Download PDF
ads:
Universidade Federal do Rio Grande do Sul
Instituto de Biociências
Programa de Pós-Graduação em Genética e Biologia Molecular
FILOGENIA MOLECULAR, TAXAS EVOLUTIVAS, TEMPO DE
DIVERGÊNCIA E HERANÇA ORGANELAR EM Passiflora L.
(PASSIFLORACEAE)
Valéria Cunha Muschner
Orientador: Francisco Mauro Salzano
Co-Orientadora: Loreta Brandão de Freitas
Tese submetida ao Programa de Pós-Graduação em
Genética e Biologia Molecular da UFRGS como
requisito parcial para a obtenção do grau de Doutor
em Ciências.
Porto Alegre
Agosto de 2005
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
INSTITUIÇÕES E FONTES FINANCIADORAS:
- Laboratório de Evolução Molecular, Departamento de Genética, Instituto de Biociências,
UFRGS
- Centro de Biologia Genômica e Molecular, Faculdade de Biociências, PUCRS
- Programa de Apoio a Núcleos de Excelência (PRONEX)
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)
- Pró-Reitoria de Pesquisa da Universidade Federal do Rio Grande do Sul (PROPESQ-
UFRGS)
ads:
Dedico esta tese aos meus pais, que sempre me
incentivaram a fazer o que eu gosto! Amo vocês!
AGRADECIMENTOS
Agradeço em primeiro lugar a Deus.
Aos meus orientadores Francisco M. Salzano, Loreta B. Freitas e Sandro L. Bonatto.
Ao Prof. Salzano pelo exemplo, carinho e amizade!
À Loreta também pelo exemplo, carinho e amizade, mas acima de tudo pela
confiança. Por ter me apresentado o fantástico mundo das “Passifloras”! Resumindo,
obrigada por TUDO!
Ao Sandro pela ajuda nas análises!
Aos meus maravilhosos pais Willi e Iracema! Pela vida, pelos ensinamentos, pela
força... Por TUDO!
Às minhas queridas irmãs Fernanda e Adriana pelo carinho, preocupação e
companheirismo! Amo vocês!
À Taia por ser mais do que uma amiga, ser uma verdadeira irmã, me escutar, me
ajudar e sempre ter uma palavra de alento! Te adoro!
Ao Alexandre pela amizade e também por me fazer rir muito!
Aos meus queridos amigos do Laboratório de Evolução Molecular: Aline, Carlos
André, Claudia, Clênio, Dânae, Franceli, Geraldo, Jaqueline, Jéferson, Joana, Laci, Lúcia,
Pakisa, Patrícia e Priscilla pelos momentos de descontração! Todos vocês são especiais e
ocupam um lugar importante no meu coração!
À Aline pela amizade e conselhos sempre bem vindos! E também por toda força
quando estava terminando de escrever a tese! Obrigada!
À Laci, pelas caronas, pelas longas conversas sérias e também por aquelas cheias de
besteiras, pela amizade maravilhosa... Te adoro! E também por ter me ajudado a formatar e
imprimir essa tese!
Ao “Charles Andrew” pelas “dicas”, pela amizade, por me escutar e por me fazer rir!
À Pakisa pela ajuda na amplificação das amostras e amizade!
Aos meus mais novos amigos Pri e Jéferson que foram muito importantes na etapa
final da redação desta tese! Obrigada pela força!
À Jaque que também me deu uma força na etapa final! Por me escutar!
À grande amiga Verônica! Obrigada pelas jantinhas, pela amizade, pelo carinho! És
uma amiga maravilhosa! Te adoro Vê!
À Franceli pela amizade e por ter sido a minha primeira co-orientada!
Aos amigos do Departamento de Genética! Não citarei nomes para não cometer
nenhuma injustiça.
Ao Elmo e à Ellen pela competência e amizade!
À Cladinara por seqüenciar as minhas amostras!
Ao Hugo, sem ele acho que não teria conseguido finalizar a tese no prazo...
Ao Duda por ter me dado várias dicas de análise!
Aos avós do Tiago, Vô Olavo e Vó Zola, agora meus avós também, pelo carinho!
Aos meus queridos tios, Luciano e Iolanda, que mesmo longe, sempre torceram
muito por mim!
Ao CNPq por ter financiado meus estudos desde a iniciação científica.
A todos que, direta ou indiretamente, ajudaram para que esse trabalho se tornasse
possível!
SUMÁRIO
RESUMO..................................................................................................................... 7
ABSTRACT................................................................................................................. 10
CAPÍTULO I INTRODUÇÃO.................................................................................... 13
I.1 A Família Passifloraceae........................................................................................ 14
I.2 O Gênero Passiflora L............................................................................................ 15
I.3 A Classificação Taxonômica................................................................................... 16
I.4 A Origem das Angiospermas.................................................................................. 19
I.5 Taxas de Substituição Nucleotídica em Plantas...................................................... 21
I.6 O Relógio Molecular............................................................................................... 27
I.7 O Relaxamento do Relógio Molecular.................................................................... 30
I.8 Padrões de Herança Organelar em Plantas.............................................................. 32
CAPÍTULO II OBJETIVOS........................................................................................ 35
CAPÍTULO III 1º ARTIGO: PHYLOGENETIC RELATIONSHIPS AMONG
Passiflora (PASSIFLORACEAE) SPECIES: MOLECULAR DATA
STRENGTHEN A NEW TAXONOMIC PROPOSAL FOR
SUBGENERA..............................................................................................................
37
CAPÍTULO IV 2º ARTIGO: DIVERGENCE TIME AND EVOLUTIONARY
RATES IN Passiflora...................................................................................................
90
CAPÍTULO V 3º ARTIGO: ORGANELLAR INHERITANCE IN Passiflora
(PASSIFLORACEAE)................................................................................................
119
CAPÍTULO VI DISCUSSÃO..................................................................................... 136
REFERÊNCIAS BIBLIOGRÁFICAS........................................................................ 145
RESUMO
RESUMO
8
Passiflora é um gênero neotropical que apresenta uma grande variabilidade floral e
foliar, o que dificulta enormemente sua classificação taxonômica. A característica mais
marcante do nero é a corona de filamentos em suas flores. Para melhor entender a
taxonomia de Passiflora, foram analisadas sete regiões de seu DNA, englobando os
genomas plastidial, mitocondrial e nuclear de 104 espécies. Essas espécies incluem 19 dos
23 subgêneros da classificação morfológica antiga e todos os quatro subgêneros da
classificação mais recente, também baseada em caracteres externos. Os resultados
corroboraram a proposta mais recente, que divide o gênero em quatro subgêneros
(Astrophea, Decaloba, Deidamioides e Passiflora), com a adição de mais um,
Tryphostemmatoides. Os três subgêneros com o número de espécies mais representativo
(Astrophea, Decaloba e Passiflora) formam grupos monofiléticos estatisticamente bem
fundamentados. No entanto, Deidamioides não é monofilético em todas as análises e
marcadores, enquanto que Tryphostemmatoides é representado por apenas uma espécie.
Foram também estudadas as prováveis datas de surgimento de Passiflora e sua
diversificação nos três principais subgêneros, através do estudo de quatro regiões do DNA,
englobando também os três genomas, em 70 espécies. Verificou-se que o gênero Passiflora
deve ter aparecido cerca de 42 milhões de anos atrás (Ma); Decaloba parece ter sido o
primeiro subgênero a se estabelecer (35 Ma), enquanto que os subgêneros Astrophea e
Passiflora devem ter se diversificado 24 Ma. Estes dois subgêneros parecem ter tido
uma radiação rápida em comparação a Decaloba, que possui árvores filogenéticas com
comprimentos dos ramos significativamente maiores que os outros dois. As adaptações
morfológicas a diferentes polinizadores devem ter sido as principais responsáveis pela
radiação rápida. A herança organelar de dois subgêneros, Decaloba e Passiflora, foi
investigada através de um e quatro híbridos interespecíficos, respectivamente. A herança
RESUMO
9
foi estritamente materna para a mitocôndria e o cloroplasto em Decaloba, enquanto que no
subgênero Passiflora ocorreu herança materna para o DNA mitocondrial e paterna para o
DNA plastidial. Esses resultados reforçam os dados obtidos pela filogenia, no que se refere
à diferenciação e diversificação dos subgêneros, pois há evidências de que a herança
materna dos cloroplastos seja ancestral em plantas.
ABSTRACT
ABSTRACT
11
Passiflora is a neotropical genus which presents a high floral and foliar variability,
making its taxonomic classification very difficult. The most marked characteristic of the
genus is the corona of filaments in its flowers. To better understand Passiflora’s taxonomy
seven regions of its DNA, including the plastid, mitochondrial, and nuclear genomes, were
studied in 104 species. These species include 19 of the 23 subgenera of the old
morphological classification and all the four subgenera of the most recent classification.
The results confirmed the most recent proposal, which divides the genus in four subgenera
(Astrophea, Decaloba, Deidamioides and Passiflora) with one more addition,
Tryphostemmatoides. The three subgenera with the most representative number of species
(Astrophea, Decaloba and Passiflora) form statistically well supported monophyletic
groups. But Deidamioides is not monophyletic in all analyses and markers, while
Tryphostemmatoides is represented by just one species. Estimations were also made of the
date of Passiflora emergence and its diversification in the three main subgenera by the
study of four DNA regions, also including the three genomes, in 70 species. The Passiflora
genus should have appeared at about 42 million years ago (Ma); Decaloba was the first
established subgenus (35 Ma) while the Astrophea and Passiflora subgenera should have
diversified at 24 Ma. These two latter subgenera seem to have had a fast radiation in
comparison to Decaloba, which presents significantly higher branch lengths in the
phylogenetic trees as compared to the two others. Morphological adaptations to different
pollinator agents could be the main responsible for this fast radiation. The organelle
inheritance of two subgenera, Decaloba and Passiflora, was investigated through the study
of respectively one and four interspecific hybrids. The inheritance was strictly maternal for
the mitochondria and chloroplast in Decaloba, while in the Passiflora subgenus maternal
inheritance for the mitochondrial DNA but paternal for chloroplast DNA occurred. These
ABSTRACT
12
results strengthen the phylogenetic data which differentiated the subgenera, as well as the
subgenera divergence, since there is evidence that chloroplast maternal inheritance is
ancestral in plants.
CAPÍTULO I
INTRODUÇÃO
CAPÍTULO I
14
I.1. A Família Passifloraceae
A família Passifloraceae ocorre, predominantemente, em áreas tropicais e
subtropicais, possuindo cerca de 17 gêneros e 650 espécies, que se distribuem nas Tribos
Paropsieae e Passifloreae. Essas espécies são trepadeiras ou lianas com gavinhas axilares
(inflorescências modificadas), ocasionalmente podem ser arbustos ou até árvores e, nestes
casos, as gavinhas estão ausentes (Judd et al. 1999). Essas plantas possuem uma grande
variabilidade foliar e floral. A característica mais marcante da família é a presença de uma
corona filamentosa em suas flores que, segundo Judd et al. (1999) apoiaria a monofilia de
Passifloraceae. Para esses autores, a tribo Paropsieae, que contém árvores e arbustos que
perderam as gavinhas, provavelmente representa um complexo basal parafilético dentro da
família, enquanto que Passiflorieae é monofilética, como evidenciado pelo hábito
escandente, gavinhas axilares e flores especializadas. No Novo Mundo a família é
representada por cinco gêneros (Passiflora, Mitostemma, Dilkea, Ancistrothyrsus e
Tetrastylis, embora esse último tenha sido incluído ao gênero Passiflora por Feuillet &
MacDougal, 2003 e Muschner et al., 2003), todos da tribo Passifloreae. As famílias
Malesherbiaceae e Turneraceae foram incluídas em Passifloraceae pela APG II (2003), por
possuírem glicosídios cianogênicos. Além disso, Turneraceae e Passifloraceae têm
glândulas foliares e transmissão biparental ou paterna dos cloroplastos (Shore et al. 1994;
Ulmer & MacDougal 2004; V. C. Muschner et al. em preparação) e Malesherbiaceae e
Passifloraceae apresentam a corona de filamentos.
CAPÍTULO I
15
I.2. O Gênero Passiflora L.
O nome do gênero, passiflora, origina-se do termo “flor da paixão ou
passionflower”, atribuído por Cieza de León em 1553, numa alusão à crucificação de
Cristo. O nome do gênero foi adotado por Carl von Linné, em 1753, no Species Plantarum
(Ulmer & MacDougal 2004).
O gênero Passiflora L. é o mais representativo da família Passifloraceae possuindo
cerca de 525 espécies. Encontra-se distribuído em regiões tropicais do Novo Mundo,
raramente na Ásia e Austrália. As características do gênero são: presença de corona de
filamentos e cinco estames e órgão sexuais elevados em uma coluna conspícua, o
androginóforo. Outra característica peculiar é a grande variabilidade foliar encontrada
nesse gênero, que segundo MacDougal (1994) é a maior encontrada entre todas as
angiospermas. Suas flores também são muito variáveis em tamanho e cor, com a corona e
o perianto diversamente orientados e desenvolvidos, sendo que todas essas características
devem ter surgido de um processo co-evolutivo com os agentes polinizadores (MacDougal
1994). A reprodução funciona predominantemente por fecundação cruzada. A
autofecundação é rara e, quando ocorre, forma frutos menores e com poucas sementes
(Semir & Brown 1975). Várias classes de animais atuam como polinizadores das diferentes
espécies do gênero, mas em geral a melitofilia (abelhas) é a síndrome floral predominante;
também ocorrem, em um número menor de espécies, as síndromes da ornitofilia (beija-
flores), quiropterofilia (morcegos) e esfingofilia (mariposas) (Semir & Brown 1975;
Koschnitzke 1993; Koschnitzke & Sazima 1997; Varassin & Silva 1999; Varassin et al.
2001). A dispersão das sementes é freqüentemente feita por aves e morcegos, que são
atraídos pela coloração e pelo cheiro dos frutos maduros (Semir & Brown 1975), embora
CAPÍTULO I
16
pequenos mamíferos já tenham sido observados alimentando-se dos frutos de algumas
passifloras (Williams et al. 2000; Koehler-Santos et al. in press).
Devido à grande variabilidade floral e foliar encontrada em Passiflora, a
classificação taxonômica é bastante complexa.
I.3. A Classificação Taxonômica
A taxonomia de Passiflora está baseada em diversos caracteres florais e
vegetativos, levando a uma complexa subdivisão taxonômica em subgêneros, seções e
séries. De acordo com Killip (1938), o gênero poderia ser subdividido em 22 subgêneros e
dez seções, mas Escobar (1989) sugeriu mudanças nessa classificação, descrevendo um
novo subgênero. Ambas as classificações foram baseadas somente em características
morfológicas, especialmente de estrutura floral.
Mais recentemente, Feuillet & MacDougal (2003) agruparam todas as espécies de
Passiflora em quatro categorias principais ou subgêneros: Astrophea, Decaloba,
Deidamioides e Passiflora. A classificação desses autores também é baseada,
exclusivamente, em características morfológicas.
Nosso grupo já vem estudando este gênero há alguns anos quanto a aspectos
moleculares, tanto no que se refere à delimitação taxonômica (Muschner et al. 2003)
quanto aos processos de especiação (Lorenz-Lemke et al. 2005). Muschner et al. (2003),
baseados na análise de duas seqüências de DNA não codificadoras (ITS do rDNA nuclear e
espaçador intergênico trnL-trnF do cloroplasto) e uma codificadora (rps4 do cloroplasto),
sugeriram a redistribuição dos 12 subgêneros estudados (segundo a classificação de Killip
1938) para apenas três, devido à formação de três clados com altos valores de suporte
CAPÍTULO I
17
estatístico (bootstraps > 99). Interessantemente, foram evidenciados diferentes tamanhos
de ramos entre os três clados. O tempo de geração de cada espécie pode estar envolvido na
diferença encontrada entre dois dos clados (Passiflora e Decaloba). Apesar da pouca
informação sobre fatores ecológicos que possam estar envolvidos nesse processo, Benson
et al. (1975) foram os primeiros a afirmar que espécies do subgênero Decaloba de Killip
(pertencente ao clado Decaloba de Muschner et al. 2003) possuem tempo de geração mais
curto que espécies do subgênero Passiflora (componente do clado Passiflora de Muschner
et al. 2003). É possível que este fator possa estar acelerando a taxa evolutiva nas espécies
do subgênero Decaloba. Os resultados de Muschner et al.. (2003) corroboram
perfeitamente a nova classificação proposta por Feuillet & MacDougal (2003), podendo os
clados observados serem nomeados como subgêneros.
O subgênero Astrophea é, indubitavelmente, o mais diferenciado dentro do gênero
Passiflora, pois algumas dessas espécies não se parecem muito com as espécies do gênero
à primeira vista. São 57 espécies de árvores, arbustos ou lianas arbustivas, com folhas não-
lobadas, sendo a maioria nativa do norte da América do Sul. Os arbustos e, principalmente,
as árvores, nos quais foram perdidas as gavinhas, diferem consideravelmente das outras
espécies trepadeiras devido ao hábito e presença de crescimento secundário do lenho. A
grande árvore P. macrophylla, por exemplo, produz as maiores folhas do gênero, podendo
atingir até 95 cm de comprimento. Esse subgênero é dividido por Feuillet & MacDougal
(2003) em duas superseções e cinco seções. As espécies da seção Astrophea são arbóreas
ou arbustivas e possuem flores com tubo floral curto e coloração branca, o que forma um
contraste com a corona amarelada. Presume-se que essas espécies sejam polinizadas por
grandes abelhas, mas a literatura carece de estudos sobre este tema. Já a seção
Boryastrophea tem espécies que são predominantemente lianas e apresentam flores
CAPÍTULO I
18
alaranjadas ou purpúreas, com um tubo floral conspícuo, mais longo que as sépalas, e uma
corona de filamentos reduzida. A ecologia floral destas espécies sugere que elas sejam
polinizadas por beija-flores.
O subgênero Decaloba inclui mais de 200 espécies, geralmente pequenas
trepadeiras, com a maioria das espécies possuindo flores pequenas e folhas variegadas ou
bi-lobadas. A grande maioria das espécies é polinizada por abelhas ou vespas, mas existe
um número delas adaptadas à polinização por beija-flores (especialmente aquelas com
flores avermelhadas e androginóforo longo como, por exemplo, P. murucuja), além de uma
comprovadamente polinizada por morcegos noturnos (P. penduliflora). A maioria das
espécies possui flores brancas ou esverdeadas; no entanto, a palheta de cores florais é
quase completa neste subgênero. Atualmente as espécies estão distribuídas em oito
superseções, sendo a superseção Decaloba a maior delas com cerca de 120 espécies. Nesta
superseção foram incluídos os subgêneros Murucuja, Pseudomurucuja, Psilanthus e
Astephia de Killip (1938), além das espécies de Decaloba. As espécies do subgênero
Adopogyne de Killip (1938) foram incluídas na superseção Multiflora.
O subgênero Passiflora compreende cerca de 240 espécies caracterizadas por flores
grandes, que geralmente têm uma corona com faixas de diversas cores. A corona é também
a plataforma para as abelhas e outros insetos que são atraídos pelo odor destas flores. Esse
subgênero contém também muitas espécies com a corona de filamentos reduzida e que são
polinizadas por beija-flores. A maioria delas é classificada na superseção Tacsonia. As
superseções Distephana e Coccinea também apresentam espécies polinizadas por beija-
flores. É neste subgênero que podem ser encontradas plantas de importância econômica,
tais como P. edulis, P. ligularis e P. tarminiana. Com exceção de P. edulis f. edulis, P.
tarminiana e P. foetida, quase todas as espécies do subgênero Passiflora são auto-
CAPÍTULO I
19
incompatíveis e requerem polinização cruzada. Os subgêneros Adenosepala,
Calopathanthus, Distephana, Dysosmia, Dysosmioides, Granadilla, Granadillastrum,
Manicata, Rathea, Tacsonia, Tacsonioides e Tacsoniopsis de Killip (1938) e Escobar
(1989) foram agregados ao subgênero Passiflora, que se encontra dividido em seis
superseções.
O subgênero Deidamioides é o menor de todos, contendo apenas 13 espécies
relativamente primitivas. Esse estado primitivo é confirmado pelo surgimento das flores
diretamente a partir das gavinhas, um fenômeno raro no gênero Passiflora. Deidamioides é
subdividido em cinco seções, duas das quais são monoespecíficas. O gênero Tetrastylis foi
incluído neste subgênero dentro da seção Tetrastylis e as duas espécies que o compõem
passaram a ser denominadas de P. ovalis e P. contracta. Neste subgênero foram incluídos
os subgêneros Deidamioides, Tryphostemmatoides e Polyanthea de Killip (1938).
I.4. A Origem das Angiospermas
Segundo Charles Darwin a origem das angiospermas seria “um abominável
mistério”, e ainda hoje esta questão permanece como um problema altamente controverso.
Acredita-se que a radiação das angiospermas tenha ocorrido há cerca de 115 milhões de
anos (Ma) atrás, aproximadamente na metade do Cretáceo, tendo o grupo dominado a flora
terrestre cerca de 90 Ma, situação que continua até os dias de hoje (Lidgard & Crane,
1988).
As relações entre as linhagens de angiospermas têm sido uma questão de difícil
resolução, pois o enraizamento do clado, usando dados morfológicos, é problemático e o
registro fóssil é insuficiente (Crane et al. 1995). Durante as duas últimas décadas, têm sido
CAPÍTULO I
20
alcançados progressos significativos no sentido da resolução deste problema. Análises
filogenéticas combinando caracteres morfológicos e seqüências de DNA têm procurado
resolver as relações entre as linhagens (Donoghue & Doyle 1989; Chase et al. 1993, 2000;
Doyle et al. 1994; Soltis 1997; Nandi et al. 1998; Qiu et al. 1999; Soltis et al. 1999a, 2000;
Savolainen et al. 2000a, b; Wikström et al. 2001; APG II 2003; Hilu et al. 2003), e têm
sido observados padrões altamente congruentes com relação ao enraizamento do clado
(Mathews & Donoghue 1999; Qiu et al. 1999; Soltis et al. 1999a; Sanderson 2003a; Davis
et al. 2004; Bell et al. 2005). Estes achados têm renovado o interesse e o foco para o
registro fóssil, particularmente aqueles dos depósitos do Cretáceo.
Davies et al. (2004) usaram a abordagem metodológica de supertrees para
reconstruir uma árvore datada das angiospermas a partir de dados moleculares. Eles
concluíram que suas análises indicam um padrão ligeiramente lábil da taxa de
diversificação, e corroboram a suspeita de Darwin de que não existe uma explicação
simples para o mistério da diversificação desse grupo de plantas. A calibragem da
diversificação utilizada para as maiores linhagens não mostrou uma radiação rápida recente
das basais. Houve, porém, numerosas mudanças nas taxas de diversificação com aumentos
grandes nas taxas evolutivas em períodos recentes. A diversificação não seria dirigida por
poucas grandes inovações-chave, mas por um processo mais complexo no qual haveria
instabilidade com “vencedores” e “perdedores” em todos os níveis e mudanças repetidas.
Os registros fósseis mais antigos das angiospermas são os de pólen do período
Valanginiano-Hauterivano, 141-132 Ma antes do presente, AP (Brenner & Bickoff 1992;
Huge 1994; Brenner 1996). O depósito do Aptiano-Albiano (125-97 Ma AP) de Portugal,
que contém rápida expansão de diversidade morfológica em flores, sementes e pólen,
também foi bastante estudado (Friis et al. 1999). Outros estudos, referentes a depósitos do
CAPÍTULO I
21
Cenomaniano-Campaniano, têm indicado idades mais recentes que variam de 97-74 Ma
AP (Basinger & Dilcher 1984; Herendeen et al. 1999). A discussão sobre a idade das
angiospermas é ampla e longa, e até que sejam encontrados registros fósseis mais
completos, não será esgotada com facilidade. Uma alternativa que pode ajudar na
estimativa do tempo de divergência deste grupo é a utilização de seqüências de DNA.
Wikström et al. (2001), baseando-se no seqüenciamento do DNA de três regiões
codificadoras (genes rbcL e atpB do DNA plastidial e 18S do DNA ribossomal nuclear),
estimaram que as angiospermas teriam surgido entre o final e a metade do Jurássico (179-
158 Ma AP) e que as eudicotiledôneas teriam surgido do início do Jurássico até a metade
do Cretáceo (147-131 Ma AP). Estas estimativas são mais antigas que as obtidas com os
registros fósseis, mas estão sendo bem aceitas por diversos pesquisadores em tentativas de
datar a origem de diversos grupos de plantas (Sanderson 2003a; Davies et al. 2004; Bell et
al. 2005). No presente estudo estaremos aceitando a proposição de que o ramo que deu
origem à família Passifloraceae teria surgido há 36-32 Ma AP (Wikström et al. 2001).
I.5. Taxas de Substituição Nucleotídica em Plantas
I.5.1. Cloroplasto
O genoma plastidial (cpDNA) é uma molécula com aproximadamente 150 mil
pares de bases (kbp), que codifica cerca de 100 funções genéticas (Clegg & Zurawski
1991) e sua organização molecular e evolução têm sido amplamente estudadas. Estudos de
mapeamento gênico dessa organela em algas e plantas terrestres confirmaram a impressão
de forte conservação de seu conteúdo gênico (Clegg et al. 1994; Martin et al. 2005). Entre
CAPÍTULO I
22
as plantas terrestres o conteúdo gênico é quase totalmente conservado, embora tenham sido
demonstradas transferências de função do genoma plastidial para o nuclear (Downie &
Palmer 1991; Huang et al. 2005).
O conteúdo gênico conservado e a taxa de substituição nucleotídica relativamente
baixa em genes codificadores de proteínas, têm tornado o genoma plastidial ideal para
estudos evolutivos em plantas (Clegg 1993; Martin et al. 2005). Durante os últimos dez a
quinze anos, houve uma explosão de publicações sobre filogenias moleculares construídas
a partir do cpDNA (p. ex. Chase et al. 1993; Soltis et al. 2000; Stefanović & Olmstead
2004; Salamin et al. 2005; Young & dePamphilis 2005).
O interesse por filogenias precisas supera o âmbito puramente descritivo. A origem
das adaptações morfológicas pode ser colocada em um contexto filogenético para
reconstruir a seqüência precisa das mudanças genéticas (e moleculares) que originaram
novas estruturas (p. ex., Clegg et al. 1994) ou os genes de desenvolvimento são usados
como marcadores filogenéticos para explicar a diversidade na estrutura floral, que ainda é
o principal elemento de identificação taxonômica (Becker & Theiβen 2003; Kaufmann et
al. 2005).
Estudos têm demonstrado, por outro lado, que alguns genes do cloroplasto violam a
constância do relógio molecular, porque as taxas evolutivas variam entre as linhagens mais
abrangentes de plantas (Bousquet et al. 1992; Gaut et al. 1992). No entanto, tem sido
sugerido que a maioria dessas variações seria devida a diferenças no tempo de geração
(Gaut et al. 1992; Doyle & Gaut 2000). Segundo esses últimos autores, tanto o relógio
molecular calibrado pelo tempo, quanto o calibrado pelo tempo de geração são consistentes
com a Teoria da Neutralidade.
CAPÍTULO I
23
A grande maioria das análises filogenéticas envolvendo grandes grupos
taxonômicos em níveis acima de famílias envolvem o gene rbcL, codificador da
subunidade maior da rubisco (Soltis et al. 2000; APG II 2003; Salamin et al. 2005). O gene
rps4, codificador da proteína 4 da subunidade menor do ribossomo plastidial, tem sido
pouco utilizado em estudos sobre a filogenia de plantas (Nadot et al. 1994; Souza-Chies et
al. 1997; Soltis et al. 2002; Rydin et al. 2004). No entanto, o estudo realizado por
Muschner et al. (2003), com 35 espécies do gênero Passiflora, demonstrou que essa região
tem grande potencial para desvendar as relações filogenéticas dentro deste gênero.
Regiões não-codificadoras do cpDNA têm sido amplamente utilizadas nas análises
filogenéticas em níveis taxonômicos intra e interespecíficos (Mes et al. 2000; Muschner et
al. 2003), devido às taxas de substituição nucleotídica elevadas. Dentre as regiões
plastidiais não-codificadoras melhor estudadas nas análises filogenéticas de angiospermas
encontram-se o espaçador intergênico trnL-trnF e o intron do gene trnL (Mes et al. 2000;
Holt et al. 2004; Lledó et al. 2005). Em 1991, Taberlet et al. publicaram primers universais
para essas regiões, os quais vêm sendo utilizados numa extensa gama de espécies com
excelentes resultados (Chen et al. 2005; Wang et al. 2005).
Por outro lado, as seqüências não-codificadoras, algumas vezes, contêm mais
inserções/deleções (indels) que substituições (Golenberg et al. 1993), as quais podem
dificultar o alinhamento das seqüências e a determinação das homologias (Kelchner 2000).
Enquanto alguns autores argumentam que os indels não devem ser tratados como
caracteres informativos (Golenberg et al. 1993), outros alegam que eles contêm
informação filogenética importante e que, por esse motivo, devem ser incluídos nas
análises (p.ex. Kelchner 2000).
CAPÍTULO I
24
I.5.2. Genes Nucleares
Um gene nuclear amplamente utilizado para a filogenia das angiospermas é o 18S
rDNA (p.ex. Chaw et al. 2000; Soltis et al. 2000). O DNA ribossomal (rDNA) é a região
do genoma que codifica os componentes do RNA dos ribossomos. O rDNA eucariótico
está organizado em tandem, com milhares de cópias no genoma. Cada unidade de repetição
consiste de genes que codificam a subunidade menor (18S), a subunidade maior (26S) e o
rDNA nuclear 5,8S, sendo que essas regiões codificadoras são separadas por espaçadores
(Schlötterer 1998). Essas cópias são homogeneizadas por evolução em concerto, que pode
ocorrer devido à permuta desigual e/ou conversão gênica (Hamby & Zimmer 1992; Koch
et al.. 2003).
Nickrent & Soltis (1995) estudaram a taxa evolutiva e a resolução filogenética do
gene 18S rDNA inteiro bem como as do gene rbcL de 59 angiospermas. A comparação
mostrou que o rbcL é cerca de três vezes mais variável que o 18S rDNA. No entanto, por
causa do maior comprimento deste último, a razão do número de sítios filogeneticamente
informativos por molécula é somente 1,4 vezes maior para o rbcL que para o 18S rDNA.
As análises de parcimônia mostraram que diversos clados foram fortemente apoiados pelos
dois genes, levando os autores a concluir que as seqüências do 18S rDNA inteiras são
suficientemente variáveis para o desenvolvimento de estudos filogenéticos no grupo das
angiospermas.
Diversos autores têm publicado filogenias robustas das angiospermas a partir do
gene 18S rDNA, por exemplo, Soltis et al. (1997), que analisaram 223 espécies, e Soltis et
al. (2000), que estudaram 560 espécies. Apesar disso, o 18S rDNA sozinho forneceu
poucos caracteres filogeneticamente informativos para resolver adequadamente as relações
CAPÍTULO I
25
entre e dentro dessas plantas (Soltis et al. 1999b; Kim et al. 2004). Kuzoff et al. (1998)
demonstraram que a seqüência do gene 26S rDNA tem um grande potencial para a
reconstrução filogenética, em níveis taxonômicos comparáveis aos investigados com o 18S
rDNA. Eles concluíram ainda que o 26S rDNA evolui de 1,6 a 2,2 vezes mais rápido e tem
cerca de 3,3 vezes mais sítios informativos que o 18S rDNA. Além disso, propuseram que
os segmentos de expansão do 26S rDNA evoluem de 1,2 a 3 vezes mais pido que o gene
rbcL, com 1,5 vezes mais sítios informativos. A utilidade filogenética dessa região em
angiospermas tem sido demonstrada em diversos estudos (p. ex. Fishbein et al. 2001; Zanis
et al. 2002; Korall & Kenrick 2004; Schönenberger et al. 2005).
I.5.3. A Mitocôndria
Wolfe et al. (1987) mostraram que as taxas de substituição sinônimas em genes
mitocondriais de angiospermas são anormalmente baixas (cerca de 50 a 100 vezes menor)
quando comparadas às dos genes mitocondriais de mamíferos. Além disso, demonstraram
que as taxas de substituição do mtDNA são algumas vezes menores que às do cloroplasto e
10 a 20 vezes menores que as taxas de substituição dos genomas nucleares. Palmer &
Herbon (1988) confirmaram que as taxas de substituição nucleotídica do genoma
mitocondrial inteiro são baixas (inclusive em regiões não codificadoras) e mostraram
separação entre as taxas de evolução de seqüências e estrutura. Estudos subseqüentes têm
confirmado essas taxas de substituição muito baixas (Gaut 1998; Muse 2000). No entanto,
variações moderadas nas taxas de substituição sinônimas (maiores que 7 vezes) têm sido
encontradas na comparação entre diversos grupos de plantas (Eyre-Walker & Gaut 1997;
Laroche & Bousquet 1999; Whittle & Johnston 2002). Na maioria dos casos, a correlação é
CAPÍTULO I
26
feita com genes plastidiais e / ou nucleares. Forças evolutivas que operam nos dois
genomas organelares ou nos três genomas, como transmissão dos genomas organelares ou
efeito do tempo de geração, respectivamente, são explicações para esses padrões. Estudos
filogenéticos, embora desenvolvidos sem um enfoque quantitativo, sugerem que exista
uma certa variação entre os diversos grupos de plantas (Beckert et al. 1999; Bowe et al.
2000; Chaw et al. 2000; Barkman et al. 2004; Davis et al. 2004). Cho et al. (2004)
encontraram taxas de substituições sinônimas do mtDNA extraordinariamente elevadas e
variáveis no gênero Plantago (Plantaginaceae). Estes autores tentaram explicar essa alta
taxa de variação no gênero e argumentaram que a transferência de genes mitocondriais
para o núcleo, os níveis elevados de edição de RNA, o tempo de geração, e mecanismos de
mutação e reparo poderiam ser os responsáveis.
Mas o interesse em incluir um terceiro genoma nas análises filogenéticas tem
aumentado. O mtDNA tem sido relativamente pouco utilizado na filogenia de plantas
devido, também, ao alto grau de recombinação intra-molecular que apresenta na maioria
das espécies vegetais estudadas, o que torna difícil o estudo de grandes regiões de seu
DNA (Palmer & Herbon 1988). A análise de pequenas regiões do mtDNA pode vir a
minimizar este problema. Por esse motivo, regiões intrônicas e espaçadoras têm-se
mostrado uma promessa na sistemática molecular de níveis taxonômicos moderadamente
mais baixos (Demesure et al. 1995; Freudenstein & Chase 2001; Duminil et al. 2002;
Dombrovska & Qiu 2004). Um dos primeiros destes fragmentos do mtDNA a ser
investigado é um intron do gene da NADH desidrogenase. A subunidade I desse gene
(nad1) tem cinco exons (a-e) em Oenothera, alguns dos quais estão altamente dispersos e
envolvidos no mecanismo de processamento em trans (Wissinger et al. 1991). O intron
entre os exons b e c é relativamente pequeno (de 1422-1464 pb em Triticum, Citrullus e
CAPÍTULO I
27
Oenothera). Esse é um intron do grupo II, que está envolvido no mecanismo de
processamento em cis, cuja estrutura secundária característica facilita seu auto-
processamento. Na primeira vez que essa região foi usada em análises filogenéticas, foi
identificada pouca variação inter e intra-específica (Demesure et al. 1995). No entanto,
Chen & Sun (1998) encontraram variação comparável à de outros marcadores plastidiais e
nucleares em espécies de Spiranthes, e Freudenstein & Chase (2001) observaram ampla
variação, principalmente relacionada a eventos de inserção/deleção, dentro da família
Orchidaceae. Embora essa não seja uma região codificadora, acredita-se que esteja sujeita
a pressão seletiva devido à estrutura de sua alça principal, necessária para o auto-
processamento. Outras regiões do mtDNA parecem conter informações filogenéticas muito
úteis (Freudenstein & Chase 2001), principalmente relacionadas com eventos de
inserção/deleção. A subunidade cinco do gene da NADH desidrogenase também possui
cinco exons e introns evolvidos com o processamento em trans (Souza et al. 1991).
Laroche et al. (1997) encontraram uma boa variação entre espécies de angiospermas para o
intron entre os exons d e e, e embora até o momento essa região não tenha sido estudada
em análises filogenéticas de angiospermas, ela parece promissora, pelo menos para
algumas espécies.
I.6. O Relógio Molecular
Até pouco tempo o estudo da evolução dos organismos era baseado somente em
registros fósseis e evidências genéticas a nível protéico. Com o advento da biologia
molecular e o surgimento de ferramentas poderosas de bioinformática, a facilidade de
acessar e analisar seqüências de DNA tem aumentado, tornando possível, portanto, a
CAPÍTULO I
28
comparação entre espécies através de seus genomas. Com essas novas tecnologias foram
desenvolvidas filogenias moleculares detalhadas para diversos grupos de plantas, nos mais
diferentes níveis taxonômicos.
Uma das pressuposições usadas para a produção de filogenias moleculares é a
hipótese do relógio molecular. Essa hipótese propõe que a taxa de mudanças evolutivas em
nível de seqüências de DNA é constante em diferentes linhagens. A hipótese ainda é
bastante controversa, gerando discussões entre os biólogos evolutivos, especificamente o
debate neutralista x selecionista. Os neutralistas tomam o relógio molecular como base
para inferências sobre a evolução dos organismos supondo a constância das taxas de
mutação neutras (Kimura 1968, 1969, 1983). os selecionistas consideram as variações
encontradas no relógio molecular como evidência contra essa constância. As taxas de
substituições nucleotídicas, ou fixação, em um sítio nucleotídico por ano (k) em uma
população diplóide de tamanho 2N, são iguais ao número de novas mutações (neutras,
deletérias ou vantajosas) que surgirem por ano (u) multiplicado por sua probabilidade de
fixação (f). A expressão matemática para isso é k = 2N.u.f (Li, 1997). Para uma mutação
neutra, a probabilidade de fixação é simplesmente o inverso do tamanho populacional
(1/2N); então a taxa de substituição de uma mutação deste tipo é k = (2N).(1/2N).u = u.
Portanto, a sua taxa de substituição depende somente da taxa de mutação e não de outros
fatores, como o tamanho populacional.
Kimura (1968) postulou que a maioria das mutações, em nível molecular, seria
devida à fixação aleatória das mutações neutras ou quase neutras. Essa hipótese é hoje
conhecida como a teoria neutra da evolução molecular (Kimura, 1983). No entanto,
durante os anos 70 muitos dados comparativos, principalmente para seqüências protéicas
de mamíferos, forneceram exemplos de heterogeneidade no ritmo evolutivo e o debate
CAPÍTULO I
29
sobre a constância do relógio molecular começou. Wu & Li (1985) demonstraram que as
taxas evolutivas de roedores são maiores que as de humanos. As variações encontradas
entre as taxas de substituições podem ser causadas pelas diferenças no tempo de geração
entre as espécies, ou seja, espécies que têm um tempo de geração mais curto teriam taxas
de substituição nucleotídica maiores que aquelas que têm um tempo longo de geração. Por
exemplo, Gaut et al. (1992), através de análises realizadas com o gene rbcL do cloroplasto,
verificaram que em gramíneas as taxas de substituições nucleotídicas eram cinco vezes
maiores que em palmeiras. No entanto, Whittle & Johnston (2003), após a análise de 24
pares de espécies filogeneticamente independentes (cada par contendo uma espécie com
história de vida anual e outra perene, ou espécies arbóreas com tempos de geração
respectivamente curto e longo), não encontraram qualquer evidência de que o tempo de
geração estivesse correlacionado com as taxas evolutivas das regiões nucleares estudadas.
A avaliação precisa do relógio molecular exige que o tamanho dos ramos de uma
árvore filogenética sejam proporcionais; para satisfazer esta exigência há, muitas vezes, a
remoção de algumas espécies da árvore, o que, em muito casos, impossibilita a datação das
divergências, além de fazer uso ineficiente dos dados (Yang & Yoder 2003).
A definição do tamanho do ramo é um dos principais motivos da deficiência dos
métodos que utilizam o pressuposto do relógio molecular. Este é interpretado como o
produto da taxa de evolução (µ) pelo tempo (T), que representa a quantidade de evolução
ocorrida desde o evento da cladogênese. Ao contrário do que é comumente pensado, o
tamanho do ramo não representa a taxa evolutiva µ (Yang & Yoder 2003). Para calcular o
tamanho de um ramo é necessário que se suponha a constância de um dos fatores acima,
para que se calcule o outro. Em uma árvore de máxima verossimilhança ou de distância em
que os ramos variam livremente, supõe-se que T é igual a 1, sendo as diferenças
CAPÍTULO I
30
observadas oriundas exclusivamente da variação na taxa µ. O grande problema dos
métodos que testam o relógio molecular é que eles não calculam µ e T independentemente,
ou seja, sem supor a constância das taxas ao longo dos ramos. A decomposição das duas
quantidades que definem o tamanho de um determinado ramo não é simples, pois a
ausência de informações a priori impossibilita tal cálculo. No entanto, é possível obter-se
informações em relação aos valores de T devido ao registro fóssil, permitindo que se
conheça algo com relação aos tempos de divergência entre as espécies.
I.7. O Relaxamento do Relógio Molecular
Sanderson (1997) foi o primeiro a explorar a questão da decomposição do tamanho
dos ramos de uma árvore filogenética. Ele propôs um método que estima o tempo de
divergência quando as taxas evolutivas variam entre as linhagens, supondo que as
mudanças são autocorrelacionadas e que a taxa de mudança é herdada, a partir de uma
linhagem ancestral, por seus descendentes imediatos. Através de técnicas de otimização, o
método procura pela solução que minimiza as taxas inferidas de mudança.
O programa “r8s”, criado a partir do método proposto e descrito acima (Sanderson
2003b), estima as taxas absolutas de evolução molecular e os tempos de divergência. A
estimativa dos parâmetros é feita de diversas formas, a partir dos padrões de máxima
verossimilhança, em um contexto global, ou postulando um relógio molecular local, para
métodos experimentais semiparamétricos ou não paramétricos que relaxam a estringência
de sua admissão usando procedimentos homogêneos. O ponto de partida é uma árvore
filogenética e a estimativa do comprimento dos ramos (número de substituições ao longo
dos ramos). Além disso, podem ser adicionados um ou mais pontos de calibragem para
CAPÍTULO I
31
permitir uma escala das taxas e tempos para unidades reais. Essas calibragens podem ser
realizadas de duas maneiras: a escolha de uma idade fixa para um da árvore, ou a
imposição de uma idade mínima ou máxima em um determinado nó, o que geralmente
reflete o conteúdo de informações obtidas a partir das evidências fósseis. Os nós terminais
podem ocorrer em qualquer ponto de calibragem, permitindo a investigação da taxa de
variação nas filogenias. Finalmente, é possível determinar-se todos os tempos de
divergência e avaliar a taxa de variação molecular a partir de diversos modelos de
ajustamento (smoothing).
O algoritmo de Sanderson (2002) não utiliza distribuições probabilísticas para
modelar a evolução das taxas e dos tempos e, portanto, é fundamentalmente não-
paramétrico.
Thorne et al. (1998), Kishino et al. (2001) e Thorne & Kishino (2002) propuseram
uma outra solução para o problema da dissociação de tempos e taxas. Esses autores
admitiram explicitamente distribuições probabilísticas. O método usa uma abordagem
baiesiana para inferir os tempos de divergência e as taxas evolutivas. A idéia básica é
adotar distribuições a priori dos parâmetros µ e T e, posteriormente, verificar o impacto
dos dados (alinhamento das seqüências e pontos de calibragem) nessas distribuições.
Este enfoque tem sido amplamente utilizado no cálculo de tempos de divergência,
pois possibilita o uso de múltiplos genes e de modelos evolutivos complexos, ao contrário
do método de Sanderson (1997, 2002). Além disso, incorpora a adoção de intervalos
temporais para os pontos de calibragem. Simulações feitas pelos autores indicam que o
método é robusto e valores a priori diferentes dos parâmetros tendem a convergir para uma
mesma distribuição posterior (Kishino et al. 2001, Thorne & Kishino 2002).
CAPÍTULO I
32
I.8. Padrões de Herança Organelar em Plantas
As plantas possuem três genomas: nuclear, plastidial e mitocondrial. Cloroplastos e
mitocôndrias são organelas eucarióticas de origem endossimbiôntica. A maioria das células
eucarióticas contém dezenas a centenas de mitocôndrias que geram energia, enquanto as
células das plantas contêm dezenas a centenas de cloroplastos que desempenham a
fotossíntese como principal função. Mitocôndrias e cloroplastos são herdados de uma
maneira não-Mendeliana em todos os organismos estudados (revisões em Birky 1995,
2001). A herança dos genomas citoplasmáticos é freqüentemente materna, mas existem
numerosas exceções que resultam em diferentes graus de herança paterna ou biparental do
mtDNA ou cpDNA (Koperlainen 2004). Essa variedade de padrões de herança sugere que
têm sido adotadas diferentes estratégias entre os diferentes organismos considerados. A
perda do padrão universal da herança materna também indica que o sistema não-
Mendeliano não é provavelmente uma mera conseqüência da assimetria no tamanho dos
gametas. Por causa dos variáveis graus de herança uniparental, segregação durante as
divisões mitóticas e meióticas e múltiplas cópias desses genomas em cada célula,
processos evolutivos que agem nos genomas do cloroplasto e da mitocôndria diferem
daqueles que governam os de genomas nucleares.
A maioria das angiospermas exibe herança materna do cpDNA, mas cerca de um
terço dos gêneros investigados mostra algum grau de herança biparental dos cloroplastos
(Corriveau & Coleman 1988, Mogensen 1996, Zhang et al. 2003). Por outro lado, pouco se
sabe sobre a herança do mtDNA em plantas, mas esse parece ser maternalmente herdado
(Sodmergen et al. 2002; Mohanty et al. 2003). Dentre as angiospermas melhor
investigadas estão o gênero Actinidia, que possui herança estritamente paterna do cpDNA
CAPÍTULO I
33
(Testolin & Cipriani 1997, Chat et al. 1999); as espécies Medicago sativa e Turnera
ulmifolia, que exibem herança paterna, materna e biparental (Shore & Triassi 1998); e o
gênero Pelargonium, que possui um padrão de herança biparental para ambos cpDNA e
mtDNA (Guo & Hu 1995). A herança paterna do mtDNA foi detectada em
Cyclobalanopsis glauca (Lin et al. 2003). Casos de padrões de herança organelar não-
usuais têm sido registrados na análise de híbridos interespecíficos ou intragenéricos
produzidos artificialmente, como é o caso do nero Larrea, onde a herança do genoma
plastidial é paterna (Yang et al. 2000). Em cruzamentos entre Citrus-Poncirus (Moreira et
al. 2002), a herança do mtDNA é parcialmente biparental.
Dentre as gimnospermas, as coníferas herdam o cpDNA, exclusiva ou
predominantemente do genitor masculino, enquanto que outros grupos, como Ephedra,
Ginkgo e Zamia, parecem ter herança materna dos cloroplastos (Mogensen 1996;
Koperlainen 2004). Dependendo do grupo de gimnospermas, o mtDNA pode ter herança
materna, paterna ou biparental.
Existe uma variedade de mecanismos pelos quais as organelas podem ser ou não
transmitidas para a prole. Os mecanismos que resultam na supressão da herança
citoplasmática paterna em angiospermas incluem a exclusão ou perda de organelas
citoplasmáticas das células germinativas ou espermáticas, a exclusão do citoplasma
masculino na fusão gamética e a degradação do DNA organelar dentro da célula
germinativa e/ou células espermáticas (Morgensen 1996, Nagata et al. 1997). A eliminação
materna pode ser ocasionada pela transformação das organelas citoplasmáticas ao longo do
ovo/zigoto ou pela sua degeneração antes da fusão gamética (Morgensen 1996, Brums &
Owens 2000). No entanto, nenhum desses mecanismos de eliminação é perfeitamente
efetivo em todos os casos.
CAPÍTULO I
34
Liu et al. (2004) acreditam que o desenvolvimento do controle da herança do
genoma dos cloroplastos ocorreu independentemente nas angiospermas, sendo possível que
a herança materna tenha se tornado dominante antes do seu surgimento Estes autores
pressupõem, ainda, que os mecanismos para a herança dos cloroplastos nessas plantas
devam ter se desenvolvido independentemente e mais tardiamente que os de herança da
mitocôndria, devido ao fato de que o modo de herança dos plastídios varia
consideravelmente, estando associados aos processos de especiação.
O entendimento da diversidade genética é necessário, tanto para o desenvolvimento
de estratégias eficientes de conservação, quanto para o delineamento de programas de
exploração sustentável da biodiversidade. Análises moleculares são úteis para avaliar a
diversidade e filogenia das espécies e para a compreensão dos processos de especiação. A
determinação do modo de herança dos plastídios e mitocôndrias em plantas é um passo
importante para o uso desses genomas no traçado da história evolutiva das espécies e na
compreensão de suas implicações.
CAPÍTULO II
OBJETIVOS
CAPÍTULO II
36
II.1. Geral
O objetivo geral desse trabalho é contribuir para o esclarecimento da história
evolutiva do gênero Passiflora a partir da utilização de seqüências de DNA e diversos
métodos de análise.
II.2. Específicos
1. Analisar as relações filogenéticas dentro do gênero Passiflora, principalmente no
que diz respeito ao seu agrupamento em subgêneros, e contribuir para o melhor
entendimento da taxonomia clássica.
2. Correlacionar os resultados obtidos com características ecológicas e bioquímicas.
3. Datar o surgimento de Passiflora e a diversificação de seus principais subgêneros,
associando essas datas com eventos biogeográficos.
4. Determinar os modos de herança organelar no gênero e tentar correlacioná-los com
a filogenia e a datação de sua diversificação evolutiva.
CAPÍTULO III
1º ARTIGO
A ser submetido para a revista Systematic Biology
PHYLOGENETIC RELATIONSHIPS AMONG Passiflora
(PASSIFLORACEAE) SPECIES: MOLECULAR DATA
STRENGTHEN A NEW TAXONOMIC PROPOSAL FOR
SUBGENERA
Jul– xx –05
Running head: PASSIFLORAS PHYLOGENY
Phylogenetic relationships among Passiflora (Passifloraceae)
species: Molecular data strengthen a new taxonomic proposal
for subgenera
VALÉRIA C. MUSCHNER
1
, ALINE P. LORENZLEMKE
1
, PAKISA D. TOGNI
1
, ARMANDO C.
CERVI
2
, SANDRO L. BONATTO
3
, FRANCISCO M. SALZANO
1
, AND LORETA B. FREITAS
1
1
Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul,
Caixa Postal 15053, 91501–970 Porto Alegre, RS, Brazil; E–mail: [email protected];
2
Departamento de Botânica, Universidade Federal do Paraná, Caixa Postal, 19031, 81531–970,
Curitiba, PR, Brazil
3
Centro de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade
Católica do Rio Grande do Sul, Ipiranga 6681, 90610–001 Porto Alegre, RS, Brazil
Correspondence: Loreta B. Freitas, Departamento de Genética, Instituto de
Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501–
970 Porto Alegre, RS, Brazil. Phone: 55 51 33166715. Fax: 55 51 33166727. E–mail:
loreta.freitas@ufrgs.br
CAPÍTULO III
39
Abstract Passiflora is a genus with more than 500 species, showing large flower
complexity and diversity; its habit range from climbing herbaceous shrubs to trees. These
characteristics condition taxonomic problems. The genus’ first classification divided it into
22 subgenera, and afterwards an additional subgenus was added to them. However,
recently a new classification system grouped the 23 subgenera in just four. To further
understand and complement a first phylogeny of the genus published by us, 104 species,
representing 19 of 23 subgenera of the first classifications, and all four of the most recent
proposal were investigated. Seven molecular markers were used: (a) the rbcL and rps4
genes, trnL intron, and trnL-trnF intergenic spacers of plastid DNA; (b) nad1 b/c and nad5
d/e of mitochondrial DNA; and (c) a partial sequence of the 26S nuclear DNA, totaling
about 6,300 base pairs. The monophyly of Astrophea, Decaloba, and Passiflora subgenera
was highly supported independently of the phylogenetic analysis employed, but the fourth
subgenus (Deidamioides), as originally proposed, proved to be polyphyletic. We hereby
classified a restriction in the delimitation of Deidamioides, and the addition of E. P.
Killip’s Tryphostemmatoides to the subgenera classification, that therefore would be
composed by five taxonomic units.
Key Words: Passiflora, phylogeny, taxonomic classification, cpDNA, mtDNA, nuclear
DNA, combined genetic analysis.
CAPÍTULO III
40
The Passifloraceae family of the Malpighiales order is composed by 19 genera
(APG II, 2003), one of its characteristics being the presence of cyclopentenoid cyanogenic
glycosides and of a hypanthium-like structure that does not bear the stamens. Passiflora is
the largest genus of the family with 525 species distributed especially in the tropical region
(Vanderplank, 1996; Cervi, 1997; Ulmer and MacDougal, 2004). The majority of these
species is herbaceous, but there also shrubs and trees among them. Killip (1938) and
MacDougal (1994) asserted that among the Angiosperms no other group presented such a
large foliar diversity. In addition, its flowers displayed ample variation in size and color,
with the corona and perianth showing diverse orientation and development. Coevolution
with insect pollinators has been suggested as an explanation for these features
(MacDougal, 1994). Based on morphology only (especially flower structures) Killip
(1938) and Escobar (1989) concluded that the genus could be divided into 23 subgenera,
with diverse series and sections.
Feuillet and MacDougal (2003), on the other hand, proposed a drastic taxonomic
reevaluation of the genus that according to them would consist of only four subgenera
(Astrophea, Decaloba, Deidamioides and Passiflora). The Astrophea subgenus remained
unchanged in relation to the previous classification, with 57 species divided in six sections;
214 species were attributed to Decaloba, the majority with x = 6 chromosomes, distributed
by eight supersections and five sections; 13 species, grouped into five sections, were
classified as Deidamioides; while Passiflora included more than 236 species mainly with x
= 9 chromosomes, separated in six supersections, 13 sections, and 11 series. This
classification, however, did not include Old World species. Krosnick and Freudenstein
(2005) studied species of this region (subgenus Decaloba, supersection Disemma)
confirming the supersection monophyly.
CAPÍTULO III
41
The first Passiflora molecular phylogeny, published by Muschner et al. (2003),
included 11 of the previously suggested 23 subgenera, studied for two non-coding regions
[the nuclear ribosomal internal transcribed spacers (nrITS) and the plastid trnL-trnF spacer
regions], while the rps4 plastid gene was also investigated for a more restrict, but
representative sample. They found three clearly defined clades (involving the Passiflora,
Decaloba, and Astrophea subgenera) while the Deidamioides subgenus remained
undefined due to the small number of studied species classified in it. Other attempts to
elucidate the genus’ phylogeny did not yield good association with morphologic and/or
ecological data, and did not agree with Feuillet and MacDougal (2003) proposition in
relation to the number of subgenera and their composition (Yockteng and Nadot, 2004;
Plotze et al., 2005).
Sequences of plastid, mitochondrial, and nuclear (especially ribosomal) DNA
have been extensively utilized to study plant (especially Angiosperm) phylogenies (Soltis
et al., 1998; Qiu et al, 1999; Kuzoff and Gasser, 2000). This strategy of combining
multiple genes with different functions from the three plant genomes should reduce the
homoplasies generated by gene-function and/or genomic specific phenomena, such as
heterogeneity of rates of change, GC-content bias, RNA editing, and protein structural
constraints (Qiu et al., 1999). Rokas et al. (2003) showed that as the number of genes
increases in a phylogenetic analysis, the better the tree reflects the species’ phylogeny. The
same type of relationship was examined by Rokas and Carrol (2005), who concluded that
for phylogenetic precision the number of the genes considered is a more important
determinant than the number of taxa examined. However, branch representativiness should
also be taken into consideration, and when a large number of taxa is being studied the ideal
number of markers should be decided in cost-benefit terms.
CAPÍTULO III
42
The objectives of the present work were: (a) to examine Passiflora’s three
genomes, assessing their phylogenetic utility; (b) test the genus monophyly; (c) compare
the results obtained with Feuillet and MacDougal’s (2003) infrageneric classification; (d)
evaluate different methods of phylogenetic reconstruction; and (e)generally verify the
relationships among species in a large number of such taxa in this genus.
MATERIALS AND METHODS
Taxon sampling
The 104 species representing nineteen of Killip’s (1938) and Escobar’s (1989)
subgenera, as well as all four Feuillet and MacDougal’s (2003) subgenera investigated are
listed in Table 1, together with representatives from seven other genera of Passifloraceae
(Adenia Forssk., Ancistrothyrsus Harms, Barteria Hook.f., Deidamia Noronha ex Thouars,
Dilkea Mast., Mitostemma Mast., Paropsia Noronha ex Thouars) utilized as outgroups.
Tetrastylis Barb.Rodr. (re-classified as Passiflora by Feuillet and MacDougal [2003]), was
also included in our analyses. This sampling involved all species of Passifloraceae from
which we could obtain suitable material to extract DNA, containing taxa from a wide
distributional range in South and Central America. Among the outgroups, representatives
of the two tribes of Passifloraceae were considered, as well as members of the Turneraceae
and Malesherbiaceae, included in the Passifloraceae by APG II (2003).
CAPÍTULO III
43
DNA Extraction, Amplification, and Sequencing
Total DNA was extracted from fresh leaves dried in silica gel or obtained from
herbarium material, using Roy et al.’s (1992) method with a few adaptations.
Seven DNA regions were sampled: the rbcL and rps4 genes, trnL intron and
trnLtrnF intergenic spacer from the plastid genome; nad1 b/c and nad5 d/e introns from
the mitochondrial genome; and a partial portion of the 26S gene from the nuclear
ribosomal genome. These regions were amplified with primers 1F and 1460R (Savolainen
et al., 2000), rps45’ and rps43’ (Souza-Chies et al., 1997), c, d, e and f (Taberlet et al.,
1991), nad1/2 and nad1/3 (Duminil et al., 2002), mt3 and mt6 (Souza et al., 1991), N–
nc26S1 and 1229r (Kuzoff et al., 1998). Sequencing primers were used as listed by these
authors except for the nad1 b/c intron, for which we constructed internal primers specific
for Passiflora. PCR products were purified using the polyethylene glycol / NaCl
precipitation method of Dunn and Blattner (1987). Sequencing was performed on a
MegaBace 1000 (Amersham Biosciences) machine using the DYEnamicTM ET
termination cycle sequencing premix kit (Amersham Biosciences) and following the
manufacturer’s protocol. The sequences were deposited with Genbank (Accession nos.
given in Table 1). Sequence alignments were conducted using the ClustalX 1.81 program
(Thompson et al., 1994, 2001) and manually refined. Regions of ambiguous alignment
were excluded from the analyses.
Model Selection and Phylogenetic Analyses
Models for maximum likelihood (ML), neighbor-joining (NJ), and Bayesian (BA)
analyses were selected based in two approaches, the Akaike Information Criterion (AIC) of
the 56 models implemented in Modeltest (Posada and Crandall, 1998) and the evaluation
CAPÍTULO III
44
of the same 56 models in DT–ModSel (Minin et al., 2003). The latter uses a Bayesian
Information Criterion (BIC) that combines branch–length estimates, model fit, and a
penalty for overfitting in a statistically rigorous way. Since the models chosen by BIC were
practically identical to those selected by AIC, we decided to use the AIC approach.
All analyses were performed for (1) each region separately; (2) the cpDNA data;
(3) the mtDNA data; and (4) the combined seven regions data. The combined set for all
loci includes 6,382 nucleotides with 75 Passiflora species representing all subgenera
investigated and eight outgroups (Adenia, Barteria, Deidamia, Dilkea, Mitostemma,
Paropsia, Malesherbia, and Turnera). In the combined results, 2.87% of the cells were
coded as missing information.
Maximum parsimony – Equally weighted parsimony (maximum parsimony or
MP) analyses were performed by heuristic search with TBR branch swapping, the
MULPARS option, and 10 random–addition replicates. Gaps were treated as missing data.
Since an excessive number of most parsimonious trees did not allow searches to be
completed for the each region separately under the described search parameters, a heuristic
search of 1,000 random addition replicates was conducted, with 100 trees saved per
replicate. Bootstrap statistical support (Felsenstein, 1985) was carried out with 1,000
replications of heuristic search and simple taxon addition, with the ALL TREES SAVED
option. The g1 statistic (Hillis, 1991) of skewed tree-length distribution was calculated
from 10,000 random trees, to measure the phylogenetic information content of the seven
DNA regions independently and for the combined data.
Maximum likelihood – In each ML analysis we used the model of sequence
evolution as suggested by Modeltest. The ML tree estimation used heuristic searches with
neighbor-joining starting trees, and TBR branch swapping was conducted with PAUP*
CAPÍTULO III
45
(Swofford, 1998). We performed 100 replicates of nonparametric bootstrap (Felsenstein,
1985) using the FASTSTEP option, to obtain the confidence of the ML topology. The ML
analysis was also performed in Treefinder (Jobb et al., 2004) and PHYML (Guindon and
Gascuel, 2003), with appropriate models of sequence evolution. The trees obtained by
these two last programs had their likelihood scores recalculated in PAUP* and were then
employed to evaluate the performance in each of the three programs. For this procedure
Shimodaira and Hasegawa’s (1999; SH) test, as well as consensus trees among
phylogenies obtained from different programs were used.
Distances For the distance analyses, trees were constructed in PAUP* using the
neighbor-joining method (NJ; Saitou and Nei, 1987) with models selected by Modeltest,
proportional (p), and logDet (Steel, 1994; Lockhart et al., 1994) distances. LogDet or
paralinear distances were calculated to test the possible influence of nucleotide
composition differences in the phylogeny (Nei and Kumar, 2000). Reliability of the trees
was tested using 10,000 bootstrap replications (Hedges, 1992).
Bayesian analyses – Bayesian phylogeny estimation (BA) was performed in
MrBayes v3.0b4 (Ronquist and Huelsenbeck, 2003). Each gene was assigned to its own
model of sequence evolution. One cold and three heated Markov chain Monte Carlo
(mcmc) chains run for 2x10
6
generations were used, with trees sampled every 100
th
generation, using a random tree as a starting point and a temperature parameter value of
0.2. The mcmc runs were repeated three times as a safeguard against spurious results.
Burn–in, or the time for each parameter to reach a stationary state, was determined by
visual inspection when the log-likelihood values achieved an asymptote over a large
number of generations (the first 2,000 trees were discarded; 200,000 generations for each
CAPÍTULO III
46
analysis). To calculate the posterior probability of each bipartition, a 50% majority–rule
consensus tree was constructed from the remaining trees using PAUP*.
Evolutionary rates The molecular–clock hypothesis was tested with the LR test
by calculating the log likelihood score of the chosen model with the molecular clock
enforced and comparing it with the log likelihood score without the molecular clock
enforced (Muse and Weir 1992; Baldwin and Sanderson 1998). The number of degrees of
freedom is equivalent to the number of terminals minus two (Sorhannus and Van Bell,
1999). The two-cluster test of Takezaki et al. (1995) was performed using PHYLTEST
(Kumar, 1996) to evaluate the relative rates between clades. Additionally, average
nucleotide diversities and their standard errors within each subgenus were calculated by the
Mega3 program (Kumar et al., 2004) with the p-distance option and 2,000 bootstrap
replications.
RESULTS
Data Set Characteristics
The general characteristics for each data set are summarized in Table 2;
alignments are available at the Systematic Biology website. The number of taxa analyzed
for each region differs because in specific cases we were unable to adequately amplify the
DNA of a given segment. Some points needing consideration are present below.
rbcL A nine base pair (bp), or three amino acid (aa) deletion was observed in
Paropsia braunii between positions 120 and 130. It is not know if this deletion may affect
the protein’s function, but the possibility that in this species a pseudogene occurs at this
region should be contemplated. Passiflora sanguinolenta’s sequence presented several stop
CAPÍTULO III
47
codons, also suggesting the presence of a pseudogene, and therefore was excluded from the
analyses. The DNA of P. clathrata, P. palmeri e Paropsia guinensii, were only partially
sequenced, since it was not possible to amplify the whole region. This suggests a large
deletion or mutation in the annealing portion of the reverse primer. The nucleotide
diversity observed in this region is quite high (0.039 ± 0.004; Table 3), and if data from 32
Malpighiales genera (extracted from GenBank) are compared (data not shown) the
diversity obtained is 0.051 ± 0.004.
rps4 Several insertion/deletion events (indels) were observed in this gene.
Passiflora suberosa, P. coriacea e P. xiikzodz share a 21 bp (or 7 aa) insertion between
positions 27 and 49, while P. coriacea and P. xiikzodz have another 33 bp insertion
between 441 and 475.
trnL intron Here also indels were found, and some characterize monophyletic
groups. For instance a six bp deletion occurs between nucleotides (nt) 157 and 154 in
Decaloba.
trnLtrnF intergenic spacer P. coriacea, P. suberosa e P. xiikzodz presented a
15 bp insertion between nt 105 and 121. Almost all species (exception P. clathrata) show a
11 bp insertion between positions 66 and 78 as compared to outgroups. P. actinia, P.
elegans e P. sidaefolia have a five nt duplication between positions 316 and 322.
nad1 b/c intron – Several indels were observed here, but our previous study
(Muschner et al., 2003), showed that the majority is not phylogenetically informative.
Therefore, they were not considered in the final alignment. Large deletions occur between
nt 686 and 1645. A deletion of 768 bp, starting at position 687, is found in P. umbilicata,
while another of 684 bp, beginning at nt 747, is observed in P. mixta, P. trifoliata and P.
tripartita var. mollissima. Additionally, starting at nt 810, there is a 250 bp deletion in P.
CAPÍTULO III
48
multiflora and other of 805 bp in Barteria fistulosa. A deletion of 450 bp, beginning at nt
1,125, is observed in P. actinia, P. caerulea, P. edmundoi, P.racemosa, P. reflexiflora, P.
sidaefolia, P. sprucei e P. tenuifila. The evolutionary meaning of these large deletions will
be discussed by V. C. Muschner et al. in a forthcoming paper. Finally, an 11 bp deletion
between nt 161 and 173 is found in all species of the Decaloba subgenus, but is also
present in Deidamia sp. and Turnera subulata.
nad5 d/e intron Indels can occur, but are less frequent than those found in the
other noncoding regions. Paropsia braunii has a large 173 bp insertion starting at nt 441
and another of 22 bp beginning at nt 610; species of the subgenus Passiflora share a five
bp insertion between positions 316 e 322.
26SThis region practically does not show indels, that when present involve one
nucleotide only.
Phylogenetic Analyses
The topologies of all trees, independently of the types of analysis employed, were
very similar; therefore only selected examples of those obtained by Bayesian or maximum
likelihood methods will be presented. The models selected by Modeltest are listed in Table
4.
The g1 statistics of the distribution of 10,000 random trees indicates that all seven
combinations of data sets are significantly structured, suggesting that the DNA sequence
variation is not random with respect to phylogeny.
Generally, all trees (Figures 1 5) showed three monophyletic groups,
corresponding to the Astrophea, Decaloba, and Passiflora subgenera, plus a small set with
P. cirrhiflora and P. ovalis. P. tryphostemmatoides is consistently positioned at the base of
CAPÍTULO III
49
the Astrophea subgenus. In what follows we will consider first the cpDNA, mtDNA and
nrDNA separately, and afterwards the combined analyses.
Chloroplast DNA Decaloba, Astrophea, and Passiflora clusters are highly
supported by all methods used (MP, NJ, ML and BA; for the latter see Figure 1), bootstrap
(BS) and posterior probabilities (PP) being higher than 80 in almost all isolated analyses.
The exceptions were rbcL and the trnLtrnF intergenic spacer, in which Astrophea is not
supported. However, when the four plastid regions are considered together the statistical
support for Decaloba are equal to 100 in all analyses, vary between 99 and 100 for
Passiflora, and between 88 (ML and BA), 74 (MP) and 60 (NJ) for Astrophea. The coding
regions (rbcL and rps4) show a better resolution within each of the three groups when
compared to the noncoding segments (trnL intron and trnLtrnF intergenic spacer). In the
combined analysis (Figure 1) species having the same main pollinator generally group
together.
Mitochondrial DNA In the isolated analyses only the Decaloba monophyly is
supported. But when the two regions are considered jointly Astrophea is also supported in
the ML and BA (Figure 2) approaches. The interspecific relationships are also better
supported when the two regions are considered together.
Nuclear DNA If the 26S nrDNA gene is considered in isolation, again only the
Decaloba and Astrophea clusters are supported (Figure 3).
Combined data Tests using combined data from different systems showed
limitations in the detection of incongruences (Reeves et al., 2001; Yoder et al., 2001);
therefore we decided, as Wiens (1998), Reeves et al. (2001) and van den Berg et al. (2005),
to closely examine especially groups supported in the individual analyses. But note that in
CAPÍTULO III
50
this case (Figures 4 and 5) Decaloba’s monophyly is supported by PP and BS values of
100, of 98 to 100 for Passiflora, and of 94 to 100 for Astrophea.
Evolutionary Rates
A difference that can be visually observed especially in Figures 4 and 5 is the
larger branches of the Decaloba clade when compared to the others. A Z statistic (p <
0.005) calculated with the PHYLTEST package rejects a constant rate of evolution of the
subgenus Decaloba in relation to the others for all DNA regions examined (except the
trnL–trnF intergenic spacer). This test was made with an equal number of species for each
subgenus, since it showed to be very conservative when all species were compared. The
result of the LR test of the molecular–clock hypothesis for
the combined data set is –2 Ln =
508.96, df = 81, P < 0.001. The nucleotide diversity was always higher in Decaloba, as
compared to the other main subgenera (Table 3).
Comparison Among Phylogenetic Methods
The methods employed (Maximum Parsimony, Neighbor–Joining, Maximum
Likelihood, Bayesian), in a general way generated very similar topologies, although a few
within-cluster relationships changed (data not shown). The SH test among the ML trees
generated by PAUP*, PHYML, and Treefinder showed that they do not differ
significantly.
Taxonomic Implications
Decaloba relationships This subgenus according to Feuillet and MacDougal
(2003), groups Killips’ (1938) Adopogyne, Astephia, Decaloba, Murucuja,
CAPÍTULO III
51
Pseudomurucuja and Psilanthus subgenera. Our results highly support this view (Figures 1
and 5). For instance, P. penduliflora and P. tacsonioides, as well P. tulae and P. murucuja,
placed in different subgenera by Killip (1938), (but not by Feuillet and MacDougal, 2003),
generally cluster together in the majority of our trees. P. coriacea, P. suberosa, and P.
xiikzodz groups together in all trees. Morphologically they are peculiar by the absence of
petals and Feuillet and MacDougal (2003) placed them in supersection Cieca . P.
sanguinolenta, inserted in the Decaloba supersection by Feuillet and MacDougal (2003),
was first classified in the Psilanthus subgenus by Killip (1938). This last author mentioned
that due to its leaf shape, integument, and bract absence this species should show affinity
with P. rubra. Since we could only study the trnL-trnF intergenic spacer of P. rubra, its
relationship of P. sanguinolenta and P. capsularis is supported by a PP = 71 (data not
shown). The relationships of P. sanguinolenta and P. capsularis is supported in all trees
with PP or BS = 100, then our results support their position in section Xerogona. P.
misera, P. pohlii, P. organensis and P. tricuspis generally group together also. According
to Killip (1938) P. misera and P. tricuspis are related due to their relatively wide inner
corona. P. organensis leaves can also be easily confounded with those of P. pohlii and P.
tricuspis. Feuillet and MacDougal (2003) cluster these species together in section
Decaloba. Our results confirm this classification this and relate them with other Decaloba
species. Another interesting cluster is that observed in the cpDNA tree (Figure 1) between
P. helleri and P. talamancensis which, according to Ulmer and MacDougal (2004) show
almost identical leaves. P. lancetillensis and P. microstipula occur in a basal position in the
Decaloba clade, with high support in all analyses except that of the 26S gene (Figure 3).
According to MacDougal and Hansen (2003) they are intimately related; Feuillet and
MacDougal (2003) classified them in the Pterosperma section of the Decaloba subgenus,
CAPÍTULO III
52
but Killip (1938) and Feuillet and MacDougal (1999) placed them in the Deidamioides
subgenus. Our results confirm their relationships with Decaloba, but in a divergent
position from the remaining of this subgenus species (Figures 4 and 5).
Astrophea relationships – This subgenus includes species identified with the
same label by Killip (1938) and Feuillet and MacDougal (2003) and the clade is highly
supported. According to Feuillet and MacDougal (2003) the Astrophea subgenus can be
divided into two supersections: Astrophea and Pseudoastrophea. Our analyses, in a general
way, confirm the existence of these groups, but with some exceptions. A larger number of
species of this subgenus should be studied to verify this question.
Passiflora relationships This group is composed by Killip’s (1938)
Calopathanthus, Distephana, Dysosmia, Dysosmioides, Granadillastrum, Passiflora,
Tacsonia and Tacsonioides subgenera, as well by Escobar’s (1989) Manicata. This
composition is the same proposed by Feuillet and MacDougal (2003). There are clusters
with high statistical support within this subgenus, such as P. actinia, P. elegans and P.
sidaefolia in the combined analyses and cpDNA tree (Figures 1, 4 and 5). Actually,
Muschner et al. (2003) and Lorenz–Lemke et al. (2005) verified that they are evolutionary
closely related. Another well supported cluster refers to P. clathrata, P. foetida and P.
palmeri of Killip’s (1938) Dysosmia subgenus, placed in the subgenus Passiflora,
supersection Stipulata and section Dysosmia by Feuillet and MacDougal (2003). P.
campanulata, P. setulosa and P. villosa classified in the Dysosmioides subgenus by Killip
(1938) cluster with high values of statistical support. P. speciosa and P. vitifolia were
classified in subgenus Distephana by Killip (1938). Feuillet and MacDougal (2003) placed
them in supersection Distephana of Passiflora and we confirmed this classification. They
are both pollinated by hummingbirds. A seven-species cluster with a high bootstrap value
CAPÍTULO III
53
formed by P. antioquiensis, P. trisecta, P. manicata, P. mathewsii, P. tripartita var.
mollissima, P. mixta and P. trifoliata was observed. These species were variously
classified in different groups by morphological analysis (Killip, 1938; Escobar, 1989), but
were included in the supersection Tacsonioides by Feuillet and MacDougal (2003).
Undetermined relationships P. cirrhiflora, classified in the subgenus
Polyanthea by Killip (1938), and Tetrastylis (Passiflora) ovalis, included by Feuillet and
MacDougal (2003) in the Deidamioides subgenus, generally clustered together. This
grouping however shows different positions in the trees of the present study, with
undetermined relationships to Decaloba and/or Passiflora. Besides, the statistical support
of this relationship is high only in the Bayesian analyses of the combined 7 regions (Figure
4) or of the cpDNA tree (Figure 1).
P. tryphostemmatoides, classified in Killip’s (1938) Tryphostemmatoides,
subgenus, but included in the Deidamioides subgenus by Feuillet and MacDougal (2003),
occurs closer to the Astrophea base in all but one of our trees, differing markedly from
species of this subgenus in its mtDNA (Figure 2). We suggest that this species could be
considered a separate subgenus.
Outgroups In the phylogenies involving the seven DNA regions (Figures 4 and
5) Passiflora can be considered as a monophyletic group. Dilkea johannesii and
Mitostemma brevifilis generally occur together at the base of the Passiflora genus cluster,
with the exception of the 26S nrDNA tree (Figure 3). According to Killip (1938), species
of these genera are morphologically very similar, especially in their woody habit.
Deidamia and Adenia always cluster with high statistical support. Curiously, Adenia has
dioic flowers, while Deidamia (and the majority of the Passifloraceae) is hermaphroditic.
Rooting of the trees was made with Malesherbia and Turnera, since despite being included
CAPÍTULO III
54
in the Passifloraceae they are phylogenetically more distant (Wikström et al., 2001). But in
all trees the outgroup genera that cluster together are Barteria and Malesherbia. The first is
classified in Old World’s (Africa and Madagascar) Paropsieae, while Malesherbia occurs
in the Andes and coastal deserts of Chile, Peru and Argentina (Gengler–Nowak, 2003).
Turnera, distributed in subtropical and tropical America (Neffa and Fernández, 2000) and
Paropsia, which occurs in the Old World together with Barteria and Malesherbia, are in a
more basal position as compared to Adenia and Deidamia.
DISCUSSION
Taxonomic Implications
The three main clades found in this study had already been detected by Muschner
et al. (2003) in a first analysis with a smaller number of taxa and molecular markers.
Yockteng and Nadot (2004) also identified the existence of these clades, but proposed five
other subgenera.
The Decaloba subgenus was highly supported in the present study, despite the
fact that only a fraction (14%) of the 214 species classified in it had been studied. Six of
the eight supersections proposed by Feuillet and MacDougal (2003) were studied and the
majority was confirmed by us. For example, P. coriacea, P. suberosa e P. xiikzodz,
classified by them in the Cieca supersection, clustered together in our trees. However, P.
capsularis and P. sanguinolenta of the Xerogona section were inside the Decaloba section
in the combined analyses. Species classified by Feuillet and MacDougal (2003) as the
Pterosperma supersection were always observed in a basal position in relation to Decaloba
in the present study. According to Ulmer and MacDougal (2004) there are two basal
CAPÍTULO III
55
supersections in this subgenus, Pterosperma and Hanhniopathanthus, but the latter was not
represented in our studies. These authors also maintained that Pterosperma would be most
primitive, since it possesses flowers borne off the tendrils.
Another well-supported subgenus is Astrophea, with 57 species according to
Feuillet and MacDougal (2003), and represented here by 12 (21%) species. In a general
way our results confirmed the two supersections proposed by these authors, but a cluster
well supported in almost all of our trees, P. candida plus P. citrifolia, were classified in
different supersections (Pseudoastrophea and Boryastrophea, respectively) by them. In the
two phylogenies including all data (Figures 4 and 5) Astrophea is basal in relation to
Passiflora, with high statistical support. These species, in contrast to other Passiflora that
are herbaceous, lianas or small shrubs, consist of trees, shrubs or woody climbing plants.
Besides, the genus characteristic tendrils are reduced to spines or aculei and the leaves can
reach 95 cm of length, as in P. macrophylla (Ulmer and MacDougal, 2004). As asserted by
Benson et al. (1975), this position suggests that the arborescent habit may be ancestral in
the genus. This is confirmed by the Dilkea – Mitostemma group’s position, basal to
Astrophea, since according to Killip (1938) they could be wood vines, subscandent shrubs,
or small trees, as the Old World genera. Kim et al (2004) maintained that the woody habit
is the ancestral state in several major eudicotyledon clades. Besides Dilkea also does not
posses tentrils.
The subgenus Passiflora is composed by 236 species, of which 24% are here
represented. This subgenus is also highly supported in our analyses, confirming Feuillet
and MacDougal’s (2003) classification. However, although in some cases we could discern
agreement with supersections, sections and/or series of these authors, discrepancies also
occur. For instance, P. mendoncaei, P. reflexiflora and P. luetzelburgii, placed in the
CAPÍTULO III
56
Tacsonioides subgenus by Killip (1938) and classified in the Stipulata supersection,
Tacsonioides section by Feuillet and MacDougal (2003), do not cluster in our phylogenies.
In our analyses the Deidamioides subgenus proposed by Feuillet and MacDougal
(2003) is polyphyletic. Similar results were obtained by Krosnick and Freudenstein (2005).
We suggest that of the three species studied here (P. cirrhiflora, P. ovalis e P.
tryphostemmatoides), only two should be classified as Deidamioides, since P.
tryphostemmatoides does not cluster with them and is placed in the trees near Astrophea,
although with clear differences. A further suggestion, therefore, is that P.
tryphostemmatoides be mantained in the Tryphostemmatoides subgenus of Killip (1938).
Our proposal is that the genus Passiflora should be classified in five subgenera:
Astrophea, Decaloba, Passiflora, Deidamioides and Tryphostemmatoides.
Comparison Among the Three Main Clades
There are significant differences among the three main clades. To begin with, the
species of subgenus Decaloba present significantly smaller flowers than the Passiflora or
Astrophea subgenera (P < 0.05), as initially reported by Muschner et al. (2003). In
addition, Souza et al. (2004) investigated the variation in genome size in eight Passiflora
taxa, seven of the Passiflora and one of the Decaloba subgenera. P. suberosa, the only
Decaloba representative, was the species with the lowest 2C DNA content.
V. C. Muschner et al. (unpublished) analyzed four Passiflora interspecific
hybrids, three from the Passiflora and one from the Decaloba subgenera, in relation to the
sequences of four DNA regions (rps4 gene, trnL intron, trnLtrnF and psbAtrnH
intergenic spacers) and observed that the first group presents exclusively paternal while the
CAPÍTULO III
57
second shows maternal cpDNA inheritance. On the other hand, the mtDNA is inherited
exclusively from the maternal parent in all these hybrids.
Studies on the reproductive systems have been generally performed in P. edulis,
of the Passiflora subgenus (Rêgo et al., 1999, 2000; Suassuna et al., 2003), no reports
existing in Decaloba or Astrophea. The subgenus Passiflora presents autocompatible and
autoincompatible species (Vasconcelos, 1991; Lindberg and Olesen, 2001; Rêgo et al.,
2000; Suassuna et al., 2003). According to Lewis (1979), Passiflora species with large
flowers are autoincompatible, while those with small flowers are autocompatible. The
same is true in Amsinckia (Boraginaceae; Barret, 2002).
As reported by Snow and MacDougal (1993) and De Melo et al. (2001), the
Decaloba subgenus presents x = 6, while the Passiflora subgenus shows x = 9
chromosomes [but P. foetida, of the latter subgenus and studied by De Melo et al. (2001)
has x = 10]. The Astrophea subgenus would have x = 12 like Adenia, strengthening its
basal position within the genus. But De Melo and Guerra (2003) suggested that x = 6
would be the ancestral genome for the genus, while groups with x = 9, x = 10 and x = 12
would have a tetraploid origin with descending disploidy and inactivation of some
redundant gene sites, especially those of 5S rDNA.
Plotze et al. (2005) developed a morphometric method for the analysis of
Passiflora leaves. They studied six species of the Passiflora and four of the Decaloba
subgenera and detected two clusters, one composed by four of six Passiflora species and
the other with species of the two subgenera. Therefore, no clear association between this
characteristic and subgenus classification was found, leaf form not being a good indicator
for this type of comparison.
CAPÍTULO III
58
As previously mentioned Passifloraceae species, including those previously
classified as Turneraceae or Malesherbiaceae, recently referred as the Passifloraceous
group (APG II, 2003) are known to produce, with some few exceptions, cyclopentanoid
cyanohydrin glycosides 1-10. Flacourtiaceae and Achariaceae species also produce these
compounds, but no other plants have this property (Clausen et al., 2002). Jaroszewski et al.
(2002) verified the presence of these substances in P. apetala, P. cuneata, P. indecora, P.
kalbreyeri, P. murucuja, P. perfoliata, P. biflora, P. discophora e P. herbetiana, of the
Decaloba subgenus and in P. x violacea, a hybrid between P. caerulea e P. racemosa, of
the Passiflora subgenus. No such compounds were found in P. aurantia, P. gibertii, P.
ligularis, P. manicata, P. platyloba and P. tripartita, species of the Passiflora subgenus,
nor in P. lindeniana of the Astrophea subgenus. It is therefore possible that the presence of
these substances is restricted to Decaloba, their occurrence in the Passiflora hybrid being
due to the exceptional opening of the respective metabolic route due to the hybridization
process.
The association Heliconius-Passiflora is one of the better studied insect-plant
associations. Heliconiine butterflies only feed, as larvae, Passifloraceae leaves. Benson et
al. (1975) and Brown (1981) reviewed the Heliconiine-Passifloraceae interaction and
concluded that there is specificity between determined groups of Heliconius and different
Passiflora subgenera. Ehrlich and Raven (1964) suggested that these correlations can be
explained by coevolutive processes responsible for the high present diversification of
modern plants and herbivorous insects. Species of the Heliconius numata-melpomene
group feed especially Granadilla (of the Passiflora subgenus) plants. According to these
authors both taxa are considered primitive in their genera, possessing non-specialized
morphology and behavior. On the other hand, members of the Heliconius erato-charitonia
CAPÍTULO III
59
species group feed plants of the Plectostemma (Decaloba) subgenus, while larvae of the
Heliconius sara-sapho group feed plants both of the Plectostemma (Decaloba) and
Astrophea subgenera. These other associations could be derived phenomena. Smiley
(1985) confirmed these relationships and concluded that the Decaloba subgenus evolved
without a chemical barrier against herbivory, while many species of the Passiflora
subgenus are protected from a large number of Heliconius larvae. Besides, species of this
subgenus developed morphologic structures which prevent or disfavor butterfly
oviposition, such as those which resemble egg layers, or present high pilosity (Ulmer and
MacDougal, 2004).
Maternal, Paternal, and Biparental Phylogenies
The mode of inheritance of a characteristic has obvious influence in its evolution
(Harris and Ingram, 1991). In addition, traits inherited by parents of only one side can
furnish precious details about sex-specific conditions important for the evolution of the
organism as a whole, such as interpopulation gene flow (Collevatti et al., 2001, 2003;
Liepelt et al., 2002). Ideally, therefore, evolutionary investigations should include, as was
done in the present study, characteristics inherited just by the maternal or paternal line, as
well as others with biparental inheritance (Shore and Triassi, 1998).
In plants and algae mitochondria and chloroplasts can be inherited through distinct
sexual lineages. Generally, in hermaphrodite species both organelles are transmitted
together by the gamete of the same sex, female in the majority of the Angiosperms
(Dumolin-Lapègue et al., 1998, Moreira et al., 2002) and male in some Gymnosperms
(Chesnoy, 1987; Hagemann, 1992). Exceptions, however, were observed; in Pinaceae
(Neale and Sederoff, 1989) and Actinidia (Actinidiaceae) chloroplasts are paternally and
CAPÍTULO III
60
mitochondria maternally inherited (Chat et al., 1999; Burban and Petit, 2003); while the
opposite was observed in Musa acuminata (Musaceae) and Cucumis (Cucurbitaceae)
(Fauré et al., 1994; Havey et al., 1998).
Similarities and dissimilarities were obtained in our phylogenetic cpDNA,
mtDNA, and nrDNA trees. All of them, however, point for Decaloba subgenus
monophyly. On the other hand, when the placement of the Passiflora and Astrophea
subgenera is considered, intergenomic differences occur. Mention was already made that
the pattern of organelle inheritance differs among these subgenera; if some of the species
considered had a hybrid origin, discrepancies could occur in relation to the others. Another
question refers to different rates of nucleotide substitution; the differences observed
between Decaloba and the other subgenera in this regard were already mentioned. But the
intergenomic differences in such rates should also consider (Riesenberg, et al., 1996; Chat
et al., 2004). In our case it should be pointed out that the four cpDNA regions presented
five times more parsimoniously informative sites than the mtDNA and/or nrDNA markers.
Pollinization Agents
The high floral diversity found in the Passiflora genus is certainly intimately
related to the different pollinization forms that exist in this genus. The corona of filaments,
between the perianth and stamens, is highly variable, showing different colors, forms,
smells, and filament disposition. According to Endress (1994), the series of most external
filaments are involved in pollinator attraction, while the two inner ones furnish mechanical
protection to the nectar chamber.
Passiflora ancestors were probably especially pollinated by bees. Hummingbird
pollinization probably occurred independently more than once in the genus and in all
CAPÍTULO III
61
subgenera that were also pollinated by wasps, butterflies, and bats (MacDougal, 1994).
Examples are seen in the phylogeny of Figure 1.
Pollination by small and large bees are found in Passiflora taxa with flattish to cup-
shaped hypanthia, and with a range of erect, lateral to pendulous flowers. This flower form
is generally found in the Decaloba subgenus, but also in several species of the Passiflora
and Astrophea subgenera (MacDougal, 1994).
According to MacDougal (1994), hummingbird pollination is common in several
Passiflora groups, and was documented in the Granadillastrum, Tacsonia, Dysosmia
(presently Passiflora), Decaloba, Murucuja e Pseudomurucuja (presently Decaloba)
subgenera. In our material widely separated species like P. speciosa and P. vitifolia, in the
Passiflora, P. sanguinolenta, in the Decaloba, and P. amoena, in the Astrophea subgenera
are all pollinated by hummingbirds, suggesting independent origins. The latter observation
agrees with Ulmer and MacDougal’s (2004) assertion that hummingbirds pollinate species
of the Astrophea Boryastrophea section (to which P. amoena belongs).
Passiflora species typically pollinated by bats (P. mucronata and P. galbana, for
instance) seem to attract the animals by their scent (Sazima and Sazima, 1978). This type
of pollination seems also to have independently developed many times in Passiflora, as
suggested by its presence in evolutionary distinct species (P. penduliflora in the Decaloba,
P. galbana, P. trisecta and P. trifoliata in the Passiflora, and P. ovalis in the Deidamioides
subgenera).
CONCLUSIONS
The present study illustrates the utility of molecular analyses for a series of
comparisons of both evolutionary and taxonomic importance. The observed pattern of
CAPÍTULO III
62
genetic variation shows clear intergenomic differences, one especially curious finding
being the large deletions found in the nad1 b/c intron. Also of note is the higher rate of
change observed in the Decaloba clade, which is reflected in higher nucleotide diversity
indices. The three main subgenera identified through the molecular approach show
distinctiveness in flower and genome size, cpDNA inheritance, chromosome numbers,
secondary compounds content, and diverse degree of relationships with pollinators and
predators. In addition to these three subgenera we are proposing the existence of two
others. Within these entities clear associations between patterns of molecular phylogenetic
relationships and morphological traits could be found. We maintain that global evaluations
such as this one, involving different genomes, good phylogenetic markers, and careful
taxonomic sampling, are essential for the unraveling of the complex evolutionary histories
of the organic world.
ACKNOWLEDGMENTS
We thank Mark Chase, Maurizio Vecchia, Marcelo S. Guerra-Filho, Natoniel
Franklin de Melo, Cláudio Mondin, Teonildes S. Nunes, Marcelo C. Dornelas, Cássio van
den Berg, Roxana Yockteng, Sophie Nadot, Karla Gengler, Fernando Campos Neto, Luis
Carlos Bernacci, Alessandra Selbach, Alba Lins and Shawn Krosnick for specimen
donations. This research was financially supported by Programa de Apoio a Núcleos de
Excelência (PRONEX), Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS),
and Pró-Reitoria de Pesquisa da Universidade Federal do Rio Grande do Sul (PROPESQ-
UFRGS).
CAPÍTULO III
63
REFERENCES
APG II. 2003. An update of the Angiosperm Phylogeny Group classification for the orders
and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399–436.
Bakker, F. T., A. Culham, C. E. Pankhurst, and M. Gibby. 2000. Mitochondrial and
chloroplast DNA–based phylogeny of Pelargonium Geraniaceae). Am. J. Bot. 87: 727–
734.
Baldwin, B. G., and M. J. Sanderson. 1998. Age and rate of diversification of the Hawaiian
silversword alliance (Compositae).Proc. Natl. Acad. Sci. USA 95:9402–9406.
Barret, S. C. H. 2002. The evolution of plant sexual diversity. Nat. Rev. Genet. 3:274–284.
Benson, W. W., K. S. Brown, and L. E. Gilbert. 1975. Coevolution of plants and
herbivores: Passion flower butterflies. Evolution 29: 659–680.
Bowe, L. M., G. Coat, and C. W. Depamphilis. 2000. Phylogeny of seed plants based on
all three genomic compartments: Extant Gymnosperms are monophyletic and Gnetales’
closest relatives are Conifers. Proc. Natl. Acad. Sci. USA 97: 4092–4097.
Brown, K. S. 1981. The biology of Heliconius and related genera. Ann. Rev. Entomol. 26:
427–456.
Burban, C., and R. J. Petit. 2003. Phylogeography of maritime pine inferred with organelle
markers having contrasted inheritance. Mol. Ecol. 12: 1487–1495.
Cervi, A. C. 1997. Passifloraceae do Brasil. Estudo do gênero Passiflora L. subgênero
Passiflora. Fontqueria 45: 1–92.
Chat J., L. Chalak, and R. J. Petit. 1999. Strict paternal inheritance of chloroplast DNA and
maternal inheritance of mitochondrial DNA in intraspecific crosses of kiwifruit. Theor.
Appl. Genet. 99: 314–322.
CAPÍTULO III
64
Chat, J., B, Jáuregui, R. J. Petit, and S. Nadot. 2004. Reticulate evolution in kiwifruit
(Actinidia, Actinidaceae) identified by comparing their maternal and paternal
phylogenies. Am. J. Bot. 91: 736–747.
Chaw, S.–M., C. L. Parkinson, Y. Cheng, T. M. Vincent, and J. D. Palmer.2000. Seed
plant phylogeny inferred from all three plant genomes: Monophyly of extant
gymnosperms and origin of Gnetales from conifers. Proc. Natl. Acad. Sci. USA 97:
4086–4091.
Chesnoy L. 1987. La reproduction sexuée des Gymnosperms. Bull. Soc. Bot. France 134:
63–85.
Cho, Y., J. P. Mower, Y.–L. Qiu, and J. D. Palmer. 2004. Mitochondrial rates are
extraordinarily elevated and variable in a genus of flowering plants. Proc. Natl. Acad.
Sci. USA 101: 17741–17746.
Clausen, V., K. Frydenvang, R. Koopman, L. B. Jørgensen, D. K. Abbiw, P. Ekpe, and J.
W. Jaroszewski. 2002. Plant analysis by butterflies: Occurrence of
cyclopentenylglycines in Passifloraceae, Flacourtiaceae, and Turneraceae and
discovery of the novel nonproteinogenic amino acid 2–(3’–cyclopentenyl)glycine in
Rinorea. J. Nat. Prod. 65: 542–547.
Collevatti R. G., D. Grattapaglia, and J. D. Hay. 2001. High resolution microsatellite based
analysis of the mating system allows the detection of significant biparental inbreeding
in Caryocar brasiliense, and endangered tropical tree species. Heredity 86: 60–67.
Collevatti R. G., D. Grattapaglia, and J. D. Hay. 2003. Evidence for multiple maternal
lineages of Caryocar brasiliense populations in the Brazilian Cerrado based on the
analysis of chloroplast DNA sequences and microsatellite haplotype variation. Mol.
Ecol. 12: 105–115.
CAPÍTULO III
65
De Melo, N. F., A. C. Cervi, and M. Guerra. 2001. Karyology and cytotaxonomy of the
genus Passiflora L. (Passifloraceae). Plant Syst. Evol. 226: 69–84.
De Melo, N. F., and M. Guerra. 2003. Variability of the 5S and 45S rDNA sites in
Passiflora L. species with distinct base chromosome numbers. Ann. Bot. 92: 309–316.
Duminil J., M. H. Pemonge, and R. J. Petit. 2002. A set of 35 consensus primer pairs
amplifying genes and introns of plant mitochondrial DNA. Mol. Ecol. Notes 2: 428–
430.
Dumolin–Lapègue S, Pemonge MH, and R. J. Petit. 1998. Association between chloroplast
mitochondrial lineages in oaks. Mol. Biol. Evol. 15: 1321–1331.
Dunn I. S., F. R. Blattner. 1987. Charons 36 to 40: multi enzyme, high capacity,
recombination deficient replacement vectors with polylinkers and polystuffers. Nucl.
Ac. Res. 15: 2677–2698.
Ehrlich, P. R., and P. H. Raven. 1964. Butterflies and plants: A study in coevolution.
Evolution 18: 586–608.
Endress, P. K. 1994. Diversity and evolutionary biology of tropical flowers. Cambridge
University Press, Cambridge.
Escobar, L. K. 1989. A new subgenus and five new species in Passiflora (Passifloraceae)
from South America. Ann. Miss. Bot. Gard. 76: 877–855.
Farris, J. S., M. Källersjö, A. G. Kluge, and C. Bult. 1994. Testing significance of
congruence. Cladistics 10: 315–319.
Fauré S., J.–L. Noyer, F. Carreel, J.–P. Horry, F. Bakry, and C. Lanaud. 1994. Maternal
inheritance of chloroplast genome and paternal inheritance of mitochondrial genome in
bananas (Musa acuminata). Curr. Genet. 25: 265–269.
CAPÍTULO III
66
Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap.
Evolution 39: 783–791.
Feuillet, C. P. and J. M. MacDougal. 1999. Abstract 4295. XVI International Botanical
Congress, Saint Louis, Missouri, USA. http://www.biologie.uni–hamburg.de/b–
online/ibc99/ibc/abstracts/listen/abstracts/4295.html.
Feuillet, C. P., and J. M. MacDougal. 2003. A new infrageneric classification of
Passiflora. Passiflora 13: 34–38.
Freudenstein, J. V., and M. W. Chase. 2001. Analysis of mitochondrial nad1 b–c intron
sequences in Orchidaceae: utility and coding of length change characters. Syst. Bot. 26:
643–657.
Gengler–Nowak, K. M. 2003. Molecular phylogeny and taxonomy of Malesherbiaceae.
Syst. Bot. 28:333–344.
Goffinet B., C. J. Cox, A. J. Shaw, and T. A. J. Hedderson. 2001. The bryophyta (mosses):
Systematic and evolutionary inferences from an rps4 gene (cpDNA) phylogeny. Ann.
Bot. 87: 191–208.
Guindon S., and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large
phylogenies by maximum likelihood. Syst. Biol. 52: 696–704.
Hagemann R. 1992. Plastid genetics in higher plants. Pages 65–96. in Cell organelles (R.G.
Herrmann, ed.). Springer–Verlag, Berlin.
Harris S. A., and R. Ingram. 1991. Chloroplast DNA and biosystematics: The effects of
intraspecific diversity and plastid transmission. Taxon 40: 393–412.
Havey M. J., J. D. McCreight, B. Rhodes, and G. Taurick. 1998. Differential transmission
of the Cucumis organellar genomes. Theor. Appl. Genet. 97: 122–128.
CAPÍTULO III
67
Hedges, S. B. 1992. The number of replications needed for accurate estimation of the
bootstrap P value in phylogenetic studies. Mol. Biol. Evol. 9: 366–369.
Hillis, D. M. 1991. Discriminating between phylogenetic signal and random noise in DNA
sequences. In (M. M. Myamoto, and J. Craft, eds.) Phylogenetic analysis of DNA
sequences, 278 – 294, Oxford University Press, New York.
Jaroszewski J. W., E. S. Olafsdottir, P. Wellendorph, J. Christensen, H. Franzyk, B.
Somanadhan, B. A. Budnik, L. B. Jørgensen, and V. Clausen. 2002. Cyanohydrin
glycosides of Passiflora: Distribution pattern, a saturated cyclopentane derivative from
P. guatemalensis, and formation of pseudocyanogenic alpha–hydroxyamides as
isolation artifacts. Phytochemistry 59: 501–511.
Jobb, G., A. von Haeseler, and K. Strimmer. 2004. TREEFINDER: a powerful graphical
analysis environment for molecular phylogenetics. BMC Evol. Biol. 4: 18.
Killip, E. P. 1938. The American species of Passifloraceae. Field Museum of Natural
History, Botanical Series 19: 1–613.
Kim, S., D. E. Soltis, P. S. Soltis, M. J. Zanis, and Y. Suh. 2004. Phylogenetic
relationships among early-diverging eudicots based on four genes: were the eudicots
ancestrally woody? Mol. Phylogenet. Evol. 31: 16-30.
Krosnick, S. E., and J. V. Freudenstein. 2005. Monophyly and floral character homology
of Old World Passiflora (Subgenus Decaloba: Supersection Disemma) Syst. Bot. 30:
139–152.
Kumar, S. 1996. PHYLTEST: phylogeny hypothesis testing software. Pennsylvania State
University, University Park, Pennsylvania, USA.
Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for Molecular
Evolutionary Genetics Analysis and sequence alignment. Brief. Bioinform. 5:150–163.
CAPÍTULO III
68
Kuzoff R. K., and C. S. Gasser. 2000. Recent progress in reconstructing Angiosperm
phylogeny. Trends Plant Sci. 5: 330–336.
Kuzoff R. K., J. A. Sweere, D. E. Soltis, P. S. Soltis, and E. A. Zimmer. 1998. The
phylogenetic potential of entire 26S rDNA sequences in plants. Mol. Biol. Evol. 15:
251–263.
Lewis, D. 1979. Evolution of incompatibility: The price of a gene bank and long–term
insurance. Pages 53–56. in Sexual incompatibility in plants (D. Lewis, ed.). Edward
Arnold, London.
Liepelt S., R. Bialozyt, and B. Ziegenhagen 2002. Wind–dispersed pollen mediates
postglacial gene flow among refugia. Proc. Natl. Acad. Sci. USA 99: 14590–14594.
Lindberg, A. B., and J. M. Olesen. 2001. The fragility of extreme specialization: Passiflora
mixta and its pollinating hummingbird Ensifera ensifera. J. Trop. Ecol. 17: 323–329.
Lockhart, P. J., M. A. Steel, M. D. Hendy, and D. Penny. 1994. Recovering evolutionary
trees under a more realistic model of sequence evolution. Mol. Bio. Evol. 11: 605–612.
Lorenz–Lemke A. P., V. C. Muschner, S. L. Bonatto, A. C. Cervi, F. M. Salzano, and L. B.
Freitas 2005. Phylogeographic inferences concerning evolution of Brazilian Passiflora
actinia and P. elegans (Passifloraceae) based on ITS (nrDNA) variation. Ann. Bot. 95:
799–806.
MacDougal, J. M. 1994. Revision of Passiflora subgenus Decaloba section
Pseudodysosmia (Passifloraceae). Syst. Bot. Monogr. 41: 1–46.
MacDougal, J. M., and A. K. Hansen. 2003. A new nection of Passiflora, subgenus
Decaloba (Passifloraceae), from Central America, with two new species. Novon 13:
459–466.
CAPÍTULO III
69
Minin, V. , Z. Abdo , P. Joyce , and J. Sullivan. 2003. Performance–based selection of
likelihood models for phylogeny estimation. Syst. Biol. 52: 674–682.
Moreira C. D., F. G. Gmitter, J. W. Grosser, S. Huang, V. M. Ortega, and C. D. Chase
2002. Inheritance of organelle DNA sequences in Citrus-Poncirus intergeneric cross. J.
Hered. 93: 174–178.
Muschner, V. C., A. P. Lorenz, A. C. Cervi, S. L. Bonatto, T. T. Souza–Chies, F. M.
Salzano, and L. B. Freitas. 2003. A first molecular phylogenetic analysis of Passiflora
(Passifloracae). Am. J. Bot. 90: 1229–1238.
Muse,S. V., and B. S. Weir. 1992. Testing for equality of evolutionary rates. Genetics 132,
269–276.
Neale D. B., and R. R. Sederoff. 1989. Paternal inheritance of chloroplast DNA and
maternal inheritance of mitochondrial DNA in loblolly pine. Theor. Appl.Genet.
77:212–216.
Neffa V. G. S., and A. Fernández. 2000. Chromosome studies in Turnera (Turneraceae).
Genet. Mol. Biol. 23: 925–930.
Nei, M., and S. Kumar. 2000. Molecular evolution and phylogenetics. Oxford University
Press, Oxford, UK.
Pérez–Losada M, Bond–Buckup G, Jara CG, and Crandall KA. 2004. Molecular
systematics and biogeography of the southern South American freshwater "crabs"
Aegla (Decapoda: Anomura: Aeglidae) using multiple heuristic tree search approaches.
Syst. Biol. 53: 767–780.
CAPÍTULO III
70
Plotze R. D., M. Falvo, J. G. Padua, L. C. Bernacci, M. L. C. Vieira, G. C. X. Oliveira, and
O. M. Bruno. 2005. Leaf shape analysis using the multiscale Minkowski fractal
dimension, a new morphometric method: A study with Passiflora (Passifloraceae).
Can. J. Bot. 83: 287–301.
Posada, D., and K. A. Crandall. 1998. MODELTEST: Testing the model of DNA
substitution. Bioinformatics 14: 817–818.
Qiu, Y.–L., J. Lee, F. Bernasconi–Quadroni, D. E. Soltis, P. S. Soltis, M. Zanis, E. A.
Zimmer, Z. Chen, V. Savolainen, and M. W. Chase. 1999. The earliest Angiosperms:
Evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–7.
Reeves, G., M. W. Chase, P. Goldblatt, P. Rudall, M. F. Fay, A. V. Cox, B. Lejeune, and
T. Souza–Chies. 2001. Molecular systematics of Iridaceae: evidence from four plastid
regions. Am. J. Bot. 88: 2074–2087.
Rêgo, M. M., C. H. Bruckner, E. A. M. da Silva, F. L. Finger, D. L. de Siqueira, and A. A.
Fernandes. 1999. Self–incompatibility in passion fruit: Evidence of two locus genetic
control. Theor. Appl. Genet. 98: 564–568.
Rêgo, M. M., E. R. go, C. H. Bruckner, E. A. M. da Silva, F. L. Finger, and K. J. C.
Pereira. 2000. Pollen tube behavior in yellow passion fruit following compatible and
incompatible crosses. Theor. Appl. Genet. 101: 685–689.
Riesenberg, L. H., J. Whitton, and C. R. Linder. 1996. Molecular marker incongruence in
plant hybrid zones and phylogenetic trees. Acta Bot. Neerl. 45: 243–262.
Rokas A., and S. B. Carroll. 2005. More genes or more taxa? The relative contribution of
gene number and taxon number to phylogenetic accuracy. Mol. Biol. Evol. 22: 1337–
1344.
CAPÍTULO III
71
Rokas A., B. L. Williams, N. King, and S. B. Carrol. 2003. Genome–scale approaches to
resolving incongruence in molecular phylogenies. Nature 425: 798–804.
Ronquist F., and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference
under mixed models. Bioinformatics 19: 1572–1574.
Roy A., N. Frascaria, J. MacKay, and J. Bousquet. 1992. Segregating random amplified
polymorphic DNAs (RAPDs) in Betula alleghaniensis. Theor. Appl. Genet. 85: 173–
180.
Saitou, N., and M. Nei. 1987. The neighbor–joining method: A new method for
reconstructing phylogenetic trees. Mol. Biol. Evol. 9: 945–967.
Savolainen V., M. W. Chase, S. B. Hoot, C.M. Morton, D. E. Soltis, C. Bayer, M. F. Fay,
A. Y. de Bruijn, S. Sullivan, and Y. L. Qiu. 2000. Phylogenetics of flowering plants
based on combined analysis of plastid atpB and rbcL gene sequences. Syst Biol. 49:
306–362.
Sazima, M., and I. Sazima. 1978. Bat pollination of the passion flower, Passiflora
mucronata, in southeastern Brazil. Biotropica 10: 100–109.
Shimodaira, H., and M. Hasegawa. 1999. Multiple comparisons of loglikelihoods with
applications to phylogenetic inference. Mol. Biol. Evol. 16: 1114–1116.
Shore J. S., and M. Triassi. 1998. Paternally biased cpDNA inheritance in Turnera
ulmifolia (Turneraceae). Am. J. Bot. 85: 328–332.
Smiley, J. T. 1985. Are chemical barriers necessary for evolution of the butterfly–plant
associations? Oecologia 65: 580–583.
Snow, N., and J. M. MacDougal. 1993. New chromosome reports in Passiflora
(Passifloraceae). Syst. Bot. 18: 261–273.
CAPÍTULO III
72
Soltis, D. E., P. S. Soltis, M. E. Mort, M. W. Chase, V. Savolainen, S. B. Hoot, and C. M.
Morton. 1998. Inferring complex phylogenies using parsimony: An empirical approach
using three large DNA data sets for Angiosperms. Syst. Biol. 47: 32–42.
Sorhannus, U., and C. Van Bell. 1999. Testing for equality of molecular evolutionary rates:
A comparison between a relative–rate test and a likelihood ratio test. Mol. Biol. Evol.
16:848–855.
Souza, A. P. M.–F. Jubier, E. Delcher, D. Lancelin, and B. Lejeune. 1991. A trans–splicing
model for the expression of the tripartite nad5 gene in wheat and maize mitochondria.
Plant Cell 3: 1363–1378.
Souza, M. M., G. Palomino, T. N. S. Pereira, M. G. Pereira, and A. P. Viana. 2004. Flow
cytometric analysis of genome size variation in some Passiflora species. Hereditas 141:
31–38.
Souza–Chies, T. T., G. Bittar, S. Nadot, L. Carter, E. Besin, and B. Lejeune. 1997.
Phylogenetic analysis of Iridaceae with parsimony and distance methods using the
plastid gene rps4. Plant Syst. Evol. 204: 109–123.
Steel, M. 1994. Recovering a tree from the Markov leaf colouration it generates under a
Markov model. Appl. Math. Lett. 7: 19–23.
Suassuna, T. M. F., C. H. Bruckner, C. R. de Carvalho, and A. Borém. 2003. Self–
incompatibility in passionfruit: evidence of gametophytic–sporophytic control. Theor.
Appl. Genet. 106: 298–302.
Swofford, D. L. 1998. PAUP*: phylogenetic analysis using parsimony (*and other
methods). Version 4. Sinauer Associates, Sunderland, Massachusetts, USA.
Taberlet, P., L. Gielly, G. Patou, and J. Bouvet. 1991. Universal primers for amplification
of three non–coding regions of chloroplast DNA. Plant Mol. Biol. 17: 1105–1109.
CAPÍTULO III
73
Takezaki, N., A. Rzhetsky, and M. Nei. 1995. Phylogenetic test of the molecular clock and
linearized tree. Mol. Phylogenet. Evol. 12: 823–833.
Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. ClustalW: Improving the
sensivity of progressive multiple sequence weighting, positions–specific gap penalties
and weight matrix choice. Nucl. Ac. Res. 22: 4673–4680.
Thompson, J. D., D. G. Higgins, and T. J. Gibson. 2001. ClustalX. Program available at
fttp://ftp–igbmc.u–strasbg.fr/pub/clustalx/.
Ulmer, T., and J. M. MacDougal. 2004. Passiflora hybrids and cultivars.
http://www.passionflow.co.uk/downloads1.htm.
Ulmer, T., and MacDougal. 2004. Passiflora: Passionflowers of the world. Timber Press,
Portland.
Van den Berg, C., D. H. Goldman, J. V. Freudenstein, A. M. Pridgeon, K. M. Cameron,
and M. W. Chase. 2005. An overview of the phylogenetic relationships within
Epidendroideae inferred from multiple DNA regions and recircumscription of
Epidendreae and Arethuseae (Orchidaceae). Am. J. Bot. 92:613–624.
Vanderplank J. 1996. Passion flowers. 2nd edn. Massachusetts Institute of Technology,
Cambridge.
Varassin, I. G., J. R. Trigo, and M. Sazima. 2001. The role of nectar production, flower
pigments and odour in pollination of four species of Passiflora (Passifloraceae). Bot. J.
Linn. Soc. 136: 139–152.
Vasconcellos, M. A. D. S. 1991. Observaciones sobre incompatibilidad floral y de botones
florales em fase de pré–antesis em el maracuya dulce, Passiflora alata Dryand. Pages
95–97 in Primer simpósio internacional de Passifloras, memórias (F. A. Vallejo, ed.).
Palmira, Colombia.
CAPÍTULO III
74
Werner, O., and J. Guerra. 2004. Molecular phylogeography of the moss Tortula muralis
Hedw. (Pottiaceae) based on chloroplast rps4 gene sequence data. Plant Biol. 6: 147–
157.
Wiens J. J., 1998. Combining data sets with different phylogenetic histories. Syst. Biol. 47:
568–581.
Wikström, N., V. Savolainen, and M. W. Chase. 2001. Evolution of the Angiosperms:
Calibrating the family tree. Proc. Royal Soc. London 268: 2211–2220.
Yockteng, R., and S. Nadot. 2004. Phylogenetic relationships among Passiflora species
based on the glutamine synthetase nuclear gene expressed in chloroplast (ncpGS). Mol.
Phylogenet. Evol. 31: 379–396.
Yoder, A. D., J. A. Irwin, and B. A. Payseur. 2001. Failure of the ILD to determine data
combinability for slow loris phylogeny. Syst. Biol. 50: 408–424.
75
Table 1: List of the species studied, their taxonomic classification, source of collection, and GenBank accession numbers for the DNA sequences.
GenBank numbers
Subgenera or tribe
(Killip, 1938)
This study's
proposal
Species
Data of collection
rbcL rps4 trnL trnL-trnF
nad1 b/c nad5 d/e
26S
Astrophea Astrophea P. amoena L. K. Escobar
Italy, Ripalta Cremasca,
Colection (MV)
DQ123300 DQ123407 DQ123017 DQ123486 DQ123214 DQ123128 DQ122935
P. arborea Spreng.
Panama (RY)
DQ123301 DQ123408 DQ123018 DQ123487 DQ123215 DQ123129 DQ122936
P. candida (P. & E.) Mast.
Italy, Ripalta Cremasca,
Colection (MV)
DQ123302 DQ123409 DQ123019
N/A
DQ123216 DQ123130 N/A
P. ceratocarpa Silveira
Brazil, PA (LCB)
DQ123303 DQ123410 DQ123020 DQ123488 DQ123217 DQ123131 DQ122937
P. citrifolia (Juss.) Mast.
French Guiana (MV)
DQ123304 AY212311 DQ123021 AY210958 DQ123218 DQ123132 DQ122938
P. haematostigma Mart. ex Mast.
Guaratuba, PR (ACC)
DQ123305 AY212292 DQ123022 AY032773 DQ123219 DQ123133 DQ122939
P. kawensis Feuillet
French Guiana (RY)
DQ123306 DQ123411 DQ123023 DQ123489 DQ123220 DQ123134 DQ122940
P. lindeniana Tr. & Pl.
Italy, Ripalta Cremasca,
Colection (MV)
DQ123307 DQ123412 DQ123024 DQ123490 DQ123221 DQ123135 DQ122941
P. macrophylla Spruce ex Mast.
Brazil (MV)
DQ123308 AY212313 DQ123025 AY210965 DQ123222 DQ123136 DQ122942
P. mansoi (Mart.) Mast.
Chapadão do Sul, MS
(ACC)
DQ123309 AY212307 DQ123026 AY102401 DQ123223 DQ123137 DQ122943
P. pittieri Mast.
Italy, Ripalta Cremasca,
Colection (MV)
DQ123310 DQ123413 DQ123027 DQ123491 DQ123224 DQ123138 DQ122944
P. rhamnifolia Mast.
Cabo Frio, RJ (TSN)
DQ123299 DQ123406 DQ123016 DQ123485 DQ123213 DQ123127 N/A
Adopogyne Decaloba P. multiflora L.
Dominica (MV)
DQ123297 DQ123404 DQ123014 AY210967 DQ123211 DQ123125 DQ122933
Astephia P. penduliflora Bertero ex DC.
Blois-France-Greenhouse
(RY)
DQ123298 DQ123405 DQ123015 DQ123484 DQ123212 DQ123126 DQ122934
Decaloba P. capsularis L.
Quatro Barras, PR
(ACC)
DQ123312 DQ123415 DQ123029 AY032775 DQ123226 DQ123140 DQ122946
P. coriacea Juss.
Colombia (MV)
DQ123313 DQ123416 DQ123030 AY210959 DQ123227 DQ123141 DQ122947
P. helleri Peyer
Mexico (MV)
DQ123314 DQ123417 DQ123031 AY210962 DQ123228 DQ123142 DQ122948
P. lobbi subsp. ayaucuchoensis
Skrabal & Weigend
2
Peru (MC)
DQ123315 DQ123419 DQ123032 DQ123493 N/A N/A N/A
P. lobbi subsp. obtusiloba (Mast.)
Skrabal & Weigend
2
Peru (MC)
DQ123316 DQ123418 DQ123033 DQ123494 DQ123229 DQ123143 N/A
P. misera HBK.
Santa Maria, RS (PASS)
DQ123317 DQ123420 DQ123034 AY032777 DQ123230 DQ123144 DQ122949
76
Table 1 (Cont.)
GenBank numbers
Subgenera or tribe
(Killip, 1938)
This study's
proposal
Species
Data of collection
rbcL rps4 trnL trnL-trnF
nad1 b/c nad5 d/e
26S
P. morifolia Mast. in Mart.
Brazil, RS (PASS)
DQ123318 AY212314 DQ123035 AY032780 DQ123231 DQ123145 DQ122950
P. organensis Gardn.
Brazil, PR (ACC)
DQ123319 DQ123421 DQ123036 AY032779 DQ123232 DQ123146 DQ122951
P. ornithoura Mast.
Guatemala (MV)
DQ123320 DQ123422 DQ123037 AY210968 DQ123233 DQ123147 DQ122952
P. pohlii Mast. in Mart.
Pirapora, MG (ACC)
DQ123321 DQ123423 DQ123038 AY032778 DQ123234 DQ123148 DQ122953
P. podlechii Skrabal & Weigend
Peru (MC)
N/A DQ123403 DQ123013 DQ123483 DQ123210 N/A N/A
P. punctata L.
Peru (MV)
DQ123322 DQ123424 DQ123039 AY210969 DQ123235 N/A DQ122954
P. rovirosae Killip
Italy, Ripalta Cremasca,
Colection (MV)
N/A DQ123425 DQ123040 N/A N/A N/A N/A
P. rubra L.
Brazil, PE (MG)
N/A N/A N/A AY032776 N/A N/A N/A
P. rufa Feuillet
French Guiana (MV)
DQ123323 AY212315 DQ123041 AY210971 DQ123236 DQ123149 DQ122955
P. sexflora Juss.
Dominican Republic
(MV)
DQ123324 DQ123426 DQ123042 AY210974 DQ123237 DQ123150 DQ122956
P. suberosa L.
Brazil, RS (PASS)
DQ123325 DQ123427 DQ123043 AY032774 DQ123238 DQ123151 DQ122957
P. talamancensis Killip
Costa Rica (MV)
DQ123326 DQ123428 DQ123044 AY210976 DQ123239 DQ123152 DQ122958
P. tricuspis Mast. in Mart.
Brazil, SP (MCD)
DQ123327 DQ123429 DQ123045 AY102396 DQ123240 DQ123153 DQ122959
P. trifasciata Lemaire
Pitangui, MG (NFM)
DQ123328 DQ123430 DQ123046 AY210980 N/A N/A N/A
P. truncata Regel
Brazil, SC (ACC)
N/A DQ123431 DQ123047 AY102390 N/A N/A N/A
P. vespertilio L.
Brazil, PA (LCB)
DQ123329 DQ123432 DQ123048 DQ123495 N/A N/A N/A
P. xiikzodz MacDougal
Italy, Ripalta Cremasca,
Colection (MV)
DQ123330 DQ123433 DQ123049 AY210975 DQ123241 DQ123154 DQ122960
Deidamioides P. lancetillensis MacDougal &
Meerman
French Guiana (MV)
DQ123331 AY212312 DQ123050 AY210963 DQ123242 DQ123155 DQ122961
P. microstipula Gilbert &
MacDougal
Mexico (MV)
DQ123332 DQ123434 DQ123051 AY210966 DQ123243 DQ123156 DQ122962
Murucuja P. murucuja L.
Blois-France-Greenhouse
(RY)
DQ123345 DQ123442 DQ123064 DQ123501 DQ123255 DQ123168 DQ122974
P. tulae Urban
Puerto Rico (MV)
DQ123346 DQ123443 DQ123065 AY102392 DQ123256 DQ123169 DQ122975
Pseudomurucuja P. cupraea L.
Bahamas (MV)
DQ123378 DQ123459 DQ123102 DQ123513 DQ123274 DQ123186 DQ122993
77
Table 1 (Cont.)
GenBank numbers
Subgenera or tribe
(Killip, 1938)
This study's
proposal
Species
Data of collection
rbcL rps4 trnL trnL-trnF
nad1 b/c nad5 d/e
26S
P. tacsonioides Griseb.
Blois-France-Greenhouse
(RY)
DQ123379 DQ123461 DQ123103 DQ123514 DQ123275 DQ123187 DQ122995
Psilanthus P. sanguinolenta Mast.
Ecology & Evolutionary
Biology Conservatory,
Univ. Connecticut (RY)
N/A DQ123462 DQ123104 DQ123515 DQ123276 DQ123188 DQ122996
Calopathanthus Passiflora P. racemosa Brot.
Brazil, RJ (FCN)
DQ123311 DQ123414 DQ123028 DQ123492 DQ123225 DQ123139 DQ122945
Distephana P. coccinea Aubl.
Peru (MC)
DQ123333 DQ123435 N/A N/A N/A N/A N/A
P. speciosa Gardn.
Brazil, MS (ACC)
DQ123334 AY212293 DQ123052 AY102402 DQ123244 DQ123157 DQ122963
P. vitifolia HBK.
Colombia (MV)
DQ123335 DQ123436 DQ123053 AY210977 DQ123245 DQ123158 DQ122964
Dysosmia P. clathrata Mast.
Brazil, MG (FCN)
DQ123336 DQ123437 DQ123054 DQ123496 DQ123246 DQ123159 DQ122965
P. foetida L.
Brazil, PE (NFM)
DQ123337 AY212291 DQ123055 AY032763 DQ123247 DQ123160 DQ122966
P. palmeri var. sublanceolata
Killip
Italy, Ripalta Cremasca,
Colection (MV)
DQ123338 DQ123438 DQ123056 DQ123497 DQ123248 DQ123161 DQ122967
Dysosmioides P. campanulata Mast.
Brazil, PR (ACC)
DQ123339 AY212317 DQ123057 AY032760 DQ123249 DQ123162 DQ122968
P. setulosa Killip
Brazil, PR (ACC)
DQ123340 AY212297 DQ123058 AY032761 DQ123250 DQ123163 DQ122969
P. villosa Vell.
Brazil, MG (ACC)
DQ123341 AY212308 DQ123059 AY102403 DQ123251 DQ123164 DQ122970
Granalillastrum P. antioquiensis Karst.
Italy, Ripalta Cremasca,
Colection (MV)
DQ123342 DQ123439 DQ123060 DQ123498 DQ123252 DQ123165 DQ122971
P. trisectaMast.
Blois-France-Greenhouse
(RY)
DQ123343 DQ123440 DQ123061 DQ123499 DQ123253 DQ123166 DQ122972
Manicata P. manicata (Juss.) Pers.
Blois-France-Greenhouse
(RY)
DQ123344 DQ123441 DQ123062 DQ123500 DQ123254 DQ123167 DQ122973
Passiflora P. actinia Hook
Brazil, RS (PASS)
DQ123347 AY212301 DQ123065 AY032767 DQ123257 DQ123170 DQ122976
P. acuminata DC.
Brazil, PA (AL)
N/A AY212301 DQ123066 DQ123502 N/A N/A N/A
P. alata Curtis
Brazil, RS (PASS)
DQ123348 AY212323 DQ123067 AY032765 DQ123258 DQ123171 DQ122977
P. ambigua Hemsl.
Brazil, MT (LCB)
DQ123349 DQ123444 DQ123068 DQ123503 DQ123259 DQ123172 DQ122978
P. amethystina Mikan
Brazil, MG (MCD)
N/A AY212323 DQ123069 AY102397 N/A N/A N/A
P. caerulea L.
Brazil, RS (PASS)
DQ123350 AY212316 DQ123070 AY032772 DQ123260 DQ123173 DQ122979
P. cincinnata Mast.
Brazil, MS (ACC)
DQ123351 AY212294 DQ123071 AY102400 DQ123261 DQ123174 DQ122980
78
Table 1 (Cont.)
GenBank numbers
Subgenera or tribe
(Killip, 1938)
This study's
proposal
Species
Data of collection
rbcL rps4 trnL trnL-trnF
nad1 b/c nad5 d/e
26S
P. edmundoi Sacco
Brazil, BA (NFM)
DQ123352 AY212302 DQ123072 AY102399 DQ123262 DQ123175 DQ122981
P. edulis Sims
Brazil, RS (PASS)
DQ123353 AY212303 DQ123073 AY032769 DQ123263 DQ123176 DQ122982
P. eichleriana Mast.
Brazil, RS (PASS)
DQ123354 AY212304 DQ123074 AY102388 N/A N/A N/A
P. elegans Mast.
Brazil, RS (PASS)
DQ123355 AY212295 DQ123075 AY032766 DQ123264 DQ123177 DQ122983
P.exura
Italy, Ripalta Cremasca,
Colection (MV)
DQ123356 DQ123445 DQ123076 DQ123504
N/A
N/A N/A
P. gabrielliana sp. new
French Guiana (MV)
DQ123357 AY212319 DQ123077 AY210960 N/A N/A N/A
. P. galbana Mast.
Camocin S. Felix, PE
(NFM)
DQ123358 DQ123446 DQ123078 AY032770 DQ123265 DQ123178 DQ122984
P. garkey Mast.
French Guiana (MV)
DQ123359 AY212320 DQ123079 AY210961 N/A N/A N/A
P. incarnata L.
Brazil, SP (BGJ)
DQ123360 AY212306 DQ123080 AY032768 DQ123266 DQ123179 DQ122985
P. ischnoclada
Brazil, PA (LCB)
N/A DQ123447 DQ123081 DQ123505 N/A N/A N/A
P. jilekii Wawra
Brazil, SC (ACC)
DQ123361 AY212318 DQ123082 AY102387 DQ123267 DQ123180 DQ122986
P. kermesina Link & Otto
Brazil, SP (BGJ)
N/A DQ123448 DQ123083 AY032762 N/A N/A N/A
P. maliformis L.
Dominica (MV)
DQ123362 AY212321 DQ123084 AY210964 DQ123268 DQ123181 DQ122987
P. miersii Mast. in Mart.
Brazil, SP (PASS)
DQ123363 DQ123449 DQ123085 AY102395 DQ123269 DQ123182 DQ122988
P. mucronata Lam.
Brazil, PE (MG)
N/A DQ123450 DQ123086 DQ123506 N/A N/A N/A
P. nitida Kunth
Brazil, MT (LCB)
DQ123364 DQ123451 DQ123087 N/A N/A N/A N/A
P. odontophylla Harms ex Glaz.
Brazil, MG (FCN)
DQ123365 DQ123452 DQ123088 DQ123507 N/A N/A N/A
P. quadrangularis L.
Brazil, SP (BGJ)
DQ123366 AY212322 DQ123089 AY032764 N/A N/A N/A
P. recurva Mast in Mart.
Brazil, MG (ACC)
DQ123367 AY212310 DQ123090 AY102391 N/A N/A N/A
P. ripariaMart.
Brazil, PA (LCB)
DQ123368 DQ123453 DQ123091 DQ123508 N/A N/A N/A
P. serratifolia L.
Surinam (MV)
DQ123369 DQ123454 DQ123092 AY210973 N/A N/A N/A
P. serratodigitata L.
Martinique (MV)
DQ123370 DQ123455 DQ123093 AY210972 N/A N/A N/A
P. setacea DC.
Brazil, SP (BGJ)
DQ123371 AY212296 DQ123094 AY102398 N/A N/A N/A
P. sidaefolia M. Roemer
Brazil, MG (MCD)
DQ123372 AY212298 DQ123095 AY102394 DQ123270 DQ123183 DQ122989
P. sprucei Mast.
Italy, Ripalta Cremasca,
Colection (MV)
DQ123373 DQ123456 DQ123096 DQ123509 DQ123271 DQ123184 DQ122990
P. tenuifila Killip
Brazil, RS (PASS)
DQ123374 AY212299 DQ123097 AY032771 DQ123272 N/A DQ122991
79
Table 1 (Cont.)
GenBank numbers
Subgenera or tribe
(Killip, 1938)
This study's
proposal
Species
Data of collection
rbcL rps4 trnL trnL-trnF
nad1 b/c nad5 d/e
26S
P. trintae Sacco
Brazil, BA (TSN)
DQ123375 DQ123457 DQ123098 DQ123510 N/A N/A N/A
P. urubicensis Cervi
Brazil, SC (ACC)
N/A AY212300 DQ123099 AY102393 N/A N/A N/A
P. watsoniana Mast.
Brazil, BA (AS)
DQ123376 DQ123458 DQ123100 DQ123511 N/A N/A N/A
Tacsonia P. mathewsii (Mast.) Killip
Blois-France-Greenhouse
(RY)
DQ123380 DQ123463 DQ123105 DQ123516 DQ123277 DQ123190 DQ122994
P. mixta L. f.
(RY)
DQ123381 DQ123464 DQ123106 DQ123517 DQ123278 DQ123191 DQ122997
P. tripartita var. mollissima
(Juss.) Poir.
(RY)
DQ123382 DQ123465 DQ123107 DQ123518 DQ123279 DQ123192 DQ122998
P. trifoliata Cav.
Peru (MC)
DQ123383 DQ123466 DQ123108 DQ123519 DQ123280 DQ123193 N/A
Tacsonioides P. luetzelburgii Harms
Brazil, BA (TSN)
DQ123384 DQ123467 DQ123109 DQ123520 DQ123281 DQ123194 DQ122999
P. mendoncaei Harms
Brazil, PR (ACC)
DQ123385 DQ123468 DQ123110 AY102389 DQ123282 N/A DQ123000
P. reflexiflora Cav.
Ecuador (MV)
DQ123386 DQ123469 DQ123111 AY210970 DQ123283 DQ123195 DQ123001
P. umbilicata (Griseb.) Harms
Blois-France-Greenhouse
(RY)
DQ123387 DQ123470 DQ123112 DQ123521 DQ123284 N/A DQ123002
Polyanthea Deidamioides P. cirrhiflora Juss.
Italy, Ripalta Cremasca,
Colection (MV)
DQ123377 DQ123459 DQ123101 DQ123512 DQ123273 DQ123185 DQ122992
Genus P. ovalis
Brazil, BA (TSN)
DQ123401 AY216662 DQ123122 AY210978 DQ123295 DQ123207 DQ123010
Tryphostemmatoides
Tryphostemmatoides
P. tryphostemmatoides Harms
Blois-France-Greenhouse
(RY)
DQ123388 DQ123471 DQ123113 DQ123522 DQ123285 DQ123196 DQ123003
Passifloreae tribe Adenia isoalensis
(MC)
DQ123389 DQ123472 DQ123115 N/A DQ123286 DQ123198 DQ123004
Adenia keramanthus
(MC)
DQ123390 DQ123473 DQ123114 AY102405 DQ123287 DQ123197 DQ123005
Ancistrothyrsus sp.
Peru (MC)
DQ123391 DQ123474 N/A DQ123523 N/A N/A N/A
Deidamia sp.
(MC)
DQ123394 DQ123477 DQ123117 DQ123526 DQ123289 DQ123201 DQ123007
Dilkea cf johannesii Barb. Rodr.
Peru (MC)
DQ123399 DQ123478 DQ123118 DQ123527 DQ123290 DQ123202 DQ123008
Mitostemma brevifilis
Brazil, MS (ACC)
DQ123400 AY212309 DQ123119 AY102386 DQ123291 DQ123203 DQ123009
Paropsieae tribe Barteria fitulosa
Nigeria (MC)
DQ123392 DQ123475 N/A DQ123524 DQ123288 DQ123199 DQ123006
Barteria sp.
(MC)
DQ123393 DQ123476 DQ123116 DQ123525 N/A DQ123200 N/A
Paropsia braunii
Tanzania (MC)
DQ123395 DQ123479 N/A N/A N/A DQ123204 N/A
Paropsia brazzeana
Africa (MC)
DQ123396 DQ123480 DQ123120 DQ123528 DQ123292 DQ123205 N/A
80
Table 1 (Cont.)
GenBank numbers
Subgenera or tribe
(Killip, 1938)
This study's
proposal
Species
Data of collection
rbcL rps4 trnL trnL-trnF
nad1 b/c nad5 d/e
26S
Paropsia guneensis
Gold Coast (MC)
DQ123397 DQ123481 N/A N/A N/A N/A N/A
Paropsia madagascariensis
(MC)
AF206802 AY216663 DQ123121 AY102404 DQ123293 DQ123206 N/A
Malesherbiaceae Malesherbia linearifolia
Chile (KG, SK)
DQ123402 DQ123482 DQ123123 DQ123529 DQ123294 DQ123208 DQ123011
Turneraceae Turnera subulata
Brazil, BA (CB)
DQ123398 N/A DQ123124 DQ123530 DQ123296 DQ123209 DQ123012
Collectors: ACC = A. C. Cervi; AL = A. Lins; AS = A. Selbach; BGJ = Banco de Germoplasma de Jaboticabal; CB = C. van den Berg; FCN = F. Campos
Neto; KG = K. Gengler; LCB = L. C. Bernacci; MC=Mark Chase; MCD = M. C. Dornelas; MG = M. Guerra; MV = M. Vecchia; NFM = N. F. Melo; PASS =
our group; RY = R. Yockteng; SK = S. Krosnick; TSN = T. S. Nunes.
Brazilian states: BA = Bahia; MG = Minas Gerais; MS = Mato Grosso do Sul; MT = Mato Grosso; PA = Pará; PR = Paraná; PE = Pernambuco; RJ = Rio de
Janeiro; RS = Rio Grande do Sul; SC = Santa Catarina; SP = São Paulo
81
TABLE 2: Number of taxa and outgroups considered, sequence and phylogenetic tree characteristics of the data.
DNA regions
Combined data
Characteristics
rbcL rps4
intron
trnL trnL–trnF
nad1 b/c nad5 d/e 26S
cpDNA mtDNA All
Number of taxa 93 100 99 100 77 72 71 99 77 74
Number of outgroups 17 14 12 12 11 13 9 15 9 9
Sequence characteristics
Length of sequenced region
(range)
683 – 1345 479 – 600 314 – 546 239 – 324
898 – 1610 1103 – 1357 722 – 1125
1111 – 2773 771 – 2063
4 430 – 5 913
Aligned length
1345 666 664 393 1787 1545 1127 3068 2187 6382
Analyzed aligned length
1345 666 664 393 843 1344 1127 3068 2187 6382
Variable sites
376 247 178 155 180 228 227 965 342 1480
Parsimony informative sites
237 178 109 71 90 83 123 592 121 705
Pairwise uncorrected
distances (range, %)
a
0 – 9.1 0 – 10.0 0 – 6.0 0 – 13.3 0 – 4.5 0 – 3.3 0 – 4.2 0 – 16.2 0 – 4.5 0 – 5.4
Average AT content
55.3 63.4 69.6 64.5 46.0 52.1 39.4 60.8 49.6 53.0
Tree characteristics
Parsimony
Number of trees
57 419 2 069 620 1 205 5 382 132 4 2 427 576
Length
951 519 294 271 208 320 549 2 233 438 2 862
CI/RI
b
0.51/0.81 0.65/0.89 0.74/0.92 0.72/0.89
0.92/0.96 0.80/0.90 0.52/0.78 0.56/0.82 0.84/0.93 0.62/0.82
Likelihood
PAUP score
7 813.471 3 956.488 2 858.708 2 212.631
2 575.551 3 846.605 4 598.699 18 268.774 6 040.234 27 418.611
PhyML score
7 812.643 3 998.949 2 834.748 2 160.828
2 544.575 3 895.092 4 635.927 18 294.505 6 022.834 27 430.730
Treefinder score
7 992.700 3 932.725 2 751.871 2 168.797
2 577.286 3 802.093 4 722.206 18 494.149 6 004.187 27 429.117
a
Without outgroups.
b
Consistency Index / Retention Index.
82
TABLE 3: Average values for the nucleotide diversity found in the seven DNA regions. Values within parentheses refer to standard errors.
rbcL rps4 trnL intron trnL–trnF nad1 b/c nad5 d/e 26S
Total 0.039 (0.004) 0.053 (0.005) 0.017 (0.004) 0.043 (0.009) 0.015 (0.003) 0.013 (0.002) 0.006 (0.002)
Passiflora genus 0.033 (0.004) 0.041 (0.004) 0.025 (0.004) 0.041 (0.009) 0.013 (0.003) 0.011 (0.002) 0.012 (0.002)
Passiflora subgenus 0.013 (0.002) 0.006 (0.001) 0.008 (0.002) 0.014 (0.004) 0.005 (0.001) 0.001 (0.000) 0.007 (0.001)
Decaloba subgenus 0.029 (0.003) 0.033 (0.004) 0.021 (0.003) 0.033 (0.005) 0.009 (0.001) 0.010 (0.002) 0.016 (0.002)
Astrophea subgenus 0.007 (0.001) 0.018 (0.003) 0.013 (0.003) 0.014 (0.004) 0.001 (0.000) 0.001 (0.000) 0.008 (0.001)
Outgroups 0.053 (0.005) 0.095 (0,008) 0.020 (0.005) 0.051 (0.007) 0.042 (0.003) 0.027 (0.002) 0.029 (0.001)
83
TABLE 4: Models selected by Modeltest and used in the Bayesian (BA) and Maximum
Likelihood (ML) inferences.
DNA region Model Selected by AIC
rbcL GTR+I+G
Shape = 0.5651 Pinvar = 0.8313
rps4 TVM+I+G
Shape = 1.1134 Pinvar = 0.2475
intron trnL GTR+I+G
Shape = 1.1285 Pivar = 0.1483
trnL–trnF GTR+G
Shape = 0.7787 Pivar = 0
nad1 b/c TVM+G
Shape = 0.7621 Pivar = 0
nad5 d/e GTR+I+G
Shape = 0.9423 Pivar = 0.3599
26S GTR+I+G
Shape = 0.5061 Pivar = 0.6080
cp TVM+I+G
Shape = 0.8897 Pinvar = 0.4484
mt TVM+I+G
Shape = 0.9362 Pinvar = 0.4690
Combined GTR+I+G
Shape = 0.8313 Pinvar = 0.5651
84
Figure 1: Phylogenetic tree based on the four cpDNA regions and obtained by the Bayesian
approach. Numbers above the branches refer to posterior probabilities (PP)
values. Pollinator agents are represented as follows: = bat; =
hummingbird; = wasp; = bee.
Figure 2: Phylogenetic tree considering the two mtDNA regions, obtained by the
Bayesian method. Numbers above the branches refer to posterior
probabilities (PP) values.
Figure 3: Phylogenetic tree for the 26S nrDNA gene obtained by the Bayesian
approach. Numbers above the branches refer to posterior probabilities (PP)
values.
Figure 4: Phylogenetic tree considering all seven DNA regions studied by the
Bayesian analysis. Numbers above the branches refer to posterior
probabilities (PP) values.
Figure 5: Maximum likelihood phylogenetic tree considering all the seven DNA
regions. Numbers above the branches refer to bootstrap (BS) values.
85
Figure 1
P. podlechii
P. lobii var. ayaucuchoensis
P. rufa
P. truncata
P. morifolia
P. multiflora
P. penduliflora
P. tacsonioides
P. helleri
P. talamancensis
P. murucuja
P. tulae
P. misera
P. pohlii
P. trifasciata
P. vespertilio
P. organensis
P. tricuspis
P. punctata
P. ornithoura
P. capsularis
P. sanguinolenta
P. sexf lora
P. coriacea
P. suberosa
P. xiikzodz
P. cupraea
P. lancetillensis
P. microstipula
P. cirrhiflora
Tetrastylis ovalis
P. racemosa
P. galbana
P. mucronata
P. campanulata
P. set ulosa
P. villosa
P. amethystina
P. exura
P. garkey
P. kermesina
P. miersii
P. watsoniana
P. edmundoi
P. urubiscencis
P. caerulea
P. eichleriana
P. tenui fila
P. sprucei
P. reflexif lora
P. ischnoclada
P. jilekii
P. mendoncae
P. umbi licata
P. coccine a
P. speciosa
P. vitifolia
P. recurva
P. set acea
P. trintae
P. actinia
P. elegans
P. sidaefolia
P. alat a
P. quadrangularis
P. ambi gua
P. riparia
P. odontophylla
P. gabrielliana
P. nitida
P. incarnata
P. serratifolia
P. serratodigitata
P. anti oquiensis
P. mani cata
P. mathewsii
P. tripartita
P. mixta
P. trisecta
P. trifol iata
P. clathrata
P. foetida
P. palm eri
P. cincinnata
P. eduli s
P. maliformis
P. luetzelburgii
P. rhamnifolia
P. haematostigma
P. ceratocarpa
P. kawensis
P. mansoi
P. amoena
P. candida
P. citrifolia
P. lindeniana
P. macrophylla
P. pittieri
P. tryphostemmatoides
P. arborea
Dilkea johannesii
Mitostemma brevifilis
Adenia isoalensis
Deidamia sp.
Adenia keramanthus
Ancistrothyrsus sp.
Barteria fistul osa
Paropsia guineensis
Paropsia braunii
Barteria sp.
Paropsia brazzeana
Paropsia madagascariensis
Malesherbia linearifolia
Turnera subulata
100
93
91
92
93
100
99
100
100
100
99
63
84
100
75
65
100
100
78
100
90
100
79
85
100
91
78
97
92
100
100
100
100
100
100
99
100
100
100
100
64
87
69
100
100
60
64
74
93
52
95
100
67
100
65
99
79
97
81
100
71
100
100
75
100
93
99
83
77
100
100
85
91
73
100
94
96
76
100
100
100
100
93
100
100
83
98
100
91
100
100
99
100
100
87
93
93
78
96
100
Subgenus
Decaloba
Subgenus Deidamioides
Subgenus
Passiflora
Subgenus
Astrophea
Subgenus Tryphostemmatoides
86
Figure 2
P. podlechii
P. multiflora
P. penduliflora
P. talamancensis
P. murucuja
P. tulae
P. tacsonioides
P. helleri
P. misera
P. pohlii
P. organensis
P. tricu spis
P. ornitho ura
P. punctata
P. cupraea
P. capsularis
P. sanguinolenta
P. sexflora
P. coriacea
P. suberosa
P. xiikzodz
P. morifolia
P. rufa
P. lobii var. ayaucuchoensis
P. lancetillensis
P. microstipula
P. amoena
P. candida
P. citrifolia
P. rhamnifolia
P. arborea
P. ceratocarpa
P. haematostigma
P. kawensis
P. lindeniana
P. macrophylla
P. mansoi
P. pittieri
Parop sia brazzeana
P. racemosa
P. edmundoi
P. tenuifila
P. miersii
P. sprucei
P. reflexiflora
P. coccinea
P. speciosa
P. vitifolia
P. campanulata
P. setulosa
P. villosa
P. incarnata
P. actinia
P. alata
P. umbilicata
P. ambigua
P. caerulea
P. cincinn ata
P. edulis
P. elegans
P. galbana
P. jilekii
P. maliformis
P. sidaefolia
P. luetzelburg ii
P. mendoncae
P. clathrata
P. foetida
P. palmeri
P. antioquiensis
P. manica ta
P. mathew sii
P. trisecta
P. trifoliata
P. mixta
P. tripartita
Adenia isoalensis
Deidamia sp.
P. cirrhiflora
Tetrastylis ovalis
P. tryphostemmatoides
Dilkea johannesii
Mitostemma brevifilis
Turnera subulata
Barteria fistulosa
Malesherbia linearifolia
86
86
68
93
96
98
100
63
62
79
100
65
99
97
86
64
75
100
100
100
90
100
74
86
87
92
95
100
100
94
99
58
100
99
91
100
71
58
Subgenus
Decaloba
Subgenus
Passiflora
Subgenus
Astrophea
Subgenus Deidamioides
Subgenus Tryphostemmatoides
87
Figure 3
P. multiflora
P. coriacea
P. suberosa
P. xiikzodz
P. penduliflora
P. capsularis
P. sanguinolenta
P. helleri
P. misera
P. organensis
P. pohlii
P. tricuspis
P. cupraea
P. ornithoura
P. tacsonioides
P. punctata
P. sexflora
P. talamancensis
P. murucuja
P. tulae
P. rufa
P. morifolia
Adenia isoalensis
Deidamia sp.
Adenia keramanthus
P. lancetillensis
P. microstipula
P. amoena
P. ceratocarpa
P. kawensis
P. mansoi
P. haematostigma
P. pittieri
P. citrifolia
P. arborea
P. lindeniana
P. macrophylla
P. tryphostemmatoides
P. cirrhiflora
Tetrastylis ovalis
Dilkea johannesii
Mitostemma brevifilis
P. racemosa
P. galbana
P. clathrata
P. foetida
P. palmeri
P. antioquiensis
P. mathewsii
P. mixta
P. tripartita
P. trisecta
P. luetzelburgii
P. campanulata
P. setulosa
P. villosa
P. actinia
P. alata
P. ambigua
P. caerulea
P. incarnata
P. edmundoi
P. miersii
P. tenuifila
P. jilekii
P. maliformis
P. sidaefolia
P. sprucei
P. mendoncae
P. reflexiflora
P. umbilicata
P. speciosa
P. vitifolia
P. cincinnata
P. edulis
P. elegans
P. manicata
Barteria fistulosa
Malesherbia linearifolia
Turnera subulata
53
95
61
57
76
54
54
99
99
52
62
80
72
80
96
100
61
86
55
85
100
99
100
90
100
81
86
93
81
99
71
100
97
65
67
85
88
97
98
69
52
100
79
98
93
Subgenus
Decaloba
Subgenus
Passiflora
Subgenus
Astrophea
Subgenus Tryphostemmatoides
Subgenus Deidamioides
Subgenus Decaloba
88
Figure 4
P. multiflora
P. penduliflora
P. tacsonioides
P. helleri
P. talamancensis
P. murucuja
P. tulae
P. misera
P. pohlii
P. organensis
P. tricuspis
P. punctata
P. ornithoura
P. cupraea
P. capsularis
P. sanguinolenta
P. sexflora
P. coriacea
P. suberosa
P. xiikzodz
P. lobii var. ayaucuchoensis
P. rufa
P. morifolia
P. lancetillensis
P. microstipula
P. cirrhiflora
Tetrastylis ovalis
P. racemosa
P. galbana
P. campanulata
P. setulosa
P. villosa
P. caerulea
P. edmundoi
P. miersii
P. jilekii
P. mendoncae
P. sprucei
P. reflexiflora
P. tenuifila
P. umbi licata
P. speciosa
P. vitifolia
P. actinia
P. elegans
P. sidaefolia
P. alata
P. ambigua
P. incarnata
P. cincinnata
P. edulis
P. maliformis
P. luetzelburgii
P. clathrata
P. foetida
P. palmeri
P. antioquiensis
P. mani cata
P. mathewsii
P. tripartita
P. mixta
P. trisecta
P. trifoliata
P. rahmnifolia
P. haematostigma
P. ceratocarpa
P. kawensis
P. mansoi
P. amoena
P. candida
P. citrifolia
P. lindeniana
P. macrophylla
P. pittieri
P. tryphostematoides
Dilkea johannesii
Mitostemma brevifilis
Adenia sp.
Deidamia sp.
Paropsia sp.
Turnera subulata
Barteria sp.
Malesherbi a linearifolia
97
100
100
100
99
100
96
100
100
60
100
100
100
67
100
100
100
95
100
100
100
100
100
100
100
100
100
97
100
100
100
100
100
85
100
100
72
100
100
100
76
73
100
100
100
100
100
100
95
100
88
100
100
96
97
68
100
100
100
100
92
100
65
100
100
100
60
99
100
97
100
97
99
100
99
100
100
Subgenus
Decaloba
Subgenus
Passiflora
Subgenus
Astrophea
Subgenus Tryph ostemmatoide s
Subgenus Deidamioides
89
Figure 5
P. multiflora
P. lobii var. ayaucuchoensis
P. rufa
P. morifolia
P. penduliflora
P. tacsonioides
P. helleri
P. talamancensis
P. murucuja
P. tulae
P. misera
P. pohlii
P. organensis
P. tricuspis
P. punctata
P. ornithoura
P. capsularis
P. sanguinolenta
P. sexflora
P. coriacea
P. suberosa
P. xiikzodz
P. cupraea
P. lancetillensis
P. microstipula
P. cirrhiflora
Tetrastylis ovalis
P. racemosa
P. galbana
P. tenuifila
P. edmundoi
P. miersii
P. caerulea
P. campanulata
P. setulosa
P. villosa
P. jilekii
P. mendoncae
P. sprucei
P. reflexiflora
P. umbilicata
P. speciosa
P. vitifolia
P. actinia
P. elegans
P. sidaefolia
P. alata
P. ambigua
P. incarnata
P. cincinnata
P. edulis
P. maliformis
P. luetzelburgii
P. clathrata
P. foetida
P. palmeri
P. antioquiensis
P. mathewsii
P. tripartita
P. mixta
P. manicata
P. trisecta
P. trifoliata
P. rhamnifolia
P. haematostigma
P. ceratocarpa
P. mansoi
P. kawensis
P. amoena
P. candida
P. citrifolia
P. lindeniana
P. macrophylla
P. pittieri
P. tryphostemmatoides
Dilkea johannesii
Mitostemma brevifilis
Adenia sp.
Deidamia sp.
Paropsia sp.
Turnera subulata
Barteria sp.
Malesherbia linearifolia
10 changes
87
74
89
75
100
92
100
100
100
100
100
75
58
89
95
80
79
65
69
100
100
96
100
88
100
74
100
95
100
100
100
100
100
70
72
60
71
100
93
93
94
95
95
98
100
77
59
77
64
87
100
72
73
78
73
60
Subgenus
Decaloba
Subgnenus
Passiflora
Subgenus
Astrophea
Subgenus Deidamioides
Subgenus Tryphostemmatoides
CAPÍTULO IV
2º ARTIGO
A ser submetido para a revista Systematic Botany
DIVERGENCE TIME AND EVOLUTIONARY RATES IN Passiflora
Running head: PASSIFLORA EVOLUTIONARY HISTORY
Divergence Time and Evolutionary Rates in Passiflora
VALÉRIA C. MUSCHNER
1
, SANDRO L. BONATTO
2
, FRANCISCO M. SALZANO
1
and LORETA B.
FREITAS
1,3
1
Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul,
Caixa Postal 15053, 91501–970 Porto Alegre, RS, Brazil
2
Centro de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade
Católica do Rio Grande do Sul, Ipiranga 6681, 90610–001 Porto Alegre, RS, Brazil
3
Author for Correspondence (loreta.freit[email protected])
Address to which proofs should be sent
Loreta B. Freitas
Departamento de Genética, UFRGS
Caixa Postal 15053
91501–970 Porto Alegre, RS
Brazil
Phone: 55 51 33166715. Fax: 55 51 33166727.
E–mail: loreta.freit[email protected]
CAPÍTULO IV
92
ABSTRACT A total of 70 species of Passiflora distributed over five subgenera,
plus nine outgroups from related genera and representatives from eight other angiosperm
families were examined in relation to two chloroplast (rbcL, rps4), one mitochondrial (b/c
intron of the nad1 gene), and one nuclear ribosomal (26S) DNA regions to establish
evolutionary rates and divergence times. In a separate analysis the monophyly of Southeast
Asian and Australian species of the Disemma section was confirmed. Passiflora shows
heterogeneous substitution rates among subgenera, probably related to coevolution with
pollinator agents. Its disjunct distribution (Americas / Southeast Asia–Australia) could
probably be explained by Trans–Pacific dispersion which occurred about 42 million years
ago (Ma). The first of the three main subgenera to separate was Decaloba, at about 35 Ma,
the diversification of Passiflora and Astrophea occurring much later (24 Ma).
CAPÍTULO IV
93
The advantages of DNA sequences for the inference of phylogenetic relationships
among different organisms has been amply demonstrated (Savolainen et al. 2000; APG II,
2003; Muschner et al. 2003) and several studies had identified variation in the rates of
evolution of genes and lineages (Avise 1994; Li 1997; Page and Holmes 1998; Hebert et
al. 2002; Soltis et al. 2002). Those, in turn, led to the development of methods for the
estimation of divergence time (Rambaut and Bromham 1998; Sanderson 2002; Thorne and
Kishino 2002). The use of local strict molecular clock (Zuckerkandal and Pauling 1962,
1965), which follow the principles of the neutral theory of molecular evolution (Kimura
1983), calibrated by the fossils or tectonic moviments, is being increasingly used as a
biogeographical tool for dating the divergence between clades (Renner 2004; Givinish and
Renner 2004).
Renner et al. (2001) asserted that the difficulties encountered in the performance
of biogeographic works dealing with tropical angiosperms, and specifically the
identification of sister groups and divergence times, are due to their high variability and the
scarcity of study material. Biogeographical analyses of the tropical flora attribute
Transtropical disjunctions at high taxonomic levels to the Gondwana break–up (Raven and
Axelrod 1974; Gentry 1982, 1993; Barlow 1990; Burnham and Graham 1999). This
interpretation, however, imply divergence times of 100–90 millions of year ago (Ma)
between the African neotropical clades, and higher values for taxa also found in Indochina
and Southeast Asia. In addiction, fossils supporting the Gondwana break–up are available
for only a few pantropical eudicot families. In the absence of an adequate fossil record for
key areas like South America (Burnham and Graham 1999), the controversy between
break–up Gondwana explanations and those which rely in more recent long–distance
dispersion events for the interpretation of present distribution patterns remains unsettled.
CAPÍTULO IV
94
Sanmartín e Ronquist (2004) found that in plants the hierarchical patterns observed by
them were incongruent with the sequence of commonly accepted geological events, and
that they seem to have been molded by more recent dispersion and extinction events that
occurred in the southern hemisphere.
Passiflora L. is a large neotropical genus which has about 520 species. Its
taxonomy was until recently rather complicated due to the high variability of its flowers
and vegetative structures. Feuillet and MacDougal (2003), based in morphological
characteristics, divided the genus in four subgenera: Astrophea, Decaloba, Deidamioides,
and Passiflora. Muschner et al. (in mss.) studied seven DNA regions distributed over the
chloroplast (cp), mitochondrial (mt) and nuclear (n) genomes, suggesting that the genus
should be subdivided in the four above–indicated subgenera, plus Tryphostemmatoides.
According to Ulmer and MacDougal (2004) Astrophea and Deidamioides occur in Central
and South America, Passiflora in North and South America, while Decaloba has a disjunct
distribution, with a group in North and South America and another in Southeast Asia and
Australia (Fig. 1). Tryphostemmatoides, with only two species, was up to now only found
in Colombia (South America).
Astrophea, Decaloba, and Passiflora exhibit monophyletic groups with high
statistical support in the molecular analyses (Muschner et al. 2003; Krosnick and
Freudenstein 2005). The latter authors based their analyses in six Southeast Asian and
three Australian species of the Disemma section of the Decaloba subgenus.
The present study investigated four regions of the three genomes (cpDNA,
mtDNA, nDNA) of 70 widely distributed species of Passiflora, to estimate the dates of the
genus probable origin, of subgenera diversification, and their relationship with
biogeographical and/or historical events.
CAPÍTULO IV
95
MATERIALS AND METHODS
Taxon Sampling and Laboratory Methods. The Passiflora species studied, their
subgenera classification, nine species from eight other genera used as outgroups, the source
of the material, and the GenBank accession numbers of the sequences determined are
displayed in Table 1. Since there is no fossil record for the Passifloraceae (maybe because
these plants are pollinated by animals; see Proctor et al. 1996) sequences from
representatives of seven other angiosperm genera for which fossil data information are
available were obtained from GenBank for purposes of comparison and tree calibration.
Information about them is given in Table 2.
Total DNA was extracted by Roy et al.’s (1992) method, and the regions studied
were as follows: 1. cpDNA rbcL and rps4 genes, amplified with primers 1F and 1460R
(Savolainen et al. 2000) and rps45’ and rps43’ (Souza–Chies et al. 1997) respectively; 2.
mtDNA intron b/c of the gene nad1 gene, amplified by nad1/2 and nad1/3 (Duminil et al.
2002); and 3. partial nuclear ribosomal DNA 26S gene, amplified by N–nc26S1 and 1229r
(Kuzoff et al. 1998). Sequencing primers were the same indicated by the above–indicated
authors, except for the nad1 b/c intron, for which an internal primer was devised, specific
for Passiflora (5’ ATTCACATAGAGACAGACT). PCR products were cleaned using
the polyethylene glycol/NaCl precipitation method of Dunn and Blattner (1987).
Sequencing was performed in a MegaBace 1000 machine (Amersham Biosciences) using a
DYEnamicTM ET termination cycle sequencing premix kit (Amersham Biosciences), with
the protocol provided by the manufacturer. Sequence alignments were manually
conducted, with ambiguous regions being excluded from the analyses. The sequences were
deposited in the Genbank (accession numbers provided in Table 1).
CAPÍTULO IV
96
Molecular dating. Bayesian methods (Thorne et al. 1998. Kishino et al. 2001; Thorne and
Kishino 2002) were employed using the MULTIDISTRIBUTE package (available at
http://statgen.nscu.edu/thorne/multidivtime). This parametric approach relaxes the
hypothesis of a strict molecular clock through a continuous autocorrelation in the
substitution rates across the phylogeny and allows the use of several calibration time
constraints.
MULTIDIVTIME divergence date estimates were performed in two stages: first
the parameters of nucleotide substitution were estimated using the BASEML program of
the PAML package (Yang 1997), using the F84 + G model (with five rate categories). Tree
topology was estimated by maximum likelihood (ML) with the PAUP*4.0 program
(Swofford, 1998) using the model selected by the MODELTEST (GTR + I + G) (Posada
and Crandall 1998). The PAML2MODELINF program from the MULTIDISTRIBUTE
package was employed to convert the BASEML output in an archive acceptable for
ESTBRANCHES, also from the MULTIDISTRIBUTE package. The latter was used to
calculate the variance–covariance matrix and the respective trees’ branch lengths.
ESTBRANCHES outputs served as MULTIDIVTIME inputs and the divergence
times were estimated using the appropriate calibration points. A priori and a posteriori
branch ages, their standard errors, and the 95% confidence intervals were inferred via
Markov chain Monte Carlo (MCMC) calculations. MCMC was run for 1,000,000
generations and sampled every 100 generations after an initial bur–in period of 10,000
cycles. To check for convergence analyses were run from two different starting points.
The following prior distributions were used in these analyses: 108 Ma (standard
deviation, SD: 54 Ma) for the expected time between tip and root if there were no
constraints; 0.001 (SD: 0.0005) substitutions per site per million year for the rate of the
CAPÍTULO IV
97
root node; 0.1 (SD: 0.1) for the parameters which determine the magnitude of
autocorrelation per million years; and 300 Ma for the larger value of the time unit between
the root and the tips. The parameters were chosen following the MULTIDIVTIME
program manual.
Old World Passiflora. Sequences of the cpDNA trnL–trnF and of the nrDNA ITS1 and
ITS2 spacers previously published by Muschner et al. (2003) and Krosnick and
Freudenstein (2005), in a total of 32 Passiflora species of the Decaloba subgenus, were
used to confirm the Disemma section monophyly. For this purpose we utilized the
maximum likelihood (using PAUP* 4.0) and Bayesian (MrBayes v3.0b4; Ronquist and
Huelsenbeck 2003) programs.
RESULTS
Sequence and Tree Characteristics. The size of alignment of the four combined DNA
regions was of 3,040 nucleotides, since due to distant relationships of the Passifloraceae
with the other families used for tree calibration large regions had to be excluded from the
analysis. The average rate of nucleotide substitution obtained by the MULTIDIVTIME
program was of 0.0002 substitutions / site / million years. This rate is however higher in
the Decaloba subgenus, as can be observed by the branch lenghts of the ML tree displayed
in Fig. 2.
Since Krosnick and Freudenstein (2005) included a limited number of New
World species in their analysis we decided to reanalyze their data including a larger
number of Decaloba subgenus taxa. The results of the Bayesian analysis are presented in
Fig. 3. Disemma’s section monophyly was confirmed with high statistical support (PP:
CAPÍTULO IV
98
100; BS: 97), the Australian and Southeast Asian species separating as distinct clusters.
Basically the same results were obtained using a maximum likelihood approach.
Divergence Date Estimates. Fig. 2 shows the divergence dates obtained. The separation
between Old World (Barteria and Paropsia genera) and New World taxa appears to have
occurred about 56 ± 18 million years ago (Ma). The next event (diversification of the
Passifloraceae family in New World) should be have happened 44 ± 17 Ma, and shortly
afterwards (42 ± 16 Ma) the branching of the Passiflora genus occurred. The first of the
subgenera which separated from the others was Decaloba (35 ± 15 Ma), while the split
between the two others should have occurred 24 ± 14 Ma.
DISCUSSION
This is the first study which considers Passiflora’s biogeographical history and its
subgenera diversification. Wikström et al. (2001) in a work involving 560 plant families
and three molecular markers (the rbcL e atpB cpDNA genes and 18S nrDNA) estimated a
diversification time for the Passifloraceae of 32–36 Ma. We are proposing an older (56
Ma) date, and note that Bremer et al. (2004), after studying six cpDNA markers in a larger
number of Asterid species, also obtained older dates from those of the above–indicated
authors for this group of plants. The application of molecular dating techniques to diverse
sets of data are helping to identify changes in speciation rates and to address questions
about the ecological, geographical, and temporal factors which may influence these rates
(Penington and Dick 2004).
We tried to minimize the problems which may arise by use of calibration points
just in the terminal nodes of a phylogeny (Sanderson 1997), by the inclusion of several
CAPÍTULO IV
99
external groups, and the highest number of dates possible. Despite this fact, the ages
derived from the present study should be considered with caution, as a first approximation
of the main events which occurred in Passiflora’s evolution.
Even though the sampling at the molecular level of this study is lower than those
of similar analyses (Renner 2004; Richardson et al. 2004; Bell and Donoghue 2005; Yuan
et al. 2005) there are evidences for a Gondwanic origin of the Passifloraceae family, and
according to Raven and Axelrod (1974) the migration between South America and Africa
could have occurred even after the Gondwana break–up, 90–105 Ma. Morley (2003)
reviewed the potential world migration routes for the megathermal angiosperms,
suggesting, for example, that the South American and African connections should have
existed up to the Oligocene (around 35 Ma). This should have happened via stepping stone
dispersal across islands of the Rio Grande Rise and the Walvis Ridge (which according to
Parrish 1993 was above water southwest of the coast of Africa up until that time), as well
as through the Sierra Leone Rise.
Dispersion through Laurasia during the Eocene climatic optimum, when the
conditions supported a tropical vegetation, could be the best explanation for many
organisms that now have a disjunct distribution among the tropics of South America,
Africa, and Southeast Asia (Richardson et al. 2004). Other studies (Renner et al. 2001;
Davis et al. 2002) suggested a boreotropical migration into southern areas during the
Oligocene and Miocene (35–23 Ma). Molecular phylogenetic studies have also
demonstrated that the role of long–distance dispersals to explain modern distribution
patterns may have been subestimated (Renner et al. 2001; Renner, 2004; Yuan et al. 2005).
The Passiflora disjunct distribution could be explained by a Trans–Pacific
(Sanmartín and Ronquist 2004). The [(South America, New Zealand) Australia]
CAPÍTULO IV
100
relationship is the most frequent found in the flora and fauna of the Southern Hemisphere,
and is in conflict with the geologically predicted vicariance patterns (Renner et al. 2000;
Winkworth et al. 2002). Sanmartín and Ronquist (2004) documented a highly
asymmetrical plant directional dispersion, a westward long–distance dispersal from South
América to New Zealand against the prevailing wind and oceanic currents (Winkworth et
al. 2002). Instead of direct jumps, the dispersal could have occurred in a stepping–stone
way along the Antarctic coastline (Renner et al. 2000). This hypothesis is supported by the
presence of temperate florests in these areas until at least the Pliocene (Swenson and
Bremer 1997; Sanmartín and Ronquist, 2004). This dispersal could have been mediated by
the west–flowing East Wind Drift, which runs close to the Antarctic coast, or could have
followed the West Wind Drift around Antarctica, involving dispersal first to the
subantarctic islands (and/or Australia) and from there to New Zealand (Swenson and
Bremer, 1997). This pattern would explain the clade monophyly that we observed in the
Southeast Asian and Australian species of Passiflora.
Differences in evolutionary rates are widespread in plants (Muse 2000), and can
be ascribed to intrinsic factors like genome type (cp, mt, nuclear) or specific regions, as
well as to extrinsic ones like the speed of group speciaton or population size (Bousquet et
al. 1992; Muse 2000; Andreasen and Baldwin 2001; Barraclough and Savolainen 2001).
The heterogeneous and high rates of nucleotide substitution found in Passiflora, that do not
seem to be gene- or genome-specific (data not shown), can be used as a comparison for
those found in other taxa.
As was already mentioned, the Decaloba subgenus has larger branches than those
of the Passiflora and Astrophea subgenera, which presented a pattern of accelerated
radiation. The mechanisms that lead to high lineage diversification constitute a central
CAPÍTULO IV
101
question in evolutionary biology (Malcomber 2002). The classical examples of rapid
species radiation are all geographically restricted, with high sympatry levels. In these
cases, low levels of interspecific competition in poor habitats have been suggested as
important (Jensen 1990; Liem 1990). But key innovations could also increase the radiation
of a given lineage (Hodges and Arnold 1994; Malcomber 2002). Although interspecific
competition could be involved in the rapid diversification of the Passiflora and Astrophea
subgenera, it is more likely that the key factors are related to plant morphology and
pollination agents, as detailed below.
Species of the Passiflora subgenus are characterized by handsome flowers that
are usually dominated by a corona that is usually zoned or banded in different colors. The
corona is the seat of scent production, and this subgenus contains de majority of intensely
fragrant species. The corona is also the landing platform for bees and other insects which
are attracted by odor (Ulmer and MacDougal 2004). In the species pollinated by
hummingbirds, however, the corona is usually reduced.
On the other hand, Astrophea flowers have a short floral tube and a white
coloring that contrast with the often bright yellow corona. They are probably pollinated by
large bees. In other section of this subgenus orange or reddish to purple flowers occur with
a conspicuous floral tube that is longer than the sepals, and a reduced corona. In these
cases the pollinators are probably hummingbirds (Ulmer and MacDougal 2004).
We are, therefore, observing a wonderful example of coevolution between flower
morphology and pollination agents that are now being corroborated by molecular data.
CAPÍTULO IV
102
ACKNOWLEDGMENTS
We thank Mark Chase, Maurizio Vecchia, Marcelo S. Guerra-Filho, Natoniel
Franklin de Melo, Cláudio Mondin, Teonildes S. Nunes, Marcelo C. Dornelas, Cássio van
den Berg, Roxana Yockteng, Sophie Nadot, Karla Gengler, Fernando Campos Neto, Luis
Carlos Bernacci, Alessandra Selbach, Alba Lins and Shawn Krosnick for specimen
donations. This research was financially supported by Programa de Apoio a Núcleos de
Excelência (PRONEX), Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS),
and Pró-Reitoria de Pesquisa da Universidade Federal do Rio Grande do Sul (PROPESQ-
UFRGS).
LITERATURE CITED
ANDREASEN, K. and B. BALDWIN. 2001. Unequal evolutionary rates between annual and
perennial lineages of checker mallows (Sidalcea, Malvaceae): evidence from 18S–26S
rDNA internal and external transcribed spacers. Molecular Biology and Evolution
18:936–944.
APG II. 2003. An update of the Angiosperm Phylogeny Group classification for the orders
and families of flowering plants: APG II. Botanical Journal of the Linnean Society
141: 399–436.
AVISE, J. C. 1994. Molecular markers, natural history and evolution. New York: Chapman
and Hall.
CAPÍTULO IV
103
BARLOW, B. A. 1990. Biogeographical relationships of Australia and Malasia:
Loranthaceae as a model. Pp. 273–292 in The plant diversity of Malasia, eds. P. Baas,
K. Kalkman, and R. Geesink. Dordrecht: Kluwer
BARRACLOUGH, T. G. and V. SAVOLAINEN. 2001. Evolutionary rates and species diversity
in flowering plants. Evolution 55: 677–683.
BELL, C. D. and M. J. DONOGHUE. 2005. Dating the Dipsacales: comparing models, genes
and evolutionary implications. American Journal of Botany 92: 284–296.
BOUSQUET, J., S. H. STRAUSS, A. H. DOERKSEN, and R. A. PRICE. 1992. Extensive variation
in evolutionary rate of rbcL gene sequences among seed plants. Proceedings of the
National Academy of Sciences, USA 89: 7844–7848.
BREMER, K., E. M. FRIIS, and B. BREMER. 2004. Molecular phylogenetic dating of Asterids
flowering plants shows early Cretaceous diversification. Systematic Biology 53: 496–
505.
BURNHAM, R. J. and A. GRAHAM. 1999. The history of neotropical vegetation: new
developments and status. Annals of the Missouri Botanical Garden 86: 546–589.
DAVIS, C. C., C. D. BELL, P. W. FRITSCH, and S. MATHEWS. 2002. Phylogeny of
Acridocarpus–Brachylophon (Malpighiaceae): implications for tertiary tropical floras
and Afroasian biogeography. Evolution 56: 2395–2405.
DUMINIL J., M.–H. PEMONGE, and R. J. PETIT. 2002. A set of 35 consensus primer pairs
amplifying genes and introns of plant mitochondrial DNA. Molecular Ecology Notes
2: 428–430.
DUNN I. S. and F. R. BLATTNER. 1987. Charons 36 to 40: multi–enzyme, high capacity,
recombination deficient replacement vectors with polylinkers and polystuffers. Nucleic
Acids Research 15:2677–2698.
CAPÍTULO IV
104
FEUILLET C. P. and J. M. MACDOUGAL. 2003. A new infrageneric classification of
Passiflora. Passiflora 13: 34–38.
GENTRY, A. H. 1982. Neotropical floristic diversity: phytogeographical connections
between Central and South America, Pleistocene climatic fluctuations, or an accident
of the Andean orogeny? Annals of the Missouri Botanical Garden 69: 557–593.
———. 1993 Diversity and floristic composition of lowland tropical forest in Africa and
South America. Pp. 500–547 in Biological relationships between Africa and South
America, ed. P. Goldblatt. New Haven: Yale University Press.
GIVINISH, T. J. and S. S. RENNER. 2004. Tropical intercontinental disjunctions: Gondwana
breakup, immigration from the boreotropics, and transoceanic dispersal. International
Journal of Plant Sciences 165: S1–S6.
HEBERT, P. D. N., E. A. REMIGIO, J. K. COLBOURNE, D. J. TAYLOR, and C. C. WILSON. 2002.
Accelerated molecular evolution in halophilic crustaceans. Evolution 56:909–926.
HODGES, S. A., and M. A. ARNOLD. 1994. Columbines: a geographically widespread
species flock. Proceedings of the National Academy of Sciences, USA 91: 5129–5132.
JENSEN, J. S. 1990. Plausability and testability, assessing the consequences of evolutionary
innovations. Pp. 171–190 in Evolutionary innovations, ed. M. Nitecki. Chicago:
University of Chicago Press.
KIMURA, M. 1983. The neutral theory of molecular evolution. Cambridge: Cambridge
University Press.
KISHINO, H., J. L. THORNE, and W. J. BRUNO. 2001. Performance of a divergence time
estimation method under a probabilistic model of rate evolution. Molecular Biology
and Evolution 18: 352–361.
CAPÍTULO IV
105
KROSNICK, S. E. and J. V. FREUDENSTEIN. 2005. Monophyly and floral character homology
of Old World Passiflora (Subgenus Decaloba: Supersection Disemma) Systematic
Botany 30: 139–152.
KUZOFF R. K., J. A. SWEERE, D. E. SOLTIS, P. S. SOLTIS, and E. A. ZIMMER. 1998. The
phylogenetic potential of entire 26S rDNA sequences in plants. Molecular Biology and
Evolution 15: 251–263.
LI, W–S. 1997. Molecular evolution. Sunderland: Sinauer Associates.
LIEM, K. F. 1990. Key evolutionary innovations, differential diversity, and
symecomorphosis. Pp. 147–170 in Evolutionary innovations, ed. M. Nitecki. Chicago:
University of Chicago Press.
LINDER, H. P. 1999. Rytidosperma vickeryae a new danthonioid grass from Kosciuszko
(New South Wales, Australia): morphology, phylogeny and biogeography. Australian
Systematic Botany 12: 743–755.
LINDER, H. P. and M. D. CRISP. 1995. Nothofagus and Pacific biogeography. Cladistics 11:
5–32.
MALCOMBER, S. T. 2002. Phylogeny of Gaertnera Lam. (Rubiaceae) based on multiple
DNA markers: evidence of a rapid radiation in a widespread, morphologically diverse
genus. Evolution 56: 42–57.
MORLEY, R. J. 2003. Interplate dispersal paths for megathermal angiosperms. Perspectives
in Plant Ecology, Evolution and Systematics 6: 5–20.
MUSCHNER, V. C., A. P. LORENZ, A. C. CERVI, S. L. BONATTO, T. T. SOUZA–CHIES, F. M.
SALZANO, and L. B. FREITAS. 2003. A first molecular phylogenetic analysis of
Passiflora (Passifloracae). American Journal of Botany 90: 1229–1238.
CAPÍTULO IV
106
MUSE, S. V. 2000. Examining rates and patterns of nucleotide substitution in plants. Plant
Molecular Biology 42:25–43.
PAGE, R. D. M., and E. C. HOLMES. 1998. Molecular evolution. A phylogenetic approach.
Oxford: Blackwell Science.
PARRISH, J.T. 1993. Climate of the supercontinent Pangea. Journal of Geology 101: 215–
233.
PENINGTON, R. T. and C. W. DICK. 2004. The role of immigrants in the assembly of the
South American rainforest tree flora. Philosofical Transactions of the Royal Society of
London B 359: 1611–1622.
POSADA, D. and K. A. CRANDALL. 1998. MODELTEST: Testing the model of DNA
substitution. Bioinformatics 14: 817–818.
PROCTOR, M., P. YEO, and A. LACK. 1996. The natural history of pollination. London:
Harper Collins.
RAMBAUT, A. and L. BROMHAM. 1998. Estimating divergence dates from molecular
sequences. Systematic Biology 49:579–591.
RAVEN P. H. and D. I. AXELROD. 1974 Angiosperm biogeography and past continental
movements. Annals of the Missouri Botanical Garden 61: 39–39.
RENNER, S. S. 2004. Bayesian analysis of combined chloroplast loci, using multiple
calibrations, supports the recent arrival of Melastomataceae in Africa and Madagascar.
American Journal of Botany 91: 1427–1435.
RENNER, S. S., D. MURRAY, and D. FOREMAN. 2000. Timing transantarctic disjunctions in
the Atherospermataceae (Laurales): evidence from coding and noncoding chloroplast
sequences. Systematic Biology 49: 579–591.
CAPÍTULO IV
107
RENNER, S. S., CLAUSING, G., and K. MEYER. 2001. Historical biogeography of
Melastomataceae: the roles of Tertiary migration and long–distance dispersal.
American Journal of Botany 88: 1290–1300.
RICHARDSON, J. E., L. W. CHATROU, J. B. MOLS, R. H. J. ERKENS, and M. D. PIRIE. 2004.
Historical biogeography of two cosmopolitan families of flowering plants:
Annonaceae and Rhamnaceae. Philosophical Transactions of the Royal Society of
London B 359: 1495–1508.
RONQUIST F. and J. P. HUELSENBECK. 2003. MrBayes 3: Bayesian phylogenetic inference
under mixed models. Bioinformatics 19: 1572–1574.
ROY A., N. FRASCARIA, J. MACKAY, and J. BOUSQUET. 1992. Segregating random
amplified polymorphic DNAs (RAPDs) in Betula alleghaniensis. Theoretical and
Applied Genetics 85: 173–180.
SANDERSON, M. J. 1997. A nonparametric approach to estimating divergence times in the
absence of rate constancy. Molecular Biology and Evolution 14: 1218–1231.
———. 2002. Estimating absolute rates of molecular evolution and divergence times: a
penalized likelihood approach. Molecular Biology and Evolution 19: 101–109.
SANMARTÍN, I. and F. RONQUIST. 2004. Southern Hemisphere biogeography inferred by
event–based models: plant versus animal patterns. Systematic Biology 53: 216–243.
SAVOLAINEN V., M. W. CHASE, S. B. HOOT, C.M. MORTON, D. E. SOLTIS, C. BAYER, M. F.
FAY, A. Y. DE BRUIJN, S. SULLIVAN, and Y. L. QIU. 2000. Phylogenetics of flowering
plants based on combined analysis of plastid atpB and rbcL gene sequences. Systematic
Biology 49: 306–362.
SEBERG, O. 1991. Biogeographic congruence in the South Pacific. Australian Systematic
Botany 4: 127–136.
CAPÍTULO IV
108
SOLTIS, P. S., D. E. SOLTIS, V. SAVOLAINEN, P. R. CRANE, and T. G. BARRACLOUGH. 2002.
Rate heterogeneity among lineages of tracheophytes: integration of molecular and
fossil data and evidence for molecular living fossils. Proceedings of the National
Academy of Sciences, USA 99: 4430–4435.
SOUZA–CHIES, T. T., G. BITTAR, S. NADOT, L. CARTER, E. BESIN, and B. LEJEUNE. 1997.
Phylogenetic analysis of Iridaceae with parsimony and distance methods using the
plastid gene rps4. Plant Systematics and Evolution 204: 109–123.
SWENSON, U. and BREMER, K. 1997. Patterns of floral evolution of four Asteraceae genera
(Senecioneae-Blennospermatinae) and the origin of white flowers in New Zealand.
Systematic Biology 46: 407-425.
SWOFFORD, D. L. 1998. PAUP*: phylogenetic analysis using parsimony (*and other
methods). Version 4. Sunderland: Sinauer Associates.
THORNE, J. L. and H. KISHINO. 2002. Divergence time and evolutionary rate estimation
with multilocus data. Systematic Biology 51: 689–702.
THORNE, J. L., H. KISHINO, and I. S. PAINTER. 1998. Estimating the rate of evolution of the
rate of molecular evolution. Molecular Biology and Evolution 15: 1647–1657.
ULMER, T., and MACDOUGAL. 2004. Passiflora: Passionflowers of the world. Portland:
Timber Press.
VEEVERS, J. J., C. M. POWELL, and S. R. ROOTS. 1991. Review of sea floor spreading
around Australia. I. Synthesis of the patterns of spreading. Australian Journal of Earth
Sciences 38: 373–389.
WIKSTRÖM, N., V. SAVOLAINEN, and M. W. CHASE. 2001. Evolution of the angiosperms:
calibrating the family tree. Proceedings of the Royal Society of London 268: 2211–
220.
CAPÍTULO IV
109
WINKWORTH, R. C., S. J. WAGSTAFF, D. GLENNY, and P. LOCKHART. 2002. Plant dispersal
N.E.W.S. from New Zealand. Trends in Ecology and Evolution 17: 514–520.
YANG, Z. 1997. PAML: a program package for phylogenetic analysis by maximum
likelihood. CABIOS 13: 555–556. http://abacus.gene.ucl.ac.uk/software/paml.html/.
YUAN, Y.–M., S. WOHLHAUSER, M. MÖLLER, J. KLACKENBERG, M. W. CALLMANDER, and
P. KÜPFER. 2005. Phylogeny and biogeography of Exacum (Gentianaceae): a
disjunctive distribution in the Indian Ocean Basin resulted from long distance
dispersal and extensive radiation. Systematic Biology 54: 21–34.
ZUCKERKANDL, E., and L. PAULING. 1962. Molecular disease, evolution, and genetic
heterogeneity. Pp. 189–225 in Horizons in biochemistry, eds. M. Kasha and B.
Pullman. New York: Academic Press.
———. 1965. Evolutionary divergence and convergence. Pp. 97–166 in Evolving genes
and proteins, eds. V. Bryson and H. J. Vogel. New York: Academic Press.
110
Table 1: Species studied, their subgenera classification, places of collection, and GenBank accession numbers of the sequences determined.
GenBank numbers
Subgenera Species
Source of the material and
collector names
rbcL rps4 nad1 b/c 26S
Astrophea P. amoena L. K. Escobar
Italy, Ripalta Cremasca,
Colection (MV)
DQ123300 DQ123407 DQ123214 DQ122935
P. arborea Spreng.
Panama (RY)
DQ123301 DQ123408 DQ123215 DQ122936
P. ceratocarpa Silveira
Brazil, PA (LCB)
DQ123303 DQ123410 DQ123217 DQ122937
P. citrifolia (Juss.) Mast.
French Guiana (MV)
DQ123304 AY212311 DQ123218 DQ122938
P. haematostigma Mart. ex Mast.
Guaratuba, PR (ACC)
DQ123305 AY212292 DQ123219 DQ122939
P. kawensis Feuillet
French Guiana (RY)
DQ123306 DQ123411 DQ123220 DQ122940
P. lindeniana Tr. & Pl.
Italy, Ripalta Cremasca,
Colection (MV)
DQ123307 DQ123412 DQ123221 DQ122941
P. macrophylla Spruce ex Mast.
Brazil (MV)
DQ123308 AY212313 DQ123222 DQ122942
P. mansoi (Mart.) Mast.
Chapadão do Sul, MS (ACC)
DQ123309 AY212307 DQ123223 DQ122943
P. pittieriMast.
Italy, Ripalta Cremasca,
Colection (MV)
DQ123310 DQ123413 DQ123224 DQ122944
Decaloba P. capsularis L.
Quatro Barras, PR (ACC)
DQ123312 DQ123415 DQ123226 DQ122946
P. coriacea Juss.
Colombia (MV)
DQ123313 DQ123416 DQ123227 DQ122947
P. cupraea L.
Bahamas (MV)
DQ123378 DQ123459 DQ123274 DQ122993
P. helleri Peyer
Mexico (MV)
DQ123314 DQ123417 DQ123228 DQ122948
P. lancetillensis MacDougal &
Meerman
French Guiana (MV)
DQ123331 AY212312 DQ123242 DQ122961
P. microstipula Gilbert & MacDougal
Mexico (MV)
DQ123332 DQ123434 DQ123243 DQ122962
P. misera HBK.
Santa Maria, RS (PASS)
DQ123317 DQ123420 DQ123230 DQ122949
P. morifolia Mast. in Mart.
Brazil, RS (PASS)
DQ123318 AY212314 DQ123231 DQ122950
P. multiflora L.
Dominica (MV)
DQ123297 DQ123404 DQ123211 DQ122933
P. murucuja L.
Blois-France-Greenhouse (RY)
DQ123345 DQ123442 DQ123255 DQ122974
P. organensis Gardn.
Brazil, PR (ACC)
DQ123319 DQ123421 DQ123232 DQ122951
P. ornithoura Mast.
Guatemala (MV)
DQ123320 DQ123422 DQ123233 DQ122952
P. penduliflora Bertero ex DC.
Blois-France-Greenhouse (RY)
DQ123298 DQ123405 DQ123212 DQ122934
111
Table 1 (Cont.)
GenBank numbers
Subgenera Species
Source of the material and
collector names
rbcL rps4 nad1 b/c 26S
P. pohlii Mast. in Mart.
Pirapora, MG (ACC)
DQ123321 DQ123423 DQ123234 DQ122953
P. punctata L.
Peru (MV)
DQ123322 DQ123424 DQ123235 DQ122954
P. rufa Feuillet
French Guiana (MV)
DQ123323 AY212315 DQ123236 DQ122955
P. sanguinolenta Mast.
Ecology & Evolutionary
Biology Conservatory, Univ.
Connecticut (RY)
N/A DQ123462 DQ123276 DQ122996
P. sexflora Juss.
Dominican Republic (MV)
DQ123324 DQ123426 DQ123237 DQ122956
P. suberosa L.
Brazil, RS (PASS)
DQ123325 DQ123427 DQ123238 DQ122957
P. tacsonioides Griseb.
Blois-France-Greenhouse (RY)
DQ123379 DQ123461 DQ123275 DQ122995
P. talamancensis Killip
Costa Rica (MV)
DQ123326 DQ123428 DQ123239 DQ122958
P. tricuspis Mast. in Mart.
Brazil, SP (MCD)
DQ123327 DQ123429 DQ123240 DQ122959
P. tulae Urban
Puerto Rico (MV)
DQ123346 DQ123443 DQ123256 DQ122975
P. xiikzodz MacDougal
Italy, Ripalta Cremasca,
Colection (MV)
DQ123330 DQ123433 DQ123241 DQ122960
Passiflora P. actinia Hook
Brazil, RS (PASS)
DQ123347 AY212301 DQ123257 DQ122976
P. alata Curtis
Brazil, RS (PASS)
DQ123348 AY212323 DQ123258 DQ122977
P. ambigua Hemsl.
Brazil, MT (LCB)
DQ123349 DQ123444 DQ123259 DQ122978
P. antioquiensis Karst.
Italy, Ripalta Cremasca,
Colection (MV)
DQ123342 DQ123439 DQ123252 DQ122971
P. caerulea L.
Brazil, RS (PASS)
DQ123350 AY212316 DQ123260 DQ122979
P. campanulata Mast.
Brazil, PR (ACC)
DQ123339 AY212317 DQ123249 DQ122968
P. cincinnata Mast.
Brazil, MS (ACC)
DQ123351 AY212294 DQ123261 DQ122980
P. clathrata Mast.
Brazil, MG (FCN)
DQ123336 DQ123437 DQ123246 DQ122965
P. edmundoi Sacco
Brazil, BA (NFM)
DQ123352 AY212302 DQ123262 DQ122981
P. edulis Sims
Brazil, RS (PASS)
DQ123353 AY212303 DQ123263 DQ122982
P. elegans Mast.
Brazil, RS (PASS)
DQ123355 AY212295 DQ123264 DQ122983
P. foetida L.
Brazil, PE (NFM)
DQ123337 AY212291 DQ123247 DQ122966
P. galbana Mast.
Camocin S. Felix, PE (NFM)
DQ123358 DQ123446 DQ123265 DQ122984
112
Table 1 (Cont.)
GenBank numbers
Subgenera Species
Source of the material and
collector names
rbcL rps4 nad1 b/c 26S
P. incarnata L.
Brazil, SP (BGJ)
DQ123360 AY212306 DQ123266 DQ122985
P. jilekii Wawra
Brazil, SC (ACC)
DQ123361 AY212318 DQ123267 DQ122986
P. luetzelburgii Harms
Brazil, BA (TSN)
DQ123384 DQ123467 DQ123281 DQ122999
P. maliformis L.
Dominica (MV)
DQ123362 AY212321 DQ123268 DQ122987
P. manicata (Juss.) Pers.
Blois-France-Greenhouse (RY)
DQ123344 DQ123441 DQ123254 DQ122973
P. mathewsii (Mast.) Killip
Blois-France-Greenhouse (RY)
DQ123380 DQ123463 DQ123277 DQ122994
P. miersii Mast. in Mart.
Brazil, SP (PASS)
DQ123363 DQ123449 DQ123269 DQ122988
P. mixta L. f.
(RY)
DQ123381 DQ123464 DQ123278 DQ122997
P. palmeri var. sublanceolata Killip
Italy, Ripalta Cremasca,
Colection (MV)
DQ123338 DQ123438 DQ123248 DQ122967
P. racemosa Brot.
Brazil, RJ (FCN)
DQ123311 DQ123414 DQ123225 DQ122945
P. reflexiflora Cav.
Ecuador (MV)
DQ123386 DQ123469 DQ123283 DQ123001
P. setulosa Killip
Brazil, PR (ACC)
DQ123340 AY212297 DQ123250 DQ122969
P. sidaefolia M. Roemer
Brazil, MG (MCD)
DQ123372 AY212298 DQ123270 DQ122989
P. speciosa Gardn.
Brazil, MS (ACC)
DQ123334 AY212293 DQ123244 DQ122963
P. sprucei Mast.
Italy, Ripalta Cremasca,
Colection (MV)
DQ123373 DQ123456 DQ123271 DQ122990
P. tenuifila Killip
Brazil, RS (PASS)
DQ123374 AY212299 DQ123272 DQ122991
P. tripartita var. mollissima (Juss.)
Poir.
(RY)
DQ123382 DQ123465 DQ123279 DQ122998
P. trisectaMast.
Blois-France-Greenhouse (RY)
DQ123343 DQ123440 DQ123253 DQ122972
P. umbilicata (Griseb.) Harms
Blois-France-Greenhouse (RY)
DQ123387 DQ123470 DQ123284 DQ123002
P. villosa Vell.
Brazil, MG (ACC)
DQ123341 AY212308 DQ123251 DQ122970
P. vitifolia HBK.
Colombia (MV)
DQ123335 DQ123436 DQ123245 DQ122964
Deidamioides P. cirrhiflora Juss.
Italy, Ripalta Cremasca,
Colection (MV)
DQ123377 DQ123459 DQ123273 DQ122992
113
Table 1 (Cont.)
GenBank numbers
Subgenera Species
Source of the material and
collector names
rbcL rps4 nad1 b/c 26S
Tryphostemmatoides P. tryphostemmatoides Harms
Blois-France-Greenhouse (RY)
DQ123388 DQ123471 DQ123285 DQ123003
Other Adenia isoalensis
(MC)
DQ123389 DQ123472 DQ123286 DQ123004
Adenia keramanthus
(MC)
DQ123390 DQ123473 DQ123287 DQ123005
Deidamia sp.
(MC)
DQ123394 DQ123477 DQ123289 DQ123007
Dilkea cf johannesii Barb. Rodr.
Peru (MC)
DQ123399 DQ123478 DQ123290 DQ123008
Mitostemma brevifilis
Brazil, MS (ACC)
DQ123400 AY212309 DQ123291 DQ123009
Barteria fitulosa
Nigeria (MC)
DQ123392 DQ123475 DQ123288 DQ123006
Paropsia madagascariensis
(MC)
AF206802 AY216663 DQ123293 N/A
Malesherbia linearifolia
Chile (KG)
DQ123402 DQ123482 DQ123294 DQ123011
Turnera subulata
Brazil, BA (CB)
DQ123398 N/A DQ123296 DQ123012
Collectors: ACC = A. C. Cervi; BGJ = Banco de Germoplasma de Jaboticabal; CB = C. van den Berg; FCN = F. Campos Neto; KG = K. Gengler; LCB = L. C. Bernacci;
MC=Mark Chase; MCD = M. C. Dornelas; MV = M. Vecchia; NFM = N. F. Melo; PASS = our group; RY = R. Yockteng; TSN = T. S. Nunes.
Brazilian states: BA = Bahia; MG = Minas Gerais; MS = Mato Grosso do Sul; MT = Mato Grosso; PA = Pará; PR = Paraná; PE = Pernambuco; RJ = Rio de Janeiro; RS =
Rio Grande do Sul; SC = Santa Catarian; SP = São Paulo
114
Table 2. Information about the sequences obtained in the GenBank for representatives of
eight angiosperm families for which fossil data are available, used for comparison
and tree calibration. *Extracted from Wikström et al. (2001). Ma: million years
ago; N/A: not available.
GenBank numbers
Family Fossil age* (Ma) rbcL rps4 nad1 b/c 26S
Euphorbiacae 58 AF530850 N/A AY674695 AF479125
Elaeocarpaceae 58 AF206765 N/A N/A AF479128
Cucurbitaceae 58 AF206756 NC007144 AF453648 AF479108
Combretaceae 84 AF206826 N/A N/A AF479147
Buxaceae 104 AF203486 AY188234 N/A AF389244
Buxaceae 104 AF543712 N/A N/A AF389243
Platanaceae 108 L01943 AY188229 AY832123 AF274662
115
FIG. 1. World map showing the Passifloraceae distribution. The genus Passiflora,
however, is only found in the Americas, Southeast Asia and Australia.
FIG. 2. a) Maximum likelihood tree obtained using data from the four combined DNA
regions. b) Chronogram from the four combined DNA regions. PASS = Subgenus
Passiflora; DECA = Subgenus Decaloba; ASTR = Subgenus Astrophea.
FIG. 3. trnL–trnF, ITS1 and ITS2 interspacer regions. Bayesian tree, indicating as shaded
areas the Australian and Southeast Asian species.
116
Figure 1
117
a
b
Figure 2
0.1
Turnera ulmifolia
Malesherbia linearifolia
Euphorbiaceae
Cucurbitaceae
Elaeocarpaceae
Combretaceae
Buxaceae
Buxaceae
Platanaceae
PASS
DECA
ASTR
Old World
Passifloraceae
56
50
44
42
35
30
24
67
Ma
118
Figure 3
P. adenopoda
P. morifolia
P. aurantia
P. cinnabarina
P. herbertiana
P. cupiformis
P. henryi
P. jugorum
P. moluccana
P. siamica
P. coriacea
P. suberosa
P. tenuiloba
P. xiikzodz
P. multiflora
P. biflora
P. cupraea
P. tulae
P. helleri
P. mexicana
P. misera
P. tricuspis
P. organensis
P. pohlii
P. punctata
P. capsularis
P. rubra
P. sexflora
P. rufa
P. truncata
P. membranacea
P. tetrandra
P. arbelaezii
P. lancetilensis
91
98
100
72
100
72
64
100
100
62
100
56
59
100
79
100
100
100
100
77
99
100
58
100
98
57
76
100
100
100
Australia
Southeast
Asia
CAPÍTULO V
3º ARTIGO
A ser submetido para a revista American Journal of Botany
ORGANELLAR INHERITANCE IN Passiflora (PASSIFLORACEAE)
Running head: MUSCHNER ET AL. ORGANELLAR INHERITANCE IN PASSIFLORA
ORGANELLAR INHERITANCE IN PASSIFLORA (PASSIFLORACEAE)
1
VALÉRIA C. MUSCHNER,
2
ALINE P. LORENZ-LEMKE,
2
MAURIZIO VECCHIA,
3
SANDRO L.
BONATTO,
4
FRANCISCO M. SALZANO,
2
AND LORETA B. FREITAS
2, 5
2
Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética,
Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-
970 Porto Alegre, RS, Brazil;
3
Via Roma 11/B, 26010 Ripalta Cremasca (CR) Italy;
4
Centro de
Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do
Rio Grande do Sul, Ipiranga 6681, 90610-001 Porto Alegre, RS, Brazil
5
Correspondence: Loreta B. Freitas, Departamento de Genética, Instituto de
Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053,
91501-970 Porto Alegre, RS, Brazil. Phone: 55 51 33166715. Fax: 55 51
33166727. E-mail: loreta.freitas@ufrgs.br
Key words: Plastid inheritance; mtDNA inheritance; Passiflora; genetic markers
CAPÍTULO V
121
1
Manuscript received ________; revision accepted ________.
Our research is financed by Programa de Apoio a Núcleos de Excelência (PRONEX),
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de
Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and Pró-Reitoria de
Pesquisa da Universidade Federal do Rio Grande do Sul (PROPESQ-UFRGS).
CAPÍTULO V
122
ABSTRACT
Analyses of four chloroplast (cp), one mitochondrial (mt), and one ribosomal
nuclear (ITS) DNA regions studied in four artificial and one natural interspecific
Passiflora hybrids indicated that while all mtDNAs were maternally inherited, the same
was not true for cpDNA. The four hybrids (three induced and one natural) derived from
species of the Passiflora subgenus showed paternal, but the one involving taxa of the
Decaloba subgenus gave evidence of maternal transmission. These results are important
for the ongoing studies which are being performed on the molecular evolution of this
genus.
CAPÍTULO V
123
The two cytoplasmic plant genomes, chloroplast DNA (cpDNA) and mitochondrial
DNA (mtDNA) are generally inherited in an uniparental way (Birky 1995, 2001). Plastid
inheritance has been more thoroughly studied in angiosperms (Corriveau and Coleman,
1988; Harris and Ingram, 1991; Mogensen, 1996; Zhang et al., 2003) than mtDNA
inheritance (Sodmergen et al., 2002; Mohanty et al., 2003). Generally it was observed that
in hermaphrodite species both organelles are transmitted together via a single–sex gamete
which is female in the majority of the angiosperms (Dumolin-Lapègue et al., 1998,
Moreira et al., 2002; Petit and Vendramin, 2005) but male in various gymnosperms
(Chesnoy, 1987; Hagemann, 1992; Petit and Vendramin, 2005). Exceptions however have
been observed in Pinaceae (Neale and Sederoff, 1989) and Actinidiaceae (Actinidia) (Chat
et al., 1999; Burban and Petit, 2003), where the chloroplasts are paternally and the
mitochondria maternally inherited. The opposite was observed in Musa acuminata
(Musaceae) and in Cucumis (Cucurbitaceae), with the chloroplasts showing maternal and
the mitochondria paternal inheritance (Fauré et al., 1994; Havey et al., 1998).
The Passiflora L genus belongs to the Passifloraceae family and is composed by
525 species mainly distributed in the Neotropical region; at present it is divided into four
subgenera (Feuillet and MacDougal, 2003). The genus’ species present considerable
diversity, especially floral, the greater part of which is due to different expansions of the
hypanthium. Another marked characteristic of the flowers is the corona of filaments, with a
wide range of size, color and format which represent adaptations to different pollinators
(MacDougal, 1994). Passiflora species have been cultivated for ornamental purposes and
various interspecies hybrids were produced, so that up to 2003 over 300 hybrids and
cultivated plants had been included in the Passiflora Hybrids and Cultivars (Ulmer and
MacDougal, 2004a), thus increasing the morphological diversity of the group
CAPÍTULO V
124
Besides the morphological there is also considerable genetic variability. Muschner
et al. (2003), studying 61 species, found high molecular variability for regions of the
chloroplast and nuclear DNA. The results they obtained amply corroborated the new
classification of the genus proposed by Feuillet and MacDougal (2003). Melo et al. (2001)
described the basic chromosome number of various species, observing also variability in
the genus (x=6, 9, 10 e 12). Within the Passiflora subgenus only x=6 was found, while in
the Decaloba subgenus the other numbers were observed. Souza et al. (2004) measured the
relative content of nuclear DNA and verified that the 2C nuclear content ranged from 3.16
to 5.36 for the diploid species and 1.83 for the tetraploid P. suberosa of the subgenus
Decaloba.
Various analyses of the pollination mechanisms and of crossbreed compatibility
have been developed, involving especially the species of higher economic interest,
classified mainly in the subgenus Passiflora. In general, these species, which have much
larger flowers than those of the subgenus Decaloba, present mechanisms of auto-
incompatibility (Rêgo et al., 1999), reproducing by cross-fertilization, while Decaloba
species are generally auto-compatible and reproduce by self-fertilization (Endress, 1994;
Varassin and Silva, 1999).
Ulmer & MacDougal (2004b) mentioned Linda Escobar’s unpublished findings on
the paternal chloroplast inheritance in interspecific Passiflora hybrids. Previously,
Corriveau and Coleman (1988), using cytological methods, suggested the possibility of
biparental cpDNA inheritance in P. edulis. In both cases the hybrids which were analyzed
were obtained by artificial crossbreeding. Lorenz-Lemke et al. (2005) reported a natural
hybrid between P. actinia and P. elegans, with indirect evidence for paternal inheritance of
the plastid genome. Turnera ulmifolia, a species of the Turneraceae family recently
CAPÍTULO V
125
inserted in Passifloraceae by APGII (2003), showed a tendency for paternal inheritance,
although maternal and biparental inheritance were also observed (Shore and Triassi, 1998).
As part of an ongoing research program on Passiflora phylogenetics and population
genetics (Muschner et al., 2003; Lorenz-Lemke et al., 2005), we studied the organelle
inheritance in four artificial interspecies hybrids and one natural hybrid of Passiflora,
evaluated through sequences of four cpDNA (rps4, trnL intron and the intergenic spacers
trnL-trnF e psbA-trnH), one mtDNA (intron between exons b and c of the nad1 gene ) and
one ribosomal nuclear DNA (ITS) regions.
MATERIALS AND METHODS
Plant material
The four hybrids analyzed were, ‘P. Aurora’ [P. foetida () x P. palmeri var.
sublanceolata ()], ‘P. Leida’ [P. incarnata () x P. cincinnata ()], ‘P. Paola Gastaldo’
[P. incarnata () x P. sprucei ()], and ‘P. Manta’ [P. xiikzodz () x P. coriacea ()].
The first three involved species of the Passiflora, while the latter included species of the
Decaloba subgenera. To obtain them, the anthers covered with fresh pollen from the male
parent were taken to the stigma of the female parent. The anthers of the mother plant had
been cut off before its own pollen was mature. The pollination was performed in the early
morning, and soon afterwards the flowers were covered with gauze to prevent
contamination by unwanted pollen. The fruits obtained ripened in 2 or 3 months and the
hybrid plants derived from them matured in two years. The interspecies natural hybrid (P.
actinia x P. elegans) was described by Lorenz-Lemke et al. (2005).
CAPÍTULO V
126
DNA extraction, PCR amplification, sequencing, and analysis
Total DNA was extracted from young leaves, which were first dried in silica gel,
using Roy et al.’s (1992) method. PCR amplification and sequencing were performed as
follows: rps4, using the rps5 and trnS primers as described by Souza-Chies et al. (1997);
trnL-trnF intergenic spacer and trnL intron, primers e, f and c, d, respectively, as described
by Taberlet et al. (1991); for the psbA-trnH intergenic spacer, primers described by Sang et
al. (1997). The nad1/2 e nad1/3 primers (Duminil et al., 2002) were used in the
amplification of the b/c intron of the nad1 gene, while the sequencing of the whole region
was performed with the same PCR primer plus an internal primer specifically designed for
Passiflora (5’-ATTCACATAGAGACAGACT). The internal transcribed spacers ITS1 and
ITS2 of rDNA were amplified and sequenced with the primers described by Desfeux and
Lejeune (1996).The PCR products were purified with PEG 20% (Dunn and Blattner, 1987)
and the two strands were directly sequenced. Sequencing was performed on a MegaBace
1000 automatic sequencer (Amersham Biosciences) in accordance with the manufacturer’s
instructions. The sequences were deposited in the Genbank (Accession N
os
). For the
analysis of the natural hybrid between P. actinia () and P. elegans (), the sequences of
Lorenz-Lemke et al. (2005) and the analysis of the mitochondrial nad1 b/c intron were
utilized. Alignment of the sequences and identification of the variable sites were performed
with the Mega 3.0 program (Kumar et al., 2004).
RESULTS AND DISCUSSION
The ITS nuclear regions were sequenced in the hybrids and their parents to confirm
the hybrid condition of these individuals and eliminate the possibility of possible natural
CAPÍTULO V
127
contamination in our artificial fertilization process. By analyzing the heterozygote sites in
the points where divergences in the parental sequences were detected, three of the four
individuals were confirmed as interspecific hybrids. Due to the nature of the ITS region
(scattered over all the genome and subjected to concerted evolution) the fact that no
confirmation occurred for ‘P. Paola Gastaldo’ was not considered significant.
Characterization of the hybrids’ sequences and those of their parents at the variable
places is presented in Table 1. In relation to cpDNA, the parental species which originated
the ‘P. Aurora’ hybrid were identical for the 1685 nucleotides analyzed, except two trnL
intron and two psbA-trnH bases. In these cases the hybrid presented a sequence identical to
the P. palmeri (male parent) species. For the ‘P. Leida’ and ‘P. Paola Gastaldo’ hybrids
the cpDNA inheritance (respectively 35 and 39 informative sites) was also strictly paternal.
On the other hand the ‘P. Manta’ hybrid (which was the only example of the subgenus
Decaloba analyzed) presented a maternal pattern of inheritance (51 informative sites).
The mitochondrial DNA inheritance was strictly maternal in all the hybrids, in a
total of 26 informative sites analyzed. Besides the point mutations, which were used to
identify the maternal parent as the donor of the mitochondrial genome, we observed a large
indel of 449 bp in the paternal P. sprucei and in P. actinia, as well as another of 5 bp in P.
coriacea, which were not present in the hybrids.
The artificial hybrids results agree with Lorenz-Lemke et al.’s (2005) findings in a
natural interspecies hybrid of P. elegans e P. actinia, both of the Passiflora subgenus. The
sequences of the trnL-trnF and psbA-trnH chloroplast spacers of the hybrid were equal to
those of P. actinia. The hybrid was observed in a P. elegans population, and the closest P.
actinia population occurred 9 km apart. If the chloroplast inheritance of these species were
maternal, two events involving long distances would have to have occurred. First, the P.
CAPÍTULO V
128
elegans pollen would have to have been transported to the P. actinia population and then,
after the fruits had developed, their seeds would have to be dispersed far away from the
plant and deposited in P. elegans territory. Given the rarity of the postulated events, the
most economical hypothesis for the origin of the hybrid would be that a P. elegans plant
had been impregnated by pollen from P. actinia, indicating a paternal origin for the
plastids of this species. These observations reinforce the artificial hybrids findings and
minimize the doubts about possible faulty manipulation in the artificial crosses as
suggested by Birky (2001) as a source of error.
The mechanisms which result in different modes of inheritance of organelles
between genera and within a given genus have been amply studied and discussed. They
basically refer to the exclusion and/or degeneration of the paternal plastid during or after
fertilization (Yang et al. 2000). However, a large number of alternatives have been
compiled by different authors based mainly in cytological analyses after fecundation, to
explain what happens to the maternal plastid (and its respective DNA) when the
inheritance of the organelles is essentially paternal (Hagemann, 1992; Owens and Morris,
1990; Owens et al., 1995; Mogensen, 1996; Nagata et al., 1997). No such studies have
been found for Passiflora, but the difference in mode of organellar inheritance confirms
the distinction between the Decaloba and Passiflora subgenera observed in the molecular
phylogeny (Muschner et al. 2003). Knowledge about the mode of inheritance of the
cpDNA in Passiflora can provide important information for the interpretation of molecular
data, especially in relation to cytoplasmic gene flow.
CAPÍTULO V
129
LITERATURE CITED
APG II. 2003. An update of the Angiosperm Phylogeny Group classification for the orders
and families of flowering plants: APG II. Botanical Journal of the Linnean Society
141: 399–436.
BIRKY, C. W. 1995. Uniparental inheritance of mitochondria and chloroplast genes:
mechanisms and evolution. Proceedings of the National Academy of Sciences, USA
92: 11331–11338.
BIRKY, C. W. 2001. The inheritance of genes in mitochondria and chloroplasts: laws,
mechanisms, and models. Annual Review of Genetics 35: 125-148.
BURBAN, C., AND R. J. PETIT, 2003. Phylogeography of maritime pine inferred with
organelle markers having contrasted inheritance. Molecular Ecology 12: 1487-1495.
CHAT J., L. CHALAK, AND R. J. PETIT. 1999. Strict paternal inheritance of chloroplast DNA
and maternal inheritance of mitochondrial DNA in intraspecific crosses of kiwifruit.
Theoretical and Applied Genetics 99: 314-322.
CHESNOY, L. 1987. L’organites du cytoplasme embryonnaire chez les Gymnospermes.
Bulletin de la Société Botanique de France 134: 51-56.
CORRIVEAU J. L., AND A. W. COLEMAN. 1988. Rapid screening method to detect potential
biparental inheritance of plastid DNA and results for over 200 angiosperm species.
American Journal of Botany 75: 1443-1458.
DESFEUX C., AND B. LEJEUNE. 1996. Systematics of Euromediterranean Silene
(Caryophyllaceae): evidence from a phylogenetic analysis using ITS sequence. Comptes
Rendus de l’Academie des Sciences de Paris 319: 351-358.
CAPÍTULO V
130
DUMINIL J., M.-H. PEMONGE, AND R. J. PETIT. 2002. A set of 35 consensus primer pairs
amplifying genes and introns of plant mitochondrial DNA. Molecular Ecology Notes
2: 428-430.
DUMOLIN-LAPÈGUE, S., M. H. PEMONGE, AND R. J. PETIT. 1998 Association between
chloroplast and mitochondrial lineages in oaks. Molecular Biology and Evolution 15:
1321–1331.
DUNN, I. S., AND F. R. BLATTNER. 1987. Charons 36 to 40: multi-enzyme, high capacity,
recombination deficient replacement vectors with polylinkers and polystuffers. Nucleic
Acids Research 15:2677-2698.
ENDRESS, P. K. 1994. Diversity and evolutionary biology of tropical flowers. Cambridge
University Press, Cambridge, UK.
FAURÉ, S., J.-L. NOYER, F. CARREEL, J.-P. HORRY, F. BAKRY, AND C. LANAOUD. 1994.
Maternal inheritance of mitochondrial genome in bananas (Musa acuminata). Current
Genetics 25: 265-269.
FEUILLET, C. P, AND J. M. MACDOUGAL. 2003. A new infrageneric classification of
Passiflora. Passiflora 13: 34–38.
HAGEMANN, R. 1992. Plastid genetics in higher plants. In: Herrmann R. G. [ed.] Cell
organelles, 66-96. Springer, New York, USA.
HARRIS, S. A., AND R. INGRAM. 1991. Chloroplast DNA and biosystematics: the effects of
intraspecific diversity and plastid transmission.Taxon 40: 393-412.
HAVEY, M. J., J. D. MCCREIGHT, B. RHODES, AND G. TAURICK. 1998. Differential
transmission of the Cucumis organellar genomes. Theoretical and Applied Genetics 97:
122-128.
CAPÍTULO V
131
KUMAR, S., K. TAMURA, AND M. NEI. 2004. MEGA3: integrated software for Molecular
Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics
5:150-163.
LORENZ-LEMKE, A. P., V. C. MUSCHNER, S. L. BONATTO, A. C. CERVI, F. M. SALZANO,
AND L. B. FREITAS. 2005. Phylogeographic inferences concerning evolution of
Brazilian Passiflora actinia and P. elegans (Passifloraceae) based on ITS (nr DNA)
variation. Annals of Botany 95: 799–806.
MACDOUGAL, J. M. 1994. Revision of Passiflora subgenus Decaloba section
Pseudodysosmia (Passifloraceae). Systematic Botany Monographs 41: 1-146.
MELO, N. F., A. C. CERVI, AND M. GUERRA. 2001. Karyology and cytotaxonomy of the
genus Passiflora L. (Passifloraceae). Plant Systematics and Evolution 226: 69-84.
MOGENSEN, H. L. 1996. The hows and whys of cytoplasmic ihneritance in seed plants.
American Journal of Botany 83: 383-404.
MOHANTY, A., J. P. MARTÍN, L. M. GONZÁLEZ, AND I. AGUINAGALDE. 2003. Association
between chloroplast DNA and mitochondrial DNA haplotypes in Prunus spinosa L.
(Rosaceae) populations across Europe. Annals of Botany 92: 749–755.
MOREIRA, C. D., F. G. GMITTER, J. W. GROSSER, S. HUANG, V. M. ORTEGA, AND C. D.
CHASE. 2002. Inheritance of organelle DNA sequences in CitrusPoncirus
intergeneric cross. The Journal of Heredity 93: 174–178.
MUSCHNER, V. C., A. P. LORENZ, A. C. CERVI, S. L. BONATTO, T. T. SOUZA-CHIES, F. M.
SALZANO, AND L. B. FREITAS. 2003. A first molecular phylogenetic analysis of
Passiflora (Passifloraceae). American Journal of Botany 90: 1229-1238.
CAPÍTULO V
132
NAGATA, N., C. SODMERGEN, A. SAITO, H. SAKAI, AND T. KUROIWA. 1997. Preferential
degradation of plastid DNA with preservation of mitochondrial DNA in the sperm
cells of Pelargonium zonale during pollen development. Protoplasma 197: 217-229.
NEALE, D. B., AND R. R. SEDEROFF. 1989. Paternal inheritance of chloroplast DNA and
maternal inheritance of mitochondrial DNA in loblolly pine. Theoretical and Applied
Genetics 77:212-216.
OWENS, J. N., AND S. J. MORRIS. 1990. Cytological basis for cytoplasmic inheritance in
Pseudotsuga menziesii. I. Pollen tube and archegonial development. American Journal
of Botany 77: 433-445.
OWENS, J. N., G. L. CATALANO, S. J. MORRIS, AND J. AITKEN-CITRISTIE. 1995. The
reproductive biology of kauri (Agathis australis). II. Male gametes, fertilization, and
cytoplasmic inheritance. International Journal of Plant Sciences 156: 404-416.
PETIT, R. J., G. G. VENDRAMIN. 2005. Phylogeography of organelle DNA in plants: an
introduction. In: Weiss, S., and N. Ferrand [eds.] Phylogeography of southern
european refugia. Kluwer, New York (in press).
RÊGO, M. M., C. H. BRUCKNER, E. A. M. DA SILVA, F. L. FINGER, D. L. DE SIQUEIRA, AND
A. A. FERNANDES. 1999. Self-incompatibility in passion fruit: evidence of two locus
genetic control. Theoretical and Applied Genetics 98: 564-568.
ROY, A., N. FRASCARIA, J. MACKAY, AND J. BOUSQUET. 1992. Segregating random
amplified polymorphic DNAs (RAPDs) in Betula alleghaniensis. Theoretical and
Applied Genetics 85: 173-180.
CAPÍTULO V
133
SANG, T., D. J. CRAWFORD, AND T. F. STUESSY. 1997. Chloroplast DNA phylogeny,
reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of
Botany 84: 1120-1136.
SHORE, J. S., AND M. TRIASSI. 1998. Paternally biased cpDNA inheritance in Turnera
ulmifolia (Turneraceae). American Journal of Botany 85: 328-332.
SODMERGEN, Q. ZHANG, Y. ZHANG, W. SAKAMOTO, AND T. KUROIWA. 2002. Reduction in
amounts of mitochondrial DNA in the sperm cells as a mechanism for maternal
inheritance in Hordeum vulgare. Planta 216: 235–244.
SOUZA, M. M., G. PALOMINO, T. N. S. PEREIRA, M. G. PEREIRA, AND A. P. VIANA. 2004.
Flow cytometric analysis of genome size variation in some Passiflora species.
Hereditas 141: 31–38.
SOUZA-CHIES, T. T., G. BITTAR, S. NADOT, L. CARTER, E. BESIN, AND B. LEJEUNE. 1997.
Phylogenetic analysis of Iridaceae with parsimony and distance methods using the
plastid gene rps4. Plant Systematics and Evolution 204: 109-123.
TABERLET, P. L., L. GIELLY, G. PAUTOU, AND J. BOUVET. 1991. Universal primers for
amplification of three non-coding regions of chloroplast DNA. Plant Molecular
Biology 17: 1105-1109.
ULMER, T., AND J. M. MACDOUGAL. 2004a. Passiflora hybrids and cultivars.
http://www.passionflow.co.uk/downloads1.htm.
ULMER, T., AND J. M. MACDOUGAL. 2004b. Passiflora: passionflowers of the world.
Timber Press, Portland Oregon, USA.
VARASSIN I. G., AND A. G. SILVA. 1999. A melitofilia em Passiflora alata Dryander
(Passifloraceae), em vegetação de restinga. Rodriguésia 50: 5-17.
CAPÍTULO V
134
YANG, T. W., Y. A. YANG, AND Z. XIONG. 2000. Paternal inheritance of chloroplast DNA
in interespecific hybrids in the genus Larrea (Zigophyllaceae). American Journal of
Botany 87: 1452-1458.
ZHANG Q, Y. LIU, AND SODMERGEN. 2003. Examination of the cytoplasmic DNA in male
reproductive cells to determine the potential for cytoplasmic inheritance in 295
angiosperm species. Plant Cell Physiology 44: 941–951.
135
TABLE 1: DNA regions showing informative variation about the interspecific hybrids and their parents.
trnL intron trnL-trnF psbA-trnH rps4 nad1
8
2
1
1
7
1
1
8
1
1
9
1
2
2
1
3
7
1
3
8
1
3
9
2
2
5
3
2
0
3
2
1
3
9
1
3
9
2
3
9
3
3
9
4
4
2
4
4
2
5
3
2
5
0
9
8
9
9
1
3
1
1
5
8
4
1
5
0
5
7
6
7
7
5
7
7
7
8
8
3
1
1
5
1
4
7
1
6
8
1
8
2
1
8
3
1
8
4
1
8
5
1
8
6
1
9
1
1
9
2
1
9
6
1
9
7
1
9
8
1
9
9
2
0
0
2
4
7
2
6
9
2
8
8
3
3
6
3
8
5
6
8
9
1
2
5
1
1
2
5
4
‘P. Manta’ C T
- - - A
A
T
- C
G
T
- C
A
A
A
T
T
G
C
C
A
- A
A
- A
A
A
G
- A
C
T
T
T
T
G
A
A
T
G
G
A
A
A
- C
C
A
A
G
c
P. xiikzodz () · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
P. coriacea () A G
T
T
T
- - G
a T
- A
A
T
T
C
T
A
C
A
- T
G
T
C
C
T
G
G
T
- T
T
A
G
G
A
A
A
T
G
A
- - - - C
b
T
G
G
G
T
-
trnL intron trnL-trnF psbA-trnH rps4 nad1
3
8
8
3
8
9
1
1
7
2
3
6
‘P. Aurora’ T T
*
T
A
*
*
P. palmeri () · ·
*
· ·
*
*
P. foetida () - -
*
- -
*
*
trnL intron trnL-trnF psbA-trnH rps4 nad1
1
1
8
2
6
2
3
4
4
3
9
0
4
0
8
4
1
0
1
1
2
2
2
1
2
3
1
3
1
3
7
3
9
5
6
6
0
6
4
6
5
7
2
7
7
7
9
8
4
8
9
9
0
1
0
2
1
2
4
1
9
4
2
0
6
2
1
1
2
2
2
2
2
4
2
5
1
2
8
3
8
7
1
7
1
2
4
3
4
1
4
2
4
8
5
4
1
8
4
5
7
6
5
3
6
8
2
7
9
8
7
9
9
9
6
5
1
1
6
3
‘P. Leida’ G
T
A
- A
T
d
G
C
A
G
A
A
G
A
T
T
T
A
G
- T
- e G
T
A
T
G
G
T
T
A
T
C
C
A
T
C
G
A
C
A
A
A
P. cincinnata () · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · A
C
G
T
A
G
T
G
G
C
P. incarnata () - - G
T
G
G
- C
T
C
A
G
C
A
T
C
A
A
C
- G
C
A
- A
A
- C
- A
G
G
C
C
T
· · · · · · · · · ·
trnL intron trnL-trnF psbA-trnH rps4 nad1
1
1
8
1
6
5
2
4
3
3
4
6
3
4
9
3
9
0
4
1
0
6
1
9
4
2
1
3
3
1
5
6
6
2
7
9
1
0
1
1
0
3
1
1
7
1
1
8
1
2
4
1
6
2
1
6
6
1
8
4
1
8
5
1
8
6
1
8
7
1
8
8
1
8
9
1
9
4
1
9
8
2
1
1
2
1
3
2
1
7
2
2
1
2
3
9
2
4
8
2
7
1
0
8
7
2
4
3
4
1
4
2
0
2
4
5
0
1
3
9
4
1
8
4
5
7
6
8
2
7
9
8
7
9
9
8
2
3
9
8
8
‘P. P. Gastaldo’ G
- G
T
T
T
T
G
G
G
A
A
A
A
- C
T
C
f A
G
T
T
T
T
C
T
A
A
T
G
G
- G
T
T
T
T
C
T
C
C
T
T
C
A
C
A
T
g
P. sprucei () · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · C
A
T
G
G
T
G
T
G
G
-
P. incarnata () - T
T
C
C
- G
T
A
C
C
C
C
C
A
A
- A
- C
T
A
A
G
A
A
A
T
G
C
A
A
A
A
G
G
G
C
T
· · · · · · · · · · ·
trnL intron trnL-trnF psbA-trnH rps4 nad1
3
0
9
9
4
7
1
5
9
1
9
9
8
8
‘P. acti x P. eleg’
h
G
T
-
T
i
P. actinia () · · · ·
C
-
P. elegans () - T
G
T
· ·
Note: Lower case a to i represent indels of variable size as follows:
a
8 pb indel (st 225-232),
b
22 pb indel (st 269-290),
c
5 pb indel (st 1254-1258),
d
8 pb indel (st 112-119),
e
22 pb indel
(st 124-145),
f
13 pb indel (st 124-136),
g
449 pb indel (st 988-1436),
h
6 pb indel (st 30-35),
i
449 pb indel (st 988-1436); st: sites; an asterisk indicates lack of variation, a dagger
data not obtained, dots the same nucleotide (A, T, C, G) present in the hybrids.
CAPÍTULO VI
DISCUSSÃO
CAPÍTULO VI
137
As classificações de Killip (1938) e Escobar (1989) dividiam o gênero Passiflora
em 23 subgêneros apoiados somente em características morfológicas. Feuillet &
MacDougal (2003) propuseram uma classificação que agrupa as espécies de Passiflora em
apenas quatro subgêneros. Embora estes últimos autores também tenham baseado sua
classificação predominantemente nos caracteres morfológicos, valeram-se da
sinonimização de muitos taxa e da tentativa de introduzir algumas relações evolutivas no
agrupamento. Muschner et al. (2003), numa análise filogenética a partir de seqüências de
DNA nucleares e plastidiais, estudaram representantes de 12 subgêneros (de Killip 1938) e
sugeriram que as espécies analisadas fossem redistribuídas em apenas três subgêneros. Os
subgêneros, denominados clados, propostos por Muschner et al. (2003) foram
concordantes com a classificação proposta por Feuillet & MacDougal (2003).
Subseqüentemente, foram publicadas outras avaliações da classificação de Feuillet e
MacDougal, usando uma abordagem filogenética molecular com outros marcadores, mas
não apoiaram esta classificação (Yockteng & Nadot 2004).
No Capítulo III foram analisadas 104 espécies de Passiflora distribuídas em 19 dos
23 subgêneros de Killip (1938) e Escobar (1989), as quais compõem os quatro subgêneros
de Feuillet & MacDougal (2003). Neste artigo, foram estudadas sete regiões do DNA,
englobando os três genomas vegetais (plastidial, mitocondrial e nuclear). Os resultados
obtidos corroboraram amplamente a classificação proposta por Feuillet & MacDougal
(2003) com a adição de mais um subgênero (Tryphostemmatoides). Os subgêneros
Astrophea, Decaloba e Passiflora formaram grupos monofiléticos com altos valores de
suporte estatístico. No entanto, o subgênero Deidamioides proposto por Feuillet &
MacDougal (2003) não se confirmou monofilético, tendo sido proposto sua divisão em
dois, Deidamioides e Tryphostemmatoides. Krosnick & Freudenstein (2005), analisando
CAPÍTULO VI
138
um número menor de espécies e outro conjunto de marcadores, também sugeriram a
divisão deste subgênero da mesma forma. Analisar um número maior de espécies incluídas
por Feuillet & MacDougal em Deidamioides poderá esclarecer as relações filogenéticas
deste grupo. Como a maioria das espécies aqui inseridas pode ser encontrada no Brasil e
somente poucos representantes ocorrem na Amazônia boliviana, um trabalho de revisão
taxonômica do grupo está sendo proposto por pesquisadores de Feira de Santana (BA),
envolvendo análises de marcadores moleculares (T.S. Nunes, comunicação pessoal).
Os três principais agrupamentos encontrados nas filogenias moleculares,
subgêneros Astrophea, Decaloba e Passiflora, apresentam padrões ecológicos e
bioquímicos bem diferenciados. Tais diferenças incluem: 1) tamanho das flores,
significativamente menores em Decaloba; 2) conteúdo 2C de DNA, significativamente
menor em Decaloba; 3) número cromossômico básico diferente para cada um dos três
subgêneros; 4) Decaloba possui compostos cianogênicos, enquanto as espécies do
Passiflora não os possuem; 5) especificidade na interação de grupos de Heliconius com
diferentes subgêneros de Passiflora; 6) diferentes modos de herança do cloroplasto. Desta
forma, pode-se usar com segurança e justificadamente as recomendações da APGII com
relação à composição das classificações botânicas: filogenias moleculares, amplamente
corroboradas e embasadas por características morfológicas e ecológicas.
A contribuição dos marcadores moleculares para esclarecer as relações
infragenéricas quanto à divisão em subgêneros de Passiflora é evidente, ficando bastante
claro que o número de regiões analisadas tem um papel crucial para que essas relações
sejam estabelecidas. No entanto, a similaridade genética relativamente alta encontrada na
maioria das espécies, exceto para as do subgênero Decaloba, e os resultados incongruentes
obtidos para diferentes marcadores não permitiram a divisão dos subgêneros nas seções e
CAPÍTULO VI
139
séries propostas por Feuillet & MacDougal (2003). Neste caso, resta a dúvida entre propor
a não subdivisão dos subgêneros, porque estas outras classificações realmente não são
monofiléticas, ou aceitar a atual classificação justificando a ausência dos agrupamentos
pelos marcadores moleculares por sua inadequação para a inferência das relações
interespecíficas do conjunto de taxa analisados. Aqui, também, o aumento no número de
espécies de cada subgênero irá auxiliar na resolução das relações evolutivas. Sendo apenas
uma questão metodológica, a análise de outros marcadores, com maior variabilidade
genética, irá ajustar os agrupamentos. Se o número relativo de espécies de cada subgênero
for considerado no Capítulo III e ponderada, ainda, a divergência genética dos marcadores
estudados entre as espécies do subgênero Decaloba, pode-se propor que, pelo menos para
este, as subdivisões em seções e séries não se confirmam com a filogenia molecular.
Um outro resultado interessante que se pode ainda observar no manuscrito do
Capítulo III, que havia sido destacado por Muschner et al. (2003), é a diferença nos
comprimentos dos ramos da árvore filogenética entre os três subgêneros Astrophea,
Decaloba e Passiflora. As espécies do subgênero Decaloba estão ligadas a ramos
significativamente mais longos que as dos outros dois subgêneros. Interessantemente, essa
característica não é gene ou genoma específico. O tempo de geração de cada espécie pode
estar envolvido na diferença encontrada entre os subgêneros, embora se tenha pouca
informação sobre fatores ecológicos que possam estar envolvidos nesse processo. Benson
et al. (1975) foram os primeiros a afirmar que espécies do subgênero Decaloba possuem
tempos de geração mais curtos que espécies do subgênero Passiflora. É possível que este
fator possa estar acelerando a taxa evolutiva nas espécies do subgênero Decaloba, mas
alguns autores questionam esta e outras possibilidades em plantas, sem no entanto
CAPÍTULO VI
140
apresentar uma alternativa concreta (Whittle & Johnston 2003). Em todo o caso, deve-se
destacar que somente entre estas espécies foram encontrados casos de autofecundação.
Análises de datação molecular têm sido realizadas em diversos grupos de plantas,
tais como, Notophagus (Knapp et al. 2005), Begonia (Plana et al. 2004), Melastomataceae
(Morley & Dick 2003) e Crypterionaceae (Conti et al. 2002). No Capítulo IV foram
analisadas apenas quatro das sete regiões do DNA amostradas no manuscrito do Capítulo
anterior (rbcL e rps4 do cpDNA, intron b/c do gene nad1 do mtDNA e região parcial do
gene 26S do nrDNA) devido a dificuldades no alinhamento do espaçador intergênico trnL-
trnF e intron do gene trnL com os grupos com registro fóssil utilizados para a calibragem
da árvore e carência de seqüências desses grupos para o intron d/e do gene nad5. A
dificuldade no alinhamento foi decorrente da alta divergência das seqüências quando os
diferentes gêneros são analisados. Através de uma abordagem que relaxa o relógio
molecular estrito, procurou-se estimar as prováveis datas de surgimento do gênero
Passiflora e a diversificação de seus subgêneros mais representativos. Os resultados
indicam que o gênero Passiflora diversificou-se no Novo Mundo há aproximadamente 42
milhões de anos atrás (Ma), sendo Decaloba o primeiro subgênero a se diversificar (35
Ma), enquanto Passiflora e Astrophea parecem ter se diversificado 24 Ma. A estimativa
para o surgimento de Passifloraceae (56 Ma) é maior que a única estimativa para a família
feita por Wikström et al. (2001), em um estudo envolvendo 560 famílias de angiospermas,
que estimaram datas de 32-36 Ma para este grupo. Bremer et al. (2004) e Bell & Donoghue
(2005) também estimaram datas mais antigas que as de Wikström et al. (2001) e assim,
como aconteceu para as Passifloraceae, as discrepâncias podem ser decorrentes do
aumento no número de seqüências nos trabalhos que focalizaram uma única família ou
CAPÍTULO VI
141
gênero. A família Passifloraceae possivelmente teve uma origem Gondwânica, devido à
distribuição disjunta apresentada pelos gêneros da família (vide Figura 1 do Capítulo IV).
com relação à distribuição disjunta do gênero Passiflora, pode-se sugerir que
esta seja devida a eventos de dispersão à longa distância pelo Oceano Pacífico. Os
principais agentes dispersores no Sul do Oceano Pacífico, segundo Winkworth et al.
(2002), são provavelmente pássaros (albatrozes e petrels) que regularmente atravessam o
Pacífico, além das dispersões pelo vento e correntes marinhas. Estas hipóteses foram
testadas e comprovadas para outras espécies vegetais que apresentam características
semelhantes às observadas nas espécies de Passiflora (Renner et al. 2001; Knapp et al.
2005).
No manuscrito do Capítulo IV, mais uma vez, aborda-se a característica inerente às
árvores filogenéticas em Passiflora: diferença no comprimento dos ramos entre os
subgêneros Astrophea, Decaloba e Passiflora. Observa-se que os subgêneros Astrophea e
Passiflora tiveram uma radiação rápida, provavelmente associada a adaptações florais a
diferentes polinizadores. Segundo Malcomber (2002), inovações-chave devem ser as
principais responsáveis pela radiação rápida em uma linhagem, sugerindo ainda que em
Gaertenera esse padrão deva ter surgido devido a adaptações florais para polinizadores
mais especializados. Na Figura 1 do Capítulo III tem-se uma pequena idéia sobre a
interação das espécies do grupo com seus agentes polinizadores. As lacunas observadas na
árvore devem-se ao total desconhecimento dos polinizadores das outras espécies.
Os resultados apresentados no Capítulo V dizem respeito ao padrão de herança
organelar no gênero. Os híbridos interespecíficos e seus parentais em Passiflora
apresentaram dois padrões de herança do cpDNA. Nas espécies do subgênero Decaloba os
plastídios e seu DNA foram herdados do progenitor materno, enquanto que entre as
CAPÍTULO VI
142
espécies do subgênero Passiflora foi o gameta masculino o doador destas seqüências. A
herança das seqüências do mtDNA foi estritamente materna, independentemente do
subgênero considerado. Diferentes padrões de herança do cloroplasto em um mesmo
gênero já foram documentados em outros grupos (por exemplo, Turnera analisada por
Shore & Triassi 1998 e Syringa, descrita por Liu et al. 2004). Estudos sobre o modo de
herança organelar são muito importantes para ajudar a desvendar a história evolutiva das
espécies de plantas e outros organismos e podem auxiliar no entendimento dos processos
de especiação. Os resultados do Capítulo V reforçam ainda mais o proposto no Capítulo III
com relação à monofilia dos subgêneros Passiflora e Decaloba. O estudo de Liu et al.
(2004) demonstrou que a herança do cloroplasto está intimamente associada à filogenia de
Syringa, gênero que é dividido em dois subgêneros, cada um deles com um modo de
herança plastidial diferente. Em Passiflora isto também é verdadeiro, sugerindo que
ocorreu um desenvolvimento independente do controle da herança dos plastídios nesses
grupos de plantas. Liu et al. (2004) propuseram que é possível que a herança materna deva
ter se tornado dominante antes do aparecimento das angiospermas, o que pode ser
evidenciado pelo modo de herança plastidial materna na alga verde Chlamydomonas.
Nossos achados também corroboram que a herança materna deva ser ancestral, como
evidenciado pela idade de diversificação do subgênero Decaloba (35 Ma), que tem herança
materna do cpDNA, em relação ao subgênero Passiflora (24 Ma), que possui herança
paterna do cpDNA.
Muitos resultados foram aqui abordados e contribuíram para o esclarecimento de
algumas questões relevantes no estudo deste complexo gênero de plantas. Alguns passos
importantes foram dados no sentido de esclarecer aspectos da história evolutiva do gênero
Passiflora: 1) a taxonomia do gênero, até então bastante complicada, pôde ser melhor
CAPÍTULO VI
143
esclarecida e corrobora a classificação morfológica mais recente; 2) três subgêneros (os
maiores em número de espécies) apresentaram altos valores de suporte estatístico
sustentando sua monofilia e possuem características morfológicas e ecológicas diferentes
que a corroboram; 3) a datação da diversificação de Passiflora e de seus três subgêneros
maiores pôde ser correlacionada a eventos biogeográficos; 4) as diferentes taxas de
substituição nucleotídica observadas na comparação dos subgêneros parecem estar
correlacionadas com o tempo de geração e o modo de reprodução das espécies, não sendo
características de alguns dos genes ou genomas estudados; 5) o padrão de herança
organelar diferenciado é mais um aspecto a corroborar a filogenia molecular e a divisão do
gênero em subgêneros.
No entanto, existem mais de 500 espécies conhecidas de Passiflora e muitas áreas
ricas em diversidade biológica ainda não foram estudadas. O maior número de espécies
diferentes tem sido encontrado em países como a Bolívia e a Colômbia, mas no Brasil não
se sabe quantas ou quais são as espécies que ocorrem na Floresta Amazônica. Se forem
consideradas todas as espécies descritas, menos de 20% delas têm seu número
cromossômico básico ou nível de ploidia conhecido; de menos de 10% sabe-se alguma
coisa sobre a biologia floral ou forma de reprodução; apenas 1% é utilizada como fonte de
compostos para a indústria farmacêutica ou para fins alimentícios. Somando todos os
trabalhos publicados sobre marcadores moleculares, de qualquer natureza, menos de
50% das espécies têm seu relacionamento evolutivo com outras espécies do gênero
determinado. Nada é sabido sobre os aspectos de seu desenvolvimento floral e foliar,
embora existam diversas sugestões sobre a importância das alterações morfológicas nos
processos evolutivos do grupo, como aquisição de novos polinizadores, alterações no
modo de reprodução, e aspectos neotênicos na forma das folhas. A corona de filamentos,
CAPÍTULO VI
144
assim como a presença do androginóforo, é uma das características mais marcantes destas
espécies, tendo sido diversas vezes proposta como o caráter diagnóstico que garante a
monofilia do gênero, mas nada se sabe sobre sua origem ontogenética. Há, portanto, muito
trabalho ainda por realizar.
REFERÊNCIAS BIBLIOGRÁFICAS
REFERÊNCIAS BIBLIOGRÁFICAS
146
APG II. 2003. An update of the Angiosperm Phylogeny Group classification for the orders
and families of flowering plants: APG II. Botanical Journal of the Linnean Society
141: 399–436.
Barkman TJ, Lim S–H, Salleh KM, Nais J. 2004. Mitochondrial DNA sequences reveal the
photosynthetic relatives of Rafflesia, the world's largest flower. Proceedings of the
National Academy of Sciences, USA 101: 787–792.
Basinger JF, Dilcher DL. 1984. Ancient bisexual flowers. Science 224: 511–513.
Becker A, Theiβen G. 2003. The major clades of MADS–box genes and their role in the
development and evolution of flowering plants. Molecular Phylogenetics and
Evolution 29: 464–489.
Beckert S, Steinhauser S, Muhle H, Knoop V. 1999. A molecular phylogeny of bryophytes
based on nucleotide sequences of the mitochondrial nad5 gene. Plant Systematics and
Evolution 218, 179–192.
Bell CD, Donoghue MJ. 2005. Dating the Dipsacales: comparing models, genes, and
evolutionary implications. American Journal of Botany 92: 284–296.
Bell CD, Soltis DE, Soltis PS. 2005. The age of the Angiosperms: a molecular timescale
without a clock. Evolution 59: 1245–1258.
Benson WW, Brown KS, Gilbert LE. 1975. Coevolution of plants and herbivores: Passion
flower butterflies. Evolution 29: 659–680.
Birky CW. 1995. Uniparental inheritance of mitochondria and chloroplast genes:
mechanisms and evolution. Proceedings of the National Academy of Sciences, USA
92: 11331–11338.
Birky CW. 2001. The inheritance of genes in mitochondria and chloroplasts: laws,
mechanisms, and models. Annual Review of Genetics 35: 125–148.
REFERÊNCIAS BIBLIOGRÁFICAS
147
Bousquet J, Strauss SH, Doerksen AH, Price RA. 1992. Extensive variation in
evolutionary rate of rbcL gene sequences among seed plants. Proceedings of the
National Academy of Sciences, USA 89:7844–7848.
Bowe LM., Coat G, dePamphilis CW. 2000. Phylogeny of seed plants based on all three
genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest
relatives are conifers. Proceedings of the National Academy of Sciences, USA 97:
4092–4097.
Bremer KE, Friis M, Bremer B. 2004. Molecular phylogenetic dating of Asterids flowering
plants shows early Cretaceous diversification. Systematic Biology 53: 496–505.
Brenner GJ. 1996. Evidence for the earliest stage of angiosperm pollen evolution: a
paleoequatorial section from Israel. In Flowering plant origin, evolution and
phylogeny (ed. Taylor DW, Hickey LJ), pp. 97–115. New York: Chapman & Hall.
Brenner GJ, Bickoff IS. 1992. Palinology and the age of the Lower Cretaceous basal
Kurnub Group from the coastal plain to the northern Negev of Israel. Palynology 16:
137–185.
Brums D, Owens JN. 2000. Western white pine (Pinus monticola Dougl.) reproduction. II.
Fertilization and cytoplasmic inheritance. Sexual Plant Reproduction 13: 75–84.
Chase, MW (e 41 outros). 1993. Phylogenetics of seed plants: an analysis of nucleotide
sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 80:
528–580.
Chase, MW (e 12 outros). 2000. Higher–level systematics of the monocotyledons: an
assessment of current knowledge and a new classification. In Monocots: systematics
and evolution (ed. K.L. Wilson & D.A. Morrison), pp. 3–16. Collingwood, Australia:
Commonwealth Scientific and Industrial Research Organization.
REFERÊNCIAS BIBLIOGRÁFICAS
148
Chat J, Chalak L, Petit RJ. 1999. Strict paternal inheritance of chloroplast DNA and
maternal inheritance of mitochondrial DNA in intraspecific crosses of kiwifruit.
Theoretical and Applied Genetics 99: 314–322.
Chaw S–M, Parkinson CL, Cheng Y, Vincent TM, Palmer JD. 2000. Seed plant phylogeny
inferred from all three plant genomes: monophyly of extant gymnosperms and origin
of Gnetales from conifers. Proceedings of the National Academy of Sciences, USA 97:
4086–4091.
Chen H, Sun M. 1998. Consensus multiplex PCR–restriction fragment length
polymorphism (RFLP) for rapid detection of plant mitochondrial DNA polymorphism.
Molecular Ecology 7: 1553–1556.
Chen S, Xia T, Wang Y, Liu J, Chen S. 2005. Molecular systematics and biogeography of
Crawefurdia, Metagentiana and Triptorpermim (Gentianaceae) based on nuclear
ribosomal and plastid DNA sequences. Annals of Botany available online at
www.aob.oupjournals.org.
Cho Y, Mower JP, Qiu Y–L, Palmer JD. 2004. Mitochondrial substitution rates are
extraordinarily elevated and variable in a genus of flowering plants. Proceedings of
the National Academy of Sciences, USA 101: 17741–17746.
Clegg, MT. 1993. Chloroplast gene sequences and the study of plant evolution.
Proceedings of the National Academy of Sciences, USA 90: 363–367.
Clegg MT, Zurawski G. 1991. Chloroplast DNA and the study of plant phylogeny: present
status and future prospects. In Molecular Systematics of Plants. (ed. Soltis DE, Soltis
PS, Doyle JJ). pp. 1–13. New York: Chapmann and Hall.
Clegg MT, Gaut BS, Learn GH, Morton B.. 1994. Rates and patterns of chloroplast
evolution. Proceedings of the National Academy of Sciences, USA 91: 6795–6801.
REFERÊNCIAS BIBLIOGRÁFICAS
149
Conti E, Eriksson T, Schönenberger J, Sytsma K, Baum DA. 2002. Early Tertiary out-of-
India dispersal of Crypteroniaceae: evidence from phylogeny and molecular dating.
Evolution 56: 1931-1942.
Corriveau JL, Coleman AW. 1988. Rapid screening method to detect potential biparental
inheritance of plastid DNA and results for over 200 angiosperm species. American
Journal of Botany 75: 1443–1458.
Crane PR, Friis EM, Pedersen KR. 1995. The origin and early diversification of
angiosperms. Nature 374: 27–33.
Davies TJ, Barraclough TG, Chase MW, Soltis PS, Soltis DE, Savolainen V. 2004.
Darwin's abominable mystery: insights from a supertree of the angiosperms.
Proceedings of the National Academy of Sciences, USA 101:1904–1909.
Davis J I, Stevenson DW, Petersen G, Seberg L, Campbell LM, Freudenstein JV, Goldman
DH, Hardy CR, Michelangeli FA, Simmons MP, Specht CD; Vergara–Silva F,
Gandolfo M 2004. A phylogeny of the monocots, as inferred from rbcL and atpA
sequence variation, and a comparison of methods for calculating jackknife and
bootstrap values. Systematic Botany 29: 467–510.
Demesure B, Sodzi N, Petit RJ. 1995. A set of universal primers for amplification of
polymorphic non–coding regions of mitochondrial and chloroplast DNA in plants.
Molecular Ecology 4: 129–131.
Dombrovska O, Qiu Y–L. 2004. Distribution of introns in the mitochondrial gene nad1 in
land plants: phylogenetic and molecular evolutionary implications. Molecular
Phylogenetics and Evolution 32: 246–263.
REFERÊNCIAS BIBLIOGRÁFICAS
150
Donoghue MJ, Doyle JA. 1989. Phylogenetic studies of seed plants and angiosperms based
on morphological characters. In The hierarchy of life: molecules and morphology in
phylogenetic analysis (ed. Fernholm B, Bremer K, Jörvall H), pp. 181–193.
Amsterdam: Elsevier.
Downie SR, Palmer JD. 1991. Use of chloroplast DNA rearrangements in reconstructing
plan phylogeny. In Molecular systematics of plants (ed. Soltis PS, Soltis DE) pp. 14–
35. New York: Chapman and Hall.
Doyle JJ, Gaut BS. 2000. Evolution of genes and taxa: a primer. Plant Molecular Biology
42: 1–23.
Doyle JA, Donoghue MJ, Zimmer EA. 1994. Integration of morphological and ribosomal
RNA data on the origin of angiosperms. Annals of the Missouri Botanical Garden 81:
419–450.
Duminil J, Pemonge MH, Petit RJ. 2002. A set of 35 consensus primer pairs amplifying
genes and introns of plant mitochondrial DNA. Molecular Ecology Notes 2: 428–430.
Escobar LK. 1989. A new subgenus and five new species in Passiflora (Passifloraceae)
from South America. Annals of the Missouri Botanical Garden 76: 877–855.
Eyre–Walker A, Gaut BS. 1997. Correlated rates of synonymous site evolution across
plant genomes. Molecular Biology and Evolution 14:455–460.
Feuillet CP, MacDougal JM. 2003. A new infrageneric classification of Passiflora.
Passiflora 13: 34–38.
Fishbein M, Hibsch–Jetter C, Soltis DE, Hufford L. 2001. Phylogeny of Saxifragales
(Angiosperm, Eudicots): Analysis of a rapid, ancient radiation. Systematic Biology 50:
817–847.
REFERÊNCIAS BIBLIOGRÁFICAS
151
Freudenstein JV, Chase MW. 2001. Analysis of mitochondrial nad1c–c intron sequences in
Orchidaceae: utility and coding of length–change characters. Systematic Botany 26:
643–657.
Friis EM., Crane PR, Pedersen KR. 1999. Early angiosperm diversification: the diversity
of pollen associated with angiosperm reproductive structures in Early Cretaceous
floras from Portugal. Annals of the Missouri Botanical Garden 86: 259–296.
Gaut, BS. 1998. Molecular clocks and nucleotide substitution rates in higher plants.
Evolutionary Biology 30:93–120.
Gaut BS, Muse SV, Clark WD, Clegg MT. 1992. Relative rates of nucleotide substitution
at the rbcL locus of monocotyledonous plants. Journal of Molecular Evolution 35:
292–303.
Golenberg, EM, Clegg MT, Durbin ML, Doebley J, Ma DP. 1993. Evolution of noncoding
region of the chloroplast genome. Molecular Phylogenetics and Evolution 2: 52–64.
Guo FL, Hu SY. 1995. Cytological evidence of biparental inheritance of plastids and
mitochondria in Pelargonium. Protoplasma 186: 201–207.
Hamby RK, Zimmer EA. 1992. Ribosomal RNA as a phylogenetic tool in plant
systematics. In Molecular systematics of plants (ed. Soltis PS, Soltis DE, Doyle JJ) pp.
50–91. London: Chapman and Hall.
Heredeen PS, Magallón–Puebla S, Lupia R, Crane PR, Kobylinska J. 1999. A prelimnary
conspectus of the Allon Flora from the Late Cretaceous (Late Santonian) of central
Georgia, U.S.A. Annals of the Missouri Botanical Garden 86: 407–471.
Hilu KW (e 15 outros). 2003. Angiosperm phylogeny based on matK sequence
information. American Journal of Botany 90:1758–1776.
REFERÊNCIAS BIBLIOGRÁFICAS
152
Holt SDS, Horova L, Bures P. 2004. Indel patterns of the plastid DNA trnL–trnF region
within the genus Poa (Poaceae). Journal of Plant Research 117: 393–407.
Huang CY, Grünheit N, Ahmadinejad N, Timmis JN, Martin W. 2005. Mutational decay
and age of chloroplast and mitochondrial genomes transferred recently to angiosperm
nuclear chromosomes. Plant Physiology, in press.
Huge NF. 1994. The enigma of angiosperm origins. Cambridge: Cambridge University
Press.
Judd WS, Campbell CS, Kellogg EA, Stevens, PF. 1999. Plant systematics. A phylogenetic
approach. Sinauer Associates, Sunderland, Massachusetts, USA.
Kaufmann K, Melzer R, Theiβen G. 2005. MIKC–type MADS–domain proteins: structural
modularity, protein interactions and network evolution in land plants. Gene 347: 183–
198.
Kelchner SA. 2000. The evolution of non–coding chloroplast DNA and its application in
plant systematics. Annals of the Missouri Botanical Garden 87: 482–498.
Killip EP. 1938. The American species of Passifloraceae. Field Museum of Natural
History, Botanical Series 19: 1–613.
Kim S, Soltis DE, Soltis PS, Zanis MJ, Suh Y. 2004. Phylogenetic relationships among
early–diverging eudicots based on four genes: were the eudicots ancestrally woody?
Molecular Phylogenetics and Evolution 31: 16–30.
Kimura M. 1968. Evolutionary rate at the molecular level. Nature 217: 624–626.
Kimura M. 1969. The rate of molecular evolution considered from the standpoint of
population genetics. Proceedings of the National Academy of Sciences, USA 63: 1181–
1188.
REFERÊNCIAS BIBLIOGRÁFICAS
153
Kimura M. 1983. The neutral theory of molecular evolution. Cambridge: Cambridge
University Press.
Kishino H, Thorne JL, Bruno WJ. 2001. Performance of a divergence time estimation
method under a probabilistic model of rate evolution. Molecular Biology and
Evolution 18: 352–361.
Knapp M, Stöckler K, Havell D, Delsuc F, Sebatiani F, Lockhart PJ. 2005. Relaxed
molecular clock provides evidence for long-distance dispersal of Notophagus
(Southern Beech). Plos Biology 3: e14.
Koch MA, Dobes C, Mitchell–Olds T. 2003. Multiple hybrid formation in natural
populations: concerted evolution of the internal transcribed spacer of nuclear
ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae).
Molecular Biology and Evolution 20: 338–350.
Koehler–Santos P, Lorenz–Lemke AP, Salzano FM, Freitas LB. 2005. Ecological–
evolutionary relationships in Passiflora alata from Rio Grande do Sul, Brazil.
Brazilian Journal of Biology, in press.
Koperlainen H. 2004. The evolutionary process of mitochondrial and chloroplast genomes
differ from those of nuclear genomes. Naturwissenschaften 91: 505–518.
Korall P, Kenrick P. 2004. The phylogenetic history of Selaginellaceae based on sequences
from the plastid and nucleus: extreme substitution rates and rate heterogeneity.
Molecular Phylogenetics and Evolution 31: 852–864.
Koschnitzke C. 1993. Morfologia e biologia floral de cinco espécies de Passiflora L.
(Passifloraceae). Dissertação de Mestrado. Instituto de Biologia, UNICAMP,
Campinas, São Paulo. 81p.
REFERÊNCIAS BIBLIOGRÁFICAS
154
Koschnitzke C, Sazima M. 1997. Biologia floral de cinco espécies de Passiflora L.
(Passifloraceae) em mata semidecídua. Revista Brasileira de Botânica 20: 119–126.
Krosnick SE, Freudenstein JV. 2005. Monophyly and floral character homology of Old
World Passiflora (Subgenus Decaloba: Supersection Disemma) Systematic Botany 30:
139–152.
Kuzoff RK, Sweere JA, Soltis DE, Soltis PS, Zimmer EA. 1998. The phylogenetic
potential of entire 26S rDNA sequences in plants. Molecular Biology and Evolution
15: 251–263.
Laroche J, Li P, Maggia L, Bousquet J. 1997. Molecular evolution of angiosperm
mitochondrial introns and exons. Proceedings of the National Academy of Science
USA 94: 5722−5727.
Laroche J, Bousquet J. 1999. Evolution of the mitochondrial rps3 intron in perennial and
annual angiosperms and homology to nad5 intron 1. Molecular Biology and Evolution
16: 441–452.
Li W–S. 1997. Molecular evolution. Sunderland: Sinauer Associates.
Lidgard S, Crane PR. 1988. Quantitative analysis of early angiosperms radiation. Nature
331: 344–346.
Lin TP, Chung WJ, Huang SSF, Hwang SY. 2003. Evidence for the existence of some
dissociation in otherwise strong linkage disequilibrium between mitochondrial and
chloroplastic genomes in Cyclobalanopsis glauca. Molecular Ecology 12: 2661–
2668.
Liu Y, Cui H, Zhang Q, Sodmergen. 2004. Divergent potentials for cytoplasmic
inheritance within the genus Syringa. A new trait associated with speciogenesis. Plant
Physiology 136: 2762–2770.
REFERÊNCIAS BIBLIOGRÁFICAS
155
Lledó MD, Crespo MB, Fay MF, Chase MW. 2005. Molecular phylogenetics of Limonium
(Plumbaginaceae): Biogeographical and systematic implications. American Journal of
Botany 92: 1189–1198.
Lorenz–Lemke AP, Muschner VC, Bonatto SL, Cervi AC, Salzano FM, Freitas LB. 2005.
Phylogeographic inferences concerning evolution of Brazilian Passiflora actinia and
P. elegans (Passifloraceae) based on ITS (nrDNA) variation. Annals of Botany 95:
799–806.
MacDougal JM. 1994. Revision of Passiflora subgenus Decaloba section Pseudodysosmia
(Passifloraceae). Systematic Botany Monographs 41: 1–46.
Malcomber ST. 2002. Phylogeny of Gaertnera Lam. (Rubiaceae) based on multiple DNA
markers: evidence of a rapid radiation in a widespread, morphologically diverse genus.
Evolution 56: 42–57.
Martin W, Deusch O, Stawski N, Grünheit N, Goremykin V. 2005. Chloroplast genome
phylogenetics: why we need independent approaches to plant molecular evolution.
Trends in Plant Science 10: 203–209.
Mathews S, Donoghue MJ. 1999. The root of angiosperm phylogeny inferred from
duplicate phytochrome genes. Science 286: 947–950.
Mes TH, Kuperus P, Kirschner J, Stepanek J, Oosterveld P, Storchova H, den Nijs JC.
2000. Hairpins involving both inverted and direct repeats are associated with
homoplasious indels in non–coding chloroplast DNA of Taraxacum (Lactuceae:
Asteraceae). Genome 43:634–41.
Mogensen HL. 1996. The hows and whys of cytoplasmic inheritance in seed plants.
American Journal of Botany 83: 383–404.
REFERÊNCIAS BIBLIOGRÁFICAS
156
Mohanty A, Martín JP, González LM, Aguinagalde I. 2003. Association between
chloroplast DNA and mitochondrial DNA haplotypes in Prunus spinosa L. (Rosaceae)
populations across Europe. Annals of Botany 92: 749–755.
Moreira CD, Gmitter FG, Grosser JW, Huang S, Ortega VM, Chase CD. 2002. Inheritance
of organelle DNA sequences in CitrusPoncirus intergeneric cross. The Journal of
Heredity 93: 174–178.
Morley RJ, Dick CW. 2003. Missing fossils, molecular clocks, and the origin of the
Melastomataceae. American Journal of Botany 90: 1638–1644.
Muschner VC, Lorenz AP, Cervi AC, Bonatto SL, Souza–Chies TT, Salzano FM, Freitas
LB. 2003. A first molecular phylogenetic analysis of Passiflora (Passifloraceae).
American Journal of Botany 90: 1229–1238.
Muse SV. 2000. Examining rates and patterns of nucleotide substitution in plants. Plant
Molecular Biology 42:25–43.
Nadot S, Bajon R, Lejeune B. 1994. The chloroplast gene rps4 as a tool for the study of
Poaceae phylogeny. Plant Systematics and Evolution 191: 27–38.
Nagata N, Sodmergen, Saito A, Sakai H, Kuroiwa T. 1997. Preferential degradation of
plastid DNA with preservation of mitochondrial DNA in the sperm cells of
Pelargonium zonale during pollen development. Protoplasma 197: 217–229.
Nandi WI, Chase MW, Endress PK. 1998. A combined cladistic analysis of angiosperms
using rbcL and non–molecular data sets. Annals of the Missouri Botanical Garden 85:
137–212.
Nickrent DL, Soltis DE. 1995. A comparison of angiosperm phylogenies from nuclear 18S
rDNA and rbcL sequences. Annals of the Missouri Botanical Garden 82: 208–234.
REFERÊNCIAS BIBLIOGRÁFICAS
157
Palmer JD, Herbon LA. 1988. Plant mitochondrial DNA evolves rapidly in structure, but
slowly in sequence. Journal of Molecular Evolution 27: 87–97.
Plana V, Gascoigner A, Forrest LL, Harris D, Pennington RT. 2004. Pleistocene and pre-
Pleistocene Begonia speciation in Africa. Molecular Phylogenetics and Evolution 31:
449–461.
Qiu, Y–L, Lee J, Bernasconi–Quadroni F, Soltis DE, Soltis PS, Zanis M, Chen Z,
Savolainen V & Chase MW. 1999. The earliest angiosperms: evidence from
mitochondrial, plastid and nuclear genomes. Nature 402: 404–407.
Renner SS, Clausing G, Meyer K. 2001. Historical biogeography of Melastomataceae: the
roles of Tertiary migration and long–distance dispersal. American Journal of Botany
88: 1290–1300.
Rydin C, Pedersen KR, Friis EM. 2004. On the evolutionary history of Ephedra:
Cretaceous fossils and extant molecules. Proceedings of the National Academy of
Sciences, USA 101: 16571–16576.
Salamin N, Hodkinson TR Savolainen V. 2005. Towards building the tree of life: a
simulation study for all angiosperm genera. Systematic Biology 54: 183–196.
Sanderson MJ. 1997. A nonparametric approach to estimating divergence times in the
absence of rate constancy. Molecular Biology and Evolution 14: 1218–1231.
Sanderson MJ. 2002. Estimating absolute rates of molecular evolution and divergence
times: a penalized likelihood approach. Molecular Biology and Evolution 19: 101–
109.
Sanderson, M. J. 2003a. Molecular data from 27 proteins do not support a Precambrian
origin of land plants. American Journal of Botany 90: 954–956.
REFERÊNCIAS BIBLIOGRÁFICAS
158
Sanderson MJ. 2003b. r8s; inferring absolute rates of evolution and divergence times in the
absence of a molecular clock. Bioinformatics 19: 301–302.
Savolainen V, Chase MW, Morton CM, Hoot SB, Soltis DE, Bayer C, Fay MF, De Bruijn
A, Sullivan S, Qiu Y–L.. 2000a. Phylogenetics of flowering plants based upon a
combined analysis of plastid atpB and rbcL gene sequences. Systematic Biology 49:
306–362.
Savolainen V. (e 16 outros). 2000b. Phylogeny of the edicots a nearly complete familial
analysis based on rbcL gene sequences. Kew Bulletin 55: 257–309.
Schlötterer C. 1998. Ribosomal DNA probes and primers. In Molecular tools for screening
biodiversity (ed. Karp A, Isaac PG, Ingram DS), pp. 267–276. London: Chapman &
Hall.
Schönenberger J, Anderberg AA, Sytsma KJ. 2005. Molecular phylogenetics and patterns
of floral evolution in the Ericales. International Journal of Plant Sciences 166: 265–
288.
Semir J, Brown KS Jr. 1975. Maracujá: a flor da paixão. Revista Geográfica Universal,
fevereiro: 41–47.
Shore JS, McQueen K, Little SH. 1994. Inheritance of plastid DNA in Turnera ulmifolia
complex (Turneraceae). American Journal of Botany 81: 1636–1639.
Shore JS, Triassi M. 1998. Paternally biased cpDNA inheritance in Turnera ulmifolia
(Turneraceae). American Journal of Botany 85: 328–332.
Sodmergen, Zhang Q, Zhang Y, Sakamoto W, Kuroiwa T. 2002. Reduction in amounts of
mitochondrial DNA in the sperm cells as a mechanism for maternal inheritance in
Hordeum vulgare. Planta 216: 235–244.
REFERÊNCIAS BIBLIOGRÁFICAS
159
Soltis DE, Soltis PS, Nickrent DL, Johnson LA, Hahn WJ, Hoot SB, Sweere JA, Kuzoff
RK, Kron KA, Chase MW. 1997. Angiosperms phylogeny inferred from 18S
ribosomal DNA sequences. Annals of the Missouri Botanical Garden 84: 1–49.
Soltis DE (e 13 outros). 2000. Angiosperm phylogeny inferred from a combined dataset of
18S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnean Society 133:
381–461.
Soltis PS, Soltis DE Chase MW. 1999a. Angiosperm phylogeny inferred from multiple
genes: a research tool for comparative biology. Nature 402: 402–404.
Soltis PS, Soltis DE, Wolf PG, Nickrent DL, Chaw S–M, Chapman RL. 1999b. The
phylogeny of land plants inferred from 18S rDNA sequences: pushing the limits of
rDNA signal? Molecular Biology and Evolution 16: 1774–1784.
Soltis PS, Soltis DE, Savolainen V, Crane PR, Barraclough TG. 2002. Rate heterogeneity
among lineages of tracheophytes: integration of molecular and fossil data and
evidence for molecular living fossils. Proceedings of the National Academy of
Sciences, USA 99: 4430–4435.
Souza AP, Jubier M–F, Delcher E, Lancelin D, Lejeune B. 1991. A trans–splicing model
for the expression of the tripartite nad5 gene in wheat and maize mitochondria. Plant
Cell 3: 1363–1378.
Souza–Chies TT, Bittar G, Nadot S, Carter L, Besin E, Lejeune B. 1997. Phylogenetic
analysis of Iridaceae with parsimony and distance methods using the plastid gene
rps4. Plant Systematics and Evolution 204: 109–123.
Stefanović S, Olmstead RG. 2004. Testing the phylogenetic position of a parasitic plant
(Cuscuta, Convolvulaceae, Asteridae): Bayesian inference and the parametric
bootstrap on data drawn from three genomes. Systematic Biology 53:384–99.
REFERÊNCIAS BIBLIOGRÁFICAS
160
Stoneberg Holt SD, Horova L, Bures P. 2004. Indel patterns of the plastid DNA trnL–trnF
region within the genus Poa (Poaceae). Journal of Plant Research 117: 393–407.
Taberlet P, Gielly L, Patou G, Bouvet J. 1991. Universal primers for amplification of three
non–coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105–1109.
Testolin R, Cipriani G. 1997. Paternal inheritance of chloroplast DNA and maternal of
mitochondrial DNA in the genus Actinidia. Theoretical and Applied Genetics 94: 897–
903.
Thorne JL, Kishino H. 2002. Divergence time and evolutionary rate estimation with
multilocus data. Systematic Biology 51: 689–702.
Thorne JL, Kishino H, Painter IS. 1998. Estimating the rate of evolution of the rate of
molecular evolution. Molecular Biology and Evolution 15: 1647–1657.
Ulmer T, MacDougal JM. 2004. Passiflora: passionflowers of the world. Portland: Timber
Press.
Varassin IG, Silva AG. 1999. A melitofilia em Passiflora alata Dryander (Passifloraceae),
em vegetação de restinga. Rodriguésia, 50: 5–17.
Varassin IG, Trigo JR, Sazima M. 2001. The role of nectar production, flower pigments
and odour in the pollination of four species of Passiflora (Passifloraceae) in south–
eastern Brazil. Botanical Journal of the Linnean Society, 136: 139–152.
Wang A, Yang M, Liu J. 2005. Molecular phylogeny, recent radiation and evolution of
gross morphology of the Rhubarb genus Rheum (Polygonaceae) inferred from
chloroplast DNA trnL–trnF sequences. Annals of Botany available online at
www.aob.oupjournals.org.
REFERÊNCIAS BIBLIOGRÁFICAS
161
Whittle C-A, Johnston MO. 2003. Male-driven evolution of mitochondrial and
chloroplastidial DNA sequences in plants. Molecular Biology and Evolution 19: 938–
949.
Williams PA, Karl BJ, Bannister P, Lee WG. 2000. Small mammals as potential seed
dispersers in New Zealand. Austral Ecology, 25: 523–532.
Wikström N, Savolainen V, Chase MW. 2001. Evolution of the angiosperms: calibrating
the family tree. Proceedings of the Royal Society of London 268: 2211–220.
Winkworth RC, Wagstaff SJ, Glenny D, and Lockhart P. 2002. Plant dispersal N.E.W.S.
from New Zealand. Trends in Ecology and Evolution 17: 514–520.
Wissinger B, Schuster W, Brennicke A. 1991. Trans splicing in Oenothera mitochondria:
nad1 mRNAs are edited in exon and trans–splicing group II intron sequences. Cell 65:
473–482.
Wolfe KH, Li W–H, Sharp PM. 1987. Rates of nucleotide substitution vary greatly among
plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National
Academy of Sciences, USA 84: 9054–9058.
Wu C–I, Li WH. 1985. Evidence for higher rates of nucleotide substitution in rodents than
in man. Proceedings of the National Academy of Sciences, USA 82: 1741–1745.
Yang TW, Yang YA, Xiong Z. 2000. Paternal inheritance of chloroplast DNA in
interespecific hybrids in the genus Larrea (Zigophyllaceae). American Journal of
Botany 87: 1452–1458.
Yang Z, Yoder AD. 2003. Comparison of likelihood and Bayesian methods for estimating
divergence times using multiple gene loci and calibration points, with application to a
radiation of cute–looking mouse lemur species. Systematic Biology 52:705–716.
REFERÊNCIAS BIBLIOGRÁFICAS
162
Yockteng R, Nadot S. 2004. Phylogenetic relationships among Passiflora species based on
the glutamine synthetase nuclear gene expressed in chloroplast (ncpGS). Molecular
Phylogenetics and Evolution. 31: 379–396.
Young ND, dePamphilis, CW. 2005. Rate variation in parasitic plants: correlated and
uncorrelated patterns among plastid genes of different functions. BMC Evolutionary
Biology 5: 16–26.
Zanis MJ, Soltis DE, Soltis PS, Mathews S, Donoghue MJ. 2002. The root of the
angiosperm revisited. Proceedings of the National Academy of Sciences, USA 99:
6848–6853.
Zhang Q, Liu Y, Sodmergen. 2003. Examination of the cytoplasmic DNA in male
reproductive cells to determine the potential for cytoplasmic inheritance in 295
angiosperm species. Plant Cell Physiology 44: 941–951.
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo