UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS

GEOQUÍMICA DAS GRANADAS E ASSEMBLÉIAS DE MINERAIS PESADOS NO ESTUDO DE PROVENIÊNCIA DOS SEDIMENTOS QUATERNÁRIOS DA PORÇÃO SUL DA BACIA DE PELOTAS, RS

Fábio Splendor

ORIENTADOR: Marcus Vinicius Dorneles Remus

COMISSÃO EXAMINADORA:

Ana Maria Pimentel Mizusaki (UFRGS/IG) Norberto Dani (UFRGS/IG) Rogério Schiffer de Souza (PETROBRAS/CENPES)

Dissertação de Mestrado apresentada como requisito para obtenção do Título de Mestre em Geociências.

Porto Alegre - julho 2006

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

ÍNDICE

1 – Introdução	15
1.1 – Área de Estudo	18
1.2 – Objetivo	19
1.3 – Geologia da Área de Estudo	20
1.3.1 – Escudo Sul-Riograndense	20
1.3.2 – Bacia de Pelotas	25
1.3.2.1 – Evolução Tectono-sedimentar da margem Contin	ental
Brasileira	25
1.3.2.2 – Bacia de Pelotas	26
1.3.2.3 – A plataforma continental do Rio Grande do Sul	30
1.3.2.4 – Sistema Laguna-Barreira da Planície Costeira do	Rio
Grande do Sul	31
1.3.2.5 – Evidências de Paleocanais	32
2 – Metodologia	34
2.1 - Atividades de Campo	34
2.2 - Atividades Laboratoriais	35
3 – Geomorfologia no Estudo de Proveniência	45
3.1 – Geomorfologia em Margens Passivas	45
3.2 – Contexto Geotectônico e Morfologia	46
3.3 – Taxa de Soerguimento e denudação para estudo de proveniência	49
3.4 – Taxa de denudação fluvial atuais	49
3.5 – Aspecto Geomorfológico do Escudo Sul-riograndense	51
3.6 – Desenvolvimento Geral da Drenagem do Rio Grande do Sul	52
4 – Proveniência X Minerais Pesados	56
4.1 - Processos e seus efeitos na proveniência	58
4.2 - Parâmetros sensíveis à proveniência	61
5 – Granadas	64
5.1 – Composição Química	64
5.2 – Características Distintivas	66
5.3 – Paragênese	67
5.4 – Granadas no Estudo de Proveniência	68
6 – Minerais Pesados da Bacia de Pelotas – Trabalhos Anteriores	71
7 – Resultados e Discussões	75
8 – Artigo	90
9 – Conclusões	117
10 – Referências Bibliográficas	121

ÍNDICE DE FIGURAS

Figura 1: Mapa de localização da área de estudo.	18
Figura 2: Esboço geológico dos Escudos Sul-Riograndense contendo os principa	ais
segmentos geotectônicos (modificado de Costa, 1997).	22
Figura 3: Carta estratigráfica da Bacia de Pelotas (modificado do Boletim	de
Geociências – PETROBRAS, 1994).	29
Figura 4: Reconstrução paleofisiográfica da planície costeira do RS durante o máxir	mo
regressivo, modificado de Villwock e Tomazelli (1995).	32
Figura 5: Fotomicrografia da amostra de cornubianito do Bloco São Gabriel.	35
Figura 6: Fotomicrografia da amostra biotita-granada gnaisse (QT-1) do Comple	xo
Metamórfico Várzea do Capivarita.	35
Figura 7: Fotomicrografia da amostra estaurolita-granada-biotita xisto (CP-03)	do
Complexo Metamórfico Porongos.	36
Figura 8: Fotomicrografia da amostra de fonolito (ALC) da Suíte Piratini, no Cintur	āo
Dom Feliciano.	36
Figura 9: Fotomicrografia da amostra CAMB – Metapelito da Formação Cambaizin	ho
do Bloco São Gabriel.	36
Figura 10: Fotomicrografia da amostra IND – Anfibolito do Complexo Metamórf	ico
Porongos.	36
Figura 11: Fotomicrografia da amostra CGSMC - Gnaisse pelítico do Comple	xo
Granulito Santa Maria Chico do Bloco Taquarembó.	36
Figura 12: Fotomicrografia da amostra MMO – Escarnito da Formação Cambaizin	ho
do Bloco São Gabriel.	36
Figura 13: Mapa de localização das amostras dos testemunhos dos sediment	tos
quaternários da Bacia de Pelotas (modificado de Martins, Toldo & Gruber, 1978).	38
Figura 14: Granadas do testemunho 31 da plataforma interna da Bacia de Pelotas.	41
Figura 15: Granadas do testemunho 32 da plataforma interna da Bacia de Pelotas.	41
Figura 16: Seção polida da amostra do testemunho 60 da Bacia de Pelotas.	42
Figura 17: Fluxograma da Metodologia.	44
Figura 18: Figura generalizada da geometria de uma margem continental. Marge	эm
tipo Shoulder o eixo do soerguimento é localizado no ápice do domínio soerguido.	Ao
longo dessa margem, a divisão da drenagem é coincidente com o topo	do
escarpamento. Margem do tipo arco o eixo do domínio soerguido está localizado	no
continente. Ao longo dessa margem, a divisão da drenagem é separada no topo	do
escarpamento.	47

Figura 19: Representação esquemática da Under-plate margin com morfologia deuma margem continental com ampla plataforma e um modesto soerguimento nocontinente (modificado de Summerfield, 1994).48

Figura 20:Representação esquemática da Upper-plate margin com extensosoerguimento marginal e uma plataforma continental estreita (modificado deSummerfield, 1994).48

Figura 21: Bacias Hidrográficas do Rio Grande do Sul. 54

Figura 22: Diagrama esquemático mostrando os processos que controlam a
assembléia de minerais pesados (modificado de Morton e Hallsworth, 1999).58Figura 23: Diagramas triangulares discriminantes com os respectivos campos
composicionais relacionados as litologias-fonte.69

Figura 24: Províncias minerais dos sedimentos quaternários da Bacia de Pelotasdefinidas por Tomazzeli, 1978.73

Figura 25: Histograma dos minerais: Augita, Horblenda e Hiperstênio.75

Figura 26: Histograma dos minerais metamórficos.

Figura 27: Histogramas dos minerais pesados da Bacia de Pelotas.76

Figura 28: Histogramas dos minerais pesados da Bacia de Pelotas.76

Figura 29: Histograma dos minerais do índice ZTR.

Figura 30: Composição das granadas de amostras da Formação Pontas do Salso -Bloco São Gabriel, relacionadas ao metamorfismo regional dinamotermal (orogênico) de baixo grau: (a) metapelito (ML02); (b) composição das granadas dos metapelitos de médio grau metamórfico pertencentes à Formação Cambaizinho (CAMB) do Grupo Vacacaí Bloco São Gabriel. 78

Figura 31: Composição das granadas de amostras do Bloco São Gabriel: (a)metapelito do Complexo Metamórfico Passo Feio (CAP-03); (b) Composição dasgranadas de (a) estaurolita-granada xisto (CPMF-13 e 14) e calcio-silicatada doComplexo Passeio (CPMF-7).78

Figura 32: (a) amostra de granada-biotita gnaisse (7041) do Complexo Cambaí; (b) granadas de cornubianito do Complexo Bossoroca Bloco São Gabriel (SSP). 79

Figura 33: Composição das granadas de amostras da Formação Pontas do Salso -Bloco São Gabriel, relacionadas ao metamorfismo regional dinamotermal (orogênico) de baixo grau: (a) metamarga (ML-02A) e (b) metarenito (ML01) da Formação Pontas do Salso do Bloco São Gabriel.

Figura 34: Composição das granadas da variedade Grossulária da amostra de escarnito (a) da Formação Cambaizinho (MMO) mostrando teores elevados nos componentes GAU; (b) granadas de sedimento de corrente coletada em drenagem

4

75

que corta a Formação Pontas do Salso mostrando duas populações: a mais abundante é derivada de rochas metamórficas de médio a baixo grau e um grão derivado de aplito/pegmatito graníticos. 81

Figura 35: Composição das granadas das amostras PA (a) e CP03 (b) de metapelitosdo Complexo Metamórfico Porongos.82

Figura 36: (a) granadas de anfibolito (IND) do Complexo Metamórfico Porongos doCinturão Tijucas; (b) metapelito do Complexo Metamórfico Porongos (TL-2).82

Figura 37: Composição das granadas de (a) sedimento de corrente coletada emdrenagem que corta a região de Capané, mostrando populações de rochasmetamórficas de médio a baixo grau.83

Figura 38: Composição das granadas de amostras do Bloco Encruzilhada: (a)metapelito (QT-1) e (b) amostra de biotita-granada gnaisse (QT-2) do ComplexoMetamórfico Várzea de Capivarita.84

Figura 39: Composição das granadas (a) de silimanita-granada gnaisse (QT-2A), do Complexo Metamórfico Várzea do Capivarita do Bloco Encruzilhada; (b) granadas de gnaísse pelítico (SMVC) do bloco Encruzilhada. 84

Figura 40:Composição das granadas de amostras do Bloco São Gabriel: (a)anortosito (JT); (b) amostra de aplito (JT40C).85

Figura 41: No diagrama AIS-P-GAU estas granadas (a) são indistinguíveis das granadas derivadas de rochas metamórficas de baixo a médio grau. No diagrama Al-PGAU-S estas granadas ricas em MnO podem ser facilmente discriminadas das rochas metamórficas de baixo a médio grau pois plotam no campo com baixíssimos valores de PGAU; (b) granada Melanita dos fonolitos da Província Alcalina da região de Piratini-RS mostrando composição peculiar, rica em TiO2.

Figura 42: Composição das granadas de amostras do Complexo Granulítico Santa Maria Chico do Bloco Taquarembó proveniente de granulito máfico (CGSMC-34 e 39) e silimanita-granada gnaisse (CGSMC-33) plotando nos campos dos metabasitos e metassedimentos de alto grau, respectivamente. 87

Figura 43: (a) Composição das granadas dos sedimentos do Quaternário da Bacia de Pelotas envolvendo amostras de testemunhos da Província Sul-Riograndense Interna e Patos, mostrando 4 populações distintas, com predomínio de granadas derivadas de terrenos de alto grau metamórfico. (b) Granadas das diversas litologias-fonte do Escudo Sul-Riograndense mostrando grande diversidade composicional, relacionada aos diferentes grupos composicionais de rochas de terrenos com idade variável do Paleoproterozóico ao Terciário. 87

Figura44: Diagramas triangulares da composição química das granadas dostestemunhos 13 e 26129

Figura 45: Diagramas triangulares da composição química das granadas dos 130 testemunhos 27 e 28 Figura 46: Diagramas triangulares da composição química das granadas dos testemunhos 31 e 32 131 Figura 47: Diagramas triangulares da composição química das granadas dos testemunhos 33 e 34 132 Figura 48: Diagramas triangulares da composição química das granadas dos testemunhos 42 e 46 133 Figura 49: Diagramas triangulares da composição química das granadas dos testemunhos 47 e 49 134 Figura 50: Diagramas triangulares da composição química das granadas dos testemunhos 50 e 52 135 Figura 51: Diagramas triangulares da composição química das granadas dos testemunhos 54 e 56 136 Figura 52: Diagramas triangulares da composição química das granadas dos testemunhos 59 e 60 137 Figura 53: Diagramas triangulares da composição química das granadas dos testemunhos 62 e 65 138 Figura 54: Diagramas triangulares da composição química das granadas dos testemunhos 66 e 67 139 Figura 55: Diagramas triangulares da composição química das granadas do 140 testemunho 68

ÍNDICE DE TABELAS

labela 1: Laminas delgadas e sedimentos de corrente selecionados para ar	nalise
química	37
Tabela 2: Amostras selecionadas nos testemunhos de sondagem da Oper	ação
Geomar VII e Remac Trato 1	39
Tabela 3: Composição das moléculas das granadas das amostras CAP3 e ML2	141
Tabela 4: Composição das moléculas das granadas das amostras CGSM	∕IC e
CMPF	142
Tabela 5: Composição das moléculas das granadas da amostra CP01	143
Tabela 6: Composição das moléculas das granadas das amostras JT40C e JT	144
Tabela 7: Composição das moléculas das granadas das amostras ML01 e ML02A	145
Tabela 8: Composição das moléculas das granadas da amostra ML03	146
Tabela 9: Composição das moléculas das granadas das amostras MMO e F90	147
Tabela 10: Composição das moléculas das granadas das amostras PA e CP03	148
Tabela 11: Composição das moléculas das granadas das amostras QT2 e QT1	149
Tabela 12: Composição das moléculas das granadas das amostras QT2A e ALC	150
Tabela 13: Composição das moléculas das granadas das amostras SSP e 7041	151
Tabela 14: Composição das moléculas das granadas das amostras TL2, CAN	1B e
IND	152
Tabela 15: Composição das moléculas das granadas dos testemunhos 13 e 56	153
Tabela 16: Composição das moléculas das granadas do testemunho 26	154
Tabela 17: Composição das moléculas das granadas do testemunho 27	155
Tabela 18: Composição das moléculas das granadas do testemunho 28	156
Tabela 19: Composição das moléculas das granadas do testemunho 31	157
Tabela 20: Composição das moléculas das granadas do testemunho 32	158
Tabela 21: Composição das moléculas das granadas do testemunho 33	159
Tabela 22: Composição das moléculas das granadas do testemunho 42	160
Tabela 23: Composição das moléculas das granadas do testemunho 46	161
Tabela 24: Composição das moléculas das granadas do testemunho 47	162
Tabela 25: Composição das moléculas das granadas do testemunho 49	163
Tabela 26: Composição das moléculas das granadas do testemunho 50	164
Tabela 27: Composição das moléculas das granadas do testemunho 52	165
Tabela 28: Composição das moléculas das granadas dos testemunhos 54 e 34	166
Tabela 29: Composição das moléculas das granadas do testemunho 59	167
Tabela 30: Composição das moléculas das granadas do testemunho 60	169
Tabela 31: Composição das moléculas das granadas do testemunho 62	160
rabeia 51. Composição das moleculas das granadas do testemunho 62	109

Tabela 32: Composição das moléculas das granadas do testemunho 65 170 Tabela 33: Composição das moléculas das granadas do testemunho 66 e 67 171 Tabela 34: Composição das moléculas das granadas do testemunho 68 172 Tabela 35: Composição química dos elementos maiores das granadas das amostras CAP3 e ML2 173 Tabela 36: Composição química dos elementos maiores das granadas das amostras CMPF e SMVC 174 Tabela 37: Composição química dos elementos maiores das granadas da amostra CP01 175 Tabela 38: Composição química dos elementos maiores das granadas das amostras F90 e MMO 176 Tabela 39: Composição química dos elementos maiores das granadas das amostras JT40C e JT 177 Tabela 40: Composição química dos elementos maiores das granadas das amostras ML01 e ML02A 178 Tabela 41: Composição química dos elementos maiores das granadas da amostra **ML03** 179 Tabela 42: Composição química dos elementos maiores das granadas das amostras PA e CP03 180 Tabela 43: Composição química dos elementos maiores das granadas das amostras QT1 e QT2 181 Tabela 44: Composição química dos elementos maiores das granadas das amostras QT2A e ALC 182 Tabela 45: Composição química dos elementos maiores das granadas das amostras SSP e 7041 183 Tabela 46: Composição química dos elementos maiores das granadas das amostras TL2, CAMB e IND 184 Tabela 47: Composição química dos elementos maiores das granadas do testemunho 26 185 Tabela 48: Composição química dos elementos maiores das granadas do testemunho 27 186 Tabela 49: Composição química dos elementos maiores das granadas do testemunho 28 187 Tabela 50: Composição química dos elementos maiores das granadas do testemunho 31 188 Tabela 51: Composição química dos elementos maiores das granadas do testemunho 32 189

Tabela 52: Composição química dos elementos maiores das granadas do testemunho Tabela 53: Composição química dos elementos maiores das granadas do testemunho Tabela 54: Composição química dos elementos maiores das granadas do testemunho Tabela 55: Composição química dos elementos maiores das granadas do testemunho Tabela 56: Composição química dos elementos maiores das granadas do testemunho Tabela 57: Composição química dos elementos maiores das granadas do testemunho Tabela 58: Composição química dos elementos maiores das granadas do testemunho Tabela 59: Composição química dos elementos maiores das granadas dos testemunhos 54 e 34 Tabela 60: Composição química dos elementos maiores das granadas dos testemunhos 56 e 13 Tabela 61: Composição química dos elementos maiores das granadas do testemunho Tabela 62: Composição química dos elementos maiores das granadas do testemunho Tabela 63: Composição química dos elementos maiores das granadas do testemunho Tabela 64: Composição química dos elementos maiores das granadas do testemunho Tabela 65: Composição química dos elementos maiores das granadas dos testemunhos 66 e 67 Tabela 66: Composição química dos elementos maiores das granadas do testemunho Tabela 67: Composição química dos elementos maiores das granadas do testemunho Tabela 68: Composição química dos elementos maiores das granadas do testemunho Tabela 69: Composição química dos elementos maiores das granadas do testemunho

Tabela 70: Composição química dos elementos maiores das granadas do testemun	ho
3045 2	08
Tabela 71: Composição química dos elementos maiores das granadas do testemun	ho
3046 2	09
Tabela 72: Composição química dos elementos maiores das granadas do testemun	ho
3052 2	10
Tabela 73: Composição química dos elementos maiores das granadas do testemun	ho
17 2	11
Tabela 74: Composição química dos elementos maiores das granadas do testemun	ho
38 2	12
Tabela 75: Composição das moléculas das granadas do testemunho 382	13
Tabela 76: Composição das moléculas das granadas do testemunho 30282	14
Tabela 77: Composição das moléculas das granadas do testemunho 30392	15
Tabela 78: Composição das moléculas das granadas do testemunho 30452	16
Tabela 79: Composição das moléculas das granadas do testemunho 30462	17
Tabela 80: Composição das moléculas das granadas do testemunho 30522	18
Tabela 81: Índice ZTR2	19
Tabela 82: Quantificação dos Minerais Pesados dos testemunhos da Bacia o	de
Pelotas 22	20
Tabela 83: Quantificação dos Minerais Pesados dos testemunhos da Bacia o	de
Pelotas 2	21
Tabela 84: Quantificação dos Minerais Pesados dos testemunhos da Bacia	de
Pelotas 22	22
Tabela 85: Quantificação dos Minerais Pesados dos testemunhos da Bacia	de
Pelotas 22	23

Resumo

A análise de minerais detríticos pesados oferece uma abordagem de alta precisão para determinar a proveniência sedimentar, devido à diversidade de espécies minerais encontrados nas rochas-fonte. Entretanto, devido às modificações introduzidas pela seleção hidráulica diferencial e pela diagênese sobre as assembléias originais de minerais pesados, a análise de variedades dentro de uma mesma espécie de mineral pesado (análise varietal de minerais pesados) tem sido crescentemente utilizada com excelentes resultados. Neste estudo são analisados os minerais do grupo das granadas dos sedimentos Quaternários da Bacia de Pelotas, comparandose a sua composição química com a composição reconhecida para estes minerais nas diversas unidades do Escudo Sul-Riograndense. Amostras de testemunhos de sondagem, extraídos da cobertura superficial de sedimentos da Bacia de Pelotas (plataforma continental interna do Rio Grande do Sul) foram selecionadas e trabalhadas de acordo com a metodologia de separação de minerais pesados. Os principais minerais pesados identificados são: turmalina, estaurolita, epidoto, granada, horblenda, hiperstênio, augita, cianita, silimanita, monazita, zircão, rutilo e opacos. A composição química das granadas foi analisada através de microssonda eletrônica (WDS). Os resultados mostram a presença de quatro populações para os sedimentos Quaternários da Bacia de Pelotas: (1) a mais freqüente consiste de granadas ricas no componente piropo, indicando áreas-fonte de terrenos de alto grau metamórfico, granulitos e gnaisses pelíticos do Complexo Granulítico Santa Maria Chico (Bloco Taquarembó) e com provável contribuição dos granulitos pré-brasilianos do Cinturão Valentines (Uruguai); (2) granadas com teores baixos de piropo, elevados valores para almandina+espessartita e teores variáveis de grossularia+andradita+uvarovita, derivadas de rochas meta-sedimentares de baixo a médio grau, com área fonte principal relacionada às rochas metamórficas de médio a baixo grau metamórfico do Complexo Metamórfico Porongos do Cinturão Tijucas e menor contribuição dos metamorfitos de médio e baixo grau do Bloco São Gabriel; (3) granadas com elevados teores de piropo e grossularia+andradita+uvarovita, provenientes de metabasitos, com área fonte principal do Bloco Taquarembó, relacionados aos granulitos máficos do Complexo Granulítico Santa Maria Chico e do Cinturão Tijucas, relacionado aos anfibolitos do Complexo Metamórficos Porongos; (4) menos expressiva, contendo granadas com elevados valores de espessartita е baixos teores de piropo+grossulária+andradita+uvarovita, encontradas em pegmatitos e aplitos graníticos e alguns granitos, tendo como área fonte principal o Cinturão Dom Feliciano.

Abstract

The analysis of detrital heavy mineral offers a high precision approach to determine the sedimentary provenance, owing to the diversity of mineral species in the source-rocks. The analysis of varieties within a single species of heavy mineral is increasingly used by oil exploration companies, with excellent results. In this study, the chemical composition of garnet group minerals from the Quaternary sediments of Pelotas Basin (south Brazil) is compared with the composition of garnets from the units of basement rocks of the Sul-Riograndense shield. Surface sediments from the inner continental (shelf) were obtained from core samples of the Pelotas Basin. These samples were selected and prepared according to usual methodology of heavy mineral concentration. Heavy minerals constitute a small part of the sediment of the shelf platform studied. The principal species identified are: tourmaline, staurolite, epidote, garnet, hornblende, hypersthene, augite, kyanite, sillimanite, monazite, zircon, rutile and opaques. Chemical data of garnet minerals were obtained by WDS electron microprobe analysis. The results show that the Quaternary sediments of Pelotas Basin has 4 garnet populations: 1) the most common group, with garnet of pyrope composition, indicating an origin from high-grade metamorphic rocks, including granulites and pelitic gneisses of Santa Maria Chico Granulitic Complex (Taquarembó Block), with probable contributions of Pre-Brasiliano granulites from the Valentines Belt (Uruguay); 2) comprising garnets with low-pyrope composition, high almandine+spessartine and variable grossular+andradite+uvarovite contents, whose origin is related to middle to low-grade metamorphic rocks of the Porongos Complex, Tijucas Belt, with possible minor contribution also of the middle to low-grade metamorphic rocks of São Gabriel Block; 3) comprising garnets with high pyrope and grossular+andradite+uvarovite composition, which are related to metabasites mainly from mafic granulites of Santa Maria Chico Granulitic Complex, and possible contribution from amphibolites of the Porongos Metamorphic Complex; 4) the less common group, comprising spessartine and low pyrope+grossular+andradite+uvarovite garnets, which are related to pegmatites and aplitic granites from the Dom Feliciano Belt.

Agradeço de forma especial, ao meu pai Firmino, a minha mãe Petronila e a ao meu irmão Júnior, pela educação, pelo carinho, pelo apoio, pelo amor.... AMO muito vocês.

Muito obrigado a UFRGS e ao corpo docente do Instituto de Geociências (Geologia) e ao Conselho Nacional de Pesquisa (CNPq) pela bolsa de estudo para o desenvolvimento do trabalho.

Obrigado aos colegas do Laboratório de Petrologia Metamórfica de forma especial meu orientador Marcus V.D. Remus e as colegas Fernanda L. Martelo e Cassiane N. Cardoso.

A Prof Lídia e o técnico Gilberto Santos pela ajuda e paciência nas atividades laboratoriais.

> Aos meus colegas e, sobretudo para minha companheira *Alessandra Cacela*. A DEUS Muito Obrigado!!!!!

Formato da dissertação

A presente dissertação de mestrado foi elaborada sob a forma de artigo científico, composta por uma introdução, contendo objetivos, metodologia e o estado da arte, seguida do artigo científico, e uma conclusão integradora na parte final, com a presença de anexos.

O primeiro capítulo é a introdução abordando a importância do tema para o avanço da pesquisa geológica da área e a importância atual da ferramenta de estudo de proveniência na geologia. Este capítulo localiza os leitores nas áreas de estudo e informa o objetivo do presente trabalho. Esse capítulo aborda também a geologia das áreas de estudo com uma pesquisa bibliográfica das principais associações pretotectônicas do Escudo Sul-riograndense e dos compartimentos da Bacia de Pelotas (planície costeira e plataforma continental).

O segundo capítulo aborda a metodologia aplicada para a obtenção das amostras para a realização das análises químicas com um breve comentário do principio físico da técnica analítica de microssonda eletrônica.

Os capítulos seguintes (3, 4, 5, 6) compõem o estado da arte da dissertação abordando a importância da geomorfologia, a aplicação de minerais pesados e do estudo varietal do mineral granada como uma forte ferramenta no estudo de proveniência. O capítulo 7 apresenta resultados obtidos.

Posteriormente é apresentado o artigo científico, contendo um resumo dos principais resultados obtidos na dissertação e suas interpretações com uma avaliação integradora dos resultados, discussões e conclusões e a referente bibliografia. Por último é apresentado como anexos às tabelas contendo todas as análises químicas e a quantificação dos minerais pesados realizadas neste trabalho.

1- Introdução

O estudo da proveniência dos sedimentos Quaternários da Bacia de Pelotas é de grande importância para o entendimento da distribuição espacial dos sedimentos da bacia, permitindo identificar as direções preferenciais de transporte sedimentar e as suas respectivas áreas fonte.

A identificação da proveniência é crucial para entender um sistema deposicional. Pois, estabelecendo a localização das áreas-fonte é possível assim restringir a direção dos transportes dos sedimentos, a distribuição dos corpos arenosos dentro de uma bacia sedimentar e prever a natureza desses sedimentos.

A análise de proveniência sedimentar é reconhecida atualmente como uma ferramenta importante para análise de bacias. Estudos petrológicos e geoquímicos dos componentes detríticos têm sido bastante utilizados na interpretação da evolução tectônica e do preenchimento das bacias. Diversas empresas da área do petróleo já perceberam o grande potencial desta ferramenta para a compreensão dos padrões de preenchimento das bacias e previsão da distribuição dos corposreservatórios. Além disso, os estudos de proveniência permitem caracterizar e prever a composição detrítica dos arenitos que têm grande influência na sua evolução diagenética, causando efeitos na porosidade e permeabilidade do reservatório, respondendo diretamente na sua qualidade. Assim tem sido dada especial importância às areias marinhas, tanto sob o ponto de vista sedimentológico onde os minerais pesados oferecem importantes subsídios ao conhecimento da historia sedimentar de uma área, como também sob o ponto de vista econômico.

Assim, deste modo, os minerais pesados, constituintes acessórios dos sedimentos e das rochas sedimentares, tem sido tradicionalmente utilizados em estudos sedimentológicos, estratigráficos e econômicos, dentro do campo da geologia. Na sedimentologia, estes minerais envolvem, principalmente, estudos de proveniência e dispersão dos sedimentos, graças ao fato de que determinadas espécies mineralógicas são características de grupos restritos de rochas-fonte (Pettijohn, 1973) e que sua distribuição espacial, em uma bacia sedimentar, permite identificar as direções preferenciais de transporte sedimentar.

A análise de minerais pesados oferece uma abordagem de alta precisão para determinar a proveniência sedimentar, devido à diversidade de espécies minerais encontrados nas rochas-fonte. Além disso, a utilização dos minerais pesados é uma técnica sensível para determinar a proveniência, pois muitos desses minerais têm uma paragênese muito restrita e específica e por isso fornecem informação crucial sobre a proveniência (Hurst & Morton, 1988; Basu & Molinaroli, 1991; Morton 1991). Desse modo, os minerais pesados são sensíveis indicadores de proveniência, e dão uma idéia dos fatores limitantes, providenciando informações crucias para reconstruções paleo-geográficas.

A identificação e a discriminação apurada da proveniência depende do isolamento das características sensíveis à proveniência e de evitar parâmetros que sejam influenciados por outros fatores. O sinal de proveniência original pode ser sobre-impresso nos sedimentos, pelas alterações intempéricas, pelo sistema de transporte, pelos processos hidráulicos durante o transporte e pela diagênese (Morton & Hallsworth, 1994).

Estudos anteriores nos sedimentos quaternários da Bacia de Pelotas (Tomazelli, 1978; Vilwock & Tomazzelli, 1995; Caruso *et al.*, 1999) determinaram a presença de varias espécies de minerais e associações de minerais pesados neste

sistema. Esses dados permitiram aos autores estabelecer algumas correlações com as áreas-fonte da bacia, faltando, entretanto, a identificação das variedades composicionais específicas dos grupos minerais (por exemplo, granadas) para identificar com maior precisão as áreas fonte.

Estudos de variedades de espécies minerais específicas (p. ex. granadas) são executados porque elas não mostram modificações sensíveis nas proporções originais provocado pelo ciclo sedimentar desde a alteração seletiva no intemperismo, pelo transporte, na deposição e na diagênese. Além disso, as composições químicas das granadas são diagnósticas das litologias fonte e, das condições físico-químicas de sua formação (Morton, 1985; Morton, 1991; Von Eynatten, 1999).

A utilização da técnica analítica microssonda eletrônica é de fundamental importância para analise química composicional. E tem sido uma ferramenta muito importante, amplamente utilizada, para obter dados que auxiliam na interpretação e identificação no estudo da proveniência. Esse tipo de informação acrescenta sofisticação na discriminação da proveniência e permite uma comparação mineralógica direta entre a fonte e o sedimento. Além de criar um enorme acervo de dados de forma rápida e precisa, o qual pode ser utilizado e comparado por outros geocientistas.

Os resultados deste estudo compreenderam a determinação da distribuição dos minerais pesados e da composição química, em especial o grupo das granadas, permitindo estabelecer mais precisamente as correlações entre os sedimentos quaternários da Bacia de Pelotas e das litologias aflorantes do Escudo Sul-Riograndense.

1.1 – Área de Estudo

O presente estudo ocupa-se da fração arenosa dos depósitos sedimentares do Quaternário (Holoceno-Pleistoceno), da plataforma continental interna da Bacia de Pelotas e do embasamento cristalino adjacente do Escudo Sul-Riograndense (Fig. 1).

Figura 1: Mapa de localização geral da área de estudo.

1.2 – Objetivos

O estudo proposto tem por objetivo determinar as áreas fontes e os padrões de preenchimento sedimentar da Bacia de Pelotas, durante o período Quaternário, através do estudo da variedade composicional específica das granadas, na fração arenosa dos sedimentos da bacia, em relação à composição reconhecida para este mineral nas diversas unidades litoestratigráficas que compõem o Escudo Sul-Riograndense. Para isso é realizada uma investigação geoquímica detalhada da composição química das granadas através da técnica analítica de microssonda eletrônica (WDS).

1.3 – Geologia da Área de Estudo

1.3.1 - Escudo Sul-Riograndense

O conhecimento geológico e evolução do Escudo Sul-riograndense (ESRGS), têm como base o somatório de trabalhos realizados por diferentes geocientistas, sendo um dos mais estudados do Brasil. Trabalhos pioneiros como: a) mineiro-geognóstico de Paulino de Carvalho (1932); b) mineiro epirogênico de Beurlen & Martins (1956); c) geossinclinal-metassomático que foi desenvolvido por Tessari & Picada (1966), deram os primeiros dados sobre o escudo.

Ribeiro & Fantinell (1978) organizaram os dados do ESRGS em termos dos preceitos da Teoria da Tectônica de Placas, dando início ao período Plaquista, causando grandes mudanças de pensamentos em relação aos modelos evolutivos do escudo anteriormente propostos. Contudo seguiram-se outros trabalhos inseridos nas idéias plaquistas como Hasui *et al.*, 1975; Porada, 1979; Fragoso César, 1980, onde foram utilizados critérios paleogeográficos, correlações geotectônicas intercontinentais e geológicas. Uma década mais tarde, foi proposto um modelo geotectônico de natureza tridimensional (Tommasi, 1991) considerando os critérios estruturais para sistematização dos diferentes litodemas em associações petrotectônicas.

Fragoso-Cesar (1980), Jost & Hartmann (1984), Soliani Jr. (1986), apresentaram novas divisões para geologia do escudo, com base de estudos geológicos, estruturais e isotópicos.

Fernandes *et al* (1995), caracterizaram as principais assembléias petrotectônicas do Escudo Sul-riograndense como arcos magmáticos I e II, bacias "back-arc", bacia "fore-arc", ofiolitos, etc. Propõem também o uso de Cinturão Dom Feliciano para todas as unidades brasilianas do sul do Brasil. Mais recentemente, Fernandes *et al* (1995) apresenta o modelo de tectônica de placas com modificações, caracterizando o Cráton Rio de La Prata e as unidades brasilianas representadas por:

(a) Associação de Arco Magmático I (Bloco Dom Feliciano, de Jost & Hartmann, 1984);
(b) Associações do Embasamento Retrabalhado e de Bacia Marginal (Cinturão Tijucas, de Jost & Hartmann, 1984);
(c) Associação de Arco Magmático II e Ofiolitos Associados (Cinturão Vila Nova, conforme Chemale Jr. *et al*, 1995);
(d) Granitóides Sintranscorrentes, que correspondem aos granitos nos Blocos Dom Feliciano e Encruzilhada do Sul de Jost & Hartmann, 1984;
(e) Granitóides pós-tectônicos, que ocorrem em todo ESRGS ou Cinturão Dom Feliciano, conforme esses autores.

Chemale *et al* (1995), sugere uma divisão tríplice para os cinturões brasilianos: Dom Feliciano (leste), Tijucas (centro) e Vila Nova (oeste) este correspondendo aos grupos Cambai e Vacacaí de Jost & Hartmann, 1984.

De modo geral, o Escudo Sul-Riograndense (ESRGS) abrange uma superfície de aproximadamente 65.000 Km² na porção meridional do Rio Grande do Sul, estando inserido na porção Meridional da Província Mantiqueira (Almeida *et al.*, 1979). Está constituído por uma grande diversidade de associações petrotectônicas, distribuídos desde o Arqueano até o Eopaleozóico, podendo ser compartimentado em 4 blocos: Bloco Taquarembó, Bloco São Gabriel, Cinturão Tijucas e Cinturão Dom Feliciano (Fig. 2).

Os terrenos geológicos de cada bloco serão sumarizadamente descritos, a seguir, sem assumir qualquer modelo geotectônico, visando especialmente destacar as unidades litoestratigráficas do ESRGS.

Figura 2: Esboço geológico do Escudo Sul-Riograndense contendo os principais segmentos geotectônicos (modificado de Costa, 1997).

O Bloco Taquarembó localizado na porção sudoeste do ESRGS consiste de um complexo granulítico Paleoproterozóico parcialmente retrabalhado durante o Brasiliano (Soliani Jr., 1986). Os limites do bloco são definidos: ao norte, pelo lineamento de Ibaré, ao leste pela anomalia magnética superficial de Caçapava do Sul e ao oeste e sul pela cobertura sedimentar da Bacia do Paraná. A principal característica geológica é a presença de rochas metamórficas de alto-grau, prébrasilianas (Complexo Granulítico Santa Maria Chico - CGSMC). As principais unidades litológicas do CGSMC são granulitos básicos а granada e trondhjemitos/tonalitos ácidos que se alternam em escala métrica (Hartmann, 1998). Ocorrem também corpos de metaultramafito (espinélio lherzolitos), anortositos e granada-silimanita gnaisses. As rochas brasilianas na região são representadas por granitóides da Suíte Santo Afonso (Hartmann & Nardi, 1982), além de pequenos stocks de pertita granito da Suíte Intrusiva Saibro (Hartmann & Nardi, 1982). Neste bloco as principais unidades litológicas portadoras de granadas são os granulitos máficos e granada-silimanita gnaisses.

O **Bloco São Gabriel** (BSG), localizado no noroeste do ESRGS, é limitado ao sul pelo Lineamento de Ibaré, ao leste pelo sistema de falhas do Sistema Irapuá (NE-SW) paralelo à anomalia magnetométrica superficial de Caçapava do Sul (Costa, 1997). Ao norte e oeste é coberto por rochas da Bacia do Paraná. Esse bloco possui rochas Pré-Cambrianas metamórficas pertencentes ao Complexo Cambaí (gnaisses polifásicos), Grupo Vacacaí (metavulcanosedimentares derivadas de arco magmático Brasiliano) e Complexo Passo Feio (metavulcanosedimentares derivada de sedimentos do embasamento Arqueano/Paleoproterozóico e de arco magmático Brasiliano), granitóides Brasilianos intrusivos e rochas vulcânicas e sedimentares do Neoproterozóico-Ordoviciano além das coberturas sedimentares Paleozóicas da Bacia do Paraná.

O Complexo Cambaí é constituído por metagranitóides tonalíticos, dioríticos, granodioríticos, monzograniticos, gnaisses trondhjemiticos, intercalados com anfibolitos, ultramafitos e calcários metamorfizados em condições de fácies anfibolito (Naumann *et al.*, 1984).

As seqüências metamórficas supracrustais presentes nesse bloco pertencentes ao Grupo Vacacaí (Complexo metamórfico Passo Feio, Bossoroca e Cambai) consistem de metavulcanitos básicos a ácidos, metavulcanoclásticas, metaepiclásticas, cherts e formações ferríferas (Formação Campestre) além de metaarenitos, metapelitos, calcico-silicatadas, anfibolitos e xistos magnesianos e serpentinitos da Formação Cambaizinho, situados na extremidade NW do Bloco. Justapostas às seqüências metavulcanosedimentares ocorrem unidades máficoultramáficas da Formação Cerro do Ouro. Este conjunto de rochas foi metamorfizado em condições de fácies xistos verdes a anfibolito (Remus *et al*, 1999; Hartmann & Remus, 2000).

As rochas graníticas do Bloco São Gabriel podem ser colocadas em dois grupos principais (Gastal & Lafon, 1998): a) Suítes graníticas com forte contribuição juvenil que compreende o Complexo Granítico de Lavras (Nardi, 1984) e o Monzogranito Santa Rita (Naumann, 1984) de afinidade shosshonítica e alcalina e b) Suítes graníticos com contribuição crustal dominante ou importante que compreende rochas plutônicas de afinidade subalcalina a alcalina, que estão incluídas na Suíte Intrusiva Saibro (Hartmann & Nardi, 1982). O terceiro grupo, representando o Complexo Granítico Caçapava de afinidade geoquímica cálcico-alcalina e caráter metaluminoso (Nardi & Bitencourt, 1989), foi metamorfizado em condições da fácies xistos verdes e possui foliação paralela a xistosidade das rochas da Formação Passo Feio.

As seqüências vulcano-sedimentares nesse bloco estão inseridas na Bacia do Camaquã (Neoproterozóico a Ordoviciano). Dominam neste Bloco as rochas básicas a intermediárias, denominadas originalmente por Robertston (1966) como Andesito Hilário, envolvendo diversos derrames, tufos e brechas vulcânicas. Posteriormente (Lima & Nardi, 1992), incluíram intrusões monzoniticas rasas, lamprófiros e raros diques riolíticos nesta unidade. O magmatismo ácido-alcalino do bloco fica por conta dos traquitos, traquidacitos e riolitos da Formação Acampamento Velho reavaliado modernamente por Sommer (1994).

As rochas portadoras de granadas do Bloco São Gabriel são os metapelitos, metarenitos, cornubianitos pelíticos, escarnitos, calcico-silicatadas e gnaisses quartzo-feldspáticos pertencentes ao Grupo Vacacaí e Complexo Cambaí.

O Bloco Porongos ocupa a porção central do ESRGS, é limitada ao leste pela zona de cisalhamento Dorsal de Canguçu, a oeste limitada pela anomalia magnética de Caçapava, ao sul e ao norte estão cobertas por sedimentos da Bacia do Paraná. No estado do RS está representado pelo Complexo Encantadas (rochas granito-gnaíssicas e anfibolíticas Paleopreoterozóicas), Complexo Metamórfico Porongos, constituído por rochas supracrustais – sedimentos siliciclásticos, carbonatos e vulcânicas cálcico-alcalinas metamorfizadas em grau variável desde a zona da clorita até a zona da silimanita e granitóides sintectônicos do Ciclo Brasiliano (Remus *et al.*, 1991).

As litologias portadoras de granadas do Bloco Porongos são os metarenitos, metapelitos, cálcico silicatadas (incluindo anfibolitos) e granitóides sintectônicos a duas micas.

O **Cinturão Dom Feliciano**, ocupa o leste do ESRGS, é limitado pelo oeste pela zona de cisalhamento Dorsal de Canguçu e a leste coberta pelas rochas da planície costeira. É formado basicamente por rochas granítico-migmatítico-gnaissicas, que corresponde ao Batólito Pelotas. Suas principais unidades podem ser individualizadas em unidades pre-brasiliana: Anortosito Capivarita, Complexo Metamórfico Várzea de Capivarita e o Complexo Arroio dos Ratos do Bloco Encruzilhada. As unidades brasilianas, pelo grupo de rochas granito-gnaissicas da Suíte Intrusiva Pinheiro Machado, rochas graníticas sin-transcorrentes (Suítes Intrusivas Erval, Viamão, Encruzilhada do Sul e Cordilheira), rochas tardi ou postrasncorrência (Suíte Granítica Dom Feliciano e alcalinas), e pós-tectônicos (Gabro Passo da Fabiana e Riolitos Asperezas) – (Philipp, 1998).

As principais litologias portadoras de granadas do Bloco Dom Feliciano (Bloco Encruzilhada e Batólito Pelotas) são os metapelitos (gnaisses pelíticos e quartzo-feldspático) e rochas calcico-silicatadas de alto grau, escarnitos, anortositos e muscovita-biotita granitos, aplitos e pegmatitos graníticos além de fonolitos relacionados a Suíte Piratini.

1.3.2 – Bacia de Pelotas

1.3.2.1 - Evolução tectono-sedimentar da Margem Continental Brasileira

A margem divergente da América do Sul, estendendo-se desde ao norte na Venezuela até ao extremo sul da Argentina, inclui um sistema contínuo de bacias sedimentares originadas pelos mecanismos de distensão litosférica, que, a partir do Mesozóico, conduziram à ruptura do paleocontinente Gondwana, e à separação definitiva das placas Africana e Sul-Americana, acompanhando a formação do Atlântico Sul.

Considerando a natureza e a orientação dos campos de tensões regionais durante a fase de rifteamento e a dinâmica das placas Africana e Sul-Americana durante a fase de deriva continental três domínios distintos podem ser reconhecidos ao longo da margem: uma região dominantemente distensiva, entre o sul da Argentina e o extremo nordeste da costa brasileira; um segmento de natureza transformante, correspondente ao Atlântico Equatorial; e a região ao norte da Foz do Amazonas onde novamente operaram processos de caráter dominantemente distensional (Milani & Thomaz Filho, 2000).

No domínio distensivo meridional, onde se encontra a Bacia de Pelotas, o estilo estrutural durante a fase rifte foi marcado pela atividade de falhas normais orientadas principalmente na direção paralela à costa. Falhas de transferência ocorreram a altos ângulos em relação à direção regional de desenvolvimento das falhas normais. O conjunto de falhas normais evoluiu e acabou por definir a orientação regional de abertura da margem passiva, e as zonas de transferência do rifte nuclearam as grandes falhas transformantes do assoalho oceânico, cuja projeção contra a borda do continente se dá em ângulo reto (Ojeda, 1982; Chang et al., 1992).

Nesse segmento da margem leste o Neojurrássio marcou o início do efetivo riftemanto na porção sul da América do Sul (Uliana & Biddle, 1998; Urien & Zambrano, 1996). A margem continental da América do Sul vista a partir do deu extremo meridional, inicia com extenso trecho retilíneo, orientado NE-SW, em que se inclui a Bacia de Pelotas.

1.3.2.2 - Bacia de Pelotas.

A Bacia de Pelotas ocupa cerca de 200.000 km² na região costeira e marítima do Estado do Rio Grande do Sul, dos quais 40.000 km² da área emersa. Em sua porção em terra, a Bacia de Pelotas inclui um pacote de rochas sedimentares

siliciclásticas de idade terciária com até 1.800m de espessura (Dias *et al.*, 1994; Fontana, 1995).

O pacote sedimentar que preenche a Bacia de Pelotas assenta diretamente sobre o embasamento cristalino ou sobre seqüências paleozóicas da Bacia do Paraná. O limite sul da bacia é dado pela Zona de Fratura do Chuy (Alto de La Coronilla), junto ao território com Uruguai. Para norte, ao alto de Florianópolis e a dorsal de São Paulo constituem o limite e entre as bacias de Pelotas e de Santos.

A Bacia de Pelotas que teve sua origem relacionada com os movimentos tectônicos que, a partir do Jurássico, conduziram à abertura do Atlântico Sul, onde através de sucessivos basculamentos em direção ao mar, foram ali acumulados, durante o Cenozóico, mais de 10.000 m de sedimentos continentais, transicionais e marinhos, no qual os folhelhos dominam amplamente (Villwock & Tomazelli, 1995).

Sabe-se que as bacias marginais brasileiras desenvolveram-se em quatro estágios principais: pré-rift valley, rift valley, proto-oceânico e oceânico, os quais conduziram, respectivamente a deposição de seqüências sedimentares do Continente, dos Lagos, do Golfo, e do Mar (Almeida, 1967). Chang *et al* (1992), definiu uma estratigrafia geral para estas bacias, representada por cinco mega-seqüências: megasseqüências continentais, evaporítica transicional, plataforma carbonática rasa, transgressiva marinha e regressiva marinha.

Na Bacia de Pelotas, sabe-se, que ao contrário do que acontece na maioria das demais bacias da margem continental brasileira, onde são evidentes todos os estágios acima mencionados, a acumulação de sedimentos iniciou-se no estágio oceânico com a deposição da seqüência do mar, durante o Aptiano, enquanto se produzia o afastamento progressivo dos continentes e a formação do piso oceânico a partir da cordilheira Meso-Atlântica de forma mais rápida que as demais bacias.

Genericamente, o preenchimento vulcano-sedimentar da Bacia de Pelotas segue a seguinte seção estratigráfica (Fig. 3), onde a fase rifte da Bacia de Pelotas ocorreu durante o Neocomiano, e então se acumularam rochas siliciclásticas grossas da Formação Cassino associadas aos fluxos basálticos da Formação Imbituba no domínio de águas ainda rasas, onde a morfologia do rifte é imageada pelos dados sísmicos, configurando-se meio-grábens controlados por falhas antitéticas de alto ângulo (Fontana, 1990). Os basaltos da Formação Imbituba, num arranjo característico de *seaward dipping reflectors* (Fontana, 1990), tem idade K/Ar de 124±8,6 Ma (Dias *et al.*, 1994), e Ar/Ar 126,6±2,9 Ma (Milani, 1998), idades que se aproximam ao final do episódio magmático Serra Geral.

O registro da seqüência evaporítica na Bacia de Pelotas é conhecido apenas na porção norte, sobre a Plataforma de Florianópolis, onde ocorre uma delgada unidade de anidrita e carbonatos (Formação Ariri), com 50 m de espessura, sobrepostos a traquiandesitos de 113,2±0,1 Ma (Ar/Ar, Dias *et al.*, 1994) da Formação Curumim. A ausência de evaporitos emprestou à Bacia de Pelotas um aspecto monótono, pouco deformando, em claro contraste ao resto da margem brasileira.

Entre o Albiano e o Recente, predominaram condições de subsidência térmica. O Eoalbiano é representado pelo pacote carbonático da Formação Portobelo, de ocorrência restrita à porção norte da bacia, que é recoberto pela sucessão siliciclásticas das Formações Tramandaí e Cidreira. Estas unidades, abrangendo o intervalo temporal Neoalbiano-Recente, constituem uma clássica cunha sedimentar arenosa junto á margem, gradando a siltitos e calcários de granulometria fina (Formação Atlântida) e folhelhos (Formação Imbé) para as porções mais distais da bacia.O pacote supra Portobelo é recortado por uma série de superfícies erosivas que correspondem a tempos de queda do nível do mar.

PETROBRAS, 1994).

Na porção sul da Bacia de Pelotas, ocorre um espesso pacote de sedimentos pós-Paleoceno com até 6000 metros, definido o Cone do Rio Grande. Naquela área, são abundantes as estruturas ligadas à movimentação gravitacional, sendo comuns as ocorrências de hidratos de gás nos níveis estratigráficos mais superficiais. O processo pelo qual tamanha carga sedimentar atravessou a plataforma, vindo a depositar no talude continental, ainda não é bem entendido. Grandes sistemas de canyons ou mesmo de canais fluviais enterrados não são feições típicas ao longo da Bacia de Pelotas (Fontana, 1990).

1.3.2.3 – A Plataforma Continental do Rio Grande do Sul

Urien e Martins (1974), classificam a plataforma continental do RS, como sendo do tipo estável, sujeita somente a movimentos epirogênicos e onde as flutuações de nível do mar estabeleceram feições topográficas erosivas e deposicionais.

Segundo os autores acima, na plataforma continental do Rio grande do Sul aparecem três texturas sedimentares principais, de diferentes origens: I – sedimentos finos da borda da plataforma (silte, argila, argila síltica e silte arenoso) e cobrindo a plataforma externa, média e parte da interna. Estas lamas são consideradas como relíquias de uma sedimentação nerítica ocorrida durante o último estágio de nível de mar baixo (Wisconsin), quando as drenagens das terras altas riograndenses chegavam a esta zona atualmente isolada (Martins, Urien e Eichler, 1967). II – outra zona de texturas finas seria formada pelos componentes pelíticos do Rio de La Plata que chegam até a altura do Albardão, cobrindo a plataforma média; iii – representada por uma sedimentação arenosa que cobre toda a plataforma interna e parte da média. Para Martins, Urien e Eichler (1967), estes sedimentos estariam relacionados a processos costeiros de areias transgressivas, durante o avanço do mar até sua posição atual, após a última glaciação.

1.3.2.4 - Sistema Laguna-Barreira da planície costeira do Rio Grande do Sul.

No Período Quaternário ocorreram pelo menos quatro oscilações do nível do mar, registradas por três regressões Pleistocênicas e uma transgressão Holocênica. Os sistemas do tipo laguna-barreira evoluíram lateralmente apartir de quatro sistemas, onde cada um destes sistemas registra o pico de uma transgressão, seguida de um evento regressivo (Villwock & Tomazelli, 1995). O sistema mais antigo (Sistema Laguna-Barreira I) é o mais interiorizado e a idade decresce no sentido mais extremo (Sistema Laguna-Barreira IV). A glácio-eustasia seria a responsável pelos eventos transgressivos-regressivos na geração dos sistemas laguna-barreira (Villwock & Tomazelli, 1995).

Na regressão Pleistocênica III (Wisconsiano) que teria começado após a instalação da Barreira III, há cerca de 120 Ka, respondendo a um controle de natureza glácio-eustática, alcançou o máximo regressivo há aproximadamente 17 Ka (Villwock & Tomazelli, 1995). Segundo Crowley (1991) esse máximo regressivo teria atingido cerca de 121 m abaixo do atual.

Com o nível do mar baixo, os rios que desaguavam no oceano tiveram seus perfis de equilíbrio deslocados em direção à plataforma, formando uma planície costeira que ocupava a plataforma continental atual e o sistema lagunar Patos-Mirim, transformando numa grande planície fluvial, aonde os rios chegavam na linha de costa, situada aproximadamente a 120m abaixo do atual nível do mar, erodindo e segmentando a Barreira II. Na região de Rio Grande, oportunamente a desembocadura da laguna dos patos (Canal do Rio Grande), também serviu como uma calha para o escoamento das águas continentais através de sistemas fluviais. Uma boa evidencia disso é a segmentação da barreira II na região (Fig. 4).

Figura 4: Reconstrução paleofisiográfica da planície costeira do RS durante o máximo regressivo, modificado de Villwock e Tomazelli (1995).

Posteriormente com o avanço do nível do mar, a transgressão Holocênica foi responsável pela instalação do sistema laguna/barreira IV (Villwock & Tomazelli, 1995).

1.3.2.5 - Evidências de Paleocanais

Paleocanais Pleistocênicos foram evidenciados por Seeliger (2004), através de dados sísmicos na plataforma interna da Bacia de Pelotas a 23 Km do norte de Cidreira. Esse autor evidenciou a presença de três canais que cortam os depósitos pleistocênicos, preenchidos por sedimentos retrabalhados do Pleistoceno/Holoceno.

Há evidências morfológicas de paleocanais de idade holocênica como aqueles que comunicavam a Laguna Mirim, nas adjacências do Banhado Taim, com o oceano adjacente (Ayup-Zouain *et al*, 2003). Elirio *et al* (1991), também evidenciaram um paleocanal holocênico ao norte do canal de Rio Grande situadas ao sul do Pontal do Bojuru (Barra Falsa), em frente ao delta do rio Camapuã, o qual comunicava essa laguna ao Oceano Atlântico, que se manteve ativo aproximadamente durante o período de 2.450 a 2.080 anos A.P. Para esses autores os canais permitiram a salinização das águas lagunares em ambiente estuarino. O fechamento deste canal, a aproximadamente 2.080 A.P., estaria relacionado aos processos costeiros responsáveis pelo desenvolvimento da barreira arenosa IV.

2 - Metodologia

A metodologia envolveu atividades de campo para afloramentos do Escudo Sul-Riograndense e seleção de amostras de testemunhos de sondagem da porção superficial da Bacia de Pelotas. As amostras selecionadas dos afloramentos e testemunhos foram analisadas e processadas nos laboratórios de Separação de Minerais do Centro Estudos Costeiros e Oceânicos (CECO), no Laboratório de Petrologia Metamórfica do Departamento de Mineralogia e Petrologia, e no Laboratório de Microssonda Eletrônica do Instituto de Geociências da UFRGS.

2.1 - Atividades de campo

Um levantamento bibliográfico prévio da geologia do Escudo Sulriograndense (ESRGS) foi realizado, com o objetivo de identificar e selecionar as litologias que possuem a granada em sua mineralogia, para futura análise química via microssonda eletrônica. Após o levantamento bibliográfico foram realizadas duas viagens ao campo para os afloramentos selecionados nos diferentes principais blocos da geologia do ESRGS.

Durante os trabalhos de campo utilizaram-se os equipamentos convencionais de geólogo de campo (lupa, martelo, bússola, mapas e etc.). Os levantamentos de campo consistiram em:

- localização e escolha das melhores e mais significativas exposições de rochas portadoras de granadas;
- identificação dos diferentes litotipos e respectivas unidades litoestratigráficas;

- exame macroscópico com lupa de mão das diferentes rochas e minerais.
- amostragem das rochas para estudo em laboratório;
- amostragem de sedimentos de corrente;

Durante os trabalhos de campo foram coletadas 35 amostras para exame macroscópico e dessas 18 foram utilizadas para confecção de lâminas delgadas incluindo seis amostras de sedimentos de correntes para separação de minerais.

3.2 - Atividades de Laboratório

As lâminas delgadas selecionadas (Tab.1) foram observadas e descritas com o auxílio de um microscópio trinocular de luz transmitida marca Leitz no Laboratório de Petrologia Metamórfica. As granadas identificadas foram selecionadas, posicionadas e fotografadas para posterior análise química via microssonda eletrônica.

Figura 5 – Fotomicrografia da amostra de cornubianito (SSP) do Bloco São Gabriel mostrando porfiroblastos de granada e biotita.

Figura 6 – Fotomicrografia da amostra biotita-granada gnaisse (QT-1) do Complexo Metamórfico Várzea do Capivarita.

Figura 7 – Fotomicrografia da amostra estaurolita-granada-biotita xisto (CP-03) do Complexo Metamórfico Porongos, mostrando granadas e estaurolitas pre-cinemáticas envoltas pela xistosidade composta por muscovita e biotita.

Figura 8 – Fotomicrografia da amostra de fonolito (ALC) da Suíte Piratini, no Cinturão Dom Feliciano mostrando granada da variedade melanita com zonação composicional.

Figura 9 – Fotomicrografia da amostra CAMB – Metapelito da Formação Cambaizinho do Bloco São Gabriel.

Figura 11 – Fotomicrografia da amostra CGSMC – Gnaisse pelítico do Complexo Granulito Santa Maria Chico do Bloco Taquarembó.

Figura 10 – Fotomicrografia da amostra IND – Anfibolito do Complexo Metamórfico Porongos.

Figura 12 – Fotomicrografia da amostra MMO – Escarnito da Formação Cambaizinho do Bloco São Gabriel.

Identificação	Litologia	Unidade Litoestratigráfica	UTM
QT-1	Biotita-granada xisto	Complexo Metamórfico Varzea da Capivarita	0371891/6645444
QT-2	Metapelito	Complexo Metamórfico Varzea da Capivarita	0375084/6642407
QT-2A	Silimanita-granada gnaisse	Complexo Metamórfico Varzea da Capivarita	0375099/6642499
CP-03	Estaurolita-granada-biotita xisto	Complexo Metamórfico Porongos	0320066/6642323
ML-01	Metamarga	Complexo Palma	0778928/6610600
ML-02	Metapelito	Complexo Palma (Formação Pontas do Salso	0778621/6610758
ML-02A	Metamarga	Complexo Palma	0778699/6610810
ML-03	Sedimento de corrente	Complexo Palma (Formação Pontas do Salso	0777039/6615421
PA	Granada-biotita-xisto	Complexo Metamórfico Porongos	0256373/6510168
CAP-3	Granada-biotita-xisto	Complexo Metamórfico Passo feio	0268689/6621020
ALC	Fonolito	Suíte Piratini	0307832/6563812
CP-01	Sedimento de corrente	Complexo Metamórfico Porongos	0320400/6642772
JT40C	Aplito	Granito Campinas	
JT	Anortosito	Anortosito Capivarita	
SSP	Cornubianito	Complexo Bossoroca	
MMO	Escarnito	Formação Cambaizinho	
7041	Granada-biotita-gnaisse	Complexo Cambai	
F90	Pegmatito	Suíte Intrusiva Pinheiro Machado	
CGSMC 34 e 39*	Granulito máfico	Complexo Granulitico Santa Maria Chico	
CGSMC 33*	Gnaisse pelítico	Complexo Granulitico Santa Maria Chico	
CMPF 12, 13 E 14*	Estaurolita-granada xisto	Complexo Metamórfico Passo feio	
CMPF 7*	Anfibolito	Complexo Metamórfico Passo feio	
IND	Anfibolito	Complexo Metamórfico Porongos	
CAMB	Metapelito	Formação Cambaizinho	
TL2	Metapelito	Complexo Metamórfico Porongos	

Tabela 1 – Lâminas delgadas e sedimentos de corrente selecionados para análise química

* amostras compiladas na bibliografia.

SMVC – Silva, Porcher, Fernandes & Droop, 2002 - CMPF 7, 12, 13 e 14 – Hartmann, Tindle & Bitencourt, 1990 CGSMC 33 e 34 – Hartmann, 1987 - CGSMC 37 e 39 – Hartmann, 1988 - amostra JT – cedida pela CPRM SSP, MMO, IND, CAMB, TL2 e 7041 - Remus et al. (em prep.)

As amostras (Tab. 2) da Bacia de Pelotas foram selecionadas (Fig. 13) e coletadas dos testemunhos de sondagem realizados pela Operação Geomar VII (1985) e REMAC - Trato 1 na plataforma continental.

* REMAC TRATO 1 • Amostras sem granada

Figura 13 - Mapa de localização das amostras dos testemunhos dos sedimentos quaternários da Bacia de Pelotas, modificado de Martins, Toldo & Gruber, 1987.

Testemunho	Latitude S	Longitude W	Lam.Áqua	Comp. (cm)	Amostra nº	cm coletado
1	33° 55′06′′	51°14′00′′	1184	430	4	10
1	33° 55′06′′	51°14′00′′	1184	430	12	70
1	33° 55′06′′	51°14′00′′	1184	430	15	118
1	33° 55′06′′	51°14′00′′	1184	430	5	25
4	34° 24′00′′	51° 55′42′′	150	280	7	118
10	34° 14′33′′	47° 55′24′′	4028	654	21	380
13	33° 12′54′′	50° 10′48′′	800	696	7	80
14	33° 22′49′′	49° 25′39′′	2007	198	3	100
15	33° 33′59′′	48° 28′50′′	3199	753	2	20
17	33° 45′30′′	46° 00′46′′	4123	775	5	25
19	33° 01′42′′	48° 58′42′′	2841	681	8	120
22	32° 13′24′′	49° 35′30′′	2000	609	14	300
26	32° 47′12′′	52° 22′48′′	14	286	6	20
27	32° 53′18′′	51° 23′18′′	60	182	7	15
28	32° 55′36′′	51° 09′42′′	62	453	12	220
29	33º 11'12''	51° 23′06′′	59	458	6	120
31	32° 57′00′′	52° 15′00′′	21	158	10	75
32	33° 00′54′′	52° 31′54′′	13	190	7	20
33	33° 10′24′′	52° 35′00′′	15	105	8	30
34	33º 11′36′′	52° 22′48′′	21	405	10	105
38	33° 33′05′′	52° 08′50′′	74	393	6	105
42	33° 29′59′′	52° 26′34′′	24	268	8	80
46	33° 58′04′′	52° 04′32′′	54	110	7	80
47	33° 47′40′′	52° 18′24′′	78	265	9	240
49	33° 34′36′′	52° 37′18′′	22	269	9	75
50	33° 31′44′′	52° 42′13′′	25	224	8	80
52	33° 27′12′′	52° 44′12′′	19	275	15	120
54	33° 32′52′′	52° 49′04′′	21	265	6	20
55	33° 36′00′′	52°′45′02′′	26	270	9	80
56	33° 53′32′′	52° 23′37′′	74	372	13	200
59	33° 59′30′′	52° 33′24′′	58	184	6	85
60	33° 56′48′′	52° 36′48′′	38	143	7	40
62	33°′39′56′′	52° 58′54′′	22	145	7	40
65	33° 43′58′′	53° 07′14′′	24	140	7	45
66	33° 46′05′′	53° 04′26′′	19	174	8	140
67	33° 48′ 18′′	53° 01′48′′	20	280	9	45
68	33° 55′30′′	52° 54′18′′	28	67	6	20
70	34° 09′42′′	52° 37′40′′	65	681	15	220
80	32° 22′05′′	50° 58′47′′	47	153	6	60
100	32° 29′00′′	45° 27′05′′	4000	577	5	145

Amostras selecionadas nos testemunhos de sondagem da Operação Geomar VII

3025	32°29′15′′	52°16′15′′	56	250	3	85
3028	32°40′00′′	52°15′00′′	70	305	5	100
3039	33°45′15′′	52°15′45′′	40	150	4	30
3045	33°02′15′′	52°15′15′′	85	290	1	45
3046	33°22′10′′	52°15′30′′	33	180	1	30
3052	33°12′05′′	52°15′15′′	21	149	2	25

Amostras selecionadas nos testemunhos de sondagem da Operação REMAC Trato 1 Tabela 2: Amostras selecionadas da Operação Geomar VII e Remac Trato 1. As amostras de sedimento de corrente e dos testemunhos de sondagem da plataforma continental, foram processadas utilizando a seguinte metodologia:

a) Identificação das amostras (projeto, data, número da amostra);

b) Desagregação preliminar da amostra, utiliza-se pistilo e almofariz;

c) Secagem das amostras em estufas numa temperatura de 60° C;

d) Separação granulométrica através das malhas de peneiras de tamanho 0,250 mm e 0,062 mm (fração areia fina e areia muito fina), posteriormente discutiremos o porque da escolha dessa granulometria;

 e) Separação dos minerais pesados da assembléia mineral, através da técnica do líquido denso.

As separações mineralógicas através de líquidos pesados compreendem em separarem minerais de diferentes pesos específicos, com a utilização de um líquido pesado padrão. Numerosos são os líquidos pesados disponíveis, mas o mais utilizado é o liquido pesado bromofórmio (d=2,87).

Modo de separação:

- colocar o líquido pesado no funil separador;
- colocar a fração representativa no funil separador e deixar repousar;
- separação dos minerais pesados pela diferença do peso específico, abrindo a torneira do fundo do funil separador, deixando-se passar apenas a fração pesada que é recebida em outro funil acoplado num papel filtro.

f) Identificação dos minerais pesados em 19 amostras;

A contagem dos grãos foi o processo utilizado para estimar as proporções dos diferentes minerais. A contagem foi realizada por linhas transversais onde cada grão visto é contado. O número de grãos contados é totalizado em 400 grãos não opacos. Dessa forma tivemos ao final três grupos de minerais pesados: opacos, não opacos e alterados. Quanto o equipamento utilizado foi microscópio trinocular de luz transmitida marca Leitz e tabelados em arguivos do tipo Microsoft Excel.

g) Separação magnética dos pesados;

De modo geral os minerais pesados apresentam características paramagnéticas e diamagnéticas, assim esses minerais pesados podem ser individualizados e tabelados de acordo com a sua susceptibilidade magnética.

Essa individualização pode ser feita através da utilização do Separador Magnético Franz®. As amperagens utilizadas foram de 0,3; 0,4; 05; 0,9; 1,2; 1,5, 1,8 e >1,8 A.

h) Posterior individualização de 50 grãos de granada de 30 amostras em lupa binocular por luz refletida. De modo geral o mineral encontra-se na fração 0,4 A e 0,5 A. (Fig.14 e 15).

Figura 14 – Fotomicrografia de granadas separadas do testemunho 31 da plataforma interna da Bacia de Pelotas.

Figura 15 – Fotomicrografia de granadas (e epidotos - amarelo esverdeado) separadas do testemunho 32 da plataforma interna da Bacia de Pelotas

i) Montagem da seção polida para análise química;

Passos para a montagem:

- limpeza do molde com álcool;
- untar molde com fina camada com 7 partes de resina + 2 partes de endurecedor (EPOFIX Kit – marca Struers);
- montagem da seção com 4 populações de 50 granadas;
- identificação da seção e posterior secagem em estufa por duas horas com temperatura aproximadamente 45°C;
- montagem final da seção com o Kit Epofix (mesmas doses), com posterior secagem;

• polimento para expor a face do mineral na superfície;

Com seção montada (Fig. 16) encaminha-se para análise química na técnica analítica de microssonda eletrônica.

Figura 16 – Seção polida com montagem de granadas da amostra do testemunho 60 da Bacia de Pelotas.

j) Investigação quantitativa (WDS) da química do mineral foi efetuada na microssonda eletrônica do Instituto de Geociências da UFRGS.

Microssonda Eletrônica

CAMECA SX50 equipada com:

- quatro espectrômetros tipo dispersão em comprimento de onda (WDS-wavelenght dispersive spectrometer) e um espectrômetro tipo dispersão em energia (EDSenergy dispersive spectrometer).
- microscópio Eletrônico de Varredura nos modos de elétrons secundários, elétrons retroespalhados e catodoluminescência.
- microscópio ótico acoplado com magnificação única de 400 X, nos modos de luz refletida e transmitida.

Descrição da Técnica:

A microssonda eletrônica detecta Raios-X característicos que são emitidos por uma amostra bombardeada por um feixe de elétrons cuja energia varia entre 1 e 50 keV. Dependendo dos elementos que constituem a amostra e da energia do feixe, são excitadas as linhas K, L ou M. O número de fótons e a correspondente energia dos raios-X são detectados em dois modos: i) espectrometria de raios-X por dispersão em energia (EDS) e ii) espectrometria de Raios-X por dispersão em comprimento de onda (WDS). A Lei de Moseley é utilizada para identificar os elementos geradores da radiação através da correlação entre energia e número atômico dos mesmos. A análise composicional é efetuada pela comparação da intensidade da linha de cada elemento na amostra desconhecida com a mesma linha em uma amostra padrão com composição conhecida.

Como conseqüência do processo de irradiação com feixe de elétrons ocorrem, além da emissão de Raios-X característicos, muitos outros fenômenos físicos, tais como a emissão de luz (catodoluminescência), emissão de elétrons secundários e emissão de elétrons retroespalhados. A varredura do feixe de elétrons incidentes sobre a superfície da amostra e a deteção de elétrons secundários (SE) e elétrons retroespalhados (BSE) podem ser usadas para controlar o sinal em um tubo de raios catódicos resultando na formação de imagens, em um microscópio eletrônico de varredura. Este tipo de sinal fornece diferentes tipos de informação, uma vez que cada um destes sinais eletrônicos se deve a diferentes fenômenos físicos e ocorrem em profundidades diferentes da amostra.

Para as análises químicas via microssonda foi utilizado um potencial de aceleração de 15 kV, corrente de 25 nA com diâmetro do feixe de 1 μ m e o tempo de contagem foi de 20 segundos para Fe, Ca, e Ti e 30 segundos para Mg, Mn, Si, Al e Cr. Os padrões utilizados foram: MnHo (Fe, Mg, Mn), Anor (Al, Si, Ca), TiO₂ (Ti), CrO₂ (Cr).

Figura 17: Fluxograma da metodologia aplicada

3 - Geomorfologia no Estudo de Proveniência

O estudo da geomorfologia é de grande importância para conhecer os tipos de relevo e os processos a eles relacionados.

Uma vista superficial da morfologia terrestre, sugere que todas as feições mais significativas estão associadas com limites de placas. Porém, os efeitos geomorfológicos no contexto de interações entre placas podem se estender por milhares de quilômetros destes limites.

O quebramento do Supercontinente Pangea, o qual iniciou a 180 Ma, formou novas margens continentais. Estes eventos foram de grande importância para o desenvolvimento da morfologia em escala continental, estabelecendo novas bases para o nível de erosão continental.

Boa parte das margens continentais passivas está relacionada com grandes escarpamentos como o caso da África do Sul e Brasil, evidenciando distintos ambientes geomorfológicos.

3.1 - Geomorfologia em Margens Passivas.

A interpretação das seqüências sedimentares em conjunto com as evidências morfológicas e estruturais nos conduz ao desenvolvimento de vários modelos de evolução tectônica de margem passiva.

O mecanismo de isostasia flexural em escala regional é comum em margens passivas associadas a grandes escarpamentos, onde a erosão é mais efetiva na margem do escarpamento do que no plateau (Summerfield, 1994).

Quando ocorre o rifteamento das placas, criam-se novos relevos e assim um novo nível de base é estabelecido. O modelo inicial do rifte ocorre com soerguimento domal formado através de uma anomalia termal sub-litosférica. À medida que essas seqüências de domos vão intervindo, ocorre a quebra do continente procedido da criação de um assoalho oceânico e de um grande escarpamento. À medida que a evolução da margem passiva é formada o efeito de isostasia flexural fica mais proponente, diminuindo o efeito termal. Isso se dá devido o resfriamento da crosta e pelo aumento da carga sedimentar, provocando o soerguimento flexural no continente.

Um componente importante a considerar no rifteamento passivo, e se o mesmo é acompanhado por abundante vulcanismo, podendo causar enormes espessuras de lavas basálticas que são extravasadas nos primeiros estágios do rifteamento. Assim a margem passiva pode ser considerada de vulcânica ou não vulcânica dependendo se o local do rift coincide com a localização de uma pluma mantélica ou se está associado a um *hot spot* (Summerfield, 1994).

3.2 - Contexto Geotectônico e Morfologia

Os grandes escarpamentos associados com tectônica extensional estão localizados em dois distintos ambientes morfológicos: riftes continentais e nas margens passivas. Ambos a morfologia desenvolve através de um continuo processo tectônico, onde o recuo do escarpamento desenvolve-se de uma forma linear e com uma mesma taxa de recuo (King, 1995; Partridge & Maud, 1987; Seild *et al*, 1996; in Matmon, 2002).

Podem-se dividir os riftes continentais e de margem passiva em dois tipos: 1 - *Soulder-type margins* onde o eixo do soerguimento é localizado na margem do domínio soerguido, e ao longo desse ambiente a divisão da drenagem é coincidente com o topo do escarpamento. 2 - *Arch-type margins* onde o eixo do soerguimento é localizado no continente na margem do domínio soerguido e a divisão da drenagem é separada no topo do escarpamento. (Ollier, 1984; Gilchrist and Summerfield, 1994; in Matmon *et al*, 2002) (Fig 18.)

Figura 18: Figura generalizada da geometria de uma margem continental. Margem tipo Shoulder o eixo do soerguimento é localizado no ápice do domínio soerguido. Ao longo dessa margem, a divisão da drenagem é coincidente com o topo do escarpamento. Margem do tipo arco o eixo do domínio soerguido está localizado no continente. Ao longo dessa margem, a divisão da drenagem é separada no topo do escarpamento, modificado de Matmon *et al*, 2002.

As drenagens em escarpamentos do *shoulder-type*, embora muito abruptas, são extremante restrita nas suas cabeceiras, podendo haver corte da drenagem e o seu recuo no escarpamento. Ao contrário das drenagens da margem *arch-type*, onde muitas são antecedentes ao rifte, envolve grandes drenagens com altas descargas, iniciando embaiamentos nas escarpas.

Estudos de medidas de sinuosidade dos grandes escarpamentos nas bordas das margens passivas e rifte continentais indicam que margens do *arch-type* apresentam valores maiores de sinuosidade do que do tipo *shoulder*, essa diferença é devido aos sistemas de drenagens antecedentes ao rifte, que iniciam o recuo da escarpa mais rapidamente (Matmon *et al*, 2002).

Já o modelo de *detachment faults* prediz dois tipos de margem passiva. *Under-plate margim*, desenvolvida em rochas profundas da crosta abaixo da zona de *detachment*, onde o deslocamento ocorre ao longo das falhas e a placa inferior será soerguida com a remoção progressiva da placa superior (Fig. 19). O resultado é uma morfologia de uma margem continental com ampla plataforma e um modesto soerguimento no continente. É o exemplo das bacias marginais brasileiras, com extensas plataformas e algumas escarpas nos continentes, como por exemplo, a Serra do Mar, uma cadeia de escarpas herdadas do embasamento pré-cambriano, gerado por isostasia flexural e a Serra Geral por vulcanismo.

Figura 19: Representação esquemática da *Under-plate margin* com morfologia de uma margem continental com ampla plataforma e um modesto soerguimento no continente, modificado de Summerfield, 1994.

Já *Upper-plate margim* o comportamento é completamente diferente. O arrasto da placa inferior ao longo da falha expõe a base da litosfera, ascendendo a astenosfera. Essa substituição de uma astenosfera menos densa por uma litosfera mais densa resulta no soerguimento da placa superior (Fig. 20). A subsidência em *offshore* e o soerguimento em *onshore* irão induzir a flexura da margem que acentuará o soerguimento no continente, isso resultará uma morfologia da margem da placa superior com extenso soerguimento marginal com quebras abruptas e uma plataforma continental relativamente estreita. É o exemplo do sudoeste do continente Africano (Summerfield, 1994).

Figura 20: Representação esquemática da *Upper-plate margin* com extenso soerguimento marginal e uma plataforma continental estreita, modificado de Summerfield, 1994.

Superimposto a todos esses modelos de margem passiva a contribuição de soerguimento e subsidência para a geomorfologia dessas bacias do tipo margem passiva, é feita basicamente pela isostasia flexural e pela quantidade do material erodido e transportado para *offshore*.

3.3 - Taxas de soerguimento e denudação para estudo de proveniência

Na maioria dos casos as superfícies de soerguimento são associadas com atividade tectônica, mas soerguimento crustal ocorre simplesmente como resposta isostática da denudação, ou seja, de material removido restaurar o equilíbrio isostático.

As taxas de soerguimento podem ser determinadas diretamente ou indiretamente por diversas técnicas apropriadas para diferentes escalas de tempo. Métodos arqueológicos, geodésicos, radiométricos e geológicos são algumas ferramentas para realizar a medida ou estimação da taxa de soerguimento e denudação.

3.4 - Taxas de denudação fluvial atuais

A análise das taxas de denudação contemporâneas é de grande dificuldade, mas ela pode determinar quais são os fatores mais significativos no controle das taxas as quais as superfícies são erodidas.

A base para determinar as taxas de denudação fluvial é de um cálculo de estimação do sólido (sedimento) e soluto (constituintes dissolvidos) carreado pelos rios. Dados das taxas de sedimentos e solutos não são disponíveis em todas bacias de drenagens, assim são feitas estimações e extrapolações baseadas entrem a relação empírica observada entre a medida das taxas de sólido e soluto transportado e os fatores que controlam essas taxas, como o relevo e clima. Outras variáveis também são consideradas, como ação a antrópica, presença de vegetação e o mecanismo de denudação (mecânico / químico) (Summerfield, 1994).

Fatores que controlam as taxas de denudação fluvial.

Vários fatores controlam as variações das taxas de denudação, onde serão abordados de forma resumida para simples esclarecimentos.

Erosivitidade X Eroditibilidade

A erosivitidade é a energia necessária para que a superfície seja destruída e transportada como regolito; representa o potencial do sistema de denudação para remover o material das bacias de drenagem, envolvendo todos tipos de transporte desde enxurradas à movimentos de massa.

E a eroditibilidade é a susceptibilidade do material em resistir o processo de transporte pela denudação. Esta relacionada a um complexo de fatores incluindo a força mecânica, a dureza, a coesão e o tamanho da partícula.

• Relevo X Denudação

Em regiões de alto relevo, com grandes declives e com uma fina camada de solo estão mais propícias as denudações físicas e químicas, ao contrário de relevos baixos com espessa camada de solo onde o intemperismo é menos eficiente.

• Clima X Denudação

Tem predominante influência na taxa de denudação. Maior será o intemperismo quanto maior for à média de precipitação, e mais fortes os ventos. Em climas glaciais o intemperismo é extremante forte.

• Biomassa X Denudação

A presença de vegetação esta muito associada à precipitação. A presença de vegetação reduz a eroditibilidade do material em superfície, retardando as taxas de denudação mecânica.

Para obter melhores elucidações a respeito dos modelos e taxas de soerguimento e denudação é preciso uma combinação de dados físicos (relevo, clima), morfológicos, geológicos, geodésicos, geocronológicos, geofísicos e estruturais para compreender melhor o continuo processo de recuo das escarpas ao longo dos rites e margens passivas. É um assunto de grande complexidade que envolve uma gama de dados e estudos que auxiliam no entendimento da proveniência em uma bacia sedimentar.

3.5 - Aspecto Geomorfológico do Escudo Sul-Riograndense

Uma superfície de aplainamento é um plano de erosão que corta indistintamente diversos tipos de rochas e estruturas e que, no presente, se encontra nivelado em relação ao nível de base geral por processos de deformação moderna (Ab´Saber, 1969). Assim como as discordâncias são planos de tempo em estratigrafia, as superfícies de aplainamento são planos de tempo em geomorfologia.

Ab'Saber (1969), definiu que o relevo do Rio Grande do Sul apresenta o registro de cinco grandes tipos de relevos ou superfícies aplainadas nas paisagens. São elas, pela ordem cronológica proposta pelo autor.

- Superfície de Vacaria – Teto topográfico da terra gaúcha, que constitui o altiplano basáltico de Vacaria, sendo o setor mais elevado dos planaltos do RS, com uma altitude de 950 a 1100 metros. Para leste, ele é bruscamente interrompido pelas escarpas de Aparados da Serra. Para sul e sudoeste ele é marginado pelas áreas festonadas e dissecadas da região serrana (Caxias-Morro Reuter). Para oeste, o planalto basáltico se rebaixa e se degrada, passando apresentar um relevo de maciças coxilhas.

 Superfície de Caçapava do Sul – corresponde à cimeira do Escudo Sul-Riograndense, com uma altitude média de 450-460 metros, evidenciado por um alto grau de aperfeiçoamento por processos antigos de aplainamento.

- Superfície do Cerro da Cadeia – no reverso da cuesta de Vila Nova, existem geomórficos importantes que comprovam a existência de aplainamentos parciais pós-superfície de Caçapava do Sul e pré-superfície da Campanha. Esse aplainamento encontrado entre 300 e 320 metros na área do Cerro da Cadeia é significativo, estando entre a superfície da Campanha (180-220 m) e da superfície de Caçapava do Sul (450-460 m).

- Superfície da Campanha – Constitui-se em uma superfície interplanáltica típica da paisagem do interior Sul-riograndense. Mostra-se muito bem desenvolvida na zona de transição topográfica entre o Escudo Uruguaio-Sul Riograndense e as estruturas sedimentares paleozóicas da margem sudeste da Bacia do Paraná. Sua altitude média oscila entre 180-220m.

Lisboa (1990), identificou em um estudo geomorfológico através da técnica de sensoriamento remoto, uma nova superfície de aplainamento do tipo cimeira, correlacionável com a superfície de Caçapava do Sul. Esta superfície localizada em Santana da Boa Vista, denominada Cerro da Lagoa, se manteve preservada pela resistência destas rochas (quartzitos), e encontram-se na mesma cota que a superfície de Caçapava.

Lisboa (1998) comenta a evolução geomorfológica do RS, onde a superfície de cimeira (Caçapava-Vacaria) é correlacionável, em sua fase inicial de erosão com o preenchimento da Bacia de Pelotas por uma sedimentação detrítica. As fases finais de aplainamento são correlacionáveis com os depósitos sedimentares detríticos continentais hoje representados pelas formações Santa Tecla e Tupanciretã. Este antigo pediplano foi afeiçoado no Terciário Inferior tendo sido deformado por soerguimentos diferenciais modernos. Aos soerguimentos associam-se novas retomadas de erosão, cujos testemunhos são as superfícies interplanálticas do Cerro da Cadeia e da Campanha, esculpidas em épocas mais recentes. Associadas a estas fases de pediplanação-peneplanação estão a abertura da Depressão Periférica e a conformação da drenagem atual.

3.6 - Desenvolvimento Geral da Drenagem do Rio Grande do Sul

O desenvolvimento da drenagem é uma parte importante da geomorfologia, sendo também estreitamente relacionada com a tectônica de placas. Ao contrário do relevo do Rio Grande do Sul, cujos traços de desenvolvimento já estão bem desenvolvidos, as primeiras tentativas para estabelecer o desenvolvimento seqüencial da rede de drenagem do Estado ainda estão pouco esclarecidas.

O desenvolvimento da drenagem da África e América do Sul foi influenciado pela ruptura do continente Gondwana (Potter, 1997). Neste contexto, o

desenvolvimento da drenagem do estado do Rio Grande do Sul está associada a partir do Cretáceo com a evolução de uma margem continental passiva. Onde a seqüência soerguimento, rifteamento e ruptura continental foram fundamentais para o desenvolvimento da rede de drenagem atual do Estado.

Em um contexto regional Ab'Saber (1969) associa o desenvolvimento de uma drenagem primordial com padrão radial irregular, a partir da deformação moderna da superfície de aplainamento Caçapava, dirigida para todos os quadrantes marginais do escudo Sul-Riograndense, da qual a drenagem atual é herança. Na intersecção dos dois núcleos do Escudo e do Planalto basáltico vieram se formar linhas de drenagem importantes, da qual o Jacuí é a herança mais notável e complexa.

A metade da área do Rio Grande do Sul é drenada por bacias hidrográficas (Fig. 21) dirigidas para o Atlântico. Onde essa drenagem iniciou a sedimentação da planície costeira pela progradação de deltas e pelo desenvolvimento de ilhas de barreira.

O Rio Uruguai, cujo sistema de drenagem é o mais importante do estado, desenvolveu-se a partir do rifte (sin-rift) da América do Sul, com uma paleopendente para noroeste (Potter, 1997), desenvolvendo um sistema de drenagem conseqüente e controlado pela pendente inicial ao soerguimento. Um rio conseqüente é aquele cuja posição é resultado de uma pendente inicial de uma área terrestre (Lobeck, 1939 apud Lisboa *et al* 1988).

Figura 21: Bacias Hidrográficas do Rio Grande do Sul.

Os rios Jacuí e o Camaquã são alinhados na direção E-W e se dispõem de forma obsequente em relação a paleopendente inicial ao soerguimento do Uruguai. Um rio obsequente é aquele que flui na direção oposta ao mergulho das formações e oposto à pendente que condicionou o rio original conseqüente (Lobeck, 1939 apaud Lisboa *et al* 1998). A geometria atual destes cursos d'água é anômala e pode ser explicada por modificações pretéritas por processos de captura (Lisboa e Castro, 1998) e por afogamento recente do baixo curso destes sistemas no sistema lagunar costeiro (Willwock e Tomazelli, 1995).

Lisboa e Castro (1998) localizaram e documentaram capturas ocorridas nas cabeceiras do Camaquã (capturado) e Jacuí (capturante) que modificaram a forma das cabeceiras destes dois sistemas de drenagem, encurtando a bacia hidrográfica do Rio Camaquã que no passado se estendia mais para o oeste. Os autores indicam que esse processo de captura das cabeceiras do Rio Camaquã pelas cabeceiras do Rio Vacacai, afluente do Jacuí, se deu pelo consumo erosivo da Superfície do Cerro da Cadeia, no Neógeno, dentro do contexto da abertura da depressão periférica Sulriograndense e do desenvolvimento da Superfície Interplanáltica da Campanha. A captura de um rio por outro (capturante), ocorre quando a drenagem controlada por certo nível de base invade a drenagem adjacente com certo nível de base mais elevado, desviando parte dos canais desse rio para a sua bacia hidrográfica (Lauber, 1968). Summerfield (1994), argumenta que a captura de rios é um importante processo no desenvolvimento da drenagem em geral.

A drenagem da bacia do Rio Camaquã, situada em um nível topográfico elevado, aplainado, com fraca declividade, tem suas nascentes em remanescentes da velha Superfície Cimeira de Caçapava, estabelecida no Paleógeno, e flui na Superfície Interplanáltica do Cerro da Cadeia, de idade Neógena. A bacia do rio Camapuã desenvolve-se nas regiões fisiográficas da serra do sudeste. O rio Camapuã e a maior parte de sua bacia situam-se sobre o escudo Sul-riograndense, sendo o maior da região sudeste. Suas nascentes situam-se aproximadamente a o oeste de Lavras do Sul, Bagé e Torquato Severo.

Segundo Ortiz (1995) o vale do rio Camaquã foi escavado em sedimentos de leques aluviais pliopleistocênicos, resultante de preenchimento de vales incisos, em especial durante o rebaixamento de mais de 130 metros do nível do mar ocorrido no máximo da Glaciação Wisconsin.

O sistema Jacuí-Guaíba é transverso às estruturas do escudo na direção NW-SE. Não se conhecem depósitos antigos na orientação atual E-W destes rios. Aventa-se a hipótese da existência de um antigo baixo curso do Jacuí, atualmente afogado na Lagoa dos Patos, cuja saída para o Atlântico seria onde está o atual canal de Rio Grande (Lisboa e Castro 1998).

4 - Proveniência X Minerais Pesados

A análise de minerais pesados oferece uma abordagem de alta precisão para determinar a proveniência de sedimentos, pois fornecem dados sobre a natureza mineralógica das áreas-fonte. Um dos pontos a favor da análise de minerais pesados é que uma ampla variedade de minerais pesados são encontrados nos sedimentos e muitos desses minerais têm uma paragênese muito restrita e específica e assim fornecem informação crucial sobre a proveniência.

Entretanto, a composição dos minerais pesados não é controlada somente pela composição mineralógica da região de origem. O sinal original da proveniência pode ser modificado por alguns processos que acontecem durante o ciclo de sedimentação, deste modo os minerais pesados não refletem somente a composição das rochas-fonte, e sim em alguns casos, eles podem manter pouca semelhança com a rocha-fonte, e irão refletir também os processos de impressão durante o ciclo sedimentar. Assim esses processos de impressão podem fazer com que um corpo homogêneo de sedimentos, derivado de uma única fonte, contenha cadeias heterogêneas de minerais pesados. Portanto, o uso indiscriminado de assembléias de minerais pesados para caracterizar e diferenciar a proveniência e pode levar a conclusões errôneas.

A composição dos minerais pesados produzidos das áreas-fonte depende basicamente de três fatores: da composição da suíte original dos minerais pesados (controlado pela litologia da rocha-mãe) da situação fisiográfica e do clima (Morton e Hallsworth, 1999).

Os minerais pesados são afetados por três processos atuantes durante o transporte e deposição: seleção física, abrasão mecânica e dissolução (Morton e

Hallsworth, 1999). A seleção física acontece como um resultado das condições hidrodinâmicas operantes durante o transporte sobre as diferentes densidades dos minerais pesados, e controla tanto sua abundância absoluta quanto relativa. A abrasão mecânica acontece durante o transporte e faz com que os grãos diminuam em tamanho, através de uma combinação de ruptura e arredondamento. A dissolução causa perda parcial ou total de minerais pesados em uma variedade de condições geoquímicas em diversos estágios do ciclo de sedimentação.

Esses três fatores operam em estágios diferentes durante o ciclo sedimentar. O intemperismo nas rochas-fonte causa a modificação da mineralogia antes da incorporação para o sistema de transporte através da dissolução seletiva. Durante o transporte, os minerais podem ser perdidos através da abrasão mecânica e através das mudanças durante o período de armazenamento. Os processos hidráulicos durante o transporte e a deposição afeta fortemente a abundância de minerais com características hidráulicas diferentes. A diagênese remove seletivamente minerais instáveis como um resultado de mudanças das condições físico-químicas. E as mudanças dadas pela exposição atual dos sedimentos podem causar uma alteração maior nos minerais instáveis.

Em uma visão mais ampla, o sinal original da proveniência dos minerais pesados é modificado por processos que acontecem durante todo o ciclo sedimentar, esses processo são: o intemperismo na área de origem antes da incorporação no sistema de transporte, a abrasão e efeitos hidrodinâmicos durante o transporte e deposição, o intemperismo durante o período de armazenagem aluvial, os processos de diagênese durante o soterramento, e o intemperismo pela exposição atual da rocha. (Morton e Hallsworth, 1999) (Fig. 22).

Figura 22: Diagrama esquemático mostrando os processos que controlam a assembléia de minerais pesados, modificado de Morton e Hallsworth, 1999.

4.1 - Processos e seus efeitos na proveniência

Quando o processo de transporte (remoção) do sedimento é mais rápido do que o processo que o gera, os detritos são rapidamente removidos sem significantes modificações químicas e assim o sinal de proveniência é transferido pelo sistema de transporte. Se por outro lado, a geração exceder a capacidade de remoção dos sedimentos, os produtos têm mais tempo para interagir com a água, afetando muito a composição dos detritos. Nessa situação, modificações extensas das suítes dos minerais pesados podem ocorrer antes do sedimento alcançar o sistema de transporte. (Johnsson *et al.*, 1991).

A estabilidade mecânica define a habilidade do mineral a resistir à abrasão e outros processos de redução de tamanho durante o transporte (vento, correntes, ondas). Os efeitos de abrasão nos grãos durante o transporte foram considerados como um possível mecanismo para a diminuição da diversidade mineral. Trabalhos de como Thiel (1945) e Dietz (1973) determinaram a estabilidade relativa mecânica de minerais pesados. Estudos em sistemas de rios tais como, Missipi (Russel, 1937), do Nilo (Shukri, 1949) e do Reno (Van Andel, 1950), não mostram evidencias de qualquer diminuição da diversidade dos minerais nas correntezas. Embora tenha havido um considerável esforço para determinar a estabilidade mecânica de grãos de minerais pesados, não há evidencia de que os minerais pesados desaparecem através do processo. Os efeitos de abrasão em minerais pesados durante o transporte, aparentam, portanto, ser geralmente indiferentes, mas é possível que a abrasão tenha um efeito significante em circunstancias excepcionais.

A estabilidade química define a habilidade do mineral de resistir à dissolução ou alteração em um ambiente químico particular. Tal estabilidade depende tanto da natureza do mineral quanto do caráter químico do meio ambiente.

Potter, 1973 estudando as suítes de minerais pesados elaborou uma tabela de estabilidade.

Ultraestável	Rutilo, zircão, turmalina	
Estável	Granada (pobre em Fe), estaroulita,	
	monazita, ilmenita, magnetita.	
Moderadamente estável	Epidoto, cianita, granada (rica em Fe),	
	silimanita, Apatita.	
Instável	Horblenda, augita, diopsidio, andalusita	
Muito Instável	Olivina	

Dos processos que operam durante o ciclo sedimentar dois desses exercem um forte controle das assembléias de minerais pesados, são eles: o processo hidráulico e o diagenético. Esses processos são capazes de causar uma impressão no sinal original de proveniência, provocando conclusões errôneas.

Processos hidráulicos

Visto que os minerais pesados são mais densos do que quartzo e os feldspatos, eles se comportam diferentemente durante o transporte e a deposição. Em média, os grãos de minerais pesados têm um tamanho menor do que os de quartzo e feldspato com os quais são transportados. Uma atenção detalhada a esse fenômeno foi dada pela primeira vez por Rubey (1933), que apresentou o conceito de equivalência hidráulica, mostrando que os minerais com mesma velocidade de acomodação são

depositados juntos. Rubey propôs que a velocidade de acomodação é uma função do tamanho e da densidade do mineral, onde os minerais menores e mais densos são depositados junto com minerais maiores e menos densos. Assim o processo hidráulico é capaz de fracionar a relativa abundância de minerais pesados. Rubey

(1933) sugeriu um método para diminuir esta influência que é de analisar as amostras dentro de uma faixa de tamanho. Não existe uma faixa de tamanho padronizada, embora estudos feitos procuraram estabelecer a faixa mais apropriada (Young, 1966; Muller, 1967). No entanto, parece haver uma tendência quase geral de que a faixa mais apropriada para minimizar esse efeito é a fração 63-125 μm, ideal para trabalhos com minerais pesados, pois estão presentes na maioria dos arenitos e as variações nas propriedades ópticas para identificação dos minerais são menores (Morton, 1985).

O comportamento hidráulico dos minerais pesados é um tópico complexo, com muitos fatores envolvidos tais como: regime de transporte (água ou vento), energia do transporte (alta ou baixa). As características do grão como tamanho, densidade e a forma também controlam a disponibilidade do mineral no sedimento e o seu comportamento durante a entrada, a locomoção e a deposição.

A característica mais importante é que a distribuição do tamanho do grão na rocha-fonte é o que controla a disponibilidade do tamanho do grão no sedimento.

Diagênese

Esse processo altera a assembléia de minerais através da progressiva dissolução de minerais instáveis (solução intraestratal) e pelo crescimento de minerais secundários. Os minerais secundários produzidos durante os processos diagenéticos não são indicadores de proveniência. Eles mostram, no entanto, informações sobre o regime diagenético. Diversos fatores governam a dissolução de minerais pesados durante a diagênese, incluindo a estabilidade do mineral, a temperatura e a composição dos fluídos dos poros, seu regime de circulação e o tempo (Morton & Halsworth 1999).

4.2 - Parâmetros sensíveis à proveniência

Apesar dos fatores, acima discutidos, que afetam os minerais pesados, eles mantém informações fundamentais sobre a proveniência. Para uma interpretação correta de proveniência é crucial que os parâmetros usados sejam herdados da área fonte e não sejam demasiadamente modificados por processos que operam durante o ciclo de sedimentação. Estas considerações e a discussão a seguir foram baseadas essencialmente no trabalho de Morton & Halsworth (1999).

Existem duas maneiras alternativas de estudo de minerais pesados para a interpretação de proveniência sedimentar, uma que usa a suíte inteira de minerais pesados (Analise de Minerais Pesados Convencional - AMP convencional) e outra que se concentra nos atributos de espécies minerais individuais (Analise de Minerais Pesados Varietais - AMP varietal). Para maximizar a informação de proveniência é recomendado que se combinem as duas abordagens.

AMP convencional

A análise de minerais pesados convencional baseia-se na quantificação das diferentes espécies de minerais pesados, e na definição de províncias petrológicas de minerais pesados (Suttner, 1974). Essas províncias são definidas pela ocorrência e pelas proporções de espécies significativas, constituindo unidades de sedimentos distintos, caracterizadas pela sua idade, origem e distribuição. Tais províncias constituem corpos sedimentares tridimensionais, caracterizados por uma suíte peculiar de minerais leves e pesados (Edelman, 1933 apud Sutter, 1974). Desse modo, as províncias mineralógicas presentes em uma bacia são definidas por possuírem uma associação mineralógica própria. As bacias sedimentares podem conter muitas províncias petrológicas de pesados, dependendo da quantidade de áreas-fonte. A contribuição combinada de diversas áreas-fonte para a uma bacia pode gerar associações muito complexas, originando províncias híbridas (Baak, 1936; apud Suttner, 1974).

A análise de proveniência através da definição de províncias de pesados, entretanto, pode dar margem a erros de interpretação da proveniência dos sedimentos. Tais erros de interpretação podem ser produzidos através de uma inadequada apreciação dos fatores já mencionados que controlam as assembléias minerais. Assim, a definição de proveniência pelas proporções de vários minerais pesados (suítes) pode levar a erros de interpretação, já que as proporções entre as espécies podem ser modificadas ou até totalmente eliminadas dos sedimentos. Para estudos criteriosos com esta metodologia é necessário escolher minerais pesados com comportamento intempérico, hidráulico e diagenéticos semelhantes para que possam refletir melhor o sinal da proveniência.

AMP varietal

Os efeitos de sobreposição da seleção hidráulica e da diagênese podem ser minimizados concentrando-se nas propriedades de um único grupo mineral. Parâmetros tais como cor (zircão, turmalina) e morfologia (zircão e apatita), foram usados para estudo de proveniência com excelentes resultados.

O advento da técnica de microssonda eletrônica acrescentou uma nova dimensão a AMP varietal por permitir a caracterização geoquímica de grupos individuais de minerais pesados. Esse tipo de informação acrescenta sofisticação na discriminação da proveniência e permite uma comparação mineralógica direta entre a fonte e o sedimento. Essa abordagem pode ser aplicada a muitas espécies de minerais, mas é melhor usada em minerais que são estáveis, como por exemplo o grupo das granadas. Uma das mais valiosas contribuições foi obtida por Morton (1994) com aplicação da análise geoquímica das granadas à litoestratigrafia e fazendo uma modelagem do reservatório no Campo Oseberg, ao Mar do Norte.

O desenvolvimento mais recente é a aplicação de métodos isotópicos em grãos individuais, mais notavelmente em zircão e monazita, ambos estáveis durante as fases do ciclo de sedimentação.

É recomendada uma abordagem completa para caracterizar a proveniência do sedimento usando a AMP. A metodologia ideal envolve uma caracterização mineralógica, diferenciando e mapeando os tipos de areia, usando método de AMP convencional para locação das áreas fontes, depois selecionar um ou mais tipos de minerais para que a AMP varietal forneça comparações diretas com potenciais áreas-fonte e maior informações sobre as litologias das áreas-fonte, e complementar com dados isotópicos. Combinada a abordagem convencional e a análise varietal de AMP e é uma ferramenta poderosa para a avaliação da proveniência dos sedimentos.

5 - GRANADAS

As granadas são tipicamente encontradas em rochas metamórficas, mas também ocorrem em rochas ígneas alcalinas, aplitos e pegmatitos graníticos, kimberlitos, e como grãos detríticos em sedimentos.

As granadas podem ser divididas em duas séries – piralespite (piropo, almandina, espessartita) e ugrandite (uvarovita, grossulária, andradita) (Deer *et al*, 1997). Assim, o grupo das granadas forma uma série isomórfica sub-dividida em 07 espécies, representadas pelos seguintes membros extremos:

• Piropo	Mg ₃ Al ₂ Si ₃ O ₁₂
Almandina	Fe3Al2Si3O12
• Espessartita	Mn ₃ Al ₂ Si ₃ O ₁₂
 Grossulária 	Ca ₃ Al ₂ Si ₃ O ₁₂
Andradita	Ca3(Fe ⁺³ , Ti)2 Al ₂ Si ₃ O ₁₂
• Uvarovita	Ca ₃ Cr2 Al ₂ Si ₃ O ₁₂
 Hidrogrossulária 	Ca ₃ Al ₂ Si ₂ O ₁₈ (SiO ₄) _{1-m} (OH) _{4-m}

Contudo, as granadas são nomeadas de acordo com a predominância da espécie em sua composição, raramente ocorrendo composição correspondendo a um membro extremo.

5.1 - Composição química:

São raras as granadas piropo com mais 80% da molécula. A granada tipo piropo típica das rochas metamórficas de alto grau contém em torno de 30 a 70 por cento

desta molécula, sendo os restantes componentes principalmente almandina e, subsidiariamente, a grossulária.

A granada almandina é a espécie mais comum no grupo das granadas. Essas granadas contêm, geralmente, quantidades apreciáveis de moléculas de piropo, espessartita e grossulária. Uma composição típica para granada almandina em um micaxisto com metamorfismo regional pode ser Alm₆₆Gro₂₅Pi₅Esp₄ (Deer *et al*, 1992).

As espessartitas mostram uma larga variação na composição da molécula, sendo o principal substituto a almandina, mas também ocorrem espessartitas com um componente apreciável de grossulária.

Granadas do tipo grossulária possui composição química muito próxima do membro extremo, sendo a molécula predominante de substituição e á andradita, com a qual forma uma série contínua.

Andradita contém na sua composição química mais do que 90% da molécula andradita. No entanto, a principal série da solução sólida é a andraditagrossulária. O que faz diferenciar da grossulária é a presença do Fé⁺³ e Ti na posição octaédrica na sua composição. Para as variedades titaníferas de andradita (mais de 2% Ti) com Fé⁺³>Ti na posição octaédrica, são denominadas de melanitas. Nesse grupo também, onde o vanádio é o componente principal é denominada de goldmanita. O zircônio ocorre como constituinte menor em algumas andraditas titaníferas, mas com granadas em que o Zr é o componente principal são denominadas de kimzeyita (Deer *et al*, 1992).

A uvarovita é um membro da série ugrandita, mas são raras as granadas com molécula uvarovita dominante. É principalmente a molécula da grossulária, com pequenas quantidades de andradita, que entra na solução sólida com uvarovita. São granadas de coloração verde, fornecidas por uma alta concentração de cromo na sua composição química.

5.2 - Características distintivas (propriedades ópticas e físicas)

Têm sido elaborados diversos diagramas relacionando a variação das propriedades físicas com a mudança da composição química das granadas. Três características tem sido bastante utilizadas para construção dos diagramas: o índice de refração, a densidade e as dimensões das arestas das células unitárias. Tais diagramas baseiam-se na hipótese de que as propriedades físicas representadas são funções proporções moleculares dos membros finais. Das três propriedades físicas, a densidade é a menos viável, devido ser freqüente a ocorrência de inclusões de quartzo ou outros minerais.

O método mais eficiente para determinar à composição química da granada é o de análise química por microssonda.

A granada é admitida como um mineral isotrópico, embora a almandina e o piropo sejam em geral completamente isotrópico, a espessartita pode ser um pouco anisotrópica e a série ugrandita pode apresentar acentuado anisotropismo (Sobolev, 1965). Nas séries de ugrandita pode também ser comum um certo zoneamento composicional. A cor das granadas é extremamente variável, sendo controladas principalmente pelas quantidades de Fe, Mn, e Cr presentes (Deer *et al*, 1992). O piropo é tipicamente cor de rosa avermelhado com uma tonalidade púrpura. A granada almandina possui cor vermelha escura a preta acastanhada. A espessartita varia de preta, a vermelha, castanha e laranja. A grossulária possui variedades incolores, cor de rosa e verde amareladas. A andradita varia de amarelada a castanha escura, mas as variedades com alto Ti são pretas. A uvarovita vai tipicamente a verde escura a verde esmeralda intenso.

O alto relevo e a natureza isotrópica ou pouco birrefringente, e algum zoneamento são características principais desse mineral.

5.3 - Paragênese

A granada é um mineral especialmente característico de uma vasta variedade de rochas metamórficas, bem como de alguns granitos e pegmatitos, rochas vulcânicas ácidas e quimberlitos. Como é resistente à abrasão e ao ataque químico, encontra-se freqüentemente em sedimentos detríticos.

A granada piropo é comum em algumas rochas ultrabásicas, tais como peridoditos, kimberlitos e serpentinitos, paragnaisses, granulitos, charnockitos e eclogitos.

A almandina é a granada típica dos xistos resultantes do metamorfismo regional de sedimentos pelíticos (Deer *et al*, 1992). Em rochas de fácies granulíticas, são típicas granadas do tipo almandina-piropo, tendo uma composição Alm₄₀₋₆₀,Pir₂₀₋₄₀,Gr+And+Uv₁₋₅. A almandina em rochas metamórficas pelíticas de baixo a médio grau, podem conter uma quantidade apreciável de piropo e espessartita, tendo uma composição Alm₅₀₋₇₀,Pir₅₋₂₀,Esp₁₋₅,Gro₁₋₃.

A espessartita é menos comum que muitas das outras espécies de granadas. As granadas que contêm como molécula dominante a espessartita encontra-se em alguns depósitos escarníticos em associações ricas de Mn de origem metassómatica. Sua maior abundância é em rochas magmáticas graníticas peraluminosas, principalmente em pegmatitos e aplitos graníticos.

A grossulária, característica de rochas calcárias metamorfizadas, ocorrendo também em rochas que tenham sofrido metassomatismo cálcico. Em zonas de metamorfismo de contato, por exemplo, ocorre em margas ou xistos argilosos calcários e encontra-se em abundância em escarnitos (Watters, 1958).

A andradita é uma granada que ocorre essencialmente em rochas calcárias impuras que sofreram metamorfismo de contato ou termal, particularmente em depósitos escarníticos metassomáticos, envolvendo a introdução de Fe_2O_3 e TiO (Schwartz *et al*, 1980). As andraditas titaníferas (melanita), ocorrem, normalmente, em rochas ígneas alcalinas tais como sienitos nefelínicos e ijolitos e seus equivalentes vulcânicos, fonolito, nefelinitos etc.

A uvarovita é a granada mais rara e esta sempre associada a molécula da grossulária. As granadas que tem molécula da uvarovita dominante são de ocorrência muito restrita e encontram-se principalmente em serpentinitos envolvendo a associação do cromo em calcários metamorfizados. Em tais rochas calcarias a produção de uvarovita depende da introdução metassómatica de Cr proveniente de rochas ígneas básicas ou ultrabásicas (Burns, 1973).

5.4 - Granadas no estudo de proveniência.

As granadas são minerais pesados adequados para estudos de proveniência, consistindo numa importante ferramenta para traçar as áreas-fonte dos sedimentos. Dentre as suas características favoráveis destacam-se:

- a sua ampla variação composicional, ou seja, há sete membros finais principais no grupo que fornecem informações detalhadas sobre os tipos litológicos da áreas-fonte;

- são extremamente estáveis no intemperismo e relativamente estáveis na diagênese;

possuem uma variação de densidade relativamente pequena (3.6 4.3) diminuindo o efeito de seleção hidráulica;

 a utilização da fração 65-125 μm minimiza os efeitos hidráulicos e as variações nas propriedades óticas para seu reconhecimento;

 o estudo de um único grupo de mineral, como por exemplo a granada minimiza os possíveis efeitos de instabilidade mecânica, ou seja, minimiza os efeitos da destruição seletiva durante o intemperismo, o transporte e diagênese.

A identificação das rochas-fonte das granadas pode ser realizada através da discriminação de sua composição através de dois diagramas triangulares distintos, representados pelos vértices: **P** (Piropo); **AIS** (AI = Almandina + S =Espessartita); **GAU** (G = Grossulária + A = Andradita + U = Uvarovita) e **PGAU** (P = Piropo + G = Grossulária + A = Andradita + U = Uvarovita). Os diagrama triangulares P-AIS-GAU e AI-S-PGAU
(Fig. 23) discriminam cinco campos composicionais (a), (b), (c), (d) e (e) correspondentes
a grupos distintos de rochas portadoras de granadas conforme definido abaixo:

(C) anfibolitos e gnaisses máficos, (d) metacarbonatos e (e) granitos, aplitos e pegmatitos.

Figura 23 – Diagramas triangulares discriminantes com os respectivos campos composicionais relacionados as litologias-fonte.

(a) Granadas com elevado teor de Piropo (P>20) e almandina e baixo teor de Grossularia+Andradtita+Uvarovita (GAU<10), derivadas de rochas metamórficas de alto grau (paragnaisses, granulitos e charnockitos).

(**b**) Granadas com teores baixos de Piropo, elevados valores para AIS e teores variáveis de GAU são características de rochas metasedimentares de baixo a médio grau (metapelitos e outros metasedimentos siliciclásticos).

(c) Granadas com elevados teores de Piropo e GAU, derivadas de metabasitos (anfibolitos e gnaisses máficos).

(d) Granadas com elevados teores de GAU (GAU>45) são encontradas em rochas metacarbonáticas (rochas metamórficas regionais e de contato; escarnitos). Neste campo plotam ainda outros tipos litológicos representados por: – granadas Andraditas da variedade Melanita (TiO2 > 2,0%) derivadas de rochas ígneas alcalinas – e Uvarovitas (elevado teor de Cr) que ocorrem em serpentinitos.

 (e) Granadas com baixos teores de PGAU e elevados valores de Espessartita (S>20) são encontradas em granitos; pegmatitos e aplitos graníticos.

6 - Minerais Pesados da Bacia de Pelotas – Trabalhos anteriores

A plataforma continental do Rio Grande do Sul vem sendo pesquisada, sob o ponto de vista geológico, desde a década de 50, porém no ano de 1967 quando surgiram os trabalhos de Zembruscki e Martins, Urien e Eichler que foram considerados pioneiros da pesquisa científica. Posteriormente, com o surgimento do programa Plurianual da Geologia e Geofísica Marinha (Projeto GEOMAR) e do Programa de Reconhecimento Global da Margem Continental Brasileira (Projeto REMAC), aumentou grandemente o número de pesquisadores e trabalhos relacionados à área. Paralelamente, a PETROBRAS desenvolvia trabalhos geológicos, geofísicos e paleontológicos nos mais diversos aspectos sedimentológicos, estratigráficos e estruturais (Celmins, 1957; Ghingone, 1960; Gonçalves, 1979; Asmus & Guazelli, 1981; Ojeda, 1982; Fontana, 1990).

Tratando especificamente de minerais pesados, diversos autores desenvolveram trabalhos sobre proveniência dos sedimentos da faixa costeira e da plataforma continental do Rio Grande do Sul (Martins *et al*, 1967; Pomerancblum e Costa, 1972; Rocha *et al.*, 1975; Silva, 1976).

Pomerancblum e Costa (1972) reconheceram duas províncias de minerais pesados: (a) província Riograndense interna – ocupando a parte interna da plataforma e sendo caracterizada pela assembléia epidoto-estaurolita-granada-zircão-horblenda, de alta estabilidade mineralógica; (b) província Riograndense externa: localizando-se na parte externa da plataforma (inclusive talude) e caracterizada pela associação hiperstênio-horblenda-augita, de baixa maturidade mineralógica. Quanto à proveniência, os autores sugerem como área fonte da primeira província, as areias metamórficas do
escudo Sul-riograndense e, como fonte da segunda província, as rochas básicas da formação Serra Geral.

Rocha *et al* (1975), em um trabalho da Margem continental Brasileira, desde ao Cabo Frio ao Chuí, identificaram na Margem Continental do Rio Grande do Sul, duas províncias de minerais pesados: (a) Província horblenda-epidoto-hiperstênio, com menores quantidades de turmalina, granada e augita, cobrindo toda a parte norte da margem continental desde a altura do Rio Grande e (b) Província augita-epidotohiperstênio, com menores quantidades de horblenda e granada, cobrindo toda a margem continental ao sul de Rio Grande.

Silva (1976), estudando a mineralogia das areias de praia entre Rio Grande e Chuí, reconheceu duas associações de minerais pesados: (a) ao norte de sua área de estudo, caracterizada por minerais como augita, hiperstênio, horblenda e epidoto e (b) ao sul da área de trabalho, onde predominam minerais opacos. Quanto à fonte a autora sugere as rochas do escudo sul-riograndense e uruguaio e as basálticas da Formação Serra Geral.

Tomazelli (1978) identificou o agrupamento das suítes (assembléias) de minerais pesados, da faixa costeira e plataforma adjacente que permitiu o reconhecimento de quatro províncias mineralógicas (Fig. 24)

1 – Província Riograndense Interna – caracterizada pela associação epidoto-estaurolita-cianita-zircão-turmalina-granada que possui como área fonte principal o complexo ígneo-metamórfico do Escudo Sul-Riograndense. Extende-se pela plataforma interna, paralelamente a linha de costa.

2 – Província Patos – caracterizada pela associação horblenda-epidotohiperstênio-turmalina. Ocorre como uma pequena área na desembocadura da Lagoa dos Patos.

3 – Província Riograndense Externa – caracterizada pela associação augita-hiperstênio-horblenda, e possui como área fonte o escudo e platô basáltico. Extende-se pela plataforma externa. 4 – Província Platina – caracterizada pela associação augita-hiperstênio, e interpretou como provável área fonte os sedimentos do Prata, em especial a suíte pampeano-patagônica. Extende-se pela plataforma média até a altura de Rio Grande.

Figura 24: Províncias minerais dos sedimentos quaternários da bacia de Pelotas definidas por Tomazzeli, 1978.

Estes dados permitiram identificar duas direções preferenciais de dispersão dos sedimentos pela plataforma continental do RS: (1) direção continenteoceano (offshore), responsável pela alimentação das províncias Riograndense Interna, Patos, e Riograndense Externa, (2) direção sul-norte suprindo a província Platina (Tomazelli, 1978).

Ayup *et al*, 1995, aplicando análise multivariada, destacando técnica de agrupamento e vetorial modo QR, identificaram quatro assembléias. A primeira, constituída principalmente por augita a qual predomina na plataforma continental externa, principalmente ao sul da bacia. A segunda suíte, predominante constituída por horblenda e hiperstênio. O primeiro mineral predominante nas adjacências da desembocadura da laguna dos patos, enquanto o segundo apresenta suas maiores concentrações na parte norte da bacia. Ambos minerais típicos de rochas ígneas básicas e como acessórios nos

derrames basálticos. Em função da composição desta suíte e da distribuição espacial dos sedimentos, atribuíram a este conjunto uma origem a partir dos principais sistemas de drenagem desde o setor central do escudo em direção aos basaltos no norte. A terceira componente constituída por turmalina, estaurolita, epidoto, granada e cianita, este conjunto de minerais apresenta concentração mais abundante no setor central na altura do rio Camaquã e da lagoa Mangueira, onde atribuíram para esta suíte comuns nas rochas do escudo Sul-riograndense e Uruguaio, principalmente de origem de rochas metamórficas. A quarta componente constituída principalmente por apatita, zircão e apatita; destacando-se pela presença localizada no setor sul-central, com direção predominante ao norte da plataforma uruguaia e nas proximidades do arroio Chuí, atribuíram estes minerais comuns nas rochas do escudo Sul-riograndense e Uruguaio e continental adjacente, considerando estes sedimentos platenses.

8 - Resultados e Discussões

Os histogramas a seguir mostram o percentual (Tab. 82, 83, 84 e 85 -Anexos) dos minerais pesados em grupos de minerais encontrados nas 19 amostras dos sedimentos inconsolidados da Bacia de Pelotas.

Figura 25: Histograma dos minerais: Augita, Horblenda e Hiperstênio.

Figura 26: Histograma dos minerais metamórficos

Figura 27: Histogramas dos minerais pesados da Bacia de Pelotas

Figura 28: Histogramas dos minerais pesados da Bacia de Pelotas

A avaliação do grau de sedimentos recicláveis é um problema que não tem tido um trato satisfatório (Zuffa, 1984), porem a utilização do índice ZTR (zircão-turmalina-rutilo) é válido, devido que esses minerais terem alta estabilidade mecânica e química, eles tendem a se tornar concentrados durante a reciclagem, então um alto índice de ZTR pode ser considerado como uma medida de maturidade.

O índice ZTR baixo a moderado (Tab.81 - anexos e Fig. 29) mostra que sedimentos provenientes de áreas fontes recicladas não foram importantes no suprimento da Bacia de Pelotas.

Figura 29: Histograma dos minerais do índice ZTR

Análises Químicas

Os resultados das análises químicas das granadas obtidas em amostras das rochas e de sedimentos do primeiro ciclo do Escudo Sul-riograndense serão apresentados e discutidos nesse capítulo. Os valores analíticos são mostrados nas tabelas em anexo.

As análises das granadas do escudo foram descritas a seguir, individualizando os principais blocos.

Bloco São Gabriel

As granadas das amostras de rochas coletadas no Bloco São Gabriel do Escudo Sul-riograndense são dominantemente almandinas e subordinadamente grossulárias.

A composição das granadas dos metapelitos de baixo e médio grau (ML02, CAMB, CAP-03, CPMF-13 e CPMF-14) mostram assinatura química característica, esperada para estes tipos de rochas, com teores elevados para AI e baixos e médios para P e GAU (Fig. 30 e 31).

Figura 30 - Composição das granadas de amostras da Formação Pontas do Salso - Bloco São Gabriel, relacionadas ao metamorfismo regional dinamotermal (orogênico) de baixo grau: (a) metapelito (ML02); (b) composição das granadas dos metapelitos de médio grau metamórfico pertencentes à Formação Cambaizinho (CAMB) do Grupo Vacacaí Bloco São Gabriel.

Figura 31 - Composição das granadas de amostras do Bloco São Gabriel: (a) metapelito do Complexo Metamórfico Passo Feio (CAP-03); (b) Composição das granadas de (a) estaurolitagranada xisto (CPMF-13 e 14) e calcio-silicatada do Complexo Passeio (CPMF-7);

As granadas do biotita gnaisse do Complexo Cambaí (7041) são também almandinas (Fig. 32). Os cordierita-andaluzita-biotita cornubianitos da auréola de metamorfismo de contato do Granito São Sepé sobre os metasedimentos da Formação Campestre do Grupo Vacacaí (SSP), possuem granadas com valores elevados para componente AI e médios para P e S (Fig. 32). A composição das granadas das amostras de metamarga (ML-02A e ML01) da Formação Pontas do Salso, indicaram valores baixos para P, médio para o componente G e alto teor para AI. (Fig. 33). A composição das granadas do escarnito (MMO), derivado da interação de fluídos de granitóides do Complexo Cambaí com mármores calcíticos da Formação Cambaizinho, é da variedade Grossulária e mostra teores elevados nos componentes GAU (Fig. 34).

Figura 32 - (a) amostra de granada-biotita gnaisse (7041) do Complexo Cambaí; (b) granadas de cornunbianito do Complexo Bossoroca Bloco São Gabriel (SSP).

Figura 33 - Composição das granadas de amostras da Formação Pontas do Salso - Bloco São Gabriel, relacionadas ao metamorfismo regional dinamotermal (orogênico) de baixo grau: (a) metamarga (ML-02A) e (b) metarenito (ML01) da Formação Pontas do Salso do Bloco São Gabriel.

Uma amostra de sedimento de corrente de primeiro ciclo (ML-03) coletada em drenagem que corta a Formação Pontas do Salso constitui duas populações de granadas: a mais abundante é derivada de rochas metamórficas de médio a baixo grau e um grão derivado de aplito/pegmatito granítico (Fig 34).

Figura 34 - Composição das granadas da variedade Grossulária da amostra de escarnito (a) da Formação Cambaizinho (MMO) mostrando teores elevados nos componentes GAU; (b) granadas de sedimento de corrente coletada em drenagem que corta a Formação Pontas do Salso mostrando duas populações: a mais abundante é derivada de rochas metamórficas de médio a baixo grau e um grão derivado de aplito/pegmatito graníticos.

Bloco Porongos

As amostras das rochas portadoras de granada do Cinturão Tijucas mostram os seguintes resultados.

Os metapelitos de baixo e médio grau (PA, CP03) indicaram valores altos para Al e baixos para P (Fig. 35), exceto para a amostra TL2 que possui um valor médio para S (Fig. 36). As granadas do anfibolito (IND) indicaram teores médios para G e P e alto para Al (Fig. 36).

AIS GAU PGAU Figura 35 - Composição das granadas das amostras PA (a) e CP03 (b) de metapelitos do Complexo Metamórfico Porongos.

Figura 36 - (a) granadas de anfibolito (IND) do Complexo Metamórfico Porongos do Cinturão Tijucas; (b) metapelito do Complexo Metamórfico Porongos (TL-2).

O sedimento de corrente (CP-01) coletado na drenagem que corta as rochas metavulcanosedimentares na região de Capané (norte do Complexo Metamórfico Porongos), mostra apenas granadas derivadas de rochas metamórficas de médio a baixo grau (Fig. 37).

Figura 37 - Composição das granadas de (a) sedimento de corrente coletada em drenagem que corta a região de Capané, mostrando populações de rochas metamórficas de médio a baixo grau.

Cinturão Dom Feliciano (Bloco Encruzilhada e Batólito Pelotas)

As amostras analisadas das rochas portadoras de granada no cinturão DF forneceram os seguintes resultados.

As composições das granadas dos metapelitos do Bloco Encruzilhada (QT-1, QT-2, QT2A) indicaram altos teores nos componentes P e Al, característico de granadas de alto grau metamórfico (Fig. 38 e 39). A amostra de gnaisse pelítico (SMVC) possui altos teores para Al e teores médios para o componente P (Fig. 39). As granadas do Anortosito Capivarita (JT), mostram assinatura característica com altos teores para PGAU (Fig. 40).

As granadas analisadas do aplito (JT40C) (Fig. 40) e do pegmatito (F90), mostram assinatura típica, com baixos valores de PGAU e teores elevados de espessartita (Fig. 41). Já a exótica granada melanita (série das andraditas) dos fonolitos (ALC) da Província Alcalina da região de Piratini-RS mostra altos teores para A e teores médios para G e composição peculiar, rica em TiO₂ e Fe₂O₃ (Fig. 41 e Tab - 44).

Figura 38 - Composição das granadas de amostras do Bloco Encruzilhada: (a) metapelito (QT-1) e (b) amostra de biotita-granada gnaisse (QT-2) do Complexo Metamórfico Várzea de Capivarita.

Figura 39 - Composição das granadas (a) de silimanita-granada gnaisse (QT-2A), do Complexo Metamórfico Várzea do Capivarita do Bloco Encruzilhada; (b) granadas de gnaísse pelítico (SMVC) do bloco Encruzilhada.

Figura 40 - Composição das granadas de amostras do Bloco São Gabriel: (a) anortosito (JT); (b) amostra de aplito (JT40C).

Figura 41 - No diagrama AIS-P-GAU estas granadas (a) são indistinguíveis das granadas derivadas de rochas metamórficas de baixo a médio grau. No diagrama AI-PGAU-S estas granadas ricas em MnO podem ser facilmente discriminadas das rochas metamórficas de baixo a médio grau pois plotam no campo com baixíssimos valores de PGAU; (b) granada Melanita dos fonolitos da Província Alcalina da região de Piratini-RS mostrando composição peculiar, rica em TiO2.

Bloco Taquarembó

Os granulitos máficos (CGSMC-34 e 39) e o gnaisse pelítico (CGSMC-33) do Bloco Taquarembó, indicaram composição das granadas com alto teores para o componente P para as duas litologias, com teor médio para GAU (granulitos máficos) e baixo GAU (gnaisse pelítico), plotando nos campos dos metabasitos e metasedimentos de alto grau, respectivamente (Fig.42).

Figura 42: composição das granadas de amostras do Complexo Granulítico Santa Maria Chico do Bloco Taquarembó proveniente de granulito máfico (CGSMC-34 e 39) e silimanita-granada gnaisse (CGSMC-33) plotando nos campos dos metabasitos e metassedimentos de alto grau, respectivamente

A correlação dos dados composicionais das granadas, determinadas no Quaternário da Bacia de Pelotas com aquelas do embasamento adjacente mostram a presença de três populações expressivas de granadas e uma quarta com menor representatividade, provenientes do Escudo Sul-Riograndense (Fig.43).

Figura 43 - (a) Composição das granadas dos sedimentos do Quaternário da Bacia de Pelotas envolvendo amostras de testemunhos da Província Sul-Riograndense Interna e Patos, mostrando 4 populações distintas, com predomínio de granadas derivadas de terrenos de alto grau metamórfico. (b) Granadas das diversas litologias-fonte do Escudo Sul-Riograndense mostrando grande diversidade composicional, relacionada aos diferentes grupos composicionais de rochas de terrenos com idade variável do Paleoproterozóico ao Terciário.

- a mais freqüente consiste de granadas ricas no componente almandina - piropo – indicando uma área fonte relacionada a terrenos de alto grau metamórfico, tais terrenos localizados no ESRGS na região do Bloco Taquarembó (granulitos e gnaisses), e no cinturão DF na de Região de Capivarita. Acreditamos que haja uma provável contribuição do Escudo Uruguaio dos granulitos e gnaisses pré-brasilianos do Cinturão Valentines.

- Granadas com teores baixos de piropo, elevados valores para almandina+espessartita e teores variáveis de grossularia+andradita+uvarovita – derivadas de rochas metasedimentares de baixo a médio grau, provenientes das unidades do Cinturão Tijucas, Bloco São Gabriel incluindo Complexo Palmas, Cambaizinho e Passo Feio. Em menor proporção granadas com elevados teores de Piropo e grossularia+andradita+uvarovita – provenientes de metabasitos e granulitos do Complexo Santa Maria Chico.

- os aplitos e pegmatitos graníticos do Bloco Dom Feliciano tiveram pequena participação como área fonte dos sedimentos da bacia.

O Bloco Taquarembó através do Complexo Granulítico Santa Maria Chico foi uma área fonte importante para as granadas de alto grau.

O Cinturão Tijucas é a principal área fonte das granadas de médio a baixo grau metamórfico. Estas rochas possuem expressão importante no Complexo Metamórfico Porongos. Outra evidência importante é a presença de cianita na suíte dos minerais pesados presentes na plataforma interna, mineral este em particular presente somente nas unidades desse Cinturão.

O Bloco São Gabriel também pode ter contribuído com granadas de baixo a médio grau metamórfico e subordinadamente com granadas de rochas calcicosilicatadas, envolvendo a Formação Pontas do Salso, Cambaizinho e Complexo Passo Feio. A ausência de granadas de escarnitos (altos valores de GAU) nos sedimentos da bacia analisados pode estar relacionado ao fato de que estas rochas não são abundantes e por representarem corpos de menor tamanho nestas unidades do Bloco São Gabriel. Por outro lado, o fato dos sedimentos da bacia analisados não apresentarem granadas ricas em Ca - de composição escarnítica, leva a supor que esta região não era uma área fonte importante. Em conseqüência, as granadas de baixo e médio grau que ocorrem neste bloco devem ter pouca participação nos sedimentos da bacia.

O Cinturão Dom Feliciano teve contribuição importante com granadas de alto grau metamórfico provenientes do Complexo Metamórfico Várzea da Capivarita. Já as granadas de aplitos e pegmatitos graníticos, representando a quarta e a menos expressiva presença na Bacia de Pelotas, pode ter proveniência dos complexos graníticos intrusivos do Batólito de Pelotas, muito comum nesse bloco. Quanto a granada

89

escudo, não sendo possível a sua contribuição para a bacia.

8 - PROVENIÊNCIA DOS SEDIMENTOS QUATERNÁRIOS DA PORÇÃO SUL DA BACIA DE PELOTAS, RS: COMPOSIÇÃO QUÍMICA DAS GRANADAS E ASSEMBLÉIA DE MINERAIS PESADOS

FÁBIO SPLENDOR, MARCUS VINICIUS DORNELES REMUS, SERGIO REBELLO DILLEMBURG

Instituto de Geociências, Universidade Federal do Rio Grande do Sul (UFRGS). Porto Alegre – RS Caixa Postal 15044, CEP 51509-900. e-mail:fabiospl@ibest.com.br

Publicado na Revista Pesquisa em Geociências conforme em anexo I

Abstract

The analysis of detrital heavy mineral offers a high precision approach to determine the sedimentary provenance, owing to the diversity of mineral species in the source-rocks. The analysis of varieties within a single species of heavy mineral is increasingly used by oil exploration companies, with excellent results. In this study, the chemical composition of garnet group minerals from the Quaternary sediments of Pelotas Basin (south Brazil) is compared with the composition of garnets from the units of basement rocks of the Sul-Riograndense shield. Surface sediments from the inner continental (shelf) were obtained from core samples of the Pelotas Basin. These samples were selected and prepared according to usual methodology of heavy mineral concentration. Heavy minerals constitute a small part of the sediment of the shelf platform studied. The principal species identified are: tourmaline, staurolite, epidote, garnet, hornblende, hypersthene, augite, kyanite, sillimanite, monazite, zircon, rutile and opaques. Chemical data of garnet minerals were obtained by WDS electron microprobe analysis. The results show that the Quaternary sediments of Pelotas Basin has 4 garnet populations: 1) the most common group, with garnet of pyrope composition, indicating an origin from high-grade metamorphic rocks, including granulites and pelitic gneisses of Santa Maria Chico Granulitic Complex (Taquarembó Block), with probable contributions of Pre-Brasiliano granulites from the Valentines Belt (Uruguay); 2) comprising garnets with lowpyrope composition, high almandine+spessartine and variable grossular+andradite+uvarovite contents, whose origin is related to middle to low-grade metamorphic rocks of the Porongos Complex, Tijucas Belt, with possible minor contribution also of the middle to low-grade metamorphic rocks of São Gabriel Block; 3) comprising garnets with high pyrope and grossular+andradite+uvarovite composition, which are related to metabasites mainly from mafic granulites of Santa Maria Chico Granulitic Complex, and possible contribution from amphibolites of the Porongos Metamorphic Complex; 4) the less common group, comprising spessartine and low pyrope+grossular+andradite+uvarovite garnets, which are related to pegmatites and aplitic granites from the Dom Feliciano Belt.

ÍNDICE

INTRODUÇÃO

ÁREA DE ESTUDO

METODOLOGIA

RESULTADOS E DISCUSSÕES

CONCLUSÕES

BIBLIOGRAFIA

INTRODUÇÃO

A análise de proveniência sedimentar é reconhecida atualmente como uma ferramenta importante para análise de bacias. Estudos petrológicos e geoquímicos dos componentes detríticos têm sido bastante utilizados na interpretação da evolução tectônica e do preenchimento das bacias. A análise de minerais pesados oferece uma abordagem de alta precisão para determinar a proveniência sedimentar, devido à diversidade de espécies minerais encontrados nas rochas-fonte (Pettijohn, 1973). Além disso, a utilização dos minerais pesados é uma técnica sensível para determinar a proveniência, pois muitos desses minerais têm uma paragênese muito restrita e específica e por isso fornecem informação crucial sobre a proveniência (Morton, 1991). Porém, o sinal de proveniência original pode ser modificado nos sedimentos, pelas alterações intempéricas, pelo sistema de transporte, pelos processos hidráulicos durante o transporte e pela diagênese, assim a identificação e a discriminação apurada da proveniência dependem do isolamento dessas características (Morton & Hallsworth, 1999). A análise química de minerais detríticos, atualmente é uma importante parte integrante de muitos estudos de proveniência principalmente em minerais pesados (Morton, 1985, Morton, 1987, Hurst et al, 1988, Morton, 1991, Takeuchi, 1994, Preston et al, 1998, Morton, 1998, Morton et al, 2002, Sabeen et al, 2002, Pinto et al, 2004, Morton et al., 2004). A análise química é determinada rápida e precisamente pela análise de microssonda eletrônica e quando usada em conjunto com dados convencionais da composição de toda assembléia de minerais pesados, fornece informações sensíveis sobre a proveniência. O grupo de minerais da granada, mais usado nos estudos varietais, provou ser o mais útil, isso porque a granada tem uma ampla variedade composicional, ou seja, há sete membros finais principais no grupo que fornecem informações detalhadas sobre os tipos litológicos (Wright, 1938, Sobolev, 1965) e que são extremamente estáveis no intemperismo e relativamente estáveis na diagênese, bem como possuem uma variação da densidade relativamente pequena (3.6 - 4.3) diminuindo o efeito de seleção hidráulica (Morton, 1985). O estudo da proveniência dos sedimentos quaternários da Bacia de Pelotas é de grande importância para o entendimento da distribuição espacial dos sedimentos da bacia, permitindo identificar as direções preferenciais de transporte sedimentar e as suas respectivas áreas fonte. Estudos anteriores nos sedimentos quaternários da Bacia de Pelotas (Delaney, 1965, Martins *et al.*, 1967; Pomerancblum e Costa, 1972; Rocha *et al.*, 1975; Da Silva, 1976, Tomazelli, 1978; Villwock *et al.*, 1979) determinaram a presença de várias espécies de minerais e associações de minerais pesados neste sistema. Esses dados permitiram aos autores estabelecer algumas correlações com as áreas-fonte da bacia, faltando, entretanto, a identificação das variedades composicionais específicas dos grupos minerais (por exemplo, granadas) para identificar com maior precisão as áreas fonte. Mais recentemente, foram retomados estudos das concentrações de minerais pesados (placers) na planície costeira e plataforma continental do Rio Grande do Sul focalizando especialmente os aspectos de geologia econômica destes depósitos (Corrêa, 1990, Castro, 1993, Munaro, 1994, Caliarri *et al*, 1995, Ferron, 1995, Wolf, 1997, Caruso *et al*, 1999). Os dados obtidos no presente trabalho consistem na análise convencional da mineralogia total da assembléia dos minerais pesados de 19 amostras e da análise da composição das granadas de diferentes populações de 30 amostras.

ÁREA DE ESTUDO

O presente estudo ocupa-se da fração arenosa dos depósitos sedimentares do Quaternário (Holoceno-Pleistoceno), da plataforma continental interna do estado do Rio Grande do Sul, a qual representa parte da porção superficial atualmente imersa da Bacia de Pelotas (Fig. 1), bem como do embasamento do Escudo Sul-riograndense adjacente. No escudo, afloram rochas que, na sua maior parte, foram geradas durante o Pré-cambriano, constituindo-se de rochas ígneas e metamórficas, parcialmente recobertas por rochas sedimentares. O embasamento ocupa a porção centro-sul do estado, abrangendo cerca de 50 mil Km², com limites ao norte, oeste e sudoeste com sedimentos gonduânicos da Bacia do Paraná, ao leste com depósitos sedimentares inconsolidados da Província Costeira do Rio Grande do Sul, ao sul prolonga-se para além da fronteira do Brasil com o Uruguai. Do ponto de vista litológico, ao leste o Escudo Sul-riograndense caracteriza-se por granitóides diversos com características petrográficas, geoquímicas e idades relacionadas dominantemente ao Ciclo Brasiliano. Na sua porção central, afloram principalmente rochas metamórficas xistosas, metavulcânicas, quartzitos, vulcânicas intermediárias a ácidas, recobertas por rochas sedimentares siliciclásticas deformadas ou não. A oeste predominam os granitóides com estrutura gnáissica,

associados a complexos máficos-ultramáficos relacionados ao Neoproterozóico, granulitos do Paleoproterozóico e vulcânicas intermediárias e ácidas. Importantes zonas de cisalhamento transcorrentes (Fig. 2) com direções preferenciais NE-SW e NW-SE recortam o embasamento (Chemale, 2000). A Bacia de Pelotas, com dois grandes compartimentos geomorfológicos a Planície Costeira (Sistema de legues aluviais e Sistemas deposicionais Tipo Laguna-Barreira) e a Plataforma Continental, ocupa cerca de 200.000 Km² na região costeira e marítima do estado do Rio Grande do Sul, dos quais 40.000 Km² da área emersa. O pacote sedimentar que preenche a Bacia de Pelotas assenta diretamente sobre o embasamento cristalino ou sobre següências paleozóicas da Bacia do Paraná. O limite sul da bacia é dado pela Zona de Fratura do Chuy (Alto de La Coronilla), junto ao território com Uruguai. Para norte, o alto de Florianópolis e a dorsal de São Paulo constituem o limite entre as bacias de Pelotas e de Santos. A Bacia de Pelotas teve sua origem, juntamente com a margem divergente da América do Sul, relacionada a distensão litosférica que, a partir do Jurássico, conduziram à abertura do Atlântico Sul. Através de sucessivos basculamentos em direção ao mar, foram ali acumulados, durante o Cenozóico, mais de 10.000 m de sedimentos continentais, transicionais e marinhos, no qual os folhelhos dominam amplamente (Villwock & Tomazelli, 1995). A Província Costeira do Rio Grande do Sul evoluiu para leste através de quatro sistemas deposicionais tipo laguna-barreira, onde cada um destes sistemas registra o pico de uma transgressão, seguida de um evento regressivo causado pela glácio-eustasia (Villwock & Tomazelli, 1995).

Figura 1: Mapa de localização das amostras dos testemunhos dos sedimentos quaternários da Bacia de Pelotas (modificado de Martins, Toldo & Gruber, 1978).

Figura 2: Mapa do Escudo Sul-riograndense com seus domínios petrotectônicos. A=Domínio Taquarembó, B=Domínio São Gabriel, C=Domínio Porongos, D=Domínio Encruzilhada, E=Domínio Dom Feliciano (modificado de Costa, 1997). Localização das principais cidades: BG=Bagé, PL=Pelotas, SBV=Santana da Boa Vista, LR=Lavras do Sul, EC=Encruzilhada do Sul, CS=Caçapava do Sul, SG=São Gabriel.

METODOLOGIA

As amostras da Bacia de Pelotas foram selecionadas e coletadas no arquivo de testemunhos de sondagem do CECO-UFRGS (Centro de Estudos de Geologia Costeira e Oceânica da Universidade Federal do Rio Grande do Sul). Estas sondagens foram realizadas pela Operação Geomar VII e REMAC - Trato 1, na plataforma continental. Os sedimentos processados são amostras superficiais do fundo marinho. A metodologia aplicada ao processamento das amostras é a tradicionalmente utilizada nos estudos mineralógicos de sedimentos (Krumbein e Pettijonh, 1938, Milner, 1962, Griffiths, 1967, Carver, 1971). As amostras foram quarteadas e posteriormente peneiradas, tendo sido escolhida a fração granulométrica situada entre os intervalos de tamanho de grão 0,125-0,062mm (areia fina e areia muito fina) por razões que serão comentadas posteriormente. Este material foi submetido à separação gradativa com bromofórmio (d=2,86). A fração leve foi descartada, enquanto a pesada após a secagem em estufa foi quarteada, onde uma fração passou para a montagem da lâmina em Balsamo do Canadá para a identificação e contagem

no microscópio trinocular de luz transmitida marca Leitz e tabelados em arquivos do tipo Microsoft Excel. Outra fração dos minerais pesados foi submetida ao Separador Magnético Franz®. As amperagens utilizadas foram de 0,3; 0,4; 05; 0,9; 1,2; 1,5, 1,8 e >1,8 A. A seguir foi realizada a individualização do mineral granada para a montagem da seção polida em resina transparente EPOFIX Kit – marca Struers, para posterior análise química na técnica analítica de microssonda eletrônica. Para as análises químicas foi utilizado a microssonda eletrônica CAMECA SX50 do laboratório da UFRGS, com os parâmetros de um potencial de aceleração de 15 kV, corrente de 25 nA com diâmetro do feixe de 1 μ m e o tempo de contagem foi de 20 segundos para Fe, Ca, e Ti e 30 segundos para Mg, Mn, Si, Al e Cr. Os padrões utilizados foram: MnHo (Fe, Mg, Mn), Anor (Al, Si, Ca), TiO₂ (Ti), CrO₂ (Cr). As amostras de rochas portadoras de granadas do Escudo Sulriograndense foram selecionadas e descritas com o auxílio de um microscópio trinocular de luz transmitida. As granadas identificadas foram selecionadas, posicionadas e fotografadas para posterior análise química via microssonda eletrônica.

Comentários sobre a metodologia empregada

a) - A escolha da faixa de tamanho

Rubey (1933) propôs que a velocidade de acomodação de um mineral é uma função do tamanho e da densidade do mineral, onde os menores e mais densos são depositados junto com minerais maiores e menos densos. Assim o processo hidráulico é capaz de fracionar a relativa abundância de minerais pesados e um método para diminuir esta influência é de analisar as amostras dentro de uma faixa de tamanho. Não existe uma faixa de tamanho padronizada, embora existam trabalhos que procuraram estabelecer a faixa mais apropriada (Young, 1966). No entanto, parece haver uma tendência quase geral de que a faixa mais apropriada para minimizar esse efeito é a fração situada entre os tamanhos de grão 0,250-062mm, ideal para trabalhos com minerais pesados, pois estão presentes na maioria dos arenitos e as variações nas propriedades ópticas para identificação dos minerais são menores (Morton, 1985).

b) O método de contagem e o número de grãos contados

A contagem dos grãos foi o processo utilizado para estimar as proporções dos diferentes minerais. A contagem foi realizada por linhas transversais onde cada grão identificado é contado. O número de grãos contados é totalizado em 400 grãos de minerais não opacos. Dessa forma tivemos ao final três grupos de minerais pesados: opacos, não opacos e alterados.

RESULTADOS E DISCUSSÕES

A década de 1970 foi o auge na pesquisa com trabalhos pioneiros nos estudos de proveniência utilizando associações de minerais pesados nos sedimentos da faixa costeira e da plataforma continental do Rio Grande do Sul (Martins *et al.*, 1967; Pomerancblum e Costa, 1972; Rocha *et al.*, 1975; Da Silva, 1976, Tomazelli, 1978). Trabalhos posteriores com ênfase na localização de depósitos de minerais pesados (placers) foram realizados no Rio Grande do Sul (Corrêa, 1990, Castro, 1993, Munaro, 1993, Munaro, 1994, Caliarri *et al*, 1995, Ferron, 1995, Wolf, 1997, Caruso *et al*, 1999). Atualmente, os trabalhos foram retomados na busca na aquisição de novos dados, principalmente na aplicação da geoquímica mineral em grãos detríticos para estudos de proveniência (Splendor, 2004, Remus *et al*, 2004, Barros, no prelo).

Assembléia dos Minerais Pesados

As amostras dos sedimentos superficiais da plataforma continental do Rio Grande do Sul revelaram que em geral os percentuais de minerais pesados na fração granulométrica estudada são muito baixos (0,5 - 2,7 %). Respaldando nos trabalhos anteriores de Da Silva (1976) e Tomazelli (1978) com 0,5-5% e 0,5-3,56%, respectivamente, Caruso (1997), sintetizou dados de percentuais de minerais pesados na planície costeira com valores entre 1,54-4,6%.

O presente trabalho revelou a ocorrência das seguintes espécies mineralógicas na plataforma continental:

- minerais transparentes: andaluzita, apatita, augita, biotita, cianita, epidoto estaurolita, granada, hiperstênio, horblenda, monazita, rutilo, silimanita, turmalina e zircão.

- minerais opacos: magnetita, ilmenita, leucoxeno e pirita.

Castro (1993), num perfil de São José do Norte a Saraiva na planície costeira identificou a seguinte assembléia: ilmenita, leucoxeno, zircão, rutilo, turmalina, granada, epidoto e horblenda. Munaro (1994), num perfil de Estreito a Bojuru identificou a assembléia mineralógica de minerais pesados formada por ilmenita, zircão, estaurolita, magnetita, turmalina, leucoxeno, cianita, rutilo, granada, epidoto e horblenda.

Das 19 amostras estudadas da plataforma continental, os minerais pesados mais significantes encontrados foram:

Augita: Mineral que surge de forma esporádica (menos de 1%), mas tem sua importância para proveniência, pois sua origem está relacionada principalmente a rochas básicas. É um mineral presente no vulcanismo básico da Formação Acampamento Velho e da Formação Hilário (Lima, 1995, Wildner *et al*, 1999), nos basaltos e rochas associadas do vulcanismo da Formação Serra Geral (Roisenberg, 1989) e comum nos sedimentos costeiros da região do Prata (Urien, 1967). Aparecem, em geral, como prismas ou como fragmentos de prismas bem arredondados de cor verde-claro. Pomerancblum e Costa (1972) e Da Silva (1976), caracterizaram a associação hiperstênio-horblenda-augita com proveniência relacionada às rochas básicas da formação Serra Geral. Tomazelli (1978) sugeriu também que houve contribuição para proveniência destes minerais dos sedimentos do Prata, em especial a suíte pampeano-patagônica.

Cianita: Mineral presente na maioria das amostras (média 1 %). Normalmente incolor a levemente azulado com hábito tabular. Mineral identificado pelo seu relevo alto, excelentes clivagens, alto ângulo de extinção e figura biaxial negativa. Mineral presente e restrito aos xistos do Complexo Porongos (Remus *et al*, 1991). Tomazelli (1978) caracterizou esse mineral na associação epidoto-estaurolita-cianita-zircão-turmalina-granada na Província Riograndense Interna, e atribuiu como área fonte principal o complexo ígneo-metamórfico do Escudo Sul-riograndense, sem especificar as litologias fonte.

Epidoto: Presente de forma moderada em todas as amostras (média 10%) (Fig.3). Encontram-se como cristais arredondados a sub-arredondados de coloração verde-amarelada. É um mineral típico e muito presente nas diversas rochas metamórficas e ígneas de quase todo o Escudo Sul-riograndense, principalmente como minerais essenciais de metabasitos de grau baixo e como acessório ou secundário nos granitóides. Pomerancblum e Costa (1972) caracterizaram na província Riograndense interna a assembléia epidoto-estaurolita-granada-zircão-horblenda, onde sugeriram como área fonte desta província, as áreas metamórficas do Escudo Sul-riograndense.

Estaurolita: Ocorre com freqüência em todas as amostras (média 20%) (Fig.3). É um mineral que aparece em cristais sub-arrendondados em tons amarelados. O pleocroísmo de incolor a amarelo dourado, a extinção reta e a birrefringência elevada são características diagnósticas que a identificam. É um mineral típico nas rochas metamórficas do Escudo Sul-riograndense, principalmente nos xistos pelíticos onde ocorre na paragênese estaroulita+granada do Complexo Metamórfico Porongos e Passo Feio (Ribeiro *et al.*, 1966, Jost, 1982, Remus *et al*, 1991). Remus (1990) destaca a presença da estaurolita nos metapelitos do Cinturão Cambaizinho no Bloco São Gabriel. Também nesse bloco, Kope *et al* (1988) evidenciou o mineral nos metapelitos da Formação Campestre (Cornubianitos).

Granada: Mineral presente de forma moderada (média 12%). Apresentam-se em cristais angulosos, subangulosos, subarredondados e arredondados. Sua coloração, no geral, apresenta-se em tonalidades róseas, mas também é comum acastanhada a levemente alaranjada e incolor. Sua coloração, o alto relevo e a natureza isotrópica a tornam de fácil identificação. Mineral de distribuição bastante homogênea em toda a área de trabalho. A granada é comum e abundante nas rochas metamórficas e ocorre subordinadamente nas ígneas do Escudo Sul-riograndense.

Hiperstênio: Piroxênio mais freqüente do que a augita (média 6%) (Fig.3). Apresenta-se em cristais prismáticos subarredondados de coloração verde acastanhado com intenso pleocroismo róseo a verde. Mineral diagnóstico de rochas de fácies granulito e também presente em rochas ígneas básicas, encontrado no Escudo Sul-riograndense nos metanoritos da região de Pinheiro Machado (Alto Alegre) (Horbach *et al*, 1984), nos gabros-noritos do bloco Encruzilhada no Cerro da Árvore (Picada, 1971) e nos Arroio das Pedras e Arroio Santa Fé no batólito Pelotas (Horbach *et al*, 1984). Mineral comum também nos gnaisses quartzo-feldspáticos, gnaisses básicos, ultramafitos e anortositos do complexo granulítico Santa Maria Chico (Nardi *et al.*, 1979). O hiperstênio ocorre também, de modo mais restrito, no fácies mais máfico do Granito Lavras, classificado anteriormente como charnockito (De Ros & Fernandes, 1981) e nos Gnaisses Várzea do Capivarita próximo ao Sienito Piquiri (Lima et al, 1998). Pomerancelum e Costa (1972) e Tomazelli (1978) interpretaram o hiperstênio como de provável proveniência dos basaltos da Formação Serra Geral. Roisenberg (1989) argumenta que o hiperstênio não é presente nos basaltos da Formação Serra

Geral como mineral isolado, mas sim como bordas de alteração. Urien (1967) indica ainda como uma fonte nos sedimentos pampenanos na costa uruguaia e Argentina.

Horblenda: Também um mineral freqüente em todas as amostras (média 7%) (Fig.3). Apresentamse em forma "lenhosa" em cristais prismáticos alongados com clivagem distinta e pleocroismo intenso. Duas variedades são distintas nas amostras: (a) horblenda de coloração verde, a mais freqüente, comum nas rochas ígneas e metamórficas do escudo. Mineral freqüente nos granitóides das Suítes Graníticas (Suíte Cordilheira, Suíte Encruzilhada do Sul, Suíte Dom Feliciano, Suíte Pinheiro Machado) do Batólito Pelotas, nas Suítes Intrusivas do Complexo Granulítico Santa Maria Chico e nos granitóides da região de Caçapava do Sul e Lavras do Sul. (b) horblenda de coloração marrom, comum como acessório nos basaltos da formação Serra Geral (Roisenberg, 1989) e nos peridotitos, piroxenitos, gabros, anortositos, basaltos e andesitos da Formação Campestre do Grupo Palma (Garcia *et al*, 1981). Mineral presente também nos peridotitos e clorititos da seqüência Corticeira na região de Ibaré.

Rutilo: mineral pouco comum (menos que 1%). Apresenta-se em cristais arredondados de coloração castanha avermelhada escura. Mineral acessório presente nas rochas ígneas e metamórficas do Escudo Sul-Riograndense.

Silimanita: mineral pouco freqüente (1%). Apresenta-se em cristais prismáticos alongados de coloração leve amarelo a incolor e apresenta alta birrefringência. Mineral presente em rochas metamórficas do Escudo Sul- riograndense. No Bloco Encruzilhada está presente nos metapelitos da Suíte Metamórfica Várzea do Capivarita (Fernandes *et al*, 1990). Ribeiro *et al.* (1966), descreveu a presença da silimanita nas rochas granito-gnáissica no Complexo Cambai no Bloco São Gabriel e Remus *et al* (1991) descrevem a presença de silimanita da variedade fibrolita nos xistos pelíticos do Complexo Porongos.

Andaluzita: mineral pouco freqüente (média 2%). Apresenta-se em cristais subarredondados com uma boa clivagem com pleocroismo de coloração rosa, acastanhada a amarelo esverdeado. Mineral presente nas rochas metamórficas do Escudo Sul-riograndense.

Turmalina: Mineral muito freqüente nas amostras (média 25%) (Fig.3). Apresentam-se normalmente como cristais prismáticos euédricos a subarredondados. A cor da turmalina é bastante

variável, mas em termos gerais apresenta-se em tons claros de rosa, castanho, verde, azul, preta e até incolor. A extinção reta, o caráter uniaxial, o relevo, birrefringência média e pleocroismo intenso a tornam de fácil identificação. Mineral comum presente nas rochas ígneas e metamórficas do escudo Sul-Riograndense. Esse mineral encontra-se principalmente nos granitóides do Batólito de Pelotas. Picada (1965) destacou na Suíte Granítica Cordilheira a presença em sienogranitos e granodioritos com muscovita, biotita, turmalina, granada, monazita, zircão e opacos. No Complexo Metamórfico Porongos destacam-se a presença de turmalina nos xistos turmaliníferos (Picada, 1965). Koester (2000) identificou a paragênese turmalina-granada nos metagranitos Quitéria e Arroio Fransquinho dessa Suíte. Frantz (1983) identificou no Granito Campinas como minerais acessórios turmalina, zircão, rutilo, epidoto, apatita, esfeno, clorita e fluorita. Jost *et al* (1984) destacou a presença de turmalina no Granito Arroio Gaúcho. Philipp *et al* (1993) descreveu a turmalina e granada como mineral acessório no Granito Três Figueiras. No bloco São Gabriel destaca-se a presença de turmalina nas Suítes Intrusivas Santa Rita e Jaguari na região de Ibaré (Naumann *et al.*, 1984, Renner, 2003).

Monazita: Mineral presente de forma moderada (média 9%). Apresenta-se em cristais subarrendondados e subangulosos de cor amarela com pleocroísmo muito fraco. Ocorre como mineral acessório em rochas graníticas e pegmatitos do Batólito Pelotas e em metapelitos do escudo.

Zircão: Mineral pouco freqüente (menos que 1%). Apresenta-se em cristais com hábito prismático, em fragmentos subarrendondados, incolores e alguns com tonalidades de castanho. Extinção reta e alta birrefringência são características distintivas. Mineral acessório comum nas rochas ígneas ácidas a intermediárias de todo o Escudo Sul-riograndense e também presente nas metamórficas de alto grau.

Apatita: Mineral pouco freqüente (menos que 1%) e que ocorre apenas em uma amostra. Apresenta-se com hábito prismático, geralmente incolor ou levemente amarelo. Mineral comum na maioria das litologias do Escudo Sul-riograndense. A pequena presença deste mineral na bacia é devido a sua instabilidade no intemperismo químico que atua na área fonte e também durante o período de armazenamento aluvial. **Minerais Alterados**: Minerais que não foram classificados, pois suas características ópticas não puderam ser definidas. Deste modo, foram denominados como minerais alterados. Uma quantidade significante foi encontrada nas amostras analisadas.

Minerais opacos: Eles são a maioria dos minerais nas amostras. Na identificação foi revelada a presença de magnetita, ilmenita, leucoxeno e pirita, com nítido predomínio da magnetita e ilmenita. A pirita aparece normalmente como uma capa de alteração de alguns minerais.

Os minerais pesados identificados representam uma grande variedade de litologias presentes no Escudo Sul-riograndense. Os minerais augita, hiperstênio, hornblenda epidoto são característicos de rochas básicas ígneas ou metabasitos. Os alumino-silicatos, cianita, andaluzita e silimanita são provenientes de metamorfitos pelíticos aluminosos, enquanto que a granada, estaurolita, rutilo e turmalina são comuns em rochas metasedimentares, granitóides (turmalina) e básicas (rutilo). O zircão é encontrado principalmente em granitóides e vulcânicas ácidas a intermediárias enquanto que a monazita é proveniente de granitóides peraluminos e metapelíticas.

Figura 3: Histograma dos minerais pesados das 19 amostras analisadas da Bacia de Pelotas.

O índice ZTR (Fig.4) baixo a moderado mostra que sedimentos provenientes de áreas fontes recicladas não foram importantes no suprimento da Bacia de Pelotas.

Figura 4: Diagrama mostrando a distribuição dos minerais índices ZTR.

O padrão de distribuição dos minerais pesados na bacia mostra que os minerais estaurolita, granada, rutilo, zircão e turmalina concentraram-se mais próximo da linha de costa, enquanto os minerais hiperstênio, horblenda e monazita concentram-se mais distantes da linha de costa (Fig. 5). A granada e a monazita mostram ainda distribuição bi ou tri- modal, respectivamente.

Figura 5: Distribuição dos minerais pesados na plataforma continental da Bacia de Pelotas. A= Estaurolita, B= Granada, C= Rutilo, D= Turmalina, E= Zircão, F= Monazita, G= Hiperstênio, H= Horblenda.

Composição Química das Granadas

Os resultados das análises químicas das granadas obtidas em amostras dos testemunhos da Bacia de Pelotas mostram a presença de 4 populações de granadas (Fig. 6), listadas abaixo em ordem de abundância decrescente.

- granadas com alto teor de Piropo (P) e teores médios para Almandina + Espessartita (AlS), características de rochas de alto grau metamórfico (paragnaisses, granulitos e charnockitos)

granadas com teores baixos de piropo, elevados valores para AlS e teores variáveis de
GAU (G= grossulária + A= andradita + U= uvarovita), características de rochas
metasedimentares de baixo a médio grau (metapelitos e outros metasedimentos).

 granadas com elevados teores de piropo e GAU, características de metabasitos (anfibolitos e gnaisses máficos).

- granadas com baixos teores de PGAU e elevados valores de espessartita, encontradas em pegmatitos e aplitos graníticos e alguns granitos, com presença pouca expressiva nas amostras estudadas.

Figura 6: Composição das granadas de 30 amostras de sedimentos do Quaternário da Bacia de Pelotas envolvendo amostras de testemunhos, mostrando 4 populações distintas, com predomínio de granadas derivadas de terrenos de alto grau metamórfico.

As análises químicas das granadas das amostras do Escudo Sul-riograndense mostram uma ampla variedade composicional.

No Bloco São Gabriel a composição das granadas dos metapelitos de baixo e médio grau (ML01, ML02, ML02-A, CAMB, CAP-03, CPMF-13 e CPMF-14) mostram assinatura química característica, esperada para estes tipos de rochas, com teores elevados para Al e baixos e médios para P e GAU (Fig. 7). Os cordierita-andaluzita-biotita cornubianitos da auréola de metamorfismo de contato do Granito São Sepé sobre os metasedimentos da Formação Campestre do Grupo Vacacaí (SSP), possuem granadas com valores elevados para componente Al e médios para P e S (Fig. 7). A composição das granadas do escarnito (MMO), derivado da interação de fluídos de granitóides do Complexo Cambaí com mármores calcíticos da Formação Cambaizinho é da variedade grossulária e mostra teores elevados nos componentes GAU (Fig. 7). Uma amostra de sedimento de corrente de primeiro ciclo (ML-03) coletada em drenagem que corta a Formação Pontas do Salso constitui duas populações de granadas: a mais abundante é derivada de rochas metamórficas de médio a baixo grau e um grão derivado de aplito/pegmatito granítico (Fig 7).

No Cinturão Tijucas os metapelitos de baixo e médio grau (IND, CP03, TL2) indicaram valores altos para Al e baixos para P (Fig. 7). O sedimento de corrente (CP-01) coletado na drenagem que corta as rochas metavulcanosedimentares na região de Capané (norte do Complexo Metamórfico Porongos) mostra apenas granadas derivadas de rochas metamórficas de médio a baixo grau (Fig. 7).

No Bloco Encruzilhada as composições das granadas dos metapelitos (QT-1, QT-2, QT2A) indicaram altos teores nos componentes P e Al, característico de granadas de alto grau metamórfico (Fig. 7). As granadas do Anortosito Capivarita (JT) mostram assinatura característica de rochas cálcicas com altos teores para GAU (Fig. 7).

No Bloco Dom Feliciano as granadas analisadas do aplito (JT40C) e do pegmatito (F90), mostram assinatura típica, com teores elevados de espessartita e baixos valores de PGAU (Fig. 7). Granadas magmáticas de granitóides de modo geral pode apresentar composições de almandina com conteúdo de FeO de 30% e altos valores para espessartita também, com o aumento de CaO nas bordas do mineral (Searle *et al*, 1992, Koester, 2000). Já a exótica granada melanita (série das
andraditas) dos fonolitos (ALC) da Província Alcalina da região de Piratini-RS mostra altos teores para Al e teores médios para G e composição peculiar, rica em TiO₂ e Fe₂O₃ (Fig. 7).

No Bloco Taquarembó os granulitos máficos (CGSMC-34 e 39) e o gnaisse pelítico (CGSMC-33) indicaram composição das granadas com altos teores para o componente P para as duas litologias, com teor médio para GAU (granulitos máficos) e baixo GAU (gnaisse pelítico), plotando nos campos dos metabasitos e metasedimentos de alto grau, respectivamente (Fig. 7).

Figura 7: Diagramas triangulares discriminando as análises químicas das granadas nas diversas rochas nos domínios do Escudo Sul-Riograndense.

CONCLUSÕES

As associações dos minerais pesados identificados na porção superficial (Quaternário) da Bacia de Pelotas refletiram a presença de assembléias características de áreas fontes de rochas ígneas e metamórficas do escudo Pré-Cambriano adjacente, com uma pequena contribuição dos basaltos da Formação Serra Geral. Minerais como hiperstênio, estaurolita, turmalina, epidoto, cianita, silimanita refletem a grande diversidade de rochas metamórficas presentes nos diversos blocos pretotectônicos do escudo sul-riograndense. Turmalina, monazita e zircão são minerais acessórios comuns nos granitóides do Batólito Pelotas. A augita presente indicando a fonte de rochas básicas tanto do escudo como do platô basáltico da Formação Serra Geral. O hiperstênio indica áreas fontes de alto grau metamórfico como o Complexo Granulítico Santa Maria Chico (Bloco Taquarembó) e a Suíte Metamórfica Várzea do Capivarita (Bloco Encruzilhada), com ocorrência consistente com a principal população de granada de alto grau metamórfico encontrada na Bacia de Pelotas. A escassez de apatita nesta área da bacia indica que os sedimentos estudados estiveram por períodos prolongados expostos na superfície e submetidos a intemperismo químico em condições relativamente severas. Isto se deve a elevada instabilidade da apatita no intemperismo químico, que atuou na área fonte e também durante o período de armazenamento na planície costeira.

A correlação dos dados composicionais das granadas, determinadas no Quaternário da Bacia de Pelotas com aquelas do embasamento adjacente mostram a presença de três populações expressivas de granadas e uma quarta com menor representatividade, provenientes do Escudo Sul-Riograndense (Fig. 8).

Figura 8: (a) Composição das granadas dos sedimentos do Quaternário da Bacia de Pelotas envolvendo 30 amostras de testemunhos mostrando 4 populações distintas, com predomínio de granadas derivadas de terrenos de alto grau metamórfico. (b) Granadas das diversas litologias-fonte do Escudo Sul-riograndense mostrando grande diversidade composicional, relacionada aos diferentes grupos composicionais de rochas de terrenos com idade variável do Paleoproterozóico ao Terciário.

A mais freqüente consiste de granadas ricas no componente almandina - piropo – indicando uma área fonte relacionada a terrenos de alto grau metamórfico. Tais terrenos no escudo estão localizados na região do Bloco Taquarembó, onde granadas com esta composição são provenientes de silimanita-granada gnaisses e também no Bloco Encruzilhada na região de Capivarita que possui metapelitos e gnaisses de alto grau metamórfico. Outros terrenos de alto grau metamórfico que poderiam potencialmente atuar como áreas-fonte para estas granadas, são encontrados no NE do Escudo Uruguaio no Cinturão Valentines (Islas Cristalinas de Riveira e Aceguá). Tal possibilidade deve ser investigada no futuro através da determinação da composição química das granadas destes terrenos.

Granadas derivadas de rochas metasedimentares de baixo a médio grau ocorrem de modo significativo na Bacia de Pelotas e são provenientes das unidades do Cinturão Porongos e Bloco São Gabriel incluindo o Complexo Palmas, Cambaizinho e Passo Feio. As rochas mais freqüentes nesses blocos são os metapelitos de baixo a médio grau, biotita-granada gnaisses e minoritariamente os cordierita-andaluzita-biotita cornubianitos. Em menor proporções ocorrem as granadas de metabasitos, provenientes dos granulitos máficos do Complexo Santa Maria Chico. Os aplitos e pegmatitos graníticos do Bloco Dom Feliciano tiveram pequena participação como área fonte dos sedimentos da bacia.

BIBLIOGRAFIA

- Calliari, L.J.; Machado, M.; Furlong, E.B. & Asp, N.E., 1995. Inner shelf and beach sea shelf resources in the southern Brazil. In: Advancement of Mineral Studies and Techonology. Mining Institute Meeting, Canada.
- Carver, R. E., 1971. Procedures in Sedimentary Petrology. Wiley Interscience. New York.
- Caruso, Jr. F., 1997. Panorama Geológico dos Pláceres de Minerais Pesados da Região de São José do Norte-Mostardas, Planície Costeira do Rio Grande do Sul. In: Congresso Latino-Americano sobre Ciências do Mar, 8, Santos, SP p.147-148.
- Caruso, Jr.F.; Martins, L.R.; Potter, P.E. & Wolff, I.M., 1999, Heavy Mineral Sand Deposits of the Rio Grande do Sul Coastal Plain, Southern Brazil, *In*: Martins, L.R., Santana, C. I., eds., Non Living Resources of the Southern Brazilian Coastal Zone and Continental Margin, IOC-UNESCO: 110p.
- Corrêa, I.C.S., 1990. Analyse morphostructurale et evolution paleogeographique de la plateforme continentale atlantique sud-brasilienne (Rio Grande do Sul-Brésil). Talence, France, Université de Bourdeaux. PhD thesis, 314p.
- Chemale, F. Jr., 2000. Evolução Geológica do Escudo Sul-riograndense, In: Holz, M., De Ros, L.F., Geologia do Rio Grande do Sul-UFRGS/CIGO, p. 13-52.
- Costa, A.F.V., 1997. Teste e modelagem geofísica da estruturação das associações litotectônicas pré-cambrianas no Escudo Sul-Riograndense. Rio Grande do Sul. 291p. Tese de Doutorado em Geociências. Instituto de Geociências, Universidade Federal do Rio Grande do Sul.
- Da Silva, M.M.A., 1976. Mineralogia das areias de praia entre Rio Grande e Chuí, RS. Dissertação de Mestrado IG-UFRGS.
- Delaney, P.J.V., 1965. Fisiográfia e geologia de superfície da Planície Costeira do Rio Grande do Sul. Publicação Especial da Escola de Geologia, UFRGS, 6:1-195.
- De Ros, L.F. & Fernandes, L. A. D. 1981. Rochas charnoquíticas no Escudo Sul-riograndense. Acta Geológica Leopoldensia, 5:25-44.
- Fernandes, L.A.D.; Tommasi, A. & Porcher, C.C, 1990. Esboço estrutural de parte do Batólito Pelotas região de Quitéria-Capivarita. Acta Geológica Leopoldensia, 13:117-138.
- Ferron, J.M, 1995. Projeto Bojuru-Mostardas. Departamento Nacional de Produção Mineral.

- Frantz, J.C., 1983. Petrologia e geologia econômica de granitóides na região Campinas-Figueira, RS. Dissertação de Mestrado. IG-UFRGS 121p.
- Garcia, M.A.M. & Hartmann, L.A., 1981. Petrologia do Complexo Palma, RS. Acta Geológica Leopoldensia, 13:51-119.
- Griffiths, J.C.,1967. Scientific method in the analysis of sediments. McGraw-Hill Book Co. New York.
- Horbach, R.; Marimon, R.G. & Kuck, L., 1984. Ocorrências de rochas granulíticas no Maciço Pelotas, Escudo Sul-riograndense. Anais do Congresso Brasileiro de Geologia, 33, RJ p.3143-3150.
- Hurst, A. & Morton, A.C.; 1988. An application of heavy mineral analysis to lithostratigraphy and reservoir modeling in the Oseberg Field, Northern North Sea. Marine and petroleum Geology, 1988 Vol 5, 157-169.
- Jost, H., 1982. Condições do metamorfismo regional de uma parte da faixa de dobramentos de Tijucas no RS. Acta Geológica Leopoldensia, 4(7):27-60.
- Jost, H.; Frantz, J.C. & Wernick, E., 1984. Implicações geotectônicas da variação composicional temporal e regional dos granitóides do ciclo Brasiliano do Escudo Sul-riograndense. In: Congresso Brasileiro de Geologia, 33, RJ. p.2978-3000.
- Lima, E.F; Porcher, C.A. & Wildner, W., 1998. Granulitos da região da Várzea do Capivarita Bloco Encruzilhada do Sul. Pesquisas Instituto de Geociências 25 (1):27-33.
- Lima, E.F., 1995. Petrologias das rochas vulcânicas e hipabissais da Associação Shoshonítica de Lavras do Sul, RS. Tese de Doutorado, IG-UFRGS. 338p.
- Koester, E., 2000. Petrologia e geocronologia de granitóides da região leste do Cinturão Dom Feliciano e a evolução do magmatismo sintectônico da zona de cisalhamento transcorrente Dorsal de Canguçu, RS. Tese de Doutorado. IG-UFRGS 437p.
- Kope, J.C. & Hartmann, L.A., 1988. Geochemistry of the Bossoroca Greenstone Belt, Southernmost Brazil. Geochimica Brasiliensis, 2(2):167-174.
- Krumbein, W.C. & Pettijonh, F., 1938. Manual of Sedimentary Petrography Appleton-Century. New York.
- Martins, L.R.; Urien, C.M. & Eichleer, B.B, 1967. Distribuição dos sedimentos modernos da plataforma continental Sul-Brasileira e Uruguaia. In: Congresso Brasileiro de Geologia, 21, Curitiba.
- Martins, A.; Toldo, E. & Grubber, C., 1987. Geologia Costeira do Rio Grande do Sul. Notas Técnicas, 5: 1-167.
- Milner, H., 1952. Sedimentary Petrography. Thomas Murby & Co. London.
- Morton, A.C., 1985. A new approach to provenance studies: electron microprobe analyses of detrital garnets from Middle Jurassic sandstones of northern North Sea. Sedimentology, 32, 553-566p.

- Morton, A. C., 1985. Heavy Minerals In Provenance Studies. In: Zuffa, G.G., Provenance of Arenites. Reidel Publishing Company, p.249-277.
- Morton, A.C., 1987. Influences of provenances and diagenesis on detrital garnet suites in the Paleoceno Forties Sandstone, Central North Sea. Journal of Sedimentary Petrology, 57(6):1027-1032.
- Morton, A.C., 1991. Geochemical studies of detrital heavy minerals and their application to provenance studies. In: Morton, A.C., Todd, S.P., Haughton, P.D.W. (Eds.), Developments in Sedimentary Provenance Studies. Geol. Soc. London, Spec. Publ. 57, 31-45.
- Morton, A. C. & Hallsworth, C.R, 1994, Processes controlling the composition of heavy mineral assemblages in sandstones: Sedimentary Geology, v. 124, p. 3-30.
- Morton, A.C.; Robert, W.; Knox, O.B. & Hallsworth, C., 2002. Correlation of reservoir sandstones using quantitative heavy minerals analysis. Petroleum Geoscience, 2002, Vol. 8 p.251-262.
- Morton, A.C.; Hallsworth, C. & Chalton, B., 2004. Garnet compositions in Scottish and Norwegian basement terrains: a framework for interpretation of North Sea sandstone provenance. Marine and Petroleum Geology 21:393-410.
- Munaro, P., 1994. Geologia e Mineralogia do depósito de minerais pesados de Bojurú, RS. Dissertação de Mestrado. IG-UFRGS 96p.
- Nardi, L. & Hartmann, L.A., 1979. O Complexo Granulítico Santa Maria Chico do Escudo Sulriograndense. Acta Geológica Leopoldensia nº 10 Vol. III p.45-75.
- Naumann, M.P.; Hartmann, L.A.; Koppe, J.C. & Chemale, F., 1984. Sequencias supra-crustais, gnaisses graníticos, granulitos, e granites intrusivos da região de Ibaré-Palma, RS: Geologia, aspectos estratigráficos e considerações geotectônicas. In: Congresso Brasileiro de Geologia, 33, RJ, p.2417-2425.
- Pettijohn, F. J.; Potter, P. E. & Siever, R., 1973. Sand and Sandstones. Springer-Verlag. New York.
- Philipp, R.P.; Mesquita, M.J.; Gomes, M.E.B. & Almeida, D.P.M., 1993. Reconhecimento estrutural e geoquímico dos Granitóides Brasilianos da região de Pelotas, RS. Pesquisas, 20(1):3-13.
- Picada, R.S., 1965. Ocorrências de migmatitos, granitos, e graisens controlados por fraturas regionais, Encruzilhada do Sul, RS. Boletim da Escola de Geologia da UFRGS, 14:7-59.
- Picada, R.S., 1971. Ensaio sobre a tectônica do Escudo Sul-riograndense. Caracterização dos sistemas de falhas. In: Congresso Brasileiro de Geologia, 25, São Paulo. Vol.1. p.167-191.
- Pinto, L.; Herail, G.; Moine, B.; Fontn, F.; Charrier, R. & Dupre, B., 2004. Using geochemistry to estabilish the igneous provenances of the Neogene continental sedimentary rocks in the Central Depression and Altiplano, Central Andes. Sedimentary geology, 166:157-183.
- Preston, J.; Hartley, A.; Hole, M.; Buck, S.; Bond, J.; Mange, M. & Still, J., 1998. Integrated whole-rock trace element geochemistry and heavy mineral chemistry studies: aids to the

correlation of continental red-bed resoirvs in the Berly Field, UK North Sea. Petroleum Geoscience 4, 7-16.

- Pomerancblun, M. & Costa, M.P.A, 1972. Integração de informações sobre minerais pesados na plataforma continental brasileira. In: Congresso Brasileiro de Geologia, 26, Belém – PA v.2:179-186.
- Remus, M.V.D., 1990. Geologia e geoquímica do Complexo Cambaizinho, São Gabriel RS. Dissertação de Mestrado. IG-UFGRS 267p.
- Remus, M.V.D.; De Ros, L.F., Dillenburg, S., Splendor, F., Nunes, L.C. 2004 Aplicação da microssonda eletrônica na análise de proveniência: Granadas – traçadores de áreas fonte nas Bacias de Santos e Pelotas. In: DEZ ANOS DE MICROSSONDA EM PORTO ALEGRE. Porto Alegre, RS, Abril, 2004, Boletim: 101-107.
- Remus, M.V.D.; Hartmann, L.A. & Ribeiro, M., 1991. Nota sobre a geologia dos metamorfitos de pressão intermediária e granitóides associados na região de Pinheiro Machado, RS. Acta Geológica Leopoldensia, 34 (14):175-190.
- Renner, L.C., 2003. Geologia, petrografia e ensaios tecnológicos dos granitóides Jaguari e Santa Rita, região de Ibaré, oeste do Escudo Sul-Riograndense: contribuição para o aproveitamento industrial. Dissertação de Mestrado. IG-UFGRS 218p.
- Ribeiro, M.J.; Bocchi, P.A.; Figueiredo, P.M. & Tessari, R.I., 1966. Geologia da Quadrícula de Caçapava do Sul, RS. Boletim da Divisão de Fomento e Produção Mineral, DNPM, 127:1-232.
- Rocha, J.; Milliman, J.D.; Santana, C.I & Vicalvi, M.A, 1975. Continental Margin Sedimentation of Brazil. Contribution to Sedimentology 4:117-150.
- Roisemberg, A.,1989. Petrologia e geoquímica do vulcanismo ácido mesozóico da Província Meridional da Bacia do Paraná. Tese de Doutorado. IG-UFRGS, 285p.
- Rubey, W.W., 1933. The size distribution of heavy minerals within a water-lain sandstone. J. Sediment. Petrol. 3, 3-29
- Sabeen, H.M.; Ramanujam, N. & Morton, A.C., 2002. The provenance of garnet: constraints provided by studies of coastal sediments from southern Índia.
- Searle, M.P.; Crawford, M.B. & Rex, A.J., 1992. Field relations, geochemistry, origin and emplacement of Baltoro Granite, Central KaraKoram. Transaction of the Royal Society of Edimburg, Earth Sciences, 83: 519-538.
- Splendor, F., 2004. Composição química das granadas no estudo de proveniência dos sedimentos quaternários da porção sul da bacia de pelotas, RS. Monografia de Conclusão de Curso. IG-UFRGS.
- Sobolev, N.V. 1965 Classification of rock forming garnets. Dokl. Acad. Sci.. USSR, Earth Sci. 143, 105-107.

- Takeuchi, M., 1994. Changes in garnet chemistry show a progressive denudation of the source areas for Permian-Jurrassic sandstones, southern Kitakami Terrane, Japan. Sedimentary geology 93, 85-105.
- Tomazelli, L.J., 1978, Minerais pesados da plataforma continental do Rio Grande do Sul, in Estudos Tecnológicos, Acta Geológica Leopoldensia, Vol. 2, p 103-159.
- Urien, C.M.,1967. Los sedimentos modernos del Rio de La Plata Exterior. Boletin Del Serviço de Hidrografia Naval de la Armada Argentina. Buenos Aires. 4(2):113-213.
- Villwock, J.A.; Loss, E.L.; Dehnhardt, E.A.; Tomazelli, L.J. & Hofmeister, T., 1979. Concentraciones de arena negras a lo largo de la costa de Rio Grande do Sul, Brasil. In: Seminário sobre Ecologia Bentônica Y Sedimentacion de la Plataforma Continental Del Atlantico Sur. Montevideo, Uruguay. Memórias, UNESCO/ROSTLAC, p.405-514.
- Villwock, J.A. & Tomazzelli, L.J., 1995, Geologia Costeira do Rio Grande do Sul. Notas Técnicas, 8: 1-45.
- Wildner, W.; Nardi, L.V.S. & Lima, E.F., 1999. The Post-collisional alkaline magmatism in the Taquarembó Plateau: a well preserved Neoproterozoic-Cambrian Plutono-Volcanic Association in the Southern Brazil. International Geology Review, 41(12):1082-1098.
- Wolff, I.M., 1997. Resultados da Análise factorial (modo Q) aplicada aos minerais pesados da Plataforma Continental do Rio Grande do Sul. Dissertação de Mestrado, IG-UFRGS, 107p.
- Wright, W.I, 1938. The composition and occurrence of garnets. American Mineralogist 23, 436-449.
- Young, E.J., 1966. A critique of methods for comparing heavy minerals suites. Journal of Sedimentary Petrology, Tulsa, Okla, 36:57-65.

9 - Conclusões

1 - Na análise mineralógica, ao microscópico petrográfico, de 19 amostras as principais espécies identificadas foram: magnetita, ilmenita, horblenda, augita, hiperstênio, turmalina, epidoto, granada, estaurolita, cianita, rutilo, zircão, silimanita, monazita, andaluzita e apatita.

2 - As associações dos minerais pesados identificados na porção superficial (Quaternário) da Bacia de Pelotas refletiram a presença de assembléias características de áreas fontes de rochas ígneas e metamórficas do escudo Pré-Cambriano adjacente, com uma pequena contribuição dos basaltos da Formação Serra Geral. Minerais como hiperstênio, estaroulita, turmalina, epidoto, cianita, silimanita refletem a grande diversidade de rochas metamórficas presentes nos diversos blocos pretotectônicos do escudo sul-riograndense. Turmalina, monazita e zircão são minerais acessórios comuns nos granitóides do Batólito Pelotas. A augita presente indicando a fonte de rochas básicas tanto do escudo como do platô basáltico da Formação Serra Geral. O hiperstênio indica áreas fontes de alto grau metamórfico como o Complexo Granulítico Santa Maria Chico (Bloco Taquarembó) e a Suíte Metamórfica Várzea do Capivarita (Bloco Encruzilhada), com ocorrência consistente com a principal população de granada de alto grau metamórfico encontrada na Bacia de Pelotas. A escassez de apatita nesta área da bacia indica que os sedimentos estudados estiveram por períodos prolongados expostos na superfície e submetidos a intemperismo químico em condições relativamente severas. Isto se deve a elevada instabilidade da apatita no intemperismo químico, que atuou na área fonte e também durante o período de armazenamento na planície costeira.

3 - O índice ZTR baixo a moderado indica que áreas fontes recicladas não foram importantes no suprimento da Bacia de Pelotas.

4 - As principais litologias-fonte portadoras de granadas e as variedades composicionais respectivas do Escudo Sul-Riograndense são:

Bloco Taquarembó:

Complexo Granulítico Santa Maria Chico: granada-silimanita gnaisses (almandinas com elevado teor de piropo); granulitos máficos (almandinas com elevados teores de grossulária e moderado para piropo).

Cinturão Porongos:

Complexo Metamórfico Porongos: metapelitos de baixo a médio grau metamórfico (almandinas com teores baixo a médio para piropo); Anfibolitos (almandina com teores médio para grossulária e piropo).

Bloco São Gabriel:

Complexo Metamórfico Passo Feio: metapelitos de baixo a médio grau contendo almandinas com baixos a médios teores de piropo. Calcico-silicatadas (anfibolitos) possuem granadas com teores médios de grossulária e almandina e baixo teor para piropo.

Complexo Cambai: as granadas dos biotita gnaisses são também almandinas.

Complexo Bossoroca: Os cordierita-andaluzita-biotita cornubianitos, possuem almandinas com teores médios para piropo e espessartita. As granadas das metamargas da Formação Pontas do Salso, são almandinas com teores baixos para piropo e médio para o componente grossulária.

Cinturão Dom Feliciano

Bloco Encruzilhada: metapelitos indicaram altos teores nos componentes P e Al, característico de granadas de metasedimentos de alto grau metamórfico. O Anortosito Capivarita, mostrou granada com assinatura característica, contendo altos teores para PGAU.

Batólito Pelotas: Os aplitos e pegmatitos associados aos granitóides possuem granadas da variedade espessartita. Os fonolitos da Província Alcalina de Piratini possuem granadas da variedade melanita (variedade da andradita).

5 - As variedades mais comuns detriticas são almandina e piropo refletindo a preponderância das rochas metamórficas e ígneas do escudo adjacente.

6 - Os resultados indicam que três áreas principais distintas forneceram material detríticos para a proveniência dos sedimentos quaternários da Bacia de Pelotas:
o Bloco Encruzilhada com metasedimentos de alto grau metamórfico do complexo Metamórfico Várzea do Capivarita.

 o Bloco Taquarembó (Complexo Granulítico Santa Maria Chico), evidenciado pela grande quantidade de granadas de alto grau metamórfico e granadas derivadas de metabasitos/gnaisses máficos presentes nos sedimentos analisados.

 - o Cinturão Tijucas (Complexo Metamórfico Porongos), com granadas de médio a baixo grau metamórfico, combinado com a presença comum de cianita na província Sul-Riograndense interna. Os blocos São Gabriel e o Cinturão Dom Feliciano com contribuição subordinada;

7 - Dois modos podem explicar a presença dos minerais pesados holocênicos na planície costeira e na plataforma continental: (a) os processos de intemperismo e erosão que atuaram até o Terciário nas litologias do escudo cristalino, com os rios transportando os sedimentos até a linha de costa, onde as ondas e as correntes retrabalhavam e depositavam no delta da paleodrenagem do Rio Camaquã e na paleolinha de costa e (b) a deposição dos sedimentos na plataforma continental com o nível do mar baixo, onde os rios que desaguavam no oceano tiveram seus perfis de equilíbrio deslocados em direção à plataforma, transformando numa grande planície fluvial, aonde os rios chegavam na linha de costa retrogradada, erodindo e segmentando os sistemas Laguna-Barreira.

REFERÊNCIAS BIBLIOGRÁFICAS

- Ab'Saber, A.N. 1969. Participação das superfícies aplainadas nas paisagens do Rio Grande do Sul. Geomorfologia, 11: 1-15.
- Almeida, F.F.M. 1967. Origem e Evolução da Plataforma Brasileira. Boletim da Divisão de Geologia e Mineralogia, Rio de janeiro, 241:1-36.
- Almeida, F.F.M. & Hasui, Y., 1979, O pré-cambriano do Brasil. Ed. Blucher, SP 374p.
- Asmus, H.E, Guazelli, W. 1981. Descrição sumária das estruturas da Margem Continental Brasileira e das áreas oceânicas e continentais adjacentes. Hipóteses sobre o tectonismo causador e implicações para os prognósticos do potencial de recursos minerais. (ed) Estrutura e tectonismo da Margem Continental Brasileira e suas implicações nos processos sedimentares e na avaliação do potencial de recursos minerais. PETROBRÁS, CENPES, DINTEP, 1981, p.187-269.
- Ayup, Z.N.R., 2002. Área fonte e dispersão dos minerais pesados nos sedimentos superficiais da Plataforma Continental norte do Atlântico Sulocidental. In: Anais do 41º Congresso Brasileiro de Geologia, João Pessoa, PB, p.121.
- Ayup, Z.N.R., Toldo, E.E., 2003. Evidência morfológica de um paleo canal Holocenico da Laguna Mirim nas adjacências do banhado Taim. In: Congresso da Associação Brasileira de Estudos Quaternários. Recife – PE p.82.
- Basu, A., Molinaroli, E., 1991. Reliability and application of detrital opaque Fe-Ti oxide minerals in provenance determinations. In:Morton, A.C., Todd, S.P., Haughton, P.D.W. (Eds), Developments in Sedimentary Provenance Studies. Geological Society, London, Special Publications, vol.57, p.55-65.
- Burns, R.L., 1973. A member of the ugrandite garnet series found in Western Australia. Journal Petrology, 11 p.19-20.
- Carvalho, P.F., 1932. Reconhecimento geológico do Estado do Rio Grande do Sul. Bol. Serv. Mineral. Rio Janeiro, 66: 1-72.
- Caruso, Jr., F.Martins, L.R., Potter, P.E. and Wolff, I.M.,1999, Heavy Mineral Sand Deposits of the Rio Grande do Sul Coastal Plain, Southern Brazil, *In*: Martins, L.R., Santana, C. I., eds., Non Living Resourses of the Southern Brazilian Coastal Zone and Continental Margin, IOC-UNESCO: 110p.
- Celmins, A. 1957. Pelotas Basin gravity and magnetic survey interpretation. Petrobras. Dexpro. RJ 846p.
- Chang, H.K, kowsmann, R.O. e Figueiredo, A.M.F. 1990. Novos conceitos sobre o desenvolvimento das bacias marginais do leste brasileiro. In: Raja Gabaglia, G.P & Milani, E.J (Coords.). Origem e Evolução das Bacias Sedimentares. PETROBRÁS, Rio de Janeiro. p.269-289.

- Chang, H.K, kowsmann, R.O., Figueiredo, A.M.F. & Beender, A.A.1992. Tectonics and stratigraphy of the East Brazil rift system. An overview. Tectonophysics 213:97-138.
- Chemale Jr. F, Hartmann, L..A & Silva, L.C., 1995. Stratigraphy and tectonism of Precambrian to Early Paleozoic units in Southern Brazil an Uruguay. Acta geologica Leopoldensia, 43: 4-115.
- Chemale, F. Jr. 2000, Evolução Geológica do Escudo Sul-riograndense, In: Holz, M., De Ros, L.F., Geologia do Rio Grande do Sul-UFRGS/CIGO, p. 13-52.
- Costa, A.F.V., 1997. Teste e modelagem geofísica da estruturação das associações litotectônicas pré-cambrianas no Escudo Sul-Riograndense. Tese de Doutorado.
- Crowley, T.J, 1991. Paleoclimatology. New York, Oxford Univ. Press. 349p.
- Deer, W.A., Howie, R.A., & Zussman, J., 1992. Minerais constituintes das rochas: uma introdução. Fundação Calouste Gulbenkian, Lisboa, 2º edição, 727p.
- Deer, W.A., Howie, R.A., & Zussman, J., 1997. Rock-Forming minerals Orthosilicates. Volume 1A. Second Edition 919p.
- Dias, J.L., Sad, A.R.E., Fontana, R.F. & Feijó, F.J., 1994. Bacia de Pelotas. In: Boletim de geociências da PETROBRAS. p. 235-245.
- Dietz, V.,1973. Experiments on the influence of transport on shape roundness of heavy minerals. Sedimentology v.23, p.103-125.
- Fernandes, L.A.D., Menagat, R., Costa, A.F.U., koester, E., Porcher, C.C., Tommasi, A., Kraemer, G., Ramgrab, G. & Camazzato, E. 1995. Evolução tectônica do Cinturão Dom Feliciano no Escudo Sul-Riograndense. Revista Brasileira de geociências 25: 351-374.
- Fontana, L.R.,1990; Investigações Geofísicas Preliminares sobre o Cone do Rio Grande Bacia de Pelotas – Brasil, Acta Geológica Leopoldensia nº30, Volume XIII, p.161-169.
- Fragoso-Cesar, A.R.S., 1980. O Cráton de Rio de la Plata e o cinturão Dom Feliciano no Escudo Uruguiaio-Sul-Riograndense. Anais 31 Congresso Brasileiro de Geologia, v.5 p.2879-2892.
- Gastal, M.C.P., Lafon, J.M., 1998. Gênese e evolução dos granitóides metaluminosos de afinidade alcalina da porção oeste do Escudo Sul-riograndense: geoquímica e isótopos de Rb-Sr e Pb-Pb. Revista Brasileira de Geociências, 28(1):29-44.
- Ghingnone, J.I, 1960. Reconhecimento gravi-magnético na Bacia de Pelotas. Boletim Técnico da Petrobrás 3: 73-79.
- Gonçalves, A. Oliveira, M.A.M. & Motta, S.O. 1979. Geologia da Bacia de Pelotas e da Plataforma de Florianópolis. Boletim técnico da Petrobrás 22: 157.
- Gomes, Celso B.;1984; Técnicas Analíticas Instrumentais Aplicadas à Geologia; Editora Edgar Blücher Ltda, PROMINÉRIO, São Paulo.

- Hartmann, L.A, Nardi, L.V.S., 1982. Os Granitos Santo Afonso, Saibro e Vauthier da região do Arroio Santa Maria Chico, Dom Pedrito, RS. – geologia, petrografia, e química dos elementos maiores, com interpretação geotectônica. Acta Geológica Leopoldensia, São Leopoldo, 16 (12):153-178.
- Hartmann, L.A, 1987. Isócronas Sn-Nd de 2,1 Ga em minerais de duas amostras do complexo Granulítico Santa Maria Chico, RS. Iº Congresso Brasileiro de Geoquímica, Vol.1, p105-111.
- Hartmann, L.A, 1988. Deepest exposed crust of Brazil geochemistry of Paleoproterozoic depleted Santa Maria Chico Granulites. Gondwana Research.
- Hartmann, L.A., Tindle, A. & Bitencourt, M.F., 1990. O Metamorfismo de fácies Anfibolito no Complexo Metamórfico Passo Feio, RS, com base em química dos minerais. Pesquisas, 17(1-2):62-71.
- Hartmann, L.A. Porcher, C.C. Remus, M.V.D. 2000, Evolução das Rochas Metamórficas do Rio Grande do Sul, In: Holz, M., De Ros, L.F., Geologia do Rio Grande do Sul-UFRGS/CIGO, p. 79-119.
- Hasui, Y., Carneiro, C dal R. & Coimbra, A.M, 1975. The Ribeira Folded belt. Rev. Bras. de Geociências, 5:257-266.
- Hurst, A.R & Morton, A..C., 1988. An application of heavy-mineral analysis to lithostratigraphy and reservoir modeling in the Oseberg Field, northern North Sea. Marine and Petroleum Geology, 5, p.157-169.
- Johnsson, M.J., Stallard, R.F., Lundberg, N.,1991. Controls on the composition of fluvial sands from tropical weathering environment: Sands of the Orinoco drainage basin, Venezuela and Colombia. Bull.Geol.Soc.Am. 103, 1622-1647.
- Jost, H. & Hartmann, L.A., 1984. Provincia Mantiqueira, Setor Meridional. In: O Pré-Cambriano do Brasil (coord. By F.F. de Almeida and Y.Hasui), pp. 345-368. Edgard Blucher Ltda., São Paulo, 378p.
- Lauder, W.R. 1968, Stream capture. In: Fairbridge. R.W. (Ed.) The encyclopedia of geomorphology. New York. Reinhold Book Corporation, IV, p.1054-1057.
- Lisboa, N.A., Schuck, M.T.G.O, 1990. Identificação e estudo geomorfológico da superfície de aplainamento do Cerro da Lagoa (Santana da Boa Vista, RS) através de técnicas de sensoriamento remoto. Geociências, SP v9 p.189-199.
- Lisboa, N.A., Castro, J.H.W., 1998. Captura do Sistema Fluvial Camaquã pelo Sistema Fluvial Jacuí São Gabriel, RS, Brasil. Pesquisas V.25 nº2, p.67-71.
- Lisboa, N.A., Castro, J.H.W., Dani, N., 1998. Esboço Geral do Desenvolvimento da Drenagem do Rio Grande do Sul. XI Congresso Latinoamericano de Geologia III Congresso Uruguayo.

- Martins, L.R, Urien, C.M., Eichler, B.B, 1967. Distribuição dos sedimentos modernos da plataforma continental Sul-Brasileira e Uruguaia. In: 21º Congresso Brasileiro de Geologia. Curitiba.
- Martins, L.R., Villwock, J.A, 1972. Estudo preliminar sobre a distribuição faciológica da plataforma continental brasileira. Pesquisas do Instituto de Geociências da UFRGS, v1:6-51.
- Martins, A., Toldo, E., Grubber, C., 1987. Geologia Costeira do Rio Grande do Sul. Notas Técnicas, 5: 1-167.
- Matmon, A., Bierman, P., Enzel, Y., 2002. Pattern and tempo of great escarpment erosion. Geological Society of America. V.30 nº12 p.1135-1138.
- Milani, E.J, 1998. Rift dynamics of Southern Brazil. AAPG International Conference. p389-452.
- Milani, E.J & Thomaz Filho, A., 2000. Sedimentary basins of South América. Tectonic Evolution of South America. 31° Congresso Internacional de Geologia, RJ p.389-452.
- Morton, A. C., Heavy Minerals In Provenance Studies, 1984, In: Zuffa, G.G., Provenance of Arenites-Reidel Publishing Company, p.249-277.
- Morton, A.C.,1985. A new approach to provenance studies: electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea. Sedimentology, 32 p.553-566.
- Morton, A.C., 1991. Geochemical studies of detrital heavy minerals and their application to provenance studies. In: Morton, A.C., Todd, S.P., Haughton, P.D.W. (Eds.), Developments in Sedimentary Provenance Studies. Geol. Soc. London, Spec. Publ. 57, 31-45.
- Morton, A. C., Hallsworth, C.R, 1994, Processes controlling the composition of heavy mineral assemblages in sandstones: Sedimentary Geology, v. 124, p. 3-30.
- Nardi, L.V.S., Bitencourt, M.F., 1989. Geologia, petrologia, e geoquímica do Complexo Granitico de Caçapava do Sul. Revista Brasileira de Geociências, 19(2):153-169.
- Naumann, M.P, Hartmann, L.A., Koppe, J.C & Chemale, F.1984. Sequências supracrustais, gneisses graníticos granulitos e granites intrusivos na região de Ibaré-Palma, RS – geologia, aspectos estratigráficos e considerações geotectônicas. In: 33º Congresso Bras. de Geologia, 1984, Rio de Janiero p.2417-2424.
- Ojeda. H.A.O, 1982. Structure, stratigraphy and evolution of the brazilian marginal basins. American Association Petroleum Geologist Bulletin, 66(6):732-749.
- Ollier, C.D.,1984. Morphotectonics of continental margins with great escarpments. Tectonic geomorphology v.19 p 1-15.
- Ortiz, J.D.R., 1995. O preenchimento sedimentar do vale inciso do Rio Camaquã, quaternário da província costeira do RS. Dissertação de Mestrado. IG-UFRGS. 182p.

- Pettijohn, F.P., Potter, P.E. & Seiver, R., 1973. Production and Provenance of Sand. Sand and Sandstone cap. 7. editora Springer-Verlag. p. 251-273.
- Philipp, R.P. 1998. A Evolução geológica e tectônica do Batólito Pelotas, RS. Tese de Doutorado, IG-UFRGS, Porto Alegre, 371p.
- Picada, R.S, 1971. Ensaio sobre a tectônica do Escudo Sul-Riograndense: caracterização dos sistemas. Na. XXV Congr. Bras. Geol. São Paulo 167-191.
- Pomerancblun, M. & Costa, M.P.A, 1972. Integração de informações sobre minerais pesados na plataforma continental brasileira. In: 26º Congresso Brasileiro de Geologia. Belém –PA v2:179-186.
- Porada, H., 1979. The Damara-Ribeira orogen of the Pan-African-Brazilian cycle in Namíbia (Southwest Africa) and Brazil as interpreted in terms of continental collision. Tectonophysics, 57: 237-265.
- Potter, P.E, 1997. The Mesozoic and Cenozoic paleodrainage of South America: a natural history. Journal of South American eart Sciences. Vol 10, p.331-334.
- Remus, M.V.D., Tedesco, M.A., Phillipp, R.P. 7 Faccini, U.F, 1987. Evolução estritural da unidade Porongos a sul do Rio Camaquã, RS. In: Simpósio Sul Brasileiro de Geologia, 3, 1987. Curitiba p.223-244.
- Remus, M.V.D., 1990. Geologia e geoquímica do Complexo Cambaizinho, São Gabriel, RS. Dissertação de Mestrado, IG-UFRGS, 267p.
- Remus, M.V.D, McNaughton, N.J., Hartmann, L.A & Fletcher, I.R, 1997. U-Pb SHRIMP zircon dating and Nd isotope data granitoids of the São Gabriel Block, southern Brazil: evidence an Archean/Paleoproterozoic basement. Interm. Symp. On Granites and Associated Mineralizations. Salvador Bahia.
- Ribeiro, M.& Fantinel, L.M., 1978. Associações petrotectônicas do Escudo Sul-Riograndense. Tabulação e distribuição das associações petrotectônicas do Escudo do Rio Grande do Sul. Iheringia, Ser. Geo., 5:19-54, Porto Alegre.
- Robertson, J.F, 1966. Revision of the stratigraphy and nomenclatura of rock units in the Caçapava Lavras region, RS. Notas e estudos, IG-UFRGS v1:41-54.
- Rocha, J., Milliman, J.D., Santana, C.I & Vicalvi, M.A, 1975. Continental Margin Sedimentation of Brazil. Contribution to Sedimentology 4:117-150.
- Rubey, W.W., 1933. The size distribution of heavy minerals within a water-lain sandstone. J. Sediment. Petrol. 3, 3-29.
- Russel, R.D., 1937. Mineral composition of Mississipi River sands. Bulletin Geol. Soc. Am. 48, 1307-1348.
- Schwartz, K.B., Nolet, D.A & Burns, R.G., 1980. Mossbauer spectroscopy and crystal chemistry of natural Fe-Ti garnets. American Minarology, 65 p.142-153.

- Seeliger, M., 2004. Influência da herança geológica na evolução do Quaternário tardio da plataforma continental interna, litoral norte do Rio Grande do Sul, Brasil. Dissertação de mestrado, IG-UFRGS, 51p.
- Shukri, N.M., The mineralogy of Nile sediments. Geol. Soc. London v.105, p.511-529.
- Silva, M.A., 1976. Mineralogia das areias de praia entre Rio Grande e Chuí, RS. Dissertação de Mestrado IG-UFRGS.
- Sobolev, N.V. 1965 Classification of rock forming garnets. Dokl. Acad. Sci.. USSR, Earth Sci. 143, 105-107.
- Soliani, Jr., E., 1986. Os dados geocronológicos do Escudo Sul-Riograndense e suas implicações de ordem geotectônica. Tese de Doutorado. Univ. São Paulo, SP 425p.
- Sommer, C.A., 1994. O Vulcanismo ácido da porção sul do platô do Taquarembó, Dom Pedrito RS. Dissertação de Mestrado. IG-UFRGS 149p.
- Suguio, K. 1973. Introdução a Sedimentologia. Editora da Universidade de São Paulo, 317p.
- Suttner, L.J., 1974, Sedimentary petrographic provinces: an evaluation. In C.A.Ross, ed., Paleogeographic Provinces and Provinciality: SEPM. Spec. Pub., V.21: Tulsa, Okla., Society of Economic Paleontology and Mineralogy, p. 75-84.
- Tessari, R.I & Picada, R.S, 1966. geologia da quadricula de Encruzilhada do Sul, RS. Boletim do DNPM, RJ 124:1-147.
- Thiel, G.A.,1945. Mechanical effects of stream transportation in mineral grains of sand size. Bulletin geol. Soc. Am. V.56, p.1207.
- Toldo, E.E., 1991. Barra Falsa: hipótese de um paleocanal Holoceno de comunicação entre Laguna dos Patos e o Oceano Atlântico. Pesquisas IG-UFRGS vol.18 nº2 p99-103.
- Tommasi, A. 1991. Evolução cinemática do Cinturão Dom Feliciano durante o ciclo Brasiliano. Dissertação de Mestrado, IG-UFRGS, Porto Alegre, 207p.
- Tomazelli, L.J., 1978, Minerais pesados da plataforma continental do Rio Grande do Sul, in Estudos Tecnológicos, Acta Geológica Leopoldensia, Vol. 2, p 103-159.
- Tomazelli, L.J. Villwock, J.A, 1992. Considerações Sobre o Ambiente Praial e a Deriva Litorânea de Sedimentos ao Longo do Litoral do Rio Grande do Sul, Brasil, Pesquisas, 19 nº 1, p.3-12.
- Urien, C.M, Martins, L.R. & Zambrano, J.J. 1974. The Geology and Tectonic Framework of Southern Brazil, Uruguay and Argentina Continental Margin. Their Behavior during South Atlantic Open. Anais da Academia Brasileira de Ciências, 48:365-376.
- Van Andel, T.H, 1950. Provenance, transport and deposition of Rhine Sediments. Bulletin of Geol. Soc. Am. V48, p.1520.
- Villwock, J.A. & Tomazzelli, L.J., 1995, Geologia Costeira do Rio Grande do Sul. Notas

Técnicas, 8: 1-45.

Zuffa, G.G, 1985. Provenance of arenites. Reidel Publishing Company. 450p.

ANEXOS

Figura 44 - Diagramas composicionais para granadas das amostras de testemunho do Quatemário da Bacia de Pelotas: (a) a amostra T13 possui granadas provenientes de terrenos de alto grau e também de baixo a médio grau metamórfico; (b) a amostra T26 possui quatro populações de granadas, indicando proveniência de terrenos de alto grau metamórfico (população dominante), metabasitos/gnaisses máficos, rochas metamórficas de baixo a médio grau e apenas um grão derivado de aplito/pegmatito graníticos.

Figura 45 - Composição das granadas das amostras de testemunhos do Quaternário da Bacia de Pelotas: os testemunho T27 (a) e T28 (b) possuem granadas de tres populações distintas - a população dominante deriva de rochas metamórficas de alto grau e as outras são provenientes de rochas metamórficas de baixo/médio grau e de metabasitos.

Figura 46 - Diagramas composicionais para granadas das amostras de testemunho do Quatemário da Bacia de Pelotas: (a) a amostra T31 possui 3 populações de granadas, indicando proveniência de terrenos de alto grau metamórfico (dominante) e de médio grau metamórfico; (b) a amostra T32 indica proveniência de terrenos de alto grau metamórfico (população dominante), e duas análises de metabasitos.

Figura 47 - Composição das granadas de amostras de testemunho do Quatemário da Bacia de Pelotas: (a) a amostra T33 mostra granadas provenientes de terrenos de alto grau e de rochas de baixo a médio grau metamórficos, com apenas dois grãos de metabasitos/gnaisses máficos; (b) a amostra T34 possui granadas de alto grau metamórfico, duas granadas de terrenos de baixo grau e uma análise indicando origem de metasedimentos rico em Ca.

Figura 48 - Composição das granadas das amostras de testemunhos do Quaternário da Bacia de Pelotas: os testemunho T42 (a) e T46 (b) possuem granadas de tres populações distintas - a população dominante deriva de rochas metamórficas de alto grau e as outras são provenientes de rochas metamórficas de baixo/médio grau e de metabasitos.

Figura 49 - Composição das granadas das amostras de testemunhos do Quatemário da Bacia de Pelotas: os testemunho T47 (a) e T49 (b) possuem granadas de três populações distintas - a população dominante deriva de rochas metamórficas de alto grau e as outras são provenientes de rochas metamórficas de baixo/médio grau e de metabasitos.

Figura 50 - Composição das granadas de amostras de testemunho do Quaternário da Bacia de Pelotas: (a) a amostra T50 mostra granadas provenientes de terrenos de alto grau e de rochas de baixo a médio grau metamórficos, com apenas uma análise de grãos de metabasitos/gnaisses máficos; (b) a amostra T52 possui granadas de alto e médio grau metamórfico.

Figura 51 - Composição das granadas das amostras de testemunhos do Quaternário da Bacia de Pelotas: os testemunho T54 (a) e T56 (b) possuem granadas de três populações distintas - a população dominante deriva de rochas metamórficas de alto grau e as outras são provenientes de rochas metamórficas de baixo/médio grau e de metabasitos. A amostra T56 possui um único grão derivado de metabasito.

Figura 52 - Composição das granadas de amostras de testemunho do Quaternário da Bacia de Pelotas: (a) a amostra T59 mostra granadas provenientes de terrenos de alto grau e de rochas de baixo a médio grau metamórficos, com apenas um grão de metabasitos/gnaisses máficos ; (b) a amostra T60 indicou 4 populações de granadas: baixo e médio grau metamórfico (dominante), duas granadas de metabasitos e três análises de aplitos e pegmatitos graníticos.

Figura 53 - Composição das granadas de amostras de testemunho do Quaternário da Bacia de Pelotas: as amostras T62 (a) e T65 (b) mostra granadas provenientes de terrenos de alto (dominante) e médio grau metamórfico.

Figura 54 - Composição das granadas das amostras de testemunhos do Quaternário da Bacia de Pelotas: (a) o testemunho T66 possui granadas de duas populações distintas: a população dominante deriva de rochas metamórficas de alto grau e a outra é derivada de rochas metamórficas de baixo/médio grau; (b) testemunho T67 possui granadas das duas populações anteriores e apenas uma amostra de metabasito.

Figura 55 - Composição das granadas de amostras de testemunho do Quaternário da Bacia de Pelotas: a amostra T68 indica 4 populações de granadas provenientes de rochas de baixo, médio (dominante) e alto grau metamórfico, dois grãos de metabasitos e duas análises de aplitos e pegmatitos graníticos.

	Molécula (%)									
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU	
CAP3-G1B	0,00	0,05	5,63	8,43	4,56	81,34	85,90	5,68	14,11	
CAP3-G1C	0,00	0,04	5,55	7,54	10,36	76,50	86,86	5,59	13,13	
CAP3-G2B	0,10	0,05	6,74	8,10	6,38	78,63	85,01	6,89	14,99	
CAP3-G2C	0,02	0,16	6,31	7,97	7,48	78,06	85,54	6,49	14,46	
CAP3-G3B	0,17	0,00	5,82	8,93	4,86	80,72	85,58	5,99	14,92	
CAP3-G3C	0,14	0,08	5,93	7,66	9,22	76,97	86,19	6,15	13,81	
CAP3-G4B	0,08	0,02	6,31	8,07	5,37	80,16	85,53	6,41	14,48	
CAP3-G4C	0,00	0,00	6,12	8,57	5,82	79,49	85,31	6,12	14,69	
CAP3-G5C	0,03	0,83	6,40	7,33	8,08	77,33	85,41	7,26	14,59	
CAP3-G5B	0,14	0,09	8,56	9,56	0,90	80,75	81,65	8,79	18,35	
CAP3-G5I	0,00	0,78	5,54	7,93	5,36	80,38	85,74	6,32	14,25	
CAP3-G6C	0,00	0,06	6,07	7,57	6,74	79,56	86,30	6,13	13,70	
CAP3-G6B	0,00	0,18	5,51	7,80	6,81	79,69	86,50	5,69	13,49	
CAP3-G7C	0,04	0,06	6,40	9,08	3,52	80,90	84,42	6,50	15,58	
CAP3-G7B	0,00	3,75	0,00	44,24	0,00	52,01	52,01	3,75	47,99	
ML2-G1B	0,00	0,10	9,33	4,60	16,09	69,88	85,97	9,43	14,03	
ML2-G1C	0,00	0,05	7,74	3,97	24,14	64,09	88,23	7,79	11,76	
ML2-G2B	0,09	0,26	9,02	4,68	15,69	70,26	85,95	9,37	14,05	
ML2-G2C	0,00	0,24	8,73	4,00	21,46	65,68	87,14	8,97	12,97	
ML2-G3B	0,11	0,14	9,42	4,58	15,71	70,04	85,75	9,67	14,25	
ML2-G3C	0,02	0,24	9,03	4,05	23,53	63,14	86,67	9,29	13,34	
ML2-G4B	0,00	0,10	9,64	4,63	15,49	70,14	85,63	9,74	14,37	
ML2-G4C	0,13	0,03	9,23	4,24	22,17	64,20	86,37	9,39	13,63	
ML2-G5B	0,07	0,00	10,23	4,52	16,15	69,03	85,18	10,30	14,82	
ML2-G5C	0,00	0,15	7,75	3,89	26,03	62,17	88,20	7,90	11,79	
ML2-G6B	0,02	0,07	8,67	4,66	17,85	68,73	86,58	8,76	13,42	
ML2-G6C	0,00	0,15	9,09	4,00	24,16	62,60	86,76	9,24	13,24	

Tabela 3 - Composição das moléculas das granadas das amostras CAP3 e ML2. G=granada, B=borda, C=centro, I=Intermédiário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

	Molécula (%)								
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU
CGSMC-34a	0,00	0,16	17,84	22,55	1,80	57,63	59,43	18,00	40,55
CGSMC-34b	0,00	0,13	18,00	21,20	2,06	58,59	60,65	18,13	39,33
CGSMC-33a	0,15	0,06	3,02	40,60	0,76	55,38	56,14	3,23	43,83
CGSMC-33b	0,12	0,09	3,02	40,12	0,73	55,09	55,82	3,23	43,35
CGSMC-33c	0,12	0,13	2,94	41,07	0,80	54,93	55,73	3,19	44,26
CGSMC-37	0,00	0,09	18,95	42,46	1,60	36,87	38,47	19,04	61,50
CGSMC-39	0,03	0,19	19,34	27,85	1,73	50,83	52,56	19,56	47,41
CMPF-12A	0,02	0,19	5,45	4,89	1,35	88,07	89,42	5,66	10,55
CMPF-12B	0,02	0,08	4,94	5,34	0,66	89,37	90,03	5,04	10,38
CMPF-12C	0,00	0,24	5,38	4,40	1,54	88,42	89,96	5,62	10,02
CMPF-12D	0,00	0,20	3,59	6,73	0,47	89,00	89,47	3,79	10,52
CMPF-4A	0,00	0,16	10,50	5,17	3,16	80,97	84,13	10,66	15,83
CMPF-4B	0,00	0,10	8,12	3,71	4,48	83,57	88,05	8,22	11,93
CMPF-13A (EN28D)	0,00	0,17	6,72	7,59	15,13	70,38	85,51	6,89	14,48
CMPF-13B (EN28D)	0,00	0,06	5,74	9,68	9,56	74,94	84,50	5,80	15,48
CMPF-13C (EN28D)	0,03	0,20	6,29	7,37	9,58	68,72	78,30	6,52	13,89
CMPF-13D (EN28D)	0,00	0,13	5,60	9,90	8,83	75,52	84,35	5,73	15,63
CMPF-14A (NP-37)	0,00	0,27	8,11	4,08	15,26	72,26	87,52	8,38	12,46
CMPF-14B (NP-37)	0,00	0,10	6,82	8,24	0,62	84,20	84,82	6,92	15,16
CMPF-14C (NP-37)	0,00	0,37	13,26	1,54	42,22	42,64	84,86	13,63	15,17
CMPF-14D (NP-37)	0,00	0,13	6,91	8,41	2,17	82,34	84,51	7,04	15,45
CMPF-7A	0,00	2,02	65,39	0,09	1,06	30,81	31,87	67,41	67,50
CMPF-7B	0,00	1,80	66,49	0,15	1,16	30,39	31,55	68,29	68,44
SMVC-GRD11	0,65	0,00	6,56	13,14	6,41	73,21	79,62	7,21	20,35
SMVC-GRD20	0,03	0,04	3,35	7,99	16,17	73,29	89,46	3,42	11,41
SMVC-GRD9	0,01	0,08	2,90	12,09	3,39	81,59	84,98	2,99	15,08
SMVC-GRD17	0,11	0,04	3,00	12,84	3,63	80,29	83,92	3,15	15,99

Tabela 4 - Composição das moléculas das granadas da amostra CGSMC, CMPF.e SMVC. G=granada, B=borda, C=centro, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

	Molécula (%)									
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU	
CP01-G1	0,00	0,07	6,57	10,84	6,49	76,03	82,52	6,64	17,48	
CP01-G2	0,10	0,00	5,83	10,19	8,06	75,82	83,88	5,93	16,12	
CP01-G3	0,03	0,24	17,32	8,40	11,45	62,56	74,01	17,59	25,99	
CP01-G4	0,00	0,29	8,03	10,72	6,31	74,65	80,96	8,32	19,04	
CP01-G5	0,12	0,25	10,81	13,08	7,48	68,27	75,75	11,18	24,26	
CP01-G6	0,05	0,45	24,97	6,97	9,62	57,94	67,56	25,47	32,44	
CP01-G7	0,00	0,40	14,77	4,98	15,45	64,40	79,85	15,17	20,15	
CP01G-8C	0,11	0,41	12,66	7,07	2,05	77,71	79,76	13,18	20,25	
CP01G-8B	0,07	0,15	12,73	7,62	1,51	77,92	79,43	12,95	20,57	
CP01-G9	0,12	0,25	11,21	18,86	4,39	65,16	69,55	11,58	30,44	
CP01-G10	0,09	0,13	14,58	5,98	4,09	75,12	79,21	14,80	20,78	
CP01-G11	0,10	0,42	18,29	8,39	6,87	65,93	72,80	18,81	27,20	
CP01-G12	0,07	1,06	6,33	11,70	7,30	73,55	80,85	7,46	19,16	
CP01-G13	0,00	0,47	5,60	7,34	5,93	80,66	86,59	6,07	13,41	
CP01-G14	0,03	0,40	11,89	9,62	14,32	63,74	78,06	12,32	21,94	
CP01-G15	0,05	1,20	17,73	10,85	11,42	58,75	70,17	18,98	29,83	
CP01-G16	0,00	2,89	30,87	6,58	9,97	49,70	59,67	33,76	40,34	
CP01-G17	0,04	0,37	22,30	7,33	10,81	59,16	69,97	22,71	30,04	
CP01-G18	0,07	0,07	5,82	10,55	6,61	76,88	83,49	5,96	16,51	
CP01-G19	0,00	1,31	18,96	5,53	31,52	42,68	74,20	20,27	25,80	
CP01-G20	0,12	0,52	11,76	10,05	1,19	76,37	77,56	12,40	22,45	
CP01-G21	0,18	0,17	12,53	11,70	3,64	71,79	75,43	12,88	24,58	
CP01-G22	0,00	0,47	25,40	9,12	3,61	61,40	65,01	25,87	34,99	
CP01-G23	0,20	0,11	12,35	12,85	9,48	65,01	74,49	12,66	25,51	
CP01-G24	0,00	0,35	17,53	7,95	0,55	73,62	74,17	17,88	25,83	
CP01-G25	0,00	1,52	5,46	5,06	42,28	45,69	87,97	6,98	12,04	

Tabela 5 - Composição das moléculas das granadas da amostra CP01. G=granada, B=borda, C=centro, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=AImandina
	Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU		
JT40C-G1B	0,10	0,23	7,72	1,07	44,96	45,93	90,89	8,05	9,12		
JT40C-G1I	0,00	0,19	2,76	0,00	85,80	11,25	97,05	2,95	2,95		
JT40C-G1C	0,00	0,21	2,94	0,00	84,50	12,35	96,85	3,15	3,15		
JT40C-G2B	0,02	0,17	7,49	1,02	46,62	44,67	91,29	7,68	8,70		
JT40C-G2I	0,00	0,13	3,40	0,00	85,28	11,20	96,48	3,53	3,53		
JT40C-G2C	0,00	0,05	3,17	0,08	83,38	13,31	96,69	3,22	3,30		
JT40C-G3B	0,00	0,03	7,97	0,71	49,54	41,76	91,30	8,00	8,71		
JT40C-G3I	0,08	0,29	3,03	0,02	83,60	12,99	96,59	3,40	3,42		
JT40C-G3C	0,06	0,00	3,81	0,00	83,18	12,95	96,13	3,87	3,87		
JT40C-G4B	0,00	0,07	7,31	0,89	45,69	46,04	91,73	7,38	8,27		
JT40C-G4I	0,00	0,08	3,35	0,04	82,93	13,60	96,53	3,43	3,47		
JT40C-G4C	0,00	0,12	3,31	0,03	83,05	13,49	96,54	3,43	3,46		
JT40C-G5B	0,08	0,04	8,06	0,80	49,96	41,06	91,02	8,18	8,98		
JT40C-G5I	0,08	0,01	3,22	0,00	83,98	12,71	96,69	3,31	3,31		
JT40C-G5C	0,00	0,00	2,61	0,00	85,28	12,11	97,39	2,61	2,61		
JT40C-G6B	0,00	0,04	2,85	1,32	37,08	58,71	95,79	2,89	4,21		
JT40C-G6I	0,00	0,03	3,72	0,06	78,65	17,55	96,20	3,75	3,81		
JT40C-G6C	0,00	0,06	3,55	0,03	80,96	15,40	96,36	3,61	3,64		
JT-G1B	0,09	9,19	78,20	1,11	0,13	11,27	11,40	87,48	88,59		
JT-G1I	0,02	10,40	73,41	1,10	0,12	14,95	15,07	83,83	84,93		
JT-G1C	0,05	10,31	73,86	1,08	0,13	14,57	14,70	84,22	85,30		
JT-G2C	0,00	7,95	81,59	1,25	0,20	9,01	9,21	89,54	90,79		
JT-G2I	0,00	6,73	83,31	1,07	0,05	8,33	8,38	90,04	91,11		
JT-G2B	0,03	9,32	74,22	0,97	0,13	15,34	15,47	83,57	84,54		
JT-G3C	0,03	6,40	83,57	1,21	0,06	8,73	8,79	90,00	91,21		
JT-G3I	0,06	10,75	78,38	1,20	0,13	9,48	9,61	89,19	90,39		
JT-G3B	0,03	6,66	82,99	1,21	0,08	9,03	9,11	89,68	90,89		
JT-G4C	0,06	15,36	72,01	0,82	0,17	11,58	11,75	87,43	88,25		
JT-G4I	0,06	7,98	79,19	1,19	0,00	11,58	11,58	87,23	88,42		
JT-G4B	0,04	14,72	72,87	0,80	0,26	11,30	11,56	87,63	88,43		
JT-G5C	0,00	13,76	72,45	0,94	0,30	12,54	12,84	86,21	87,15		
JT-G5I	0,04	17,03	72,96	0,88	0,14	8,96	9,10	90,03	90,91		
JT-G5B	0,05	14,24	74,42	0,60	0,24	10,45	10,69	88,71	89,31		
JT-G6C	0,01	17,71	74,61	0,36	0,15	7,14	7,29	92,33	92,69		
JT-G6I	0,00	15,02	71,59	0,88	0,22	12,29	12,51	86,61	87,49		
JT-G6B	0,00	15,98	74,02	0,38	0,18	9,45	9,63	90,00	90,38		

Tabela 6 - Composição das moléculas das granadas das amostras JT40C e JT. G=granada, B=borda, C=centro, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, Al=Almandina

				Ν	/lolécula (%)			
Amostra	U	А	G	Р	S	AI	A/+S	G+A+U	P+GAU
ML01-G1C	0,02	0,15	16,74	6,11	22,21	54,78	76,99	16,91	23,02
ML01-G1I	0,11	0,30	17,73	5,96	22,85	53,05	75,90	18,14	24,10
ML01-G1B	0,02	0,16	16,38	6,58	18,89	57,98	76,87	16,56	23,14
ML01-G2B	0,01	0,04	15,25	6,47	21,52	56,71	78,23	15,30	21,77
ML01-G2I	0,13	0,21	18,40	5,49	25,69	50,18	75,87	18,74	24,23
ML01-G2C	0,00	0,06	19,79	5,43	24,31	50,42	74,73	19,85	25,28
ML01-G3B	0,03	0,03	14,99	6,80	19,44	58,71	78,15	15,05	21,85
ML01-G3I	0,04	0,12	19,37	5,40	24,05	51,03	75,08	19,53	24,93
ML01-G3C	0,00	0,42	19,26	5,33	25,55	49,43	74,98	19,68	25,01
ML01-G4B	0,00	0,00	18,22	5,98	20,01	55,79	75,80	18,22	24,20
ML01-G4I	0,03	0,18	15,77	5,88	24,80	53,35	78,15	15,98	21,86
ML01-G4C	0,11	0,47	17,07	5,54	25,22	51,59	76,81	17,65	23,19
ML01-G5B	0,00	0,13	14,69	6,73	20,19	58,26	78,45	14,82	21,55
ML01-G5I	0,00	0,12	18,86	5,73	23,87	51,41	75,28	18,98	24,71
ML01-G5C	0,00	0,36	21,28	5,16	26,10	47,09	73,19	21,64	26,80
ML01-G6B	0,12	0,16	14,80	6,65	20,02	58,25	78,27	15,08	21,73
ML01-G6I	0,09	0,31	21,18	4,96	26,91	46,55	73,46	21,58	26,54
ML01-G6C	0,09	0,41	22,69	4,62	27,02	45,18	72,20	23,19	27,81
ML02A-G1B	0,00	0,19	25,55	4,94	17,23	52,39	69,62	25,74	30,68
ML02A-G1I	0,01	0,66	34,68	3,65	23,75	37,24	60,99	35,35	39,00
ML02A-G1C	0,11	0,72	31,76	3,87	23,78	39,76	63,54	32,59	36,46
ML02A-G2B	0,06	0,22	25,68	5,29	16,61	52,14	68,75	25,96	31,25
ML02A-G2I	0,11	0,25	21,84	3,63	27,69	46,48	74,17	22,20	25,83
ML02A-G2C	0,03	0,41	21,20	3,68	28,14	46,55	74,69	21,64	25,32
ML02A-G3B	0,00	0,05	23,66	5,72	16,37	54,21	70,58	23,71	29,43
ML02A-G3I	0,01	0,20	23,30	3,58	27,62	45,29	72,91	23,51	27,09
ML02A-G3C	0,01	0,22	18,02	3,62	32,49	45,65	78,14	18,25	21,87
ML02A-G4B	0,08	0,06	24,64	5,20	17,32	52,70	70,02	24,78	29,98
ML02A-G4I	0,02	0,41	21,83	4,22	22,25	51,27	73,52	22,26	26,48
ML02A-G4C	0,00	0,38	22,78	3,97	24,57	48,30	72,87	23,16	27,13
ML02A-G5B	0,10	0,09	27,47	4,93	16,59	50,82	67,41	27,66	32,59
ML02A-G5I	0,00	0,23	25,60	4,13	21,63	48,40	70,03	25,83	29,96
ML02A-G5C	0,00	0,03	27,02	3,85	23,15	45,95	69,10	27,05	30,90
ML02A-G6B	0,02	0,08	23,87	5,42	16,51	54,10	70,61	23,97	29,39
ML02A-G6I	0,15	0,44	32,36	3,69	22,26	41,09	63,35	32,95	36,64
ML02A-G6C	0,02	0,49	29,08	4,01	22,93	43,48	66,41	29,59	33,60

Tabela 7 - Composição das moléculas das granadas das amostras ML01 e ML02. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=AImandina

				ľ	Nolécula (%)			
Amostra	U	А	G	Р	S	AI	A/+S	G+A+U	P+GAU
ML03-G1	0,00	0,11	2,45	0,59	38,73	58,12	96,85	2,56	3,15
ML03-G2	0,00	1,25	15,74	4,32	35,88	42,81	78,69	16,99	21,31
ML03-G3	0,00	0,04	7,58	6,39	15,84	70,15	85,99	7,62	14,01
ML03-G4	0,05	0,04	7,59	8,94	9,78	73,59	83,37	7,68	16,62
ML03-G5	0,20	0,07	8,17	6,57	15,83	69,15	84,98	8,44	15,01
ML03-G6	0,00	0,51	20,45	5,59	27,25	46,20	73,45	20,96	26,55
ML03-G7	0,08	0,06	8,01	8,51	19,16	64,19	83,35	8,15	16,66
ML03-G8	0,11	0,16	18,91	7,59	16,97	56,28	73,25	19,18	26,77
ML03-G9	0,02	0,35	5,21	13,88	13,46	67,07	80,53	5,58	19,46
ML03-G10	0,12	0,59	20,32	7,45	16,18	55,34	71,52	21,03	28,48
ML03-G11	0,00	0,16	7,82	10,50	17,16	64,36	81,52	7,98	18,48
ML03-G12	0,00	0,10	6,66	5,46	25,39	62,38	87,77	6,76	12,22
ML03-G13	0,00	0,05	10,01	4,30	23,86	61,77	85,63	10,06	14,36
ML03-G14	0,11	0,79	23,07	9,89	9,42	56,72	66,14	23,97	33,86
ML03-G15	0,00	0,06	7,61	8,39	26,25	57,70	83,95	7,67	16,06
ML03-G16	0,00	0,94	1,69	8,09	29,40	59,87	89,27	2,63	10,72
ML03-G17	0,06	0,41	11,77	6,54	30,95	50,26	81,21	12,24	18,78
ML03-G18	0,00	0,15	5,20	15,62	3,67	75,36	79,03	5,35	20,97
ML03-G19	0,00	0,46	8,22	15,85	15,92	59,54	75,46	8,68	24,53
ML03-G20C	0,04	0,84	23,21	10,46	8,71	56,73	65,44	24,09	34,55
ML03-G20B	0,06	0,10	24,07	10,29	8,86	56,62	65,48	24,23	34,52
ML03-G21	0,00	0,06	7,01	9,76	4,56	78,60	83,16	7,07	16,83
ML03-G22	0,02	0,18	10,63	6,41	8,66	74,10	82,76	10,83	17,24
ML03-G23	0,00	0,46	6,34	20,34	14,08	58,77	72,85	6,8	27,14
ML03-G24	0,00	0,55	26,69	5,53	24,29	42,95	67,24	27,24	32,77
ML03-G25	0,04	1,15	14,30	6,97	27,29	50,25	77,54	15,49	22,46

Tabela 8. Composição das moléculas das granadas da amostra ML03. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

	Molécula (%)										
Amostra	U	А	G	Р	S	AI	AI+S	G+A+U	P+GAU		
MMO-G1C	0,36	5,46	88,59	0,39	0,32	4,88	0,71	94,41	94,80		
MMO-G1B	0,81	6,95	87,93	0,32	0,66	3,33	0,98	95,69	96,01		
MMO-G2C	0,04	6,81	87,26	0,41	0,32	5,16	0,73	94,11	94,52		
MMO-G2B	0,03	4,95	90,37	0,41	0,23	4,00	0,64	95,35	95,76		
MMO-G3C	0,08	4,70	90,60	0,35	0,13	4,14	0,48	95,38	95,73		
MMO-G3B	0,23	5,69	87,48	0,46	1,08	5,06	1,54	93,40	93,86		
MMO-G4C	0,12	6,72	87,48	0,39	0,21	5,08	0,60	94,32	94,71		
MMO-G4B	0,06	4,14	90,71	0,43	0,25	4,41	0,68	94,91	95,34		
MMO-G5C	0,51	6,36	85,66	0,51	0,55	6,42	1,06	92,53	93,04		
MMO-G5B	0,04	4,96	90,97	0,44	0,27	3,32	0,71	95,97	96,41		
MMO-G6C	0,04	4,34	88,76	0,52	0,27	6,07	0,79	93,14	93,66		
MMO-G6B	0,13	6,88	87,14	0,39	0,40	5,07	0,79	94,15	94,54		
F90-G1C	0,00	0,00	1,81	2,77	44,36	51,06	95,42	1,81	4,58		
F90-G1I	0,00	0,01	1,79	2,88	43,57	51,76	95,33	1,8	4,68		
F90-G1B	0,02	1,16	0,68	3,21	40,62	54,30	94,92	1,86	5,07		
F90-G2C	0,00	1,20	0,56	2,67	46,16	49,41	95,57	1,76	4,43		
F90-G2B	0,00	0,66	1,06	3,05	44,34	50,89	95,23	1,72	4,77		
F90-G3C	0,08	0,17	1,30	3,31	39,28	55,87	95,15	1,55	4,86		
F90-G3B	0,00	2,25	0,05	2,96	42,39	52,35	94,74	2,3	5,26		
F90-G4C	0,01	0,17	1,62	3,39	38,77	56,04	94,81	1,8	5,19		
F90-G4B	0,05	0,09	2,44	3,08	40,83	53,51	94,34	2,58	5,66		
F90-G5C	0,02	0,68	1,01	2,90	44,47	50,93	95,4	1,71	4,61		
F90-G5B	0,07	0,08	3,15	1,78	43,13	51,78	94,91	3,3	5,08		
F90-G5I	0,00	1,16	0,78	2,10	44,64	51,33	95,97	1,94	4,04		
F90-G6C	0,00	1,15	0,79	2,97	41,93	53,16	95,09	1,94	4,91		
F90-G6I	0,01	0,83	1,58	1,99	45,25	50,34	95,59	2,42	4,41		
F90-G6B	0,00	0,01	2,45	3,28	40,54	53,73	94,27	2,46	5,74		
F90-G7C	0,00	0,66	1,38	3,35	38,72	55,89	94,61	2,04	5,39		
F90-G7B	0,09	0,12	1,92	3,23	40,26	54,38	94,64	2,13	5,36		
F90-G8C	0,00	0,01	1,68	3,25	40,53	54,53	95,06	1,69	4,94		
F90-G8I	0,06	0,11	1,49	3,36	39,42	55,55	94,97	1,66	5,02		
F90-G8B	0,01	0,00	1,79	3,06	42,52	52,62	95,14	1,8	4,86		

Tabela 9 - Composição das moléculas das granadas das amostras MMO e F90. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

	Molécula (%)										
Amostra	U	А	G	Р	S	AI	A/+S	G+A+U	P+GAU		
PA-G1C	0,10	0,14	5,31	6,72	1,72	86,01	87,73	5,55	12,27		
PA-G1B	0,12	0,04	4,94	7,47	1,44	85,99	87,43	5,10	12,57		
PA-G2C	0,22	0,15	7,30	5,30	2,98	84,05	87,03	7,67	12,97		
PA-G2I	0,25	0,22	5,86	5,73	2,69	85,25	87,94	6,33	12,06		
PA-G2B	0,01	0,00	5,64	6,94	1,80	85,60	87,40	5,65	12,59		
PA-G3C	0,07	0,09	10,58	6,18	0,65	82,43	83,08	10,74	16,92		
PA-G3I	0,00	0,03	10,33	5,99	0,50	83,16	83,66	10,36	16,35		
PA-G3B	0,05	0,00	4,54	8,06	0,99	86,36	87,35	4,59	12,65		
PA-G4C	0,12	0,16	5,80	7,29	0,92	85,71	86,63	6,08	13,37		
PA-G4I	0,09	0,19	8,22	6,71	0,94	83,86	84,80	8,50	15,21		
PA-G4B	0,00	0,09	4,53	7,84	1,18	86,36	87,54	4,62	12,46		
PA-G5C	0,00	0,00	8,37	6,49	2,34	82,80	85,14	8,37	14,86		
PA-G5I	0,11	0,37	9,88	5,08	5,86	78,69	84,55	10,36	15,44		
PA-G5B	0,08	0,31	14,19	3,21	11,27	70,93	82,20	14,58	17,79		
PA-G6C	0,00	0,14	12,17	4,69	2,00	81,00	83,00	12,31	17,00		
PA-G6I	0,04	0,16	13,63	4,08	1,09	81,01	82,10	13,83	17,91		
PA-G6B	0,21	0,14	13,23	5,21	0,83	80,39	81,22	13,58	18,79		
CP03-G1B	0,57	2,36	0,00	13,55	1,38	82,13	83,51	2,93	16,48		
CP03-G1I	0,15	1,02	7,06	5,41	14,36	72,00	86,36	8,23	13,64		
CP03-G1C	0,09	1,52	7,80	4,81	15,75	70,03	85,78	9,41	14,22		
CP03-G2B	0,00	0,03	5,39	8,15	6,28	80,15	86,43	5,42	13,57		
CP03-G2I	0,02	0,43	8,68	7,39	6,87	76,61	83,48	9,13	16,52		
CP03-G2C	0,00	0,99	8,96	5,91	11,37	72,78	84,15	9,95	15,86		
CP03-G4B	0,00	0,77	5,68	8,14	4,72	80,69	85,41	6,45	14,59		
CP03-G4I	0,09	0,64	7,54	7,02	5,47	79,24	84,71	8,27	15,29		
CP03-G4C	0,05	0,71	7,45	6,92	5,83	79,06	84,89	8,21	15,13		
CP03-G5B	0,04	0,90	6,19	7,72	5,91	79,24	85,15	7,13	14,85		
CP03-G51	0,00	1,07	7,22	6,62	7,32	77,77	85,09	8,29	14,91		
CP03-G5C	0,17	0,87	6,73	6,37	8,88	76,98	85,86	7,77	14,14		
CP03-G6B	0,09	1,42	6,99	6,64	10,05	74,80	84,85	8,50	15,14		
CP03-G6I	0,18	0,40	8,01	5,33	14,69	71,39	86,08	8,59	13,92		
CP03-G6C	0,04	0,83	8,47	4,85	16,08	69,72	85,80	9,34	14,19		

Tabela 10 - Composição das moléculas das granadas das amostras PA e F90. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

	Molécula (%)									
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU	
QT2-G1B	0,06	0,53	8,20	23,11	1,39	66,71	68,10	8,79	31,90	
QT2-G1I	0,06	0,01	9,21	26,37	1,46	62,89	64,35	9,28	35,65	
QT2-G1C	0,06	0,00	8,19	27,03	1,55	63,17	64,72	8,25	35,28	
QT2-G2B	0,00	0,01	4,21	15,78	1,92	78,07	79,99	4,22	20,00	
QT2-G2I	0,04	0,03	3,89	28,50	1,15	66,40	67,55	3,96	32,46	
QT2-G2C	0,08	0,05	4,99	28,00	1,24	65,64	66,88	5,12	33,12	
QT2-G3B	0,05	0,00	5,31	28,14	1,24	65,27	66,51	5,36	33,50	
QT2-G3I	0,02	0,08	4,73	28,11	1,16	65,91	67,07	4,83	32,94	
QT2-G3C	0,13	0,21	6,20	26,98	1,21	65,25	66,46	6,54	33,52	
QT2-G4B	0,02	0,09	7,35	20,65	1,50	70,38	71,88	7,46	28,11	
QT2-G4I	0,06	0,25	8,20	25,28	1,29	64,93	66,22	8,51	33,79	
QT2-G4C	0,08	0,01	8,99	25,94	1,10	63,88	64,98	9,08	35,02	
QT2-G5B	0,04	0,04	7,44	22,90	1,33	68,25	69,58	7,52	30,42	
QT2-G5I	0,05	0,08	8,26	26,75	1,01	63,86	64,87	8,39	35,14	
QT2-G5C	0,08	0,00	8,99	26,80	1,11	63,03	64,14	9,07	35,87	
QT2-G6B	0,00	0,15	6,68	22,43	1,35	69,39	70,74	6,83	29,26	
QT2-G6I	0,05	0,01	8,64	26,81	1,14	63,35	64,49	8,70	35,51	
QT2-G6C	0,00	0,01	8,00	27,59	1,20	63,20	64,40	8,01	35,60	
QT1-G1B	0,12	0,07	8,36	22,89	1,15	67,41	68,56	8,55	31,44	
QT1-G1I	0,16	0,65	10,36	21,59	1,31	65,93	67,24	11,17	32,76	
QT1-G1C	0,00	0,53	11,37	21,01	1,39	65,69	67,08	11,90	32,91	
QT1-G2B	0,05	0,52	8,06	22,67	1,03	67,67	68,70	8,63	31,30	
QT1-G2I	0,00	0,53	8,87	23,19	0,93	66,49	67,42	9,40	32,59	
QT1-G2C	0,04	0,53	10,21	21,51	0,82	66,89	67,71	10,78	32,29	
QT1-G3B	0,09	0,06	8,98	23,78	1,08	66,00	67,08	9,13	32,91	
QT1-G3I	0,06	1,13	10,96	22,64	1,10	64,12	65,22	12,15	34,79	
QT1-G3C	0,13	1,12	10,72	22,58	0,96	64,49	65,45	11,97	34,55	
QT1-G4B	0,15	0,51	6,45	21,16	1,31	70,41	71,72	7,11	28,27	
QT1-G4I	0,02	1,39	10,17	22,58	0,96	64,89	65,85	11,58	34,16	
QT1-G4C	0,07	0,61	11,06	22,45	1,11	64,71	65,82	11,74	34,19	
QT1-G5B	0,09	0,61	6,31	22,83	1,20	68,95	70,15	7,01	29,84	
QT1-G5I	0,06	1,25	8,90	22,91	1,18	65,70	66,88	10,21	33,12	
QT1-G5C	0,10	1,21	10,88	21,23	1,20	65,38	66,58	12,19	33,42	
QT1-G6B	0,14	0,52	8,21	23,67	1,12	66,34	67,46	8,87	32,54	
QT1-G6I	0,02	1,05	10,08	22,52	1,09	65,24	66,33	11,15	33,67	
QT1-G6C	0,08	1,01	10,53	21,94	1,20	65,24	66,44	11,62	33,56	

Tabela 11 - Composição das moléculas das granadas das amostras QT2 e QT1. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

		Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU			
QT2A-G1B	0,07	0,11	8,32	26,34	1,40	63,75	65,15	8,50	34,84			
QT2A-G1I	0,17	0,17	8,00	27,09	1,37	63,19	64,56	8,34	35,43			
QT2A-G1C	0,00	0,15	8,08	25,35	1,49	64,94	66,43	8,23	33,58			
QT2A-G2B	0,16	0,03	6,86	19,98	1,51	71,46	72,97	7,05	27,03			
QT2A-G2I	0,10	0,04	7,45	26,78	1,38	64,25	65,63	7,59	34,37			
QT2A-G2C	0,01	0,34	7,49	26,66	1,37	64,13	65,50	7,84	34,50			
QT2A-G3B	0,00	0,11	8,43	27,02	1,37	63,08	64,45	8,54	35,56			
QT2A-G3I	0,09	0,00	7,87	27,34	1,22	63,48	64,70	7,96	35,30			
QT2A-G3C	0,04	0,11	8,16	27,39	1,30	63,01	64,31	8,31	35,70			
QT2A-G4B	0,10	0,12	8,42	25,93	1,30	64,13	65,43	8,64	34,57			
QT2A-G4I	0,12	0,00	7,08	28,24	1,28	63,29	64,57	7,20	35,44			
QT2A-G4C	0,12	0,01	8,30	27,36	1,26	62,95	64,21	8,43	35,79			
QT2A-G5B	0,03	0,15	8,86	27,01	1,23	62,72	63,95	9,04	36,05			
QT2A-G5I	0,14	0,02	8,06	27,59	1,15	63,03	64,18	8,22	35,81			
QT2A-G5C	0,12	0,12	7,02	27,86	1,22	63,67	64,89	7,26	35,12			
QT2A-G6B	0,14	0,04	9,35	24,76	1,27	64,45	65,72	9,53	34,29			
QT2A-G6I	0,08	0,00	9,76	26,79	1,19	62,19	63,38	9,84	36,63			
QT2A-G6C	0,00	0,04	9,78	26,61	1,37	62,21	63,58	9,82	36,43			
ALC-G1B	0,00	71,86	15,42	1,17	2,64	8,88	11,52	87,28	88,45			
ALC-G1I	0,05	66,14	20,72	1,14	2,93	8,49	11,42	86,91	88,05			
ALC-G1C	0,05	66,58	20,27	1,19	2,92	8,97	11,89	86,90	88,09			
ALC-G2B	0,09	72,46	14,39	1,20	2,57	9,25	11,82	86,94	88,14			
ALC-G2I	0,06	67,48	19,05	1,12	3,04	9,22	12,26	86,59	87,71			
ALC-G2C	0,08	66,74	19,95	1,17	3,13	8,57	11,70	86,77	87,94			
ALC-G3B	0,02	71,90	15,25	0,81	2,72	9,27	11,99	87,17	87,98			
ALC-G3I	0,03	67,03	19,20	1,14	3,10	9,46	12,56	86,26	87,40			
ALC-G3C	0,00	67,37	19,24	1,19	2,88	9,30	12,18	86,61	87,80			
ALC-G4B	0,00	73,99	13,89	1,19	2,45	8,47	10,92	87,88	89,07			
ALC-G4I	0,06	72,80	13,55	1,20	2,41	9,95	12,36	86,41	87,61			
ALC-G4C	0,07	71,90	14,96	1,28	2,70	9,07	11,77	86,93	88,21			
ALC-G5C	0,06	68,36	1,53	28,58	1,44	0,00	1,44	69,95	98,53			
ALC-G5B	0,00	65,80	3,79	21,57	1,76	7,08	8,84	69,59	91,16			
ALC-G5I	0,00	55,03	10,79	32,81	1,38	0,00	1,38	65,82	98,63			
ALC-G6B	0,00	73,92	0,00	23,77	2,31	0,00	2,31	73,92	97,69			
ALC-G6I	0,00	74,76	0,00	22,56	1,80	0,87	2,67	74,76	97,32			
ALC-G6C	0,00	74,98	0,00	22,76	2,26	0,00	2,26	74,98	97,74			

Tabela 12 - Composição das moléculas das granadas das amostras QT2A e ALC. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

	Molécula (%)											
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU			
SSP-G1C	0,07	0,13	4,49	11,84	16,64	66,83	28,48	4,69	16,53			
SSP-G1B	0,02	0,02	4,15	10,25	17,74	67,81	27,99	4,19	14,44			
SSP-G2C	0,00	0,98	3,25	12,36	16,84	66,57	29,20	4,23	16,59			
SSP-G2B	0,00	0,60	3,56	10,41	17,24	68,19	27,65	4,16	14,57			
SSP-G3C	0,07	0,96	3,94	12,15	16,95	65,92	29,10	4,97	17,12			
SSP-G3B	0,02	0,33	3,60	11,04	17,45	67,56	28,49	3,95	14,99			
SSP-G4C	0,00	0,21	4,61	12,27	16,60	66,31	28,87	4,82	17,09			
SSP-G4B	0,07	0,51	3,23	11,11	17,46	67,61	28,57	3,81	14,92			
SSP-G5C	0,00	1,19	4,36	12,61	17,02	64,82	29,63	5,55	18,16			
SSP-G5B	0,10	0,26	3,66	11,35	16,92	67,72	28,27	4,02	15,37			
SSP-G6C	0,02	0,17	4,34	12,54	17,16	65,78	29,70	4,53	17,07			
SSP-G6B	0,05	1,00	3,20	11,55	17,17	67,03	28,72	4,25	15,80			
7041-G1C	0,13	0,64	6,63	10,40	8,92	73,29	19,32	7,40	17,80			
7041-G1B	0,07	0,00	6,21	8,49	7,85	77,39	16,34	6,28	14,77			
7041-G2C	0,00	0,12	6,53	9,00	7,83	76,52	16,83	6,65	15,65			
7041-G2B	0,03	0,10	6,35	8,05	7,68	77,79	15,73	6,48	14,53			
7041-G3C	0,00	0,02	6,15	10,94	8,05	74,85	18,99	6,17	17,11			
7041-G3B	0,00	0,00	6,36	8,85	7,52	77,26	16,37	6,36	15,21			
7041-G4C	0,08	0,37	6,37	10,38	10,15	72,65	20,53	6,82	17,20			
7041-G4B	0,02	0,92	6,30	8,98	7,46	76,32	16,44	7,24	16,22			
7041-G5C	0,03	0,19	6,57	11,02	8,19	74,00	19,21	6,79	17,81			
7041-G5B	0,00	0,05	5,97	9,43	7,79	76,75	17,22	6,02	15,45			
7041-G6C	0,00	0,14	6,17	10,98	7,90	74,82	18,88	6,31	17,29			
7041-G6B	0,00	0,00	6,11	9,56	7,70	76,64	17,26	6,11	15,67			

Tabela 13 - Composição das moléculas das granadas das amostras SSP e 7041. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

		Molécula (%)									
Amostra	U	А	G	Р	S	AI	A/+S	G+A+U	P+GAU		
TL2G1C	0,00	0,00	4,81	7,83	24,35	63,01	87,36	4,81	12,64		
TL2G2C	0,00	0,00	6,60	6,79	26,60	60,01	86,61	6,60	13,39		
TL2G3C	0,08	0,00	5,16	7,66	26,53	60,57	87,10	5,24	12,90		
TL2G3B	0,08	0,01	7,15	5,98	29,78	57,00	86,78	7,24	13,22		
TL2G4C	0,05	0,00	7,59	7,22	25,73	59,42	85,15	7,64	14,86		
CAMB1-G1C	0,00	0,33	3,22	14,23	19,18	63,04	82,22	3,55	17,78		
CAMB1-G1B	0,01	0,00	3,56	13,89	18,81	63,73	82,54	3,57	17,46		
CAMB1-G2C	0,07	0,00	3,44	13,30	20,01	63,18	83,19	3,51	16,81		
CAMB1-G2B	0,08	0,09	6,06	11,18	20,63	61,69	82,32	6,23	17,41		
CAMB1-G3C	0,00	0,34	3,58	13,58	19,35	63,15	82,50	3,92	17,50		
CAMB1-G3B	0,11	0,00	3,45	12,02	20,82	63,60	84,42	3,56	15,58		
CAMB1-G4C	0,12	0,00	3,27	13,28	20,14	63,19	83,33	3,39	16,67		
CAMB1-G4B	0,06	0,00	5,98	11,12	20,57	62,28	82,85	6,04	17,16		
CAMB1-G5C	0,00	0,15	2,95	14,19	19,53	63,17	82,70	3,10	17,29		
CAMB1-G5B	0,08	0,18	5,87	11,37	20,43	62,07	82,50	6,13	17,50		
CAMB-G1C	0,06	0,02	8,01	13,11	4,53	74,27	78,80	8,09	21,20		
CAMB-G1B	0,00	0,12	5,97	13,05	4,66	76,20	80,86	6,09	19,14		
CAMB-G2C	0,04	0,24	7,17	12,65	8,69	71,22	79,91	7,45	20,10		
CAMB-G2B	0,03	0,06	6,39	12,14	4,88	76,51	81,39	6,48	18,62		
CAMB-G3C	0,06	0,08	6,68	12,63	4,75	75,80	80,55	6,82	19,45		
CAMB-G3B	0,00	1,02	5,43	12,05	4,84	76,67	81,51	6,45	18,50		
CAMB-G4C	0,03	0,11	6,79	13,72	4,78	74,58	79,36	6,93	20,65		
CAMB-G4B	0,00	0,00	6,32	12,86	4,88	75,94	80,82	6,32	19,18		
CAMB-G5C	0,02	0,21	6,93	13,78	4,85	74,21	79,06	7,16	20,94		
CAMB-G5B	0,00	1,00	5,25	12,00	4,94	76,81	81,75	6,25	18,25		
ING-G1	0,00	0,15	29,07	14,23	3,18	53,36	56,54	29,22	43,45		
ING-G2	0,01	0,03	27,99	13,37	2,68	55,92	58,60	28,03	41,40		
ING-G3	0,01	0,18	27,02	16,10	2,76	53,93	56,69	27,21	43,31		
ING-G4	0,08	0,08	27,07	13,02	1,14	58,62	59,76	27,23	40,25		
ING-G5	0,03	1,31	25,93	17,34	2,73	52,65	55,38	27,27	44,61		
ING-G6	0,00	0,27	27,70	11,81	1,51	58,71	60,22	27,97	39,78		
ING-G7	0,01	0,06	25,73	13,82	5,24	55,13	60,37	25,80	39,62		
ING-G8	0,09	0,09	28,64	13,96	3,69	53,54	57,23	28,82	42,78		

Tabela 14 - Composição das moléculas das granadas das amostras TL2, CAMB1, CAMB E ING. G=granada, B=borda, C=centro, I=Intermédiário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita,

		Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU			
T13-G01	0,00	0,16	2,48	16,88	2,83	77,65	80,48	2,64	19,52			
T13-G02	0,00	0,00	2,02	12,71	9,43	75,84	85,27	2,02	14,73			
T13-G03	0,00	0,04	1,49	8,57	13,62	76,28	89,90	1,53	10,10			
T13-G04	0,05	0,01	2,35	22,96	1,66	72,99	74,65	2,41	25,37			
T13-G05	0,02	0,00	3,20	29,82	3,15	63,81	66,96	3,22	33,04			
T13-G06	0,00	0,00	2,93	18,95	4,55	73,56	78,11	2,93	21,88			
T13-G07	0,14	0,04	3,59	23,01	4,05	69,18	73,23	3,77	26,78			
T13-G08C	0,08	0,00	4,22	35,20	0,77	59,73	60,50	4,30	39,50			
T13-G08B	0,13	0,02	4,28	34,35	0,82	60,40	61,22	4,43	38,78			
T13-G09	0,23	0,00	5,33	33,77	0,63	60,03	60,66	5,56	39,33			
T56-G1	0,10	0,19	1,74	26,07	2,40	69,49	71,89	2,03	28,10			
T56-G2	0,04	0,72	3,22	17,01	24,29	54,72	79,01	3,98	20,99			
T56-G3	0,00	0,17	2,44	32,88	1,96	62,56	64,52	2,61	35,49			
T56-G4	0,06	0,03	5,11	40,25	1,62	52,93	54,55	5,20	45,45			
T56-G5	0,22	0,79	2,49	30,34	2,34	63,82	66,16	3,50	33,84			
T56-G6	0,11	0,00	2,57	25,12	10,21	61,99	72,20	2,68	27,80			
T56-G7	0,01	1,69	1,43	36,74	2,07	58,05	60,12	3,13	39,87			
T56-G8	0,05	0,00	2,03	32,31	1,51	64,10	65,61	2,08	34,39			
T56-G9	0,00	0,07	6,89	28,96	1,61	62,47	64,08	6,96	35,92			
T56-G10	0,02	0,70	3,67	18,56	28,23	48,83	77,06	4,39	22,95			
T56-G11	0,00	1,58	23,60	10,61	2,48	61,74	64,22	25,18	35,79			
T56-G12	0,12	0,62	2,16	17,05	1,61	78,44	80,05	2,90	19,95			
T56-G13	0,15	3,14	17,30	20,75	2,73	55,94	58,67	20,59	41,34			
T56-G14	0,00	0,13	17,01	8,71	12,75	61,40	74,15	17,14	25,85			
T56-G15	0,05	0,58	2,53	32,48	2,73	61,63	64,36	3,16	35,64			
T56-G16	0,01	0,82	2,56	31,24	3,73	61,64	65,37	3,39	34,63			
T56-G17	0,03	3,98	3,35	28,42	1,69	62,54	64,23	7,36	35,78			
T56-G18	0,15	1,42	20,07	24,17	1,28	52,92	54,20	21,64	45,81			
T56-G19	0,00	0,98	18,42	24,14	3,22	53,24	56,46	19,40	43,54			

Tabela 15 - Composição das moléculas das granadas dos testemunhos T13 e T56. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

	Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU		
T26-G1	0,14	0,00	4,34	23,66	3,31	68,55	71,86	4,48	28,14		
T26-G2	0,19	0,18	12,44	29,63	1,87	55,69	57,56	12,81	42,44		
T26-G3	0,02	0,11	2,50	19,74	3,52	74,10	77,62	2,63	22,37		
T26-G4	0,09	0,00	2,98	31,83	2,59	62,51	65,10	3,07	34,90		
T26-G5	0,00	0,07	17,07	32,20	0,86	49,80	50,66	17,14	49,34		
T26-G6	0,00	0,28	0,07	3,10	35,10	61,44	96,54	0,35	3,45		
T26-G7	0,10	0,19	3,33	8,52	22,55	65,32	87,87	3,62	12,14		
T26-G8	0,15	0,05	2,55	15,25	11,59	70,41	82,00	2,75	18,00		
T26-G9	0,06	0,00	2,89	32,93	2,00	62,12	64,12	2,95	35,88		
T26-G10	0,07	0,00	10,36	35,71	1,51	52,36	53,87	10,43	46,14		
T26-G11	0,29	0,06	8,27	27,59	2,82	60,97	63,79	8,62	36,21		
T26-G12	0,14	0,06	3,74	37,75	3,03	55,28	58,31	3,94	41,69		
T26-G13	0,04	0,07	2,57	13,26	0,60	83,45	84,05	2,68	15,94		
T26-G14	0,02	0,00	3,21	37,53	1,99	57,25	59,24	3,23	40,76		
T26-G15C	0,11	0,05	6,71	31,37	1,60	60,16	61,76	6,87	38,24		
T26-G15B	0,12	0,11	6,82	27,45	1,83	63,67	65,50	7,05	34,50		
T26-G16	0,03	0,16	28,39	8,88	2,46	60,08	62,54	28,58	37,46		
T26-G17	0,21	0,05	8,03	22,50	2,11	60,10	62,21	8,29	30,79		
T26-G18	0,03	0,20	6,08	31,32	1,44	60,93	62,37	6,31	37,63		
T26-G19	0,07	0,13	2,78	20,32	2,43	74,27	76,70	2,98	23,30		
T26-G20	0,07	0,08	8,37	12,20	3,38	75,90	79,28	8,52	20,72		
T26-G21	0,10	0,09	4,43	35,01	0,94	59,43	60,37	4,62	39,63		
T26-G22	0,00	0,03	2,90	20,99	3,82	72,26	76,08	2,93	23,92		
T26-G23	0,13	0,15	4,19	45,60	1,29	48,64	49,93	4,47	50,07		
T26-G24	0,09	0,11	3,01	28,14	2,64	66,01	68,65	3,21	31,35		
T26-G25	0,00	0,10	4,13	16,33	9,06	70,37	79,43	4,23	20,56		

Tabela 16 - Composição das moléculas das granadas do testemunho T26. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

	Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU		
T27-G1	0,05	1,31	1,87	38,23	1,04	57,50	58,54	3,23	41,46		
T27-G2	0,29	0,39	6,46	19,25	4,47	69,15	73,62	7,14	26,39		
T27-G3	0,01	0,77	3,05	11,17	14,83	70,15	84,98	3,83	15,00		
T27-G4	0,08	0,31	2,26	35,65	2,02	59,69	61,71	2,65	38,30		
T27-G5	0,00	0,04	2,57	39,39	2,09	55,91	58	2,61	42,00		
T27-G6	0,08	0,36	3,68	40,22	0,75	54,90	55,65	4,12	44,34		
T27-G7	0,00	0,77	7,21	33,01	1,39	57,62	59,01	7,98	40,99		
T27-G8	0,08	0,03	5,23	32,18	1,27	61,21	62,48	5,34	37,52		
T27-G9	0,06	0,00	3,66	40,72	0,58	54,98	55,56	3,72	44,44		
T27-G10	0,18	0,74	15,41	18,88	1,89	62,89	64,78	16,33	35,21		
T27-G11	0,11	0,25	2,25	40,11	1,46	55,82	57,28	2,61	42,72		
T27-G12	0,00	0,03	3,59	10,81	7,42	78,16	85,58	3,62	14,43		
T27-G13	0,08	0,85	2,50	22,97	11,97	61,64	73,61	3,43	26,40		
T27-G14	0,00	0,47	2,29	20,86	7,86	68,52	76,38	2,76	23,62		
T27-G15	0,03	1,28	3,51	34,97	1,33	58,88	60,21	4,82	39,79		
T27-G16	0,08	0,65	1,98	30,04	1,85	65,39	67,24	2,71	32,75		
T27-G17	0,00	0,10	8,19	12,52	8,03	71,15	79,18	8,29	20,81		
T27-G18	0,08	0,11	4,39	32,96	1,25	61,21	62,46	4,58	37,54		
T27-G19	0,02	0,26	2,20	36,80	1,54	59,18	60,72	2,48	39,28		
T27-G20	0,05	1,70	2,35	2,34	0,70	92,86	93,56	4,1	6,44		
T27-G21	0,28	0,23	5,26	25,54	3,32	65,38	68,7	5,77	31,31		
T27-G22	0,00	2,28	0,30	29,42	17,62	50,38	68	2,58	32,00		
T27-G23	0,13	0,00	6,73	33,74	1,82	57,58	59,4	6,86	40,60		
T27-G24	0,00	2,07	14,02	25,49	1,52	56,90	58,42	16,09	41,58		
T27-G25	0,14	0,89	28,05	1,81	15,07	54,05	69,12	29,08	30,89		
T27-G26C	0,11	0,64	3,13	37,47	1,07	57,58	58,65	3,88	41,35		
T27-G26B	0,06	0,06	3,66	37,91	0,98	57,33	58,31	3,78	41,69		

Tabela 17 - Composição das moléculas das granadas do testemunho T27. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=AImandina

		Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU			
T28-G1	0,00	0,79	3,24	21,54	3,44	70,98	74,42	4,03	25,57			
T28-G2	0,18	0,37	3,55	27,07	1,66	67,18	68,84	4,1	31,17			
T28-G3	0,00	1,86	2,82	24,42	2,92	68,98	71,9	4,68	29,10			
T28-G4	0,11	0,50	2,11	33,14	2,27	61,86	64,13	2,72	35,86			
T28-G5	0,00	2,72	23,90	11,33	2,13	59,91	62,04	26,62	37,95			
T28-G6	0,12	0,99	1,45	40,95	0,59	55,90	56,49	2,56	43,51			
T28-G7	0,07	2,33	22,22	6,93	4,97	63,47	68,44	24,62	31,55			
T28-G8	0,05	0,14	2,99	29,61	1,40	65,81	67,21	3,18	32,79			
T28-G9	0,86	0,11	1,70	29,75	12,36	55,21	67,57	2,67	32,42			
T28-G10	0,28	1,02	3,43	33,60	1,08	60,59	61,67	4,73	38,33			
T28-G11	0,13	0,73	1,99	17,22	6,46	73,47	79,93	2,85	20,07			
T28-G12	0,15	0,66	3,44	33,88	1,95	59,92	61,87	4,25	38,13			
T28-G13	0,00	1,68	18,75	2,65	6,58	70,33	76,91	20,43	23,08			
T28-G14	0,06	2,62	16,60	25,21	0,64	54,86	55,5	19,28	44,49			
T28-G15	0,00	0,08	5,22	32,81	0,93	60,96	61,89	5,3	38,11			
T28-G16	0,00	1,54	1,21	24,68	7,10	65,47	72,57	2,75	27,43			
T28-G17C	0,10	0,29	3,40	27,96	1,18	67,06	68,24	3,79	31,75			
T28-G17B	0,14	0,11	3,44	29,19	1,20	65,89	67,09	3,69	32,88			
T28-G18	0,05	1,20	1,51	32,31	1,94	62,99	64,93	2,76	35,07			
T28-G19	0,16	0,48	2,95	20,96	5,21	70,24	75,45	3,59	24,55			
T28-G20	0,07	0,07	3,57	34,11	3,52	58,66	62,18	3,71	37,82			
T28-G21	0,03	0,16	2,42	29,06	1,32	67,01	68,33	2,61	31,67			
T28-G22	0,00	0,03	6,10	22,74	3,08	68,05	71,13	6,13	28,87			
T28-G23	0,20	0,93	1,16	25,21	1,02	71,47	72,49	2,29	27,50			
T28-G24	0,15	0,42	5,52	11,16	3,53	79,22	82,75	6,09	17,25			
T28-G25	0,03	1,15	7,84	16,09	6,49	68,39	74,88	9,02	25,11			

Tabela 18 - Composição das moléculas das granadas do testemunho T28. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=AImandina

				ľ	Molécula (%)			
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU
T31-G1	0,12	0,02	3,52	13,70	15,51	67,13	82,64	3,66	17,36
T31-G2C	0,14	0,34	7,44	39,28	1,36	51,44	52,80	7,92	47,20
T31-G2B	0,23	0,05	7,25	39,35	1,39	51,72	53,11	7,53	46,88
T31-G3	0,27	0,00	6,67	32,45	1,65	58,96	60,61	6,94	39,39
T31-G4	0,08	0,06	6,54	11,88	1,60	79,84	81,44	6,68	18,56
T31-G5	0,03	0,06	10,92	24,39	0,57	64,02	64,59	11,01	35,40
T31-G6	0,11	0,19	3,66	24,93	5,08	66,03	71,11	3,96	28,89
T31-G7	0,00	0,00	2,93	28,34	2,41	66,33	68,74	2,93	31,27
T31-G8	0,02	0,05	2,36	19,92	0,38	77,27	77,65	2,43	22,35
T31-G9	0,23	0,13	4,57	37,46	1,11	56,49	57,60	4,93	42,39
T31-G10	0,00	0,80	2,21	20,02	11,48	65,50	76,98	3,01	23,03
T31-G11	0,16	0,14	5,70	43,40	1,12	49,48	50,60	6,00	49,40
T31-G12	0,00	0,01	2,74	13,10	16,48	67,68	84,16	2,75	15,85
T31-G13	0,00	0,00	2,57	15,24	5,71	76,48	82,19	2,57	17,81
T31-G14	0,39	0,11	3,49	35,84	1,10	59,07	60,17	3,99	39,83
T31-G15	0,19	0,23	11,40	24,88	2,11	61,19	63,30	11,82	36,70
T31-G16	0,13	0,16	8,22	37,06	1,72	52,71	54,43	8,51	45,57
T31-G17	0,00	0,10	2,98	26,15	2,96	67,81	70,77	3,08	29,23
T31-G18	0,31	0,06	6,41	31,26	1,79	60,17	61,96	6,78	38,04
T31-G19	0,15	0,61	4,80	12,93	2,37	79,14	81,51	5,56	18,49
T31-G20	0,13	0,56	5,74	32,57	1,00	60,00	61,00	6,43	39,00
T31-G21	0,06	0,00	2,68	28,52	3,53	65,22	68,75	2,74	31,26
T31-G22	0,00	0,02	3,03	29,82	0,66	66,47	67,13	3,05	32,87
T31-G23	0,19	0,17	8,49	20,60	2,36	68,19	70,55	8,85	29,45
T31-G24	0,10	0,12	4,41	25,44	2,77	67,16	69,93	4,63	30,07
T31-G25	0,02	0,06	2,65	18,43	11,35	67,49	78,84	2,73	21,16

Tabela 19 - Composição das moléculas das granadas do testemunho T31. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

		Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU			
T32-G1	0,02	0,01	3,11	40,40	1,24	55,22	56,46	3,14	43,54			
T32-G2	0,27	0,16	4,20	30,80	1,53	63,04	64,57	4,63	35,43			
T32-G3	0,44	0,12	3,21	39,97	1,19	55,06	56,25	3,77	43,74			
T32-G4	0,00	0,00	3,20	41,50	1,03	54,27	55,30	3,20	44,70			
T32-G5	0,20	0,06	5,41	29,74	1,48	63,11	64,59	5,67	35,41			
T32-G6	0,14	0,04	3,99	31,06	1,43	63,33	64,76	4,17	35,23			
T32-G7	0,09	0,03	4,22	37,65	1,50	56,50	58,00	4,34	41,99			
T32-G8	0,21	0,11	9,32	35,88	2,39	52,08	54,47	9,64	45,52			
T32-G9	0,06	0,15	2,70	35,98	0,72	60,39	61,11	2,91	38,89			
T32-G10C	0,07	0,21	3,72	39,66	0,85	55,49	56,34	4,00	43,66			
T32-G10B	0,09	0,22	3,90	38,37	0,95	56,47	57,42	4,21	42,58			
T32-G11	0,15	0,00	3,68	33,62	1,98	60,56	62,54	3,83	37,45			
T32-G12	0,19	0,05	3,23	42,13	1,70	52,71	54,41	3,47	45,60			
T32-G13	0,06	0,02	8,76	32,38	2,05	56,73	58,78	8,84	41,22			
T32-G14	0,11	0,08	2,32	33,39	1,77	62,33	64,10	2,51	35,90			
T32-G15	0,04	0,00	3,21	28,48	2,75	65,51	68,26	3,25	31,73			
T32-G16	0,18	0,00	2,84	34,88	1,53	60,56	62,09	3,02	37,90			
T32-G17	0,06	0,20	3,78	34,74	1,71	59,51	61,22	4,04	38,78			
T32-G18	0,04	1,28	13,14	31,57	3,82	50,16	53,98	14,46	46,03			
T32-G19	0,16	0,11	6,91	35,39	1,67	55,77	57,44	7,18	42,57			
T32-G20	0,09	0,02	4,80	20,38	4,62	70,09	74,71	4,91	25,29			
T32-G21	0,00	0,17	10,77	39,58	4,84	44,63	49,47	10,94	50,52			
T32-G22	0,18	0,09	1,95	41,65	1,16	54,97	56,13	2,22	43,87			
T32-G23	0,32	0,05	6,36	41,23	0,93	51,10	52,03	6,73	47,96			
T32-G24	0,09	0,10	4,42	36,68	2,43	56,27	58,70	4,61	41,29			
T32-G25	0,14	0,07	28,80	22,06	0,97	47,95	48,92	29,01	51,07			

Tabela 20 - Composição das moléculas das granadas do testemunho T32. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

		Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU			
T33-G1	0,04	0,04	10,10	18,06	4,57	67,19	71,76	10,18	28,24			
T33-G2C	0,07	0,03	3,22	29,79	1,50	65,40	66,90	3,32	33,11			
T33-G2B	0,18	0,07	3,00	29,58	1,50	65,07	66,57	3,25	32,83			
T33-G3	0,00	0,00	2,56	31,76	5,05	60,63	65,68	2,56	34,32			
T33-G4	0,00	0,00	2,30	30,75	8,90	58,05	66,95	2,30	33,05			
T33-G5	0,10	0,17	2,73	38,34	1,49	57,17	58,66	3,00	41,34			
T33-G6	0,03	0,01	2,79	21,10	5,59	70,49	76,08	2,83	23,93			
T33-G7	0,00	0,09	2,85	30,10	7,27	59,69	66,96	2,94	33,04			
T33-G8	0,06	0,08	2,83	11,19	8,14	77,69	85,83	2,97	14,16			
T33-G9	0,23	0,12	2,98	36,87	0,86	58,93	59,79	3,33	40,20			
T33-G10	0,11	0,12	2,30	24,49	19,51	53,47	72,98	2,53	27,02			
T33-G11	0,03	0,12	11,36	22,45	2,07	63,97	66,04	11,51	33,96			
T33-G12	0,03	0,00	9,51	14,09	11,18	65,20	76,38	9,54	23,63			
T33-G13	0,07	0,00	3,15	24,54	3,18	69,06	72,24	3,22	27,76			
T33-G14	0,00	0,00	4,44	9,55	19,65	66,37	86,02	4,44	13,99			
T33-G15	0,04	0,03	3,58	15,17	20,33	60,85	81,18	3,65	18,82			
T33-G16	0,00	0,00	4,10	10,93	12,04	72,93	84,97	4,10	15,03			
T33-G17	0,05	1,09	12,33	19,76	3,13	63,63	66,76	13,47	33,23			
T33-G18	0,29	0,08	7,60	23,73	2,50	65,80	68,30	7,97	31,70			
T33-G19	0,14	0,30	7,22	30,95	1,22	60,16	61,38	7,66	38,61			
T33-G20	0,00	0,09	3,95	18,10	17,65	60,21	77,86	4,04	22,14			
T33-G21	0,02	0,00	4,81	11,12	9,95	74,10	84,05	4,83	15,95			
T33-G22	0,01	0,03	2,91	21,79	5,18	70,07	75,25	2,95	24,74			
T33-G23	0,27	0,65	3,47	30,42	1,15	64,04	65,19	4,39	34,81			
T33-G24	0,05	0,09	2,54	30,22	3,03	64,07	67,10	2,68	32,90			
T33-G25	0,10	0,00	2,74	36,45	1,98	58,72	60,70	2,84	39,29			

Tabela 21 - Composição das moléculas das granadas do testemunho T33. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

		Molécula (%)										
Amostra	U	А	G	Р	S	AI	AI+S	G+A+U	P+GAU			
T42-G1C	0,15	0,06	3,52	39,73	1,43	55,12	56,55	3,73	43,46			
T42-G1B	0,00	0,00	4,08	40,34	1,39	54,19	55,58	4,08	44,42			
T42-G2	0,34	0,14	5,94	34,95	1,53	57,11	58,64	6,42	41,37			
T42-G3	0,00	1,09	1,87	23,09	4,82	69,14	73,96	2,96	26,05			
T42-G4	0,55	0,39	17,66	36,17	1,49	43,74	45,23	18,60	54,77			
T42-G5	0,08	0,05	1,99	12,48	20,28	65,11	85,39	2,12	14,60			
T42-G6	0,12	0,12	2,94	32,42	0,59	63,82	64,41	3,18	35,60			
T42-G7	0,30	0,09	4,85	34,75	1,58	58,44	60,02	5,24	39,99			
T42-G8	0,12	0,03	2,31	39,83	1,34	56,36	57,70	2,46	42,29			
T42-G9	0,14	0,00	5,53	28,66	1,47	64,20	65,67	5,67	34,33			
T42-G10	0,12	0,07	2,32	35,79	1,02	60,69	61,71	2,51	38,30			
T42-G11	0,07	0,00	2,98	33,98	1,57	61,40	62,97	3,05	37,03			
T42-G12	0,29	0,14	3,43	43,44	0,61	52,08	52,69	3,86	47,30			
T42-G13	0,20	0,15	4,38	31,27	1,31	62,68	63,99	4,73	36,00			
T42-G14	0,14	0,12	7,19	32,38	1,13	59,03	60,16	7,45	39,83			
T42-G15	0,00	0,00	3,84	31,68	1,70	62,78	64,48	3,84	35,52			
T42-G16	0,02	0,00	2,85	25,53	4,22	67,38	71,60	2,87	28,40			
T42-G17	0,11	0,11	3,61	30,20	2,59	63,38	65,97	3,83	34,03			
T42-G18	0,03	0,51	15,45	26,01	0,62	57,38	58,00	15,99	42,00			
T42-G19	0,04	0,01	3,71	23,76	2,27	70,21	72,48	3,76	27,52			
T42-G20	0,08	0,00	6,53	40,45	1,10	51,83	52,93	6,61	47,06			
T42-G21	0,10	0,00	2,91	39,84	1,48	55,67	57,15	3,01	42,85			
T42-G22	0,44	0,17	2,16	48,28	0,67	48,28	48,95	2,77	51,05			
T42-G23	0,08	0,05	2,42	38,90	2,21	56,33	58,54	2,55	41,45			
T42-G24	0,05	0,32	7,14	28,64	6,20	57,65	63,85	7,51	36,15			
T42-G25	0,07	0,04	2,72	31,51	2,15	63,51	65,66	2,83	34,34			

Tabela 22 - Composição das moléculas das granadas do testemunho T42. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

		Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU			
T46-G01	0,04	0,00	2,68	23,50	5,07	68,71	73,78	2,72	26,22			
T46-G02	0,07	0,11	18,59	27,05	0,70	53,49	54,19	18,77	45,82			
T46-G03	0,00	0,06	2,80	19,08	11,04	67,02	78,06	2,86	21,94			
T46-G04	0,10	0,10	3,76	38,03	2,53	55,47	58,00	3,96	41,99			
T46-G05	0,00	0,01	25,01	3,71	8,40	62,87	71,27	25,02	28,73			
T46-G06	0,06	0,00	2,94	36,09	2,52	58,39	60,91	3,00	39,09			
T46-G07	0,07	0,03	3,31	28,31	0,65	67,74	68,39	3,41	31,72			
T46-G08	0,25	0,00	4,14	31,65	2,16	61,80	63,96	4,39	36,04			
T46-G09	0,18	0,08	3,27	35,28	1,43	59,78	61,21	3,53	38,81			
T46-G10C	0,06	0,00	2,86	28,16	2,31	66,61	68,92	2,92	31,08			
T46-G10B	0,00	0,00	2,79	28,37	2,26	66,58	68,84	2,79	31,16			
T46-G11	0,04	0,05	2,33	26,11	14,73	56,74	71,47	2,42	28,53			
T46-G12	0,00	0,00	4,21	29,73	3,76	62,29	66,05	4,21	33,94			
T46-G13	0,00	0,01	7,05	31,54	1,44	59,95	61,39	7,06	38,60			
T46-G14	0,21	0,00	3,18	41,75	1,12	53,74	54,86	3,39	45,14			
T46-G15	0,00	0,00	2,58	17,50	2,23	77,69	79,92	2,58	20,08			
T46-G16	0,10	0,13	6,75	39,76	0,84	52,43	53,27	6,98	46,74			
T46-G17	0,17	0,00	5,41	32,21	1,54	60,68	62,22	5,58	37,79			
T46-G18	0,00	0,10	9,02	13,29	4,45	73,13	77,58	9,12	22,41			
T46-G19	0,00	0,00	15,42	21,98	1,59	61,01	62,60	15,42	37,40			
T46-G20	0,11	0,03	5,23	24,03	4,03	66,56	70,59	5,37	29,40			
T46-G21	0,20	0,12	16,27	34,55	1,32	47,55	48,87	16,59	51,14			
T46-G22	0,00	0,04	2,52	27,18	5,77	64,48	70,25	2,56	29,74			
T46-G23	0,04	0,00	18,75	12,58	11,35	57,28	68,63	18,79	31,37			
T46-G24	0,10	0,00	4,97	29,83	8,16	56,94	65,10	5,07	34,90			
T46-G25	0,11	0,02	3,54	37,41	1,68	57,23	58,91	3,67	41,08			

Tabela 23 - Composição das moléculas das granadas do testemunho T46. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

		Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU			
T47-G1	0,04	0,52	2,23	20,22	5,94	71,05	76,99	2,79	23,01			
T47-G2	0,07	0,18	16,02	12,02	4,66	67,06	71,72	16,27	28,29			
T47-G3	0,13	0,19	2,62	23,70	2,66	70,70	73,36	2,94	26,64			
T47-G4	0,12	0,00	2,90	20,43	3,50	73,05	76,55	3,02	23,45			
T47-G5	0,08	0,74	4,84	32,49	5,55	56,31	61,86	5,66	38,15			
T47-G6	0,04	0,81	2,73	33,73	3,35	59,35	62,70	3,58	37,31			
T47-G7	0,24	0,01	3,64	28,81	1,17	66,13	67,30	3,89	32,70			
T47-G8C	0,14	0,83	5,60	33,65	1,99	57,80	59,79	6,57	40,22			
T47-G8B	0,00	1,07	5,73	34,01	2,14	57,04	59,18	6,80	40,81			
T47-G9	0,10	0,83	1,62	29,97	2,04	65,45	67,49	2,55	32,52			
T47-G10	0,04	0,02	4,48	17,32	2,43	75,71	78,14	4,54	21,86			
T47-G11	0,07	0,13	2,85	22,71	7,97	66,27	74,24	3,05	25,76			
T47-G12	0,52	1,06	21,85	22,34	7,04	47,20	54,24	23,43	45,77			
T47-G13	0,10	0,69	6,36	50,15	0,61	42,10	42,71	7,15	57,30			
T47-G14	0,23	0,93	8,57	32,16	2,31	55,79	58,10	9,73	41,89			
T47-G15	0,10	0,68	22,64	6,05	6,04	64,49	70,53	23,42	29,47			
T47-G16	0,06	0,06	3,09	16,38	3,54	76,87	80,41	3,21	19,59			
T47-G17	0,02	1,43	9,77	29,43	3,96	55,40	59,36	11,22	40,65			
T47-G18	0,27	2,32	21,70	11,40	20,73	43,58	64,31	24,29	35,69			
T47-G19	0,27	0,21	1,69	21,31	1,20	69,32	70,52	2,17	23,48			
T47-G20	0,15	0,51	17,77	22,64	2,23	56,69	58,92	18,43	41,07			
T47-G21	0,03	0,09	8,35	30,82	1,66	59,05	60,71	8,47	39,29			
T47-G22	0,06	7,44	61,17	0,53	7,90	22,90	30,80	68,67	69,20			
T47-G23	0,15	0,07	2,61	24,54	1,25	71,39	72,64	2,83	27,37			
T47-G24	0,09	0,66	1,79	35,67	2,29	59,50	61,79	2,54	38,21			
T47-G25	0,06	0,18	2,36	27,07	4,73	65,61	70,34	2,60	29,67			

Tabela 24 - Composição das moléculas das granadas do testemunho T47. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

		Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU			
T49-G1	0,16	0,15	8,79	35,34	0,98	54,59	55,57	9,10	44,44			
T49-G2	0,05	0,08	2,47	41,12	1,51	54,77	56,28	2,60	43,72			
T49-G3	0,09	0,72	25,69	16,33	2,55	54,61	57,16	26,50	42,83			
T49-G4	0,19	0,00	3,46	41,52	0,81	54,02	54,83	3,65	45,17			
T49-G5	0,03	0,01	13,49	18,06	2,22	66,19	68,41	13,53	31,59			
T49-G6	0,00	0,00	12,91	9,75	47,25	30,10	77,35	12,91	22,66			
T49-G7	0,17	0,17	4,04	42,99	1,00	51,63	52,63	4,38	47,37			
T49-G8	0,00	0,14	3,78	38,26	1,96	55,86	57,82	3,92	42,18			
T49-G9	0,15	0,23	3,16	41,72	2,13	52,61	54,74	3,54	45,26			
T49-G10	0,05	0,04	4,13	42,90	0,40	52,47	52,87	4,22	47,12			
T49-G11	0,00	0,01	3,40	29,87	3,16	63,56	66,72	3,41	33,28			
T49-G12	0,03	0,03	3,15	29,29	2,45	65,06	67,51	3,21	32,50			
T49-G13	0,05	0,49	20,09	26,65	1,51	51,21	52,72	20,63	47,28			
T49-G14	0,03	2,18	32,96	18,36	1,25	45,22	46,47	35,17	53,53			
T49-G15	0,05	0,33	5,19	46,04	3,17	45,22	48,39	5,57	51,61			
T49-G16	0,07	0,23	2,67	41,00	0,59	55,44	56,03	2,97	43,97			
T49-G17	0,26	0,22	4,78	33,16	1,98	59,60	61,58	5,26	38,42			
T49-G18	0,08	1,89	15,31	17,16	17,27	48,29	65,56	17,28	34,44			
T49-G19	0,00	0,02	2,71	20,65	24,78	51,84	76,62	2,73	23,38			
T49-G20	0,28	0,00	7,72	27,96	2,24	61,79	64,03	8,00	35,96			
T49-G21	0,01	0,10	4,19	25,62	12,58	57,50	70,08	4,30	29,92			
T49-G22	0,00	0,08	3,49	26,17	2,74	67,52	70,26	3,57	29,74			
T49-G23	0,11	0,04	7,53	16,46	4,23	71,64	75,87	7,68	24,14			
T49-G24C	0,01	0,02	2,96	30,75	2,21	64,05	66,26	2,99	33,74			
T49-G24B	0,00	0,05	2,97	30,56	2,07	64,34	66,41	3,02	33,58			
T49-G25	0,00	0,06	0,73	39,33	3,13	56,75	59,88	0,79	40,12			

Tabela 25 - Composição das moléculas das granadas do testemunho T49. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

		Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU			
T50-G1	0,14	0,17	3,45	38,52	1,25	56,46	57,71	3,76	42,28			
T50-G2	0,11	0,51	4,70	37,41	1,01	56,26	57,27	5,32	42,73			
T50-G3	0,09	0,41	9,21	4,90	37,38	48,01	85,39	9,71	14,61			
T50-G4	0,15	0,63	4,97	26,98	1,63	65,64	67,27	5,75	32,73			
T50-G5	0,03	0,82	1,93	44,28	1,42	51,54	52,96	2,78	47,06			
T50-G6	0,07	1,23	1,80	35,75	4,93	56,22	61,15	3,10	38,85			
T50-G7	0,00	0,31	2,69	24,64	3,69	68,68	72,37	3,00	27,64			
T50-G8	0,05	0,28	3,62	40,25	2,11	53,70	55,81	3,95	44,20			
T50-G9C	0,23	0,00	4,66	38,72	0,92	55,48	56,40	4,89	43,61			
T50-G9B	0,28	1,15	3,69	37,83	0,96	56,09	57,05	5,12	42,95			
T50-G10	0,10	0,00	3,63	17,75	3,53	74,99	78,52	3,73	21,48			
T50-G11	0,09	1,61	5,22	35,03	1,26	56,79	58,05	6,92	41,95			
T50-G12	0,04	0,29	2,89	32,28	1,13	63,37	64,50	3,22	35,50			
T50-G13	0,16	0,79	1,80	38,24	1,59	57,42	59,01	2,75	40,99			
T50-G14	0,63	1,01	8,60	24,16	6,97	58,64	65,61	10,24	34,40			
T50-G15	0,13	0,46	6,00	14,16	9,21	70,05	79,26	6,59	20,75			
T50-G16	0,00	1,48	8,25	29,71	6,30	54,26	60,56	9,73	39,44			
T50-G17	0,26	0,62	3,79	31,10	1,73	62,49	64,22	4,67	35,77			
T50-G18	0,04	0,00	2,82	28,42	2,89	65,82	68,71	2,86	31,28			
T50-G19	0,03	0,04	5,72	24,73	2,22	67,25	69,47	5,79	30,52			
T50-G20	0,01	0,05	2,54	29,92	3,62	63,87	67,49	2,60	32,52			
T50-G21	0,04	0,21	2,70	27,79	0,93	68,26	69,19	2,95	30,74			
T50-G22	0,14	1,70	1,80	33,81	1,15	61,40	62,55	3,64	37,45			
T50-G23	0,03	1,13	1,17	10,42	19,65	67,60	87,25	2,33	12,75			
T50-G24	0,13	0,00	3,27	30,55	1,99	64,06	66,05	3,40	33,95			
T50-G25	0,08	1,74	23,79	14,73	1,72	57,94	59,66	25,61	40,34			

Tabela 26 - Composição das moléculas das granadas do testemunho T50. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

		Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU			
T52-G1	0,03	0,00	2,91	39,55	2,62	54,89	57,51	2,94	42,49			
T52-G2	0,00	0,01	3,06	32,87	2,51	61,55	64,06	3,07	35,94			
T53-G3C	0,09	0,10	4,59	35,43	1,08	58,70	59,78	4,78	40,21			
T52-G3B	0,22	0,26	4,23	35,07	1,19	59,02	60,21	4,71	39,78			
T52-G4	0,09	0,11	3,00	34,52	1,81	60,48	62,29	3,20	37,72			
T52-G5	0,10	0,16	2,97	39,30	1,27	56,21	57,48	3,23	42,53			
T52-G6	0,07	0,00	3,01	28,67	7,24	61,03	68,27	3,08	31,75			
T52-G7	0,11	0,09	2,48	29,42	3,61	64,28	67,89	2,68	32,10			
T52-G8	0,07	0,02	2,62	27,37	1,52	68,41	69,93	2,71	30,08			
T52-G9	0,09	0,09	3,12	14,00	15,07	67,62	82,69	3,30	17,30			
T52-G10	0,12	0,00	9,93	19,86	3,89	66,21	70,10	10,05	29,91			
T52-G11	0,18	0,00	4,87	22,63	2,07	69,63	71,70	5,05	27,68			
T52-G12	0,01	0,11	3,04	27,32	15,44	54,08	69,52	3,16	30,48			
T52-G13	0,00	0,00	9,25	15,31	2,31	73,13	75,44	9,25	24,56			
T52-G14	0,02	0,01	7,79	22,29	3,19	66,70	69,89	7,82	30,11			
T52-G15	0,07	0,03	3,44	11,50	22,58	62,38	84,96	3,54	15,04			
T52-G16	0,37	0,20	6,69	21,47	2,18	69,09	71,27	7,26	28,73			
T52-G17	0,12	0,08	7,64	23,66	0,74	67,76	68,50	7,84	31,50			
T52-G18	0,00	0,03	7,40	16,33	3,63	72,61	76,24	7,43	23,76			
T52-G19	0,08	0,09	2,78	33,77	1,77	61,51	63,28	2,95	36,72			
T52-G20	0,16	0,00	11,11	15,83	5,94	66,97	72,91	11,27	27,10			
T52-G21	0,24	0,00	4,47	32,91	2,01	60,37	62,38	4,71	37,62			
T52-G22	0,12	0,01	6,90	24,81	2,73	65,43	68,16	7,03	31,84			
T52-G23	0,00	0,31	4,57	37,39	3,96	53,76	57,72	4,88	42,27			
T52-G24	0,14	0,06	2,91	38,59	2,17	56,11	58,28	3,11	41,70			
T52-G25	0,31	0,17	5,06	41,82	0,54	52,10	52,64	5,54	47,36			

Tabela 27 - Composição das moléculas das granadas do testemunho T52. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

		Molécula (%)									
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU		
T54-G01	0,00	0,03	2,68	32,94	1,99	62,36	64,35	2,71	35,65		
T54-G02	0,13	0,17	25,02	6,30	6,01	62,37	68,38	25,32	31,62		
T54-G03	0,07	0,10	2,06	21,84	6,85	69,08	75,93	2,23	24,07		
T54-G04	0,08	0,02	2,67	32,46	2,01	62,76	64,77	2,77	35,23		
T54-G05	0,20	0,11	5,14	29,79	2,24	62,53	64,77	5,45	35,24		
T54-G06	0,09	0,00	3,04	35,69	4,94	56,24	61,18	3,13	38,82		
T54-G07	0,09	0,00	8,77	11,54	6,93	72,68	79,61	8,86	20,40		
T54-G08	0,10	0,13	4,21	40,64	1,80	53,10	54,90	4,44	45,08		
T54-G09	0,14	0,00	6,44	24,31	2,77	66,34	69,11	6,58	30,89		
T54-G10	0,11	0,03	4,57	21,72	2,88	70,69	73,57	4,71	26,43		
T54-G11	0,08	0,00	4,64	37,71	1,41	56,16	57,57	4,72	42,43		
T54-G12	0,00	0,01	5,40	32,75	1,82	60,02	61,84	5,41	38,16		
T54-G13	0,07	0,47	19,53	14,79	38,89	26,65	65,54	20,07	34,86		
T54-G14	0,00	0,01	2,70	28,22	3,62	65,45	69,07	2,71	30,93		
T54-G15	0,11	0,01	3,21	43,25	1,49	51,93	53,42	3,33	46,58		
T54-G16	0,00	0,06	5,43	40,06	2,02	52,42	54,44	5,49	45,55		
T54-G17	0,13	0,00	3,94	13,05	19,43	63,45	82,88	4,07	17,12		
T54-G18	0,03	0,04	13,39	29,73	1,30	55,50	56,80	13,46	43,19		
T54-G19	0,14	0,00	4,49	10,01	18,89	66,39	85,28	4,63	14,64		
T34-G1C	0,11	0,00	3,38	34,36	4,07	58,09	62,16	3,49	37,85		
T34-G1B	0,00	0,11	3,25	34,04	4,31	58,28	65,59	3,36	37,40		
T34-G2	0,21	0,23	7,27	29,68	1,74	60,87	62,61	7,71	37,39		
T34-G3	0,22	0,05	3,59	34,31	1,85	59,98	61,83	3,86	38,17		
T34-G4	0,00	0,08	3,00	11,49	19,43	66,00	85,43	3,08	14,57		
T34-G5	0,00	0,11	4,53	41,68	2,72	50,97	53,69	4,64	46,32		
T34-G6	0,00	0,02	2,71	12,81	6,93	77,53	84,46	2,73	15,54		
T34-G7	0,03	0,22	77,83	0,28	0,22	21,43	21,65	78,08	78,36		

Tabela 28 - Composição das moléculas das granadas dos testemunhos T54 e T34. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

		Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU			
T59-G1	0,04	0,09	7,55	10,41	5,92	75,98	81,90	7,68	18,09			
T59-G2	0,06	0,00	2,55	23,27	3,47	70,65	74,12	2,61	25,88			
T59-G3	0,04	0,00	3,16	13,09	15,27	68,44	83,71	3,20	16,29			
T59-G4	0,00	0,23	0,97	28,42	3,50	63,89	67,39	1,20	29,62			
T59-G5	0,11	0,00	2,96	17,33	9,44	70,16	79,60	3,07	20,40			
T59-G6	0,08	0,06	4,51	9,82	6,50	79,04	85,54	4,65	14,47			
T59-G7	0,09	0,06	3,08	11,66	9,45	75,65	85,10	3,23	14,89			
T59-G8	0,05	0,12	5,39	26,66	1,06	66,72	67,78	5,56	32,22			
T59-G9	0,06	0,13	2,82	31,03	2,72	63,24	65,96	3,01	34,04			
T59-G10	0,00	1,44	10,11	31,64	1,13	55,67	56,80	11,55	43,19			
T59-G11	0,64	0,00	5,34	32,71	2,88	58,43	61,31	5,98	38,69			
T59-G12	0,01	0,09	3,22	21,06	3,84	71,78	75,62	3,32	24,38			
T59-G13	0,21	0,04	4,09	31,71	1,05	62,91	63,96	4,34	36,05			
T59-G14	0,19	0,00	3,06	13,43	23,09	60,23	83,32	3,25	16,68			
T59-G15	0,08	0,00	2,15	12,02	38,04	47,41	85,45	2,23	14,25			
T59-G16	0,23	0,04	7,85	27,25	2,19	62,44	64,63	8,12	35,37			
T59-G17	0,02	1,21	7,19	42,34	1,76	47,49	49,25	8,42	50,76			
T59-G18	0,07	0,05	2,61	31,32	2,41	63,54	65,95	2,73	34,05			
T59-G19	0,14	0,00	6,06	11,88	7,28	74,65	81,93	6,20	18,08			
T59-G20	0,05	0,05	6,06	33,06	1,17	59,61	60,78	6,16	39,22			
T59-G22	0,05	0,08	2,25	36,80	2,12	58,71	60,83	2,38	39,18			
T59-G23C	0,01	0,00	3,99	13,71	15,31	66,67	81,98	4,00	17,71			
T59-G23B	0,08	0,00	4,30	13,43	14,23	67,95	82,18	4,38	17,81			
T59-G24	0,02	0,33	5,16	11,20	27,73	55,55	83,28	5,51	16,71			
T59-G25	0,01	0,00	2,70	25,39	3,05	68,85	71,90	2,71	28,10			

Tabela 29 - Composição das moléculas das granadas do testemunho T59. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=AImandina

	Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU		
T60-G1	0,12	0,50	16,47	27,49	1,75	53,67	55,42	17,09	44,58		
T60-G2	0,00	0,22	2,29	35,87	0,99	60,63	61,62	2,51	38,38		
T60-G3	0,06	0,00	2,85	29,98	2,19	64,92	67,11	2,91	32,89		
T60-G4	0,27	0,00	5,31	27,85	2,32	64,25	66,57	5,58	33,43		
T60-G5	0,00	0,06	4,19	15,77	9,36	70,61	79,97	4,25	20,02		
T60-G6	0,11	0,55	15,84	2,69	74,47	6,34	80,81	16,50	19,19		
T60-G7	0,04	0,41	4,33	20,86	6,96	67,40	74,36	4,78	25,64		
T60-G8	0,09	0,00	2,84	29,38	2,73	64,97	67,70	2,93	32,31		
T60-G9	0,00	0,00	3,13	36,30	2,37	58,20	60,57	3,13	39,43		
T60-G10	0,00	0,04	1,07	5,05	46,74	47,09	93,83	1,11	6,16		
T60-G11	0,22	0,09	3,59	28,95	1,57	65,57	67,14	3,90	32,85		
T60-G12C	0,03	0,10	2,59	5,91	44,67	46,70	91,37	2,72	8,63		
T60-G12B	0,09	0,26	2,37	5,75	44,31	47,22	91,53	2,72	8,47		
T60-G13	0,08	0,00	3,78	11,62	26,02	58,50	84,52	3,86	15,48		
T60-G14	0,01	0,05	0,88	0,37	45,21	53,48	98,69	0,94	1,31		
T60-G15	0,27	0,10	21,32	17,15	4,10	57,07	61,17	21,69	38,84		
T60-G16	0,04	0,00	2,89	11,70	14,43	70,94	85,37	2,93	14,63		
T60-G17	0,00	0,06	3,24	13,29	10,14	73,27	83,41	3,30	16,59		
T60-G18	0,00	0,07	5,09	7,81	3,09	83,94	87,03	5,16	12,97		
T60-G19	0,00	0,02	11,57	13,71	5,84	68,86	74,70	11,59	25,30		
T60-G20	0,00	0,00	3,06	30,45	20,22	46,27	66,49	3,06	33,51		
T60-G21	0,10	0,03	4,49	41,27	1,56	52,56	54,12	4,62	45,89		
T60-G22	0,09	0,12	5,96	27,69	1,72	64,42	66,14	6,17	33,86		
T60-G23	0,02	0,00	4,97	19,22	2,91	72,88	75,79	4,99	24,21		
T60-G24	0,00	0,01	3,11	14,32	2,69	79,88	82,57	3,12	17,44		
T60-G25	0,05	0,58	5,07	27,48	2,73	64,09	66,82	5,70	33,18		

Tabela 30 - Composição das moléculas das granadas do testemunho T60. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

	Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU		
T62-G1	0,00	0,04	1,75	14,91	2,41	80,88	83,29	1,79	16,70		
T62-G2	0,37	0,05	5,25	30,38	1,71	62,24	63,95	5,67	36,05		
T62-G3	0,13	0,15	7,92	30,27	2,12	59,41	61,53	8,20	38,47		
T62-G4	0,00	0,22	2,51	23,59	4,06	69,63	73,69	2,73	26,32		
T62-G5	0,19	0,07	3,37	20,62	2,25	73,50	75,75	3,63	24,25		
T62-G6	0,07	0,08	4,96	32,49	1,47	60,94	62,41	5,11	37,60		
T62-G7	0,06	0,00	6,55	14,79	8,54	70,07	78,61	6,61	21,40		
T62-G8C	0,10	0,04	4,48	39,02	0,91	55,45	56,36	4,62	43,64		
T62-G8B	0,05	0,13	4,78	35,83	1,05	58,17	59,22	4,96	40,79		
T62-G9	0,15	0,08	4,02	34,56	1,33	59,86	61,19	4,25	38,81		
T62-G10	0,12	0,29	3,31	41,01	1,29	53,98	55,27	3,72	44,73		
T62-G11	0,13	0,07	3,91	36,08	1,28	58,54	59,82	4,11	40,19		
T62-G12	0,00	0,00	7,54	12,76	13,87	65,82	79,69	7,54	20,30		
T62-G13	0,00	0,08	2,99	24,82	4,07	68,04	72,11	3,07	27,89		
T62-G14	0,06	0,58	2,46	37,45	1,92	57,54	59,46	3,10	40,55		
T62-G15	0,03	0,10	2,96	23,25	2,65	71,01	73,66	3,09	26,34		
T62-G16	0,05	0,12	3,88	33,56	0,96	61,42	62,38	4,05	37,61		
T62-G17	0,17	1,16	7,88	35,81	1,38	53,60	54,98	9,21	45,02		
T62-G18	0,03	0,08	3,85	17,05	4,38	74,60	78,98	3,96	21,01		
T62-G19	0,09	0,17	3,71	34,12	3,03	58,88	61,91	3,97	38,09		
T62-G20	0,01	0,05	3,05	23,45	2,07	71,37	73,44	3,11	26,56		
T62-G21	0,02	0,04	3,50	11,55	13,70	71,19	84,89	3,56	15,11		
T62-G22	0,11	0,04	2,69	29,39	1,67	66,11	67,78	2,84	32,23		
T62-G23	0,02	0,00	3,13	39,42	1,68	55,75	57,43	3,15	42,57		
T62-G24	0,05	0,80	6,24	39,15	0,88	52,89	53,77	7,09	46,24		
T62-G25	0,06	0,11	4,10	34,59	0,82	60,33	61,15	4,27	38,86		

Tabela 31 - Composição das moléculas das granadas do testemunho T62. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

	Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU		
T65-G1	0,11	0,00	8,79	37,35	2,15	51,60	53,75	8,90	46,25		
T65-G2	0,03	0,01	3,12	29,18	6,75	60,90	67,65	3,16	32,34		
T65-G3	0,20	0,08	3,22	22,01	2,84	71,65	74,49	3,50	25,51		
T65-G4	0,00	0,04	3,38	8,27	13,46	74,84	88,30	3,42	11,69		
T65-G5	0,05	0,05	2,69	22,41	1,52	73,28	74,80	2,79	25,20		
T65-G6	0,01	0,18	13,72	8,73	0,64	76,73	77,37	13,91	22,64		
T65-G7	0,13	0,15	2,76	32,31	1,26	63,40	64,66	3,04	35,35		
T65-G8	0,12	0,03	4,06	40,56	1,81	53,43	55,24	4,21	44,77		
T65-G9	0,20	0,07	6,79	38,09	1,26	53,60	54,86	7,06	45,15		
T65-G10	0,13	0,07	6,35	37,23	2,33	53,89	56,22	6,55	43,78		
T65-G11	0,00	0,03	3,09	19,51	2,52	74,85	77,37	3,12	22,63		
T65-G12	0,16	0,08	4,69	33,95	1,38	59,74	61,12	4,93	38,88		
T65-G13	0,23	0,02	3,59	37,17	1,41	57,58	58,99	3,84	41,01		
T65-G14C	0,13	0,85	42,31	3,02	7,29	46,40	53,69	43,29	46,31		
T65-G14B	0,00	0,72	42,42	2,45	9,59	44,83	54,42	43,14	45,59		
T65-G15	0,14	0,03	7,88	18,48	4,92	68,54	73,46	8,05	26,53		
T65-G16	0,11	0,19	18,61	10,69	5,57	64,84	70,41	18,91	29,60		
T65-G17	0,15	0,10	5,17	36,69	3,46	54,43	57,89	5,42	42,11		
T65-G18	0,10	0,05	2,43	24,91	1,21	71,31	72,52	2,58	27,49		
T65-G19	0,05	0,00	2,52	10,96	5,84	80,62	86,46	2,57	13,53		
T65-G20	0,08	0,05	2,78	24,86	0,97	71,25	72,22	2,91	27,77		
T65-G21	0,07	0,04	4,09	24,92	3,13	67,76	70,89	4,20	29,12		
T65-G22	0,02	0,03	2,36	39,41	1,31	56,88	58,19	2,41	41,82		
T65-G23	0,00	0,02	2,97	21,09	6,12	69,79	75,91	2,99	24,08		
T65-G24	0,05	0,18	3,18	26,21	1,59	68,78	70,37	3,41	29,62		
T65-G25	0,03	0,00	8,55	33,51	7,36	50,55	57,91	8,58	42,09		

Tabela 32 - Composição das moléculas das granadas do testemunho T65. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=AImandina

					Nolécula (%))			
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU
T66-G1	0,07	0,03	4,10	29,63	0,88	65,29	66,17	4,20	33,83
T66-G1A	0,29	0,03	3,77	28,88	0,91	66,13	67,04	4,09	32,97
T66-G2	0,18	0,11	4,21	32,07	3,11	60,32	63,43	4,50	36,57
T66-G3	0,00	0,36	3,47	35,53	1,63	59,01	60,64	3,83	39,36
T66-G4	0,00	0,08	4,15	34,90	0,96	59,90	60,86	4,23	39,13
T66-G5	0,15	0,00	4,55	20,65	3,41	71,24	74,65	4,70	25,35
T66-G6	0,34	0,09	3,56	23,86	1,06	71,09	72,15	3,99	27,85
T66-G7	0,24	0,10	6,52	35,15	1,18	56,81	57,99	6,86	42,01
T66-G8	0,14	0,09	3,73	14,16	9,26	72,61	81,87	3,96	18,12
T66-G9	0,00	0,29	6,32	17,55	9,25	66,59	75,84	6,61	24,16
T66-G10	0,09	0,07	2,68	27,68	1,09	68,37	69,46	2,84	30,52
T66-G11	0,07	0,11	3,23	43,21	0,86	52,51	53,37	3,41	46,62
T66-G12	0,06	0,05	3,28	24,46	0,30	71,84	72,14	3,39	27,85
T66-G13	0,03	0,18	5,30	39,41	0,71	54,37	55,08	5,51	44,92
T66-G14	0,11	0,00	3,24	27,50	3,04	66,11	69,15	3,35	30,85
T66-G15	0,00	0,03	2,55	40,89	1,59	54,93	56,52	2,58	43,47
T67-G1	0,09	0,10	10,50	10,98	4,59	73,74	78,33	10,69	21,67
T67-G2	0,15	0,08	4,01	22,17	3,49	70,09	73,58	4,24	26,41
T67-G3	0,01	0,16	13,09	11,22	7,19	68,34	75,53	13,26	24,48
T67-G4	0,15	0,04	0,91	4,42	7,72	86,76	94,48	1,10	5,52
T67-G5	0,10	0,17	3,06	39,40	0,74	56,53	57,27	3,33	42,73
T67-G6	0,02	0,01	2,42	44,96	2,33	50,25	52,58	2,45	47,41
T67-G7	0,00	0,04	2,74	29,75	3,65	63,82	67,47	2,78	32,53
T67-G8	0,01	0,06	4,75	28,77	1,13	65,28	66,41	4,82	33,59
T67-G9	0,12	0,05	2,69	40,02	1,46	55,66	57,12	2,86	42,88
T67-G10	0,22	0,00	6,03	27,25	1,89	64,61	66,50	6,25	33,50
T67-G11	0,09	0,00	2,68	33,83	2,08	61,32	63,40	2,77	36,60
T67-G12	0,03	0,47	21,96	30,56	1,44	45,55	46,99	22,46	53,02
T67-G13	0,04	0,03	4,87	27,04	1,21	66,81	68,02	4,94	31,98

Tabela 33 - Composição das moléculas das granadas dos testemunhos T66 e T67. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=AImandina

	Molécula (%)										
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU		
T68-G1	0,12	0,05	13,52	17,67	12,58	56,05	68,63	13,69	31,36		
T68-G2	0,00	0,00	13,06	25,17	3,53	68,25	71,78	13,06	38,23		
T68-G3	0,06	0,13	19,50	16,75	1,19	62,38	63,57	19,69	36,44		
T68-G4	0,00	0,00	14,51	10,08	6,99	68,42	75,41	14,51	24,59		
T68-G5	0,03	0,00	4,44	18,65	5,29	71,59	76,88	4,47	23,12		
T68-G6	0,00	0,20	5,29	12,20	26,93	55,38	82,31	5,49	17,69		
T68-G7	0,00	0,00	3,87	10,30	30,85	54,98	85,83	3,87	14,17		
T68-G8	0,11	0,03	14,17	3,52	5,93	76,23	82,16	14,31	17,83		
T68-G9	0,04	0,09	11,09	17,49	4,01	67,27	71,28	11,22	28,71		
T68-G10	0,11	0,05	1,46	18,79	3,96	75,63	79,59	1,62	20,41		
T68-G11	0,03	0,03	2,67	34,33	1,59	61,36	62,95	2,73	37,06		
T68-G12	0,15	0,00	7,15	17,93	1,13	73,63	74,76	7,30	25,23		
T68-G13	0,03	0,00	4,64	14,80	37,00	43,54	80,54	4,67	19,47		
T68-G14	0,00	0,12	0,96	4,34	50,06	44,52	94,58	1,08	5,42		
T68-G15	0,04	0,01	3,10	42,12	2,83	51,89	54,72	3,15	45,27		
T68-G16	0,12	0,03	2,89	26,92	22,75	47,28	70,03	3,04	29,96		
T68-G17	0,07	0,00	7,79	19,24	27,59	45,31	72,90	7,86	27,10		
T68-G18	0,00	0,41	9,25	8,24	28,31	53,79	82,10	9,66	17,90		
T68-G19	0,00	0,09	0,40	3,43	52,36	43,72	96,08	0,49	3,92		
T68-G20	0,10	0,04	2,82	15,74	25,98	55,32	81,30	2,96	18,70		
T68-G21C	0,04	0,01	2,72	25,05	2,63	69,55	72,18	2,77	27,82		
T68-G21B	0,06	0,00	2,95	24,32	3,14	69,53	72,67	3,01	27,33		
T68-G22	0,00	0,05	2,72	44,21	2,21	50,81	53,02	2,77	46,98		
T68-G23	0,24	0,05	4,37	29,15	1,69	64,50	66,19	4,66	33,81		
T68-G24	0,01	0,01	4,66	13,61	10,41	71,30	81,71	4,68	18,29		
T68-G25	0,04	0,60	2,51	13,43	39,16	44,27	83,43	3,15	16,58		

Tabela 34 - Composição das moléculas das granadas do testemunho T68. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=AImandina

					Óxidos ((% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
CAP3-G1B	2,10	21,64	37,10	0,03	36,16	1,98	2,00	0,00	0,00	101,01
CAP3-G1C	1,87	20,95	36,22	0,02	33,82	1,94	4,52	0,00	0,00	99,34
CAP3-G2B	1,98	21,18	35,39	0,03	34,31	2,36	2,75	0,03	0,00	98,03
CAP3-G2C	2,00	21,25	36,84	0,09	34,98	2,31	3,31	0,01	0,00	100,78
CAP3-G3B	2,23	21,22	36,63	0,00	35,67	2,08	2,13	0,05	0,00	100,01
CAP3-G3C	1,90	20,90	37,07	0,04	34,07	2,14	4,03	0,04	0,00	100,20
CAP3-G4B	1,99	21,24	36,56	0,01	35,29	2,20	2,33	0,03	0,00	99,65
CAP3-G4C	2,12	21,27	36,38	0,00	35,04	2,11	2,53	0,00	0,00	99,45
CAP3-G5C	2,39	21,51	36,51	0,05	36,03	3,08	0,40	0,04	0,00	100,02
CAP3-G5B	2,01	21,06	37,34	0,01	36,26	2,23	2,39	0,00	0,26	101,54
CAP3-G5I	1,84	20,98	37,42	0,00	34,58	2,53	3,57	0,01	0,27	101,20
CAP3-G6C	1,94	21,36	37,24	0,10	35,36	2,02	2,98	0,00	0,00	101,00
CAP3-G6B	1,90	21,21	37,17	0,04	35,59	2,16	2,98	0,00	0,00	101,04
CAP3-G7C	4,97	32,43	35,42	0,93	10,41	0,98	0,00	0,00	0,00	85,14
CAP3-G7B	2,27	21,19	36,13	0,03	36,00	2,27	1,55	0,01	0,00	99,45
ML2-G1B	0,97	20,90	36,67	0,03	27,91	2,66	10,38	0,00	0,00	99,52
ML2-G1C	1,12	20,93	36,56	0,06	30,23	3,21	6,87	0,00	0,00	98,98
ML2-G2B	0,98	20,73	36,86	0,02	28,72	3,07	9,28	0,00	0,07	99,73
ML2-G2C	1,15	20,66	36,64	0,00	30,78	3,20	6,79	0,03	0,08	99,33
ML2-G3B	0,99	20,77	37,03	0,07	27,64	3,20	10,17	0,00	0,03	99,92
ML2-G3C	1,14	20,98	37,32	0,00	31,02	3,34	6,87	0,03	0,05	100,75
ML2-G4B	1,04	20,85	36,44	0,02	28,17	3,22	9,60	0,04	0,00	99,39
ML2-G4C	1,15	20,85	36,83	0,06	30,98	3,38	6,75	0,00	0,00	100,00
ML2-G5B	0,94	20,93	36,47	0,08	26,69	2,68	11,03	0,00	0,00	98,83
ML2-G5C	1,12	21,02	36,69	0,00	30,42	3,54	7,03	0,02	0,00	99,84
ML2-G6B	0,98	20,91	36,61	0,08	27,25	3,17	10,38	0,00	0,00	99,39
ML2-G6C	1,15	20,88	36,82	0,04	30,32	3,03	7,78	0,01	0,00	100,02

Tabela 35 - Composição química dos elementos maiores das granadas das amostras CAP3 e ML2. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos ((% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
CMPF-12A	1,23	21,06	37,41	0,10	39,38	1,90	0,60	0,01	0,00	101,69
CMPF-12B	1,35	21,07	37,21	0,05	40,11	1,57	0,30	0,01	0,00	101,67
CMPF-12C	1,09	20,93	36,99	0,12	39,57	1,86	0,67	0,00	0,00	101,23
CMPF-12D	1,70	20,84	37,09	0,10	39,97	1,26	0,21	0,00	0,00	101,27
CMPF-4A	1,31	21,00	37,32	0,09	36,54	3,70	1,41	0,00	0,00	101,37
CMPF-4B	0,93	20,97	37,55	0,05	37,34	2,83	1,98	0,00	0,00	101,65
CMPF-13A (EN28D)	1,89	21,25	37,52	0,09	31,25	2,33	6,63	0,00	0,00	100,96
CMPF-13B (EN28D)	2,43	21,24	37,41	0,03	33,49	2,00	4,22	0,00	0,00	100,82
CMPF-13C (EN28D)	1,84	21,22	37,39	0,10	30,61	2,19	7,65	0,02	0,00	101,02
CMPF-13D (EN28D)	2,49	21,38	37,44	0,07	33,80	1,96	3,90	0,00	0,00	101,04
CMPF-14A (NP-37)	1,02	20,90	37,48	0,14	32,13	2,82	6,70	0,00	0,00	101,19
CMPF-14B (NP-37)	2,04	21,02	37,14	0,05	37,12	2,35	0,27	0,00	0,00	99,99
CMPF-14C (NP-37)	0,40	20,99	37,27	0,19	19,28	4,66	18,85	0,00	0,00	101,64
CMPF-14D (NP-37)	2,11	21,34	37,77	0,07	36,88	2,42	0,96	0,00	0,00	101,55
CMPF-7A	0,04	5,67	35,89	1,92	20,30	33,61	0,69	0,00	0,00	98,16
CMPF-7B	0,05	6,37	36,28	1,29	19,64	33,54	0,74	0,00	0,00	97,97
SMVC-GRD11	3,35	21,12	37,35	0,00	33,33	2,32	2,88	0,03	0,18	100,58
SMVC-GRD20	4,10	21,27	37,25	0,03	32,71	1,19	3,56	0,02	0,00	100,19
SMVC-GRD9	3,01	21,29	37,27	0,04	36,41	1,01	1,49	0,01	0,00	100,53
SMVC-GRD17	3,27	21,51	37,49	0,03	36,37	1,07	1,62	0,06	0,00	100,42
VC15-09-G1	0,06	21,22	40,42	0,00	0,95	36,80	0,16	0,02	2,57	102,21
VC15-09-G2	0,02	18,94	39,88	0,78	0,61	36,83	0,13	0,03	4,96	102,18

Tabela 36 - Composição química dos elementos maiores das granadas das amostras CMPF e SMVC. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO ₂	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
CP01-G1	2,73	21,28	37,81	0,02	34,10	2,33	0,00	2,87	0,01	101,15
CP01-G2	2,54	21,14	37,67	0,00	33,65	2,06	0,03	3,53	0,00	100,60
CP01-G3	2,08	21,08	37,71	0,13	27,67	6,13	0,01	5,00	0,00	99,81
CP01-G4	2,66	21,07	37,72	0,05	33,03	2,89	0,00	2,76	0,07	100,24
CP01-G5	3,31	21,30	37,82	0,05	30,84	3,96	0,04	3,34	0,05	100,71
CP01-G6	1,74	21,13	37,88	0,09	25,81	8,89	0,02	4,23	0,10	99,88
CP01-G7	1,22	20,72	37,25	0,13	27,99	5,20	0,00	6,63	0,05	99,18
CP01-G8C	1,77	20,97	37,27	0,05	34,65	4,61	0,04	0,90	0,11	100,36
CP01-G8B	1,91	21,39	37,99	0,08	34,84	4,56	0,02	0,67	0,00	101,46
CP01-G9	4,77	21,53	38,05	0,14	29,36	4,13	0,04	1,95	0,00	99,97
CP01-G10	1,50	21,10	37,44	0,06	33,58	5,19	0,03	1,81	0,01	100,72
CP01-G11	2,10	21,09	37,67	0,04	29,41	6,57	0,03	3,03	0,11	100,06
CP01-G12	2,92	20,89	37,53	0,00	32,69	2,59	0,02	3,20	0,35	100,18
CP01-G13	1,81	20,81	37,29	0,07	35,36	2,11	0,00	2,57	0,11	100,11
CP01-G14	2,38	20,93	37,49	0,04	28,09	4,25	0,01	6,23	0,11	99,52
CP01-G15	2,67	20,88	38,04	0,05	25,80	6,53	0,02	4,95	0,36	99,31
CP01-G16	1,65	20,69	38,06	0,09	22,17	11,79	0,00	4,39	0,90	99,74
CP01-G17	1,84	21,14	37,66	0,09	26,49	7,97	0,01	4,78	0,07	100,05
CP01-G18	2,61	20,95	37,26	0,04	33,87	2,07	0,02	2,88	0,00	99,69
CP01-G19	1,35	20,57	37,24	0,02	18,59	6,90	0,00	13,56	0,41	98,64
CP01-G20	2,52	21,07	37,67	0,03	34,07	4,33	0,04	0,52	0,16	100,39
CP01-G21	2,95	21,21	37,72	0,06	32,23	4,53	0,06	1,61	0,02	100,39
CP01-G22	2,31	21,34	38,16	0,07	27,66	9,13	0,00	1,61	0,11	100,38
CP01-G23	3,21	21,16	37,74	0,06	28,92	4,42	0,06	4,16	0,00	99,73
CP01-G24	1,95	20,95	37,77	0,07	32,21	6,14	0,00	0,24	0,07	99,40
CP01-G25	1,21	20,15	36,69	0,12	19,50	2,37	0,00	17,82	0,41	98,27

Tabela 37 - Composição química dos elementos maiores das granadas da amostra CP01. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos (% peso)				
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
F90-G1C	0,66	20,63	36,98	0,00	21,62	0,60	0,00	18,55	0,00	99,03
F90-G1I	0,68	20,58	36,96	0,01	21,66	0,59	0,00	18,00	0,00	98,47
F90-G1B	0,77	20,11	36,38	0,08	23,11	0,65	0,01	17,07	0,32	98,48
F90-G2C	0,63	20,12	36,52	0,05	20,96	0,60	0,00	19,34	0,35	98,57
F90-G2B	0,72	20,15	36,78	0,08	21,26	0,59	0,00	18,29	0,16	98,02
F90-G3C	0,79	20,45	37,07	0,09	23,64	0,55	0,02	16,41	0,00	99,01
F90-G3B	0,69	19,23	35,06	0,01	21,58	0,75	0,00	17,25	0,68	95,24
F90-G4C	0,81	20,48	36,95	0,09	23,77	0,63	0,00	16,24	0,00	98,96
F90-G4B	0,72	20,61	37,34	0,05	22,39	0,86	0,02	16,87	0,00	98,85
F90-G5C	0,69	20,22	36,59	0,09	21,58	0,60	0,01	18,61	0,16	98,53
F90-G5I	0,50	20,05	36,54	0,08	21,60	0,67	0,00	18,55	0,31	98,30
F90-G6B	0,42	20,51	36,80	0,04	21,99	1,11	0,02	18,09	0,00	98,99
F90-G6C	0,70	20,20	36,95	0,04	22,45	0,66	0,00	17,49	0,33	98,83
F90-G6I	0,47	20,11	36,48	0,05	21,20	0,81	0,00	18,81	0,23	98,17
F90-G6B	0,76	20,80	37,25	0,00	22,15	0,79	0,00	16,50	0,00	98,24
F90-G7C	0,81	20,43	36,80	0,03	24,02	0,70	0,00	16,43	0,20	99,40
F90-G7B	0,78	20,46	36,74	0,04	23,26	0,73	0,03	17,01	0,01	99,05
F90-G8C	0,78	20,53	36,80	0,01	23,21	0,56	0,00	17,03	0,00	98,92
F90-G8I	0,81	20,74	36,91	0,06	23,81	0,58	0,02	16,68	0,00	99,61
F90-G8B	0,72	20,54	36,87	0,00	22,05	0,59	0,00	17,59	0,00	98,36
MMO-G1C	0,11	21,25	39,75	0,22	2,35	35,48	0,12	0,15	1,81	101,24
MMO-G1B	0,09	20,44	39,31	0,70	1,57	35,46	0,27	0,31	2,00	100,15
MMO-G2C	0,11	20,82	39,59	0,62	2,45	35,19	0,01	0,15	2,03	100,97
MMO-G2B	0,11	21,47	40,05	0,25	1,91	35,68	0,01	0,11	1,60	101,20
MMO-G3C	0,09	21,39	39,64	0,42	1,98	35,80	0,03	0,06	1,42	100,82
MMO-G3B	0,12	21,08	39,54	0,34	2,41	34,89	0,08	0,51	1,81	100,78
MM0-G4C	0,11	20,73	39,43	0,78	2,41	35,23	0,04	0,10	1,89	100,71
MMO-G4B	0,12	21,77	40,11	0,36	2,13	35,97	0,02	0,12	1,27	101,87
MMO-G5C	0,14	20,84	39,45	0,24	3,05	34,48	0,17	0,26	2,10	100,73
MMO-G5B	0,12	21,37	39,97	0,50	1,58	35,85	0,01	0,13	1,45	100,98
MMO-G6C	0,14	21,41	39,45	0,29	2,89	34,77	0,01	0,13	1,36	100,45
MMO-G6B	0,10	20,75	39,27	0,36	2,41	35,14	0,04	0,19	2,21	100,47

Tabela 38 - Composição química dos elementos maiores das granadas das amostras F90 e MMO. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
JT40C-G1C	0,000	20,813	0,108	5,103	1,062	34,485	0,000	35,700	0,000	97,271
JT40C-G2B	0,246	20,744	0,089	19,153	2,607	19,737	0,007	36,899	0,000	99,482
JT40C-G2I	0,000	20,833	0,065	4,681	1,177	35,203	0,000	36,124	0,000	98,083
JT40C-G2C	0,019	20,852	0,026	5,573	1,067	34,474	0,001	36,070	0,000	98,082
JT40C-G3B	0,168	20,920	0,013	17,661	2,646	20,685	0,000	36,169	0,000	98,262
JT40C-G3I	0,006	20,837	0,146	5,398	1,161	34,303	0,023	35,997	0,000	97,871
JT40C-G3C	0,000	20,806	0,000	5,431	1,268	34,440	0,019	36,118	0,000	98,082
JT40C-G4B	0,213	20,819	0,036	19,683	2,478	19,287	0,000	36,038	0,000	98,554
JT40C-G4I	0,009	20,793	0,042	5,685	1,138	34,222	0,000	36,033	0,000	97,922
JT40C-G4C	0,006	20,907	0,062	5,648	1,147	34,330	0,000	35,883	0,000	97,983
JT40C-G5B	0,192	20,648	0,020	17,435	2,720	20,949	0,023	36,088	0,000	98,075
JT40C-G5I	0,000	20,787	0,007	5,310	1,084	34,648	0,024	35,878	0,000	97,738
JT40C-G5C	0,000	20,913	0,000	5,099	0,857	35,461	0,000	36,237	0,000	98,567
JT40C-G6B	0,315	20,671	0,023	24,944	0,968	15,555	0,000	36,156	0,000	98,632
JT40C-G6I	0,014	20,910	0,016	7,331	1,230	32,445	0,000	35,953	0,000	97,899
JT40C-G6C	0,006	20,849	0,033	6,398	1,186	33,207	0,000	35,976	0,000	97,655
JT-G1	0,292	20,048	0,203	5,273	32,023	0,061	0,030	39,123	3,063	100,116
JT-G1I	0,287	19,687	0,181	6,914	30,342	0,056	0,005	39,064	3,456	99,992
JT-G1C	0,283	19,778	0,195	6,800	30,758	0,059	0,018	39,078	3,447	100,416
JT-G2C	0,332	20,473	0,269	4,274	33,284	0,094	0,000	39,134	2,636	100,496
JT-G2I	0,285	20,784	0,153	3,950	33,566	0,025	0,000	39,251	2,272	100,286
JT-G2-B	0,254	19,960	0,216	7,174	30,601	0,059	0,008	38,865	3,100	100,237
JT-G3C	0,323	20,764	0,153	4,138	33,370	0,028	0,011	38,935	2,156	99,878
JT-G3I	0,317	19,610	0,225	4,469	32,920	0,062	0,021	38,531	3,619	99,774
JT-G3B	0,323	20,731	0,233	4,283	33,300	0,037	0,011	39,042	2,199	100,159
JT-G4C	0,215	18,585	0,270	5,438	32,157	0,079	0,019	38,678	5,183	100,624
JT-G4I	0,313	20,348	0,217	5,448	32,130	0,000	0,020	39,025	2,653	100,154
JT-G4B	0,210	18,649	0,195	5,281	32,054	0,122	0,014	38,481	4,983	99,989
JT-5C	0,246	18,829	0,231	5,861	31,540	0,141	0,000	38,354	4,625	99,827
JT-G5I	0,231	18,151	0,285	4,177	32,896	0,064	0,012	38,611	5,713	100,140
JT-G5B	0,156	18,793	0,235	4,877	32,407	0,111	0,017	38,680	4,780	100,056
JT-G6C	0,095	17,866	0,328	3,309	33,538	0,071	0,005	38,303	5,884	99,399
JT-G6I	0,229	18,529	0,166	5,720	31,543	0,103	0,000	38,351	5,081	99,722
JT-G6B	0,099	18,378	0,249	4,412	32,904	0,081	0,000	38,522	5,379	100,024

Tabela 39 - Composição química dos elementos maiores das granadas das amostras JT40C e JT. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
ML01-G1	1,51	21,11	0,08	24,13	5,85	9,66	0,01	36,81	0,00	99,15
ML01-G1I	1,47	21,15	0,16	23,34	6,30	9,92	0,03	36,24	0,00	98,61
ML01-G1B	1,62	21,18	0,09	25,46	5,71	8,19	0,01	36,12	0,00	98,37
ML01-G2B	1,57	21,08	0,02	24,56	5,18	9,20	0,00	36,58	0,00	98,19
ML01-G2I	1,35	21,04	0,12	21,97	6,45	11,06	0,04	36,70	0,00	98,72
ML01-G2C	1,35	21,33	0,03	22,28	6,86	10,61	0,00	36,81	0,00	99,25
ML01-G3B	1,68	21,02	0,02	25,83	5,17	8,45	0,01	36,56	0,00	98,74
ML01-G3I	1,33	21,25	0,06	22,35	6,70	10,40	0,01	36,67	0,00	98,78
ML01-G3C	1,30	21,06	0,23	21,52	6,79	10,99	0,00	36,36	0,00	98,25
ML01-G4B	1,46	21,25	0,00	24,33	6,20	8,62	0,00	36,63	0,00	98,49
ML01G4I	1,44	21,02	0,09	23,22	5,47	10,66	0,01	36,29	0,00	98,19
ML01-G4C	1,36	20,96	0,25	22,57	6,13	10,90	0,03	36,63	0,00	98,83
ML01-G5B	1,66	20,92	0,07	25,58	5,11	8,76	0,00	36,55	0,00	98,65
ML01G5I	1,41	21,12	0,07	22,62	6,55	10,37	0,00	36,77	0,00	98,90
ML01-G5C	1,28	21,02	0,20	20,74	7,52	11,35	0,00	36,92	0,00	99,03
ML01-G6B	1,64	21,18	0,09	25,54	5,20	8,67	0,04	36,14	0,00	98,49
ML01-G6I	1,21	20,86	0,17	20,23	7,39	11,55	0,03	36,58	0,00	98,02
ML01-G6C	1,14	20,96	0,22	19,88	8,06	11,74	0,03	36,45	0,00	98,48
ML02A-G1	1,25	21,26	0,11	23,62	9,00	7,67	0,00	37,33	0,00	100,23
ML02A-G1	0,92	21,05	0,37	16,67	12,51	10,50	0,00	37,32	0,00	99,33
ML02A-G1	0,97	21,21	0,40	17,71	11,50	10,46	0,04	37,54	0,00	99,82
ML02A-G2	1,32	21,33	0,12	23,25	9,09	7,31	0,02	37,24	0,00	99,68
ML02A-G2	0,90	21,01	0,14	20,59	7,73	12,11	0,03	36,77	0,00	99,30
ML02A-G2	0,91	21,16	0,22	20,60	7,57	12,30	0,01	36,82	0,00	99,59
ML02A-G3	1,43	21,64	0,03	24,20	8,27	7,21	0,00	36,93	0,00	99,71
ML02A-G3	0,89	21,14	0,11	20,05	8,17	12,07	0,00	36,78	0,00	99,21
ML02A-G3	0,88	21,07	0,12	19,84	6,24	13,94	0,00	36,47	0,00	98,56
ML02A-G4	1,31	21,27	0,03	23,72	8,72	7,70	0,03	37,04	0,00	99,81
ML02A-G4	1,05	20,96	0,23	22,69	7,79	9,72	0,01	36,87	0,00	99,32
ML02A-G4	0,99	21,11	0,21	21,43	8,11	10,76	0,00	36,92	0,00	99,52
ML02A-G5	1,23	21,38	0,05	22,65	9,65	7,30	0,03	37,07	0,00	99,37
ML02A-G5	1,04	21,13	0,13	21,62	9,06	9,54	0,00	36,87	0,00	99,39
ML02A-G5	0,97	21,15	0,02	20,71	9,52	10,30	0,00	36,94	0,00	99,62
ML02A-G6	1,38	21,55	0,05	24,54	8,51	7,40	0,01	37,09	0,00	100,52
ML02A-G6	0,94	21,16	0,25	18,68	11,80	9,99	0,05	37,08	0,00	99,94
ML02A-G6	0,99	21,31	0,27	19,19	10,30	9,99	0,01	37,18	0,00	99,24

Tabela 40 - Composição química dos elementos maiores das granadas das amostras ML01 e ML02A. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
ML03-G1	0,14	20,56	36,40	0,06	24,48	0,86	0,00	16,11	0,00	98,60
ML03-G2	1,05	20,46	37,24	0,15	18,46	5,78	0,00	15,28	0,31	98,73
ML03-G3	1,55	20,80	37,15	0,02	30,31	2,58	0,00	6,76	0,00	99,17
ML03-G4	2,21	21,14	37,59	0,02	32,42	2,65	0,02	4,26	0,00	100,31
ML03-G5	1,61	20,88	37,02	0,04	30,22	2,89	0,06	6,83	0,00	99,54
ML03-G6	1,37	20,87	37,67	0,14	20,20	7,21	0,00	11,76	0,08	99,30
ML03-G7	2,08	21,04	37,47	0,03	27,94	2,78	0,02	8,23	0,00	99,59
ML03-G8	1,91	21,25	37,77	0,09	25,29	6,76	0,03	7,53	0,00	100,63
ML03-G9	3,47	21,15	37,82	0,06	29,89	1,97	0,01	5,92	0,08	100,36
ML03-G10	1,85	20,97	37,70	0,18	24,52	7,35	0,04	7,08	0,08	99,78
ML03-G11	2,56	20,91	37,31	0,09	27,94	2,74	0,00	7,35	0,00	98,89
ML03-G12	1,31	20,77	37,05	0,05	26,66	2,28	0,00	10,71	0,00	98,84
ML03-G13	1,02	20,72	36,66	0,03	26,12	3,33	0,00	9,96	0,00	97,83
ML03-G14	2,49	21,13	37,93	0,14	25,45	8,45	0,04	4,17	0,18	99,98
ML03-G15	2,07	20,93	37,09	0,03	25,33	2,64	0,00	11,38	0,00	99,46
ML03-G16	1,95	20,41	36,93	0,11	25,73	0,93	0,00	12,48	0,23	98,78
ML03-G17	1,60	20,69	37,09	0,00	21,88	4,16	0,02	13,30	0,13	98,88
ML03-G18	3,91	21,17	37,47	0,08	33,63	1,90	0,00	1,62	0,00	99,78
ML03-G19	3,98	21,16	37,78	0,01	26,62	3,04	0,00	7,03	0,14	99,75
ML03-G20C	2,67	21,30	37,96	0,02	25,81	8,56	0,01	3,91	0,27	100,52
ML03-G20B	2,61	21,56	38,61	0,06	25,56	8,56	0,02	3,95	0,00	100,92
ML03-G21	2,44	21,18	37,45	0,03	34,93	2,47	0,00	2,00	0,00	100,50
ML03-G22	1,58	20,88	37,36	0,07	32,48	3,74	0,01	3,75	0,02	99,88
ML03-G23	5,18	21,35	37,90	0,02	26,67	2,42	0,00	6,31	0,14	99,99
ML03-G24	1,38	21,14	38,10	0,08	19,04	9,46	0,00	10,63	0,13	99,95
ML03-G25	1,71	20,68	37,44	0,12	21,99	5,34	0,01	11,79	0,30	99,38

Tabela 41 - Composição química dos elementos maiores das granadas da amostra ML03. G=granada, B=borda, C=centro, I=Intermédiário.
					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
PA-G1C	1,672	20,955	0,076	38,145	1,954	0,753	0,032	36,436	0,000	100,023
PA-G1B	1,885	21,421	0,023	38,691	1,802	0,640	0,037	36,246	0,000	100,745
PA-G2C	1,309	21,010	0,080	36,992	2,666	1,295	0,068	36,537	0,000	99,957
PA-G2I	1,434	21,150	0,123	38,047	2,257	1,185	0,078	36,474	0,000	100,748
PA-G2B	1,727	21,078	0,000	37,955	1,957	0,788	0,005	36,552	0,000	100,062
PA-G3C	1,558	21,115	0,050	37,006	3,783	0,287	0,022	36,791	0,000	100,612
PA-G3I	1,501	21,075	0,017	37,155	3,619	0,220	0,000	36,983	0,000	100,570
PA-G3B	2,047	21,257	0,000	39,093	1,622	0,445	0,015	36,690	0,000	101,169
PA-G4C	1,812	21,104	0,090	37,986	2,144	0,402	0,038	36,607	0,000	100,183
PA-G4I	1,676	20,971	0,103	37,322	2,994	0,412	0,028	36,814	0,000	100,320
PA-G4B	1,951	21,092	0,050	38,301	1,621	0,517	0,000	36,838	0,000	100,370
PA-G5C	1,610	21,090	0,000	36,592	2,887	1,022	0,000	36,433	0,000	99,634
PA-G5I	1,269	20,936	0,206	35,044	3,690	2,579	0,036	36,350	0,000	100,110
PA-G5B	0,741	23,733	0,158	29,182	4,751	4,576	0,025	35,659	0,000	98,825
PA-G6C	1,179	21,053	0,080	36,262	4,335	0,883	0,000	36,714	0,000	100,506
PA-G6I	1,022	21,041	0,087	36,170	4,853	0,483	0,012	36,761	0,000	100,429
PA-G6B	1,315	21,034	0,077	36,176	4,800	0,368	0,067	36,643	0,000	100,480
CP03-G1B	1,533	20,672	36,943	0,000	32,764	2,754	0,000	4,953	0,303	99,922
CP03-G11	1,341	20,660	37,035	0,129	31,801	2,891	0,046	6,260	0,256	100,419
CP03-G1C	1,197	20,682	37,214	0,017	31,079	3,267	0,029	6,900	0,489	100,874
CP03-G2C	1,477	20,846	37,227	0,075	32,413	3,488	0,000	5,000	0,280	100,806
CP03-G3B	0,001	0,000	0,020	0,027	0,000	55,532	0,000	0,037	0,148	55,765
CP03-G3I	0,006	0,000	0,000	0,004	0,000	54,780	0,050	0,049	0,120	55,009
CP03-G3C	0,016	0,000	0,001	0,000	0,000	55,253	0,013	0,056	0,092	55,431
CP03-G4B	2,056	20,854	36,707	0,092	36,327	2,306	0,000	2,100	0,203	100,645
CP03-G4I	1,759	20,898	37,111	0,048	35,387	2,904	0,029	2,410	0,183	100,729
CP03-G4C	1,748	20,934	36,997	0,198	35,614	2,965	0,014	2,593	0,117	101,180
CP03-G5B	1,930	20,741	36,788	0,065	35,324	2,511	0,013	2,600	0,260	100,232
CP03-G5I	1,658	20,805	37,069	0,031	34,691	2,900	0,000	3,223	0,336	100,713
CP03-G5C	1,572	20,758	36,897	0,474	33,883	2,868	0,052	3,861	0,000	100,365
CP03-G6B	1,643	20,474	36,683	0,126	32,987	2,979	0,028	4,378	0,389	99,687
CP03-G6I	1,330	20,872	37,053	0,020	31,739	2,989	0,055	6,447	0,119	100,624
CP03-G6C	1,195	20,675	37,044	0,126	30,644	3,259	0,014	6,979	0,195	100,131

Tabela 42 - Composição química dos elementos maiores das granadas da amostra ML03. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos (% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
QT1-G1B	5.997	22.063	38.905	0.042	31.484	3.136	0.041	0.532	0.000	102.200
QT1-G1I	5.629	21.822	38.928	0.011	30.638	4.054	0.053	0.603	0.216	101.954
QT1-G1C	5.487	21.860	38.822	0.084	30.574	4.361	0.000	0.639	0.133	101.960
QT1-G2B	5.969	21.804	38.312	0.035	31.755	3.174	0.015	0.478	0.161	101.703
QT1-G2I	6.076	22.005	39.206	0.089	31.044	3.461	0.000	0.428	0.129	102.438
QT1-G2C	5.662	21.981	38.949	0.019	31.377	3.955	0.012	0.379	0.174	102.508
QT1-G3B	6.174	21.820	38.573	0.027	30.548	3.311	0.028	0.495	0.006	100.982
QT1-G3I	5.923	21.799	39.019	0.027	29.897	4.432	0.019	0.506	0.374	101.996
QT1-G3C	5.902	21.733	38.859	0.000	30.041	4.354	0.042	0.439	0.388	101.758
QT1-G4B	5.503	21.726	38.584	0.031	32.636	2.587	0.050	0.601	0.158	101.876
QT1-G4I	5.925	21.847	39.239	0.023	30.352	4.235	0.005	0.442	0.468	102.536
QT1-G4C	5.843	21.863	39.056	0.058	30.020	4.273	0.022	0.508	0.175	101.818
QT1-G5B	5.917	21.759	38.861	0.019	31.847	2.539	0.030	0.545	0.198	101.715
QT1-G5I	5.982	21.763	39.073	0.050	30.567	3.728	0.019	0.542	0.400	102.124
QT1-G5C	5.497	21.533	38.555	0.000	30.168	4.391	0.032	0.545	0.415	101.136
QT1-G6B	6.201	21.837	38.688	0.023	30.972	3.240	0.045	0.517	0.166	101.689
QT1-G6I	5.870	21.734	38.820	0.000	30.312	4.043	0.006	0.502	0.362	101.649
QT1-G6C	5.711	21.706	38.795	0.000	30.260	4.206	0.025	0.550	0.346	101.599
QT2-G1I	6.819	21.923	38.632	0.008	28.986	3.341	0.019	0.664	0.000	100.392
QT2-G1C	7.098	22.133	38.613	0.000	29.563	3.014	0.019	0.716	0.000	101.156
QT2-G2B	4.027	21.690	37.651	0.008	35.506	1.501	0.000	0.863	0.000	101.246
QT2-G2I	7.563	22.134	38.695	0.015	31.408	1.467	0.014	0.536	0.000	101.832
QT2-G2C	7.334	21.924	38.394	0.027	30.639	1.875	0.026	0.572	0.000	100.791
QT2-G3B	7.354	22.042	38.727	0.000	30.407	1.947	0.015	0.570	0.000	101.062
QT2-G3I	7.372	22.027	38.458	0.046	30.810	1.780	0.005	0.534	0.000	101.032
QT2-G3C	7.149	22.140	39.089	0.050	30.812	2.435	0.044	0.566	0.045	102.330
QT2-G4B	5.406	21.983	38.449	0.050	32.831	2.738	0.008	0.692	0.000	102.157
QT2-G4I	6.623	21.911	38.304	0.143	30.324	3.162	0.021	0.595	0.000	101.083
QT2-G4C	6.839	22.007	38.345	0.008	30.016	3.336	0.027	0.508	0.000	101.086
QT2-G5B	6.006	21.938	38.011	0.023	31.902	2.754	0.014	0.615	0.000	101.263
QT2-G5I	7.039	21.862	38.197	0.043	29.951	3.088	0.017	0.465	0.002	100.664
QT2-G5C	7.043	21.929	38.298	0.000	29.524	3.316	0.027	0.511	0.000	100.648
QT2-G6B	5.815	21.600	37.465	0.085	32.059	2.498	0.000	0.618	0.000	100.140
QT2-G6I	7.088	21.923	38.163	0.000	29.841	3.198	0.017	0.532	0.003	100.765
QT2-G6C	7.317	22.080	38.245	0.004	29.870	2.957	0.000	0.558	0.000	101.031

Tabela 43 - Composição química dos elementos maiores das granadas das amostras QT1 E QT2. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos ((% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
QT2A-G1I	7.149	22.131	38.055	0.100	29.725	3.106	0.056	0.638	0.000	100.960
QT2A-G1C	6.714	22.181	38.229	0.085	30.654	3.065	0.000	0.692	0.000	101.620
QT2A-G2B	5.194	21.698	37.517	0.019	33.112	2.556	0.051	0.693	0.000	100.840
QT2A-G2I	7.157	22.180	38.449	0.023	30.609	2.831	0.034	0.648	0.000	101.931
QT2A-G2C	7.094	22.089	38.715	0.008	30.415	2.903	0.003	0.643	0.113	101.983
QT2A-G3B	7.125	22.200	38.604	0.062	29.652	3.157	0.000	0.636	0.000	101.436
QT2A-G3I	7.220	22.255	38.659	0.000	29.882	2.928	0.031	0.566	0.000	101.541
QT2A-G3C	7.265	22.292	38.832	0.062	29.790	3.088	0.012	0.608	0.000	101.949
QT2A-G4B	6.817	21.923	38.510	0.031	30.050	3.172	0.034	0.604	0.022	101.163
QT2A-G4I	7.464	22.280	38.909	0.000	29.810	2.644	0.039	0.594	0.000	101.740
QT2A-G4C	7.224	22.138	38.598	0.004	29.626	3.097	0.040	0.585	0.000	101.312
QT2A-G5B	7.162	21.884	38.014	0.089	29.641	3.372	0.009	0.572	0.000	100.743
QT2A-G5I	7.329	22.172	38.308	0.012	29.838	3.042	0.046	0.538	0.000	101.285
QT2A-G5C	7.392	22.291	38.963	0.070	30.116	2.709	0.040	0.567	0.000	102.148
QT2A-G6B	6.560	22.139	38.462	0.023	30.441	3.521	0.047	0.592	0.000	101.785
QT2A-G6I	7.131	22.348	38.881	0.000	29.506	3.641	0.025	0.557	0.000	102.089
QT2A-G6C	7.056	22.210	38.896	0.023	29.398	3.631	0.000	0.638	0.000	101.852
ALC-G1B	0.302	4.627	33.084	4.604	4.062	31.152	0.000	1.194	19.745	98.770
ALC-G1I	0.292	6.103	34.098	2.877	3.853	30.748	0.027	1.313	19.348	98.659
ALC-G1C	0.305	6.024	34.040	3.447	4.094	30.935	0.027	1.317	19.065	99.254
ALC-G2B	0.309	4.677	33.818	4.635	4.219	30.911	0.047	1.160	19.847	99.623
ALC-G2I	0.288	5.915	34.341	3.370	4.200	30.773	0.032	1.368	19.410	99.697
ALC-G2C	0.298	6.250	35.114	3.014	3.868	30.655	0.042	1.399	19.412	100.052
ALC-G3B	0.208	4.753	33.591	5.601	4.241	31.099	0.012	1.230	18.755	99.490
ALC-G3I	0.293	6.164	34.826	3.494	4.313	30.665	0.016	1.397	19.132	100.300
ALC-G3C	0.302	6.032	34.438	3.378	4.198	30.501	0.000	1.283	19.143	99.275
ALC-G4B	0.303	4.361	33.621	4.813	3.845	31.114	0.000	1.097	20.055	99.209
ALC-G4I	0.312	4.456	33.425	5.466	4.587	31.062	0.030	1.100	19.393	99.831
ALC-G4C	0.329	4.759	33.725	4.966	4.157	31.069	0.034	1.224	19.448	99.711
ALC-G5B	4.617	8.799	41.928	1.629	2.701	21.411	0.000	0.663	17.622	99.370
ALC-G5I	7.685	7.145	44.835	1.417	0.000	22.046	0.000	0.568	16.174	99.870
ALC-G5C	6.359	8.488	43.289	1.711	0.000	21.633	0.028	0.566	18.372	100.446
ALC-G6B	4.999	5.657	44.411	0.823	0.000	21.835	0.000	0.857	20.035	98.617
ALC-G6I	4.908	7.124	44.347	1.134	0.339	20.674	0.000	0.689	20.791	100.006
ALC-G6B	5.013	6.571	43.921	1.074	0.000	20.991	0.001	0.874	21.161	99.606

Tabela 44 - Composição química dos elementos maiores das granadas das amostras QT2A e ALC. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr ₂ O ₃	Fe ₂ O ₃	Total
SSP-G1B	2,87	19,92	43,06	0,02	26,36	1,60	0,00	7,05	2,92	103,79
SSP-G1C	2,95	21,10	37,68	0,03	29,64	1,64	0,02	7,29	0,02	100,36
SSP-G1B	2,53	21,14	37,68	0,01	29,81	1,44	0,01	7,70	0,00	100,32
SSP-G2C	3,08	20,89	37,55	0,04	29,51	1,48	0,00	7,37	0,30	100,21
SSP-G2B	2,52	20,45	36,67	0,06	29,44	1,43	0,00	7,35	0,16	98,07
SSP-G3C	2,99	20,78	37,54	0,09	28,94	1,74	0,02	7,35	0,26	99,71
SSP-G3B	2,72	20,86	37,33	0,00	29,65	1,36	0,01	7,56	0,11	99,58
SSP-G4C	3,06	21,07	37,55	0,07	29,44	1,70	0,00	7,28	0,03	100,19
SSP-G4B	2,72	20,62	36,83	0,03	29,51	1,31	0,02	7,52	0,15	98,71
SSP-G5C	3,12	20,67	37,15	0,06	28,55	1,93	0,00	7,40	0,35	99,23
SSP-G5B	2,78	20,74	37,12	0,00	29,54	1,37	0,03	7,29	0,08	98,95
SSP-G6C	3,10	21,04	37,59	0,09	28,96	1,59	0,01	7,46	0,00	99,83
SSP-G6B	2,82	20,49	36,82	0,03	29,19	1,46	0,02	7,38	0,30	98,52
7041-G1C	2,64	21,04	37,17	0,05	33,15	2,64	0,04	3,98	0,18	100,89
7041-G1B	2,12	21,23	37,40	0,00	34,41	2,18	0,02	3,45	0,00	100,80
7041-G2C	2,26	21,21	37,22	0,07	34,23	2,35	0,00	3,46	0,00	100,80
7041-G2B	2,02	21,36	37,37	0,05	34,80	2,29	0,01	3,39	0,00	101,29
7041-G3C	2,77	21,34	37,44	0,01	33,83	2,18	0,00	3,59	0,00	101,16
7041-G3B	2,25	21,29	37,22	0,00	35,00	2,25	0,00	3,37	0,00	101,37
7041-G4C	2,65	21,24	37,46	0,09	33,04	2,46	0,03	4,56	0,07	101,59
7041-G4B	2,26	20,96	37,40	0,17	34,21	2,61	0,01	3,30	0,20	101,11
7041-G5C	2,78	21,35	37,53	0,11	33,24	2,42	0,01	3,63	0,00	101,07
7041-G5B	2,38	21,37	37,47	0,03	34,53	2,13	0,00	3,46	0,00	101,37
7045-G6C	2,80	21,10	36,07	0,08	33,97	2,27	0,00	3,54	0,00	99,82
7041-G6B	2,45	21,33	36,60	0,00	35,06	2,18	0,00	3,48	0,00	101,11

Tabela 45 - Composição química dos elementos maiores das granadas das amostras SSP e 7041. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos ((% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
TL2G1C	1,943	21,309	37,616	0,000	27,853	1,661	10,626	0,000	0,000	101,007
TL2G2C	1,692	21,384	37,830	0,000	26,649	2,287	11,661	0,000	0,000	101,505
TL2G3C	1,895	21,174	37,351	0,000	26,724	1,804	11,558	0,024	0,000	100,531
TL2G3B	1,446	21,098	37,139	0,003	24,572	2,440	12,675	0,026	0,000	99,399
TL2G4C	1,796	21,089	37,521	0,000	26,330	2,641	11,257	0,015	0,000	100,648
CAMB1-G1C	3,552	21,017	37,370	0,044	28,044	1,250	8,425	0,000	0,081	99,784
CAMB1-G1B	3,422	21,147	37,372	0,000	27,940	1,195	8,529	0,028	0,000	99,634
CAMB1-G2C	3,322	21,082	37,214	0,000	28,146	1,219	8,804	0,022	0,000	99,811
CAMB1-G2B	2,771	21,253	37,432	0,048	27,372	2,166	8,999	0,024	0,000	100,065
CAMB1-G3C	3,374	20,917	37,177	0,000	27,961	1,356	8,459	0,000	0,111	99,356
CAMB1-G3B	2,980	21,317	37,182	0,000	28,098	1,277	9,080	0,034	0,000	99,918
CAMB1-G4C	3,298	21,164	37,264	0,000	27,960	1,172	8,798	0,039	0,000	99,694
CAMB1-G4B	2,740	20,880	36,608	0,000	27,354	2,070	8,922	0,018	0,000	98,591
CAMB1-G5C	3,533	21,217	37,359	0,085	28,029	1,111	8,555	0,000	0,000	99,889
CAMB1-G5B	2,851	21,196	37,112	0,099	27,739	2,180	9,015	0,027	0,000	100,218
CAMB-G1C	3,312	21,380	37,288	0,011	33,452	2,850	2,015	0,020	0,000	100,328
CAMB-G1B	3,290	21,526	37,882	0,067	34,241	2,166	2,068	0,000	0,000	101,240
CAMB-G2C	3,839	21,130	37,520	0,066	31,868	2,628	3,839	0,011	0,038	100,277
CAMB-G2B	3,041	21,248	37,213	0,033	34,163	2,270	2,150	0,008	0,000	100,126
CAMB-G3C	3,175	21,280	37,322	0,044	33,952	2,402	2,102	0,019	0,000	100,295
CAMB-G3B	3,019	20,890	37,264	0,000	34,249	2,247	2,135	0,000	0,337	100,142
CAMB-G4C	3,449	21,314	37,560	0,059	33,414	2,447	2,114	0,001	0,000	100,366
CAMB-G4B	3,207	21,427	37,456	0,000	33,751	2,194	2,143	0,000	0,000	100,177
CAMB-G5C	3,501	21,251	37,482	0,089	33,607	2,572	2,167	0,007	0,019	100,694
CAMB-G5B	3,038	20,873	36,835	0,039	34,657	2,217	2,201	0,000	0,311	100,168
ING-G1	3,971	21,791	38,106	0,008	25,338	9,863	1,466	0,000	0,000	100,541
ING-G2	3,469	21,630	37,833	0,000	25,860	10,117	1,224	0,003	0,008	100,145
ING-G3	4,202	21,858	38,551	0,105	25,080	9,922	1,268	0,004	0,000	100,990
ING-G4	3,348	21,526	37,912	0,043	26,873	9,760	0,515	0,026	0,000	100,004
ING-G5	4,442	21,664	38,208	0,738	24,033	10,027	1,232	0,011	0,000	100,354
ING-G6	3,031	21,574	37,560	0,151	26,843	10,044	0,682	0,000	0,000	99,885
ING-G7	3,557	21,820	38,170	0,035	25,289	9,254	2,375	0,004	0,000	100,503
ING-G8	3,606	21,906	38,483	0,051	24,658	10,381	1,677	0,029	0,000	100,791

Tabela 46 - Composição química dos elementos maiores das granadas das amostras CAP3 e ML2. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T26-G1	6.055	21.850	37.340	0.000	31.269	1.595	0.047	1.493	0.000	99.649
T26-G2	7.785	21.929	38.218	0.102	26.081	4.726	0.063	0.867	0.000	99.771
T26-G3	5.045	21.698	37.135	0.063	33.742	0.962	0.007	1.583	0.000	100.235
T26-G4	8.291	22.076	37.589	0.000	29.019	1.113	0.030	1.189	0.000	99.307
T26-G5	8.562	22.237	38.315	0.038	23.600	6.354	0.000	0.401	0.000	99.507
T26-G6	0.753	20.613	35.523	0.153	26.635	0.186	0.000	15.025	0.000	98.888
T26-G7	2.099	20.608	35.818	0.103	28.683	1.282	0.031	9.777	0.000	98.401
T26-G8	3.863	21.396	36.746	0.026	31.776	0.978	0.047	5.167	0.000	99.999
T26-G9	8.574	22.128	38.079	0.000	28.828	1.069	0.019	0.915	0.000	99.612
T26-G10	9.448	22.290	38.703	0.000	24.690	3.837	0.022	0.702	0.000	99.692
T26-G11	7.161	21.860	37.699	0.034	28.206	3.126	0.094	1.288	0.000	99.468
T26-G12	9.960	22.194	38.256	0.034	25.999	1.460	0.046	1.408	0.000	99.357
T26-G13	3.288	21.281	36.685	0.041	36.899	0.945	0.014	0.263	0.000	99.416
T26-G14	9.854	22.334	38.403	0.000	26.789	1.178	0.005	0.920	0.000	99.483
T26-G15C	8.187	21.998	37.782	0.030	27.980	2.507	0.036	0.734	0.000	99.254
T26-G15B	7.057	21.629	37.104	0.060	29.170	2.546	0.040	0.829	0.000	98.435
T26-G16	2.246	21.456	36.906	0.088	27.063	10.086	0.011	1.092	0.000	98.948
T26-G17	5.693	21.628	36.902	0.030	30.255	2.929	0.065	0.941	0.000	98.443
T26-G18	8.222	22.085	38.142	0.113	28.508	2.354	0.011	0.665	0.000	100.100
T26-G19	5.142	21.529	36.848	0.074	33.497	1.083	0.023	1.081	0.000	99.277
T26-G20	3.079	20.971	36.670	0.033	34.130	3.003	0.021	1.501	0.007	99.415
T26-G21	9.121	22.228	38.439	0.053	27.599	1.699	0.034	0.429	0.000	99.602
T26-G22	5.368	21.405	36.613	0.019	32.943	1.052	0.000	1.720	0.000	99.120
T26-G23	12.280	22.521	38.726	0.091	23.347	1.713	0.043	0.611	0.000	99.332
T26-G24	7.238	21.883	37.562	0.064	30.262	1.177	0.030	1.193	0.000	99.409
T26-G25	4.044	21.397	36.668	0.056	31.063	1.482	0.000	3.950	0.000	98.660

Tabela 47 - Composição química dos elementos maiores das granadas do testemunho T26. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T27-G1	10.021	21.978	39.724	0.038	26.859	1.194	0.480	0.017	0.431	100.742
T27-G2	4.919	21.407	38.126	0.012	31.490	2.540	2.009	0.093	0.123	100.719
T27-G3	2.762	20.907	37.660	0.01	30.907	1.324	6.453	0.004	0.246	100.273
T27-G4	9.462	22.132	39.020	0.040	28.236	0.994	0.942	0.028	0.084	100.938
T27-G5	10.479	22.292	39.179	0.025	26.510	0.979	0.980	0.000	0.000	100.444
T27-G6	10.629	22.284	39.760	0.032	25.859	1.530	0.350	0.027	0.107	100.578
T27-G7	8.584	21.950	39.448	0.021	26.710	2.895	0.638	0.000	0.251	100.497
T27-G8	8.499	22.207	38.957	0.019	28.815	1.974	0.589	0.028	0.000	101.088
T27-G9	10.890	22.459	39.500	0.000	26.205	1.386	0.271	0.020	0.000	100.731
T27-G10	4.904	21.508	38.073	0.061	29.115	5.927	0.866	0.059	0.217	100.730
T27-G11	10.660	22.353	39.054	0.147	26.443	1.028	0.682	0.038	0.000	100.405
T27-G12	2.710	21.112	36.956	0.016	34.931	1.269	3.274	0.000	0.000	100.268
T27-G13	5.843	21.358	38.315	0.041	27.949	1.230	5.358	0.024	0.260	100.378
T27-G14	5.253	21.297	38.115	0.000	30.759	0.968	3.482	0.000	0.157	100.031
T27-G15	9.195	21.920	39.386	0.101	27.596	1.808	0.615	0.011	0.385	101.017
T27-G16	7.799	21.718	38.670	0.015	30.251	0.986	0.847	0.026	0.214	100.526
T27-G17	3.117	21.166	37.773	0.054	31.572	2.895	3.519	0.000	0.000	100.096
T27-G18	8.657	22.207	38.902	0.065	28.653	1.698	0.580	0.025	0.000	100.787
T27-G19	9.776	22.180	39.067	0.044	28.022	0.938	0.719	0.007	0.065	100.818
T27-G20	0.573	20.420	37.061	0.022	40.441	1.402	0.300	0.014	0.535	100.768
T27-G21	6.595	21.539	38.108	0.121	30.093	2.123	1.508	0.090	0.006	100.183
T27-G22	7.467	21.310	39.297	0.129	22.787	0.965	7.870	0.000	0.685	100.510
T27-G23	8.861	22.268	39.236	0.000	26.954	2.506	0.841	0.042	0.000	100.708
T27-G24	6.602	21.444	38.833	0.049	26.270	5.821	0.691	0.000	0.680	100.390
T27-G25	0.451	20.925	37.620	0.103	24.026	10.133	6.615	0.044	0.231	100.148
T27-G26C	9.879	22.111	39.490	0.048	27.056	1.444	0.496	0.036	0.193	100.753
T27-G26B	10.185	22.731	39.198	0.036	27.453	1.428	0.461	0.020	0.000	101.512

Tabela 48 - Composição química dos elementos maiores das granadas do testemunho T27. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T28-G1	5.488	21.406	38.317	0.000	32.225	1.430	1.544	0.000	0.267	100.677
T28-G2	6.991	21.739	38.791	0.000	30.921	1.471	0.752	0.057	0.126	100.848
T28-G3	6.286	21.570	38.598	0.077	31.641	1.350	1.322	0.000	0.245	101.089
T28-G4	8.751	21.996	38.900	0.000	29.111	1.001	1.056	0.037	0.175	101.027
T28-G5	2.872	21.026	38.666	0.072	27.054	9.416	0.951	0.001	0.867	100.925
T28-G6	10.915	22.303	40.009	0.000	26.560	0.948	0.278	0.040	0.350	101.403
T28-G7	1.728	20.794	38.226	0.137	28.189	8.595	2.181	0.022	0.685	100.557
T28-G8	7.755	22.097	38.332	0.083	30.725	1.196	0.643	0.016	0.000	100.847
T28-G9	7.589	21.641	38.666	0.065	25.102	0.977	5.549	0.275	0.000	99.864
T28-G10	8.876	21.948	39.280	0.059	28.524	1.761	0.503	0.093	0.319	101.363
T28-G11	4.382	21.206	37.716	0.049	33.328	1.028	2.894	0.040	0.217	100.860
T28-G12	8.791	21.891	39.350	0.000	27.714	1.536	0.890	0.050	0.226	100.448
T28-G13	0.658	20.503	36.787	0.140	31.126	7.118	2.877	0.000	0.468	99.677
T28-G14	6.526	21.416	39.263	0.104	25.305	6.985	0.294	0.021	0.832	100.746
T28-G15	8.602	22.110	39.171	0.038	28.490	1.951	0.428	0.000	0.005	100.795
T28-G16	6.340	21.305	38.257	0.077	29.971	1.014	3.208	0.000	0.477	100.649
T28-G17C	7.257	21.780	38.625	0.000	31.024	1.372	0.540	0.033	0.101	100.732
T28-G17B	8.423	21.736	38.971	0.015	29.269	1.006	0.892	0.017	0.403	100.732
T28-G18	5.363	21.281	37.596	0.000	32.036	1.280	2.344	0.053	0.163	100.116
T28-G19	8,967	22,081	38,501	0,042	27,483	1,375	1,629	0,022	0,000	100,098
T28-G20	7.517	21.864	38.620	0.090	30.893	0.977	0.603	0.009	0.000	100.573
T28-G21	5.830	21.606	38.197	0.017	31.091	2.194	1.390	0.000	0.000	100.325
T28-G22	6.430	21.446	38.673	0.000	32.486	0.813	0.459	0.065	0.312	100.684
T28-G23	2.780	20.979	37.485	0.019	35.165	2.117	1.546	0.046	0.127	100.264
T28-G24	4.055	21.168	38.192	0.035	30.711	3.178	2.878	0.01	0.362	100.589
T28-G25	7.596	22.535	36.998	0.063	30.557	1.363	0.560	0.046	0.000	99.718

Tabela 49 - Composição química dos elementos maiores das granadas do testemunho T28. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T31-G1	3,418	21,100	37,143	0,014	29,835	1,276	0,038	6,805	0,000	99,629
T31-G2C	10,488	22,300	39,441	0,021	24,482	2,950	0,047	0,638	0,107	100,474
T31-G2B	10,385	22,273	39,138	0,032	24,331	2,781	0,077	0,648	0,000	99,665
T31-G3	8,536	22,078	38,586	0,000	27,641	2,538	0,090	0,764	0,000	100,233
T31-G4	2,954	21,001	36,942	0,034	35,396	2,327	0,024	0,700	0,000	99,378
T31-G5	6,355	21,883	38,337	0,035	29,730	4,008	0,011	0,260	0,000	100,619
T31-G6	6,438	21,683	38,089	0,107	30,390	1,467	0,034	2,308	0,000	100,516
T31-G7	7,364	21,816	38,335	0,000	30,718	1,058	0,000	1,101	0,000	100,392
T31-G8	5,039	21,350	37,616	0,027	34,847	0,868	0,007	0,171	0,000	99,925
T31-G9	9,927	22,011	38,631	0,035	26,683	1,833	0,078	0,520	0,025	99,743
T31-G10	5,106	21,221	37,655	0,079	29,777	1,100	0,000	5,151	0,222	100,311
T31-G11	11,679	22,324	38,982	0,081	23,733	2,280	0,055	0,532	0,000	99,666
T31-G12	3,211	21,206	36,546	0,003	29,569	0,937	0,000	7,108	0,000	98,580
T31-G13	3,758	21,294	36,364	0,000	33,620	0,882	0,000	2,478	0,000	98,396
T31-G14	9,397	22,017	38,638	0,063	27,604	1,481	0,128	0,506	0,000	99,834
T31-G15	6,441	21,630	38,216	0,003	28,238	4,260	0,062	0,962	0,078	99,890
T31-G16	9,697	22,120	39,155	0,091	24,583	3,136	0,044	0,790	0,000	99,616
T31-G17	6,738	21,561	37,905	0,007	31,144	1,109	0,001	1,340	0,029	99,834
T31-G18	8,081	21,952	38,272	0,031	27,717	2,450	0,100	0,816	0,000	99,419
T31-G19	3,263	21,014	37,259	0,014	35,600	1,958	0,049	1,054	0,195	100,406
T31-G20	8,512	21,824	38,776	0,063	27,946	2,363	0,041	0,458	0,156	100,139
T31-G21	7,372	21,810	38,273	0,000	30,049	0,984	0,018	1,604	0,000	100,110
T31-G22	7,684	21,893	38,216	0,010	30,526	1,098	0,000	0,299	0,000	99,726
T31-G23	5,204	21,555	37,810	0,097	30,706	3,152	0,059	1,050	0,000	99,633
T31-G24	6,520	21,632	37,834	0,069	30,681	1,679	0,032	1,251	0,000	99,698
T31-G25	4,618	21,288	37,160	0,034	30,143	0,966	0,005	5,006	0,000	99,220

Tabela 50 - Composição química dos elementos maiores das granadas do testemunho T31. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T32-G1	10,622	22,378	39,170	0,007	25,879	1,149	0,005	0,575	0,000	99,785
T32-G2	7,998	22,077	38,712	0,093	29,174	1,713	0,088	0,698	0,000	100,553
T32-G3	10,549	22,284	39,231	0,069	25,898	1,415	0,147	0,553	0,000	100,146
T32-G4	11,154	22,674	39,590	0,000	25,994	1,196	0,000	0,487	0,000	101,095
T32-G5	7,649	22,120	38,358	0,033	28,925	2,041	0,064	0,671	0,000	99,861
T32-G6	8,061	22,187	38,597	0,020	29,292	1,515	0,047	0,654	0,000	100,373
T32-G7	9,964	22,486	39,201	0,018	26,646	1,605	0,029	0,700	0,000	100,649
T32-G8	9,478	22,359	39,051	0,065	24,516	3,571	0,069	1,110	0,000	100,219
T32-G9	9,416	22,388	38,768	0,087	28,166	1,096	0,018	0,329	0,000	100,268
T32-G10C	10,522	22,432	39,307	0,121	26,236	1,527	0,024	0,396	0,000	100,565
T32-G10B	9,897	21,503	37,570	0,128	25,959	1,567	0,030	0,431	0,000	97,085
T32-G11	8,777	22,196	38,505	0,000	28,172	1,392	0,051	0,911	0,000	100,004
T32-G12	11,312	22,516	39,187	0,029	25,227	1,306	0,064	0,802	0,000	100,443
T32-G13	8,595	22,144	38,555	0,011	26,843	3,270	0,021	0,958	0,000	100,397
T32-G14	8,719	22,261	39,049	0,044	29,002	0,930	0,035	0,814	0,000	100,854
T32-G15	7,371	21,944	38,607	0,000	30,213	1,171	0,012	1,253	0,000	100,571
T32-G16	9,103	22,139	38,979	0,000	28,169	1,099	0,060	0,703	0,000	100,252
T32-G17	9,031	22,214	38,798	0,116	27,571	1,512	0,020	0,782	0,000	100,044
T32-G18	8,250	21,821	39,259	0,061	23,359	5,280	0,012	1,754	0,406	100,202
T32-G19	9,349	22,348	38,927	0,062	26,254	2,662	0,052	0,774	0,000	100,428
T32-G20	5,140	21,572	37,756	0,009	31,513	1,728	0,030	2,051	0,000	99,799
T32-G21	10,568	22,524	39,715	0,102	21,237	4,107	0,000	2,274	0,000	100,527
T32-G22	11,101	22,648	39,360	0,054	26,113	0,844	0,060	0,542	0,000	100,722
T32-G23	10,960	22,674	39,775	0,032	24,212	2,504	0,107	0,437	0,000	100,701
T32-G24	9,698	22,422	39,288	0,060	26,516	1,723	0,029	1,131	0,000	100,867
T32-G25	5,785	22,218	38,791	0,039	22,409	10,597	0,048	0,448	0,000	100,335

Tabela 51 - Composição química dos elementos maiores das granadas do testemunho T32. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T33-G1	4.571	21.464	36.997	0.022	30.310	3.594	0.013	2.035	0.000	99.006
T33-G2C	7.764	22.143	37.622	0.015	30.382	1.209	0.024	0.688	0.000	99.847
T33-G2B	7.597	21.737	37.323	0.041	30.064	1.182	0.059	0.677	0.000	98.680
T33-G3	8.246	22.043	38.287	0.000	28.058	0.925	0.000	2.305	0.000	99.864
T33-G4	7.882	21.994	38.146	0.000	26.522	0.821	0.000	4.016	0.000	99.381
T33-G5	10.124	22.370	38.625	0.098	26.909	1.144	0.034	0.692	0.000	99.996
T33-G6	5.356	21.680	36.749	0.004	31.893	1.001	0.011	2.496	0.000	99.190
T33-G7	7.869	21.985	38.019	0.052	27.808	1.090	0.000	3.344	0.000	100.167
T33-G8	2.813	21.058	36.638	0.044	34.801	1.059	0.020	3.600	0.000	100.033
T33-G9	9.644	22.190	38.100	0.072	27.478	1.244	0.076	0.398	0.000	99.202
T33-G10	6.234	21.588	37.267	0.067	24.259	0.925	0.035	8.738	0.000	99.113
T33-G11	5.787	21.890	37.753	0.068	29.395	4.156	0.011	0.940	0.000	100.000
T33-G12	3.535	21.250	37.014	0.000	29.162	3.330	0.01	4.937	0.000	99.238
T33-G13	6.270	21.693	37.706	0.000	31.447	1.144	0.024	1.432	0.000	99.716
T33-G14	2.367	21.069	36.447	0.000	29.330	1.530	0.000	8.572	0.000	99.315
T33-G15	3.845	21.262	36.792	0.015	27.484	1.293	0.013	9.068	0.000	99.772
T33-G16	2.704	21.163	36.657	0.000	32.159	1.411	0.000	5.244	0.000	99.338
T33-G17	4.986	21.326	38.659	0.015	28.616	4.737	0.016	1.391	0.355	100.101
T33-G18	6.019	21.523	38.585	0.030	29.750	2.825	0.092	1.115	0.01	99.949
T33-G19	8.053	21.915	39.106	0.125	27.901	2.829	0.047	0.557	0.030	100.563
T33-G20	4.555	21.476	37.857	0.052	27.009	1.437	0.000	7.815	0.000	100.201
T33-G21	2.751	21.141	37.496	0.000	32.668	1.661	0.006	4.330	0.000	100.053
T33-G22	5.565	21.467	37.875	0.019	31.887	1.058	0.004	2.328	0.000	100.203
T33-G23	7.900	21.754	38.928	0.026	29.639	1.596	0.087	0.524	0.206	100.660
T33-G24	7.808	21.807	38.705	0.000	29.500	0.965	0.016	1.377	0.032	100.210
T33-G25	9.310	23.509	39.108	0.000	26.734	1.010	0.033	0.891	0.000	100.595

Tabela 52 - Composição química dos elementos maiores das granadas do testemunho T33. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T42-G1C	10.383	22.219	39.559	0.034	25.676	1.369	0.656	0.049	0.000	99.945
T42-G1B	10.454	22.584	40.189	0.000	25.033	1.472	0.634	0.000	0.000	100.366
T42-G2	9.065	22.270	39.536	0.080	26.400	2.348	0.699	0.109	0.000	100.507
T42-G3	5.611	20.935	38.611	0.034	29.936	1.013	2.059	0.000	0.328	98.527
T42-G4	9.571	22.224	39.914	0.089	20.631	6.885	0.695	0.184	0.082	100.275
T42-G5	3.045	21.118	37.472	0.026	28.310	0.730	8.707	0.024	0.000	99.432
T42-G6	8.353	22.124	38.951	0.068	29.307	1.165	0.267	0.038	0.000	100.273
T42-G7	8.990	22.414	39.643	0.049	26.951	1.904	0.719	0.096	0.000	100.766
T42-G8	10.480	22.384	39.661	0.019	26.426	0.909	0.622	0.041	0.000	100.542
T42-G9	7.364	21.750	38.698	0.000	29.396	2.025	0.667	0.045	0.000	99.945
T42-G10	9.243	22.327	39.182	0.038	27.931	0.914	0.463	0.038	0.000	100.136
T42-G11	8.861	22.148	39.225	0.000	28.541	1.107	0.722	0.024	0.000	100.628
T42-G12	11.486	22.721	40.503	0.084	24.544	1.457	0.285	0.096	0.000	101.176
T42-G13	8.077	22.069	38.735	0.087	28.855	1.735	0.597	0.064	0.000	100.219
T42-G14	8.359	22.193	39.269	0.068	27.158	2.704	0.515	0.046	0.000	100.312
T42-G15	8.130	21.958	38.927	0.000	28.718	1.371	0.766	0.000	0.000	99.870
T42-G16	6.487	21.748	38.489	0.000	30.508	1.011	1.889	0.005	0.000	100.137
T42-G17	7.696	21.919	38.904	0.060	28.788	1.383	1.161	0.036	0.000	99.947
T42-G18	6.722	21.843	39.130	0.000	26.432	5.749	0.280	0.011	0.174	100.341
T42-G19	6.004	21.806	38.486	0.007	31.618	1.325	1.008	0.012	0.000	100.266
T42-G20	10.565	22.292	39.762	0.000	24.126	2.404	0.506	0.028	0.000	99.683
T42-G21	10.368	22.542	39.871	0.000	25.823	1.089	0.676	0.031	0.000	100.400
T42-G22	12.910	22.584	40.500	0.053	23.013	1.052	0.317	0.147	0.028	100.604
T42-G23	10.089	22.345	39.581	0.030	26.037	0.934	1.008	0.027	0.000	100.051
T42-G24	7.374	21.751	38.820	0.000	26.453	2.692	2.807	0.017	0.110	100.024
T42-G25	8.182	21.960	38.777	0.023	29.392	1.032	0.982	0.024	0.000	100.372

Tabela 53 - Composição química dos elementos maiores das granadas do testemunho T42. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T46-G01	5,972	21,814	36,958	0,000	31,122	0,959	2,269	0,011	0,000	99,106
T46-G02	7,015	22,071	37,845	0,060	24,727	6,797	0,320	0,024	0,000	98,859
T46-G03	4,758	21,379	36,269	0,033	29,785	1,007	4,845	0,000	0,000	98,075
T46-G04	9,977	22,076	37,979	0,057	25,937	1,469	1,170	0,034	0,000	98,697
T46-G05	0,916	21,139	36,576	0,003	27,664	8,594	3,650	0,000	0,000	98,540
T46-G06	9,370	22,309	38,178	0,000	27,017	1,084	1,151	0,021	0,000	99,130
T46-G07	7,250	21,640	37,242	0,017	30,875	1,219	0,294	0,021	0,000	98,558
T46-G08	8,303	22,220	38,037	0,000	28,893	1,603	0,997	0,082	0,000	100,134
T46-G09	9,184	22,144	38,167	0,043	27,737	1,293	0,653	0,059	0,000	99,280
T46-G10C	7,288	21,950	37,416	0,000	30,723	1,049	1,053	0,018	0,000	99,497
T46-G10B	7,254	21,363	37,022	0,000	30,340	0,993	1,016	0,000	0,000	97,988
T46-G11	6,628	21,975	37,681	0,026	25,671	0,864	6,582	0,012	0,000	99,439
T46-G12	7,541	22,161	37,521	0,000	28,161	1,487	1,678	0,000	0,000	98,549
T46-G13	8,129	22,021	37,433	0,007	27,543	2,537	0,655	0,000	0,000	98,324
T46-G14	11,042	22,554	38,541	0,000	25,333	1,249	0,520	0,071	0,000	99,309
T46-G15	4,407	21,318	36,805	0,000	34,880	0,904	0,990	0,000	0,000	99,304
T46-G16	10,521	22,345	39,134	0,074	24,730	2,601	0,039	0,033	0,000	99,827
T46-G17	8,387	22,172	38,313	0,000	28,164	2,019	0,705	0,055	0,000	99,815
T46-G18	3,294	21,257	35,997	0,056	32,300	3,169	1,942	0,000	0,000	98,015
T46-G19	5,550	21,640	37,378	0,000	27,465	5,418	0,709	0,000	0,000	98,160
T46-G20	5,927	21,621	36,167	0,017	29,259	1,851	1,749	0,035	0,000	96,626
T46-G21	9,083	22,327	38,399	0,071	22,281	6,096	0,612	0,065	0,000	98,934
T46-G22	6,832	21,375	36,123	0,023	28,887	0,907	2,554	0,000	0,000	96,700
T46-G23	3,146	21,385	36,620	0,000	25,522	6,535	4,994	0,012	0,000	98,214
T46-G24	7,643	21,756	37,518	0,000	25,996	1,805	3,680	0,031	0,000	98,429
T46-G25	9,737	22,316	38,457	0,010	26,545	1,335	0,771	0,037	0,000	99,208

Tabela 54 - Composição química dos elementos maiores das granadas do testemunho T46. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T47-G1	5.126	21.304	37.964	0.022	32.113	0.993	0.013	2.652	0.162	100.349
T47-G2	2.994	21.274	38.136	0.098	29.768	5.675	0.020	2.041	0.000	100.006
T47-G3	5.951	21.502	38.111	0.104	31.647	1.072	0.042	1.175	0.000	99.604
T47-G4	5.168	21.708	38.301	0.000	32.932	1.063	0.037	1.559	0.000	100.768
T47-G5	8.370	21.684	38.915	0.057	25.856	2.050	0.025	2.519	0.216	99.692
T47-G6	8.673	21.746	39.218	0.030	27.202	1.293	0.012	1.515	0.256	99.945
T47-G7	7.385	21.748	38.712	0.004	30.214	1.386	0.076	0.530	0.000	100.055
T47-G8C	8.729	21.937	39.660	0.034	26.724	2.386	0.046	0.907	0.263	100.686
T47-G8B	8.799	21.852	39.550	0.049	26.300	2.470	0.000	0.976	0.336	100.332
T47-G9	7.565	21.455	38.929	0.000	29.444	0.892	0.030	0.907	0.276	99.498
T47-G10	4.327	21.325	37.875	0.011	33.708	1.581	0.012	1.066	0.000	99.905
T47-G11	5.713	21.398	37.933	0.075	29.712	1.102	0.023	3.527	0.000	99.483
T47-G12	5.721	21.541	39.197	0.027	21.550	8.360	0.167	3.172	0.342	100.077
T47-G13	13.422	22.675	40.905	0.000	20.081	2.662	0.033	0.286	0.243	100.307
T47-G14	8.288	21.692	39.214	0.080	25.629	3.524	0.075	1.050	0.270	99.822
T47-G15	1.493	20.884	37.696	0.163	28.376	8.112	0.032	2.622	0.124	99.502
T47-G16	4.062	21.381	37.904	0.033	33.970	1.120	0.018	1.547	0.000	100.035
T47-G17	7.531	21.590	39.290	0.000	25.272	3.992	0.005	1.784	0.483	99.947
T47-G18	2.854	20.862	38.402	0.080	19.452	8.494	0.084	9.137	0.719	100.084
T47-G19	6.862	21.792	38.613	0.116	31.046	0.807	0.085	0.531	0.000	99.852
T47-G20	5.846	21.688	38.760	0.107	26.087	6.666	0.049	1.012	0.111	100.326
T47-G21	7.902	21.874	39.191	0.049	26.986	3.044	0.011	0.748	0.000	99.805
T47-G22	0.135	20.025	38.722	0.047	10.342	24.227	0.019	3.522	2.462	99.501
T47-G23	6.244	21.684	38.475	0.041	32.368	1.018	0.047	0.558	0.000	100.435
T47-G24	9.222	21.808	39.168	0.042	27.414	0.932	0.030	1.043	0.199	99.858
T47-G25	6.867	21.606	38.754	0.004	29.669	0.919	0.019	2.112	0.057	100.007

Tabela 55 - Composição química dos elementos maiores das granadas do testemunho T46. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T49-G1	9,095	21,873	38,993	0,085	25,038	3,292	0,051	0,443	0,000	98,870
T49-G2	10,726	22,120	39,044	0,044	25,458	0,962	0,018	0,694	0,000	99,066
T49-G3	4,129	21,319	38,367	0,156	24,616	9,390	0,029	1,137	0,148	99,291
T49-G4	10,766	22,254	39,048	0,000	24,969	1,317	0,063	0,371	0,000	98,788
T49-G5	4,526	21,370	37,930	0,003	29,559	4,718	0,011	0,979	0,000	99,096
T49-G6	2,432	21,214	37,058	0,000	13,385	4,483	0,000	20,747	0,000	99,319
T49-G7	11,190	22,344	39,317	0,095	23,952	1,624	0,055	0,460	0,000	99,037
T49-G8	9,901	22,127	38,679	0,081	25,767	1,446	0,001	0,893	0,000	98,895
T49-G9	11,096	22,530	39,145	0,134	24,938	1,368	0,052	0,997	0,000	100,26
T49-G10	11,277	22,217	39,209	0,024	24,581	1,556	0,018	0,184	0,000	99,066
T49-G11	7,503	21,722	38,328	0,007	28,455	1,194	0,000	1,398	0,000	98,607
T49-G12	7,490	21,351	37,849	0,047	28,709	1,111	0,050	1,178	0,000	97,785
T49-G13	10,888	21,922	38,851	0,051	23,739	0,918	0,008	1,127	0,000	97,504
T49-G14	4,667	21,131	38,533	0,072	20,486	12,464	0,008	0,557	0,687	98,605
T49-G15	12,181	22,340	39,864	0,020	21,325	2,059	0,018	1,476	0,103	99,386
T49-G16	10,549	22,213	38,957	0,128	25,418	1,116	0,022	0,269	0,000	98,672
T49-G17	8,399	21,820	38,873	0,121	26,906	1,903	0,082	0,883	0,000	98,987
T49-G18	4,386	20,721	37,730	0,044	20,801	6,087	0,053	7,587	0,497	97,906
T49-G19	5,367	21,116	37,652	0,023	23,060	0,932	0,015	10,286	0,000	98,451
T49-G20	7,070	21,585	38,174	0,000	27,842	2,816	0,090	0,997	0,000	98,574
T49-G21	6,446	21,368	38,002	0,056	25,786	1,532	0,004	5,569	0,000	98,763
T49-G22	6,649	21,413	37,597	0,000	29,848	1,302	0,017	1,137	0,000	97,963
T49-G23	4,176	20,897	37,021	0,000	31,005	2,662	0,009	1,789	0,000	97,559
T49-G24C	7,763	21,631	38,422	0,010	28,817	1,055	0,004	0,981	0,000	98,683
T49-G24B	7,727	21,584	38,199	0,027	28,994	1,073	0,000	0,923	0,000	98,527
T49-G25	10,175	21,816	38,635	0,030	26,163	0,297	0,000	1,426	0,002	98,544

Tabela 56 - Composição química dos elementos maiores das granadas do testemunho T49. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO ₂	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T50-G1	10.212	22.369	38.824	0.101	26.679	1.433	0.582	0.048	0.000	100.248
T50-G2	9.939	22.164	39.296	0.090	26.642	2.005	0.472	0.037	0.124	100.769
T50-G3	1.195	20.741	37.328	0.01	20.880	3.301	16.053	0.029	0.125	99.662
T50-G4	6.995	21.678	38.633	0.048	30.331	2.095	0.741	0.049	0.188	100.758
T50-G5	11.855	22.420	40.043	0.019	24.594	1.039	0.669	0.009	0.277	100.925
T50-G6	9.311	21.813	39.319	0.000	26.095	1.124	2.257	0.023	0.424	100.366
T50-G7	6.421	21.690	38.127	0.102	31.901	1.128	1.694	0.000	0.044	101.107
T50-G8	10.724	22.078	38.660	0.118	25.502	1.513	0.989	0.016	0.028	99.628
T50-G9C	10.254	22.535	39.449	0.000	26.184	1.800	0.428	0.076	0.000	100.726
T50-G9B	9.828	21.716	39.214	0.101	25.969	1.894	0.438	0.091	0.335	99.586
T50-G10	4.561	21.547	37.697	0.000	34.354	1.335	1.597	0.034	0.000	101.125
T50-G11	9.229	21.848	39.363	0.116	26.669	2.584	0.586	0.031	0.489	100.915
T50-G12	8.539	22.091	38.962	0.050	29.879	1.208	0.524	0.015	0.071	101.339
T50-G13	10.090	22.054	39.404	0.025	27.004	1.022	0.740	0.053	0.261	100.653
T50-G14	6.249	21.403	38.399	0.048	27.035	3.704	3.174	0.204	0.315	100.531
T50-G15	3.582	21.178	37.658	0.101	31.589	2.362	4.100	0.042	0.094	100.706
T50-G16	7.721	21.740	39.278	0.000	25.133	3.518	2.882	0.000	0.510	100.782
T50-G17	8.145	21.873	39.029	0.077	29.172	1.736	0.799	0.087	0.169	101.087
T50-G18	7.464	22.060	38.715	0.000	30.804	1.046	1.336	0.013	0.000	101.438
T50-G19	6.473	21.845	37.995	0.023	31.368	2.119	1.022	0.011	0.000	100.856
T50-G20	7.815	21.929	38.463	0.027	29.727	0.953	1.664	0.003	0.000	100.581
T50-G21	7.296	21.892	38.478	0.000	31.935	1.103	0.428	0.013	0.074	101.219
T50-G22	8.816	21.782	39.595	0.040	28.535	1.338	0.530	0.046	0.562	101.244
T50-G23	2.587	20.842	37.543	0.012	29.916	0.808	8.588	0.011	0.362	100.669
T50-G24	8.029	22.144	38.514	0.000	30.003	1.243	0.920	0.043	0.000	100.896
T50-G25	3.784	21.396	38.762	0.034	26.533	9.170	0.778	0.027	0.569	101.053

Tabela 57 - Composição química dos elementos maiores das granadas do testemunho T50. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T52-G1	10.426	22.139	38.192	0.000	25.793	1.077	0.009	1.216	0.000	98.852
T52-G2	8.583	22.062	37.983	0.008	28.646	1.118	0.000	1.155	0.000	99.555
T53-G3C	9.275	22.374	38.222	0.057	27.392	1.767	0.031	0.499	0.000	99.617
T52-G3B	9.111	22.156	38.202	0.147	27.330	1.766	0.073	0.545	0.000	99.330
T52-G4	9.100	22.157	38.272	0.064	28.421	1.199	0.029	0.839	0.000	100.081
T52-G5	10.334	22.342	38.452	0.091	26.340	1.218	0.032	0.587	0.000	99.396
T52-G6	7.429	21.894	37.839	0.000	28.176	1.112	0.023	3.300	0.000	99.773
T52-G7	7.631	21.816	37.602	0.052	29.718	0.992	0.036	1.648	0.000	99.495
T52-G8	7.081	21.784	37.957	0.011	31.544	0.977	0.022	0.692	0.000	100.068
T52-G9	3.504	21.402	37.145	0.052	30.171	1.173	0.028	6.641	0.000	100.116
T52-G10	5.071	21.527	37.297	0.000	30.137	3.569	0.038	1.748	0.000	99.387
T52-G11	5.793	21.690	37.017	0.000	31.767	1.797	0.057	1.214	0.000	99.335
T52-G12	7.017	21.884	37.120	0.063	24.760	1.155	0.002	6.979	0.000	98.980
T52-G13	3.833	21.350	36.352	0.000	32.641	3.222	0.000	1.020	0.000	98.418
T52-G14	5.667	21.602	36.444	0.007	30.220	2.768	0.005	1.425	0.000	98.138
T52-G15	2.865	21.246	36.446	0.015	27.707	1.235	0.023	9.903	0.000	99.440
T52-G16	5.484	21.481	37.501	0.112	31.446	2.628	0.119	0.978	0.000	99.749
T52-G17	6.051	21.730	37.396	0.045	30.894	2.809	0.039	0.335	0.000	99.299
T52-G18	4.122	21.378	36.725	0.019	32.668	2.617	0.000	1.613	0.000	99.142
T52-G19	8.895	22.252	38.271	0.053	28.877	1.103	0.028	0.819	0.000	100.298
T52-G20	3.990	21.493	36.735	0.000	30.089	3.951	0.051	2.635	0.000	98.944
T52-G21	8.497	22.210	38.310	0.000	27.779	1.689	0.077	0.915	0.000	99.477
T52-G22	6.393	21.867	37.544	0.004	30.055	2.520	0.040	1.239	0.000	99.662
T52-G23	9.871	22.504	38.416	0.182	25.296	1.870	0.000	1.840	0.000	99.979
T52-G24	10.209	22.407	38.871	0.038	26.457	1.165	0.047	1.010	0.000	100.204
T52-G25	11.159	22.470	39.146	0.099	24.781	2.097	0.104	0.254	0.000	100.110

Tabela 58 - Composição química dos elementos maiores das granadas do testemunho T52. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T54-G01	8,580	22,102	38,080	0,016	28,950	0,989	0,912	0,000	0,000	99,630
T54-G02	1,557	21,172	36,714	0,093	27,461	8,742	2,613	0,041	0,000	98,393
T54-G03	5,455	21,289	36,158	0,052	30,744	0,797	3,009	0,024	0,000	97,526
T54-G04	8,322	21,937	37,466	0,013	28,677	0,994	0,905	0,024	0,000	98,338
T54-G05	7,658	21,998	37,301	0,060	28,645	1,970	1,013	0,064	0,000	98,709
T54-G06	9,292	22,218	38,079	0,000	26,097	1,133	2,262	0,030	0,000	99,110
T54-G07	2,841	21,329	36,318	0,000	31,888	3,032	3,002	0,026	0,000	98,436
T54-G08	10,701	22,500	38,728	0,077	24,921	1,663	0,836	0,035	0,000	99,460
T54-G09	6,242	21,751	37,984	0,000	30,361	2,350	1,254	0,044	0,000	99,987
T54-G10	5,486	21,446	36,539	0,016	31,825	1,662	1,279	0,036	0,000	98,289
T54-G11	9,868	22,531	38,668	0,000	26,190	1,719	0,648	0,028	0,000	99,651
T54-G12	8,400	22,103	37,651	0,007	27,435	1,934	0,820	0,000	0,000	98,349
T54-G13	3,686	21,143	36,979	0,258	11,657	7,066	17,053	0,021	0,000	97,863
T54-G14	7,134	21,711	36,837	0,003	29,491	0,953	1,611	0,000	0,000	97,741
T54-G15	11,409	22,545	37,651	0,007	24,416	1,227	0,692	0,037	0,000	97,982
T54-G16	10,604	22,117	38,615	0,037	24,731	2,039	0,941	0,000	0,000	99,083
T54-G17	3,218	21,055	36,110	0,000	27,891	1,398	8,434	0,041	0,000	98,147
T54-G18	7,648	21,977	38,244	0,023	25,445	4,828	0,588	0,011	0,000	98,763
T54-G19	2,433	21,271	35,954	0,000	28,755	1,565	8,116	0,042	0,000	98,135
T34-G1C	9.002	22.207	39.396	0.000	27.121	1.269	1.875	0.035	0.000	100.905
T34-G1B	8.824	21.947	39.078	0.060	26.926	1.240	1.967	0.000	0.003	100.045
T34-G2	7.690	22.091	39.160	0.128	28.114	2.834	0.793	0.069	0.000	100.879
T34-G3	8.759	22.252	39.420	0.030	27.294	1.385	0.830	0.069	0.000	100.039
T34-G4	2.777	21.156	37.112	0.041	28.425	1.050	8.261	0.000	0.000	98.822
T34-G5	10.896	22.335	39.631	0.061	23.745	1.711	1.250	0.000	0.000	99.629
T34-G6	3.103	21.515	37.788	0.011	33.456	0.923	2.954	0.000	0.000	99.750
T34-G7	0.059	26.528	38.706	0.100	8.057	22.957	0.081	0.008	0.000	96.496

Tabela 59 - Composição química dos elementos maiores das granadas dos testemunhos T54 e T34. G=granada, B=borda, C=centro, I=Intermédiário.

Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T56-G1	6.691	21.636	38.501	0.060	31.788	0.753	1.084	0.034	0.029	100.576
T56G2	4.249	21.053	37.759	0.000	24.369	1.384	10.681	0.013	0.237	99.745
T56-G3	8.600	22.060	38.588	0.096	29.162	0.989	0.900	0.000	0.000	100.395
T56G4	10.718	22.446	39.478	0.015	25.118	1.932	0.757	0.021	0.000	100.485
T56G5	7.931	21.752	38.768	0.071	29.736	1.304	1.075	0.073	0.231	100.941
T56G6	6.419	21.632	38.302	0.000	28.239	0.953	4.593	0.034	0.000	100.172
T56G7	9,681	21,830	39,256	0,008	27,261	1,153	0,096	0,005	0,583	100,737
T56G8	8.545	22.115	38.522	0.000	30.218	0.765	0.701	0.017	0.000	100.883
T58G9	7,601	22,017	38,684	0,040	29,226	2,558	0,744	0,000	0,000	100,869
T56G10	4.662	21.210	38.101	0.019	21.858	1.538	12.474	0.005	0.220	100.087
T56G11	2.702	21.248	38.406	0.106	28.030	8.967	1.111	0.000	0.469	101.039
T56G12	4.269	21.042	37.623	0.000	35.010	1.011	0.712	0.038	0.205	99.910
T56G13	5.259	21.062	39.195	0.066	25.275	7.285	1.218	0.047	1.010	100.417
T56G14	2.186	21.232	37.406	0.071	27.468	6.015	5.634	0.000	0.000	100.012
T56G15	8.531	21.957	38.976	0.000	28.849	1.156	1.263	0.017	0.200	100.949
T56G16	8.124	21.766	38.897	0.123	28.569	1.278	1.709	0.004	0.207	100.677
T56G17	7.173	20.843	39.122	0.080	28.135	2.617	0.750	0.008	1.279	100.007
T56G18	6.323	21.609	38.639	0.011	24.674	7.878	0.587	0.049	0.484	100.254
T56G19	6.236	21.738	39.114	0.011	24.513	6.977	1.464	0.000	0.327	100.380
T13G1	4,259	21,257	36,537	0,088	34,907	0,963	1,257	0,000	0,000	99,267
T13G2	3,118	21,052	35,980	0,000	33,159	0,689	4,073	0,000	0,000	98,070
T13G3	2,081	21,001	35,787	0,019	33,011	0,525	5,820	0,000	0,000	98,245
T13G4	5,770	21,626	37,190	0,003	32,694	0,841	0,732	0,015	0,000	98,871
T13G5	7,526	21,866	37,410	0,000	28,700	1,133	1,398	0,007	0,000	98,039
T13G6	4,699	21,379	37,015	0,000	32,506	1,012	1,986	0,000	0,000	98,597
T13G7	5,794	21,839	37,324	0,020	31,043	1,327	1,793	0,045	0,000	99,184
T13G8C	9,260	22,248	38,101	0,000	28,006	1,575	0,356	0,027	0,000	99,574
T13G8B	8,855	21,712	37,358	0,010	27,753	1,594	0,370	0,043	0,000	97,695
T13G9	8,700	22,171	37,763	0,000	27,559	1,994	0,287	0,075	0,000	98,548

Tabela 60 - Composição química dos elementos maiores das granadas dos testemunhos T56 e T13. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T59-G1	2,573	21,147	36,888	0,051	33,466	2,664	0,012	2,576	0,000	99,377
T59-G2	5,868	21,296	37,560	0,000	31,755	0,914	0,018	1,541	0,000	98,952
T59-G3	3,256	21,122	36,973	0,000	30,333	1,104	0,011	6,682	0,000	99,481
T59-G4	7,258	21,796	37,702	0,128	29,086	1,544	0,000	1,574	0,000	99,088
T59-G5	4,339	21,354	37,128	0,000	31,317	1,071	0,034	4,158	0,000	99,401
T59-G6	2,424	20,941	36,475	0,031	34,782	1,607	0,025	2,823	0,000	99,108
T59-G7	2,868	21,143	36,874	0,034	33,153	1,122	0,029	4,091	0,000	99,314
T59-G8	6,767	21,818	37,895	0,066	30,176	1,992	0,017	0,472	0,000	99,203
T59-G9	7,930	21,873	38,542	0,073	28,805	1,102	0,019	1,223	0,000	99,567
T59-G10	8,268	21,655	38,774	0,066	25,926	4,227	0,000	0,520	0,458	99,894
T59-G11	8,491	22,011	38,674	0,000	27,029	2,158	0,209	1,316	0,000	99,888
T59-G12	5,377	21,544	37,464	0,048	32,660	1,199	0,004	1,726	0,000	100,022
T59-G13	8,202	21,928	38,549	0,021	29,004	1,571	0,069	0,476	0,000	99,820
T59-G14	3,322	20,976	37,188	0,000	26,560	1,119	0,060	10,054	0,000	99,279
T59-G15	2,936	21,017	37,251	0,000	20,645	0,758	0,024	16,485	0,000	99,116
T59-G16	7,024	21,692	37,792	0,024	28,687	2,921	0,073	0,995	0,000	99,208
T59-G17	11,380	22,291	39,764	0,074	22,750	3,177	0,006	0,832	0,383	100,657
T59-G18	8,064	22,113	38,353	0,028	29,155	0,988	0,022	1,090	0,000	99,813
T59-G19	2,949	21,048	37,104	0,000	33,034	2,142	0,045	3,180	0,000	99,502
T59-G20	8,625	22,008	38,638	0,028	27,715	2,246	0,017	0,537	0,000	99,814
T59-G21	2,946	18,262	32,186	14,124	24,856	5,809	0,000	0,964	0,000	99,147
T59-G22C	9,587	22,220	38,923	0,049	27,261	0,882	0,015	0,970	0,000	99,907
T59-G22B	3,408	21,301	36,986	0,000	29,679	1,386	0,004	6,701	0,000	99,465
T59-G23	3,341	20,773	36,421	0,000	30,127	1,517	0,026	6,230	0,000	98,435
T59-G24	2,738	20,683	36,956	0,058	24,218	1,901	0,006	11,937	0,073	98,570
T59G25	6,477	21,568	37,706	0,000	31,310	0,964	0,004	1,370	0,000	99,399

Tabela 61 - Composição química dos elementos maiores das granadas do testemunho T59. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T60-G1	7,29	22,13	39,20	0,01	25,38	6,31	0,04	0,82	0,17	101,33
T60-G2	9,37	22,24	39,22	0,13	28,22	0,96	0,00	0,46	0,00	100,59
T60-G3	7,76	22,04	38,12	0,00	29,97	1,05	0,02	1,00	0,00	99,96
T60-G4	7,20	21,91	38,07	0,00	29,60	2,01	0,09	1,06	0,00	99,93
T60-G5	3,97	21,44	37,57	0,03	31,72	1,51	0,00	4,15	0,00	100,39
T60-G6	0,66	20,71	37,20	0,30	2,78	5,76	0,04	32,18	0,00	99,63
T60-G7	5,34	21,37	37,78	0,02	30,72	1,71	0,01	3,13	0,13	100,21
T60-G8	7,55	21,97	38,62	0,00	29,77	1,05	0,03	1,23	0,00	100,23
T60-G9	9,49	22,44	39,04	0,00	27,12	1,14	0,00	1,09	0,00	100,32
T60-G10	1,24	20,90	36,98	0,02	20,57	0,39	0,00	20,16	0,00	100,26
T60-G11	7,53	21,95	38,35	0,05	30,38	1,43	0,07	0,72	0,00	100,48
T60-G12C	1,44	20,99	37,01	0,06	20,34	0,95	0,01	19,21	0,00	100,02
T60-G12B	1,41	20,37	35,88	0,06	20,57	0,95	0,03	19,06	0,05	98,35
T60-G13	2,89	21,24	37,25	0,00	25,97	1,34	0,03	11,40	0,00	100,11
T60-G14	0,09	20,70	35,75	0,03	23,20	0,33	0,00	19,37	0,00	99,48
T60-G15	4,46	21,55	37,72	0,03	26,46	7,86	0,09	1,88	0,02	100,05
T60-G16	2,92	21,23	36,59	0,00	31,53	1,02	0,01	6,33	0,00	99,62
T60-G17	3,33	21,22	36,10	0,03	32,70	1,16	0,00	4,47	0,00	99,01
T60-G18	1,94	21,02	36,52	0,04	37,09	1,80	0,00	1,35	0,00	99,74
T60-G19	3,50	21,44	37,24	0,01	31,29	4,11	0,00	2,62	0,00	100,21
T60-G20	7,88	21,87	38,39	0,00	21,34	1,10	0,00	9,21	0,00	99,79
T60-G21	10,92	22,45	39,09	0,02	24,80	1,70	0,03	0,73	0,00	99,74
T60-G22	7,14	22,03	38,39	0,07	29,60	2,24	0,03	0,78	0,00	100,29
T60-G23	4,82	21,55	37,83	0,00	32,60	1,74	0,01	1,28	0,00	99,83
T60-G24	3,60	21,34	36,91	0,00	35,81	1,09	0,00	1,19	0,00	99,95
T60-G25	7,13	21,63	38,29	0,01	29,63	2,06	0,02	1,25	0,19	100,20

Tabela 62 - Composição química dos elementos maiores das granadas do testemunho T60. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO ₂	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T62-G1	3,68	21,20	37,88	0,02	35,57	0,62	0,00	1,05	0,00	100,03
T62-G2	7,80	21,83	38,79	0,03	28,47	2,04	0,12	0,77	0,00	99,85
T62-G3	7,86	21,91	39,02	0,00	27,48	2,96	0,04	0,97	0,05	100,28
T62-G4	6,01	21,49	38,18	0,05	31,63	0,99	0,00	1,82	0,05	100,20
T62-G5	5,18	21,49	37,94	0,04	32,92	1,29	0,06	1,00	0,00	99,92
T62-G6	8,48	22,02	39,07	0,00	28,36	1,85	0,02	0,68	0,03	100,51
T62-G7	3,71	21,21	37,66	0,00	31,31	2,30	0,02	3,77	0,00	99,98
T62-G8C	10,25	22,22	39,55	0,00	25,95	1,69	0,03	0,42	0,01	100,12
T62-G8B	9,20	21,72	38,65	0,07	26,63	1,80	0,02	0,48	0,00	98,56
T62-G9	8,93	22,01	39,12	0,05	27,57	1,55	0,05	0,60	0,00	99,88
T62-G10	10,72	22,06	39,35	0,00	25,15	1,35	0,04	0,60	0,10	99,37
T62-G11	9,23	21,96	39,15	0,04	26,68	1,48	0,04	0,58	0,00	99,14
T62-G12	3,20	21,21	37,52	0,00	29,45	2,64	0,00	6,13	0,00	100,15
T62-G13	6,35	21,74	38,43	0,05	31,03	1,11	0,00	1,83	0,00	100,55
T62-G14	9,89	21,98	38,85	0,05	27,09	1,16	0,02	0,89	0,17	100,11
T62-G15	5,95	21,66	38,05	0,06	32,38	1,12	0,01	1,19	0,00	100,42
T62-G16	8,72	22,21	38,83	0,07	28,44	1,49	0,02	0,44	0,00	100,21
T62-G17	9,44	21,89	39,19	0,06	25,18	3,40	0,06	0,64	0,37	100,24
T62-G18	4,32	21,52	37,80	0,05	33,65	1,42	0,01	1,95	0,00	100,70
T62-G19	8,82	22,02	39,01	0,10	27,11	1,47	0,03	1,38	0,00	99,93
T62-G20	5,97	21,56	37,55	0,03	32,41	1,12	0,00	0,93	0,00	99,57
T62-G21	2,82	21,03	37,19	0,02	31,02	1,22	0,01	5,89	0,00	99,22
T62-G22	7,56	21,83	38,63	0,02	30,33	1,02	0,04	0,76	0,00	100,19
T62-G23	10,34	22,23	39,45	0,00	26,05	1,15	0,01	0,77	0,00	99,99
T62-G24	10,36	22,16	39,57	0,05	24,95	2,63	0,02	0,41	0,25	100,40
T62-G25	9,06	22,17	39,12	0,06	28,16	1,58	0,02	0,38	0,00	100,55

Tabela 63 - Composição química dos elementos maiores das granadas do testemunho T62. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T65-G1	9.872	22.253	38.779	0.000	24.308	3.272	0.035	1.002	0.000	99.521
T65-G2	7.586	22.006	38.013	0.007	28.215	1.148	0.01	3.089	0.000	100.074
T65-G3	5.606	21.444	37.230	0.045	32.531	1.261	0.065	1.274	0.000	99.456
T65-G4	2.070	21.365	36.418	0.022	33.371	1.201	0.000	5.927	0.000	100.374
T65-G5	5.659	21.639	37.230	0.026	32.980	0.989	0.015	0.674	0.000	99.212
T65-G6	2.180	21.333	36.887	0.097	34.154	4.872	0.003	0.281	0.000	99.807
T65-G7	8.321	22.109	38.369	0.083	29.100	1.120	0.041	0.573	0.000	99.716
T65-G8	10.749	22.538	39.433	0.015	25.236	1.557	0.040	0.842	0.000	100.410
T65-G9	10.085	22.425	38.895	0.038	25.296	2.615	0.066	0.587	0.000	100.007
T65-G10	9.832	22.311	38.187	0.038	25.365	2.420	0.043	1.083	0.000	99.279
T65-G11	4.934	21.478	36.800	0.015	33.738	1.102	0.000	1.123	0.000	99.190
T65-G12	8.902	22.234	38.282	0.049	27.924	1.819	0.052	0.638	0.000	99.900
T65-G13	9.732	22.352	38.186	0.011	26.869	1.406	0.077	0.650	0.000	99.283
T65-G14C	0.768	21.112	37.532	0.142	21.041	15.380	0.042	3.266	0.199	99.482
T65-G14B	0.619	21.139	37.672	0.119	20.191	15.216	0.000	4.264	0.169	99.389
T65-G15	4.697	21.544	37.054	0.019	31.046	2.854	0.044	2.202	0.000	99.460
T65-G16	2.704	21.305	36.921	0.105	29.240	6.701	0.036	2.480	0.000	99.492
T65-G17	9.673	22.141	38.073	0.061	25.570	2.014	0.050	1.603	0.000	99.185
T65-G18	6.370	21.800	37.054	0.030	32.498	0.930	0.031	0.543	0.000	99.256
T65-G19	2.729	21.268	36.573	0.000	35.767	0.890	0.014	2.559	0.000	99.800
T65-G20	6.358	21.782	37.763	0.026	32.479	1.047	0.026	0.439	0.000	99.920
T65-G21	6.414	21.979	37.935	0.022	31.090	1.513	0.021	1.416	0.000	100.390
T65-G22	10.435	22.464	38.494	0.015	26.840	0.893	0.007	0.609	0.000	99.757
T65-G23	5.314	21.584	37.512	0.011	31.339	1.054	0.000	2.714	0.000	99.528
T65-G24	6.754	21.988	37.788	0.105	31.593	1.270	0.017	0.722	0.000	100.237
T65-G25	8.830	22.218	38.514	0.000	23.741	3.145	0.009	3.412	0.000	99.869

Tabela 64 - Composição química dos elementos maiores das granadas do testemunho T65. G=granada, B=borda, C=centro, I=Intermédiário.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T66-G1	7.630	22.007	38.766	0.015	29.963	1.508	0.400	0.021	0.000	100.310
T66-G1A	7.458	22.081	38.809	0.015	30.445	1.474	0.412	0.094	0.000	100.788
T66-G2	8.283	22.050	39.263	0.060	27.770	1.643	1.415	0.059	0.000	100.543
T66-G3	9.316	22.155	39.537	0.019	27.578	1.405	0.754	0.000	0.112	100.876
T66-G4	9.033	22.206	39.141	0.045	27.626	1.543	0.438	0.000	0.000	100.032
T66-G5	5.192	21.669	38.136	0.000	31.926	1.644	1.507	0.046	0.000	100.120
T66-G6	6.066	21.892	38.663	0.049	32.210	1.432	0.474	0.108	0.000	100.894
T66-G7	9.217	22.446	39.586	0.057	26.549	2.527	0.544	0.078	0.000	101.004
T66-G8	3.538	21.421	37.705	0.048	32.334	1.397	4.072	0.045	0.000	100.560
T66-G9	4.382	21.228	38.065	0.000	29.628	2.297	4.063	0.000	0.097	99.760
T66-G10	7.041	21.813	38.374	0.041	30.995	1.025	0.490	0.030	0.000	99.809
T66-G11	11.372	22.391	39.899	0.065	24.630	1.277	0.400	0.024	0.000	100.058
T66-G12	6.123	21.774	38.393	0.030	32.048	1.196	0.130	0.020	0.000	99.714
T66-G13	10.357	22.399	39.469	0.103	25.468	2.058	0.328	0.011	0.000	100.193
T66-G14	7.046	22.103	38.697	0.000	30.194	1.193	1.372	0.034	0.000	100.639
T66-G15	10.760	22.688	40.035	0.019	25.763	0.954	0.738	0.000	0.000	100.957
T67-G1	2.708	21.009	37.675	0.056	32.404	3.692	1.989	0.028	0.000	99.561
T67-G2	5.451	21.545	38.026	0.045	30.713	1.470	1.510	0.046	0.000	98.806
T67-G3	2.748	21.197	37.740	0.086	29.835	4.554	3.097	0.003	0.000	99.260
T67-G4	1.051	20.945	36.810	0.022	36.755	0.374	3.229	0.044	0.000	99.230
T67-G5	10.215	22.537	39.556	0.095	26.124	1.240	0.338	0.032	0.000	100.137
T67-G6	11.864	22.469	39.760	0.008	23.633	0.904	1.083	0.007	0.000	99.728
T67-G7	7.530	21.925	38.767	0.023	28.785	0.988	1.627	0.000	0.000	99.645
T67-G8	7.237	22.062	39.088	0.034	29.264	1.701	0.498	0.004	0.000	99.888
T67-G9	10.274	22.465	39.603	0.027	25.471	1.034	0.658	0.040	0.000	99.572
T67-G10	6.896	21.925	38.731	0.000	29.143	2.202	0.841	0.070	0.000	99.808
T67-G11	8.531	22.148	39.398	0.000	27.563	0.971	0.924	0.029	0.000	99.564
T67-G12	7.916	21.907	39.257	0.073	21.029	8.123	0.658	0.008	0.116	99.087
T67-G13	6.712	21.886	38.647	0.015	29.557	1.710	0.530	0.013	0.000	99.070

Tabela 65 - Composição química dos elementos maiores das granadas dos testemunhos T66 e T67. G=granada, B=borda, C=centro, I=Intermédiário.

	Óxidos (% peso)												
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total			
T68-G1	4.503	21.410	37.393	0.030	25.460	4.867	0.039	5.644	0.000	99.346			
T68-G2	6.491	21.916	37.724	0.000	31.364	1.096	0.000	1.600	0.000	100.191			
T68-G3	4.297	21.529	37.357	0.072	28.529	7.056	0.018	0.536	0.000	99.394			
T68-G4	2.532	21.256	36.877	0.000	30.640	5.071	0.000	3.092	0.000	99.468			
T68-G5	4.677	21.477	37.180	0.000	31.990	1.557	0.009	2.335	0.000	99.225			
T68-G6	3.034	21.049	36.844	0.111	24.549	1.947	0.000	11.784	0.000	99.318			
T68-G7	2.559	21.114	36.343	0.000	24.343	1.338	0.001	13.488	0.000	99.186			
T68-G8	0.875	20.880	36.341	0.015	33.735	4.951	0.036	2.592	0.000	99.425			
T68-G9	4.448	21.447	37.070	0.049	30.488	3.990	0.014	1.795	0.000	99.301			
T68-G10	4.763	21.451	36.887	0.026	34.164	0.581	0.035	1.768	0.000	99.675			
T68-G11	9.019	22.177	37.891	0.019	28.734	1.003	0.008	0.733	0.000	99.584			
T68-G12	4.514	21.442	36.431	0.000	33.035	2.559	0.048	0.502	0.000	98.531			
T68-G13	3.716	21.246	36.508	0.000	19.486	1.630	0.008	16.348	0.000	98.942			
T68-G14	1.053	20.544	35.095	0.062	19.266	0.390	0.000	21.388	0.000	97.798			
T68-G15	11.226	22.462	38.215	0.008	24.647	1.174	0.015	1.326	0.000	99.073			
T68-G16	6.853	21.662	36.772	0.019	21.451	1.088	0.039	10.191	0.000	98.075			
T68-G17	4.899	21.065	36.509	0.000	20.561	2.782	0.022	12.362	0.000	98.200			
T68-G18	2.053	20.661	35.807	0.225	23.884	3.442	0.000	12.412	0.000	98.484			
T68-G19	0.832	20.713	35.532	0.047	18.919	0.185	0.000	22.370	0.000	98.598			
T68-G20	3.928	21.201	36.353	0.022	24.600	1.039	0.032	11.406	0.000	98.581			
T68-G21C	6.412	21.713	37.443	0.007	31.734	0.990	0.012	1.184	0.000	99.495			
T68-G21B	6.186	21.638	37.093	0.000	31.514	1.067	0.020	1.403	0.000	98.921			
T68-G22	11.852	22.452	38.675	0.030	24.275	1.047	0.000	1.043	0.000	99.374			
T68-G23	7.516	21.876	37.737	0.026	29.640	1.682	0.079	0.769	0.000	99.325			
T68-G24	3.395	21.114	36.734	0.007	31.698	1.629	0.004	4.568	0.000	99.149			
T68-G25	3.379	20.795	36.541	0.084	19.849	1.136	0.012	17.334	0.148	99.278			

Tabela 66 - Composição química dos elementos maiores das granadas do testemunho T68. G=granada, B=borda, C=centro, I=Intermédiário.

	Óxidos (% peso)												
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total			
3025-G1	1,4651	21,4424	38,3527	0,0978	19,7935	14,9528	3,9604	0,0438	0,1623	100,2708			
3025-G2	0,6978	20,9310	36,7111	0,2666	14,0526	2,6785	24,6066	0,1265	0,0000	100,0707			
3025-G3	6,8577	21,9346	38,8484	0,0000	29,5081	2,7100	1,4848	0,1058	0,0481	101,4975			
3025-G4	7,2043	22,0315	38,7200	0,0435	28,8766	0,7667	3,5379	0,0000	0,0000	101,1805			
3025-G5	3,1552	21,6261	37,8676	0,0202	34,7652	2,7991	1,1163	0,0203	0,0000	101,3700			
3025-G6	10,5949	21,9736	38,9577	0,1064	24,0983	2,4673	0,5417	0,0645	0,0000	98,8044			
3025-G7	9,9799	21,7200	38,4207	0,0492	25,9464	1,1671	1,1687	0,0000	0,1489	98,6009			
3025-G8	2,5264	20,8832	37,4223	0,0689	17,3030	6,4346	14,5144	0,0000	0,3858	99,5386			
3025-G9	11,4006	22,4926	39,6841	0,0706	24,9203	1,6122	0,7054	0,0542	0,0168	100,9568			
3025-G10	5,1719	21,5866	38,0842	0,0000	30,7368	2,2542	2,5183	0,0240	0,0000	100,3760			
3025-G11	2,2400	21,4740	38,0406	0,1058	8,5614	11,4522	17,9511	0,0000	0,0000	99,8251			
3025-G12	1,0112	21,2407	37,8615	0,0234	22,7138	11,7086	5,1579	0,0439	0,0111	99,7721			
3025-G13	5,9351	21,7321	38,1325	0,0759	32,0859	1,1373	1,5801	0,0775	0,0000	100,7564			
3025-G14	3,8721	20,8134	36,9331	0,0000	19,5635	2,4116	14,8739	0,0616	0,2264	98,7556			
3025-G15	6,1570	21,9842	38,7413	0,0000	30,9075	2,5151	1,1657	0,0012	0,0000	101,4720			
3025-G16	10,0276	21,8157	39,5306	0,0850	25,9751	1,7679	0,8536	0,3025	0,3521	100,7101			
3025-G17	3,5083	21,2312	36,9502	0,0000	28,0715	0,7123	8,7815	0,0000	0,0000	99,2550			
3025-G18	11,9673	21,9396	39,0769	0,0863	23,4666	1,3702	0,8271	0,0181	0,2361	98,9882			
3025-G19	6,8769	21,8859	38,6328	0,0493	30,3322	1,1387	2,3234	0,0247	0,0000	101,2639			
3025-G20	8,7018	21,5377	38,2613	0,1237	26,8152	2,3188	0,6485	0,0762	0,0371	98,5203			
3025-G21	8,5603	22,0632	38,6022	0,0634	28,5634	1,4524	0,6957	0,0414	0,0000	100,0420			
3025-G22	9,3475	22,2492	38,9917	0,0002	27,2457	1,6522	0,6508	0,0927	0,0000	100,2300			
3025-G23	8,1159	21,8201	38,0894	0,0354	25,0715	4,8715	0,8787	0,0612	0,0000	98,9437			
3025-G24	7,4279	21,2602	37,4051	0,0514	29,2723	1,0448	1,0795	0,0000	0,0000	97,5412			

Tabela 67 - Composição química dos elementos maiores das granadas do testemunho 3025.

	Óxidos (% peso)												
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total			
3028-G1	6,5373	21,1474	37,8948	0,0585	29,4439	3,0451	1,2656	0,1190	0,6334	100,1450			
3028-G2	3,2956	21,1864	37,8581	0,0312	28,3106	3,1531	7,7814	0,0491	0,5846	102,2501			
3028-G3	9,4879	22,0399	39,1949	0,0598	26,7744	2,4950	0,7977	0,0279	0,4234	101,3009			
3028-G4	3,4429	20,8533	36,9412	0,0336	30,9531	1,3595	6,0466	0,0107	0,3122	99,9531			
3028-G5	8,8877	21,7514	38,8742	0,0062	28,8725	1,2826	0,8991	0,0000	0,6565	101,2302			
3028-G6	1,5858	21,3714	38,5252	0,0899	29,6281	9,7280	1,8042	0,0649	0,7520	103,5495			
3028-G7	11,1205	22,3606	39,5483	0,0509	26,4795	1,0545	0,5761	0,0000	0,3170	101,5074			
3028-G8	3,2722	21,3450	37,6153	0,0000	30,2144	3,7248	5,1428	0,0205	0,2609	101,5959			
3028-G9	11,0303	22,0993	39,8741	0,0697	25,8657	1,6017	0,5089	0,0824	0,7105	101,8426			
3028-G10	11,3584	22,2909	39,4471	0,0571	25,5005	1,3378	0,8741	0,0059	0,4074	101,2792			
3028-G11	5,9312	21,7222	38,3298	0,0000	32,9666	1,0003	1,9061	0,0045	0,2748	102,1355			
3028-G12	5,8449	21,4112	38,1884	0,0062	32,8894	1,5847	0,9609	0,0850	0,4419	101,4126			
3028-G13	8,5574	21,8407	38,7713	0,0375	27,5118	1,9847	1,6367	0,0052	0,3269	100,6722			
3028-G14	9,6585	21,8568	38,5708	0,0596	27,2397	1,7740	0,6685	0,0104	0,3437	100,1820			
3028-G15	7,5221	21,8494	39,1616	0,0159	28,0075	4,0235	0,8664	0,1719	0,5114	102,1297			
3028-G16	6,8798	21,7089	38,1575	0,0440	30,0783	2,5661	1,2683	0,0446	0,1898	100,9373			
3028-G17	9,7694	21,8445	38,8029	0,0629	25,6823	2,9249	0,6206	0,0279	0,4686	100,2040			
3028-G18	8,5503	21,9292	39,4420	0,0064	29,4256	1,5249	0,8801	0,0000	0,7202	102,4787			
3028-G19	9,4511	22,3773	39,9999	0,0868	24,6673	4,9921	0,5973	0,0000	0,5560	102,7278			
3028-G20	10,6332	22,5166	39,8734	0,0160	26,1933	2,0525	0,7253	0,0834	0,2635	102,3572			
3028-G21	9,6201	21,9267	38,9531	0,0533	28,1958	1,0933	0,7375	0,0058	0,4462	101,0318			
3028-G22	3,2324	21,2350	37,4444	0,0000	35,6553	1,4705	2,6018	0,0197	0,3244	101,9835			
3028-G23	3,1554	21,2258	37,7958	0,0093	36,1400	1,5899	1,6945	0,0310	0,3182	101,9599			
3028-G24	8,0593	22,0130	39,6023	0,0383	30,8748	1,2921	0,8817	0,0000	0,7302	103,4917			
3028-G25	8,1541	22,0709	39,1296	0,0635	30,3380	1,3384	0,9690	0,0163	0,3078	102,3876			

Tabela 68 - Composição química dos elementos maiores das granadas do testemunho 3028. G=granada

Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total			
3039-G1	10,5222	23,0121	40,1239	0,0000	25,5647	2,4982	0,8228	0,0663	0,0000	102,6102			
3039-G2	2,7524	21,5513	37,6202	0,0000	35,8071	0,6907	3,0132	0,0000	0,0000	101,4490			
3039-G3	6,8647	21,7931	38,2536	0,0000	31,0633	0,9002	1,4488	0,0208	0,0000	100,3445			
3039-G4	11,0645	22,5829	39,8925	0,0080	26,1418	1,4418	0,5280	0,0440	0,1257	101,8292			
3039-G5	9,9826	22,8652	40,2230	0,0707	26,4078	2,2258	0,7178	0,0719	0,0000	102,5648			
3039-G6	4,9277	21,4813	37,4918	0,0399	29,8116	3,9160	1,4249	0,0142	0,0000	99,1074			
3039-G7	3,5538	21,4082	37,9848	0,0752	19,5694	5,7440	11,8626	0,0627	0,0000	100,2607			
3039-G8	6,7264	21,7111	38,3338	0,0718	30,5502	1,4652	1,2614	0,0686	0,0000	100,1885			
3039-G9	2,0509	21,5115	38,3514	0,0470	24,3763	12,8958	1,1337	0,0062	0,1736	100,5464			
3039-G10	0,8546	21,1215	37,5872	0,0723	30,0670	6,5862	4,3938	0,0374	0,0000	100,7200			
3039-G11	9,5245	22,4279	39,1313	0,0467	27,5245	1,5140	0,8605	0,0779	0,0000	101,1073			
3039-G12	8,0440	22,4345	39,8089	0,0839	24,0589	6,7346	1,0374	0,0201	0,2013	102,4236			
3039-G13	5,6784	21,3273	37,5676	0,0285	30,5320	2,2529	1,3150	0,1197	0,0000	98,8214			
3039-G14	9,6084	22,1666	39,1258	0,1150	27,8425	1,0510	0,6239	0,0341	0,0000	100,5673			
3039-G15	3,5702	21,4065	37,4747	0,0000	31,1747	4,9149	0,9409	0,0256	0,0000	99,5075			
3039-G16	7,7796	22,2140	39,2093	0,1026	27,7812	3,8602	0,7867	0,0300	0,0039	101,7675			
3039-G17	10,0411	22,3586	39,3217	0,0697	26,6179	1,8233	0,7943	0,0406	0,0000	101,0672			
3039-G18	0,9831	20,9984	37,2111	0,0896	24,5935	9,3711	6,4838	0,0834	0,0583	99,8723			
3039-G19	2,3624	20,9871	36,8611	0,1035	29,2599	0,9840	9,0742	0,0779	0,0000	99,7101			
3039-G20	9,2543	22,4799	39,3752	0,0088	28,1473	1,8557	0,5428	0,0829	0,0000	101,7469			
3039-G21	7,8950	22,5766	40,1304	0,0000	22,2742	8,5904	0,5288	0,1052	0,0472	102,1478			
3039-G22	5,4093	21,9295	39,1308	0,0734	28,4104	5,5226	1,3556	0,0123	0,1286	101,9725			
3039-G23	8,4090	22,3625	39,4091	0,0000	28,8201	1,9347	0,9191	0,0000	0,0000	101,8545			
3039-G24	9,5309	22,4495	39,4288	0,0000	27,7331	1,0125	1,1118	0,0498	0,0000	101,3164			
3039-G25	6,1057	21,7029	39,1405	0,0555	25,7317	4,0695	4,6900	0,0012	0,5446	102,0416			

Tabela 69 - Composição química dos elementos maiores das granadas do testemunho 3039. G=granada.

	Óxidos (% peso)												
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total			
3045-G1	8,1426	21,4474	38,3330	0,0000	29,7258	1,0229	0,9322	0,0353	0,5800	100,2192			
3045-G2	6,2078	21,3968	38,4042	0,0064	31,7601	1,8079	1,2183	0,0695	0,6200	101,4910			
3045-G3	6,5537	21,3182	38,4964	0,0000	27,7890	4,5144	0,8166	0,0343	0,7120	100,2346			
3045-G4	4,7310	21,0508	37,8250	0,0127	28,9859	1,6125	6,1436	0,0000	0,7127	101,0742			
3045-G5	10,7764	22,3282	39,8243	0,0065	27,0234	1,3425	0,6112	0,0282	0,6266	102,5673			
3045-G6	10,1973	22,0688	39,2178	0,0390	27,5924	1,3187	0,6029	0,0415	0,5320	101,6104			
3045-G7	11,2005	21,9519	39,4323	0,0387	25,0274	1,4130	1,0011	0,0693	0,7074	100,8416			
3045-G8	3,5170	20,8754	37,7893	0,0964	24,5620	10,6199	0,7867	0,0000	0,7081	98,9548			
3045-G9	2,1498	20,7217	36,9918	0,0442	19,5657	5,0842	15,2082	0,0000	0,6922	100,4578			
3045-G10	3,7247	20,9036	37,1528	0,0696	25,1707	4,4219	7,6424	0,0237	0,3735	99,4829			
3045-G11	8,8078	21,7919	38,3453	0,1017	27,1913	2,6699	0,7365	0,0485	0,1344	99,8273			
3045-G12	1,5982	20,4406	36,0946	0,1915	27,2384	2,5472	10,3935	0,0090	0,0323	98,5453			
3045-G13	1,3296	20,7754	37,6162	0,1994	25,1269	8,1059	6,9308	0,0000	0,5686	100,6528			
3045-G14	7,2177	21,2353	38,4646	0,0000	26,8984	1,3892	4,4330	0,0839	0,7541	100,4762			
3045-G15	10,0447	21,8904	39,5553	0,0455	26,2987	1,4081	0,9381	0,0725	0,5182	100,7715			
3045-G16	8,6026	21,1917	39,0724	0,0908	22,3312	6,3361	1,0936	0,0000	1,3964	100,1148			
3045-G17	2,2940	20,2955	36,7165	0,0550	26,3822	0,6582	12,0462	0,0216	0,5205	98,9897			
3045-G18	9,4122	21,5229	39,3023	0,1319	27,1864	3,1318	0,8601	0,0694	0,4671	102,0841			
3045-G19	2,3188	20,5298	37,1325	0,0189	32,4121	1,9203	5,5460	0,0415	0,7623	100,6822			
3045-G20	7,3912	21,1759	37,7808	0,0510	28,7350	2,8871	1,0887	0,0315	0,7904	99,9316			
3045-G21	9,4307	22,0196	39,0561	0,0968	27,9876	2,0503	0,6907	0,0002	0,5434	101,8754			
3045-G22	7,5330	21,8095	39,6807	0,1194	24,2581	7,7087	0,8062	0,0605	1,1574	103,1335			
3045-G23	5,2779	21,3520	37,7480	0,0000	31,9529	0,9526	3,4978	0,0441	0,3193	101,1446			
3045-G24	0,3996	21,5000	36,7108	0,1044	19,2158	1,4536	21,1322	0,0000	0,0000	100,5164			
3045-G25	6,1368	21,4683	38,0469	0,0127	30,3917	2,7494	1,1043	0,0118	0,2344	100,1563			

Tabela 70 - Composição química dos elementos maiores das granadas do testemunho 3045. G=granada

	Óxidos (% peso)													
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total				
3046-G1	10,5052	22,7104	40,1226	0,0546	27,2338	1,8934	0,4845	0,0868	0,1705	103,2618				
3046-G2	7,9854	22,1040	39,3364	0,0000	27,3771	4,0263	0,8916	0,1230	0,3357	102,1795				
3046-G3	10,0292	22,0221	39,4968	0,0947	26,7092	2,3027	0,5135	0,0013	0,7103	101,8798				
3046-G4	8,5792	22,2746	39,2054	0,0000	27,9191	3,5472	0,4020	0,0861	0,2312	102,2448				
3046-G5	5,8591	21,5941	38,2423	0,0000	33,2985	1,8921	0,6942	0,0301	0,4534	102,0638				
3046-G6	9,0757	22,0600	39,2410	0,1050	28,2732	2,2740	0,5787	0,0105	0,4845	102,1026				
3046-G7	12,4303	22,5797	40,4885	0,0354	23,1705	2,5170	0,8569	0,0466	0,7930	102,9179				
3046-G8	8,7433	22,2252	39,2136	0,0222	28,5103	2,1425	0,9169	0,0307	0,2196	102,0243				
3046-G9	3,3892	21,4709	38,4077	0,0453	31,9198	5,9817	0,8153	0,0232	0,5231	102,5762				
3046-G10	11,0551	22,3184	39,8785	0,0064	26,3415	1,1898	0,8730	0,0747	0,5744	102,3118				
3046-G11	6,8517	21,4736	37,6668	0,0000	29,7953	0,6077	3,5698	0,0000	0,2425	100,2074				
3046-G12	10,2940	22,4086	40,0471	0,0000	25,9431	2,9349	0,6410	0,0186	0,6642	102,9515				
3046-G13	7,9319	21,8859	38,9020	0,0158	27,7845	2,8016	2,0164	0,0189	0,5349	101,8919				
3046-G14	9,9059	22,3496	39,7601	0,0127	26,8028	2,0739	1,1669	0,0302	0,4615	102,5636				
3046-G15	3,6858	21,1566	37,4814	0,0000	36,3110	1,3004	1,4009	0,0442	0,4527	101,8330				
3046-G16	10,8331	22,2756	39,6778	0,0000	26,7898	1,2178	0,6318	0,0190	0,5596	102,0045				
3046-G17	11,1088	22,3386	39,9726	0,0577	24,4590	2,6210	0,7151	0,0000	0,5718	101,8446				
3046-G18	7,1902	21,4131	37,8825	0,0000	28,7336	2,9826	1,1377	0,0657	0,4170	99,8224				
3046-G19	2,3088	21,0288	37,5881	0,1659	27,1530	7,4574	4,9916	0,0058	0,5496	101,2490				
3046-G20	9,3044	22,1924	39,3625	0,0889	29,3551	1,2075	0,3891	0,0313	0,2939	102,2251				
3046-G21	11,0673	22,0284	39,2651	0,0158	23,9894	1,8729	1,5802	0,0202	0,5368	100,3761				
3046-G22	2,2070	20,9892	37,0431	0,0123	29,8160	2,5212	7,8494	0,0000	0,1758	100,6140				
3046-G23	9,9526	22,2139	38,7477	0,1006	25,8100	1,6373	2,1677	0,0735	0,0000	100,7033				
3046-G24	4,8097	21,4029	37,8985	0,0251	31,7032	1,2837	4,0121	0,0167	0,2585	101,4104				
3046-G25	7,7371	21,4673	38,1111	0,0093	30,0058	1,4084	0,8626	0,0351	0,4297	100,0664				

Tabela 71 - Composição química dos elementos maiores das granadas do testemunho 3046. G=granada

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO ₂	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
3052-G1	9,5607	23,0717	40,5641	0,0582	27,8931	1,2194	1,3189	0,0394	0,0000	103,7255
3052-G2	1,5839	21,3426	38,1064	0,1463	21,8502	10,5885	6,6635	0,0411	0,0000	100,3225
3052-G3	5,0281	22,4451	38,6606	0,1778	32,1629	3,3968	0,5199	0,0356	0,0000	102,4268
3052-G4	9,8127	23,2287	40,5531	0,1241	25,7115	2,6562	0,8606	0,0921	0,0000	103,0390
3052-G5	6,0648	22,6238	39,2062	0,0000	32,8401	1,2149	0,6468	0,0200	0,0000	102,6166
3052-G6	8,7554	22,5940	39,1477	0,0973	28,8142	1,3219	0,4099	0,0156	0,0000	101,1560
3052-G7	7,5004	22,8879	38,7904	0,0000	28,5453	3,4952	0,7460	0,0457	0,0000	102,0109
3052-G8	7,3966	22,4725	38,9213	0,0081	30,0755	1,1336	1,0459	0,0002	0,0000	101,0537
3052-G9	3,9009	21,8250	38,6721	0,0819	19,5061	8,0805	9,0503	0,0469	0,0000	101,1637
3052-G10	6,9502	22,3419	37,9245	0,0000	30,5005	1,0438	1,3999	0,0184	0,0000	100,1792
3052-G11	0,5971	22,2823	37,9323	0,1155	26,3822	7,6709	8,0018	0,0000	0,0000	102,9821
3052-G12	7,9971	23,0912	39,9381	0,2726	21,1329	9,2471	0,6135	0,0470	0,0000	102,3395
3052-G13	7,7527	22,7150	38,3004	0,1045	26,1575	4,4329	0,8400	0,0136	0,0000	100,3166
3052-G14	9,3096	23,0845	39,1852	0,0572	28,1010	1,1674	0,8838	0,0000	0,0000	101,7887
3052-G15	7,3832	22,7300	38,3246	0,1054	30,5466	0,9282	1,6903	0,0110	0,0000	101,7193
3052-G16	9,2665	23,0008	39,6022	0,0735	27,9143	1,1821	1,1143	0,0709	0,0000	102,2246
3052-G17	9,1066	22,5292	38,3870	0,0000	26,9394	1,1431	1,4721	0,0365	0,0000	99,6139
3052-G18	10,6721	23,0587	39,1154	0,2681	24,7497	2,7133	0,4811	0,0000	0,0000	101,0584
3052-G19	7,4535	23,0277	39,4799	0,0000	24,0794	3,2432	5,9080	0,0000	0,0000	103,1917
3052-G20	10,7072	23,4086	39,6698	0,1903	26,2124	1,7099	0,7544	0,0520	0,0000	102,7046
3052-G21	3,1140	22,7128	38,9921	0,1752	22,0788	12,4518	3,9238	0,0061	0,0000	103,4546
3052-G22	7,9467	22,9066	38,8932	0,0894	30,4974	1,2530	0,4730	0,0761	0,0000	102,1354
3052-G23	0,7347	21,5035	37,6993	0,1790	22,2340	9,8232	8,7682	0,0657	0,0000	101,0076
3052-G24	7,2484	22,6720	37,9351	0,0000	30,9432	0,9068	1,5798	0,0290	0,0000	101,3143
3052-G25	11,6939	23,9568	40,9024	0,0000	24,2357	2,3847	0,5808	0,0409	0,0000	103,7952

Tabela 72 - Composição química dos elementos maiores das granadas do testemunho 3052. G=granada

	Óxidos (% peso)											
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total		
T17-G1	4,3874	21,7063	39,0971	0,2294	29,4816	6,5521	1,1460	0,0000	0,4507	103,0506		
T17-G2	9,4010	22,6042	40,0827	0,1390	27,2559	2,4164	1,2255	0,0000	0,1241	103,2488		
T17-G3	2,3416	21,9967	38,3839	0,0407	32,5765	6,9843	0,2115	0,0294	0,0000	102,5646		
T17-G4	6,6194	22,2018	38,7145	0,0000	32,5872	0,9238	0,4172	0,0348	0,0000	101,4987		
T17-G5	1,9096	20,1867	37,5042	0,0160	14,0466	6,7542	18,9599	0,0000	1,7626	101,1398		
T17-G6	3,1816	21,9028	38,1666	0,0161	34,7118	2,1903	1,7387	0,0218	0,0000	101,9297		
T17-G7	10,0011	23,0642	39,9804	0,0000	27,5451	0,8684	0,4588	0,0000	0,0000	101,9180		
T17-G8	11,0325	23,5850	41,2474	0,0585	19,6402	6,8341	0,4755	0,0598	0,0000	102,9330		
T17-G9	1,4359	21,8724	38,4195	0,0000	31,0153	4,3717	5,9076	0,0000	0,0000	103,0224		
T17-G10	10,3993	23,3520	40,4062	0,0083	26,8989	1,4216	0,3985	0,0584	0,0000	102,9432		
T17-G11	6,6595	22,3250	38,2982	0,0956	31,5886	1,3013	0,7048	0,1102	0,0000	101,0832		
T17-G12	0,6652	21,7021	38,1886	0,0727	32,2547	0,5536	10,5217	0,0000	0,0000	103,9586		
T17-G13	0,0257	28,5477	38,9896	0,7345	6,3957	24,2911	0,2796	0,0463	0,0000	99,3102		
T17-G14	8,9682	23,1693	40,3841	0,0577	28,3640	2,4790	0,4598	0,0192	0,0000	103,9013		
T17-G15	11,5195	23,6013	40,9461	0,0000	24,1002	2,2415	0,3298	0,0934	0,0000	102,8318		
T17-G16	2,2062	22,1887	38,9252	0,3130	27,6083	10,9624	1,0452	0,0000	0,0000	103,2490		
T17-G17	6,7050	22,5781	39,2410	0,0162	29,0205	1,1704	4,4544	0,0300	0,0000	103,2156		
T17-G18	7,5344	22,9580	40,4664	0,2573	27,4000	4,6333	0,7984	0,0007	0,0000	104,0485		
T17-G19	11,8450	23,6924	40,9502	0,0000	25,8351	1,0057	0,1866	0,0033	0,0000	103,5183		
T17-G20	4,7325	22,3834	39,4450	0,0000	32,5082	3,6198	1,2332	0,0284	0,0000	103,9505		
T17-G21	6,4822	22,6869	39,7470	0,0905	26,8276	6,6274	0,5728	0,0192	0,0000	103,0536		
T17-G22	8,7482	22,8058	39,5408	0,0000	29,6952	0,9529	0,3720	0,0488	0,0000	102,1637		
T17-G23	5,4993	21,8923	38,6454	0,1297	22,9636	10,3949	0,5396	0,0020	0,0000	100,0668		
T17-G24	5,2564	22,0144	38,8264	0,2939	27,4645	6,7687	0,8624	0,0151	0,0000	101,5018		
T17-G25	2,7105	21,4571	37,1225	0,0313	29,7373	1,1428	7,8706	0,0510	0,0000	100,1231		
T17-G26	10,4166	23,0561	40,0554	0,1709	26,2304	1,3687	0,3793	0,0544	0,0000	101,7318		

Tabela 73 - Composição química dos elementos maiores das granadas do testemunho T17. G=granada.

					Óxidos	(% peso)				
Amostra	MgO	Al ₂ O ₃	SiO 2	TiO 2	FeO	CaO	MnO	Cr_2O_3	Fe ₂ O ₃	Total
T38-G1	7,1044	22,0226	38,2631	0,1508	28,9910	1,1798	1,8580	0,0000	0,0000	99,5697
T38-G2	5,2851	21,4163	38,3585	0,1215	25,6348	8,0838	0,9292	0,0000	0,5058	100,3350
T38-G3	0,1753	20,6218	37,7251	0,5334	14,0415	17,9037	8,5317	0,0000	0,9026	100,4351
T38-G4	8,7219	22,3000	38,7340	0,0798	26,4464	2,4807	0,3833	0,0084	0,0000	99,1545
T38-G5	1,5574	21,9650	38,3241	0,1240	27,3893	11,9322	0,8704	0,0380	0,0000	102,2004
T38-G6	2,2627	21,4798	37,6209	0,0321	28,5961	7,4423	2,8375	0,0284	0,0000	100,2998
T38-G7	6,4494	22,4479	38,8579	0,0000	31,6567	1,0902	1,4556	0,0000	0,0000	101,9577
T38-G8	8,6082	22,5418	38,9801	0,0886	28,8647	1,0079	0,8360	0,0084	0,0000	100,9357
T38-G9	0,6116	21,4301	37,9113	0,1219	20,4039	10,6000	10,9367	0,0645	0,1469	102,2269
T38-G10	5,6487	22,1658	38,6455	0,0964	32,2155	1,2634	1,1628	0,0135	0,0000	101,2116
T38-G11	8,0179	22,8055	39,8186	0,0981	30,1896	1,3806	0,6064	0,0590	0,0000	102,9757
T38-G12	9,1829	22,7556	40,2128	0,0495	26,6550	3,0499	0,9296	0,0386	0,0000	102,8739
T38-G13	9,8458	22,7909	40,1129	0,1974	27,1924	1,0166	0,6138	0,0397	0,0000	101,8095
T38-G14	7,7617	22,6765	39,3365	0,0651	29,4747	1,5266	1,2260	0,0268	0,0000	102,0939
T38-G15	7,1166	22,7484	39,5251	0,0000	30,6211	1,0643	1,9861	0,0649	0,0000	103,1265
T38-G16	9,2927	23,3802	40,1486	0,0329	28,6364	1,6816	0,6060	0,0046	0,0000	103,7830
T38-G17	6,9169	22,2131	38,5522	0,0000	30,6011	0,9924	1,7718	0,0129	0,0000	101,0604
T38-G18	6,7580	22,6998	39,0467	0,0324	31,9898	1,1043	1,0757	0,0116	0,0000	102,7183
T38-G19	10,1287	22,8928	39,5404	0,1466	26,5237	1,5953	0,6496	0,0466	0,0000	101,5237
T38-G20	3,8554	22,1871	38,7628	0,1380	31,5805	4,5725	1,5740	0,0722	0,0000	102,7425
T38-G21	2,5866	21,4998	37,9998	0,0320	30,8988	2,4762	6,7458	0,0122	0,0000	102,2512
T38-G22	8,1617	22,8595	40,1215	0,1907	26,6231	4,0963	0,7140	0,0394	0,0000	102,8062
T38-G23	6,7243	22,2935	38,9639	0,0000	31,2440	1,3269	1,2052	0,0136	0,0000	101,7714
T38-G24	6,7095	22,6762	39,2302	0,0000	29,4570	1,8668	2,0198	0,0118	0,0000	101,9713
T38-G25	9,2681	23,0695	40,0662	0,0247	26,9385	2,5537	0,8960	0,1371	0,0000	102,9538

Tabela 74 - Composição química dos elementos maiores das granadas do testemunho T38. G=granada.

					Molécula (%)			
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU
T38-G1	0,00	0,27	2,91	28,16	4,18	64,47	68,65	3,18	31,34
T38-G2	0,00	1,69	20,55	20,35	2,03	55,38	57,41	22,24	42,59
T38-G3	0,00	3,61	46,01	0,68	18,93	30,76	49,69	49,62	50,30
T38-G4	0,03	0,14	6,72	34,15	0,85	58,11	58,96	6,89	41,04
T38-G5	0,12	0,22	32,56	6,00	1,91	59,20	61,11	32,90	38,90
T38-G6	0,09	0,06	20,99	8,96	6,38	63,52	69,90	21,14	30,10
T38-G7	0,00	0,00	3,03	24,98	3,20	68,79	71,99	3,03	28,01
T38-G8	0,03	0,15	2,51	33,14	1,83	62,35	64,18	2,69	35,83
T38-G9	0,20	0,64	28,48	2,37	24,04	44,27	68,31	29,32	31,69
T38-G10	0,04	0,17	3,26	22,36	2,62	71,55	74,17	3,47	25,83
T38-G11	0,18	0,17	3,32	30,53	1,31	64,49	65,80	3,67	34,20
T38-G12	0,11	0,08	7,91	34,21	1,97	55,71	57,68	8,10	42,31
T38-G13	0,12	0,34	2,10	37,69	1,34	58,41	59,75	2,56	40,25
T38-G14	0,08	0,11	3,94	29,77	2,67	63,43	66,10	4,13	33,90
T38-G15	0,20	0,00	2,72	27,17	4,31	65,60	69,91	2,92	30,09
T38-G16	0,01	0,06	4,39	34,54	1,28	59,72	61,00	4,46	39,00
T38-G17	0,04	0,00	2,72	26,80	3,90	66,53	70,43	2,76	29,56
T38-G18	0,04	0,06	2,91	25,89	2,34	68,76	71,10	3,01	28,90
T38-G19	0,14	0,25	3,77	38,25	1,39	56,20	57,59	4,16	42,41
T38-G20	0,22	0,24	12,15	14,99	3,48	68,91	72,39	12,61	27,60
T38-G21	0,04	0,06	6,84	10,13	15,02	67,91	82,93	6,94	17,07
T38-G22	0,12	0,33	10,49	30,93	1,54	56,60	58,14	10,94	41,87
T38-G23	0,04	0,00	3,64	25,97	2,65	67,70	70,35	3,68	29,65
T38-G24	0,04	0,00	5,18	26,08	4,46	64,24	68,70	5,22	31,30
T38-G25	0,41	0,04	6,39	34,69	1,91	56,57	58,48	6,84	41,53

Tabela 75 - Composição das moléculas das granadas do testemunho T47. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=AImandina

				ľ	Molécula (%)			
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU
3028-G1	0,36	1,95	6,05	25,19	2,77	63,67	66,44	8,36	33,55
3028-G2	0,15	1,77	6,81	12,74	17,10	61,43	78,53	8,73	21,47
3028-G3	0,08	1,30	5,26	35,48	1,70	56,18	57,88	6,64	42,12
3028-G4	0,03	1,00	2,80	13,66	13,63	68,88	82,51	3,83	17,49
3028-G5	0,00	1,89	1,58	33,52	1,93	61,09	63,02	3,47	36,99
3028-G6	0,20	2,33	24,06	6,05	3,91	63,45	67,36	26,59	32,64
3028-G7	0,00	0,97	1,77	41,11	1,21	54,93	56,14	2,74	43,85
3028-G8	0,06	0,77	9,54	12,67	11,32	65,64	76,96	10,37	23,04
3028-G9	0,24	2,11	1,84	40,91	1,07	53,83	54,90	4,19	45,10
3028-G10	0,02	1,23	2,23	41,90	1,83	52,78	54,61	3,48	45,38
3028-G11	0,01	0,79	1,93	22,61	4,13	70,52	74,65	2,73	25,34
3028-G12	0,26	1,30	2,82	22,50	2,10	71,02	73,12	4,38	26,88
3028-G13	0,02	1,00	4,35	32,49	3,53	58,61	62,14	5,37	37,86
3028-G14	0,03	1,08	3,62	36,34	1,43	57,50	58,93	4,73	41,07
3028-G15	0,51	1,48	8,85	28,26	1,85	59,04	60,89	10,84	39,10
3028-G16	0,13	0,62	6,20	26,15	2,74	64,15	66,89	6,95	33,10
3028-G17	0,08	1,44	6,30	36,71	1,32	54,14	55,46	7,82	44,53
3028-G18	0,00	2,06	2,05	32,08	1,88	61,94	63,82	4,11	36,19
3028-G19	0,00	1,69	11,41	34,76	1,25	50,90	52,15	13,10	47,86
3028-G20	0,24	0,76	4,40	39,08	1,51	54,01	55,52	5,40	44,48
3028-G21	0,02	1,36	1,51	36,13	1,57	59,41	60,98	2,89	39,02
3028-G22	0,06	0,95	3,09	12,54	5,74	77,62	83,36	4,10	16,64
3028-G23	0,10	0,96	3,41	12,36	3,77	79,41	83,18	4,47	16,83
3028-G24	0,00	2,13	1,29	30,07	1,87	64,64	66,51	3,42	33,49
3028-G25	0,05	0,98	2,50	30,57	2,06	63,83	65,89	3,53	34,10

Tabela 76 - Composição das moléculas das granadas do testemunho 3028. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

				Γ	Nolécula (%)			
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU
3039-G1	0,19	0,00	6,42	38,79	1,72	52,87	54,59	6,61	45,40
3039-G2	0,00	0,00	1,98	10,99	6,84	80,20	87,04	1,98	12,97
3039-G3	0,06	0,00	2,45	26,64	3,20	67,65	70,85	2,51	29,15
3039-G4	0,13	0,37	3,32	40,88	1,11	54,19	55,30	3,82	44,70
3039-G5	0,21	0,12	5,56	37,27	1,52	55,32	56,84	5,89	43,16
3039-G6	0,04	0,07	10,98	19,50	3,20	66,20	69,40	11,09	30,59
3039-G7	0,20	0,13	15,85	14,00	26,56	43,26	69,82	16,18	30,18
3039-G8	0,21	0,13	3,69	26,26	2,80	66,92	69,72	4,03	30,29
3039-G9	0,02	0,60	35,50	8,00	2,51	53,37	55,88	36,12	44,12
3039-G10	0,12	0,13	18,65	3,43	10,01	67,66	77,67	18,90	22,33
3039-G11	0,23	0,08	3,74	35,90	1,34	58,21	59,55	4,05	39,95
3039-G12	0,06	0,71	17,10	29,85	2,19	50,09	52,28	17,87	47,72
3039-G13	0,38	0,05	5,97	22,56	2,97	68,07	71,04	6,40	28,96
3039-G14	0,10	0,20	2,44	36,53	1,35	59,39	60,74	2,74	39,27
3039-G15	0,08	0,00	13,98	14,21	2,13	69,61	71,74	14,06	28,27
3039-G16	0,09	0,19	10,05	29,29	1,68	58,69	60,37	10,33	39,62
3039-G17	0,12	0,12	4,59	37,58	1,69	55,90	57,59	4,83	42,41
3039-G18	0,26	0,34	26,05	3,90	14,64	54,81	69,45	26,65	30,55
3039-G19	0,25	0,19	2,30	9,60	20,95	66,70	87,65	2,74	12,34
3039-G20	0,25	0,01	4,73	34,68	1,16	59,18	60,34	4,99	39,67
3039-G21	0,31	0,13	22,54	29,38	1,12	46,51	47,63	22,98	52,36
3039-G22	0,04	0,50	14,60	20,75	2,96	61,15	64,11	15,14	35,89
3039-G23	0,00	0,00	5,25	31,74	1,97	61,04	63,01	5,25	36,99
3039-G24	0,15	0,00	2,60	36,03	2,39	58,83	61,22	2,75	38,78
3039-G25	0,00	1,68	9,46	23,38	10,20	55,28	65,48	11,14	34,52

Tabela 77 - Composição das moléculas das granadas do testemunho 3039. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina
				ľ	Molécula (%)			
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU
3045-G1	0,11	1,68	1,03	31,21	2,03	63,94	65,97	2,82	34,03
3045-G2	0,21	1,82	2,96	23,86	2,66	68,49	71,15	4,99	28,85
3045-G3	0,11	2,09	10,36	25,35	1,79	60,31	62,10	12,56	37,91
3045-G4	0,00	2,13	2,38	18,45	13,62	63,43	77,05	4,51	22,96
3045-G5	0,08	1,75	1,70	39,55	1,27	55,64	56,91	3,53	43,08
3045-G6	0,12	1,56	1,79	37,83	1,27	57,43	58,70	3,47	41,30
3045-G7	0,21	2,06	1,47	41,77	2,12	52,37	54,49	3,74	45,51
3045-G8	0,00	2,29	27,71	13,87	1,76	54,36	56,12	30,00	43,87
3045-G9	0,00	2,14	12,19	8,46	34,01	43,20	77,21	14,33	22,79
3045-G10	0,07	1,24	11,14	14,69	17,13	55,72	72,85	12,45	27,14
3045-G11	0,15	0,56	6,45	33,40	1,59	57,85	59,44	7,16	40,56
3045-G12	0,03	0,45	6,74	6,51	24,05	62,23	86,28	7,22	13,73
3045-G13	0,00	2,07	20,87	5,29	15,67	56,09	71,76	22,94	28,23
3045-G14	0,26	2,21	1,40	27,95	9,75	58,43	68,18	3,87	31,82
3045-G15	0,22	1,57	2,00	38,15	2,02	56,04	58,06	3,79	41,94
3045-G16	0,00	4,18	13,05	32,73	2,36	47,68	50,04	17,23	49,96
3045-G17	0,07	1,72	0,08	9,40	28,06	60,67	88,73	1,87	11,27
3045-G18	0,20	1,51	6,37	34,39	1,79	55,74	57,53	8,08	42,47
3045-G19	0,13	2,34	3,02	9,26	12,59	72,65	85,24	5,49	14,75
3045-G20	0,10	2,37	5,40	28,22	2,36	61,55	63,91	7,87	36,09
3045-G21	0,00	1,69	3,67	34,97	1,46	58,22	59,68	5,36	40,33
3045-G22	0,18	3,43	16,78	27,79	1,69	50,21	51,90	20,39	48,18
3045-G23	0,14	0,93	1,58	20,40	7,68	69,28	76,96	2,65	23,05
3045-G24	0,00	0,20	3,99	1,65	49,62	44,55	94,17	4,19	5,84
3045-G25	0,04	0,71	6,90	23,80	2,43	66,12	68,55	7,65	31,45

Tabela 78 - Composição das moléculas das granadas do testemunho 3045. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

				Γ	Molécula (%)			
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU
3046-G1	0,25	0,56	4,09	38,33	1,00	55,76	56,76	4,90	43,23
3046-G2	0,37	0,95	9,50	29,86	1,89	57,43	59,32	10,82	40,68
3046-G3	0,00	2,16	3,88	37,24	1,08	55,64	56,72	6,04	43,28
3046-G4	0,25	0,65	8,53	31,75	0,85	57,97	58,82	9,43	41,18
3046-G5	0,09	1,31	3,78	22,28	1,50	71,05	72,55	5,18	27,46
3046-G6	0,03	1,54	4,39	33,78	1,22	59,04	60,26	5,96	39,74
3046-G7	0,13	2,22	4,13	44,85	1,76	46,91	48,67	6,48	51,33
3046-G8	0,09	0,66	4,97	32,63	1,94	59,70	61,64	5,72	38,35
3046-G9	0,07	1,60	14,78	13,01	1,78	68,76	70,54	16,45	29,46
3046-G10	0,22	1,61	1,31	40,67	1,82	54,37	56,19	3,14	43,81
3046-G11	0,00	0,71	0,97	26,32	7,79	64,21	72,00	1,68	28,00
3046-G12	0,05	1,84	5,83	37,67	1,33	53,27	54,60	7,72	45,39
3046-G13	0,06	1,55	5,93	29,73	4,30	58,44	62,74	7,54	37,27
3046-G14	0,09	1,31	4,09	36,56	2,45	55,50	57,95	5,49	42,05
3046-G15	0,14	1,33	2,16	14,29	3,09	79,00	82,09	3,63	17,92
3046-G16	0,06	1,56	1,61	39,98	1,32	55,47	56,79	3,23	43,21
3046-G17	0,00	1,69	5,19	40,98	1,50	50,63	52,13	6,88	47,86
3046-G18	0,20	1,21	6,80	27,55	2,48	61,76	64,24	8,21	35,76
3046-G19	0,02	1,91	18,74	8,99	11,04	59,30	70,34	20,67	29,66
3046-G20	0,09	0,98	2,06	34,67	0,82	61,37	62,19	3,13	37,80
3046-G21	0,06	1,55	3,41	41,35	3,35	50,29	53,64	5,02	46,37
3046-G22	0,00	0,55	6,62	8,76	17,70	66,37	84,07	7,17	15,93
3046-G23	0,22	0,17	3,89	37,12	4,59	54,01	58,60	4,28	41,40
3046-G24	0,05	0,80	2,69	18,65	8,84	69,96	78,80	3,54	22,19
3046-G25	0,11	1,26	2,50	29,68	1,88	64,57	66,45	3,87	33,55

Tabela 79 - Composição das moléculas das granadas do testemunho 3046. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

				1	Molécula (%	o)			
Amostra	U	А	G	Р	S	AI	Al+S	G+A+U	P+GAU
3052-G1	0,12	0,10	2,99	35,65	2,79	58,35	61,14	3,21	38,86
3052-G2	0,13	0,26	29,64	6,29	15,03	48,65	63,68	30,03	36,32
3052-G3	0,11	0,31	8,85	19,52	1,15	70,06	71,21	9,27	28,79
3052-G4	0,28	0,21	6,55	36,89	1,84	54,23	56,07	7,04	43,93
3052-G5	0,06	0,00	3,33	23,57	1,43	71,61	73,04	3,39	26,96
3052-G6	0,05	0,17	3,31	33,58	0,89	62,00	62,89	3,53	37,11
3052-G7	0,14	0,00	9,36	28,35	1,60	60,55	62,15	9,50	37,85
3052-G8	0,00	0,01	3,15	28,81	2,31	65,72	68,03	3,16	31,97
3052-G9	0,14	0,14	22,15	15,14	19,96	42,47	62,43	22,43	37,57
3052-G10	0,06	0,00	2,87	27,14	3,11	66,82	69,93	2,93	30,07
3052-G11	0,00	0,21	21,34	2,35	17,88	58,22	76,10	21,55	23,90
3052-G12	0,14	0,46	23,92	29,88	1,30	44,30	45,60	24,52	54,40
3052-G13	0,04	0,18	11,88	29,75	1,83	56,32	58,15	12,10	41,85
3052-G14	0,00	0,10	3,01	35,26	1,90	59,72	61,62	3,11	38,37
3052-G15	0,03	0,18	2,22	28,27	3,68	65,62	69,30	2,43	30,70
3052-G16	0,21	0,13	2,80	35,11	2,40	59,35	61,75	3,14	38,25
3052-G17	0,11	0,00	3,06	35,19	3,23	58,40	61,63	3,17	38,36
3052-G18	0,00	0,46	6,54	39,97	1,02	52,01	53,03	7,00	46,97
3052-G19	0,00	0,00	8,75	27,97	12,60	50,69	63,29	8,75	36,72
3052-G20	0,15	0,32	3,86	39,63	1,59	54,44	56,03	4,33	43,96
3052-G21	0,02	0,30	33,10	11,69	8,37	46,52	54,89	33,42	45,11
3052-G22	0,23	0,15	2,95	30,33	1,03	65,31	66,34	3,33	33,66
3052-G23	0,21	0,32	27,28	2,92	19,77	49,51	69,28	27,81	30,73
3052-G24	0,09	0,00	2,40	27,71	3,43	66,37	69,80	2,49	30,20
3052-G25	0,12	0,00	6,15	42,78	1,21	49,74	50,95	6,27	49,05

Tabela 80 - Composição das moléculas das granadas do testemunho 3052. G=granada, B=borda, C=centro, I=Intermediário, U=Uvarovita, A=Andradita, G=Grossulária, P=Piropo, S=Espersartita, AI=Almandina

AMOSTRA	3044	3043	T-28	T-31	T-46	3052	T-49	3046	T-27
100xGarnet/ Garnet+Zircon	76,5	75,9	91,67	88,3	86,8	81,7	86,7	73,9	95,1
100xApatite/Apatite+Tourmaline	2,4	0,8	1,19	0,0	0,0	1,9	0,9	0,0	2,8
100xRutile/Rutile+Zircon	5,9	13,0	40,00	22,2	43,8	31,3	16,7	28,0	66,7
100xMonazite/Monazite+Zircon	80,5	69,2	96,34	87,0	85,9	82,3	83,3	81,1	96,8
100xTi min/Ti min+Zircon	51,5	39,4	78,57	73,1	71,9	31,3	50,0	56,1	86,7
ZTR	33,5	34,6	22,11	36,1	30,5	29,1	30,3	32,0	28,0
AMOSTRA	T-52	T-42	T-32	T-26	T-68	T-62	T-60	T-47	T-54
100xGarnet/ Garnet+Zircon	90,2	84,0	80,0	97,5	90,0	88,6	89,1	96,1	83,7
100xApatite/Apatite+Tourmaline	0,0	1,6	0,0	3,3	0,0	0,8	0,0	1,6	0,0
100xRutile/Rutile+Zircon	60,0	20,0	36,8	80,0	28,6	16,7	16,7	66,7	20,0
100xMonazite/Monazite+Zircon	92,8	86,4	85,0	98,4	91,7	90,7	90,0	96,4	88,4
100xTi min/Ti min+Zircon	76,9	68,0	61,3	92,9	64,3	66,7	50,0	90,9	61,9
ZTR	31,2	33,1	38,0	23,8	29,5	32,0	33,0	31,7	30,5

Tabela 81: Indíces ZTR

Amostra	3044			3043			T-13			T-31			T-46		
Component	Points	%	%	Points	%	%	Points	%	%	Points	%	%	Points	%	%
Total	964	20,9		940	21,9		930	21,0		872	26,8		882	25,9	
Total transparent grains	409	42,4	100,0	410	43,6	100,0	468	50,3	85,9	440	50,5	100,0	417	47,3	100,0
Total Garnets	52	5,4	12,7	63	6,7	15,4	35	<mark>3,8</mark>	7,9	53	<mark>6,1</mark>	12,0	59	<mark>6,</mark> 7	14,1
Pyraslpites	51	5,3	12,5	61	6,5	14,9	35	3,8	7,5	53	6,1	12,0	59	<mark>6</mark> ,7	14,1
Colorless-Pink	51	5,3	12,5	61	6,5	14,9	35	3,8	7,5	53	6,1	12,0	59	6,7	14,1
Red-Pink	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Ugrandites (anisotropic)	1	0,1	0,2	2	0,2	0,5	2	0,2	0,4		0,0	0,0		0,0	0,0
Total Tourmalines	120	12,4	29,3	119	12,7	29,0	51	5,5	10,9	150	17,2	34,1	111	12,6	26,6
Blue-Black tourmaline	21	2,2	5,1	18	1,9	4,4	1	0,1	0,2	23	2,6	5,2	8	0,9	1,9
Brown-(Green) Black tourmaline	99	10,3	24,2	101	10,7	24,6	45	4,8	9,6	113	13,0	25,7	101	11,5	24,2
Green-Blue tourmaline	0	0,0	0,0	0	0,0	0,0	5	0,5	1,1	14	1,6	3,2	2	0,2	0,5
Total Hornblende	17	1,8	4,2	14	1,5	3,4	59	<mark>6,3</mark>	12,6	4	0,5	0,9	27	3,1	6,5
Hornblende - Green	10	1,0	2,4	9	1,0	2,2	43	4,6	9,2	1	0,1	0,2	19	2,2	4,6
Hornblende - Brown	7	0,7	1,7	5	0,5	1,2	16	1,7	3,4	3	0,3	0,7	8	0,9	1,9
Total Pyroxene	12	1,2	2,9	10	1,1	2,4	50	5,4	10,7	27	3,1	6,1	31	3,5	7,4
Hyperstene	12	1,2	2,9	10	1,1	2,4	33	3,5	7,1	25	2,9	5,7	30	3,4	7,2
Augite	0	0,0	0,0	0	0,0	0,0	14	1,5	3,0	2	0,2	0,5	1	0,1	0,2
Diopside	0	0,0	0,0	0	0,0	0,0	3	0,3	0,6	0	0,0	0,0	0	0,0	0,0
Total Zircon	16	1,7	3,9	20	2,1	4,9	1	0,1	0,2	7	0,8	1,6	9	1,0	2,2
Prismatic zircon	1	0,1	0,2	1	0,1	0,2	0	0,0	0,0	2	0,2	0,5	3	0,3	0,7
Rounded zircon	15	1,6	3,7	19	2,0	4,6	1	0,1	0,2	5	0,6	1,1	6	0,7	1,4
Others	747	77,5	-	714	76,0	-	666	71,6	-	631	72,4	-	645	73,1	-
Monazite	66	6,8	16,1	45	4,8	11,0	45	4,8	9,6	47	5,4	10,7	55	6,2	13,2
Rutile	1	0,1	0,2	3	0,3	0,7	1	0,1	0,2	2	0,2	0,5	7	0,8	1,7
Apatite	3	0,3	0,7	1	0,1	0,2	20	2,2	4,3		0,0	0,0		0,0	0,0
Kyanite	5	0,5	1,2	1	0,1	0,2	17	1,8	3,6	15	1,7	3,4	2	0,2	0,5
Staurolite	72	7,5	17,6	81	8,6	19,8	7	0,8	1,5	86	9,9	19,5	60	6,8	14,4
Silimanite	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	2	0,2	0,5	0	0,0	0,0
Andaluzite	5	0,0	1,2	5	0,0	1,2	30	0,0	6,4	10	0,5	2,3	10	0,0	2,4
Chlorite	0	0,0	0,0	0	0,0	0,0	7	0,8	1,5	0	0,0	0,0	0	0,0	0,0
Actinolite	5	0,5	1,2	9	1,0	2,2	32	3,4	6,8	7	0,8	1,6	7	0,8	1,7
Epidote	35	3,6	8,6	39	4,1	9,5	43	4,6	9,2	29	3,3	6,6	39	4,4	9,4
	0	0,0	0,0	0	0,0	0,0	1	0,1	0,2	0	0,0	0,0	0	0,0	0,0
litanium opaque minerais	16	1,7	3,9	10	1,1	2,4	3	0,3	0,6	17	1,9	3,9	16	1,8	3,8
Opaques	372	38,0	-	321	34,1	-	189	20,3	-	199	22,8	-	121	13,7	-
	167	17,3	-	199	21,2	-	270	29,0	-	210	24,8	-	328	37,2	-
Allanile	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	1	0,1	0,2	0	0,0	0,0
Chlorithoid	0	0,0	0,0	0	0,0	0,0	1	0,1	0,2	0	0,0	0,0	0	0,0	0,0
100vCorpet/Corpet/Zireen	U	0,0		U	0,0	75.0	U	0,0	0,0	U	0,0	0,0	U	0,0	0,0
100xGamel/ Gamel+Zircon		[76,5			75,9			97,4			88,3			86,8
			2,4			υ,δ			20,2			0,0			U,U 42.0
100xKullie/Kullie+ZIrcon			5,9 90 F			13,0			5U,U			22,2			43,ð
			0U,5			09,2 20.4			٥, ٥ ٥ 2			01,U 72.4			00,9 74.0
			01,0 22 5			39,4 24 C			03,3			13,1			71,9 20 5
21N			33,5			34,0			13,2			30,1			30,5

Tabela 82: Quantificação dos Minerais Pesados dos testemunhos da Bacia de Pelotas

Amostra	3052			T-49			3046			T-27			T-52		
Component	Points	%	%	Points	%	%	Points	%	%	Points	%	%	Points	%	%
Total	831	28,0		929	22,7		1036	17,1		894	25,5		1224	17,7	
Total transparent grains	406	48,9	100,0	400	43,1	100,0	400	38,6	100,0	393	44,0	100,0	410	33,5	100,0
Total Garnets	49	5,9	12,1	65	7,0	16,3	51	4,9	12,8	39	4,4	9,9	55	4,5	13,4
Pyraslpites	49	5,9	12,1	61	6,6	15,3	51	4,9	12,8	39	4,4	9,9	55	4,5	13,4
Colorless-Pink	49	5,9	12,1	61	6,6	15,3	51	4,9	12,8	39	4,4	9,9	55	4,5	13,4
Red-Pink	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Ugrandites (anisotropic)	0	0,0	0,0	4	0,4	1,0		0,0	0,0		0,0	0,0		0,0	0,0
Total Tourmalines	102	12,3	25,1	109	11,7	27,3	103	9,9	25,8	104	11,6	26,5	113	9,2	27,6
Blue-Black tourmaline	17	2,0	4,2	1	0,1	0,3	15	1,4	3,8	6	0,7	1,5	9	0,7	2,2
Brown-(Green) Black tourmaline	85	10,2	20,9	97	10,4	24,3	85	8,2	21,3	92	10,3	23,4	103	8,4	25,1
Green-Blue tourmaline	0	0,0	0,0	11	1,2	2,8	3	0,3	0,8	6	0,7	1,5	1	0,1	0,2
Total Hornblende	52	6,3	12,8	18	1,9	4,5	15	1,4	3,8	36	4,0	9,2	38	3,1	9,3
Hornblende - Green	37	4,5	9,1	11	1,2	2,8	7	0,7	1,8	32	3,6	8,1	25	2,0	6,1
Hornblende - Brown	15	1,8	3,7	7	0,8	1,8	8	0,8	2,0	4	0,4	1,0	13	1,1	3,2
Total Pyroxene	30	3,6	7,4	19	2,0	4,8	8	0,8	2,0	49	5,5	12,5	11	0,9	2,7
Hyperstene	29	3,5	7,1	19	2,0	4,8	8	0,8	2,0	49	5,5	12,5	11	0,9	2,7
Augite	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Diopside	1	0,1	0,2	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Total Zircon	11	1,3	2,7	10	1,1	2,5	18	1,7	4,5	2	0,2	0,5	6	0,5	1,5
Prismatic zircon	1	0,1	0,2	3	0,3	0,8	4	0,4	1,0	0	0,0	0,0	2	0,2	0,5
Rounded zircon	10	1,2	2,5	7	0,8	1,8	14	1,4	3,5	2	0,2	0,5	4	0,3	1,0
Others	587	70,6	-	708	76,2	-	841	81,2	-	664	74,3	-	1001	81,8	-
Monazite	51	6,1	12,6	50	5,4	12,5	77	7,4	19,3	61	6,8	15,5	77	6,3	18,8
Rutile	5	0,6	1,2	2	0,2	0,5	7	0,7	1,8	4	0,4	1,0	9	0,7	2,2
Apatite	2	0,2	0,5	1	0,1	0,3		0,0	0,0	3	0,3	0,8		0,0	0,0
Kyanite	15	1,8	3,7	7	0,8	1,8	5	0,5	1,3	7	0,8	1,8	10	0,8	2,4
Staurolite	53	6,4	13,1	79	8,5	19,8	77	7,4	19,3	45	5,0	11,5	43	3,5	10,5
Silimanite	0	0,0	0,0	0	0,0	0,0	1	0,1	0,3	0	0,0	0,0	0	0,0	0,0
Andaluzite	6	0,0	1,5	2	0,0	0,5	0	0,3	0,0	6	0,0	1,5	10	0,0	2,4
Chlorite	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Actinolite	0	0,0	0,0	1	0,1	0,3	7	0,7	1,8	5	0,6	1,3	16	1,3	3,9
Epidote	30	3,6	7,4	37	4,0	9,3	31	3,0	7,8	32	3,6	8,1	22	1,8	5,4
Titanite	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Titanium opaque minerals		0,0	0,0	8	0,9	2,0	16	1,5	4,0	9	1,0	2,3	11	0,9	2,7
Opaques	298	35,9	-	400	43,1	-	462	44,6	-	224	25,1	-	394	32,2	-
Altered minerals	127	15,3	-	121	13,0	-	158	15,3	-	268	30,0	-	409	33,4	-
Allanite	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Xenotíme	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Chlorithoid	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
100xGarnet/ Garnet+Zircon			81,7			86,7			73,9			95,1			90,2
100xApatite/Apatite+Tourmaline			1,9			0,9			0,0			2,8			0,0
100xRutile/Rutile+Zircon			31,3			16,7			28,0			66,7			60,0
100xMonazite/Monazite+Zircon			82,3			83,3			81,1			96,8			92,8
100xTi min/Ti min+Zircon			31,3			50,0			56,1			86,7			76,9
ZTR			29,1			30,3			32,0			28,0			31,2

Tabela 83: Quantificação dos Minerais Pesados dos testemunhos da Bacia de Pelotas

Amostra	T-42			T-32			T-26			T-68			T-62		
Component	Points	%	%	Points	%	%	Points	%	%	Points	%	%	Points	%	%
Total	1301	16,9		836	24,3		896	27,2		767	27,5		868	24,0	
Total transparent grains	405	31,1	100,0	403	48,2	100,0	395	44,1	100,0	400	52,2	100,0	406	46,8	100,0
Total Garnets	42	3,2	10,4	48	5,7	11,9	39	4,4	9,9	45	5,9	11,3	39	4,5	9,6
Pyraslpites	42	3,2	10,4	48	5,7	11,9	39	4,4	9,9	45	5,9	11,3	39	4,5	9,6
Colorless-Pink	42	3,2	10,4	48	5,7	11,9	39	4,4	9,9	45	5,9	11,3	39	4,5	9,6
Red-Pink	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Ugrandites (anisotropic)		0,0	0,0		0,0	0,0		0,0	0,0		0,0	0,0		0,0	0,0
Total Tourmalines	124	9,5	30,6	134	16,0	33,3	89	9,9	22,5	111	14,5	27,8	124	14,3	30,5
Blue-Black tourmaline	14	1,1	3,5	15	1,8	3,7	6	0,7	1,5	7	0,9	1,8	15	1,7	3,7
Brown-(Green) Black tourmaline	107	8,2	26,4	119	14,2	29,5	82	9,2	20,8	103	13,4	25,8	109	12,6	26,8
Green-Blue tourmaline	3	0,2	0,7	0	0,0	0,0	1	0,1	0,3	1	0,1	0,3	0	0,0	0,0
Total Hornblende	23	1,8	5,7	10	1,2	2,5	37	4,1	9,4	30	3,9	7,5	24	2,8	5,9
Hornblende - Green	17	1,3	4,2	6	0,7	1,5	26	2,9	6,6	21	2,7	5,3	19	2,2	4,7
Hornblende - Brown	6	0,5	1,5	4	0,5	1,0	11	1,2	2,8	9	1,2	2,3	5	0,6	1,2
Total Pyroxene	31	2,4	7,7	11	1,3	2,7	79	8,8	20,0	25	3,3	6,3	21	2,4	5,2
Hyperstene	31	2,4	7,7	11	1,3	2,7	79	8,8	20,0	25	3,3	6,3	21	2,4	5,2
Augite	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Diopside	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Total Zircon	8	0,6	2,0	12	1,4	3,0	1	0,1	0,3	5	0,7	1,3	5	0,6	1,2
Prismatic zircon	2	0,2	0,5	1	0,1	0,2	0	0,0	0,0	3	0,4	0,8	2	0,2	0,5
Rounded zircon	6	0,5	1,5	11	1,3	2,7	1	0,1	0,3	2	0,3	0,5	3	0,3	0,7
Others	1073	82,5	-	621	74,3	-	651	72,7	-	551	71,8	-	655	75,5	-
Monazite	51	3,9	12,6	68	8,1	16,9	61	6,8	15,4	55	7,2	13,8	49	5,6	12,1
Rutile	2	0,2	0,5	7	0,8	1,7	4	0,4	1,0	2	0,3	0,5	1	0,1	0,2
Apatite	2	0,2	0,5		0,0	0,0	3	0,3	0,8		0,0	0,0	1	0,1	0,2
Kyanite	9	0,7	2,2	12	1,4	3,0	7	0,8	1,8	9	1,2	2,3	15	1,7	3,7
Staurolite	65	5,0	16,0	91	10,9	22,6	35	3,9	8,9	61	8,0	15,3	55	6,3	13,5
Silimanite	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	1	0,1	0,3	3	0,3	0,7
Andaluzite	11	0,0	2,7	1	0,0	0,2	6	0,0	1,5	9	0,3	2,3	19	0,7	4,7
Chlorite	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Actinolite	8	0,6	2,0	0	0,0	0,0	12	1,3	3,0	8	1,0	2,0	9	1,0	2,2
Epidote	29	2,2	7,2	9	1,1	2,2	22	2,5	5,6	39	5,1	9,8	41	4,7	10,1
Titanite	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Titanium opaque minerals	15	1,2	3,7	12	1,4	3,0	9	1,0	2,3	7	0,9	1,8	9	1,0	2,2
Opaques	412	31,7	-	105	12,6	-	224	25,0	-	231	30,1	-	298	34,3	-
Altered minerals	469	36,0	-	316	37,8	-	268	29,9	-	129	16,8	-	155	17,9	-
Allanite	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Xenotíme	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Chlorithoid	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
100xGarnet/ Garnet+Zircon			84,0			80,0			97,5			90,0			88,6
100xApatite/Apatite+Tourmaline			1,6			0,0			3,3			0,0			0,8
100xRutile/Rutile+Zircon			20,0			36,8			80,0			28,6			16,7
100xMonazite/Monazite+Zircon			86,4			85,0			98,4			91,7			90,7
100xTi min/Ti min+Zircon			68,0			61,3			92,9			64,3			66,7
ZTR			33,1			38,0			23,8			29,5			32,0

Tabela 84: Quantificação dos Minerais Pesados dos testemunhos da Bacia de Pelotas

Amostra	T-60			T-47			T-54			T-28		
Component	Points	%	%									
Total	932	23,4		893	26,1		1217	17,7		899	24,0	
Total transparent grains	400	42,9	100,0	401	44,9	100,0	403	33,1	100,0	398	44,3	100,0
Total Garnets	41	4,4	10,3	49	5,5	12,2	41	3,4	10,2	33	3,7	8,3
Pyraslpites	41	4,4	10,3	49	5,5	12,2	41	3,4	10,2	33	3,7	8,3
Colorless-Pink	41	4,4	10,3	49	5,5	12,2	41	3,4	10,2	33	3,7	8,3
Red-Pink	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Ugrandites (anisotropic)		0,0	0,0		0,0	0,0		0,0	0,0		0,0	0,0
Total Tourmalines	126	13,5	31,5	121	13,5	30,2	113	9,3	28,0	83	9,2	20,9
Blue-Black tourmaline	3	0,3	0,8	8	0,9	2,0	9	0,7	2,2	2	0,2	0,5
Brown-(Green) Black tourmaline	123	13,2	30,8	111	12,4	27,7	103	8,5	25,6	81	9,0	20,4
Green-Blue tourmaline	0	0,0	0,0	2	0,2	0,5	1	0,1	0,2	0	0,0	0,0
Total Hornblende	20	2,1	5,0	27	3,0	6,7	42	3,5	10,4	34	3,8	8,5
Hornblende - Green	17	1,8	4,3	19	2,1	4,7	29	2,4	7,2	25	2,8	6,3
Hornblende - Brown	3	0,3	0,8	8	0,9	2,0	13	1,1	3,2	9	1,0	2,3
Total Pyroxene	31	3,3	7,8	36	4,0	9,0	19	1,6	4,7	66	7,3	16,6
Hyperstene	31	3,3	7,8	35	3,9	8,7	19	1,6	4,7	66	7,3	16,6
Augite	0	0,0	0,0	1	0,1	0,2	0	0,0	0,0	0	0,0	0,0
Diopside	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Total Zircon	5	0,5	1,3	2	0,2	0,5	8	0,7	2,0	3	0,3	0,8
Prismatic zircon	1	0,1	0,3	1	0,1	0,2	3	0,2	0,7	1	0,1	0,3
Rounded zircon	4	0,4	1,0	1	0,1	0,2	5	0,4	1,2	2	0,2	0,5
Others	709	76,1	-	658	73,7	-	994	81,7	-	680	75,6	-
Monazite	45	4,8	11,3	54	6,0	13,5	61	5,0	15,1	79	8,8	19,8
Rutile	1	0,1	0,3	4	0,4	1,0	2	0,2	0,5	2	0,2	0,5
Apatite	0	0,0	0,0	2	0,2	0,5	0	0,0	0,0	1	0,1	0,3
Kyanite	9	1,0	2,3	4	0,4	1,0	2	0,2	0,5	4	0,4	1,0
Staurolite	55	5,9	13,8	39	4,4	9,7	53	4,4	13,2	39	4,3	9,8
Silimanite	2	0,2	0,5	1	0,1	0,2	0	0,0	0,0	1	0,1	0,3
Andaluzite	15	0,5	3,8	15	0,2	3,7	11	0,0	2,7	7	0,3	1,8
Chlorite	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Actinolite	1	0,1	0,3	8	0,9	2,0	16	1,3	4,0	11	1,2	2,8
Epidote	49	5,3	12,3	39	4,4	9,7	35	2,9	8,7	35	3,9	8,8
Titanite	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Titanium opaque minerals	4	0,4	1,0	16	1,8	4,0	11	0,9	2,7	9	1,0	2,3
Opaques	329	35,3	-	289	32,4	-	394	32,4	-	224	24,9	-
Altered minerals	199	21,4	-	187	20,9	-	409	33,6	-	268	29,8	-
Allanite	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Xenotíme	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
Chlorithoid	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0	0	0,0	0,0
100xGarnet/ Garnet+Zircon			89,1			96,1			83,7			91,7
100xApatite/Apatite+Tourmaline			0,0			1,6			0,0			1,2
100xRutile/Rutile+Zircon			16,7			66,7			20,0			40,0
100xMonazite/Monazite+Zircon			90,0			96,4			88,4			96,3
100xTi min/Ti min+Zircon			50,0			90,9			61,9			78,6
ZTR			33,0			31,7			30,5			22,1

Tabela 85: Quantificação dos Minerais Pesados dos testemunhos da Bacia de Pelotas

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo