

furanoeliangolidos"

& & & %+ ‰ %()& & & && !!& %8!! 4% & & - %+, %!& !& & - ,)) / %&1 2. %&! & 3 4 %& ! & 5 6 ()&*! 4/& ‰□! %!&!&()&* %,)&))&8%4& %& ! &1 2. %& ! %Química & & & 5 - 5 &* 5 '*&

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

FICHA CATALOGRÁFICA

&	
&	
&	
&	
&	
&	
&	
&	
&	
&	
&	
&	
&	
&	
&	
&	
&	
&	
&	
	Dedico este trabalho aos meus amados pais,

Dirce & Valdemar

Vocês são muito importantes para mim!

Ofereço ao meu querido noivo, Alexandre

Aquele, escolhido por Deus, para estar ao meu lado!

Agradecimentos

À Deus, pelo seu infinito amor! E, por todas as bênçãos derramadas em minha vida!

À toda minha família, que sempre me incentivou! Amo muito todos vocês! Aos meus pais, Dirce e Valdemar, que são grandes exemplos em minha vida. Às minhas queridas irmãs, Luciana e Cristiana, e ao meu querido irmão Paulo. À minha irmãzinha Lucimara (in memorian). À minha linda sobrinha, Amanda.

Aos meus estimados cunhados, Antônio e Marcelo. Às minhas avós, Vicentina e Ana (in memorian).

Ao meu noivo, Alexandre, por toda ajuda, incentivo e apoio! Amo muito você! À toda família Leoneti, ao Sr. Edson e D. Mércia, Marcelo e Gerusa, que me acolheram tão carinhosamente. Que Deus os abençõe!

Aos amigos que Deus me presenteou durante estes anos: Adriana, Aline,

Ao meu orientador, Prof. Dr. Mauricio Gomes Constantino, pelos seus valiosos ensinamentos que, com certeza, me ajudarão sempre!

Ao Pof. Dr. Gil Valdo José da Silva e ao Prof. Dr. Paulo Marcos Donate, por toda colaboração.

Ao Prof. Dr. Noberto Peporine Lopes, pelas análises de massa de alta resolução.

À Virginia, pela excelente obtenção dos espectros de RMN.

Ao Prof. Dr. Adilson Beatriz, pela colaboração.

Ao Dr. Kleber, pela ajuda e ricas discussões de química. Ao Dr. Álvaro, pela colaboração nos estudos teóricos. Às amigas, Dra Mirela e Erica, pelo carinho e apoio.

Aos colegas de laboratório: Dr. Álvaro, Ana, Prof. Dr. Cláudio, Daiane, Edilene, Elen, Emílio, Fausto, Dr. Felipe, Francisco, Dr. Kleber, Dr. Luiz Carlos, Luiz Felipe, Marco, Rodrigo C., Rodrigo, R., Dra. Rosângela, Shirley, Dra. Susimaire, Prof. Dr. Valdemar, Viviane e a todos os outros colegas que estiveram no laboratório durante estes anos, agradeço pela convivência agradável.

Aos alunos de iniciação científica que trabalharam comigo: Francisco, Giovana e Roberta, pela colaboração e apoio.

Aos funcionários do Departamento de Química: Lâmia, Bel, Sônia, Emerson, André, Mércia, Djalma, Lousane, Vera, Olímpia, Dias; e também aos funcionários da Seção de Pós-Graduação da FFCLRP: Denise, Inês, Sônia, por toda atenção e ajuda.

A todos os docentes do Departamento de Química, que contribuíram nesta etapa de minha formação.

À Fapesp pela bolsa concedida.

Enfim, a todos que contribuíram, direta ou indiretamente, na execução deste trabalho, meus sinceros agradecimentos!

Índice

&	
6! % ! *********************************	88
& '	
5! +)	&&
&	
' + % [°]	. &
&	
& 4) + () ***********************************	× &
& & *) + 4 & % + % & -),) . % ! !4& 4) &	. &
& & - + %)!, %),) * * * * * * * * * * * * * * * * * * 	&
888. & 5. %)& ! & 7.! , , ! 888.	&
&	
& 6! 4) **********************************	&
&	
&*, %)&!&*! + **********************************	&
&	
&7 . + ()&) &5! +,4%) &	&
888. & 4) & 568) 8) 456. 4 4 56. °,6888888888888888888888888888888888888	&
888 & 4) & % ! + % 8) 8) 4 % 4 4 %	&
888. 8. 4) 8. 8. 4. 1. 8. 8) 8) 48. 4. 4. 98. 80 4. 4. 4. 98. 80 4. 4. 4. 98. 80 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	&
888. & ' + !) ⁴ ! & 8 % % 4) & # 4) 8****)	&
&	
&1) .,+ ()	&
&	
&* %4& 8 ! 4%	&
888. & 4) + () 888.	&
888. & *).!!! 448. 88! 49,6000000000000000000000000000000000000	&
& .! & %&5! % ! &7! . 4%	&
& *).!! 4 8	&
&	
&! ()&!& 8.4) &!&5	&
&	
&5! Y 2. %&-6) /. %	&
&	

Abreviações

. &&.)&% 4)& . &&)&% 4)& - & &) bis) 6+4) 4, & 1 & &1 %6))&) 4% ! 4&7! %) 8 %)& ! &) 2)& 7 - & & 0 7 % % . . ,)) !) & 7 - & &/ NJ ! 4, 1) % 86 7 *& & *!) % % ! & 7! % 4 & 7 ' & &7 ! 4 +, /)& & • -&&,!.4)&8%&)%++%+8),! !&)&, & • -&& ,!. 4) & 8 % (k) % (h) & & ! &) & , & & 1 ' & &1) !, % & 8.4).)8& -1&&!!) +. ! % +, 48! -) &1) !, % +, & 1& & ! !4) +. ! % +, 48! + % 4 & 1) !, % & ! & & &!), ! & && ! & . . + 8! &),! . +, % 64% 2 7'&&6s 4 ! 4, , % % ! & 8) 4) & 37 & & 7) 8) 8 , % ! 4 & ! & 4 & 3 □ & &3) ! & □)..+8! &),!.+, % 64% 1,& &1,) ! 4,& ! & ! 4%) +, /) , 8%, ,) ! 4,& ! & ! , %& -'&&/-6))+.. % && +.,! %& ! % ! & //. & & & ! , % & &&),%#& **'&&),+!)+,/)%#&!&8)& * ' & & .) & 4,+!) +, / .) & -' 1,& &1,) ! **4**& !**&** 6+4, ! 4, , **%** t - -+ 2 & - 6 + 4) & ! & 8) 4) &1,& &1,) ! 4,& ! & 4,+!) +, /) , & -&&! 4%) + %)& , % ‰&4)8)8,6 !) +,/) ,% % ‰

Resumo

&

Goiazensolido &

&

&) & ! 4),) & + 4 %
8 & & 8 ?
8 & & 6 ?
8 & & 6 ?
8 & & 6 ?
8 & & 6 ?
8 & & 6 ?
8 & & 6 ?
8 & & 6 ?
8 & & 6 ?
8 & & 6 ?
8 & & 6 ?
8 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & & 7 ?
9 & &

&

& ! !4&4 %6 %) &/) % & 4 % %&42 &) 4% & 4 4 %&8 % &88! 8 % %() &) & .,!) &6 .) &) &/ * %)!, %),) &

& %68)8)4%644%6. %28%6!%()&!&7!, ,!&!%%%264&)& !4 #%)&75&&&(&)8)8),%4&!&!4%290&&%8!!4+&+&%8.4& +8!!!4&&+&%%4&))!,!%

&

&

&

& & %!)&116&8 · !&! &) 64)&.) & 6) &! ! **4** & %&)&8) + **4**& ! +, **4**% **!**& %) ! %()&% ,. %) 8) **4318** & & + **4**& 4 !, & & , !&

&

Summary

&

Goyazensolide

&

&

&

&

&

&

&

& !&%! !&116&)+,&6&) 64%! & &) &!, &6+&4!&%),&8) +. & 118&&! &+ 4%6! & &!& %!&} + & &8 ! 4& 4&15&&4!&), &

&

&

&	&4 &	% &	4!	4&)+4	8 4! &	%),!	842	2&%8	52 &!	! & 8! 8%	&
&!!	& <u>4</u> 8	8),	&4)&7!	, ,!	&! %4)	8	4&)!	% & !,	&) &	&
% &	& !	8.	4!,	&							
&											
&											
&											
&											

&				
&				
&				
&				
&				
&				
&				
&				
&				
&				
&				
&				
&				

1. Intro

1. Introdução

```
&
```

&

& 7 !) & 8) + 4 & %
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

& * % % / & ! & % ! ! 4% () & ! 4% ! () & / & + 6 %) & ! + 4 & 48.) &

& & 1.1. Produtos naturais &iologicamente ativos; &

& & 1.2. Furanoeliangolidos &

& & 1.3. Reação de Diels-Alder. &

&

&

1.1. Produtos Naturais Biologicamente Ativos

& & & 1) ! .) % ! ! 4 **(2**) \otimes .) 8) / 4 \otimes 8) +) \otimes 8, % 8, % 4% \otimes () \otimes !) %) & .)) & ! 4%6 , 4 & 8) & ! & ! . +) & & ! 4%6 , 4 &)&()&!.) 4%)&! &4 %&%&.,+,%&!!4%&!&()&!.! 8) & **8**! **8** %).) & 8) 4 %&! & .) & +., .) & & ! 4%6, 4 & !.+) & % .) 4) & () &! 4 4 & & %+ %&8 %4 & %8 % 4% & & & & ! ! 4 & %&8 % 4%& +! &) &8) + ! & & ! 4%6, 4 & !.+) & 8) +) & 8, % & 8, % 4% & !,) & & .).! 4 %) & ! +)&) 44! 6&.))& ! 4%6, 4 &! 8. % & 4! %& 8%8,& ₳ %! 4%&)&!!), ! 4& %6 + . %6 . %6 4 4 %6) ! %& 4. %! 48)&!!), ! 48 % + . %) . %).) !+8! & & 8%%,)&%& 4)&!&8%4%&8 . 8%! 4&&8%4&)& .+,)& & + %)& /) %&! 4%) &) &8 !) &! 4) &.) &6% &.! 4/. % &8% 4&)&),%! 44& !&8 . 8) & %4) & !&8,%4%& &! (4)&.) !. %&.))& ! . % & /) % &) 64 % & % + % & +6 4 . % & +! & ! & .) % % % & .)) & 4 %4%! 44&!&! 4%&)! %& ! 8) & ! %& +64. %& ()& %) / %& % %**8**%6 /) %26&%26). % %20) /) !&) 4%)& %26/+ %26 & + & %#! %Q !&/) %&! %Q !4 & 8) +)& % % % %& +64. %& &) **‰ %&** *Ŋ* !& %&)! .) 8! % & ! & ! 4% 6, 4 & 8. % & 6) 44%) & 8, % 8 8 % 4% 8 4 %! & %)&& (),+)&))& !. %)&!&! / % !! &! ! &! ! 4%& &) 、!& Ŋ) ! & % 6! 4%&. %& &.)) %) & ! 4 & % %&&&4% 6 & &) ! & % % 4%() & &! +, %() * &

- &
- &
- &

Figura 1 & 4+ 4 % & + . % & ! & % + & 8 . 8) & %) &), %) & ! & 8 % 4%

&

1).

&

& % % ! & ‰ /%, ‰Amaryllidaceae & 42 & %4%)&.) ! !,& & %4 ()& 4 & & + .) & .) & !) & & + %6 ! % % 4 & 4+ **4** % 4 4 % !& % 8 ‰ %! %!&8)8! %! &/% %2+4 %& □& ! 8)&! ‰,%!& !&.) 8) 4 & & & %),.)) % **23** & ! +! % & * % % !& .),%6)%)!&42&!4%)& !4%! !4&%%!%()&!&7!, ,!& 4%),!.+, %& !& %) # %) & # .) % %) & ! & +4 %) & ! 4% ! **4**),) **% 8** ! % %% & **% 4** ! & **4 4% k** ! **823 k** 1) /) ! & **%** ! ! 4%) **k**) **k** 4%),!.+,%&88).! %%%) %%4 . %! 4% 1 &) %%+4 %)& %% .) <u>\</u> ! & ! & ! .) & 31, & **4** & 1 & *i* / ! . !) &) & .) & **3** / **4** & **2** & & +8) 4/8 +! &! 4/8% ! %() &!), %/6 + %/6 .,) % () & & .%/6 8) +) &) & %+4&19&.) &+ % 8) 4& !&) 2 & + %)/!&+ % % 42. % & 4) 2)&)&%!,&%6)&)&!4 &)%6...,) ! 84%)&! +,4%)&)& (4 !) (20 & & + 6! ! (48.4)). (26 ! & 8 4 (8 ! + (8.8), (26 !) (48.4)). (28 ! (4**21**&/) !.!+&)&8) + 4/&%) 4)&**22 8**.) & & !&! ! 4/&, + %& % ! & ! ! ! & 8) + **4**& .) + % & % & 8) + **4**& % **23** & 4% /) .) %! 48)& +8)& !& *% %4 & ! 4%)& % 4 !& !&)+4)& %% ! & & Amaryllidaceae& + 4 %)& ! % ! & !& 7!, , ! & 4%),!.+,%&,%&)&!%)&%) + %)&) + 38+ & +8)& %!)&4 %&

&

& &

&

&

&

&

&

&

&

&

&

&

&

& Son Son H ! & J 4% ! & 23 & J & ! % % & 30 & -) ! & &), % on % on % on the second of the second definition of

Esquema 3

Esquema 5

1.2. Furanoeliangolidos

&

&

& ! 4%6, 4 & 8) ! & ! & , % /. %) & ! +)&)& ! + &! +!,! 4&
. %6)...,.) & & + %4)& + 8) & 8 . 8% & germacranolido & .) & + & %d & ! & & &
! 6) & ! + ! %),)& 0& .) 8) 4 & 6...,.) & + %%),)& !& &
8! +) + %%),)& 0&) 8) 4 & 6...,.) & ! &
8! +) + %%),)& 0&) 8) 4 & 6...,.) & ! &
8. 4 %! ! 4% %8! ! 4%) & &
%6 / + %6 & 4 4% 4 & %8! ! 4% & + %6 %l %l & !&)+4) & %%) &

&

Figura 2 &* . 8%&, %! &! & % # % ! + 4 82 . % &

Figura 3 & +6 +8) &) & ! %%),) &

&

&

&

& 1) 8) 4 &)& +6 +8)&heliangolido & +! & 8) +! & + & 4)& !&
) 2)&, %)&1 & & 1 & ()&!) %) & uranoeliangolidos & &8 !)&
! 6)& ! 4&, % !&), %) & & ! 6! & 39 & / & 8+6. %)&! & &
4 % ! 4 & &)!.)& + & % !& !)& ! ! &) 8) 4 & % + %&!&
% + & !, ! & ()&) 4%) & & / + & &

& &

&

&

&

&

&

&

&

&

&

&

&

•

&

&

& !4 !& 3/ 4% & ! !& 8) + 3/& % # % & % ()&) 4% % ! % # %)& ! 4% 3/ & ! % ! 3/),) % ()& ! 4 % % 8% % # !&)& !)&

& & & -)!. %&!&.), %) %) ! & 8+6. %%& & 8 ! ‰ 14 !& .) /) !&) 4%)&)&! +! ‰ & & ! 4),) %d 8! % %d), !+& % ! + 2. ‰!&5%6 - %,+ &)&) 8) 4447 &/)&4%%)&) & -+ 23 & & ! + ‰) & 1,&/) !.!)&)&8) + 4& %+ %& ! %4,)& &444 &

&

- &
- &

Esquema 7

& ! 4),) %&8%%&% 4 !&!&) 8) 4 &) 4)&)&...!)& 4+4 %&) & # %)!, %),) & ()&.) 4%!4 ! !4&! 4 % %&!& %8 %& %& <u>4</u> !& ()&! .) 4%) & &, <u>4</u> % ^{0 0 0} & & 4% 6 & ! <u>4</u>),) %& 6 % % & &) /. % ! & ! & + 4) & 8) + 4 & % & % & % !! 8, 88%4)&!&+! %),) &)+&!&! %),) & & , + %& 4 ! & 4 ! % 4 & ! 4 & 48) & ! & .) 8) 4 & / % & !,!.) % % & & ! () & % ! ! 4% % & & ! + & & & **&**. 7) + % **&** &), %) ! **&** 8+6, % % & **&** 4 ! &) & +!,! 4 & 6 .)&! ! &.) 8) 4/ &7!&%))&.) &)&! +! %% & . %! !4&)& ! % % ‰ ‰ ! %()& !&7!, , ! &! 4 &)& ! %)&)& # %)**851** & 8! 8%%)& 8! %! 4 & & &)& %.)& 52 & +, 4%)&)& %+ 4&53 & 8 & %+ %& % ! & **53** & *h* & 64) & &) 8) **4854** & & & + % & *h* & + 6 ! 4) & % + % 4%) ! %()&!&) , !& % + 8 % % %() & %)&) ! & % & %)...,)**55** &

&

Esquema 8

&

&

& +4)&!! 8)& 4! % 4&!& 4!&!!&) 8) 4&/&!. 4%
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)
8) & % & 0, %)</

Esquema 10

&

Esquema 11

& & **&** % 4 ! &)&6...) + !. %)**&**74 & /) & ! % % % & &))& , %6) %4) 0 & 8 %4) & ! & + %6 ! %() & ! & . . ,) % () & & & & ! 4 &) & ...,) 8 4%!)&71 & & & & 4) 8) **%72** & / !.!)&)&) 8) 4873 & +! 8 % & & & ! 4%8% & 1/ & 4% / %)&)& %)...,) **& 4** & ! +! & & & & Esquema 13 & 69.0 8.4%8% 71 72 73 74 & & &) % %8 %2+4, %()& !& !%) &)& +%) & %8 8. /. %! 4&)& ! 4 # %)& **75** & & ! %()& !& 7!, , ! & 8) !&.) + & & ! 4 # %& %)...,. %& %&8%.. %&.) &%)&) %!),)&**42** & , &)**&**) & ! %) &) %6...) ! 84 !)& ! +, 4% !4 & ()& 8) 4% !4 & 14 !) & % 14 ! & ! & !) & 8) + 4 & % 4 % & & Esquema 14 & 5! %()&! 7!, ,! 75 7-Oxabicyclo[2.2.1]hept-5-eno & &)& & 8) 4 . ‰ ‰! ‰()& !&7!, , ! & &)) & 4) & &)& & 7!)&4 8.)&! 48%! ()&! &! . %)&..,+ %! 4&8%, %& 8 & &

1.3. Reação de Diels-Alder & & 1.3.1. Introdução & & 7! !& + % !..) 6 4% !& 0 & % !% () & ! & 7!, , ! & ! & & !! 8 %)&+ & 8 % & 8) 4% 4& % 4 ! &) . % 8 8) 6, 4%)&! & ! 6) &! 48‰! %() &+ &!)&) + %)&! %!&) &+ &! /,) &)&+ %& +&+ % +8,%)+&+ % 48,% % ()&8%% / % & 4) & & +4&!&! & 8) 8 ^{0 0} ! 6) & Esquema 15 & & & 486 ! %()&/)&! !4 %! !48 ! 4 % %68)& ! + & ! .) 6) ! & 8) 4 . 5% ! 45% ! % ()& & + . 5% . % & & & ! 4/. %()&) & 8) + 4 & 77 & 878 & +! % & & ! +, 4% 4 & % ! %()& 4 &)& .,) 8 4%!)&71 & & &60) +) **%76 &**!)+&7!, & &, ! & **%5** 4%66, %48. .) 6 4% ⁰ & & Esquema 16 &

& 7!,&!&,!&! 4%%&)!4}&%&% % &) %! 4&! & 0& +!&! 48%! %()& 86%! &8) # %! 48 /. %48 % 4 !&!&8) + 4 & '%\44& & !!&}4?& &) 4) %&&8)&'} & & & !& & 6 %4% % & .) % ! 4 **& &** % 4 **& &** % 4 **& &** % 6. % & **&** 8 **&** % 4 ! & %) / ‰! 8! %)&! %! &8 . . , . %& %&)+4%& 4 ! & 4 4%& !& 8) + 4/ & % + % & /) % & 8+ 6, % % & % & % ! 48% . % % & *%4+,%!#&&&%%4%%&85&!+! & **%** &!), ! & **%** %()&)& !4 %) %6...) ! 84 !)&)& + %&/ &) 64)& %+ % & % λ ! %()&!&7!, , ! & 4 &)&+ %)&79 & &)& %4 ↓) . %6) , %4 & ! & ! 4 % ! %()& !& 7!, , ! &.) &)& 6+ 4%!) & / !.!+&)& %+ 4883 & & ! %& 4%) % ! & ! +, 4%%& ‰/) %()&)& %!)&**884** & ! & 8) !4) ! !4& ‰ 885 . %4% &

&

Esquema 17

&

& ! + & %+ & 48.) & 8 4! <u>4</u> & & ! %()& !& 7!, , ! & ! ()& & $|\&/\%| \otimes + \%|$ ()&) $\otimes |4\%| \otimes |4\%| \otimes |8| + |8\otimes |14| \otimes |8| + |8\otimes |16| \otimes |16| \otimes$,!& & & 1.3.2. O dienófilo & & 7 / ! 4 & 48) & ! & ! /,) & 8) ! & 8 % 4 8 % & % ! % () & ! & 7 ! , , ! & !!)&! &! %) &! &! 4!)&)+& 4!)&)+& 8% & &! %! 4! & &+! &+ &)+& % 6) &) & 4) & ! & + & ! ! 4) 4) & & ! % 4 % ! &) & ! /,) & ! 8 ! & ! & + ‰! 4+ 4 % k ! %! 4 & 8% ‰+ ‰! %() & ! & 7!, , ! &) %&.) & ! % %) %& !&!, 4) & + % 4& % &)& !)& !& ! /,) & & !,). % & & % ! % ()& ! & 7 !, , ! & & ! 4 % & 8 . 8 % ! 4 & & 8,)& %& !& !4 %()& 4&)& & !& &),!.+, %&) 64%& !& + &) &) 8) ! 4 & & & & = &,) ! & +)..+8! &),!.+, % 6 4% &)&)+4) & !& + % **4**& !) & **/**) & **%** ! **%** ! & 8%%() & 4& ! & 64%& %&/%, ! 4& &)& !)& &)&3 □ &)& ! /,)& / + ‰ &)&

&

&

Figura 7 & 14 %()&)& & &)&!)&) &)&3 □ &)&2 /,)&

&

 &
 &+
 %()&!&7!, , !&)
 %&+
 !&)
 !&
 !&
 !
 !
 !
 !&
 !&
 !
 !
 !&
 !
 !
 !
 !&
 !&
 !
 !
 !
 !
 !&
 !
 !
 !
 !
 !
 !
 !
 !&
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 <

! (4)& %& +) %& %)& %.)& & 4) %+!) & +4) & 6) & ! /,) & ()&%!) & !4! &!} %&& 4, %& β0 %# %) & &) % & + %)& + & !)& !/.! 4&! &!, 4) & & + 4 %)& & & 8! 1 2. 56 &! ! 56 &) &! /,) &.) & & & , 4) & () & & !,) ! & .) & !&7!, , ! &) & ! % % ! % !&, 4) & & % ()& %&/) 4& & ! 4 &) & &) & ! /,) & & 3 □ &) & !) & & & + 4 % & 4 4 % % % ()& ! & 7 ! , , ! & 8) ! & ! & /. % + % ! 4 & % 8, % ‰ 8, ‰ 4, % ()&!&! /,) & +!&) 42 & + .) % % & % % % & !)&! + % 4 & 44) & !&! 8. ! & ()&! % + %)+& % ! &)& ! +! **%** %6 %) & & %8! ! 4%) &+ & ! 8) & ! 4**%** ! %() &) &) **8 487** & & $\frac{1}{4}$ $\frac{1}$ %+**4&88**&&8)!&!&), % &&&&!**4** %&7! 4&// **%&**/ **%&**/ **%**&/* .) % %!&%# & .))&+ &! + % 4&)&! 4)& 1 1 1 &)& + % ()& &+ &! /,)& !,) &)& +! &8 , & & &! ! % % &

&

Esquema 18

&

&

&

1.3.3. O dieno

& □ ‰%8,‰%1 %l&!&!) & &+4 % ‰ & &! % ! & !&7!, , ! & .,+)&!) & !&. %l ‰ %b 4‰)+& I. % %b !& !) & /) %) &

 $\begin{pmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

&

Figura 8 & / 4 & 4 .) &)& !) &

&

&

%&! % ! & ! & 7!, , ! & & ! 4 %) & ! & , 4) & 5 5 5 5&&+ &% 8**4** & **8**4%&))&1 5& **&** 1 !&, 4) & 7 & &1 7 & & + &) %) & & & 4%&)) & 5 & 5 & ' ! 7、 .)! /. ! '4 &) &) 64%&!&/) '4 % 8! 1 2. 568, 56) ! 4% () orto 5 8! / 2. ‰8,%a) ! 4%()para $^{7} \swarrow + \parallel_{5} \longrightarrow ^{7} \swarrow_{5}$

& °

&

Esquema 21 &* . 8)& ‰% ()&*is* &

&

&

- 1.3.6. Reações de Diels-Alder em Síntese Orgânica
- &
- & 1))&// & % %) & % & ! ! & ! 4% ! () & % ! % () & ! & 7!, , ! & & + 4% 8) 4% 48 ! & 44 ! & . % ! & . % & % & 44 ! & ! & 8) + 4 & % & % & .
- &
- &
- &

& 2. Objetivo & & & & & & & & &

2. Objetivo

&

&

.

&

Esquema 25

&

•

&

4.1.2. Reação de Diels-Alder entre o 2-metil-furano (**75**) e o 3bromopropiolato de metila (**90**)

&

& 7!&%))&) &&, 4 %# %&&! %()&!&7!, , !&!&# %)&&!+& ! %) &.) & %! 4!) & %# %) &).) !&/%, ! 4&! +,4%)&)& %+ 4& .) ! 8) ! 4 &

8 & %) 6!4 () &) & 6)) 8) 8), % & ! & ! 4 % 90 & /) & ! % % % % & ! %()&!&7!, , ! & 4 & ! /,)&&)& ! 4 + %)&75 & & +6 4 % &),+6, %) & & & !)&!.)&/) % & . %! 4 & % 4%) & 8) & &) %& & 14 8 % 4 % % 6! 14 &) % % 8 % % () & 4% %).) !) & + 4 & ! 4% ! 14 & !)& % &)& !)&! %) %& /) & %+! .)& %4&! /+)&! & % & % 4)&8) & %& &) % &7!&/%#&&%%1! %()& %%! %()&!&7!, , ! &).) !+& %&)+!&4%6 &+ &% ! 4&) ! !,&!&)+4%&! % ! &!.+ %& & %()& !&+ %% ! +,4%)&/)& & %/ 4 86. ! . + 88.) 4)& !)& +68) + 4 & ! /. %) & 8) &) %**4** % %2 & % % % % !, % % ... & 7! 48% 4 %) 8! %&\/ %&), %) &8) &) %∦ % %‰!&),+ %‰ & ,. ‰!, &) & !) - !) &91a &! &91b & & ! & ! ! **4 &** + **%**8)8)()&!& 08 4 & %+ 4 & / % & % % %) & 8) & 5 & & & / % & % 6+) & ! 8.4 %! 4& 4)&)& %&.) ! 8) ! 4 & % &) 2) **&**. %6)) &! & % ! & ! & .) 4% 4 & 8%) 8 %! 4 &

& & 8) 4% 44&! %4%&+ & %8. 4/& + 8!! ! 44&! 44&! %()&+!&& & % %44&!) !,! 4 %!&) 6! % %&

& **%**%%%()&) & 64%&),!.+, % & !&-) !4 **%**- & & &) &)! /.! !4 & %4 .) &1 & &!) ! 4 %)& !) &75 & &)& !/,) &90 & /) % &) 4 % & 8,)& 4)& &!&) &.)! /.! !4 & !&) 64% & % +... & 4% 6 & /) % & . %+, %) &8) & 4& 4) & & %&/+ %& && ()&) 4% %& %& +8 /.!&! % %& &)& !)&!&3□ &)&! /,)&) &) ! 4% ! & +!&! +, 4%&) &) 8) **} 301a**& !**31b 8**! 8.4 %! 4& & ! +,48‰ **⊗1a** & & & & & HOMO & & & & LUMO &

&

 $\begin{array}{cccc} 1 & 1 \\ & & & \\ & & & \\ \hline \\ 90 & & 91a \end{array}$

&

!

&

& & &

& %&/ + %& && & ()&) 4%) &) &)!/.! 4&) &) 64%&%4 .)& 1&8%%g&!)&&!/,)&

&

НОМО

90

0

1

91a

ļ

&

& &! +, 4%) &) 64) & 4% 4& 8 , % + 8 /. ! & ! % % + 8 + % 4& 8 ,) & .)! /. ! 4 &) & 6 4% & % + .) & ()&+ 4/. % & %!) + . & ! 4%! %()& !&7!, ,! &

- & 7 % 4&) & !. + !& ! % % ! 4) & 4 .) & ! 4%), .+, % & 4 & 4) & 4 .) & 4)& !)& ! % %) &) & & 6) % ()&)& *) /& 7 & ,& %)&) & ‰', ‰)& 3%) & 4)& !& , !& 1) /) %) % & & 5!) . ‰ % 4 ‰ +.,! % 3 1& & 5 & - 1 35 * □ *&
- &
- &
- &
- _
- &

4.1.3. Transformações químicas no aduto de Diels-Alder 91a

&

&

Figura 15 & 4!) + . %)&) 8) 434 &

&

Cis &

Trans

% 4%**1**, **%** %6%)&! 4)& %8!! 4%)&)& %)!& 4!.)&!& & ! 8 ! 4%& %&) 4%!4 & ! & %) 8 % ! 4& & 8) & 8 % % () &) .,+ ! & +! & % ! !) + . %) &) 8) 4394 & & is &) & +8) & +6 44 ! 4 & 8% % 6%)&

&

&

Tabela 1 & % ! & 4 .) & ! & 8%%) & - !) & cis & ! & trans & ! & % & ! 8 ! 4%&!&(&)&) 8) 4**34** &

	J ₂₋₃ (Hz)	<i>J</i> ₃₋₄ (Hz)
Teórico-Trans	0&	0&
Teórico-Cis	0&	0&
Experimental	0&	0&

* % % .) / % & % ! !!) + . % 4% 6 &) % & ! % %) & & 8 ! ! **4** & ! & & & 7 - - **8** % %) & **8** & & & ≥) & 2) & ∞ + 8 % & 7! & %))&) & , +,) & ! &) ! , %! &),! . +, %0 & &) 2) & % & +!& ()&8) 6, 4% % ! /. % ()&)& / 4& & / + % &)& 8 ! 4 & !& &7--&! % %) &4% 4& % %)&) &) 2) & % + 8 % + !& &não verificamos efeito NOE &! 4 &! ! &) 2) &.) / %)& % & % 4!) + . % 4&) 8) 4&

&

4.248Å 3.064 Å

Figura 17 & 7 4 . % 8% % 4 & &) 2) & ! ! .) %) & ! 394 &

Esquema 31

& 48% ! % ()&) & ! 4% 8%.) & %& ! + ! 4 & 6 % | & % & t -+ 2&!& ! % & & 4 4% + %) & % & & + 2 & ! + , 4% % & & + % 4 % 8! 86! & !) & +68) + 4 & & 8, 86 4 8! 4% () &) & 8.4) & ! & 5 & 4 .) !& & & &)&8) + 4&6+ 4 & ()&) &) 6! % % % 8! ! %) & 8) + 4& !! %) & &)&! &! %! &! +, **4**+& **%**! %()&!&! %! 4, %()& **%&** & **%** ! %()& !& . . , %()& ! ! % **%** /) ! . !)& % 8 %) 4% %! **4** &) & 8) + **4 8 101** &) & +! **%** % 6 %) & + & 8) **!** & **!** . %)& &8)8)4&

&

&

&

Esquema 32

4.1.4. Modificações na Proposta Inicial

&

&

Esquema 33

&

&

&), %4& ! & 02 &) & 8! 8%%) & 8 ,) & 4 %4%! 4&) & -+ & - & & - & & 1& + % 4& & + 4 & ! +, 4%)& % / % ()& !&+ & 8!. 84%)& .))& 7!)& % /.+, % &! & % 8+, % ! 4%),+ () & ! 4% ! &)& * 4%),+6, %)&I& -&/)&%.) %)&%&I),%4&& 4%%!%) %&/)&% 4%% ! +,4%)&/\& %()\&)\&) 8) 4\$103 & 4 %6! & %! 4!) - !) &) & ! **4 & % & & +** /. %()&8) &) % **#** % **%** ! &),+ % **b** & ,. % !,& &!&! & & **4** ‰)64 ‰/)&4%4% ‰) & .)&!&.)&% 4)&) &+,4%) & **4** ‰ ! & & % ! !) - !) &) & + % & & % % . ! % & ! & 8) + **4**&**104** & %)&+%4%/&)&&!&! ! 4&8%8&8+/.%()&8)&) %4 %%8 !&.),+ ‰! & ,. ‰ !,&! +! ‰ & *) &) & 4) & 8 & 4) & *b* /) & !.)& .) 4 + % &) & 4) &) & % 4 % ! & % ! 4 !) - !) & & ! 8 !) &) &) & ! +, 4%) &) 64) & % & ! 4% & % & ! & ! 8%% () & ! % & ! 4 % % & &

Esquema 34

&

&

% ! 2. % 1/8 1/8 1/4% % % 1/8 ! % ()& !& ., % ()&)&)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)
% 1/8 104 &)

&

- &
- &
- &

0) %

Esquema 36

& **4**)&/)&. %)&) & % 8 8 8 % ()&)&), % **4** 8 % 8 4%) & **106** & 8,) & 4 % (4%) = 4&) & -+ 2& - & 6 & 1& + % 4& & + 4 & 8 + , 4%) & +, 4%) & +, 4% & +, %26/) %()&!&+ ‰),+()&4 ‰!& /. ,& % 8+, %() & & %+ 4/391a & & -& /) & %.) %) & & 4 &), + () & & & 6 + & 1 + () & & & 6 + & 6 8 .) %4 % %6 ! &),+ %2 & ,. %6 ! ,& ! ! 4& %) & ()&)+ ! & /) %()& ! &

4 ‰ ! & % ! !) - !) & & & +! & ! + &))& ! 4)& + ‰ /) & !)& ‰), . +, %&

Esquema 37

&

&

&

& + 4 & & 8) + 4& ! ! %) & .) 8) 4&108 & 1/&), %) & .) & & ...

&

- &
- &

Esquema 40

&

&

& 4!) + . & ! 4&8) + 4&/ & ! 4 8 % ()& & 8)64) & 8 ! 4% & & 4) . %! 4 & / + % & & 4 & / 6, % & &) . ,+ () & 64 % /) & +! & % +!) + . %) &) 8) 48109 & 8c/s &) & & + 8) & + 6 44 4 & 8%%%6%)&

&

&

Trans

&

! 8 ! 4% & ! & &) &) 8) 48.09 &

	J ₂₋₃ (Hz)	<i>J</i> ₃₋₄ (Hz)
Teórico- <i>Trans</i>	0&	0&
Teórico-Cis	0&	0&
Experimental	0&	0&

&

Esquema 41

&

Esquema 42

&

&

&! 4) & ! 4‰! %()&8) ! %& !4 &)&8) ! +) & !4 %)&)+4%&6% & %&!)& %& %& !& /.+, % &)&!)&! %&! !4 & ! 4) & & . %& % ! 4 %()&!&+ ‰) %) 4‰ 44 %& & *Investigação de um caminho alternativo para a preparação do composto 108* & & & * %‰!), ! &)&8) 6! ‰! ! ! !4& %&6%)&! ! 4& % & 4% ‰!& ! + ()& ‰ +8 ‰, %()&.) + % ‰)&.) 8) 4&107 & ! 4)+ !&+ & . %)& %4 %4)&8%%&%8!8%%()&)&) 8) 4&108&)+&) &) 8) 4 %,)) &104&&**994**&!8 !)&)&)&) &%.) %)&%&%+4&! 8)& 4%&4%&& 8)& 4%&4%&&

Esquema 43

&

Esquema 44

<u>4</u> !& **%** 4+**4 %** %).., **%**) & + %)!, %),) &

& 4.2. Estudos da segunda proposta sintética

&

&

Esquema 45

&

Esquema 46

&

&

& & & 4! + + , 56 + 26

Esquema 47

&

&

&

&	* %%, %!	4& %& !	!)	, ! ·	4&!	48%)) 48%	44
---	----------	---------	----	-------	-----	------	-------	----

Esquema 49

&

&

& 1) 4) 8 % + 8 % %) & ! 8115 8 % % 4 ! 488) + & # 48 # 48 ! 48 ! 4%6, %()&)& !!)& %+ .)& 8) !, ! !4& %4 % & %6) + %()& /) %)&+ &) &()&, .) &))&) 4%)&)& +! 86 88) &)&4 48 !& , ! & % & & % ! + () & % + 8, % % % () & * 1 & & & % ! & 8 % 4 % /)&) +)& %8 %! !4&/) !.!)&+ ‰ 4 ‰) **% % + %**) ! <u>4</u>& 8! & +! & &

&

Esquema 50

&

).)	‰ %4	/%) %!	48	& %!)& /)&)64)&.) &	& !	& !	!	48)&
!)& &	4!,&&.	&!	% % /%	o, !	<u>48%88</u> %	% &8 ,%8	+, (ھ	86	& ,.	&!,&
&											

&

Esquema 52

&

&

Esquema 53

&

&

& 7 % 44&! 44&! +, 4%)& %4 /%4)& & 4% 6 &) ! %)& %) ()&
! %) %& !)& / 4 ! 4&.)& !.! %68%%, .!&)&.! 4%
8) 4) & / &!.)& 4 4%
+ 4%
+ 4%
+ 4%
+ 4%
+ 4%
* 4%
* 44 %
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
* 4%
*

- &
- &
- &
- &

4.3. Estudos da terceira proposta sintética &

&

Esquema 54

&

%4 % %6 ! &.),+ %6! & ,. %6 ! &)& %+ 4& / &), %)&.) & & ! & .) ! ! 48 Esquema 55 80 & & &! + %!**8133**&) & * 1**8** & 8! ()&!&&%+&+ %++&&) %& & 8) + **48134** & 1/&) 64) &) & &!&! ! 4& & Esquema 56 $\begin{array}{c} & & 1 \\ & 1 \\ & 1 \\ & 1 \end{array} \xrightarrow{* 1} \begin{array}{c} & & 1 \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$ 133 134 & & !!) + . %)&) 8) 4**3**34&/)&!!! % % 8) &) 8%%()&) & &

& & #!) + . %)&) 8) 48(34&/)&! 4
% % 8) &) 8%%()&) &
% ! & 4 .) & & 8
! 4% & %) 4% 4& !& % & 8 & !
! & 8) 4
& 8 & !
! & 8) 4
& 8 & 0) & !
. 4& % 4% 6, % & & % !
& 4 & % & 8 ,)& 8) % % *1) !,& !.
. %),!.+, % & 1 % 8)& !& /

&

	J ₂₋₃ (Hz)	J ₃₋₄ (Hz)
Teórico-Trans	0&	0&
Teórico-Cis	0&	0&
Experimental	0&	0&
&		
& 1))& &! /. %) 0&)	&%)8,%!4&&&)6!	%)&)&))2)&&8
. %6 ,.)&! &34 &) / &	%وهه 4!) + . %))&!)&ndo
& & 4 8 34 & <i>j</i> & 4)	&! +)&%&), 8 39 & %4%	6 &)&4 %4%! 44&) 8
3, & & 4 % !%) % <i>\</i>	& % 4% & + % 4& & + 4	& & ⁾ 1& & & & & & & & & & & & & & & & & & &
+4)&&4:8 %+86%6!	4 & &),&/)&) 64)&) &	&!&! ! 4&
&		
	Esquema 57	
&		

&

*) !4) ! !4 &)&),&139 & / & 4 % f%)&.) &.,) ! 4 & !& !, % !&
4! 4 % % & &),+ ()& / & % % 4% % + % !& 0&) % & % ⁾ 1 & ! +, 4%)&)&
!, % 4 35 &) & & !&! ! 4 &

Esquema 58

&

&

Esquema 61

&

&

Figura 20. &1) / !)& %& 4 !,&) % + 4&41 *

&	4%	&)&	4)8	.! 4%	%)&)	& 8	8.4)8	&!&5	&!& 8	SL& 1807	*
8	1 ' &	18	88	-1 & /)	&8)	.! ,&	! 4/.	%& %	%) %)	&) 2) &
)ଷ	4% 4 8)& 8	. 4)&	!&5	&!&	&)	& %	. (&	8)!	4&%&	& &
&	(4)&)	6!8)	4 &))&-	4%6	&) &	%&	! &	& &	& 4%	&!&
! 8	! 4.8	& ! & 5	&	!& &	.) &!	%	<u>48</u> ! 8	&!,).	%! 4 8	k +- 78	& 1) &
8)	!,&)6!	%&+	86	%)& (% %()8	&) &) 2	<mark>2)&</mark> β	&& β&.)) 8%%)&	%&
&! &	&! &)&) 2)& β	&.)	8%%	5)& %&	8	.)/ 9	%)&%	& &
! !4!) + .	‰ !8	4)	&) &)	2)&	β8	\$ 8) ! 8	&!&!	4/. %)& 8	3 ,)&
%) 8,	%! 4 8	k) &	8) 6	6! %	%)&)&	8.	4)&1 '	&			
%) 8, &	%! 4 8 .)	k) & %!	80)6 1480.92	6.) /	BB(&(% ()%	8. & &	4)&1 ' ! 44!	&) +	. ‰)&.) 8) 48.1	41 &
%)8, & 8)!&	%! 4/8 .) .! &) 64	&) & %! \$&)	80)6 148098 8.%)!	\$! % %.)/ & %	%)&)& %() &) 4	8. & & % 4& !	4)&1' ! <u>4</u> ! &%)8	&) + } %!	. ‰)&. 4&!&) 8) 4&1 &&	41&
%) 8 & 8) ! & & _	%! 4/8) .!&)64 %60+	&) & %! & &) & &)	80)6 1480.92 8.969!	\$! % &) / !& % %) %	&)&)& %() &) 4 &!%	8. & & %4&! %&	4)&1' ! 44! &%)8)&	* &) + } %! &	. %6)&. 4]&!&) 8) 48.1 && & & Y !	41 & 4 &
%) 8 & 8) ! & & [] .) <i>1</i>)	%! 4)& .) !&)64 &6+. %!	&) & %! & &) & &) & &) & & 8%	80)6 14809 & %) 1) & 4141	\$! % &.) / !& % %) % &) &.	6)&)& %() 6) 4 6.!%)! 8	8. & & % 4& ! % & ;	4)&1' ! 4! &%)8)& !4&	&) + 3 %! & % ! 8	. ‰)&. 4]&!& :/) !.!+ & !&/&!8) 8) 4&1 && & & /! & & % % %	41 & 4 & 4 &
%) 8 & 8) ! & & □ .) ♪ -), 4	%! 4/8) !&)64 &6+ %! %&/)	k) & %! %o) %o) & %o) & 8%) %o) %o) %o) %o) %o) %o) %o) %o) %o) %	80) 6 <u>1</u> 48 8 8 %) 1 1) ~ 8 8 141 4 14	\$! % &.) / & & & %) % &) &. %) &	%)&)& %() &) 4 &!%)! { &8.8%%	8. & & % 4& ! % & 3) ! %&)	4)&1' ! 14 ! & %) &)& !4 & & %) !) + 3 %! % ! & % ! & &4	. ‰)&. ≄&!& :/) !.!+ & !&/&!& .) &!&/) 8) 48.1 & & & & 1 ! & & 95 & 95 & 4%61, %6	41 &
%) 8 & 8) ! & & □ .) <i>≬</i> -), 4 %)	%! 4/8 .) !&)64 & 6+. %! %&/) !,& 8)	 *) & % ! %) %) & 8% ? % & ! 	80) 6 14 82 92 8& 93 1 1) 9 861 41 9 14 261 &	\$! % &) / & & % %) % &) & %) &) &	%)&)& %() &) 4 &! % } ! 8 &8%% %) ! 8	8. & % % 4& ! % % 3) ! % & 4	4)&1' ! H! &%) &)& H & & % ! .)&!8	8) + 3 %! & % ! 8	. %5)&. 3 &!& ./) !.!+ &!&/&!& .)&!&/ .)&!&/) 8) 48.1 & & & & !! & & 9 & 4%6, & .) /)+	41& 4& 6 !& & & & & & & & &

&

	%)&44)&!&4&&&	%)&8 ! 4%&!&/&
α	0&	0&
β	0&	0&
α	0&	0&
β	0&	0&

&

&

& &! %()&. %! 4&14 4% &%/&& , !&. %&& %+ 4&141&/)& 4%4%)&) &! 4%),&&.)&+,/.)&).! 4%)&8)&&) %&&44 8 %4 %6! 4&&&) & %&&) %&&%! (+) &&&8) + 4&)64)&/)&! 4/.%)&) &

!)&)&)	8)	4 8.46 &	&!&!	! 4	} & !	+,4%	%)&	‰%6	4	&	% 8)	48 ! 8
)	2)&!	+	&&(3) & (4)	%4 %()&))&%!	,&!	+!	&	&				

Esquema 65

&

& 4% & 4% h % ! & h % & 4% 6 & ! 4% % & ! 4% ! ! & & %)..., & **142** & 4 % ‰ 4 % ‰ ½ 4% 4 % & ! +, 4% % & ‰ h % () & ! & 4 ‰) & 8! % & ! & % &) & & + 4 & ! ! %) &

4.3.2. Modificações na terceira proposta sintética

& &) /. %()&+ ! % ! 4%) 4% 44 % &) &!, %()&% ! /,)& % ! + % ! %()&!&7!, , ! & !4& ()&8) +)&& + 8)&! , % % 8) !&.) + & !4%! !& %& %)...,)&!! %)& & %4 %()&8) 8) 4% &) 4% %)& +! %%6%)&

&

&

Esquema 66

& & ! /,) & % % & !& ! 4 % 148 & / & 8! 8%% & 8;)& 4 % !
%)& % .)& 52 &) & ! 4%)& !& .)& +, / .)&) . ! 4% & + % ! & &
% & % ! +)& & !& !

& Esquema 67

&

& %6! %()&!&7!, , ! &)&!)&! &)&! ,+6, %) &! &&4,+!)&
/ %&! /+ %) & 8) & & %&8 8) &)&! +,4%)&) 64)& / & !.+8 %()&)&
%4 %&!&8%4 %&+ 4%! !4&) &+ %6 4 %6) & 8! %6! &.4)&!&5 &
!& && & &

&

&

&

&

Esquema 69

&

&

Esquema 71

&

& ! 4%) 4% 44% 8%% 11% 2. ..., 0.414 4% 2. ..., 0.414 4% 2. ..., 0.414 1% 2. ..., 0.4144 1% 2. ..., 0.4144 1% 2. ..., 0.4144 1% 2. ..., 0.4144 1% 2. ..., 0.4144 1% 2. ..., 0.4144 1% 2. ..., 0.4144 1% 2. ...,

' <u>4</u> ! & **%** 4+ **4 %** %).., **%**) & + %)!, %),) &

4.4. Sugestões para estudos futuros

& () & +! () & 8% & ! () & 8) () & 8

Esquema 72

&

154

&

Esquema 73

- &
- &

& 5. Conclusão. & & & & & & & & &

.

5. Conclusão &

&

&

& ! !4& 4 %6 %)& /) %& %8! ! 4%) &! 4) &) 6! & & 14 !& !&
%)!, %),) & +4 %)& & 16! &

&

.

6. Parte Experimental & & & & 6.1. Introdução & • & &) % & % + 6 4 . %) 4% % & ! & % ! 4 %) % & ! 4 % % & % / % % 2 . % & •& ! 4% ! ()&) & .) 8) 4 & 1 % &) ! %) & .) 1 !& !.) ! % ! &) /. %& & nternational Union of Pure and Applied Chemistry & □* 1 & 8 % ‰) ! ., % 4 ‰ ! &) 8) 4 & .) & & •& & 8.4) & ! & !) . % % 4 % +. ! % ! &) 2) & 5 & **&** &)+& & & &/ %&) 64) & & &+ & 8.4 ! 4)&-+!& 75 &)+&-+! &75 & &!,). %! 4 &+ .) & & 4 (4)& !, %4%) & &8%4&8) & , () & 88 & &!, %() & %&4 4 %! 4 , %) & '**&**+4, %)&))&8%()& !4)**&**),). %) !& 4&8%2 !4 !& **% +**,48, % & & & <u>,</u>] **40** <u>,</u>& & <u>,</u>] **48** <u>,</u> %) **8** & & + 6! **48 8** & +6! 48 & +8)& +8)& +8)& 48! 48 & 48! 48 & 86 +,48! 48 & 86 &

1& } & Carbono Totalmente Desacoplado de Hidrogênio; &

&

•&	&!	8.4)&	!& 5	7& /)	%&)64)	&!	&+ &	. 8.	4 ! 4)&
	- + !	&7 5	&) +&- + !	&7 5	&				
&									
•&	&!	8.4)&	!&%6) ()&)&	/%]!,)&	&)	%&!	4%)&
	! &+	& 8 .4	4)))4 !4)	& *!	, ! &) ! ,);	&	- &!	&!,%&

<u>4</u> ! & ‰ 4+ 4 ‰ %)..., ‰) & + %)!, %),) &

'

6.2.5.

&

6.2.6.

&

6.2.7.

&

&

&

&

&

6.2.8.

&

&

&

6.2.9.

6.2.25.

Procedimento

&

6.2.1. Propiolato de metila (100)

Procedimento: & &+ ‰),+ ()&!&.)&8) 8,.)**&99**& 0& & 0&),& & ! 4%) & 0& 3&! / % & % ! 1) %& & 4 % % % 6! 4& & & + %& & ! % & & .) % % & + & 6%)&!& + % & 3&! & .) & & 8) + 4&/ & 4%)&) & !4&! 4.)& & & ... ! 4 ! %) 64 % /) &, % % %) & %) % **%**) & % % &8%‰‰!)()&)& .)&8)8,.)&!&!.%‰) &.,)!4&!&.,.)&&),!4&/& !4%)& %4% & ! &),+ ‰ ! &/%) %! 4& & &! +)& 64)&! 4%)& & ort-path& ∞ 0 ⁾ 1 **& endimento:** & & & & 80 1 &

6.2.2. 3-Bromopropiolato de metila (90) &

&

&

Procedimento: & & ₩ ‰),+ ()&!&8) 8), % & & ! & 4 % **500** & 0& & 0&), &), & 0 & & 0 &), & ! +)& !& -' & 0& & 0&), & !& + % & & ! & & 4 % (%) % (%) 4 +) + &) & % 4% (%) & 8 &) % 8 % 8 & ! ! 4 & 8)) & % %1 **4 86**/3 **8.** + %) %! !4&! %3) % **86 8 4%** %3) %) &.) & 6%)& !& + **%6** %6 ⁾ 1 & & ! +)& ! +, 4% ! & /) & , % %)&) & 8 4%)&! & /, 4 %) & &), ! !4&/)&!))& &) 4% %3) %) &) &6%)& !& + %6%. !& ⁾ 1 & & ! +) & + & !) & % % ,) & / & ! 4 %) & ! & % % ,) & 8 % & ! & % % ,) & 8 % & ! & 4 %) & ! & % % % ,) & 8 % % $! 4, \%()\&)) 4\%\&) 6\&8! ()\&! + \% ^{)} 1\&$ **&**) 64) !&+ & & RMN¹H&171, **&** & **&**&88 & 0 & **&**& & & 80 1 & & & & & & &

6.2.3. (±)-(1R,4S)-3-Bromo-1-metil-7-oxabiciclo[2.2.1]hepta-2,5-dieno-2carboxilato de metila (91a) e (±)-(1S,4R)-3-bromo-4-metil-7oxabiciclo[2.2.1]hepta-2,5-dieno-2-carboxilato de metila (91b) &

&

<u>Procedimento</u>: [&] □ ‰ **4** ‰!& ! 4 *#* %)&**75** & 0 & & 0 &), & & 6))8)8), % & ! & ! 4 **‰90** & 0 2 - & - & - & - 6.2.4. (±)-(1S,4R)-3-[1-(Metoxicarbonil)-2-oxopropil]-1-metil-7-oxabiciclo-

[2.2.1]hepta-2,5-dieno-2-carboxilato de metila (93) &

&

&

Procedimento &

&

Preparação do enolato do acetoacetato de etila &

&+ ‰),+()&!&t -+ 2& 0& & 0&), &! & -& %)& 0& 3& ! / % ‰) &6%)&!&!,)&!& + ‰)&% %.) %)&% 4 4 %1 4%4&!&! 4 ‰ 0 & 3& 0& & 0&), &) 4‰ ‰) 4%0)& & %1 4 %4&!&! 4 ‰ 4 ‰! +, 4% 4&/ &% 4% ‰8)&& + 4 &),+()&% %, ‰, %%&

&

Reação de adição do enolato ao aduto 91a &

&

 RMN
 ¹H& 171, 8
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &

& 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 && 80 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 80 1 & 0&1 & 0&1 & 0&1 & 0&1 & 0&1 & 0& 1 & & 0& 1 & 0&1 & 0& 1 0& 1 & & IV (KBr) v_{max} & & & & & & & & & &

6.2.5. &(±)-(1R,2R,3R,4S)-3-[1-(Metoxicarbonil)-2-oxopropil]-1-metil-7-oxabiciclo[2.2.1]hept-5-eno-2-carboxilato de metila (94)

- RMN ¹³C & 171, & & 86 & 88 & 0& 1 & 0& 1 & 0& 1 & 80 1 & 0& 1 & 0& 1 & 0&1 & 0&1 & 0&1 & 0& 1 & 80 1 & 0& 1 & 0& 1 & 0& 1 & &

6.2.6. (±)-2-[(1S,4R)-3-(Metoxicarbonil)-4-metil-7-oxabiciclo[2.2.1]hepta-2,5dien-2-ila]-3-oxopentanodioato de dimetila (103) &

&

Procedimento &

&

Preparação do enolato do 3-oxoglutarato de dimetila &

&

Reação de adição do enolato ao aduto 91a &

&
6.2.7. (±)-2-[(1S,4R)-3-(Metoxicarbonil)-4-metil-7-oxabiciclo[2.2.1]hept-5-en-2-ila]-3-oxopentanodioato de dimetila (104) & &

&

- **RMN ¹H**& 171, **&** & 8688888888 **&** 0 & **&** & 0 & **&** & **& &** & 80 & 0 & **&** & 80 & &
- **RMN**¹³**C**& 171. **&** & 66888880&1 & 0& 1 & 0& 1 & 0& & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 1 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 80 1 & 0&1 & 0&1 & 0&1 & 0& 1 0&1 & & 0& 1 & 0&

1	&	0& 1	&	0& 1	&	0&	1	&	0& 1	&	0& 1	&
	0& 1	&	0& 1	&	0& 1	&						
&												
IV (KBr) v	max	&	&	&	&	&	&	&			
&												
&												
&												
&												
&												
&												
&												
&												

6.2.8. (±)-(1R,4S)-3-(1-Acetil-2-oxopropil)-1-metil-7-oxabiciclo[2.2.1]hepta-2,5-dieno-2-carboxilato de metila (107)

&

&

Procedimento &

&

&

Preparação do enolato da pentano-2,4-diona &

Reação de adição do enolato ao aduto 91a &

¹³ C	8.171,	8	&	8	& 88	&	0& 1	&	0& 1	&	0& 1	&	0&
&	0& 1	&	0& 1	&	0& ^	1&	0& 1	&	0& 1	&	0& 1	&	0&
	0& 1	&	0& 1		&	0& 1	&						
Br)	v _{max} &		& &		&	&	&	&	&				
	¹³ C & Br)	¹³ C & 1 7 1, & 0& 1 0& 1 3r) ν _{max} &	¹³ C&171, & & 0&1&& 0&1&& 3r)ν _{max} &	¹³ C&171, & & & 0&1 & 0&1 0&1 & 0&1 3r)ν _{max} & & &	¹³ C&171, & & & 0&1 & 0&1 & 0&1 & 0&1 3r)ν _{max} & & &	¹³ C&171, & & & & & & & & & & & & & & & & & & &	 ¹³C & 171, 8 & S & 8 & 8 & 0& 1 & 0& 0& 1 & 0& 0	¹³ C & 171, & & & & & & & & & & & & & & & & & & &	¹³ C & 171, & & & & & & & & & & & & & & & & & & &	¹³ C & 171, & & & & & & & & & & & & & & & & & & &	¹³ C&171, & & & & & & & & & & & & & & & & & & &	¹³ C&171, & & & & & & & & & & & & & & & & & & &	¹³ C&171, & & & & & & & & & & & & & & & & & & &

6.2.9. (±)-(1R,2R,3S,4S)-3-(1-Acetil-2-oxopropil)-1-metil-7-oxabiciclo[2.2.1]hept-5-eno-2-carboxilato de metila (108)

&

&

&

RMN ¹³C & 171. & & 86 & 88 & 0& 1 & 0& 1 & 0& 1 80 & 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0&1 & 0&1 & 0& 1 & &

6.2.10. (±)-(1R,2R,3S,4S)-1-Metil-3-(2-oxopropil)-7-oxabiciclo[2.2.1]hept-5eno-2-carboxilato de metila (109)

&

&

! ‰ 0&), 3& 8! %! 4&8! 8%%) & & 4 ‰! %) %&/ &% 4% ‰8) & &) %&8 4)& & | %()& & 4 8 % + & % & & 4 8 % + & & 6 ! ! & & 8 &! 4& 8)) & %.)) + ! & + % % & !) & ! %) % ! &) & 8) + 4 & / & ! 4%)&.) & % 4% & !&! 4 % & & /% &) . % / & !. % %) & ' **&**)& .),+ %26 & ,. %6!, 60+4 %) !&))&, +! !4&! %) %1 4%48 !&! 4 %6 8) 64) ! & & !) & % % ,) **& endimento** & & & RMN¹H&171, & & & 0& & 0 & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0& & 0 & 8 & 0 & **& & &** 0 & **&** 0 & **& & &** 0 & **&** 0 & **&** 0 & **&** 0 & **&** 0 & **&** 0 & **&** 0 & **&** 0 & **&** 0 & **&** 0 & **&** 0 & **&** 0 & **&** 0 & **&** 0 & **&** 0 & **&** 0 & **& 0 &** & & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0 0& 1 & 0& 1 & 0& 1 & & IV (KBr) v_{max} & & & & & & & &

6.2.11. (±)-(1R,2S,4S)-3,3-Dimetoxi-1-metil-7-oxabiciclo[2.2.1]hept-5-eno-2carboxilato de metila (115)

&

&

Procedimento: $^{\&}$ \square $^{\&}$),+ ()&)&.) 8) 4891a & 0 & 0 & .), & & . ! 4%)&& 3&/)&%.) % %) 4%% %) 4%% % + %),+ ()&!&! 4)&!&)& !&!4%)&&),3&& &3&! /%%%%%⁰1&& **4**%%!%)%&%&%%%% 8) & &) % & ! %) ! & ! % & % 4 8 % 4 % ! 4% ! 4& % & & 4 8 % 4 % % 6! 4 &) % ! 4 & % 4 % / & ! / % % % % ⁾ 1 & ! & ! (4) & 4 % % % .) &),+ ()&%+) % !& 1,& & % 4&8 & & & ! 4%),&/,&!))&) & .+)&&.+)&.&)& 8) + 4& 1/8! 4% (%) & 4/8! 4. (%) & 8/9! 8 (%) %& 8/9! 8 (%) %& 1/8! 8 (% &), ! !4&/) & !)) &) & . +) & &) & . +)&/)&&+ /. %)&8)&) %# %& !&,),+ %24 & ,. %6 !, &+ 4 %) !&,))&!,+! !4& ! %) %1 4%4& !&! 4 %6 & ,)&% %,) & onto de Fusão: & ⁾ 1 & endimento: & & & & 0& & 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 80 1 & & IV (KBr) v_{max}: & & & & & & & & & & &

6.2.12. Ácido (±)-(1R,2S,4S)-3,3-dimetoxi-1-metil-7-oxabiciclo[2.2.1]hept-5eno-2-carboxílico (122)

&

&

&

6.2.13. (±)-(1R,2S,3S,6R,7S)-2-lodo-9,9-dimetoxi-7-metil-4,8-dioxatriciclo-[4.2.1.0^{3,7}]nonan-5-ona (123) & &

&

Procedimento: & &+ %),+ ()&)&.)&22&0& &0& ,& ,& &-& 0& 3&8 !)&), ! !&)&2&&& &&&.) %!&)&&&& 4 % **4** %6/) & 4% %6) & 4 & 4.) & %6/% & . %6/) & . % & & &),+ () & % + % % ! & % 1 & ! . % %) & ' & & &), ! 4&) & !))&) & . +) & .)&6 %) & Ponto de Fusão & & 1& **Rendimento** & & & **8** 8 0 8 **8** 8 0 8 **8** 8 0 8 **8** & & & 0& 1 & 0& 1 & 0& 1 0& 1 & & IV (KBr) v_{max}: & & & & & & & & & & & & &

8.2.14. (±)-(1R,2S,4S)-1-Metil-3-oxo-7-oxabiciclo[2.2.1]hept-5-eno-2carboxilato de metila (124)

&

&

Procedimento & &+ ‰),+()&)&) 8) 4&15& & &0 &),& & ! 4%),& 0& 3&&&! 8 %# %%% 6! !+&/,&%.) %)& 1,&) .! 4%)&) 4%% %6.)4%6.0& 3&& 4 %6.!%) %&∦&% 4% %6.8)&&) %& & & ↓ + %∂ .) &),+()&%+) % % % % % % 1 &!. % %) & ' & &), ! !4&/)& !))&) & . +) & / !.!)&+ & .!)& .),) **& Rendimento:** & & & & 0 & **&** & 80 & & 1 & 0& 1 & 0& 1 & 0&1 & 0&1 & 0&1 & & & & & IV (KBr) v_{max} : & & & & & &

8.2.15. (±)-(1R,2S,4S)-3,3-Dimetoxi-1-metil-7-oxabiciclo[2.2.1]heptano-2carboxilato de metila (125)

&

&

6.2.16. (±)-[(1R,2S,4S)-3,3-Dimetoxi-1-metil-7-oxabiciclo[2.2.1]hept-5-en-2il]metanol (128)

&

&

 RMN ¹H&171, &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &

&

6.2.17. (±)-(1R,2R,4S)-3,3-Dimetoxi-1-metil-7-oxabiciclo[2.2.1]hept-5-eno-2carbaldeído (116)

&

&

6.2.18. (±)-4-[(1R,2S,4S)-3,3-Dimetoxi-1-metil-7-oxabiciclo[2.2.1]hept-5-en-2-il]-4-hidroxibutan-2-ona (118)

&

&

Procedimento: &

&

Preparação da solução de LDA &

&

&

Preparação do enolato da acetona &

&

Reação de condensação do enolato ao aldeído 116 &

*) !4) ! !4 &)& %!)& 16 & 0 & & 0 &), & j & %.) %)& &
),+ ()&)&), %) & & ! &
),+ ()&)& &), %) & & ! &
),+ ()&)& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& &
),* ()& & </l

RMN ¹H& 171, **&** & & 0 & 8 **0**& & 0 & **&** & 0 & **&** & 0 & 08 8 0 84 & 80 & 8 & **RMN** ¹³C & 171, **&** & && & 88 & 0& 1 & 0& 1 & 0& 1 & 0& 1 0& 1 & 0& 1 & 0&1 & 0& 1 & & IV (KBr) v_{max}: & & & & & & & & & & &

6.2.19. Periodinana de Dess-Martin (DMP) 131

129

130

&

Procedimento: &-) %4& ! &8) 4)& 0 & & 0&), & / & %.) %)&8) & + &8) &! & & + 4 &) &! ! & & + 4 &) &! ! ! & % 4% () & % 4% () & % 4% () & .)))6 .)&**129**& 0& & & 0&), & & 0& 3& !&.)& +, / .)& 0&), 3& 7+ % 4& % % () & % 4 8 % 8 % 4 % % 4 % 1 %) % 1 & % 4 % % 6 %) & ! & °1&&!+ %&&%4 8 %+ %%)&!! %%%%% °1&!&%4%%%8)& %& 0&) %& & **4** %%! %) %&/) &! / % %% %% ° 1&! &/, 4 % %%) & . +) &) & .)&/) & ,%%)&.) & & 3&!& &!& & &3&!&! + 4%),& & ! ! & & &8) + 4& / & % % %)& & & . %)& . 4)& . 868)& &) %& , 866 %)& Ponto de Fusão: & ⁾ 1 & endimento: & & & & & & & & & & & & & & & & & & &

2^a Etapa &

&

& &

& &

- &
- &

6.2.20. (±)-(1R,4S)-1-Metil-7-oxabiciclo[2.2.1]hepta-2,5-dieno-2,3dicarboxilato de dimetila (133)

&

&

Procedimento: &-) %& 4 %) & ! 4 # %) & 75 & 0& & 0 &), & %1 4!). %6), %4& !& !4 **%80 &** 0& 00 &), & & & ↓;)& !.)& & & ! 4 # %)&75 & 0& & 0&),&/&%.) % & & & & 4 %./&! /+ % & 8) & %& &), ! !4&/ & !))&) & . +, 4%)& & + & !)& & .),) **& endimento** & & & 8 &0 & & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & & IV (KBr) v_{max} & & & & & & & & & & %) & 8.4). 8.) & (+)&!&%))&) & % / (+) & (+)

6.2.21. (±)-(1R,2R,3S,4S)-1-Metil-7-oxabiciclo-[2.2.1]heptano-2,3dicarboxilato de dimetila (134)

&

&

- RMN
 ¹H & 171, 8
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
- &

&

6.2.22. (±)-[(1R,2S,3R,4S)-1-Metil-7-oxabiciclo-[2.2.1]heptano-2,3diil]dimetanol (139)

&

&

Procedimento:[&] &+ ‰),+ ()&)& ! 4& 0& & 0&),&! &-& & 3& ! / % % % ° 1&) & % ! & & / & % .) %) & %)& .! 4%! 48+ ‰),+ ()&)& 48134& 0& & 0&),& & -&%)& 4 8 % 4 % % 6! 4 & 8 & 4 & 8)) & %),+ () &) & ! / % % % ° 1 & 8 4%%% (%) & +6! ! 4%% ! & !& +% 0 & 3 &),+ () & %+) % ! & % & & 0 & 3& & + % 0 & 3 & &),+ ()&/ & % 4% % & 8 & . 8 4% & 6 %)& /) %)& /) & ,+)&.) & %! 4% & !&! 4 % !& /,4%)& % + % & !& Rendimento: & & & & & IV (KBr) v_{max}: & & & & & & & & & & & &

6.2.23. (±)-[(1R,2S,3R,4S)-1-Metil-7-oxabiciclo-[2.2.1]heptano-2,3diil]bis(metileno)dimetanossulfonato (135)

6.2.24. (±)-(1R,4S)-1-Metil-2,3-bis(metileno)-7-oxabiciclo-[2.2.1]heptano (136) &

&

6.2.25. (±)-(1R,4R,5S,8S)-*N*-Fenil-1-metil-11-oxatriciclo-[6.2.1.0^{2,7}]undec-2(7)eno-4,5-dicarboximida (141)

&

&

 Procedimento: & □
 %
 4
 %
) & !
) & 6+ 4/3136 & & 1/8
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %<

&

& 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0 0& 1 & 1 80 1 & 0&1 & 0&1 & 0&1& 0&1& 0& 1 & 0& 1 & & IV (KBr) v_{max} : & & & & & & & & & HRMS (ESI-TOF): & %+, %)&8%%21 86 %& 0 & .) 4%)& 0 &

6.2.26. (±)-[(1R,4R,8S,11S)-1-Metil-6-fenil-14-oxa-6-azatriciclo-[9.2.1.0^{4,8}]tetradecano-2,5,7,10-tetrona (142) &

Procedimento: [&] &+ &),+ ()&)&%+ 4841& & &0 &),& & &4%+ !&! 4, 5% 0& 3&/\&6) 6+, %)&) -)& + %4&&) %& 5% ° 1& &! + %80 1/2.%.) %)&+,1/4&!&!4% 0 & 3&2% 4%% 4%% 8%8)&),+ ()&/ & ,+ &) & 4 & 4 .)& 0& 3& % &) &),+ ()& +) & &!& % & % & 0& 3& &),+()&%+) & 2& &2 1 & & & & & 0& 3& & !. % ‰) & ' & %) & &), ! !4&//&!))&) & ...,)&6 %) & ⁾ 1 **&endimento:** & Ponto de Fusão: & 88 & & 0& & & & 0& & 0 & J&& 0& & 0 & & 8 & 0 & **& & &** & & **RMN**¹³C&171, & & **&**& 88 & 0& 1 & 0& 1 & 0& 1 & 80 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 80 0& 1 & 0& 1 & 0& 1 & 1 & 0& 1 & 0& 1 & 80 1 & & IV (KBr) v_{max} : & & & & & & & &

&

HRMS (ESI-TOF): &. %+, %)& 8% & 1 & & & 0 & &! .) 4%)& 0 & & 6.2.27. (2Z)-But-2enodioato de dimetila (148)

&

&

Procedimento: & & & %),+()&!&%) & %.)&52 & 0& 0&),& & & ! 4%) & & 3 & ! / % % % %) 1 & / & % .) % & .) & +, / .) & .) . ! 4 %) & $! + \%(1) \otimes \%(1) \otimes \%(1) \otimes (1 \otimes 1) \otimes (1) \otimes (1) \otimes (1) \otimes (1) \otimes (1) \otimes (1) \otimes (1)$ &! & !. % %) & ,) ! 4 & ! & ,.) & &), ! 4 & / &! %) %) & . +) 64) ! & & !) & .),) **& endimento:** & & & & 0&1 & 0& 1 & & &

6.2.28. (±)-(1R,8S)-1-Metil-11-oxatriciclo[6.2.1.0^{2,7}]undeca-2(7),4-dieno-4,5dicarboxilato de dimetila (151)

IV (KBr) 。	v _{max} : &	&	&	&	&	&	&	&				
∝ HRMS	(ESI-TOF)	:&.	%+, %)&	8% &	1	&		&	0	&!	.)	4%)&
0	&											
&												

6.2.29. (±)-(1R,4Z,8S)-1-Metil-2,7-dioxo-11-oxabiciclo[6.2.1]undec-4-eno-4,5-dicarboxilato de dimetila (152)

&

- &
- 8,). 81 14)&1 7 83 & 88 & 0& 1 RMN¹³C&11, & & & 0& 1 & & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 & 0& 1 0& 1& 0& 1& 0& 1 & 0& 1 & 0& 1 & &

- HRMS (ESI-TOF): &. %+, %)& 8% & 1 & & 0 & ! .) 4%)& 0 &
- &

•

```
7. Seção de Espectros de RMN
&
&
    7.1. Introdução
&
&
&
     ! +! & ! + ‰ ) ‰ + &! . ) ! % () & /. % & & 6! 4 ) & ! 4‰ + ! % () & &
/%, 4%& & ! 4/. %()&) & 4 ) & !& %6) )& & ) 2 ) &
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
```

7.2. Espectros de RMN Selecionados &

& Composto 91a

&

&

Espectro de RMN ¹H do composto 91a

&

%6, %6 & 7 %) & 8.4 % & ! & 5 [&] &) &) 8) **431a** & 171, &

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	J & & O & & & O&
0&	&	&	J&& 0&
0 &	&	&	J&& 0&
0 &	& 1 &	&	&
0 &	& 1 &	&	&

Espectro de RMN ^{13}C { ^{1}H } do composto 91a

&

&

%6, %6 & 7 %) & 8.4 % & ! & 5 [&] 1&) &) 8) 4/391a & 171, &

δ (ppm) &	
	Atribuição
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
&□4)+ !&%&! + !4 &4 %&!&) !	,%()& 1&& - 1&
&	
&	
&	
&	

Espectro de RMN ¹³C (DEPT-135) do composto 91a

&

%3, %6 & 7 %) & 8.4 % & ! & 5 [&] 1& 7 * &) &) 8) 4**31a** & 171, &

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
&□4,)+!&%&!+!4&4%&!&)!,%()& &	1&& - 1 &

Composto 91b

&

&

Espectro de RMN ¹H do composto 91b

&

%6, %6 & 7 %) & 8.4 % & ! & 5 [&] &) &) 8) 4/30 1b & 171, &

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	J & & 0 & & & 0&
0 &	&	&	J&& 0&
0 &	&	&	J&& 0&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
&			
&			

&

Espectro de RMN ^{13}C { ^{1}H } do composto 91b

&

%3, %6 & 7 %) & 8.4 % & ! & 5 [&] 1&) &) 8) 4**31b** & 171, &

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
&⊡4)+!&‰&!+ !4&4 ‰&!&)!,%() * *)& 1&& -1&
:	
) X	

%6, % & 7%) &! 8.4% &! & 5 [&] 1& 7 * &)&.) 8) 4/891b & 171, &

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
&□4)+ !&‰! + !4 &4 ‰!&) !,‰()& &	1&& - 1 &

&

Composto 93 (mistura diastereoisomérica) &

Espectro de RMN ¹H do composto 93 (mistura diastereoisomérica)

•

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	J & & O & & & O&
0 &	&	&	J & & O & & & O&
0 &	&	&	J&& 0&
0 &	&	&	J _{&} & 0&
0 &	&	&	J&& 0&
0 &	&	&	J&& 0&
0 &	& 1 &	&	&
0 &	&	&	&
0 &	& 1 &	&	&
0 &	&	&	&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			

%6, %6 & 7%) & ! 8 . 4% & ! & 5 [&] &)& .) 8) 4/∞ 93 & 4 %6 %4 !)) . % 171. &

& &

& &

- & &
- &
- &

&

- &
- &

- &
- &

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

& 7 %) & ! 8 . 4 % & ! & 5 [&] 1&) & .) 8) 4/8**93** & %6**3**,%26 4 %

•

- & %&) 6! 8) 4 &
- &
- &
- &

¹³C (DEPT-135) do composto 93 (mistura Espectro de RMN diastereoisomérica)

& &

& & & &

& &

&

۲

&

•

%4!)). %&171, & Atribuição & δ (ppm) & 80 1 & 1 & 80 80 1 & 80 1 & 0& 1& 80 1& 0& 1 & 80 1 & 80 1 & 0& 1 & 80 1& 80 1& 80 1 & 80 1 & 80 1 & &*) ! & 4%&4). %) & & %&)6!8)4 & & & & & & & & & & & &

%6, %6 & 7 %) & 8.4 % & ! & 5 [&] 1& 7 * &)&) 8) 4833& 4 %

<u>4</u> ! & **%** 4+ **4 %** %)..., **%**) & + %)!, %),) &

Composto 94

&

&

Espectro de RMN ¹H do composto 94

%6 5,%6 &7%)	& 8.4%&!&5	^{&} &)&) 8	3) 4,334 & 171, &
δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	J & & O & & & O&
0 &	&	&	J&& 0&
0 &	&	&	J & & O & & & 0&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0 &	&	&	J&& 0&
0 &	&	& J &	8 0 8 8 8 0 8 8 0 8
0 &	&	&	J&& 0&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			

Espectro de RMN ^{13}C $\{^{1}H\}$ do composto 94

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

&*) ! & 4%&4). %) &

۲

&

Espectro de RMN ¹³C (DEPT-135) do composto 94

%6, % & %7 %) & 8.4% & ! & 5 [&] 1& 7 * &)&) 8) 4/394 & 171, &

Atribuição &
1 &
1 &
1 &
1 &
1 &
1 &
1 &
1 &
1 &
1 &

&*) ! & 4%&4). %) &

Composto 101

&

&

Espectro de RMN ¹H do composto 101

•

%6 ,%6 ,%6,%7%)&	8.4%&!&5	^{&} &)&) 8)	4101 & 1 7 1, &
δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	J&& 0&
0 &	&	&	J & & O & & & O&
0 &	&	&	J&& 0 -

Espectro de RMN ^{13}C { ^{1}H } do composto 101

&

%6, %6 & 7 %) & 8.4% & ! & 5 [&] 1&) &) 8) 4**& 01** & 171,

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
9 * \ I 9 /0/9 /\ 0/ \ 9	

Espectro de RMN ¹³C (DEPT-135) do composto 101

&

%3, %6 & 7 %) & 8.4 % & ! & 5 [&] 1&) &) 8) **44.01** & 171,

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

&*) ! & 4%&4). %) & &*) ! & 4%&4). %) &

۲

&

Composto 103 (mistura diastereoisomérica) &

Espectro de RMN ¹H do composto 103 (mistura diastereoisomérica)

&

& &	&	J & & 0 & & & 0&
&	_	
	&	J & & O & & & O&
&	&	J&& 0&
&	&	J _{&} & 0&
&	&	J&& 0&
&	&	J&& 0&
& 1 &	&	&
& & &		
& 1 &		
& 1 &	&	&
& 1 &	&	&
& 1 &	&	&
& 1 &	&	&
	& & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 &	& &

%6
%8
7 %) & !
8
4 % & !
8
) & .
8
4 % & .
103 & .
4 % & .

%1 / 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
<td

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

•

0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
&*) ! & 4%&4). %) & &*) ! & 4%&4). %) & &*) ! & 4%&4). %) & & %&) 6! 8) 4 & & &	
&	
&	
&	
&	
&	
&	
&	
&	
&	
&	
&	
&	

•

Espectro de RMN ¹³C (DEPT-135) do composto 103 (mistura diastereoisomérica)

'

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
& 4%&4). %) & ! & 4%&4). %) & %&)6!8) # &	

%6, %6 & 7 %) &! 8.4 %& ! & 5 [&] 1& 7 * &)&.) 8) 4&103 &

Composto 104 (mistura diastereoisomérica)

&

۲

Espectro de RMN ¹H do composto 104 (mistura diastereoisomérica)

&

&	‰4%6 , ‰%6%)&%8! !	2	4%)&)&%)&	8.4%&!&5	&	&) & &
	%4!) - !)&+!&%8%.!	8	& % & + % 4	% &		
&						

%3,%& & 7%)&! 8.4%&!&5 [&] &)&.) 8) 4/&**104**& **4**% %1/!)). %&171, &

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	J & & O & & & O&
0 &	&	&	J & & O & & & O&
0 &	&	&	J & & O & & & O&
0 &	&	&	J&& 0&
0 &	&	&	J&& 0&
0 &	&	&	J&& 0&
0 &	&	&	J & & O & & & O&
0 &	&	&	J & & O & & & O&
0 &	&	&	J & & O & & & O&
0 && 0 &	& 1 &	&	&
	& 1 &		
	& & &		
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0 &	&	&	&
0 &	&	&	J&& 0&
0 &	&	&	J&& 0&
0 &	&	&	J&& 0&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
& %&)6!8)4 & &			
∝ &			
e e			
G			

&

Espectro de RMN ¹³C {¹H} composto 104 (mistura diastereoisomérica)

&

۲

%3, % & 7 %) & 8.4% & ! & 5 [&] 1& % **4** % ! & % ! + !) - !) & ! & **104** & 171, &

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

O&	1 8
	1 0
0&	
U&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

•

Espectro de RMN ¹³C (DEPT-135) composto 104 (mistura diastereoisomérica)

&

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

1 &
1 &
1 &
1 &
1 &
1 &
1 &
1 &
1 &
1 &

&

'

Composto 107

&

&

Espectro de RMN ¹H do composto 107

&

%3, **%6** & 7 %) & 8.4% & ! & 5 & &)&) 8) 48.07 & 171, & J (Hz) Atribuição δ (ppm) Sinal J&& 0& && 0& 0 & & & J&& 0& 0 & & & 0 & & & J&& 0& 0 & & & & 1 & 0 & & 0 & & 1 & & 0 & & 1 & & & 0 & & 1 & & &

&

Espectro de RMN ^{13}C $\{^1H\}$ do composto 107

%6, %6 & 7 %) & 8.4 % & ! & 5 [&] 1&) &) 8) **43.07** & 171, &

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

&*) ! & 4%&4). %) &

%6, %6 & 7%) &! 8.4% &! & 5 [&] 1& 7 * &)&.) 8) 4&107 & 171, &

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
80	1 &
0&	1 &

&*) ! & 4%&4). %) &

Composto 108

Espectro de RMN ¹H do composto 108

•

%6 5,%∞ &7%) & 8.4%&!&5	& &)&)	8) 43.08 & 171, &
δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	J & & O & & & O&
0 &	&	&	J&& 0&
0 &	&	&	J & & O & & & O&
0 &	&	&	J&& 0
0 &	& 1 &	&	
0 &	&	&	J&& 0&&& 0&&& 0&&
0 &	&	&	J&& 0&
0 &	& 1 &	&	
0 &	& 1 &	&	&
0 &	& 1 &	&	&
		&	
		&	
		&	
		&	
		&	
		&	
		&	
		&	
		&	
		&	
		&	
		&	
		&	
		&	
		&	
		č.	
		۵ ۵	
		č.	
		Q Q	
		Q Q	
		ā.	

Espectro de RMN ^{13}C $\{^1H\}$ do composto 108

&

%6, %6 & 7 %) & 8.4% & ! & 5 [&] 1&) &) 3 4 3 0 8 & 171, &

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

171, &

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
80	1 &
0&	1 &

&*) ! & 4%&4). %) &

۲

&

Composto 109

Espectro de RMN ¹H do composto 109

&

%6, **%6** & 7 %) & **8**. 4 % & ! & 5 [&] &) &) 8) **4 409** & 171, &

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	& & &	&	J&& 0&
0 &	&	&	J&& 0&
0 &	& 1 &	&	
0 &	&	&	J & & 0 & & & 0 J & & 0 &
			J & & O
0 &	&	&	J&& 0&
0 &	æ	&	J&& 0&&& 0&
0 &	%	&	J&& 0&&& 0
0 &	& 1 &	&	&
0 &	& 1 &	&	&
	•		

[&]amp; %&)6!8)4 &

Espectro de RMN ^{13}C { ^{1}H } do composto 109

&

%6, **%6** & 7 %) & 8.4% & ! & 5 [&] 1&) &) 8) **4** & **109** & 171, &

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

171, &

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

&*) ! & 4%&4). %) &

۲

&

Espectro de RMN ¹H do composto 114

& & &

%3 5 ,%8 & 7%)	& 8.4%&!&5	& &)&) 8)	4 8.14 & 171, &
δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	J & & O & & & O&
0 &	&	&	J & & O & & & O&
0 &	&	&	J&& 0&
0 &	&	&	J&& 0&
0 &	&	&	J & & O & & & O&
0 &	&	&	J&& 0&
0 &	& 1 &	&	&
0 &	&	&	J&& 0&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
бх о			
Cx o			
a R			
& &			
а 8.			
e e			
e e			
e R			
e e			
<u>с</u>			

•

Espectro de RMN ^{13}C { ^{1}H } do composto 114

& &

۲

& &

•

171, & Atribuição & δ **(ppm)** & 80 1& 1 & 80 80 1 & 80 1 & 1 & 0& 80 1& 0& 1& 80 1 & 80 1& 0& 1 & 80 1& 1& 80 80 1& 80 1 & &*) ! & 4%&4). %) & &*) ! & 4%.4). %) & & & & & & & & & & & & & &

%3, % & & 7 %) & 8. 4 % & ! & 5 [&] 1& 7 * &) &) 8) 4/3.14 &

%3, %6 & 7 %) & 8.4 % & ! & 5 [&] 1&) &) 8) **48.14** & 171,

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

&*) ! & 4%&4). %) &

۲

&

Espectro de RMN ¹H do composto 115

&

%6, **%6** & 7 %) & 8.4% & ! & 5 [&] &)&) 8) **4815** & 171, &

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	J&& 0&
0 &	&	&	J & & O & & & O&
0 &	&	&	J&& 0&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0 &	&	&	&
0 &	& 1 &	&	&

[&]amp;*) ! & 4%&4). %) &

%6, %6 & 7 %) & 8.4 % & ! & 5 [&] 1&) &) 8) **48.15** & 171, &

δ (ppm) &	Atribuição
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

& &

%6, %6 & 7%) &! 8.4% &! & 5 [&] 1& 7 * &)&.) 8) 4&115& 171, &

δ (ppm) &	
	Atribuição
	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
&*) ! & 4%&4). %) & & □4,)+ !&‰! + 4&4 ‰!&) !	.,%()& 1&

&

&

&

&

Espectro de RMN ¹H do composto 122

&

%6, %6 & 7 %) & 8.4% & ! & 5 [&] &)&) 8) **48.22** & 171, &

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	J&& 0&
0 &	&	&	J & & O & & & O&
0 &	&	&	J&& 0&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0 &	&	&	&
0 &	& 1 &	&	&

&

Espectro de RMN ^{13}C $\{^1H\}$ do composto 122

%6, **%6** & 7 %) & 8.4% & ! & 5 [&] 1&) &) 8) **48.22** & 171, &

δ (ppm) &	Atribuição
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
&*) ! & 4%&4). %) & &	
&	

- &
- &

Espectro de RMN ¹³C (DEPT-135) do composto 122

%6, %6 & 7%) &! 8.4% &! & 5 [&] 1& 7 * &)&.) 8) 4&122 & 171, &

δ (ppm) &	
	Atribuição
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

&*) ! & 4%&4). %) &

'

Composto 123

Espectro de RMN ^{13}C $\{^1H\}$ do composto 123

%3, %6 & 7 %) & 8.4 % & ! & 5 [&] 1&) &) 8) 48.23 & 171, &

δ (ppm) &	
	Atribuição
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
& [4])+ !&%&! + !4 &4 %&!&) &	!,%()& 1&& -1 &
&	
&	

%6, %6 & 7%) &! 8.4% &! & 5 [&] 1& 7 * &)&.) 8) 4&123 & 171, &

δ (ppm) &		
	Atribuição	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
& □4,)+ !&‰k! + ¼&4 ‰k!&) &	!,%()& 1&& -1&	

&

Espectro de RMN ¹H do composto 124

&

%6, **%6** & 7 %) & 8.4% & ! & 5 [&] &)&) 8) **4824** & 171, &

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	J&& 0&
0 &	&	&	J & & O & & & 08
0 &	&	&	J&& 0&
0 &	& 1 &	&	
0 &	&	&	&
0 &	& 1 &	&	&

&

Espectro de RMN ^{13}C $\{^1H\}$ do composto 124

δ (ppm) &	Atribuição
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
& □4,)+ !&%&! + !4 &4 %&!&) !,%	ά()& 1&& -1&

%6, %6 & 7%) &! 8.4% &! & 5 [&] 1& 7 * &)&.) 8) 4&124& 171, &

δ (maa) δ	
	Atribuição
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
& □4,)+ !&%&! + !4 &4 %&!&) !, %() & 1& & -1&

&

Espectro de RMN ¹H do composto 125

•

% 3 , % & 7%)	& 8.4%&!&5	^{&} &)&) 8)	48125 & 171, &
δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	J&& 0&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0&	&& &	& &	J&& 0& &
		! &&	J&& 0&&&0&
		& 6&	J & & O& 6&
0&	œ.	&	J&& 0& && 0&
			& & 0&
0&	86	8	1&&&& 0&&&8
			0&&&&0&
0 &	& 1 &	&	&
0 &	86	8	J&&&& 0&&&8
			0&&&0&
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			

Espectro de RMN ^{13}C $\{^1H\}$ do composto 125

۲

%3, %6 & 7 %) & 8.4 % & ! & 5 [&] 1&) &) 8) **48.25** & 171, &

δ (ppm) &	Atribuição
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
&*) ! & 4%&4). %) & & □4,)+ !&%&! + 14 &4 %&!&	a)!,%()& 1&& -1&

171, &

δ (ppm) &	
	Atribuição
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
&*) ! & 4%&4). %) & & □4,)+ !&%&! + ¼ &4 %&!&) !, & &	·%()& 1&& -1&

Composto 128

&

&

Espectro de RMN ¹H do composto 128

%6, ‰ &7 %) & 8. 4 % & ! & 5 [&] &) &) 8) **4** & 28 & 171, &

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	J & & O & & & O&
0 &	&	&	J&& 0&
0 &	&	&	J&& 0&
0 &	86	&	J&& 0&&&0
0 &	æ	&	J & & O & & & O
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0 &	&	,&	&
0 &	&	&	J & & O & & & O&
0 &	& 1 &	&	&

Espectro de RMN ^{13}C $\{^1H\}$ do composto 128

%6, **%6** & 7 %) & 8.4% & ! & 5 [&] 1&) &) 8) **4828** & 171, &

δ (ppm) &	
	Atribuição
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
08	1 &

- &
- &
- &

171, &

δ (ppm) &	A tuibuicão
	Atribulção
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

&*) ! & 4%&4). %) &

Espectro de RMN ¹H do composto 116

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	J&& 0&
0 &	&	&	J & & O & & & O&
0 &	&	&	J&& 0&
0 &	&	&	J&& 0&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0 &	&	&	J&& 0&
0 &	& 1 &	&	&

% 8 87 % 8 8 4%&!&5 & &)&) 8) 4816 171 &

Espectro de RMN ^{13}C $\{^{1}H\}$ do composto 116

[&] 1&)&) 8) **48.16**&171, & **%3**, **%6 &**7 %) **& 8**. 4 % **&** ! **&**5

&

δ (ppm) &		
	Atribuição	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
&*) ! & 4%&4), %) &		

- &
- &
- &

%6, %6 & 7%) &! 8.4% &! & 5 [&] 1& 7 * &)&.) 8) 4&116 & 171, &

δ (ppm) &	
	Atribuição
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
9 * 1 9 40/9 4 0/ 1 9	

&*) ! & 4%&4). %) &

Espectro de RMN ¹H do composto 118

%6, **%6** & 7 %) & 8.4% & ! & 5 [&] &)&) 8) **4**8**18** & 171,

Espectro de RMN ^{13}C $\{^{1}H\}$ do composto 118

%3, %6 & 7 %) & 8.4 % & ! & 5 [&] 1&) &) 8) 4 & 18 & 171, &

δ (ppm) &	A (1), 1, 7, .	
	Atribuição	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 _{&}	
0&	1 &	

&*) ! & 4%&4). %) &

Seção de Espectros de RMN

' <u>!</u>4 ! & ‰ 4+ **4** ‰ %)..., ‰) & + %)!, %),) &

Composto 133

&

&

Espectro de RMN ¹H do composto 133

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	J & & 0 & & & 0&
0 &	&	&	J&& 0&
0 &	&	&	J&& 0&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
&*)!& 4%&4).% &) &		
X			
š			

%6, **%6** & 7 %) & 8.4 % & ! & 5 [&] &) &) 8) **44.33** & 171, &

Espectro de RMN ^{13}C $\{^{1}H\}$ do composto 133

%6, **%6** & 7 %) & 8.4% & ! & 5 [&] 1&) &) 8) **4833** & 171, &

δ (ppm) &	Atribuição
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
&*) & <u>4%</u> 24) %) &	

(x, y) = (x + 4/6x(4), -7/0) - (x + 3/6x(4), -7/0) - (x + 3/6x(4)) - (

Espectro de RMN ¹³C (DEPT-135) do composto 133

%3, % & 7 %) &! 8.4 % & ! & 5 [&] 1& 7 * &) &.) 8) 4 & 133 & 171, &

&

δ (ppm) &		
(PP) a	Atribuição	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
&*) ! & 4%&4). %) &		

&*) ! & 4%&4). %) &

۲

&

Espectro de RMN ¹H do composto 134

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	8	J & & & & 0&
0 &	& 1 &	&	
0 &	& 1 &	&	
0 &	&	&	J & & 0 & & & 0 & & & 0&
0 &	&	&	J & & 0 & & & 0
0 &	æ	&	J & & 0 & & & 0 & & & 0
0 &	æ	&	J&& 0&&& 0&&& 0
0 &	86	욟	J&&&& 0&&&& 0&&
			J & & O& & & & O&
0 &	& 1 &	&	&
0 &	86	8	J&&&& 0&&&& 0&&&& 0&&& 0&&& 0&&& 0&&& 0
&*) ! & 4	%&4). %) &		
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
& o			
&			

%3, **%%** &7 %) & **8**. 4 % & ! &5 [&] & ()&) 8) **4834** & 171, &

Espectro de RMN ^{13}C $\{^1H\}$ do composto 134 &

&

%6, %6 & 7 %) & 8.4 % & ! & 5 [&] 1&) &) 8) **48.34** & 171, &

δ (ppm) &	Atribuição &
	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

&*) ! & 4%&4). %) &

&*) ! & 4%&4). %) &

&*) ! & 4%&4). %) &

۲

&*) ! & 4%&4). %) &

%6, %6 & 7%) &! 8.4% &! & 5 [&] 1& 7 * &)&.) 8) 4&134 & 171, &

δ (ppm) &	Atribuição &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
9 * \ I 9 /0/9 / \ 0/ \ 9		

&*) ! & 4%&4). %) & &*) ! & 4%&4). %) &

&*) ! & 4%.4). %) &

Espectro de RMN ¹H do composto 139 &

&

%3, ‰ &7 %) & 8. 4 % & ! & 5 [&] &) &) 8) **4** 43 **39** & 171, &

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	8	J & & & & 0&
0 &	& & & & & &	,&	&
0 &	& 1 &	&	&
0 &	& 1 &	&	&
0 &	&	&	&
0 &	&	&	&
0 &	&	&	&
0 &	&1 &	&	&
0 &	& 1 &	&	&
0 &	&	&	&

&*) ! & 4%&4). %) &

&*) ! & 4%&4). %) &

&*) ! & 4%&4). %) & &

[&] 1&)&) 8) **44.39**&171, & **%6**, **%6** & 7 %) & 8.4% & ! & 5

δ (ppm) &	Atribuição &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	
0&	1 &	

- &*) ! & 4%&4). %) & &*) ! & 4%&4). %) & &*) ! & 4%&4). %) &

- &
- &
- &

& 7 %) &! 8.4%&!&5 & 1& 7 * **%6**, **%** &)&.) 8) 4&139& 171, &

Atribuição &	
1 &	
1 &	
1 &	
1 &	
1 &	
1 &	
1 &	
1 &	

Espectro de RMN ¹H do composto 135 &

&

%3, **%6** & 7 %) & 8.4% & ! & 5 [&] &) &) 8) **4835** & 171, &

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	8	J & & & & 0&
0 &	&	&	&
0 & & 0 &	& & & &	&	&
0 &	&1 &	&	&
0 &	&1 &	&	&
0 &	&	&	&
0 &	&	&	&
0 & & 0 &	& & & &	&	&
0 &	& 1 &	&	&
0 &	& &	&	&

&*) ! & 4%&4). %) &

&*) ! & 4%&4). %) &

&*) ! & 4%&4). %) & &*) ! & 4%&4). %) & &

Espectro de RMN ^{13}C $\{^{1}H\}$ do composto 135 &

%6, %6 & 7 %) & 8.4% & ! & 5 [&] 1&) &) 8) 4 & 35 & 171, &

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

&*) ! & 4%&4). %) &

&*) ! & 4%&4). %) &

[&]amp;*) ! & 4%&4). %) &

Espectro de RMN ¹³C (DEPT-135) do composto 135

171, &&

δ (ppm) &	Atribuição &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

&*) ! & 4%&4). %) &

&*) ! & 4%.4). %) &

&*) ! & 4%.4). %) &

۲

&*) ! & 4%&4). %) &

Espectro de RMN ¹H do composto 136 &

& & %&! & 0 & 88 & ,&!& 0 & 88 & &.) ! 8) ! & % &) 2) &)& t 1 1 & +68) + 4& & ! %() & &

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	
0 &	&	&	
0 &	&	&	&
0 &	&	&	&
0 &	&	&	J&& 0&
0 &	& &	&	&
0 &	& & & &	&	&
0 &	& 1 &	&	&

%3, % & & 7 %) & 8.4 % & ! & 5 [&] &) &) 8) 4 & 36 & 171, &

Espectro de RMN ^{13}C $\{^1H\}$ do composto 136 &

%3, %6 & 7 %) & 8.4 % & ! & 5 [&] 1&) &) 8) **48.36** & 171, &

δ (ppm) &	Atribuição
	Allibulça
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
9 * 1 9 <i>4</i> 0/9 <i>4</i>) 0/) 9	

&*) ! & 4%&4). %) &

~ /

۲

&

[&]amp;*) ! & 4%&4). %) &

[&]amp;*) ! & 4%&4). %) &

[&]amp;

%6, %6 & 7%) &! 8.4% &! & 5 [&] 1& 7 * &)&.) 8) 4&136 & 171, &

&

δ (ppm) &	
	Atribuição
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

[&]amp;

&

&

%35,%& &7%)	& 8 . 4%&!&5	& &)&)	8) 48.41 &171, &
δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	* & &	&	&
0 &	* & &	&	&
0 &	* & &	&	&
0 &	&	&	J&& 0&
0 &	& & & &	&	&
0 &	86 &	&	J&& 0&&& 0&
0 &	86 &	&	J&& 0&&& 0&
0 &	6& &	&	J & & 0 & & & 0&
0 &	& &	&	J & & 0 & & & 0&
0 &	86 &	&	&
0 &	& 1 &	&	&
0 &	86 &	&	&
0 &	684.& 664.&	&	&
&□4,)+!&%&!+	<u>4</u> &4 %&!&) !, %	%()&1'&	J! & 1&& -1&
&			
&			
&			
&			
&			
&			
&			
&			
& o			
& o			
č.			
& o			
&			
& o			
č.			
& o			
&			
ά.			

&

- &
- &

δ (ppm) &	Δτείδο
0&	1 &
0&	1 &
0&	1 &
0&	* &
0&	* &
0&	* &
0&	* &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
&*) ! & 4%&4). %) & &*) ! & 4%&4). %) & & □4)+ !&%&! + !4 &4 %&!&) &	!,%()&1 '&3J!&3 1&8& -1&
Q.	
8	
۵ ۶	
& &	
&	
&	
&	
&	
&	
&	
&	

%3, %6 & 7 %) & 8.4 % & ! & 5 [&] 1&) &) 8) 4 & 41 & 171, &

171, &

δ (ppm) &	
	Atribuição
0&	* &
0&	* &
0&	* &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

Espectro de gCOSY do composto 141

'

&

- &
- &

&

&

Espectro de RMN ¹H do composto 142

/09, 00 Ox / 7		$\frac{1}{2} \frac{1}{2} \frac{1}$
δ (ppm)	Atribuição	Sinal J (Hz)
0 &	* & &	& &
0&	* & &	& &
0&	* & &	& &
0&	&	& J & & 0 & & & & & & & & & & & & & & &
0 && 0 &	& &	& &
	& &	
	& &	
	& &	
0 &	& &	& J&& 0&&& 0&&& 0&& 0&& 0&& 0&& 0&0&0&0&
0 &	& &	& J&& 0&
0 &	& &	& J&& 0&&&0&
0 &	æ	8 J & & O & & & O & & & 0 & & & 0 & & & 0 & & 0 & & 0
		J & & 0
0 &	86	& J&& 0&&&& 0&&&&
		0& & & 0&
0 &	86	& J&& 0&&& 0&&& 0&&& 0&& 0&& 0&& 0&& 0&&
0 &	& 1 &	& &
&*)!&:4%&4).	%) &	
&		
&		
&		
&		
&		
&		
&		
&		
&		
&		
&		
&		
&		
&		

%6, **%6** & 7 %) & 8, 4 % & ! & 5 [&] &) &) & **48 42** & 171, &

- &
- 0
- &
- &
- & &

& &

&

&

&

&

- &
- &
- &

- &
- &
- &

δ (ppm) &	Atribuicão
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	* &
0&	* &
0&	* &
0&	* &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
&	
&	
&	
&	
&	
&	
&	
&	
~ &	
<u>u</u>	

%3, %6 & 7 %) & 8.4 % & ! & 5 [&] 1&) &) 8) **4 & 42** & 171, &

171, &

δ (ppm) &	
	Atribuição
0&	* &
0&	* &
0&	* &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
9 * 1 9 <i>1</i> 0/9 <i>1</i>) 0/) 9	

&*) ! & 4%&4). %) & &*) ! & 4%&4). %) &

&*) ! & 4%&4). %) &

&

&

Espectro de RMN ¹H do composto 151

% 5 ,%x &7%)	& 8.4%&!&5 ~	&)&)	B) 48.51&17&
δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
0 &	&	&	J&& 0&
0 &	& 1 ^{&}	&	
0 &	& 1 ^{&}	&	
0 &	&& & &	&	
0 &	&& & &	&	&
0 &	% ^{&}	&	&
0 &	& 1 &	&	&
0 &	% &	&	&
0 &	684.& 684. ^{&}	&	&
&*) ! & 4%&4). % &⊡4,)+ !&%&! -	%)& + !4&4%&!&)!,%	b()&1 ' &	aJ!&a 1&at& -1&
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
&			
& & &			
& & &			
& & & &			

%6.%% &7%)&8.8.4%&!&5[&]&)&)&8)4**851**&17&&

Espectro de RMN ^{13}C $\{^{1}H\}$ do composto 151

%6, **%6** & 7 %) & 8.4% & ! & 5 [&] 1&) &) 8) **4** & 51 & 1 7 &

δ (ppm) &	
	Atribuição
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 <u>&</u> &1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

&*) ! & 4%&4). %) &

۲

&

Espectro de RMN ¹³C (DEPT-135) do composto 151

&

%3, %6 & 7 %) & 8.4 % & ! & 5 [&] 1 & 7 * &) &) 8) 4 & 51 & 1 7 &

δ (ppm) &	Atribuicão
0&	1 &
0&	1 _{&} ! &1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
& □4,)+ !&%&! + ¼ &4 %&!&)!,%()&1'&J!& 1&& -1&
&	
&	

Espectro de RMN ¹H do composto 152

/0, 20	α /0) α 0. 2	+ /0X ! XU	α)	ux, 0, 4		x
δ (ppm)	Atribuição)	Sinal		<i>J</i> (Hz)	
0 &	&		&	J 8	& & 0 & & & &	0&
0&	&		&		J&& 0	
0&	&		&		J&& 0	
0&	& 1	&	&			
0&	1	&	&			
0&	&		&		J&& 0	
0&	&		&		J&& 0	
0&	8		&	J & & (08888081	&& 0&
					J & & O	
0 &	68.		&	J & &	0& & & 0&	&& 0
0&	æ		4&	J & &	0&&&&&&	& 0&&
					J & & 0&	
0&	8		&	J & &	0& & & 0&	& & 0&
0 &	& 1	&	&		&	
&*) ! & &⊡4)+	4%&4).%)& !&%&!+4.&4.	. %&!&)	!.%()&	1 '&J!	& 1&&	-1&
&			.,,			
& &						
&						
&						
&						
&						
&						
&						
&						
&						
&						
&						
&						
&						
&						
&						

%3, **%6** & 7 %) & 8. 4 % & ! & 5 [&] & () &) 8) **48.52** & 11, &

Espectro de RMN ^{13}C $\{^1H\}$ do composto 152

%3, **%6** & 7 %) & 8.4 % & ! & 5 [&] 1&) &) 8) **4**8.52 & 11, &

δ (ppm) &	
	Atribuição
0&	1 &
0&	1 &
0&	1 & &1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

&*) ! & 4%&4). %) &

۲

&

&

Espectro de RMN ¹³C (DEPT-135) do composto 152

&

%6, %6 & 7 %) & 8.4 % & ! & 5 [&] 1& 7 * &) &) 8) 48.52 & 11, &

δ (ppm) &	
	Atribuição
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &
0&	1 &

&

&

&
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &

&

8. Referências Bibliográficas

&

&) ! & & & Sci. Food Agri. **2006 8**6& & & ,) & 5 & & 7 % ! / & & & . Org. Chem. 2006 & 7 & & &) 4% % & 1 & &-), % & & & Quim. Nova **2001** & 4 & & 2)) %&5)&!& %!) &001 & &7)))! & & &- %4%! &1 & &5 &1 + . ,, & & &Annu. Rep. Prog. Chem., Sect. B **2006 8**02 **8** & & %) ! &7&1 &* %)! &7&7 &7! + 4% &7 &-)+ ! & & & Angew. Chem. Int. Ed. **2005 4**4 & & &-)!) & & & %) & &5 &3%!.! &-& & %) 6! & & & &Angew. Chem. Int. Ed. **2005 &**4 & & & % % & 2 & + % % % & 5 & % %) & 2 Chem. Rev. 2005 & 05 & & &* % % & &7 4) // & & % 4) & & & + & & J. Org. Chem. & 1998 & 63 & & & !.) &*& & + ! & & & %, & 7. J. Am. Chem. Soc. & 990 & 12 & & & % * % % & & -) ! & & & & 3+ & - & % % & 2 & + & & J. Org. Chem. & & 6& * % % & & -) ! & & & & 3 . & & & J. Org. Chem. & **1999 &**64 & **2001 6**6 8. 8. 8 % 8. 8* % % 80 80 rg. Lett. **2004 6** 8. & & %& , ! & & 7 & ,,) 440 & & & -, % & -& & &), ! 6 & & & &)! ! & 7 & 5 & "! & & &*)" % & &-) ! &7&3&. Am. Chem. Soc. 2002 &24 & & 6&), ! 6 & & &-) ! & 7 & 3&. Org. Chem. **2002 6**7 & 88 Teóricos sobre Anulenos e Baquenolidas 4 ! ! & ! &) + 4 % ! 4 & --135* 🖞 *&56 ()&*! **42006** & & .), %+ & 2&1& ! & & &) 4%) & & & % ,) % % & Angew. Chem. Int. Ed. **2002 4**1 **8** & & % ! & &) / % & & ! ,! & - & ! ,) 4 & 3 & !)) 4 & & % ! ! & & . Med. Chem. **2006 4**9 & !) 48 & . 48 & Bioorg. Med. Chem. 4999 & 8 &
&*. %& &2& iochem. Syst. Ecol. &986 & 4 & & & . ! & & Recent Advances in Phytochemistry **1991** & 4 & & %% & & & 6 & & -&*& & !&)) & & Tetrahedron & 999 & 55 & & & &3% ! & &3& + & & & & ! ! 4& & Tetrahedron Lett & 1976 & 49 & & &-) &7 & &* %+! 44 & 3& & Org. Chem. **& 992 & 7** & & & . 7)+ % & * & & & & % 7! !! & 7 & Org. Chem & 989 & 4 & & & . ! & & % % % & & & % & & & &) %! & 7&1&5& & & Phytochemistry **& 989 &**8 & & & %4, &*& & + %4&&1&1 &) %& &1 &3) 8 & & * Baraz. J. Pharm. Sci. & **2003 8**9 & & &-) %480 & 3&1 & %,801&-&-&')+ %60 & & *&3)8 & & &* Phytochemistry **2000 5 8** & & 3) 8 & &* &. Nat. Prod. **2003 6**6 & & & %& 3+ % ! , ,) & & &) % & & 1 & . ! & & & 3) 8 & & & 3. 8 & & . Braz. . **&** *& hytochemistry* **&993** *&* 4 **&** & & J. Am. Chem. Soc. **8975 8**2 & & & -)!. % **&** 5 & 2 & &)) **&**' & 2 & !. !) **&** 7 & 2 & J. Am. Chem. Soc. & **1991** & 13 & & % % & &. Org. Chem & 995 & & & & & % & &5) % 8& &. Tetrahedron Lett & 992 & 3 & & &!) & &2 & &2% & &Bull. Korean Chem. Soc & 997 & 8 & & &* %+! 44 &3& &Chem. Soc. Rev. 1995 & & ! & & &)) & & &) ,! & & & %) & & Tetrahedron & ! Lett 81992 833 & & &5) % & & 4 ! & 5& & 1+! % & & & ,4 % & & & Angew. Chem. Int. Ed. & **2005 &**4 & &

&1) 4%4) & & &-! %4 & & & , %0 & & & Tetrahedron Lett **2000** & 1 & & &1) 4%4)& & &-!%4& & &&;,%& & & &+!%'.8.4& Synth. Commun **2001 8**1 **8** & &-! %4 & Estudos Sobre a Síntese de Heliangolidos pela Reação de Diels-*Alder*&! !&!&)+4 %! 4&-135* □ *856 ()&*! 4&001 & Lett **2003 2**4 **8** & & *! !), &' &Estudos Sobre a Síntese de Furanoeliangolidos a partir da Reação de Diels-Alder&!!&!&)+4 %! 4&-135* □ *&56 ()&*!4& **2005** & &*!!), &' &1) 4% 4) & & & & & ', % & & & & Magn. Reson. Chem. & **2006 &**4 & & 10 8 & &7!, & &, ! &2 Justus Liebigs Ann. Chem. &928 &60 & & & 1 %+ 4! & &Cycloaddition Reactions in Organic Synthesis &), & & *! %) &* ! **&** /) **&990** & & %4 & & ,, &5&2&Chem. Rev. & 961 & 1 & & & % & & angew. Chem. Int. Ed. & 966 & & & & %&)) % **&**5&-&') ! ! **&** & %6**&**7 & ! + ,! **&**2 & . 3%) ! **&** & &J. Am. Chem. Soc. & 1952 & 4 & & & 6&)) % **&**5&-&') ! ! **&**-& %687 & ! + ! 82 & . 3%) ! 8 & & *Am. Chem. Soc.* 8951 873 8 & 1) 4% 4 & & & Am. Chem. Soc. 4952 & 4 & & & %&' 4, & & %& %! ! & & & & ! %& & & + 4%,! & & & & Am. Chem. Soc. 81951 873 8 & 6& 4 8 & % % %! ,! 8 & & ! % 8 3 & & & -+ 4%! & & & Am. Chem. Soc. **8953** & 5 & &-!) & & & Tetrahedron & 992 & & & & & % & % & & . + & & . Am. Chem. Soc. & 952 & 4 & & 6& %4 & & Soc. 81950 872 8 &

& % !) & &2 &7! ! &5& & Med. Chem. & 997 & 0 & &6& & & + % & & & . Org. Chem. & 982 & 7 & & & & + %) & 7 &) ! & &1),,! & & &,)! & &) !, & `Org. Magn. Reson. & 1977 & & &

'

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo