Download PDF
ads:
UNIVERSIDADE
FEDERAL DE SANTA MARIA
CENTRO
DE CIÊNCIAS NATURAIS E EXATAS
PROGRAMA
DE PÓS-GRADUAÇÃO EM BIOQUÍMICA
TOXICOLÓGICA
CARACTERÍSTICAS FÍSICO-QUÍMICAS
DE CULTIVARES DE FEIJÃO (Phaseolus vulgaris L.),
E EFEITOS BIOLÓGICOS DA FRAÇÃO
FIBRA SOLÚVEL
DISSERTAÇÃO DE MESTRADO
Ivo Roberto Dorneles Prolla
Santa Maria, RS, Brasil
2006
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
CARACTERÍSTICAS FÍSICO-QUÍMICAS
DE CULTIVARES DE FEIJÃO (Phaseolus vulgaris L.),
E EFEITOS BIOLÓGICOS DA FRAÇÃO FIBRA SOLÚVEL
por
Ivo Roberto Dorneles Prolla
Dissertação apresentada ao Curso de Mestrado
do Programa de Pós-Graduação em Bioquímica Toxicológica,
da Universidade Federal de Santa Maria (UFSM, RS),
como requisito parcial para obtenção do grau de
Mestre em Bioquímica Toxicológica.
Orientador: Profa. Dra. Tatiana Emanuelli
Santa Maria, RS, Brasil
2006
ads:
___________________________________________________________________________
© 2006
Todos os direitos autorais reservados a Ivo Roberto Dorneles Prolla. A reprodução de partes
ou do todo deste trabalho só poderá ser feita com autorização por escrito do autor.
Endereço: Rua General Neto, n. 1241/902, Bairro Nossa Senhora de Lourdes, Santa Maria,
RS, 97050-241
Fone (0xx)55 32238914; Fax (0xx) 32216762; End. Eletr: [email protected]
___________________________________________________________________________
Universidade Federal de Santa Maria
Centro de Ciências Naturais e Exatas
Programa de Pós-Graduação em Bioquímica Toxicológica
A Comissão Examinadora, abaixo assinada,
aprova a Dissertação de Mestrado
CARACTERÍSTICAS FÍSICO-QUÍMICAS
DE CULTIVARES DE FEIJÃO (Phaseolus vulgaris L.),
E EFEITOS BIOLÓGICOS DA FRAÇÃO FIBRA SOLÚVEL
elaborada por
Ivo Roberto Dorneles Prolla
como requisito parcial para obtenção do grau de
Mestre em Bioquímica Toxicológica
COMISÃO EXAMINADORA:
___________________________________
Tatiana Emanuelli, Dra.
(Presidente/Orientador)
___________________________________
Liane Nanci Rotta, Dra. (FFFCM-PA)
___________________________________
Maria Rosa Chitolina Schetinger, Dra. (UFSM)
Santa Maria, 13 de dezembro de 2006.
DEDICATÓRIA
À minha mãe Idalina, que lutando contra as adversidades do destino criou-me,
educou-me e me possibilitou ter um destino diferente do seu.
Aos meus irmãos Gladstone, Jorge, Carmem e Fernando que sempre me cuidaram,
apoiaram e valorizaram minha vida profissional.
À minha esposa Alba e à minha filha Luíza, que tiveram paciência e resignação
nos momentos em que não estive presente ou disponível como marido e pai.
Tenham certeza que vocês fizeram parte, de uma forma ou de outra, desta obra.
Muito obrigado!
Amo vocês!
AGRADECIMENTOS
Primeiramente, gostaria de agradecer à minha mãe e aos meus irmãos por terem me
oportunizado viver, crescer, estudar e me tornar o que sou. Ao meu falecido pai, que apesar de
não termos nos conhecido, certamente colaborou e influenciou no que penso e faço.
Ao Dr. Prado Veppo, meu sogro, que me tomou como filho. Apesar de termos
convivido tão pouco nossa convivência foi intensa e marcante. À Zelinha e ao Pity, pelo
acolhimento, carinho, apoio e estímulo para “sempre continuar”.
Agradeço aos colegas do NIDAL que me receberam de forma fraterna, me fizeram
sentir parte do grupo e me auxiliaram nas inúmeras técnicas utilizadas em minha pesquisa.
Gostaria de agradecer às minhas ICs Paula Augusti e Ana Paula Veeck, hoje
mestrandas, pelo auxílio inestimável nas análises de laboratório. Agradeço, também, às alunas
Bruna, Carina e Ana pela valiosa colaboração durante o experimento animal. E deixo um
grande agradecimento ao meu “braço-direito”, IC Roberta Barbosa, que esteve ao meu lado
durante todos os anos da pesquisa. Obrigado pelo auxílio, pelas coisas que me ensinastes, pela
amizade e parceria. Obrigado por ter estado presente em todos os momentos, inclusive quando
eu não estava lá.
À Angélica, secretária do PPGBT, pela atenção com que era tratado sempre que
necessitei.
Gostaria de agradecer à Profa. Dra. Nerinéia Dalfollo Ribeiro, que gentilmente
forneceu as sementes utilizadas neste estudo e me orientou sobre aspectos relacionados à
cultura do feijão, completamente desconhecidos para mim.
A ti, Profa. Dra. Leila Picolli da Silva, que sempre se mostrou acessível e disponível,
que me auxiliou em vários momentos no laboratório e fora dele, que me co-orientou e me
mostrou caminhos alternativos para solucionar problemas que me pareciam sem solução.
Agradeço-te enormemente.
À minha orientadora, Profa. Dra. Tatiana Emanuelli, deixo meu agradecimento
especial. Mesmo sem me conheceres, acreditastes que um médico pediatra poderia trabalhar
em um laboratório de pesquisa, sem causar grandes estragos, e que seria capaz de desenvolver
um estudo sobre um assunto tão distante de minha realidade. Que teve paciência em me
ensinar as inúmeras técnicas às quais tive de aprender; que me ensinou a trabalhar com
planilhas e estatísticas; que me auxiliou na redação dos artigos em inglês; que não me
deixava desanimar quando algo dava errado; e que teve compreensão para aqueles momentos
em que não estive tão presente, pois a família ou a vida profissional me exigiram.
Agradeço ao PPGBT por me permitir ingressar e realizar esta pesquisa. Com ela
espero ter podido colaborar para enaltecer o conceito já existente.
Aos membros da banca, Profa. Dra. Liane Rotta, Profa. Dra. Maria Rosa e Profa. Dra.
Maria Ester, por terem aceitado participar de minha defesa de dissertação e que pacientemente
avaliaram cada item de minha pesquisa. Rosinha e Ester, vocês participaram de minha defesa
de projeto, e com suas observações delinearam outros aspectos os quais tentei seguir. Espero
que este estudo tenha demonstrado minha evolução, e tenham certeza que suas observações
para enriquecê-lo novamente serão de grande valia.
Por fim, gostaria de agradecer de forma muito especial à minha esposa Alba e à minha
filha Luíza pelo apoio, estímulo e, principalmente, compreensão. Nestes últimos anos vocês
tiveram de aprender a conviver com uma intrusa em nosso lar: minha ausência. Foi um tempo
difícil para mim, pois tentava administrar, da melhor maneira possível, tantas atividades
simultaneamente: o magistério superior, o consultório privado, os plantões e o mestrado.
Procurei não descuidar de meus papéis de marido e de pai. Mas agora, finalmente este período
termina, como uma longa gestação. E a dissertação se concretiza no todo, como um filho que
nasce e que dará início a uma nova fase em nossas vidas.
Obrigado a todos vocês.
CONSELHO
Quando te decidires: segue!
Não esperes que o vento
Cubra de flores o caminho.
Nem sequer esperes o caminho.
Cria-o. Faze-o tu mesmo
E parte... Sem lembrar
Que outros passos pararam,
Que outros olhos ficaram te olhando seguir.
(Prado Veppo)
RESUMO
Dissertação de Mestrado
Programa de Pós-Graduação em Bioquímica Toxicológica
Universidade Federal de Santa Maria
CARACTERÍSTICAS FÍSICO-QUÍMICAS
DE CULTIVARES DE FEIJÃO (Phaseolus vulgaris L.),
E EFEITOS BIOLÓGICOS DA FRAÇÃO FIBRA SOLÚVEL
A
UTOR: IVO ROBERTO DORNELES PROLLA
ORIENTADOR: TATIANA EMANUELLI
Data e Local da Defesa: Santa Maria, 13 de dezembro de 2006.
Foram analisadas as características físico-químicas de sementes cruas de dezesseis
cultivares de feijão comum (Phaseolus vulgaris L.), ao longo de duas safras consecutivas
(2001/2002 e 2002/2003), bem como os teores de amido e fibra alimentar nas sementes após
cozimento e estocagem. Avaliaram-se, também, os lipídeos séricos e a glicose sanguínea de
ratos normolipidêmicos e normoglicêmicos, alimentados com dietas contendo cultivares de
feijão com diferentes relações fibra solúvel/fibra total (FS/FT): dieta Pérola (0,11), dieta
Diamante Negro (0,19) e dieta Iraí (0,26); o grupo controle recebeu dieta padrão (com fibra
insolúvel). Exceto pelos teores de matéria seca, umidade e fibra alimentar total, as cultivares
estudadas mantiveram suas características físico-químicas constantes ao longo das safras.
Conforme a similaridade nos teores de macronutrientes (proteína bruta-PB, fibra alimentar
total, fibra alimentar insolúvel, fibra alimentar solúvel-FS, amido disponível-AD e amido
resistente-AR) as sementes das safras 2001/2002 e 2002/2003 foram categorizadas em quatro
grupos distintos; da mesma forma, em relação aos micronutrientes (Fe, Zn, Mn, Cu, Ca, Mg e
P), quatro grupos puderam ser identificados. As cultivares Guateian 6662 e Rio Tibagi
apresentaram o melhor perfil nutricional (maiores teores de PB, FS, AD, Fe e Zn). A
armazenagem sob refrigeração e o congelamento não determinaram alterações nos teores de
fibra dos grãos cozidos, mas redução do AD e aumento do AR, principalmente naqueles com
AR mais baixo antes do cozimento. Em relação à resposta biológica, os ratos alimentados
com dietas contendo feijão apresentaram valores para colesterol sérico e índice glicêmico
menores que os do grupo controle (p<0,05). Foi observado, também, que apesar do ganho de
peso dos animais ter sido semelhante entre os grupos, os ratos alimentados com as dietas
contendo feijão apresentaram menor retenção de gordura corporal (p<0,05). Os efeitos das
dietas sobre os animais experimentais foram mais expressivos no grupo alimentado com a
dieta Iraí (FS/FT: 0,26).
Palavras-chave: fibra alimentar; fibra insolúvel; amido disponível; amido resistente; conteúdo
mineral; colesterol; curva glicêmica; gordura epididimal.
ABSTRACT
Dissertação de Mestrado
Programa de Pós-Graduação em Bioquímica Toxicológica
Universidade Federal de Santa Maria
PHYSICOCHEMICAL CHARACTERISTICS
OF BEAN CULTIVARS (Phaseolus vulgaris L.),
AND BIOLOGICAL EFFECTS OF SOLUBLE FIBER FRACTION
A
UTHOR: IVO ROBERTO DORNELES PROLLA
A
DVISER: TATIANA EMANUELLI
Date and Place of the defense: Santa Maria, December 13th, 2006
Raw seeds of sixteen common bean (Phaseolus vulgaris L.) cultivars were evaluated
along two consecutive harvests (2001/2002 and 2002/2003) concerning their physicochemical
characteristics, as well as the effect of cooking and storage conditions on starch and dietary
fiber contents. Serum lipids and blood glucose levels were also evaluated in normolipidemic-
normoglycemic rats witch were fed diets containing bean cultivars with different soluble
fiber/total fiber ratios (SF/TF): Pérola diet (0.11), Diamante Negro diet (0.19) and Iraí diet
(0.26); control group was fed a standard diet (with insoluble fiber). Except for dry matter,
moisture, and total dietary fiber, cultivars kept their chemical characteristics between
harvests. Regarding similarity among macronutrient levels (crude protein-CP, total dietary
fiber, insoluble dietary fiber, soluble dietary fiber-SF, digestible starch-DS, and resistant
starch-RS) seeds from harvests 2001/2002 and 2002/2003 were categorized into four different
groups; the same was done for micronutrients (Fe, Zn, Mn, Cu, Ca, Mg, and P), and four
groups were also identified. Guateian 6662 and Rio Tibagi were considered the cultivars with
the best nutritional profile (highest levels of CP, SF, DS, Fe, and Zn). Storage under
refrigerated or freezing conditions did not change fiber content of cooked beans, but
decreased their DS content and increased RS content, mainly in seeds with low RS levels
before cooking. Concerning biological response, rats fed bean diets experienced lower values
for serum cholesterol (P<0.05) and lower glycemic indexes (P<0.05). It was also observed a
similar weight gain among groups, however animals fed bean based diets showed lower fat
retention (P<0.05). The effects of bean diets on experimental groups were more remarkable in
animals fed Iraí diet (SF/TF: 0.26).
Keywords: dietary fiber; insoluble fiber; digestible starch; resistant starch; mineral content;
cholesterol; glycemic curve; epididymal fat.
LISTA DE ABREVIATURAS
ACG: área sob a curva glicêmica
AD: amido disponível
AR: amido resistente
Ca: cálcio
Cu: cobre
FB: fibra bruta
Fe: ferro
FI: fibra alimentar insolúvel
FS/FT: relação fibra solúvel/fibra total
FS: fibra alimentar solúvel
FT: fibra alimentar total
g N: gramas de nitrogênio
HC: carboidrato
HDL: “high-density-lipoprotein”
IG: índice glicêmico
LDL: “low density lipoprotein”
Mg: magnésio
Mn: manganês
MS: massa seca
P: fósforo
PB: proteína bruta
RS: Rio Grande do Sul
Zn: zinco
LISTA DE ANEXOS
ANEXO 1 – Roteiro para autores / Guia para a redação e edição de artigo científico a
ser submetido à revista LWT- FOOD SCIENCE AND TECHNOLOGY...............................97
ANEXO 2 – Roteiro para autores / Guia para a redação e edição de artigo científico a
ser submetido à revista BRITISH JOURNAL OF NUTRITION...........................................102
ANEXO 3 – Valores para peso de 1000 grãos e de macronutrientes das cultivares de
feijão das safras 1 (2001/2002) e 2 (2002/2003).....................................................................112
ANEXO 4 – Valores de micronutrientes das cultivares de feijão das safras 1
(2001/2002) e 2 (2002/2003)..................................................................................................113
SUMÁRIO
DEDICATÓRIA .......................................................................................................................4
AGRADECIMENTOS .............................................................................................................5
EPÍGRAFE ...............................................................................................................................7
RESUMO ..................................................................................................................................8
ABSTRACT ..............................................................................................................................9
LISTA DE ABREVIATURAS ..............................................................................................10
LISTA DE ANEXOS .............................................................................................................11
APRESENTAÇÃO .................................................................................................................13
1 INTRODUÇÃO ...................................................................................................................14
2 REVISÃO DA LITERATURA ..........................................................................................18
2.1 A cultura do feijão ............................................................................................................18
2.2 Características físico-químicas dos grãos de feijão .......................................................20
2.3 Alterações secundárias ao processamento doméstico e ao tempo de estocagem ........23
2.4 Propriedades nutritivas e funcionais do feijão ..............................................................25
3 RESULTADOS................... .................................................................................................29
3.1 Manuscrito 1 .....................................................................................................................30
3.2 Manuscrito 2 .....................................................................................................................56
4 DISCUSSÃO ........................................................................................................................84
5 CONCLUSÕES ...................................................................................................................91
6 BIBLIOGRAFIA .................................................................................................................92
7 ANEXOS ..............................................................................................................................97
APRESENTAÇÃO
Os resultados que fazem parte desta dissertação são apresentados sob a forma de
manuscritos, os quais se encontram no item RESULTADOS. As seções Materiais e Métodos,
Resultados, Discussão dos Resultados e Referências Bibliográficas encontram-se nos próprios
manuscritos e representam na íntegra este estudo.
Os itens DISCUSSÃO e CONCLUSÃO contêm interpretações e comentários gerais
referentes aos manuscritos contidos neste estudo.
A BIBLIOGRAFIA refere-se às citações que aparecem nos itens INTRODUÇÃO,
REVISÃO BIBLIOGRÁFICA e DISCUSSÃO desta dissertação.
14
1 INTRODUÇÃO
Nos últimos anos inúmeras pesquisas foram conduzidas com o objetivo de relacionar o
tipo de dieta consumida pelos povos e as doenças como diabete, deslipidemias, obesidade e
doenças cardiovasculares. Assim, muitos alimentos passaram a ser considerados na
etiopatogenia destas enfermidades. Porém, outros se destacaram pelos efeitos protetores de
seus nutrientes sobre o funcionamento de tecidos, órgãos e sistemas: os chamados alimentos
funcionais. Estes, apresentam propriedades que podem influenciar na evolução e prognóstico
de muitas destas doenças cujas taxas de morbidade e mortalidade são ainda elevadas em nosso
meio.
Uma vez que os alimentos apresentam diferenças marcantes no perfil bioquímico de
seus nutrientes, os efeitos funcionais a eles relacionados podem, também, diferir de forma
significativa. Isto é vital em nutrição humana, principalmente em situações adversas de saúde.
Nestas situações, a prescrição de alimentos funcionais dentro de um plano dietoterápico
específico poderia auxiliar no controle e também na prevenção de muitas enfermidades.
Dos diversos alimentos utilizados pelo homem, as sementes da família das
leguminosas desempenham importante papel na dieta da maioria das populações, sendo o
feijão comum (Phaseolus vulgaris L.) um dos mais consumidos, inclusive no Brasil. É rico
em proteínas (19,6 a 26% da massa seca - MS), carboidratos complexos de baixo índice
glicêmico (64 a 71% da MS) e pobre em gordura (1 a 2% da MS) (VIEIRA, 1967); é fonte
importante de fibras (HARO et al., 1995) e de amido resistente (SAURA-CALIXTO et al.,
1992). Por isto, é um dos alimentos que contempla as recomendações dietéticas atuais.
Estudos já demonstraram que as leguminosas, dentre estas o feijão, possuem
propriedades reguladoras dos níveis de glicemia e insulina (FOSTER-POWELL & MILLER,
1995). Como há estreita relação entre diabete, hiperinsulinemia e deposição de gordura, o
consumo de feijões poderia, de forma preventiva, influenciar no surgimento da obesidade.
Além disto, outros estudos demonstraram que o feijão também é capaz de reduzir os níveis
séricos de colesterol e, assim, o risco de doenças cardiovasculares (ANDERSON et al., 1984;
BAZZANO et al., 2001; HAN et al., 2003).
Dentre os nutrientes encontrados no grão de feijão, a fração fibra solúvel parece
desempenhar um importante papel como alimento funcional. Isto pode ser observado em
estudos que avaliaram os efeitos de dietas contendo feijão como fonte de fibra solúvel e o
15
comportamento dos lipídeos e glicose sanguíneos após a sua ingestão (ANDERSON &
GUSTAFSON, 1988)
As cultivares de feijão apresentam diferenças agronômicas e tecnológicas notáveis.
Isto ocorre principalmente devido ao perfil genotípico da planta. Porém, o melhoramento
genético e as adversidades climáticas impostas à planta também influenciam sobremaneira
este perfil. Estas alterações acabam por afetar a composição química das sementes, com
aperfeiçoamento de algumas características em detrimento de outras. Isto pode ser
comprovado por estudos envolvendo cultivares de Phaseolus vulgaris plantadas em diferentes
regiões do mundo, onde as sementes têm apresentado diferenças marcantes na sua
composição química (VIEIRA, 1967; SOTELO et al., 1995; YANEZ et al., 1995; SAMMAN
et al., 1999; CASTELLÓN et al., 2003).
No Rio Grande do Sul (RS), assim como em nosso país, a lista de cultivares de feijão
indicadas para o plantio é extensa. Uma vez que o perfil nutricional dos grãos pode ser
influenciado pelo ano de plantio, a variabilidade na composição química das cultivares aqui
plantadas e consumidas também deve ser significativa. Além disto, o processamento
doméstico habitual dos grãos (cozimento e refrigeração) poderia determinar outras alterações
relevantes na sua composição química.
Se todas estas alterações realmente determinam mudanças bioquímicas profundas nos
grãos de feijão, estas diferenças poderiam ser mais bem exploradas na nutrição humana.
Assim, cultivares de feijão com teores elevados da fração fibra solúvel, por exemplo,
poderiam ser preferidas dentro de um plano de orientação dietética para pacientes portadores
de deslipidemias, diabete, obesidade e doenças cardiovasculares. Além disso, estas cultivares
seriam fortemente recomendadas para o consumo geral, uma vez que deteriam propriedades
preventivas em pessoas com risco aumentado de desenvolverem alguma daquelas
enfermidades.
Este estudo objetiva avaliar a hipótese de que feijões apresentam variações
importantes nos teores de fibra solúvel e que cultivares com teores elevados desta fração
apresentam efeito redutor dos lipídeos séricos e da glicemia, mesmo em situações em que
estes valores encontram-se dentro da normalidade. Assim, estas cultivares poderiam ser
preferentemente indicadas na orientação dietética de pacientes com ou em risco de
desenvolverem doenças relacionadas ao metabolismo dos lipídios e/ou da glicose. Estes
resultados reforçariam a idéia de que tabelas de composição alimentar devem ser mais
16
completas e detalhadas quanto aos nutrientes de relevância clínica. Ainda, o cruzamento de
cultivares de feijão com características nutricionais peculiares poderia ser estimulado, a fim
de que fossem obtidas novas cultivares com perfis bioquímicos mais adequados a outras
enfermidades crônicas prevalentes.
Desta forma, o presente estudo foi delineado com base em questionamentos que
nortearam o desenrolar desta pesquisa. Foram eles:
1. As cultivares de feijão (Phaseolus vulgaris L.) plantadas e consumidas em
nosso meio diferem significativamente entre si quanto às características físico-
químicas?
2. Uma mesma cultivar pode alterar significativamente suas características físico-
químicas de uma safra para outra?
3. Processos de cozimento e armazenamento podem alterar os teores de amido e
de fibra do feijão?
4. As diferenças genéticas e as alterações no perfil químico (secundárias ao
processamento doméstico), se existirem, atingem de forma relevante a fração
fibra solúvel?
5. Se a diferença nos teores de fibra solúvel for significativa, cultivares com
teores mais elevados podem determinar redução nos níveis de lipídeos e
glicose sanguíneos, mesmo em situações de normolipidemia e normoglicemia?
Para respondermos a estes questionamentos elaboramos os seguintes objetivos
específicos:
1. Determinar e comparar as características físico-químicas de sementes cruas de
dezesseis cultivares de feijão comum (Phaseolus vulgaris L.) recomendadas
para plantio no RS;
2. Avaliar a persistência destas características ao longo de duas safras
consecutivas (2001/2002 e 2002/2003);
3. Estudar os efeitos da estocagem das sementes após cozimento seguido de
refrigeração ou congelamento sobre teores de amido disponível, amido
resistente, fibra alimentar total, insolúvel e solúvel;
4. Avaliar os efeitos de dietas experimentais contendo cultivares de feijão com
diferentes relações fibra solúvel/fibra total sobre os níveis de lipídeos séricos
17
(triglicerídeos, colesterol total, colesterol HDL), glicemia e outros
parâmetros biológicos em ratos normolipidêmicos e normoglicêmicos.
18
2 REVISÃO DA LITERATURA
2.1 A cultura do feijão
Existem várias espécies de sementes que, maduras, servem como alimento a uma
grande parte da população mundial. Algumas destas são produzidas por plantas chamadas
leguminosas graníferas onde cerca de 20 espécies são utilizadas na alimentação em
quantidades apreciáveis, numa ou noutra região do mundo.
As mais importantes espécies de leguminosas são o guandu, o caupi, a ervilha, a
lentilha, o grão-de-bico, a fava, o feijão-fava, os feijões asiáticos do gênero Vigna, o
amendoim, a soja e o feijão comum. Este último, segundo relatos na literatura, já fazia parte
da dieta de muitos povos antepassados. No Peru, foram encontrados restos de feijão comum
com 8.000 anos; em dois locais no México foram encontrados restos com 4.300 a 7.000 anos
de idade. Mas, no norte da Argentina foram encontrados os restos mais antigos até agora
descritos, com 6.700 a 9.600 anos de idade (VIEIRA et al., 2001).
No Brasil o cultivo do feijão é bastante difundido em todo o território nacional,
principalmente como cultura de subsistência em pequenas propriedades. Nosso país é o
segundo produtor mundial de feijão (Phaseolus), perdendo apenas para a Índia e seguido pela
China; é o primeiro na espécie vulgaris, seguido pelo México. Apesar disto, a produção
brasileira é insuficiente para abastecer o mercado interno, necessitando importar este produto
de outros países da América Latina e dos Estados Unidos (YOKOYAMA, 2002).
O feijão comum ou simplesmente feijão pertence à família Leguminosae, sub-família
Papipilionoideae, gênero Phaseolus cujo nome científico é Phaseolus vulgaris L.. É uma
planta herbácea, trepadora ou não, levemente pubescente, cujo ciclo de vida varia de,
aproximadamente, 65 a 120 dias, dependendo da cultivar e das condições e época de plantio.
Pode apresentar quatro tipos de hábitos de crescimento sendo um tipo chamado determinado e
outros três definidos como indeterminados. Com vagens retas ou ligeiramente curvas,
achatadas ou arredondadas, com bico reto ou curvado, em geral com 9 a 12 cm de
comprimento e com 3 a 7 sementes (ALMEIDA & CANÉCHIO FILHO, 1987; VIEIRA et al.,
2001).
19
O gênero Phaseolus compreende aproximadamente 55 espécies das quais apenas
cinco são cultivadas: o feijoeiro comum (Phaseolus vulgaris); o feijão de lima (P. lunatus); o
feijão ayocote (P. coccineus); o feijão tepari (P. acutifolius); e o P. polyanthus (EMBRAPA
ARROZ e FEIJÃO, 2004).
O feijão é uma planta muito exigente. Para plantar feijão com êxito comercial, a
escolha da área onde será feita a cultura é de importância fundamental. Devem-se preferir
áreas que tenham outono e primavera mais ou menos longos, suficientes para completar o
ciclo do feijoeiro, não se prestando aquelas onde o verão e o inverno são muito rigorosos. A
temperatura média ótima para a cultura varia de 10
o
a 25
o
C (ALMEIDA & CANÉCHIO
FILHO, 1987). A alta temperatura (superior a 30
o
C) pode ocasionar, dependendo da cultivar,
diminuição da percentagem de flores que vingam e do número de sementes por vagem. Por
outro lado, as baixas temperaturas são desfavoráveis ao crescimento, e as geadas podem
causar enormes danos à cultura (VIEIRA et al., 2001).
O feijoeiro prospera em diferentes tipos de solos, exceto nos compactos, nos salinos e
nos encharcados. Os solos preferidos são os de textura areno-argilosa, leves, soltos, ricos em
matéria orgânica e em elementos fertilizantes, e com pH entre 6 a 7,5, considerado adequado
para um crescimento ótimo (ALMEIDA & CANÉCHIO FILHO, 1987).
Tanto o excesso quanto a escassez de água são prejudiciais. A alta umidade pode
favorecer as doenças, pois o feijoeiro não tolera água estagnada, mesmo que por curto espaço
de tempo. A seca, também prejudicial, pode ser contornada pela irrigação, principalmente na
época da floração e do vageamento (VIEIRA et al., 2001). A precipitação pluviométrica ideal
na época do plantio situa-se na faixa dos 100 mm (ALMEIDA & CANÉCHIO FILHO, 1987).
Já durante a colheita, condições de seca são essenciais para a obtenção de sementes de boa
qualidade (VIEIRA et al., 2001).
No Brasil o feijão pode ser plantado mais de uma vez por ano sendo comum, entre os
pequenos agricultores, a prática deste cultivo de permeio com mandioca, cana, café e outras
culturas, principalmente com o milho. Desta forma, é possível explorar a cultura em três
épocas diferentes no mesmo ano: a safra “das águas”, cujo plantio é feito de agosto a
novembro, com predominância na região sul; o plantio “da seca”, realizado de janeiro a
março, abrangendo a maioria dos estados produtores; e o plantio “de inverno”, de abril a
julho, realizada nas regiões centro-oeste e sudeste. As duas primeiras safras são responsáveis
por 90% da produção nacional e provém de lavouras de pequenos e médios produtores, com
20
baixo nível tecnológico; os outros 10% provém da safra “de inverno”, de lavouras com alto
nível tecnológico principalmente quanto à irrigação, determinando uma alta produtividade por
hectare plantado (EMBRAPA ARROZ e FEIJÃO, 2004).
As cultivares de feijão plantadas no Brasil terminam o ciclo de vida em 80 a 100 dias
(alguns em menos tempo: 65 a 75 dias) e a colheita costuma ser feita manualmente,
mecanicamente ou pela combinação de ambas.
O feijão recém colhido normalmente apresenta-se com umidade alta, em torno de
15%, e muitas vezes com as sementes abrigando ovos de carunchos. Por isto, logo após a
colheita, deve-se proceder à secagem (com redução da sua umidade para 10 a 11%),
beneficiamento, fumigação e estocagem das sementes em ambiente arejado, com baixa
umidade, a temperatura de 21
o
C mantendo-as protegidas de insetos, de carunchos e da luz.
Para temperaturas mais elevadas (26,5
o
C), a umidade das sementes deve ser rebaixada até 8%
para uma conservação segura. Desta forma, as sementes podem ser estocadas por dois anos
com manutenção adequada de seu poder germinativo (VIEIRA et al., 2001).
2.2 Características físico-químicas dos grãos de feijão
A semente do feijão pode apresentar as mais diferentes cores: branca, negra, vermelha,
amarela, parda, rósea, creme, alaranjada, bege, roxa e outras, muitas vezes com estrias ou
sarapintas de diferentes cores. Há também as bicolores e as que exibem uma segunda cor no
hilo. Atualmente, em nosso meio, os tipos comerciais mais aceitos são: o carioca (bege com
estrias pardacentas), o preto e o mulatinho (bege). As demais têm menor aceitação comercial
ou aceitação limitada a certas regiões do país. A massa das sementes também é bastante
variável, com pesos de 12 até 70 gramas por 100 unidades. Os feijões carioca, preto e
mulatinho, por serem pequenos, em geral pesam de 15 a 25 g/100 unidades. Já os feijões do
tipo manteigão, que são graúdos, apresentam pesos geralmente superiores a 35 g/100
unidades, alguns ultrapassando 50 g. Geralmente as formas silvestres de P. vulgaris produzem
sementes menores que as formas cultivadas (VIEIRA et al., 2001)
VASQUEZ-CARRILLO & CARDENAS-RAMOS (1992) avaliaram algumas
características físicas, tecnológicas e protéicas de 4 cultivares de feijão (P. vulgaris)
desenvolvidas no México e 12 sementes de feijões selvagens, sendo 8 mexicanas e 4 sul-
americanas. As sementes sul-americanas mostravam um tamanho similar entre si (em média
21
10,4 g/100 sementes), mas diferentes capacidades de absorver água (de 36 a 64%),
percentagens de casca e sólidos, e teores de proteína (de 23,8 a 27,2%). As sementes
selvagens mexicanas foram as menores do estudo (2,8 g/100 sementes) e com a menor
capacidade de absorver água. Estas continham a maior quantidade de casca e durante o
processo de cozimento perdiam pequena quantidade de solutos para a água. O conteúdo
protéico variou de 21,3 a 24,6%. As sementes cultivadas apresentaram as melhores
características físicas e tecnológicas, o menor tempo de cozimento, mas o menor teor protéico
do estudo (22,3%).
No Brasil, a lista de cultivares indicadas para plantio é extensa. Cada estado tem a sua
própria recomendação, às vezes com indicação por região. Os feijões dos tipos carioca e
preto, seguidos pelo mulatinho são os mais indicados. No Rio Grande do Sul, as cultivares
indicadas para as safras 2002/2003 e 2003 foram: Guapo Brilhante, Macotaço, Diamante
Negro, Pérola, FTS Magnífico, FTS Soberano, TPS Bonito, TPS Bionobre e TPS Nobre
(BRASIL, 2002 a; 2002 b).
É sabido que a composição química das sementes é bastante variável, dependendo da
cultivar. VIEIRA (1967) avaliou a composição de 17 cultivares de feijão e encontrou, com
base na matéria seca, as seguintes variações: proteína bruta, de 19,6 a 26,0%; extrato etéreo,
de 1,1 a 1,9%; cinzas brutas, de 3,3 a 4,3%; fibra bruta, de 2,8 a 5,5%; e extrato não-
nitrogenado, de 63,9 a 70,9%. A Embrapa, em seus comunicados técnicos, cita valores
semelhantes (matérias protéicas 22%, matérias graxas 1,5%, cinzas 4%, fibras 4,5%, umidade
12% e carboidratos 56%).
As variações na composição química podem ser atribuídas às modificações genéticas
impostas à planta ou às condições ambientais durante o plantio. Em Fortaleza, Ceará,
CASTELLÓN et al. (2003) avaliaram a fração lipídica de 6 cultivares comerciais de feijão
caupi, e encontraram diferenças importantes nos teores de ácido palmítico, ácido linoléico e
ácidos graxos pentacosanóico e eicosanóico. Concluíram que o melhoramento genético pode
determinar diferenças quantitativas e qualitativas na composição bioquímica. Concluíram,
também, que mudanças na capacidade germinativa, resistência a predadores, etc. podem
alterar a expressão de genes codificadores de síntese de moléculas relevantes, levando a
diferentes composições químicas.
Em um estudo publicado em 1999, os autores avaliaram a composição de algumas
variedades de feijão plantadas em 7 regiões da Argentina (SAMMAN et al., 1999). Estes
22
autores encontraram valores variáveis para o amido (12 a 14%), para as proteínas (18 a
22%), para a gordura (0,7 a 1,2%) e também para os minerais (cobre: 0,8 a 1,2 mg/100 g;
ferro: 9 a 18 mg/100 g; zinco: 2,5 a 4,0 mg/100 g; e fósforo: 295 a 542 mg/100 g) e
concluíram que conforme a região, diferenças importantes na composição química do feijão
são encontradas.
SOTELO et al. (1995), no México, avaliando a composição química de feijões
selvagens e cultivados, observaram que estes últimos, apesar de apresentarem menores
proporções de proteínas (21,7 vs. 25,5%), cinzas (4,2 vs. 5,2%) e fibra bruta (5 vs. 7,1%),
maiores quantidades de carboidratos (68,1 vs. 61,6%) e melhor perfil de aminoácidos. Com
isto, demonstraram que, sob o ponto de vista químico, a domesticação parece ter efeitos
positivos.
O conteúdo protéico dos grãos dos cereais varia, aproximadamente, de 8 a 16%. Uma
dieta de cereais em quantidade adequada pode satisfazer as necessidades de calorias do
consumidor, mas não lhe fornecerá a quantidade de proteínas, especialmente quando se trata
de crianças e mulheres grávidas. Nos países com melhores condições nutricionais, esse déficit
protéico é compensado pelos alimentos de origem animal, mais caros que os de origem
vegetal. Já nos países em desenvolvimento da África, da Ásia e da América Latina, as
leguminosas graníferas são utilizadas como fonte muito mais barata de proteínas e, por este
motivo, são chamadas de “carne do pobre”. Contêm de 18 a 35% de proteínas, sendo que a
soja pode alcançar mais de 40%.
Enquanto as sementes de leguminosas são ricas em lisina, os cereais são ricos em
aminoácidos sulfurados (metionina e cistina). Desta forma, a proporção mais adequada entre
cereal e leguminosa que equilibraria as deficiências parece ser de 2,6:1. Isto foi demonstrado
por ABD-EL-SAMEI et al. (1984), que realizaram um estudo comparativo sobre a
composição de aminoácidos em três variedades locais de sementes de P. vulgaris. Eles
observaram que a composição dos aminoácidos foi semelhante, sendo que todos
apresentavam deficiência de aminoácidos sulfurados, um teor elevado de lisina (8,1 a 8,6 g/16
g N), ausência de cistina, fenilalanina e tirosina nos extratos das três variedades. Verificaram,
também, uma correlação negativa entre o conteúdo de aminoácidos sulfurados e percentagem
de proteínas nas sementes.
Em 1995, YANEZ et al. publicaram um artigo onde avaliavam a composição química
e a qualidade biológica da proteína de 5 cultivares de feijão comum recém lançadas para uso
23
no Chile. O conteúdo protéico bruto encontrado variava de 22 a 27% e a resposta biológica
em ratos mostrou que os animais alimentados com a cultivar com mais proteínas ganhavam
mais peso e apresentavam maior captação/incorporação protéica.
Além dos aspectos inerentes às proteínas das leguminosas, as mesmas ainda
influenciam a formação de outros compostos de relevantes propriedades nutricionais; dentre
eles, o amido resistente (AR). SAURA-CALIXTO et al. (1992) estudaram a formação de AR
em feijão desproteinizado e não desproteinizado, inteiro e moído, após cocção e
congelamento. Os maiores teores de AR foram obtidos nas preparações com feijão inteiro (3,7
a 8,7%). O feijão moído e o moído e desproteinizado apresentaram os menores teores (1,6 e
0,9%, respectivamente). Concluíram que a presença de proteína e o tamanho das partículas
são os principais fatores que afetam a formação de AR.
Em relação às fibras, as leguminosas são reconhecidamente fontes importantes deste
polissacarídeo. Em um estudo que avaliou a composição química, fibra dietética e conteúdo
mineral de 15 alimentos freqüentemente consumidos no noroeste do México, o feijão foi o
alimento que apresentou os maiores teores de fibra (9,2 g/100 g) (HARO et al., 1995).
A literatura pertinente contém várias publicações envolvendo características físico-
químicas de cultivares de feijão das mais diferentes regiões do globo. Este é o primeiro estudo
brasileiro que caracteriza e avalia a persistência ao longo de 2 safras de parâmetros físico-
químicos em um número expressivo de cultivares de Phaseolus vulgaris L. plantadas e
consumidas em nossa região.
2.3 Alterações secundárias ao processamento doméstico e ao tempo de estocagem
Além das alterações nas características químicas das sementes devido à variedade
genética e aos fatores ambientais, processos de cozimento e armazenamento também podem
produzir alterações importantes na composição dos grãos, principalmente nos teores de amido
e fibra (KUTOS et al., 2003; VARGAS-TORRES et al., 2004).
É dito que as condições e o tempo de estocagem podem alterar algumas propriedades
físicas e químicas dos grãos. No entanto, em um estudo realizado por HERNANDEZ-
UNZON & ORTEGA-DELGADO (1989), no México, avaliando alterações possíveis em
sementes de feijão estocadas por até oito anos, não foram observadas diferenças significativas
nas composições químicas. Porém, sementes com 5 a 6 anos de estocagem absorviam mais
24
água que aquelas com menos tempo, mas custavam mais a cozinhar. A diferença realmente
importante observada foi a redução entre 94 e 98% do ácido fítico durante a estocagem longa.
Além do tempo de armazenamento, os diferentes métodos de cocção podem, ou não,
modificar química e fisicamente os grãos. Um estudo realizado na Espanha avaliou as
propriedades nutricionais após o cozimento de feijões por extrusão (MARTIN-CABREJAS et
al., 1999). Para isto, foram utilizados tanto feijões frescos quanto feijões armazenados por 6
semanas e por 1 ano. Observaram aumento do tempo de cozimento destes de 7,7 e de 12
vezes, respectivamente, devido à dureza que se instalou. Nas amostras extrusadas houve
incremento na absorção de água devido à maior proporção de amido gelatinizado. A extrusão
causou, também, redistribuição da fibra insolúvel para solúvel, embora a fibra dietética total
permanecesse igual. Não observaram, porém, diferenças físicas e/ou químicas entre feijões
estocados ou frescos após o processo de extrusão.
No Chile, ESTEVEZ et al. (1991), estudando os efeitos do cozimento e secagem em
várias leguminosas, observaram que nos feijões das variedades Tortola e Coscorron, não
havia mudanças significativas nas proteínas, mas sim o aumento da digestibilidade das
mesmas.
Um estudo italiano avaliou de forma comparativa os efeitos do cozimento
convencional e ao microondas de grão-de-bico e de feijão comum. Os feijões cozidos ao
microondas apresentaram uma redução drástica no tempo de cozimento (de 55 para 9 min),
uma menor perda sólida para a água de cozimento (de 7,5 para 4,5 g/100 g de semente seca de
feijão) e um aumento da digestibilidade do amido, devido à redução do amido resistente (de
32,4%, na semente crua, para 10% após o cozimento) e à elevação do amido rapidamente
digerível (de 27,5% para cerca de 80%). Houve, também, uma redistribuição dos
polissacarídeos não amiláceos de insolúveis para solúveis, mas sem alteração nos teores totais
(MARCONI et al., 2000).
Na Guatemala, ACEVEDO et al. (1994) avaliaram as alterações decorrentes do
processo de cozimento e fritura de feijões pretos. Observaram aumento da fibra dietética
insolúvel de 18,1% no feijão cozido para 22,4% no feijão frito; diminuição da fibra dietética
solúvel de 8,4 para 6,6% nestas mesmas preparações, assim como redução nos teores de
amido (34,5 para 31,3%). A digestibilidade e a qualidade protéica, no entanto, reduziram-se
do feijão cozido para o frito, correlacionando-se com a fibra dietética insolúvel.
25
Os estudos envolvendo a fração fibra alimentar são, ainda, controversos sendo que
tanto o aumento quanto a redução nos teores de fibra total, solúvel e insolúvel de feijões
cozidos foram relatados (HUGHES & SWANSON, 1989; KUTOS et al., 2003). No entanto,
estudos sobre os efeitos do cozimento seguido de armazenamento nos níveis destes
carboidratos não foram encontrados em feijões.
Quanto à fração amido, alguns autores demonstraram redução nos níveis de amido
disponível e aumento nos de amido resistente em feijões cozidos estocados a 4°C (VARGAS-
TORRES et al., 2004); outros, ao contrário, encontraram aumento do amido disponível
(OSORIO-DIAZ et al., 2003); porém LANDA-HABANA et al. (2004) não encontraram
alterações.
Como visto, a composição química dos grãos de feijão pode ser profundamente
alterada após processos de cozimento e armazenamento sob refrigeração. Estas mudanças
podem, assim, afetar a digestibilidade e, conseqüentemente, o valor nutricional de dietas
formuladas com esta leguminosa.
2.4 Propriedades nutritivas e funcionais do feijão
As propriedades nutritivas relacionadas ao feijão comum baseiam-se no fato de ser
fonte rica de proteínas (19,6 a 26% da MS), de carboidratos complexos de baixo índice
glicêmico (64 a 71% da MS) e pobre em gordura (1 a 2% da MS) (VIEIRA, 1967), o que o
torna um alimento apropriado às recomendações dietéticas atuais. É considerado a “carne do
pobre” em função de seu elevado teor protéico que, juntamente com o arroz, fornece os
aminoácidos necessários à nutrição humana.
Além disto, apresenta muitos efeitos funcionais atribuídos a sua composição química
peculiar, pois é também uma fonte importante de fibras (HARO et al., 1995) e de amido
resistente (SAURA-CALIXTO et al., 1992).
Há muitos anos, pesquisas são desenvolvidas no intuito de relacionar os alimentos
ingeridos pelos povos e o surgimento e a evolução de doenças crônicas. Estas, que
tipicamente cursam por dez ou mais anos, incluem principalmente o diabete melito, as
deslipidemias, a obesidade e as doenças cardiovasculares. Estudos em animais e em humanos
já demonstraram efeitos benéficos das leguminosas sobre algumas destas doenças, inclusive
efeitos protetores do feijão sobre o surgimento de câncer (CORREA, 1981; HUGHES et al.,
26
1997; SING & FRASER, 1998; HANGEN & ENNINK, 2003). O mecanismo pelo qual
esta proteção ocorre e qual componente tem propriedades anticarcinogênicas ainda não são
conhecidos. O que se sabe é que níveis elevados de insulina (GIOVANNUCCI, 1995;
SANDHU et al., 2002) e/ou altos níveis de glicemia (MCKEOWN-EYSSEN, 1994) podem
estimular o surgimento de alguns tipos de câncer como o dos cólons. Sabe-se, também, que o
consumo de alimentos com alto índice glicêmico por períodos longos pode levar à
hiperinsulinemia, resistência à insulina e diabete melito tipo dois. Baseado nisto, um
mecanismo provável pelo qual feijões inibiriam o surgimento de câncer estaria relacionado à
regulação da glicemia e da insulina, uma vez que é considerado um alimento de baixo índice
glicêmico (IG) (FOSTER-POWELL & MILLER, 1995).
Na atualidade, interações existentes entre dieta de elevado IG, diabete e obesidade são
muito estudadas. Alimentos com alto IG estimulam a fome e levam à seleção progressiva de
alimentos de IG sempre elevados. Forma-se, assim, um ciclo vicioso com ingestão
preferencial de alimentos densamente calóricos, hiperglicemia e hiperinsulinemia (LUDWIG,
2002). As duas últimas, juntamente com a obesidade desenvolvida, são reconhecidamente
fatores de risco para o câncer e patologias cardiovasculares, respectivamente.
Além dos distúrbios metabólicos já mencionados, as deslipidemias constituem um
risco importante para as doenças do coração. É sabido que uma redução de 1% nos níveis de
colesterol total reduzem em 2% o risco de uma pessoa desenvolver esse tipo de afecção
(RIFKIND, 1984). Os grãos de feijão comum têm demonstrado um importante efeito redutor
dos níveis séricos de lipídios (FUKUSHIMA et al., 2001). Tanto em animais (HAN et al.,
2003) quanto em humanos (ANDERSON et al., 1984; BAZZANO et al., 2001) estudos
demonstram que o feijão é capaz de reduzir os níveis séricos de colesterol e,
conseqüentemente, o risco de doenças cardiovasculares. Em pacientes hiperlipidêmicos, a
fração solúvel da fibra de feijão reduziu o colesterol total (13 a 26%), cholesterol HDL (5 a
20%) e triglicerídeos (3 a 25%) (ANDERSON & GUSTAFSON, 1988). Embora alguns
autores tenham atribuído este efeito à fração amido, presumivelmente ao conteúdo de
saponinas (AMIGO et al., 1992), a fibra solúvel parece ser realmente a porção ativa do grão
(ALLER et al., 2004).
Poucos estudos avaliaram os níveis de fibra dietética e de AR em feijões (KUTOS et
al., 2003; VARGAS-TORRES et al., 2004; LANDA-HABANA et al., 2004), enquanto muitos
estudos avaliaram o conteúdo de amido total e fibra bruta, os quais não fornecem dados
27
esclarecedores sobre as implicações nutricionais destes componentes (VIEIRA, 1967;
ANTUNES et al., 1995; CASTELLÓN et al., 2003; LEMOS et al., 2004; SHIMELIS &
RAKSHIT, 2005). Os carboidratos são a maior fração encontrada nas sementes de feijão. O
conhecimento atual sobre as propriedades do amido indica que uma fração deste carboidrato é
resistente à digestão enzimática no intestino delgado. Esta porção é denominada amido
resistente (AR). Este pode ser um substrato para o processo de fermentação nos cólons com
efeitos benéficos para a saúde humana, semelhante àqueles determinados pela fibra dietética.
O feijão comum apresenta, também, um efeito redutor da glicose plasmática (PARI &
VENKATESWARAN, 2003). Esta propriedade tem sido relacionada não só à digestibilidade
do amido, mas aos conteúdos de proteínas e de fibras. A fração fibra parece reduzir a resposta
glicêmica devido à redução do esvaziamento gástrico e das taxas de absorção intestinal
(THORNE et al., 1983). Esta resposta glicêmica é avaliada pelos valores de glicemia ao longo
do tempo após a ingestão do alimento que é conhecida como curva glicêmica. Porém,
atualmente, tem sido expressa como índice glicêmico (IG) ou área sob a curva glicêmica
(ACG). Dietas com elevado IG estão associadas a maiores respostas insulinêmicas e risco
aumentado de obesidade (PAWLAK et al., 2001). O feijão comum é considerado um alimento
de baixo IG e, por isso, esta leguminosa pode ter importante papel na nutrição humana.
É sabido que grãos de feijão são excelente fonte de fibra alimentar, fornecendo uma
mistura de fibras solúveis e insolúveis (MESSINA, 1999) com todos os efeitos notáveis
relacionados a elas. Entretanto, as cultivares de feijão podem diferir significativamente em
suas composições químicas, incluindo a fração fibra alimentar. Desta forma, suas
propriedades sobre os lipídios e a glicose sanguíneos também podem ser variáveis.
Até o momento, a maioria dos estudos relacionados aos efeitos de dietas baseadas em
feijões foram realizados em ratos hipercolesterolêmicos (DABAI et al., 1996; ROSA et al.,
1998 a; 1998 b) ou com diabete induzido (PARI & VENKATESWARAN, 2003). Nestes
modelos, o consumo de feijões melhorou significativamente os níveis séricos de gordura e de
glicose. No entanto, não há relatos na literatura pertinente de estudos que tenham testado
dietas contendo teores diferenciados de fibra solúvel de feijão sobre lipídeos e glicemia
sanguíneos em animais metabolicamente normais.
28
3 RESULTADOS
Os resultados desta dissertação estão apresentados sob a forma de manuscritos, os
quais se encontram aqui organizados. As apresentações dos manuscritos estão baseadas na
versão para submissão, sendo que os roteiros para os autores estão anexados.
29
3.1 Manuscrito 1
CULTIVAR, HARVEST YEAR, AND STORAGE CONDITIONS AFFECTING
COMPOSITION OF COMMON BEANS (Phaseolus vulgaris L.)
Manuscrito submetido à revista
LWT-FOOD SCIENCE AND TECHNOLOGY
30
Cultivar, harvest year, and storage conditions affecting composition of
common beans (Phaseolus vulgaris L.)
Ivo Roberto Dornelles Prolla
1,2
, Roberta Garcia Barbosa
1
, Ana Paula de Lima Veeck
1
, Paula
Rossini Augusti
1
, Leila Picolli da Silva
3
, Nerinéia Dalfollo Ribeiro
4
, Tatiana Emanuelli
1,*
1
Núcleo Integrado de Desenvolvimento em Análises Laboratoriais (NIDAL), Departamento
de Tecnologia e Ciência dos Alimentos, Centro de Ciências Rurais, Universidade Federal de
Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brasil.
2
Departamento de Pediatria e Puericultura, Centro de Ciências da Saúde, Universidade
Federal de Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brasil.
3
Departamento de Zootecnia, Centro de Ciências Rurais, Universidade Federal de Santa
Maria, Camobi, 97105-900, Santa Maria, RS, Brasil.
4
Departamento de Fitotecnia, Centro de Ciências Rurais, Universidade Federal de Santa
Maria, Camobi, 97105-900, Santa Maria, RS, Brasil.
* Corresponding author. Tel.: +55 55 3220 8547; fax: +55 55 3220 8353.
E-mail address: tatiem[email protected] (T. Emanuelli).
Corresponding author:
Tatiana Emanuelli
Núcleo Integrado de Desenvolvimento de Análises Laboratoriais (NIDAL)
Departamento de Tecnologia e Ciência dos Alimentos
Centro de Ciências Rurais
Universidade Federal de Santa Maria
Campus – Camobi, 97105-900
Santa Maria, RS - Brasil
Telephone: +55 55 3220 8547
Fax: +55 55 3220 8353
E-mail:
tatiemanuelli@smail.ufsm.br
31
Abstract
Sixteen common bean cultivars were compared concerning the physicochemical
characteristics of their raw seeds along two consecutive harvests, as well as the effect of
storage conditions on starch and dietary fiber content of cooked beans. It was possible to
identify groups of cultivars with different nutritional features. Bean cultivars were
categorized into four different groups according either to their macronutrient contents (crude
protein-PROT, total dietary fiber-TDF, insoluble dietary fiber-IDF, soluble dietary fiber-SDF,
digestible starch-DS, and resistant starch-RS) or to their micronutrient levels (Fe, Zn, Mn, Cu,
Ca, Mg, and P). Guateian 6662 and Rio Tibagi appeared to be the most adequate cultivars to
prevent nutritional deficiencies, because they had high PROT, DS, Fe, and Zn content. The
high dietary fiber and RS content of cultivars Iraí, Minuano, and TPS Bonito suggests that
they could have beneficial role in controlling blood lipid and glucose levels. Cooked beans
had a decrease in DS and an increase in RS content after storage (4
o
C or -20
o
C), but these
changes were more prominent in beans that had low RS content before cooking than in those
of high RS content. TDF, IDF, and SDF did not change after storage.
Keywords: Phaseolus vulgaris; Dietary fiber; Digestible starch; Resistant starch; Mineral
content.
1. Introduction
Common beans (Phaseolus vulgaris L.) are grown and consumed throughout the
world. They play an important role in the nutrition of low-income people especially in
developing countries where they are often the most important dietary source of protein,
carbohydrate, dietary fiber, and minerals (Tharanathan & Mahadevamma, 2003). It is
noteworthy that protein energy undernutrition and micronutrient deficiencies in childhood can
32
be prevented if beans and cereals are appropriately combined. Besides the nutritional role,
bean consumption has other potential benefits for human health like lowering the risk of colon
cancer and of heart disease, reducing total and LDL cholesterol, and regulating blood glucose
and insulin levels (The Michigan Bean Commission, 2006).
Different chemical characteristics can be found in beans according to the genetic
variety (Barampama & Simard, 1993; Kigel, 1999). Genetic research concerning bean culture
is mainly aimed at improving productivity and resistance to field pests and environmental
stress. Although, there is evidence that it may also change physicochemical characteristics of
seeds and affect their nutritional value, studies concerning these changes in beans are still rare
and limited to few cultivars (Augustin, Beck, Kalbfleish, Kagal, & Mathews, 1981;
Barampama & Simard, 1993; Nunez-Gonzalez et al., 2002).
Nutrient profile of beans may also be affected by environmental factors (Samman,
Maldonado, Alfaro, Farfan, & Gutierrez, 1999), which could make it difficult to obtain
standard nutritional values for seeds cultivated in different regions and from different
harvests. However, some studies in cereal cultivars (oat, rice, and wheat) indicate that despite
the changes in absolute values due to environmental factors, cultivars may keep a standard
compositional pattern, i.e. higher or lower starch or protein content (Silva, 2002; Storck,
Silva, & Fagundes, 2005).
Besides these changes in chemical characteristics due to genetic and environmental
factors, certain processing techniques, such as cooking and storage conditions, can also
produce important changes in starch, fiber, and other components of legume seeds (Kutos,
Golob, Kač, & Plestenjak, 2003; Vargas-Torres, Osorio-Diaz, Islas-Hernández, Tovar,
Paredes-Lopéz, & Bello-Pérez, 2004). These changes may affect the digestibility and
nutritional value of foods containing common bean seeds. All this variability has remarkable
33
importance for strict diets that are based on food composition tables, which usually do not
show specific values for different bean cultivars, neither their possible changes along harvest
years. Besides, bean seeds of better nutritional quality could be supplied for low-income
populations around the world.
Carbohydrates are the major component of beans. Current knowledge on nutritional
features of starch indicates that a fraction of this carbohydrate is resistant to enzyme digestion
in the small intestine. This resistant starch can be a substrate for the fermentation process in
the colon with important benefits for human health, similar to the dietary fiber. However,
relatively few studies evaluated resistant starch and dietary fiber content of common beans
(Kutos et al., 2003; Vargas-Torres et al., 2004; Landa-Habana, Piña-Hernández, Ágama-
Acevedo, Tovar, & Bello-Pérez, 2004), while most studies evaluated total starch content and
crude fiber content that do not give a real picture of the nutritional implications of these
components (Vieira, 1967; Antunes, Bilhalva, Elias, & Soares, 1995; Castellón et al., 2003;
Lemos, Oliveira, Palomino, & Silva, 2004).
The objectives of the present study were: (i) to compare the physicochemical
characteristics of sixteen common bean cultivars; (ii) to investigate the persistence of the
nutrient profile along two harvests; and (iii) to assess the effect of storage conditions on
digestible starch, resistant starch, and dietary fiber contents of cooked beans. Results will be
useful for dietitians to choose the most appropriate cultivars for specific nutritional purposes
like public health programs (health policy) and strict dietary orientations.
2. Materials and methods
2.1. Samples
34
Common bean seeds (Phaseolus vulgaris L.) of sixteen cultivars (Carioca,
Diamante Negro, FTS Magnífico, FTS Soberano, Guapo Brilhante, Guateian 6662, IAPAR
31, Iraí, Macanudo, Minuano, Pérola, Rio Tibagi, TPS Bionobre, TPS Bonito, TPS Nobre,
and Valente) were obtained from the Department of Fitotecnia of the Federal University of
Santa Maria, Rio Grande do Sul, Brazil. They were grown during two consecutive years
(2001/2002 and 2002/2003) at the campus, which is placed at an altitude of 95 m. The local
climate, according to Köppen’s classification, is Cfa – subtropical, with total average annual
rainfalls and temperature around 1769 mm and 19.2°C, respectively. The soil is a typical
dystrophic red (Bandinelli et al., 2005). In both harvest years, seeds were grown under similar
field conditions and normal agronomic practices required for bean crops were followed. Each
cultivar was obtained from three independent lots of land, each one containing four rows (4 m
length and 50 cm row to row distance). After harvest, seeds from the three lots were pooled
and a representative sample (200 g) of each cultivar was taken and kept at –20°C in sealed
polyethylene bags until analysis.
2.2. Physical analysis
One thousand seed mass (g) was calculated as ten times the mass of 100 seeds. The
evaluation was performed in unbroken raw seeds chosen at random.
2.3. Chemical analysis
2.3.1. Raw bean analysis
Raw seeds (50 g) were finely ground into flour and kept at –20°C in sealed
polyethylene bags until analysis. Bean flours were analyzed as described by AOAC (1995) for
35
moisture (method 925.10), ash (method 923.03), fat (method 945.39), crude protein
(method 960.52, N x 6.25, microKjeldahl method), and crude fiber (method 962.09). Dry
matter and organic matter were calculated as 100 minus the centesimal content of moisture
and ash, respectively. Digestible and resistant starch were determined after enzymatic
hydrolysis according to the method no. 996.11 AOAC (1995, reviewed in 1998) as modified
by Walter (2005) that uses a higher amount of sample (300 mg instead of 100 mg), phosphate
buffer pH 6.8 instead of MOPS (4-morpholinepropanesulfonic acid) buffer pH 7.0, and
proteolysis during digestion process. Amylose value was determined by iodometric assay
(blue value; Gilbert & Spragg, 1964). Total and insoluble dietary fiber contents were
determined by enzymic-gravimetric methods no. 985.29 and no. 991.42 (AOAC, 1995) and
soluble dietary fiber content was calculated by difference. The enzymes employed for dietary
fiber and starch determination were: α-amylase (Termamyl 120L
®
), protease (Flavourzyme
®
),
and amyloglucosidase (AMG 300L
®
) supplied by Novozymes Latin América Ltda.
(Araucária, PR, Brazil). Activity and purity of the enzymes was controlled weekly in our
laboratory. For starch determination, glucose was measured using glucose-oxidase-peroxidase
test kit (Glucox 500) supplied by Doles (Goiânia, GO, Brazil). Calcium, iron, zinc, copper,
manganese, and magnesium were determined by atomic absorption spectroscopy (
Atomic
Absorption Spectrometer AA 12/1475 -
Intralab), and phosphorus content was determined
colorimetrically (Tedesco, Gianello, Bissani, Bohnen, & Volkweiss, 1995).
All experiments were conducted at least in duplicate. Duplicates falling within 10% of
their mean were accepted to be showing satisfactory agreement. The analysis was repeated if
the agreement was outside 10% of the mean for the duplicates, and then recalculated on the
basis of the concordant replicates. Reagent blanks were always run with samples and helped
to monitor the purity of the reagents used. Any significant value for the blank determination
36
was accounted for in the calculation of the results. Analytical quality control was monitored
through the use of in-house control and participation in the interlaboratory proficiency testing
scheme (INTERLAB) of the Science and Technology Foundation (CIENTEC, Porto Alegre,
RS, Brazil) that follows ISO and IUPAC guidelines for interlaboratory proficiency testing.
2.3.2. Cooked bean analysis
Based on raw seed analysis, four cultivars of high resistant starch content (FTS
Magnífico, IAPAR 31, Pérola, and TPS Bonito) and four cultivars of low resistant starch
content (Diamante Negro, Iraí, Macanudo, and Valente) were chosen in order to determine the
effect of storage conditions on starch and dietary fiber contents of cooked beans. Fifty grams
of bean seeds were soaked overnight in tap distilled water (250 ml) at room temperature.
Twelve hours later, they were cooked at 100°C with the soaking water in beakers covered by
an aluminum foil until they became suitable for consumption (approximately 40 min). The
cooked seeds were either immediately analyzed (control) or stored with the cooking water in
sealed containers at 4°C for 4 days or at –20°C for 28 days. At the moment of the analysis, the
seeds were drained off, dried on a paper towel, and ground into a paste.
Total, insoluble, and soluble dietary fiber, as well as the digestible and resistant starch
contents were determined in cooked beans according to the same methods described above.
Dry matter was determined after 48 h at 55°C in an assisted air circulation oven, followed by
8 h at 105°C. All experiments were conducted at least in duplicate.
2.4. Statistical analysis
For evaluation of year to year variability, data concerning physicochemical
characteristics from the two consecutive harvests were compared using the Student’s t-test for
37
paired samples (P<0.05) considering each cultivar sample as an independent replicate
(n=16). The correlations between the various physicochemical characteristics evaluated were
assessed by Pearson’s correlation in the whole population of cultivars studied (n=16)
separately in each harvest year.
Bean cultivars were divided into groups with distinctive chemical characteristics by
cluster analysis using the Ward’s method as indicated by Hair Jr, Anderson, Tahman, &
Black, 1998). This technique is a classification procedure that groups objects in clusters in
terms of their nearness or similarity for a set of variables. The measurement of the similarity
is based, among other ones, on the squared Euclidean distance. Data were standardized (Z
score) before cluster analysis in order to eliminate the bias introduced by the differences in the
scales of the several variables (chemical characteristics) used in the analysis. Since small
differences were observed in the physicochemical characteristics along the two harvests
evaluated, results from the two harvests were used as two independent replicates of each
cultivar in the cluster analysis. Comparisons among groups obtained by cluster analysis were
made separately for each chemical characteristic by one-way analysis of variance (ANOVA)
using untransformed values. The effect of storage conditions on the levels of digestible starch,
resistant starch, total dietary fiber, insoluble dietary fiber, and soluble dietary fiber of cooked
beans were evaluated using two-way ANOVA (2 types of sample x 3 storage conditions, with
4 independent replicates per group). Post-hoc analysis was carried out using Duncan’s test
(P<0.05). The software used for the analysis was SPSS 8.0 for Windows.
3. Results and discussion
3.1. Influence of harvest year on physicochemical characteristics of bean cultivars
38
Seed characteristics are determined by cultivar genotype and environmental
conditions during plant growth and seed development. Table 1 shows the average
physicochemical characteristics of the sixteen bean cultivars along two consecutive harvests
(2001/2002 and 2002/2003). Of the sixteen bean cultivars evaluated only Carioca, Iraí, and
Pérola had been previously studied concerning some physicochemical characteristics before
and after cooking procedure (Universidade de São Paulo, 2005). The average values were
similar to those reported for other common bean cultivars (Vieira, 1967; Barampama et al,
1993; Antunes et al., 1995; Universidade de São Paulo, 2005). Most physicochemical
characteristics evaluated concerning macro and micronutrients contents did not change
significantly throughout the harvests, except for the slight moisture decrease (P<0.05), and
dry matter and total dietary fiber increase (P<0.05; Table 1) from the first to the second
harvest. On average, these results indicate that the various cultivars exhibited a constant
profile for most nutrients along the two harvests.
Although no major differences were observed in the average chemical characteristics
of seeds between the two harvests, remarkable ranges were observed in physical (1000 seeds
mass) and chemical characteristics (ash, crude protein, crude fiber, dietary fiber, crude fat,
amylose, and starch content) within each harvest (Table 1). Common beans are important
dietary sources of protein, starch, and fiber. Therefore, the range in the content of protein
(36%), insoluble dietary fiber (70%), soluble dietary fiber (106%), digestible starch (77%),
and resistant starch (100%) could be used to categorize bean cultivars according to their
nutritional potential.
We assessed the correlations between the various physicochemical characteristics
shown in Table 1. Similar to the results of Lemos et al. (2004) we also found a significant
negative correlation between protein (PROT) and 1000 seed mass (r = -0.65 for harvest 1 and
39
-0.55 for harvest 2), indicating that bigger seeds have lower PROT contents. An interesting
finding is that crude fiber had no significant correlation with total, soluble or insoluble dietary
fiber, which indicates that crude fiber assay is unsuitable to estimate the fiber content of bean.
3.2. Categorizing bean cultivars according to their macronutrient content
Previous studies discuss separately the variation of each nutrient among bean
cultivars. However, this approach provides an incomplete analysis of the nutritional potential
of different cultivars. Therefore, in the present study we used the multivariate cluster analysis
to classify the set of cultivars into groups of different nutritional quality based on their
similarities for a set of characteristics. Table 2 shows characteristics of groups formed by
multivariate cluster analysis based on their similarity for the content of some macronutrients
measured along two consecutive harvests (crude protein-PROT, total dietary fiber-TDF,
insoluble dietary fiber-IDF, soluble dietary fiber-SDF, digestible starch-DS, and resistant
starch-RS). These nutrients were chosen based on the relevance of common beans intake as a
dietary source. According to cluster analysis cultivars were divided into four groups (Table 2).
Group A that was formed by cultivars TPS Bonito, Iraí, and Minuano had low PROT, high
TDF, IDF, DS, and RS, and intermediate levels of SDF. Group B (Carioca, FTS Magnífico,
FTS Soberano, Guapo Brilhante, IAPAR 31, Pérola, TPS Bionobre, and TPS Nobre) had
intermediate levels of PROT and IDF, low levels of TDF and SDF, but high levels of DS and
RS. Group C (Diamante Negro, Macanudo, and Valente) also had intermediate PROT and
IDF levels, and low TDF and SDF, but in contrast to group B, group C had low levels of DS
and RS. Group D (Guateian 6662 and Rio Tibagi) had the highest PROT and SDF levels, high
DS levels, low TDF and IDF, and intermediate RS levels.
40
It is known that we can have different biological effects depending on the levels of
nutrients in the diet. The present data shows that the genetic variability among bean cultivars
significantly influenced its chemical characteristics. Among these cultivars those that
exhibited an interesting nutritional profile could be selected for specific dietary purposes, for
example, cultivars from group D (high PROT and DS levels) could be used for undernutrition
prevention. Some macronutrients like TDF, IDF, SDF and RS have been demonstrated to
reduce serum lipid levels, and regulate blood insulin and glucose levels (Guillon & Champ,
2002; Higgins, 2004). Hence, cultivars from groups A (high TDF and IDF, intermediate SDF,
and high RS) and D (high SDF) could be indicated for reduction of the risk of colon cancer
and coronary disease, as well as for the prevention of diseases related to insulin resistance
(Guillon & Champ, 2002; Lupton & Turner, 2003).
3.3. Categorizing bean cultivars according to their micronutrient content
The great range observed in the ash content (70%) of bean cultivars (Table 1) suggests
that the content of some essential minerals may vary significantly among the studied cultivars.
Since common beans are an important source of iron and other minerals these micronutrients
were also determined in the common beans evaluated (Table 3). According to the literature
common beans exhibit a great range in the content of minerals (mg/100g dry weight basis)
like Fe (2–18), Zn (1–7), Mn (1–2), Cu (0.20–1.96), Ca (55–284), Mg (38–369), and P (295–
570) (Augustin et al., 1981; Barampama & Simard, 1993; Vazquez-Blanco, Vazquez-Oderiz,
Simal-Lozano & Lopez-Hernandez, 1997; Samman et al., 1999; Nunez-Gonzalez et al.,
2002). In this study, Fe, Zn, Mn, Cu, Ca, and P contents were similar to those found in
literature (Table 3). However, Mg content was slightly lower than previously reported values.
41
Considering the nutritional importance of beans as mineral source, cultivars
evaluated in the present study were also classified based on their similarity for the content of
some micronutrients along two consecutive harvests (Table 3). Bean cultivars were divided
into four different groups. No significant differences were observed in P content among the
groups formed. Group A that was formed by cultivars Iapar 31, Iraí, and Macanudo had low
levels of all minerals evaluated (Fe, Zn, Mn, Cu, Mg) with the exception of Ca that was found
at intermediate levels in this group. Group B (Carioca, Guapo Brilhante, Minuano) had low
levels of Zn and Mn, intermediate levels of Fe, and high levels of Cu, Ca, and Mg. Group C
(Diamante Negro, TPS Bonito, Valente) had low levels of Ca, intermediate levels of Mn and
Mg, and high levels of Fe, Zn, and Cu. Group D (FTS Magnífico, FTS Soberano, Guateian
6662, Pérola, Rio Tibagi, TPS Bionobre, TPS Nobre) had the highest content for all minerals
evaluated.
Changes in mineral profile of beans can be explained by a variety of factors, including
genotypic variability in absorption of minerals from soil (Nunez-Gonzalez et al., 2001), effect
of fertilizers on metallic composition of plants (Sadiq & Hussain, 1994), and salinity levels of
soil (Carbonell-Barrachina, Burlo, & Mataix, 1998). In this study, the soil used for seeding
and the fertilization practices were kept the same for all cultivars. Hence, the differences of
mineral profile among the cultivars could be attributed to genotypic variability.
As observed for macronutrients, these changes in mineral levels have an important
role in human nutrition, because different cultivars could be used for specific nutritional
purposes as mineral deficiencies. Based on Table 3 we can select cultivars with the highest
levels of Fe, Zn, (groups C and D), and Ca (groups B and D) for the prevention of these
ordinary mineral deficiencies. The data presented here can also be useful for selecting
42
cultivars for the development of new ones, with a more appropriate nutritional profile for
populations with specific mineral dietary deficiencies.
3.4. Effect of storage conditions on cooked beans
The effect of storage conditions on DS and RS contents of cooked beans were
evaluated using cultivars that had either low or high RS levels before cooking (Fig. 1). DS
content of cooked beans significantly reduced after storage at 4°C both for low and high RS
cultivars. However, storage at -20°C only reduced DS content of low RS cultivars (Fig. 1A).
RS content of both low and high RS cultivars was significantly increased after storage of
cooked beans at 4
o
C, but at -20
o
C only low RS cultivars had a significant increase in RS
content (Fig. 1B). It is noteworthy that the increase in RS content during storage was much
more pronounced for low than for high RS cultivars, in such a way that the RS profile of
cultivars was inverted after storage at -20
o
C (Fig. 1B). These results suggest that beans that
have low RS content before cooking are more prone to retrogradation after cooking. Hence,
we can propose that the behavior of bean starch during storage may vary among different
cultivars. This observation may help to explain previous controversial results on the effects of
cooking and storage conditions on starch levels of common beans. Some authors found a
decrease of digestible starch and increase of resistant starch after storage at 4°C (Vargas-
Torres et al., 2004), others found no changes (Landa-Habana et al., 2004), and others found an
increase of digestible starch (Osorio-Diaz, Bello-Perez, Sayago-Ayerdi, Benitez-Reyes,
Tovar, & Paredes-Lopez, 2003).
The effects of storage conditions on TDF, IDF, and SDF contents of cooked beans
were also evaluated using cultivars that had either low or high RS levels before cooking (Fig.
43
2). TDF (Fig. 2A), IDF (Fig. 2B), and SDF (Fig. 2C) contents of cooked beans did not
change during storage.
Previous studies on the dietary fiber of common beans focused on the effects of
cooking and revealed variable results, since either increase or decrease of TDF, IDF, and SDF
was observed by different authors (Hughes & Swanson, 1989; Kutos et al., 2003). No study
was found on the effects of different storage conditions on dietary fiber (DF) levels of
common beans. In the present study we demonstrated that DF content did not change during
storage of cooked beans. RS is a component of IDF, and it did change during storage (Fig. 1).
However, no change was observed in IDF fraction, probably because RS contributes to a
small part of this fraction in cooked beans (10-20%).
4. Conclusions
It was possible to identify groups of cultivars with different nutritional features.
Guateian 6662 and Rio Tibagi appeared to be the most adequate cultivars to prevent
nutritional deficiencies, because they had high PROT, DS, Fe, and Zn content. Cultivars with
a composition more adequate for prevention of coronary disease and diseases related to
insulin resistance (Iraí, Minuano, and TPS Bonito) were also identified. The observed
variability among bean cultivars reveal the need for bringing food composition tables up to
date by including an expected range of nutrients for each cultivar.
Besides, it was shown that the increase in RS content and the decrease in DS during
storage of cooked beans were higher for beans that had low RS content before cooking. The
TDF, IDF and SDF contents did not change. These results may be useful in selecting cultivars
for breeding and for specific uses in human nutrition.
44
Acknowledgements
Authors thank to Novozymes Latin American Ltda. for kindly donation of enzymes
and Doles (GO, Brazil) for donation of GOP test kit. T. Emanuelli is the recipient of a CNPq
research fellowship. L.P. Silva is the recipient of CAPES/PRODOC fellowship.
References
Antunes, P.L., Bilhalva, A.B., Elias, M.C. , & Soares, G.J.D. (1995). Valor nutricional de
feijão (Phaseolus vulgaris L.), cultivares Rico 23, Carioca, Piratã-1 e Rosinha-G2. Revista
Brasileira de Agrociência, 1, 12-18.
AOAC. (1995). Official Methods of Analysis of the Association of the Official Analysis
Chemists (16
th
ed.). Arlington, VA: Association of Official Analytical Chemists.
Augustin, J., Beck, C.B., Kalbfleish, G., Kagal, L.C., & Mathews, R.H. (1981). Variation in
the vitamin and mineral content of raw and cooked commercial Phaseolus vulgaris classes.
Journal of Food Science, 46, 1701-1706.
Bandinelli, D.G., Gatiboni, L.C., Trindade, J.P.P, Quadros, F.L.F., Kaminski, J., Flores, P.C.,
Brunetto, G., & Saggin, A. (2005). Botanical composition of natural pasture as affected by
phosphorus sources, lime and introduction of winter forage species. Ciência Rural, 35, 84-
91.
Barampama, Z., & Simard, R.E. (1993). Nutrient composition, protein quality and
antinutritional factors of some varieties of dry beans (Phaseolus vulgaris) grown in
Burundi. Food Chemistry, 47, 159-167.
Carbonell-Barrachina, A.A., Burlo, F., & Mataix, J. (1998). Response of bean micronutrient
nutrition to arsenic and salinity. Journal of Plant Nutrition, 21, 287-299.
45
Castellón, R.E.R., Araújo, F.M.M.C., Ramos, M.V., Andrade Neto, M., Freire Filho, F.R.,
Grangeiro, T.B., & Cavada, B.S. (2003). Composição elementar e caracterização da fração
lipídica de seis cultivares de caupi. Revista Brasileira de Engenharia Agrícola e
Ambiental, 7, 149-153.
Gilbert, G.A., & Spragg, S.P. (1964). Iodine sorption: “blue value”. In R. L. Whistler,
Methods in Carbohydrate Chemistry, vol. IV, Starch (pp. 168-169). New York: Academic
Press.
Guillon, F., & Champ, M. M. (2002). Carbohydrate fractions of legumes: uses in human
nutrition and potential for health. British Journal of Nutrition, 88 (suppl. 3), S293-306.
Hair Jr, J.F., Anderson, R.E., Tahman, R.L., & Black, W.C. (1998). Multivariate data
analysis. New Jersey: Prentice-Hall Inc.
Higgins, J.A. (2004). Resistant starch: metabolic effects and potential health benefits. Journal
of AOAC International, 87, 761-768.
Hughes, J.S., & Swanson, B.G. (1989). Soluble and insoluble dietary fiber in cooked common
bean (Phaseolus vulgaris L.) seeds. Food Microstructure, 8, 15-21.
Kigel, J. (1999). Culinary and nutritional quality of Phaseolus vulgaris seeds as affected by
environmental factors. Biotechnology, Agronomy, Society and Environment, 3, 205-209.
Kutos, T., Golob, T., Kač, M., & Plestenjak, A. (2003). Dietary fiber content of dry and
processed beans. Food Chemistry, 80, 231-235.
Landa-Habana, L., Piña-Hernández, A., Ágama-Acevedo, E., Tovar, J., & Bello-Pérez, L.A.
(2004). Effect of cooking procedures and storage on starch bioavailability in common
beans (Phaseolus vulgaris L.). Plant Foods for Human Nutition, 59, 133-136.
Lemos, L.B., Oliveira, R.S., Palomino, E.C., & Silva, T.R.B. (2004). Características
agronômicas e tecnológicas de genótipos de feijão do grupo comercial Carioca. Pesquisa
Agropecuária Brasileira, 39, 319-326.
46
Lupton, J.R., & Turner, N.D. (2003). Dietary fiber and coronary disease: does the evidence
support an association? Current Atherosclerose Reports, 5, 500-505.
Nunez-Gonzalez, M.A., Maiti, R.K., Verde, J., Foroughbakch, R., Garcia-Diaz, G., Martinez-
Lozano, S., Heredia-Rojas, N.L., Moreno-Limon, S., Hernandez-Pinero, J.L., & Cardenas-
Avila, M.L. (2001). Genotypic variability in absorption of minerals among bean
(Phaseolus vulgaris L.) cultivars exposed to low nutrient stress. Crop Research, 22, 408-
423.
Nunez-Gonzalez, M.A., Maiti, R.K., Verde, J., Cardenas-Avilla, M.L., Foroughbakch, R.,
Hernandez-Pinero, J.L., Moreno-Limon, S., & Garcia-Diaz, G. (2002). Variability in
mineral profile in seven varieties of bean (Phaseolus vulgaris L.) adapted in North East of
Mexico. Legume Research, 25, 284-287.
Osorio-Diaz, P., Bello-Perez, L.A., Sayago-Ayerdi, S.G., Benitez-Reyes, M.Del P., Tovar, J.,
& Paredes-Lopez, O. (2003). Effect of processing and storage time on in vitro digestibility
and resistant starch content of two bean (Phaseolus vulgaris L.) varieties. Journal of
Science and Food Agricultural, 83, 1283-1288.
Sadiq, M., & Hussain, G. (1994). Effect of chelate fertilizers on dry matter and metallic
composition of bean plants in a pot experiment. Journal of Plant Nutrition, 17, 1477-1488.
Samman, N., Maldonado, S., Alfaro, M.E., Farfan, N., & Gutierrez, J. (1999). Composition of
different bean varieties (Phaseolus vulgaris) of northwestern Argentina (region NOA):
cultivation zone influence. Journal of Agricultural and Food Chemistry, 47, 2685-2689.
Silva, L.P. da (2002). Composição Química de Trigo e de Aveia e Efeito dos Teores e
Proporções de Fibra Alimentar sobre a Resposta Biológica de Frangos de Corte e Ratos.
47
Tese (Doutorado em Zootecnia), Faculdade de Agronomia, Universidade Federal do Rio
Grande do Sul, Brasil.
Storck, C.R., Silva, L.P. da, & Fagundes, C.A.A. (2005). Categorizing rice cultivars based on
differences in chemical composition. Journal of Food Composition and Analysis, 18, 333-
341.
Tharanathan, R.N., & Mahadevamma, S. (2003). Grain legumes – a boon to human nutrition.
Trends in Food Science & Technology, 14, 507-518.
Tedesco, M.J., Gianello, C., Bissani, C.A., Bohnen, H., & Volkweiss, S.J. (1995). Análise de
Solo, Plantas e Outros Materiais. (Boletim Técnico, n.5) 2. ed. Departamento de Solos,
UFRGS, Porto Alegre.
The Michigan Bean Commission (2006). Beans and inhibition of cancer. Retrieved 2006-03-
03: http://www.michiganbean.org/research.html.
Universidade de São Paulo (2005). Faculdade de Ciências Farmacêuticas. Departamento de
Alimentos e Nutrição Experimental / BRASILFOODS. Tabela Brasileira de Composição
de Alimentos-USP. Versão 4.1. Retrieved 2005-10-05: http://www.fcf.usp.br/tabela.
Vargas-Torres, A., Osorio-Diaz, P., Islas-Hernández, J.J., Tovar, J., Paredes-Lopéz, O., &
Bello-Pérez, L.A. (2004). Starch digestibility of five cooked black bean (Phaseolus
vulgaris L.) varieties. Journal of Food Composition and Analysis, 17, 605-612.
Vazquez-Blanco, M.E., Vazquez-Oderiz, M.L. Simal-Lozano, J., & Lopez-Hernandez, J.
(1997). Determination of mineral elements in Galician green beans by atomic
spectroscopy. Deutsche Lebensmittel-Rundschau, 93, 286-287.
Vieira, C. (1967). O Feijoeiro-Comum: Cultura, Doenças e Melhoramento. Viçosa, MG:
Universidade Federal de Viçosa.
48
Walter, M. (2005). Amido Resistente: Metodologias de Quantificação e Resposta Biológica
em Ratos. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos), Universidade
Federal de Santa Maria, Santa Maria, Brasil.
49
Figure captions
Fig. 1. Effect of storage on digestible (A) and resistant (B) starch content of cooked common
beans that had either a low (open bars) or a high (hatched bars) resistant starch content before
cooking. Results (g/100 g of dry weight) are mean±standard error (n=4). Bars within the same
panel that have no common letters are significantly different (P<0.05).
Fig. 2. Effect of storage on total dietary fiber (A), insoluble fiber (B), and soluble fiber (C) of
cooked common beans that had either a low (open bars) or a high (hatched bars) resistant
starch content before cooking. Results (g/100 g of dry weight) are mean±standard error (n=4).
50
Table 1
Physicochemical characteristics of common bean seeds from 2 consecutive harvests
(2001/2002 and 2002/2003)
&
Characteristics 1
(2001/2002)
2
(2002/2003)
1000 seed mass (g) 223.19±9.74
(165.00-331.70)
230.59±10.48
(158.40-338.60)
Dry matter
(g/100 g fresh weight)
86.67± 0.13
(85.92-87.57)
87.09±0.12*
(86.09-87.79)
Organic matter
(g/100 g fresh weight)
96.12±0.12
(95.50-97.07)
96.16±0.14
(95.46-97.33)
Moisture
(g/100 g fresh weight)
13.33±0.13
(12.43-14.08)
12.91±0.12*
(12.21-13.91)
Ash
(g/100 g fresh weight)
3.90±0.12
(2.93-4.50)
3.84±0.14
(2.67-4.54)
Crude protein
(g/100 g dry weight)
25.69±0.55
(21.24-29.06)
25.11±0.41
(22.50-27.96)
Crude fiber
(g/100 g dry weight)
4.79±0.17
(3.64-5.72)
4.98±0.18
(3.54-6.05)
Total dietary fiber
(g/100 g dry weight)
23.97±0.54
(20.79-28.79)
25.35±0.72*
(21.02-31.91)
Insoluble dietary fiber
(g/100 g dry weight)
18.81±0.65
(13.80-23.49)
19.50±0.50
(16.97-22.79)
Soluble dietary fiber
(g/100 g dry weight)
5.17±0.48
(3.59-10.68)
5.90±0.60
(1.44-9.72)
Crude fat
(g/100 g dry weight)
1.90±0.25
(0.98-5.49)
1.82±0.21
(0.92-4.43)
Amylose
(g/100 g dry weight)
8.35±0.28
(6.16-10.08)
9.02±0.21
(7.54-10.34)
Digestible starch
(g/100 g dry weight)
29.40±1.15
(20.02-35.61)
30.81±1.12
(23.66-39.41)
Resistant starch
(g/100 g dry weight)
3.34±0.18
(2.35-4.70)
3.44±0.17
(2.46-4.58)
&
Results are expressed as mean value±standard error (min-max) of sixteen bean cultivars.
*Significantly different from harvest 2001/2002 (P< 0.05, Student’s t-test).
51
Table 2
Groups formed by bean cultivars considering the levels of macronutrients*
Group/Cultivars PROT TDF IDF SDF DS RS
A: Iraí; Minuano; TPS Bonito
22.93
c
(0.67)
28.83
a
(0.18)
22.31
a
(0.22)
6.51
a,b
(0.36)
31.73
a
(0.85)
3.81
a
(0.40)
B: Carioca; FTS Magnífico; FTS Soberano; Guapo
Brilhante; Iapar 31; Pérola; TPS Bionobre; TPS Nobre
25.61
b
(0.41)
23.96
b
(0.38)
19.23
b
(0.46)
4.72
b
(0.44)
31.54
a
(1.40)
3.60
a
(0.19)
C: Diamante Negro; Macanudo; Valente
25.59
b
(0.85)
22.71
b
(0.50)
17.84
b,c
(0.57)
4.87
b
(0.57)
24.29
b
(1.68)
2.50
b
(0.02)
D: Guateian 6662; Rio Tibagi
27.96
a
(0.26)
24.15
b
(0.28)
16.04
c
(0.64)
8.11
a
(0.92)
30.60
a
(3.02)
3.24
a,b
(0.30)
*Results (g/100 g of dry weight) are mean (standard error) of the group of cultivars indicated in the first column, each one analyzed in two
harvests (2001/2002 and 2002/2003). Values within the same column that have no common superscript are significantly different (P< 0.05,
Duncan’s test). PROT: crude protein; TDF: total dietary fiber; IDF: insoluble dietary fiber; SDF: soluble dietary fiber; DS: digestible starch; RS:
resistant starch. , , and indicate high, intermediate, and low levels of each macronutrient.
52
Table 3
Groups formed by bean cultivars considering the levels of micronutrients*
Group / Cultivars Fe Zn Mn Cu Ca Mg P
A: Iapar 31; Iraí; Macanudo
8.26
c
(0.33)
3.18
b
(0.08)
1.35
b
(0.05)
1.10
b
(0.12)
257.23
b
(46.09)
21.53
b
(1.17)
358.59
ns
(11.12)
B: Carioca; Guapo Brilhante; Minuano
9.08
b
(0.15)
3.20
b
(0.09)
1.44
b
(0.02)
1.39
a
(0.06)
373.23
a
(22.15)
23.88
a
(0.45)
351.17
ns
(14.17)
C: Diamante Negro; TPS Bonito; Valente
9.26
a,b
(0.11)
3.57
a
(0.05)
1.53
a,b
(0.04)
1.44
a
(0.03)
147.01
c
(15.32)
23.19
a,b
(0.17)
335.69
ns
(15.14)
D: FTS Magnífico; FTS Soberano; Guateian 6662;
Pérola; Rio Tibagi; TPS Bionobre; TPS Nobre
9.65
a
(0.11)
3.53
a
(0.09)
1.67
a
(0.05)
1.55
a
(0.05)
399.75
a
(11.57)
24.64
a
(0.38)
342.47
ns
(9.61)
*Results (mg/100g of dry weight) are mean (standard error) of the group of cultivars indicated in the first column, each one analyzed in two
harvests (2001/2002 and 2002/2003). Values within the same column that have no common superscript are significantly different (P< 0.05,
Duncan’s test); ns: not significant. , , and indicate high, intermediate, and low levels of each micronutrient
53
Fig. 1
control 4°C -20°C
Storage conditions
0
10
20
30
40
50
Digestible starch
A
control 4°C -20°C
Storage conditions
0
3
6
9
12
15
Resistant starch
B
a
a
b
b
b
a
c,d
a
a,b
a
b,c
d
54
Fig. 2
control 4°C -20°C
Storage conditions
0
10
20
30
40
50
60
Total fiber
A
control 4°C -20°C
Storage conditions
0
10
20
30
40
50
60
Insoluble fiber
B
control 4°C -20°C
Storage conditions
0
5
10
15
Soluble fiber
C
55
3.2 Manuscrito 2
EFFECTS OF COMMON BEAN (Phaseolus vulgaris L.) DIETS ON SERUM
LIPIDS AND BLOOD GLUCOSE LEVELS IN NORMOLIPIDEMIC-
NORMOGLYCAEMIC RATS
Manuscrito em fase final de revisão pelos autores para ser submetido à revista
BRITISH JOURNAL OF NUTRITION
56
Effects of common bean (Phaseolus vulgaris L.) diets on serum lipids and
blood glucose levels in normolipidemic-normoglycaemic rats
Ivo Roberto Dornelles Prolla
1,2
, Roberta Garcia Barbosa
1
, Carina Mota
1
, Bruna Gaelzer Silva
Torres
1
, Leila Picolli da Silva
3
and Tatiana Emanuelli
1,*
1
Núcleo Integrado de Desenvolvimento em Análises Laboratoriais (NIDAL), Departamento
de Tecnologia e Ciência dos Alimentos, Centro de Ciências Rurais, Universidade Federal de
Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brasil.
2
Departamento de Pediatria e Puericultura, Centro de Ciências da Saúde, Universidade
Federal de Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brasil.
3
Departamento de Zootecnia, Centro de Ciências Rurais, Universidade Federal de Santa
Maria, Camobi, 97105-900, Santa Maria, RS, Brasil.
* Corresponding author. Tel.: +55 55 3220 8547; fax: +55 55 3220 8353.
E-mail address: tatiem[email protected] (T. Emanuelli).
Corresponding author:
Tatiana Emanuelli
Núcleo Integrado de Desenvolvimento de Análises Laboratoriais (NIDAL)
Departamento de Tecnologia e Ciência dos Alimentos
Centro de Ciências Rurais
Universidade Federal de Santa Maria
Campus – Camobi, 97105-900
Santa Maria, RS - Brasil
Telephone: +55 55 3220 8547
Fax: +55 55 3220 8353
E-mail:
tatiemanuelli@smail.ufsm.br
Running title: Effect of beans on blood lipids and glucose
57
Abstract
Common beans (Phaseolus vulgaris L.) have different soluble fibre/total fibre ratios (SF/TF)
according to the genetic variety. This study was aimed at determining the effects of three
cultivars of common beans containing different SF/TF (Pérola diet, 0·11; Diamante Negro
diet, 0·19; Iraí diet, 0·25) on serum lipids, blood glucose and others biological parameters in
normolipidemic-normoglycaemic rats. Male Wistar rats (52·0±1·1 g) were fed isocaloric and
isonitrogenous diets with 5% fibre content obtained from one of the three bean cultivars or
from cellulose (100% insoluble fibre - Control) during an experimental period of 23 days. No
differences were observed in food intake or body weight among groups. Animals fed Iraí diet
had significantly higher food efficiency ratio (0·33 g/g) when compared to Diamante Negro
and control (0·30 and 0·31 g/g, respectively), while those fed with Pérola diet had
intermediate values (0·32 g/g). Iraí had higher dry matter, starch, and fibre digestibility (92·6,
94·6, and 86·8%, respectively) than the other bean diets (90·3-90·5, 91·9-92·3, and 77·1-
79·5%; P<0·05). All bean diets lead to higher faecal weight and faecal moisture
(Pérola>Diamante Negro>Iraí), and lower faecal pH (Pérola<Diamante Negro<Iraí) than
control (P<0·05). All bean diets lead to lower epididymal fat weight and total blood
cholesterol levels than control diet (P<0·05). Fibre digestibility was negatively correlated to
cholesterol levels (r=-0·84) and epididymal fat weight (r= -0·58; P<0·05). The glycaemic peak
occurred at 30 min for animals fed bean diets and at 60 min for those fed control diet
(P<0·05). Besides, animals fed bean diets had lower total area under the glycaemic curve than
control animals (P<0·05). We concluded that diets with cultivars of common beans containing
higher SF/TF reduce serum cholesterol, blood glucose levels and fat retention in
normolipidemic-normoglycaemic rats.
58
Keywords: digestibility; cholesterol; glycaemic curve; insoluble fibre; soluble fibre; faecal
pH, epididymal fat.
1. Introduction
Common beans (Phaseolus vulgaris L.) are widely consumed throughout the world,
mainly by low income populations. In addition to the nutritional properties, it is known that
they have potential benefits on human health. Beans have been responsible for an important
lowering effect on serum lipids (Fukushima et al. 2001). In hyperlipidemic subjects, bean
water-soluble fibre was shown to decrease total cholesterol (13 to 26%), HDL cholesterol (5
to 20%) and triglyceride levels (3 to 25%) (Anderson & Gustafson, 1988). Although some
authors have related the lipid-lowering effect to the starch fraction, presumably on its saponin
content (Amígo et al. 1992), the soluble fibre seams to be really the active portion of the
legume (Aller et al. 2004).
This legume has also a lowering effect on plasma glucose (Pari & Venkateswaran,
2003). This property has been related not only to starch digestibility, but also to fibre contents
(Panlasigui et al. 1995). The fibre fraction seems to lower blood glucose responses due to a
delaying in gastric emptying and due to a reduction in the rate of nutrient absorption from
gastrointestinal tract (Thorne et al. 1983; Bjorck & Elmstahl, 2003). The blood glucose
response can be expressed either as the area under the glycaemic curve or as the glycaemic
index. High glycaemic index diets are associated with higher insulin response and increased
risk of obesity (Pawlak et al. 2001). Common beans are considered a low glycaemic index
food.
59
It is known that bean grains are excellent sources of dietary fibre, providing a mix
of soluble and insoluble fibres (Messina, 1999) with all the remarkable effects already related
to them. However, common bean cultivars have significant differences in chemical
composition, including the fibre content. Thus, their properties can be also quite different.
The majority of the studies concerning the effects of common bean-based diets were
performed in hypercholesterolemic (Dabai et al. 1996; Rosa et al. 1998 a; 1998 b) or
hyperglycaemic rats (Pari & Venkateswaran, 2003). In these models, bean consumption
improved lipids and glucose levels. However, studies on its effects in healthy animals are still
lacking (Amigo et al. 1992). Besides, we did not find any study comparing the effect of bean
cultivars with different levels of soluble fiber content on these parameters.
Therefore, this study was aimed at evaluating the effects of three cultivars of common
beans containing different proportions of water-soluble fibre (Pérola: 11%; Diamante Negro:
19%; and Iraí: 25% of total dietary fibre levels, respectively) on serum lipids, blood glucose
and other biological parameters in normolipidemic-normoglycaemic rats.
2. Materials and methods
2.1. Bean flour
Common bean (Phaseolus vulgaris L.) grains of three cultivars (Pérola, Diamante Negro and
Iraí) were provided by Centro Nacional de Pesquisa de Arroz e Feijão – EMBRAPA (Santo
Antônio de Goiás, Goiás, Brazil) and had been grown during the harvest year 2005.
Five kg of each bean grains were soaked overnight in tap water (1:3 wt/wt ratio) at
room temperature. Twelve hours later, they were cooked separately at 100°C with the soaking
water in covered pots until they became suitable for consumption (approximately 90 min).
60
The cooked grains were drained off, dried at 55°C in an assisted air circulation oven for 48
h and ground into fine flour, which was used for chemical analysis and for diet formulation.
2.2. Bean flour analysis
Bean flours were analyzed as described by AOAC (1995) for moisture (method 925.10), ash
(method 923.03), fat (method 945.39), and crude protein (method 960.52, N x 6·25,
microKjeldahl method). Dry matter was determined after 48 h at 55°C in an assisted air
circulation oven, followed by 8 h at 105°C. Digestible starch was determined after enzymatic
hydrolysis according to the method no. 996.11 (AOAC, 1995, reviewed in 1998) as modified
by Walter (2005) that uses a higher amount of sample (300 mg instead of 100 mg), phosphate
buffer pH 6·8 instead of MOPS (4-morpholinepropanesulfonic acid) buffer pH 7·0, and
proteolysis during digestion process. Total and insoluble dietary fibre contents were
determined by enzymic-gravimetric methods no. 985.29 and no. 991.42 (AOAC, 1995) and
soluble dietary fibre content was calculated by difference. All the enzymes used in chemical
analysis, Termamyl 120L
®
(amylase), AMG 200
®
(amyloglycosidase) and Alcalase 2
.
4L
®
(protease), were provided by Novozymes Latin America Ltda.
2.3. Animal experiment
This study was approved by the Ethics and Animal Welfare Committee of Universidade
Federal de Santa Maria. Thirty-two male weanling Wistar rats (52·0±1·1 g) were randomly
assigned into four dietary groups (8 animals each) and individually housed in cages placed in
a room with controlled temperature (22±1°C), humidity (65±5%) and light (12-h light and 12-
h dark periods). One group was fed a control diet (C-diet), according to AIN-93 rodent diet
(Reeves et al. 1993), containing 5% fibre from crystalline cellulose (100% insoluble fibre).
61
The other three groups were fed experimental diets similar to AIN-93, except for the source
and type of fibre. Each experimental diet was formulated with the bean flour of one cultivar:
Pérola diet (P-diet), Diamante Negro diet (DN-diet), and Iraí diet (I-diet) (Table 1). The
amount of flour was that to ensure the same percentage of total fibre present in C-diet (5%)
(Tables 1 and 2). Protein and starch content of experimental diets were balanced in order to
match the same levels found in AIN-93. All diets had the same amount of sucrose, soybean
oil, mineral mix, vitamin mix, choline and methionine, ensuring isoproteic and isocaloric
diets.
Rats were provided tap water and food ad libitum during the whole experiment. A
period of 5 days was allowed for adaptation to the diets, followed by a 23-day experimental
period with daily feed intake and weight gain record. On each day of the experimental period,
faeces and spilled food for each rat were collected. The faeces were weighed and stored in
plastic containers at 4°C until analysis. The spilled food were weighed and discharged.
Blood glucose levels were evaluated from the 17-day to the 20-day of the experimental
period, using 8 randomly chosen animals in each day. After a 12 h fasting period, 2 µl blood
was extracted from the tail of the animal and glucose concentration was immediately
determined (time 0). Then, the rats were allowed to eat 2 g of their respective diets (control or
experimental diets). After 20 minutes the pots of food were removed from the cages and new
blood glucose determinations were performed at 15, 30, 45, 60 and 90 minutes later.
At the 23-day of the experimental period animals were fasted during 12 h and
submitted to euthanasia by cardiac puncture under ether anesthesia. The blood was collected
in a 5-ml tube and serum was obtained after centrifugation. Liver and epididymal fat pad were
removed and weighed.
62
2.4. Faecal analysis
Dry matter, moisture, total dietary fibre and starch were analyzed following to the
same methods described for bean flour. pH was evaluated directly in a solution made of 1 g of
faeces and 10 ml of distilled water.
2.5. Blood analysis
Serum triglycerides, total cholesterol and HDL (high-density-lipoprotein) cholesterol were
measured enzymatically using laboratory kits (Triglicérides 120, Colesterol 250 and
Colesterol HDL, supplied by Doles Reagentes, Goiânia, GO, Brazil).
Blood glucose was assessed in blood samples extracted from the tail of the animal
with reactive strips read in a portable glucosemeter (ACCU-CHEK
®
Advantage blood glucose
meter). We determined the area under the curve (AUC) for each animal using the Data Master
Program 2003, version 11·7. Total AUC was defined by the area under the 90 minutes blood
glucose response curve following the ingestion of 2 g portion of the respective diet. We also
calculated partial AUC for each period of time along the curve. The AUC of the testing food
was divided by the AUC of the control diet and multiplied by 100. Thus, AUC for the control
diet was expressed as 100, while for the experimental diets it was a percentage of this value
(Thorne et al. 1983).
2.6. Statistical analysis
Results are presented as the mean ± standard error of the mean. Data were analysed by one-
way analysis of variance (ANOVA). Data of glycaemic curve was analysed by ANOVA with
time considered as repeated measure. Post-hoc analysis was carried out using Duncan’s test
(P<0·05). The software used for the analysis was SPSS 8·0 for Windows.
63
3. Results and discussion
Male Wistar rats were fed isocaloric and isoproteic diets with 5% fibre content
obtained from one of three bean cultivars or from cellulose (100% insoluble fibre - Control)
during the whole experimental period (23 days). The only difference among diets was the
soluble fibre/total fibre ratio (Table 2). Control (C-diet) and experimental diets (Pérola diet, P-
diet; Diamante Negro diet, DN-diet; and Iraí diet, I-diet) were well tolerated by all animals.
Final body weight, feed intake, and weight gain were similar among all groups (Table 3).
C-diet and I-diet groups showed higher dry matter and starch digestibility than DN-
diet and P-diet groups (Table 4). The highest fibre digestibility was observed in I-diet that had
the greatest soluble fibre/total fibre proportion (SF/TF) (Table 2). On the contrary, the C-diet
that had only insoluble fibre, showed the lowest fibre digestibility, while DN-diet and P-diet
had intermediate values (Table 4). As expected fibre digestibility was positively correlated to
the SF/TF in the diet (r= 0·91; P<0·05). We also found positive correlation between fibre
digestibility and feed efficiency ratio (FER) (r= 0·46; P<0·05), and positive correlation
between SF/TF and FER (r= 0·55; P<0·05).
Despite showing similar feed intake and similar values for digestibility of starch
(Table 4), animals fed I-diet and C-diet had different FER (I-diet higher than C-diet) (Table
3). However, I- and C-diet had different SF/TF ratio (Table 2) and fibre digestibility (Table
4). On the other hand, animals fed P-diet (lower SF/TF) showed higher FER than animals fed
DN-diet (P<0·05) and similar to I-diet group (higher SF/TF) (Table 3). We noted that both
feed intake and fibre digestibility in P-diet group were slightly higher than in DN-diet group
(P>0·05) (Table 3 and 4). As we found a positive correlation between SF/TF and FER (r=
0·55; P<0·05), we considered that these differences may have influenced FER in these
64
animals. Besides, we did not find any correlation between starch digestibility and FER.
Jamroz et al. (2002) studied the digestibility and energy value of non-starch polysaccharides
(NSP) in birds and showed that the degradation of NSP in the gut (39 to 42%) resulted in
short chain fatty acids and contributed with 3·5% of the metabolisable energy. Robertson et
al. (1987) studied the digestibility and rate of degradation of water-insoluble dietary fibre in
pigs and showed that cellulose did not appear to be degraded, while vegetable fibre can have
its fibre cell wall matrix completely destroyed by the microbial digestion during gut transit.
Kienzle et al. (2001) studied the effect of cellulose on the digestibility of fat, protein and
energy in dogs. They found that cellulose did not decrease the digestibility of fat, but
decreased the digestibility of protein and energy. Besides, starch also decreased protein
digestibility and the effects of cellulose and starch appeared to be additive. Thus, these papers
support our findings, where experimental animals in I-diet (highest digestibility) and P-diet
(intermediate digestibility but high feed intake) showed higher feed efficiency ratio.
Concerning starch digestibility, C-diet and I-diet groups showed the highest but
similar levels, while DN-diet and P-diet showed the lowest values. It does not seam to have
any relation to the type neither to the percentage of starch in the diet because C-diet had
50·1% of corn starch, while I-diet, DN-diet, and P-diet had 50·3%, 48·4%, and 51·2 %,
respectively, of bean starch on dry matter basis. In addition, both digestible starch and
resistant starch of these bean varieties were previously evaluated by the authors in raw grains
(unpublished data). The levels, on dry matter basis, ranged from 28·4 to 31·5% and from 3·0
to 4·4%, respectively, but were not statistically different among them. So, as both digestible
starch and resistant starch were similar among the bean varieties used in experimental diets,
we do not believe that they could have caused any effect on the differences of starch
digestibility in these groups.
65
Comparing experimental groups, there was positive correlation between faecal
moisture and faecal weight (r= 0·77; P<0·01), and they were higher in P-diet than in I-diet
groups (Table 5). We can observe that animals fed diets with low SF/TF (consequently higher
levels of insoluble fibre) produced faeces with higher levels of these two parameters.
Surprisingly, animals fed control diet (only insoluble fibre) showed the lowest levels for both
moisture and weight. Concerning faecal pH, experimental groups showed similar values,
despite the different SF/TF proportion in the diets. However, control animals showed higher
faecal pH, even when compared to P-diet with the lowest SF/TF proportion. Burrows et al.
(1982) showed that faecal weight and water content increased linearly, while digestibility of
dry matter decreased, when cellulose was added in dog´s diets. Unexpectedly, we did not find
any correlation between fibre digestibility and faecal moisture, faecal weight, or faecal pH.
On the other hand, we found a negative correlation between starch digestibility and faecal
moisture (r= -0·64, P<0·05), and between starch digestibility and faecal weight (r= -0·86,
P<0·05), but a positive correlation between starch digestibility and faecal pH (r= 0·51,
P<0·05). These data were important to explain why animals fed diets with high starch
digestibility (C-diet and I-diet) showed lower values for faecal moisture, and faecal weight,
but higher values for faecal pH. We assume that C-diet and I-diet groups, with a remarkable
difference in SF/TF proportion (0 and 0·25, respectively), and fibre digestibility (68 and 86%,
respectively), showed similar values for faecal weight because I-diet group produced faeces
with higher faecal moisture, compensating the weight of the insoluble fibre in faeces of C-diet
animals. Thus, we presume that in this study starch digestibility had more prominent influence
on faecal weight and moisture than even insoluble fibre fraction that has low digestibility.
We found a positive correlation between final animal body weight and liver weight of
animals (r= 0·76, P<0·05). So, liver/body weight ratio was used to compare the groups.
66
Groups fed experimental diets had liver/body weight ratio similar to control (Table 6).
Based on this data, we can say that all the animals showed a well distributed weight gain. To
evaluate fat retention, we measured epididymal fat weight. We also found a positive
correlation between final animal body weight and epididymal fat weight (r= 0·52, P<0·05). C-
diet animals showed the highest epididymal fat/body weight ratio (P<0·05; Table 6), and no
significant difference was observed in epididymal fat/body weight ratios among experimental
diets. However, we found a negative correlation between epididymal fat/body weight ratio
and fibre digestibility (r= -0·58; P<0·05). This indicates that the intake of bean-based diets
that had higher fibre digestibility was associated with a lower fat retention. As the weight gain
among all groups were similar, it is possible to presume that animals fed bean-based diets
increased their lean body mass instead of fat body mass. These data are supported by studies
that related type and fibre content to digestibility of nutrients. For example, Burrows et al.
(1982) showed that high cellulose level diets decrease digestibility of both dry matter (from
90 to 70%) and ash (from 43 to 32%). On the other hand, Larsen et al. (1994) showed that
high viscosity diets delayed passage rate and, consequently, increased the absorption of amino
acids in rats. Thus, as experimental diets had lower insoluble fibre level than control diet, it is
easy to understand that experimental animals would have greater digestibility of the nutrients,
mainly amino acids, showing a similar weight gain but lower fat retention with low
epididymal fat weight.
Experimental diets yielded lower total cholesterol levels compared to control (Table
6). Although no statistically significant difference was observed among experimental groups,
animals fed I-diet that had the highest SF/TF proportion, showed the lowest cholesterol levels
(P>0·05). In addition, I-diet and DN-diet yielded lower HDL cholesterol levels compared to
control, while P-diet showed intermediate values. Some authors have used the HDL/total
67
cholesterol ratio to express plasma lipid levels (Shutler et al., 1989). In our study this
parameter was slightly higher in experimental animals, but was not significantly different
among all groups.
Cholesterol and HDL levels were found to be positively correlated to epididymal
fat/body weight ratio (r=0·59 and 0·57; P<0·05). So, animals with higher fat retention had a
tendency to show upper blood lipid levels. In addition, total cholesterol level was negatively
correlated to fibre digestibility (r= -0·84; P<0·05) and positively correlated to faecal pH
(r=0·76; P<0·05). These data explain the findings that the animals fed I-diet, with high fibre
digestibility, showed lower cholesterol levels in comparison to C-diet (low fibre digestibility).
There was a reduction around 19·34 to 28·58% in serum cholesterol levels when we
compare any of experimental diets to C-diet. We can see that significant reduction in serum
cholesterol levels occurred when SF/TF proportion was equal to or higher than 0·11 (as in P-
diet). Although no statistically significant difference was observed among bean-diets, animals
fed I-diet (highest SF/TF proportion) had the lowest cholesterol level.
Although animals fed I-diet showed lower serum triglyceride values (around 10%)
than controls, this difference was not statistically significant (Table 6). So, animals fed bean-
based diets, even with high SF/TF proportion, did not show any important lowering effect on
serum triglycerides. Shutler et al. (1989) also found no changes in plasma triacylglycerol
levels of normocholesterolemic men after daily consumption of Phaseolus vulgaris, despite
significant reductions in total plasma cholesterol levels. There is evidence that, at least in
humans, the lipid-lowering effect of beans seems to be more remarkable on cholesterol
fraction. For example, Birketvedt et al. (2002) studied the effects of bean fibre on serum
lipids and fat excretion in faeces in overweight and obese volunteers. After a 3 months period,
the supplemented group, but not the placebo-group, showed reduction in serum cholesterol
68
and increased in fat excretion in faeces. However, triacylglycerol and HDL did not change
in either group. Hunninghake et al. (1994) showed that hypercholesterolemic subjects
receiving a dietary fibre supplementation of 10 g/d or 20 g/d showed significantly reduction in
total cholesterol and LDL/HDL ratio, but no reduction in serum HDL or triglycerides. In our
study, bean diet had lipid-lowering effect on both total cholesterol and HDL fraction. It is
known that around 50% of cholesterol in rats is transported as HDL (Olson & Schneeman,
1998; Simunek & Bartonova, 2005). In our animals, these levels ranged from 37·70 to
44·21%. Hence, it is understandable that a reduction in cholesterol levels would be
accompanied by a reduction in HDL values. This can be seen through HDL/total cholesterol
ratios which were not different among all groups. It shows that the percentage of total
cholesterol which was transported as HDL cholesterol did not change in any group. Thus,
both total cholesterol and HDL cholesterol levels were equally decreased by the diets.
Amígo et al. (1992) studied the effects of each constituent of beans on serum and
biliary lipids in rats. They found that both whole bean and bean starch-based diets had
lowering effects on serum cholesterol and triglyceride. Neither bean protein, bean lipid or
bean fibre alone had this effect. Thus, they presumed that the active component of beans was
linked to starch fraction and saponins. However, they could not discard a role of soluble
fibres, since this fraction was not evaluated. In our study all the experimental diets had the
same starch content. Moreover, the most significant changes in serum lipids have occurred
between Iraí and control group, which had no difference in their starch digestibility. In
addition, the percentage of bean starch in experimental diets ranged from 18 to 25·6%. P-diet
had 1·9% and 4·2% more bean starch than I-diet and DN-diet, respectively. However, P-diet
did not cause any lowering effect on cholesterol levels. Thus, in the present study bean starch
content seems not to be responsible for this lowering effect. Our results suggest that the lipid
69
lowering effect was linked to the soluble fraction of the bean fibre.
There was no difference in fasting levels of blood glucose among groups (Figure 1).
Compared to C-diet animals, blood glucose levels of DN-diet and P-diet were significantly
higher at 30 min, while glucose levels of I-diet and P-diet were significantly lower at 60 min.
The moment for the rise in blood glucose (glycaemia peak) occurred at 60 min for animals fed
C-diet, but at 30 min for those fed experimental bean diets.
Aller et al. (2004) compared the effect of a high soluble fibre content diet (82·2% of
total dietary fibre) against a control one (18·9% of total dietary fibre) in healthy humans. They
found 12·3% reduction on fasting glucose levels, but no significant changes on insulin levels.
In the present study, the experimental bean diets had no effect on fasting blood glucose,
despite the difference in SF/TF proportions. This could be related to the range of SF/TF ratio
evaluated that was much lower than that used by Aller et al. (2004).
Based only on blood glucose values, the SF effects on plasma glycaemia did not seem
to be of remarkable importance. However, an assessment of the areas under the glycaemic
curve provided noteworthy information. The total areas under the curve (AUC) for all
experimental bean diets were lower than for control group (P<0·05) (Table 7). When AUC
were calculated separately for each period of time, the I-diet showed more stable values
during the whole 90 minutes than the other two bean cultivars. Comparing P-diet (lowest
SF/TF) to I-diet (highest SF/TF), P-diet showed higher areas over the first 15 min and lower
areas during the 60-90 min interval. Based on this finding, animals fed I-diet kept
postprandial plasma glucose values more stable along the time. Dilawari et al. (1981)
compared the effects of different carbohydrate sources on plasma glucose. They found that
the postprandial rise in plasma glucose and AUC were lower when carbohydrates were taken
as beans (Phaseolus vulgaris) when compared to glucose. This can be explained because
70
pulses and legumes are rich sources of fibre in the form of galactomannans
(polysaccharides) which are not hydrolyzed by the digestive enzymes of man and are hence
called unabsorbable carbohydrate (Leeds et al. 1979). Moreover, galactomannans present in
pulses are more viscous than fibre present in others cereals and viscosity of the dietary fibre
has been shown to correlate positively with the reduction in postprandial plasma glucose
levels (Jenkins et al. 1978). Thus, besides the desirable effect of soluble fibre viscosity on
blood glucose, we observed that SF/TF ratio can also influence the variability in AUC values.
Animals from all groups had similar weight gain and final body weight. However,
control animals showed higher values for epididymal fat/body weight ratio than those fed
experimental bean diets. This may be related to the lower area under the curve (AUC) in
animals fed experimental bean diets when compared to controls. Pawlak et al. (2001)
observed that rats fed a high glycaemic index (GI) diet showed higher epididymal fat mass
than low GI group, despite comparable body weights. They also observed that high GI diet
resulted in higher insulin response, which may underlie the increased fat deposition. In
addition, we found a negative correlation between epididymal fat/body weight ratio and fibre
digestibility. Thus, diets with higher SF/TF reduced tendency to fat retention.
5. Conclusions
According to this study, even normolipidemic-normoglycaemic rats fed bean diets
with high soluble fibre to total fibre proportion (SF/TF: equal to or higher than 0·11) can have
lowering effects on serum cholesterol levels (22·3 to 33%), lower glycaemic responses
(glycaemix index), and lower fat retention. These results point out that consumption of bean
cultivars with high SF/TF would help people, not only during nutritional treatment, but as an
71
important tool against hypercholesterolemia, diabetes, and obesity. For this reason, food
composition tables should bring data concerning SF/TF proportion, because bean varieties
with higher soluble to insoluble fibre ratio could be preferred for nutritional and clinical
purposes.
Acknowledgements
Authors thank to Centro Nacional de Pesquisa de Arroz e Feijão – EMBRAPA (Santo
Antônio de Goiás, Goiás, Brazil) for donation of beans, to Doles Reagentes e Equipamentos
para Laboratórios Ltda (Goiânia, GO, Brazil) for donation of lipid assay kits and to
Novozymes Latin América Ltda. for donation of enzymes. T. Emanuelli is the recipient of a
CNPq research Fellowship (proc. 304257/2004-4). L.P. Silva is the recipient of
CAPES/PRODOC fellowship. R.G. Barbosa is the recipient of a PIBIC/CNPq-UFSM
Fellowship (2005-2006).
References
Aller R, de Luis DA, Izaola O, La Calle F, del Olmo L, Fernandez L, Arranz T & Hernandez
JM (2004) Effect of soluble fibre intake in lipid and glucose levels in healthy subjects: a
randomized clinical trial. Diabetes Res Clin Pract 65, 7-11.
Amígo L, Marzolo MP, Aguilera JM, Hohlberg A, Cortés M & Nervi F (1992) Influence of
different dietary constituents of beans (Phaseolus vulgaris) on serum and biliary lipids in
the rat. J Nutr Biochem 3, 486-490.
Anderson JW & Gustafson NJ (1988) Hypocholesterolemic effects of oat and bean products.
Am J Clin Nutr 48, 749-753.
AOAC (1995) Official methods of analysis of the association of the official analysis chemists
72
(16
th
ed.). Arlington, Virginia: Association of Official Analytical Chemists.
Birketvedt GS, Travis A, Langbakk B & Florholmen JR (2002) Dietary supplementation with
bean extract improves lipid profile in overweight and obese subjects. Nutrition 18, 729-733.
Bjorck I & Elmstahl HJ (2003) The glycaemic index: Importance of dietary fibre and other
food properties. Proc Nutr Soc 62, 201-206.
Burrows CF, Kronfeld DS, Banta Ca & Merritt AM (1982) Effects of fiber on digestibility
and transit time in dogs. J Nutr 112, 1726-1732.
Dabai FD, Walker AF, Sambrook IE, Welch VA, Owen RW & Abeyasekera S (1996) Effects
on blood lipids and faecal steroids of five legume species incorporated into a semi-purified,
hypercholesterolemic rat diet. Brit J Nutr 75, 557-571.
Dilawari JB, Kamath PS, Batta RP, Mukewar S & Raghavan S (1981) Reduction of
postprandial plasma glucose by Bengal gram dal (Cicer arietinum) and Rajmah (Phaseolus
vulgaris). Am J Clin Nutr 34, 2450-2453.
Fukushima M, Ohashi T, Kojima M, Ohba K, Shimizu H, Sonoyama K & Nakano M (2001)
Low density lipoprotein receptor mRNA in rat liver is affected by resistant starch of beans.
Lipids 36, 129-134.
Hunninghake DB, Miller VT, LaRosa JC, Kinosian B, Brown V, Howard WJ, DiSerio FJ &
O’Connor RR (1994) Hypocholesterolemic effects of a dietary fibre supplement. Am J Clin
Nutr 59, 1050-1054.
Jamroz D, Jakobsen K, Bach Knudsen KE, Wiliczkiewicz A & Orda J (2002) Digestibility
and energy value of non-starch polysaccharides in young chickens, ducks and geese, fed
diets containing high amount of barley. Comp Biochem Physiol A Mol Integr Physiol 131,
657-668.
Jenkins DJ, Wolever TM, Leeds AR et al. (1978) Dietary fibres, fibre analogues and glucose
73
tolerance: importance of viscosity. Br Med J 1, 1392-1394.
Kienzle E, Dobenecker B & Eber S (2001) Effect of cellulose on the digestibility of high
starch versus high fat diets in dogs. J Anim Physiol Anim Nutr 85, 174-185.
Larsen FM, Wilson MN & Moughan PJ (1994) Dietary fiber viscosity and amino acid
digestibility, proteolytic digestive enzyme activity and digestive organ weights in growing
rats. J Nutr 124, 833-841.
Leeds AR, Bolster NR & Truswell AS (1979) Meal viscosity, gastric emptying and glucose
absorption in the rat. Proc Nutr Soc 38,44A.
Messina MJ (1999) Legumes and soybeans: overview of their nutritional profiles and health
effects. Am J Clin Nutr 70, 439-450.
Olson B & Schneeman BO (1998) Alimentary lipemia is enhanced in fibre-fed rats. J Nutr
128, 1031-1036.
Panlasigui LN, Panlilio LM & Madrid JC (1995) Glycaemic response in normal subjects to
five different legumes commonly used in the Philippines. Int J Food Sci Nutr 46, 155-160.
Pari L & Venkateswaran S (2003) Effect of an aqueous extract of Phaseolus vulgaris on
plasma insulin and hepatic key enzymes of glucose metabolism in experimental diabetes.
Pharmazie 58, 916-919.
Pawlak DB, Bryson MJ, Denyer GS & Brand-Miller JC (2001) High glycemic index starch
promotes hypersecretion of insulin and higher body fat in rats without affecting insulin
sensitivity. J Nutr 131, 99-104.
Reeves PG, Nielsen HF & Fahey GC (1993) AIN-93 Purified diets for laboratory rodents:
final report of the American Institute of Nutrition ad hoc writing Committee on the
reformulation of the AIN-76 rodent diet. J Nutr 123, 1939-1951.
Robertson JA, Murison SD & Chesson A (1987) Estimation of the potential digestibility and
74
rate of degradation of water-insoluble dietary fiber in the pig cecum with a modified
nylon bag technique. J Nutr 117, 1402-1409.
Rosa COB, Costa NMB, Leal PFG & Oliveira TT (1998 a) The cholesterol-lowering effect of
black beans (Phaseolus vulgaris, L.) without hulls in hypercholesterolemic rats. Arch
Latinoam Nutr 48, 299-305.
Rosa COB, Costa NMB, Nunes RM & Leal PFG (1998 b) The cholesterol-lowering effect of
black , carioquinha and red beans (Phaseolus vulgaris, L.) in hypercholesterolemic rats.
Arch Latinoam Nutri 48, 306-310.
Shutler SM, Bircher GM, Tredger JA, Morgan LM, Walker AF & Low AG (1989) The effect
of daily baked bean (Phaseolus vulgaris) consumption on the plasma lipid levels of young,
normo-cholesterolemic men. Br J Nutr 61, 257-265.
Simunek J & Bartonova H (2005) Effect of dietary chitin and chitosan on cholesterolemia of
rats. Acta Vet Brno 74, 491-499.
Thorne MJ, Thompson LU & Jenkins DJA (1983) Factors affecting starch digestibility and
the glycaemic response with special reference to legumes. Am J Clin Nutr 38, 481-488.
Walter M (2005) Amido resistente: metodologias de quantificação e resposta biológica em
ratos. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos), Universidade
Federal de Santa Maria, Santa Maria, Brasil
75
Figure caption
Figure 1. Glycaemic curves according to diet type. C-diet: control diet; I-diet: Iraí diet; P-diet:
Pérola diet; DN-diet: Diamante Negro diet. * Significantly different from control at the same
time (P<0
.
05).
76
Fig. 1
0 153045607590
Time (minutes)
C-diet I-diet P-diet DN-diet
80
90
100
110
120
130
140
150
160
170
Blood glucose (mg/dl)
*
*
*
*
77
Table 1. Content of diets (g/100 g diet)
Diets
Nutrients
Control Pérola Diamante Negro Iraí
Bean flour 0 19·30 22·83 20·62
Fibre (cellulose) 5 0 0 0
Caseine 20 15·33 13·63 14·84
Corn starch 52·90 43·31 41·49 42·49
78
Table 2. Fibre content of diets (g/100 g diet)
Diets
Nutrients
Control Pérola Diamante Negro Iraí
Total fibre (TF) 5 5 5 5
Soluble fibre (SF) 0 0·55 0·97 1·28
Insoluble fibre 5 4·45 4·03 3·72
SF/TF proportion 0 0·11 0·19 0·25
79
Table 3. Effect of bean-containing diet on biological parameters of rats
Diets
Control Pérola Diamante Negro Iraí
Final body weight (g) 188·51±5·28 192·68±4·25 194·23±4·19 197·41±5·85
Feed intake (g/day) 16·72±0·17 17·34±0·27 16·21±0·35 16·48±0·31
Body weight gain (g) 117·02±3·24 121·90±3·92 115·03±3·58 127·78±3·33
Feed efficiency ratio (g/g) 0·310±0·002
bc
0·320±0·003
ab
0·300±0·003
c
0·330±0·005
a
Results are expressed as mean value±standard error of the mean (n=8).
Parameters were measured during growth period (26–44 days of age).
Values within the same horizontal row with no common superscript differ significantly (P < 0·05, Duncan’s test).
80
Table 4. Digestibility (g/100 g of dry weight) of dry matter, starch, and fibre of the diets
Diets
Digestibility (%)
Control Pérola Diamante Negro Iraí
Dry matter 92·84±0·08
a
90·47±0·35
b
90·29±0·17
b
92·58±0·16
a
Starch 94·24±0·14ª 92·30±0·44
b
91·93±0·48
b
94·61±0·32ª
Fibre 68·22±1·31
c
79·47±1·03
b
77·13±1·66
b
86·82±0·41
a
Results are expressed as mean value±standard error of the mean (n=8).
Values within the same horizontal row with no common superscript differ significantly (P < 0·05, Duncan’s test).
81
Table 5. Effect of diets on faecal parameters
Diets
Control Pérola Diamante Negro Iraí
Faecal weight (g/day) 1·11±0·04
b
1·69±0·08
a
1·62±0·03
a
1·22±0·05
b
Faecal pH 6·19±0·07ª 5·68±0·05
c
5·86±0·04
bc
5·93±0·06
b
Faecal moisture (g/100 g of fresh weight) 27·34±0·68
c
37·47±1·12ª 32·22±0·72
b
30·63±1·19
b
Results are expressed as mean value±standard error of the mean (n=8).
Values within the same horizontal row with no common superscript differ significantly (P < 0·05, Duncan’s test).
82
Table 6. Effect of diets on liver and epididymal fat weight and on serum lipids concentration
Diets
Control Pérola Diamante Negro Irai
Liver/body weight ratio (mg/g) 37·53±0·48
ab
37·03±0·42
b
37·11±0·31
b
38·95±0·70
a
Epididymal fat/body weight ratio (mg/g) 16·86±0·62
a
13·51±0·65
b
12·85±0·36
b
12·61±0·92
b
Total cholesterol (mg/dL)
115·43±4·18
a
92·82±3·11
b
93·11±3·45
b
82·44±3·98
b
HDL cholesterol (mg/dL)
50·93±2·96
a
43·99±2·59
ab
36·.61±2·52
bc
33·.67±2·33
c
HDL/total cholesterol ratio
37·70±0·67 42·95±1·11 44·21±2·03 39·35±3·64
Triglyceride (mg/dL)
87·72±1·95 97·18±6·06 82·46±3·20 78·21±6·76
Results are expressed as mean value±standard error of the mean (n=8).
Values within the same horizontal row with no common superscript differ significantly (P < 0·05, Duncan’s test).
83
Table 7. Area under the glycaemic curve (% of control value)
Interval of time (min)
Diet
0 – 15 15 - 30 30 - 45 45 - 60 60 - 90 0 - 90
Control 100
b
100 100 100
a
100
a
100
a
Pérola 104·75±1·61
a
104·79±2·43 102·74±1·76 90·16±2·11
b
87·26±1·86
c
95·75±0·44
b
Diamante Negro 100·45±0·83
b
103·65±0·80 99·56±2·08 94·29±1·86
b
89·40±1·44
bc
95·93±1·20
b
Iraí 98·66±1·55
b
98·51±1·70 100·99±1·98 95·24±1·20
ab
92·11±1·49
b
96·18±0·71
b
Results are expressed as mean value±standard error of the mean (n=8).
Values within the same column with no common superscript differ significantly (P < 0·05, Duncan’s test).
84
4 DISCUSSÃO
O feijão comum é um alimento amplamente consumido pelos povos ao redor do
mundo, principalmente por aqueles economicamente menos favorecidos. Apresenta
propriedades nutritivas e funcionais inquestionáveis, principalmente em função de seu perfil
bioquímico peculiar. No entanto, as cultivares plantadas nas mais variadas regiões do globo
apresentam diferenças significativas na sua composição, tanto de macro quanto de
micronutrientes e podem, com o passar dos anos, alterar seu perfil bioquímico e perder suas
características genéticas originais.
Em nosso estudo comparamos o perfil bioquímico de 16 diferentes cultivares de feijão
recomendadas para plantio no RS, e que foram colhidas em 2 anos consecutivos. Observamos
que as cultivares não mudaram significativamente suas composições químicas entre as safras,
exceto pela pequena variação nos teores de umidade, matéria seca e fibra total. A despeito do
aumento nos teores de fibra alimentar total (FT) na safra 2002/2003 ter sido significativo, os
teores de fibra alimentar insolúvel (FI) e de fibra alimentar solúvel (FS) não aumentaram
significativamente, demonstrando que este incremento foi realmente discreto e se diluiu
quando as frações foram analisadas separadamente. É sabido que os feijões podem variar a
sua composição química conforme o local de plantio (SAMMAN et al., 1999). No entanto,
não encontramos estudos que avaliassem as possíveis alterações no perfil de macro e
micronutrientes entre cultivares de feijão de uma mesma variedade genética, mas oriundos de
safras distintas. Nosso estudo demonstrou que feijões plantados em um mesmo local, sob as
mesmas condições de cultivo tendem a manter suas características ao longo de pelo menos 2
safras. Resultados semelhantes já haviam sido observados em cultivares de aveia, trigo e arroz
(SILVA, 2002; STORCK, SILVA, & FAGUNDES, 2005).
Entre as cultivares estudadas observamos uma grande variação nos teores de
macronutrientes, principalmente de fibra alimentar solúvel (106%) e amido resistente (100%),
seguidos por amido digestível (77%) e fibra alimentar insolúvel (70%). Já o teor de proteína
foi o parâmetro de menor variação (36%) entre as sementes. Baseado nisto podemos concluir
que as diferentes variedades genéticas de feijão estudadas mantiveram esta característica
peculiar do alto conteúdo protéico (21,24-29,06 g/100 g MS) e sem diferenças importantes
entre elas.
85
Utilizando análise de agrupamento para categorizar as cultivares com
características químicas semelhantes obtivemos 4 grupos distintos quanto ao perfil de
macronutrientes. As cultivares Guateian 6662 e Rio Tibagi compuseram o grupo com os
maiores teores de proteínas, de fibra solúvel e de amido disponível. Este perfil peculiar torna
estas cultivares mais adequadas às recomendações para prevenção e tratamento de doenças
como diabete, deslipidemias, obesidade e doenças cardiovasculares. Além disto, são úteis
como fonte alimentar para populações de risco nutricional. As cultivares Iraí, Minuano e TPS
Bonito compuseram o grupo que apresentou os maiores teores de fibra insolúvel e de amido
resistente. Porém, foram as com menor teor de proteínas. Assim, poderiam ser indicadas em
situações onde uma oferta maior de fibras insolúveis fosse necessária (ex.: constipação) ou
onde uma restrição protéica fosse indicada (ex.: insuficiência renal crônica).
Da mesma forma que para os macronutrientes, os minerais tamm foram agrupados
pela semelhança em seus teores. Obtivemos 4 grupos distintos. O grupo formado pelas
cultivares FTS Magnífico, FTS Soberano, Guateian 6662, Pérola, Rio Tibagi, TPS Bionobre e
TPS Nobre foi o que apresentou os maiores teores de todos os minerais avaliados. Novamente
as cultivares Guateian 6662 e Rio Tibagi estão presentes, reforçando o valor nutricional destas
variedades no contexto deste estudo.
Por outro lado, as cultivares Diamante Negro, Macanudo e Valente compuseram o
grupo com os menores valores para os macronutrientes, exceto pelo valor intermediário de
proteína; as cultivares Iapar 31, Iraí e Macanudo compuseram o grupo com os menores
valores para os micronutrientes. Assim, estas cultivares foram as de mais baixo valor
nutricional quanto aos macro e micronutrientes, respectivamente.
Este estudo demonstrou, ainda, uma correlação negativa entre o tamanho da semente e
o teor de proteína bruta (PB). Desta forma, sementes grandes, muitas vezes preferidas para o
consumo, são as de menor valor nutricional para este nutriente. LEMOS et al. (2004)
avaliaram as características agronômicas (produtividade de grãos, número de vagens/planta,
número de grãos/vagem e massa de 100 grãos) e tecnológicas (teor de proteína bruta, tempo
de cozimento, capacidade de hidratação e presença de grãos de casca dura que não hidratam)
de 29 genótipos de feijão. Observaram que genótipos com os maiores teores protéicos nem
sempre se sobressaíram nas outras características avaliadas, especialmente em relação à
produtividade. Já genótipos com as maiores produtividades apresentaram teores de PB abaixo
da média. Assim, concluíram que o teor de PB é inversamente proporcional à produtividade
86
de grãos. Desta forma, se o objetivo do melhoramento genético for apenas gerar cultivares
altamente produtivas ou cultivares mais atraentes ao consumidor (grãos grandes), o teor
protéico certamente declinará com o passar do tempo, com surgimento de cultivares de menor
valor nutricional.
Outra observação feita foi a não existência de correlação entre os teores de fibra bruta
(FB) e fibra alimentar (total, solúvel ou insolúvel). Assim, médicos e nutricionistas que
utilizam as informações contidas em rótulos de produtos ou em tabelas de composição
alimentar devem ficar atentos pois, algumas vezes, apenas os valores referentes à FB estão
explicitados. Como visto, estes valores não traduzem as reais quantidades de fibra dietética,
que detém importância funcional.
A literatura relata de forma contraditória algumas modificações na composição
química dos grãos de feijão cozidos após o armazenamento, tanto em relação aos teores de
amido disponível quanto de amido resistente (OSORIO-DIAZ et al., 2003; VARGAS-
TORRES et al., 2004; LANDA-HABANA et al., 2004). Decidimos, então, estudar os efeitos
do armazenamento (refrigeração a 4
o
C por 4 dias ou congelamento a -20
o
C por 28 dias) sobre
os teores de amido disponível (AD), amido resistente (AR), fibra total (FT), fibra insolúvel
(FI) e fibra solúvel (FS) nestas sementes. O tipo de armazenamento escolhido baseou-se nas
formas domésticas habitualmente utilizadas para conservar feijões após seu cozimento.
Nossos resultados demonstraram que os grãos cozidos e armazenados apresentaram redução
dos níveis do AD e elevação dos níveis de AR, tanto após refrigeração a 4
o
C por 4 dias
quanto após congelamento a -20
o
C por 28 dias. Estas alterações nos teores de AD e de AR
foram menos intensas após congelamento e foram influenciadas pelos teores de AR
encontrados nas sementes cruas, pois o congelamento só alterou o AD e o AR em feijões
cujos níveis de AR eram baixos antes do cozimento. Assim, em situações onde uma dieta com
baixo teor de AD e alto teor de AR estiver indicada, como no tratamento e controle do diabete
e da obesidade, feijões cozidos e refrigerados por apenas 4 dias podem ter um efeito
metabólico desejável.
Quanto às fibras, tanto a refrigeração quanto o congelamento pelos períodos estudados
não determinaram mudanças em relação aos níveis encontrados logo após o cozimento. Desta
forma grãos de feijão ao serem cozidos e refrigerados passam a apresentar uma redução nos
teores de AD e aumento nos teores de AR, sem alterar os teores de fibra. Assim, o perfil
87
nutricional destes grãos seria modificado, tornando-os mais adequados ao controle e
prevenção de doenças que cursam com alterações no metabolismo dos lipídeos e/ou da
glicose, bem como da obesidade.
A literatura pertinente enfoca, cada vez mais, as recomendações sobre o perfil da dieta
que a população humana deveria ingerir para recuperar ou manter sua saúde. O feijão, pela
sua composição química peculiar, enquadra-se nestas recomendações dietéticas. Além disto,
sua fração fibra solúvel possui propriedades redutoras dos lipídeos séricos (ANDERSON &
GUSTAFSON, 1988) e dos níveis glicêmicos (THORNE et al., 1983; BJORCK &
ELMSTAHL, 2003).
Desta forma, o consumo de feijões por pessoas com distúrbios do controle das
gorduras e/ou da glicose sanguíneas poderia auxiliá-las a manter seus níveis de lipídeos e
glicemia mais estáveis e próximos da normalidade. Assim, complicações inerentes às
deslipidemias e à hiperglicemia, bem como a evolução para situações mais críticas, poderiam
ser amenizadas. Mas será que este tipo de alimento também poderia influenciar de forma
benéfica os níveis de lipídeos e de glicose em pessoas saudáveis ou em risco de desenvolver
estes distúrbios metabólicos? Nosso estudo demonstrou que mesmo animais
normolipidêmicos, uma vez submetidos a dietas em que a fibra alimentar foi substituída por
feijões apresentaram valores mais baixos de colesterol total (19,3 a 28,6% menores) que
animais alimentados com a dieta padrão, sendo esta redução relacionada à porcentagem de
fibra solúvel do feijão. No entanto, para os triglicerídeos séricos, apesar de os valores
encontrados nos animais alimentados com as dietas Iraí e Diamante Negro serem 10,8 e 6%
menores que nos controles, respectivamente, esta redução não alcançou significância
estatística. A literatura relata que uma redução de 1% nos níveis de colesterol total reduzem
em 2% o risco de uma pessoa desenvolver doenças do coração (RIFKIND, 1984). Assim, por
dedução, os animais teriam de 38,6 a 57,2% menos risco de desenvolverem doença arterial
coronariana. No entanto, não há relatos da percentagem de redução necessária nos níveis de
triglicerídeos para que sejam observados efeitos benéficos sobre a saúde. Se as percentagens
forem semelhantes, estas taxas de redução detectadas pelo nosso estudo, apesar de modestas,
poderão ser de relevância clínica e nutricional.
ANDERSON & GUSTAFSON (1988) estudaram os efeitos de dietas contendo aveia
ou feijões, os quais são ricos em fibra solúvel, sobre os níveis de lipídeos em homens
hipercolesterolêmicos. Observaram redução nos níveis de colesterol total, LDL, triglicerídeos
88
e glicemia de jejum. Juntamente com outros dados de literatura concluíram que uma
ingestão diária de 100-200 g de feijões cozidos reduziria os níveis de colesterol séricos em
12% a curto prazo, mas de 20-25% a longo prazo. Isto levaria a uma redução estimada de 40-
50% nos riscos para doença arterial coronariana. No entanto, CHEN et al. (2006) avaliaram os
efeitos da fibra solúvel de aveia (8 g/dia) dada por um período de 3 meses a um grupo de
voluntários sadios e normocolesterolêmicos. Ao final do estudo não observaram redução
significativa nos níveis de colesterol total ou LDL no grupo estudado. HEIJNEN et al. (1996)
estudaram os efeitos do amido resistente (AR) sobre os níveis séricos de colesterol total,
colesterol HDL e LDL, e triglicerídeos em homens e mulheres sadios e normolipidêmicos.
Para isto utilizaram AR tipo 2 (amido de milho cru) e AR tipo 3 (amido de milho
retrogradado) sob a forma de suplementos diários de 30 g por 3 semanas. Concluíram que
nenhuma das formas de AR foi capaz de reduzir os lipídeos séricos em relação ao grupo
controle. Assim, pode-se sugerir que o teor de AR das dietas experimentais parece não ter
influenciado os nossos resultados. Além disso, observou-se uma correlação negativa entre a
digestibilidade da fibra e o teor de colesterol. Podemos concluir que feijões apresentam um
efeito redutor nos níveis de lipídeos séricos, principalmente do colesterol, mesmo em
situações de normolipidemia, e que este efeito está ligado a fração digerível da fibra.
A avaliação das respostas glicêmicas após a ingestão das dietas experimentais
demonstrou valores inferiores que os determinados pela dieta controle. DILAWARI et al.
(1981) avaliaram os efeitos de dietas contendo 50 g de carboidratos de diferentes fontes
(incluindo feijão) sobre os níveis de glicose sanguínea pós-prandiais. Compararam estes
valores com os de uma curva glicêmica após ingestão de dextrose. Para isto, 6 voluntários
sadios ingeriram as dietas experimentais em dias sucessivos e de forma randomizada. Em
relação à curva controle observaram que a dieta contendo feijão determinou pico glicêmico
mais tardio e de menor valor, e menor área sob a curva nos primeiros 60 minutos pós-
prandiais. Em nosso estudo, os valores de glicose sanguínea dos animais no período pós-
prandial apresentaram-se mais estáveis e com menores valores para as áreas sob a curva
(índice glicêmico-IG). Isto demonstra que mesmo ratos normoglicêmicos alimentados com
dietas contendo feijões com elevados teores de fibra solúvel podem apresentar uma melhor
regulação do metabolismo da glicose sanguínea, pois, devido ao baixo IG, estas dietas
possivelmente produzem menores picos de insulina.
89
OU et al.(2001) estudaram in vitro os mecanismos pelos quais a fibra dietética
reduz a glicemia pós-prandial. Concluíram que 3 são os mecanismos possíveis: as fibras
dietéticas aumentam a viscosidade do suco intestinal, reduzindo a difusão da glicose; ligam-se
à glicose reduzindo sua concentração e sua disponibilidade na luz do intestino; retardam a
ação da alfa-amilase devido ao encapsulamento do amido e da enzima, além de atuarem de
forma inibitória diretamente sobre a enzima. JENKINS et al. (1978) estudaram os efeitos de
diferentes tipos de fibra durante um teste de tolerância à glicose em 6 voluntários sadios.
Observaram que fibras dietéticas com viscosidade elevada são mais adequadas para uso
terapêutico em pacientes diabéticos por reduzirem os níveis glicêmicos pós-prandiais, sendo
esta redução diretamente proporcional à viscosidade da fibra. Assim, a ingestão de feijões
com altos teores de fibra solúvel teria um efeito regulador da glicemia pós-prandial nestas
situações clínicas.
PAWLAK, KUSHNER, & LUDWIG (2004) estudaram os efeitos em ratos de dietas
com diferentes índices glicêmicos (IG) devido ao tipo de carboidrato (HC) utilizado (HC de
alto IG; HC de baixo IG). Observaram que a dieta com alto IG causou maior acúmulo de
gordura, menor massa magra, maiores áreas sob a curva da glicemia e da insulina, e maiores
níveis de triglicerídeos plasmáticos. Concluíram que, como fator independente, o IG pode
causar obesidade e aumentar os riscos de diabete e doenças do coração em ratos. BRENNAN
(2005) também relatou conclusões semelhantes em seu estudo de revisão: dietas contendo
alimentos de elevado IG estão relacionadas com aumento de peso, obesidade e diabete,
provavelmente devido à alteração na expressão da enzima ligada à síntese de lipídeos,
modificação da resposta hormonal e estimulação da gliconeogênese. Em nosso estudo, através
da análise do ganho de peso dos animais e do peso do tecido adiposo epididimal, observamos
uma menor retenção de gordura corporal nos animais alimentados com dietas contendo feijão
em relação aos controles. Este dado nos leva a crer que, a despeito da não medição dos
valores de insulina pós-prandial, possivelmente estes eram inferiores nos ratos alimentados
com dietas contendo feijão que nos controles. Assim, devido à estreita relação entre IG, pico
de insulina e deposição de gordura, pacientes com obesidade ou em controle de peso
poderiam ser beneficiados da ingestão regular de feijões em sua dieta. Isto porque feijões,
além de possuírem teores elevados de fibra solúvel, também apresentam amido digestível
considerado de baixo IG que, segundo BRENNAN (2005), seria o fator primordial no impacto
glicêmico determinado por um alimento.
90
Sendo assim, o consumo de feijões com teores elevados de fibra solúvel dentro de
um plano alimentar poderia auxiliar no controle e prevenção de doenças metabólicas como o
diabete melito, as deslipidemias, a obesidade e as doenças cardiovasculares. Para isto, a busca
por cultivares que apresentem este perfil e que mantenham estes teores ao longo do tempo
deveria ser estimulada.
91
5 CONCLUSÕES
Quanto às características físico-químicas das sementes de feijão concluímos que:
1. A composição química das sementes variou significativamente de uma cultivar
para outra sendo possível categorizá-las em quatro diferentes grupos de acordo
com os macronutrientes (PB, FT, FI, FS, AD e AR) bem como pelos
micronutrientes (Fe, Zn, Mn, Cu, Ca, Mg e P); as cultivares Guateian 6662 e
Rio Tibagi apresentaram os melhores perfis de nutrientes, com altos teores de
PB, FS, AD, Fe e Zn.;
2. Exceto pelos níveis de massa seca, umidade e fibra dietética total, as
características físico-químicas das cultivares estudadas mantiveram-se estáveis
ao longo das duas safras;
3. A estocagem de feijões cozidos e armazenados sob refrigeração ou sob
congelamento não alterou os níveis de FT, FI ou FS, mas reduziu os teores de
AD e aumentou os teores de AR, principalmente em sementes cujos teores de
AR eram menores antes do cozimento.
Quanto aos efeitos das dietas experimentais em ratos normolipidêmicos e
normoglicêmicos concluímos que os animais alimentados com dietas contendo cultivares de
feijão apresentaram redução dos níveis séricos de colesterol total, menor índice glicêmico,
valores mais estáveis de glicemia pós-prandial e menor retenção de gordura corporal, sendo
que estes efeitos foram mais marcantes no grupo alimentado com a dieta Iraí (FS/FT: 0,26).
92
6 BIBLIOGRAFIA
ABD-EL-SAMEI, M. H.; LASZTITY, R. Comparative study on the aminoacids composition
in three local Phaseolus vulgaris seeds varieties. Z Lebensm Unters Forsch, v. 178, n. 1, p.
24-26, 1984.
ACEVEDO, E.; VELAZQUEZ-CORONADO, L.; BRESSANI, R. Changes in dietary fiber
content and its composition as affected by processing of black beans (Phaseolus vulgaris,
Tamazulapa variety). Plant Foods Hum Nutr, v. 46, n. 2, p. 139-145, 1994.
ALLER, R. et al. Effect of soluble fibre intake in lipid and glucose levels in healthy subjects:
a randomized clinical trial. Diabetes Res Clin Pract, v. 65, p. 7-11, 2004.
ALMEIDA, T. C; CANÉCHIO FILHO, V. Principais Culturas vol. II. 2
nd
ed. Instituto
Campineiro de Ensino Agrícola, Campinas, 1987.
AMÍGO, L. et al. Influence of different dietary constituents of beans (Phaseolus vulgaris) on
serum and biliary lipids in the rat. J Nutr Biochem, v. 3, p. 486-490, 1992.
ANDERSON, J. W. et al. Hypocholesterolemic effects of oat-bran or bean intake for
hypercholesterolemic men. Am J Clin Nutr, v. 40, p. 1146-1155, 1984.
ANDERSON, J. W.; GUSTAFSON, N. J. Hypocholesterolemic effects of oat and bean
products. Am J Clin Nutr, v. 48, p. 749-753, 1988.
ANTUNES, P. L. et al. Valor nutricional de feijão (Phaseolus vulgaris L.), cultivares Rico 23,
Carioca, Piratã-1 e Rosinha-G2. Rev Bras de Agrociência, v. 1, p. 12-18, 1995.
BAZZANO, L. A. et al. Legume consumption and risk of coronary heart disease in US men
and women. Arch Intern Med, v. 161, p. 2573-2578, 2001.
BJORCK, I.; ELMSTAHL, H. J. The glycaemic index: Importance of dietary fibre and other
food properties. Proc Nutr Soc, v. 62, p. 201-206, 2003.
BRASIL. Portaria n. 36 de 15 de julho de 2002. MAPA. Diário Oficial da República
Federativa do Brasil, Brasília, 16 de julho de 2002 a.
BRASIL. Portaria n. 124 de 11 de novembro de 2002. MAPA. Diário Oficial da República
Federativa do Brasil, Brasília, 18 de novembro de 2002 b.
BRENNAN, C. S. Dietary fibre, glycaemic response, and diabetes. Mol Nutr Food Res, v.
49, p. 560-570, 2005.
93
CASTELLÓN, R. E. R. et al. Composição elementar e caracterização da fração lipídica de
seis cultivares de caupi. R Bras Eng Agric Ambiental, v. 7, n. 1, p.149-153, 2003.
CHEN, J. et al. A randomized controlled trial of dietary fiber intake on serum lipids. Eur J
Clin Nutr, v. 60, n. 1, p. 62-68, 2006.
CORREA, P. Epidemiological correlations between diet and cancer frequency. Cancer Res,
v. 41, p. 3685-3689, 1981.
DABAI, F. D. et al. Effects on blood lipids and faecal steroids of five legume species
incorporated into a semi-purified, hypercholesterolemic rat diet. Brit J Nutr, v. 75, p. 557-
571, 1996.
DILAWARI, J. B. et al. Reduction of postprandial plasma glucose by Bengal gram dal (Cicer
arietinum) and Rajmah (Phaseolus vulgaris). Am J Clin Nutr, v. 34, p. 2450-2453, 1981.
EMBRAPAARROZ e FEIJÃO. Acesso em 20 ago. 2004. Disponível em:
<http://www.cnpaf.embrapa.br/feijao/historia.htm/>.
ESTEVEZ, A. M. et al. Effect of processing on some chemical and nutritional characteristics
of pre-cooked and dehydrated legumes. Plant Foods Hum Nutr, v. 41, n. 3, p. 193-201,
1991.
FOSTER-POWELL, K.; MILLER, J. B. International tables of glycemic index. Am J Clin
Nutr, v. 62, p. 871-890, 1995.
FUKUSHIMA, M. et al. Low density lipoprotein receptor mRNA in rat liver is affected by
resistant starch of beans. Lipids, v. 36, p. 129-134, 2001.
GIOVANNUCCI, E. L. et al. Insulin and colon-cancer. Canc Causes Contr, v. 6, p. 164-179,
1995.
HAN, K. H. et al. Resitant starches of beans reduce the serum cholesterol concentrations in
rats. J Nutr Sci Vitaminol, v. 49, n. 4, p. 281-286, 2003.
HANGEN, L. A.; ENNINK, M. R. Consumption of black beans and navy beans (Phaseolus
vulgaris) reduced azoxymethane-induced colon cancer in rats. Nutr Cancer, v. 44, p. 60-65,
2003.
HARO, M. I. et al. Chemical composition, dietary fiber and mineral content of frequently
consumed foods in northwest Mexico. Arch Latinoam Nutr, v. 45, n. 2, p. 145-150, 1995.
HEIJNEN, M. L. et al. Neither raw nor retrograded resistant starch lowers fasting serum
cholesterol concentrations in healthy normolipidemic subjects. Am J Clin Nutr, v. 64, n. 3, p.
312-318, 1996.
94
HERNANDEZ-UNZON, H. Y.; ORTEGA-DELGADO, M. L. Phytic acid in stored
common bean seeds (Phaseolus vulgaris). Plant Foods Hum Nutr, v. 39, n. 3, p. 209-221,
1989.
HUGHES, J. S.; GANTHAVORN, C.; WILSON-SANDERS, S. Dry beans inhibit
azoxymethane-induced colon carcinogenesis in F344 rats. J Nutr, v. 127, p. 2328-2333, 1997.
HUGHES, J. S.; SWANSON, B. G. Soluble and insoluble dietary fiber in cooked common
bean (Phaseolus vulgaris L.) seeds. Food Microstruct, v. 8, p. 15-21, 1989.
JENKINS, D. J. et al. Dietary fibres, fibre analogues and glucose tolerance: importance of
viscosity. Br Med J, v. 1, p. 1392-1394, 1978.
KUTOS, T. et al. Dietary fiber content of dry and processed beans. Food Chem, v. 80, p.
231-235, 2003.
LANDA-HABANA, L. et al. Effect of cooking procedures and storage on starch
bioavailability in common beans (Phaseolus vulgaris L.). Plant Foods Hum Nutr, v. 59, p.
133-136, 2004.
LEMOS, L. B. et al. Características agronômicas e tecnológicas de genótipos de feijão do
grupo comercial Carioca. Pesq Agropec Bras, v. 39, p. 319-326, 2004.
LUDWIG, D. D. S. The glycemic index – Physiological mechanisms relating to obesity,
diadetes, and cardiovascular diease. J Am Med Assoc, v. 287, p. 2414-2423, 2002.
MARCONI, E. et al. Physicochemical, nutritional and microstructural characteristics of
chickpeas (Cicer arietinum L.) and common beans (Phaseolus vulgaris L.) following
microwave cooking. J Agric Food Chem, v. 48, n. 12, p. 5986-5994, 2000.
MARTIN-CABREJAS, M. A. et al. Modifications to physicochemical and nutritional
properties of hard-to-cook beans (Phaseolus vulgaris L.) by extrusion cooking. J Agric Food
Chem, v. 47, n. 3, p. 1174-1182, 1999.
MCKEOWN-EYSSEN, G. Epidemiology of colorectal-cancer revisited are serum
triglycerides and/or plasma-glucose associated with risk. Cancer Epidemiol Biomarkers
Prev, v. 3, p. 687-695, 1994.
MESSINA, M. J. Legumes and soybeans: overview of their nutritional profiles and health
effects. Am J Clin Nutr, v. 70, n. 3, p. 439-450, 1999.
95
OSORIO-DIAZ, P. et al. Effect of processing and storage time on in vitro digestibility and
resistant starch content of two bean (Phaseolus vulgaris L.) varieties. J Sci Food Agric, v. 83,
p. 1283-1288, 2003.
OU, S. et al. In vitro study of possible role of dietary fiber in lowering postprandial serum
glucose. J Agric Food Chem, v. 49, n. 2, p. 1026-1029, 2001.
PARI, L.; VENKATESWARAN, S. Effect of an aqueous extract of Phaseolus vulgaris on
plasma insulin and hepatic key enzymes of glucose metabolism in experimental diabetes.
Pharmazie, v. 58, p. 916-919, 2003.
PAWLAK, D. B.; KUSHNER, J. A.; LUDWIG, D. S. Effects of dietary glycaemic index on
adiposity, glucose homeostaseis, and plasma lipids in animals. Lancet, v. 3, p. 778-785, 2004.
RIFKIND, B. M. The Lipid Research Clinics coronary primary prevention trial results.2. The
relationship of reduction in incidence of coronary heart-disease to cholesterol lowering. J Am
Med Assoc, v. 251, p. 365-374, 1984.
ROSA, C. O. B. et al. The cholesterol-lowering effect of black beans (Phaseolus vulgaris, L.)
without hulls in hypercholesterolemic rats. Arch Latinoam Nutr, v. 48, p. 299-305, 1998 a.
ROSA, C. O. B. et al. The cholesterol-lowering effect of black , carioquinha and red beans
(Phaseolus vulgaris, L.) in hypercholesterolemic rats. Arch Latinoam Nutr, v. 48, p. 306-
310, 1998 b.
SAMMAN, N. et al. Composition of different bean varieties (Phaseolus vulgaris) of
northwestern Argentina (region NOA): cultivation zone influence. J Agric Food Chem, v.
47, n. 7, p. 2685-2689, 1999.
SANDHU, M. S.; DUNGER, D. B.; GIOVANNUCCI, E. L. Insulin, insulin-like growth
factor-I (IGF-I), IGF-I binding proteins, their biologic interactions, and colorectal cancer. J
Nat Cancer Inst, v. 94, p. 972-980, 2002.
SAURA-CALIXTO, F. et al. Formation of resistant starch in deproteinized and non-
deproteinized beans. Eur J Clin Nutr, v. 46, p. 109-111, 1992.
SHIMELIS, E. A.; RAKSHIT, S. K. Proximate composition and physico-chemical properties
of improved dry bean (Phaseolus vulgaris L.) varieties grown in Ethiopia. Lebensm Wiss
Technol, v. 38, p. 331-338, 2005.
SILVA, L. P. da. Composição Química de Trigo e de Aveia e Efeito dos Teores e
Proporções de Fibra Alimentar sobre a Resposta Biológica de Frangos de Corte e Ratos.
2002. Tese (Doutorado em Zootecnia) - Faculdade de Agronomia, Universidade Federal do
Rio Grande do Sul, Porto Alegre, 2002.
96
SING, P. N.; FRASER, G. B. Dietary risk factors for colon cancer in low-risk population.
Am J Epidemiol, v. 148, p. 761-774, 1998.
SOTELO, A.; SOUZA, H.; SANCHEZ, M. Comparative study of the chemical composition
of wild and cultivated beans (Phaseolus vulgaris). Plant Foods Hum Nutr, v. 47, n. 2, p. 93-
100, 1995.
STORCK, C. R.; SILVA, L. P. da; FAGUNDES, C. A. A. Categorizing rice cultivars based
on differences in chemical composition. J Food Compos Anal, v. 18, p. 333-341, 2005.
THORNE, M. J.; THOMPSON, L. U.; JENKINS, D. J. A. Factors affecting starch
digestibility and the glycaemic response with special reference to legumes. Am J Clin Nutr,
v. 38, p. 481-488, 1983.
VARGAS-TORRES, A. et al. Starch digestibility of five cooked black bean (Phaseolus
vulgaris L.) varieties. J Food Compos Anal, v. 17, p. 605-612, 2004.
VASQUEZ-CARRILLO, G.; CARDENAS-RAMOS, F. Physical, technological and protein
characteristics of wild and cultivated beans (Phaseolus vulgaris L). Arch Latinoam Nutr, v.
42, n. 2, p. 201-209, 1992.
VIEIRA, C. O Feijoeiro-Comum: Cultura, Doenças e Melhoramento. Editora UFV-
Universidade Federal de Viçosa, Viçosa, MG, 1967.
VIEIRA, R. F.; VIEIRA, C.; VIEIRA, R. F. Leguminosas graníferas. Editora UFV-
Universidade Federal de Viçosa, Viçosa, MG, 2001.
YANEZ, E. et al. Nutritive value evaluated on rats of new cultivars of common beans
(Phaseolus vulgaris) released in Chile. Plant Foods Hum Nutr, v. 47, n. 4, p. 301-307, 1995.
YOKOYAMA, L. P. Tendências de mercado e alternativas de comercialização de feijão.
Embrapa arroz e feijão - comunicado técnico no. 43, 2002.
97
7 ANEXOS
ANEXO 1 - Roteiro para autores
Guia para redação e edição de manuscrito científico a ser submetido à revista
LWT- FOOD SCIENCE AND TECHNOLOGY
Guide for Authors
LWT - Food Science and Technology is an international journal that publishes innovative
papers in the fields of food chemistry, biochemistry, microbiology, technology and nutrition.
The work described should be innovative either in the approach or in the methods used. The
significance of the results either for the science community or for the food industry must also
be specified. Contributions that do not fulfil these requirements will not be considered for
review and publication. Submission of a paper will be held to imply that it presents original
research, that it has not been published previously, and that it is not under consideration for
publication elsewhere.
SUBMISSION OF MANUSCRIPTS
As of 1 June 2006, submission for all types of manuscripts to LWT - Food Science and
Technology will proceed totally online. Via the Elsevier Editorial System (EES) website for
this journal, http://ees.elsevier.com/lwt, you will be guided step-by-step through the
creation and uploading of the various files. The system automatically converts source files to
a single Adobe Acrobat PDF version of the article, which is used in the peer-review process.
Please note that even though manuscript source files are converted to PDF at submission for
the review process, these source files are needed for further processing after acceptance. All
correspondence, including notification of the Editor's decision and requests for revision, takes
place by e-mail generated by EES and via the Author's homepage, removing the need for a
hard-copy paper trail. Authors must submit revisions via EES. Authors may send queries
concerning the submission process, manuscript status, or journal procedures to
Books for review should be sent to the Editors; all other correspondence should be sent
directly to the publishers.
Four types of peer-reviewed papers will be published:
Short Reviews. These should present a focused aspect on a topic of current interest or an
emerging field. They are not intended as comprehensive literature surveys covering all aspects
of the topic. They should aim to give balanced, objective assessments by giving due reference
to relevant published work, and not merely present the prejudices of individual authors or
summarise only work carried out by the authors or by those with whom the authors agree.
Undue speculation should also be avoided. These short reviews will receive priority in
publication.
98
Reviews. Concise reviews of a scientific or applied field should include all major findings
and bring together reports from a number of sources.
Research Papers. Reports of complete, scientifically sound, original research which
contributes new knowledge to its field. The paper must be organised as described below.
Research Notes. Brief reports of scientifically sound, original research of limited scope of
new findings. Research Notes have the formal organisation of a full paper. Such notes will
receive priority of publication.
LWT - Food Science and Technology is an international journal that publishes innovative
papers in the fields of food chemistry, biochemistry, microbiology, technology and nutrition.
The work described should be innovative either in the approach or in the methods used. The
significance of the results either for the science community or for the food industry must also
be specified. Contributions that do not fulfil these requirements will not be considered for
review and publication. Submission of a paper will be held to imply that it presents original
research, that it has not been published previously, and that it is not under consideration for
publication elsewhere.
Peer Reviews It is the journal policy to keep the peer reviewing anonymous. Names of
reviewers are only revealed if they are in agreement with the request of the author. When
submitting a manuscript, authors may indicate names of experts who are not
suitable/appropriate for reviewing the paper.
Language Manuscripts should be written in English. Authors whose mother tongue is not
English are strongly advised to have their manuscripts checked by someone familiar with
English scientific writing. The Editors reserve the right to make any necessary linguistic
alterations without consulting the authors.
Preparation of Manuscripts Authors should aim at producing 6 printed A4 pages (research
papers) or 3 printed pages (research notes), which corresponds to approximately 18 and 9
pages of double-spaced type, respectively. All papers should follow the new style for LWT.
Please see Volume 36 issue 1 onward. Manuscripts should be double-spaced throughout, with
a left-hand margin of not less than 4 cm. On the first page, immediately below the title, give
authors' names, affiliations and business addresses. Number the lines of each page. If your
manuscript cites submitted but unpublished papers, send one copy of each of these papers
with your manuscript.
The SI system (Systeme International d'Unites, often referred to as 'International Units') must
be used for reporting units of measurement. Do not use %, ppm, M, N, etc. as units for
concentrations. If analytical data are reported, replicate analyses must have been carried out
and the number of replications must be stated.
Standard error or other evidence of reliability of data must be given.
Editorial Style Title. The title of the papers should be short but informative.
Abstract. Each article should include an abstract, not exceeding 200 words.
Introduction. In the Introduction, briefly review important prior publications and state the
99
reasons for the investigation being reported.
Methods. Results. Discussion. Following the Introduction, authors are free to structure papers
as appropriate. However, for the sake of clarity and uniformity, the above or similar section
headings are recommended. If necessary, each section may be divided into further
subsections, but do not use more than two levels for subtitles.
The Materials and Methods section must provide enough detail that a competent worker can
repeat the experiments. However, detailed descriptions of well-known methods should be
avoided in the experimental section. References to the relevant literature are sufficient. The
Discussion should not be a compilation of current literature, but a consideration of the
significance and consequences of the authors' present findings.
References: All publications cited in the text should be presented in a list of references
following the text of the manuscript. In the text refer to the author's name (without initials)
and year of publication (e.g. "Steventon, Donald and Gladden (1994) studied the effects..." or
"...similar to values reported by others (Anderson, Douglas, Morrison & Weiping, 1990)...").
For 2-6 authors all authors are to be listed at first citation. At subsequent citations use first
author et al.. When there are more than 6 authors, first author et al. should be used throughout
the text. The list of references should be arranged alphabetically by authors' names and should
be as full as possible, listing all authors, the full title of articles and journals, publisher and
year. The manuscript should be carefully checked to ensure that the spelling of authors' names
and dates are exactly the same in the text as in the reference list. References should be given
in the following form:
Watt, D. K., Brasch, D. J., Larsen, D. S., & Melton, L. D. (1999). Isolation, characterisation,
and NMR study of xyloglucan from enzymatically depectinised and non-depectinised apple
pomace. Carbohydrate Polymers, 39(2), 165-180.
Closs, C. B., Roberts, I. D., Conde-Petit, B., & Eschler, F. (1997). Phase separation and
rheology of aqueous amylopectin/ galactomannan systems. In E. J. Windhab, & B. Wolf.
Proceedings of the 1st international symposium on food rheology and structure (pp. 233-237).
Hannover: Vincentz Verlag.
Stephen, A. M. (1995). Food polysaccharides and their applications. New York: Marcel
Dekker. Wurzburg, O. B. (1986). Cross-linked starches. In O. B. Wurzburg, Modified
starches: properties and uses (pp. 41). Boca Raton, FL: CRC Press.
Tables
Tables should be numbered and headed by a short but informative title. The experimental
conditions, as far as they are necessary for understanding, should be given. Use no vertical
and few horizontal lines. Probabilities may be indicated by *P < 0.05, **P <0.01 and ***P
<0.001. Tables should be submitted on separate sheets.
Figures and Illustrations
Figures must be provided on separate sheets. Do not repeat material already included in
tables. Figures should be comprehensible without reference to the text. All drawings and
graphs should not exceed 20 x 20.5 cm in size. All illustrations should be consecutively
numbered. Keys to graphs etc., should not appear on the figure, but only in the figure legend.
Legends should consist of a short title followed by a brief description of experimental
100
conditions and, where necessary, a key. Where it is necessary to use photographs, these
should again be clearly labelled and numbered. Authors are strongly advised to consult
Elsevier's artwork instructions before uploading any graphics files for electronic submission.
These are available at http://authors.elsevier.com/artwork.
Colour Illustrations
If, together with your accepted article, you submit usable colour figures then Elsevier will
ensure, at no additional charge, that these figures will appear in colour on the web (e.g.,
ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced
in colour in the printed version. For colour reproduction in print, you will receive information
regarding the costs from Elsevier after receipt of your accepted article. For further
information on the preparation of electronic artwork, please see
http://authors.elsevier.com/artwork. Please note: Because of technical complications which
can arise by converting colour figures to ?grey scale? (for the printed version should you not
opt for colour in print) please submit in addition usable black and white prints corresponding
to all the colour illustrations.
Key Words
Four to five pertinent key words should be provided. If possible the Food Science and
Technology Abstracts (FSTA) Thesaurus should be used (IFIS Publ., Shinfield, Reading RG2
9BB, UK http://www.foodScienceCentral.com).
Proofs
When your manuscript is received at the Publisher it is considered to be in its final form.
Proofs are not to be regarded as 'drafts'. One set of page proofs in PDF format will be sent by
e-mail to the corresponding author, to be checked for typesetting/editing. No changes in, or
additions to, the accepted (and subsequently edited) manuscript will be allowed at this stage.
Proofreading is solely your responsibility. A form with queries from the copy editor may
accompany your proofs. Please answer all queries and make any corrections or additions
required. The Publisher reserves the right to proceed with publication if corrections are not
communicated. Return corrections within two working days of receipt of the proofs. Should
there be no corrections, please confirm this. Elsevier will do everything possible to get your
article corrected and published as quickly and accurately as possible. In order to do this we
need your help. When you receive the (PDF) proof of your article for correction, it is
important to ensure that all of your corrections are sent back to us in one communication.
Subsequent corrections will not be possible, so please ensure your first sending is complete.
Note that this does not mean you have any less time to make your corrections, just that only
one set of corrections will be accepted.
Offprints
Twenty-five offprints will be supplied free of charge. If colour has been paid for within the
article, 100 extra offprints will be supplied free of charge. Additional offprints and copies of
the issue can be ordered at a specially reduced rate using the order form sent to the
corresponding author after the manuscript has been accepted. Orders for reprints (produced
after publication of an article) will incur a 50% surcharge.
Copyright
Upon acceptance of an article, authors will be asked to transfer copyright (for more
information on copyright see
http://authors.elsevier.com). This transfer will ensure the
widest possible dissemination of information. A letter will be sent to the corresponding author
101
confirming receipt of the manuscript. A form facilitating transfer of copyright will be
provided. If excerpts from other copyrighted works are included, the author(s) must obtain
written permission from the copyright owners and credit the source(s) in the article. Elsevier
has preprinted forms for use by authors in these cases: contact Elsevier Ltd., Global Rights
Department, The Boulevard, Langford Lane, Oxford, OX5 1GB, UK; phone: (+44) 1865
843830, fax: (+44) 1865 853333, e-mail: [email protected]
Author Enquiries
Authors can keep a track on the progress of their accepted article, and set up e-mail alerts
informing them of changes to their manuscript's status, by using the "Track a Paper" feature
of Elsevier's Author Gateway. Other questions or queries will also be dealt with via the
website http://authors.elsevier.com. Contact details for questions arising after acceptance of
an article, especially those related to proofs, are provided when an article is accepted for
publication.
102
ANEXO 2 - Roteiro para autores
Guia para redação e edição de manuscrito científico a ser submetido à revista
British Journal of Nutrition
The British Journal of Nutrition is an international peer-reviewed journal which publishes
original papers, review articles (including those critically re-examining published information
and the conclusions drawn from it), technical notes and short communications in all branches
of nutritional science. Short communications will be expedited through the review process.
The underlying aim of all work should be, as far as possible, to develop nutritional concepts.
Prospective authors should note that they (or their institutions) now retain the copyright
of their material published in the British Journal of Nutrition. As a contributor you are
asked to follow the guidelines set out below. Prospective authors may also contact the
Editorial Office directly on + 44 (0)207 371 6225 (telephone), +44 (0)207 602 1756 (fax), or
Papers submitted for publication should be written in English and be as concise as possible.
The BJN now operates an on-line submission and reviewing system (eJournalPress).
Authors should submit to the following address: http://bjn.msubmit.net/. Receipt of
papers will be acknowledged immediately.
Papers should be accompanied by a statement signed by each author (or by the submitting
author on behalf of the others) to the effect that the conditions laid down in the Directions to
Contributors are accepted. The statement should affirm that the submission represents original
work that has not been published previously and which is not currently being considered by
another journal, and that if accepted for the British Journal of Nutrition it will not be
published elsewhere in the same form, in English or in any other language, without the written
consent of the Editor-in-Chief. It should also confirm that each author has seen and approved
the contents of the submitted manuscript. The submission letter should be accompanied by
a completed copy of the ‘Licence to Publish’ (in lieu of copyright transfer) as
reproduced in the January 2004 issue (vol. 91, no 1) of the British Journal of Nutrition or
on the Nutrition Society’s web pages (http://www.nutritionsociety.org); the Society no
longer requires copyright of the material published in the journal, only a ‘Licence to Publish’,
the authors or their institution retaining the copyright.
When substantial revisions are required to manuscripts, authors are given the opportunity
to do this once only, the need for any further changes should at most reflect only minor issues.
Should there be a change in the authorship then a new Licence to Publish should be submitted
to reflect that change.
Authors' names should be given without titles or degrees and one forename may be given
in full. The name and address of the institution where the work was performed should be
given. Any necessary descriptive material about the author, e.g. Beit Memorial Fellow, should
appear at the end of the paper in the acknowledgments section.
Manuscripts should bear the name and address, together with telephone and fax numbers
and email address, of the person to whom correspondence is to be sent and should also give a
shortened version of the paper's title, not exceeding forty-five letters and spaces in length,
suitable for a running title in the published pages of the work.
If a paper requiring revision is not resubmitted within 3 months, it may, on resubmission,
be deemed a new paper and the date of receipt altered accordingly.
Short Communications. Papers submitted as Short Communications should consist of an
Abstract (250 words maximum), and no more than 3000 words of text (including references).
103
Each Short Communication can include up to two Tables or one Table and one Figure, but
these will be at the expense of text (one half-page Table or Figure is equivalent to about 500
words in two columns or 250 words in one column).
Nutrition Discussion Forum. Letters are invited which discuss, criticize or develop themes
put forward in papers published in the Journal, or which deal with matters relevant to it. They
should not, however, be used as a means of publishing new work.
Acceptance will be at the discretion of the Editorial Board, and editorial changes may be
required. Wherever possible, letters from responding authors will be included in the same
issue.
Form of Papers Submitted for Publication. The onus of preparing a paper in a form
suitable for sending to press lies with the author. Authors are advised to consult a current
issue in order to make themselves familiar with the practice of the British Journal of Nutrition
as to typographical and other conventions, layout of tables and so on. Papers will not be
accepted as part of a numbered series; instead there should be a short common title separated
by a colon from a subtitle more specific to the paper. Sufficient information should be given
to permit repetition of the published work by any competent reader of the Journal. Authors
are invited to nominate up to four potential referees who may then be asked by the Editorial
Board to help review the work.
Papers should be in double-spaced typescript on paper with wide margins (2 cm or more).
At the ends of lines, words should not be hyphenated unless hyphens are to be printed. A
space of 50mm should be left at the top of the first sheet. Line-numbered paper is encouraged.
Spelling should generally be that of the Concise Oxford Dictionary (1995), 9th ed. Oxford:
Clarendon Press. Paper should normally be divided into the following parts:
(a) Abstract: each paper must open with an abstract of not more than 250 words. The
abstract should be a single paragraph of continuous text outlining the aims of the work, the
experimental approach taken, the principal results, and the conclusions and their relevance to
nutritional science.
(b) Introduction: it is not necessary to introduce a paper with a full account of the
relevant literature, but the introduction paragraph should indicate briefly the nature of the
question asked and the reasons for asking it.
(c) Experimental methods adopted: methods should appear after the introduction.
(d) Results: these should be given as concisely as possible, using figures or tables as
appropriate.
(e) Discussion: while it is generally desirable that the presentation of the results and
the discussion of their significance should be presented separately, there may be occasions
when combining these sections may be beneficial. Authors may also find that additional or
alternative sections such as 'conclusions' may be useful.
(f) Acknowledgments: these should be given in a single paragraph after the discussion
and be as brief as possible.
(g) References: these should be given in the text thus: Sebrell & Harris (1967) showed
that ..., or ... has been shown (Wallace & West, 1982); where a paper to be cited has more
than two authors, citations should appear thus: (Peto et al. 1981). Where more than one paper
has appeared in one year for which the first name in a group of three or more authors is the
same, the reference should be given as follows: Adams et al. (1962a,b,c) ..., or ... (Adams et
al. 1962a,b,c). In the text, references grouped together should be given in chronological order
thus: ... (Wallace & West, 1982; Lau, 1988). At the end of the paper, on a page(s) separate
from the text, references should be listed in alphabetical order according to the name of the
first author of the publication quoted and should include the author's initials and the title of
104
the paper. When an article has more than ten authors only the names of the first three
authors should be given followed by et al. Names and initials of authors of unpublished work
should be given in the text and not included in the References. Titles of journals should
appear in their abbreviated form using the NICB LinkOut page
http://www.ncbi.nlm.nih.gov/entrez/journals/loftext_noprov.html). References to books
and monographs should include the Publisher's name, the town of publication and the number
of the edition to which reference is made. Thus:
Ablett JG & McCance RA (1971) Energy expenditure of children with kwashiorkor. Lancet ii,
517–519.
Adams RL, Andrews FN, Gardiner EE, Fontaine WE & Carrick CW (1962a) The effects of
environmental temperature on the growth and nutritional requirements of the chick.
Poultry Sci 41, 588–594.
Adams RL, Andrews FN, Rogler JC & Carrick CW (1962b) The protein requirement of 4-
week-old chicks as affected by temperature. J Nutr 77, 121–126.
Adams RL, Andrews FN, Rogler JC & Carrick CW (1962c) The sulfur amino acid
requirement of the chick from 4 to 8 weeks as affected by temperature. Poultry Sci 41,
1801–1806.
Agricultural Research Council (1981) The Nutrient Requirements of Pigs. Slough:
Commonwealth Agricultural Bureaux.
Clément K, Vaisse C, Lahlou N, et al. (1998) A mutation in the human leptin receptor gene
causes obesity and pituitary dysfunction. Nature 392, 398–401.
Edmundson W (1980) Adaptation to undernutrition: how much food does man need? Soc Sci
Med 14 D, 19–126.
European Communities (1971) Determination of Crude Oils and Fats, Process A. Part 18,
Animal Feeding-stuffs, pp. 15–19. London: H. M. Stationery Office.
Hegsted DM (1963) Variation in requirements of nutrients – amino acids. Fed Proc 22, 1424–
1430.
Heneghan JB (1979) Enterocyte kinetics, mucosal surface area and mucus in gnotobiotes. In
Clinical and Experimental Gnotobiotics. Proceedings of the VIth International Symposium
on Gnotobiology, pp. 19–27 [TM Fliedner, H Heit, D Niethammer and H Pflieger, editors].
Stuttgart: Gustav Fischer Verlag.
Hill DC (1977) Physiological and biochemical responses of rats given potassium cyanide or
linamarin. In Cassava as an Animal Feed. Proceedings of a Workshop held at University of
Guelph, 1977. International Development Research Centre Monograph 095e, pp. 33–42 [B
Nestel and M Graham, editors]. Ottawa, Ont., Canada: International Development
Research Centre.
Lau EMC (1988) Osteoporosis in elderly Chinese (letter). Br Med J 296, 1263.
Louis-Sylvestre J (1987) Adaptation de l'ingestion alimentaire aux dépenses energétiques
(Adaptation of food intake to energy expenditure). Reprod Nutr Dév 27, 171–188.
Martens H & Rayssiguier Y (1980) Magnesium metabolism and hypomagnesaemia. In
Digestive Physiology and Metabolism in Ruminants, pp. 447–466 [Y Ruckebusch and P
Thivend, editors]. Lancaster: MTP Press Ltd.
Ministry of Agriculture, Fisheries and Food (1977) Energy Allowances and Feeding Systems
for Ruminants. Technical Bulletin no. 33. London: H.M. Stationery Office.
Peto R, Doll R, Buckly JD & Sporn MB (1981) Can dietary beta-carotene materially reduce
human cancer rates? Nature 290, 201–208.
Sebrell WH Jr & Harris RS (1967) The Vitamins, 2nd ed., vol. 1. London: Academic Press.
105
Technicon Instruments Co. Ltd (1967) Technicon Methodology Sheet N-36. Basingstoke:
Technicon Instrument Co. Ltd.
Van Dokkum W, Wesstra A & Schippers F (1982) Physiological effects of fibre-rich types of
bread. 1. The effect of dietary fibre from bread on the mineral balance of young men. Br J
Nutr 47, 451–460.
Wallace RJ & West AA (1982) Adenosine 5' triphosphate and adenylate energy charge in
sheep digesta. J Agric Sci (Cambridge) 98, 523–528.
Wilson J (1965) Leber's disease. PhD Thesis, University of London.
World Health Organization (1965) Physiology of Lactation. Technical Report Series no. 305.
Geneva: WHO.
References to material available on websites should include the full Internet address, and the
date of the version cited. Thus:
Department of Health (1997) Committee on Toxicity of Chemicals in Food Consumer
Products and the Environment. Statement on vitamin B
6
(pyridoxine) toxicity.
http://www.open.gov.uk/doh/hef/B
6
.htm
Mathematical Modelling of Nutritional Processes. Papers in which mathematical modelling
of nutritional processes forms the principal element will be considered for publication
provided: (i) they are based on sound biological and mathematical principles, (ii) they
advances nutritional concepts or identifies new avenues likely to lead to such advances, (iii)
assumptions used in their construction are fully described and supported by appropriate
argument, (iv) they are described in such a way that the nutritional purpose is clearly
apparent, (v) the contribution of the model to the design of future experimentation is clearly
defined.
Units. Results should be presented in metric units according to the International System of
Units (see Quantities, Units, and Symbols (1971) London: The Royal Society, and Metric
Units, Conversion Factors and Nomenclature in Nutritional and Food Sciences (1972)
London: The Royal Society – as reproduced in Proceedings of the Nutrition Society (1972)
31, 239–247).
Energy measurements should be expressed in joules.
For substances of known molecular weight, e.g. glucose, urea, Ca, Na, Fe, K, P, values
should be expressed as mol/l: for substances of indeterminate molecular weights, e.g.
phospholipids, proteins, and for trace elements, e.g. Cu, Zn, then g/l should be used.
Time. The 24 h clock should be used, e.g. 15.00 hours.
Statistical Treatment of Results.
Data from individual replicates should not be given for large experiments, but may be
given for small studies. The methods of statistical analysis used should be described, and
references to statistical analysis packages included in the text, thus: Statistical Analysis
Systems statistical software package version 6.11 (SAS Institute, Cary, NC, USA).
Information such as analysis of variance tables should be given in the paper only if they are
relevant to the discussion. A statement of the number of replicates, their average value and
some appropriate measure of variability is usually sufficient.
Comparisons between means can be made by using either confidence intervals or
significance tests. The most appropriate of such measures is usually the standard error of a
difference between means (SED), or the standard errors of the means (SE or SEM) when
these vary between means. The standard deviation (SD) is more useful only when there is
specific interest in the variability of individual values. The degrees of freedom associated with
SED, SEM or SD should also be stated. The number of decimal places quoted should be
106
sufficient but not excessive. Note that pH is an exponential number, as are the log(10)
values often quoted for microbial numbers. Statistics should be carried out on the scalar rather
than the expontential values.
If comparisons between means are made using confidence intervals (CI), these may be
presented as, e.g. ‘difference between means 0·73 g (95 % CI 0·314, 1·36)’. If significance
tests are used, a statement that the difference between the means for two groups of values is
(or is not) statistically significant should include the level of significance attained, preferably
as an explicit P value (e.g. P =0·016 or P =0·32) rather than as a range (e.g. P<0·05 or
P>0·05}. It should be stated whether the significance levels quoted are one-sided or two-
sided. Where a multiple comparison procedure is used, a description or explicit reference
should be given. Where appropriate, a superscript notation may be used in tables to denote
levels of significance; similar superscripts should denote lack of a significant difference.
Where the method of analysis is unusual, or if the experimental design is at all complex,
further details (e.g. experimental plan, raw data, confirmation of assumptions, analysis of
variance tables, etc.) should be included.
Figures. In curves presenting experimental results the determined points should be clearly
shown, the symbols used being, in order of preference, ¦, ¦, _, σ, ¦, ν, ×, . Curves and
symbols should not extend beyond the experimental points. Scale-marks on the axes should
be on the inner side of each axis and should extend beyond the last experimental point. Ensure
that lines and symbols used in graphs and shading used in histograms are large enough to be
easily identified when the figure is reduced to fit the printed page.
Figures and diagrams should be provided with numbers and lettering, preferably using
computer-based graphical programmes. The names of the authors, title of the paper and the
figure number should be given in pencil on the back of each figure. Legends for all figures
should be typed on a separate sheet and numbered. Each figure, with its legend, should be
comprehensible without reference to the text. The approximate position of each should be
indicated in the margin of the text.
Plates. The Journal will now also consider the inclusion of colour plates. The size of
photomicrographs may have to be altered in printing; in order to avoid mistakes, the
magnification should be shown by scale on the photograph itself. The scale with the
appropriate unit together with any lettering should be drawn by the author, preferably using
appropriate software.
Tables. Tables should carry headings describing their content and should be comprehensible
without reference to the text. The dimensions of the values, e.g. mg/kg, should be given at the
top of each column. Tables should be typed on separate sheets at the end of the text. Tables
should not be subdivided by ruled lines. Abbreviations in tables must be defined in footnotes.
Signs for footnotes should be used in the sequence: *†‡§|¶, then ** etc. (omit * or †, or both,
from the sequence if they are used to indicate levels of significance). The approximate
position should be indicated in the margin of the text.
Key Words. Authors are asked to supply three or four key words or phrases (each containing
up to three words) on the title page of the typescript. Please see a recent issue of the British
Journal of Nutrition Cumulative Index for examples of approved key words.
Chemical Formulas. These should be written as far as possible on a single horizontal line.
With inorganic substances, formulas may be used from first mention. With salts, it must be
stated whether or not the anhydrous material is used, e.g. anhydrous CuSO
4
, or which of the
different crystalline forms is meant, e.g. CuSO
4
.5H
2
O, CuSO
4
.H
2
O.
Descriptions of Solutions, Compositions and Concentrations. Solutions of common acids,
bases and salts should be defined in terms of molarity (M), e.g. 0·1 M-NaH
2
PO
4
.
107
Compositions expressed as mass per unit mass (w/w) should have values expressed as ng,
μg, mg or g per kg; similarly for concentrations expressed as mass per unit volume (w/v), the
denominator being the litre. Concentrations or compositions should not be expressed on a
percentage basis. The common measurements used in nutritional studies, e.g. digestibility,
biological value and net protein utilization, should be expressed as decimals rather than as
percentages, so that amounts of available nutrients can be obtained from analytical results by
direct multiplication. See Metric Units, Conversion Factors and Nomenclature in Nutritional
and Food Sciences. London: The Royal Society, 1972 (para. 8).
Nomenclature of Vitamins. Most of the names for vitamins and related compounds that are
accepted by the Editors are those recommended by the IUNS Committee on Nomenclature.
See Nutrition Abstracts and Reviews A (1978) 48, 831–835.
Acceptable name Other names*
Vitamin A
Retinol Vitamin A
1
Retinaldehyde, retinal Retinene
Retinoic acid (all-trans or 13-cis) Vitamin A
1
acid
3-Dehydroretinol Vitamin A
2
Vitamin D
Ergocalciferol, ercalciol Vitamin D
2
calciferol
Cholecalciferol, calciol Vitamin D
3
Vitamin E
α-, β- and γ-tocopherols plus
tocotrienols
Vitamin K
Phylloquinone Vitamin K
1
Menaquinone-n (MK-n) † Vitamin K
2
Menadione Vitamin K
3,
menaquinone,
menaphthone
Vitamin B
1
Thiamin Aneurin(e), thiamine
Vitamin B
2
Riboflavin Vitamin G, riboflavine,
Lactoflavin
Niacin
Nicotinamide Vitamin PP
Nicotinic acid
Folic Acid
Pteroyl(mono)glutamic acid Folacin, vitamin B
c
or M
Vitamin B
6
Pyridoxine Pyridoxol
Pyridoxal
Pyridoxamine
Vitamin B
12
Cyanocobalamin
108
Hydroxocobalamin Vitamin B12a or Vitamin B12b
Aquocobalamin
Methylcobalamin
Adenosylcobalamin
Inositol
Myoinositol Meso-inositol
Choline
Pantothenic acid
Biotin Vitamin H
Vitamin C
Ascorbic acid
Dehydroascorbic acid
*Including some names which are still in use elsewhere, but are not used by the British
Journal of Nutrition.
†Details of the nomenclature for these and other naturally occurring quinones should
follow the Tentative Rules of the IUPAC-IUB Commission on Biochemical Nomenclature
(see European Journal of Biochemistry (1975) 53, 15–18).
Generic descriptors. The terms vitamin A, vitamin C and vitamin D may still be used
where appropriate, for example in phrases such as ‘vitamin A deficiency’, ‘vitamin D
activity’.
Vitamin E. The term vitamin E should be used as the descriptor for all tocol and
tocotrienol derivatives exhibiting qualitatively the biological activity of α-tocopherol. The
term tocopherols should be used as the generic descriptor for all methyl tocols. Thus, the
term tocopherol is not synonymous with the term vitamin E.
Vitamin K. The term vitamin K should be used as the generic descriptor for 2-methyl-1,4-
naphthoquinone (menaphthone) and all derivatives exhibiting qualitatively the biological
activity of phylloquinone (phytylmenaquinone).
Niacin. The term niacin should be used as the generic descriptor for pyridine 3-carboxylic
acid and derivatives exhibiting qualitatively the biological activity of nicotinamide.
Vitamin B
6
. The term vitamin B
6
should be used as the generic descriptor for all 2-
methylpyridine derivatives exhibiting qualitatively the biological activity of pyridoxine.
Folate. Due to the wide range of carbon-substituted, unsubstituted, oxidized, reduced and
mono- or polyglutamyl side-chain derivatives of pteroylmonoglutamic acid which exist in
nature, it is not possible to provide a complete list. Authors are encouraged to use either the
generic name or the correct scientific name(s) of the derivative(s), as appropriate for each
circumstance.
Vitamin B
12
. The term vitamin B
12
should be used as the generic descriptor for all
corrinoids exhibiting qualitatively the biological activity of cyanocobalamin. The term
corrinoids should be used as the generic descriptor for all compounds containing the corrin
nucleus and thus chemically related to cyanocobalamin. The term corrinoid is not
synonymous with the term vitamin B
12
.
Vitamin C. The terms ascorbic acid and dehydroascorbic acid will normally be taken as
referring to the naturally occurring L-forms. If the subject matter includes other optical
isomers, authors are encouraged to include the L- or D-prefixes, as appropriate. The same is
true for all those vitamins which can exist in both natural and alternative isomeric forms.
Amounts of vitamins and summation. Weight units are acceptable for the amounts of
vitamins in foods and diets. For concentrations in biological tissues, SI units should be used;
109
however, the authors may, if they wish, also include other units, such as weights or
international units, in parentheses.
See Metric Units, Conversion Factors and Nomenclature in Nutritional and Food Sciences
(1972) paras. 8 and 14–20. London: The Royal Society.
Nomenclature of Fatty Acids and Lipids. In the description of results obtained for the
analysis of fatty acids by conventional gas–liquid chromatography, the shorthand designation
proposed by Farquhar JW, Insull W, Rosen P, Stoffel W & Ahrens EH (Nutrition Reviews
(1959), 17, Suppl.) for individual fatty acids should be used in the text, tables and figures.
Thus 18 : 1 should be used to represent a fatty acid with eighteen carbon atoms and one
double bond; if the position and configuration of the double bond is unknown. The shorthand
designation should also be used in the abstract. If the positions and configurations of the
double bonds are known, and these are important to the discussion, then a fatty acid such as
linoleic acid may be referred to as cis-9,cis-12-18 : 2 (positions of double bonds related to the
carboxyl carbon atom 1). However, to illustrate metabolic relationship between different
unsaturated fatty acid families, it is sometimes more helpful to number the double bonds in
relation to the terminal methyl carbon atom, n. The preferred nomenclature is then: 18 : 3n-3
and 18 : 3n-6 for α-linolenic and γ-linolenic acids respectively; 18 : 2n-6 and 20 : 4n-6 for
linoleic and arachidonic acids respectively and 18 : 1n-9 for oleic acid. Positional isomers
such as α- and γ-linolenic acid should always be clearly distinguished. It is assumed that the
double bonds are methylene-interrupted and are of the cis-configuration (see Holman RT in
Progress in the Chemistry of Fats and Other Lipids (1966) vol. 9, part 1, p. 3. Oxford:
Pergamon Press. Groups of fatty acids that have a common chain length but vary in their
double bond content or double bond position should be referred to, for example, as C
20
fatty
acids or C
20
polyunsaturated fatty acids. The modern nomenclature for glycerol esters should
be used, i.e. triacylglycerol, diacylglycerol, monoacylglycerol not triglyceride, diglyceride,
monoglyceride. The form of fatty acids used in diets should be clearly stated, i.e. whether
ethyl esters, natural or refined fats or oils. The composition of the fatty acids in the dietary fat
and tissue fats should be stated clearly, expressed as mol/100 mol or g/100 g total fatty acids.
Nomenclature of Micro-organisms. The correct name of the organism, conforming with
international rules of nomenclature, should be used: if desired, synonyms may be added in
parentheses when the name is first mentioned. Names of bacteria should conform with the
current Bacteriological Code and the opinions issued by the International Committee on
Systematic Bacteriology. Names of algae and fungi must conform with the current
International Code of Botanical Nomenclature. Names of protozoa should conform with the
current International Code of Zoological Nomenclature.
Nomenclature of Plants. For plant species where a common name is used that may not be
universally intelligible, the Latin name in italics should follow the first mention of the
common name. The cultivar should be given where appropriate.
Other Nomenclature, Symbols and Abbreviations. Authors should follow current numbers
of the British Journal of Nutrition in this connection. The IUPAC rules on chemical
nomenclature should be followed, and the Recommendations of the IUPAC-IUB Commission
on Biochemical Nomenclature (see Biochemical Journal (1978) 169, 11–14). The symbols
and abbreviations, other than units, are essentially those listed in British Standard 5775
(1979–1982), Specifications for Quantities, Units and Symbols, parts 0–13. Day should be
abbreviated to d, for example 7 d, except for ‘each day’, ‘7th day’ and ‘day 1’.
Elements and simple chemicals (e.g. Fe and CO
2
) can be referred to by their chemical
symbol or formula from the first mention in the text; titles can be taken as an exception. Well-
known abbreviations for chemical substances may be used without explanation, thus: RNA
110
for ribonucleic acid and DNA for deoxyribonucleic acid. Other substances that are
mentioned frequently may also be abbreviated, the abbreviation being placed in parentheses at
the first mention, thus: free fatty acids (FFA), and an alphabetical list of abbreviations used
should be included on a separate sheet of paper. Terms such as ‘bioavailability’ or ‘available’
may be used providing that the use of the term is adequately defined.
Spectrophotometric terms and symbols are those proposed in IUPAC Manual of Symbols
and Terminology for Physicochemical Quantities and Units (1979) London: Butterworths.
The attention of authors is particularly drawn to the following symbols: m (milli, 10
3
), μ
(micro, 10
6
), n (nano, 10
9
) and p (pico, 10
12
). Note also that ml (millilitre) should be used
instead of cc, μm (micrometre) instead of μ (micron) and μg (microgram) instead of γ.
Numbers. Figures should be used with units, for example, 10 g, 7 d, 4 years (except when
beginning a sentence, thus: ‘Four years ago...’); otherwise, words (except when 100 or more),
thus: one man, ten ewes, ninety-nine flasks, three times (but with decimal, 2·5 times), 100
patients, 120 cows, 136 samples.
Ethics of Human Experimentation. The notice of contributors is drawn to the guidelines in
the Declaration of Helsinki (1964) (British Medical Journal (1964) ii, 177–178), the Report of
ELSE as printed in British Journal of Nutrition (1973) 29, 149, the Guidelines on the Practice
of Ethics Committees Involved in Medical Research Involving Human Subjects (1990)
London: The Royal College of Physicians, and to the Guidelines for the Ethical Conduct of
Medical Research Involving Children, published in 1992 by the British Paediatric
Association, 5 St Andrew's Place, Regents Park, London NW1 4LB. A paper describing any
experimental work on human subjects should include a statement that the Ethical Committee
in the Institution in which the work was performed has approved it.
Animal Experimentation. The Editors will not accept papers reporting work carried out
using inhumane procedures. Authors should indicate that their experiments have been
approved by the appropriate local or national ethics committee for animal experiments.
Discloser of Financial Support. The source of funding should be identified either in the
experimental or acknowledgement section of the manuscript. All potential conflicts of
interest, or financial interests of the author in a product or company which is relevant to the
article, should be declared.
Proofs. PDF proofs are sent to authors in order that they make sure that the paper has been
correctly set up in type. Excessive alterations involving changes other than typesetting errors
may have to be disallowed or made at the author's expense. All corrections should be made in
ink in the margins: marks made in the text should be only those indicating the place to which
the corrections refer.
Corrected proofs should be returned within 3 days either by Express mail to the BJN
Production Editor, CABI Publishing, Wallingford, Oxon, OX10 8DE, UK; by fax +44 (0)
1491 833508 or via email [email protected].
Offprints. A copy of the issue and a PDF file of the paper will be supplied free of charge to
the corresponding author of each paper or short communication, and offprints may be ordered
on the order form sent with the proofs.
SUBMISSION PROCESS
The BJN now operates an on-line submission and reviewing system (eJournalPress).
Authors should submit to the following address: http://bjn.msubmit.net/. If any
difficulties are encountered please contact the Publications Office immediately.
111
The manuscript submission process is broken into a series of 4 screens that gather detailed
information about your manuscript and allow you to upload the appropriate text and
figure/table files. The sequence of screens is as follows:
1. A form requesting author details, manuscript title, abstract, and associated
information and the file quantities. Although there is the option of saving your
information and returning to complete your submission at a later date we strongly advise
you to submit your paper in one session if possible.
2. A screen asking for the actual file locations (via an open file dialogue). After
completing this screen, your files will be uploaded to our server.
3. A completion screen that will provide you with a specific manuscript number for your
manuscript. You may be asked to select the order in which your uploaded files should
be presented.
4. An approval screen that will allow you to verify that your manuscript has been
uploaded and converted to PDF correctly. Each converted file must be approved
individually to complete your online submission. If the conversion is not correct, you
can replace or delete your manuscript files as necessary. After you have reviewed the
converted files, you will need to click on "Approve Manuscript". This link will have a
red arrow next to it.
Throughout the system, red arrows reflect pending action items that you should address.
Before submitting a manuscript, please gather the following details for all authors:
• Title, First and Last Names
• Full Postal Address for Corresponding Author only
• Institutions
• Country
• Work Fax Number for Corresponding Author only (including international dialling
code)
• E-mail addresses
In addition we require full manuscript details:
Covering Letter
Title (you may copy and paste this from your manuscript)
Abstract (you may copy and paste this from your manuscript)
Manuscript files in PDF, Word, WordPerfect, or RTF format.
Ideally manuscript files should have the tables/figures given at the end of the article.
For illustrations, preferred software packages are Adobe Illustrator, Adobe Photoshop,
Aldus Freehand, Chemdraw or CorelDraw. Preferred formats are TIFF or JPEG, if a
TIFF file is not possible save as an EPS or a windows metafile.
Please provide contact details for up to 4 potential Referees (email addresses and institutions).
For further information, please contact the Publications Office: Tel: +44 (0) 20 7371 6225
Fax: +44 (0) 20 7602 1756 Email: [email protected]
112
Anexo 3
Valores para peso de 1000 grãos e de macronutrientes das cultivares de feijão das safras 1 (2001/2002) e 2 (2002/2003)*
P 1000
grãos
Proteína
Bruta
Amido
Disponível
Amido
Resistente
Fibra
Total
Fibra
Solúvel
Extrato
Etéreo
Cultivar
1 2 1 2 1 2 1 2 1 2 1 2 1 2
TPS BONITO 234,00 233,00 22,81 22,73 33,08 33,78 4,70 4,41 24,74 25,11 4,55 7,59 1,42 1,01
TPS BIONOBRE 223,60 215,60 25,68 27,16 28,73 29,12 2,91 3,14 19,36 21,73 4,03 5,73 1,01 0,80
GUAPO BRILHANTE 211,20 230,40 24,16 23,14 35,61 39,41 3,00 3,56 20,60 20,25 4,61 3,86 1,48 1,90
TPS NOBRE 211,00 224,00 26,22 25,37 29,89 34,41 3,22 4,12 22,55 23,02 5,18 4,79 1,93 1,97
IRAÍ 320,80 339,40 21,24 22,50 29,72 31,97 3,18 3,20 22,95 26,06 3,61 6,45 1,35 0,87
FTS SOBERANO 157,60 205,00 29,06 24,62 33,40 38,90 2,99 3,29 19,44 22,58 3,44 3,85 1,56 1,95
GUATEIAN 6662 185,40 189,40 27,45 27,96 33,25 34,02 2,91 2,98 21,05 21,20 9,18 6,43 1,41 1,42
CARIOCA 260,40 259,60 25,44 24,93 35,06 32,12 3,20 3,13 21,38 20,32 7,22 3,68 1,23 1,25
RIO TIBAGI 180,60 151,80 28,95 27,52 27,10 28,06 3,59 3,47 19,25 22,29 4,99 7,51 1,74 1,57
MINUANO 215,60 214,00 23,82 24,52 32,98 28,90 3,55 3,80 22,92 28,01 3,14 8,53 1,53 1,31
PÉROLA 264,80 282,40 26,97 26,09 23,46 29,28 4,56 4,20 20,32 20,77 3,31 1,26 1,44 1,22
FTS MAGNÍFICO 235,80 261,80 26,75 25,84 28,36 29,35 3,98 4,58 21,16 20,12 3,71 2,32 4,77 3,88
MACANUDO 212,80 223,40 23,42 24,73 29,04 25,99 2,35 2,57 20,23 18,41 4,22 2,35 0,85 1,36
DIAMANTE NEGRO 217,80 207,80 27,79 26,27 20,02 23,66 2,54 2,47 19,91 21,28 3,22 5,86 1,62 1,51
VALENTE 203,40 191,60 26,66 24,68 21,56 25,46 2,62 2,46 18,09 20,90 3,81 6,02 1,67 2,26
IAPAR 31 222,40 252,20 24,66 23,70 29,07 28,50 4,18 3,61 18,40 21,08 3,38 5,26 1,33 1,15
Média
222,33 230,09 25,69 25,11 29,39 30,81 3,34 3,44 20,77 22,07 4,47 5,09 1,65 1,59
CV (%)
16,96 18,78 8,62 6,53 15,71 14,55 20,97 19,29 8,70 11,15 36,29 40,70 53,00 46,36
*Valores (média de 3 repetições) expressos em g/100 g de MS.
113
Anexo 4
Valores de micronutrientes das cultivares de feijão das safras 1 (2001/2002) e 2 (2002/2003)*
Fe
Zn
Mn
Cu
Ca
Mg
P
Cultivar
1 2 1 2 1 2 1 2 1 2 1 2 1 2
TPS BONITO 9,56 9,37 3,53 3,55 1,50 1,54 1,47 1,36 117,39 117,52 23,98 21,82 274,80 337,42
TPS BIONOBRE 8,83 10,57 3,40 3,38 1,65 1,66 1,56 1,51 361,34 426,37 24,47 22,75 294,47 349,70
GUAPO BRILHANTE 8,39 9,42 3,28 3,51 1,47 1,47 1,38 1,51 343,32 333,80 22,77 23,26 338,47 355,31
TPS NOBRE 10,11 n.d. 4,02 3,46 1,92 1,71 1,43 1,57 394,29 427,24 23,96 24,84 350,75 329,52
IRAÍ 7,50 8,85 4,02 2,72 1,51 1,30 1,17 1,18 325,84 349,92 17,60 20,80 365,96 374,26
FTS SOBERANO 9,30 10,52 3,74 3,69 1,80 1,63 1,48 1,60 351,71 346,09 24,93 24,80 375,18 360,32
GUATEIAN 6662 9,96 9,88 3,21 3,34 1,83 1,58 1,68 1,89 429,75 468,63 26,73 26,03 392,87 348,00
CARIOCA 8,89 9,97 2,81 3,33 1,37 1,58 1,30 1,28 406,34 422,54 24,62 24,36 376,14 379,01
RIO TIBAGI 9,12 10,32 3,59 3,69 1,45 1,56 1,59 1,86 411,55 426,29 24,78 22,50 304,98 291,84
MINUANO 8,68 9,77 3,29 3,20 1,42 1,40 1,45 1,54 328,41 404,99 23,45 24,85 329,17 328,94
PÉROLA 9,04 10,17 3,29 3,90 1,53 1,56 1,52 1,54 406,63 402,98 25,90 24,65 346,11 349,86
FTS MAGNÍFICO 9,25 9,72 3,47 3,36 1,84 1,83 1,50 1,42 380,64 395,97 24,87 24,68 354,17 325,62
MACANUDO 6,36 9,49 2,91 3,39 1,12 1,43 1,22 1,35 348,01 163,12 22,82 22,26 339,10 333,62
DIAMANTE NEGRO 8,76 9,58 3,76 3,52 1,51 1,53 1,46 1,55 138,39 171,02 23,52 23,44 343,10 369,13
VALENTE 9,62 9,46 3,72 3,62 1,63 1,61 1,41 1,49 163,16 174,53 24,14 22,22 353,91 335,77
IAPAR 31 9,55 8,44 3,19 3,09 1,51 1,33 0,84 0,90 156,33 200,15 22,92 22,76 369,33 369,25
Média
8,93 9,70 3,45 3,42 1,57 1,55 1,40 1,47 316,44 326,95 23,84 23,50 344,28 346,10
CV (%)
10,44 6,01 10,14 7,99 13,11 8,88 14,15 16,17 34,03 36,27 8,32 6,08 9,13 6,47
*Valores (média de 3 repetições) expressos em g/100 g de MS.
n.d. = não determinado.
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo