MINISTÉRIO DA CIÊNCIA E TECNOLOGIA

OBSERVATÓRIO NACIONAL

COORDENAÇÃO DE PÓS-GRADUAÇÃO

Modelamento Matemático do Campo Geomagnético Principal no Brasil, através de harmônicos esféricos sobre uma calota.

Maximiliano da Fonseca Cordeiro

Dissertação apresentada como requisito parcial para obtenção do grau de mestre em geofísica pelo programa de Pós-Graduação do Observatório Nacional do Ministério da Ciência e Tecnologia.

Orientador: Dr. Cosme Ferreira da Ponte Neto

ON/MCT

Rio de Janeiro – Brasil

2007

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

AGRADECIMENTOS

É um prazer agradecer às pessoas que me ajudaram na realização deste trabalho. Ao saudoso Dr Luis Munis Barreto, pela iniciação aos assuntos relacionados à base do geomagnetismo, fato este responsável pelo meu ingresso neste programa de pós-graduação; ao Dr Jean Flexor por ter sugerido o tema da dissertação e por fornecer as rotinas em Fortran importantes no desenvolvimento do trabalho; ao meu orientador Dr Cosme Ferreira da Ponte Neto, pela paciência para resolver todos os problemas computacionais e matemáticos deste tema, que é considerado um grande desafio em virtude da complexidade das fases relacionadas à confecção do programa e ao resultado do modelo. À colega e amiga Ana Gauza, que me ajudou no período de adaptação deste curso, principalmente na matéria Geofísica I; aos colegas Suze, Reginaldo, José Carlos e Martins pelos momentos de descontração durante o curso. Ao meu amigo Ricardo Quintão pelas dicas e palavras de incentivo nos momentos mais difíceis da tese.

À minha família, meu pai Ilmar e à minha mãe Maria Amália. E, finalizando, à minha esposa Lenilda, por juntos sempre conseguirmos superar todos os obstáculos durante este longo processo de elaboração da tese.

Para a minha esposa Lenilda e meus pais

SUMÁRIO

AGRADECIMENTOS	ii
DEDICATÓRIA	iii
SUMÁRIO	iv.
RESUMO	v
ABSTRACT	vi
ÍNDICE	

RESUMO

Neste trabalho foi utilizada a técnica da expansão por harmônicos esféricos sobre uma calota (SCHA), proposta por Haines (1985 a), para modelar o campo geomagnético principal em escala regional no Brasil. A calota foi construída utilizando um meio ângulo (θ_0) de 24°e seu centro localizado nas coordenadas (latitude=-12° e longitude =-53°), de tal forma que todo o território brasileiro estivesse localizado na região central, bem distante da região da borda da calota. Esta configuração inseriu alguns países vizinhos da América do Sul dentro da calota.

De acordo com as características do modelo, a escolha do valor do meio ângulo (θ_0) gera um conjunto de coeficientes compostos pelo índice (k) e ordem (m) (números inteiros), pelo grau (nk) (número real) e fator de normalização (kmn), que são a base para gerar, a partir do número de pontos dentro da calota, os respectivos coeficientes de Gauss (g) e (h), em função do número de termos utilizados para a convergências das séries hiper-geométricas.

Para gerar o modelo foi utilizada a anomalia magnética residual que é obtida subtraindo dos dados das 127 estações geomagnéticas de repetição do ON reduzidas para 2005, o valor do campo geomagnético principal gerado pelo modelo IGRF para 2005. Para testar a qualidade os resultados em função dos números de pontos, foram realizados testes inserindo pontos sintéticos do IGRF dentro da região da calota, aumentando a base de dados para 147 pontos, e finalizando com 177 pontos.

A partir dos coeficientes de Gauss gerados, foi obtido o modelo do campo geomagnético principal para pontos da rede, quanto para a confecção das cartas magnéticas e a sua qualidade foi quantificada comparando com o modelo IGRF, através do cálculo do coeficiente de ajuste (FIT) e o desvio padrão (r.m.s). A partir dos coeficientes de Gauss gerados, foi obtido o modelo para as cartas magnéticas, utilizando uma grade regular de 1º sobre a região da calota, totalizando 1858 pontos dentro da calota com uma altitude de zero metros (nível do mar).

Como referência para a análise estatística dos resultados foi escolhido o campo total (F), cujo melhor resultado foi obtido utilizando 177 pontos, que para pontos da rede teve r.m.s= 366 nT, e, para a confecção das cartas magnéticas sobre o Brasil r.m.s=494 nT. Este aumento no r.m.s ocorreu devido à pouca quantidade de pontos modelados dentro da região calota.

Como proposta para diminuir o desvio padrão do resultado será necessário aumentar significativamente o número de pontos dentro da calota, acrescentando dados de novas estações e dados de satélite.

ABSTRACT

The model field of the brazilian area was constructed using the technique of spherical cap harmonic analysis (SCHA), proposed by Haines (1985a). In order to encompass the brazilian territory and neighbor countries of south America, it was used half-angle 24°.

According to the SCHA model, given the choice of half-angle, it results in a series of coefficients: index(k), order (m)(both integer), degree(nk) (real number), and the Stirlling's normalizing factor (kmn). These coefficients originate the Gauss coefficients (g) and (h), in function of the number of the points in the cap and the finite number of terms that truncates the series that compose the model.

The modelling used the values that resulted from the subtraction og the main field data from IGRF 2005 model from the values of the ON repetition geomagnetic stations (127 points). Nevertheless, the results were not satisfactory; so, tests were done adding new points to the Cap (synthetic data for IGRF). At this stage, there were 147 points, but the better model was obtained when using 177 points.

Aiming to represent the quality of the results of the main field, it was chosen the component (F) and the mean root square (r.m.s) with a valor of 366nT when comparing to stations data. However, when using the magnetic charts the (r.m.s.) value was increased to 494nT.

As a proposal to lessen the r.m.s values of the results, it is necessary to increase the number of points in the cap. It can be done adding new stations, aeromagnetic surveys and satelite data.

ÍNDICE

I- INTRODUÇÃO	
1.1 - Campo geomagnético	001
1.2 - Elementos do campo geomagnético	002
1.3 - Unidades de medida do campo geomagnético	003
1.4 - O dipolo terrestre	004
1.5 - Origem do campo geomagnético	007
1.6 - Variações do campo geomagnético	008
1.6.1- Variações de curta duração	008
1.6.2- Variações de longa duração	010
1.7- Campo principal	013
II - MODELOS MATEMÁTICOS DO CAMPO GEOMAGNÉTICO	
2.1 - Introdução geral	014
2.2 - Modelo polinomial	016
2.3 - Harmônicos retangulares	017
2.4 - Modelo por harmônicos esféricos	020
2.5 - Separação das fontes geradoras do campo	023
2.6 - Modelo global para o campo principal (IGRF)	025
2.6.1- Incerteza do modelo IGRF	028
2.7 - Harmônicos esféricos sobre uma calota	028
III - IMPORTÂNCIA DO TEMA	029
3.1-Campo geomagnético principal e a magnetometria	032
3.2 - Atualização dos dados da rede do Observatório Nacional	033
3.3 -Redução à mesma data	034
3.3.1- Ajuste linear dos dados	035
3.3.2- Ajuste pela variação secular calculada pelo modelo do IGRF	037
3.4 -Redução dos dados para a mesma altitude	040

3.5 - Descrição da rede Geomagnética do ON por região	040
3.6 - Descrição da calota	044
3.7 - Descrição do modelo	046
3.7.1-Rotação das coordenadas para o referencial da calota	046
3.7.2-Rotação dos campos para o referencial da calota	048
3.8 - Correções devido à superfície da Terra	053
3.8.1- Superfície de referência	053
3.8.2- Fator de achatamento	054
3.9 -O modelo dos harmônicos esféricos sobre uma calota	055
3.91- Grau nk	056
3.92- Fator de normalização Kmn	057
3.93- Os polinômios $P(\cos(\theta))$	058
3.94- Convergência das funções de Legendre	059
3.95-Métodos mínimos quadrados	059
3.96-Cálculo dos coeficientes de Gauss	063
IV- RESULTADOS E CONCLUSÕES	066
4.1-Metodologia	066
4.2-Procedimentos	066
4.2-Estatísticas	068
4.3-Resultados	070
4.3.1-Teste com 127 estações da rede	071
4.3.2- Teste com 147 estações da rede	075
4.3.3-Teste com 177 estações da rede	080
4.3.4- Comportamento do modelo em relação aos dados do IG	RF em função do número
de pontos dentro da calota.	081
4.3.5-Análise estatística dos desvios do modelo em relação a	no IGRF, sobre pontos da
rede ON.	085

4.4- Comportamento do modelo para a confecção das cartas magnéticas		
4.4.1- Estabilidade do modelo para a confecção das cartas para varias altitudes	090	
4.4.2- Análise estatística dos desvios do modelo em relação ao IGRF, para a	confecção	
das cartas magnéticas do campo principal (F) no Brasil.	092	
4.4.3- Confecção das cartas magnéticas do Brasil.	095	
4.5-Coeficientes de Gauss para 2010 e 2007	100	
4.6-Conclusão	101	
REFERÊNCIAS BIBLIOGRÁFICAS	103	
ANEXO A	107	
Dados das estações geomagnéticas de repetição do ON , reduzidas para 2005		
ANEXO B	125	
Parâmetros da calota e os Coeficientes de Gauss gerados para o Brasil para a época de 2 utilizando 127,147 e 177 pontos; extrapolados para 2010 e interpolados linearmente pa		
ANEXO C	130	
Rotinas em FORTRAN: modelo direto e modelo inverso		

Capítulo I-Introdução

1.1 - Campo geomagnético

O conhecimento do campo geomagnético vem sendo utilizado por inúmeras civilizações antigas. A primeira a se utilizar estes conhecimentos para a orientação foi a civilização chinesa e com o passar dos séculos, estes conhecimentos foram levados à Europa e contribuíram para o movimento das grandes navegações no século XVI.

O primeiro estudo científico sobre o campo Geomagnético foi realizado por Gilbert, que em 1600 propôs no seu livro "De Magnete" que a Terra fosse considerada equivalente a um imenso ímã permanente.

A teoria física matemática capaz de explicar o campo geomagnético só foi definida no fim do século XIX com Maxwell, e os primeiros modelos mais realistas do mecanismo gerador do campo só atualmente começam a ser elaborados, a partir de 1960.

A prova matemática de que o campo magnético observado na superfície tem como origem fundamental fontes no núcleo da Terra e não fenômenos externos foi obtida por Gauss em 1838. Nesta época já se havia constatado que o campo geomagnético apresentava uma variação secular, e de que as variações rápidas do mesmo tinham correlação com fenômenos atmosféricos, como as auroras boreais.

A utilização da bússola como instrumento de localização sobre a Terra parte do princípio de que o Campo Magnético da Terra se aproxima do campo magnético gerado por um ímã permanente alinhado com o eixo de rotação, onde é possível distinguir um "Pólo magnético norte", um "Pólo magnético sul" e um "Equador magnético", à semelhança do que ocorre com as referências geográficas. Neste sentido, é correto afirmar que o meridiano magnético seja a projeção das linhas de força do campo magnético na superfície da Terra , a declinação como sendo o ângulo que cada ponto do meridiano geográfico faz com o meridiano magnético e a inclinação como o ângulo formado por estas linhas de força com o plano que é tangente à Terra, no ponto de observação.

Uma inclinação de -90° corresponde ao pólo magnético norte, da mesma maneira que uma inclinação de +90° corresponde ao pólo magnético sul. O equador magnético é constituído pelo conjunto de pontos sobre a superfície da Terra onde a inclinação é nula. Assim, pode-se concluir que em primeira aproximação o campo geomagnético pode ser considerado como dipolar e o seu eixo magnético não coincide com o seu eixo geográfico; além disso, os mesmos pólos magnéticos diferem sensivelmente dos pólos geográficos (estes eixos formam um ângulo de 11,5°). Atualmente o pólo magnético sul está próximo do pólo geográfico norte, assim como o

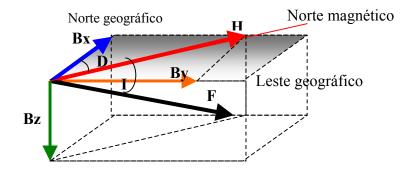
pólo magnético norte está próximo do pólo geográfico sul, mas no passado esta configuração já foi oposta, devido às reversões do campo geomagnético.

Uma visão mais detalhada destes conceitos introdutórios sobre o geomagnetismo pode ser encontrada nos seguintes livros: Campbell (1997) e Merril et al (1998).

1.2 - Elementos do campo geomagnético

O campo geomagnético é de natureza vetorial e a sua descrição exige o conhecimento da sua amplitude ou módulo e de seus dois ângulos principais, denominados de declinação e inclinação. Geralmente é utilizado o referencial cartesiano para representar estes elementos (figura 1.1).

O campo geomagnético em qualquer ponto da superfície da Terra pode ser decomposto em componentes cartesianas (x,y,z). Os eixos que compõem as direções deste sistema de coordenadas são direcionados de tal forma que o eixo x tenha a direção do eixo norte-sul, apontado sempre para norte geográfico; o eixo y tenha a direção do eixo leste –oeste geográfico, com o sentido apontado para o leste e, finalizando, o eixo z, que representa a profundidade, no sentido apontando para o centro da Terra.


O módulo do campo é chamado de "campo total", denominado (F) e as suas componentes são denominadas conforme a sua direção nos eixos cartesianos. No eixo x é denominado (Bx), em y de (By), no plano formado pelo plano x y é denominada componente horizontal (H) e no eixo z é denominada componente vertical (Bz).

O sinal da componente vertical depende da localização do ponto no globo terrestre. Convencionalmente é adotado Z positivo quando aponta para o centro da Terra, normalmente Bz > 0 no hemisfério norte e Bz < 0 no hemisfério Sul.

Deste modo, as componentes do campo geomagnético podem ser representadas em função da intensidade do campo total (F), da declinação (D) e da inclinação (I).

- O campo (Bz) é a projeção do campo total (F) na direção do eixo z.
- O campo (H) é dado pela projeção do campo total (F) no plano horizontal, na prática
 H tem a direção da bússola.
- O campo (Bx) e (By) são as projeções do campo horizontal (H) nas respectivas direções x (norte geográfico) e y (leste geográfico).

Estas grandezas estão representadas matematicamente através das equações (1.1),(1.2),(1.3),(1.4) e (1.5) :

componentes do campo
$$\begin{cases}
H = F \cos(I) \\
Bz = F \sin(I)
\end{cases}$$
(1.1)
$$Bx = H \cos(D) \\
By = H \sin(D)$$

Figura 1.1- componentes do campo geomagnético

módulo da componente horizontal

$$H = \sqrt{Bx^2 + By^2} \tag{1.2}$$

módulo do campo total
$$F = \sqrt{Bx^2 + By^2 + Bz^2} = \sqrt{H^2 + Bz^2} \quad (1.3)$$

$$D = arc \ tg\left(\frac{By}{Bx}\right) \ (1.4)$$

valor da inclinação

$$I = arc \ tg\left(\frac{Bz}{H}\right) = arc \ tg\left(\frac{Bz}{\sqrt{Bx^2 + By^2}}\right) \quad (1.5)$$

1.3- Unidades de medida do campo geomagnético

Em resolução da IAGA (Associação Internacional de Geomagnetismo e Aeronomia) de 1973 estabeleceu-se que o campo geomagnético seria descrito através do vetor B (vetor indução magnética).

No sistema internacional as medidas do vetor B são expressas em Tesla (T), onde 1T = 1 weber / m^2 . Como a intensidade do campo geomagnético é muito pequena, não é utilizada a unidade de campo magnético tesla (T), mas sim um submúltiplo desta unidade denominada nanotesla (nT). Esta unidade representa 10^{-9} T. No sistema CGS é representada $1 \text{ nT} = 10^{-5}$ Gauss.

A magnitude do Campo Geomagnético tem uma amplitude que varia conforme a localização do ponto na superfície da Terra, ele atribui o valor máximo na região dos pólos, sendo de aproximadamente 60.000 nT, e na região do equador, onde o seu valor é da ordem de 30.000 nT.

1.4- O dipolo terrestre

O modelo mais simples para um magneto é um dipolo, e em primeira análise, a própria Terra pode ser considerada como um dipolo magnético. Para o Geomagnetismo é muito importante a expressão do campo magnético de um dipolo orientado segundo o eixo da Terra (figura 1.2).

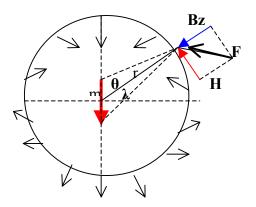


Figura 1.2- dipolo magnético

O campo magnético de um dipolo é representado de forma simples a partir da definição de potencial escalar , ver equação (1.6) ,que é expresso em função do momento magnético dipolar, \mathbf{m} , do vetor posição em relação a centro da Terra , \mathbf{r} , e da permeabilidade magnética no vácuo , μ_0 ,que possui o valor $4\pi 10^{-7}$ Henry/m (S.I).

$$V_{dipolo} = \frac{\mu_0 \stackrel{\rightarrow}{m.r}}{4\pi r^3} \quad (1.6)$$

Aplicando o produto escalar entre \mathbf{m} e \mathbf{r} , a equação (1.6) temos como resultado a equação (1.7).

$$V_{dipolo} = \frac{\mu_0 \, m \cos(\theta)}{4\pi \, r^2} \quad (1.7)$$

onde θ é o ângulo formado entre o momento de dipolo m e vetor posição r A relação entre o campo magnético e o potencial é expressa por:

$$\overrightarrow{\mathbf{B}} = -\overrightarrow{\nabla} V_{dipolo} \quad (1.8)$$

Como a Terra é aproximadamente esférica, é conveniente a utilização de coordenadas esféricas, que é expressa, através de três coordenadas: a distância radial (\mathbf{r}), a colatitude ($\mathbf{\theta}$) e a longitude ($\mathbf{\phi}$).

Em coordenadas esféricas o vetor gradiente é expresso, como:

$$\vec{\nabla} (V_{dipolo}) = \frac{\partial (V_{dipolo})}{\partial r} \rho + \frac{1}{r} \frac{\partial (V_{dipolo})}{\partial \theta} \Theta + \frac{1}{(r \sin \theta)} \frac{\partial (V_{dipolo})}{\partial \phi} \Phi$$
 (1.9)

onde ρ,Θ e Φ são sos vetores unidimensionais em cada direção

Aplicando o gradiente no potencial magnético, equação (1.9), temos como resultado as componentes dos campos magnéticos gerados pelo dipolo em coordenadas esféricas, equação (1.10).

$$Br = -\frac{\partial (V_{dipolo})}{\partial r} \qquad B_{\theta} = -\frac{1}{r} \frac{\partial (V_{dipolo})}{\partial \theta} \qquad B_{\phi} = -\frac{1}{(r \sin \theta)} \frac{\partial (V_{dipolo})}{\partial \phi}$$
(1.10)

onde: $\begin{cases} B\mathbf{r} = Bz = componente \ vertical \ do \ campo \ do \ dipolo \\ \mathbf{H} = B_{\theta} = componente \ horizontal \ do \ campo \ do \ dipolo \end{cases}$

$$H = \frac{\mu_0}{4\pi} \left(\frac{m \operatorname{sen}(\theta)}{r^3} \right) \qquad Bz = \frac{\mu_0}{4\pi} \left(\frac{2m \operatorname{cos}(\theta)}{r^3} \right) \qquad (1.11)$$

O módulo do campo total \mathbf{F} , equação (1.12), pode ser expresso em função das duas componentes do campo \mathbf{B}_r e \mathbf{B}_θ , equação(1.11).

$$F = \sqrt{(B_r)^2 + (B_\theta)^2} = \sqrt{(H)^2 + (Bz)^2}$$
 (1.12)

colocando a equação (1.12) em função das variáveis $\mathbf{r}, \mathbf{\theta}$, chegamos a equação (1.13).

$$\begin{cases} F = \frac{\mu_0 m}{4\pi r^3} \sqrt{1 + 3(\cos(\theta))^2} \\ \theta = colatitude = (90 - latitude) \\ F = \frac{\mu_0 m}{4\pi r^3} \sqrt{1 + 3(\sin(\lambda))^2} \end{cases} \lambda = latitude$$
 (1.13)

No equador magnético, onde $\theta=90^{\circ}$ e $\lambda=0^{\circ}$ a equação (1.13), é escrita como a equação (1.14).

$$B_{eq} = \frac{\mu_0}{4\pi} \left(\frac{m_{dipolo}}{a^3} \right) (1.14)$$

onde a representa o raio médio da Terra (6371 km).

$$I = \arctan\left(\frac{B_r}{B_{\theta}}\right) = 2\cot(\theta) = 2\tan(\lambda)$$
 (1.15)

Medidas efetuadas na superfície da Terra sugerem que o campo magnético terrestre pode ser aproximado pelo campo produzido por um momento de dipolo localizado em seu centro cujo valor é de 7.856 .10² Am². Este momento tem o seu sentido para o sul geográfico e se localiza sobre um eixo que forma o ângulo de 11,5° com o eixo de rotação da Terra (figura 1.3).

Devido à inclinação do eixo do dipolo, ele intercepta a superfície da Terra em dois pontos distintos que são denominados pólos geomagnéticos que são definidos pelas coordenadas (78,5° N, 70°W) e (78,5° S, 110°E). Esta definição não pode ser confundida com o conceito de pólos magnéticos do dipolo, pois os pólos magnéticos são pontos onde o campo é perpendicular a superfície terrestre, e experimentalmente é indicado através da a inclinação da bússola de 90° no hemisfério norte, e de –90° no hemisfério Sul; as suas coordenadas são expressar pelas coordenadas (75°N, 101°W) e (67° S, 143°E).

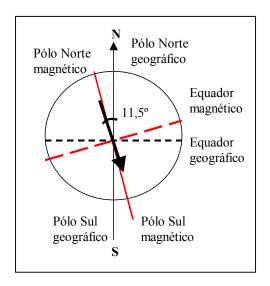


Figura 1.3- representação da inclinação do dipolo da Terra

1.5- Origem do campo geomagnético

O campo magnético observado na superfície terrestre ou nas suas proximidades é originário de fontes internas no núcleo externo da Terra, fontes crustais e fontes externas.

A **contribuição externa** é responsável por uma pequena parcela do campo geomagnético (≅0,06% do campo total) e é caracterizada por grandes variações temporais, sendo da ordem de segundos a milisegundos, denominadas pulsações. Este campo é gerado através da interação do vento solar com a região da magnetosfera, causando correntes elétricas que circulam na região da ionosfera (figura 1.4).

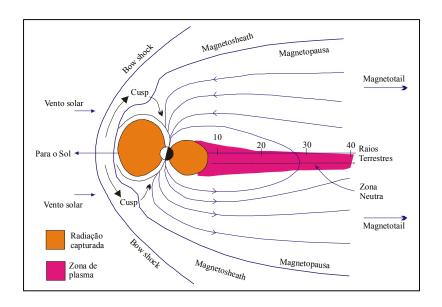


Figura 1.4 - a magnetosfera

A **contribuição crustal** é devido à indução de campos magnéticos nos materiais magnéticos localizados na região da crosta superior, aproximadamente numa profundidade de 30 km na crosta continental e 10 km na crosta oceânica (figura 1.5). Estas contribuições são denominadas anomalias magnéticas crustais e constituem uma pequena contribuição no campo geomagnético, que é de extrema importância para estudos de geofísica aplicada.

Existem também correntes elétricas que circulam na crosta, as quais são geradas pelas variações do campo externo, e que geram campos magnéticos induzidos que também são importantes para a geofísica aplicada e estudos da crosta (correntes magneto-telúricas).

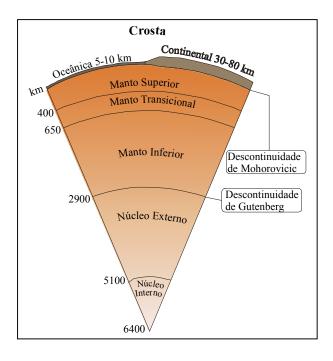


Figura 1.5- camadas da Terra em função da profundidade em km e composição

A maior contribuição para o campo geomagnético é do chamado Campo Principal, cuja origem é explicada pelo modelo do dínamo. Neste modelo o campo é gerado pela circulação do material metálico na região externa do núcleo. Este campo é responsável pelas variações seculares e as reversões de polaridade do campo geomagnético.

As reversões de polaridade são variações de 180 º no sentido do momento de dipolo e ocorrem em intervalos de aproximadamente milhares de anos.

1.6- Variações do campo geomagnético

O campo geomagnético é sujeito a inúmeras variações temporais, como as variações diurnas, as pulsações e tempestades magnéticas e variações de longa duração como a variação secular e as reversões.

1.6.1- Variações de curta duração

A variação diurna é responsável pelas flutuações na amplitude do campo magnético terrestre no período de 24 horas (figura 1.6), cuja causa é explicada pelas correntes que fluem na região da atmosfera, denominada ionosfera. Nesta região ocorre um aumento da exposição à radiação solar e do movimento de íons devido à presença do vento solar e a dinâmica na atmosfera, gerando campos e correntes na ionosfera.

Estas variações apresentam dependência da latitude, das estações do ano e do ciclo solar, com período de 11 anos. Em dias de pouca atividade solar, ela é chamada de Variação Diurna do Campo Geomagnético ou variação Solar Quiet, Sq, que apresenta uma magnitude para o campo magnético na faixa desde algumas dezenas até várias centenas de nanoteslas. Devido à esta característica, a amplitude do campo geomagnético tem o valor mínimo nas primeiras horas da manhã, com o seu ápice no período por volta de meio dia e torna decrescer suavemente à tarde(figura 1.6).

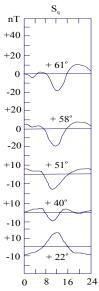


Figura 1.6— Variação diurna média dos dias calmos da componente horizontal, para as latitudes (61°,58°,51°,40° e 22°). Abcissas em h, ordenadas em nT. Retirada de Merril R.T. et al ,Academic Press (1998)

As **pulsações** geomagnéticas estão relacionadas a eventos transientes com interações complexas entre o Vento Solar, plasma solar, e o Campo Geomagnético que ocorrem na fronteira da região que constitui a magnetosfera terrestre. Esta contribuição é responsável por variações na amplitude na ordem 0,1 a 10 nT nas zonas auroras, com amplitude menores no equador e com freqüências bem definidas, associadas a fenômenos de ressonância eletromagnética.

As **tempestades magnéticas** são associadas a grande incidência de plasma solar na região da magnetosfera. São responsáveis por grandes variações no campo geomagnético superior a 1000 nT , principalmente na componente horizontal do campo, denominada de H (figura1.7). Estas variações são repentinas; num determinado momento o campo é da ordem de alguns nanoteslas , enquanto no instante seguinte o valor pode atingir centenas de nanoteslas. A duração das tempestades pode ser aleatória, podendo durar frações de segundos, ocorrendo de uma a três vezes ao dia durante 2 a 10 horas; ou periódicas, repetindo a cada 27 dias e com efeitos chegando a durar até vários dias. Este fenômeno é mais intenso em grandes latitudes, onde estão associados à presença das auroras Boreal e Astral.

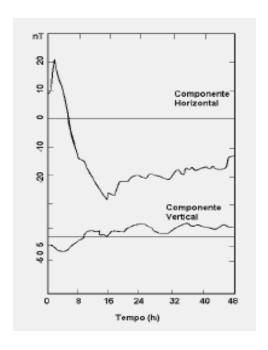


Figura 1.7 – Tempestade Magnética típica. Valores médios para a latitude 40N. No hemisfério Sul a variação da componente vertical seria invertida. Retirada de Merril R.T. ,et al ,Academic Press(1998).

1.6.2- Variações de longa duração

A variação secular é caracterizada por mudanças lentas e contínuas no campo Geomagnético principal. Uma consequência deste fenômeno é a presença de variações suaves nas componentes do campo geomagnético Bx, By e Bz ou H e nos ângulos de declinação D e inclinação I (figura 1.8), e também a atual diminuição da amplitude do momento de dipolo magnético da Terra (figura 1.9).

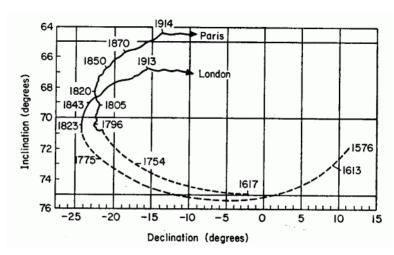


Figura 1.8- Efeito da variação secular sobre a declinação e a inclinação nos últimos 400 anos., Retirada de Merril R.T. ,et al ,Academic Press(1998)

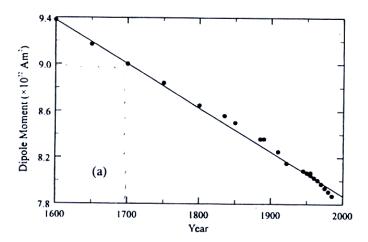


Figura 1. 9- diminuição da amplitude do momento de dipolo com o tempo., Retirada de Merril R.T. ,et al ,Academic Press (1998)

As **Reversões do campo** estão associadas a mudanças na polaridade do campo magnético da Terra e como conseqüência mudança dos pólos magnéticos. A característica deste fenômeno é o aparecimento de uma queda na intensidade do campo e em seguida por uma recuperação quando a nova orientação do campo é estabelecida.

A primeira **escala temporal de inversões** foi estabelecida por **Cox et al.** (1963a, 1963b) que utilizou o método de datação Potássio-Argônio. Para os últimos 4 milhões de anos estabeleceram-se 4 épocas distintas que se chamam Brunhes (normal), Matuyama (inversa), Gauss (normal) e Gilbert (inversa), tendo-se adotado nomes de alguns dos pioneiros do geomagnetismo. Contudo, em cada uma destas épocas de duração aproximada 10⁶ anos, houve períodos mais ou menos curtos, de duração aproximada de 10⁵ anos, onde a polaridade foi diferente da polaridade da época. Denominam-se estes intervalos por acontecimentos e os nomes

que recebem têm a ver com as localidades onde foram recolhidas as amostras respectivas (figura1.10).

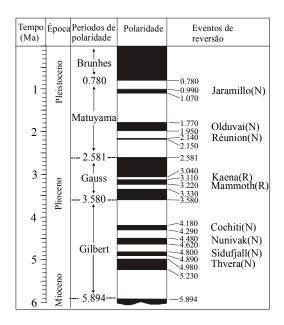


Figura 1.10- representação do tempo cronológico (Ma), período e eventos para as inversões do campo magnético. Retirada de Merril R.T., et al ,Academic Press(1998)

Estes resultados foram obtidos através de levantamentos magnéticos marinhos do fundo do oceano próximo à região das dorsais meso oceânicas, onde se observa um padrão zebrado na magnetização das rochas do fundo oceânico(figura 1.11). Isto acontece devido à diferença de polaridade e de magnetização entre as camadas laterais constituintes da crosta oceânica. Outro procedimento importante é a datação de sedimentos lacustres retirados de testemunhos; neste método, utiliza-se a medida da magnetização remanescente de amostras, e como resultado aparecem diferenças no sentido de magnetização em função da profundidade destes sedimentos, onde os mais rasos são pertencentes a períodos mais recentes e os mais profundos a períodos mais antigos.

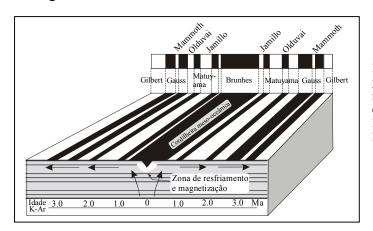


Figura 1.11. Padrão Zebrado do Fundo oceânico junto à dorsal meso-Atlântica , Os períodos mostrados na Figura 9 estão representados espacialmente em torno da dorsal meso-Atlântica. Retirada de Merril R.T. ,et al ,Academic Press(1998)

1.7- Campo principal

O campo magnético observado na superfície terrestre, ou nas suas proximidades, tem origem predominantemente de fontes internas localizadas na região da fronteira manto/ núcleo.

A primeira teoria moderna para explicar este mecanismo é a do dínamo de disco ou homopolar (figura 1.12), cujo as bases teóricas foram propostas por Elsasser (1946) e Bullard (1949). Neste modelo o campo é produzido por correntes elétricas que são geradas devido à circulação da região líquida do núcleo, denominadas núcleo externo, o qual se acredita ser constituído por ferro e níquel. Segundo esta teoria, estas correntes elétricas são mantidas devido ao movimento de rotação da Terra e a forças inerciais de Coriolis, que causam a circulação do material no núcleo, gerando então um campo magnético na superfície.

O modelo do dínamo de disco possui uma falha: não explica a reversão do campo geomagnético. Então foi proposto por **Rikitake** (1958) o modelo dos dínamos acoplados (figura 1.13). Neste modelo, um disco gera corrente elétrica que excita o disco adjacente, os discos giram no mesmo sentido, mas os seus campos magnéticos são opostos, de modo que a polaridade do sistema será determinada pela resultante dos campos gerados pelos discos. As oscilações na velocidade angular dos discos podem gerar desbalanceamento do sistema e como conseqüência, a reversão da polaridade.

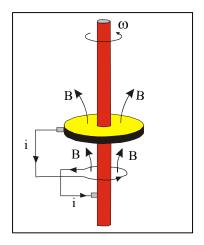


Figura 1.12- dínamo homopolar de Elsasser (1946) e Bullard (1949)

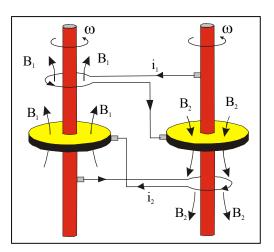


Figura 1.13-dínamos acoplados- Rikitake (1958)

Capítulo II- Modelos matemáticos do campo Geomagnético

2.1- Introdução geral

O Objetivo da modelagem em escala regional do campo geomagnético é representar e descrever o seu comportamento sobre uma porção da superfície terrestre, utilizando como base dados coletados nesta região. Os dados consistem em medidas das componentes do campo geomagnético Bx, By, Bz, obtidos de diversas formas: levantamentos terrestres, através de dados coletados ao nível do mar e em baixas altitudes; levantamentos aeromagnéticos compreendidos em altitudes entre 4 km e 5 km e finalmente dados de satélite como o CHAMP e o MAGSAT em altitudes superiores a 300 km, **Haines (1990)**.

Podem ser realizados vários tipos de modelos para o comportamento espacial e temporal do campo geomagnético e a escolha do modelo dependerá da área a qual se pretende analisar e do comprimento de onda das anomalias a se observar. Para a análise de grandes áreas da superfície terrestre, é definido um modelo global, através da expansão por harmônicos esféricos (SHA) que representam anomalias globais cuja origem está na região do núcleo externo. Se forem analisadas áreas continentais, será utilizado um modelo regional através da expansão por harmônicos esféricos sobre uma calota (SCHA), estes representam anomalias de campo principal em escala regional. Finalizando, se a dimensão da região for muito pequena quando comparada com o raio terrestre, será uma analise em escala local e os métodos utilizados serão a expansão por harmônicos retangulares (RHA).

Modelos regionais são baseados em uma maior densidade de dados do que os modelos globais, e obtêm melhores resultados em pequenas áreas. Se for utilizado um modelo global, o tempo de processamento aumenta significativamente e será exigido um grande número de coeficientes neste tipo de expansão, segundos trabalhos realizados por **Alldredge** (1981); para obter resolução de 100 km utilizando os harmônicos esféricos é necessário utilizar uma expansão até a ordem n= 400, obtendo no total 160.800 coeficientes, e em trabalhos de **Kolesova and Kropachev** (1973) uma resolução de 1740 km é necessária uma expansão para a ordem n=23.

No modelo regional ocorre a representação de anomalias magnéticas com escala inferior a do modelo global; representam não somente fontes magnéticas cuja origem esteja no núcleo terrestre, mas também fontes originárias da região da crosta.

Segundo **Haines** (1990),inúmeras maneiras são utilizadas para descrever o campo geomagnético, entre elas temos: o método analítico e o método gráfico, descritos nos parágrafos a seguir.

O método analítico consiste em inúmeros tipos distintos: ajustes polinomiais numa superfície, equivalentes fonte de dipolos e expansões matemáticas. As expansões matemáticas são os métodos matemáticos, com vínculos físicos, dentre elas temos: os harmônicos esféricos (SHA), harmônicos retangulares (RHA) e harmônicos esféricos sobre uma calota (SCHA). todos estes métodos serão descritos com detalhes nos capítulos a seguir.

O método gráfico consiste em representar o campo através de cartas magnéticas de contorno, que representam as componentes do campo em função das coordenadas geodésicas, baseados em processamento numéricos através de gridagem da superfície. Geralmente este procedimento é produzido após o modelo analítico, e os principais métodos de ajustes utilizados são: o Kriging, mínima curvatura, entre outros. Devido à característica do campo magnético diminuir a sua intensidade com a distância do ponto em relação ao centro da Terra, é comum utilizar o método do inverso da distância para representar as componentes do campo geomagnético.

2.2- Modelo polinomial

O modelo polinomial é um método matemático que utiliza um conjunto de funções não ortogonais para o ajuste das componentes do campo geomagnético. Este método não possui vínculos com as leis físicas, e a altitude não está expressa nas funções utilizadas por este modelo. Devido a esta característica, para cada altitude fixa a ser analisada será gerado um polinômio que representará as características do campo geomagnético naquela altitude, agora se o objetivo for calcular o valor campo geomagnético numa outra altitude, serão selecionados novos dados e um outro polinômio será calculado para esta nova altitude.

Este tipo de representação matemática causa alguns problemas numéricos à medida que se aumenta a ordem da expansão do polinômio, como por exemplo, o aparecimento de valores com grandes amplitudes para campo geomagnético em pontos onde não se obteve dados. Para evitar este problema, é necessário que a distribuição de dados sobre a região de estudo seja aproximadamente uniforme, geralmente este método é utilizado com dados obtidos por levantamentos aeromagnéticos. Esta metodologia é citada em alguns trabalhos, como por exemplo, **Haines (1967)** que utiliza a expansão de Taylor para a modelagem da região do

Norte Canadá e em trabalhos mais atuais como **Ardizione** (2000) que aplica esta metodologia para a análise da região da Espanha.

O modelo polinomial consiste em representar o campo geomagnético através de uma série de Taylor, composta por polinômios independentes não ortogonais em função da longitude e da latitude do ponto na superfície terrestre. O resultado deste somatório de termos para cada ponto de uma região é uma superfície matemática por onde ocorre o ajuste dos dados experimentais ao modelo. Na equação (2.1) está a representação geral para a expansão, onde $\bf P$ representa o coeficiente de ajuste do polinômio, e $\bf \phi$ e $\bf \lambda$, representam ,respectivamente, a longitude e a latitude do ponto.

$$B = P_{00} + (P_{10} * \phi) + (P_{01} * \lambda) + (P_{11} * \phi * \lambda) + (P_{20} * \phi^{2}) + (P_{02} * \lambda^{2}) + \dots (2.1)$$

Para diminuir os erros na expansão do polinômio é tomado um valor de referência, geralmente um ponto no centro da região, com coordenadas de longitude ϕ_0 e latitude λ_0 . Estes valores serão reduzidos das coordenadas dos pontos pertencentes à região, obtendo um valor de latitude e longitude novas para cada ponto, $\phi = \phi_i - \phi_0$ e $\lambda = \lambda_i - \lambda_0$. O procedimento anterior causa uma mudança nas coordenadas de cada ponto , gerando um polinômio em função das novas coordenadas , conforme a equação (2.2)

$$\hat{B} = P_{00} + P_{10} * (\phi - \phi_0) + P_{01} * (\lambda - \lambda_0) + P_{11} * (\phi - \phi_0) * (\lambda - \lambda_0) + P_{20} * (\phi - \phi_0)^2 + P_{02} * (\lambda - \lambda_0)^2 + \dots$$
Definindo $\mathbf{w}_{ii} = (\phi - \phi_0)^i * (\lambda - \lambda_0)^j$ (2.3)

Generalizando para um formato de somatório, temos:

$$\hat{\boldsymbol{B}} = \sum_{i,j}^{N} \boldsymbol{P}_{ij} * (\boldsymbol{\phi} - \boldsymbol{\phi}_0)^i * (\boldsymbol{\lambda} - \boldsymbol{\lambda}_0)^j (2.4)$$

Onde o campo será a soma do campo estimado $\hat{\pmb{B}}$ e o erro do modelo $\pmb{\varepsilon}$.

$$\mathbf{B} = \hat{\mathbf{B}} + \boldsymbol{\varepsilon} \quad (2.5)$$

O modelo polinomial vem utilizado pelo Observatório Nacional para realizar as cartas magnéticas do Brasil nos períodos de 1960 até os tempos atuais Os principais trabalhos são descritos em **Gama (1961,1969)** nos períodos 1960 e 1965, **Godoy (1982)** e em **Motta e Barreto (1986)**.

Segundo o modelo de **Gama (1961)**, o território brasileiro pode ser dividido em quatro áreas superpostas, formando faixas comuns com vínculo de continuidade, o que permite a utilização de um ajuste com polinômios de 2° grau tendo como valor de referência as coordenadas do observatório magnético de Vassouras e de Tatuoca , representadas através da coordenadas ϕ_0 e λ_0 . Segundo **Godoy (1982)**, a região pode ser analisada como uma única área, utilizando diretamente os valores de latitude e longitude, sem tomar uma referência local.

Já **Bullard** (1967) define que em áreas da ordem de $10^7 \, \mathrm{km}^2$, um polinômio de 3°grau composto por 10 termos já fornece um bom ajuste, equivalente àquele gerado pelo modelo por harmônicos esféricos para grau 20 ou 30.

De acordo com trabalhos de **Motta e Barreto** (1986), este mesmo modelo utiliza um polinômio de 4º grau composto por 35 coeficientes, em função da longitude ϕ , latitude λ ; ponto de referência ϕ_0 =15 ºS e λ_0 =55°W e data na qual foi medido o campo geomagnético como a variável t.

De forma genérica, temos:
$$\hat{\mathbf{B}} = \sum_{i,j,k}^{4} C_{ijk} * (\phi - \phi_0)^i * (\lambda - \lambda_0)^j * (t)^k$$
 (2.6)

$$B_{000} = C_{000}$$

$$B_{100} = C_{100} * (\phi - \phi_0) \qquad B_{100} = C_{010} * (\lambda - \lambda_0) \qquad B_{001} = C_{001} * (t) \qquad B_{011} = C_{001} * (\lambda - \lambda_0) * (t)$$

$$B_{110} = C_{110} * (\phi - \phi_0) * (\lambda - \lambda_0) \qquad B_{101} = C_{101} * (\phi - \phi_0) * (t)$$

$$+ \dots \qquad (2.7)$$

2.3- Harmônicos retangulares

Este modelo foi desenvolvido por **Alldread** (**1981**), para pequenas regiões do globo terrestre com extensão, da ordem 10³ km e ocupando uma área de 10⁶ km². Neste modelo a representação do campo geomagnética está no sistema de coordenadas retangulares (x,y, z), no qual x representa a direção norte, y a direção leste, e z a direção vertical (figura 2.1).

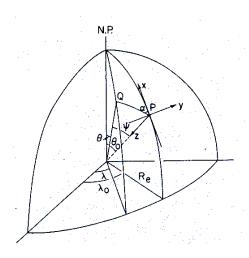


Figura 2.1- representação de uma seleção da esfera representando a Terra, onde há uma representação de uma seleção da. O ponto P é o ponto da terra com colatitude θ_0 e longitude λ_0 , que é a origem do sistema de coordenadas retangulares x,y, e z .Q é um ponto na Terra (θ,λ) onde os dados serão analisados, retirada de Alldredge 1981

A solução deste problema é através da solução da equação de Laplace para o potencial magnético em coordenadas retangulares, equação (2.8), onde as componentes horizontais são **x** e **y**, e a componente vertical é **z**.

$$\nabla V = -B$$
 $\nabla^2 V = 0$

laplaciano em coordenadas retangulares
$$\nabla^{2}() = \frac{\partial^{2}}{\partial x^{2}}() + \frac{\partial^{2}}{\partial y^{2}}() + \frac{\partial^{2}}{\partial z^{2}}()$$

Neste modelo, o potencial possui três dependências: x, y, z; expressos na equação (2.9).

$$V = V(x, y, z)$$
 $V = X Y Z$ (2.9)

A solução da equação (2.9) é através de uma serie de Fourier em função das coordenadas x e y e funções exponenciais de z, ver a base matemática em **Haines** (1989). Se a equação para o potencial V(x,y,z), equação (2.9) for substituída na equação de Laplace, equação do potencial em coordenadas retangulares, equação (2.8) e, resolvendo a equação diferencial de x,y e z, através do método da separação de variáveis, se obtém a solução para o potencial geomagnético, através de uma série de Fourier em função das coordenadas retangulares (x,y,z), e das dimensões da região (Lx,Ly), descrito pela equação (2.10).

$$V = Ax + By + Cz + \{ (A_1 \cos(lx) + A_2 \sin(lx)) (B_1 \cos(my) + B_2 \sin(my)) \} e^{+nz}$$
 (2.10)

definindo **l,m, n** como os números de onda,

$$l = \left(\frac{2\pi}{Lx}\right)i \quad ; \quad m = \left(\frac{2\pi}{Ly}\right)j \quad ; \quad n = \sqrt{l^2 + m^2} = \sqrt{\left(\left(\frac{2\pi}{Lx}\right)i\right)^2 + \left(\left(\frac{2\pi}{Ly}\right)j\right)^2} \quad (2.11)$$

Resolvendo o produto de termos na equação (2.10) e substituindo as relações (2.11) , chegamos a equação do potencial em coordenadas retangulares, equação (2.12).

$$V = Ax + By + Cz +$$

$$\sum_{q=1}^{Nq \max - 1} \sum_{i=1}^{q} \left\{ D_{ij} \cos \left(\frac{2\pi x}{Lx} i \right) \cos \left(\frac{2\pi y}{Ly} j \right) + E_{ij} \cos \left(\frac{2\pi x}{Lx} i \right) \sin \left(\frac{2\pi y}{Ly} j \right) + \right\}_{*e^{+nz}}$$

$$\left\{ F_{ij} \sin \left(\frac{2\pi x}{Lx} i \right) \cos \left(\frac{2\pi y}{Ly} j \right) + G_{ij} \sin \left(\frac{2\pi x}{Lx} i \right) \sin \left(\frac{2\pi y}{Ly} j \right) \right\}_{*e^{+nz}}$$

$$(2.12)$$

Onde **Dij**, **Eij**, **Fij**, **Gij** são os coeficientes da série; **l,m**, **n** são os números de onda; **Lx e Ly** são as dimensões da região e **i j q** são os índices do somatório.

As componentes do campo serão expressas através da equação (2.13):

$$Bx = -\frac{\partial V}{\partial x} \qquad By = -\frac{\partial V}{\partial y} \qquad Bz = -\frac{\partial V}{\partial z}$$
 (2.13)

Para este modelo é necessário expressar as coordenadas x, y e z em função da longitude e da latitude do ponto na superfície terrestre e em função dos ângulos α e Ψ , definidos através da trigonometria esférica, pelas relações (2.14).

$$\begin{cases} x = R \operatorname{sen}(\Psi) \cos(\alpha) \\ y = -R \operatorname{sen}(\Psi) \operatorname{sen}(\alpha) \end{aligned} (2.14) \\ z = R(1 - \cos(\Psi)) \end{cases}$$

$$\Psi = \operatorname{arccos}[\cos(\theta_0) \cos(\theta) + \sin(\theta_0) \sin(\theta) \cos(\lambda - \lambda_0)] (2.15)$$

$$\alpha = \operatorname{arcsen}\left[\frac{\operatorname{sen}(\theta) \operatorname{sen}(\lambda - \lambda_0)}{\operatorname{sen}(\Psi)}\right] (2.16) \qquad \cos(\alpha) = \pm \sqrt{(1 - (\operatorname{sen}(\alpha))^2)} (2.17)$$

Para obter os coeficientes para este modelo é utilizado o método dos mínimos quadrados, que obtém a quantidade de coeficientes, através da equação (2.18).

$$n\'umero = 2N_{max}(N_{max} - 1) + 3 (2.18)$$

O método da expansão por Harmônicos retangulares é eficiente para o modelo de pequenos comprimentos de onda na série de Fourier de x e y, que estão dentro da área limitada pelo retângulo, dimensionado por Lx e Ly, que define a área a ser analisada. A solução da equação de Laplace é valida para distribuição de dados em uma pequena região da superfície da esfera; esta região quando comparada à dimensão global pode ser aproximada como um pequeno plano. Se a região analisada for maior, devido à curvatura da superfície da Terra, os dados irão cobrir uma grande extensão de z, causando uma ampla variação nos valores dos termos exponenciais para a expressão do potencial. Este problema introduz instabilidades numéricas no cálculo dos coeficientes do modelo.

2.4-Modelo por harmônicos esféricos

Este modelo é utilizado para representar grandes áreas na superfície da Terra, através de funções harmônicas esféricas que são ortogonais apenas na região analisada. Problemas em estabilidade numérica aparecem principalmente quando o modelo é utilizado fora da área restrita, e é mais adequado para análise global, e não regional. Este método foi utilizado por **Dawson et al (1981)**, para a análise de dados de declinação na região do Canadá; os resultados deste modelo não foram eficientes, pois o método não é adequado para pequenos comprimentos de onda. Segundo **Bullard (1967)**, a resolução do modelo é definida pelo mínimo comprimento de onda λ , que é descrito como a circunferência da Terra ($2\pi R$) dividida pelo a máxima ordem dos coeficientes utilizados pelo modelo, de acordo com a equação (2.19).

$$\lambda = \frac{2\pi R}{l} \quad (2.19)$$

Segundo Gauss (1838), o campo geomagnético de um ponto no espaço pode ser determinado através de um modelo matemático aplicado à simetria esférica do problema proposto (figura 2.2), denominado de harmônicos esféricos globais. Neste modelo, o campo geomagnético obedece à lei de conservação do campo, a qual define que o rotacional de um potencial é zero para um sistema conservativo; logo, o campo geomagnético pode ser calculado através do divergente deste mesmo potencial, satisfazendo a equação de Laplace para coordenadas esféricas (equação 2.20).

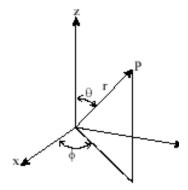


Fig 2.2- representação do sistema de coordenadas esféricas

$$\nabla \otimes V = \mathbf{0}$$
 $\log o$ $\nabla V = -B$ $equação de laplace $\nabla^2 V = 0$$

laplaciano em coordenadas esféricas

$$\nabla^{2}() = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r}\right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta}\right) + \frac{1}{\left(r \sin \theta\right)^{2}} \frac{\partial^{2}()}{\partial \phi^{2}}$$
(2.20)

Neste modelo, o potencial possui duas dependências: radial (relativa a distancia do ponto ao centro da Terra) e angular (relativo aos ângulos de colatitude (θ) e longitude (ϕ)). Devido a esta característica, o potencial pode ser expresso através da relação (2.21).

$$V = V(r, \theta, \phi)$$
 $V = R(r) \Theta(\theta, \phi)$ (2.21)

Se a equação (2.21) for substituída na equação de Lapace para o potencial em coordenadas esféricas, equação (2.20), e resolvendo a solução da equação diferencial de **R** e **Θ**

através do método da separação de variáveis se obtém a solução geral para o potencial geomagnético através da equação (2.22).

$$V(r,\theta,\phi) = \sum_{n=1}^{n \max imo} \sum_{m=0}^{m} P_n^m \left(\cos\theta\right) \begin{cases} \left[C_n^m \left(\frac{r}{a}\right)^n + (1 - C_l^m) \left(\frac{a}{r}\right)^{n+1} \right] g_n^m \cos(m\phi) \\ + \left[S_n^m \left(\frac{r}{a}\right)^n + (1 - S_n^m) \left(\frac{a}{r}\right)^{n+1} \right] h_n^m \sin(m\phi) \end{cases}$$
(2.22)

onde **a** é o raio, **r** a distância até o centro da Terra , θ colatitude , ϕ longitude, $P_n^m(\cos\theta)$ são as funções de Legendre com a normalização de Schmidt ; C_n^m, S_n^m , são os coeficientes relativos à fonte de origem externa , g_n^m, h_n^m são os coeficientes relativos a fonte de origem interna ou coeficientes de Gauss, **n** é o grau da expansão dos coeficientes e **m** é a ordem da função de Legendre Associada.

A função $P_n^m(\cos\theta)$, denominada polinômios de Legendre podem ser calculadas numericamente através da série abaixo (2.23):

$$P_n^m(\cos\theta) = \frac{\sin\theta}{2^n} \sum_{n=0}^{\inf(\frac{n-m}{2})} \frac{(-1)^n (2n-2)!}{t!(n-t)!(n-m-2t)!} (\cos\theta)^{(n-m-2t)}$$
onde $\inf(\frac{n-m}{2})$ é o maior inteiro menor que $\frac{n-m}{2}$

que são normalizadas segundo os critérios de Schmidt, que define que $P_n^m = P_{l,m}$ para o grau de expansão $\mathbf{m} = \mathbf{0}$ e que $P_n^m = \sqrt{\frac{2(n-m)!}{(n+m)!}}$ para $\mathbf{m} > \mathbf{0}$, graus de expansão maiores que zero, ver Schimitz (1935) e Chapman and Bartels (1940).

Assim o Potencial será expresso através de duas contribuições : $\left(\frac{r}{a}\right)^n$, $\left(\frac{a}{r}\right)^{n+1}$, resultado da solução radial da equação de Laplace, onde \mathbf{r} é a distância radial, e \mathbf{a} o raio da Terra e $P_n^m(\cos\theta)$, denominados polinômios de Legendre são resultantes da solução angular da equação de Laplace .

As componentes do campo geomagnético em coordenadas esféricas, são expressas através da relação (2.24)

$$Bx = -\left(\frac{1}{r}\right)\frac{\partial V}{\partial \theta} \qquad By = -\left(\frac{1}{r\sin(\theta)}\right)\frac{\partial V}{\partial \phi} \qquad Bz = -\frac{\partial V}{\partial r} \quad (2.24)$$

2.5-Separação das fontes geradoras do campo

Nesta representação do potencial haverá duas contribuições distintas: uma de origem externa, cuja a fonte é explicada na contribuição da corrente elétrica na região da ionosfera e magnetosfera, sendo esta contribuição presente nos coeficientes $\mathbf{C}_1^{\mathbf{m}}$, $\mathbf{S}_1^{\mathbf{m}}$. A outra é de origem interna, relativa ao movimento do fluido na região do núcleo da Terra, cuja contribuição está nos coeficientes $\mathbf{g}_1^{\mathbf{m}}$, $\mathbf{h}_1^{\mathbf{m}}$, denominados coeficientes de Gauss.

Este tipo de expansão por harmônicos esféricos permite separar as contribuições do campo de origem interna, equação (2.25), daquelas cuja origem é externa, equação (2.26).

fonte de origem interna

$$V(r,\theta,\phi) = a \sum_{n=0}^{n \max} \sum_{m=0}^{m} \left(\frac{a}{r}\right)^{m+1} \left\{ g_n^m \cos(m\phi) + h_n^m \sin(m\phi) \right\} P_n^m(\cos\theta)$$
 (2.25)

fonte de origem externa

$$V(r,\theta,\phi) = a \sum_{n=0}^{n \max} \sum_{m=0}^{m} \left(\frac{r}{a}\right)^{m} \left\{ C_{n}^{m} \cos(m\phi) + S_{n}^{m} \sin(m\phi) \right\} P_{n}^{m} (\cos\theta)$$
 (2.26)

Este processo se baseia na análise dos coeficientes que constituem a série do potencial total, através do peso da sua contribuição para o modelo. A maior contribuição na formação do campo geomagnético total é o de origem interna, denominada campo principal. O estudo da variação deste campo é de extrema importância, porque este varia muito lentamente no tempo e é responsável pela variação secular. Esta variação possui uma grande importância no estudo do geomagnetismo, principalmente para construção de cartas de declinação e inclinação utilizadas na navegação, análise da reversão do campo geomagnético e redução e análise de feições geológicas através de dados aeromagnéticos.

Para o estudo do campo principal, os coeficiente C_1^m , S_1^m são desprezíveis, sendo válidos somente os coeficientes g_I^m , h_I^m . Estes coeficientes são gerados através do ajuste dos dados experimentais do campo geomagnético, através do método dos mínimos quadrados. Este modelo

é eficiente para a representação global do campo.O modelo permite a separação em componentes dipolares, quadripolares, etc.

Dependendo do grau dos coeficientes utilizados no cálculo do potencial é possível separar cada uma destas componentes e estimar a profundidade das fontes geradoras do campo, através do gráfico do espectro de potencias (figura 2.3). Nesta representação, $\mathbf{R_l}$ é o erro quadrático médio da intensidade do campo gerado pelo harmônico \mathbf{l} , ver equação (2.27).

$$R_{l} = (l+1) \sum_{n=0}^{l} \left[(g_{l}^{m})^{2} + (h_{l}^{m})^{2} \right] (2.27)$$

Aplicando a raiz quadrada na equação (2.27), obtém-se a intensidade do campo gerado pelo harmônico, denominado I, através da equação(2.28)

$$I = \sqrt{R_l} \ (2.28)$$

A determinação da profundidade da fonte geradora é determinada a partir das inclinações das retas ajustadas para cada um dos intervalos representados na figura (2.3), através da equação (2.29).

$$S + 2 * \log \left(\frac{a}{r} \right) = 0 \ (2.29)$$

Onde **S** representa o coeficiente angular da reta de ajuste, **a** o raio da Terra e **r** a profundidade da fonte.

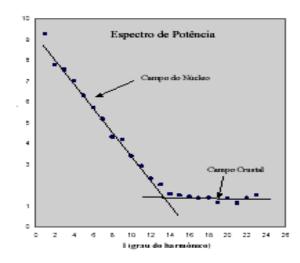


Figura 2.3. espectro de potências dos harmônicos esféricos.O gráfico mostra o logaritmo de R₁ em função do grau da expansão. O gráfico mostra duas tendências claramente distinguíveis: o trecho entre l = 0 e l = 12 corresponde ao campo gerado no núcleo da Terra, enquanto o trecho entre l = 12 e l = 24 corresponde ao campo de origem crustal. As retas são ajustadas pelo método dos mínimos quadrados, e a interseção das retas indica o grau da expansão no qual ocorre a separação entre as fontes do campo. Retirada Blakely,1995, Cambridge University Press, London

Utilizando a equação da resolução dos harmônicos esféricos ,equação (2.18) , é possível calcular o comprimento de onda representado para l=10 , λ =3998 km e l=12, λ =3332 km . Estes resultados são da ordem das dimensões espacial de escala global.

2.6 - Modelo global para o campo principal (IGRF)

O estudo do comportamento do campo geomagnético principal vem sendo utilizado para descrever e representar o campo em escala global, obtendo as contribuições tanto de fontes do campo magnético da região do núcleo, quanto da crosta terrestre.

Para o modelamento do campo geomagnético em escalas globais é utilizado o modelo dos harmônicos esféricos proposto pela IAGA, denominado IGRF, utilizado desde 1955 e sendo atualizado em períodos de 5 anos, ver (tabela 2.1). Matematicamente o IGRF é um modelo para o campo geomagnético principal através de harmônicos esféricos, cujo coeficientes são expandidos até a ordem 10 e estes coeficientes são gerados para uma dada época, através de medidas magnéticas em toda a região do planeta, por meio de levantamentos terrestres (estação de repetição e observatórios magnéticos), levantamentos marinhos e aéreos (aeronaves ou por satélite) ver **Peddie W. Norman (1982), Langel (1992) e Macmillan et al (2005)**.

As ultimas gerações do IGRF, a partir de 2005, utilizam uma expansão até grau 12, para limitar o campo modelado ao campo principal, conforme ilustrado na tabela (2.1).

Tabela 2.1- Nomenclatura e validade dos modelos

NOME	SIGLA	VALIDADE	DEFINITIVO PARA
IGRF 10 th generation (revised 2005)	IGRF-10	1900.0-2010.0	1945.0-2000.0
IGRF 9 th generation (revised 2003)	IGRF-9	1900.0-2005.0	1945.0-2000.0
IGRF 8 th generation (revised 1999)	IGRF-8	1900.0-2005.0	1945.0-1990.0
IGRF 7 th generation (revised 1995)	IGRF-7	1900.0-2000.0	1945.0-1990.0
IGRF 6 th generation (revised 1991)	IGRF-6	1945.0-1995.0	1945.0-1985.0
IGRF 5 th generation (revised 1987)	IGRF-5	1945.0-1990.0	1945.0-1980.0
IGRF 4 th generation (revised 1985)	IGRF-4	1945.0-1990.0	1965.0-1980.0
IGRF 3 rd generation (revised 1981)	IGRF-3	1965.0-1985.0	1965.0-1975.0
IGRF 2 nd generation (revised 1975)	IGRF-2	1955.0-1980.0	-
IGRF 1 st generation (revised 1969)	IGRF-1	1955.0-1975.0	-

Tabela retirada do site http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html

O modelo IGRF utiliza uma grande densidade de dados do campo geomagnético principal sobre a superfície da Terra, distribuídos entre os 5 continentes. Observando a figura 2.4, se percebe a maior densidade de pontos distribuídos principalmente na Europa e América do Norte, diminuindo sensivelmente na América do Sul, África, Ásia e Oceania. Todas estas características causam diferenças entre o resultado do modelo em relação aos dados observados nestas regiões.

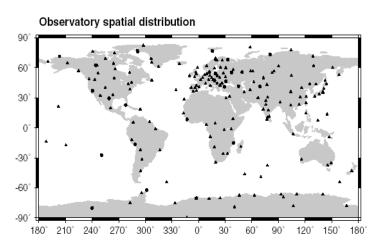


Figura 2.4- distribuição espacial dos observatórios magnéticos pelo globo. O eixo horizontal representa as longitudes e o eixo vertical as latitudes. extraído de IAGA Corporation Internacional.

Os dados obtidos anualmente nos observatórios magnéticos em torno do globo terrestre são as bases para a geração deste modelo. Este modelo evoluiu bastante devido à utilização de dados de satélites no período de 1979-1980 (MAGSAT), e de 1999 (Ørsted,CHAMP), para complementar as áreas do globo terrestre que não possuam observatórios magnéticos.

O modelo global como o **IGRF** alcança uma precisão melhor que 1° em declinação e a precisão é melhor em áreas densamente observadas, como a Europa e América do Norte; os piores resultados aparecem em áreas oceânicas como o Pacífico Sul ,devido à pequena quantidade de dados nesta região. A precisão deste modelo diminui no Ártico nas proximidades do Pólo Norte Magnético.

Este modelo é representado matematicamente, através de funções harmônicas esféricas que são ortogonais apenas na região analisada, ver equação (2.25).

$$V(r,\theta,\phi) = a \sum_{n=0}^{n \max} \sum_{m=0}^{m} \left(\frac{a}{r}\right)^{m+1} \left\{ g_n^m \cos(m\phi) + h_n^m \sin(m\phi) \right\} P_n^m \left(\cos\theta\right) (2.25)$$

Neste modelo o potencial magnético é representado em função dos parâmetros relativos à localização do ponto na esfera terrestre, estes são:

a distancia radial (r) , o raio da Terra (a), a longitude (θ) e a latitude(ϕ) , a partir destes são gerados coeficientes $\mathbf{g^m}_n$ e $\mathbf{h^m}_n$, denominados coeficientes de Gauss.

2.6.1- Incerteza do modelo IGRF

Para medir o grau de imprecisão (erro) do modelo IGRF, é calculado o desvio padrão dos resultados gerados pelo modelo em relação aos dados globais observados. Segundo esta análise, se percebe através dos tempos que este erro para o modelo do campo principal vem diminuindo sensivelmente de valores da ordem de 300nT para 10nT, (ver o site da IAGA http://www.ngdc.noaa.gov/IAGA/vmod/igrfhw.html).

Segundo **Lowes** (2000), o primeiro modelo definitivo para o campo geomagnético principal, **DGRF**, utilizava apenas dados de estações geomagnéticas e de repetição, para o período de 1945 e 1960. Esta pouca quantidade de dados causava um desvio padrão para o campo principal de 300nT, que diminuiu para 100nT a medida que foram inseridos novas dados de levantamentos terrestres, aéreos e marinhos. Com o aparecimento dos satélites os erros diminuíram muito, como aparece no modelo DGRF para 1965 a 1995, que tem o valor da ordem de 50nT, e finalizando modelos DGRF para 1980 e 2005 que são da ordem de 10nT

2.7- Harmônicos esféricos sobre uma calota

Haines (1985 a) demonstrou que a equação de Laplace pode ser resolvida, segundo as condições de contorno apropriadas para a análise do campo geomagnético sobre uma calota esférica. A solução é realizada em termos em função de tipos de funções harmônicas esféricas de grau real, mas de ordem inteira. Neste modelo as funções são ortogonais na região sobre a calota. Este método é adequado para o modelo em escala regional das equações de Laplace em uma geometria limitada por uma porção da superfície da Terra.. Nesta representação a distancia radial entra naturalmente na formulação, e uma faixa de intervalos de altitudes pode ser representada sem dificuldades através deste modelo.

As características principais que diferenciam este modelo da expansão por harmônicos esféricos são o grau real (nk) e o meio ângulo (θ_0) . O meio ângulo é definido pela metade do ângulo do setor circular sobre a superfície terrestre, ver figura (2.5).

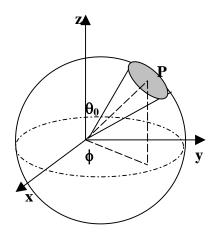


Figura 2.5- representação da calota na superfície terrestre

Estas características causam um equação de Laplace em função de $\bf a$ (o raio da Terra), $\bf r$ (distância do ponto considerado até o centro da Terra), $\bf \theta_0$ (meio ângulo), $\bf \theta$ (colatitude (90-latitude)) e $\bf \phi$ (longitude),conforme a equação(2.30).

$$V(r,\theta,\phi) = a \sum_{n=0}^{n \max} \sum_{m=0}^{m} \left(\frac{a}{r}\right)^{m+1} \left\{g_{n}^{m} \cos(m\phi) + h_{n}^{m} \sin(m\phi)\right\} P_{nk}^{m} \left(\cos\theta\right) (2.30)$$

Desde 1985, a partir do trabalho de Haines (1985a), diversos trabalhos sobre o ajuste usando (SCHA) foram propostos, tais como: De Santis (1991), De Santis (1992), Haines and Torta (1994), De Santis, and Falcone (1995), De Santis, Torta and Falcone (1996), Lowes (1999). Este modelo foi aplicado em inúmeros estudos regionais em inúmeros trabalhos, como por exemplo, no Canadá em Haines (1985b,1995c), Haines et al (1997); na Itália em De Santis et al (1990), De Santis et al (1997) ,em novas abordagens aplicadas na Espanha em Torta et al (1992). Com decorrer dos anos esta metodologia sofreu algumas modificações, aparecendo em trabalhos mais recentes através de Korte at al (2003) e Thebault et al (2004).

Mais detalhes sobre esta metodologia ver capítulo 3.

Capítulo III - Importância do tema

O conhecimento do campo geomagnético vem sendo utilizado por muito tempo pelo homem. Na época das grandes navegações foram confeccionadas cartas de inclinação e declinação magnética que tinham a função de orientar as caravelas durante as grandes viagens da Europa rumo a outros continentes, como as Américas, Ásia e África.

Este processo era feito de forma muito rudimentar: a cada local que a frota passava, nos respectivos portos de parada eram anotados os valores da declinação e inclinação das bússolas; isto gerava uma grande quantidade de informações sobre o campo geomagnético em inúmeros pontos durante a viagem. Através desta metodologia, foi possível a confecção das cartas marítimas que contribuíram para impulsionar o movimento das grandes navegações.

As cartas magnéticas são a representação gráfica dos elementos do campo magnético Terrestre em uma determinada data e numa dada altitude, no sistema de coordenadas geodésicas. Há dois tipos distintos de cartas magnéticas: as isomagnéticas e as isopóricas.

As Isomagnéticas são linhas que representam pontos na superfície terrestre com o mesmo valor para um elemento do campo magnético em uma dada época, e são utilizadas para representar as componentes do campo geomagnético. Quando estas linhas são utilizadas para representas as componentes cartesianas do campo principal, ou seja, Bx, By, Bz,H e F estas são denominadas isodinâmicas e são representadas pelo valor em nano tesla (nT), ver figura (3.1).

Se estas linhas representarem a declinação magnética estas serão denominadas isogônicas, que são representadas em graus, ver figura (3.2). A isogônica que representa a declinação zero possui uma denominação especial esta é denominada linha agônica.

Para representar a inclinação as isolinhas são denominadas isoclínicas e também são representadas em graus, ver a figura (3.3), onde aquela que representa a inclinação zero é denominada de equador magnético.

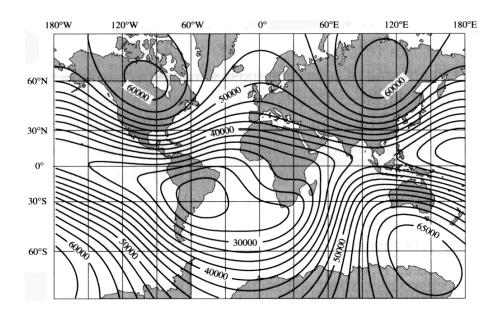


Figura 3.1- representação das isodinâmica de F , com contornos de 2500nT baseado no modelo IGRF 1990, retirada de Blakely ,1995, , Cambridge University Press, London

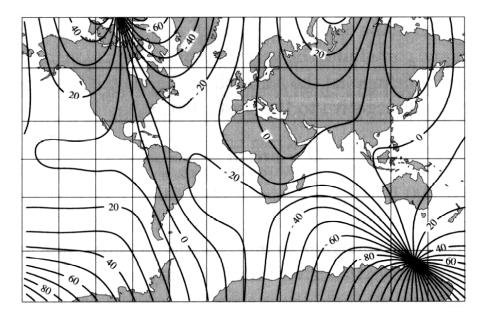


Figura 3.2-representação das isogônicas baseado no modelo IGRF 1990 , com contorno de intervalos de 10° , retirada de Blakely ,1995,Cambridge University Press, London.

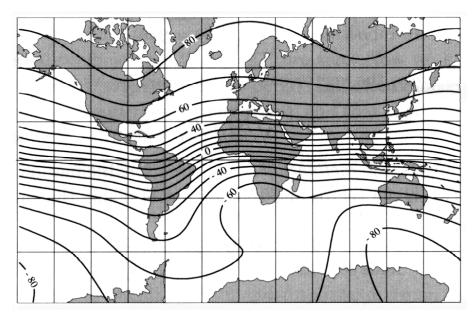


Figura 3.3 representação das isoclínicas , baseado no modelo IGRF 2005 , com contorno de intervalos de 10° , retirada de Blakely ,1995,Cambridge University Press, London.

Quando as isolinhas representam locais da superfície terrestre com a mesma variação anual de uma componente do campo magnético, estas são denominadas de isopóricas e representam a variação secular de qualquer componente do campo magnético principal, ver figura (3.4).

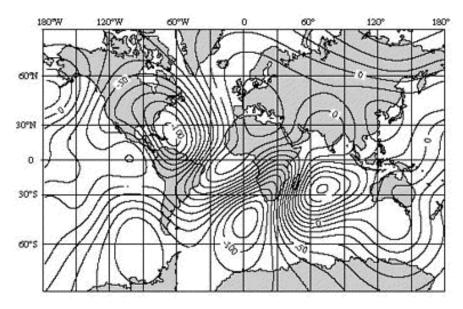


Figura 3.4- variação secular de F em nT/ano baseado no modelo IGRF 1990 para 1991, retirada de Blakely ,1995, Cambridge University Press, London.

As cartas isogônicas e isoclínicas são utilizadas atualmente, para a orientação de Navios e de aviões em viagens a longas distâncias, pois em caso de pane nos sistemas de navegações atuais, como por exemplo, o sistema de navegação por satélite (GPS) e o radar, é utilizada a navegação pela bússola utilizando estes tipos de cartas processadas.

As cartas isodinâmicas têm a função de identificar as componentes do campo geomagnético Bx, By, Bz, H e F e as suas respectivas anomalias magnéticas em escala global (anomalias do campo principal).

3.1-Campo geomagnético principal e a magnetometria

O valor da anomalia magnética é obtido através da redução dos dados brutos sobre o campo geomagnético na região analisada. O processo é realizado, retirando do valor do campo medido as contribuições relativas a variação diurna e a do campo principal, gerado pelo modelo do IGRF. Após todo este processo, só restará uma pequena fração do campo medido relativo a anomalia magnética crustal. Neste processo é muito importante que os dados sejam bem reduzidos, pois um aumento ou uma diminuição dado valor da anomalia no ponto de estudo, causa inúmeros erros de interpretação na localização e no modelo da anomalia da região analisada.

Na área de prospecção de minérios este procedimento é de extrema importância, pois algumas estruturas geológicas são compostas por minerais ou rochas com comportamentos ferromagnéticos. Estes materiais, na presença de um campo magnético externo, alinham os seus dipolos na direção do campo principal, induzindo um campo secundário no corpo. Todo este processo contribuirá no aumento do valor do campo geomagnético medido na região.

Na área de prospecção de petróleo e gás, estes materiais não contribuem positivamente para o aumento do campo geomagnético, pois são do tipo paramagnético. Neste tipo de material, os dipolos do corpo ficam desalinhados com o campo magnético externo, diminuindo a sua intensidade e gerando uma anomalia negativa, que também podem identificar estas estruturas.

3.2- Atualização dos dados da rede do Observatório Nacional

O Observatório Nacional (ON) mantém uma rede de estações de medidas do campo geomagnético composta por 131 estações distribuídas no território brasileiro (figura 3.5), ver Lima e Carvalho (2001), além de 2 observatórios magnéticos de operação contínua, Vassouras-RJ e Tatuoca –PA. As estações que compõem a rede geomagnética do ON são ocupadas em períodos de 5 anos, em média e juntamente com os observatórios, fornecem informações importantes para confecção das cartas Magnéticas do Brasil, para representar a inclinação, a declinação e a intensidade do Campo Total que são publicadas em intervalos de 5 anos.

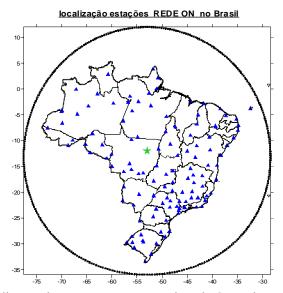


Figura 3.5 – localização das estações geomagnéticas do ON sobre o território brasileiro

As cartas magnéticas do ON para o Brasil são elaboradas através de um modelo matemático que é ajustado utilizando como base as informações relativas aos dados dos campos coletados nas estações que compõem a rede. O modelo atual utilizado na confecção das cartas é o polinomial, que utiliza um polinômio de 4º grau para ajustar os dados da rede, ver **Motta e Barreto (1986)**.

Todos estes dados também são utilizados na elaboração do modelo internacional do campo geomagnético, denominado IGRF, através da cooperação entre o Observatório Nacional e a IAGA (Internacional Association for Geomagnetism and Aeronomia).

Neste trabalho, foram utilizados apenas os dados das estações da rede do Observatório que tiveram ocupação no período de 5 anos e as atuais. Devido a este fato, serão eliminados os dados de 24 estações da rede que foram considerados desatualizados e possíveis causadores de erros no modelo, reduzindo assim a base de dados para 127 estações de repetição.

O arquivo de dados brutos sobre as estações que compõe a rede do ON contém as seguintes informações:

- Nome do local e sigla do estado de origem
- coordenadas geográficas (latitude e longitude) em graus.
- altitude em relação ao nível do mar (metros)
- época na qual foram obtidas as medidas (anos fração)
- inclinação e declinação magnética (minutos de arco)
- valores das componentes do campo geomagnético (Bx, By, Bz) em nT.

Conforme o anexo 1.

3.3-Redução à mesma Data

O maior problema enfrentado neste tipo de trabalho é o fato do campo magnético de um local na superfície da Terra variar com o tempo. Devido a esta característica, são realizados levantamentos periódicos em intervalos de 5 anos. Este comportamento é denominado variação secular.

A variação secular é um fator de grande importância na redução dos dados das 127 estações que compõem a rede geomagnética do ON. De acordo com as características da estação, a redução dos dados será realizada de maneira diferente. Para estações com grande densidade de dados do campo geomagnético será utilizado o método do ajuste linear para a obtenção da variação secular das componentes do campo geomagnético.Para as estações com apenas uma medição ou poucos dados, será realizado o método da atualização dos dados pela variação secular gerada pelo modelo do IGRF, estes métodos serão citados a seguir.

3.3.1- Ajuste linear dos dados

O ajuste linear utilizou dados reduzidos de 110 estações de repetição do ON para 2005, retirados do trabalho da aluna de iniciação científica do ON, Lays Helena Fogagnoli de Oliveira, apresentado em sua monografia final do curso de Matemática da UERJ, ver **Oliveira**, **L.H.F (2005)**.

Este trabalho consiste de uma extrapolação utilizando os dados obtidos de épocas diferentes para calcular o campo para o período de 2005, utilizando um modelo de ajuste linear pelo método dos mínimos quadrados dos dados do campo geomagnético em função do tempo. Este modelo consiste em calcular através da curva de ajuste, o valor da variação de secular das componentes do campo geomagnético de cada estação da rede do ON, cuja unidade é a (nT/ano), de acordo com a equação (3.1).

$$a = coeficiente linear da reta = \frac{\sum x y - \left[\frac{\sum x}{\sum y}\right]}{n+1}$$

$$y = ax + b_{(3.1)}$$

$$\sum x^2 - \left[\frac{\sum x}{n+1}\right]$$

$$b = coeficiente de ajuste da reta = \frac{\left(\sum y - a \sum x\right)}{n+1}$$

$$\varepsilon = \frac{\sum x \ y - \left[\frac{\sum x}{n+1}\right]}{\sum x^2 - \left[\frac{\left(\sum x}{n+1}\right]} \sum y^2 - \left[\frac{\left(\sum y\right)^2}{n+1}\right]}$$

para um bom ajuste o valor de ${\bf E}$ se aproxima de 100

Para demonstrar como é realizado este processo para cada estação foram utilizados os dados da estação Natal coletados nos períodos 1919 a 2001, figura (3.6). Estes dados foram selecionados de tal forma que ajuste fosse o melhor possível. Para diminuir a propagação do erro no ajuste linear, foram descartados os dados relativos a intervalos de tempo anteriores a 1980, pois a tecnologia e a precisão utilizadas por estes instrumentos, causavam inúmeros erros no processo de medição, sendo assim uma fonte de erro significante durante o processo.

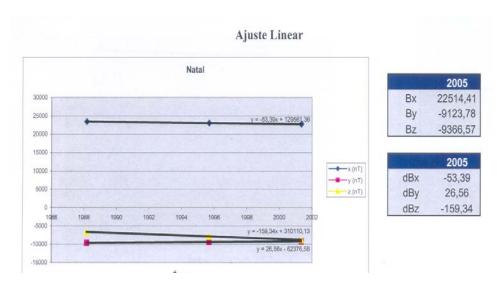


Figura 3.6-Resultados da variação secular e campo atualizado para 2005 para a estação de Natal. Retirado de **Oliveira, L.H.F,** 2005.

O intervalo selecionado para obter o ajuste linear foi o compreendido entre 1980 e 2000 e este foi escolhido pois o valor do campo calculado para este período foi muito próximo ao valor gerado pelo modelo do IGRF para esta mesma época e a qualidade do ajuste é demonstrada através do resíduo do valor calculado pelo ajuste linear para dada época pelo o valor gerado pelo IGRF, conforme a equação (3.2).

Re
$$siduo(R) = valor \ calculado(y) - valor \ IGRF(f)$$
 (3.2)

3.3.2- ajuste pela variação secular calculada pelo modelo do IGRF

Este procedimento será utilizado nas estações com apenas 1 medida ou com poucos dados de outros períodos.

Para realizar esta redução, será utilizado o programa na linguagem Fortran que foi adaptado para calcular a variação secular nas datas e nas localidades das estações de repetição do ON com as características descritas acima. Na tabela (3.1), estão representadas as datas convertidas para ano-fração, conforme a equação (3.3):

ano fração
$$\Rightarrow$$
 dia/mês/ano
ano = parte inteira (ano fração)

mes = parte inteira $\left[1 + \frac{(ano fração - ano)*365}{30}\right]$

dia = parte decimal $\left[1 + \frac{(ano fração - ano)*365}{30}\right]*30$

dia/mês/ano \Rightarrow ano fração
ano fração - ano $+ \frac{mês}{12} + \frac{dia}{30*12}$

Tabela 3.1- Conversão dos valores de anos fração em dia, mês e ano para 17 estações da rede ON,

nome da estação	sigla	ano fração	parte inteira do ano fração	mês	dia
ALTA FLORESTA	MT	1989,473	1989	6	23
ATIBAIA	SP	2000,177	2000	2	5
BOM JESUS PIAUÍ	PI	1990,151	1990	1	25
BRASÍLIA	DF	1999,899	1999	10	28
CAMPINAS	SP	2000,536	2000	6	16
COSTA MARQUES	RO	1992,67	1992	8	5
CRISCIUMA	SC	2000,677	2000	8	7
EPITACIOLANDIA	AC	1992,63	1992	7	20
GAVIÃO PEIXOTO	SP	2002,718	2002	8	22
JOAO PESSOA	PB	2001,333	2001	3	32
LONDRINA	PR	1986,848	1986	10	10
MONTES CLAROS	MG	1999,878	1999	10	20
PIMENTEIRAS	MT	1992,687	1992	8	11
PORTO TROMBETAS	PA	1982,729	1982	8	26
SÃO MARTIM DA SERRA	RS	2000,645	2000	7	25
TIRADENTES	MG	1998,463	1998	5	19
VILA BELA SS	MT	1992,697	1992	8	14

TRINDADE

Para o cálculo da variação secular pelo modelo IGRF foi utilizada a atualização dos dados, através do número de dias Julianos entre a data da estação e a data na qual se deseja reduzir os dados. O cálculo do "dia Juliano" ou "data Juliana", foi um método idealizado pelo astrônomo francês Joseph Justus Scalinger (1540-1609), para caracterizar uma data específica no Calendário Gregoriano, sem se prender a dias, semanas, meses ou anos, vem facilitar as diversas situações em que se necessita trabalhar com datas. Esse método considera como início da contagem do tempo a data de 1º de janeiro de 4713 a.C. (mais exatamente ao meio-dia do dia 1º de janeiro desse ano) e consiste em cálculos com números naturais (inteiros). No calendário Juliano o ano comum (não bissexto) tem 365 dias, enquanto que nos anos bissextos (aqueles divisíveis por 4) é introduzido um dia a mais em fevereiro, passando o ano a ter 366 dias. O ano Juliano médio tem, então uma duração de 365,25 dias. A relação matemática, e a rotina para a obtenção do número de dias entre duas datas estão descritas no livro Numerical Recipes in FORTRAN 77 conforme a relação abaixo, ver **Press et al (1992).**

```
data
       gregoriana
                      : dia / mes /ano
                             juliano
conversão
                      dias
               para
* para
          meses
                   menores
                                que
                                        3, ou seja, janeiro
                                                                   e fevereiro
ano = ano - 1
mes = mes + 12
a = int (365,25 * ano + 4716)
b = \text{int} \left(\frac{a}{4}\right)
e = \text{int} \left( 30,6001 * (mes + 1) \right)
c = 2 - a + b
dia julianos
                = d + e + dia + c - 1524
assim , o número
                      de dias
                                 entre duas
                                               datas (data1
                                                               e data2)
 N_{dias} = dia juliano (data2) - dia juliano(
                                                     data1)
```

O programa lê as coordenadas geodésicas da estação (longitude, latitude, altitude), e a data, composta por dia, mês e ano. Na saída deste programa aparecerão às variações seculares das componentes do campo geomagnético para um dado período, denominado por dx, a componente Norte; dy a componente Leste e dz a componente vertical, ambas na unidade de nT/ano, os resultados estão expresso na tabela (3.2).

Tabela 3.2- Resultados para as variações seculares pelo modelo IGRF para 17 estações da rede ON

						variação secular (nT/ano)			
estação	estado	LONG	LAT	ALT(m)	ANO	DX	DY	DZ	DF
ALTA FLORESTA	MT	-56,1	-9,867	288	1989	-65	-50,04	-119,25	-52,67
ATIBAIA	SP	-46,575	-23,131	880	2000	-86,89	-13,86	-86,98	-27,41
BOM JESUS PIAUÍ	PI	-44,352	-9,029	325	1990	-65,95	-11,17	-148,35	-33,45
BRASÍLIA	DF	-47,868	-15,948	1110	1999	-79,01	-21,61	-116,85	-31,18
CAMPINAS	SP	-47,047	-22,814	630	2000	-86,45	-15,52	-88,01	-27,85
COSTA MARQUES	RO	-64,252	-12,422	169	1992	-62,77	-68,98	-78,12	-54,71
CRISCIUMA	SC	-49,423	-28,725	42	2000	-85,78	-19,04	-60,85	-32,49
EPITACIOLANDIA	AC	-68,733	-11,017	150	1992	-57,62	-76,14	-59,29	-56,8
GAVIÃO PEIXOTO	SP	-48,403	-21,75	515	2002	-84,93	-20,38	-91,28	-29,35
JOAO PESSOA	PB	-34,843	-7,091	47	2001	-57,85	21,98	-155,07	-13,97
LONDRINA	PR	-51,133	-23,333	570	1986	-83,75	-27,78	-80,73	-32,56
MONTES CLAROS	MG	-43,809	-16,707	630	1999	-81,95	-8,05	-117,76	-24,21
PIMENTEIRAS	MT	-61,047	-13,483	185	1992	-66,66	-61,62	-89,14	-51,52
PORTO TROMBETAS	PA	-56,398	-1,484	86	1982	-49,81	-50,98	-141,42	-72,33
SÃO MARTIM DA SERRA	RS	-53,82	-29,443	485	2000	-81,91	-31,11	-52,09	-36,99
TIRADENTES	MG	-44,178	-21,11	927	1998	-86,92	-7,4	-97,55	-24,37
VILA BELA SS TRINDADE	MT	-59,967	-15,015	270	1992	-69,27	-58,06	-88,51	-48,73

Com os valores das variações seculares calculados, será realizada a atualização do campo geomagnético através do programa modelo-atualização-campos (confeccionado na linguagem Fortran) de acordo com as equações (3.4):

$$Bx_{atual} = (2005 - ano) * dX + Bx_{antigo}$$

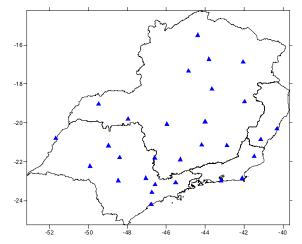
$$By_{atual} = (2005 - ano) * dY + By_{antigo}$$
(3.4)
$$Bz_{atual} = (2005 - ano) * dZ + Bz_{antigo}$$

3. 4-redução dos dados para a mesma altitude

É sabido que o campo geomagnético varia com a distância do ponto de observação ao centro da Terra, assim uma variável importante na redução dos dados é a altitude da estação em relação ao nível do mar.

Este tipo de redução não é um problema no modelo adotado, pois a variável altitude já está embutida dentro do modelo dos harmônicos esféricos sobre uma calota, pois os polinômios gerados para o cálculo das componentes do campo geomagnético estão em função da altitude do ponto, assim este modelo é considerado muito mais eficiente para dados com altitudes diferentes. Observando a equação (2.30), se percebe que a dependência do potencial está em r, onde o valor de r é a soma do raio da Terra (a), com a altitude (h).

$$V(r,\theta,\phi) = \sum_{m=0}^{\infty} \sum_{\substack{k=m\\k-m=nar}}^{\infty} a \left(\frac{a}{r}\right)^{nk(m)+1} P_{nk(m)}(\cos(\theta)) \left\{ g_k^m \cos(m\phi) + h_k^m \sin(m\phi) \right\} (2.30)$$

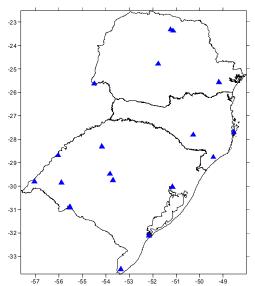

3.5- Descrição da rede Geomagnética do ON por região

<u>Região sudeste:</u> 1 observatório magnético –Vassouras-RJ e 30 estações de repetição distribuídas entre os 4 estados representados na tabela (3.3) e figura (3.6).

Tabela 3.3- distribuições das estações do ON na região Sudeste

Estado	Números de estações
RJ	3
SP	10
MG	15
ES	2

Figura 3.6- distribuição das estações por estado na região sudeste

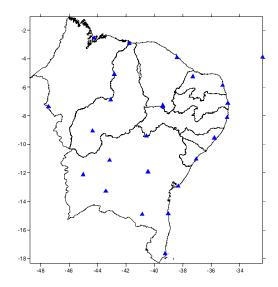


Região sul: 21 estações distribuídas entre os 3 estados representadas na tabela 3.4 e figura 3.7.

Tabela 3.4- distribuições das estações do ON na região Sul

Estado	Números de estações
RS	12
SC	3
PR	6

Figura 3.7- distribuição das estações por estado na região sul

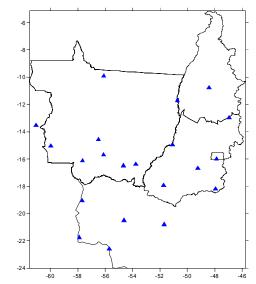


Região nordeste: 25 estações distribuídas entre os 9 estados representadas na tabela (3.5) e figura (3.8).

Tabela 3.5- distribuições das estações do ON na região Nordeste

Estado	Números de estações
BA	8
SE	1
CE	3
AL	1
PI	4
PE	3
MA	2
PB	1
RN	2

Figura 3.8- distribuição das estações por estado na região Nordeste

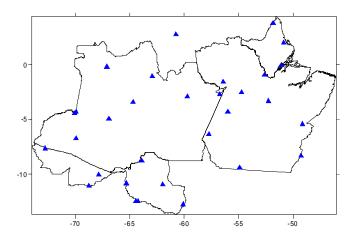


Região centro-oeste: 18 estações distribuídas entre os 3 estados e o distrito federal representadas na tabela (3.6) e figura (3.9).

Tabela 3.6- distribuições das estações do ON na região Centro-Oeste

Estado	Números de estações
MT	9
GO	5
DF	1
MS	3

Figura 3.9- distribuição das estações por estado na região Centro-oeste



Região norte: 31 estações, distribuídas entre os 4 estados representadas na tabela (3.7) e figura (3.10).

Tabela 3.7- distribuições das estações do ON na região Norte

Estado	Números de estações
PA	8
AP	3
AM	9
RR	1
RO	5
AC	3

Figura 3.10- distribuição das estações por estado na região Norte

Ao analisar a distribuição das estações geomagnética do ON em relação às regiões brasileiras, é correto afirmar que a região com a maior quantidade de dados é a região sudeste com 30 estações de repetição e a com menor quantidade é a região centro-oeste com 18 estações.

Mas, se analisarmos a relação do número de estações em relação à área da região em km^2 , pode-se expressar através da densidade por área (η), cuja unidade é o **número de estações** / km^2 , expressos através da equação (3.5) e com resultados expressos na tabela (3.8).

$$\eta = \frac{n\acute{u}mero \ de \ estações}{km^2} \ (3.5)$$

área(km2) região número de estações Norte 3.869.637,90 8,01E-06 31 25 1.561.177,80 | 1,60E-05 Nordeste Sul 21 575.316 3,65E-05 Sudeste 30 924.266 3,25E-05 1.606.445,50 1.31E-05 Centro-Oeste 21 8.536.843,20 1,50E-05 total 128

Tabela 3.8- Densidade de estações por área

Interpretando a tabela 3.14 pode-se concluir que a densidade de estações espalhadas no território brasileiro não é uniforme. A região mais densamente povoada de dados é a região Sul com o valor **3,65.10**⁻⁵ **estações/km²**, apesar de possuir apenas 21 estações; e a com pior densidade de dados é a região Norte com o valor de **8,01.10**⁻⁶ **estações/km²**, ainda que com a maior quantidade (31 de estações).

Esta análise mostra que é necessário aumentar a quantidade de estações para a região Norte .O ideal é que todas as regiões do Brasil, tenham pelo menos uma densidade de estações igual à da região Sul, que é de **3,65.10**-5 estações/km²; pode—se estimar a quantidade necessária de estações futuras para a rede geomagnética do ON utilizando este parâmetro, os resultados estão expressos na tabela (3.9).

Tabela 3.9- Previsões sobre o número de estações para rede geomagnética do ON

região	número de estações previstas	número de estações atuais	acréscimo de estações
Norte	141	31	110
nordeste	57	25	32
Sul	21	21	0
sudeste	34	30	4

centro-	peste 59	21	38
tota	312	128	184

Utilizando os resultados da tabela (3.9), é possível concluir que: a região Sudeste, para obter a densidade demográfica de **3,65.10**-5 **estações/km²** deverá ter um acréscimo de 4 estações; assim como um aumento de 32 na Nordeste , 38 no Centro-oeste e 110 estações na região Norte. Analisando todos estes resultados, é correto afirmar que o número de estações da região Sudeste está bem próximo do ideal e a região Norte necessita de uma quantidade estações muito maior que o dobro da atual.

Todas estas previsões aumentam o número de estações da rede ON de 127 para 312, ocasionando um acréscimo de 184 estações na rede do ON. È sabido que este tipo de procedimento é de um custo operacional muito grande e exige uma grande quantidade de verbas para que possa ser realizada; assim através desta análise, pode-se concluir que a densidade de dados para a construção do modelo é pequena quando comparada à área de estudo.

3.6- Descrição da calota

Este trabalho visa gerar um modelo regional do campo geomagnético na região do Brasil, através do modelo dos harmônicos esféricos sobre uma calota, proposto por **Haines** (1985), utilizando os dados da rede do Observatório Nacional.

Para utilizar este modelo, primeiramente é necessário que todos os dados das estações estejam dentro desta região; a calota é definida pelas coordenadas do seu centro, no sistema de coordenadas geodésicas (Latc, Longc) e o valor do meio ângulo (θ_0), ver figura (3.11).

O meio ângulo é a metade do ângulo formado pela cunha da calota na superfície terrestre .Utilizando este procedimento, quanto maior for o valor do meio ângulo da calota, maior será a área coberta pelo modelo. De acordo com este modelo, é de extrema importância a construção de uma calota que abranja toda a área a qual se deseja analisar.

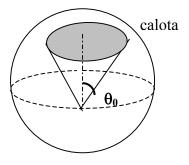


Figura 3.11- componentes da calota na superfície terrestre

Na aplicação deste modelo no território brasileiro, a coordenada do centro da calota tem latitude= -12 ° e longitude =-53°, com o meio ângulo (θ_0)=24°. Esta dimensão foi definida de tal forma que os pontos onde se localizam as estações de repetição estejam distantes da região da borda da calota e que todo o Brasil esteja contido nesta região.

Devido à grande extensão da calota, alguns países da América do Sul, visinhos ao Brasil que ficaram dentro desta região não terão dados de suas estações geomagnéticas utilizadas neste trabalho. Estes países citados são: As Guianas e região amazônica da Venezuela (Norte); Uruguai, Argentina (ao Sul); Chile, Peru, Paraguai e Bolívia (ao Sudoeste), ver figura (3.12).

Este trabalho também pode ser utilizado para a análise da região da plataforma continental e das ilhas oceânicas, porém for falta de dados nestas regiões, não será adequado utilizar este modelo para analisa-las.

dimensão da calota na América do Sul

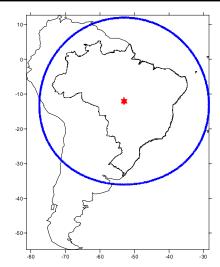


Figura 3.12- representação espacial da calota na América do Sul

3.7-Descrição do modelo

3.7.1-Rotação das coordenadas para o referencial da calota

A expansão por harmônicos esféricos sobre uma calota exige que a base de dados esteja apenas dentro da região da calota, correspondendo a uma janela circular sobre o Brasil.

Para testar esta metodologia, foi realizada uma simulação utilizando dados gerados pelo modelo IGRF sobre a região do Brasil. Os dados do modelo IGRF estão dispostos através de grade regular de 1º sobre a região, dentro de um limite definido pela latitude e longitude máxima e mínima do Brasil, correspondendo a uma janela retangular composta de dados que estão dentro e fora da região da calota. Estes dados estão contidos informações sobre a longitude (long) e latitude (lat) de cada ponto, as componentes do campo geomagnético Bx, By, Bz e altitude (h).

Para utilizar estes dados é necessário que todas as coordenadas e as componentes do Campo geomagnético sejam rotacionadas para a região da calota, localizado na região do pólo norte geográfico. Nesta região serão eliminados os dados externos à calota, utilizando como base de dados apenas os dados internos que correspondem a uma janela circular. Finalizando todo o processo, os dados selecionados retornarão à região de origem, obtendo uma janela de dados dentro da calota. A metodologia matemática utilizada será descrita nos parágrafos a seguir, ver **Haines (1988)**.

Na primeira etapa, serão convertidas as coordenadas dos pontos da janela retangular localizada sobre o Brasil no sistema de coordenadas geodésicas (lat, long, alt) para o sistema cartesiano (x,y, z), através das relações (3.6):

$$\begin{cases} x = \cos(\text{lat})\cos(\text{long}) \\ y = \cos(\text{lat})\sin(\text{long}) \\ z = \sin(\text{lat}) \end{cases}$$
(3.6)

Com todos os pontos convertidos para o sistema de coordenadas cartesianas (x,y,z), estes sofrerão uma rotação para a região da calota localizada no pólo Norte terrestre, através dos ângulos de rotação descritos na relação (3.7):

$$\begin{cases} \theta = -longc \\ \phi = -(90 - latc) \end{cases}$$
(3.7)

Utilizando a relação anterior, será possível descrever as novas coordenadas cartesianas dos pontos na região da calota (xv,yv,zv) em função dos ângulos de rotação (θ , ϕ), conforme as relações na equação (3.8):

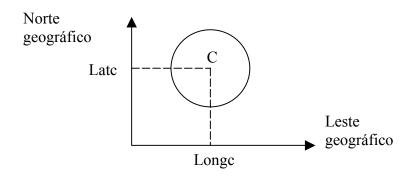
$$\begin{cases} xv = x(\cos(-\phi)\cos(-\theta)) + y(\cos(-\phi)\sin(-\theta)) - z(\sin(-\phi)) \\ yv = -x(\sin(-\theta)) + y(\cos(-\theta)) \\ zv = x(\sin(-\phi)\cos(-\theta)) + y(\sin(-\phi)\sin(-\theta)) - z(\cos(-\phi)) \end{cases}$$
(3.8)

Agora, após este processo, será realizada a conversão das coordenadas cartesianas para o sistema de coordenadas em relação ao centro da calota (longv, latv) (equação 3.9). Nesta região, as coordenadas do centro (latc, longc) da calota será o ponto com latitude 90° e longitude 0° e os demais pontos estarão compreendidos entre as longitudes -180° a 180°.

$$latv = \arctan\left(\frac{zv}{\sqrt{(xv)^2 + (yv)^2}}\right) \qquad longv = \arctan\left(\frac{yv}{xv}\right) \quad (3.9)$$

Para filtragem dos dados das coordenadas da calota de coordenadas geodésicas (lat, long), serão utilizadas as seguintes relações: $latv \ge 90 - meio~\hat{a}ngulo~e~$ para este trabalho , $latv \ge 66^{\circ}$

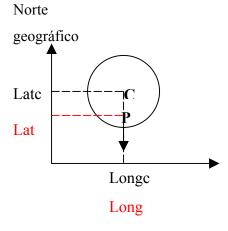
A nova base de dados será composta pelos pontos, dentro desta região da calota, os demais dados serão eliminados da base de dados.

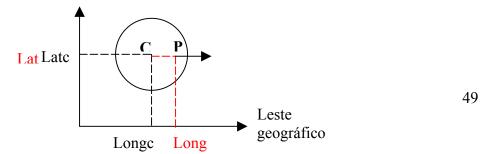

Após todas esta etapas, os dados já filtrados podem ser retornados para o seu local de origem, através de uma nova conversão do sistema de coordenadas da calota para o cartesiano. Finalizando, uma última rotação realizada no sentido horário, que retornará estes destes dados para o seu local de origem e finalizando com uma conversão para o sistema de coordenadas geodésicas.

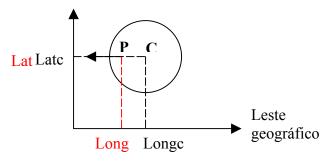
3.7.2-Rotação dos campos para o referencial da calota

O modelo da expansão por harmônicos esféricos sobre uma calota exige que as componentes do campo geomagnético Bx e By sejam rotacionadas de tal forma que o campo Bx esteja apontando para o centro da calota sobre o Brasil. Nesta rotação a única componente onde não ocorre a mudança do módulo, da direção e do sentido será a componente vertical, denominada Bz, ver **Haines (1988)**.

Para ocorrer a rotação será necessário obter os valores dos ângulos entre as componentes do campo em relação ao centro da calota. Esta definição dependerá das coordenadas de cada ponto da malha, ou seja, da latitude e longitude.


A localização do ponto em relação aos meridianos onde se localiza o centro da calota será importante para obter o ângulo de rotação, deste ponto para o referencial da calota. Quando o ponto da tiver uma de suas coordenadas igual à do centro da calota, o ângulo de rotação poderá assumir os seguintes valores: 0°, 180°, 90° e –90°. Nesta situação o ponto está na direção do norte ou do leste geográfico; assim, a obtenção deste ângulo de rotação será muito mais simples, não precisando recorrer aos conceitos da trigonometria esférica. Estes casos serão citados nos parágrafos a seguir.


Quando o campo está na mesma direção e sentido do Norte geográfico a **longitude do ponto é igual à da calota, mas sua latitude é maior que a latitude da mesma,** sendo assim, o ângulo de rotação será de **180°**.


Quando o campo está na mesma direção e sentido oposto ao Norte geográfico a longitude do ponto é igual à da calota, mas sua latitude é menor que a latitude da mesma . O ângulo de rotação será de 0° .

Quando o campo está na mesma direção e sentido do leste geográfico, a longitude do ponto é maior que a da calota, mas sua latitude é igual à latitude da mesma. O ângulo de rotação será -90°.

Quando o campo está na mesma direção e sentido oposto ao Leste geográfico, a longitude do ponto é menor que a da calota, mas sua latitude é igual à latitude da mesma. O ângulo de rotação será +90°.

Se o ponto não estiver alinhado com os meridianos da calota, será necessário recorrer a trigonometria esférica para poder encontrar o ângulo de rotação, e o seu valor dependerá da sua localização no quadrante da calota, podendo estar no 1°, 2°, 3° ou 4° quadrante.

Neste caso é necessário definir alguns fatores importantes utilizados na trigonometria esférica: os lados dos triângulos serão os arcos, representados pela letra minúscula (a,b,c) e os ângulos formados entre estes arcos, através da letra maiúscula (A,B,C), ver figura (3.13), calculados a partir das relações (3.10),(3.13).

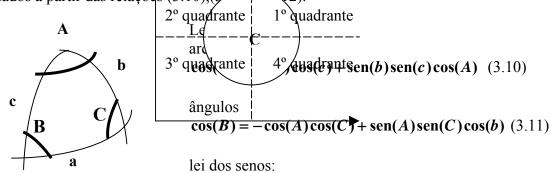
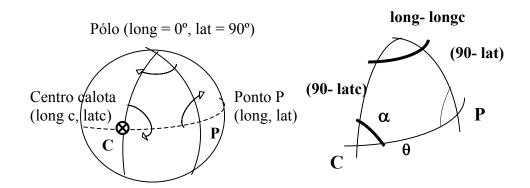



Figura 3.13- triângulo esférico $\frac{\operatorname{sen}(A)}{\operatorname{sen}(a)} = \frac{\operatorname{sen}(B)}{\operatorname{sen}(b)} = \frac{\operatorname{sen}(C)}{\operatorname{sen}(c)} \quad (3.12)$

Relacionando com os nossos dados pode-se afirmar que quando dois pontos estão localizados em meridianos diferentes, a distância entre eles dependerá do valor do arco formado entre o ponto no qual se deseja, ponto P, e as coordenada do centro da calota, ponto C. De acordo com a trigonometria esférica os lados dos triângulos serão os arcos, assim representados

na figura (3.14) como: $a = \theta$, b = (90-lat), c = (90-latc) e os ângulos A = (long-longc), $B = \alpha$ e $C = \gamma$; mais detalhes em Boczko (1984).

3.14- representação do triangulo esférico

Já conhecendo estas características será necessário primeiramente encontrar o valor do arco entre o ponto P e o centro da calota C, denominado de θ . Para este procedimento será utilizada a lei dos co-senos da trigonometria esférica, através da equação (3.10), e colocando em função das latitudes e longitudes do ponto e do centro da calota chegamos à equação (3.13).

$$\cos(\theta) = \cos(90 - lat)\cos(90 - latc) + \sin(90 - lat)\sin(90 - latc)\cos(long - longc)$$
(3.13)

Realizando alguns procedimentos na equação (3.13) se obtém equação (3.14) para o calculo do arco $\,\theta\,$.

$$\theta = \arccos \left[\sec(long) \sec(longc) + \cos(long) \cos(longc) \cos(long - longc) \right] (3.14)$$

Encontrado o valor do arco θ , será calculado o valor do ângulo de rotação definido como α , este será o ângulo formado entre o arco θ e a colatitude da calota, ou seja, (90-latc).

Utilizando a lei dos senos, equação (3.12), e colocando em função das latitudes e longitudes do ponto e do centro da calota se chega a equação (3.15):

$$\frac{\operatorname{sen}(long - longc)}{\operatorname{sen}(\theta)} = \frac{\operatorname{sen}(\alpha)}{\operatorname{sen}(90 - lat)} = \frac{\operatorname{sen}(\gamma)}{\operatorname{sen}(90 - latc)}$$
(3.15)

Realizando alguns procedimentos na equação (3.13) se obtém equação (3.16) para o calculo de α .

$$\alpha = \arcsin\left[\frac{\operatorname{sen}(long - longc)\operatorname{sen}(90 - latc)}{\operatorname{sen}(\theta)}\right]$$
(3.16)

ou pela lei dos cossenos ,equação (3.11), realizando algumas simplificações , chegamos a equação(3.17)

$$\cos(\alpha) = -\cos(\log - \log c) * \cos(\gamma) + \sin(\log - \log c) * \sin(\gamma) * \cos(90 - \log t)$$

$$\alpha = \arccos\left[\frac{\cos(90 - latc) - \cos(\alpha) * \cos(90 - lat)}{\sin(\alpha) * \sin(90 - lat)}\right] (3.17)$$

Já se conhecendo as equações para o calculo do ângulo de rotação, precisamos agora definir o seu sinal, que depende do quadrante na qual o ponto P está localizado:

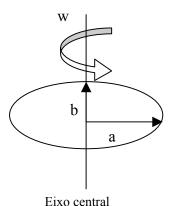
- 1° quadrante-Ambos os valores do sen(α) e do cos(α), são positivos, assim $\alpha = -\alpha$.
- 2°quadrante-O valor do sen(α) é positivo e o do cos(α) é negativo , são , assim $\alpha = +\alpha$.
- 3°quadrante-Ambos os valores do $sen(\alpha)$ e de $cos(\alpha)$, são negativos, assim $\alpha=-\alpha$.
- 4°quadrante-O valor do sen(α) é negativo e o do cos(α) é positivo , são , assim $\alpha = +\alpha$

Assim, os valores dos componentes do campo geomagnético na região da calota serão expressos em função do ângulo de rotação (α), das componentes do campo geomagnético **Bx**, **By**, **Bz**, conforme a equação(3.18):

$$Bx_{rot} = Bx \cos(\alpha) + By \sin(\alpha)$$

$$By_{rot} = -Bx \sin(\alpha) + By \cos(\alpha) \quad (3.18)$$

$$Bz_{rot} = Bz$$


3.8- Correções devido à superfície da Terra

3.8.1 -Superfície de referência

Dados espaciais caracterizam-se especificamente pelo atributo da localização geográfica. Um objeto qualquer somente tem sua localização geográfica estabelecida quando se pode descrevê-la em relação a outro objeto cuja posição seja previamente conhecida ou quando se determina sua localização em relação e um certo sistema de coordenadas.

A definição de posições sobre a superfície terrestre requer que a Terra possa ser tratada matematicamente. Para fins práticos, aproxima-se a Terra por um elipsóide de revolução, que é um sólido gerado pela rotação de uma elipse em torno do eixo dos pólos (eixo menor). Estudos geodésicos apresentam valores levemente diferentes para os elementos do elipsóide, medidos nos vários pontos da Terra. Assim, cada região deve adotar como referência o elipsóide mais indicado.

No Brasil adotou-se o elipsóide de Hayford, cujas dimensões foram consideradas mais adequadas à América do Sul. Atualmente, no entanto, utiliza-se com mais freqüência o elipsóide da União Astronômica Internacional, homologado em 1967 pela Associação Internacional de Geodésica, que passou a se chamar elipsóide de referência 1967, conforme a figura 3.15, este assunto é mais aprofundado em www.ngdc.noaa.gov/IAGA.

a= semi-eixo maior ou raio equatorial **6.378.160 m**

b= semi-eixo menor ou raio polar 6.378.138 m

f= fator de achatamento $f = \frac{a-b}{a} = \frac{1}{298,25}$

53

Figura 3.15-superfície de referência

3.7.3- Fator de achatamento

A superfície da Terra não é perfeitamente esférica, assim a distância entre um ponto P localizado na região do equador até o seu centro C é muito superior à distância de um ponto Q localizado no pólo até o mesmo centro C; dados mostram que o raio equatorial (A) e polar (B) possuem os respectivos valores: 6378,160 km e 6356,775 km. Todas as características anteriores causarão algumas correções no valor da latitude de qualquer ponto localizado na superfície terrestre; isto implica que será necessária a escolha de um novo sistema de coordenadas que apresenta esta correção devido à esta diferença radial; este sistema de coordenadas é denominado esferoidal oblato, ver figura (3.16).

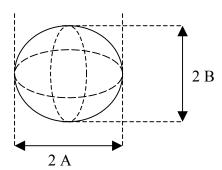


Figura 3.16- representação da Terra como esferóide oblato

No modelo dos harmônicos esféricos sobre uma calota, todas estas correções causarão inúmeras mudanças para o valor da latitude θ e do da distancia radial \mathbf{r} , que serão expressos em função da latitude geográfica (ϕ), da altitude em relação ao nível do mar (\mathbf{h}), dos raios equatoriais e polares (A e B) e finalizando uma nova variável que será apresentada, denominada fator de achatamento (\mathbf{f}), equação (3.19). Este fator define quanto o esferóide esta próximo de uma esfera, para uma esfera perfeita ; quando A=B e f=1, chegamos a equação (3.20), ver **Macmillan** (2005).

$$f = \frac{\left(h * \sqrt{A^2 - (A^2 - B^2) * \sec^2(\phi)} + A^2\right)^2}{\left(h * \sqrt{A^2 - (A^2 - B^2) * \sec^2(\phi)} + B^2\right)^2}$$
(3.19)

$$f = \frac{\left\{ h * \sqrt{A^2} + A^2 \right\}}{\left\{ h * \sqrt{A^2} + A^2 \right\}^2} = 1 (3.20)$$

As latitudes e a distância do ponto até o centro da Terra serão expressas respectivamente pela equação (3.21) e (3.22):

$$\cos(\theta) = \frac{\sin(\phi)}{\sqrt{f\cos^2(\phi) + \sin^2(\phi)}} \quad (3.21)$$

$$r = \frac{h^2 + 2h\sqrt{A^2 - (A^2 - B^2)\sin^2(\phi)} + \sqrt{A^4 - (A^4 - B^4)\sin^2(\phi)}}{A^2 - (A^2 - B^2)\sin^2(\phi)}$$
(3.22)

3.9-O modelo dos harmônicos esféricos sobre uma calota

A base do modelo proposto por Haines é a utilização das funções de Legendre em função da ordem m(inteiro), do grau nk (real) e de suas derivadas para obter as componentes do campo geomagnético principal. Utilizando a definição de que o campo geomagnético é derivado de um potencial magnético, pode-se expressar o campo geomagnético através do gradiente de um campo potencial.

$$B(r, \theta, \phi) = -\nabla V(r, \theta, \phi)$$

que em coordenadas esféricas é expresso através da equação (2.24).

$$Bx = -\frac{1}{r} \frac{\partial V(r, \theta, \phi)}{\partial \theta} \qquad By = -\frac{1}{r \operatorname{sen}(\theta)} \frac{\partial V(r, \theta, \phi)}{\partial \phi} \qquad Bz = -\frac{\partial V(r, \theta, \phi)}{\partial r}$$
(2.24)

O potencial magnético pode ser expresso através das funções de Legendre de r, θ , ϕ , através da equação (2.30).

$$V(r,\theta,\phi) = \sum_{m=0}^{\infty} \sum_{\substack{k=m\\k-m=par}}^{\infty} a \left(\frac{a}{r}\right)^{nk(m)+1} P_{nk(m)}(\cos(\theta)) \left\{ g_k^m \cos(m\phi) + h_k^m \sin(m\phi) \right\}$$
(2.30)

aplicando algumas diferenciações na equação (2.30), obteremos os seguintes resultados expressos pelas relações da equação (3.23):

$$Bx(r,\theta,\phi) = -\sum_{m=0}^{\infty} \sum_{k=m}^{\infty} a \left(\frac{a}{r}\right)^{nk(m)+1} \frac{dP_{nk(m)}(\cos(\theta))}{d\theta} \left\{ g_k^m \cos(m\phi) + h_k^m \sin(m\phi) \right\}$$

$$By(r,\theta,\phi) = -\frac{1}{r \operatorname{sen}(\theta)} \sum_{m=1}^{\infty} \sum_{k=m}^{\infty} m \, a \left(\frac{a}{r}\right)^{nk(m)+1} \frac{P_{nk(m)}(\cos(\theta))}{\operatorname{sen}(\theta)} \left\{-g_k^m \operatorname{sen}(m\phi) + h_k^m \cos(m\phi)\right\} \quad (3.23)$$

$$Bz(r,\theta,\phi) = -\sum_{m=0}^{\infty} \sum_{k=m}^{\infty} (n_k(m) + 1) a \left(\frac{a}{r}\right)^{nk(m)+1} P_{nk(m)}(\cos(\theta)) \left\{ g_k^m \cos(m\phi) + h_k^m \sin(m\phi) \right\}$$

3.9.1- O grau nk

O modelo da expansão por harmônicos esféricos globais exige que tanto a ordem (**m**) quanto o grau (**l**) utilizado na expansão da série seja inteiro. No modelo de Haines para o campo geomagnético sobre uma calota há uma modificação muito importante: nele o grau utilizado(**m**) na expansão é inteiro, mas a ordem é um número real(**nk**). Esta característica causará inúmeras modificações no cálculo e nos processamento dos valores das componentes do campo geomagnético para este modelo.

Para gerar os valores para os graus(nk) em relação à dimensão da calota com o valor do meio ângulo ou colatitude (θ_0) , será utilizada uma rotina retirada de **Haines** (1988), confeccionada na linguagem Fortran. Esta rotina gera valores para os graus (nk), que são representados por números reais raízes da equação não linear do tipo F(x)=0, resultados das condições de contorno para as bordas da calota (θ_0) , conforme as relações (3.24):

$$\begin{cases} \frac{dP_n^m(\cos(\theta_0))}{d\theta} = 0 & \text{para } k - m = par \\ P_n^m(\cos(\theta_0)) = 0 & \text{para } k - m = \text{impar} \end{cases}$$
(3.24)

Para obter estas raízes foi utilizado o método de aproximação numérica, através das sucessivas bissecções de Mueller e interpolação parabólica inversa.

O número de linhas geradas por esta rotina dependerá do meio ângulo da calota e do grau de expansão escolhido. Neste caso, para meio ângulo de 24° e ordem 10, foram geradas 66 linhas. Todos estes fatores serão utilizados para calcular o fator de normalização ($\mathbf{K}^{\mathbf{m}}_{\mathbf{n}\mathbf{k}}$), as funções de Legendre $\mathbf{P}^{\mathbf{m}}_{\mathbf{n}\mathbf{k}}$ e as suas respectivas derivadas $\mathbf{d}\mathbf{P}^{\mathbf{K}\mathbf{m}}_{\mathbf{n}\mathbf{k}}$.

3.9.2- Fator de normalização Kmn

As funções utilizadas para a obtenção do melo do campo geomagnético são normalizadas de acordo a condição de Schmidtz para o grau \mathbf{m} ; nela se define que quando o grau é zero o fator de normalização é máximo , sendo $\mathbf{K}^{\mathbf{m}}$ n igual a 1 e para $\mathbf{m}\neq\mathbf{0}$ o fator de normalização dependerá do grau (\mathbf{m})e ordem (\mathbf{n}), adotados durante a expansão, de acordo as relações (3.25), segundo **Haines (1988)**:

$$\begin{cases} K_n^m = 1 & para \ m = 0 \\ K_n^m = \frac{\sqrt{2}}{2^m * m!} * \sqrt{\frac{(n+m)!}{(n-m)!}} \end{cases}$$
(3.25)

No modelo de Haines, ocorre um grande problema que a diferencia dos harmônicos esféricos: o valor do grau utilizado no modelo da calota não é inteiro, mas sim real. Devido a esta característica os fatores de normalização (\mathbf{K}^{m} _{nk}) serão calculados através do método de Stirling. Este método transforma o fatorial de um número real em um produto de funções dependentes da **ordem (m)** e do **grau (nk)**.

Matematicamente o fatorial só existe para números positivos, então analisando a as condições de Schmidtz, anteriormente apresentadas, conclui-se que o **grau (nk)** utilizado na expansão deve ser maior que a **ordem (m)**, para que o resultado seja um número positivo, que pode ser aproximado através das relações (3.26) e (3.27):

$$K_{nk}^{m} = \frac{2^{-m}}{\sqrt{m * \pi}} \left(\frac{nk + m}{nk - m}\right)^{\left(\frac{nk}{2} + \frac{1}{4}\right)} p^{\left(\frac{m}{2}\right)} e^{(e_{1} + e_{2})} (3.26)$$

$$\begin{cases} e_{1} = \frac{-1}{12m} * \left(1 + \frac{1}{p}\right) \\ e_{2} = \frac{1}{360m^{3}} * \left(1 + \frac{3}{p^{2}} + \frac{4}{p^{3}}\right) (3.27) \\ p = \left(\frac{nk}{m}\right)^{2} - 1 \end{cases}$$

$$(3.27)$$

3.9.3- Os polinômios $P(\cos(\theta))$

Para calcular os polinômios $P(\cos(\theta))$, é necessário obter as amplitudes Ak(m,n), que pertencem à série em função dos parâmetros calculados: o índice(k), a ordem (m), o grau (n), o fator de normalização (Kmn); utilizando a rotina de **Haines (1988)**.

Para calcular as amplitudes Ak(m,n), será lida uma matriz composta de 4 colunas, onde a primeira coluna é o índice k, e as demais colunas a ordem (m),o grau(n) e a normalização Kmn. Para este trabalho foi escolhido que a expansão fosse até o grau 10, ou seja m=10, gerando um total de 67 linhas na matriz. Para gerar a amplitude Ak(m,n) para um dado índice haverá uma série, composta pela soma de todas as contribuições de cada linha, para cada ordem e grau conforme as relações (3.28):

$$A_0 = K_n^m (\operatorname{sen}(\theta))^m$$

$$A_{k}(m,n) = \left[\frac{(k+m-1)(k+m) - n(n+1)}{k(k+m)}\right] A_{0}(m,n)$$
(3.28)

A função de Legendre , representadas por Pnm($\cos(\theta)$), ver equação(3.29), é um somatório de fatores dependentes da amplitude Ak(m,n) (equação (3.30) ; dos ângulos (θ) e o índice do somatório definido por kmax (este substitui o somatório de infinitos termos da série)

 $P_n^m(\cos(\theta)) = \sum_{k=0}^{k \max} A_k(m,n) \left(\frac{1-\cos(\theta)}{2}\right)^{k \max}$ (3.29)

$$A_{k}(m,n) = \left[\frac{(k+m-1)(k+m) - n(n+1)}{k(k+m)}\right] A_{k-1}(m,n) \quad (3.30)$$

As suas derivadas, ver equação (3.31):

$$\frac{dP_n^m(\cos(\theta))}{d\theta} = \frac{\sin(\theta)}{2} \sum_{j=0}^{j\max} j \, Aj(m,n) \sin\left(\frac{\theta}{2}\right)^{2(j-1)}$$
(3.31)

3.9.4- Convergência das funções de Legendre

O modelo consiste em representar as componentes do campo geomagnético através das funções de Legendre, que são composta de um somatório de infinitos termos expressos usando termos trigonométricos (senos e cosenos). Esta metodologia, quando aplicada para modelar o campo geomagnético ,torna necessário obter uma quantidade máxima de termos para que haja uma convergência rápida e eficaz das séries que compõem este modelo. Esta quantidade de termos depende da ordem e do número de pontos utilizados como base de dados.

3.9.5-Métodos mínimos quadrados

O método dos mínimos quadrados é uma técnica matemática muito utilizada no tratamento e interpretação de dados experimentais.

Neste trabalho este método será utilizado para determinar os coeficientes de Gauss (g,h) a partir de um conjunto de dados de campo geomagnético coletados das direções norte Bx, leste By e vertical Bz . Este tipo de procedimento é uma inversão linear, pois os valores dos coeficientes gerados são diretamente proporcionais aos valores coletados do campo geomagnético, proporcionando um sistema linear.

É sabido que os campos geomagnéticos dependem dos coeficientes de Gauss, do grau (m) e da ordem (nk) utilizados na expansão. Assim, assim os campos serão expressos em função de g e h, conforme equação (3.32).

$$\begin{cases} Bx = f_x(g_{nk}^m, h_{nk}^m) \\ By = f_y(g_{nk}^m, h_{nk}^m) \end{cases}$$

$$Bz = f_z(g_{nk}^m, h_{nk}^m)$$
(3.32)

Esta contribuição também está em função da quantidade de dados coletados do campo geomagnético, pois neste sistema linear cada linha representa a medida do campo na região que está sendo analisada. A qualidade do modelo é diretamente proporcional à quantidade de medidas, ou seja ,quanto maior for o número de medidas, melhor será o modelo.

O sistema linear gerado será dividido em três blocos distintos, onde o primeiro será a contribuição do campo Bx, o segundo do campo By e o último o campo Bz; ver relação (3.33).

$$\begin{cases} Bx_{1} = f_{x}^{-1}(g_{nk}^{m}, h_{nk}^{m}) \\ Bx_{2} = f_{x}^{-2}(g_{nk}^{m}, h_{nk}^{m}) \\ \vdots \\ Bx_{N} = f_{x}^{-N}(g_{nk}^{m}, h_{nk}^{m}) \\ By_{1} = f_{y}^{-1}(g_{nk}^{m}, h_{nk}^{m}) \\ By_{2} = f_{y}^{-2}(g_{nk}^{m}, h_{nk}^{m}) \\ \vdots \\ By_{N} = f_{z}^{-N}(g_{nk}^{m}, h_{nk}^{m}) \\ Bz_{1} = f_{z}^{-1}(g_{nk}^{m}, h_{nk}^{m}) \\ Bz_{2} = f_{z}^{-2}(g_{nk}^{m}, h_{nk}^{m}) \\ Bz_{2} = f_{z}^{-N}(g_{nk}^{m}, h_{nk}^{m}) \\ Bz_{3} = f_{z}^{-N}(g_{nk}^{m}, h_{nk}^{m}) \\ Bz_{4} = f_{z}^{-N}(g_{nk}^{m}, h_{nk}^{m}) \\ Bz_{5} = f_{5}^{-N}(g_{nk}^{m}, h_{nk}^{m}) \\ Bz_{6} = f_{5}^{-N}(g_{nk}^{m}, h_{nk}^{m}) \end{cases}$$

Este sistema linear será a base para calcular os respectivos coeficientes de Gauss. Para gerar estes coeficientes é necessário obter a matriz sensibilidade, denominada de $\bf A$. Esta matriz está em função das derivadas parciais do campo geomagnético em função dos coeficiente ${\bf g}_{nk}^m$, ${\bf h}_{nk}^m$. Para cada par formado por um dado grau (m) e ordem (nk), nesta matriz haverá dois blocos distintos de colunas: o primeiro será a contribuição para as derivadas parciais em função de ${\bf g}_{nk}^m$, e o segundo em função de ${\bf h}_{nk}^m$, ver relação (3.34).

$$\begin{vmatrix} \frac{\partial f_x^1}{\partial g_0^1} & \frac{\partial f_x^N}{\partial g_{10}^{10}} \\ \frac{\partial f_x^2}{\partial g_0^1} & \frac{\partial f_x^N}{\partial g_{10}^{10}} \\ \frac{\partial f_x^2}{\partial g_0^1} & \frac{\partial f_x^N}{\partial g_{10}^{10}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_x^N}{\partial g_0^1} & \frac{\partial f_x^N}{\partial g_{10}^{10}} \\ \frac{\partial f_x^N}{\partial g_0^{10}} & \frac{\partial f_x^N}{\partial g_{10}^{10}} \\ \frac{\partial f_x^N}{\partial g_0^1} & \frac{\partial f_x^N}{\partial g_{10}^{10}} \\ \frac{\partial f_x^N}{\partial g_0^1} & \frac{\partial f_x^N}{\partial g_{10}^{10}} \\ \frac{\partial f_y^N}{\partial g_0^1} & \frac{\partial f_y^N}{\partial g_{10}^{10}} \\ \frac{\partial f_z^N}{\partial g_0^1} & \frac{\partial f_z^N}{\partial g_0^{10}} \\ \frac{\partial f_z^N}{\partial g_0^1} & \frac{\partial f_z^N}{\partial g_0^1} \\ \frac{\partial f_z^N}{\partial g_0^$$

Neste caso, a matriz sensibilidade $\bf A$ terá o número de linhas expresso pela relação , i=3N, onde N representa onúmero de pontos e "3" o número de componentes do campo geomagnético (Bx,By,Bz) . O número de colunas será definido por $\bf j=\frac{\left(m^2+3m\right)}{2}+1$, onde $\bf m$ representa o grau na qual foi feita a expansão do campo geomagnético .Para a ordem 10 , temos como resultado: 66 coeficientes para g e 55 coeficientes para h, totalizando 121 coeficientes .

Esta matriz sensibilidade **A** será a base para gerar a matriz transformação, que representa a linearidade entre os valores do campo geomagnético e os respectivos coeficientes de Gauss. Esta matriz está definida através do produto matricial, equação(3.35).

$$C = (A.A^T)^{-1}.A^T_{(3.35)}$$

Observando a equação (3.35), temos que A^T , representa a transposta da matriz A, ou seja, nesta matriz os elementos da linha serão o da coluna e vice versa, gerando assim uma matriz $A^T = A(j,i)$; esta matriz ao ser multiplicada pela matriz A, gera uma matriz quadrada $A * A^T(i,i) = A(i,j) * A(j,i)$ e também a sua matriz inversa, que é uma matriz quadrada $(A * A^T)^{-1}$. Este conjunto quando multiplicado pela A^T gera uma matriz coluna C = C(i,j), que é definida como a matriz de inversão dos dados.

Após este procedimento é obtida a seguinte equação matricial, equação (3.14), para calcular os valores dos coeficientes de Gauss:

$$p(j,1) = C(i,j).f(i,1)$$
 (3.36)

Onde a matriz f(i,1), representa os valores dos campos geomagnéticos Bx, By, Bz; C(i,1) é a matriz transformação e finalizando p(j,1) que é uma matriz que contém os valores dos coeficientes de Gauss. Todas estas matrizes são do tipo matriz coluna, neste caso, para ordem 10, temos as relações (3.37)

Como os coeficientes de Gauss são calculados a partir de um ajuste matemático, então haverá uma incerteza associada para o cálculo de cada coeficiente gerado pelo modelo da expansão por harmônicos esféricos sobre uma calota (SCHA). Esta incerteza depende das incertezas das medidas, que geralmente é definida pela resolução do magnetômetro e é obtida à partir dos elementos da diagonal principal da matriz de covariâncias, ver equação (3.35).

3. 9.6 - Cálculo dos coeficientes de Gauss

Para gerar os coeficientes de Gauss para o modelo da calota , denominado SCHA , foi desenvolvida uma rotina em Fortran que utiliza um arquivo de entrada composto pela longitude , latitude , Bx , By ,Bz ambos rotacionados para o referencial da calota localizada no pólo e a altitude de cada ponto em relação ao nível do mar. Neste processo é utilizado também um arquivo composto pelo índice (k) , o grau (m) , a ordem (nk) e os fatores de normalização (Kmn). Todos estes dados serão aplicados ao modelo , na qual como primeira etapa serão obtidos os coeficientes Ak (m,nk) , que são expressos em função de todas as variáveis apresentadas anteriormente. Todos estes coeficientes serão a base da criação das séries denominadas de função de Legendre (Pwlm) e de suas derivadas ,denominadas (dPwlm) que representam o modelo matemático proposto por Haines para resolver o problema da expansão dos harmônicos esféricos sobre uma calota.

Com estes resultados será aplicado a inversão pelo método dos mínimos quadrados , quando será criada uma matriz sensibilidade composta pelas derivadas parciais das componentes do campo geomagnético para Bx ,By e Bz em função dos coeficientes de Gauss $\,g\,$ e h. As derivadas parciais em função de $\,g\,$,serão denominadas de $\,\alpha\,$, e as derivadas em função de h serão denominadas de $\,\beta\,$, ver relação (3.37).

$$\begin{cases} \alpha = \mathbf{a} * \left(\frac{a}{r}\right)^{(nk(\mathbf{i})+1)} \mathbf{dpwlm}(\mathbf{i}) * \frac{\cos(\mathbf{m}(\mathbf{i}) * \mathbf{lng})}{r} \\ \beta = \mathbf{a} * \left(\frac{a}{r}\right)^{(nk(\mathbf{i})+1)} \mathbf{dpwlm}(\mathbf{i}) * \frac{\sin(\mathbf{m}(\mathbf{i}) * \mathbf{lng})}{r} \end{cases}$$
Derivadas parciais de g e h de Bx
$$(3.37)$$

$$\begin{cases} \alpha = -a * \left(\frac{a}{r}\right)^{(nk(i)+1)} dpwlm(i) * \frac{(-m(i)) * sin(m(i) * lng)}{(r * sin(clt))} \\ \beta = -a * \left(\frac{a}{r}\right)^{(nk(i)+1)} dpwlm(i) * \frac{(+m(i)) * cos(m(i) * lng)}{(r * sin(clt))} \end{cases}$$
Derivadas parciais de g e h de By

$$\begin{cases} \alpha = (nk(i) + 1) * \left(\frac{a}{r}\right)^{(nk(i))} * \left(\frac{-a}{r^2}\right) * a * pwlm(i) * (cos(m(i) * lng)) \end{cases}$$
$$\beta = (nk(i) + 1) * \left(\frac{a}{r}\right)^{(nk(i))} * \left(\frac{-a}{r^2}\right) * a * pwlm(i) * (sen(m(i) * lng)) \end{cases}$$

Derivadas parciais de g e h de Bz

As derivadas parciais em relação a g e h , denominadas respectivamente como α e β serão a base para a matriz sensibilidade A , composta por 3 blocos . No primeiro bloco aparecem as derivadas parciais para Bx , no segundo para By e no terceiro e ultimo bloco Bz. A matriz sensibilidade A, por sua vez gerará a matriz $C = (A * A^T)^{-1} * A^T$, que será a matriz para a transformação dos campo geomagnético em coeficientes de Gauss respectivos para este modelo, através da equação (3.36):

$$p(j,1) = C(i,j).f(i,1)$$
 (3.36)

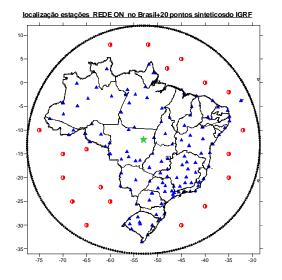
Na relação anterior f(i,1) é a matriz composta pelos valores dos campos geomagnéticos , Bx .By e Bz na qual se deseja realizar a inversão e p(j,1) é a matriz contendo os coeficientes de Gauss que serão calculados.

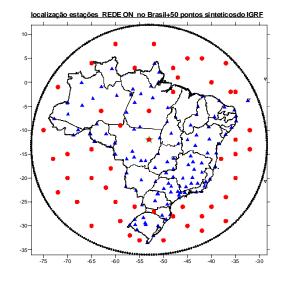
A rotina em Fortran que descreve o método dos mínimos quadrados e o cálculo dos coeficientes de Gauss está localizada no anexo C.

IV- RESULTADOS E CONCLUSÕES

4.1-Metodologia

Foi realizado um teste para obter o grau para a expansão por harmônicos esféricos sobre uma calota sobre o Brasil, com colatitude de 24°. O resultado deste procedimento será a obtenção do grau **nk** e o fator de normalização **Kmn**, ambos bases para gerar as funções de Legendre(ver anexo B tabela 1). Estas funções compõem a base matemática para formar a série que gerará os coeficientes de Gauss e o modelo do campo geomagnético para o Brasil.


O início do procedimento começou com a escolha de uma ordem inicial para realizar a expansão. Neste caso, foi escolhido o grau m=10, pois de acordo com **Bullard** (1967), representa feições com grandes comprimentos de onda, característicos do campo principal. Neste trabalho, foi testada uma expansão para ordens superiores a 10, visando uma melhora na qualidade dos resultados do modelo; entretanto, ocorreram problemas numéricos no programa que impossibilitaram este procedimento.


4.2-Procedimentos

Na primeira etapa, foram utilizados para suprir o modelo apenas os dados das componentes do campo principal (Bx,By,Bz) de 127 estações geomagnéticas do ON. Visando uma melhora da qualidade dos resultados foram inseridos pontos extras gerados a partir do modelo IGRF para o ano 2005 aos dados da rede, formando uma base de dados composta primeiramente por 147 pontos (figura 4.1), e finalizando 177 pontos, (figura 4.2), onde os triângulos representam as estações do ON e os pontos vermelhos os dados inseridos pelo modelo IGRF dentro da região da calota região da calota.

Figura 4.1- base de dados do modelo para 147 pontos

Figura 4.2- base de dados do modelo para 177 pontos

A primeira etapa deste procedimento foi calcular a anomalia magnética em cada ponto da rede, através da diferença entre os valores das componentes do campo da rede ON e o valor gerado pelo modelo IGRF, conforme a equação (4.1).

anomalia =
$$(B_{rede} - B_{IGRF})$$
 (4.1)

Estes dados através do modelo inverso geraram os coeficientes de Gauss para as seguintes bases de dados: 127 pontos (5,10,15,20,25 termos), 147 pontos (5,10,15,20,25 termos) e finalizando 177 pontos (5,10 termos). Os melhores resultados estão localizados no anexo B, conforme a descrição a seguir: 127 pontos e 20 termos (tabela 2), 147 pontos e 10 termos (tabela 3) e finalizando 177 pontos e 10 termos (tabela 4).

A partir dos valores dos coeficientes de Gauss calculados, foi aplicado o modelo direto em função do número de termos da série. O modelo direto é o procedimento onde a partir dos coeficientes de Gauss será modelada a anomalia magnética na calota no pólo Norte, que será retornada para a calota no Brasil. Com estes resultados,o modelo do campo principal será obtido somando o valor da anomalia modelada (ΔB modelo) com o respectivo valor do modelo IGRF, conforme a equação (4.2):

$$\boldsymbol{B}_{\text{mod }elo} = \Delta \boldsymbol{B}_{\text{(mod }elo)} + \boldsymbol{B}_{IGRF} \ (4.2)$$

Para finalizar o procedimento serão calculados, respectivamente, o valor do campo total F, inclinação(I) e declinação magnética (D) para cada ponto da rede, utilizando as seguintes equações, já definidas anteriormente no capítulo 1 da tese:

$$F = \sqrt{(Bx)^2 + (By)^2 + (Bz)^2} \qquad I = arctg\left(\frac{By}{Bx}\right) \qquad D = arctg\left(\frac{Bz}{\sqrt{(Bx)^2 + (By)^2}}\right)$$
(1.3)
$$(1.5) \qquad (1.4)$$

4.2-Estatísticas

Com os resultados obtidos para o modelo do campo geomagnético no Brasil, foram comparados os resultados obtidos para um base de dados composta por 127, 147 e 177 com os resultados do IGRF e da rede do ON . Este procedimento foi através do cálculo dos resíduos, desvio padrão dos resíduos obtidos em relação ao IGRF e à rede.

O resíduo das componentes do campo geomagnético é calculado através da diferença do valor calculado pelo modelo do valor de referência, podendo ser dados da rede geomagnética do ON ou valores sintéticos do IGRF, conforme a equação (4.3).

$$\operatorname{Re} s = \left(B_{\text{mod elo}} - B_{\text{referencia}}\right) \qquad B_{\text{referencia}} = \begin{cases} B_{IGRF} \\ B_{\text{rede}} \end{cases} (4.3)$$

Para calcular valor do desvio padrão dos resíduos em relação aos dados de referência foi utilizado a relação (4.4):

$$R_{r.m.s} = \sqrt{\frac{\sum (B_{\text{mod elo}} - B_{\text{referencia}})^{2}}{N}} \qquad B_{\text{referencia}} = \begin{cases} B_{IGRF} \\ B_{\text{rede}} \end{cases}$$
(4.4)

Para representar a qualidade do modelo, em relação ao valor do IGRF e a rede, foi calculado o coeficiente de ajuste (FIT), esta relação é citada em **Balch et al (1989)**. O FIT é um coeficiente adimensional que representa o quão o resultado do modelo está próximo dos dados experimentais modelo. Ele pode assumir valores entre 0 e 100 %, de acordo com a qualidade do ajuste modelo em relação aos dados de referência; se o mesmo não foi bem ajustado o seu valor será muito pequeno, próximo a zero, mas se o ajuste foi muito bom o FIT será um valor muito próximo a 100 %.

A definição de FIT está vinculada aos conceitos de desvio médio quadrático, definido como **z** _{rms}, equação (4.5) e o de desvio padrão dos resíduos, **R** _{rms}, equação (4.4). O FIT matematicamente é expresso como a razão entre a média quadrática e a soma da media quadrática ,equação (4.5), com o seu desvio padrão, equação (4.4); conforme a equação (4.6).

$$R_{rms} = \sqrt{\frac{\sum_{i=1}^{n} (z_i - z_{referencia})}{n}}$$
 (4.4)
$$z_{rms} = \sqrt{\frac{\sum_{i=1}^{n} (z_i)^2}{n}}$$
 (4.5)
$$FIT = \left(\frac{z_{rms}}{z_{rms} + R_{rms}}\right) * 100$$
 (4.6)

Para representar graficamente a distribuição de freqüências dos resultados obtidos serão utilizados histogramas. O histograma é um gráfico composto por retângulos justapostos em que a base de cada um deles corresponde ao intervalo de classe, e a sua altura à respectiva freqüência. Quando o número de dados aumenta indefinidamente e o intervalo de classe tende a zero, a distribuição de freqüência passa para uma distribuição de densidade de probabilidades. A construção de histogramas tem caráter preliminar em qualquer estudo e é um importante

indicador da distribuição de dados. Podem indicar se uma distribuição aproxima-se de uma função normal, como pode indicar mistura de populações quando se apresentam bimodais, ver figura (4.3).

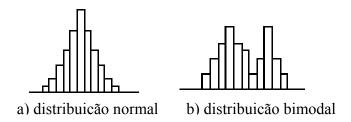


Figura 4.3- tipos de distribuição de um histograma

Neste trabalho será realizado o histograma dos desvios do valor do modelo em relação ao IGRF para o campo total (F), pois este representa todas as características do campo geomagnético principal na região de estudo.

4.3-Resultados

4.3.1-Teste com 127 estações da rede

Os testes com vários dados da rede (127 pontos), utilizando 5, 10, 15, 20 e 25 termos para a convergência das funções de Legendre da série, e os seus resultados foram expressos através do coeficiente de ajuste (FIT) e desvio padrão (r.m.s). Os resultados para as componentes do campo geomagnético (Bx, By, Bz e F) estão nas tabelas **4.1a** e **4.1b**, e aqueles que representam a inclinação (I) e a declinação (D), nas tabelas **4.2 a** e **4.2b**, onde em todas as tabelas o termo **a** representa análise dos resultados em relação ao modelo IGRF e o termo **b**, para os dados da rede ON.

Tabela 4.1a - comparação do modelo em relação ao IGRF, utilizando 127 estações de repetição da rede ON.

127 pontos	FIT-IGRF (%)					r.m.s -IGRF (nT)			
n termos	Вх	Ву	Bz	F	Вх	Ву	Bz	F	
5	76,61	45,96	18,37	42,03	6552,20	8105,13	43388,80	33876,75	
10	94,62	86,87	79,67	92,91	1220,54	1042,46	2490,90	1874,72	
15	97,81	94,1	91,47	97,47	398,42	400,36	835,03	584,92	
20	98,33	95,42	95,47	98,66	364,06	330,77	463,03	334,00	
25	97,56	93,29	94,27	97,68	536,88	495,55	593,02	582,70	

Tabela 4.1b-comparação do modelo em relação ao dados da rede, utilizando 127 estações de repetição da rede ON.

127 pontos	FIT-REDE (%)				r.m.s -REDE (nT)			
n termos	Bx	Ву	Bz	F	Bx	Ву	Bz	F
5	76,6036	46,4596	18,2192	42,0166	6557,42	8053,86	43379,52	33893,29
10	94,5286	87,1603	79,0099	92,822	1242,71	1029,52	2567,42	1899,26
15	97,8052	94,1047	91,4706	97,4692	481,79	437,82	901,16	637,71
20	98,1133	94,8605	94,416	98,4784	412,87	378,64	571,56	379,48
25	97,2445	92,9546	93,5924	97,4755	608,38	529,70	661,64	636,07

Tabela 4.2a - comparação do modelo em relação ao IGRF, utilizando 127 estações de repetição para valores de inclinação e declinação magnética.

127 pontos	FIT -IGRF(%)		r.m.s -IGRF (graus)		
n termos	incli	Decli	incli	decli	
5	38,18	58,94	84,51	47,33	
10	64,32	96,47	38,02	2,65	
15	75,43	98,57	22,28	1,05	
20	98,33	98,75	1,16	0,92	
25	81,27	98,34	15,76	1,22	

Tabela 4.2b - comparação do modelo em relação aos dados da rede ON, utilizando 127 estações de repetição para valores de inclinação e declinação magnética.

127 pontos	FIT -RE	EDE(%)	r.m.s-REDE (graus)		
n termos	incli	decli	incli	decli	
5	38,16	58,97	84,59	47,27	
10	64,37	96,47	37,93	2,65	
15	75,52	98,41	22,17	1,17	
20	97,89	98,58	1,48	1,04	
25	81,25	98,2	15,79	1,32	

a) Comportamento de Bx, By, Bz eF

Analisando a tabela **4.1a**, percebe-se que à medida que aumentou a quantidade de termos ocorreu um melhor resultado, onde a melhor convergência aparece para 20 termos, com valores de desvios padrão para **Bx** = **364nT**, **By** = **330nT**, **Bz**= **463nT** e de **F**= **334nT**. Já na tabela **4.1b** ocorreu o mesmo comportamento, mas com valores de desvios padrão um pouco superiores àqueles encontrados na tabela **4.1a**, com os valores **Bx** = **412nT**, **By** = **378nT**, **Bz**= **571nT** e de **F**= **379nT**. O mesmo comportamento aparece no coeficiente de ajuste com valores na tabela **4.1a** de **Bx**= **98,33%**, **By**= **95,42%**, **Bz**= **95,47%** e **F**= **98,66%**, e na tabela **4.1b** de **Bx**= **98,11%**, **By**= **94,86%**, **Bz**= **94,41%** e **F**= **98,47%**. Analisando os resultados das tabelas **4.1a** e **4.1b**

mostram que os melhores resultados aparecem quando o modelo é comparado com os dados do IGRF, assim serão expressos os resultados para o coeficiente de ajuste (FIT) e desvio padrão (r.m.s) nos gráficos, representados nas figuras 4.4 e 4.5..

Figura 4.4- FIT das componentes do campo geomagnético em função do número de termos da série para 127 estações de repetição da rede ON

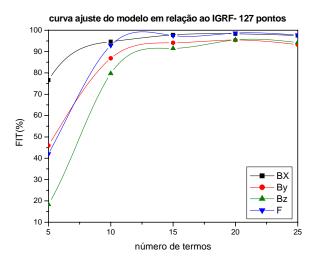
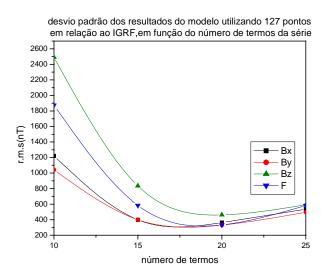



Figura 4.5- r.m.s das componentes do campo geomagnético em função do número de termos da série para 127 estações de repetição da rede ON.

Interpretando a **figura 4.4**, percebe-se que o coeficiente de ajuste (FIT) assume valores pequenos para 5 termos e à medida que o número de termos foi aumentado, aumentaram os valores do FIT para todas as componentes do campo, chegando até um valor limiar de 20 termos. Valores calculados para número de termos superior a 20 começam a diminuir o valor do

FIT, demonstrando assim que diminui a qualidade dos resultados modelados. Analisando o gráfico do comportamento do FIT em função do número de termos, pode-se concluir que à medida que se aumenta o número de termos da série, os valores calculados para o FIT aumentam e o melhor resultado aparece para 20 termos. Neste ponto todas as componentes do campo estão com maiores valores, mostrando um melhor ajuste.

Interpretando a **figura 4.5**, percebe-se que o desvio padrão (r.m.s) assume valores muito grandes para 5 termos e à medida que o número de termos foi aumentando, diminuíram os valores do r.m.s para todas as componentes do campo, chegando até um valor limiar de 20 termos. Valores calculados para número de termos superior a 20 começam a aumentar o valor do r.ms, demonstrando assim que diminui a qualidade dos resultados modelados. Analisando o gráfico do comportamento do r.m.s em função do número de termos, pode-se concluir que à medida que se aumenta o número de termos da série, os valores calculados para o r.m.s diminuem e o melhor resultado aparece para 20 termos. Neste ponto todas as componentes do campo estão com menores valores, mostrando um melhor ajuste.

b) Comportamento para inclinação e declinação

Analisando a tabela **4.2 a**, percebe-se que à medida que se aumentou a quantidade de termos ocorreu um melhor resultado, onde a melhor convergência aparece para 20 termos, com valores de desvios padrão respectivamente, para inclinação de **1,16 graus** e para a declinação de **0,92 graus**. Já na tabela **4.2b** ocorreu o mesmo comportamento, mas com valores de desvios padrão um pouco superior àqueles encontrados na tabela **4.2a**, com os valores **1,48 graus** para a inclinação e de **1,04** graus para a declinação. O mesmo comportamento aparece no coeficiente de ajuste com valores na tabela **4.4a** para a **inclinação=98,33%** e **declinação=98,75%**, e na tabela **4.3b**, **inclinação=97,89%** e **declinação=98,58%** . Os resultados das tabelas **4.2** a e **4.2**b mostram que os melhores resultados aparecem quando o modelo é comparado com os dados do IGRF, assim serão expressos os resultados para o coeficiente de ajuste (FIT) e desvio padrão (r.m.s) nos gráficos, representados nas **figuras 4.6** e **4.7**

Figura 4.6 - FIT da inclinação e declinação em função do número de termos da série para 127 estações de repetição da rede ON

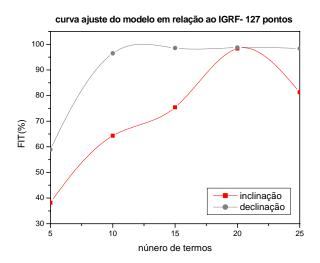
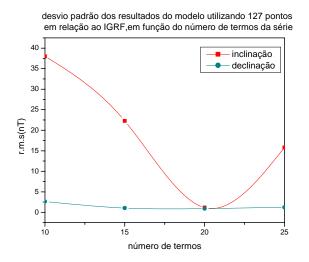



Figura 4.7 - r.m.s da inclinação e declinação em função do número de termos da série para 127 estações de repetição da rede ON

Interpretando a **figura 4.6**, percebe-se que o coeficiente de ajuste (FIT) assume valores pequenos para 5 termos e à medida que o número de termos foi aumentado, aumentaram os valores do FIT para a inclinação e declinação, chegando até um valor limiar de 20 termos. Valores calculados para número de termos superior a 20 começam a diminuir os valores do FIT com comportamentos diferentes para a inclinação e declinação. A declinação possui variações muito pequenas, mostrando quase uma estabilidade, e a inclinação ocorre uma queda muito brusca mostrando um grande aumento na qualidade dos resultados modelados. Analisando o gráfico do comportamento do FIT em função do número de termos, pode-se concluir que à

medida que se aumenta o número de termos da série, os valores calculados para o FIT aumentam e o melhor resultado aparece para 20 termos. Neste ponto todas as inclinações e declinações estão com maiores valores, mostrando um melhor ajuste.

Interpretando a **figura 4.7**, percebe-se que o desvio padrão (r.m.s) assume valores muito grandes para 5 termos e à medida que o número de termos foi aumentado, diminuiu os valores do r.m.s para a inclinação e declinação, chegando até um valor limiar de 20 termos. Valores calculados para número de termos superior a 20 começam a aumentar os valores do r.m.s com comportamentos diferentes para a inclinação e declinação. A declinação possui variações muito pequenas, mostrando que para numero de termos superiores a 20 o modelo é bem estável, e a inclinação ocorre um aumento muito brusco mostrando uma grande diminuição na qualidade dos resultados modelados. Analisando o gráfico do comportamento do r.m.s em função do número de termos, pode-se concluir que à medida que aumenta o número de termos da série, os valores calculados para o r.m.s diminuem e o melhor resultado aparece para 20 termos. Neste ponto tanto a inclinação quanto a declinação assumem menores valores, mostrando um melhor ajuste.

4.3.2-Teste com 147 estações da rede

Os testes com vários dados da rede (147 pontos), utilizando 5, 10, 15, 20, 25 termos para a convergência das funções de Legendre da série e os seus resultados foram expressos através do coeficiente de ajuste(FIT) e desvio padrão (r.m.s). Os resultados para as componentes do campo geomagnético (Bx, By, Bz e F) estão nas **tabelas 4.3a e 4.3b** e aqueles que representam a inclinação (I) e a declinação (D) **nas tabelas 4.4 a e 4.4b**, onde em todas as tabelas o termo **a** representa a análise dos resultados em relação ao modelo IGRF e o termo **b**, para os dados da rede ON.

Tabela 4.3a- comparação do modelo em relação ao IGRF, utilizando 127 estações de repetição+ 20 pontos do IGRF

147 pontos	FIT-IGRF (%)					r.m.s-l	r.m.s-IGRF (nT)		
n termos	Bx	Ву	Bz	F	Bx	Ву	Bz	F	
5	79,09	53,05	22,43	51,19	5718,15	6058,51	34055,00	23587,00	
10	98,86	95,65	93,24	98,23	250,23	311,25	713,55	446,16	
15	98,39	95,07	93,00	98,17	355,02	354,86	741,60	461,24	
20	97,78	93,50	93,01	97,49	491,96	475,85	740,16	636,06	
25	94,03	81,70	94,32	94,86	1372,90	1533,67	593,44	1339,15	

Tabela 4.3b - comparação do modelo em relação aos dados da rede ON, utilizando 127 estações de repetição+ 20 pontos do IGRF.

147 pontos	FIT-REDE (%)					r.ms-REDE (nT)			
n termos	Вх	Ву	Bz	F	Bx	Ву	Bz	F	
5	79,11	53,39	22,25	51,16	5714,36	6048,10	34116,00	23604,00	
10	98,28	95,44	92,43	98,00	378,72	331,23	799,88	503,76	
15	98,23	94,51	92,10	98,12	388,97	402,07	836,85	473,00	
20	97,58	92,92	91,95	97,39	535,72	527,78	854,07	661,60	
25	94,17	81,55	93,14	94,92	1340,93	1567,70	718,86	1324,05	

Tabela 4.4a - comparação do modelo em relação ao IGRF, utilizando 127 estações de repetição + 20 pontos do IGRF para valores de inclinação e declinação magnética.

			1005 ()		
147 pontos	FIT -IGRF(%)		r.m.s-IGRF (graus)		
n termos	incli	decli	incli	decli	
5	41,37	56,21	68,90	55,27	
10	97,83	98,97	1,52	0,76	
15	97,72	98,74	1,60	0,93	
20	97,91	98,26	1,46	1,29	
25	97,54	72,04	1,72	28,69	

Tabela 4.4b - comparação do modelo em relação aos dados da rede ON utilizando 127 estações de repetição + 20 pontos do IGRF para valores de inclinação e declinação magnética.

147 pontos	FIT -REDE(%)		r.m.s-REDE (graus)		
n termos	incli	decli	incli	decli	
5	41,34	56,25	69,00	55,18	
10	97,42	98,90	1,82	0,81	
15	97,30	98,63	1,91	1,02	
20	97,42	98,09	1,82	1,42	
25	97,34	72,04	1,87	28,69	

a) Comportamento de Bx, By, Bz eF

Analisando a tabela **4.3a** percebe-se que à medida que se aumentou a quantidade de termos ocorreu um melhor resultado, onde a melhor convergência aparece para 10 termos, com valores de desvios padrão para **Bx** = **250nT**, **By** =**311nT**, **Bz**= **713nT** e de **F**= **446nT**. Já na tabela **4.3b** ocorreu o mesmo comportamento, mas com valores de desvios padrão um pouco superiores aqueles encontrados na tabela **4.5a**, com os valores **Bx** = **379nT**, **By** =**331nT**, **Bz**=**780nT** e de **F**=**504nT**. O mesmo comportamento aparece no coeficiente de ajuste com valores na tabela **4.5a** de **Bx**=**98,86%**, **By**=**95,65%**, **Bz**=**93,24%** e **F**=**98,23%**, e na tabela **4.5b**, **Bx**=**98,28%**, **By**=**95,44%**, **Bz**=**92,43%** e **F**=**98,00%**. Os resultados das tabelas **4.5** a e

4.5b mostram que os melhores resultados aparecem quando o modelo é comparado com os dados do IGRF, assim serão expressos os resultados para o coeficiente de ajuste (FIT) e desvio padrão (r.m.s) representados nas **figuras 4.8** e **4.9**. O resultado do desvio padrão na **figura 4.9** foi representado entre 10 e 25 termos, pois se incluídos os valores encontrados para 5 termos distorcem muito o gráfico.

Figura 4.8 - FIT das componentes do campo geomagnético em função do número de termos da série para 147 pontos.

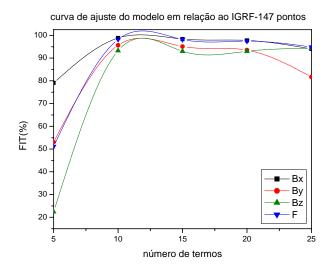
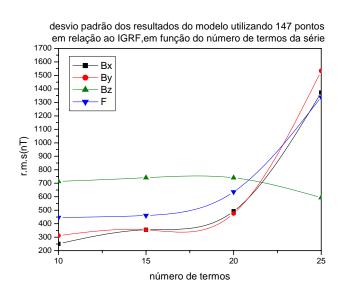



Figura 4.9 - r.m.s das componentes do campo geomagnético em função do número de termos da série para 147 pontos.

Interpretando a **figura 4.8**, percebe-se que o coeficiente de ajuste (FIT) assume valores mito pequenos para 5 termos e a medida que o número de termos foi aumentado, aumentou os valores do FIT para todas as componentes do campo, chegando até um valor limiar de 10 termos. Valores calculados para Bx ,By e F ,com número de termos superior a 10 sofrem flutuações e ocorrendo uma queda brusca no valor do FIT para valores acima de 20 termos. Para Bz, o resultado é contrário as demais componentes o seu melhor ajuste aparece quando utiliza 25 termos **FIT=94,32%** superior ao de 10 termos **FIT=93,24%**.

Interpretando a **figura 4.9**, se percebe que o desvio padrão (r.m.s) assume o menor valor para 10 termos e à medida que o número de termos foi aumentando os valores do r.m.s para as componentes do campo Bx, By e F. Valores calculados para número de termos superior até 20 termos começam a aumentar muito o valor do r.m.s, demonstrando assim que diminui a qualidade dos resultados modelados. Para Bz o comportamento do r.m.s é muito diferente, pois à medida que aumentou o número de termos inicialmente de 10 até 20 ocorreu um leve aumento no valor do r.m.s, mas para valores superiores este valor uma grande queda, obtendo melhor resultado para 25 termos **r.m.s=593 nT**, que é muito inferior ao escolhido para 10 termos **r.m.s=713nT**. Para modelar o campo foram escolhidos 10 termos para a série, pois apresentou na maioria das componentes do campo desvios padrão menores.

b) Comportamento para inclinação e declinação

Analisando a tabela **4.4a** percebe-se que à medida que se aumentou a quantidade de termos ocorreu um melhor resultado, onde a melhor convergência aparece para 20 termos, com valores de desvios padrão respectivamente para a inclinação de **1,52 graus** e para a declinação de **0,76 graus**. Já na tabela **4.4b** ocorreu o mesmo comportamento, mas com valores de desvios padrão um pouco superior àqueles encontrados na tabela **4.3a**, com os valores **1,82 graus** para a inclinação e de **0,81** graus para a declinação. O mesmo comportamento aparece no coeficiente de ajuste com valores na tabela **4.4a** para a **inclinação=97,83%** e **declinação=98,97%**, e na tabela **4.4b**, **inclinação=97,42%** e **declinação=98,90%**. Os resultados das tabelas **4.4** a e **4.4b** mostram que os melhores resultados aparecem quando o modelo é comparado com os dados do IGRF, assim serão expressos os resultados para o coeficiente de ajuste (FIT) e desvio padrão (r.m.s) nos gráficos, representados nas **figuras 4.10** e **4.11.** O resultado do desvio padrão na **figura 4.8** foi representado entre 10 e 25 termos, pois se incluídos os valores encontrados para 5 termos distorcem muito o gráfico.

Fig 4.10 - FIT da inclinação e declinação em função do número de termos da série para 147 pontos ON.

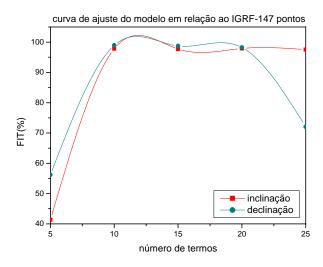
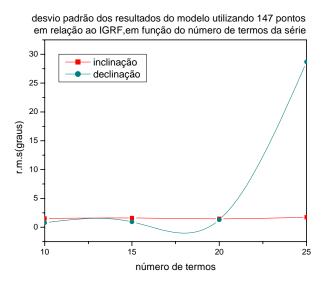



Fig 4.11 - r.m.s da inclinação e declinação em função do número de termos da série para 147 pontos

Interpretando a **fig 4.10**, se percebe que o coeficiente de ajuste (FIT) assume valores muito pequenos para 5 termos e à medida que o número de termos foi aumentado, aumentou os valores do FIT para a inclinação e declinação, chegando até um valor limiar de 10 termos. Analisando a inclinação se percebe que número de termos entre 10 e 15 os valores do FIT sofrem flutuações tendo um comportamento estável acima de 20 termos. Já a declinação para numero de termos acima de 20, o FIT cai drasticamente.

Interpretando a **fig 4.11**, percebe-se que o desvio padrão (r.m.s) assume valores muito pequenos para 10 termos e à medida que o número de termos foi aumentado, aumentaram os valores do r.ms para a inclinação e declinação. Analisando a inclinação percebe-se que o seu comportamento é quase estável, apresentando pequenas flutuações. Já a declinação parece estável entre 10 e 15 termos, ocorrendo uma queda entre 15 e 20 e aumentando drasticamente para valores acima de 20.

4.3.3-Teste com 177 estações da rede

Os testes com vários dados da rede (177 pontos), utilizando 5,10 termos para a convergência das funções de Legendre da série e os seus resultados foram expressos através do coeficiente de ajuste(FIT) e desvio padrão (r.m.s). Os resultados para as componentes do campo geomagnético (Bx, By, Bz e F) estão nas **tabelas 4.5a e 4.5b**, e aqueles que representam a inclinação (I) e a declinação (D) **nas tabelas 4.6 a e 4.6b**, onde em todas as tabelas o termo **a** representa a análise dos resultados em relação ao modelo IGRF e o termo **b**, para os dados da rede ON.

Tabela 4.5a- comparação do modelo em relação ao IGRF, utilizando 127 estações de repetição+ 50 pontos do IGRF

177 pontos	os FIT-IGRF (%)					r.m.s-IGRF (nT)			
n termos	Вх	Ву	Bz	F	Bx	Ву	Bz		
5	79,97	77,94	28,79	58,94	5424,24	1917,84	24846,61	17286,34	
10	98,90	96,50	94,51	98,55	241,33	245,58	584,03	366,26	

Tabela 4.5b-comparação do modelo em relação ao dados da rede, utilizando 127 estações de repetição+ 50 pontos do IGRF.

177 pontos	os FIT-REDE (%)					r.m.s-REDE (nT)		
n termos	Bx	Ву	Bz	F	Bx	Ву	Bz	E
5	80,06	77,94	28,59	58,94	5395,57	1938,39	24912,57	17284,81
10	98,59	95,94	93,49	98,45	309,89	289,92	695,05	391,23

Tabela 4.6a - comparação do modelo em relação ao IGRF, utilizando 127 estações de repetição + 20 pontos do IGRF para valores de inclinação e declinação magnética.

177 pontos	77 pontos FIT -IGRF(%)		r.m.s-IGRF (graus)		
n termos	incli	decli	incli	decli	
5	47,22	82,95	57,06	15,12	
10	83,65	99,13	13,36	0,64	

Tabela 4.6b - comparação do modelo em relação aos dados da rede ON utilizando 127 estações de repetição + 20 pontos do IGRF para valores de inclinação e declinação magnética.

177 pontos	FIT -IGRF(%)		r.m.s-REDE (graus)		
n termos	incli	incli decli		decli	
5	47,21	47,21 82,93		15,14	
10	83,61	99,01	13,40	0,73	

a) Comportamento de Bx, By, Bz e F

Analisando a tabela **4.5a** percebe-se que o melhor resultado continua sendo 10 termos e os seus resultados para o desvio padrão foram: **Bx** = **241nT**, **By** =**245nT**, **Bz**= **584nT** e de **F**= **366nT**. Já na tabela **4.5b** ocorreu o mesmo comportamento, mas com valores de desvios padrão um pouco superiores àqueles encontrados na tabela **4.5a**, com os valores **Bx** = **310nT**, **By** =**290nT**, **Bz**=**695nT** e de **F**=**391nT**. O mesmo comportamento aparece no coeficiente de ajuste com valores na tabela **4.5a** de **Bx**=**98,90%**, **By**=**96,50%**, **Bz**=**94,51%** e **F**=**98,55%**, e na tabela **4.5b**, **Bx**=**98,59%**, **By**=**95,94%**, **Bz**=**93,49%** e **F**=**98,45%**.

b) Comportamento da inclinação e declinação

Analisando a tabela **4.6a** percebe-se que o melhor resultado continua sendo 10 termos e os resultados para o desvio padrão foram: **inclinação** = **13,36 graus** e **declinação** = **0,64 graus**. Já na tabela **4.6b** ocorreu o mesmo comportamento, mas com valores de desvios padrão um pouco superior àqueles encontrados na tabela **4.7a**, com os valores **inclinação** = **13,40 graus** e **declinação** = **0,73 graus**. O mesmo comportamento aparece no coeficiente de ajuste com valores na tabela **4.7a** de **incli=83,65%** e **decli=99,13%**, na tabela **4.7b**, **inclinação=83,61%**, **declinação=99,01%**.

4.3.4- Comportamento do modelo em relação aos dados do IGRF em função do número de pontos dentro da calota.

Os melhores resultados obtidos para 127, 147 e 177 pontos, foram expressos através de tabelas onde estão representados: o coeficiente de ajuste (FIT) e desvio padrão (r.m.s) em função do número de pontos. Os resultados para as componentes do campo geomagnético (Bx, By, Bz e F), estão na **tabela 4.7** e aqueles que representam a inclinação (I) e a declinação (D) na tabela **4.8**.

Tabela 4.7 - comparação do modelo em relação ao IGRF em função do número pontos, para os campos.

	FIT-IGRF (%)			r.m.s-IGRF (nT)				
n termos	Bx	Ву	Bz	F	Вх	Ву	Bz	F
127	98,11	94,86	94,42	98,48	412,17	378,64	571,56	379,48
147	98,86	95,65	63,24	98,23	250,23	311,25	713,55	446,16
177	98,90	96,50	94,51	98,55	241,33	245,58	584,03	366,26

Tabela 4.8 - comparação do modelo em relação ao IGRF em função do número pontos, para a inclinação e declinação.

	FIT -IGRF(%)		r.m.s-IGRF (graus)		
n termos	incli	decli	incli	decli	
127	98,33	98,75	1,16	0,92	
147	97,83	98,97	1,52	0,76	
177	83,65	99,13	13,36	0,64	

Analisando a tabela 4.7 e 4.8 percebe-se que o melhor resultado é quando se utiliza uma base de dados composta por 177 pontos. As componentes do campo geomagnético apresentam FIT com os valores Bx=98,90 %, By=96,50, Bz=94,51% e F= 98,55 %; r.m.s Bx=241 nT, By= 245 nT, Bz=584 nT e F= 366nT. Já para a inclinação e declinação apresentam FIT com valores inclinação=83,65% e declinação= 99,13%; r.m.s inclinação=13,36 graus e declinação=0,64 graus.

O comportamento destes resultados para o FIT e o r.ms das componentes do campo, estão expressos nos gráficos nas **figuras 4.12 e 4.13.** Na fig 4.9 foram representados valores de FIT entre 92% e 100%, com intervalo de 1%; na figura 4.10 foram representados desvios padrão entre 200 nT até 800nT, com intervalo de 50nT.

figura 4.12- comportamento do valor do coeficiente de ajuste em função do número de pontos, para as componentes do campo geomagnético

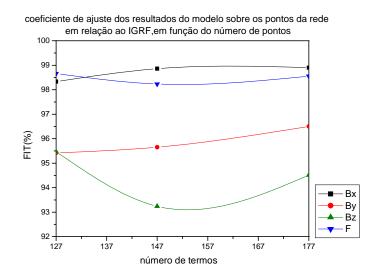
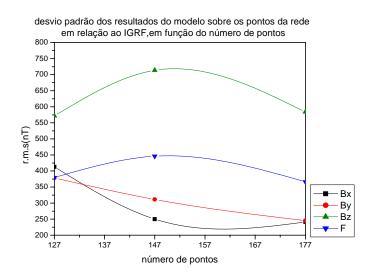



figura 4.13- comportamento do valor do desvio padrão em função do número de pontos, para as componentes do campo geomagnético.

O comportamento destes resultados para o FIT e o r.ms para a inclinação e declinação estão expressos nos gráficos nas **figuras 4.14 e 4.15**. Na figura 4.14 foram representados valores de FIT entre 82% e 100%, com intervalo de 2%; na figura 4.15 foram representados desvios padrão entre 0 grau até 14 graus, com intervalo de 2 graus.

figura 4.14- comportamento do valor do coeficiente de ajuste em função do número de pontos, para a inclinação e declinação .

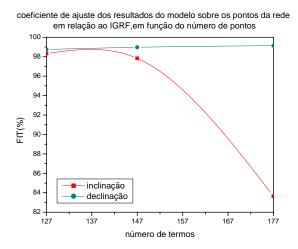
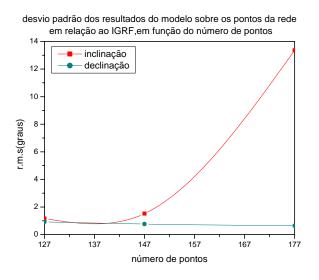



figura 4.15- comportamento do valor do coeficiente de ajuste em função do número de pontos, para a inclinação e declinação

Analisando as figuras **4.12**, **4.13**, **4.14** e **4.15**, percebe-se que à medida que foram acrescidos valores sintéticos do IGRF aos dados da rede, melhoraram muito os resultados do modelo para as componentes do campo Bx ,By e Bz e F. Nestes resultados aumentou o FIT e diminuiu o r.m.s, mostrando que o procedimento adotado melhorou muito o modelo. A inclinação possui um comportamento muito diferente, pois se percebe que o melhor resultado aparece quando se utilizam apenas os dados da rede (FIT = 98,33% e r.m.s= 1,16 graus) e à medida que foram inseridos valores sintéticos do IGRF, os resultados pioraram bastante chegando a um valor de FIT = 83,65% e r.m.s= 13,36 graus. Para declinação à medida que

foram inseridos valores sintéticos aos dados da rede melhoraram os seus resultados, mas não ocorrendo grandes variações, parecendo bastante estável.

4.3.5-Análise estatística dos desvios do modelo em relação ao IGRF, sobre pontos da rede ON.

Para todos os testes efetuados sobre os pontos da rede foram calculados os desvios dos resultados em relação ao IGRF e a freqüência destes resultados foram expressos em histogramas, com células de intervalo de 200 nT, conforme a **figuras 4.16 ,4.17 e 4.18.**

histograma para os desvios do valor do campo total(F) em relação ao IGRF para o modelo utilizando 127 estações da rede 34 32 - 28 - 26 - 24 - 20 - 18 - 16 - 14 - 12 - 1 desvio frequencia 1)-800 a -600 2)-600 a -400 3)-400 a -200 4)-200 a 0 10 a 200 8 - 6 - 4 - 6)200 a 400 7)400 a 600 8)600 a 800 2 6 intervalo dos desvios (nT)

Figura 4.16- Histograma para o valor do campo total (F), utilizando 127 pontos.

figura 4.17- Histograma para o valor do campo total (F), utilizando 147 pontos.

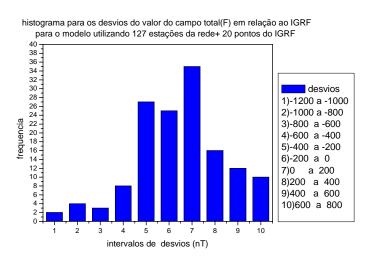
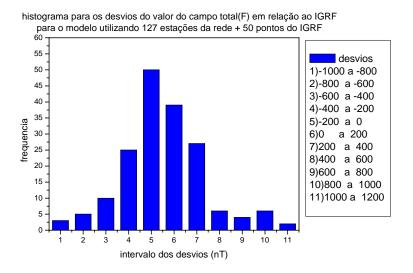



figura 4.18- Histograma para o valor do campo total (F), utilizando 177 pontos.

Na **figura 4.16**, foram expresso resultados utilizando 127 pontos , e se constatou que as maiores freqüências estão compreendidas nos intervalos de desvios entre –400nT a –200nT , -200nT a 0nT, 0nT a 200nT e 200nT a 400nT , que representam estatisticamente respectivamente a 23,62% , 16,53%, 16,53% ,e 17,32% ; todos estes valores somados representam 74% dos resultados. Esta distribuição de dados tem desvio padrão de 334 nT, que está compreendido entre –350nT e 350nT. Nesta base de dados o valor do campo médio calculado foi de 24.525 nT e o valor do desvio padrão representa 1,36% deste resultado.

Visando diminuir o desvio padrão, foram acrescentados 20 pontos nos dados da rede para preencher regiões sem estações de repetição; este processo causou o aparecimento de uma pequena fração de desvios superiores a 1200 nT, que estatisticamente são descartados da base de dados. Analisando a **figura 4.17**, percebe-se que as maiores freqüências estão nos intervalos de desvios entre –400nT a –200nT, -200nT a 0nT, 0nT a 200nT, 200nT a 400nT, 400nT a 600nT que representam estatisticamente respectivamente a 18,36%, 17%, 23,80%, 10,88%, 8,16% todos resultados somados representam 78,02% dos resultados. Esta distribuição de dados tem desvio padrão de 446 nT, que está compreendido entre –450 a 450 nT e mostra um deslocamento da distribuição para desvios positivos. Nesta base de dados o valor do campo médio calculado aumentou para 24.665 nT e o desvio padrão representa 1,81% deste resultado.

Como última tentativa foram inseridos 50 pontos do IGRF nos dados da rede ON, ver **figura 4.18**, este processo causou a presença de alguns picos de desvios da ordem 1000nT a 1200nT e -1200nT a -1000nT. As maiores freqüências estão compreendidas nos intervalos

entre –400nT a –200nT, -200nT a 0nT, 0nT a 200nT e 200nT a 400nT, que representam estatisticamente, respectivamente: 14,12%, 28,24%, 22,03%, e 15,25%; todos estes valores somados representam 79,64% dos resultados. Esta distribuição de dados possui desvio padrão de 366nT, este valor está dentro do intervalo compreendido entre – 400nT e 400nT. Com esta base de dados o campo médio aumenta para 24.748,79 nT e o desvio padrão equivale a 1,47% do valor médio.

4.4- Comportamento do modelo para a confecção das cartas magnéticas

Para confeccionar as cartas magnéticas para pontos situados ao longo do nível do mar, foi utilizada uma grade regular retangular no sistema de coordenadas geodésicas com intervalos de 1 grau, compreendidas entre as latitudes de –77° a –28° e longitudes entre –36° a 12°, totalizando 2450 pontos sobre o Brasil. Em cada ponto da grade foi aplicado o modelo do IGRF e deslocados para o referencial da calota, onde foram filtrados e retornados para a região de origem. Como resultado deste processo, a base de dados diminui para 1858 pontos, formando uma janela circular, composta apenas de dados dentro da calota.

Após a etapa da filtragem, foi novamente foi aplicado o modelo direto nestes 1858 pontos sobre a calota, utilizando os respectivos numero de termos para a convergência e os coeficientes de Gauss gerados com os melhores resultados para 127,147 e177 pontos. Os resultados obtidos serão os valores das anomalias modeladas na região da calota, que serão retornadas para o seu local de origem e somadas com o valor do IGRF, gerando o modelo do campo geomagnético principal para o Brasil.

Todos estes resultados foram comparados com os valores do IGRF e expressos através do coeficiente de ajuste (FIT) e desvio padrão (r.m.s), ver **tabela 4.9 e 4.10.**

Tabela 4.9 - comparação do modelo em relação ao IGRF em função do número pontos, para as componentes do campo geomagnético.

	FIT-IGRF (%)			r.m.s-IGRF (nT)				
n termos	Вх	Ву	Bz	F	Bx	Ву	Bz	F
127	95,22	84,08	65,51	87,44	1141,30	1247,93	5353,31	3701,08
147	98,35	93,82	89,85	97,42	381,36	434,37	1148,53	682,11
177	98,58	95,33	93,38	98,12	327,38	322,57	721,10	494,13

Tabela 4..10 - comparação do modelo em relação ao IGRF em função do número pontos, para a inclinação e declinação.

	FIT -IGRF(%)		r.m.s-IGRF (graus)		
n termos	incli	decli	incli	decli	
127	72,28	72,13	26,67	29,07	
147	75,57	74,45	22,49	25,82	
127	78,66	78,04	18,87	21,17	

Foram confeccionados gráficos para expressar o comportamento do FIT e do r.m.s Para a confecção das cartas magnéticas do Brasil. Na **figura 4.19 e 4.20** está expresso o comportamento das componentes do campo e nas **figuras 4.21 e 4.22** os da inclinação e declinação.

Figura 4.19 – coeficiente de ajuste do modelo em relação ao IGRF para a confecção das cartas magnéticas em função do número pontos, para as componentes do campo geomagnético.

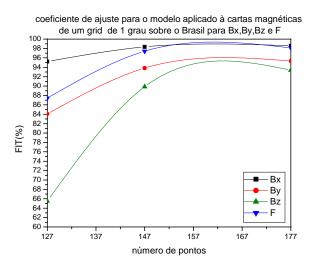


Figura 4.20 – desvio padrão do modelo em relação ao IGRF para a confecção das cartas magnéticas em função do número pontos, para as componentes do campo geomagnético.

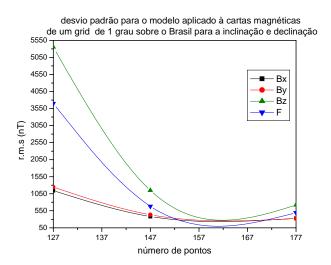


Figura 4.21 – coeficiente de ajuste do modelo em relação ao IGRF para a confecção das cartas magnéticas em função do número pontos, para a inclinação e declinação.

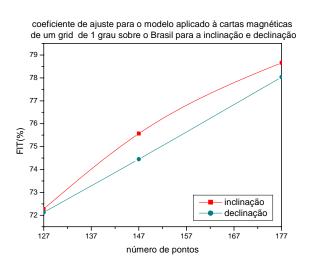
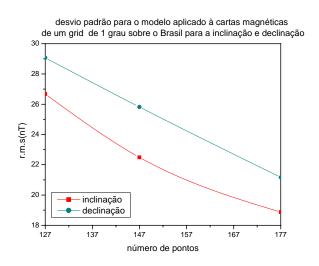



Figura 4.22 – desvio padrão do modelo em relação ao IGRF para a confecção das cartas magnéticas em função do número pontos, para a inclinação e declinação.

4.4.1- estabilidade do modelo para a confecção das cartas para varias altitudes

Para demonstrar a estabilidade modelo para a confecção das cartas magnéticas em função da altitude em relação ao nível do mar, foram modelados valores para as componentes do campo geomagnético, inclinação e declinação para as altitudes 0, 100, 500 e 1000 metros, utilizando os coeficientes de Gauss gerados para uma base de dados composta de 147 pontos. Os resultados estão expressos através do cálculo do coeficiente de ajuste em função da altitude para as componentes do campo geomagnético **tabela 4.11**, e inclinação e declinação , **tabela 4.12**. Foram confeccionados gráficos para expressar o comportamento do FIT e do r.m.s em função da altitude escolhida para as cartas magnéticas do Brasil. Para as componentes do campo **figura 4.23** e inclinação e declinação **figura 4.24**.

Tabela 4.11 – relação do coeficiente de ajuste em função da altitude, comparação do modelo para 147, para a as componentes do campo geomagnético.

147 pontos	FIT-IGRF (%)				
Altitude (m)		Ву	Bz	F	
0	98,35	93,82	89,85	97,42	
100	98,35	93,82	89,84	97,42	
500	98,36	93,83	89,76	97,40	
1000	98,36	93,84	89,62	97,37	

tabela 4.12 – relação do coeficiente de ajuste em função da altitude ,comparação do modelo para 147, para a a inclinação e declinação.

147 pontos	FIT -IGRF(%)			
Altitude (m)	incli	decli		
0	75,57	74,45		
100	75,57	74,45		
500	75,56	74,45		
1000	74,98	74,45		

Figura 4.23– gráfico do FIT em função da altitude, comparação do modelo para 147 pontos, para as componentes do campo geomagnético.

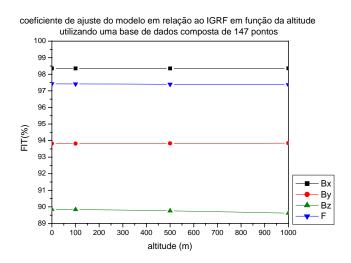
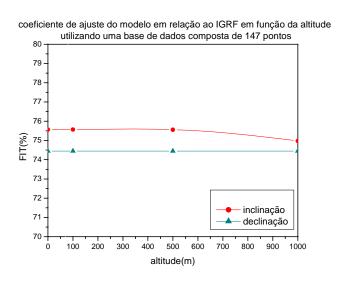



Figura 4.24— gráfico do FIT em função da altitude ,comparação do modelo para 147 pontos, para a a inclinação e declinação.

Observando **a figura 4.23** e **4.24** percebe-se que o modelo é bastante estável para a confecção das cartas para varias altitudes , onde para as componentes do campo e a inclinação. ocorrem flutuações de 0,01% , com o melhor resultado aparecendo na declinação que possui um ajuste constante.

4.4.2-Análise estatística dos desvios do modelo em relação ao IGRF, para a confecção das cartas magnéticas do campo principal (F) no Brasil.

Comparando todos os resultados obtidos para as componentes do campo geomagnético, percebe-se que o melhor resultado ocorre quando as cartas são confeccionadas para pontos localizados no nível do mar (h=0m). Para cada valor modelado do campo total (F) nesta altitude foram calculados os respectivos desvios em relação ao IGRF (equação (4.3)), e a frequência destes resultados foram expressas através de um histograma com intervalo de células de 200 nT. Neste histograma foram representados os desvios positivos, quanto os negativos, compreendidos entre -1200 nT a +1200nT. Os valores superiores a este intervalo não foram representados, nos histogramas, ver **figuras (4.25) ,(4.26) e (4.27).**

figura 4.25- Histograma para o valor do campo total (F) para a confecção das cartas magnéticas , utilizando 127 pontos.

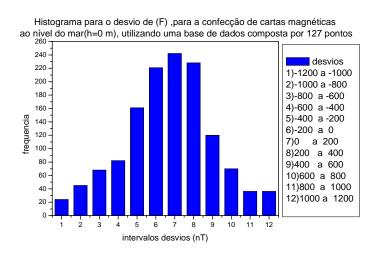


Figura 4.26- Histograma para o valor do campo total (F) para a confecção das cartas magnéticas, utilizando 147 pontos.

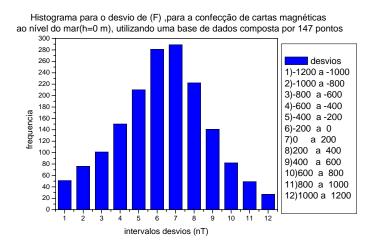
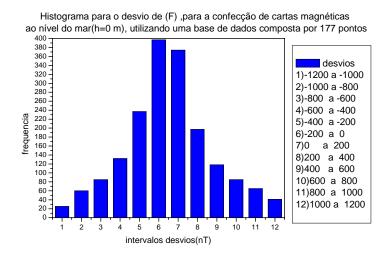



figura 4.27- Histograma para o valor do campo total (F) para a confecção das cartas magnéticas , utilizando 177 pontos.

Foi utilizado como a base para a análise dos resultados o valor da média do campo geomagnético principal no território brasileiro, F=24.000 nT, e definiu-se como o intervalo de desvios aceitáveis como equivalente a 1,6% do valor do campo médio, ou seja, desvios compreendidos entre -400nT e 400nT.

No histograma da **figura 4.25** estão representados os resultados obtidos utilizando 127 estações de repetição. Estes totalizam 1333 pontos que estão na faixa de –1200nT a 1200nT, equivalentes a 71,74%, e apenas 525 pontos não foram representados, pois assumem valores superiores a este intervalo que representam 28,25% dos resultados. Analisando os resultados da **figura 4.25** percebe-se que a maior freqüência aparece no intervalo entre 0nT a 200nT,

seguido do intervalo entre –200nT a 400nT e –200nT a 0nT e estes resultados equivalem a 242, 228 e 221 pontos. Estes pontos estatisticamente representam 13%, 12,27% e 11,89% do total de pontos das cartas magnéticas. Neste histograma um total de 1054 pontos está entre – 400nT e 400nT. Isto equivale a 56,72% dos resultados para as cartas magnéticas.

Visando uma melhora dos resultados, foram geradas cartas utilizando os coeficientes de Gauss gerados a partir de 147 pontos (**figura 4.26**) e 177 pontos(**figura 4.27**) e os seus resultados serão analisados nos parágrafos a seguir.

No histograma da **figura 4.26** estão representados 1679 pontos que estão na faixa de – 1200nT a 1200nT, equivalentes a 90,03%, e apenas 179 pontos não foram representados, pois assumem valores superiores a este intervalo que representam 9,63% dos resultados. Analisando os resultados da fig 4.2 se percebe que a maior freqüência aparece no intervalo entre 0nT a 200nT, seguido do intervalo –200nT a 0nT e –200nT a 400nT e estes resultados equivalem a 289, 281 e 222 pontos, que estatisticamente representam 15,55%, 15,12% e 11,95% do total de pontos das cartas magnéticas. Neste histograma um total 1293 pontos estão entre –400nT e 400nT, que equivalem a 69,59% dos resultados para as cartas magnéticas.

Finalizando o estudo, no histograma da **figura 4.27** estão representados 1816 pontos que estão na faixa de –1200nT a 1200nT, equivalentes a 97,73%, e apenas 42 pontos não foram representados, pois assumem valores superiores a este intervalo. Estes pontos representam 2,26% dos resultados. Analisando os resultados da fig 4.3 percebe-se que a maior freqüência aparece no intervalo entre –200nT a 0nT, seguido do intervalo 0nT a 200nT e –200nT a 400nT e estes resultados equivalem a 397, 374 e 197 pontos, que estatisticamente representam 21,36%, 20,13% e 10,60% do total de pontos das cartas magnéticas. Neste histograma um total 1455 pontos estão entre –400nT e 400nT, que equivalem a 78,31% dos resultados para as cartas magnéticas.

Analisando todos os resultados apresentados anteriormente, percebe-se que à medida que se aumentou a base de dados, diminuiu a quantidade de pontos com desvios superiores e - 1200nT e 1200nT, sucessivamente de 525, 179 e finalizando 42 pontos; além disso, a quantidade de pontos dentro da faixa entre –400nT e 400nT, aumentou de 1054, sucessivamente para 1293 e 1455 pontos. Todos este resultados expressam que o melhor modelo obtido para a confecção das cartas foi obtido com a base de dados composta por 177 pontos.

4.4.3- Confecção das cartas magnéticas do Brasil.

Foram confeccionadas as cartas magnéticas para as componentes do campo geomagnético principal (Bx , By, Bz e F) e a inclinação (I) e declinação(D) sobre uma grade regular de 1º sobre o Brasil, em função do número de pontos utilizados para o modelo (127,147 e 177 pontos) para representar pontos localizados ao nível do mar (h=0m) . A interpolação espacial dos pontos em todos os mapas utilizou o método do inverso da potência com intervalo de 1º, compreendendo pontos no eixo x (longitude) entre -77º e -28º, e no eixo y (latitude) entre -36º e 12º, gerando uma malha com dimensão de (49 x 48) pontos.

Para representar intervalos de resultados distintos nas cartas magnéticas foram utilizadas cores diferentes: nas cartas de Bx, By ,Bz e F utilizou-se a cor azul para valores positivos e a cor laranja para representar os negativos ; e nas cartas de I e D foi utilizada a cor azul para valores positivos e amarelo para os negativos. Visando definir alguns parâmetros importantes, foram utilizadas ainda cores diversas das anteriores, sendo que nas cartas de (F) a cor laranja representou as regiões com valor mínimo, desta forma destacando a anomalia do Atlântico Sul nas cartas do IGRF. Na carta de (Bz) foi utilizada a cor vermelha para a representar a linha de inclinação zero (equador magnético). Todos estes procedimentos são de grande importância para mostrar a evolução das cartas confeccionadas e compará-las com as construídas com o modelo IGRF.

Com o intuito de representar as isodinâmicas nas cartas magnéticas utilizou intervalos distintos. A representação de Bx e By para 147 e 177 pontos foi utilizado um intervalo de 500nT, mas nas cartas para 127 pontos foi utilizado um intervalo de 1000nT . A representação de Bz não obedeceu à este padrão, foi utilizado um intervalo de 2000nT para 147 e 177 pontos e 2500nT para 127 pontos , e esta escolha foi realizada visando representar o equador magnético nas cartas. Já as isoclínicas (I) e isogônicas (D) foram confeccionadas respectivamente com intervalo de 6° e 4°.

A cartas magnéticas com a evolução do modelo para Bx , By ,Bz ,F ,I e D estão descritas respectivamente nas **figuras** (4.28) , (4.29) , (4.30), (4.31), (4.32) e (4.33).

figura 4.28- Evolução das cartas magnéticas para Bx.

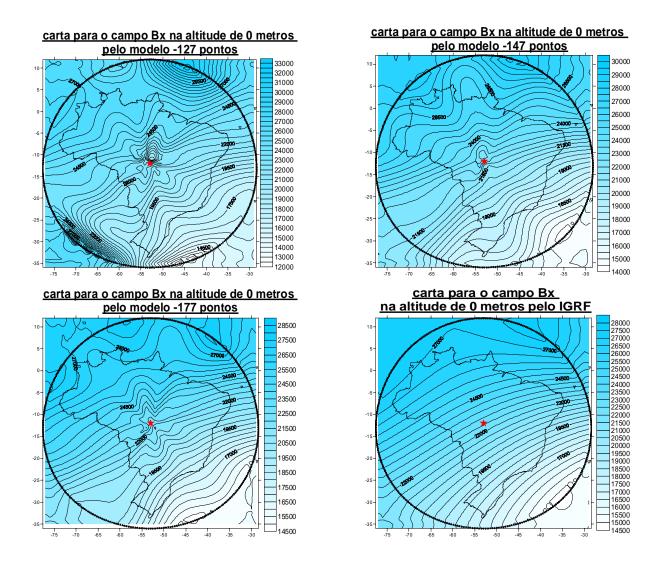
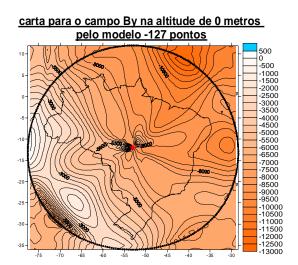
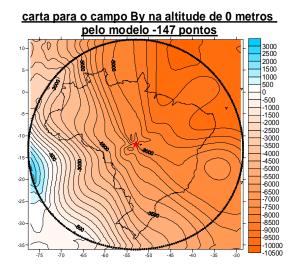
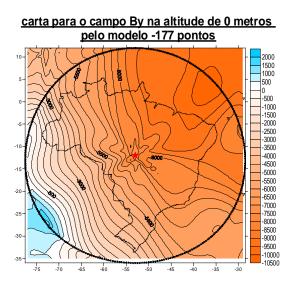





figura 4.29- Evolução das cartas magnéticas para By.

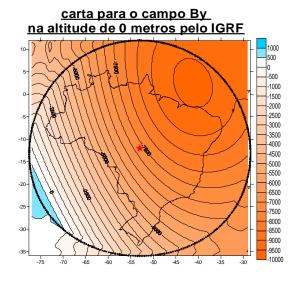
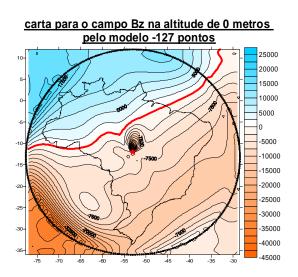
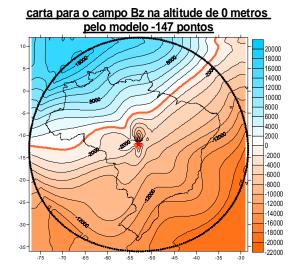
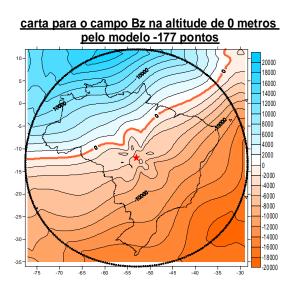





figura 4.30- Evolução das cartas magnéticas para Bz.

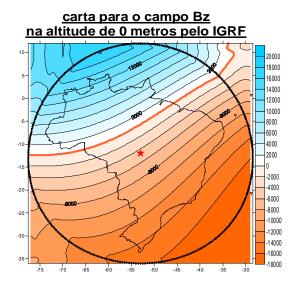
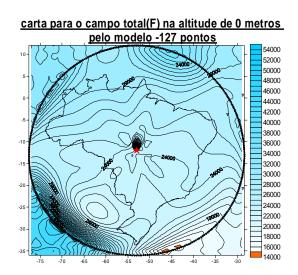
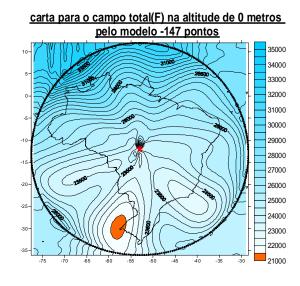
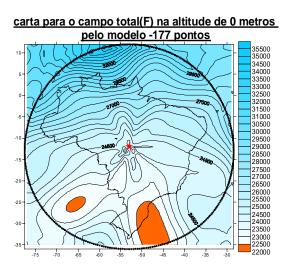





figura 4.31- Evolução das cartas magnéticas para F.

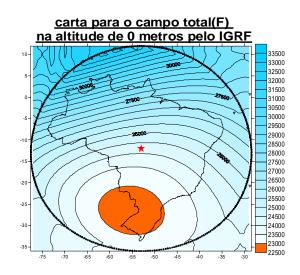
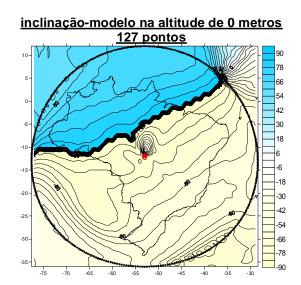
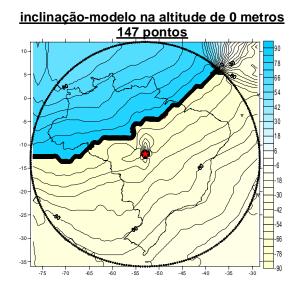
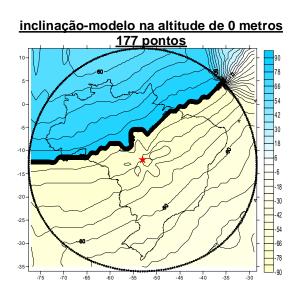





figura 4.32- Evolução das cartas magnéticas para a inclinação (I).

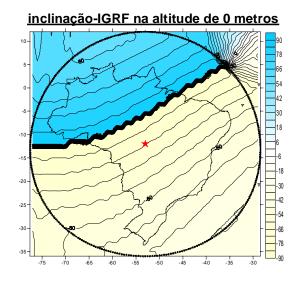
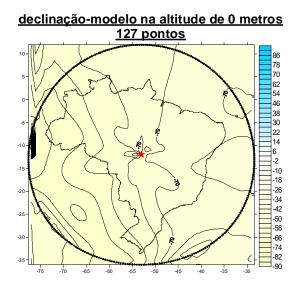
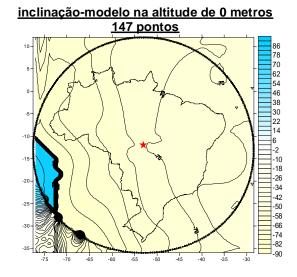
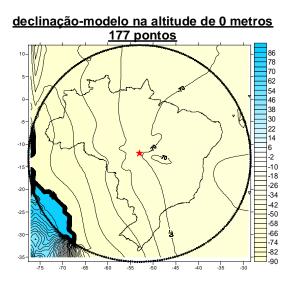
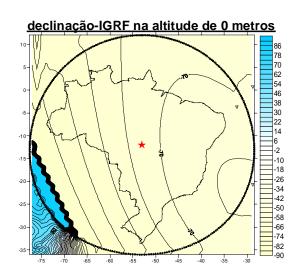






figura 4.33- Evolução das cartas magnéticas para a Declinação (D).

Analisando as cartas de Bx, **figura** (**4.28**), percebe-se que as isodinâmicas se tornam mais suaves e com menor espaçamento à medida que aumenta a base de dados, com o melhor resultado utilizando 177 pontos.Um comportamento perceptível nestas cartas é uma grande perturbação das linhas com a aproximação da região central da calota, e também um distanciamento destas na região Norte do Brasil.Os melhores resultados aparecem principalmente na região Sudeste e Nordeste onde as isodinâmicas se aproximam do padrão gerado pelo modelo IGRF.

Nas cartas para By, **figura** (**4.29**), percebe-se que com o aumento do número de termos, começa a aparecer a região com polaridade positiva na calota, que não aparece nas cartas confeccionadas com 127 pontos. O melhor resultado está na região Sul , para uma base de dados de 177 pontos. Nesta carta há indícios da região de máximo para By, localizada na região Nordeste e valor mínimo na região sudoeste da calota, mostrando uma proximidade da carta confeccionada com o modelo IGRF.

Nas cartas para Bz, **figura 4.30**, percebe-se que à medida que se aumenta o número de termos diminui o ruído gerado no centro da calota, com o melhor resultado aparecendo para 177 pontos na região Norte onde a linha do equador magnético já apresenta uma boa suavização. que se assemelha bastante com os das cartas obtidas pelo IGRF.

Finalizando, nas cartas de F **figura 4.31** percebeu-se que à medida que se aumentou a base de dados aparecem regiões com baixa intensidade, que caracterizam um padrão característico da anomalia do Atlântico Sul e também uma suavização das linhas na região Norte.

4.5-Coeficientes de Gauss para 2010 e 2007

Para propor um modelo para 2007, neste trabalho será realizada uma extrapolação dos coeficientes de Gauss para este ano. A primeira etapa será a partir da anomalia obtida para 177 pontos de 2005, reduzi-la para 2010 utilizando o modelo da variação secular pelo modelo IGRF, o qual utiliza os coeficientes de Gauss gerados pelo modelo IGRF para 2005 e 2010 (ver os valores dos coeficientes no site www.ngdc.noaa.gov/IAGA). Através deste resultado foi aplicado o modelo inverso gerando os coeficientes de Gauss para 2010 (ver anexo B tabela 5). A partir dos resultados do coeficiente de Gauss para 2005 e para 2010 (anexo B tabela 4 e 5) será realizado um ajuste linear em função das épocas utilizadas, conforme as relações (4.5).

$$\frac{2010 - 2005}{2007 - 2005} = \frac{g_{2010} - g_{2005}}{g_{2007} - g_{2005}}$$

$$\frac{5}{2} = \frac{g_{2010} - g_{2005}}{g_{2007} - g_{2005}}$$
(4.5)

$$g_{2007} = \frac{2}{5} * (g_{2010} - g_{2005}) + g_{2005}$$

O resultado deste procedimento será os valores dos coeficientes de Gauss para 2007 (anexo B Tabela 6).

4.6-Conclusão

Através da análise dos gráficos do coeficiente de ajuste e do desvio médio quadrático, conclui-se que à medida que aumenta a base de dados para o cálculo dos coeficientes de Gauss do modelo, diminuiu a quantidade de termos para as funções de Legendre e conseqüentemente o tempo de processamento dos programas utilizados no trabalho. Os resultados também mostram que com o aumento do número de pontos houve melhora do valor do ajuste e diminuíram as incertezas associadas, mostrando uma melhor qualidade dos resultados obtidos pelo modelo sobre os pontos pertencentes á rede do ON. Quando o modelo foi utilizado sobre os pontos da rede ON acrescidos de pontos sintéticos gerados a partir do IGRF, mostrou que os resultados do coeficiente de ajuste se aproximaram muito mais aos valores gerados pelo modelo IGRF do que aos dados da rede ON, mas esta diferença não é tão expressiva.

Observando o gráfico do coeficiente de ajuste em função da altitude, percebe-se que o modelo é bastante estável, ocorrendo ínfimas diminuições no valor deste coeficiente à medida que se aumenta a altitude em relação ao nível do mar. Esta característica ocorre, pois o maior percentual dos dados das estações geomagnéticas do ON utilizados na confecção do modelo está em pequenas altitudes, variando de 0 a 1000 m, e estes representam as principais feições geológicas brasileiras.

Para confecção das cartas das componentes do campo, foi utilizada a altitude de 0 m, pois nesta altitude ocorreu o maior valor do ajuste para todas as componentes. Analisando as respectivas cartas obtidas percebe-se que à medida que aumentamos a quantidade de pontos na base do modelo, as cartas geradas se aproximam das cartas confeccionadas pelo modelo do IGRF.

Devido a pouca quantidade de dados utilizados na confecção do modelo do campo geomagnético para o Brasil, não se pode obter um resultado satisfatório. Para aprimorar as cartas e diminuir os ruídos gerados no processo de interpolação espacial da superfície será necessário que a base de dados seja aumentada, reduzindo os valores das incertezas associadas e aumentando assim o coeficiente de ajuste. Todas as etapas descritas aproximam o modelo dos valores reais, medidos na região de estudo. Desta forma, como sugestão para futuros trabalhos nesta área seria a utilização de dados de satélites, como o MAGSAT. Esta sugestão proporcionará o surgimento de mais informações a respeito do campo principal da região oceânica e continental do Brasil, e de alguns países da América do Sul, que estão dentro da região da calota.

REFERÊNCIAS BIBLIOGRÁFICAS

Alldredge, **L.R.**, 1981, Rectangular Harmonic Analysis applied to the geomagnetic field, Journal Geophysics Research, **86**, 3021-3026.

Ardizone J. and Herraiz M., 2000, Application of the polynomial adjust to the aeromagnetic survey of the Spanish Mainland; Requirement and shortcoming, Earth Planets Space, **52**,183-196.

Balch, S. J. and Thompson ,G.T, 1989, An efficient algorithm for polynomial surface fitting, Computer and Geociences, **15**, 107-119.

Blakely J. R,1995, Potential Theory in gravity and magnetic applications, Cambridge University Press, London.

Boczko, R., 1984, Conceitos de Astronomia, ed Edgard Blücher, cap 3, pgs 64-73.

Bullard, E. C., 1949, Proc. R. Soc. London, Ser. A, 197-433.

Bullard, E.C., 1967, The removal of trend from magnetic surveys, Earth and Planet, Sci Letters, 2, 293-300.

Campbell, W.H., 1997, Introduction to Magnetic Fields, Cambridge University Press.

Chapman ,S., and Bartels ,J., 1940–1962, Geomagnetism ,vol 1 and 2 , 1° edition and 2 ° edition , Oxford University Press ,1049 pp.

Cox, A., Doell, R.R and Dalrymple, G.B., 1963a, Geomagnetic polarity epochs and Pleistocene geochronometry, Nature, 198, 1049-1051.

Cox, A., Doell, R.R and Dalrymple, G.B., 1963b, Geomagnetic polarity epochs – Sierra Nevada II, Science, 142, 382-385.

Dawson, E. and Newitt, L.R.,1981, A spherical harmonic approach to mapping the magnetic declination in Canada 1980, Geomagnetic series ,21 ,19 pp, Earth Physics Branch, Ottawa.

De Santis, A., Batelli ,O.,and Kerridige , D.J.,1990, Spherical Cap Harmonic Analysis applied to regional field modelling for Italy, Journal of Geomagnetism and Geoelectricity, **42**, 1019-1036.

De Santis, A., 1991, Translated origin Spherical Cap Harmonic Analysis, Geophysics Journal International, **106**, 253-263.

De Santis, A., 1992, Conventional Spherical Harmonic Analysis for regional modelling of the geomagnetic field, Geophysical Research Letters, vol **19**,n°(**10**),1065-1067.

De Santis, and Falcone C.,1995, Spherical cap harmonics models of Laplacian polynomials and general fields, in geodetic theory today, Ed. F Sanso, Springer, Berlin, 141-150

De Santis, A, Torta J. M. and Falcone C., 1996, A simple approach to the transformation of the spherical harmonic models under coordinate system rotation, Geophysics Journal International ,**126**,263-270.

De Santis, A, Falcone C and Torta J. M., 1997, SHA vs SCHA for modeling secular variations in a small region such as Italy, Journal Geomagnetic and Geoelectricy , **49**, 359-371.

De Santis, A., Torta J. M and Lowes F. J., 1999, Spherical Cap Harmonics revisited and their relationship to ordinary Spherical Harmonics, Physics Chemistry Earth, **24**, 935-941

Elsasser, **W. M**., 1946, Induction effects in terrestrial magnetism, I. Theory. Physics. Review, **9**, 106-16.

Gama, **L. I.**,1961, Distribuição geográfica do campo magnético e da sua variação secular no Brasil: cartas magnéticas do Brasil para 1960, Publ. Serv. Magn. ON nº 9

Gama , L. I.,1969, Campo normal e a sua variação secular no Brasil de 1965, Pupl. Serv . Magn. ON, n°10

Gauss, C.F., 1838, Allgemeine Theorie des Erdmagntismus. In Resultate aus den Beobachutungen magnetischen Vereins in Jahe, 1-57 (Reprinted in Werke 1877, pag 5,121-193, Gottingen 1877; translated by Sabine, e., in Taylor 1841, R., Scientific Memories vol 2, London.

Godoy, R.C., 1982, Variação secular da intensidade do campo geomagnético do Brasil, ON

Godoy, R.C. ,1982, Um modelo para de declinação magnética e a sua variação secular no Brasil nos últimos 70 anos, ON

Haines, G.V., 1967, A Taylor expansion of the geomagnetic field in the Canadian Arctic, Publication of the Dominion Observatory, Ottawa, **35**, 115-140.

Haines, G.V., 1985a, Spherical Cap Harmonic Analysis, 1985, Journal Geophysical Research, **90**, 2583-2591.

Haines, G. V.; 1985b, MAGSAT Vertical Field Anomalies Above 400 N from Spherical Cap Harmonic Analysis, Journal of Geophysical Research, **90**, 2593-2598

Haines, G. V.; 1985c, Spherical Cap Harmonic Analysis of Geomagnetic Secular Variation Over Canada 1960-1983, Journal of Geophysical Research, **90**, 12563-12574

Haines, G.V, 1988, Computer programs for Spherical Cap Harmonic Analysis of potential and general fields, Computer Geociencies, **14**, 413-447

Haines, G.V, 1989; Modeling Geophysical fields in sources free regions by Fourier series and rectangular harmonic analysis, Geophysica, **25**, 91-122.

Haines, G.V.;1990, Regional Magnetic Field Modeling: a Review, Journal of Geomagnetism and Geoelectricity, **42**, 1001-1018.

Haines G. V. and Torta J. M.; 1994, Determination of equivalent current sources from Spherical Cap Harmonic models of geomagnetic field variations; Geophysics Journal International, **118**, 499-514.

Haines, G.V., Newitt L.R., 1997, The Canadian Geomagnetic Reference Field. Journal of Geomagnetism and Geoelectricity, **49**, 317-336.

IAGA division I Study Group on Geomagnetic References Fields ,1975, Journal of Geomagnetism and Geoelectricity, **27**, 437-439.

Kolesova ,V.I., and E. D. Kropachev, 1973, Spherical harmonic Analysis of the magnetic field for the 1965 epoch up to n=23 according to ground-based data ,II, results, Geomagnetic Aeronomy ,**13**, 127-131.

Korte M., and Holme R., 2003, Regularization of spherical cap harmonic, Geophysics Journal International, 153, 253-262

Oliveira,L.H.F, 2005, Redução à mesma data dos dados da Rede Geomagnética do Observatório nacional com objetivo de modelar matematicamente o campo principal- monografia de graduação ,UERJ.

Langel R. A.,1992, International reference field: the six generation, Journal of Geomagnetism and Geoelectricity, **44**, 679-707.

Lima ,E.C e Carvalho,R.M,2001, Rede Geomagnética Brasileira, descrição das estações. Publicação do observatório nacional N°3.

Lowes F.J, 1999, Research note: Orthogonality and mean squares of the vector field given by Spherical Cap Harmonic Potentials, Geophysics Journal International, **136**, 781-783

Lowes F.J, 2000, An estimate of the errors of the IGRF/DGRF fields 1945-2000, Earth Planets Space ,52,1207-1211

Macmillan S. and Maus S., 2005, International Geomagnetic Reference Field-the tenth generation ,Earth Planets Space, Vol. **57** (N° 12), 1135-1140.

Merril R.T ,McElhinny M.W, Mcfadden P.L.,1998,The magnetic field of the Earth Paleomagnetism ,the Core ,and deep mantle, Academic Press.

Motta M.C. and Barreto M.L.,1986, Campo geomagnético normal e a sua variação secular no Brasil em 1985, Observatório Nacional, Rio de Janeiro.

Peddie W. Norman, 1982, International reference field: the third generation, Journal Geomagnetic and Geoelectricity, **34**, 309-326.

Press H. W., Flannery P. B.,Tekolsk S. A.,Vetterling T.W.,1992, Numerical Recipes in FORTRAN 77 The Art of Scientific Computing ,Volume 1, 2nd edition, Cambridge University Press,London

Rikitake T., 1958, Oscillations of a system of discs dynamos, Proc. Camb. Phil. Soc. 54 p. 89.

Schmitdz D., 1989, Spherical Harmonic Analysis, in the Encyclopedia of Solid Earth Geophysics, ed. James, D.E, Van Nostrand Reinhold Co., New York, 1217-1221.

Torta , J.M., García A., Curto J.J. and De Santis , A .,1992, New representation of geomagnetic secular variation over restricted regions by means of Spherical Cap Harmonic Analysis: application to the case of Spain. , Physics of the Earth Planetary Interiors ,**74**, 209-217.

Thebault E., Schott J.J., **Mandea M. and Hoffebeck J.P**, 2004, A new proposal for spherical cap harmonic modeling, Geophysics Journal international, **159**, 83-103

www.ngdc.noaa.gov/IAGA

http://www.ngdc.noaa.gov/IAGA/vmod/IGRF-10/evaluation/LPGN-IPGP_evaluation.doc

Anexo A

Dados das estações geomagnéticas de repetição do ON, reduzidas para 2005

- ☐ Base de dados para atualização para 2005 através do modelo da variação secular pelo modelo polinomial
- Base de dados para a atualização para 2005 através do modelo da variação secular do IGRF

Estação elimin	BIGEA	a base	deldndos	dom	odelpata	DECL	INCL	Н	F	ВХ	BY	BZ
ALEGRETE	RS	-29,803	-55,762	138	1914,400	6697	-23117	23632	25696	23471	2756	-10088
3		-29,803	-55,762		1965,359	-5697	-27533	21704	24477	21597	-2155	-11314
		-29,814	-55,893		2000,613	-12413	-36729	18979	23681	18535	-4079	-14162
ALTA FLORESTA	MT	-9,867	-56,1	288	1989,473	-13958	229	25453	25454	24702	-6139	101
ALTAMIRA	PA	-3,208	-52,2	110	1923,369	-8015	21298	28862	30978	28580	-4024	11251
5		-3,2	-52,217		1976,927	-15281	12781	27384	28080	26415	-7217	6212
		-3,25	-52,252		1984,557	-16280	10373	27193	27645	26102	-7623	4977
		-3,2	-52,217		1984,557	-16545	10590	27091	27561	25969	-7714	5065
		-3,25	-52,252		1988,572	-16781	9199	27017	27370	25867	-7800	4375
ALTO DO PARAGAI	MT	-14,515	-56,495	260	1954,619	-6907	-949	26267	26271	26076	-3159	-435
5		-14,515	-56,495		1959,687	-7616	-1718	25963	25975	25734	-3441	-778
		-14,515	-56,495		1963,659	-8515	-2141	25685	25703	25401	-3803	-960
		-14,515	-56,495		1975,489	-10277	-4118	24901	24966	24501	-4442	-1793
		-14,515	-56,495		1986,208	-12067	-6624	24321	24485	23784	-5084	-2824
AMAPA	AP	2,08	-50,858	10	1952,078	-13104	25774	29059	32270	28302	-6588	14031
6		2,08	-50,858		1958,416	-13401	24402	28983	31827	28194	-6717	13148
		2,073	-50,863		1965,619	-14538	22943	28739	31208	27819	-7214	12165
		2,073	-50,863		1977,739	-15958	20079	28259	30088	27170	-7769	10330
		2,073	-50,863		1984,619	-16753	18065	28086	29543	26894	-8096	9161
		2,073	-50,863		1988,473	-17149	16958	27964	29236	26721	-8245	8527
ARACAJU	SE	-10,9	-37,083	8	1903,947	-14217	2183	27397	27417	26557	-6728	1044
8		-10,9	-37,083		1923,409	-17016	-1366	27030	27038	25847	-7910	-644
		-10,93	-37,052		1957,447	-20249	-9899	25677	26066	24090	-8887	-4481
		-10,93	-37,052		1963,296	-20833	-11765	25329	25873	23673	-9008	-5275
		-10,93	-37,052		1975,145	-21753	-15678	24539	25488	22792	-9094	-6887
		-10,985	-37,074		1983,218	-22353	-18940	23983	25356	22181	-9121	-8229
		-10,985	-37,074		1988,223	-22527	-20777	23664	25310	21858	-9066	-8978
		-10,985	-37,074		2001,311	-22760	-25819	22629	25139	20867	-8755	-10948
ARAÇUAI	MG	-16,872	-42,047	300	1954,588	-17197	-14449	24326	25121	23238	-7192	-6268
6		-16,872	-42,047		1959,279	-17881	-15715	24013	24946	22853	-7373	-6756
		-16,872	-42,047		1963,529	-18541	-16767	23763	24819	22530	-7556	-7160
		-16,83	-42,043		1974,921	-19652	-19947	23007	24476	21667	-7737	-8350
		-16,83	-42,043		1989,276	-21350	-24863	21950	24193	20444	-7991	-10171
		-16,852	-42,046		1999,910	-22045	-28340	21097	23971	19555	-7918	-11379
ARRAIAS	TO	-12,947	-46,933	586	1954,250	-14486	-3894	25939	26000	25115	-6488	-1765
6		-12,947	-46,933		1960,567	-15276	-5328	25573	25685	24670	-6737	-2385
l		-12,947	-46,933	l	1964,307	-15883	-6085	25371	25515	24402	-6943	-2704

1	1		i i	Ī	I	i	İl İ	Ī		ī	ī	i
		-12,932	-46,948		1974,885	-17357	-9012	24716	25025	23590	-7373	-3919
		-13,023	-46,885		1986,744	-18985	-12847	23994	24611	22689	-7806	-5472
		-12,931	-46,947		2001,390	-20451	-17663	23086	24229	21631	-8067	-7351
ARUANA	GO	-14,917	-51,067	280	1915,399	-5730	266	26724	26725	26591	-2669	124
6		-14,927	-51,092		1954,697	-11343	-4671	25684	25770	25182	-5051	-2099
		-14,927	-51,092		1960,619	-12225	-5861	25236	25369	24664	-5343	-2590
		-14,927	-51,092		1964,328	-12883	-6467	25114	25275	24481	-5599	-2847
		-14,927	-51,092		1973,276	-14305	-8350	24524	24787	23763	-6059	-3599
		-14,926	-51,081		1986,681	-16378	-12067	23777	24315	22812	-6704	-5083
ATIBAIA	SP	-23,131	-46,575	880	2000,177	-19475	-31777	19588	23043	18468	-6531	-12134
BAMBUI	MG	-20,005	-45,977	769	1928,218	-10932	-11765	24885	25419	24433	-4719	-5182
7		-20,008	-45,978		1954,139	-14133	-16232	23720	24705	23002	-5791	-6905
		-20,008	-45,978		1959,197	-14847	-17381	23411	24532	22629	-5999	-7328
		-20,008	-45,978		1963,447	-15512	-18333	23146	24384	22303	-6190	-7669
		-20,042	-45,977		1970,399	-16625	-19843	22646	24076	21699	-6479	-8172
		-20,036	-45,972		1978,046	-17603	-21868	22164	23883	21126	-6702	-8895
		-20,036	-45,972		2001,817	-20486	-29149	20413	23374	19122	-7144	-11385
BARBALHA	CE	-7,31	-39,395	415	1983,088	-21607	-10432	25406	25834	23621	-9355	-4677
2		-7,31	-39,395		1988,150	-21857	-12432	25086	25689	23283	-9339	-5530
BARCELOS	AM	-0,97	-62,883	34	1913,609	666	23517	29932	32643	29930	348	13025
5		-0,97	-62,883		1924,089	-1082	25000	29789	32868	29783	-563	13890
		-0,972	-62,9		1924,099	-1067	25000	29776	32854	29770	-554	13884
		-0,97	-62,883		1932,109	-2282	25666	29647	32892	29623	-1180	14247
		-0,982	-62,918		1984,729	-9387	20666	27727	29634	27355	-4522	10458
BARRA DO CHUI	RS	-33,753	-53,367	30	1953,838	-4552	-30499	21706	25192	21637	-1722	-12785
8		-33,753	-53,367		1960,036	-5386	-31266	21221	24827	21127	-1991	-12885
		-33,753	-53,367		1965,029	-6283	-31923	20955	24690	20829	-2294	-13055
		-33,753	-53,367		1965,379	-6289	-31808	20903	24597	20777	-2289	-12964
		-33,753	-53,367		1974,239	-7643	-33138	20188	24110	20009	-2685	-13179
		-33,753	-53,367		1982,291	-8894	-34568	19617	23824	19382	-3033	-13517
		-33,753	-53,367		1986,900	-9494	-35573	19207	23615	18944	-3168	-13737
		-33,742	-53,372		2000,598	-11175	-37984	18263	23172	17917	-3539	-14261
BARRA DO RIO GRANDE	BA	-11,09	-43,157	410	1911,458	-11333	4381	27229	27309	26698	-5350	2086
7		-11,1	-43,15		1954,427	-17099	-3433	26242	26290	25082	-7716	-1574
		-11,1	-43,15		1960,708	-17899	-5149	25915	26021	24661	-7965	-2335
		-11,1	-43,15		1964,859	-18527	-6353	25700	25859	24368	-8166	-2861
		-11,088	-43,27		1975,786	-19686	-9593	24936	25290	23478	-8400	-4214
		-11,088	-43,27		1989,317	-21135	-14581	24043	24844	22426	-8669	-6254
		-11,078	-43,144		2001,362	-21947	-18826	23283	24599	21595	-8702	-7937
BARREIRAS	BA	-12,102	-44,993	760	1943,500	-14399	-1399	26518	26526	25685	-6594	-647
10		-12,102	-44,993		1951,838	-15399	-3381	26131	26177	25193	-6938	-1544
		-12,15	-45,002		1951,848	-15383	-3516	26102	26152	25167	-6924	-1603
		-12,102	-44,993		1954,218	-15732	-3799	26006	26064	25032	-7051	-1726
		-12,102	-44,993		1960,557	-16631	-5399	25640	25755	24568	-7338	-2423
		-12,102	-44,993		1964,296	-17131	-6453	25474	25637	24344	-7504	-2881
		-12,102	-44,993		1972,588	-18156	-8845	24932	25233	23691	-7769	-3879
		-12,102	-44,993		1984,140	-19669	-12687	24258	24866	22843	-8165	-5461
		-12,079	-45,002		1989,338	-20170	-14456	23857	24638	22394	-8226	-6150
		-12,079	-45,002		2001,385	-21259	-18582	23153	24427	21578	-8395	-7783
BELO HORIZONTE	MG	-19,913	-43,985	858	1928,088	-12383	-12467	24829	25429	24251	-5324	-5489

-	-	_	-		_			_	_	-	_	_
12		-19,913	-43,985		1952,520	-15567	-16933	23813	24893	22940	-6390	-7250
		-19,913	-43,985		1953,348	-15682	-17131	23745	24848	22861	-6418	-7319
		-19,913	-43,985		1953,468	-15666	-17100	23778	24878	22894	-6420	-7315
		-19,913	-43,985		1953,609	-15781	-17131	23772	24876	22876	-6465	-7327
		-19,913	-43,985		1957,187	-16215	-18033	23492	24706	22557	-6560	-7648
		-19,913	-43,985		1957,187	-16315	-17815	23500	24684	22553	-6602	-7552
		-19,913	-43,985		1960,088	-16783	-18533	23312	24588	22319	-6731	-7815
		-19,913	-43,985		1963,170	-17149	-19381	23177	24570	22147	-6834	-8153
		-19,858	-43,963		1967,968	-17927	-20097	22865	24348	21755	-7038	-8366
		-19,913	-44,003		1970,170	-18152	-21138	22725	24365	21594	-7079	-8786
		-19,913	-44,003		1978,239	-19152	-23156	22239	24188	21008	-7296	-9511
BENJAMIN CONSTANT	AM	-4,393	-70,017	65	1932,536	2815	18968	30170	31903	30134	1481	10370
8		-4,367	-70,005		1943,699	1883	18549	30040	31686	30023	987	10080
		-4,367	-70,05		1952,280	1100	18100	29723	31270	29717	570	9714
		-4,367	-70,022		1952,578	1032	18166	29690	31247	29685	535	9742
		-4,367	-70,05		1958,500	316	17881	29299	30787	29299	161	9453
		-4,367	-70,05		1965,807	-365	17684	28844	30275	28843	-183	9196
		-4,367	-70,05		1978,708	-2930	17058	28050	29341	28013	-1433	8606
		-4,367	-70,05		1984,706	-3858	16610	27714	28921	27651	-1864	8267
BOA VISTA	RR	2,8	-60,678	90	1913,817	-1498	29232	29910	34275	29899	-781	16738
10	1	2,8	-60,678		1932,239	-4749	31048	29497	34430	29396	-2442	17757
10		2,798	-60,7		1952,409	-7348	30561	29294	34020	29053	-3746	17297
		2,8	-60,677		1952,409	-7480	30099	29598	34212	29346	-3854	17157
		2,798	-60,7		1958,479	-8116	29447	29163	33490	28871	-4117	16464
		2,798	-60,7		1965,578	-9064	28593	28862	32872	28502	-4547	15732
		2,798	-60,7		1979,906	-11008	26468	28127	31421	27610	-5370	14004
		2,825	-60,747		1979,906	-11140	26642	28588	31985	28050	-5523	14343
		2,825	-60,747		1988,869	-12569	24950	28316	31231	27637	-6162	13174
		2,825	-60,747		1905,809	-13430	23482	28114	30653	27345	-6529	12214
BOM JESUS DA LAPA	ВА	-13,25	-43,429	443	1911,489	-10666	699	26681	26683	26220	-4938	325
6		-13,243	-43,42	143	1954,389	-16506	-7217	25456	25660	24407	-7233	-3224
		-13,243	-43,42		1960,399	-17409	-8774	25143	25441	23991	-7522	-3880
		-13,243	-43,42		1964,119	-17954	-9824	24895	25266	23683	-7674	-4310
		-13,269	-43,417		1989,369	-20805	-18111	23275	24489	21757	-8267	-7612
		-13,26	-43,417		2001,364	-21805	-22201	22417	24213	20813	-8327	-9149
BOM JESUS DO PIAUI	PI	-9,029	-44,352	325	1990,151	-20582	-10295	24873	25280	23285	-8744	-4517
BOTUCATU	SP	-22,878	-48,438	912	1913,819	-5900	-13666	24781	25503	24649	-2547	-6025
5		-22,878	-48,438	012	1913,819	-8232	-14682	24424	25248	24172	-3497	-6399
3		-22,933	-48,468		1990,697	-17611	-28000	20434	23143	19476	-6182	-10864
		-22,933	-48,468		1996,198	-18086	-29221	20197	23143	19199	-6270	-11297
		-22,933	-48,468		2001,139	-18559	-29221	19834	23048	18803	-6313	-11738
BRASILIA	DF	-15,948	-47,868	1110	1999,899	-19652	-21082	22107	23693	20819	-7434	-8522
	MT	-18,068	-57,717	1110	1914,519	-19032	-1215	26971	26978	26971	-7454	-572
CACERES 8	IVII	-16,062	-57,717 -57,682		1914,519	-2532	-1213	26930	26937	26903	-7 -1189	-572 -610
		-16,067	-57,682 -57,675		1928,730	-5866	-3898	25971	26032	25835	-2654	-1769
		-16,067	-57,675 -57,675		1954,639	-6697	-3696 -4513	25632	25712	25457	-2034	-2024
		-16,067	-57,675 -57,675		1963,677	-7388	-4848	25406	25498	25195	-3267	-2024
		-16,08	-57,675 -57,653		1905,677	-7300 -9133	-4646 -6769	24640	23496	24328	-3911	-2134
		-16,08	-57,653 -57,653		1975,500	-10850	-8772	24040	24360	23644	-4531	-2925
					•	-12130						
I	I	-16,08	-57,653	I	1992,697	-12130	-10571	23691	24101	23162	-4978	-4421

											_	
CACHIMBO	PA	-9,367	-54,9	620	1977,060	-12628	2950	25877	25912	25251	-5657	1333
3		-9,367	-54,9		1984,540	-14060	1047	25486	25491	24723	-6191	466
		-9,367	-54,9		1984,540	-14137	1059	25443	25448	24672	-6214	470
CACHOEIRO DE ITAPEMIRIM	ES	-20,85	-41,17	95	1952,708	-17166	-20516	23138	24705	22107	-6828	-8658
9		-20,823	-41,137		1957,598	-17749	-21853	22863	24634	21775	-6969	-9169
		-20,823	-41,137		1963,409	-18589	-23256	22412	24395	21243	-7144	-9632
		-20,823	-41,137		1968,019	-19193	-24520	22108	24300	20879	-7268	-10084
		-20,823	-41,137		1970,239	-19513	-25048	21972	24254	20710	-7339	-10268
		-20,823	-41,137		1978,009	-20416	-27374	21391	24089	20047	-7462	-11076
		-20,823	-41,137		1984,088	-21135	-29399	20852	23935	19450	-7518	-11749
		-20,823	-41,137		1990,151	-21562	-31197	20405	23855	18977	-7499	-12356
		-20,823	-41,137		2001,285	-22364	-34534	19462	23625	17998	-7405	-13392
CAMBE	PR	-23,248	-51,307	636	1953,557	-9166	-18131	23490	24718	23190	-3741	-7692
7	' ' '	-23,248	-51,307	000	1959,166	-9965	-19000	23160	24495	22811	-4007	-7974
1		-23,248	-51,307		1965,029	-10975	-19777	22833	24265	22416	-4347	-8210
		-23,248			1905,029	-13003	-21663	21987	23659	21424	-4947	-8733
		-23,248	-51,287 -51,287		1975,921	-13003	-21663	21424	23432	20839	-4947 -4970	-6733 -9490
					•							
		-23,248	-51,287		1986,838 2000,687	-14135	-25325	20992	23224	20356	-5126	-9934 10001
	140	-23,287	-51,247	050	,	-15876	-28610	20152	22955	19383	-5512	-10991
CAMBUQUIRA -	MG	-21,853	-45,283	950	1956,410	-14666	-19881	22986	24444	22237	-5820	-8313
5		-21,853	-45,283		1959,500	-15199	-20666	22764	24330	21967	-5968	-8586
		-21,853	-45,283		1965,229	-16093	-21833	22445	24180	21565	-6222	-8992
		-21,853	-45,283		1968,046	-16325	-22451	22272	24099	21374	-6260	-9204
		-21,853	-45,283		1976,625	-17708	-24541	21767	23929	20735	-6620	-9939
CAMPO GRANDE	MS	-20,455	-54,742	559	1923,859	-3216	-8847	25506	25814	25466	-1430	-3970
11		-20,455	-54,612		1943,500	-5697	-10949	25013	25477	24889	-2483	-4838
		-20,455	-54,612		1951,519	-6716	-12133	24486	25046	24318	-2863	-5264
		-20,447	-54,637		1951,529	-7164	-11798	24574	25105	24382	-3065	-5133
		-20,447	-54,637		1952,409	-7296	-11932	24499	25041	24301	-3112	-5177
		-20,455	-54,612		1952,416	-6866	-12265	24437	25008	24261	-2921	-5312
		-20,455	-54,612		1959,649	-7914	-13383	24017	24688	23788	-3307	-5714
		-20,45	-54,617		1976,055	-10765	-15557	23005	23880	22600	-4296	-6404
		-20,469	-54,67		1986,177	-12659	-18249	22412	23599	21867	-4911	-7389
		-20,45	-54,617		1986,180	-12512	-18086	22251	23408	21722	-4821	-7266
		-20,45	-54,617		1994,895	-14057	-20502	21894	23375	21238	-5317	-8186
CAMPOS DOS GOITACAZES	RJ	-21,758	-41,338	13	1915,510	-12366	-14649	24542	25366	23972	-5256	-6415
		-21,696	-41,48		2001,562	-22176	-34763	19298	23492	17871	-7284	-13395
CAMPINAS	SP	-22,814	-47,047	630	2000,536	-18809	-31062	19663	22955	18613	-6339	-11843
CARAURAI	AM	-4,878	-66,898	100	1978,656	-4931	15803	27665	28752	27562	-2377	7830
4		-4,878	-66,895		1984,770	-5947	15001	27457	28426	27309	-2844	7357
		-4,878	-66,895		1988,880	-6690	14449	27277	28168	27091	-3177	7028
		-4,878	-66,895	<u> </u>	1995,906	-7881	13293	26891	27632	26637	-3687	6353
CARAVELAS	ВА	-17,74	-39,292	4	1923,437	-15232	-11531	25150	25669	24267	-6607	-5131
12		-17,74	-39,292		1927,729	-15866	-12432	25034	25636	24081	-6844	-5518
		-17,74	-39,292		1943,500	-17416	-15265	24495	25391	23372	-7331	-6685
		-17,74	-39,292		1947,369	-17833	-16368	24241	25265	23076	-7423	-7119
		-17,74	-39,292		1951,968	-18381	-17533	23887	25051	22668	-7532	-7546
		-17,633	-39,255		1951,979	-18381	-17197	23973	25096	22750	-7560	-7420
		-17,633	-39,255		1954,489	-18683	-17833	23847	25051	22590	-7639	-7671
		-17,633			1963,500	-19916		23247	24795	21857	-7919	-8621
I	I	17,000	00,200	ı	1000,000	10010	20047	20241	27130	21001	1010	3021

_	_	_	_	_	_	_	_	_	_	_	_	_
		-17,633	-39,255		1972,921	-20892	-23003	22603	24556	21117	-8060	-9595
		-17,637	-39,255		1984,119	-22069	-26958	21709	24356	20118	-8156	-11041
		-17,636	-39,252		1989,270	-22548	-28527	21341	24291	19710	-8184	-11600
		-17,636	-39,252		2001,296	-23079	-32458	20300	24059	18675	-7957	-12912
CAROLINA	MA	-7,335	-47,47	181	1931,909	-12031	10699	28036	28533	27421	-5844	5297
10		-7,285	-47,472		1952,067	-14449	7065	27576	27787	26703	-6880	3417
		-7,285	-47,47		1952,078	-14416	7197	27579	27799	26711	-6866	3483
		-7,285	-47,472		1954,769	-14798	6499	27499	27677	26587	-7023	3132
		-7,285	-47,472		1961,279	-15765	4947	27193	27295	26170	-7388	2354
		-7,285	-47,472		1964,328	-16131	4217	27039	27113	25975	-7512	1993
		-7,317	-47,442		1970,759	-16951	2450	26671	26696	25512	-7776	1141
		-7,317	-47,442		1976,711	-17600	869	26311	26315	25080	-7955	399
		-7,317	-47,442		1986,618	-18929	-2562	25844	25870	24446	-8383	-1156
		-7,317	-47,442		1993,727	-19572	-4991	25510	25608	24036	-8545	-2227
CATALAO	GO	-18,18	-47,883	885	1915,286	-8166	-5966	25625	25765	25365	-3639	-2677
13		-18,18	-47,883		1925,817	-9883	-7282	25431	25638	25053	-4364	-3249
		-18,18	-47,917		1925,817	-9916	-7263	25396	25602	25017	-4373	-3237
		-18,18	-47,883		1933,659	-11064	-8248	25231	25495	24762	-4842	-3657
		-18,18	-47,917		1933,659	-11083	-8232	25233	25496	24762	-4850	-3650
		-18,165	-47,933		1933,666	-11015	-8166	25283	25542	24817	-4830	-3628
		-18,165	-47,933		1954,296	-13564	-11765	24341	24864	23662	-5709	-5069
		-18,165	-47,933		1959,218	-14248	-12847	24047	24665	23307	-5918	-5484
		-18,165	-47,933		1963,588	-15078	-13675	23782	24476	22963	-6186	-5786
		-18,165	-47,933		1967,889	-15640	-14576	23509	24291	22638	-6337	-6113
		-18,158	-47,93		1974,677	-16812	-16430	23037	24018	22052	-6663	-6793
		-18,158	-47,93		1996,218	-19811	-22968	21546	23402	20271	-7302	-9131
		-18,158	-47,93		2002,729	-20125	-24913	21105	23271	19816	-7261	-9802
CATANDUVA	SP	-21,148	-48,985	600	1956,338	-11949	-16433	23519	24521	23009	-4869	-6936
9		-21,148	-48,985		1959,598	-12465	-17197	23295	24386	22746	-5028	-7210
		-21,148	-48,985		1964,649	-13314	-18048	23033	24225	22413	-5304	-7505
		-21,148	-48,98		1970,786	-14373	-19433	22603	23969	21896	-5610	-7974
		-21,148	-48,98		1978,109	-15364	-21106	22129	23721	21338	-5863	-8541
		-21,148			1981,942	-16059	-22246	21831	23587	20979	-6039	-8930
		-21,148	-48,98		1986,828	-16628	-23627	21511	23480	20612	-6155	-9410
		-21,148	-48,98		1996,211	-17742	-26294	20798	23199	19809	-6338	-10276
		-21,148	-48,98		2002,744	-18576	-28058	20369	23082	19308	-6488	-10856
CONCEIÇÃO DO ARAGUAIA	PA	-8,258	-49,283	165	1915,519	-7848	11314	28016	28572	27754	-3825	5605
,		-8,259	-49,255		1954,750	-13465	6116	27346	27503	26594	-6367	2930
		-8,259	-49,255		1961,269	-14366	4763	27059	27153	26213	-6713	2255
		-8,259	-49,255		1964,259	-14814	4032	26905	26972	26010	-6879	1896
		-8,259	-49,255		1970,729	-15746	2536	26553	26580	25557	-7206	1176
		-8,259	-49,255		1976,713	-16472	958	26150	26154	25077	-7414	437
		-8,258	-49,283		1986,659	-17881	-2256	25676	25696	24435	-7884	-1011
		-8,259	-49,255		1986,659	-18131	-2269	25633	25654	24360	-7977	-1015
CORUMBA	MT	-19	-57,655	141	1904,650	2382	-6500	26558	26729	26535	1104	-3025
15]	-19	-57,65		1913,958	340	-6421	26559	26727	26558	157	-2988
		-18,99	-57,65		1914,479	449	-6241	26269	26426	26268	205	-2872
		-19,002	-57,655		1923,879	-1215	-6296	26366	26527	26360	-559	-2910
		-19	-57,65		1925,598	-1565	-6414	26134	26299	26124	-713	-2938
		-18,997			1928,869	-2098	-6499	26058	26227	26040	-953	-2968
•	•	-,	. ,	•	,							

1	ı	i i		ī	Ī	Ī		Ī			Ī	i i
		-19	-57,65		1939,500	-3516	-7399	25865	26083	25817	-1586	-3358
		-19	-57,655		1943,500	-4000	-7833	25696	25939	25634	-1792	-3535
		-19	-57,65		1943,500	-4013	-7899	25693	25940	25630	-1799	-3564
		-19	-57,655		1951,557	-4914	-8949	25203	25514	25110	-2159	-3968
		-19	-57,65		1952,437	-5083	-8916	25162	25470	25063	-2229	-3947
		-19	-57,655		1952,447	-5083	-9031	25189	25506	25090	-2231	-4004
		-18,998	-57,655		1966,479	-7276	-10571	24349	24770	24153	-3083	-4544
		-19	-57,665		1976,009	-8776	-12064	23724	24260	23446	-3619	-5070
		-19	-57,665		1986,187	-10699	-14137	23153	23877	22751	-4298	-5832
COSTA MARQUES	RO	-12,422	-64,252	169	1992,670	-7980	-569	25183	25185	24939	-3496	-250
CRATO	CE	-7,223	-39,41	427	1952,848	-19033	48	27203	27204	25716	-8871	22
9		-7,223	-39,41		1960,848	-19815	-2447	26855	26880	25265	-9103	-1148
		-7,223	-39,41		1963,859	-20096	-3426	26673	26721	25049	-9164	-1596
		-7,223	-39,412		1972,614	-20898	-6221	26223	26379	24498	-9354	-2858
		-7,32	-39,31		1983,088	-21607	-10428	25407	25834	23621	-9356	-4675
		-7,22	-39,41		1983,088	-21697	-10279	25571	25989	23760	-9454	-4637
		-7,32	-39,31		1988,145	-21856	-12432	25086	25689	23283	-9339	-5530
		-7,22	-39,41		1988,227	-21937	-12213	25283	25869	23452	-9445	-5472
		-7,231	-39,415		2001,353	-22357	-17128	24456	25591	22617	-9302	-7536
CRISCIÚMA	SC	-28,725	-49,423	42	2000,677	-16180	-35847	18618	22969	17880	-5188	-13451
CRUZEIRO DO SUL	AC	-7,637	-72,67	189	1958,529	2683	11281	29097	29671	29065	1362	5804
6		-7,637	-72,67		1965,848	1824	11277	28662	29227	28648	912	5715
		-7,62	-72,67		1978,640	-35	11026	27835	28359	27835	-17	5423
		-7,599	-72,77		1986,279	-1343	10685	27402	27886	27394	-642	5170
		-7,599	-72,77		1989,503	-1847	10468	27222	27683	27208	-877	5029
		-7,599	-72,77		1995,869	-2901	9951	26930	27342	26896	-1362	4724
CUIABÁ	MS	-15,657	-56,123	176	1904,510	532	-683	27164	27166	27162	252	-323
13	1110	-15,657	-56,123		1904,510	532	-683	27164	27166	27162	252	-323
10		-15,657	-56,123		1925,640	-3582	-648	26886	26888	26833	-1680	-305
		-15,657	-56,123		1925,650	-3565	-683	26893	26895	26840	-1673	-320
		-15,657	-56,123		1925,670	-3565	-648	26884	26886	26832	-1672	-305
		-15,657	-56,123		1928,660	-4083	-767	26847	26850	26779	-1911	-359
		-15,657	-56,123		1943,530	-6000	-2098	26586	26604	26440	-2779	-974
		-15,657	-56,123		1943,530	-6948	-3433	26133	26180	25940	-3162	-974 -1567
					1951,598							
		-15,657 -15,657	-56,123			-6933 -7065	-3131 -3217	26074	26114 26063	25884 25824	-3147 -3201	-1427 -1462
		-15,65 <i>7</i> -15,657	-56,123		1952,458 1959,670	-7065 -8050	-3217 -4300	26021	25567	25824	-3201 -3570	-1462 -1916
			-56,123		•			25495				
		-15,657 -15,657	-56,123		1963,650 1975,515	-8866 10710	-4800 6015	25392	25482	25089	-3914 4577	-2132 2097
CUDITIDA	PR	-15,657	-56,123	900	1975,515	-10710	-6915 -20433	24629	24810 25026	24200 23139	-4577 -3800	-2987 -8736
CURITIBA	FK		-49,2	900	•	-9347		23451			-3809	
11		-25,392	-49,232		1951,229	-10383	-21766	22900	24658	22525	-4127	-9143
		-25,415	-49,228		1951,229	-10515	-21399	22764	24450	22382	-4154 4204	-8920
		-25,392	-49,232		1953,567	-10616	-22149	22821	24640	22431	-4204	-9289
		-25,392	-49,232		1961,166	-11932	-23416	22345	24351	21862	-4619	-9677
		-25,415	-49,228		1965,057	-12696	-23697	21924	23943	21387	-4818	-9623
		-25,517	-49,167		1976,149	-14597	-27294	20976	23604	20298	-5286	-10823
		-25,517	-49,167		1982,187	-15970	-28579	20553	23405	19759	-5654	-11196
		-25,517	-49,167		1986,920	-16635	-30190	20182	23349	19337	-5777	-11741
		-25,517	-49,167		1991,842	-17288	-31381	19852	23254	18955	-5899	-12108
		-25,525	-49,182		2000,687	-18642	-33784	19336	23265	18321	-6180	-12937

DIAMANTINA	MG	-18,245	-43,598	1355	1928,009	-12932	-10449	25143	25568	24506	-5627	-4637
9		-18,253	-43,602		1954,098	-15965	-15399	23995	24889	23069	-6599	-6609
		-18,253	-43,602		1959,279	-16749	-16715	23662	24706	22658	-6818	-7105
		-18,253	-43,602		1963,166	-17231	-17562	23486	24635	22432	-6957	-7433
		-18,253	-43,602		1967,536	-17798	-18701	23207	24501	22096	-7093	-7856
		-18,253	-43,602		1975,562	-18891	-20833	22602	24184	21385	-7318	-8600
		-18,253	-43,602		1990,151	-20461	-25488	21626	23958	20261	-7559	-10309
		-18,233	-43,651		1990,151	-20642	-25534	21582	23919	20197	-7608	-10310
		-18,233	-43,652		1999,847	-21427	-28523	20867	23750	19425	-7623	-11340
DIVINOPOLIS	MG	-20,138	-44,888	690	1928,177	-11883	-12498	24708	25308	24178	-5087	-5476
9		-20,162	-44,87		1954,119	-14949	-17215	23538	24642	22741	-6071	-7293
		-20,162	-44,87		1959,369	-15531	-18416	23151	24401	22305	-6199	-7708
		-20,162	-44,87		1963,458	-16364	-19333	22936	24307	22007	-6462	-8047
		-20,162	-44,87		1970,129	-17399	-20933	22500	24090	21470	-6728	-8606
		-20,162	-44,87		1978,057	-18375	-22968	22008	23904	20886	-6937	-9327
		-20,162	-44,87		1984,160	-19444	-24856	21595	23800	20363	-7189	-10004
		-20,162	-44,87		1990,151	-19861	-26791	21044	23575	19792	-7149	-10626
		-20,102	-44,873		1999,838	-20784	-29690	20291	23358	18970	-7200	-11569
EIRUNEPE	AM	-6,662	-69,87	130	1978,645	-2266	13031	27667	28399	27645	-1093	6403
	\(\tau\)	-6,667	-69,917	130	1970,045	-3154	12571	27286	27957	27245	-1501	6085
3		-6,667	-69,917		1984,770	-3868	12119		27749	27068	-1830	5825
EDITACIOLANDIA	AC			150	1992,630	-4400	3335	27130		25996		1519
EPITACIOLANDIA	PE	-11,017 -3,84	-68,733 -32,408	56	1992,030	-18333	7447	26073 29002	26118 29249	27530	-2000 -9122	3791
FERNANDO DE NORONHA 5		-3,86	-32,408	30	1952,250	-21541	-333	27712	27713	25776	-10175	-161
5		-3,86	-32,43		1952,546	-21614	-199	27429	27430	25500	-10173	-95
		-3,85			1932,340	-21014	-13602	25987	26737	24084	-9761	-6287
		-3,85	-32,417 -32,417		1988,170	-22002	-18111	25424	26750	23709	-9180	-8315
FLORIANO	PI	-6,773	-43,022	210	1930,170	-14798	9097	28030	28388	27101	-7159	4488
FLORIANO	FI	-6,777		210	1950,279	-17065	4499	27531	27617	26319	-8079	2166
11			-43,035		-							
		-6,777	-43,037		1952,057	-17083	4499	27512	27598	26299	-8082	2164
		-6,777	-43,035		1954,779	-17364	3733	27459	27518	26208	-8195	1791
		-6,777	-43,037		1963,848	-18416	1166	26959	26965	25578	-8516	548
		-6,777	-43,037		1970,937	-19201	-809	26635	26638	25153	-8759	-376
		-6,78	-43,04		1983,098	-20468	-5197	25855	25962	24222	-9041	-2352
		-6,85	-43,08		1983,098	-20479	-5559	25804	25926	24173	-9027	-2511
		-6,78	-43,04		1987,150	-20670	-6735	25712	25891	24057	-9076	-3036
		-6,85	-43,08		1987,150	-20777	-7072	25675	25872	24005	-9107	-3185
		-6,845	-43,078	0.5	1993,655	-21145	-9468	25264	25613	23563	-9113	-4213
FLORIANÓPOLIS	SC	-27,597	-48,562	25	1913,416	-5366	-19666	24167	25665	24062	-2260	-8637
8		-27,613	-48,553		1953,796	-10748	-24965	22134	24416	21746	-4127	-10305
		-27,613	-48,553		1960,019	-11798	-25849	21368	23744	20916	-4369	-10352
		-27,613	-48,553		1965,177	-12637	-26701	21388	23941	20869	-4679	-10757
		-27,667	-48,548		1976,175	-14689	-29291	20740	23781	20062	-5259	-11635
		-27,667	-49,548		1986,920	-16250	-32073	19891	23474	19096	-5566	-12464
		-27,667	-49,548		1991,875	-16607	-33347	19480	23320	18667	-5567	-12819
		-27,664	-48,55		2000,681	-17090	-35185	18944	23179	18107	-5567	-13356
FORMOSA	GO	-15,54	-47,355	900	1959,529	-14633	-9383	24809	25146	24004	-6267	-4099
5		-15,54	-47,355		1963,557	-15284	-10265	24586	24986	23716	-6480	-4452
		-15,54	-47,355		1967,779	-15810	-11182	24318	24789	23398	-6625	-4807
		-15,54	-47,355		1974,781	-16822	-13000	23827	24454	22807	-6895	-5500

I	Ī	l l		Ī	l	l			l	l	l	l
		-15,54	-47,355		1985,114	-18322	-16274	23222	24192	22045	-7300	-6779
		-15,552	-47,343		1999,885	-19940	-20951	22217	23790	20885	-7576	-8506
FORTALEZA	CE	-3,722	-38,5	28	1919,317	-16416	13465	29216	30042	28025	-8256	6995
11		-3,753	-38,568		1943,619	-18732	8149	28329	28618	26828	-9097	4056
		-3,753	-38,568		1947,447	-18982	7065	28226	28442	26691	-9181	3498
		-3,753	-38,568		1952,036	-19381	5664	28009	28147	26422	-9295	2778
		-3,775	-38,533		1952,040	-19312	5393	28090	28215	26509	-9290	2651
		-3,753	-38,568		1952,750	-19416	5447	28039	28167	26444	-9321	2674
		-3,753	-38,568		1957,509	-19773	3858	27882	27946	26238	-9432	1880
		-3,87	-38,41		1983,177	-21559	-5697	26584	26717	24725	-9768	-2652
		-3,87	-38,41		1988,197	-21666	-7605	26416	26651	24550	-9752	-3527
		-3,87	-38,41		1995,685	-21805	-10475	25986	26427	24127	-9653	-4804
		-3,878	-38,426		2001,348	-21760	-12571	25735	26368	23902	-9540	-5738
FORTE PRINCIPE DA BEIRA	RO	-12,43	-64,425	220	1952,328	-1450	3983	27346	27413	27338	-691	1904
3		-12,43	-64,425		1952,338	-1508	3325	27316	27363	27307	-718	1587
		-12,43	-64,425		1958,550	-2365	2858	26957	26991	26934	-1112	1345
FOZ DO IGUAÇU	PR	-25,533	-54,567	246	1943,447	-4631	-18833	24063	25425	23985	-1943	-8207
12		-25,533	-54,567		1951,276	-5532	-19961	23484	24986	23375	-2263	-8529
		-25,535	-54,585		1951,286	-5491	-19288	23380	24771	23273	-2237	-8182
		-25,535	-54,585		1953,577	-5821	-19513	23245	24662	23125	-2357	-8237
		-25,535	-54,585		1959,156	-6710	-20798	22783	24372	22627	-2662	-8653
		-25,535	-54,585		1965,036	-7729	-20909	22541	24131	22336	-3031	-8612
		-25,535	-54,585		1970,338	-9022	-21808	22052	23752	21779	-3458	-8823
		-25,597	-54,488		1982,208	-10534	-24697	21157	23288	20801	-3868	-9730
		-25,597	-54,488		1986,869	-11324	-25857	20898	23223	20491	-4103	-10128
		-25,597	-54,488		1991,942	-11913	-27000	20595	23115	20152	-4251	-10493
		-25,597	-54,488		1994,869	-12425	-27621	20361	22981	19885	-4381	-10654
		-25,595	-54,492		2000,660	-13331	-28857	20048	22891	19508	-4622	-11047
GAVIÃO PEIXOTO	SP	-21,75	-48,403	515	2002,718	-19179	-29325	20166	23130	19046	-6624	-11328
GENERAL CARNEIRO	MT	-15,727	-52,762	343	1976,753	-13399	-9423	24180	24511	23521	-5603	-4012
GOIANIA	GO	-16,683	-49,267	746	1943,529	-10894	-6578	25585	25755	25124	-4835	-2950
12		-16,68	-49,3		1943,531	-10678	-6716	25565	25742	25122	-4736	-3010
		-16,68	-49,3		1951,790	-11737	-8319	25083	25350	24558	-5102	-3667
		-16,683	-49,267		1951,802	-11902	-8329	25079	25347	24540	-5172	-3671
		-16,68	-49,3		1952,477	-11880	-8432	25066	25340	24529	-5160	-3715
		-16,627	-49,227		1959,552	-13069	-9772	24602	24965	23965	-5563	-4237
		-16,627	-49,227		1963,572	-13795	-10557	24378	24798	23675	-5812	-4543
		-16,645	-49,227		1970,274	-14916	-12135	23952	24500	23145	-6165	-5150
		-16,645	-49,227		1978,149	-16055	-13862	23490	24195	22574	-6496	-5796
		-16,645	-49,227		1986,729	-17311	-16663	22854	23856	21819	-6800	-6840
		-16,645	-49,227		1995,812	-18416	-19333	22313	23647	21170	-7049	-7828
		-16,631	-49,228		2001,411	-19184	-21274	22018	23629	20795	-7235	-8573
GOVERNADOR VALADARES	MG	-18,843	-41,942	120	1954,149	-17083	-17444	23636	24776	22593	-6943	-7427
8		-18,51	-41,872		1961,098	-18034	-19183	23303	24673	22158	-7214	-8107
		-18,51	-41,872		1963,519	-18399	-19784	23187	24642	22001	-7319	-8341
		-18,877	-41,983		1970,197	-19318	-21663	22693	24418	21415	-7507	-9013
		-18,877	-41,983		1978,067	-20232	-23728	22149	24195	20783	-7659	-9735
		-18,877	-41,983		1984,098	-20232	-25847	21684	24095	20240	-7780	-10504
		-18,877	-41,983 -41,983		1989,276	-2102 <i>1</i> -21461	-27465	21321	24095	19843	-7800	-11083
		-18,89	-41,977		1999,911	-22239	-30819	20428	23787	18908	-7731	-12186

GRARAJÁ- MIRIM	RO	-10,8	-65,333	146	1924,180	2500	7500	28675	28922	28647	1250	3775
		-10,8	-65,333		1932,439	1250	8050	28598	28882	28591	623	4044
		-10,788	-65,282		1992,645	-7432	3546	25584	25634	25369	-3309	1585
GUIRATINGA	MT	-16,352	-53,755	510	1964,430	-10637	-7480	24849	25063	24422	-4586	-3262
2		-16,352	-53,755		1974,698	-12229	-9454	24166	24499	23617	-5118	-4024
ILHÉUS	ВА	-14,818	-39,01	4	1957,416	-19902	-16454	24333	25373	22880	-8283	-7186
7		-14,818	-39,01		1960,859	-20141	-17562	24193	25376	22713	-8330	-7656
		-14,818	-39,01		1963,208	-20430	-18156	24053	25314	22540	-8396	-7887
		-14,813	-39,033		1983,197	-22517	-24729	22627	24912	20902	-8665	-1042
		-14,813	-39,033		1989,295	-22958	-27090	22151	24881	20396	-8640	-1133
		-14,813	-39,036		2001,300	-23266	-31919	21156	24925	19435	-8356	-1317
		-14,815	-39,03		2001,375	-22996	-30746	21218	24689	19532	-8289	-1262
ITAITUBA	PA	-4,266	-55,983	27	1982,723	-13689	11475	27014	27565	26246	-6392	5483
2		-4,266	-55,983		1988,550	-14522	9902	26883	27290	26024	-6741	4692
ITANHAÉM	SP	-24,164	-46,785	34	1986,930	-17420	-30110	20373	23552	19439	-6099	-1181
3		-24,164	-46,785		1991,807	-18141	-31363	19949	23363	18957	-6211	-1215
		-24,165	-46,785		2000,170	-18957	-33485	19441	23310	18386	-6315	-1286
ITAPEVA	SP	-23,965	-48,88	720	1914,088	-5683	-14366	24462	25252	24342	-2422	-626
		-23,967	-48,863		1956,380	-11597	-20613	22683	24235	22220	-4560	-853
		-23,967	-48,863		1964,666	-12942	-21988	22232	23977	21668	-4979	-897
		-23,967	-48,863		1975,082	-13625	-24735	21642	23829	21033	-5098	-997
		-23,967	-48,863		1981,890	-15835	-25572	20940	23215	20146	-5714	-1002
		-23,967	-48,863		1986,920	-15020	-27899	20809	23546	20098	-5392	-1101
		-23,967	-48,863		1986,920	-16635	-26961	20584	23095	19723	-5893	-1047
		-23,967	-48,863		1991,816	-15645	-29208	20430	23406	19673	-5509	-1142
		-23,944	-48,881		2002,739	-16826	-32069	19605	23136	18766	-5675	-1228
ITUIUTABA	MG	-18,987	-49,435	570	1956,087	-11805	-12892	24174	24800	23663	-4945	-553
7		-18,987	-49,435		1959,447	-12451	-13578	23976	24666	23412	-5169	-579
		-18,987	-49,435		1963,582	-13173	-14314	23729	24490	23105	-5407	-605
		-18,987	-49,435		1970,279	-14218	-15713	23327	24233	22612	-5729	-656
		-18,987	-49,435		1978,135	-15284	-17356	22754	23840	21949	-5998	-711
		-18,987	-49,435		1996,213	-17812	-22610	21558	23353	20524	-6594	-897
		-19	-49,487		2002,729	-18558	-24440	21151	23233	20051	-6731	-961
JACAREACANGA	PA	-6,267	-57,733	99	1977,082	-11019	10661	26920	27393	26423	-5145	506
2		-6,267	-57,733		1988,937	-13038	7940	26475	26732	25793	-5973	3692
JANUARIA	MG	-15,492	-44,358	450	1911,410	-9883	-2904	26152	26186	25764	-4488	-132
7		-15,493	-44,368		1954,202	-15774	-10260	24888	25293	23951	-6765	-450
		-15,493	-44,368		1957,139	-16121	-11079	24703	25173	23732	-6859	-483
		-15,493	-44,368		1964,129	-17208	-12748	24336	24952	23247	-7199	-550
		-15,442	-44,598		1972,817	-18329	-15161	23793	24652	22586	-7482	-644
		-15,474	-44,386		1990,151	-20371	-20843	22590	24172	21177	-7863	-860
		-15,475	-44,387		1999,875	-21294	-24124	21829	23919	20339	-7927	-977
JATAI	GO	-17,875	-51,717	782	1953,369	-10314	-9133	25111	25434	24705	-4496	-403
7		-17,887	-51,728		1953,625	-10161	-9314	24835	25167	24445	-4381	-407
		-17,887	-51,728		1959,557	-11064	-10352	24497	24903	24042	-4701	-447
		-17,887	-51,728		1963,639	-11850	-11000	24255	24709	23738	-4980	-471
		-17,887	-51,728		1972,229	-13036	-12781	23680	24282	23070	-5341	-537
		-17,887	-51,728		1984,821	-15116	-16267	23015	23975	22218	-6001	-671
		-17,887	-51,728		1986,692	-15456	-16732	22950	23965	22120	-6116	-689
JI-PARANÁ	R0	-10,867	-61,955	181	1976,796	-7888	3496	25907	25956	25662	-3556	158

	1	-10,867	-61,955	I	1989,484	-9649	467	25150	25151	24794	-4215	204
		-10,867	-61,955		1909,404	-10184	-202	24950	24951	24557	-4213 -4411	-87
JOÃO PESSOA	РВ	-7,091	-34,843	47	2001,333	-22426	-22353	24930	25966	22198	-9161	-9875
	SC	-27,827	-50,32	951	1955,708	-9196	-24989	22058	24337	21775	-3525	-10281
LAGES 5	30	-27,827	-50,32	951	1960,239	-9916	-25989	21707	24149	21382	-3738	-10582
5		-27,783	-50,265		1900,239	-12479	-28628	20656	23533	20168	-4463	-11275
		-27,783	-50,265 -50,265		1970,192	-14748	-32324	19548	23133	18904	-4403	-12369
		-27,782	-50,281		2000,671	-15803	-34346	18880	22868	18167	-5141	-12901
LONDRINA	PR	-23,333	-51,133	570	1986,848	-14310	-25340	21082	23327	20428	-5210	-9983
MACAPA	AP	0,043	-51,067	16	1950,040	-13182	21899	29130	31396	28362	-6643	11710
4		0,05	-51,067	10	1977,713	-16197	16783	27954	29198	26844	-7798	8430
4		0,05	-51,067		1984,604	-17103	14755	27796	28744	26566	-8174	7320
		0,05	-51,067		1988,468	-17450	13609	27677	28477	26403	-8299	6700
MACEIÓ	AL	-9,655	-35,8	118	1952,899	-20465	-7366	26254	26473	24597	-9179	-3394
8		-9,655	-35,715	110	1952,916	-20545	-7782	26184	26428	24519	-9189	-3578
0		-9,655	-35,715		1957,458	-20982	-9215	25928	26268	24209	-9284	-4206
		-9,655	-35,715		1963,286	-21329	-11116	25639	26130	23883	-9325	-5037
		-9,655	-35,715		1903,280	-21871	-13699	25239	25978	23422	-9323 -9402	-6152
		-9,52	-35,78		1983,208	-22620	-18107	24342	25611	22470	-9362	-7960
		-9,52	-35,78		1988,218	-22753	-19971	24048	25587	22176	-9301	-8739
		-9,512	-35,797		2001,317	-22868	-24684	23112	25437	21296	-8981	-10622
MANAUS	AM	-3,142	-59,992	93	1910,546	112	20065	29439	31342	29439	57	10753
24	Aivi	-3,127	-59,983		1910,567	123	20159	29413	31333	29413	63	10798
24		-3,127	-59,983		1910,307	-68	20263	29396	31336	29396	-34	10750
		-3,127	-59,983		1911,239	-587	20579	29483	31493	29481	-302	11070
		-3,127	-59,983		1914,729	-824	20781	29469	31520	29466	-424	11183
		-3,142	-59,992		1914,796	-828	20697	29487	31522	29484	-426	11141
		-3,142	-59,992		1917,848	-1393	20989	29427	31519	29418	-715	11290
		-3,142	-59,992		1924,098	-2479	21548	29390	31599	29363	-1271	11605
		-3,127	-59,983		1924,159	-2470	21621	29411	31638	29384	-1267	11658
		-3,127	-59,983		1932,166	-3861	21954	29381	31679	29314	-1978	11844
		-3,135	-60		1932,279	-4664	21937	29243	31526	29146	-2378	11778
		-3,117	-60,067		1932,359	-3634	22208	29255	31600	29196	-1854	11943
		-3,127	-59,983		1932,379	-3996	21971	29377	31678	29305	-2047	11851
		-3,133	-59,95		1943,659	-5181	21319	29291	31443	29171	-2645	11431
		-3,133	-60		1943,659	-5230	21267	29281	31421	29159	-2669	11397
		-3,103	-60,017		1952,250	-6157	20569	28737	30695	28572	-3082	10784
		-3,133	-60		1952,389	-6184	20531	29001	30969	28833	-3124	10861
		-3,15	-59,988		1958,458	-7019	19524	28797	30555	28582	-3519	10212
		-3,067	-60,017		1965,567	-8003	19045	28338	29979	28062	-3945	9782
		-3,067	-60,017		1977,129	-9699	17350	27678	28998	27282	-4663	8647
		-2,9	-59,967		1979,927	-10428	17076	27532	28802	27077	-4983	8457
		-2,838	-59,713		1982,770	-10880	16645	27372	28570	26880	-5167	8183
		-2,838	-59,713		1988,947	-11840	15189	27233	28219	26653	-5587	7393
		-2,838	-59,713		1995,926	-13201	13628	26922	27702	26210	-6148	6527
MARABÁ	PA	-5,348	-49,183	84	1915,578	-8189	16239	28547	29734	28256	-4066	8315
		-5,367	-49,167]	1976,916	-16686	5770	26904	27042	25772	-7725	2719
		-5,367	-49,138		1984,567	-17809	3256	26572	26615	25298	-8126	1512
		-5,367	-49,138		1986,640	-18069	2523	26535	26561	25226	-8230	1169
MARÍLIA	SP	-22,202		663	1953,458	-10715		23459	24518	23050	-4361	-7127
	-	,	,									– .

11		-22,372	-49,95		1953,479	-10628	-17333	23525	24645	23122	-4338	-7342
		-22,202	-49,95		1959,098	-11548	-17916	23050	24225	22583	-4614	-7452
		-22,202	-49,95		1964,659	-12583	-18697	22780	24050	22233	-4962	-7709
		-22,202	-49,95		1970,359	-13531	-19899	22424	23848	21801	-5246	-8116
		-22,202	-49,95		1981,927	-15310	-22427	21657	23430	20889	-5718	-8938
		-22,202	-49,95		1981,927	-15364	-22436	21657	23431	20883	-5738	-8942
		-22,202	-49,95		1986,828	-16023	-24038	21303	23326	20475	-5880	-9501
		-22,202	-49,95		1986,838	-16121	-24055	21290	23315	20453	-5911	-9503
		-22,202	-49,95		1996,203	-17364	-26620	20597	23040	19658	-6147	-10323
		-22,198	-49,928		2000,692	-17975	-27700	20344	22978	19351	-6278	-10681
MONTE DOURADO	PA	-0,85	-52,6	200	1982,687	-15911	14869	27600	28557	26543	-7566	7328
2	'	-0,85	-52,6 -52,6	200	1988,505	-16829	13090	27457	28190	26281	-7949	6384
	MG	-16,712		630	1950,303		-11965	24587	25134	23666	-6666	-5210
MONTES CLAROS	IVIG		-43,823	030	i -	-15732						
9		-16,711	-43,857		1952,536	-15781	-12166	24528	25092	23603	-6671	-5288
		-16,711	-43,857		1960,927	-16899	-14265	24018	24783	22981	-6981	-6106
		-16,722	-43,803		1963,546	-17416	-15048	23883	24732	22788	-7148	-6421
		-16,722	-43,803		1967,796	-17947	-16183	23647	24623	22496	-7287	-6862
		-16,722	-43,803	ŀ	1973,317	-18628	-17548	23241	24376	22024	-7423	-7349
		-16,722	-43,803		1985,109	-20194	-21493	22437	24114	21057	-7745	-8835
		-16,722	-43,803		1989,380	-20559	-22874	22125	24014	20716	-7769	-9334
		-16,707	-43,809		1999,878	-21468	-26329	21309	23776	19830	-7798	-10545
MOSSORÓ	RN	-5,192	-37,345	16	1922,550	-17100	3667	28374	28432	27119	-8343	1818
2		-5,213	-37,312		2001,359	-22003	-16173	25128	26164	23298	-9414	-7288
MUNDO NOVO	BA	-11,888	-40,452	604	1961,317	-19149	-9564	25409	25768	24003	-8335	-4281
6		-11,888	-40,452		1964,109	-19416	-10482	25240	25669	23805	-8390	-4669
		-11,888	-40,445		1975,755	-20614	-14055	24497	25254	22929	-8625	-6133
		-11,888	-40,445		1984,130	-21416	-17243	23972	25101	22317	-8753	-7440
		-11,888	-40,445		1989,311	-21812	-19111	23615	24993	21924	-8775	-8182
		-11,88	-40,454		2001,359	-22465	-23326	22470	24471	20765	-8586	-9689
NATAL	RN	-5,778	-35,183	60	1919,489	-17697	6480	28188	28370	26854	-8569	3202
16		-5,782	-35,195		1922,348	-18131	6333	28059	28232	26666	-8732	3114
		-5,792	-35,183		1941,649	-19916	1358	27729	27737	26070	-9445	657
		-5,768	-35,2		1943,697	-20114	1072	27613	27618	25928	-9496	516
		-5,902	-35,23		1952,019	-20614	-1582	27292	27303	25544	-9609	-753
		-5,768	-35,2		1952,019	-20697	-1516	27353	27363	25587	-9667	-723
		-5,768	-35,2		1952,879	-20666	-1766	27297	27310	25540	-9633	-841
		-5,902	-35,23		1952,889	-20649	-2124	27284	27303	25531	-9621	-1011
		-5,768	-35,2		1957,500	-21000	-3582	26975	27028	25183	-9667	-1688
		-5,768	-35,193		1975,717	-21899	-9706	26124	26504	24239	-9743	-4468
		-5,77	-35,19		1983,187	-22197	-12850	25579	26237	23684	-9664	-5835
		-5,768	-35,19		1983,187	-22229	-12878	25613	26274	23709	-9689	-5855
		-5,77	-35,193		1988,187	-22190	-14852	25336	26212	23459	-9569	-6718
		-5,768	-35,19		1988,187	-22190	-14800	25300	26169	23429	-9509 -9571	-6684
		-5,768			1995,687	-22232	-17562	24845	26060	22998	-9571 -9400	-7863
			-35,193									
OMBOSTIE	A D	-5,836	-35,208	10	2001,338	-22086	-19704	24519	26045	22720	-9219	-8781
OIAPOQUE	AP	3,837	-51,83	10	1984,614	-16833	21302	28249	30321	27039	-8180	11015
2	-	3,837	-51,83	44	1988,489	-17180	20218	28165	30015	26908	-8319	10372
PALMAS	PR	-26,472	-51,968	1114	1953,578	-7782	-22533	22419	24273	22213	-3035	-9301
9		-26,472	-51,968		1959,149	-8883	-23399	22201	24191	21935	-3428	-9607
1	I	-26,472	-51,972	l	1965,046	-9899	-24298	21833	23955	21507	-3753	-9857

	ı	1 1		I		I	I	I	I	I		i i
		-26,478	-52		1974,343	-11156	-25746	21266	23610	20864	-4114	-10256
		-26,478	-52		1982,234	-12463	-27309	20780	23387	20290	-4484	-10729
		-26,478	-52		1982,239	-12496	-27722	20613	23286	20124	-4460	-10832
		-26,478	-52		1986,869	-13187	-28808	20344	23218	19808	-4641	-11188
		-26,478	-52		1991,859	-13892	-30013	19951	23041	19367	-4790	-11525
		-26,476	-51,977		2000,670	-15015	-32129	19291	22780	18632	-4997	-12115
PARINTINS	AM	-2,613	-56,733	23	1911,390	-2200	21200	29214	31334	29192	-1121	11331
3		-2,633	-56,733		1982,739	-13288	14810	27377	28318	26644	-6292	7238
,	<u> </u>	-2,633	-56,733		1988,561	-14109	13180	27236	27973	26414	-6639	6378
PARNAÍBA	PI	-2,883	-41,74	5	1952,769	-18009	10265	28416	28879	27024	-8785	5146
9		-2,9	-41,763		1952,786	-17958	10314	28385	28852	27002	-8751	5166
		-2,9	-41,763		1960,828	-18749	7914	28095	28366	26604	-9030	3906
		-2,9	-41,763		1963,838	-19117	6815	28005	28205	26461	-9171	3347
		-2,9	-41,735		1975,697	-19944	3190	27471	27514	25823	-9370	1531
		-2,9	-41,763		1983,149	-20589	-303	27099	27100	25368	-9529	-143
		-2,9	-41,763		1983,149	-20600	-372	27083	27084	25351	-9529	-175
		-2,9	-41,763		1987,229	-20815	-1327	27037	27045	25272	-9608	-626
		-2,9	-41,763		1995,671	-21062	-4394	26573	26652	24798	-9550	-2042
PASSO FUNDO	RS	-28,265	-52,395	61	1914,310	-1616	-20482	24357	26001	24347	-686	-9098
6		-28,265	-52,395		1953,937	-7083	-24482	22280	24482	22110	-2747	-10145
		-28,265	-52,395		1960,239	-8083	-25482	21862	24218	21644	-3073	-10419
		-28,265	-52,395		1965,328	-8932	-26100	21560	24009	21299	-3347	-10562
		-28,265	-52,395		1976,208	-10652	-28033	20795	23560	20437	-3843	-11072
		-28,25	-52,517		2000,630	-14602	-33261	19065	22801	18449	-4806	-12505
PETROLINA	PE	-9,412	-40,507	377	1911,604	-12732	5683	27182	27317	26514	-5990	2705
15		-9,402	-40,517		1923,389	-14965	3233	26905	26948	25992	-6947	1519
		-9,43	-40,523		1952,000	-18232	-2664	26728	26757	25386	-8362	-1244
		-9,392	-40,498		1952,000	-18283	-2815	26666	26699	25320	-8365	-1311
		-9,43	-40,523		1954,447	-18482	-3315	26569	26614	25199	-8422	-1538
		-9,392	-40,498		1954,447	-18516	-3516	26533	26584	25160	-8426	-1630
		-9,392	-40,498		1960,416	-19197	-5263	26129	26240	24676	-8592	-2407
		-9,43	-40,523		1960,427	-19065	-5013	26257	26358	24816	-8576	-2304
		-9,392	-40,498		1963,879	-19548	-6366	26039	26201	24538	-8712	-2905
		-9,392	-40,498		1972,629	-20402	-9071	25503	25826	23903	-8890	-4071
		-9,39	-40,5		1980,197	-21179	-11810	25073	25616	23380	-9058	-5242
		-9,39	-40,5		1980,197	-21197	-11350	25059	25559	23363	-9061	-5030
		-9,39	-40,5		1988,135	-21767	-15272	24304	25194	22571	-9012	-6636
		-9,39	-40,5		1988,213	-21745	-14446	24559	25361	22811	-9098	-6326
DILATA ITTEID A C	NAT	-9,365	-40,565	405	2001,354	-22399	-19343	23658	25074	21873	-9015	-8305
PIMENTEIRAS	MT	-13,483	-61,047	185	1992,687	-10159	-4072	24504	24567	24120	-4322	-1744
PIRAPORA	MG	-17,355	-44,937	600	1911,187	-7815	-4367	25871	25947	25631	-3518	-1975
9		-17,355	-44,937		1954,180	-13649	-11350	24454	24942	23763	-5770	-4908 5400
		-17,355	-44,937		1959,578	-14449	-12666	24068	24669	23307	-6005	-5409 5472
		-17,355	-44,937		1960,317	-14482	-12833	24028	24644	23264	-6008	-5473
		-17,355	-44,937		1964,760	-15166	-13850	23825	24539	22995	-6233	-5874
		-17,352	-44,927		1965,280	-15250	-13916	23782	24502	22945	-6255	-5892
		-17,352	-44,927		1967,790	-15531 46470	-14750	23668	24475	22804	-6337	-6231
		-17,352	-44,927		1974,729	-16479	-16427	23120	24104	22170	-6558 -7054	-6816 0440
F:=	55	-17,313	-44,858	000	1999,864	-19458	-24047	21176	23189	19966	-7054	-9449
PITANGA	I PR	-24,746	-51,761	922	1956,369	-9213	-20992	22730	24346	22436	-3639	-8721

2		-24,752	-51,772		2000,666	-14944	-28356	19638	22316	18974	-5064	-10598
POÇOS DE CALDAS	MG	-21,812	-46,595	1200	1953,427	-13347	-18381	23394	24652	22762	-5400	-7774
10 10	""	-21,812	-46,595	1200	1959,078	-14281	-19583	23050	24466	22338	-5686	-8200
10		-21,812	-46,595		1964,000	-15048	-20482	22752	24288	21972	-5907	-8498
		-21,812	-46,595		1970,098	-16048	-21965	22338	24087	21468	-6175	-9009
		-21,812	-46,595		1976,713	-16906	-23284	21905	23848	20959	-6370	-9426
		-21,812	-46,595		1981,953	-17649	-24579	21571	23721	20556	-6540	-9866
		-21,812	-46,595		1981,953	-17694	-24540	21558	23699	20538	-6552	-9842
		-21,812	-46,595		1986,817	-18253	-26413	21157	23623	20092	-6627	-10508
		-21,81	-46,595		1996,229	-19298	-29079	20451	23401	19302	-6758	-11373
		-21,786	-46,59		1999,822	-19690	-30125	20139	23285	18962	-6786	-11686
PONTA PORÃ	MS	-22,548	-55,735	658	1953,529	-5833	-15248	24018	24895	23894	-2440	-6547
9		-22,543	-55,728		1953,529	-5848	-15281	24029	24910	23904	-2448	-6565
		-22,543	-55,728		1959,639	-6833	-16166	23597	24569	23429	-2807	-6840
		-22,543	-55,728		1964,520	-7664	-16631	23384	24406	23175	-3119	-6985
		-22,55	-55,715		1975,067	-9253	-18513	22677	23915	22382	-3646	-7593
		-22,55	-55,715		1984,832	-11045	-20582	22094	23601	21685	-4232	-8296
		-22,55	-55,715		1986,859	-11359	-21068	21902	23471	21473	-4313	-8437
		-22,55	-55,715		1994,889	-12553	-22913	21379	23211	20868	-4646	-9036
		-22,552	-55,705		2001,755	-13699	-24700	20759	22850	20168	-4916	-9548
PORTO ALEGRE	RS	-30,07	-51,138	5	1904,739	-648	-21833	24834	26754	24833	-281	-9949
17		-30,07	-51,138		1914,639	-2183	-22666	24167	26190	24149	-920	-10092
		-29,912	-50,122		1923,989	-4800	-23298	23664	25765	23581	-1980	-10190
		-30,033	-51,233		1925,927	-4197	-23683	23712	25893	23648	-1735	-10400
		-30,033	-51,233		1951,379	-7216	-26965	22138	24839	21963	-2780	-11263
		-30,03	-51,175		1951,389	-7366	-26947	22198	24902	22014	-2845	-11285
		-30,03	-51,175		1953,817	-7664	-27298	22078	24846	21881	-2944	-11394
		-30,03	-51,175		1960,029	-8748	-28183	21587	24491	21336	-3283	-11566
		-30,03	-51,175		1965,389	-9583	-28881	21285	24309	20988	-3543	-11741
		-30,03	-51,175		1974,229	-10932	-30458	20607	23907	20233	-3908	-12118
		-30,03	-51,175		1982,328	-12253	-32076	20028	23637	19572	-4250	-12552
		-30	-51,183		1982,328	-12314	-32074	20019	23626	19559	-4269	-12545
		-30,03	-51,175		1986,910	-12876	-33172	19692	23526	19196	-4388	-12872
		-30	-51,183		1986,910	-12923	-33131	19702	23527	19203	-4406	-12858
		-30,03	-51,175		1991,880	-13487	-34478	19199	23291	18670	-4477	-13184
		-30	-51,183		1991,880	-13515	-34472	19216	23309	18683	-4490	-13192
		-29,992	-51,163		2000,640	-14656	-35992	18710	23125	18101	-4734	-13589
PORTO MURTINHO	MS	-21,697	-57,883	90	1913,880	1282	-10567	25931	26378	25924	580	-4837
		-21,703	-57,882		2001,760	-12456	-21548	21476	23091	20971	-4632	-8481
PORTO NACIONAL	то	-10,715	-48,408	265	1954,729	-13833	933	26707	26711	25932	-6385	434
8		-10,715	-48,408		1960,609	-14666	-282	26352	26353	25494	-6672	-129
		-10,715	-48,408		1964,269	-15232	-1133	26200	26206	25280	-6883	-518
		-10,723	-48,408		1970,677	-16183	-2697	25752	25781	24732	-7177	-1213
		-10,723	-48,408		1976,723	-16933	-4269	25380	25451	24280	-7392	-1894
		-10,727	-48,408		1985,119	-18142	-7084	24938	25130	23698	-7765	-3099
		-10,727	-48,408		1986,670	-18325	-7556	24865	25083	23604	-7817	-3298
		-10,727	-48,408		1995,817	-19315	-10562	24358	24778	22987	-8057	-4541
PORTO DE TROMBETAS	PA	-1,484	-56,398	86	1982,729	-13692	16388	27681	28854	26894	-6552	8141
PORTO VELHO	RO	-8,76	-63,917	88	1914,718	2447	10682	28976	29487	28949	1237	5465
14		-8,76	-63,917		1917,796	1983	10949	29091	29631	29074	1006	5627

			Ī		-		•	-				
		-8,76	-63,917		1924,197	966	11682	29012	29626	29008	489	5998
		-8,76	-63,917		1924,197	966	11715	28962	29579	28958	488	6005
		-8,76	-63,917		1932,479	-333	12248	28926	29600	28925	-168	6279
		-8,767	-63,9		1943,697	-1465	11798	28763	29384	28753	-735	6007
		-8,76	-63,913		1952,359	-2582	11015	28468	29003	28439	-1282	5541
		-8,732	-63,897		1952,369	-2516	11116	28408	28952	28381	-1247	5581
		-8,76	-63,913		1958,629	-3433	10564	28087	28572	28037	-1681	5238
		-8,76	-63,913		1964,468	-4315	10314	27790	28247	27711	-2090	5057
		-8,7	-63,902		1976,791	-6131	9137	26911	27257	26757	-2875	4328
		-8,7	-63,902		1984,807	-7709	7964	26538	26797	26298	-3559	3712
		-8,7	-63,902		1989,510	-8454	7196	26303	26512	26017	-3866	3320
		-8,7	-63,902		1992,650	-8961	6631	26138	26315	25819	-4071	3038
RECIFE	PE	-8,047	-34,867	10	1913,369	-17499	4098	27787	27859	26501	-8355	1990
16	-	-8,062	-34,883		1919,500	-17614	2000	27823	27840	26518	-8419	971
10		-8,062	-34,883		1923,359	-18083	1149	27687	27693	26319	-8594	555
		-8,06	-34,883		1923,359	-18099	1149	27699	27705	26328	-8605	555
		-8,182	-34,883		1923,339	-19099	349	27435	27436	25925	-8976	167
		-8,063	-34,867		1929,708	-19183	-814		27446	25925	-9017	-390
					1931,958			27443				
		-8,082	-34,883		•	-19215	-666	27369	27371	25844	-9007	-318
		-8,113	-34,9		1931,979	-19166	-583	27441	27443	25920	-9009	-279
		-8,113	-34,9		1943,598	-20016	-3131	27099	27140	25462	-9275	-1482
		-8,08	-34,895		1954,828	-20864	-7131	26622	26830	24876	-9482	-3331
		-8,08	-34,895		1957,489	-21083	-8083	26410	26676	24643	-9500	-3750
		-8,08	-34,895		1963,279	-21447	-9916	26133	26530	24323	-9555	-4568
		-8,08	-34,895		1975,739	-22131	-14387	25411	26234	23538	-9573	-6518
		-8,08	-34,9		1983,197	-22479	-17357	24899	26088	23008	-9520	-7783
		-8,08	-34,9		1988,180	-22524	-19242	24601	26057	22724	-9424	-8587
		-8,08	-34,895		2001,326	-22496	-24027	23670	25916	21869	-9057	-10552
RIBEIRÃO DA AGUA BRANCA		-9,242	-48,53		1970,729	-16148	93	26189	26190	25156	-7283	43
RIO BRANCO	AC	-9,975	-67,8	142	1918,036	5000	7348	29300	29543	29188	2553	3778
9		-9,98	-67,807		1952,307	1266	8366	28518	28825	28511	630	4193
		-9,992	-67,813		1952,317	1248	7933	28578	28855	28572	622	3982
		-9,98	-67,807		1958,536	483	8133	28150	28436	28149	237	4022
		-9,98	-67,807		1966,317	-564	7881	27679	27943	27677	-272	3831
		-10	-67,817		1977,109	-2088	7230	26782	26997	26764	-975	3398
		-9,998	-67,833		1986,270	-3759	5776	26610	26746	26552	-1744	2692
		-9,998	-67,833		1989,489	-4333	5500	26350	26472	26274	-1990	2538
		-9,998	-67,833		1992,635	-5144	5105	26200	26305	26095	-2349	2341
RIO DE JANEIRO	RJ	-22,933	-43,183	2	1910,938	-9850	-14850	24647	25499	24284	-4216	-6535
7		-22,933	-43,183		1915,250	-10616	-15416	24602	25521	24181	-4532	-6784
		-22,933	-43,183		1942,119	-13928	-19753	23662	25142	22966	-5695	-8497
		-22,933	-43,183		1943,448	-14062	-20048	23554	25074	22848	-5723	-8595
		-22,933	-43,183		1951,150	-14944	-21621	23060	24806	22280	-5947	-9140
		-22,933	-43,183		1952,369	-15215	-21767	22989	24755	22183	-6033	-9180
		-22,933	-43,183		1978,411	-18815	-28283	21182	24054	20050	-6832	-11397
RIO GRANDE	RS	-32,025	-52,133	23	1904,718	850	-24215	24721	27107	24719	366	-11118
16		-32,025	-52,133		1913,437	-633	-24881	24116	26584	24114	-266	-11185
.0		-32,025	-52,133		1925,947	-2697	-26099	23418	26077	23392	-1102	-11471
		-32,025	-52,133		1925,947	-2782	-26099	23430	26091	23403	-1137	-11478
		-32,023	-52,162		1953,848	-6315	-29364	21672	24868	21541	-2383	-12194
İ	1	JZ,U8	-UZ, 1UZ	I	1000,040	-0010	23304	210/2	Z-1000	Z 10+1	2000	12134

		_			-	-		-	_	-	_	_
		-32,09	-52,162		1960,046	-7315	-30149	21211	24530	21038	-2700	-12320
		-32,09	-52,162		1965,019	-8133	-30607	21034	24440	20823	-2975	-12443
		-32,09	-52,162		1965,389	-8199	-30864	20940	24395	20726	-2986	-12515
		-32,09	-52,162		1974,233	-9520	-32277	20192	23883	19914	-3339	-12753
		-32,09	-52,162		1982,307	-10765	-33521	19701	23633	19355	-3679	-13051
		-32,09	-52,162		1982,307	-10819	-33520	19683	23610	19333	-3694	-13038
		-32,09	-52,162		1986,900	-11411	-34935	19201	23422	18821	-3798	-13412
		-32,09	-52,162		1986,900	-11545	-34875	19175	23373	18786	-3837	-13364
		-32,09	-52,162		1991,909	-12043	-35874	18916	23345	18500	-3946	-13680
		-32,09	-52,162		1991,909	-11975	-35785	18915	23318	18503	-3924	-13635
		-32,081	-52,161		2000,598	-13116	-37541	18283	23059	17806	-4149	-14050
RONDONÓPOLIS	MT	-16,472	-54,635	320	1928,619	-4967	-2516	26441	26466	26341	-2289	-1162
2		-16,45	-54,667		1986,711	-13607	-11859	23566	24080	22904	-5544	-4948
SALVADOR	ВА	-13,003	-38,512	19	1931,989	-16982	-5730	25638	25767	24520	-7488	-2573
17		-13,003	-38,512		1942,197	-18099	-7631	25510	25739	24248	-7925	-3418
		-13,003	-38,512		1943,529	-18249	-7899	25426	25670	24147	-7962	-3527
		-13,003	-38,512		1952,000	-19099	-10182	25399	25806	24001	-8310	-4561
		-12,922	-38,318		1952,009	-19048	-10182	25415	25822	24023	-8294	-4564
		-12,922	-38,318		1952,578	-19065	-10515	25252	25684	23867	-8248	-4687
		-13,003	-38,512		1952,588	-19197	-10347	24937	25350	23550	-8200	-4553
		-12,922	-38,318		1954,479	-19283	-11133	25130	25612	23720	-8298	-4945
		-12,922	-38,318		1957,519	-19614	-12064	24931	25495	23485	-8369	-5328
		-12,922	-38,318		1963,317	-20315	-13765	24575	25302	23046	-8532	-6020
		-12,877	-38,677		1975,166	-21798	-17315	24106	25251	22383	-8951	-7515
		-12,795	-38,487		1975,177	-21503	-17783	24135	25347	22456	-8847	-7741
		-12,922	-38,318		1980,208	-21878	-19510	23489	24920	21797	-8752	-8322
		-12,922	-38,318		1983,229	-22107	-20739	23084	24684	21387	-8687	-8740
		-12,922	-38,318		1983,229	-22149	-20760	23194	24805	21482	-8744	-8792
		-12,922	-38,318		1988,227	-22287	-22478	22818	24695	21114	-8653	-9441
		-12,902	-38,327		2001,302	-22863	-27267	21709	24423	20003	-8434	-11189
SANTA MARIA	RS	-29,69	-53,812		1914,359	-65	-21565	24656	26511	24656	-28	-9744
9		-29,692	-53,812		1951,427	-5499	-25697	22363	24818	22260	-2143	-10761
		-29,683	-53,823		1951,447	-5249	-25499	22389	24806	22295	-2048	-10678
		-29,683	-53,823		1953,889	-5631	-25749	22284	24741	22176	-2186	-10748
		-29,683	-53,823		1960,208	-6616	-26516	21829	24396	21684	-2515	-10891
		-29,687	-53,835		1965,338	-7381	-27114	21540	24200	21361	-2767	-11029
		-29,687	-53,835		1976,218	-9126	-28829	20793	23735	20529	-3297	-11445
		-29,717	-53,7		1982,249	-10361	-30357	20296	23521	19965	-3650	-11887
		-29,717	-53,7		1991,926	-11670	-32479	19618	23257	19213	-3968	-12489
SANTA VITORIA DOS PALMAR	RS	-33,502	-53,344	25	1982,291	-8402	-35499	19562	24029	19352	-2858	-13953
3		-33,502	-53,344		1986,895	-9043	-36617	19122	23824	18884	-3005	-14210
		-33,52	-53,363		1991,916	-9663	-37354	18882	23754	18614	-3169	-14412
SANTANA DO LIVRAMENTO	RS	-30,875	-55,522	216	1953,869	-3250	-27065	22155	24880	22119	-1256	-11320
12		-30,875	-55,522		1960,177	-4282	-27683	21764	24578	21703	-1625	-11418
		-30,875	-55,522		1965,379	-5131	-28249	21430	24328	21344	-1916	-11514
		-30,875	-55,522		1974,260	-6117	-29812	20720	23881	20602	-2207	-11872
		-30,875	-55,522		1982,265	-7782	-30718	20215	23515	20029	-2737	-12012
		-30,875	-55,522		1982,265	-7914	-30809	20244	23571	20051	-2788	-12072
		-30,875	-55,522		1986,890	-8451	-31791	19905	23419	19689	-2925	-12337
		-30,875			1986,890	-8553	-31722	19919	23418	19698	-2962	-12313
		•										

ı	ı	i i	İ	ı	ı	ı	i	i	Ī	Ī	Ī	
		-30,875	-55,522		1991,920	-9237	-32715	19556	23244	19302	-3139	-12563
		-30,875	-55,522		1991,921	-9208	-32618	19593	23262	19340	-3135	-12539
		-30,882	-55,527		2000,609	-10451	-34431	18824	22823	18511	-3414	-12905
		-30,867	-55,54		2000,609	-10494	-34235	18974	22951	18657	-3455	-12911
SANTARÉM	PA	-2,415	-54,707	30	1903,699	-1967	21466	28813	30960	28796	-988	11330
14		-2,415	-54,65		1911,279	-3631	21947	29075	31347	29016	-1841	11716
		-2,415	-54,65		1918,129	-5230	22283	29145	31498	29024	-2657	11943
		-2,417	-54,65		1932,328	-7833	22232	29023	31354	28752	-3955	11863
		-2,415	-54,65		1943,598	-9182	21183	29058	31164	28685	-4636	11261
		-2,415	-54,707		1952,166	-10133	20000	28487	30316	28043	-5011	10368
		-2,417	-54,713		1952,166	-10149	19864	28763	30583	28313	-5068	10392
		-2,415	-54,707		1958,447	-10982	18965	28330	29957	27812	-5397	9735
		-2,417	-54,713		1965,536	-12031	17516	28219	29592	27599	-5882	8906
		-2,417	-54,713		1976,942	-13574	15262	27610	28620	26839	-6480	7534
		-2,437	-54,728		1982,708	-14432	14079	27311	28157	26449	-6806	6849
		-2,417	-54,713		1982,708	-14475	13864	27427	28250	26556	-6855	6769
		-2,437	-54,728		1988,536	-15342	12399	27147	27796	26180	-7182	5968
		-2,437	-54,728		1995,847	-16156	10347	26876	27321	25815	-7478	4907
SANTO ANGELO	RS	-28,29	-54,272	346	1953,920	-4900	-23416	22594	24622	22511	-1929	-9784
5		-28,29	-54,272		1960,218	-5767	-24166	22131	24257	22019	-2223	-9930
-		-28,29	-54,272		1965,328	-6598	-24767	21814	24024	21669	-2506	-10064
		-28,292	-54,12		1976,237	-9012	-27052	21063	23651	20803	-3299	-10756
		-28,281	-54,17		2000,619	-12048	-33191	19217	22964	18794	-4011	-12571
SÃO BORJA	RS	-28,66	-55,997	90	1914,500	1750	-20299	24711	26347	24699	754	-9140
5		-28,66	-55,997		1923,959	182	-20933	24115	25819	24114	77	-9224
Ů		-28,65	-56,033		1986,890	-8729	-28610	20750	23636	20509	-3149	-11317
		-28,65	-56,033		1991,937	-9550	-29600	20413	23477	20130	-3386	-11596
		-28,651	-56,028		2000,619	-10718	-21360	21555	23145	21179	-4008	-8430
SÃO FELIX DO ARAGUAIA	MT	-11,667	-50,733	292	1977,831	-15378	-4046	25311	25375	24405	-6712	-1790
2	'*''	-11,667	-50,733	202	1986,722	-16753	-6782	24732	24907	23682	-7129	-2941
SÃO GABRIEL DA CACHOEIRA	AM	-0,137	-67,1	74	1932,076	865	26766	29326	32846	29323	443	14792
4	7	-0,132	-67,075	' '	1978,687	-5796	23934	28160	30810	28016	-2844	12499
7		-0,133	-67,1		1984,739	-7184	22940	27932	30332	27713	-3493	11822
		-0,133	-67,1		1995,916	-9081	21159	27408	29390	27065	-4325	10608
SÃO JOSE DOS CAMPOS	SP	-23,232	-45,865	660	1987,920	-18489	-29392	20476	23501	19419	-6493	-11533
5	"	-23,232	-45,865		1987,920	-18503	-29375	20505	23531	19445	-6507	-11542
3		-23,232	-45,865		1994,437	-19270	-31211	19945	23321	18828	-6582	-12084
		-23,232	-45,865		1994,437	-19243	-31250	19934	23318	18821	-6570	-12096
		-23,232	-45,865		2000,151	-19819	-32625	19563	23229	18404	-6632	-12524
SÃO LUIZ	MA	-2,53	-44,28	60	1923,328	-13116	18447	28890	30456	28137	-6556	9637
13	IVIZ	-2,5	-44,283		1923,328	-13166	18565	28861	30446	28103	-6573	9693
13		-2,505	-44,283		1923,328	-13166	18599	28871	30462	28112	-6576	9715
		-2,505	-44,278		1923,328	-15798	15298	28757	29814	27671	-7829	7866
		-2,505	-44,278		1943,619	-16565	13133	28577	29345	27391	-8147	6667
		-2,505	-44,276 -44,225		1952,596	-16783	12873	28491	29226	27277	-8226	6511
		-2,585	-44,225 -44,225		1963,817	-17982	9713	28119	28528	26745	-8680	4813
		-2,585	-44,225 -44,225			-17982	6197		27770		-8979	2998
		-2,505	-44,225 -44,225		1975,685	-10902	3569	27607		26106		1697
					1983,140			27210	27263	25612	-9185	
		-2,505	-44,225		1983,140	-19780	3569	27213	27266	25607	-9209	1697
I	I	-2,505	-44,225	I	1987,197	-20010	2029	27148	27166	25510	-9289	961

		-2,505	-44,225		1987,197	-20111	2015	27138	27155	25483	-9331	954
		-2,505	-44,225		1995.661	-20700	-995	26748	26753	25022	-9455	-464
SÃO MARTINHO DA SERRA	RS	-29,443	-53,82	485	2000,645	-11975	-34451	18933	22960	18521	-3928	-12988
SÃO PAULO	SP	-23,548	-46,742	760	1913,619	-7517	-14567	24629	25448	24418	-3222	-6400
8	0.	-23,548	-46,742	100	1943,448	-11531	-18916	23504	24847	23030	-4699	-8055
Ĭ		-23,548	-46,742		1951,198	-12531	-20117	23004	24499	22456	-4991	-8426
		-23,548	-46,742		1951,218	-12350	-20166	23033	24538	22500	-4926	-8459
		-23,548	-46,742		1953,438	-12932	-20617	22929	24498	22347	-5131	-8626
		-23,548	-46,742		1959,400	-13467	-21833	22488	24226	21869	-5237	-9009
		-23,548	-46,742		1965,068	-14531	-22767	22177	24051	21467	-5565	-9307
		-23,548	-46,742		1905,000	-16083	-25298	21443	23718	20603	-5940	-10136
SÃO PEDRO DA ALDEIA	RJ	-22,816	-42,092	20	1973,936	-21354	-32063	20457	24140	19052	-7449	-12815
	11.0	-22,816	-42,092	20	1987,093	-20336	-31915	20490	24140	19213	-7121	-12761
2 TABATINGA	AM	-4,25	-69,933	85	1988,931	-4340	16370	27566	28731	27487	-2086	8097
1ABATINGA 2	Aivi	-4,25	-69,933	00	1995,890	-5624	15531	27212	28244	27081	-2666	7563
TAUBATÉ	SP	-23,02	-09,933 -45,555	620	1993,890	-8649	-14300	24596	25382	24316	-3699	-6269
	35	-23,02	-45,555 -45,555	020	1913,330	-10282	-15717	24130	25067	23742	-4307	-6790
5					•							
		-23,038	-45,516		1992,208	-19333	-30416	20127	23340	18992	-6663	-11816
		-23,038	-45,516		2000,161	-20190	-32694	19484	23153	18287	-6725	-12506
	A N 4	-23,038	-45,516	F0	2000,161	-20090	-32729	19463	23137	18278	-6685	-12510
TEFE	AM	-3,358	-64,715	58	1952,259	-2865	20364	29249	31200	29213	-1461	10857
8		-3,358	-64,71		1952,269	-2865	20315	29260	31201	29223	-1462	10832
		-3,358	-64,71		1958,598	-3697	19864	28973	30807	28913	-1868	10468
		-3,358	-64,71		1965,796	-4697	19298	28555	30256	28460	-2338	9999
		-3,352	-64,695		1978,701	-6873	18034	27689	29120	27490	-3313	9015
		-3,35	-64,7		1984,703	-7806	17239	27416	28706	27162	-3723	8507
		-3,35	-64,7		1988,921	-8500	16489	27237	28406	26938	-4026	8062
		-3,35	-64,7	70	1995,890	-9661	15277	26926	27913	26544	-4518	7354
TERESINA	PI	-5,087	-42,812	70	1930,369	-15000	12015	28344	28979	27378	-7336	6032
8		-5,06	-42,82		1954,796	-17565	6697	27819	28011	26522	-8395	3267
		-5,06	-42,82		1960,817	-18215	4933	27485	27588	26108	-8591	2372
		-5,06	-42,82		1963,807	-18583	4065	27452	27522	26021	-8748	1950
		-5,045	-42,793		1970,916	-19298	2049	27099	27117	25577	-8955	969
		-5,06	-42,82		1983,109	-20343	-2388	26440	26463	24790	-9191	-1102
		-5,06	-42,82		1983,109	-20375	-2388	26426	26449	24772	-9200	-1102
		-5,06	-42,82		1987,208	-20684	-3937	26375	26438	24675	-9316	-1815
TIRADENTES	MG	-21,11	-44,178	927	1998,463	-20465	-31100	20100	23475	18831	-7028	-12125
TRES LAGOAS	MT	-20,79	-51,702	320	1913,927	-3983	-9116	25397	25722	25335	-1764	-4075
12		-20,79	-51,7		1923,817	-5749	-10149	25086	25485	24960	-2512	-4490
		-20,785	-51,705		1953,639	-9597	-14215	24032	24792	23696	-4007	-6087
		-20,785	-51,705		1957,286	-10199	-14748	23844	24657	23467	-4222	-6276
		-20,798	-51,717		1964,546	-11416	-15965	23371	24309	22909	-4625	-6686
		-20,733	-51,662		1971,947	-12498	-17083	22971	24032	22427	-4971	-7059
		-20,733	-51,662		1978,218	-13553	-18506	22558	23789	21930	-5286	-7550
		-20,754	-51,683		1986,161	-14795	-20836	21944	23480	21216	-5603	-8351
		-20,733	-51,662		1986,161	-14836	-20715	22014	23536	21280	-5636	-8325
		-20,754	-51,683		1994,911	-16104	-23065	21409	23270	20569	-5938	-9116
		-20,733	-51,662		1994,906	-15932	-23138	21376	23246	20555	-5867	-9134
		-20,756	-51,688		2002,738	-17016	-25106	20921	23104	20005	-6122	-9802
UBÁ	MG	-21,125	-42,887	328	1956,286	-16298	-20249	23088	24609	22160	-6479	-8517

i	ĺ	1 1		Ī	l	1 1		l	l	1	l	l I
6		-21,125	-42,887		1959,296	-16666	-21048	22890	24527	21928	-6564	-8808
		-21,125	-42,887		1963,416	-17433	-21947	22626	24394	21586	-6778	-9117
		-21,125	-42,887		1970,229	-18416	-24000	22153	24250	21018	-6998	-9863
		-21,122	-42,882		1990,151	-20635	-29666	20706	23830	19378	-7297	-11794
		-21,122	-42,882		2001,812	-21950	-33061	19784	23607	18350	-7395	-12878
UBERABA	MG	-19,743	-47,937	840	1915,029	-7032	-8949	25371	25684	25180	-3106	-3995
14		-19,757	-47,917		1925,828	-9883	-10015	24972	25359	24602	-4286	-4410
		-19,757	-47,942		1943,529	-11232	-12498	24844	25448	24369	-4839	-5507
		-19,767	-47,963		1951,088	-12333	-14281	23957	24722	23405	-5117	-6098
		-19,757	-47,942		1951,838	-12366	-14097	24348	25105	23783	-5214	-6115
		-19,767	-47,963		1952,489	-12465	-14449	23880	24661	23318	-5154	-6153
		-19,767	-47,963		1957,307	-13149	-15333	23592	24463	22973	-5366	-6468
		-19,767	-47,963		1964,786	-14199	-16783	23263	24298	22552	-5706	-7015
		-19,767	-47,963		1970,197	-15083	-18065	22910	24098	22120	-5961	-7472
		-19,767	-47,963		1972,682	-15409	-18638	22650	23904	21836	-6018	-7639
		-19,767	-47,963		1974,802	-15713	-19215	22525	23854	21683	-6100	-7850
		-19,767	-47,963		1984,160	-17145	-21923	21918	23627	20944	-6461	-8821
		-19,767	-47,963		1996,223	-18552	-25409	21090	23349	19994	-6710	-10018
LIBUOLIAIANA	DC	-19,767	-47,963	02	1999,827	-18961	-26493	20782	23221	19654	-6753	-10358
URUGUAIANA	RS	-29,783	-57,034 57,034	93	1914,420 1923,937	2183	-23250	21440	23336	21425	816	-9211
7		-29,783 -29,783	-57,034 57,034		1923,937	814	-19465 -25982	24397 22476	25877 25004	24395 22452	347 -1039	-8623 -10953
		-29,783	-57,034 -57,034		1953,660	-2650 -3799	-26631	22047	24664	21998	-1460	-110955
		-29,783	-57,034		1961,160	-4467	-27000	21751	24412	21685	-1694	-11033
		-29,783	-57,034		1903,369	-5532	-28305	20983	23833	20885	-2022	-11300
		-29,783	-57,034		2000,619	-9175	-32366	19420	22992	19171	-3096	-12308
VILA BELA DA SANT. TRIND.	MT	-15,015	-59,967	270	1992,697	-10425	-7426	24111	24315	23713	-4362	-3142
VILHENA	RO	-12,723	-60,132	612	1964,447	-6131	1616	26390	26401	26239	-2819	744
6		-12,723	-60,132		1976,770	-8038	-17	25578	25579	25327	-3577	-8
		-12,723	-60,132		1980,140	-8649	-560	25422	25424	25133	-3823	-248
		-12,723	-60,132		1980,140	-8680	-439	25419	25420	25128	-3836	-194
		-12,701	-60,093		1986,229	-9843	-1820	25093	25106	24723	-4289	-797
		-12,701	-60,093		1989,478	-10390	-2480	24951	24975	24542	-4499	-1080
VITÓRIA	ES	-20,323	-40,367	3	1904,040	-11532	-12133	24854	25421	24352	-4969	-5343
7						-11332	12 100					
		-20,332			1923,473	-14272	-16024		25172	23643	-6014	-6948
		-20,332 -20,332	-40,333 -40,333					24396 24388	25172 25164	23643 23635	-6014 -6012	-6948 -6964
			-40,333		1923,473	-14272	-16024	24396				
		-20,332	-40,333 -40,333		1923,473 1923,475	-14272 -14272	-16024 -16065	24396 24388	25164	23635	-6012	-6964
		-20,332 -20,333	-40,333 -40,333 -40,333		1923,473 1923,475 1923,470	-14272 -14272 -13765	-16024 -16065 -15750	24396 24388 24536	25164 25261	23635 23831	-6012 -5838	-6964 -6856
·		-20,332 -20,333 -20,335	-40,333 -40,333 -40,333		1923,473 1923,475 1923,470 1923,473	-14272 -14272 -13765 -15868	-16024 -16065 -15750 -16437	24396 24388 24536 24902	25164 25261 25888	23635 23831 23953	-6012 -5838 -6808	-6964 -6856 -7325
VITÓRIA DA CONQUISTA	ВА	-20,332 -20,333 -20,335 -20,312	-40,333 -40,333 -40,333 -40,282	914	1923,473 1923,475 1923,470 1923,473 1966,833	-14272 -14272 -13765 -15868 -19068	-16024 -16065 -15750 -16437 -25284	24396 24388 24536 24902 22454	25164 25261 25888 23757	23635 23831 23953 21221	-6012 -5838 -6808 -7335	-6964 -6856 -7325 -10146
	ВА	-20,332 -20,333 -20,335 -20,312 -20,276	-40,333 -40,333 -40,333 -40,282 -40,302	914	1923,473 1923,475 1923,470 1923,473 1966,833 2001,290	-14272 -14272 -13765 -15868 -19068 -21867	-16024 -16065 -15750 -16437 -25284 -35631	24396 24388 24536 24902 22454 19582	25164 25261 25888 23757 24094	23635 23831 23953 21221 18173	-6012 -5838 -6808 -7335 -7293	-6964 -6856 -7325 -10146 -14036
VITÓRIA DA CONQUISTA	ВА	-20,332 -20,333 -20,335 -20,312 -20,276 -14,848	-40,333 -40,333 -40,333 -40,333 -40,282 -40,302	914	1923,473 1923,475 1923,470 1923,473 1966,833 2001,290 1952,937	-14272 -14272 -13765 -15868 -19068 -21867 -17715	-16024 -16065 -15750 -16437 -25284 -35631 -11515	24396 24388 24536 24902 22454 19582 24993	25164 25261 25888 23757 24094 25507	23635 23831 23953 21221 18173 23808	-6012 -5838 -6808 -7335 -7293	-6964 -6856 -7325 -10146 -14036 -5091
VITÓRIA DA CONQUISTA	ВА	-20,332 -20,333 -20,335 -20,312 -20,276 -14,848 -14,848	-40,333 -40,333 -40,333 -40,282 -40,302 -40,825 -40,837	914	1923,473 1923,475 1923,470 1923,473 1966,833 2001,290 1952,937 1952,937	-14272 -14272 -13765 -15868 -19068 -21867 -17715 -17815	-16024 -16065 -15750 -16437 -25284 -35631 -11515 -11548	24396 24388 24536 24902 22454 19582 24993 24974	25164 25261 25888 23757 24094 25507 25491	23635 23831 23953 21221 18173 23808 23777	-6012 -5838 -6808 -7335 -7293 -7605 -7640	-6964 -6856 -7325 -10146 -14036 -5091 -5103
VITÓRIA DA CONQUISTA	ВА	-20,332 -20,333 -20,335 -20,312 -20,276 -14,848 -14,848	-40,333 -40,333 -40,333 -40,282 -40,302 -40,825 -40,837 -40,825	914	1923,473 1923,475 1923,470 1923,473 1966,833 2001,290 1952,937 1952,937	-14272 -14272 -13765 -15868 -19068 -21867 -17715 -17815 -18614	-16024 -16065 -15750 -16437 -25284 -35631 -11515 -11548 -13465	24396 24388 24536 24902 22454 19582 24993 24974 24540	25164 25261 25888 23757 24094 25507 25491 25234	23635 23831 23953 21221 18173 23808 23777 23256	-6012 -5838 -6808 -7335 -7293 -7605 -7640 -7833	-6964 -6856 -7325 -10146 -14036 -5091 -5103 -5875
VITÓRIA DA CONQUISTA	ВА	-20,332 -20,333 -20,335 -20,312 -20,276 -14,848 -14,848 -14,848	-40,333 -40,333 -40,333 -40,282 -40,302 -40,825 -40,825 -40,825 -40,825	914	1923,473 1923,475 1923,470 1923,473 1966,833 2001,290 1952,937 1952,937 1959,807 1963,529	-14272 -14272 -13765 -15868 -19068 -21867 -17715 -17815 -18614 -19149	-16024 -16065 -15750 -16437 -25284 -35631 -11515 -11548 -13465 -14498	24396 24388 24536 24902 22454 19582 24993 24974 24540 24338	25164 25261 25888 23757 24094 25507 25491 25234 25139	23635 23831 23953 21221 18173 23808 23777 23256 22991	-6012 -5838 -6808 -7335 -7293 -7605 -7640 -7833 -7983	-6964 -6856 -7325 -10146 -14036 -5091 -5103 -5875 -6293

Anexo B

Parâmetros da calota e Coeficientes de Gauss gerados para o Brasil para a época de 2005 utilizando 127 ,147e 177 pontos ; extrapolados para 2010 e interpolados para 2007

Tabela 1- parâmetros para a calota com meio ângulo de 24°

indice (k)	ordem(m)	grau(nk)	Kmn
0	0	0	1
1	0	5,2337799	1
1	1	3,9779313	3,1481719
2	0	8,6613407	1
2	1	8,6613407	6,47166443
2	2	6,9184523	9,506217
3	0	12,6750183	1
3	1	12,2515402	9,01432419
3	2	11,812006	26,5757885
3	3	9,711257	30,049139
4	0	16,2560291	1
4	1	16,2560291	11,8490162
4	2	15,5607824	45,3789864
4	3	14,8285332	104,136276
4	4	12,4352207	96,6580734
5	0	20,1572132	1
5	1	19,893549	14,423377
5	2	19,6261692	71,3859711
5	3	18,7223969	206,785446
5	4	17,7627563	396,81073
5	5	15,1178465	313,623718
6	0	23,7925739	1
6	1	23,7925739	17,182497
6	2	23,3343086	100,203316
6	3	22,8660908	372,852325
6	4	21,7894535	889,849731
6	5	20,640213	1483,71509
6	6	17,7723637	1022,61047
7	0	27,6487179	1
7	1	27,4566326	19,7751598
7	2	27,2631283	136,03978
7	3	26,6475964	585,979248
7	4	26,0157013	1793,36084
7	5	24,7894783	3687,34912
7	6	23,4756393	5471,41357
7	7	20,4062862	3344,38501

8	0	31,3119488	1
8	1	31,3119488	22,5030479
8	2	30,9675503	174,828171
8	3	30,6190128	883,864014
8	4	29,8698082	3097,29932
8	5	29,0981331	8169,47803
8	6	27,738903	14871,4951
8	7	26,2784233	19961,9434
8	8	23,0243397	10958,7393
9	0	35,1437569	1
9	1	34,9925423	25,1072273
9	2	34,8406372	220,570709
9	3	34,3685951	1244,55078
9	4	33,8893623	5105,1626
9	5	33,0228653	15306,1582
9	6	32,1281776	35795,418
9	7	30,6484547	58759,9023
9	8	29,0549622	72207,5859
9	9	25,6297188	35955,3633
10	0	38,8239517	1
10	1	38,8239517	27,8180523
10	2	38,5474281	269,316376
10	3	38,2687836	1711,80835
10	4	37,6859474	7774,2998
10	5	37,0928574	27248,3047
10	6	36,1211815	72065,375
10	7	35,1159592	152295,703
10	8	33,5255852	228442,094
10	9	31,8098469	259356,203
10	10	28,2246933	118070,914

Tabela 2- coeficientes de Gauss gerados calculados para 2005 para uma base de dados composta por 127 pontos utilizando 20 termos para a convergência da série.

indice k	ordem m	g	h
0	0	-12423,9	0
0	1	133471,6	0
1	1	-21086,6	21978,8
0	2	-266814,3	0
1	2	80494,0	-104474,1
2	2	1267,9	-2018,4
0	3	547433,7	0
1	3	-131853,9	143304,0
2	3	-3048,9	6355,5
3	3	-363,1	-36,6
0	4	-795463,9	0
1	4	252051,0	-332573,2
2	4	8129,7	-10912,1
3	4	1044,1	256,4
4	4	32,1	-0,1
0	5	929002,1	0
1	5	-249243,9	287653,0
2	5	-10716,2	17966,2
3	5	-1519,3	-177,0
4	5	-64,2	-3,8
5	5	1,6	-0,2
0	6	-927510,8	0
1	6	295161,5	-411836,3
2	6	14897,7	-17991,0
3	6	2483,0	679,5
4	6	106,6	-9,5
5	6	-3,1	0,1
6	6	-0,4	-0,2
0	7	670768,5	0
1	7	-181397,0	225628,7
2	7	-11376,0	17117,8
3	7	-1938,8	-289,5
4	7	-115,3	1,2
5	7	2,3	-0,8
6	7	0,5	0,2
7	7	0	0

0	8	-449646,1	0
1	8	143229,1	-219073,8
2	8	9644,2	-10490,9
3	8	1952,3	672,7
4	8	105,7	-15,9
5	8	-3,1	0,6
6	8	-0,7	-0,1
7	8	0	0
8	8	0	0
0	9	170554,0	0
1	9	-44986,4	61224,4
2	9	-3680,2	5219,6
3	9	-733,0	-145,9
4	9	-53,2	2,8
5	9	0,7	-0,6
6	9	0,4	0,1
7	9	0	0
8	9	0	0
9	9	0	0
0	10	-69154,7	0
1	10	23165,3	-40723,0
2	10	1843,9	-1662,0
3	10	462,4	223,3
4	10	27,3	-5,9
5	10	-0,8	0,3
6	10	-0,3	0
7	10	0	0
8	10	0	0
9	10	0	0
10	10	0	0
·	· ·		· · · · · · · · · · · · · · · · · · ·

Tabela 3- coeficientes de Gauss gerados calculados para 2005 para uma base de dados composta por 147 pontos utilizando 10 termos para a convergência da série.

indice K	ordem m	g	h
0	0	36560,3	0
0	1	145765,7	0
1	1	-5111,5	-2081,8
0	2	7139,8	0
1	2	18512,7	6902,7
2	2	497,4	-327,8
0	3	-78684,3	0
1	3	-32540,5	-17003,1
2	3	-1273,8	1029,5
3	3	-151,9	-0,5
0	4	148495,4	0
1	4	59086,6	28423,1
2	4	2727,9	-1920,9
3	4	430,5	16,5
4	4	8,7	-7,5
0	5	-303561,7	0
1	5	-61262,1	-38192,9
2	5	-3734,2	3134,9
3	5	-660,3	-35,5
4	5	-17,2	12,9
5	5	1,9	-0,7
0	6	179836	0
1	6	68809,5	39559,9
2	6	4429	-3352,9
3	6	1051,2	91,3
4	6	26,8	-26
5	6	-3,5	0,9
6	6	0	-0,1
0	7	-197328,3	0
1	7	-43917,9	-31870,6
2	7	-3487,6	3156,5
3	7	-863,7	-87,9
4	7	-29,2	24,9
5	7	3,5	-1,2
6	7	0	0,2
7	7	0	0

0	8	54268,2	
		J4200,Z	0
1	8	32671,3	21096,5
2	8	2509,3	-2052,2
3	8	835,8	112,8
4	8	24,6	-26
5	8	-3,8	0,9
6	8	0	-0,2
7	8	0	0
8	8	0	0
0	9	-37620,1	0
1	9	-10653,2	-8816,2
2	9	-997,6	1006,3
3	9	-332,1	-49,1
4	9	-12,7	11,6
5	9	1,6	-0,6
6	9	0	0,1
7	9	0	0
8	9	0	0
9	9	0	0
0	10	6,8	0
1	10	5101	3311,5
2	10	391,5	-337,9
3	10	195,7	35,9
4	10	5,5	-6,7
5	10	-1	0,2
6	10	0	-0,1
7	10	0	0
8	10	0	0
9	10	0	0
10	10	0	0

Tabela 4- coeficientes de Gauss gerados calculados para 2005 para uma base de dados composta por 177 pontos utilizando 10 termos para a convergência da série.

indice K	ordem m	g	h	
0	0	34389,5	0	
0	1	403,5	0	
1	1	-1226,9	-4057,3	
0	2	168523,5	0	
1	2	4223,5	14387,1	
2	2	85,2	37,1	
0	3	-376143,5	0	
1	3	-8577,7	-27900,8	
2	3	-131,8	-68,1	
3	3	25,1	-15,4	
0	4	462211	0	
1	4	14842,8	49413,4	
2	4	674,6	-50,9	
3	4	-70	57,3	
4	4	3	-5,7	
0	5	-601957,4	0	
1	5	-17184,2	-56348,4	
2	5	-701,9	147,2	
3	5	103,6	-82	
4	5	-5,5	9,5	
5	5	-0,1	-0,7	
0	6	397557,5	0	
1	6	18427,3	61229,4	
2	6	1412,7	-426	
3	6	-165,5	163,8	
4	6	7,4	-15,7	
5	6	0,2	1,1	
6	6	0	-0,1	
0	7	-322387	0	
1	7	-13031,4	-43170,8	
2	7	-895,3	421,4	
3	7	128,9	-130	
4	7	-8,1	14,9	
5	7	-0,4	-1,4	
6	7	0	0,1	
7	7	0	0	

0	8	105006,7	0
1	8	9139,3	30180
2	8	1043,6	-459,2
3	8	-128,3	154,3
4	8	5,4	-13,1
5	8	0,4	1,4
6	8	0	-0,2
7	8	0	0
8	8	0	0
0	9	-52784	0
1	9	-3334,4	-11085,5
2	9	-328	211
3	9	47,3	-59,2
4	9	-3	5,8
5	9	-0,3	-0,8
6	9	0	0,1
7	9	0	0
8	9	0	0
9	9	0	0
0	10	8,1	0
1	10	1440	4571,4
2	10	238,5	-120,8
3	10	-30,1	42,9
4	10	0,7	-2,8
5	10	0,2	0,4
6	10	0	0
7	10	0	0
8	10	0	0
9	10	0	0
10	10	0	0

Tabela 5- coeficientes de Gauss gerados calculados para 2010 para uma base de dados composta por 177 pontos utilizando 10 termos para a convergência da série.

indice K	ordem m	g	h	
0	0	33862,1	0	
0	1	5681,4	0	
1	1	-1267,1	-3832,7	
0	2	160364,5	0	
1	2	4499,5	13184,4	
2	2	128	28,9	
0	3	-359984	0	
1	3	-8804,8	-26246,0	
2	3	-230,8	-53,1	
3	3	22,7	-11,6	
0	4	444832,5	0	
1	4	15747,7	45249,9	
2	4	905,7	-86,6	
3	4	-63,7	51,5	
4	4	3,7	-6,2	
0	5	-582927	0	
1	5	-17730,5	-52735,4	
2	5	-983,1	181,3	
3	5	95,4	-75,0	
4	5	-6,8	10,3	
5	5	-0,1	-0,7	
0	6	384656,5	0	
1	6	19690,7	55815,5	
2	6	1811,8	-479,2	
3	6	-153,5	161,7	
4	6	9,5	-17,0	
5	6	0,1	1,2	
6	6	0	-0,1	
0	7	-313648	0	
1	7	-13581,8	-40178,7	
2	7	-1173,4	450,1	
3	7	120,3	-129,6	
4	7	-10,1	16,2	
5	7	-0,3	-1,5	
6	7	0	0,1	
7	7	0	0	

0	8	101904,3	0		
1	8	9944	27227,7		
2	8	1304,9	-492,9		
3	8	-120,7	160,6		
4	8	7,1	-14,2		
5	8	0,4	1,5		
6	8	0	-0,2		
7	8	0	0,0		
8	8	0	0,0		
0	9	-51594	0,0		
1	9	-3527,5	-10247,5		
2	9	-417,8	219,9		
3	9	44,6	-61,7		
4	9	-3,8	6,3		
5	9	-0,2	-0,8		
6	9	0	0,1		
7	9	0	0		
8	9	0	0		
9	9	0	0		
0	10	8	0		
1	10	1624,4	4021,5		
2	10	293,6	-128,9		
3	10	-28,8	46,1		
4	10	1,1	-3,0		
5	10	0,2	0,4		
6	10	0	0		
7	10	0	0		
8	10	0	0		
9	10	0	0		
10	10	0	0		

Tabela 6- coeficientes de Gauss gerados calculados para 2007 para uma base de dados composta por 177 pontos utilizando 10 termos para a convergência da série.

indice K	ordem m	g	h	
0	0	34128,5	0	
0	1	3015,0	0	
1	1	-1246,8	-3946,2	
0	2	164486,5	0	
1	2	4360,1	13792,0	
2	2	106,4	33,0	
0	3	-368147,7	0	
1	3	-8690,1	-27082,0	
2	3	-180,8	-60,7	
3	3	23,9	-13,5	
0	4	453612,2	0	
1	4	15290,5	47353,3	
2	4	788,9	-68,6	
3	4	-66,9	54,4	
4	4	3,3	-5,9	
0	5	-592541,0	0	
1	5	-17454,5	-54560,7	
2	5	-841,0	164,1	
3	5	99,5	-78,5	
4	5	-6,1	9,9	
5	5	-0,1	-0,7	
0	6	391174,2	0	
1	6	19052,4	58550,6	
2	6	1610,2	-452,3	
3	6	-159,6	162,8	
4	6	8,4	-16,3	
5	6	0,2	1,1	
6	6	0	-0,1	
0	7	-318062,8	0	
1	7	-13303,7	-41690,3	
2	7	-1032,9	435,6	
3	7	124,6	-129,8	
4	7	-9,1	15,5	
5	7	-0,4	-1,4	
6	7	0	0,1	
7	7	0	0	

0	8	103471,6	0		
1	8	9537,5	28719,2		
2	8	1172,9	-475,9		
3	8	-124,5	157,4		
4	8	6,2	-13,6		
5	8	0,4	1,4		
6	8	0	-0,2		
7	8	0	0		
8	8	0	0		
0	9	-52195,2	0		
1	9	-3429,9	-10670,9		
2	9	-372,4	215,4		
3	9	46,0	-60,4		
4	9	-3,4	6,0		
5	9	-0,3	-0,8		
6	9	0	0,1		
7	9	0	0		
8	9	0	0		
9	9	0	0		
0	10	8,1	0		
1	10	1531,2	4299,3		
2	10	265,8	-124,8		
3	10	-29,5	44,5		
4	10	0,9	-2,9		
5	10	0,2	0,4		
6	10	0	0		
7	10	0	0		
8	10	0	0		
9	10	0	0		
10	10	0	0		

Anexo C

Rotinas em fortran

inverso-calota.for- Esta rotina calcula os coeficientes de Gauss para a calota , utilizando o método dos mínimos quadrados utilizando dois arquivos de entrada parametro- calota.dat e anomalia-calota.dat, descritos a seguir:

Arquivos de entrada:

- <u>parametro- calota.dat</u> –Este arquivo é composto por 66 linhas e 5 colunas: a 1° é o índice(k), 2° a ordem (m), 3° o grau (nk), 4° as amplitudes (Ak(m,nk)) e 5° fator de normalização(kmn).
- <u>anomalia-calota.dat</u>- Este arquivo contém os valores das coordenadas e das anomalias rotacionadas e filtradas para a região da calota no (pólo norte), onde as anomalias são calculadas através da diferença entre o valor medido e o do modelo IGRF. O arquivo contém o número de linhas de acordo com o número de pontos dentro da calota e 6 colunas: a 1º é a longitude, a 2º latitude, a 3º Bx, a 4º By, a 5º Bz e 6º a altitude da estação (h).

Arquivos de saída:

• <u>coef-gauss.dat</u> – Este arquivo neste arquivo contém o índice (k), a ordem (m) e os valores calculados para o coeficientes de Gauss (g,h).

direto-calota.for- Esta rotina calcula os valores das anomalias modeladas para componentes do campo geomagnético principal na região do pólo norte, utilizando dois arquivos de entrada parametro-calota ,coef-gauss.dat e grid-calota.dat. Os dois primeiros já foram citados anteriormente e ultimo será descritos a seguir:

- <u>Grid calota haines.dat</u>- Este arquivo contém as coordenadas dos pontos rotacionadas para referencial da calota e é composto por número de linhas, igual ao número de pontos e 2 colunas: a 1º a longitude e a 2º a latitude.
- <u>elementos-campo.dat</u> Este arquivo contém as coordenadas e as componentes do Campo geomagnético na região da calota (no pólo norte) ,gerados à partir do modelo , ele contém o número de linhas igual a quantidade de pontos dentro da calota e 5 colunas: a 1° é a longitude , a 2° latitude, a 3° Bx, a 4° By, a 5° Bz e 6° a altitude da estação (h).

inverso-calota.for

```
\mathbf{C}
    programa que calcula os coeficientes de Gauss para a calota esférica
C
    VARIAVEIS UTILIZADAS
C
           - LATITUDE GEOGRÁFICA
      lt
C
      lg
           - LONGITUDE
\mathbf{C}
      ht
                    - ALTITUDE
C
    a
         - RAIO DA TERRA = 6371200 METROS
C
         - DISTANCIA DO CENTRO DA TERRA AO PONTO
\mathbf{C}
            - COMPONENTE xc DO CAMPO
      ХC
C
            - COMPONENTE yc DO CAMPO
      yc
\mathbf{C}
            - COMPONENTE zc DO CAMPO
      xc
\mathbf{C}
      clt
                    - COTATITUDE GEOCENTRICA (TETA) clt=90-ltgeocentrica
\mathbf{C}
      DEFINICAO DO TIPO DAS VARIAVEIS
   program inverso
      implicit real*8 (a-h,o-z)
   INTEGER w,in(230),grau
      REAL*8 m(230),l(230),g(230),h(230),plm(230),plm(230),dplm(230),
   *pwlm(230),dpwlm(230),dsdclt(230),dsdfi(230),dsdr(230)
      real*8 ht,rad,pi,lat,lng
      real*8 b(10000,3), alfa(10000,230,3), beta(10000,230,3),
   *lt(230),mt(230)
      real*8 A(10000,440),AT(440,10000),ATA(440,440),C(440,10000),
        f(10000),p(440),BB(440)
      real*8 Ak(100,100),nk(1000),kmn1(1000) !rotinas da calota
   anomalia-calota= dados rotacionados para o referencial da calota (bx,by,bz,ht)
   coef-gauss= coeficientes de Gauss (g,h) para o modelode haines
   parametros-calota= contem o indice(1), grau (m), ordem(nk), o faor de normalização (Kmn1)
   open(1,file='anomalia-calota.dat')
                                                       !arquivo de entrada
      open(2,file='coef-gauss.dat')
                                                       !arquivo de saida
   open(5,file='parametros-calota.dat')
                                                !arquivo de entrada
      aa=6371200.d0
      pi=4*datan(1.d0)
      rad=pi/180.d0
      dclt=1.d-10
c
      =====entre o grau da expansão desejado
   grau=10
   ======leitura do arquivo froot brasil ordem
      do i=1,(grau**2+3*grau)/2+1
      read(5,*) a1,a2,a3,a4,a5
      nk(i)=a3
```

```
kmn1(i)=a5
       end do
       ======calculo (indice e grau) l(i) e m(i)
c
       ii=0
       1(1)=1
       do i=1,grau
       do j=1,i+1
       ii=ii+1
       l(ii)=i*i/j
       end do
       end do
       ii=0
       m(1)=0
       do i=1,grau
       do j=0,i
       ii=ii+1
       m(ii)=j
       end do
       end do
       =======adicionando l(0) e m(0)
c
       do i=1,(grau**2+3*grau)/2
       lt(i+1)=l(i)
       mt(i+1)=m(i)
       end do
       lt(1)=0.d0
       mt(1)=0.d0
       do i=1,(grau**2+3*grau)/2+1
       l(i)=lt(i)
       m(i)=mt(i)
       end do
       ====leitura do arquivo de dados
c
      jj=1
       do 3 while (1)
       read(1,*,end=100) lng,lat,bx,by,bz,ht
       b(jj,1)=bx
       b(jj,2)=by
       b(jj,3)=bz
       lng=lng*rad
       lat=lat*rad
       if(lat .eq. 0) then
       lat=1.d-5
```

```
end if
      if(lat .eq. 90*rad) then
      lat=90*rad-1.d-5
      end if
      if(lat .eq. -90*rad) then
      lat = -90*rad + 1.d - 5
      end if
      clt=lat
      r=ht+aa
      ======inicio da implementação dos polinomios de Legendre p/ a calota
c
   iparcelas = número de termos do somatório
c
      do iparcelas=1,10
                           !começo do looping do iparcelas
      c
      do i=1,(grau**2+3*grau)/2+1
      do ij=1,iparcelas
      Ak(i,1) = kmn1(i)*(dsin(clt))**m(i)
   x1=((ij+m(i)-1.d0)*(ij+m(i))-L(i)*(L(i)+1.d0))
      x2=ij*(ij+m(i))
      x3 = x1/x2
      Ak(i,ij+1)=Ak(i,ij)*x3
      end do
      end do
      fim do Calculo do Ak(m,n)
c
      ======Calculo do Pmn(cos(teta))
c
      do i=1,(grau**2+3*grau)/2+1
      Pwlm(i)=0.d0
      do ij=1,iparcelas
      Pwlm(i)=Pwlm(i)+Ak(i,ij)*((1-dcos(clt))/2.d0)**ij
      end do
      end do
      fim do Calculo do Pmn(cos(teta))
c
    ======calculo do d[Pmn(cos(teta))]/dteta
   do i=1,(grau**2+3*grau)/2+1
      dPwlm(i)=0.d0
      do ij=1,iparcelas
      if(m(i).eq. 0.d0) then
      dPwlm(i)=dPwlm(i)+(dsin(clt)/2.d0)*(ij)*Ak(i,ij)*
       (\sin(\text{clt/2.d0}))**(2.d0*(ij-1))
      end if
      if(m(i).gt. 0.d0) then
      dPwlm(i)=dPwlm(i)+(dsin(clt)/2.d0)*(ij)*Ak(i,ij)*
       (\sin(\text{clt/2.d0}))**(2.d0*(ij-1))+
```

```
dcos(clt)*(m(i)*Pwlm(i)/dsin(clt))
       end if
       end do
       end do
c
       end do! fim do looping do iparcelas
       final da implementação dos polinomios de Legendre p/ a calota
c
       =======cálculo das parcelas de x
c
       do 7 i=1,(grau^**2+3*grau)/2+1
       alfa(jj,i,1)=aa*(aa/r)**(nk(i)+1)*dpwlm(i)*dcos(m(i)*lng)/r
                                                                                      !nk(i)
       beta(ii,i,1)=aa*(aa/r)**(nk(i)+1)*dpwlm(i)*dsin(m(i)*lng)/r
    cálculo das parcelas de y
       alfa(ii,i,2) = -aa*(aa/r)**(nk(i)+1)*pwlm(i)*(-m(i))*dsin(m(i)*lng)/
                                                                               !nk(i)
            (r*dsin(clt))
       beta(ij,i,2) = -aa*(aa/r)**(nk(i)+1)*pwlm(i)*(+m(i))*dcos(m(i)*lng)/
                                                                               !nk(i)
            (r*dsin(clt))
c
       cálculo das parcelas de z
       alfa(jj,i,3) = (nk(i)+1)*(aa/r)**nk(i)*(-aa/(r**2))*aa*pwlm(i)*
                                                                               !nk(i)
   *
       (d\cos(m(i)*lng))
       beta(jj,i,3)=(nk(i)+1)*(aa/r)**nk(i)*(-aa/(r**2))*aa*pwlm(i)*
                                                                               !nk(i)
       (dsin(m(i)*lng))
  7 end do
      ij=ij+1
  3
       end do
100
       continue
       write(6,*) "dados=",(jj-1)," ", "incogn=",(grau+1)**2-1+1
       write(6,*) " ----- "
       ====inicio da inversão====matriz de sensibilidade A
c
\mathbf{C}
              matriz de sensibilidade A (3*(jj-1),121)
       ii=1
       do i=1,(grau**2+3*grau)/2+1
       if(m(i).ne.0) then
       in(ii)=i
                                    !in(ii)= indices cujos hs são diferentes de zero
       ii=ii+1
       end if
       end do
       do i=1,ii-1
       do j=1,(grau**2+3*grau)/2+1
```

```
A(i,j)=alfa(i,j,1)
       end do
       do j=1,grau*(grau+1)/2
       A(i,j+(grau^**2+3*grau)/2+1)=beta(i,in(j),1)
       end do
       end do
       do i=1,ji-1
       do j=1,(grau**2+3*grau)/2+1
       A(jj-1+i,j)=alfa(i,j,2)
       end do
       do j=1,grau*(grau+1)/2
       A(jj-1+i,j+(grau^{**}2+3*grau)/2+1)=beta(i,in(j),2)
       end do
       end do
       do i=1,jj-1
       do j=1,(grau**2+3*grau)/2+1
       A(2*(jj-1)+i,j)=alfa(i,j,3)
       end do
       do j=1,grau*(grau+1)/2
       A(2*(jj-1)+i,j+(grau**2+3*grau)/2+1)=beta(i,in(j),3)
       end do
       end do
\mathbf{C}
       -----AT (121,3*(jj-1))
       do i=1,3*(jj-1)
       do j=1,(grau+1)**2-1+1
       AT(j,i)=A(i,j)
       end do
       end do
\mathbf{C}
       multiplicação de AT.A (121,121)
       do k=1,(grau+1)**2-1+1
       do j=1,(grau+1)**2-1+1
       ATA(j,k)=0.d0
       do i=1,3*(jj-1)
       ATA(j,k)=ATA(j,k)+AT(j,i)*A(i,k)
       end do
       end do
       end do
\mathbf{C}
       ======inverter a matriz ATA
       n=(grau+1)**2-1+1
                                                                !120
       IM=n-1
   DO K=1,n
              DO J=1,IM
         BB(J)=ATA(1,J+1)/ATA(1,1)
```

```
end do
   BB(n)=1.d0/ATA(1,1)
              DO LL=1,IM
                     DO J=1,IM
                     ATA(LL,J)=ATA(LL+1,J+1)-ATA(LL+1,1)*BB(J)
                     end do
              ATA(LL,n) = -ATA(LL+1,1)*BB(n)
              end do
              DO J=1,n
         ATA(n,J)=BB(J)
              end do
       end do
       ======fim da inversão da matriz ATA
c
\mathbf{C}
       multiplica a inversa de ATA(121,121) por AT(121,3*(jj-1)) = C(121,3*(jj-1))
       do k=1.3*(ii-1)
       do j=1,(grau+1)**2-1+1
       C(j,k)=0.d0
       do i=1,(grau+1)**2-1+1
       C(j,k)=C(j,k)+ATA(j,i)*AT(i,k)
       end do
       end do
       end do
\mathbf{C}
       -----determinação da matriz f(3*(jj-1),1)
       do i=1,(jj-1)
       f(i)=b(i,1)
       end do
       do i=1,(jj-1)
       f(ii-1+i)=b(i,2)
       end do
       do i=1,(jj-1)
       f(2*(jj-1)+i)=b(i,3)
       end do
       multiplica C por bz --- P(121,1) = C.f
c
       do i=1,(grau+1)**2-1+1
       p(j)=0.d0
       do i=1,3*(jj-1)
       p(j)=p(j)+C(j,i)*f(i)
       end do
       end do
       ====arrumando a saida
c
       do i=1,grau*(grau+1)/2
       h(in(i))=p((grau**2+3*grau)/2+1+i)
       end do
```

```
do i=1,(grau**2+3*grau)/2+1
       g(i)=p(i)
       write(2,30) int(m(i)),int(l(i)),g(i),h(i)
       write(6,30) int(m(i)),int(l(i)),g(i),h(i)
30
       format(2(i2,2x),2(f15.1,2x))
       end do
       end program inverso
c
       -----função fatorial
   real*8 function fat(n)
        integer i
        real*8 n
        fat=1.0
        do i=2,n
      fat=fat*i
   end do
       end function fat
```

```
direto-calota.for
    programa que calcula os elementos do campos para o modelo da calota
C
\mathbf{C}
    VARIAVEIS UTILIZADAS
C
           - LATITUDE GEOGRÁFICA
C
      lg
           - LONGITUDE
C
                    - ALTITUDE
      ht
         - RAIO DA TERRA = 6371200 METROS
C
    a
\mathbf{C}
         - DISTANCIA DO CENTRO DA TERRA AO PONTO
C
            - COMPONENTE xc DO CAMPO
      ХC
\mathbf{C}
            - COMPONENTE yc DO CAMPO
      yc
            - COMPONENTE zc DO CAMPO
\mathbf{C}
      XC
\mathbf{C}
                    - COTATITUDE GEOCENTRICA (TETA) clt=90-ltgeocentrica
      clt
\mathbf{C}
      DEFINICAO DO TIPO DAS VARIAVEIS
   program direto
      implicit real*8 (a-h,o-z)
   INTEGER w
      REAL*8 m(230),l(230),g(230),h(230),plm(230),plm(230),dplm(230),
   *pwlm(230),dpwlm(230),dsdclt(230),dsdfi(230),dsdr(230),der(230)
      real*8 ht,rad,pi,lat,lng,in,mes,incl,incl1,incl2
      real*8 g1(230),g2(230),h1(230),h2(230)
      real*8 a(10000),b(10000),c(10000),d(10000)
      real*8 dsdclt1(230),dsdfi1(230),dsdr1(230)
      real*8 dsdclt2(230),dsdfi2(230),dsdr2(230)
      real*8 Ak(100,100),nk(1000),kmn1(1000) !rotinas da calota
   open(1,file='coef-gauss.dat')
   open(2,file='grid-calota.dat')
   open(3,file='elementos-campo.dat')
   open(5,file='parametros-calota.dat')
      do i=1,66
      read(5,*) a1,a2,a3,a4,a5
      nk(i)=a3
      kmn1(i)=a5
      end do
  =======grau da expansão
      grau=10
      aa=6371200.d0
      pi=4*datan(1.d0)
```

rad=pi/180.d0 dclt=1.d-10

c

-----leitura dos coeficientes de gauss g(i) e h(i)

do 1 i=1,(grau**2+3*grau)/2+1 read(1,*) m(i),l(i),g(i),h(i)

```
1 end do
      -----fim
      do 2 while (1)
      read(2,*,end=20) lng,lat,ht
      lng=lng*rad
      lat=lat*rad
      if(lat .eq. 0) then
      lat=1.d-5
      end if
      if(lat .eq. 90*rad) then
      lat=90*rad-1.d-5
      end if
      if(lat .eq. -90*rad) then
      lat=-90*rad+1.d-5
      end if
      clt=lat
      r=aa+ht
      ======inicio da implementação dos polinomios de Legendre p/ a calota
c
      do iparcelas=1,10 !começo do looping do iparcelas
      =======Calculo do Ak(m,n)
c
      do i=1,(grau**2+3*grau)/2+1
      do ij=1,iparcelas
      Ak(i,1) = kmn1(i)*(dsin(clt))**m(i)
   x1=((ij+m(i)-1.d0)*(ij+m(i))-L(i)*(L(i)+1.d0))
      x2=ij*(ij+m(i))
      x3 = x1/x2
      Ak(i,ij+1)=Ak(i,ij)*x3
      end do
      end do
      c
      -----Calculo do Pmn(cos(teta))
c
      do i=1,(grau**2+3*grau)/2+1
      Pwlm(i)=0.d0
      do ij=1,iparcelas
      Pwlm(i)=Pwlm(i)+Ak(i,ij)*((1-dcos(clt))/2.d0)**ij
      end do
      end do
      -----fim do Calculo do Pmn(cos(teta))
c
```

```
======calculo do d[Pmn(cos(teta))]/dteta
   do i=1,(grau**2+3*grau)/2+1
       dPwlm(i)=0.d0
       do ij=1,iparcelas
       if(m(i).eq. 0.d0) then
       dPwlm(i)=dPwlm(i)+(dsin(clt)/2.d0)*(ij)*Ak(i,ij)*
       (\sin(\text{clt/2.d0}))**(2.d0*(ij-1))
       end if
       if(m(i).gt. 0.d0) then
       dPwlm(i)=dPwlm(i)+(dsin(clt)/2.d0)*(ij)*Ak(i,ij)*
       (\sin(\text{clt/2.d0}))**(2.d0*(ij-1))+
       dcos(clt)*(m(i)*Pwlm(i)/dsin(clt))
       end if
       end do
       end do
       end do! fim do looping do iparcelas
       do 6 i=1,(grau**2+3*grau)/2+1
       cálculo das parcelas de x
c
       dsdclt(i)=aa*(aa/r)**(nk(i)+1)*dpwlm(i)*(g(i)*dcos(m(i)*lng)+
                                                                                !nk(i)
               h(i)*dsin(m(i)*lng)
    cálculo das parcelas de y
       dsdfi(i) = aa*(aa/r)**(nk(i)+1)*pwlm(i)*(-m(i)*g(i)*dsin(m(i)*lng)+
                                                                                !nk(i)
       m(i)*h(i)*cos(m(i)*lng))
       cálculo das parcelas de z
c
       dsdr(i)=(nk(i)+1)*(aa/r)**nk(i)*(-aa/(r**2))*aa*pwlm(i)*
                                                                                !nk(i)
   *
         (g(i)*dcos(m(i)*lng)+h(i)*dsin(m(i)*lng))
  6 end do
    cálculo da soma das parcelas
       xc=0.d0
       yc=0.d0
       zc=0.d0
   do 7 i=1,(grau**2+3*grau)/2+1
                     xc=xc+dsdclt(i)
                     yc=yc+dsdfi(i)
                     zc=zc+dsdr(i)
  7
       end do
       xc=xc/r
       yc = -yc/(r*dsin(clt))
```

```
zc=zc
       fc=dsqrt(xc**2+yc**2+zc**2)
       hc = dsqrt(xc**2+yc**2)
       decl=datan(yc/xc)/rad
       incl=datan(zc/hc)/rad
       write(3,11) lng/rad,lat/rad,xc,yc,zc,ht !dsqrt(xc**2+yc**2+zc**2),ht
       format(2(f10.2,2x),3(f12.2,2x),f10.0)
11
  2 end do
20
       continue
       close(2)
       close(3)
       end program direto
       -----função fatorial
c
   real*8 function fat(n)
        integer i
        real*8 n
        fat=1.0
        do i=2,n
      fat=fat*i
    end do
       end function fat
```

Livros Grátis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

<u>Baixar</u>	livros	de	Adm	inis	tra	ção

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciência da Computação

Baixar livros de Ciência da Informação

Baixar livros de Ciência Política

Baixar livros de Ciências da Saúde

Baixar livros de Comunicação

Baixar livros do Conselho Nacional de Educação - CNE

Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos

Baixar livros de Economia

Baixar livros de Economia Doméstica

Baixar livros de Educação

Baixar livros de Educação - Trânsito

Baixar livros de Educação Física

Baixar livros de Engenharia Aeroespacial

Baixar livros de Farmácia

Baixar livros de Filosofia

Baixar livros de Física

Baixar livros de Geociências

Baixar livros de Geografia

Baixar livros de História

Baixar livros de Línguas

Baixar livros de Literatura

Baixar livros de Literatura de Cordel

Baixar livros de Literatura Infantil

Baixar livros de Matemática

Baixar livros de Medicina

Baixar livros de Medicina Veterinária

Baixar livros de Meio Ambiente

Baixar livros de Meteorologia

Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Música

Baixar livros de Psicologia

Baixar livros de Química

Baixar livros de Saúde Coletiva

Baixar livros de Serviço Social

Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo