Influência da Dimensão e da Sucção Matricial no Comportamento de Fundações Superficiais Assentes em Solo Arenoso Não-Saturado

Ana Paula Fontana Vianna

Tese apresentada à Escola de Engenharia de São Carlos da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Doutor em Geotecnia.

Orientador: Prof. Dr. José Carlos A. Cintra

São Carlos 2005

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Dedico esta tese ao meu marido Kamran e à minha Família, os alicerces de minha vida.

AGRADECIMENTOS

A Deus, pelo dom da vida e a oportunidade de aprendizado todos os dias.

Ao Prof. Dr José Carlos A. Cintra pela amizade, orientação e estimulo.

Ao Prof. Dr. Nelson Aoki pelas sugestões e ensinamentos transmitidos.

À CAPES e ao CNPq pela concessão das bolsas de estudo.

Ao Departamento de Geotecnia da Escola de Engenharia de São Carlos (EESC/USP) pela infra estrutura oferecida para o programa de pósgraduação, através do quadro de docentes e funcionários, em especial à Maristela, Álvaro e Prof. Esquível.

Ao Prof. Dobroslav Znidarcic, da Universidade do Colorado em Boulder, pela contribuição nos ensaios na centrífuga e aos técnicos Tom, Ton e Rob pela ajuda na execução dos mesmos.

Aos amigos Mauro, Jeselay, Kléber, Cristina, Carlos, Luiz Fernando, Domingos e Márcio pelo inestimável apoio, principalmente com respeito ao árduo trabalho dispensado durante a execução das provas de carga e ao amigo Pedro pela ajuda na edição das fotos.

À Neiva, Oscar e à Professora Gene, por toda amizade e carinho durante todos estes anos.

Aos amigos Adriana, Carol, Ma, Soraya, Simoni, Karine, Dete, Dani, Adelvan, Sandro e Zé, pelos momentos de descontração e à Luciene, Karla e Nívea por toda ajuda durante minha ausência.

À minha grande amiga e irmã do coração Sandra, por sempre estar presente, me dando força e incentivando a seguir em frente.

Ao meu marido Kamran pelo companheirismo e participação no encerramento de mais uma etapa de minha vida.

RESUMO

VIANNA, A. P. F. Influência da dimensão e da sucção matricial no comportamento de fundações superficiais assentes em solo arenoso nãosaturado. Tese (Doutorado) - Escola de Engenharia de São Carlos, Universidade de São Paulo. São Carlos, 2005, 170 p.

Analisa-se a influência da sucção matricial e da dimensão de sapatas na capacidade de carga e nos recalques de fundações rasas, assentes em areia não-saturada. Na primeira parte da pesquisa foram analisadas 14 provas de carga estática em placas metálicas rígidas assentes a 1,5 m de profundidade, com diâmetros de 0,20, 0,40 e 0,80 m e em uma sapata circular de concreto com diâmetro de 1,50 m, no Campo Experimental de Fundações da USP / São Carlos. Devido ao caráter colapsível do solo, a sucção matricial foi monitorada por meio de tensiômetros instalados no fundo da cava. Na segunda parte da pesquisa, foram realisados ensaios em centrífuga, na Universidade do Colorado em Boulder, utilizando-se placas metálicas de 30 mm, 50 mm e 100 mm, ensaiadas a 1 g, 5 g, 10 g, 15 g, 25 g, 50 g e 100 g. As placas foram assentes em maciço de areia em três condições de umidade: seca, inundada e nãoinundada. A partir dos resultados obtidos, procedeu-se a análise da capacidade de carga levando-se em conta tanto o efeito da dimensão como o da sucção matricial. A influência da dimensão nos recalques também foi analisada. Ratificou-se que o aumento da sução matricial provoca um aumento substancial na capacidade de carga do sistema placa-solo e uma diminuição considerável nos recalques. Em relação à influência da dimensão no comportamento de fundações rasas, demonstrou-se que tanto a variação da capacidade de carga como a dos recalques não ocorre de forma linear e crescente como apresentado pelos métodos teóricos. Para pequenas dimensões da sapata, os valores de capacidade de carga e recalque aumentam.

Palavras-chave: capacidade de carga; fundações rasas; recalques; influência da dimensão; sucção matricial; areia não-saturada.

ABSTRACT

VIANNA, A. P. F. **Size and matric suction influence in the behavior of shallow foundations in unsaturated sandy soils.** Tese (Doutorado) -Escola de Engenharia de São Carlos, Universidade de São Paulo. São Carlos, 2005, 170 p.

The influence of matric suction and size of footings in the bearing capacity and settlement of shallow foundations in unsaturated sandy soils are analyzed. Fourteen plate load tests were performed in the first part of the research. Rigid metallic plates with diameters 0,20, 0,40, 0,80 m and one concrete circular footing with 1,50 m were used in the tests. All plates and footing were positioned at 1,50 m depth. The tests were performed in the Foundation Experimental Field of USP / São Carlos. Due to the soil collapsible character, the tests were performed with the monitoring of matric suction pressure through tensiometers installed in the bottom of the holes. Centrifuge tests were carried out at the University of Colorado at Boulder in the second part of the research. Metallic plates with 30 mm, 50 mm and 100 mm were used and the gravity levels were 1 g, 5 g, 10 g, 15 g, 25 g, 50 g e 100g. The plates were positioned on top of a sandy soil with three moisture conditions: dry, flooded, and non-flooded. Thus, the capacity will be analyzed taking into consideration both the geometry of the tested plates and the influence of the matric suction pressure. The footing size influence in the settlement was also analyzed. A substantial increase of the plate-soil system bearing capacity and a considerable decrease in the settlements, caused by matric suction increase, was confirmed. It was also demonstrated that the bearing capacity and settlements variations are not a linearly increasing function of the size as theoretical methods suggest. For small footings, the bearing capacity and settlement increase as the footing size decreases.

Key-words: bearing capacity, shallow foundations, settlement, size effect, matric suction, unsaturated sand.

LISTA DE FIGURAS	iii
LISTA DE TABELAS	ix
LISTA DE SÍMBOLOS	xi
RESUMO	xii
ABSTRACT	xiii
1 INTRODUÇÃO	1
2 REVISÃO BIBLIOGRÁFICA	3
2.1 Efeito da Dimensão na Capacidade de Carga	3
2.1.1 Provas de carga em placa	7
2.1.2 Ensaios em centrífuga	17
2.2 Efeito Das Dimensões Nos Recalques	
2.3 Efeito Escala	
2.4 Influência da Sucção Matricial em Solos Não-Saturados.	
3 CAMPO EXPERIMENTAL DE FUNDACÕES	47
3.1 Aspectos Geológicos	47
3.2 Caracterização Geotécnica	
3.2.1 Ensaios <i>in situ</i>	50
3.2.2 Ensaios laboratoriais	53
3.3 Provas de Carga em Placa	57
3.3.1 Equipamentos e Materiais	
3.3.2 Sistema de Reacão	65
3.3.3 Pressão de Succão	
4 CENTRÍFUGA	68
4.1 Macico de solo	70
4.2 Equipamentos e Materiais Utilizados	71
4.2.1 Sistema de reacão	
4.2.2 Ensaios realizados	
5 RESULTADOS OBTIDOS	
5.1 Curvas Tensão x Recalque Obtidas no Campo Experiment	al86
5.2 Curvas Tensão x Recalque Obtidas na Centrífuga	
5.2.1 Areja na condição seca	
5.2.2 Areia na condição inundada	
5.2.3 Areia na condição não-saturada	
5.2.4 Ensaios com variação do nível d'água	
6 ANÁLISE DOS RESULTADOS DO CAMPO EXPERIMENTAL	L112
6.1 Capacidade de Carga	
6.2 Influência da Succão Matricial	
6.3 Tensão Admissível	
6.4 Influência da Dimensão na Capacidade de Carga	
6.5 Influência da Dimensão nos Recalques	
6.6 Efeito Escala	
7 ANÁLISES DOS RESULTADOS DA CENTRÍFUGA	
7.1 Capacidade de Carga	

7.2	Influência da Sucção Matricial	141
7.3	Influência da Dimensão na Capacidade de Carga	143
7.4	Influência da Dimensão nos Recalques	146
7.5	Efeito Escala	153
8 C(ONCLUSÕES	158
9 R	EFERÊNCIAS BIBLIOGRÁFICAS	163
ANEX	KO 1	
ANEX	KO 2	
ANEX	KO 3	

LISTA DE FIGURAS

Figura 2.1 - Capacidade de carga em função da largura da sapata3
Figura 2.2 - Efeito da dimensão na capacidade de carga de fundações por
sapatas em areia (DE BEER, 1965a)4
Figura 2.3 – Variação de N _{γ} obtida através de ensaios de modelos de
sapatas (CERATO & LUTENEGGER, 2002)7
Figura 2.4 - Curvas tensão x recalque de provas de carga em sapatas assentadas em areia (BRIAND & JEANJEAN, 1994)
Figura 2.5 – Curvas carga x recalque: a) ensaios de placa; b) ensaios de sapatas (CUDMANI <i>et al.</i> , 1994)
Figura 2.6 – Resultados de ensaios de placas com tamanhos diferentes (MENCL, 1961) 10
Figura 2.7 – Curvas carga x recalque para placas circulares de aço
(CONSOLI & SCHNAID, 1997)11
Figura 2.8 – Curvas carga x recalque de sapatas quadradas de concreto (CONSOLI & SCHNAID, 1997)12
Figura 2.9 – Analogia entre ensaios triaxiais e provas de carga em sapatas (BRIAUD & JEANJEAN, 1994)
Figura 2.10 – Efeito da dimensão em grande deslocamento (MEYERHOF, 1983 apud BRIAUD & JEANJEAN, 1994)
Figura 2.11 – Curvas tensão <i>versus</i> recalque/largura para ensaios em
sanatas (BRIAUD & IEANIEAN 1994)
Figura 2.12 – Provas de carga em solos cimentados em termos de tensão
normalizada versus recalque relativo (CONSOLI & SCHNAID, 1997)15
Figura 2.13 - Representação de modelagem de modelos (KO, 1988)
Figura 2.14 - Relação entre o fator de capacidade de carga e o produto do peso específico unitário pela largura da fundação (KIMURA, 1988)23
Figura 2.15 – Curvas carga x recalque médias para vários protótipos (OVESEN, 1979)
Figura 2.16 - Relação entre a capacidade de carga adimensional e o diâmetro do protótipo (KING <i>et al.</i> 1984) 28
Figura 2 17 – Tensão normalizada <i>versus</i> recalque relativo de sanatas
circulares (ZHI et al. 1998)
Figura 2.18 – Efeito da dimensão do protótipo (D) no fator de canacidade
de carga (N γ) de sapatas carregadas verticalmente, assentes em areia, em ensaios de centrífuga (STEENEELT 1989)
Figura 2 19 - Provas de carga em placa e sapata em argila (adaptado de
TAVI OR 1946) (CINTRA et al. 2003) 32
Figura 2 20 - Provas de carga em placa e sapata em areja (modificado de
Taylor 1946).
Figura 2 21 - Recalques de sanata em função da largura
Figura 2.21 Rolação ontro o recolavio (a) o a dimensão (P) de constas o
Figura μ . μ - relação entre o recarque (p) e a uniferisão (d) de sapalas e plaços rígidos para uma tanção constante aplicada (COPPLINOV
POSSADOV & DAVIDOV 1072)
Γ USSADUV & DAVIDUV, 1973)

Figura 2.23 - Relação entre recalques e diâmetros adimensionalizados para diferentes tensões aplicadas (COSTA & CINTRA. 1999)
Figura 2.24 – Relação entre a tensão aplicada e o diâmetro
adimensionalizado para alguns níveis diferentes de recalques (COSTA & CINTRA 1999)
Figura 2.25 – Curvas carga x recalque adimensionalisadas (OVESEN, 1979)
Figura 2.26 – Carta de representação para a separação do efeito escala do
efeito da dimensão (OVESEN, 1979)
FIGURA 2.27 – Variação da capacidade de carga em função da sucção
matricial (FREDLUND & RAHARDJO, 1993)43
Figura 2.28 – Curva tensão x recalque para os ensaios inundados da placa
de 0,80 m realizadas por COSTA (1999) e MACACARI (2001)44
Figura 2.29 – Variação da tensão de ruptura com a sucção (TSUHA, 2003)
Figura 3.1 – Seção Distribuição dos depósitos de cobertura cenozóica do
interior do Estado de São Paulo (FÚLFARO & BJONBERG, 1993)48
Figura 3.2 – Seção esquemática da geologia de pequena profundidade em
São Carlos (BORTOLUCCI, 1983)49
Figura 3.3 - Locação dos ensaios de campo (SPT e CPT) realizados51
Figura 3.4 – Perfil estratigráfico associado às sondagens à percussão52
Figura 3.5 – Resultados de ensaios penetrométricos de SPT e CPTu
(MENEGOTTO, 2004)
Figura 3.6 – Variação de índices físicos e de limites de consistência com a profundidade (COSTA 1999) 54
Figura 3.7 – Curvas granulométricas obtidas para as profundidades de 3.0
m, 5,0 m e 8,0 m, em relação à superfície do terreno (MACHADO, 1998)
$\mathbf{F}_{\mathbf{r}} = 0 0 0 0$
Figura 3.8 – Curva característica de sucção do solo para a profundidade de
2,0 m (MACHADO, 1998)
Figura 3.9 – Curva característica de sucção do solo para a profundidade de
5,0 m (MACHADO, 1998)
Figura 3.10 – Curva característica de sucção do solo para a profundidade
de 8,0 m (MACHADO, 1998)57
Figura 3.11 – Locação das cavas no Campo Experimental de Fundações58
Figura 3.12 – Placa metálica de 0,20 m de diâmetro
Figura 3.13 – Placa metálica de 0,40 m de diâmetro60
Figura 3.14 – Sapata de concreto armado de 1,50 m de diâmetro61
Figura 3.15 – Torre de tranferência de carga63
Figura 3.16 – Barraca de proteção64
Figura 3.17 – Esquema dos sistemas de reação, vistos em corte transversal
Figura 3.18 – Esquema geral das provas de carga66
Figura 3.19 – Instalação dos tensiômetros67
Figura 4.1 – Vista geral da centrífuga da Universidade do Colorado em
Boulder, EUA69

Figura 4.2 - Vista interna da centrífuga da Universidade do Colorado er	n
Boulder, EUA	.69
Figura 4.3 – Swinging basket	69
Figura 4.4 - Detalhe da junta giratória com as linhas de transmissão	.70
Figura 4.5 - Curva granulométrica para a F-75 Otawa Sand	71
Figura 4.6 – Caixa de ensaio	72
Figura 4.7 – Esquema do aparato utilizado para a chuva de areia	73
Figura 4.8 – Aparato utilizado para a chuva de areia	73
Figura 4.9 – Distribuição da areia durante a pluviação	74
Figura 4.10 – Haste utilizada como placa de 0,03 m e placas de 0,05 m e	
0,10 m	75
Figura 4.11 – Cilindro de aplicação de carga	76
Figura 4.12 - Sistema de pressurização de ar	77
Figura 4.13 – Esquema de fixação do LVDT	78
Figura 4.14 – Viga de alumínio	79
Figura 4.15 – Esquema geral dos ensaios realizados	.80
Figura 4.16 – Detalhe da conexão na caixa de ensaio (a) e da pedra poros	sa
(b)	82
Figura 4.17 – Esquema de inundação	.83
Figura 4.18 – Detalhe do tubo para rebaixamento do N.A.	
Figura 4.19 – Cilindro de 10 mm acoplado a haste de ligação	85
Figura 5.1 – Curvas tensão x recalque dos ensaios para a placa de 0,20 m	186
Figura 5.2 – Curvas tensão x recalque dos ensaios para a placa de 0,40 m	187
Figura 5.3 – Curvas tensão x recalque dos ensaios para a sapata de 1,50 r	m
	87
Figura 5.4 - Curva tensão x recalque para a placa de 30 mm ensaiada a 1	g
-	.88
Figura 5.5 - Curva tensão x recalque para a placa de 30 mm ensaiada a 5	g
	.89
Figura 5.6 - Curva tensão x recalque para a placa de 30 mm ensaiada a 1	0g
	.89
Figura 5.7 - Curva tensão x recalque para a placa de 30 mm ensaiada a 1	5g
	.90
Figura 5.8 - Curva tensão x recalque para a placa de 30 mm ensaiada a 2	5g
	.90
Figura 5.9 - Curva tensão x recalque para a placa de 30 mm ensaiada a 5	0g
	.91
Figura 5.10 - Curva tensão x recalque para a placa de 30 mm ensaiada a	
100g	.91
Figura 5.11 – Curvas tensão x ρ/D para os ensaios com a placa de 30 mm	n
	.92
Figura 5.12 - Curva tensão x recalque para a placa de 50 mm ensaiada a	1g
	.92
Figura 5.13 - Curva tensão x recalque para a placa de 50 mm ensaiada a	5g
	.93

Figura 5.14 - Curva tensão x recalque para a placa de 50 mm ensaiada a 10g
Figura 5.15 - Curva tensão x recalque para a placa de 50 mm ensaiada a
15g94
Figura 5.16 - Curva tensão x recalque para a placa de 50 mm ensaiada a 25g
Figura 5.17 - Curva tensão x recalque para a placa de 50 mm ensaiada a
50g95
Figura 5.18 - Curva tensão x recalque para a placa de 50 mm ensaiada a 100g
Figura 5.19 – Curvas tensão x ρ/D para os ensaios com a placa de 50 mm
Figura 5.20 - Curva tensão x recalque para a placa de 10 cm ensaiada a 1g
Figura 5.21 - Curva tensão x recalque para a placa de 10 cm ensaiada a 5g
Figura 5.22 - Curva tensão x recalque para a placa de 10 cm ensaiada a 10g
Figura 5.23 – Curvas tensão x o/D para os ensaios com a placa de 10 cm.98
Figura 5.24 - Curva tensão x recalque para a placa de 50 mm no ensaio
inundado a 1g
Figura 5.25 - Curva tensão x recalque para a placa de 50 mm no ensaio
inundado a 5g
Figura 5.26 - Curva tensão x recalque para a placa de 50 mm no ensaio
inundado a 10g
Figura 5.27 - Curva tensão x recalque para a placa de 50 mm no ensaio
inundado a 15g.
Figura 5 28 - Curva tensão x recalque para a placa de 50 mm no ensaio
inundado a 25g 101
Figura 5.29 - Curva tensão x recalque para a placa de 50 mm no ensaio
inundado a 50g
Figura 5.30 - Curva tensão x recalque para a placa de 50 mm no ensaio
inundado a 100g
Figura 5.31 – Curvas tensão x ρ /D para os ensaios inundados (placa de 50
mm)
Figura 5.32 - Curva tensão x recalque para a placa de 10 mm no ensaio
não-saturado a 5g103
Figura 5.33 - Curva tensão x recalque para a placa de 30 mm no ensaio
não-saturado a 5g104
Figura 5.34 - Curva tensão x recalque para a placa de 50 mm no ensaio
não-saturado a 5g104
Figura 5.35 - Curva tensão x recalque para a placa de 50 mm no ensaio
não-saturado a 10g105
Figura 5.36 - Curva tensão x recalque para a placa de 50 mm no ensaio
não-saturado a 15g105

Figura 5.37 - Curva tensão x recalque para a placa de 50 mm no ensaio
Figura 5.38 Curva tanção y recalque para a plaça de 50 mm no ensaio
não-saturado a 50g
Figura 5.39 - Curva tensão x recalque para a placa de 50 mm no ensaio
não-saturado a 100g
Figura 5.40 – Curvas tensão x α/D para os ensaios não-saturados 107
Figura 5.41 - Curva tensão x recalque para $D = 0.50$ m e nível d'água a 20
mm do topo da amostra
Figura 5.42 - Curva tensão x recalque para $D = 0.50$ m e nível d'água a 40
mm do topo da amostra
Figura 5.43 - Curva tensão x recalque para $D = 0.50$ m e nível d'água a 80
mm do topo da amostra
Figura 5.44 - Curva tensão x recalque para $D = 0,50$ m e nível d'água a 100
mm do topo da amostra
Figura 5.45 – Curvas tensão x ρ/D para os ensaios com variação do nível
d'água (placa e 50 mm)111
Figura 6.1 - Capacidade de carga x diâmetro da placa ou sapata (ensaios
inundados)120
Figura 6.2 – Variação de σ_r em função da sucção para a placa de 0,20 m.122
Figura 6.3 – Variação de σ_r em função da sucção para a placa de 0,40 m.122
Figura 6.4 – Variação de σ_r em função da sucção para a placa de 0,80 m.123
Figura 6.5 – Variação de σ_r em função da sucção para a placa de 1,50 m.123
Figura 6.6 – Variação da capacidade de carga (σ_r) obtida pelo método de
TERZAGHI (1943) com o diâmetro da placa ou sapata (B)125
Figura 6.7 – Variação da capacidade de carga (σ_r) obtida pelo método de
LEONARDS (1962) com o diâmetro da placa ou sapata (B)125
Figura 6.8 – Variação da capacidade de carga (σ_r) obtida pelo método do
"Pré-adensamento" com o diâmetro da placa ou sapata (B)126
Figura 6.9 – Variação da capacidade de carga (σ_r) obtida pelo método B/10
com o diâmetro da placa ou sapata (B)126
Figura 6.10 – Variação da capacidade de carga (σ_r) obtida pelo método
B/30 com o diâmetro da placa ou sapata (B)127
Figura 6.11 – Variação dos recalques com a dimensão da placa ou sapata
(B) para níveis de tensão constantes nos ensaios inundados
Figura 6.12 – Relação entre a tensão aplicada e o diâmetro da placa ou
sapata para alguns niveis diferentes de recalques
Figura 6.13 – Variação dos recalques com a dimensão da placa ou sapata
(B) para niveis de tensão constantes para uma sucção matricial de 10 kPa
Figura 6.14 – Variação dos recalques com a dimensão da placa ou sapata (D) a su
para niveis de tensão constantes para uma sucção matricial de 20 kPa
Figura 6.15 Variação dos rocalquos com a dimensão da placa ou sanata
(B) para níveis de tensão constantes para uma succão matricial do 20 kDa
(b) para invers de tensao constantes para una sucção inatriciar de 30 KPa 129

Figura 6.16 – Curvas tensão x recalque adimensionalisadas13	34
Figura 6.17- Curvas tensão x recalque adimensionalisadas dos ensaios	
inundados1	35
Figura 6.18 – Curvas tensão x recalque adimensionalisadas dos ensaios	
não-inundados1	35
Figura 7.1 - Capacidade de carga x diâmetro do protótipo (placa de 3 cm	e
areia seca)14	44
Figura 7.2 - Capacidade de carga x diâmetro do protótipo (placa de 5 cm	
em areia seca)14	44
Figura 7.3 - Capacidade de carga x diâmetro do protótipo (placa de 10 cm	n
em areia seca)14	45
Figura 7.4 Capacidade de carga x diâmetro do protótipo (placa de 5 cm e	m
areia inundada)14	45
Figura 7.5 Capacidade de carga x diâmetro do protótipo (ensaios não-	
saturados)14	46
Figura 7.6 – Variação dos recalques com a dimensão do protótipo (D) par	a
níveis de tensão constantes (placa de 3 cm em areia seca)14	47
Figura 7.7 – Variação dos recalques com a dimensão do protótipo (D) par	a
níveis de tensão constantes (placa de 5 cm em areia seca)14	47
Figura 7.8– Variação dos recalques com a dimensão do protótipo (D) para	а
níveis de tensão constantes (placa de 10 cm em areia seca)14	48
Figura 7.9 – Variação dos recalques com a dimensão do protótipo (D) par	a
níveis de tensão constantes (placa de 5 cm em areia inundada)1	48
Figura 7.10 – Variação dos recalques com a dimensão do protótipo (D)	
para níveis de tensão constantes (ensaios não-saturados)1	49
Figura 7.11 – Relação entre a tensão aplicada e o diâmetro do protótipo	
para alguns níveis de recalques (placa de 3 cm – areia seca)1	50
Figura 7.12– Relação entre a tensão aplicada e o diâmetro do protótipo	
para alguns níveis de recalques (placa de 5 cm – areia seca)1	51
Figura 7.13 – Relação entre a tensão aplicada e o diâmetro do protótipo	
para alguns níveis de recalques (placa de 10 cm – areia seca)	51
Figura 7.14 – Relação entre a tensão aplicada e o diâmetro do protótipo	
para alguns níveis de recalques (placa de 5 cm – areia inundada) 1	52
Figura 7.15 – Relação entre a tensão aplicada e o diâmetro do protótipo	
para alguns níveis de recalques (ensaios não -saturados)1	52
Figura 7.16 – Curvas tensão x recalque adimensionalisadas para a placa c	1e
3 cm em areia seca	54
Figura 7.17 – Curvas tensão x recalque adimensionalisadas para a placa o	le Z
5 cm em areia seca	54
Figura 7.18 – Curvas tensão x recalque adimensionalisadas para a placa o	de
10 cm em areia seca	55
Figura 7.19 – Curvas tensão x recalque adimensionalisadas para a placa c	de Z
5 cm em areia inundada1	55
Figura 7.20 – Curvas tensao x recalque adimensionalisadas para os ensai	OS
em areia nao-saturada1	56

LISTA DE TABELAS

Tabela 2.1 – Regras de similaridade para um ensaio de um modelo convencional (OVESEN, 1070)
Table 2.2. Destruction de sincilarida de serve accesion de serve adale serve
rabela 2.2 – Regras de similaridade para um ensaio de um modelo em centrífuga (OVESEN, 1979)
Tabela 2.3 – Fatores de escala para ensaios em centrífuga (FUGI SANG $\&$
OVESEN. 1988)
Tabela 2.4- Relações de escala de ensaios em centrífuga (ALTAEE &
FELLENIUS. 1994)
Tabela 2.5 – Capacidade de carga para um protótipo de 1.23 m obtidos
através de ensaios em centrífuga realizados por OVESEN (1975)
Tabela 2.6 – Resultados de ensaios em centrífuga para um modelo de 24.7
mm em diferentes níveis de gravidade realizados por OVESEN (1975)
25
Tabela 2.7 – Resultados de ensaios em centrífuga realizados por MIKASA
& TAKADA (1973)
Tabela 2.8– Valores da tensão de ruptura média nas oito cavas ensaiadas
Tabela 3.1 – Valores de peso específico seco e umidade obtidos ao longo
do perfil de coleta de blocos indeformados (MACHADO, 1998)54
Tabela 3.2 – Resultados dos ensaios de caracterização e compactação
(MACHADO, 1998)
Tabela 3.3 – Frações granulométricas constituintes do solo (MACHADO,
1998)
Tabela 3.4 - Características das Provas de Carga59
Tabela 4.1 – Variação do nível d'água, em relação ao topo do maciço, de
acordo com o nível de gravidade84
Tabela 6.1 – Valores de capacidade de carga obtidos utilizando-se conco
critérios de ruptura convencional114
Tabela 6.2 - Redução da capacidade de carga116
Tabela 6.3 - Valores de tensão admissível para os ensaios inundados117
Tabela 6.4 – Valores de FS calculados para o método de TERZAGHI (1943)
Tabela 6.5 – Valores de FS calculados para o método de LEONARDS
(1962)
Tabela 6.6 – Valores de FS calculados para o método do "Pré-
adensamento"118
Tabela 6.7 – Valores de FS calculados para o método B/10119
Tabela 6.8 – Valores de FS calculados para o método B/30119
Tabela 6.9 - Correlações entre σ_r (kPa) e ψ_m (kPa)124
Tabela 6.10– Valores calculados de capacidade de carga obtidos por
TERZAGHI (1943) em função da sucção matricial127
Tabela 6.11 – Valores calculados de capacidade de carga obtidos por
LEONARDS (1962) em função da sucção matricial127

Tabela 6.12 – Valores calculados de capacidade de carga obtidos por "Pré-
adensamento" em função da sucção matricial128
Tabela 6.13 – Valores calculados de capacidade de carga obtidos por B/10
em função da sucção matricial128
Tabela 6.14 – Valores calculados de capacidade de carga obtidos por $B/30$
em função da sucção matricial128
Tabela 6.15 – Média, desvio padrão, valores mínimo e máximo da relação
σ/σ_r para uma relação $\rho/B = 0.05$ 136
Tabela 7.1 – Valores de capacidade de carga para a placa de 3 cm ensaiada
com areia seca138
Tabela 7.2 – Valores de capacidade de carga para a placa de 5 cm ensaiada
com areia seca138
Tabela 7.3 – Valores de capacidade de carga para a placa de 10 cm cm
ensaiada com areia seca139
Tabela 7.4 – Valores de capacidade de carga para a placa de 5 cm ensaiada
com areia inundada139
Tabela 7.5 – Valores de capacidade de carga dos ensaios com areia não-
saturada140
Tabela 7.6 – Valores de capacidade de carga para a placa de 5 cm ensaiada
a 10 g com variação do nível d'água140
Tabela 7.7 – Redução da capacidade de carga nos ensaios inundados em
relação aos não-saturados141
Tabela 7.8 – Aumento da capacidade de carga devido à sucção matricial
Tabela 7.9 – Redução da capacidade de carga (σ_r média no ensaio
inundado = 90 kPa)143
Tabela 7.10 – Média, desvio padrão, valores mínimo e máximo da relação
σ/σ_r para uma relação ρ/B = 0,05157

В	largura da placa ou sapata
Bs	largura da sapata
Bp	largura da placa
с	coesão
c'	coesão efetiva
D	diâmetro do protótipo
Dr	compacidade relativa
e	índice de vazios
e _{máx}	índice de vazios máximo
emín	índice de vazios mínimo
E	módulo de deformabilidade
g	gravidade
$I_{ ho}$	fator de influência, que depende da forma e da rigidez da sapata
Ν	nível de aceleração
N_c , N_γ , N_γ	q fatores de capacidade de carga
$\mathbf{q}_{\mathbf{c}}$	resistência de ponta
$\mathbf{q}_{\mathbf{p}}$	tensão de ruptura
S_c, S_{γ}, S_q	fatores de forma
Wot	umidade ótima
WL	limite de liquidez
Wp	limite de plasticidade
Z	profundidade
φ	ângulo de atrito
$\boldsymbol{\varphi}_{\mathbf{p}}$	taxa de aumento da resistência ao cisalhamento devido à sucção
matrie	cial
ρ	recalque
ρ_s	recalque da sapata
$ ho_{ m p}$	recalque da placa
$\gamma_{ m w}$	peso específico da água
$\gamma_{ m d}$	peso específico seco
γs	peso específico dos sólidos
$\sigma_{\rm r}$	capacidade de carga
σ_{adm}	tensão admissível
σ	tensão
ν	coeficiente de Poisson do solo
Ψm	sucção matricial

1 INTRODUÇÃO

A dimensão das sapatas é um fator de grande influência na capacidade de carga e nos recalques de fundações rasas em areia. Teoricamente, tanto a capacidade de carga como os recalques deste tipo de fundação apresentam uma variação linear e crescente com a largura B da sapata. Porém, há várias evidências de que para "baixos" valores de B, a capacidade de carga e os recalques aumentam com a diminuição da largura da sapata, contrariando o pressuposto teoricamente.

Uma maneira de se investigar a influência da dimensão no comportamento de fundações rasas é através da realização de provas de carga em placas de diâmetros variados.

Modelos em centrífuga também podem ser utilizados para avaliação do efeito da dimensão. Os ensaios podem ser realizados com um modelo de determinado diâmetro e diferentes níveis de gravidade para simular protótipos de diferentes diâmetros ou podem-se utilizar placas de diferentes diâmetros ensaiadas em mesmo nível de gravidade.

Além da influência da dimensão, outro efeito a ser considerado é o chamado efeito escala. Diz-se que há a ocorrência deste efeito se as curvas tensão x recalque de placas e sapatas de dimensões variadas não convergirem a uma curva única quando adimensionalisadas.

Em solos não-saturados, a sucção matricial é outro fator importante que deve ser considerado nas análises de capacidade de carga e nos recalques. O papel relevante da sucção foi demonstrado primeiramente por & FREDLUND & RAHARDJO (1993) através do cálculo de capacidade de carga pela equação de TERZAGHI (1943) para um caso específico, mas considerando o aumento da coesão em função da sucção matricial. Posteriormente, COSTA (1999) comprovou experimentalmente que a sucção matricial causa um aumento substancial na capacidade de carga.

Diante do exposto, constata-se a grande importância de se empreender um estudo experimental da influência da sucção matricial e da largura da sapata na capacidade de carga e nos recalques. Este trabalho tem como objetivo analisar, por meio de provas de carga *in situ* e em centrífuga, o comportamento de fundações superficiais assentes em solos arenosos não-inundados através da influência da dimensão e da sucção matricial na capacidade de carga. A variação dos recalques com o diâmetro das placas e sapatas também será analisada.

Os ensaios *in situ* foram realizados com o solo na condição nãoinundada, em diferentes épocas do ano, de forma a se obter diferentes valores de sucção matricial e desta forma, analisar-se a influência deste fator na capacidade de carga. Também foram realizadas provas de carga com pré-inundação do solo, para representar a condição de sucção matricial praticamente nula. Através da comparação dos ensaios restas duas situações, pode-se quantificar a redução da capacidade de carga devido à inundação do terreno, em função da sucção matricial correspondente à condição não-inundada. Da mesma forma, para os ensaios em centrífuga, foram utilizadas areias em diferentes condições de umidade (seca, inundada e não-inundada) de forma a se comparar os resultados.

Também será feita a verificação da ocorrência do efeito escala nos resultados obtidos, incluindo-se a análise do papel da sucção matricial no efeito escala.

2 REVISÃO BIBLIOGRÁFICA

2.1 Efeito da Dimensão na Capacidade de Carga

Nas formulações teóricas de capacidade de carga, como por exemplo, a equação de TERZAGHI (1943) representada pela linha contínua na Figura 2.1, a capacidade de carga (σ_r) varia de forma linear e crescente com a largura (B) da sapata.

$$\sigma_{\rm r} = c N_{\rm c} S_{\rm c} + q N_{\rm q} S_{\rm q} + \gamma \frac{B}{2} N_{\gamma} S_{\gamma}$$
(2.1)

Figura 2.1 - Capacidade de carga em função da largura da sapata

Entretanto, tal comportamento não é válido para sapatas de pequenas dimensões. Nesse caso, contrariando o pressuposto teoricamente, a capacidade de carga parece aumentar com a diminuição da largura da sapata, conforme esquematizado pela linha tracejada da Figura 2.1. Uma evidência nesse sentido são os ensaios CPT, cujo diâmetro do cone é de 3,6 cm e o valor da resistência de ponta (q_c) é bem superior (20 a 30 vezes) a capacidade de carga de fundações por sapatas instaladas no mesmo local e à mesma profundidade.

Uma compilação de dados realizada por DE BEER (1965a) mostra que o fator N_{γ} da capacidade de carga aumenta significativamente com a diminuição da largura da sapata, para "baixos" valores de B, de acordo com a Figura 2.2.

Figura 2.2 - Efeito da dimensão na capacidade de carga de fundações por sapatas em areia (DE BEER, 1965a)

A discrepância entre valores teóricos e experimentais, quando estes são realizados em pequena escala, na capacidade de carga, é claramente DE BEER (1965a e b) explica a influência da dimensão das fundações em solos coesivos pelo fenômeno da ruptura progressiva. O autor correlaciona N_{γ} e a deformação ao nível de tensão o qual é dependente da largura da sapata. Também mostra experimentalmente que para areias compactas o recalque relativo na ruptura aumenta com o aumento da largura da sapata até um certo limite. A variação do recalque relativo na ruptura indica a existência de alguma influência da dimensão no fenômeno da ruptura progressiva.

MIKASA E TAKADA (1973) mostram que modelos em centrífuga produzem caminhos de tensões similares aos do protótipo. Isto permite a modelagem de sapatas em centrífuga sob curvas tensão x deformação similares às do protótipo. YAMAGUCHI *et al.* (1977) e KIMURA *et al.* (1985) estudam o efeito da dimensão de sapatas em areia compacta utilizando ensaios em centrífuga. É feita a comparação da distribuição das tensões de cisalhamento medidas para modelos de pequenas dimensões e para modelos em centrífuga, em níveis de gravidade elevados. Os resultados mostraram que a maior sapata fornece a maior tensão de cisalhamento na carga de pico quando comparada com as menores sapatas. Os maiores valores da tensão de cisalhamento correspondem aos menores valores do ângulo de atrito ϕ .

HETTLER & GUDEHUS (1988) mostram que N_{f} decresce com o aumento da largura da sapata. Os autores explicam este fenômeno pelo fato das tensões serem dependentes do ângulo de atrito e afirmam que a ruptura progressiva tem importância somente após a carga de pico. Por outro lado, STEENFELT (1977) relata o decréscimo de N_{γ} com o aumento da dimensão da fundação devido ao tamanho dos grãos em relação à largura da sapata e não pelos níveis de tensão. AIBAN (1991) afirma que se este fosse o caso, os resultados em centrífuga deveriam fornecer os mesmos resultados de ensaios realizados a 1g para a mesma dimensão de sapata desde que a relação entre a dimensão da sapata e a dimensão do grão seja a mesma.

Para mostrar que o fator de capacidade de carga N_{γ} é absolutamente dependente da largura B da sapata e também sofre uma influência do diâmetro médio dos grãos do solo, CERATO & LUTENEGGER (2003) realizaram uma série de ensaios laboratoriais com modelos de sapatas em duas areias com diferentes granulometrias e compacidades relativas. Todos os ensaios foram realizados em condições de inundação do solo e com a sapata assente na superfície. O modo de ruptura para cada ensaio variou de acordo com o tipo de areia e a compacidade utilizada. A capacidade de carga foi definida como a carga correspondente a uma relação $\rho / B = 0.1$ e o fator de capacidade de carga N_{γ} foi recalculado a partir da capacidade de carga obtida. Os resultados dos ensaios (Figura 2.3) mostraram que para todas as areias utilizadas, os valores de N_{γ} decrescem com o aumento da largura da sapata e aumentam com o aumento da compacidade relativa. Os resultados também mostraram que a compacidade relativa pode ter causado alguma influência na variação de N_{γ} , além da dimensão dos grãos de solo.

Figura 2.3 – Variação de N_{γ} obtida através de ensaios de modelos de sapatas (CERATO & LUTENEGGER, 2003)

2.1.1 Provas de carga em placa

Para analisar o efeito da dimensão na capacidade de carga, BRIAUD & JEANJEAN (1994) realizaram cinco provas de carga estática em sapatas quadradas de concreto a 0,75 m de profundidade e lado variando entre 1 m e 3 m. A Figura 2.4 mostra as curvas tensão x recalque obtidas.

Figura 2.4 - Curvas tensão x recalque de provas de carga em sapatas assentadas em areia (BRIAUD & JEANJEAN, 1994)

Ao considerar-se a capacidade de carga definida como a tensão suportada para um recalque equivalente a 10% do diâmetro da placa, a influência da dimensão é obvia, como pode se verificar observando a Figura 2.4.

CUDMANI *et al.* (1994) realizaram ensaios em placas circulares de diâmetros de 0,30 m, 0,45 m e 0,60 m e em placa quadrada de área equivalente à placa circular de 0,45 m e compararam seus resultados com ensaios realizados em sapatas quadradas de concreto de 0,7 m e 1,0 m de lado, executadas por LUZZARDI & MILITITSKI (1994) e citadas em CUDMANI *et al.* (1994). As profundidades variaram, para ambos os casos, entre 0,4 m e 1,6 m. A Figura 2.5 apresenta as curvas carga x recalque para os ensaios em placa e sapata. A nomenclatura usada é da forma PLACxxyy(z), onde xx é o diâmetro, yy é a profundidade e z é o número do ensaio.

Figura 2.5 – Curvas carga x recalque: a) ensaios de placa; b) ensaios de sapatas (CUDMANI *et al.*, 1994)

O comportamento observado pelos autores nos ensaios de placa foi similar ao correspondente nas provas de carga em sapatas. Ao aplicaremse diversos métodos consagrados para determinação do recalque, a influência da dimensão foi confirmada pelo fato de que os valores de ρ/ρ_0 (recalque da fundação de maior e menor tamanho, respectivamente) são proporcionais à relação B/B₀ (dimensões da maior e menor fundação, respectivamente).

Ensaios com fundações de diferentes dimensões também podem ser utilizados para obtenção de parâmetros do solo. MENCL (1961) obteve ótimos resultados de provas de carga realizadas com placas de 0,6 m e 0,9 m de diâmetro, assentes em rocha branda. A partir dos dados das curvas tensão x recalque (Figura 2.6) obtidas dos ensaios, o autor utilizou o método proposto por MEYERHOF (1951) para obter duas equações e da resolução deste sistema, obter o ângulo de atrito interno e a coesão da rocha em questão.

Figura 2.6 – Resultados de ensaios de placas com tamanhos diferentes (MENCL, 1961)

Na tentativa de estabelecer uma metodologia de projeto de fundações superficiais, CONSOLI & SCHNAID (1997) realizaram provas de carga estática em sapatas quadradas de concreto em verdadeira grandeza e em placas de aço de diâmetros variados, assentes a 1,20 m de profundidade sobre uma camada homogênea de solo cimentado, e carregadas verticalmente à compressão, seguindo os procedimentos indicados por SCHNAID *et al.* (1995).

O objetivo principal da pesquisa foi determinar o efeito da dimensão e da forma de uma sapata no recalque e na capacidade de carga. Através dos resultados obtidos, os autores observaram uma clara tendência de aumento da carga máxima com o aumento do diâmetro.

A Figura 2.7 apresenta seis curvas carga x recalque de ensaios realizados com placas circulares de 0,30 m, 0,45 m e 0,60 m de diâmetro. Dois ensaios nominalmente idênticos foram executados para cada tamanho de placa com o objetivo de verificar a repetibilidade dos resultados. Uma boa concordância de resultados foi observada para os pares de ensaios das placas de 0,30 m e 0,60.

Figura 2.7 – Curvas carga x recalque para placas circulares de aço (CONSOLI & SCHNAID, 1997)

Os ensaios da placa de 0,45 m exibiram um comportamento carga x recalque distinto, possivelmente devido a perturbações no solo subjacente à placa ocorrida durante a preparação do segundo ensaio (CONSOLI & SCHNAID, 1997).

A simples observação dos resultados demonstra uma clara tendência de aumento da carga máxima com o aumento do diâmetro. Observou-se comportamento similar para os resultados de provas de carga em sapatas quadradas de concreto, apresentadas na Figura 2.8.

Figura 2.8 – Curvas carga x recalque de sapatas quadradas de concreto (CONSOLI & SCHNAID, 1997)

Os autores afirmam ainda que os fatores que influenciam na quantificação e magnitude dos recalques e da capacidade de carga são a dimensão da fundação, os parâmetros de resistência ϕ e c' e o módulo de deformabilidade E na profundidade de influência H.

Resultados de ensaios de placa são usualmente expressos em termos de tensão aplicada *versus* recalque. Desta forma, observa-se uma grande influência da dimensão da fundação na determinação da capacidade de carga.

BRIAUD & JEANJEAN (1994) analisam o efeito da dimensão comparando ensaios triaxiais em uma mesma areia onde o topo do cilindro representa uma sapata e a tensão confinante é a mesma para os três casos (Figura 2.9).

s x r = com efeito escala s x e = sem efeito escala

Figura 2.9 – Analogia entre ensaios triaxiais e provas de carga em sapatas (BRIAUD & JEANJEAN, 1994)

Ao plotar-se o gráfico tipo tensão x deformação, obtém-se uma curva única, independente da dimensão, para todos os casos, enquanto que na curva tipo tensão x recalque são obtidas curvas diferentes para cada caso. A tensão lida para um determinado recalque é a mesma para a primeira situação e apresenta três valores diferentes para a segunda situação, dependendo da dimensão da sapata e será menor quanto maior for esta dimensão.

Desta forma, BRIAUD & JEANJEAN (1994) afirmam que ao plotar os resultados obtidos das provas de carga tipo tensão x recalque/dimensão da placa ou sapata, as curvas convergem para uma única curva provando a eliminação do efeito da dimensão.

Na Figura 2.10, o efeito da dimensão é ilustrado pela curva com pontos cheios, de acordo com a forma apresentada por MEYERHOF, 1983.

Figura 2.10 – Efeito da dimensão em grande deslocamento (MEYERHOF, 1983 *apud* BRIAUD & JEANJEAN, 1994)

Se a capacidade de carga é definida da relação recalque sobre largura (ρ/B) igual a 0,05, o efeito da dimensão desaparece. De fato, se as curvas tensão x recalque da Figura 2.4 forem traçadas como tensão *versus* recalque/largura, as curvas convergem quase a uma única curva (Figura 2.11).

Figura 2.11 – Curvas tensão *versus* recalque/largura para ensaios em sapatas (BRIAUD & JEANJEAN, 1994)

Isto prova que não há nenhuma influência da dimensão se os resultados das provas de carga forem traçados como curvas tensão x deformação.

Para eliminar o efeito da dimensão na interpretação dos resultados das provas de carga, CONSOLI & SCHNAID (1997) representam o comportamento dos ensaios em termos de variáveis adimensionais. Os resultados são apresentados em um gráfico que correlaciona tensão normalizada (relação entre a tensão aplicada e a resistência à compressão simples) com o recalque relativo (relação entre o recalque e o diâmetro) como mostra a Figura 2.12.

Figura 2.12 – Provas de carga em solos cimentados em termos de tensão normalizada *versus* recalque relativo (CONSOLI & SCHNAID, 1997)

A utilização da resistência à compressão simples como referência, ao contrário do nível de tensões médio normalmente adotado em outras pesquisas, deve-se ao fato de que a cimentação controla o comportamento do solo estudado neste caso e os valores da resistência à compressão simples fornecem uma medida direta do grau de cimentação do solo (CONSOLI *et al.*, 1996).

A superposição das curvas indica que resultados de ensaios de placas assentes em solos homogêneos são, na realidade, independentes da dimensão do elemento testado. Este comportamento pode ser explicado pela teoria da elasticidade que fornece os fundamentos necessários para justificar a normalização dos resultados.

Outros autores como D'APPOLONIA *et. al.* (1968) e ISMAEL (1985) também obtiveram curvas superpostas ao utilizarem a adimensionalização de seus resultados.

Conseqüentemente, é preferível a apresentação de resultados na forma σ *versus* ρ/B para ensaios de fundações rasas por esta ser independente das dimensões, visto que uma curva tensão x recalque é influenciada diretamente por este fator.

BRIAUD & GIBBENS (1999) também afirmam que ρ/B está relacionado à tensão média sob a fundação. Desde que a tensão σ sob as fundações é relacionada à tensão normal vertical média sob a fundação, a plotagem de σ *versus* ρ/B é relacionada diretamente à curva de tensão-deformação da massa do solo sob a fundação.

A literatura apresenta uma discussão de OSTERBERG (1947) que mostra curvas carga-recalque para ensaios de placas de diâmetros variados (0,25; 0,5; 0,75 e 1,0 m) em argila. O autor mostra que se os dados forem plotados como tensão *versus* recalque sobre diâmetro, as curvas tensões x recalque para os três maiores diâmetros convergem para uma única curva. PALMER (1947) também apresenta curvas tensão x recalque de ensaios em placas com diâmetros de 0,38, 0,61 e 0,76 m em pavimento que, quando na forma tensão *versus* recalque/diâmetro, convergem a uma única curva.

2.1.2 Ensaios em centrífuga

Modelos em centrífuga também têm sido utilizados para avaliação dos efeitos citados. A concepção destes ensaios utiliza um modelo construído com comprimento numa escala 1:N, assente em um solo semelhante ao solo natural em questão, submetido a um campo gravitacional artificial de magnitude N . g, em que g é a gravidade natural.

A maneira ideal de se verificar os resultados obtidos é a comparação com o próprio protótipo. Porém quando isto não é possível, pode-se recorrer à técnica comumente utilizada em centrífuga denominada "Modelagem de modelos". A Figura 2.13 apresenta uma forma esquemática para se entender esta técnica.

Figura 2.13 - Representação de modelagem de modelos (KO, 1988).

Todos os modelos testados em condições de 1g são, por definição, protótipos. Considere um protótipo de 1000 cm, indicado por A₁. Ele pode ser representado por um modelo de 100 cm (A₂) ou de 10 cm (A₃). A₂ e A₃ não são apenas modelos representando o protótipo (A₁), mas são também modelos um do outro. Na ausência do protótipo, A₂ e A₃ podem ser comparados entre si, e usando as relações de escala, seu comportamento pode ser extrapolado para o desempenho do protótipo projetado. As comparações entre A₂ e A₃ e de outros modelos ao longo da linha A₁A₂A₃ fornecem os meios para validar com exatidão as relações de escala.

Deve-se notar que A₂ e B₂ não são modelos um do outro e a comparação entre ambos delineará os efeitos da dimensão. Ao mesmo tempo, B₂ e A₃ também não são modelos um do outro e a comparação entre eles determinará os efeitos acréscimo do campo gravitacional.

Em um ensaio convencional (gravidade natural) de fundações rasas, os modelos são construídos com o comprimento em uma escala 1:N. OVESEN (1979) apresenta na Tabela 2.1 as seis variáveis de semelhança requeridas para o modelo e o protótipo assentes em areia.

	Protótipo	Modelo convencional	
Regra	Escala – 1:1	Escala – 1:N	Similaridade
	Gravidade – g	Gravidade – g	
1	е	e	SIM
2	φ	φ	SIM
3	ς γΒ	γB_n	NÃO
4	$\sigma_{ m g}/\gamma_{ m B}$	$\sigma_g / \gamma B / n$	NÃO
5	ΈγΒ	$\mathbb{Z}_{\gamma B_{n}}$	NÃO
6	d⁄B	d'B/n	NÃO

Tabela 2.1 – Regras de similaridade para um ensaio de um modelo convencional (OVESEN, 1979).

onde:

• e = índice de vazios;

- $\phi = \hat{a}$ ngulo de atrito;
- γ = peso específico;
- d = diâmetro dos grãos de solo;
- B = dimensão da fundação;
- c = coesão entre interpartículas;
- E = módulo de deformabilidade;
- σ_g = resistência ao esmagamento dos grãos.

Os ensaios em centrífuga requerem as mesmas regras de similaridade que os ensaios realizado em gravidade natural, porém, observa-se na Tabela 2.2 que quase todas as regras de similaridade podem ser satisfeitas neste caso. Somente a regra que diz respeito à dimensão dos grãos não pode ser cumprida devido ao fato de que o solo utilizado para o protótipo e o modelo deve ser o mesmo e, conseqüentemente, a relação entre o diâmetro dos grãos e o diâmetro da sapata não será a mesma.

Tabela 2.2 – Regras de similaridade para um ensaio de um modelo em centrífuga (OVESEN, 1979).

	Protótipo	Modelo em centrífuga	
Regra	Escala – 1:1	Escala – 1:N	Similaridade
	Gravidade – g	Gravidade – N .g	
1	E	е	SIM
2	φ	φ	SIM
3	$^{c}/_{\gamma B}$	$\sum_{\gamma n \times B_n}^{C}$	SIM
4	$\sigma_{ m g}/\gamma_{ m B}$	$\sigma_{g}/\gamma_{n}\times B/n$	SIM
5	Έ⁄γΒ	$E_{\gamma n \times B_n}$	SIM
6	d/B	d/B/n	NÃO
Os ensaios realizados em centrífuga sobre modelos reduzidos satisfazem praticamente todas as leis de semelhança física fazendo desta ferramenta uma excelente via de pesquisa complementar às análises teóricas e numéricas e às experiências em verdadeira grandeza.

Os ensaios devem ser realizados num solo idêntico ao do protótipo em termos de composição mineralógica e classificação. Porém, o modelo não deve ser tão pequeno em relação ao protótipo, pois a dimensão dos grãos poderia ter um efeito significativo nos resultados.

A Tabela 2.3 apresenta fatores de escala estabelecidos para parâmetros básicos de solo para ensaios em centrífuga. O mesmo material do protótipo deve ser usado no modelo.

Para todos os parâmetros são dados números adimensionais e as condições de similaridade são expressas em termos de N-valores. Supondo que a aceleração é escalada em N, os comprimentos são escalados em 1/N (FUGLSANG & OVESEN, 1988).

Na maioria dos casos é desejável usar o material do protótipo no modelo pois é quase impossível encontrar um material alternativo com as propriedades corretas. Se as propriedades de um material não forem completamente conhecidas, é estritamente necessário o uso do mesmo material.

Parâmetro	Símbolo	Números Similaridade Adimensionais requerida		Fator de escala
Aceleração	а	-	N _a =	Ν
Dimensão	В	-	$N_B =$	1/N
Compacidade	ρ	-	$N_{\rho} =$	1
Tamanho do grão	d	d/B	$N_d =$	1
Índice de vazios	e	Ε	$N_e =$	1
Saturação	Sr	Sr	$N_S =$	1
Compacidade líquida	ρι	ρι⁄ ρ	$N_{\rho l} = N_{\rho} =$	1
Tensão superficial	σ_t	$\sigma_t/adB\rho_l$	$N_{\sigma t} = N_{\rho} N_a N_d N_B =$	1
Capilaridade	hc	$h_c a d\rho_l / \sigma_t$	$N_{h} = N_{\sigma t} N^{-1}{}_{\rho} N^{-1}{}_{a} N^{-1}{}_{d} =$	1/N
Viscosidade	η	η∕dρı√aL	$N_{\eta}{=}N_{\rho}N^{1/2}{}_{a}\;N_{d}N^{1/2}{}_{B}{=}$	1
Permeabilidade	k	kη∕ad²ρı	$N_k = N_{\rho} N_a \ N^2 d N^{-1} \eta =$	Ν
Ângulo de atrito	φ	φ	$N_{\phi} =$	1
Tensão interpartículas	σc	σc/aΒρ	$N_{\sigma^c} = N_\rho N_a N_B =$	1
Coesão	С	c∕aBp	$N_c = N_\rho N_a N_B =$	1
Compressibilidade	E	E/aBp	$N_E = N_\rho N_a N_B =$	1

Tabela 2.3 – Fatores de escala para ensaios em centrífuga

(FUGLSANG & OVESEN, 1988).

Nos ensaios convencionais em centrífuga, o produto da escala do gradiente de tensão e da escala geométrica é igual à unidade. As tensões e deformações nos pontos homólogos no protótipo e no modelo são idênticas e a razão de deslocamento entre o modelo e o protótipo é igual a N. Os ensaios são realizados com índice de vazios igual ao do protótipo (ALTAEE & FELLENIUS, 1994). Na prática, utilizam-se para os ensaios solos de mesma compacidade que o protótipo. Os resultados dos ensaios em centrífuga podem ser extrapolados para prever o comportamento do protótipo usando as relações de escala apresentadas na Tabela 2.4.

Protótipo em escala real	Modelo em centrífuga em igual nível de tensão
1	Ν
1	N^2
1	N^3
1	N^3
1	1/N
1	1
1	1
1	Ν
1	N^2
	Protótipo em escala real 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Tabela 2.4- Relações de escala de ensaios em centrífuga (ALTAEE & FELLENIUS, 1994).

Nota: Todos os itens da tabela se referem a pontos homólogos no modelo e no protótipo.

KIMURA (1988) apresenta um relato de provas de carga realizadas em areia compacta tendo como alvo principal da pesquisa o estudo da diferença nas relações entre carga e recalque sob acelerações centrífugas diferentes.

Os resultados obtidos apresentaram uma similaridade impressionante com a compilação de dados realizada por DE BEER (1965a) como mostra a Figura 2.14.

Figura 2.14 - Relação entre o fator de capacidade de carga e o produto do peso específico unitário pela largura da fundação (KIMURA, 1988)

OVESEN (1975) apresenta os resultados de duas séries de ensaios realizados em centrífuga: na primeira série foram utilizados placas com três diâmetros distintos (0,157 m, 0,671 m e 0,412 m) submetidas a três diferentes n (79g, 51g e 30g) para simular uma placa de 1,23 m. Os valores obtidos para a capacidade de carga mostraram uma boa concordância como mostra a Tabela 2.5.

Diâmetro do modelo (mm)	Nível de gravidade N	Capacidade de carga (kPa)
15,7	79 g	681
67,1	51 g	671
41,2	30 g	685

Tabela 2.5 – Capacidade de carga para um protótipo de 1,23 m obtidos através de ensaios em centrífuga realizados por OVESEN (1975).

A segunda série de ensaios foi realizada utilizando-se um modelo com diâmetro constante (24,7 mm) submetido a diferentes níveis de gravidade N, simulando assim protótipos de diâmetros variados. Os ensaios foram realizados utilizando-se duas areias padrões distintas (G-12 sand e Edgar sand). A Tabela 2.6 mostra os resultados obtidos pelos autores.

Através destes resultados observa-se a influência da dimensão na capacidade de carga. Conforme o diâmetro do modelo aumenta, a capacidade de carga sofre um acréscimo.

Nível de	Tipo de	Índice de	Capacidade de carga
gravidade N	areia	vazios	(kPa)
1,0g		0,471	37,4
9,5g		0,471	215,0
43,3g		0,475	758,0
84,8g	Edgar	0,474	1082,0
1,0g	Sand	0,699	6,53
10,1g		0,700	47,0
50,5g		0,696	176,0
81,8g		0,700	289,0
1,0g		0,549	28,2
10,0g		0,550	113,0
50,1g		0,550	668,0
50,2g		0,559	602,0
50,2g	G12	0,556	461,0
50,2g	Sand	0,556	864,0
84,3g		0,555	1259,0
10,1g	-	0,722	35,7
50,2g		0,722	145,0
81,2g		0,715	307,0

Tabela 2.6 – Resultados de ensaios em centrífuga para um modelo de 24,7 mm em diferentes níveis de gravidade realizados por OVESEN (1975).

OVESEN (1979) apresenta alguns resultados experimentais a respeito da influência da dimensão na capacidade de carga de sapatas assentes em areia. Estes resultados mostram que a capacidade de carga decresce com o aumento da dimensão da fundação, como mostra a Figura 2.15. Estas curvas mostram uma tendência definida: o protótipo de maior diâmetro tem a menor capacidade de carga e o pico da curva é menos acentuado, indicando a ocorrência do efeito da dimensão.

Figura 2.15 – Curvas carga x recalque médias para vários protótipos (OVESEN, 1979)

OVESEN (1979) afirma que o efeito da dimensão ocorre principalmente porque nem todas as regras de similaridade são obedecidas, como a coesão entre partículas entre os grãos de areia, a resistência ao esmagamento, o módulo de deformabilidade e o tamanho dos grãos. O autor afirma que os efeitos da dimensão, no que diz respeito à capacidade de carga, tendem a desaparecer ao utilizar-se uma centrífuga cujo braço seja maior que 30 vezes a relação entre a dimensão da sapata ensaiada e a dimensão dos grãos de solo, mesmo que a regra de similaridade requerida para os grãos de solo não seja satisfeita.

MIKASA & TAKADA (1973) mostram esta influência da dimensão de sapatas corridas através de ensaios em centrífuga variando-se a dimensão dos modelos e os níveis de gravidade. Os resultados são apresentados na Tabela 2.7.

Pode-se observar também que os resultados para os protótipos de mesma largura apresentam boa concordância.

Tabela 2.7 – Resultados de ensaios em centrífuga realizados por MIKASA & TAKADA (1973).

	Largura do	Nível de	Largura do	Capacidade de
	Modelo (cm)	gravidade	protótipo (m)	carga (kPa)
	0,1	80 g	0,8	2100
	0,1	60 g	0,6	1580
	0,1	40 g	0,4	1030
•	1,5	80 g	1,2	3370
	1,5	40 g	0,6	1680
•	2,0	60 g	1,2	3070
	2,0	40 g	0,8	2060
	2,0	30 g	0,6	1460
	2,0	20 g	0,4	1250
•	3,0	40 g	1,2	3170
	3,1	20 g	0,6	1640

Um estudo do efeito da dimensão da placa no resultado de provas de carga foi realizado por KING *et al.* (1984). Foram simulados protótipos de 0,5 m a 1,0 m de diâmetro utilizando-se modelos de 12,5 mm, 25,0 mm e 50,0 mm de diâmetro num campo gravitacional de 40 g. A Figura 2.16 mostra uma considerável redução no valor da capacidade de carga (σ_r), expressa de forma adimensionalisada como $\sigma_r/\gamma D$, onde D é o diâmetro

do protótipo e γ é o peso específico do solo, com o aumento do diâmetro,

particularmente acima de 50,0 mm.

Figura 2.16 - Relação entre a capacidade de carga adimensional e o diâmetro do protótipo (KING *et al.*, 1984)

ZHU *et al.* (1998) realizaram ensaios em uma sapata circular de 43,7 mm de diâmetro e acelerações de 1, 10, 40 e 160 g, correspondendo a protótipos de diâmetros de 0,044; 0,44; 1,75 e 7,0 m, respectivamente. Os autores apresentaram os resultados na forma de tensão normalizada ($\sigma_p = \sigma/\gamma D$, onde σ é a tensão aplicada, γ é o peso específico e D é o diâmetro do protótipo) pelo recalque relativo (ρ/D , onde ρ é o recalque medido) como mostra a Figura 2.17.

Figura 2.17 – Tensão normalizada *versus* recalque relativo de sapatas circulares (ZHU *et al.*, 1998)

A Figura 2.17 indica que o aumento do diâmetro causa uma mudança no modo de ruptura, passando de cisalhamento geral para cisalhamento local. Para os diâmetros da sapata de 0,044, 0,44; 1,75; e 7,0 m, a tensão normalizada na ruptura é de aproximadamente 240, 120, 80 e 60 respectivamente, decrescendo com a dimensão da sapata.

A inclinação inicial das curvas decresce com o aumento das dimensões da sapata. Isto sugere que a compressibilidade relativa dos solos aumenta com o aumento da dimensão da sapata. Também pode ser visto que o recalque relativo quando a carga de ruptura é atingida aumenta com a dimensão. Com o aumento de D de 0044 a 7,0 m, o recalque relativo na ruptura aumenta em torno de 7 a 15%.

Os resultados de ensaios realizados por dez instituições distintas, para avaliar a repetibilidade da resposta ao carregamento, relatados por STEWART & KOUDA (1998), são apresentados de forma semelhante. Utilizaram–se nos ensaios sapatas circulares rígidas com rugosidade na base, sendo que oito organizações usaram sapatas com 30 mm de diâmetro, outra usou com 25 mm e a última utilizou diâmetros de 11,3 e 31,9 mm. A maioria dos ensaios foi realizada normalmente com aceleração de 30 g, embora alguns utilizaram 1 g e 60 g. Os dados foram plotados na forma de carga normalizada *versus* recalque relativo. A tensão normalizada é definida como $2\sigma/N\gamma B$ onde: σ é a tensão média aplicada, N é o nível de aceleração, γ é o peso específico e B é a largura da fundação. Assim, na ruptura a carga normalizada representa o produto do fator de capacidade de carga (N_{γ}) pelo fator de forma para sapatas circulares (s_{γ}). O recalque relativo é definido da mesma forma: ρ/B .

Constatou-se que um dos fatores que interferiu nos resultados dos ensaios foi à escala utilizada nas dimensões do modelo. Todavia, para um determinado nível de gravidade, uma variação na dimensão das sapatas ensaiadas não conduziu a uma mudança significativa da capacidade de carga (STEWART & KOUDA, 1998).

Numa tentativa de explicar o efeito da dimensão de DE BEER (1965b) na capacidade de carga de uma fundação rasa em areia compacta sob o ponto da vista da ruptura progressiva, YAMAGUCHI *et al.* (1977) realizaram ensaios em fundações rasas usando sapatas com diâmetros de 20 mm, 30 mm e 40 mm de largura em gravidade natural (1 g) e na centrífuga com acelerações de 10, 20 e 40 g, com profundidade de embutimento (H) de 0 B, 0,5 B e B, assentes em areia compacta.

Os autores concluíram que o fator de capacidade de carga decresce com o aumento de γB (γ = peso específico da areia e B = largura da fundação). O fator de capacidade de carga é o mesmo definido por DE BEER (1965a) como $\sigma_{máx}$, o nde $\sigma_{máx}$ é a capacidade de carga máxima observada.

Linhas de ruptura foram detectadas com sucesso pelo exame de raio X feitas após os ensaios na centrifuga. Combinando as linhas de ruptura com as tensões de cisalhamento observadas, YAMAGUCHI *et al.* (1977) concluíram que a ruptura progressiva foi responsável pela influência da dimensão da fundação. Também foi observado pelos autores que o efeito da dimensão existe no que diz respeito ao fator N_{γ} da capacidade de carga mas desaparece em torno de B = 90 cm, tornando-se mais evidente com o aumento da relação H/B.

A influência da dimensão do protótipo é mostrada por STEENFELT (1989). A Figura 2.18 mostra alguns resultados de sapatas circulares e corridas, carregadas central e verticalmente, assentes em areia e ensaiadas em centrífugas diferentes.

Figura 2.18 – Efeito da dimensão do protótipo (D) no fator de capacidade de carga (Nγ) de sapatas carregadas verticalmente, assentes em areia, em ensaios de centrífuga (STEENFELT, 1989)

Este tipo de plotagem, introduzido por DE BEER (1965a), ilustra o efeito da dimensão em ensaios de modelos convencionais em 1g. O fator de capacidade de carga N_{γ} é plotado contra um parâmetro adimensional D/E_{eq} , com $E_q = 100$ kPa. O efeito da dimensão da fundação ou o regime de tensão abaixo da fundação influencia fortemente a capacidade de carga. Comparando a Figura 2.18 com os dados de DE BEER (1965a), os gráficos

sugerem que placas maiores (B > 0,6 m) devem ser usadas para uma extrapolação confiável de ensaios de carregamento de placas para fundações em escala real.

2.2 Efeito Das Dimensões Nos Recalques

Através de comparação de provas de carga em placas e provas de carga em sapatas em argilas pré-adensadas pode-se analisar o efeito da dimensão nos recalques. De acordo com CINTRA *et al.*, (2003), não há influência da dimensão na capacidade de carga, portanto esta será a mesma para as provas de carga em placa e sapata. Como o módulo de deformabilidade é constante com a profundidade e os bulbos são proporcionais à largura da placa e da sapata, os recalques serão proporcionais à dimensão:

$$\rho_{s} = \rho_{p} \, \frac{B_{s}}{B_{p}} \tag{2.2}$$

A Figura 2.19 ilustra qualitativamente a comparação de provas de carga em placa e sapata assentes em solos puramente coesivos.

Figura 2.19 - Provas de carga em placa e sapata, em argila (adaptado de TAYLOR, 1946) (CINTRA *et al.*, 2003)

No caso de solos não-coesivos, a capacidade de carga é proporcional à dimensão, porém o mesmo não ocorre para os recalques pois o módulo de deformabilidade aumenta com a profundidade. Neste caso, quando bulbos maiores atingem solos menos deformáveis, o recalque não aumenta proporcionalmente ao bulbo.

Para o caso do módulo de deformabilidade ser diretamente proporcional ao aumento da profundidade ($E_s = kz$), placas e recalques terão o mesmo recalque para um mesmo nível de tensão, pois o aumento do bulbo é compensado pelo aumento de E_s , ao passar da placa para a sapata.

CINTRA *et al.* (2003) afirmam que a deformabilidade da areia se situa entre esse extremo (módulo de deformabilidade aumentando diretamente com profundidade) e o outro extremo do módulo constante com a profundidade (caso das argilas):

$$E_s = E_o + k z \qquad (2.3)$$

Para uma mesma tensão aplicada, os recalques da sapata serão maiores do que os da placa, mas menores do que os valores obtidos com a proporção direta do aumento da dimensão. Numa sapata três vezes maior que a placa, por exemplo, o recalque da sapata estará compreendido entre uma e três vezes o recalque da placa, dependendo da lei de variação do módulo de deformabilidade (caso-a-caso) se aproximar mais do valor constante com a profundidade ou da variação diretamente proporcional com a profundidade:

$$\rho_{\rm s} = \rho_{\rm p} \quad \leftrightarrow \quad \rho_{\rm s} = \rho_{\rm p} \, \frac{B_s}{B_p} \tag{2.4}$$

ou

$$\rho_{\rm s} = \beta \ \rho_{\rm p} \tag{2.5}$$

onde

$$k \to 0: \quad \beta \to \frac{B_s}{B_p}$$
$$E_o \to 0: \quad \beta \to 1$$

A Figura 2.20 ilustra qualitativamente a comparação de provas de carga em placa e sapata, em areias.

Figura 2.20 - Provas de carga em placa e sapata, em areia (modificado de Taylor, 1946):

a) curvas tensão x recalque típicas; b) caso particular do módulo de deformabilidade aumentando na proporção direta com a profundidade (CINTRA *et al.*, 2003)

Enquanto métodos teóricos mostram uma variação linear e crescente dos recalques com a dimensão das fundações (Equação 2.6 e Figura 2.21), GORBUNOV-POSSADOV & DAVIDOV (1973) demonstram a dependência da largura nos recalques de placas e sapatas quadradas sob uma tensão constante com a Figura 2.22.

$$\rho = \sigma B \left(\frac{1 - v^2}{E_s} \right) I_{\rho} \dots \dots \dots (2.6)$$

Figura 2.21 - Recalques de sapata em função da largura

Figura 2.22 - Relação entre o recalque (ρ) e a dimensão (B) de sapatas e placas rígidas para uma tensão constante aplicada (GORBUNOV – POSSADOV & DAVIDOV, 1973)

No trecho AB, primeiramente o recalque apresenta valores elevados devido às altas deformações plásticas do solo, porém a função decresce com o aumento da placa conduzindo a recalques reduzidos. No trecho BC as deformações plásticas são insignificantes. Em CD, a função que mostra a influência da largura da placa nos recalques torna-se linear e as fórmulas da teoria da elasticidade podem ser aplicadas. Então, no trecho DE ocorre um retardamento no recalque e em EF, o recalque torna-se praticamente independente da largura da placa, tendendo a uma assíntota horizontal. Isto ocorre porque em placas de grandes dimensões, as camadas de solo abaixo da placa praticamente não apresentam grande variação da deformação sob condições de carregamento externo.

COSTA & CINTRA (1999), utilizando simulações numéricas, apresentam a variação do recalque com os diâmetros das placas, adimensionalisados pela placa padrão de 0,80 m (Figura 2.23).

Figura 2.23 - Relação entre recalques e diâmetros adimensionalizados para diferentes tensões aplicadas (COSTA & CINTRA, 1999)

Observa-se que para um nível de tensão constante, os recalques aumentam se o tamanho da placa aumentar. As curvas mostram um comportamento bilinear, o qual torna-se mais evidente para maiores níveis de tensão. A inclinação da segunda parte da curva decresce com o aumento da tensão aplicada tornando-se praticamente horizontal a 90 kPa. A partir deste nível o efeito da dimensão deixa de atuar.

Também pode-se notar que as curvas da Figura 2.23 apresentam uma forma similar à porção CF da curva apresentada na Figura 2.22. Para os níveis mais elevados de tensão esta evidência é mais acentuada.

Para níveis de recalque constante, a tensão diminui se a dimensão da placa aumenta (Figura 2.24).

Figura 2.24 – Relação entre a tensão aplicada e o diâmetro adimensionalizado para alguns níveis diferentes de recalques (COSTA & CINTRA, 1999)

O efeito da dimensão influencia num resultado de tensão maior para diâmetros de placas menores tornando-se mais evidente para níveis de recalques maiores.

2.3 Efeito Escala

A influência da dimensão no comportamento de fundações rasas é muitas vezes confundida por diversos autores com outro fenômeno denominado efeito escala. A distinção entre estes fenômenos foi feita por OVESEN (1979) e posteriormente por CORTÉ (1989), que chama de efeito das dimensões quando, para um mesmo campo específico de gravidade, o valor de um parâmetro adimensional é uma função de uma das dimensões características da estrutura em iguais circunstâncias. Uma ilustração clássica é fornecida pelo coeficiente N_{γ} da capacidade de carga que diminui com o aumento da largura de uma fundação rasa. O efeito escala

é definido pelo autor como a diferença entre resultados, expressos na forma adimensional, dos ensaios em um modelo reduzido e seu respectivo protótipo.

Para ilustrar o efeito escala, OVESEN (1979) realizou uma série de ensaios em centrífuga utilizando modelos de dimensões variadas ensaiados em diferentes níveis de gravidade para representar um mesmo protótipo. A Figura 2.25 apresenta as curvas adimensionalisadas para um total de 11 ensaios realizados com séries denominadas H, L, P e U representando um protótipo com 1 m de diâmetro. Os ensaios apresentam uma variação no diâmetro do modelo de B = 14,2 mm até B = 79,8 mm e uma variação da razão de aceleração de N = 70,7 até N = 12,5.

Figura 2.25 – Curvas carga x recalque adimensionalisadas (OVESEN, 1979)

Observa-se na Figura 2.25 que as curvas para as diferentes séries de ensaios são praticamente coincidentes mostrando que não houve nenhuma influência do efeito escala.

Para ilustrar a diferença entre efeito escala e efeito da dimensão, OVESEN (1979) apresenta a Figura 2.26.

Figura 2.26 – Carta de representação para a separação do efeito escala do efeito da dimensão (OVESEN, 1979)

Neste diagrama, cada série de ensaios é representada por uma letra maiúscula. As linhas diagonais ascendentes para a direita indicam ensaios em centrífuga do mesmo protótipo ($D = B \times N$ é constante ao longo de cada linha). O efeito escala pode ser estudado comparando-se os resultados de ensaios das diferentes séries que representam o mesmo protótipo, como por exemplo, os resultados das séries D, H, L, P, U e X que representam um protótipo de 1 m.

As linhas diagonais descendentes para a direita indicam ensaios realizados com protótipos de diferentes dimensões. O efeito da dimensão pode ser analisado comparando os resultados de séries de ensaios que representam protótipos diferentes, como por exemplo, os resultados das séries F (D = 0,25 m), L (D = 1,0 m) e R (D = 4,0 m). O efeito da dimensão também pode ser visto nos gráficos já apresentados na Figura 2.15.

CINTRA (2005) exemplifica a ocorrência do efeito escala no problema da extrapolação de recalques obtidos através de provas de carga em placas para o recalque da sapata, para uma mesma tensão aplicada. No caso em que o solo pode ser considerado como um meio elástico homogêneo, essa extrapolação é simples de ser realizada, pois os recalques imediatos crescem na mesma proporção entre as dimensões da placa e da sapata. Assim, as curvas carga x recalque se unificam quando o eixo dos recalques é adimensionalisado pelas dimensões da placa e da sapata, mostrando a inexistência do efeito escala.

No caso de meios não-homogêneos, como as areias em geral, CINTRA (2005) afirma que a extrapolação do recalque depende também de uma variável adicional, o módulo de deformabilidade do solo em função da profundidade. Neste caso, a simples adimensionalisação do eixo dos recalques pela dimensão da placa e da sapata não resultará em unificação das curvas, mostrando que neste caso há a ocorrência do efeito escala.

LOBO CARNEIRO (1993) atribui o efeito escala aos casos onde não é possível satisfazer todas as condições de semelhança entre modelo e protótipo, conduzindo os resultados a erros não desprezíveis. Por exemplo, um fator de forma que tem papel secundário ou desprezível no protótipo passa a ter papel importante no modelo.

Exemplo disso se verifica nos corpos constituídos por grãos ou partículas, que podem ser macroscopicamente considerados como contínuos no protótipo mas não no modelo, se a dimensão desses grãos é a mesma. Por outro lado, se as dimensões dos grãos são reduzidas no modelo, segundo a escala geométrica geral, pode haver intensificação da influência de um fenômeno cuja influência era desprezível no protótipo. No caso dos grãos ou partículas de mesmas dimensões no modelo e no protótipo, é desrespeitada a condição de semelhança correspondente à relação entre as dimensões representativas dos grãos e do corpo.

Outro exemplo são os fenômenos que dependem da porosidade como a retração e os efeitos reológicos. É impossível respeitar-se o fator relação entre a dimensão dos poros/dimensão linear representativa.

De acordo com LOBO CARNEIRO (1993), o desconhecimento da teoria da semelhança física leva muitos pesquisadores ao erro de atribuir as diferenças devidas ao desrespeito do fator forma-dimensão dos grãos/dimensão representativa da seção transversal a uma suposta influência da dimensão absoluta da peça.

O efeito da dimensão dos grãos na capacidade de carga é uma questão importante na modelagem de sapatas em solos granulares em centrífuga. Quando uma massa de solo é sujeita a uma aceleração de Ng, a dimensão da partícula é escalada em N vezes o tamanho original (YAMAGUCHI *et al.*, 1977).

Esta questão foi estudada por diversos autores. FUGLSANG & OVESEN (1988) compilaram resultados experimentais publicados por diversos pesquisadores a respeito do efeito da dimensão dos grãos na capacidade de carga de fundações. A conclusão foi de que não há nenhuma influência deste fator na capacidade de carga se a relação entre a dimensão do modelo e a dimensão média dos grãos for maior que 30. Consideração semelhante foi obtida por CHRISTENSEN & BAGGE (1977) que mostram um efeito escala menos acentuado quando a relação entre a dimensão do modelo e a dimensão média dos grãos é em torno de 15.

YAMAGUCHI *et al.* (1976 e 1977), utilizando grãos com diferentes dimensões médias (com mesmo coeficiente de uniformidade), provam experimentalmente que a capacidade de carga praticamente não apresenta nenhuma diferença. A relação entre as dimensões dos modelos e dos grãos nos ensaios foi superior a 30. KIMURA *et al.* (1985) e OVESEN (1975) apresentam conclusões semelhantes. A questão da influência da dimensão dos grãos de solo tem sido um desafio para experimentos de modelos em centrífuga. AIBAN (1991) sugere que talvez este fator não tenha nenhuma influência nas propriedades relacionadas às tensões, mas tenha influência nas propriedades relacionadas à geometria. O autor cita que uma das conseqüências do efeito escala devido à dimensão das partículas de solo está na similaridade das tensões dos modelos em centrífugas quando comparados com os protótipos. Se a deformação característica e a deformação total são relacionadas à dimensão dos grãos, então não poderia se afirmar que há similaridade entre as deformações entre modelos e protótipos. AIBAN (1991) afirma que não há nenhuma evidência de que tal similaridade possa existir para grandes deformações. Todavia, assume-se que tal similaridade existe e que não há nenhuma interferência nos problemas de capacidade de carga.

2.4 Influência da Sucção Matricial em Solos Não-saturados

A sucção matricial é outro fator importante que deve ser considerado nas análises de capacidade de carga em solos não-saturados. O papel relevante da sucção foi demonstrado por FREDLUND & RAHARDJO (1993), utilizando-se a equação de TERZAGHI (1943), com a consideração do acréscimo na coesão (c) devido à sucção matricial (Ψ_m):

$$\mathbf{c} = \mathbf{c}' + \boldsymbol{\psi}_{\mathrm{m}} \operatorname{tg} \boldsymbol{\phi}^{\mathrm{b}} \tag{2.7}$$

em que c' é a coesão efetiva e ϕ^b a taxa de aumento da resistência ao cisalhamento devido à sucção matricial no solo.

Os cálculos efetuados consideram sapatas corridas de 0,5 e 1 m de largura a 0,5 m de profundidade e resultam nos gráficos apresentados na Figura 2.27.

FIGURA 2.27 – Variação da capacidade de carga em função da sucção matricial (FREDLUND & RAHARDJO, 1993)

Experimentalmente foi COSTA (1999) que comprovou que a sucção matricial possui grande influência na capacidade de carga de fundações diretas. Por meio de provas de carga em placa de 0,80 m a 1,5 m de profundidade, o autor constatou que um pequeno aumento na sucção pode causar um substancial crescimento da capacidade de carga, como pode ser observado na Figura 2.28, em que os valores entre parênteses representam a sucção matricial, em kPa. Nesta figura incluiu-se também uma curva carga x recalque de uma prova de carga estática, realizada por MACACARI (2001), em uma placa de 0,80 m, assente a 1,5 m de profundidade e com sucção matricial de 33 kPa.

Figura 2.28 – Curva tensão x recalque para os ensaios inundados da placa de 0,80 m realizadas por COSTA (1999) e MACACARI (2001)

Para analisar o papel simultâneo da profundidade e da sucção matricial na capacidade de carga do sistema placa-solo, CINTRA *et al.* (2005) apresentam os resultados de provas de carga em placa, instalada até 6 m de profundidade, com monitoramento da sucção matricial por meio de tensiômetros, além de ensaios com pré-inundação do solo para reproduzir a condição de sucção matricial praticamente nula.

Os autores ratificam que, para uma mesma profundidade de ensaio, o aumento da sucção matricial implica a majoração da capacidade de carga. Também observaram que a capacidade de carga cresce sensivelmente com o aumento da profundidade, para um mesmo nível de sucção: para a sucção praticamente nula a capacidade de carga quase triplica ao passar de 1,5 m para 6,0 m de profundidade. Já para uma sucção de 16 kPa, por exemplo, a capacidade de carga mais do que duplica com esse mesmo aumento de profundidade. A partir dos valores de capacidade de carga, sucção matricial e profundidade, CINTRA *et al.*, (2005) estabeleceram uma regressão linear múltipla, correlacionando estes valores entre si (z em m):

$$\sigma_r = 2.9 * \psi_m + 22 * z + 29 \text{ (kPa)}$$
 (2.8)

com coeficiente $R^2 = 0.94$.

Ensaios com um penetrômetro manual foram realizados por TSUHA (2003) para quantificação da resistência à penetração do solo. Os ensaios foram realizados no Campo Experimental de Fundações da USP / São Carlos em cavas onde posteriormente se realizaram provas de carga estática em placas. Foi utilizado um penetrômetro com anel dinamométrico (Solotest – ref. 1.210.001), com capacidade para medir tensões de até 1550 kPa.

A Tabela 2.8 apresenta os valores médios de resistência na tensão de ruptura (TSUHA, 2003).

Ensaio	Sucção matricial média (kPa)	Tensão de ruptura (kPa)
I-20	0	461
N1-20	15	953
N2-20	18	869
I-40	0	489
N1-40	13	851
N2-40	12	832
I-150	0	462
N1-150	21	966

Tabela 2.8 – Valores da tensão de ruptura média nas oito cavas ensaiadas

Os valores da tensão de ruptura (q_p) obtidos com o penetrômetro portátil foram relacionados com os respectivos valores de sucção matricial (ψ_m), obtendo-se assim o gráfico da Figura 2.29.

Figura 2.29 – Variação da tensão de ruptura com a sucção matricial (TSUHA, 2003)

Pelos pontos apresentados na Figura 2.29, obtém-se por regressão linear, a Equação 2.9:

$$q_p = 25\Psi + 487$$
 (kPa) (2.9)

com coeficiente $R^2 = 0.944$.

A equação (2.9) pode ser utilizada para estimar a sucção matricial no Campo Experimental de Fundações da USP de São Carlos, na profundidade de 1,50 m, quando se realizar o ensaio de penetração sem a correspondente monitoração da sucção. Ou, ao contrário, estimar a tensão de ruptura do ensaio penetrométrico a partir da sucção matricial indicada pelo tensiômetro.

3 CAMPO EXPERIMENTAL DE FUNDAÇÕES

Parte da pesquisa, relativa às provas de carga estática, foi desenvolvida no Campo Experimental de Fundações do Departamento de Geotecnia da Escola de Engenharia de São Carlos. Esse campo, implantado em 1988, está situado no extremo sul do campus da USP/São Carlos, em uma área cujo perfil geológico-geotécnico pode ser considerado representativo da região centro-oeste do Estado de São Paulo (CINTRA *et al.*, 1991).

A cidade de São Carlos tem sua posição geográfica dada pela coordenadas 22°01'22" de latitude sul e 47°53'38" de latitude oeste e está situada a cerca de 800 m de altitude em relação ao nível do mar, com relevo de altitudes variando entre 750 e 950 m.

3.1 Aspectos Geológicos

A cidade de São Carlos está assentada sobre as rochas do grupo São Bento, compostas pelos arenitos da Formação Botucatu e Pirambóia e pelos migmatitos da Formação Serra Geral. Sobre estas rochas encontram-se os conglomerados e arenitos do Grupo Bauru, que é representado na região por arenitos de granulação média a conclomeráticos, com grãos angulosos, seleção pobre, ricos em feldspatos, minerais pesados e instáveis (BORTOLUCCI, 1983). Devido à ação do intemperismo e da erosão, com posterior retrabalhamento dos materiais do Grupo Bauru e das Formações Serra Geral e Botucatu, originaram-se depósitos aluviais e coluviais, geologicamente denominados Sedimento Cenozóico. Possuindo grande extensão lateral, recobre quase toda a região centro-oeste do Estado (Figura 3.1).

Figura 3.1 – Seção Distribuição dos depósitos de cobertura cenozóica do interior do Estado de São Paulo (FÚLFARO & BJONBERG, 1993)

De acordo com BORTOLUCCI (1983), estes sedimentos foram submetidos à ação de intemperismo sob condições climáticas típicas de região tropical, com elevadas temperaturas e intensa precipitação pluviométrica. Deste modo, esse material apresenta a característica de ser pouco compacto, muito poroso e colapsível.

A espessura da camada de solo superficial de Sedimento Cenozóico na região urbana varia entre 5,0 e 7,0 m predominantemente, podendo ultrapassar estes valores em alguns pontos, porém não excede 12,0 m. O contato inferior com o solo residual do Grupo Bauru é feito através de uma fina camada de seixos de quartzo e limonita.

A Figura 3.2 apresenta um perfil típico da geologia de pequena superfície na área urbana da cidade de São Carlos, com descrição táctil-visual das litologias predominantes e mostra ainda a localização do campus da USP.

Figura 3.2 – Seção esquemática da geologia de pequena profundidade em São Carlos (BORTOLUCCI, 1983)

3.2 Caracterização Geotécnica

3.2.1 Ensaios In Situ

O Campo Experimental foi caracterizado geotecnicamente através de diversos ensaios de campo. Foram realizadas 15 sondagens de simples reconhecimento (SPT) divididas em três campanhas de cinco furos e dez ensaios de penetração estática (CPT), sendo duas campanhas com cinco furos cada uma. Na primeira campanha dos ensaios de CPT foi utilizado cone mecânico, enquanto que na segunda foi utilizado um cone elétrico com medida de pressão neutra. A locação destes ensaios pode ser vista na Figura 3.3.

Figura 3.3 – Locação dos ensaios de campo (SPT e CPT) realizados no Campo Experimental de Fundações

O perfil típico é composto por uma camada superficial colapsível (Sedimento Cenozóico) de areia argilosa marrom e fofa, laterizada e porosa que atinge aproximadamente 6,4 m de profundidade. Na profundidade de aproximadamente 6,0 m, uma fina camada (0,1 a 0,5 m) de seixos de quartzo e limonita separa a camada superficial de uma camada de solo residual constituída por areia argilosa vermelha, pouco a medianamente compacta, que atinge cerca de 24,0 m de profundidade (Solo Residual do Grupo Bauru). A última camada é composta por um silte argiloso, variegado, compacto a muito compacto (Formação Serra Geral – Grupo São Bento). O nível do lençol freático varia de 7,0 a 10,0 m de profundidade, dependendo da época do ano. A Figura 3.4 mostra o perfil estratigráfico do maciço de solo, baseado nas sondagens à percussão da terceira campanha.

Figura 3.4 – Perfil estratigráfico associado às sondagens à percussão (modificado de SANTOS, 2001)

Os valores mínimos, médio e máximos dos resultados dos ensaios penetrométricos de SPT e CPTu ao longo do perfil de solo podem ser vistos na Figura 3.5.

Figura 3.5 – Resultados de ensaios penetrométricos de SPT e CPTu (MENEGOTTO, 2004)

3.2.2 Ensaios laboratoriais

Ensaios de laboratório foram realizados por MACHADO (1998), utilizando amostras indeformadas retiradas através de um poço de 1,2 m de diâmetro, a cada metro até 10,0 m de profundidade. Foram realizados ensaios de caracterização, compressão confinada convencional saturada e com controle de sucção para todas as amostras. Curvas de retenção de umidade do solo e ensaios triaxiais convencionais saturados e com sucção controlada também foram realizados para as amostras coletadas a 2,0 m, 5,0 m e 8,0 m.

Os valores de umidade e peso específico seco ao longo do perfil de coleta do solo são apresentados na Tabela 3.1. O valor do peso específico seco representa a média dos valores calculados a partir dos corpos de prova empregados nos ensaios de compressão confinada e triaxiais.

Profundidade	1,0 m	2,0 m	3,0 m	4,0 m	5,0 m	6,0 m	7,0 m	8,0 m	9,0 m
W (%)	13,7	14,6	15,8	16,8	16,4	17,2	19,1	16,7	18,3
$\gamma_{\rm d} ({\rm kN/m^3})$	12,5	13,6	13,8	14,3	14,4	14,7	15,2	16,1	16,6
γ (kN/m ³)	14,2	15,6	16,0	16,7	14,8	17,1	18,1	18,8	19,6
e	1,17	0,99	0,96	0,90	0,88	0,84	0,78	0,68	0,63

Tabela 3.1 – Valores de peso específico seco e umidade obtidos ao longo do perfil de coleta de blocos indeformados (MACHADO, 1998)

Os resultados dos ensaios de caracterização para as profundidades de 3,0 m, 5,0 m e 8,0 m são apresentados na Tabela 3.2. Os valores de $\gamma_{d máx}$ e w_{ot} foram obtidos em ensaios de compactação utilizando-se a energia do Proctor Normal. A variação dos índices físicos até a profundidade de 9,0 m também pode ser vista na Figura 3.6.

Figura 3.6 – Variação de índices físicos e de limites de consistência com a profundidade (COSTA, 1999)

Prof. (m)	$\gamma_{\rm d\ m\acute{a}x}\ ({\rm kN/m^3})$	w _{ot} (%)	w _L (%)	wp (%)	$\gamma_{\rm s} ({\rm kN/m^3})$
3,0	18,7	14,0	27,9	16,0	27,1
5,0	18,4	14,8	30,9	19,8	27,5
8,0	18,9	11,2	28,4	17,2	27,1

Tabela 3.2 – Resultados dos ensaios de caracterização e compactação (MACHADO, 1998)

As curvas granulométricas obtidas para as profundidades de 3,0 m, 5,0 m e 8,0 m são apresentadas na Figura 3.7 enquanto que as frações granulométricas constituintes de cada profundidade podem ser vistas na Tabela 3.3.

Figura 3.7 – Curvas granulométricas obtida para as profundidades de 3,0 m, 5,0 m e 8,0 m, em relação à superfície do terreno (MACHADO, 1998)

Tabela 3.3 - Frações granulométricas constituintes do solo (MACHADO,

Profundidade (m)	Areia (%)	Silte (%)	Argila (%)
3,0	60,8	11,9	27,3
5,0	66,7	5,90	27,4
8,0	68,9	13,7	17,4

As Figuras 3.8 a 3.9 apresentam as curvas características de sucção obtidas para as profundidades de 2,0 m, 5,0 m e 8,0 m, juntamente com o ajuste para cada curva utilizando a equação proposta por FREDLUND & XING (1994). Pode-se observar nestas figuras que os valores de entrada de ar em todas as profundidades ensaiadas são muito baixos, praticamente nulos. Isto ocorre porque o solo ensaiado apresenta estrutura com macro poros de grande diâmetro, visíveis a olho nu (MACHADO, 1998).

Figura 3.8 – Curva característica de sucção do solo para a profundidade de 2,0 m (MACHADO, 1998)

Figura 3.9 – Curva característica de sucção do solo para a profundidade de

5,0 m (MACHADO, 1998)

Figura 3.10 – Curva característica de sucção do solo para a profundidade de 8,0 m (MACHADO, 1998)

3.3 Provas de Carga em Placa

Foram realizadas nove provas de carga estática em placas circulares de 0,20 e 0,40 m e em uma sapata de 1,50 m de diâmetro, assentes no terreno a 1,50 m de profundidade. Os ensaios foram executados em nove cavas abertas no Campo Experimental de Fundações, locadas de acordo com a Figura 3.11, com diâmetros de 0,50 m, 0,60 m e 1,70 m respectivamente a cada dimensão das placas.

Figura 3.11 - Locação das cavas no Campo Experimental de Fundações

Em três dos nove ensaios o terreno foi pré-inundado por no mínimo 48 horas mantendo-se sempre uma lâmina de pelo menos 5 cm no fundo da cava. Para os outros seis ensaios, realizados sem inundação do terreno, instalaram-se tensiômetros no fundo da cava para obtenção da sucção média sob a placa.

As provas de carga estática à compressão vertical foram executadas de acordo com a NBR 12131/91. Os ensaios foram realizados com carregamento do tipo rápido (QML), com estágios de 15 minutos de duração e leituras de recalque nos tempos de 0, 1, 2, 3, 6, 9, 12 e 15 min em cada estágio. Antes do descarregamento, deixou-se de repor a carga até a estabilização.

A Tabela 3.4 apresenta algumas características das provas de carga.

Ensaio	Denominação	Diâmetro (m)	Inundação	Data
01	N1-40	0,40	Não	13/05/02
02	N1-20	0,20	Não	22/05/02
03	S-20	0,20	Sim	27/05/02
04	N2-40	0,40	Não	11/06/02
05	N2-20	0,20	Não	18/06/02
06	S-40	0,40	Sim	25/06/02
07	N1-150	1,50	Não	02/07/02
08	N2-150	1,50	Não	30/07/02
09	S-150	1,50	Sim	06/08/02

Tabela 3.4 - Características das Provas de Carga

3.3.1 Equipamentos e Materiais

Placas

Utilizaram-se placas circulares confeccionadas em aço para os diâmetros de 0,20 m e 0,40 m. Para a realização dos ensaios com a placa de 0,20m fixou-se esta à placa de 0,40 m através de uma rosca, para que então a torre, com diâmetro de 0,25 m, pudesse ser apoiada sobre a placa maior. Para realização dos ensaios com a placa de 0,40 m, retirava-se a placa de menor diâmetro e fechava-se o furo com uma rosca de tamanho igual ao da espessura da placa.

Figura 3.12 – Placa metálica de 0,20 m de diâmetro

Figura 3.13 - Placa metálica de 0,40 m de diâmetro

Já a sapata de diâmetro de 1,50 m foi projetada em concreto armado, fck = 25 kPa e tem a forma da base de um tubulão de modo a evitar o momento negativo na base durante a aplicação da carga (Figura 3.14).

Figura 3.14 – Sapata de concreto armado de 1,50 m de diâmetro

Macaco hidráulico e bomba

Para execução das provas de carga utilizaram-se dois macacos hidráulicos sendo um com capacidade de 50 kN para as placas de 0,20 m e 0,40 m e outro com capacidade de 250 kN para a placa de 1,50 m. Os macacos foram acionados através de uma bomba elétrica.

Célula de carga

As células de carga utilizadas possuem capacidade de carga de 50 kN, 100 kN e 2000 kN e foram devidamente calibradas em laboratório antes de serem utilizadas e as curvas de calibração encontram-se no Anexo 1.

Indicador de deformações

Para as leituras das deformações específicas dos *strain gages* instalados na célula de carga, utilizou-se um indicador de deformações da marca *Transdutec*, modelo T832, com resolução de 1 *mstrain* e capacidade de leitura de \pm 50000 *mstrains*.

Extensômetros

As leituras de recalque foram realizadas utilizando-se quatro extensômetros mecânicos da marca *Mitutoyo*, com resolução de 0,01 mm e curso total de 50 mm. Os extensômetros foram instalados diametralmente opostos com o auxílio de bases magnéticas articuláveis apoiadas nas guias de referência. Cada extensômetro era apoiado em pequenas placas de azulejo encaixadas nas hastes móveis da torre de transferência de carga. A medida do recalque é dada pela média aritmética das leituras dos extensômetros.

Guias de referência

Duas vigas de aço com perfil U e com 3,30 m de comprimento foram utilizadas como guias de referência para a medição dos recalques, nas quais as bases magnéticas eram fixadas. As guias foram fixadas através de pontaletes de ferro cravados no solo e parafusados às vigas sem que estas se encostassem ao solo para que não houvesse interferência nos resultados.

Torre de transferência de carga

Como meio de transferência da carga aplicada pelo macaco hidráulico até a placa, utilizou-se uma torre de aço, com 1,53 m de comprimento, 170 mm de diâmetro externo, parede de 10 mm de espessura, massa equivalente a 80 kg e tensão admissível à compressão de aproximadamente 100 MPa. Para melhor distribuição da carga, soldaram-se discos circulares de 25 mm de espessura e 0,30 m de diâmetro nas extremidades do cilindro central. Para apoio dos extensômetros, soldaram-se à torre oito alças de comprimento ajustável, sendo quatro em cada extremidade para que quatro tubos metálicos passando por dentro destas interligassem a placa e os extensômetros (Figura 3.15). Os tubos permanecem livres dentro das alças para acompanhar o recalque da placa. A regulagem do comprimento das hastes permite que, de acordo com o diâmetro da placa, possam-se posicionar os extensômetros próximos à borda das placas independentemente da dimensão das mesmas.

Figura 3.15 – Torre de transferência de carga

Rótula

Com o objetivo de anular qualquer excentricidade do mecanismo de aplicação de carga, utilizou-se uma rótula inserida entre a célula de carga e a viga de reação.

Barraca de proteção

Após a montagem dos ensaios, protegeu-se o local com uma barraca de lona de 6,60 m x 4,40 montada sobre pilaretes metálicos. A Figura 3.16 mostra a barraca utilizada.

Figura 3.16 - Barraca de proteção

3.3.2 Sistema de Reação

O sistema de reação utilizado constitui-se de uma viga metálica, a qual transfere a carga aplicada pelo macaco a uma composição de barras do tipo *Dywidag* (aço para protenção ST 85/105) de 32 mm de espessura. As barras transmitem carga às estacas de reação tipo trilho TR-68, com 27 m de comprimento e carga admissível à tração de 550 kN.

Utilizaram-se duas vigas de reação escolhidas de acordo com a disposição das cavas em relação às estacas de reação. A primeira viga (Figura 3.17a) tem seção transversal tipo *I* com 300 x 650 mm, comprimento de 3,30 m, capacidade de suporte de 800 kN e peso total de 800 kN. A segunda viga (Figura 3.17b) é composta por quatro perfis tipo *I* metálicos. Os perfis centrais são ligados aos laterais por meio de parafusos e quatro barras ligam o centro destes perfis às extremidades dos perfis laterais para conferir maior rigidez ao conjunto. A viga tem um comprimento total de 4,0 m, capacidade de suporte de 2000 kg.

Figura 3.17 – Esquema dos sistemas de reação, vistos em corte transversal

Figura 3.18 – Esquema geral das provas de carga

3.3.3 Pressão de Sucção

Para determinação da sucção matricial média do solo abaixo da cota de assentamento da placa, foram instalados quatro tensiômetros nas cotas 0,1 m,

0,3 m, 0,5 m e 0,7 m para as placas de 0,20 m e 0,40 m e nas cotas 0,1 m e 0,3 m, 0,6 m e 0,9 m para a sapata de 1,50.

Os tensiômetros utilizados são da marca Soil Moisture, tipo *"Jet Fill"*, providos de um reservatório no topo para facilitar a complementação do nível d'água do tubo e a retirada de bolhas. Também são munidos de medidores de pressão negativa da água do tipo vacuômetro Bourdon. Apresentam diâmetro externo de aproximadamente 20 mm e sua cápsula porosa possui uma permeabilidade de 10⁻⁵ cm/s.

Os tensiômetros foram instalados no mínimo 48 h antes do início de cada prova de carga para que a medida da pressão negativa já estivesse estabilizada antes do início do ensaio. A instalação era procedida mediante a utilização de um trado com diâmetro ligeiramente inferior ao tubo. Nos últimos centímetros a cravação era conduzida por prensagem, visando à garantia do contato do elemento poroso com o solo. A Figura 3.19 mostra a instalação dos tensiômetros.

Figura 3.19 - Instalação dos tensiômetros

4 CENTRÍFUGA

Os ensaios em modelos centrifugados foram realizados na Universidade do Colorado em Boulder, EUA, sem a pretensão de simular os ensaios realizados no Campo Experimental de Fundações da USP/São Carlos.

A centrífuga utilizada possui 1,36 m de raio (distância entre o centro da centrífuga à base da *swinging basket*) e a largura da *swinging basket* é de 0,45 m. A centrífuga é equipada com três linhas hidráulicas conectadas a uma junta giratória e pode alcançar até 200 g. Duas das linhas têm capacidade para uma tensão de 21 MPa enquanto que a terceira é uma linha de drenagem e tem capacidade de tensão mais baixa. As Figuras 4.1 a 4.4 mostram alguns detalhes da centrífuga.

Figura 4.1 – Vista geral da centrífuga da Universidade do Colorado em Boulder, EUA

Figura 4.2 – Vista interna da centrífuga da Universidade do Colorado em Boulder, EUA

Figura 4.3 – Swinging basket

Figura 4.4 – Detalhe da junta giratória com as linhas de transmissão

4.1 Maciço de solo

O maciço de areia foi constituído pela técnica da chuva de areia, utilizando uma areia pura seca (F-75 Otawa Sand), controlando-se a compacidade em torno de 90%. Essa areia tem as seguintes características principais: coeficiente de uniformidade de 1,7, peso específico dos sólidos 26,5 kN/m³, diâmetro médio dos grãos de 0,18mm e índice de vazios máximo e mínimo de 0,805 e 0,486, respectivamente. O ângulo de atrito interno é de 42° e o ângulo de dilatação varia entre 16° e 19°. A Figura 4.5 apresenta a curva granulométrica para esta areia.

Figura 4.5 – Curva granulométrica para a F-75 Otawa Sand

4.2 Equipamentos e Materiais Utilizados

Caixa de ensaio

Foi utilizada uma caixa de alumínio com medidas de 43,0 cm de largura, 40,5 cm de comprimento e 28,0 cm de altura (Figura 4.6). O peso da caixa é de 28,6 kg. O maciço de areia atingiu a altura de 20 cm neste caixa.

Figura 4.6 – Caixa de ensaio

Chuva de Areia

A areia foi "pluviada" seguindo o procedimento utilizado por BATISTE (1998), utilizando-se um jogo de cinco peneiras sendo duas #10, duas #4 e uma #30. As malhas foram dispostas formando um ângulo de 45° uma em relação à outra. O jogo de peneiras foi colocado sobre uma bandeja com malha equivalente a peneira #10. Todo o conjunto foi disposto a 75 cm de altura em relação ao fundo da caixa de ensaio, sendo suspenso através de cabos presos a uma roldana móvel. As Figuras 4.7 e 4.8 apresentam o aparato utilizado para a chuva de areia.

Figura 4.7 – Esquema do aparato utilizado para a chuva de areia

Figura 4.8 – Aparato utilizado para a chuva de areia

O conjunto de bandejas foi movimentado manualmente de forma a distribuir a areia em finas camadas por toda a área da caixa. Para melhor uniformidade do maciço seguiram-se as recomendações de FRETTI *et al.* (1995) alternando-se o sentido do movimento do conjunto: para frente e para trás ou para a esquerda e para direita, cada vez que se completava uma camada. A Figura 4.9 mostra o esquema de distribuição da areia dentro da caixa para cada camada.

Camada anterior Camada seguinte

Figura 4.9 – Distribuição da areia durante a pluviação

A distribuição da areia na caixa foi feita em quatro camadas de 5 cm cada uma. A cada camada foi feita a verificação da compacidade relativa e ajuste da altura de queda em 5 cm.

Compacidade Relativa

A compacidade relativa (D_r) utilizada para os ensaios foi em torno de 90%. O valor de D_r foi determinado através das E quações 4.1 e 4.2:

$$e = \frac{\gamma_s}{\gamma_d} - 1 \dots (4.2)$$

Placas

Foram utilizadas duas placas metálicas circulares com diâmetros de 0,05 m e 0,10 m. Para a placa de 0,03 m, utilizou-se a haste de ligação entre as placas e o sistema de reação (Figura 4.10).

Figura 4.10 - Haste utilizada como placa de 0,03 m e placas de 0,05 e 0,10 m

Sistema de Aplicação de Carga

Para aplicação da carga, utilizou-se um cilindro de ar com pistão de 5 cm de comprimento. A capacidade máxima de pressão de ar fornecida pela linha de transmissão do laboratório é de 700 kPa. O cilindro possui duas entradas de ar, uma no topo e outra na base (Figura 4.11).

Figura 4.11 - Cilindro de aplicação de carga

A entrada no topo foi utilizada para aplicação da carga de compressão, enquanto que a entrada na base foi utilizada para aplicação de uma carga, constante durante todo o ensaio (cerca de 50 kPa), no sentido contrário para garantir que as placas não se encostassem ao maciço de solo até que se atingisse o nível de gravidade desejado na centrífuga. A carga medida pela célula de carga é equivalente à diferença entra as duas cargas aplicadas. O controle de aplicação de carga foi feito através de pressurização com dois manômetros, sendo um para cada entrada de ar (Figura 4.12).

Figura 4.12 – Sistema de pressurização de ar

Célula de Carga

Foi utilizada uma célula de carga (marca Entran) com capacidade de 15 kN devidamente calibrada antes de ser utilizada. A curva de calibração encontra-se no Anexo 1.

LVDT

Para leitura dos recalques foi utilizado um LVDT Schaevitz 3002 XSD do tipo AC cuja curva de calibração encontra-se no Anexo 1. O corpo do LVDT foi fixado na *swinging basket* enquanto que a antena foi fixada na guia de referência para garantir que durante o ensaio a mesma permanecesse sobre a guia, que por sua vez foi fixada à haste de ligação entra as placas e o sistema de reação (Figura 4.13).

Figura 4.13 – Esquema de fixação do LVDT

Sistema de Aquisição de Dados

O sistema de aquisição dos dados foi feito com equipamento *National Instrument PXE* acoplado ao braço da centrífuga com transmissão de dados via *wireless* a um computador. Para visualização dos dados utilizou-se o programa *National Instrument LabView7.0.* Com este sistema pode-se monitorar a variação do recalque com o tempo, a variação da carga com o tempo e também a variação da carga com os recalques.

4.2.1 Sistema de Reação

O sistema de reação foi constituído por uma viga de alumínio composta por quatro barras, sendo duas com 45,5 cm de comprimento e 5,0 cm de altura, e duas com 13,5 m de comprimento por 9,0 cm de altura. Uma placa quadrada com 15 cm de lado e três furos centrais (um para o pistão e dois para os parafusos de fixação) para colocação do cilindro de ar, foi fixada no centro da viga para que fosse possível o posicionamento do sistema de aplicação de carga. Todas as barras e a placa têm 1,0 cm de espessura. A Figura 4.14 mostra um esquema da viga de alumínio.

Figura 4.14 – Esquema da viga de alumínio

A viga de reação foi fixada às paredes laterais da *swingig basket* por meio de dois parafusos em cada lado, fazendo com que as mesmas trabalhassem como estacas de reação. A Figura 4.15 mostra o esquema geral dos ensaios realizados, com a disposição dos equipamentos descritos.

Figura 4.15 – Esquema geral dos ensaios realizados

4.3 Ensaios Realizados

Foram realizados ensaios utilizando a areia em três condições de umidade: seca, inundada e não-inundada.

Ensaios com Areia Seca

Para os ensaios com areia em condição seca, preparou-se o maciço de solo de acordo com o procedimento descrito como chuva de areia. Após a conclusão desta etapa, colocou-se a caixa de ensaio na *swingig basket* e os demais equipamentos utilizados. Aplicou-se então a carga na base do cilindro e após fechamento de toda a centrífuga, iniciou-se a aplicação do nível de gravidade desejado. Após atingir-se o valor de N requerido, iniciou-se a aplicação da carga no topo do cilindro girando-se a válvula do manômetro em um quarto de volta por minuto. A variação da carga e do recalque pode ser observada simultaneamente através do sistema de aquisição de dados. Procedeu-se o ensaio até o limite do pistão do cilindro de ar (5 cm). Para os ensaios com areia seca, foram utilizadas placas de 3 cm, 5 cm e 10 cm e níveis de gravidade N = 1g, 5g, 10g, 15g, 25g, 50g e 100g.

Ensaio com Areia Inundada

Para os ensaio com areia em condição inundada foram necessários alguns ajustes na caixa de ensaio. Primeiramente selaram-se todas as juntas da caixa, utilizando-se silicone, e colocou-se uma pedra porosa no fundo. Fezse um furo na altura equivalente ao meio da camada da pedra porosa, onde foi colocada uma conexão com uma válvula de controle de entrada de água. Nesta conexão foi colocado um tubo flexível (Figura 4.16). Para estes ensaios foi utilizada a placa de 5 cm e níveis de gravidade N = 1g, 5g, 10g, 15g, 25g, 50g e 100g.

Figura 4.16 – Detalhe da conexão na caixa de ensaio (a) e da pedra porosa (b)

Um balde com água foi colocado numa altura de 70 cm e através do tubo, fez-se primeiramente a saturação da pedra porosa (Figura 4.17). Fechou-se a válvula de entrada de água e sobre a pedra porosa foi colocado um papel filtro. Utilizou-se a chuva de areia para constituição do maciço até a altura de 20 cm e então abriu-se a válvula para inundação do mesmo. A inundação foi feita até aproximadamente 1 cm acima do topo da amostra para garantir que não houvesse sucção durante o ensaio. Terminada a inundação procedeu-se o ensaio da mesma maneira descrita para o ensaio em condição seca.

Figura 4.17 – Esquema de inundação

Ensaio em Condições Não-inundada

Para os ensaios em condições não-inundada, ou seja, com presença de sucção matricial, utilizou-se o mesmo processo para preparação do maciço e inundação descrito acima. Após a colocação da caixa de ensaio na centrífuga, procedeu-se o rebaixamento do nível d'água para obter-se a sucção do solo. Primeiramente escoou-se a água até que a mesma atingisse a superfície do maciço, marcou-se esta altura da coluna de água no tubo flexível e fechou-se a válvula em seguida.

Para garantir a mesma sucção em todos os ensaios, no caso 8 kPa, o nível d'água variou de acordo com o nível de gravidade do ensaio (Tabela 4.1).

N (g)	N.A. (mm)		
100	8		
50	16		
25	32		
15	53		
10	80		
5	160		

Tabela 4.1 – Variação do nível d'água, em relação ao topo do maciço, de acordo com o nível de gravidade

A partir da marca referente ao nível d'água no topo do maciço, marcou-se no tubo a altura desejada. Cortou-se o tubo nesta altura e abriu-se a válvula permitindo que a água escorresse. Esperou-se até que não houvesse mais escoamento de água pelo tubo. O nível d'água no maciço deve corresponder ao nível d'água no tubo (Figura 4.18). Procedeu-se ao ensaio como descrito anteriormente.

Figura 4.18 - Detalhe do tubo para rebaixamento do N.A.

Para estes ensaios foi utilizada a placa de 5 cm e níveis de gravidade N igual a 5g, 10g, 15g, 25g, 50g e 100g. Devido à limitação da altura da amostra, para a realização de ensaios com diâmetros de protótipo menores foi necessária a utilização de um cilindro de diâmetro de 1 mm acoplado à haste de ligação (Figura 4.19) ensaiado a 5 g e com N.A. = 160 mm, simulando um protótipo de D = 0,05 m e também a placa de 3 cm ensaiada a 5g e N.A. = 160 mm, simulando um protótipo de D = 0,15 m.

Figura 4.19 - Cilindro de 10 mm acoplado à haste de ligação

5 **RESULTADOS OBTIDOS**

Neste capítulo apresentam-se os resultados obtidos nas provas de carga realizadas tanto no Campo Experimental como na centrífuga.

5.1 Curvas Tensão x Recalque Obtidas no Campo Experimental

Nas Figuras 5.1 a 5.3 estão apresentadas as curvas tensão x recalque obtidas nas provas de carga realizadas no Campo Experimental, agrupadas de acordo com o diâmetro da placa ou sapata. Os valores entre parênteses referem-se à sucção matricial média, em kPa, dada pela leitura de quatro tensiômetros.

Figura 5.1 – Curvas tensão x recalque dos ensaios para a placa de 0,20 m

Figura 5.2 – Curvas tensão x recalque dos ensaios para a placa de 0,40 m

Figura 5.3 – Curvas tensão x recalque dos ensaios para a sapata de 1,50 m

5.2 Curvas Tensão x Recalque Obtidas na Centrífuga

Os resultados dos ensaios realizados na centrífuga foram agrupados de acordo com a dimensão da placa ensaiada e do tipo de ensaio.

5.2.1 Areia na condição seca

Foram realizados ensaios utilizando-se três placas com dimensões de 30 mm, 50 mm e 10 cm. As curvas tensão x recalque para cada ensaio e as curvas adimensionalisadas na forma tensão x ρ/D são apresentadas na seqüência. O diâmetro do protótipo (D) corresponde ao diâmetro da placa ensaiada multiplicado pelo nível de gravidade em cada ensaio (N).

a) Placa de 30 mm

Figura 5.4 - Curva tensão x recalque para a placa de 30 mm ensaiada a 1g

Figura 5.5 - Curva tensão x recalque para a placa de 30 mm ensaiada a 5g

Figura 5.6 - Curva tensão x recalque para a placa de 30 mm ensaiada a 10g

Figura 5.7 - Curva tensão x recalque para a placa de 30 mm ensaiada a 15g

Figura 5.8 - Curva tensão x recalque para a placa de 30 mm ensaiada a 25g

Figura 5.9 - Curva tensão x recalque para a placa de 30 mm ensaiada a 50g

Figura 5.10 - Curva tensão x recalque para a placa de 30 mm ensaiada a 100g

A Figura 5.11 apresenta todas as curvas dos ensaios com a placa de 30 mm com o eixo dos recalques adimensionalisado na forma ρ/D . Os valores na legenda correspondem ao nível de gravidade em cada ensaio.

Figura 5.11 – Curvas tensão x ρ/D para os ensaios com a placa de 30 mm

b) Placa de 50 mm

Figura 5.12 - Curva tensão x recalque para a placa de 50 mm ensaiada a 1g

Figura 5.13 - Curva tensão x recalque para a placa de 50 mm ensaiada a 5g

Figura 5.14 - Curva tensão x recalque para a placa de 50 mm ensaiada a

10g

Figura 5.15 - Curva tensão x recalque para a placa de 50 mm ensaiada a

15g

Figura 5.16 - Curva tensão x recalque para a placa de 50 mm ensaiada a

Figura 5.17 - Curva tensão x recalque para a placa de 50 mm ensaiada a

50g

Figura 5.18 - Curva tensão x recalque para a placa de 50 mm ensaiada a

A Figura 5.19 apresenta todas as curvas dos ensaios com a placa de 50 mm com o eixo dos recalques adimensionalisado na forma ρ/D . Os valores na legenda correspondem ao nível de gravidade em cada ensaio.

Figura 5.19 – Curvas tensão x ρ/D para os ensaios com a placa de 50 mm

Placa de 10 cm

Figura 5.20 - Curva tensão x recalque para a placa de 10 cm ensaiada a 1g

Figura 5.21 - Curva tensão x recalque para a placa de 10 cm ensaiada a 5g

Figura 5.22 - Curva tensão x recalque para a placa de 10 cm ensaiada a 10g

A Figura 5.23 apresenta todas as curvas dos ensaios com a placa de 10 cm com o eixo dos recalques adimensionalisado na forma ρ/D . Os valores na legenda correspondem ao nível de gravidade em cada ensaio.

Figura 5.23 – Curvas tensão x ρ/D para os ensaios com a placa de 10 cm

No caso da placa de 10 cm não foi possível a realização dos ensaios em níveis mais elevados de gravidade devido a limitações do equipamento utilizado.

5.2.2 Areia na condição inundada

Foram realizados ensaios utilizando-se a placa diâmetro de 50 mm. As curvas tensão x recalque para cada ensaio e as curvas adimensionalisadas na forma tensão x ρ/D são apresentadas na seqüência. O diâmetro do protótipo (D) corresponde ao diâmetro da placa ensaiada multiplicado pelo nível de gravidade em cada ensaio (N).

Figura 5.24 - Curva tensão x recalque para a placa de 50 mm no ensaio inundado a 1g

Figura 5.25 - Curva tensão x recalque para a placa de 50 mm no ensaio inundado a 5g

Figura 5.26 - Curva tensão x recalque para a placa de 50 mm no ensaio inundado a 10g

Figura 5.27 - Curva tensão x recalque para a placa de 50 mm no ensaio inundado a 15g

Figura 5.29 - Curva tensão x recalque para a placa de 50 mm no ensaio inundado a 50g

Figura 5.30 - Curva tensão x recalque para a placa de 50 mm no ensaio inundado a 100g

A Figura 5.31 apresenta todas as curvas dos ensaios inundados com o eixo dos recalques adimensionalisado na forma ρ/D . Os valores na legenda correspondem ao nível de gravidade em cada ensaio.

Figura 5.31 – Curvas tensão x ρ/D para os ensaios inundados (placa de 50

5.2.3 Areia na condição não-inundada

Foram realizados ensaios utilizando-se placas diâmetro de 10 mm, 30 mm e 50 mm. As curvas tensão x recalque para cada ensaio e as curvas adimensionalisadas na forma tensão x ρ/D são apresentadas na seqüência. O diâmetro do protótipo (D) corresponde ao diâmetro da placa ensaiada multiplicado pelo nível de gravidade em cada ensaio (N).

Todos os ensaios foram realizados com a mesma sucção matricial ($\Psi_m = 8 \text{ kPa}$). As Figuras 5.32 a 5.39 apresentam estes resultados.

Figura 5.32 - Curva tensão x recalque para a placa de 10 mm no ensaio não-inundado a 5g

Figura 5.33 - Curva tensão x recalque para a placa de 30 mm no ensaio não-inundado a 5g

Figura 5.34 - Curva tensão x recalque para a placa de 50 mm no ensaio não-inundado a 5g

Figura 5.35 - Curva tensão x recalque para a placa de 50 mm no ensaio não-inundado a 10g

Figura 5.36 - Curva tensão x recalque para a placa de 50 mm no ensaio não-inundado a 15g

Figura 5.37 - Curva tensão x recalque para a placa de 50 mm no ensaio não-inundado a 25g

Figura 5.38 - Curva tensão x recalque para a placa de 50 mm no ensaio não-inundado a 50g

Figura 5.39 - Curva tensão x recalque para a placa de 50 mm no ensaio não-inundado a 100g

A Figura 5.40 apresenta todas as curvas dos ensaios não-inundados com o eixo dos recalques adimensionalisado na forma ρ/D . Os valores na legenda correspondem ao nível de gravidade em cada ensaio.

5.2.4 Ensaios com variação do nível d'água

Para verificação da influência da sucção matricial na capacidade de carga de placas foram realizados ensaios com diâmetro do protótipo constante, utilizando-se a placa de 50 mm e nível de gravidade g = 10, variando-se o nível d'água para simular diferentes pressões de sucção. As Figuras 5.41 a 5.44 apresentam estes resultados.

Figura 5.41 - Curva tensão x recalque para D = 0,50 m e nível d'água a 20 mm do topo da amostra

Figura 5.42 - Curva tensão x recalque para D = 0,50 m e nível d'água a 40 mm do topo da amostra

Figura 5.43 - Curva tensão x recalque para D = 0,50 m e nível d'água a 80 mm do topo da amostra

Figura 5.44 - Curva tensão x recalque para D = 0,50 m e nível d'água a 100 mm do topo da amostra

A Figura 5.45 apresenta as curvas tensão x ρ/D para estes ensaios, juntamente com a curva tensão x ρ/D do ensaio inundado a 10 g, apresentada na Figura 5.26. Os valores na legenda correspondem ao nível d'água, medido a partir do topo do modelo, em cada ensaio.

Figura 5.45 – Curvas tensão x ρ/D para os ensaios com variação do nível d'água (placa e 50 mm)

6 ANÁLISE DOS RESULTADOS DO CAMPO EXPERIMENTAL

Na análise dos resultados foram inclusas as provas de carga realizadas por COSTA (1999) e MACACARI (2001) apresentadas no capítulo 2 (Figura 2.28).

6.1 Capacidade de Carga

O trecho final das curvas tensão x recalque das Figuras 5.1 a 5.3 e 2.28 apresentam uma relação praticamente linear entre o recalque e a correspondente tensão aplicada. Em virtude desta forma apresentada pelas curvas, constata-se a inexistência de ruptura física, o que invalida a utilização do critério de VAN DER VEEN (1953). Por isso, é necessária a aplicação de critérios de ruptura convencional para determinação da capacidade de carga do sistema placa-solo. Foram utilizados os seguintes critérios:

> • TERZAGHI (1943): a capacidade de carga do sistema placasolo corresponde ao ponto a partir do qual a curva tensão x recalque passa a exibir um comportamento linear no seu trecho final.

- LEONARDS (1962): a capacidade de carga é intersecção de duas tangentes, uma traçada na parte inicial da curva tensão x recalque e a outra traçada na parte final da curva.
- "Pré-Adensamento": convertendo-se o eixo das tensões para escala logarítmica, observa-se que a curva log tensão x recalque é similar à curva log tensão x índice de vazios dos ensaios de adensamento, de argilas saturadas. Assim, aplicase o método de PACHECO SILVA (1970).
- B/10 (ou 10% B): este critério faz analogia ao critério de TERZAGHI (1942) em que a capacidade de carga é a tensão correspondente a um recalque equivalente a 10% do diâmetro da placa. No caso dos diâmetros maiores (0,80 e 1,50 m) foi necessária uma extrapolação da curva tensão x recalque.
- B/30: este critério faz analogia ao critério de ruptura convencional da NBR 6122/96 para provas de carga em estaca. A capacidade de carga é a tensão correspondente a um recalque igual ao diâmetro da placa dividido por 30.

A Tabela 6.1 apresenta os valores obtidos para cada critério.

	Capacidade de Carga (kPa)						
Ensaio	Terzaghi	Leonards	"Pré-	B/10	B/30		
	(1943)	(1962)	adensamento"				
I-20	25	18	34	39	19		
N1-20	144	94	121	129	91		
N2-20	185	136	160	173	118		
I-40	54	37	48	79	43		
N1-40	144	97	128	172	112		
N2-40	109	80	105	145	94		
I1-80	56	39	52	110	63		
I2-80	68	50	63	97	61		
N1-80	102	78	85	174	100		
N2-80	100	91	100	183	118		
N3-80	144	106	121	257	150		
I-150	54	40	60	102	59		
N1-150	151	108	129	226	133		
N2-150	140	99	126	242	141		

Tabela 6.1 – Valores de capacidade de carga obtidos utilizando-se cinco critérios de ruptura convencional

Para a maioria dos ensaios, o critério B/10 apresenta os maiores valores de capacidade de carga, enquanto que os menores valores são apresentados pelo critério de LEONARDS (1962). Os critérios de LEONARDS (1962), B/30, TERZAGHI (1943) e "Pré-adensamento", apresentam valores, em média, 50%, 40%, 37% e 35% menores que os obtidos pelo critério B/10, respectivamente.

Observa-se também que os critérios B/30, TERZAGHI (1943) e "Pré-adensamento" apresentam a menor variação dos resultados entre si, com coeficiente de variação em torno de 12%, enquanto que os valores obtidos com os métodos B/10 e LEONARDS (1962) apresentam maiores discrepâncias em relação à média dos demais (aproximadamente 30% maior para o primeiro e 18% menor para o segundo).

6.2 Influência da Sucção Matricial

O comportamento do sistema placa-solo ou sapata-solo com a variação da sucção também pode ser analisado a partir dos resultados apresentados nas Figuras 5.1 a 5.3 e 2.28. Observa-se que quanto maior a sucção matricial do solo, maior a capacidade de carga.

Para as duas curvas obtidas em ensaios não inundados, observa-se que o recalque apresentado em cada nível de tensão diminui quando aumenta a sucção medida durante a prova de carga. Em outras palavras, o solo ganha um aumento de rigidez provocado pelo crescimento da sucção. Isto denota a forte influência exercida pela sucção matricial na capacidade de carga, ratificando a conclusão de COSTA *et al.* (2003).

Ainda nas Figuras 5.1 a 5.3 e 2.28, pode-se analisar o comportamento do sistema placa-solo ou ,sapata-solo com a variação da sucção no que diz respeito ao colapso do solo. A condição de sucção nula é crítica em relação à capacidade de carga, conduzindo então a um valor mínimo em comparação aos valores de capacidade de carga obtidos em ensaios não-inundados. A Tabela 6.2 mostra a redução da capacidade de carga para diferentes níveis de sucção medidos quando comparados aos correspondentes ensaios inundados. Para a placa de 0,80 m, utilizou-se como valor de capacidade de carga para os ensaios inundados o valor médio entre os dois ensaios.

Ensaios	Sucção nos ensaios não-	Redução de σ _r (%)					
	inundados	Terzaghi	Leonards	"Pré-	D /10	D /90	
	(kPa)	(1943)	(1962)	adensamento"	D/ 10	Б/ 30	
I-20 e N1-20	15	83	81	72	70	79	
I-20 e N1-20	18	86	87	79	77	84	
I-40 e N1-40	13	63	62	63	54	61	
I-40 e N2-40	12	50	54	54	46	51	
I-80 e N1-80	15	37	42	32	40	38	
I-80 e N2-80	22	49	51	42	43	47	
I-80 e N3-80	33	57	58	52	60	59	
I-150 e N1-150	21	64	63	53	55	56	
I-150 e N1-150	23	61	60	52	58	58	

Tabela 6.2 – Redução da capacidade de carga

Para os ensaios inundados a redução da capacidade de carga é, em média, 60% sendo que o valor mínimo obtido é de 37%. Os ensaios com a placa de menor diâmetro apresentaram os maiores valores de redução devido ao colapso (cerca de 80%).

6.3 Tensão Admissível

Para análise de tensão admissível (σ_{adm}), aplicou-se um fator de segurança FS = 1,5 para os valores de capacidade de carga obtidos por cada critério para os ensaios inundados, como recomendado por CINTRA (2004). Os valores obtidos para tensão admissível podem ser vistos na Tabela 6.3.

Ensaio	Terzaghi (1943)	Leonards (1962)	"Pré- adensamento"	B/10	B/30
I-20	17	12	23	26	13
I-40	36	25	32	53	29
I1-80	37	26	35	73	42
I2-80	45	33	42	65	41
I-150	36	27	40	68	39

Tabela 6.3 - Valores de tensão admissível para os ensaios inundados

Comparando-se estes valores com os respectivos ensaios nãoinundados para cada diâmetro de placa, obtêm-se os fatores de segurança (FS) apresentados nas Tabelas 6.4 a 6.8, para cada método utilizado. Os recalques correspondentes à tensão admissível também são apresentados nestas tabelas. Para a placa de 0,80 m utilizou-se como σ_{adm} , o valor médio entre os ensaios I1-80 e I2-80.

	Sucção nos	σ_r para o	σ_{adm} para o		
Encolor	ensaios não-	ensaio não-	ensaio	FC	ρ
Ensalos	inundados	inundado	inundado	FS	(mm)
	(kPa)	(kPa)	(kPa)		
I-20 e N1-20	15	144	17	9	0,1
I-20 e N1-20	18	185	17	11	0,1
I-40 e N1-40	13	144	36	4	2,3
I-40 e N2-40	12	109	36	3	0,3
I-80 e N1-80	15	102	41	2	4,9
I-80 e N2-80	22	100	41	2	1,8
I-80 e N3-80	33	144	41	4	1,8
I-150 e N1-150	21	151	36	4	4,0
I-150 e N1-150	23	140	36	4	4,0

Tabela 6.4 – Valores de FS calculados para o método de TERZAGHI (1943)

	Sucção nos	σ_r para o	σ_{adm} para o		
Encoinc	ensaios não-	ensaio não-	ensaio	FC	ρ
Elisalos	inundados	inundado	inundado	гэ	(mm)
	(kPa)	(kPa)	(kPa)		
I-20 e N1-20	15	94	12	8	0,1
I-20 e N1-20	18	136	12	11	0,1
I-40 e N1-40	13	97	25	4	1,0
I-40 e N2-40	12	80	25	3	0,2
I-80 e N1-80	15	78	30	3	3,5
I-80 e N2-80	22	91	30	3	1,4
I-80 e N3-80	33	106	30	4	1,4
I-150 e N1-150	21	108	27	4	3,0
I-150 e N1-150	23	99	27	4	3,0

Tabela 6.5 – Valores de FS calculados para o método de LEONARDS (1962)

Tabela 6.6 – Valores de FS calculados para o método do "Pré-adensamento"

	Sucção nos	σ_r para o	σ_{adm} para o		
Encolor	ensaios não-	ensaio não-	ensaio	EC	ρ
Ensalos	inundados	inundado	inundado	r5	(mm)
	(kPa)	(kPa)	(kPa)		
I-20 e N1-20	15	121	23	5	0,2
I-20 e N1-20	18	160	23	7	0,1
I-40 e N1-40	13	128	32	4	1,3
I-40 e N2-40	12	105	32	3	0,2
I-80 e N1-80	15	85	39	2	4,6
I-80 e N2-80	22	100	39	3	1,8
I-80 e N3-80	33	121	39	3	1,8
I-150 e N1-150	21	129	40	3	4,0
I-150 e N1-150	23	126	40	3	4,0
4					

	Sucção nos	σ_r para o	σ_{adm} para o		
Encoioc	ensaios não-	ensaio não-	ensaio	FC	ρ
Elisalos	inundados	inundado	inundado	гэ	(mm)
	(kPa)	(kPa)	(kPa)		
I-20 e N1-20	15	129	26	5	0,2
I-20 e N1-20	18	173	26	7	0,1
I-40 e N1-40	13	172	53	3	3,0
I-40 e N2-40	12	145	53	3	2,0
I-80 e N1-80	15	174	69	3	11,8
I-80 e N2-80	22	183	69	3	3,5
I-80 e N3-80	33	257	69	4	3,5
I-150 e N1-150	21	226	68	3	10,5
I-150 e N1-150	23	242	68	4	8,0

Tabela 6.7 – Valores de FS calculados para o método $B/10\,$

Tabela 6.8 – Valores de FS calculados para o método B/30

	Sucção nos	σ_r para o	σ_{adm} para o		
Encoioc	ensaios não-	ensaio não-	ensaio	FC	ρ
Ensaios	inundados	inundado	inundado	г5	(mm)
	(kPa)	(kPa)	(kPa)		
I-20 e N1-20	15	91	13	7	0,1
I-20 e N1-20	18	118	13	9	0,1
I-40 e N1-40	13	112	29	4	1,5
I-40 e N2-40	12	94	29	3	0,2
I-80 e N1-80	15	100	42	2	5,0
I-80 e N2-80	22	118	42	3	2,0
I-80 e N3-80	33	150	42	4	2,0
I-150 e N1-150	21	133	39	3	4,0
I-150 e N1-150	23	141	39	4	4,0
	1 '	1 '	1	1	

As Tabelas 6.4 a 6.8 mostram em média um fator de segurança FS = 4 e o menor valor obtido foi de FS = 2. Segundo CINTRA (2004), a adoção do valor 1,5 para o fator de segurança ao colapso, juntamente com o fator de segurança 2,0 à ruptura na condição não-inundada, implica que a carga de colapso é condicionante sempre que a redução da capacidade de carga por inundação for superior a 25%.

6.4 Influência da Dimensão na Capacidade de Carga

As Figuras 5.1 a 5.3 e 2.28 mostram que a capacidade de carga varia simultaneamente com a dimensão da sapata ou placa e com a sucção do solo. Apenas para a condição de solo inundado, ou de sucção praticamente nula, pode-se fazer uma análise direta da influência exclusiva da dimensão da sapata ou placa na capacidade de carga. Assim, considerando-se apenas os ensaios inundados, obtém-se a Figura 6.1, que mostra a variação da capacidade de carga com a dimensão da placa ou sapata.

Figura 6.1 - Capacidade de carga x diâmetro da placa ou sapata (ensaios inundados)

Observa-se na Figura 6.1 que a variação da capacidade de carga com o diâmetro não ocorre segundo uma função linear da dimensão da sapata ou placa, como admitem os métodos teóricos, e que a capacidade de carga não aumenta ao passar do diâmetro de 0,80 m para 1,50 m.

Além disso, para complementar esse gráfico poderia se incluir um ponto correspondente ao diâmetro de apenas 28,4 mm, que é diâmetro da ponta de um penetrômetro manual utilizado por TSHUA (2003), para o qual se obtém uma resistência da ordem de 500 kPa, no mesmo local, à mesma profundidade, na condição de solo inundado. Então a capacidade de carga obtida com o penetrômetro, cujo diâmetro é cerca de 50 vezes menor que o da sapata ensaiada, é aproximadamente cinco vezes maior que a encontrada na prova de carga em sapata, com o solo inundado. Isso é coerente com as correlações empíricas existentes na literatura, entre resistência de ponta do cone (ensaio de penetração estática) e a capacidade de carga de fundações diretas, em que se divide a resistência de ponta do cone por um número inteiro para se obter a capacidade de carga da fundação direta.

Para os demais ensaios não é possível fazer-se esta análise diretamente pois as provas de carga para um mesmo diâmetro não apresentam o mesmo valor de sucção matricial. Sendo assim, correlacionando-se os valores da capacidade de carga (σ_r) e os respectivos valores de sucção matricial, é possível obter-se uma variação linear para cada diâmetro de placa, de acordo com as Figuras 6.2 a 6.5:

Figura 6.2 – Variação de σ_r em função da sucção matricial para a placa de 0,20 m

Figura 6.3 – Variação de σ_r em função da sucção matricial para a placa de $0{,}40~m$

Figura 6.4 – Variação de σ_r em função da sucção matricial para a placa de 0,80 m

Figura 6.5 – Variação de σ_r em função da sucção matricial para a placa de 1,50 m

Constatada essa razoável linearidade nas Figuras 6.2 a 6.5, pode-se correlacionar a capacidade de carga (σ_r) com a sucção matricial (ψ_m), ambos os valores em kPa. As correlações obtidas por meio de regressão linear são apresentadas na Tabela 6.9.

В			$\sigma_{\rm r} = f(\psi_{\rm m})$		
(m)	Terzaghi	Leonards	"Pré-	B/10	B/30
(11)	(1943)	(1962)	adensamento"	D / 10	D/ 00
0 20	$\sigma_{\rm r}=8.6\Psi_{\rm m}+24$	$\sigma_{\rm r}=6,1\Psi_{\rm m}+16$	$\sigma_{\rm r}=6.6\Psi_{\rm m}+32$	$\sigma_{\rm r}=7,0\Psi_{\rm m}+40$	$\sigma_{\rm r}=5,2\Psi_{\rm m}+18$
0,20	$R^2 = 0,991$	$R^2 = 0,960$	$R^2 = 0,977$	$R^2 = 0,971$	$R^2 = 0,988$
0 40	$\sigma_{\rm r}=5.9\Psi_{\rm m}+53$	$\sigma_{\rm r}=4,2\Psi_{\rm m}+36$	$\sigma_{\rm r}=5.6\Psi_{\rm m}+47$	$\sigma_{\rm r}=6.5\Psi_{\rm m}+78$	$\sigma_{\rm r}=4.9\Psi_{\rm m}+42$
0,10	$R^2 = 0.897$	$R^2 = 0.957$	$R^2 = 0,955$	$R^2 = 0.954$	$R^2 = 0,966$
0.80	$\sigma_{\rm r}=2,3\Psi_{\rm m}+61$	$\sigma_{\rm r}=1.9\Psi_{\rm m}+46$	$\sigma_{\rm r}=1.9\Psi_{\rm m}+57$	$\sigma_{\rm r}=4,4\Psi_{\rm m}+102$	$\sigma_{\rm r}=2.6\Psi_{\rm m}+61$
0,00	$R^2 = 0.937$	$R^2 = 0,970$	$R^2 = 0,980$	$R^2 = 0.972$	$R^2 = 0,999$
1 50	$\sigma_{\rm r}=4,1\Psi_{\rm m}+55$	$\sigma_{\rm r}=2,8\Psi_{\rm m}+41$	$\sigma_{\rm r}=3.0\Psi_{\rm m}+60$	$\sigma_{\rm r}=6.0\Psi_{\rm m}+102$	$\sigma_{\rm r}=3,5\Psi_{\rm m}+59$
1,00	$R^2 = 0,967$	$R^2 = 0,960$	$R^2 = 0,986$	$R^2 = 0,999$	$R^2 = 0,999$

Tabela 6.9 - Correlações entre σ_r (kPa) e ψ_m (kPa)

Com essas equações, calcula-se a capacidade de carga para cada diâmetro de placa variando-se os valores de sucção matricial, obtendo-se assim os gráficos das Figuras 6.6 a 6.10. Estes valores também são apresentados nas Tabelas 6.10 a 6.14, onde são incluídos os valores obtidos para o penetrômetro portátil (B = 2,8 cm).

Figura 6.6 – Variação da capacidade de carga (σ_r) obtida pelo método de TERZAGHI (1943) com o diâmetro da placa ou sapata (B)

Figura 6.7 – Variação da capacidade de carga (σ_r) obtida pelo método de LEONARDS (1962) com o diâmetro da placa ou sapata (B)

Figura 6.8 – Variação da capacidade de carga (σ_r) obtida pelo método do

"Pré-adensamento" com o diâmetro da placa ou sapata (B)

Figura 6.9 – Variação da capacidade de carga (σ_r) obtida pelo método B/10 com o diâmetro da placa ou sapata (B)

Figura 6.10 – Variação da capacidade de carga (σ_r) obtida pelo método B/30 com o diâmetro da placa ou sapata (B)

Tabela 6.10– Valores calculados de capacidade de carga obtidos por TERZAGHI (1943) em função da sucção matricial

Sucção (kPa)	B = 2.8 cm	B = 20 cm	B = 40 cm	B = 80 cm	B = 150 cm
0	482	24	53	61	55
10	742	110	112	84	96
20	1002	196	171	107	137
30	1262	282	230	130	178

Tabela 6.11 – Valores calculados de capacidade de carga obtidos por LEONARDS (1962) em função da sucção matricial

Sucção (kPa)	B = 2,8 cm	B = 20 cm	B = 40 cm	B = 80 cm	B = 150 cm
0	482	16	36	46	41
10	742	77	78	65	69
20	1002	138	120	84	97
30	1262	199	162	103	125
		5	2		
--------------	------------	-----------	------------	-----------	------------
Sucção (kPa)	B = 2,8 cm	B = 20 cm	B = 40 cm	B = 80 cm	B = 150 cm
0	482	32	47	57	60
10	742	98	103	76	90
20	1002	164	159	95	120
30	1262	230	215	114	150

Tabela 6.12 – Valores calculados de capacidade de carga obtidos por "Préadensamento" em função da sucção matricial

Tabela 6.13 – Valores calculados de capacidade de carga obtidos por B/10

Succão (kPa)	B = 2.8 cm	B = 20 cm	B = 40 cm	B = 80 cm	B = 150 cm
	, • • • • • •				
0	482	40	78	102	102
10	742	110	143	146	162
20	1002	180	208	190	222
30	1262	250	273	234	282

em função da sucção matricial

Tabela 6.14 – Valores calculados de capacidade de carga obtidos por B/30 em função da sucção matricial

Sucção (kPa)	B = 2,8 cm	B = 20 cm	B = 40 cm	B = 80 cm	B = 150 cm
0	482	18	42	61	122
10	742	71	91	87	308
20	1002	124	140	113	493
30	1262	177	189	139	679

Observa-se nas Figuras 6.6 a 6.10 que somente a partir do diâmetro 0,80 m a relação entre capacidade de carga e a dimensão da placa passa a ser crescente. Vale ressaltar que, coincidentemente, este é o valor do diâmetro de placa adotado pela Norma Brasileira NBR 6489. Para valores menores, a capacidade de carga aumenta com a diminuição de B para quase todos os métodos de capacidade de carga utilizados, como demonstrado por DE BEER (1965a) na Figura 2.2. Nas Tabelas 6.10 a 6.14, nota-se ainda que os valores obtidos para o penetrômetro portátil são os mais elevados, como acontece nos ensaios de penetração do cone (CPT). Portanto, ao contrário do exposto pelos métodos teóricos, para valores "baixos" de B a capacidade de carga aumenta drasticamente.

Para o critério de B/10 e B/30 há uma pequena diminuição dos valores de capacidade de carga para a placa de 0,20 m em relação à placa de 0,40 m. A partir deste valor, as curvas passam a exibir um comportamento semelhante aos demais métodos utilizados.

As curvas obtidas para os ensaios inundados apresentaram boa semelhança às curvas apresentadas na Figura 6.1.

6.5 Influência da Dimensão nos Recalques

A influência da dimensão da placa nos recalques para os ensaios inundados pode ser observada na Figura 6.11.

Figura 6.11 – Variação dos recalques com a dimensão da placa ou sapata (B) para níveis de tensão constantes nos ensaios inundados

Observa-se que para um nível de tensão constante, os recalques não variam de forma linear e crescente como sugerem os métodos teóricos. Entre os diâmetros de 0,2 e 0,6 m, os recalques apresentam uma variação decrescente, e a partir de 0,6 m os valores de recalque passam a aumentar com o aumento do diâmetro da placa. A curva ρ x B apresenta também uma forma similar ao trecho BF da curva apresentada na Figura 2.22.

Para o caso de níveis de recalque constante, a tensão diminui se a dimensão da placa aumenta, a partir do diâmetro de 0,4 m (Figura 6.12).

Figura 6.12 – Relação entre a tensão aplicada e o diâmetro da placa ou sapata para alguns níveis diferentes de recalques

A partir do diâmetro de 0,4 m, a dimensão da placa ou sapata influencia num resultado de tensão maior para diâmetros de placas menores, tornando-se mais evidente para níveis de recalques maiores. Conclusão semelhante foi apresentada por COSTA & CINTRA (1999).

Para os ensaios não-inundados não é possível fazer uma análise direta da influência da dimensão nos recalques. Para tal, calcularam-se os valores da capacidade de carga pelos métodos de TERZAGHI (1943), B/10 e B/30 para cada placa, utilizando-se as equações obtidas na Tabela 6.3 e sucções matriciais de 10 kPa, 20 kPa e 30 kPa. Marcaram-se estes pontos nos gráficos das Figuras 5.1 a 5.3 e 2.28 e, por paralelismo, traçaram-se à mão as curvas correspondentes a estas sucções. A partir destas curvas pode-se obter os valores de recalques para diferentes valores de tensão e com os pares ordenados, traçam-se as curvas de variação dos recalques com o diâmetro das placas como os apresentados nas Figuras 6.13 a 6.15.

Figura 6.13 – Variação dos recalques com o diâmetro da placa ou sapata (B) para níveis de tensão constantes para uma sucção matricial de 10 kPa

Figura 6.14 – Variação dos recalques com o diâmetro da placa ou sapata (B) para níveis de tensão constantes para uma sucção matricial de 20 kPa

Figura 6.15 – Variação dos recalques com o diâmetro da placa ou sapata (B) para níveis de tensão constantes para uma sucção matricial de 30 kPa

Assim como para os ensaios inundados apresentados na Figura 6.11, para um nível de tensão constante os recalques não variam de forma linear e crescente. Entre os diâmetros de 0,2 e 0,4 m, os recalques apresentam uma variação ligeiramente crescente e a partir de 0,4m há uma aumento acentuado dos valores de recalque com o aumento do diâmetro da placa. Na Figura 6.15 observa-se uma tendência à estabilização a partir da placa de 0,80, com as curvas tornando-se praticamente horizontais.

Também observa-se que todas as curvas apresentam forma semelhante ao trecho CF da curva apresentada na Figura 2.22

6.6 Efeito Escala

Se as curvas tensão x recalque de placas e sapatas de dimensões variadas convergirem a uma curva única quando adimensionalisadas, dizse que não há a ocorrência do efeito escala. Para analisar a existência deste efeito nos ensaios realizados, os valores de tensão foram divididos pela capacidade de carga e os valores de recalques pelo diâmetro da placa ou sapata. Como a adimensionalisação dos resultados não varia muito para cada critério utilizado para avaliação da capacidade de carga, serão apresentados somente os gráficos obtidos com o critério de TERZAGHI (1943). A Figura 6.16 apresenta todas as curvas experimentais adimensionalisadas dessa forma.

Figura 6.16 – Curvas tensão x recalque adimensionalisadas

Observa-se na Figura 6.16 que as curvas não convergem a uma curva única, o que implica a existência do efeito escala nesse caso. Para verificar o papel da sucção no efeito escala, apresentam-se na Figura 6.17 apenas as curvas adimensionalisadas dos ensaios inundados e na Figura 6.18 as curvas dos ensaios não-inundados.

Figura 6.17- Curvas tensão x recalque adimensionalisadas dos ensaios inundados

Figura 6.18 – Curvas tensão x recalque adimensionalisadas dos ensaios não-inundados

Comparando-se as duas figuras, percebe-se que para o caso das curvas referentes aos ensaios com sucção nula, o efeito escala é menos acentuado. A Tabela 6.15 mostra os valores da média, desvio padrão, valores mínimo e máximo da relação σ/σ_r para uma relação $\rho/B = 0.05$.

Tabela 6.15 – Média, desvio padrão, valores mínimo e máximo da relação σ/σ_r para uma relação ρ/B = 0,05

	σ/σ _r para os ensaios inundados	σ/σ _r para os ensaios não- inundados
Média	1,08	1,05
Desvio padrão	0,11	0,24
Mínimo	1,00	0,70
Máximo	1,27	1,37

Para os ensaios inundados, o desvio padrão é de 11% e há uma variação entre a tensão adimensionalisada máxima e mínima de 27%, enquanto que para os não-inundados o desvio padrão é de 24% e o acréscimo de tensão é de 96%, mostrando que o efeito escala é influenciado pela sucção.

7 ANÁLISES DOS RESULTADOS DA CENTRÍFUGA

7.1 Capacidade de Carga

Para os ensaios em centrífuga foram utilizados os mesmos critérios para determinação da capacidade de carga citados no capítulo anterior. Em alguns dos ensaios realizados, observou-se a ocorrência de ruptura nítida. Para estes casos, adotou-se como capacidade de carga a carga máxima de ensaio.

As Tabelas 7.1 a 7.6 apresentam os valores obtidos para a capacidade de carga para cada grupo de ensaios. Os valores de D correspondem ao diâmetro do protótipo.

	Capacidade de Carga (kPa)						
D (m)	Terzaghi (1943)	Leonards (1962)	"Pré- adens."	B/10	B/30	Ruptura nítida	
0,03	-	-	-	-	-	26	
0,15	70	68	65	79	56	-	
0,30	112	100	100	120	83	-	
0,45	170	150	148	175	110	-	
0,75	240	190	180	195	94	-	
1,50	368	305	285	295	171	-	
3,00	370	310	320	335	172	-	

Tabela 7.1 – Valores de capacidade de carga para a placa de 3 cm ensaiada com areia seca

Tabela 7.2 – Valores de capacidade de carga para a placa de 5 cm ensaiada

com areia seca

	Capacidade de Carga (kPa)					
D (m)	Terzaghi (1943)	Leonards (1962)	"Pré- adens."	B/10	B/30	Ruptura nítida
0,05	-	-	-	-	-	75
0,25	-	-	-	-	-	268
0,50	-	-	-	-	-	390
0,75	-	-	-	-	-	425
1,25	630	575	580	610	360	-
2,50	-	-	-	-	-	776
5,00	524	511	512	840	515	-

	Capacidade de Carga (kPa)						
D (m)	Terzaghi (1943)	Leonards (1962)	"Pré- adens."	B/10	B/30	Ruptura nítida	
0,10	-	-	-	-	-	121	
0,50	250	238	233	250	170	-	
1,00	460	423	430	500	300	-	

Tabela 7.3 – Valores de capacidade de carga para a placa de 10 cm ensaiada com areia seca

Tabela 7.4 – Valores de capacidade de carga para a placa de 5 cm ensaiada com areia inundada

	Capacidade de Carga (kPa)					
D (m)	Terzaghi (1943)	Leonards (1962)	"Pré- adens."	B/10	B/30	Ruptura nítida
0,05	-	-	-	-	-	4
0,25	-	-	-	-	-	28
0,50	94	86	85	93	49	-
0,75	150	138	132	152	70	-
1,25	340	300	325	270	140	-
2,50	325	304	320	330	234	-
5,00	340	305	315	360	303	-

		Ca	apacidade d	e Carga (kF	Pa)	
D (m)	Terzaghi (1943)	Leonards (1962)	"Pré- adens."	B/10	B/30	Ruptura nítida
0,05	678	650	660	500	200	-
0,15				-	-	520
0,25	-	-	-	-	-	580
0,50	-	-	-	-	-	670
0,75	-	-	-	-	-	760
1,25	1120	1040	1100	1030	420	-
2,50	1475	1420	1440	1420	580	-
5,00	1620	1600	1180	1840	660	-

Tabela 7.5 – Valores de capacidade de carga dos ensaios com areia nãoinundada

Tabela 7.6 - Valores de capacidade de carga para a placa de 5 cm ensaiada

	a to g com variação do mver a agua					
		Ca	apacidade d	le Carga (kF	Pa)	
N.A. (mm)	Terzaghi (1943)	Leonards (1962)	"Pré- adens."	B/10	B/30	Ruptura nítida
0	94	86	85	93	49	-
20	256	252	253	261	160	-
40	648	600	600	552	51	-
80	779	755	765	740	390	-
100	920	910	915	920	600	-

a 10 g com variação do nível d'água

Para os ensaios realizados em centrífuga, observa-se que os valores obtidos pelos métodos TERZAGHI (1943), LEONARDS (1962), "Préadensamento" e B/10 são razoavelmente próximos, com coeficiente de variação de 8%, enquanto que o critério B/30 apresenta os menores valores, cerca de 41% inferiores a média dos demais.

Para os ensaios inundados, a variação dos valores da capacidade de carga entre todos os métodos utilizados é a menor, em torno de 8%, enquanto que para todos os demais ensaios, esta variação é de cerca de 22%.

Para as demais análises, apresentadas a seguir, nos casos em que não há ruptura nítida, utilizou-se como valor de capacidade de carga a média entre os critérios TERZAGHI (1943), LEONARDS (1962), "Préadensamento" e B/10 pelos mesmos apresentarem valores semelhantes.

7.2 Influência da Sucção Matricial

A partir dos resultados obtidos com os ensaios utilizando-se areia na condição não-inundada, pode-se analisar a influência da sucção matricial comparando-se o resultado destes ensaios com os resultados dos ensaios realizados em areia inundada e em areia seca, para a placa de 5 cm.

A Tabela 7.7 mostra a redução da capacidade de carga em relação aos ensaios inundados.

		relação aos não-inundados								
Diâmetro do		σ_r nos ensaios não-	σ _r nos ensaios	Redução de σ_r						
	protótipo (m)	inundados (kPa)	inundados (kPa)	(%)						

Tabela 7.7 – Redução da capacidade de carga nos ensaios inundados em

Diametro do	σ_r nos ensalos não-	σ_r nos ensaios	Redução de σ_r
protótipo (m)	inundados (kPa)	inundados (kPa)	(%)
0,25	580	28	95
0,50	670	90	87
0,75	760	143	81
1,25	1073	317	70
2,50	1439	320	78
5,00	1560	330	79

Observa-se uma redução da capacidade de carga para os ensaios inundados em média de 80% em relação ao aos ensaios não-inundados, sendo um valor mínimo de 70% e máximo de 95%.

A influência da sucção matricial na capacidade de carga também pode ser analisada comparando-se os valores de capacidade de carga dos ensaios em areia seca com os ensaios em areia não-inundada (Tabela 7.8).

Diâmetro do	σ_r nos ensaios secos	σ _r nos ensaios não-	Aumento de σ_r
protótipo (m)	(kPa)	inundados (kPa)	(%)
0,25	268	580	116
0,50	390	670	72
0,75	425	760	79
1,25	599	1073	79
2,50	776	1439	85
5,00	597	1560	161

Tabela 7.8 – Aumento da capacidade de carga devido à sucção matricial

A sucção matricial aumenta a capacidade de carga em média 100% em relação aos ensaios realizados com areia seca. O maior aumento acontece para a maior placa (161%), enquanto que o menor aumento ocorre para a placa de D = 0,50 (72%).

A partir da Figura 5.45 também se pode analisar a influência da sucção matricial na capacidade de carga. A Tabela 7.9 apresenta os valores da redução da capacidade de carga para diferentes níveis de sucção quando comparados ao ensaio inundado. Os ensaios foram realizados considerando uma placa com D = 50 mm ensaiada variando-se a posição do nível d'água, simulando assim diferentes sucções.

Ensaios (N.A. em mm)	Ψ _m (kPa) no ensaio não- inundado	σ _r média nos ensaio não- inundados (kPa)	Redução de σ _r (%)
N.A. = 0 e N.A = 20	2	256	65
N.A. = 0 e N.A = 40	4	600	85 88
N.A. = 0 e N.A = 80	8	760	
N.A. = 0 e N.A = 100	10	916	90

Tabela 7.9 – Redução da capacidade de carga (σ_r média no ensaio inundado = 90 kPa)

Também para este caso, a redução média da capacidade de carga é de cerca de 80%, com valores mínimos de 65% e máximo de 90%.

7.3 Influência da Dimensão na Capacidade de Carga

As Figuras 5.11, 5.19, 5.23, 5.31 e 5.40 mostram que a capacidade de carga também varia com a dimensão da sapata ou placa. Observando-se estas figuras, pode-se fazer uma análise da influência da dimensão da placa na capacidade de carga para os ensaios nas condições de areia seca, inundada e não-inundada. As Figuras 7.1 a 7.5 mostram a variação da capacidade de carga com a dimensão da placa ou sapata.

Figura 7.1 - Capacidade de carga x diâmetro do protótipo (placa de 3 cm e areia seca)

Figura 7.2 - Capacidade de carga x diâmetro do protótipo (placa de 5 cm em areia seca)

Figura 7.3 - Capacidade de carga x diâmetro do protótipo (placa de 10 cm em areia seca)

Figura 7.4 Capacidade de carga x diâmetro do protótipo (placa de 5 cm em areia inundada)

Figura 7.5 Capacidade de carga x diâmetro do protótipo (ensaios nãoinundados)

Observa-se nas Figuras 7.1, 7.2 e 7.4 que a variação da capacidade de carga com o diâmetro não ocorre segundo uma função linear do diâmetro do protótipo, como admitem os métodos teóricos. A capacidade de carga não aumenta significantemente a partir de um diâmetro do protótipo de cerca de 1,0 m. Como para a placa de 0,10 m (Figura 7.3) não foi possível a realização dos ensaios em todos os níveis de gravidade, tem-se somente o trecho inicial do gráfico.

No caso dos ensaios não-inundados (Figura 7.5), observa-se que para valores de diâmetro do protótipo inferiores a 0,15 m, a capacidade de carga aumenta.

7.4 Influência da Dimensão nos Recalques

A influência da dimensão da placa nos recalques pode ser observada nas Figuras 7.6 a 7.10, agrupadas de acordo com o tipo de ensaio.

Figura 7.6 – Variação dos recalques com a dimensão do protótipo (D) para níveis de tensão constantes (placa de 3 cm em areia seca)

Figura 7.7 – Variação dos recalques com a dimensão do protótipo (D) para níveis de tensão constantes (placa de 5 cm em areia seca)

Figura 7.8– Variação dos recalques com a dimensão do protótipo (D) para níveis de tensão constantes (placa de 10 cm em areia seca)

Figura 7.9 – Variação dos recalques com a dimensão do protótipo (D) para níveis de tensão constantes (placa de 5 cm em areia inundada)

Figura 7.10 – Variação dos recalques com a dimensão do protótipo (D) para níveis de tensão constantes (ensaios não-inundados)

Observa-se que para um nível de pressão constante, os recalques não variam de forma linear e crescente. No caso da placa de 3 cm ensaiada em areia seca e da placa de 5 cm ensaiada com areia inundada (Figuras 7.6 e 7.9) observa-se forma semelhante a porção BF da Figura 2.22. Os recalques decrescem até D = 0,45 m (Figura 7.6) e D= 1,25 m (Figura 7.9) tornando-se crescentes com o aumento da placa a partir destes valores. No caso da placa de 3 m, para as tensões de 20 kPa e 100 kPa, há uma pequena inversão para D = 0,03 m cujo recalque apresenta um valor inferior ao recalque correspondente ao diâmetro seguinte (D = 0,15 m). Para a placa de 5 cm (areia inundada) o mesmo ocorre para D = 0,05 m nos níveis de tensão de 40 kPa e 60 kPa.

Nos casos da placa de 5 cm ensaiada com areia seca (Figura 7.7) observa-se forma semelhante à porção CF da Figura 2.22 apresentada por GORBUNOV – POSSADOV & DAVIDOV (1973) e pelos resultados de COSTA & CINTRA (1999) na Figura 2.23. Os ensaios não-inundados (Figura 7.10), apresentam comportamento semelhante à partir de D = 0,15 m. Para valores de D inferiores, os recalques são mínimos.

A placa de 10 cm ensaiada em areia seca (Figura 7.8) apresenta apenas três dimensões de diâmetro, localizados no trecho inicial das curvas. Observa-se porém um comportamento similar ao das Figuras 7.7 e 7.10, com aumento sutil dos recalques com o aumento do diâmetro.

Para o caso de níveis de recalque constante, a pressão diminui se a dimensão da placa aumenta (Figuras 7.11 a 7.15).

Figura 7.11 – Relação entre a tensão aplicada e o diâmetro do protótipo para alguns níveis de recalques (placa de 3 cm – areia seca)

Figura 7.12– Relação entre a tensão aplicada e o diâmetro do protótipo para alguns níveis de recalques (placa de 5 cm – areia seca)

Figura 7.13 – Relação entre a tensão aplicada e o diâmetro do protótipo para alguns níveis de recalques (placa de 10 cm – areia seca)

Figura 7.14 – Relação entre a tensão aplicada e o diâmetro do protótipo para alguns níveis de recalques (placa de 5 cm – areia inundada)

Figura 7.15 – Relação entre a tensão aplicada e o diâmetro do protótipo para alguns níveis de recalques (ensaios não -saturados)

A relação entre o recalque e a tensão do protótipo é crescente até D = 0,45 m para a placa de 3 cm em areia seca (Figura 7.11), D = 0,25 m para a placa de 5 cm em areia seca (Figura 7.12) e D = 1,25 m para a placa de 5 cm em areia inundada (Figura 7.14). A partir destes valores, a dimensão do protótipo influencia num resultado de tensão maior para diâmetros de placas menores tornando-se mais evidente para níveis de recalques maiores. No caso da placa de 10 cm, observa-se um aumento sutil entre os diâmetros de 0,1 m e 0,5 m e, a partir deste valor, os valores de tensão praticamente não variam.

No caso dos ensaios não-inundados os valores de tensão para os menores diâmetros do protótipo são bastante elevados e diminuem com o aumento do diâmetro tornando-se constantes a partir de D = 2,5 m. Este mesmo comportamento pode ser observado nos ensaios com areia seca (placas de 5 cm e 10 cm) para um nível de recalque de 5 mm (Figuras 7.12 e 7.13). Comportamento semelhante foi mostrado por COSTA & CINTRA (1999) na Figura 2.24.

7.5 Efeito Escala

Para analisar a existência do efeito escala nos ensaios realizados em centrífuga, os valores de tensão foram divididos pelo valor médio da capacidade de carga obtido pelos métodos de TERZAGHI (1943), LEONARDS (1962), "Pré-adensamento" e B/10 e os valores de recalques, pelo diâmetro da placa ou sapata. As Figuras 7.16 a 7.20 apresentam todas as curvas experimentais adimensionalisadas dessa forma, agrupadas de acordo com o diâmetro da placa e a condição da areia ensaiada.

Figura 7.16 – Curvas tensão x recalque adimensionalisadas para a placa de 3 cm em areia seca

Figura 7.17 – Curvas tensão x recalque adimensionalisadas para a placa de 5 cm em areia seca

Figura 7.18 – Curvas tensão x recalque adimensionalisadas para a placa de 10 cm em areia seca

Figura 7.19 – Curvas tensão x recalque adimensionalisadas para a placa de 5 cm em areia inundada

Figura 7.20 – Curvas tensão x recalque adimensionalisadas para os ensaios em areia não-inundada

Observa-se que as curvas não convergem a uma curva única, o que implica a existência do efeito escala. No caso da Figura 7.18, a menor amostragem (apenas três ensaios) favorece a convergência a uma única curva. A variação entre os valores máximo e mínimo é de 12,5%.

Comparando-se as figuras acima, percebe-se que entre as curvas referentes aos ensaios com areia seca, o efeito escala apresentou-se menos acentuado para a placa de 3 cm do que para a de 5 cm.

Comparando-se os ensaios inundados aos não-inundados, observase que o efeito escala é ligeiramente mais acentuado no caso dos ensaios com influência da sucção matricial.

A Tabela 7.10 mostra os valores da média, desvio padrão, valores mínimo e máximo da relação σ/σ_r para uma relação $\rho/B = 0,05$ para cada caso.

	σ/σ_r -						
Ensaio	0,03	0,05 m	0,10	0,05 m (areia	Areia não-		
	m	(areia seca)	m	inundada)	inundada		
Média	0,80	0,75	0,86	0,72	0,50		
Desvio	0,11	0,17	0,05	0,15	0,19		
padrão							
Coeficiente	0,14	0,23	0,06	0,21	0,38		
de variação			-				
Mínimo	0,67	0,51	0,80	0,55	0,18		
Máximo	0,99	1,07	0,90	0,97	0,65		

Tabela 7.10 – Média, desvio padrão, valores mínimo e máximo da relação σ/σ_r para uma relação $\rho/B = 0.05$

Para os ensaios inundados, o desvio padrão é de 15% e há uma variação entre a tensão adimensionalisada máxima e mínima de 76%, enquanto que para os não-inundados o desvio padrão é de 19% e o acréscimo de tensão é de 261%, mostrando que o efeito escala é influenciado pela sucção. No caso dos ensaios com areia seca, o desvio padrão médio entre os ensaios com as três dimensões de placas é cerca de 11% e o acréscimo de tensão médio é de cerca de 50%.

8 CONCLUSÕES

Na primeira parte da pesquisa, analisou-se o comportamento carga x recalque obtido em 14 provas de carga em placa com diâmetros de 0,20, 0,40, 0,80 e 1,50 m realizadas *in situ*, no Campo Experimental de Fundações da USP/São Carlos, com diferentes níveis de sucção matricial.

Para determinação da capacidade de carga, foram utilizados os critérios convencionais de TERZAGHI (1943), LEONARDS (1962), "Préadensamento", B/10 e B/30. Os resultados mostraram que os critérios de TERZAGHI (1943), "Pré-adensamento" e B/30 apresentam a menor variação entre os seus resultados (12%), enquanto que os métodos de LEONARDS (1962) e B/10 apresentam os menores valores (18% inferior à média dos demais) e maiores valores (30% acima dos demais), respectivamente.

As análises mostraram que a sucção matricial tem grande influência no comportamento do sistema solo-placa ou sapata-solo. Quanto maior a sucção matricial do solo, maior a capacidade de carga. Por outro lado, quanto maior a sucção matricial, maior a redução da capacidade de carga em relação à condição de sucção praticamente nula. Esta redução é de no mínimo 37 %, para os níveis de sucção medidos nos ensaios. Os ensaios com a placa de 20 cm apresentaram a maior redução devido ao colapso (cerca de 80%). Conseqüentemente, não há dúvidas de que a sucção matricial é um fator imprescindível nas análises de capacidade de carga em solos colapsíveis. No caso dos ensaios inundados foi possível correlacionar diretamente a capacidade de carga com a dimensão da placa ou sapata ensaiada. Neste caso, observou-se que a variação da capacidade de carga com o diâmetro não ocorre segundo uma função linear do diâmetro da sapata ou placa, como admitem os métodos teóricos, e que a capacidade de carga é praticamente invariável quando o diâmetro passa de 0,80 m para 1,50 m.

Correlacionando-se os valores de capacidade de carga com a sucção matricial para cada ensaio foi possível obter-se, através de regressão linear, uma correlação linear para cada diâmetro de placa. A partir destas correlações, calculou-se a capacidade de carga para cada diâmetro de placa, variando-se a sucção matricial e com estes valores traçaram-se os gráficos de variação da capacidade de carga com o diâmetro. Estas curvas demonstraram que, de fato, a capacidade de carga não varia de forma linear crescente como demonstra a teoria. Para valores de B inferiores a 0,80 m passa a haver um aumento no valor da capacidade de carga com a diminuição de B. No caso dos métodos B/10 e B/30, houve uma diminuição dos valores de capacidade de carga para a placa de 0,20 m em relação à placa de 0,40 m. A partir deste valor, as curvas passaram a exibir um comportamento semelhante aos demais métodos utilizados.

A dimensão das placas ou sapata também influencia nos recalques. Para os ensaios inundados, foi feita uma análise direta desta influência correlacionando-se o diâmetro das placas ou sapata com os recalques, para níveis de tensão constante. Observou-se que os recalques são decrescentes até a placa de diâmetro de 0,4 m. A partir deste valor, os recalques aumentam se a dimensão da placa aumentar. Para níveis de recalque constante, a tensão é crescente até a placa de 0,4 m e a partir deste valor, a tensão diminui com o aumento do diâmetro, tornando-se mais evidente para recalques maiores. Para os ensaios não-saturados, traçaram-se curvas para sucções matriciais de 10 kPa, 20 kPa e 30 kPa a partir dos valores de capacidade de carga calculados através das equações obtidas para $\sigma_r = f(\psi_m)$. A partir destas curvas, obtiveram-se os valores de recalques para diferentes tensões e assim encontrou-se a variação de ρ em função de B para cada valor de ψ_m . Os recalques apresentam uma variação ligeiramente crescente entre os diâmetros de 0,2 m e 0,4 m e a partir de 0,4 m, há uma aumento acentuado dos valores de recalque com o aumento do diâmetro da placa. No caso das curvas traçadas para uma sucção matricial de 30 kPa, a partir da placa de 0,80 m há uma tendência à estabilização.

Como não houve convergência após a adimensionalização das curvas experimentais dos ensaios, constatou-se a existência do efeito escala. Nos ensaios inundados, entretanto, o efeito escala é menos acentuado do que nos ensaios não-inundados. O desvio padrão para a relação σ/σ_r para uma relação $\rho/B = 0,05$ é de 11% e a diferença entre a tensão adimensionalisada máxima e mínima é de 27%, enquanto que para os ensaios não-saturados, estes valores são 24% e 96%, respectivamente. Parece que a sucção também exerce um papel importante ao acentuar o efeito escala nos ensaios realizados.

Na outra parte da pesquisa, foram realizados ensaios em centrífuga utilizando-se placas de 30 mm, 50 mm e 100 mm e areia em condições seca, inundada e não-inundada. Nos casos onde não ocorreu ruptura nítida, também se aplicaram os mesmos critérios convencionais utilizados nas provas de carga em placa.

Observou-se que os valores obtidos pelos métodos de TERZAGHI (1943), LEONARDS (1962), "Pré-adensamento" e B/10 apresentam uma pequena variação entre seus resultados (8%), enquanto que o critério B/30 apresenta os menores valores, em média, 41% inferior à média dos demais.

Também se analisou a influência da sucção matricial para os ensaios em centrífuga comparando-se os ensaios não-inundados com os ensaios inundados e com os ensaios da placa de 5 cm em areia seca. A redução da capacidade de carga para os ensaios inundados foi em média de 80% apresentando um máximo de 95% e mínimo de 70%. Comparandose os ensaios não-inundados aos ensaios com areia seca, constatou-se que a sucção matricial causa um acréscimo de cerca 100% no valor da capacidade de carga.

A partir dos resultados dos ensaios realizados com a placa de 5 cm e com variação do nível d'água também pode-se analisar a influência da sucção matricial comparando-se o ensaio inundado (N.A. = 0 mm) com os demais. A redução média da capacidade de carga também é de 80%, com mínimo e máximo de 65% e 90%, respectivamente.

A influência da dimensão na capacidade de carga também foi analisada para cada grupo de ensaio. No caso dos ensaios com areia seca, observa-se que a capacidade de carga não varia de forma linear e crescente com a dimensão dos protótipos, como apresentado pelos métodos teóricos e que a partir dos ensaios realizados a 50 g os valores praticamente não variam. No caso dos ensaios inundados, observa-se que há um aumento acentuado da capacidade de carga com o diâmetro até o ensaio a 25 g e a partir deste, os valores são praticamente constantes. Em ambos os casos, as curvas apresentaram formas semelhantes.

Para os ensaios não-inundados houve um pequeno acréscimo da capacidade de carga para D = 5 cm e a partir de D = 2,50 m os valores tornam-se praticamente constantes.

A influência da dimensão nos recalques também foi analisada. Nos ensaios realizados com a placa de 3 cm em areia seca, para níveis de tensão constantes, os recalques são decrescentes até D = 0.45 m. A partir deste valor, os recalques aumentam com o aumento do diâmetro. Comportamento semelhante ocorre para os ensaios inundados, com valores de recalques decrescentes até D = 0.75 m e praticamente constantes a partir deste ponto.

Para a placa de 5 cm em areia seca, os recalques aumentam sutilmente até D = 0.5 m tornando-se praticamente constantes até D = 4.5

m e, a partir deste valor, os recalques crescem com o diâmetro. Comportamento semelhante pode ser visto no caso dos ensaios com areia não-inundada, com os recalques tornando-se constantes a partir de D = 2,5m.

A relação entre tensão aplicada e o diâmetro do protótipo para níveis de tensão constante, mostra que a tensão sofre um acréscimo no início da curva, atingindo um valor máximo a partir do qual passa a decrescer com o aumento do diâmetro. No caso dos ensaios nãoinundados, tal comportamento não ocorre. Os valores de tensão são bastante elevados para pequenas dimensões e decrescem com o aumento do diâmetro, tornando-se praticamente constantes.

A adimensionalisação dos resultados mostrou que, dentre os ensaios realizados em areia seca, o efeito escala é menos acentuado nos ensaios realizados com a placa de 3 cm (desvio padrão igual a 11% e variação entre σ/σ_r máximo e mínimo igual a 48%), enquanto que para a placa de 5 cm, estes valores são 17% e 110%, respectivamente. Comparando-se os ensaios inundados aos não-inundados, constata-se que para os primeiros, o desvio padrão é de 11% e há uma variação entre a tensão adimensionalisada máxima e mínima de 27%, enquanto que para os demais, o desvio padrão é de 24% e o acréscimo de tensão é de 96%, mostrando que o efeito escala é influenciado pela sucção matricial.

9 REFERÊNCIAS BIBLIOGRÁFICAS

- ABNT, (1984). Prova de Carga Direta Sobre Terreno de Fundação. NBR 6489, Rio de Janeiro, 2p.
- ABNT, (1991). Estacas Prova de Carga Estática. NBR 12131, Rio de Janeiro, 4p.
- AIBAN, S. A. (1991). "Shallow foundations on sands". ". Tese (Doutorado), Universidade do Colorado, Boulder, 119 p.
- ALTAEE, A., & FELLENIUS, H. (1994). "Phisical Modelling in Sand". *Canadian Geothecnical Journal*, v. 31, n.º 31, p. 420 – 431, junho.
- BATISTE, S. N. (1998). "Mechanics of granular materials at low confining stress". Dissertação (Mestrado), Universidade do Colorado, Boulder, 167 p.
- BORTOLUCCI, A. A. (1983). "Caracterização geológico-geotécnica da região urbanade São Carlos-SP, a partir de sondagens de simples reconhecimento". Dissertação (mestrado), ESSC / USP, São Carlos / SP.
- BRIAUD, J L & GIBBENS, R. M. (1999). "Large Scale Load Tests and Data Base of Spread Footings on Sand". Federal Highway Administration, Publication n. FHWA-RD-97-068, 217p., Washington, DC, USA.
- BRIAUD, J. L. & JEANJEAN, P. (1994). "Load Settlement Curve Method for Spread Footings on Sand". In: SETTLEMENT '94 SPECIALTY
CONFERENCE, ASCE, Special Publication, n.º 40, p. 1774 – 1804, ASCE, New York, USA.

- CERATO, A. B & LUTENEGGER, A. J. (2003). "Scale Effects of Shallow Foundation Bearing Capacity on Granular Soils". In: INTERNATIONAL CONFERENCE ON FOUNDATIONS, Proceedings of the British Geotechnical Association (BGA), September, Dundee, Scotland. pp. 217-225.
- CHRISTENSEN, S. N. & BAGGE, G. (1977). "Centrifugal Testing on the Bearing Capacity of Circular Footings on the Surface of Sand". *Dialog, Anniversary of the Danish Engineering Academy,* 20th, Copenhagen.
- CINTRA, J. C. A.(2004). "Resenha: Aplicações da Mecânica dos Solos Fundações em solos colapsíveis". In: SIMPÓSIO BRASILEIRO SOBRE SOLOS NÃO SATURADOS, V, São Carlos, SP, v. 2.
- CINTRA, J. C. A. (2005). "Extrapolação de recalques de placas para sapatas em areia". *Solos e Rochas, no prelo.*
- CINTRA, J. C. A. ; CARVALHO, D. ; GIACHETTI, H. L.; BORTOLUCCI, A. A.;ALBIERO, J. H. (1991). "Campo experimental de fundações em São Carlos". In:SEMINÁRIO DE ENGENHARIA DE FUNDAÇÕES ESPECIAIS, II, SãoPaulo, 1985. Anais. São Paulo, ABMS/ABEF. v.1, p. 96 - 105.
- CINTRA, J. C. A.; AOKI, N.; ALBIERO, J.H. (2003). "Tensão admissível em fundações diretas". Ed. Rima, São Carlos, 135 p.
- CINTRA, J. C. A.; MACACARI, M. F., AOKI, N. VILAR, O. M. (2005). "Variação da capacidade de carga com a sucção matricial e com a profundidade em provas de carga sobre placa em solo colapsível". *Solos e Rochas, no prelo.*
- CONSOLI, C. N. & SCHNAID, F. (1997). "Interpretação de Provas de Carga de Fundações Superficiais em solos Cimentados". *Solos e Rochas*, v. 20, n.º 2, p. 107 117, agosto, ABMF.
- CONSOLI, N. C., SCHNAID, F., PRIETTO, P. D. M. & ROHLFES JUNIOR, J.A. (1996). "Engineering Properties of Residual Soil-Cement

Mixtures". In: INTERNATIONAL CONFERENCE ON GROUND IMPROVEMENT GEOSYSTEMS, II, Proceedings, p. 25 – 31, Tokio.

- CORTÉ, J.-F. (1989). "Discussion". In: INTERNATIONAL CONFERENCE OF SOIL MECHANICS AND FOUNDATION ENGINEERING, XII, Proceedings, v. 4, p. 2553 – 2571, agosto, Rio de Janeiro.
- COSTA, Y. D. (1999). "Estudo do comportamento de solo não saturado através de provas de carga em placa". Dissertação (mestrado), ESSC / USP, São Carlos / SP, 131 p.
- COSTA, Y. D. J. & CINTRA, J, C. A. (1999). "On the Effect of Plate load Tests Through Numerical Simulations". In: PANAMERICAN CONFERENCE ON SOIL MECHANICS AND GEOTECHNICAL ENGINEERING, XI, Proceedings, v. 3, p. 1555 – 1561, agosto, Foz do Iguaçu.
- COSTA, Y. D., CINTRA, J. C., ZORNBERG, J. G. (2003). "Influence of matric suction on plate load test result performed on lateritic soils". *Geotechnical Testing Journal, v.26, n.2, p. 219 227, June.*
- CUDMANI, R. P., SCHNAID, F., CONSOLI, N. C. (1994). "Comportamento de Sapatas Assentes em solo Plano Estruturado Através de Ensaios de Placa". In: CONGRESSO BRASILEIRO DE MECÂNICA DOS SOLOS E ENGENHARIA DE FUNDAÇÕES, Anais, ABMS, v. 1, p. 127 – 134, novembro, Foz do Iguaçu.
- D'APPOLONIA, D. J., D'APPOLONIA, E. & BRISETTE, R.F. (1968). "Settlement of Spread Footings on Sand". *Journal of Soil Mechanics and Foundations Division*, SM3, p. 735 – 760, ASCE, New York.
- DE BEER, E. E. (1965a). "Bearing Capacity and Settlement of foundations".
 In: SYMPOSIUM ON BEARING CAPACITY AND SETTLEMENT OF FOUNDATIONS - HEALD AT DUKE UNIVERSITY, Proceedings, p. 15 – 34, abril, Durham.
- DE BEER, E. E. (1965b). "The Scale Effect on the Phenomenon of Progressive Rupture in Cohesionless Soils". In: INTERNATIONAL

CONFERENCE OF SOIL MECHANICS AND FOUNDATION ENGINEERING, VI, Proceedings, v. 2, p. 13 – 17, setembro, Montreal.

- FREDLUND, D. G., RAHARDJO, H. (1993). "Soil Mechanics for Unsaturated Soils". New York, John Wiley & Sons.
- FREDLUND, D. G.; XING, A. (1994). "Equations for the soil water characteristic curve". *Canadian Geotechnical Journal*, v.31, n.º 4.
- FRETTI, C., LO PRESTI, D. C. F., PEDRONI, S. (1995). "A pluvial deposition method to reconstitute well-graded sand specimens". *Geotechnical Testing Journal*, v. 18, n.º 2, p. 292 – 298.
- FUGLSANG, L. D. & OVESEN, N. K. (1988). "The Application of the Theory of Modelling to Centrifuge Studies". In: CENTRIFUGE IN SOIL MECHANICS, p. 119 – 138, Ed. Balkema, Rotterdam.
- FÚLFARO, V. J.; BJONBERG, A. J. S. (1993). "Geologia". In: FERREIRA, A. A.; NEGRO JR. A.; ALBIERO, J. H.;CINTRA, J. C. A. orgs. Solos do interior de São Paulo. São Paulo, ABMS USP/SC. Cap. 1, p. 1-42.
- GORBUNOV POSSADOV, M. I. & DAVIDOV, S. S. (1973). "Interaction of Soil Bases and Structures (Prediction of Settlement, Design of Massive Foundations Based on the Limiting State, Design of Flexible Foundation Beams and Slabs)". In: INTERNATIONAL CONFERENCE ON SOIL MECHANICS AND FOUNDATION ENGINEERING, VIII, Proceedings, v. 3, p. 46 92, Moscow.
- HETTLER, A. & GUDEHUS, G. (1988). "Influence of the Foundation Width on the Bearing Capacity Factor". *Soils and Foundation*, v. 28, nº 4, p. 81 – 92, dezembro.
- ISMAEL, N.F. (1985). "Allowable Pressure from Loading Tests on Kuwaiti Soils". *Canadian Geotechnical Journal*, v. 22, n.º 2, p. 151 – 157.
- KIMURA, T. (1988). "Centrifuges Research Activities in Japan". In: CENTRIFUGES IN SOIL MECHANICS, p. 19 – 28, Ed Balkema, Rotterdam.

- KIMURA, T., KUSAKABE, O., SAITOH, K. (1985). "Geotechnical Model Test of Bearing Capacity Problems in a Centrifuge". *Géotechnique – The International Journal of Soil Mechanics*, v.35, n.º 1, p. 33 – 45, março.
- KIMURA, T., TAKEMURA, J., HIRO-OKA, A., OKAMURA, M. (1994)."Mechanical Behaviour of Intermediate Soils". In: INTERNATIONAL CONFERENCE CENTRIFUGE, Proceedings, p. 13 –24, Boulder.
- KING, G. J. W., DICKIN, E. A., LYNDON, A. (1984). "The Development of a Medium Size Centrifuge Testing Facility". In: SYMPOSIUM APPLICATION ON CENTRIFUGAL MODELLING TO GEOTECHNICAL DESIGN, *Proceedings*, p. 25 – 45, Ed. Balkema, Rotterdam.
- KO, H.-Y. (1988). "Summary of the State of the Art in Centrifuge Model Testing". In: CENTRIFUGES IN SOIL MECHANICS, p. 11 – 18, Ed. Balkema, Rotterdam.
- LEONARDS, G. A. (1962). "Foundation Engineering". Mc. Graw Hill Ed.
- LOBO CARNEIRO, F. (1993). "Análise Dimensional e Teoria da Semelhança e dos Modelos Físicos". Editora UFRJ, 2ª edição, 256 p.,
- MACACARI, M. (2001). "Variação da capacidade de carga com a sucção e profundidade em ensaios de placa em solo colapsível". Dissertação (Mestrado), ESSC/USP, São Carlos/SP, 96 p.
- MACHADO, S. L. (1998). "Aplicações de conceitos de elastoplasticidade a solos não saturados". Tese (Doutorado), EESC/USP, São Carlos/SP, 362 p.
- MENCL, M. V. (1961). "Discussion". In: INTERNATIONAL CONFERENCE ON SOIL MECHANICS AND FOUNDATOIN ENGINEERING, V, Proceedings, v. 3, p. 165 – 167, Paris.
- MENEGOTTO, M.L. (2004). "Previsão da curva tensão x recalque de ensaios de placa em solo não saturado". Tese (Doutorado), EESC/USP, São Carlos - SP, 219 p.

- MEYERHOF, G. G. (1951). "The Ultimate Bearing Capacity of Foundations". *Géotechnique– The International Journal of Soil Mechanics*, v. 2, nº 4, p. 301 – 332.
- MEYERHOF, G. G. (1983). "Scale Effects of Ultimate Pile Capacity". *Journal of Geotechnical Engineering*, ASCE, v. 109, nº 6, p. 797 – 806.
- MIKASA,M. & TAKADA, N. (1973). "Significance of centrifugal model test in soil mechanics". In: INTERNATIONAL CONFERENCE ON SOIL MECHANICS AND FOUNDATION ENGINEERING, VIII, Proceedings, v. 3, p. 46 – 92, Moscow.
- OSTERBERG, J. O. (1947). "Discussion". In: SYMPOSIUM ON LOAD TEST OF BEARING CAPACITY OF SOILS, Proceedings, ASTM, STP 79, p. 128 – 139, Philadelphia.
- OVESEN, N. K. (1975). "Centrifugal testing applied to bearing capacity problems of footing on sand". *Geotechnique*, v. 25, p.394 401.
- OVESEN, N. K. (1979). "Panel Discussion: The Scaling Law Relationship". In: EUROPEAN CONFERENCE ON SOIL MECHANICS AND FOUNDATION ENGINEERING, VII, Proceedings, v. 4, p. 319 - 323, Brighton.
- PACHECO SILVA, F. (1970) "Uma nova construção gráfica para a determinação da pressão de pré-adensamento de uma amostra de solo". In: CONGRESSO BRASILEIRO DE MECÂNICA DOS SOLOS E ENGENHARIA DE FUNDAÇÕES, IV, v. 2, tomo 1, p. 219-224, Rio de Janeiro.
- PALMER, L. A. (1947). "Field Loading tests for the Evaluation of the Wheel Load Capacities of Airport Pavements". In: SYMPOSIUM ON LOAD TESTS OF BEARING CAPACITY OF SOILS, ASTM, STP 79, p. 9 30, Philadelphia.
- SANTOS, T.R.S. (2001) "Atrito lateral e resistência de base em tubulões a céu aberto em solo colapsível". Dissertação (Mestrado), USP / São Carlos, 178 p.

- SCHNAID, F., CONSOLI, N. C., CUDMANI, R. ^o & MILITITSKY, J. (1995).
 "Load Settlement Response of Shallow Foundations in Structured Unsaturated Soils". In: INTERNATIONAL CONFERENCE ON UNSATURATED SOILS, I, Proceedings, p. 999 – 1004.
- STEENFELT, J. S. (1977). "Scale Effect on Bearing Capacity Factor N_{γ} ". In: INTERNATIONAL CONFERENCE OF SOIL MECHANICS AND FOUNDATION ENGINEERING, IX, Proceedings, v. 1, p. 749 – 752, Tokio.
- STEENFELT, J.S. (1989). "Centrifugal Modelling and Limit Analysis Reciprocity or Adversity". In: INTERNATIONAL CONFERENCE OF SOIL MECHANICS AND FOUNDATION ENGINEERING, XII, Proceedings, v. 2, p. 987 – 990, agosto, Rio de Janeiro.
- STEWART, D. P. & KOUDA, M. (1998). "Tests Results and Discussions: Rigid Circular Footing Tests (C2 – Footing). In: INTERNATIONAL CONFERENCE CENTRIFUGE, Proceedings, v. 2, p. 1117 – 1123, setembro, Tokio.
- TERZAGHI, K. (1942). "Discussion on pile driving formulas". Proc. ASCE, 68 (2), p. 311-323.
- TERZAGHI, K (1943). "Teorical Soil Mechanics". Editora Jonh Willey & Sons, 1ª edição, New York.
- TSUHA, C. H. C. (2003). "Utilização de penetrômetro manual em solo colapsível e comparação com resultados de provas de carga em placa e sapata". Dissertação (Mestrado), ESSC/USP, São Carlos/SP, 53 p.
- VAN DER VEEN, C. (1953) "The Bearing Capacity of a Pile". In: INTERNATIONAL CONFERENCE ON SOIL MECHANICS AND FOUNDATION ENGINEERING, III, Proceedings, v. 2, p. 125-151, Zurich.
- YAMAGUCHI, H., KIMURA, T., FUJII, N. (1976). "On the Influence of Progressive Failure on the Bearing Capacity of Shallow Foundation in Dense Sand". *Soils and Foundations*, v. 16, nº4, p. 11 – 22, dezembro.

- YAMAGUCHI, H., KIMURA, T., FUJII, N. (1977). "On the Scale Effect of Fottings in Dense Sand". In: INTERNATIONAL CONFERENCE OF SOIL MECHANICS AND FOUNDATION ENGINEERING, VII, Proceedings, v. 1, p. 795 – 798, Tokio.
- ZHU, F., CLARK, J. I., PHILLIPS, R. (1998). "Bearing Capacity of ring Foundations Under Vertical Load". In: INTERNATIONAL CONFERENCE CENTRIFUGE, Proceedings, v. 1, p. 441 – 446, setembro, Tokio.

ANEXO 1

Calibrações

Célula de carga de 15 kN utilizada nos ensaios em centrífuga

Célula de carga de 50 kN utilizada nas provas de carga com a placa de 20 cm

Célula de carga de 100 kN utilizada nas provas de carga com a placa de 40 cm

Célula de carga de 2000 kN utilizada nas provas de carga com a sapata de 1,50 m

ANEXO 2

Ensaios *In Situ*

Placa de 0,20 m – Ensaio inundado

Indicador de	Carga	Tensão	L1	L2	L3	L4
deformação	(kN)	(kPa)	(mm)	(mm)	(mm)	(mm)
49080	0.0000	0	0	0	0	0
49085	0.1320	4	35	11	19	42
49090	0.2640	8	112	88	97	120
49095	0.3960	13	243	220	227	252
49100	0.5280	17	528	505	514	535
49105	0.6600	21	778	756	763	785
49110	0.7920	25	1030	1010	1012	1037
49115	0.9240	29	1310	1288	1293	1315
49120	1.0560	34	1635	1613	1615	1637
49125	1.1880	38	1913	1894	1895	1918
49130	1.3200	42	2227	2210	2210	2234
49135	1.4520	46	2493	2475	2475	2498
49140	1.5840	50	2830	2815	2813	2834
49145	1.7160	55	3160	3146	3140	3160
49150	1.8480	59	3500	3488	3488	3505
49155	1.9800	63	3846	3824	3828	3850
49160	2.1120	67	4128	4112	4113	4135
49165	2.2440	71	4436	4420	4415	4438
49139	1.5576	50	4450	4432	4430	4451
49080	0.0000	0	4450	4432	4429	4450

Placa de 0,20 m – Sucção = 15 kPa

Indicador de	Carga	Tensão	L1	L2	L3	L4
deformação	(kN)	(kPa)	(mm)	(mm)	(mm)	(mm)
49100	0.0000	0	0	0	0	0
49109	0.2376	8	1	10	9	4
49118	0.4752	15	13	23	22	11
49127	0.7128	23	31	45	44	27
49136	0.9504	30	59	73	71	52
49145	1.1880	38	88	105	102	80
49154	1.4256	45	135	155	150	28
49163	1.6632	53	180	205	198	170
49172	1.9008	61	236	259	252	228
49181	2.1384	68	305	330	322	295
49190	2.3760	76	382	409	401	372
49199	2.6136	83	479	511	499	468
49208	2.8512	91	664	699	686	654
49217	3.0888	98	872	909	893	859
49226	3.3264	106	1174	1204	1182	1150
49235	3.5640	113	1376	1474	1380	1350
49244	3.8016	121	1588	1617	1590	1562
49253	4.0392	129	1953	1982	1959	1929
49262	4.2768	136	2211	2240	2215	2187
49271	4.5144	144	2453	2482	2455	2428
49280	4.7520	151	2750	2780	2752	2722
49289	4.9896	159	3071	3099	3070	3042
49298	5.2272	166	3345	3374	3345	3316
49307	5.4648	174	3711	3741	3710	3683
49316	5.7024	182	4075	4106	4073	4046
49325	5.9400	189	4393	4424	4393	4352
49275	4.6200	147	4406	4439	4409	4365
49177	2.0328	65	4405	4432	4404	4365
49100	0.0000	0	4399	4415	4392	4365

Placa de 0,20 m - Sucção = 17 kPa

Indicador de	Carga	Tensão	L1	L2	L3	L4
deformação	(kN)	(kPa)	(mm)	(mm)	(mm)	(mm)
49071	0.0000	0	0	0	0	0
49081	0.2640	8	5	0	1	4
49091	0.5280	17	12	0	3	22
49101	0.7920	25	27	0	7	36
49111	1.0560	34	45	0	14	62
49121	1.3200	42	55	0	16	79
49131	1.5840	50	88	0	28	126
49141	1.8480	59	111	0	43	161
49151	2.1120	67	137	0	69	208
49161	2.3760	76	157	0	95	242
49171	2.6400	84	230	0	180	330
49181	2.9040	92	304	0	293	430
49191	3.1680	101	440	0	403	549
49201	3.4320	109	535	0	501	645
49211	3.6960	118	669	0	635	777
49221	3.9600	126	789	0	760	896
49231	4.2240	134	958	0	940	1060
49241	4.4880	143	1130	0	1115	1240
49251	4.7520	151	1340	0	1320	1456
49261	5.0160	160	1577	0	1580	1596
49271	5.2800	168	1826	0	1835	1955
49281	5.5440	176	2118	0	2123	2252
49291	5.8080	185	2397	0	2407	2534
49301	6.0720	193	2705	0	2715	2842
49311	6.3360	202	3095	0	3100	3232
49321	6.6000	210	3431	0	3436	3570
49331	6.8640	218	3863	0	3871	4008
49341	7.1280	227	4184	0	4189	4328
49278	5.4648	174	4195	0	4198	4337
49185	3.0096	96	4195	0	4191	4336
49098	0.7128	23	4183	0	4173	4327
49071	0.0000	0	4175	0	4164	4320

Placa de 0,40 cm - Ensaio inundado

Indicador de	Carga	Tensão	L1	L2	L3	L4
deformação	(kN)	(kPa)	(mm)	(mm)	(mm)	(mm)
49068	0.0000	0	0	0	0	0
49083	0.3960	3	2	2	17	32
49098	0.7920	6	22	22	46	59
49113	1.1880	9	70	73	117	124
49128	1.5840	13	140	152	213	214
49143	1.9800	16	197	207	278	275
49158	2.3760	19	248	261	338	334
49173	2.7720	22	310	325	405	401
49188	3.1680	25	387	403	488	483
49203	3.5640	28	509	521	610	604
49218	3.9600	32	634	645	738	734
49233	4.3560	35	771	785	880	875
49248	4.7520	38	946	961	1055	1050
49263	5.1480	41	1129	1144	1240	1236
49278	5.5440	44	1296	1314	1410	1405
49293	5.9400	47	1503	1521	1618	1618
49308	6.3360	50	1742	1762	1857	1858
49323	6.7320	54	1955	1981	2080	2080
49338	7.1280	57	2174	2205	2305	2303
49353	7.5240	60	2431	2476	2570	2564
49368	7.9200	63	2673	2725	2822	2815
49383	8.3160	66	2904	2959	3055	3050
49398	8.7120	69	3147	3203	3300	3295
49413	9.1080	72	3371	3453	3553	3550
49428	9.5040	76	3533	3725	3825	3825
49443	9.9000	79	3827	4017	4115	4118
49458	10.2960	82	4111	4302	4399	4402
49386	8.3952	67	4115	4317	4413	4414
49281	5.6232	45	4115	4317	4413	4414
49169	2.6664	21	4115	4312	4403	4403
49068	0.0000	0	4115	4297	4384	4383

Placa de 0,40 m – Sucção = 12 kPa

Indicador de	Carga	Tensão	L1	L2	L3	L4
deformação	(kN)	(kPa)	(mm)	(mm)	(mm)	(mm)
49077	0.0000	0	0	0	0	0
49124	1.2408	10	14	5	18	22
49171	2.4816	20	62	45	57	70
49218	3.7224	30	128	104	116	135
49265	4.9632	39	187	164	172	197
49312	6.2040	49	282	256	265	294
49359	7.4448	59	401	368	380	414
49406	8.6856	69	575	535	549	593
49453	9.9264	79	805	765	780	826
49500	11.1672	89	1118	1070	1090	1140
49547	12.4080	99	1546	1489	1512	1573
49594	13.6488	109	1962	1902	1920	1995
49641	14.8896	118	2464	2697	2430	2507
49688	16.1304	128	3009	2932	2970	3060
49735	17.3712	138	3520	3428	3472	3578
49782	18.6120	148	4110	4010	4065	4170
49829	19.8528	158	4735	4625	4668	4794
49725	17.1072	136	4767	4654	4697	4820
49410	8.7912	70	4760	4655	4690	4804
49296	5.7816	46	4753	4648	4681	4790
49077	0.0000	0	4705	4603	4641	4764

Placa de 0,40 m - Sucção = 13 kPa

Indicador de	Carga	Tensão	L1	L2	L3	L4
deformação	(kN)	(kPa)	(mm)	(mm)	(mm)	(mm)
51963	0.0000	0	0	0	0	0
51981	0.9504	8	1	0	5	2
51999	1.9008	15	2	0	11	9
52017	2.8512	23	6	1	23	20
52035	3.8016	30	19	12	44	36
52053	4.7520	38	36	26	69	61
52071	5.7024	45	57	47	96	88
52089	6.6528	53	95	82	139	132
52107	7.6032	61	163	146	210	200
52125	8.5536	68	251	232	300	289
52143	9.5040	76	355	335	410	399
52161	10.4544	83	487	467	543	536
52179	11.4048	91	646	625	705	698
52197	12.3552	98	844	823	907	898
52215	13.3056	106	1082	1061	1150	1140
52233	14.2560	113	1337	1314	1405	1394
52251	15.2064	121	1595	1569	1665	1650
52269	16.1568	129	1875	1846	1950	1935
52287	17.1072	136	2166	2135	2242	2228
52305	18.0576	144	2565	2478	2594	2580
52323	19.0080	151	2852	2832	2948	2933
52341	19.9584	159	3271	3246	3372	3355
52359	20.9088	166	3645	3628	3752	3740
52377	21.8592	174	4054	4022	4147	4135
52395	22.8096	182	4503	4468	4598	4588
52260	15.6816	125	4515	4478	4603	4593
52152	9.9792	79	4506	4470	4587	4579
52051	4.6464	37	4485	4452	4560	4553
51963	0.0000	0	4437	4413	4505	4496

Indicador de	Carga	Tensão	L1	L.2	L3	I.4
deformação	(kN)	(kPa)	(mm)	(mm)	(mm)	(mm)
50045	0.0000	0	100	100	100	100
50068	11 8358	7	184	208	205	180
50091	23 6716	13	311	273	385	338
50114	25 5074	20	540	625	620	560
50114	55.5074	20	540	025	030	509
50137	47.3432	27	931	1018	980	909
50160	59.1790	33	1542	1634	1497	1450
50183	71.0148	40	2290	2376	2150	2123
50206	82.8506	47	3330	3400	3040	3072
50229	94.6864	54	4280	4320	3890	3975
50252	106.5222	60	1500	1460	1390	1470
50275	118.3580	67	2835	2760	2605	2710
50298	130.1938	74	1320	1290	1230	1270
50321	142.0296	80	3080	3020	2900	2980
50344	153.8654	87	1830	1800	1740	1780
50296	129.1646	73	1907	1864	1841	1875
50217	88.5112	50	1899	1860	1843	1870
50130	43.7410	25	1865	1800	1813	1857
50045	0.0000	0	1853	1686	1713	1852

Sapata de 1,50 m – Ensaio Inundado

Sapata de 1,50 m -	- Sucção = 21 kPa
--------------------	-------------------

Indicador de	Carga	Tensão	L1	L2	L3	L4
deformação	(kN)	(kPa)	(mm)	(mm)	(mm)	(mm)
50038	0.0000	0	200	100	300	200
50118	38.1840	22	386	238	432	325
50198	76.3680	43	670	515	710	604
50278	114.5520	65	1155	992	1280	1150
50358	152.7360	86	1992	1785	2211	2044
50438	190.9200	108	3210	2950	3450	3239
50518	229.1040	130	4795	4512	5042	4781
50598	267.2880	151	2040	1662	2059	1915
50678	305.4720	173	4380	3830	4335	4155
50758	343.6560	194	2690	2590	2830	2785
50838	381.8400	216	2950	2970	2950	2905
50650	292.1076	165	2980	2985	2977	2920
50443	193.3065	109	2951	2985	2949	2906
50248	100.2330	57	2897	2970	2898	2862
50046	3.8184	2	2687	2920	2786	2724

Sapata de 1,50 m – Sucção = 23 kPa

Indicador de	Carga	Tensão	L1	L2	L3	L4
deformação	(kN)	(kPa)	(mm)	(mm)	(mm)	(mm)
50052	0.0000	0	200	200	100	100
50100	24.7008	14	329	323	232	237
50148	49.4016	28	453	418	365	385
50196	74.1024	42	613	546	484	525
50244	98.8032	56	820	743	675	740
50292	123.5040	70	1110	1010	925	1028
50340	148.2048	84	1630	1482	1373	1530
50388	172.9056	98	2375	2210	2058	2264
50436	197.6064	112	3250	3085	2887	3132
50484	222.3072	126	4333	4160	3922	4199
50532	247.0080	140	910	1045	1110	1250
50580	271.7088	154	2430	2550	2560	2750
50628	296.4096	168	3785	3910	3875	4090
50676	321.1104	182	1375	1480	1305	1370
50724	345.8112	196	3100	3195	2980	2968
50643	304.1286	172	3299	3399	3390	3483
50337	146.6610	83	3206	3308	3350	3425
50052	0.0000	0	3190	3206	3220	3335

ANEXO 3

Ensaios em Centrífuga

a) Ensaios em Areia Seca

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
32.3289	0.1080	0.0064	9	0
32.0980	0.1123	0.0107	15	0
31.7866	0.1172	0.0156	22	1
31.4025	0.1184	0.0168	24	1
30.9074	0.1168	0.0152	21	2
30.2698	0.1200	0.0184	26	2
28.9854	0.1191	0.0175	25	4
27.7311	0.1237	0.0222	31	5
26.1660	0.1237	0.0222	31	6
24.1305	0.1303	0.0287	40	8
19.4490	0.1430	0.0414	58	13
15.0128	0.1509	0.0493	69	18
11.0834	0.1631	0.0615	87	21
7.4200	0.1775	0.0759	107	25
4.9317	0.1879	0.0863	121	28
3.5617	0.1869	0.0853	120	29
2.8671	0.1901	0.0885	125	30
2.3477	0.1937	0.0921	130	30
1.8166	0.1966	0.0950	134	31
1.4834	0.1987	0.0971	137	31
1.3785	0.2057	0.1041	147	31
1.0521	0.1992	0.0976	137	31
0.7236	0.1989	0.0973	137	32
0.3954	0.2059	0.1043	147	32
0.1195	0.2044	0.1028	145	32
-0.1848	0.2037	0.1021	144	33
-0.4398	0.2065	0.1049	148	33
-0.6998	0.2071	0.1055	149	33
-0.8165	0.2061	0.1045	147	33
-1.3030	0.2038	0.1022	144	34
-1.6800	0.2120	0.1104	155	34
-2.0163	0.2100	0.1084	153	35
-2.2262	0.2115	0.1099	155	35
-2.5984	0.2090	0.1074	151	35
-2.9494	0.2111	0.1095	154	35
-3.2390	0.2131	0.1115	157	36
-3.3377	0.2168	0.1152	162	36
-3.7094	0.2130	0.1114	157	36
-4.3485	0.2166	0.1150	162	37
-4.7094	0.2208	0.1192	168	37
-4.9538	0.2201	0.1185	167	37
-5.0029	0.2234	0.1218	172	38
-5.0346	0.2281	0.1265	178	38
-5.6148	0.2210	0.1194	168	38
-5.9170	0.2231	0.1215	171	38
-6.5363	0.2233	0.1217	171	39
-7.3118	0.2279	0.1263	178	40
-7.4939	0.2328	0.1312	185	40
-7.7246	0.2292	0.1276	180	40

Placa de 30 mm – Ensaio a 1 g

Placa de 30 mm – Ensaio a 5 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
34.1887	0.0725	0.0000	0	0
34.1405	0.0761	0.0036	5	0
34.1023	0.0753	0.0027	4	0
34.0555	0.0734	0.0008	1	1
33.9839	0.0800	0.0075	11	1
33.9219	0.0821	0.0095	13	1
33.8925	0.0859	0.0134	19	1
33.8653	0.0831	0.0106	15	2
33.8421	0.0871	0.0146	21	2
33.8058	0.0914	0.0189	27	2
33.7690	0.0907	0.0181	26	2
33.7349	0.0913	0.0188	26	2
33.6959	0.0944	0.0219	31	2
33.6081	0.1011	0.0286	40	3
33.5134	0.1032	0.0307	43	3
33.4661	0.1051	0.0325	46	4
33.3831	0.1103	0.0378	53	4
33.1870	0.1124	0.0398	56	5
33.0581	0.1142	0.0417	59	6
32.9871	0.1163	0.0438	62	6
32.9349	0.1196	0.0471	66	6
32.5848	0.1234	0.0509	72	8
32.0135	0.1162	0.0437	62	11
31.4832	0.1271	0.0545	77	14
30.8748	0.1310	0.0584	82	17
30.1927	0.1354	0.0629	89	20
29.2355	0.1410	0.0685	96	25
27.4653	0.1503	0.0778	110	34
25.7806	0.1623	0.0897	126	42
24.7408	0.1743	0.1018	143	47
23.9335	0.1780	0.1055	149	51
23.2669	0.1794	0.1068	150	55
22.6051	0.1856	0.1130	159	58
21.6160	0.1954	0.1229	173	63
20.4416	0.2036	0.1311	185	69
19.7302	0.2145	0.1419	200	72
19.0406	0.2188	0.1462	206	76
18.5849	0.2273	0.1548	218	78
18.3254	0.2294	0.1569	221	79
18.1129	0.2341	0.1616	228	80
17.6172	0.2377	0.1651	233	83
16.5574	0.2454	0.1728	243	88
15.7922	0.2512	0.1786	252	92
15.3965	0.2591	0.1865	263	94
14.9630	0.2613	0.1888	200	96
13.6871	0.2733	0.2008	283	103
12.524/	0.2837	0.2112	297	108
11.9301	0.2912	0.2180	3Uð	110
11.5080	0.2994	0.2269	320	113

10.4413	0.3035	0.2310	325	119
9.1406	0.3171	0.2446	344	125
7.9536	0.3310	0.2584	364	131
7.3501	0.3341	0.2615	368	134
7.1034	0.3404	0.2679	377	135
6.9493	0.3452	0.2727	384	136
5.8413	0.3496	0.2771	390	142
4.7754	0.3586	0.2860	403	147
4.3358	0.3631	0.2905	409	149
4.1721	0.3551	0.2825	398	150
3.7941	0.3751	0.3026	426	152
3.1504	0.3779	0.3054	430	155
2.5296	0.3843	0.3118	439	158
1.9908	0.3914	0.3189	449	161
1.5517	0.3985	0.3260	459	163
1.2361	0.4003	0.3277	462	165
1.0369	0.4034	0.3308	466	166
0.8947	0.4035	0.3309	466	166
0.7812	0.4065	0.3339	470	167
0.3794	0.4076	0.3351	472	169
-1.7622	0.4246	0.3521	496	180
-3.4700	0.4464	0.3739	527	188
-3.8655	0.4507	0.3782	533	190
-4.5205	0.4616	0.3891	548	194
-6.7746	0.4841	0.4116	580	205

Placa de 30 mm – Ensaio a 10 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
22.1762	-0.0914	0.0000	0	0
22.0371	-0.0826	0.0088	12	1
21.9007	-0.0740	0.0174	25	3
21.8085	-0.0670	0.0244	34	4
21.7250	-0.0598	0.0317	45	5
21.6114	-0.0536	0.0379	53	6
21.5640	-0.0471	0.0443	62	6
21.4890	-0.0413	0.0502	71	7
21.3523	-0.0355	0.0560	79	8
21.0494	-0.0302	0.0612	86	11
20.2781	-0.0241	0.0674	95	19
20.1556	-0.0176	0.0739	104	20
20.0269	-0.0117	0.0797	112	21
17.1696	0.0125	0.1040	146	50
17.0975	0.0161	0.1075	151	51
16.9911	0.0187	0.1102	155	52
16.9033	0.0216	0.1130	159	53
16.8103	0.0250	0.1164	164	54
16.7126	0.0277	0.1192	168	55
16.6050	0.0299	0.1214	171	56
16.5232	0.0335	0.1249	176	57
16.4189	0.0358	0.1273	179	58
16.3194	0.0387	0.1301	183	59
16.2176	0.0414	0.1329	187	60
16.1035	0.0443	0.1357	191	61
16.0042	0.0469	0.1383	195	62
15.8780	0.0493	0.1408	198	63
15.7504	0.0526	0.1441	203	64
15.6173	0.0555	0.1470	207	66
15.4793	0.0578	0.1492	210	67
15.3301	0.0604	0.1518	214	68
15.2048	0.0635	0.1549	218	70
15.0751	0.0661	0.1575	222	71
14.8941	0.0679	0.1594	224	73
14.6761	0.0702	0.1616	228	75
14.5139	0.0725	0.1640	231	77
14.3047	0.0742	0.1656	233	79
14.1120	0.0763	0.1677	236	81
13.8899	0.0781	0.1695	239	83
13.5988	0.0786	0.1700	239	86
13.3427	0.0804	0.1745	242	88 00
13.1937	0.0830	0.1751	240	90
12./906	0.0836	0.1777	24/	94
12.0017	0.0051	0.1760	20U	90 20
12.2349	0.0000	0.1004	249	99
12.13/0	0.0890	0.1804	204 256	100
11.9307	0.0302	0.101/	200 957	102
11.0249	0.0307	0.10/1	201	107
11.9991	0.0922	0.1049	200	100

11.0167	0.0934	0.1849	260	112
10.8938	0.0966	0.1880	265	113
10.4215	0.0950	0.1864	263	118
10.3034	0.0999	0.1913	270	119
9.9527	0.0990	0.1905	268	122
9.7325	0.1026	0.1940	273	124
9.5150	0.1043	0.1958	276	127
9.1450	0.1057	0.1972	278	130
9.0283	0.1089	0.2003	282	131
8.5921	0.1071	0.1985	280	136
8.4329	0.1118	0.2033	286	137
8.2887	0.1142	0.2057	290	139
7.8394	0.1140	0.2055	289	143
7.7233	0.1178	0.2092	295	145
7.3648	0.1170	0.2084	294	148
7.1723	0.1198	0.2112	298	150
7.0310	0.1226	0.2140	301	151
6.6686	0.1226	0.2140	301	155
6.4747	0.1251	0.2166	305	157
6.1373	0.1253	0.2167	305	160
5.9091	0.1283	0.2197	309	163
5.7371	0.1305	0.2219	313	164
5.3886	0.1306	0.2220	313	168
5.1676	0.1335	0.2250	317	170
4.8073	0.1346	0.2260	318	174
4.5858	0.1365	0.2279	321	176
4.3213	0.1381	0.2295	323	179
3.9969	0.1401	0.2315	326	182
3.8186	0.1428	0.2343	330	184
3.3336	0.1411	0.2326	328	188
3.1877	0.1456	0.2370	334	190
3.0258	0.1484	0.2399	338	192
2.5351	0.1477	0.2391	337	196
2.3896	0.1515	0.2430	342	198
1.9931	0.1522	0.2436	343	202
1.7772	0.1553	0.2468	348	204
1.4513	0.1562	0.2476	349	207
1.1737	0.1591	0.2506	353	210
0.9196	0.1610	0.2524	356	213
0.5351	0.1613	0.2527	356	216
0.2660	0.1637	0.2551	359	219
-0.0490	0.1651	0.2566	361	222
-0.3144	0.1670	0.2585	364	225
-0.6541	0.1678	0.2593	365	228
-0.9581	0.1703	0.2618	369	231
-1.2163	0.1721	0.2635	371	234
-1.5858	0.1723	0.2638	371	238
-1.8470	0.1751	0.2666	375	240
-2.1904	0.1770	0.2685	378	244
-2.4470	0.1792	0.2707	381	246
-2.7637	0.1808	0.2723	383	249
-3.1170	0.1826	0.2740	386	253

-3.3811	0.1850	0.2765	389	256
-3.7048	0.1863	0.2778	391	259
-4.0656	0.1881	0.2795	394	262
-4.3081	0.1915	0.2830	399	265
-4.7482	0.1918	0.2832	399	269
-4.9901	0.1961	0.2875	405	272
-5.3457	0.1977	0.2891	407	275
-5.6705	0.2018	0.2932	413	278
-5.8565	0.2088	0.3002	423	280
-6.1203	0.2175	0.3089	435	283
-6.5995	0.2189	0.3104	437	288
-6.7665	0.2275	0.3189	449	289
-7.1587	0.2307	0.3221	454	293
-7.4433	0.2331	0.3246	457	296
-7.7850	0.2341	0.3255	458	300
-8.1748	0.2349	0.3263	460	304
-8.4355	0.2389	0.3304	465	306
-8.8233	0.2391	0.3305	466	310
-9.1538	0.2414	0.3328	469	313
-9.4388	0.2447	0.3361	473	316
-9.8962	0.2445	0.3360	473	321
-10.1739	0.2473	0.3388	477	324
-10.5810	0.2465	0.3379	476	328
-10.8522	0.2449	0.3363	474	330
-11.0615	0.2474	0.3388	477	332
-11.4600	0.2471	0.3385	477	336
-11.8053	0.2493	0.3407	480	340
-12.1351	0.2512	0.3427	483	343
-12.4551	0.2565	0.3479	490	346
-12.8746	0.2576	0.3491	492	351
-13.2412	0.2591	0.3505	494	354
-13.6098	0.2608	0.3523	496	358
-13.9766	0.2626	0.3541	499	362
-14.3640	0.2641	0.3556	501	365

Placa de 30 mm – Ensaio a 15 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
32.2343	-0.0128	0.0000	0	0
32.1634	-0.0062	0.0066	9	1
32.1234	-0.0003	0.0125	18	2
32.1116	0.0010	0.0138	19	2
32.1018	0.0013	0.0141	20	2
32.0194	0.0134	0.0262	37	3
31.9537	0.0191	0.0319	45	4
31.9286	0.0215	0.0342	48	5
31.7451	0.0371	0.0499	70	7
31.5957	0.0463	0.0591	83	10
31.5711	0.0463	0.0591	83	10
31.5462	0.0434	0.0562	79	10
31.5411	0.0484	0.0612	86	10
31.3593	0.0603	0.0731	103	13
31.1524	0.0678	0.0805	113	16
31.1092	0.0642	0.0770	108	17
31.0594	0.0712	0.0840	118	18
30.9317	0.0742	0.0870	123	20
30.7351	0.0808	0.0936	132	22
29.9342	0.1084	0.1212	171	35
29.0668	0.1125	0.1253	176	48
28.4223	0.1167	0.1295	182	57
28.0122	0.1213	0.1340	189	63
27.8152	0.1248	0.1376	194	66
27.6200	0.1230	0.1357	191	69
25.1540	0.1527	0.1655	233	106
23.8444	0.1650	0.1778	250	126
23.2843	0.1739	0.1866	263	134
23.1427	0.1762	0.1890	266	136
22.5455	0.1763	0.1891	266	145
21.6813	0.1859	0.1987	280	158
21.0137	0.1954	0.2082	293	168
19.0742	0.2131	0.2259	318	197
18.4340	0.2220	0.2348	331	207
18.3328	0.2234	0.2362	333	209
17.1466	0.2329	0.2457	346	226
16.6618	0.2389	0.2517	355	234
16.5458	0.2432	0.2559	360	235
16.4883	0.2455	0.2583	364	236
16.4287	0.2476	0.2604	367	237
15.4017	0.2515	0.2643	372	252
14.8830	0.2579	0.2707	381	260
14.7800	0.2615	0.2743	386	262
14.1659	0.2636	0.2764	389	2/1
13.5515	0.2759	0.2887	407	280
13.2661	0.2798	0.2926	412	285
13.1/48	0.2862	0.2990	421	280
11.9635	0.2919	0.3046	429	304
11.2004	0.3038	0.3165	440	316

10.7088	0.3094	0.3222	454	323
10.6013	0.3155	0.3283	462	324
9.7556	0.3234	0.3362	474	337
9.3725	0.3304	0.3432	483	343
8.2953	0.3364	0.3492	492	359
7.1219	0.3492	0.3620	510	377
6.9058	0.3635	0.3763	530	380
6.7681	0.3712	0.3840	541	382
5.8433	0.3792	0.3920	552	396
5.3596	0.3874	0.4002	564	403
5.0894	0.3867	0.3995	563	407
4.8494	0.3903	0.4031	568	411
3.3435	0.4073	0.4201	592	433
2.7333	0.4157	0.4284	603	443
2.5980	0.4227	0.4354	613	445
1.4792	0.4332	0.4460	628	461
0.5288	0.4475	0.4603	648	476
0.3890	0.4559	0.4686	660	478
-0.5729	0.4617	0.4744	668	492
-1.7944	0.4784	0.4912	692	510
-2.5381	0.4879	0.5007	705	522
-2.6816	0.4952	0.5080	716	524
-4.0613	0.4969	0.5097	718	544
-4.7281	0.5122	0.5250	739	554
-4.8862	0.5167	0.5295	746	557
-6.0932	0.5211	0.5339	752	575
-7.6433	0.5405	0.5532	779	598

Placa de 30 mm – Ensaio a 25 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
21.2801	-0.1555	0.0000	0	0
21.1450	-0.1482	0.0073	10	3
21.0418	-0.1431	0.0123	17	6
20.9471	-0.1382	0.0173	24	8
20.8796	-0.1296	0.0258	36	10
20.8256	-0.1287	0.0268	38	11
20.7678	-0.1254	0.0301	42	13
20.7301	-0.1232	0.0322	45	14
20.6870	-0.1194	0.0361	51	15
20.6550	-0.1172	0.0383	54	16
20.6246	-0.1151	0.0404	57	16
20.5997	-0.1129	0.0426	60	17
20.5731	-0.1112	0.0443	62	18
20.5553	-0.1096	0.0459	65	18
20.5353	-0.1084	0.0470	66	19
20.5216	-0.1072	0.0483	68	19
20.5045	-0.1057	0.0498	70	19
20.4929	-0.1040	0.0514	72	20
20.4769	-0.1031	0.0524	74	20
20.4626	-0.1021	0.0534	75	20
20.4507	-0.1014	0.0541	76	21
20.4404	-0.1004	0.0551	78	21
20.4283	-0.0995	0.0560	79	21
20.4204	-0.0988	0.0567	80	21
20.4087	-0.0979	0.0576	81	22
20.4037	-0.0974	0.0581	82	22
20.3969	-0.0968	0.0587	83	22
20.3946	-0.0962	0.0593	83	22
20.3895	-0.0959	0.0596	84	22
20.3856	-0.0953	0.0602	85	22
20.3799	-0.0951	0.0604	85	23
20.3754	-0.0929	0.0626	88	23
20.3734	-0.0928	0.0627	88	23
20.3688	-0.0922	0.0633	89	23
20.3668	-0.0922	0.0633	89	23
20.3761	-0.0902	0.0653	92	23
20.3730	-0.0906	0.0649	91	23
20.3574	-0.0918	0.0637	90	23
20.3224	-0.0917	0.0638	90	24
20.3024	-0.0902	0.0653	92	24
20.2800	-0.0890	0.0665	94	25
20.2579	-0.0873	0.0682	96	26
20.2469	-0.0862	0.0693	98	26
20.2317	-0.0848	0.0707	100	26
20.2203	-0.0839	0.0716	101	26
20.2098	-0.0826	0.0729	103	27
20.1999	-0.0819	0.0736	104	27
20.1908	-0.0817	0.0738	104	27
20.1823	-0.0810	0.0745	105	27

20.1760	-0.0804	0.0751	106	28
20.1678	-0.0794	0.0761	107	28
20.1607	-0.0793	0.0762	107	28
20.1555	-0.0787	0.0768	108	28
20.1465	-0.0783	0.0772	109	28
20.1426	-0.0778	0.0777	109	28
20.1373	-0.0771	0.0784	110	29
20.1320	-0.0768	0.0786	111	29
20.1267	-0.0764	0.0791	111	29
20.1241	-0.0758	0.0797	112	29
20.1211	-0.0757	0.0797	112	29
20.1168	-0.0751	0.0804	113	29
20.1248	-0.0733	0.0822	116	29
20.1310	-0.0708	0.0847	119	29
20.1232	-0.0717	0.0838	118	29
20.1099	-0.0730	0.0825	116	29
20.0854	-0.0750	0.0805	113	30
20.0600	-0.0656	0.0899	127	31
20.0372	-0.0661	0.0894	126	31
20.0218	-0.0656	0.0899	127	31
20.0062	-0.0652	0.0903	127	32
19.9920	-0.0647	0.0908	128	32
19.9805	-0.0646	0.0909	128	32
19.9718	-0.0646	0.0909	128	33
19.9639	-0.0646	0.0909	128	33
19.9567	-0.0643	0.0912	128	33
19,9500	-0.0642	0.0913	129	33
19.9433	-0.0639	0.0916	129	33
19.9371	-0.0641	0.0914	129	34
19.9296	-0.0638	0.0917	129	34
19.9260	-0.0633	0.0922	130	34
19.9216	-0.0632	0.0923	130	34
19.9160	-0.0632	0.0923	130	34
19.9102	-0.0630	0.0924	130	34
19.9053	-0.0626	0.0929	131	34
19.9036	-0.0625	0.0930	131	34
19.9005	-0.0621	0.0934	131	34
19.8978	-0.0614	0.0941	133	35
19.6306	-0.0445	0.1110	156	41
19.6297	-0.0387	0.1168	165	41
19.6257	-0.0341	0.1214	171	41
16.9906	0.0136	0.1691	238	107
16.8324	0.0147	0.1702	240	111
16.6100	0.0158	0.1712	241	117
16.4731	0.0174	0.1729	243	120
16.2759	0.0192	0.1747	246	125
15.8664	0.0218	0.1773	250	135
15.7201	0.0261	0.1816	256	139
12.7880	0.0892	0.2447	345	212
12.6636	0.0929	0.2484	350	215
12.5029	0.0955	0.2510	354	219
12.2427	0.0977	0.2532	357	226

12.0404	0.1011	0.2566	361	231
11.8655	0.1046	0.2601	366	235
11.6564	0.1074	0.2629	370	241
11.3757	0.1104	0.2658	374	248
11.2406	0.1144	0.2699	380	251
11.1169	0.1177	0.2732	385	254
10.9166	0.1197	0.2752	388	259
10.6971	0.1215	0.2770	390	265
10.6001	0.1246	0.2801	394	267
10.5257	0.1282	0.2837	400	269
10.4194	0.1311	0.2866	404	272
10.1888	0.1328	0.2883	406	277
9.9094	0.1355	0.2909	410	284
9.8034	0.1390	0.2945	415	287
2.6126	0.1965	0.3520	496	467
2.4019	0.1994	0.3549	500	472
2.2506	0.2020	0.3575	504	476
1.9328	0.2042	0.3597	507	484
1.5399	0.2066	0.3621	510	494
1.3279	0.2109	0.3664	516	499
0.8740	0.2134	0.3689	520	510
0.5294	0.2165	0.3720	524	519
0.2355	0.2200	0.3755	529	526
-0.2688	0.2216	0.3771	531	539
-0.6953	0.2244	0.3799	535	549
-1.1037	0.2273	0.3828	539	560
-1.6047	0.2297	0.3851	542	572
-1.9597	0.2332	0.3887	547	581
-2.6032	0.2347	0.3901	550	597
-2.9384	0.2383	0.3937	555	605
-3.4975	0.2404	0.3959	558	619
-3.9426	0.2432	0.3987	562	631
-4.3295	0.2464	0.4019	566	640
-4.8952	0.2483	0.4038	569	654
-5.2933	0.2509	0.4064	572	664
-5.8278	0.2535	0.4090	576	678
-6.2385	0.2556	0.4111	579	688
-6.6629	0.2580	0.4135	582	699
-7.0842	0.2603	0.4158	586	709
-7.6199	0.2618	0.4173	588	722
-8.0997	0.2637	0.4192	590	734
-8.5038	0.2657	0.4212	593	745
-8.9387	0.2679	0.4234	596	755
-9.4563	0.2696	0.4251	599	768
-9.8822	0.2712	0.4267	601	779
-10.3762	0.2729	0.4284	603	791
-10.8565	0.2746	0.4301	606	803
-11.2899	0.2764	0.4319	608	814
-11.7445	0.2776	0.4331	610	826
-12.1319	0.2793	0.4348	612	835
-12.6005	0.2801	0.4356	613	847
-13.0055	0.2809	0.4363	615	857

-13.3671	0.2812	0.4367	615	866
-13.6498	0.2806	0.4361	614	873
-13.7354	0.2864	0.4419	622	875
-13.8222	0.2898	0.4452	627	878
-14.6687	0.2888	0.4443	626	899
-15.1792	0.2900	0.4455	628	911
-15.4109	0.2917	0.4472	630	917
-15.8104	0.2925	0.4480	631	927
-16.3044	0.2929	0.4484	632	940
-16.6240	0.2941	0.4496	633	948
-16.9563	0.2951	0.4506	635	956
-17.2499	0.2939	0.4494	633	963
-17.3087	0.2927	0.4482	631	965
-17.3283	0.2926	0.4481	631	965
-17.3394	0.2927	0.4481	631	965
-17.3481	0.2926	0.4481	631	966
-17.3528	0.2927	0.4482	631	966
-17.3584	0.2928	0.4483	631	966
-17.3604	0.2929	0.4484	631	966
-17.3644	0.2929	0.4484	632	966
-17.3674	0.2930	0.4485	632	966
-17.3692	0.2932	0.4487	632	966
-17.3710	0.2933	0.4488	632	966
-17.3743	0.2934	0.4489	632	966
-17.3736	0.2936	0.4491	633	966
-17.3759	0.2938	0.4493	633	966
-17.3758	0.2940	0.4495	633	966
-17.3768	0.2942	0.4497	633	966
-17.3782	0.2944	0.4499	634	966
-17.3795	0.2947	0.4501	634	966
-17.3799	0.2951	0.4506	635	966
-17.3801	0.2955	0.4510	635	967
-17.3807	0.2960	0.4514	636	967
-17.3803	0.2965	0.4519	637	967
-17.3805	0.2968	0.4523	637	967
-17.3806	0.2972	0.4527	638	967

Placa de 30 mm – Ensaio a 50 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
14.7449	-0.3183	0.0000	0	0
14.6681	-0.3089	0.0094	13	4
14.6057	-0.3001	0.0182	26	7
14.5723	-0.2926	0.0257	36	9
14.5367	-0.2871	0.0312	44	10
14.5029	-0.2821	0.0362	51	12
14.4686	-0.2778	0.0405	57	14
14.4394	-0.2735	0.0447	63	15
14.4225	-0.2696	0.0487	69	16
14.4084	-0.2658	0.0525	74	17
14.3910	-0.2631	0.0552	78	18
14.3782	-0.2601	0.0582	82	18
14.3685	-0.2575	0.0608	86	19
14.3588	-0.2554	0.0629	89	19
14.3472	-0.2532	0.0651	92	20
14.3312	-0.2481	0.0702	99	21
14.3077	-0.2469	0.0714	101	22
14.2972	-0.2444	0.0739	104	22
14.2828	-0.2427	0.0756	107	23
14.2789	-0.2409	0.0774	109	23
14.2749	-0.2388	0.0795	112	23
14.2479	-0.2366	0.0817	115	25
14.2050	-0.2340	0.0843	119	27
14.1779	-0.2310	0.0873	123	28
14.1500	-0.2282	0.0901	127	30
14.1262	-0.2260	0.0923	130	31
14.0974	-0.2244	0.0939	132	32
14.0766	-0.2225	0.0958	135	33
14.0586	-0.2208	0.0974	137	34
14.0265	-0.2199	0.0984	139	36
14.0078	-0.2185	0.0998	141	37
13.9947	-0.2173	0.1010	142	38
13.9828	-0.2157	0.1026	144	38
13.9717	-0.2146	0.1037	146	39
13.9563	-0.2139	0.1044	147	39
13.9441	-0.2131	0.1052	148	40
13.9344	-0.2121	0.1062	150	41
13.9287	-0.2108	0.1075	151	41
13.9131	-0.2099	0.1084	153	42
13.9039	-0.2092	0.1090	154	42
13.8900	-0.2089	0.1094	154	42
13.8931	-0.2082	0.1101	100	43
13.8804		0.1107	150	43
10.0/0/	-0.2009	0.1114	137	43
13.8080	-0.2005	0.1100	157	44
13.804/	-0.2057	0.1120	159	44
13.0303	-0.2030	0.1140	109	44
13.0330	-0.2043	0.1140	101	44
10.0000	-0.2030	0.1100	102	44

13.8559	-0.2017	0.1165	164	44
13.8415	-0.2007	0.1176	166	45
13.8304	-0.1998	0.1185	167	46
13.8159	-0.1988	0.1195	168	46
13.7971	-0.1977	0.1206	170	47
13.7817	-0.1976	0.1207	170	48
13.7590	-0.1969	0.1214	171	49
13.7291	-0.1968	0.1215	171	51
13.7036	-0.1967	0.1216	171	52
13.6963	-0.1961	0.1222	172	52
13.6918	-0.1957	0.1226	173	53
13.6876	-0.1946	0.1237	174	53
13.6817	-0.1939	0.1244	175	53
13.6775	-0.1934	0.1249	176	53
13.6657	-0.1928	0.1255	177	54
13.6632	-0.1923	0.1260	177	54
13.6483	-0.1919	0.1264	178	55
13.6407	-0.1914	0.1269	179	55
13.6303	-0.1911	0.1272	179	56
13.6152	-0.1911	0.1272	179	56
13.6040	-0.1906	0.1277	180	57
13.5909	-0.1905	0.1278	180	58
13.5801	-0.1901	0.1282	181	58
13.5696	-0.1899	0.1284	181	59
13.5596	-0.1882	0.1301	183	59
13.5518	-0.1863	0.1320	186	60
13.5366	-0.1838	0.1345	189	60
13.5085	-0.1813	0.1370	193	62
13.4706	-0.1792	0.1391	196	64
13.4313	-0.1767	0.1416	199	66
13.3740	-0.1749	0.1434	202	69
13.3089	-0.1718	0.1465	206	72
13.2395	-0.1689	0.1494	210	75
13.1693	-0.1651	0.1532	216	79
13.0863	-0.1614	0.1569	221	83
12.9976	-0.1569	0.1614	227	87
12.8933	-0.1527	0.1656	233	93
12.7869	-0.1485	0.1698	239	98
12.6865	-0.1446	0.1737	245	103
12.5757	-0.1415	0.1768	249	108
12.4810	-0.1384	0.1799	253	113
12.3729	-0.1356	0.1827	257	119
12.3089	-0.1335	0.1848	260	122
12.2424	-0.1318	0.1865	263	125
12.1994	-0.1297	0.1886	266	127
12.1580	-0.1280	0.1903	268	129
12.1225	-0.1268	0.1915	270	131
12.0819	-0.1259	0.1923	271	133
12.0467	-0.1250	0.1932	272	135
12.0246	-0.1245	0.1938	273	136
12.0013	-0.1239	0.1944	274	137
11.9776	-0.1241	0.1942	273	138
11.9528	-0.1243	0.1940	273	140
---------	---------	--------	-----	-----
11.9326	-0.1245	0.1938	273	141
11.9210	-0.1241	0.1942	273	141
11.9034	-0.1246	0.1937	273	142
11.8940	-0.1243	0.1940	273	143
11.8826	-0.1241	0.1942	273	143
11.8688	-0.1231	0.1952	275	144
11.8594	-0.1208	0.1975	278	144
11.8499	-0.1178	0.2005	282	145
11.8279	-0.1138	0.2045	288	146
11.7768	-0.1110	0.2073	292	148
10.3303	-0.1001	0.2182	307	221
10.2228	-0.0954	0.2229	314	226
10.1458	-0.0911	0.2271	320	230
10.0478	-0.0876	0.2306	325	235
9.8767	-0.0838	0.2345	330	243
9.4475	-0.0830	0.2353	331	265
9.2578	-0.0784	0.2399	338	274
9.0956	-0.0754	0.2429	342	282
8.6872	-0.0731	0.2452	345	303
8.4291	-0.0694	0.2489	351	316
8.2640	-0.0646	0.2537	357	324
7.8980	-0.0604	0.2579	363	342
7.4971	-0.0568	0.2615	368	362
7.2245	-0.0520	0.2663	375	376
6.8943	-0.0476	0.2707	381	393
6.5395	-0.0446	0.2737	386	410
6.2984	-0.0402	0.2781	392	422
5.8763	-0.0368	0.2815	396	443
5.5714	-0.0331	0.2851	402	459
5.3105	-0.0287	0.2896	408	472
4.8932	-0.0257	0.2926	412	493
4.6549	-0.0219	0.2964	417	504
4.3837	-0.0182	0.3001	423	518
3.9843	-0.0152	0.3031	427	538
3.6701	-0.0116	0.3067	432	554
3.3110	-0.0081	0.3101	437	572
2.9659	-0.0049	0.3133	441	589
2.5800	-0.0015	0.3168	446	608
2.1527	0.0012	0.3195	450	630
1.8212	0.0057	0.3240	456	646
1.4771	0.0087	0.3270	461	663
1.1057	0.0127	0.3310	466	682
0.6918	0.0156	0.3339	470	703
0.2922	0.0186	0.3369	475	723
-0.1088	0.0223	0.3406	480	743
-0.5335	0.0255	0.3437	484	764
-0.8924	0.0285	0.3468	488	782
-1.3546	0.0317	0.3500	493	805
-1.8037	0.0347	0.3530	497	827
-2.2135	0.0370	0.3553	500	848
-2.7346	0.0400	0.3582	505	874

-3.1229	0.0428	0.3611	509	893
-3.5747	0.0459	0.3642	513	916
-4.0249	0.0481	0.3664	516	938
-4.3552	0.0516	0.3699	521	955
-4.8429	0.0545	0.3728	525	979
-7.6660	0.0860	0.4043	569	1121
-8.0926	0.0887	0.4070	573	1142
-8.6179	0.0909	0.4092	576	1168
-9.0423	0.0934	0.4117	580	1189
-9.5492	0.0950	0.4133	582	1215
-11.9121	0.1263	0.4446	626	1333
-12.4400	0.1274	0.4457	628	1359
-15.4847	0.1632	0.4815	678	1511
-15.9957	0.1644	0.4826	680	1537
-16.4161	0.1666	0.4849	683	1558
-16.9543	0.1682	0.4865	685	1585
-17.4037	0.1697	0.4880	687	1607
-17.9106	0.1710	0.4893	689	1633
-18.4128	0.1710	0.4893	689	1658
-18.8623	0.1724	0.4907	691	1680

Placa de 30 mm – Ensaio a 100 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
23.0338	-0.1396	0.0000	0	0
23.0178	-0.1331	0.0065	9	2
22.9191	-0.1298	0.0099	14	11
22.8635	-0.1227	0.0170	24	17
22.8066	-0.1165	0.0231	33	23
22.7588	-0.1107	0.0289	41	28
22.7202	-0.1037	0.0359	51	31
22.6764	-0.0981	0.0416	59	36
22.6371	-0.0927	0.0469	66	40
22.5891	-0.0865	0.0531	75	44
22.5406	-0.0802	0.0595	84	49
22.4939	-0.0735	0.0662	93	54
22.4395	-0.0663	0.0733	103	59
22.3845	-0.0596	0.0800	113	65
22.3367	-0.0535	0.0862	121	70
22.2943	-0.0480	0.0916	129	74
22.2547	-0.0419	0.0977	138	78
22.1969	-0.0360	0.1036	146	84
22.1406	-0.0285	0.1112	157	89
22.0838	-0.0213	0.1184	167	95
22.0149	-0.0149	0.1248	176	102
21.9559	-0.0073	0.1324	186	108
21.8923	0.0000	0.1396	197	114
21.8463	0.0058	0.1455	205	119
21.7964	0.0161	0.1557	219	124
21.7487	0.0231	0.1627	229	129
21.7047	0.0262	0.1658	234	133
21.6694	0.0266	0.1663	234	136
21.6383	0.0269	0.1665	235	140
21.6105	0.0269	0.1666	235	142
21.5836	0.0272	0.1668	235	145
21.5519	0.0276	0.1673	236	148
21.5217	0.0279	0.1675	236	151
21.4805	0.0281	0.1678	236	155
21.4399	0.0284	0.1681	237	159
21.4044	0.0291	0.1687	238	163
21.3676	0.0303	0.1699	239	167
21.3204	0.0322	0.1718	242	171
21.2710	0.0348	0.1745	246	176
21.2160	0.0380	0.1777	250	182
21.1696	0.0406	0.1802	254	186
21.1238	0.0433	0.1830	258	191
21.0855	0.0461	0.1858	262	195
21.0386	0.0487	0.1884	265	200
20.9968	0.0521	0.1918	270	204
20.9518	0.0563	0.1959	276	208
20.9079	0.0600	0.1997	281	213
20.8457	0.0636	0.2032	286	219
20.7556	0.0675	0.2071	292	228

20.6447	0.0718	0.2114	298	239
20.5801	0.0773	0.2169	305	245
20.5207	0.0835	0.2232	314	251
20.4133	0.0872	0.2268	319	262
20.2993	0.0935	0.2332	328	273
20.1728	0.0996	0.2392	337	286
20.0260	0.1056	0.2453	345	301
19.9123	0.1141	0.2538	357	312
19.7567	0.1201	0.2597	366	328
16.8249	0.1681	0.3077	433	621
16.6603	0.1749	0.3146	443	637
16.2239	0.1830	0.3226	454	681
16.1081	0.1938	0.3334	470	693
15.7175	0.1991	0.3387	477	732
15.5365	0.2093	0.3489	491	750
15.3997	0.2183	0.3579	504	763
15.0219	0.2241	0.3637	512	801
14.9319	0.2315	0.3712	523	810
14.8307	0.2379	0.3776	532	820
14.6309	0.2416	0.3812	537	840
14.2786	0.2466	0.3862	544	876
14.1941	0.2533	0.3929	553	884
14.1334	0.2601	0.3997	563	890
13.9892	0.2640	0.4036	568	904
13.5219	0.2663	0.4060	572	951
13.4524	0.2737	0.4133	582	958
13.3898	0.2806	0.4202	592	964
13.2698	0.2852	0.4248	598	976
12.7485	0.2860	0.4256	600	1029
12.6897	0.2940	0.4337	611	1034
12.6151	0.3009	0.4405	620	1042
12.4166	0.3025	0.4421	623	1062
12.1550	0.3072	0.4468	629	1088
12.0484	0.3135	0.4532	638	1099
11.8994	0.3172	0.4569	643	1113
11.6338	0.3187	0.4583	646	1140
11.5320	0.3247	0.4644	654	1150
11.4488	0.3302	0.4698	662	1158
11.3440	0.3342	0.4738	667	1169
11.1575	0.3356	0.4753	669	1188
10.9978	0.3394	0.4790	675	1204
10.8617	0.3438	0.4835	681	1217
10.7159	0.3474	0.4870	686	1232
10.5179	0.3487	0.4883	688	1252
10.3621	0.3520	0.4917	692	1267
10.2719	0.3581	0.4977	701	1276
10.1533	0.3609	0.5006	705	1288
9.9362	0.3602	0.4998	704	1310
9.8219	0.3648	0.5044	710	1321
9.7509	0.3689	0.5085	716	1328
9.7021	0.3721	0.5118	721	1333
9.6362	0.3752	0.5148	725	1340

9.5117	0.3775	0.5172	728	1352
9.1207	0.3745	0.5141	724	1391
9.0472	0.3811	0.5207	733	1399
9.0037	0.3863	0.5259	741	1403
8.9626	0.3911	0.5307	747	1407
8.9049	0.3946	0.5343	753	1413
8.7682	0.3949	0.5346	753	1427
8.3058	0.3912	0.5308	748	1473
8.2444	0.3984	0.5380	758	1479
8.1869	0.4058	0.5455	768	1485
8.0942	0.4102	0.5498	774	1494
7.6489	0.4033	0.5429	765	1538
7.4907	0.4125	0.5522	778	1554
7.3959	0.4188	0.5584	787	1564
7.2732	0.4252	0.5648	796	1576
6.7608	0.4217	0.5614	791	1627
6.6166	0.4294	0.5690	801	1642
6.5430	0.4369	0.5765	812	1649
6.4540	0.4445	0.5841	823	1658
6.2503	0.4475	0.5871	827	1678
5.6570	0.4445	0.5842	823	1738
5.5649	0.4533	0.5930	835	1747
5.3783	0.4555	0.5952	838	1766
4.9226	0.4544	0.5940	837	1811
4.7145	0.4571	0.5967	840	1832
4.5382	0.4644	0.6041	851	1850
4.3719	0.4682	0.6079	856	1866
3.9575	0.4630	0.6026	849	1908
3.7250	0.4684	0.6080	856	1931
3.5834	0.4754	0.6150	866	1945
3.0492	0.4697	0.6094	858	1998
2.8407	0.4757	0.6154	867	2019
2.6432	0.4829	0.6226	877	2039
2.2457	0.4810	0.6206	874	2079
2.0091	0.4894	0.6290	886	2102
1.9509	0.5004	0.6400	901	2108
1.8557	0.5070	0.6466	911	2118
1.1362	0.4926	0.6322	890	2190
0.9578	0.4982	0.6378	898	2208
0.8404	0.5066	0.6462	910	2219
0.7066	0.5135	0.6531	920	2233
0.2061	0.5054	0.6450	908	2283
0.1058	0.5170	0.6566	925	2293
0.0212	0.5217	0.6614	932	2301
-0.1109	0.5222	0.6618	932	2314
-0.3476	0.5239	0.6635	935	2338
-0.4602	0.5302	0.6698	943	2349
-0.5113	0.5374	0.6771	954	2355
-0.5605	0.5419	0.6816	960	2359
-0.6381	0.5434	0.6831	962	2367
-0.7055	0.5462	0.6858	966	2374
-0.8450	0.5436	0.6832	962	2388

-1.0651	0.5419	0.6815	960	2410
-1.1948	0.5443	0.6839	963	2423
-1.2883	0.5445	0.6841	964	2432
-1.3585	0.5488	0.6884	970	2439
-1.4568	0.5495	0.6891	971	2449
-1.5995	0.5510	0.6906	973	2463
-1.7320	0.5515	0.6912	973	2477
-1.8587	0.5535	0.6931	976	2489
-2.0680	0.5519	0.6916	974	2510
-2.2919	0.5563	0.6959	980	2533
-2.3748	0.5634	0.7031	990	2541
-2.5104	0.5621	0.7018	988	2554
-2.6768	0.5632	0.7028	990	2571
-2.9477	0.5663	0.7059	994	2598
-3.1171	0.5671	0.7068	995	2615
-3.3012	0.5670	0.7066	995	2634
-3.4991	0.5727	0.7123	1003	2653
-3.5886	0.5830	0.7226	1018	2662
-3.7307	0.5839	0.7235	1019	2676
-4.1308	0.5802	0.7198	1014	2716
-4.3402	0.5826	0.7222	1017	2737
-4.4138	0.5904	0.7300	1028	2745
-4.4964	0.5957	0.7354	1036	2753
-4.6082	0.6018	0.7415	1044	2764
-4.8135	0.6059	0.7456	1050	2785
-5.2754	0.5986	0.7382	1040	2831
-5.3950	0.6095	0.7492	1055	2843
-5.4987	0.6145	0.7541	1062	2853
-5.6624	0.6172	0.7568	1066	2870
-5.9536	0.6237	0.7634	1075	2899
-6.1455	0.6264	0.7660	1079	2918
-6.4497	0.6287	0.7684	1082	2948
-6.6484	0.6397	0.7793	1098	2968
-6.8184	0.6417	0.7814	1101	2985
-7.0070	0.6492	0.7889	1111	3004
-7.1144	0.6619	0.8015	1129	3015
-7.2904	0.6646	0.8042	1133	3032
-7.7125	0.6644	0.8041	1132	3075
-7.9813	0.6638	0.8035	1132	3102
-8.1508	0.6672	0.8068	1136	3118
-8.2815	0.6789	0.8186	1153	3132
-8.4936	0.6796	0.8192	1154	3153
-8.8863	0.6743	0.8139	1146	3192
-9.1471	0.6750	0.8147	1147	3218
-9.2801	0.6794	0.8190	1154	3231
-9.3972	0.6825	0.8221	1158	3243
-9.5101	0.6908	0.8304	1170	3254
-9.6646	0.6952	0.8349	1176	3270
-9.9002	0.6913	0.8310	1170	3293
-10.1913	0.6935	0.8332	1173	3323
-10.3491	0.6978	0.8374	1179	3338
-10.4550	0.6997	0.8393	1182	3349

-10.5573	0.7028	0.8425	1187	3359
-10.6874	0.7065	0.8462	1192	3372
-10.8913	0.7146	0.8542	1203	3393
-11.1467	0.7123	0.8520	1200	3418
-11.2868	0.7133	0.8529	1201	3432
-11.3896	0.7163	0.8559	1206	3442
-11.4598	0.7236	0.8632	1216	3449
-11.5483	0.7267	0.8664	1220	3458
-11.6250	0.7293	0.8689	1224	3466
-11.7256	0.7281	0.8677	1222	3476
-11.8233	0.7297	0.8693	1224	3486
-11.9232	0.7282	0.8679	1222	3496
-11.9964	0.7310	0.8706	1226	3503
-12.0465	0.7342	0.8738	1231	3508
-12.0824	0.7373	0.8769	1235	3512
-12.1208	0.7378	0.8775	1236	3515
-12.1487	0.7384	0.8781	1237	3518

Carga (kN) LVDT Célula de carga Tensão (kN) Recalque (mm) 18.5383 1.4290 0 0 0 17.6911 3.9768 2.54779 8 1 17.3716 5.7300 4.30098 13 1 17.2454 7.3318 5.9028 18 1 17.1837 7.2561 5.82713 17 1 17.1508 7.3822 5.95326 18 1 19 16.9573 6.1929 2 7.6219 16.6236 10.0562 8.62718 26 2 2 16.5270 9.45962 28 10.8886 16.4997 11.1030 9.67404 29 2 2 16.1231 13.4995 12.0705 36 3 15.9848 14.2184 12.7894 38 15.9496 13.2561 14.6851 40 3 15.8379 13.9876 42 3 15.4166 15.4597 17.2707 15.8417 48 3 15.3708 18.5950 51 3 17.1661 15.1769 19.7428 18.3138 55 3 14.8730 19.7265 21.1555 59 4 14.7929 21.0798 19.6508 59 4 14.7688 22.0510 20.622 62 4 14.7573 22.1897 20.7607 62 4 14.7198 23.1861 21.7571 65 4 14.2069 24.1951 22.7662 68 4 70 14.0841 24.6114 23.1824 4 14.0439 24.8888 23.4599 70 4 13.5409 25.7970 24.368 73 5 13.0608 26.5537 25.1248 75 5 12.5402 74 6 26.1123 24.6833 10.9689 23.0436 24.4726 69 8 5.7866 57 13 20.5248 19.0958 2.5644 23.8168 22.3878 67 16 0.2146 28.0168 26.5878 80 18 -1.620030.7160 29.287 88 20 92 22 -3.321532.0277 30.5987 -5.496331.4601 30.0311 90 24 -7.1553 34.8278 33.3988 100 26 -8.095236.2530 34.824 104 27 -8.9511 36.0134 34.5844 104 27 -9.6439 39.3810 37.952 114 28 -10.0245 40.1125 38.6835 116 29 -10.1777 117 29 40.5161 39.0872 -10.2996 40.9702 39.5412 119 29 41.3360 120 -10.9760 39.907 30 -11.2525 42.3576 40.9286 123 30 -11.322143.2784 41.8494 126 30 -11.9094 42.7234 41.2944 124 30 -12.166044.2369 42.8079 128 31 -12.2935 44.0982 42.6692 128 31

44.0566

132

31

Placa de 50 mm – Ensaio a 1 g

-12.3325

45.4856

10.0507	44.0070	40,4000	100	0.1
-12.9537	44.8676	43.4386	130	31
-13.0510	46.0910	44.662	134	32
-13.1108	45.9775	44.5485	134	32
-13.1390	45.8640	44.435	133	32
-13.1530	46.6964	45.2674	136	32
-13.1616	46.0784	44.6494	134	32
-13.1696	45.8640	44.435	133	32
-13.1735	46.1415	44.7125	134	32
-13.1777	45.9397	44.5107	134	32
-13.1798	46.2550	44.826	134	32
-13.1827	46.0658	44.6368	134	32
-13.1843	46.4442	45.0152	135	32
-13.1864	46.0532	44.6242	134	32
-13.1877	46.2298	44.8008	134	32
-13.1882	46.3054	44.8764	135	32
-13.1896	44.7414	43.3125	130	32
-13.1906	46.4946	45.0656	135	32
-13.1914	46.5829	45.1539	135	32
-13.1923	46.3559	44.9269	135	32
-13.1930	46.1289	44.6999	134	32
-13.1934	46.8478	45.4188	136	32
-13.1945	46.0027	44.5737	134	32
-13.1946	46.2676	44.8386	135	32
-13.1954	45.2586	43.8296	131	32
-13.1960	45.4351	44.0062	132	32
-13.1968	45.8261	44.3972	133	32
-13.1970	46.2802	44.8512	135	32
-13.1971	45.9901	44.5611	134	32
-13.1974	45.8009	44.3719	133	32
-13.1975	46.2298	44.8008	134	32
-13.1978	45.9523	44.5233	134	32
-13.1986	45.9270	44.4981	133	32
-13.1981	45.7505	44.3215	133	32
-13.1989	45.8388	44.4098	133	32
-13.1989	45.9018	44.4728	133	32
-13.1983	45.5234	44.0945	132	32
-13.2015	45.6874	44.2584	133	32
-13.2000	45.6748	44.2458	133	32
-13.1998	45.8892	44.4602	133	32
-13.2021	45.8514	44.4224	133	32
-13.2026	44.2622	42.8332	128	32
-13.2078	45.4478	44.0188	132	32
-13.2075	45.5108	44.0818	132	32
-13.2053	45.6243	44.1954	133	32
-13.2055	45.5360	44.1071	132	32
-13.2056	45.9397	44.5107	134	32
-13.2055	46.2676	44.8386	135	32
-13.2057	46.3433	44.9143	135	32
-13.2062	45.8009	44.3719	133	32
-13.2067	45.9901	44.5611	134	32
-13.2062	45.9270	44.4981	133	32
-13.2073	45.8640	44.435	133	32

-13.2079	45.9523	44.5233	134	32
-13.2076	45.9523	44.5233	134	32
-13.2079	46.3054	44.8764	135	32
-13.2093	45.9523	44.5233	134	32
-13.2091	46.0532	44.6242	134	32
-13.2092	45.9397	44.5107	134	32
-13.2094	45.5739	44.1449	132	32
-13.2092	44.7414	43.3125	130	32
-13.2096	45.7000	44.271	133	32
-13.2093	46.3054	44.8764	135	32
-13.2097	46.3054	44.8764	135	32
-13.2098	46.1793	44.7503	134	32
-13.2101	46.6334	45.2044	136	32
-13.2103	46.5199	45.0909	135	32
-13.2108	45.9270	44.4981	133	32
-13.2102	46.3054	44.8764	135	32
-13.2109	46.2550	44.826	134	32
-13.2107	44.6658	43.2368	130	32
-13.2103	46.0153	44.5864	134	32
-13.2094	46.1919	44.7629	134	32
-13.2116	45.9397	44.5107	134	32
-13.2120	45.6874	44.2584	133	32
-13.2114	45.8892	44.4602	133	32
-13.2119	46.0406	44.6116	134	32
-13.2116	47.1379	45.7089	137	32
-13.2123	45.7126	44.2836	133	32
-13.2113	46.7090	45.2801	136	32
-13.2119	44.7667	43.3377	130	32
-13.2123	46.2928	44.8638	135	32
-13.2123	46.3811	44.9521	135	32
-13.2124	46.4442	45.0152	135	32
-13.2120	46.6081	45.1792	136	32
-13.2124	46.4694	45.0404	135	32
-13.2128	46.3559	44.9269	135	32

Placa de 50 mm – Ensaio a 5 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
8.4762	-3.2242	0.0000	0	0
8.2546	-0.7950	2.4292	7	1
8.0284	1.7478	4.9720	15	2
7.8902	4.6538	7.8780	24	3
7.7198	7.0376	10.2618	31	4
7.6390	9.5576	12.7818	38	4
7.5537	11.8052	15.0294	45	5
7.4784	15.0972	18.3214	55	5
7.4219	17.5264	20.7506	62	5
7.3757	20.7048	23.9291	72	6
7.3234	20.5913	23.8155	71	6
7.2716	24.4282	27.6524	83	6
7.1172	27.2433	30.4675	91	7
7.0175	31.0348	34.2590	103	7
6.9341	33.5775	36.8017	110	8
6.8091	35.8024	39.0266	117	8
6.7615	38.4360	41.6602	125	9
6.6700	40.7744	43.9986	132	9
6.5067	44.9063	48.1306	144	10
6.4390	48.0394	51.2636	154	10
6.3961	51.0362	54.2604	163	10
6.2515	54.5552	57.7794	173	11
6.1445	61.0709	64.2952	193	12
5.8280	66.8375	70.0617	210	13
5.4385	73.9209	77.1451	231	15
5.3904	74.6020	77.8262	233	15
5.3509	80.9134	84.1377	252	16
5.2487	83.9784	87.2026	262	16
4.9088	85.7038	88.9280	267	18
4.7469	87.5200	90.7443	272	19
4.5842	88.7460	91.9702	276	19
3.8565	87.5654	90.7897	272	23
3.7624	90.9482	94.1724	283	24
3.0055	87.3157	90.5399	272	27
2.8298	90.1309	93.3551	280	28
2.3689	90.5623	93.7865	281	31
2.0882	92.5828	95.8070	287	32
1.5875	92.5147	95.7389	287	34
1.3445	94.4899	97.7141	293	36
0.7321	94.2629	97.4871	292	39
0.3429	94.8758	98.1001	294	41
0.0045	90.14/2	99.3/14	298	42
-0.3079	90.8310	100.0752	300	44
-0.7545	97.8273		<u>3U3</u> 915	40
-0.8304	101.0414	104.8030	313	4/ 51
	30.0337 101.0509	101.3239	3U4 916	51 E 1
-1./344	101.9392	103.1834	310 310	52
-2.2133	103.2303	107 90/0	299	51
-2.0000	103.3730	101.2040	066	54

-3.0776	102.3906	105.6148	317	58
-3.1808	105.1376	108.3619	325	58
-3.3507	107.0447	110.2689	331	59
-3.9599	105.7052	108.9294	327	62
-4.0656	109.1334	112.3576	337	63
-4.2468	110.1096	113.3338	340	64
-4.9694	109.5420	112.7663	338	67
-5.0548	112.9021	116.1263	348	68
-5.2319	115.7627	118.9869	357	69
-5.8753	114.1281	117.3523	352	72
-5.9431	117.5108	120.7350	362	72
-6.6010	114.4005	117.6247	353	75
-6.7242	118.4644	121.6886	365	76
-6.8137	119.5541	122.7783	368	76
-7.1805	119.8265	123.0508	369	78
-7.6284	119.8947	123,1189	369	81
-7.7041	123.0731	126.2973	379	81
-8.3350	121.9379	125.1621	375	84
-8.5687	123,4590	126.6833	380	85
-8.6338	125.8656	129.0898	387	86
-9.0018	124.0039	127.2281	382	87
-9.5383	128.2721	131,4963	394	90
-9.6501	131.2008	134.4250	403	91
-9.7505	133.2668	136.4910	409	91
-10.6464	129.3164	132.5407	398	96
-10.7258	133.0852	136.3094	409	96
-10.8326	134,1749	137.3991	412	97
-11.3813	133,1987	136.4229	409	99
-11.7644	135.4009	138.6251	416	101
-11.8413	138.9653	142.1895	427	102
-11.9396	141.8939	145.1182	435	102
-12.8308	136.2409	139.4651	418	107
-12.9183	142.4615	145.6857	437	107
-12.9867	144.0961	147.3204	442	107
-13.7114	140.6680	143.8922	432	111
-13.9518	140.8496	144.0738	432	112
-14.0062	147.3654	150.5896	452	112
-14.1314	149.1816	152.4059	457	113
-14.8574	147.5924	150.8166	452	117
-14.9747	150.1352	153.3594	460	117
-15.0649	152.8141	156.0384	468	118
-15.6568	151.8379	155.0621	465	121
-16.0372	153.8585	157.0827	471	123
-16.1122	157.6726	160.8968	483	123
-16.2532	159.5797	162.8039	488	124
-16.9564	157.6045	160.8287	482	127
-17.0583	161.2597	164.4839	493	128
-17.1790	163.0759	166.3001	499	128
-18.1409	160.8737	164.0980	492	133
-18.2141	164.0295	167.2537	502	133
-18.2831	167.1625	170.3867	511	134
-18.4096	169.7506	172.9749	519	134

-18.9890	167.2306	170.4548	511	137
-19.2020	171.0901	174.3143	523	138
-19.3074	173.2923	176.5165	530	139
-19.5102	175.9713	179.1955	538	140
-20.2163	173.1334	176.3576	529	143
-20.3259	177.2654	180.4896	541	144
-20.4828	179.7627	182.9869	549	145
-21.0680	178.5594	181.7837	545	148
-21.4087	179.6492	182.8734	549	149
-21.5495	183.0320	186.2562	559	150
-21.6949	185.1433	188.3676	565	151
-22.0506	184.7347	187.9589	564	153
-22.5354	184.5758	187.8000	563	155
-22.6782	185.7336	188.9578	567	156
-22.8607	191.0007	194.2250	583	157
-23.1802	189.0483	192.2725	577	158
-23.8132	189.2980	192.5222	578	161
-23.9287	193.2483	196.4726	589	162
-24.0731	197.5165	200.7407	602	163
-24.6006	194.8603	198.0845	594	165
-24.7881	198.2430	201.4672	604	166
-24.9229	199.5825	202.8067	608	167
-25.0070	197.5392	200.7635	602	167
-25.0433	192.9078	196.1320	588	168
-25.0643	193.2256	196.4499	589	168
-25.0655	192.3175	195.5417	587	168
-25.0715	191.5683	194.7925	584	168
-25.0727	191.7726	194.9969	585	168
-25.0742	192.1132	195.3374	586	168
-25.0747	192.7716	195.9958	588	168
-25.0754	191.9316	195.1558	585	168
-25.0750	191.1370	194.3612	583	168
-25.0748	192.0224	195.2466	586	168
-25.0750	191.7953	195.0196	585	168
-25.0736	192.8851	196.1093	588	168
-25.0739	193.0213	196.2455	589	168

Placa de 50 mm – Ensaio a 10 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
26.4409	-6.5844	0.0000	0	0
26.3903	-5.9941	0.5903	2	1
26.3643	-6.6335	-0.0492	0	1
26.3289	-4.8135	1.7708	5	1
26.2971	-4.6659	1.9184	6	1
26.2823	-3.4198	3.1646	9	2
26.2620	-3.9117	2.6727	8	2
26.2453	-3.6002	2.9842	9	2
26.2126	-2.1081	4.4763	13	2
26.1939	-1.9277	4.6567	14	2
26.1727	-1.5834	5.0010	15	3
26.1436	-0.4192	6.1652	18	3
26.1338	-0.7143	5.8700	18	3
26.1361	-0.0749	6.5095	20	3
26.1304	0.5318	7.1162	21	3
26.1300	0.9581	7.5425	23	3
26.1242	0.8269	7.4113	22	3
26.1140	2.2699	8.8542	27	3
26.1151	2.3682	8.9526	27	3
26.1017	1.3352	7.9196	24	3
26.0871	2.8437	9.4281	28	4
26.0811	3.4176	10.0020	30	4
26.0697	1.7452	8.3295	25	4
26.0575	4.2211	10.8054	32	4
26.0326	5.1721	11.7564	35	4
26.0015	6.5330	13.1173	39	4
25.9895	4.6802	11.2645	34	5
25.9739	6.5822	13.1665	39	5
25.9599	6.6970	13.2813	40	5
25.9534	7.0577	13.6420	41	5
25.9291	6.7461	13.3305	40	5
25.9187	8.3694	14.9538	45	5
25.9132	8.0415	14.6258	44	5
25.9009	6.3034	12.8878	39	5
25.8190	11.6979	18.2823	55	6
25.7715	13.7311	20.3155	61	7
25.7545	14.1083	20.6926	62	1
25.7424	15.1740	21.7584	65	7
20.0888	17.1744	23.7588	/1	8
25.0020	17.0269	23.0112	/1	8
25.6504	17.1232	23.7096	71	8
20.0000	17.0433	23.02/0	/1	٥ ٥
25.0275	17.4600	24.0703	12	0
20.0240	10.1382 91 4704	24.1420 28.0517	/ 4 Q /	0 0
20.0700	61.4704 91.200 <i>1</i>	20.004/ 97.0797	04	<u>у</u>
20.0140	21.3004 99.0461	21.3121	04	У 10
25.4001	22 8802	29.0004	03 88	10
25.4300	21 2881	23.4040 97 0797	<u> </u>	10
~0.7701	~1.000H	61.0161	F U	10

25 4181	25 6023	32 1867	97	10
25.3786	24.5529	31,1373	93	10
25.3598	26.0122	32,5966	98	11
25.3484	27.3732	33.9575	102	11
25.3225	29.8819	36.4662	109	11
25.2858	30.7837	37.3680	112	12
25.2529	28.4062	34,9905	105	12
25.2418	31.0460	37.6304	113	12
25.1951	34.3090	40.8933	123	12
25.1546	34.3090	40.8933	123	13
25.1356	33.9482	40.5326	122	13
25.0919	37.7523	44.3366	133	13
25.0363	37.8670	44.4514	133	14
25.0029	38.2606	44.8449	135	14
24.9561	41.2120	47.7963	143	15
24.9110	42.2122	48.7965	146	15
24.8806	42.7860	49.3704	148	16
24.8596	42.1630	48.7473	146	16
24.8333	45.2291	51.8135	155	16
24.7969	46.2621	52.8465	159	16
24.7704	46.4753	53.0597	159	17
24.7504	47.4591	54.0435	162	17
24.7068	49.1316	55.7159	167	17
24.6811	48.9840	55.5683	167	18
24.6662	48.6888	55.2732	166	18
24.6568	49.6235	56.2078	169	18
24.6492	50.7220	57.3064	172	18
24.6283	52.9356	59.5199	179	18
24.6086	52.7880	59.3724	178	18
24.5791	53.2471	59.8315	179	19
24.5576	54.3621	60.9465	183	19
24.5376	55.7558	62.3402	187	19
24.5111	55.2311	61.8155	185	19
24.4723	55.4443	62.0286	186	20
24.4572	58.0841	64.6685	194	20
24.4023	58.4121	64.9964	195	20
24.3703	58.7892	65.3736	196	21
24.3460	60.3961	66.9804	201	21
24.3110	63.3639	69.9482	210	21
24.2765	63.5278	70.1122	210	22
24.2550	63.0031	69.5875	209	22
24.2404	63.1179	69.7023	209	22
24.2142	67.2335	73.8178	221	22
24.1759	67.4302	74.0146	222	23
24.1454	68.9387	75.5231	227	23
24.0790	73.3822	79.9666	240	24
24.0189	72.6608	79.2451	238	24
23.9808	73.7102	80.2945	241	25
23.9597	74.3333	80.9176	243	25
23.9455	74.0873	80.6717	242	25
23.8981	76.1861	82.7704	248	25
23.8651	76.8747	83.4591	250	26

23 8497	77 1535	83 7378	251	26
23.8273	76.3500	82.9344	249	26
23,8093	78.6456	85.2299	256	26
23,7791	80.5640	87.1483	261	27
23.7484	80.8263	87.4107	262	27
23 7258	81 1379	87 7222	263	2.7
23 5786	86 0733	92 6576	278	29
23 5478	84 2204	90 8048	272	29
23.5209	84,7943	91.3787	274	29
23 5007	84 6468	91 2311	274	29
23 4782	84 8599	91 4443	274	30
23 4577	89 2870	95 8714	288	30
23.4077	00.2070 01 5826	98 1669	295	30
23 3511	91.0907	97 6750	293	30
23.3311	02 0027	99 5770	200	31
23.3222	02 8451	00 4205	208	31
23.2323	92.0431	99.4295	298	31
23.2782	92.3172	00.0522	297	32
23.2340	92.4080	00 2211	209	32
23.2320	92.7407	100 4625	298	32
23.2200	07 4526	100.4025	219	32
23.1933	97.4320	104.0309	312	J2 22
23.1392	97.2338	103.0402	312	<u>ა</u> კ
23.1204	93.0129	102.3973	307	24
23.0690	90.4030	104.9079	315	54 97
22.9012	104.0440	110.0284	332	30
22.0431	101.0901	100.4004	323	
22.8112	101.8961	108.4804	325	30
22.7872	102.4699	109.0543	327	37
22.7280	108.3564	114.9407	345	37
22.6058	109.3074	115.8917	348	38
22.5383	111.3242	117.9085	354	39
22.3691	112.9638	119.5482	359	41
22.1883	116.5383	123.1227	369	43
21.8989	116.6531	123.2374	370	45
21.7773	119.9488	126.5332	380	47
21.2198	121.7688	128.3532	385	52
20.9108	123.1134	129.6977	389	55
20.7228	126.4747	133.0590	399	57
16.9690	123.5233	130.1076	390	95
15.3086	128.5899	135.1742	406	111
14.7847	131.1313	137.7157	413	117
13.3903	134.0991	140.6835	422	131
12.5644	138.3131	144.8974	435	139
12.2520	140.7398	147.3242	442	142
10.9205	144.4946	151.0790	453	155
10.5630	146.1343	152.7187	458	159
9.2463	150.4630	157.0474	471	172
8.4234	153.9227	160.5071	482	180
8.2162	152.8733	159.4577	478	182
7.3739	158.6122	165.1965	496	191
6.4531	162.6950	169.2793	508	200
6.1549	162.8917	169.4761	508	203

5.5927	167.4828	174.0671	522	208
4.1585	170.0079	176.5922	530	223
3.9225	172.0247	178.6090	536	225
3.2209	175.5008	182.0851	546	232
2.7476	176.8617	183.4460	550	237
2.5903	179.0260	185.6104	557	239
0.1032	192.1762	198.7605	596	263
-0.1365	193.8650	200.4494	601	266
-0.2813	193.6355	200.2198	601	267
-0.4080	200.8828	207.4672	622	268
-1.4440	202.1126	208.6969	626	279
-1.6076	203.6211	210.2054	631	280
-1.6821	204.0638	210.6481	632	281
-1.7435	204.4901	211.0744	633	282
-1.7758	204.7524	211.3368	634	282
-1.8226	204.5557	211.1400	633	283

Placa de 50 mm – Ensaio a 15 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
26.3302	9.3669	0.0000	0	0
26.3192	9.8924	0.5255	2	0
26.3195	10.3023	0.9355	3	0
26.3148	10.7858	1.4189	4	0
26.3096	10.6386	1.2718	4	0
26.3049	11.3534	1.9865	6	0
26.3013	11.5951	2.2283	7	0
26.2928	11.3324	1.9655	6	1
26.2892	12.7093	3.3424	10	1
26.2840	13.1087	3.7418	11	1
26.2706	13.3714	4.0046	12	1
26.2636	13.5816	4.2148	13	1
26.2517	14.8324	5.4656	16	1
26.2413	14.8639	5.4971	16	1
26.2332	14.9060	5.5391	17	1
26.2287	15.3474	5.9806	18	2
26.2176	16.2303	6.8635	21	2
26.2143	16.2724	6.9055	21	2
26.2064	16.3670	7.0001	21	2
26.1998	17.2604	7.8935	24	2
26.1795	17.9751	8.6083	26	2
26.1742	16.8610	7.4941	22	2
26.1654	18.0697	8.7029	26	2
26.1551	19.2995	9.9326	30	3
26.1374	19.7304	10.3635	31	3
26.1167	20.1088	10.7419	32	3
26.1082	20.2559	10.8891	33	3
26.1007	21.0442	11.6774	35	3
26.0854	21.7379	12.3711	37	4
26.0764	21.6328	12.2660	37	4
26.0640	21.2755	11.9086	36	4
26.0534	22.5893	13.2224	40	4
26.0418	23.3881	14.0213	42	4
26.0348	23.4302	14.0633	42	4
26.0275	24.1659	14.7991	44	5
26.0078	25.3851	16.0183	48	5
25.9918	26.5939	17.2270	52	5
25.9742	25.3957	16.0288	48	5
25.9579	28.0128	18.6460	56	6
25.9363	28.1495	18.7826	56	6
25.9235	27.7711	18.4042	55	6
25.9139	28.2020	18.8352	57	6
25.8994	29.6840	20.3172	61	6
25.8861	30.3252	20.9583	63	7
25.8755	30.5039	21.1370	63	7
25.8628	32.0805	22.7136	68	7
25.8327	32.6060	23.2391	70	7
25.8197	32.4063	23.0394	69	8
25.8029	34.6346	25.2677	76	8
25.7598	35.5385	26.1716	79	9

25.7392	35.7907	26.4239	79	9
25.7277	35.9379	26.5710	80	9
25.7225	36.1481	26.7812	80	9
25.7170	36.8418	27.4749	82	9
25.7080	35.9064	26.5395	80	9
25.6979	38.7442	29.3774	88	9
25.6811	38.9650	29.5981	89	10
25.6645	39.1226	29.7558	89	10
25.6588	39.5536	30.1867	91	10
25.6422	41.0986	31,7318	95	10
25.6288	41.3299	31.9630	96	11
25 6185	40.9620	31 5951	95	11
25 6093	42 4335	33 0666	99	11
25 5999	40.8359	31 4690	94	11
25 5864	42 6752	33 3084	100	11
25.5764	12.0732	33.3004	100	11
25 5738	42.7303	33.3714	100	11
25.5680	42.0000	33 6237	100	11
25 5585	42.3300	35.0237	101	11
25.5537	44.0137	31.2323	100	12
25.5357	44.1705	35 1057	104	12
25.5477	44.4720	37.0607	105	12
25.5168	46.2600	36,0030	111	12
25 5055	40.2033	30.9030	111	12
25.4807	47.3420	30.3210	114	12
25.4659	40.0979	39.3310	110	13
25.4038	49.2444	20 4799	110	13
25.4494	40.0430	39.4762 41.2010	110	13
25.4338	51 1004	41.2019	124	13
25.4205	52 0823	41.8520	125	14
25.4040	52 2400	42.7134	120	14
25 3670	52 07490	43.0021	132	14
25.3079	52 6160	44.0074	134	14
25 3949	56 5073	44.2500	135	15
25.2025	57 6625	47.1405	141	15
25.2768	56 0 503	40.2900	145	10
25 2630	57 0740	47.3924	143	10
25.2009	58 6620	47.7000	145	10
25 2258	59 7656	50 3988	140	10
25.2200	50 73/1	50.3672	151	17
25 1002	60 2759	51 008/	151	17
25.1900	62 7296	53 3628	155	17
25.1678	63 1711	53 8042	161	17
25.1538	62 5 930	53 2261	160	18
25 1/09	62 6226	54 9667	162	18
25.1402	66 12/6	56 7577	170	18
25 0894	66 3348	56 9679	171	10
25.0004	65 8512	56 /8/5	160	10
25,000	60.0010	50.4045	180	20
24 9756	69 7087	60 3419	181	20
24 9579	70 3184	60.9515	183	20
24.0012	72 6797	63 2050	100	21
24.5102	73 3034	63 9365	190	29
24 8646	73 5241	64 1573	192	2.2
~ 1.00 10	10.0011	0111010	10~	~~

24.8369	75.5527	66.1858	199	22
24.8104	75.1322	65.7654	197	23
24.7957	76.7089	67.3420	202	23
24.7809	77.8860	68.5192	206	23
24.7648	78.6744	69.3075	208	23
24.7437	79.8726	70.5057	212	24
24.7296	79.5152	70.1484	210	24
24.7141	80.8816	71.5147	215	24
24.6837	83.0258	73.6589	221	25
24.6626	83.0363	73.6694	221	25
24.6518	83.6249	74.2580	223	25
24.6291	85.6745	76.3076	229	26
24.6027	85.0649	75.6980	227	26
24.5786	86.5679	77.2010	232	26
24.5665	86.3156	76.9488	231	26
24.5407	90.1415	80.7747	242	27
24.5019	89.4163	80.0494	240	27
24.4743	90.9929	81.6260	245	28
24.4453	93.5470	84.1801	253	28
24.3968	94.6191	85.2522	256	29
24.3596	95.0185	85.6516	257	30
24.3430	95.0290	85.6621	257	30
24.3280	95.8804	86.5135	260	30
24.3070	98.0771	88.7102	266	30
24.2825	98.6236	89.2568	268	31
24.2683	98.7918	89.4250	268	31
24.2505	98.4555	89.0886	267	31
24.2317	100.9780	91.6112	275	31
24.2061	101.3354	91.9685	276	32
24.1914	102.3129	92.9460	279	32
24.1741	102.3129	92.9460	279	32
24.1593	102.8174	93.4506	280	33
24.1393	103.8054	94.4386	283	33
24.1184	103.8895	94.5226	284	33
24.1007	103.7739	94.4070	283	33
24.0752	107.6944	98.3275	295	34
24.0576	107.9046	98.5377	296	34
24.0398	107.6734	98.3065	295	34
24.0259	107.9676	98.6008	296	35
24.0096	109.6914	100.3245	301	35
23.9913	109.5863	100.2194	301	35
23.9708	110.5323	101.1654	303	35
23.9565	110.3010	100.9342	303	30
23.9388	113.1074	103.7405	311	36
23.9197	113.2125	103.8456	312	36
23.9029	112.5398	103.1729	310	30
23.8903	112.3506	102.9837	309	37
23.8725	115.1885	105.8216	317	37
23.8506	115.7351	105.3682	319	37
23.0322	113.0098	103.0430	317 217	<u>२</u>
23.022U	114.042ð 110.9901	104.0700	014 007	00 00
23.0000 23.7750	110.2201	100.009%	321 297	აბ ვჹ
23.7730	117.4709	108.0302	321	30 20
~J.1J1U	111.1130	100.1100	0~1	55

23.7361	119.0249	109.6580	329	39
23.7031	120.4333	111.0665	333	39
23.6671	120.5700	111.2031	334	40
23.6488	121.2952	111.9283	336	40
23.6261	122.9454	113.5785	341	41
23.5858	124.9634	115.5966	347	41
23.5509	125.2052	115.8383	348	42
23.5263	125.6046	116.2377	349	42
23.4883	128.2848	118.9180	357	43
23.4480	128.1587	118.7918	356	43
23.4205	128.1377	118.7708	356	44
23.4001	128.3479	118.9810	357	44
23.3620	131.1963	121.8294	365	45
23 3242	130 8704	121 5036	365	45
23 2837	131 3434	121.9766	366	46
23 2503	133 5612	124 1943	373	46
23.2022	132.5837	123.2168	370	47
23 1622	133 9185	124 5517	374	48
23 1296	136 6724	127 3055	382	48
23 0766	136 5147	197 1478	381	49
23 0269	136 6408	127 2740	382	50
22 9940	136 7249	127 3580	382	50
22.0010	139 1529	129 7860	389	51
22.0112	140 1409	120.7000	303	51
22.0070	140.1400	131 4572	394	52
22.0001	149 4953	191.4072	304	52
99 7717	142.1000	129 6554	208	53
22.7396	142.0223	132.0004	/01	54
22.7333	149.0410	133.0730	300	54
22.6490	146 2476	136 8807	411	55
99 5761	1/6 9623	127 5054	/13	56
22.5701	146.80020	127 5224	413	57
22.0107	146.0002	137.5524	413	58
22 4267	149 3587	139.9919	420	59
22.3207	140.0007	1/0 3913	191	60
22.0020	140.7002	120 0288	420	61
22 2381	151 1351	141 7682	425	61
22 1675	152 0390	142 6721	428	62
22.0997	151 2086	141 8418	426	63
22.0001	155 3814	146 0145	438	65
21 8249	155 3814	146 0145	438	68
21 5635	155 5601	146 1932	439	72
21 3654	156 0015	146 6347	440	74
21 2470	157 7463	148 3794	445	76
21 1039	157 9145	148 5476	446	78
20.9741	158 6187	149 2518	448	80
20.8771	158 6712	149 3044	448	82
20.7656	161.0151	151 6482	455	83
18 5465	156 8844	147 5176	433	117
15 5960	161 8139	152 4471	457	161
15.0513	165 6924	156 3255	469	169
14 6878	166.8380	157 4712	100	175
14.0070	167 1498	157 7760	472	175
14.0107	169 7810	160 4142	481	179
	100.1010	100.111~	101	110

14.2572	170.8321	161.4652	484	181
14.1152	171.6940	162.3271	487	183
13.9121	174.2165	164.8497	495	186
13.6743	174.7631	165.3962	496	190
13.5214	174.8051	165.4383	496	192
13.3937	176.4343	167.0674	501	194
13.1324	178.1370	168.7702	506	198
12.9129	178.1580	168.7912	506	201
12.6586	182.2572	172.8904	519	205
11.8508	181.5215	172.1546	516	217
11.5355	183.2873	173.9204	522	222
11.3647	186.5246	177.1577	531	224
11.1084	187.4600	178.0932	534	228
10.9215	187.2603	177.8934	534	231
10.8038	187.3129	177.9460	534	233
10.7395	187.5966	178.2298	535	234
10.6644	190.8550	181.4881	544	235
10.5667	191.4751	182.1082	546	236
10.4798	191.5802	182.2133	547	238
10.3274	193.7769	184.4101	553	240
10.0034	193.3250	183.9581	552	245
9.7849	193.5562	184.1893	553	248
8.9400	198.1178	188.7510	566	261
8.3001	200.2936	190.9267	573	270
8.1480	200.9032	191.5363	575	273
8.0851	201.2290	191.8622	576	274
7.9251	206.8207	197.4538	592	276
7.6669	206.7051	197.3382	592	280
7.4608	206.6630	197.2962	592	283
7.3269	207.4093	198.0424	594	285
7.2467	207.1991	197.8322	593	286
7.1899	208.2291	198.8623	597	287
7.1517	206.2952	196.9283	591	288
7.1226	207.4198	198.0529	594	288
7.0950	207.7561	198.3893	595	289
7.0742	207.8928	198.5259	596	289
7.0620	207.6090	198.2421	595	289
7.0478	207.6721	198.3052	595	289

Placa de 50 mm – Ensaio a 25 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
0.3443	0.1561	0.0000	0	0
0.2951	0.1758	0.0198	10	1
0.2744	0.1856	0.0295	15	2
0.2630	0.1892	0.0331	17	2
0.2557	0.1906	0.0346	17	2
0.2471	0.1923	0.0362	18	2
0.2416	0.1927	0.0366	18	3
0.2356	0.2051	0.0490	25	3
0.2026	0.2210	0.0649	32	4
0.1786	0.2298	0.0738	37	4
0.1617	0.2351	0.0790	39	5
0.1547	0.2375	0.0815	41	5
0.0497	0.2487	0.0927	46	7
0.0208	0.2569	0.1008	50	8
0.0052	0.2607	0.1046	52	8
-0.0103	0.2691	0.1130	57	9
-0.0330	0.2780	0.1219	61	9
-0.0445	0.2803	0.1242	62	10
-0.0570	0.2875	0.1314	66	10
-0.0860	0.3033	0.1472	74	11
-0.0965	0.3057	0.1497	75	11
-0.1150	0.3228	0.1667	83	11
-0.1791	0.3493	0.1933	97	13
-0.2053	0.3566	0.2005	100	14
-0.2133	0.3588	0.2028	101	14
-0.2191	0.3602	0.2041	102	14
-0.2354	0.3780	0.2219	111	14
-0.2620	0.3902	0.2342	117	15
-0.2732	0.3930	0.2369	118	15
-0.2790	0.3941	0.2380	119	16
-0.2862	0.3989	0.2428	121	16
-0.3216	0.4303	0.2743	137	17
-0.3474	0.4376	0.2816	141	17
-0.3560	0.4392	0.2831	142	18
-0.3865	0.4719	0.3159	158	18
-0.4364	0.4890	0.3329	166	20
-0.4539	0.4922	0.3362	168	20
-0.4600	0.4934	0.3374	169	20
-0.4658	0.4941	0.3380	169	20
-0.4922	0.5276	0.3715	186	21
-0.5476	0.5474	0.3913	196	22
-0.5665	0.5514	0.3953	198	23
-0.5752	0.5527	0.3967	198	23
-0.5869	0.5642	0.4082	204	23
-0.6138	0.5828	0.4267	213	24
-0.6295	0.5857	0.4297	215	24
-0.6371	0.5867	0.4306	215	25
-0.6434	0.5870	0.4310	215	25
-0.6638	0.6133	0.4572	229	25

-0.7059	0.6301	0.4740	237	26
-0.7274	0.6325	0.4764	238	27
-0.7378	0.6335	0.4775	239	27
-0.7469	0.6341	0.4780	239	27
-0.7626	0.6556	0.4996	250	28
-0.7832	0.6634	0.5074	254	28
-0.7950	0.6646	0.5085	254	28
-0.8046	0.6651	0.5090	255	29
-0.8123	0.6655	0.5094	255	29
-0.8265	0.6876	0.5315	266	29
-0.8430	0.6931	0.5370	269	30
-0.8577	0.6939	0.5378	269	30
-0.8681	0.6976	0.5415	271	30
-0.8952	0.7213	0.5652	283	31
-0.9169	0.7241	0.5681	284	32
-0.9317	0.7248	0.5687	284	32
-0.9434	0.7252	0.5692	285	32
-0.9642	0.7528	0.5968	298	33
-0.9979	0.7608	0.6048	302	34
-1.0176	0.7618	0.6057	303	34
-1.0329	0.7659	0.6098	305	34
-1.0713	0.7963	0.6403	320	35
-1.1108	0.8013	0.6452	323	36
-1.1271	0.8028	0.6467	323	37
-1.1466	0.8199	0.6638	332	37
-1.1791	0.8331	0.6771	339	38
-1.2005	0.8348	0.6788	339	39
-1.2127	0.8360	0.6799	340	39
-1.2233	0.8370	0.6809	340	39
-1.2323	0.8430	0.6869	343	39
-1.2572	0.8727	0.7166	358	40
-1.2882	0.8770	0.7209	360	41
-1.3085	0.8782	0.7221	361	41
-1.3244	0.8836	0.7275	364	42
-1.3674	0.9180	0.7619	381	43
-1.4389	0.9254	0.7693	385	45
-1.4709	0.9276	0.7716	386	45
-1.4914	0.9403	0.7842	392	46
-1.5357	0.9673	0.8112	406	47
-1.5798	0.9714	0.8153	408	48
-1.6003	0.9728	0.8167	408	49
-1.6145	0.9738	0.8177	409	49
-1.6255	0.9750	0.8189	409	49
-1.6390	1.0002	0.8441	422	50
-1.6867	1.0232	0.8671	434	51
-1.7403	1.0262	0.8702	435	52
-1.7701	1.0278	0.8717	436	53
-1.7899	1.0288	0.8727	436	53
-1.8011	1.0294	0.8733	437	54
-1.8084	1.0299	0.8738	437	54
-1.8140	1.0309	0.8748	437	54
-1.8227	1.0343	0.8782	439	54

-1.8729	1.0958	0.9397	470	55
-2.2159	1.1119	0.9558	478	64
-2.2577	1.1187	0.9626	481	65
-2.2789	1.1206	0.9645	482	66
-2.2896	1.1218	0.9658	483	66
-2.2961	1.1227	0.9666	483	66
-2.3005	1.1235	0.9675	484	66
-2.3111	1.1515	0.9955	498	66
-2.4185	1.2016	1.0455	523	69
-2.6817	1.2117	1.0556	528	76
-2.7278	1.2164	1.0603	530	77
-2.7460	1.2180	1.0620	531	77
-2.7602	1.2192	1.0632	532	78
-2.7685	1.2199	1.0638	532	78
-2.7787	1.2457	1.0896	545	78
-2.8028	1.2629	1.1068	553	79
-2.8293	1.2646	1.1085	554	79
-2.8546	1.2652	1.1092	555	80
-2.8680	1.2661	1.1100	555	80
-2.8789	1.2667	1.1107	555	81
-2.8892	1.2676	1.1116	556	81
-2.9184	1.3197	1.1637	582	82
-3.8801	1.3331	1.1770	589	106
-3.9674	1.3494	1.1933	597	108
-4.0046	1.3526	1.1966	598	109
-4.0265	1.3543	1.1982	599	109
-4.0389	1.3555	1.1994	600	110
-4.0677	1.4078	1.2517	626	110
-5.2345	1.4200	1.2639	632	139
-5.4444	1.4499	1.2939	647	145
-5.5241	1.4564	1.3004	650	147
-5.5657	1.4594	1.3034	652	148
-5.5881	1.4613	1.3052	653	148
-5.6026	1.4629	1.3069	653	149
-5.6162	1.4645	1.3084	654	149
-5.6277	1.4744	1.3183	659	149
-5.6425	1.4945	1.3385	669	150
-5.6584	1.4969	1.3408	670	150
-5.6770	1.5000	1.3440	672	151
-5.6955	1.5022	1.3461	673	151
-5.7438	1.5506	1.3945	697	152
-8.6657	1.5243	1.3682	684	225
-9.4438	1.5686	1.4125	706	245
-9.8177	1.5910	1.4350	717	254
-9.9565	1.6143	1.4582	729	258
-11.3420	1.6484	1.4923	746	292
-11.7852	1.6922	1.5361	768	303
-12.0267	1.7084	1.5523	776	309
-12.1271	1.7192	1.5631	782	312
-12.2728	1.7686	1.6125	806	315
-13.8956	1.7996	1.6435	822	356
-14.4713	1.8342	1.6781	839	370

-14.7209	1.8527	1.6966	848	377
-14.8121	1.8591	1.7031	852	379
-14.8828	1.8947	1.7386	869	381
-16.4402	1.9174	1.7614	881	420
-16.7783	1.9664	1.8104	905	428
-16.9939	1.9823	1.8262	913	433
-17.1155	2.0029	1.8468	923	436
-17.2785	2.0398	1.8837	942	441
-18.7230	2.0612	1.9051	953	477
-19.0678	2.1052	1.9491	975	485
-19.2533	2.1193	1.9632	982	490
-19.5101	2.1792	2.0232	1012	496
-21.1169	2.2248	2.0687	1034	537
-21.6985	2.2698	2.1138	1057	551
-21.9592	2.2914	2.1353	1068	558
-22.0735	2.3036	2.1475	1074	560
-22.1393	2.3127	2.1566	1078	562
-22.0826	2.4396	2.2835	1142	561
-22.2665	2.5413	2.3852	1193	565
-23.6601	2.5591	2.4030	1202	600
-23.9736	2.5025	2.3464	1173	608
-24.1169	2.5177	2.3616	1181	612
-24.1989	2.5236	2.3675	1184	614
-25.5828	2.5623	2.4063	1203	648
-26.3189	2.6336	2.4775	1239	667
-26.6762	2.6659	2.5099	1255	676
-26.8659	2.6783	2.5222	1261	680
-26.9628	2.6830	2.5269	1263	683
-27.0213	2.7050	2.5489	1274	684
-27.1916	2.7737	2.6177	1309	688
-28.0533	2.6662	2.5102	1255	710
-28.0624	2.6658	2.5097	1255	710
-28.0692	2.6634	2.5073	1254	710
-28.0616	2.6782	2.5221	1261	710
-28.0541	2.6855	2.5295	1265	710
-28.0558	2.6835	2.5275	1264	710
-28.0603	2.6814	2.5253	1263	710
-28.0534	2.6916	2.5355	1268	710
-28.0497	2.6936	2.5376	1269	710
-28.0508	2.6923	2.5362	1268	710
-28.0512	2.6906	2.5345	1267	710
-28.0547	2.6890	2.5329	1266	710
-28.0553	2.6876	2.5315	1266	710
-28.0552	2.6865	2.5304	1265	710
-28.0547	2.6900	2.5339	1267	710
-28.0544	2.6930	2.5369	1268	710
-28.0542	2.6926	2.5365	1268	710
-28.0535	2.6918	2.5358	1268	710
-28.0532	2.6910	2.5349	1267	710
-28.0547	2.6902	2.5341	1267	710
-28.0563	2.6894	2.5333	1267	710
-28.0559	2.6887	2.5326	1266	710

Placa de 50 mm – Ensaio a 50 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
19.2629	0.2547	0.0000	0	0
19.2546	0.2728	0.0181	9	0
19.2460	0.2780	0.0232	12	1
19.2391	0.2792	0.0245	12	1
19.2235	0.2811	0.0264	13	2
19.2220	0.2842	0.0294	15	2
19.2165	0.2869	0.0322	16	2
19.2160	0.2889	0.0342	17	2
19.2133	0.2945	0.0398	20	2
19.2012	0.3122	0.0575	29	3
19.1920	0.3197	0.0650	32	4
19.1801	0.3213	0.0666	33	4
19.1732	0.3291	0.0744	37	4
19.1607	0.3463	0.0916	46	5
19.1465	0.3498	0.0951	48	6
19.1414	0.3578	0.1031	52	6
19.1271	0.3789	0.1242	62	7
19.1079	0.3826	0.1279	64	8
19.1004	0.3837	0.1290	64	8
19.0937	0.3975	0.1428	71	8
19.0804	0.4036	0.1489	74	9
19.0735	0.4114	0.1567	78	9
19.0564	0.4229	0.1682	84	10
19.0443	0.4252	0.1705	85	11
19.0387	0.4257	0.1710	85	11
19.0309	0.4285	0.1738	87	12
19.0253	0.4413	0.1866	93	12
19.0152	0.4448	0.1901	95	12
19.0121	0.4456	0.1909	95	13
19.0068	0.4535	0.1988	99	13
19.0002	0.4655	0.2108	105	13
18.9902	0.4675	0.2128	106	14
18.9873	0.4750	0.2203	110	14
18.9708	0.4793	0.2246	112	15
18.9661	0.4809	0.2262	113	15
18.9593	0.4959	0.2412	121	15
18.9476	0.5008	0.2461	123	16
18.9400	0.5081	0.2534	127	16
18.9234	0.5195	0.2648	132	17
18.9126	0.5210	0.2663	133	18
18.9008	0.5347	0.2800	140	18
18.8907	0.5384	0.2837	142	19
18.8817	0.5502	0.2955	148	19
18.8724	0.5623	0.3076	154	20
18.8594	0.5657	0.3110	155	20
18.8446	0.5871	0.3324	166	21
18.8277	0.5900	0.3353	168	22
18.8185	0.5924	0.3377	169	22
18.8000	0.6132	0.3585	179	23

10 7700	0.0470	0.0010	101	
18.7793	0.6159	0.3612	181	24
18.7702	0.6210	0.3663	183	25
18.7537	0.6340	0.3793	190	25
18.7417	0.6358	0.3811	191	26
18.7311	0.6362	0.3815	191	27
18.7251	0.6476	0.3929	196	27
18.7011	0.6704	0.4157	208	28
18.6806	0.6738	0.4191	210	29
18.6697	0.6770	0.4223	211	30
18.6477	0.7009	0.4462	223	31
18.6277	0.7053	0.4506	225	32
18.6081	0.7060	0.4513	226	33
18.5945	0.7207	0.4660	233	33
18.5734	0.7286	0.4739	237	34
18.5613	0.7296	0.4749	237	35
18.5505	0.7304	0.4757	238	36
18.5428	0.7437	0.4890	245	36
18.5133	0.7713	0.5166	258	37
18.4826	0.7749	0.5202	260	39
18.4660	0.7759	0.5212	261	40
18.4504	0.7871	0.5324	266	41
18.4174	0.8163	0.5616	281	42
18.3791	0.8191	0.5644	282	44
18.3565	0.8203	0.5655	283	45
18.3257	0.8530	0.5983	299	47
18.2480	0.8776	0.6229	311	51
18.2134	0.8806	0.6259	313	52
18.1918	0.8873	0.6326	316	54
18.1644	0.9167	0.6620	331	55
18.1314	0.9226	0.6679	334	57
18.1105	0.9387	0.6839	342	58
18.0370	0.9770	0.7223	361	61
17.9760	0.9822	0.7275	364	64
17.9436	0.9948	0.7401	370	66
17.8806	1.0342	0.7795	390	69
17.8241	1.0392	0.7845	392	72
17.7986	1.0406	0.7859	393	73
17.7798	1.0454	0.7907	395	74
17.7435	1.0876	0.8329	416	76
17.6740	1.1064	0.8517	426	79
17.6188	1.1086	0.8539	427	82
17.5920	1.1099	0.8551	428	84
17.5566	1.1505	0.8958	448	85
17.4903	1.1692	0.9145	457	89
17.4376	1.1719	0.9172	459	91
17.4156	1.1733	0.9186	459	92
17.4004	1.1745	0.9198	460	93
17.3906	1.1752	0.9205	460	94
17.3783	1.1757	0.9210	461	94
17.3711	1.1781	0.9234	462	95
17.3520	1.2234	0.9687	484	96
17.3102	1.2357	0.9810	491	98

17.2823	1.2369	0.9822	491	99
17.2656	1.2384	0.9837	492	100
17.2462	1.2389	0.9842	492	101
17.2279	1.2589	1.0042	502	102
17.1796	1.2843	1.0296	515	104
17.1375	1.2862	1.0315	516	106
17.1031	1.2868	1.0321	516	108
17.0803	1.2878	1.0331	517	109
17.0605	1.2988	1.0441	522	110
17.0026	1.3402	1.0855	543	113
16.9314	1.3434	1.0887	544	117
16.8852	1.3450	1.0903	545	119
16.8553	1.3462	1.0915	546	120
16.8050	1.3893	1.1346	567	123
16.7213	1.3998	1.1451	573	127
16.6493	1.4015	1.1468	573	131
16.6119	1.4030	1.1483	574	133
16.5851	1.4039	1.1492	575	134
16.5492	1.4457	1.1910	595	136
16.4752	1.4593	1.2046	602	139
16.3975	1.4607	1.2060	603	143
16.3542	1.4620	1.2073	604	145
16.3112	1.4957	1.2409	620	148
16.0169	1.5241	1.2694	635	162
15.6908	1.5324	1.2777	639	179
15.6350	1.5365	1.2818	641	181
15.6081	1.5386	1.2839	642	183
15.5638	1.5815	1.3268	663	185
15.4880	1.5978	1.3431	672	189
15.4231	1.5999	1.3451	673	192
15.3835	1.6016	1.3469	673	194
15.3505	1.6037	1.3490	675	196
15.3252	1.6054	1.3507	675	197
15.3050	1.6065	1.3518	676	198
15.2893	1.6072	1.3525	676	199
15.2801	1.6077	1.3530	677	199
15.2723	1.6089	1.3542	677	200
15.2464	1.6484	1.3937	697	201
15.2047	1.6543	1.3996	700	203
15.1665	1.6545	1.3998	700	205
15.0947	1.6546	1.3999	700	208
15.0394	1.6627	1.4079	704	211
14.9411	1.7010	1.4463	723	216
14.8585	1.6959	1.4412	721	220
14.8253	1.7078	1.4531	727	222
14.8155	1.7118	1.4571	729	222
13.8072	1.8043	1.5496	775	273
13.7844	1.8074	1.5527	776	274
<u>1</u> 2.7579	1.8072	1.5525	776	325
12.7275	1.8074	1.5527	776	327
12.6809	1.8365	1.5818	791	329
10.1561	1.8108	1.5561	778	455

9.6222	1.8544	1.5997	800	482
9.3763	1.8683	1.6136	807	494
9.2844	1.8724	1.6177	809	499
9.2370	1.8743	1.6195	810	501
9.2072	1.8756	1.6209	810	503
9.1849	1.8769	1.6222	811	504
9.1729	1.8778	1.6230	812	505
9.1613	1.8782	1.6235	812	505
9.1499	1.8788	1.6241	812	506
9.1422	1.8792	1.6245	812	506
9.1328	1.8940	1.6393	820	507
9.1039	1.9411	1.6864	843	508
9.0724	1.9448	1.6901	845	510
9.0325	1.9451	1.6904	845	512
8.9913	1.9453	1.6906	845	514
8.9487	1.9545	1.6998	850	516
8.7704	1.9880	1.7333	867	525
7.2923	1.9800	1.7253	863	599
7.1301	1.9988	1.7441	872	607
7.0637	2.0020	1.7473	874	610
7.0274	2.0038	1.7491	875	612
7 0038	2.0047	1 7500	875	613
6.9872	2.0057	1.7510	876	614
6 9678	2.0340	1 7793	890	615
6.9311	2.0010	1 8067	903	617
6 8957	2.0627	1 8080	904	618
6 8586	2.0632	1 8085	904	620
6.8127	2.0074	1.8427	921	623
5.5469	2.0787	1.8240	912	686
5 1546	2 1195	1 8648	932	705
5 0440	2 1310	1 8763	938	711
4.9927	2.1335	1.8788	939	714
4 9629	2 1360	1 8812	941	715
4 9236	2.1772	1 9225	961	717
4.8585	2.1992	1.9445	972	720
4 7852	2 2003	1 9456	973	724
4,7253	2.2014	1.9467	973	727
4.6763	2.2146	1.9599	980	729
4.5787	2.2472	1.9924	996	734
4.3328	2.2457	1.9909	995	747
4.0106	2.2454	1.9907	995	763
3.8551	2.2499	1.9951	998	770
3.7896	2.2525	1.9978	999	774
3.7533	2.2540	1.9992	1000	775
3.7283	2.2551	2.0004	1000	777
3.7092	2.2557	2.0009	1000	778
3.6966	2.2562	2.0014	1001	778
3.6787	2.2785	2.0238	1012	779
3.6470	2.3134	2.0587	1029	781
3.6145	2.3152	2.0605	1030	782
3.5855	2.3160	2.0612	1031	784
3.5564	2.3161	2.0614	1031	785

3 5200	2 3167	2 0620	1031	787
3.5233	2.3107	2.0020	1031	788
3 4881	2 3175	2.0628	1031	789
3 4616	2 3481	2.0020	1031	700
3 4239	2 3581	2 1034	1047	792
3 3773	2 3596	2.1034	1052	79/
3 3204	2 3615	2.1045	1052	707
3 2508	2.3013	2.1008	1055	801
3 1694	2 3656	2.1004	1055	805
3.0860	2.3030	2.1103	1055	809
3.0800	2.3044	2.1057	1055	809 812
2 0454	2.3030	2.1111	1030	816
2.3434	2.3334	2.0387	1049	810 810
2.0043	2.3943	2.1390	1070	819
2.3073	2.4019	2.1472	1074	040
1.2101	2.4109	2.1302	1078	902
1.0880	2.4262	2.1715	1080	909
1.0300	2.4304	2.1737	1000	912
0.9969	2.4331	2.1783	1089	913
0.9743	2.4325	2.1778	1089	914
0.9597	2.4300	2.1753	1088	915
0.9470	2.4306	2.1759	1088	916
0.9355	2.4353	2.1806	1090	916
0.9241	2.4400	2.1853	1093	917
0.9050	2.4810	2.2263	1113	918
0.8865	2.4861	2.2314	1116	919
0.8706	2.4879	2.2331	1117	920
0.8571	2.4867	2.2320	1116	920
0.8435	2.4857	2.2310	1115	921
0.8310	2.4945	2.2398	1120	922
0.7973	2.5496	2.2949	1147	923
0.7277	2.5556	2.3009	1150	927
0.5652	2.5531	2.2984	1149	935
-0.0854	2.5383	2.2836	1142	967
-0.3640	2.5483	2.2936	1147	981
-0.4390	2.5532	2.2985	1149	985
-0.4764	2.5557	2.3010	1151	987
-0.5000	2.5591	2.3044	1152	988
-0.5190	2.5602	2.3055	1153	989
-0.5456	2.6083	2.3536	1177	990
-0.6044	2.6423	2.3876	1194	993
-0.6884	2.6448	2.3901	1195	998
-0.7913	2.6459	2.3911	1196	1003
-0.8890	2.6463	2.3916	1196	1008
-0.9628	2.6472	2.3925	1196	1011
-1.0159	2.6485	2.3937	1197	1014
-1.0557	2.6493	2.3946	1197	1016
-1.0836	2.6491	2.3944	1197	1017
-1.1067	2.6599	2.4052	1203	1018
-1.1778	2.7367	2.4820	1241	1022
-3.6568	2.8988	2.6441	1322	1146
-3.6861	2.8991	2.6444	1322	1147
-3.7142	2.8932	2.6385	1319	1149

-3.7393	2.8936	2.6389	1319	1150
-3.7664	2.9010	2.6463	1323	1151
-3.8323	2.9557	2.7010	1351	1155
-4.7653	2.9233	2.6686	1334	1201
-5.3812	2.9494	2.6947	1347	1232
-5.5002	2.9628	2.7081	1354	1238
-5.5442	2.9633	2.7086	1354	1240
-5.5701	2.9624	2.7077	1354	1242
-5.5870	2.9615	2.7068	1353	1242
-5.5983	2.9646	2.7098	1355	1243
-5.6224	3.0275	2.7728	1386	1244
-5.6515	3.0422	2.7875	1394	1246
-5.6752	3.0398	2.7851	1393	1247
-5.6945	3.0363	2.7815	1391	1248
-5.7059	3.0324	2.7777	1389	1248
-5.7109	3.0279	2.7732	1387	1249
-5.6771	3.0439	2.7892	1395	1247
-5.6752	3.0428	2.7880	1394	1247
-5.6739	3.0410	2.7863	1393	1247
-5.6746	3.0394	2.7846	1392	1247
-5.6748	3.0379	2.7832	1392	1247
-5.6753	3.0979	2.8432	1422	1247
-5.6772	3.0948	2.8401	1420	1247
-5.6434	3.1578	2.9031	1452	1245
-5.6374	3.1706	2.9158	1458	1245
-5.6428	3.1647	2.9100	1455	1245
-5.6472	3.1608	2.9061	1453	1246
-5.6476	3.1657	2.9110	1456	1246
-5.6500	3.1903	2.9356	1468	1246

Placa de 50 mm – Ensaio a 100 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
18.3347	0.8823	0.0000	0	0
18.2939	0.9053	0.0230	12	4
18.2790	0.9376	0.0554	28	6
18.1225	0.9756	0.0933	47	21
18.0855	1.0135	0.1313	66	25
18.0646	1.0642	0.1819	91	27
18.0330	1.1107	0.2285	114	30
17.9905	1.1456	0.2633	132	34
17.9537	1.1715	0.2892	145	38
17.8832	1.1915	0.3092	155	45
17.8781	1.1919	0.3096	155	46
17.8724	1.1919	0.3096	155	46
17.8651	1.1919	0.3096	155	47
17.8627	1.1918	0.3095	155	47
17.8585	1.1957	0.3134	157	48
17.8535	1.2128	0.3305	165	48
17.8444	1.2231	0.3408	170	49
17.8375	1.2405	0.3583	179	50
17.8308	1.2614	0.3791	190	50
17.8160	1.2968	0.4145	207	52
17.8012	1.3358	0.4535	227	53
17.7724	1.3810	0.4987	249	56
17.7484	1.4158	0.5335	267	59
17.7072	1.4580	0.5757	288	63
17.6483	1.5048	0.6226	311	69
17.4636	1.5415	0.6592	330	87
17.4165	1.5921	0.7098	355	92
17.3385	1.6369	0.7546	377	100
17.2408	1.6735	0.7912	396	109
17.1697	1.7188	0.8366	418	117
17.0841	1.7529	0.8706	435	125
16.9955	1.7971	0.9148	457	134
16.8161	1.8534	0.9711	486	152
16.7116	1.8940	1.0118	506	162
16.5826	1.9444	1.0621	531	175
10.4447	1.9994	1.11/1	559	189
10.2354	2.0364	1.1541	577	210
15.050	2.0976	1.2154	608	222
15.6959	2.1319	1.2090	035	244
15.0030	2.1923 2.2510	1.3100	601	207
15.4015	2.2312	1.3069	004 719	200
11.13/1	2.3004 9.3696	1.4241	712	314
14.0401	2.3000 9.4254	1.4004	777	J43 107
13 8963	2.4334 9 5099	1 6900	810	<u>407</u> <u>451</u>
13.0200	2.5025	1 60/6	<u><u> </u></u>	512
19 706/	2 6288	1 7/65	872	562
12 3052	2 7034	1 8211	911	603
11.7007	2.7629	1.8806	940	663

11.2084	2.8417	1.9595	980	713
10.7255	2.9080	2.0258	1013	761
10.1770	2.9671	2.0848	1042	816
9.7705	3.0555	2.1732	1087	856
9.2023	3.1294	2.2471	1124	913
8.8788	3.1956	2.3133	1157	946
8.4807	3.2764	2.3941	1197	985
7.9365	3.3428	2.4605	1230	1040
7.5296	3.4314	2.5492	1275	1081
7.0196	3.5205	2.6382	1319	1132
6.5162	3.6211	2.7388	1369	1182
6.0991	3.7012	2.8190	1409	1224
5.6875	3.7844	2.9021	1451	1265
5.1870	3.8952	3.0129	1506	1315
4.7445	3.9979	3.1156	1558	1359
4.4301	4.1280	3.2457	1623	1390
3.8347	4.2052	3.3229	1661	1450
3.3820	4.2744	3.3921	1696	1495
3.0320	4.3725	3.4902	1745	1530
2.5764	4.4419	3.5596	1780	1576
2.1062	4.5338	3.6515	1826	1623
1.5764	4.6199	3.7376	1869	1676
1.1775	4.7158	3.8335	1917	1716
0.6504	4.8000	3.9177	1959	1768
0.2609	4.8869	4.0046	2002	1807
-0.0952	5.0011	4.1188	2059	1843
-0.6914	5.0897	4.2074	2104	1903
-1.0764	5.1798	4.2975	2149	1941
-1.5500	5.2846	4.4023	2201	1988
-1.9842	5.3840	4.5017	2251	2032
-2.4342	5.4943	4.6120	2306	2077
-2.8616	5.5938	4.7115	2356	2120
-3.2850	5.7103	4.8280	2414	2162
-3.6577	5.8096	4.9273	2464	2199
-3.9809	5.9105	5.0282	2514	2232
-4.2166	5.9954	5.1131	2557	2255
-4.3762	6.0564	5.1741	2587	2271
-4.4854	6.0970	5.2147	2607	2282
-4.5614	6.1188	5.2365	2618	2290
-4.6212	6.1317	5.2495	2625	2296
-4.6605	6.1371	5.2548	2627	2300
-4.6893	6.1418	5.2595	2630	2302
-4.7163	6.1431	5.2608	2630	2305
-4.7327	6.1427	5.2604	2630	2307
-4.7507	6.1434	5.2611	2631	2309
-4.7667	6.1427	5.2604	2630	2310
-4.7754	6.1421	5.2598	2630	2311
-4.7875	6.1409	5.2586	2629	2312
-4.7981	6.1394	5.2571	2629	2313
-4.8063	6.1380	5.2558	2628	2314
-4.8144	6.1364	5.2541	2627	2315
-4.8203	6.1351	5.2528	2626	2315

-4.8245	6.1341	5.2518	2626	2316
-4.8322	6.1328	5.2505	2625	2317
-4.8368	6.1315	5.2493	2625	2317
-4.8414	6.1301	5.2478	2624	2318
-4.8461	6.1282	5.2459	2623	2318
-4.8498	6.1265	5.2442	2622	2318
-4.8556	6.1249	5.2426	2621	2319
-4.8589	6.1231	5.2408	2620	2319
-4.8597	6.1249	5.2426	2621	2319
-4.8672	6.1336	5.2513	2626	2320
-4.8787	6.1437	5.2614	2631	2321
-4.9085	6.1459	5.2636	2632	2324
-4.9359	6.1521	5.2699	2635	2327
-4.9598	6.1549	5.2726	2636	2329
-4.9825	6.1581	5.2758	2638	2332

Placa de 100 mm – Ensaio a 1 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
33.6432	0.0720	0.0000	0	0
33.4328	0.0793	0.0073	1	0
33.4239	0.0830	0.0110	1	0
33.4276	0.0883	0.0163	2	0
33.3983	0.0888	0.0169	2	0
33.3423	0.0844	0.0124	2	0
33.3421	0.0945	0.0225	3	0
33.3412	0.0962	0.0243	3	0
33.3405	0.0952	0.0232	3	0
33.3400	0.0971	0.0252	3	0
33.3390	0.0956	0.0237	3	0
33.3387	0.0967	0.0247	3	0
33.3383	0.0965	0.0245	3	0
33.3378	0.0902	0.0182	2	0
33.3011	0.1015	0.0295	4	0
33.2496	0.1084	0.0364	5	0
33.2120	0.1139	0.0420	5	0
33.1922	0.1204	0.0485	6	0
33.1794	0.1233	0.0513	7	0
33.1712	0.1228	0.0509	7	0
33.1349	0.1281	0.0561	7	1
33.0968	0.1352	0.0632	8	1
33.0605	0.1418	0.0699	9	1
33.0460	0.1430	0.0710	9	1
33.0409	0.1442	0.0723	9	1
33.0299	0.1458	0.0739	9	1
33.0003	0.1546	0.0826	11	1
32.9854	0.1619	0.0899	12	1
32.9753	0.1647	0.0927	12	1
32.9686	0.1641	0.0922	12	1
32.9210	0.1674	0.0954	12	1
32.9098	0.1767	0.1047	13	1
32.9005	0.1754	0.1034	13	1
32.8897	0.1787	0.1068	14	1
32.8769	0.1855	0.1136	15	1
32.8440	0.1856	0.1136	15	1
32.8350	0.1922	0.1202	15	1
32.8233	0.1939	0.1219	16	1
32.7833	0.1979	0.1260	16	1
32.7746	0.2009	0.1289	17	<u>l</u>
32.7701	0.2037	0.1317	17	<u> </u>
32.7655	0.2108	0.1388	18	
32.6817	0.2205	0.1486	19	1
32.6545	0.2300	0.1580	20	
32.6421	0.2314	0.1594	20	
32.6359	0.2346	0.1020	21	
32.6329	0.2344	0.1624	21	1
32.0208	0.2324	0.1004	21	1
32.0225	0.2415	0.1095	22	1
32.6172	0.2456	0.1737	22	1
---------	--------	--------	----	---
32.6098	0.2508	0.1789	23	1
32.5886	0.2503	0.1783	23	1
32.5676	0.2520	0.1800	23	1
32.5595	0.2573	0.1854	24	1
32.5545	0.2637	0.1917	25	1
32.5280	0.2679	0.1959	25	1
32.4850	0.2727	0.2007	26	1
32.4777	0.2770	0.2050	26	1
32.4734	0.2740	0.2020	26	1
32.4700	0.2800	0.2080	27	1
32.4664	0.2863	0.2143	27	1
32.4613	0.2874	0.2154	28	1
32.3822	0.2969	0.2249	29	1
32.3446	0.3039	0.2319	30	1
32.3345	0.3109	0.2389	31	1
32.3290	0.3143	0.2423	31	1
32.3051	0.3194	0.2474	32	1
32.2464	0.3319	0.2599	33	1
32.2357	0.3333	0.2614	34	1
32.2257	0.3495	0.2775	36	1
32.1807	0.3602	0.2883	37	1
32.1525	0.3522	0.2802	36	1
32.1451	0.3629	0.2909	37	1
32.1409	0.3655	0.2936	38	2
32.1289	0.3822	0.3102	40	2
32.1037	0.3872	0.3153	40	2
32.0864	0.3866	0.3147	40	2
32.0766	0.3884	0.3164	41	2
32.0238	0.4009	0.3289	42	2
31.9209	0.4070	0.3350	43	2
31.9096	0.4132	0.3412	44	2
31.9041	0.4151	0.3432	44	2
31.8938	0.4295	0.3575	46	2
31.8712	0.4348	0.3628	47	2
31.8565	0.4399	0.3680	47	2
31.8487	0.4427	0.3708	48	2
31.6717	0.4536	0.3816	49	2
31.6233	0.4682	0.3962	51	2
31.6132	0.4665	0.3945	51	2
31.6050	0.4879	0.4159	53	2
31.5520	0.5049	0.4330	56	2
31.4970	0.5127	0.4408	57	2
31.4846	0.5166	0.4446	57	2
31.4790	0.5145	0.4426	57	2
31.4692	0.5325	0.4605	59	2
31.2848	0.5478	0.4758	61	2
31.2488	0.5579	0.4859	62	2
31.2394	0.5632	0.4913	63	2
31.2258	0.5874	0.5155	66	2
31.1958	0.5942	0.5222	67	2
31.1660	0.5964	0.5245	67	2

01 1500	0.0070	0 5050	0.0	9
31.1500	0.6072	0.5353	69 70	2
30.9830	0.0202	0.5465	70	ა ი
30.0474	0.0201	0.5501	71	ა ი
20.8332	0.6300	0.5560	72	ა ე
20.8290	0.6611	0.5014	76	ა ი
30.0171	0.0011	0.5692	70	ა ე
30.7909	0.6685	0.5964	70	<u>ა</u>
30.7630	0.0085	0.5900	70	ა ე
30.7740	0.0710	0.5991	77	ა ე
30.7039	0.6890	0.0170	79	ა ი
30.7293	0.6995	0.0270	80	3
30.0080	0.0980	0.0207	80	3
30.0148	0.7034	0.6314	81	3
30.3781	0.7309	0.0390	84 92	ა ი
30.2215	0.7206	0.6487	83	3
30.1870	0.7252	0.6533	84	3
30.1738	0.7491	0.0771	87	3
30.1520	0.7717	0.6997	90	3
30.1393	0.7764	0.7044	90	4
30.1301	0.7770	0.7050	90	4
30.1121	0.7972	0.7253	93	4
30.0762	0.8113	0.7393	95	4
30.0170	0.8058	0.7338	94	4
29.9988	0.8090	0.7370	94	4
29.9875	0.8083	0.7363	94	4
29.9759	0.8241	0.7522	96	4
29.9261	0.8359	0.7639	98	4
29.3207	0.8324	0.7604	97	4
29.2970	0.8430	0.7710	99	4
29.2800	0.8458	0.7738	99	4
29.2794	0.8492	0.7759	100	4
29.2703	0.8471	0.7732	109	4
29.2093	0.8053	0.7934	102	4
29.2493	0.8960	0.8241	100	4
29.2299	0.8977	0.8237	100	4
29.2121	0.0941	0.8406	103	4
29.1037	0.9210	0.8490	109	5
20.4035	0.9127	0.8407	100	5
20.3341	0.9195	0.8470	110	5
28 3053	0.9308	0.8563	110	5
28.3033	0.9582	0.8026	111	5
20.2004	0.9043	0.8920	114	5
20.2730	0.9003	0.8045	114	5
20.2031	0.3003	0.0945	113	5
20.2J24	0.0060	0.9094	117	5
20.2020	1 0010	0.9249	119	5 5
20.2030	0.0005	0.9291	113	5
20.1097	1 0910	0.9273	119	5
20.1020 26.7104	0.0880	0.9490	122	7
20.7104 26.1957	1 0080	0.0100	117	l Q
25 1227	0.0079	0.000	110	0
60.1001	0.0010	0.02014	113	3

23.9098	0.9953	0.9233	118	10
22.5950	1.0047	0.9327	120	11
20.0669	0.9828	0.9109	117	14
17.5927	1.0013	0.9294	119	16
9.8940	0.8357	0.7637	98	24
6.2877	0.8920	0.8201	105	27
4.4052	0.9608	0.8888	114	29
2.5599	1.0121	0.9401	121	31
0.6984	1.0515	0.9795	126	33
-1.1778	1.0770	1.0050	129	35
-3.0787	1.0795	1.0076	129	37
-3.1564	1.1455	1.0736	138	37
-5.0745	1.1249	1.0529	135	39
-5.1372	1.1855	1.1136	143	39
-5.1793	1.2061	1.1341	145	39
-5.2174	1.2205	1.1486	147	39
-5.2352	1.2320	1.1600	149	39
-5.2639	1.2514	1.1795	151	39
-5.2999	1.2641	1.1921	153	39
-5.3342	1.2638	1.1919	153	39
-5.3584	1.2713	1.1994	154	39
-8.0539	1.1921	1.1201	144	42
-8.1024	1.2561	1.1841	152	42
-8.1427	1.2898	1.2179	156	42
-8.1734	1.3018	1.2298	158	42
-8.1888	1.3038	1.2318	158	42
-8.2062	1.3340	1.2620	162	42
-8.2338	1.3452	1.2732	163	42
-8.2612	1.3392	1.2673	162	42
-8.2806	1.3565	1.2846	165	42
-9.2912	1.3590	1.2871	165	43
-11.0580	1.3345	1.2626	162	45
-11.0954	1.3747	1.3027	167	45
-11.1434	1.4238	1.3518	173	45
-13.3053	1.3995	1.3275	170	47
-13.3492	1.4470	1.3750	176	47
-13.3855	1.4779	1.4059	180	47
-13.4285	1.5109	1.4389	184	47
-13.4731	1.5149	1.4430	185	47
-13.5000	1.5233	1.4513	186	47
-13.5149	1.5229	1.4509	186	47
-13.5317	1.5546	1.4826	190	47
-13.5541	1.5707	1.4987	192	47
-13.5733	1.5699	1.4979	192	47
-13.5888	1.5723	1.5003	192	47
-13.5984	1.5715	1.4996	192	47
-13.6055	1.5709	1.4989	192	47
-13.6105	1.5717	1.4997	192	47
-13.6145	1.5709	1.4990	192	47
-13.6178	1.5736	1.5016	193	47

Placa de 100 mm – Ensaio a 5 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
23.4821	0.0098	0.0000	0	0
23.4809	0.0105	0.0007	0	0
23.4808	0.0117	0.0018	0	0
23.4804	0.0190	0.0091	1	0
23.4734	0.0282	0.0183	2	0
23.4664	0.0302	0.0204	3	0
23.4660	0.0302	0.0204	3	0
23.4648	0.0387	0.0288	4	0
23.4564	0.0517	0.0419	5	0
23.4427	0.0524	0.0426	5	0
23.4435	0.0525	0.0427	5	0
23.4425	0.0546	0.0448	6	0
23.4367	0.0643	0.0544	7	0
23.4321	0.0662	0.0563	7	0
23.4281	0.0682	0.0583	7	0
23.4256	0.0731	0.0632	8	0
23.4205	0.0784	0.0686	9	0
23.4153	0.0811	0.0712	9	0
23.4133	0.0845	0.0746	10	0
23.4056	0.0983	0.0884	11	0
23.3914	0.1045	0.0946	12	0
23.3865	0.1053	0.0954	12	0
23.3831	0.1058	0.0959	12	0
23.3794	0.1086	0.0987	13	1
23.3780	0.1189	0.1090	14	1
23.3711	0.1204	0.1105	14	1
23.3681	0.1223	0.1124	14	1
23.3602	0.1347	0.1248	16	1
23.3530	0.1350	0.1251	16	1
23.3480	0.1383	0.1285	16	1
23.3429	0.1554	0.1456	19	1
23.3131	0.1627	0.1528	20	1
23.3075	0.1629	0.1531	20	1
23.3048	0.1628	0.1530	20	1
23.3004	0.1726	0.1627	21	1
23.2876	0.1922	0.1824	23	1
23.2576	0.1961	0.1862	24	1
23.2521	0.1961	0.1863	24	1
23.0223	0.3353	0.3254	42	2
22.9867	0.3471	0.3372	43	2
22.9666	0.3500	0.3402	44	3
22.9557	0.3493	0.3395	44	3
22.9517	0.3497	0.3399	44	3
22.9456	0.3524	0.3426	44	3
22.9429	0.3609	0.3510	45	3
22.9319	0.3799	0.3700	47	3
22.8918	0.3972	0.3873	50	3
22.8659	0.3973	0.3875	50	3
22.8550	0.3982	0.3884	50	3

22.8466	0.3999	0.3901	50	3
22.8404	0.4172	0.4073	52	3
22.7366	0.4562	0.4464	57	4
22.6779	0.4632	0.4534	58	4
22.6652	0.4645	0.4547	58	4
22.6581	0.4659	0.4560	58	4
22.6535	0.4712	0.4614	59	4
22.6427	0.5013	0.4914	63	4
22.5560	0.5300	0.5202	67	5
22.5196	0.5325	0.5226	67	5
22.5076	0.5326	0.5227	67	5
22.5019	0.5352	0.5253	67	5
22.4858	0.5758	0.5659	73	5
22.4023	0.5962	0.5863	75	5
22.3715	0.5971	0.5872	75	6
22.3571	0.6069	0.5970	77	6
22.3294	0.6421	0.6323	81	6
22.2741	0.6546	0.6447	83	6
22.2430	0.6557	0.6458	83	6
22.2298	0.6570	0.6472	83	6
22.2153	0.6873	0.6774	87	6
22.1095	0.7236	0.7137	92	7
22.0293	0.7275	0.7177	92	7
22.0114	0.7290	0.7192	92	7
21.9907	0.7667	0.7569	97	7
21.9017	0.8007	0.7909	101	8
21.8476	0.8035	0.7936	102	8
21.8279	0.8054	0.7955	102	8
21.8165	0.8066	0.7968	102	8
21.8048	0.8284	0.8186	105	8
21.7880	0.8531	0.8432	108	8
21.7539	0.8708	0.8609	110	9
21.7208	0.8712	0.8613	110	9
21.6994	0.8823	0.8724	112	9
21.1713	0.9672	0.9574	123	12
21.1185	0.9754	0.9656	124	12
21.1041	0.9778	0.9680	124	12
21.0965	0.9864	0.9766	125	12
21.0807	1.0256	1.0157	130	12
21.0649	1.0297	1.0198	131	12
21.0552	1.0306	1.0208	131	12
21.0470	1.0339	1.0240	131	12
21.0410	1.0431	1.0333	132	12
21.0286	1.0725	1.0627	136	12
20.9881	1.1124	1.1026	141	12
20.9389	1.1146	1.1048	142	13
20.9026	1.1236	1.1137	143	13
20.8521	1.1624	1.1525	148	13
20.7467	1.1755	1.1657	149	14
20.6918	1.1778	1.1680	150	14
1 20.6656	4 4 6 6 1	4 1007		
20.0000	1.1924	1.1825	152	14

20.6028	1.2311	1.2213	157	14
20.5686	1.2439	1.2340	158	15
20.5207	1.2693	1.2594	161	15
20.4380	1.2838	1.2740	163	15
20.3649	1.2863	1.2764	164	16
20.3227	1.3071	1.2973	166	16
20.2831	1.3117	1.3019	167	16
20.2554	1.3313	1.3215	169	16
20.2179	1.3541	1.3443	172	16
20.1765	1.3586	1.3488	173	17
20.1395	1.3702	1.3604	174	17
20.0970	1.3822	1.3723	176	17
20.0597	1.3897	1.3798	177	17
20.0268	1.4029	1.3930	179	17
19.9946	1.4130	1.4032	180	17
19.9635	1.4220	1.4121	181	18
19.9367	1.4281	1.4182	182	18
19.9111	1.4293	1.4195	182	18
19.8914	1.4292	1.4194	182	18
19.8714	1.4380	1.4282	183	18
19.8529	1.4468	1.4370	184	18
19.8360	1.4563	1.4464	185	18
19.8175	1.4721	1.4622	187	18
19.7939	1.4724	1.4625	188	18
19.7692	1.4721	1.4622	187	19
19.7487	1.4817	1.4719	189	19
19.7229	1.4933	1.4835	190	19
19.6999	1.4936	1.4837	190	19
19.6824	1.4996	1.4897	191	19
19.6445	1.5458	1.5359	197	19
18.4266	1.5286	1.5188	195	25
18.2670	1.5647	1.5548	199	26
18.2162	1.6072	1.5974	205	26
18.1688	1.6188	1.6089	206	27
18.1404	1.6197	1.6098	206	27
18.1243	1.6271	1.6173	207	27
18.1061	1.6486	1.6388	210	27
18.0818	1.6873	1.6775	215	27
18.0530	1.6907	1.6808	215	27
18.0255	1.6974	1.6875	216	27
17.9919	1.7247	1.7148	220	27
17.9569	1.7364	1.7266	221	28
17.8694	1.7637	1.7539	225	28
15.2968	1.7606	1.7507	224	41
15.1911	1.7749	1.7650	226	41
15.1625	1.7923	1.7825	229	42
15.1310	1.8299	1.8200	233	42
15.1047	1.8326	1.8228	234	42
15.0868	1.8450	1.8352	235	42
15.0634	1.8743	1.8645	239	42
15.0436	1.8754	1.8656	239	42
15.0256	1.8833	1.8735	240	42

15.0000	1.9206	1.9108	245	42
14.9710	1.9223	1.9125	245	43
14.9434	1.9265	1.9167	246	43
14.9065	1.9521	1.9422	249	43
14.8214	1.9672	1.9574	251	43
8.1085	1.9523	1.9424	249	77
7.6657	2.0089	1.9991	256	79
7.6299	2.0284	2.0186	259	79
7.6040	2.0326	2.0228	259	79
7.5762	2.0585	2.0487	263	80
7.5576	2.0719	2.0621	264	80
7.5418	2.0721	2.0622	264	80
7.5303	2.0762	2.0664	265	80
7.5184	2.1129	2.1031	270	80
7.4876	2.1306	2.1207	272	80
7.4712	2.1309	2.1210	272	80
7.4427	2.1450	2.1352	274	80
7.4107	2.1749	2.1650	278	80
7.3680	2.1826	2.1728	279	81
7.3278	2.1816	2.1717	278	81
7.2707	2.1999	2.1901	281	81
-4.2768	2.1477	2.1378	274	139
-5.6120	2.2649	2.2550	289	145
-5.6675	2.2766	2.2668	291	146
-5.6777	2.2794	2.2696	291	146
-5.6892	2.2818	2.2719	291	146
-5.6960	2.2834	2.2736	291	146
-5.6998	2.2848	2.2750	292	146
-5.7052	2.3092	2.2993	295	146
-5.7119	2.3318	2.3219	298	146
-5.7160	2.3363	2.3265	298	146
-5.7188	2.3384	2.3286	299	146
-5.7220	2.3411	2.3313	299	146
-5.7299	2.3602	2.3504	301	146
-5.7648	2.4131	2.4032	308	146
-5.7789	2.4309	2.4210	310	146
-5.7964	2.4301	2.4202	310	146
-5.8134	2.4315	2.4217	310	146
-5.8321	2.4538	2.4440	313	147
-5.8657	2.4731	2.4632	316	147
-9.0150	2.4417	2.4319	312	162
-9.1003	2.4743	2.4645	316	163
-9.1156	2.4797	2.4699	317	163
-9.1250	2.4819	2.4720	317	163
-9.1325	2.4963	2.4865	319	163
-9.1439	2.5518	2.5419	326	163
-9.1535	2.5609	2.5510	327	163
-9.1587	2.5621	$2.552\overline{3}$	327	163
-9.1631	2.5725	2.5627	329	163
-9.1987	2.6507	2.6408	339	163
-11.6335	2.6025	2.5926	332	176
-12.8551	2.6862	$2.676\overline{4}$	343	182

-12.9059	2.6924	2.6825	344	182
-12.9140	2.6961	2.6863	344	182
-12.9203	2.6975	2.6876	345	182
-12.9251	2.7067	2.6969	346	182
-12.9424	2.7790	2.7692	355	182
-12.9582	2.7999	2.7901	358	182
-12.9755	2.8042	2.7944	358	182
-12.9861	2.8024	2.7925	358	182
-12.9977	2.8234	2.8136	361	182
-13.0170	2.8496	2.8398	364	182
-13.0343	2.8795	2.8697	368	183

Placa de 100 mm – Ensaio a 10 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
38.3181	0.0021	0.0000	0	0
38.3171	0.0070	0.0049	1	0
38.3091	0.0100	0.0078	1	0
38.3048	0.0180	0.0158	2	0
38.2943	0.0270	0.0249	3	0
38.2844	0.0305	0.0284	4	0
38.2830	0.0368	0.0346	4	0
38.2700	0.0433	0.0412	5	0
38.2635	0.0476	0.0455	6	1
38.2580	0.0537	0.0515	7	1
38.2454	0.0609	0.0588	8	1
38.2416	0.0664	0.0643	8	1
38.2292	0.0738	0.0717	9	1
38.2160	0.0836	0.0814	10	1
38.2081	0.0892	0.0870	11	1
38.1986	0.0930	0.0908	12	1
38.1934	0.1038	0.1017	13	1
38.1778	0.1112	0.1091	14	1
38.1693	0.1193	0.1172	15	1
38.1543	0.1388	0.1366	18	2
38.1219	0.1518	0.1496	19	2
38.1188	0.1503	0.1482	19	2
38.1132	0.1508	0.1487	19	2
38.1091	0.1599	0.1577	20	2
38.1021	0.1788	0.1767	23	2
38.0728	0.1982	0.1960	25	2
38.0602	0.2028	0.2007	26	3
38.0526	0.2195	0.2174	28	3
38.0282	0.2501	0.2480	32	3
38.0026	0.2607	0.2586	33	3
37.9929	0.2682	0.2661	34	3
37.9755	0.3049	0.3028	39	3
37.9524	0.3153	0.3132	40	4
37.9416	0.3383	0.3361	43	4
37.9225	0.3649	0.3628	47	4
37.8982	0.3762	0.3741	48	4
37.8867	0.4036	0.4015	51	4
37.8620	0.4364	0.4343	56	5
37.8370	0.4457	0.4436	57	5
37.8197	0.4856	0.4834	62	5
37.7979	0.4950	0.4928	63	5
37.7843	0.5173	0.5151	66	5
37.7683	0.5348	0.5326	68	5
37.7513	0.5462	0.5441	70	6
37.7427	0.5602	0.5580	72	6
37.7304	0.5818	0.5796	74	6
37.7112	0.5940	0.5919	76	6
37.7041	0.5949	0.5928	76	6
37.6948	0.6052	0.6030	77	6

37.6902	0.6216	0.6195	79	6
37.6827	0.6238	0.6216	80	6
37.6738	0.6328	0.6306	81	6
37.6667	0.6520	0.6499	83	7
37.6350	0.6791	0.6770	87	7
37.6122	0.6847	0.6825	88	7
37.5978	0.7046	0.7025	90	7
37.5740	0.7229	0.7207	92	7
37.5527	0.7464	0.7442	95	8
37.5312	0.7541	0.7519	96	8
37.4732	0.8072	0.8051	103	8
37.4324	0.8316	0.8294	106	9
37.4137	0.8451	0.8430	108	9
37.3836	0.8904	0.8882	114	9
37.3489	0.9061	0.9040	116	10
37.3207	0.9276	0.9254	119	10
37.3059	0.9531	0.9510	122	10
37.2776	0.9770	0.9748	125	10
37.2547	1.0037	1.0016	128	11
37.2177	1.0285	1.0264	132	11
37.1916	1.0340	1.0319	132	11
37,1779	1.0576	1.0555	135	11
37.1455	1.0823	1.0802	138	12
37.1247	1.1050	1.1028	141	12
37.0907	1.1418	1.1397	146	12
36.9996	1.1839	1.1818	152	13
36.9617	1.1873	1.1852	152	14
36 9410	1 2062	1 2041	154	14
36.9126	1.2539	1.2518	160	14
36.8846	1.2583	1.2562	161	14
36.8674	1.2675	1.2653	162	15
36.8475	1.3082	1.3060	167	15
36.8211	1.3199	1.3178	169	15
36.8036	1.3213	1.3192	169	15
36.7902	1.3424	1.3402	172	15
36.7688	1.3727	1.3706	176	15
36.7515	1.3805	1.3784	177	16
36.7386	1.3933	1.3912	178	16
36.7019	1.4385	1.4363	184	16
36.6366	1.4725	1.4704	189	17
36.5929	1.4769	1.4748	189	17
36.5648	1.4978	1.4956	192	18
36.5404	1.5220	1.5198	195	18
36.5108	1.5723	1.5702	201	18
36.4686	1.5858	1.5836	203	18
36.4195	1.6215	1.6193	208	19
36.3717	1.6555	1.6533	212	19
36.3356	1.6662	1.6640	213	20
36.3147	1.6782	1.6761	215	20
36.2901	1.7336	1.7314	222	20
36.2492	1.7433	1.7411	223	21
36.2193	1.7534	1.7512	225	21

36.1854	1.8034	1.8013	231	21
36.1428	1.8071	1.8050	231	22
36.1220	1.8128	1.8106	232	22
36.0914	1.8493	1.8472	237	22
36.0599	1.8685	1.8664	239	23
36.0252	1.9023	1.9002	244	23
35.9942	1.9164	1.9143	245	23
35.9565	1.9588	1.9567	251	24
35.9058	1.9992	1.9971	256	24
35.8009	2.0097	2.0075	257	25
35.7441	2.0601	2.0579	264	26
35.6784	2.0819	2.0797	267	26
35.6503	2.0879	2.0858	267	27
35.6282	2.0900	2.0878	268	27
35.6119	2.1057	2.1035	270	27
35.6007	2.1228	2.1207	272	27
32.5482	3.2140	3.2119	412	58
32.5434	3.2155	3.2134	412	58
32.5402	3.2158	3.2137	412	58
32.5378	3.2163	3.2141	412	58
32.5354	3.2251	3.2229	413	58
32.5297	3.2653	3.2631	418	58
32.5257	3.2825	3.2804	421	58
32.5162	3.2860	3.2839	421	58
32.5089	3.3313	3.3292	427	58
32.4934	3.3865	3.3843	434	58
32.4724	3.3904	3.3883	434	58
32.4597	3.3915	3.3894	435	59
32.4326	3.4483	3.4461	442	59
30.1024	3.4511	3.4489	442	82
29.6112	3.5688	3.5667	457	87
29.5670	3.6206	3.6185	464	88
29.5375	3.6679	3.6658	470	88
29.5064	3.6982	3.6961	474	88
29.4867	3.7002	3.6981	474	88
29.4680	3.7694	3.7672	483	89
29.4236	3.8410	3.8388	492	89
29.3640	3.8648	3.8626	495	90
29.3040	3.8777	3.8755	497	90
29.2205	3.9121	3.9100	501	91
24.4874	3.8310	3.8289	491	138
22.4072	4.0324	4.0303	517	159
22.3538	4.0475	4.0453	519	160
22.3306	4.0969	4.0947	525	160
22.3018	4.1529	4.1507	532	160
22.2869	4.1568	4.1547	533	160
22.2670	4.2278	4.2256	542	161
22.2429	4.2480	4.2458	544	161
22.2273	4.2500	4.2479	545	161
22.2096	4.2983	4.2962	551	161
22.1801	4.3390	4.3369	556	161
22.1544	4.3395	4.3374	556	162

22.1325	4.3409	4.3388	556	162
22.1159	4.3518	4.3497	558	162
22.0948	4.3894	4.3873	562	162
22.0721	4.3959	4.3938	563	162
22.0533	4.4094	4.4073	565	163
22.0235	4.4443	4.4421	570	163
21.9778	4.4868	4.4846	575	163
16.9194	4.2505	4.2484	545	214
14.4527	4.4541	4.4519	571	239
14.3872	4.4701	4.4679	573	239
14.3599	4.5128	4.5107	578	240
14.3364	4.5490	4.5468	583	240
14.3243	4.5493	4.5471	583	240
14.3075	4.5877	4.5856	588	240
14.2893	4.6204	4.6183	592	240
14.2758	4.6224	4.6203	592	240
14.2641	4.6227	4.6206	592	241
14.2495	4.6822	4.6801	600	241
14.2328	4.6860	4.6839	600	241
14.2209	4.6848	4.6827	600	241
14.2143	4.6846	4.6824	600	241
14.2027	4.6897	4.6875	601	241
14.1970	4.6867	4.6846	601	241
14.1919	4.6840	4.6819	600	241
14.1850	4.6816	4.6794	600	241
14.1841	4.6789	4.6768	600	241
14.1787	4.6749	4.6727	599	241
14.1759	4.6730	4.6709	599	241
14.1756	4.6704	4.6683	599	241
14.1711	4.6665	4.6644	598	241
14.1698	4.6640	4.6619	598	241
14.1693	4.6624	4.6602	597	241
14.1648	4.6600	4.6579	597	242
14.1658	4.6587	4.6566	597	242
14.1647	4.6558	4.6537	597	242
14.1610	4.6536	4.6515	596	242
14.1622	4.6516	4.6494	596	242
14.1579	4.6490	4.6469	596	242
14.1582	4.6471	4.6450	596	242
14.1577	4.6453	4.6432	595	242
14.1546	4.6432	4.6411	595	242
14.1566	4.6419	4.6398	595	242
14.1536	4.6401	4.6380	595	242
14.1535	4.6386	4.6364	594	242
14.1545	4.6373	4.6352	594	242
14.1667	4.2261	4.2240	542	242
14.1645	4.2763	4.2741	548	242
14.1632	4.3278	4.3257	555	242
14.1596	4.4488	4.4466	570	242
14.1542	4.5464	4.5442	583	242
14.1533	4.5510	4.5489	583	242
14.1538	4.5524	4.5502	583	242

14.1509	4.5551	4.5530	584	242
14.1511	4.5566	4.5544	584	242
14.1512	4.5575	4.5553	584	242
14.1493	4.5567	4.5546	584	242
14.1521	4.5563	4.5542	584	242
14.1490	4.5555	4.5534	584	242
14.1481	4.5548	4.5526	584	242
14.1489	4.5544	4.5523	584	242
14.1478	4.5535	4.5514	584	242
14.1489	4.5530	4.5509	583	242
14.1490	4.5526	4.5505	583	242
14.1458	4.5518	4.5497	583	242
14.1479	4.5514	4.5492	583	242
14.1470	4.5508	4.5487	583	242
14.1459	4.5501	4.5479	583	242
14.1472	4.5497	4.5476	583	242
14.1459	4.5488	4.5467	583	242
14.1454	4.5484	4.5462	583	242
14.1463	4.5463	4.5442	583	242
14.1439	4.5447	4.5426	582	242
14.1461	4.5416	4.5394	582	242
14.1450	4.5398	4.5376	582	242
14.1433	4.5376	4.5354	581	242
14.1450	4.5356	4.5334	581	242

b) Ensaios em Areia Inundada

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
57.8241	0.0096	0.0000	0	0
54.9309	0.0157	0.0061	3	3
52.2003	0.0181	0.0085	4	6
50.5825	0.0169	0.0073	4	7
49.7873	0.0220	0.0124	6	8
47.8925	0.0194	0.0098	5	10
47.0665	0.0174	0.0078	4	11
46.6317	0.0206	0.0110	6	11
46.2454	0.0214	0.0118	6	12
46.1037	0.0247	0.0150	8	12
45.7218	0.0213	0.0117	6	12
45.3485	0.0210	0.0114	6	12
45.2190	0.0209	0.0113	6	13
44.8694	0.0215	0.0119	6	13
44.4403	0.0191	0.0094	5	13
44.2599	0.0215	0.0119	6	14
43.5604	0.0197	0.0101	5	14
42.8695	0.0209	0.0113	6	15
42.2652	0.0178	0.0082	4	16
41.7898	0.0188	0.0091	5	16
41.1300	0.0219	0.0123	6	17
40.6367	0.0216	0.0119	6	17

Placa de 50 mm – Ensaio a 1 g

Placa de 50 mm – Ensaio a 5 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
34.6439	0.1066	0.0000	0	0
34.1884	0.1165	0.0099	5	2
34.0149	0.1157	0.0091	5	3
33.7474	0.1275	0.0209	10	4
33.4801	0.1212	0.0146	7	6
33.1490	0.1278	0.0212	11	7
32.7496	0.1305	0.0239	12	9
32.6571	0.1320	0.0254	13	10
32.5863	0.1326	0.0260	13	10
32.5235	0.1329	0.0263	13	11
32.4676	0.1311	0.0245	12	11
32.3751	0.1313	0.0247	12	11
32.2054	0.1369	0.0303	15	12
32.0253	0.1396	0.0330	17	13
31.9007	0.1429	0.0363	18	14
31.7885	0.1406	0.0340	17	14
31.7128	0.1404	0.0338	17	15
31.6468	0.1411	0.0345	17	15
31.5638	0.1443	0.0377	19	15
31.4561	0.1346	0.0280	14	16
31.3632	0.1475	0.0409	20	16
31.2128	0.1488	0.0422	21	17
31.0249	0.1425	0.0359	18	18
30.8965	0.1479	0.0412	21	19
30.7860	0.1479	0.0412	21	19
30.4776	0.1592	0.0526	26	21
30.2602	0.1556	0.0490	24	22
30.0577	0.1540	0.0474	24	23
29.8856	0.1531	0.0465	23	24
29.7065	0.1543	0.0477	24	25
29.5697	0.1569	0.0503	25	25
29.3876	0.1533	0.0466	23	26
29.2542	0.1537	0.0471	24	27
29.0916	0.1577	0.0511	26	28
28.7436	0.1611	0.0545	27	30
28.5272	0.1630	0.0564	28	31
28.0748	0.1627	0.0561	28	33
27.7593	0.1608	0.0542	27	34
27.0607	0.1634	0.0568	28	38
26.2469	0.1607	0.0540	27	42
25.2733	0.1629	0.0563	28	47
24.3732	0.1494	0.0428	21	51
23.1742	0.1599	0.0533	27	57
21.9320	0.1565	0.0499	25	64
20.7178	0.1608	0.0542	27	70
19.4686	0.1571	0.0505	25	76
18.1995	0.1546	0.0480	24	82
17.0363	0.1494	0.0428	21	88
16.0984	0.1529	0.0463	23	93

15.0612	0.1507	0.0441	22	98
14.1076	0.1538	0.0471	24	103
12.8134	0.1444	0.0378	19	109
11.8320	0.1582	0.0516	26	114
10.9607	0.1542	0.0476	24	118
10.3814	0.1544	0.0478	24	121
9.3914	0.1553	0.0487	24	126
8.5061	0.1612	0.0546	27	131
7.8497	0.1656	0.0590	29	134
6.8173	0.1660	0.0594	30	139
5.9529	0.1681	0.0615	31	143
5.3808	0.1703	0.0637	32	146
4.6651	0.1725	0.0659	33	150
3.7882	0.1720	0.0654	33	154
3.0224	0.1785	0.0719	36	158
2.3318	0.1829	0.0763	38	162
1.6498	0.1831	0.0765	38	165
1.0935	0.1814	0.0748	37	168
0.2053	0.1745	0.0679	34	172
-0.5035	0.1859	0.0793	40	176
-1.0056	0.1912	0.0846	42	178
-1.5832	0.1916	0.0850	42	181
-2.6339	0.1939	0.0873	44	186
-3.2311	0.1962	0.0896	45	189
-3.6748	0.1962	0.0896	45	192
-4.1156	0.1982	0.0915	46	194
-4.5291	0.1992	0.0926	46	196
-5.0929	0.2039	0.0973	49	199
-5.3735	0.2031	0.0965	48	200
-5.7626	0.2037	0.0971	49	202
-6.1423	0.2053	0.0987	49	204
-6.4171	0.2055	0.0989	49	205
-6.7922	0.2082	0.1016	51	207
-7.3800	0.2116	0.1050	53	210

Placa de 50 mm – Ensaio a 10 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
46.1622	0.0779	0.0000	0	0
46.0517	0.0847	0.0068	3	1
46.0136	0.0855	0.0076	4	1
45.9713	0.0907	0.0128	6	2
45.8566	0.0973	0.0194	10	3
45.8264	0.1025	0.0245	12	3
45.7601	0.1023	0.0244	12	4
45.7275	0.1069	0.0290	15	4
45.6684	0.1147	0.0367	18	5
45.5586	0.1173	0.0394	20	6
45.4119	0.1278	0.0499	25	8
45.3009	0.1338	0.0559	28	9
45.0962	0.1454	0.0675	34	11
45.0168	0.1523	0.0744	37	11
44.8574	0.1633	0.0854	43	13
44.5634	0.1779	0.1000	50	16
43.9955	0.2020	0.1240	62	22
43.7962	0.2050	0.1271	64	24
43.1419	0.2333	0.1553	78	30
42.2834	0.2483	0.1704	85	39
40.9492	0.2695	0.1916	95	52
39.9091	0.2673	0.1894	95	63
38.8595	0.2716	0.1937	97	73
37.7670	0.2740	0.1961	98	84
36.5034	0.2787	0.2008	100	97
35.0995	0.2878	0.2099	105	111
33.9309	0.2962	0.2183	109	122
32.3904	0.3097	0.2318	116	138
31.5456	0.3115	0.2336	117	146
30.0610	0.3274	0.2495	125	161
29.1621	0.3335	0.2555	128	170
28.1367	0.3429	0.2650	133	180
27.0687	0.3512	0.2733	137	191
26.5607	0.3526	0.2747	137	196
24.7342	0.3505	0.2726	136	214
24.3710	0.3734	0.2954	148	218
23.7029	0.3796	0.3017	151	225
22.3645	0.3922	0.3143	157	238
21.8038 91.0419	0.3911	0.3132	157	245 951
21.0413	0.3900	0.0001	109	201
20.1011	0.4100	0.3321	100	201 960
19.0000	0.4100	0.000	100	200 979
10.9/34	0.4108	0.3309	109	212 907
17.4407	0.4201	0.3472	1/4	205
16.2760	0.4207	0.3307	173	290 200
10.3700	0.4313	0.0000	1//	230

Placa de 50 mm – Ensaio a 15 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
23.7701	0.0832	0.0000	0	0
23.7445	0.0844	0.0012	1	0
23.7159	0.0867	0.0035	2	1
23.6941	0.0774	-0.0058	-3	1
23.6869	0.0873	0.0041	2	1
23.6681	0.0942	0.0110	5	2
23.6454	0.0931	0.0099	5	2
23.6028	0.0970	0.0138	7	3
23.5800	0.0975	0.0143	7	3
23.5620	0.0989	0.0157	8	3
23.5460	0.1030	0.0197	10	3
23.5285	0.1056	0.0224	11	4
23.5046	0.1100	0.0268	13	4
23.4884	0.1031	0.0198	10	4
23.4732	0.1080	0.0248	12	4
23.4518	0.1100	0.0268	13	5
23.4292	0.1155	0.0323	16	5
23.4121	0.1114	0.0282	14	5
23.3939	0.1133	0.0301	15	6
23.3785	0.1164	0.0332	17	6
23.3507	0.1136	0.0304	15	6
23.3331	0.1209	0.0377	19	7
23.3168	0.1103	0.0271	14	7
23.2897	0.1177	0.0345	17	7
23.2306	0.1312	0.0480	24	8
23.1906	0.1286	0.0454	23	9
23.1725	0.1306	0.0474	24	9
23.1349	0.1361	0.0529	26	10
23.0968	0.1412	0.0580	29	10
23.0756	0.1306	0.0474	24	10
23.0576	0.1324	0.0492	25	11
23.0372	0.1471	0.0639	32	11
23.0040	0.1443	0.0611	31	11
22.9723	0.1506	0.0674	34	12
22.9462	0.1552	0.0720	36	12
22.9015	0.1592	0.0760	38	13
22.8252	0.1605	0.0773	39	14
22.7930	0.1666	0.0834	42	15
22.7073	0.1646	0.0814	41	15
22.7456	0.1698	0.0866	43	15
22.7158	0.1750	0.0918	40	10
22.0038	0.1709	0.0923	40	17
22.02U3	0.1007	0.0900	40	10
22.0931	0.1007	0.1003	5U E 4	1ð 10
22.00/0	0.1904	0.1072	5 G	10
22.3103 22.4820	0.1943	0.1111	55	19
22.4000	0.1932	0.1100	56	13
22.4032 99 2605	0.1902	0.1130	50	20 91
22 3389	0.2010	0.1230	61	21
~~.0000	0.2002	0.1600	V1	~ 1

22.3163	0.2078	0.1246	62	22
22.2841	0.2104	0.1272	64	22
22.2321	0.2183	0.1351	68	23
22.1855	0.2207	0.1375	69	24
22.1382	0.2200	0.1368	68	24
22.0857	0.2350	0.1518	76	25
21.9852	0.2421	0.1589	79	27
21.9087	0.2429	0.1597	80	28
21.8334	0.2478	0.1646	82	29
21.7062	0.2668	0.1836	92	31
21.5167	0.2785	0.1953	98	34
21.3647	0.2866	0.2034	102	36
21.2939	0.2812	0.1980	99	37
21.2534	0.2906	0.2073	104	38
21.1996	0.2863	0.2031	102	39
21.1297	0.3024	0.2192	110	40
21.0380	0.3063	0.2231	112	41
20.8931	0.3188	0.2356	118	43
20.6266	0.3258	0.2426	121	47
20.4752	0.3356	0.2524	126	49
20.3211	0.3441	0.2609	130	52
20.1572	0.3525	0.2693	135	54
19.9838	0.3544	0.2712	136	57
19.8804	0.3623	0.2791	140	58
19.6386	0.3778	0.2946	147	62
18.9659	0.3825	0.2993	150	72
18.5751	0.4057	0.3225	173	78
17.2469	0.4185	0.3353	168	98
15.8360	0.4391	0.3559	178	119
14.2768	0.4615	0.3783	189	142
12.5643	0.4910	0.4078	204	168
11.5940	0.4978	0.4146	207	183
10.6009	0.5193	0.4361	218	198
9.7102	0.5189	0.4357	218	211
9.6268	0.5183	0.4351	218	212
9.5952	0.5069	0.4237	212	213
9.5607	0.5139	0.4307	215	213
9.5251	0.5218	0.4386	219	214
9.4996	0.5202	0.4370	218	214
9.4710	0.5121	0.4289	214	214
9.4501	0.5104	0.4272	214	215
9.4303	0.5219	0.4387	219	215
9.4172	0.5158	0.4326	216	215
9.4067	0.5115	0.4283	214	215
9.3930	0.5161	0.4329	216	216
9.3806	0.5081	0.4249	212	216
9.3637	0.5254	0.4422	221	216
9.3541	0.5174	0.4342	217	216
9.3413	0.5289	0.4457	223	216
9.3255	0.5287	0.4455	223	217
9.3128	0.5242	0.4410	220	217
9.2917	0.5352	0.4519	226	217
9.2781	0.5296	0.4464	223	217
9.2639	0.5250	0.4418	221	218

9.2491	0.5281	0.4449	222	218
9.2428	0.5282	0.4450	223	218
9.2300	0.5285	0.4453	223	218
9.2166	0.5200	0.4368	218	218
9.2064	0.5355	0.4523	226	218
9.1923	0.5323	0.4491	225	219
9.1843	0.5195	0.4363	218	219
9.1849	0.5191	0.4359	218	219
9.1806	0.5108	0.4276	214	219
9.1753	0.5189	0.4357	218	219

Placa de 50 mm – Ensaio a 25 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
19.9398	-2.6477	0.0000	0	0
19.9113	-2.6341	0.0136	7	1
19.8588	-2.6374	0.0103	5	2
19.8250	-2.6184	0.0293	15	3
19.8098	-2.6005	0.0472	24	3
19.6899	-2.5919	0.0558	28	6
19.6080	-2.5793	0.0684	34	8
19.5787	-2.5579	0.0898	45	9
19.5665	-2.5496	0.0981	49	9
19.5511	-2.5338	0.1139	57	10
19.5260	-2.5275	0.1202	60	10
19.4679	-2.5227	0.1251	63	12
19.4279	-2.5142	0.1335	67	13
19.4113	-2.5089	0.1388	69	13
19.4027	-2.5026	0.1451	73	13
19.3946	-2.4990	0.1488	74	14
19.3865	-2.4935	0.1542	77	14
19.3796	-2.4917	0.1560	78	14
19.3717	-2.4831	0.1646	82	14
19.3603	-2.4760	0.1717	86	14
19.3339	-2.4744	0.1733	87	15
19.3107	-2.4542	0.1935	97	16
19.2882	-2.4415	0.2063	103	16
19.2469	-2.4335	0.2142	107	17
19.1119	-2.4233	0.2244	112	21
19.0398	-2.4137	0.2340	117	23
18.9700	-2.3963	0.2514	126	24
18.8478	-2.3962	0.2515	126	27
18.7967	-2.3935	0.2542	127	29
18.7591	-2.3893	0.2584	129	30
18.6470	-2.3817	0.2660	133	32
18.4482	-2.3795	0.2683	134	37
18.4048	-2.3712	0.2765	138	38
18.3483	-2.3664	0.2813	141	40
18.2982	-2.3601	0.2876	144	41
18.2407	-2.3598	0.2879	144	42
18.1319	-2.3509	0.2968	148	45
18.0770	-2.3443	0.3034	152	47
18.0289	-2.3356	0.3121	156	48
17.9356	-2.3159	0.3319	166	50
17.7577	-2.2911	0.3566	178	55
17.2870	-2.2688	0.3789	189	66
17.2226	-2.2578	0.3899	195	68
17.1786	-2.2432	0.4045	202	69
17.0785	-2.2311	0.4166	208	72
16.9461	-2.2234	0.4243	212	75
16.7592	-2.2088	0.4390	219	80
15.9261	-2.1986	0.4491	225	100
15.8219	-2.1506	0.4971	249	103

14.1277	-2.0611	0.5867	289	145
12.1145	-1.9727	0.6750	338	196
11.7257	-1.9642	0.6835	342	205
11.6043	-1.9603	0.6874	344	208
8.4645	-1.9373	0.7104	355	287
8.0143	-1.9250	0.7227	361	298
7.9432	-1.9255	0.7222	361	300
6.4445	-1.9209	0.7268	363	337
5.0543	-1.9135	0.7342	367	372
4.9920	-1.9057	0.7421	371	374
4.9615	-1.9010	0.7467	373	374
4.9395	-1.8885	0.7592	380	375
4.9181	-1.8790	0.7687	384	376
4.8971	-1.8673	0.7804	390	376
4.8745	-1.8671	0.7806	390	377
4.8559	-1.8606	0.7871	394	377
4.8226	-1.8579	0.7898	395	378
4.7744	-1.8532	0.7945	397	379
4.7118	-1.8497	0.7980	399	381
1.8022	-1.8441	0.8036	402	453
1.1640	-1.8384	0.8093	405	469
1.1157	-1.8314	0.8163	408	471
1.0784	-1.8186	0.8291	415	472
1.0337	-1.8046	0.8431	422	473
-1.3678	-1 7459	0.9019	451	533
-4.4829	-1.6760	0.9717	486	611
-4.4984	-1.6682	0.9796	490	611
-4 5128	-1 6595	0.9882	494	611
-4.5306	-1.6480	0.9997	500	612
-4.5515	-1.6333	1.0144	507	612
-4.5983	-1.6294	1.0183	509	613
-4.6377	-1.6228	1.0249	512	614
-4.6688	-1.6108	1.0370	518	615
-4 7243	-1 6107	1 0370	519	617
-4.8302	-1.6044	1.0433	522	619
-7.1350	-1.5932	1.0545	527	677
-7.2011	-1.5720	1.0758	538	679
-7.2521	-1.5603	1.0874	544	680
-7.9758	-1.5454	1.1023	551	698
-9.3235	-1.5263	1.1214	561	732
-9.3900	-1.5128	1.1349	567	733
-9.4529	-1.5006	1.1471	574	735
-11.2872	-1.4880	1.1597	580	781
-11.3250	-1.4813	1.1664	583	782
19.9398	-2.6477	0.0000	0	0
19.9113	-2.6341	0.0136	7	1
19.8588	-2.6374	0.0103	5	2
19.8250	-2.6184	0.0293	15	3
19.8098	-2.6005	0.0472	24	3
19.6899	-2.5919	0.0558	28	6
19.6080	-2.5793	0.0684	34	8
19.5787	-2.5579	0.0898	45	9

19.5665	-2.5496	0.0981	49	9
19.5511	-2.5338	0.1139	57	10
19.5260	-2.5275	0.1202	60	10
19.4679	-2.5227	0.1251	63	12
19.4279	-2.5142	0.1335	67	13
19.4113	-2.5089	0.1388	69	13
19.4027	-2.5026	0.1451	73	13
19.3946	-2.4990	0.1488	74	14
19.3865	-2.4935	0.1542	77	14
19.3796	-2.4917	0.1560	78	14
19.3717	-2.4831	0.1646	82	14
19.3603	-2.4760	0.1717	86	14
19.3339	-2.4744	0.1733	87	15
19.3107	-2.4542	0.1935	97	16
19.2882	-2.4415	0.2063	103	16
19.2469	-2.4335	0.2142	107	17
19.1119	-2.4233	0.2244	112	21
19.0398	-2.4137	0.2340	117	23
18.9700	-2.3963	0.2514	126	24
18.8478	-2.3962	0.2515	126	27
18.7967	-2.3935	0.2542	127	29
18.7591	-2.3893	0.2584	129	30
18.6470	-2.3817	0.2660	133	32
18.4482	-2.3795	0.2683	134	37
18.4048	-2.3712	0.2765	138	38
18.3483	-2.3664	0.2813	141	40
18.2982	-2.3601	0.2876	144	41
18.2407	-2.3598	0.2879	144	42
18.1319	-2.3509	0.2968	148	45
18.0770	-2.3443	0.3034	152	47
18.0289	-2.3356	0.3121	156	48
17.9356	-2.3159	0.3319	166	50
17.7577	-2.2911	0.3566	178	55
17.2870	-2.2688	0.3789	189	66
17.2226	-2.2578	0.3899	195	68
17.1786	-2.2432	0.4045	202	69
17.0785	-2.2311	0.4166	208	72
16.9461	-2.2234	0.4243	212	75
16.7592	-2.2088	0.4390	219	80
15.9261	-2.1986	0.4491	225	100
15.8219	-2.1506	0.4971	249	103
14.1277	-2.0611	0.5867	289	145
12.1145	-1.9727	0.6750	338	196
11.7257	-1.9642	0.6835	342	205
11.6043	-1.9603	0.6874	344	208
8.4645	-1.9373	0.7104	355	287
8.0143	-1.9250	0.7227	361	298
7.9432	-1.9255	0.7222	361	300
6.4445	-1.9209	0.7268	363	337
5.0543	-1.9135	0.7342	367	372
4.9920	-1.9057	0.7421	371	374
4.9615	-1.9010	0.7467	373	374

4.9395	-1.8885	0.7592	380	375
4.9181	-1.8790	0.7687	384	376
4.8971	-1.8673	0.7804	390	376
4.8745	-1.8671	0.7806	390	377
4.8559	-1.8606	0.7871	394	377
4.8226	-1.8579	0.7898	395	378
4.7744	-1.8532	0.7945	397	379
4.7118	-1.8497	0.7980	399	381
1.8022	-1.8441	0.8036	402	453
1.1640	-1.8384	0.8093	405	469
1.1157	-1.8314	0.8163	408	471
1.0784	-1.8186	0.8291	415	472
1.0337	-1.8046	0.8431	422	473
-1.3678	-1.7459	0.9019	451	533
-4.4829	-1.6760	0.9717	486	611
-4.4984	-1.6682	0.9796	490	611
-4.5128	-1.6595	0.9882	494	611
-4.5306	-1.6480	0.9997	500	612
-4.5515	-1.6333	1.0144	507	612
-4.5983	-1.6294	1.0183	509	613
-4.6377	-1.6228	1.0249	512	614
-4.6688	-1.6108	1.0370	518	615
-4.7243	-1.6107	1.0370	519	617
-4.8302	-1.6044	1.0433	522	619
-7.1350	-1.5932	1.0545	527	677
-7.2011	-1.5720	1.0758	538	679
-7.2521	-1.5603	1.0874	544	680
-7.9758	-1.5454	1.1023	551	698
-9.3235	-1.5263	1.1214	561	732
-9.3900	-1.5128	1.1349	567	733
-9.4529	-1.5006	1.1471	574	735
-11.2872	-1.4880	1.1597	580	781
-11.3250	-1.4813	1.1664	583	782

Placa de 50 mm – Ensaio a 50 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
20.1459	0.0076	0.0000	0	0
20.1315	0.0138	0.0061	3	1
20.1162	0.0202	0.0125	6	1
20.1080	0.0118	0.0042	2	2
20.0860	0.0220	0.0143	7	3
20.0737	0.0304	0.0228	11	4
20.0637	0.0383	0.0307	15	4
20.0523	0.0464	0.0388	19	5
20.0442	0.0541	0.0464	23	5
20.0360	0.0614	0.0537	27	5
20.0375	0.0686	0.0610	30	5
20.0264	0.0756	0.0680	34	6
20.0100	0.0830	0.0754	38	7
19.9931	0.0907	0.0831	42	8
19.9751	0.0980	0.0904	45	9
19.9572	0.1051	0.0975	49	9
19.9413	0.1142	0.1066	53	10
19.9238	0.1220	0.1144	57	11
19.9131	0.1291	0.1214	61	12
19.8951	0.1353	0.1277	64	13
19.8853	0.1406	0.1330	67	13
19.8713	0.1446	0.1370	68	14
19.8581	0.1478	0.1402	70	14
19.8482	0.1505	0.1428	71	15
19.8410	0.1532	0.1456	73	15
19.8275	0.1573	0.1497	75	16
19.8188	0.1621	0.1545	77	16
19.8098	0.1664	0.1588	79	17
19.8024	0.1716	0.1640	82	17
19.7903	0.1766	0.1689	84	18
19.7833	0.1805	0.1729	86	18
19.7771	0.1860	0.1784	89	18
19.7662	0.1923	0.1847	92	19
19.7593	0.1982	0.1906	95	19
19.7473	0.2092	0.2016	101	20
19.7477	0.2153	0.2077	104	20
19.7373	0.2245	0.2169	108	20
19.7293	0.2304	0.2228	111	21
19.7230	0.2357	0.2281	114	21
19.7049	0.2468	0.2392	120	22
19.7032	0.2550	0.2473	124	22
19.6931	0.2684	0.2607	130	23
19.6904	0.2759	0.2683	134	23
19.6740	0.2824	0.2748	137	24
19.6560	0.2894	0.2818	141	24
19.6424	0.2964	0.2887	144	25
19.6231	0.3028	0.2952	148	26
19.6110	0.3090	0.3014	151	27
19.5984	0.3161	0.3085	154	27

19.5827	0.3225	0.3148	157	28
19.5740	0.3289	0.3213	161	29
19.5647	0.3353	0.3276	164	29
19.5561	0.3417	0.3341	167	29
19.5574	0.3474	0.3398	170	29
19.5462	0.3541	0.3465	173	30
19.5437	0.3601	0.3525	176	30
19.5344	0.3667	0.3591	180	31
19.5355	0.3726	0.3650	183	31
17.6370	0.5579	0.5503	275	125
17.5508	0.5632	0.5556	278	130
17.4660	0.5683	0.5607	280	134
17.3557	0.5741	0.5665	283	140
17.2446	0.5800	0.5724	286	145
17.1503	0.5858	0.5782	289	150
17.0307	0.5918	0.5841	292	156
16.8699	0.5978	0.5902	295	164
16.7244	0.6038	0.5962	298	171
16.6071	0.6092	0.6016	301	177
16.3384	0.6146	0.6070	303	190
16.1266	0.6203	0.6127	306	201
15 8784	0.6255	0.6178	325	213
12.2868	0.7072	0.6996	350	393
11 8502	0 7124	0 7048	352	415
11.0002	0.7172	0 7096	355	449
10 9292	0.7219	0.7143	357	461
8 9048	0 7229	0 7153	358	562
20 1459	0.0076	0.0000	0	0
20.1315	0.0138	0.0061	3	1
20 1162	0.0202	0.0125	6	1
20 1080	0.0118	0.0042	2	2
20.0960	0.0126	0.0050	2	2
20.0860	0.0220	0.0143	7	3
20.0737	0.0304	0.0228	11	4
20.0637	0.0383	0.0307	15	4
20.0523	0.0464	0.0388	19	5
20.0442	0.0541	0.0464	23	5
20.0360	0.0614	0.0537	27	5
20.0375	0.0686	0.0610	30	5
20.0264	0.0756	0.0680	34	6
20.0100	0.0830	0.0754	38	7
19.9931	0.0907	0.0831	42	8
19.9751	0.0980	0.0904	45	9
19.9572	0.1051	0.0975	49	9
19.9413	0.1142	0.1066	53	10
19.9238	0.1220	0.1144	57	11
19.9131	0.1291	0.1214	61	12
19.8951	0.1353	0.1277	64	13
19.8853	0.1406	0.1330	67	13
19.8713	0.1446	0.1370	68	14
19.8581	0.1478	0.1402	70	14
19.8482	0.1505	0.1428	71	15

19.8410	0.1532	0.1456	73	15
19.8275	0.1573	0.1497	75	16
19.8188	0.1621	0.1545	77	16
19.8098	0.1664	0.1588	79	17
19.8024	0.1716	0.1640	82	17
19.7903	0.1766	0.1689	84	18
19.7833	0.1805	0.1729	86	18
19.7771	0.1860	0.1784	89	18
19.7662	0.1923	0.1847	92	19
19.7593	0.1982	0.1906	95	19
19.7473	0.2092	0.2016	101	20
19.7477	0.2153	0.2077	104	20
19.7373	0.2245	0.2169	108	20
19.7293	0.2304	0.2228	111	21
19.7230	0.2357	0.2281	114	21
19.7049	0.2468	0.2392	120	22
19.7032	0.2550	0.2473	124	22
19.6931	0.2684	0.2607	130	23
19.6904	0.2759	0.2683	134	23
19.6740	0.2824	0.2748	137	24
19.6560	0.2894	0.2818	141	24
19.6424	0.2964	0.2887	144	25
19.6231	0.3028	0.2952	148	26
19.6110	0.3090	0.3014	151	27
19.5984	0.3161	0.3085	154	27
19.5827	0.3225	0.3148	157	28
19.5740	0.3289	0.3213	161	29
19.5647	0.3353	0.3276	164	29
19.5561	0.3417	0.3341	167	29
19.5574	0.3474	0.3398	170	29
19.5462	0.3541	0.3465	173	30
19.5437	0.3601	0.3525	176	30
19.5344	0.3667	0.3591	180	31
19.5355	0.3726	0.3650	183	31
17.6370	0.5579	0.5503	275	125
17.5508	0.5632	0.5556	278	130
17.4660	0.5683	0.5607	280	134
17.3557	0.5741	0.5665	283	140
17.2446	0.5800	0.5724	286	145
17.1503	0.5858	0.5782	289	150
17.0307	0.5918	0.5841	292	156
16.8699	0.5978	0.5902	295	164
16.7244	0.6038	0.5962	298	171
16.6071	0.6092	0.6016	301	177
16.3384	0.6146	0.6070	303	190
16.1266	0.6203	0.6127	306	201
15.8784	0.6255	0.6178	325	213
12.2868	0.7072	0.6996	350	393
11.8502	0.7124	0.7048	352	415
11.1733	0.7172	0.7096	355	449
10.9292	0.7219	0.7143	357	461
8.9048	0.7229	0.7153	358	562

Placa de 50 mm – Ensaio a 100 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
9.7746	0.0037	0.0000	0	0
9.7730	0.0108	0.0072	4	0
9.7573	0.0189	0.0153	8	2
9.7475	0.0294	0.0257	13	3
9.7395	0.0405	0.0369	18	4
9.7298	0.0493	0.0456	23	4
9.7211	0.0603	0.0567	28	5
9.7083	0.0756	0.0719	36	7
9.6959	0.0869	0.0833	42	8
9.6770	0.1024	0.0987	49	10
9.6606	0.1182	0.1146	57	11
9.6395	0.1324	0.1287	64	14
9.6213	0.1501	0.1465	73	15
9.5980	0.1648	0.1611	81	18
9.5774	0.1750	0.1713	86	20
9.5514	0.1994	0.1958	98	22
9.5244	0.2146	0.2110	105	25
9.4892	0.2500	0.2463	123	29
9.4504	0.2769	0.2733	137	32
9.3993	0.3044	0.3007	150	38
9.3516	0.3324	0.3288	164	42
9.3005	0.3581	0.3544	177	47
9.2507	0.3878	0.3841	192	52
9.1972	0.4158	0.4121	206	58
9.1401	0.4411	0.4374	219	63
9.0814	0.4720	0.4683	234	69
9.0082	0.5052	0.5016	251	77
8.9455	0.5205	0.5169	258	83
8.9109	0.5023	0.4986	249	86
8.8595	0.5372	0.5335	267	92
8.8114	0.5498	0.5461	273	96
8.7554	0.5521	0.5484	274	102
8.6573	0.5634	0.5597	280	112
8.5295	0.5691	0.5654	283	125
8.4662	0.5719	0.5682	284	131
8.3052	0.5844	0.5808	290	147
8.2183	0.5976	0.5940	297	156
8.1302	0.6078	0.6042	302	164
8.0035	0.6184	0.6147	307	177
7.7497	0.6295	0.6258	313	202
7.4757	0.6511	0.6474	324	230
7.0682	0.6432	0.6395	320	271
6.5249	0.6841	0.6804	340	325
4.7581	0.7249	0.7213	361	502
4.1030	0.7813	0.7777	389	567
3.4957	0.7840	0.7803	390	628
2.1698	0.8339	0.8302	415	760
0.1574	0.8595	0.8558	428	962

c) Ensaios em Areia Não-Inundada

1	LUDE				
	LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
	57.8241	0.0096	0.0000	0	0
	54.9309	0.0157	0.0061	3	3
	52.2003	0.0181	0.0085	4	6
	50.5825	0.0169	0.0073	4	7
	49.7873	0.0220	0.0124	6	8
	47.8925	0.0194	0.0098	5	10
	47.0665	0.0174	0.0078	4	11
	46.6317	0.0206	0.0110	6	11
	46.2454	0.0214	0.0118	6	12
	46.1037	0.0247	0.0150	8	12
	45.7218	0.0213	0.0117	6	12
	45.3485	0.0210	0.0114	6	12
	45.2190	0.0209	0.0113	6	13
	44.8694	0.0215	0.0119	6	13
	44.4403	0.0191	0.0094	5	13
	44.2599	0.0215	0.0119	6	14
	43.5604	0.0197	0.0101	5	14
	42.8695	0.0209	0.0113	6	15
	42.2652	0.0178	0.0082	4	16
	41.7898	0.0188	0.0091	5	16
	41.1300	0.0219	0.0123	6	17
	40.6367	0.0216	0.0119	6	17

Placa de 50 mm – Ensaio a 1 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
32.7338	0.0516	0.0000	0	0
31.0152	0.0825	0.0309	386	9
29.1398	0.0983	0.0466	583	18
26.4817	0.1139	0.0622	778	31
23.6751	0.1190	0.0674	842	45
21.1201	0.1365	0.0848	1060	58
18.2053	0.1416	0.0900	1125	73
15.5427	0.1579	0.1062	1328	86
12.7825	0.1725	0.1208	1511	100
9.7063	0.1800	0.1283	1604	115
7.8233	0.1964	0.1448	1809	125

Placa de 10 mm – Ensaio a 5 g

Placa de 30 mm – Ensaio a 5 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
8.2858	0.0747	0.0000	0	0
8.2094	0.0809	0.0061	10	0
8.1450	0.1058	0.0310	52	1
8.0902	0.1087	0.0340	57	1
8.0402	0.1132	0.0385	64	1
7.9833	0.1215	0.0468	78	2
7.9223	0.1307	0.0559	93	2
7.8693	0.1413	0.0666	111	2
7.7918	0.1565	0.0818	136	2
7.7086	0.1670	0.0923	154	3
7.6110	0.1826	0.1079	180	3
7.5277	0.1972	0.1225	204	4
7.4395	0.2165	0.1418	236	4
7.3332	0.2246	0.1499	250	5
7.2540	0.2316	0.1569	261	5
7.1667	0.2523	0.1776	296	6
7.0711	0.2552	0.1804	301	6
6.9074	0.2674	0.1927	321	7
6.6891	0.2913	0.2166	361	8
6.3184	0.2855	0.2108	351	10
6.0631	0.3081	0.2334	389	11
0.8646	0.2191	0.1444	241	37
0.1998	0.2585	0.1838	306	40
-1.0561	0.2859	0.2111	352	47
-2.2367	0.3318	0.2571	429	53
-4.1797	0.3534	0.2787	465	62
-6.3834	0.4306	0.3559	593	73
-10.3575	0.5101	0.4354	726	93

Placa de 50 mm – Ensaio a 5 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
21.4759	-0.0159	0.0000	0	0
20.9767	0.0219	0.0378	19	2
20.8026	0.0399	0.0558	28	3
20.7277	0.0354	0.0513	26	4
20.6745	0.0565	0.0724	36	4
20.6505	0.0584	0.0744	37	4
20.6250	0.0551	0.0710	36	4
20.5994	0.0608	0.0767	38	4
20.5685	0.0664	0.0823	41	5
20.5334	0.0701	0.0860	43	5
20.4296	0.0787	0.0946	47	5
20.2965	0.0975	0.1134	57	6
20.2264	0.1145	0.1305	65	6
20.1856	0.1187	0.1346	67	6
20.1554	0.1232	0.1391	70	7
20.1234	0.1258	0.1418	71	7
20.0560	0.1375	0.1534	77	7
19.9854	0.1491	0.1650	83	7
19.9506	0.1454	0.1614	81	8
19.9384	0.1549	0.1708	85	8
19.9253	0.1537	0.1697	85	8
19.9010	0.1707	0.1866	93	8
19.7317	0.1961	0.2120	106	9
19.6379	0.2068	0.2228	111	9
19.5943	0.2117	0.2276	114	9
19.5789	0.2160	0.2319	116	9
19.5672	0.2246	0.2405	120	10
19.5531	0.2236	0.2395	120	10
19.5231	0.2381	0.2540	127	10
19.4521	0.2470	0.2629	131	10
19.4036	0.2517	0.2676	134	10
19.3629	0.2683	0.2842	142	11
19.3292	0.2732	0.2892	145	11
19.2925	0.2796	0.2955	148	11
19.2671	0.2950	0.3109	155	11
19.2466	0.2852	0.3011	151	11
19.2141	0.3069	0.3229	161	10
19.1001	0.3343	0.3503	1/5	12
18.9403	0.3034	0.3813	191	13
18.8300	0.3780	0.3939	197	13
18.8038	0.3853	0.4012	201	13
10./803	0.3889	0.4049	202	13
10./031	0.3997	0.4137	200 919	14
10./398	0.4100	0.4204	213 999	14
10./0/2	0.4200	0.4439	222 297	14
10.0702	0.4300	0.4343	221	14
10.0433	0.4433	0.4013	201 922	14
18.0037	0.4432	0.4031	253 259	14
18.4000	0.4721	0.4880	244	15

18.3764	0.4957	0.5116	256	15
18.3474	0.5091	0.5251	263	16
18.3134	0.5179	0.5339	267	16
18.2417	0.5423	0.5583	279	16
18.1769	0.5581	0.5740	287	16
18.0700	0.5873	0.6032	302	17
17.9277	0.5853	0.6012	301	18
17.8840	0.6096	0.6255	313	18
17.8487	0.6242	0.6401	320	18
17.8192	0.6348	0.6507	325	18
17.7881	0.6532	0.6691	335	18
17.7354	0.6809	0.6969	348	19
17.6445	0.6774	0.6934	347	19
17.5278	0.7160	0.7319	366	20
17.4343	0.7477	0.7636	382	20
17.3307	0.7770	0.7930	396	21
17.2478	0.7873	0.8033	402	21
17.1989	0.7925	0.8084	404	21
17.1704	0.8001	0.8160	408	22
17.0125	0.8657	0.8816	441	22
16.6415	0.8820	0.8979	449	24
16.5760	0.9216	0.9376	469	24
16.4788	0.9540	0.9699	485	25
16.3428	0.9751	0.9910	496	26
16.1800	1.0053	1.0212	511	26
15.8653	1.0431	1.0591	530	28
14.5377	1.0954	1.1114	556	35
14.1467	1.1134	1.1293	565	37
14.0703	1.1253	1.1412	571	37
14.0118	1.1492	1.1651	583	37
13.9197	1.1861	1.2020	601	38
6.0643	1.1227	1.1386	569	77
-0.0992	1.2405	1.2564	628	108
-2.6361	1.3149	1.3308	665	121
-4.9553	1.3396	1.3555	678	132
-8.3106	1.3766	1.3926	696	149
-8.4992	1.4075	1.4234	712	150
-8.5725	1.4100	1.4259	713	150
-8.6308	1.4115	1.4274	714	151
-8.6598	1.4070	1.4229	711	151
-8.6714	1.3831	1.3990	700	151
-8.6784	1.3756	1.3916	696	151
-8.6898	1.3816	1.3975	699	151
-8.7029	1.3999	1.4158	708	151
-8.7164	1.4035	1.4195	710	151
-8.7230	1.3949	1.4108	705	151
-8.7263	1.3833	1.3992	700	151
-8.7291	1.3529	1.3688	684	151
-8.7315	1.3677	1.3836	692	151
-8.7333	1.3662	1.3821	691	151

Placa de 50 mm – Ensaio a 10 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
18.1611	-0.0724	0.0000	0	0
17.9814	-0.0334	0.0390	20	2
17.8870	-0.0187	0.0536	27	3
17.8175	0.0028	0.0752	38	3
17.7432	0.0196	0.0920	46	4
17.7205	0.0269	0.0993	50	4
17.6898	0.0128	0.0852	43	5
17.6489	0.0372	0.1096	55	5
17.5438	0.0765	0.1489	74	6
17.4573	0.0943	0.1667	83	7
17.2700	0.1707	0.2430	122	9
17.1989	0.1796	0.2520	126	10
17.1128	0.2113	0.2837	142	10
17.0813	0.2241	0.2965	148	11
17.0053	0.2502	0.3225	161	12
16.9720	0.2691	0.3415	171	12
16.9034	0.3051	0.3775	189	13
16.8612	0.3089	0.3813	191	13
16.8475	0.3026	0.3750	187	13
16.8219	0.3410	0.4133	207	13
16.7501	0.3755	0.4479	224	14
16.6093	0.4213	0.4937	247	16
16.4418	0.4965	0.5689	284	17
16.3479	0.5164	0.5888	294	18
16.2311	0.5581	0.6305	315	19
16.1915	0.5674	0.6398	320	20
16.1173	0.6185	0.6909	345	20
16.0547	0.6285	0.7008	350	21
16.0314	0.6295	0.7018	351	21
16.0147	0.6306	0.7030	352	21
16.0046	0.6290	0.7013	351	22
15.9962	0.6335	0.7058	353	22
15.9776	0.6359	0.7083	354	22
15.9660	0.6580	0.7304	365	22
15.9518	0.6622	0.7345	367	22
15.9464	0.6574	0.7297	365	22
15.9382	0.6650	0.7374	369	22
15.9213	0.6733	0.7457	373	22
15.9158	0.6818	0.7541	377	22
15.9007	0.6796	0.7520	376	23
15.8902	0.6960	0.7684	384	23
15.8774	0.6949	0.7672	384	23
15.8636	0.6950	0.7674	384	23
15.8547	0.6929	0.7653	383	23
15.8356	0.7062	0.7785	389	23
15.8378	0.7248	0.7971	399	23
15.8064	0.7475	0.8199	410	24
15./510	0.7049	0.0070	419	24
15.0004	0.7946	0.8070	434	20
15.5721	0.8078	0.8801	440	26
----------	---------	--------	-----	-----
15.4780	0.8273	0.8997	450	27
15.4113	0.8481	0.9205	460	27
15.3498	0.8683	0.9407	470	28
15.2932	0.8981	0.9704	485	29
15.2061	0.9062	0.9786	489	30
15.0781	0.9435	1.0159	508	31
14.9119	0.9847	1.0571	529	32
14.7452	0.9978	1.0702	535	34
14.4579	1.0362	1.1085	554	37
13.7675	1.1162	1.1885	594	44
13.4773	1.1519	1.2242	612	47
13.3229	1.1957	1.2681	634	48
13.1487	1.2013	1.2737	637	50
13.0727	1.1832	1.2556	628	51
13.0268	1.2068	1.2792	640	51
13.0012	1.2096	1.2820	641	52
12.9823	1.2018	1.2742	637	52
12.9681	1.2053	1.2777	639	52
12.9333	1.2626	1.3350	667	52
9.5890	1.2496	1.3220	661	86
-0.1186	1.4289	1.5013	751	183
-3.2491	1.5347	1.6070	804	214
-5.9972	1.6529	1.7252	863	242
-9.7012	1.7827	1.8550	928	279
-10.7722	1.8220	1.8944	947	289
-12.5123	1.8379	1.9103	955	307
-12.6043	1.8182	1.8906	945	308
-12.7177	1.8208	1.8932	947	309
-12.7728	1.8511	1.9234	962	309
-12.8131	1.8384	1.9108	955	310
-12.8391	1.8409	1.9133	957	310
-12.8595	1.8336	1.9060	953	310
-12.8700	1.8205	1.8929	946	310
-12.8737	1.7988	1.8711	936	310
-12.8803	1.7931	1.8655	933	310
-12.8803	1.7815	1.8539	927	310
18.1611	-0.0724	0.0000	0	0
17.9814	-0.0334	0.0390	20	2
17.8870	-0.0187	0.0536	27	3
17.8175	0.0028	0.0752	38	3
17.7432	0.0196	0.0920	46	4
17.7205	0.0269	0.0993	50	4
17.6898	0.0128	0.0852	43	5
17.6489	0.0372	0.1096	55	5
17.5438	0.0765	0.1489	74	6
17.4573	0.0943	0.1667	83	7
17.2700	0.1707	0.2430	122	9
17.1989	0.1796	0.2520	126	10
17.1128	0.2113	0.2837	142	10
17.0813	0.2241	0.2965	148	11
17.0053	0.2502	0.3225	161	12

16,9720	0.2691	0.3415	171	12
16.9034	0.3051	0.3775	189	13
16.8612	0.3089	0.3813	191	13
16.8475	0.3026	0.3750	187	13
16.8219	0.3410	0.4133	207	13
16.7501	0.3755	0.4479	224	14
16.6093	0.4213	0.4937	247	16
16.4418	0.4965	0.5689	284	17
16.3479	0.5164	0.5888	294	18
16.2311	0.5581	0.6305	315	19
16.1915	0.5674	0.6398	320	20
16.1173	0.6185	0.6909	345	20
16.0547	0.6285	0.7008	350	21
16.0314	0.6295	0.7018	351	21
16.0147	0.6306	0.7030	352	21
16.0046	0.6290	0.7013	351	22
15.9962	0.6335	0.7058	353	22
15.9776	0.6359	0.7083	354	22
15.9660	0.6580	0.7304	365	22
15.9518	0.6622	0.7345	367	22
15.9464	0.6574	0.7297	365	22
15.9382	0.6650	0.7374	369	22
15.9213	0.6733	0.7457	373	22
15.9158	0.6818	0.7541	377	22
15.9007	0.6796	0.7520	376	23
15.8902	0.6960	0.7684	384	23
15.8774	0.6949	0.7672	384	23
15.8636	0.6950	0.7674	384	23
15.8547	0.6929	0.7653	383	23
15.8356	0.7062	0.7785	389	23
15.8378	0.7248	0.7971	399	23
15.8064	0.7475	0.8199	410	24
15.7516	0.7664	0.8388	419	24
15.6604	0.7946	0.8670	434	25
15.5721	0.8078	0.8801	440	26
15.4780	0.8273	0.8997	450	27
15.4113	0.8481	0.9205	460	27
15.3498	0.8683	0.9407	470	28
15.2932	0.8981	0.9704	485	29
15.2061	0.9062	0.9786	489	30
15.0781	0.9435	1.0159	508	31
14.9119	0.9847	1.0571	529	32
14.7452	0.9978	1.0702	535	34
14.4579	1.0362	1.1085	504	3/
13./0/5	1.1102	1.1885	<u> </u>	44
13.4//3	1.1519	1.2242	012	4/
10.0229	1.1937	1.2001	697	4ð 50
10.140/	1.2013	1.2/3/	U37 690	JU E 1
13.0727	1.1032	1.200	02ð 640	51 51
13.0200	1 9006	1.2732	£/1	59
19 0892	1.2030	1.2020	627	59
16.0060	1.6010	1.6146	037	J.L

12.9681	1.2053	1.2777	639	52
12.9333	1.2626	1.3350	667	52
9.5890	1.2496	1.3220	661	86
-0.1186	1.4289	1.5013	751	183
-3.2491	1.5347	1.6070	804	214
-5.9972	1.6529	1.7252	863	242
-9.7012	1.7827	1.8550	928	279
-10.7722	1.8220	1.8944	947	289
-12.5123	1.8379	1.9103	955	307
-12.6043	1.8182	1.8906	945	308
-12.7177	1.8208	1.8932	947	309
-12.7728	1.8511	1.9234	962	309
-12.8131	1.8384	1.9108	955	310
-12.8391	1.8409	1.9133	957	310
-12.8595	1.8336	1.9060	953	310
-12.8700	1.8205	1.8929	946	310
-12.8737	1.7988	1.8711	936	310
-12.8803	1.7931	1.8655	933	310
-12.8803	1.7815	1.8539	927	310

Placa de 50 mm – Ensaio a 15 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
15.6448	-0.1182	0.0000	0	0
15.4556	-0.1059	0.0123	6	3
15.3621	-0.0843	0.0339	17	4
15.2697	-0.0727	0.0455	23	6
15.2384	-0.0677	0.0505	25	6
15.2112	-0.0664	0.0518	26	7
15.1817	-0.0616	0.0566	28	7
15.1233	-0.0390	0.0792	40	8
15.0312	-0.0144	0.1037	52	9
14.9841	-0.0033	0.1149	57	10
14.9243	0.0199	0.1381	69	11
14.8741	0.0292	0.1474	74	12
14.8354	0.0420	0.1602	80	12
14.8037	0.0576	0.1758	88	13
14.7826	0.0699	0.1881	94	13
14.7655	0.0794	0.1975	99	13
14.7489	0.0832	0.2014	101	13
14.7052	0.1124	0.2306	115	14
14.6504	0.1350	0.2531	127	15
14.5847	0.1639	0.2820	141	16
14.5169	0.1961	0.3142	157	17
14.4747	0.2087	0.3269	163	18
14.4332	0.2198	0.3380	169	18
14.3916	0.2218	0.3400	170	19
14.3242	0.2558	0.3740	187	20
14.2661	0.2875	0.4057	203	21
14.2396	0.2943	0.4125	206	21
14.2142	0.3064	0.4246	212	21
14.1733	0.3294	0.4475	224	22
14.1363	0.3511	0.4693	235	23
14.1095	0.3501	0.4683	234	23
14.0914	0.3609	0.4791	240	23
14.0781	0.3640	0.4822	241	24
14.0628	0.3875	0.5056	253	24
14.0154	0.3961	0.5143	257	24
13.9632	0.4147	0.5329	266	25
13.9110	0.4635	0.5817	291	26
13.8733	0.4726	0.5908	295	27
13.8488	0.4817	0.5999	300	27
13.8163	0.5007	0.6188	309	27
13.7538	0.5178	0.6359	318	28
13.6873	0.5755	0.6937	347	29
13.6267	0.5822	0.7003	350	30
13.5916	0.5886	0.7068	353	31
13.5295	0.6363	0.7545	377	32
13.4601	0.6665	0.7847	392	33
13.3529	0.7175	0.8356	418	34
13.2403	0.7272	0.8454	423	36
13.1816	0.7644	0.8826	441	37

13.0677	0.8141	0.9322	466	39
12.9322	0.8586	0.9767	488	41
12.7064	0.9331	1.0513	526	44
12.5089	0.9719	1.0901	545	47
12.4591	0.9879	1.1060	553	48
12.3295	1.0652	1.1834	592	50
11.9969	1.1132	1.2314	616	55
11.8932	1.1276	1.2458	623	56
11.8306	1.1678	1.2860	643	57
11.6678	1.2201	1.3383	669	60
11.4039	1.2477	1.3658	683	64
11.1800	1.2913	1.4095	705	67
10.6400	1.3336	1.4518	726	75
10.4443	1.3398	1.4580	729	78
10.3257	1.4085	1.5267	763	80
7.4485	1.4294	1.5476	774	123
2.2952	1.5073	1.6255	813	200
-0.1375	1.6057	1.7239	862	237
-1.7818	1.6688	1.7870	893	261
-2.3733	1.7111	1.8293	915	270
-2.4641	1.7231	1.8413	921	272
-2.5756	1.7963	1.9145	957	273
-4.4406	1.8378	1.9560	978	301
-6.4878	1.9276	2.0458	1023	332
-8.7890	2.0416	2.1598	1080	367
-10.7825	2.1246	2.2428	1121	396
-11.6548	2.1879	2.3060	1153	409
-16.4178	2.3789	2.4971	1249	481
-16.9111	2.3071	2.4252	1213	488
-17.0279	2.3197	2.4378	1219	490
-17.0890	2.3137	2.4319	1216	491
-17.1194	2.2835	2.4017	1201	491
-17.1307	2.2646	2.3827	1191	492
-17.1479	2.2747	2.3929	1196	492
-17.1538	2.2571	2.3753	1188	492
-17.1588	2.2390	2.3572	1179	492
-17.1645	2.2377	2.3558	1178	492
-17.1648	2.1904	2.3085	1154	492

Placa de 50 mm – Ensaio a 25 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
10.1402	-0.1723	0.0000	0	0
10.1174	-0.1861	-0.0138	-7	1
10.0759	-0.1721	0.0002	0	2
10.0326	-0.1414	0.0309	15	3
9.9976	-0.1222	0.0501	25	4
9.9565	-0.1187	0.0536	27	5
9.9186	-0.1160	0.0563	28	6
9.8844	-0.0936	0.0787	39	6
9.8522	-0.0783	0.0940	47	7
9.7927	-0.0607	0.1116	56	9
9.7266	-0.0217	0.1506	75	10
9.6579	0.0027	0.1750	87	12
9.5977	0.0196	0.1919	96	14
9.5712	0.0277	0.2000	100	14
9.5295	0.0546	0.2269	113	15
9.4733	0.0782	0.2505	125	17
9.4442	0.0996	0.2719	136	17
9.4221	0.0984	0.2707	135	18
9.4036	0.1117	0.2840	142	18
9.3841	0.1242	0.2965	148	19
9.3658	0.1451	0.3174	159	19
9.3469	0.1521	0.3244	162	20
9.3250	0.1672	0.3395	170	20
9.3015	0.1896	0.3619	181	21
9.2725	0.1969	0.3692	185	22
9.2516	0.2090	0.3813	191	22
9.2274	0.2249	0.3972	199	23
9.2012	0.2347	0.4070	204	23
9.1831	0.2440	0.4163	208	24
9.1712	0.2558	0.4281	214	24
9.1530	0.2606	0.4329	216	25
9.1381	0.2704	0.4427	221	25
9.1189	0.2837	0.4560	228	26
9.0894	0.2927	0.4650	232	26
9.0632	0.3156	0.4879	244	27
9.0423	0.3375	0.5098	255	27
9.0188	0.3388	0.5111	256	28
8.9962	0.3582	0.5305	265	29
8.9778	0.3672	0.5395	270	29
8.9561	0.3752	0.5475	274	30
8.9363	0.3958	0.5680	284	30
8.9220	0.3999	0.5722	286	30
8.9117	0.4054	0.5777	289	31
8.8997	0.4170	0.5893	295	31
8.8914	0.4085	0.5808	290	31
8.8857	0.4178	0.5901	295	31
8.8733	0.4280	0.6003	300	32
8.8443	0.4617	0.6339	317	32

8.8012	0.4801	0.6524	326	33
8.7829	0.4794	0.6517	326	34
8.7718	0.4799	0.6522	326	34
8.7629	0.4836	0.6559	328	34
8.7535	0.4932	0.6655	333	35
8.7390	0.5159	0.6882	344	35
8.7053	0.5437	0.7160	358	36
8.6845	0.5458	0.7181	359	36
8.6645	0.5631	0.7354	368	37
8.6214	0.5963	0.7686	384	38
8.5536	0.6366	0.8089	404	40
8.4852	0.6713	0.8436	422	41
8.4246	0.6721	0.8444	422	43
8.3948	0.7092	0.8815	441	44
8.3563	0.7462	0.9185	459	45
8.2955	0.7812	0.9535	477	46
8.1927	0.8312	1.0035	502	49
8.1338	0.8757	1.0479	524	50
8.0144	0.9411	1.1134	557	53
7.8367	1.0345	1.2068	603	58
7.7532	1.0508	1.2231	612	60
7.6001	1.1655	1.3378	669	64
7.4297	1.2083	1.3806	690	68
7.2394	1.3119	1.4842	742	73
7.1776	1.3320	1.5043	752	74
7.1068	1.3770	1.5493	775	76
6.9282	1.4736	1.6459	823	80
6.6159	1.5395	1.7118	856	88
6.5341	1.6050	1.7773	889	90
5.9641	1.7654	1.9377	969	104
5.4931	1.8589	2.0312	1016	116
3.0372	2.0503	2.2225	1111	178
-1.5446	2.1434	2.3157	1158	292
-5.7331	2.3783	2.5506	1275	397
-10.2259	2.6449	2.8172	1409	509
-10.5634	2.6975	2.8698	1435	518
-14.5721	2.9295	3.1018	1551	618
-16.6769	3.0539	3.2262	1613	670
-19.1056	3.1462	3.3185	1659	731
-21.3587	3.3709	3.5432	1772	787
-21.5036	3.3072	3.4795	1740	791
-21.5889	3.3628	3.5351	1768	793
-21.6351	3.3261	3.4984	1749	794
-21.6898	3.3535	3.5258	1763	796
-21.7169	3.3289	3.5012	1751	796
-21.7673	3.3432	3.5155	1758	798
-21.7833	3.3279	3.5002	1750	798
-21.7941	3.2810	3.4533	1727	798
-21.8008	3.2891	3.4614	1731	799

Placa de 50 mm – Ensaio a 50 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
24.4622	-0.3021	0.0000	0	0
24.4461	-0.2878	0.0143	7	1
24.4163	-0.2800	0.0221	11	2
24.3856	-0.2581	0.0440	22	4
24.3572	-0.2558	0.0463	23	5
24.3284	-0.2365	0.0656	33	7
24.3017	-0.2282	0.0739	37	8
24.2724	-0.2042	0.0979	49	9
24.2372	-0.1962	0.1059	53	11
24.1982	-0.1764	0.1257	63	13
24.1591	-0.1413	0.1609	80	15
24.1148	-0.1240	0.1781	89	17
24.0654	-0.0946	0.2075	104	20
24.0148	-0.0714	0.2307	115	22
23.9734	-0.0382	0.2639	132	24
23.9365	-0.0385	0.2636	132	26
23.8992	0.0020	0.3041	152	28
23.8660	0.0267	0.3288	164	30
23.8394	0.0354	0.3375	169	31
23.8151	0.0518	0.3539	177	32
23.7946	0.0686	0.3707	185	33
23.7735	0.0936	0.3957	198	34
23.7569	0.1024	0.4045	202	35
23.7375	0.1177	0.4198	210	36
23.7224	0.1250	0.4271	214	37
23.7097	0.1375	0.4396	220	38
23.6933	0.1502	0.4523	226	38
23.6744	0.1635	0.4656	233	39
23.6587	0.1843	0.4864	243	40
23.6331	0.2009	0.5030	251	41
23.6118	0.2107	0.5128	256	43
23.5861	0.2351	0.5372	269	44
23.5595	0.2706	0.5727	286	45
23.5285	0.2726	0.5747	287	47
23.4956	0.3267	0.6288	314	48
23.4591	0.3649	0.6670	333	50
23.4186	0.3913	0.6934	347	52
23.3742	0.4479	0.7500	375	54
23.3153	0.4935	0.7956	398	57
23.2567	0.5470	0.8491	425	60
23.1925	0.6042	0.9064	453	63
23.1109	0.6708	0.9729	486	68
23.0335	0.7082	1.0103	505	71
22.9506	0.7981	1.1002	550	76
22.8598	0.8753	1.1774	589	80
22.7498	0.9585	1.2606	630	86
22.6374	1.0491	1.3512	676	91
22.4935	1.1524	1.4545	121	98
22.3278	1.2717	1.5738	787	107

22.1185	1.4201	1.7222	861	117
21.8397	1.6024	1.9045	952	131
21.3709	1.8733	2.1754	1088	155
20.7250	2.1822	2.4843	1242	187
19.2323	2.6276	2.9297	1465	261
13.6962	2.9644	3.2665	1633	538
9.7046	3.5758	3.8779	1939	738
5.5777	4.3108	4.6129	2306	944
4.3040	4.5293	4.8314	2416	1008
4.1788	4.5333	4.8354	2418	1014
4.1290	4.5331	4.8352	2418	1017
4.0908	4.5376	4.8397	2420	1019
4.0669	4.5314	4.8335	2417	1020
4.0490	4.5293	4.8314	2416	1021
4.0346	4.5185	4.8206	2410	1021
4.0221	4.5153	4.8174	2409	1022
4.0076	4.5172	4.8193	2410	1023
4.0069	4.5100	4.8121	2406	1023
3.9966	4.5092	4.8113	2406	1023

Placa de 50 mm – Ensaio a 100 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
9.8056	-0.0916	0.0000	0	0
9.7825	-0.0564	0.0352	18	2
9.7625	-0.0294	0.0623	31	4
9.7329	-0.0015	0.0901	45	7
9.6941	0.0435	0.1351	68	11
9.6447	0.0963	0.1879	94	16
9.5932	0.1516	0.2432	122	21
9.5228	0.2025	0.2941	147	28
9.4601	0.2482	0.3398	170	35
9.4173	0.2995	0.3911	196	39
9.3497	0.3531	0.4447	222	46
9.2555	0.4047	0.4963	248	55
9.2052	0.4499	0.5415	271	60
9.1515	0.4889	0.5805	290	65
9.0912	0.5219	0.6135	307	71
9.0130	0.5359	0.6275	314	79
8.9880	0.5873	0.6789	339	82
8.9319	0.6258	0.7174	359	87
8.8757	0.6655	0.7571	379	93
8.8223	0.7078	0.7994	400	98
8.7870	0.7543	0.8459	423	102
8.7320	0.8013	0.8929	446	107
8.6959	0.8474	0.9391	470	111
8.6143	0.8936	0.9852	493	119
8.5599	0.9455	1.0372	519	125
8.5001	0.9957	1.0873	544	131
8.4506	1.0490	1.1406	570	136
8.3983	1.1129	1.2045	602	141
8.3332	1.1607	1.2523	626	147
8.2705	1.2103	1.3019	651	154
8.1827	1.2775	1.3692	685	162
8.1389	1.3418	1.4334	717	167
8.0615	1.4135	1.5051	753	174
7.9534	1.4706	1.5622	781	185
7.8844	1.5230	1.6147	807	192
7.8200	1.5803	1.6719	836	199
7.7371	1.6314	1.7231	862	207
7.6937	1.7053	1.7969	898	211
7.5985	1.7417	1.8333	917	221
7.5444	1.7848	1.8764	938	226
7.4874	1.8335	1.9251	963	232
7.4237	1.9045	1.9961	998	238
7.3582	1.9525	2.0441	1022	245
7.2943	2.0182	2.1098	1055	251
7.1883	2.0939	2.1855	1093	262
7.1287	2.1738	2.2654	1133	268
7.0327	2.2456	2.3373	1169	277
6.9311	2.3268	2.4184	1209	287
6.8348	2.4616	2.5532	1277	297

0 7075	0 5000	0.0010	1000	010
6.7075	2.5693	2.6610	1330	310
6.5677	2.6990	2.7906	1395	324
6.0558	2.8504	2.9420	1471	375
5.1624	2.9783	3.0700	1535	464
4.5915	3.1334	3.2250	1613	521
4.3106	3.2044	3.2961	1648	550
4.0500	3.2712	3.3628	1681	576
3.0197	3.4443	3.5359	1768	679
2.4736	3.4878	3.5794	1790	733
1.7096	3.6701	3.7617	1881	810
1.4259	3.6913	3.7829	1891	838
1.2211	3.7051	3.7967	1898	858
1.0559	3.8249	3.9166	1958	875
0.8154	3.9713	4.0630	2031	899
0.5832	3.9584	4.0500	2025	922
0.3790	3.9951	4.0867	2043	943
0.2009	4.1189	4.2105	2105	960
-0.1506	4.2418	4.3334	2167	996
-0.4041	4.2929	4.3845	2192	1021
-0.9292	4.4516	4.5432	2272	1073
-1.4201	4.4987	4.5903	2295	1123
-1.9408	4.5952	4.6868	2343	1175
-2.1952	4.6114	4.7031	2352	1200
-2.4124	4.6186	4.7102	2355	1222
-2.5910	4.6257	4.7173	2359	1240
-2.7208	4.6592	4.7509	2375	1253
-2.8377	4.6724	4.7640	2382	1264
-2.9336	4.6820	4.7736	2387	1274
-3.0326	4.6893	4.7809	2390	1284
-3.1230	4.6986	4.7902	2395	1293
-3.2297	4.7095	4.8012	2401	1304
-3.2864	4.7163	4.8080	2404	1309
-3.3663	4.7265	4.8181	2409	1317
-3.4391	4.7446	4.8362	2418	1324
-3.5050	4.7479	4.8395	2420	1331
-3.5707	4.7545	4.8462	2423	1338
-3.6148	4.7650	4.8566	2428	1342
-3.6646	4.7635	4.8551	2428	1347
-3.6959	4.7580	4.8496	2425	1350
-3.7321	4.7877	4.8793	2440	1354
-3.7582	4.7975	4.8891	2445	1356
-3.7941	4.8065	4.8981	2449	1360
-3.8209	4.8141	4.9057	2453	1363
-3.8557	4.8186	4.9102	2455	1366
-3.8822	4.8281	4.9197	2460	1369
-3.9493	4.8324	4.9240	2462	1375
-3.9787	4.8153	4.9069	2453	1378
-4.0075	4.8148	4.9064	2453	1381
-4.0254	4.8179	4.9096	2455	1383
-4.0522	4.8133	4.9049	2452	1386
-4.0615	4.8030	4.8946	2447	1387

d) Ensaios com Variação do N.A.

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
46.1622	0.0779	0.0000	0	0
46.0517	0.0847	0.0068	3	1
46.0136	0.0855	0.0076	4	1
45.9713	0.0907	0.0128	6	2
45.8566	0.0973	0.0194	10	3
45.8264	0.1025	0.0245	12	3
45.7601	0.1023	0.0244	12	4
45.7275	0.1069	0.0290	15	4
45.6684	0.1147	0.0367	18	5
45.5586	0.1173	0.0394	20	6
45.4119	0.1278	0.0499	25	8
45.3009	0.1338	0.0559	28	9
45.0962	0.1454	0.0675	34	11
45.0168	0.1523	0.0744	37	11
44.8574	0.1633	0.0854	43	13
44.5634	0.1779	0.1000	50	16
43.9955	0.2020	0.1240	62	22
43.7962	0.2050	0.1271	64	24
43.1419	0.2333	0.1553	78	30
42.2834	0.2483	0.1704	85	39
40.9492	0.2695	0.1916	95	52
39.9091	0.2673	0.1894	95	63
38.8595	0.2716	0.1937	97	73
37.7670	0.2740	0.1961	98	84
36.5034	0.2787	0.2008	100	97
35.0995	0.2878	0.2099	105	111
33.9309	0.2962	0.2183	109	122
32.3904	0.3097	0.2318	116	138
31.5456	0.3115	0.2336	117	146
30.0610	0.3274	0.2495	125	161
29.1621	0.3335	0.2555	128	170
28.1367	0.3429	0.2650	133	180
27.0687	0.3512	0.2733	137	191
26.5607	0.3526	0.2747	137	196
24.7342	0.3505	0.2726	136	214
24.3710	0.3734	0.2954	148	218
23.7029	0.3796	0.3017	151	225
22.3645	0.3922	0.3143	157	238
21.8638	0.3911	0.3132	157	243
21.0413	0.3960	0.3181	159	251
20.1011	0.4100	0.3321	166	261
19.3656	0.4138	0.3359	168	268
18.9734	0.4168	0.3389	169	272
17.4467	0.4251	0.3472	174	287
16.6381	0.4287	0.3507	175	295
16.3760	0.4315	0.3536	177	298

Placa de 50 mm – Ensaio a 10 g - N.A. = 0 mm

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
35.9967	2.6410	0.0000	0	0
35.9692	2.6593	0.0184	9	0
35.9387	2.6737	0.0328	16	1
35.9028	2.6901	0.0492	25	1
35.8657	2.7036	0.0627	31	1
35.8212	2.7195	0.0785	39	2
35.7916	2.7317	0.0908	45	2
35.7612	2.7462	0.1052	53	2
35.7198	2.7577	0.1167	58	3
35.3908	2.7675	0.1265	63	6
35.2948	2.7786	0.1377	69	7
35.2673	2.7900	0.1491	75	7
35.2104	2.8022	0.1613	81	8
35.1491	2.8132	0.1723	86	8
35.0976	2.8259	0.1849	92	9
35.0731	2.8382	0.1973	99	9
34.9921	2.8597	0.2187	109	10
34.9575	2.8699	0.2290	114	10
34.9139	2.8827	0.2418	121	11
34.8429	2.9093	0.2683	134	12
34.7427	2.9299	0.2890	144	13
34.6636	2.9419	0.3009	150	13
34.5901	2.9536	0.3126	156	14
34.5241	2.9662	0.3252	163	15
34.4766	2.9775	0.3365	168	15
34.4188	2.9882	0.3473	174	16
34.3672	3.0007	0.3597	180	16
34.2471	3.0118	0.3709	185	17
34.1798	3.0215	0.3806	190	18
34.1248	3.0312	0.3903	195	19
33.9971	3.0417	0.4007	200	20
33.8998	3.0530	0.4121	206	21
33.8444	3.0673	0.4263	213	22
33.6790	3.0810	0.4401	220	23
33.5948	3.0965	0.4556	228	24
33.3372	3.1089	0.4680	234	27
33.1910	3.1205	0.4796	240	28
32.8341	3.1355	0.4946	247	32
32.2290	3.1468	0.5059	253	38
31.9683	3.1542	0.5132	257	40
30.5170	3.1674	0.5265	263	55
27.3780	3.1872	0.5463	273	86
23.1516	3.2254	0.5845	292	128
18.8380	3.2197	0.5787	289	172
18.1370	3.2325	0.5915	296	179
14.4796	3.2630	0.6221	311	215
13.1695	3.2834	0.6424	321	228
12.8096	3.2971	0.6562	328	232
12.7365	3.3125	0.6715	336	233

Placa de 50 mm – Ensaio a 10 g - N.A. = 20 mm

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
44.9374	0.0257	0.0000	0	0
44.8944	0.0228	-0.0030	-1	0
44.6298	0.0470	0.0212	11	3
44.5207	0.0550	0.0292	15	4
44.4899	0.0619	0.0362	18	4
44.3096	0.0966	0.0709	35	6
44.2488	0.1107	0.0850	42	7
44.2328	0.1177	0.0920	46	7
44.0451	0.1663	0.1406	70	9
43.8509	0.2151	0.1894	95	11
43.6914	0.2634	0.2377	119	12
43.4432	0.3401	0.3144	157	15
43.3968	0.3614	0.3356	168	15
42.8745	0.5259	0.5002	250	21
42.7459	0.5694	0.5436	272	22
42.5320	0.6527	0.6270	313	24
42.3286	0.6879	0.6622	331	26
42.2530	0.7553	0.7296	365	27
41.5108	0.9168	0.8911	446	34
41.3826	0.9281	0.9024	451	36
41.1554	1.0166	0.9908	495	38
39.5494	1.1874	1.1617	581	54
37.2830	1.3111	1.2853	643	77
30.4800	1.4867	1.4610	730	145
24.7728	1.6987	1.6729	836	202
21.6253	1.7783	1.7526	876	233
16.8803	1.9659	1.9402	970	281
16.5937	1.9653	1.9395	970	283
12.4974	2.0426	2.0169	1008	324
12.3821	2.0786	2.0529	1026	326
12.2685	2.1049	2.0791	1040	327
12.2259	2.1025	2.0768	1038	327
12.2078	2.0996	2.0738	1037	327
12.1821	2.0971	2.0713	1036	328
12.1742	2.0712	2.0454	1023	328
12.1693	2.0595	2.0338	1017	328
12.1633	2.0531	2.0273	1014	328
12.1622	2.0426	2.0169	1008	328
12.1576	2.0393	2.0136	1007	328
12.1545	2.0478	2.0220	1011	328
12.1481	2.0667	2.0409	1020	328
12.1434	2.0587	2.0330	1016	328
12.1431	2.0562	2.0305	1015	328

Placa de 50 mm – Ensaio a 10 g – N.A. = 40 mm

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
38.9517	0.1136	0.0000	0	0
38.8228	0.1695	0.0559	28	1
38.7987	0.1733	0.0598	30	2
38.6516	0.2565	0.1429	71	3
38.5670	0.3046	0.1911	96	4
38.3352	0.4180	0.3044	152	6
38.2563	0.4578	0.3443	172	7
38.0285	0.5656	0.4520	226	9
37.9730	0.6062	0.4927	246	10
37.7759	0.6955	0.5820	291	12
37.6791	0.7533	0.6398	320	13
37.4412	0.8572	0.7437	372	15
37.2400	0.9832	0.8697	435	17
36.9054	1.0619	0.9483	474	20
36.1475	1.3351	1.2216	611	28
35.8011	1.3730	1.2594	630	32
35.4625	1.4945	1.3809	690	35
33.9186	1.5938	1.4802	740	50
32.3609	1.6678	1.5542	777	66
21.0797	1.8321	1.7186	859	179
16.3568	1.9588	1.8452	923	226
11.9484	2.1210	2.0074	1004	270
10.0463	2.0987	1.9852	993	289

Placa de 50 mm – Ensaio a 10 g – N.A. = 80 mm

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
33.3199	0.1879	0.0000	0	0
33.2809	0.2307	0.0428	21	0
33.2339	0.2641	0.0763	38	1
33.2158	0.2745	0.0867	43	1
33.1631	0.3361	0.1482	74	2
33.0783	0.4195	0.2317	116	2
33.0258	0.4667	0.2789	139	3
32.9828	0.5273	0.3394	170	3
32.8896	0.5922	0.4044	202	4
32.8142	0.6594	0.4715	236	5
32.7658	0.6793	0.4914	246	6
32.7227	0.7368	0.5490	274	6
32.5553	0.8649	0.6771	339	8
32.4635	0.9205	0.7326	366	9
32.2234	1.1145	0.9267	463	11
32.1137	1.1601	0.9723	486	12
31.9584	1.3077	1.1199	560	14
31.4564	1.5169	1.3290	665	19
31.2450	1.6721	1.4842	742	21
30.8924	1.7171	1.5292	765	24
30.0711	1.9613	1.7735	887	32
29.3142	2.0253	1.8374	919	40
24.1249	2.0824	1.8946	947	92
16.5179	2.2729	2.0850	1043	168
11.8115	2.4338	2.2460	1123	215
8.6366	2.5798	2.3920	1196	247
6.9067	2.4533	2.2655	1133	264
6.7551	2.5689	2.3810	1191	266
6.7233	2.5539	2.3661	1183	266
6.6946	2.5583	2.3705	1185	266
6.6721	2.5711	2.3832	1192	266
6.6540	2.5828	2.3950	1197	267
6.6477	2.5605	2.3726	1186	267

Placa de 50 mm – Ensaio a 10 g – N.A. = 100 mm

Placa de 50 mm – Ensaio a 50 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
20.1459	0.0076	0.0000	0	0
20.1315	0.0138	0.0061	3	1
20.1162	0.0202	0.0125	6	1
20.1080	0.0118	0.0042	2	2
20.0860	0.0220	0.0143	7	3
20.0737	0.0304	0.0228	11	4
20.0637	0.0383	0.0307	15	4
20.0523	0.0464	0.0388	19	5
20.0442	0.0541	0.0464	23	5
20.0360	0.0614	0.0537	27	5
20.0375	0.0686	0.0610	30	5
20.0264	0.0756	0.0680	34	6
20.0100	0.0830	0.0754	38	7
19.9931	0.0907	0.0831	42	8
19.9751	0.0980	0.0904	45	9
19.9572	0.1051	0.0975	49	9
19.9413	0.1142	0.1066	53	10
19.9238	0.1220	0.1144	57	11
19.9131	0.1291	0.1214	61	12
19.8951	0.1353	0.1277	64	13
19.8853	0.1406	0.1330	67	13
19.8713	0.1446	0.1370	68	14
19.8581	0.1478	0.1402	70	14
19.8482	0.1505	0.1428	71	15
19.8410	0.1532	0.1456	73	15
19.8275	0.1573	0.1497	75	16
19.8188	0.1621	0.1545	77	16
19.8098	0.1664	0.1588	79	17
19.8024	0.1716	0.1640	82	17
19.7903	0.1766	0.1689	84	18
19.7833	0.1805	0.1729	86	18
19.7771	0.1860	0.1784	89	18
19.7662	0.1923	0.1847	92	19
19.7593	0.1982	0.1906	95	19
19.7473	0.2092	0.2016	101	20
19.7477	0.2153	0.2077	104	20
19.7373	0.2245	0.2169	108	20
19.7293	0.2304	0.2228	111	21
19.7230	0.2357	0.2281	114	21
19.7049	0.2468	0.2392	120	22
19.7032	0.2550	0.2473	124	22
19.6931	0.2684	0.2607	130	23
19.6904	0.2759	0.2683	134	23
19.6740	0.2824	0.2748	137	24
19.6560	0.2894	0.2818	141	24
19.6424	0.2964	0.2887	144	25
19.6231	0.3028	0.2952	148	26
19.6110	0.3090	0.3014	151	27
19.5984	0.3161	0.3085	154	27

19.5827	0.3225	0.3148	157	28
19.5740	0.3289	0.3213	161	29
19.5647	0.3353	0.3276	164	29
19.5561	0.3417	0.3341	167	29
19.5574	0.3474	0.3398	170	29
19.5462	0.3541	0.3465	173	30
19.5437	0.3601	0.3525	176	30
19.5344	0.3667	0.3591	180	31
19.5355	0.3726	0.3650	183	31
17.6370	0.5579	0.5503	275	125
17.5508	0.5632	0.5556	278	130
17.4660	0.5683	0.5607	280	134
17.3557	0.5741	0.5665	283	140
17.2446	0.5800	0.5724	286	145
17.1503	0.5858	0.5782	289	150
17.0307	0.5918	0.5841	292	156
16.8699	0.5978	0.5902	295	164
16.7244	0.6038	0.5962	298	171
16.6071	0.6092	0.6016	301	177
16.3384	0.6146	0.6070	303	190
16.1266	0.6203	0.6127	306	201
15.8784	0.6255	0.6178	325	213
12.2868	0.7072	0.6996	350	393
11.8502	0.7124	0.7048	352	415
11,1733	0.7172	0.7096	355	449
10.9292	0.7219	0.7143	357	461
8.9048	0.7229	0.7153	358	562
20.1459	0.0076	0.0000	0	0
20.1315	0.0138	0.0061	3	1
20.1162	0.0202	0.0125	6	1
20.1080	0.0118	0.0042	2	2
20.0960	0.0126	0.0050	2	2
20.0860	0.0220	0.0143	7	3
20.0737	0.0304	0.0228	11	4
20.0637	0.0383	0.0307	15	4
20.0523	0.0464	0.0388	19	5
20.0442	0.0541	0.0464	23	5
20.0360	0.0614	0.0537	27	5
20.0375	0.0686	0.0610	30	5
20.0264	0.0756	0.0680	34	6
20.0100	0.0830	0.0754	38	7
19.9931	0.0907	0.0831	42	8
19.9751	0.0980	0.0904	45	9
19.9572	0.1051	0.0975	49	9
19.9413	0.1142	0.1066	53	10
19.9238	0.1220	0.1144	57	11
19.9131	0.1291	0.1214	61	12
19.8951	0.1353	0.1277	64	13
19.8853	0.1406	0.1330	67	13
19.8713	0.1446	0.1370	68	14
19.8581	0.1478	0.1402	70	14
19.8482	0.1505	0.1428	71	15

19.8410	0.1532	0.1456	73	15
19.8275	0.1573	0.1497	75	16
19.8188	0.1621	0.1545	77	16
19.8098	0.1664	0.1588	79	17
19.8024	0.1716	0.1640	82	17
19.7903	0.1766	0.1689	84	18
19.7833	0.1805	0.1729	86	18
19.7771	0.1860	0.1784	89	18
19.7662	0.1923	0.1847	92	19
19.7593	0.1982	0.1906	95	19
19.7473	0.2092	0.2016	101	20
19.7477	0.2153	0.2077	104	20
19.7373	0.2245	0.2169	108	20
19.7293	0.2304	0.2228	111	21
19.7230	0.2357	0.2281	114	21
19.7049	0.2468	0.2392	120	22
19.7032	0.2550	0.2473	124	22
19.6931	0.2684	0.2607	130	23
19.6904	0.2759	0.2683	134	23
19.6740	0.2824	0.2748	137	24
19.6560	0.2894	0.2818	141	24
19.6424	0.2964	0.2887	144	25
19.6231	0.3028	0.2952	148	26
19.6110	0.3090	0.3014	151	27
19.5984	0.3161	0.3085	154	27
19.5827	0.3225	0.3148	157	28
19.5740	0.3289	0.3213	161	29
19.5647	0.3353	0.3276	164	29
19.5561	0.3417	0.3341	167	29
19.5574	0.3474	0.3398	170	29
19.5462	0.3541	0.3465	173	30
19.5437	0.3601	0.3525	176	30
19.5344	0.3667	0.3591	180	31
19.5355	0.3726	0.3650	183	31
17.6370	0.5579	0.5503	275	125
17.5508	0.5632	0.5556	278	130
17.4660	0.5683	0.5607	280	134
17.3557	0.5741	0.5665	283	140
17.2446	0.5800	0.5724	286	145
17.1503	0.5858	0.5782	289	150
17.0307	0.5918	0.5841	292	156
16.8699	0.5978	0.5902	295	164
16.7244	0.6038	0.5962	298	171
16.6071	0.6092	0.6016	301	177
16.3384	0.6146	0.6070	303	190
16.1266	0.6203	0.6127	306	201
15.8784	0.6255	0.6178	325	213
12.2868	$0.707\overline{2}$	0.6996	350	393
11.8502	$0.712\overline{4}$	0.7048	352	415
11.1733	0.7172	0.7096	355	449
10.9292	0.7219	0.7143	357	461
8.9048	0.7229	0.7153	358	562

Placa de 50 mm – Ensaio a 100 g

LVDT	Célula de carga	Carga (kN)	Tensão (kN)	Recalque (mm)
9.7746	0.0037	0.0000	0	0
9.7730	0.0108	0.0072	4	0
9.7573	0.0189	0.0153	8	2
9.7475	0.0294	0.0257	13	3
9.7395	0.0405	0.0369	18	4
9.7298	0.0493	0.0456	23	4
9.7211	0.0603	0.0567	28	5
9.7083	0.0756	0.0719	36	7
9.6959	0.0869	0.0833	42	8
9.6770	0.1024	0.0987	49	10
9.6606	0.1182	0.1146	57	11
9.6395	0.1324	0.1287	64	14
9.6213	0.1501	0.1465	73	15
9.5980	0.1648	0.1611	81	18
9.5774	0.1750	0.1713	86	20
9.5514	0.1994	0.1958	98	22
9.5244	0.2146	0.2110	105	25
9.4892	0.2500	0.2463	123	29
9.4504	0.2769	0.2733	137	32
9.3993	0.3044	0.3007	150	38
9.3516	0.3324	0.3288	164	42
9.3005	0.3581	0.3544	177	47
9.2507	0.3878	0.3841	192	52
9.1972	0.4158	0.4121	206	58
9.1401	0.4411	0.4374	219	63
9.0814	0.4720	0.4683	234	69
9.0082	0.5052	0.5016	251	77
8.9455	0.5205	0.5169	258	83
8.9109	0.5023	0.4986	249	86
8.8595	0.5372	0.5335	267	92
8.8114	0.5498	0.5461	273	96
8.7554	0.5521	0.5484	274	102
8.6573	0.5634	0.5597	280	112
8.5295	0.5691	0.5654	283	125
8.4662	0.5719	0.5682	284	131
8.3052	0.5844	0.5808	290	147
8.2183	0.5976	0.5940	297	156
8.1302	0.6078	0.6042	302	164
8.0035	0.6184	0.6147	307	177
7.7497	0.6295	0.6258	313	202
7.4757	0.6511	0.6474	324	230
7.0682	0.6432	0.6395	320	271
6.5249	0.6841	0.6804	340	325
4.7581	0.7249	0.7213	361	502
4.1030	0.7813	0.7777	389	567
3.4957	0.7840	0.7803	390	628
2.1698	0.8339	0.8302	415	760
0.1574	0.8595	0.8558	428	962

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo