Download PDF
ads:
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
FACULDADE DE MEDICINA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS MÉDICAS:
ENDOCRINOLOGIA
TESE DE DOUTORADO
ESTUDOS PROSPECTIVOS NO DIAGNÓSTICO DIFERENCIAL
DA BAIXA ESTATURA E DA DEFICIÊNCIA DE
HORMÔNIO DE CRESCIMENTO EM CRIANÇAS
LEILA PEDROSO DE PAULA
Porto Alegre, 2007
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
FACULDADE DE MEDICINA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS MÉDICAS:
ENDOCRINOLOGIA
TESE DE DOUTORADO
ESTUDOS PROSPECTIVOS NO DIAGNÓSTICO DIFERENCIAL
DA BAIXA ESTATURA E DA DEFICIÊNCIA DE
HORMÔNIO DE CRESCIMENTO EM CRIANÇAS
LEILA PEDROSO DE PAULA
Orientador: Dr. Mauro Antônio Czepielewski
Dissertação apresentada ao Programa
de Pós-Graduação em Ciências
Médicas: Endocrinologia, UFRGS,
como requisito parcial para a obtenção
do título de Doutora em Ciências
Médicas - Endocrinologia.
Porto Alegre, 2007
2
ads:
Ficha Catalográfica
P324e Paula, Leila Pedroso de
Estudos prospectivos no diagnóstico diferencial da baixa
estatura e da deficiência de hormônio de crescimento em
crianças / Leila Pedroso de Paula ; orient. Mauro Antônio
Czepielewski. – 2007.
100 f. : il.
Tese (doutorado) Universidade Federal Rio Grande do Sul.
Faculdade de Medicina. Programa de Pós-Graduação em Ciências
Médicas: Endocrinologia. Porto Alegre, BR-RS, 2007.
1. Nanismo hipofisário 2. Hormônio do crescimento 3.
Diagnóstico diferencial 4. Criança 5. Estatura I. Czepielewski,
Mauro Antonio II. Título.
NLM: WK 550
Catalogação Biblioteca FAMED/HCPA
3
DEDICATÓRIA
Aos meus pais
Por todos estes anos de dedicação
Ao meu esposo
Pelo amor que aumenta a cada dia
Aos meus filhos
Pela renovada inspiração de vida.
4
AGRADECIMENTOS
Agradeço aos pacientes que foram atendidos em nosso ambulatório ao longo
destes anos, que confiaram suas vidas e seus problemas em nossas mãos e permitiram
desta forma que pudéssemos analisar os métodos diagnósticos utilizados para
diferenciar as diversas causas de baixa estatura. Desde o último ano como acadêmica de
medicina comecei a trabalhar neste ambulatório de baixa estatura e confundi a minha
história com a dele, nos anos de residência, mestrado e doutorado. São estes os meus
pacientes mais antigos, alguns dos quais eu acompanho já há 13 anos.
Agradeço aos bolsistas, residentes e pós-graduandos que passaram pelo
ambulatório neste período, em especial aos que se diferenciaram pela vontade em
aprender e a disposição em trabalhar. Não cito todos seus nomes aqui, pois tenho
certeza que eles o sabem.
Tenho um agradecimento em especial ao Dr. Mauro Antônio Czepielewski, que
nos últimos 13 anos tem sido um verdadeiro orientador, compartilhando generosamente
todo seu conhecimento. Mesmo nos últimos tempos, acumulando os cargos de Diretor
da Faculdade de Medicina da UFRGS, professor da graduação e da pós-graduação,
médico em consultório particular e em nível hospitalar e filho, esposo e pai sempre
presente, ele ainda “inventa” um tempo para todos os seus orientandos de pós-
graduação e não tem pressa nenhuma de entrar em um consultório e conversar
tranqüilamente com os pacientes, aos quais conhece por nome e sobrenome. Certamente
ele é responsável por grande parte do meu “conhecimento endocrinológico” e também
de “relação médico-paciente”.
Agradeço minha família, meu bem maior e eterno.
5
Esta Tese de Doutorado segue o formato proposto pelo Programa de Pós-
Graduação em Ciências Médicas: Endocrinologia da Faculdade de Medicina da
UFRGS, sendo apresentada na forma de dois artigos originais a serem submetidos
para publicação em periódicos Qualis A Internacional na Classificação da
CAPES.
Esta trabalho foi realizado com o apoio das seguintes instituições:
- CAPES - através de bolsa de Doutorado obtida junto ao Programa de Pós-
Graduação em Ciências Médicas: Endocrinologia, Metabolismo e Nutrição,
Faculdade de Medicina, UFRGS.
- Pró-Reitoria de Pesquisa – UFRGS através das bolsas de iniciação científica que
permitiram o envolvimento de vários acadêmicos de medicina durante o estudo
- Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre,
através do apoio financeiro e na consultoria estatística e epidemiológica
6
SUMÁRIO
Agradecimentos.................................................................................. 5
Formato da Tese de Doutorado........................................................ 6
Lista de Abreviaturas........................................................................ 9
Lista de Tabelas e Figuras................................................................ 11
Introdução......................................................................................... 13
Referências.......................................................................................... 31
Artigo Original 1
Títle.................................................................................................... 36
Abstract.............................................................................................. 37
Introduction........................................................................................ 39
Patients and Methods ........................................................................ 40
Statistical Analysis............................................................................ 42
Results............................................................................................... 43
Discussion.......................................................................................... 48
Conclusions....................................................................................... 53
References......................................................................................... 55
Figures and Tables............................................................................ 61
7
Artigo Original 2
Title ................................................................................................. 66
Abstract………...……………………………………………......... 67
Introduction………...…………………………………………….. 69
Patients and Methods.............……………………………………. 70
Statistical Analysis…….......……………………………………... 73
Results……………………...…………………………………….. 73
Discussion…………………...………………………………….... 75
Conclusion....................................................................................... 81
References………………………………………………………... 83
Figures and Tables.......................................................................... 90
Comentários Finais....................................................................... 95
8
LISTA DE ABREVIATURAS
ALS: Subunidade Ácido-Lábil
ASC: Área Sob a Curva (AUC)
BE: Baixa Estatura (SS- short stature)
BEC: Baixa Estatura Constitucional (CSS- constitutional SS)
BEF: Baixa Estatura Familiar (FSS- Familial SS)
BEVN: Baixa Estatura Variante da Normalidade (NVSS- Normal Variant SS)
DC: Doença Celíaca (CD- Celiac Disease)
DP: Desvio Padrão (SD- standard deviation)
FSH: Hormônio Folículo-Estimulante
GH: Hormônio de Crescimento
GH Clo: teste de estímulo do GH pela Clonidina
GHRH: Hormônio Liberador do Hormônio do Crescimento
GHRPs: GH Releasing Peptides ou Peptídeos Liberadores do Hormônio do
Crescimento
GnRH: Hormônio Liberador das Gonadotrofinas
HipoIns: Teste de estímulo do GH pela Insulina
IGF-1: Fator de Crescimento Insulina-Símile Número 1
IGF-2: Fator de Crescimento Insulina-Símile Número 2
IGFBP-1: Proteína Ligadora Número 1 do IGF-1
IGFBP-2: Proteína Ligadora Número 2 do IGF-1
9
IGFBP-3: Proteína Ligadora Número 3 do IGF-1
IGFBP-4: Proteína Ligadora Número 4 do IGF-1
IGFBP-5: Proteína Ligadora Número 5 do IGF-1
IGFBP-6: Proteína Ligadora Número 6 do IGF-1
IGFBP-rPs: Proteínas Correlatas de IGFBPs
KDa: kilodaltons
LH: Hormônio Luteinizante
Priming: Administração prévia de agente hormonal destinado a estimular resposta do
GH ao teste de estímulo farmacológico
RCIU: Retardo do Crescimento Intra-Uterino (IGR- Intrauterine Growth Retardation)
RNA: Ácido Ribonucleico
ROC: Receiver Operating Characteristics
SNC: Sistema Nervoso Central
SOCS: GH inducible suppressors of citokine signaling ou
citoquinas que provocam insensibilidade ao GH
SPSS: Statistical Package for the Social Sciences
ST: Síndrome de Turner (TS- Turner Syndrome)
T4: Tiroxina
TSH: Hormônio Tireo-Estimulante
VC: Velocidade de Crescimento
VSG: Velocidade de Sedimentação Globular (ESG)
10
LISTA DE TABELAS E FIGURAS
Introdução
Figura 1. Diagnóstico Diferencial de Baixa Estatura ...................................... 19
Tabela 1. Genes associados com a deficiência isolada ou combinada de GH.29
Tabela 2. Exames recomendados na investigação da BE................................ 30
Artigo 1
Table 1. Basal clinic Charactheristics................................................... 61
Table 2. Diagnosis of cause of short stature in 670 patients with a defined
diagnosis (General, 396 boys and 274 girls)...................................................... 62
Table 3. Chronic diseases and genetic syndromes associated with short
stature observed in these case list ..................................................................... 63
Table 4. Tests recommended to investigate SS............................................ 64
Figure 1. Flowchart of patient evaluation and diagnosis............................. 65
11
Artigo 2
Table 1. Comparison of characteristics of patients................................ 90
Figure 1. Percentage Frequency of the GH peak response values to stimulation
tests and standard deviation of IGF-1 in patients with normal variant SS or GH
deficiency........................................................................................................ 91
Table 2. Sensitivity, specificity and percentage of false positives tests from
different cutoff points in the GH response to the clonidine stimulation tests,
preceded (P+) or not (P-) by priming and to all stimulation tests (clonidine and
insulin)........................................................................................................... 92
Table 3. Sensitivity and specificity of different cutoff points of the standard
deviation of IGF-1........................................................................................ 93
Figure 2. ROC curve of the peak response of GH to clonidine stimulation test
without and with priming and to insulin hypoglycemia in the diagnosis of GH
deficiency and ROC curve of the standard deviation of the IGF-1 in diagnosing
GH deficiency.............................................................................................. 94
Comentários finais
Tabela 1- “Prós” e “Contras” dos Métodos Diagnósticos Utilizados na Avaliação
do Eixo GH- IGF-1.................................................................................... 100
12
INTRODUÇÃO
O crescimento é um processo complexo e multifatorial, determinado por
fatores genéticos e também por influência do meio - incluindo aspectos nutricionais,
psicológicos e ambientais - aliados a um conjunto de hormônios secretados
harmonicamente e a uma boa saúde global. Apesar de ser multifatorial, o crescimento
de uma criança usualmente ocorre de forma previsível e qualquer alteração na estatura
ou velocidade do crescimento (VC) pode significar a existência de uma doença
associada. Assim, no sentido de discutirmos a avaliação diagnóstica das causas da baixa
estatura (BE) e da deficiência do hormônio do crescimento, é preciso que revisemos o
eixo GH-IGFs (hormônio do crescimento e fatores de crescimento semelhantes à
insulina), o crescimento normal nas diferentes idades, as causas de BE e a possível
influência do eixo GH-IGF-1 nestas causas.
O GH, assim como os IGFs e suas proteínas carreadoras (BPs) formam a base
do eixo responsável pela atuação do GH nos órgãos-alvo. Esse complexo eixo GH-IGFs
atua em todas as fases do crescimento, sofrendo influência de outros hormônios e
também de fatores externos (1, 2).
O entendimento deste complexo eixo hormonal, desde a embriogênese até sua
regulação fisiológica, nos permite uma melhor compreensão dos processos normais e
patológicos envolvidos com o crescimento. No sentido de introduzirmos os artigos que
13
compõem esta tese de doutorado, apresentamos a seguir uma revisão que procura
compilar os principais aspectos atuais referentes ao eixo GH-IGFs e o crescimento.
1.Eixo GH-IGF:
Estudos recentes e, principalmente, a criação de inúmeros modelos animais
com deleções de vários genes do sistema IGF, revelaram sua alta complexidade.
Atualmente acredita-se que o crescimento seja mediado principalmente pela ação
autócrina/parácrina do IGF-1 livre produzido localmente (na placa de crescimento, por
exemplo) após estímulo pelo GH, porém com algum efeito direto do GH e um mínimo
efeito do IGF-1 circulante, de origem hepática. Este IGF-1 circulante parece ter um
maior efeito no feed back negativo da produção e secreção de GH pela hipófise. Além
de sofrer influência dos níveis séricos de IGF-1, a secreção de GH é regulada pela inter-
relação dos níveis de GHRH, Somatostatina, GHRPs (GH Releasing Peptides), Grelina,
dentre outros. A hipófise secreta 70-75% do GH sob a forma ativa de 22kDa, cerca de
5-10% na forma de 20KDa, uma proteína de 176 KDa, com baixa afinidade pelo
receptor de GH. Outras formas podem ser GH-desamino (8-13%) e uma variedade de
oligômeros do GH, cujas bioatividades não estão bem estabelecidas (3). A concentração
de IGF-1 varia com a idade, aumentando gradualmente durante a infância, atingindo
pico em média aos 13 a 15 anos nos meninos e de 11 a 13 anos nas meninas. O IGF-1
aumenta gradativamente conforme o estágio puberal, alcançando pico no estágio IV da
puberdade em meninos e III-IV em meninas (4,5). Os níveis de IGF-1 livre são
14
modulados também por um intricado sistema de proteínas carreadoras (IGFBPs),
proteases e proteinas correlatas de IGFBPs (IGFBP-rPs) (6). Este sistema compreende 6
IGFBPs, onde a IGFBP-3 e, mais raramente, a IGFBP-5 podem ligar-se à subunidade
ácido-lábil e ao IGF-1 formando o complexo ternário, de maior peso molecular 150Kda,
o qual não atravessa o endotélio capilar. As IGFBPs aumentam a meia-vida das IGFs,
inibindo sua proteólise e depuração e são responsáveis pelo transporte (IGFBP-3), além
de modular a interação dos IGFs com seus receptores. A IGFBP-5 também é capaz de
fixar as IGFs na matriz óssea aumentando seu armazenamento local e, aparentemente,
as IGFBPs possuem também funções independentes de IGFs.
Os principais fatores implicados na regulação das IGFs são: nível de GH/ IGF-
1, idade, estágio puberal, jejum e má-nutrição (reduzindo concentração de IGFBP3 e
aumentando a de IGFBP1 e IGFBP2, reduzindo assim, a longo prazo, a meia-vida das
IGFs, porém aumentando o transporte através do endotélio capilar e conseqüentemente
aumentando o aporte de IGFs livres nos tecidos alvo), exercício (aumenta atividade da
protease cálcio dependente o que aumenta o IGF livre no local e provoca efeito
anabólico no tecido muscular) e outros hormônios como por exemplo os
glicocorticóides (aumenta IGFBP-3 e diminui IGFBP-1 e IGFBP-2, reduzindo 60% da
biodisponibilidade dos IGFs). Outro importante fator de regulação das IGFBPs é a
existência de proteases específicas para IGFBPs, capazes de exercer diversos níveis de
degradação destas proteínas, provocando desde uma leve redução da afinidade pelos
15
IGFs até impossibilidade total de ligação. Proteínas correlatas são proteínas inicialmente
descobertas e caracterizadas em sistemas não envolvendo o eixo dos IGFs, mas com
regiões semelhantes (1, 7).
Em ratos foi possível determinar a porcentagem de crescimento que é
dependente de cada “passo do sistema”, concluindo-se que 17% do crescimento é
independente tanto do GH quanto do IGF-1, 14% dependente apenas do GH, 35%
dependente apenas do IGF-1 e 34% dependente do GH e IGF-1 associados. Entretanto
estas evidências são de estudos animais e ainda poucos dados em humanos que
comprovem com exatidão esta hipótese (1, 2).
2. Crescimento Normal e eixo GH-IGF
O período de vida intra uterina é uma fase de crescimento exponencial, sendo
que aos quatro meses de idade gestacional o feto desenvolve sua maior velocidade de
crescimento, crescendo cerca de 11 cm/ mês. A partir daí se produz uma desaceleração
que se prolonga até o momento do nascimento. O IGF-2 é importante no início da
gestação, enquanto o IGF-1 parece influenciar os estágios mais tardios do
desenvolvimento. A produção tecidual de IGF-1 com ação parácrina é crítica para o
crescimento intra-uterino e sua regulação é quase totalmente GH independente e
influenciada pelo estado nutricional do feto, principalmente pela disponibilidade de
glicose e as conseqüentes mudanças na síntese de insulina fetal (8, 9). A placenta é
origem de IGF-1 materno, o qual possui ação trófica no desenvolvimento fetal apesar de
16
não atravessar a barreira placentária. O IGF-1 materno aumenta o crescimento e a
circulação placentária o que amplia o aporte nutricional ao feto e conseqüentemente
aumenta a produção fetal de IGFs. A elevação da concentração de IGF-1 livre materno
se deve também a um aumento de IGFBP-1 e IGFBP-2 e redução da IGFBP-3 por
maior proteólise. Ratos mutantes, nulos para o receptor tipo IGF-1 nascem com 45% do
peso normal, hipoplasia muscular, atraso de ossificação e pele translúcida. Ratos
mutantes nulos para o gene de IGF-1 nascem com peso de 60% do normal e apresentam
desenvolvimento pós-natal deficiente e infertilidade. Ratos nulos para o gene do IGF-2
também nascem com peso de 60% do normal, porém apresentam crescimento pós-natal
normal (2).
Os níveis de IGF-1 e IGFBP-3 vão gradualmente se elevando a partir do
primeiro/segundo ano de vida, na fase de crescimento considerada dependente de GH.
O IGF-2 não varia significativamente com a idade. A nutrição permanece o mais
importante regulador dos IGFs no início da vida.
Na infância o crescimento não é linear. Durante os três primeiros anos de vida
extra-uterina, no período também denominado de primeira infância, a velocidade de
crescimento é muito maior do que nos anos subseqüentes. No primeiro ano a criança
cresce a uma velocidade média de 25 cm/ ano. Esta é uma etapa de risco, sensível a
déficits nutricionais, infecções e outras doenças. A partir dos 3 até por volta dos 9 anos,
na segunda infância, a VC é de 5 a 7 cm/ ano, alternando fases de crescimento rápido
17
com nenhum crescimento. Qualquer insulto, como uma doença aguda ou verminose,
pode também interferir no ritmo do crescimento.
Entretanto, a maioria das crianças tem a capacidade de acelerar o crescimento
no momento que a causa para a desaceleração prévia tenha desaparecido, caracterizando
um crescimento compensatório para que a criança recupere seu tamanho normal
(“catch-up growth”).
Por volta dos 12 anos nas meninas e 14 anos nos meninos, a VC aumenta,
podendo passar para 10cm/ano ou mais. O crescimento na puberdade é determinado, em
grande parte, pelo GH e os esteróides sexuais. Todos marcadores de maturação
aparecem em média 2 anos mais cedo em meninas do que em meninos, como a
maturação da idade óssea, a elevação dos níveis de IGF-1, IGFBP-3 e IGF-1 livre. Os
níveis de IGF-1 e IGFBP-3 atingem pico no estágio IV de Tanner com declínio
posterior. A retroalimentação negativa do GH é mais ativa na fase puberal em meninos,
aumentando o padrão pulsátil, característico da puberdade (10, 11).
Outro aspecto ainda
a ser considerado é a dificuldade em interpretar os testes de estímulo do GH no período
imediatamente peri puberal, uma vez que nesta fase do desenvolvimento os níveis de
GH estão freqüentemente baixos (12). A secreção de GH aumenta fisiologicamente na
puberdade, devido principalmente a uma maior amplitude dos pulsos do que a um
número maior de pulsos (13, 14).
18
3. Desordens do Crescimento
O déficit de crescimento se caracteriza por estatura abaixo do 3
o
percentil ou
abaixo de 2 desvios padrões para a média padronizada pela idade e sexo, ou VC abaixo
do percentil 25. Como podemos observar no fluxograma abaixo, as desordens
endócrinas são apenas algumas das diversas causas de déficit de crescimento, porém
alterações do eixo GH-IGF-1 parecem estar implicadas, ao menos parcialmente, na
etiopatogenia de causas consideradas não endócrinas. Apresentamos a seguir um breve
resumo do papel do eixo GH-IGF-1 nestas situações clínicas.
Adaptado da referência 15
Causas
Podemos reagrupar as diversas causas apresentadas na figura 1 em quatro
grandes grupos, descritos abaixo:
1.Variantes da Normalidade Este é o grupo mais freqüente. Entretanto, classificar
uma criança como portadora de BE que expressa a variação da normalidade exige que
antes se exclua qualquer patologia que possa estar presente.
19
1.1.BE Constitucional - É um diagnóstico de exclusão. Os pacientes
apresentam estatura abaixo do 3
o
percentil, peso e altura ao nascer normais, atraso de
idade óssea, altura abaixo do canal de crescimento da altura alvo e possível atraso de
desenvolvimento puberal. Na época esperada para a puberdade, por não terem atingido
ainda o desenvolvimento puberal, estes pacientes possuem o padrão pulsátil de GH
semelhante ao de crianças pré-púberes, ou seja, com amplitude baixa e respondem
pouco aos testes de estímulo do GH. O IGF-1 e o IGFBP3 são baixos para a idade
cronológica, mas não para idade óssea ou estágio puberal (16).
1.2. BE Familiar - Os pacientes apresentam peso e altura ao nascer normais,
canal de crescimento compatível com altura alvo, sem atraso de idade óssea e
velocidade de crescimento normal. Pode eventualmente estar relacionada com
polimorfismos genéticos, produção inadequada de GH/IGF-1 ou resistência parcial ao
GH.
2. Causas Patológicas Não Endócrinas
Relacionam-se a um grupo heterogêneo de patologias que podem ter como
única manifestação a baixa estatura. Estas têm em comum VC anormal e atraso da idade
óssea, com exceção das displasias ósseas e a maioria das síndromes genéticas.
2.1. Displasias esqueléticas Baixa estatura com desproporção de segmentos
corporais, aparentemente sem relação com o eixo GH-IGF-1, causada por
anormalidades dos colágenos e outras proteínas que formam a matriz óssea.
20
2.2. Anormalidades cromossômicas e síndromes genéticas - Na sua maioria
não apresentam alterações do eixo GH-IGF (exemplo: síndromes de Turner, Noonan,
Silver Roussel).
2.3. nutrição - Infelizmente é uma causa muito freqüente de BE. Como
característica principal os pacientes apresentam peso abaixo do esperado para a idade e
menor ainda do que a altura esperada para a idade (idade-peso menor do que idade-
estatura). Apresentam níveis elevados de GH e reduzidos de IGF-1. Deprivação
alimentar de longo prazo reduz níveis de IGF-1 e eleva IGFBP-1 e IGFBP-2, sendo
sugerido que este aumento de IGFBP-1 e IGFBP-2 iniba o feed-back negativo
hipofisário na secreção de GH, provocando os níveis elevados de GH. Ocorre também
redução dos níveis de IGFBP-3, especialmente por aumento da ação das proteases
específicas para IGFBP-3. Este aumento de IGFBP-1 e 2 e redução de IGFBP-3 durante
a má-nutrição reduz a meia-vida dos IGFs, porém tende a aumentar o transporte de IGFs
através da parede endotelial o que aumenta a biodisponibilidade dos IGFs em nível
tecidual, como uma forma de preservar o crescimento da melhor forma possível (6).
2.4. Doenças crônicas - Os mecanismos envolvidos no atraso do crescimento
decorrente de doenças crônicas que podem estar relacionados ao eixo GH-IGFs podem
depender de substratos insuficientes pelo jejum ou má-absorção, consumo excessivo de
substratos em doenças como estados hiper catabólicos por infecção, doença cardíaca ou
pulmonar importantes, e condições que aumentam a degradação muscular protéica
21
através da via da ubiquitina como acidose metabólica, uremia, queimaduras, sepse e
outros. O jejum reduz a ligação do GH ao receptor enquanto a restrição protéica
provoca defeito pós-receptor, ambos provocando resistência ao GH e reduzindo a
expressão de IGF-1. Pode haver redução no RNA mensageiro do IGF-1 por jejum ou
restrição protéica, não por diminuir a transcrição do gene do IGF-1 mas por retardar o
“splicing” do pré-RNA mensageiro e prejudicar a estabilidade citoplasmática deste.
alteração do perfil das proteínas ligadoras aumentando a depuração de IGF-1, pelas
diferentes meias-vida dos IGFs ligados às diferentes proteínas. As citoquinas induzem
SOCS (GH inducible suppressors of citokine signaling), que provocam insensibilidade
ao GH. Além disto ocorre resistência tecidual ao IGF-1 (17).
2.5. Nanismo Psicossocial - Pode estar associado à desnutrição ou distúrbios
psiquiátricos. O GH pode estar diminuído, normal ou aumentado e o IGF1 diminuído.
Parece haver um distúrbio hipotalâmico que interfere na secreção de GH. Em geral se
identifica uma situação pessoal, familiar e/ou social que provoca grande alteração
psicológica e/ou comportamental (18).
2.6. Restrição ao crescimento intra-uterino (RCIU) - Pode estar associado a
síndromes genéticas, infecções intra-uterinas ou uso de drogas e/ou fármacos durante
gestação. Sem atraso de idade óssea, sem atraso puberal, VC normal, aproximadamente
85 a 90% dos pacientes apresentam catch up growth nos primeiros anos de vida. Na
RCIU o GH basal está elevado e a concentração de GH de 24 horas e o IGF-1 e IGFBP-
22
3 estão diminuídos (19).
3. Causas Endócrinas
Comparativamente às causas anteriores encontram-se entre as menos
prevalentes, apesar de não menos importantes, especialmente pelas suas possibilidades
terapêuticas.
3.1. Diabete Melito quando cronicamente mal controlado, apresenta GH
aumentado ou normal e níveis diminuídos de IGF1. Pacientes com diabete melito
insulino-dependente possuem aumento nos níveis de IGFBP-1 e redução da IGFBP-3
(por aumento da ação de proteases) quando ainda não iniciaram o tratamento com
insulina, talvez para tentar compensar o estado catabólico com o aumento da
biodisponibilidade de IGF-1 (20).
3.2. Excesso de glicocorticóides endógenos ou exógenos - Glicocorticóides
inibem o crescimento por uma série de fatores: alteração no perfil secretor do GH por
estímulo do tônus somatostinérgico, alteração na atividade das IGFBPs, prejuízo na
ação local das IGFs por redução de receptores e inibição direta da mitogênese dos
condrócitos (6).
3.3. Hipotireoidismo congênito ou adquirido - A BE geralmente precede os
outros sintomas, apresentando também atraso de idade óssea, piora do desempenho
escolar e outros sinais e sintomas de hipotireoidismo. Tanto o hipo quanto o
hipertireoidismo diminuem a síntese de GHRH e prejudicam o crescimento pós-natal
23
(21). Em relação ao T
3,
sua ausência em células hipofisárias diminui a resposta do GH
ao GHRH. No hipotireoidismo a secreção de GH está diminuída em resposta aos testes
de estímulo fisiológicos e farmacológicos (22). O tratamento promove uma aceleração
do crescimento e maturação esquelética.
3.4. Desordens do metabolismo do cálcio e da Vitamina D Entre estas
alterações incluímos as diversas formas de raquitismo ou os distúrbios decorrentes da
má-absorção intestinal.
3.5. Deficiência de GH - A deficiência de GH pode ser congênita, incluindo
anomalias do desenvolvimento do hipotálamo e da hipófise e anomalias da síntese e
secreção de GH, ou ainda adquirida, secundária a processos neoplásicos, traumatismos,
infecções ou doenças infiltrativas que acometam estruturas hipotálamo-hipofisárias (9).
Dentre as alterações congênitas, podem ocorrer mutações nos fatores de transcrição, no
gene GHRH, no gene do receptor do GHRH ou do próprio gene do GH ou ainda
defeitos de linha média. As mutações nos fatores de transcrição e demais diagnósticos
genéticos da deficiência de GH estão sumarizados na tabela 1.
3.6. Neuro disfunção Secretória - A criança apresenta BE e baixa velocidade
de crescimento, resposta normal do GH aos testes de estímulo farmacológicos, mas na
avaliação da secreção de 24h os níveis de GH são baixos, assim como a IGF-1 basal.
Esses achados são mais comuns em crianças após radioterapia de crânio (15).
24
3.7. GH Bioinativo - Pode ser suspeitado em crianças com baixa estatura com
GH imunorreativo (mensurável), mas de baixa biopotência. Estas alterações
moleculares são raras, tendo sido descritos poucos casos efetivamente comprovados
(23). O diagnóstico definitivo pode ser estabelecido através de estudos moleculares.
Na prática clínica pode ser presumido, porém, em uma criança com auxologia
compatível com deficiência de GH, exclusão de outras causas, níveis elevados de GH
basal ou responsivo aos testes de estímulo, nível muito baixo de IGF-1 que se eleva no
teste de geração de IGF-1 e que apresenta uma resposta marcada no crescimento com o
uso de GH exógeno (15).
3.8. Insensibilidade ao GH Ocorre em crianças com fenótipo de deficiência
de GH, mas com níveis de GH normais ou elevados, e diminuída produção de IGF-1
(deficientes de IGF-1). Classificada como insensibilidade ao GH primária ou nanismo
de Laron, defeitos hereditários, como anormalidades do receptor de GH, anormalidades
pós-receptor do sinal de transdução do GH, defeitos de biossíntese do IGF-1 e
insensibilidade gênica à ação do GH (9, 22) Os níveis de IGF-1, IGF-2 e IGFBP-3 são
baixos e as GHBPs são na maioria das vezes indetectáveis (23). Os pacientes não
respondem ao GH exógeno, mas respondem á administração de IGF-1 (25).
3.9. Deleção do gene do IGF-1 - Existe apenas um único caso relatado no qual
se observou intenso déficit de crescimento pré e pós-natal (- 6,9 DP) com microcefalia,
surdez neurossensorial e retardo mental. O GH basal variava de 2,2 a 171 e o GH pós
25
estímulo com clonidina atingiu 98mcg/l, a IGFBP-3 era normal e o IGF-1 indetectável.
Análise genética evidenciou deleção dos éxons 4 e 5 do gene IGF-1 e seus pais eram
heterozigotos, com estatura no limite inferior da normalidade e IGF-1 discretamente
reduzido.
4- Baixa Estatura Idiopática Também se trata de uma classificação de
exclusão. Caracteriza-se por estatura abaixo do percentil 3, estatura ao nascer normal,
proporções corporais normais e maturação sexual adequada. Sem evidência de má-
nutrição, desordem psicossocial, doença crônica ou endocrinopatia. Apresenta VC de 4
a 5 cm/ano, idade óssea normal ou atrasada, mas idade cronológica maior ou igual a
idade óssea que é maior que a idade estatural. A etiologia não foi ainda completamente
elucidada, porém existem algumas evidências que demonstram: produção inadequada
ou resistência parcial a GH (polimorfismos do gene GH-1, mutações heterozigotas no
gene do receptor de GH), menor biodisponibilidade do IGF-1 por elevação da IGFBP-1
e altos níveis teciduais de IGFBP-3 ou outros polimorfismos genéticos (16).
4. Avaliação Diagnóstica
Conforme podemos observar, frente a uma criança portadora de desordem do
crescimento é necessário e fundamental seguir uma avaliação sistematizada na
investigação da causa deste distúrbio. Neste sentido apresentamos a seguir dois artigos
originais envolvendo aspectos diagnósticos e etiológicos da BE relatando achados
obtidos a partir de estudo prospectivo de uma coorte de pacientes com BE atendidos em
26
ambulatório organizado especificamente para tal no Serviço de Endocrinologia do
Hospital de Clínicas de Porto Alegre.
O primeiro artigo enfatiza a importância de uma investigação basal clínica
prévia, analisa as causas mais prevalentes de baixa estatura (BE) assim como a utilidade
dos exames laboratoriais basais nesta investigação. Como discutido neste artigo
clínico, é impressionante a escassez e até mesmo a ausência de dados publicados com
relatos atualizados sobre a prevalência das causas de BE e sua avaliação em outros
centros. Aparentemente, esta falta de informações clínicas não é decorrente de haver
uma padronização na sistemática da investigação destes pacientes, pois um estudo de
2004 questionou a prática de 13 hospitais do sul da Inglaterra, especializados na
avaliação de pacientes com BE (26). O surpreendente é que apesar dos especialistas
destes hospitais diagnosticarem e tratarem até 12 casos de deficiência de GH ao ano em
cada serviço, em apenas 9 dos 13 centros os pais destas crianças tiveram sua estatura
aferida ou o estágio puberal da criança havia sido avaliado. Com relação à avaliação
laboratorial, o hemograma era o único exame que era consenso em todos os serviços e
apenas 8 centros submetiam os pacientes a um Raio X de mão e punho para idade óssea.
Além disto, existiam 8 diferentes protocolos para a realização do teste da clonidina e
alguns centros avaliavam o eixo GH-IGF-1 apenas pela medida do GH basal!
O segundo artigo compara diferentes testes diagnósticos, assim como define o
ponto de corte com maior acurácia de cada um deles no diagnóstico da deficiência de
27
GH em crianças com BE. Baseado nos dados encontrados na análise desta Coorte com
851 pacientes com BE e na revisão da literatura, após os dois artigos, apresentamos
nossa sugestão no que se refere à padronização na investigação de pacientes com BE.
28
Tabela 1. Genes associados com a deficiência isolada ou combinada de GH
Gene Fenótipo humano Herança
Hesx1/HESX1,
homeobox gene
expression in
embrionic stem cells
Variável: displasia septo-óptica (defeito frontal,
ocular e hipofisário), deficiência combinada de
hormônios hipofisários, deficiência isolada de GH
com ectopia de neuro-hipófise
Dominante
ou
Recessiva
Lhx3/LHX3
LIM-homeobox
Deficiência de GH, TSH, LH, FSH, com hipoplasia
hipofisária. Sem deficiência de ACTH. Cervical
curta e rígida, com dificuldade de rotação
Recessiva
Lhx4/LHX4
LIM-homeobox
Deficiência de GH, TSH, ACTH, persistência do
conduto crânio-faríngeo e anormalidade de tonsila
cerebelar
Dominante
Prop1/PROP1 Deficiência de GH, TSH, LH, FSH (variável) e
prolactina. Deficiência de ACTH. Hipófise
aumentada (tumor-like), com involução tardia
Recessiva
Pit1/POU1F1 (PIT1)
(POU-family)
Deficiência de GH, TSH, prolactina variável.
Hipófise anterior de tamanho variado
(normal/hipoplásica)
Dominante
ou
Recessiva
Ghrhr/GHRHR No Brasil, na cidade de Itabaianinha pacientes
homozigotos para mutação no gene do receptor do
GHRH apresentam baixa estatura extrema e não
respondem aos testes de estímulo do GH
Recessiva
Deficiência de GH Tipo 1B com hipoplasia de
hipófise anterior - fenótipo heterogêneo
diminuição da síntese ou bioatividade GH.
Recessiva
Gh-1/GH1 Deficiência de GH
GHD 1 A- retardo crescimento no 1º ano
pode desenvolver anticorpos anti-GH
GHD II: molécula mutada com disposição espacial
alterada.
GHD III:Não alteração do gene GH. É uma
doença ligada ao X, associada a hipo ou
agamaglobulinemia e deficiência de GH
Recessiva
(tipo 1A, 1B)
Dominante
(tipo II)
Ligada ao X
(tipo III)
Adaptado das referências 27 e 28.
29
Tabela 2. Exames recomendados na investigação da BE.
EXAMES
Gerais para todos Específicos + comuns
Hemograma
Glicemia
Potássio
IGF-1
-abaixo do 3
o
percentil de altura ou
-baixa velocidade de crescimento
Cálcio, fósforo, albumina
Fosfatase alcalina
Aspartato aminotransferase
Cariótipo sangue periférico (bandas G)
-meninas abaixo do 3
o
percentil
-sem outra causa de BE identificada
Creatinina, exame comum de urina
Bicarbonato, pH urinário
Velocidade de hemossedimentação
TSH, T4
Exame Parasitológico de fezes
Raio X de mão e punho p/ idade óssea
IgA e Anticorpos anti-Transglutaminase IgA
-se perda ou dificuldade de ganho de peso,
-anemia persistente,
-evidência metabólica de má-absorção ou
-qualquer sintoma gastrointestinal
Específicos Incomuns
Ecografia abdominal, pélvica ou cardíaca, Raio X de coluna e ossos longos,
17OH progesterona, Testes e demais dosagens hormonais
Adaptado das referências 29 e 30.
30
Referências Bibliográficas da Introdução
1. Roith DL, Bondy C, Yakar S, Liu JL, and Butler A 2001 The somatomedin
hypothesis: 2001. Endocrine Reviews 22(1):53-74
2. Nakae J, Kido Y, and Accili D 2001 Distinct and overlapping functions of
insulin and IGF-I receptors. Endocrine Reviews 22(6): 818-835
3. Baumann G 1991 Growth hormone heterogeneity: Genes, isohormones,
variants, and binding proteins. Endocrine Reviews 12 (4):424-449
4. Juul A, Bang P, Hertel NT, Main K, Dalgaard P, Jorgensen K, Müller J,
Hall K, Skakkebaek NE 1994 Serum insulin-like growth factor-I in 1030 healthy
children, adolescents, and adults: Relation to age, sex, stage of puberty, testicular size,
and body mass index. J Clin Endocrinol Metab 78 (3): 744-752
5. Juul A, Holm K, Kastrup KW, Pedersen SA, Michaelsen KM, Scheike T,
Rasmussen S, Müller J, Skakkebzek NE 1997 Free insulin-like growth factor I serum
levels in 1430 healthy children and adults, and its diagnostic value in patients suspected
of growth hormone deficiency. J Clin Endocrinol Metab 82: 2497-2502
6. Rajaram S, Baylink DJ, Mohan S 1997 Insulin-like growth factor-binding
proteins in serum and other biological fluids: Regulation and functions. Endocrine
Reviews 18(6): 801-831
7. Póvoa G 2004 Proteínas Transportadoras de IGfs. In Liberman B, Cukiert A
31
eds. Fisiologia e fisiopatologia do hormônio do crescimento. First ed, São Paulo: Lemos
Editorial; 93-130
8. Nogueira KC, Liberman B, Pimentel-Filho FR 2004 Secreção de hormônio
de crescimento nas diversas fases da vida. In Liberman B, Cukiert A eds. Fisiologia e
fisiopatologia do hormônio do crescimento. First ed, São Paulo: Lemos Editorial; 17-40
9. Rosenfeld RG, Cohen P 2002 Disorders of Growth Hormone/Insulin-like
Growth factor Secretion and Action. In: Sperling Pediatric Endocrinology, 2
nd
Edition–
Saunders Company- Elsevier Science, USA: 117-169
10. Miller JD, Tannenbaum GS, Colle E, Guyda HJ 1982 Daytime pulsatile
growth hormone secretion during childhood and adolescence. J Clin Endocrinol Metab
55 (5): 989-994
11. Martha Jr PM, Rogol AD, Veldhuis JD, Kerrigan JR, Goodman DW,
Blizzard RM 1989 Alterations in the pulsatile properties of circulating growth hormone
concentrations during puberty in boys. J Clin Endocrinol Metab 69 (3): 563-570
12. Saenger P 2002 Editorials. Growth hormone in growth hormone deficiency.
Start treatment early and give it for long enough. Br Med Jr; 325: 58-59
13. Ho KY, Evans WS, Blizzard RM, Veldhuis JD, Merriam GR, Samojlik
E, Furlanetto R, Rogol AD, Kaiser DL, Thorner MO 1987 Effect of sex and age on
the 24-hour profile of growth hormone secretion in man: Importance of endogenous
estradiol concentrations. J Clin Endocrinol Metab 64 (1): 51-58
32
14. Lanes R, Bohorquez L, Leal V, Hernández G, Borges M, Hurtado E,
Moncada G 1986 Growth hormone secretion in patients with constitutional delay of
growth and pubertal development. J Pediat; 109(5): 781-783
15. Reiter EO, Rosenfeld RG 2003 Normal and aberrant growth. In: Larsen
PR, Kronenberg HM, Melmed S, Polonsky KS. Williams Textbook of Endocronology,
2003 - 10
th
Edition – Saunders Company- Elsevier Science, USA
16. Silva MER 2004 Emprego do hormônio do crescimento na baixa estatura
não-deficiente de GH. In Liberman B, Cukiert A eds. Fisiologia e fisiopatologia do
hormônio do crescimento. First ed, São Paulo: Lemos Editorial; 195-240
17. Underwood LE 1999 Growth retardation in chronic diseases: possible
mechanisms. Acta Paediatr; Suppl 428:93-6
18. Gohlke BC, Stanhope R 2002 Final height in psychosocial short stature: is
there complete catch-up? Acta Paediatr; 91(9): 961-5
19. Boguszewski MCS, Rosberg S, Albertsson-Wikland K. Spontaneous 24-
hour profiles in pré-pubertal small for gestational age children. J Clin Endocrinol
Metab 1995;7:351-63
20. Chiarelli F, Giannini C, Mohn A 2004 Growth, growth factors and
diabetes. Eur J Endocrinol;151(3):109-17
33
21. Giustina A, Veldhuis JD 1998 Pathophysiology of the neuroregultation of
growth hormone secretion in experimental animals and the human. Endocrine Reviews;
19(6): 717-97
22. Hintz RL 2001 Management of disorders of size. In D. Brook Clinical
Pediatric Endocrinology. 4
th
ed- Blackwell Science. London
23. Abucham-Filho JZ, Czepielewski MA, Ribeiro SR, Jaber HE, Lengyel
AM, Chacra AR, Vieira JG 1985 Abnormal growth hormone and dwarfism. N Engl J
Med 25; 313(4): 268-9
24. Buckway CK, Selva KA, Pratt KL, Tjoeng E, Guevara-Aguirre J,
Rosenfeld RG 2002 Insulin-like growth factor binding protein-3 generation as a
measure of GH sensitivity. J Clin Endocrinol Metab; 87(10):4754-4765
25. Laron Z 2004 Laron syndrome (primary growth hormone resistence or
insentivity): The personal experience 1958-2003. J Clin Endocrinol Metab, 89(3):1031-
1044
26. Evans C, Gregory JW on behalf of the All Wales Clinical Biochemistry
Audit Group 2004 The investigation of short stature: a survey of practice in Wales and
suggested practical guidelines. Journal of Clinical Pathology; 57:126-130
27. Cohen LE, Radovick S 2002 Molecular basis of combined pituitary
hormone deficiences. Endocrine Reviews, 23(4): 431-42
34
28. Dattani M, Preece M 2004 Growth hormone deficiency and related
disorders: Insight into causation, diagnosis and treatment. Lancet, 363:1977-871
29. de Paula LP, Czepielewski MA 2003 Baixa Estatura: Investigação e
detecção da deficiência de hormônio de crescimento. Rev HCPA vol 23: 106-112
30. Tavarone VB, de Paula LP, Elnecave RH, Czepielewski MA 2004 Baixa
Estatura. In Gross JL, Silveiro SP Rotinas diagnósticas em endocrinologia. First ed,
Artmed editora: 249-58
35
ARTIGO ORIGINAL 1
Clinical and laboratory evaluation of 851 short-stature children
referred to an endocrine outpatient clinic
Leila Pedroso de Paula, Vanessa L. Zen e Mauro A Czepielewski
Programa de Pós-Graduação em Ciências Médicas: Endocrinologia,
Metabolismo e Nutrição, Faculdade de Medicina, UFRGS.
Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre.
Short Title: Short Stature in 851 children.
Address for Correspondence:
Leila Pedroso de Paula
Serviço de Endocrinologia,
Hospital de Clínicas de Porto Alegre
Ramiro Barcelos, 2350, Prédio 12, 4º andar.
CEP 90035-003 Porto Alegre, Brasil
Phone: +55 51 21018127 Fax: +55 5121018777
36
ABSTRACT
Slower growth may be the first and only sign of several chronic diseases and
should be investigated to distinguish healthy children from those who are ill. The
objective of this study was to show the importance of auxological and complementary
baseline investigation, to validate a protocol for the evaluation of SS, and to quantify
the prevalence of the final diagnosis of 851 children evaluated prospectively. All the
patients were evaluated by a complete history and physical examination followed by X-
rays for bone age determination and laboratory tests.
Referrals to our Center included 511 boys and 340 girls (p<0,05). More boys
than girls (62.6% vs 42.6%, p<0.001) were of normal stature or variants of normality.
On the other hand, the percentage of girls (56.6% vs 46.0% p<0.001) with any organic
disease or genetic syndrome diagnosed before referral was significantly higher than that
of boys. Anemia (25%), eosinophilia (36.4%) and helminthic diseases (20.1%) were
prevalent. Despite the hight prevalence of suspicious tests (elevated ESR-17%, low
bicarbonate-8%, hight TSH-10,6% and altered urinalysis-14.1%), we diagnosed only a
few cases of celiac disease (n=2), renal tubular acidosis (n=3), primary hypothyroidism
(n=19) and renal failure (n=4). Growth hormone deficiency was diagnosed in 52
children and Turner Syndrome in 43 girls. The reported stature, both of mothers and
fathers, was on average 2.2 centimeters higher than the measured stature (p<0,001).
37
These data demonstrate that even in a specifically endocrine outpatient clinic,
one must be aware of the most common causes of SS and recalls the importance of an
adequate baseline evaluation before any endocrine test. Finally, the target height should
always be calculated considering the measured, not the reported, stature of the parents.
Key Words: short stature, growth, Turner Syndrome, celiac disease, short
stature causes, growth hormone deficiency, target height.
38
Introduction
By monitoring the growth of a child, the parents and attending physician can
observe a slowdown of growth velocity. This may be the first sign of several disorders,
congenital or acquired. Since growth is a marker of several disorders, the same
importance must be given to evaluating patients of both sexes, although generally there
is greater concern regarding the stature of boys (1).
Short stature (SS) may have many causes, and appropriate treatment and
stature of the child in adult life depend on the right etiological diagnosis. Endocrine
disorders are only some of the different causes of growth deficit, the most frequent
being variants of normality such as familial SS and constitutional SS (3). However,
classifying a child as having an SS that expresses variation of normality requires that
several diseases be excluded in advance, and physical examination and laboratory tests
must be used for this purpose (4, 5).
In this study we demonstrate the importance of the auxological and
complementary baseline investigation in diagnosing the causes of SS and we quantified
their prevalences in 851 children prospectively evaluated at a specific pediatric
endocrine outpatient clinic at Hospital de Clínicas de Porto Alegre, Brazil. In these
cases we also evaluate the usefulness of the complementary baseline investigation,
establishing a protocol which tries to be appropriate to our reality as a tertiary care
hospital in a developing country.
39
Patients and Methods
Design: Cohort study
Patients
Eight hundred and fifty-one children were evaluated for SS according to a pre-
established protocol at an endocrine outpatient clinic at Hospital de Clínicas de Porto
Alegre between 1994 and 2006. These children were referred from the Primary Care
Units of public health system of the city of Porto Alegre RS Brasil, after a pediatric
consultation, or else they were sent by pediatric specialities from the Hospital itself.
Initial Evaluation
All the children were evaluated according to a predetermined protocol (figure
2), by a complete history and physical examination. In the history we emphasize
perinatal data, the prior existence of some disease, hospitalization or use of medication,
neuropsychomotor development, any other complaint associated or not with SS,
socioeconomic conditions, nutritional profile and family history. Besides the basic
physical examination, a systematic, detailed evaluation was performed of the limbs and
face looking for phenotypical alterations suggesting genetic disorders. The stature was
measured using a Harpender stadiometer and plotted in the National Center for Health
Statistics (NCHS) growth charts or the Centers for Disease Control and Prevention 2000
Growth charts improvements to the NCHS version. Height under the third centile was
considered short stature. Span and body segments were measured and evaluated
40
according to the reference (6,7). Pubertal stage was evaluated and classified according
to Marshall and Tanner (8,9), and testicular volume was evaluated by Prader
orchidometer. The target height was calculated using the Tanner method, and the height
of the parents was obtained by verbal information and then measured, thus obtaining the
informed and measured target height.
The protocol was reviewed and approved by the Ethics in Research Committee
at Hospital de Clínicas de Porto Alegre. After informed consent by the parents or legal
guardian, the patients were submitted to initial evaluation with X-rays of the left hand
and wrist for bone age, analyzed according to the Greulich-Pyle method (10) and to
laboratory evaluation by tests analyzed mostly by modular equipment – Roche R: blood
count (light absorbance method/impedance/flow cytometry), glycemia (colorimetric-
oxidase enzymatic method), erythrocyte sedimentation rate (ESR-capillary kinetic
photometry method), ferritin (electrochemical luminescence method), urea (enzymatic
UV method) , creatinine (Jaffé method without deproteinization), sodium and potassium
(ion selective electrode method ), bicarbonate (indirect potentiometric method), calcium
(o-cresolphthalein colorimetric method), phosphorus (UV –phosphomolybdate method),
albumin (bromocresol green colorimetric method), alkaline phosphatase and gamma
glutamyltransferase (colorimetric kinetic method), aspartate aminotransferase and
alanine aminotransferase (UV kinetic method), thyroxine and TSH
(electrochemoluminescence method, Urisys 2400 and UF 100i equipment), three
41
samples for stool examination for parasitic infection and fecal steatocrit. One hundred
and twenty-five girls had a karyotype (peripheral blood, G cell-bands) corresponding to
36.7% of the total number of girls. When tests showed any abnormalities, the patients
were submitted to a specific evaluation in order to establish a definitive diagnosis of the
different associated disorders and followed to have their growth pattern observed.
Median follow-up was 2,4 years (0- 12,8 years). After initial evalution and in suspected
cases, growth hormone (GH) deficiency, alone or associated with hypopituitarism, was
diagnosed using auxological criteria, a baseline measure of IGF-1, clonidine and insulin
tolerance tests , tests to evaluate hypophyseal function and an sella turcica image (CT,
MRI) (11, 12).
Statistical Analysis
The database was stored and analyzed using SPSS (Statistical Package for the
Social Sciences) version 14.0. The quantitative variables were described by mean and
standard deviation, or median and range of variation (maximum-minimum) in the case
of asymmetry. The categorical variables were described by absolute and relative
frequencies. The Student t test was used to compare the groups as to the quantitative
variables of normal distribution. The Mann-Whitney test was applied for asymmetry.
The level of significance adopted was 5%, and p0.05 values were considered
stastistically significant.
42
Results
Analysis of the clinical and laboratory data of the initial evaluation shows that
mean age at the first visit was 9.8 years. Referrals to our center included 511 boys and
340 girls (p<0.05), and considering as a null hypothesis that the percentage of SS
diagnoses in both sexes should be similar, a tendency is perceived to refer more boys
than girls. More boys than girls (62.6% vs 42.3%, p<0.001) were diagnosed as being of
normal stature or as variants of normality. On the other hand, the percentage of girls
(56.6% vs 46.0%, p<0.01) with any organic disease or genetic syndrome already
diagnosed before referral was significantly greater than that of boys.
Basal clinic characteristics are described at table 1. The reported stature of the
mothers was on the average 2.48 centimeters higher than their stature measured
(p<0.001), and the reported stature of the parents was average 1.84 centimeter higher
than their measured stature ( p<0.001 ). Thus, if we were to use the information reported
by the parents to calculate the target-height, we would have a significantly greater target
height.
At the first visit, 39.8% of the parents mentioned that their children had a low
weight associated with their SS, although in fact only 26 children (3%) presented a Z-
score of weight to stature below 2 standard deviations. The most frequent diseases
diagnosed before the first visit were genetic syndromes in girls and asthma or allergic
rhinitis in boys.
43
Among the children born at term, 15% (80/539) had a birth weight of less than
2.5 Kg, and in 5.4% of all pregnancies the mothers had not been followed in antenatal
care.
At physical examination, a high percentage of alterations was detected, a few
highly suggestive of a given pathology such as, for instance, Turner syndrome stigmata,
and other unspecific ones, the most prevalent being delayed puberty, alterations of the
extremities or of the fascies, alterations at cardiac auscultation or of the genitalia. The
measurement of disproportionate body segments caused a radiological investigation of
long bones, spine and skull in 27 children and allowed the diagnosis of conditions
ranging from epiphysiolysis of the femur to diseases such as rickets and
osteodystrophies in 16 children (59%). Some of these children had clear phenotypic
alterations, but others had discrete manifestations, and this diagnosis could only be
performed by systematically measuring the body segments of all children.
As to bone age, 55.8% of the patients presented more than two standard
deviations of retardation. Anemia (25%), eosinophilia (36.4%) and helminthic disease
(20.1%) were also prevalent. In the baseline laboratory evaluation, there was a high
index of small alterations of the liver transaminases, several times related to the use of
medications, but only two cases of chronic hepatitis were diagnosed after complete
investigation of the liver function. Despite the high prevalence of suspicious tests
(elevated ERS, 17%, low bicarbonate 8% and altered urinalysis, 14.1%, we diagnosed
44
few cases of celiac disease (n=2), renal tubular acidosis (n=3) and renal failure (n=4).
We observed elevated TSH levels in 10.6% of the children (90/851), mostly discretely
above normal, and the diagnosis of primary hypothyroidism was confirmed in only 19
cases (2.8%).
Among the 851 patients, 9.17% (78/ 851) withdrew from the study, and were
then excluded from the analysis of cause of SS, but not from the general characteristics.
Patients with less than six months of follow up of growth velocity were not included,
nor were those who are still undergoing baseline exams or following a specific
diagnostic investigation. Thus, the total number of patients classified for the final
diagnosis of SS is 670 (table 2).
As we can see, even when it is a tertiary hospital, our cases were mainly
normal variant short stature (NVSS). However a non-negligible number of diagnoses of
endocrine disorders, chronic diseases and genetic syndromes were established during
the evaluation of growth deficiency.
Growth hormone (GH) deficiency, alone or associated with
panhypopituitharism was diagnosed in fifty-two children (52/670; 7.8%). These patients
presented auxological criteria, low or normal-low IGF-1, GH peak after clonidine and
insuline stimulation tests lower than 5 ng/ml using a specific 22 Kda GH assay and
variable sela turcica images (12). Among “other diagnoses” are classified patients with
45
idiopathic SS, those with psychosocial dwarfism (13), as well as the three cases of
suspected biologically inactive GH.
The patients who presented altered baseline exams were submitted to further
evaluation, and were often referred to the specialist responsible for this, such as the
pediatric nephrologist, etc. In this sense it should be mentioned that children with an
elevated ESR, and no other evident cause, altered fecal steatocrit or persistent difficulty
in gaining weight, were referred to the gastropediatrics service, where they were
submitted to digestive endoscopy with duodenal biopsy. This strategy was used in
thirty-seven patients, and two were observed with complete atrophy of the villi, seven
with inflammation, six of them without any degree of atrophy and one with partial
atrophy of the villi.
Based on these approaches chronic disease could be diagnosed as the cause of
SS in 43/670 (6.4%) children, they are listed in Table 2 and are similar to those
observed in other series in the literature (14, 15, 16, 17, 18). The children classified as
having SS resulting from recurrent helminthic disease could be considered short due to
multiple needs, both for food and habits of environmental hygiene. For a few children,
calcium metabolism disorders were considered the cause of chronic disease, but even a
few children classified as having idiopathic SS, presented hypocalciuria that could only
be reversed with elevated doses of calcium and calcitriol supplementation. Recent
studies have correlated the capacity to absorb calcium with stature in children and
46
adolescents (19, 20), and haplotypes of the vitamin D receptor gene and stature
difference in adults (21). These findings suggest a connection between calcium and
vitamin D metabolism which can modify the stature of a child more often and subtly
than the classical cases of rickets and hypoparathyroidism.
Although more than 80 children had low birth weight, restricted intrauterine
growth without growth recovery was considered responsible for SS in only 29 (36%) of
them. This finding results from the fact that in the others the diagnosis of other
pathologies or associated genetic syndromes was established. Thus, these data support
the strategy that, when a child had low birth weight and its growth did not catch up, we
must rule out the presence of various disorders and/or genetic syndromes, performing
additional investigations, depending on the clinical suspicion.
Systematic karyotyping of all girls with SS without any other known cause, in
this study, as currently recommended (22, 23), led to the diagnosis of 43 girls with
Turner syndrome (TS). Eightteen of these girls had already been referred with the
diagnosis of TS, and the other 25 did not have this suspected diagnosis, although most
of them also presented a few suggestive clinical stigmata. Among our cases, the
proportion of patients with mosaicisms was higher in those in whom we observed less
TS stigmata. Eleven of the eighteen girls (61.1%) already referred with a diagnosis of
TS had karyotype 45 X0 and only ten of the 25 remaining ones (40%) did not present
any degree of mosaicism detected at karyotype. The other genetic syndromes in children
47
seen at the outpatient clinic coincide with those usually associated with SS, and account
for 18.42% of our cases (Table 3). Even after diagnosis we continue to follow these
children, optimizing clinical care according to each syndrome, seeking to develop the
potential for growth as far as possible, according to up-to-date reviews and protocols
(23, 24, 25, 26, 27).
Discussion
Concerning the objectives of this study, we above all managed to demonstrate
the importance of the auxological and basal complementary investigation to diagnose
the causes of SS. Even at a tertiary center, endocrine disorders are not the most
prevalent causes. When we compare the frequencies between different groups, it is
important to consider where the work was done. The prevalence studies on causes of SS
are distinguished mainly according to the level of care at which they were performed. In
population base studies, the proportion of short normal children is always greater than
in those performed at specialized centers, to which the more complex cases are referred,
with a higher probability of presenting associated diseases.
As to the comparison with the prevalence observed at other centers, the
absence of recently published data with up-to-date reports is noticeable. Even with the
discovery of new diagnostic tools, and new diagnoses involving SS, the literature of the
last few years has set aside the clinical characteristics in favor of new molecular
discoveries. The clinical reports published are on specific pathologies, such as the
48
auxology of haploinsuficiency of gene SHOX (28, 29). Apparently this gap in clinical
information is not due to the fact that the system used to investigate these patients is
already standardized, since a 2004 study questioned the practice of 13 hospitals in
Wales, specialized in evaluating patients with SS. The surprising fact is that although
the specialists at these hospitals diagnose and treat up to 12 cases of GH deficiency a
year at each service, the parents were measured or the pubertal stage of the child
evaluated at only 9 of the 13 centers. In this study the complete blood count was the
only consensus examination at all services, and only 8 centers submitted the patients to
an X-ray to find out bone age (30).
In this study we evaluated prospectively 851 children with SS, at an outpatient
clinic specifically for pediatric endocrinology, and we found that 54.3% of them were of
normal stature or had a short variant of normality, 7.8% had GH deficiency, 9.2% of the
patients had treatable organic diseases and 18.1 % had genetic syndromes. These
numbers are mostly no different from those found at services with the same profile of
care provided at ours. During the 70s, Vimpani et cols (2) examined 449 children with a
stature over two standard deviations below the average in Scotland and found 41% of
familial or constitutional SS, 24% organic disease, 8% GH deficiency, 7.5% due to
intrauterine retardation and 19% from an undetermined cause.
On the other hand, in a population base study performed on children of lower
social classes, in Chile, the most prevalent cause of SS was an association of
49
malnutrition, bad environmental hygiene, SS at birth and a short period of exclusive
breastfeeding (31). This study supports the importance of environmental factors in the
etiology of SS. Among our patients, even considering that we evaluate children
previously seen at basic health units, 1/5 had helminthic infestations, and ¼ presented
some degree of anemia. These findings are certainly also related to the patients’
socioenvironmental factors. We already knew this, but it is increasingly demonstrated
that calorie intake, iron deficiency and even hypermetabolism, even at a low level,
interfere in the growth velocity of children with SS (32, 33, 34). The fact that few of our
patients presented low weight related to stature does not exclude this possibility, since
studies of Latin American populations of a low socioeconomic level showed high
prevalences of stature for age deficit, while there is no evidence of major deficits of
weight for height. A Brazilian study, analised 386 children aged 6 to 59 months and
found 26%, 14% and 3.5%, respectively, of stature deficits for age, weight for age, and
weight for stature (35).
As to the prevalence of clinical and subclinical hypothyroidism, a group that
evaluated 2067 children with SS found a prevalence similar to ours (1,88% vs 2.8%)
(36).
When we compared our numbers with those reported by studies evaluating
children with a similar profile, we perceive a greater discordance in relation to cases of
celiac disease (CD) and TS. Analyzing the differences in the evaluation system used for
50
these children, the cause of this discordance appears clear. A given disease will be more
frequently diagnosed depending on the greater accuracy and frequency with which the
specific exams for this pathology are performed. In this study, the systematic
karyotyping of all girls with SS, without any other known cause, led to diagnosing a
high percentage of cases of this pathology. On the other hand, we observed only two
diagnosed cases of CD in thirty-seven patients submitted to endoscopy with a biopsy
after clinical suspicion. Very few children were submitted to serological tests and since
these tests are easier to perform as screeening, even in asymptomatic patients,
apparently they would allow a greater number of diagnoses, as suggested in the
literature, where the routine investigation of CD by IgA antiendomysium and
antitransglutaminase antibodies (ATA) is one of the factors responsible for the high
prevalence of CD in other countries (1.7 to 8%) (17,18). Anyhow, it is striking that
even in a selected group of patients, in whom digestive endoscopy with a biopsy was
performed, only 2 out of 37 patients were seen with typical findings of the disorder,
suggesting that in our population, CD is not a frequent cause of SS. On the contrary,
there is a study, also by a Brazilian group, that studied 106 asymptomatic children with
SS, and found a similar prevalence of CD to that in the European literature, of 4.7%
(37).
As to systematic ATA in all patients with SS, at our hospital, this exam only
became available a short while ago, and even now we recommend it only when there is
51
a clinical suspicion, even though minimal. This situation includes patients with SS and
low weight or persistent difficulty in gaining weight, persistent anemia, metabolic
evidence suggesting malabsorption (for instance: hypocalciuria with adequate calcium
and vitamin D intake), or any gastrointestinal symptom. This management was recently
justified by a cohort of 2000 patients. Apparently, establishing a “rule” to investigate
CD, which includes: evaluation of the degree of clinical suspicion, ATA dosage and
performing biopsy only on the patients with positive antibodies or IgA deficiency,
increases the sensitivity and specificity of the diagnostic method (38).
These findings led us to rediscuss our baseline complementary investigation, in
order to evaluate the usefulness of the exams performed and establish the simplest
protocol possible. In this review of the protocol, it was decided to exclude a few
baseline exams whose results were not useful for the differential diagnosis of SS,
namely, sodium, urea, gamma glutamyltransferase, alanine aminotransferase and fecal
steatocrit. On the other hand the evaluation of our cases suggested the inclusion of the
IGF-1 dosage for children with a stature less than 2 standard deviations from the
average height for age and/or low growth velocity. Although no major prevalence of
CD occurred in our cases, the review of literature creates a foundation for measuring
IgA ATA, in children with the characteristics described previously, even if they do not
have gastrointestinal symptoms. Our data recommend also that karyotyping be
performed in girls without any other known cause of SS, as already emphasized in the
52
literature.
Conclusions
These data showed that even in a specific endocrine outpatient clinic there is a
large number of patients with a short stature varying from normality, or short stature
resulting from diseases that are simpler to manage, who are referred for specialized
evaluation. This population, with a high incidence of common clinical problems,
depending on the approach to them, adds a very significant potential health cost.
Apparently this initial evaluation may be long and expensive, but the hormonal
investigations would be much more expensive. And if wrongly interpreted due to
ignorance of the baseline situation of the child, they would lead to unnecessary
treatments, at a high cost with doubtful results.
Herein lies the importance of our results, which call attention to a careful,
detailed evaluation of general factors associated with growth, including the importance
of taking a complete history and detailed physical examination, and general baseline
tests (39), before carrying out specialized investigations and endocrine treatments. As
part of the physical examination, it is important to measure the parents, since their
reported stature, compared with the one measured in our outpatient clinic was an
average of 2.2 centimeters taller, interfering in the target-height calcule.
Most chronic diseases and even a few genetic syndromes beside endocrine
diseases are currently treatable (23, 40) and for satisfactory treatment we need, above all
53
a correct diagnosis.
54
REFERENCES:
1. Grimberg A, Kutikov JK, Cucchiara AJ 2005 Sex differences in patients
referred for evaluation of poor growth. J Pediatr; 146: 212-16
2. Vimpani GV, Vimpani AF, Lidgard GP, Cameron EH, Farquhar JW
1977 Prevalence of severe growth hormone deficiency. Br Med J;13 (6084): 427-30
3. Volkl TM, Haas B, Beier C, Simm D, Dorr HG 2006 Catch-down growth
during infancy of children born small (SGA) or appropriate (AGA) for gestational age
with short-statured parents. J Pediatr; 148 (6): 747-52
4. Vimpani GV, Vimpani AF, Pocock SJ, Farquhar JW 1981 Differences in
physical characteristics, perinatal histories, and social backgrounds between children
with growth hormone deficiency and constitutional short stature. Arch Dis Child; 56
(12): 922-8
5. Growth Hormone Research Society 2000 Consensus guidelines for the
diagnosis and treatment of growth hormone (GH) deficiency in childhood and
adolescence: Summary statement of the GH research society. J Clin Endocrinol Metab
85 (11): 3990-3993
6. Tanner JM, Whitehouse RH 1976 Clinical longitudinal standards for
height, weight, height velocity, weight velocity, and stages of puberty. Archives of
Disease in Childhood 51:170-179
55
7. Monte O, Longui CA, Calliari LE, Kochi C 1998 Apêndice
Endocrinologia para o pediatra. 2
nd
ed Atheneu, São Paulo
8. Marshall WA, Tanner JM 1969 Variations in the pattern of pubertal
changes in girls. Arch Dis Child; 44: 291-303
9. Marshall WA, Tanner JM 1970 Variations in the pattern of pubertal
changes in boys. Arch Dis Child; 45: 13-24
10. Greulich WW, Pyle SI 1959 Radiographic atlas of skeletal development
of the hand and wrist. Stanford: Stanford University Press
11. Bussières L, Souberbielle JC, Pinto G, Adan L, Noel M, Brauner R
2000 The use of insulin-like growth factor 1 reference values for the diagnosis of
growth hormone deficiency in prepubertal children. Clin Endocrinol; 52: 735-739
12.de Paula LP, Czepielewski MA 2002 Analysis of the accuracy the growth
hormone (GH) stimulation test with clonidine to diagnose GH deficiency in short
stature children and adolescents. M.Sc. thesis, UFRGS, Faculdade de Medicina
Programa de pós graduação ciências médicas Endocrinologia Porto Alegre, BR-RS
13. Gohlke BC, Stanhope R 2002 Final height in psychosocial short stature: is
there complete catch-up? Acta Paediatr; 91(9): 961-5
14. Mahan JD, Warady BA; the Consensus Committee 2006 Assessment
and treatment of short stature in pediatric patients with chronic kidney disease: a
consensus statement. Pediatr Nephrol; 21(7):917-30
56
15. Chiarelli F, Giannini C, Mohn A 2004 Growth, growth factors and
diabetes. Eur J Endocrinol Nov;151(3):109-17
16. Vimpani GV, Vimpani AF, Farquhar JW 1976 Growth retardation in
chronic asthma.Lancet Aug 21; 2 (7982): 422
17. Csizmadia CG, Mearin ML, von Blomberg BM, Brand R, Verloove-
Vanhorick SP 1999 An iceberg of chilhood coeliac disease in the Neatherlands.
Lancet; 353: 813-14
18. van Rijn JC, Grote FK, Oostdijk W, Wit JM 2004 Short stature and the
probability of coeliac disease, in the absence of gastrointestinal symptoms. Arch Dis
Child;89 (9): 882-3
19. Barger-Lux MJ, Heaney RP 2005 Calcium absorptive efficiency is
positively related to body size. J Clin Endocrinol Metab 90: 5118-5120
20. Abrams SA, Griffin IJ, Hawthorne KM, Liang L 2005 Height and
height Z- score are related to calcium absorption in five-to fifteen-year-old girls. J Clin
Endocrinol Metab 90: 5077-5081
21. Fang Y, van Meurs JBJ, Rivadeneira F, van Schoor NM, van Leeuwen
JPT, Lips P, Pols HAP, Uitterlinden AG 2007 Vitamin D receptor gene haplotype is
associated with body height and bone size. J Clin Endocrinol Metab; 92(4): 1491-501
57
22. Lam WF, Hau WL, Lam TS 2002 Evaluation of referrals for genetic
investigation of short stature in Hong Kong. Chin Med J;115(4):607-11
23. Bondy CA The Turner Syndrome Consensus Study Group 2007 Care
of girls and women with Turner syndrome: A guideline of the Turner syndrome study
group. J Clin Endocrinol Metab; 92: 10-25
24. Price SM, Stanhope R, Garrett C, Preece MA, Trembath RC 1999 The
spectrum of Silver-Russell syndrome: a clinical and molecular genetic study and new
diagnostic criteria. J Med Genet Nov;36(11):837-42
25. Savarirayan R, Rimoin DL 2002 The skeletal dysplasias. Best Pract Res
Clin Endocrinol Metab;16(3):547-60
26. Limal JM, Parfait B, Cabrol S, Bonnet D, Leheup B, Lyonnet S,
Vidaud M, Le Bouc Y 2006 Noonan syndrome: Relationships between genotype,
growth, and growth factors. J Clin Endocrinol Metab; 91: 300-306
27. Trotter TL, Hall JG; American Academy of Pediatrics Committee on
Genetics 2005 Health supervision for children with achondroplasia. Pediatrics; 116 (3):
771-83
28. Binder G, Ranke MB, Martin DD 2003 Auxology is a valuable
instrument for the clinical diagnosis of SHOX haploinsufficiency in school-age children
with unexplained short stature. J Clin Endocrinol Metab; 88 (10) 4891-4896
58
29. Huber C, Rosilio M, Munnich A, Cormier-Daimer V, the French
SHOX GeNeSIS Module 2006 High incidence of SHOX anomalies in individuals with
short stature. J Med Genet; 43: 735-739
30. Evans C, Gregory JW on behalf of the All Wales Clinical Biochemistry
Audit Group 2004 The investigation of short stature: a survey of practice in Wales and
suggested practical guidelines. Journal of Clinical Pathology;57:126-130
31. Jolly DL, Nolan T, Moller J, Vimpani G 1991 The impact of poverty and
disadvantage on child health. J Paediatr Child Health; 27(4): 203-17
32. Wudy SA, Hagemann S, Dempfle A, Ringler G, Blum WF, Berthold
LD, Alzen G,Gortner L, Hebebrand J 2005 Children with idiopathic short stature are
poor eaters and have decreased body mass index. Pediatrics;116(1):52-7
33. Han JC, Balagopal P, Sweeten S, Darmaun D, Mauras N 2006 Evidence
for hypermetabolism in boys with constitutional delay of growth and maturation. J Clin
Endocrinol Metab;91(6):2081-6
34. Zadik Z, Sinai T, Zung A, Reifen R 2005 Effect of nutrition on growth in
short stature before and during growth-hormone therapy. Pediatrics;116(1):68-72
35. Post CLA, Victora CG e Barro AJD 1999 Low prevalence of wasting:
comparison of stunted and non-stunted Brazilian children. Rev. Saúde Pública; 33(6):
575-585
59
36. Cetinkaya E, Aslan A, Vidinlisan S, Oscal G 2003 Height improvement
by L-thyroxine treatment in subclinical hypothyroidism. Pediatr Int; 45 (5): 534-7
37. Queiroz MS, Nery M, Cançado EL, Gianella-Neto D, Liberman B 2004
Prevalence of celiac disease in Brazilian children of short stature. Braz J Med Biol Res;
37(1) 55-60
38. Hopper AD, Cross SS, Hurlstone DP, McAlindon ME, Lobo AJ,
Hadjivassiliou M, Sloan ME, Dixon S, Sanders DS 2007 Pre-endoscopy serological
testing for coeliac disease: evaluation of a clinical decision tool. Br Med J; 23 March
2007
39. Tavarone VB, de Paula LP, Elnecave RH, Czepielewski MA 2004
Baixa Estatura. In Gross JL, Silveiro SP Rotinas Diagnósticas em endocrinologia. 1st
ed, Artmed editora: 249-58
40. Rosenfield RG, Buckway CK 2000 Should we treat genetic syndromes? J
Pediatr Endocrinol Metab;13 Suppl 2:971-81
60
Table 1: Basal Clinical Characteristics
Total Boys Girls Significance
(between sexes)
Number 851 511 340
Age at first
medical visit
Mean (SD)
Minimum-
Maximum
9.82 (4.4)
0.35 – 20.5
years
10.13 (4,4)
0.45 – 20.2
years
9.36 (4.41)
0.35 – 20.5
years
NS
Z-score of
height for age
Median (SD)
Minimum-
Maximum
-2.77 (1.33)
-9.98- +3.18
-2.69 (1.33)
-9.98 - + 3.18
-2.87 (1.28)
-9.98 - +0.26
NS
Z-score of
weight for age
Median (SD)
Minimum-
Maximum
-1.7 (1.12)
-6.68 - +4.13
-1.73 (1,14)
-6.68 - + 4.13
-1.67 (1.10)
-4.69 - +3.82
NS
Z-score of
weight for height
Median (SD)
Minimum-
Maximum
0.15 (1.66)
-5.36 - +9.98
0.12 (1.63)
-4.65 - + 9.98
0.19 (1.7)
-5.36 - +6.44
NS
Sougth care
previously
63.5% 63.8% 63.6% NS
Birth order
35% only child
33% second or third child
32% 4
th
to 10
th
child
Not different
and NS
Prematurity
16.8% 17% 16% NS
Delivery by C-
Section
36% 34.9% 37.9% NS
Percentile of target
height
41.9% < = p 5
88.9% < = p 25
3.15% > = p 75
38.7% < = p 5
90.3% < = p 25
3% > = p 75
47% < = p 5
87.6% < p 25
3.3% > = p 75
NS
NS – not significant, SD – standard deviation
61
Table 2. Diagnosis of the Cause of Short Stature in the 670 patients with a defined
diagnosis (General , 396 boys and 274 girls).
DIAGNOSIS General (%) Boys (%) Girls (%)
No Short Stature
56 (8.3%) 36 (9.0%) 20 (7.3%)
CSS+ FSS –Variant of
normality
308
(46.0%)
212 (53.6%) 96 (35.0%)
Hypothyroidism
19 (2.8%) 8 (2.0%) 11 (4.0%)
GH deficiency
52 (7.8%) 35 (8.8%) 17 (6.2%)
Chronic disease
43 (6.4%) 28 (7.2%) 15 (5.5%)
Genetic syndrome
121 (18.1%) 37 (9.3%) 84 (30.7%)
IUGR
29 (4.3%) 17 (4.3%) 12 (4.4%)
Others
42 (6.3%) 23 (5.8%) 19 (6.9%)
CSS- Constitutional short stature, FSS- Familial short stature, IUGR-Intra-
uterine growth restriction
62
Table 3. Chronic diseases and genetic syndromes associated with short stature
observed in this case list
Chronic diseases Genetic syndromes
Celiac Disease
Chronic Liver Disease
Diabete Mellitus
Hemosiderosis
Hirschprung Disease
Histiocytosis X
Hypoparathyroidism
Juvenile Rheumatoid Arthritis
Medullary Aplasia
Recurring Helminthic Infections
Renal Tubular Acidosis
Severe Asthma
Sickle Cell Anemia
Thalassemia Major
Thyroid Carcinoma
Vitamin D Deficiency
Aaskorg
Achondroplasia
Aicardi
Albright
Blackfan Diamond
Cornélia de Lange
Chromosomal translocations
Dandywalker
Dent
Di-George
Down
Dubowitz
Duchene Muscular Dystrophy
Fetal Alcohol
Friedrich Ataxia
Hadju-Cheney
Homocysteinuria
Mckusick chondrodysplasia
Neurofibromatosis
Noonan
Rubinstein-Taybi
Schmidt Dysplasia
Seckel
Septo-optic Dysplasia
Silver Roussel
Turner
Type I Tricorhinofalangian
William
63
Table 4. Tests recommended to investigate SS.
TESTS
General for all Most common specific ones
Blood count
Glycemia
Potassium
IGF-1
-below 3rd percentile of height or
-slow growth velocity
Calcium, phosphorus, albumin
Alkaline phosphatase
Aspartate aminotransferase
Karyotype of peripheral blood (G bands)
-girls below the 3rd percentile
-no other cause identified for SS
Creatinine, urinalysis
Bicarbonate, urinary pH
Erythrocyte sedimentation rate
TSH, T4
Stool test for parasitic infections
X-ray for bone age
IgA and IgA anti-transglutaminase antibodies
-if weight loss or difficulty in gaining weight,
-persistent anemia,
-metabolic evidence of malabsorption or
-any gastrointestinal symptom
Uncommon specific ones
Abdominal, pelvic or cardiac ultrasound, X-ray of the spine and the long bones,
17OH progesterone, Tests and other hormone dosages.
64
IUGR – Intra-uterine growth restriction, SS – short stature,
NVSS – normal variant short stature
65
ARTIGO ORIGINAL 2
Comparison of the IGF-1 and GH peak after clonidine or insulin in the
diagnosis of growth hormone deficiency in short children.
Leila Pedroso de Paula e Mauro A Czepielewski
Programa de Pós-Graduação em Ciências Médicas:Endocrinologia,
Metabolismo e Nutrição, Faculdade de Medicina, UFRGS.
Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre.
Short Title: ROC Curve of IGF-1 and GH peaks after GH deficiency tests
Address for Correspondence:
Leila Pedroso de Paula
Serviço de Endocrinologia,
Hospital de Clínicas de Porto Alegre
Ramiro Barcelos, 2350, Prédio 12, 4º andar.
CEP 90035-003 Porto Alegre, Brasil
Phone: +55 51 21018127 Fax: +55 5121018777
66
ABSTRACT
The current recommendation is to submit children with auxological criteria
characteristic of GH deficiency and/or with IGF-1/ IGFBP3 below 2 standard deviations
(SD) from normality for sex and age to GH secretion stimulation tests
Using the ROC (Receiver Operating Characteristics) curve approach, the
present study evaluates two tests for the diagnosis of GH deficiency in patients with
short stature (SS), mainly to determine clear, objective cutoff points that could be useful
in clinical practice.
Eight hundred and fifty-one children referred to an endocrine outpatient clinic
because of SS during the 1994-2006 period were evaluated prospectively. Three
hundred and thirty-five children in this population participated in a cross-sectional study
of a diagnostic test nested in a cohort. One hundred and fourteen had at least a baseline
dosage of IGF-1 and two hundred and twenty-one children were submitted to at least
one GH secretion stimulation test, either with clonidine (GH-Clo), with or without
pretreatment with sexual steroids (priming), or with insulin hypoglycemia, a total of 306
stimulation tests. Fifty-one patients were diagnosed as GH-deficient. The other patients
were classified as having normal variant SS. The GH was measured using the
IMMULITE–DPC assay by chemoluminescence.
As to the ideal cutoff point of the standard deviation of IGF-1, the sensitivity of
the value of -2 SD usually used, although quite specific, after excluding chronic
67
diseases and malnutrition, is only 14.3%. When a ROC curve was constructed for the
value of the SD of IGF-1 with the best accuracy to diagnose GH deficiency, 92.9%
sensitivity was found, and 84.2% specificity for the cutoff point of about -1 SD.
New ROC curves were also constructed for the GH peak value in the GH–Clo
tests. without and with priming and for the higher response value of GH that was
presented by a same patient, independent of the type of stimulation used in the test (total
GH). Ninety-five percent sensitivity and 93.4% specificity were found in the GH-Clo
tests without priming for the cutoff point of 4 ng/ml. In the GH-Clo test with priming, a
sensitivity of 96.3% and a specificity of 100% were found for the 5 ng/ml cutoff point.
In the total GH tests a sensitivity of 97.9% and a specificity of 97.6% were found for the
cutoff point of about 5ng/ml of GH.
Thus our data show that a child without a chronic disease, genetic syndrome or
malnutrition, that has compatible auxology plus an IGF-1 dosage below -1 SD from the
normal for its age and sex, should be submitted to a GH stimulation test. The child must
be diagnosed as GH deficient if it presents a GH-Clo peak response value without
priming below 4ng/ml and below 5ng/ml (in the GH Clo tests with priming or Insulin
test), when the latter was measured by specific chemoluminescent assay for form 22
KDa.
Key words: Growth hormone (GH), IGF-1, GH stimulation tests, Clonidine,
ROC Curve, GH deficiency
68
Introduction
Currently, the base of GH deficiency (GHD) diagnosis is still clinical
according to auxologic criteria and hormonal and laboratory criteria including the
evaluation of the GH-IGFs axis (1-12). The current recommendation is that children
with characteristic auxological criteria and/or IGF-1/IGFBP3 below 2 standard
deviations (SD) be submitted to GH secretion stimulation tests. Most countries have
established diagnostic criteria for GHD based on maximum “normal“ arbitrary GH
responses (peaks), so that a peak greater than 10 ng/ml is currently accepted as a cutoff
point to consider a normal response to stimulation (13, 14, 15). However it was found
that even children without SS and with normal growth could present responses lower
than 10 ng/ml in the stimulation tests (16, 17).
Despite the use of new assays in which the values of measured GH are lower
than those of the previous assays, because they measure predominantly biologically
active GH (22KDa) in the circulation, this cutoff point was not modified (18, 19, 20).
This controversy led to several studies with initially very different results (2, 10, 16,
17). In our group and based on a previous prospective study, we demonstrated the best
accuracy of a peak cutoff point, different from the historically and empirically accepted
one (21). In constructing an ROC curve, considering the GH peaks in response to
clonidine administration, a rate of 46.8% of false positives was obtained with peak > 10
69
ng/ ml and greater accuracy with a cutoff point of 4 ng/ ml. Recent publications have
ratified this peak value as adequately discriminant (22, 23, 24).
There are a number of studies in the literature that compare the sensitivity and
specificity of these two diagnostic methods of GHD, baseline dosages of IGF-1 versus
GH stimulation tests. However, most of these studies used the empirical cutoff point of
10, and because we found equal sensitivity but higher specificity with the cutoff point of
4, we consider the new comparison between the two diagnostic methods, using these
new data, extremely useful to obtain a more accurate diagnosis of GHD.
Using the ROC (Receiver Operating Characteristics) curve approach which
allows comparing test sensitivity and specificity in a large range of cutoff points, the
study was done to determine the performance of these two tests in diagnosing GHD in
patients with short stature (SS), and especially to determine clear, objective cutoff
points which may be useful in clinical practice.
Patients and Methods
In an endocrine outpatient clinic, 851 children referred because of SS during
the 1994-2006 period were evaluated prospectively. During the first years of follow up
we did not have the IGF-1 dosage available at our service, only the GH stimulation
tests. A total of 345 children, out of this population fulfilled the inclusion criteria:
stature below the third percentile, growth velocity measured at our clinic during at least
6 months, exclusion of chronic diseases and genetic syndromes. One hundred and
70
fourteen had at least one baseline dosage of IGF-1 and two hundred and twenty-one
children were submitted to at least one test to stimulate GH secretion, either with
clonidine, with or without pretreatment with sexual steroids (priming) or with insulin
hypoglycemia, a total of 306 stimulation tests in these children alone. The tests were
performed according to a detailed protocol and according to literature (25, 26).
Fifty-one patients were diagnosed as GH deficient considering, for diagnosis, a
set of factors besides SS and the exclusion of chronic diseases and genetic syndromes:
growth velocity below the 25th percentile; delayed bone age, stature below the growth
channel in relation to the target height; presence of risk factors such as previous
radiation of the CNS, chemotherapy, tumor or another hypothalamo-hypophyseal
disease; IGF-1 values; value of the peak response of GH to at least two pharmacological
stimuli (clonidine and insulin); hormone tests to evaluate the integrity of the other
hypophyseal hormones and alteration in the hypothalamo-hypophyseal region image.
The other patients were classified as having normal variant SS (NVSS).
Initial Evaluation
All the patients were evaluated by history and complete physical examination,
the target height was calculated using the Tanner formula, according to the parents’
stature, preferably measured or else reported. After informed consent by parents or legal
guardians, the patients were submitted to initial evaluation with an X-ray of the left
71
hand and wrist for bone age, according to the Greulich-Pyle atlas (27) and laboratory
evaluation by complete blood count, thyroid function and biochemistry (28).
Design
Cross-sectional study of a diagnostic test nested in a cohort
Endocrine Evaluation
GH- Clonidine (GH-Clo) test performed at 8 am, after fasting. A blood sample
was drawn and clonidine was administered in a 0.15 mg/m2 dose orally, and additional
samples were drawn at 30-minute intervals until 2 hours had elapsed. The patients who
did not reach the value of 10 at the initial test were submitted to a test with priming,
consisting of testosterone 50 mg intramuscularly, 7 and 2 days before the boys’ test and
conjugated estrogens 1.2 mcg/m2/day for 3 days before the girls’ test.
Insulin hypoglycemia (HipoIns): this was performed administrating insulin
intravenously, after the same precautions described previously, at a dose of 0.05-0.1
IU/KG and blood samples were drawn at baseline time and every 30 minutes until 2
hours had elapsed.
Hormone Dosages
GH was dosed using the IMMULITE–DPC assay, by chemoluminescence,
which uses specific monopolyclonal antibodies for GH form 22kDa calibrated with
recombinant GH, with a sensitivity of up to 0.01 ng/ml, intraassay coefficient of
variation ranging from 5.3% (1.7 ng/ml) to 6.5% (31 ng/ml) and interassay coefficient
of variation of 5.5 %(3 ng/ml) to 6.2% (18 ng/ml).
72
The IGF-1 concentrations were determined by immunoradiometric assay
(IRMA), DSL-5600 Active (Diagnostic System Laboratories Inc, Webster, Texas), with
intra-assay and inter-assay coefficient of variation of 3,9% and 4,2%.
Statistical Analysis
The data obtained were stored in an Excel database and exported to SPSS
version 14.0. The categorical variables are described by the percentage relative
frequency and the quantitative variables by the mean and SD when the distribution is
symmetrical, and median and interquartile range (p25-p75) when asymmetrical.
Comparison between the groups of patients with and without GHD considering the IGF-
1 values using the Student t test for independent samples, or the Mann-Whitney test
according to the distribution of the (asymmetrical) variable. The categorical variables
were compared using the Chi-square test with Yates correction. Considering the
sensitivity and specificity of different cutoff points of the GH response peak and of the
cutoff points of the IGF-1 SD levels, it was possible to construct a ROC curve for each
diagnostic method. The level of significance adopted was 5%, and p0.05 values were
considered stastistically significant.
Results
The distribution by sex was equal among the two groups, as well as the mean
age at first consultation, and age when growth reduction was observed for the first time
(table 1). It should be pointed out that the weight/height ratio was similar in both groups
73
and much closer to normality than the height and weight for age. Other group
characteristics can be seen at table 1.
All exams of the GH-IGF-1 axis were statistically different among the groups.
It should however be emphasized that there was a greater variance of the values in the
group of patients with NVSS, as viewed in figure 1.
Sensitivity and specificity of different cutoff points of GH tests can be seen at
table 2 and this curves are represented graphically in figure 2. As to the ideal cutoff
point of the SD of IGF-1, in table 3 and in figure 2 we can see that the value of -2SD
usually used, although quite specific, after excluding chronic diseases, has a sensitivity
of only 14.3%. When a ROC curve was constructed for the SD value of IGF-1, with the
best accuracy to diagnose GH deficiency, a 92.9% sensitivity and a 84% specificity
were found for the cutoff point of about -1 SD. In other words, in cases in which
another cause of IGF-1 reduction was excluded, such as chronic disease or malnutrition,
our data suggest that one should use the stimulation tests to evaluate all the children
who have a compatible auxology and a screening exam with IGF-1 below -1 SD from
the normal for their age and sex.
New ROC curves were also constructed for the peak value of GH in the GH-
Clo tests without and with priming and for the higher response value of GH that a same
patient presented, independent of type of stimulation used in the test (total GH). The
cutoff points that presented the best diagnostic accuracy for GH deficiency were very
74
close among the tests without and with priming, because, although the priming
amplifies the GH response to stimulation in patients with NVSS, it did not modify the
response in GH deficient patients in any major way.
Discussion
Usually a diagnostic test value is considered abnormal when the latter is at
least two standard deviations from the mean observed in normal people. However, only
2 out of 15 deficient subjects presented an IGF-1 value below -2SD, which showed that
this criterion was not appropriate, especially due to the fact that any screening test
should prioritize sensitivity. A series of studies compared the sensitivity of the IGF-1
measure with the GH stimulation test response in diagnosing GHD and found
percentages that vary from 50 to 100% (on average 71% sensitivity), using the cutoff
points of -2 SD of IGF-1 and 7 to 10 ng/ml in the GH response to the stimulation test.
(29). Our data, showing lower sensitivity with the IGF-1 cutoff point of -2SD, are
similar to the group of Nunez et cols, 1996 , who had also found the IGF-1 cutoff point
of -1 SD as most appropriate in investigating GHD (30). These authors had compared
the SD of IGF-1 with the peak response of GH to stimulation by arginine and insulin
hypoglycemia, besides the nocturnal concentration of GH in 104 children with SS and
found a sensitivity of 50 and 21% as the IGF-1 cutoff point of -2DP to diagnose the
complete or partial GHD. These data are different from those described here, especially
by the type of GH assay used (polyclonal) and by the cutoff point considered diagnostic
75
for deficiency in the GH stimulation tests (7-10 ng/ml). Juul et cols evaluated 108
patients previously diagnosed as deficient, at the time of the retest, and compared the
usefulness of the IGF-1 measure in reevaluating these patients (31). Comparing it with
the cutoff point of 7.5 ng/ml of GH to the stimulation test, they found 75.9% sensitivity
and 72% specificity for the IGF-1 measure. The only group in which all the patients
presented IGF-1 values below -2 SD was the group with panhypopituitarism and a
deficiency of 3 or more pituitary hormones, besides the GH. This study also calculated
the sensitivity, specificity and accuracy of different cutoff points of GH and the SD of
IGF-1, and manipulating these cutoff points, it found the highest concordance index
using a GH cutoff point of approximately 3 to 4 ng/ml and -2 SD for IGF-1. Using a
different strategy, but with a similar population, we were able to observe almost the
same values. The IGF-1 reference values are defined by age and sex, and, as suggested
by Saenger (32) it might be more appropriate to compare the result of IGF-1 with the
bone age pattern, because children with growth disorders often have delayed physical
and/or pubertal development.
As to the GH peak response to the stimulation test, in this study we see that the
cutoff point of 10 ng/ml, widely recommended in the literature, produces an extremely
elevated number of false positive tests (46.1%) in the GH-Clo tests without priming,
and a relatively low specificity of 53.9 to 76.5%. This had already been described when
children who were not of SS were tested. Marin et cols, when they evaluated normal
76
children and adolescents with 3 GH stimulation tests (exercise, arginine and insulin),
considering a cutoff point of 7ng/ml, observed that, as puberty advances, the percentage
of normal children who failed to reach a GH level of 7 ng/ml during any of the tests,
diminished from 61% during the prepubertal stage to 0% in the stages 4 and 5 (33). If
in normal children without SS it is already difficult to define a normal standard of
evaluation of the GH-IGF-1 axis, in patients with constitutional SS, this difficulty is
even more marked. They are very often clinically indistinct from the GH deficient ones,
and at the time expected for puberty, because they have not yet reached pubertal
development, they have a GH pulsatile pattern similar to that of pre-pubertal children,
i.e., low range and low response to GH stimulation tests. Besides, they may present a
low IGF-1 for their chronological age, but not for their bone age or pubertal stage.
It has become increasingly clear that the diagnosis of isolated GHD in
childhood may not be confirmed in the retest after the end of growth, and this appears to
reflect the use of inappropriate diagnostic criteria, including the GH cutoff point to the
stimulation test (33, 34, 35). Carel et cols retested 208 young adults who had been
treated in childhood for GHD, demonstrating that among the patients with this prior
diagnosis, but with the complete or partial idiopathic form, 44% and 89%, respectively,
presented a GH peak greater than 10 ng/ml at retest, while this fact occurred among less
than 5% of those with a previous diagnosis of GHD due to organic cause or CNS
radiation (36).
77
A study of 2,852 children with isolated idiopathic GHD found an interesting
item: the children who interrupted GH treatment early grew to a final height similar to
those who took the whole course of treatment, suggesting that the previous diagnosis of
GH was mistaken. Based on their data, they suggested that the peak value of GH,
considered responsive, should be about 2-4 ng/ml, and that the priming strategy should
be used before the GH test (37).
A paper published in 2004 used questionnaires sent to physicians and
laboratories at 13 hospitals in Wales, where children with SS were habitually
investigated, asking about their current practices (38). Although these centers evaluate
up to 50 new cases of SS a year, and diagnose GHD in 10 to 25% of them, a few did
not even perform the prior clinical and laboratory evaluation, such as a bone age X ray
or basic biochemical exams. Several screening tests for GHD were used, including IGF-
1, baseline GH and GH-stimulating test with exercise. Clonidine was used at most of
the centers to stimulate GH secretion in diagnostic investigation, but 8 different
protocols were described and 9 different cutoff points were considered indicative of
deficiency, sometimes even varying at a same center. The need for appropriate
standardization is thus clear, to define which child should be tested and the diagnostic
tests to be used, the protocol of times and sample collections, which essays are to be
used, and the points considered diagnostic for GHD.
78
ROC curves are particularly useful to validate diagnostic tests and to determine
a cutoff point of the response to this test more accurately, but their use assumes that
there is a comparison test that will be a faithful indicator of whether a disease really
exists (gold standard). In clinical research, however, this gold standard is often difficult
to find. The difficulty is particularly significant in SS patients, in whom the precise
diagnosis is habitually based on the association of different criteria, including the GH
pharmacological stimulation tests. Thus, comparing GH secretion tests with the
definitive diagnosis of its deficiency implies that the test itself should be used as one of
the diagnostic criteria. In order to get around this difficulty, in the present study our
gold standard is a set of clinical and laboratory variables from a same patient, and they
were diagnosed as GH deficient or not according to medical evaluation.
Using the assay described previously, and the cutoff point of 4ng/ml, 95%
sensitivity and 93.4% specificity were found for tests without priming. Martinez et cols
studied 15 pre-pubertal patients with GHD, and 44 patients with idiopathic SS who
were submitted to the arginine-clonidine test for GH, randomizing them to receive
placebo or priming with estradiol 1 or 2 mg/day for 3 days, and found 73% sensitivity
and 95% specificity, with a cutoff point of 3.7 mcg/l after placebo, and 87% sensitivity
and 98% specificity for a cutoff point of 8.3 mcg/l after priming (22).
Chalera et al used the SD score of growth velocity in the first year of treatment
with GH as a biological marker to confirm the diagnosis of deficiency and validate the
79
GH cutoff point in response to two stimulation tests with arginine and clonidine, dosed
by two different assay, one specific for the 22KDa form and the other called total assay,
since it dosed all isoforms of GH (23). Also using the ROC curve approach, this group
defined the SD of growth velocity in the 39 GH-deficient patients and in the 11 patients
with NVSS, and considering this information the gold standard, constructed new curves
for the GH values and found a cutoff point of 10.8 ng/ml when the total assay was used,
and 5.4 ng/ml for the specific 22KDa assay. In a prior paper, these authors had found
the cutoff points of 10.0 and 4.8 ng/ml, respectively for total GH and the specific
22KDa, using biochemical validation (39).
Our data, associated with a review of the literature, confirm the need to modify
the cutoff point of the GH response for values around 4-5 ng/ml, when the latter is
dosed using a monopoliclonal assay. They also demonstrate that this value previously
validated in response to clonidine coincides with the value when the stimulation used is
insulin hypoglycemia The main novelties were related to priming and to IGF-1 value.
On the contrary of previous studies, where the value of the cutoff point in response to
GH almost doubled when it was preceded by sexual steroids, in our study we observed a
significant amplification of the GH response only in the group of patients with NVSS
and not in the deficient ones. Because of this, the cutoff point in the test without and
with priming were not much different, and it showed that, when we reduce the cutoff
point to 5 ng/ml there is mostly no longer any need for priming to mark this difference.
80
Conclusions
As established by the ROC curve and using the IGF-1 IRMA assay, the most
accurate cutoff point was about –1 SD adjusted for sex and age in patients with SS
resulting from different etiologies. As also established by the ROC curve and using the
chemoluminescent GH assay (Immulite-DPC), the most sensitive and specific cutoff
point of the GH peak response to stimulus by clonidine without priming was 4 ng/ml,
while the cutoff point of the stimulation tests with clonidine preceded by priming or by
insulin was 5 ng/ml in patients with SS.
Despite all the studies, there is no exclusive diagnostic study for GHD, and we
decided to maintain the diagnosis by analyzing the same set of clinical factors
previously described, plus IGF1 value below -1 SD and value of the GH response peak
to at least two pharmacological stimulations (clonidine and insulin) below 4-5 ng/ml
when the specific assay for the 22KDa form was used.
In clinical practice, our findings are important because they suggest that one
should: 1) perform a clinical and laboratory evaluation of a child with SS (40); 2) dose
baseline IGF-1 in children with a stature below the third percentile, or when there is a
reduction in the growth velocity below the 25th percentile; 3) if the child does not have
any other cause of IGF-1 reduction (chronic disease, malnutrition) and presents an IGF-
1 value below -1 SD for age, submit it to a GH secretion stimulation test (clonidine or
glucagon); 4) children who in two GH stimulation tests have no response higher than 4-
81
5 ng/ml, when a similar assay is used, should be diagnosed as deficient and treated; 5)
children with IGF-1 below -1 SD and one non-responsive stimulation test associated
with the presence of risk factors such as prior irradiation of the CNS, chemotherapy,
tumor or another hypothalamo-hypophyseal disease, alteration in the imaging exam of
the hypothalamo-hypophyseal region or deficiency of more hypophyseal hormones
must also be diagnosed as GH deficiencient; 6) children with IGF-1 greater than -1 SD
are unlikely to be deficient, but they must be followed to evaluate their growth velocity
which, if very low, may indicate the need to reevaluate the GH-IGF-1 axis.
Thus, considering the medical and public health aspects, particularly in a
country like ours, in which GH therapy for SS should be recommended only when the
diagnosis of GHD is confirmed, the results of this study are important, because they
support the importance of clinical characteristics and they demonstrate a cutoff point
with good sensitivity and with a small number of GH stimulation test “false-positives”,
enabling a precise, accurate diagnosis of GHD.
82
REFERENCES
1. Rosenfeld RG 1997 Editorial: Is growth hormone deficiency a viable diagnosis?
J Clin Endocrinol Metab; 82 (2): 349-341
2. Rosenfeld RG, Albertsson-Wikland K, Cassorla F, Frasier D, Hasegawa Y,
Hintz RL, Lafranchi S, Lippe B, Loriaux L, Melmed S, Preece MA, Ranke MB,
Reiter EO, Rogol AD, Underwood LE, Werther GA 1995 Diagnostic controversy:
The diagnosis of childhood growth hormone deficiency revisited. J Clin Endocrinol
Metab; 80(5):1532-1540
3. Frasier D 2000 Editorial: The diagnosis and treatment of childhood and
adolescent growth hormone deficiency-consensus or confusion? J Clin Endocrinol
Metab; 85 (11): 3988-3989
4. Chen S, Léger J, Carel C, Hassan M, Czernichow P 1999 Growth hormone
deficiency with ectopic neurohypophysis: Anatomical variations and relationship
between the visibility of the pituitary stalk asserted by magnetic resonance imaging and
anterior pituitary function. J Clin Endocrinol Metab; 84: 2408-2413
5. Zadik Z, Chalew SA, Kowarski A 1990 Assessment of growth hormone
secretion in normal stature children using 24-hour integrated concentration of GH and
pharmacological stimulation. J Clin Endocrinol Metab; 71(4):932-936
6. Ghigo E, Belloni J, Aimaretti G, Bellone S, Loche S, Cappa M, Bartolotta E,
Dammacco F, Camanni F 1996 Reliability of provocative tests to asses growth
83
hormone secretory status. Study in 472 normally growing children. J Clin Endocrinol
Metab; 81(9):3323-3327
7. Bright GM, Julius JR, Lima J, Blethen SL 1999 Growth hormone stimulation
test results as predictors of recombinant human growth hormone treatment outcomes:
preliminary analysis of the national cooperative growth study database. Pediatrics; 104:
1028-1031
8. Guyda HJ 2000 Commentary. Growth hormone testing and the short child.
Pediatr Res; 48:579-580
9. Kawai N, Kansaqui S, Takano-Watou S, Tada C, Yamanaka Y, Miyata T,
Oka M, Seino Y 1999 Serum free insulin-like growth factor I (IGF-I), total IGF-I, and
IGF-binding protein-3 concentrations in normal children and children with growth
hormone deficiency. J Clin Endocrinol Metab; 84(1):82-89
10. Lee PDK, Wilson DM, Rountree L, Hintz RL, Rosenfeld RG 1990 Efficacy
of insulin-like growth factor in predicting the response to provocative growth hormone
testing. Pediat Res; 27(1):45-51
11. Bussières L, Souberbielle JC, Pinto G, Adan L, Noel M, Brauner R 2000
The use of insulin-like growth factor 1 reference values for the diagnosis of growth
hormone deficiency in prepubertal children. Clin Endocrinol; 52: 735-739
12. Juul A, Bang P, Hertel NT, Main K, Dalgaard P, Jorgensen K, Müller J,
Hall K, Skakkebaek NE 1994 Serum insulin-like growth factor-I in 1030 healthy
84
children, adolescents, and adults: Relation to age, sex, stage of puberty, testicular size,
and body mass index. J Clin Endocrinol Metab; 78(3):744-752
13. Shalet SM, Toogood A, Rahim A, Brennan BMD 1998 The diagnosis of
growth hormone deficiency in children and adults. Endocr Rev; 19(2):203-223
14. Drake WM, Howell SJ, Monson JP, Shalet SM 2001 Optimizing GH therapy
in adults and children. Endocr Rev; 22(4):425-450
15. Growth Hormone Research Society 2000 Consensus guidelines for the
diagnosis and treatment of growth hormone (GH) deficiency in childhood and
adolescence: Summary statement of the GH research society. J Clin Endocrinol Metab;
85(11):3990-3993
16. Carel JC, Tresca JP, Letrait M, Chaussain JL, Lebouc Y, Job JC, Coste J
1997 Growth hormone testing for the diagnosis of growth hormone deficiency in
childhood: A population register based study. J Clin Endocrinol Metab; 82(7):2117-
2121
17. Carel JC, Gendrel JC, Chaussain JL 1998 Pharmacological testing for the
diagnosis of growth hormone deficiency. Growth Hormone and IGF Research 8(A):1-8
18. Reiter EO, Morris AH, MacGillivray MH, Weber D 1988 Variable estimates
of serum growth hormone concentrations by different radioassay systems. J Clin
Endocrinol Metab; 66(1):68-71
85
19. Celniker AC, Chen AB, Wert Jr RM, Sherman BM 1989 Variability in the
quantitation of circulating growth hormone using commercial immunoassays. J Clin
Endocrinol Metab; 68(2):469-476
20. Andersen M, Petersen PH, Blaabjerg O, Hangaard J, Hagen C 1998
Evaluation of growth hormone assays using radio plots. Clin Chem; 44(5):1032-1038
21. De Paula LP, Czepielewski MA 2002 Analysis of the accuracy the growth
hormone (GH) stimulation test with clonidine to diagnose GH deficiency in short
stature children and adolescents. M.Sc. thesis, UFRGS- Faculdade de Medicina -
Programa de pós-graduação em ciências médicas Endocrinologia- Porto Alegre, BR-RS
22. Martínez A, Domené HM, Ropelato G, Jasper HG, Pennisi PA, Escobar
ME, Heinrich JJ 2000 Estrogen priming effect on growth hormone (GH) provocative
test: A useful tool for the diagnosis of GH deficiency. J Clin Endocrinol Metab; 85:
4168-4172
23. Chalera EA, Rivarola MA, Guercib B, Ciaccioa M, Costanzoa M,
Travaglinob P, Maceirasa M, Paganib S, Meazzab C, Bozzolab E, Barberib S,
Bozzolab M, Belgoroskya A 2006 Differences in serum GH cut-off values for
pharmacological tests of GH secretion depend on the serum GH method clinical
validation from the growth velocity score during the first year of treatment. Horm Res;
66:231-235
86
24. Silva EGP, Slhessarenko N, Arnhold IJP, Batista MC, Estefan V, Osorio
MGF, Marui S, Mendonça BB 2003 GH values after clonidine stimulation measured
by immunofluorometric assay in normal pre-pubertal children and GH deficient
patients.Horm Res 59: 229-233
25. Barnes ND, Betts P R, Brook CGD 1981 Comparison of the intravenous
insulin and oral clonidine tolerance tests for growth hormone secretion. Arch Dis Child
56: 852-854
26. Lanes R, Recker B, Fort P, Lifshitz F 1985 Low-dose oral clonidine. A simple
and reliable growth hormone screening test for children. Am J Dis Child; 139:87-88
27. Greulich WW, Pyle SI 1959 Radiographic atlas of skeletal development of the
hand and wrist. Stanford: Stanford University Press
28. de Paula LP, Zen VL, Czepielewski MA 2007 Clinical and laboratory
evaluation of 851 short-stature children referred to an endocrine outpatient clinic, in
Estudos prospectivos no diagnóstico diferencial da baixa estatura e da deficiência de
hormônio de crescimento em crianças, tese de Doutorado- Faculdade de Medicina -
Programa de pós-graduação em ciências médicas Endocrinologia- Porto Alegre, BR-RS.
UFRGS
29. Sizonenko PC, Clayton PE, Cohen P, Hintz R, Tanaka T, Laron Z 2001
Diagnosis and management of growth hormone deficiency in childhood and
87
adolescence. Part 1: Diagnosis of growth hormone deficiency. Growth Hormone & IGF
Research, 11: 137-165
30. Nunez SB, Municchi G, Barnes KM, Rose SR 1996 Insulin-like growth factor
I (IGF-1) and IGF-binding protein-3 concentrations compared to stimulated and night
growth hormone in the evaluation of short children – A clinical research center study.
J Clin Endocrinol Metab; 81: 1927-1932
31. Juul A, Kastrup KW, Pedersen SA, Skakkebaek NE 1997 Growth hormone
(GH) provocative retesting of 108 young adults with childhood-onset GH deficiency
and the diagnostic value of insulin-like growth factor I (IGF-1) and IGF-binding
protein-3. J Clin Endocrinol Metab; 82:1195-1201
32. Saenger P 2002 Editorials. Growth hormone in growth hormone deficiency.
Start treatment early and give it for long enough. Br Med J; 325: 58-59
33. Marin G, Domené HM, Barnes KM, Blackwell BJ, Cassorla F, Cutler GB
1994 The effects of estrogen priming and puberty on the growth hormone response to
standardized treadmill exercise and arginine-insulin in normal girls and boys. J Clin
Endocrinol Metab 79 (2): 537-541
34. Cacciari E, Tassoni P, Cicognani A, Pirazzoli P, Salardi S, Balsamo A,
Cassio A, Zucchini S, Colli C, Tassinari D, Tani G, Gualandi S 1994 Value and
limits of pharmacological and physiological tests to diagnose growth hormone (GH)
88
deficiency and predict therapy response: first and second retesting during replacement
therapy of patients defined as GH deficient, J Clin Endocrinol Metab 79 (6): 1663-1669
35. Longobardi S, Merola B, Pivonello R, Di Rella F, Di Somma C, Colao A,
Ghigo E, Camanni F, Lombardi G 1996 Reevaluation of growth hormone (GH)
secretion in 69 adults diagnosed as GH-deficient patients during childhood. J Clin
Endocrinol Metab 81 (3): 1244-1247
36. Carel JC, Gendrel JC, Chaussain JL 1998 Pharmacological testing for the
diagnosis of growth hormone deficiency. Growth Hormone and IGF Research 8 (A):1-8
37. Carel JC, Ecosse E, Nicolino M, Tauber M, Leger J 2002 Adult height after
long-term recombinant growth hormone treatment of idiopathic isolated growth
hormone deficiency. Br Med J; 325:70-73
38. Evans C, Gregory JW on behalf of the All Wales Clinical Biochemistry
Audit Group 2004 The investigation of short stature: a survey of practice in Wales and
suggested practical guidelines. Journal of Clinical Pathology; 57:126-130
39. Chaler E, Belgoroski A, Maceiras M, Mendioroz M, Rivarola MA 2001
Between-assay differences in serum GH measurements: Importance in the diagnosis of
GH deficiency in childhood. Clin Chem; 47:1735-1738
40. Tavarone VB, de Paula LP, Elnecave RH, Czepielewski MA Short Stature
2004 In Gross JL, Silveiro SP Diagnostic routines in endocrinology. 1st ed Artmed:
249-58
89
Table 1. Comparison of characteristics of patients
.
GH deficiency
(n= 51)
Normal Variant
Short Stature (n=294)
Significance
Male 66.7% 69.7% p=0.785 NS
Age at first medical
visit
Mean (SD)
10.3 anos (4.8) 10.6 anos (4.0) p=0.662 NS
When noticed growth
deviation
Median and p25-75
4.5 years
1-7years
5 years
3 months- 9 years
p=0.523 NS
Sougth care
previously
87.8% 63.8% P=0.005
Events during
pregnancy (%)
37.3% 36.4% p=1 NS
Delivery by C-
Section
29.5% 34.8% p=0.609 NS
Birth weight Mean
(SD)
3019 grams
(655)
2971 grams
(628)
p=0.640 NS
Delayed puberty (%) 43.8% 24.5% P=0.012
Height different from
the growth channel
of target height (%)
100% 58.3% P<0.001
Z-score of
height for age
Median (SD)
Percentile 25-75
-3.73 (1.37)
-4.80/ -3.10
-2.44 (0.96)
-2.88/ -1.96
P<0.001
Z-score of
weight for age
Median (SD)
Percentile 25/ 75
-2.09 (1.18)
-3.18/ -1.46
-1.76 (0.84)
-2.31/ -1.26
P=0.006
Z-score of
weight for height
Median (SD)
Percentile 25/ 75
0.17 (1.35)
-0.79/ 0.80
-0.08 (1.20)
-0.67/ 0.64
P=0,354 NS
Delayed bone age 87.0% 59.4% P= 0.001
Growth velocity
Mean and SD
3.6 (1.75) cm/year 6.2 (2.0) cm/year P< 0.001
Percentile of target
height
<5 - 33.3%
5-25 - 46,7%
>=50 - 20.0%
<5 - 43.2%
5-25 - 46.8%
>=50 - 10.0%
Glycemia (mg/dl)
Mean (SD)
78.4 (11.8) 86.1 (10.5) P< 0.001
90
91
Table 2. Sensitivity, specificity and percentage of false positives tests from
different cutoff points in the GH response to the clonidine stimulation tests,
preceded (P+) or not (P-) by priming and to all stimulation tests (clonidine and
insulin).
Cutoff
point
ng/ml
Sensitivity % Specificity % False Positive %
GH Clo
P -
GH Clo
P +
Total
GH
GH Clo
P -
GH Clo
P +
Total
GH
GH Clo
P -
GH Clo
P +
Total GH
1
55 59.3 52.1 97.4 100 99.4 2.6 0 0.6
4
95 92.6 89.6 93.4 100 97.6 6.6 0 2.4
5
97.5 96.3 97.9 88.2 100 97.6 11.8 0 2.4
7
100 96.3 97.9 73 93.3 92.,4 27 6.7 7.6
10
100 100 100 53.9 75 76.5 46.1 25 23.5
92
Table 3. Sensitivity and specificity of different cutoff points of the standard
deviation of IGF-1
Cutoff points Sensitivity % Specificity % False-positive %
- 2 14.3 98.9 1.1
- 1.5 6.3 93.7 7.4
- 1 92.9 84.2 15.8
93
94
COMENTÁRIOS FINAIS
PROTOCOLO SUGERIDO PARA INVESTIGAÇÃO DE BAIXA
ESTATURA
1- Anamnese completa
Antecedentes perinatais e mórbidos
Doenças crônicas ou uso de medicações
Anamnese nutricional e psicossocial
Desenvolvimento neuro psicomotor
História familiar
2- Exame físico
Medida de altura do paciente e dos pais
Criança até 24 meses deve ter seu comprimento aferido em posição supina,
medida em uma superfície plana, deitada de costas. Mantém-se a cabeça da criança em
contato com uma prancha fixa ao longo da mesa e desliza-se a prancha até os
calcanhares.
Criança acima de 24 meses deve ser medida em posição ortostática, de pés
descalços, com o dorso e os calcanhares em contato com uma parede, a cabeça deve ser
segura de modo que a criança olhe diretamente para frente, a prancha deslizada até o
topo da cabeça e feita a leitura.
Medida de segmentos corporais para obtenção do segmento inferior e da
envergadura
95
Desenvolvimento puberal- Conforme classificação de Tanner e medida de
volume testicular com orquidômetro de Pradder.
Exame físico completo.
Cálculo da altura alvo (AA) = A pai + A mãe +- 13 / 2.
Preenchimento dos dados na curva de crescimento.
Deve-se investigar na anamnese e exame físico indícios que possam sugerir o
diagnóstico de deficiência de GH, quais sejam:
No neonato presença de hipoglicemia, icterícia prolongada, micro pênis ou
parto traumático.
Irradiação craniana
Traumatismo ou infecções do SNC.
Consangüinidade e/ou um membro da família afetado
Anormalidades da linha média craniofacial.
BE severa, com mais de 3 desvios padrões (DP) abaixo da média para
idade.
Estatura com mais de 1,5 DP abaixo do percentil da altura alvo.
Estatura com mais de 2 DP abaixo da média e velocidade de crescimento
(VC) em 1 ano abaixo da média em pelo menos 1 DP, ou diminuição de 0,5
DP da altura em 1 ano em crianças maiores de 2 anos.
Na ausência de BE, uma VC pelo menos 2 DP abaixo da média em 1 ano
96
ou 1,5 DP sustentados em 2 anos.
3- Raio X de Mão e Punho para determinação da Idade Óssea
O Raio X de mão e punho esquerdo para determinação da idade óssea deve ser
interpretado através de métodos como o de Grewlich-Pyle e o de Tanner-Whitehouse.
4- Exames de triagem de doença crônica
Uma série de exames gerais deve fazer parte da avaliação inicial da baixa
estatura, conforme está representado na tabela 2. Mesmo onerando a avaliação inicial,
através desta avaliação sistematizada é possível diagnosticar uma série de outras
patologias não endócrinas implicadas na gênese da BE, tratá-las adequadamente,
revertendo o quadro, muitas vezes. Cabe lembrar também que as alterações laboratoriais
do eixo GH-IGF-1 nestas outras patologias podem mimetizar as alterações diagnósticas
de deficiência de GH, e que pulando esta etapa inicial da avaliação por economia, pode-
se cair no extremo oposto, testando um maior número de crianças com avaliações
hormonais dispendiosas, ou o que é pior, diagnosticando erroneamente algumas crianças
como deficientes de GH e submetendo-as a tratamentos longos, caros e de resultado
medíocre.
5- Avaliação do Eixo GH-IGF1
Várias abordagens têm sido utilizadas para confirmar a suspeita clínica de
deficiência de GH em uma criança, e as mais comuns são apresentadas na tabela 3,
97
assim como também os “prós” e os “contras” de sua utilização. Uma vez que todos os
métodos possuem “falsos-positivos”, é importante que se defina com exatidão quais as
crianças que necessitam avaliação da suficiência de GH, tendo como base a análise
prévia dos critérios auxológicos relatados acima, e somente após exclusão de doenças
crônicas e síndromes genéticas.
Uma proposta de utilização na prática clínica de nossos achados é: 1) avaliar
clínica e laboratorialmente a criança com BE; 2) dosar o IGF-1 basal nas crianças com
estatura abaixo do terceiro percentil ou quando houver diminuição da velocidade de
crescimento abaixo do percentil 25; 3)caso a criança não tenha outra causa para redução
do IGF-1 (doença crônica, desnutrição) e apresentar valor de IGF-1 abaixo de -1 DP
para a idade, submetê-la a um teste de estímulo da secreção do GH (clonidina ou
glucagon); 4) crianças que em dois testes de estímulo do GH não tenham resposta
superior a 4-5 ng/ml, quando utilizado ensaio monoclonal do GH, devem ser
diagnosticadas como deficientes e tratadas; 5) crianças com IGF-1 abaixo de -1 DP e 1
teste de estímulo não responsivo + presença de fatores de risco como irradiação prévia
de SNC, quimioterapia, tumor ou outra doença hipotálamo-hipofisária, alteração de
exame de imagem da região hipotálamo-hipofisária ou deficiência de mais hormônios
hipofisários também devem ser diagnosticadas como deficientes de GH; 6) crianças
com IGF-1 maior do que -1 DP dificilmente serão deficientes, porém devem ser
acompanhadas para avaliar sua velocidade de crescimento, que se muito baixa pode
98
indicar uma reavaliação do eixo GH-IGF-1.
5- Avaliação Adicional
Nos pacientes com deficiência de GH comprovada são realizados também
testes para avaliação dos outros eixos hipotálamo-hipofisários e avaliação do Sistema
Nervoso Central, especialmente a região hipotálamo-hipofisária, por Ressonância
Magnética ou Tomografia Computadorizada. Em meninas, caso não se encontre outra
causa de baixa estatura, mesmo sem estigmas que sugiram síndrome de Turner, deve-se
realizar cariótipo.
99
Tabela 1- “Prós” e “Contras” dos Métodos Diagnósticos Utilizados na Avaliação
do Eixo GH- IGF-1.
MÉTODO
DIAGNÓSTICO
“Prós” “Contras”
GH basal -------- Não reflete a suficiência de GH –
secreção pulsátil
IGF-1 e IGFBP-3 Possuem níveis mais estáveis do que o
GH, tornando a coleta mais fácil
Têm maior reprodutibilidade
Existem tabelas padronizadas de
níveis normais para cada faixa etária em
ambos os sexos
Variam conforme:
Idade, idade óssea,
estágio puberal, sexo
estado nutricional e
doenças orgânicas crônicas
Não evidencia "o nível" do defeito do eixo
Não existe preparação de referência
aceitável
Concentração
integrada GH em 12
ou 24 horas
(amostras de sangue de
20/20’ por 12/ 24 hs)
Sensibilidade e especificidade
semelhantes aos testes de GH
Pesquisas científicas
Indicado na discrepância entre os
testes de estímulo de GH e o IGF-1
Necessário hospitalização
Custo elevado
Inconveniente provocado ao paciente.
Testes de estímulo da
secreção de GH
Manipulação
farmacológica
do tônus
somatostinérgico ou
GHRHérgico
hipotalâmicos
ou das condições
fisiológicas que afetam
a secreção de GH
arginina
clonidina
glucagon
insulina
L-dopa
Prática clínica comum na avaliação da
causa de baixa estatura
Confirmam a DefGH quando o
diagnóstico é suspeito em bases
auxológicas ou em um fator
predisponente
Menor dependência de fatores
nutricionais ou doenças crônicas do que
o IGF-1
GH clonidina apresenta resultados tão
confiáveis quanto o teste da
hipoglicemia insulínica, sendo, além
disso, mais seguro
Diferentes protocolos e estímulos
farmacológicos
Baixa reprodutibilidade
Depende de:
Idade, peso corporal,
estágio puberal
Picos de GH "normais" arbitrários (5, 7 ou
10 ng/ml?)
Variação do GH depende:
Tipo de ensaio empregado,
preparação de referência,
pureza do traçador de GH,
anticorpo monoclonal X policlonal
método básico de medida
Não há consenso quanto ao “priming”
Respostas normais ao reteste
Avaliação Genética
Técnica promissora
mutação./ del. gene do GH,
gene PIT-I - GH, TSH e PRL,
gene PROP-I - GH, TSH, LH, FSH,
ACTH e PRL
outros
Custo elevado
Inacessibilidade
GH urinário
IGF-II
IGFBP-2
Sub-unidade ácido-
lábil
Podem ser úteis quando utilizados em
combinação com outros testes
não são diagnósticos
100
101
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo