

UFSM

DISSERTAÇÃO DE MESTRADO

SÍNTESE DE CALCOGENO ENINOS ATRAVÉS DA REAÇÃO DE WITTIG-HORNER

Francieli Rinaldi

PPGQ

Santa Mari7a, RS, Brasil 2006

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

SÍNTESE DE CALCOGENO ENINOS ATRAVÉS DA REAÇÃO DE WITTIG-HORNER

por

Francieli Rinaldi

Dissertação apresentada ao Curso de Mestrado do Programa de Pós-Graduação em Química, Área de Concentração em Química Orgânica, da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para a obtenção do grau de **Mestre em Química.**

Orientador: Prof. Dr. Claudio da Cruz Silveira

Santa Maria, RS, Brasil 2006

Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Programa de Pós-Graduação em Química

A Comissão Examinadora, abaixo assinada, aprova a Dissertação de Mestrado

SÍNTESE DE CALCOGENO ENINOS ATRAVÉS DA REAÇÃO DE WITTIG-HORNER

elaborada por **Francieli Rinaldi**

como requisito parcial para obtenção do grau de Mestre em Química

COMISSÃO EXAMINADORA:

Dr. Claudio da Cruz Silveira – UFSM (Presidente/Orientador)

Dr. Gilson Zeni – UFSM

Dr. Oscar Endrigo Dorneles Rodrigues - UNIFRA

Santa Maria, 25 de Julho de 2006.

...aos meus pais, irmãos, avós

e ao meu namorado (Itamar)...

AGRADECIMENTOS

Ao Prof. Dr. Claudio da Cruz Silveira, pela orientação durante a realização deste trabalho e pela oportunidade concedida, o meu agradecimento.

Aos meus colegas e ex-colegas de laboratório: Adriano, Samuel, Railander, Maurício, Mariana, Margiane, Liziê, Fernanda, Patrícia, Lucas, Carlos, Paulo Cezar e Rafael.

Ao pessoal dos Laboratórios do Prof. Braga e Prof. Gilson.

Aos professores membros da comissão examinadora: Prof. Dr. Gilson Zeni e Dr. Oscar E.

D. Rodrigues.

Ao Ademir e a Valéria da coordenação pelo excelente trabalho desenvolvido.

Ao Prof. Wolmar, da UNISC, pelas análises concedidas.

Às entidades financiadoras CAPES e CNPq pelos auxílios concedidos.

A todos que de alguma forma contribuíram para a realização deste trabalho.

RESUMO

Título: SÍNTESE DE CALCOGENO ENINOS ATRAVÉS DA REAÇÃO DE WITTIG-HORNER

Autora: Francieli Rinaldi Orientador: Prof. Dr. Claudio da Cruz Silveira

Neste trabalho, desenvolvemos um método de preparação de calcogeno eninos (4, 5 e 6), através da reação de Wittig-Horner, empregando como materiais de partida calcogeno fosfinóxidos acetilenos (1, 2 e 3) e aldeídos alifáticos, aromáticos e cetonas. As reações foram realizadas em THF, utilizando-se NaH como base. Os calcogeno eninos foram obtidos em bons rendimentos.

PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA UNIVERSIDADE FEDERAL DE SANTA MARIA Dissertação de Mestrado Santa Maria, 25 de Julho de 2006.

ABSTRACT

Título: SYNTHESIS OF CHALCOGEN ENYNES VIA WITTIG-HORNER REACTION

Authora: Francieli Rinaldi

Academic Advisor: Prof. Dr. Claudio da Cruz Silveira

In this work, we developed a method to prepare chalcogen enynes (4, 5 and 6), via Wittig-Horner reaction, utilizing chalcogen phosphinoxide acetylenes (1, 2 e 3) and aliphatic and aromatic aldehydes and ketones. The reaction was carried out in THF, using NaH as the base. The chalcogen enynes were obtained in good yields.

PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA UNIVERSIDADE FEDERAL DE SANTA MARIA MSc. Dissertation in Chemistry Santa Maria, July 25, 2006.

ÍNDICE

Agradecimentos
Resumo
Abstract
Lista de Tabelas
Lista de Figuras
Lista de Siglas, Abreviaturas e Símbolos
Introdução e Objetivos
Capítulo 1: Revisão da Literatura
1.1. Introdução
1.2. Síntese de Sulfetos Vinílicos através da Reação de Wittig
1.3. Síntese de Sulfetos Vinílicos através da Reação de Wittig-Horner
1.4. Síntese de Selenetos Vinílicos através da Reação de Wittig
1.5. Síntese de Selenetos Vinílicos através da Reação de Wittig-Horner
1.6. Síntese de Teluretos Vinílicos através da Reação de Wittig
1.7. Síntese de Teluretos Vinílicos através da Reação de Wittig-Horner
Capítulo 2: Apresentação e Discussão dos Resultados
2.1 SÍNTESE DOS CALCOGENO FOSFINÓXIDOS
2.1.1. Preparação dos materiais de partida
2.1.2. Discussão dos dados espectrais de RMN ¹ H e ¹³ C dos materiais de partida
2.1.3. Discussão dos dados espectrais de Infravermelho e Massa dos materiais de
partida
2.1.4. Apresentação dos dados de Análise Elementar
2.2. SÍNTESE DOS CALCOGENO ENINOS ATRAVÉS DA REAÇÃO DE WITTIG-
HORNER
2.2.1. Introdução
2.2.2. Síntese do seleno enino 5a via reação de Wittig-Horner em condições de catálise
por transferência de fase

2.2.3. Preparação de calcogeno eninos via reação de Wittig-Horner utilizando-se NaH	40
como base	
2.2.4. Discussão dos dados espectrais de RMN ¹ H e ¹³ C dos calcogeno eninos	45
2.2.5. Discussão dos dados de Espectrometria de Massa dos calcogeno eninos	59
2.2.6. Discussão dos dados de Espectroscopia de Infravermelho	64
2.2.7. Discussão dos dados de Raios-X para o composto 5a	67
2.2.8. Apresentação dos dados de Análise Elementar	70
Considerações Finais e Conclusões	72
Capítulo 3: Parte Experimental	74
3.1. MATERIAIS E MÉTODOS	75
3.1.1. Solventes e Reagentes	75
3.1.2. Rota-Evaporadores	75
3.1.3. Destilador Horizontal	75
3.1.4. Cromatografia em Camada Delgada (CCD)	76
3.1.5. Cromatografia em Coluna (CC)	76
3.1.6. Cromatografia Gasosa (CG)	76
3.1.7. Ponto de Fusão	76
3.1.8. Espectroscopia de Ressonância Magnética Nuclear (RMN)	76
3.1.9. Espectroscopia de Infravermelho	77
3.1.10. Espectrometria de Massa	77
3.1.11. Análise Elementar	77
3.1.12. Difração de Raio-X	77
3.2. PROCEDIMENTOS EXPERIMENTAIS	78
3.2.1. Preparação da Hidrogenodifenilfosfina 65	78
3.2.2. Preparação do Hidroximetildifenilfosfinóxido 66	78
3.2.3. Preparação do Tosiloximetildifenilfosfinóxido 67	79
3.2.4. Preparação do Tio Fosfinóxido Acetileno 1	79
3.2.5. Preparação do Seleno Fosfinóxido Acetileno 2	80
3.2.6. Preparação do Teluro Fosfinóxido Acetileno 3	80
3.2.7. Procedimento Geral de Preparação dos Calcogeno Eninos	81

Capítulo 4: Espectros Selecionados	82
Referências Bibliográficas	114
ANEXOS	120

LISTA DE TABELAS

Tabela 1-	Resultados obtidos para a síntese dos calcogeno fosfinóxidos acetilenos 1, 2	
	e 3	24
Tabela 2-	Dados espectrais de RMN ¹ H e ¹³ C dos materiais de partida	25
Tabela 3-	Constante de acoplamento para ³¹ P com ¹³ C para o composto 66	28
Tabela 4-	Constante de acoplamento para ³¹ P com ¹³ C para o composto 67	30
Tabela 5-	Constante de acoplamento para ³¹ P com ¹³ C para o composto 2	32
Tabela 6-	Dados espectrais de Infravermelho e Massa dos materiais de partida	33
Tabela 7-	Dados de Análise Elementar para os compostos 2 e 3	35
Tabela 8-	Preparação do seleno enino 5a via reações de Wittig-Horner em condições	
	de transferência de fase	39
Tabela 9-	Preparação dos tio eninos via reação de Wittig-Horner	42
Tabela 10-	Preparação dos seleno eninos via reação de Wittig-Horner	43
Tabela 11-	- Preparação dos teluro eninos via reação de Wittig-Horner	
Tabela 12-	- Dados espectrais de RMN ¹ H e ¹³ C dos compostos 4a-h	
Tabela 13-	Dados espectrais de RMN ¹ H e ¹³ C dos compostos 5a-h	47
Tabela 14-	Dados espectrais de RMN ¹ H e ¹³ C dos compostos 6a-f	50
Tabela 15-	· Deslocamentos no RMN ¹³ C dos carbonos da dupla ligação dos compostos	
	4a, 5a e 6a	53
Tabela 16-	Isótopos de S, Se e Te e abundância relativa	59
Tabela 17-	Dados de Espectrometria de Massa dos compostos 4a-h	60
Tabela 18-	Dados de Espectrometria de Massa dos compostos 5a-h	62
Tabela 19-	Dados de Espectrometria de Massa dos compostos 6a-d	64
Tabela 20-	Dados espectrais de Infravermelho dos compostos 4a-h	65
Tabela 21-	Dados espectrais de Infravermelho dos compostos 5a-h	66
Tabela 22-	Dados espectrais de Infravermelho dos compostos 6a-d	67
Tabela 23-	Condições de reflexão pertinentes ao grupo espacial monoclínico	
	<i>P</i> 2 ₁ / <i>c</i>	68

5a	Tabela 24-	Ângulos (°) e comprimento (Å) de ligação, selecionados para o composto	
 Tabela 25- Dados de Análise Elementar para os calcogeno eninos		5a	69
 Tabela 26- Dados da coleta de intensidades e do refinamento da estrutura cristalina do composto 5a	Tabela 25-	Dados de Análise Elementar para os calcogeno eninos	70
composto 5a	Tabela 26-	Dados da coleta de intensidades e do refinamento da estrutura cristalina do	
 Tabela 27- Coordenadas atômicas (10⁴) e parâmetros térmicos isotrópicos dos átomos não hidrogenóides, U(eq)^a (Å² x 10³) para o composto 5a		composto 5a	121
 não hidrogenóides, U(eq)^a (Å² x 10³) para o composto 5a	Tabela 27-	Coordenadas atômicas (10 ⁴) e parâmetros térmicos isotrópicos dos átomos	
Tabela 28- Comprimentos de ligação (Å), com os respectivos desvios padrão entre parênteses, do composto 5a		não hidrogenóides, $U(eq)^{a} (A^{2} \times 10^{3})$ para o composto 5 a	122
parênteses, do composto 5a	Tabela 28-	Comprimentos de ligação (Å), com os respectivos desvios padrão entre	
Tabela 29- Ângulos de (°), com os respectivos desvios padrão entre parênteses, do composto 5a		parênteses, do composto 5a	122
composto 5a	Tabela 29-	Ângulos de (°), com os respectivos desvios padrão entre parênteses, do	
		composto 5a	123

LISTA DE FIGURAS

Figura 1-	Espectro de RMN 1 H (200 MHz) do composto 66	
Figura 2-	Espectro de RMN 13 C (100 MHz) do composto 66 e expansão da região	28
	aromática	
Figura 3-	Espectro de RMN ¹ H (200 MHz) do composto 67	29
Figura 4-	Espectro de RMN ¹³ C (100 MHz) do composto 67	30
Figura 5-	Espectro de RMN ¹ H (200 MHz) do composto 2	31
Figura 6-	Espectro de RMN ¹³ C (100 MHz) do composto 2	32
Figura 7-	Expansão do espectro de RMN ¹³ C (100 MHz) do composto 2	32
Figura 8-	Espectro de RMN ¹ H (200 MHz) do composto 4a	52
Figura 9-	Espectro de RMN ¹ H (400 MHz) do composto 5a	52
Figura 10-	Espectro de RMN 1 H (200 MHz) do composto 6a	52
Figura 11-	Espectro de RMN 13 C (100 MHz) do composto 4a	55
Figura 12-	- Expansão do espectro de RMN ¹³ C (100 MHz) do composto 4a	
Figura 13-	Espectro de RMN 13 C (100 MHz) do composto 5a	56
Figura 14-	Expansão do espectro de RMN 13 C (100 MHz) do composto 5a	56
Figura 15-	Espectro de RMN 13 C (50 MHz) do composto 6a	57
Figura 16-	Expansão do espectro de RMN 13 C (50 MHz) do composto 6a	57
Figura 17-	Espectro de RMN ¹³ C (100 MHz) do composto 5e	58
Figura 18-	Expansão do espectro de RMN 13 C (100 MHz) do composto 5 e	58
Figura 19-	Projeção ORTEP da unidade assimétrica do composto 5a	69

LISTA DE SIGLAS, ABREVIATURAS E SÍMBOLOS

18-C-6	18-coroa-6	
18-C-5	18-coroa-5	
<i>n</i> -Bu	Grupo <i>n</i> -butila	
Cat.	Catalisador	
d	Dubleto	
dd	Duplo dubleto	
Et	Grupo etila	
g	Gramas	
h	Horas	
HMPA	Hexametilfosforamida	
Hz	Hertz	
IV	Infravermelho	
J	Constante de acoplamento	
m	Multipleto	
Me	Grupo metila	
mg	Miligrama	
mL	Mililitro	
p.f.	Ponto de fusão	
Ph	Grupo fenila	
ppm	Partes por milhão	
quart.	Quarteto	
quint.	Quinteto	
RMN ¹ H	Ressonância magnética nuclear de hidrogênio	
RMN ¹³ C	Ressonância magnética nuclear de carbono	
S	Singleto	
sext.	Sexteto	
t	Tripleto	
t. a.	Temperatura ambiente	

<i>t</i> -Bu	Grupo terc-butila
THF	Tetraidrofurano
Ts	Tosila
δ	Deslocamento químico
°C	Graus Celcius

Introdução e Objetivos

INTRODUÇÃO E OBJETIVOS

Dentre as diversas classes de compostos organocalcogênios, os calcogenetos vinílicos¹⁻⁵ continuam sendo bastante estudados e utilizados em química orgânica, principalmente por permitirem a formação de novas ligações carbono-carbono, e conseqüentemente a obtenção de olefinas altamente substituídas.

O nosso grupo de pesquisa vem estudando metodologias para a obtenção de calcogenetos vinílicos. Dando continuidade a estes estudos, objetivou-se, com este trabalho, o desenvolvimento de uma metodologia para a obtenção de calcogeno eninos, compostos inéditos, através da reação de Wittig-Horner. Planejou-se a preparação dos calcogeno eninos utilizando como materiais de partida calcogeno fosfinóxidos acetilenos e alguns compostos carbonílicos, aldeídos alifáticos, aromáticos e cetonas (Esquema 1).

Esquema 1

¹ Comasseto, J. V. Reviews on Heteroatom. Chem. 1993, 9, 61.

² Lüdtke, D. S.; Panatieri, R. B.; Braga, A. L.; Zeni, G. Chem. Rev. 2006, 106, 1032.

³ Silveira, C. C.; Perin, G.; Jacob, R. G.; Braga, A. L. Phosphorus, Sulfur and Silicon 2001, 172, 55.

⁴ Zyk, N. V.; Beloglazkina, E. K.; Belova, M. A.; Dubinina, N. S. Russ. Chem. Rev. 2003, 72, 769.

⁵Comasseto, J. V.; J. Organomet. Chem. 1983, 253, 131.

Capítulo 1

Revisão da Literatura

1. REVISÃO DA LITERATURA

1.1. Introdução

A química de compostos organocalcogênios tem estado, nos últimos anos, presente em um grande número de metodologias empregados na síntese orgânica, devido, principalmente, à versatilidade promovida por estes grupos em um composto orgânico. O átomo de calcogênio, uma vez incorporado ao substrato orgânico, confere a este uma série de propriedades específicas como a de estabilizar carbocátions^{2, 3} e carbânios⁴ aos quais o átomo se encontra ligado. O grupo organocalcogênio pode ser introduzido em um substrato orgânico pelo uso de reagentes nucleofílicos, eletrofílicos e radicalares.

Dentre as diversas classes de compostos organocalcogênios, os calcogenetos vinílicos¹⁻⁵ constituem-se em uma das espécies mais úteis pela sua versatilidade sintética. Os sulfetos e selenetos vinílicos, tem sido muito estudado, contudo, nos últimos anos, este interesse voltou-se aos teluretos vinílicos, tendo em vista o grande número de livros e artigos de revisão relatando métodos de obtenção e aplicações destas espécies em síntese orgânica.

Os sulfetos vinílicos são importantes intermediários sintéticos em Química Orgânica, podem acoplar com reagentes de Grignard⁵ na presença de complexos de níquel-fosfina conservando a geometria, podem ser usados como aceptores de Michel⁶ ou dienófilos⁷ e equivalentes de íons enolato.⁸ Eles são importantes intermediários na síntese de oxetanas,⁹ ciclopentanonas¹⁰ e ciclopentanos.¹¹

Os selenetos vinílicos têm várias aplicações em síntese orgânica, dentre elas, as reações de acoplamento com reagentes de Grignard catalisadas por NiCl₂(Ph₃P)₂ ou Ni(dppp)Cl₂, dando os

² Hevesi, L. Bull. Soc Chim. Fr. **1990**, 127, 697.

³ Seebach, D. Peleties, N. Chem. Ber. 1972, 105, 511.

⁴ Paulmier, C. "Selenium Reagents and Intermediates in Organic Synthesis", Pergamon, Oxford, 1986.

⁵ (a) Fiandanese, V.; Marchese, G.; Naso, F.; Ronzini, L. *Tetrahedron Lett.* **1988**, *29*, 3705. (b) Fiandanese, V.; Marchese, G.; Naso, F.; Ronzini, L. *Synthesis* **1988**, 1034. (c) Okamura, H.; Miura, M.; Takei, H. *Tetrahedron Lett.* **1979**, *20*, 43.

⁶ (a) Posner, G. H. Acc. Chem. Res. **1987**, 20, 72. (b) Pyne, S. G.; Chapman, S. L. J. Chem. Soc., Chem. Commun. **1986**, 1688. (c) Pyne, S. G. J. Chem. Soc., Chem. Commun. **1986**, 1686.

⁷ (a) Takayama, H.; Hayashi, K.; Koizimi, T. *Tetrahedron Lett.* **1986**, 27, 5509. (b) Solladie, G.; Monine, G. J. Am. *Chem. Soc.* **1984**, *106*, 6097. (c) Alonso, I.; Cid, M. B.; Carretero, C. J. *Tetrahedron Asymetry* **1991**, 2, 1193.

⁸ Trost, B. M.; Lavoie, A. C. J. Am. Chem. Soc. **1983**, 105, 5075.

⁹ Morris, T. H.; Smith, E. H.; Walsh, R. Chem. Commun. **1987**, 964.

¹⁰ Magnus, P.; Quagliato, D. J. Org. Chem. **1985**, 50, 1621.

¹¹ Mizuno, H.; Domon, K.; Masuya, K.; Tanino, K.; Kuwajima, I. J. Org. Chem. 1999, 64, 2648.

correspondentes produtos de acoplamento. Estas reações se procedem com retenção da configuração e em bons rendimentos.^{12, 13, 14}

Os teluretos vinílicos, constituem-se em uma das espécies mais úteis pela sua versatilidade sintética. Entre as várias aplicações dos teluretos vinílicos as mais úteis são reações de acoplamento catalisadas por paládio¹⁵, Ni(II) ou Co(II)¹⁶ e reação de transmetalação. Os teluretos vinílicos podem ser transmetalados pelo tratamento com Li,¹⁷ Li/Ce,^{21a} Li/Zn,¹⁸ Zn,¹⁹ sódio e cálcio,²⁰ e reagentes de Grignard,²¹ levando aos compostos organometálico vinílicos correspondentes, a posterior captura deste intermediário formado com eletrófilos apropriados, leva à alcenos funcionalizados. Na maioria destas reações a geometria da dupla ligação é mantida.

A grande aplicação de calcogenetos vinílicos em síntese orgânica fez com que surgissem vários métodos de preparação desta classe de compostos. Devido à existência desses vários métodos, serão revisados, neste capítulo, somente os que utilizam reações de Wittig e Wittig-Horner. Tendo em vista a metodologia utilizada para a síntese dos compostos neste trabalho, que utiliza reações de Wittig-Horner.

¹⁴ Gerard, J.; Hevesi, L. Tetrahedron 2001, 57, 9109.

¹² Okamura, H.; Miura, M.; Kosugi, K.; Takei, H. Tetrahedron Lett. 1980, 21, 87.

¹³ Tingoli, M.; Tiecco, M.; Testaferri, A.; Pelizzi, G.; Bacci, A. Tetrahedron **1995**, *51*, 4691.

¹⁵ (a) Braga, A. L.; Ludtke, D. S.; Vargas, F.; Donato, R. K.; Silveira, C. C.; Stefani, H. A.; Zeni, G. *Tetrahedron Lett.* 2003, 44, 1779; (b) Braga, A. L.; Vargas, F.; Zeni, G.; Silveira, C. C.; Andrade, L. H. *Tetrahedron Lett.* 2002, 43, 4399; (c) Braga, A. L.; Andrade, L. H.; Silveira, C. C.; Moro, A. V.; Zeni, G. *Tetrahedron Lett.* 2001, 42, 8563; (d) Zeni, G.; Menezes, P. H.; Moro, A. V.; Braga, A. L.; Silveira, C. C.; Stefani, H. A. *Synlett* 2001, 1473; (e) Nishibayashi, Y.; Cho, C. S.; Uemura, S. J. Organomet. Chem. 1996, 507, 197; (f) Zeni, G.; Comasseto, J. V. *Tetrahedron Lett.* 1999, 40, 4619; (g) Kang, S. K.; Lee, S. W.; Ryu, H. C. J. Chem. Soc., Chem. Commun. 1999, 2117; (h) Kang, S. K.; Lee, S. W.; Kim, M. S.; Kwon, H. S. Synth. Commun. 2001, 31, 1721. (i) Nishibayashi, Y.; Cho, C. S.; Organomet. Chem. 1996, 526, 335.

 ¹⁶ (a) Silveira, C. C.; Braga, A. L.; Vieira, A. S.; Zeni, G. J. Org. Chem. 2003, 68, 662; (b) Uemura, S.; Fukuzawa, S.; Patil, S. R. J. Organomet. Chem. 1983, 243, 9; (c) Gerard, J.; Hevesi, L. Tetrahedron 2001, 57, 9109; (d) Huang, X.; Wang, Y. P. Tetrahedron Lett. 1996, 37, 7417; (e) Uemura, S.; Fukuzawa, S. I. Tetrahedron Lett. 1982, 23, 1181.
 ¹⁷ (a) Huang, Y. Z.; Mo, X. S. Synlett 1998, 93; (b) Mo, X. S.; Huang, Y. Z. Tetrahedron Lett. 1995, 36, 3539; (c) Dabdoub, M. J.; Begnini, M. L.; Cassol, T. M.; Guerrero, P. G., Jr.; Silveira, C. C. Tetrahedron Lett. 1995, 36, 7623; (d) Hiiro, T.; Kambe, N.; Ogawa, A.; Miyoshi, N.; Murai, S.; Sonoda, N. Angew. Chem., Int. Ed. Engl. 1987, 26, 1187; (e) Barros, S. M.; Comasseto, J. V.; Berriel, J. N. Tetrahedron Lett. 1989, 30, 7353; (f) Comasseto, J. V.; Berriel, J. N. Synth. Commun. 1990, 20, 1681; (g) Barros, S. M.; Dabdoub, M. J.; Dabdoub, V. B.; Comasseto, J. V.; Organometallics 1989, 8, 1661; (h) Ogawa, A.; Tsuboi, Y.; Obayashi, R.; Yokoyama, K.; Ryu, I.; Sonoda, N. J. Org. Chem. 1994, 59, 1600; (i) Dabdoub, M. J.; Dabdoub, V. B. Tetrahedron Lett. 1999, 40, 7159; (k) Dabdoub, M. J.; Dabdoub, V. B.; Comasseto, J. V. B.; Marques, F. A. Tetrahedron Lett. 1999, 40, 7159; (k) Dabdoub, M. J.; Dabdoub, V. B.; Cuerrero, P. G., Jr.; Silveira, C. C. Tetrahedron 1997, 53, 4199.

¹⁸ Huang, Y. Z.; Mo, X. S. *Tetrahedron Lett.* **1998**, *39*,1945.

¹⁹ Terao, J.; Kambe, N.; Sonoda, N. *Tetrahedron Lett.* **1996**, *37*, 4741.

²⁰ Kanda, T.; Sugiro, T.; Kambe, N.; Sonoda, N. *Phosphorus* Sulfur Silicon Relat. Elem. **1992**, 67, 103.

²¹ Jang, W. B.; Oh, D. Y.; Lee, C. W. Tetrahedron Lett. **2000**, *41*, 5103.

1.2. Síntese de Sulfetos Vinílicos através da Reação de Wittig

A primeira metodologia descrita para obtenção de sulfetos vinílicos empregando sais de fosfônio, foi relatada em 1961, por Wittig e Schlosser,²² que descreveram a reação a partir dos sais de α -metiltio fosfônio **7** e fenilítio, seguido da adição do composto carbonílico (Esquema 2).

Em 1968, Mukayiama e col.²³ descreveram uma variação desta metodologia, baseada na obtenção da tiofosforana **10** a partir da fosforana **8** e cloreto de fenilsulfenila **9**. A reação posterior com aldeídos e cetonas leva aos correspondentes sulfetos vinílicos **11** (Esquema 3).

Esquema 3

²² Wittig, G.; Schlosser, M. Chem. Ber. 1961, 94, 1373.

²³ Mukayiama, T.; Fukuyama, S.; Kumamoto, T. Tetrahedron Lett. 1968, 9, 3787.

Sulfetos de estirila do tipo 12^{24} podem ser preparados pela formação de uma tiofosforana "in situ", na presença de um dissulfeto, e subseqüente reação com aldeídos aromáticos, (Esquema 4).

Em outra metodologia,²⁵ sulfetos vinílicos foram obtidos usando técnicas de sonicação, em tempos de reação bastante curtos, utilizando como base K₂CO₃ e procedimentos experimentais bastante simples. Os sulfetos vinílicos do tipo 13 são obtidos, preferencialmente, com configuração E (Esquema 5).

Esquema 5

Uma modificação desta metodologia descrita por Silveira e col.,²⁶ mostra que a tiofosforana é formada através da simples mistura do cloreto 14, t-BuOK e trifenilfosfina em THF. A posterior reação com aldeídos e cetonas leva aos correspondentes sulfetos vinílicos do tipo 15 em bons rendimentos (46-84%), preferencialmente de configuração Z (Esquema 6). Esta metodologia também é aplicada para a síntese dos compostos análogos de selênio e telúrio, porém, com rendimentos menores e somente com a formação dos produtos derivados de aldeídos aromáticos.

 ²⁴ Galli, R. J. Org. Chem. 1987, 52, 5349.
 ²⁵ Silveira, C. C.; Perin, G.; Braga, A. L. J. Chem. Res. (S) 1994, 492.
 ²⁶ Silveira, C. C.; Begnini, M. L.; Boeck, P.; Braga, A. L. Synthesis 1997, 221.

1.3. Síntese de Sulfetos Vinílicos através da Reação de Wittig-Horner

A reação de Wittig-Horner foi utilizada na preparação de sulfetos vinílicos 17 de configuração E preferencialmente, a partir do ânion gerado do dimetil(metiltiometil)fosfonato 16 com NaH e posterior reação com aldeídos e cetonas.²⁷ A mesma reação foi realizada com o fosfonato 18; entretanto, neste caso, a reação ocorreu apenas com aldeídos aromáticos (Esquema 7).²⁸

Esquema 7

Olefinas tetrassubstituídas foram obtidas por uma reação semelhante, por Corey e Shulman.²⁹ Inicialmente, a reação envolve a alquilação do ânion derivado de **19** através da reação com n-BuLi e um cloreto alquílico. O posterior tratamento do fosfonato 20 com n-BuLi e um

 ²⁷ Shahak, I.; Almog, J. *Synthesis* 1969, 170.
 ²⁸ Shahak, I.; Almog, J. *Synthesis* 1970, 145.

²⁹ Corey, E. J.; Shulman, J. I. J. Org. Chem. 1970, 35, 777.

aldeído ou cetona, permite a formação dos correspondentes sulfetos vinílicos do tipo 21, de configuração preferencial E (Esquema 8).

$$(C_{2}H_{5}O)_{2}P \xrightarrow{SCH_{3}} SCH_{3} \xrightarrow{1) n-BuLi} (C_{2}H_{5}O)_{2}P \xrightarrow{SCH_{3}} SCH_{3} \xrightarrow{1) n-BuLi} R^{1} \xrightarrow{R} 2$$

$$19 \qquad 20 R \qquad SCH_{3} \xrightarrow{1) n-BuLi} R^{2} \xrightarrow{21} SCH_{3}$$

$$R = CH_{3}, CH_{3}(CH_{2})_{7}$$

$$R^{1} = alquila, arila, H$$

$$R^{2} = alquila, arila$$

$$Esquema 8$$

A reação de Wittig-Horner foi realizada em condições de transferência de fase, por Mikolajczyk e col.³⁰ utilizando o composto **22**, para a obtenção de sulfetos vinílicos (Esquema 9). Entretanto, esta reação leva a formação dos produtos apenas a partir de aldeídos aromáticos, uma vez que cetonas e aldeídos alifáticos podem sofrer enolização.³¹

$$(C_{2}H_{5}O)_{2}P \xrightarrow{SR} + \underset{H}{\overset{R^{1}}{\underset{H}{\longrightarrow}}} O \xrightarrow{CH_{2}Cl_{2} / H_{2}O}_{NaOH / TEBA} \overset{R^{1}}{\underset{SR}{\overset{V}{\longrightarrow}}} + (CH_{3}O)_{2}P \xrightarrow{O}H$$

$$R = CH_{3}, Ph$$

$$R^{1} = arila$$

$$40 - 81\%$$

Esquema 9

Em 1979, Mikolajczyk e col.,³² descreveram uma metodologia complementar que permite a obtenção de sulfetos vinílicos do tipo 23, com um grupamento fenila na posição α ao átomo de enxofre (Esquema 10).

 ³⁰ Mikolajczyk, M.; Grzejszczak, S.; Midura, W.; Zatorski, A. Synthesis 1975, 278.
 ³¹ Brocksom, T. J.; Petragnani, R.; Rodrigues, Teixeira H. S. Synthesis 1975, 396.
 ³² Mikolajczyk, M.; Grzejszczak, S.; Chefczynska, A.; Zatorski, A. J. Org. Chem. 1979, 44, 2967.

Warren e col.³³ descreveram a preparação de sulfetos vinílicos através da reação de um difenilfosfinóxido **24** com n-BuLi e aldeídos, (Esquema 11).

Esquema 11

Em 2005, foi descrita a preparação de calcogenetos de bis-vinila³⁴ **25** de configuração **E/E**, preferencialmente, empregando como materiais de partida calcogeno bis-(metildifenilfosfinóxidos), em condições de reação do tipo Wittig-Horner (Esquema 12).

³³ Blatcher, P.; Grayson, J. I.; Warren, S. J. Chem. Soc., Chem. Commun. 1975, 547.

³⁴ Guadagnin, R. C.; *Novos Métodos de Preparação de Calcogenetos Vinílicos via Calcogeno Fosfinóxidos*. Tese (Doutorado em Química) – Universidade Federal de Santa Maria, Santa Maria, **2005**.

1.4. Síntese de Selenetos Vinílicos através da Reação de Wittig

Petragnani e col.^{35, 36} descreveram um dos primeiros métodos gerais para a obtenção de selenetos vinílicos, baseados na reação de Wittig. Neste método, as fenilselenofosforanas **27** são geradas através da reação de transilidação entre brometo de fenilselenenila e dois equivalentes da fosforana **26** (Esquema 13). A reação posterior com aldeídos alifáticos e aromáticos leva a formação dos correspondentes selenetos vinílicos **28** em bons rendimentos (63-99%) em uma mistura de isômeros **E** e **Z**.

Esquema 13

³⁵ Petragnani, N.; Rodrigues, R.; Comasseto, J. V. J. Organomet. Chem. 1976, 114, 281.

³⁶ Stefani, H. A.; Cavaleiro, M. M. C.; Comasseto, J. V.; Petragnani, N. An. Acad. Brás. Cienc. 1989, 61, 37.

Comasseto e Brandt³⁷ descreveram a obtenção de selenetos vinílicos **30** utilizando brometo de fenilselenometiltrifenilfosfônio **29** e aldeídos, sob condições de transferência de fase (Esquema 14). A reação levou a formação das olefinas em bons rendimentos, preferencialmente de configuração **Z**.

Esquema 14

Silveira e col.²⁹ descreveram a preparação de selenetos vinílicos usando técnicas de sonicação, utilizando como base K_2CO_3 e procedimentos experimentais bastante simples. Os sulfetos vinílicos do tipo **31** são obtidos, preferencialmente, com configuração **Z**, no entanto com baixa estereosseletividade (Esquema 15).

Em outro trabalho,³⁰ foi descrita uma metodologia, onde os selenetos vinílicos foram obtidos através da simples mistura do cloreto **25**, *t*-BuOK, trifenilfosfina e o composto carbonílico, em THF (Esquema 16). Os produtos foram obtidos em bons rendimentos (63-75%) com uma mistura de isômeros **E** e **Z**.

³⁷ Comasseto, J. V.; Brandt, C. A. J. Chem. Res. (S) 1982, 56.

1.5. Síntese de Selenetos Vinílicos através da Reação de Wittig-Horner

Comasseto e Petragnani³⁸ desenvolveram uma metodologia para a síntese de selenetos vinílicos, baseada na reação do selenofosfonato 33, n-BuLi ou NaH como base e um composto carbonílico (Esquema 17). Quando foi utilizado n-BuLi, a reação levou a formação dos produtos com aldeídos aromáticos, alifáticos e cetonas em bons rendimentos. Entretanto, quando foi utilizado NaH, ocorreu reação apenas com aldeídos aromáticos. Os dois métodos levaram à formação dos produtos, preferencialmente de configuração E.

Esquema 17

Reação semelhante foi descrita por Coutrot e col.³⁹ para a obtenção de clorovinilfenilselenetos 37. Esta baseia-se na reação do ânion do selenofosfonato 34 com tetracloreto de carbono formando-se o α -clorofosfonato 35 e triclorometilítio. Este atua como base gerando um novo derivado litiado 36, que na presença de um composto carbonílico, leva aos produtos correspondentes 37 (Esquema 18).

 ³⁸ Comasseto, J. V.; Petragnani, N. *J. Organomet. Chem.* **1978**, *152*, 295.
 ³⁹ Coutrot, P.; Grison, C.; Yossefi-Tabrizi, M. Synthesis **1987**, 169.

Esquema 18

A reação de Wittig-Horner foi utilizada por Oh e col.⁴⁰ para a obtenção de fenilselenoacetais **39**, a partir de aldeídos e bis(fenilseleno)fosfonato **40** ou dietilmetilfosfonato **38** (Esquema 19).

A preparação de espécies bis-vinílicas simétricas **43** já é conhecida, porém, novas metodologias⁴¹ ainda continuam surgindo, devido a grande importância que estes compostos possuem frente a reações de acoplamentos. O nosso grupo de pesquisa desenvolveu a preparação do seleno bis-(metilfosfonato) **42** pela reação de substituição do iodometilfosfonato **41** com

⁴⁰ Shin, W. S.; Lee, K. e Oh, D. Y. Tetrahedron Lett. **1992**, 33, 5375.

⁴¹ Silveira, C. C.; Santos, P. C. S.; Braga, A. L. *Tetrahedron Lett.* **2002**, *43*, 7517.

Na₂Se, gerado "in situ", (Esquema 20). O composto **42** reage bem com aldeídos aromáticos, no entanto, não reage com aldeídos alifáticos e cetonas. Os produtos obtidos são, preferencialmente, de configuração **E**.

Esquema 20

Recentemente foi descrita uma metodologia para preparar selenetos vinílicos³⁸ **45**, empregando fenilcalcogenometildifenilfosfinóxido **44**, sintetizado pela reação de metildifenilfosfinóxido com LDA, em THF, seguido da adição de um haleto de feniltelurenila. Este material de partida quando submetido a condições de reação do tipo Wittig-Horner, em THF, utilizando NaH como base, e com a posterior adição de compostos carbonílicos (aldeídos aromáticos, alifáticos e cetonas), fornece os correspondentes selenetos vinílicos de configuração **E**, preferencialmente. Nas reações com aldeídos alifáticos, ocorre a inversão da configuração (Esquema 21).

Esquema 21

A preparação de selenetos de bis-vinila³⁸ de configuração E/E, preferencialmente, foi descrita empregando como materiais de partida seleno bis-(metildifenilfosfinóxidos), visto anteriormente (Esquema 12).

1.6. Síntese de Teluretos Vinílicos através da Reação de Wittig

Silveira e col.⁴² descreveram a preparação teluretos vinílicos por dois métodos diferentes. O primeiro consiste na reação de transilidação entre a trifenilfosforana **46** e brometo de feniltelurenila (Esquema 22). A subseqüente reação com aldeídos fornece os teluretos vinílicos **47** em rendimentos moderados a bons.

$$2 [Ph_3\overset{\oplus}{P}-CH_3]X^{\ominus} \underline{BuLi} 2 [Ph_3P=CH_2] \underline{PhTeBr} Ph_3P=CHTePh \underline{RCHO} R^{\bullet} TePh$$

$$46 \qquad 47 \\ 30 - 76\% \\ R= Ph, 2-furyl, 4-NO_2Ph, 4-CIPh$$

Esquema 22

A segunda metodologia consiste na geração de telurodialotelurolato de trifenilfosfônio, pela reação de quantidade equimolar de brometo de ariltelurenil e sal de fosfônio. A reação com base fornece a telurofosforana **48** (Esquema 23) e subseqüente reação com aldeídos fornece os teluretos vinílicos **49** em rendimentos moderados a bons. Em ambas as metodologias obtiveram-se, preferencialmente, os isômeros de configuração **Z**.

$$[Ph_{3}P-CH_{2}R]\stackrel{\odot}{X} \xrightarrow{1) ArTeBr} Ph_{3}P = CRTePh \xrightarrow{R^{1}CHO} R^{1} \xrightarrow{R} TePh$$

$$48 \qquad 49 \qquad 7 - 48\%$$

$$R = H, Me; R^{1}=Ph, 2-furyl, 4-NO_{2}Ph, 4-ClPh$$

Esquema 23

⁴² Silveira, C. C.; Perin, G.; Braga, A. L.; Petragnani, N. Synlett 1995, 58.

Teluretos vinílicos 51 foram preparados via adição de t-BuOK a solução de clorometil fenil telureto 50 e trifenilfosfina em THF seguido pela adição de aldeídos (Esquema 24). Obtendo-se isômeros de configuração Z exclusivamente.³⁰

PhTe Cl
$$t$$
-BuOK
(C₆H₅)₃P
50 RCHO, THF R TePh
51
34 - 45%

R= Ph, 2-furyl, 4-NO₂Ph, 4-MePh

Esquema 24

Teluretos simétricos de bis-vinila 53^{43} foram preparados pela reação do intermediário 52 com aldeídos, fornecendo os teluretos vinílicos como uma mistura de isômeros, em rendimentos moderados (Esquema 25).

Esquema 25

1.7. Síntese de Teluretos Vinílicos através da Reação de Wittig-Horner

A reação do feniltelurometilfosfonato 54 com NaH em THF, seguido da adição de um aldeído aromático, leva à formação dos correspondentes teluretos vinílicos 55,44 de configuração

 ⁴³ Silveira, C. C.; Perin, G.; Boeck, P.; Braga, A. L.; Petragnani, N. J. Organomet. Chem. 1999, 584, 44.
 ⁴⁴ Lee, C. W.; Koh, Y. J.; Oh, D. Y. J. Chem. Soc., Perkin Trans. 1 1994, 717.

E (Esquema 26). Os produtos só foram obtidos quando tratados com aldeídos aromáticos, com aldeídos alifáticos e cetonas não ocorre reação.

Esquema 26

Fenilteluroalquilfosfinóxido **56** foi recentemente aplicado na preparação de teluretos vinílicos⁴⁵ através da reação com aldeídos e cetonas. Quando aldeídos aromáticos foram empregados, houve a formação principalmente de isômeros de configuração **E**. No entanto, com aldeídos alifáticos o produto favorecido foi o isômero de configuração **Z**. A reação com cetonas permitiu a formação de teluretos vinílicos trissubstituídos **57** em bons rendimentos (Esquema 27).

Esquema 27

A preparação de ceteno teluro acetais **59** pela reação de dietil alquilfosfonato com LDA e a subseqüente adição de PhTeBr foi descrita por Silveira e col..⁴⁶ O intermediário resultante **58** foi tratado com compostos carbonílicos para fornecer os produtos **59** em bons rendimentos (Esquema 28).

⁴⁵ Silveira, C. C.; Guadagnin, R. C.; Braga, A. L. *Tetrahedron Lett.* **2003**, *44*, 5703.

⁴⁶ Silveira, C. C.; Perin, G.; Braga, A. L.; *Tetrahedron Lett.* **1995**, *36*, 7361.

A reação de tiometil fosfonato **60** com haletos de aril ou butil telurenila, em condição básica, forneceu **61** em rendimentos bons a moderados.⁴⁷ Aldeídos aromáticos e alifáticos deram uma mistura de produtos de configuração **E** e **Z** (Esquema 29).

4-ClPh, Me₂CH, CH₃CH₂CH₂ H

Esquema 29

Fenilteluro acrilonitrilas **63** foram sintetizadas⁴⁸ por reações análogas (Esquema 30). Cianometil fosfonato **62** foi tratado com LDA e o intermediário resultante com PhTeBr, formando o intermediário **64**. O tratamento com aldeídos forneceu as acrilonitrilas em bons rendimentos, como uma mistura de isômeros de configuração **E** e **Z**.

⁴⁷ Silveira, C. C.; Perin, G.; Braga, A. L.; Dabdoub, M. J.; Jacob, R. G. *Tetrahedron* **1999**, *55*, 7421.

⁴⁸ Silveira, C. C.; Perin, G.; Braga, A. L.; Dabdoub, M. J.; Jacob, R. G. Tetrahedron **2001**, *57*, 5953.

Esquema 30

A preparação de teluretos de bis-vinila de configuração **E/E**, preferencialmente, foi descrita empregando como materiais de partida teluro bis-(metildifenilfosfinóxidos) (Esquema 12).³⁸
Capítulo 2

Apresentação e Discussão dos Resultados

2. APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS

A seguir, serão apresentados e discutidos os resultados obtidos durante a realização do presente trabalho. Será discutida a síntese dos calcogeno fosfinóxidos (materiais de partida). Em um segundo momento, a síntese dos calcogeno eninos, via reação de Wittig-Horner.

2.1 SÍNTESE DOS CALCOGENO FOSFINÓXIDOS

2.1.1. Preparação dos materiais de partida

Visando a síntese dos calcogeno fosfinóxidos acetilenos, partiu-se da reação de trifenilfosfina com Naº em THF (Esquema 31), obtendo-se, após uma devida extração e destilação horizontal, um óleo límpido, transparente, de odor bastante irritante, a hidrogenodifenilfosfina **65**.⁴⁹

$$(Ph)_{3}P \xrightarrow{2Na^{\circ}} (Ph)_{2}PNa + PhNa \xrightarrow{H_{2}O, HCl} (Ph)_{2}PH$$
65
68%

Esquema 31

Sob atmosfera de argônio, preparou-se o ânion $[(Ph)_2 P Na^+]$, a partir da hidrogenofosfina 65 e sódio metálico em THF (Esquema 32). Após 6 horas adicionou-se paraformaldeído sólido, a temperatura de -40°C. Deixou-se o sistema sob agitação por mais 24 horas (temperatura ambiente) e devida oxidação forneceu o composto 66. Este foi purificado através de recristalização com hexano/acetato de etila (1:9), sendo este um sólido branco de ponto de fusão 136-137°C.50

 ⁴⁹ Wittenberg, D.; Gilman, H. *J. Org. Chem.* **1958**, *23*, 1063.
 ⁵⁰ Hellmann, H.; Bader, J. *Tetrahedron Lett.* **1961**, *20*, 724.

$$\begin{array}{cccc} (Ph)_2PH & \underline{1}) \underline{Na^{\circ}, THF, 6h} \\ 2) CH_2O, -40^{\circ}C - t. a. \end{array} (Ph)_2PCH_2ONa & \underline{1}) \underline{H_2O} \\ 65 & & & & & & & \\ 65 & & & & & & & \\ 66 & & & & & & & \\ 83\% & & & & & & \\ \end{array}$$

Esquema 32

O hidroxilmetildifenilfosfinóxido **66** foi facilmente transformado no seu derivado tosilato **67**, após o tratamento com Et_3N e Cl-Ts em CH_2Cl_2 (Esquema 33). O composto **67** foi obtido em 96% de rendimento, sendo um sólido branco de ponto de fusão 123,7-125,0°C,⁵¹ após purificação por coluna cromatográfica.

$$(Ph)_{2}P(O)CH_{2}OH \xrightarrow{1) Et_{3}N, CH_{2}Cl_{2}}{2) Cl-Ts, 0^{\circ}C - t. a.} (Ph)_{2}P(O)CH_{2}OTs$$
66 67 96%

Esquema 33

O tosilato 67 foi tratado com calcogenoacetiletos de lítio (Esquema 34), preparados "in situ", pela reação de *n*-BuLi com fenilacetileno, em THF à 0°C, seguida pela adição do calcogênio (S, Se ou Te). A temperatura da reação é aumentada até a temperatura ambiente, gradativamente, e após o tempo indicado na Tabela 1, obtêm-se os respectivos calcogeno fosfinóxido acetilenos $1, 2 \in 3$ (Tabela 1).

Esquema 34

As reações de formação destes compostos apresentaram-se bastante limpas e ocorreram em condições brandas 0-25°C, em THF. Estes compostos, após serem sintetizados em ótimos

⁵¹ Tkachenko, S. E.; Yarkevich, A. N.; Timofeev, S. V.; Tsvetkov, E. N. J. Gen. Chem. USSR (Engl. Transl.), **1988**, 58, 465

rendimentos (75-91%), foram isolados por recristalização de hexano/acetato de etila (5%), ou por coluna cromatográfica utilizando uma mistura de hexano/acetato de etila como eluente, aumentando gradativamente a polaridade até 40% de acetato de etila.

Linha	Compostos	Tempo reacional ^a (h)	Rend. (%)	P. de Fusão (°C)
1	(Ph) ₂ P_S_	3,5	79	104,6-107,4
2	O (Ph) ₂ P Se	2	89	131,2-132,1
3	O (Ph) ₂ P Te	2	68	138,9-142,0

Tabela 1. Resultados obtidos para a síntese dos calcogeno fosfinóxidos acetilenos 1, 2 e 3.

^a Tempo reacional após a adição do tosilato

2.1.2. Discussão dos dados espectrais de RMN ¹H e ¹³C dos materiais de partida

T in h a	Commentant.	RMN ¹ H (CDCl ₃ /TMS)	RMN ¹³ C (CDCl ₃ /TMS)	
Linha	Compostos	δ (ppm); <i>J</i> (Hz)	δ (ppm); <i>J</i> (Hz)	
		4,38 (s, 2H); 5,64 (s, 1H, OH); 7,27-7,76 (m, 10H). ^a	60,93 (d, ${}^{17}J_{P-C}=$ 84,06); 128,43 (d, ${}^{2}J_{P-C}=$ 11,30); 130,45 (d, ${}^{13}J_{P-C}=$ 96,07);	
1	(Ph) ₂ P_OH 66		131,21 (d, ${}^{3}J_{P-C}=$ 9,18); 131,90 (d, ${}^{4}J_{P-C}=$ 2,82). ^b	
2	$(Ph)_2 P$ OTs 67	2,43 (s, 3H); 4,62 (d, ^{1'} <i>J</i> _{P-H} = 7,22, 2H); 7,25- 7,27 (m, 2H); 7,47-7,72 (m, 12H). ^a	21,49; 64,60 (d, ^{1'} $J_{P-C}=$ 82,05); 127,95; 128,63 (d, ² $J_{P-C}=$ 13,04); 128,84 (d, ¹ $J_{P-C}=$ 103,84); 129,83; 130,93; 131,28 (d, ³ $J_{P-C}=$ 9,97); 132,66 (d, ⁴ $J_{P-C}=$ 3,07); 145,39. ^b	
3	(Ph) ₂ P_S_	3,65 (d, ¹ ' <i>J</i> = 7,99, 2H); 7,24-7,26 (m, 5H); 7,49- 7,56 (m, 6H); 7,78-7,88 (m, 4H). ^a	34,08 (d, ^{1'} J = 66,71); 77,98 (d, ^{3'} J = 6,13); 93,25; 122,49; 127,98; 128,30; 128,54 (d, ² J = 12,27); 131,17 (d, ³ J = 9,97); 131,52; 132,26 (d, ⁴ J = 3,07). ^b	

Na tabela a seguir estão os dados de RMN 1 H e 13 C dos materiais de partida. **Tabela 2.** Dados espectrais de RMN 1 H e 13 C dos materiais de partida.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a); J (Hz) I'J = 67,00); J'J = 6,36);
4 $(Ph)_2P$ Se $(Ph)_2P$ Se	$J^{T}J=$ 67,00); $J^{3}J=$ 6,36);
4 $(Ph)_2P$ Se $(Ph)_2P$ Se $(m, 4H)^a$. $(m, 4H)^a$.	J = 6,36);
4 (Ph) ₂ ^{\dot{P}} Se (m, 4H) ^a . 128,33; 12 12,01); 13 9,89); 131 103,14); 13 (d, ⁴ J=2,83 3,76 (d, ^{1'} J= 7,33, 2H); 6,88 (d,	2,77; 128,03;
4 12,01); 13 9,89); 131 103,14); 13 (d, ${}^{4}J=2,83$ 3,76 (d, ${}^{1'}J=$ 7,33, 2H); 6,88 (d,	8,55 (d, $^{2}J=$
2 3,76 (d, ^{1'} J= 7,33, 2H); 6,88 (d,	1,04 (d, ${}^{3}J=$
2 103,14); 1 (d, ${}^{4}J=2,83$ 3,76 (d, ${}^{1'}J=$ 7,33, 2H); 6,88 (d,	,30 (d, ${}^{1}J=$
(d, ${}^{4}J=2,83$ 3,76 (d, ${}^{1'}J=$ 7,33, 2H); 6,88 (d,	31,55; 132,15
3,76 (d, ¹ ' <i>J</i> = 7,33, 2H); 6,88 (d,). ^b
	¹ ' <i>J</i> = 67,22);
0 7,25-7,33 (m, 5H); 7,42- 45,88 (d,	³ ' <i>J</i> = 5,94);
$(Ph)_2P$ Te 7,52 (m, 6H); 7,70-7-86 112,02; 12	3,06; 128,11;
5 (m, 4H). ^a 128,55; 12	8,65 (d, $^{2}J=$
11,87); 13	
9,86); 132	0,98 (d, ${}^{3}J=$
3 102,94); 11	0,98 (d, ${}^{3}J=$,04 (d, ${}^{1}J=$
$(d, {}^{4}J=2,82)$	0,98 (d, ${}^{3}J=$,04 (d, ${}^{1}J=$ 51,86; 132,11

Tabela 2. Dados espectrais	de RMN ¹ H e ¹³ C dos mat	eriais de partida (cont.).

^a Dados do espectro de RMN ¹H (200 MHz). ^b Dados do espectro de ¹³C (100 MHz).

Caracterização do composto 66

No espectro de RMN ¹H do composto **66** (Figura 1) podemos verificar, nitidamente, os sinais dos hidrogênios do CH₂ α -P, δ 4,38 ppm (s, 2H); em 5,64 ppm aparece um pequeno sinal do hidrogênio do OH (s largo, 1H) e na região dos hidrogênios aromáticos, dois multipletos, 7,37-7,50 ppm (m, 6H) e 7,71-7,76 ppm (m, 4H).

Figura 1. Espectro de RMN ¹H (200 MHz) do composto 66.

No espectro de RMN ¹³C, (Figura 2), pode-se verificar facilmente todos os sinais referentes aos carbonos, com seus desdobramentos para dubletos devido ao acoplamento C-P. Em 60,93 ppm podemos notar o sinal do CH₂ α -P (d, ¹⁷J_{C-P}= 84,06 Hz), enquanto que na região dos carbonos aromáticos evidencia-se, também, todos os sinais como sendo dubletos, podendo-se atribuir a ordem dos carbonos. Quanto maior o valor da constante de acoplamento maior é a proximidade do carbono com o fósforo. O composto **66** possui constantes de acoplamento bem características, onde ¹J_{C-P}= 96,07 Hz, ²J_{C-P}= 11,30 Hz, ³J_{C-P}= 9,18 Hz, ⁴J_{C-P}= 2,82 Hz, correspondem aos carbonos aromáticos 1, 2, 3, 4, respectivamente, mostrado na Tabela 3.

Tabela 3: Constante de acoplamento para ³¹P com ¹³C para o composto **66**.

Composto	$^{1}J_{\text{C-P}}(\text{Hz})$	$^{2}J_{\text{C-P}}(\text{Hz})$	$^{3}J_{\text{C-P}}(\text{Hz})$	${}^{4}J_{\text{C-P}}(\text{Hz})$	$^{1'}J_{\text{C-P}}(\text{Hz})$
66	96,07	11,30	9,18	2,82	84,06

Figura 2. Espectro de RMN ¹³C (100 MHz) do composto 66 e expansão da região aromática.

Caracterização do composto 67

No espectro de RMN ¹H composto **67** podemos verificar, nitidamente, os sinais dos hidrogênios da metila do grupamento tosila, δ 2,43 ppm (s, 3H). Em 4,62 ppm temos um dubleto referente aos hidrogênios do CH₂ α -P (d, ^{1'}*J*_{H-P}= 7,22 Hz), e na região dos hidrogênios aromáticos dois multipletos, 7,25-7,27 ppm (m, 2H) e 7,47-7,72 ppm (m, 12H), (Figura 3).

Figura 3. Espectro de RMN ¹H (200 MHz) do composto 67.

No espectro de RMN ¹³C pode-se verificar os sinais referentes aos carbonos com seus desdobramentos para dubletos, devido ao acoplamento C-P (Tabela 4). Em 64,60 ppm podemos notar o sinal do CH₂ α -P (d, ^{1'} J_{C-P} = 82,05 Hz), enquanto que na região dos carbonos aromáticos evidencia-se, também, todos os sinais como sendo dubletos, de maneira similar ao composto **66**, porém com constantes de acoplamento um pouco maiores (Figura 4).

Figura 4. Espectro de RMN ¹³C (100 MHz) do composto 67.

Tabela 4: Constante de acoplamento para ³¹P com ¹³C para o composto **67**.

Composto	$^{1}J_{\text{C-P}}(\text{Hz})$	$^{2}J_{\text{C-P}}(\text{Hz})$	$^{3}J_{\text{C-P}}(\text{Hz})$	${}^{4}J_{\text{C-P}}(\text{Hz})$	$^{1'}J_{\text{C-P}}(\text{Hz})$
67	103,84	13,04	9,97	3,07	82,05

Caracterização dos compostos 2

A título de exemplo selecionou-se o composto 2 para discutir a atribuição dos sinais nos espectros de RMN 1 H e 13 C.

No espectro de RMN ¹H (Figura 5), observa-se em 3,64 ppm um dubleto com constante de acoplamento ^{1'} $J_{\text{H-P}}$ = 6,91 Hz, referente aos hidrogênios metilênicos α -selênio, com integral relativa a 2 hidrogênios.

Figura 5: Espectro de RMN 1 H (200 MHz) do composto 2.

No espectro de RMN ¹³C, observa-se o deslocamento químico em 25,85 ppm de um dubleto com constante de acoplamento ^{1'} J_{C-P} = 67,00, relativo ao carbono 1'. O carbono 3' encontra-se em um deslocamento de 69,81 ppm, como um dubleto com constante de acoplamento ^{3'} J_{C-P} = 6,36 Hz.

As constantes de acoplamento para ³¹P com ¹³C para o composto 2 estão na Tabela 5. As atribuições dos deslocamentos químicos, a cada carbono, podem ser observadas nas Figuras 6 e 7.

Composto	$^{1}J_{\text{C-P}}(\text{Hz})$	$J_{C-P}(Hz)$	$J_{C-P}(Hz)$	$^{4}J_{\text{C-P}}(\text{Hz})$	$^{\Gamma}J_{\text{C-P}}(\text{Hz})$	$J_{C-P}(Hz)$
2	103,14	12,01	9,89	2,83	67,00	6,36
		1 P Se 3	З' З' J _{C-Р}		^{1'} J _{C-P}	
Figura 6: Espe	ectro de RMN	¹³ C (100 MI	Hz) do compo	osto 2 .		

Tabela 5: Constante de acoplamento para ${}^{31}P$ com ${}^{13}C$ para o composto 2.

Figura 7: Expansão do espectro de RMN ¹³C (100 MHz) do composto 2.

2.1.3. Discussão dos dados espectrais de Infravermelho e Massa dos materiais de partida

Em relação à Espectroscopia de Infravermelho, os compostos **66** e **67** apresentam bandas referentes aos estiramentos das ligações $P=O(1210-1140 \text{ cm}^{-1}) \text{ e } P-CH_2(1440-1400 \text{ cm}^{-1}).$

Os espectros de Massa também confirmaram as estruturas destes compostos, pela constatação dos sinais dos respectivos íons moleculares e outros fragmentos característicos (Tabela 6).

Linha		IV v (cm ⁻¹)		Massa (<i>m/z</i>)	
Liiiia	Compostos	Geral	P=O	(intensidade relativa)	
	0	3230 (OH), 3050,	1150	233 (M ⁺ +1), 232 (M ⁺)	
1	(Ph) ₂ R _OH	2900, 1600, 1505,		(100), 135, 124, 109, 91,	
I	66	1490, 1250, 1150,		79, 67, 45.	
		1050, 750.			
	O II	3050, 2920, 1600,	1200	387 (M ⁺ +1), 356, 322,	
2	$(Ph)_2 P OTs$	1450, 1390, 1200,		307, 292, 201 (100), 152,	
	67	1000, 750.		91, 77, 65, 51.	

Tabela 6. Dados espectrais de Infravermelho e Massa dos materiais de partida.

Links		IV ν (cm ⁻¹)		Massa (m/z)	
Linna	Compostos	Geral	P=O	(intensidade relativa)	
	O II	3052, 2950, 2889,	1183	350 (M ⁺ +2), 349 (M ⁺	
	(Ph) ₂ ^H S	1957, 1895, 1813,		+1), 348 (M ⁺), 347 (M ⁺ -	
3		1593, 1486, 1445,		1), 202, 201 (100), 183,	
		1127, 927, 764,		178, 121, 103, 91, 89, 77,	
	1	743, 687, 533.		65, 51.	
4	O II	3052, 2965, 2894,	1188	397 (M ⁺ +1), 396 (M ⁺),	
	(Ph) ₂ ^H Se	1952, 1900, 1823,		395 (M ⁺ -1), 303, 258,	
		1593, 1480, 1434,		225, 201 (100), 178, 152,	
		1372, 1127, 917,		133, 115, 91, 65.	
	2	763, 691, 528.			
	0	3062, 2980, 2919,	1178	357 (M ⁺ -CPh), 323, 307,	
	(Ph) ₂ P Te	1956, 1890, 1833,		291, 201 (100), 183, 91,	
5		1593, 1486, 1439,		77, 65.	
		1347, 1107, 1045,			
		784, 758, 727,			
	3	574, 513.			

Tabela 6. Dados espectrais de Infravermelho e Massa dos materiais de partida (cont).

2.1.4. Apresentação dos dados de Análise Elementar

Foi realizada Análise Elementar para os compostos da Tabela 7, cujos dados comprovam a atribuição das estruturas feitas anteriormente.

	Análise Elementar			
Composto	Experimental; (Teórico)			
	C(%)	H(%)		
O (Ph) ₂ P Se 2	63,53 (63,81)	4,13 (4,33)		
(Ph) ₂ PTe	57,11 (56,82)	3,67 (3,86)		

 Tabela 7: Dados de Análise Elementar para os compostos 2 e 3.

2.2. SÍNTESE DOS CALCOGENO ENINOS ATRAVÉS DA REAÇÃO DE WITTIG-HORNER

2.2.1. Introdução

A síntese de olefinas aplicando reações do tipo Wittig é conhecida há mais de 50 anos e ainda é bastante estudada. Uma das principais vantagens é a formação de ligação dupla C=C, com aumento da cadeia carbônica, além da posição da ligação dupla ser bem definida. Desde a sua descoberta a reação de Wittig tornou-se um dos mais importantes e efetivos método para a preparação de alcenos.

O mecanismo e estereosseletividade da reação de Wittig é tema de vários livros⁵² e artigos.⁵³

Uma proposta de mecanismo⁵⁴ (Esquema 35) sugere que o ilídeo de fósforo, agindo como um cabânion, ataca o carbono da carboníla do aldeído ou da cetona para formar um intermediário instável com cargas separadas, chamado de betaína trans e betaína cis, existindo em equilíbrio. A betaína torna-se um sistema cíclico instável de quatro membros chamado de oxafosfetano, que expontaneamente perde o óxido de trifenilfosfina para formar o alceno cis (produto cinético) e ou o alceno trans (protudo termodinâmico). A força diretora da reação de Wittig é a formação de uma ligação fósforo-oxigênio muito forte no óxido de trifenilfosfina.

A reação de Wittig, normalmente, resulta em cis e trans alcenos, a estereosseletividade da depende de vários fatores: tipo de ilídeo, tipo de composto carbonílico, natureza do solvente, temperatura, entre outros. A possibilidade de se controlar a estereoquímica da reação tem grande significância, pois usualmente deseja-se a síntese de um único isômero.

⁵² (a) Kolodiazhnyi, O. I. Phosphorus Ylides: *Chemistry and Application in Organic Synthesis* Wiley-VCH. Weinheim; New York; Chichester; Brisbane; Singapore; Toronto **1999**. (b) Cadogan, J. I. G. *Organophosphorus Reagents in Organic Synthesis* ACADEMIC PRESS INC. London **1979**.

⁵³ (a) Maryanoff, B. E.; Reitz A. B. Chem. Rev. 1989, 89, 863. (b) Vedejs E.; Fleck. T. J. J. Am. Chem. Soc. 1989, 111, 5861. (c) Nagase, S.; Yamataka, H.; Nagareda, K.; Takatsuka, T.; Ando, K.; Hanafusa, T.; J. Am. Chem. Soc. 1993, 115, 8570. (d) Vedejs E.; Marth, C. F.; Ruggeri, R. J. Am. Chem. Soc. 1988, 110, 3940. (e) Vedejs E.; Marth, C. F. J. Am. Chem. Soc. 1990, 112, 3905. (f) Schlosser, M.; Schaub, B. J. Am. Chem. Soc. 1982, 104, 5821. (g) Maryanoff, B. E.; Reitz A. B.; Nortey, S. O.; Jordan, A. D.; Mutter, M. S. J. Org. Chem. 1986, 51, 3302. (h) Vedejs E.; Cabaj, J.; Peterson, M. J. J. Org. Chem. 1993, 58, 6509. (i) Takakis, I. M.; Mylona, A.; Nikokavouras, J. J. Org. Chem. 1988, 53, 3838. (j) Toda, F.; Akai, H.; J. Org. Chem. 1990, 55, 3446. (l) Yamataka, H.; Nagareda, K.; Ando, K.; Hanafusa, T.; J. Org. Chem. 1992, 57, 2865. (m) Maryanoff, B. E.; Reitz A. B.; Mutter, M. S.; Inners, H. R. A.; Whittle, R. R.; Olofson, R. A. J. Am. Chem. Soc. 1986, 108, 7664.

⁵⁴Kurti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis. ELSEVIER, **2005**.

A seguir, serão discutidos, os resultados obtidos referentes a preparação de calcogeno eninos frente a condições de reação do tipo Wittig-Horner, sendo esta uma variação da reação de Wittig, empregando como materiais de partida calcogeno fosfinóxidos acetilenos.

2.2.2. Síntese do seleno enino 5a via reação de Wittig-Horner em condições de catálise por transferência de fase

O nosso estudo começou com a preparação do composto 5a em condições de transferência de fase.⁵⁵ A expressão "catálise por transferência de fase" foi introduzida por Starks em 1971⁵⁶ e engloba uma série de processos diferentes, envolvendo mecanismos de ação diversos. No entanto, todos eles têm em comum a reação entre um reagente de uma fase líquida com um substrato de outra fase líquida (CTF-LL) ou entre um reagente de uma fase sólida com o substrato de uma fase líquida (CTF-LF). Em ambos os casos, ocorre um sensível aumento na atividade do reagente, devido a presença de um catalisador.

⁵⁵ Starks, C. M.; Liotta, C. Phase Transfer Catalysis: Principles and Techniques ACADEMIC PRESS. New York, San Francisco, London **1978**. ⁵⁶ Starks, C. M.; *J. Amer. Chem. Soc.***1971**, *93*, 195.

O seleno enino **5a**, foi então, preparado em condições de transferência de fase, via reação de Wittig-Horner, entre o seleno fosfinóxido acetileno e p-anisaldeído (Esquema 36). Inicialmente várias condições foram testadas, variando-se a base, o catalisador e o solvente (Tabela 8).

Esquema 36

Nos sistemas sólido-líquido (linhas 1-7), utilizou-se éteres de coroa como catalisador. Neste caso o cátion inorgânico é "preso" no interior do éter de coroa, conferindo-lhe carga positiva, aumentando a reatividade do ânion, já que se encontra mais livre, portanto, mais reativo. A existência de éteres-coroa com "cavidades" de dimensões diferentes confere a esta classe de catalisadores grande seletividade; os cátions tenderão a complexar com éteres-coroa cuja cavidade seja da mesma ordem de grandeza de seu diâmetro iônico. Podemos observar que as dimensões das "cavidades" dos éteres 18-coroa-6 (2,6-3,2 Å), 15-coroa-5 (1,7-2,2 Å), 12-coroa-4 (1,1-1,1 Å) aproximam-se, respectivamente, dos diâmetros iônicos do K⁺, Na⁺, Li⁺. O éter-18coroa-6 apresenta uma "cavidade" de 2,6-3,2 Å, aproximada do diâmetro do K⁺ o que faz com que este éter de coroa complexe mais eficientemente com o cátion potássio do que com os cátions sódio ou lítio. Isso não quer dizer, no entanto, que o éter 18-coroa-6 não complexe com esses dois cátions; apenas o éter 18-coroa-6 é mais específico para o cátion potássio do que para os cátions sódio ou lítio.

O melhor resultado obtido nas reações em condição de transferência de fase, em relação a estereosseletividade, foi quando se utilizou *t*-BuOK como base, benzeno como solvente e 18-coroa-6 (Tabela 8, linha 5). Observa-se que o tempo reacional foi bastante curto (10 mim), devido a presença do catalisador. O rendimento da reação foi de 81%, e a relação \mathbf{Z}/\mathbf{E} foi 1/6,7.

Em sistemas contendo hidróxido de sódio concentrado e um solvente orgânico, Tabela 8, linha 9 e 10, excelentes rendimentos foram observados. Esta metodologia apresenta grande comodidade, pois substitui as bases fortes como NaH, além de ser efetuada em uma mistura de $CH_2Cl_2 \ e \ H_2O$. No entanto, a estereosseletividade da reação é 1/1,8 e 1/1,14 (relação Z/E determinada por GC da amostra bruta), linhas 9 e 10 respectivamente. O catalisador de transferência de fase, brometo de tetrabutilamônio, acelera a reação entre o reagente iônico da fase aquosa e o substrato orgânico insolúvel em água presente no solvente orgânico. A função do catalisador é a de transferir os ânions da fase aquosa para a fase orgânica. Na fase orgânica, os ânios estão praticamente livres (não solvatados) e conseqüentemente muito reativos.

 Tabela 8: Preparação do seleno enino 5a via reações de Wittig-Horner em condições de transferência de fase.

Linha	Base	Cat.	Solvente	Temp.	Tempo	Rend. (%)	Z/E
1	КОН	18-C-6	CH_2Cl_2	t.a.	2 hs	85	1,6/1
2	КОН	18-C-6	Benzeno	t.a.	30 min	87	1/2,7
3	K_2CO_3	18-C-6	Benzeno	t.a.	48 hs	*	*
4	LiOH	15-C-5	Benzeno	t.a.	48 hs	*	*
5	t-BuOK	18-C-6	Benzeno	t.a.	10 min	81	1/6,7
6	t-BuOK	18-C-6	THF	t.a.	2 min	85	1/4,3
7	t-BuOK	18-C-6	CH_2Cl_2	t.a.	10 min	82	1/1,1
8	CsCO ₃	TEBA	Benzeno	t.a.	48 hs	*	*
	NaOH						
9	(Sol. aq.	TEBA	CH_2Cl_2	t.a.	40 hs	92	1/1,8
	50%)						
	NaOH						
10	(Sol. aq.	TEBA	CH_2Cl_2	refluxo	10 hs	94	1/1,14
	50%)						

*Não se observou consumo total do material de partida.

Apesar de se obter excelentes resultados em relação ao rendimento e tempo reacional para a maioria das reações (Tabela 8), a estereosseletividade foi baixa. O seleno fosfinóxido acetileno foi então, submetido à reação de Wittig-Horner em THF utilizando-se como base NaH (Esquema 37). O produto desejado **5a** foi obtido com 83% de rendimento e a relação **Z/E** foi de 1/16. Tendo

em mãos esta condição, considerada satisfatória, por apresentar uma maior estereosseletividade, estendeu-se esta metodologia para preparação de outros calcogeno eninos, como será visto a seguir.

Esquema 37

2.2.3. Preparação de calcogeno eninos via reação de Wittig-Horner utilizando-se NaH como base

Os calcogeno fosfinóxidos acetilenos foram submetidos à reação de Wittig-Horner em THF utilizando-se como base NaH (Esquema 1), sendo esta, a condição que apresentou melhores resultados.

Em um balão, equipado com agitação magnética e atmosfera de argônio, foi adicionado o respectivo fosfinóxido de partida (1, 2 ou 3), dissolvendo-o em THF. Em seguida, foram adicionados dois equivalentes de NaH sobre a solução a 0° C. Agitou-se o sistema nesta temperatura por 20 minutos e após adicionou-se 1,5 equivalentes do respectivo composto carbonílico. Agitou-se a mistura até total consumo do material de partida, verificado por CCD.

A reação ocorreu conforme planejado, obtendo-se preferencialmente os isômeros de configuração E, para os aldeídos aromáticos. Para os aldeídos alifáticos obteve-se uma mistura de

isômeros (\mathbf{Z}/\mathbf{E} 2/1, aproximadamente). Os calcogeno eninos provenientes de reação com aldeídos aromáticos podem ser obtidos com configuração 100% \mathbf{E} , através de recristalização em éter de petróleo.

Além dos aldeídos aromáticos e alifáticos, as reações com cetonas também deram bons resultados, quando o material de partida utilizado foi o composto **1** e **2**.

Nas reações com cetonas a condição reacional utilizada foi mais drástica, devido ao menor reatividade das cetonas em relação aos aldeídos (especificamente os utilizados neste trabalho). Uma mistura de THF/HMPA (20:1) e a temperatura de 45°C (banho de óleo), foi fundamental para o total consumo do material de partida, bem como o aumento da velocidade da reação. Sem o uso de HMPA, não há total consumo do material de partida (acompanhado por CCD até 48 horas). Utilizou-se HMPA, devido sua eficiência demonstrada em reações semelhantes.^{38, 50}

O rendimento das reações com aldeídos alifáticos e cetonas, quando o material de partida utilizado foi o teluro fosfinóxido acetileno **3**, foi baixo (26% e 15%, respectivamente).

Os resultados obtidos estão nas Tabelas 9, 10 e 11.

T · 1		Relação	Tempo	Rend.	P. de
Linna	Composto	Z/E ^a	Reacional	(%)	Fusão (°C)
1	<i>p</i> -CH ₃ O(C ₆ H ₄) 'sSPh 4a	1/12	1h20min	78	94,0-95,8 ^b
2	Ph S-Ph 4b	1/11	1h	70	36,0-38,8 ^b
3	$p-CH_3(C_6H_4)$ S — Ph 4c	1/11	1h10min	77	63,5-65,6 ^b
4	p-Cl(C ₆ H ₄) S Ph 4d	1/9	1h	72	64,3-66,5 ^b
5		2/1	40min	62	óleo
6	S Ph 4f	2/1	40min	60	óleo
7	(CH ₃) ₃ C		1h20min	65	óleo
8	Ph Ph S $ Ph4h$		2h20min	59	51,2-52,1

Tabela 9: Preparação dos tio eninos via reação de Wittig-Horner.

^a Relação determinada por GC, da amostra bruta. ^b Pontos de fusão medidos do isômero **E**.

Linha	Composto	Relação	Tempo	Rend.	P. de
Linna	Composio	Z/E ^a	Reacional	(%)	Fusão (°C)
1	p-CH ₃ O(C ₆ H ₄) Se Ph 5a	1/16	1h20min	83	106,7-108,2 ^b
2	Ph Se Ph 5b	1/8,7	1h	80	55,5-56,0 ^b
3	<i>p</i> -CH ₃ (C ₆ H ₄) SePh 5c	1/12	1h10min	81	61,5-62,5 ^b
4	p-Cl(C ₆ H ₄) Se — Ph 5d	1/9	1h	83	94,2-95,6 ^b
5	Se Ph	2,3/1	40min	77	óleo
6	Se Ph 5f	2,1/1	40min	76	óleo
7	(CH ₃) ₃ C		1h20min	70	óleo
8	Ph Ph Se 5h		2h20min	64	80,0-82,0

Tabela 10: Preparação dos seleno eninos via reação de Wittig-Horner.

^a Relação determinada por GC, da amostra bruta.
 ^b Pontos de fusão medidos do isômero E.

T L	0	Relação	Tempo	Rend.	P. de
Linna	Composto	Z/E	Reacional	(%)	Fusão (°C)
1	p-CH ₃ O(C ₆ H ₄) Te—Ph 6a	1/12 ^a	1h40min	64	119-121 ^d
2	Ph ² Te—Ph 6b	1/9 ^b	1h20min	58	74-77
3	<i>p</i> -CH ₃ (C ₆ H ₄) [*] TePh 6c	1/11 ^ª	1h30min	60	80-83
4	$p-Cl(C_6H_4)$ Te—Ph 6d	c	1h10min	60	95-98
5	Te—Ph 6e	2/1 ^a	40min	26	óleo
6	Ph Te—Ph 6f		1h50min	15	с

Tabela 11: Preparação dos teluro eninos via reação de Wittig-Horner.

^a Relação determinada por RMN ¹H, da amostra bruta. ^b Relação determinada por GC, da amostra purificada por coluna. ^c Não determinado.

^d Ponto de fusão medido da amostra purificada por recristalização.

2.2.4. Discussão dos dados espectrais de RMN ¹H e ¹³C dos calcogeno eninos

Os espectros de RMN dos calcogeno eninos contendo enxofre, selênio ou telúrio apresentam várias características em comum, pois apresentam a mesma cadeia carbônica, se diferenciando apenas pelo átomo de calcogênio presente no composto. Os dados espectrais de RMN ¹H e ¹³C estão nas Tabelas 12, 13 e 14.

	RMN ¹ H (CDCl ₃ /TMS)	RMN ¹³ C (CDCl ₃ /TMS)
Composto	δ (ppm); <i>J</i> (Hz)	δ (ppm); J (Hz)
	δ= 3,79 (s, 3H); 6,41 (d, <i>J</i> =	δ= 55,26; 75,21; 98,04;
	14,92 Hz, 1H); 6,80 (d, <i>J</i> =	114,14; 115,97; 122,89;
p-CH ₃ O(C ₆ H ₄)	14,92 Hz, 1H); 6,85 (d, <i>J</i> =	127,36; 128,36; 128,56;
SPh	8,67 Hz, 2H); 7,27 (d, <i>J</i> =	128,94; 129,82; 131,63;
4 a	8,67 Hz, 2H); 7,31-7,35 (m,	159,33. ^c
	3H); 7,47-7,52 (m, 2H). ^a	
	δ= 6,57 (d, <i>J</i> = 15,07 Hz, 1H);	$\delta = 74,53; 98,70; 118,66;$
Ph	6,86 (d, <i>J</i> = 15,07 Hz, 1H);	122,69; 126,05; 127,59;
SPh	7,18-7,36 (m, 8H); 7,47-7,53	128,38; 128,68; 128,68;
4 b	(m, 2H). ^a	129,59; 131,64; 135,95. ^d
	δ= 2,30 (s, 3H); 6,47 (d, <i>J</i> =	δ= 21,13; 74,96; 98,32;
$p-CH_3(C_6H_4)$	15,05 Hz, 1H); 6,81 (d, <i>J</i> =	117,42; 122,81; 125,98;
	15,05 Hz, 1H); 7,09 (d, <i>J</i> =	128,33; 128,56; 129,35;
`S— — Ph	7,97 Hz, 2H); 7,20 (d, <i>J</i> =	129,83; 131,60; 133,24;
4 c	7,97 Hz, 2H); 7,29-7,31 (m,	137,48. [°]
	3H); 7,46-7,49 (m, 2H). ^b	

Tabela 12: Dados espectrais de RMN ¹H e ¹³C dos compostos **4a-h**.

	RMN ¹ H (CDCl ₃ /TMS)	RMN ¹³ C (CDCl ₃ /TMS)
Composto	δ (ppm); <i>J</i> (Hz)	δ (ppm); <i>J</i> (Hz)
	δ= 6,54 (d, <i>J</i> = 15,07 Hz, 1H);	δ= 74,03; 99,11; 119,52;
p-Cl(C ₆ H ₄)	6,79 (d, <i>J</i> = 15,07 Hz, 1H);	122,54; 127,20; 128,03;
S—————————————————————————————————————	7,21-7,36 (m, 7H); 7,46-7,53	128,41; 128,80; 128,83;
4d	(m, 2H). ^a	131,98; 133,16; 134,43. ^d
	Z δ = 1,01 (d, <i>J</i> = 6,62 Hz,	Z+E
	6H); 2,45-2,54 (m, 1H); 5,58	δ= 22,03; 22,13; 28,53; 31,60;
	(t, J= 9,26 Hz, 1H); 6,00 (d,	73,17; 76,07; 93,02; 96,68;
	<i>J</i> = 9,26 Hz, 1H); 7,26-7,32	115,25; 119,45; 123,03;
	(m, 3H); 7,39-7,47 (m, 2H);	123,07; 128,19; 128,23;
\ •	E δ= 1,04 (d, <i>J</i> = 6,72 Hz,	128,27; 128,31; 131,42;
4e	6H); 2,36-2,45 (m, 1H); 5,78-	131,51; 139,41; 139,23. ^d
	5,95 (m, 2H); 7,26-7,32 (m,	
	3H); 7,39-7,47 (m, 2H). ^a	
	Z δ= 0,94 (t, <i>J</i> = 7,38 Hz, 3H);	Z+E
	1,46 (sext, J= 7,38 Hz, 2H);	δ= 13,54; 13,61; 21,96; 22,16;
	2,12 (q, <i>J</i> = 7,20 Hz, 2H);	30,65; 34,69; 73,17; 76,00;
	5,68-5,81 (m, 1H); 6,12 (d, <i>J</i> =	92,95; 96,69; 117,28; 121,78;
\ک	9,14 Hz, 1H); 7,28-7,31 (m,	123,00; 123,06; 128,16;
SPh	3H); 7,37-7,46 (m, 2H);	128,23; 128,24; 128,24;
4f	E δ= 0,92 (t, <i>J</i> = 7,38 Hz, 3H);	131,41; 131,45; 132,59;
	1,46 (sext, J= 7,38 Hz, 2H);	132,75. ^d
	2,12 (q, J= 7,20 Hz, 2H);	
	6,10-6,20 (m, 2H); 7,28-7,31	
	(m, 3H); 7,37-7,46 (m, 2H). ^a	

Tabela 12: Dados espectrais de RMN ¹H e ¹³C dos compostos **4a-h** (cont).

Composto δ (ppm); J (Hz) δ (ppm); J (Hz) $\delta = 0,85$ (s, 9H); 0,97-1,25 $\delta = 27,53$; 27,64; 28,57; $(CH_3)_3C$ $(m, 3H)$; 1,76-1,93 (m, 29,88; 32,38; 36,04; 47,69; $4g$ $3H$; 2,00-2,17 (m, 1H); 78,68; 92,30; 110,72; $4g$ $2,31-2,47$ (m, 1H); 2,72- $4g$ $2,31-2,47$ (m, 1H); 2,72- $2,33,0$; 127,97; 128,18; $2,83$ (m, 1H); 5,78 (s, 1H); $7,25-7,31$ (m, 3H); 7,38- $7,44$ (m, 2H). ^a $\delta = 6,77$ (s, 1H); 7,19-7,45 $\delta = 77,78$; 93,86; 121,90;(m, 15H). ^a $123,83$; 127,01; 127,61; $128,14$; 128,26; 128,28; $128,35$; 128,57; 129,47; $131,53$; 137,87; 140,38;		RMN ¹ H (CDCl ₃ /TMS)	RMN ¹³ C (CDCl ₃ /TMS)
$ \begin{array}{c} \delta = \ 0,85 \ (s, \ 9H); \ 0,97-1,25 & \delta = \ 27,53; \ 27,64; \ 28,57; \\ (m, \ 3H); \ 1,76-1,93 \ (m, \ 29,88; \ 32,38; \ 36,04; \ 47,69; \\ 3H); \ 2,00-2,17 \ (m, \ 1H); \ 78,68; \ 92,30; \ 110,72; \\ 2,31-2,47 \ (m, \ 1H); \ 2,72- \ 123,30; \ 127,97; \ 128,18; \\ 2,83 \ (m, \ 1H); \ 5,78 \ (s, \ 1H); \ 131,37; \ 145,51.^d \\ 7,25-7,31 \ (m, \ 3H); \ 7,38- \\ 7,44 \ (m, \ 2H).^a \end{array} $	Composto	δ (ppm); J (Hz)	δ (ppm); <i>J</i> (Hz)
$(CH_{3})_{3}C - 4g \qquad (m, 3H); 1,76-1,93 (m, 29,88; 32,38; 36,04; 47,69; 3H); 2,00-2,17 (m, 1H); 78,68; 92,30; 110,72; 2,31-2,47 (m, 1H); 2,72- 123,30; 127,97; 128,18; 2,83 (m, 1H); 5,78 (s, 1H); 131,37; 145,51.d 7,25-7,31 (m, 3H); 7,38- 7,44 (m, 2H).a \delta = 6,77 (s, 1H); 7,19-7,45 \qquad \delta = 77,78; 93,86; 121,90; (m, 15H).^{a} \qquad 123,83; 127,01; 127,61; 128,14; 128,26; 128,28; 128,35; 128,57; 129,47; 131,53; 137,87; 140,38;$		δ= 0,85 (s, 9H); 0,97-1,25	$\delta = 27,53; 27,64; 28,57;$
$(CH_{3})_{3}C - M_{3} = M_{3$		(m, 3H); 1,76-1,93 (m,	29,88; 32,38; 36,04; 47,69;
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(CHa)aC	3H); 2,00-2,17 (m, 1H);	78,68; 92,30; 110,72;
4g2,83 (m, 1H); 5,78 (s, 1H); 7,25-7,31 (m, 3H); 7,38- 7,44 (m, 2H).a131,37; 145,51.d $7,25-7,31$ (m, 3H); 7,38- 7,44 (m, 2H).a $\delta = 6,77$ (s, 1H); 7,19-7,45 $\delta = 77,78; 93,86; 121,90;$ (m, 15H).aPh $\delta = 6,77$ (s, 1H); 7,19-7,45 $\delta = 77,78; 93,86; 121,90;$ (m, 15H).a $123,83; 127,01; 127,61;$ 128,14; 128,26; 128,28; 128,35; 128,57; 129,47; 131,53; 137,87; 140,38;	s—Ph	2,31-2,47 (m, 1H); 2,72-	123,30; 127,97; 128,18;
$7,25-7,31 (m, 3H); 7,38-7,44 (m, 2H).^{a}$ $\delta = 6,77 (s, 1H); 7,19-7,45 \qquad \delta = 77,78; 93,86; 121,90; (m, 15H).^{a}$ 123,83; 127,01; 127,61; 128,14; 128,26; 128,28; 128,35; 128,57; 129,47; 131,53; 137,87; 140,38;	4 g	2,83 (m, 1H); 5,78 (s, 1H);	131,37; 145,51. ^d
7,44 (m, 2H). ^a $\delta = 6,77$ (s, 1H); 7,19-7,45 $\delta = 77,78$; 93,86; 121,90; (m, 15H). ^a 123,83; 127,01; 127,61; 128,14; 128,26; 128,28; 128,35; 128,57; 129,47; 131,53; 137,87; 140,38;		7,25-7,31 (m, 3H); 7,38-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7,44 (m, 2H). ^a	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		δ= 6,77 (s, 1H); 7,19-7,45	δ= 77,78; 93,86; 121,90;
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ph	(m, 15H). ^a	123,83; 127,01; 127,61;
4h 128,35; 128,57; 129,47; 131,53; 137,87; 140,38;	Ph S——Ph		128,14; 128,26; 128,28;
131,53; 137,87; 140,38;	4h		128,35; 128,57; 129,47;
			131,53; 137,87; 140,38;
141,88. ^d			141,88. ^d

Tabela 12: Dados espectrais de RMN ¹H e ¹³C dos compostos **4a-h** (cont).

^a Dados do espectro de RMN ¹H (200 MHz). ^b Dados do espectro de RMN ¹H (400 MHz). ^c Dados do espectro de RMN ¹³C (100 MHz). ^d Dados do espectro de RMN ¹³C (50 MHz).

T-1-1-19. T	D = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =		30 1	
Tabela 13: 1	Jados espectrais de	KMIN He	C dos com	postos 5a-n

Composto	RMN ¹ H (CDCl ₃ /TMS)	RMN ¹³ C (CDCl ₃ /TMS)		
Composio	δ (ppm); J (Hz)	δ (ppm); J (Hz)		
	δ= 3,78 (s, 3H); 6,74 (d, <i>J</i> =	$\delta = 55,23; 68,29; 102,94;$		
<i>p</i> -CH ₃ O(C ₆ H ₄)	15,35 Hz, 1H); 6,96 (d, <i>J</i> =	112,04; 114,10; 123,14;		
Se———Ph	15,35 Hz, 1H); 6,84 (d, <i>J</i> =	127,44; 128,30; 128,46;		
5a	8,70 Hz, 2H); 7,26 (d, <i>J</i> =	129,42; 131,63; 133,73;		
	8,70 Hz, 2H); 7,30-7,32 (m,	159,42.°		
	3H); 7,47-7,49 (m, 2H). ^b			

	RMN ¹ H (CDCl ₃ /TMS)	RMN ¹³ C (CDCl ₃ /TMS)
Composto	δ (ppm); <i>J</i> (Hz)	δ (ppm); J (Hz)
	δ= 6,89 (d, <i>J</i> = 15,42 Hz, 1H);	δ= 67,80; 103,53; 115,11;
Ph	7,01 (d, <i>J</i> = 15,42 Hz, 1H);	123,05; 126,16; 127,75;
Se———Ph	7,21-7,35 (m, 8H); 7,48-7,50	128,33; 128,57; 128,66;
5b	(m, 2H). ^b	131,67; 133,59; 136,49.°
	δ= 2,31 (s, 3H); 6,83 (d, <i>J</i> =	$\delta = 21,18; 68,06; 103,23;$
	15,35 Hz, 1H); 6,98 (d, <i>J</i> =	113,72; 123,12; 126,09;
p-CH ₃ (C ₆ H ₄)	15,35 Hz, 1H); 7,11 (d, <i>J</i> =	128,31; 128,51; 129,37;
Se——Ph	8,11 Hz, 2H); 7,22 (d, <i>J</i> = 8,11	129,37; 131,66; 133,78;
5c	Hz, 2H); 7,30-7,32 (m, 3H);	137,70. ^c
	7,47-7,49 (m, 2H). ^b	
	δ= 6,88 (d, <i>J</i> = 15,35 Hz, 1H);	$\delta = 67,38; 103,92; 116,07;$
$p-Cl(C_6H_4)$	6,95 (d, J= 15,35 Hz, 1H);	122,93; 127,32; 128,38;
Se————————————————————————————————————	7,24-7,29 (m, 4H); 7,32-7,34	128,70; 128,87; 131,72;
5d	(m, 3H); 7,48-7,51 (m, 2H). ^b	132,03; 133,42; 135,00.°
	Z δ= 1,02 (d, <i>J</i> = 6,58 Hz,	Z+E
	6H); 2,36-2,45 (m, 1H); 5,83	$\delta = 21,83; 22,06; 30,70;$
	(t, J= 8,92 Hz, 1H); 6,29 (d,	32,70; 69,00; 69,72; 99,05;
SePh	<i>J</i> = 8,92 Hz, 1H); 7,27-7,32	101,85; 110,84; 115,92;
	(m, 3H); 7,40-7,45 (m, 2H);	123,33; 123,33; 128,19;
5e	E δ= 1,04 (d, <i>J</i> = 6,87 Hz,	128,20; 128,23; 128,26;
	6H); 2,45-2,56 (m, 1H); 6,08-	131,51; 131,55; 141,71;
	6,17 (m, 2H); 7,27-7,32 (m,	143,44.°
	3H); 7,40-7,45 (m, 2H). ^b	

Tabela 13: Dados espectrais de RMN ¹H e ¹³C dos compostos **5a-h** (cont).

	RMN ¹ H (CDCl ₃ /TMS)	RMN ¹³ C (CDCl ₃ /TMS)
Composto	δ (ppm); <i>J</i> (Hz)	δ (ppm); <i>J</i> (Hz)
Se Ph 5f	Z δ = 0,94 (t, <i>J</i> = 7,38 Hz, 3H); 1,40-1,51 (m, 2H); 2,08 (q, <i>J</i> = 7,31 Hz, 2H); 6,00 (q, <i>J</i> = 8,70 Hz, 1H); 6,42 (d, <i>J</i> = 8,70 Hz, 1H); 7,27-7,30 (m, 3H); 7,41- 7,45 (m, 2H); E δ = 0,92 (t, <i>J</i> = 7,45 Hz, 3H); 1,40-1,51 (m, 2H); 2,13 (q, <i>J</i> = 7,16 Hz, 2H); 6,10-6,20 (m, 2H); 7,27- 7,30 (m, 3H); 7,41-7,45 (m, 2H) ^b	Z+E δ = 13,52; 13,61; 21,90; 21,96; 32,68; 35,90; 68,94; 69,67; 99,00; 101,86; 112,88; 118,51; 123,32; 123,34; 128,19; 128,21; 128,23; 128,26; 131,52; 131,54; 134,75; 136,96.°
(CH ₃) ₃ CPh 5g	$\delta = 0,86 (s, 9H); 1,03-1,20$ (m, 3H); 1,83-1,93 (m, 3H); 2,00-2,16 (m, 1H); 2,39-2,49 (m, 1H); 2,58- 2,66 (m, 1H); 6,03 (s, 1H); 7,27-7,31 (m, 3H); 7,39- 7,45 (m, 2H). ^a	δ= 27,55; 27,75; 28,58; 31,90; 32,40; 36,61; 47,69; 70,59; 98,41; 106,93; 123,47; 128,07; 128,19; 131,51; 147,17. ^d
Ph Ph Se Ph 5h	δ= 7,11 (s, 1H); 7,22-7,34 (m, 6H); 7,37-7,48 (m, 9H). ^a	δ = 70,66; 99,64; 106,80; 123,09; 127,00; 127,59; 128,23; 128,29; 128,32; 128,36; 128,80; 128,91; 131,61; 139,08; 140,36; 143,88. ^d

Tabela 13: Dados espectrais de RMN ¹H e ¹³C dos compostos **5a-h** (cont).

^a Dados do espectro de RMN ¹H (200 MHz). ^c Dados do espectro de RMN ¹³C (100 MHz). ^d Dados do espectro de RMN ¹³C (50 MHz).

Commente	RMN ¹ H (CDCl ₃ /TMS)	RMN ¹³ C (CDCl ₃ /TMS)
Composto	δ (ppm); <i>J</i> (Hz)	δ (ppm); <i>J</i> (Hz)
	δ= 3,81 (s, 3H); 7,09 (d, <i>J</i> =	$\delta = 55,23; 46,01; 94,80;$
	16,73 Hz, 1H); 7,21 (d, <i>J</i> =	113,68; 113,92; 123,31;
p-CH ₃ O(C ₆ H ₄)	16,73 Hz, 1H); 6,86 (d, <i>J</i> =	127,50; 128,20; 128,50;
Te——Ph	8,78 Hz, 2H); 7,27 (d, <i>J</i> =	130,72; 131,81; 142,25;
6a	0,00 Hz, 2H); 7,30-7,35 (m,	159,51. ^b
	3H); 7,45-7,50 (m, 2H). ^a	
	δ=7,81-7,53 (m, 12H). ^a	δ= 45,76; 98,51; 114,23;
Ph		123,23; 126,17; 127,94;
Te——Ph		128,23; 128,56; 128,59;
бb		131,83; 137,67; 141,86. ^b
	$\delta = 2,33$ (s, 3H); 7,10-7,47 (m,	$\delta = 21,18; 45,84; 96,83;$
р <u>С</u> Ц (С Ц)	12H). ^a	113,93; 123,28; 126,11;
	,	128,22; 128,55; 129,22;
TePh		131,80; 135,01; 137,79;
6с		142,16. ^c
	δ=7.00-7.34 (m. H): 7.45-	$\delta = 45.40; 99.58; 114.60;$
p-CI(C ₆ H ₄)	7.50 (m. 2H). ^a	123.13: 127.33: 128.14
Te-Ph	· ··· (,)·	128,29; 128,75; 131,89;
6d		133,60; 136,71; 140,14.°

Tabela 14: Dados espectrais de RMN ¹H e ¹³C dos compostos **6a-f**.

Comments.	RMN ¹ H (CDCl ₃ /TMS)	RMN ¹³ C (CDCl ₃ /TMS)
Composto	δ (ppm); <i>J</i> (Hz)	δ (ppm); J (Hz)
	Z δ= 1,03 (d, <i>J</i> = 6,47 Hz,	
	6H); 2,18-2,36 (m, 1H); 6,11	
	(t, J= 9,00 Hz, 1H); 6,57 (d,	
<u></u>	<i>J</i> = 9,00 Hz, 1H); 7,28-7,32	
	(m, 3H); 7,40-7,47 (m, 2H);	
	E δ= 1,04 (d, <i>J</i> = 6,76 Hz,	
0e	6H); 2,40-2,57 (m, 1H); 6,32-	
	6,52 (m, 2H); 7,28-7,32 (m,	
	3H); 7,40-7,47 (m, 2H). ^a	
Ph	δ= 6,25 (s, 1H); 7,26-7,33 (m,	
Ph Te—Ph	6H); 7,40-7,45 (m, 9H). ^a	
6 f		

Tabela 14: Dados espectrais de RMN ¹H e ¹³C dos compostos **6a-f** (cont).

^a Dados do espectro de RMN ¹H (200 MHz).

^b Dados do espectro de RMN ¹³C (50 MHz).

^c Dados do espectro de RMN ¹³C (100 MHz).

Discussão dos dados espectrais de RMN ¹H dos calcogeno eninos

A título de exemplo, discutir-se-á a atribuição nos espectros de RMN de hidrogênio para os hidrogênios vinílicos dos compostos **4a**, **5a** e **6a** (Figuras 8, 9 e 10). Com o objetivo de comparar o deslocamento químico quando se têm na molécula átomos de enxofre, selênio e telúrio.

Em 6,41, 6,74 e 7,09 encontra-se um dubleto referente ao sinal do hidrogênio H_d (β ao átomo de calcogênio), para os compostos com S, Se e Te respectivamente, com integral relativa de 1 hidrogênio. Em 6,80, 6,96 e 7,21 encontra-se o sinal referente ao hidrogênio H_e (α ao átomo de calcogênio) para os compostos com S, Se e Te, com integral relativa de 1 hidrogênio.

Figura 9. Espectro de RMN ¹H (400 MHz) do composto 5a.

2.00

6.5 6.0 5.5

8.0 7.5 7.0

7.5

8.0

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

тттт

1.0

0.5

0.0

Figura 10. Espectro de RMN ¹H (200 MHz) do composto **6a**.

Os hidrogênios vinílicos do composto com telúrio estão mais desblindados. Ocorre um aumento nos valores do deslocamento químico dos hidrogênios vinílicos ($\alpha \ e \ \beta$), dependendo do átomo de calcogênio presente na estrutura. Quanto mais volumoso for o átomo de calcogênio, maior o deslocamento químico. Os sinais aparecem em campo mais baixo.

A constante de acoplamento entre H_d e H_e está entre J= 14,92 Hz e J= 16,73 Hz, comprovando a estereoquímica **E** dos compostos. Para os compostos com estereoquímica **Z** a constante de acoplamento entre H_d e H_e é de aproximadamente 10 Hz.

Discussão dos dados espectrais de RMN ¹³C dos calcogeno eninos

A título de ilustração discutir-se-á os espectros de RMN ¹³C dos compostos **4a**, **5a** e **6a** (Figura 11, 12 e 13). O objetivo desta discussão é avaliar o efeito que a mudança dos átomos de calcogênio exercem no deslocamento dos carbonos da dupla ligação α e β ao heteroátomo (Tabela 15).

Tabela 15: Deslocamentos no RMN ¹³C dos carbonos da dupla ligação dos compostos 4a, 5a e6a.

Calcogeno eninos	C7	C8
4 a	115,97	129,82
5a	112,04	133,73
6a	94,80	142,25

Obsevando a Tabela 15 e o espectro de RMN ¹³C do tio enino **4a** (Figura 11 e12), apresenta um sinal com deslocamento em 115,97 ppm referente ao C7 da dupla ligação em posição α ao enxofre e um outro sinal em 129,82 referente ao C8 da dupla ligação em posição β ao enxofre.

O espectro de RMN ¹³C do seleno enino **5a** (Figura 13 e 14), apresenta um sinal com deslocamento em 112,04 ppm referente ao C7 da dupla ligação em posição α ao selênio e um outro sinal em 133,73 referente ao C8 da dupla ligação em posição β ao selênio.

O espectro de RMN ¹³C do teluro enino **6a** (Figura 15 e 16), apresenta um sinal com deslocamento em 94,80 ppm referente ao C7 da dupla ligação em posição α ao telúrio e um outro sinal em 142,25 referente ao C8 da dupla ligação em posição β ao telúrio.

Com base nos resultados obtidos, observou-se que o átomo de telúrio blinda o carbono em posição α , sendo que o enxofre e o selênio desblindam. Por outro lado o carbono β ao telúrio é fortemente desblindado por este átomo.

No espectro de RMN ¹³C do composto **5e** pode-se verificar o acoplamento J_{C}^{13} (Figura 17 e 18). O sinal do acoplamento do carbono vinílico α ao átomo de selênio aparece em 115,92 como um dubleto de baixa intensidade com J_{C}^{13} (J_{Se}^{77} (Figura a como um dubleto de baixa intensidade com J_{C}^{13} (J_{Se}^{77} (Figura a como um dubleto de baixa intensidade com J_{C}^{13} (J_{Se}^{77} (Figura a como um dubleto de baixa intensidade com J_{C}^{13} (J_{Se}^{77} (Figura a como um dubleto de intensidade mais baixa do que a do acoplamento com carbono α , com constante de acoplamento J_{C}^{13} (J_{Se}^{77} (Figura Hz).

Figura 11. Espectro de RMN ¹³C (100 MHz) do composto 4a.

Figura 16. Expansão do espectro de RMN ¹³C (50 MHz) do composto 6a.

130

| 120

110

C8

140

C7

90

100

Figura 17. Espectro de RMN ¹³C (100 MHz) do composto 5e.

Figura 18. Expansão do espectro de RMN ¹³C (100 MHz) do composto 5e.

2.2.6. Discussão dos dados de Espectrometria de Massa dos calcogeno eninos

Foram realizadas análises de Espectrometria de Massa de baixa resolução. Os dados, nas Tabelas 17, 18 e 19, mostram os principais e mais relevantes fragmentos.

Nos espectros dos compostos contendo S, Se e Te, aparecem picos de massa próxima ao do íon molecular. Isso se deve ao fato desses átomos apresentar isótopos, como é mostrado na Tabela 16. A presença de enxofre é percebida com facilidade por causa da grande contribuição isotópica a intensidade de $M^+ + 2$. Verificado nos espectros dos compostos **4a-h** (Tabela 17).

	Peso Atômico	Nuclídeo	Abundância Relativa
Elemento			
Enxofre	32,065	^{32}S	94,93
		³³ S	0,76
		³⁴ S	4,29
		³⁶ S	0,02
Selênio	78,960	⁷⁴ Se	0,89
		⁷⁶ Se	9,37
		⁷⁷ Se	7,63
		⁷⁸ Se	23,77
		⁸⁰ Se	49,61
		⁸² Se	8,73
Telúrio	127,600	¹²⁰ Te	0,09
		¹²² Te	2,55
		¹²³ Te	0,89
		¹²⁴ Te	4,74
		¹²⁵ Te	7,07
		¹²⁶ Te	18,84
		¹²⁸ Te	31,74
		¹³⁰ Te	34,08

Tabela 16: Isótopos de S, Se e Te e abundância relativa.

	Massa (m/z)
Composto	(intensidade relativa)
	268 (4) (M ⁺ +2); 267 (13) (M ⁺ +1); 266
p-CH ₃ O(C ₆ H ₄)	(67) (M ⁺); 265 (21) (M ⁺ -1); 251 (17); 250
	(18); 234 (20); 223 (17); 222 (16); 221
5Pn	(52); 189 (19); 121 (100); 90 (18); 89 (57);
⊣ a	77 (24); 63 (30); 51 (15).
DI	238 (3) (M ⁺ +2); 237 (11) (M ⁺ +1); 236
Ph	(58) (M^+); 235 (50) (M^+ -1); 234 (47) (M^+
SPh	-2); 202 (34); 203 (25); 191 (23); 121
4 b	(100); 89 (37); 77 (56); 63 (21); 51 (45).
$p-CH_3(C_6H_4)$ S — Ph 4c	252 (4) (M ⁺ +2); 251 (14) (M ⁺ +1); 250 (68) (M ⁺); 249 (29) (M ⁺ -1); 235 (36); 234 (73); 217 (15); 205 (25); 202 (38); 121 (100); 115 (35); 91 (21); 89 (41); 65 (26); 63 (24); 51 (18).
$p-Cl(C_6H_4)$ S Ph 4d	273 (3) (M ⁺ +3); 272 (14) (M ⁺ +2); 271 (9) (M ⁺ +1); 270 (37) (M ⁺); 269 (7) (M ⁺ -1); 235 (30); 234 (82); 225 (17); 202 (36); 121 (100); 117 (19); 102 (20); 101 (29); 89 (37); 75 (28); 63 (17); 51 (20).
	204 (4) (M ⁺ +2); 203 (10) (M ⁺ +1); 202 (68) (M ⁺); 187 (80); 171 (15); 154 (19); 153 (23); 143 (23); 134 (24); 128 (20); 121 (26); 115 (17); 102 (19); 100 (45); 99 (41); 89 (70); 85 (100); 69 (47); 63 (27); 53 (18); 51 (18); 45 (31).

Tabela 17: Dados de Espectrometria de Massa dos compostos 4a-h.

	Massa (<i>m</i> /z)		
Composto	(intensidade relativa)		
	204 (3) (M ⁺ +2); 203 (8) (M ⁺ +1); 202 (54)		
	(M ⁺); 173 (92); 171 (17); 160 (17); 134		
	(17); 129 (44); 128 (28); 121 (24); 115		
حمي	(22); 102 (19); 100 (15); 89 (64); 85 (52);		
SPh	77 (15); 69 (18); 67 (19); 63 (25); 51 (15);		
41	45 (100).		
	286 (4) (M ⁺ +2); 285 (12) (M ⁺ +1); 284		
	(59) (M ⁺); 227 (58); 200 (15); 199 (39);		
(CH ₃) ₃ C	186 (18); 126 (18); 125 (41); 111 (20); 93		
S—————————————————————————————————————	(19); 91 (47); 89 (27); 77 (21); 57 (100);		
4g	55 (21); 45 (15).		
	314 (4) $(M^+ +2)$; 313 (15) $(M^+ +1)$; 312		
Ph	(57) (M ⁺); 311 (29) (M ⁺ -1); 286 (15); 278		
	(12); 178 (37); 176 (14); 165 (18); 152		
$\frac{Ph}{4h} = \frac{S}{Ph}$	(16); 121 (100); 89 (22); 77 (17); 63 (11);		
	51 (25).		

Tabela 17: Dados de Espectrometria de Massa dos compostos 4a-h (cont).

Commente	Massa (m/z)		
Composto	(intensidade relativa)		
	316 (3) (M ⁺ +2); 314 (17) (M ⁺); 312 (9) (M ⁺		
	-2); 311 (4) (M ⁺ -3); 310 (4) (M ⁺ -4); 235		
<i>p</i> -CH ₃ O(C ₆ H ₄)	(19); 234 (100); 219 (15); 202 (17); 201		
Se———Ph	(19); 191 (53); 190 (18); 189 (32); 168 (35);		
5a	167 (17); 165 (17); 102 (20); 90 (16); 89		
	(52); 77 (17); 63 (27).		
	286 (3) (M ⁺ +2); 285 (3) (M ⁺ +1); 284 (15)		
	(M ⁺); 283 (7) (M ⁺ -1); 282 (12) (M ⁺ -2); 281		
Ph	(5) (M ⁺ -3); 280 (6) (M ⁺ -4); 205 (19); 204		
Se——Ph	(100); 203 (84); 202 (69); 169 (26); 102		
5b	(39); 101 (45); 89 (33); 77 (49); 76 (16); 51		
	(34).		
	300 (3) (M ⁺ +2); 299 (3) (M ⁺ +1); 298 (14)		
	(M^{+}) ; 297 (4) $(M^{+} -1)$; 296 (8) $(M^{+} -2)$; 295		
<i>p</i> -CH ₃ (C ₆ H ₄)	(4) (M ⁺ -3); 294 (4) (M ⁺ -4); 219 (18); 218		
Se——Ph	(100); 217 (50); 203 (51); 202 (74); 169		
5c	(29); 115 (47); 108 (24); 102 (28); 101 (21);		
	91 (22); 89 (42); 65 (29); 63 (22); 51 (21).		
	320 (4) (M ⁺ +2); 319 (2) (M ⁺ +1); 318 (9)		
	(M ⁺); 317 (2) (M ⁺ -1); 316 (5) (M ⁺ -2); 315		
<i>p</i> -ci(c ₆ n ₄)	(2) (M ⁺ -3); 314 (2) (M ⁺ -3); 240 (22); 238		
SePh	(66); 203 (53); 202 (100); 169 (27); 102		
5d	(52); 101 (75); 89 (42); 75 (44); 74 (18); 63		
	(17); 51 (32).		

Tabela 18: Dados de Espectrometria de Massa dos compostos 5a-h.

	Massa (m/z)		
Composto	(intensidade relativa)		
	252 (7) (M ⁺ +2); 251 (6) (M ⁺ +1); 250 (37)		
	(M ⁺); 249 (4) (M ⁺ -1); 248 (19) (M ⁺ -2); 247		
	(8) (M ⁺ -3); 246 (8) (M ⁺ -4); 235 (45); 233		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(22); 155 (34); 155 (34); 154 (59); 153 (48);		
Se Ph	152 (20); 148 (69); 146 (35); 141 (32); 133		
5e	(68); 131 (35); 129 (32); 128 (35); 115 (30);		
	102 (72); 89 (100); 69 (35); 63 (27); 53 (28);		
	51 (34).		
	252 (5) (M ⁺ +2); 251 (4) (M ⁺ +1); 250 (27)		
	(M ⁺ ); 249 (3) (M ⁺ -1); 248 (13) (M ⁺ -2); 247		
	(5) (M ⁺ -3); 246 (5) (M ⁺ -4); 221 (65); 219		
Se-Ph	(37); 154 (32); 141 (100); 133 (30); 129		
5f	(21); 128 (30); 115 (44); 102 (50); 91 (22);		
	89 (70); 67 (25); 63 (20); 51 (20).		
	334 (2) (M ⁺ +2); 333 (3) (M ⁺ +1); 332 (12)		
	$(M^{+})$ ; 331 (2) $(M^{+} -1)$ ; 330 (6) $(M^{+} -2)$ ; 329		
(CH-)-C	(3) (M ⁺ -3); 328 (3) (M ⁺ -4); 195 (22); 181		
SePh	(11); 167 (45); 165 (12); 115 (22); 102 (11);		
5g	93 (22); 91 (36); 89 (20); 83 (14); 77 (16);		
	67 (12); 57 (100); 55 (26); 53 (12).		
	360 (2) (M ⁺ ); 359 (17) (M ⁺ -1); 358 (56) (M ⁺		
Ph	-2); 267 (23); 203 (13); 202 (15); 191 (13);		
	180 (21); 179 (19); 178 (22); 168 (15); 167		
Pn Se Pn 5h	(100); 166 (15); 165 (55); 152 (23); 77 (13);		
	51 (16).		

Tabela 18: Dados de Espectrometria de Massa dos compostos 5a-h (cont).

Composto	Massa $(m/z)$	
	(intensidade relativa)	
	267 (18); 266 (100); 265 (23); 235 (42); 178	
p-CH ₃ O(C ₆ H ₄ )	(17); 165 (19); 159 (17); 158 (18); 134 (25);	
	133 (16); 121 (67); 115 (35); 102 (19); 91	
6a	(31); 89 (29); 77 (22); 76 (20); 65 (20); 63	
Ua	(25); 51 (21).	
	334 (5) (M ⁺ ); 332 (5) (M ⁺ -2); 330 (3) (M ⁺ -	
Ph	4); 205 (16); 204 (100); 203 (91); 202 (61);	
TePh	103 (19); 102 (49); 101 (38); 77 (74); 76	
6b	(20); 75 (31); 74 (16); 51 (63); 50 (22).	
	348 (7) (M ⁺ ); 219 (22); 218 (100); 217 (42);	
<i>p</i> -CH ₃ (C ₆ H ₄ )	203 (78); 202 (78); 115 (57); 102 (33); 101	
TePh	(57); 91 (23); 89 (21); 75 (39); 74 (17); 65	
6с	(48); 63 (33); 50 (18).	
	276 (23): 274 (37): 241 (15): 239 (30): 204	
p-Cl(C ₆ H ₄ )	(90): 203 (66): 202 (56): 128 (15): 127 (32):	
Te——Ph	(30), 202 (00), 202 (00), 120 (10), 127 (02), 125 (30): 102 (18): 101 (100): 89 (21): 75	
6d	(45): 63 (32): 51 (33): 50 (33)	
	(10), 00, 02), 01, 00, 00, 00, 00, 00, 00, 00, 00, 00	

Tabela 19: Dados de Espectrometria de Massa dos compostos 6a-d.

## 2.2.6. Discussão dos dados de Espectroscopia de Infravermelho

Os dados espectrais de Infravermelho dos calcogeno eninos estão nas Tabelas 20, 21 e 22. As bandas mais características nos espectros de infravermelho, para estes compostos, são:

- Banda da deformação axial da ligação tripla carbono-carbono, que ocorre na região de 2172-2134 cm⁻¹;
- Banda da deformação axial da ligação dupla carbono-carbono, que ocorre na região de 1608-1591 cm⁻¹.

	IV $v$ (cm ⁻¹ )		
Composto	Caral	c=c	C≡C
	Geral		
p-CH ₃ O(C ₆ H ₄ )	3037, 3001, 2960, 2934, 2837, 1511,		
2	1434, 1306, 1260, 1168, 1034, 927, 840,	1608	2171
S────Ph <b>4a</b>	784, 753, 686, 517.		
Ph	3078, 3026, 3001, 2309, 1952, 1880,		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1486, 1439, 1286, 1245, 1066, 943, 738,	1602	2166
SPh 4b	692, 533, 502, 472.	1005	2100
p-CH ₃ (C ₆ H ₄)	3074, 3039, 2909, 2860, 1899, 1510,		
² Ph 4c	1485, 1441, 1246, 933, 778, 753, 689.	1595	2172
	3078, 3031, 2919, 2857, 1956, 1890,		
	1490, 1439, 1398, 1009, 932, 835, 789,	1(02	01(1
SPh	753, 687, 513, 446.	1603	2161
4d			
	2951, 2927, 2875, 1484, 1293, 931, 755,		
	683.	1598	2160
4 e			
	2956, 2922, 2860, 1484, 1446, 1379,	1502	0165
SPh	931, 755, 688.	1593	2165
1	2937, 2870, 2834, 1489, 1443, 1365,		
(CH ₃) ₃ C	1288, 1242, 980, 801, 750.	1597	2171
4g S $ Ph$			
Ph	3060, 1950, 1879, 1807, 1484, 1448,		
	1335, 1165, 1068, 1027, 939, 811, 750.	1591	2171
rn s———Pn 4h			

Tabela 20: Dados espectrais de Infravermelho dos compostos 4a-h.

	IV ν (cm ⁻¹)		
Composto		c=c	C≡C
	Geral		
p-CH ₃ O(C ₆ H ₄)	3034, 2964, 2830, 1894, 1510, 1441,		
۶	1281, 1246, 1182, 1027, 953, 833, 758,	1600	2162
SePh 5a	694.		
Ph	3079, 3034, 1958, 1879, 1744, 1485,		
· · · · · · · · · · · · · · · · · · ·	1441, 1286, 1221, 1177, 1062, 943, 758,	1600	2162
Se———Ph 5b	694, 529.	1000	2102
	3049, 3014, 2914, 2860, 1948, 1894,		
<i>p</i> -Сп ₃ (С ₆ п ₄)	1500, 1441, 1231, 1182, 1027, 953, 823,	1505	2152
SeCCPh 5c	748, 694.	1595	2152
	3034, 2919, 2860, 1904, 1555, 1485,		
p-CI(C ₆ H ₄)	1441, 1396, 1321, 1226, 1092, 1017,	1600	2162
Se——Ph 5d	943, 853, 753, 689.	1000	2102
	2956, 2870, 2356, 1484, 1436, 1279,		
	936, 750, 688.	1598	2156
5e	2951 2928 2870 2356 1484 1298		
	936 750 683	1589	2160
Se————————————————————————————————————			
	3060, 3029, 2942, 2865, 1494, 1443,		
(CH ₃) ₃ C	1360, 1278, 1242, 991, 790, 754.	1597	2151
5g Se Ph			
Ph	3075, 2922, 2859, 2341, 1966, 1889,		
Ph Se Ph	1817, 1760, 1494, 1437, 1324, 1175,	1591	2156
5h	1072, 1026, 918, 760, 692, 616, 533.		

Tabela 21: Dados espectrais de Infravermelho dos compostos 5a-h.

	IV v (cm ⁻¹)		
Composto	Geral	c=c	C≡C
<i>p</i> -CH ₃ O(C ₆ H ₄)	3075, 3024, 2963, 2937, 2840, 1890, 1509, 1247, 1175, 1026, 965, 837, 754, 688, 534		
`Te───Ph 6a	1247, 1173, 1020, 903, 037, 734, 000, 334.	1602	2151
Ph ~Ph 6b	3050, 3070, 3019, 2367, 1950, 1873, 1756, 1561, 1483, 1442, 1283, 1217, 1175, 1068, 1031, 955, 754, 724, 688, 528, 482.	1591	2134
<i>p</i> -CH ₃ (C ₆ H ₄) ² Те——Рh 6с	3050, 3024, 2916, 2860, 2361, 1550, 1514, 1489, 1443, 1273, 1068, 1021, 955, 831, 754, 682, 503, 528.	1597	2141
p-Cl(C ₆ H ₄) Te—Ph 6d	3065, 3019, 2963, 2922, 2367, 1956, 1884, 1715, 1489, 1211, 1175, 1098, 1006, 960, 837, 754, 688, 575, 539, 498, 421.	1597	2146

Tabela 22: Dados espectrais de Infravermelho dos compostos 6a-d.

2.2.7. Discussão dos dados de Raios-X para o composto 5a

A estrutura do composto **5a** foi resolvida empregando-se método direto.⁵⁷ Os parâmetros estruturais foram obtidos através do refinamento, baseando-se nos quadrados dos fatores estruturais e na técnica da matriz completa/mínimos quadrados. Os átomos não hidrogenóides foram localizados através de sucessivas diferenças de Fourier e refinados com parâmetros térmicos anisotrópicos.58

As coordenadas dos átomos de hidrogênio foram calculadas com base na geometria da molécula completa após o refinamento anisotrópico de todos os átomos não hidrogenóides. Os átomos de hidrogênio foram refinados isotropicamente, na forma de grupos vinculados aos

 ⁵⁷ Sheldrick, G. M. SHELXL-97, *Program for Crystal structure Refinement*, university of Germany, **1990**.
 ⁵⁸ Sheldrick, G. M. SHELXS-97 and SHELXL-97 – *Programmes for the Solution and of Crystal Structures*, **1997**, Universidade de Gottingen, Alemanha.

respectivos átomos não hidrogenóides. As projeções gráficas foram executadas utilizando-se o programa ORTEP 3.⁵⁹

Os dados referentes as coordenadas atômicas e parâmetros de deslocamentos térmicos isotrópicos equivalentes dos átomos não hidrogenóides e as coordenadas cristalográficas dos átomos de hidrogênio com os respectivos parâmetros térmicos isotrópicos equivalentes, podem ser encontrados na Tabela 27 em anexo.

O composto **5a** cristaliza no sistema monoclínico, grupo espacial $P2_1/c$ (N° 14 – *International Tables for Crystallography*).⁶⁰ Este grupo espacial apresenta simetria de Laue 2/m e inclui quatro unidades assimétricas na cela unitária.

O tipo de Bravais Primitivo P foi deduzido a partir da inexistência de uma sistemática na condição de reflexão, quando analisada a classe integral (*hkl*). Os dados contidos na Tabela 23 ressumem as condições de reflexão nas classes integrais, seriais e zonais, vinculadas ao tipo de Bravais e aos operadores de simetria 2_1 e c.

Classe		Condicão de reflexão	Informação obtida
	Reflexão	, see a second	
Integral	hkl	-	Tipo de Bravais – P
Zonal	hOl	l = 2n + 1	Oper. de Simetria - c
Serial	OkO	k = 2n + 1	Oper. de Simetria - 2 ₁

Tabela 23: Condições de reflexão pertinente ao grupo espacial monoclínico $P2_1/c$.

Informações complementares referentes à coleta de dados e refinamento das estruturas cristalinas do composto **5a** podem ser obtidas na Tabela 26, em anexo.

O composto **5a** apresenta simetria local 1 – nenhum átomo encontra-se em, posição cristalográfica especial. Neste composto, os grupamentos constituem a parte assimétrica de cada cela unitária monoclínica, conforme mostra a Figura 19.

Alguns comprimentos e ângulos de ligação selecionados estão na Tabela 24. Demais comprimentos e ângulos de ligações podem ser observados nas Tabelas 28 e 29, em anexo.

⁵⁹ ORTEP 3 – *Program for ellipsoid of crystal structures* – L. J. Farruja, J. Appl. Cryst., **1997**, 30.

⁶⁰ Hahn, T., *International Tables for Crystallography*, Vol. A Space-Group Symmetry, 2nd ed., The International Union of Crystallography, D. Reidel publishing Company, Dordrecht, Holland **1987**.

Figura 19: Projeção ORTEP⁶⁴ da unidade assimétrica do composto **5a**.

Tabela 24. Ângulos (°) e comprimento (Å) de ligação, selecionados para o composto 5a.

Ângulo de li	gação (°)	Comprimento	de ligação (Å)
C(15)-C(14)-Se(1)	179,2(2)	C(14)-C(15)	1,189(3)
C(14)-Se(1)-C(9)	98,05(10)	Se(1)-C(14)	1,826(2)
C(10)-C(9)-Se(1)	126,80(18)	Se(1)-C(9)	1,910(3)
C(8)-C(7)-C(10)	123,7(2)	C(9)-C(10)	1,309(3)

2.2.8. Apresentação dos dados de Análise Elementar

Foi realizada Análise Elementar para os compostos da Tabela 25, cujos dados comprovam a atribuição das estruturas feitas anteriormente.

	Análise Elementar		
Composto	Experimental; (Teórico)		
	C(%)	H(%)	
PhP	81,17 (81,31)	5,03 (5,12)	
$p-CH_3(C_6H_4)$ S — Ph 4c	81,13 (81,56)	5,41 (5,64)	
$p-Cl(C_6H_4)$ S Ph 4d	71,21 (70,97)	3,63 (4,09)	
S	77,98 (77,18)	6,73 (6,97)	
Ph Ph S Ph Ph Ph $4h$	84,43 (84,57)	5,05 (5,16)	
p-CH ₃ O(C ₆ H ₄) Se — Ph 5a	65,16 (65,18)	4,48 (4,50)	

Tabela 25: Dados de Análise Elementar para os calcogeno eninos.

Composto	Análise Elementar	
	Experimental; (Teórico)	
	C(%)	H(%)
PhPhPhPhSb	67,61 (67,85)	4,27 (4,27)
<i>p</i> -CH ₃ (C ₆ H ₄) Se———Ph 5c	68,62 (68,69)	4,70 (4,75)
p-Cl(C ₆ H ₄) Se Ph 5d	60,50 (60,49)	3,48 (3,49)
Se Ph	62,89 (62,65)	5,85 (5,66)
Ph Ph Se 5h	73,32 (73,54)	4,40 (4,49)
<i>p</i> -CH ₃ O(C ₆ H ₄) Te——Ph 6a	56,09 (56,42)	3,76 (3,90)

 Tabela 25: Dados de Análise Elementar para os calcogeno eninos (cont.).

Considerações Finais e Conclusões

CONSIDERAÇÕES FINAIS E CONCLUSÕES

Considerando-se os objetivos propostos para o presente trabalho e analisando os resultados obtidos, conclui-se que:

A metodologia desenvolvida permite a preparação de calcogeno eninos, a partir de calcogeno fosfinóxidos acetilenos, através da reação de Wittig-Horner. A melhor condição reacional, testada, para os aldeídos alifáticos e aromáticos foi quando se utilizou NaH como base, THF como solvente, e a reação efetuada a temperatura ambiente. Observou-se que, nas reações com cetonas houve a necessidade de se utilizar uma mistura de solvente (THF/HMPA), e temperatura de 45°C, devido a menor reatividade em relação aos aldeídos. Através desta rota sintética, os calcogeno eninos foram obtidos em tempo reacional curto. Os calcogeno eninos, contendo enxofre e selênio, foram obtidos em excelentes rendimentos, no entanto, quando utilizou-se teluro fosfinóxido acetileno como material de partida o rendimento foi menor.

Os calcogeno eninos, sintetizados neste trabalho, são compostos inéditos, apresentam estruturas interessantes e futuramente pode ser feita uma avaliação toxicológica e farmacológica.

Cabe destacar ainda, que calcogenetos vinílicos são importantes intermediários sintéticos. Podem ser realizados estudos com os calcogeno eninos, por exemplo, em reações de acoplamento e de transmetalação.

Poder-se-á, futuramente, dando continuidade ao desenvolvimento deste trabalho, variar os substituintes da tripla ligação dos calcogeno fosfinóxidos acetilenos, sintetizando, assim, outros compostos inéditos.

Capítulo 3

Parte Experimental

3. PARTE EXPERIMENTAL

Neste capítulo, será apresentada a descrição dos equipamentos e dos procedimentos experimentais realizados para a obtenção e caracterização dos compostos obtidos.

3.1. MATERIAIS E MÉTODOS

3.1.1. Solventes e Reagentes

Os solventes foram purificados e secos antes de serem utilizados, conforme normas usuais.⁶¹ Os reagentes comerciais foram convenientemente purificados. O THF foi destilado sob sódio metálico, utilizando como indicador benzofenona, e destilado imediatamente antes do uso.

3.1.2. Rota-Evaporadores

Para remoção do solvente das soluções orgânicas, utilizou-se rotaevaporador Heidolph VV2000 ou rotaevaporador Büchi modelo R-114, ambos aparelhos operando a pressão reduzida (~30 mmHg). O solvente remanescente foi eliminado em uma linha de vácuo, equipada com uma bomba de alto-vácuo Vacuubrand, modelo RD 4, operando 4,3 m³/h.

3.1.3. Destilador Horizontal

Para a purificação do composto **65**, utilizou-se um aparelho de destilação horizontal (Kugelrohfen) Büchi, sendo que as temperaturas de destilação indicadas referem-se à temperatura do forno.

⁶¹ Perrin, D. D; Arnarego, W. L. F. "Purification of Laboratory Chemicals", 3th ed. Pergamon Press, Oxford, **1988**.

3.1.4. Cromatografia em Camada Delgada (CCD)

Todas as reações foram acompanhadas por cromatografia em camada delgada, utilizando cromatofolhas de sílicagel 60 (F254- Merck) com 0,2 mm de espessura sobre lâminas de alumínio. Como eluente, utilizou-se hexano ou solução de hexano/acetato de etila em diferentes proporções. Os reveladores utilizados foram luz ultravioleta, iodo e solução ácida de vanilina.

3.1.5. Cromatografia em Coluna (CC)

A purificação dos compostos foi feita através de cromatografia em coluna, utilizou-se silicagel 40-63 μ m (230-400 mesh)- Merck e, como eluente, empregou-se hexano ou solução de hexano/acetato de etila em diferentes proporções.

3.1.6. Cromatografia Gasosa (CG)

A relação **Z/E**, da maioria dos calcogeno eninos, foi determinada no aparelho de cromatografia gasosa GC 14B Shimadzu, equipado com detector de ionização de chamas e integrador C-R6A Chromatopac.

3.1.7. Ponto de Fusão

Os valores de ponto de fusão (P.F.) foram determinados em um aparelho MQAPF-301, após as amostras estarem purificadas, recristalizadas e secas.

3.1.8. Espectroscopia de Ressonância Magnética Nuclear (RMN)

Os espectros de RMN ¹H e ¹³C foram obtidos nos seguintes espectrômetros:

- Bruker DPX-200 (200 e 50 MHz) (DQ-USFM);

- Bruker DPX-400 (400 e 100 MHz) (DQ-UFSM).

Os deslocamentos químicos (δ) estão relacionados em parte por milhão (ppm) em relação ao tetrametilsilano (TMS, utilizado como padrão interno para os espectros de hidrogênio) e CDCl₃ (para os espectros de ¹³C). Colocou-se, entre parênteses, a multiplicidade, o número de hidrogênios deduzido da integral relativa e a constante de acoplamento (*J*) expressa em Hertz (Hz).

3.1.9. Espectroscopia de Infravermelho

Os espectros de absorção no infravermelho, foram registrados na forma de filme líquido ou pastilha de KBr. Foram calibrados com filme de poliestireno de 0,05 mm de espessura, na absorção a 1601 cm⁻¹, utilizando o seguinte aparelho: espectrofotômetro-Nicollet-Magna 440 (CA-UNISC).

3.1.10. Espectrometria de Massa

Os espectros de Massa foram obtidos em um cromatógrafo gasoso Shimadzu, modelo GCMS-QP5000 (UEL), coluna DB1 (100% polimetilsiloxano), acoplado ao detector de massa. Seus fragmentos estão descritos na relação entre unidade de massa atômica e a carga destes (m/z), com sua abundância relativa expressa em porcentagem (%).

3.1.11. Análise Elementar

As Análises Elementares dos produtos obtidos foram realizadas utilizando um analisador Perkin-Elmer modelo 2400 (Central Analítica-IQ-USP-SP).

3.1.12. Difração de Raio-X

Para a coleta dos dados de Difração de Raios-X do composto **5a** foi utilizado um difratômetro Bruker Kappa APEX II CCD, dotado de um monocromador de grafite e fonte de radiação Mo-K α (λ = 0,71073 Å).

3.2. PROCEDIMENTOS EXPERIMENTAIS

3.2.1. Preparação da Hidrogenodifenilfosfina 65

Em um balão de duas bocas de 250 mL, munido de agitação magnética, sob atmosfera de argônio, adicionou-se THF (100 mL) e Na^o (2,53 g; 110 mmol), picado em pequenos pedaços, e a 0°C adicionou-se a trifenilfosfina (13,1 g; 50 mmol). A mistura reacional foi protegida da luz, e tornou-se vermelha escura. Agitou-se a mistura a 0°C por vinte minutos, e após, a temperatura ambiente por 16 horas. Após este tempo reacional, e a 0°C adicionou-se lentamente H₂O (15 mL). Deixou-se o sistema sob agitação forte por 20 min, adicionou-se com seringa HCl (3 M) até pH= 7. Extraiu-se rapidamente a mistura com acetato de etila, filtrou-se em funil sinterizado com MgSO₄ e Celite. Evaporou-se o solvente sob pressão reduzida, em rotaevaporador. O resíduo oleoso foi purificado por destilação horizontal.

Rendimento: 65% Óleo límpido e transparente.

3.2.2. Preparação do Hidroximetildifenilfosfinóxido 66

Em um balão de duas bocas de 100 mL, munido de agitação magnética, sob atmosfera de argônio, adicionou-se THF (60 mL) e Na^o (0,87 g; 35 mmol), picado em pequenos pedaços, e a 0°C adicionou-se com uma seringa a difenilfosfina (5,58 g; 30 mmol). A mistura reacional foi protegida da luz, e tornou-se vermelha escura. Agitou-se a mistura a 0°C por vinte minutos, e após, a temperatura ambiente por 24 horas. Após este tempo reacional, e a -40°C adicionou-se paraformaldeído. Deixou-se a temperatura subir gradativamente até a temperatura ambiente e deixou-se o sistema sob agitação a t. a. por mais 24 horas. Após este tempo reacional adicionou-se com seringa HCl (3 M) até pH= 7. Após, com funil de extração a fase orgânica foi separada para um balão de 250 mL, adicionou-se H₂O₂ (30 V, aproximadamente 6mL) gota a gota a 0°C. A reação foi acompanhada por CCD, nitidamente. Agita-se a mistura por aproximadamente 2 horas. Extraiu-se a reação com acetato de etila (60 mL), lavando a fase orgânica com água (2 x 60 mL), solução saturada de NH₄Cl (1 x 60 mL). Secou-se a fase orgânica com MgSO₄, filtrou-se e

evaporou-se o solvente sob pressão reduzida, em rotaevaporador. Purificou-se o produto por recristalização com uma mistura de acetato de etila/hexano (1:9).

Ponto de Fusão: 136,0-137,0°C

Rendimento: 83%

3.2.3. Preparação do Tosiloximetildifenilfosfinóxido 67

Em um balão de duas bocas de 100 mL, munido de agitação magnética, sob atmosfera de argônio, adicionou-se o hidroximetildifenilfosfinóxido (4,64 g; 20 mmol) e CH₂Cl₂ (50 mL), e a 0°C adicionou-se com seringa, Et₃N (2,14 g; 21 mmol). Deixou-se a mistura reacional sob agitação e a t. a. por 30 min. Após este tempo resfriou-se o sistema a 0°C e adicionou-se o cloreto de tosila (4 g; 21 mmol). O sistema reacional foi mantido a 0°C por 30 min e após a temperatura ambiente por 4 horas. Em seguida, adicionou-se água (50 mL) e extraiu-se a mistura com CH₂Cl₂ (50 mL). Secou-se a fase orgânica com MgSO₄, filtrou-se e evaporou-se o solvente sob pressão reduzida, em rotaevaporador. Purificou-se o produto por cromatografia em coluna de sílica, eluída com uma mistura de acetato de etila/hexano, aumentou-se gradativamente a polaridade da solução até atingir, aproximadamente, 40% de acetato de etila. O produto pode, também, ser recristalizado com uma mistura de acetato de etila/hexano (1:9).

Ponto de Fusão: 123,7-125,0°C Rendimento: 96%

3.2.4. Preparação do Tio Fosfinóxido Acetileno 1

Em um balão de 50 mL, munido de agitação magnética, sob atmosfera de argônio, adicionou-se *n*-BuLi (11 mmol), sob uma solução de fenilacetileno (1,12 g; 11 mmol) em THF (15 mL) a 0°C. Deixou-se o sistema sob agitação por 20 min nesta temperatura e após adicionou-se S°, seco, (0,35 g; 11 mmol), a 0°C, agitou-se a mistura reacional a t. a. por uma hora. Após este tempo resfriou-se o sistema a 0°C e adicionou-se lentamente, com seringa o tosilato 67 (3,86 g, 10 mmol) dissolvido em THF (15 mL). Deixou-se a mistura sob agitação a 0°C por 30 min e após a t. a. por aproximadamente 3,5 horas. Após este período, adicionou-se H₂O (10 mL) e extraiu-se a mistura com acetato de etila (50 mL). Lavou-se a fase orgânica com H₂O (3 x 50 mL) e solução

saturada de NH₄Cl (1 x 50 mL). Secou-se a fase orgânica com MgSO₄, filtrou-se e evaporou-se o solvente sob pressão reduzida, em rotaevaporador. Purificou-se o produto por cromatografia em coluna de sílica, eluída com uma mistura de acetato de etila/hexano, aumentou-se gradativamente a polaridade da solução até atingir, aproximadamente, 40% de acetato de etila. O produto pode, também, ser recristalizado com uma mistura de acetato de etila/hexano (1:9).

Ponto de Fusão: 104,6-107,4°C Rendimento: 79%

3.2.5. Preparação do Seleno Fosfinóxido Acetileno 2

Em um balão de 50 mL, munido de agitação magnética, sob atmosfera de argônio, adicionou-se *n*-BuLi (11 mmol), sob uma solução de fenilacetileno (1,12 g; 11 mmol) em THF (15 mL) a 0°C. Deixou-se o sistema sob agitação por 20 min nesta temperatura e após adicionou-se Se° (0,87 g; 11 mmol), ativado previamente por uma hora a 90°C. Agitou-se a mistura reacional a t. a. por uma hora. Após este tempo resfriou-se o sistema a 0°C e adicionou-se lentamente, com seringa o tosilato 67 (3,86 g, 10 mmol) dissolvido em THF (15 mL). Deixou-se a mistura sob agitação a 0°C por 30 min e após a t.a. por aproximadamente duas horas. Após este período, adicionou-se H₂O (10 mL) e extraiu-se a mistura com acetato de etila (50 mL). Lavou-se a fase orgânica com H₂O (3×50 mL) e solução saturada de NH₄Cl (1×50 mL). Secou-se a fase orgânica com MgSO₄, filtrou-se e evaporou-se o solvente sob pressão reduzida, em rotaevaporador. Purificou-se o produto por cromatografia em coluna de sílica, eluída com uma mistura de acetato de etila/hexano, aumentou-se gradativamente a polaridade da solução até atingir, aproximadamente, 40% de acetato de etila. O produto pode, também, ser recristalizado com uma mistura de acetato de etila/hexano (1:9).

Ponto de Fusão: 131,2-132,1°C

Rendimento: 89%

3.2.6. Preparação do Teluro Fosfinóxido Acetileno 3

Em um balão de 50 mL, munido de agitação magnética, sob atmosfera de argônio, adicionou-se *n*-BuLi (11 mmol), sob uma solução de fenilacetileno (1,12 g; 11 mmol) em THF

(15 mL) a 0°C. Deixou-se o sistema sob agitação por 20 min nesta temperatura e após adicionouse Te° (1,4 g; 11 mmol), ativado previamente por uma hora a 100°C. Agitou-se a mistura reacional a t. a. por uma hora. Após este tempo resfriou-se o sistema a 0°C e adicionou-se lentamente, com seringa o tosilato 67 (3,86 g, 10 mmol) dissolvido em THF (15 mL). Deixou-se a mistura sob agitação a 0°C por 30 min e após a t. a. por aproximadamente duas horas. Após este período, adicionou-se H₂O (10 mL) e extraiu-se a mistura com acetato de etila (50 mL). Lavou-se a fase orgânica com H₂O (3 x 50 mL) e solução saturada de NH₄Cl (1 x 50 mL). Secou-se a fase orgânica com MgSO₄, filtrou-se e evaporou-se o solvente sob pressão reduzida, em rotaevaporador. Purificou-se o produto por cromatografía em coluna de sílica, eluída com uma mistura de acetato de etila/hexano, aumentou-se gradativamente a polaridade da solução até atingir, aproximadamente, 40% de acetato de etila. O produto pode, também, ser recristalizado com uma mistura de acetato de etila/hexano (1:9).

Ponto de Fusão: 138,9-142,0°C Rendimento: 68%

3.2.7. Procedimento Geral de Preparação dos Calcogeno Eninos

Em um balão de 25 mL, equipado com agitação magnética e atmosfera de argônio, adicionou-se o respectivo calcogeno fosfinóxido de partida (1 mmol) e THF (10 mL). Em seguida, a 0°C, adicionou-se a base NaH (2 mmol). Agitou-se o sistema, nesta temperatura, por 20 min, após, adicionou-se o respectivo composto carbonílico (1,5 mmol). Agitou-se a mistura a temperatura ambiente, para os aldeídos aromáticos e alifáticos, e a 45°C para as cetonas, até consumo total do material de partida.

Acompanhou-se a reação, facilmente, por placa cromatográfica. Após, adicionou-se H_2O (10 mL) e extraiu-se a mistura com acetato de etila e solução saturada de NH_4Cl . Secou-se a fase orgânica com MgSO₄, filtrou-se e evaporou-se o solvente sob pressão reduzida, em rotaevaporador. Purificou-se o produto por cromatografia em coluna de sílica, eluída com hexano. O produto pode, também, ser recristalizado com éter de petróleo.

Obs.: Para as cetonas utilizo-se uma mistura THF:HMPA (20:1).

Os resultados obtidos encontram-se nas Tabelas 9, 10 e 11.

Capítulo 4

Espectros Selecionados

Espectro de RMN ¹H (200 MHz) do composto **66**.

Espectro de RMN ¹H (200 MHz) do composto **1**.

Espectro de RMN 13 C (100 MHz) do composto 2.

Espectro de RMN ¹H (200 MHz) do composto **3**.

Espectro de RMN ¹³C (100 MHz) do composto **6a**.

Espectro de infravermelho do composto 4a.

Espectro de infravermelho do composto 5a.

Espectro de infravermelho do composto 6a.

Espectro de infravermelho do composto 4b.

Espectro de infravermelho do composto **5b**.

Espectro de infravermelho do composto 6b.

Espectro de infravermelho do composto **4c**.

Espectro de infravermelho do composto 5c.

Espectro de infravermelho do composto 6c.

Espectro de infravermelho do composto 4d.

Espectro de infravermelho do composto 5d.

Espectro de infravermelho do composto 6d.

Espectro de infravermelho do composto **4e**.

Espectro de infravermelho do composto **5e**.

Espectro de infravermelho do composto 4f.

Espectro de infravermelho do composto 5f.

Espectro de infravermelho do composto 4g.

Espectro de infravermelho do composto 5g.

Espectro de infravermelho do composto 4h.

Referências Bibliográficas

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. Comasseto, J. V. Reviews on Heteroatom. Chem. 1993, 9, 61.
- 2. Lüdtke, D. S.; Panatieri, R. B.; Braga, A. L.; Zeni, G. Chem. Rev. 2006, 106, 1032.
- Silveira, C. C.; Perin, G.; Jacob, R. G.; Braga, A. L. Phosphorus, Sulfur and Silicon 2001, 172, 55.
- Zyk, N. V.; Beloglazkina, E. K.; Belova, M. A.; Dubinina, N. S. Russ. Chem. Rev. 2003, 72, 769.
- 5. Comasseto, J. V.; J. Organomet. Chem. 1983, 253, 131.
- 6. Hevesi, L. Bull. Soc Chim. Fr. 1990, 127, 697.
- 7. Seebach, D. Peleties, N. Chem. Ber. 1972, 105, 511.
- Paulmier, C. "Selenium Reagents and Intermediates in Organic Synthesis", Pergamon, Oxford, 1986.
- 9. (a) Fiandanese, V.; Marchese, G.; Naso, F.; Ronzini, L. *Tetrahedron Lett.* 1988, 29, 3705.
 (b) Fiandanese, V.; Marchese, G.; Naso, F.; Ronzini, L. *Synthesis* 1988, 1034. (c) Okamura, H.; Miura, M.; Takei, H. *Tetrahedron Lett.* 1979, 43.
- (a) Posner, G. H. Acc. Chem. Res. 1987, 20, 72. (b) Pyne, S. G.; Chapman, S. L. J. Chem. Soc., Chem. Commun. 1986, 1688. (c) Pyne, S. G. J. Chem. Soc., Chem. Commun. 1986, 1686.
- (a) Takayama, H.; Hayashi, K.; Koizimi, T. *Tetrahedron Lett.* **1986**, *27*, 5509. (b)
 Solladie, G.; Monine, G. J. Am. Chem. Soc. **1984**, *106*, 6097. (c) Alonso, I.; Cid, M. B.;
 Carretero, C. J. *Tetrahedron Asymetry* **1991**, *2*, 1193.
- 12. Trost, B. M.; Lavoie, A. C. J. Am. Chem. Soc. 1983, 105, 5075.
- 13. Morris, T. H.; Smith, E. H.; Walsh, R. Chem. Commun. 1987, 964.
- 14. Magnus, P.; Quagliato, D. J. Org. Chem. 1985, 50, 1621.
- 15. Mizuno, H.; Domon, K.; Masuya, K.; Tanino, K.; Kuwajima, I. J. Org. Chem. **1999**, 64, 2648.
- 16. Okamura, H.; Miura, M.; Kosugi, K.; Takei, H. Tetrahedron Lett. 1980, 21, 87.
- 17. Tingoli, M.; Tiecco, M.; Testaferri, A.; Pelizzi, G.; Bacci, A. Tetrahedron 1995, 51, 4691.

- 18. Gerard, J.; Hevesi, L. Tetrahedron 2001, 57, 9109.
- (a) Braga, A. L.; Ludtke, D. S.; Vargas, F.; Donato, R. K.; Silveira, C. C.; Stefani, H. A.; Zeni, G. *Tetrahedron Lett.* 2003, 44, 1779; (b) Braga, A. L.; Vargas, F.; Zeni, G.; Silveira, C. C.; Andrade, L. H. *Tetrahedron Lett.* 2002, 43, 4399; (c) Braga, A. L.; Andrade, L. H.; Silveira, C. C.; Moro, A. V.; Zeni, G. *Tetrahedron Lett.* 2001, 42, 8563; (d) Zeni, G.; Menezes, P. H.; Moro, A. V.; Braga, A. L.; Silveira, C. C.; Stefani, H. A. *Synlett* 2001, 1473; (e) Nishibayashi, Y.; Cho, C. S.; Uemura, S. *J. Organomet. Chem.* 1996, 507, 197; (f) Zeni, G.; Comasseto, J. V. *Tetrahedron Lett.* 1999, 40, 4619; (g) Kang, S. K.; Lee, S. W.; Ryu, H. C. *J. Chem. Soc., Chem. Commun.* 1999, 2117; (h) Kang, S. K.; Lee, S. W.; Kim, M. S.; Kwon, H. S. *Synth. Commun.* 2001, *31*, 1721. (i) Nishibayashi, Y.; Cho, C. S.; Ohe, K.; Uemura, S. *J. Organomet. Chem.* 1996, 526, 335.
- 20. (a) Silveira, C. C.; Braga, A. L.; Vieira, A. S.; Zeni, G. J. Org. Chem. 2003, 68, 662; (b) Uemura, S.; Fukuzawa, S.; Patil, S. R. J. Organomet. Chem. 1983, 243, 9; (c) Gerard, J.; Hevesi, L. Tetrahedron 2001, 57, 9109; (d) Huang, X.; Wang, Y. P. Tetrahedron Lett. 1996, 37, 7417; (e) Uemura, S.; Fukuzawa, S. I. Tetrahedron Lett. 1982, 23, 1181.
- (a) Huang, Y. Z.; Mo, X. S. Synlett **1998**, 93; (b) Mo, X. S.; Huang, Y. Z. Tetrahedron Lett. **1995**, 36, 3539; (c) Dabdoub, M. J.; Begnini, M. L.; Cassol, T. M.; Guerrero, P. G., Jr.; Silveira, C. C. Tetrahedron Lett. **1995**, 36, 7623; (d) Hiiro, T.; Kambe, N.; Ogawa, A.; Miyoshi, N.; Murai, S.; Sonoda, N. Angew. Chem., Int. Ed. Engl. **1987**, 26, 1187; (e) Barros, S. M.; Comasseto, J. V.; Berriel, J. N. Tetrahedron Lett. **1989**, 30, 7353; (f) Comasseto, J. V.; Berriel, J. N. Synth. Commun. **1990**, 20, 1681; (g) Barros, S. M.; Dabdoub, M. J.; Dabdoub, V. B.; Comasseto, J. V. Organometallics **1989**, 8, 1661; (h) Ogawa, A.; Tsuboi, Y.; Obayashi, R.; Yokoyama, K.; Ryu, I.; Sonoda, N. J. Org. Chem. **1994**, 59, 1600; (i) Dabdoub, M. J.; Dabdoub, V. B. Tetrahedron **1995**, 51, 9839; (j) Dabdoub, M. J.; Jacob, R. G.; Ferreira, J. T. B.; Dabdoub, V. B.; Marques, F. A. Tetrahedron Lett. **1999**, 40, 7159; (k) Dabdoub, M. J.; Dabdoub, V. B.; Guerrero, P. G., Jr.; Silveira, C. C. Tetrahedron **1997**, 53, 4199.
- 22. Huang, Y. Z.; Mo, X. S. Tetrahedron Lett. 1998, 39,1945.
- 23. Terao, J.; Kambe, N.; Sonoda, N. Tetrahedron Lett. 1996, 37, 4741.

- 24. Kanda, T.; Sugiro, T.; Kambe, N.; Sonoda, N. *Phosphorus* Sulfur Silicon Relat. Elem. **1992**, *67*, 103.
- 25. Jang, W. B.; Oh, D. Y.; Lee, C. W. Tetrahedron Lett. 2000, 41, 5103.
- 26. Wittig, G.; Schlosser, M. Chem. Ber. 1961, 94, 1373.
- 27. Mukayiama, T.; Fukuyama, S.; Kumamoto, T. Tetrahedron Lett. 1968, 3787.
- 28. Galli, R. J. Org. Chem. 1987, 52, 5349.
- 29. Silveira, C. C.; Perin, G.; Braga, A. L. J. Chem. Res. (S) 1994, 492.
- 30. Silveira, C. C.; Begnini, M. L.; Boeck, P.; Braga, A. L. Synthesis 1997, 221.
- 31. Shahak, I.; Almog, J. Synthesis 1969, 170.
- 32. Shahak, I.; Almog, J. Synthesis 1970, 145.
- 33. Corey, E. J.; Shulman, J. I. J. Org. Chem. 1970, 35, 777.
- 34. Mikolajczyk, M.; Grzejszczak, S.; Midura, W.; Zatorski, A. Synthesis 1975, 278.
- 35. Brocksom, T. J.; Petragnani, R.; Rodrigues, Teixeira H. S. Synthesis 1975, 396.
- 36. Mikolajczyk, M.; Grzejszczak, S.; Chefczynska, A.; Zatorski, A. J. Org. Chem. 1979, 44, 2967.
- 37. Blatcher, P.; Grayson, J. I.; Warren, S. J. Chem. Soc., Chem. Commun. 1975, 547.
- Guadagnin, R. C.; Novos Métodos de Preparação de Calcogenetos Vinílicos via Calcogeno Fosfinóxidos. Tese (Doutorado em Química) – Universidade Federal de Santa Maria, Santa Maria, 2005.
- 39. Petragnani, N.; Rodrigues, R.; Comasseto, J. V. J. Organomet. Chem. 1976, 114, 281.
- 40. Stefani, H. A.; Cavaleiro, M. M. C.; Comasseto, J. V.; Petragnani, N. An. Acad. Brás. *Cienc.* **1989**, *61*, 37.
- 41. Comasseto, J. V.; Brandt, C. A. J. Chem. Res. (S) 1982, 56.
- 42. Comasseto, J. V.; Petragnani, N. J. Organomet. Chem. 1978, 152, 295.
- 43. Coutrot, P.; Grison, C.; Yossefi-Tabrizi, M. Synthesis 1987, 169.
- 44. Shin, W. S.; Lee, K. e Oh, D. Y. Tetrahedron Lett. 1992, 33, 5375.
- 45. Silveira, C. C.; Santos, P. C. S.; Braga, A. L. Tetrahedron Lett. 2002, 43, 7517.
- 46. Silveira, C. C.; Perin, G.; Braga, A. L.; Petragnani, N. Synlett 1995, 58.
- Silveira, C. C.; Perin, G.; Boeck, P.; Braga, A. L.; Petragnani, N. J. Organomet. Chem.
 1999, 584, 44.
- 48. Lee, C. W.; Koh, Y. J.; Oh, D. Y. J. Chem. Soc., Perkin Trans. 1 1994, 717.

- 49. Silveira, C. C.; Guadagnin, R. C.; Braga, A. L. Tetrahedron Lett. 2003, 44, 5703.
- 50. Silveira, C. C.; Perin, G.; Braga, A. L.; Tetrahedron Lett. 1995, 36, 7361.
- 51. Silveira, C. C.; Perin, G.; Braga, A. L.; Dabdoub, M. J.; Jacob, R. G. *Tetrahedron* **1999**, 55, 7421.
- Silveira, C. C.; Perin, G.; Braga, A. L.; Dabdoub, M. J.; Jacob, R. G. *Tetrahedron* 2001, 57, 5953.
- 53. Wittenberg, D.; Gilman, H. J. Org. Chem. 1958, 23, 1063.
- 54. Hellmann, H.; Bader, J. Tetrahedron Lett. 1961, 20, 724.
- 55. Tkachenko, S. E.; Yarkevich, A. N.; Timofeev, S. V.; Tsvetkov, E. N. J. Gen. Chem. USSR (Engl. Transl.), **1988**, 58, 465
- 56. (a) Kolodiazhnyi, O. I. Phosphorus Ylides: *Chemistry and Application in Organic Synthesis* Wiley-VCH. Weinheim; New York; Chichester; Brisbane; Singapore; Toronto 1999. (b) Cadogan, J. I. G. *Organophosphorus Reagents in Organic Synthesis* ACADEMIC PRESS INC. London 1979.
- 57. (a) Maryanoff, B. E.; Reitz A. B. Chem. Rev. 1989, 89, 863. (b) Vedejs E.; Fleck. T. J. J. Am. Chem. Soc. 1989, 111, 5861. (c) Nagase, S.; Yamataka, H.; Nagareda, K.; Takatsuka, T.; Ando, K.; Hanafusa, T.; J. Am. Chem. Soc. 1993, 115, 8570. (d) Vedejs E.; Marth, C. F.; Ruggeri, R. J. Am. Chem. Soc. 1988, 110, 3940. (e) Vedejs E.; Marth, C. F. J. Am. Chem. Soc. 1990, 112, 3905. (f) Schlosser, M.; Schaub, B. J. Am. Chem. Soc. 1982, 104, 5821. (g) Maryanoff, B. E.; Reitz A. B.; Nortey, S. O.; Jordan, A. D.; Mutter, M. S. J. Org. Chem. 1986, 51, 3302. (h) Vedejs E.; Cabaj, J.; Peterson, M. J. J. Org. Chem. 1993, 58, 6509. (i) Takakis, I. M.; Mylona, A.; Nikokavouras, J. J. Org. Chem. 1988, 53, 3838. (j) Toda, F.; Akai, H.; J. Org. Chem. 1990, 55, 3446. (l) Yamataka, H.; Nagareda, K.; Ando, K.; Hanafusa, T.; J. Org. Chem. 1992, 57, 2865. (m) Maryanoff, B. E.; Reitz A. B.; Mutter, M. S., Inners, H. R. A.; Whittle, R. R.; Olofson, R. A. J. Am. Chem. Soc. 1986, 108, 7664.
- 58. Kurti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis. ELSEVIER, 2005.
- 59. Starks, C. M.; Liotta, C. *Phase Transfer Catalysis: Principles and Techniques* ACADEMIC PRESS. New York, San Francisco, London **1978**.
- 60. Starks, C. M.; J. Amer. Chem. Soc. 1971, 93, 195.

- 61. Sheldrick, G. M. SHELXL-97, *Program for Crystal structure Refinement*, university of Germany, **1990**.
- 62. Sheldrick, G. M. SHELXS-97 and SHELXL-97 *Programmes for the Solution and of Crystal Structures*, **1997**, Universidade de Gottingen, Alemanha.
- 63. ORTEP 3 Program for ellipsoid of crystal structures L. J. Farruja, J. Appl. Cryst., **1997**, 30.
- 64. Hahn, T., *International Tables for Crystallography*, Vol. A Space-Group Symmetry, 2nd ed., The International Union of Crystallography, D. Reidel publishing Company, Dordrecht, Holland **1987**.
- 65. Perrin, D. D; Arnarego, W. L. F. "*Purification of Laboratory Chemicals*", 3th ed. Pergamon Press, Oxford, **1988**.

Anexos

Composto	5a
Fórmula molecular	$C_{17}H_{14}OSe$
Peso molecular (g)	313,24
Sistema Cristalino	Monoclínico
Grupo espacial	$P2_1/c$ (N ^o 14)
Parâmetros de cela	
a (Å)	12,0730(3)
b (Å)	7,3922(2)
c (Å)	8,4791(2)
α (°)	90
β(°)	107,2840(10)
γ (°)	90
V (Å)	722,55(3)
Ζ	4
Coeficiente linear de absorção μ (mm ⁻¹)	2,587
Dimensão do cristal (mm)	0,30 x 0,30 x 0,12
F (000)	316
Região de varredura angular θ (°)	2,60 - 34,89
Índices de varredura h, k, l	-16<=h<=16
	-10<=k<=9
	-10<=1<=11
Número de reflexos coletados	8549
Número de reflexos independentes	3882
Critério de observação	[I>2δ (I)]
Correção de absorção	Multi Scan
	(SADABS)
	$T_{min} = 0,5108$
	$T_{max} = 0,7465$
Método de refinamento	M. C / M. Q. $(F^2)^a$
Dados / restrições / parâmetros	3882 / 2 / 173
Goodness-of-fit (F^2)	0,951
Índices de discordância finais	$R_1 = 0,0272$
	$wR_2 = 0,0596$
Índices de discordância final (dados totais)	$R_1 = 0,0395$
_	$WR_2 = 0,0631$
Densidade eletrônica residual (e. Å ⁻³)	0,217 e -0,334

 Tabela 26: Dados da coleta de intensidades e do refinamento da estrutura cristalina do composto

 5a.

^a matriz completa / mínimos quadrados

\mathbf{U}	/1				
	х	У	Z	U(eq)	
Se(1)	3076(1)	1639(1)	4386(1)	64(1)	
C(6)	4719(2)	3318(3)	-636(3)	53(1)	
0(1)	7377(1)	2399(2)	-1758(2)	64(1)	
C(8)	6026(2)	1548(3)	1445(3)	52(1)	
C(3)	6543(2)	2470(3)	-963(3)	50(1)	
C(4)	6804(2)	1553(3)	542(3)	54(1)	
C(5)	5490(2)	3336(3)	-1554(3)	56(1)	
C(7)	4956(2)	2423(3)	884(2)	47(1)	
C(9)	4155(2)	1546(3)	3136(3)	54(1)	
C(10)	4108(2)	2472(3)	1802(2)	50(1)	
C(14)	2120(2)	3386(3)	3189(3)	58(1)	
C(15)	1503(2)	4539(3)	2425(3)	58(1)	
C(16)	781(2)	5955(4)	1500(3)	56(1)	
C(19)	-119(2)	5596(4)	117(3)	67(1)	
C(17)	1013(3)	7724(5)	1970(4)	83(1)	
C(18)	347(3)	9107(5)	1038(4)	90(1)	
C(21)	-526(3)	8726(5)	-333(4)	82(1)	
C(20)	-766(3)	6973(5)	-808(4)	79(1)	
C(1)	7134(3)	3299(4)	-3298(4)	76(1)	

Tabela 27: Coordenadas atômicas (10^4) e parâmetros térmicos isotrópicos dos átomos não hidrogenóides, U(eq)^a (Å² x 10³) para o composto **5a**.

^a U(eq) é definido como um terço do traço tensor U_{ij} ortogonalizado.

Tabela 28: Comprimentos de ligação (Å), com os respectivos desvios padrão entre parênteses, do composto **5a**.

Se(1)-C(14)	1.826(2)
Se(1)-C(9)	1.910(3)
C(6)-C(5)	1.380(4)
C(6) - C(7)	1.400(3)
O(1)-C(3)	1.369(3)
O(1) - C(1)	1.417(3)
C(8) - C(4)	1.376(4)
C(8) - C(7)	1.396(3)
C(3)-C(5)	1.377(3)
C(3) - C(4)	1.396(3)
C(7) - C(10)	1.459(3)
C(9) - C(10)	1.309(3)
C(14) - C(15)	1.189(3)
C(15)-C(16)	1.437(4)
C(16) - C(19)	1.367(3)
C(16) - C(17)	1.372(4)
C(19) - C(20)	1.377(4)
C(17) - C(18)	1.393(5)
C(18)-C(21)	1.346(5)
C(21)-C(20)	1.363(5)

C(14) - Se(1) - C(9)	98.05(10)
C(5) - C(6) - C(7)	122.4(2)
C(3) - O(1) - C(1)	117.0(2)
C(4) - C(8) - C(7)	121.6(2)
O(1) - C(3) - C(5)	124.9(2)
O(1) - C(3) - C(4)	115.62(19)
C(5) - C(3) - C(4)	119.4(2)
C(8) - C(4) - C(3)	120.3(2)
C(3) - C(5) - C(6)	119.7(2)
C(8) - C(7) - C(6)	116.6(2)
C(8) - C(7) - C(10)	123.7(2)
C(6) - C(7) - C(10)	119.68(19)
C(10)-C(9)-Se(1)	126.80(18)
C(9) - C(10) - C(7)	126.2(2)
C(15)-C(14)-Se(1)	179.2(2)
C(14) - C(15) - C(16)	178.7(2)
C(19) - C(16) - C(17)	118.4(3)
C(19) - C(16) - C(15)	121.7(2)
C(17) - C(16) - C(15)	119.8(2)
C(16) - C(19) - C(20)	121.1(3)
C(16) - C(17) - C(18)	120.1(3)
C(21) - C(18) - C(17)	120.5(4)
C(18)-C(21)-C(20)	119.8(3)
C(21) - C(20) - C(19)	120.0(3)

 Tabela 29: Ângulos de (°), com os respectivos desvios padrão entre parênteses, do composto 5a.

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo