UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia - CEPSRM Programa de Pós-Graduação em Sensoriamento Remoto MESTRADO

GERAÇÃO DE MODELO DIGITAL DE TERRENO A PARTIR DE PAR ESTEREOSCÓPICO DO SENSOR CCD DO SATÉLITE CBERS-2 E CONTROLE DE QUALIDADE DAS INFORMAÇÕES ALTIMÉTRICAS

Rafael Pereira Zanardi

Porto Alegre, RS.

2006

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia - CEPSRM Programa de Pós-Graduação em Sensoriamento Remoto MESTRADO

GERAÇÃO DE MODELO DIGITAL DE TERRENO A PARTIR DE PAR ESTEREOSCÓPICO DO SENSOR CCD DO SATÉLITE CBERS-2 E CONTROLE DE QUALIDADE DAS INFORMAÇÕES ALTIMÉTRICAS

Autor: Rafael Pereira Zanardi - Engenheiro Cartógrafo

Orientadora: Prof^a. Dr^a. Sílvia Beatriz Alves Rolim Co-orientador: Prof. Dr. Sérgio Florêncio de Souza

> Dissertação apresentada ao Programa de Pós Graduação em Sensoriamento Remoto da Universidade Federal do Rio Grande do Sul para a obtenção do título de Mestre em Sensoriamento Remoto.

Porto Alegre, RS.

Maio de 2006.

Agradecimentos

Aos meus pais e seus companheiros, aos meus avós e demais familiares, que me ensinaram a nunca desistir de ir até o fim, além de terem me dado todo o suporte necessário.

À minha namorada, Fabi, que, até por também ser mestranda, me entendeu, agüentou e apoiou nos momentos de maior tensão.

Aos meus orientadores e amigos, Sílvia e Sérgio, pela grande ajuda, sem a qual esse trabalho não teria passado do projeto inicial.

Ao colega Engenheiro Cartógrafo Marcelo Maranhão, do IBGE-RJ, que prontamente atendeu aos nossos pedidos de socorro.

À 5^a Divisão de Levantamentos do Exército Brasileiro, pelo fornecimento gratuito das Cartas Topográficas utilizadas no trabalho.

Ao INPE e à GISPLAN, pela disponibilidade das imagens e dos arquivos de metadados.

"Aos meus amigos e aos meus <u>verdadeiros</u> amigos" (Angrizani, 2005), companheiros de memoráveis confraternizações em que tive a oportunidade de observar bem melhor todos os movimentos da Terra, além de praticar o didático exercício de cair, levantar e seguir com a cabeça erguida, cambalear por mais alguns metros e cair de novo para, finalmente, acordar na tarde seguinte no chão do meu quarto, morrendo de ressaca e pensando "por que diabos às vezes é tão difícil acertar a cama?".

Aos colegas do CEPSRM das turmas de 2003, 2004 e 2005, pelos momentos compartilhados durante o curso, churrascos e chacrinhas diversas, além das sempre úteis dicas repassadas pelos colegas da turma de 2003.

Aos demais professores, pesquisadores e servidores do CEPSRM.

Ao Núcleo de Pesquisas Antárticas e Climáticas (NUPAC), por permitir a utilização da tão disputada estação fotogramétrica digital do seu laboratório.

Sinopse

Em 1988, os governos do Brasil e da China estabeleceram uma parceria para construção e lançamento de satélites de Sensoriamento Remoto que atendessem suas necessidades comuns. O programa de cooperação CBERS (China-Brazilian Earth Resources Satellite) propiciou os lançamentos dos satélites CBERS-1 em outubro de 1999 e CBERS-2 em 2003, e prevê ainda o lançamento de mais três satélites nos próximos anos. Entre diversas funções importantes, o CBERS-2 oferece ainda a possibilidade de visada off nadir, ou seja, com inclinação lateral de até 32° do seu espelho, permitindo a tomada de imagens em estereoscopia. Esses pares estereoscópicos possibilitam, através de medidas de diferença de paralaxe, a extração de informações altimétricas. O objetivo central deste trabalho foi a extração, através da aplicação de técnicas de fotogrametria digital, de informações altimétricas de um par estereoscópico do sensor HR-CCD (High Resolution Charge-Coupled Devices) do CBERS-2 e sua validação, na busca de parâmetros quantitativos que avaliem a precisão e a exatidão dessas informações. Foram gerados Modelos Digitais de Terreno (MDTs) com diferentes resoluções, 60 e 100 metros, e empregados testes estatísticos para análise da qualidade das informações altimétricas. Ao final, não se verificou melhoria significativa no MDT com resolução de 60 metros em relação ao de 100 metros, ficando o erro das observações com média de 46,86 metros. Além disso, pôde-se observar o que pode vir a ser um erro sistemático de aproximadamente 38 metros nesses modelos, o que baixou para 27,03 metros o valor da média dos erros nos pontos de verificação. Seguindo classificação adotada no Brasil segundo o Decreto Lei 89.817 - Padrão de Exatidão Cartográfica, concluiu-se que há possibilidade de se utilizar essas informações altimétricas na geração de documentos cartográficos Classe A em escala de 1:250000 ou menores.

Abstract

In 1988, the governments of Brazil and China established a partnership for construction and launching of Remote Sensing satellites, aiming to supply its common necessities. The cooperation program CBERS (China-Brazilian Earth Resources Satellite) propitiated the launching of the satellites CBERS-1 in October 1999, and CBERS-2 in 2003, and foresees the launching of other three satellites in the next years. Among several important functions, CBERS-2 offers the possibility of off nadir imagery (lateral inclination until 32° of its mirror), allowing to take images with stereoscopy. These stereoscopic pairs make possible the extraction of altimetric information through parallax measurement. The main objective of this work was to extract, by digital photogrammetry techniques, altimetric information from a stereoscopic pair of the HR-CCD sensor (High Resolution Charge-Coupled Devices) in CBERS-2 and its validation, in search of quantitative parameters that may evaluate the precision and accuracy of these information. Digital Terrain Models (DTMs) with different resolutions, 60 and 100 meters, were generated and statistical tests for a quality analysis of the altimetric information had been applied. In the end, significant improvement in the DTM with resolution of 60 meters in relation to the one of 100 meters hasn't been verified, and the error of the observations had average of 46,86 meters. Moreover, it was observed something that may be a bias quality control of approximately 38 meters in these models, what lowered for 27,03 meters the average of errors in the verification points. Following the classification adopted in Brazil according to Decree-Law 89817 - Standard of Cartographic Accuracy, it was concluded that it is possible to use these altimetric information for cartographic document generation Class A in scale 1:250000 or minus.

Sumário

1. Introdução	. 1
1.1 Objetivo	2
1.2 Objetivos Específicos	3
1.3 Justificativa	. J 3
	. 5
2. Revisão Bibliográfica	. 4
2.1. Sistemas de Satélites	. 4
2.1.1. Tipos de Sensores Quanto à Geometria de Aquisição	. 4
2.2. O Projeto CBERS	. 6
2.2.1. Características dos Satélites CBERS-1 e 2	. 6
2.2.2. Órbita dos Satélites CBERS-1 e 2	. 7
2.2.3. As Câmeras dos Satélites CBERS-1 e 2	. 8
2.2.3.1. Câmera Imageadora de Alta Resolução (HR CCD)	. 8
2.2.3.2. Imageador de Amplo Campo de Visada (WFI)	10
2.2.3.3. Imageador por Varredura de Média Resolução (IRMSS)	11
2.2.3.4. Sistema Brasileiro de Coleta de Dados Ambientais	11
	10
2.3. Fotogrametria Digital.	12
2.3.1. Estereoscopia com Fotografias	13
2.3.1.1. Definição de Paralaxe	13
2.3.2. Processo Fotogramétrico	14
2.3.2.1. Orientação Interior	14
2.3.2.2. Orientação Exterior	15
2.3.2.3. Orientação de Imagens de Sensoriamento Remoto	16
2.3.2.4. Aerotriangulação	17
2.3.2.5. Retificação de Imagens	18
2.3.2.6. Normalização de Imagens	18
2.3.2.7. Ortorretificação de Imagens	19
2.4. Modelagem Digital de Terreno (MDT)	21
2.4.1. Obtenção de Dados	22
2.4.1.1. Amostragem por Pontos	22
2.4.1.2. Amostragem por Isolinhas	22
2.4.2. Geração de Grades	23
2.4.2.1. Geração de Grade Retangular	24
2.4.2.2. Geração de Grade Triangular	24
2.4.2.3. Interpoladores	25
2.4.3. Elaboração de Produtos	27
2.4.3.1. Geração de Imagem em Níveis de Cinza	28
2.4.3.2. Geração de Imagem Sombreada	28
2.4.3.3. Geração de Modelo de Visualização Tridimensional	29
2.5. SRTM (Shuttle RadarTopogrphy Mission)	30
2.6. Controle de Qualidade	32
2.6.1. Precisão e Acurácia	34
2.6.2. Número de Pontos Amostrais	34
263 Análise da Exatidão	35
	55

2.6.4. Análise da Precisão	35
3. Caracterização da Área de Estudo	37
4. Materiais e Métodos	39
4.1. Material Utilizado 4.1.1. Leica Photogrammetry Suite (LPS)	39 40
4.2. Metodo de Trabalho4.2.1. Processo Fotogramétrico4.2.2. Análise dos MDTs Gerados	40 40 44
5. Resultados e Discussões	46
5.1. Preparação para a Análise Estatística	52
 5.2. Controle de Qualidade	50 50 51 52 52 53 53
5.3. Definição da Escala Máxima para Utilização	56
6. Considerações Finais	57
6.1. Geração dos Modelos	57
6.2. Controle de Qualidade	58
7. Referências Bibliográficas	62
7. Anexos	66
ANEXO 1 – Relatório da Triangulação	67
ANEXO 2 – Modelos Digitais de Terreno MDT CBERS-2 - Resolução de 60 metros MDT CBERS-2 - Resolução de 100 metros MDT - SRTM	80 81 82 83

Lista de Tabelas

Tabela 1: Características dos Satélites CBERS-1 e 2 7
Tabela 2: Características da Câmera CCD
Tabela 3: Características do Imageador WFI
Tabela 4: Características do Imageador IRMSS 11
Tabela 5: Coordenadas dos 4 pontos medidos com GPS e dos pontos fotogramétricos 42
Tabela 6: Altitude, nas datas do imageamento, do nível de água nos reservatórios das usinas hidrelétricas mostradas na Figura 33
Tabela 7: Equidistância das curvas de nível de acordo com a escala da carta 44
Tabela 8: Comparação a priori entre as cotas obtidas das cartas, do MDT gerado das imagensCBERS-2 (60 x 60m) e do SRTM46
Tabela 9: Comparação a priori entre as cotas obtidas das cartas, do MDT gerado das imagens
CBERS-2 (100 x 100m) e do SRTM
Tabela 10: Relação dos 36 pontos de verificação do MDT (60 x 60m)
Tabela 11: Relação dos 36 pontos de verificação do MDT (100 x 100m)
Tabela 12: Análise dos pontos de verificação do MDT (50 x 50m) subtraído de 38m 54
Tabela 13: Análise dos pontos de verificação do MDT (100 x 100m) subtraído de 38m 55

Lista de Figuras

Figura 1: Geometria dos sensores digitais	4
Figura 2: Componentes dos satélites CBERS 1 e 2	7
Figura 3: Órbita dos satélites CBERS 1 e 2	8
Figura 4: Faixas de imageamento das câmeras dos satélites CBERS	8
Figura 5: Esquema representativo da obtenção de pares estereoscópicos através da visada lateral	8
Figura 6: Comparação das bandas do sensor CCD com outros sensores similares	9
Figura 7: Relação entre as paralaxes de um ponto <i>I</i>	14
Figura 8: Esquema representativo da Orientação Interior	15
Figura 9: Ângulos de atitude ω , ϕ , κ	. 15
Figura 10: Interseções espaciais para três imagens	18
Figura 11: Esquema demonstrando os efeitos da transformação de perspectiva pelo processo ortorretificação	de 19
Figura 12: Esquema representativo das etapas da ortorretificação	20
Figura 13: Distribuição dos pontos amostrais (a) irregular, (b) aerolevantamento, (c) a partir da drenag e (d) regular	em 22
Figura 14: Mapa plani-altimétrico	23
Figura 15: Exemplos de Grade Retangular Regular e Grade Triangular Irregular	24
Figura 16: Exemplo ilustrativo de interpolação bilinear	26
Figura 17: MDT da área de estudo representado por imagem em níveis de cinza	28
Figura 18: imagem sombreada da mesma região do MDT representado na Figura 17	28
Figura 19: visualização tridimensional do MDT da Figura 17	29
Figure 20: Esqueme de equisição de dedes do SPTM	30
Figura 20. Esquema da aquisição de dados do SKTM	
Figura 20: Esquema da aquisição de dados do SKTM Figura 21: Os valores apresentados no gráfico (a) são mais exatos do que os em (b), enquanto es últimos são mais precisos	stes 34
 Figura 20: Esqueina da aquisição de dados do SKTM Figura 21: Os valores apresentados no gráfico (a) são mais exatos do que os em (b), enquanto es últimos são mais precisos Figura 22: Área abrangida pelo par estéreo, dentro da área do Projeto SP/MG/GO-50 do IBGE 	stes 34 38
 Figura 20: Esqueina da aquisição de dados do SKTM Figura 21: Os valores apresentados no gráfico (a) são mais exatos do que os em (b), enquanto es últimos são mais precisos Figura 22: Área abrangida pelo par estéreo, dentro da área do Projeto SP/MG/GO-50 do IBGE Figura 23: Composições coloridas do par estéreo utilizado - imagens de 16/6/2004 e 1º/7/2004 	stes 34 38 39
 Figura 20: Esqueina da aquisição de dados do SKTM Figura 21: Os valores apresentados no gráfico (a) são mais exatos do que os em (b), enquanto es últimos são mais precisos Figura 22: Área abrangida pelo par estéreo, dentro da área do Projeto SP/MG/GO-50 do IBGE Figura 23: Composições coloridas do par estéreo utilizado - imagens de 16/6/2004 e 1º/7/2004 Figura 24: Distribuição dos <i>Control Points, Check Points</i> e <i>Tie Points</i> 	stes 34 38 39 42
 Figura 20: Esqueina da aquisição de dados do SKTM Figura 21: Os valores apresentados no gráfico (a) são mais exatos do que os em (b), enquanto es últimos são mais precisos Figura 22: Área abrangida pelo par estéreo, dentro da área do Projeto SP/MG/GO-50 do IBGE Figura 23: Composições coloridas do par estéreo utilizado - imagens de 16/6/2004 e 1º/7/2004 Figura 24: Distribuição dos <i>Control Points, Check Points</i> e <i>Tie Points</i> Figura 25: MDT gerado a partir de imagens CBERS-2, com células de 100 x 100 metros 	stes 34 38 39 42 43

Figura 27: Área abrangida pelas cartas topográficas e distribuição dos pontos da verificação inicial 4
Figura 28: Distribuição dos 36 pontos de verificação utilizados na análise estatística do MDT gerad
através dos pares estéreo do CBERS-2
Figura 29: Sensor PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping) do satélit
ALOS-2
Figura 30: Pontos onde não se verificou valores mais altos no MDT do CBERS-2 em relação às carta
topográficas
Figura 31: Gráfico das diferenças entre as cotas dos MDTs e das cartas topográficas

Anexos

ANEXO 1 – Relatório da Triangulação	67
ANEXO 2 – Modelos Digitais de Terreno	80
MDT CBERS-2 - Resolução de 60 metros	
MDT CBERS-2 - Resolução de 100 metros	
MDT - SRTM	83

1. Introdução

Na última década do século XX, marcada por avanços notáveis na área de Sensoriamento Remoto, foram desenvolvidos e lançados, tanto por plataformas de programas espaciais já existentes como por projetos inéditos, sensores de alto desempenho no que se refere às resoluções espacial, espectral, radiométrica e temporal. A bordo de plataformas orbitais, esses novos sensores vieram a complementar o registro dos recursos naturais e do meio ambiente terrestre, desde a escala regional até o nível de detalhe.

Este empenho pela eficiência na aquisição de dados, juntamente com a necessidade de autonomia no monitoramento de recursos terrestres, resultou em uma parceria entre os governos do Brasil e da China. Iniciado em 1988, o programa de cooperação China-Brasil, CBERS (*China-Brazilian Earth Resources Satellite*), lançou o primeiro satélite (CBERS-1) em 1999, e o segundo (CBERS-2) em 2003, havendo ainda previsão para o lançamento de mais três: o CBERS-2b (2006), o CBERS-3 (2008) e o CBERS-4 (2010). Com três sensores a bordo, os CBERS já lançados registram cenas em diferentes resoluções espaciais, temporais e espectrais, atendendo a necessidades semelhantes de ambos os países nas áreas de gerenciamento de recursos terrestres, monitoramento de florestas, geologia, hidrologia e mapeamento de áreas de difícil acesso em várias escalas, além da inclusão de um moderno sistema de monitoramento ambiental.

Entre tantas funções importantes, as imagens do CBERS-2 oferecem a possibilidade de extração de informações altimétricas a partir de medidas baseadas na diferença de paralaxe, graças à capacidade de apontamento lateral do espelho em até $\pm 32^{\circ}$. Alguns satélites comerciais mais estudados, por serem mais conhecidos no

mercado, já se destacam por sua capacidade de aquisição desse tipo de dados. Entre esses sensores capazes de obter dados em estereoscopia, pode-se citar os sensores norteamericanos ASTER (*Advanced Spaceborne Thermal Emission and Reflection Radiometer*, a bordo da plataforma EOS-TERRA) e IKONOS II, o japonês ALOS-2 (*Advanced Land-Observing Satellite*) e o francês SPOT (*Système Pour l'Observacion de la Terre*). Apesar disso, nota-se uma escassez de estudos envolvendo medições altimétricas utilizando imagens do CBERS, provavelmente devida à dificuldade de obtenção de pares estereoscópicos imposta pelo seu sistema de imageamento por apontamento lateral de espelho, o que resultou em uma única aquisição de dados com estereoscopia que ainda foi muito prejudicada por uma excessiva cobertura de nuvens e problemas de turbulência. Apesar de a vida útil nominal do CBERS-2 já ter chegado ao limite, só recentemente se conseguiu efetuar medições de altimetria utilizando suas imagens, resultado de um esforço conjunto de pesquisadores de diversas universidades e outras instituições em todo o país.

Assim como as informações planimétricas, a altimetria é de extrema importância para os mais diversos setores de aplicação, desde projetos de engenharia e de meio ambiente até o setor público administrativo, passando por aplicações rurais, agrícolas e de exploração mineral. O objetivo da altimetria é a tradução visual do relevo de um terreno. Essa representação pode ser armazenada e visualizada de forma vetorial (curvas de nível) ou matricial (Modelos Digitais de Terreno). Este último caso é o objeto de estudo do presente projeto.

1.1. Objetivo

O objetivo central desta dissertação é a geração de Modelo Digital de Terreno (MDT) a partir de dados altimétricos extraídos do único estereoscópico utilizável tomado pelo sensor HR-CCD (*High Resolution Charge Coupled Device*) do satélite CBERS-2 em território brasileiro e a realização de um estudo quantitativo desse produto, comparando-o com outras fontes de dados e classificando-o de acordo com o definido pelo Padrão de Exatidão Cartográfica. Espera-se, além da obtenção de informações importantes que possam vir a colaborar com o desenvolvimento dos satélites do projeto CBERS, estimular mais estudos científicos envolvendo esses sensores bem como a sua utilização comercial em maior escala.

1.2. Objetivos Específicos

- Emprego de técnicas de fotogrametria digital para extração de Modelo Digital de Terreno de um par estereoscópico de imagens do sensor HR-CCD do CBERS-2;

- Análise estatística de qualidade e comparação entre as informações altimétricas extraídas desse par estereoscópico;

- Classificação do modelo gerado de acordo com o Decreto Lei 89.817, de 20 de junho de 1984 - Padrão de Exatidão Cartográfica (Brasil, 1984).

1.3. Justificativa

- Obtenção de informações importantes que possam vir a contribuir com o desenvolvimento do projeto CBERS;

- Escassez de estudos relacionados à altimetria extraída de imagens destes sensores;

- Estímulo para utilização comercial em maior escala dos produtos oferecidos pelo programa CBERS.

2. Revisão Bibliográfica

2.1. Sistemas de Satélites

As radiações do espectro visível e do infravermelho podem ser registradas pelos sistemas passivos do sensoriamento remoto com métodos fotográficos, de vídeo e de varredura (*scanners*). Esses sistemas registram a radiação eletromagnética que é refletida ou emitida pelos alvos terrestres. Enquanto os métodos fotográficos e de vídeo são limitados ao intervalo de 0,4 a 0,9 μ m, a técnica de varredura permite o registro de imagens nos comprimentos de onda do ultravioleta até o infravermelho térmico (0,3 - 14 μ m). A radiação refletida e/ou emitida pela superfície terrestre atravessa o sistema óptico do *scanner* e é focalizada sobre os detectores. Estes transformam a radiação em sinais elétricos que são gravados em fita magnética. Um *scanner* multiespectral pode gravar sinais provenientes de vários intervalos de comprimento de onda.

2.1.1. Tipos de Sensores Quanto à Geometria de Aquisição

Ao falar de sensores digitais, pode-se fazer uma distinção entre sensores matriciais, lineares e de rotação (Ricart *et al*, 2003). O princípio geométrico pode ser visto na **Figura 1**.

Figura 1: Geometria dos sensores digitais. Sensores matriciais (a), sensores lineares (b) e sensores de rotação (c). *Fonte: Ricart* et al, 2003.

a) Sensores matriciais (Frame Cameras)

Estes sensores eletrônicos utilizam dispositivos sensores de estado sólido do tipo CCD ou CMOS. Todos os elementos sensoriais são dispostos no plano focal e apresentam a particularidade de adquirir a imagem digital em um único instante. A geometria dessas imagens corresponde ao caso da projeção central. Além disso, geralmente necessitam correção do arrastamento através de TDI (*Time Delayed Integration*).

b) Sensores Lineares (Pushbroom Scanners)

A captura da imagem é um processo contínuo e totalmente eletrônico, onde todos os detectores da barra do CCD são amostrados simultaneamente para uma mesma linha perpendicular à órbita (Schovengerdt, 1997). Essa geometria se caracteriza por cada linha da imagem resultante precisar seus próprios parâmetros de orientação externa, ajustando-se a uma projeção central. A sensibilidade espectral desses sensores oscila entre o espectro eletromagnético visível e infravermelho próximo.

c) Sensores de rotação (Whiskbroom Scanners)

Os sensores de rotação são do tipo eletromecânico. A imagem é obtida graças à rotação de um prisma ou espelho que move instantaneamente o campo de vista (IFOV) perpendicularmente à direção de vôo. Deste modo, a formação da imagem segue um processo contínuo. A geometria resultante é cilíndrica. No geral, a sensibilidade espectral desses sensores é maior que dos lineares, já que oscila entre 0,4 (visível) e 13µm (infravermelho distante).

2.2. O Projeto CBERS

Na tentativa de reverter sua posição de dependentes das imagens de sensoriamento remoto fornecidas por outras nações, os governos do Brasil e da China assinaram em 06 de Julho de 1988 um acordo de parceria envolvendo o INPE e a CAST denominado Programa CBERS, Satélite Sino-Brasileiro de Recursos Terrestres, tendo como intuito a implantação de um sistema completo de sensoriamento remoto de nível internacional.

Com a união de recursos financeiros e tecnológicos entre o Brasil e a China, num investimento superior a US\$ 300 milhões, foi criado um sistema de responsabilidades divididas (30% brasileiro e 70% chinês). A experiência chinesa na construção de satélites e foguetes lançadores tornou-se o grande aliado estratégico para o governo brasileiro. Em contrapartida, o Brasil trazia em sua bagagem a familiaridade com a alta tecnologia e um parque industrial mais moderno que o existente no parceiro.

Por outro aspecto, as grandes áreas despovoadas e os vastos recursos naturais dentro do território, além dos grandes potenciais agrícolas e ambientais de ambos os países se somaram a esses interesses. A ferramenta para monitorar constantemente essas áreas era o Programa CBERS, que trazia em seu projeto sensores específicos para essas atividades científicas.

2.2.1. Características dos Satélites CBERS-1 e 2

O primeiro satélite desenvolvido, CBERS-1, foi lançado pelo foguete chinês Longa Marcha 4B, do Centro de Lançamento de Taiyuan em 14 de outubro de 1999. O CBERS-2, tecnicamente idêntico ao primeiro, foi lançado no dia 21 de outubro de 2003. São compostos por dois módulos (**Figura 2**):

- "Carga útil", onde são acomodadas as três câmeras (HR CCD – *High Resolution Charge Coupled Device*, IRMSS – *Infrared Multi Spectral Scanner* e WFI – *Wide Field Imager*) e o Repetidor para o Sistema Brasileiro de Coleta de Dados Ambientais.

- "Serviço", que contém os equipamentos que asseguram o suprimento de energia, os controles, as telecomunicações e demais funções necessárias (**Tabela 1**).

Os 1100W de potência elétrica necessária para o funcionamento dos equipamentos de bordo são obtidos através de painéis solares que se mantêm orientados na direção do sol por controle automático. O satélite dispõe ainda de um sistema de

controle de atitude, complementado por um conjunto de propulsores a hidrazina que também auxilia nas eventuais manobras de correção da sua órbita nominal.

Massa total	1450 kg	
Potência gerada	1100 W	
Baterias	2 x 30 Ah NiCd	
Dimensões do corpo	(1,8 x 2,0 x 2,2) m	
Dimensões do painel	6,3 x 2,6 m	
Altura da órbita hélio-síncrona	778 km	
Propulsão a hidrazina	16 x 1 N; 2 x 20 N	
Estabilização	3 eixos	
Supervisão de bordo	são de bordo Distribuída	
Comunicação de Serviço (TT&C) UHF e banda		
Tempo de vida (confiabilidade de 0.6)	2 anos	

 Tabela 1: Características dos Satélites CBERS-1 e 2

1 - Módulo de Serviço 2 - Sensor de Presença do Sol 3 - Conjunto dos Propulsores de 20N 4 - Conjunto dos Propulsores de 1N 5 - Divisória Central 6 - Antena UHF de Recepção 7 - Câmera IRMSS 8 - Antena de Transmissão do IR 9 - Antena de Transmissão em VHF 10 - Antena UHF Tx/Rx 11 - Antena em Banda - S (DCS) 12 - Antena de Transmissão do CCD 13 - Antena de Transmissão em UHF 14 - Câmera CCD 15 - Antena em Banda-S (TT&C) 16 - Módulo de Carga Útil 17 - Painel Solar 18 - Antena em Banda-S (TT&C) 19 - Antena de Recepção em UHF 20 - Câmera Imageadora WFI

2.2.2. Órbita dos Satélites CBERS-1 e 2

A órbita do CBERS (**Figura 3**) é heliosíncrona a uma altitude de 778 km e inclinação de 98,504°, perfazendo cerca de 14 revoluções por dia. Nesta órbita, o satélite cruza o Equador sempre na mesma hora local, 10h30min da manhã, permitindo assim que se tenha sempre as mesmas condições de iluminação solar para a comparação de imagens tomadas em dias diferentes.

Figura 3: Órbita dos satélites CBERS 1 e 2. Fonte: www.cbers.inpe.br

2.2.3. As Câmeras dos Satélites CBERS-1 e 2

Uma característica dos satélites CBERS-1 e 2 é a diversidade de câmeras com diferentes resoluções espaciais e temporais para observações ópticas de todo o globo terrestre (**Figura 4**), além de um sistema de coleta de dados ambientais.

Figura 4: Faixas de imageamento das câmeras CBERS. Fonte: www.cbers.inpe.br

2.2.3.1. Câmera Imageadora de Alta Resolução (HR CCD)

A câmera CCD fornece imagens de uma faixa de 113 km de largura, com uma resolução de 20 m. Esta câmera tem capacidade de orientar seu campo de visada dentro de \pm 32°, possibilitando a obtenção de imagens estereoscópicas (**Figura 5**). Além disso, qualquer fenômeno detectado pelo WFI pode ser focalizado pela Câmera CCD, para estudos mais detalhados, no máximo, a cada três dias.

Figura 5: Esquema representativo da obtenção de pares estereoscópicos através da visada lateral. *Fonte: www.cbers.inpe.br*

A Câmera CCD opera em 5 faixas espectrais incluindo uma faixa pancromática de 0,51 a 0,73 μ m (**Tabela 2** e **Figura 6**). As duas faixas espectrais do WFI são também empregadas na câmera CCD para permitir a combinação dos dados obtidos pelas duas câmeras. São necessários 26 dias para uma cobertura completa da Terra.

Bandas espectrais	0,51 - 0,73 μm (pan)	
	0,45 - 0,52 µm (azul)	
	0,52 - 0,59 μm (verde)	
	0,63 - 0,69 μm (vermelho)	
	0,77 - 0,89 μm (infravermelho próximo)	
Campo de Visada	8,3°	
Resolução espacial	20 x 20 m	
Largura da faixa imageada	113 km	
Capacidade de apontamento do espelho	±32°	
Basaluaão temporal	26 dias com visada vertical	
	(3 dias com visada lateral)	
Freqüência da portadora de RF	8103 MHz e 8321 MHz	
Taxa de dados da imagem	2 x 53 Mbit/s	
Potência Efetiva Isotrópica Irradiada	43 dBm	

Tabela 2: Características da Câmera CCD.

Figura 6: Comparação das bandas do sensor CCD com outros sensores similares.

Destacam-se como aplicações potenciais da CCD:

• Vegetação: identificação de áreas de florestas, alterações florestais em parques, reservas, florestas nativas ou implantadas, quantificações de áreas, sinais de queimadas recentes.

 Agricultura: identificação de campos agrícolas, quantificação de áreas, monitoramento do desenvolvimento e da expansão agrícola, quantificação de pivôs centrais, auxílio em previsão de safras, fiscalizações diversas. Meio ambiente: identificação de anomalias antrópicas ao longo de cursos d'água, reservatórios, florestas, cercanias urbanas, estradas; análise de eventos episódicos naturais compatíveis com a resolução da Câmera, mapeamento de uso do solo, expansões urbanas.

 Água: identificação de limites continente-água, estudos e gerenciamento costeiros, monitoramento de reservatórios.

 Cartografia: dada a sua característica de permitir visadas laterais de até 32°, possibilita a obtenção de pares estereoscópicos e a conseqüente análise cartográfica altimétrica.

• Geologia e solos: apoio a levantamentos de solos e geológicos.

• Educação: geração de material de apoio a atividades educacionais em geografia, meio ambiente, e outras disciplinas.

2.2.3.2. Imageador de Amplo Campo de Visada (WFI)

O WFI produz imagens de uma faixa de 890 km de largura, permitindo a obtenção de cartas-imagem com resolução espacial de 260 m (**Tabela 3**). No período aproximado de cinco dias, obtém-se uma cobertura completa do globo.

Bandas espectrais	0,63 - 0,69 μm (vermelho)	
Dandas espectrais	0,77 - 0,89 µm (infra-vermelho)	
Campo de Visada	60°	
Resolução espacial	260 x 260 m	
Largura da faixa imageada	890 km	
Resolução temporal	5 dias	
Freqüência da portadora de RF	8203,35 MHz	
Taxa de dados da imagem	1,1 Mbit/s	
Potência Efetiva Isotrópica Irradiada	31,8 dBm	

Tabela 3: Características do Imageador WFI.

Entre suas aplicações, podem ser mencionadas:

- Geração de mosaicos nacionais ou estaduais.
- Geração de índices de vegetação para fins de monitoramento.

Monitoramento de fenômenos dinâmicos, como safras agrícolas, queimadas persistentes.

 Sistema de alerta, em que a imagem WFI serve como indicativo para a aquisição de imagens de mais alta resolução da CCD ou do IRMSS. Acoplamento a outros sistemas mundiais de coleta de dados de baixa a média resolução

2.2.3.3. Imageador por Varredura de Média Resolução (IRMSS)

A câmera de varredura IRMSS tem 4 faixas espectrais e estende o espectro de observação do CBERS até o infravermelho termal (**Tabela 4**). O IRMSS produz imagens de uma faixa de 120 km de largura com uma resolução de 80 m (160 m no canal termal). Em 26 dias obtém-se uma cobertura completa da Terra que pode ser correlacionada com aquela obtida através da câmera CCD.

	0,50 - 1,10 μm (pancromática)	
Bandas espectrais	1,55 - 1,75 µm (infravermelho médio)	
Dandas espectrais	2,08 - 2,35 µm (infravermelho médio)	
	10,40 - 12,50 μm (infravermelho termal)	
Campo de Visada	8,8°	
Resolução espacial	80 x 80 m (160 x 160 m termal)	
Largura da faixa imageada	120 km	
Resolução temporal	26 dias	
Freqüência da portadora de RF	8216,84 MHz	
Taxa de dados da imagem	6,13 Mbit/s	
Potência Efetiva Isotrópica Irradiada	39,2 dBm	

Tabela 4: Características do Imageador IRMSS.

Suas aplicações são as mesmas do sensor CCD, com as devidas adaptações. Outras aplicações são:

- Análise de fenômenos que apresentem alterações de temperatura da superfície.
- Geração de mosaicos estaduais.
- Geração de cartas-imagens.

2.2.3.4. Sistema Brasileiro de Coleta de Dados Ambientais

Os satélites CBERS-1 e CBERS-2 fazem parte do Sistema Brasileiro de Coleta de Dados Ambientais que, baseado na utilização de satélites e mais de 600 Plataformas de Coleta de Dados (PCDs) distribuídas pelo território nacional, objetiva fornecer ao país dados ambientais diários coletados nas diferentes regiões do território nacional. Esses dados são utilizados em diversas aplicações, tais como a previsão de tempo do CPTEC, estudos sobre correntes oceânicas, marés, química da atmosfera, planejamento agrícola, entre outras.

2.3. Fotogrametria Digital

A palavra Fotogrametria, deriva de três palavras de origem grega: *photon* (luz), *graphos* (escrita) e *metron* (medições), ou "medições executadas através de fotografias". O consenso geral define tal termo como a ciência, a técnica e a arte de se extrair informações confiáveis sobre a forma, as dimensões e a posição de objetos através de imagens adquiridas por sensores fotográficos (Brito, 2002).

Segundo Temba (2000), a fotogrametria pode ser dividida em duas áreas:

A *fotogrametria interpretativa* objetiva, principalmente o reconhecimento e a identificação de objetos e o julgamento do seu significado, a partir de uma análise sistemática e cuidadosa de fotografias. A interpretação de fotos é o ato de examinar as imagens com o propósito de identificar objetos e determinar sua significância. A esta definição deve-se adicionar o conceito de identificar o contexto, já que muitos fatores críticos exigem que o processo seja mais do que simplesmente identificar objetos individualmente.

A *fotogrametria métrica* consiste na tomada de medidas a partir de fotos e outras fontes de informação para determinar, de um modo geral, o posicionamento de pontos. Com a utilização de técnicas e processos correntes da fotogrametria métrica, é possível determinar, distâncias, ângulos, áreas e elevações para confecção de cartas planimétricas e altimétricas, mosaicos, modelos digitais de elevação, ortofotos, etc.

Imagens para fotogrametria podem ser adquiridas diretamente no formato digital ou ainda em formato analógico, sendo, nesta última hipótese, transformadas para o meio digital em aparelhos digitalizadores matriciais, ou *scanners*.

Há, basicamente, duas modalidades de imagem digital: vetorial e matricial ou matricial (*raster*). A imagem vetorial é caracterizada pela delimitação de objetos pelas entidades que os determinam (pontos, linhas e polígonos).

A imagem *raster* é uma matriz composta por células quadradas, chamadas *pixels* (*picture x elements*). Dentro de cada *pixel*, há somente um nível de cinza ou coloração sólida, definida por um número digital. Pode-se, assim, definir qualquer imagem digital por uma matriz, sendo valor de cada um dos elementos igual ao número digital equivalente.

A utilização dessas imagens para medições com a finalidade de produção cartográfica depende de todo um processo de orientação, correção e referenciamento,

desde a sua aquisição até a execução dos produtos finais, conhecido como Processo Fotogramétrico.

2.3.1. Estereoscopia com Fotografias

2.3.1.1. Definição de Paralaxe

Paralaxe é o deslocamento aparente de um referencial, causado pelo deslocamento do observador. Um exemplo de paralaxe pode ser obtido quando se posiciona um objeto fixo a certa distância do rosto e observa-se ele com um olho de cada vez. Tem-se a nítida impressão de que o objeto está se movendo de um lado para o outro à medida que se alterna o olho aberto. É a partir dessa diferença entre o ângulo com que cada olho enxerga um mesmo objeto que o cérebro interpreta a distância até ele, proporcionando visão tridimensional aos seres humanos.

Da mesma forma, quando uma câmara aérea que está acoplada ao avião em movimento obtém uma cena e, segundos depois, volta a obtê-la em posição diferente, haverá deslocamentos das posições dos objetos imageados de uma foto para a outra, e estes serão diretamente proporcionais à altura do terreno. Estes deslocamentos nas imagens apresentam-se paralelos à linha de vôo e são conhecidos como "paralaxe estereoscópica". O sentido positivo na medida das paralaxes de um ponto coincide com o sentido positivo das coordenadas cartesianas deste ponto (Alves, 1999).

Paralaxe Absoluta ou Paralaxe Horizontal Total de um ponto é a diferença algébrica de suas paralaxes parciais obtidas do par estereoscópico.

$$p_i = x_i - x'_i$$

Onde:

 P_i : Paralaxe Absoluta no ponto *i*

 x_i : coordenada x do ponto i na fotografia da esquerda

 x'_i : coordenada x do ponto i na fotografia da direita

Paralaxe Diferencial Linear é a diferença entre paralaxes absolutas entre pontos.

$$P = p_b - p_a$$

Onde:

P: diferença de paralaxe do ponto *b* em relação ao ponto *a*.

Para a determinação da altitude de um ponto qualquer no terreno (**Figura 7**) a partir da altitude do vôo e da base aérea (distância entre o ponto de tomada de cada foto), seguindo o princípio da semelhana de triângulos, chega-se a:

$$\frac{p_i}{f} = \frac{B}{H - h_i}$$
, o que leva a: $h_i = H - \frac{B.f}{p_i}$

Onde: *h_i*: altitude do ponto *I H*: altitude do vôo *B*: base aérea *f*: distância focal *p_i*: paralaxe absoluta do ponto *i*

Figura 7: Relação entre as paralaxes de um ponto *I. Adaptado de Lillesand e Kiefer, 2000.*

2.3.2. Processo Fotogramétrico

2.3.2.1. Orientação Interior

A orientação interior é uma operação de reconstrução da posição dos feixes perspectivos (referenciamento da imagem) em relação à câmara, permitindo a recuperação da posição da fotografia no momento da tomada da foto. Para materializar este efeito, são aplicados modelos matemáticos para calcular os parâmetros que relacionam o sistema de coordenadas de imagem digital (*pixels*) em um sistema característico de cada câmara, dado pelos parâmetros do certificado de calibração de

câmara fotogramétrica. Pode-se resumir afirmando que a imagem digital, que se encontrava livre no espaço (não-referenciada), é associada à posição que exercia dentro da câmera quando foi obtida (**Figura 8**).

Figura 8: Esquema representativo da Orientação Interior.

O modelo matemático mais comumente utilizado para esse fim é a Transformação Afim Geral associada a um ajustamento de observações pelo Método Paramétrico e por Mínimos Quadrados, ou variações desse modelo. Esse método corrige problemas de não-ortogonalidade dos eixos, rotação, posicionamento (translação em x e y) e diferenças de escala em x e y. A formulação para esse método pode ser encontrada em Gemael (1994).

2.3.2.2. Orientação Exterior

A orientação exterior consiste em relacionar o sistema de câmara (reconstruído na orientação interior) com sua posição e sua atitude em relação ao terreno imageado naquele instante, através da determinação dos seis parâmetros que regem a posição do centro de perspectiva na tomada da foto: a posição tridimensional (X_0, Y_0, Z_0) e as rotações nos três eixos (ω , ϕ , κ), representados na **Figura 9**. Isso significa que essa etapa possibilita o posicionamento da imagem em relação à câmara (espaço-imagem) e em relação a um referencial terrestre (espaço-objeto).

Figura 9: Ângulos de atitude ω , ϕ , κ Fonte: www.ibge.gov.br

Com o conhecimento destes parâmetros, pode-se agora deduzir as coordenadas no espaço-objeto de qualquer ponto representado no espaço-imagem através das equações de colinearidade, que consideram estas coordenadas no espaço-objeto como incógnitas.

$$x = x_0 - f \cdot \frac{r_{11}(X - X_0) + r_{21}(Y - Y_0) + r_{31}(Z - Z_0)}{r_{13}(X - X_0) + r_{23}(Y - Y_0) + r_{33}(Z - Z_0)}$$

$$y = y_0 - f \cdot \frac{r_{12}(X - X_0) + r_{22}(Y - Y_0) + r_{32}(Z - Z_0)}{r_{13}(X - X_0) + r_{23}(Y - Y_0) + r_{33}(Z - Z_0)}$$

Onde:

x, y = coordenadas do ponto de interesse no espaço-imagem $x_0, y_0 =$ coordenadas do centro de perspectiva no espaço-imagem f = distância focal da câmera X, Y = coordenadas do ponto de interesse no espaço-objeto $X_0, Y_0 =$ coordenadas do centro de perspectiva no espaço-objeto

$$r_{ij}$$
 = elementos da matriz de rotação R = $\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$ =

	$\cos \phi . \cos \kappa$	$-\cos\phi.\cos\kappa$	sin Ø
=	$\cos\phi.\sin\kappa + \sin\omega.\sin\phi.\cos\kappa$	$\cos \omega . \cos \kappa + \sin \omega . \sin \phi . \sin \kappa$	$-\sin\omega.\cos\phi$
	$\sin\phi$. $\sin\kappa - \cos\omega$. $\sin\phi$. $\cos\kappa$	$\sin \omega .\cos \kappa + \cos \omega .\sin \phi .\sin \kappa$	$\cos\omega.\cos\phi$

A partir dessas equações de colinearidade, pode-se realizar uma série de cálculos, como a Resseção Espacial (obtém valores dos parâmetros de orientação exterior), a Interseção Espacial (obtém os valores de coordenadas tridimensionais para um par de imagens) e o Ajustamento por Feixes Perspectivos (propicia a obtenção destes valores já citados para um bloco de fotografias).

2.3.2.3. Orientação de Imagens de Sensoriamento Remoto

Na formação do estereomodelos compostos por imagens de sensoriamento remoto, utiliza-se uma metodologia baseada num modelo de coplanaridade adaptado (Ruy e Tommaselli, 2003). Neste caso, o modelo é tratado de forma diferente, sendo os parâmetros de orientação exterior normalizados pela restrição de coplanaridade num sistema de referência terrestre, no qual estes parâmetros foram determinados no momento da tomada das imagens pelo sistema de posicionamento do satélite. No modelo original as fotos são orientadas uma em relação à outra, num referencial arbitrário da foto da esquerda.

- Identificação Automática de Pontos Homólogos

Para compatibilizar os parâmetros de orientação no ajustamento pelo Método dos Mínimos Quadrados, alguns pontos homólogos devem ser medidos no modelo. Esses pontos podem ser identificados automaticamente através do uso de técnicas de correlação (Ruy e Tommaselli, 2003). As técnicas de correlação implicam em que a medida de similaridade entre a janela de referência, contendo pixels de uma imagem, e a janela de pesquisa, contendo pixels da outra, é calculada por um fator de correlação normalizado (ρ), definido em Kraus (1993) por:

$$\rho = \frac{\sigma_{RP}}{\sigma_R \sigma_P} \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} ((g_R(x_i, y_j) - \overline{g}_R)(g_P(x_i, y_j) - \overline{g}_P))}{\sqrt{\sum_{i=0}^{n} \sum_{j=0}^{m} (g_R(x_i, y_j) - \overline{g}_R)^2 * \sum_{i=0}^{n} \sum_{j=0}^{m} (g_P(x_i, y_j) - \overline{g}_P)^2}}$$

Onde:

 σ_{RP} : covariância entre as janelas de referência e de pesquisa; σ_{R} : desvio-padrão da janela de referência (*template*). σ_{P} : desvio-padrão da janela de pesquisa; (*m*, *n*): dimensão das janelas de referência e pesquisa; $g_{R}(x_{b}y_{j})$: nível de cinza da posição (xi,yj): na janela de referência; $g_{R}(x_{b}y_{j})$: nível de cinza da posição (xi,yj), na janela de pesquisa; g_{R} : média dos níveis de cinza da janela de referência; g_{P} : média dos níveis de cinza da janela de pesquisa.

Este fator de correlação é determinado para cada posição da janela de pesquisa na janela de busca. O fator de correlação varia entre –1 e 1. Esses valores correspondem, respectivamente, aos casos de correlação inversa e de similaridade máxima, e o valor 0 indica que não há correlação entre as janelas.

2.3.2.4. Aerotriangulação

A aerotriangulação (**Figura 10**) é uma técnica segura de cálculo de coordenadas espaciais de pontos medidos fotogrametricamente. O seu principal objetivo é fornecer coordenadas precisas para os pontos necessários à orientação absoluta de

modelos fotogramétricos, já que, para isso é comum a necessidade de levar-se em conta uma quantidade considerável de pontos. Através da aerotriangulação, pode-se necessitar das coordenadas levantadas *"in loco"* de apenas alguns poucos pontos espaçados pelo bloco para calcular, por interpolação, quantos pontos forem necessários para cada modelo. Isto é o que normalmente se denomina *"adensamento"* de pontos de campo.

Figura 10: Interseções espaciais para três imagens. *Fonte: www.tracasa.es/html/es/t_cartografia.html*

2.3.2.5. Retificação de Imagens

Retificar uma imagem consiste em projetá-la, segundo seu próprio feixe perspectivo, para um plano horizontal (Andrade, 1998). Esse processo permite modificar ou até mesmo eliminar completamente as distorções causadas pelos ângulos de atitude da câmara em relação a um dado referencial, bem como pela distância focal da imagem resultante (distorção radial).

No caso da fotogrametria aérea/orbital, ou seja, a fotogrametria com vistas ao mapeamento em larga escala, interessa transformar as imagens em perfeitamente verticais, ou seja: eliminar os ângulos de atitude $\phi \in \omega$, gerando, então, imagens perfeitamente verticais. O objetivo primordial da retificação para a fotogrametria é gerar uma nova imagem vertical sem as distorções introduzidas pela atitude do sensor durante a tomada da imagem.

2.3.2.6. Normalização de Imagens

Diferentemente da retificação, que é feita imagem a imagem, a normalização é "orientada" ao par estereoscópico, porém sem restringir-se à área de

superposição das imagens. O objetivo principal da normalização é gerar um novo par de imagens digitais que se adapte à assim chamada geometria epipolar (Brito, 2002). Para isso, se faz necessário eliminar todos os ângulos de atitude da aeronave. Cabe lembrar que na retificação, apenas $\phi e \omega$ devem ser obrigatoriamente zerados.

2.3.2.7. Ortorretificação de Imagens

O processo de ortorretificação (**Figura 11**) de imagens é responsável por transformar imagens com perspectiva central (com os inúmeros raios de luz advindos de diferentes pontos imageados, passando por um só ponto: o centro de perspectiva) em imagens em perspectiva ortogonal (em que raios ortogonais são projetados a partir da região imageada, sem nunca se encontrar). É através desse processo que se eliminam a distorção radial e os desvios relativos ao relevo da região imageada.

Figura 11: Esquema demonstrando os efeitos da transformação de perspectiva pelo processo de ortorretificação. *Adaptado de: BRITO*, 2002.

Uma imagem em perspectiva central não pode ser tomada como fonte de informação métrica segura, uma vez que a mesma possui erros devido à rotação do sensor e deslocamentos devido ao relevo, inerentes à perspectiva cônica. Já a imagem em projeção ortogonal pode ser tomada como um documento cartográfico, podendo ser empregada em qualquer atividade que demande um mapa ou carta ou fonte de dados similar (Brito, 2002).

O método matemático mais empregado na ortorretificação de imagens é a retificação diferencial (Andrade, 1998). Seu objetivo é gerar uma nova imagem digital em perspectiva ortogonal, através da reconstrução dos feixes perspectivos (**Figura 12**).

Essa "nova imagem" é feita a partir das coordenadas tridimensionais de cada pixel que vai formá-la e, por intermédio dos parâmetros da orientação exterior conhecidos, determinar as coordenadas no novo espaço-imagem para cada ponto. Através dos parâmetros da orientação interior, chega-se ao pixel correspondente, e, conseqüentemente, ao seu nível de cinza, que é reamostrado na imagem ortorretificada.

Figura 12: Esquema representativo das etapas da ortorretificação. Fonte: www.profc.udec.cl/~gabriel/tutoriales

2.4. Modelagem Digital de Terreno (MDT)

Um Modelo Digital de Terreno (MDT) é uma representação matemática da distribuição espacial de uma determinada característica vinculada a uma superfície real. A superfície é em geral contínua e o fenômeno que representa pode ser variado. O MDT pode ser utilizado para representar informações de ordem econômica e social (tais como a distribuição da população ou renda dos habitantes de uma região) ou acerca do meio físico (tais como dados de relevo, poluição, temperatura, geofísica, geológicos, etc.). Entre alguns usos do MDT pode-se citar (Burrough, 1986):

- Armazenamento de dados de altimetria para gerar mapas e perfis topográficos;

- Ortorretificação de imagens;

- Análises de corte-aterro para projeto de estradas e barragens;

 Elaboração de mapas de declividade e exposição para apoio à análise de geomorfologia e erodibilidade;

- Determinação de intervisibilidade de pontos;

- Análise de variáveis geofísicas e geoquímicas;

- Apresentação tridimensional (em combinação com outras variáveis).

Para a representação de uma superfície real no computador, é indispensável a elaboração e criação de um modelo digital, que pode estar representado por equações analíticas ou uma rede (grade) de pontos, de modo a transmitir ao usuário as características espaciais do terreno.

A criação de um MDT corresponde a uma nova maneira de enfocar o problema da elaboração e implantação de projetos. A partir dos modelos pode-se calcular diretamente volumes, áreas, desenhar perfis e secções transversais, gerar imagens sombreadas ou em níveis de cinza, gerar mapas de declividade e aspecto, gerar fatiamentos nos intervalos desejados e perspectivas tridimensionais, etc.

No processo de modelagem numérica de terreno pode-se distinguir três fases:

- obtenção dos dados,
- geração de grades,

- elaboração de produtos representando as informações obtidas.

2.4.1. Obtenção de Dados

Os dados de modelo numérico de terreno estão representados pelas coordenadas XYZ, onde Z caracteriza o parâmetro a ser modelado. A aquisição destes dados é geralmente realizada por levantamentos topográficos ou geodésicos, digitalização de mapas, medidas fotogramétricas a partir de modelos estereoscópicos e dados altimétricos adquiridos por GPS, aviões ou satélites.

Os métodos de aquisição de dados podem ser, por pontos amostrados, com espaçamento irregular e regular, bem como por mapas de isolinhas.

2.4.1.1. Amostragem por Pontos

De acordo com o tipo de aquisição tem-se a distribuição das amostras conforme a **Figura 13**:

Figura 13: Distribuição dos pontos amostrais (a) irregular, (b) aerolevantamento, (c) a partir da drenagem e (d) regular. *Fonte: www.dpi.inpe.br/spring*

O cuidado na escolha dos pontos e a quantidade de dados amostrados estão diretamente relacionados à qualidade do produto final de uma aplicação sobre o modelo. Para aplicações onde se requer um grau de realismo maior, a quantidade de pontos amostrados, bem como a sua distribuição espacial e a relevância de cada ponto para a representação do relevo são fatores decisivos.

2.4.1.2. Amostragem por Isolinhas

Um mapa de isolinhas nada mais é do que a representação de uma superfície por meio de curvas de isovalor. O exemplo mais comum são as isolinhas altimétricas, também conhecidas como curvas de nível, existentes nos mapas topográficos. Nestes mapas ainda existem pontos amostrados irregularmente que foram obtidos por trabalhos de campo. A **Figura 14** mostra um exemplo de mapa plani-altimétrico com isolinhas e alguns pontos cotados.

Figura 14: Mapa plani-altimétrico. Fonte: www.dpi.inpe.br/spring

A digitalização das isolinhas pode ser efetuada por meio manual, com uso de uma mesa digitalizadora, ou através de um processo automático por meio de *scanner*.

A digitalização manual consiste na operação de identificação de uma isolinha com um valor de cota, via mesa digitalizadora ou cursor, diretamente na tela.

A digitalização utilizando *scanner* resulta em uma matriz de pontos onde podem ser identificadas as isolinhas e os valores de cota. Processos de vetorização percorrem uma isolinha e transformam-na em uma seqüência de pontos com coordenadas x, y de mesmo valor em z.

2.4.2. Geração de Grades

Os MDT não são elaborados diretamente sobre os dados amostrados, mas sim a partir dos modelos gerados no formato de grade regular ou irregular (**Figura 15**). Estes formatos simplificam a implementação dos algoritmos de aplicação e os tornam mais rápidos computacionalmente. As grades retangulares são geralmente utilizadas em aplicações qualitativas, por exemplo, para visualização da superfície. Enquanto o modelo de grade irregular é utilizado quando se requer maior precisão na análise quantitativa dos dados.

Figura 15: Exemplos de Grade Retangular Regular e Grade Triangular Irregular. *Fonte: www.dpi.inpe.br/spring*

2.4.2.1. Geração de Grade Retangular

A grade retangular ou regular é um modelo digital que aproxima superfícies através de um poliedro de faces retangulares. Os vértices desses poliedros podem ser os próprios pontos amostrados, caso estes tenham sido adquiridos nas mesmas localizações x, y que definem a grade desejada.

A geração de grade regular ou retangular deve ser efetuada quando os dados amostrados na superfície não são obtidos com espaçamento regular. Assim, a partir das informações contidas nas isolinhas ou nos pontos amostrados, gera-se uma grade que representa de maneira mais fiel possível a superfície. Os valores iniciais a serem determinados são os espaçamentos nas direções x e y (resolução em x e y) de forma que possam representar os valores próximos aos pontos da grade em regiões acidentadas e que, ao mesmo tempo, reduzam redundâncias em regiões mais planas.

Uma vez definida a resolução e consequentemente as coordenadas de cada ponto da grade, pode-se aplicar um dos métodos de interpolação para calcular o valor aproximado da elevação.

2.4.2.2. Geração de Grade Triangular

Na modelagem da superfície por meio de grade irregular triangular, cada polígono que forma uma face do poliedro é um triângulo. Os vértices do triângulo são geralmente os pontos amostrados da superfície. Esta modelagem, considerando as arestas dos triângulos, permite que as informações morfológicas importantes, como as descontinuidades representadas por feições lineares de relevo (cristas) e drenagem (vales), sejam consideradas durante a geração da grade triangular, possibilitando assim, modelar a superfície do terreno preservando as feições geomórficas da superfície.

O número de redundâncias é bastante reduzido se comparado à grade retangular, uma vez que a malha é mais fina em regiões de grandes variações e mais espaçada em regiões quase planas. As descontinuidades da superfície podem ser modeladas através de linhas e pontos característicos.

Esta grade tem a vantagem de utilizar os próprios pontos amostrados para modelar a superfície, sem a necessidade de qualquer tipo de interpolação sobre os mesmos. A desvantagem da grade irregular é que os procedimentos para obtenção de dados derivados de grades triangulares tendem a ser mais complexos e consequentemente mais demorados que os da grade retangular.

2.4.2.3. Interpoladores

Interpolação é o procedimento utilizado para estimar o valor de um atributo em locais não amostrados a partir de pontos amostrados na mesma área ou região, convertendo dados de observações pontuais em campos contínuos. Alguns dos interpoladores mais comumente utilizados:

- Vizinho mais próximo:

Para cada ponto *x*, *y* da grade é atribuída a cota da amostra mais próxima ao ponto. Este interpolador deve ser usado quando se deseja manter os valores de cotas das amostras na grade sem gerar valores intermediários.

- Bilinear:

Para se calcular a superfície bilinear, para uma célula da grade aproveita-se as características de ordenação das posições dos elementos das células e otimiza-se o procedimento que implementa este interpolador.

Considera-se uma célula da grade formada pelos pontos vértices *A*, *B*, *C* e *D*, e um ponto genérico situado no interior da célula *M* (**Figura 16**).

Figura 16: Exemplo ilustrativo de interpolação bilinear. *Fonte: www.dpi.inpe.br/spring/portugues/tutorial*

O valor em *M* é função de f(u,v), sendo (u,v) em (0,1). A interpolação bilinear sobre a célula *ABCD* é realizada pela seguinte seqüência:

- Interpola-se linearmente os pontos $E \in F$ a partir dos pontos $C \in D$, e $A \in B$, respectivamente;

- Interpola-se o ponto *M* linearmente a partir dos pontos *E* e *F*. Assim, o valor de cota z_m é:

$$z_{M} = z_{E} \cdot (1 - v) + z_{F} \cdot v$$
$$z_{M} = v \cdot (u \cdot z_{B} + (1 - u) \cdot z_{A}) + (1 - v) \cdot (u \cdot z_{D} + (1 - u) \cdot z_{C})$$

Com (u,v) normalizados em (0,1).

- Médias Ponderadas e Inverso do Quadrado da Distância:

O algoritmo das Médias Ponderadas calcula estimativas de valores desconhecidos a partir dos valores amostrados vizinhos. A distância atua como o peso e o expoente usado permite ajustamentos a esse peso: maiores expoentes, aumentam a influência dos valores conhecidos mais próximos. A utilização do expoente 2 caracteriza o caso denominado Inverso do Quadrado da Distância.

$$\hat{Z} = \frac{\sum_{i=1}^{n} \frac{1}{d_i^p} z_i}{\sum_{i=1}^{n} \frac{1}{d_i^p}}$$
Onde:
$$\hat{Z} : valor interpoladod: distância de um dado ponto conhecido ip: expoente de ponderação da distâncian: número de pontos a serem incluídos na procuraz: valor de z do ponto conhecido ii: 1, 2, ... n$$

- Krigagem:

A Krigagem é semelhante ao método de interpolação por Médias Ponderadas, com exceção dos pesos, que são determinados a partir de uma análise espacial, baseada no semivariograma experimental, denominada "comportamento típico de declive" (Peucker, 1980). Esta função é conhecida como autocorrelação, covariância ou variograma e as técnicas de estimação são chamadas de interpolação por autocorrelação, colocação ou krigagem, respectivamente.

Segundo Felgueiras (1987), a Krigagem é um método estatístico que utiliza as informações dos pontos vizinhos (variáveis regionalizadas), considerando além dos valores amostrados, a sua posição espacial relativa. Apesar deste processo inicialmente ter sido desenvolvido para estimativas de reservas em mineração, pode-se utilizar a krigagem para estimar o valor de z de um ponto de posição planimétrica conhecida, a partir de um conjunto de n pontos vizinhos, cujo valor de z é conhecido:

$$z_i = H^*(x_i, y_i)$$

O estimador $H^*(x,y)$ é associado a cada posição a ser interpolada, sendo obtido através de uma combinação linear dos *n* pontos conhecidos :

$$H^{*}(x, y) = \sum_{i=1}^{n} p_{i} H(x_{i}, y_{i})$$

Onde p_i é o ponderador obtido através dos conceitos de geoestatística, tendo como característica (Destri, 1988):

$$\sum_{i=1}^{n} p_i = 1$$

O objetivo da Krigagem é obter os ponderadores p_i que forneçam estimativas não tendenciosas e com variâncias mínimas.

2.4.3. Elaboração de Produtos

Superadas as etapas de obtenção dos dados e geração das grades para cálculo das informações a serem fornecidas pelo modelo, tem-se a necessidade de elaboração de um produto final, que vai ser manuseado pelo usuário. Pode-se visualizar um MDT basicamente de três formas: gerando imagens em níveis de cinza, imagens sombreadas ou modelos tridimensionais.

2.4.3.1. Geração de Imagem em Níveis de Cinza

A geração de imagem em níveis de cinza para representar um MDT (**Figura 17**), consiste em atribuir valores digitais de níveis de cinza (de 0 a 255, por exemplo) linearmente, dos mínimos aos máximos, a cada pixel, de acordo com sua cota.

Figura 17: MDT da área de estudo representado por imagem em níveis de cinza.

2.4.3.2. Geração de Imagem Sombreada

Uma imagem sombreada (**Figura 18**) é gerada a partir da aplicação de um modelo de iluminação sobre um modelo de superfície. O modelo de iluminação determina a intensidade de luz refletida em um ponto da superfície considerando o relevo, a posição da fonte de luz - que pode ser a luz ambiente - e a reflexão da superfície.

Figura 18: Imagem sombreada da mesma região do MDT representado na Figura 17.

2.4.3.3. Geração de Modelo de Visualização Tridimensional

Consiste na simulação de uma vista em perspectiva do sólido tridimensional (**Figura 19**) a partir das cotas interpoladas nas grades, representando proporcionalmente a superfície estudada. Normalmente, adota-se um fator de exagero vertical, para melhor observar as variações no relevo.

Figura 19: Visualização tridimensional do MDT da Figura 17.

2.5. SRTM (Shuttle Radar Topography Mission)

O SRTM é uma missão espacial liderada pela NASA, em parceria com as agências espaciais da Alemanha (DLR) e Itália (ASI), realizada em fevereiro de 2000. Com 11 dias de duração, seu objetivo foi gerar um modelo digital de elevação quaseglobal. O sensor utilizado foi um radar (SAR) a bordo do ônibus espacial *Endeavour*, que adquiriu dados sobre mais de 80% da superfície terrestre, nas bandas C e X, fazendo uso da técnica de interferometria. Nesta técnica, a altitude de pontos no terreno é obtida através da medição da diferença de fase entre duas imagens radar sobre um mesmo local na Terra. Diferente dos dados em estereoscopia do CBERS-2, o SRTM adquire os dados em uma mesma órbita, graças às duas antenas de recepção separadas por um mastro de 60 metros (**Figura 20**) a bordo da plataforma, o que melhora muito a qualidade das informações coletadas.

Figura 20: Esquema da aquisição de dados do SRTM Fonte: http://erg.usgs.gov/isb/pubs/factsheets/fs07103.html

Os dados, adquiridos com resolução de 1 arco segundo (aproximadamente 30 metros, no equador), foram processados para a geração dos MDTs da área coberta. Os modelos relativos à banda C estão sendo distribuídos gratuitamente pela NASA para as Américas do Sul e do Norte, com resolução espacial de aproximadamente 90 metros. Há a possibilidade de se adquirir dados com resolução de 30 metros dependendo de acordos analisados individualmente pela NASA. Os dados relativos à banda X estão sendo processados e distribuídos pelo DLR – Centro Aeroespacial Alemão (JPL, 2004). Ao se iniciar a missão, esperava-se atingir precisões da ordem de 16 metros na altimetria (Duren, 1998).

Outro ponto a favor do SRTM é o uso da interferometria para o cálculo da altitude, que possui uma maior acurácia em relação à técnica da estereoscopia (CCRS, 2004). Além disso, alguns trabalhos indicam que podem ser atingidas precisões melhores do que as estimadas antes do inicio da missão, estimando em até 6 metros o erro vertical (Heipke, 2002). Para atingir tais metas, os dados devem ser processados a fim de se eliminar imperfeições do sistema, tais como valores espúrios próximos ao litoral e alguns vazios no continente, referentes a áreas de sombra ao sinal. Rao (2004), em experimentos de campo, encontrou erros menores que 5 metros na vertical e de 2 a 3 *pixels* na horizontal, o que chama a atenção para a necessidade de validação também para deslocamentos planimétricos.

Os MDTs gerados estão sendo disponibilizados no site ftp://e0srp01u.ecs.nasa.gov/srtm/version2/, cobrindo áreas de 1º latitude por 1º de longitude no terreno. Cada arquivo tem aproximadamente uma linha e uma coluna de sobreposição com os arquivos correspondentes às áreas de sua vizinhança. O sistema de projeção utilizado é o de coordenadas geográficas (latitude e longitude) e o *datum* é o WGS84, sendo as altitudes dadas em metros.

2.6. Controle de Qualidade

Para uma adequada utilização dos produtos cartográficos no suporte às atividades rurais, no planejamento de obras de engenharia, no apoio à tomada de decisões da administração pública e qualquer outra finalidade em que estes possam ser aplicados, é imprescindível que o usuário conheça a qualidade das informações ali disponíveis e as limitações de utilização de cada tipo de documento. Por isso, há a necessidade de se verificar estatisticamente a qualidade dos produtos cartográficos.

A regulamentação do controle de qualidade de documentos cartográficos no Brasil funciona de acordo com as normas especificadas no Decreto Lei nº 89.817 de 20 de junho de 1984, o "Padrão de Exatidão Cartográfica" (PEC), que estabelece as Instruções Reguladoras das Normas Técnicas da Cartografia Nacional. A classificação dos documentos cartográficos de acordo com a sua qualidade geométrica é detalhada nos artigos 8º e 9º do Capítulo II desse Decreto Lei. De acordo com esses artigos:

"Art. 8^o: As cartas, quanto à exatidão, devem obedecer ao Padrão de Exatidão Cartográfica, segundo o critério indicado:

1. Noventa por cento dos pontos bem definidos em uma carta, quando testados no terreno, não deverão apresentar erro superior ao Padrão de Exatidão Cartográfica - Planimétrico - estabelecido.

2. Noventa por cento dos pontos isolados de altitude, obtidos por interpolação de curvas de nível, quando testados no terreno, não deverão apresentar erro superior ao Padrão de Exatidão Cartográfica - Altimétrico estabelecido.

> §1º Padrão de Exatidão Cartográfica é um indicador estatístico de dispersão, relativo a 90% de probabilidade, que define a exatidão de trabalhos cartográficos.

> §2° A probabilidade de 90% corresponde a 1,6449 vezes o Erro Padrão - PEC = 1,6449 EP.

> *§3° O Erro-Padrão isolado num trabalho cartográfico, não ultrapassará 60,8% do Padrão de Exatidão Cartográfica.*

§4º Para efeito das presentes Instruções, consideram-se equivalentes as expressões Erro-Padrão, Desvio-Padrão e Erro-Médio-Quadrático."

"Art. 9^o: As cartas, segundo sua exatidão, são classificadas nas Classes A, B e C, segundo os critérios seguintes:

a. Classe A

1. Padrão de Exatidão Cartográfica - Planimétrico: 0,5 mm, na escala da carta, sendo de 0,3 mm na escala da carta o Erro-Padrão correspondente.

2. Padrão de Exatidão Cartográfica - Altimétrico: metade da eqüidistância entre as curvas de nível, sendo de um terço desta eqüidistância o Erro-Padrão correspondente.

b. Classe B

1. Padrão de Exatidão Cartográfica - Planimétrico: 0,8 mm na escala da carta, sendo de 0,5 mm na escala da carta o Erro-Padrão correspondente.

2. Padrão de Exatidão Cartográfica - Altimétrico: três quintos da equidistância entre as curvas de nível, sendo de dois quintos o Erro-Padrão correspondente.

c. Classe C

1. Padrão de Exatidão Cartográfica - Planimétrico: 1,0 mm na escala da carta, sendo de 0,6 mm na escala da carta o Erro-Padrão correspondente.

2. Padrão de Exatidão Cartográfica - Altimétrico: três quartos da eqüidistância entre as curvas de nível, sendo de metade desta eqüidistância o Erro-Padrão correspondente."

Partindo das definições padronizadas pelo Decreto Lei, se necessita estabelecer os critérios estatísticos a serem utilizados nos cálculos de exatidão e acurácia das informações em estudo. Os métodos estatísticos que serão utilizados para a análise de qualidade no presente projeto são baseados, principalmente, na metodologia definida por Itame (2001) e Rocha (2002).

2.6.1. Precisão e Acurácia

Precisão é o tipo de medida utilizada para definir o grau de dispersão de um grupo de valores observados, ou seja, o quanto esses valores estão afastados da média do grupo. Graficamente, pode ser observada pela amplitude da curva da função densidade de probabilidade desses valores: quanto mais "achatada", pior é a precisão (**Figura 21**). Já a acurácia, ou exatidão, indica genericamente se os valores observados estão próximos do valor exato que se deseja encontrar. Por exemplo: divide-se aleatoriamente uma turma de 50 alunos em grupos de 10 e calcula-se a média das notas de cada grupo. O resultado mais exato é o do grupo cuja média mais se aproximar da média de todos os 50 alunos, enquanto o mais preciso é o do grupo cujos alunos tenham os valores de nota mais próximas entre si (menor variância).

Figura 21: Os valores apresentados no gráfico (a) são mais exatos do que os em (b), enquanto estes últimos são mais precisos.

2.6.2. Número de Pontos Amostrais

Para análise estatística de um MDT, pode-se calcular a partir da definição do valor do intervalo de confiança e do erro amostral, o número de pontos de verificação a serem comparados com as cotas interpoladas utilizando-se a seguinte expressão:

$$n = \frac{Z^{2}.\gamma^{2}.N}{(N-1).\varepsilon_{r}^{2} + Z^{2}.\gamma^{2}}$$

Onde:

Z: Intervalo de Confiança

 $\gamma = s/\overline{x}$

s: Desvio Padrão amostral

 \overline{x} : Média amostral

N: Tamanho da população

 ε : Erro amostral

 \mathcal{E}_{r} : Erro amostral Relativo ($\mathcal{E}_{r} = \mathcal{E} / \overline{x}$)

O valor do intervalo de confiança e o erro amostral são atribuídos em função da precisão da estimativa, finalidade da pesquisa, custo econômico e tempo disponível. O valor do erro amostral apresenta o erro máximo a ser aceito quando se utiliza uma média amostral ao invés da média populacional (Rocha, 2002).

2.6.3. Análise da Exatidão

Baseada na análise estatística das diferenças entre as coordenadas observadas no modelo gerado e as coordenadas \bar{x} de referência. Consiste na construção de um intervalo de confiança de 90% para a média μ a partir da média amostral e do desvio padrão amostral *S*, dado por (Leal *et al*, 1999):

$$\mu = \overline{x} + \left(t_{\alpha}\right) \left(\frac{S}{\sqrt{n}}\right)$$

Onde:

 t_a = valor tabelado da distribuição de *Student*

n =tamanho da amostra

Em seguida, aplica-se um teste de hipótese com nível de significância de 10%, para validação da exatidão, formulando a hipótese:

$$H_0: \mu \le x$$
$$H_1: \mu > x$$

Onde x é o erro máximo admissível (1/2 da equidistância para Classe A).

Determina-se o cálculo da estatística por:

$$t = \frac{\left(\overline{x} - \mu_0\right)}{S / \sqrt{n}}$$

Onde:

 μ_0 é a média populacional esperada.

t é a estatística amostral para comparação com o valor t_{α} tabelado da distribuição de *Student*.

2.6.4. Análise da Precisão

Verificação da coerência interna dos elementos do MDT. Costuma-se utilizar a distribuição do Qui-quadrado, χ^2 , que nada mais é do que a construção de um

36

intervalo de confiança de 90% para o desvio padrão populacional σ a partir do desvio padrão amostral *s*:

$$\sigma \leq \sqrt{\frac{(n-1).s^2}{\chi^2_{1-\alpha}}}$$

Novamente, aplica-se um teste de hipótese com nível de significância de 10%, para validação da precisão, confrontando:

$$H_0: \sigma \le x$$
$$H_1: \sigma^2 > x$$

Onde x são os erros máximos admissíveis em precisão (1/3 da equidistância para Classe A).

O cálculo da estatística é dado por:

$$\chi^2 = \frac{(n-1).s^2}{\sigma_0^2}$$

Verifica-se, então, se o valor está no intervalo de aceitação $\chi^2 \leq \chi^2_{1-\alpha}$.

3. Caracterização da Área de Estudo

Os únicos pares estereoscópicos do CBERS-2 disponibilizados pelo INPE são de uma área localizada próxima ao Triângulo Mineiro, na região de Estrela do Sul, entre os municípios de Catalão, no estado de Goiás, e Perdizes, em Minas Gerais (**Figura 22**). Devido a grandes dificuldades técnicas para a inclinação dos espelhos, necessária à tomada dessas imagens, não há previsão para imageamento de novos pares estereoscópicos pelo CBERS-2. Dos quatro pares tomados nessa região (imagens com visada inclinada nas órbitas 159 e 154), apenas um foi aproveitado, devido à excessiva cobertura de nuvens verificada nos demais.

Figura 22: Área abrangida pelo par estéreo, dentro da área do Projeto SP/MG/GO-50 do IBGE. *Adaptado de: Maranhão, 2005*.

A escolha dessa região deu-se, principalmente, devido à existência de vasto material cartográfico disponível em escalas apropriadas ao trabalho com o sensor HR-CCD (1:25000 e 1:50000), além de 4000 fotos aéreas métricas na escala de 1:35000 e 950 pontos GPS previamente medidos pelo Instituto Brasileiro de Geografia e Estatística (IBGE) para apoio fotogramétrico. Desses dados, 10 pontos de apoio fotogramétrico e 4 pontos GPS encontravam-se na área abrangida pelo par estereoscópico utilizado.

Localizada na região da Bacia Hidrográfica do Paraná, Sub-Bacia do Paranaíba, a área em estudo apresenta relevo predominantemente ondulado a montanhoso, com altitudes variando entre 600 e 1100 metros.

4. Materiais e Métodos

4.1. Material Utilizado

• Um par estereoscópico de imagens CBERS-2 do sensor HR-CCD (**Figura** 23) com recobrimento de 98,04% formado por imagens da órbita-ponto 156-121 datadas de 16 de Junho de 2004 e 1º de Julho de 2004 com inclinações de 18,6° para Leste e 17,033° para Oeste, respectivamente;

Figura 23: Composições coloridas do par estéreo utilizado - imagens de 16/6/2004 (a) e 01/7/2004 (b).

• Dezesseis cartas topográficas em escala 1:25000 da cartografia sistemática brasileira (*datum* SAD69/Imbituba), geradas pela Divisão de Serviço Geográfico (DSG), restituídas sobre fotos aéreas de 1982, gentilmente cedidas pela 5^ª Divisão de Levantamento do Exército Brasileiro para fins de pesquisa;

• Coordenadas (*datum* SAD69/Imbituba) e localização de quatro pontos de controle medidos com GPS topográfico e 10 pontos de apoio fotogramétrico na área de estudo, gentilmente cedidas pelo setor de cartografia do IBGE-RJ para fins de pesquisa;

• Modelo Digital de Terreno da área de estudo gerado pela *Shuttle Radar Topography Mission* (SRTM), disponível para *download* gratuitamente no endereço: ftp://e0srp01u.ecs.nasa.gov/srtm/version2;

- Softwares ERDAS 8.7 e LPS (Leica Photogrammetry Suite).
- Software ENVI 4.0.

4.1.1. Leica Photogrammetry Suite (LPS)

A *Leica Photogrammetry Suite* (LPS) é um conjunto de software, desenvolvido para se trabalhar com orientações fotogramétricas de imagens geoespaciais. É uma coleção de ferramentas que permitem transformar imagens brutas em camadas de dados exigidos em mapeamentos digitais, análises em sistemas de informações geográficas (SIG) e visualização 3D.

A LPS oferece aplicativos para criar todo um projeto, eliminando tarefas repetitivas com recursos como medição automática de pontos de amarração, extração automática do MDT e carregamento inteligente de várias imagens. Possibilita, também, a interoperabilidade com dados de outros softwares de fotogrametria.

A arquitetura modular da LPS permite que outros produtos sejam adicionados às suas configurações para acrescentar algumas funcionalidades. Alguns desses módulos foram utilizados no presente projeto, como o LPS TE (*Terrain Editor*), para verificação da consistência do posicionamento das imagens do par e visualização da estereoscopia; e o LPS ATE (*Automatic Terrain Extractor*), para extração dos MDTs e inserção de *breaklines*.

4.2. Método de Trabalho

4.2.1. Processo Fotogramétrico

A partir de um par estereoscópico de imagens coletadas pelo sensor HR-CCD do satélite CBERS-2 fez-se uso de técnicas de fotogrametria digital para a geração de dois Modelos Digitais de Terreno com diferentes resoluções: 60 e 100 metros.

Inicialmente, procedeu-se a configuração dos parâmetros do sensor utilizado. Na indicação do tipo de geometria do modelo optou-se pelo *Generic Pushbroom*, por ser o mais adequado ao sistema de varredura por sensores lineares do CBERS-2. O segundo passo foi a definição do sistema de coordenadas de referência a ser utilizado no trabalho. O *datum*

escolhido foi o atualmente utilizado no Sistema Geodésico Brasileiro, o SAD69, com os parâmetros de acordo com o listado a seguir:

- Superfície de referência: Elipsóide Internacional de 1967 (UGGI 1967)
- semi-eixo maior: 6378160m
- achatamento: 1/298,25
- Ponto datum: Vértice Chuá 91031
- Coordenadas geodésicas: Latitude = 19°45'41,6527" S Longitude = 48°06'04,0639" W
 - Longitude = 48 00 04,0059 W
 - Altura geométrica = 763,2819m
- Azimute (Chuá-Uberaba) 271°30'04,05".
- Datum Horizontal: SAD69 (South American Datum, 1969) IBGE Brasil.
- Datum Vertical: Imbituba-SC.
- Sistema de coordenadas plano-retangulares UTM (Universal Transversa de Mercator), zona 23 Sul.

Como já citado na seção 2.5.2.3., imagens de satélite diferem de fotografias métricas em diversos aspectos, o que resulta, evidentemente, em diferenças nos métodos de extração de informações altimétricas em cada um dos dois casos. Essas diferenças já começam a ser observadas na fase da Orientação Interior: as imagens do CBERS já vêm "pré-georreferenciadas" (mesmo que com erro horizontal de alguns quilômetros) pelas informações fornecidas pelo sistema de telemetria do satélite, e não em coordenadas de imagem (linhas,colunas).

Essa etapa do processo fotogramétrico é cumprida com o fornecimento dos parâmetros encontrados nos arquivos de metadados das imagens. Devido à diferença de inclinação do sensor na tomada de cada imagem, faz-se necessário criar no sistema um sensor para cada imagem, com as mesmas informações de distância focal (520mm), resolução espacial (19,57m - dado fornecido pela GISPLAN) e eixo cartesiano correspondente à órbita do satélite (y), diferindo apenas na informação de inclinação do sensor (-18,60° para a imagem de 16/6/2004 e +17,03° para a imagem de $1^{\circ}/7/2004$).

Na Orientação Exterior, foram utilizados os 4 pontos de controle de campo medidos por GPS localizados na área de recobrimento das imagens (**Figura 24-a** e **Tabela 5**) e os 10 pontos de apoio fotogramétrico (**Figura 24-b** e **Tabela 5**), além de 256 pontos de amarração (**Figura 24-c**) localizados automaticamente por correlação entre os *pixels* de ambas as imagens do par e verificados um a um, manualmente. Esses dados foram utilizados para fornecer um georreferenciamento mais preciso às imagens e relacioná-las com suas posições e atitudes em relação ao terreno imageado.

(a) (b) (c) Figura 24: Distribuição dos *Control Points* (a), *Check Points* (b) e *Tie Points* (c).

	Ponto	Ε	Ν	Z
1	HV1750	224.598,071	7.883.260,411	821,290
2	HV1000	171.517,860	7.942.040,730	642,976
3	HV1017	225.165,899	7.940.342,686	821,050
4	HV1659	158.347,020	7.889.951,930	865,448
5	CB_1	172.609,360	7.950.347,370	563,330
6	CB_2	164.962,860	7.920.810,690	565,960
7	CB_3	164.893,270	7.886.327,240	885,200
8	CB_6	196.150,050	7.945.766,330	706,600
9	CB_8	216.606,180	7.882.171,310	828,790
10	CB_9	238.621,750	7.916.108,790	1.046,190
11	CB_10	222.943,020	7.922.910,270	1.004,620
12	CB_13	179.687,470	7.906.420,350	689,320
13	CB_16	243.356,660	7.902.197,370	1.017,040
14	CB_17	235.549,700	7.944.703,670	844,440

Tabela 5: Coordenadas dos 4 pontos medidos com GPS e dos pontos fotogramétricos

Por Triangulação, calculou-se as coordenadas tridimensionais desses pontos homólogos localizados automaticamente nas imagens, gerando um relatório contendo os resíduos de cada coordenada utilizada no cálculo e das coordenadas calculadas (**Anexo 1**).

A geração automática de MDT é feita através de cálculos de diferença de paralaxe entre os *pixels* homólogos nas imagens que compõem o par, apoiado nos pontos de coordenadas conhecidas fornecidos na orientação exterior (**Tabela 5**). Aos demais *pixels* são atribuídos valores de cota calculados por interpolação. O método de interpolação mais eficiente para esse tipo de trabalho é a Krigagem, mas como não é oferecida essa opção na estação fotogramétrica utilizada, gerou-se os MDTs (**Figura 25** e **Anexo 2**) utilizando-se os métodos de interpolação do Vizinho Mais Próximo e

Bilinear. Para uma posterior comparação, testou-se a geração de modelos com dois tamanhos de células (*pixels*): 60 e 100 metros de lado, valores coerentes com a precisão esperada dos valores de altitude interpolados (em torno de duas vezes a resolução espacial, ou seja, 40m) e compatíveis com a velocidade de processamento dos dados.

Figura 25: MDT gerado a partir de imagens CBERS-2, com células de 100 x 100metros.

Ainda nessa etapa, optou-se pela definição de polígonos de altitude constante nos lagos das barragens abrangidas pelas imagens, fixando a altitude das superfícies desses corpos d'água para melhorar a qualidade dos MDTs. A obtenção desses dados relativos ao nível de água dos reservatórios das Usinas Hidrelétricas (UHE) nos dias em que as imagens foram coletadas pelo CBERS-2 (**Figura 26** e **Tabela 6**) foi feita junto à Companhia Energética de Minas Gerais (CEMIG), com a intermediação do IBGE.

Figura 26: Lagos das UHEs Emborcação (1), Miranda (2) e Nova Ponte (3).

-		-
Usina	Data	Nível do Reservatório (m)
1 - UHE Emborcação	16/06/2004	660,66
	01/07/2004	660,59
2 - UHE Miranda	16/06/2004	695,65
	01/07/2004	695,39
3 - UHE Nova Ponte	16/06/2004	808,97
	01/07/2004	809,18

Tabela 6: Altitude, nas datas do imageamento, do nível de água nos reservatórios das usinas hidrelétricas mostradas na Figura 33. *Fonte: CEMIG*.

4.2.2. Análise dos MDTs Gerados

Nos procedimentos para o controle de qualidade do MDT, foi adotada uma metodologia de análise do produto cartográfico seguindo as regras e análises estatísticas apresentadas na seção 2.8. Como os MDTs gerados apresentaram os mesmos valores de cota para os dois métodos de interpolação utilizados, optou-se por aplicar os procedimentos a seguir foram aplicados somente a um MDT de cada resolução.

O ideal para esse tipo de análise é a utilização de pontos de controle de alta precisão levantados em campo, por exemplo, via posicionamento relativo GPS pósprocessado. Devido à grande distância até a área em estudo, aliada à dificuldade de acesso ao local, optou-se pela utilização das cartas topográficas da DSG em escala 1:25000, que, segundo o PEC, devem apresentar exatidão altimétrica de 5 metros (metade da equidistância das curvas de nível - **Tabela 7**) em 90% dos pontos bem definidos na carta.

Escala da Carta	Eqüidistância das Curvas de Nível (metros)
1:250 000	100
1:100 000	50
1:50000	20
1:25 000	10

Tabela 7: Equidistância das curvas de nível de acordo com a escala da carta

A área coberta pelas 16 cartas é de aproximadamente 2900 km², incluindo uma parte do estereopar que continha uma considerável cobertura de nuvens. Procurouse escolher pontos de verificação espacialmente bem distribuídos por toda essa região, evitando locais muito próximos às nuvens ou à grande área de reflorestamento de Eucalipto e *Pinus* abrangida pela imagem, já que não se dispunha de dados sobre a altura dessas árvores. Foram selecionados 20 pontos para uma análise *a priori*.

A partir dos valores de média e desvio padrão dos erros verificados nessa amostra inicial, procedeu-se o cálculo do número de pontos amostrais que seriam necessários para a análise quantitativa da qualidade cartográfica dessas informações altimétricas. Para tanto, utilizou-se a equação apresentada na seção 2.8.2. da presente dissertação, extraída de Rocha (2002). Para garantir uma boa estimativa, adotou-se um valor de 95% para o intervalo de confiança e um erro amostral ($\boldsymbol{\varepsilon}$) de 8 metros, o que levou a um erro relativo ($\boldsymbol{\varepsilon}$) de 19%.

A etapa seguinte foi a aplicação de testes estatísticos, apresentados na seção 2.8. deste trabalho, para análise da exatidão e da precisão das informações altimétricas interpoladas nos MDTs gerados. A partir dos resultados constatados nesses testes, procurou-se classificar a utilização desses produtos cartográficos de acordo com os requisitos altimétricos do PEC.

5. Resultados e Discussões

5.1. Preparação para a Análise Estatística

A utilização de 20 pontos (**Figura 27**) para verificação inicial dos modelos gerou os resultados mostrados nas **Tabelas 8** e **9**. Para efeitos de comparação, foram também observados os valores no MDT gerado pelo SRTM. Embora esta seja uma fonte de informação não tão confiável como as cartas, é bem mais atualizada.

Figura 27: Área abrangida pelas cartas topográficas disponíveis (a) e distribuição dos 20 pontos da verificação inicial (b).

		imagens CBERS-2 (60 x 60m) e do SRTM (valores em metros)											
_		Е	Ν	Z _{carta}	Z _{CBERS (60)}	Z _{SRTM}	Z _{carta} - Z _{CBERS (60)}	Resíduo CBERS (60)	$Z_{SRTM} - Z_{CBERS(60)}$				
	1	185925	7931717	953	979,70	960	-26,70	26,70	-19,70				
	2	186330	7916940	939	1008,61	956	-69,61	69,61	-52,61				
	3	186645	7948453	665	681,16	687	-16,16	16,16	5,84				
	4	194953	7902201	870	867,05	784	2,95	2,95	-83,05				
	5	196535	7929395	992	1074,93	1009	-82,93	82,93	-65,93				
	6	200100	7947320	767	774,40	765	-7,40	7,40	-9,40				
	7	200430	7937955	930	970,19	947	-40,19	40,19	-23,19				

Tabela 8: Comparação *a priori* entre as cotas obtidas das cartas, do MDT gerado das imagens CBERS-2 (60 x 60m) e do SRTM (valores em metros)

0	201210	7010020	0(0	000 74	007	24.74	24.74	2.00
8	201310	/919839	968	992,74	996	-24,74	24,74	3,26
9	201435	7909340	958	992,38	971	-34,38	34,38	-21,38
10	205529	7901665	963	997,20	975	-34,20	34,20	-22,20
11	206000	7928255	1003	1041,79	1006	-38,79	38,79	-35,79
12	211041	7944245	675	717,09	677	-42,09	42,09	-40,09
13	212980	7951350	728	782,12	724	-54,12	54,12	-58,12
14	218237	7924066	901	957,20	924	-56,20	56,20	-33,20
15	221435	7915464	892	910,18	908	-18,18	18,18	-2,18
16	222728	7937955	846	815,23	842	30,77	30,77	26,77
17	227229	7933167	810	853,90	810	-43,90	43,90	-43,90
18	229325	7911160	1003	1097,09	1008	-94,09	94,09	-89,09
19	234440	7941863	743	799,95	751	-56,95	56,95	-48,95
20	234620	7925110	900	968,55	910	-68,55	68,55	-58,55
					μ_{60}	-38,77	42,15	-33,57
					$\sigma_{\!\!60}$	29,59	24,26	30,14

Tabela 9: Comparação *a priori* entre as cotas obtidas das cartas, do MDT gerado das imagens CBERS-2 (100 x 100m) e do SRTM (valores em metros)

	Е	Ν	Z _{carta}	Z _{CBERS (100)}	Z _{SRTM}	Z _{carta} - Z _{CBERS (100)}	Resíduo CBERS (100)	Z _{SRTM} - Z _{CBERS (100)}
1	185925	7931717	953	979,10	960	-26,10	26,10	-19,10
2	186330	7916940	939	994,94	956	-55,94	55,94	-38,94
3	186645	7948453	665	681,97	687	-16,97	16,97	5,03
4	194953	7902201	870	865,30	784	4,70	4,70	-81,30
5	196535	7929395	992	1079,89	1009	-87,89	87,89	-70,89
6	200100	7947320	767	765,71	765	1,29	1,29	-0,71
7	200430	7937955	930	967,71	947	-37,71	37,71	-20,71
8	201310	7919839	968	991,29	996	-23,29	23,29	4,71
9	201435	7909340	958	1003,91	971	-45,91	45,91	-32,91
10	205529	7901665	963	1008,86	975	-45,86	45,86	-33,86
11	206000	7928255	1003	1041,16	1006	-38,16	38,16	-35,16
12	211041	7944245	675	722,15	677	-47,15	47,15	-45,15
13	212980	7951350	728	779,34	724	-51,34	51,34	-55,34
14	218237	7924066	901	962,70	924	-61,70	61,70	-38,70
15	221435	7915464	892	914,99	908	-22,99	22,99	-6,99
16	222728	7937955	846	813,50	842	32,50	32,50	28,50
17	227229	7933167	810	852,63	810	-42,63	42,63	-42,63
18	229325	7911160	1003	1096,38	1008	-93,38	93,38	-88,38
19	234440	7941863	743	799,81	751	-56,81	56,81	-48,81
20	234620	7925110	900	967,38	910	-67,38	67,38	-57,38
					μ_{100}	-39,14	42,99	-33,94
				ļ	σ_{100}	30,26	24,15	30,08

A partir desses resultados ($\mu_{60} = 42,15$ e $\sigma_{60} = 24,26$, portanto: $\gamma_{60} = 57,6\%$; $\mu_{100} = 42,99$ e $\sigma_{100} = 24,15$, portanto: $\gamma_{100} = 56,2\%$) e da definição dos valores de intervalo de confiança em 95% ($\mathbf{Z} = 1,96$) e erro amostral ($\boldsymbol{\varepsilon} = 8$ metros), obteve-se número de pontos amostrais que seriam necessários para a análise quantitativa da qualidade cartográfica dessas informações altimétricas. O tamanho da população adotado foi o número de pixels abrangidos pela área das cartas, ou seja, $N_{60} = 800000$ e $N_{100} = 360000$. Aplicando esses valores à devida equação, chegou-se aos valores $n_{60} = 35,32$ e $n_{100} = 35,01$, o que corresponde a 36 pontos amostrais para ambos os casos.

Coletou-se, então, mais 16 pontos para verificação dos MDTs, sempre respeitando um critério de boa distribuição espacial, obtendo-se a configuração mostrada nas **Tabelas 10** e **11** e na **Figura 28**. Chama a atenção que 15 pontos apresentam erro superior a 50 metros.

	Е	Ν	Z	ZCREDS ((0)	Zedta	Z _{carta}	Resíduo	Z _{SRTM}
	Ъ	11	₽-carta	ECBERS (60)	ZSKIM	- Z _{CBERS (60)}	CBERS (60)	- Z _{CBERS (60)}
1	185925	7931717	953	979,70	960	-26,70	26,70	-19,70
2	186330	7916940	939	1008,61	956	-69,61	69,61	-52,61
3	186645	7948453	665	681,16	687	-16,16	16,16	5,84
4	187490	7906600	972	931,05	889	40,95	40,95	-42,05
5	188400	7946430	763	814,49	755	-51,49	51,49	-59,49
6	188426	7900760	818	874,45	824	-56,45	56,45	-50,45
7	188559	7941945	767	799,62	764	-32,62	32,62	-35,62
8	189680	7910240	885	988,67	894	-103,67	103,67	-94,67
9	194953	7902201	870	867,05	784	2,95	2,95	-83,05
10	195340	7938065	885	968,31	906	-83,31	83,31	-62,31
11	196535	7929395	992	1074,93	1009	-82,93	82,93	-65,93
12	196975	7915540	977	1083,98	1002	-106,98	106,98	-81,98
13	200100	7947320	767	774,40	765	-7,40	7,40	-9,40
14	200430	7937955	930	970,19	947	-40,19	40,19	-23,19
15	201310	7919839	968	992,74	996	-24,74	24,74	3,26
16	201435	7909340	958	992,38	971	-34,38	34,38	-21,38
17	203420	7942240	741	659,91	736	81,09	81,09	76,09
18	205434	7912268	961	992,49	977	-31,49	31,49	-15,49
19	205529	7901665	963	997,20	975	-34,20	34,20	-22,20
20	206000	7928255	1003	1041,79	1006	-38,79	38,79	-35,79
21	210240	7930359	789	836,41	779	-47,41	47,41	-57,41
22	211041	7944245	675	717,09	677	-42,09	42,09	-40,09
23	212136	7937863	753	822,51	744	-69,51	69,51	-78,51
24	212980	7951350	728	782,12	724	-54,12	54,12	-58,12
25	216990	7939570	808	862,71	808	-54,71	54,71	-54,71
26	218237	7924066	901	957,20	924	-56,20	56,20	-33,20
27	219830	7934258	802	827,46	805	-25,46	25,46	-22,46
28	221435	7915464	892	910,18	908	-18,18	18,18	-2,18
29	221480	7935710	870	872,45	867	-2,45	2,45	-5,45
30	222728	7937955	846	815,23	842	30,77	30,77	26,77
31	223533	7921962	1009	1051,24	1009	-42,24	42,24	-42,24
32	227229	7933167	810	853,90	810	-43,90	43,90	-43,90
33	228930	7939450	807	832,08	806	-25,08	25,08	-26,08

Tabela 10: Relação dos 36 pontos de verificação do MDT (60 x 60m)

1									
	34	229325	7911160	1003	1097,09	1008	-94,09	94,09	-89,09
	35	234440	7941863	743	799,95	751	-56,95	56,95	-48,95
	36	234620	7925110	900	968,55	910	-68,55	68,55	-58,55
						μ_{60}	-38,51	47,16	-36,79
						$\sigma_{\!60}$	38,45	26,75	34,33

Tabela 11: Relação dos 36 pontos de verificação do MDT (100 x 100m)

ſ	F	Ν	7	7	7	Z _{carta}	Resíduo	Z _{SRTM}
	Е	19	[⊥] carta	L CBERS (100)	LSRTM	- Z _{CBERS (100)}	CBERS (100)	- Z _{CBERS (100)}
1	185925	7931717	953	979,10	960	-26,10	26,10	-19,10
2	186330	7916940	939	994,94	956	-55,94	55,94	-38,94
3	186645	7948453	665	681,88	687	-16,97	16,97	5,03
4	187490	7906600	972	939,53	889	32,47	32,47	-50,53
5	188400	7946430	763	813,23	755	-50,23	50,23	-58,23
6	188426	7900760	818	877,30	824	-59,30	59,30	-53,30
7	188559	7941945	767	811,32	764	-44,32	44,32	-47,32
8	189680	7910240	885	981,19	894	-96,19	96,19	-87,19
9	194953	7902201	870	871,09	784	4,70	4,70	-81,30
10	195340	7938065	885	942,12	906	-88,00	88,00	-67,00
11	196535	7929395	992	1079,89	1009	-87,89	87,89	-70,89
12	196975	7915540	977	1083,73	1002	-106,73	106,73	-81,73
13	200100	7947320	767	765,71	765	1,29	1,29	-0,71
14	200430	7937955	930	967,71	947	-37,71	37,71	-20,71
15	201310	7919839	968	992,38	996	-23,29	23,29	4,71
16	201435	7909340	958	1003,91	971	-45,91	45,91	-32,91
17	203420	7942240	741	670,14	736	70,86	70,86	65,86
18	205434	7912268	961	992,65	977	-31,65	31,65	-15,65
19	205529	7901665	963	1008,86	975	-45,86	45,86	-33,86
20	206000	7928255	1003	1041,16	1006	-38,16	38,16	-35,16
21	210240	7930359	789	843,68	779	-54,68	54,68	-64,68
22	211041	7944245	675	722,15	677	-47,15	47,15	-45,15
23	212136	7937863	753	822,17	744	-69,17	69,17	-78,17
24	212980	7951350	728	779,34	724	-51,34	51,34	-55,34
25	216990	7939570	808	864,52	808	-56,52	56,52	-56,52
26	218237	7924066	901	962,70	924	-61,70	61,70	-38,70
27	219830	7934258	802	830,12	805	-28,12	28,12	-25,12
28	221435	7915464	892	914,99	908	-22,99	22,99	-6,99
29	221480	7935710	870	872,45	867	-2,45	2,45	-5,45
30	222728	7937955	846	813,50	842	32,50	32,50	28,50
31	223533	7921962	1009	1007,20	1009	1,80	1,80	1,80
32	227229	7933167	810	852,63	810	-42,63	42,63	-42,63
33	228930	7939450	807	841,82	806	-34,82	34,82	-35,82
34	229325	7911160	1003	1096,38	1008	-93,38	93,38	-88,38
35	234440	7941863	743	799,81	751	-56,81	56,81	-48,81
36	234620	7925110	900	967,38	910	-67,38	67,38	-57,38
	······································	. <u> </u>			U 100	-38,88	46,86	-37,16
				ľ	<u>σ</u> 100	37.82	26.95	33.94

Figura 28: Distribuição dos 36 pontos de verificação utilizados na análise estatística do MDT gerado através dos pares estéreo do CBERS-2

Apesar de serem bem maiores do que os valores observados para os resíduos das cotas do SRTM, os valores de média amostral e desvio padrão amostral dos resíduos do MDT do CBERS-2 apresentaram valores compatíveis com os definidos na legislação brasileira para documentos cartográficos classe A na escala 1:250000.

5.2. Controle de Qualidade

Os requisitos de altimetria do PEC para um documento cartográfico ser considerado Classe A definem os critérios de exatidão em metade da equidistância das curvas de nível e os de precisão em um terço dessa equidistância. Partindo desse princípio, testou-se a hipótese de se definir a escala máxima para trabalho com as informações altimétricas obtidas de MDTs gerados a partir de pares estereoscópicos de imagens do sensor CCD do satélite CBERS-2 em 1:250000 (equidistância das curvas de nível: 100 metros).

5.2.1. Avaliação do MDT com Células de 60 metros

5.2.1.1. Análise da Exatidão

Conforme procedimentos obtidos de Leal *et al*, 1999, pôde-se estimar a média populacional a partir da média amostral, construindo um intervalo de confiança de 90% e 35 graus de liberdade, aplicando-se a equação a seguir:

$$\mu \le \overline{x} + (t_{\alpha}) \left(\frac{s}{\sqrt{n}} \right) \implies \mu \le 52,98 \mathrm{m}$$

Onde:

 \overline{x} : média amostral = 47,16m s: desvio padrão amostral = 26,75 α : nível de significância = 10% t_{α} : valor tabelado na distribuição de *Student* = 1,306 n : tamanho da amostra = 36

Obtido esse valor, o próximo passo foi a avaliação da acurácia dessas informações de resíduos altimétricos. Essa avaliação se dá através do teste de hipótese exposto na seção 2.8.3. deste trabalho, que, nesse caso, se apresenta da seguinte forma:

$$H_0: \mu \le 50m$$

 $H_1: \mu > 50m$

Como o valor tabelado para 35 graus de liberdade e 10% de nível de significância, $t_{35;0,1} = 1,306$, é maior do que a estatística de teste calculada, t = -0,637, aceita-se a hipótese H_0 . Em outras palavras: pode-se dizer com confiança de 90% que a média populacional dos erros nas informações altimétricas estudadas não deve ser maior do que 50 metros.

5.2.1.2. Análise da Precisão

De forma semelhante à exatidão, estimou-se também um intervalo de confiança de 90% referente ao desvio padrão populacional através da equação a seguir:

$$\sigma \leq \sqrt{\frac{(n-1).s^2}{\chi^2_{1-\alpha}}} \implies \sigma = 31,78 \mathrm{m}$$

Onde:

s: desvio padrão amostral = 26,75m

 $1-\alpha$: intervalo de confiança = 90%

 $\chi^2_{1-\alpha}$: valor tabelado na distribuição Qui-quadrado = 24,797

n: tamanho da amostra = 36

Outro teste de hipótese deve ser aplicado para a verificação da precisão dos dados de altimetria extraídos do MDT em estudo. A diferença é que, para esse fim, utiliza-se o desvio padrão como a grandeza a ser considerada e a distribuição Quiquadrado como parâmetro, conforme citado na seção 2.8.4. deste trabalho.

$$H_0: \sigma \le 33,333m$$

 $H_1: \sigma > 33,333m$

Pelo cálculo da estatística de teste chega-se ao valor de $\chi^2 = 22,54$, que é inferior ao valor tabelado $\chi^2_{90} = 46,059$, o que novamente leva à aceitação da hipótese H_0 . Isso equivale a dizer que se tem 90% de confiança de que o desvio padrão populacional dos erros nas informações altimétricas estudadas deve ser menor ou igual a 33,333 metros.

5.2.2. Avaliação do MDT com células de 100 metros

5.2.2.1. Análise da Exatidão

Conforme os mesmos procedimentos aplicados no MDT com células de 60 metros, a partir da média amostral, estimou-se a média populacional em:

$$\mu \le \overline{x} + (t_{\alpha}) \left(\frac{s}{\sqrt{n}} \right) \implies \mu \le 51,64 \mathrm{m}$$

Onde:

 \overline{x} : média amostral = 45,93m

s : desvio padrão amostral = 26,23m

 α : nível de significância = 10%

 t_{α} : valor tabelado na distribuição de *Student* = 1,306

n : tamanho da amostra = 36

Procedeu-se, então, a avaliação da acurácia dessas informações de resíduos altimétricos, através do mesmo tipo de teste de hipótese já aplicado na seção 5.2.1.1.:

*H*₀:
$$\mu \le 50m$$

*H*₁: $\mu > 50m$

Como o valor tabelado para 35 graus de liberdade e 10% de nível de significância, $t_{35;0,1} = 1,306$, é maior do que a estatística de teste calculada, t = -0,931, aceita-se a hipótese H_0 . Em outras palavras: pode-se dizer com confiança de 90% que a média populacional dos erros nas informações altimétricas estudadas deve ser menor ou igual a 50 metros.

5.2.2.2. Análise da Precisão

Estimou-se também um intervalo de confiança de 90% do desvio padrão populacional relativo às amostras lidas no MDT de células de 100 metros através da equação:

$$\sigma \leq \sqrt{\frac{(n-1).s^2}{\chi^2_{1-\alpha}}} \implies \sigma = 31,16m$$

Onde:

s : desvio padrão amostral = 26,23m $1-\alpha$: intervalo de confiança = 90% $\chi^2_{1-\alpha}$: valor tabelado na distribuição Qui-quadrado = 24,797 *n* : tamanho da amostra = 36

Mais um teste de hipótese foi aplicado para a verificação da precisão dos dados de altimetria extraídos desse MDT. Como no teste apresentado na seção 5.2.1.2.:

$$H_0: \sigma \le 33,333m$$

 $H_1: \sigma > 33,333m$

Pelo cálculo da estatística de teste chega-se ao valor de $\chi^2 = 21,673$, que é inferior ao valor tabelado $\chi^2_{90} = 46,059$, o que novamente leva à aceitação da hipótese H_0 . Logo, pode-se ter 90% de confiança de que o desvio padrão populacional dos erros nas informações altimétricas estudadas deve ser menor ou igual a 33,333 metros.

5.2.3. Análise de Tendência

Ao observar as colunas " $Z_{carta} - Z_{CBERS}$ " nas **Tabelas 10** e **11** da seção 5.1., constatou-se que os valores de cota calculados a partir das imagens CBERS-2 são quase sempre bem superiores aos medidos nas cartas. Surgiu, assim, uma indicação de que possivelmente haja um erro sistemático nessas cotas.

Formulou-se, então, a hipótese de que esse erro seria igual ao valor da média observada (38m) e procedeu-se o teste a seguir, também com nível de significância de 10%:

*H*₀:
$$\mu = 38m$$

*H*₁: $\mu \neq 38m$

Sendo a estatística de teste definida por:

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

Após o cálculo da estatística de teste chegou-se aos valores de t = 0,034 e t = 0,086, ambos menores do que o valor tabelado $t_{n;\alpha/2} = t_{35;0,05} = 1,690$, levando à aceitação da hipótese H_0 . Portanto, com confiança de 90%, pode haver um erro sistemático de 38 metros nas cotas extraídas dos pares estereoscópicos do CBERS-2.

Embora não haja outros pares estereoscópicos de imagens CBERS-2 para que se realize a mesma análise mais vezes e, assim, se possa ter certeza de que esse erro seja realmente sistemático, pode-se inferir que existe a possibilidade de um melhoramento das cotas desses MDTs subtraindo-se delas 38 metros, conforme as **Tabelas 12** e **13**.

	7	Z _{CBERS} (60) – 38m	7	Z _{carta}	Resíduo	Z _{SRTM}
	∠ carta	$L_{CBERS(60)} - 30m$	L SRTM	- (Z _{CBERS (60)} - 38)	CBERS (60) - 38	- Z _{CBERS (60)}
1	953	941,70	960	11,30	11,30	18,30
2	939	970,61	956	-31,61	31,61	-14,61
3	665	643,16	687	21,84	21,84	43,84
4	972	893,05	889	78,95	78,95	-4,05
5	763	776,49	755	-13,49	13,49	-21,49
6	818	836,45	824	-18,45	18,45	-12,45
7	767	761,62	764	5,38	5,38	2,38
8	885	950,67	894	-65,67	65,67	-56,67
9	870	829,05	784	40,95	40,95	-45,05
10	885	930,31	906	-45,31	45,31	-24,31
11	992	1036,93	1009	-44,93	44,93	-27,93
12	977	1045,98	1002	-68,98	68,98	-43,98
13	767	736,40	765	30,60	30,60	28,60
14	930	932,19	947	-2,19	2,19	14,81
15	968	954,74	996	13,26	13,26	41,26
16	958	954,38	971	3,62	3,62	16,62
17	741	621,91	736	119,09	119,09	114,09
18	961	954,49	977	6,51	6,51	22,51
19	963	959,20	975	3,80	3,80	15,80
20	1003	1003,79	1006	-0,79	0,79	2,21
21	789	798,41	779	-9,41	9,41	-19,41
22	675	679,09	677	-4,09	4,09	-2,09
23	753	784,51	744	-31,51	31,51	-40,51
24	728	744,12	724	-16,12	16,12	-20,12
25	808	824,71	808	-16,71	16,71	-16,71
26	901	919,20	924	-18,20	18,20	4,80
27	802	789,46	805	12,54	12,54	15,54
28	892	872,18	908	19,82	19,82	35,82

Tabela 12: Análise dos pontos de verificação do MDT (60 x 60m) subtraído de 38m

29	870	834,45	867	35,55	35,55	32,55
30	846	777,23	842	68,77	68,77	64,77
31	1009	1013,24	1009	-4,24	4,24	-4,24
32	810	815,90	810	-5,90	5,90	-5,90
33	807	794,08	806	12,92	12,92	11,92
34	1003	1059,09	1008	-56,09	56,09	-51,09
35	743	761,95	751	-18,95	18,95	-10,95
36	900	930,55	910	-30,55	30,55	-20,55
			μ_{60}	-0,51	27,45	1,21
			$\sigma_{\!60}$	38,45	26,53	34,33

Tabela 13: Análise dos pontos de verificação do MDT (100 x 100m) subtraído de 38m

	Z _{carta}	Z _{CBERS (100)} – 38m	Z _{SRTM}	Z _{carta}	Resíduo	Z _{SRTM}
		0.11.10	0.60	$-(L_{\text{CBERS}(100)}-38)$	CBERS (100) - 38	- <i>L</i> _{CBERS (100)}
1	953	941,10	960	11,90	11,90	18,90
2	939	956,94	956	-17,94	17,94	-0,94
3	665	643,88	687	21,12	21,12	43,12
4	972	901,53	889	70,47	70,47	-12,53
5	763	775,23	755	-12,23	12,23	-20,23
6	818	839,30	824	-21,30	21,30	-15,30
7	767	773,32	764	-6,32	6,32	-9,32
8	885	943,19	894	-58,19	58,19	-49,19
9	870	833,09	784	36,91	36,91	-49,09
10	885	904,12	906	-19,12	19,12	1,88
11	992	1041,89	1009	-49,89	49,89	-32,89
12	977	1045,73	1002	-68,73	68,73	-43,73
13	767	727,71	765	39,29	39,29	37,29
14	930	929,71	947	0,29	0,29	17,29
15	968	954,38	996	13,62	13,62	41,62
16	958	965,91	971	-7,91	7,91	5,09
17	741	632,14	736	108,86	108,86	103,86
18	961	954,65	977	6,35	6,35	22,35
19	963	970,86	975	-7,86	7,86	4,14
20	1003	1003,16	1006	-0,16	0,16	2,84
21	789	805,68	779	-16,68	16,68	-26,68
22	675	684,15	677	-9,15	9,15	-7,15
23	753	784,17	744	-31,17	31,17	-40,17
24	728	741,34	724	-13,34	13,34	-17,34
25	808	826,52	808	-18,52	18,52	-18,52
26	901	924,70	924	-23,70	23,70	-0,70
27	802	792,12	805	9,88	9,88	12,88
28	892	876,99	908	15,01	15,01	31,01
29	870	834,45	867	35,55	35,55	32,55
30	846	775,50	842	70,50	70,50	66,50
31	1009	969,20	1009	39,80	39,80	39,80
32	810	814,63	810	-4,63	4,63	-4,63
33	807	803,82	806	3,18	3,18	2,18
34	1003	1058,38	1008	-55,38	55,38	-50,38

35	743	761,81	751	-18,81	18,81	-10,81
36	900	929,38	910	-29,38	29,38	-19,38
			μ_{100}	-0,21	27,03	1,51
			$\sigma_{\!100}$	36,82	24,59	33,76

5.3. Definição da Escala Máxima para Utilização

Partindo das conclusões a que levam os resultados dos testes de hipótese acima, pode-se utilizar informações altimétricas obtidas dos MDTs extraídos de pares estereoscópicos do CBERS-2 na geração de documentos cartográficos Classe A em escalas até 1:250 000.

6. Considerações Finais

6.1. Geração dos Modelos

A utilização de técnicas de fotogrametria digital se mostrou satisfatória no processo de geração de MDTs utilizando as imagens do CBERS-2. É possível afirmar que a triangulação deve apresentar melhores resultados a partir do uso de mais pontos de controle. Apenas algumas questões de *software* apresentaram certa dificuldade, como a não observação de nenhuma diferença nos valores de cotas ao se utilizar os diferentes métodos de interpolação disponíveis no sistema (Vizinho Mais Próximo e Bilinear).

Considerando a grande cobertura de nuvens, os MDTs gerados apresentaram uma boa coerência visual quando comparados ao MDT do SRTM, permitindo uma boa visualização para identificação de feições, principalmente as redes de drenagem.

Quanto ao sistema de aquisição de pares estereoscópicos pelo CBERS-2, embora essa seja economicamente menos acessível, é sabido que há maiores vantagens em sistemas de aquisição de pares *along-track*, ou seja, tomados na mesma passagem do satélite, com a utilização de pelo menos dois sensores (um em nadir e outro com inclinação para trás ou para frente), como é feito em sensores como o ASTER (Plataforma TERRA) e o PRISM (*Panchromatic Remote Sensing Instrument for Stereo Mapping*, na Plataforma ALOS-2) (**Figura 29**), por exemplo. Além de eliminar o problema de mudanças nas condições atmosféricas, iluminação e paisagem entre uma passagem e outra (o CBERS-2 adquire os pares com uma diferença em torno de 15 dias); desgaste do equipamento e dificuldades técnicas para movimentação do espelho; etc., esse tipo de sistema ainda traz a vantagem de imagear sempre com estereoscopia e com pouquíssimo tempo entre a aquisição de cada imagem do par, pois tem sensores funcionando simultaneamente para esse fim.

Figura 29: Sensor PRISM, do satélite ALOS-2. Fonte: NASDA – National Agency for Space Development of Japan.

6.2. Controle de Qualidade

Inicialmente, deve-se registrar que a distância e as dificuldades de acesso à área de estudo abrangida pelos pares estereoscópicos disponíveis inviabilizaram a coleta de pontos de controle *in loco*. Esse procedimento proporcionaria uma melhor precisão desses pontos de controle, garantindo um controle de qualidade bem mais confiável do que a coleta em cartas topográficas de escala 1:25000.

Outro grande obstáculo para a realização do trabalho foi a excessiva cobertura de nuvens existente nas imagens, o que prejudicou muito a qualidade dos dados do Modelo Digital do Terreno. O quadrante nordeste do MDT gerado, por exemplo, ficou praticamente inutilizável devido a esse problema. No entanto, foi de fundamental importância a utilização do único par gerado pelo CBERS-2 em território brasileiro.

Inicialmente, observaram-se valores de erro dentro do esperado, em torno de 40 metros, tanto para o MDT gerado com células de 60 quanto para o de 100 metros de lado. Esse resultado remete a escalas de até 1:250 000 para documento Classe A de acordo com o PEC, já que nessa escala a equidistância das curvas de nível é de 100 metros. Apesar da existência de valores de erro muito elevados, traduzida por um desvio padrão bastante alto, os testes formulados para analisar as hipóteses de que estes valores apresentavam acurácia e precisão adequadas apontaram para um resultado positivo.

Pode-se afirmar que, para a região em estudo, a utilização da resolução de 60 metros para o MDT não trouxe melhora significativa em relação à de 100 metros. Com isso, conclui-se que a definição das células do MDT em 100 metros já pode ser suficiente para a obtenção resultados satisfatórios na geração de altimetria para escala 1:250000 em áreas de relevo não muito acidentado, pois também cumpre os requisitos planimétricos para essa escala. Além disso, o tempo de processamento é bem menor com essa resolução para o MDT.

Da mesma forma, verificou-se que a utilização de polígonos de quebra de relevo nos reservatórios das usinas hidrelétricas, apesar de ser uma etapa bastante trabalhosa, não apresentou mudanças nos valores de altimetria dos MDTs gerados, a não ser por pequenas variações em *pixels* bem próximos aos lagos.

Outra observação importante foi a verificação do que pode ser um erro sistemático nos valores de cota interpolados a partir dos pares estereoscópicos. Quase todas as observações apresentaram valores mais elevados no MDT do que os lidos nas cartas, com exceção dos pontos 4, 9, 17, 29, 30 e 31 (**Figura 30**). Testou-se a hipótese dessa tendência ser igual a 38 metros, valor aproximado da média observada, e obteve-se resultado afirmativo.

Figura 30: Pontos onde não se verificou valores mais altos no MDT do CBERS-2 em relação às cartas topográficas.

Após a subtração desse valor das cotas lidas no MDT gerado pelas imagens CBERS-2, o resultado mostrou-se mais compatível com os valores das cartas (média dos resíduos em 27,03 metros, com desvio padrão de 24,59 metros) e do SRTM. Seria aconselhável um estudo mais detalhado, utilizando outros pares de imagens CBERS-2, a fim de verificar a real existência desse erro sistemático. Cabe lembrar que outro requisito constante no PEC para classificação de um documento cartográfico como Classe A é que "Noventa por cento dos pontos isolados de altitude, obtidos por interpolação de curvas de nível, quando testados no terreno, não deverão apresentar erro superior ao Padrão de Exatidão Cartográfica - Altimétrico - estabelecido". Essa característica não foi observada nas primeiras verificações (somente 55,5% dos valores de erro eram inferiores a 50 metros). A partir da subtração de 38 metros dos valores de cota do MDT, chegou-se a uma proporção de 85% das observações com erro inferior a 50 metros.

Os valores de cota extraídos do MDT do SRTM, dados mais atuais do que as cartas e de reconhecida qualidade, com resolução espacial semelhante às aqui utilizadas para geração dos MDTs do CBERS-2, apresentaram valores muito bons em relação às cartas 1:25 000, superando a qualidade dos valores extraídos das imagens (**Figura 31**). A média dos erros encontrados foi de 13,83 metros, com desvio padrão de 19,01 metros. Esses valores remetem a escalas em torno de 1:50000, mas não se fez um estudo mais detalhado da qualidade destes dados para não fugir do escopo do trabalho, sendo eles utilizados apenas para uma comparação com os valores obtidos pelo CBERS-2.

Figura 31: Gráfico das diferenças entre as cotas dos MDTs e das cartas topográficas.

Considerando a precisão das cartas utilizadas como verdade de campo e até mesmo algum eventual erro em decorrência da idade dessas cartas (a restituição foi feita sobre fotografias tiradas há mais de 20 anos), conclui-se que pode ser possível a utilização de pares estéreo de imagens CBERS-2 para extração de informações altimétricas compatíveis com escalas menores ou iguais a 1:250 000, obedecendo aos requisitos para documento Classe A do PEC. Apesar disso, já existem outras fontes gratuitas de dados para trabalhar nessa escala com melhor qualidade, o que leva à necessidade de melhorias no sistema de aquisição de pares estereoscópicos nos próximos satélites CBERS para que seus produtos possam entrar no mercado de forma realmente competitiva.

Mais uma vez, ressalta-se a importância de mais estudos envolvendo altimetria e até ortoimagens do satélite CBERS-2, principalmente utilizando outros pares estereoscópicos de imagens de diferentes regiões. Como isso não será possível, devido à proximidade da desativação do satélite, espera-se que esse trabalho estimule pesquisas do mesmo tipo nos próximos satélites sino-brasileiros que estão para ser lançados.
7. Referências Bibliográficas

ALVES, A.R.VisãoEstéreo -Princípios da Estereoscopia e Fotogrametria.Florianópolis:UFSC,1999.Disponívelem:www.inf.ufsc.br/~visao/1999/aline/index.html.Acesso em: 20 de out. 2005.

ANDRADE, J.B. Fotogrametria. Curitiba: SBEE, 1998. 258 p.

ARANA, J. Associação do GPS/Nivelamento ao Geóide gravimétrico do Estado de São Paulo. In: CONGRESSO BRASILEIRO DE CADASTRO TÉCNICO MULTIFINALITÁRIO, 2002, Florianópolis. **Anais...** Florianópolis: UFSC, 2002.

BARROS, R.S.; CRUZ, C.B.M., REIS, R.B.; COSTA Jr., N.A. Avaliação do modelo digital de elevação do SRTM na ortorretificação de imagens Landsat 7 – Área de aplicação: Angra dos Reis – RJ. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 12, 2005, Goiânia. Anais...Goiânia: INPE, 2005. p. 3997-4004.

BERBERAN, A. **Elementos de Fotogrametria Digital**. Universidade de Coimbra, 2001. Disponível em: www.mat.uc.pt/~engeo/cadeiras/ano4/Fotogrametria. Acesso em: 13 de jan. 2006.

BRASIL. **Decreto Lei 89.817, de 20 de Junho de 1984**. Estabelece as instruções reguladoras das normas técnicas da cartografia nacional. Brasília, 1984. Disponível em: http://www.presidencia.gov.br/CCIVIL/decreto/1980-1989/D89817.htm. Acesso em: 20 de out. 2005.

BRITO, J.L.N.S.; COELHO FILHO, L.C.T. Fotogrametria Digital. Rio de Janeiro: IME, 2002. 208p.

BURROUGH, P.A. **Principles of Geographical Information Systems for Land Resources Assessment**. Monographs on Resources Survey n° 2. Oxford Science Publications. Oxford: Clarendon Press, 1986. 194 p.

CCRS - Canada Center for Remote Sensing [Informações]. Disponível em: www.ccrs.nrcan.gc.ca/ccrs. Acesso em: 22 de out. 2005.

COLLIER, P. A., CROFT, M. J. Heigts from GPS in an engineering environment. Survey Review, Surrey, v. 263, 1997.

CRÓSTA, A.P. **Processamento Digital de Imagens de Sensoriamento Remoto**. Campinas: IG-UNICAMP, 1993. 170p.

DESTRI, A.R. **Tratamento de Modelos Numéricos do Terreno (DTM) Obtidos por Processos Fotogramétricos**. 1987. Dissertação (Mestrado) – Programa de Pós-Graduação em Engenharia de Sistemas, Instituto Militar de Engenharia, Rio de Janeiro, 1987.

DODSON, A. H. GPS for height Determination. Survey Reviews, New York, v. 33, n. 256. 1995

DUREN, R.; WONG, E.; BRECKENRIDGE, B; SHAFFER, S; DUNCAN, C.; TUBBS, E.; SALOMON, P. Metrology, Attitude and Orbit Determination for Spaceborne Interferometric Synthetic Aperture Radar. In: SPIE AEROSENSE CONFERENCE ON ACQUISITION, TRACKING AND POINTING, 12, 1998, Orlando. Anais... Orlando, 1998.

FEATHERSTONE, W. E., DENTITH, M. C. and KIRBY, J. F. Strategies for the accurate determination of orthometric heights from GPS. **Survey Review**, New York, v. 34, n. 267. 1998.

FELGUEIRAS, C.A. **Desenvolvimento de Um Sistema de Modelagem Digital de Terreno para Microcomputadores**. 1987. 92 f. Dissertação (Mestrado em Computação Aplicada). Ministério da Ciência e Tecnologia, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 1987.

GEMAEL, C. Introdução à Geodésia Física. Curitiba: Editora da UFPR, 1999. 304p.

GEMAEL, C. Introdução ao Ajustamento de Observações - Aplicações Geodésicas. Curitiba: Editora da UFPR, 1994. 319 p.

GONZALEZ, R.C.; WOODS, R.E. **Processamento de Imagens Digitais.** São Paulo: Editora Edgard Blücher. 1992. 509p.

HEIPKE, C.; KOCH, A.; LOHNANN, P. Analysis of SRTM DTM – Methodology and Practical Results. In: ISPRS COMMISSION – SYMPOSIUM, 4., 2002, Ottawa. 2002. **Anais...**Ottawa, 2002.

INPE - Instituto Nacional de Pesquisas Espaciais. **O Programa CBERS**. Disponível em: http://www.cbers.inpe.br. Acesso em 16 de maio 2005.

INPE - Instituto Nacional de Pesquisas Espaciais. **SPRING: Tutorial de Geoprocessamento**. Disponível em: http://www.dpi.inpe.br/spring. Acessado em 29 de maio 2005. ITAME, O.Y. **Controle de Qualidade Aplicado na Modelagem Digital de Terreno**. 2001. 106 f. Dissertação (Mestrado) – Programa de Pós-Graduação em Ciências Cartográficas, Departamento de Cartografia, Universidade Estadual Paulista, Presidente Prudente, 2001.

JPL - Jet Propulsion Laboratory. **Shuttle Radar Topography Mission**. Disponível em: http://www2.jpl.nasa.gov/srtm/dataprod.htm. Acesso em: 16 de maio 2005.

KRAUS, K. **Photogrammetry – Fundamentals and Standard Processes**. Bonn: Dümmmler Verlag, v.1, 1993. 397p.

KRONBERG, P. Fernerkundung der Erde - Grundlagen und Methoden der remote sensing in der Geologie. Stuttgart: Enke Verlag. 1985. 394p.

LEAL, E.; DALMOLIN, Q. Análise da Qualidade Posicional em Bases Cartográficas Geradas em CAD. In: GIS BRASIL 99, 5., 1999. Salvador. **Anais...** Salvador, 1999.

LI, Y. C. e SIDERIS, M. G. Minimization and estimation of geoid undulation errors. **Bulletin Géodésique**. Paris: Springer Verlag. v. 68, 1994.

LILLESAND, T.M.; KIEFER, R.W. **Remote Sensing and Image Interpretation**. 4th ed. New York: John Wiley & Sons, 2000. 724p.

LIN, D.; CUI, S.; CCD Camera for CBERS, 1999. Disponível em: www.gisdevelopment.net/aars/acrs/1999/ts7/ts7201pf.htm. Acesso em: 23 de maio 2005.

LOCH, C.; CORDINI, J. Topografia Contemporânea. Florianópolis: Editora da UFSC, 2000. 321p.

MARANHÃO, M.R.A.; RAIVEL, J.P.C. Análise de pares estereoscópicos obtidos pelo CBERS II - Primeiros testes utilizando fotogrametria digital. 2005. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 12., 2005. Goiânia. Anais... Goiânia: INPE, 2005.

MONICO, J.F.G. **Posicionamento pelo NAVSTAR-GPS: Descrição, Fundamentos e Aplicações**. São Paulo: Editora da Unesp, 2000. 1ª Edição. 287p.

PEUCKER, T.K. The Impact of Different Mathematical Approaches to Contouring. **Cartographica**, Toronto, v.17(2), p.73-95, 1983.

RAO, K. S. Validation of Digital Elevation Model Derived from Shuttle Radar Topography Mission using GPS Field measurements, 2004. Disponível em: www.gisdevelopment.net/tecnology/gps/ma03033abs.htm. Acesso em: 20 de out. 2005.

RICART, C.P.; GARCÍA, J.L.L. Sensores Hiperespectrales Aerotransportados. Eliminación del Defecto de Deriva. Mapping Interactivo - Revista Internacional de Ciencias de la Tierra. Espanha v. 87, p. 14-18, 2003.

RICHARDS, J.A.; **Remote Sensing Digital Image Analysis - An Introduction**. 2 ed. Berlin: Springer Verlag, 1993.

ROCHA, R.S. **Exatidão Cartográfica Para as Cartas Digitais Urbanas**. 2002. 126 f. Tese (Doutorado) – Programa de Pós-Graduação em Engenharia de Produção e Sistemas, Departamento de Engenharia de Produção e Sistemas, Universidade Federal de Santa Catarina, Florianópolis, 2002.

RUY, R.S.; TOMMASELLI, A.M.G. Geração Automática de Estereomodelos a Partir de Imagens Digitais Georreferenciadas. 2003. In: CONGRESSO BRASILEIRO DE CARTOGRAFIA, 21, 2003. Belo Horizonte. Anais... Rio de Janeiro: Sociedade Brasileira de Cartografia, 2003.

SANTOS, M.F.S.; MACHADO, A. Relatório Sobre o Ângulo do Espelho no Instrumento CCD do Satélite CBERS-2. INPE: São José dos Campos, 2004. 28p.

SCHOVENGERDT, R.A. Remote Sensing - Models and methods for Image **Processing.** New York : Academic Press, 1997. 522p.

SCHOVENGERDT, R.A. Techniques for Image Processing and Classification in Remote Sensing. New York: Academic Press, 1983.

SEEBER, G. Satellite Geodesy: Foundations, Methods and Applications. Berlin: Waltger de Gruyter, 1993. 589p.

SIMÕES, M.G. **Modeladores Digitais de Terreno em Sistemas de Informação Geográfica**. 1993. 158 f. Dissertação (Mestrado) – Programa de Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1993.

TEMBA, P.C. Fundamentos da Fotogrametria. Belo Horizonte: UFMG, 2000. 26p.

VANICEK, P.; KRAKIWSKY, E. J. Geodesy: The concepts. Amsterdan, New York, Oxford. University of New Brunswick. Canadá, 1982.

VIALI, L. Notas de Aula da Disciplina de Probabilidade e Estatística. Curso de Graduação em Engenharia Cartográfica. UFRGS, Porto Alegre, 1999. 184p.

8. ANEXOS

Anexo 1

Relatório da Triangulação

		T: (riangulat Dutput im	ion age	Rej un:	port N its: p	Vith pixe	n Or els	tho	BASE	
		(Dutput gr Dutput an	ouno gula	d un ar 1	nits: units	met ra	ters adia	ns		
Points	exc	luded with (ross err	ors	:						
image		pid in	nage_x		ima	age_y	_	r	esio	dual_x	residual_y
1 2		231 34 231 34	17.1414 92.0383	1	243 247	9.906	2 3		0. -0.	.5141 .5042	-0.0285
Normal	wei	ghted itera	tive adju	stm	ent	:					
No.	Tot	al_RMSE Max	_Residual	at	ima 1	age p:	id				
2	0.	070209 0	.1270		2	1	13				
3 4	0.	042797 0 032811 0	.0551		2	1.	43 43				
5	0.	027239 0	.0339		2	1	43				
Image p	para	meter value	:								
image X	id K: -	1: 2.45289113e	+004 -1.5	406	921:	3e+003	3 -1	L.82	1275	587e-002	
7	/:	7.96385078e	+006 1.8	609	407	5e+002	2 7	7.14	3185	509e-003	
omega	z: a: –	7.58433097e 6.42536738e	+005 1.8 -002	896.	342	/e+000) 5	5.15	692.	L28e-002	
Phi	i: -	3.09783838e	-001	171	2121	- 00/	-				
image	id	2:	+000 -3.0	4/4.	213:	5e-001	C				
Σ	<: ,.	4.37451659e	+005 -1.5	007: 191	333(451)	5e+003	3 — 1 2 — 1	L.59 1 44	3964	107e-002	
2	z:	7.65818982e	+005 7.3	5963	328	3e+00) -5	5.58	335	799e-002	
omega Phi	a: ;•	6.04206115e	-002 -001								
Kappa	a:	1.34236532e	+000 4.9	372	214	5e-008	3				
Ground	poi	nt value:									
point	id	8:	224597	.80	10	78	3832	260.	4294	1	821.2808
point	id	10:	225166	.23	85	7	9403	342.	659	7	821.0727
point	id	11:	158347	.32	31 N4	78	3899	951. 774	926	7	865.4479
point	id	18:	164909	.00	76	78	3863	352.	9423	3	907.4779
point	id id	19: 20:	179733 222970	.64	71 25	79	9063 9228	385. 386	8269) I	726.4319 982 1561
point	id	22:	216616	.74	34	78	3822	206.	7483	3	900.3885
point point	id id	23: 24:	238634 243320	.11:	34 28	79	9160 9022)92. 208.	0886	5	1056.6232
point	id	28:	196190	.64	19	7	9457	746.	0203	3	727.2359
point point	ıd id	30: 33:	235538	·24.	15 19	79	9446 9503	540. 318.	6256))	920.1055 607.6578
point	id	34:	168865	.33	59	79	9745	562.	4579	9	723.9583
point point	ıd id	35: 36:	170309	.22	51 53	79	974: 9763	340. 357.	5053 0124	3 1	722.0378
point	id	37:	182411	.03	27	79	9735	584.	3660)	752.4098
point	id	38: 39:	184952 190559	.79	46 46	79	9743 9742	389. 241.	9892 6425	5	741.8835
point	id	40:	191025	.45	96	79	9734	195.	4422	2	753.3180
point	id	41:	176468	.75	90 46	79	9695 9697	741.	4521) L	712.7585
point	id	43:	184999	.37	91	79	9714	188.	8838	3	750.0726
point	id	45: 46:	206893 207047	.65	95 65	79	9709 9702	258.	7596	5	761.1079
point	id	47:	210200	.47	72	79	9707	750.	2468	3	673.1282
point	id	49:	176660	.332	29	79	9646	563.	7618	3	693.5099
point	id	50:	180043	.673	36 D 1	79	9676	518. 202	1886	5	748.1005
point	id	52:	192661	.78	99	7	9649	928.	8948	3	759.1917
point point	id id	53: 54·	192419 197933	.62	83 51	79	9636 9672	570. 294	8988	3	724.3769 774 1629
point	id	55:	199115	.88	78	79	9652	249.	5980)	700.9645
point point	id id	56: 57·	214739 212670	.11	50 11	79	9666 9652	513. 214	2723	3	704.3763 749.5656
point	id	58:	212764	.93	82	79	9642	298.	4211	Ĺ	758.8060
point point	id id	59: 60:	265199 266783	.13	17 06	79	9635 9633	542. 303.	2382 3235	5	775.3115 774.9240
point	id	61:	211583	.94	81	79	9624	132.	6252	2	715.4019
point	ıd	62:	230191	.88	J /	79	9603	324.	9588	3	759.9407

		6.0	1		
poınt	ıd	63:	177362.9515	/95619/.8995	707.1723
point	id	67:	261501.4287	7956867.6132	804.7603
noint	id	68.	259748 2215	7954083 8560	841 5948
poinc	10	70.	100407 0204	7954005.0500	744 6000
point	ıα	/0:	169467.0304	/950038.1105	/44.5923
point	id	71:	176458.0847	7952722.1271	716.5720
point	id	73:	208772.1149	7952453.4658	770.6106
noint	id	74.	252761 6174	7950466 6206	805 3807
poinc	тu • л	74.	252701.0174	7930400.0200	005.3007
point	ıα	/5:	251147.8671	/949664.2253	805.1935
point	id	76:	259641.1332	7950861.4979	853.1343
point	id	77:	257413.5348	7950795.3133	853.2949
noint		70.	163105 5736	70/3627 0/57	057 1367
point	10	/0:	103103.3730	/94302/.943/	037.4307
poınt	ıd	79:	245498.6179	7946291.6010	791.5374
point	id	80:	242604.5048	7945633.5457	865.8214
point	id	81:	162655.0020	7942034.7011	913.3918
point	10	02.	162066 4220	7040077 5177	000 0017
point	Iα	82:	103800.4338	/9422//.51//	908.9017
point	id	83:	164841.4680	7939853.9918	912.3077
point	id	85:	219429.6078	7941715.1619	896.8606
point	id	86:	222389.3208	7939436,9101	815.8031
point	10	07.	227024 6246	7020040 6205	704 2010
point	±α	0/:	22/934.0340	1930040.0203	/04.2019
point	id	88:	238279.5263	7942500.5446	852.1678
point	id	90:	222208.7079	7934982.4711	816.6847
noint	id	91.	160923 8278	7929182 6596	862 2321
POINC		21.	100923.0270	7929102.0390	002.2021
point	тa	92:	102283.1//0	1929032.55//	900.1224
point	id	93:	168288.0621	7931659.8506	1015.7909
point	id	94:	168959.6281	7928871.9930	979.6738
noin+		06.	21/565 5210	7032055 1000	010 0600
ΡΟΤΠΟ	тa	20:	214J03.33IU	1932033.1090	010.2008
point	ıd	97:	229903.9359	/930//4.9464	905.6198
point	id	98:	241380.2250	7928822.0685	804.1717
point	id	99:	245878.6097	7927277.4082	866.1527
point	10	100.	169512 2610	7026605 2722	066 7067
point	10	100:	100312.2010	1920003.3723	000.7207
point	id	103:	176729.5552	7916036.6188	877.3879
point	id	104:	184376.8936	7915931.5329	901.4821
noint	id	105.	184519 9349	7914517 6808	918 5911
POINC		100.	100742 0040	7914107 4000	1000 1000
point	Iα	100:	190743.0249	/91419/.4090	1082.1032
point	id	107:	223682.1456	7914504.8788	933.7189
point	id	109:	160884.4575	7904587.3527	975.9694
noint	id	110.	1928/8 0538	7905122 0052	102/ 358/
POINC	та • ,	110.	192040.0550	7909122.0092	1024.0014
point	ıα	111:	190442.9083	/903142.24//	1004.8914
point	id	112:	199451.3616	7903231.1538	981.0621
point	id	113:	229829.1249	7905885.5153	1009.0842
noint	id	11/.	239119 02/1	7903545 5671	001 7235
POINC	та • ,	115	239119.0241	7903943.3071	000 1004
point	ıd	115:	2/4642.039/	/904393.0951	968.1294
point	id	116:	274972.5457	7903528.3529	976.5220
point	id	117:	155267.6021	7901302.2506	914.1835
point	10	110.	167162 7145	7000671 1167	000 0000
point	IU	110;	10/102./143	7900871.1137	990.0902
poınt	ıd	119:	183850.9254	7901380.1330	663.9589
point	id	120:	190936.7198	7901767.8033	909.3887
point	id	121:	275102.0709	7900782.5646	974.0550
po ± ±	4 -1	100.	200100 1400	7001004 5004	000 5025
point	Iα	122:	206166.1406	/891694.5084	996.5035
point	id	123:	259454.3160	7892603.0999	1019.5088
point	id	124:	150871.0707	7888493.3403	932.8598
point	id	125.	154897 2129	7891590 1288	912 4999
point	+ ~	106.	161833 5040	7889051 7406	010 7664
point	10	120:	101033.3042	/009034./400	912.7004
point	ıd	127:	167908.2613	7891108.9549	1023.8975
point	id	128:	169363.1488	7888207.9381	1063.4713
point	id	129:	199855.2238	7890429.7389	938 2316
roint	10	120.	200711 2/00	7001162 6000	000 2/10
POTIC	±u	101	200/11.3490	7091103.0000	22.341U
point	ıd	131:	221818.2060	7890488.8161	1004.5416
point	id	132:	253073.1846	7890607.3307	1053.9559
point	iд	133.	261425 7301	7888347 9802	848 0013
roint	4 ~1	101.	260710 1000	7000010 2074	0.00 0010
POINT	τα	134:	200/19.1290	1090019.39/4	920.0351
point	id	135:	267883.8272	7890662.0108	917.2885
point	id	136:	275210.0040	7887936.6600	1006.7366
point	id	137.	183717 0671	7876269 3024	908 8536
1-01110	10	120.	200017 2605	7070503 61/3	001 1110
Ροτης	τα	130:	20001/.2005	1010003.0143	201.1110
point	id	139:	228643.8251	7877486.6242	1000.5817
point	id	140:	237017.9361	7879752.5777	1007.2633
point	id	141 •	246017 2698	7880104 0425	826 8700
POLIC		1 4 0 -	210012/02000	7070745 0017	020.0700
point	тa	14∠:	209134.3/38	/0/0/45.991/	928.9355
point	id	143:	146592.5637	7875454.4707	868.7921
point	id	144:	155249.0645	7875807.6489	967.4150
noint	id	145.	160797 2011	7874284 9925	922 1271
POINC	10	140	177077 0000	7075704 6570	1000 0005
poınt	ld	146:	1//Z//.0906	18/5/04.65/2	T033.0906
point	id	147:	214518.8295	7875283.6201	1106.5863
point	id	148:	223093.4848	7875467.0403	794.5045
noint	id	149.	229526 2816	7875080 9599	1102 4742
POTIC	тu	エコノ・ 1 F へ	227J20.2010	70755000.0000	+++++++++++++++++++++++++++++++++++++++
point	ıd	100:	231226.9044	/8/5595.5412	9/4./903

noint	id	151.	261226 2899	7875572 6245	917 1671
POINC)	150	201220.2000	7075372.0243	061 0070
point	la	152:	269307.8673	/8/5305.4246	961.9278
point	id	153:	206226.9645	7866514.7639	918.1818
noint	id	154 •	221664 7412	7866290 5995	917 9705
POINC)	101.	101007.0502	7000290.5555	1042 0566
point	ıα	155:	191697.8503	/86491/.6/54	1043.0566
point	id	156:	193218.4809	7864329.6939	1042.7605
point	id	157:	199968.0665	7864873.2912	1007.0429
point	+ a	150.	200427 0676	7064726 7262	002 5006
point	Ia	100:	200437.9070	/004/20./303	902.3000
point	id	159:	200527.2719	7862463.1478	1018.3016
point	id	160:	207986.8984	7863869.1687	1023.8227
point	+ a	161.	207770 0042	7061700 0020	001 5009
point	Iu	101:	201119.0942	/001/00.0030	991.3990
point	id	162:	216340.9162	7862776.6783	1134.6648
point	id	163:	237747.5122	7862476.8898	1013.8200
noint	id	161.	238362 9833	7862391 3392	1017 0642
POINC	10 .,	104.	230302.9033	7002394.3392	1017.0042
point	ld	165:	242437.5950	/864182.3249	1034.2568
point	id	166:	253308.9898	7864099.5997	1091.0905
point	id	167:	256048.8746	7863231,4016	1235.7392
point	1 J	100.	200010.0710	7005251.1010	1007 5350
point	Τα	108:	208488.7524	/865365.2093	1007.5358
point	id	169:	267772.0332	7864251.1044	987.2157
- noint	id	170.	269068 0659	7862231 2949	1061 4067
POINC		170.	170000.0005	7070010 4000	1001.1007
point	la	1/1:	1/0286.8296	/9/0212.4008	694.56/5
point	id	172:	170546.0942	7969798.5251	707.6724
point	id	173:	169647.6917	7968480.1514	728,6840
noint	id	174.	176701 5000	7060030 0700	71 / 75/6
point	10	1/4.	1/0/01.5222	1909030.0100	/14./540
point	id	175:	182193.2131	7970181.9849	739.8202
point	id	176:	190540.7128	7972063.7894	729,4408
noin+	id	177.	213/16 6711	7971753 2000	707 0074
point	Iu	1//:	213410.0/11	1911133.2099	101.2314
point	id	178:	214356.3220	7969364.9877	765.8074
point	id	179:	213923.4516	7968915.4177	774.8038
noint	id	182.	171/31 2296	7966726 3969	761 6435
point	10	102.	1/1451.2290	7500720.5505	701.0433
poınt	ıd	183:	191155.6651	/96/134.4198	710.9076
point	id	184:	197354.6388	7966917.2786	750.7361
noint	id	185.	196369 5/35	7965193 6572	733 8178
POINC	. ,	105.	100000.0400	7903193.0372	755.0170
point	ld	180:	213606.3894	/96340/.8/63	/60./316
point	id	187:	265801.5857	7963274.6118	781.5021
point	id	188.	177338 4141	7962780 5405	702 8013
POINC		100.	101011 0710	790270019109	702.0010
point	ld	189:	191311.3/13	/962860.9544	/25.4133
point	id	190:	193427.2134	7962608.1900	780.8893
point	id	191 •	190994 2661	7962243 3191	761 6508
POINC		100	210400 2570	7902213.3191	701.0000
point	ıα	192:	212490.3572	/962355.40/0	/44.2361
point	id	193:	214074.0433	7962344.4231	758.5399
point	id	194:	257924.8077	7958828.5109	823.3840
POINC		105	207921.0077	7950020.5109	747 6624
point	ld	195:	263384.6538	/960/90.5905	/4/.6634
point	id	196:	261704.5268	7958046.7134	797.8930
point	id	197.	176812 0859	7956727 2607	678 1316
point	1 J	100.	174000 0(50	7054770 0400	710 0714
point	Τα	198:	1/4880.9659	/954//9.9480	/12.2/14
point	id	199:	188724.4115	7955065.0550	703.0732
point	id	200:	208619.2945	7953044.6195	755.6282
po ± ±	4 -1	200.	200019.2910	7057700 5700	700 0501
point	la	201:	263009.4097	/95//08.5/00	/80.8521
point	id	202:	162841.3950	7951974.7697	820.4665
point	id	203:	163695.9495	7952573.8447	700.8935
point	4 -1	2001	200641 7052	7051004 4701	776 2020
point	Ia	204:	208541.7853	/951224.4/61	116.2928
point	id	205:	214323.6220	7948991.6419	829.4769
point	id	206:	250207.3657	7948274.4259	862.8050
	ia	207.	251163 5011	7950062 7123	050 0000
POTIC	±α	201:	2J740J.JULL	10002.1100	000.2203
point	ıd	208:	16/511.1942	7946532.0347	816.7504
point	id	209:	164456.7304	7943577.1507	828.1537
point	id	210.	176893 0761	7944312 3759	859 6725
LOTIC	1.1	011	170500.0701	7042112 0046	015 00720
point	тα	∠⊥⊥:	1/0090.8420	/943113.9946	815.0849
point	id	212:	173575.0714	7942831.3531	872.9059
point	id	213.	210611 2629	7945343 3726	803 0322
POINC	1-1	210.	2100110 0507	7047612 0260	010 7150
point	ld	∠⊥4:	248138.852/	/94/013.8360	846./456
point	id	215:	246550.2628	7946083.6195	775.7266
point	id	216:	162034 2911	7938401.8362	925.5487
r 0 + 11 C		217.	165001 0010	7030055 0504	000 101
POTUC	та	21/:	100001.0013	/930033.9304	002.4040
point	id	218:	165427.8636	7938237.8556	910.5510
point	id	219:	177090.1841	7939426.1567	905.1759
noin+	id	220.	177075 0/20	7939067 2200	000 A700
POTUC	тu	220:	11010.0439	1222001.2290	920.4/03
point	id	221:	210292.0197	/93/9/3.6498	822.9710
point	id	222:	225126.4109	7939816.1826	798.4288
noin+	id	223.	2318/3 210/	7939669 0516	700 0000
POTIC	±u	223:	201040.0104	100000000000000000000000000000000000000	100.9229
point	id	224:	166805.6049	7935909.0751	904.7380
point	id	225:	221426.5044	7936822.0558	852.0134
noin+	id	226.	229782 2501	7933779 3513	813 0000
POTUC	тu	220:	227/02.2394	1333113.3342	043.9808
point	ıd	227:	229693.0296	7932483.0385	853.6033
point	id	228:	161780.1343	7930904.7898	831.2402
noin+	id	220.	177137 3076	79295/19 701/	1020 5244
LUTIC	τu		± , , ± J , • J Z / U	,,,J+0.1014	1020.0044

point i	d 2	30:	178672.3031	7929362.5006	967.6366
point i			270072.0001 005052 1010	7000070 (000	070 0150
point i	a 2	32:	235353.1219	/9289/2.6383	978.9158
point i	d 2	:33:	236645.3137	7929386.0063	933.4808
noint i	3 2	31.	166235 03/0	7026010 1017	037 7230
point i	u 2	.54:	100233.9349	/920049.194/	037.7230
point i	d 2	:35:	168479.0520	7925046.3041	936.5456
noint i	d 2	36.	168984 8444	7924395 8619	982 2678
point i	u 2		100004.0444	7924393.0019	502.2070
point i	d 2	37:	177744.0598	7927153.9858	944.4218
noint i	d 2	38.	182440 8311	7926771 7580	961 0647
point i			102110.0011	7920771.7900	901.001/
point i	d 2	:39:	222203.4181	7923643.1248	981.9386
point i	d 2	40:	222466.7337	7923268.9315	972.6530
poinc i	1 0		100600 0507	7920200.9020	972.0000
point i	d 2	:41:	182633.3597	/91/41/.3639	898.5343
point i	d 2	42:	193083.8049	7917680.7389	1078.9456
			177054 0000	7010001 2245	015 4715
point i	a 2	44:	1//954.2220	/916091.3345	915.4/15
point i	d 2	45:	182486.8537	7916100.0125	894.7477
noint i	- - - -	16.	10/700 1661	7010040 2100	005 1010
point i	a 2	40:	184/98.1001	/912942.3102	885.1210
point i	d 2	247:	194101.6237	7916814.0269	1080.7330
noint i	d 2	18.	195186 0691	7916506 6633	1086 6658
point i	u 2	.40.	1))100.00)1	7910300.0033	1000.0000
point i	d 2	249:	229153.5228	7913975.5774	973.3218
noint i	d 2	50.	154068 9696	7909268 5478	944 9045
point i			201000.0000	500200.0110	911.9010
point i	d 2	:51:	206595.8123	7908936.2001	991.0003
point i	d 2	53:	190346.3903	7903752.7211	987.8418
point i			241600 2070	7004000 6050	005 0050
point i	a 2	54:	241600.3070	/904982.6052	965.3863
point i	d 2	:55:	162370.3160	7901708.0764	889.7951
		EC.	100750 0720	7001000 0000	054 0001
point i	a 2	. 36 :	190/50.9/20	/901202.8202	854.2091
point i	d 2	:57:	267135.2968	7896583.8381	920.0408
noint i	- -	50.	160160 5000	700000 500	060 7500
ροτης τ	u 2		100100.2000	1072302.3368	yod./588
point i	d 2	:59:	266779.6340	7892351.9142	906.1136
noint i	a 2	60.	260201 0100	7001600 6505	007 0760
point i	u z	.00.	209204.0190	1091000.0000	907.9700
point i	d 2	261 :	152869.0736	7890402.0992	956.6783
noint i	d 2	62.	169563 2666	7887457 5292	1058 2451
point i	u 2	.02.	100000.2000	7007437.3252	1050.2451
point i	d 2	.63:	183886.3156	7888405.9050	822.8833
noint i	d 2	64.	192255 4993	7890737 6513	853 9208
point i	u 2		192233.4995	7090797.0919	000.0200
point i	d 2	66:	229431.9843	/88/918.3939	1014./861
point i	d 2	67:	238359,4190	7888349.1496	912,4631
point i	1 2		2000000.1100	7000019.1190	912.1001
point i	d 2	68:	241161.2023	/8908//.6996	900.1086
point i	d 2	69:	244314.4082	7890378.0800	894,6382
1		70		7000522 7025	1010 7105
point i	a 2	:/0:	253491.9069	/890533./835	1018./105
point i	d 2	:71:	251353.2348	7887496.4181	951.8227
		70.	200070 2045	7007022 2700	
point i	a 2	./∠:	2080/8.2045	1881823.2109	890.9638
point i	d 2	.73:	155068.3539	7878035.9669	993.1092
noint i	a 2	74.	167006 3373	7070701 5000	026 2250
point i	u 2	./4:	10/000.33/3	1010101.3990	920.3339
point i	d 2	275:	176781.1540	7878778.7365	1001.2884
noint i	a 2	76.	222710 1612	7077030 3167	011 000/
point i	u z	. /0 .	223/40.1043	1011930.3101	911.0004
point i	d 2	277:	229676.4225	7879412.9194	1092.1433
noint i	d 2	78.	254806 8144	7879070 2239	887 5429
point i	u 2		234000.0144	1019010.2239	007.5425
point i	d 2	.79:	256161.7051	7877436.6656	903.9704
noint i	d 2	80.	259292 8601	7878013 0031	862 0427
point i	1 2	.00.	154044 0000	7070010.0001	002.012/
point i	d 2	:81:	154944.0878	7875272.1125	936.5511
point i	d 2	82:	161884.2691	7873558.0241	899.8183
point i			101001.2091	7072200 0015	005.0076
point i	a 2	.83:	109209.3070	1813398.0813	985.9976
point i	d 2	84:	177142.1871	7874492.0532	1032.3914
noint i		95.	206533 0000	7871131 1615	000 2021
point i	u 2	.00:	200000.0900	/0/4434.4043	990.3031
point i	d 2	86:	214675.4020	7874715.3934	1110.4264
point i	d ?	87:	223806 5878	7875865 6221	924 0030
To THO T	4		050044 0755	7075000 50221	221.0000
point i	a 2	00:	203944.2163	18/5908.7889	982.3301
point i	d 2	89:	261429.3498	7875137.0984	883.5487
_ · ···· + ·	a 0	00.	260632 2204	7075006 0150	000 1007
borur j	u 2		209032.2304	1013020.0159	930.1327
point i	d 2	91:	266826.6415	7872393.6362	969.2337
noint i	d 7	92.	155471 5100	7870835 5001	929 220
POTIC T	u 2			1010000.0201	222.1120
point i	d 2	.93:	244039.8618	7865909.3737	1044.4490
noint i	d ?	94.	176318 5789	7865677 0920	1017 6830
POTIC T	~		101000	7005077.0920	TOT / .0030
point i	a 2	.95:	191262.4679	7865398.3894	1039.3826
point i	d ?	96 :	193705 0753	7864228 2382	1059 2257
POTIC T			104455 0755	7060020.2002	1045 0107
point i	a 2	9/:	19445/.0551	/8633/0.9266	1045.2404
point i	d 2	98:	196228.7872	7862423.4872	1041.3375
Lorno T			200024 1402	7004077 0500	070 7055
point i	a 2	.99:	200634.1490	18643/1.2593	970.7956
point i	d 3	:00	224156.1132	7863567.4697	901.6587
	a 7	01.	007700 1500	7064200 2000	1000 0000
point i	u 3	OT:	221123.1539	/004389.2909	TAR3.8002
point i	d .3	02:	246363.8122	7862761.0924	1120.8772
noint i		03.	253842 0710	786/100 6700	1120 1240
borur j	u 3		20042.0/12	1004108.0199	1130.1348
point i	d 3	04:	260820.2125	7861713.5551	1192.2805
- noint i	d ?	05.	267506 0500	7863281 7360	1002 6060
borur j	u 3		20100.0000	1003201.1309	T005.0200
Control	and che	ck point	residuals in	meters:	
U U U U U U U U U U U U U U U U U U U	and che	POTHC	I	. metero.	
type	pıd	resid	.ua⊥_x	residual_y	residual_z
aan				0 11000476	0 00040711
uco	8	-0.27	274550	0.11320476	2.30340711
gep	8	-0.27	274550	0.11320476	2.30340711

gcp	10	0.40520841	0.0457782	.9 -2.965	74675
gcp	11	0.33290286	-0.1406636	-2.984	71400
chk	17	74.00539898	-36.6590522	.8 -52.504	16062
chk	18	15.79810277	25.4907538	18.064	45722
chk	19	46.11999486	-34.4560547	3 39.822	86076
chk	20	27.85316398	-24.1455289	-22.844	33921
chk	22	10.62967907	35.3650547	70.228	88380
chk	23	12.38799101	-16.7057889	5 9.957	80815
chk	24	-35 71907852	11 5288349	13 13 342	47071
chk	28	40 04127826	-20 1264500	18 365	87443
chk	30	-11.44100443	-63,0362379	75 222	43928
chk	33	56.77484320	-28.8541379	48.172	22424
mage po	ints and	their residuals	s:		
image	pid	image_x	image_y	residual_x	residual_y
1	- 8	4058.3839	4764.8578	1.2589	-0.0172
1	9	1433.9519	1828.1572	1.8269	-0.2178
1	10	4091.5639	1907.8088	-1.5611	-0.0662
1	11	781.4123	4436.6198	-1.4627	1.2448
1	1.8	1106 4026	4616 2885	0 0276	0 4135
⊥ 1	10	1838 8030	3611 5653	0.0270	-0 2007
1	19	2002 0560	2792 2442	0.0169	-0.3097
1	20	3703.7300 3661 F340	2/02.2442 1010 7520	-0.1002	0.3092
1	22	3664.5240	4818./530	-0.1010	0.3/80
1	23	4759.6682	3121.0612	-0.2068	0.6862
1	24	4989.8970	3815.5870	0.0220	-0.2880
1	28	2656.5175	1640.2034	0.1425	-0.1716
1	30	4606.9251	1691.7536	0.3001	-0.1214
1	33	1490.9151	1413.7962	0.2901	-0.0788
1	34	1306.5958	201.1153	-0.0280	-0.1047
-	35	1378.0319	212.0518	-0.0088	-0.1802
1	36	1716 1648	110 3065	-0.0293	-0 1877
1	27	1077 2561	210.3003	0.0200	0.001/
1	37	19//.3561	248.4033	-0.0426	-0.0814
1	38	2102.8732	207.8570	-0.0081	-0.1/55
1	39	2380.5389	214.6347	-0.0378	-0.0572
1	40	2403.7047	251.9252	-0.0287	-0.1258
1	41	1340.0525	454.2724	-0.0180	0.0153
1	42	1682.3218	441.4941	-0.0294	-0.0066
1	43	2105.2449	353.0465	-0.0290	-0.1142
1	45	3188.7605	376.7660	-0.0342	-0.0356
1	46	3196.5262	412.1517	-0.0612	0.0500
1	47	3351.2112	387.2475	0.0013	0.0353
1	48	1203 8893	515 8971	-0.0761	0 1064
1	10	1601 0037	605 5030	0.0460	0 1073
1		1051.00007	E 17 2120	0.0400	0.1973
1	50	1009.0000	547.5429	-0.0002	0.0000
1	51	2418./886	612.4364	-0.0437	0.0648
1	52	2484.0592	680.5185	-0.0692	0.1252
1	53	24/1.4185	743.5059	-0.0314	0.0791
1	54	2745.4003	561.5076	-0.0694	0.0599
1	55	2802.5863	663.7544	-0.0199	0.0805
1	56	3575.9805	593.8205	-0.0254	0.1026
1	57	3474.1715	664.0331	-0.0275	-0.0095
1	58	3478.9354	709.8918	-0.0397	0.0288
1	59	6074.2992	742.5512	-0.1290	0.4095
1	60	6152.6850	754.3677	-0.1377	0.4504
- 1	61	3419 6379	803 4085	0 0119	-0 0487
1	6.2	1211 1002	005.4005	0.0112	0.0407
⊥ 1	02	4J41.1U03 1725 2700	シレレ・ダロダム 1110 1725	-0.0102	0.0011
1	63	1/23.3/80	1077 0114	0.0264	0.3030
1	67	2891.1317	1016.575	-0.0139	-0.0846
1	68	5804.6818	1216.5761	-0.0545	0.0567
1	70	1334.7070	1428.3486	0.1131	0.0641
1	71	1680.4599	1293.2219	0.1430	0.1313
1	73	3280.4837	1303.2187	0.1087	-0.0636
1	74	5457.9843	1398.3079	0.0200	0.0338
1	75	5378.0380	1438.6294	0.0571	-0.0349
1	76	5799.2648	1377.9175	-0.0457	0.1290
1	77	5689.0085	1381.4389	-0.0198	0 0434
⊥ 1	70	1025 1060	1750 0272	_0 1715	_0 0566
1	10	TUZ3.100U	1607 0014	-0.1/13	-0.0306
1	/9	JU97.9192	100/.9914	U.146/	0.0522
Ţ	80	4955.7847	1641.2788	U.1568	0.0292
1	81	999.6986	1829.9285	-0.1267	-0.2725
1	82	1059.5948	1817.6312	-0.1733	-0.0927
1	83	1107.6959	1938.8272	-0.1504	-0.0956
1	85	3809.0498	1839.8017	0.1199	-0.2385
1	86	3953.9708	1953.4182	0.0812	-0.4356
1	87	4227.7963	2022.7104	0.1220	-0.3379
-	88	4741.2343	1798.5306	0.2401	-0.0588
1	9 N	3944 6519	2176 4081	-0 0827	-0 2530
	111			V . V V /. /	

1	91	912.1424	2473.2112	-0.0329	-0.1806
1	92	979.9987	2480.6788	0.0385	-0.4611
1	0.2	1270 2110	2240 0250	0 0414	0 1/5/
T	93	12/9.2119	2340.0230	-0.0414	-0.1434
1	94	1311.6289	2488.2063	-0.0413	-0.1060
1	96	3566.0393	2323.6894	-0.0886	-0.4102
1	07	4336 5694	2220.0001	0.0055	0 1074
T	97	4326.3684	2386.4468	-0.0855	-0.19/4
1	98	4892.7117	2482.8745	-0.0105	-0.4211
1	aa	5116 1567	2559 8938	_0 0931	_0 1748
1))	5110.1504	2555.0550	0.0551	0.1/40
1	100	1287.5008	2601.3881	-0.0234	-0.1979
1	103	1693.3262	3129.4747	-0.1000	-0.1154
-	100	1055.3202	0104 0400	0.1000	0.1101
T	104	20/2.1843	3134.0408	-0.06/9	0.0596
1	105	2079.4104	3204.8491	-0.0911	0.1643
1	106	2200 0001	3220 0076	0 0692	0 1/21
T	100	2309.9001	3220.0070	-0.0082	0.1421
1	107	4017.6205	3201.6027	-0.1702	0.4709
1	109	909 9300	3704 5111	-0 0532	-0 0866
-	110	909.9900	0,01.0111	0.0332	0.0007
T	110	2492.3557	36/4.6928	-0.1115	0.220/
1	111	2372.8602	3773.9554	-0.1378	0.2711
1	112	2010 2666	3769 5034	0 1357	0 2505
T	112	2010.2000	5708.5054	-0.1337	0.2393
1	113	4322.2175	3632.7451	-0.1248	0.3244
1	114	4781 4638	3748 9249	-0 0318	-0 0707
1	115	1701.1000	2702.0014	0.1100	0.0707
T	115	6539.1299	3/03.0914	-0.1109	0.0402
1	116	6555.5328	3746.3784	-0.1093	0.0132
1	117	630 7715	3869 2126	_0 1295	0 1571
1	11/	050.7715	5005.2120	0.1255	0.13/1
T	118	1220.4801	3899.9373	-0.1597	0.2779
1	119	2041.1912	3861.3427	-0.1393	0.0673
1	100	2205 (105	2042 2047	0 2040	0 1700
T	120	2395.6185	3842.284/	-0.2048	0.1/82
1	121	6561.6464	3883.8106	0.0214	-0.5644
1	122	31/0 7/75	1315 3770	0 2330	0 2302
1	122	5149.7475	4343.3779	-0.2339	0.2392
1	123	5787.2349	4294.8999	-0.0488	-0.1245
1	124	412,4687	4510.7110	0.1003	0.5982
1	105	C11 C12C	4355 0400	0 0522	0 5400
T	125	611.6136	4355.2426	-0.0533	0.5492
1	126	954.5317	4481.4159	-0.0750	0.3163
1	127	1257 0625	1378 6013	-0 2055	0 4671
1	127	1237.0023	4570.0045	-0.2055	0.4071
T	128	1329.4102	4523.8651	-0.1559	0.5229
1	129	2836.3855	4409.0037	-0.2851	0.1565
1	120	2076 6016	1271 6025	0 2424	0 2562
T	130	32/5.5815	43/1.0835	-0.2424	0.2362
1	131	3924.3112	4404.2464	-0.1968	0.1052
1	132	5471 7876	4395 5584	-0 0767	-0 1003
1	102	5471.7070	1555.5501	0.0707	0.1005
T	133	5881./4/2	4506.9429	-0.0457	-0.2358
1	134	6244.1007	4382,9223	-0.0536	-0.2555
1	125	6202 6069	1200 0265	0 0626	0 2016
T	122	0202.0000	4390.0303	-0.0636	-0.2010
1	136	6566.2664	4526.9707	-0.1487	-0.0532
1	137	2036 1881	5119 0879	0 2202	-0 3066
1	107	2030.1001	5115.0075	0.2202	0.5000
T	T38	2843.9958	5006.1215	0.0110	0.3075
1	139	4260.7399	5054.3850	-0.0950	-0.1457
1	140	1675 1112	1910 2030	0 2174	0 2032
T	140	4073.4442	4940.2030	-0.21/4	-0.2032
1	141	5118.1492	4920.8386	0.0047	-0.3010
1	142	6263.5619	4987.1861	-0.1124	0.0303
1	1 4 0	100.0015	5160 1511	0.0105	0.0000
T	143	198.6985	5163.1511	0.2185	-0.6209
1	144	628.5503	5145.2805	0.1619	-0.0603
1	1/5	902 1898	5220 6554	0 1907	_0 5785
1	145	502.1050	5220.0554	0.1907	0.5705
T	146	1719.4302	5148.7187	0.2239	-0.1627
1	147	3563.2717	5166.6289	0.0491	0.1264
1	1/0	3000 0600	515/ 0515	0 2806	0 35/5
-	T-IO	5502.0029	0101.0010	0.2000	0.0040
T	149	4305.8174	5175.3057	-0.0136	-0.0966
1	150	5377.7385	5146.7682	-0.0510	-0.0951
1	1 5 1	E070 1004	E14C 0201	0 0270	0 5000
±	TOT	JU12.10U4	100.0741	-0.03/9	0.5280
1	152	6272.3168	5159.5404	-0.0509	0.2049
1	153	3149 2898	5605 1630	-0 0012	0 0732
1	155	5145.2050	5005.1050	0.0012	0.0752
T	154	3913.1660	5614.9249	0.0656	-0.1386
1	155	2432.1559	5687.2877	0.0377	-0.1493
1	156	2507 2200	E716 E607	0 0 5 5 1	0 2545
±	TOO	2001.0000	J I TO . JOY I	0.0001	-0.2343
1	157	2840.7443	5688.4705	-0.0665	0.0394
1	158	2863.6249	5695.6027	-0.0601	0.0846
-	1 5 0	2000 2000	E000 1105	0 1170	0.0010
\perp	тра	∠ԾԾԾ.3660	2007.1102	-0.11/9	0.2454
1	160	3237.6819	5738.0743	-0.1372	0.3815
1	161	3226 7150	5842 0/12	_0 0800	0 2165
±	TOT	5220.7430	JU72.0412	-0.0099	0.2103
\perp	162	3652.7081	5792.7059	0.0421	-0.1510
1	163	4710.0647	5804.8759	-0.0135	-0.0801
-	161	4740 5011	E000 0700	0 0105	0.0001
1	104	4/40.5611	2000.9/00	-0.0185	-0.063/
1	165	4942.6098	5719.1993	-0.0206	0.0157
1	166	5481 5100	5722 6787	0 0398	0 1255
1	100	J-JJ.JLUU	5122.0101	0.0390	0.1200
T	T0./	5619.2211	5766.7812	-0.0157	0.3910
1	168	6231.5234	5657.3853	0.0449	0.1480
1	169	6195 6519	5713 0028	0 0547	0 0655
1	エリジ	0130.0013	J / 1 J . U 7 Z O	0.034/	0.0000
\perp	170	6260.6884	5814.5119	-0.0396	0.1702
1	171	1376.1279	418.6488	-0.0220	-0.0061

1	172	1389.1328	439.3288	-0.0232	-0.0358
1	173	1311 8966	505 /103	-0 0609	0 0852
1	175	1544.0900	505.4105	0.0005	0.0052
Ţ	174	1697.8397	436.9822	-0.0402	0.0361
1	175	1966.0936	418.7816	-0.0469	0.0013
1	176	2379 2138	323 6478	-0 0250	-0 0619
1	170	2575.2150	225.0470	0.0250	0.0010
T	1//	3511.018/	336.6842	0.0069	-0.0938
1	178	3558.2491	456.1022	-0.0475	-0.0060
1	179	3536 9288	478 6498	-0 0587	0 0202
-	100	1422 5410	1,0.0190	0.1001	0.0202
T	182	1433.5412	592.9/18	-0.1001	0.195/
1	183	2408.9416	570.2987	-0.0042	-0.0550
1	184	2716 3487	580 4746	-0 0464	0 0293
1	101	2,10,010,	CCC 0555	0.0101	0.0200
T	185	2007.1811	000.8333	-0.0440	0.0881
1	186	3520.5336	754.3801	-0.0213	-0.0456
1	187	6104.1916	755.8919	-0.1478	0.4754
1	100	1724 6241	700 7520	0 0210	0 1506
1	100	1/24.0341	109.1329	-0.0319	0.1390
1	189	2416.5186	784.1662	-0.0701	0.2625
1	190	2522.0867	796.5942	-0.0967	0.2301
1	101	2401 3444	015 1000	0 0716	0 1020
1	100	2401.3444	015.1222	-0.0710	0.1020
Ţ	192	3464.9467	807.1798	-0.0069	-0.0466
1	193	3543.5516	807.5633	-0.0350	0.0378
1	19/	571/ 5837	979 2033	-0 0394	_0 0589
1	105	5/14.505/	575.2033	-0.0354	-0.0505
Ţ	195	5983.7988	880.4799	-0.0455	0.1577
1	196	5901.1842	1017.9927	-0.0077	-0.1118
1	197	1697 7046	1092 7237	0 0216	0 3362
1	100	1007.7040	1100 1110	0.0210	0.3302
T	198	1602.5123	1190.4143	0.0969	0.1/50
1	199	2287.4379	1174.5981	-0.0057	0.2316
1	200	3272 7367	1273 6347	0 1222	_0 1379
1	200	5272.7507	1273.0347	0.1222	-0.1375
Ţ	201	5965.4682	1034.8014	0.0039	-0.1088
1	202	1008.2479	1332.2824	0.1017	0.2688
1	203	1048 6362	1302 0596	0 1329	0 2875
1	203	2000.0002	1264 7622	0.1325	0.2075
T	204	3269.0672	1364.7632	0.1499	-0.1066
1	205	3555.8511	1475.9736	0.1548	-0.0618
1	206	5332 2664	1508 3325	0 0345	0 0840
1	200	5532.2001	1410 2001	0.0313	0.0010
T	207	5543.0099	1418.3961	-0.0409	0.1/68
1	208	1238.7549	1604.1220	-0.1331	0.0390
1	209	1087 6137	1752 3754	-0 1556	-0 0876
-	200	1700 6104	1732.3731	0.1004	0.0070
T	210	1/03.6104	1/14.2521	-0.1084	-0.0339
1	211	1786.7441	1773.9594	-0.1649	-0.0905
1	212	1539 5017	1788 7667	-0 1737	-0 0221
1	010	2021 2021	1650.0400	0.2050	0.01/21
T	213	33/1.3931	1658.9499	0.2058	-0.2163
1	214	5230.5667	1541.5883	0.0433	0.1584
1	215	5149.7016	1618.2886	0.1728	0.0009
1	010	0110.0727	2011 0477	0.0050	0.0077
T	216	968.8/3/	2011.84//	-0.0859	-0.23//
1	217	1154.6550	1988.6115	-0.1446	-0.0927
1	218	1136.5497	2019.6466	-0.1361	-0.0784
1	210	1712 6011	1050 0765	0 1450	0 2044
1	219	1/13.0011	1930.0703	-0.1430	-0.2044
1	220	1713.3153	1976.8890	-0.1281	-0.2493
1	221	3355.2612	2027.9008	-0.0867	-0.4384
1	222	1090 10/1	102/ 12/5	0 1443	0 2072
1	222	4009.1941	1934.1343	0.1445	-0.2972
Ţ	223	4421.4576	1940.8212	0.2184	-0.2731
1	224	1204.4378	2136.0374	-0.0798	-0.2043
1	225	3906 6509	2084 4631	-0 0815	-0 2900
1	220	4210 7000	2004.4051	0.0013	0.2000
T	226	4319.7828	2235.9296	-0.0824	-0.3062
1	227	4315.3995	2300.8467	-0.1137	-0.2586
1	228	954.0967	2386.8415	-0.0761	-0.3477
1	220	1717 1272	2452 5722	0.0000	0 1000
1	229	1/1/.13/3	2400.0/00	-0.0200	-0.1000
1	230	1792.1077	2462.5766	-0.0583	-0.0938
1	17	1109.4403	2892.4460	0.0653	-0.6790
1	232	1507 2501	2476 2960	0 1190	0 0150
-	202	1001.2004		0.1100	0.0100
1	233	4660.5187	2455.3776	-0.0692	-0.1971
1	234	1174.3553	2589.3350	-0.0610	-0.3312
1	235	1286 8359	2679 6214	-0 0197	-0 1501
⊥ 1	200	1210 5252	0710 0570	0.0107	0.1.771
T	236	1312.5353	2/12.25/9	-0.0166	-0.1469
1	237	1745.6127	2573.1608	-0.0414	-0.1205
1	238	1978 2644	2591 8395	-0 0878	0 0643
- 1	220	2010 012011	22244 4004	0 1000	0 10010
T	239	3946.0436	2/44.4224	-0.1266	0.1909
1	240	3958.8923	2763.1050	-0.1217	0.1756
1	241	1985,9890	3059.8448	-0.0626	0 0354
- 1	242	2506 0027	2046 1601	0 0027	0 1000
1	242	2000.003/	JU40.1001	-0.082/	0.1969
1	244	1754.6018	3126.7539	-0.0520	0.0047
1	245	1978.5660	3125,7802	-0.0757	0.0905
-	246	2002 4400	2202 5205	0 1405	0 0001
T	240	2092.4489	3283.3365	-0.1485	0.0961
1	247	2556.3213	3089.4594	-0.0828	0.2006
1	248	2610.0517	3104.7546	-0.0702	0.1496
-	240	1200 0665	3227 6007	0 1205	0 2700
1	249	C00K.007	3221.0091	-0.1332	0.3/90
1	250	572.6053	3470.8105	-0.0470	-0.0518
1	251	3172.4759	3482.2511	-0.0973	0.2013

-	050	0067 0710	2742 2270	0 1107	0 0015
T	253	2367.8713	3/43.33/0	-0.1197	0.2015
1	254	4903.9778	3676.6525	0.0197	-0.2815
1	255	981 7948	3848 0592	-0 1911	0 0931
1	250	220E EE02	2970 2400	0 2015	0.2610
1	236	2385.5503	3870.3499	-0.2015	0.2610
1	257	6166.1542	4094.5080	-0.0289	-0.2591
1	258	1269.1949	4314.5574	-0.1946	0.3748
1	259	6147 9496	4306 3066	-0 0382	-0 2545
1	260	6267 9000	1220 2011	0 0 5 9 5	0 1660
T	260	6267.8990	4339.2911	-0.0585	-0.1009
1	261	511.8497	4415.1254	-0.0222	0.6127
1	262	1339.1663	4561.3770	-0.1222	0.5171
1	263	2044 3201	4511 2714	-0 0669	0 1308
1	203	2044.5201	4202 0072	0.0000	0.100
T	264	2459.1011	4393.9273	-0.2021	0.1051
1	266	4300.9904	4532.2302	-0.1468	-0.1678
1	267	4741.2028	4509.3226	-0.1131	-0.3566
1	268	4879 8999	4382 4448	-0 0791	-0 3354
1	200	-075.0555 -025.0174	4407 1210	0.0751	0.000
Ţ	269	5035.8174	4407.1310	-0.0469	-0.4418
1	270	5491.9531	4399.0422	-0.0732	-0.1355
1	271	5384.7456	4550.9655	-0.1231	-0.2996
1	272	6241 2855	4532 7368	-0 0509	-0 1529
1	272	0241.2000		0.0000	0.1050
Ţ	2/3	620.1886	5033.9469	0.1816	0.1959
1	274	1209.8172	4999.0732	0.1382	0.1650
1	275	1694.6724	4994.7236	0.2026	0.0806
1	276	4017 1974	5031 7581	0 0328	-0 2365
1	270	4212 4027	4050.2766	0.1011	0.2303
T	211	4313.4927	4958.3766	-0.1811	-0.0424
1	278	5553.9269	4972.0710	-0.0609	-0.0652
1	279	5621.0714	5053.7861	-0.0331	0.2016
1	280	5775 4577	5024 4363	0 0036	0 1096
1	200	5775.4577	5024.4505	0.0050	0.1000
T	281	612.8/43	51/1.8999	0.1237	-0.2983
1	282	955.5739	5256.7851	0.1952	-0.6417
1	283	1334.1807	5264.5826	0.2273	-0.4808
1	28/	1712 6390	5209 1171	0 2225	_0 2720
1	204	1/12.0390	5205.4174	0.2225	-0.2720
Ţ	285	3166.1922	5209.2075	0.0160	0.3057
1	286	3571.0260	5195.0810	0.0623	0.1440
1	2.87	4020.0941	5135.5579	0.1037	-0.2077
1	200	5512 2510	5130 0753	0 0802	0 0120
1	200	5512.5519	5150.8755	-0.0802	-0.0129
T	289	5881.2438	5168.2785	0.0715	0.2761
1	290	6287.8726	5173.2882	0.0049	0.1056
1	291	6149.3601	5305.5456	0.0506	0.2467
1	202	639 0240	530/ 0121	0 2350	0 0537
1	292	039.0240	5594.0121	0.2330	-0.9537
Ţ	293	5022.2077	5632.6650	0.0036	-0.0040
1	294	1670.8979	5650.5704	0.2077	-1.0599
1	295	2410.6004	5663,2450	0.0445	-0.1695
1	206	2521 6560	5701 7114	0 0142	0 0201
1	290	2551.0500	5721.7114	0.0142	-0.0391
1	297	2568.5749	5764.4551	0.0058	-0.0132
1	298	2656.0955	5811.6800	-0.0065	0.0404
1	299	2873.1310	5712,9989	-0.0631	0.1331
1	300	1035 0672	5750 9666	0 0559	0 1/07
1	200	4035.5072	5750.0000	0.0558	-0.1407
T	301	4215.3109	5/10.5658	0.0448	-0.0469
1	302	5138.1474	5790.5271	0.0214	0.0853
1	303	5508.4870	5722,4160	0.0324	0.1772
1	304	585/ 5313	5842 0413	0 0089	0 2000
1	204	5054.5515	5042.0415	0.0000	0.2000
Ţ	305	6182.6649	5/61./26/	0.0434	0.0035
2	8	4063.3316	4906.8127	0.9566	0.1877
2	9	1383.6885	1958.2623	1.2415	0.2656
2	10	4084 9156	2047.0883	-1,2626	-0 1712
2	1 1	700 1.0100	AECE 1000	1.2020	1 0000
2	11	123.0559	4303.1088	-0.9091	-1.2002
2	18	1054.1494	4745.9950	0.0244	-0.3800
2	19	1801.1152	3744.4567	-0.0098	0.3317
2	20	3974 1047	2920 9932	0 2297	-0 3818
2	20	2660 1077	4050 7770	0 0707	0 2471
2	ZZ	3660.1977	4958.1119	0.0727	-0.34/1
2	23	4763.1563	3262.4325	0.2813	-0.6925
2	24	5001.3775	3958.6711	0.0025	0.2961
2	2.8	2625.3811	1774.5037	-0.2439	0.1287
2	30	1605 6070	1031 05037	_0 2270	0 0750
2	30	1440 00072	1001.9000	-0.23/0	0.0703
Ζ	33	1440.9925	1543.9242	-0.3825	0.0492
2	34	1244.8867	328.4990	0.0299	0.1120
2	35	1317.7247	339.7606	0.0135	0.1881
2	36	1660 1700	230 0070	-0 0300	0 1702
4	00	1007 0010	200.00/0	-0.0300	0.1/93
Z	37	1927.2248	3/8.5121	0.0450	0.0901
2	38	2055.4392	338.4841	0.0148	0.1840
2	39	2337.9131	346.3195	0.0398	0.0649
2	10	2361 3221	383 6712	0 0335	0 13/0
2	4U	2JUI.JZZI	JUJ.U/4Z	0.0000	0.1340
2	4⊥	1281.1921	582.31/1	0.0044	-0.0112
2	42	1628.7760	570.7767	0.0204	0.0127
2	43	2057.9445	483.7363	0.0302	0.1231
2	45	3161.3568	511.6789	0.0331	0.0423
2	46	3169 0160	547.0503	0.0565	-0 0432

2	47	3328.9782	523.2070	-0.0086	-0.0339
2	4.0	11/1 0277	C12 00C0	0 0 5 6 2	0 0002
2	48	1141.03//	643.0860	0.0563	-0.0993
2	49	1639.3139	825,2865	0.0159	-0.1911
~		1000 7017	677 0500	0.0510	0 0775
2	50	1808./21/	6//.2590	0.0516	-0.0775
2	51	2378.7555	744,7361	0.0306	-0.0573
~		0444 7560	010 0047	0 0 0 0 1	0 1100
2	52	2444./562	812.994/	0.0524	-0.1160
2	53	2433.1650	876.2011	0.0117	-0.0702
2	E 4	2700 0201	CO4 702C	0 0 0 1 2	0 0 5 1 0
2	54	2/09.9221	694./836	0.0613	-0.0510
2	55	2770 7138	797 7827	0 0058	-0 0753
2	55	2770.7130	797.7027	0.0000	0.0700
2	56	3557.7950	730.6264	0.0145	-0.0997
2	57	3453 1097	800 2769	0 0215	0 0169
-	50	0100.2000	000.2700	0.0210	0.0107
2	58	345/.8835	846.1454	0.0317	-0.020/
2	59	6100.1434	887.1655	0.1043	-0.4124
_	6.0	6100 0170	000 0005	0 1110	0 45 40
2	60	6180.01/2	899.2205	0.1110	-0.4540
2	61	3399.1666	939,7975	-0.0217	0.0566
-	6 Q	1000	1046 4650	0.0100	0.0000
2	62	4336.5506	1046.4658	0.0120	0.00/3
2	63	1675.5972	1249.3794	-0.1119	-0.2856
~	67	E014 000E	1001 2510	0 0000	0 0010
2	67	5914.2005	1221.3510	0.0223	0.0910
2	68	5825.6944	1360.5734	0.0631	-0.0439
0	70	1077 0010	1	0 1010	0 0000
2	70	12//.9913	155/.050/	-0.1818	-0.0888
2	71	1630.3110	1423.3680	-0.2437	-0.1377
2	70	2057 0710	1420 2742	0 1 5 0 0	0 0000
2	13	3257.9718	1439.2742	-0.1580	0.0902
2	74	5474.5138	1541.6763	-0.0111	-0.0096
2	75	E202 2000	1601 7040	0 0451	0 0625
2	15	5595.2009	1301./940	-0.0451	0.0625
2	76	5820.5265	1522.0193	0.0597	-0.1076
2	77	5700 0705	1525 2106	0 0357	0 0101
2	1 /	J100.2133	TJCJ.CT00	0.0357	-0.0191
2	78	960.6464	1877.0717	0.1426	0.0419
2	70	E100 1000	1760 6244	0 1 2 6 7	0 0205
2	19	2109.1002	1/50.5544	-0.1207	-0.0365
2	80	4962.4388	1782.9506	-0.1115	-0.0386
2	01	033 3103	1956 6075	0 1209	0 2527
2	01	955.5192	1930.0073	0.1200	0.2327
2	82	994.3976	1944.5747	0.1596	0.0766
2	03	1043 7962	2066 0720	0 1502	0 0700
2	05	1043.7002	2000.0720	0.1302	0.0709
2	85	3794.5571	1977.5199	-0.0902	0.2009
2	86	3945 1628	2092 2883	-0 0452	0 3962
~	00	3343.1020	2052.2005	0.0452	0.5502
2	87	4225.1951	2162.8035	-0.0769	0.2910
2	88	4745.0478	1939.7421	-0.1729	0.0068
~	0.0	2026 5050	2215 4612	0 1001	0.0000
2	90	3930.5950	2313.4013	0.1221	0.2206
2	91	848.4362	2600.4774	0.0451	0.1842
2	92	916 4099	2608 0022	-0 0271	0 4639
2	2	510.4055	2000.0022	-0.02/1	0.4000
2	93	1217.0142	24/6.546/	0.0547	0.1437
2	94	1251.7198	2616.4134	0.0538	0.1075
-	0.0	2551 0020	2461 5552	0 1054	0.2010
2	96	3331.8932	2461.3333	0.1254	0.3810
2	97	4323.5986	2526.4936	0.1606	0.1582
2	0.0	4002 5071	2625 6117	0 1045	0 2616
2	90	4903.3971	2023.011/	0.1045	0.5040
2	99	5129.6278	2703.0919	0.2065	0.1183
2	100	1231 0827	2730 2950	0 0345	0 2015
2	100	1231.0027	2730.2930	0.0345	0.2013
2	103	1646.3430	3260.4570	0.0439	0.1133
2	104	2031 3567	3266 3739	0 0818	_0 0/87
2	104	2031.3304	5200.5755	0.0010	0.0407
2	105	2038.4952	3337.1683	0.1072	-0.1510
2	106	2349 7487	3353 3492	0 0829	-0 1328
2	100	2010.7107	2241 1000	0.0029	0.1020
2	107	4011.6/21	3341.1889	0.2123	-0.46/1
2	109	847.9340	3832,2061	0.0889	0.1219
2	110	2157 7000	2000 2011	0 1006	0 1070
~	TTO	2431.1090	2000.3%TT	0.1330	-0.19/0
2	111	2337.1283	3907.3934	0.1639	-0.2396
2	112	2791 3973	3903 8180	0 1583	-0 2311
2	±±4	2171.3713	3303.0100	0.1000	0.2011
2	113	4321.3905	3773.3902	0.1575	-0.3112
2	114	4790 0478	3891,4463	0.0605	0 0801
2			0001.1100	0.0000	0.0001
2	115	6580.3821	3851.6904	0.1931	-0.0496
2	116	6597 0221	3895 0370	0 1881	-0 0204
-	110	566 00.17	0000.00070	0.1001	0.0201
2	117	566.2347	3996.2854	0.1943	-0.1018
2	118	1164.5714	4028.9727	0.2117	-0.2261
2	110	2010 1005	3005 6600	0 1 4 7 6	0 0000
2	119	2010.1885	3995.0002	0.14/6	-0.0330
2	120	2363.6529	3976.4918	0.2347	-0.1391
2	121	6603 9016	4032 6901	0 0296	0 5651
~	161	0000.0040	-052.0JUI	0.0290	0.0001
2	122	3130.9684	4482.3833	0.2464	-0.1851
2	123	5815 6582	4441 3937	0 0869	0 1409
-	100	046 05502	1.11.0000	0.0000	0.1100
2	124	346.0778	4637.3190	-0.0084	-0.5565
2	125	548.8519	4482.6621	0.1331	-0.5078
2	100	000 7505	1610 2670	0 1070	0 0700
2	ΤZρ	090.1595	4010.30/2	0.13/0	-0.2/98
2	127	1202.8689	4507.9832	0.2662	-0.4225
2	128	1275 9595	4653 4096	0 2150	-0 4815
~	120	1213.333		0.2100	0.4010
2	129	2814.0587	4545.2416	0.2967	-0.1119
2	130	3259.3461	4509.2225	0.2521	-0.2042
2	101	2010 7000	1511 2000	0 2051	0 0500
2	131	JJTA. 105A	4044.2060	0.2036	-0.0508
2	132	5493.8521	4540.8490	0.1070	0.1268
2	1 2 2	5918 0010	4655 1137	0 0742	0 2460
~	100	J910.0010	4000.110/	0.0/42	0.2400
2	134	6284.1071	4531,7033	0.1012	0.2634

2	135	6242.1666	4539.5437	0.1119	0.2093
2	136	6610 3947	4676 5457	0 2125	0 0623
2	100	0010.0017	10,0.010,	0.2120	0.0020
2	137	2003.1104	5252.9209	-0.2441	0.2929
2	138	2823.0301	5142.6183	-0.1098	-0.2967
2	139	4265 2908	5196 2870	-0 0256	0 1615
2	140	1203.2900	5190.2070	0.0200	0.1010
2	140	4686.8632	5083.5107	0.1079	0.216/
2	141	5142.9108	5066.8828	-0.0545	0.3160
2	142	6306 4382	5136 8198	0 1072	-0 0250
2	1 4 2	100.1002	5130.0190	0.1501	0.0200
2	143	133.1944	5289.8207	-0.1/01	0.5663
2	144	567.8085	5273.0674	-0.1073	0.0112
2	145	848 2951	5349 9114	-0 1660	0 5189
2	145	1676.2001	5000 5155	0.1000	0.5105
2	146	16/6.//9/	5280.5155	-0.2243	0.14/3
2	147	3552.2554	5305.2723	-0.0947	-0.0934
2	1/18	3988 8961	5297 0520	-0 3702	0 3674
2	140	3900.0901	5297.0520	-0.3702	0.3074
2	149	4308.5314	5316.8393	-0.0428	0.1308
2	150	5403.8594	5293.1218	0.0039	0.1209
2	151	5908 0896	5295 1651	0 0071	-0 5063
2	151	5900.0090	5255.1051	0.0071	0.0000
2	152	6315.1232	5309.2328	0.0290	-0.1915
2	153	3138.4123	5743.7614	-0.0020	-0.1014
2	154	3916 2901	5756 5403	-0 0996	0 0989
2	104	3910.2901	5750.5405	-0.0990	0.0909
2	155	2404.6319	5822.3020	-0.0400	0.1292
2	156	2481.3311	5851.9104	-0.0629	0.2341
2	157	2021 0022	5025 3600	0 0029	0 0743
2	157	2021.0995	5025.5000	-0.0025	0.0745
2	158	2846.0233	5832.7538	0.0705	-0.1012
2	159	2850.2059	5946.1465	0.0562	-0.2685
2	160	3005 0001	5076 1012	0 0745	0 /100
2	100	5225.0001	5070.4012	0.0745	-0.4109
2	161	3216.1511	5980.7048	0.1057	-0.2234
2	162	3645.1957	5932.0871	-0.0640	0.1227
2	163	1725 7210	50/0 1050	0 0106	0 0520
2	103	4/23./210	5949.1950	-0.0108	0.0529
2	164	4756.6959	5953.3915	-0.0048	0.0370
2	165	4961.5318	5864.1971	-0.0190	-0.0480
2	166	EE00 2010	E960 240E	0 1002	0 1526
2	100	3300.3010	5669.5405	-0.1093	-0.1000
2	167	5644.3612	5913.0879	-0.0412	-0.4111
2	168	6274.3844	5807.3194	-0.1317	-0.1664
2	160	6230 6062	5963 0052	0 1310	0 0020
2	109	0230.0902	5005.0952	-0.1319	-0.0920
2	170	6303.0936	5964.4181	-0.0880	-0.2123
2	171	1317.4409	546.7388	0.0115	0.0108
2	170	1330 3056	567 4204	0 0131	0 0/17
2	1/2	1330.3830	507.4204	0.0131	0.0417
2	173	1285.0030	633.2674	0.0435	-0.0788
2	174	1644.4996	566.3122	0.0300	-0.0304
2	175	1016 0310	549 0406	0 0409	0 0062
2	1/5	1910.0310	549.0400	0.0408	0.0002
2	176	2337.3809	455.5154	0.0247	0.0689
2	177	3490.4866	472.9725	-0.0068	0.0981
2	170	3537 3607	502 3402	0 0450	0 0130
2	170	5557.5097	592.5402	0.0450	0.0130
2	179	3515.4937	614.7813	0.0552	-0.0129
2	182	1374.6626	721.1043	0.0755	-0.1872
2	1 8 3	2369 2195	702 6494	-0 0039	0 0618
2	105	2303.2195	702.0494	-0.0055	0.0010
2	184	2681.1045	713.7959	0.0379	-0.0213
2	185	2631.8969	800.1755	0.0297	-0.0807
2	186	3500 3702	890 8186	0 0152	0 0551
2	100	5300.3702	000.0100	0.0152	0.0551
2	187	6130.4558	900.5701	0.1204	-0.4786
2	188	1673.5958	919.6386	-0.0054	-0.1498
2	189	2377 4047	916 6824	0 0421	-0 2544
2	100	20102 2002	000 0100	0.0721	0.0100
2	190	2483.3283	929.2102	0.0/12	-0.2180
2	191	2361.0255	947.3988	0.0440	-0.1704
2	192	3444 4748	943 5677	-0 0018	0 0562
2	100	2504 0051	044 1501	0.0010	0.0002
Z	T A 3	3524.0951	944.1521	0.0245	-0.0285
2	194	5733.4814	1122.7626	0.0444	0.0662
2	195	6009 4530	1025 1838	0 1019	-0 1428
2	100	5009.1330	1160 2000	0.151	0.1170
2	196	5924.3860	1162.3028	0.0154	0.1176
2	197	1648.1150	1222.9487	-0.1457	-0.3298
2	198	1550 6382	1320 1623	-0 1970	-0 1662
-	100	2020.0002	1207 1/01	0 1170	0.1002
Z	T A A	2248.3081	1307.1431	-0.11/0	-0.2198
2	200	3250.3965	1409.7205	-0.1697	0.1655
2	201	5990.4082	1179.4219	0.0034	0.1134
-	202	010 7701	1/60 0/47	0 1000	0 0044
2	202	942.1/21	1439.044/	-0.1809	-0.2944
2	203	987.4492	1429.6914	-0.2289	-0.3054
2	204	3246.4410	1500.8039	-0.2002	0.1246
2	201	2510.1110	1610 0600	0.1000	0.1210
2	205	3531.36/0	T017.8000	-0.1828	0.0605
2	206	5345.2985	1651.0867	-0.0159	-0.0544
2	207	5559.6305	1561.7337	0.0509	-0.1503
-	200	1170 0000	1720 1670	0.0000	0 0710
2	208	11/0.0203	1/32.10/2	0.0089	-0.0/13
2	209	1025.1213	1879.8608	0.1228	0.0726
2	210	1651.2643	1844.0364	0.0713	0.0176
2	011	1727 6050	1004 4200	0 1000	0 0700
2		0C00.1C11	1004.4300	0.1302	0.0/82
2	212	1484.0652	1917.8777	0.1443	0.0084
2	213	3351.0931	1795.4994	-0.2136	0.1831

2	214	5242.3573	1684.1532	-0.0284	-0.1314
2	215	5162 4186	1761 1050	-0 1493	0 0103
2	210	000.0000	1,01.000	0.1193	0.0100
2	216	902.3244	2138.5082	0.0952	0.2235
2	217	1092.7270	2116.2825	0.1443	0.0767
2	21.8	1073 5630	21/7 1023	0 1/27	0 0630
2	210	1073.3030	214/.1025	0.1427	0.0050
2	219	1661.1659	2088.6633	0.1407	0.1864
2	220	1660.1582	2106.5492	0.1303	0.2299
2	221	2225 6456	2164 6212	0 1026	0 /127
Z	ZZI	3333.0430	2104.0313	0.1036	0.4137
2	222	4083.2758	2073.5670	-0.1072	0.2526
2	223	1121 8986	2081 4740	-0 1654	0 2186
2	225	4421.0000	2001.4740	-0.1054	0.2100
2	224	1143.3639	2263.9238	0.0898	0.1930
2	225	3896.4786	2223.0792	0.1221	0.2592
2	226	1210 0172	2276 2024	0 1452	0 2674
Ζ	220	4318.01/3	2376.2034	0.1452	0.20/4
2	227	4313.5490	2441.1135	0.1794	0.2209
2	228	891 8851	2514 4167	0 0940	0 3520
2	220	1662 0160	2511.1107	0.0910	0.0020
2	229	1663.0168	2583.0895	0.0402	0.1/89
2	230	1741.2596	2592.7755	0.0722	0.0912
2	17	1061 8120	3023 0619	-0 0630	0 6869
2	1 /	1001.0120	3023.0019	-0.0050	0.0005
2	232	4597.3755	2616.9167	0.2158	-0.0565
2	233	4663.0857	2596.4786	0.1667	0.1507
2	224	1110 0240	0717 0720	0 0701	0 2205
2	234	1110.8340	2/1/.9/30	0.0781	0.3385
2	235	1228.6033	2808.1715	0.0315	0.1644
2	236	1253 5144	2840 6632	0 0285	0 1525
2	200	1605 0005	2010.0002	0.0200	0.1010
2	237	1695.0935	2703.4191	0.0538	0.1210
2	238	1931.5763	2722.9408	0.1027	-0.0641
2	220	2025 2421	2002 0000	0 1024	0 2041
2	239	5955.5451	2002.9900	0.1034	-0.2041
2	240	3948.7903	2901.8042	0.1773	-0.1882
2	241	1943 3543	3191 7882	0 0760	-0 0258
2	211	2467 2171	2170 0017	0.0001	0.0200
2	242	2467.3171	31/9.024/	0.0981	-0.1899
2	244	1707.4952	3257.7310	0.0661	0.0069
2	245	1936 1934	3257 7766	0 0903	-0 0789
2	245	1950.1954	5257.7700	0.0505	0.0705
2	246	2053.2719	3416.2128	0.1708	-0.0782
2	2.4.7	2518.6867	3222.5388	0.0983	-0.1931
2	240	2572 2047	2220 0100	0 0950	0 1/26
Ζ	248	25/3.284/	3238.0188	0.0850	-0.1426
2	249	4286.8733	3368.0327	0.1839	-0.3767
2	250	504 3620	3597 1013	0 0798	0 0820
2	250	504.5020	5557.1015	0.0790	0.0020
2	251	3150.5477	3618.6034	0.1166	-0.1871
2	253	2332.4376	3876.8348	0.1434	-0.1727
2	254	1015 2071	2010 6067	0 0079	0 2072
Ζ	254	4915.28/1	3819.0907	0.0078	0.28/3
2	255	924.5154	3976.7315	0.2455	-0.0422
2	256	2355 1368	4004 8692	0 2279	-0 2177
2	250	2000.1000	4004.0092	0.2275	0.2177
2	257	6203./04/	4242.6915	0.0788	0.2623
2	258	1216.6381	4444,2732	0.2494	-0.3308
2	250	6106 4010	1151 7061	0 0945	0 2610
2	239	0100.4019	4434.7004	0.0845	0.2010
2	260	6308.6973	4488.2103	0.1108	0.1712
2	261	446 1522	4541 9150	0 1123	-0 5689
2	201	1000 0105	1011.9100	0.1700	0.0000
2	262	1286.2165	4691.0234	0.1/92	-0.4/66
2	263	2011.2552	4645.1506	0.0142	-0.1160
2	261	2132 2770	1520 1700	0 2069	0 1315
2	204	2432.2773	4525.1750	0.2000	-0.1313
2	266	4303.5026	4673.6609	0.1472	0.2214
2	267	4754.8273	4653.0169	0.1154	0.3987
2	260	1005 0670	1506 5057	0 0020	0 2675
2	200	4095.0079	4520.5857	0.0920	0.3075
2	269	5054.8903	4551.8959	0.0587	0.4706
2	270	5515.4773	4544.6327	0.1028	0.1610
2	271	E400 1100	1606 7070	0 1 4 0 0	0 2220
2	2/1	J4U9.IIU9	4030.1910	U.1426	0.3336
2	272	6282.8968	4681.9180	0.1140	0.1612
2	273	558.0256	5161.4546	-0.1133	-0.2378
-	2,2	1100 5410	E100 2000	0 1000	0 1000
Ζ	2/4	1100.3413	JIZA.3900	-0.1008	-0.1800
2	275	1651.8749	5126.4981	-0.1922	-0.0683
2	276	1010 0007	5173 2601	0 0 0 0 0 1	0 2627
2	270	4010.0007	5175.2001	0.0094	0.2027
2	277	4315.7190	5099.7891	0.1477	0.0767
2	278	5585.0577	5119.3976	0.0270	0.0807
2	270	5653 2005	5201 2527		0 1000
2	219	2023.2905	JZUI.333/	-0.0054	-0.1829
2	280	5811.5868	5172.7851	-0.0397	-0.0968
2	2.81	553.0510	5299.8648	-0.0755	0.2456
-	202	000 5001	E20C 4000	0 1700	0 0 0 0
2	282	903.5001	5386.4228	-U.1/86	0.5829
2	283	1286.3879	5395.2087	-0.2199	0.4245
2	284	1670 1480	5341 2385	-0 2281	0 2395
-	201	10/0.1300 01/1 0000	50 II . 2000	0.1010	0.2000
2	285	3151.7232	5347.0850	-0.1340	-0.3217
2	286	3560.1577	5333.7560	-0.1101	-0.1127
2	287	4000 0070	5277 0005	-0 1601	0 2212
~	201	1022.3213	JZ11.UJJJ	0.1004	0.2342
2	288	5540.6315	5277.6586	0.0402	0.0380
2	2.89	5919.2819	5317.0579	-0.1180	-0.2590
	200	6001 0515	E202 0E0E	0 0242	0 0047
2	290	CTCK.TCC0	JJZJ.ZJUJ	-0.0343	-0.094/
2	291	6190.3455	5454.9459	-0.0959	-0.2260
2	292	579.7815	5522.0796	-0.2209	0.9122
-	272	577.701J	5522.0770	0.2200	0.0122
2	293	5041.8237	5///.1925	-0.1528	-0.0396

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	294 295 296 297 298 299 300 301 302 303 304 305	$1630.0038\\2382.6887\\2505.6111\\2543.8234\\2633.2751\\2856.1220\\4042.3965\\4219.2754\\5158.1523\\5534.6525\\5885.6070\\6225.2282$	5782.6524 5798.1770 5857.0499 5900.0637 5947.7018 5850.2725 5893.1898 5852.3977 5935.7712 5868.9289 5989.6077 5911.6507	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.0284\\ 0.1467\\ 0.0226\\ 0.0007\\ -0.0497\\ -0.1469\\ 0.1151\\ 0.0105\\ -0.1160\\ -0.2019\\ -0.2248\\ -0.0324 \end{array}$
Image acc	curacy	for control and	l check point	s for each sce	ene:
image ic	1 1:		:		
pia	type	1mage_x 4057 1250	1mage_y	residual_x	residual_y
9	gep	1432 1250	1828 3750	1 8269	-0.2178
10	acp	4093.1250	1907.8750	-1.5611	-0.0662
11	acp	782.8750	4435.3750	-1,4627	1.2448
18	chk	1106.3750	4615.8750	0.0276	0.4135
19	chk	1838.8750	3611.8750	0.0189	-0.3097
20	chk	3984.1250	2781.8750	-0.1682	0.3692
22	chk	3664.6250	4818.3750	-0.1010	0.3780
23	chk	4759.8750	3120.3750	-0.2068	0.6862
24	chk	4989.8750	3815.8750	0.0220	-0.2880
28	chk	2656.3750	1640.3750	0.1425	-0.1716
30	chk	4606.6250	1691.8750	0.3001	-0.1214
33	chk	1490.6250	1413.8750	0.2901	-0.0788
L/	спк Гатора	1109.3750	2893.1250	U.U653 1 E410	-0.6790
KM5 E	TTOLS	IOI 4 GCPS:	X :	0.6328	
			total:	1.6659	
RMS E	Irrors	for 10 CHKs:	x:	0.1678	
			V:	0.4014	
			total:	0.4351	
image id	12:				
pid	type	image_x	image_y	residual_x	residual_y
8	gcp	4062.3750	4906.6250	0.9566	0.1877
9	gcp	1382.4470	1957.9967	1.2415	0.2656
10	gcp	4086.1781	2047.2595	-1.2626	-0.1712
11	gcp	724.6250	4566.3750	-0.9691	-1.2662
18	chk	1054.1250	4/46.3/50	0.0244	-0.3800
19	chk	1801.1250 3973 8750	3744.1230 2921 3750	-0.0098	-0 3818
20	chk	3660 1250	4959 1250	0.2297	-0.3471
23	chk	4762.8750	3263.1250	0.2813	-0.6925
24	chk	5001.3750	3958.3750	0.0025	0.2961
28	chk	2625.6250	1774.3750	-0.2439	0.1287
30	chk	4605.8750	1831.8750	-0.2378	0.0753
33	chk	1441.3750	1543.8750	-0.3825	0.0492
17	chk	1061.8750	3022.3750	-0.0630	0.6869
RMS E	Irrors	for 4 GCPs:	х:	1.1169	
			у:	0.6592	
DMC F		fan 10 OUVa.	total:	1.2969	
KM5 E	LIOIS	IOI IU CHKS:	X :	0.2010	
			total:	0.4459	
			cocur.	0.1109	
Summary F	RMSE fo	or GCPs and CHKs	(number of	observations i	n parenthesis):
Grour	nd X•	0.3669566 /	4)	38,8961678	(10)
Grour	nd Y:	0.0962614 (4)	32.6156082	(10)
Groun	nd Z:	2.8082876 (4)	43.2816429	(10)
Image	e X:	0.6558455 (8)	0.4113992	(20)
Image	e Y:	1.3298090 (8)	0.1533370	(20)

Anexo 2

Modelos Digitais de Terreno

Modelo Digital de Terreno da Região de Estrela do Sul, MG Células de 60 x 60 metros

Modelo Digital de Terreno da Região de Estrela do Sul, MG Células de 100 x 100 metros

Modelo Digital de Terreno da Região de Estrela do Sul, MG Células de 90 x 90 metros (SRTM)