UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA - PPGMA_P

DESENVOLVIMENTO DE UM MÉTODO NODAL ANALÍTICO PARA PROBLEMAS DE ORDENADAS DISCRETAS EM GEOMETRIAS CARTESIANAS BIDIMENSIONAL E TRIDIMENSIONAL EM DOMÍNIOS HOMOGÊNEOS E HETEROGÊNEOS

por

Eliete Biasotto Hauser

Tese para obtenção do Título de

Doutor em Matemática Aplicada

Porto Alegre, Novembro de 2006

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

CIP - CATALOGAÇÃO NA PUBLICAÇÃO

Hauser, Eliete Biasotto

DESENVOLVIMENTO DE UM MÉTODO NODAL ANALÍTICO PARA PROBLEMAS DE ORDENADAS DIS-CRETAS EM GEOMETRIAS CARTESIANAS BIDIMEN-SIONAL E TRIDIMENSIONAL EM DOMÍNIOS HO-MOGÊNEOS E HETEROGÊNEOS, Eliete Biasotto Hauser. Porto Alegre: PPGMAp da UFRGS, 2006.

106 p.: il.

Tese (doutorado) Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Matemática Aplicada, Porto Alegre, 2006. Orientador: Vilhena, Marco Tullio Menna Barretto de; Co-orientador: Barros, Ricardo C.

Tese: Matemática Aplicada

3D Transporte de Nêutrons, 2D Transporte de Nêutrons, Meio Heterogêneo, Ordenadas Discretas, Análise Espectral, Medida de Condicionamento, Limite do Erro, Convergência

DESENVOLVIMENTO DE UM MÉTODO NODAL ANALÍTICO PARA PROBLEMAS DE ORDENADAS DISCRETAS EM GEOMETRIAS CARTESIANAS BIDIMENSIONAL E TRIDIMENSIONAL EM DOMÍNIOS HOMOGÊNEOS E HETEROGÊNEOS

por

Eliete Biasotto Hauser

Tese submetida ao Programa de Pós-Graduação em Matemática Aplicada, PPGMAp, do Instituto de Matemática da Universidade Federal do Rio Grande do Sul, como requisito parcial para a obtenção do grau de

Doutor em Matemática Aplicada

Area de Concentração: Teoria de Transporte e Transformadas Integrais

Orientador: Prof. Dr. Marco Tullio Menna Barreto de Vilhena

Co-Orientador: Prof. Dr. Ricardo Carvalho de Barros

Comissão de Avaliação:

Prof. Dr. Fernando Carvalho da Silva (UFRJ-COPPE)

Prof. Dr. Claudio de Oliveira Graça (UFSM)

Prof. Dr. Ruben Panta Pazos (UNISC)

Prof. Dr.Paulo Ricardo de Ávila Zingano (UFRGS-PPGMAp)

Prof. Dr. Rosandra Santos Mottola Lemos (UFRGS-PROMEC)

Prof. Dr. Maria Cristina Varriale

Coordenadora do PPGMAp

Para Samuel, Elisa e Lucio.

AGRADECIMENTOS

Para desenvolver esta tese foram necessários vários anos de estudo. Sou grata a todos que me auxiliaram neste empreendimento. Este grupo amplo de pessoas inclui professores em várias universidades, que me deram uma acolhida calorosa e partilharam comigo, generosamente, seu conhecimento e sua sabedoria.

Agradeço ao Dr. Marco Tullio M. B. de Vilhena, pela constante e competente orientação.

Ao Dr. Ricardo Carvalho de Barros pela paciência e competência dedicadas à coorientação da presente tese.

Ao Dr. Ruben Panta Pazos, por ajudar-me a ser persistente, não desistir frente às dificuldades e principalmente pelo tempo dedicado ao estudo do erro.

Aos membros da banca examinadora: Prof. Dr.Fernando Carvalho da Silva, Prof. Dr. Claudio de Oliveira Graça, Prof. Dr. Ruben Panta Pazos, Prof. Dr.Paulo Ricardo de Ávila Zingano, Prof^a. Dr^a. Rosandra Santos Mottola Lemos.

Ao Programa de Pós-Graduação em Matemática Aplicada da UFRGS pela oportunidade de realização deste estudo.

À Pró-reitoria de Pesquisa e Pós-graduação da Pontifícia Universidade Católica do Rio Grande do Sul e a todos colegas da Faculdade de Matemática.

Aos familiares e amigos pela compreensão e companheirismo.

A Deus, por tudo...

RESUMO

DESENVOLVIMENTO DE UM MÉTODO NODAL ANALÍTICO PARA PROBLEMAS DE ORDENADAS DISCRETAS EM GEOMETRIAS CARTESIANAS BIDIMENSIONAL E TRIDIMENSIONAL EM DOMÍNIOS HOMOGÊNEOS E HETEROGÊNEOS

Neste trabalho estendemos o método $LTS_N2D - DiagExp$ para problemas de transporte de nêutrons bidimensionais heterogêneos e construímos um novo algoritmo para resolver as equações de ordenadas discretas S_N tridimensionais em domínios homogêneos e heterogêneos , denominado $LTS_N3D - DiagExp$. Esses algoritmos são construídos a partir da diagonalização das matrizes de transporte S_N . Os termos de fuga transversal, que surgem nas equações S_N integradas transversalmente, são representados por uma função exponencial com constante de decaimento heuristicamente identificada com parâmetros materiais característicos do meio. Como os autovalores podem ter multiplicidade maior que a unidade, desenvolvemos uma análise espectral a fim de garantir a diagonalização e estudar questões de estabilidade. Um estudo sobre o condicionamento é também feito . Definimos os erros no fluxo aproximado e na fórmula da quadratura, e estabelecemos uma relação entre eles. A convergência ocorre com condições de fronteira e quadratura angular adequadas. Apresentamos os resultados numéricos gerados pelos novos métodos $LTS_N2D - DiagExp$ e $LTS_N3D - DiagExp$ aplicados a problemas disponíveis na literatura.

ABSTRACT

DEVELOPMENT OF AN ANALYTICAL NODAL METHOD FOR DISCRETE ORDI-NATES PROBLEMS IN MULTIDIMENSIONAL CARTESIAN GEOMETRY IN HOMO-GENEOUS AND HETEROGENEOUS MEDIA

In this work we extend the $LTS_N 2D - DiagExp$ method for heterogeneous twodimensional neutral particle transport problems and we construct a new algorithm to numerically solve three-dimensional discrete ordinates equations S_N in homogeneous and heterogeneous domains, that we refer to as the $LTS_N 3D - DiagExp$ method. The essence of these methods are the diagonalization of the S_N transport matrices. The transverse leakage terms that appear in the transverse integrated S_N equations, are represented by exponential functions with decay constant depending on the characteristics of the material associated to the medium the particles leave behind. As the eigenvalues can have multiplicity greater than one, we present a spectral analysis in order to find the eigenvalues and corresponding linearly independent eigenvectors. Moreover, a study about the condition of the transport matrix is offered. We define the errors in the approach flow and the formula of the quadrature, and establish a relation between them. The convergence occurs depending on the boundary conditions and the adequate choice of the angular quadrature scheme. We present numerical results generated by present methods $(LTS_N 2D - DiagExp \text{ and } LTS_N 3D - DiagExp)$ applied to model problems available in the literature.

ÍNDICE

1	Introdução 1			
2	Mo	odelagem Matemática do Transporte de Nêutrons	6	
	2.1	A equação de Transporte de Boltzmann	8	
	2.2	Condições Iniciais e de Contorno	12	
	2.3	Condições de Interfaces Para Domínios Heterogêneos	13	
	2.4	Operador de Migração	14	
	2.5	Método das Ordenadas Discretas S_N	17	
3	Mét	todo $LTS_N2D - DiagExp$ Estendido a Problemas de Fonte Fixa em		
	Dor	nínios Heterogêneos	23	
	3.1	As Equações S_N Bidimensionais Integradas Transversalmente	23	
	3.2	Método $LTS_N 2D - DiagExp$ para Domínios Heterogêneos	29	
	3.3	Resultados Numéricos para Problemas Bidimensionais em Domínios		
		Heterogêneos	37	
		3.3.1 Problema Modelo Bidimensional Heterogêneo	37	
4	Aná	ilise Espectral das Equações S_N Integradas Transversalmente para o		
	case	o Tridimensional	43	

5	O Método $LTS_N 3D - DiagExp$ para Problemas de Fonte Fixa em Geometria				
	Car	tesiana	a Tridimensional	58	
	5.1	O Mét	todo $LTS_N 3D - DiagExp$ para Domínios Homogêneos	58	
	5.2	Exten	nsão para meios Tridimensionais Heterogêneos	69	
	5.3	Result	ados Numéricos para Problemas Tridimensionais	72	
		5.3.1	Problema Modelo Tridimensional Homogêneo	73	
		5.3.2	Problema Modelo Tridimensional Heterogêneo No.1	76	
		5.3.3	Problema Modelo Tridimensional Heterogêneo No.2	79	
	5.4	Anális	e do Condicionamento da Matriz $LTS_N 3D$	87	
6	Esti	mativa	a do Erro da Solução LTS_N Nodal em Geometria Cartesiana	0.2	
	Ind	imens	юпаг	92	
7	7 Conclusões e Sugestões para Trabalhos Futuros				
Re	Referências Bibliográficas104				

ÍNDICE DE FIGURAS

2.1	Partículas em dV movendo-se no interior do ângulo sólido $d\Omega$	7
2.2	Corrente angular	9
2.3	Condições nas Interfaces	14
2.4	Sistema de Coordenadas espacial-angular em três dimensões	15
2.5	Conjunto Tridimensional de Direções Discretas $\Omega_m, m = 1: 168$, para ordem	
	de quadratura $N=12$	17
2.6	Conjunto Bidimensional de Direções Discretas $\Omega_m,m=1$: 24, para ordem	
	de quadratura $N=4$	19
2.7	Conjunto Tridimensional de Direções Discretas $\Omega_m, m = 1: 24$, para ordem	
	de quadratura $N=4$	19
2.8	Conjunto Bidimensional de Direções Discretas $\Omega_m,m=1$: 24, para ordem	
	de quadratura $N=6$	20
2.9	Conjunto Tridimensional de Direções Discretas $\Omega_m,m=1:48,{\rm para}$ ordem	
	de quadratura $N=6$	20
2.10	Conjunto Bidimensional de Direções Discretas $\Omega_m,m=1$: 24, para ordem	
	de quadratura $N=8$	21
2.11	Conjunto Tridimensional de Direções Discretas $\Omega_m,m=1:80,{\rm para}$ ordem	
	de quadratura $N=8$	21

2.12	Conjunto Bidimensional de Direções Discretas $\Omega_m, m = 1: 24$, para ordem	
	de quadratura $N=12$	22
2.13	Conjunto Tridimensional de Direções Discretas $\Omega_m, m = 1:168$, para ordem	
	de quadratura $N=12$	22
3.1	Direções discretas para $N = 6$ com simetria de nível	24
3.2	Direções discretas para $N = 8$ com simetria de nível	25
3.3	Problema Heterogêneo: Domínio subdividido em K regiões $\dots \dots \dots$	26
3.4	Geometria do Problema Modelo Heterogêneo Bidimensional	38
4.1	Conjunto de Direções Discretas Ω_m para ordem de quadratura $N=4$ e $N=6$	
	em problemas tridimensionais	45
4.2	Raízes simples da equação de dispersão, Eq. (4.23), para ${\cal N}=2$ (à esquerda)	
	e $N = 4$ (à direita)	52
4.3	$\Omega_m = (\mu_m, \eta_m, \xi_m)$ no primeiro octante para $N = 4$	54
5.1	Domínio do Problema Tridimensional Homogêneo	74
5.2	Problema Tridimensional Homogêneo modificado	76
5.3	Domínio do Problema Tridimensional Heterogêno No.1 (à direita), construído	
	a partir da placa (à esquerda)	77
5.4	Problema Modelo Tridimensional Heterogêneo No.2	80
5.5	Localização do Fluxo Conhecido no Domínio do Problema Modelo Tridimen-	
	sional Heterogêneo No.2, Caso A	84
5.6	Localização do Fluxo Conhecido no Domínio do Problema Modelo Tridimen-	
	sional Heterogêneo No.2, Caso B	86

ÍNDICE DE TABELAS

2.1	Operador de Migração em Coordenadas Retangulares	16
3.1	Dados do Problema Modelo Bidimensional Heterogêneo	39
3.2	Resultados Numéricos para o Problema Bidimensional Heterogêneo com or-	
	dem de quadratura angular de simetria de nível com $N = 4$	41
3.3	Resultados Numéricos para o Problema Bidimensional Heterogêneo com or-	
	dens de quadratura angular $N=6$ e $N=8$ $\ldots \ldots \ldots$	42
4.1	Multiplicidade dos Autovalores Positivos	51
4.2	Autovalores Simples apara os parâmetros $\sigma_t = 0.1$ e $\sigma_s = 0.05 \dots$	52
~ 4		
5.1	Resultados Numéricos do Problema Modelo Tridimensional Homogéneo	75
5.2	Resultados Numéricos o Problema Modelo Tridimensional Heterogêne o $\mathrm{No.1}$.	79
5.3	Dados do Problema Modelo Tridimensional Heterogêneo No.2	80
5.4	Fluxo Conhecido para o Problema Modelo Tridimensional Heterogêneo No.2,	
	Caso A	83
5.5	Fluxo Conhecido para o Problema Modelo Tridimensional Heterogêneo No.2,	
	Caso B	85
5.6	Medidas de condicionamento da Matriz ${\cal A}_z$ dos problemas modelos tridmen-	
	sionais desta tese para ordem de quadratura $N = 4$	89

5.7	Medidas de condicionamento e raio espectral da matriz A_z para σ_t =	
	$0.1 \ e \ \sigma_s = 0.05 \dots \dots$	90
5.8	Medidas de condicionamento e raio espectral da matriz A_z para $\sigma_t~=~$	
	$0.0001 \ e \ \sigma_s = 0.00005$	90

LISTA DE SIMBOLOS

$Cond(A_z)$	Medida de Condicionamento da matriz A_z		
D_z	Matriz Diagonal dos autovalores da matriz ${\cal A}_z$		
Ε	espaço de base		
$\mathbf{E}_{\mathbf{M}}$	espaço aproximante		
$h(x, y, z, \mu, \eta, \xi)$	freqüência de colisão		
K	número de regiões retangulares \Re_k		
$k(\mu,\eta,\xi,\mu',\eta',\xi')$	núcleo de espalhamento		
M	número de direções discretas, $M = \frac{N(N+2)}{2}$ em duas três dimensões		
	e $M = N(N+2)$ em duas três dimensões		
Ν	ordem da quadratura angular		
$Nom(A_z)$	Determinante Normalizado da matriz A_z		
Q	fonte isotrópica de nêutrons		
t_l	l-ésimo autovalor da matriz A_z		
V	conjunto das direções $\nu = (\mu, \eta, \xi)$		
$\mathbf{V}_{\mathbf{z}}$	Matriz dos autove tores da matriz ${\cal A}_z$		
X	espaço de configuração		
$\mathbf{W}_{\mathbf{M}}$	subespaço de \mathbf{E}_M		

GREGOS

$\ \alpha_z\ ^2$	erro ponderado do fluxo em z
11 00 2 11	ono ponaciado do nano em A

 ϵ_m erro no fluxo aproximado

$\epsilon_{mz}(z)$) erro	médio	do	fluxo	na	variável	z
1102	/						

$\nu = (\mu, \eta, \xi)$	direção do fluxo
Ψ_m	fluxo angular de partículas na direção discreta Ω_m
$\overline{\Psi}_m$	Transforma de Laplace de Ψ_m
$\Psi_{my}^{(i)}(y)$	fluxo angular médio no lado horizontal da região de espessura $(x_{i+1} - x_i)$
Ω_m	direção discreta (μ_m, η_m, ξ_m) do fluxo angular
τ	erro global na fórmula de quadratura
$ au_m$	erro médio em z na fórmula de quadratura
σ_t	a seção de choque macroscópica total
σ_s	seção de choque macroscópica de espalhamento isotrópico
w_m	peso na quadratura angular, $m = 1 : M$

CAPÍTULO 1

Introdução

Nesta tese estamos tratando sobre transporte de partículas neutras, isto é, nêutrons ou fótons, que migram em um meio com certas propriedades nucleares. Essas propriedades nucleares são caracterizadas em termos de seções de choque macroscópicas determinadas teórica ou experimentalmente. Será dada ênfase à modelagem numérica do transporte de nêutrons, a que nos referimos como neutrônica computacional.

Os nêutrons, descobertos pelo físico inglês James Chadwick em 1932, são partículas nucleares eletricamente neutras que têm aproximadamente a mesma massa dos prótons. Por sua neutralidade elétrica, o nêutron, mesmo com baixíssima energia cinética pode penetrar mais facilmente num átomo e interagir com seu núcleo, através de espalhamentos e absorção.

Novas técnicas nucleares estão sendo desenvolvidas atualmente, trazendo benefícios para diversos campos da atividade humana, por exemplo, a medicina, a indústria em geral, a farmacêutica e a agricultura. Em particular, citamos a significativa contribuição das técnicas nucleares na geofísica para prospecção de hidrocarbonetos (petróleo e gás) em áreas com produções marginais principalmente. Essas aplicações são conhecidas na literatura como problemas de *oil well logging*, [Azmy, 1988b], [Brown, 1996], [Mello e Barros, 2002].

A descrição matemática da distribuição de nêutrons está baseada na equação do

balanço de nêutrons, denominada equação do transporte de nêutrons. Essa equação é uma forma linearizada da familiar equação de Boltzamnn na descrição dos gases e modela matematicamente problemas de distribuição de partículas.

Em casos mais realísticos, os problemas de transporte de nêutrons não são simples e, portanto, precisamos recorrer à modelagem numérica, que pode ser probabilística, como os métodos de Monte Carlo, ou determinística, isto é, os métodos que se fundamentam na necessidade de modelagem matemática anterior. Nesta tese, enfatizaremos a modelagem numérica determinística do transporte de nêutrons, utilizando a aproximação de ordenadas discretas, as equações S_N ,[Lewis e W. F. Miller, 1993].

Fundamentados nas equações S_N para modelagem de problemas multidimensionais, classificamos os métodos numéricos em métodos de malha fina, e.g., o método diamond difference (DD) [Azmy, 1988b]; os métodos de malha média, e.g., os métodos de elementos finitos descontínuos; os métodos de malha grossa, e.g., os métodos nodais, dentre os quais destacamos os métodos LN [Walters, 1986], SGF-CN [Barros e Larsen, 1991], [Barros e Larsen, 1992a], SGF-ExpN [Mello, 2000] e [Mello e Barros, 2002], SGF-LN [Dominguez, 2006]. Todos esses métodos nodais são baseados em discretização do domínio em grades espaciais com integração transversal das equações S_N no interior de um nodo espacial. O método nodal LN aproxima tanto o termo de fonte por espalhamento e eventualmente fissão quanto o termo de fuga transversal por polinômio de primeiro grau. Por outro lado, os métodos espectro-nodais aproximam apenas os termos de fuga transversal; os termos de fonte são tratados analiticamente. No método SGF-CN, o termo de fuga em cada equação S_N unidimensional integrada transversalmente no interior do nodo é aproximado por uma constante; no método SGF-ExpN, o termo de fuga transversal é aproximado por uma função exponencial com constante de decaimento heuristicamente coincidente com a seção de choque macroscópica de absorção do nodo de onde emergem os nêutrons. No método SGF-LN, o termo de fuga transversal é aproximado por um polinômio de primeiro grau.

O método LTS_N [Vilhena e Barichello, 1991], [Vilhena et al., 1998] determina uma solução analítica para as equações S_N unidimensionais. Uma primeira abordagem para problemas multidimensionais foi desenvolvida por [Zabadal et al., 1993], [Zabadal et al., 1995], [Zabadal et al., 1997]. Porém, à medida que a ordem de quadratura cresce, também aumenta a complexidade computacional dessa formulação. A classe de métodos LTS_N consiste na aplicação da transformada de Laplace nas equações *unidimensionais* obtidas pela integração transversal, transformando-as num sistema algébrico para os fluxos transformados. Após a resolução desse sistema, o uso da transformada inversa de Laplace fornece uma expressão analítica para o fluxo angular discretizado. Para obtenção dessa solução é necessário realizar a inversão da matriz definida especificamente em função das seções de choque macroscópicas do problema de transporte. Vários métodos foram desenvolvidos com esse objetivo: o método da diagonalização tem se mostrado bastante eficiente, permitindo a inversão dessa matriz para altas ordens de quadratura angular [Segatto e Vilhena, 1999].

Com o objetivo de determinar uma solução numérica da equação bidimensional do transporte para ordens de quadratura mais elevadas, [Hauser, 2002] desenvolveu um novo algoritmo para o método LTS_N bidimensional: $LTS_N2D - Diag$, o qual utiliza o método da diagonalização. Uma primeira tentativa de construção da solução além de utilizar a diagonalização da matriz LTS_N para o caso bidimensional, os termos de fuga transversal, que surgem nas equações LTS_N integradas transversalmente, foram também expressos como combinação linear dos autovetores multiplicados por exponencias dos respectivos autovalores. Esse algoritmo, não se mostrou eficiente para elevadas ordens de quadratura angular. Então, foi utilizada uma aproximação exponencial para os termos de fuga transversal. Nessa representação os melhores resultados numéricos foram obtidos quando a constante de decaimento, foi heuristicamente identificada com a seção de choque macroscópica de absorção σ_a do meio de onde emergem os nêutrons. Com essa aproximação passamos a denominar o método como $LTS_N2D - DiagExp$.

Nesta tese estendemos o método $LTS_N 2D - DiagExp$ para tratar de problemas de transporte de nêutrons bidimensionais em domínios espaciais heterogêneos e construímos um novo algoritmo para as equações S_N tridimensionais, por nós denominado $LTS_N 3D - DiagExp$.

Fundamentados em [Lewis e W. F. Miller, 1993], [Duderstadt e Martin, 1979], [Duderstadt e Hamilton, 1976], [Stamm'ler e Abbate, 1983], [M.Stacey, 2001] e [Barros, 2000], no capítulo 2 descrevemos alguns aspectos da teoria de transporte de nêutrons.

No capítulo 3 estendemos o algoritmo $LTS_N2D - DiagExp$, descrito em [Hauser, 2002], para problemas de transporte de nêutrons definidos em domínios espaciais heterogêneos, com base na física de problemas de penetração profunda. O novo método é utilizado para estimar numericamente o fluxo médio em uma região do domínio de um problema modelo, semelhante ao de cálculo de blindagem de radiações ionizantes, proposto por [Azmy, 1988b] também utilizado como referência por [Brown et al., 2001] e [Mello e Barros, 2002]. Ademais determinamos a fuga de nêutrons numa placa e comparamos com os resultados obtidos em [Barros e Larsen, 1992b] e [Zabadal, 1994].

No capítulo 4 analisamos o espectro das matrizes LTS_N para o caso tridimensional. Isso nos permite diagonalizar a matriz A e encontrar uma expressão analítica mais simples para os fluxos angulares médios no nodo e fluxos angulares médios na fronteira. Essa análise espectral fundamenta-se em [Case e Zweifel, 1967], [Barros e Larsen, 1990] e [Hauser et al., 2002a] .

Um novo algoritmo é construído no capítulo 5 para resolver problemas de transporte de nêutrons em geometria Cartesiana tridimensional. Esse método foi denominado $LTS_N3D - DiagExp$ e é a principal contribuição desta tese. Estimamos a corrente na região de fuga e fluxo médio em problemas tridimensionais em meios homogêneos e em meios heterogêneos. Também, neste capítulo um estudo sobre o condicionamento das matrizes do nossos problemas modelos é realizado.

No capítulo 6 apresentamos algumas idéias sobre a convergência das aproximações LTS_N tridimensionais. Esse procedimento tem como base [Kaper et al., 1982], [Zeidler, 1990], [Mokhtar-Kharroubi, 1997], [Pazos e Vilhena, 1998], [Pazos e Vilhena, 1999a], [Pazos e Vilhena, 1999b], [Hauser et al., 2003a] e [Hauser et al., 2005b], [Mokhtar-Kharroubi e Sbihi, 2005], [Mokhtar-Kharroubi e Sbihi, 2006]. Definimos os erros no fluxo aproximado e na fórmula da quadratura e estabelecemos uma relação entre eles. Concluímos fazendo uma estimativa global do erro no fluxo aproximado.

Finalizamos a tese no capítulo 7 apresentando as conclusões e nossas sugestões para trabalhos futuros.

CAPÍTULO 2

Modelagem Matemática do Transporte de Nêutrons

O conhecimento detalhado de um campo neutrônico, isto é, do número de nêutrons existentes em cada elemento de volume, para cada direção e energia, e em todo instante de tempo, é o principal objetivo da teoria do transporte. Neste capítulo descrevemos os seus aspectos teóricos, fundamentados em [Duderstadt e Hamilton, 1976], [Duderstadt e Martin, 1979], [Stamm'ler e Abbate, 1983], [Lewis e W. F. Miller, 1993], [Barros, 2000] e [M.Stacey, 2001].

A equação do transporte de nêutrons constituirá um modelo matemático que descreve o perfil de toda a população de partículas, e não, o de cada partícula individualmente. Em termos quantitativos trata-se de se obter o valor da função distribuição conhecida como *densidade angular neutrônica*, que depende das variáveis espacial, angular, energética e temporal.

A expressão $n(\vec{r}, \vec{\Omega}, E, t) dV d\Omega dE$ representa a função densidade o número de nêutrons presentes no instante t, no elemento de volume dV, situado no extremo do vetor posição $d\vec{r}$, movendo-se dentro do ângulo sólido $d\Omega$ ao redor da direção do vetor unitário $\vec{\Omega}$ e com energias compreendidas entre $E \in E + dE$, conforme ilustrado na Figura 2.1.

Figura 2.1 – Partículas em dVmovendo-se no interior do ângulo sólido $d\Omega$

Seja $\vec{v} = |\vec{v}| \vec{\Omega}$ a velocidade correspondente a essa energia E. Assim, a densidade angular $n = n(\vec{r}, \vec{\Omega}, E, t)$ é o número de nêutrons da classe $(\vec{r}, \vec{\Omega}, E, t)$, isto é, presentes no instante t no ponto \vec{r} , por unidade de volume, de ângulo sólido e de intervalo de energia.

A densidade neutrônica total é a integral da densidade angular com respeito a todas direções de movimento, ou o número de nêutrons da classe (\vec{r}, E, t) , isto é, presentes no instante t no ponto \vec{r} , por unidade de volume e de intervalo de energia:

$$\mathbf{N}(\vec{r}, E, t) = \int_{4\pi} n\left(\vec{r}, \vec{\Omega}, E, t\right) d\Omega, \qquad (2.1)$$

onde a notação 4π significa que a integral é feita em todas as direções angulares da esfera unitária. Quando a densidade angular for isotrópica, *n* independe de $\vec{\Omega}$, e obtemos

$$n(\vec{r}, \vec{\Omega}, E, t) = \frac{1}{4\pi} \mathbf{N}(\vec{r}, E, t).$$
(2.2)

2.1 A equação de Transporte de Boltzmann

Os métodos determinísticos de transporte de radiação usam a equação de transporte de Boltzamnn como modelo matemático. Esta expressa um balanço do número de nêutrons, que no instante t, tem uma velocidade compreendida entre $\vec{v} \in \vec{v} + d\vec{v}$, num elemento de volume dV situado no extremo do vetor posição \vec{r} . Neste balanço, a diferença entre a produção de nêutrons da classe $(\vec{r}, \vec{\Omega}, E, t)$, com $\vec{v} = |\vec{v}(E)| \vec{\Omega}$, por colisões e o desaparecimento devido a colisões, absorções ou fugas, é a variação temporal da densidade angular. O estabelecimento quantitativo deste balanço requer a introdução prévia de várias magnitudes.

A corrente angular, o produto da densidade angular pelo vetor velocidade \vec{v} , representa o número de nêutrons da classe $(\vec{r}, \vec{\Omega}, E, t)$ por unidade de tempo que atravessa a unidade de superfície normal a $\vec{\Omega}$, e é expressa por:

$$\vec{F} = \vec{v} \times n(\vec{r}, \vec{\Omega}, E, t) \,. \tag{2.3}$$

O módulo da corrente angular recebe o nome de fluxo angular, que definimos como segue

$$\left|\vec{F}\right| = \left|\vec{v} \times n\left(\vec{r}, \vec{\Omega}, E, t\right)\right| = \left|\vec{v}\right| \times n\left(\vec{r}, \vec{\Omega}, E, t\right) \equiv \Psi\left(\vec{r}, \vec{\Omega}, E, t\right).$$
(2.4)

Figura 2.2 - Corrente angular

O fluxo escalar é obtido integrando-se o fluxo angular sobre todas as direções angulares (4 π), isto é

$$\psi(\vec{r}, E, t) = \int_{4\pi} \Psi(\vec{r}, \vec{\Omega}, E, t) \, d\Omega = \int_{4\pi} |\vec{v}| \times n(\vec{r}, \vec{\Omega}, E, t) \, d\Omega \,. \tag{2.5}$$

Assim, conforme $\left(2.1\right)$,

.

$$\psi(\vec{r}, E, t) = |\vec{v}| \times \mathbf{N}(\vec{r}, E, t) \,. \tag{2.6}$$

A seguir, antes de apresentar a equação do transporte, listamos as hipóteses físicas que assumimos como verdadeiras para a modelagem matemática do problema físico de transporte de nêutrons:

(1) os elementos de velocidade e espaço de interesse são suficientemente grandes, de tal forma que flutuações estatísticas no interior destes elementos são desprezíveis. As flutuações estatíticas não podem ser consideradas pela equação de transporte;

(2) o tempo de colisão dos nêutrons é considerado nulo. Entretanto, se isso for necessário ser considerado na equação de transporte dependente do tempo, o decaimento dos precursores de nêutrons atrasados tem que ser considerado como um termo de fonte;

(3) a colisão entre nêutrons é desconsiderada. Isso é fisicamente justificável, visto que a densidade de nêutrons é muito pequena quando comparada com a densidade dos núcleosalvo. A negligência da interação nêutron-nêutron é a razão por que a equação de transporte aplicada a nêutrons é linear;

 (4) a energia de vibração dos átomos ou moléculas do material no qual os nêutrons são moderados é desprezada;

(5) Normalmente os campos de forças que agem sobre o nêutron são nulos, exceto os campos nucleares. Forças gravitacionais são muito fracas para influenciarem o movimento dos nêutrons. Campos elétricos e magnéticos não têm influência no movimento do nêutron, pois ele não tem carga elétrica. Como os campos nucleares são fenomenologicamente incorporados nos termos de espalhamento e absorção, concluimos que o nêutron viaja em trajetórias retilíneas e com velocidades constantes entre colisões;

(6) efeitos que dependam da orientação do nêutron não são incorporados na equação de

transporte.

Considerando essas aproximações, escrevemos a equação do transporte de nêutrons, conforme [Lewis e W. F. Miller, 1993]:

$$\frac{1}{v}\frac{\partial}{\partial t}\Psi(\vec{r},\vec{\Omega},E,t) + \vec{\Omega}\cdot\vec{\nabla}\Psi(\vec{r},\vec{\Omega},E,t) + \sigma_T(\vec{r},E)\Psi(\vec{r},\Omega,E,t) =$$

$$S(\vec{r},E,\vec{\Omega},t) + \int dE' \, d\Omega' f(E',\vec{\Omega'}\to E,\vec{\Omega}) \, C(E') \, \sigma_T(\vec{r},E') \, \Psi(\vec{r},\Omega',E',t).$$
(2.7)

Na Eq. (2.7) definitions

 $\Psi(\vec{r},\vec{\Omega},E,t) =$ fluxo angular de nêutrons que depende de sete variáveis: $3(\vec{r}) + 1(E) + 2(\vec{\Omega}) + 1(t);$

v = velocidade do nêutron;

 σ_T = seção de choque macroscópica total(geralmente denotada por Σ_t);

$$S =$$
fonte externa;

C = multiplicidade total de um evento, isto é, $C = \frac{\sigma_{es} + \sigma_{is} + v\sigma_f + x\sigma_{xn}}{\sigma_T};$

 $\upsilon =$ número médio de nêutrons prontos que aparecem no processo de fissão por fissão;

 $\sigma_{es}=$ seção de choque macroscópica de espalhamento elástico;

 σ_{is} =seção de choque macroscópica de espalhamento inelástico;

 σ_f =seção de choque macroscópica de fissão;

 σ_{xn} =seção de choque macroscópica de reações do tipo (n, xn);

 $f(E', \vec{\Omega}' \to E, \vec{\Omega})C(E')$ = probabilidade que um evento causado por um nêutron que se desloca com energia E' na direção $\vec{\Omega}'$ gere um nêutron que se desloque com energia E na direção $\vec{\Omega}$; $\vec{\Omega}\cdot\vec{\nabla}\psi(\vec{r},E,\vec{\Omega},t)=$ termo de migração.

2.2 Condições Iniciais e de Contorno

A fim de podermos representar o problema de transporte de nêutrons de forma fechada é necessário explicitar as condições iniciais e de contorno. Para tanto, consideramos um domínio convexo de volume V, com fronteira Γ .

A condições iniciais são a especificação do fluxo angular em t = 0, isto é, a distribuição $\psi(\vec{r}, \vec{\Omega}, E, 0)$ é conhecida.

O fluxo de nêutrons que entra no domínio através da fronteira deve ser conhecido. Especificamente:

$$\psi(\vec{r},\vec{\Omega},E,t) = \varphi(\vec{r},\vec{\Omega},E,t), \quad \vec{\Omega} \cdot \hat{n} < 0, \quad \vec{r} \in \Gamma,$$
(2.8)

onde \hat{n} é o versor normal exterior à superfície $\Gamma \in \varphi$ uma distribuição conhecida.

Quando φ é identicamente nula e temos então a condição de contorno tipo vácuo ou condição de contorno de superfície livre, isto é

$$\psi(\vec{r},\vec{\Omega},E,t) = 0, \quad \vec{\Omega} \cdot \hat{\vec{n}} < 0, \quad \vec{r} \in \Gamma.$$
(2.9)

As expressões (2.8) e (2.9) são conhecidas como condições de fronteira explícitas ou prescritas.

Condições de contorno implícitas são comumente usadas em cálculo de transporte para considerar condições de *simetria* impostas pelo problema físico ou propriedades de *reflexão* de uma interface. Essas condições de contorno implícitas constituem relações entre os fluxos incidentes e refletidos, isto é, espalhados de volta pela superfície de contorno estrutural ou uma superfície virtual. Em [Lewis e W. F. Miller, 1993] são citadas, neste contexto, condições de contorno dos seguintes tipos:

1) Albedo: Essa condição estabelece que

$$\psi(\vec{r},\vec{\Omega},E,t) = \alpha\left(\vec{\Omega'},\vec{\Omega},E\right)\psi(\vec{r},\vec{\Omega'},E,t)$$
(2.10)

para $\vec{\Omega}\cdot\hat{n}<0,$
e $\vec{\Omega'}\cdot\hat{n}>0$.

No caso particular de $\alpha(\vec{\Omega'}\vec{\Omega}, E) = 1$ para $\vec{\Omega} \cdot \hat{n} = -\vec{\Omega'} \cdot \hat{n}$, denominamos *condição* de contorno reflexiva, pois todas as partículas emergentes através da fronteira Γ retornam ao domínio *especularmente*.

2) Periódica: A distribuição do fluxo em uma fronteira é igual à distribuição do fluxo numa outra fronteira num reticulado periódico, de período p

$$\psi(\vec{r}, \vec{\Omega}, E, t) = \psi(\vec{r} + p, \vec{\Omega}, E, t).$$
 (2.11)

2.3 Condições de Interfaces Para Domínios Heterogêneos

Na obtenção da equação do transporte consideramos que as características neutrônicas do meio são funções contínuas de \vec{r} . Porém, o domínio V do problema, pode conter regiões com composições materiais diferentes. Freqüentemente existem interfaces, isto é, descontinuidades que deverão ser consideradas adequadamente para resolver a problema. Nesses meios heterogêneos, a condição matemática imposta em cada interface deve representar o fato físico de que o número de nêutrons em $(\vec{r}, \vec{\Omega}, E, t)$ não muda quando cruza a fronteira (Figura 2.3). Ou seja, a densidade angular neutrônica $n(\vec{r} + l\vec{\Omega}, \vec{\Omega}, E, t)$ e suas derivadas parciais deve ser uma funções contínuas de l.

Figura 2.3 – Condições nas Interfaces

2.4 Operador de Migração

A grande maioria dos cálculos numéricos de transporte é realizada usando a forma estacionária da equação de transporte de nêutrons onde a dependência no tempo não é levada em consideração, isto é, cálculos de penetração profunda em blindagens e cálculos de criticalidade de sistemas multiplicativos.

.

Em coordenadas Cartesianas retangulares, o operador de migração nas equações pode ser escrito como

$$\vec{\Omega} \cdot \vec{\nabla} \Psi = \mu \frac{\partial \Psi}{\partial x} + \eta \frac{\partial \Psi}{\partial y} + \xi \frac{\partial \Psi}{\partial z} , \qquad (2.12)$$

onde expressamos os cossenos diretores dos eixos pelos produtos internos

$$\mu = \vec{\Omega} \cdot \vec{e_x}, \quad \eta = \vec{\Omega} \cdot \vec{e_y} \quad e \quad \xi = \vec{\Omega} \cdot \vec{e_y}. \tag{2.13}$$

Figura 2.4 – Sistema de Coordenadas espacial-angular em três dimensões

A figura 2.4 mostra o sistema de coordenadas em detalhes e serve para converter o sistema de coordenadas para uma ou duas dimensões. Por exemplo, se o fluxo independe das variações de z, o último termo da equação (2.13) é suprimido. A tabela 2.1 descreve as três opções clássicas.

	Variáveis	Variáveis	
Dimensões	Espaciais	Angulares	$ec \Omega \cdot ec abla \psi$
1	x	μ	$\mu \frac{\partial \Psi}{\partial x}$
2	x,y	μ,η	$\mu \frac{\partial \Psi}{\partial x} + \eta \frac{\partial \Psi}{\partial y}$
3	x, y, z	μ,η,ξ	$\mu \frac{\partial \Psi}{\partial x} + \eta \frac{\partial \psi}{\partial y} + \xi \frac{\partial \psi}{\partial z}$

Tabela 2.1 – Operador de Migração em Coordenadas Retangulares

É util, em abordagens analíticas ou em considerações computacionais, considerar situações simplificadoras, que apresentem simetrias espaciais e que tenham, portanto, menos variáveis independentes. Na seqüência, apresentamos casos de problemas estacionários monoenergéticos, em meios não multiplicativos, de interesse nesta tese.

No caso de espalhamento isotrópico monoenergético e geometria Cartesiana, utilizando o operador de migração dado na tabela 2.1, obtemos, para o caso de duas dimensões, a equação

$$\mu \frac{\partial}{\partial x} \psi(x, y, \mu, \eta) + \eta \frac{\partial}{\partial y} \psi(x, y, \mu, \eta) + \sigma_T \psi(x, y, \mu, \eta) = \frac{\sigma_s}{4\pi} \int_{4\pi} \psi(x, y, \mu', \eta') d\Omega', \quad (2.14)$$

e para geometria Cartesiana tridimensional

$$\mu \frac{\partial}{\partial x} \psi(x, y, z, \mu, \eta, \xi) + \eta \frac{\partial}{\partial y} \psi(x, y, z, \mu, \eta, \xi) + \xi \frac{\partial}{\partial z} \psi(x, y, z, \mu, \eta, \xi) + \sigma_T \psi(x, y, z, \mu, \eta, \xi) = \frac{\sigma_s}{4\pi} \int_{4\pi} \psi(x, y, z, \mu', \eta', \xi') \, d\Omega' \,.$$

$$(2.15)$$

2.5 Método das Ordenadas Discretas S_N

Soluções da equação de transporte de nêutrons implicam realizar integrações na variável angular $\vec{\Omega}$, normalmente aproximadas por quadraturas. Assim, a variável contínua $\vec{\Omega}$ é representada por um conjunto de direções discretas (Ω_s) e um respectivo conjunto de pesos (p_s). Essas direções são equivalentes a um conjunto de pontos sobre a superfícide de uma esfera unitária com centro em \vec{r} , conforme exemplificado na figura 2.5

Figura 2.5 – Conjunto Tridimensional de Direções Discretas $\Omega_m,\,m=1:168,\,{\rm para~ordem~de~quadratura~}N=12$

O primeiro método de transporte baseado em quadraturas angulares é conhecido como método de Ordenadas Discretas ou método fraco de Chandraseckhar, [Duderstadt e Martin, 1979]. Aplicações deste método têm sido usadas geralmente em geometrias simples, onde a componente azimutal de $\vec{\Omega}$ pode ser eliminada. Nestes casos, a representação por quadratura é feita usando um conjunto de cossenos diretores (μ_m) para as direções discretas Ω_s e um conjunto de pesos (ω_m) da quadratura p_s . Quando usados com conjuntos particulares de direções discretas recebem nomes particulares, por exemplo, o método P_{N-1} e o método DP_{N-1} , onde N é o número de direções, os quais são baseados na quadratura angular de Gauss.

O método de segmentação angular S_N , conforme descrito em [Barros, 2000], é um esquema geral de se formularem equações de transporte de nêutrons em forma adequada para modelagem computacional. Este método é, no que diz respeito à variável angular, uma generalização do método de ordenadas discretas.

A priori, a variável angular $\vec{\Omega}$ da equação de transporte não tem direção preferencial associada a ela. Normalmente $\vec{\Omega}$ é representada pelas componentes num sistema de eixos coordenados na esfera unitária localizada em \vec{r} , sujeitas à condição $\mu^2 + \eta^2 + \xi^2 = 1$.

A integração nas variáveis angulares é aproximada por uma soma (quadratura) em um conjunto de pontos na esfera unitária.

No caso multidimensional, de interesse nesta tese, a variável $\vec{\Omega}$ é discretizada e obtemos um conjunto de valores discretos para $\mu = \cos\theta$, $\eta = \sqrt{1 - \mu^2} \sin\varphi$ e $\xi = \sqrt{1 - \mu^2} \cos\varphi$.

No caso de geometria Cartesiana temos $M = \frac{N(N+2)}{2}$ pares ordenados (μ_m, η_m) para o caso bidimensional, e M = N(N+2) ternas ordenadas (μ_m, η_m, ξ_m) para o caso tridimensional. Os respectivos pesos são normalizados: $\sum_{m=1}^{\frac{M}{4}} \omega_m = 1$ e $\sum_{m=1}^{\frac{M}{8}} \omega_m = 1$.

Na seqüência ilustramos a representação geométrica de conjuntos de quadratura de simetria de nível bidimensionais e tridimensionais [Lewis e W. F. Miller, 1993].

Figura 2.6 – Conjunto Bidimensional de Direções Discretas $\Omega_m,\,m=$

1:24, para ordem de quadratura ${\cal N}=4$

Figura 2.7 – Conjunto Tridimensional de Direções Discretas $\Omega_m, \, m=1:24, \, {\rm para \ ordem \ de \ quadratura \ } N=4$

Figura 2.8 – Conjunto Bidimensional de Direções Discretas $\Omega_m, m = 1:24$, para ordem de quadratura N = 6

Figura 2.9 – Conjunto Tridimensional de Direções Discretas $\Omega_m, \ m=1:48, \ {\rm para \ ordem \ de \ quadratura \ } N=6$

Figura 2.10 – Conjunto Bidimensional de Direções Discretas $\Omega_m,\,m=$

1:24, para ordem de quadratura ${\cal N}=8$

Figura 2.11 – Conjunto Tridimensional de Direções Discretas $\Omega_m,\,m=1:80,\,\,{\rm para~ordem~de~quadratura}\,\,N=8$

Figura 2.12 – Conjunto Bidimensional de Direções Discretas $\Omega_m,\,m=1:24,\,$ para ordem de quadraturaN=12

Figura 2.13 – Conjunto Tridimensional de Direções Discretas $\Omega_m,\,m=1:168,\,\,{\rm para}~{\rm ordem}~{\rm de}~{\rm quadratura}~N=12$

CAPÍTULO 3

Método $LTS_N 2D - DiagExp$ Estendido a Problemas de Fonte Fixa em Domínios Heterogêneos

Neste capítulo apresentamos a extensão do método $LTS_N2D - DiagExp$ desenvolvida por [Hauser, 2002] para domínios heterogêneos, considerando a análise espectral descrita para o caso bidimensional em [Hauser et al., 2002a].

3.1 As Equações S_N Bidimensionais Integradas Transversalmente

Consideremos as esquações de ordenadas discretas S_N para meios nãomultiplicativos, em geometria Cartesiana bidimensional, com espalhamento isotrópico e um grupo de energia para domínios heterogêneos

$$\mu_m \frac{\partial \Psi_m}{\partial x}(x,y) + \eta_m \frac{\partial \Psi_m}{\partial y}(x,y) + \sigma_t(x,y)\Psi_m(x,y) = Q(x,y) + \frac{\sigma_s(x,y)}{4} \sum_{n=1}^M w_n \Psi_n(x,y) . \quad (3.1)$$

Aqui usamos as seguintes definições:

 $(x, y) \in [0, a] \times [0, b]$ são as variáveis espaciais da geometria retangular; m = 1 : M (números inteiros de 1 até M, inclusives), $M = \frac{N(N+2)}{2}$, onde N é a ordem da quadratura angular, e.g. S_6 , N = 6 e M = 24; M = cardinalidade do conjunto de ordenadas discretas (número de direções discretas); $\sigma_t(x, y) =$ a seção de choque macroscópica total ; $\sigma_s(x, y) =$ seção de choque macroscópica de espalhamento isotrópico; Q(x, y) = fonte isotrópica de nêutrons no ponto (x, y) do domínio; $\Psi_m(x, y) =$ fluxo angular de partículas na direção discreta $\Omega_m = (\mu_m, \eta_m)$; $w_n =$ peso na quadratura angular usada, e.g., simetria de nível.

As condições de contorno são os fluxos de nêutrons incidentes prescritos ou condições de reflexão especular. Neste trabalho utilizamos o conjunto de quadratura angular com simetria de nível, descrito em [Lewis e W. F. Miller, 1993] e que ilustramos nas figuras 3.1 e 3.2, para as quadraturas N = 6 e N = 8 respectivamente.

Figura 3.1 – Direções discretas para N = 6 com simetria de nível

Figura 3.2 – Direções discretas para ${\cal N}=8$ com simetria de nível

Para casos de meios heterogêneos que têm domínios retangulares subdivididos em K regiões também retangulares $\Re_k = [x_i, x_{i+1}] \times [y_j, y_{j+1}], k = 1 : K, K = (I-1) \times (J-1),$ conforme ilustramos na figura 3.3, escrevemos

$$x_1 = 0 < x_2 < x_3 < \dots < x_{i-1} < x_i < x_{i+1} < \dots < x_{I-1} < x_I = a, \qquad (3.2)$$

$$y_1 = 0 < y_2 < y_3 < \dots < y_{j-1} < y_j < y_{j+1} < \dots < y_{J-1} < y_J = b.$$
(3.3)

Para cada região \Re_k , k = 1 : K, são conhecidos os parâmetros materiais constantes que denotamos por σ_{t_k} e σ_{s_k} .

Ao integrarmos a Eq.(3.1) com respeito a x entre os limites 0 e a, devemos observar as subregiões do domínio do problema, aplicando a propriedade da aditividade da integração definida que apresentamos a seguir, considerando a representação na figura 3.3. Assim, por

Figura 3.3 – Problema Heterogêneo: Domínio subdividido emKregiões

definição temos

$$\Psi_{my}(y) = \frac{1}{a} \int_0^a \Psi_m(x, y) dx = \frac{1}{a} \sum_{i=1}^{I-1} \int_{x_i}^{x_{i+1}} \Psi_m(x, y) dx = \frac{1}{a} \sum_{i=1}^{I-1} (x_{i+1} - x_i) \Psi_{my}^{(i)}(y), \quad (3.4)$$

onde

$$\Psi_{my}^{(i)}(y) = \frac{1}{(x_{i+1} - x_i)} \int_{x_i}^{x_{i+1}} \Psi_m(x, y) dx$$
(3.5)

é o fluxo angular médio no lado horizontal da região de espessura $(x_{i+1} - x_i)$. Similarmente teremos

$$\int_{0}^{a} Q(x,y)dx = \sum_{i=1}^{I-1} \int_{x_{i}}^{x_{i+1}} Q(x,y)dx = \sum_{i=1}^{I-1} (x_{i+1} - x_{i})Q_{y}^{(i)}(y), \qquad (3.6)$$

е

$$\int_{0}^{a} \frac{\partial \Psi_{m}}{\partial x}(x,y) dx = \sum_{i=1}^{I-1} \int_{x_{i}}^{x_{i+1}} \frac{\partial \Psi_{m}}{\partial x}(x,y) dx = \sum_{i=1}^{I-1} \left[\Psi_{m}(x_{i+1},y) - \Psi_{m}(x_{i},y) \right]$$
(3.7)

$$=\Psi_m(a,y)-\Psi_m(0,y)\,.$$

Observando que cada intervalo possui σ_{t_i} e σ_{s_i} respectivamente, a equação nodal unidimensional na variável y para o problema heterogêneo assume a forma

$$\sum_{i=1}^{I-1} \left[\frac{d\Psi_{my}^{(i)}}{dy}(y) + \frac{\sigma_{t_i}}{\eta_m} \Psi_{my}^{(i)}(y) - \frac{\sigma_{s_i}}{4\eta_m} \sum_{n=1}^M w_n \Psi_{ny}^{(i)}(y) \right] = \sum_{i=1}^{I-1} S_{my}^{(i)}(y) , \qquad (3.8)$$

onde definimos

$$S_{my}^{(i)}(y) = \frac{1}{a\eta_m} \left[Q_y^{(i)}(y) - \mu_m \left[\Psi_m(x_{i+1}, y) - \Psi_m(x_i, y) \right] \right] .$$
(3.9)

Analogamente, para obter a equação unidimensional na variável x, observamos a propriedade da aditividade da integração definida ao integramos a Eq. (3.1) com respeito a y entre os limites 0 e b da seguinte forma:

$$\Psi_{mx}(x) = \frac{1}{b} \int_0^b \Psi_m(x, y) dy = \frac{1}{b} \sum_{j=1}^{J-1} \int_{y_j}^{y_{j+1}} \Psi_m(x, y) dy = \frac{1}{b} \sum_{j=1}^{J-1} (y_{j+1} - y_j) \Psi_{mx}^{(j)}(x) , \quad (3.10)$$

onde

$$\Psi_{mx}^{(j)}(x) = \frac{1}{(y_{j+1} - y_j)} \int_{y_j}^{y_{j+1}} \Psi_m(x, y) dx$$
(3.11)

é o fluxo angular médio no lado vertical da região de espessura $(y_{j+1} - y_j)$,

$$\int_{0}^{b} Q(x,y)dy = \sum_{j=1}^{J-1} \int_{y_j}^{y_{j+1}} Q(x,y)dy = \sum_{j=1}^{J-1} (y_{j+1} - y_j)Q_x^j(x), \qquad (3.12)$$

$$\int_{0}^{b} \frac{\partial \Psi_{m}}{\partial y}(x,y) dy = \sum_{i=1}^{J-1} \int_{y_{j}}^{y_{j+1}} \frac{\partial \Psi_{m}}{\partial x}(x,y) dx = \sum_{j=1}^{J-1} \left[\Psi_{m}(x,y_{j+1}) - \Psi_{m}(x,y_{j}) \right]$$
(3.13)

$$=\Psi_m(x,b)-\Psi_m(x,0).$$

Assim, a equação nodal unidimensional na variável \boldsymbol{y} para o problema heterogêneo toma a forma:

$$\sum_{j=1}^{J-1} \left[\frac{d\Psi_{mx}^{(j)}}{dx}(x) + \frac{\sigma_{t_j}}{\eta_m} \Psi_{mx}^{(j)}(x) - \frac{\sigma_{s_j}}{4\eta_m} \sum_{n=1}^M w_n \Psi_{nx}^{(j)}(x) \right] = \sum_{j=1}^{J-1} S_{mx}^{(j)}(x) , \qquad (3.14)$$

onde definimos

$$S_{mx}^{(j)}(x) = \frac{1}{b\mu_m} \left[Q_x^{(j)}(x) - \eta_m \left[\Psi_m(x, y_{j+1}) - \Psi_m(x, y_j) \right] \right] .$$
(3.15)

3.2 Método $LTS_N 2D - DiagExp$ para Domínios Heterogêneos

Aplicamos a Transformada de Laplace com respeito a y em ambos os lados da Eq.(3.8) e denotando $\pounds \{Q_y(y)\} = \overline{Q}_y(s)$ e $\pounds \{\Psi_{my}(y)\} = \overline{\Psi}_{my}(s)$, obtendo

$$\pounds \left\{ \sum_{i=1}^{I-1} \left[\frac{d\Psi_{my}^{(i)}}{dy}(y) + \frac{\sigma_{t_i}}{\eta_m} \Psi_{my}^{(i)}(y) - \frac{\sigma_{s_i}}{4\eta_m} \sum_{n=1}^M w_n \Psi_{ny}^{(i)}(y) \right] \right\} = \pounds \left\{ \sum_{i=1}^{I-1} S_{my}^{(i)}(y) \right\}, \quad (3.16)$$

e, aplicamos a propriedade da linearidade para a transformada de Laplace

$$\sum_{i=1}^{I-1} \pounds \left[\frac{d\Psi_{my}^{(i)}}{dy}(y) + \frac{\sigma_{t_i}}{\eta_m} \Psi_{my}^{(i)}(y) - \frac{\sigma_{s_i}}{4\eta_m} \sum_{n=1}^M w_n \Psi_{ny}^{(i)}(y) \right] = \sum_{i=1}^{I-1} \pounds \left\{ S_{my}^{(i)}(y) \right\} .$$
(3.17)

Para simplificar a notação, a partir deste ponto desenvolvemos nossa descrição no interior de uma sub-região homogênea arbitrária \Re_k , considerando o resultado (3.17), e observando que

$$\pounds\left\{\frac{d\Psi_{my}^{(i)}}{dy}(y)\right\} = s\overline{\Psi}_{my}^{(i)}(s) - \Psi_{my}^{(i)}(0),$$

para i = 1: I, m = 1: M, obtemos I sistemas lineares, cada um com M equações da forma

$$s\overline{\Psi}_{my}^{(i)}(s_i) + \frac{\sigma_{t_i}}{\eta_m}\overline{\Psi}_{my}^{(i)}(s) - \frac{\sigma_{s_i}}{4\eta_m}\sum_{n=1}^M w_n\overline{\Psi}_{ny}^{(i)}(s) = \Psi_{my}^{(i)}(0) + \overline{S}_{my}^{(i)}(s), \qquad (3.18)$$

representado matricialmente por

$$(sI - A_y^{(i)})\overline{\Psi}_y^{(i)}(s) = \Psi_y(0) + \overline{S}_y^{(i)}(s), \qquad (3.19)$$

onde, para as linhas l = 1 : M e as colunas c = 1 : M, os elementos da matriz $A_y^{(i)}$, de ordem $M \times M$, têm a forma

$$a_{y}^{(i)}(l,c) = \begin{cases} -\frac{4\sigma_{t_{i}} - \sigma_{s_{i}}w_{l}}{4\eta_{l}} & se \quad l = c , \\ \\ \\ \frac{\sigma_{s_{i}}w_{c}}{4\eta_{l}} & se \quad l \neq c , \end{cases}$$
(3.20)

onde

$$\overline{\Psi}_{y}(s) = \left[\overline{\Psi}_{1y}(s) \ \overline{\Psi}_{2y}(s) \cdots \overline{\Psi}_{My}(s) \right]^{T} , \qquad (3.21)$$

$$\Psi_{y}(0) = \left[\Psi_{1y}(0) \ \Psi_{2y}(0) \cdots \Psi_{My}(0) \right]^{T} , \qquad (3.22)$$

e o vetor $\overline{S}_{y}^{(i)}(s)$ tem componentes genéricas definidas por

$$\overline{S}_{yl}^{(i)}(s) = \frac{1}{a\eta_l} \left[\overline{Q}_y^{(i)}(s) - \mu_l \left[\overline{\Psi_m}(x_{i+1}, s) - \overline{\Psi_m}(x_i, s) \right] \right].$$
(3.23)

Similarmente, aplicando a Transformada de Laplace com respeito a x em ambos os lados da Eq.(3.14), denotando $\pounds \{Q_x(x)\} = \overline{Q}_x(s)$ e $\pounds \{\Psi_{mx}(x)\} = \overline{\Psi}_{mx}(s)$ e fazendo uso da linearidade obtemos

$$\sum_{j=1}^{J-1} \pounds \left[\frac{d\Psi_{mx}^{(j)}}{dx}(x) + \frac{\sigma_{t_j}}{\eta_m} \Psi_{mx}^{(j)}(x) - \frac{\sigma_{s_j}}{4\eta_m} \sum_{n=1}^M w_n \Psi_{nx}^{(j)}(x) \right] = \sum_{j=1}^{J-1} \pounds \left\{ S_{mx}^{(j)}(x) \right\} .$$
(3.24)

Considerando que

$$\pounds\left\{\frac{d\Psi_{mx}^{(j)}}{dx}(x)\right\} = s\overline{\Psi}_{mx}^{(j)}(s) - \Psi_{mx}^{(j)}(0)$$

e desenvolvendo nossa descrição no interior de uma sub-região homogêne
a arbitrária \Re_k , para j = 1 : I, m = 1 : M, obtemos J sistemas lineares , cada um com M equações da forma

$$s\overline{\Psi}_{mx}^{(j)}(s_j) + \frac{\sigma_{t_j}}{\mu_m}\overline{\Psi}_{mx}^{(j)}(s) - \frac{\sigma_{s_j}}{4\mu_m}\sum_{n=1}^M w_n\overline{\Psi}_{nx}^{(j)}(s) = \Psi_{mx}^{(j)}(0) + \overline{S}_{mx}^{(j)}(s) , \qquad (3.25)$$

representado matricialmente por

$$(sI - A_x^{(j)})\overline{\Psi}_x^{(j)}(s) = \Psi_x(0) + \overline{S}_x^{(j)}(s), \qquad (3.26)$$

onde, para as linhas l = 1: M e colunas c = 1: M, os elementos da matriz $A_x^{(j)}$, de ordem $M \times M$, assumem a forma

$$a_{x}^{(j)}(l,c) = \begin{cases} -\frac{4\sigma_{t_{j}} - \sigma_{s_{j}}w_{l}}{4\mu_{l}} & se \quad l = c ; \\ \\ \\ \frac{\sigma_{s_{j}}w_{c}}{4\mu_{l}} & se \quad l \neq c . \end{cases}$$
(3.27)

onde

$$\overline{\Psi}_x(s) = \left[\overline{\Psi}_{1x}(s) \ \overline{\Psi}_{2x}(s) \cdots \overline{\Psi}_{Mx}(s) \right]^T , \qquad (3.28)$$

$$\Psi_x(0) = \left[\Psi_{1x}(0) \ \Psi_{2x}(0) \cdots \Psi_{Mx}(0) \right]^T , \qquad (3.29)$$

e o vetor $\overline{S}_x^{(j)}(s)$ tem componentes genéricas dadas por

$$\overline{S}_{xl}^{(j)}(s) = \frac{1}{b\mu_l} \left[\overline{Q}_x^{(j)}(s) - \eta_l \left[\overline{\Psi_m}(s, y_{j+1}) - \overline{\Psi_m}(x, y_j) \right] \right].$$
(3.30)

As soluções dos sistemas (3.19) e (3.26) são dadas, respectivamente, por

$$\overline{\Psi}_{y}^{(i)}(s) = (sI - A_{y}^{(i)})^{-1} [\Psi_{y}(0) + \overline{S}_{y}^{(i)}(s)] , \qquad (3.31)$$

е

$$\overline{\Psi}_x^{(j)}(s) = (sI - A_x^{(j)})^{-1} [\Psi_x(0) + \overline{S}_x^{(j)}(s)] .$$
(3.32)

Para determinarmos os fluxos angulares médios em cada região \Re_k , aplicamos a transformada inversa de Laplace em (3.31) e (3.32) e o resultado é

$$\Psi_{y}^{(i)}(y) = \mathcal{L}^{-1}\{(sI - A_{y}^{(i)})^{-1}[\Psi_{y}(0) + \overline{S}_{y}^{(i)}(s)]\}, \qquad (3.33)$$

е

$$\Psi_x^{(j)}(x) = \mathcal{L}^{-1}\{(sI - A_x^{(j)})^{-1}[\Psi_x(0) + \overline{S}_x^{(j)}(s)]\}.$$
(3.34)

Para determinarmos $\mathcal{L}^{-1}\{(sI - A_y^{(i)})^{-1}\}$ e $\mathcal{L}^{-1}\{(sI - A_x^{(j)})^{-1}\}$ utilizamos o fato de que cada matriz $A_y^{(i)}$ e $A_x^{(j)}$ é diagonalizável, sendo necessário utilizar neste ponto a análise espectral desenvolvida para o problema bidimensional e descrita em [Hauser et al., 2002a]. As matrizes $A_y^{(i)} \in A_x^{(j)}$ possuem M autovalores reais, dos quais N são simples e simétricos, e M - N simétricos com multiplicidade ≥ 1 . Sejam $V_{y_m}^{(i)} \in V_{x_m}^{(j)}$ autovetores associados aos autovalores $s_m^{(i)} \in r_m^{(j)}$ de $A_y^{(i)} \in A_x^{(j)}$ respectivamente. $V_{y_m}^{(i)} \in V_{x_m}^{(j)}$ constituem as colunas das matrizes de autovetores $\mathbf{V}_y^{(i)} \in \mathbf{V}_x^{(j)}$. Como os autovetores são linearmente independentes, as matrizes $A_y^{(i)} \in A_x^{(j)}$ são diagonalizáveis, conforme descrito em [Hauser et al., 2002a], isto é

$$A_y^{(i)} = \mathbf{V}_y^{(i)} \mathbf{D}_y^{(i)} (\mathbf{V}_y^{(i)})^{-1}, \qquad (3.35)$$

е

$$A_x^{(j)} = \mathbf{V}_x^{(j)} \mathbf{D}_x^{(j)} (\mathbf{V}_x^{(j)})^{-1} , \qquad (3.36)$$

onde $\mathbf{D}_{y}^{(i)} \in \mathbf{D}_{x}^{(j)}$ são matrizes diagonais dos autovalores, e $\mathbf{V}_{y}^{(i)} \in \mathbf{V}_{x}^{(j)}$ as matrizes de autovetores correspondentes a $A_{y}^{(i)} \in A_{x}^{(j)}$ respectivamente.

Em continuidade, obtemos então,

$$\pounds^{-1}\{(sI - A_y^{(i)})^{-1}\} = \mathbf{V}_y^{(i)}\pounds^{-1}\{(sI - \mathbf{D}_y^{(i)})^{-1}\}(\mathbf{V}_y^{(i)})^{-1} = \mathbf{V}_y^{(i)}e^{\mathbf{D}_y^{(i)}y}(\mathbf{V}_y^{(i)})^{-1}$$
(3.37)

е

$$\pounds^{-1}\{(sI - A_x^{(j)})^{-1}\} = (\mathbf{V}_x^{(j)})\pounds^{-1}\{(sI - \mathbf{D}_x^{(j)})^{-1}\}(\mathbf{V}_x^{(j)})^{-1} = \mathbf{V}_x^{(j)}e^{\mathbf{D}_x^{(j)}x}(\mathbf{V}_x^{(j)})^{-1}.$$
 (3.38)

Substituindo os resultados (3.37) e (3.38) em (3.33) e (3.34), representando a operação convolução por *, em cada região \Re_k , obtemos

$$\Psi_{y}^{(i)}(y) = [\mathbf{V}_{y}^{(i)}e^{\mathbf{D}_{y}^{(i)}y}(\mathbf{V}_{y}^{(i)})^{-1}]\Psi_{y}(0) + [\mathbf{V}_{y}^{(i)}e^{\mathbf{D}_{y}^{(i)}y}(\mathbf{V}_{y}^{(i)})^{-1}] * S_{y}^{(i)}(y)$$
(3.39)

е

$$\Psi_x^{(j)}(x) = \left[\mathbf{V}_x^{(j)} e^{\mathbf{D}_x^{(j)} x} (\mathbf{V}_x^{(j)})^{-1}\right] \Psi_x(0) + \left[\mathbf{V}_x^{(j)} e^{\mathbf{D}_x^{(j)} x} (\mathbf{V}_x^{(j)})^{-1}\right] * S_x^{(j)}(x) .$$
(3.40)

As soluções gerais Eq.(3.39) e Eq.(3.40) contêm incógintas presentes nos vetores $\Psi_y(0), S_y^{(i)}(y), \Psi_x(0) \in S_x^{(j)}(x)$. Citamos o exemplo dos fluxos angulares na fronteira que são conhecidos somente na metade das direções discretas, isto é, nas direções incidentes.

Para cada região \Re_k , o espaço-solução dos problemas (3.8) e (3.14) é constituído por M autovetores $\mathbf{V}_y^{(i)} \in \mathbf{V}_x^{(j)}$, linearmente independentes, multiplicados por exponenciais, cujos expoentes são os autovalores $s_m^{(i)} \in r_m^{(j)}$ de $A_y^{(i)} \in A_x^{(j)}$ respectivamente. Ademais, MI + MJ =M(I + J) incógnitas surgem ao expressarmos os fluxos angulares médios como

$$\Psi_x^{(j)}(x) = \sum_{m=1}^M A_i V_{x_m}^{(j)} e^{r_m^{(j)} x} = \mathbf{V}_{\mathbf{x}}^{(j)} e^{\mathbf{D}_{\mathbf{x}}^{(j)} x} \mathbf{A},$$
(3.41)

onde $\mathbf{A} = [A_1, A_2, \cdots, A_M]^T$, e

$$\Psi_{y}^{(i)}(y) = \sum_{m=1}^{M} B_{i} V_{y_{m}}^{(i)} e^{s_{m}^{(i)}y} = \mathbf{V}_{y}^{(i)} e^{\mathbf{D}_{y}^{(i)}y} \mathbf{B}, \qquad (3.42)$$

onde $\mathbf{B} = [B_1, B_2, \cdots, B_M]^T$.

Conforme descrito em [Hauser et al., 2002a] e fundamentados na física de problemas de penetração profunda, onde o fluxo de nêutrons decresce à medida que se distancia da fonte, expressamos os fluxos angulares transversos por exponenciais onde a constante de decaimento λ é um parâmetro a ser determinado a priori. No trabalho pioneiro de Barros e Larsen [Barros e Larsen, 1991] para domínios homogêneos, λ foi identificada como sendo a seção de choque macroscópica de absorção, isto é, $\lambda = \sigma_a = \sigma_t - \sigma_s$.

Usamos a função sinal nas expressões $sign(\mu_m)$ e $sign(\eta_m)$ com o objetivo de garantir que os fluxos angulares aproximados apresentem decaimento exponencial para qualquer direção discreta. Para auxiliar na representação do fluxo na fronteira e interfaces restrita em cada região, fazemos uso da função de Heaviside, H. Expressamos os fluxos angulares na fronteira na *m*-ésima direção presentes nas soluções gerais, equações (3.9) e (3.15), para $i = 1: I, j = 1: J \in m = 1: M$, como

$$\Psi_m(x_1, y) = \mathbf{C1_m} \ e^{-sign(\eta_m)\lambda_i y} \left[H(y - y_i) - H(y - y_{i+1}) \right], \tag{3.43}$$

$$\Psi_m(x_I, y) = \mathbf{CI_m} \ e^{-sign(\eta_m)\lambda_i y} \left[H(y - y_i) - H(y - y_{i+1}) \right], \tag{3.44}$$

$$\Psi_m(x, y_1) = \mathbf{D1}_{\mathbf{m}} \ e^{-sign(\mu_m)\lambda_i x} \left[H(x - x_i) - H(x - x_{i+1}) \right], \qquad (3.45)$$

$$\Psi_m(x, y_J) = \mathbf{DJ_m} \ e^{-sign(\mu_m)\lambda_J x} \left[H(x - x_i) - H(x - x_{i+1}) \right] .$$
(3.46)

gerando 2MI + 2MJ = 2M(I + J) incógnitas a serem determinadas.

Consideramos importante ressaltar que num domínio heterogêneo precisamos observar as condições de continuidade do fluxo angular nas interfaces de cada região \Re_k . O fluxo angular incide na região \Re_{k+1} , quando proveniente da região \Re_k , com as características do meio \Re_k , se estas regiões são adjacentes. Então, MI + MJ = M(I + J) novas incógnitas surgem ao expressarmos o fluxo angular transverso nas fronteiras, isto é

$$\Psi_{m}(x_{i+1}, y) = \mathbf{E}\mathbf{k}_{m} \ e^{-sign(\eta_{m})\lambda_{i}y} \left[H(x - x_{i}) - H(x - x_{i+1})\right], m = 1 : \frac{M}{2}$$

$$e \qquad (3.47)$$

$$\Psi_{m}(x_{i+1}, y) = \mathbf{E}\mathbf{k}_{m} \ e^{-sign(\eta_{m})\lambda_{i+1}y} \left[H(x - x_{i}) - H(x - x_{i+1})\right], m = \frac{M}{2} + 1 : M.$$

$$\Psi_m(x, y_{j+1}) = \mathbf{Fk_m} \, e^{-sign(\mu_m)\lambda_j x} \left[H(y - y_j) - H(y - y_{j+1}) \right], m = 1 \, : \, \frac{M}{2}$$

$$e \qquad (3.48)$$

$$\Psi_m(x, y_{j+1}) = \mathbf{Fk_m} \, e^{-sign(\mu_m)\lambda_{j+1}x} \left[H(y - y_j) - H(y - y_{j+1}) \right], m = \frac{M}{2} + 1 : M.$$

Assim, podemos determinar a solução específica do problema, resolvendo um sistema linear compatível de $4M \times (I+J)$ equações lineares acopladas a partir da definição dos fluxos angulares médios em $x_I = a$, $y_J = b$, da aplicação das condições de contorno e da exigência de continuidade do fluxo angular nas interfaces de cada região.

Concluindo, a solução analítica dos problemas "unidimensionais" dados nas equações (3.8) e (3.14), em forma matricial, é dada por

$$\Psi_{y}(y) = \sum_{k=1}^{I-1} \left[\left[\mathbf{V}_{y}^{(i)} e^{\mathbf{D}_{y}^{(i)} y} (\mathbf{V}_{y}^{(i)})^{-1} \right] \Psi_{y}(0) + \left[\mathbf{V}_{y}^{(i)} e^{\mathbf{D}_{y}^{(i)} y} (\mathbf{V}_{y}^{(i)})^{-1} \right] * S_{y}^{(i)}(y) \right]$$
(3.49)

е

$$\Psi_x(x) = \sum_{k=1}^{J-1} \left[\left[\mathbf{V}_x^{(j)} e^{\mathbf{D}_x^{(j)} x} (\mathbf{V}_x^{(j)})^{-1} \right] \Psi_x(0) + \left[\mathbf{V}_x^{(j)} e^{\mathbf{D}_x^{(j)} x} (\mathbf{V}_x^{(j)})^{-1} \right] * S_x^{(j)}(x) \right].$$
(3.50)

Antes de passarmos aos resultados numéricos, observamos que a extensão do método

 $LTS_N 2D - DiagExp$ aplicável a problemas monoenergéticos de penetração profunda em geometria X, Y e em domínios homogêneos, conforme descrito em [Hauser et al., 2002a], para se resolverem problemas em domínios heterogêneos é conceitualmente simples na medida em que cada região retangular \Re_k do domínio, com parâmetros materiais constantes, será considerada como sub-domínio homogêneo do problema e condições de continuidade serão implementadas para obtermos a solução do problema proposto em domínio heterogêneo .

3.3 Resultados Numéricos para Problemas Bidimensionais em Domínios Heterogêneos

Apresentamos resultados numéricos gerados pelo método proposto aplicado a um problema modelo típico de transporte de nêutrons. O algoritmo $LTS_N2D - DiagExp$ foi utilizado para resolver o problema de transporte de nêutrons bidimensional para domínios heterogêneos com espalhamento isotrópico e foi implementado no sistema de computação algébrica e simbólica *Maple*, [Hauser et al., 2002a], e executado num Microcomputador Pentium 4 com processador Intel 2.4GHz e 512 MB de memória.

3.3.1 Problema Modelo Bidimensional Heterogêneo

Aplicamos o algoritmo $LTS_N2D - DiagExp$ para resolver o clássico problema ilustrado na figura 3.4, primeiramente proposto por [Azmy, 1988a] para ordem de quadratura $N = 4 (S_4)$ e também, utilizado como referência por [Brown et al., 2001] e [Mello e Barros, 2002].

Figura 3.4 – Geometria do Problema Modelo Heterogêneo Bidimensional

Trata-se de um problema bidimensional heterogêneo, cujo domínio é uma placa composta por quatro regiões caracterizadas pelos parâmetros nucleares especificados na tabela 3.1.

Nas fronteiras x = 0 e y = 0 as condições de contorno são reflexivas e nas fronteiras x = 10cm e y = 10cm as condições de contorno são do tipo vácuo.

Região	$Fonte(n.cm^{-3}s^{-1})$	$\sigma_t(cm^{-1})$	$\sigma_s(cm^{-1})$
Ι	1	1	0.5
II	0	2	0.1
III	0	2	0.1
IV	0	2	0.1

Tabela 3.1 – Dados do Problema Modelo Bidimensional Heterogêneo

O objetivo desse problema é determinar o fluxo escalar médio nos quadrantes I, II e IV. O fluxo na região III é equivalente ao da região II, por simetria. É um problema de dimensões espaciais pequenas, com a fonte ocupando um quarto do domínio. Problemas heterogêneos similares a este surgem em aplicações de cálculos de blindagem.

Resolvemos o problema utilizando a formulação $LTS_N2D - DiagExp$ para ordem de quadratura N = 4, N = 6 e N = 8. A constante de decaimento exponencial escolhida foi a seção de choque macroscópica de absorção $\lambda_k = \sigma_{ak} = \sigma_{tk} - \sigma_{sk}$ que caracteriza a região \Re_k .

As condições de interface foram tratadas por regiões. Para x = 5, na fronteira entre a região $I \in II$, consideramos:

$$\begin{split} \Psi_m(5,y) &= \mathbf{Gk_m} \ e^{-sign(\eta_m)\sigma_{a1}y} \left[H(y) - H(y-5) \right], m = 1 \ : \ \frac{M}{4} \quad e \quad m = \frac{3M}{4} + 1 \ : \ M \\ e \\ \Psi_m(5,y) &= \mathbf{Gk_m} \ e^{-sign(\eta_m)\sigma_{a2}y} \left[H(y) - H(y-5) \right], m = \frac{M}{4} + 1 \ : \ \frac{3M}{4} \ . \end{split}$$

Para x = 5, na fronteira entre a região III e IV, consideramos

(3.51)

$$\Psi_m(5,y) = \mathbf{Lk_m} \ e^{-sign(\eta_m)\sigma_{a3}y} \left[H(y-5) - H(y-10) \right], m = 1 \ : \ \frac{M}{4} \ e \ m = \frac{3M}{4} + 1 \ : \ M$$

$$e$$

$$\Psi_m(5,y) = \mathbf{L}\mathbf{k}_{\mathbf{m}} \ e^{-sign(\eta_m)\sigma_{a4}y} \left[H(y-5) - H(y-10) \right], \\ m = \frac{M}{4} + 1 \ : \ \frac{3M}{4} \ .$$
(3.52)

Para y = 5, na fronteira entre a região $I \in III$, consideramos

$$\Psi_m(x,5) = \mathbf{H}_{\mathbf{m}} e^{-sign(\mu_m)\sigma_{a1}x} \left[H(x) - H(x-5)\right], m = 1 : \frac{M}{2}$$

$$e$$

$$\Psi_m(x,5) = \mathbf{H}_{\mathbf{m}} e^{-sign(\mu_m)\sigma_{a3}x} \left[H(x) - H(x-5)\right], m = \frac{M}{2} + 1 : M.$$
(3.53)

Para y = 5, na fronteira entre a região II e IV, consideramos

$$\Psi_m(x,5) = \mathbf{K_m} \, e^{-sign(\mu_m)\sigma_{aII}x} \left[H(x-5) - H(x-10) \right], m = 1 \, : \, \frac{M}{2}$$

$$e \qquad (3.54)$$

$$\Psi_m(x,5) = \mathbf{K}_{\mathbf{m}} e^{-sign(\mu_m)\sigma_{aIV}x} \left[H(x-5) - H(x-10) \right], m = \frac{M}{2} + 1 : M.$$

Conforme podemos ver na tabela 3.2, para ordem de quadratura angular N = 4, o método $LTS_N2D - DiagExp$ gerou resultados bastante precisos para o modelo analisado, os quais foram comparados com os resultados obtidos pelos métodos LN, SGF - CN e SGF - ExpN com ($\lambda = \sigma_a$). O desvio relativo foi estimado utilizando os resultados dos métodos SGF - Exp4 e $LTS_42D - DiagExp$. Tabela 3.2 – Resultados Numéricos para o Problema Bidimensional

Heterogêneo com ordem de quadratura angular de sime-

Método	Fluxo Escalar Médio				
(grade espacial)	Região I	Região II	Região IV		
$LN^*(N=4)$					
10×10	0.1676×10^1	0.4170×10^{-1}	0.1986×10^{-2}		
20×20	0.1676×10^1	0.4161×10^{-1}	0.1990×10^{-2}		
40×40	0.1676×10^1	0.4159×10^{-1}	0.1992×10^{-2}		
$SGF - CN^*(N = 4)$					
10×10	0.1676×10^1	0.4290×10^{-1}	0.2850×10^{-2}		
20×20	0.1676×10^1	0.4165×10^{-1}	0.2019×10^{-2}		
40×40	0.1676×10^1	0.4163×10^{-1}	0.2000×10^{-2}		
$SGF - ExpN(N = 4)^*$, $\lambda = \sigma_a$					
10×10	0.1676×10^1	0.4169×10^{-1}	0.2000×10^{-2}		
20×20	0.1676×10^1	0.4161×10^{-1}	0.1995×10^{-2}		
40×40	0.1676×10^1	0.4161×10^{-1}	0.1993×10^{-2}		
$LTS_42D - DiagExp, \ \lambda = \sigma_a$	0.1673×10^1	0.4321×10^{-1}	0.1999×10^{-2}		
Desvio Relativo entre					
$SGF - Exp4(40 \times 40)$					
$e \ LTS_42D - DiagExp$	0.17%	3,7%	0.30%		

tria de nível com ${\cal N}=4$

* [Mello e Barros, 2002]

Na tabela 3.3 mostramos os resultados obtidos utilizando ordem de quadratura N = 6 e N = 8. Para tais ordens, não temos parâmetro disponível na literatura para comparação, mas, podemos observar indícios de convergência do método, pois o desvio relativo diminui com o crescimento de N. Nessa tabela, na coluna do desvio relativo, a notação $N = 4 \times N = 6$ foi utilizada para indicar que o desvio relativo foi calculado utilizando os valores obtidos do $LTS_62D - DiagExp$ e $LTS_42D - DiagExp$. Similarmente, $N = 6 \times N = 8$ indica que o desvio relativo foi calculado utilizando os valores obtidos do $LTS_82D - DiagExp$ e $LTS_62D - DiagExp$.

Tabela 3.3 – Resultados Numéricos para o Problema Bidimensional

Heterogêneo com ordens de quadratura angular N = 6

еi	Ν	=	8
----	---	---	---

Método	Fluxo Médio			
$(\lambda = \sigma_a)$	Região I	Região II	Região IV	
$LTS_6 - DiagExp$	0.1675×10^{1}	0.4185×10^{-1}	0.1993×10^{-2}	
Desvio Relativo $N = 4 \times N = 6$	0.12%	3.1%	0.30%	
$LTS_82D - DiagExp$	0.1676×10^1	0.4159×10^{-1}	0.1992×10^{-2}	
Desvio Relativo $N = 6 \times N = 8$	0.059%	0.62%	0.050%	

CAPÍTULO 4

Análise Espectral das Equações S_N Integradas Transversalmente para o caso Tridimensional

Neste capítulo analisamos o espectro das matrizes LTS_N para o caso tridimensional objetivando mostrar que elas são diagonalizáveis, o que permite encontrar uma expressão analítica mais simples para os fluxos angulares médios no nodo e fluxos angulares médios na fronteira. Essa análise espectral fundamenta-se em [Case e Zweifel, 1967], [Barros e Larsen, 1990] e [Hauser et al., 2002a].

Consideremos as equações monoenergéticas de ordenadas discretas S_N para meios não-multiplicativos, em geometria cartesiana tridimensional, com espalhamento isotrópico para um domínio homogêneo,

$$\mu_m \frac{\partial \Psi_m}{\partial x}(x, y, z) + \eta_m \frac{\partial \Psi_m}{\partial y}(x, y, z) + \xi_m \frac{\partial \Psi_m}{\partial z}(x, y, z) + \sigma_t(x, y, z) \Psi_m(x, y, z) =$$

$$= \frac{\sigma_s(x, y, z)}{8} \sum_{n=1}^M w_n \Psi_n(x, y, z) + Q(x, y, z) .$$
(4.1)

Na Eq.(4.1), definimos

 $(x,y,z) \in [\,0\,,\,a\,] \times [\,0\,,\,b\,] \times [\,0\,,\,c\,]\,$ são as variáveis espaciais no domínio;

m=1:M (números inteiros de 1 até M, inclusive), M=N(N+2) onde N é a ordem da

quadratura angular; por exemplo, em S_N , N = 4 e M = 24;

M = cardinalidade do conjunto de ordenadas discretas (número de direções discretas); $\sigma_t(x, y, z) =$ seção de choque macroscópica total ; $\sigma_s(x, y, z) =$ seção de choque macroscópica para espalhamento isotrópico; Q(x, y, z) = fonte isotrópica de nêutrons no ponto (x, y, z) do domínio; $\Psi_m(x, y, z) =$ fluxo angular de nêutrons na direção discreta $\Omega_m = (\mu_m, \eta_m, \xi_m)$; $w_m =$ peso na quadratura angular usada.

Figura 4.1 – Conjunto de Direções Discretas Ω_m para ordem de quadratura N = 4 e N = 6 em problemas tridimensionais

As condições de contorno abrangem fluxo de nêutrons incidente prescrito ou condições de reflexão especular. Neste trabalho utilizamos o conjunto de quadratura angular de simetria de nível, descrito por [Lewis e W. F. Miller, 1993] e que ilustramos na figura 4.1 para as quadraturas de ordem N = 4 e N = 6.

Para simplificar a descrição, primeiramente integramos a Eq.(4.1) em relação a y entre os limites 0 e b, a z entre os limites 0 e c, dividindo o resultado pelo produto bc. Procedendo assim, obtemos a equação nodal *unidimensional* na variável x

$$\frac{d\Psi_{mx}}{dx}(x) + \frac{\sigma_t}{\mu_m}\Psi_{mx}(x) - \frac{\sigma_s}{8\mu_m}\sum_{n=1}^M w_n\Psi_{nx}(x) = S_{mx}(x).$$
(4.2)

onde, m = 1 : M,

$$\Psi_{mx}(x) = \frac{1}{bc} \int_0^c \int_0^b \Psi_m(x, y, z) dy dz$$
(4.3)

é o fluxo angular médio na face yzdo paralelepípedo na direção discreta $\Omega_m=(\mu_m,\eta_m,\xi_m)$ e

$$S_{mx}(x) = \frac{1}{bc\mu_m} \left[Q_x(x) - \eta_m \int_0^c \left[\Psi_m(x, b, z) - \Psi_m(x, 0, z) \right] dz \right] -$$

$$-\frac{1}{bc\mu_m} \left[\xi_m \int_0^b \left[\Psi_m(x, y, c) - \Psi_m(x, y, 0) \right] dy \right]$$
(4.4)

depende dos fluxos angulares incidentes e emergentes dos contornos e da fonte:

$$Q_x(x) = \int_0^c \int_0^b Q(x, y, z) dy dz \,.$$
(4.5)

Observamos que

$$\Psi_m(x,b,z) - \Psi_m(x,0,z) = \int_0^b \frac{\partial \Psi_m}{\partial y}(x,y,z)dy$$
(4.6)

47

$$\Psi_m(x,y,c) - \Psi_m(x,y,0) = \int_0^c \frac{\partial \Psi_m}{\partial z}(x,y,z)dz.$$
(4.7)

Analogamente, integrando a Eq.(4.1) em relação a x entre os limites 0 e a e a z entre os limites 0 e c, e dividindo o resultado pelo produto ac, resulta a equação nodal *unidimensional* na variável y

$$\frac{d\Psi_{my}}{dy}(y) + \frac{\sigma_t}{\eta_m} \Psi_{my}(y) - \frac{\sigma_s}{8\eta_m} \sum_{n=1}^M w_n \Psi_{ny}(y) = S_{my}(y) , \qquad (4.8)$$

ondem=1:M , e definimos

$$\Psi_{my}(y) = \frac{1}{ac} \int_0^c \int_0^a \Psi_m(x, y, z) dx dz$$
(4.9)

como o fluxo angular médio na face xzdo paralelepípedo na direção discreta $\Omega_m = (\mu_m,\eta_m,\xi_m)$ e

$$S_{my}(y) = \frac{1}{ac\eta_m} \left[Q_y(y) - \mu_m \int_0^c \left[\Psi_m(a, y, z) - \Psi_m(0, y, z) \right] dz \right] - \frac{1}{ac\eta_m} \left[\xi_m \int_0^a \left[\Psi_m(x, y, c) - \Psi_m(x, y, 0) \right] dx \right]$$
(4.10)

depende dos fluxos angulares incidentes e emergentes dos contornos e da fonte:

$$Q_y(y) = \int_0^a \int_0^c Q(x, y, z) dx dz \,. \tag{4.11}$$

Por fim, integrando Eq.(4.1) em relação a x entre os limites 0 e a e a y entre os limites 0 e b, e dividindo o resultado pelo produto ab, resulta a equação nodal *unidimensional* na

е

variável \boldsymbol{z}

$$\frac{d\Psi_{mz}}{dz}(z) + \frac{\sigma_t}{\xi_m} \Psi_{mz}(z) - \frac{\sigma_s}{8\xi_m} \sum_{n=1}^M w_n \Psi_{nz}(z) = S_{mz}(z).$$
(4.12)

ondem=1:M , e definimos

$$\Psi_{mz}(z) = \frac{1}{ab} \int_0^a \int_0^b \Psi_m(x, y, z) dx dy$$
(4.13)

como o fluxo angular médio na face xy do paralelepípedo na direção discreta $\Omega_m =$ (μ_m, η_m, ξ_m) e

$$S_{mz}(z) = \frac{1}{ab\xi_m} \left[Q_z(z) - \mu_m \int_0^b \left[\Psi_m(a, y, z) - \Psi_m(0, y, z) \right] dy \right] - \frac{1}{ab\xi_m} \left[\eta_m \int_0^a \left[\Psi_m(x, b, z) - \Psi_m(x, 0, z) \right] dx \right]$$
(4.14)

depende dos fluxos angulares incidentes e emergentes dos contornos e da fonte

$$Q_z(z) = \int_0^a \int_0^b Q(x, y, z) dx dy.$$
(4.15)

Para descrevermos a análise espectral, tomemos a equação homogênea associada às equações nodais S_N na variável z, conforme Eq.(4.12)

$$\xi_m \frac{d\Psi_{mz}}{dz}(z) + \sigma_t \Psi_{mz}(z) = \frac{\sigma_s}{8} \sum_{n=1}^M w_n \Psi_{nz}(z)$$
(4.16)

 $\operatorname{com} m = 1 : M.$

Supomos que para cada m exista uma solução elementar da forma

$$\Psi_{mz}(z) = \alpha_m(t)e^{tz}, \qquad (4.17)$$

a qual substituímos na Eq. (4.16). O resultado é

$$\alpha_m(t)\xi_m t e^{tz} + \alpha_m(t)\sigma_t e^{tz} = \frac{\sigma_s}{8} \sum_{n=1}^M \alpha_n(t) e^{t,z} w_n , \qquad (4.18)$$

ou, equivalentemente

$$\alpha_m(t)(t\,\xi_m + \sigma_t) = \frac{\sigma_s}{8} \sum_{n=1}^M \alpha_n(t) w_n \,. \tag{4.19}$$

Aqui consideramos que $\sum_{n=1}^{M} \alpha_n(t) w_n$ pode ser qualquer valor real. Assumimos inicialmente que $\sum_{n=1}^{M} \alpha_n(t) w_n \neq 0$, como a normalização é arbitrária, por simplicidade, fazemos

$$\sum_{n=1}^{M} \alpha_n(t) w_n = 1, \qquad (4.20)$$

e a Eq. (4.19) toma a forma

$$\alpha_m(t)(t\,\xi_m + \sigma_t) = \frac{\sigma_s}{8}\,,\tag{4.21}$$

logo

$$\alpha_m(t) = \frac{\sigma_s}{8(t\,\xi_m + \sigma_t)}\,,\tag{4.22}$$

para m = 1 : M.

A partir das Eqs. (4.20) e (4.22) determinamos, em analogia à análise espectral descrita em [Case e Zweifel, 1967], a equação da dispersão

$$\sum_{n=1}^{M} \frac{w_n}{t\,\xi_n + \sigma_t} = \frac{8}{\sigma_s} \,. \tag{4.23}$$

Na Eq.(4.23) as N raízes reais aparecem aos pares $\pm t_1, \pm t_2, \pm t_3, \ldots, \pm t_{\frac{N}{2}}$, e constituem N autovalores de (4.19) de um total de M necessários. Os respectivos N autovetores são determinados a partir de (4.22).

Os outros
$$M - N = \frac{N^2}{2}$$
 autovalores são obtidos considerando a segunda restrição

$$\sum_{n=1}^{M} \alpha_n(t) w_n = 0.$$
(4.24)

Substituindo essa condição no problema de autovalores dado pela Eq. (4.19), obtemos

$$\alpha_m(t)(t\,\xi_m + \sigma_t) = 0\,. \tag{4.25}$$

Assim, para m = 1 : M, se fazemos

$$t = -\frac{\sigma_t}{\xi_m},\tag{4.26}$$

então podemos escolher $\alpha_m(t) \neq 0$, de modo a satisfazer simultaneamente as equações (4.24) e (4.25). Os autovalores dados em (4.26) são de multiplicidade ≥ 1 e as componentes $\alpha_m(t)$, para m = 1 : M, correspondentes constituem um conjunto de M-N autovetores linearmente independentes.

Um esquema análogo é aplicado à equação homogênea associada às equações nodais S_N (4.2) e (4.8), nas variáveis x e y respectivamente.

Neste ponto observamos que a Eq.(4.19) caracteriza-se por um problema de autovalores que aparece como

$$\sum_{n=1}^{M} \frac{1}{\xi_m} \left(\frac{\sigma_t w_n}{8} - \sigma_t \delta_{m,n} \right) \alpha_n(t) = \alpha_n(t) \,. \tag{4.27}$$

para m = 1 : M.

Na tabela 4.1 esquematizamos as multiplicidades dos autovalores s positivos. Devido à simetria da quadratura angular de simetria de nível que utilizamos estas multiplicidades repetem-se para os autovalores t negativos.

N	$\frac{\sigma_t}{\xi_1}$	$\frac{\sigma_t}{\xi_2}$	$\frac{\sigma_t}{\xi_3}$	$\frac{\sigma_t}{\xi_4}$	$\frac{\sigma_t}{\xi_5}$	$\frac{\sigma_t}{\xi_6}$	$\frac{\sigma_t}{\xi_7}$	$\frac{\sigma_t}{\xi_8}$	Equação de	Total de
									Dispersão (4.23)	autovalores positivos
2	3	-	-	-	-	-	-	-	1	4
4	7	3	-	-	-	-	-	-	2	12
6	11	7	3	-	-	-	-	-	3	24
8	15	11	7	3	-	-	-	-	4	40
10	19	15	11	7	3	-	-	-	5	60
12	23	19	15	11	7	3	-	_	6	84
14	27	23	19	15	11	7	3	_	7	112
16	31	27	23	19	15	11	7	3	8	144

Tabela 4.1 – Multiplicidade dos Autovalores Positivos

A título de ilustração usamos os parâmetros $\sigma_t = 0, 1 \ e \ \sigma_s = 0, 05$, e na figura 4.2 plotamos a função de dispersão

$$F(t) = \sum_{n=1}^{M} \frac{w_n}{t\,\xi_m + \sigma_t} - \frac{8}{\sigma_s}\,.$$
(4.28)

cujas raízes são os N autovalores que buscamos a partir da equação de dispersão na Eq.(4.23).

Figura $4.2 - \text{Raízes simples da equação de dispersão, Eq. (4.23), para$

 ${\cal N}=2$ (à esquerda) e ${\cal N}=4$ (à direita)

Os autovalores simples estão listados na tabela 4.2.

Tabela 4.2 – Autovalores Simples apara os parâmetros $\sigma_t = 0.1$ e

 $\sigma_s=0.05$

N	autovalores obtidos a partir equação 4.23
2	± 0.1224744442
4	± 0.2361318773 , ± 0.09846255111
6	$\pm 0.09679830807, \pm 0.1329678039, \pm 0.3264271638$
8	$\pm 0.09611684939, \pm 0.1189348294, \pm 0.1603361902, \pm .4091531715$
12	$\pm 0.09583678857, \pm 0.1093766884, \pm 0.1263805351, \pm 0.1532899835,$
	$\pm 0.2041636516, \pm 0.5486583380$

A título de uma segunda ilustração, descrevemos neste ponto a análise espectral LTS_4 para transporte tridimensional na variável z e considerando o conjunto de quadratura angular com simetria de nível S_4 descrito em [Lewis e W. F. Miller, 1993]. As M = 4(4+2) = 24 direções angulares Ω_m são ordenadas conforme a Figura (4.3). Construiremos o espectro da matriz LTS_4 tridimensional, utilizando a análise espectral da equação (4.16), com os parâmetros $\sigma_t = 0.1 \ e \ \sigma_s = 0.05$.

Usando a Eq. (4.20) para o caso S_4 , obtemos

$$\sum_{n=1}^{24} \frac{w_n}{t\,\xi_n + \sigma_t} = \frac{8}{\sigma_s} \,. \tag{4.29}$$

Consideramos agora a ordenação das direções discretas, indicada na figura 4.3, para o primeiro octante.

Figura 4.3 – $\Omega_m = (\mu_m, \eta_m, \xi_m)$ no primeiro octante para N = 4.

Assim, da forma como escolhemos ordenar as direções discretas Ω_m verificamos que:

- Ω_m , $m=1,2,4,5,7,8,10\,e\,11$ possuem a mesma cota $\xi_1,$
- Ω_m , $m=13,14,16,17,19,20,22\,e\,23$ possuem a mesma cota $-\xi_1,$
- Ω_m , $m=3,6,9\,e\,12$ possuem a mesma cota $\xi_2,$
- Ω_m , $m=15,18,21\,e\,24$ possuem a mesma cota $-\xi_2.$

Logo, podemos escrever

$$\frac{8}{3(\xi_1 t + 0.1)} + \frac{4}{3(\xi_2 t + 0.1)} + \frac{8}{3(-\xi_1 t + 0.1)} + \frac{4}{3(-\xi_2 t + 0.1)} - 160 = 0.$$
(4.30)

já que, para N=4, temos $\omega_m=\frac{1}{3},\,m=1:24.$

Observamos que para este caso, as raízes simples são: ± 0.2361318773 e ± 0.09846255111 , localizadas nos pontos de intersecção do gráfico da função de dispersão com o eixo da variável t, conforme Figura (4.2).

Ademais, aplicando a Eq. (4.24), em (4.19) obtemos os vinte autovalores restantes: $\pm \frac{\sigma_t}{\xi_1}$, cada um com multiplicidade sete, e $\pm \frac{\sigma_t}{\xi_2}$, cada um com multiplicidade três, conforme Tabela(4.1). Os autovetores correspondentes, todos lineramente independentes, são determinados pelo processo descrito a seguir.

Como diferentes direções possuem mesmas cotas, conforme descrito anteriormente, podemos escolher:

•
$$\alpha_m \left(\frac{\sigma_t}{\xi_1}\right) \neq 0$$
, para $m = 1, 2, 4, 5, 7, 8, 10$ e 11 ; nas demais $\alpha_m \left(\frac{\sigma_t}{\xi_1}\right) = 0$.
• $\alpha_m \left(-\frac{\sigma_t}{\xi_1}\right) \neq 0$, para $m = 13, 14, 16, 17, 19, 20, 22 e 23$; nas demais $\alpha_m \left(-\frac{\sigma_t}{\xi_1}\right) = 0$
• $\alpha_m \left(\frac{\sigma_t}{\xi_2}\right) \neq 0$, para $m = 3, 6, 9 e 12$; nas demais $\alpha_m \left(\frac{\sigma_t}{\xi_2}\right) = 0$.
• $\alpha_m \left(-\frac{\sigma_t}{\xi_2}\right) \neq 0$, para $m = 15, 18, 21 e 24$; nas demais $\alpha_m \left(-\frac{\sigma_t}{\xi_2}\right) = 0$.

Então da Eq.(4.24) obtemos:

$$\alpha_1 \left(\frac{\sigma_t}{\xi_1}\right) + \alpha_2 \left(\frac{\sigma_t}{\xi_1}\right) + \alpha_4 \left(\frac{\sigma_t}{\xi_1}\right) + \alpha_5 \left(\frac{\sigma_t}{\xi_1}\right) + \alpha_5 \left(\frac{\sigma_t}{\xi_1}\right) + \alpha_8 \left(\frac{\sigma_t}{\xi_1}\right) + \alpha_{10} \left(\frac{\sigma_t}{\xi_1}\right) + \alpha_{11} \left(\frac{\sigma_t}{\xi_1}\right) = 0,$$
(4.31)

$$\alpha_{13}\left(\frac{-\sigma_t}{\xi_1}\right) + \alpha_{14}\left(\frac{-\sigma_t}{\xi_1}\right) + \alpha_{16}\left(\frac{-\sigma_t}{\xi_1}\right) + \alpha_{17}\left(\frac{-\sigma_t}{\xi_1}\right) + \alpha_{19}\left(\frac{-\sigma_t}{\xi_1}\right) + \alpha_{20}\left(\frac{-\sigma_t}{\xi_1}\right) + \alpha_{22}\left(\frac{-\sigma_t}{\xi_1}\right) + \alpha_{23}\left(\frac{-\sigma_t}{\xi_1}\right) = 0.$$

$$(4.32)$$

O conjunto solução da equação (4.31)(de oito incógnitas) é um subespaço vetorial de dimensão sete do espaço solução do problema de autovalores dado pela Eq.(4.19). Assim, correpondendo ao autovalor de multiplicidade sete $\frac{\sigma_t}{\xi_1}$, podemos escolher sete autovetores linearmente independentes. Assim, na Eq.(4.31) explicitamos α_1 em função dos demais α_k arbitrários, isto é, $\alpha_1 = -\alpha_2 - \alpha_4 - \alpha_5 - \alpha_7 - \alpha_8 - \alpha_{10} - \alpha_{11}$.

Também da Eq.(4.24), o espectro LTS_4 tridimensional fica completamente descrito com a determinação dos autovetores correspondentes aos autovalores de mutiplicidade três, $\pm \frac{\sigma_t}{\xi_2}$:

$$\alpha_3\left(\frac{\sigma_t}{\xi_2}\right) + \alpha_6\left(\frac{\sigma_t}{\xi_2}\right) + \alpha_9\left(\frac{\sigma_t}{\xi_2}\right) + \alpha_{12}\left(\frac{\sigma_t}{\xi_2}\right) = 0 \tag{4.33}$$

е

$$\alpha_{15}\left(\frac{-\sigma_t}{\xi_2}\right) + \alpha_{18}\left(\frac{-\sigma_t}{\xi_2}\right) + \alpha_{21}\left(\frac{-\sigma_t}{\xi_2}\right) + \alpha_{24}\left(\frac{-\sigma_t}{\xi_2}\right) = 0.$$
(4.34)

O conjunto solução de cada uma das Eqs.(4.33) e (4.34)(de quatro incógnitas cada) é um subespaço vetorial de dimensão três do espaço solução do problema de autovalores dado por (4.19). Assim, correpondendo aos autovalores de multiplicidade três $\pm \frac{\sigma_t}{\xi_2}$, podemos escolher, respectivamente, três autovetores linearmente independentes.

Neste ponto, prosseguimos para o capítulo 5, onde descrevemos um método analítico
para problemas S_N de fonte fixa em geometria cartesiana tridimensional a uma velocidade, que se fundamenta na análise espectral descrita neste capítulo.

CAPÍTULO 5

O Método $LTS_N 3D - DiagExp$ para Problemas de Fonte Fixa em Geometria Cartesiana Tridimensional

Neste capítulo, estendemos ao caso tridimensional os resultados obtidos por[Hauser, 2002] para o problema de ordenadas discretas bidimensional. Construímos um novo algoritmo para calcular os fluxos angulares médios, diagonalizando as matrizes de transporte LTS_N tridimensional e utilizando uma aproximação exponencial para os termos de fuga transversal. Esse método passa a ser denominado $LTS_N 3D - DiagExp$ e é a principal contribuição desta tese.

5.1 O Método $LTS_N 3D - DiagExp$ para Domínios Homogêneos

Consideremos a equação unidimensional na variável x obtida no capítulo 4 anterior

$$\frac{d\Psi_{mx}}{dx}(x) + \frac{\sigma_t}{\mu_m}\Psi_{mx}(x) - \frac{\sigma_s}{8\mu_m}\sum_{n=1}^M w_n\Psi_{nx}(x) = S_{mx}(x).$$
(5.1)

Aplicamos a Transformada de Laplace com respeito a x em (5.1) com a notação $\pounds \{\Psi_{mx}(x)\} = \overline{\Psi}_{mx}(s) \in \pounds \{S_{mx}(x)\} = \overline{S}_{mx}(s).$ Portanto, obtemos o sistema linear e algébrico

$$s\overline{\Psi}_{mx}(s) + \frac{\sigma_t}{\mu_m}\overline{\Psi}_{mx}(s) - \frac{1}{8\mu_m}\sum_{n=1}^M w_n\sigma_s\overline{\Psi}_{nx}(s) = \Psi_{mx}(0) + \overline{S}_{mx}(s), \qquad (5.2)$$

representado na forma matricial como

$$(sI - A_x)\overline{\Psi}_x(s) = \Psi_x(0) + \overline{S}_x(s), \qquad (5.3)$$

onde, para l = 1 : M e c = 1 : M, os elementos da matriz A_x , de ordem $M \times M$, têm a forma

$$a_x(l,c) = \begin{cases} -\frac{8\sigma_t - \sigma_s w_l}{8\mu_l} & se \quad l = c \\ \\ \\ \frac{\sigma_s w_c}{8\mu_l} & se \quad l \neq c \end{cases}$$
(5.4)

Explicitamos os vetores

$$\overline{\Psi}_x(s) = \left[\overline{\Psi}_{1x}(s) \ \overline{\Psi}_{2x}(s) \cdots \overline{\Psi}_{Mx}(s) \right]^T , \qquad (5.5)$$

$$\Psi_x(0) = \left[\Psi_{1x}(0) \ \Psi_{2x}(0) \cdots \Psi_{Mx}(0) \right]^T , \qquad (5.6)$$

e, o vetor $\overline{S}_x(s)$ possui componentes genéricos dados por

$$\overline{S}_{xm}(s) = \frac{1}{bc\mu_m} \left[\overline{Q}_{mx}(s) - \eta_m \int_0^c \left[\overline{\Psi}_m(s, b, z) - \overline{\Psi}_m(s, 0, z) \right] dz \right] +$$

$$\frac{1}{bc\mu_m} \left[\xi_m \int_0^b \left[\overline{\Psi}_m(s, y, c) - \overline{\Psi}_m(s, y, 0) \right] dy \right] ,$$
(5.7)

para m = 1 : M.

Em continuidade, na equação unidimensional na variável y que aparece como

$$\frac{d\Psi_{my}}{dy}(y) + \frac{\sigma_t}{\eta_m} \Psi_{my}(y) - \frac{\sigma_s}{8\eta_m} \sum_{n=1}^M w_n \Psi_{ny}(y) = S_{my}(y) , \qquad (5.8)$$

aplicamos a transformada de Laplace com respeito a y e denotando $\pounds \{\Psi_{my}(y)\} = \overline{\Psi}_{my}(s)$ e $\pounds \{Q_y(y)\} = \overline{Q}_y(s)$ obtemos o sistema linear e algébrico

$$s\overline{\Psi}_{my}(s) + \frac{\sigma_t}{\eta_m}\overline{\Psi}_{my}(s) - \frac{1}{8\eta_m}\sum_{n=1}^M w_n\sigma_s\overline{\Psi}_{ny}(s) = \Psi_{my}(0) + \overline{S}_{my}(s), \qquad (5.9)$$

representado matricialmente por

$$(sI - A_y)\overline{\Psi}_y(s) = \Psi_x(0) + \overline{S}_y(s), \qquad (5.10)$$

onde, para l = 1 : M e c = 1 : M, os elementos da matriz A_y , de ordem $M \times M$, assumem a forma

$$a_{y}(l,c) = \begin{cases} -\frac{8\sigma_{t} - \sigma_{s}w_{l}}{8\eta_{l}} & se \quad l = c \\ \\ \\ \\ \frac{\sigma_{s}w_{c}}{8\eta_{l}} & se \quad l \neq c . \end{cases}$$
(5.11)

Definimos os vetores

$$\overline{\Psi}_{y}(s) = \left[\overline{\Psi}_{1y}(s) \ \overline{\Psi}_{2y}(s) \cdots \overline{\Psi}_{My}(s) \right]^{T} , \qquad (5.12)$$

$$\Psi_y(0) = \left[\Psi_{1y}(0) \ \Psi_{2y}(0) \cdots \Psi_{My}(0) \right]^T , \qquad (5.13)$$

e, o vetor $\overline{S}_y(s)$ possui componentes genéricos dados por

$$\overline{S}_{my}(s) = \frac{1}{ac\eta_m} \left[\overline{Q}_{my}(s) - \mu_m \int_0^c \left[\overline{\Psi}_m(a, s, z) - \overline{\Psi}_m(0, s, z) \right] dz \right] + \frac{1}{ac\eta_m} \left[\xi_m \int_0^a \left[\overline{\Psi}_m(x, s, c) - \overline{\Psi}_m(x, s, 0) \right] dx \right],$$
(5.14)

para m = 1 : M.

Similarmente, na equação unidimensional na variável \boldsymbol{z}

$$\frac{d\Psi_{mz}}{dz}(z) + \frac{\sigma_t}{\xi_m} \Psi_{mz}(z) - \frac{\sigma_s}{8\xi_m} \sum_{n=1}^M w_n \Psi_{nz}(z) = S_{mz}(z), \qquad (5.15)$$

onde m = 1 : M. Aplicamos a Transformada de Laplace com respeito a z, com a notação $\pounds \{\Psi_{mz}(z)\} = \overline{\Psi}_{mz}(s) \in \pounds \{Q_z(z)\} = \overline{Q}_x(s)$, obtemos o sistema linear e algébrico

$$s\overline{\Psi}_{mz}(s) + \frac{\sigma_t}{\xi_m}\overline{\Psi}_{mz}(s) - \frac{1}{\xi_m}\sum_{n=1}^M w_n\sigma_s\overline{\Psi}_{nz}(s) = \Psi_{mz}(0) + \frac{\overline{S}_z(s)}{\xi_m} , \qquad (5.16)$$

representado matricialmente por

$$(sI - A_z)\overline{\Psi}_z(s) = \Psi_z(0) + \overline{S}_z(s), \qquad (5.17)$$

onde, para $l = 1 : M \in c = 1 : M$, os elementos da matriz A_z , de ordem $M \times M$, apresentam a forma

$$a_{z}(l,c) = \begin{cases} -\frac{8\sigma_{t} - \sigma_{s}w_{l}}{8\xi_{l}} & se \quad l = c \\ \\ \\ \frac{\sigma_{s}w_{c}}{8\xi_{l}} & se \quad l \neq c . \end{cases}$$
(5.18)

Ademais definimos os vetores

$$\overline{\Psi}_{z}(s) = \left[\overline{\Psi}_{1z}(s) \ \overline{\Psi}_{2z}(s) \cdots \overline{\Psi}_{Mz}(s) \right]^{T} , \qquad (5.19)$$

$$\Psi_{z}(0) = \left[\Psi_{1z}(0) \ \Psi_{2z}(0) \cdots \Psi_{Mx}(0) \right]^{T}$$
(5.20)

e, o vetor $\overline{S}_z(s)$ possui componentes genéricas

$$\overline{S}_{mz}(s) = \frac{1}{ab\xi_m} \left[\overline{Q}_{mz}(s) - \mu_m \int_0^b \left[\overline{\Psi}_m(a, y, s) - \overline{\Psi}_m(0, y, s) \right] dy \right] + \frac{1}{ab\xi_m} \left[\eta_m \int_0^a \left[\overline{\Psi}_m(x, b, s) - \overline{\Psi}_m(x, 0, s) \right] dx \right] ,$$
(5.21)

para m = 1 : M.

As soluções dos sistemas (5.3), (5.10) e (5.17) são dadas, respectivamente, por

$$\overline{\Psi}_x(s) = (sI - A_x)^{-1} [\Psi_x(0) + \overline{S}_x(s)] , \qquad (5.22)$$

$$\overline{\Psi}_{y}(s) = (sI - A_{y})^{-1} [\Psi_{y}(0) + \overline{S}_{y}(s)]$$
(5.23)

е

$$\overline{\Psi}_{z}(s) = (sI - A_{z})^{-1} [\Psi_{z}(0) + \overline{S}_{z}(s)] .$$
(5.24)

Para determinarmos os fluxos angulares, aplicamos a transformada inversa de Laplace em (5.22), (5.23) e (5.24). Os resultados aparecem como

$$\Psi_x(x) = \mathcal{L}^{-1}\{(sI - A_x)^{-1}[\Psi_x(0) + \overline{S}_x(s)]\}, \qquad (5.25)$$

$$\Psi_y(y) = \mathcal{L}^{-1}\{(sI - A_y)^{-1}[\Psi_y(0) + \overline{S}_y(s)]\}$$
(5.26)

 \mathbf{e}

$$\Psi_z(z) = \pounds^{-1} \{ (sI - A_z)^{-1} [\Psi_z(0) + \overline{S}_z(s)] \} .$$
(5.27)

Para determinarmos $\pounds^{-1}\{(sI - A_x)^{-1}\}$, $\pounds^{-1}\{(sI - A_y)^{-1}\}$ e $\pounds^{-1}\{(sI - A_z)^{-1}\}$ observamos que, conforme a análise espectral descrita no capítulo 4, as matrizes A_x , A_y e A_z são diagonalizáveis, isto é

$$A_x = \mathbf{V}_x \mathbf{D}_x \mathbf{V}_x^{-1} , \qquad (5.28)$$

$$A_y = \mathbf{V}_y \mathbf{D}_y \mathbf{V}_y^{-1}, \qquad (5.29)$$

е

$$A_z = \mathbf{V}_z \mathbf{D}_z \mathbf{V}_z^{-1} , \qquad (5.30)$$

onde $\mathbf{D}_{\mathbf{x}}$, $\mathbf{D}_{\mathbf{y}} \in \mathbf{D}_{\mathbf{z}}$ são matrizes diagonais dos autovalores, e $\mathbf{V}_{\mathbf{x}}$, $\mathbf{V}_{\mathbf{y}} \in \mathbf{V}_{\mathbf{z}}$ as matrizes de autovetores correspondentes a A_x , $A_y \in A_z$ respectivamente.

Portanto, escrevemos

$$\mathcal{L}^{-1}\left\{ (sI - A_x)^{-1} \right\} = \mathcal{L}^{-1}\left\{ \left(s\mathbf{V}_x \mathbf{V}_x^{-1} - \mathbf{V}_x \mathbf{D}_x \mathbf{V}_x^{-1} \right)^{-1} \right\} =$$

$$= \mathcal{L}^{-1}\left\{ \left(\mathbf{V}_x \left(sI - \mathbf{D}_x \right) \mathbf{V}_x^{-1} \right)^{-1} \right\} = \mathbf{V}_x \mathcal{L}^{-1} \left\{ (sI - \mathbf{D}_x)^{-1} \right\} \mathbf{V}_x^{-1}.$$
(5.31)

Aqui, consideramos a matriz diagonal dos autovalores $\mathbf{D}_{\mathbf{x}}$ expressa por

$$\mathbf{D_x} = \begin{bmatrix} r_1 & 0 & \cdots & 0 \\ 0 & r_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & r_M \end{bmatrix},$$
(5.32)

então

$$s\mathbf{I} - \mathbf{D}_{\mathbf{x}} = \begin{bmatrix} s - r_1 & 0 & \cdots & 0 \\ 0 & s - r_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & s - r_M \end{bmatrix},$$
(5.33)

$$(s\mathbf{I} - \mathbf{D}_{\mathbf{x}})^{-1} = \begin{bmatrix} s - r_1 & 0 & \cdots & 0 \\ 0 & s - r_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & s - r_M \end{bmatrix}^{-1}$$
(5.34)

е

$$(s\mathbf{I} - \mathbf{D}_{\mathbf{x}})^{-1} = \begin{bmatrix} \frac{1}{s - r_1} & 0 & \cdots & 0\\ 0 & \frac{1}{s - r_2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & \cdots & 0 & \frac{1}{s - r_M} \end{bmatrix}.$$
 (5.35)

Consideramos que a transformada inversa de Laplace da matriz $\left(5.34\right)$ é obtida

aplicando a transforma inversa de Laplace em cada elemento da matriz. Portanto, obtemos

$$\mathcal{L}^{-1}\left\{ (s \mathbf{I} - \mathbf{D}_{\mathbf{x}})^{-1} \right\} = \begin{bmatrix} e^{r_{1}x} & 0 & \cdots & 0 \\ 0 & e^{r_{2}x} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & e^{r_{M}x} \end{bmatrix} = e^{\mathbf{D}_{\mathbf{x}}x}.$$
(5.36)

E, substituindo o último resultado na expressão (5.31), escrevemos

$$\pounds^{-1}\left\{ (sI - A_x)^{-1} \right\} = \mathbf{V}_x e^{\mathbf{D}_x x} \mathbf{V}_x^{-1} \,. \tag{5.37}$$

De forma similiar, obtemos

$$\pounds^{-1}\{(sI - A_y)^{-1}\} = \mathbf{V}_y \pounds^{-1}\{(sI - \mathbf{D}_y)^{-1}\}\mathbf{V}_y^{-1} = \mathbf{V}_y e^{\mathbf{D}_y y} \mathbf{V}_y^{-1}$$
(5.38)

е

$$\pounds^{-1}\{(sI - A_z)^{-1}\} = \mathbf{V}_z\pounds^{-1}\{(sI - \mathbf{D}_z)^{-1}\}\mathbf{V}_z^{-1} = \mathbf{V}_ze^{\mathbf{D}_z z}\mathbf{V}_z^{-1}.$$
(5.39)

Substituindo os resultados (5.37), (5.38) e (5.39) respectivamente em (5.22), (5.23) e (5.24), representando a operação convolução por *, determinamos a forma matricial analítica para os fluxos angulares médios nas seções transversais do domínio.

$$\Psi_x(x) = [\mathbf{V}_x e^{\mathbf{D}_x x} \mathbf{V}_x^{-1}] \Psi_x(0) + [\mathbf{V}_x e^{\mathbf{D}_x x} \mathbf{V}_x^{-1}] * S_x(x), \qquad (5.40)$$

$$\Psi_{y}(y) = [\mathbf{V}_{y}e^{\mathbf{D}_{y}y}\mathbf{V}_{y}^{-1}]\Psi_{y}(0) + [\mathbf{V}_{y}e^{\mathbf{D}_{y}y}\mathbf{V}_{y}^{-1}] * S_{y}(y)$$
(5.41)

$$\Psi_z(z) = [\mathbf{V}_z e^{\mathbf{D}_z z} \mathbf{V}_z^{-1}] \Psi_z(0) + [\mathbf{V}_z e^{\mathbf{D}_z z} \mathbf{V}_z^{-1}] * S_z(z).$$
(5.42)

O espaço-solução dos problemas (5.1), (5.8) e (5.15) é constituído por 3M autovetores V_{x_l} , V_{y_l} e V_{z_l} , linearmente independentes, multiplicados por exponenciais, cujos expoentes são os autovalores r_l , s_l e t_l de A_x , A_y e A_z respectivamente. Estes autovalores são os mesmos números reais para as três direções espaciais, porém, como a ordenação das direções foi tomada de forma fixa, a ordenação dos autovalores nas matrizes diagonais são distintas, o que implica que $\mathbf{D}_{\mathbf{x}} \neq \mathbf{D}_{\mathbf{y}} \neq \mathbf{D}_{\mathbf{z}}$, ainda que possuam os mesmos elementos com multiplicidades idênticas. Em continuidade, expressamos os fluxos angulares médios:

$$\Psi_x(x) = \sum_{i=1}^M A_l V_{x_l} e^{r_l x} = \mathbf{V}_{\mathbf{x}} e^{\mathbf{D}_{\mathbf{x}} x} \mathbf{A}, \qquad (5.43)$$

onde $\mathbf{A} = [A_1, A_2, \cdots, A_M]^T$,

$$\Psi_y(y) = \sum_{l=1}^M B_l V_{y_l} e^{s_l y} = \mathbf{V}_{\mathbf{y}} e^{\mathbf{D}_{\mathbf{y}} y} \mathbf{B},$$
(5.44)

onde $\mathbf{B} = [B_1, B_2, \cdots, B_M]^T$, e

$$\Psi_z(z) = \sum_{l=1}^M C_l V_{y_l} e^{t_l y} = \mathbf{V}_z e^{\mathbf{D}_z z} \mathbf{C}, \qquad (5.45)$$

onde $\mathbf{C} = [C_1, C_2, \cdots, C_M]^T$.

Representamos as integrais dos termos de fuga transversal, aproximando-os por uma

66

е

função exponencial, de forma similar ao efetuado na construção do algoritmo $LTS_N 2D - DiagExp$.

Definindo λ como a constante de decaimento espacial e usando as notações abaixo, aproximamos

$$\int_0^c \Psi_m(x,0,z) dz = \mathbf{D}_m \, e^{-sign(\mu_m)\lambda x} \,, \tag{5.46}$$

$$\int_0^c \Psi_m(x,b,z) dz = \mathbf{E}_m \, e^{-sign(\mu_m)\lambda x} \,, \tag{5.47}$$

$$\int_0^b \Psi_m(x, y, 0) dy = \mathbf{F}_m \, e^{-sign(\mu_m)\lambda x},\tag{5.48}$$

$$\int_0^b \Psi_m(x, y, c) dy = \mathbf{G}_m \, e^{-sign(\mu_m)\lambda x},\tag{5.49}$$

$$\int_0^c \Psi_m(0, y, z) dz = \mathbf{H}_m e^{-sign(\eta_m)\lambda y}, \qquad (5.50)$$

$$\int_0^c \Psi_m(a, y, z) dz = \mathbf{I}_m \, e^{-sign(\eta_m)\lambda y},\tag{5.51}$$

$$\int_0^a \Psi_m(x, y, 0) dx = \mathbf{J}_m \, e^{-sign(\eta_m)\lambda y},\tag{5.52}$$

$$\int_0^a \Psi_m(x, y, c) dx = \mathbf{K}_m \, e^{-sign(\eta_m)\lambda y},\tag{5.53}$$

$$\int_0^b \Psi_m(0, y, z) dy = \mathbf{L}_m \, e^{-sign(\xi_m)\lambda z},\tag{5.54}$$

$$\int_0^b \Psi_m(a, y, z) dy = \mathbf{O}_m \, e^{-sign(\xi_m)\lambda z},\tag{5.55}$$

$$\int_0^a \Psi_m(x,0,z) dx = \mathbf{P}_m e^{-sign(\xi_m)\lambda z},$$
(5.56)

$$\int_0^a \Psi_m(x,b,z) dx = \mathbf{R}_m \, e^{-sign(\xi_m)\lambda z}.$$
(5.57)

As soluções (5.40), (5.41) e (5.42) ficam completamente determinadas ao encontrarmos as 15*M* incógnitas presentes nas expressões (5.43) a (5.57). Para tanto, resolve-se um sistema linear compatível, de $15M = 15N^2 + 30N$ equações, obtidas a partir da definição dos fluxos angulares médios em x = a, y = b e z = c, e da aplicação das condições de contorno.

5.2 Extensão para meios Tridimensionais Heterogêneos

Consideremos um meio heterogêneo cujo domínio geométrico é um paralelepípedo $P = [0, a] \times [0, b] \times [0, c]$ subdividido em $I \times J \times L$ paralelepípedos $P_k, k = 1 : I \times J \times L$, onde

$$x_1 = 0 < x_2 < x_3 < \dots < x_{i-1} < x_i < x_{i+1} < \dots < x_{I-1} < x_I = a, \qquad (5.58)$$

$$y_1 = 0 < y_2 < y_3 < \dots < y_{j-1} < y_j < y_{j+1} < \dots < y_{J-1} < y_J = b$$
(5.59)

е

$$z_1 = 0 < z_2 < z_3 < \dots < z_{l-1} < z_l < z_{l+1} < \dots < z_{L-1} < z_L = c.$$
(5.60)

Para cada paralelepípedo P_k , $k = 1 : I \times J \times L$, são conhecidos os parâmetros materiais uniformes que denotamos por $\sigma_{t_k} \in \sigma_{s_k}$.

Para obter as equações *unidimensionais* por integração transversal sobre as equações S_N como descrevemos no capítulo 4, é necessário observar as subregiões do domínio do problema, aplicando adequadamente as propriedades da integração, tais como aditividade e da troca da ordem na integração com as somas finitas. Explicitamos a abordagem para algumas definições relacionadas com a equação unidimensional na variável x representada na Eq.(4.3), fazendo

$$\Psi_{mx}(x) = \frac{1}{bc} \int_{0}^{c} \int_{0}^{b} \Psi_{m}(x, y, z) dy dz = \frac{1}{bc} \int_{y_{1}}^{y_{J}} \left(\sum_{l=1}^{L-1} \int_{z_{l}}^{z_{l+1}} \Psi_{m}(x, y, z) dz \right) dy$$

$$= \frac{1}{bc} \sum_{j=1}^{J-1} \int_{y_{j}}^{y_{j+1}} \left(\sum_{l=1}^{L-1} \int_{z_{l}}^{z_{l+1}} \Psi_{m}(x, y, z) dz \right) dy.$$
(5.61)

Portanto,

$$\Psi_{mx}(x) = \frac{1}{bc} \sum_{j=1}^{J-1} \sum_{l=1}^{L-1} (y_{j+1} - y_j) (z_{l+1} - z_l) \Psi_{mx}^{(jl)}(x), \qquad (5.62)$$

onde definimos o fluxo angular médio no retângulo $[y_j,y_{j+1}]\times [z_l,z_{l+1}]$ como

$$\Psi_{mx}^{(jl)}(x) = \frac{1}{(y_{j+1} - y_j)(z_{l+1} - z_l)} \int_{y_j}^{y_{j+1}} \int_{z_l}^{z_{l+1}} \Psi_m(x, y, z) dy dz \,.$$
(5.63)

Ademais, observamos que

$$Q_x(x) = \int_0^c \int_0^b Q(x, y, z) dy dz = \sum_{j=1}^{J-1} \int_{y_j}^{y_{j+1}} \left(\sum_{l=1}^{L-1} \int_{z_l}^{z_{l+1}} Q(x, y, z) dz \right) dy = \sum_{j=1}^{J-1} \sum_{l=1}^{L-1} Q_x^{(jl)}(x) ,$$
(5.64)

$$\int_{0}^{b} \frac{\partial \Psi_{m}}{\partial y}(x, y, z) dy = \sum_{j=1}^{J-1} \int_{y_{j}}^{y_{j+1}} \frac{\partial \Psi_{m}}{\partial y}(x, y, z) dy$$

$$= \sum_{j=1}^{J-1} \left[\Psi_{m}(x, y_{j+1}, z) - \Psi_{m}(x, y_{j}, z) \right] = \Psi_{m}(x, b, z) - \Psi_{m}(x, 0, z) ,$$
(5.65)

e similarmente

z.

$$\int_{0}^{c} \frac{\partial \Psi_{m}}{\partial z}(x, y, z) dz = \sum_{l=1}^{L-1} \int_{z_{l}}^{z_{l+1}} \frac{\partial \Psi_{m}}{\partial z}(x, y, z) dz$$

$$= \sum_{l=1}^{L-1} \left[\Psi_{m}(x, y, z_{l+1}) - \Psi_{m}(x, y, z_{l}) \right] = \Psi_{m}(x, y, c) - \Psi_{m}(x, y, 0) .$$
(5.66)

Assim, a equação unidimensional na variável x para o problema heterogêneo pode ser expressa como segue

$$\sum_{j=1}^{J-1} \sum_{l=1}^{L-1} \left[\frac{d\Psi_{mx}^{(jl)}}{dx} + \frac{\sigma_t}{\mu_m} \Psi_{mx}^{(jl)}(x) - \frac{\sigma_s}{8\mu_m} \sum_{n=1}^M w_n \Psi_{nx}^{(jl)}(x) \right] = \sum_{j=1}^{J-1} \sum_{l=1}^{L-1} S_{mx}^{(jl)}(x) \,. \tag{5.67}$$

Procedemos de forma semelhante com as equações unidimensionais na variável \boldsymbol{y} e

Quando aplicamos o algoritmo $LTS_N 3D - DiagExp$ em domínios heterogêneos, fazse necessário utilizar a propriedade da linearidade para a Transformada de Laplace e sua inversa. E,para cada região P_k , $k = 1 : I \times J \times L$, $\mathbf{D}_{\mathbf{x}}^{(\mathbf{jl})}$, $\mathbf{D}_{\mathbf{y}}^{(\mathbf{il})}$ e $\mathbf{D}_{\mathbf{z}}^{(\mathbf{ij})}$ denotam matrizes diagonais dos autovalores $r_m^{(jl)}$, $s_m^{(il)} \in t_m^{(ij)}$, $\mathbf{V}_{\mathbf{x}}^{(\mathbf{jl})}$, $\mathbf{V}_{\mathbf{y}}^{(\mathbf{il})} \in \mathbf{V}_{\mathbf{z}}^{(\mathbf{ij})}$ as matrizes dos autovetores correspondentes a $A_x^{(jl)}$, $A_y^{(il)} \in A_z^{(ij)}$ respectivamente.

A solução geral para cada paralelepípedo do domínio tridimensional heterogêneo, em forma matricial analítica é dada por

$$\Psi_x(x) = \sum_{j=1}^{J-1} \sum_{l=1}^{L-1} \left[\left[\mathbf{V}_{\mathbf{x}}^{(j\mathbf{l})} e^{\mathbf{D}_{\mathbf{x}}^{(j\mathbf{l})} x} (\mathbf{V}_{\mathbf{x}}^{(j\mathbf{l})})^{-1} \right] \Psi_x(0) + \left[\mathbf{V}_{\mathbf{x}}^{(j\mathbf{l})} e^{\mathbf{D}_{\mathbf{x}}^{(j\mathbf{l})} x} (\mathbf{V}_{\mathbf{x}}^{(j\mathbf{l})})^{-1} \right] * S_x^{(jl)}(x) \right], \quad (5.68)$$

$$\Psi_{y}(y) = \sum_{i=1}^{I-1} \sum_{l=1}^{L-1} \left[\left[\mathbf{V}_{\mathbf{y}}^{(\mathbf{il})} e^{\mathbf{D}_{\mathbf{y}}^{(\mathbf{il})} y} (\mathbf{V}_{\mathbf{y}}^{(\mathbf{il})})^{-1} \right] \Psi_{y}(0) + \left[\mathbf{V}_{\mathbf{y}}^{(\mathbf{il})} e^{\mathbf{D}_{\mathbf{y}}^{(\mathbf{il})} y} (\mathbf{V}_{\mathbf{y}}^{(\mathbf{il})})^{-1} \right] * S_{y}^{(il)}(y) \right]$$
(5.69)

е

$$\Psi_{z}(z) = \sum_{i=1}^{I-1} \sum_{j=1}^{J-1} \left[\left[\mathbf{V}_{\mathbf{z}}^{(\mathbf{ij})} e^{\mathbf{D}_{\mathbf{z}}^{(\mathbf{ij})} z} (\mathbf{V}_{\mathbf{z}}^{(\mathbf{ij})})^{-1} \right] \Psi_{z}(0) + \left[\mathbf{V}_{\mathbf{z}}^{(\mathbf{ij})} e^{\mathbf{D}_{\mathbf{z}}^{(\mathbf{ij})} z} (\mathbf{V}_{\mathbf{y}}^{(\mathbf{il})})^{-1} \right] * S_{z}^{(ij)}(z) \right]. \quad (5.70)$$

Observamos que para determinar a solução local, em cada região P_k é preciso utilizar representações semelhantes às expressões (5.43) a (5.48) para os fluxos angulares médios, e semelhantes à (5.46) a (5.57) para as integrais dos termos de fuga transversal, combinadas com o uso adequado da função de Heaviside (ver exemplificação (5.76), (5.77) e (5.78)) gerando $15M(I \times J \times L)$ incógnitas a serem determinadas a partir da resolução de um sistema de $15M(I \times J \times L)$ equações lineares acopladas pela aplicação das condições de contorno e exigência de continuidade do fluxo angular nas interfaces de cada paralelepípedo P_k .

5.3 Resultados Numéricos para Problemas Tridimensionais

Primeiramente, apresentamos os resultados numéricos gerados pelo novo método $LTS_N3D - DiagExp$ aplicado a dois problemas modelos de transporte de nêutrons tridimensionais, contruídos a partir da sobreposição das placas dos problemas bidimensionais: [Barros e Larsen, 1992a], [Zabadal, 1994], [Mello e Barros, 2002] e [Hauser, 2002] para o caso homogêneo e para o caso heterogêneo, a partir do problema modelo bidimensional em meio heterogêneo resolvido no capítulo 2 desta tese. Foram consideradas as condições de fronteira de reflexão especular nas faces que constituem a base e o topo do paralepípedo, nos três casos.

Como terceiro problema modelo, escolhemos um problema Benchmark proposto por Kobayashi em 1997, [Kobayashi et al., 2001], o qual apresenta o valor do fluxo escalar em pontos específicos do domínio. Diversos autores resolveram o problema e citamos aqui [Azmy et al., 2001], [Brown et al., 2001], [Oliveira et al., 2001], [Suslov, 2001] e [Zmijarevic e Sanches, 2001]. Trata-se de problema tridimensional heterogêneo, cujo domínio é um cubo composto por três regiões caracterizadas por diferentes parâmetros nucleares.

Salientamos que utilizamos um raciocínio similar a [Suslov, 2001] e [Zmijarevic e Sanches, 2001], os quais, para calcular o fluxo no ponto de interesse P, introduziram uma grade numa pequena célula centrada em P. Quando o tamanho dessa célula tende para zero, o fluxo médio dá uma estimativa do valor do fluxo no ponto P.

Nos três problemas modelos a seguir, a constante de decaimento exponencial escolhida foi a seção de choque macroscópica de absorção $\lambda_k = \sigma_{ak} = \sigma_{tk} - \sigma_{sk}$ que caracteriza a região P_k .

O algoritmo $LTS_N 2D - DiagExp$ foi implementado utilizando o sistema de computação algébrica e simbólica *Maple* e executado num Microcomputador Pentium 4 com processador Intel 2.4GHz e 512 MB de memória.

5.3.1 Problema Modelo Tridimensional Homogêneo

Nesta seção aplicamos o algoritmo $LTS_N 3D - DiagExp$ para obter a solução numérica do problema de transporte de nêutrons num cubo homogêneo com aresta de 20 cm. O espalhamento é isotrópico e os parâmetros materiais do meio são especificados pelas seções de choque macroscópica de espalhamento e total dadas por $\sigma_s = 0.5 \, cm^{-1}$ e $\sigma_t = 1 \, cm^{-1}$ respectivamente. Conforme ilustramos na figura 5.1, encontra-se localizado na origem um paralelepípedo de arestas $1 cm \times 1 cm$ e altura 20 cm, o qual contém uma fonte de nêutrons de intensidade unitária. As condições de contorno são de reflexão especular nos contornos x = 0, y = 0, z = 0 e z = 20 cm e vácuo nos planos x = 20 cm e y = 20 cm.

Figura 5.1 – Domínio do Problema Tridimensional Homogêneo

Nosso objetivo é estimar a fuga de nêutrons num retângulo de lado $4 \, cm$ e altura $20 \, cm$, situado no canto direito do domínio no plano $x = 20 \, cm$ (vide figura 5.1), com fluxo sobre as direções que emergem do domínio, a partir da seguinte expressão para a corrente:

$$J_x = \sum_{m=1}^{\frac{M}{2}} \omega_m \mu_m \int_{16}^{20} \int_0^{20} \psi_m(20, y, z) dz dy.$$
 (5.71)

A notação $\sum_{m=1}^{\frac{M}{2}}$ no cálculo da corrente denota que somente são considerados os valores de m correspondentes aos fluxos emergentes.

Observando a Eq.(5.71) e considerando a condição de contorno reflexiva em z = 0 e

z = 20, temos a simulação de um domínio infinito na direção z, e portanto, o fluxo angular independe de z, reproduzindo ficticiamente o problema bidimensional homogêneo. Assim, a Eq.(5.71) aparece como

$$J_x = 20 \sum_{m=1}^{\frac{M}{2}} \omega_m \mu_m \int_{16}^{20} \psi_m(20, y) dy \,.$$
 (5.72)

Logo, o resultado gerado por este experimento deverá ser da ordem de 20 vezes o resultado gerado pelo método bidimensional $LTS_N 2D - DiagExp$, [Hauser, 2002].

Conforme mostram os resultados da tabela 5.1, temos um problema homogêneo de transporte bastante absorvedor. Para ordem de quadratura N = 4, N = 6 e N = 8 os valores obtidos com a execução do algoritmo $LTS_N3D - DiagExp$ foram comparados com os obtidos pelo $LTS_N2D - DiagExp$, [Hauser, 2002]. Nessa comparação o maior desvio relativo ocorrido é de 7.8%

Tabela 5.1 – Resultados Numéricos do Problema Modelo Tridimen-

	Fuga de Nêutrons $(cm^{-2}s^{-1})$	Desvio Relativo
N	$LTS_N 3D - DiagExp$	Percentual
4	0.5403×10^{-10}	7,5%
6	0.4659×10^{-10}	7.8%
8	0.3218×10^{-10}	7.4%

sional Homogêneo

No problema tridimensional homogêneo, reduzimos o tamanho da fonte unitária para um cubo de aresta $1 \, cm$, vide figura 5.2. Para os mesmos dados nucleares e condições

de fronteira, calculamos a corrente de partículas saindo das regiões assinaladas em vermelho na figura 5.2. Conforme o esperado devido à simetria do problema, o valor da corrente nas três regiões é praticamente o mesmo

Figura 5.2 – Problema Tridimensional Homogêneo modificado

5.3.2 Problema Modelo Tridimensional Heterogêneo No.1

Utilizamos o algoritmo $LTS_N 3D - DiagExp$ para resolver um problema heterogêneo num cubo de aresta $10 \, cm$, construído a partir da sobreposição do domínio do problema bidimensional heterogêneo no.2 conforme ilustrada na figura 5.3.

Figura 5.3 – Domínio do Problema Tridimensional Heterogêno No.1 (à direita), construído a partir da placa (à esquerda)

A região em verde na figura 5.3 é a região que contém uma fonte unitária, isotrópica e uniformemente distribuída, caracterizada pelos parâmetros materiais $\sigma_a = 0.5 \ e \ \sigma_t = 1 \ (\sigma_s = 0.5)$. As demais regiões, nas quais a fonte não está presente, são caracterizadas por $\sigma_a = 1.99 \ e \ \sigma_t = 2 \ (\sigma_s = 0.01)$. As condições de contorno são de reflexão especular nas fronteiras $x = 0, y = 0, z = 0 \ e \ z = 10 \ cm$ e vácuo nos planos $x = 10 \ cm$ e $y = 10 \ cm$.

Determinamos o fluxo escalar médio nos paralepípedos Ip, $IIp \in IVp$, denotando-o por ϕIp , $\phi IIp \in \phi IVp$ respectivamente. O fluxo na região IIIp é equivalente ao da região IIp, por simetria. Consideramos para a variável z a expressão similar a do fluxo angular médio dada pela Eq.(5.63), a qual foi integrada com respeito a z, conforme indicado nas Eqs.(5.73), (5.74) e (5.75) para o fluxo escalar médio:

$$\phi Ip = \frac{1}{250} \sum_{m=1}^{M} \omega_m \int_0^{10} \int_0^5 \int_0^5 \psi_m(x, y, z) dx dy dz$$

$$= \frac{1}{25} \sum_{m=1}^{M} \omega_m \int_0^5 \int_0^5 \psi_m(x, y) dx dy ,$$
(5.73)

$$\phi IIp = \frac{1}{250} \sum_{m=1}^{M} \omega_m \int_0^{10} \int_0^5 \int_5^{10} \psi_m(x, y, z) dx dy dz$$

$$= \frac{1}{25} \sum_{m=1}^{M} \omega_m \int_0^5 \int_5^{10} \psi_m(x, y) dx dy,$$
(5.74)

$$\phi IVp = \frac{1}{250} \sum_{m=1}^{M} \omega_m \int_0^{10} \int_5^{10} \int_0^5 \psi_m(x, y, z) dx dy dz$$

$$= \frac{1}{25} \sum_{m=1}^{M} \omega_m \int_5^{10} \int_5^{10} \psi_m(x, y) dx dy ,$$
(5.75)

A tabela 5.2 lista os valores dos fluxos escalares médios nas regiões Ip, IIp e IVp. Nesta tabela, o desvio relativo foi calculado comparando com os valores gerados pelo método $LTS_42D - DiagExp$ e listados na tabela 3.3. Nessa comparação, observamos que o maior desvio relativo é 8.3%.

Tabela 5.2 – Resultados Numéricos o Problema Modelo Tridimen-

	Fluxo Médio	Desvio Relativo
Região	$LTS_43D - DiagExp$	
Ip	0.1798×10^{1}	6.9%
IIp	0.4703×10^{0}	8.0%
IVp	0.2162×10^{-1}	7.5%

sional Heterogêneo No.1

5.3.3 Problema Modelo Tridimensional Heterogêneo No.2

Escolhemos um problema Benchmark proposto por Kobayashi em 1997, [Kobayashi et al., 2001], o qual apresenta o valor do fluxo escalar em pontos específicos do domínio. Diversos autores resolveram o problema e citamos aqui [Azmy et al., 2001], [Brown et al., 2001] e [Oliveira et al., 2001]. Trata-se de um problema tridimensional heterogêneo, cujo domínio é um cubo composto por três regiões caracterizadas por diferentes parâmetros nucleares especificados na tabela 5.3. Conforme ilustra a figura 5.4, na região I está presente uma fonte unitária , nas fronteiras x = 0, y = 0 e z = 0 as condições de contorno são reflexivas e nas fronteiras $x = 100 \, cm$, $y = 100 \, cm$ e $z = 100 \, cm$ as condições de contorno são do tipo vácuo.

Figura 5.4 – Problema Modelo Tridimensional Heterogêne
o $\mathrm{No.2}$

Tabela 5.3 – Dados do Problema Modelo Tridimensional Heterogêneo

No.2

Região	$S(n.cm^{-3}s^{-1})$	$\sigma_t(cm^{-1})$	$\sigma_s(cm^{-1})$
I - Fonte	1	0.1	0.05
II - Vazio	0	0.0001	0.00005
III - Blindagem	0	0.1	0.05

Felizmente para esses dados, o raio espectral é menor do que um, em módulo, para as três matrizes A_x , A_y e A_z e elas são bem condicionadas, conforme detalharemos na seção 5.4. Por exemplo, para N = 16, o número de condicionamento da matriz A_z é 15.9890.

Para exemplificar, com ${\cal H}$ = função de Heaviside, quando x = 0 na região ${\cal I}$ uti-

lizamos

$$\Psi_m(0, y, z) = C_m e^{-sgn(\mu_m)0.05x} \left[(H(y) - H(y - 10)) * (H(z) - H(z - 10)) \right], \quad (5.76)$$

quando x = 0 na região II utilizamos

$$\Psi_m(0, y, z) = D_m e^{-sgn(\mu_m)0.00005x} \left[(H(y - 10) - H(y - 50)) * (H(z - 10) - H(z - 50)) \right]$$
(5.77)

e, quando x = 0 na região III utilizamos

$$\Psi_m(0, y, z) = E_m e^{-sgn(\mu_m)0.005x} \left[(H(y - 50) - H(y - 100)) * (H(z - 50) - H(z - 100)) \right].$$
(5.78)

Para aplicar as condições de contorno e de interface, faz-se necessário observar a ordenação das direções discretas Ω_m .

Para o caso de vácuo nas fronteiras consideramos que, para $i = 1 : \frac{M}{8}$,

- em x=100, $\Psi_i = \Psi_{\frac{3M}{8}+i} = \Psi_{\frac{4M}{8}+i} = \Psi_{\frac{7M}{8}+i} = 0$ e fluxo médio Ψ_m é desconhecido nas demais direções;
- em y=100, $\Psi_{\frac{M}{8}+i} = \Psi_{\frac{2M}{8}+i} = \Psi_{\frac{5M}{8}+i} = \Psi_{\frac{6M}{8}+i} = 0$ e fluxo médio Ψ_m é desconhecido nas demais direções;
- em z=100, $\Psi_{\frac{4M}{8}+i} = \Psi_{\frac{5M}{8}+i} = \Psi_{\frac{6M}{8}+i} = \Psi_{\frac{7M}{8}+i} = 0$ e fluxo médio Ψ_m é desconhecido nas demais direções.

Ao considerarmos as condições de reflexão especular obtemos que, para $i = 1 : \frac{M}{8}$,

• em $x = 0, \Psi_i = \Psi_{\frac{3M}{8}+i}, \Psi_{\frac{M}{8}+i} = \Psi_{\frac{2M}{8}+i}, \Psi_{\frac{4M}{8}+i} = \Psi_{\frac{7M}{8}+i} \in \Psi_{\frac{5M}{8}+i} = \Psi_{\frac{6M}{8}+i};$

• em
$$y = 0, \Psi_i = \Psi_{\frac{M}{8}+i}, \Psi_{\frac{3M}{8}+i} = \Psi_{\frac{2M}{8}+i}, \Psi_{\frac{4M}{8}+i} = \Psi_{\frac{5M}{8}+i} \in \Psi_{\frac{7M}{8}+i} = \Psi_{\frac{6M}{8}+i}$$

• em $z = 0, \Psi_i = \Psi_{\frac{4M}{8}+i}, \Psi_{\frac{M}{8}+i} = \Psi_{\frac{5M}{8}+i} \in \Psi_{\frac{3M}{8}+i} = \Psi_{\frac{7M}{8}+i}.$

Consideramos também as condições nas interfaces:

- Ψ_i , $\Psi_{\frac{M}{8}+i}$, $\Psi_{\frac{4M}{8}+i}$ e $\Psi_{\frac{5M}{8}+i}$ incidem na região II com as características do meio I em x = 10 e incidem na região III com as propriedades da região II em x = 50; nos demais casos, o fluxo Ψ_m é desconhecido em x = 10 e x = 50;
- Ψ_i , $\Psi_{\frac{3M}{8}+i}$, $\Psi_{\frac{4M}{8}+i}$ e $\Psi_{\frac{7M}{8}+i}$ incidem na região II com as características do meio I em y = 10 e incidem na região III com as propriedades da região II em y = 50; nos demais casos, o fluxo Ψ_m é desconhecido em y = 10 e y = 50;
- Ψ_i , $\Psi_{\frac{M}{8}+i}$, $\Psi_{\frac{2M}{8}+i}$ e $\Psi_{\frac{3M}{8}+i}$ incidem na região II com as características do meio I em z = 10 e incidem na região III com as propriedades da região II em z = 50; nos demais casos, o fluxo Ψ_m é desconhecido em z = 10 e z = 50.

Trabalhamos o problema em dois casos distintos, a partir dos valores do fluxo total disponíveis para comparação em [Kobayashi et al., 2001].

CASO A

Na tabela 5.4 são apresentados os valores do fluxo escalar para o presente problema Benchmark.

Tabela5.4-FluxoConhecido para o Problema Modelo Tridimen-

Caso	Coordenadas(cm)	Fluxo Escalar
	(x, y, z)	$cm^{-2}s^{-1}$
	(5, 5, 5)	0.829260×10^{1}
	(5, 15, 5)	0.187028×10^{1}
	(5, 25, 5)	0.713986×10^{0}
	(5, 35, 5)	0.384685×10^{0}
А	(5, 45, 5)	0.253984×10^{0}
	(5, 55, 5)	0.137220×10^{0}
	(5, 65, 5)	0.465913×10^{-1}
	(5, 75, 5)	0.158766×10^{-1}
	(5, 85, 5)	0.547036×10^{-2}
	(5, 95, 5)	0.185082×10^{-2}

sional Heterogêneo No.2, Caso A

As coordenadas dos fluxos listados na tabela 5.4 estão localizadas sobre a reta vermelha na figura 5.5.

Figura 5.5 – Localização do Fluxo Conhecido no Domínio do Problema Modelo Tridimensional Heterogêneo No.2, Caso A

Utilizando a formulação $LTS_43D - DiagExp$ com ordem de quadratura N = 4, calculamos o fluxo médio num paralepípedo com arestas medindo $0.05 \, cm$, $90 \, cm$, e $0.05 \, cm$, localizado de tal forma que a linha vermelha da figura 5.6 esteja no seu centro. Esse valor foi denotado por ϕA e calculado usando

$$\phi A = \sum_{1}^{M} \omega_m \frac{1}{90} \int_{5}^{95} \left[\frac{1}{0.025} \int_{4.975}^{5.025} \int_{4.975}^{5.025} \psi_m(x, y, z) dx dz \right] dy \,. \tag{5.79}$$

Obtemos $\phi A = 0.9187$ o que produz um desvio relativo de 8.3% quando comparado com o valor gerado pela integração numérica usando o método dos Trapézios na variável y, considerando 5 < y < 95 isto é, $\phi A_T = (1/90) * (10/2) * (8.2926 + 2 * (1.87028 + 0.713986 + 0.384685 + 0.253984 + 0.13722 + 0.0465913 + 0.0158766 + 0.00547036) + 0.00185082) = 0.84170.$

CASO B

Na tabela 5.5 são apresentados os valores do fluxo total para o presente problema Benchmark.

Tabela5.5-FluxoConhecido para o Problema Modelo Tridimen-

Caso	Coordenadas(cm)	Fluxo Total
	(x, y, z)	$cm^{-2}s^{-1}$
	(5, 55, 5)	0.137220×10^{0}
	(15, 55, 5)	0.127890×10^{0}
	(25, 55, 5)	0.113582×10^{0}
	(35, 55, 5)	0.959578×10^{-1}
В	(45, 55, 5)	0.782701×10^{-1}
	(55, 55, 5)	0.567030×10^{-1}
	(65, 55, 5)	0.188631×10^{-1}
	(75, 55, 5)	0.646624×10^{-2}
	(85, 55, 5)	0.228099×10^{-2}
	(95, 55, 5)	0.793924×10^{-3}

sional Heterogêneo No.2, Caso B

As coordenadas dos fluxos apresentados na tabela 5.5 encontram-se sobre a reta vermelha na figura 5.6.

Figura 5.6 – Localização do Fluxo Conhecido no Domínio do Problema Modelo Tridimensional Heterogêneo No.2, Caso B

Utilizando procediment
po similar ao caso A, calculamos o fluxo médio num paralelepípedo com a
restas medindo 90 cm, $0.05 \, cm$, e 0.05 cm, localizado de tal forma que a
linha vermelha da figura 5.7 esteja no seu centro. Esse valor foi denotado por ϕB e calculado
usando

$$\phi B = \sum_{1}^{M} \omega_m \frac{1}{90} \int_{5}^{95} \left[\frac{1}{0.0025} \int_{4.975}^{5.025} \int_{44.975}^{55.025} \psi_m(x, y, z) dy dz \right] dx \,. \tag{5.80}$$

Obtemos $\phi B = 0.1293$ o que produz um desvio relativo de 8.1% quando comparado com o valor gerado pela integração numérica usando o método dos Trapézios na variável x, para 5 < x < 95, $\phi B_T = (1/90) * (10/2) * (0.137220 + 2(0.127890 + 0.113582 + 0.0959578 + 0.0782701 + 0.0567030 + 0.0188631 + 0.00646624 + 0.00228099) + 0.000793924) = 0.1187.$

5.4 Análise do Condicionamento da Matriz $LTS_N 3D$

Nesta seção determinamos o número de condicionamento da matriz LTS_N3D com a finalidade de analisar a qualidade dos resultados numéricos obtidos.

Uma das medidas utilizadas é dada por

$$Cond(A_z) = ||A_z|| \cdot ||A_z^{-1}|| .$$
 (5.81)

Quanto maior o $Cond(A_z)$, mais sensível a perturbações será o problema associado à matriz A_z .

No cálculo do $Cond(A_z)$, podemos escolher qualquer norma matricial usual, [Ortega e W.C.Rheinboldt, 1970], podendo ser $||A_z||$ a norma matricial do máximo das linhas, isto é:

$$||A_z|| = ||A_z||_{\infty} = max \left\{ \sum_{j=1}^M |a_z(i,j)|, 1 \le i \le M \right\}.$$
 (5.82)

Verificamos que $Cond(A_z)$ parece ser "pequeno", mas não sentimos segurança em afirmar que A_z é bem condicionada, ou que A_z é mal condicionada. Para podermos decidir, escolhemos uma segunda medida de condiciomaneto, o Determinante Normalizado da Matriz A_z , [Ortega e W.C.Rheinboldt, 1970], cuja ordem de grandeza é menor do que a ordem de grandeza do $Cond(A_z)$.

Por definição, o Determinante Normalizado da Matriz ${\cal A}_z$ é dado por

$$Norm(A_z) = \frac{det(Az)}{\alpha_1 \times \alpha_2 \times \ldots \times \alpha_M},$$
(5.83)

onde, para k = 1 : M, definimos

$$\alpha_k = \sqrt{\sum_{j=1}^M a_z^2(k,j)} \tag{5.84}$$

e o valor que pode ocorrer é limitado :

$$-1 < Norm(A_z) < 1.$$
 (5.85)

Quanto mais afastado de ±1, isto é, quanto mais próximo de zero estiver o $Norm(A_z)$, mais mal condicionada será a matriz A_z .

Apresentamos na tabela 5.7 os valores de $Cond(A_z)$ e $Norm(A_z)$ com ordem de quadratura angular N = 4 e parâmetros nucleares que caracterizam os problemas multidimensionais resolvidos neste capítulo. Analisando esses dados, concluímos que a matriz A_z é bem condicionada em todos os casos, exceto na região que contém a fonte no problema tridimensional heterogêneo no.1.

mas modelos tridmensionais desta tese para ordem de quadratura ${\cal N}=4$

Tabela 5.6 – Medidas de condicionamento da Matriz ${\cal A}_z$ dos proble-

Problema Modelo	$\sigma_t cm^{-1}, \sigma_s cm^{-1}$	$Cond(A_z)$	$Norm(A_z)$
Tridimensional Homogêneo	1, 0.5	5.7990981889	0.7318623630
Tridimensional Heterogêneo No.1	1 ,0.5	5.799098188	0.7318623630
Tridimensional Heterogêneo No.1	2, 0.1	2.678412457	0.9975589699
Tridimensional Heterogêneo No.2	0.1 ,0.05	5.799098188	0.7318623630
Tridimensional Heterogêneo No.2	0.0001 ,0.00005	5.799098188	0.7318623630

A seguir, os valores apresentados nas tabela 5.7 e 5.8 foram gerados utilizando a matriz A_z caracterizada pelos parâmetros nucleares do problema modelo tridimensional heterogêneo no.2, para diferentes ordens de quadratura angular.

Na tabela 5.7 e na tabela 5.8 incluímos o valor do determinante da matriz A_z com a finalidade de ilustrar que se o determinante de uma matriz é pequeno, não significa que ela seja mal condicionada. Constam também, os valores do raio espectral da matriz A_z , $\rho(A_z)$, o qual cresce lentamente à medida que N cresce.

A título de ilustração da magnitude dos valores obtidos na aplicação das medidas de condicionamento escolhidas, para uma matriz de Hilbert (tipicamente mal condicionada), de ordem $168(= 12 \times 14)$ temos $Cond(Hilbert(168)) = 0.1398244707 \times 10^{256}$ e para ordem $288(= 16 \times 18), Cond(Hilbert(288)) = 0.6306068564 \times 10^{439}.$

Tabela $5.7-{\rm Medidas}$ de condicionamento e raio espectral da matriz

N	$Cond(A_z)$	$ Norm(A_z) $	$\rho(A_z)$	$Det(A_z)$
2	2.750000000	0.7412725630	0.1732050807	0.4049999981e - 6
4	5.799098188	0.7318623630	0.2856969806	0.3032081150e - 16
6	7.991606173	0.7293669594	0.3750438332	0.2557650824e - 31
8	9.957928469	0.7270907965	0.4582575490	0.2630285952e - 51
12	13.204400424	0.7203837172	0.5980410567	0.7301932637e - 107
16	15.98903807	0.7109192929	0.7196481209	0.2798561359e - 183

 A_z para $\sigma_t=0.1~e~\sigma_s=0.05$

Tabela5.8- Medidas de condicionamento e raio espectral da matriz

N	$Cond(A_z)$	$ Norm(A_z) $	$\rho(A_z)$	$Det(A_z)$
2	2.750000000	0.7412725630	0.1732050807e - 3	0.4049999981e - 30
4	5.799098188	0.7318623630	0.2856969806e - 3	0.3032081150e - 88
6	7.991606173	0.7293669594	0.3750438332e - 3	0.2557650824e - 175
8	9.957928469	0.7270907965	0.4582575490e - 3	0.2630285952e - 291
12	13.204400424	0.7203837172	0.5980410567e - 3	0.7301932637e - 611
16	15.98903807	0.7109192929	0.7196481209e - 3	0.2798561359e - 1047

A_z	para	σ_t =	= 0.	0001	e	σ_s	=	0.	.0	00)()5)
-------	------	--------------	------	------	---	------------	---	----	----	----	----	----	---

Analisando os valores de $Cond(A_z)$ e $Norm(A_z)$ que apresentamos nas tabelas 5.7 e

5.8 , percebemos que à medida que N cresce, ocorre um crescimento muito lento de $Cond({\cal A}_z)$

e um decréscimo, muito lento de $Norm(A_z)$.

Isso sugere que o problema modelo tridimensional heterogêneo no.2 continuará bem condicionado se na sua resolução utilizarmos elevada ordem de quadratura angular, que é um dos nossos objetivos como seqüência de trabalho desta tese.

CAPÍTULO 6

Estimativa do Erro da Solução LTS_N Nodal em Geometria Cartesiana Tridimensional

Neste capítulo analisamos a questão das aproximações obtidas com o método LTS_N3D , estabelecendo uma estimativa para o erro . Nosso trabalho fundamenta-se [Kaper et al., 1982], [Zeidler, 1990], [Mokhtar-Kharroubi, 1997], [Mokhtar-Kharroubi e Sbihi, 2005], [Mokhtar-Kharroubi e Sbihi, 2006] e no estudo pioneiro da convergência do método LTS_N unidimensional , desenvolvido por [Pazos e Vilhena, 1998], [Pazos e Vilhena, 1999a], [Pazos e Vilhena, 1999b], e,no estudo do erro do método espectral aplicado à equação de Boltzmann dependente do tempo, [Pazos et al., 2002]. A convergência do método LTS_N para o caso bidimensional foi estabelecida em [Hauser, 2002] e [Hauser et al., 2005b]. Para tanto, devemos definir os chamados erros no fluxo aproximado e na fórmula da quadratura, depois estabelecer uma relação entre eles para finalmente estimar o erro global no fluxo aproximado.

Consideremos a equação do problema de transporte monoenergético estacionário em geometria Cartesiana tridimensional, escrita, conforme [Kaper et al., 1982] e [Pazos et al.,
2002], na forma

$$\mu \frac{\partial \psi}{\partial x}(x, y, z, \mu, \eta, \xi) + \eta \frac{\partial \psi}{\partial y}(x, y, z, \mu, \eta, \xi) + \xi \frac{\partial \psi}{\partial z}(x, y, z, \mu, \eta, \xi)$$

$$+h(x, y, z, \mu, \eta, \xi)\psi(x, y, z, \mu, \eta, \xi) = q(x, y, z, \mu, \eta, \xi) +$$
(6.1)

$$+ \int_{V} \psi(x, y, z, \mu', \eta', \xi') \, k(\mu, \eta, \xi, \mu', \eta', \xi') \, d\mu' \, d\eta' \, d\xi' \, .$$

Na Eq. (6.1) $(x, y, z) \in \mathbf{X} = [0, a] \times [0, b] \times [0, c]$ são as variáveis espaciais independentes no domínio \mathbf{X} , um paralelepípedo; $\psi(x, y, z, \mu, \eta, \xi)$ representa o fluxo angular de partículas na posição (x, y, z) migrando na direção $\nu = (\mu, \eta, \xi)$; $h(x, y, z, \mu, \eta, \xi)$ é a freqüência de colisão(quando constante, é igual à seção de choque macroscópica total σ_t) ; $k(\mu, \eta, \xi, \mu', \eta', \xi')$ é a seção de choque diferencial de espalhamento; $q(x, y, z, \mu, \eta, \xi)$ representa a fonte prescrista e $V = \{(\mu, \eta, \xi) \mid \mu^2 + \eta^2 + \xi^2 = 1\}$. A

As condições de contorno abrangem fluxo de entrada conhecido e reflexão especular.

Vamos denotar por o espaço de base por $\mathbf{E} = L^1 (\mathbf{X} \times \mathbf{V})$ e os os espaços aproximantes por $\mathbf{E}_M = \prod_{m=1}^M L^1 (\mathbf{X} \times \{(\mu_m, \eta_m, \xi_m)\}).$

As soluções são estudadas nos subespaços de Banach definidos como seguem

$$W = \left\{ \psi \in \mathbf{E} \mid \mu \frac{\partial \psi}{\partial x} + \eta \frac{\partial \psi}{\partial y} + \xi \frac{\partial \psi}{\partial z} \in \mathbf{E} \right\}$$
(6.2)

$$W_M = \left\{ \{\psi_m\} \in \mathbf{E}_M \mid \mu_m \, \frac{\partial \psi_m}{\partial x} + \eta_m \, \frac{\partial \psi_m}{\partial y} + \xi_m \, \frac{\partial \psi_m}{\partial z} \in L^1(\mathbf{X}) \,, \quad \forall \, m = 1 \,: \, M \right\} \,.$$

$$(6.3)$$

Fixando a direção $\Omega_m = (\mu_m, \eta_m, \xi_m)$, definimos a função erro no fluxo aproximado como

$$\epsilon_m(x, y, z) = \psi(x, y, z, \mu_m, \eta_m, \xi_m) - \Psi_m(x, y, z), \qquad (6.4)$$

e a função erro na fórmula da quadratura por

$$\tau_{m}(x, y, z) = \int_{V} \sigma_{s}(\mu_{m}, \eta_{m}, \xi_{m}, \mu', \eta', \xi') \psi(x, y, z, \mu', \eta', \xi') \, d\mu' \, d\eta' \, d\xi'$$

$$- \sum_{m=1}^{M} \omega_{m} \, k_{mn} \, \Psi(x, y, z, \mu_{m}, \eta_{m}, \xi_{m}) \,.$$
(6.5)

Com essas definições obtem-se a seguinte equação entre esses erros :

$$\mu_m \frac{\partial \epsilon_m}{\partial x}(x, y, z) + \eta_m \frac{\partial \epsilon_m}{\partial y}(x, y, z) + \xi_m \frac{\partial \epsilon_m}{\partial z}(x, y, z) + h_m(x, y, z)\epsilon_m(x, y, z)$$

$$= \sum_{n=1}^M w_n k_{mn} \epsilon_n(x, y, z) + \tau_m(x, y, z) .$$
(6.6)

Multiplicamos ambos os lados da Eq. (6.6) por $\epsilon_m(x, y, z)$ e integramos sobre o domínio **X** a seguinte equação :

Realizando a integração nos três primeiros termos do lado esquerdo da Eq. (6.7) e transpondo-os para o lado direito obtemos

$$\int \int \int_{\mathbf{X}} h_m(x,y,z) \,\epsilon_m^2(x,y,z) \,dx \,dy \,dz = \sum_{n=1}^M \omega_m \,k_{nm} \,\int \int \int_{\mathbf{X}} \,\epsilon_n(x,y,z) \,\epsilon_m(x,y,z) \,dx \,dy \,dz \\ + \int \int \int_{\mathbf{X}} \,\epsilon_m(x,y,z) \,\tau_m(x,y,z) \,dx \,dy \,dz + \frac{\mu_m}{2} \int_0^c \int_0^b \left[\epsilon_m^2(0,y,z) - \epsilon_m^2(a,y,z) \right] \,dy \,dz \\ + \frac{\eta_m}{2} \int_0^c \int_0^a \left[\epsilon_m^2(x,0,z) - \epsilon_m^2(x,b,z) \right] \,dx \,dz + \frac{\xi_m}{2} \int_0^b \int_0^a \left[\epsilon_m^2(x,y,0) - \epsilon_m^2(x,y,c) \right] \,dx \,dy \,.$$
(6.8)

Objetivando obter uma relação entre os erros no fluxo aproximado e o erro na fórmula de quadratura, neste ponto nós definimos uma norma associada à fórmula de quadratura, a qual será útil para a análise da convergência das aproximações LTS_N . Introduzimos as definições do produto escalar e da norma

$$\alpha_{m} = (\alpha)_{m=1:M},$$

$$\langle \alpha | \beta \rangle = \int \int \int_{\mathbf{X}} w_{m} \alpha_{m} (x, y, z) \beta_{m} (x, y, z) \, dx \, dy \, dz, \qquad (6.9)$$

 $\| \alpha \|^2 = \left\langle \alpha \, \big| \, \alpha \right\rangle \,.$

Agora, conforme [Pazos et al., 2002] e [Kaper et al., 1982], assumimos a seguinte hipótese: $\exists c_o$ tal que $h(x, y, z, \mu, \eta, \xi) > \lambda' - c_o | (\mu, \eta, \xi) |, \forall (x, y, z, \mu, \eta, \xi) \in \mathbf{X} \times \mathbf{V}$, onde $\lambda' = inf \left\{ \lim_{|\nu| \to 0} h(x, y, z, \mu, \eta, \xi), (x, y, z) \in \mathbf{X} \right\}$.

Assim, a partir da Eq.(6.8) obtemos a desigualdade

$$\begin{split} \int \int \int_{\mathbf{X}} \left(\lambda' - c_o \left| \left(\mu_m, \eta_m, \xi_m \right) \right| \right) \, \epsilon_m^2(x, y, z) \, dx \, dy \, dz \, \leq \\ \sum_{n=1}^M \omega_m \, k_{nm} \, \int \int \int_{\mathbf{X}} \, \epsilon_n(x, y, z) \, \epsilon_m(x, y, z) \, dx \, dy \, dz + \int \int \int_{\mathbf{X}} \, \epsilon_m(x, y, z) \, \tau_m(x, y, z) \, dx \, dy \, dz \\ + \frac{\mu_m}{2} \, \int_0^c \, \int_0^b \left[\epsilon_m^2(0, y, z) - \epsilon_m^2(a, y, z) \right] \, dy \, dz + \frac{\eta_m}{2} \, \int_0^c \, \int_0^a \left[\epsilon_m^2(x, 0, z) - \epsilon_m^2(x, b, z) \right] \, dx \, dz \\ + \frac{\xi_m}{2} \, \int_0^b \, \int_0^a \left[\epsilon_m^2(x, y, 0) - \epsilon_m^2(x, y, c) \right] \, dx \, dy \, . \end{split}$$
(6.10)

Multiplicamos todos os temos da inequação (6.10) pelo pes
o w_m e somamos em relação am. O resultado aparece como

$$\begin{split} \sum_{m=1}^{M} \omega_{m} \left(\lambda' - c_{o} \left| \left(\mu_{m}, \eta_{m}, \xi_{m}\right) \right| \right) & \int \int \int_{\mathbf{X}} \epsilon_{m}^{2}(x, y, z) \, dx \, dy \, dz \leq \\ \sum_{m=1}^{M} \sum_{n=1}^{M} \omega_{m} \, \omega_{n} \, k_{nm} \, \int \int \int_{\mathbf{X}} \epsilon_{n}(x, y, z) \, \epsilon_{m}(x, y, z) \, dx \, dy \, dz + \\ \sum_{m=1}^{M} \omega_{m} \, \int \int \int_{\mathbf{X}} \epsilon_{m}(x, y, z) \, \tau_{m}(x, y, z) \, dx \, dy \, dz + \\ \sum_{m=1}^{M} \omega_{m} \, \frac{|\mu_{m}|}{2} \int_{0}^{c} \int_{0}^{b} \left| \epsilon_{m}^{2}(0, y, z) - \epsilon_{m}^{2}(a, y, z) \right| \, dy \, dz + \\ \sum_{m=1}^{M} \omega_{m} \, \frac{|\eta_{m}|}{2} \int_{0}^{c} \int_{0}^{a} \left| \epsilon_{m}^{2}(x, 0, z) - \epsilon_{m}^{2}(x, b, z) \right| \, dx \, dz + \\ \sum_{m=1}^{M} \omega_{m} \, \frac{|\xi_{m}|}{2} \int_{0}^{b} \int_{0}^{a} \left| \epsilon_{m}^{2}(x, y, 0) - \epsilon_{m}^{2}(x, y, c) \right| \, dx \, dy \, . \end{split}$$

Na seqüência, considerando o parãmetro K_0 associado à função de espalhamento $k(x, y, z, \mu, \eta, \xi, \mu', \eta', \xi')$ e aos pesos da quadratura, [Pazos e Vilhena, 1999a], [Pazos e Vilhena, 1999b], [Pazos et al., 2001] e, para cada m = 1 : M,

$$F_{1,m} = \sqrt{\frac{|\mu_m|}{2}} \int_0^c \int_0^b |\epsilon_m^2(0, y, z) - \epsilon_m^2(a, y, z)| \, dy \, dz \,, \tag{6.12}$$

$$F_{2,m} = \sqrt{\frac{|\eta_m|}{2} \int_0^c \int_0^a |\epsilon_m^2(0, y, z) - \epsilon_m^2(a, y, z)| \, dx \, dz} \tag{6.13}$$

$$F_{3,m} = \sqrt{\frac{|\xi_m|}{2}} \int_0^b \int_0^a |\epsilon_m^2(0, y, z) - \epsilon_m^2(a, y, z)| \, dx \, dy \,, \tag{6.14}$$

dependendo das condições de fornteira somente, a aplicação da definição da norma e da desigualdade de Cauchy-Schwarz produz a desigualdade

$$\left(\lambda' - c_o \max_{m=1:M} |\Omega_m|\right) \|\epsilon^2\| \le K_0 \|\epsilon\|^2 + \|\epsilon\| \|\tau\| + \|F_1\| + \|F_2\| + \|F_3\|.$$
(6.15)

Agora, na Eq.(6.15) considerando que para a contante positiva δ vale a desigual dade

$$\|\epsilon\| \cdot \|\tau\| \le \frac{1}{2} \left(\delta \|\epsilon\|^2 + \frac{\|\tau\|^2}{\delta}\right), \qquad (6.16)$$

obtemos a seguinte desigualdade

$$\left(\lambda' - c_o \max_{m=1:M} |\Omega_m|\right) \|\epsilon^2\| \le K_0 \|\epsilon\|^2 + \frac{1}{2} \left(\delta\|\epsilon\|^2 + \frac{\|\tau\|^2}{\delta}\right) + \|F_1\| + \|F_2\| + \|F_3\|$$
(6.17)

Portando, obtemos

$$\|\epsilon\|^{2} \leq \frac{\frac{\|\tau\|^{2}}{2\delta} + \|F_{1}\| + \|F_{2}\| + \|F_{3}\|}{\left(\lambda' - c_{o} \max_{m=1:M} |\Omega_{m}|\right) - K_{0} - \frac{\delta}{2}}.$$
(6.18)

A expressão (6.18) estabelece uma relação entre o erro no fluxo aproximado , ϵ , e o erro na fórmula de quadratura, τ . Observamos que no lado direito a segunda parcela depende das condições de frornteira e, quando N cresce, isto é, para M = N(N + 2) suficientemente

grande, o primeiro e o terceiro termo do lado direito tendem para zero.

CAPÍTULO 7

Conclusões e Sugestões para Trabalhos Futuros

Nesta tese estendemos o método $LTS_N 2D - DiagExp$ para tratar problemas de transporte de nêutrons bidimensionais em domínios espaciais heterogêneos e construímos um novo algoritmo para resolver as equações S_N tridimensionais em meios homogêneos e hetrogêneos, por nós denominado $LTS_N 3D - DiagExp$.

Fomos motivados pelo fato de que com a aplicação do método $LTS_N2D - DiagExp$ na resolução de problemas de transporte de nêutrons em domínios bidimensionais homogêneos, conseguimos uma otimização no cálculo da solução geral devido à diagonalização da matriz de transporte LTS_N e otimização no cálculo da solução específica do problema devido à aproximação exponencial para os termos de fuga transversal. O sistema linear que precisa ser resolvido de $4M^2 = N^4 + 2N^3 + 4N^2$ passa a ter $6M = 3N^2 + 6N$ equações. Por exemplo, se N = 12, o sistema linear final diminui de 24768 para 504 equações.

Descrevemos detalhadamente a extensão do algoritmo $LTS_N2D - DiagExp$ para problemas de transporte de nêutrons definidos em domínios espaciais heterogêneos. O novo método foi utilizado para estimar numericamente o fluxo médio de um problema modelo, semelhante ao de cálculo de blindagem de radiações ionizantes. Obtivemos resultados que produziram desvio relativo pequeno quando comparados com [Azmy, 1988b]. Um grande avanço foi a obtenção de resultados numéricos razoáveis para o problema de ordenadas discretas bidimensional em domínio heterogêneo, com fonte fixa, isotrópico, estacionário, e para ordem de quadratura angular N = 8.

Desenvolvemos a análise espectral da matriz de transporte LTS_N tridimensional, da forma $sI - A_z$, mostrando ser possível diagonalizar a matriz A_z , apesar da existência de autovalores com multiplicidade determinada pelo número de vezes menos um que a componente ξ_m comparece no conjunto de direções discretas $\Omega_m = (\mu_m, \eta_m, \xi_m)$, m = 1 : M, M = N(N + 2), para cada ordem da quadratura angular N.

Um novo algoritmo, denominado $LTS_N 3D - DiagExp$ foi construído para resolver problemas de transporte de nêutrons em geometria Cartesiana tridimensional, para meios monoenergéticos, não-multiplicativos, com espalhamento isotrópico para domínios homogêneos e heterogêneos.

Outro progresso que apresentamos foi a obtenção de razoáveis resultados numéricos para ordem de quadratura angular N = 4 com a aplicação do novo método $LTS_N3D - DiagExp$ ao problema Benchmark tridimensional heterogêneo, proposto por Kobayashi em 1997, [Kobayashi et al., 2001], cujo domínio é um cubo composto por três regiões caracterizadas por diferentes parâmetros nucleares.

Foi necessário utilizar um raciocínio similar a [Suslov, 2001] e [Zmijarevic e Sanches, 2001], os quais, para calcular o fluxo no ponto de interesse P, introduziram uma grade numa pequena célula centrada em P. Quando o tamanho dessa célula tende para zero, o fluxo médio dá uma estimativa do valor do fluxo no ponto P.

Para investigar a influência dos erros de arredondamento e garantir a qualidade dos resultados numéricos obtidos, calculamos o número de condicionamento da matriz de transporte LTS_N . Concluímos que, nos problemas modelos resolvidos nesta tese, A_z é bem condicionada, sugerindo que poderemos obter resultados numéricos confiáveis para elevadas ordens de quadratura.

Finalizamos estabelecendo uma relação entre os erros no fluxo aproximado e na fórmula da quadratura. A convergência do método LTS_N Nodal ocorre com condições de fronteira e quadratura angular adequadas.

Portanto, o objetivo desta tese foi atingido. Uma análise do trabalho realizado indica que o método $LTS_NDiagExp$ é promissor, pois sua convergência foi provada e os resultados numéricos podem ser melhorados, pois foram obtidos utilizando um sistema de computação simbólica em equipamento de pequeno porte.

A fim de obter resultados numéricos para maiores valores de N é necessário utilizar novos conjuntos de quadratura para o problema de ordenadas discretas multidimesional.

A partir desta tese há uma seqüência de trabalhos que podem ser desenvolvidos.

Podemos utilizar a análise espectral desenvolvida para estudar questões de estabilidade do método.

Perspectivas de continuidade e aplicações do presente trabalho incluem estender nosso estudo a problemas de transporte de nêutrons com espalhamento isotrópico dependentes do tempo. Também, pretendemos aplicar o algoritmo $LTS_N3D - DiagExp$ a problemas de espalhamento anisotrópico.

Estamos aplicando o algoritmo num problema de interesse atual que surge na modelagem de problemas de blindagem de radiações ionizantes, *oil-well logging* objetivando estimar a presença de hidrocarbonetos (petróleo ou gás natural) no subsolo terrestre, [Brown, 1996]. Também, o trabalho desenvolvido nesta tese é uma modelagem computacional de problemas de transporte de partículas neutras com fonte prescrita ou incidência pelos contornos e pode ser aplicado para cálculos de blindagem que protege os equipamentos e as pessoas da incidência de radiação ionizante

Acreditamos ser possível incorporar a formulação LTS_N nodal multidimensional na modelagem de mesoescala em meteorologia, especificamente em modelos operacionais para avaliação do campo de radiação na camada limite planetária.

REFERÊNCIAS BIBLIOGRÁFICAS

Azmy, Y., 1988a. "Comparison of Three Aproximations to the Linear-Linear Nodal Transport Method in Wighted Diamond-Difference Form", Nuclear Science and Engineering, vol. 100, pp. 190–200.

Azmy, Y., 1988b. "The Weighted Diamond Difference Form of Nodal Transport Methods", Nuclear Science and Engineering, vol. 98, pp. 29–40.

Azmy, Y., 1992. "Arbitrarily High Order Characteristic Methods for Solving the Neutron Transport Equation", **Annals of Nuclear Energy**, vol. 19, pp. 593–606.

Azmy, Y. Y., Gallmeier, F. X., and Lillie, D. A., 2001. "Tort Solutions for 3D Radiation Transport Benchmarks for Simple Geometries with Void Region", **Progress in Nuclear Energy**, vol. 39-2, pp. 155–166.

Barros, R. C., 1997. "On the Equivalence of Discontinuos Finite Elemet Methods for the Angular Discretization of the Linearized Boltzmann Equation in Slab Geometry", **Ann.Nuclear Energy**, vol. 24(13), pp. 1013–1026.

Barros, R. C., 2000. "Modelagem Computacional do Fenômeno de Transporte de Nêutrons". Notas do Minicurso ministrado no PROMEC-UFRGS, 04 a 06/10/2000.

Barros, R. C. and Larsen, E., 1992a. "A Spectral Nodal Method for One-Group X,Y Geometry Discrete Ordinates Problems", vol. 111, pp. 34–45. Barros, R. C. and Larsen, E. W., 1990. "A Numerical Method for One-Group Slab-Geometry Discrete Ordinates Problems", **Nuclear Science and Engineering**, vol. 104(199), pp. 199–208.

Barros, R. C. and Larsen, E. W., 1991. "A Spectral Nodal Method for the Solution of the S_N Equations in X,Y-Geometry for Highly Absorbing Deep Penetration Problems", **VIII Encontro Nacional de Física de Reatores e Termo-hidráulica**, vol. 1(1), pp. 423–428.

Barros, R. C. and Larsen, E. W., 1992b. "A Spectral Nodal Method for One-group X,Y-geometry Discrete Ordinates Problems", Nuclear Science and Engineering, vol. 111(34), pp. 34–45.

Barros, R. C., Yavuz, M., Abreu, M. P., Filho, H. A., and Mello, J. A. M., 1998. "Progress in spectral Nodal Methods Applied to Discrete Ordinates Transport Problems", **Progress in Nuclear Energy**, vol. 33(1/2), pp. 117–154.

Bell, G. I. and Glasstone, S., 1985. "Nuclear Reactor Theory". Krieger Publishing Company, Malabar, Florida.

Biasotto, E., 1988. "Estabilidade de Equações Diferenças", Dissertação de mestrado, Programa de Pós-Graduação em Matemática do Instituto de Matemática da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.

Brown, P. N., 1996. "Computer Simulation of Nuclear Well-Logging Devices Technology". http://www.llnl.gov/CASC/well_log/. Brown, P. N., Chang, B., and Hanebutte, U. R., 2001. "Spherical Harmonic Solutions of the Boltzmann Transport Equation via Discrete Ordinates", **Progress in Nuclear Energy**, vol. 39-2, pp. 263–284.

Case, K. M. and Zweifel, P. F., 1967. "Linear Transport Theory". Addison-Wesley Publishing Co, Massachusetts.

Dominguez, D. S., 2006. "Método Espectro-Nodal Linear para Problemas de Transporte de Nêutrons na Formulação de Ordenadas Discretas em Geometria Bidimensional Cartesiana", Tese de doutorado, Programa de Pós-Graduação de Modelagem Computacional, Universidade do Estado do Rio de Janeiro, Nova Friburgo, RJ, Brasil.

Duderstadt, J. J. and Hamilton, L. J., 1976. "Nuclear Reactor Analysis". John Wiley & Sons, Inc., New York.

Duderstadt, J. J. and Martin, W. R., 1979. "Transport Theory". John Wiley & Sons, Inc., New York.

Hauser, E. B., 2000. "Formulação LTS_N Bidimensional para o Problema de Ordenadas Discretas Bidimensional com Elevada Quadratura", **Tendências em Matemática Aplicada-SBMAC**, vol. 1, pp. 111–123.

Hauser, E. B., 2002. "Estudo e Solução da Equação de Transporte de Nêutrons Bidimensional pelo Método LTS_N Para Elevadas Ordens de Quadraturas Angulares: $LTS_N2D - Diag$ e $LTS_N2D - DiagExp$ ", Tese de doutorado, PROMEC-Programa de Pós-Graduação em Engenharia Mecânica , UFRGS-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil. Hauser, E. B., de Vilhena, M. T. M. B., and Barros, R. C., 2001a. "Análise Espectral da matriz LTS_N para o Problema de Ordenadas Discretas Bidimensional", **Anais do XXIV Congresso Nacional de Matemática Aplicada e Computacional**, vol. 1, pp. 569.

Hauser, E. B., de Vilhena, M. T. M. B., and Barros, R. C., 2002a. "Análise Espectral da matriz LTS_N para o Problema de Ordenadas Discretas Bidimensional", **Tema -Tendências em Matemática Aplicada e Computacional**, vol. 3(2), pp. 131–140.

Hauser, E. B., de Vilhena, M. T. M. B., and Pazos, R. P., 2001b. "Tópicos sobre a Convergência do Método LTS_N Nodal Bidimensional pra Elevada Ordem de Quadratura",
Anais do XXIV Congresso Nacional de Matemática Aplicada e Computacional-SBMAC, vol. 1, pp. 357.

Hauser, E. B., Pazos, R. P., and de Vilhena, M. T. M. B., 2002b. "Solution and Study of the Two-Dimensional Nodal Neutron Transport Equation", Proceedings of ICONE10:
10th International Conference on Nuclear Engineering, vol. 1, pp. 1–5.

Hauser, E. B., Pazos, R. P., , and de Vilhena, M. T. M. B., 2003a. "Solution of Three-Dimensional Nodal Neutron Transport Equation", **Proceedings of the 11th International Conference on Nuclear Engineering**, vol. 1, pp. 1–10.

Hauser, E. B., Pazos, R. P., Barros, R. C., and de Vilhena, M. T. M. B., 2003b. "Solution and study of Nodal Neutron Transport Equation applying the LTS_N- DiagExp Method", **Proceedings of the 18th International Conference on Transport The**ory, vol. 1, pp. 1–5. Hauser, E. B., Pazos, R. P., Barros, R. C., and de Vilhena, M. T. M. B., 2005a. "Spectral Analysis of the Matrix for Three-dimensional Discrete Ordinates Problems", Anais do XXVIII Congresso Nacional de Matemática Aplicada e Computacional.

Hauser, E. B., Pazos, R. P., and de Vilhena, M. T. M. B., 2004. "An Error Bound Estimate and Convergence of the Nodal- LTS_N Solution in a Rectangle", **Anais do XXVII Congresso Nacional de Matemática Aplicada e Computacional**, vol. 1, pp. 1146– 1156.

Hauser, E. B., Pazos, R. P., and de Vilhena, M. T. M. B., 2005b. "An Error Bound Estimate and Convergence of the Nodal- LTS_N Solution in a Rectangle", **Annals of Nuclear Energy**, vol. 32, pp. 1146–1156.

Kaper, H. G., C.G.Lekkerkerker, and Hejtmanek, J., 1982. "Spectral Methods in Linear Transport Theory". Birkhauser Verlang, Basel.

Kobayashi, K., Sugimura, N., and Hagaya, Y., 2001. "3D Radiation Transport Benchmark Problems and Results for Simple Geometries with Void Region", **Progress in Nuclear Energy**, vol. 39-2, pp. 119–144.

Lewis, E. E. and W. F. Miller, J., 1993. "Computational Methods of Neutron Transport". American Nuclear Society, Illinois.

Mello, J. A. M., 2000. "Modelagem Espectro-Nodal Exponencial para Problemas Monoenergéticos de Penetração Profunda segundo a Teoria de Transporte de Nêutrons na Formulação de Ordenadas Discretas em Geometria Cartesiana Bidimensional", Tese de doutorado, Programa de Pós-Graduação em Engenharia Nuclear , Universidade Federal de Janeiro, Rio de Janeiro, RJ, Brasil. Mello, J. A. M. and Barros, R., 2002. "An Exponential Spectral Nodal Method for One-Speed X,Y- geometry Deep Penetration Discrete Ordinates Problems", Annals of Nuclear Energy, vol. 29, pp. 1855–1869.

Mokhtar-Kharroubi, M., 1997. "Mathematical Topics in Neutron Transport Theory. New Aspects", volume 46. World Scientific, Singapore.

Mokhtar-Kharroubi, M. and Sbihi, M., 2005. "Critical Spectrum and Spectral Mapping Theorems in Transport Theory", **Semigroup Forum**, vol. 70(3), pp. 406–435.

Mokhtar-Kharroubi, M. and Sbihi, M., 2006. "Spectral Mapping Theorems for Neutron Transport, L^1 -Theory", **Semigroup Forum**, vol. 72(2), pp. 249–282.

M.Stacey, W., 2001. "Nuclear Reactor Physics". John Wiley and Sons, Inc., New York.

N.K.Gupta, 1981. "Nodal methods for three-dimensional simulators", **Progress In** Nuclear Energy, vol. 1(7), pp. 127–149.

Oliveira, C. R., Eaton, M. D., Umplheby, A. P., and C.Pain, C., 2001. "Finite Element-Spherical Harmonics Solutions of the 3D Kobayashi Benchmarks with Ray-Tracing Void Treatment", **Progress in Nuclear Energy**, vol. 39-2, pp. 243–261.

Ortega, J. M. and W.C.Rheinboldt, 1970. "Iterative Solution of Non Linear Equations in Several Variables". Academic Press, New York.

Pazos, R. P., Thompson, M., and Vilhena, M. T. M. B., 2001. "Error Bounds for Spectral Collocation Method in Linear Boltzmann Equation", Atas do 53th Seminário Brasileiro de Análise, vol. 1, pp. 209–328. Pazos, R. P., Thompson, M., and Vilhena, M. T. M. B., 2002. "Error Bounds For Spectral Collocation Method for the Linear Boltzmann Equation", **International Journal** of Computational and Numerical Analysis and Applications, vol. 1(3), pp. 237–268.

Pazos, R. P. and Vilhena, M. T. M. B., 1998. "Convergence of the LTS_N Method: Approach of C₀ Semi-Groups", **Progress in Nuclear Energy**, vol. 34(1), pp. 77–86.

Pazos, R. P. and Vilhena, M. T. M. B., 1999a. "Convergence in Transport Theory", Applied and Numerical mathematics, vol. 30, pp. 79–92.

Pazos, R. P. and Vilhena, M. T. M. B., 1999b. "Convergence of the Spectral Approximations for Steady-State Two-dimensional Transport Problem", Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications–International Conference, Madrid, Spain, vol. 2, pp. 1770.

R.D.Lawrence, 1986. "Progress in Nodal methods for the solution of the neutron diffusion and transport equations", **Progress In Nuclear Energy**, vol. 1(17), pp. 271–301.

Segatto, C. F. and Vilhena, M. T. M. B., 1999. "The State-of-the-art of the LTS_N Method", Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications–International Conference, Madrid, Spain, vol. 2, pp. 1618–1631.

Stamm'ler, R. J. J. and Abbate, M. J., 1983. "Methods of Steady–State Reactor Physics in Nuclear Design". Academic Press, London. Suslov, I., 2001. "Improvements in the Long Characteristics Method and Their Efficiency for Deep Penetration Calculations", **Progress in Nuclear Energy**, vol. 39-2, pp. 223–242.

Vilhena, M. T. M. B. and Barichello, L. B., 1991. "A New Analytical Approach to Solve the Neutron Transport Equation", **Kerntechnick**, vol. 56(5), pp. 334–336.

Vilhena, M. T. M. B., Barichello, L. B., Zabadal, J., Segatto, C. F., and Cardona,
A. V., 1998. "General Solution of One-dimensional Approximations To the Transport
Equation", Progress in Nuclear Energy, vol. 33, pp. 99–115.

Walters, W., 1986. Progress in Nuclear Energy, vol. 18, pp. 21.

Warsa, J. S., 2000,"Analytical Solution of the Discrete Ordinates Transport Equation", Los Alamos National Laboratory, http://www.mapleapps.com/categories/engineering/nuclear/html/transport.html.

Yavuz, M., 1998. "Methods for Computing S_N Eigenvalues and Eigenvectors of Slab Geometry Transport Problems", **Annals of Nuclear Energy**, vol. 25(1), pp. 149–160.

Zabadal, J., 1994. "Solução Analítica da Equação de Ordenadas Discretas Multidimensional", Tese de doutorado, Programa de Pós-Graduação em Engenharia Mecânica (PROMEC), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.

Zabadal, J., Vilhena, M. T. M. B., and Barichello, L. B., 1993. "Solução da Equação de Ordenada Discreta em Duas Dimensões pelo Método LTS_N ", **Anais do IX ENFIR-Encontro Nacional de Física de Reatores e Termohidráulica**, vol. 1, pp. 90–92. Caxambú, MG. Zabadal, J., Vilhena, M. T. M. B., and Barichello, L. B., 1995. "Solution For Two-Dimensional One Group Discrete Ordinates Problem by the LTS_N Method", Annals of Nuclear Energy, vol. 22(2), pp. 131–134.

Zabadal, J., Vilhena, M. T. M. B., and Barichello, L. B., 1997. "An Analitical Solution for the Two-Dimensional Discrete Ordinate Problem In a Convex Domain", **Progress in Nuclear Energy**, vol. 31(3), pp. 225–228.

Zeidler, E., 1990. "Nonlinear Functional Analysis and hith Applications", volume 1,2. Springer Verlang, Berlin.

Zmijarevic, I. and Sanches, R., 2001. "Determininistic Solutions for 3D Kobayashi Benchmarks", **Progress in Nuclear Energy**, vol. 39-2, pp. 207–221.

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo