Wanessa Cartaxo Soares

ANÁLISE DE RECALQUES DE EDIFÍCIOS EM SOLOS MELHORADOS COM ESTACAS DE COMPACTAÇÃO

Dissertação apresentada à Escola de Engenharia de São Carlos da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Mestre em Geotecnia.

Orientador: Prof.Dr. José Carlos A. Cintra

São Carlos, Setembro de 2005

FOLHA DE JULGAMENTO

Candidata: Engenheira WANESSA CARTAXO SOARES

-

Dissertação defendida e julgada em 26-10-2005 perante a Comissão Julgadora:

Am CCutts	APROVADA
Prof. Titular JOSÉ CARLOS ANGELO CINTRA (Orie (Escola de Engenharia de São Carlos/USP)	ntador)
hu h -	APNOVADA
Prof. Dr. NELSON AOKI (Escola de Engenharia de São Carlos/USP)	
Henrific hes Prof. Dr. ADEMAR DA SILVA LOBO (UNESP/Bauru) Prof. Associado LAZABO	
Coordenador do Programa de	Pós-Graduação em Geotecnia
Profa. Titular MARIA DO Presidente da Comissã	o CARMO CALLJURI

-

Aos meus pais e meus irmãos

AGRADECIMENTOS

Ao Prof. Dr. José Carlos Angelo Cintra pela importante orientação durante o desenvolvimento deste trabalho.

Ao Prof. Dr. Nelson Aoki pelas valiosas sugestões ao longo da pesquisa.

Aos professores, funcionários e colegas do Departamento de Geotecnia da USP/São Carlos, em particular, a Jeselay Hemetério dos Reis, e, especialmente a Thiago, pelo apoio e compreensão.

Aos funcionários da Concresolo & Copesolo pela ajuda e amizade.

A CAPES pela bolsa concedida.

A meu pai, pelos ensinamentos, lições e apoio constante durante a minha caminhada, e a minha mãe, pela acolhida sempre presente em todos os momentos, principalmente nos mais difíceis.

A meus irmãos, Wilson e Waldez, pela companhia e ajuda mútua em nosso ainda contínuo aprendizado, e ao pequeno Gabriel, que nos enche de esperança, alegria e renovação.

RESUMO

SOARES, W.C. (2005) "Análise de recalques de edifícios em solos melhorados com estacas de compactação". São Carlos, 2005. 131 p. Dissertação de mestrado. Escola de Engenharia de São Carlos. Universidade de São Paulo.

As estacas de compactação são freqüentemente utilizadas como método de melhoria de solos arenosos em algumas cidades do litoral nordestino, principalmente João Pessoa e Recife. Introduzem-se materiais como areia, cimento e/ou brita pelo procedimento de vibrodeslocamento. Também conhecidas como estacas de areia ou granulares, o seu emprego provoca o aumento da capacidade de carga e a redução de recalques, viabilizando a execução de sapatas em locais que não permitiriam esse tipo de fundação. A majoração da capacidade de carga já foi comprovada em pesquisa anterior por meio de prova de carga em placa. Nesta pesquisa, é analisada a eficácia do processo de melhoria do solo na redução dos recalques, pelo monitoramento de cinco edifícios sobre solo melhorado com estacas de compactação na cidade de João Pessoa. São comparados os resultados obtidos por meio do monitoramento com recalques estimados para a situação hipotética dos edifícios em solo natural, sem compactação. É feita uma avaliação ao longo do tempo de monitoramento da evolução dos recalques medidos.

Palavras-chave: estacas de compactação, monitoramento de recalques, método Aoki-Lopes.

ABSTRACT

SOARES, W.C. (2005) "Settlement analysis of buildings founded on improved soil by compaction piles". São Carlos, 2005. 131 p. Dissertação de mestrado. Escola de Engenharia de São Carlos. Universidade de São Paulo.

Compaction piles are often used as a sandy soil improvement process in some cities of brazilian Northeast region, specially João Pessoa and Recife. Also known as granular or sand piles, this practice promotes an increase on bearing capacity and settlement reduction, allowing footing use in places that would not permit this type of foundation. Its effectiveness on bearing capacity increase was proved through plate load test in previous work. It is presented here an analysis of settlement reduction provided by the method. Five buildings on improved soil by compaction piles had their settlements measured in the city of João Pessoa. The results obtained through the measurement are compared to estimated settlements for hypothetical cases of the buildings founded on natural soil, without compaction. An evaluation along observation time of the measured settlements is made.

Key words: compaction piles, settlement measurement, Aoki-Lopes procedure.

SUMÁRIO

LISTA DE	FIGURASi
LISTA DE	TABELAS
1. Introduç	<u>ão</u> 1
2. Revisão	Bibliográfica
2.1	Recalques
	2.1.1 Metodologias de Cálculo
	2.1.2 Parâmetros de deformabilidade10
	2.1.3 Indeformável
	2.1.4 Carregamento
	2.1.5 Recalque admissível
	2.1.7 Extrapolação de curvas tempo x recalque16
	2.1.8 Interação estrutura-solo
2.2 1	Estacas de compactação19
	2.2.1 Processo executivo
	2.2.2 Equipamento
	2.2.3 Controle na execução
	2.2.4 Solo adequado à melhoria
	2.2.5 Restrições
	2.2.6 Disposição
	2.2.7 Resultados e análises de ensaios de avaliação
	2.2.8 Recalques

3. Caracterização Geológico -Geotécnica	
3.1 Caracterização geológica	
3.2 Caracterização geotécnica	
<u>4. Materiais e Métodos</u>	41
4.1 Monitoramento	41
4.1.1 Edifícios monitorados	
4.2 Estimativas	53
5. Resultados	55
5.1 Monitoramento	
5.2 Estimativas	
5.2.1 Módulo de deformabilidade	
5.2.2 Recalques	
6. Análise dos Resultados	71
6.1 Monitoramento	71
6.1.1 Carregamento	
6.1.2 Velocidades de recalque	75
6.1.3 Extrapolação	
6.2 Estimativas	
6.2.1 Módulo de Deformabilidade	
6.2.2 Indeformável	91
6.2.3 Recalques totais	94
6.3 Retroanálise do módulo	

6.4 Redução	
7. Conclusão	
REFERÊNCIAS BIBLIOGRÁFICAS	
ANEXO A	
APÊNDICE A	

LISTA DE FIGURAS

Figura 2.1 – Recalques de uma fundação superficial sob carga vertical centrada5
Figura 2.2 - Fator de influência na deformação vertical (Schmertmann, 1970 <i>apud</i> Cintra <i>et al.</i> , 2003)
Figura 2.3 - Fator de influência na deformação vertical (Schmertmann, 1978 <i>apud</i> Cintra <i>et al.</i> , 2003)
Figura 2.4 - Processo executivo de estaca de compactação por vibro-deslocamento (Bell, 1993)
Figura 2.5 - Bate-estacas usado na execução de estacas de areia (Soares & Soares, 2004)23
Figura 2.6 – Estacas de compactação prontas (Copesolo, 2005)23
Figura 2.7 - Faixa de ocorrência em que a técnica é mais eficiente (adaptado de GUSMÃO FILHO, 1998 <i>apud</i> SOARES,2002)
Figura 2.8 - Boletim de sondagem com os valores do índice de resistência à penetração N_{SPT} médios, obtidos em solo natural e em malhas e estacas com espaçamento de 80, 90 e 100 cm. (SOARES, 2002)
Figura 2.9 - Ensaio de cone em solo natural (SOARES, 2002)
Figura 2.10 - Ensaio de cone em malha de estacas com espaçamento de 90 cm (SOARES, 2002)
Figura 2.11 - Provas de carga realizadas em terreno natural e compactado (SOARES, 2002).
Figura 2.12 – Ábaco para cálculo do módulo equivalente para E _{estaca} = 500 MPa (Alves <i>et al.</i> ,2000)
Figura 3.1 – Perfil Geológico da cidade de João Pessoa (Gusmão Filho, 1982)
Figura 3.2 – Residencial Maison des Princes: perfil médio representativo das sondagens SPT realizadas em solo natural (N _{SPT} s em linha azul) e em solo compactado (N _{SPT} s linha vermelha)
Figura 3.3 – Residencial Vale Verzasca: perfil médio representativo das sondagens SPT realizadas em solo natural (N _{SPT} s em linha azul) e em solo compactado (N _{SPT} s linha vermelha)
Figura 3.4 – Residencial Maison Elizabeth: perfil médio representativo das sondagens SPT realizadas em solo natural (N _{SPT} s em linha azul) e em solo compactado (N _{SPT} s linha vermelha)
Figura 3.5 – Residencial Boulevard Manaíra: perfil médio representativo das sondagens SPT realizadas em solo natural (N _{SPT} s em linha azul) e em solo compactado (N _{SPT} s linha vermelha)

Figura 3.6 – Edifício Stéphano: perfil médio representativo das sondagens SPT realizadas em solo natural (N _{SPT} s em linha azul) e em solo compactado (N _{SPT} s linha vermelha)40
Figura 4.1 – Residencial Maison des Princes
Figura 4.2 – Residencial Vale Verzasca
Figura 4.3 – Residencial Maison Elizabeth45
Figura 4.4 – Edifício Boulevard manaíra45
Figura 4.5 – Edifício Stéphano
Figura 4.6 – Maison des Princes: planta de forma das sapatas e esquema de locação das estacas de compactação
Figura 4.7 – Vale Verzasca: planta de forma das sapatas e esquema de locação das estacas de compactação
Figura 4.8 – Maison Elizabeth: planta de forma das sapatas e esquema de locação das estacas de compactação
Figura 4.9 – Boulevard Manaíra: planta de forma das sapatas e esquema de locação das estacas de compactação
Figura 4.10 – Stéphano: planta de forma das sapatas e esquema de locação das estacas de compactação
Figura 5.1 – Maison des Princes: curvas tempo x recalque de três sapatas55
Figura 5.2 – Vale Verzasca: curvas tempo x recalque de três sapatas
Figura 5.3 – Maison Elizabeth: curvas tempo x recalque de três sapatas
Figura 5.4 – Boulevard Manaíra: curvas tempo x recalque de três sapatas
Figura 5.5 – Stéphano: curvas tempo x recalque de três sapatas
Figura 5.6 – Maison des Princes: Gráfico de E ₀ x z para solo natural e compactado58
Figura 5.7 – Vale Verzasca: Gráfico de E ₀ x z para solo natural e compactado58
Figura 5.8 – Maison Elizabeth: Gráfico de E ₀ x z para solo natural e compactado59
Figura 5.9 – Boulevard Manaíra: Gráfico de E ₀ x z para solo natural e compactado59
Figura 5.10 – Stéphano: Gráfico de E ₀ x z para solo natural e compactado60
Figura 5.11 – Maison des Princes: curvas de isorecalques totais para solo natural (mm) 61
Figura 5.12 – Maison des Princes: curvas de isorecalques totais para solo compactado (mm) 61
Figura 5.13 – Maison des Princes: superfície de isorecalques totais para solo compactado62

Figura 5.15 – Vale Verzasca: curvas de isorecalques totais para solo compactado (mm).......63 Figura 5.18– Maison Elizabeth: curvas de isorecalques totais para solo compactado (mm) ... 65 Figura 5.19 – Maison Elizabeth: superfície de isorecalques totais para solo compactado.......66 Figura 5.20 – Boulevard Manaíra: curvas de isorecalques totais para solo natural (mm)67 Figura 5.21 – Boulevard Manaíra: curvas de isorecalques totais para solo compactado (mm)67 Figura 5.22 – Boulevard Manaíra: superfície de isorecalques totais para solo compactado..... 68 Figura 6.1 – Maison des Princes: gráfico tempo x recalque x carregamento de três sapatas...72 Figura 6.3 – Maison Elizabeth: gráfico tempo x recalque x carregamento de três sapatas......73 Figura 6.4 – Boulevard Manaíra: gráfico tempo x recalque x carregamento de três sapatas ... 74 Figura 6.6 – Maison des Princes: gráfico tempo x velocidade de recalque de três sapatas75 Figura 6.8 – Maison Elizabeth: gráfico tempo x velocidade de recalque de três sapatas76 Figura 6.9 – Boulevard Manaíra: gráfico tempo x velocidade de recalque de três sapatas77

Figura 6.18 – S11 (Maison Elizabeth): pontos monitorados e curva ajustada
Figura 6.19 – S17 (Maison Elizabeth): pontos monitorados e curva ajustada
Figura 6.20 – S20 (Maison Elizabeth): pontos monitorados e curva ajustada
Figura 6.21 – S2a (Vale Verzasca): pontos monitorados e curva ajustada
Figura 6.22 – S3a (Vale Verzasca): pontos monitorados e curva ajustada
Figura 6.23 – Acréscimos de recalque em relação ao imediato90
Figura 6.24 – Maison des Princes: recalques médios totais estimados de cada camada de solo subjacente natural e compactado
Figura 6.25 – Vale Verzasca: recalques médios totais estimados de cada camada de solo subjacente natural e compactado
Figura 6.26 – Maison Elizabeth: recalques médios totais estimados de cada camada de solo subjacente natural e compactado
Figura 6.27 – Boulevard Manaíra: recalques médios totais estimados de cada camada de solo subjacente natural e compactado
Figura 6.28 – Stéphano: recalques médios totais estimados de cada camada de solo subjacente natural e compactado
Figura 6.28 – Maison des Princes: Gráfico de E ₈ x z para solo natural e compactado97
Figura 6.29 – Vale Verzasca: Gráfico de $E_8 x z$ para solo natural e compactado
Figura 6.30 – Maison Elizabeth: Gráfico de E ₈ x z para solo natural e compactado
Figura 6.31 - Maison des Princes: Redução de recalques entre solo natural e compactado 101
Figura 6.32 – Vale Verzasca: Redução de recalques entre solo natural e compactado101
Figura 6.33 – Vale Verzasca: Redução de recalques entre solo natural e compactado (com S2a e S3a)
Figura 6.34 – Maison Elizabeth: Redução de recalques entre solo natural e compactado102

LISTA DE TABELAS

Tabela 2.1 – Importância relativa dos recalques imediato, de adensamento e secundário para diferentes tipos de solo (Holtz, 1991)
Tabela 2.2 – Fator a (Teixeira & Godoy, 1996)11
Tabela 2.3 – Coeficiente K (Teixeira & Godoy, 1996)11
Tabela 2.4 – Coeficiente de Poisson (Teixeira & Godoy, 1996)11
Tabela 2.5 – Distribuição de cargas na estrutura (Gusmão <i>et al.</i> , 2000)
Tabela 4.1 – Período de monitoramento dos edifícios e fase estrutural dos
edifícios no início das medições43
Tabela 4.2 – Período de monitoramento de cada obra
Tabela 4.3 – Dados das estacas de cada edifício52
Tabela 4.4 – Sapatas cujos pilares foram monitorados em cada edifício
Tabela 6.1 – Maison des Princes: recalques obtidos com o ajuste
Tabela 6.2 – Vale Verzasca: recalques obtidos com o ajuste
Tabela 6.3– Maison Elizabeth: recalques obtidos com o ajuste 85
Tabela 6.4 – Vale Verzasca: recalques obtidos com novo ajuste
Tabela 6.5 – Velocidades de recalque obtidas para o período sem monitoramento
Tabela 6.6 – Acréscimos de recalque após o término da construção
Tabela 6.7 – Reduções de recalque médio estimado para as camadas
Tabela 6.8 – Recalques estimados e obtidos com o monitoramento e extrapolações96
Tabela 6.9– Módulo corrigido e calculado pela correlação e ábacos de Alves et al. (2000)99
Tabela 6.10 – Maison des Princes: recalques estimados para o solo natural e obtidos com o monitoramento e extrapolações
Tabela 6.11 – Vale Verzasca: recalques estimados para o solo natural e obtidos com o monitoramento e extrapolações
Tabela 6.12– Maison Elizabeth: recalques estimados para o solo natural e obtidos com o monitoramento e extrapolações
Tabela A.1 - Carga de projeto atuante em cada sapata dos cinco edifícios

Introdução

As estacas de compactação, também conhecidas como estacas de areia ou granulares, constituem um processo de melhoria de solos no qual uma mistura de materiais como areia, cimento e/ou brita é introduzida em terrenos arenosos por meio de aplicação de grandes energias de compactação. Esta prática é muito comum em algumas cidades do litoral nordestino, principalmente João Pessoa e Recife, onde geralmente são utilizados bate-estacas do tipo *Strauss* e a execução da estaca é semelhante a do tipo *Franki*.

O processo de compactação promove a densificação do solo adjacente, assim como um aumento de resistência e diminuição de compressibilidade. Tais efeitos contribuem para uma majoração de capacidade de carga e redução de recalques, viabilizando a utilização de sapatas em alguns casos de edifícios em regiões que não permitiriam este tipo de fundação. Na região mencionada, por hipótese de projeto, costuma-se considerar que a estaca não trabalha como elemento estrutural de fundação, mas sim como parte do solo melhorado.

No caso específico de João Pessoa, apesar da utilização dessa solução em diversas obras, ainda são poucos os trabalhos a abordar o comportamento de solos melhorados com estacas de areia. Os projetos relacionados a este assunto são baseados em experiência profissional dos engenheiros atuantes na área. Além de sondagens SPT executadas antes e após a compactação, poucos ensaios *in-situ* ou monitoramento com medições de recalque dos pilares tem sido realizados. Conseqüentemente, tornam-se raros os dados disponíveis que permitam a avaliação do desempenho das obras, assim como um melhor entendimento dos efeitos da melhoria.

Em pesquisa anterior, realizada por Soares (2002), já se comprovou a majoração da capacidade de carga dos solos compactados por meio de prova de carga em placa. Neste trabalho, são analisados os recalques de cinco edifícios sobre solo melhorado com estacas de compactação na cidade de João Pessoa – PB. Três deles foram monitorados após o início das construções, durante três anos, de fevereiro de 2001 a fevereiro de 2004. Dois continuam sendo monitorados, desde o início de suas construções, em setembro e outubro de 2004.

É analisada a eficácia desse processo de melhoria do solo na redução do recalque dos edifícios. São comparados os resultados obtidos por meio do monitoramento com recalques estimados para a situação hipotética dos edifícios em solo natural, sem compactação.

2

Revisão Bibliográfica

2.1 Recalques

Em projetos de edificações, é da maior importância prever como os recalques se desenvolverão com o tempo. De acordo com Aoki (2000), o desempenho de uma obra de engenharia civil ao longo de sua vida útil, especialmente da sua fundação, depende do grau de alteração do maciço de solo durante a fase de execução desta última. O autor acrescenta que o comportamento da fundação sob ação da carga de serviço pode ser analisado através da curva carga–tempo–recalque dos apoios da obra.

Segundo Reis (2000), a compressibilidade dos solos em função do tempo aparece no fenômeno da interação estrutura-solo como principal agente de desequilíbrio, pois a maneira

como os recalques evoluem e se estabilizam determina a importância ou a gravidade dos danos causados por estes recalques à superestrutura.

A NBR-6122/96 estabelece que nas obras em que as cargas mais importantes são verticais, a medição dos recalques constitui o recurso fundamental para a observação do comportamento da obra. A norma acrescenta que tal medida tem como objetivo permitir a comparação de valores medidos com valores calculados, visando o aperfeiçoamento dos métodos de previsão de recalques.

Apesar disso, Danziger *et al.* (2000) afirmam que a prática brasileira de fundações consiste em realizar controle de recalques apenas em situações em que são observados problemas em edificações, tais com trincas ou rachaduras. Eles enfatizam a importância da medida dos recalques desde o início da construção como um controle de qualidade das fundações.

Entre os diversos autores a mencionar os tipos de recalque (Golder, 1971), Velloso & Lopes (2004) citam o recalque instantâneo ou imediato como o que ocorre imediatamente após o carregamento, indicado como \mathbf{r}_i na Figura 2.1. Este recalque é proveniente de deformações a volume constante (distorções, sem redução do índice de vazios) e que se processa quase que simultaneamente à aplicação do carregamento, em condições nãodrenadas em argilas e condições drenadas em areias. A parcela de recalque que ocorre com o tempo é indicada como \mathbf{r}_i na mesma figura.

Assim, o recalque total ou final seria:

$$\mathbf{r}_f = \mathbf{r}_i + \mathbf{r}_t$$

Figura 2.1 – Recalques de uma fundação superficial sob carga vertical centrada (Velloso & Lopes, 2004).

Velloso & Lopes (2004) acrescentam que a parcela de recalque que se processa com o tempo se deve ao adensamento (migração de água dos poros com conseqüente redução no índice de vazios) e a fenômenos viscosos (*creep*). Este último, também chamado de fluência, é comumente tratado como adensamento secundário.

Então:

$$\boldsymbol{r}_t = \boldsymbol{r}_a + \boldsymbol{r}_v$$

em que:

 \boldsymbol{r}_a = parcela devida ao adensamento

 \boldsymbol{r}_{v} = parcela devida a fenômenos viscosos.

Os autores afirmam que em solos de drenagem rápida, r_f ocorre relativamente rápido, pois não há praticamente geração de excessos de pressão neutra com o carregamento.

Holtz (1991) ilustra a importância relativa de cada tipo de recalque nas diferentes variedades de solo na Tabela 2.1:

Tipo de Solo	Recalque Imediato	Recalque por Adensamento	Adensamento Secundário
Areias	Sim	Não	Não
Argilas	Possivelmente	Sim	Possivelmente
Solos	Possivelmente	Possivelmente (não)	Sim

Tabela 2.1 – Importância relativa dos recalques imediato, de adensamento e secundário para diferentes tipos de solo (Holtz, 1991)

Entretanto, Schmertmann (1970) constata o acréscimo de recalque com o tempo, também em areias, de maneira a sugerir a ocorrência de algum tipo de fluência, como efeito similar ao adensamento secundário em argilas. Também Vargas e Leme de Morais (1989) registram a ocorrência de parcela significativa de recalques em areias após a construção, por efeito de *creep*.

2.1.1 Metodologias de Cálculo

Dentre as diversas metodologias existentes para cálculo de recalques, abordam-se aqui as utilizadas na pesquisa desenvolvida.

O método proposto por Schmertmann (1970) permite a previsão de recalques no caso de sapatas rígidas isoladas apoiadas em areia. É considerado um semi-espaço elástico, isotrópico e homogêneo. A deformação vertical e_z , sob o centro do carregamento, à profundidade z, é expressa em função de um carregamento uniforme s e do módulo de deformabilidade do solo E:

$$\boldsymbol{e}_{z} = \frac{\boldsymbol{s}}{E} \boldsymbol{I}_{z}$$

em que Iz é um fator de influência na deformação e encontrado pelo gráfico mostrado na Figura2.2.

O autor considera as deformações ocorrentes num bulbo de profundidade 2B, sendo B a largura da sapata. No bulbo, a deformação máxima aconteceria a uma profundidade B/2.

Figura 2.2 - Fator de influência na deformação vertical (Schmertmann, 1970, *apud* Cintra *et al.*, 2003).

O autor define o fator de correção C_1 que leva em consideração a influência do embutimento da sapata:

$$C_1 = 1 - 0.5 * \left(\frac{q}{s}\right) \ge 0.5$$

em que q é a tensão vertical efetiva na cota de apoio da fundação e σ^* é a tensão líquida aplicada pela sapata ($\sigma^* = s - q$).

Schmertmann (1970) observa que outra parcela de recalque em areias, além do imediato, se desenvolve com o tempo, e adota outro fator de correção, chamado C_2 , dado por:

$$C_2 = 1 + 0.2\log\left(\frac{t}{0.1}\right)$$

em que t = tempo em anos.

Considerando a presença de n camadas homogêneas na profundidade de 0 a 2B e incluindo os efeitos do tempo e do embutimento, o recalque resultaria em:

$$\mathbf{r} = C_1 \cdot C_2 \cdot \mathbf{s}^* \cdot \sum_{i=1}^n \left(\frac{Iz}{E}\right) \Delta z_i$$

em que:

 $I_z = o$ fator de influência na deformação à meia-altura da i-ésima camada;

 $E = m \acute{o} du lo de deformabilidade da i-\acute{e} sima camada de espessura <math>\Delta z_i$.

Posteriormente, Schmertmann *et al.* (1978) acrescentaram alterações com o intuito de separar os casos de sapata corrida e de sapata quadrada por meio de dois novos diagramas referentes à distribuição do fator de influência. Para o primeiro caso, o valor máximo de I_z ocorre em z= B, enquanto que no segundo caso, em z=B/2, e pode ser calculado pela expressão:

$$I_{zmáx} = 0.5 + 0.1 \sqrt{\frac{\boldsymbol{s}^*}{\boldsymbol{s}_v}}$$

na qual s_v é a tensão vertical efetiva na profundidade correspondente a $I_{máx}$. Para sapata corrida, o novo diagrama vai até 4B. Na profundidade z = 0, o valor de I_z nos dois diagramas não é nulo, sendo 0,1 para sapata quadrada e 0,2 para sapata corrida. Os diagramas são mostrados na Figura 2.3

Figura 2.3 - Fator de influência na deformação vertical (Schmertmann, 1978, *apud* Cintra *et al.*, 2003).

No método Aoki - Lopes (1975), o maciço é considerado como meio tridimensional, elástico, estratificado e semi-infinito. Permite-se a consideração de qualquer geometria de carregamento.

A carga transmitida ao solo pelo elemento estrutural de fundação é discretizada em um sistema estaticamente equivalente de cargas pontuais. Pode-se então admitir uma superfície carregada em trechos com a ocorrência de cargas concentradas.

Considerando uma carga concentrada vertical, as equações de Mindlin (1936) *apud* Aoki e Lopes (1975) representam o estado de tensões em qualquer ponto do semi-espaço infinito, assim como o deslocamento vertical desse ponto. No método Aoki e Lopes, é feita a integração numérica da expressão que representa o deslocamento vertical do ponto, obtendose o recalque. As contribuições das cargas discretizadas no valor total dos recalques são consideradas através da superposição dos efeitos, levando-se em conta, então, a influência do carregamento dos outros elementos estruturais de fundação.

A estratigrafia do maciço de solos é considerada por meio da técnica de Steinbrenner (1934) *apud* Aoki e Lopes (1975), que possibilita a determinação, pelos deslocamentos do topo e base de cada camada, da redução de espessura dessa camada. A soma de todas as reduções de espessura é o recalque total do maciço de solos.

Com o método, Aoki e Lopes (1975) desenvolvem um programa em linguagem Fortran. Posteriormente, Reis (2000) elabora um programa na mesma linguagem para o caso específico de previsão de recalque em sapatas.

O programa de Reis (2000) considera o carregamento vertical das sapatas, admitindose sua distribuição no solo por meio de um diagrama de tensões de contato uniformemente distribuídas.

São fornecidos, como dados de entrada, as cargas de projeto de cada sapata, assim como as dimensões, coordenadas e cotas de assentamento das mesmas. Em relação ao solo, fornecem-se os números de camadas componentes do perfil geotécnico e suas características como espessura, profundidade, módulo de deformabilidade (E) e coeficiente de Poisson (n).

2.1.2 Parâmetros de deformabilidade

Teixeira & Godoy (1996) propõem a seguinte correlação para a estimativa do módulo de deformabilidade quando não se dispõem de dados de ensaios de laboratórios nem de prova de carga sobre placa:

10

$$E_0 = a K N_{SPT}$$

em que a é um fator de correlação e K um coeficiente que relaciona a resistência de ponta do cone (q_c) com o índice de resistência a penetração (N_{SPT}) da sondagem SPT, cujos valores, em função do tipo de solo, são apresentados nas Tabelas 2.2 e 2.3, respectivamente.

Solo	a	
Areia	3	_
Silte	5	_
Argila	7	_

Tabela 2.2 – Fator a (Teixeira & Godoy, 1996).

Tabela 2.3 – Coeficiente K (Teixeira & Godoy, 1996).

Solo	K (MPa)
Areia com pedregulhos	1,1
Areia	0,9
Areia siltosa	0,7
Areia argilosa	0,55
Silte arenoso	0,45
Silte	0,35
Argila arenosa	0,3
Silte argiloso	0,25
Argila siltosa	0,2

A Tabela 2.4 apresenta valores típicos do coeficiente de Poisson em função do tipo de solo, também apresentados por Teixeira & Godoy (1996).

Tabela 2.4 – Coeficiente de Poisson (Teixeira & Godoy, 1996).

Solo	n
Areia pouco compacta	0,2
Areia compacta	0,4
Silte	0,3 – 0,5
Argila saturada	$0,\!4-0,\!5$
Argila não saturada	0,1 - 0,3

2.1.3 Indeformável

Assim como todos os tipos de análise necessitam de uma perspectiva comum para fins de avaliação, o estudo da interação estrutura-solo demanda um sistema de referência comum. Aoki (1997) acrescenta que, além deste sistema de referência, é necessária uma visão integrada das diferentes formas dos elementos que compõem os sistemas envolvidos em determinadas situações, sejam eles o estrutural e o geotécnico.

O autor propõe, para o caso do modelo de transferência de carga no qual o maciço de solos é considerado linear e as cargas aplicadas ao longo da interface estaca – solo são compatíveis com as resistências últimas das camadas atravessadas, o uso da referência através de um eixo comum. Tal eixo é colocado sobre a superfície do indeslocável, abaixo do qual podem–se desprezar as deformações devidas às cargas aplicadas ao maciço. Considera–se então a ação da carga transmitida ao maciço de solos, ao longo e sob a base dos elementos estruturais de fundação, e os recalques decorrentes da deformação do maciço.

Dado um perfil com as características de deformabilidade das várias camadas, questiona-se, então, em que posição se situaria esse eixo. Cintra *et al.* (2003) propõem a consideração de um significado relativo para o indeformável, em vez do significado absoluto.

Os autores sugerem que se considere como última subcamada de interesse de um perfil a que apresentar recalque inferior a 10% do recalque total (até essa subcamada, inclusive). Assim, a posição do indeformável é obtida caso a caso.

2.1.4 Carregamento

Em trabalho que abordou medições de recalque de edifícios sobre solo melhorado com estacas de compactação em Recife, Gusmão *et al.* (2000) apresentam a distribuição de cargas contida na Tabela 2.5. As cargas são estimadas proporcionalmente ao número de pavimentos completados (concreto, alvenaria, revestimento, pisos, etc.).

Тіро	Carregamento parcial (%)*
Estrutura de concreto armado	40,0
Alvenarias	20,0
Revestimento externo	7,5
Revestimento interno	7,5
Pisos	10,0
Sobrecargas	15,0
TOTAL	100,0

Tabela 2.5 – Distribuição de cargas na estrutura (Gusmão et al., 2000)

*Em relação ao carregamento total

2.1.5 Recalque admissível

A NBR 6122/96 define como tensão admissível a que provoca apenas recalques que a construção pode suportar sem inconvenientes, afirmando que os recalques diferenciais específicos (dados por δ/l , em que δ é o recalque diferencial entre dois pilares e *l* a distância

entre eles) são os que geralmente podem prejudicar a estabilidade ou funcionalidade da construção. A norma acrescenta que os deslocamentos admissíveis máximos suportados pela estrutura devem ser definidos pelos projetistas envolvidos.

Entretanto, o limite que separa o admissível do inadmissível, ao se tratar de recalques, mostra-se uma questão subjetiva.

Teixeira & Godoy (1996) indicam que a fixação da tensão admissível, pelo critério de recalques admissíveis, implica na adoção de uma tensão tal que conduza a fundação a recalques que a superestrutura possa suportar. Afirmam que é o critério que governa a maioria dos problemas práticos, sendo também o mais difícil de ser avaliado, em virtude da dificuldade na estimativa dos recalques a que estará sujeita a fundação projetada.

Segundo os autores, mesmo para valores exagerados de recalques absolutos, uma estrutura não sofreria danos caso os recalques fossem uniformes. Acrescentam que esta hipótese, entretanto, não ocorre na prática, observando-se o aparecimento de recalques diferenciais seja por excentricidade de cargas ou heterogeneidade do solo. Afirmam ainda que a limitação do recalque absoluto é um dos meios de limitar também o recalque diferencial entre dois pilares, que, por sua vez, influencia os valores do que os autores chamam de distorção angular, definida pela rotação da linha ligando dois pontos de uma fundação depois de descontado o desaprumo.

Skempton & MacDonald (1956), em pesquisa com dados de recalques de 98 edificações, sugerem como valor limite de distorção angular o de 1/300 para o aparecimento de trincas em paredes de edifícios.

Novais Ferreira (1976), em trabalho sobre os diversos tipos e aspectos de recalque (recalque total, inclinação, recalque diferencial e distorção), adverte que a distorção angular

usada por Skempton & MacDonald e outros autores é de fato o recalque diferencial específico (δ/l) , com a correção da inclinação quando necessário.

Golder (1971) discute os valores de distorções angulares introduzidos por Skempton & McDonald em 1956. A dificuldade de se classificar edificações em grupos com mesmas características estruturais e susceptibilidade a danos é mencionada, assim como o fato do Código Russo fornecer maiores valores de δ/l para argilas do que para areias. Segundo o autor, isso se deve, presumivelmente, à maior quantidade de tempo para a ocorrência de recalques em argilas, e à fluência dos materiais constituintes das estruturas permitir algum alívio de tensões.

Terzaghi & Peck (1967) observam que o recalque diferencial, nos casos de sapatas contínuas carregadas uniformemente e sapatas isoladas de aproximadamente mesmas dimensões, geralmente não excede 50% do maior recalque medido, em areias. Os autores acrescentam que sob condições extremas envolvendo fundações por sapatas com tamanhos e embutimentos muito diferentes, o recalque diferencial geralmente não excede 75% do recalque máximo. Segundo os autores, um recalque diferencial da ordem de 20 mm pode ser tolerado pela maioria das estruturas comuns como edifícios de escritórios, residenciais e industriais. Conseqüentemente, aconselham como valor de recalque admissível para areias o de 25 mm.

Alonso (1995) adverte que além da necessidade de se controlar os recalques diferenciais para mantê-los dentro de valores que não causem danos à estrutura, também a velocidade de recalque deve ser controlada. O autor apresenta valores utilizados em sua atividade profissional.

Em prédios construídos há mais de cinco anos e considerados estabilizados, Alonso(1995) menciona ser comum registrarem-se velocidades dos recalques inferiores a 20 μ m/dia. Nesses mesmos prédios, velocidades entre 20 e 40 μ m/dia são consideradas de moderadas a altas e acima de 40 μ m/dia são consideradas muito altas e preocupantes. Em prédios construídos há mais de um ano e menos de cinco são aceitáveis velocidades de 30 μ m/dia.

Para prédios em construção e apoiados em fundação rasa, podem ser considerados normais os valores de velocidades de até 200 µm/dia.

Além da observação das velocidades, o autor também sugere que sejam feitas "curvas de igual recalque", que seriam de grande importância por permitir uma visão global do comportamento da obra.

2.1.7 Extrapolação de curvas tempo x recalque

Asaoka (1978) propõe um método gráfico para o acompanhamento de recalques ao longo do tempo. O método permite, a partir de curvas tempo x recalque medidas, prever o recalque final e também a estimativa do coeficiente de adensamento (C_v), sem a necessidade de medidas de recalque desde o início do processo de adensamento.

Massad (1982), em trabalho que divulga esse método gráfico, demonstra a simplificação da expressão proposta por Asaoka, que resulta, para U (porcentagem de adensamento) > 60 %, em:

$$?' = ?'_{est} (1 - e^{(-at + \beta)})$$

em que:

$$t = tempo;$$

 ρ'_{est} = recalque estabilizado (t = ∞);

 ρ' = recalque em um tempo t;

a =
$$\frac{2,47 * C_V}{H_d^2}$$
, com H_d sendo a altura de drenagem;
 $\beta = -0,2102.$

Segundo Aoki (1982), a expressão apresentada corresponde à equação de Van der Veen generalizada. Van der Veen (1953) propôs, para o caso de extrapolação de recalque com a carga, a equação:

$$\mathbf{P} = \mathbf{R}(1 - e^{-a\rho})$$

em que:

- P carga;
- R capacidade de carga;
- a coeficiente de forma da curva;

 ρ – recalque.

A capacidade de carga é obtida a partir de pontos (P, ρ) obtidos em prova de carga. Deve-se encontrar, por tentativas, o valor de R que conduz à melhor regressão linear até que se obtenha uma reta no gráfico $-ln(1-P/P_{máx}) \ge \rho$.

Aoki (1976) propõe a inclusão de um intercepto β , da reta obtida na escala semilogarítmica, no eixo dos recalques. O autor observa que se a curva P x ρ não for obrigada a passar pela origem, pode–se melhorar a regressão. A expressão, mencionada pelo autor em 1982 como a de Van der Veen generalizada, resulta em:

$$\mathbf{P}=\mathbf{R}(1-e^{-a\rho+\beta}).$$

Originalmente, o valor de R era encontrado graficamente. Atualmente, já existem programas para calculadoras e computadores.

Aoki (1982) afirma que, por experiência própria, a expressão demonstrada por Massad (1982) aplica-se igualmente à extrapolação de curva tempo x recalque obtidas em controle de recalques usuais, utilizando-se o procedimento de Van der Veen para estimativa do recalque estabilizado.

2.1.8 Interação estrutura-solo

Convencionalmente, a hipótese dos apoios fixos para pilares ainda é admitida em projetos estruturais, tanto no cálculo das cargas atuantes nas fundações como no dimensionamento dos elementos estruturais. Além disso, a maioria dos projetos de fundação leva em conta somente as cargas de projeto, como se estas atuassem de maneira independente umas das outras.

De acordo com Gusmão (1994), cria-se um verdadeiro "fosso" entre o terreno de fundação e a estrutura, uma vez que o processo acima mencionado despreza efeitos da interação estrutura-solo provocados pela deformação do terreno e pela rigidez da estrutura: a redistribuição de esforços nos elementos estruturais, em especial das cargas nos pilares, e a diminuição dos recalques em relação aos estimados convencionalmente. Tais efeitos decorrem da solidariedade existente entre os elementos estruturais, a qual confere à estrutura uma considerável rigidez que restringe o movimento relativo entre os apoios.

O autor enfatiza ainda a influência da interação estrutura-solo em recalques de edificações, sugerindo uma análise do fenômeno através de monitoramentos de recalques, em virtude da medida de tal informação ser mais fácil e, por meio dela, a possível avaliação do surgimento de danos e escolha do tipo de fundação.

A interação estrutura-solo promove um alívio de carga nos pilares mais carregados e uma sobrecarga nos pilares menos carregados. Devido à restrição de recalques diferenciais provocada pela rigidez da estrutura, Gusmão (1994) afirma que a deformada de recalques medida é mais suave que a estimada convencionalmente.

2.2 Estacas de compactação

As estacas de compactação, também conhecidas como estacas de areia ou estacas granulares, fazem parte de um processo de melhoria de solos pelo qual as mesmas são introduzidas em terrenos de baixa resistência, por meio da aplicação de grandes energias de compactação através de esforços dinâmicos ou vibração.

Materiais como areia e brita ou areia e cimento, entre outros, são empregados na execução. O método promove a densificação do solo adjacente, que acarreta melhorias em aspectos como resistência e compressibilidade.

Slocombe (1993) atribui a melhoria de tais propriedades pelo processo de compactação ao deslocamento físico das partículas dos solos, que têm o volume de vazios reduzido, aumentando a compacidade relativa e a capacidade de carga.

Madhav (1985) adiciona a esses efeitos algumas vantagens que as estacas de areia possuem sobre outros métodos de melhoria do solo:

 \rightarrow Aumento moderado na capacidade de carga do solo;

 \rightarrow Redução significativa nos recalques;

 \rightarrow Em solos granulares, os recalques são acelerados, e, após a construção, minimizados;

 \rightarrow Instalação relativamente simples devida a prático trabalho braçal (particularmente adequado para países em desenvolvimento);

 \rightarrow Aumento na resistência à liquefação.

Para solos coesivos, as estacas funcionam como drenos verticais de areia, pois o uso de materiais mais grossos favorece o surgimento de fluxos de água, acelerando o adensamento. Como efeitos, obtém-se o aumento de resistência e a redução de recalques.

O método das estacas de compactação é aplicado na ex-União Soviética desde 1948, e cerca de 4,5 milhões de metros cúbicos de *loess* foram compactados dessa maneira (Abelev, 1975).

No Nordeste, principalmente em João Pessoa e Recife, a compactação de solos arenosos com as estacas em questão é freqüente. A majoração da capacidade de carga e redução de recalques viabilizam a utilização de sapatas em alguns casos de edifícios em regiões que não permitiriam este tipo de fundação. Por hipótese de projeto, costuma-se considerar que a estaca não trabalha como elemento estrutural de fundação, mas sim como parte do solo melhorado. Tal prática é feita de maneira empírica, baseada na experiência dos engenheiros atuantes na área.

Segundo Gusmão (2005), a técnica vem sendo utilizada com sucesso em Recife desde a década de 70. Os primeiros prédios eram projetados com tensões admissíveis de 250 kPa, enquanto hoje há prédios com tensões admissíveis de até 700 kPa. Em João Pessoa, 90% das fundações êm sido projetadas em sapatas com melhoria prévia do solo com estacas de compactação (Passos, 2001 *apud* Gusmão *et al.*, 2005). É comum a utilização de areia e brita, areia e cimento ou até os três materiais na execução das estacas, que chegam a alcançar cinco metros de profundidade (Soares & Soares, 2004).

2.2.1 Processo executivo

No Brasil, a técnica de execução das estacas de areia é conhecida como vibrodeslocamento. Neste método, como o próprio nome sugere, o deslocamento lateral do solo natural é provocado pela cravação de um tubo de ponta fechada. Uma das subdivisões do tipo de instalação das estacas granulares por meio da cravação prévia de um tubo é o método Franki, descrito a seguir e utilizado em João Pessoa.

De acordo com Soares & Soares (2004), inicialmente, posiciona-se o tubo de revestimento de modo a se formar um plugue de material constituinte da estaca em sua base (bucha). O tubo é então cravado dinamicamente através de impactos repetidos por golpes de pilão na bucha até a profundidade especificada de projeto. A expulsão da bucha ocorre após o tubo ser preso na torre do bate-estaca por meio de cabos de aço. Em seguida, o material granular, que pode ser areia e brita, areia e cimento ou uma mistura desses materiais, é introduzido dentro do tubo e compactado pela queda livre do pilão. Simultaneamente à introdução do material, o tubo é retirado, até a finalização do processo de densificação do solo por meio da execução da estaca. A esquematização do processo ilustra-se na Figura 2.4:

Figura 2.4 - Processo executivo de estaca de compactação por vibro-deslocamento (Bell, 1993).

Essa densificação é alcançada, segundo Bell (1993), devido ao deslocamento de material no terreno com volume igual ao da estaca e também aos efeitos de vibração decorrente do processo executivo. Gusmão Filho (1998) acrescenta ainda a essas causas a introdução de material adicional compactado no terreno.

2.2.2 Equipamento

Em João Pessoa, geralmente, utiliza-se na execução das estacas granulares o equipamento descrito por Soares (2002): um bate-estacas do tipo "Strauss" formado por tripé, motor, guincho acoplado a um mecanismo de movimentação, além do pilão e tubo de revestimento. Sua produtividade depende de diversos fatores, tais como: altura da torre, potência do motor, resistência de guinchos e agilidade do mecanismo de movimentação. O procedimento é mostrado na Figura 2.5 e algumas estacas prontas na Figura 2.6.

Figura 2.5 - Bate-estacas usado na execução de estacas de areia (Soares & Soares, 2004)

Figura 2.6 – Estacas de compactação prontas (Copesolo, 2005)

2.2.3 Controle na execução

O controle do processo de execução é de caráter fundamental para a análise do comportamento e desempenho das estacas de compactação. Segundo Soares (2002), devem ser coletados dados com respeito à quantidade de material injetado tanto na base quanto no fuste, especificação de equipamentos e energia utilizada, assim como a profundidade atingida deve ser registrada.

Datye & Nagaraju (1981) afirmam que um importante fator na avaliação do desempenho das estacas granulares é o consumo de material, que pode ser uma mistura de areia e pedra britada. Da proporção em volume de 1: 0,2 - 0,5, é possível obter uma massa bem compacta, considerando o fato de que a areia preenche os vazios correspondentes aos espaços não ocupados pela pedra britada.

Soares & Soares (2004) mencionam como valores usuais de traço em volume da estaca:

 \rightarrow Estacas de areia e brita – 4:1.

 \rightarrow Estacas de cimento e areia -1:15 - 20

 \rightarrow Estacas de cimento, areia e brita -1:8:4.

Segundo Wallays (1985), pode-se ainda verificar a compacidade do solo com medidas da compacidade relativa, do índice de resistência à penetração N_{SPT} e da resistência do cone.

2.2.4 Solo adequado à melhoria

A resposta dos solos ao processo de compactação dinâmica muda de acordo com as suas características geotécnicas, observando-se diferenças significativas entre solos granulares e coesivos. Os efeitos da melhoria diminuem bastante quando há uma excessiva fração de finos no solo. Mitchell (1970) afirma que a eficiência da técnica de vibro deslocamento é limitada a solos que contenham quantidades de finos em torno de 20%.

A Figura 2.7 mostra a faixa de ocorrência granulométrica, de terrenos naturais, em que a compactação do solo com estacas de areia é mais eficiente. Foi obtida por Gusmão Filho

(1998) a partir de solos arenosos do Recife, nos quais, segundo o autor, foi utilizada a técnica de melhoria com resultados favoráveis à execução de edificações sobre fundações diretas.

Figura 2.7 - Faixa de ocorrência em que a técnica é mais eficiente (adaptado de GUSMÃO FILHO, 1998 *apud* SOARES,2002).

No Brasil, especialmente nas regiões litorâneas do Nordeste, as características do subsolo favorecem o desempenho da técnica de melhoramento do solo com estacas de areia.

No caso de solos preponderantemente coesivos, as estacas funcionam como drenos verticais de areia, pois o uso de materiais de maior granulometria favorece o surgimento de trajetórias preferenciais de água, processo que acelera o adensamento. Como efeitos, surgem o aumento de resistência e a redução de recalques. O material introduzido forma uma coluna densa, que aumenta a rigidez e reforça o solo coesivo, diminuindo o risco de ruptura por cisalhamento sob a ação das cargas de projeto. Bouassida & Hadhri (1995) acrescentam que, em solos moles, além do aumento da capacidade de carga, outras vantagens são obtidas como a redução de recalques e do tempo de adensamento primário.

2.2.5 Restrições

Um dos fatores limitantes de resultados significativos à melhoria pelas estacas granulares é a compacidade inicial dos solos arenosos. Para camadas mais compactas constata-se a redução dos efeitos da melhoria (Gusmão, 2005; Soares & Soares, 2004, Bicalho & Castello, 2004), que se revelam apreciáveis para camadas mais fofas.

A pequenas profundidades, menores que 1,5 m, não se observam resultados consideráveis porque a ausência de confinamento pela superfície do terreno não permite uma compactação ideal, podendo ocorrer o levantamento das camadas mais superficiais sem aumento de resistência (Gusmão Filho, 1998). Tal fato já não ocorre para profundidades entre 2 e 3 m.

Soares & Soares (2004) afirmam que uma maneira de avaliação dos efeitos da melhoria é a realização de sondagens pós-compactação, que são realizadas, geralmente, a 2 m do furo em solo natural e, ao mesmo tempo, em uma posição simétrica entre as estacas. Os autores apresentam valores de eficiência da compactação relacionando o índice de resistência a penetração da sondagem SPT obtido para solos naturais (N) e posteriormente compactados (N_p) :

 $\rightarrow N_p/N \cong 3,0$ para 5 < N < 10;

 \rightarrow N_p/N \cong 2,7 para 11 < N < 18;

$$\rightarrow N_p/N \cong 2.1$$
 para 19 $< N < 25.$

Observam que solos com N < 10 respondem melhor ao processo de compactação. Os autores afirmam que as areias fofas têm contato intergranular menos intenso, promovendo menos resistência a uma reorganização dos grãos. Além das condições geotécnicas, West (1975) afirma que a exeqüibilidade do uso da melhoria do solo com estacas de areia depende de vários aspectos como tipo de estrutura, tolerância quanto aos recalques, condições ambientais etc.

2.2.6 Disposição

De acordo com SOARES (2000), as estacas são geralmente instaladas em malhas quadradas ou triangulares, com espaçamento em torno de 2 a 3 vezes seu diâmetro. Tais malhas podem ser dispostas de modo a abranger toda a área de projeção do prédio ou apenas as regiões sob as sapatas.

O raio de influência no qual os efeitos da compactação das estacas se fazem presentes alcança de 2 a 2,5 vezes o diâmetro delas (GUSMÃO FILHO 1998). Os serviços de compactação com essas estacas conseguem melhorar a resistência do solo até uma profundidade de 1,5 m abaixo da ponta do tubo de revestimento (Soares & Soares, 2004).

2.2.7 Resultados e análises de ensaios de avaliação

SOARES (2002) analisa resultados de ensaios *in situ*, tais como SPT, CPT e provas de carga estática. Os ensaios foram realizados em solo natural e melhorado, com estacas de areia de 3,5 m de comprimento e 3 cm de diâmetro, de modo a avaliar os efeitos da compactação. O autor utiliza malhas de estacas espaçadas de 80, 90 e 100cm, obtendo, entre outros, os dados contidos nas Figuras 2.8 a 2.11.

Figura 2.8 - Boletim de sondagem com os valores do índice de resistência à penetração N_{SPT} médios, obtidos em solo natural e em malhas e estacas com espaçamento de 80, 90 e 100 cm. (SOARES, 2002).

Figura 2.9 - Ensaio de cone em solo natural (SOARES, 2002).

Figura 2.10 - Ensaio de cone em malha de estacas com espaçamento de 90 cm (SOARES, 2002)

Figura 2.11 - Provas de carga realizadas em terreno natural e compactado (SOARES, 2002).

O autor estabelece correlações empíricas entre os valores de N_{SPT} antes e após compactação, assim como uma previsão para capacidade de carga de fundações rasas em solos arenosos em solos melhorados com estacas de compactação, por meio dos valores de N_{SPT} obtidos.

A partir das correlações entre N_{SPT} natural e compactado, o autor determina a tensão admissível para fundações por sapata em solo arenoso e compactado, mediante a seguinte fórmula de TEIXEIRA (1996), obtida para um γ de 18 kN/m³, profundidade de 1,5 m e fator de segurança 3:

$$\sigma_{\rm a} = 50 + (10 + 4B) \, N_{\rm SPT}$$

em que σ_a é a tensão admissível (em kPa) e B é a largura da sapata (em metros), com validade no intervalo de 5 < N_{SPT} < 25. Foi constatado que a tensão admissível elevou-se de 0,2 MPa a 0,5 MPa, no intervalo de B = 1 a 5 m.

2.2.8 Recalques

Lucena *et al.* (2004) monitoraram um edifício com fundações diretas por sapatas sobre solo melhorado, em João Pessoa. O Residencial Mar da Galiléia, de 12 pavimentos, teve todos os pilares observados desde o início de sua construção. O solo era predominantemente arenoso, e a tensão admissível adotada foi de 0,5 MPa. Até a última medição obtida, correspondente a um carregamento de 53% da carga total, foi obtido o recalque médio de 4,3 mm.

Alves *et al.* (2000) propõem um método de projeto de fundações superficiais em solo granular fofo melhorado com estacas de compactação. Foi sugerida a correlação para obtenção do módulo de deformabilidade do terreno melhorado em função do índice de resistência a penetração da sondagem SPT (N_{SPT}):

$$E_{solo} = \alpha N_{SPT}$$

Na qual α depende do tipo de solo e, segundo os autores, se situa em uma faixa entre 1,5 e 3,0, sendo o valor mais baixo correspondente a solos arenosos e o valor mais alto a solos finos. O valor 2,5 é freqüentemente encontrado em areias finas ou siltosas ou argilosas.

A partir dessa correlação, os autores apresentam ábacos que fornecem o módulo da camada equivalente melhorada, para os quais são necessários:

 \rightarrow A relação espaçamento/diâmetro das estacas (s/d)

 \rightarrow O módulo de elasticidade das estacas granulares – foram utilizados dois valores: 500 MPa, para estaca granular com cimento, e 100 MPa, para estaca granular sem cimento. A Figura 2.1 exibe o ábaco a ser usado com o valor de 500 MPa;

 \rightarrow O módulo do terreno melhorado (obtido pela correlação mencionada anteriormente).

Figura 2.12 – Ábaco para cálculo do módulo equivalente para $E_{estaca} = 500 \text{ MPa}$ (Alves *et al.*, 2000).

Como exemplo de aplicação, os autores estimaram o recalque de uma sapata sobre solo sem estacas de compactação e sobre solo melhorado. Obtiveram o valor de 70 mm para a primeira situação e de 25 mm para a segunda, resultando numa redução de 64% do recalque.

Soares *et. al* (2003) também apresentam uma faixa de redução do recalque estimada para as duas situações de solo, variando de 41% a 72%, de acordo com o tamanho das sapatas. Os autores utilizaram o método de Schmertmann (1970).

3

<u>- Caracterização Geológico -</u> <u>Geotécnica</u>

Os edifícios analisados neste estudo localizam-se na região litorânea de João Pessoa, cujo subsolo arenoso tem favorecido o freqüente uso de estacas de compactação como melhoria de solos para a execução de fundações diretas por sapatas. As estacas tipo Franki também são comumente utilizadas nas obras locais.

De acordo com Soares (2002), a parte alta da cidade apresenta um solo mais coesivo, com predominância de siltes-argilosos e ausência de nível d'água superficial. Nessa área, os tipos de fundações mais comuns são as estacas escavadas e tubulões. Menos comuns são as fundações por estacas pré-moldadas e metálicas, estas geralmente apoiadas na rocha calcária, localizada a aproximadamente 24 m de profundidade.

3.1 Caracterização geológica

GUSMÃO FILHO (1982), em trabalho sobre fundações no Nordeste, menciona que João Pessoa, assim como todas as capitais da região, situa-se sobre a formação sedimentar Barreiras, com sotoposição de calcários e arenitos, para chegar ao cristalino que aflora ocasionalmente.

O autor afirma que geologicamente, a planície costeira nordestina é formada por sedimentos quaternários de origem marinha em razão do avanço e retrocesso do mar que a modulou em praias ou enseadas. João Pessoa tem a linha costeira cortada por afloramentos de rocha que se erguem como testemunhos resistentes à ação erosiva, de que são exemplos os cabos e pontas.

CONCIANI *et al.* (1999) acrescentam que os sedimentos mencionados são constituídos por areias sobrepostas em camadas de diferentes graus de compacidade. Tal estratificação pode ter sua origem nos movimentos de transgressão e regressão do mar, ocorridos em eras passadas.

O solo superficial é predominantemente granular, sendo constituído de areias e siltes geralmente fofos ($N_{SPT} < 5$) (Gusmão Filho,1982).

A Figura 3.1 mostra o perfil geológico da cidade.

Figura 3.1 – Perfil Geológico da cidade de João Pessoa (Gusmão Filho, 1982).

3.2 Caracterização geotécnica

As sondagens SPT foram realizadas pela empresa Concresolo – Consultoria em Concreto e Solos Ltda., tanto em solo natural como após a compactação, nos locais onde foram construídos os edifícios em estudo. Os perfis médios obtidos são exibidos nas Figuras 3.2 a 3.6.

As sondagens pós-compactação foram realizadas a 2 m do furo em solo mural e, ao mesmo tempo, em uma posição simétrica entre quatro estacas. Em alguns casos, elas só persistiram até cerca de 6 m de profundidade, quando se desejou apenas avaliar os efeitos do processo de melhoria. Devido a cortes no terreno para a execução de subsolos, observa-se que

algumas delas iniciaram-se em profundidades mais baixas que as sondagens do terreno natural.

STANDARD PENETRATION TEST												
OBRA: MAISON DES PRINCES											_	
LOCAL: RUA SEVERINO MASSA SPINELLI - S/No - TAMBAŬ - JOÃO PESSOA/PB.											_	
(F. (m)	DESCRIÇÃO DO SOLO	RFIL	¥	N	SPT	Nº DE GOLPES PAR PENETRAÇÃO DO				PARA DOS		
PRC	3	PE	z L	Solo Natural	Solo Compactado	ÚL 10	TIMC 20	OS 30 30) cm 4	0	50	
	Areia fina pouco siltosa - cor marrom escuro	= =	¥	2/30	10/30							
1,0 -	(rora a pouco compacta)	≓ = = ,		3/30	26/30						T	
2,0 -	Areia grossa pouco siltosa - cor marrom escuro	= =		5/30	38/30	N				N	Ţ	
3,0 -	(med. compacta)	= =		14/30	48/30						1	
4,0 -	Silte arenoso pouco argiloso - cor cinza			23/30	36/30			1				
5,0 -	(fofo a med.compacto)	, , , , , , , , , , , , , , , , , , ,		6/30	17/30							
6,0 - 6,30	Areia siltosa pouco argilosa - cor variegada			2/30	12/30							
7,0 7,40	(pouco compacta) Argila siltosa pouco arenosa - cor variegada			9/30	20/30							
8,0 - 8,30	(rija) Areia fina siltosa - cor marrom claro	<i>≠≠≠</i> = =		15/30	20/30						T	
9,0 -	(med. compacta)			15/30	16/30							
11.0	Areia siltosa pouco argilosa - cor marrom	=		14/30	16/30							
12.0-	(pouco compacta a med.compacta)	=/= =		11/30	13/30	 /						
12,0-		= =		9/30	12/30							
14.0-		≠ ∕= =		11/30	12/30							
15.0-				12/30	13/30							
15,80		/= = =		11/30	9/30							
17.0-	Areia siltosa pouco argilosa - cor marrom (fofa a med.compacta)			17/30								
17,60	Impenetrável na padra caloário			5/30								
10,0	ппрелентател па рента сансапа											
20.0												
20,0												
N.A.=	= 0,25 m	AMCSTRA AU 1		XO \$TANDARI	D PENETRATION	.EST						
R.N.=	0,00 = cota do meio fio da Rua Severino Massa Spinelli		PE	SO DO MARTI	ELO P=65 kgf							

Figura 3.2 – Residencial Maison des Princes: perfil médio representativo das sondagens SPT realizadas em solo natural (N_{SPT}s em linha azul) e em solo compactado (N_{SPT}s linha vermelha)

STANDARD PENETRATION TEST														
OBRA: RESIDENCIAL VALE VERZASCA														
LOC.	AL: RUA MANOEL ANTONIO CAVALCAN	TE - MANA	NAIRA									-		
(Ē)		崫		N	SPT	N° DE GOLPES PARA PENETRAÇÃO DOS								
ROF	DESCRIÇÃO DO SOLO	PERI	NΑ	Solo	Solo	ÚLTIMOS 30 cm.								
P.				Natural	Compactado	10	20	. 30) 	40)	50		
	Areia fina - cor cinza claro			4/30	7/30									
1,0 -	(fofa a pouco compacta)		₽	7/30	19/30		₩		╫	╫	₩	╫	╟╫	ł
1,5			-				IIN							
2,0 -	Areia fina pouco siltosa - cor marrom escuro			7/30	23/30				Π	Ħ	Ħ	Ħ	Ħ	İ
3,0 -	(pouco compacta)			7/30	28/30		₩.	ŅЦ	Щ	Щ	Щ	Ц	Щ	ļ
3,4	Areia média a grossa com	Q		1150	20/00			И						
4,0 -	pedregulhos - cor marrom escuro (fofa)			4/30	22/30		H		╢	╫	╫	╫		ł
4,8				24/20	41/20				I	Ш	Ш		Ш	
5,0		= = =		34/30	41/30					┦				
6,0 -				17/30	13/30				╫	╫	₩	╫	╟╫	ł
	Areia fina siltosa - cor cinza (fofa a med compacta)						111							
7,0 -	(iora a med.compacta)			8/30	13/30		╢╢		ttt	Ħ	Ħ	Ħ	ſĦ	İ
8.0 -					8/20	ИИ	Ш		Ш	Щ	Щ	Ц	Щ	ļ
- , -				3/30	8/30	/								
9,0-		==		1/30	3/30		╫╂┼		₩	╫	₩	╫	╟╋	ł
10.0		± + ±												
10,0-				3/30	3/30				Π	Π	Π	Π	Π	ſ
11,0-	Areia fina siltosa - cor marrom			11/30	7/30		╢╢		╢	╢	╢╢	╢	╟╟	ł
	(fofa a med. compacta)	= 7 7			1150									
12,0				13/30	9/30		╢╢		Ħ	Ħ	Ħ	Ħ	ſĦ	ł
13.0-				0/20	11/30	LII (Ш		Ш	Щ	Щ	Ц	Щ	ļ
Ĺ		÷		9/30										
14,0-				9/30	13/30		╫╂┼		╫	╫	₩	╫	┢╋╋	ł
14,7				12/20	14/20									
15,0-	Areia fina a média siltosa - cor branca			12/30	14/30						Π		Π	ſ
16,0-	(pouco compacta a med. compacta)			8/30	14/30	/ .	╢╢		Ш	╫	Щ	╢	╟╟	ł
16,6		V 11 11				II M								
17,0-	Argila siltosa nouco arenosa - cor marrom	V#/#/		4/30	4/30		╢╢		Ħ	Ħ	ĦŦ	Ħ	ſĦ	ł
18.0-	(muito mole a mole)			1/30					Ш	Ш	Ш	Ш	Ш	ļ
,-														
19,0		Y / Z					╫╂┼		╫	╫	╟╫	╫	┢╋╋	ł
20.0	Impenetrável pedra calcária													
20,0-									Π	T	Π		\prod	ſ
			DOB	እረኑ ይህ ለእህጉ • ኮ							Ш			1
N.A.= 1,34 m R N = 0.00 = cota do meio fio da rua Manoel Antônio ALTURA DE QUEDA DO MARTELO H=75 cm														
	Cavalcante		PE	SO DO MART	ELO P=65 kgf									

Figura 3.3 – Residencial Vale Verzasca: perfil médio representativo das sondagens SPT realizadas em solo natural (N_{SPT}s em linha azul) e em solo compactado (N_{SPT}s linha vermelha)

STANDARD PENETRATION TEST																
OBRA: MAISON ELIZABETH																
LOC.	LUCAL: KUA MANUEL AKKUDA CAVALCANTE S/N - MANAIKA															
(m)		Ē		N	SPT		N° D	DI	E G	OL P A	.PE	S P	AR.	A		
ROS	DESCRIÇÃO DO SOLO	ERI	N.A	Solo	Solo		ÚLTIMOS 30 cm.									
P.		I		Natural	Compactado		10		20		30		40	5	0	
0,50	Aterro arenoso com metralha - cor cinza escuro			4/30	12/30	IN		╢								
1,0 -				10/30	27/30								╉			
2,0 -	Areta fina - cor cinza claro (pouco compacta a med. compacta)			15/30	41/30			Ì					1			
3,0 - 3,70			Ţ	14/30	38/30			K		T		T		T		
4,0 -	Areia fina pouco siltosa - cor marrom escuro (med. compacta)	=		23/30	48/30								ł			
5,0 -	Areia média a grossa pouco siltosa com pedregulho	·		21/30	22/30											
7.0	es maron escaro (nec. compacta)	<u>ن</u> :		20/30												
8,0 -	Areia fina siltosa - cor cinza	 		14/30												
9,0-	(fofa a medianamente compacta)	·		13/30			ľ									
9,50 10,0 -				2/30		Á										
11,0-	Areia média a grossa pouco siltosa com pedregulho cor marrom (pouco compacta)	, = •		4/30 6/20									╇			
12,0-		= = •=		7/30									╇			
13,0-				19/30					<mark> </mark>				╇			
14,0-	Argila arenosa pouco siltosa -cor marrom escuro (rija)			13/30				X					╇			
15,0-		· ;=/ ./.		13/30				╢					╇			
15,70 16,0	Impenetrável na pedra calcária									╢			╀			
17,0-										╢			╫			
18,0-													╉		\parallel	
19,0-															$\ $	
20,0-													╉		$\left \right $	
N.A.= R.N.=	: 3,41 m : 0,00 = cota do meio fio da Rua Sebastião de A. Bastos	AMOSTRADGA DO STANDARD PENETRATION TES ALTURA DE QUEDA DO MARTELO H=75 PESO DO MARTELO P=65 kgf							L I I	11					Ш	

Figura 3.4 – Residencial Maison Elizabeth: perfil médio representativo das sondagens SPT realizadas em solo natural (N_{SPT}s em linha azul) e em solo compactado (N_{SPT}s linha vermelha)

STANDARD PENETRATION TEST													
OBRA: BOULEVARD MANAÍRA													
LOC	LOCAL: AV. POMBAL COM RUA SANTOS COELHO NETO S/N - MANAIRA - JOAO PESSOA												_
OF. (m)	DESCRIÇÃO DO SOLO	BRFIL		N-1-	SPT	N° PI	DE G ENET	OLP RAÇ	ES F ÃO I	PAR. DOS	A S		
PR		Id		Natural	Compactado	10	20	105 :	50 CI	n. 40	5	in in	
10-	Areia fina - cor cinza escuro (medianamente compacta)			5/30					Ĩ			Ĭ	
2,0 –	Areia fina - cor cinza claro (medianamente compacta)		⊉	10/30	39/30								
2,50 3,0 -	Areia fina pouco siltosa - cor marrom escuro (pouco compacta)			9/30	36/30				╢				
4,0 -	Araia mádia a grossa pouco siltosa com	· · · · · · · · · · · · · · · · · · ·		11/30	38/30								
5,0 — _{5,60}	pedregulhos - cor marrom escuro (med. compacta)	_ ہ .و ہ		24/30	55/30				╢				
6,0 -	Areia fina muito siltosa - cor cinza (pouco compacta a muito compacta)			48/30	53/30								
7,0 -				24/30	30/30								
8,0 -				11/30									
9,80 9,80		11 11		6/30									
11,0-	Silte arenoso pouco argiloso cor cinza (fofo)	=		2/30									
11,60 12,0 —	Argila arenosa pouco siltosa -cor cinza (muito rija)			8/30									
12,70 13,0-	(16/30					╢				
14,0-	Areia siltosa pouco argilosa - cor cinza claro (pouco compacta)	₽		7/30			4		╫				
15,0-				7/30									
16,0- 16,50		=/		9/30									
17,0-		*		11/30									
19.0	Areia siltosa pouco argilosa - cor cinza (pouco compacta)	/=		9/30									
20.0-		=/		10/30									
20,45	Limite de sondagem			9/30									
N.A.	N.A.= 2,26 m												
R.N.=	0,00 = cota do meio fio da Av. Pombal	ALTURA DE QUEDA DO MARTELO H=7 PESO DO MARTELO P=65 kgf											

Figura 3.5 – Residencial Boulevard Manaíra: perfil médio representativo das sondagens SPT realizadas em solo natural (N_{SPT}s em linha azul) e em solo compactado (N_{SPT}s linha vermelha)

	STANDARD PENET					
OBR	A: STÉPHANO					
LOC	AL: RUA EUZELIR FABRÍCIO DE SOUZA -	S/N - MAN	AÍRA	- JOÃO PESS	OA - PB	
(F)	~ ~ ~ ~ ~	Ш		N	I _{SPT}	Nº DE GOLPES PARA
K05	DESCRIÇAO DO SOLO	ERF	NA	Solo	Solo	ÚLTIMOS 30 cm.
PF		ц		Natural	Compactado	10 20 30 40 50
				6/30		
1,0 -	Areia fina - cor cinza claro			11/30		
1,20	(pouco compacta)		₽	11/50		, , , , , , , , , , , , , , , , , , ,
2,0 -			÷	11/30	30/30	
2,50	A fine i				7/20	
5,0 -	(fofa)			2/30	7/30	
4,0 -				5/30	15/30	
4,60	Areia média com pouco silte - cor marrom					
5,0 -	(compacta)			48/30	50/30	
5,50 6.0 -				40/20	41/20	
-,-	Areia fina muito siltosa - cor cinza (pouco compacta a muito compacta)			40/30	41/50	
7,0 -		=		15/30	16/30	
8,0 -				8/30		
9,0-				4/30		
9,30		; ;= ;=		4/50		
10,0-	Silte arenoso pouco argiloso	=		1/30		
11.0-	cor cinza (fofo a med. compacto)			11/20		
11,20				11/30		
12,0-				13/30		
12,70						
15,0-		/ =		13/30		
14,0-				26/30		
		₹		20/30		
15,0-	Areia fina siltosa pouco argilosa - cor cinza claro			42/30		
16,0-	(medianamente compacta a compacta)					
16,50		. =		23/30		
17,0-		≓∵```	ŀ	19/30		
10.0		- T				
18,0-		.=/		38/30		
19,0-		· / =		14/20		
		<u> </u>		14/30		
20,0-				14/30		
20,45	Limite de sondagem					
N.A.=	= 1,91 m	AMOETRA	ADOR I	DO STANDARD De Olieda Do	PENE RATION T	187.7 15 cm
R.N.=	= 0,00 = cota do meio fio da Rua Euzelir Fabrício de Souza	AL	PE	ESO DO MARTI	ELO P=65 kgf	5 cm

Figura 3.6 – Edifício Stéphano: perfil médio representativo das sondagens SPT realizadas em solo natural (N_{SPT}s em linha azul) e em solo compactado (N_{SPT}s linha vermelha)

4

Materiais e Métodos

Foram monitorados os recalques de cinco edifícios sobre solo melhorado com estacas de compactação na cidade de João Pessoa – PB. Também foram feitas estimativas de recalque para esses edifícios.

4.1 Monitoramento

O monitoramento dos edifícios foi feito por equipes de topógrafos contratadas pela empresa Copesolo – Estacas e Fundações Ltda, que cedeu os dados obtidos para a realização deste trabalho.

Foram instalados pinos em três pilares de cada prédio, e as leituras foram feitas com um nível automático. O referencial de nível adotado foi o meio-fio das ruas dos edifícios. De fevereiro de 2001 a fevereiro de 2004, monitoraram-se três dos cinco edifícios, com medições que começaram alguns meses após o início da construção dos mesmos. Foram feitas leituras até o fim das construções dos três, e um pouco além em dois deles.

Desde setembro e outubro de 2004, os outros dois dos cinco edifícios vêm sendo monitorados, a partir do início de suas construções.

4.1.1 Edifícios monitorados

Os cinco edifícios monitorados são:

- \rightarrow Maison des Princes, com 30 pavimentos;
- \rightarrow Vale Verzasca, com 26 pavimentos;
- \rightarrow Maison Elizabeth, com 21 pavimentos;
- \rightarrow Boulevard Manaíra, com 18 pavimentos;
- \rightarrow Edifício Stéphano, com 17 pavimentos.

As Tabelas 4.1 e 4.2 mostram o período de monitoramento de cada edifício, assim como a fase estrutural de cada obra no início das campanhas de leituras. Em João Pessoa, as edificações residenciais costumam ter estrutura de concreto armado convencional e fechamento com alvenaria de tijolos cerâmicos, caso dos edifícios envolvidos na pesquisa. Também é comum, durante a construção, passarem por uma fase inicial em que é feita toda a parte estrutural do edifício. Nesta fase, são concretados, para cada pavimento, as lajes, pilares, e, geralmente, executada meia alvenaria. Em fase posterior a estrutural são executados os revestimentos externo, interno e os pisos.

As Figuras 4.1 a 4.5 exibem os edifícios monitorados.

Edifício	Edifício Início do Fas monitotamento		Fim do monitoramento
Maison des Princes		20 pavimentos concretados c ½ alvenaria	
Vale Verzasca	Fevereiro de 2001	evereiro de 2001 alvenaria	
Maison Elizabeth		10 pavimentos concretados c ½ alvenaria	
Boulevard Manaíra	Outubro de 2004	2 pavimentos concretados	-
Stéphano	Setembro de 2004	1 pavimento concretado	-

Tabela 4.1 – Período de monitoramento dos edifícios e fase estrutural dos edifícios no início das medições

Tabela 4.2 - Período de monitoramento de cada obra

Edifício	Edifício Duração da construção		Meses monitorados durante a construção	Meses monitorados após a construção
Maison des Princes	44 meses	10º mês de construção	34	2
Vale Verzasca	sca 37 meses 9º mês de 28 construção		28	8
Maison Elizabeth	th 41 meses 5° mês de construção 36		36	-
Boulevard Manaíra	-	1º mês de construção	8	-
Stéphano	_	1º mês de construção	9	_

Figura 4.1 – Residencial Maison des Princes

Figura 4.2 – Residencial Vale Verzasca

Figura 4.3 – Residencial Maison Elizabeth

Figura 4.4 – Edifício Boulevard manaíra

Figura 4.5 – Edifício Stéphano

O Anexo A mostra a tabela de cargas de projeto atuantes nas sapatas dos cinco edifícios, de acordo com os projetos de fundações elaborados pela empresa Copesolo – Estacas e Fundações Ltda. As Figuras 4.6 a 4.10 exibem as plantas de forma das sapatas e os esquemas de locação das estacas de compactação dos mesmos edifícios. Em todos os casos, o diâmetro das estacas foi de 30 cm e a tensão admissível adotada no projeto das fundações por sapatas de 0,5 MPa. A distância de eixo-a-eixo das estacas variou de 80 a 110 cm, com disposições que extrapolaram a região sob as sapatas até quase toda a área de projeção do prédio. A Tabela 4.3 contém os dados dos edifícios referentes ao material constituinte, espaçamento e profundidade das estacas.

Figura 4.6 – Maison des Princes: planta de forma das sapatas e esquema de locação das estacas de compactação

Figura 4.7 – Vale Verzasca: planta de forma das sapatas e esquema de locação das estacas de compactação

☜♦ঽ₰⊗₰⊒

1 m

÷ 4 + • + 0 Φ ¢ ¢ ÷ ¢ • \$ ф 4 ø ÷ Φ 0 -6 ÷ æ ÷ • ÷ đ ÷ S S 10 3 • d ÷ Q ю 4 ٠ -¢ ÷ ÷ • • ٠ æ æ ¢ S15 è • • ٠ ¢ æ A e æ æ ÷ × ¢ ÷ • ¢ ¢ ¢ + ¢ • \$ ¢ ♠ 0 d ¢ -÷ • + ¢ 4 Ġ ¢ • • + ¢ ÷ • • ٠ Ø ٠ ┣╋ ٠ ۲ ٠ œ ð 0 • • ♦ • • X • ٠ • ٠ 9 ٠ 0 φ. ٠ ÷ ¢ æ Φ œ ++ + ¢ + + ÷ ¢ + **+ + + + +** + + ٠ -÷

Figura 4.8 – Maison Elizabeth: planta de forma das sapatas e esquema de locação das estacas de compactação

Figura 4.9 – Boulevard Manaíra: planta de forma das sapatas e esquema de locação das estacas de compactação

Figura 4.10 – Stéphano: planta de forma das sapatas e esquema de locação das estacas de compactação

Edifício	Materiais da estaca	Espaçamento	Cota de apoio da estaca
Maison des Princes	Areia + cimento Areia + brita	80 cm 110 cm	5 m 3,5 m
Vale Verzasca	Areia + cimento	90 cm	3,5 m
Maison Elizabeth	Areia + cimento	90 cm	3,0 m
Boulevard Manaíra	Areia + brita	80 – 100 cm	3,5 m
Stéphano	Areia + brita	90 cm	3,5 m

Tabela 4.3 – Dados das estacas de cada edifício

O traço em volume das estacas de areia e cimento foi de 15:1 e das de areia e brita, 4:1. Não se levou em conta o encurtamento dos pilares monitorados. Consideraram-se os recalques medidos como sendo o das sapatas, assim como estas foram consideradas rígidas. A Tabela 4.4 indica as sapatas cujos pilares foram monitorados.

Edifício	Sapatas cujos pilares foram monito						
M. Princes	S 6	S 8	S13				
Vale Verzasca	S2	S 3	S14				
M. Elizabeth	S11	S 17	S20				
Boulevard Manaíra	S 1	S 7	S21				
Stéphano	S5	S7	S13				

Tabela 4.4 – Sapatas cujos pilares foram monitorados em cada edifício

4.2 Estimativas

Foram estimados os recalques totais de todas as sapatas dos edifícios para as situações de solo natural e solo compactado. Para isso, utilizou-se o método Aoki & Lopes (1975), que permite a consideração da influência de todas as sapatas da fundação, nas estimativas de recalque de cada uma delas.

O método foi aplicado por meio de um programa computacional desenvolvido em linguagem Fortran por Reis (2000). Como dados de entrada, foram fornecidos:

 \rightarrow Carga de projeto de cada sapata, assim como as dimensões, coordenadas e cotas de assentamento das mesmas. As sapatas dos edifícios Maison des Princes, Vale Verzasca e Maison Elizabeth foram assentes a 1 m de profundidade. As do Boulevard Manaíra e Stéphano, a 1,5 m.

 \rightarrow Em relação ao solo, forneceram-se os números de camadas componentes de cada perfil geotécnico e suas características como espessura, profundidade, módulo de deformabilidade (E₀) e coeficiente de Poisson (n). Tais informações foram obtidas a partir dos perfis médios dos solos, mostrados no Capítulo 3. O solo compactado foi admitido homogêneo, sem a consideração das estacas.

Os valores do módulo de deformabilidade (E_0) de cada camada foram estimados a partir da correlação com o índice de resistência à penetração (N_{SPT}) das sondagens SPT apresentada por Teixeira & Godoy (1996). Os valores utilizados para os coeficientes K e de Poisson e para o fator α foram os apresentados pelos mesmos autores. Este último fator (α) teve os seguintes valores adotados: areia siltosa – 3,5, silte arenoso – 4,5, silte argiloso – 5,5 e argila siltosa – 6,5.

Calculou-se o N_{SPT} médio de cada camada por meio de média ponderada cujos pesos eram a espessura contida em cada metro com seus valores de N_{SPT} .

Não se levou em conta a interação estrutura-solo e considerou-se o efeito de grupo. O recalque resultante deste procedimento foi admitido como total ou estabilizado. Com os valores obtidos, foram feitas curvas de isorecalque das situações de solo compactado e natural para os cinco edifícios, utilizando-se o programa Surfer 7.0.

5

Resultados

5.1 Monitoramento

As curvas tempo x recalque das sapatas cujos pilares foram monitorados são apresentadas nas Figuras 5.1 a 5.5.

Figura 5.1 – Maison des Princes: curvas tempo x recalque de três sapatas

Figura 5.2 – Vale Verzasca: curvas tempo x recalque de três sapatas

Figura 5.3 – Maison Elizabeth: curvas tempo x recalque de três sapatas

Figura 5.4 – Boulevard Manaíra: curvas tempo x recalque de três sapatas

Figura 5.5 – Stéphano: curvas tempo x recalque de três sapatas

5.2 Estimativas

5.2.1 Módulo de deformabilidade

As Figuras 5.6 a 5.10 mostram a variação com a profundidade dos valores do módulo de deformabilidade inicial (E_0), adotados para as camadas do solo natural e do solo compactado sob os edifícios monitorados.

Maison des Princes

Módulo de deformabilidade - Eo (MPa)

Figura 5.6 – Maison des Princes: Gráfico de E₀ x z para solo natural e compactado

Vale Verzasca

Figura 5.7 – Vale Verzasca: Gráfico de E_0 x z para solo natural e compactado
Maison Elizabeth

Figura 5.8 – Maison Elizabeth: Gráfico de $E_0 \ge 2$ para solo natural e compactado

Boulevard Manaíra

Figura 5.9 – Boulevard Manaíra: Gráfico de $E_0 \ge z$ para solo natural e compactado

Stéphano

Figura 5.10 -Stéphano: Gráfico de $E_0 x z$ para solo natural e compactado

5.2.2 Recalques

As Figuras 5.11 a 5.26 apresentam as curvas de isorecalque, obtidas a partir dos recalques totais estimados com o módulo de deformabilidade inicial (E_0) adotado, para os casos de solo natural e compactado sob os edifícios.

Figura 5.11 - Maison des Princes: curvas de isorecalques totais para solo natural (mm)

Figura 5.12 - Maison des Princes: curvas de isorecalques totais para solo compactado (mm)

Figura 5.13 – Maison des Princes: superfície de isorecalques totais para solo compactado

Figura 5.14 – Vale Verzasca: curvas de isorecalques totais para solo natural (mm)

Figura 5.15 – Vale Verzasca: curvas de isorecalques totais para solo compactado (mm)

Figura 5.16 - Vale Verzasca: superfície de isorecalques totais para solo compactado

Figura 5.17 - Maison Elizabeth: curvas de isorecalques totais para solo natural (mm)

Figura 5.18- Maison Elizabeth: curvas de isorecalques totais para solo compactado (mm)

Figura 5.19 - Maison Elizabeth: superfície de isorecalques totais para solo compactado

Figura 5.20 - Boulevard Manaíra: curvas de isorecalques totais para solo natural (mm)

Figura 5.21 - Boulevard Manaíra: curvas de isorecalques totais para solo compactado (mm)

Figura 5.22 – Boulevard Manaíra: superfície de isorecalques totais para solo compactado

Figura 5.23 - Stéphano: curvas de isorecalques totais para solo natural (mm)

Figura 5.24 - Stéphano: curvas de isorecalques totais para solo compactado (mm)

Figura 5.25 - Stéphano: superfície de isorecalques totais para solo compactado

6

Análise dos Resultados

6.1 Monitoramento

As sapatas de três edifícios, monitorados de 2001 a 2004, o Maison des Princes, Vale Verzasca e Maison Elizabeth, apresentaram recalques em torno de 40 mm, sendo o maior de 44 mm. As únicas sapatas adjacentes incluídas no monitoramento foram a S2 e S3 do Vale Verzasca. O recalque diferencial obtido entre as duas foi de 2 mm, valor bastante inferior ao sugerido por Terzaghi & Peck (1967), de 20 mm, como recalque diferencial admissível. O recalque diferencial específico entre as duas foi de 1/2700, muito menor que o valor limite de 1/300 proposto por Skempton-MacDonald.

Não foi observado nenhum tipo de dano relacionado a essa ordem de grandeza de recalque nos edifícios mencionados, mesmo decorrido mais de um ano da última leitura e do fim das construções.

As sapatas de dois edifícios, que continuam sendo monitorados, os residenciais Boulevard Manaíra e Stéphano, apresentaram recalques em torno de 6 mm.

Observa-se que os recalques das sapatas centrais foram maiores que os das de extremidade em todos os cinco casos.

6.1.1 Carregamento

Para uma análise da evolução dos recalques monitorados de acordo com a aplicação de carga, foi adotada a distribuição de cargas admitida por Gusmão *et al.*(2000). Nesta, as fases construtivas dos edifícios (concreto, alvenarias, revestimento, pisos etc.) correspondem a carregamentos percentuais em relação ao total. As Figuras 6.1 a 6.5 mostram os gráficos tempo x recalque x carregamento das sapatas dos edifícios com o tempo = 0 correspondente ao início do monitoramento.

Figura 6.1 – Maison des Princes: gráfico tempo x recalque x carregamento de três sapatas

Figura 6.2 - Vale Verzasca: gráfico tempo x recalque x carregamento de três sapatas

Figura 6.3 – Maison Elizabeth: gráfico tempo x recalque x carregamento de três sapatas

Figura 6.4 – Boulevard Manaíra: gráfico tempo x recalque x carregamento de três sapatas

Figura 6.5 – Stéphano: gráfico tempo x recalque x carregamento de três sapatas

Compararam-se os recalques dos dois últimos edifícios com os da situação analisada por Lucena *et al.* (2004). Os autores monitoraram, desde o início de construção, os recalques de todos os pilares do edifício Mar da Galiléia, em João Pessoa, com sapatas assentes em solo melhorado com estacas de compactação. O recalque médio obtido pelos autores foi 4,3 mm para 50% de carregamento contra 4,7 mm de recalque médio das sapatas do Boulevard Manaíra na mesma fase de carregamento. Obtiveram também um recalque médio de 3,5 mm para 44% da carga, enquanto as sapatas monitoradas do Stéphano sofreram 5,7 mm de recalque médio para o mesmo carregamento.

6.1.2 Velocidades de recalque

As Figuras 6.6 a 6.10 mostram as velocidades dos recalques obtidos com o tempo = 0 sendo o início do monitoramento.

Figura 6.6 – Maison des Princes: gráfico tempo x velocidade de recalque de três sapatas

Figura 6.7 – Vale Verzasca: gráfico tempo x velocidade de recalque de três sapatas

Figura 6.8 – Maison Elizabeth: gráfico tempo x velocidade de recalque de três sapatas

Figura 6.9 – Boulevard Manaíra: gráfico tempo x velocidade de recalque de três sapatas

Figura 6.10 – Stéphano: gráfico tempo x velocidade de recalque de três sapatas

Nos três primeiros edifícios, observa-se uma tendência à diminuição da velocidade de recalque das sapatas com o tempo, com exceção das do Vale Verzasca, que apresentaram picos de velocidade no final do monitoramento. A isso se pode atribuir à ocorrência de algum erro nas medições.

As velocidades não chegaram a ultrapassar a taxa de 200 µm/dia, valor mencionado por Alonso (1991) como aceitável para construções sobre fundações diretas por sapatas.

Nos edifícios monitorados desde o início das construções, a velocidade de recalque das sapatas se mostrou nula nas primeiras medições, aparentemente devido a não ocorrência de recalque neste período. No restante, as sapatas do Boulevard Manaíra atingiram taxas de 71 μ m/dia, alternadas com 35 μ m/dia e até com 0 μ m/dia. Assim como as velocidades das sapatas do Stéphano chegaram a valores de 77 μ m/dia, por sua vez alternados com 32 μ m/dia e também com até 0 μ m/dia. Até a última leitura, não foi observada nenhuma tendência à redução, visto que as obras ainda não alcançaram nem metade da construção.

6.1.3 Extrapolação

Como os recalques das construções do Maison des Princes, Vale Verzasca e Maison Elizabeth não foram medidos desde o início, é necessário inferir um valor do recalque Δ ocorrido até o início do monitoramento. Para isso, a expressão de Massad (1982), que divulga o método gráfico de Asaoka

foi utilizada pelo procedimento de Van der Veen generalizado. Ela é representada na Figura 6.11a, onde se indica também a parcela de recalque Δ . A partir das séries de coordenadas (t, ρ '), nas quais t é o tempo de construção e ρ ' o recalque medido, foi feita a regressão dos pontos monitorados. Ajustando-se essa expressão aos pontos medidos na monitoração, obtiveram-se curvas que foram extrapoladas de modo a se obter o valor de Δ e do recalque ρ ' estabilizado. Finalmente, adicionando-se Δ aos recalques monitorados (ρ '), têm-se os valores inferidos para o recalque (ρ), conforme a Figura 6.11b.

Figura 6.11 – Ajuste dos recalques medidos pela expressão de Massad (1982)

As Figuras 6.12 a 6.19 exibem os pontos obtidos com o monitoramento e as curvas provenientes do ajuste à expressão de Massad (1982).

Figura 6.12 – S6 (Maison des Princes): pontos monitorados e curva ajustada

Figura 6.13 – S8 (Maison des Princes): pontos monitorados e curva ajustada

Figura 6.14 – S13 (Maison des Princes): pontos monitorados e curva ajustada

Figura 6.15 – S2 (Vale Verzasca): pontos monitorados e curva ajustada

Figura 6.16 - S3 (Vale Verzasca): pontos monitorados e curva ajustada

Figura 6.17 - S14 (Vale Verzasca): pontos monitorados e curva ajustada

Figura 6.18 – S11 (Maison Elizabeth): pontos monitorados e curva ajustada

Figura 6.19 - S17 (Maison Elizabeth): pontos monitorados e curva ajustada

Figura 6.20 – S20 (Maison Elizabeth): pontos monitorados e curva ajustada

As tabelas 6.3 a 6.5 mostram os valores dos recalques obtidos com o ajuste à expressão adaptada de Massad (1982): o recalque inferido Δ , ocorrido antes do monitoramento, o recalque no final de construção e o recalque estabilizado ρ_{est} .

	Recalque (mm)		
Maison des princes	Sapata		
	S 6	S 8	S13
Inferido (Δ)	16	25	27
Final da construção	52	68	68
Estabilizado (ρ_{est})	62	75	75

Tabela 6.1 – Maison des Princes: recalques obtidos com o ajuste

	Recalque (mm)		
Vale Verzasca	Sapata		
	S2	S 3	S14
Inferido (Δ)	8	11	22
Final da construção	35	39	57
Estabilizado (p _{est})	87	57	63

Tabela 6.2 – Vale Verzasca: recalques obtidos com o ajuste

Tabela 6.3- Maison Elizabeth: recalques obtidos com o ajuste

	Recalque (mm)		
Maison Elizabeth	Sapata		
	S11	S17	S20
Inferido (Δ)	10	2	4
Final da construção	51	29	32
Estabilizado (p _{est})	53	31	35

Considerando a hipótese de ocorrência dos recalques extrapolados, alguns valores podem ser considerados bastante expressivos, uma vez que ultrapassam os indicados como admissíveis na literatura. Porém, cabe lembrar que Gusmão *et al.* (2000) obtiveram recalques medidos variando entre 84 a 105 mm, com "desempenho satisfatório da fundação até o momento, onde não foram observados quaisquer danos que pudessem ser atribuídos a movimentos da fundação, apesar da magnitude dos recalques absolutos".

As sapatas adjacentes S2 e S3 do Vale Verzasca apresentariam um recalque diferencial de 20 mm, o mesmo valor sugerido por Terzaghi & Peck (1967) como recalque diferencial admissível. O recalque diferencial específico entre as duas seria de 1/271, pouco maior que o valor limite proposto por Skempton-MacDonald.

Em análise separada, foi feito, novamente, o ajuste das curvas tempo x recalque das sapatas S2 e S3 do Vale Verzasca. Desprezaram-se dois pontos de cada curva, correspondentes a t = 36 e t = 38 meses de construção. Observou-se uma melhora na regressão, mostrada nas Figuras 6.21 e 6.22, em que se pode conferir o aumento do coeficiente de correlação (\mathbb{R}^2). Esta nova regressão se refere às sapatas como S2a e S3a.

Figura 6.21 – S2a (Vale Verzasca): pontos monitorados e curva ajustada

Figura 6.22 – S3a (Vale Verzasca): pontos monitorados e curva ajustada

A tabela 6.6 mostra os valores dos recalques obtidos com o novo ajuste.

	Recalque		
Vale Verzasca	Sapata		
	S2a	S3a	
Inferido (Δ)	19	29	
Final da construção	46	57	
Estabilizado (p _{est})	72	69	

Tabela 6.4 – Vale Verzasca: recalques obtidos com novo ajuste

Tais valores resultariam num recalque diferencial de 3 mm e recalque diferencial específico de 1/1808, bastante menores que os indicados por Terzaghi & Peck (1967) (20 mm) e Skempton-MacDonald (1/300).

Considerando os recalques obtidos para o período em que não houve monitoramento, as velocidades médias de recalque correspondentes seriam as mostradas na Tabela 6.7.

Edifício	Sapata	Velocidade de recalque*
Maison des princes	S 6	53 μm/dia
	S 8	83 µm/dia
	S 13	90 µm/dia
Vale Verzasca	S2	30 µm/dia
	S2a	70 μm/dia
	S 3	41 μm/dia
	S3a	107µm/dia
	S14	81 μm/dia
Maison Elizabeth	S 11	67 μm/dia
	S17	13 μm/dia
	S20	27 µm/dia

Tabela 6.5 – Velocidades de recalque obtidas para o período sem monitoramento

Velocidade de recalque*: velocidade média de recalque obtida por meio das regressões e correspondente ao período de desde o início das construções ao início do monitoramento.

As velocidades obtidas não se mostraram muito diferentes, para os mesmos carregamentos, das observadas nos monitoramentos dos edifícios Boulevard Manaíra e Stéphano. Isso contribuiria para uma possível validação da opção pela regressão e extrapolação das curvas tempo x recalque medidas.

Schmertmann (1970) adotou o fator de correção C_2 no seu procedimento para estimativas de recalques em areias, para a consideração do efeito do tempo, definido por:

$$C_2 = 1 + 0.2 \log\left(\frac{t}{0.1}\right)$$

em que t = tempo em anos.

A última parte da expressão, $0,2 \log (t / 0,1)$, representa, então, o acréscimo de recalque ocorrido após o imediato, em relação a este.

Levando-se em conta os recalques obtidos com a extrapolação para antes do monitoramento e correspondente aos que teriam ocorrido a partir do começo das obras, podem-se obter os recalques sofridos pelas sapatas desde o início até o fim de cada construção.

Considerando esse recalque como imediato, uma vez que é o ocorrido durante a aplicação da carga, e a partir dos recalques medidos nos casos em que ainda houve monitoramento após o término da obra, calcularam-se os acréscimos de recalque, em termos percentuais, em relação ao imediato. Estes são comparados aos valores indicados por Schmertmann (1970) por meio do fator tempo C_2 , e mostrados na Tabela 6.8 e na Figura 6.23.

	Sapata	Acréscimo		
Edifício		Tempo após ocorrência do recalque imediato (meses)		
		2	3	8
M. Princes	S 6	2%	_	_
	S 8	1%	_	-
	S 13	1%	-	-
V. Verzasca	S2	_	26%	31%
	S 3	-	13%	17%
	S14	_	2%	4%
Média		2%	14%	17%
V.Verzasca(S2a, S3a)	S2a	_	19%	23%
	S3a	-	12%	16%
	S 14	-	2%	4%
Média		-	12%	15%
Schmertmann (1970)		4%	8%	17%

Tabela 6.6 – Acréscimos de recalque após o término da construção

Figura 6.23 – Acréscimos de recalque em relação ao imediato

6.2 Estimativas

6.2.1 Módulo de Deformabilidade

Observaram-se aumentos nos valores do módulo de deformabilidade em função de N_{SPT} após a compactação do solo, havendo um caso em que o módulo do solo compactado atingiu sete vezes o valor do módulo do solo natural (primeira camada sob o edifício Maison des Princes). Nos casos em que as sondagens SPT pós-compactação persistiram até profundidades além das camadas compactadas, os dos solos subjacentes ao Maison des Princes e Vale Verzasca, verificou-se que as diferenças de valores entre o módulo do solo compactado e natural diminuem a partir da profundidade de 8 m.

6.2.2 Indeformável

Nas estimativas de recalques, o indeformável foi considerado como sendo os limites das sondagens disponíveis, e obtiveram-se as parcelas de recalque correspondentes a cada camada de solo. As Figuras 6.24 a 6.28 mostram os recalques médios totais estimados de cada camada de solo subjacente aos edifícios aqui analisados, para as situações de solo natural e compactado.

Figura 6.24 – Maison des Princes: recalques médios totais estimados de cada camada de solo subjacente natural e compactado

Figura 6.25 – Vale Verzasca: recalques médios totais estimados de cada camada de solo subjacente natural e compactado

Figura 6.26 – Maison Elizabeth: recalques médios totais estimados de cada camada de solo subjacente natural e compactado

Maison Elizabeth

Boulevard Manaíra

Figura 6.27 – Boulevard Manaíra: recalques médios totais estimados de cada camada de solo subjacente natural e compactado

Stéphano

Figura 6.28 – Stéphano: recalques médios totais estimados de cada camada de solo subjacente natural e compactado

6.2.3 Recalques totais

A maior redução média de recalques estimados entre sapatas obtida foi de 63 %, referente ao edifício Maison des Princes, cujo solo contém as estacas com menor espaçamento (80 cm) e maior profundidade (5 m) dentro da área de projeção das sapatas.

Os edifícios residenciais Vale Verzasca e Maison Elizabeth obtiveram reduções médias estimadas de 38 e 29 %, respectivamente.

Já o prédio Boulevard Manaíra apresentou uma redução média estimada de 18%, enquanto o Stéphano obteve redução média estimada de 33%.

As menores reduções estimadas obtidas foram nos casos em que os terrenos naturais dos edifícios eram mais compactos, o que torna o processo de compactação menos eficaz (Soares, 2002). Eles apresentavam alguns valores de N_{SPT} maiores que 10, com N_{SPT} médios de algumas camadas de solo natural ultrapassando o valor de 20.

Os recalques estimados para as sapatas centrais dos edifícios foram maiores que os das de extremidade, assim como as reduções estimadas para estas últimas foram maiores que as das primeiras, com exceção do Residencial Vale Verzasca. Neste caso, aparentemente, a localização das sapatas não promoveu diferenças consideráveis entre as reduções estimadas de recalque das centrais e de extremidade. Tal fato pode ser talvez explicado devido à carga de projeto da sapata de extremidade S3 ser relativamente alta em relação às outras, assim como a sapata também de extremidade S14 estar muito próxima a outras três sapatas, como pode ser visto no esquema do projeto de fundações do edifício no Capítulo 4 deste trabalho.

O Apêndice A exibe as saídas do programa com os recalques totais estimados.

Observou-se ainda que a despeito das reduções estimadas para os valores totais de recalque, as reduções de recalque estimado das camadas, individualmente, mostraram-se
consideravelmente maiores para as camadas mais superficiais. A Tabela 6.9 exibe as reduções médias de recalque estimado para cada camada de solo sob os edifícios analisados.

	Redução de recalque estimado médio (%) * Edifício					
Camada*						
	M. princes	V. Verzasca	M. Elizabeth	Boulevard Manaíra	Stéphano	
1	90	62	81	84	83	
2	79	76	69	81	69	
3	68	82	60	68	49	
4	76	21	45	20	4	
5	55	6	2	0	0	
6	15	38	0	0	0	
7	10	23	3	6		
8	0			0		
9				0		

Tabela 6.7 – Reduções de recalque médio estimado para as camadas

*Ordem das camadas crescente da mais próxima da superfície a mais profunda.

6.3 Retroanálise do módulo

Considerando a hipótese de ocorrência dos recalques extrapolados, estes foram usados na retroanálise do módulo adotado. Para tanto, também se utilizaram os valores estimados de recalque total, dos caso de solo compactado dos edifícios Maison des Princes, Vale Verzasca e Maison Elizabeth.

A Tabela 6.10 mostra os valores de recalque das sapatas, em solo compactado, obtidos com o monitoramento e extrapolações, assim como os estimados pelo método Aoki – Lopes para as mesmas.

Edifício	Sapata	Solo compactado				
		Recalque obtido (mm)	Recalque estimado (mm)			
M. Princes	6	62	30			
	8	75	60			
	13	75	78			
V.Verzasca	2	87	59			
	3	57	71			
	14	63	72			
	2a	72	59			
	3a	69	71			
M. Elizabeth	11	53	54			
	17	31	27			
	20	35	24			

Tabela 6.8 – Recalques estimados e obtidos com o monitoramento e extrapolações

Comparando-se os valores, observam-se os efeitos da redistribuição de cargas devido a interação estrutura-solo. As sapatas de extremidade apresentaram recalques obtidos maiores que os estimados, sugerindo a atuação de sobrecarga influenciada pela rigidez da estrutura. Como exceção, a sapata de extremidade S3 do Vale Verzasca exibiu um recalque obtido menor que o estimado, provavelmente porque possuía carga de projeto relativamente maior que a maioria das outras. Os recalques obtidos para as sapatas centrais foram menores que os estimados, evidenciando alívio de carga.

A partir dos valores estimados e obtidos pelo monitoramento e extrapolações, foi feita a correção do módulo de deformabilidade adotado. As Figuras 6.29 a 6.30 mostram o módulo corrigido (E_s) para solo natural e compactado de cada edifício.

Figura 6.28 – Maison des Princes: Gráfico de E₈ x z para solo natural e compactado

Vale Verzasca

Figura 6.29 - Vale Verzasca: Gráfico de Es x z para solo natural e compactado

Figura 6.30 – Maison Elizabeth: Gráfico de E₈ x z para solo natural e compactado

Para o solo melhorado, os valores do módulo corrigido das camadas próximas à superfície não se mostraram muito diferentes dos valores de módulo sugerido por Alves *et al.* (2000). Os autores propõem a correlação $E = a N_{SPT}$, em que a é um coeficiente que varia com o tipo de solo. Apresentam também ábacos que fornecem o módulo da camada equivalente (solo + estacas). O valor deste, porém, não se mostrou próximo ao do módulo corrigido. A Tabela 6.11 mostra os valores do módulo corrigido e do calculado pela correlação e ábacos de Alves *et al.* (2000).

Edifício	Camada de solo	E _s (MPa)	E _{solo} * (MPa)	E _{eq} *
M. Princes	1	42	53	92
	2	86	79	115
	3	43	68	110
Vale Verzasca	1	24	25	70
	2	45	57	100
	3	76	45	85
M. Elizabeth	1	26	28	75
	2	68	72	115
	3	89	112	150

Tabela 6.9- Módulo corrigido e calculado pela correlação e ábacos de Alves et al. (2000).

*E_{solo}: – módulo do terreno melhorado, da correlação de Alves *et. al.*(2000).

*E_{eq}: – módulo da camada equivalente a partir do ábaco de Alves et. al.(2000).

Cabe lembrar que na situação analisada por Alves *et al.* (2000) não foi levado em consideração o efeito de grupo, e os resultados foram obtidos por meio de prova de carga em placa.

6.4 Redução

Com o módulo corrigido do solo natural, estimaram-se novamente os recalques dos edifícios para a situação sem melhoria. As Tabelas 6.12 a 6.14 exibem estes valores juntamente com os obtidos com o monitoramento e extrapolações, e as Figuras 6.31 a 6.34 mostram as reduções entre os recalques dos dois casos.

Maison des Princes					
Sapata	r solo natural (mm)	r obtido p/ solo compactado (mm)			
S6	111	62			
S 8	205	75			
S13	238	75			

Tabela 6.10 – Maison des Princes: recalques estimados para o solo natural e obtidos com o monitoramento e extrapolações

Tabela 6.11 – Vale Verzasca: recalques estimados para o solo natural e obtidos com o monitoramento e extrapolações

Vale Verzasca					
Sapata	r solo natural (mm)	r obtido p/ solo compactado (mm)			
S2	119	87			
S 3	154	57			
S 14	148	63			
S2a		72			
S3a		69			

Tabela 6.12– Maison Elizabeth: recalques estimados para o solo natural e obtidos com o monitoramento e extrapolações

Maison Elizabeth					
Sapata	r solo natural (mm)	r obtido p/ solo compactado (mm)			
S11	87	53			
S17	50	31			
S20	44	35			

Figura 6.31 - Maison des Princes: Redução de recalques entre solo natural e compactado

Figura 6.32 - Vale Verzasca: Redução de recalques entre solo natural e compactado

Figura 6.33 – Vale Verzasca: Redução de recalques entre solo natural e compactado (com S2a e S3a)

Figura 6.34 – Maison Elizabeth: Redução de recalques entre solo natural e compactado

Os recalques dos edifícios Maison des Princes e Vale Verzasca sofreram reduções em torno de 60 e 50%, respectivamente. A primeira se mostrou próxima à redução de 64% estimada por Alves *et al.* (2000) para uma sapata sobre solo natural e solo melhorado.

Soares *et. al* (2003) apresentaram uma faixa de redução estimada para as duas situações de solo, variando de 41 a 72%, de acordo com o tamanho das sapatas. Os autores utilizaram o método de Schmertmann (1970). Os prédios Residencial Vale Verzasca e Maison des Princes apresentaram reduções de recalque dentro desta faixa.

O Maison Elizabeth sofreu a menor redução média de recalques, cerca de 30%. O seu terreno natural era mais compacto que o dos outros, o que torna o processo de compactação menos eficaz (Soares, 2002). Ele apresentava valores de N_{SPT} maiores que 10, com N_{SPT} médios de algumas camadas de solo natural ultrapassando o valor de 20.

Conclusão

Foram analisados os recalques de cinco edifícios sobre solo melhorado com estacas de compactação, monitorados na cidade de João Pessoa - PB. Avaliou-se a eficácia do processo de melhoria na redução do recalque dos prédios, através de recalques estimados e dos recalques obtidos com o monitoramento.

As estimativas foram feitas pelo método Aoki-Lopes, a partir de sondagens SPT obtidas antes e após compactação, que foram usadas na adoção do módulo de deformabilidade. Consideraram–se os casos de solo compactado e natural.

Observaram-se aumentos nos valores do módulo em função de N após a compactação do solo, havendo um caso em que o módulo do solo compactado atingiu sete vezes o valor do módulo do solo natural. Nos casos em que as sondagens SPT pós-compactação persistiram até profundidades além das camadas compactadas, verificou-se que as diferenças de valores entre o módulo do solo compactado e natural diminuem a partir da profundidade de 8 m.

Três dos edifícios, monitorados durante período que começou após o início das construções, apresentaram recalques das sapatas em torno de 40 mm, sendo o maior de 44 mm. As únicas sapatas adjacentes incluídas no monitoramento apresentaram recalque diferencial de 2 mm e recalque diferencial específico de 1/2700. As velocidades não chegaram a ultrapassar a taxa de 200 µm/dia, valor mencionado por Alonso (1991) como aceitável para construções sobre fundações diretas por sapatas.

Não foi observado nenhum tipo de dano relacionado a essa ordem de grandeza de recalque nos edifícios mencionados, mesmo decorrido mais de um ano da última leitura e do fim das construções.

Comparando-se os recalques estimados para a situação hipotética dos três edifícios em solo natural com os recalques obtidos por meio da extrapolação dos valores dos medidos, avaliou-se a redução de recalque entre os dois casos. Observaram-se reduções médias em torno de 60% e 50% para os edifícios Maison des Princes (com 30 pavimentos) e Vale Verzasca (com 26 pavimentos), respectivamente. O solo natural apresentava-se pouco compacto, com valores de N_{SPT} menores que 10, o que favoreceu uma maior eficácia ao processo de melhoria.

A menor redução obtida foi de 33%, referente ao Maison Elizabeth, que tem 21 pavimentos. Neste caso, o solo natural se mostrou mais compacto em relação aos outros, com valores de N_{SPT} maiores que 10, com N_{SPT} médios de algumas camadas de solo natural ultrapassando o valor de 20.

Dois edifícios continuam sendo monitorados, desde início de suas construções, em setembro e outubro de 2004. Até a última medição, em junho de 2005, o Boulevard Manaíra

tinha 18 lajes concretadas e o Edifício Stéphano, 15. As suas sapatas apresentaram recalques em torno de 6 mm e o maior diferencial foi de 1 mm. A maior velocidade de recalque obtida entre os dois prédios foi de 77 µm/dia.

As velocidades de recalque obtidas por meio dos recalques extrapolados para os períodos de desde o início de construção até o início do monitoramento se mostraram coerentes com as provenientes dos edifícios Boulevard Manaíra e Stéphano.

Para pesquisas posteriores relacionadas ao assunto, sugerem-se estudos de interação estrutura-solo para as situações de solo compactado e natural, assim como monitoramento de todos os pilares de edificações sobre solo melhorado.

REFERÊNCIAS BIBLIOGRÁFICAS

- ABELEV, M. Y. (1975). Compacting loess soils in the USSR. *Geotechnique*, vol. 25, n. 1, p. 79-82.
- ABNT (1996). Projeto e execução de fundações. NBR 6122, Rio de Janeiro, 33 p.
- ALONSO, U. R. (1995). Previsão e controle das fundações. 1ª. Reimpressão. São Paulo, Ed. Edgard Blucher Ltda.142 p.
- ALVES, A. M. L.; LOPES, F. R.; ARAGÃO, C. J. G. (2000). Proposta de Método de Fundações Superficiais em Solos Granulares Melhorados por Estacas de Compactação. In: IV SEMINÁRIO DE ENGENHARIA DE FUNDAÇÕES ESPECIAIS E GEOTECNIA. *Anais* São Paulo: ABEF/ABMS. v.2, p. 102-112.
- AOKI, N. (1976). *Considerações sobre a capacidade de carga de estacas isoladas*. Curso de Extensão Universitária em Engenharia de Fundações, Universidade Gama Filho, Rio de Janeiro, 44p.
- AOKI, N. (1982). Relatório Geral. In: VII CONGRESSO BRASILEIRO DE MECÂNICA DOS SOLOS E ENGENHARIA DE FUNDAÇÕES. Olinda- Recife. *Anais.* v.V
- AOKI, N. (1997). Aspectos geotécnicos da interação estrutura maciço de solos. In: JORNADAS SUL-AMERICANAS DE ENGENHARIA ESTRUTURAL, 28, São Carlos. v.1, p. 7-20.
- AOKI, N. (2000). Reflexões sobre o comportamento de sistema isolado de fundação. In: SEFE IV, São Carlos. *Anais* São Paulo : ABEF/ABMS. v.1, p. 24-39.
- AOKI, N.; LOPES, F.R. (1975). Estimating stress and settlements due to deep foundation. In: V CONF. PANAM. SOIL MECHANICS AND FOUNDATION ENGINEERING, Buenos Aires, 1975. Vol1. .p. 377-386

- ASAOKA, A. (1978). Observational Procedure of Settlement Prediction. In: *Soils and Foundations*. Japanese Society of Soil Mechanics and Foundation Engieering. v. 18, n.4, dec. – 1978., p.87 -101.
- BELL, F. G. (1993). Engineering treatment of soils. Londres, E & FN SPON.
- BICALHO, K. V.; CASTELLO, R. R.(2004). Melhoramento de solos arenosos fofos por estacas de compactação. In: SEFE V, Anais.São Paulo: ABEF/ABMS. v.2, p. 300-307.
- BOUASSIDA, M.; HADHRI, T. (1995). Extreme load of soils reiforced by columns: the case of an isolated column. *Soils and Foundations*, vol. 35, n. 1, p. 21-35.
- CINTRA, J. C. A.; AOKI, N.; ALBIERO, J. H. (2003) Tensão admissível em fundações diretas. São Carlos, Rima.
- CONCIANI, W; BEZERRA, R. L; MEDEIROS, J. L. G. (1999). Características de Deformação de uma Areia de Praia Obtidas por Pressiômetro. Solos e Rochas, v.22, n.3, p. 207-214
- COPESOLO Estacas e Fundações Ltda. (2005). Acervo.
- DANZIGER, F. A. B.; DANZIGER, B. R.; CRISPEL, F. A. (2000). A medida dos recalques desde o início da construção como um controle de qualidade das fundações. In: SEFE IV, São Carlos. *Anais* São Paulo : ABEF/ABMS. v.1, p. 191-202.
- DATYE, K. R; NAGARAJU, S. S. (1981). Design aproach and field control for stone columns, In: X ICSMFE, Stockholm, Sweden.
- GOLDER, H.Q. (1971). The allowable settlement of structures. In: CUARTO CONGRESO PANAMERICANO DE MECÁNICA DE SUELOS E INGENIERÍA DE FUNDACIONES. Puerto Rico, 1971, México.

- GUSMÃO, A. D. (1994). Aspectos relevantes da interação solo-estrutura em edificações. *Solos e rochas.* Vol 17, No. 1. Abril 1994. p. 47-55.
- GUSMÃO, A. D. (2005). Melhoramento de terrenos arenosos. In: GUSMÃO, A.D.; GUSMÃO FILHO, J.; OLIVEIRA, J. T. R.; MAIA, G. B.(eds) Geotecnia no Nordeste. Recife, Editora Universitária da UFPE, 543P.
- GUSMÃO, A. D.; GUSMÃO FILHO, A. J.; MAIA, G. B. (2000). Medições de recalque de um prédio em Recife. In: SIMPÓSIO INTERAÇÃO ESTRUTURA-SOLO EM EDIFÍCIOS. São Carlos, 2000. (CD ROM). São Paulo, USP.
- GUSMÃO FILHO, J. A. (1982). Prática de fundações nas capitais nordestinas. In: VII CONGRESSO BRASILEIRO DE MECÂNICA DOS SOLOS E ENGENHARIA DE FUNDAÇÕES, *Anais*. Recife - Olinda, v.7, p.189-206.
- GUSMÃO FILHO, J. A. (1998). Fundações: do conhecimento geológico à prática da engenharia. Recife, Editora Universitária, UFPE.
- HOLTZ, R. D. (1991). Stress distribution and settlement of shallow foundations. In:WINTERKORN, H. F; FANG, H. Y. (eds.). *Foundation engineering handbook*. New York: Ed. Van Nostrand Reinhold Co. Cap. 5
- LUCENA, A. E.; BEZERRA, R. L.; GUSMÃO, A. D.(2004). Monitoramento de recalque de edifícios sobre fundações diretas desde o início da construção e avaliação da interação solo-estrutura. Solos e Rochas, v.27, n.3, p. 215-229.
- MADHAV, M. R. (1985). Recent developments in the use and analysis of granular piles. In: BALASUBRAMANIAM, A. S. et al. *Recent developments in ground improvement techniques*. Roterdã, A. A. Balkema. Cap. 10, p. 117-129.

- MASSAD, F. (1982). Método Gráfico Para o Acompanhamento da Evolução dos Recalques com o Tempo. In : VII CONGRESSO BRASILEIRO DE MECÂNICA DOS SOLOS E ENGENHARIA DE FUNDAÇÕES. Olinda- Recife. Anais. v.II, p. 321 – 331.
- MINDLIN, R. D. (1936). Force at a point in the interior of a semi-infinite solid. Physics 7:5, p. 195 *apud* AOKI, N.; LOPES, F.R. (1975). Estimating stress and settlements due to deep foundation. In: V CONF. PANAM. SOIL MECHANICS AND FOUNDATION ENGINEERING, Buenos Aires, 1975. Vol1. .p. 377-386.
- MITCHELL, J. K. (1970). In-place treatment of foundation soils. *Journal of the Soil Mechanics and Foundations Division*, ASCE, vol. 96, n. SM1, p. 73-110, jan.
- NOVAIS FERREIRA, H. (1976). Assentamentos Admissíveis. In: *Geotecnia*. SPG, n. 18, p. 53-86, nov.-dez.
- NOVAIS FERREIRA, H. (1977). Assentamentos Admissíveis: parte II. In: *Geotecnia*. SPG, n. 19, p. 3-20, jan. fev.
- PASSOS, P. G. O. (2001). Contribuição ao estudo do melhoramento de depósitos arenosos através de da utilização de ensaios in situ. Dissertação (Mestrado) Universidade Federal da Paraíba, Campina Grande.apud GUSMÃO, A. D. (2005). Melhoramento de terrenos arenosos. In: GUSMÃO, A.D.; GUSMÃO FILHO, J.; OLIVEIRA, J. T. R.; MAIA, G. B.(eds) Geotecnia no Nordeste. Recife, Editora Universitária da UFPE, 543P.
- REIS, J. H. C. (2000). Interação solo-estrutura de grupo de edifícios com fundações superficiais em argila mole. São Carlos, 148p. Dissertação (Mestrado) – Escola de Engenharia de São Carlos, Universidade de São Paulo.

- SCHMERTMANN, J. H. (1970) Static cone to compute static settlement over sand Journal of the Soil Mechanics and Foundations Division, ASCE, v.96, n.SM.3, pg. 1011-1043.
- SCHMERTMANN, J. H; HARTMAN, J.P.; BROWN, P. R. (1978) –Improved strain influence factor diagrams. *Journal of Geotechnical Engineering Division, ASCE*, v.104, n.GT8, pg. 1131-1135.
- SKEMPTON, A. W.; MacDONALD, D. H. (1956). Allowable Settlement of Buildings. In: Proc. Institute of Civil Engineers ,Part III. v.5, p. 727-784.
- SLOCOMBE, B. C. (1993). Dynamic compaction. In: MOSELEY, M. P., ed. *Ground improvement*. Glasgow, Chapman & Hall. Cap. 2, p. 20-39.
- SOARES, V.B. (2000). Histórico das fundações do condomínio residencial Torino, com vinte pavimentos, em João Pessoa – PB. In: SEFE IV, São Carlos. Anais São Paulo : ABEF/ABMS. v.2, p. 451-462.
- SOARES, V. B.; SOARES, W. C. (2004). Estacas de compactação (melhoramento de solos arenosos com estacas de compactação). João Pessoa, Editora paraibana. 176p.
- SOARES, W.C. (2002). *Estacas de compactação para melhoria de solo*. *133p*. Dissertação (Mestrado) Escola de Engenharia de São Carlos, Universidade de São Paulo.
- SOARES, W. C.; SOARES, V.B.; CINTRA, J.C. (2003). Sand piles for shallow foundations. In: SOIL & ROCK AMERICA 2003, Massachusetts. (CD ROM).
- STEINBRENNER, W. (1934). Tafeln sur setzsungsberechnung. Die Strasse, v. 1, p. 121 apud AOKI, N.; LOPES, F.R. (1975). Estimating stress and settlements due to deep foundation. In: V CONF. PANAM. SOIL MECHANICS AND FOUNDATION ENGINEERING, Buenos Aires, 1975. Vol1. .p. 377-386.

- TEIXEIRA, A. H. (1996). Projeto e execução de fundações. In: SEFE III, Anais. São Paulo, v.1, p.33-50.
- TEIXEIRA, A.H.; GODOY, N.S. (1996). Análise, projeto e execução de fundações rasas. In: HACHICH, W. et al, ed. *Fundações, teoria e prática*. São Paulo, PINI. Cap. 7, p.227-264.
- TERZAGHI,K.; PECK, R.B. (1967). *Soil Mechanics in Engineering Practice*. 2ed. New York: John Wiley and Sons Co. 792p.
- VAN DER VEEN, C. (1953). The Bearing Capacity of a Pile. In: III INTERNATIONAL CONFERENCE ON SOIL MECHANICS AND FOUNDATION ENGINEERING. Zurich, v.2, p. 84 – 90.
- VARGAS, M.; LEME DE MORAES, J. T. (1989). Long term settlements of tall buildings on sand. In: Proc., XII ICSMFE, Rio de Janeiro. v.1, p. 765-768.
- VELLOSO, D. A.; LOPES, F. R.(2004). Fundações: Critérios de projeto Investigação do subsolo Fundações superficiais. Nova Edição. São Paulo, Oficina de Textos. vol 1.
- WALLAYS, M. (1985). Deep compaction by casing drive. In: BALASUBRAMANIAM,A. S. et al. *Recent developments in ground improvement techniques*. Roterdã, A. A.Balkema. Cap. 4, p. 39-52.
- WEST, J. M. (1975). The role of ground improvement in foundation engineering. *Geotechnique*, vol. 25, n. 1, p. 71-78.

ANEXO A

~	Carga (kN)					
Sapata			Edifício			
	Maison des Princes	Vale Verzasca	Maison Elizabeth	Boulevard Manaíra	Stéphano	
1	2038	1537	3090	2674	3200	
2	4098	2074	2540	4716	4800	
3	3152	5906	2545	4594	4200	
4	3617	4358	2956	2632	4800	
5	5087	4954	9493	2665	3200	
6	2151	2907	5406	4141	4600	
7	3076	6828	5135	5556	9000	
8	7468	9422	2836	4745	5100	
9	10458	5388	2690	4094	4600	
10	7060	3720	4274	1409	4900	
11	3467	10123	4460	1527	4120	
12	6319	8346	4514	1345	4100	
13	8032	3059	3870	3575	3800	
14	7546	3459	5224	2378	3800	
15	2612	3992	6900	4603	-	
16	3358	-	4836	2433	-	
17	6859	-	2806	1281	-	
18	2418	-	3390	2201	-	
19	15686	-	3540	1920	-	
20	3048	-	2300	2659	-	
21	7453	-	-	1800	-	
22	7030	-	-	-	-	
23	3437	-	-	-	-	
24	2287	-	-	-	-	
25	4264	-	-	-	-	
26	4131	-	-	-	-	
27	4308	-	-	-	-	
28	5109	-	-	-	-	
29	2174	-	-	-	-	

Tabela A.1 - Carga de projeto atuante em cada sapata dos cinco edifícios

APÊNDICE A

Profundidade 17.6 Numero de sapatas 29 sapata, carga 2038.0000 1 2 4098.0000 3 3152.0000 4 3617.0000 5 5087.0000 б 2151.0000 7 3076.0000 8 7468.0000 9 10458.0000 10 7060.0000 3467.0000 11 6319.0000 12 13 8032.0000 14 7546.0000 15 2612.0000 16 3358.0000 17 6859.0000 18 2418.0000 15686.0000 19 20 3048.0000 21 7453.0000 7030.0000 2.2 23 3437.0000 2.4 2287.0000 25 4264.0000 26 4131.0000 27 4308.0000 28 5109.0000 29 2174.0000 sapata, cota, cor x, cor y, ladoA, ladoB, AlFA 1.0000 0.1000 1 20.2500 2.8000 2.0000 0.0000 2 1.0000 4.2700 18.9000 2.1000 4.0000 0.0000 3 1.0000 10.2500 19.2000 2.0000 3.4000 0.0000 4 1.0000 15.3300 18.5000 2.5000 3.4000 0.0000 5 1.0000 21.0000 19.5000 2.5000 4.1000 0.0000 б 1.0000 25.6000 20.2500 2.0000 2.6000 0.0000 7 1.0000 0.6500 15.0500 2.0000 3.1000 0.0000 8 1.0000 3.7300 14.2000 3.3000 4.6000 0.0000 9 9.4000 1.0000 15.2800 9.0000 3.0000 0.0000 10 20.7500 1.0000 14.4500 3.0000 4.7000 0.0000 11 1.0000 25.6000 15.1500 2.0000 3.5000 0.0000 12 1.0000 9.5700 10.9000 3.7000 3.7000 0.0000 13 1.0000 13.8500 10.9500 5.0000 3.6000 0.0000 14 1.0000 19.4400 8.6000 3.0000 5.1000 0.0000 15 1.0000 24.9000 11.3000 2.7000 2.0000 0.0000 1.0000 16 0.5500 9.4300 2.0000 3.4000 0.0000 1.0000 9.6300 17 3.4500 4.6000 3.0000 0.0000 24.9000 18 1.0000 8.9500 2.7000 2.0000 0.0000 19 1.0000 9.4000 5.7100 9.0000 4.5000 0.0000 20 1.0000 0.6800 4.1000 2.0000 3.1000 0.0000 3.3000 21 1.0000 3.7300 3.4500 4.6000 0.0000 4.7000 3.1000 3.0000 2.2 1.0000 20.7500 0.0000

23	1.0000	25.6000	3.6000	2.0000	3.5000	0.0000
24	1.0000	0.0000	0.0000	3.0000	2.0000	0.0000
25	1.0000	4.1800	-0.6500	2.3000	4.0000	0.0000
26	1.0000	9.9800	-0.3500	2.5000	3.4000	0.0000
27	1.0000	15.3300	0.3000	2.5000	3.5000	0.0000
28	1.0000	21.0000	-1.3500	2.5000	4.1000	0.0000
29	1.0000	25.6000	-0.6000	2.0000	2.6000	0.0000
camada, Mo	od elast, poi	sson, proi	undidade			
1		7154 0000	2 4000			
2	2	6754 0000	3 8000			
2	2	6325 0000	6 3000			
4	1	1025.0000	7.4000			
5	1	4300.0000	8.3000			
6	3	6750.0000	10.0000			
7	2	3716.0000	15.8000			
8	2	8591.5000	17.6000			
sapata,cer	ntro x, centr	о у				
1	1 5000	01 0500				
	1.5000 5.2200	21.2500				
2	5.3300	20.9000				
3 4	16 5800	20.9000				
5	22 2500	20.2000				
6	26.6000	21.5500				
7	1.6500	16.6000				
8	5.3800	16.5000				
9	13.9000	16.7800				
10	22.2500	16.8000				
11	26.6000	16.9000				
12	11.4300	12.7500				
13	16.3500	12.7500				
14	20.9300	12,2000				
15	20.2500	12.3000				
17	5.7500	11,1300				
18	26.5000	9.9500				
19	13.9000	7.9600				
20	1.6800	5.6500				
21	5.3800	5.7500				
22	22.2500	5.4500				
23	26.6000	5.3500				
24	1.5000	1.0000				
25	5.3300	1.3500				
∠o 27	16 5800	2 0500				
27	22 2500					
29	26.6000	0.7000				
sapata, 1	recalque					
1	0.0835	40				
2	0.1255	84				
3	U.1184	39 07				
4 5	U.13U4 N 1210	07 25				
5	0.1310	16				
7	0.1227	86				
8	0.1643	15				
9	0.1622	75				
10	0.1648	02				
11	0.1199	75				

12	0.184837
13	0.190590
14	0.179448
15	0.125555
16	0.127365
17	0.169329
18	0.118738
19	0.173361
20	0.122543
21	0.162786
22	0.161275
23	0.118457
24	0.087677
25	0.125108
26	0.123006
27	0.131282
28	0.130759
29	0.088810

Maison des Princes - saída do programa com os recalques totais para solo compactado:

Alfa

Proi Nur	fundidade 1 Mero de sap	7.6 atas 2	29			
sap	oata, carg	a				
	1	2038.0	0000			
	2	4098.0	0000			
	3	3152.0	0000			
	4	3617.0	0000			
	5	5087.0	0000			
	6	2151.0	0000			
	7	3076.0	0000			
	8	7468.0	0000			
	9	10458.0	0000			
	10	7060.0	0000			
	11	3467.0	0000			
	12	6319.0	0000			
	13	8032.0	0000			
	14	7546.0	0000			
	15	2612.0	0000			
	16	3358.0	0000			
	17	6859.0	0000			
	18	2418.0	0000			
	19	15686.0	0000			
	20	3048.0	0000			
	21	7453.0	0000			
	22	7030.0	0000			
	23	3437.0	0000			
	24	2287.0	0000			
	25	4264.0	0000			
	26	4131.0				
	27	4308.0	1000			
	∠o 20	5109.0 217/ (0000			
a - 1	4^{j}	$d \perp / \pm .$	cor	37	ladoð	ladop
Sal	ula, UULd,	CUL A,	COL	Υ,	rauor,	rauob,

1	1.0000	0.1000	20.2500	2.8000	2.0000	0.0000
2	1.0000	4.2700	18.9000	2.1000	4.0000	0.0000
3	1.0000	10.2500	19.2000	2.0000	3.4000	0.0000
4	1.0000	15.3300	18.5000	2.5000	3.4000	0.0000
5	1.0000	21.0000	19.5000	2.5000	4.1000	0.0000
6	1.0000	25.6000	20.2500	2.0000	2.6000	0.0000
7	1.0000	0.6500	15.0500	2.0000	3.1000	0.0000
8	1.0000	3.7300	14.2000	3.3000	4.6000	0.0000
9	1.0000	9.4000	15.2800	9.0000	3.0000	0.0000
10	1.0000	20.7500	14.4500	3.0000	4.7000	0.0000
	1.0000	25.6000	15.1500	2.0000	3.5000	0.0000
12	1.0000	9.5700	10.9000	3.7000	3.7000	0.0000
13	1.0000	13.8500	10.9500	5.0000	3.6000	0.0000
15	1.0000	19.4400	8.6000	3.0000	5.1000	0.0000
15	1.0000	24.9000	9 4300	2.7000	2.0000	0.0000
17	1 0000	3 4500	9.4300	4 6000	3.4000	0.0000
18	1 0000	24 9000	8 9500	$\frac{1}{2}$	2 0000	0.0000
19	1 0000	9 4000	5 7100	9 0000	4 5000	0.0000
20	1.0000	0.6800	4,1000	2,0000	3,1000	0.0000
21	1.0000	3.7300	3.4500	3.3000	4.6000	0.0000
22	1.0000	20.7500	3.1000	3.0000	4.7000	0.0000
23	1.0000	25,6000	3,6000	2.0000	3.5000	0.0000
24	1.0000	0.0000	0.0000	3.0000	2.0000	0.0000
25	1.0000	4.1800	-0.6500	2.3000	4.0000	0.0000
26	1.0000	9.9800	-0.3500	2.5000	3.4000	0.0000
27	1.0000	15.3300	0.3000	2.5000	3.5000	0.0000
28	1.0000	21.0000	-1.3500	2.5000	4.1000	0.0000
29	1.0000	25.6000	-0.6000	2.0000	2.6000	0.0000
camada, Mod e	last, pois	sson, profu	undidade			
_						
1	52	185.0000	2.4000			
2	107 E2	065.0000	3.8000			
З Д	36	529 5000	7 4000			
5	26		8 3000			
6	43	365 0000	10 0000			
7	26	460.0000	15.8000			
8	28	591.5000	17.6000			
sapata,centro	x, centro	у				
1	1.5000	21.2500				
2	5.3300	20.9000				
3	11.2500	20.9000				
4	16.5800	20.2000				
5	22.2500	21.5500				
6	26.6000	21.5500				
7	1.6500	16.6000				
8	5.3800	16.5000				
9	13.9000	16.7800				
1 U 1 1	22.23UU	16 0000				
⊥⊥ 1 ⊃	20.0000 11 /200	10.9000 12 7500				
12	16 3500	12.7500				
± 3 1 <i>4</i>	70.3300 T0.3300	11 1500				
15 15	20.9300	12 3000				
16	1.5500	11 1300				
17	5.7500	11,1300				
18	26.5000	9.9500				
19	13.9000	7.9600				
20	1.6800	5.6500				
_ •		• •				

21 22 23 24 25 26	5.3800 22.2500 26.6000 1.5000 5.3300	5.7500 5.4500 5.3500 1.0000 1.3500
27	16.5800	2.0500
28	22.2500	0.7000
. 29	26.6000	0.7000
sapata, reca	alque	
1	0.029248	
2	0.043544	
3	0.044629	
4	0.050438	
5	0.044972	
6	0.030272	
7	0.043550	
8	0.060211	
9	0.066955	
10	0.061300	
11	0.042330	
12	0.074943	
13	0.077763	
14	0.070180	
15	0.046434	
16	0.046292	
10	0.064768	
10	0.044351	
19	0.071556	
20	0.043527	
21	0.059354	
23	0.041643	
24	0.030173	
25	0.043363	
26	0.043864	
27	0.048022	
28	0.044066	
29	0.030005	

Vale Verzasca - saída do programa com os recalques totais para solo natural:

Profundidade 19 Numero de sapatas 15

sapata, carga

1	1537.0000
2	2074.0000
3	5906.0000
4	4358.0000
5	4954.0000
6	2907.0000
7	6828.0000

8	9422.000	0				
9	5388.000	0				
10	3720.000	0				
11	10123.000	0				
12	8346.000	00				
13 14	3059.000					
14	3459.000					
sapata, cota.	3992.000	orv.ladož	A. ladoB. A	АЧГ		
Sapaca, coca,	, 001 m, 00	<i>,</i> , , , , , , , , , , , , , , , , , , ,	1, 14402, 1			
1	1.0000	3.0100	25.4500	2.7000	1.9000	0.0000
2	1.0000	2.5450	23.2550	3.0000	1.9000	0.0000
3	1.0000	7.4200	22.7550	4.1000	3.0000	0.0000
4	1.0000	0.1500	19.1250	4.5000	2.7000	0.0000
5	1.0000	7.1450	18.8750	4.0000	3.2000	0.0000
6	1.0000	11.1900	18.6250	2.6000	3.6000	0.0000
7	1.0000	0.0000	13.7000	4.8000	3.2000	0.0000
8	1.0000	6.3400	14.0500	8.0000	2.5000	0.0000
10	1 0000	0.5500	5 6500	4.3000	2.6000	0.0000
11	1 0000	3 4030	4 0320	4 1000	5 2000	0.0000
12	1 0000	9 2400	5 6500	4 7000	3 5500	0 0000
13	1.0000	0.6700	0.2750	3.4000	3.4000	0.0000
14	1.0000	4.1450	0.0000	2.1000	4.0000	0.0000
15	1.0000	9.7400	0.6250	3.7000	2.7000	0.0000
camada, Mod e	elast, pois	son, profi	undidade			
1	13	500.0000	1.5000	1		
2	17	150.0000	3.4000			
3	20	405.0000	4.8000			
4	36	6750.0000	9.0000			
5	10		14.700			
7	4	420 0000	19 000	0		
, sapata, centro	x, centro	v v	19:000			
···· <u>·</u>	· · · · · ·	2				
1	4.3600	26.4000				
2	4.0450	24.2000				
3	9.4700	24.2500				
4	2.4000	20.4700				
5	9.1450	20.4700				
6 7	12.4900	20.4200				
8	10 3300	15 3000				
9	8.2900	12.7000				
10	1.9450	7.4500				
11	5.4450	6.6230				
12	11.5900	7.4250				
13	2.3700	1.9750				
14	5.1950	2.0000				
15	11.5900	1.9700				
sapata, reca	alque					
1		5				
⊥ 2	0.07593	4				
3	0.12291	.3				
4	0.10855	51				
5	0.13625	0				
6	0.11022	2				
7	0.13476	5				
8	0.15603	4				

9	0.164440
10	0.125722
11	0.164289
12	0.146217
13	0.096096
14	0.118551
15	0.099455

5

6

18130.0000

33810.0000

Vale Verzasca - saída do programa com os recalques totais para solo compactado:

Profundidade 19 Numero de sapatas 15 sapata, carga 1 1537.0000 2 2074.0000 3 5906.0000 4 4358.0000 5 4954.0000 2907.0000 6 7 6828.0000 8 9422.0000 9 5388.0000 10 3720.0000 11 10123.0000 12 8346.0000 13 3059.0000 14 3459.0000 15 3992.0000 sapata, cota, cor x, cor y, ladoA, ladoB, AlFA 2.7000 1.0000 3.0100 25.4500 1.9000 0.0000 1 2 1.0000 2.5450 23.2550 3.0000 1.9000 0.0000 22.7550 1.0000 7.4200 4.1000 3.0000 0.0000 3 0.1500 19.1250 4.5000 2.7000 0.0000 4 1.0000 7.1450 18.8750 4.0000 3.2000 5 1.0000 0.0000 б 1.0000 11.1900 18.6250 2.6000 3.6000 0.0000 7 1.0000 0.0000 13.7000 4.8000 3.2000 0.0000 8 1.0000 6.3400 14.0500 8.0000 2.5000 0.0000 9 1.0000 6.1400 11.4000 4.3000 2.6000 0.0000 10 1.0000 0.5500 5.6500 2.8000 3.6000 0.0000 11 1.0000 3.4030 4.0320 4.1000 5.2000 0.0000 12 1.0000 9.2400 5.6500 4.7000 3.5500 0.0000 13 1.0000 0.6700 0.2750 3.4000 3.4000 0.0000 14 1.0000 4.1450 0.0000 2.1000 4.0000 0.0000 15 1.0000 9.7400 0.6250 3.7000 2.7000 0.0000 camada, Mod elast, poisson, profundidade 1 29700.0000 1.5000 2 56350.0000 3.4000 3 94710.0000 4.8000 4 46305.0000 9.0000

14.7000

16.6000

7			57	20.0000
sapata,centro	x,	centr	0	У
1	4	3600		26.4000
2	4	0450		24 2000
3	9	4700		24 2500
4	2	4000		20 4700
5	9	1450		20 4700
6	12	4900		20 4200
5	2	4000		15 3000
8	10	3300		15 3000
9	20.	2900		12 7000
10	1	9450		7 4500
11	т. Б	4450		6 6230
12	11	5900		7 4250
13	2	3700		1 9750
14	5	1950		2 0000
15	11	5900		1 9700
sapata, recal	lque	2		1.9700
-	-			
1	(0.0475	531	
2	(0.0594	43	3
3	(0.0715	521	-
4	(0.0683	331	-
5	(0.0851	.41	-
б	(0.0698	395	5
7	(0.0832	214	Ł
8	(0.0966	581	-
9	(0.1030	80)
10	(0.0786	504	Ł
11	(0.0989	979)
12	(0.0879	942	2
13	(0.0600)45	5
14	(0.0721	.84	Ł

15 0.060624

Maison Elizabeth - saída do programa com os recalques totais para solo natural:

0.4000 19.0000

Profundidade 15.7 Numero de sapatas 20 sapata, carga 1 3090.0000 2 2540.0000 3 2545.0000 2956.0000 4 5 9493.0000 б 5406.0000 7 5135.0000 2836.0000 8 2690.0000 9 104274.0000114460.0000124514.0000

13	3870.000	00				
14	5224.000	00				
15	6900.000	00				
16	4836.000	00				
17	2806.000	00				
18	3390.000	0				
19	3540.000	0				
20 Gapata dota	2300.000	u vrv ladov	N ladop N	ገ ርጉ አ		
Sapata, COta	,)i y, iau0/	A, IAUOD, A	II'A		
1	1.0000	0.4000	23.8650	3.2000	2.3000	0.0000
2	1.0000	6.9500	23.0900	2.1000	3.0000	0.0000
3	1.0000	9.4300	23.0900	2.1000	3.0000	0.0000
4	1.0000	14.8800	23.8650	3.2000	2.3000	0.0000
5	1.0000	5.1400	18.9330	8.2000	2.6000	0.0000
6	1.0000	0.0000	16.7300	4.0000	3.1000	0.0000
7	1.0000	14.4800	16.7300	4.0000	3.1000	0.0000
8	1.0000	6.5800	15.6300	2.2000	3.1000	0.0000
9	1.0000	9.7000	15.6330	2.2000	3.1000	0.0000
10	1.0000	0.2000	10.8800	3.6000	2.8000	0.0000
11	1.0000	5.3050	10.8300	3.7000	2.9000	0.0000
12	1.0000	9.4750	10.8300	3.7000	2.9000	0.0000
13	1.0000	14.6800	10.8800	3.6000	2.8000	0.0000
14	1.0000	0.0500	5.0500	3.9000	3.1000	0.0000
15	1.0000	14 5200	4.8300	3.6000	4.3000	0.0000
10	1.0000	0 4000	0 1350	3.9000	2 2000	0.0000
18	1 0000	4 8100	0.1330	2 5000	3 3000	0.0000
19	1.0000	11.1700	0.0000	2.5000	3.3000	0.0000
20	1.0000	14.8800	0.1350	3.2000	2.2000	0.0000
camada, Mod	elast, pois	sson, profi	undidade			
1	10	0800.0000	0.5000			
2	31	1050.0000	3.7000			
3	50	0347.5000	4.8000			
4	72	2555.0000	7.0000			
5	ے ۔ 1 1	7990 0000	9.5000			
0 7	1 / 2 ⁻	7396 0000	15 700			
sapata.centr	o x. centro		13.700			
	,	- 1				
1	2.0000	25.0150				
2	8.0000	24.5900				
3	10.4800	24.5900				
4	16.4800	25.0150				
5	9.2400	20.2330				
6	2.0000	18.2800				
./	16.4800	18.2800				
8	7.6800	17.1830				
9	10.8000	12 2800				
10	2.0000	12.2800				
12	11 3250	12.2800				
13	16.4800	12.2800				
14	2.0000	6.6000				
15	9.2400	6.9800				
16	16.4800	6.6000				
17	2.0000	1.2350				
18	6.0600	1.6500				
19	12.4200	1.6500				
20	16.4800	1.2350				

sapata, recalque

1	0.040002
2	0.052407
3	0.052321
4	0.038618
5	0.074475
6	0.057465
7	0.055169
8	0.071352
9	0.070041
10	0.056019
11	0.069403
12	0.069143
13	0.052441
14	0.054409
15	0.067793
16	0.051069
17	0.040146
18	0.047979
19	0.048206
20	0.035435

Maison Elizabeth - saída do programa com os recalques totais para solo compactado:

Profundidade 1	15.7					
Numero de sap	pata 20					
sapata, caro	Ja					
1	2000 0000					
	3090.0000					
2	2540.0000					
3	2545.0000					
4	2956.0000					
5	9493.0000					
6	5406.0000					
7	5135.0000					
8	2836.0000					
9	2690.0000					
10	4274.0000					
11	4460.0000					
12	4514.0000					
13	3870.0000					
14	5224.0000					
15	6900.0000					
16	4836.0000					
17	2806.0000					
18	3390.0000					
19	3540.0000					
20	2300.0000					
sapata, cota,	cor x, cor	y, ladož	A, ladoB, Z	Alfa		
1	1.0000	0.4000	23.8650	3.2000	2.3000	0.0000
2	1.0000	6.9500	23.0900	2.1000	3.0000	0.0000
3	1.0000	9.4300	23.0900	2.1000	3.0000	0.0000

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 camada, Mod e	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	14.8800 5.1400 0.0000 14.4800 6.5800 9.7000 0.2000 5.3050 9.4750 14.6800 0.0500 7.4400 14.5300 0.4000 4.8100 11.1700 14.8800 sson, profu	23.8650 18.9330 16.7300 16.7300 15.6300 15.6330 10.8800 10.8300 10.8300 10.8800 5.0500 4.8300 5.0500 0.1350 0.0000 0.1350 undidade	3.2000 8.2000 4.0000 4.0000 2.2000 3.6000 3.7000 3.7000 3.6000 3.9000 3.6000 3.9000 3.2000 2.5000 3.2000 3.2000	2.3000 2.6000 3.1000 3.1000 3.1000 2.9000 2.9000 2.9000 2.9000 3.1000 4.3000 3.1000 2.2000 3.3000 2.2000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1	33	2400 0000	0 5000			
2	84	1780.0000	3.7000			
3	11(985.0000	4.8000			
4	80	500.0000	7.0000			
5	25	7440.0000	9.5000			
6 7	1 . 2 .	7990.0000	13.0000 15 7000)		
sapata centro	2. X. centro	v v	15.7000)		
Sapara, concil	,	2				
1	2.0000	25.0150				
2	8.0000	24.5900				
3	10.4800	24.5900				
4	16.4800 9.2400	25.0150 20 2330				
6	2.0000	18.2800				
7	16.4800	18.2800				
8	7.6800	17.1830				
9	10.8000	17.1830				
10	2.0000	12.2800				
12	11 3250	12.2800				
13	16,4800	12.2800				
14	2.0000	6.6000				
15	9.2400	6.9800				
16	16.4800	6.6000				
17	2.0000	1.2350				
18	6.0600	1.6500 1.6500				
2.0	16,4800	1.2350				
sapata, reca	alque	1.2330				
1	0.02631	L7				
2	0.03761	18				
3 A	0.03/5	L /))				
÷	0.02552	11				
6	0.04040)7				
7	0.03895	57				
8	0.05435	57				
9	0.05368	34				
10	0.04019	93				
11	0.05439	98				

12	0.052010
13	0.038063
14	0.037701
15	0.049064
16	0.035607
17	0.026776
18	0.033339
19	0.033067
20	0.024335

Boulevard Manaíra - saída do programa com os recalques totais para solo natural:

Profundidade 19 Numero de sapatas 21 sapata, carga 1 2674.0000 2 4716.0000 3 4594.0000 4 2632.0000 5 2665.0000 6 4141.0000 7 5556.0000 8 4745.0000 9 4094.0000 10 1409.0000 11 1527.0000 1345.0000 12 3575.0000 13 2378.0000 14 4603.0000 15 2433.0000 16 1281.0000 17 2201.0000 18 1920.0000 19 20 2659.0000 21 1800.0000 sapata, cota, cor x, cor y, ladoA, ladoB, AlFA 1 1.5000 0.5000 17.8200 2.5000 2.4500 0.0000 2 1.5000 5.7500 17.0200 3.0000 3.5000 0.0000 3 1.5000 11.8500 17.0200 3.0000 3.5000 0.0000 4 1.5000 18.0000 17.8200 2.5000 2.4500 0.0000 5 1.5000 0.0000 13.3000 2.4500 2.4500 0.0000 6 1.5000 3.1700 10.4700 3.3000 2.6500 0.0000 7 1.5000 8.5000 10.9000 3.6000 3.3000 0.0000 8 10.1500 1.5000 13.8000 3.3500 3.2000 0.0000 17.5700 10.3000 9 1.5000 3.4500 2.9000 0.0000 10 1.5000 0.5500 8.9200 1.9000 2.3000 0.0000 11 1.5000 6.8500 9.0000 2.5000 1.8000 0.0000 12 1.5000 7.4200 6.9700 1.9500 1.7000 0.0000 13 1.5000 9.4200 5.2000 1.9500 4.0000 0.0000 14 1.5000 2.7300 7.1000 2.6000 3.2000 0.0000 15 1.5000 13.6500 4.7700 3.2000 3.3500 0.0000 18.1500 16 1.5000 5.6000 2.4500 2.4500 0.0000 4.2200 17 1.5000 3.1000 1.9000 2.3000 0.0000 1.5000 7.4100 4.3400 2.0000 2.6000 0.0000 18

19	1.5000	7.7700	0.5200	2.4000	2.1500	0.0000
20	1.5000	12.9500	0.0000	2.3000	2.6000	0.0000
21	1.5000	18.0500	0.2200	2.1000	2.3000	0.0000
camada, Mod e	elast, pois	son, prof	undidade			
1	27	000.0000	1.0000			
2	26	040.0000	2.5000			
3	50	085.0000	4.1000			
4	56	840.0000	8.3000			
5	6	300.0000	10.1000			
6	18	645.0000	11.2000			
7	20	090.0000	15.0000			
8	26	460.0000	19.0000			
sapata, centro	o x, centro	УУ				
1	1 7500	10 0500				
	1.7500	19.0500				
2	12 2500	18.7700				
3	10.2500	10.0500				
4 E	1 2200	14 2500				
5	1.2200	11 9000				
0	4.8200	12 5500				
7	16.3000	11 7500				
0	10 2000	11.7500				
10	1 5000	10 0700				
10	8 1000	9 9000				
12	8 4000	7 8200				
13	10 3900	7 2000				
14	4 0300	8 7000				
15	15 2500	6 4500				
16	19 3700	6 8200				
17	4 0500	5 3700				
18	8.4100	5.6400				
19	8.9700	1,6000				
20	14.1000	1.3000				
21	19.1000	1.3700				
sapata, reca	alque					
-	-					
1	0.04833	0				
2	0.06625	8				
3	0.06451	.7				
4	0.04411	.6				
5	0.05902	2				
б	0.08542	1				
7	0.09553	2				
8	0.08736	9				
9	0.06805	7				
10	0.05788	0				
11	0.09272	9				
12	0.09205	2				
13	0.09317	6				
14	0.07222	2				
15	0.08184	: 3				
16	0.06090	3				
⊥ / 1 0	0.05342					
Lδ 1 ο	0.08112	7				
T A C	U.U5158 0 05531	л Л				
∠∪ 01		. т 10				
$\angle \perp$	0.04070	4				

Profundidade 19 Numero de sapatas 21 sapata, carga 2674.0000 1 2 4716.0000 3 4594.0000 4 2632.0000 5 2665.0000 б 4141.0000 7 5556.0000 8 4745.0000 9 4094.0000 10 1409.0000 11 1527.0000 12 1345.0000 13 3575.0000 14 2378.0000 15 4603.0000 16 2433.0000 17 1281.0000 18 2201.0000 19 1920.0000 20 2659.0000 21 1800.0000 sapata, cota, cor x, cor y, ladoA, ladoB, AlFA 2.5000 1 1.5000 0.5000 17.8200 2.4500 0.0000 5.7500 17.0200 3.0000 2 1.5000 3.5000 0.0000 17.0200 3.0000 3 1.5000 11.8500 3.5000 0.0000 17.8200 4 1.5000 18.0000 2.5000 2.4500 0.0000 5 13.3000 1.5000 0.0000 2.4500 2.4500 0.0000 10.4700 6 1.5000 3.1700 3.3000 2.6500 0.0000 7 10.9000 1.5000 8.5000 3.6000 3.3000 0.0000 8 10.1500 1.5000 13.8000 3.3500 3.2000 0.0000 9 1.5000 17.5700 10.3000 3.4500 2.9000 0.0000 10 1.5000 0.5500 8.9200 1.9000 2.3000 0.0000 11 1.5000 6.8500 9.0000 2.5000 1.8000 0.0000 12 1.5000 7.4200 6.9700 1.9500 1.7000 0.0000 13 1.5000 9.4200 5.2000 1.9500 4.0000 0.0000 7.1000 14 1.5000 2.7300 2.6000 3.2000 0.0000 15 1.5000 13.6500 4.7700 3.2000 3.3500 0.0000 16 18.1500 1.5000 5.6000 2.4500 2.4500 0.0000 17 1.5000 3.1000 4.2200 1.9000 2.3000 0.0000 18 1.5000 7.4100 4.3400 2.0000 2.6000 0.0000 19 1.5000 7.7700 0.5200 2.4000 2.1500 0.0000 20 1.5000 12.9500 0.0000 2.3000 2.6000 0.0000 2.1000 2.3000 21 1.5000 18.0500 0.2200 0.0000 camada, Mod elast, poisson, profundidade 105300.0000 1 1.0000 2 103600.0000 2.5000 138600.0000 3 4.1000 4 71050.0000 8.3000 5 6300.0000 10.1000 б 18645.0000 11.2000

7

20090.0000

15.0000

8	20	6460.0000	19.0000
sapata,centro	x, centro	у у	
1	1.7500	19.0500	

T	1.7500	19.0300
2	7.2500	18.7700
3	13.3500	18.7700
4	19.2500	19.0500
5	1.2200	14.3500
6	4.8200	11.8000
7	10.3000	12.5500
8	15.4700	11.7500
9	19.3000	11.7500
10	1.5000	10.0700
11	8.1000	9.9000
12	8.4000	7.8200
13	10.3900	7.2000
14	4.0300	8.7000
15	15.2500	6.4500
16	19.3700	6.8200
17	4.0500	5.3700
18	8.4100	5.6400
19	8.9700	1.6000
20	14.1000	1.3000
21	19.1000	1.3700
sapata, reca	lque	

1	0.037629
2	0.052904
3	0.051562
4	0.033965
5	0.047551
б	0.070117
7	0.079588
8	0.072412
9	0.055009
10	0.048614
11	0.079548
12	0.077201
13	0.077602
14	0.061303
15	0.067843
16	0.050066
17	0.045866
18	0.067391
19	0.042650
20	0.044388
21	0.032436

Stéphano - saída do programa com os recalques totais para solo natural:

```
Profundidade 19
Numero de sapatas
                     14
 sapata, carga
                3200.0000
         1
         2
                4800.0000
         3
                4200.0000
         4
                4800.0000
         5
                3200.0000
         б
                4600.0000
         7
                9000.0000
         8
                5100.0000
         9
                4600.0000
        10
                4900.0000
        11
                4120.0000
        12
                4100.0000
        13
                3800.0000
                3800.0000
        14
 sapata, cota, cor x, cor y, ladoA, ladoB, AlFA
                1.5000
                           0.6250
                                    12.6900
                                                3.0000
                                                          2.2000
                                                                    0.0000
         1
         2
                           5.9100
                1.5000
                                  11.8600
                                                3.1000
                                                         3.1000
                                                                    0.0000
         3
                1.5000
                        11.3000
                                  11.9100
                                                3.0000
                                                          3.0000
                                                                     0.0000
                                  11.8600
         4
                1.5000
                         16.5800
                                                3.1000
                                                          3.1000
                                                                     0.0000
         5
                1.5000
                        21.9700
                                   12.6900
                                                3.0000
                                                         2.2000
                                                                     0.0000
         б
                1.5000
                          0.6900
                                    5.1100
                                                3.1000
                                                          3.1000
                                                                     0.0000
         7
                1.5000
                         10.2600
                                    2.8700
                                                3.0500
                                                         5.9000
                                                                     0.9774
         8
                1.5000
                         16.4300
                                    5.0600
                                                3.2000
                                                          2.4000
                                                                     0.0000
         9
                1.5000
                          21.8100
                                    5.1100
                                                3.1000
                                                          3.1000
                                                                     0.0000
        10
                1.5000
                          12.9500
                                     3.3900
                                                3.2000
                                                          2.4000
                                                                     0.0000
        11
                1.5000
                          7.9300
                                     0.4200
                                                3.7500
                                                          2.4000
                                                                     0.0000
        12
                          13.0500
                                     0.1200
                                                3.0000
                                                          3.0000
                1.5000
                                                                     0.0000
                                                3.2000
                                                          2.4000
        13
                1.5000
                           0.0000
                                     0.0000
                                                                     0.0000
                1.5000
                          20.9500
                                                3.2000
                                                          2.4000
        14
                                     0.0000
                                                                     0.0000
 camada, Mod elast, poisson, profundidade
                       28350.0000
         1
                                       1.0000
         2
                       12250.0000
                                       3.1000
         3
                       80920.0000
                                       4.0000
                                       7.8000
         4
                       56840.0000
         5
                        7200.0000
                                       9.7000
         б
                       53655.0000
                                       19.0000
 sapata, centro x, centro y
                2.1200
                          13.7900
         1
         2
                          13.4100
                7.4600
         3
                          13.4100
               12.8000
         4
               18.1300
                          13.4100
         5
               23.4700
                          13.7900
         б
                2.2400
                           6.6600
         7
                8.6700
                          5.7800
         8
               18.0300
                          6.6600
         9
               23.3600
                           6.6600
        10
                           4.9900
               14.5500
        11
                9.8100
                           1.6200
        12
               14.5500
                           1.6200
        13
                1.6000
                           1.2000
```
14	22.5500	1.2000
sapata, recal	lque	
1	0.052545	
2	0.070034	
3	0.067398	
4	0.069468	
5	0.052280	
б	0.067929	
7	0.095278	
8	0.090942	
9	0.067067	
10	0.101073	
11	0.080015	
12	0.082962	
13	0.056742	
14	0.058820	

Stéphano - saída do programa com os recalques totais para solo compactado:

Nullero de sa	ipalas 14				
sapata, car	ga				
1	3200.000	00			
2	4800.000	00			
3	4200.000	00			
4	4800.000	00			
5	3200.000	00			
б	4600.000	00			
7	9000.000	00			
8	5100.000	00			
9	4600.000	00			
10	4900.000	00			
11	4120.000	00			
12	4100.000	00			
13	3800.000	00			
14	3800.000	00			
sapata, cota	, cor x, co	or y, lado	A, ladoB, A	lfa	
1	1.5000	0.6250	12.6900	3.0000	2.200
2	1.5000	5.9100	11.8600	3.1000	3.100
3	1.5000	11.3000	11.9100	3.0000	3.000
4	1.5000	16.5800	11.8600	3.1000	3.100
5	1.5000	21.9700	12.6900	3.0000	2.200
б	1.5000	0.6900	5.1100	3.1000	3.100
7	1.5000	10.2600	2.8700	3.0500	5.900
8	1.5000	16.4300	5.0600	3.2000	2.400
9	1.5000	21.8100	5.1100	3.1000	3.100
10	1.5000	12.9500	3.3900	3.2000	2.400
11	1.5000	7.9300	0.4200	3.7500	2.400
12	1.5000	13.0500	0.1200	3.0000	3.000
13	1.5000	0.0000	0.0000	3.2000	2.400
14	1.5000	20.9500	0.0000	3,2000	2.400

0.0000 0.0000 0.0000 0.0000 0.0000 0.9774 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

sapata, Mod elast, poisson, profundidade

1 2 3 4 5 6 sapata,centro	81000.0000 36260.0000 96320.0000 56840.0000 7200.0000 53655.0000 o x, centro y	1.0000 3.1000 4.0000 7.8000 9.7000 19.0000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 sapata, reca	2.1200 13.7900 7.4600 13.4100 12.8000 13.4100 18.1300 13.4100 23.4700 13.7900 2.2400 6.6600 8.6700 5.7800 18.0300 6.6600 14.5500 4.9900 9.8100 1.6200 1.6000 1.2000 22.5500 1.2000 alque	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.032977 0.046341 0.045731 0.045796 0.032713 0.045172 0.067156 0.062150 0.044312 0.070765 0.056758 0.058713 0.035559 0.037607	