23
Além disso, eles ficam explorando os bros ansiogênicos (abertos, ou área aversiva”) ou os
bros seguros (fechados). Uma interpretão alternativa para o desempenho dos animais que
exploram mais os bros abertos é que eles podem estar mais desinibidos (Almeida et al.,
1996; Lalonde et al., 2003; 2004). Do ponto de vista etológico, tendências desinibitórias
excessivas podem não ser adaptativas e potencialmente expor o animal a situões de perigo.
Além disso, esses paradigmas de alterões comportamentais podem ser interpretados mais
em termos de impulsividade do que em termos de alterões no estado de ansiedade.
2.2.6 Reconhecimento do objeto
Esse teste avalia o desenvolvimento de memória de curto prazo (STM short-term
memory) e de longo prazo (LTM long-term memory). Está baseado na capacidade que os
animais possuem de reconhecer objetos familiares e novos objetos. É uma ferramenta
experimental que avalia as funções neurais induzidas por drogas ou modificadas
geneticamente, e é um teste de memória não aversivo, não espacial (Puma et al., 1999;
Rampon et al., 2000).
2.3 Estresse Oxidativo
Durante o metabolismo basal das células aeróbicas normais existe uma produção
constante de espécies reativas de oxigênio (ERO), acompanhada pela sua contínua inativação
através da ação de antioxidantes, de forma a manter a integridade estrutural e funcional das
biomoléculas. A extensão e o tipo de dano causado pelos ERO dependem da quantidade e da
natureza dos mesmos, bem como das defesas antioxidantes celulares (Davies, 1991).
O desequilíbrio entre os fenômenos pró-oxidativos e as defesas antioxidantes celulares
pode desencadear mudanças fisiológicas, denominadas genericamente de estresse oxidativo
(Croft, 1998). Este pode estar relacionado com vários processos deletérios, tais como:
mutagênese, carcinogênese, peroxidação lipídica, oxidação e fragmentação de proteínas e
carbohidratos (Sies, 1986).
PDF created with pdfFactory trial version www.pdffactory.com
24
2.3.1 Defesas Antioxidantes
Halliwell e Gutteridge (1990) definem como antioxidante qualquer substância que,
quando presente em baixas concentrões, comparadas a de um substrato oxidável, retarda ou
inibe significativamente a oxidação deste substrato. Esta definição compreende compostos de
natureza enzimática e não enzimática. Assim, por diferentes mecanismos, as ERO são
inativadas de forma a impedir reações oxidativas posteriores de propagação (Sies, 1993).
Entre as principais enzimas responsáveis pela defesa antioxidante do organismo
destacam-se a superóxido dismutase (SOD), a catalase (CAT) e a glutationa peroxidase
(GPx), que constituem a primeira defesa endógena de neutralização das ERO. Com isso, as
células tentam manter baixas as quantidades do radical superóxido e de peróxidos de
hidrogênio, evitando assim, a formação do radical hidroxil (Boveris e Cadenas, 1997).
A SOD, presente na quase totalidade dos organismos eucarióticos, catalisa a
dismutação do radical/ânion superóxido (O
2
-
) em peróxido de hidrogênio (H
2
O
2
)
(McCord e
Fridovich, 1969). O H
2
O
2
por sua vez é degradado pela ação da CAT ou GPx, resultando em
água e oxigênio molecular (O
2
)
(Farber, 1990).
Entre os antioxidantes não enzimáticos destaca-se o ácido ascórbico (vitamina C), que
tem-se mostrado eficiente contra as ERO (Rose, 1987). O ácido ascórbico age protegendo
biomembranas contra a peroxidação, e perpetuando desta forma, a atividade do α-tocoferol,
um antioxidante não enzimático lipossolúvel. O ácido ascórbico é um dos antioxidantes mais
importantes em tecidos de maferos (Banhegyi et al., 1997), sendo ele eficiente na redução
da toxicidade de vários xenobióticos (Chakraborty et al., 1978; Chatterjee e Rudra Pal, 1975).
2.4 Enzima delta-aminolevulinato desidratase (δ-ALA-D)
A enzima citoplasmática delta-aminolevulinato desidratase (δ-ALA-D, E.C.4.2.1.24),
também conhecida como porfobilinogênio sintase ou 5-aminolevulinato hidroliase foi isolada
na década de 50 (Dresel e Falk, 1953). Esta enzima catalisa a condensação assimétrica de
duas moléculas de ácido delta-aminolevuliníco (ácido 5-aminolevulínico, ALA), com perda
de duas moléculas de água, para formar o composto monopirrólico porfobilinogênio (PBG)
(Jaffe, 1995). A reação catalisada pela δ-ALA-D faz parte da rota biossintética dos compostos
tetrapirrólicos (corrinas, bilinas, clorofilas e hemes). A grande importância destes compostos
reside na sua função como grupos prostéticos de proteínas. O heme (ferroprotoporfirina) faz
PDF created with pdfFactory trial version www.pdffactory.com
25
parte da estrutura de proteínas que participam do transporte de oxigênio (hemoglobina e
mioglobina), transporte de elétrons (citocromos a, b e c), biotransformação de xenobióticos
(citocromo P
450
) e do sistema de proteção contra peróxidos (catalases e peroxidases) (Jaffe,
1995). A via para a biossíntese de porfirinas é semelhante em bactérias, vegetais e animais,
favorecendo a ampla distribuição da δ-ALA-D na natureza (Rodrigues, 1987).
A δ-ALA-D é uma enzima de natureza sulfidrílica que pode ser inibida na presença de
agentes oxidantes, como por exemplo os compostos orgânicos contendo telúrio e selênio
(Barbosa et al., 1998; Maciel et al., 2000; Farina et al., 2001), que podem inibir a atividade
desta enzima por oxidarem grupos sulfidrílicos. A inibição da δ-ALA-D pode prejudicar a
rota biossintética do heme, resultando em conseências patológicas (Sassa et al., 1989;
Goering, 1993). Além da redução na síntese do heme, a inibição desta enzima pode resultar
no acúmulo do substrato ALA no sangue, com conseente aumento na excreção urinária do
mesmo. O acúmulo de ALA pode estar relacionado com a superprodução de espécies reativas
de oxigênio (Pereira et al., 1992; Bechara et al., 1993). Além disso, o ALA gerado no fígado e
medula óssea pode atravessar a barreira hemato-encefálica, apresentando efeitos neurotóxicos
(Becker et al., 1971; Cutler et al., 1979).
2.5. Enzima Na
+
,K
+
,ATPase
A Na
+
,K
+
-ATPase (EC 3.6.1.37) é uma enzima de natureza sulfidrílica, sensível a
agentes oxidantes (Carfagna et al., 1996; Folmer et al., 2004). Ela se encontra embebida na
membrana celular e é responsável pelo transporte ativo dos íons sódio e potássio no sistema
nervoso. Sendo assim, sua ação regula as concentrões de Na
+
/K
+
, regulando, portanto, o
gradiente iônico através da membrana plasmática. Esse processo é requerido para as funções
vitais como co-transportes pela membrana, regulação do volume celular e excitabilidade
(Doucet, 1988; Jorgensen, 1986).
Essa enzima dimérica tem várias isoformas no rebro e consome grande parte da
energia disponível (Bertorello e Kats, 1995). Ela está presente em altas concentrões no
tecido cerebral, chegando a consumir cerca de 40 a 50 % de todo o ATP gerado nesse tecido.
(Erecinska e Silver, 1994). A inativação da Na
+
,K
+
-ATPase leva a uma despolarização parcial
da membrana, seguida de uma entrada excessiva de Ca
+
para dentro das lulas neuronais, o
que resulta em eventos tóxicos, tais como a excitotoxicidade (Beal et al., 1993).
PDF created with pdfFactory trial version www.pdffactory.com
26
2.6. Glutamato
As principais vias excitatórias do sistema nervoso central utilizam glutamato como
neurotransmissor (Ozawa et al., 1998; Meldrum et al, 1999). Na década de 50, foi demonstrado
pela primeira vez que o L-glutamato e outros aminoácidos, de ocorrência natural, estavam
envolvidos na excitação neuronal em cérebro de maferos (Collingridge e Lester, 1989;
Bennett e Balcar, 1999).
O glutamato é encontrado em altas concentrões (10 mM) nesse tecido e está envolvido
em vários processos fisiológicos, tais como o aprendizado, a memória e a formação de redes
neurais durante o desenvolvimento (Ozawa et al., 1998). Recentemente, estudos têm
relacionado alguns distúrbios psiquiátricos e doenças neurodegenerativas com alterões
periféricas e centrais na expressão e sensibilidade dos receptores glutamatérgicos ao glutamato
(Ferrarese et al., 2000, 2001; Berk et al., 2000).
Este aminoácido é sintetizado nos terminais pré-sinápticos, predominantemente a partir
de glutamina através da ação da enzima glutaminase, mas pode provir do α-cetoglutarato, via
glutamato desidrogenase e α-cetoglutarato aminotransferases (Kvamme et al., 1998). Um
aumento nas quantidades de glutamato na fenda sináptica pode levar à estimulação excessiva
dos receptores glutamatérgicos (excitotoxicidade) com conseente morte neuronal (Lipton e
Rosenberg, 1994). Entretanto, a ão excitatória do glutamato é finalizada através de sua
captação pelas células gliais ou pelos neurônios pré-sinápticos, onde é armazenado nas
vesículas sinápticas.
A captação do glutamato da fenda sináptica envolve dois sistemas de transporte: um
sistema de alta afinidade e dependente de Na
+
, localizado nas membranas pré-sinápticas e
gliais (Robinson e Dowd, 1997) e outro com baixa afinidade e independente de Na
+
, nas
membranas das vesículas sinápticas. A captação de glutamato apresenta uma função vital na
manutenção de altos níveis de precursores de glutamato e baixas concentrões extracelulares
deste neurotransmissor (Dichter e Wilcox, 1997).
O glutamato, uma vez armazenado, poderá ser liberado na fenda, desde que as
membranas pré-sinápticas sejam despolarizadas. Após sua liberação, o glutamato exerce suas
funções fisiológicas ativando os receptores localizados nas membranas pré e pós-sinápticas,
bem como nas membranas das células gliais (Meldrum et al., 1999).
Os receptores glutamatérgicos podem ser classificados de acordo com estudos
farmacológicos e moleculares, em dois grandes grupos: receptores ionotrópicos e
metabotrópicos (Dichter e Wilcox, 1997; Ozawa et al., 1998). Os receptores ionotrópicos são
PDF created with pdfFactory trial version www.pdffactory.com
27
canais iônicos que permeiam cátions através da membrana neuronal, desencadeando uma
resposta excitatória. Estes receptores são subdivididos em N-metil-D-aspartato (NMDA); ácido
α-amino-3-hidroxi-5-metil-4-isoxazol-propiônico (AMPA) e ácido caínico (KA), com base na
sua sensibilidade a agonistas específicos.
Os receptores NMDA medeiam a transmissão excitatória lenta, são canais com grande
permeabilidade ao Ca
2+
e baixa permeabilidade ao Na
+
e K
+
(Lipton e Rosemberg, 1994;
Ozawa et al., 1998). Esse receptor apresenta diversos sítios para ligantes que regulam a
abertura do canal: um sítio para o glutamato ou NMDA, um sítio para o co-agonista endógeno
glicina (insensível à estricnina), um sítio para a união de bloqueadores (MK-801) e sítios
modulatórios, tais como um sítio para o zinco, outro para as poliaminas, um sensível à
modulação redox (modulado por agentes oxidantes ou redutores) e um sensível a prótons
(Gozlan e Bem-Ari, 1995; Piggott et al., 1992; Euler e Liu, 1993; Ozawa et al., 1998).
Os receptores AMPA medeiam a neurotransmissão excitatória rápida e são canais com
grande permeabilidade a tions monovalentes (Na
+
e K
+
) e com baixa permeabilidade ao Ca
2+
(Dichter e Wilcox, 1997). Os receptores KA diferem da maioria dos receptores AMPA por
serem relativamente permeáveis aos íons Ca
2+
(Ozawa et al., 1998) e estão concentrados em
poucas áreas cerebrais, ao contrário dos AMPA, que apresentam ampla distribuição no SNC
(Scatton, 1993).
Os receptores metabotrópicos (mGluRs) estão associados a sistemas de segundos
mensageiros intracelulares (Conn e Pinn, 1997). Esses receptores são acoplados a proteínas G e
modulam a atividade de efetores intracelulares, tais como adenilato ciclase e fosfolipase C,
responsáveis pela produção de segundos mensageiros (Schoepp e Conn, 1993; Cotmann et al.,
1995). Os mGluRs estão envolvidos na participão da indução da plasticidade neuronal (Bliss
e Collinbridge, 1993). Entretanto, possuem papel importante na indução de convulsões e morte
neuronal (Tizzano et al., 1995; Nicoletti et al., 1996). Sua ativação pode promover efeitos
excitatórios e inibitórios (Ozawa et al., 1998).
2.7 Organocalcogênios
A partir da década de 30, os organocalcogênios têm sido alvo de interesse para os
químicos orgânicos em virtude da descoberta de aplicações sintéticas (Petragnani et al., 1976;
Comasseto, 1983) e de propriedades biológicas desses compostos (Parnham e Graf, 1991;
Kanda et al., 1999), que são importantes intermediários e reagentes utilizados em síntese
orgânica (Paulmier, 1986; Braga et al., 1996; 1997).
PDF created with pdfFactory trial version www.pdffactory.com
28
Conseentemente, o risco de contaminação ocupacional por organocalcogênios tem
motivado estudos toxicológicos. Outro aspecto relevante é a tentativa crescente de
desenvolvimento de compostos organocalcogênios que possuam atividades biológicas e
aplicações farmacológicas (Parnham e Graf, 1991; Nogueira et al., 2003a).
2.7.1 Telúrio
O elemento telúrio foi descoberto em 1782. Entretanto, a inclusão desse átomo em
moléculas orgânicas ocorreu no início do século XIX. No Brasil, a química de telúrio foi
introduzida pelo Prof. Reinbolt, o qual se dedicou ao estudo sistemático de compostos
orgânicos contendo telúrio e sua aplicabilidade como intermediários em síntese orgânica
(Petragnani, 1995; Comasseto et al., 1997; Zeni et al., 2003).
O telúrio é um elemento que pertence ao grupo 16 da tabela periódica, podendo
apresentar-se sob múltiplos estados de valência, que vão de –2 a +6 (apresenta-se sob quatro
estados de oxidação: telurato (Te
+6
), telurito (Te
+4
), telúrio elementar (Te
0
) e telureto (Te
-2
))
(Scansetti, 1992). Esse elemento é encontrado com maior frequência na forma de teluretos
com ouro, bismuto, chumbo e prata.
Telúrio elementar (Te
0
) é usado como componente de muitas ligas metálicas, na
composição da borracha, na indústria de microchips, de componentes eletrônicos e em
sistemas de energia fotovoltáica. Ele também é utilizado na produção industrial de vidro e
o, e como um aditivo anti-detonante na gasolina (Fairhill, 1969). O telúrio é encontrado em
muitos minérios, juntamente com o selênio, e é fabricado como um sub-produto no
refinamento do cobre, do chumbo, do bismuto e de outros metais (U.S. Bureau of Mines,
1985). Atualmente, telúrio inorgânico é encontrado em soluções oxidantes que servem para
polir metais (Yarema e Curry, 2005) e na indústria de semicondutores particulados (Green et
al., 2007; Zhang e Swihart, 2007).
2.7.1.1 Potencial farmacológico
Os efeitos do telúrio sobre o organismo animal começaram a ser estudados por Gmelin
(1824). Os compostos orgânicos de telúrio apresentam propriedades imunomoduladoras,
podem ser usados como drogas antitumorais e antivirais, e apresentam propriedades
antiinflamatórias (Sredni et al., 1987, 1988; Nyska et al., 1989, Sun et al., 1996). Estudos
recentes têm demonstrado que os diteluretos de diarila podem apresentar atividade
PDF created with pdfFactory trial version www.pdffactory.com
29
antioxidante (Engman et al., 1995; Andersson et al., 1994; Kanda et al., 1999) e propriedade
de mimetizar a atividade da enzima GPx (Andersson et al., 1993; Engman et al., 1992), uma
importante enzima endógena que participa de reações de neutralização de agentes pró-
oxidantes.
Conseentemente, o emprego farmacológico desses agentes poderá crescer nos
próximos anos.
Sabe-se que o telúrio metálico está presente na composição de organismos vegetais,
particularmente em membros da família Alium, tais como o alho (Larner, 1995). Alguns
estudos já demonstraram que pequenas quantidades de telúrio foram identificadas nos fluidos
corporais, tais como sangue e urina (Siddik e Newman, 1988; Newman et al.,1989). Estudos
demonstraram também que esse elemento está presente na forma de telurocisteína e
telurometionina em muitas proteínas de bactérias (Boles et al., 1995; Budisa et al., 1995),
leveduras (Yu et al., 1993) e fungos (Ramadan et al., 1989). Mas, até o presente momento,
proteínas contendo telúrio não foram identificadas em células animais. Por isso, o telúrio não
apresenta função fisiológica descrita até o momento, em mamíferos (Taylor, 1996).
2.7.1.2 Propriedades toxicológicas
O aumento do uso industrial de produtos químicos provoca riscos ocupacionais e
ambientais para a saúde humana, e cresce a preocupação em relação aos potenciais efeitos
adversos desses compostos. Os primeiros relatos a respeito da toxicidade do telúrio
aconteceram após o acidente de Windscale (UK) (Stewart e Crooks, 1958).
O telúrio pode ser prontamente absorvido pelo organismo, através da dieta,
principalmente na forma de compostos orgânicos. Entretanto, a exposição e a absorção de
telúrio inorgânico na forma de teluritos e teluratos também ocorre (Larner, 1995).
Casos de intoxicação ocupacional aguda por telúrio são raros, entretanto, quando
ocorrem, os sintomas são: dores de cabeça, sonolência, náuseas, alteração da freência
cardíaca, bem como odor característico de alho, na respiração e na urina (Müller et al., 1989;
Taylor, 1996).
A toxicidade desse elemento parece estar relacionada ao seu estado de oxidação (Van
Vleet et al., 1982). O mecanismo proposto para explicar essa toxicidade envolve a oxirredução
de grupos SH de moléculas biologicamente ativas (Blais et al., 1972; Young et al., 1981;
Deuticke et al., 1992).
PDF created with pdfFactory trial version www.pdffactory.com
30
Por bloquearem a síntese do colesterol, que é um precursor da mielina, compostos que
contêm telúrio são potentes agentes neurotóxicos. Os compostos de telúrio inibem a atividade
da enzima esqualeno monooxigenase, responsável pela conversão do esqualeno à 2,3-
epoxiesqualeno, um precursor do colesterol. Dessa forma, o esqualeno acaba se acumulando. A
sensibilidade da enzima ao telúrio se deve à reação desse elemento com grupamentos
sulfidrílicos e com a ligação de cisteínas vicinais (Laden e Porter, 2001). Sendo assim, o telúrio
inibe a síntese de colesterol nas células de Schwann, o que resulta no bloqueio da formação de
mielina e no acúmulo de esqualeno.
A conseência desse processo é uma desmielinização ou hipomielinização, que pode ser
a causa das neuropatias ocasionadas por esses compostos (Wagner-Recio et al., 1994). Os
efeitos da intoxicação com telúrio no sistema nervoso têm sido estabelecido como sugestivo de
neuropatia periférica durante um período ativo de mielinogênese (Duckett et al., 1979; Harry et
al., 1989; Lampert e Garrett, 1971), afetando a produção de proteínas mienicas à nivel de gene
(Morell et al., 1994). Alterões neuromusculares têm sido identificadas em animais após a
administração de telurito inorgânico (Duckett et al., 1979). A suscetibilidade preferencial do
sistema nervoso periférico à toxicidade do telúrio depende, provavelmente, da grande demanda
de colesterol pelos nervos periféricos, e uma menor taxa de acúmulo de colesterol no rebro
(Rawlins e Smith, 1971).
Seguindo esse raciocínio, alguns autores sugerem que o ditelureto de difenila, um
composto orgânico que contém telúrio, é neurotóxico para camundongos (Maciel et al., 2000;
Nogueira et al., 2001; 2002; Moretto et al., 2003), além de causar toxicidade renal e hepática
em roedores, quando administrado em doses muito baixas (Meotti et al., 2003). Além disso, o
ditelureto de difenila é capaz de reduzir a neurotransmissão glutamatérgica em plaquetas de
humanos (Borges et al., 2004) e de inibir a enzima δ-aminoluvulinato desidratase (δ-ALA-D)
em eritrócitos de humanos (Nogueira et al., 2003b).
Os compostos de telúrio, que têm propriedades metálicas, atravessam a barreira rebro-
sangue, barreira placentária e a barreira ependimal-fluido rebro espinhal-sangue fetal
(Duckett e Ellem, 1971). Já foi demonstrado que telúrio metálico atravessa as membranas
celulares e se localiza no citoplasma das células (Blinzinger e Hager, 1965, Mizuno, 1969),
mais especificamente nas mitocôndrias, nos primeiros estágios de intoxicação (Duckett e
White,1974). E que a ingestão de determinadas quantidades de telúrio por mamíferos adultos e
pássaros faz com que apareçam grânulos negros ou cristais em forma de agulha no citoplasma
das células do sistema urogenital, do trato alimentar, dos órgãos respiratórios, do sistema
reticulo-endotelial e do sistema nervoso (Pentschew et al., 1962, Carlton e Kelly, 1967). O
PDF created with pdfFactory trial version www.pdffactory.com
31
metabolismo do telúrio nos tecidos não está esclarecido, mas é sugerido que os depósitos
negros ou os cristais puntiformes são telúrio reduzido ou telúrio elementar (Duckett, 1972).
2.7.1.3 O telúrio e a toxicidade desenvolvimental
Estudos descreveram o aparecimento de hidrocefalia e observaram a presença de telúrio
nos tecidos fetais de rato. Essa foi a primeira vez que a presença de um agente teratogênico
para hidrocefalia foi demonstrado em fetos. Malformações em outros órgãos não foram
verificadas nos animais hidrocefálicos no estudo em questão. Esses dados foram confirmados
posteriormente (Agnew et al., 1968; Duckett, 1971).
Também foram realizados estudos que avaliaram o momento particular (período crítico)
em que o telúrio metálico estaria causando dano aos tecidos fetais. Constatou-se que a
administração de telúrio, em ratas, no período do 10º ao 15º dia de gestação, induziu o
surgimento de malformações congênitas (Duckett e Scott, 1971). Outro estudo, porém, indicou
os dias 9 e 10 da gestação, também em ratas, como sendo o período mais suscetível ao
aparecimento de hidrocefalia induzida por esse composto (Agnew e Curry, 1972). Foi avaliada
a arquitetura das alterões que levavam à hidrocefalia, por meio de lâminas histológicas.
Nestas, foi observada uma estenose dos aquedutos cerebrais, associada com o fechamento do
espo subaracnoideo pelo aumento do volume nos ventrículos cerebrais fetais. A possível
causa da hidrocefalia induzida pelo telúrio, no protocolo experimental utilizado, pode ser, entre
outras, a superprodução de fluido cerebroespinhal e/ou a não absorção desse fluido. As
alterões observadas foram incompatíveis com a vida (Duckett, 1972).
O dióxido de telúrio, um composto inorgânico que se demonstrou teratogênico, induziu
a formação de hidrocefalia, edema, exoftalmia, hemorragia ocular, hérnia umbilical, a não
descida dos testículos, rins pequenos e diminuição no tamanho corporal, de uma maneira
relacionada à dose, em fetos de ratas Wistar, quando administrado diariamente em injões
s.c., na mãe, do dia 15 ao dia 19 da gestação (Perez-DGregorio e Miller, 1988).
Dessa forma, pode-se constatar que compostos contendo telúrio são altamente tóxicos,
particularmente para mamíferos em desenvolvimento. Além disso, o ditelureto de difenila,
quando administrado em ratas prenhas, causa múltiplas malformões nos fetos em
desenvolvimento (Stangherlin et al., 2005). Apesar dos estudos já realizados, não existem na
literatura dados referentes ao possível efeito tóxico do ditelureto de difenila sobre o
desenvolvimento cerebral dos ratos após o nascimento.
PDF created with pdfFactory trial version www.pdffactory.com
32
3. OBJETIVOS
A partir da exposição materna ao ditelureto de difenila, durante as duas primeiras
semanas do período lactacional, a presente tese teve como objetivos estudar as alterões
tardias ocorridas nos filhotes, sob os seguintes aspectos:
- Avaliação comportamental: campo aberto, cilindro giratório, labirinto em T, malabarismo,
labirinto em cruz elevado e reconhecimento do objeto;
- Determinação da captação e liberação de [³H] glutamato em sinaptossomas de rebro total;
- Avaliação da atividade da enzima Na
+
, K
+
ATPase cerebral;
- Determinação do status oxidativo em estruturas cerebrais (córtex, hipocampo e estriado):
estimativa dos níveis de peroxidação lipídica, ácido ascórbico e tióis não-protéicos, e
avaliação da atividade das enzimas superóxido dismutase, catalase e δ-ALA-D.
PDF created with pdfFactory trial version www.pdffactory.com
33
4- ARTIGO E MANUSCRITOS CIENTÍFICOS
4.1 Artigo 1:
Exposição materna ao ditelureto de difenila durante o período de
amamentação altera as tendências comportamentais da sua prole
EXPOSURE OF MOTHERS TO DIPHENYL DITELLURIDE DURING
THE SUCKLING PERIOD CHANGES BEHAVIORAL TENDENCIES IN
THEIR OFFSPRING
Eluza C. Stangherlin, Alexandre M. Favero, Gilson Zeni, João B.T. Rocha,
Cristina W. Nogueira*
Brain Research Bulletin 69 (2006) 311–317
PDF created with pdfFactory trial version www.pdffactory.com
34
PDF created with pdfFactory trial version www.pdffactory.com
35
PDF created with pdfFactory trial version www.pdffactory.com
36
PDF created with pdfFactory trial version www.pdffactory.com
37
PDF created with pdfFactory trial version www.pdffactory.com
38
PDF created with pdfFactory trial version www.pdffactory.com
39
PDF created with pdfFactory trial version www.pdffactory.com
40
PDF created with pdfFactory trial version www.pdffactory.com
41
4.2 Manuscrito 1:
Ditelureto de difenila induz prejuízo da memória de reconhecimento
DIPHENYL DITELLURIDE
INDUCES IMPAIRMENT OF
RECOGNITION MEMORY
Eluza Curte Stangherlin, João Batista Teixeira Rocha, Cristina Wayne Nogueira*
Submetido à Life Sciences
PDF created with pdfFactory trial version www.pdffactory.com
42
Diphenyl ditelluride
induces impairment of recognition
memory
Eluza Curte Stangherlin
a
, João Batista Teixeira Rocha
a
, Cristina Wayne Nogueira
a,
*
a
Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de
Santa Maria, SM, RS, CEP 97105-900 Santa Maria, Brazil
*Correspondence should be sent to:
Cristina Wayne Nogueira
Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de
Santa Maria, 97105-900, Santa Maria, RS, Brasil.
Phone: 55-55 3220-8140
FAX: 55-55-3220-8978
E-mail: criswn@quimica.ufsm.br (Nogueira CW)
PDF created with pdfFactory trial version www.pdffactory.com
43
Abstract
In the present study, the possible influence of maternal exposure to 0.03 mg/kg of
diphenyl ditelluride (PhTe)
2
during the first 14 days of lactational period in Wistar rats was
investigated. Object recognition memory task, evaluation of synaptosomal glutamate uptake
and release as well as cerebral Na
+
, K
+
-ATPase activity were evaluated in 30 day old pups.
There were no significant specific overt signs of maternal intoxication. The body weight gain
of pups was similar among groups. (PhTe)
2
-exposed group showed a significantly lower time
exploring the novel object when compared to the performance of the control group in short-
term memory (STM) test. In addition, (PhTe)
2
significantly inhibited the synaptosomal
glutamate uptake and the cerebral Na
+
, K
+
-ATPase activity in animals. The synaptosomal
glutamate release was similar between (PhTe)
2
and control groups. In conclusion, the present
study establishes that litters presented cognitive impairment after maternal exposure to
(PhTe)
2
via maternal milk, demonstrated by the performance of animals in object recognition
memory task. The possible mechanism involved in (PhTe)
2
action in memory of recognition
can involve inhibition in cerebral Na
+
,K
+
-ATPase activity.
Keywords: Organotellurium, Na
+
,K
+
-ATPase, Object Recognition Memory, Glutamate
Uptake and Release.
PDF created with pdfFactory trial version www.pdffactory.com
44
Introduction
Although the tellurium (Te) element rarely occurs in the free state in nature, silver and
bismuth tellurides do occur (Larner, 1995a; Schroeder et al., 1967). Moreover, this metallic
element is known to be present in plant material, particularly in members of the Alium family,
such as garlic (Larner, 1995b). Currently, inorganic Te is used in metal-oxidizing solutions to
blacken or tarnish metals (Yarema and Curry, 2005) and in industry of nanoparticulate
semiconductors (Green et al., 2007; Zhang and Swihart, 2007). Moreover, the use of organic
Te compounds will increase due to its importance in organic synthesis (Comasseto et al.,
1997).
A number of studies have shown that trace amounts of tellurium are present in body
fluids, such as blood and urine (Siddik and Newman, 1988, Newman et al., 1989).
Furthermore, Te has been shown to be present as tellurocysteine and telluromethionine in
several proteins in bacteria (Boles et al., 1995; Budisa et al., 1995), yeast (Yu et al., 1993) and
fungi (Ramadan et al., 1989). But to date, no telluroproteins have been identified in animal
cells. By contrast, attention has been drawn to the toxicity of tellurium.
Nowadays, in the literature it was reported two cases of toxicity in young children
from ingestion of metal-oxidizing solutions that contained substantial concentrations of
tellurium (Yarema and Curry, 2005). Clinical features of acute tellurium toxicity include a
metallic taste, nausea, nausea, blackened oral mucosa and skin and garlic odor of the breath
(Muller et al., 1989).
Exposure of experimental animals to tellurium can cause a variety of toxic effects,
including reversible hind limb paralysis due to demyelination of the sciatic nerve and spinal
roots (Lampert et al., 1970; Lampert and Garret, 1971). This has been proposed to be
primarily due to blockage of cholesterol biosynthesis at squalene epoxidase (Wagner-Recio et
al., 1994), which sequentially affects the transcription of the myelin proteins themselves at the
gene level (Morell et al., 1994). Moreover, dietary exposure to high levels (3300 ppm) of
metallic tellurium causes persistent neuromotor impairment which is associated with a severe
deficit in shock avoidance. Furthermore, tellurium could also cause a lowered sensitivity to
noxious stimulus, which in turn would retard the learning of the active avoidance task (Dru et
al., 1972). Sodium tellurite intoxication causes a consistent deficit in a non-aversive spatial
learning in water maze task that could not be overtly linked to motor or motivational
impairment in tellurium exposed animals (Widy-Tysziewicz et al., 2002). Dimethyltellurium,
an important compound derived from inorganic tellurium metabolism in mammals, has been
reported as an inducer of peripheral neuropathy in rats (Goodrum, 1998). Moreover, data of
PDF created with pdfFactory trial version www.pdffactory.com
45
our group of research suggest that exposure to mothers to low doses of diphenyl ditelluride
(PhTe)
2
, an organotellurium compound, may result in disinhibition behavior of their offspring
on elevated plus maze task (Stangherlin et al., 2006). Besides, (PhTe)
2
can be teratogenic,
causing various morphologic abnormalities in rat fetuses in development (Stangherlin et al.,
2005).
Of particular importance, our research group has obtained persuasive evidences
indicating that (PhTe)
2
causes marked neurotoxic effects in mice after acute or prolonged
exposure either by subcutaneous or intraperitoneal routes (Nogueira et al., 2004). (PhTe)
2
affects a number of neuronal processes and modifies the functionality of the glutamatergic
system in vitro and in vivo (Nogueira et al., 2001) as well as inhibits the cerebral Na
+
, K
+
-
ATPase activity (Borges et al., 2005).
Despite nervous system, glutamate is known to play an important role in cognition,
learning and memory (Davis et al., 1994; Maren, 1996; LeDoux, 1994) and in the neural
plasticity of synaptic connections (Kaczmarek et al., 1997). Moreover, Na
+
,K
+
-ATPase is an
enzyme embedded in the cell membrane, responsible for the generation of the membrane
potential through the active transport of sodium and potassium ions in the central nervous
system necessary to maintain neuronal excitability (Erecinska and Silver, 1994).
Thus, the present investigation was carried out to determine the effects of (PhTe)
2
on
the behavioral performance of rat pups in object recognition memory task. The possible
involvement of glutamatergic system and of cerebral Na
+
,K
+
-ATPase activity in (PhTe)
2
effect was evaluated.
Materials and Methods
Materials
Diphenyl ditelluride-(PhTe)
2
was synthesized according to literature method
(Petragnani, 1994). Analysis of the
1
H NMR and
13
CNMR spectra showed analytical and
spectroscopic data in full agreement with its assigned structure. The chemical purity of
(PhTe)
2
(99.9%) was determined by GC/HPLC. (PhTe)
2
is solid compound, very stable and
can be stored in the lab, in the simple flasks for long time. (PhTe)
2
was diluted in canola oil
which was obtained from a standard commercial supplier.
Animals
Virgin female Wistar rats (180–240 g) from our own breeding colony were used. The
animals were kept on a 12 h light/dark cycle, at a room temperature of 22 ºC, with free access
PDF created with pdfFactory trial version www.pdffactory.com
46
to food and water. The animals were used according to the guidelines of the Committee on
Care and Use of Experimental Animal Resources, Federal University of Santa Maria, Brazil.
Experimental procedure
Sexually naive female rats were mated with male previously tested as fertile (three
females and one male in each cage). The onset of pregnancy was confirmed by the presence
of sperm in vaginal smears (day 0 of pregnancy) and pregnant dams were immediately housed
in individual cages. At birth, the dams received (PhTe)
2
(0.03 mg/kg, experimental group) or
canola oil (1 ml/kg, control group) via subcutaneous (s.c.) injection once daily during the first
14 days of lactational period. The dose of diphenyl ditelluride used in this study was selected
on the basis of LD
50
study carried out in our laboratory (Meotti et al., 2003). Maternal body
weight was recorded during this period. The body weight of pups was recorded once daily
until PND 30. At birth, all litters were culled to eight pups. Whenever possible, only male rats
were kept within the litter and females were kept just to maintain equal litter sizes. On 21
postnatal day (PND 21), pups used for testing were weaned and placed on ad libitum standard
rat chow diets. After 1-week post-weaning period, the object recognition task was conducted
(in the morning of PND 30). The behavioral observations were blind, and carried out under
low-intensity light. Only male pups were used in the behavioral tests, litter was invariably
constituted of four animals. In PND 31, the animals were euthanized for evaluating
neurochemical parameters.
Behavioral analysis
The object recognition task took place in a 45 x 45 cm
2
open field surrounded by 30 cm
height walls, made of brown plywood. All animals were given a habituation session where
they were left to freely exploring the open field for 5 min. No objects were placed in the box
during the habituation trial (Fig. 1a). Twenty-four hours after habituation, training was
conducted by placing individual rat for 5 min into the field, in which two identical objects
(objects A
1
and A
2
; Duplo Lego toys) were positioned in two adjacent corners, 10 cm from
the walls (Fig. 1b). In a short-term memory (STM) test given 1.5 h after training, the rats
explored the open field for 5 min in the presence of one familiar (A) and one novel (B) object
(Fig. 1c). All objects presented similar textures, colors, and sizes, but distinctive shapes. The
percentage of the total exploration time that the animal spent investigating the novel object
was the measure of recognition memory. Between trials the objects were washed with 10%
ethanol solution. In a long-term memory (LTM) test given 24 h after training, the same rat
PDF created with pdfFactory trial version www.pdffactory.com
47
explored the field for 5 min in the presence of familiar object A and a novel object C (Fig.
1d). Recognition memory was evaluated as for the STM test. Exploration was defined as
sniffing or touching the object with the nose and/or forepaws. Data are expressed as the mean
± SE percentage time exploring any of the objects (training) or the novel objects. Exploratory
preference in: Training= (A
2
/(A
1
+A
2
))*100; STM= (B/(A
1
+B))*100; LTM = (C/(A
1
+C))*100.
Preparation of Synaptosomes
Twenty-four hours after the last behavioral test, three animals of each group were
decapitated. After that, the whole brain was removed and used to prepare synaptosomes on a
discontinuous Percoll gradient according to Dunkley et al. (1988). Protein concentration was
measured according to the method of Lowry et al. (1951).
[
3
H]Glutamate Release by Synaptosomes
Determination of [
3
H]glutamate release was accomplished according to the method
described by Migues et al. (1999). The synaptosomal preparation was loaded with 0.25 µCi
[
3
H]glutamate (Amersham, specific activity 53 mCi/mmol, final concentration 5 µM ) by pre
incubation in Tris/HCl buffered salt solution (composition in mM: Tris/HCl 27, NaCl 133,
KCl 2.4, MgSO
4
1.2, KH
2
PO
4
1.2, Glucose 12, CaCl
2
1.0) pH 7.4 (adjusted with HCl), for 15
min at 37°C. Aliquots of labeled synaptosomes (1.4 mg protein) were centrifuged at 16,000 g
for 1 min. Supernatants were discarded, and the pellets were washed four times in Tris/HCl
buffer by centrifugation at 16,000 g for 1 min (at 4°C). To assess the basal release of
[
3
H]glutamate, the final pellet was resuspended in Tris/HCl buffer and incubated for 60 s, at
37°C. Incubation was terminated by immediate centrifugation (16,000 g, 1 min, 4°C).
Radioactivity present in supernatants and pellet was separately determined in a scintillation
counter. The released [
3
H]glutamate was calculated as a percentage of the total amount of
radioactivity present in the synaptosomes at the start of the incubation period. K
+
-stimulated
[
3
H]glutamate release was assessed as described for basal release, except for the fact that the
incubation medium contained 40 mM KCl to induce synaptosomal depolarization.
[
3
H]Glutamate Uptake by Synaptosomes
The synaptosomal preparation was washed twice by suspending in 3 volumes of 0.3 M
sucrose, in 15 mM Tris/acetate buffer (pH 7.4) and centrifuging at 35,000 g for 15 min. The
final pellet was suspended in 0.3 M sucrose, 15 mM Tris/acetate buffer (pH 7.4), and
incubated in Tris/HCl buffer (composition in mM: Tris/HCl 27, NaCl 133, KCl 2.4, MgSO
4
1.2, KH
2
PO
4
1.2, Glucose 12, CaCl
2
1.0) pH 7.4 (adjusted with HCl), in the presence of
PDF created with pdfFactory trial version www.pdffactory.com
48
[
3
H]glutamate (final concentration 100 mM) for 1 min at 37°C. The reaction was stopped by
centrifugation (16,000 g, 1 min, 4°C), and the pellets were washed three times in Tris/HCl
buffer by centrifugation at 16,000 g for 1 min (at 4°C). Radioactivity present in pellet was
measured in a scintillation counter. Specific [
3
H]glutamate uptake was calculated as the
difference between the uptake obtained in the incubation medium described above, and the
uptake obtained with a similar incubation medium in which NaCl was replaced by choline
chloride.
Na
+
, K
+
-ATPase activity
Immediately after the euthanized, the whole brain was removed and the homogenate
was prepared in 0.05M TrisHCl buffer (pH 7.4). The homogenate was centrifuged at 4000×g
at 4ºC for 10 min and supernatant was used for assay of protein Na
+
, K
+
-ATPase. The reaction
mixture for Na
+
, K
+
-ATPase activity assay contained 3 mM MgCl, 125 mM NaCl, 20 mM
KCl and 50 mM TrisHCl, pH 7.4, in a final volume of 500 μL. The reaction was initiated by
addition of ATP to a final concentration of 3.0 mM. Controls were carried out under the same
conditions with the addition of 0.1mM ouabain. Na
+
, K
+
-ATPase activity was calculated by
the difference between the two assays. Released inorganic phosphate (Pi) was measured by
the method of Fiske and Subbarow (1925). All the experiments were conducted at least four
times and similar results were obtained.
Statistical analysis
The litter (four animals averaged) was considered the experimental unit in all statistical
analyses performed. Statistical significance was assessed by analysis of variance (ANOVA)
with repeated measures, when appropriated. Post hoc Duncans test was carried out when
appropriated. A value of p < 0.05 was considered to be significant.
Results
General analysis
There were no significant specific overt signs of maternal intoxication. The pups
demonstrated normal body weigh gain (data not shown here).
Object recognition task
Results for recognition memory task are shown in Fig. 2. There were no significant
differences among groups in the time exploring any of the two identical objects during training
PDF created with pdfFactory trial version www.pdffactory.com
49
(p >0.05) or in the time exploring the novel object during the LTM test (p >0.05). In the STM
test, (PhTe)
2
-exposed group showed a significantly lower time exploring the novel object (p
>0.05) when compared to the performance to the control group. In addition, control animals
showed a significantly higher time exploring the novel object, in the STM test, when compared
to the performance of control animals during training (p < 0.05).
Synaptosomal [
3
H]glutamate release and uptake
Results for synaptosomal [
3
H]glutamate uptake are shown in Fig. 3. The [
3
H]glutamate
uptake by synaptosomes was significantly decreased (around 15%) in the (PhTe)
2
-exposed
group when compared to the control group (p<0.05).
[
3
H]glutamate release from synaptosomes are shown in Fig. 4. The basal and K
+
-
stimulated [
3
H]glutamate release by synaptosomes from whole brain of young rats were not
different between control and (PhTe)
2
-exposed groups (p>0.05).
Na
+
, K
+
-ATPase activity
Na
+
, K
+
-ATPase activity was significantly decreased (around 34%) in the (PhTe)
2
-
exposed group when compared to the control group (p<0.05) (Fig. 5).
Discussion
The present study establishes that pups presented cognitive impairment after maternal
(PhTe)
2
exposure, demonstrated by the performance of animals in object recognition memory
task. Another finding of this study is that (PhTe)
2
significantly inhibited the synaptosomal
glutamate uptake and the cerebral Na
+
, K
+
-ATPase activity in these animals.
A point that must be discussed here is that a lipophylic form of tellurium was used and
we would expect an even higher degree of tellurium transference from mothers to their litters.
In fact, literature evidence suggests that inorganic radiotellurium can be transferred to
suckling rats in proportions that varied from 2 to 5% of the administered maternal dose
(Nishimura et al., 2003). Thus, it seems plausible to assume that tellurium become
bioavailable to suckling rats after exposure of their mothers to (PhTe)
2
and may cause
behavioral changes in the offspring. In this context, during experimental protocol, (PhTe)
2
-
exposed pups via maternal milk presented normal body weight gain and no signs of toxicity or
lethality. There were also no significant specific overt signs of maternal intoxication or
lethality following administration of (PhTe)
2
during the suckling period.
PDF created with pdfFactory trial version www.pdffactory.com
50
The action of nervous system and its subtle disruption functioning by xenobiotics
could be evaluated through the performance of animals in several behavioral tests (Annau and
Cuomo, 1988; Graeff et al., 1998; Lalonde et al., 2003). The object recognition memory task
in rodents has been shown to be a very useful experimental tool for assessing changes in
neuronal function induced by drugs or genetic modifications. Novel object recognition is a
type of non-aversive and non-spatial memory (Puma et al., 1999; Rampon et al., 2000).
Evidence in the literature has shown that systemic administration of diphenyl diselenide,
(PhSe)
2
, a selenium compound analogous to (PhTe)
2
, induces a cognitive enhancers in the
object recognition task in mice (Rosa et al., 2003).
In the present study, a behavioral performance of animals suggests that the exposure to
(PhTe)
2
induced a cognitive impairment. Our data corroborated with findings reported in the
literature that showed a consistent deficit in spatial learning following inorganic tellurium
intoxication using the water maze task (Widy-Tyszkiewicz et al., 2002). Moreover, dietary
exposure to high levels (3300 ppm) of metallic tellurium causes persistent neuromotor
impairment which is associated with a severe deficit in shock avoidance. Furthermore,
tellurium could also cause a lowered sensitivity to noxious stimulus, which in turn would
retard the learning of the active avoidance task (Dru et al., 1972). Additionally, data of our
research group suggest that mother exposure to low doses of (PhTe)
2
may result in
disinhibitory behavior of their offspring on elevated plus maze task (Stangherlin et al., 2006).
In addition, our research group has obtained persuasive evidence indicating that (PhTe)
2
affects a number of neuronal processes and modifies the functionality of the glutamatergic
system in vitro and in vivo (Nogueira et al., 2001). Glutamate is known to play an important
role in cognition, learning and memory (Davis et al., 1994; Maren, 1996; LeDoux, 1994) and
in the neural plasticity of synaptic connections (Kaczmarek et al., 1997). Therefore, we
examine if glutamatergic neurotransmission is involved in the (PhTe)
2
behavioral effect. In
general, glutamate is the most dominant transmitter across tasks of learning and memory and
has been linked to associative processes (Myhrer, 2003). In this context, one candidate for
improve of memory is a persistent enhancement of glutamate release (Dolphin et al., 1982),
triggered by a retrograde messenger or messengers following activation of postsynaptic
glutamatergic receptor/channels (Bliss et al., 1990). Several studies have reported facilitated
glutamate release with consequent increase in learning (Daisley et al., 1998; Lhullier et al.,
2004; Mameli et al., 2005; McGahon et al., 1996). Different from these data, in the present
study, synaptosomal glutamate release was not affected by (PhTe)
2
. On the other hand,
(PhTe)
2
inhibited glutamate uptake, which can increase the levels of extracellular glutamate.
PDF created with pdfFactory trial version www.pdffactory.com
51
According to the literature data, this event could improve memory in animals. However, the
behavior observed in the present study is exactly the opposite. Taken together, these results
pointed out that neurochemical mechanisms involved in the action of (PhTe)
2
in the
impairment of memory exclude, at least in the whole brain, synaptosomal glutamate release
and uptake processes. Several other studies have reported the involvement of glutamatergic
system in learning/memory in specific cerebral structures, such as hippocampus (Izquierdo
and Medina, 1997; Lisman et al., 2005; Rosenzweig and Barnes, 2003; Wu and Yamaguchi,
2004).
Our results provide evidence for the involvement of Na
+
,K
+
-ATPase in (PhTe)
2
effect.
In fact, Na
+
,K
+
-ATPase activity was found inhibited in pups exposed to (PhTe)
2
. Na
+
,K
+
-
ATPase is an enzyme embedded in the cell membrane, responsible for the generation of the
membrane potential through the active transport of sodium and potassium ions in the central
nervous system necessary to maintain neuronal excitability (Erecinska and Silver, 1994). In
this context, inhibition of Na
+
,K
+
-ATPase activity may be involved in the memory
consolidation of step-down inhibitory avoidance in the hippocampus (Wyse et al., 2004).
Moreover, stimulation of Na
+
,K
+
-ATPase activity was shown to inhibit neurotransmitter
release (Vizi and Vyskocil, 1979). Since Na
+
,K
+
-ATPase is crucial for maintaining ionic
gradients in neurons and is reported to be critically involved in potassium buffering after
periods of hyperstimulation (Xiong and Stringer, 2000), it is well acceptable that a reduction
in this enzyme activity may impair neuronal activity and memory storage.
Although the fact that a parallelism of effects was verified between Na
+
,K
+
-ATPase
activity and memory, it does not necessarily mean that the reduced activity of this enzyme
would be the only cause of the memory impairment observed. Accordingly, there is evidence
of a role of Na
+
,K
+
-ATPase in long-term potentiation (Glushchenko and Izvarina, 1997), in
long-term depression (Reich et al., 2004) and in spreading depression - a transient breakdown
of neuronal function concomitant with a massive failure in ion homeostasis (Kohling et al.,
2003). Recent studies have also reported that Na
+
,K
+
-ATPase inhibition can lead to memory
impairment in the inhibitory avoidance and in the Water Maze tasks (dos Reis et al., 2002;
Sato et al., 2004; Wyse et al., 2004), and to cognitive deficits in degenerative diseases, such as
Alzheimer disease (Hattori et al., 1998; Lehotsky et al., 1999). Therefore, it is tempting to
suggest that the possible mechanism of action of (PhTe)
2
in impair memory of recognition is
related to Na
+
,K
+
-ATPase activity inhibition. In addition, the inhibitory effect of (PhTe)
2
on
cerebral Na
+
,K
+
-ATPase activity has been reported by Borges and collaborators (2005).
PDF created with pdfFactory trial version www.pdffactory.com
52
Although the data observed in this study indicate that action of (PhTe)
2
in Na
+
,K
+
-ATPase
activity seems not to be connected directly to glutamate release and uptake processes.
In conclusion, the present study establishes that pups presented cognitive impairment
after maternal exposure to (PhTe)
2
, demonstrated by the performance of animals in object
recognition memory task. The Inhibition in cerebral Na
+
,K
+
-ATPase activity could be
involved in (PhTe)
2
-induced cognitive impairment. Additional investigations in specific
cerebral structures, such as hippocampus, are necessary to determine the neurochemical
mechanisms involved in the effect of (PhTe)
2
on learning/memory.
PDF created with pdfFactory trial version www.pdffactory.com
53
Acknowledgements
The financial support by FAPERGS, CAPES and CNPq is gratefully acknowledged.
J.B.T.R. and C.W.N. are the recipients of CNPq fellowships.
References
Annau, Z., Cuomo V., 1988. Mechanisms of neurotoxicity and their relationship to behavioral
changes. Toxicology 49, 219-225.
Bliss, T.V.P., Errington, M.L., Lynch, M.A., Williams, J.H., 1990. Presynaptic mechanisms in
hippocampal long-term potentiation. Cold Spring Harbor Symposium on Quantitative
Biology 55, 119-129.
Boles, J.O., Lebioda, L., Dunlap, R.B., Odum, J.D., 1995. Telluromethionine in structural
biochemistry. Biochemistry And Biotechnology, Southern Association Of Agricultural
Scientists 8, 29-34.
Borges, V.C., Rocha, J.B.T., Nogueira, C.W., 2005. Effect of diphenyl diselenide, diphenyl
ditelluride and ebselen on cerebral Na
+
, K
+
-ATPase activity in rats. Toxicology 215, 191–
197.
Budisa, N., Steipe, B., Demange, P., Eckerskorn, C., Kellernman, J., Huber, R., 1995. High
level biosynthetic substitution of methionine in proteins by its analogues 2-aminohexanoic
acid, selenomethionine, telluromethionine and ethionine in Escherichia coli. European
Journal of Biochemistry 230, 788-796.
Comasseto, J.V., Ling, L.W., Petragnani, N., Stefani, H.A., 1997. Vinylic selenides and
tellurides - Preparation, reactivity and synthetic applications. Synthesis 4, 373-403.
Davis, M., Rainnie, D., Cassel, M., 1994. Neurotransmission in the rat amygdale related to
fear and anxiety. Trends in Neurosciences 17, 208-214.
Daisley, J.N., Gruss, M., Rose, S.P.R., Braun, K., 1998. Passive avoidance training and recall
are associated with increased glutamate levels in the intermediate medial hyperstriatum
ventrale of the day-old chick. Neural Plasticity 6, 53-61.
Dolphin, A.C., Errington, M.L. and Bliss, T.V.P., 1982. Long-term potentiation of the
perforant path in vivo is associated with increased glutamate release. Nature 297, 496-498.
dos Reis, E. A., de Oliveira, L. S., Lamers, M. L., Netto, C. A., & Wyse, A. T. S., 2002.
Arginine administration inhibits hippocampal Na(+),K(+)-ATPase activity and impairs
retention of an inhibitory avoidance task in rats. Brain Research 951, 151–157.
Dru, D., Agnew, W.F. Greene, E., 1972. Effects of tellurium ingestion on learning capacity of
the rat. Psychopharmacology 24, 508-515.
PDF created with pdfFactory trial version www.pdffactory.com
54
Dunkley, P. R., Heath, J., Harrison, S. M., Jarvie, P. E., Glenfield, P. Y., Rostas, J. A. P.
1988. A rapid gradient procedure for isolation of synaptosomes directly from an S-1
fraction-homogeneity and morphology of subcellular fractions. Brain Research 441, 59–
71.
Erecinska, M., Silver, I., 1994. Ions And Energy In Mammalian Brain. Progress In
Neurobiology 43, 37-71.
Fiske, C.H., Subbarow, Y.J., 1925. The calorimetric determination of phosphorus. Biological
Chemistry 66, 375–381.
Glushchenko, T.S., Izvarina, N.L., 1997. Na + ,K + -ATPase activity in neurons and glial
cells of the olfactory cortex of rat brain during the development of long-term potentiation.
Neuroscience and Behavioral Physiology 27, 49– 52.
Goodrum, J.F., 1998. Role of organotellurium species in tellurium neuropathy.
Neurochemical Research 23, 1313-1319.
Graeff, F.G., Netto, F.C., Zangrossi, H., 1998. The elevated T-maze as an experimental model
of anxiety. Neuroscience & Biobehavioral Reviews 23, 237-246.
Green, M., Harwood, H., Barrowman, C., Rahman, P., Eggeman, A., Festry, F., Dobsonb, P.,
Ng, T.,2007. A facile route to CdTe nanoparticles and their use in bio-labelling. Journal of
Materials Chemistry 17, 1989–1994.
Hattori, N., Kitagawa, K., Higashida, T., Yagyu, K., Shimohama, S., Wataya, T., Perry, G.,
Smith, M.A., Inagaki, C., 1998. CI-ATPase and Na+/K(+)-ATPase activities in
Alzheimers disease brains. Neuroscience Letters 2, 141–144.
Izquierdo, I. and Medina, J.H., 1997. Memory formation: the sequence of biochemical events
in the hippocampus and its connection to activity in other brain structures. Neurobiology
of Learning and Memory 68, 285–316.
Kaczmarek, L., Kossut, M., Skangielkramska, J., 1997. Glutamate receptors in cortical
plasticity: molecular and cellular biology. Physiological Reviews 77, 217-255.
Kohling, R., Koch, U. R., Hagemann, G., Redecker, C., Straub, H., & Speckmann, E. J., 2003.
DiVerential sensitivity to induction of spreading depression by partial disinhibition in
chronically epileptic human and rat as compared to native rat neocortical tissue. Brain
Research 975, 129–134.
Lalonde, R, Qian, S, Strazielle, C., 2003. Transgenic mice expressing the PSI-A346E
mutation: effects on spatial learning, exploration, anxiety, and motor coordination.
Behavioural Brain Research 138, 71-79.
PDF created with pdfFactory trial version www.pdffactory.com
55
Lampert, P., Garro, F., Pentschew, A., 1970. Tellurium neuropathy. Acta Neuropathologica
15, 308-317.
Lampert, P.W., Garrett, R.S., 1971. Mechanism of demyelination in tellurium neuropathy.
Electron microscopic observations. Laboratory Investigation 25, 380-388.
Larner, A.J., 1995a. Biological effects of tellurium: a review. Trace Elements Electrolytes 12,
26-31.
Larner, A.J., 1995b. How does garlic exert its hypocholesterolaemic action? The tellurium
hypothesis. Medical Hypothesis 44, 295-297.
LeDoux, J.E., 1994. Emotion, memory and the brain. Scientific American 270, 50-57.
Lehotsky, J., Kaplan, P., Racay, P., Matejovicova, M., Drgova, A., & Mezesova, V., 1999.
Membrane ion transport systems during oxidative stress in rodent brain:protective eVect
of stobadine and other antioxidants. Life Sciences 65, 1951–1958.
Lhullier, F.L.R., Nicolaidis, R., Riera, N.G., Cipriani, F., Junqueira, D., Dahm, K.C.S.,
Brusque, A.M., Souza, D.O., 2004. Dehydroepiandrosterone increases synaptosomal
glutamate release and improves the performance in inhibitory avoidance task.
Pharmacology Biochemistry and Behavior 77, 601–606.
Lisman, J.E., Talamini, L.M., Raffone, A., 2005. Recall of memory sequences by interaction
of the dentate and CA3: A revised model of the phase precession. Neural Networks 18,
1191–1201.
Lowry, O.H., Rosemburg, N.J., Farr, A.L., Roudall, R., 1951. Protein measurement with
Folin-Phenol reagent. Journal of Biological Chemistry 193, 265-275.
Mameli, M., Zamudio, P.A., Carta, M., Valenzuela, C.F., 2005. Developmentally regulated
actions of alcohol on hippocampal glutamatergic transmission. Journal of Neuroscience
25, 8027.
Maren, S., 1996. Synaptic transmission and plasticity in the amygdala. Molecular
Neurobiology 13, 1-22.
McGahon, B., Holscher, C., McGlinchey, L., Rowan, M.J., Lynch, M.A., 1996. Training in
the Morris water maze occludes the synergism between ACPD and arachidonic acid on
glutamate release in synaptosomes prepared from rat hippocampus. Learning & Memory
3, 296-304.
Meotti, F.C., Borges, V.C., Zeni, G., Rocha, J.B.T., Nogueira, C.W., 2003. Potential renal and
hepatic toxicity of diphenyl diselenide, diphenyl ditelluride and Ebselen for rats and mice.
Toxicology Letters 143, 9-16.
PDF created with pdfFactory trial version www.pdffactory.com
56
Migues, P. V., Leal, R. B., Mantovani, M., Nicolau, M., Gabilan, N. H., 1999. Synaptosomal
glutamate release induced by the fraction Bc2 from the venon of the sea anemone
Bunodosoma caissarum. NeuroReport 10, 67–70.
Morell, P., Toews, A.D., Wagner, M., Goodrum, J.F., 1994. Gene expression during
tellurium-induced primary demyelination. Neurotoxicology 15, 171-180.
Muller, R., Zschiesche, W., Steffen, H., Schaller, K., 1989. Tellurium-intoxication. Klin
Wochenschr 67, 1152–1155.
Myhrer, T., 2003. Neurotransmitter systems involved in learning and memory in the rat: a
meta-analysis based on studies of four behavioral tasks. Brain Research Reviews 41, 268–
287.
Newman, R.A., Osborn, S., Siddik, Z.H., 1989. Determination of tellurium in biological fluids
by means of electrothermal vapourization-inductively coupled to plasma mass
spectrometry (ETV-ICP-MS). Clinica Chimica Acta 179, 191-196.
Nishimura, Y., Sahoo, S. K., Kim, H.-S., Homma-Takeda, S., Watanabe, Y., Inaba, J., 2003.
Biokinetics of radiotellurium in rats. Radiation Protection Dosimetry 105, 285–290.
Nogueira, C.W., Zeni, G., Rocha, J.B.T., 2004. Organoselenium and organotellurium
compounds: Toxicology and Pharmacology. Chemical Reviews 104, 6255-6286.
Nogueira, C.W., Rotta, L.N., Perry, M.L., Souza, D.O., Rocha, J.B.T., 2001. Diphenyl
diselenide and diphenyl ditelluride affect the rat glutamatergic system in vitro and in vivo.
Brain Research 906, 157– 163.
Petragnani, N., 1994. Preparation of the Principal Classes of Organic Tellurium compounds.
in: Tellurium in Organic Synthesis (A.R. Katritzky, O. Meth-Cohn, C.W. Rees),
Academic Press, London, pp. 9-88.
Puma, C., Deschaux, O., Molimard, R., Bizot, J.C., 1999. Nicotine improves memory in an
object recognition task in rats. European Neuropsychopharmacology 9, 323–327.
Ramadan, S.E., Razak, A.A., Ragab, A.M., el Meleigy, M., 1989. Incorporation of tellurium
into amino acids and proteins in a tellurium-tolerant fungi. Biological Trace Element
Research 20, 225-232.
Rampon, C., Tang, Y.P., Goodhouse, J., Shimizu, E., Kyin, M., Tsien, J.Z., 2000. Enrichment
induces structural changes and recovery from nonspatial memory deficits in CA1
NMDAR1-knockout mice. Nature Neuroscience 3, 238–244.
Rosa, R.M., Flores, D.G., Appelt, H.R., Braga, A.L., Henriques, J.A.P., Roesler, R., 2003.
Facilitation of long-term object recognition memory by pretraining administration of
diphenyl diselenide in mice. Neuroscience Letters 341, 217–220.
PDF created with pdfFactory trial version www.pdffactory.com
57
Rosenzweig, E.S., Barnes, C.A., 2003. Impact of aging on hippocampal function: plasticity,
network dynamics, and cognition. Progress in Neurobiology 69,143–179.
Sato, T., Tanaka, K., Ohnishi, Y., Teramoto, T., Irifune, M., Nishikawa, T., 2004. Effects of
steroid hormones on (Na+,K+)-ATPase activity inhibitioninduced amnesia on the step-
through passive avoidance task in gonadectomized mice. Pharmacological Research 49,
151–159.
Schroeder, H.A., Buckman, J., Balassa., J.J., 1967. Abnormal trace elements in man: tellurium.
Journal of Chronic Disease 20, 147-161.
Siddik, Z.H., Newman, R.A., 1988. Use of platinum as a modifer in the sensitive detection o
tellurium in biological samples. Analytical Biochemistry 172, 190-196.
Stangherlin, E.C., Favero, A.M., Zeni, G., Rocha, J.B.T., Nogueira, C.W., 2005. Teratogenic
vulnerability of rat fetuses to diphenyl ditelluride: prenatal assessment. Toxicology 207,
231-239.
Stangherlin, E.C., Favero, A.M., Zeni, G., Rocha, J.B.T., Nogueira, C.W., 2006. Exposure of
mothers to diphenyl ditelluride during the suckling period changes behavioral tendencies
in their offspring. Brain Research Bulletin 69, 311-317.
Vizi, E.S., Vyskocil, F., 1979. Changes in total and quantal release of acetylcholine in the
mouse diaphragm during activation and inhibition of membrane ATPase. The Journal of
Physiology 286, 1–14.
Wagner-Recio, M., Toews, A.D., Morell, P., 1994. Tellurium blocks cholesterol synthesis by
inhibiting squalen metabolism: preferential vulnerability to this metabolic block leads to
peripheral nervous system demyelination. Journal of Neurochemistry 57, 1891-1901.
Widy-Tysziewicz, E., Piechal, A., Gajkowska, B., Smialek, M., 2002. Tellurium-induced
cognitive deficits in rats are related to neuropathological changes in the central nervous
system. Toxicology Letters 131, 203-214.
Wu, Z., and Yamaguchi, Y., 2004. Input-dependent learning rule for the memory of
spatiotemporal sequences in hippocampal network with theta phase precession. Biological
Cybernetics 90, 113–124.
Wyse, A.T., Bavaresco, C.S., Reis, E.A., Zugno, A.I., Tagliari, B., Calcagnotto, T., Netto,
C.A., 2004. Training in inhibitory avoidance causes a reduction of Na+,K+-ATPase
activity in rat hippocampus. Physiology & Behavior 80, 475–479.
Xiong, Z. Q., and Stringer, J. L., 2000. Sodium pump activity, not glial spatial buVering,
clears potassium after epileptiform activity induced in the dentate gyrus. Journal of
Neurophysiology 83, 1443–1451.
PDF created with pdfFactory trial version www.pdffactory.com
58
Yarema, M.C., Curry, S.C., 2005. Acute tellurium toxicity from ingestion of metal-oxidizing
solutions. Pediatrics 116, 319-321.
Yu, L., He, K., Chai, D., Yang, C., Zheng, O., 1993. Evidence for telluroamino acid in
biological materials and some rules for assimilation of inorganic tellurium by yeast.
Analytical Biochemistry 209, 318-322.
Zhang H., Swihart M.T., 2007. Synthesis of Tellurium Dioxide Nanoparticles by Spray
Pyrolysis Chemistry of Materials 19, 1290-1301.
PDF created with pdfFactory trial version www.pdffactory.com
59
Legends
Figure 1. Behavioral analysis. All animals were given to freely exploring the open field for 5
min for the habituation trial (a); training (b) carried out 24 h after habituation; the short-term
memory (STM) test (c) carried out 1.5 h after training; and the long-term memory (LTM) test
(d) carried out 24 h after training. A, B and C represent the objects. Exploratory preference in:
Training = (A
2
/(A
1
+ A
2
)) * 100; STM = (B/(A
1
+ B) ) * 100; LTM = (C/(A
1
+ C) ) * 100.
Figure 2. Evaluation of exploratory preference on object recognition task in young rats during
Training (percentage of time exploring any of the two identical objects (A)), STM
(percentage of time exploring the novel object (B), test carried out 1.5 h after training) and
LTM (percentage of time exploring the novel object (C), test carried out 24 h after training).
Exploratory preference in: Training = (A
2
/(A
1
+ A
2
)) * 100; STM = (B/(A
1
+ B) ) * 100; LTM
= (C/(A
1
+ C) ) * 100. The animals were exposed to (PhTe)
2
(0.03 mg/kg, experimental
group) or canola oil (1 ml/kg, control group) by subcutaneous (s.c.) injection once daily
during the first 14 days of lactational period. Results are expressed as mean ± S.E.M. n = 6-8
litters (4 animals each litter).
#
p<0.05 compared to the control group during training; *p<0.05
compared to the control group during STM.
Figure 3. Evaluation of synaptosomal [
3
H]glutamate uptake of young rats exposed to (PhTe)
2
(0.03 mg/kg, experimental group) or canola oil (1 ml/kg, control group) by subcutaneous
(s.c.) injection once daily during the first 14 days of lactational period. Results are expressed
as mean ± S.E.M. for 3 independent experiments performed in triplicate. *p < 0.05 compared
to the control group.
Figure 4. Evaluation of synaptosomal [
3
H]glutamate release of young rats exposed to (PhTe)
2
(0.03 mg/kg, experimental group) or canola oil (1 ml/kg, control group) by subcutaneous
(s.c.) injection once daily during the first 14 days of lactational period. Results are expressed
as mean ± S.E.M. for 3 independent experiments performed in triplicate.
Figure 5. Determination of Na
+
, K
+
-ATPase activity in brain of young rats exposed to
(PhTe)
2
(0.03 mg/kg, experimental group) or canola oil (1 ml/kg, control group) by
subcutaneous (s.c.) injection once daily during the first 14 days of lactational period. Results
are expressed as mean ± S.E.M. for 6-8 independent experiments performed in duplicate. *p <
0.05 compared to the control group.
PDF created with pdfFactory trial version www.pdffactory.com
60
Figure 1.
Figure 2.
Training STM LTM
0
10
20
30
40
50
60
70
80
Exploratory preference
Control Diphenyl ditelluride
*
#
PDF created with pdfFactory trial version www.pdffactory.com
61
Figure 3.
Figure 4.
0
3
6
9
12
15
pmol glu uptake / mg prot/ min
Control Diphenyl ditelluride
*
Basal Stimulated
0
5
10
15
20
25
30
35
glutamate release (%)
Control Diphenyl ditelluride
PDF created with pdfFactory trial version www.pdffactory.com
62
Figure 5.
0
5
10
15
20
25
nmol Pi / mg prot / min
Control Diphenyl ditelluride
*
PDF created with pdfFactory trial version www.pdffactory.com
63
4.3 Manuscrito 2:
Exposição ao ditelureto de difenila, via leite materno, causa estresse
oxidativo no córtex cerebral, hipocampo e estriado de filhotes de rato
EXPOSURE TO DIPHENYL DITELLURIDE, VIA MATERNAL MILK,
CAUSES OXIDATIVE STRESS IN CEREBRAL CORTEX,
HIPPOCAMPUS AND STRIATUM OF RAT PUPS
Eluza Curte Stangherlin, Ana Paula Ardais,
João Batista Teixeira Rocha, Cristina Wayne
Nogueira*
Em fase de redação
PDF created with pdfFactory trial version www.pdffactory.com
64
Exposure to Diphenyl Ditelluride, via maternal milk, Causes
Oxidative Stress in Cerebral Cortex, Hippocampus and Striatum of
Rat Pups
Eluza Curte Stangherlin
a
, Ana Paula Ardais
a
, João Batista Teixeira Rocha
a
, Cristina Wayne
Nogueira
a
*
a
Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de
Santa Maria, CEP 97105-900 Santa Maria, RS, Brazil,
Correspondence should be sent to:
Cristina Wayne Nogueira
Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de
Santa Maria, 97105-900, Santa Maria, RS, Brasil.
Phone: 55-55-3220-8140
FAX: 55-55-3220-8978
E-mail: criswn@quimica.ufsm.br (Nogueira CW)
PDF created with pdfFactory trial version www.pdffactory.com
65
Abstract
The purpose of the present study was to evaluate the effect of diphenyl ditelluride
[(PhTe)
2
]
exposure to mothers on the cerebral oxidative status of their offspring. The dams
received (PhTe)
2
(0.03 mg/kg, experimental group) or canola oil (1 ml/kg, control group) via
subcutaneous (s.c.) injection once daily during the first 14 days of lactational period (sub-
chronic exposure). At post natal day 30, biochemical parameters of oxidative stress (lipid
peroxidation, non-protein thiols (NPSH) and ascorbic acid levels, superoxide dismutase
(SOD), catalase and δ-aminolevulinic acid dehydratase (δ-ALA-D) activities) in cerebral
structures - cerebral cortex, hippocampus and striatum - of pups exposed to (PhTe)
2
via
maternal milk were evaluated. Exposure to (PhTe)
2
increased lipid peroxidation and inhibited
δ-ALA-D, catalase and SOD activities in hippocampus and striatum of pups. (PhTe)
2
induced
changes in the levels of non-enzymatic defenses in cerebral cortex and striatum of pups. In
conclusion, these results showed that (PhTe)
2
disrupted cerebral prooxidant/antioxidant
balance, which can lead to brain injury via oxidative damage to critical biomolecules.
Keywords: Diphenyl ditelluride, tellurium, rat pups, oxidative stress, brain, antioxidant.
PDF created with pdfFactory trial version www.pdffactory.com
66
1. Introduction
The metallic element tellurium (Te) is known to be present in plant material,
particularly in members of the Alium family (Larner, 1995). Currently, inorganic Te is used in
industry of nanoparticulate semiconductors (Green et al., 2007; Zhang and Swihart, 2007). In
this context, Te dioxide based nanoparticles would be particularly interesting for the
formation of polymer/nanoparticle nanocomposites with a high refractive index and high
optical nonlinearity (Zhang and Swihart, 2007). Moreover, the use of organic Te compounds
will increase due to its importance in organic synthesis (Zeni et al., 2006).
A number of studies have shown that trace amounts of tellurium are present in body
fluids (Siddik and Newman, 1988; Newman et al., 1989). But to date, no telluroproteins have
been identified in animal cells. By contrast, attention has been drawn to the toxicity of
tellurium.
Currently, in the literature it was reported two cases of toxicity in young children from
ingestion of metal-oxidizing solutions that contained substantial concentrations of tellurium
(Yarema and Curry, 2005).
Data of our group of research suggest that diphenyl ditelluride [(PhTe)
2
], an
organochalcogen compound, is a teratogenic agent causing various morphologic
abnormalities in rat fetuses in development (Stangherlin et al., 2005). Besides, exposure to
mothers to low doses of (PhTe)
2
may result in disinhibition behavior on elevated plus maze
task (Stangherlin et al., 2006).
Of particular importance, our research group has obtained persuasive evidence
indicating that (PhTe)
2
causes marked neurotoxic effects in rodents after acute or prolonged
exposure either by subcutaneous or intraperitoneal routes (Maciel et al., 2000; Nogueira et al.,
2001; Meotti et al., 2003). Although the specific molecular targets that mediate
organochalcogens toxicity are not known, these compounds can interact directly with low
molecular thiols, oxidizing them to disulfides (Nogueira et al., 2004). In fact, reduced
cysteinyl residues from proteins react with these compounds, which may cause, in the case of
the enzymes, the loss of their catalytic activity (Park et al., 2000; Gupta and Porter, 2001;
Nogueira et al., 2003). (PhTe)
2
inhibit the δ-aminolevulinate dehydratase (δ-ALA-D) activity
(Barbosa et al., 1998). This sulfhydryl-containing enzyme catalyzes the condensation of two
δ-aminolevulinic acid (ALA) molecules with the formation of porphobilinogen, which is a
heme precursor (Jaffe, 1995). Consequently, δ-ALA-D inhibition may impair heme
biosynthesis (Sassa et al., 1989) and can result in the accumulation of ALA, which may affect
the aerobic metabolism and may have some prooxidant activity (Bechara et al., 1993).
PDF created with pdfFactory trial version www.pdffactory.com
67
The cellular redox status is defined as the balance between intracellular oxidants and
antioxidants (Castagne et al., 1999). The brain is considered as a sensitive organ prone to
oxidative damage because it has a high rate of oxidative metabolism, a high content of
polyunsaturated fatty acids and low levels of protective enzymes to eliminate free radicals
(Kodavanti, 1999). The increased free radical levels can alter dramatically the neuronal
function (Frantseva et al., 2000). In particular, it has been suggested that free radicals acting
via oxidative stress, may be involved in neuronal plasticity and the excessive content of
reactive species derivate of oxygen (ROS) can induce neuronal damage in young and adult
rats (McCobb et al., 1988). To circumvent oxidative stress organisms have systems that
prevent hazardous effects of free radicals such as enzymatic (superoxide dismutase (SOD)
and catalase (CAT)) e non-enzymatic (non-protein thiols (NPSH) and ascorbic acid) defenses.
Thus, the purpose of the present study was to evaluate the effect of (PhTe)
2
exposure
to mothers on the cerebral oxidative status of their offspring. For this end, biochemical
parameters of oxidative stress (lipid peroxidation, NPSH and ascorbic acid levels, SOD,
catalase and δ-ALA-D activities in cerebral structures (cerebral cortex, hippocampus and
striatum) of pups exposed to (PhTe)
2
via maternal milk were evaluated.
2. Experimental Procedure
2.1 Materials
Diphenyl ditelluride (PhTe)
2
was prepared according to literature method
(Petragnani, 1994). Analysis of the
1
H NMR and
13
CNMR spectra showed analytical and
spectroscopic data in full agreement with its assigned structure. The chemical purity of
(PhTe)
2
(99.9%) was determined by GC/HPLC. (PhTe)
2
is solid compound, very stable and
can be stored in the lab, in the simple flasks for long time. (PhTe)
2
was diluted in canola oil
which was obtained from a standard commercial supplier.
2.2 Animals
Adult female Wistar rats (200-250 g) and their offspring from our own breeding colony
were used. The animals were kept on a 12 light/dark cycle, at a controlled temperature
(22±2ºC), with free access to water and food (Guabi, RS, Brazil). The animals were used
according to the guidelines of the Committee on Care and Use of Experimental Animal
Resources, the Federal University of Santa Maria, Brazil.
2.3 Exposure to Diphenyl Ditelluride
PDF created with pdfFactory trial version www.pdffactory.com
68
Sexually naïve female rats were mated with male previously tested as fertile (three
females and one male in each cage). The onset of pregnancy was confirmed by the presence
of sperm in vaginal smears (day 0 of pregnancy) and pregnant dams were immediately housed
in individual cages. At birth, the dams received (PhTe)
2
(0.03 mg/kg, experimental group) or
canola oil (1 ml/kg, control group) via subcutaneous (s.c.) injection once daily during the first
14 days of lactational period (sub-chronic exposure). The dose of (PhTe)
2
used in this study
was selected on the basis of LD
50
study carried out in our laboratory (Meotti et al., 2003).
Maternal body weight was recorded during this period. The body weight of rat pups was
recorded once daily until 30 postnatal day (PND 30). At birth, all litters were culled to eight
pups. Whenever possible, only male rats were kept within the litter and females were kept just
to maintain equal litter sizes. On PND 21, pups were weaned and placed on ad libitum
standard rat chow diets. After 1-week post-weaning period (in PND 30), the animals were
killed by decapitation without anesthesia, the brain was removed and cerebral structures -
cerebral cortex, hippocampus and striatum - were separated. The tissues were kept under
cooling.
2.4 Biochemical parameters
2.4.1 Lipid peroxidation
Thiobarbituric acid reactive species (TBARS) were determined as described by
Ohkawa et al. (1979). An aliquot of cerebral structures tissue was incubated with 0.8 %
thiobarbituric acid (TBA), acetic acid buffer pH 3.4 and 8.1 % sodium dodecil sulphate (SDS)
at 95°C for 2 hours. The color reaction was measured at 532 nm.
2.4.2 Determination of non-protein thiols (NPSH)
NPSH in cerebral structures were determined by the method of Ellman (1959).
Briefly, the homogenate was centrifuged at 4000 x g at C for 10 minutes and the
supernatant was mixed (1:1) with 10% trichloroacetic acid. After the centrifugation, the
protein pellet was discarded and free -SH groups were determined in the clear supernatant. An
aliquot of supernatant was added in potassium phosphate buffer 1 M pH 7.4 and 10 mM 5,5'-
dithio-bis(2-nitrobenzoic acid) (DTNB). The color reaction was measured at 412 nm.
2.4.3 Ascorbic acid determination
Ascorbic acid determination was performed as described by Jacques-Silva et al.
(2001). Protein (cerebral structures) was precipitated in 10 volumes of a cold 4 %
PDF created with pdfFactory trial version www.pdffactory.com
69
trichloroacetic acid solution. An aliquot of the sample in a final volume of 1 ml of the solution
was incubated for 3 hours at 38°C then H
2
SO
4
65 % (v/v) was added to the medium. The
reaction product was determined using color reagent containing 4.5 mg/ml dinitrophenyl
hydrazine and CuSO
4
(0.075 mg/ml). The color reaction was measured
spectrophotometrically at 520 nm.
2.4.4 Catalase activity
The catalase activity was assayed spectrophotometrically by the method of Aebi et al.
(1984), which involves monitoring the disappearance of H
2
O
2
in the presence of cerebral
structures homogenate at 240 nm. An aliquot of cerebral structures tissue was added in 50mM
potassium phosphate buffer pH 7.0 and the enzymatic reaction was initiated by adding H
2
O
2
.
The enzymatic activity was expressed in Units (1U decomposes 1 μmol H
2
O
2
/min at pH 7 at
25°C).
2.4.5 Superoxide dismutase (SOD) activity
Superoxide dismutase (SOD) activity in cerebral structures homogenate was assayed
spectrophotometrically as described by Misra and Fridovich (1972). This method is based on
the capacity of SOD in inhibiting autoxidation of adrenaline to adrenochrome. The color
reaction was measured at 480 nm. One unit of enzyme was defined as the amount of enzyme
required to inhibit the rate of epinephrine autoxidation by 50 % at 26°C. The cerebral
structures tissue was diluted 1:10 (v/v) for determination of SOD activity in test day. Aliquots
of cerebral structures were added in a glycine buffer 50 mM pH 10.3. Enzymatic reaction was
started by adding of the epinephrine.
2.4.6 δ-Aminolevulinic acid dehydratase (δ-ALA-D) activity
δ-ALA-D activity in the cerebral structures was assayed according to the method of
Sassa (1982) by measuring the rate of product (porphobilinogen) formation except that 1 M
potassium phosphate buffer pH 6.8 and 12 mM ALA were used. An aliquot of tissue was
incubated for 3 hours at 37°C. The reaction was linear in relation to protein and time of
incubation. The reaction product was determined using modified Erlichs reagent at 555 nm.
2.4.7 Protein determination
Protein was measured by the Coomassie blue method according to Bradford (1976)
using bovine serum albumin as standard. An aliquot of cerebral structures tissue diluted 1:10
PDF created with pdfFactory trial version www.pdffactory.com
70
(v/v) was added in Comassie blue reactive. The color was measured spectrophotometrically at
595 nm.
2.5 Statistical Analysis
Results are reported as mean ± S.E.M. n = 6-8 litters (4 animals each litter and the
litter is an experimental unit). Statistical analysis was performed using a one-way ANOVA
followed by the Duncans test. Values of p < 0.05 were considered statistically significant.
3. Results
3.1 Body weight
There was no difference in the body weight gain between rat pups exposed to diphenyl
ditelluride and controls (data not shown).
3.2 Biochemical parameters
3.2.1 Lipid peroxidation
As can be observed in Figure 1, exposure to (PhTe)
2
via maternal milk increased lipid
peroxidation in the TBARS assay (p<0.05 by Duncan's multiple range test). This effect was
observed in the hippocampus and striatum of pups. One-way ANOVA demonstrated that
exposure to (PhTe)
2
via maternal milk did not alter lipid peroxidation in cerebral cortex of
pups.
3.2.2 NPSH levels
In cerebral cortex and striatum, one-way ANOVA (p<0.05 by Duncan's multiple
range test) of NPSH levels yielded a significant increase in pups exposed to (PhTe)
2
. In
hippocampus, NPSH levels were not modified for (PhTe)
2
exposure (Figure 2).
3.2.3 Ascorbic acid content
One-way ANOVA (p<0.05 by Duncan's multiple range test) showed that ascorbic acid
content was increased in striatum of (PhTe)
2
exposed pups. In hippocampus and cerebral
cortex, the ascorbic acid content was similar to the control group (Figure 3).
3.2.4 Catalase activity
PDF created with pdfFactory trial version www.pdffactory.com
71
The catalase activity was inhibited in hippocampus and striatum of pups exposed to
(PhTe)
2
via maternal milk. While, the enzyme activity in cerebral cortex was not altered by
(PhTe)
2
exposure (Figure 4).
3.2.5 SOD activity
In hippocampus and striatum, SOD activity was inhibited in pups exposed to (PhTe)
2
.
In cerebral cortex, the enzyme activity was similar among groups (PhTe)
2
(Figure 5).
3.2.6 δ-ALA-D activity
One-way ANOVA revealed that δ-ALA-D activity was inhibited in hippocampus and
striatum of pups exposed to (PhTe)
2
via maternal milk (p<0.05 by Duncan's multiple range
test). Exposure to (PhTe)
2
did not alter δ-ALA-D activity in cerebral cortex of pups (Figure 6).
4. Discussion
The findings of the present study demonstrate that sub-chronic exposure to (PhTe)
2
,
via maternal milk, caused different responses in cerebral oxidative stress in rat pups in early
postnatal period, a period in which the brain is still in developing. The exposure to (PhTe)
2
increased lipid peroxidation and inhibited δ-ALA-D, catalase and SOD activities in
hippocampus and striatum of pups. Moreover, exposure to (PhTe)
2
induced changes in the
levels of non-enzymatic defenses in cerebral cortex and striatum of pups.
Reactive oxygen species (ROS) such as superoxide radical anion, hydroxyl radical and
hydrogen peroxide are produced in metabolic and physiological processes and harmful
oxidative reactions may occur in organisms (Halliwell, 2006). The oxidative effects of ROS
are controlled by non-enzymatic antioxidants, such as ascorbic acid, NPSH and glutathione,
and also by enzymatic antioxidants (superoxide dismutase, catalase and glutathione
peroxidase). Under some conditions, the increase in oxidants and the decrease in antioxidants
cannot be prevented, and the oxidative/antioxidative balance shifts towards the oxidative
status. Consequently, oxidative stress, has been implicated in over 100 disorders develop
(Halliwell, 2006). In this context, the brain is extremely vulnerable to oxidative stress, in part
because it is highly enriched with non-heme iron, which is catalytically involved in the
production of oxygen free radicals. In addition, the brain contains a relatively high degree of
polyunsaturated fatty acids that are particularly good substrates for peroxidation reactions
(Halliwell and Gutteridge, 2000). The results of the current study suggest that (PhTe)
2
,
by
PDF created with pdfFactory trial version www.pdffactory.com
72
interacting with biological membranes, induced an increase of lipid peroxidation in
hippocampus and striatum of pups.
Moreover, exposure to (PhTe)
2
produced also an inhibition of δ-ALA-D in hippocampus
and striatum of pups. This inhibition of δ-ALA-D activity is probably a consequence of
oxidative stress induced by exposure to (PhTe)
2
. Many cerebral enzymes which contain
sulfhydryl groups, such as δ-ALA-D, are sensitive to oxidizing agents (Borges et al., 2005)
and to situations associated with oxidative stress (Demasi et al., 1996; Prigol et al., 2007). It is
important to point out that ALA accumulation has been reported in tissues of animals and
patients which δ-ALA-D activity is inhibited (Juknat et al., 1995). ALA can undergo
autooxidation generating reactive oxygen species and the ALA enoyl radical (Bechara et al.,
1993). These reactive species increased lipid peroxidation (Emanuelli et al., 2003) and
induced oxidative damage (Demasi et al., 1996).
Regarding to catalase and SOD, exposure to (PhTe)
2
inhibited the activity of these
enzymes in hippocampus and striatum of pups. Antioxidant enzymes are considered to be a
primary defense that prevents biological macromolecules from oxidative damage. SOD is
mainly located in neurons whereas GPx, the major protective enzyme against the action of
H
2
O
2
, is mostly present in astrocytes. The brain has a much higher SOD to GPx activity ratio
than other organs of the rat (Benzi and Moretti, 1995). This, together with lower CAT
activity, makes the brain the most vulnerable organ to H
2
O
2
. Moreover, acute exposure
generally enhanced the production of these antioxidant enzymes as a result of adaptive
response, which consequently mitigate the damage (Hilbert and Mohsenin, 1996). However,
after prolonged exposure, the toxic effects appear to override the adaptive mechanism of the
body tissues, as indicated by a decrement in the levels of these enzymes (Hulea et al., 1995).
The experimental protocol carried out in this study was performed in two weeks of exposure,
an intermediary time, classified as sub-chronical protocol. This time can express alterations
observed in acute and/or chronic exposures.
The exposure to (PhTe)
2
induced changes in the levels of non-enzymatic defenses in
cerebral cortex and striatum of pups. In fact, NPSH levels were found increased in cerebral
cortex and striatum, and ascorbic acid content was increased only in striatum of pups exposed
to (PhTe)
2
via maternal milk. The changes observed in the non-enzymatic antioxidant
defenses could be explained by the adaptive response of cerebral tissue. This may in part
reflect the participation of these antioxidants in toxicological mechanisms by which (PhTe)
2
causes oxidative damage in brain of pups.
PDF created with pdfFactory trial version www.pdffactory.com
73
Additionally, the data obtained herein suggest that compared to cerebral cortex,
hippocampus and striatum were more susceptible to oxidative stress induced by (PhTe)
2
, since
that different parameters of oxidative stress were altered in these structures.
In conclusion, our results show that one possible molecular mechanism involved in the
(PhTe)
2
disrupted cerebral prooxidant/antioxidant balance, which can lead to brain injury via
oxidative damage to critical biomolecules.
PDF created with pdfFactory trial version www.pdffactory.com
74
Legends
Figure 1 - Effect of exposure to (PhTe)
2
via maternal milk on TBARS levels in cerebral
structures of pups. Results are reported as mean ± S.E.M. n = 6-8 litters (4 animals each litter).
Data are expressed as nmol MDA (malondialdehyde)/g tissue. (*) Denoted p < 0.05 as
compared to the respective control group.
Figure 2 - Effect of exposure to (PhTe)
2
via maternal milk on NPSH levels in cerebral
structures of pups. Results are reported as mean ± S.E.M. n = 6-8 litters (4 animals each litter).
Data are expressed as μmol NPSH/g tissue. (*) Denoted p < 0.05 as compared to the respective
control group.
Figure 3 - Effect of exposure to (PhTe)
2
via maternal milk on ascorbic acid levels in cerebral
structures of pups. Results are reported as mean ± S.E.M. n = 6-8 litters (4 animals each litter).
Data are expressed as μmol ascorbic acid/g tissue. (*) Denoted p < 0.05 as compared to the
respective control group.
Figure 4 - Effect of exposure to (PhTe)
2
via maternal milk on catalase activity in cerebral
structures of pups. Results are reported as mean ± S.E.M. n = 6-8 litters (4 animals each litter).
Data are expressed as U/mg protein. (*) Denoted p < 0.05 as compared to the respective control
group.
Figure 5 - Effect of exposure to (PhTe)
2
via maternal milk on SOD activity in cerebral
structures of pups. Results are reported as mean ± S.E.M. n = 6-8 litters (4 animals each litter).
Data are expressed as U SOD/mg protein. (*) Denoted p < 0.05 as compared to the respective
control group.
Figure 6 - Effect of exposure to (PhTe)
2
via maternal milk on δ-ALA-D activity in cerebral
structures of pups. Results are reported as mean ± S.E.M. n = 6-8 litters (4 animals each litter).
Data are expressed as nmol PBG (porphobilinogen)/mg protein/hour. (*) Denoted p < 0.05 as
compared to the respective control group.
Acknowledgements
The financial support by FAPERGS, CAPES and CNPq is gratefully acknowledged
C.W.N. is the recipient of CNPq fellowships.
PDF created with pdfFactory trial version www.pdffactory.com
75
References
Aebi, H. (1984). Catalase in vitro. Method. Enzymol. 105, 121-126.
Barbosa N. B. V., Rocha J. B. T., Zeni G., Emanuelli T., Beque M. C., Braga A. L. Effect of
Organic Forms of Selenium on d-Aminolevulinate Dehydratase from Liver, Kidney, and
Brain of Adult Rats. Toxicology and applied pharmacology 149, 243–253 (1998)
Bechara, E. J. H., Medeiros, M. H. G., Monteiro, H. P., Hermes-Lima, M., Pereira, B.,
Demasi, M., Costa, C. A., Abdall, D. S. P., Onuki, J., Wendel, C. M. A., and Masci, P.
D. (1993). A free radical hypothesis of lead poisoning and inborn porphyrias associated
with 5-aminolevulinic acid overload. Quimica Nova 16, 385–392.
Benzi, G., Moretti, A., 1995. Age- and peroxidative stress-related modifications of the
cerebral enzymatic activities linked to mitochondria and glutathione system. Free Radic.
Biol. Med. 19, 77–101.
Borges, V.C., Rocha, J.B.T., Nogueira, C.W., 2005. Effect of diphenyl diselenide, diphenyl
ditelluride and Ebselen on cerebral Na+ K+-ATPase activity in rats. Toxicology 215,
191–197.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram
quantities of protein utilizing the principles of protein-dye binding. Anal. Biochem. 72,
248-254.
Castagne, V., Gautschi, M., Lefevre, K., Posada, A., Clarke, P.G., 1999. Relationships
between neuronal death and the cellular redox status. Prog. Neurobiol. 59, 397–423.
Demasi, M., Penatti, C.A.A., De Lucia, R., Bechara, E.J.H., 1996. The prooxidant effect of 5-
aminolevulinic acid in the brain tissue of rats: implications in neuropsychiatric
manifestations in porphyrias. Free Radical Biol. Med. 20, 291–299.
Ellman, G.L. (1959). Tissue sulfhydryl groups. Arch. Biochem. 82, 70-77.
Emanuelli, T., Pagel, F.W., Porciúncula, L.O., Souza, D.O., 2003.Effects of 5-aminolevulinic
acid in the glutamatergic neurotransmission. Neurochem. Int. 42, 115–121.
Farina, M., Folmer, V., Bolzan, R.C., Andrade, L.H., Zeni, G., Braga, A.L., Rocha, J.B.T.,
2001. Selenoxides inhibit δ-aminolevulinic acid dehydratase. Toxicol. Lett. 119, 27-
37.
Frantseva M.V., V.J.L. Perez, P.A. Hwang, P.L. Carlen, Free radical production correlates
with cell death in an vitro model of epilepsy, Eur. J. Neurosci. 12 (2000) 1431–1439.
PDF created with pdfFactory trial version www.pdffactory.com
76
Green, M., Harwood, H., Barrowman, C., Rahman, P., Eggeman, A., Festry, F., Dobsonb, P.,
Ng, T.,2007. A facile route to CdTe nanoparticles and their use in bio-labelling. Journal of
Materials Chemistry 17, 1989–1994.
Gupta, N., Porter, T.D., 2001. Inhibition of human squalene monooxigenase by selenium
compounds. J. Biochem. Mol. Toxicol. 16, 18–23
Halliwell, B. Oxidative stress and neurodegeneration: where arewe now? Journal of
Neurochemistry, 2006, 97, 1634–1658
Halliwell B. and Gutteridge, J.M.C., editors (2000). Free radicals in biology and medicine,
3rd ed. Oxford: Oxford Science Publications.
Hilbert, J., Mohsenin, V., 1996. Adaptation of lung antioxidants to cigarette smoking in
humans. Chest 110, 916–920.
Hulea, S.A., Olinescu, R., Nita, S., Crocnan, D., Kummerow, A., 1995. Cigarette smoking
causes biochemical changes in blood that are suggestive of oxidative stress: a case
control study. Journal of Environmental Pathology Toxicology and Oncology 14, 173–
180.
Jacques-Silva, M.C., Nogueira, C.W., Broch, L.C., Rocha, J.B.T. (2001) Diphenyl diselenide
and acorbic acid changes deposition of selenium and ascorbic acid in brain of mice,
Pharmacol. Toxicol. 88, 119-125.
Jaffe, E. K. (1995). Porphobilinogen synthase, the first source of hemes asymmetry. J.
Bioenerg. Biomembr. 27, 169–179.
Juknat, A.A., Kotler, M.L., Batlle, A.M.C., 1995. High δ-aminolevulinic acid uptake in rat
cerebral cortex: effect on porphyrin biosynthesis.Comp. Biochem. Physiol. 111C, 143–
150.
Kodavanti PRS. Reactive oxygen species and antioxidant homeostasis in neurotoxicology. In:
Tilson HA, Harry GJ, editors. Neurotoxicology. USA: Taylor & Francis; 1999.
Larner, A.J., 1995. How does garlic exert its hypocholesterolaemic action? The tellurium
hypothesis. Medical Hypothesis 44, 295-297.
Maciel, E.N., Bolzan, R.C., Braga, A.L., Rocha, J.B.T., 2000. Diphenyl diselenide and
diphenyl ditelluride differentially affect d-Aminolevulinate dehydratase from liver,
kidney, and brain of mice. Journal of Biochemical and Molecular Toxicology 14, 310–
319.
McCobb D.P., Cohan C.S., Connor J.A., Kater S.B., (1988). Interactive effects of serotonin
and acetylcholine on neurite elongation. Neuron 1 377–385.
PDF created with pdfFactory trial version www.pdffactory.com
77
Meotti, F.C., Borges, V.C., Zeni, G., Rocha, J.B.T., Nogueira, C.W., 2003. Potential renal and
hepatic toxicity of diphenyl diselenide, diphenyl ditelluride and Ebselen for rats and
mice. Toxicology Letters 143, 9-16.
Misra, H.P. and Fridovich, I. (1972). The role of superoxide anion in the autoxidation of
epinephrine and simple assay for superoxide dismutase. J. Biol. Chem. 247, 3170-3175.
Newman, R.A., Osborn, S., Siddik, Z.H., 1989. Determination of tellurium in biological fluids
by means of electrothermal vapourization-inductively coupled to plasma mass
spectrometry (ETV-ICP-MS). Clinica Chimica Acta 179, 191-196.
Nogueira, C.W., Zeni, G., Rocha, J.B.T., 2004. Organoselenium and organotellurium
compounds: Toxicology and Pharmacology. Chemical Reviews 104, 6255-6286.
Nogueira, C.W., Quinhones, E.B., Jung, E.A.C., Zeni, G., Rocha, J.B.T., 2003. Anti-
inflammatory and antinociceptive activity of diphenyl diselenide. Inflamm. Res. 52, 56–
63.
Nogueira, C.W., Rotta, L.N., Perry, M.L., Souza, D.O., Rocha, J.B.T., 2001. Diphenyl
diselenide and diphenyl ditelluride affect the rat glutamatergic system in vitro and in
vivo. Brain Research 906, 157– 163.
Ohkawa, H., Ohishi, N., and Yagi, K. 1979. Assay for lipid peroxides in animal tissues by
thiobarbituric acid reaction. Anal. Biochem. 95: 351-358.
Park, H.S., Park, E., Kim, M.S., Ahn, K., Kim, I.Y., Choi, E.J., 2000. Selenite inhibits the c-
Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) through a thiol redox
mechanism. J. Biol. Chem. 275, 2527–2531.
Petragnani, N., 1994. Preparation of the principal classes of organic tellurium compounds. In:
Tellurium in Organic Synthesis. Academic Press, London, pp. 9–88.
Prigol M., Wilhelm E.A., Schneider C.C., Rocha J.B.T., Nogueira C.W., Zeni G. (2007).
Involvement of oxidative stress in seizures induced by diphenyl diselenide in rat pups.
Brain Research 1147, 226 232.
Sassa, S. 1982. Delta-aminolevulinic acid dehydratase assay. Enzyme 28: 133-145.
Sassa, S., Fujita, H., and Kappas, A. (1989). Genetic and chemical influences on heme
biosynthesis. In Highlights of Modern Biochemistry (A. Kotyk, J. Skoda, V. Paces and
V. Kostka, eds.), Vol.1, pp. 329–338. VSP, Utrecht.
Siddik, Z.H., Newman, R.A., 1988. Use of platinum as a modifer in the sensitive detection of
tellurium in biological samples. Analytical Biochemistry 172, 190-196.
PDF created with pdfFactory trial version www.pdffactory.com
78
Stangherlin, E.C., Favero, A.M., Zeni, G., Rocha, J.B.T., Nogueira, C.W., 2005. Teratogenic
vulnerability of rat fetuses to diphenyl ditelluride: prenatal assessment. Toxicology 207,
231-239.
Stangherlin, E.C., Favero, A.M., Zeni, G., Rocha, J.B.T., Nogueira, C.W., 2006. Exposure of
mothers to diphenyl ditelluride during the suckling period changes behavioral tendencies
in their offspring. Brain Research Bulletin 69, 311-317.
Yarema, M.C., Curry, S.C., 2005. Acute tellurium toxicity from ingestion of metal-oxidizing
solutions. Pediatrics 116, 319-321.
Zeni G., Lüdtke D.S., Panatieri R.B., Braga A.L., 2006. Vinylic Tellurides: From Preparation
to Their Applicability in Organic Synthesis. Chem. Rev. 106, 1032-1076.
Zhang H., Swihart M.T., 2007. Synthesis of Tellurium Dioxide Nanoparticles by Spray
Pyrolysis Chemistry of Materials 19, 1290-1301.
PDF created with pdfFactory trial version www.pdffactory.com
79
Figure 1
Figure 2
Cortex Hippocampus Striatum
0
2
4
6
8
10
nmol MDA / g tissue
Control Diphenyl ditelluride
*
*
Cortex Hippocampus Striatum
0.00
0.50
1.00
1.50
2.00
2.50
umol / g tissue
Control Diphenyl ditelluride
*
*
PDF created with pdfFactory trial version www.pdffactory.com
80
Figure 3
Figure 4
Cortex Hippocampus Striatum
0
110
220
330
440
550
umol ascorbic acid / g tissue
Control Diphenyl ditelluride
*
Cortex Hippocampus Striatum
0
3
6
9
12
15
U / mg prot
Control Diphenyl ditelluride
*
*
PDF created with pdfFactory trial version www.pdffactory.com
81
Figure 5
Figure 6.
Cortex Hippocampus Striatum
0
5
10
15
20
U SOD / mg protein
Control Diphenyl ditulluride
*
*
Cortex Hippocampus Striatum
0
3
6
9
12
15
nmol PBG / mg prot / h
Control Diphenyl ditelluride
*
*
PDF created with pdfFactory trial version www.pdffactory.com
82
5. DISCUSSÃO
Esse estudo avaliou o efeito da exposição materna a baixas doses de ditelureto de
difenila, durante o período de amamentação, sob aspectos comportamentais e bioquímicos,
em filhotes de rato.
Os resultados obtidos após a avaliação comportamental revelaram, num primeiro
momento, tendências desinibitórias, determinadas pelo desempenho dos animais expostos ao
ditelureto de difenila via leite materno, no labirinto em cruz-elevado (artigo 1). O teste do
campo aberto também poderia sugerir alterões da mesma natureza. Porém, no campo
aberto, os animais expostos ao ditelureto de difenila demonstraram um comportamento
normal, comparável ao comportamento dos animais controle. Esse fato sugere que as
alterões observadas são específicas para uma determinada tarefa, e ocorrem em um
ambiente mais complexo. Ainda, para roedores, essas alterões podem não ser adaptativas e
podem potencialmente expor os animais afetados a situões de perigo. Outras observações
importantes revelaram que a exposição ao ditelureto de difenila não alterou a atividade
exploratória ou a coordenação motora dos animais (artigo 1).
Num segundo momento, os resultados obtidos após a avaliação comportamental
revelaram que os animais expostos ao ditelureto de difenila via leite materno tiveram um
prejuízo de memória, revelado no teste do reconhecimento do objeto (manuscrito 1). Esse
resultado está de acordo com um estudo que também revelou deficiência cognitiva induzida
por telúrio inorgânico em ratos (Widy-Tyszkiewicz et al., 2002).
Sendo assim, as observões desses estudos sugerem que o ditelureto de difenila (ou
metabólito dele) consegue passar para os filhotes através do leite materno, provavelmente por
esse composto ter uma natureza lipídica. Uma vez nos tecidos do filhote, ele tem a capacidade
de injuriar o tecido cerebral, a ponto de causar alterões que se revelam nas mudanças
comportamentais observadas.
A investigação dos possíveis mecanismos pelos quais o ditelureto de difenila atua
revelou que ele causou uma inibição da captação de glutamato em sinaptossomas de rebro
total e não interferiu no processo de liberação de glutamato, no mesmo ensaio (manuscrito 1).
Esses eventos poderiam promover um aumento de glutamato na fenda sináptica, pela inibição
da sua captação. Porém, o favorecimento da neurotransmissão glutamatérgica parece estar
mais relacionado com eventos ansiogênicos/inibitórios (LeDoux, 1994; Maren, 1996) ou
ainda, de facilitação dos processos relacionados com a cognição e a memória (Daisley et al.,
1998; Lhullier et al., 2004; Mameli et al., 2005; McGahon et al., 1996), ou seja,
PDF created with pdfFactory trial version www.pdffactory.com
83
comportamentos contrários aos observados nesse estudo. Dessa forma, nesse protocolo
experimental, a alteração da homeostase do sistema glutamatérgico ocasionada pelo ditelureto
de difenila parece não estar diretamente relacionada com as alterões comportamentais
observadas nos filhotes. Entretanto, não se pode descartar o envolvimento da via
glutamatérgica em estruturas cerebrais específicas no que diz respeito à ansiedade ou à
memória (Izquierdo e Medina, 1997; Lisman et al., 2005; Rosenzweig e Barnes, 2003; Wu e
Yamaguchi, 2004; LeDoux, 1994; Maren, 1996).
No protocolo experimental utilizado nesse estudo, foi observada uma inibição na
atividade da enzima Na
+
,K
+
-ATPase cerebral (manuscrito 1). Essa importante enzima
reguladora do potencial de membrana é responsável pelo transporte ativo dos íons sódio e
potássio no sistema nervoso (Doucet, 1988; Jorgensen, 1986). Além disso, a inibição da
atividade dessa enzima está relacionada com o aumento da liberação de neurotransmissores
excitatórios (Vizi e Vyskocil, 1979). Então, como no presente estudo a liberação de glutamato
não foi alterada pela exposição ao ditelureto de difenila, provavelmente esses dois eventos
(transmissão glutamatérgica e atividade da Na
+
,K
+
-ATPase) não estão relacionados. Porém,
vários estudos relacionam a inibição da atividade da Na
+
,K
+
-ATPase com o prejuízo da
memória (Wyse et al., 2004; Xiong e Stringer, 2000; dos Reis et al., 2002; Sato et al., 2004).
Sendo assim, a inibição da atividade dessa enzima provavelmente é um dos mecanismos
relacionados com o prejuízo de memória dos animais testados nesse estudo.
Num terceiro momento, foi constatado que a exposição ao ditelureto de difenila via
leite materno causou uma série de alterões no status oxidativo cerebral dos filhotes
(manuscrito 2). As estruturas cerebrais mais afetadas foram o hipocampo e o estriado. Nessas
regiões, foi observado um aumento da peroxidação lipídica e uma inibição da atividade das
enzimas superóxido dismutase, catalase e δ-ALA-D. O aumento do estresse oxidativo no
hipocampo e no estriado pode ser explicado pelo fato de que o ditelureto de difenila pode
interagir com as membranas biológicas, induzindo um aumento da peroxidação lipídica. Em
algumas situões, o aumento de substâncias oxidantes pode ser tão intenso que a diminuição
das defesas antioxidantes não consegue ser prevenida (Halliwell, 2006). E assim, o tecido fica
vulnerável ao dano. Provavelmente a inibição da atividade das enzimas foi uma conseência
do estresse oxidativo. E mais, a inibição da atividade da Na
+
,K
+
-ATPase também pode ter
sido ocasionada pelo aumento do estresse oxidativo. Ainda, no estriado houve um aumento
dos níveis de ácido ascórbico e de grupos tióis não-protéicos. No córtex, por sua vez, houve
um aumento somente dos níveis de grupos tióis não-protéicos. O aumento dos níveis desses
PDF created with pdfFactory trial version www.pdffactory.com
84
dois antioxidantes não-enzimáticos pode ter sido uma resposta adaptativa dos tecidos
cerebrais ao estresse.
Sendo assim, parece que a exposição ao ditelureto de difenila via leite materno alterou
o status oxidativo nas estruturas cerebrais dos filhotes, interferindo, consequentemente, na
homeostase funcional dessas regiões. Essa alterão oxidativa localizada provavelmente é um
dos principais mecanismos envolvidos nas mudanças comportamentais observadas nesse
estudo. Isso porque o hipocampo e o estriado, as duas regiões mais afetadas pelo estresse
oxidativo induzido pela exposição ao ditelureto de difenila, são as regiões mais relacionadas
com ansiedade/desinibição e cognição/memória.
Vários estudos demonstram que os sintomas da depressão e da ansiedade envolvem
estruturas cerebrais como o hipocampo (Cheeta et al., 2000; Kempermann, 2002), o córtex
pré-frontal (Zhong e Yan et al., 2004; Shah et al., 2004), e o córtex cerebral (Setnik e
Nobrega, 2004; Talpalar e Grossman, 2004). Além disso, lesões pré-frontais estão
relacionadas com a desinibição, a deficiência da memória de trabalho e as disfunções de
atenção. Lesões experimentais no estriado estão associadas com a etiologia da desordem de
hiperatividade com deficiência de atenção (Lou, 1996). Lesões estriatais em animais
produzem hiperatividade e desempenho insatisfatório em testes de memória de trabalho
(Alexander et al., 1986). Além disso, o envolvimento do hipocampo em muitas, se não em
todas as formas de memória é conhecido há muito tempo (Barnes, 1979, 1996; Squire, 1992).
PDF created with pdfFactory trial version www.pdffactory.com
85
6. CONCLUSÕES
De acordo com os resultados apresentados nesta tese podemos inferir o seguinte: a
exposição materna ao ditelureto de difenila, durante as duas primeiras semanas do período
lactacional, causou, nos filhotes:
- Alterões comportamentais, sendo elas:
(a) tendências comportamentais desinibitórias no teste do labirinto em cruz-elevado, e
(b) prejuízo de memória no teste do reconhecimento ao objeto.
As demais tarefas comportamentais avaliadas não foram alteradas pela exposição.
- Em sinaptossomas de cérebro, inibição da captão de [³H]glutamato, enquanto que a
liberação de [³H]glutamato não foi afetada.
- Inibição da atividade da enzima Na
+
,K
+
ATPase cerebral.
- Alteração do status oxidativo em estruturas cerebrais:
(a) hipocampo e estriado: aumento dos níveis de peroxidação lipídica, inibição da atividade
das enzimas superóxido dismutase, catalase e δ-ALA-D;
(b) estriado: além das alterões acima citadas, verificou-se ainda, um aumento nos níveis
das defesas antioxidantes não-enzimáticas, ácido ascórbico e grupos tióis não-protéicos;
(c) córtex cerebral: aumento dos níveis de grupos tióis não-protéicos.
A exposição ao ditelureto de difenila via leite materno alterou o status oxidativo nas
estruturas cerebrais dos filhotes, e consequentemente, alterou a homeostase funcional dessas
regiões. Essa alteração oxidativa localizada provavelmente é um dos principais mecanismos
envolvidos nas alterões comportamentais observadas nesse estudo. Isso porque o
hipocampo e o estriado, as duas regiões mais afetadas pelo estresse oxidativo induzido pela
exposição ao ditelureto de difenila, são as regiões mais relacionadas com os comportamentos
referentes à ansiedade/desinibição e à cognição/memória.
PDF created with pdfFactory trial version www.pdffactory.com
86
7. REFERÊNCIAS BIBLIOGFICAS
AGNEW, W.F.; CURRY, E. Period of teratogenic vulnerability of rat embryo to induction of
hydrocephalus by tellurium. Experientia, v. 28, p. 1444-1445, 1972.
AGNEW, W.F., FAUVRE, F.M., PUDENZ, P.H. Tellurium hydrocephalus: Distribution of
tellurium-127m between maternal, fetal and neonatal tissues of the rat. Exp. Neurol., v. 21, p.
120-131, 1968.
ALEXANDER, G.E.; DELONG, M.R.; STRICK, P.L. Parallel organization of functionally
segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci., v. 9, p. 357–381,
1986.
ALMEIDA, S.S.; TONKISS, J.; GALLER, J.R. Prenatal protein malnutrition affects
exploratory behavior of female rats in the elevated plus-maze test. Physiol. Behav., v. 60, p.
675–680, 1996.
ALTMAN. J.; DAS, G.D. Autoradiographic and histological studies of postnatal
neurogenesis. I. A longitudinal investigation of kinetics migration and transformation of cells
incorporating tritiated thymidine in neonate rats with special reference to postnatal
neurogenesis in some brain regions. J. Comp. Neurol., v. 126, p. 337, 1966.
ANDERSSON, C.-M.; BRATTSAND, R.; HALLBERG, A. Diaryl tellurides as inhibitors of
lipid peroxidation in biological and chemical systems. Free Radical Res., v. 20, p. 401-410,
1994.
ANDERSSON, C.-M. et al. Glutathione Peroxidase-Like activity of diaryl tellurides. Bioorg.
Med. Chem. Lett., v. 3, p. 2553-2558, 1993.
ANNAU, Z.; CUOMO, V. Mechanisms of neurotoxicity and their relationship to behavioral
changes. Toxicology, v. 49, p. 219–225, 1988.
BANHEGYI, G. et al. Ascorbate metabolism and its regulation in animals. Free Radical
Bio. Med., v. 23, p. 793-803, 1997.
BARBOSA, N.B.V. et al. Effect of organic forms of selenium on δ-aminolevulinate
dehydratase from liver, kidney, and brain of adult rats. Toxicol. Appl. Pharmacol., v. 149, p.
243-253, 1998.
BARNES, C. A. Involvement of LTP in memory: Are we searching under the street light?’’
Neuron, v. 15, p. 751–754, 1996.
BARNES, C. A. Memory deficits associated with senescence: A neurophysiological and
behavioral study in the rat. J. Comp. Physiol. Psychol., v. 93, p. 74–104, 1979.
BEAL, M.F.; HYMAN, B.T.; KOROSHETZ,W. Do defects in mitochondrial energy
metabolism underlie the pathology of neurodegenerative diseases. Trends Neurosci., v. 16, p.
125–131, 1993.
BECHARA, E.J.H. et al. A free radical hypothesis of lead poisoning and inborn porphyrias
associated with 5-aminolevulinic acid overload. Química Nova, v. 16, p. 385-392, 1993.
PDF created with pdfFactory trial version www.pdffactory.com
87
BECKER, D., VILJOEN, D., KRAMER, S. Inhibition of red cell and brain atpase by delta-
aminolaevulinic acid. Biochim. Biophys. Acta, v. 225, p. 26, 1971.
BENNET, M.R.; BALCAR, V.J. Forty years of amino acid transmission in the brain.
Neurochem. Int., v. 35, p. 269-280, 1999.
BERK, M.; PLEIN, H.; BELSHAM, B. The specificity of platelet glutamate receptor
supersensitivity in psychotic disorders. Life Sci., v. 66, p. 2427-2432, 2000.
BERTORELLO, A.M.; KATS, A.L. Regulation of Na
+
-K
+
- pump activity: pathways between
receptors and effectors. NIPS, v. 10, p. 253–259, 1995.
BLAIS, F. X.; ONISCHUK, R. T.; DE MEIO, R. H. Hemolysis by tellurite: I: The tellurite
test for hemolysis. J. AOA, p. 73, 1972.
BLINZINGER, K.; HAGER, H. Uber die zellulare Speicherung von Tellur und ihre
Beziehung zu den unter dem Lysosomenbegriff zusammengefassten intrazytolplasmatischen
Korpern. Verh. Deut. Ges. Pathol., v. 49, p. 357-362, 1965.
BLISS, T.V.P.; COLLINBRIDGE, G.L.A. A synaptic model of memory long-term
potentiation in the hippocampus. Nature, v. 361, p. 31-39, 1993.
BOLES, J.O. et al. Telluromethionine in structural biochemistry. SAAS Bull. Biochem.
Biotechnol., v. 8, p. 29-45, 1995.
BORGES, V.C. et al. Organochalcogens affect the glutamatergic neurotransmission in human
platelets. Neurochem. Res., v. 29, p. 1505-1509, 2004.
BOVERIS, A.; CADENAS, E. Cellular sources and steady-state levels of reactive oxygen
species. In : CLERCH, L.; MASSARO, D. Oxygen, gene expression and cellular function.
Marcel Decker: New York, v. 105, p.1-25, 1997.
BRAGA, A. L. et al. Stereoconservative formation and reativity of α-chalcogen-
functionalized vinylithium compounds from bromo-vinylic chalcogens. Synlett, v. 5, p. 595-
596, 1997.
BRAGA, A. L. et al. Synthesis of selenocetais from enol ethers. J. Chem. Res., p. 206-207,
1996.
BUDISA, N. et al. High level biosynthetic substitution of methionine in proteins by its
analogues 2-aminohexanoic acid, selenomethionine, telluromethionine and ethionine in
Escherichia coli. Eur. J. Biochem., v. 230, p. 788-796, 1995.
CARFAGNA, M.A.; PONSLER, G.D.; MUHOBERAC, B.B. Inhibition of ATPase activity in
rat synaptic plasma membranes by simultaneous exposure to metals. Chem. Biol. Interact.,
v. 100, p. 53–65, 1996.
CARLTON, W.W.; KELLY, W.A. Tellurium toxicosis in Pekin ducks. Toxicol. Appl.
Pharmacol., v. 2, p. 203-214, 1967.
PDF created with pdfFactory trial version www.pdffactory.com
88
CHAKRABORTY, D. et al. Studies on ascorbic acid metabolism in rats under chronic
toxicity due to organophosphorus inseticides: effects of supplementation of ascorbic acid in
high doses. J. Nutr., v. 108, p. 973-980, 1978.
CHATTERJEE, G.C.; RUDRA PAL, D. Metabolism of L-ascorbic acid in rats under in vivo
administration of mercury: effects of L-ascorbic acid supplementation. Int. J. Vit. Nutr. Res.,
v. 45, p. 284-292, 1975.
CHEETA, S.; KENNY, P.J.; FILE, S.E. Hippocampal and septal injections of nicotine and 8-
OH-DPAT distinguish among different animal tests of anxiety. Prog.
NeuroPsychopharmacol. Biol. Psychiatry, v. 24, p. 1053–1067, 2000.
COLLINGRIDGE, G.L.; AND LESTER, R.A.J. Excitatory amino acid receptors in the
vertebrate central nervous system. Pharmacol. Rev., v. 40, p. 143-210, 1989.
COMASSETO, J. V. et al. Vinylic selenides and tellurides preparations, reactivity and
synthetic applications. Synthesis, p. 373, 1997.
COMASSETO, J. V. Vinylic selenides. J. Organomet. Chem., v. 253, p. 131-181, 1983.
CONN, P.J.; PINN, J.P. Pharmacology and function of metabotropic glutamate receptors.
Annu. Rev. Pharmacol. Toxicol., v. 37, p. 205-237, 1997.
COTMANN, C.W. et al. Excitatory amino acid neurotransmission. Pharmacology: The
fourth generation of Progress, Floyd E, Bloom and David J. Kupfer, eds. Raven Press, New
York, 1995.
CROFT, K.D. The chemistry and biological effects of flavonoides and phenolic acids.
Towards Prolongation of the Healthy Life Span., v. 854, p. 435-443, 1998.
CROSKERRY, P.G., et al. Perinatal brain DNA in normal and growth hormone-treated rat.
Brain Res., v. 52, p. 413-418, 1973.
CUTLER, M.G.; MOORE, M.R.; EWART, F.G. effects of delta-aminolevulinic-acid
administration on social-behavior in the laboratory mouse. Psychopharmacol., v. 61, p. 131-
135, 1979.
DAISLEY, J.N. et al. Passive avoidance training and recall are associated with increased
glutamate levels in the intermediate medial hyperstriatum ventrale of the day-old chick.
Neural Plasticity, v. 6, p. 53-61, 1998.
DAVISON, A.N.; DOBBING, J. Myelination as a vulnerable period in brain development.
Brit. Med. Bull., v. 22, p. 40, 1966.
DAVIES, K.J.A. Oxidative damage and repair: Chemical, biological and medical
aspects. Oxford: Pergamon, p. 910, 1991.
DEUTICKE, B.; LÜTKEMEIER, P.; POSE, B. Tellurite-induced damage of the erythrocyte
membrane. Manifestations and mechanisms. Biochem. Biophys. Acta, v. 1109, p. 97-107,
1992.
PDF created with pdfFactory trial version www.pdffactory.com
89
DICHTER, M.A.; WILCOX, K.S. Excitatory synaptic transmission. Epilepsy: A
comprehensive Textbook. J. Engel, Jr. and T.A. Pedley. Eds. Lippincott-Raven Publishers,
Philadelphia, 1997.
DOBBING J, SANDS J. Vulnerability of developing brain. IX. The effect of nutritional
growth retardation on the timing of the brain growthspurt. Biol. Neonate, v. 19, p. 363–378,
1971.
DOS REIS, E. A. et al. Arginine administration inhibits hippocampal Na
+
,K
+
-ATPase activity
and impairs retention of an inhibitory avoidance task in rats. Brain Res., v. 951, p. 151–157,
2002.
DOUCET, A. Function and control of Na
+
-K
+
-ATPase in single nephron segments of the
mammalian kidney. Kidney Int., v. 34, p. 749–760, 1988.
DRESEL, E.I.B.; FALK, J.E. Conversion of delta-aminolevulinic acid to porphobilinogen in a
tissue system. Nature, p. 1172-1185, 1953.
DUCKETT, S. et al. Tellurium-induced neuropathy. Correlative physiological, morphological
and electron microprobe studies. Neuropath. Appl. Neuro., v. 5, p. 265-278, 1979.
DUCKETT, S.; WHITE, R. Cerebral lipofucsinosis induced with tellurium: electron
dispersive x-ray spectrophotomrtry analysis. Brain Res., v. 73, p. 205-214, 1974.
DUCKETT, S. Teratogenesis caused by tellurium. Ann. N.Y. Acad. Sci., v. 192, p. 220-226,
1972.
DUCKETT, S.; ELLEM, K.A.O. The location of tellurium in fetal tissues, particularly the
brain. Exp. Neurol., v. 32, p. 49-71, 1971.
DUCKETT, S.; SCOTT, T. The target period during fetal life for the production of tellurium
hydrocephalus. Experientia, v. 27, p. 1064-1065, 1971.
DUCKETT, S. The morphology of tellurium-induced hydrocephalus. Exp. Neural., v. 31, p.
1-16, 1971.
EGGER, G.J.; LIVESEY, P.J.; DAWSON, R.G. Ontogenic aspects of central cholinergic
involvement in spontaneous alternation behavior. Dev. Psychobiol., v. 6, p. 289–299, 1973.
ENGMAN, L. et al. Organotellurium compounds as efficient retarders of lipid peroxidation in
methanol. Free Radical Bio. Med., v. 19, p. 441-452, 1995.
ENGMAN, L. et al. Thiol peroxidase activity of diaryl ditellurides as determined by a
1
H
NMR method. J. Am. Chem. Soc., v. 114, p. 9737-9743, 1992.
ERECINSKA, M.; SILVER, I.A. Ions and energy in mammalian brain. Progress in
Neurobiology, v. 43, p. 37-71, 1994.
EULER, G.V.; LIU, Y. Glutamate and glycine decrease the affinity of [
3
H] MK-801 binding in
prsence of Mg
2+
. Eur. J. Pharmacol., v. 245, p. 233-239, 1993.
PDF created with pdfFactory trial version www.pdffactory.com
90
FAIRHILL, L.T. Tellurium. In: Industrial Toxicology, pp. 120. Hafner Publishing Co, New
York & London, 1969.
FARBER, J.L.; KYLE, M.E.; COLEMANN, J.B. Biology of disease. Mechanisms of cell
injury by activated oxygen species. Lab. Invest., v. 62, p. 670-678, 1990.
FARINA, M. et al. Selenoxides inhibit δ-aminolevulinic acid dehydratase. Toxicol. Lett., v.
119, p. 27-37, 2001.
FERRARESE, C. et al. Decreased platelet glutamate uptake in patients with amyotrophic
lateral sclerosis. Neurology, v. 56, p. 270-272, 2001.
FERRARESE, C. et al. Glutamate uptake is decreased in platelets from Alzheimers disease
patients. Ann. Neurol., v. 47, p. 641-643, 2000.
FOLMER, V. et al. High sucrose consumption potentiates the sub-acute cadmium effect on
Na
+
-K
+
-ATPase but not on and δ- aminolevulinate dehydratase in mice. Toxicol. Lett., v.
153, p. 333–341, 2004.
GENN, R.F., et al. Age associated sex differences in response to food deprivation in two
animal tests of anxiety. Neurosci. Biobehav. Rev., v. 27, p. 155–161, 2003.
GMELIN, C. H. R. Versuche über die Wirkungem des Baryts, Strontians, u.s.w auf den
thierischen organismus. Tübingen 1824, 43. (Citated by Challenger, Frederick: Biological
methylation). Chem. Rev., v. 36, p. 315, 1945, 1824.
GOERING, P.L. Lead protein interactions as a basis for lead toxicity. Neurotoxicology, v.
14, p. 45-60, 1993.
GOZLAN, H.; BEM-ARI, Y. NMDA receptor redox sites: are they targets for selective
neuronal protection? TiPS, v. 16, p. 368-375, 1995.
GOTTLIEB A.; KEYDAR I.; EPSTEIN H.T. Rodent brain growth stages: an analytical
review. Neonate, v. 32, p. 166–176, 1977.
GRAEFF, F.G.; NETTO, F.C.; ZANGROSSI, H. The elevated T-maze as an experimental
model of anxiety. Neurosci. Biobehav. Rev., v. 23, p. 237–246, 1998.
GREEN, M. et al. A facile route to CdTe nanoparticles and their use in bio-labelling. Journal
of Materials Chemistry, v. 17, p. 1989–1994, 2007.
HALLIWELL, B. Oxidative stress and neurodegeneration: where are we now? J.
Neurochem., v. 97, p. 1634–1658, 2006.
HALLIWELL, B.; GUTTERIDGE, J. M. C. Role of free radicals and catalytic metal ions in
human disease: an overview. Met. Enzimol., v. 186, p. 1-5, 1990.
HARRY, G.J. et al. Tellurium-induced neuropathy: metabolic alterations associated with
demyelination and remyelination in rat sciatic nerve. J. Neurochem., v. 52, p. 938-945, 1989.
PDF created with pdfFactory trial version www.pdffactory.com
91
IZQUIERDO, I.; MEDINA, J.H. Memory formation: the sequence of biochemical events in
the hippocampus and its connection to activity in other brain structures. Neurobiology of
Learning and Memory, v. 68, p. 285–316, 1997.
JAFFE, E.K. et al. Characterization of the role of the stimulatory magnesium of Escherichia
coli porphobilinogen synthase. Biochem., v. 34, p. 244-251, 1995.
JORGENSEN, P.L. Structure, function and regulation of Na
+
-K
+
-ATPase in the kidney.
Kidney Int., v. 29, p. 10–20, 1986.
KANDA, T. et al. G. Novel water-soluble diorganyl tellurides with thiol peroxidase and
antioxidant activity. J. Org. Chem., v. 64, p. 8161-8169, 1999.
KEMPERMANN, G. Regulation of adult hippocampal neurogenesis-Implications for novel
theories of major depression. Bipolar Disord., v. 4, p. 17–33, 2002.
KVAMME, E. Synthesis of glutamate and its regulation. Prog. Brain Res., v. 116, p. 73-85,
1998.
LADEN, B.; PORTER, T. Inhibition of human squalene monooxigenase by tellurium
compounds. Evidence of interaction with vicinal sulfhydryls. J. Lipid. Res., v. 42, p. 235-
240, 2001.
LAMPERT, P.W.; GARRETT, R.S. Mechanism of demyelination in tellurium neuropathy.
Electron microscopic observations. Lab. Invest., v. 25, p. 380-388, 1971.
LALONDE, R.; KIM, H.D.; FUKUCHI, K. Exploratory activity, anxiety, and motor
coordination in bigenic APPswe + PS1/Delta E9 mice. Neurosci. Lett., v. 369, p. 156–161,
2004.
LALONDE, R.; QIAN, S.; STRAZIELLE, C. Transgenic mice expressing the PSIA346E
mutation: effects on spatial learning, exploration, anxiety, and motor coordination. Behav.
Brain Res., v. 138, p. 71–79, 2003.
LALONDE, R.; STRAZIELLE, C. Motor performance of spontaneous murine mutations
with cerebellar atrophy, in: CRUSIO, W.; GERLAI, E. (Eds.), Handbook of Molecular-
Genetic Techniques for Brain and Behavior Research (Techniques in the Behavioral and
Neural Sciences, vol. 13), Elsevier, Amsterdam, p. 627–637, 1999.
LARNER, A.J. How does garlic exert its hypocholesterolaemic action? The tellurium
hypothesis. Med. Hypothesis, v. 44, p. 295-297, 1995.
LEDOUX, J.E. Emotion, memory and the brain. Sci. Am., v. 270, p. 50-57, 1994.
LHULLIER, F.L.R. et al. Dehydroepiandrosterone increases synaptosomal glutamate release
and improves the performance in inhibitory avoidance task. Pharmacol. Biochem. Behav., v.
77, p. 601–606, 2004.
LIPTON, S.A.; ROSENBERG, P.A. Excitatory amino acids as a final common pathway for
neurological disorders. New. Eng. J. Med., v. 330, p. 613-622, 1994.
PDF created with pdfFactory trial version www.pdffactory.com
92
LISMAN, J.E.; TALAMINI, L.M.; RAFFONE, A. Recall of memory sequences by
interaction of the dentate and CA3: A revised model of the phase precession. Neural
Networks, v. 18, p. 1191–1201, 2005.
LOU, H. Etiology and pathogenesis of attention-deficit hyperactivity disorder (ADHD);
significance of prematurity and perinatal hypoxic-haemodynamic encephalopathy. Acta
Paediatr., v. 85, p. 1266–1271, 1996.
MACIEL, N. et al. Diphenyl diselenide and diphenyl ditelluride differentially affects
aminolevulinate dehydratase from liver, kidney and brain of mice. J. Biochem. Mol. Toxic.,
v. 14, p. 310-319, 2000.
MAMELI, M. et al. Developmentally regulated actions of alcohol on hippocampal
glutamatergic transmission. J Neurosci., 25, p. 8027, 2005.
MAREN, S. Synaptic transmission and plasticity in the amygdala. Mol. Neurobiol., v. 13, p.
1-22, 1996.
McCORD, J.M.; FRIDOVICH, I. Superoxide dismutase: an enzymatic function for
erythrocuprein (hemocuprein). J. Biol. Chem., v. 244, p. 6049-6055, 1969.
MCGAHON, B. et al. Training in the Morris water maze occludes the synergism between
ACPD and arachidonic acid on glutamate release in synaptosomes prepared from rat
hippocampus. Learning & Memory, v. 3, p. 296-304, 1996.
MELDRUM, B.S.; AKBAR, M.T.; CHAPMAN, A.G. Glutamate receptors and transporters
in genetic an acquired modles of epilepsy. Epilepsy Res., v. 36, p. 189-204, 1999.
MEOTTI, F.C. et al. Potential renal and hepatic toxicity of diphenyl diselenide, diphenyl
ditelluride and Ebselen for rats and mice. Toxicol. Lett., v. 143, p. 9-16, 2003.
MIZUNO, R. Electron microscopic study on the cerebral cortex of rabbits intoxicated with
tellurium. Yokohama Med. J., v. 20, p. 101-121, 1969.
MORELL, P. et al. Gene expression during tellurium-induced primary demyelination.
Neurotoxicology, v. 15, p. 171-180, 1994.
MORETTO, M.B. et al. Ebselen and diorganochalcogenides inhibition of
45
Ca
2+
influx into
brain synaptosomes is voltage-dependent. J. Biochem. Mol. Toxic., v. 17, p. 154-160, 2003.
MORGANE, P.J.; MOKLER, D.J.; GALLER, J.R. Effects of prenatal protein malnutrition on
the hippocampal formation. Neurosci. Biobehav. Rev., v. 26, p. 471-483, 2002.
MÜLLER, R. et al. Tellurium intoxication. Kiln. Wocherschr., v. 67, p. 1152-1155, 1989.
NICOLETTI, F. et al. Metabotropic glutamate receptors: a new target for the therapy of
neurodegenerative disorders? Trends Neurosci., 19, p. 267-272, 1996.
NEWMAN, R.A.; OSBORN, S.; SIDDIK, Z.H. Determination of tellurium in biological
fluids by means of electrothermal vapourization-inductively coupled to plasma mass
spectrometry (ETV-ICP-MS). Clin. Chim. Acta, v. 179, p. 191-196, 1989.
PDF created with pdfFactory trial version www.pdffactory.com
93
NOGUEIRA, C.W. et al. Anti-inflammatory and antinociceptive activity of diphenyl
diselenide. Inflamm. Res., v. 52, p. 56-63, 2003a.
NOGUEIRA, C.W. et al. Organochalcogens effects on δ-aminolevulinic acid dehydratase
activity from human erythrocytic cells in vitro. Toxicology, v. 191, p. 169-178, 2003b.
NOGUEIRA, C.W. et al. Exposure to ebselen changes glutamate uptake and release by rat
brain synaptosomes. Neurochem. Res., v. 27, p. 283-288, 2002.
NOGUEIRA, C.W. et al. Diphenyl diselenide and diphenyl ditelluride affect the rat
glutamatergic system in vitro and in vivo. Brain Res., v. 906, p. 157-163, 2001.
NYSKA, A. et al. Toxicity study in rats of a tellurium based immunomodulating drug, AS-
101: a potencial drug for AIDS and cancer patients. Arch. Toxicol., v. 63, p. 386-393, 1989.
OZAWA, S.; KAMIYA, H.; TSUZUKI, K. Glutamate receptors in the mammalian central
nervous system. Prog. Neurobiol., v. 54, p. 581-618, 1998.
PARNHAM, M. J.; GRAF, E. Pharmacology of synthetic organic selenium compounds.
Prog. Drug Res., v. 36, p. 10-47, 1991.
PAULMIER, C. Selenium reagents and intermediates. In: Organic Synthesis. Oxford:
Pergamon, 1986.
PELLOW S. et al. Validation of open:close arm entries in an elevated plus-maze as a measure
of anxiety in the rat. J. Neurosci. Meth., v. 14, p. 149–167, 1985.
PENTSCHEW, A.; EBNER, F.; KOVATCH, R. In: Proceedings of Fourth International
Congress of Neuropathology. H. Jacobs, Ed. 3:300. George Thiem Verlag. Stuttgart,
Germany, 1962.
PEREIRA, B. et al. 5-Aminolevulinic acid induces alteration of oxidative metabolism in
sedentary and exercise trained rats. J. Appl. Physiol., v. 72, p. 226-230, 1992.
PEREZ-DGREGORIO, R.E.; MILLER, R.K. Teratogenicity of tellurium dioxide: prenatal
assessment. Teratology, v. 37, p. 307-316, 1988.
PETRAGNANI, N. In: comprehensive Organometallic Chemistry II (Ed. A. Mckillop),
vol. LI, Pergamon Press, Exeter, UK, 1995.
PETRAGNANI, N.; RODRIGUES, R.; COMASSETO, J. V. Organomet. Chem. p. 114-281,
1976.
PIGGOTT, M.A. et al. Examination of parameters influencing [
3
H] MK-801 binding in post-
mortem human cortex. J. Neurochem., v. 58, p. 1001-1008, 1992.
PUMA C. et al. Nicotine improves memory in an object recognition task in rats. Eur.
Neuropsychopharmacol., v. 9, p. 323–327, 1999.
RAMADAN, S.E. et al. Incorporation of tellurium into amino acids and proteins in a
tellurium-tolerant fungi. Biol. Trace Elem. Res., v. 20, p. 225-232, 1989.
PDF created with pdfFactory trial version www.pdffactory.com
94
RAMPON C., et al. Enrichment induces structural changes and recovery from nonspatial
memory deficits in CA1 NMDAR1-knockout mice. Nat. Neurosci., v. 3, p. 238–244, 2000.
RAWLINS, F.A.; SMITH, M.E. Myelin synthesis in vitro: a comparative study of central
and peripheral nervous tissue. J. Neurochem., v. 18, p. 1861-1870, 1971.
RICE, D.C. Effect of exposure to 3,3, 4,4, 5-pentachlorobiphenyl (PCB 126) throughout
gestation and lactation on developmental and spatial delayed alternation performance in rats.
Neurotoxicol. Teratol., v. 21, p. 59–69, 1999.
ROBINSON, M.D.; DOWD, L.A. Heterogeneity and functional subtypes of sodium-
dependent glutamate transporters in the mammalian central nervous system. Adv.
Pharmacol., v. 37, p. 69-115, 1997.
ROCHA, J.B.T.; VENDITE, D. Effects of undernutrition and handling during suckling on
shuttle avoidance and footshock escape behavior and on plasma-glucose levels of young-rats.
Dev. Psychobiol., v. 23, p. 157–168, 1990.
ROCINHOLI, L.F.; ALMEIDA, S.S.; DE-OLIVEIRA, L.M. Response threshold to aversive
stimuli in stimulated early protein-malnourished rats. Braz. J. Med. Biol. Res., v. 30, p. 407–
413, 1997.
RODRIGUES, A.L.S. Delta-aminolevulinato desidratase (E.C.: 4.2.1.24) em sangue de
Pimelodus Maculatus (Pisces, Pimelodidae): características bioquímicas e efeito de
metais pesados. 1987. Dissertação (Mestrado em Bioquímica)- UFRGS, Porto Alegre, 1987.
ROSE, R.C. Solubility properties of reduced and oxidized ascorbate as determinants of
membrane permeation. Biochem. Byophys. Acta., v. 924, p. 254-256, 1987.
ROSENZWEIG, E.S.; BARNES, C.A. Impact of aging on hippocampal function: plasticity,
network dynamics, and cognition. Progress in Neurobiology, v. 69, p. 143–179, 2003.
SASSA, S.; FUJITA, H.; KAPPAS, A. Genetic and chemical influences on heme
biosynthesis. In: A. Kotyk, J. Skoda; V. Paces and V. Kostka (Eds.), Highlights of modern
biochemistry, VSP, Utrecht, v.1, p. 329-338, 1989.
SATO, T. et al. Effects of steroid hormones on (Na+,K+)-ATPase activity inhibitioninduced
amnesia on the step-through passive avoidance task in gonadectomized mice. Pharmacol.
Res., v. 49, p. 151–159, 2004.
SCANSETTI, G. Exposure to metals that have recently come into use. Science Total
Environ., v. 120, p. 85-91, 1992.
SCATTON, B. The NMDA receptor complex. Fundam. Clin. Pharmacol., v. 7, p. 389-400,
1993.
SCHOEPP, D.D.; CON, P.J. Metabotropic glutamate receptors in brain function and
pathology. Trends Pharmacol. Sci., v. 14, p. 13-20, 1993.
SHAH, A.A.; SJOVOLD, T.; TREIT, D. Inactivation of the medial prefrontal cortex with the
GABA A receptor agonist muscimol increases open-arm activity in the elevated plus-maze and
attenuates shock-probe burying in rats. Brain Res., v. 1028, p. 112–115, 2004.
PDF created with pdfFactory trial version www.pdffactory.com
95
SIDDIK, Z.H.; NEWMAN, R.A. Use a platinum as a modifier in the sensitive detection off
tellurium in biological samples. Anal. Biochem., v. 172, p. 190-196, 1988.
SIES, H. Strategies of antioxidants defenses. Eur. J. Biochem., v. 215, p. 213-219, 1993.
SIES, H. Biochemistry of oxidative stress. Angew. Chem. Int. Ed. Engl., v. 25, p. 1058-
1071, 1986.
SREDNI, B. et al. The biological activity and immunotherapeutic properties of AS-101, a
synthetic organotellurium compound. Nat. Immun. Cell Grow., v. 7, p. 163-168, 1988.
SREDNI, B. et al. A new immunomodulating compound (AS-101) with potential therapeutic
application. Nature, v. 330, p. 173-176, 1987.
STANGHERLIN, E.C. et al. Teratogenic vulnerability of rat fetuses to diphenyl ditelluride:
prenatal assessment. Toxicology, v. 207, p. 231-239, 2005.
SETNIK, B.; NOBREGA, J.N. Long-chain acyl-CoenzymeA synthetase-2mRNA: increased
cerebral cortex expression in an animal model of depression. Prog. NeuroPsychopharmacol.
Biol. Psychiatry, v. 28, p. 577–582, 2004.
SQUIRE, L. R. Memory and the hippocampus: A synthesis from findings with rats,
monkeys,and humans. Psychol. Rev., v. 99, p. 195–221, 1992.
STEWART, N. G.; CROOKS, R. N. Long-range travel of the radioactive cloud from the
accident at Windscale. Nature, v. 182, p. 627-628, 1958.
SUN, X. et al. Anticarcinoma activity of a novel drug, 3-ethyl-3methyl-
thiatelluracarbocyanine iodite (Te) a tellurium-containing cyanine targeted at mitochondria.
Clin. Canc. Res., v. 2, p. 1335-1340, 1996.
SUTHERLAND, R.J.; RUDY J.W. Configural association theory: the role of the hippocampal
formation in learning, memory and amnesia. Psychobiology, v. 17, p. 129-144, 1989.
TALPALAR, A.E.; GROSSMAN, Y. Enhanced excitability compensates for high-pressure-
induced depression of cortical inputs to the hippocampus. J. Neurophysiol., v. 92, p. 3309-
3319, 2004.
TAYLOR, A. Biochemistry of tellurium. Biol. Trace. Elem. Res., v. 55, p. 231-239, 1996.
TIZZANO, J.P.; GRIFFEY, K.I.; SCHOEPP, D.D. Receptor subtypes linked to metabotropic
glutamate receptor agonist-mediated limbic seizures in mice. Ann. NY. Acad. Sci., v. 765, p.
230-235, 1995.
U.S. Bureau of Mines, 1985. Mineral Year Book. U.S. Government Printing Office, Vol. I,
pp. 1018-1021. Washington D.C., 1985.
VAN VLEET, J. F. V.; FERRANS, V. J. Ultrastructural alterations in skeletal muscle of
ducklings fed selenium-vitamin E-deficient diet. Am. J. Vet. Res., v. 38, p. 1399-1405, 1982.
PDF created with pdfFactory trial version www.pdffactory.com
96
VIZI, E.S.; VYSKOCIL, F. Changes in total and quantal release of acetylcholine in the mouse
diaphragm during activation and inhibition of membrane ATPase. J. Physiol., v. 286, p. 1-
14, 1979.
WAGNER-RECIO, M.; TOEWS, A.D.; MORELL, P. Tellurium blocks cholesterol syntesis
by inhibiting squalene metabolism: Preferential vulnerability to this metabolic block leads to
peripheral nervous system demyelination. J. Neurochem., v. 57, p. 1891-1901, 1994.
WIDY-TYSZIEWICZ, E. et al. Tellurium-induced cognitive deficits in rats are related to
neuropathological changes in the central nervous system. Toxicol. Lett., v. 131, p. 203-214,
2002.
WINICK, M. Nutrition and nerve cell growth. Feder Proceed, v. 29, p. 1510, 1970.
WU, Z.; YAMAGUCHI, Y. Input-dependent learning rule for the memory of spatiotemporal
sequences in hippocampal network with theta phase precession. Biological Cybernetics, v.
90, p. 113–124, 2004.
WYSE, A.T. et al. Training in inhibitory avoidance causes a reduction of Na+,K+-ATPase
activity in rat hippocampus. Physiol. Behav., v. 80, p. 475–479, 2004.
XIONG, Z. Q.; STRINGER, J. L. Sodium pump activity, not glial spatial buVering, clears
potassium after epileptiform activity induced in the dentate gyrus. J. Neurophysiol., v. 83, p.
1443-1451, 2000.
YAREMA, M.C.; CURRY, S.C. Acute tellurium toxicity from ingestion of metal-oxidizing
solutions. Pediatrics, v. 116, p. 319-321, 2005.
YOUNG, V. R.; NAHAPETIAU, A.; JONGHORBONI, M. Selenium bioavailability with
reference to human nutrition. American J. Clin. Nutrion, v. 35, p. 1076-1088, 1981.
YU, L. et al. Evidence for telluroamino acid in biological materials and some rules for
assimilation of inorganic tellurium by yeast. Anal. Biochem., v. 209, p. 318-322, 1993.
ZENI, G., BRAGA, A. L., STEFANI, H. A. Palladium-catalyzed coupling of sp(2)-hybridized
tellurides. Accounts Chem. Res., v. 10, p. 731-738, 2003.
ZHANG H.; SWIHART M.T. Synthesis of Tellurium Dioxide Nanoparticles by Spray
Pyrolysis. Chemistry of Materials, v. 19, p. 1290-1301, 2007.
ZHONG, P.; YAN, Z. Chronic antidepressant treatment alters serotonergic regulation of
GABA transmission in prefrontal cortical pyramidal neurons. Neuroscience, v. 129, p. 65–73,
2004.
PDF created with pdfFactory trial version www.pdffactory.com
97
8. APÊNDICE
A- Demais trabalhos realizados durante o Curso de Doutorado
FAVERO, A.M.; WEIS, S.N.; STANGHERLIN, E.C.; ZENI, G.; ROCHA, J.B.T.;
NOGUEIRA, C.W. Adult male rats sub-chronically exposed to diphenyl diselenide: Effects
on their progeny. Reproductive Toxicology, v. 23, 119–123, 2007.
LUCHESE, C.; STANGHERLIN, E.C.; ARDAIS, A.P.; NOGUEIRA, C.W.; SANTOS, F.W.
Diphenyl diselenide prevents oxidative damage induced by cigarette smoke exposure in lung
of rat pups. Toxicology, v. 230, 189–196, 2007.
WEIS, S.N.; FAVERO, A.M.; STANGHERLIN, E.C.; MANARIN, F.G.; ROCHA, J.B.T.;
NOGUEIRA, C.W.; ZENI, G. Repeated administration of diphenyl diselenide to pregnant rats
induces adverse effects on embryonic/fetal development. Reproductive Toxicology, v. 23,
175–181, 2007.
FAVERO, A.M.; WEIS, S.N.; STANGHERLIN, E.C.; ZENI, G.; ROCHA, J.B.T.;
NOGUEIRA, C.W. Sub-chronic exposure of adult male rats to diphenyl ditelluride did not
affect the development of their progeny. Food and Chemical Toxicology, v. 45, 859–862,
2007.
FAVERO, A.M.; WEIS, S.N.; STANGHERLIN, E.C.; ZENI, G.; ROCHA, J.B.T.;
NOGUEIRA C.W. Teratogenic effects of diphenyl diselenide in Wistar rats. Reproductive
Toxicology, v. 20, 561–568, 2005.
STANGHERLIN, E.C.; FAVERO, A.M.; ROCHA, J.B.T.; NOGUEIRA, C.W. Sub-chronical
exposure to diphenyl diselenide improves water-maze performance in adult rats. Submetido a
Brain Research.
STANGHERLIN, E.C.; FAVERO, A.M.; WEIS, S.N.; ROCHA, J.B.T.; NOGUEIRA, C.W.
Effect of diphenyl ditelluride on elevated plus maze in adult rats: possible involvement of
glutamatergic system. Submetido a Neurotoxicology
ARDAIS, A.P.; STANGHERLIN, E.C.; ROCHA, J.B.T.; NOGUEIRA, C.W. Diphenyl
Diselenide and Diphenyl Ditelluride: Neurotoxic Effect in Brain of Young Rats, in vitro. Em
fase de redação.
STANGHERLIN, E.C.; LUCHESE, C.; ARDAIS, A.P.; SANTOS, F.W.; NOGUEIRA, C.W.
Passive Smoke Exposure Induces Oxidative Damage in Brain of Rat Pups: Protective Role of
Diphenyl Diselenide. Em fase de redação.
PDF created with pdfFactory trial version www.pdffactory.com
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo