Download PDF
ads:
PATRICIA RIGLOSKI MENEZES
ABORDAGEM PARA A SÍNTESE DA NIAZIMINA, UM GLICOSÍDEO CARBAMATO
ISOLADO DE Moringa oleifera Lam., MORINGACEAE
CURITIBA
2006
Dissertação apresentada como requisito parcial
à obtenção do grau de Mestre em Ciências
Farmacêuticas, Curso de Pós-Graduação em
Ciências Farmacêuticas, Setor de Ciências da
Saúde, Universidade Federal do Paraná.
Orientador: Prof. Tit. Cid Aimbiré M. Santos
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
2
PATRICIA RIGLOSKI MENEZES
ABORDAGEM PARA A SÍNTESE DA NIAZIMINA, UM GLICOSÍDEO CARBAMATO
ISOLADO DE Moringa oleifera Lam., MORINGACEAE
CURITIBA
2006
Dissertação apresentada como requisito parcial
à obtenção do grau de Mestre em Ciências
Farmacêuticas, Curso de Pós-Graduação em
Ciências Farmacêuticas, Setor de Ciências da
Saúde, Universidade Federal do Paraná.
Orientador: Prof. Tit. Cid Aimbiré M. Santos
ads:
i
Aos meus pais,
Ana Lúcia e Olavo
ii
NOTA BIOGRÁFICA
A autora graduou-se em Farmácia Industrial em 2003 pela Universidade Federal do
Paraná. Durante a graduação foi bolsista de Iniciação Científica CNPq/PIBIC no
Laboratório de Farmacognosia da UFPR desenvolvendo o projeto "Determinação da
atividade antioxidante de plantas medicinais e aromáticas", cujos resultados conferiram à
autora, por duas vezes, o primeiro lugar no VIII e X Eventos de Iniciação Científica. Esses
resultados foram em parte publicados em Fitoterapia 2004, 75, 398-400. Em 2003, atuou
como Analista Técnica do Setor de Desenvolvimento Farmacotécnico - Laboratório
Neoquímica, Anápolis - GO, durante sete meses e, em 2004, ingressou no mestrado do
Programa de Pós-Graduação em Ciências Farmacêuticas dessa mesma Universidade,
onde desenvolveu o trabalho aqui apresentado. Os resultados parciais até então
alcançados foram apresentados no V Congresso Internacional de Ciências
Farmacêuticas, Ribeirão Preto, SP.
iii
AGRADECIMENTOS
A toda a minha família que sempre me incentivou mesmo sem entender muito
bem o que eu estava fazendo, em especial a minha irmãzinha Franciele.
A CAPES pela concessão da bolsa de mestrado que possibilitou a realização
deste trabalho.
Ao Professor Cid Aimbiré de Moraes Santos por ter me acolhido em seu
laboratório e ter sido meu um orientador durante todos estes anos.
Ao Professor Richard Brown, Universidade de Manchester, por ter fornecido os
reagentes utilizados neste trabalho e pela realização de alguns dos espectros de
ressonância magnética nuclear.
Ao Professor Alfredo Ricardo Marques de Oliveira por ter me ensinado
mecanismos de reações orgânicas e pela imensa ajuda durante a realização deste
trabalho.
Ao Professor Guilherme Sassaki, Departamento de Bioquímica - UFPR, e ao Dr.
Anderson Barrison, Departamento de Química – UFPR, pela realização dos espectros de
ressonância magnética nuclear.
A Maria do Rocio Baldon, minha querida Dona Maria, por toda a ajuda, carinho e
amizade.
A Professora Mayumi Elisa Otsuka Sato pelo apoio, incentivo e amizade.
Ao meu amor, Plínio Cabrera Casarotto, por ter dividido comigo todas as alegrias
e frustações deste último ano, por ter me ajudado na bancada mesmo sem nunca ter feito
uma coluna cromatográfica e, principalmente, por ter me apoiado sempre.
A Jane Manfron Budel por ter me apoiado, incentivado e especialmente, por ser
minha amiga.
Aos grandes amigos que eu fiz no Laboratório de Farmacognosia: Wesley, Stella,
Kely, Cáthia, Larissa, Ingrid, Fabrício, Maria Cecília e Érica.
Aos meus amigos Rafael Soldi e Rogério Gariani por serem minha turma de
mestrado.
A todas as pessoas que de alguma forma me ajudaram na realização deste
trabalho.
iv
SUMÁRIO
LISTA DE FIGURAS…………………………………………………………….
v
LISTA DE TABELAS……………………………………………………………
vi
LISTA DE QUADROS…………………………………………………………...
vii
LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS ……….
viii
SISTEMA DE NUMERAÇÃO………………………………………………..
x
RESUMO………………………………………………………………………………..
xi
ABSTRACT……………………………………………………………………………
xii
INTRODUÇÃO……………………………………………………………………….
1
As plantas como fonte de novos medicamentos
…………………………….
1
Síntese de produtos
naturais…………………………………………………….
4
Hipertensão arterial
………………………………………………………………..
5
O tratamento da hipertensão
…………………………………………………….
7
O uso de plantas medicinais no tratamento da hipertensão arterial
……..
8
Carbamatos e tiocarbamatos isolados de Moringa oleifera
…………………
13
Glicosídeos com grupos acila…………………………………………………. 18
Síntese dos constituintes ativos de Moringa oleifera
………………………...
19
OBJETIVOS…………………………………………………………………………..
.
24
Objetivo geral………………………………………………………………………. 24
Objetivos
específicos
……………………………………………………………..…
24
RESULTADOS E DISCUSSÃO……………………………………………
25
Síntese da porção aglicona……………………………………………………… 26
Síntese da porção glicona……………………………………………………….. 37
CONCLUSÃO…………………………………………………………………………
59
PERSPECTIVAS FUTURAS…………………………………………………
60
EXPERIMENTAL…………………………………………………………………..
61
4-Metoxifenilcarbamato de etila
(69)……………………………..……………..
62
4-Hidroxifenilcarbamato de etila (70)............................................................ 63
4-Metoxibenzilcarbamato de etila (72)…………………………………………. 64
4-Hidroxibenzilcarbamato de etila (73)………………………………………… 65
Tetracetato de
L-ramnose (47)…………………………………………………... 66
Tri-O-2,3,4-acetil-
L-ramnopiranosídeo de benzila (75)............................ 67
2,3-O-Isopropilideno-4-O-acetil-α-
L-ramnopiranosídeo de benzila (76)....
68
α-
L-Ramnopiranosídeo de metila (82).........................................................
70
2,3-O-Isopropilideno-4-O-acetil-α-
L-ramnopiranosídeo de metila (83)......
71
REFERÊNCIAS……………………………………………………………………..
72
v
LISTA DE FIGURAS
Figura 1: Prevalência de hipertensão sistólica isolada por idade e sexo
observada em estudo realizado por Kannel e colaboradores................
6
Figura 2: Espectro de RMN
1
H (400 MHz, CDCl
3
) do 4-metoxifenilcarbamato de
etila (69)...............................................................................................
28
Figura 3: Espectro de RMN
1
H (400 MHz, CDCl
3
) do 4-metoxifenilcarbamato de
etila (69)...............................................................................................
29
Figura 4: (a) Espectro de RMN
1
H (400 MHz, CDCl
3
) e (b) espectro de RMN
13
C (100 MHz, CDCl
3
) do 4-hidroxifenilcarbamato de etila (70).............
31
Figura 5: Espectro de RMN
1
H (300 MHz, CDCl
3
) do 4-metoxibenzilcarbamato
de etila (72)...........................................................................................
33
Figura 6: Espectro de correlação homonuclear (300 MHz, CDCl
3
) do 4-
metoxibenzilcarbamato de etila (72)......................................................
34
Figura 7: Espectro de RMN
13
C (75 MHz, CDCl
3
) do 4-metoxibenzilcarbamato
de etila (72)...........................................................................................
35
Figura 8: (a) Espectro de RMN
1
H (300 MHz, CDCl
3
) e (b) espectro de RMN
13
C (75 MHz, CDCl
3
) do 4-hidroxibenzilcarbamato de etila (73)............
36
Figura 9:
Espectro de RMN
1
H (400 MHz, CDCl
3
) do tri-O-2,3,4-acetil-α-L-
ramnopiranosídeo de benzila (75).........................................................
41
Figura 10:
Espectro de RMN
13
C (100 MHz, CDCl
3
) do tri-O-2,3,4-acetil-α-L-
ramnopiranosídeo de benzila (75).........................................................
42
Figura 11: Espectro de RMN
1
H (400 MHz, CDCl
3
) de 2,3-O-isopropilideno-4-O-
acetil-α-
L-ramnopiranosídeo de benzila (76).........................................
45
Figura 12: Espectro de RMN
13
C (100 MHz, CDCl
3
) do 2,3-O-isopropilideno-4-O-
acetil-α-
L-ramnopiranosídeo de benzila (76).........................................
46
Figura 13: Espectro RMN acoplado
13
C (100 MHz, CDCl
3
) do 2,3-O-
isopropilideno-4-O-acetil-α-
L-ramnopiranosídeo de benzila (76)..........
47
Figura 14:
Espectro de RMN
13
C (50 MHz, CDCl
3
) do α-L-ramnopiranosídeo de
metila (82).............................................................................................
53
Figura 15: Espectro de RMN
1
H (400 MHz, CDCl
3
) do 2,3-O-isopropilideno-4-O-
acetil-α-
L-ramnopiranosídeo de metila (83)...........................................
56
Figura 16: Espectro de RMN
13
C (100 MHz, CDCl
3
) do 2,3-O-isopropilideno-4-O-
acetil-α-
L-ramnopiranosídeo de metila (83)...........................................
57
vi
LISTA DE TABELAS
Tabela 1: Valores limite da pressão arterial........................................................... 6
Tabela 2: Otimização da reação de hidrogenólise do éter benzílico de 76. Em
todas as reações foi utlizado Pd/C 10% como catalisador....................
53
Tabela 3: Reações testadas com o intuito de substituir o éter metílico e o
isopropilideno do açúcar 83 por grupos éster cloroacetato...................
58
Tabela 4: Dados de RMN
1
H (CDCl
3
, 400MHz) de 4-metoxifenilcarbamato de
etila (69)...............................................................................................
62
Tabela 5: Dados de RMN
13
C (CDCl
3
, 100MHz) de 4-metoxifenilcarbamato de
etila (69)...............................................................................................
62
Tabela 6: Dados de RMN
1
H (CDCl
3
, 400MHz) de 4-hidroxifenilcarbamato de
etila (70)...............................................................................................
63
Tabela 7: Dados de RMN
13
C (CDCl
3
, 100MHz) de 4-hidroxifenilcarbamato de
etila (70)...............................................................................................
63
Tabela 8: Dados de RMN
1
H (CDCl
3
, 300MHz) de 4-metoxibenzilcarbamato de
etila (72)................................................................................................
64
Tabela 9: Dados de RMN
13
C (CDCl
3
, 75MHz) de 4-metoxibenzilcarbamato de
etila (72)................................................................................................
64
Tabela 10: Dados de RMN
1
H (CDCl
3
, 300MHz) de 4-hidroxibenzilcarbamato de
etila (73)...............................................................................................
65
Tabela 11: Dados de RMN
13
C (CDCl
3
, 75MHz) de 4-metoxibenzilcarbamato de
etila (73)................................................................................................
65
Tabela 12: Dados de RMN
1
H (CDCl
3
, 400MHz) de tetracetato de L-ramnose
(47)........................................................................................................
66
Tabela 13: Dados de RMN
13
C (CDCl
3
, 100MHz) de tetracetato de L-ramnose
(47)........................................................................................................
66
Tabela 14: Dados de RMN
1
H (CDCl
3
, 400MHz) de tri-O-2,3,4-acetil-L-
ramnopiranosídeo de benzila (75).........................................................
67
Tabela 15: Dados de RMN
13
C (CDCl
3
, 100MHz) de tri-O-2,3,4-acetil-L-
ramnopiranosídeo de benzila (75)........................................................
68
Tabela 16: Dados de RMN
1
H (CDCl
3
, 100MHz) de 2,3-O-isopropilideno-4-O-
acetil-α-
L-ramnopiranosídeo de benzila (76).........................................
69
Tabela 17: Dados de RMN
13
C (CDCl
3
, 400MHz) de 2,3-O-isopropilideno-4-O-
acetil-α-
L-ramnopiranosídeo de benzila (76).........................................
69
Tabela 18:
Dados de RMN
13
C (CDCl
3
, 400MHz) de α-L-ramnopiranosídeo de
metila (82).............................................................................................
70
Tabela 19: Dados de RMN
1
H (CDCl
3
, 400MHz) de 2,3-O-isopropilideno-4-O-
acetil-α-
L-ramnopiranosídeo de metila (83)...........................................
71
Tabela 20: Dados de RMN
13
C (CDCl
3
, 100MHz) de 2,3-O-isopropilideno-4-O-
acetil-α-
L-ramnopiranosídeo de metila (83)...........................................
71
vii
LISTA DE QUADROS
Quadro 1:
Principais classes de medicamentos utilizados no tratamento da
hipertensão, seus mecanismos de ação e principais representantes....
10
viii
LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS
[CH
3
CO]
+
Íon acetílio
°C graus Celsius
13
C Isótopo 13 do carbono
1
H Hidrogênio
2K-1C “Two kidney-one clip”
Ac Acetila
AcCl Cloroacetila
Ar Aromático
Asp Aspartato
Bn Benzila
Bomba Na/H Bomba de sódio/próton
CCD Cromatografia em camada delgada
CDCl
3
Clorofórmio deuterado
CGL Cromatografia gás-líquido
ClC(O)OR Cloroformato
COCH
3
Acetila
COSY “Correlation Spectroscopy”
d Dupleto
Da Dalton
DBU 1,8-diazobiciclo[5.4.0]unde-7-ene
DCM Diclorometano
dd Duplo dupleto
ECA Enzima conversora de angiotensina
eq Equivalente
Et Etila
Gly Glicina
Hz Hertz
J Constante de acoplamento
m Multipleto
Me Metila
MHz Megahertz
NIS N-iodossuccinimida
OCH
3
Metoxila
OH Hidroxila
OMS Organização Mundial da Saúde
p/p Peso por peso
Pd/C Paládio-carbono
Phe Fenilalanina
q Quarteto
quant Quantitativo
R
1
OC(S)SCH
2
CO
2
Na O-alquil-S-carboximetil ditiocarbonato de sódio
RNH-COR Grupo carbamato
RNH-CSR Grupo tiocarbamato
RMN Ressonância magnética nuclear
s Singleto
Ser Serina
ix
sl Singleto largo
t Tripleto
TA Temperatura ambiente
TfOH Ácido trifluorometanossulfônico
Tyr Tirosina
v/v Volume por volume
δ
Deslocamento químico
x
SISTEMA DE NUMERAÇÃO
HO
H
3
C
OH
O
OH
HO
1
2
3
4
56
L-ramnose
xi
RESUMO
Substâncias contendo grupos acila têm sido freqüentemente isoladas a partir de plantas,
sendo que muitas delas apresentam atividades biológicas de interesse para a indústria
farmacêutica. A niazimina A é um glicosídeo carbamato isolado das folhas de Moringa
oleifera Lam. (Moringaceae) capaz de reduzir a pressão arterial em cerca de 35 a 40%
quando administrada por via endovenosa (3mg/kg). Uma rota sintética simples para a
obtenção da niazimina A é apresentada. A porção aglicona (4-Hidroxibenzilcarbamato de
etila ) foi obtida a partir da 4-metoxibenzilamina em dois passos. A porção glicona (4-
acetil-α-
L-ramnopiranosídeo) apresenta apenas um grupo acetila em C-4 e sua obtenção,
através de reações de proteção e desproteção dos grupos hidroxilas da
L-ramnose não
pôde ser alcançada, após várias tentativas. Após a obtenção das porções glicona e
aglicona, a glicosilação será alcançada por uma reação de acoplamento catalisada por
trifluoreto de boro. A abordagem apresentada deve resultar em uma síntese eficiente
para a niazimina A e pode ser também útil na síntese de estruturas análogas.
Palavras-chave: Moringa oleifera, Moringaceae, niazimina A,
L-ramnose, pressão
arterial, derivados acila
xii
ABSTRACT
Substances with acyl groups have frequently been isolated from plants and many present
biological activities of interest to the pharmaceutical industry. Niazimin A is a carbamate
glycoside isolated from leaves of Moringa oleifera Lam. (Moringaceae) that reduces the
arterial blood pressure about 35 to 40% on intravenous administration (3mg/kg). A simple
proposal of a synthetic route for obtaining niazimin A is presented. The aglycone moiety
(4-hydroxybenzylcarbamate) was obtained from 4-methoxybenzylamine in two steps. The
glycone moiety (4-acetyl-a-L-rhamnopyranoside) has one acetyl group at C-4 and it was
not successful, after several attempts through selective protection and deprotection
reactions of the hydroxyl groups of
L-rhamnose. However, the intermediate could not be
obtained. After having the glycone and aglycone moieties, the glycosylation will be
achieved by a coupling reaction catalysed by boron trifluoride. The approach presented
should afford an efficient synthesis of niazimin A, and also be useful for obtaining
analogous structures.
Keywords: Moringa oleifera, Moringaceae, niazimin A,
L-rhamnose, blood pressure, acyl
derivatives
1
INTRODUÇÃO
As plantas como fonte de novos medicamentos
Durante eras, os seres humanos dependeram da natureza para suprir suas
necessidades básicas, tais como alimentação, abrigo, vestuário, meio de transporte,
fertilizantes, flavorizantes, fragrâncias e remédios.
1
As plantas formam a base de sofisticados sistemas de medicina tradicional
existentes há milhares de anos. Ainda hoje, estes sistemas desempenham papel
essencial no cuidado à saúde. A Organização Mundial da Saúde (OMS) estima que,
aproximadamente, 80% da população mundial depende, principalmente, dos
medicamentos tradicionais para os cuidados primários à saúde.
1
Estudos químicos, farmacológicos e clínicos realizados a partir destes
medicamentos tradicionais, os quais derivam predominantemente de plantas, foram a
base para a descoberta de medicamentos, tais como o ácido salicílico (1), a pilocarpina
(2), a digitoxina (3), a morfina (4) e a quinina (5).
Estima-se que, hoje em dia, cerca de 25% de todas os fármacos prescritos pelo
mundo derivam de plantas. Dos 252 medicamentos considerados como básicos e
essenciais pela OMS, 11% são originados, exclusivamente, de plantas e um número
significativo são fármacos sintéticos obtidos a partir de precursores naturais.
2
Dos 520
novos fármacos aprovados entre os anos de 1983 e 1994, 39% eram produtos naturais
ou derivados, sendo que 60 a 80% dos fármacos antibacterianos ou antitumorais
derivavam de produtos naturais.
3
Em 1999, dos vinte fármacos não-protéicas mais
vendidos, nove eram derivados ou desenvolvidos a partir de resultados obtidos por
produtos naturais – sinvastatina (6), lovastatina, enalapril (7), pravastatina, atorvastatina
(8), augmentina, ciprofloxacina, claritromicina e ciclosporina – com vendas anuais
combinadas superiores a U$ 16 bilhões. Portanto, o uso de produtos naturais tem sido
uma estratégia de sucesso na descoberta de novos medicamentos. Um fator importante
a ser considerado é a singularidade química associada aos produtos naturais que é
maior que em qualquer outra fonte: 40% dos produtos naturais publicados na base de
dados Dictionary of Natural Products não apresentam uma síntese química descrita.
4
Além disso, muitos produtos naturais são, relativamente, de baixa dimensão molecular (<
1000Da) e possuem propriedades semelhantes aos medicamentos, ou seja, podem ser
absorvidos e metabolizados.
4, 5
Freqüentemente, as substâncias naturais bioativas
2
ocorrem como parte de uma família de moléculas relacionadas podendo-se isolar
estruturas homólogas e obter informações sobre estrutura-atividade.
5
N
CH
3
HO
HO
O
CH
3
H
H
H
CH
3
OH
O
H
O
O
O
H
O
H
HO
H
OH
OH
H
OH
O
H
O
H
HO
H
OH
OH
H
OH
O
H
HO
H
HO
H
OH
OH
H
OH
CO
2
H
OH
1
N
CH
3
O
N
H
HO
O
O
N
N
2
3
45
CH
3
CH
3
O
HO O
H
3
C
O
O
6
NCH
3
CH
2
CO
O CH
3
N
O
H CO
2
H
N
N
O
H
OH
CO
2
H
HO
F
7
8
Contudo, o uso do potencial de plantas superiores como fonte de novos fármacos
é, ainda, pouco explorado.
2
Avalia-se que apenas 5 a 15% das aproximadamente
3
250.000 espécies de vegetais superiores tenham sido investigados com relação a
presença de substâncias bioativas.
6
A descoberta de novos fármacos é um processo complexo e interdisciplinar que
envolve áreas da química, farmacologia e medicina.
3
Neste processo três diferentes
abordagens são utilizadas: a tradicional, a empírica e a molecular.
5
O caminho a ser
escolhido depende dos objetivos de cada projeto sendo que estratégias diferentes podem
resultar em um medicamento fitoterápico ou em um componente ativo isolado.
2
A abordagem tradicional faz uso do material encontrado por tentativa e erro
através dos anos por diferentes culturas e sistemas de medicina.
5
Informações sobre
como a planta é usada por um grupo étnico são muito importantes. Assim como, o
preparo pode indicar qual o melhor método de extração, a formulação utilizada resulta em
informações sobre a atividade farmacológica, administração oral versus não-oral e indica
doses a serem testadas.
2
A abordagem empírica é construída pela compreensão dos processos fisiológicos
e, freqüentemente, desenvolve-se um agente terapêutico a partir de uma molécula
modelo de ocorrência natural.
5
A abordagem molecular, por sua vez, é baseada na disponibilidade ou
compreensão do alvo molecular relacionado ao agente medicinal. Com o
desenvolvimento de técnicas de biologia molecular e avanços na genômica, a grande
parte das novas fármacos são baseadas neste tipo de abordagem.
5
Entretanto, uma abordagem multidisciplinar abrangendo a geração de diversidade
molecular a partir de fontes naturais, associada a metodologias sintéticas combinatórias
ou totais, incluindo a manipulação das rotas biossintéticas, resulta em uma melhor
estratégia para o desenvolvimento e descoberta de fármacos.
7
Substâncias naturais podem, também, ser utilizadas como moléculas modelo,
permitindo o desenho e planejamento racional de novos fármacos (a maioria das classes
de fármacos disponíveis, atualmente, ou contem produtos naturais ou tem os mesmos
como modelo), assim como o desenvolvimento de sínteses biomiméticas e a descoberta
de novas propriedades terapêuticas que não foram ainda, atribuídas a substâncias
conhecidas.
2, 8
Síntese de produtos naturais
A síntese de produtos naturais teve seu início quando, em 1828, Friedrich Wöhler
sintetizou a uréia a partir do cianato de amônio. Hoje em dia, a síntese de produtos
4
naturais, tanto total quanto parcial (semi-síntese), é um importante campo de
investigação, pois compreende a geração de novos conhecimentos científicos e a
aplicação prática de metodologias já existentes.
O campo da síntese de produtos naturais tem sido reconhecido com o Prêmio
Nobel de Química com certa periodicidade ao longo da existência deste prêmio. Entre
estes prêmios podemos citar aqueles dados a:
E. Fischer, em 1902, pelo trabalho na síntese de açúcares e purinas;
H. Fischer, em 1930, por sua pesquisa sobre a constituição da haemina e
clorofila, especialmente, por sua síntese da haemina;
R. Robinson, em 1947, por suas investigações sobre produtos naturais de
importâncias biológica, especialmente os alcalóides;
R. B. Woodward, em 1965, por suas realizações em síntese orgânica; e
E. J. Corey, em 1990, pelo desenvolvimento de teoria e metodologia na área de
síntese orgânica.
9
A síntese de produtos naturais tem propiciado grande oportunidade para a
obtenção de moléculas, pequenas e simples, biologicamente ativas. Moléculas altamente
funcionalizadas de isolamento difícil ou que são produzidas na planta em pequenas
quantidades, podem ser obtidas em quantidades suficientes através de síntese para a
realização de estudos farmacológicos posteriores.
10
Além disso, a síntese de um produto
natural fornece prova irrefutável para a confirmação da estrutura proposta de substâncias
isoladas.
9
As indústrias farmacêuticas apresentam grande interesse pelo estudo da síntese
de produtos naturais. Neste contexto, o desenvolvimento destas sínteses está voltado
para a obtenção de rotas eficientes, com reduzido número de passos e usando matérias
primas de baixo custo, incluindo a preparação de análogos simples e produtos naturais
modificados quimicamente para serem comparados com seus originais naturais.
10
Com o intuito de otimizar as rotas sintéticas propostas para a obtenção de
produtos naturais, reações que ocorrem naturalmente têm sido imitadas in vitro
utilizando-se microrganismos, enzimas, cultura de tecidos e técnicas de biologia
molecular.
10
Abordagens biomiméticas também têm sido utilizadas na síntese de diversas
substâncias onde o número de passos é reduzido e o rendimento da síntese é maior.
11
5
Hipertensão arterial
A pressão arterial é a força ou tensão que o sangue exerce contra as paredes de
seus vasos. Esta força é gerada pelo coração em sua função de bombeamento e pode
ser modificada produzindo um aumento na tensão. A hipertensão é, na verdade, a
manifestação de um processo multifatorial, em cuja patologia estão implicados
numerosos fatores genéticos (isto é, uma série de defeitos genéticos diferentes onde
cada um tem a elevação da pressão arterial como uma das expressões fenotípicas) e
ambientais (ingestão de sal, obesidade, profissão e ingestão de álcool) que determinam
mudanças estruturais do sistema cardiovascular, produzindo o estímulo hipertensivo e
iniciando o dano cardiovascular.
12, 13
Quando se diz que uma pessoa tem hipertensão (ou “pressão alta”), significa que
sua pressão arterial média é maior que o limite superior da faixa aceita da normalidade.
14
Uma classificação comumente utilizada para qualificar a pressão arterial em adultos
maiores de dezoito anos e idosos é aquela apresentada na Tabela 1.
15
Inquéritos, de base populacional, realizados em algumas cidades brasileiras
apontam uma alta prevalência de hipertensão arterial. Utilizando-se como critério de
diagnóstico de hipertensão arterial valores iguais ou superiores a 140/90mmHg, as taxas
de prevalência na população urbana adulta brasileira em estudos selecionados variam de
22,3% a 43,9%,
16
sendo que esta prevalência aumenta com a idade (Figura 1).
15, 17
Os
indivíduos negros são afetados pela hipertensão cerca de duas vezes mais do que os
brancos e parecem ser mais vulneráveis às suas complicações.
15
Em mulheres a
prevalência está intimamente relacionada à idade ocorrendo um aumento substancial
após cinqüenta anos de idade (Figura 1), presumivelmente relacionado com as
mudanças hormonais da menopausa, embora o mecanismo não seja claro.
13
Tabela 1: Valores limite da pressão arterial.
Categoria Sistólica (mmHg) Diastólica (mmHg)
Normal < 130 < 85
Normal-alta 130 – 139 85 - 89
Hipertensão
6
Estágio 1 (leve) 140 – 159 90 – 99
Estágio 2 (moderada) 160 – 179 100 – 109
Estágio 3 (grave) 180 – 209 110 – 119
Estágio 4 (muito grave)
> 210 > 120
Fonte: 5º Relatório da Joint National Comitee on Detection Evaluation and Treatment of High Blood
Pressure.
Figura 1: Prevalência de hipertensão sistólica isolada por idade e sexo observada em
estudo realizado por Kannel e colaboradores.
17
Aproximadamente 90 a 95% de todas as pessoas hipertensas apresentam
“hipertensão essencial”. Esta expressão significa simplesmente que a pressão é de
origem desconhecida.
14, 18
Dos 5 a 10% restantes, a maior parte é secundária à doença
renal ou, com menor freqüência, à estenose da artéria renal, geralmente por uma placa
ateromatosa (placa focal elevada no interior da íntima do vaso com centro lipídico e uma
cápsula fibrosa).
15
Pode-se considerar a existência de três fatores determinantes para o
desenvolvimento da hipertensão arterial:
1. A predisposição hereditária;
2. Fatores ambientais, psicossociais, fatores nutritivos (consumo de cloreto de
sódio, cálcio, potássio e magnésio, excessiva ingestão calórica e alcoólica), cuja
importância vai depender da sensibilidade genética de cada indivíduo;
3. Adaptação da estrutura cardiovascular em resposta a elevação da tensão durante
o desenvolvimento da enfermidade.
12
7
A hipertensão arterial é um dos fatores de risco mais importantes para o
desenvolvimento das doenças cardiovasculares, explicando 40% das mortes por
acidente vascular encefálico e 25% daquelas doenças causadas por doença arterial
coronariana.
16
O tratamento da hipertensão
As diretrizes estabelecidas pela Organização Mundial da Saúde/Sociedade
Internacional de Hipertensão e pelo Comitê Nacional Norte-Americano concordam que a
hipertensão é um problema de saúde pública, devendo a mesma ser tratada
incondicionalmente sendo que o tratamento deve iniciar o mais cedo possível e continuar
por toda a vida do indivíduo.
19
Um dos componentes principais do tratamento de um paciente com hipertensão é
a decisão de qual fármaco a ser utilizado. Esta decisão deve ser tomada tendo como
base a melhor evidência disponível de eficácia, isto é, a capacidade que o fármaco
possui de prevenir efeitos adversos que são importantes para o paciente.
20
Porém, como
a maioria absoluta dos hipertensos apresenta hipertensão essencial – ou seja, a sua
causa é desconhecida – o tratamento é apenas sintomático.
18
A estratégia básica para o tratamento da hipertensão consiste, inicialmente, de
mudanças no estilo de vida seguido por monoterapia e, então, na maioria dos casos, por
tratamento combinado (Esquema 1). A manutenção do tratamento com o fármaco
escolhido, a substituição por outro fármaco ou a mudança para um tratamento combinado
deve ser determinada pela estratégia “espere-e-veja” baseado no freqüente registro da
pressão arterial e do monitoramento cuidadoso do paciente.
19
Cinco classes de medicamentos possuem sua eficácia anti-hipertensiva,
segurança e tolerância bem descritas. Estes fármacos são os diuréticos tiazídicos, β-
bloqueadores, inibidores da Enzima Conversora de Angiotensina (ECA), bloqueadores de
canais de cálcio e α
1
-bloqueadores (Quadro 1).
19
8
O uso de plantas medicinais no tratamento da hipertensão arterial
A partir de uma perspectiva histórica, a produção de medicamentos e o
tratamento farmacológico de doenças começaram com o uso de plantas medicinais. Até
1800, quando a medicina entrou na era científica, a medicina tradicional que se utilizava
das plantas era considerada inquestionável para todos os livros de farmacologia. Só com
o advento da chamada “ciência médica” é que a fitoterapia foi considerada uma
modalidade alternativa.
21
A hipertensão não é considerada indicação primária para fitoterapia. Todavia,
algumas medicações vegetais são adequadas como terapia de apoio em pacientes com
pressão sangüínea alta.
21
Assim, as plantas medicinais com indicação anti-hipertensiva
são recomendadas nos casos de hipertensão leve a moderada e seus mecanismos de
ação concentram-se em seu potencial vasodilatador.
Passo 1
Abordagem não-farmacológica – restrição de sódio, restrição de álcool, controle
de peso, controle de outros fatores de risco cardiovascular
Passo 2
Diurético ou β-bloqueador ou bloqueador de canal de cálcio ou inibidor da ECA
9
Esquema 1: Tratamento passo a passo da hipertensão sugerido pelas diretrizes do
Comitê Nacional Norte-Americano (1988). Pode-se considerar a terapia de passos
anteriores. Abordagens não-farmacológicas devem ser contínuas.
19
Quadro 1: Principais classes de medicamentos utilizados no tratamento da hipertensão,
seus mecanismos de ação e principais representantes.
Classe do medicamento Mecanismo de ação Fármaco
Diuréticos tiazídicos Vasodilatadores diretos. Hidroclorotiazida
β-bloqueadores
Reduzem o débito cardíaco, reduzem o
volume sistólico, reduzem a freqüência
Atenolol
Metoprolol
10
cardíaca, inibem a secreção de renina,
possuem efeito simpatomimético central,
estimulam a produção de cininas,
estimulam a liberação do peptídeo
natriurético atrial.
Inibidores da ECA Inibem a produção da Angiotensina II,
um potente vasoconstritor. Inibem o
sistema de degradação das bradicininas,
estimulando a biodisponibilidade de
prostaciclinas e óxido nítrico (NO) que
conferem propriedades vasodilatadoras
periféricas.
Captopril
Enalapril
Lisinopril
Ramipril
Bloqueadores de canais
de cálcio
Diminuem a contratilidade miocárdica e o
tônus da musculatura lisa, induzindo
vasodilatação e um certo efeito
depressor da ação cardíaca.
Nifedipina
Amlodipina
Nicardipina
α
1
-bloqueadores
Bloqueiam a ligação das catecolaminas
aos receptores α
1
pós-sinápticos inibindo
a vasoconstrição mediada por estes e
induzindo vasodilatação
Prazosina
Terazosina
Doxazosina
Algumas drogas vegetais utilizadas no tratamento anti-hipertensivo atuam sobre o
sistema nervoso central, produzindo excitação dos centros vasodilatadores bulbares.
Essas drogas são de difícil manejo terapêutico e nem sempre estão isentas de risco.
Outras drogas atuam a nível periférico sendo o seu uso terapêutico mais seguro. Elas
atuam sobre as células ganglionares ou sobre as terminações nervosas dos vasos,
gerando um efeito espasmolítico e miolítico sobre as fibras musculares lisas, os quais
11
conduzem a uma diminuição da resistência vascular periférica. Algumas drogas
vegetaisb utilizadas no tratamento da hipertensão são:
Rauvolfia serpentina (L.) Benth. Ex Kurz, Apocynaceae: O extrato total feito a
partir de suas raízes secas tem sido utilizado como fitoterápico no tratamento da
hipertensão. O extrato contem mais de cinqüenta alcalóides diferentes, dentre os
quais destaca-se a reserpina (9). A reserpina não é apenas um dos mais antigos
agentes anti-hipertensivos, como também, é um dos mais econômicos.
21
Este
alcalóide provoca uma diminuição dos neurotransmissores noradrenalina,
dopamina e 5-hidroxitriptamina. Devido a sua associação com efeitos colaterais
desagradáveis, como depressão, fadiga, impotência e entupimento nasal,
21
o uso
clínico da reserpina é obsoleto.
22
N
N
OCH
3
O
H
R
O
OCH
3
OCH
3
OCH
3
H
3
CO
R = -OCO
2
CH
3
9
Viscum album L., Viscaceae: As propriedades curativas desta droga são
conhecidas na medicina tradicional desde os tempos antigos, tendo sido utilizada
no tratamento de várias doenças tais como aterosclerose e hipertensão.
23
Estudo
realizado com extrato aquoso das folhas de V. album demonstra a atividade
vasodilatadora do mesmo. Supõe-se que esta ação resulte do aumento do óxido
nítrico (NO).
24
Veratrum album L., Liliaceae: Suas raízes apresentam alcalóides protoveratrinas
A e B e germitetrina B, que demonstraram atividade hipotensiva, sendo que a
protoveratrina B mostrou-se menos ativa que os outros dois.
25
Allium sativum L., Liliaceae: O alho tem sido utilizado na medicina popular por
mais de 4.000 anos.
26
Dentre os vários usos preconizados para esta droga pode-
se enfatizar o efeito anti-hipertensivo.
12
Estudos in vivo demonstraram que a administração de sete peptídeos
isolados do alho (Ser-Tyr, Gly-Tyr, Phe-Tyr, Asp-Tyr, Ser-Phe, Gly-Phe, Asp-Phe)
reduzem a pressão arterial de maneira similar ao captopril. A presença destes
peptídeos sugerem que estas moléculas simples podem ser responsáveis, ao
menos em parte, pelos efeitos anti-hipertensivos da droga.
27
Al-Qattan e seus colaboradores
28
estudaram o efeito anti-hipertensivo do
alho em ratos no modelo de hipertensão Goldblatt dois rins-um clip (2K-1C). Os
dados mostram um efeito anti-hipertensivo e uma diminuição do aumento da
pressão arterial que é típica da condição na qual realizou-se o ensaio. Observou-
se, pela aferição da pressão arterial no tratamento dos animais com múltiplas
doses (50mg/kg doses diárias por duas semanas), uma apreciável habilidade de
diminuir a da pressão arterial sistólica.
Estudos conduzidos com ratos alimentados com uma dieta rica em
colesterol revelam que os extratos aquosos de alho produzidos a partir de uma
preparação de alho padronizada (contendo 1,3% de alliina equivalente a 0,6% de
allicina) são capazes de reduzir a pressão arterial induzida por esta dieta a níveis
inferiores ao do grupo controle (dieta controle).
29
A allicina (10) é uma substância sulfurada derivada da ação da enzima
alliinase sob seu substrato, a alliina (11) (Esquema 2).
30
S
CO
2
O NH
3
S
S
O
alliinase
11
10
Esquema 2
Elkayam e colaboradores
31
observaram que a administração de allicina
em animais é capaz de reduzir a pressão arterial induzida pela dieta rica em
frutose.
No ano de 2003, Al-Qattan e colaboradores
32
realizaram novo estudo
sobre o efeito de extratos de alho na hipertensão induzida pelo modelo 2K-1C em
ratos. Os resultados demonstram uma redução significativa na pressão arterial
2
13
dos animais. Os demais achados sugerem que esta ação anti-hipertensiva do
alho neste modelo pode ser mediada, parcialmente, pela supressão da bomba
Na/H isoforma-1.
Crataegus oxycantha L., Rosaceae: Possui ação inotrópica e vasodilatadora.
Seus constituintes ativo são os flavonóides e as protocianidinas oligoméricas.
33
Olea europea L., Oleaceae: Estudos etnofarmacológicos realizados no Marrocos
Oriental e no sudeste do Marrocos relatam o uso popular desta droga no
tratamento da hipertensão.
34, 35
Carbamatos e tiocarbamatos isolados de Moringa oleifera
A Moringa oleifera Lam. (sinonímia Moringa pterygosperma Gaertn.) pertence à
famíliia monogenérica Moringaceae.
36
É uma árvore ornamental pequena de rápido
crescimento, distribuída pelas regiões tropicais da Ásia e África.
Todas as partes dessa árvore são utilizadas na medicina tradicional no
tratamento de doenças humanas.
37
Estudos biológicos feitos com os extratos de suas
várias partes demonstraram que a planta possui atividade hipotensiva, antimicrobiana,
antifertilidade, antiespasmódica, antiinflamatória, diurética,
38
anti-diarréica,
39
anti-úlcera,
40
hipocolesterolêmica, atividade hipolipidêmica e efeito anti-aterosclerótico associado a
perda de peso.
41
Dentre as muitas substâncias presentes nos extratos das folhas de Moringa
oleifera, foram isolados os carbamatos niazimina A (12); niazimina B (13);
38
(E) O-metil-4-
[(2’,3’,4’-tri-O-acetil-α-
L-ramnosiloxi)benzil] carbamato (14); (Z) O-metil-4-[(2’,3’,4’-tri-O-
acetil-α-
L-ramnosiloxi)benzil] carbamato (15); (E) O-etil-4-[2’,3’,4’-tri-O-acetil-α-L-
ramnosiloxi)benzil] carbamato (16); (E) O-metil-4-[4’-O-acetil-α-
L-ramnosiloxi)benzil]
carbamato (17),
42
sendo que os glicosídeos 12 e 13 são os primeiros exemplos de
produtos naturais glicosilados com a função carbamato. Desde que estes glicosídeos
foram detectados no extrato etanólico fresco das folhas, eles podem ser considerados
produtos naturais genuínos.
38
Sugere-se que a biogênese dos carbamatos possa ocorrer
através da hidrólise dos tiocarbamatos.
42
14
AcO
H
3
C
O
O
OR
2
R
3
O
N OR
1
O
H
R
4
O
H
3
C
O
O
OR
2
R
3
O
N OR
1
O
H
Também dos extratos das folhas foram isolados os tiocarbamatos niazicina A
(18); niazicina B (19);
38
niazinina A (20); niazinina B (21); niazimicina (22); niaziminina A
(23); niaziminina B (24);
43
O-etil-p-hidroxibenzeno carbamato (25);
36
(E) O-metil-4-
[(2’,3’,4’-tri-O-acetil-α-
L-ramnosiloxi)benzil] tiocarbamato (26); (Z) O-metil-4-[(2’,3’,4’-tri-O-
acetil-α-
L-ramnosiloxi)benzil] tiocarbamato (27); (Z) O-etil-4-[(2’,3’,4’-tri-O-acetil-α-L-
ramnosiloxi)benzil] tiocarbamato (28); (Z) O-etil-4-[(α-
L-ramnosiloxi)benzil] tiocarbamato
(29)
42
e a niazidina (30).
36
As substâncias 27 e 28 já haviam sido obtidas, anteriormente,
através da acetilação da niazinina e niazimicina, respectivamente. Acredita-se que os
glicosídeos tiocarbamatos possam ser sintetizados na planta pela adição de metanol ou
etanol ao isotiocianato presente na mesma.
42
R
4
O
H
3
C
O
O
OR
2
R
3
O
N OR
1
S
H
12: R
1
= Et; R
2
, R
3
= H
15: R
1
= Me; R
2
, R
3
=Ac
13: R
1
= Et; R
2
, R
3
= H; R
4
=Ac
14: R
1
= Me; R
2
, R
3
, R
4
=Ac
16: R
1
= Et; R
2
, R
3
, R
4
=Ac
17: R
1
= Me; R
2
, R
3
= H, R
4
=Ac
18: R
1
= Me; R
2
, R
3
= H; R
4
= Ac
20: R
1
= Me; R
2
, R
3
, R
4
= H
22: R
1
= Et; R
2
, R
3
, R
4
= H
23: R
1
= Et; R
2
, R
3
= H, R
4
=Ac
26: R
1
= Me; R
2
, R
3
, R
4
= Ac
30: R
1
= CN; R
2
, R
3
, R
4
= H
15
R
4
O
H
3
C
O
O
OR
2
R
3
O
N OR
1
S
H
HO
N O
O
H
25
Foram, ainda, encontradas nos extratos das folhas as nitrilas niazirina (31);
niazirinina (32)
39
e 4-etil[(2’,3’,4’-tri-O-acetil-α-L-ramnosiloxi)benzil] nitrila (33);
42
o 4-[(4’-
O-acetil-α-
L-ramnosiloxi)benzil] isotiocianato (34);
39
metil-15-cianopentadecanoato (35) e
o metil-1-aminopentasulfeto-5-sulfinato (36).
36
Supõe-se que a origem dos glicosídeos
nitrila é a degradação de glucosinolatos, os quais são versáteis progenitores dos cianetos
e isotiocianatos orgânicos. A substância 33 fora obtida, anteriormente, pela acetilação da
niazirina (31).
42
R
3
O
H
3
C
O
O
OR
1
R
2
O
N
AcO
H
3
C
O
O
OH
HO
N
C
H
3
C
O
O
(CH
2
)
12
35
S
S
SS
S
NH
2
OCH
3
S
O
36
34
S
N
19: R
1
= Me; R
2
, R
3
= H; R
4
= Ac
21: R
1
= Me; R
2
, R
3
, R
4
= H
24: R
1
= Et; R
2
, R
3
, R
4
= Ac
27: R
1
= Me; R
2
, R
3
, R
4
=Ac
28: R
1
= Et; R
2
, R
3
, R
4
= Ac
29: R
1
= Et; R
2
, R
3
, R
4
= H
31: R
1
, R
2
, R
3
= H
32: R
1
, R
2
= H; R
3
=Ac
33: R
1
, R
2
, R
3
=Ac
16
Estudos biológicos demonstraram que a administração intravenosa das
substâncias niazimina A (12), niazimina B (13), niazicina A (18) e niazicina B (19) levou a
uma diminuição, dose dependente, da pressão arterial sistólica, diastólica e média. Estas
substâncias produziram uma redução de 15 a 20% na pressão arterial média quando
comparadas ao controle quando administradas em uma dose de 1mg/kg e uma redução
de 35 a 40% foi observada na dose de 3mg/kg. Os resultados revelaram que tanto os
carbamatos (12 e 13) quanto os tiocarbamatos (18 e 19) são igualmente potentes como
agentes hipotensores, mostrando que tanto o grupo amida quanto o tioamida presentes
nestas moléculas são responsáveis pela atividade.
38
Resultados biológicos indicaram que, também, os tiocarbamatos niazinina A (20),
niazinina B (21) e niazimicina (22) são potentes agentes hipotensores. O efeito
hipotensor foi similar para estas substâncias. A uma dose de 1mg/kg, elas produziram
uma diminuição de 14 a 22% na pressão arterial quando comparado ao controle e uma
diminuição de 40 a 65% quando administrada uma dose de 3mg/kg.
43
Estudos realizados por Faizi e colaboradores demonstraram que os
tiocarbamatos niaziminina A (23) e B (24) e o isotiocianato (34) também demonstraram a
capacidade de diminuir a pressão arterial, enquanto as nitrilas niazirina (31) e niazirinina
(32), não apresentaram esta atividade mesmo em doses superiores a 5mg/kg.
39
O isomerismo observado nos carbamatos e tiocarbamatos, isolados de Moringa
oleifera, é raro. Observa-se uma diminuição na rotação da ligação simples (grupos RNH-
COR ou RNH-CSR) por um efeito mesomérico, a ligação simples N-C adquire certo
caráter de dupla ligação.
44
A diminuição da rotação livre da ligação N-C pode ser
observada pelas estruturas de ressonância do tiocarbamato 37 e 38, para os isômeros
trans – e 39 e 40 para os isômeros cis. A diferença de estereoquímica nestas substâncias
é confirmada pela diferença nos deslocamentos químicos dos hidrogênios do grupo NH
quando realizam-se as análises de RMN, em dimetil sulfóxido deuterado. O hidrogênio do
isômero trans (41) apresenta um
δ
de 9,5ppm, enquanto o hidrogênio do isômero cis (42)
possui um
δ
de, aproximadamente, 4,5ppm.
37
17
RH
2
C
N
S
H
OR
RH
2
C
N
S
H
OR
RH
2
C
N
OR
H
S
RH
2
C
N
OR
H
S
RH
2
C
N
S
H
OR
RH
2
C
N
OR
H
S
Glicosídeos com grupos acila
Diversos glicosídeos ocorrem na natureza com grupos acila, um grupo
relativamente raro de substâncias naturais, cujo principal representante entre seus
membros são os derivados do canferol 3-ramnosídeo, conhecidos como afzelinas (43).
Essas substâncias têm sido isoladas com maior freqüência nos últimos anos e, na sua
maioria, mostram atividades biológicas de interesse para a indústria farmacêutica. Além
do grupamento açúcar prover maior solubilidade em água para as substâncias, o grupo
acila deixa a substância mais lipofílica e por isso, acredita-se, que elas possam permear
37
38
39
40
41
42
E (trans)
Z (cis)
E (trans)
δ ~9,5
Z (cis)
δ ~4,5
18
com mais facilidade a membrana celular. Em seguida, ocorreria uma quebra enzimática,
revelando uma forma de substância biologicamente ativa.
OHO
OH O
O
OH
OH
O
OH
OH
OH
CH
3
43
Provavelmente, a substância com grupos acila de maior abundância na natureza
seja o tilirosídeo (44), um flavonóide primeiramente isolado em 1959 e o primeiro membro
deste grupo a ser sintetizado.
45
O
HO
OH
OH
OR
OHO
OH O
O
OH
44 R = p-cumaroila
R = glu-glu-p-cumaroila
Outro exemplo importante, onde a acilação parcial é crucial para a atividade
farmacológica, é o taxol (45) que contém um grupo benzoila cuja remoção resulta em
redução da sua atividade.
19
NHO
OH
O
H
3
C
O
O
O
OH
O
O
O
O
O
HO
45
Síntese dos constituintes ativos de Moringa oleifera
Em 1998, os pesquisadores alemães Leuck e Kunz
37
propuseram uma síntese
para os constituintes ativos, já identificados, do extrato das folhas de M. oleifera que
apresentam as funções nitrila, aldeído, carbamato e tiocarbamato. A síntese apresentada
está dividida em duas rotas distintas:
Rota A: as substâncias foram obtidas a partir da glicosilação do
ramnopiranosídeo com a hidroxila fenólica da porção aglicona
Rota B: a glicosilação foi obtida pela reação do ramnopiranosídeo e da 4-
hidroxibenzilamina protegida. Após deproteção, a amina resultante é convertida
no grupo funcional desejado.
Iniciou-se a síntese destes constituintes ativos pela formação de tioramnosídeo S-
pent-4-enila 46, intermediário para a glicosilação, correspondente a porção glicona da
molécula alvo. Desta maneira, reagindo-se a tetra-O-acetil-
L-ramnopiranose (47) com o
4-penteno-1-tiol (48), na presença de trifluoreto de boro, obteve-se 46 (Esquema 3).
AcO
H
3
C
OAc
O
OAc
AcO
SH
AcO
H
3
C
S
O
OAc
AcO
BF
3
.OEt
2
DCM
46
47 48
Esquema 3
20
Seguindo a rota A, a síntese das substâncias com funções nitrila (49) ou aldeído
(50) foi alcançada pela reação do ramnopiranosídeo 46 com 4-hidroxibenzonitrila (51) ou
anisaldeído (52), respectivamente, na presença de N-iodossuccinimida/ácido
trifluorometanossulfônico (Esquema 4). A remoção dos grupos acetila de 52 pela
transesterificação de Zemplen levou a formação do 4-(α-
L-ramnosiloxi)-benzaldeído (53).
AcO
H
3
C
S
O
OAc
AcO
HO
R
R
2
O
H
3
C
O
O
OR
2
R
2
O
R
1
NIS/TfOH
DCM, -40
o
C
46
51 R = CH
2
CN
52 R = CHO
49 R
1
= CH
2
CN, R
2
= Ac (78%)
50 R
1
= CHO, R
2
= Ac (62%)
53 R
1
= CHO, R
2
= H (75%)
Esquema 4
Para a síntese dos derivados tiocarbamatos, a porção aglicona tiocarbamato deve
ser construída primeiro (Esquema 5). Como material de partida foi utilizada a 4-
hidroxibenzonitrila (51). Sua hidroxila fenólica foi protegida como um éter alílico. Em dois
passos, a nitrila (54) foi reduzida resultando na amina (55), correspondente, a qual foi
tioacetilada. A remoção catalítica [Pd (0)] do éter alílico resultando na aglicona 56.
21
CN
OH
R-Br / NaH
DMF
CN
OR
1. LiAlH
4,
Et
2
O
2. DBU, CH
3
CN
N S
S
OEt
CH
3
X
OR
H
N
S
OEt
Pd(OAc)
2
/ PPh
3
HCO
2
H
THF
OH
H
N
S
OEt
51
54
55
56
Esquema 5
Com o intuito de evitar reações secundárias no grupo tiocarbonila durante a
glicosilação contendo um grupo ativador eletrofílico, a glicosilação de 56 foi realizada
com o tricloroacetimidato de ramnose (57) e quantidades catalíticas de trifluoreto de boro
(Esquema 6). Contudo, relatou-se que a formação do produto final, com todas as
hidroxilas do açúcar acetiladas 24 foi acompanhada pela formação de produtos
secundários não descritos.
AcO
H
3
C
O
O
OAc
AcO
CCl
3
NH
+ 56
BF
3
.OEt
2
DCM, - 20
o
C
AcO
H
3
C
O
O
OAc
AcO
N
H
S
OEt
57
24
Esquema 6
Tendo por objetivo evitar a formação dos produtos secundários citados acima, a
síntese dos ativos pela rota B iniciou-se pela obtenção da 4-benzilamina protegida (58) a
22
partir da redução da nitrila 54 e subseqüente introdução do grupo benziloxicarbonila e
remoção do grupo alila (Esquema 7). A glicosilação de 58 foi obtida utilizando-se N-
iodossuccinimida/ácido trifluorometanossulfônico resultando na ramnosiloxi-benzilamina
protegida 59. A acilação da amina desprotegida, obtida pela hidrogenólise do grupo
benziloxicarbonila, foi conseguida utilizando-se metil e etilcloroformato na presença de
1,8-diazobiciclo[5.4.0]undec-7-ene resultando no O-metilcarbamato 60 ou O-
etilcarbamato 61, respectivamente. A reação da amina desprotegida com o sal sódico
correspondente de O-alquil-S-carboximetil ditiocarbonato a temperaturas elevadas levou
a formação do O-metil tiocarbamato 62 e O-etil tiocarbamato 63. Quando submetidos a
transesterificação de Zemplen, os princípios ativos 62 e 63 resultaram na formação dos
produtos naturais niazinina (20) e niazimicina (22).
AcO
H
3
C
O
O
OAc
AcO
CN
OR
1. a) LiAlH
4
b) R-OSu / Na
2
CO
3
2. Pd(OAc)
2
/ PPh
3
/ HCO
2
H
OH
NHR
NHR
46
NIS / TfOH
-40
o
C
AcO
H
3
C
O
O
OAc
AcO
N
H
OR
O
1. H
2
-Pd
2. ClC(O)OR, DBU, DCM
R
2
O
H
3
C
O
O
OR
2
R
2
O
N
H
OR
1
S
1. H
2
-Pd
2. R
1
OC(S)SCH
2
CO
2
Na
DMF, 80
o
C
54
58
59
62 R
1
= CH
3
, R
2
= Ac (62%)
63 R
1
= CH
2
CH
3
, R
2
= Ac (65%)
20 R
1
= CH
3
, R
2
= H (93%)
22 R
1
= CH
2
CH
3
, R
2
= H (95%)
60 R = CH
3
(62%)
61 R = CH
2
CH
3
(67%)
Esquema 7
Os pesquisadores americanos Saleem e Meinwald, em 2000, propuseram uma
rota sintética para os tiocarbamatos niazinina A (21) e niazimicina(22)
46
sendo que o
primeiro passo envolveu a condensação da porção açúcar com a p-hidroxibenzonitrila
MeONa/MeOH
23
(64) resultando no glicosídeo 65 (Esquema 8). Em seguida, a nitrila foi reduzida a
benzilamina 66, a qual é convertida no isotiocianato 67. Finalmente, alcoolise de 67
resultou nos glicosídeos tiocarbamatos esperados 20 e 22.
A síntese idealizada por Leuck e Kunz
37
para os carbamatos isolados de M.
oleifera não levou em consideração as substituições encontradas na porção glicona
destas moléculas. Ao final da rota proposta obteve-se um análogo estrutural da niazimina
A (12), pois o resíduo de açúcar encontra-se acetilado nas posições 2, 3 e 4 ao invés de
apresentar apenas um grupo acetato. Saleem e Meinwald
46
concentraram seus esforços
na síntese de moléculas (niazinina 20 e niazimicina 22) que não apresentam subsituintes
na porção glicona. Portanto, propõe-se estudar uma alternativa para a síntese do
glicosídeo carbamato niazimina A (12) tendo como principal desafio obter a porção
glicona com apenas um grupo acetato ligado a C-4.
HO
H
3
C
OH
O
OH
HO
Ac
2
O/
piridina
15h
AcO
H
3
C
OAc
O
OAc
AcO
+
CN
OH
AcO
H
3
C
O
O
OAc
AcO
CN
HO
H
3
C
O
O
OH
HO
NH
2
HO
H
3
C
O
O
OH
HO
NCS
HO
H
3
C
O
O
OH
HO
N
H
OR
S
64
65
66
67
20 R = CH
3
22 R = CH
2
CH
3
ZnCl
2
160°C, 40min
NaBH
4
CF
3
COOH
CSCl
2
alcóxidos de
sódio
47
Esquema 8
24
OBJETIVOS
Objetivo geral
Propor uma rota sintética para a substância hipotensora niazimina A (12).
N
H
O
O
CH
3
AcO
H
3
C
O
O
OH
HO
12
Objetivos específicos
Sintetizar a porção aglicona ou genina a partir da 4-metoxibenzilamina (71).
Sintetizar a porção glicona a partir da
L-ramnose (74).
Condensar as porções aglicona e glicona, através de glicosilação, para obtenção
da niazimina A (12).
25
RESULTADOS E DISCUSSÃO
A proposta de uma síntese orgânica começa com a análise da molécula alvo. Os
grupos funcionais presentes na mesma são a chave para o problema. Sabe-se que para
a maioria dos grupos funcionais existem uma ou mais desconexões – um processo
imaginário, o reverso da reação química real, no qual uma ligação na molécula alvo é
quebrada resultando na estrutura de uma nova substância a partir do qual esta pode ser
feita.
47
Deste modo, analisando-se a estrutura da niazimina (12), propõe-se a
retrossíntese da mesma de acordo com o Esquema 9. Por seu um glicosídeo, a niazimina
poderia ser dividida em duas partes: a porção glicona e aglicona. A porção glicona
corresponderia a uma molécula de ramnose acetilada em C-4 que poderia ser sintetizada
a partir da acilação da
L-ramnose. A porção aglicona seria um carbamato que por sua
vez poderia ser feito pela reação de uma amina aromática e um haloformato de etila.
Desta maneira, pode-se dividir a síntese da niazimina em três etapas: síntese da porção
glicona, síntese da porção aglicona e reação de glicosilação.
AcO
H
3
C
OH
O
OH
HO
AcO
H
3
C
O
O
OH
HO
N O
O
H
HO
N O
O
H
HO
H
3
C
OH
O
OH
HO
HO
NH
2
O
O O
X O
O
Esquema 9
Síntese da porção aglicona
X = halogênio
26
A porção aglicona da niazimina (12) corresponde a um carbamato. Os
carbamatos são substâncias de grande interesse por sua importante aplicação como
intermediários para a síntese de pesticidas, fungicidas, herbicidas, fármacos, polímeros
baseados em poliuretano e como grupos protetores da função amina,
48-50
especialmente
na química de peptídeos.
51
Além disso, os carbamatos desempenham um papel
fundamental no desenho de fármacos como ésteres resistentes a hidrólise ou substitutos
de grupos fosfatos.
52
Inicialmente, estas substâncias eram preparadas a partir da reação de aminas
com fosgênio (Esquema 10) e seus derivados,
48, 53
porém este método deve ser evitado
pois agride a natureza, devido ao uso de reagentes tóxicos e resulta na formação de
produtos secundários. Atualmente, existem várias técnicas que utilizam reagentes não
tóxicos para a síntese destas substâncias.
48, 53
O uso de dialquilcarbonatos ou
cloroformatos (Esquema 10) representam uma boa alternativa sendo a formação de
produtos secundários restrita.
48, 49
R-OH
Cl Cl
O
O Cl
O
R
HCl
O Cl
O
R
2NH
3
O NH
2
O
R
NH
4
Cl
R'NCO R-OH
R' N
H
OR
O
"R N
H
OR
O
R"NH
2
Cl OR
O
Fosgênio:
Dialquilcarbonatos:
Cloroformatos:
Esquema 10
Sabe-se que a reação de aminas e cloroformatos é muito rápida e completa-se
dentro de minutos. Observou-se que a presença de grupos retiradores de elétrons na
amina suprime a reação. Já a reação com um substrato contendo grupos doadores e
retiradores de elétrons tem a velocidade diminuída imensamente.
51
Seguindo a análise retrossintética da molécula alvo (esquema 9), a 4-
metoxibenzilamina corresponde ao material de partida para a síntese da porção aglicona.
Devido a semelhança estrutural, disponibilidade e ao preço mais acessível resolveu-se
27
utilizar a p-anisidina (68) como um modelo de estudo da formação de intermediário
referente a porção aglicona da molécula alvo.
Por ser a formação do grupo carbamato o primeiro passo na síntese da porção
aglicona, reagiu-se a p-anisidina (68) com o cloroformato de etila em presença de piridina
(Esquema 11) resultando no 4-metoxifenilcarbamato de etila (69), com rendimento de
75%.
H
3
CO
NH
2
H
3
CO
H
N
O
O CH
3
cloroformato de etila/piridina
DCM, agitação, 2h
68
69
Esquema 11
A estrutura de 69 pode ser confirmada pela análise dos espectros de RMN
1
H e
RMN
13
C (Figuras 2 e 3; Tabelas 4 e 5, p. 63).
No espectro de RMN
1
H (Figura 2) observou-se a presença de um tripleto (J =
7,11Hz) em 1,28ppm e um quarteto em 4,19ppm (J = 7,10Hz), referentes aos hidrogênios
dos grupos CH
3
e CH
2
do carbamato, respectivamente. Estes mesmos grupos
apresentam sinais correspondentes no espectro de RMN
13
C (Figura 3) em 14,46ppm
(CH
3
) e 60,95ppm (CH
2
). Ainda no espectro de RMN
13
C (Figura 3), observou-se um sinal
em 155,75ppm referente à carbonila do grupo carbamato.
O multipleto em 6,82ppm no espectro de RMN
1
H (Figura 2) e os sinais em
114,09ppm; 120,67ppm; 131,06ppm e 154,08ppm presentes no espectro de RMN
13
C
(Figura 3) foram atribuídos ao anel aromático de 69. O singleto em 3,76ppm e o sinal em
55,36ppm presentes nos espectros de RMN
1
H (Figura 2) e RMN
13
C (Figura 3),
respectivamente, foram atribuídos ao grupo metoxila.
28
Figura 2: Espectro de RMN
1
H (400 MHz, CDCl
3
) do 4-metoxifenilcarbamato de etila
(69).
29
Figura 3: Espectro de RMN
13
C (100 MHz, CDCl
3
) do 4-metoxifenilcarbamato de etila
(69).
30
Para que o acoplamento entre as porções glicona e aglicona possa ser realizado
é necessário que o grupo hidroxila em 69 esteja livre. Uma possibilidade para a hidrólise
do grupo metoxila seria a reação com tribrometo de boro. O tribrometo de boro é
conhecido por ser um reagente efetivo na quebra de éteres metílicos aromáticos
54, 55
a
temperatura ambiente ou inferior.
54
A reação é realizada sob condições brandas sendo
que o uso de condições fortemente ácidas ou básicas ou condições redutoras podem ser
evitadas. Outra característica importante é a capacidade que o tribrometo de boro
apresenta de clivar éteres sem afetar grupos ésteres ou duplas ligações.
56
Assim, reagindo-se 69 com BBr
3
(Esquema 12), utilizando diclorometano anidro
como solvente, obteve-se o produto 4-hidroxifenilcarbamato de etila (70) com um
rendimento de 54%.
H
3
CO
H
N
O
O CH
3
BBr
3,
DCM
1. -78oC, 30min
2. TA, 24h
HO
H
N
O
O CH
3
69
70
Esquema 12
A ausência de sinais nos espectros de RMN
1
H e RMN
13
C (Figura 4; Tabela 6 e
7, p. 64 e 65) referentes ao grupo metoxila confirmaram a estrutura de 70.
Estabelecidos os passos para a obtenção do carbamato 70, reagiu-se a 4-
metoxibenzilamina (71) com o cloroformato de etila (Esquema 13), resultando no 4-
metoxibenzilcarbamato de etila (72) com um rendimento de 79%.
H
3
CO
N
H
O
O
H
3
CO
NH
2
cloroformato de etila/piridina
DCM, agitação, 2h
71
72
CH
3
Esquema 13
31
Figura 4: (a) Espectro de RMN
1
H (400 MHz, CDCl
3
) e (b) espectro de RMN
13
C (100
MHz, CDCl
3
)do 4-hidroxifenilcarbamato de etila (70).
Pela análise do espectro de RMN
1
H de 72 (Figura 5) pôde-se observar um
tripleto em 1,25ppm, um quarteto em 4,13ppm referentes aos grupos CH
3
e CH
2
do
(a)
(b
)
32
carbamato, respectivamente. Observou-se, também, a presença de dois dupletos –
6,87ppm e 7,22ppm – indicativos do anel aromático, um singleto em 3,79ppm referente
ao grupo metoxila e um dupleto em 4,28ppm atribuído ao CH
2
ligado ao nitrogênio. Pelo
espectro de correlação homonuclear (Figura 6) observa-se a correlação entre o tripleto
(1,25ppm) e o quarteto (4,13ppm) referentes ao grupo etila ligado ao grupo carbamato.
Notou-se também a correlação entre os hidrogênios do CH
2
benzílico (dupleto em
4,28ppm) e o hidrogênio do grupo NH (singleto largo em 5,24ppm). Observou-se também
o acoplamento entre os hidrogênios aromáticos, sinais em 6,87ppm e 7,22ppm.
Os sinais em 14,56ppm; 60,79ppm e 158,9ppm presentes no espectro de RMN
13
C (Figura 7) foram atribuídos aos carbonos dos grupos CH
3
, CH
2
e carbonila do grupo
carbamato de 72. Os sinais em 113,94ppm; 128,77ppm; 130,68ppm e 156,54ppm foram
atribuídos aos carbonos do anel aromático de 72 e os sinais em 44,40ppm e 55,19ppm
foram atribuídos aos grupos CH
2
e OCH
3
ligados a este anel, respectivamente.
Com o intuito de desproteger o grupo OH de 72 reagiu-se o mesmo com BBr
3
(Esquema 14) resultando na formação do 4-hidroxibenzilcarbamato de etila 73 com um
rendimento de 65%.
HO
N
H
O
O
H
3
CO
N
H
O
O
BBr3, DCM
1. -78oC, 30min
2. TA, 24h
72
73
CH
3
CH
3
Esquema 14
A clivagem do grupo metoxila pôde ser confirmada pela ausência dos sinais
correspondentes nos espectros de RMN
1
H e
13
C RMN (Figura 8) anteriormente
observados nos espectros de RMN de 72 em 3,79ppm e 55,19ppm, respectivamente.
33
Figura 5: Espectro de RMN
1
H (300 MHz, CDCl
3
) do 4-metoxibenzilcarbamato de etila
(72).
34
Figura 6: Espectro de correlação homonuclear (300 MHz, CDCl
3
) do 4-
metoxibenzilcarbamato de etila (72).
35
Figura 7: Espectro de RMN
13
C (75 MHz, CDCl
3
) do 4-metoxibenzilcarbamato de etila
(73).
36
Figura 8: (a) Espectro de RMN
1
H (300 MHz, CDCl
3
) e (b) espectro de RMN
13
C (75
MHz, CDCl
3
) do 4-hidroxibenzilcarbamato de etila (73).
Um fator valioso a ser considerado é o deslocamento químico observado para o
hidrogênio do grupo NH, pois é esta a característica que diferencia os isômeros cis e
trans do grupo carbamato. Nos espectros de
1
H RMN de 72 (Figura 5) e 73 (Figura 8)
(a)
(b
)
37
observa-se um singleto largo em 5,24ppm e 5,51ppm, respectivamente, correspondente
a este hidrogênio. Estes deslocamentos são característicos do isômero cis (Z), pois como
descrito por Leuck e Kunz
37
o hidrogênio do isômero cis apresenta um
δ
de 4,5ppm
enquanto o hidrogênio trans apresenta um
δ
de 9,5ppm, aproximadamente.
Desta maneira, a metodologia proposta mostrou-se eficiente para a síntese
correspondente a porção aglicona da molécula alvo.
Síntese da porção glicona
A porção glicona da substância niazimina A (12) apresenta apenas um grupo
acetato em C-4. Assim, faz-se necessário estabelecer reações de proteção e deproteção
das hidroxilas da
L-ramnose (74) de modo a obter um intermediário que resulte nesta
configuração particular, fato não observado na síntese proposta anteriormente para a
molécula em questão.
37
Esta estratégia de proteção/desproteção é, geralmente, utilizada
no decorrer das várias transformações de uma seqüência sintética, especialmente na
construção de moléculas polifuncionais tais como carboidratos e produtos naturais.
57
A primeira alternativa para a síntese do intermediário glicona seria a obtenção de
uma substância que apresenta um grupo acetato em C-4 enquanto as hidroxilas de C-1,
C-2 e C-3 estariam protegidas na forma de cloroacetato menos estável e que pode ser
removido em condições que preservam o grupo acetato, como demonstrado através do
Esquema 15.
Para atingir esse alvo, o primeiro passo na síntese da porção açúcar da molécula
foi a acetilação da
L-ramnose (74) (Esquema 16) com anidrido acético/piridina resultando
na formação do tetracetato de
L-ramnose (47).
38
HO
H
3
C
OH
O
OH
HO
AcO
H
3
C
OBn
O
OAc
AcO
AcO
H
3
C
OAc
O
OAc
AcO
AcO
H
3
C
OAcCl
O
OAcCl
ClAcO
AcO
H
3
C
OBn
O
O
O
74 47
75
76
77
Esquema 15
HO
H
3
C
OH
O
OH
HO
Ac
2
O/piridina
15h, TA
quant.
AcO
H
3
C
OAc
O
OAc
AcO
47
74
Esquema 16
Dados de RMN confirmaram a estrutura de 47. O espectro de RMN
1
H (Tabela
12, p. 67) mostrou um dupleto em 1,17ppm (J = 6,22Hz) referente a H-6. Em 3,89ppm
observou-se um multipleto correspondente a H-5. O sinal do hidrogênio 4 apresentou-se
na forma de um tripleto em 5,05ppm com uma constante de acoplamento igual a
10,01Hz. Dois dupletos duplos em 5,18ppm e 5,23ppm foram atribuídos a H-2 e H-3,
respectivamente. O sinal do hidrogênio do carbono anomérico aparece como um dupleto
em 5,94ppm. Os grupos metilas, presentes nos grupos acetato foram representados por
quatro singletos em 1,93ppm; 2,00ppm; 2,09ppm e 2,10ppm. No espectro de RMN
13
C
(Tabela 13, p. 67) foram observados sinais em 17,28ppm; 68,34ppm; 68,58ppm;
68,89ppm e 70,62ppm referentes a C-6, C-5, C-3, C-2 e C-4 do açúcar, respectivamente.
O carbono anomérico foi relacionado ao sinal em 90,57ppm. Os grupos acetato
Intermediário para
glicosilação
39
apresentaram-se como quatro sinais (20,43ppm; 20,53ppm; 20,61ppm e 20,76ppm)
referentes aos grupos metila e quatro sinais (169,66ppm; 169,70ppm; 169,91ppm e
170,12ppm) correspondentes às carbonilas.
As constantes de acoplamento dos hidrogênios do açúcar confirmaram a
estereoquímica da molécula: H-1 e H-2 são hidrogênios equatoriais tendo um J igual a
1,96Hz; H-3 e H-4 são hidrogênios axiais com um J de 10,01Hz sendo que H-5, também,
é um hidrogênio axial, pois acopla com H-4 com uma constante igual a 9,79Hz. Estas
inferências foram feitas com base em dados teóricos que indicam que hidrogênios
equatorial-equatorial (78) e hidrogênios axial-equatorial (79) acoplam com um J típico
entre 2 e 3Hz, e que hidrogênios axial-axial (80) possuem constantes de acoplamento
típicas entre 8 e 10Hz.
58, 59
H
H
H
H
H
H
78
J = 2 - 3Hz
79
J = 2 - 3Hz
80
J = 8 - 10Hz
A reação seguinte constituiu-se na substituição do éster (grupo acetila) ligado ao
carbono anomérico por um éter (éter benzílico). Os éteres benzílicos são comumente
empregados como grupos protetores temporários em carboidratos
60-62
devido a sua
estabilidade frente a condições ácidas e básicas e ao fato de serem quebrados sob
condições brandas.
63
É um grupo de natureza relativamente inerte podendo ser utilizado
para proteger um grupo hidroxila durante uma série de reações com posterior deproteção
sem ocorrerem migrações ou inversão de configuração. De interesse particular para a
química de carboidratos é a possibilidade de remoção deste éter benzílico sem a redução
do açúcar.
64
O açúcar tetracetilado 47 foi deixado reagir com álcool benzílico na presença de
trifluoreto de boro eterato (Esquema 17), de modo a produzir o tri-O-2,3,4-acetil-α-
L-
ramnopiranosídeo de benzila (75). O produto final de reação apresentou-se na forma de
um líquido viscoso claro que após repouso a temperatura ambiente resultou em um
sólido branco amorfo, com um rendimento de 50%.
40
AcO
H
3
C
OAc
O
OAc
AcO
AcO
H
3
C
O
O
OAc
AcO
álcool benzílico/
BF
3
.OEt
2
57h, TA
agitação
50%
75
47
Esquema 17
A estrutura da substância 75 foi confirmada por análises de RMN. A presença de
três sinais no espectro de RMN
1
H (Figura 9) em 1,99ppm; 2,05ppm e 2,14ppm e no
espectro de RMN
13
C (Figura 10) em 20,84ppm; 20,75ppm e 20,67ppm, referentes aos
grupos acetila indicam a substituição de um dos grupos acetila de 47. Observa-se no
espectro RMN
1
H (Figura 9) um multipleto, integrando para 5H, em 7,37ppm referente
aos hidrogênios aromáticos e dois dupletos em 4,72ppm e 4,57ppm referentes aos
hidrogênios metilênicos do grupamento benzila. A formaçãoo do éter benzílico na
molécula pôde ser confirmada, também, pela presença dos sinais de carbonos
aromáticos (136,65ppm; 128,5ppm e 127,99ppm) e carbono metilênico (66,56ppm) no
espectro de RMN
13
C (Figura 10). A substituição do éster pelo éter só foi possível devido
à configuração assumida pelos substituintes dos C1 e C2 (trans-diaxial) e pela maior
densidade de carga positiva apresentada por este carbono facilitando o ataque
nucleofílico.
Para manter somente um grupo acetila na posição 4 do açúcar foi necessária a
substituição dos grupos acetila das posições 2 e 3. O grupo escolhido para tal finalidade
foi o cetal, pois sabe-se que dentre as numerosas reações químicas envolvendo a função
álcool, a reação de cetalação é, no caso dos açúcares, amplamente empregada para fins
de proteção em sínteses multipasso.
65
41
Figura 9: Espectro de RMN
1
H (400 MHz, CDCl
3
) do tri-O-2,3,4-acetil-α-L-
ramnopiranosídeo de benzila (75).
42
Figura 10: Espectro de
RMN
13
C (100 MHz, CDCl
3
) do tri-O-2,3,4-acetil-α-L-
ramnopiranosídeo de benzila (75).
43
A reação de cetalação cíclica tradicional é realizada pelo tratamento do substrato
com um excesso de substâncias carbonílicas como acetona, acetaldeído, benzaldeído ou
por uma reação de “troca de cetal” com acetais como o 2,2-dimetoxipropano.
66
A
cetalação é, geralmente, conduzida na presença de catalisadores ácidos
67
sendo que os
ácidos minerais (ácido sulfúrico), a associação ácido sulfúrico/sulfato de cobre anidro
(agente desidratante) e ácidos de Lewis (cloreto de zinco) são os catalisadores de
escolha.
68
Normalmente, o procedimento de “troca de cetal” requer quantidades menores
de catalisadores ácidos
69
assim como possui um controle cinético enquanto a cetalação
direta (utilizando aldeídos e cetonas) tem controle termodinâmico.
69, 70
Eventualmete, um
equilíbrio pode ser atingido sendo que a composição da mistura de produtos é
determinada pelas energias relativas associadas aos vários acetais cíclicos que podem
ser formados. Preferencialmente, formam-se anéis dioxolano de cinco membros, pois são
estabilizados por um pequeno efeito gem-dimetil que permite uma melhor conformação
do anel, diminuído a tensão torsional. Cetais cíclicos de seis membros são, raramente
formados, pois há uma grande interação associada aos grupos alquila axiais em C-2 de
um anel 1,3-dioxano.
67
Baseado-se nos resultados em que Santos
71
obteve a formação de um cetal nas
hidroxilas 2 e 3 da ramnose quando esta apresentava proteção na hidroxila 1, que Evans
e Parrish
72
obtiveram como produto majoritário da reação de cetalação do metil-α-D-
manopiranosídeo a formação do 2,3-O-isopropilideno-α-
D-manopiranosídeo de metila, e
que Piskorz
73
e colaboradores conseguiram a desacetilação de um dissacarídeo sem a
perda do grupamento benzila, a substância 75 foi submetida à reação de Zemplen
(NaOMe/MeOH). O objetivo desta reação foi a retirada dos grupos acetila presentes nos
carbonos 2, 3 e 4 do ramnopiranosídeo formando o α-
L-ramnopiranosídeo de benzila, o
qual não foi isolado. Este produto foi, então, deixado reagir com acetona/H
2
SO
4
e, em
seguida, o grupo hidroxila livre de C-4 foi acetilado com anidrido acético/piridina
(Esquema 18). Este procedimento resultou na formação do 2,3-O-isopropilideno-4-O-
acetil-α-
L-ramnopiranosídeo de benzila (76) em um rendimento total de 50%.
Um fator importante a ser considerado para explicar o rendimento desta reação é
a neutralização do meio ao final da cetalação. Moravcová e colaboradores
68
relataram
que todas as tentativas de neutralizar o ácido sulfúrico utilizado como catalisador na
reação de cetalação, antes de realizar a reação de acetilação, resultaram na diminuição
44
da concentração da 1,2:3,5-di-O-isopropilideno-α-D-xilofuranose. Análises de CGL
demonstraram que a neutralização com carbonato de sódio sólido anidro resultou em
apenas 82,7% do xilofuranosídeo comparado aos 91% presentes originalmente na
mistura, sendo que os resultados com amônia aquosa e carbonato de bário foram menos
satisfatórios. Foi comprovado que mesmo quantidades ínfimas de água na mistura de
neutralização resultaram em um decréscimo no rendimento do xilofuranosídeo.
AcO
H
3
C
O
O
OAc
AcO
HO
H
3
C
O
O
OH
HO
HO
H
3
C
O
O
O
O
AcO
H
3
C
O
O
O
O
75
76
NaOMe
MeOH
acetona
H
2
SO
4
Ac
2
O/piridina
Esquema 18
O espectro de RMN
1
H de 76 (Figura 11; Tabela 16, p. 70) apresentou dois
singletos em 1,33ppm e 1,56ppm referentes aos grupos metila do cetal e um singleto em
2,09ppm correspondente ao grupo metila do acetato.
O espectro de RMN
13
C (Figura 12; Tabela 17, p. 70) mostrou apenas um sinal
(170,28ppm) referente ao carbono carbonílico do grupo acetila. A presença do grupo
cetal pode ser confirmado pelo sinal em 109,96ppm correspondente ao carbono
quaternário do cetal e pelos sinais em 27,78ppm e 26,62ppm referentes aos grupos
metila do isopropilideno.
A formação do isopropilideno ocorre, preferencialmente, nas posições 2 e 3 do
açúcar por ser esse um processo favorecido termodinamicamente.
74, 75
A formação de
cetais nas posições 3 e 4 do açúcar é um procedimento que requer a utilização de 1,2-
dicetonas.
50%
45
Figura 11: Espectro de RMN
1
H (400 MHz, CDCl
3
) de 2,3-O-isopropilideno-4-O-acetil-α-
L-ramnopiranosídeo de benzila (76).
46
Figura 12: Espectro de RMN
13
C (100 MHz, CDCl
3
) do 2,3-O-isopropilideno-4-O-acetil-α-
L-ramnopiranosídeo de benzila (76).
47
Figura 13: Espectro RMN
13
C acoplado (100 MHz, CDCl
3
) do 2,3-O-isopropilideno-4-O-
acetil-α-
L-ramnopiranosídeo de benzila (76).
Analisando-se o espectro de RMN
13
C acoplado (Figura 13), observa-se um
dupleto referente ao carbono anomérico sendo que a constante de acoplamento (J) igual
a 169,5Hz confirma a estereoquímica α. Carbonos anoméricos que estão na
48
configuração β apresentam deslocamentos químicos próximos de 82-83ppm e uma
constante de acoplamento J
C-1-H-1
de 158-160Hz.
76
O último passo para a obtenção do intermediário de glicosilação corresponderia a
substituição do éter benzílico em C-1 e do 2,3-O-isopropilideno pelo éster cloroacetato
(Esquema 15) restando um grupo acetato apenas em C-4. Duas abordagens diferentes
podem ser utilizadas para este fim. A primeira corresponde a reação de formação direta
do éster nas posições em questão. A segunda consiste na quebra dos grupos éter e cetal
para posterior formação do éster.
A quebra de uma ligação O-R com concomitante formação de uma ligação éster é
alcançada por uma reação conhecida por acetólise. O sistema mais utilizado é o anidrido
acético/ácido sulfúrico, sendo que os sistemas anidrido acético/ácido perclórico, anidrido
acético/cloreto de zinco ou anidrido trifluoroacético/ácido acético são utilizados com
menor freqüência. Todas estas espécies resultam na formação do íon acetílio [CH
3
CO]
+
,
o qual é a espécie reativa de todas as reações.
77
Esta metodologia torna-se válida para o
problema em questão a partir do conhecimento que os grupos isopropilideno são
removidos completamente quando anidrido acético/ácido sulfúrico são utilizados
77
e que
os éteres benzílicos são quebrados por anidrido acético na presença de ácido sulfúrico,
77-
79
ácido perclórico
77
ou cloreto de zinco.
80
No entanto, o anidrido acético não pode ser
utilizado pois levaria a formação de acetatos ao invés de cloroacetatos nas posições 1, 2
e 3 do açúcar, então substituiu-se o anidrido acético pelo anidrido cloroacético (Esquema
19). Porém, mesmo após várias tentativas e um período de até 46h não foi observado
consumo do material de partida.
AcO
H
3
C
OAcCl
O
OAcCl
ClAcO
AcO
H
3
C
OBn
O
O
O
anidrido cloroacético/
ácido cloroacético, H
2
SO
4
CH
3
CN, 46h, TA
76
77
Esquema 19
A segunda abordagem seria através da quebra do éter benzílico e do 2,3-O-
isopropilideno, para a liberação das hidroxilas e posterior formação do éster cloroacetato,
envolvendo duas metodologias distintas: uma capaz de realizar a quebra do éter e outra
para o rompimento do cetal.
49
Grupos cetais e acetais são suscetíveis à quebra em condições ácidas aquosas.
56
O tratamento de 76 com solução aquosa de ácido acético 80% (v/v)
81
a 60°C por 3h
resultou na formação de 4-O-acetil-α-
L-ramnopiranosídeo de benzila (81).
AcO
H
3
C
OBn
O
OH
HO
81
A hidrogenólise catalítica foi a metodologia escolhida para a quebra do éter
benzílico. A hidrogenólise de éteres benzílicos é uma reação branda e o rendimento dos
produtos é, geralmente, bom.
64, 82
Reações secundárias são mínimas e não interferem
com a maioria dos derivados de açúcar.
64
O paládio é o catalisador de escolha, embora o
Níquel de Raney possa ser utilizado com resultados satisfatórios.
64, 82, 83
A platina deve
ser evitada pois há uma redução no rendimento pela competição entre as reações de
hidrogenação do anel aromático e a quebra da ligação éter. O paládio tem sido utilizado
em muitas formas, porém o “paládio black”, o óxido de paládio e o paládio-carbono são
as formas mais empregadas na química de carboidratos.
64
Gás hidrogênio (H
2
),
84
ácido
fórmico,
63, 85
e formiato de amônio
63, 86
podem ser utilizados como fonte de hidrogênio nas
reações de hidrogenólise; contudo, quando o ácido fórmico é o doador de hidrogênio
uma grande quantidade de paládio deve ser usada (1g de Pd/C 10% para cada 0,2mmol
do substrato).
63
Vários solventes tem sido utilizados com catalisadores de paládio. Ácido
acético glacial, metanol, etanol, acetato de etila, tetraidrofurano e éter etílico podem ser
utilizados com sucesso.
64
Estudo realizado por Hawker e colaboradores
83
demonstraram
que o hexanol e o tetraidrofurano são os melhores solventes para éteres benzílicos
proporcionando altas velocidades de reação (25ml H
2
/min/0,1g de catalisador e 40ml
H
2
/min/0,1g de catalisador, respectivamente). O metanol, o qual é normalmente um bom
solvente para reações de hidrogenólise, mostrou baixa velocidade de reação (5ml
H
2
/min/0,1g de catalisador). A velocidade de hidrogenólise aumenta com o aumento da
temperatura,
83
entretanto éteres benzílicos sofrem hidrogenólise a temperaturas mais
baixas que outros éteres.
84
Para os sistemas O-benzílicos velocidades ideais podem ser
alcançadas a temperatura de 25°C ou inferior. Evidências mostram que altas pressões
50
tendem a diminuir a seletividade da hidrogenólise por aumentar a velocidade de reações
secundárias tal como a hidrogenação.
83
Utilizando-se formiato de amônio como fonte de hidrogênio e 76 como material de
partida não se observou consumo do material de partida quando a reação foi realizada a
temperatura ambiente (Tabela 2, entrada 1) ou sob refluxo (Tabela 2, entrada 2). Quando
se substituiu o formiato de amônio pelo gás hidrogênio, o material de partida (76) foi
consumido (Tabela 2, entrada 3) levando a formação do 4-O-acetil-α-
L-ramnopiranosídeo
de benzila (81). Modificando-se o solvente da reação (metanol para tetraidrofurano) e o
material de partida (76 para 81) (Tabela 2, entrada 4) não houve consumo do material de
partida.
A segunda abordagem proposta para a síntese do intermediário glicona
(Esquema 20) tem como principal característica a troca do grupo protetor éter benzílico
pelo éter metílico.
HO
H
3
C
OH
O
OH
HO
AcO
H
3
C
OCH
3
O
O
O
HO
H
3
C
OCH
3
O
OH
HO
AcO
H
3
C
OAcCl
O
OAcCl
ClAcO
74
82
83
77
Esquema 20
Tabela 2: Otimização da reação de hidrogenólise do éter benzílico de 76. Em todas as
reações foi utlizado Pd/C 10% como catalisador.
Intermediário para
glicosilação
51
Produto final
-
-
Benzil-4-acetil-α-L-
ramnopiranosídeo
-
Tempo (h)
24
4
48
24
Temperatura
TA
Refluxo
TA
TA
Solvente
Metanol
Metanol
Metanol
Tetraidrofurano
Fonte de
hidrogênio
Formiato de
amônio
Formiato de
amônio
Gás
hidrogênio
*
Gás
hidrogênio
**
Material de partida
Benzil-2,3-isopropilideno-4-acetil-α-
L-ramnopiranosídeo (0,16mmol)
Benzil-2,3-isopropilideno-4-acetil-α-
L-ramnopiranosídeo (0,3mmol)
Benzil-2,3-isopropilideno-4-acetil-α-
L-ramnopiranosídeo (0,1mmol)
Benzil-4-acetil-α-L-
ramnopiranosídeo (0,1mmol)
Entrada
1
2
3
4
*
Pressão = 60psi
**
Pressão = 21psi
O primeiro passo compreendeu a formação do éter metílico no C-1 da
L-ramnose
resultando no α-
L-ramnopiranosídeo de metila (82) (Esquema 21). Esta reação ocorre,
preferencialmente, em C-1 devido a configuração assumida pelos substituintes em C-1 e
C-2 (trans-diaxial) e pela maior densidade de carga positiva observada no mesmo, como
citado anteriormente.
52
HO
H
3
C
OH
O
OH
HO
HO
H
3
C
OCH
3
O
OH
HO
SOCl
2,
MeOH
refluxo, 72h
82
74
Esquema 21
A estrutura de 82 pôde ser confirmada pela análise do espectro de RMN
13
C
(Figura 14; Tabela 18, p. 71). Observou-se um sinal em 17,46ppm correspondente a C-6
do açúcar sendo que os sinais presentes em 68,07ppm; 70,72ppm; 71,40ppm e
72,60ppm referem-se a C-5, C-3, C-2 e C-4, respectivamente. O carbono anomérico
apresentou um sinal em 100,92ppm. A presença do grupo metoxila na molécula pôde ser
comprovada pelo sinal em 54,78ppm.
Em seguida, reagiu-se 82 com acetona/H
2
SO
4
e anidrido acético/piridina
(Esquema 22) resultando no 2,3-O-isopropilideno-4-O-acetil-α-
L-ramnopiranosídeo de
metila (83) com rendimemto de 50%.
AcO
H
3
C
OCH
3
O
O
O
HO
H
3
C
OCH
3
O
OH
HO
1. acetona/H
2
SO
4
4h, TA
2. Ac
2
O/piridina
15h, TA
83
82
Esquema 22
53
Figura 14: Espectro de RMN
13
C (50 MHz, CDCl
3
) do α-L-ramnopiranosídeo de metila
(82).
54
Pela análise dos espectros de RMN
1
H e RMN
13
C pôde-se confirmar a estrutura
do glicosídeo 82. No espectro de RMN
1
H (Figura 15) observou-se um singleto em
3,39ppm referente aos hidrogênios do grupo metoxila de C-1. A presença do
isopropilideno foi verificada pelos dois singletos (1,25ppm e 1,35ppm) no espectro de
RMN
1
H (Figura 15) e pelos sinais em 26,43ppm; 27,71ppm e 109,80ppm no espectro de
RMN
13
C (Figura 16) referentes às duas metilas e ao carbono quaternário do
isopropilideno, respectivamente. Os sinais em 21,08 ppm e 170,17ppm no espectro de
RMN
13
C (Figura 16) e o sinal em 2,10ppm no espectro de RMN
1
H (Figura 15)
evidenciam a presença do grupo acetila em C-4.
O passo final na obtenção do intermediário para glicosilação corresponderia a
substituição do grupo metoxila e do 2,3-O-isopropilideno pelo grupo cloroacetila
(Esquema 20).
Combinações de ácidos de Lewis e cloretos de ácidos carboxílicos ou anidridos
são capazes de converter éteres em ésteres.
87, 88
Benedetti e colaboradores
demonstraram a conversão de um açúcar metilado (84) em seu respectivo acetato (85),
com retenção de configuração, utilizando o sistema iodeto de zinco/anidrido acético.
87
O
OBz
OR
BzO
BzO
BzO
84 R = CH
3
85 R = Ac
A primeira reação foi realizada com 85 e anidrido cloroacético na presença de
ZnCl
2
(Tabela 3, entrada 1). Porém, as condições empregadas não foram as ideais, uma
vez que o ZnCl
2
não apresentou boa solubilidade em diclorometano. Deste modo, trocou-
se o diclorometano por acetonitrila (Tabela 3, entrada 2), o ZnCl
2
apresentou-se
completamente solúvel, tendo a solução adquirido aspecto límpido. Entretanto, após 72h
encontrava-se material de partida no meio reacional indicando que a reação é muito lenta
nestas condições. Na tentativa de acelerar a reação aumentou-se a temperatura do meio
(Tabela 3, entrada 3). Depois de 28h observou-se o consumo total do material de partida
caracterizando um significativo incremento na velocidade de reação.
55
Substituiu-se o catalisador, ZnCl
2
, pelo FeCl
3
(Tabela 3, entrada 4). A reação
apresentou-se muito mais rápida, pois nas mesmas condições de temperatura houve
uma diminuição significativa no tempo de reação.
Testou-se, também, a reação com cloreto de cloroacetila catalisada por ZnCl
2
(Tabela 3, entrada 7). Após 23h, encontrava-se material de partida no meio reacional.
Reação semelhante à acetólise, utilizando anidrido cloroacético/ácido
cloroacético/H
2
SO
4
(Tabela 3, entradas 5 e 6) foi testada. Contudo, depois de 21h o
material de partida não havia sido consumido por completo.
Todas as reações acima citadas levaram a formação dos mesmos produtos
majoritários em baixo rendimento (cerca de 30% produto final bruto). Sendo que os
mesmos não foram passíveis de separação por CCD preparativa, conseqüentemente,
não puderam ser identificados.
O sistema anidrido acético/FeCl
3
parece ser a metodologia mais promissora para
a substituição dos grupos metoxila e isopropilideno pelo cloroacetato, porém alguns
ajustes devem ser realizados com o intuito de reduzir a formação de produtos
secundários e aumentar o rendimento bruto da reação. A substituição do FeCl
3
pelo ZnI
87
pode ser um fator a ser testado para melhorar a performance da reação em questão.
Sistemas como HCl/surfactantes
89
e BF
3
.OEt
2
/NaI
90, 91
podem ser utilizados na
substituição dos grupos éter/cetal por hidroxilas, devendo o cloroacetato ser formado
posteriormente.
56
Figura 15: Espectro de RMN
1
H (400 MHz, CDCl
3
) do 2,3-O-isopropilideno-4-O-acetil-α-
L-ramnopiranosídeo de metila (83).
57
Figura 16: Espectro de RMN
13
C (100 MHz, CDCl
3
) do 2,3-O-isopropilideno-4-O-acetil-α-
L-ramnopiranosídeo de metila (83).
58
Tabela 3: Reações testadas com o intuito de substituir o éter metílico e o isopropilideno
do açúcar 83 por grupos éster cloroacetato.
Tempo (h)
23
72
28
3
21
21
23
Temperatura
TA
TA
60°C
55°C
TA
TA
TA
Solvente
DCM
CH
3
CN
CH
3
CN
CH
3
CN
CH
3
CN
CH
3
CN
DCM
Catalisador
ZnCl
2
(1,05mmol)
ZnCl
2
(1,05mmol)
ZnCl
2
(1,05mmol)
FeCl
3
(0,19mmol)
H
2
SO
4
H
2
SO
4
ZnCl
2
(0,07mmol)
Reagentes
Anidrido cloroacético (1,33mmol)
Anidrido cloroacético (1,33mmol)
Anidrido cloroacético (1,33mmol)
Anidrido cloroacético (1,33mmol)
Anidrido cloroacético/ácido
cloroacético 1:1 (p/p)
Anidrido cloroacético/ácido
cloroacético 2:1 (p/p)
Cloreto de cloroacetila
(1,33mmol)
MP (mmol)
0,38
0,38
0,38
0,38
0,69
0,93
0,38
Entrada
1
2
3
4
5
6
7
CONCLUSÃO
59
Uma rota para a obtenção da niazimina A (12), através de dois intermediários,
seguido de glicosilação foi proposta.
A porção aglicona da molécula alvo (4-hidroxibenzilcarmato de etila 73) foi
sintetizada a partir da 4-metoxibenzilamina em duas reações. A primeira compreendeu a
formação do grupo carbamato utilizando-se o cloroformato de etila e a segunda reação
foi realizada em presença de BBr
3
com o intuito de obter a hidroxila em C-4, para realizar
a glicosilação.
PERSPECTIVAS FUTURAS
O intermediário 1,2,3-O-cloroacetil-4-O-acetil-α-
L-ramnopiranose, referente a
porção glicona, não foi obtido após várias tentativas. Uma outra possibilidade para
60
alcançar este substância poderia ser através de reações do 2,3-O-isopropilideno-4-O-
acetil-α-
L-ramnopiranosídeo de metila com anidrido cloroacético/ZnI
87
ou sistemas como
HCl/surfactantes
89
e BF
3
.OEt
2
/NaI
90, 91
que poderiam ser utilizados na substituição dos
grupos éter/cetal por hidroxilas seguido da formação dos grupos cloroacetato nas
posições 1, 2 e 3 do açúcar.
Obtidos os intermediários, a reação de glicosilação poderá ser realizada através
de reação catalisada por BF
3
.OEt
2
(esquema 23) conforme demonstrado por Santos
71
que obteve o 4-O-cloroacetil-2,3-O-diacetil-α-
L-ramnopiranosídeo de fenila, com um
rendimento de 91%, a partir de fenol e 1,2,3-O-triacetil-4-cloroacetil-α-
L-ramnopiranose.
+
HO
N
H
O
O
CH
3
O
N
H
O
O
CH
3
AcO
H
3
C
OAcCl
O
OAcCl
ClAcO
AcO
H
3
C
O
OH
HO
AcO
H
3
C
OCH
3
O
O
O
1. BF
3
OEt
2
2. tioureia
Niazimina A
61
EXPERIMENTAL
As cromatografias em camada delgada foram realizadas em placas de sílica
Merck com Kieselgel 60 (F
254
), pré-ativadas. A visualização foi feita pela aspersão de
solução de ácido fosfomolíbdico 10%, seguida de aquecimento a 100ºC. Utilizou-se
Kieselgel 60 (230 - 400 mesh) da Merck para a realização das cromatografias em coluna.
Solventes e reagentes foram purificados quando necessário usando métodos
padrões.
92
Unidades e símbolos foram baseados no Sistema Internacional de Unidades (SI).
A nomenclatura dos açúcares foi feita de acordo com as Regras para Nomenclatura de
Carboidratos.
93
Os espectros de Ressonância Magnética Nuclear foram realizados em
espectrômetro Bruker a 400MHz/200MHz dos Departamentos de Química e Bioquímica
da Universidade Federal do Paraná e no espectrômetro Varian INOVA-300 de 300MHz
da Universidade de Manchester. A posição da linha e o centro dos multipletos são dados
em escala de deslocamento químico tendo como referência o tetrametilsilano (TMS) para
os espectros de RMN
1
H e o clorofórmio deuterado para os espectros de RMN
13
C. As
multiplicidades, os tipos de hidrogênios e as constantes de acoplamento estão indicadas
no texto.
62
4-Metoxifenilcarbamato de etila (69)
H
3
CO
H
N
O
O CH
3
F.M.:C
10
H
13
NO
3
M.M.: 195,16g
A uma solução de p-anisidina 68 (24,36mmol) em diclorometano (10ml) e piridina
(6ml) adicionou-se cloroformato de etila (48,72mmol) gota-a-gota. Esta solução
permaneceu sob agitação, a temperatura ambiente, por duas horas e depois foi tratada
com excesso de solução de carbonato de sódio a 5% (p/v). A fase orgânica foi separada
e lavada com solução de ácido clorídrico 5% (v/v), água deionizada e, então, secada com
sulfato de sódio anidro. Destilação sob pressão reduzida do solvente resultou no produto
final. Rendimento: 75%.
Tabela 4: Dados de RMN
1
H (CDCl
3
, 400MHz) de 4-
metoxifenilcarbamato de etila (69)
Hidrogênio
δ
(ppm)
Multiplicidade J (Hz)
CH
3
1,28 t 7,10
CH
2
4,19 q 7,10
Aromáticos 6,82 m -
OCH
3
3,76 s -
NH 7,1-7,2 m -
Tabela 5: Dados de RMN
13
C (CDCl
3
, 100MHz) de 4-
metoxifenilcarbamato de etila (69)
Carbono
δ
(ppm)
CH
3
14,46
CH
2
60,95
CO 155,75
Aromáticos 154,07/131,05/
120,67/114,09
OCH
3
55,36
4-Hidroxifenilcarbamato de etila (70)
63
HO
H
N
O
O CH
3
F.M.: C
9
H
11
NO
3
M.M.: 181,16g
A uma solução de 4-metoxifeniluretano (36,9mmol) em diclorometano (100ml),
em banho de gelo a -78°C, adicionou-se tribrometo de boro (62,7mmol) gota a gota. A
mistura permaneceu sob agitação a esta temperatura por 30min. Em seguida, foi deixado
reagir por 24h à temperatura ambiente. Adicionou-se, gota a gota, excesso de solução
saturada de bicarbonato de sódio. Após a separação das fases, a fase orgânica foi
lavada com água, secada com sulfato de sódio anidro e o solvente destilado até a secura
sob pressão reduzida obtendo-se, assim, o derivado 70. Rendimento: 54%.
Tabela 6: Dados de RMN
1
H (CDCl
3
, 400MHz) de 4-
hidroxifenilcarbamato de etila (70)
Hidrogênio
δ
(ppm)
Multiplicidade J (Hz)
CH
3
1,30 t 7,11
CH
2
4,21 q 7,11
Aromáticos 6,76 m -
Tabela 7: Dados de RMN
13
C (CDCl
3
, 100MHz) de 4-
hidroxifenilcarbamato de etila (70)
Carbono
δ
(ppm)
CH
3
14,57
CH
2
61,22
CO 152,12
Aromáticos 115,73/121,24/
122,03/130,31
64
4-Metoxibenzilcarbamato (72)
H
3
CO
N
H
O
O
CH
3
F.M.: C
11
H
15
NO
3
M.M.: 209,16g
Em uma solução de 4-metoxibenzilamina (71) (8,21mmol) em diclorometano (2ml)
e piridina (2ml) foi adicionado gota-a-gota cloroformato de etila (2,2eq). A mistura foi
deixada em agitação por duas horas à TA e depois tratada com excesso de solução
saturada de bicarbonato de sódio. A fase orgânica foi separada e lavada com ácido
clorídrico diluído 5% (v/v), secada e o solvente destilado em rotavapor, obtendo-se 72.
Rendimento: 79%
Tabela 8: Dados de RMN
1
H (CDCl
3
, 300MHz) de 4-
metoxibenzilcarbamato de etila (72).
Hidrogênio
δ
(ppm)
Multiplicidade J (Hz)
ArH 7,22 d 8,0
ArH 6,87 d 8,0
NH 5,24 sl -
CH
2
N 4,28 d 6,0
CH
2
4,13 q 7,0
OCH
3
3,79 s -
CH
3
1,25 t 7,0
Tabela 9: Dados de RMN
13
C (CDCl
3
, 75MHz) de 4-
metoxibenzilcarbamato de etila (72)
Carbono
δ
(ppm)
CH
3
14,56
CH
2
N 44,40
OCH
3
55,19
CH
2
60,79
Aromáticos 113,94/128,77/
130,68/156,54
Carbonila 158,90
4-Hidroxibenzilcarbamato de etila (73)
65
HO
N
H
O
O
CH
3
F.M.: C
10
H
11
NO
3
M.M.: 195,16g
Em uma solução de 72 em diclorometano anidro a -78°C (banho de gelo seco em
acetona) foi adicionado gota-a-gota tribrometo de boro (1,6eq) na forma de solução
1mol/l em DCM. A mistura foi agitada por 30min a -78°C e então deixada aquecer até TA
e depois permaneceu sob agitação por 24h. Após este período foi adicionado excesso de
solução saturada de bicarbonato de sódio. A fase orgânica foi separada e lavada com
água, seca com sulfato de sódio anidro e o solvente removido em rotavapor obtendo-se,
assim, 73. Rendimento: 65%.
Tabela 10: Dados de RMN
1
H (CDCl
3
, 300MHz) de 4-
hidroxibenzilcarbamato de etila (73).
Hidrogênio
δ
(ppm)
Multiplicidade J (Hz)
ArH 7,77 d 8,0
ArH 6,82 d 8,0
NH 5,51 sl -
CH
2
N 4,26 d 6,0
CH
2
4,14 q 7,0
CH
3
1,24 t 7,0
OH 8,02 sl -
Tabela 11: Dados de RMN
13
C (CDCl
3
, 75MHz) de 4-
metoxibenzilcarbamato de etila (73)
Carbono
δ
(ppm)
CH
3
14,49
CH
2
N 44,43
CH
2
61,16
Aromáticos 115,47/128,83/129,87
Carbonila 155,50
66
Tetracetato de L-ramnose (47)
AcO
H
3
C
OAc
O
OAc
AcO
F.M.: C
14
H
20
O
9
M.M.: 332,30g
A
L-ramnose (74) foi tratada com anidrido acético (10ml/g) e piridina (5ml/g) por
15h. Após destilação sob pressão reduzida, o resíduo foi solubilizado em clorofórmio. A
solução foi lavada com solução de ácido clorídrico 5% (v/v), seguida de lavagem com
água deionizada, secagem com sulfato de sódio anidro e filtração através de coluna de
alumina desativada. O produto tetracetilado 47 foi obtido após remoção do solvente sob
pressão reduzida. Rendimento: quantitativo.
Tabela 12: Dados de
1
H RMN (CDCl
3
, 400MHz) de tetracetato de
L-ramnose (47).
Hidrogênio
δ
(ppm)
Multiplicidade J (Hz)
1 5,94 d 1,96
2 5,18 dd 1,96/3,2
3 5,23 dd 3,2/10,01
4 5,05 t 10,01
5 3,89 m -
6 1,17 d 6,22
4x COCH
3
1,93/2,00/
2,09/2,10
s -
Tabela 13: Dados de RMN
13
C (CDCl
3
, 100MHz) de tetracetato
de
L-ramnose (47)
Carbono
δ
(ppm)
1 90,57
2 68,89
3 68,58
4 70,62
5 68,34
6 17,28
CH
3
dos acetatos 20,43/20,53/
20,61/20,76
CO dos acetatos 169,66/169,70/
169,91/170,12
67
Tri-O-2,3,4-acetil-L-ramnopiranosídeo de benzila (75)
AcO
H
3
C
O
O
OAc
AcO
F.M.: C
19
H
24
O
8
M.M.: 380,39g
O açúcar 47 (27,6mmol) foi solubilizado em diclorometano anidro. Em seguida,
foram acrescentados o trifluoreto de boro eterato (55,2mmol) e álcool benzílico
(35,88mmol). A mistura reacional permaneceu sob agitação constante ao abrigo da luz
por um período de 57h. A solução foi lavada com solução saturada de bicarbonato de
sódio e água deionizada. Após a lavagem, a fase orgânica foi secada com sulfato de
sódio anidro e solvente removido sob pressão reduzida resultando no produto 75.
Rendimento: 50%.
Tabela 14: Dados de RMN
1
H (CDCl
3
, 400MHz) de tri-O-2,3,4-
acetil-
L-ramnopiranosídeo de benzila (75)
Hidrogênio
δ
(ppm)
Multiplicidade J (Hz)
1 4,83 d 1,58
2 5,31 dd 1,58 / 3,49
3 5,36 dd 3,49 / 9,90
4 5,1 t 9,90
5 3,92 dq 6,25 / 9,90
6 1,22 d 6,25
7a 4,72 d 11,97
7b 4,57 d 11,97
Aromáticos 7,37 m -
COCH
3
1,99 / 2,05 / 2,14 s -
Tabela 15: Dados de RMN
13
C (CDCl
3
, 100MHz) de tri-O-2,3,4-
acetil-
L-ramnopiranosídeo de benzila (75)
68
Carbono
δ
(ppm)
1 96,71
2 69,94
3 69,52
4 71,19
5 69,23
6 17,368
7 66,56
Aromáticos 136,65 / 128,5 / 127,99
Carbonilas 170,03 / 169,95 / 169,90
Metilas das
acetilas
20,84 / 20,75 / 20,67
2,3-O-Isopropilideno-4-O-acetil-α-
L-ramnopiranosídeo de benzila (76)
AcO
H
3
C
O
O
O
O
F.M.: C
18
H
24
O
6
M.M.: 337g
O açúcar 75 (5,26mmol) foi dissolvido em uma solução de metóxido de sódio
(0,1mol/l) em metanol e deixado à TA por duas horas. Em seguida, dióxido de carbono
em excesso foi adicionado à mistura e a solução destilada até a secura sob pressão
reduzida.
Adicionou-se ao resíduo acetona (50ml) e ácido sulfúrico concentrado (1mmol). A
mistura reacional foi agitada por quatro horas à TA. O meio foi, então, neutralizado com
hidróxido de amônio concentrado. O precipitado formado foi separado por filtração a
vácuo. O filtrado foi secado com sulfato de sódio anidro e o solvente removido sob
pressão reduzida.
Ao resíduo presente no balão foi adicionado piridina (10ml) e anidrido acético
(1,3ml). A mistura permaneceu em repouso por um período de 12h. Após a destilação
sob pressão reduzida, o resíduo foi solubilizado em clorofórmio. A solução foi lavada com
solução de ácido clorídrico 5% (v/v), seguida de lavagem com água deionizada, secagem
com sulfato de sódio anidro e filtração através de coluna de alumina desativada. O
produto acetilado foi obtido por destilação sob pressão reduzida. Rendimento: 50%.
69
Tabela 16: Dados de RMN
1
H (CDCl
3
, 400MHz) de 2,3-O-
Isopropilideno-4-O-acetil-α-
L-ramnopiranosídeo de benzila (76)
Hidrogênio
δ
(ppm)
Multiplicidade J (Hz)
5 3,80 dq 6,32 / 10,13
6 1,16 d 6,32
7a 4,53 d 11,77
7b 4,71 d 11,77
Aromáticos 7,37 m -
COCH
3
2,09 s -
CH
3
(cetal) 1,33 / 1,56 s -
Tabela 17: Dados de RMN
13
C (CDCl
3
, 100MHz) de 2,3-O-
Isopropilideno-4-O-acetil-α-
L-ramnopiranosídeo de benzila (76)
Carbono
δ
(ppm)
1 96,39
2 75,92
3 76,15
4 64,28
5 69,47
6 17,03
7 74,69
C aromáticos 137,22/128,26/128,71
C cetal 109,96
Metilas do cetal 27,78/26,62
C carbonílico 170,28
Metila da acetila 21,15
α-
L-Ramnpiranosídeo de metila (82)
HO
H
3
C
OCH
3
O
OH
HO
F.M.: C
7
H
14
O
5
70
M.M.: 178g
A uma solução de
L-ramnose (74) (61 mmol) em metanol (100ml) adicionou-se
cloreto de tionila (183 mmol). A mistura permaneceu sob refluxo por 72h. Após
resfriamento, a solução foi neutralizada com bicarbonato de sódio e o solvente destilado
até a secura sob pressão reduzida. O resíduo foi suspenso em uma mistura
metanol/acetato de etila 1:1 e filtrado em sílica. O solvente foi, então, removido até a
secura resultando no produto. Rendimento: 50%.
Tabela 18: Dados de RMN
13
C (CDCl
3
, 100MHz) de α-L-
ramnopiranosídeo de metila (82)
Carbono
δ
(ppm)
1 100,92
2 71,40
3 70,72
4 72,60
5 68,07
6 17,46
OCH
3
54,78
2,3-O-Isopropilideno-4-O-acetil-α-
L-ramnopiranosídeo de metila (83)
AcO
H
3
C
OCH
3
O
O
O
F.M.: C
11
H
20
O
6
M.M.: 260,15g
Ao açúcar 82 (28,1mmol) adicionou-se acetona (40ml) e ácido sulfúrico
concentrado (0,7mmol). A mistura permaneceu sob agitação por um período de 4h à TA.
Em seguida, o meio foi basificado com hidróxido de amônio concentrado. O precipitado
formado foi separado por filtração a vácuo. O filtrado foi, então, secado com sulfato de
sódio anidro e destilado até a secura sob pressão reduzida.
Piridina (10ml) e anidrido acético (4,5ml) foram adicionados ao líquido viscoso
resultante. A solução permaneceu em repouso por 15h. Após remoção do solvente em
rotavapor, o resíduo foi solubilizado em clorofórmio. A nova solução foi lavada com
solução de ácido clorídrico 5% (v/v), água deionizada e secada com sulfato e sódio
71
anidro. Após filtração por coluna de alumina desativada, destilou-se o solvente sob
pressão reduzida obtendo-se o material acetilado. Rendimento: 57%.
Tabela 19: Dados de RMN
1
H (CDCl
3
, 400MHz) de 2,3-O-
isopropilideno-4-O-acetil-α-
L-ramnopiranosídeo de metila (83)
Hidrogênio
δ
(ppm)
Multiplicidade J (Hz)
2 4,15 dd -
3 4,86 dd 7,24/10,16
5 3,71 dq 6,32/10,16
6 1,17 d 6,32
OCH
3
3,39 s -
C(CH
3
)
2
1,25/1,35 s -
COCH
3
2,10 s -
Tabela 20: Dados de RMN
13
C (CDCl
3
, 100MHz) de 2,3-O-
isopropilideno-4-O-acetil-α-
L-ramnopiranosídeo de metila (83)
Carbono
δ
(ppm)
1 98,04
2 75,76
3 74,49
4 75,88
5 63,86
6 17,00
OCH
3
55,00
C cetal 109,80
Metilas cetal 26,43/27,71
C carbonílico 170,17
Metila acetato 21,08
72
REFERÊNCIAS
1. Newman, D., Cragg, G. & Snader, K. The influence of natural products upon drug
discovery. Natural Products Report 17, 215-234 (2000).
2. Rates, S. Plants as source of drugs. Toxicon 39, 603-613 (2001).
3. Butler, M. The role of natural product chemistry in drug discovery. Journal of
Natural Products 67, 2141-2153 (2004).
4. Harvey, A. Strategies for discovering drugs from previously unexplored natural
products. Drug Discovery Today 5, 294-300 (2000).
5. Harvey, A. Medicines from nature: are natural products still relevant to drug
discovery? Trends in Pharmacological Sciences 20, 196-198 (1999).
6. Cragg, G., Newman, D. & Snader, K. Natural products in drug discovery and
development. Journal of Natural Products 60, 52-60 (1997).
7. Newman, D., Cragg, G. & Snader, K. Natural products as sources of new drugs
over the period 1981-2002. Journal of Natural Products 66, 1022-1037 (2003).
8. Tulp, M. & Bohlin, L. Functional versus chemical diversity: is biodiversity important
for drug discovery. Trends in Pharmacological Sciences 23, 225-231 (2002).
9. Nicolaou, K. The art and science of constructing the molecules of nature.
Proceedings of the National Academy of Sciences 101, 11928 (2004).
10. 154, C. F. S. in Bioactive Compounds from Plants 242 (Wiley, Chichester, 1990).
11. Santos, C. A. M. 146 (University of Manchester, Manchester, 1991).
12. Machuca, M. & Parras, M. 1-61 (Espai Gràfic Anagrafic, Granada, 2002).
13. Williams, G. H. in Harrison Medicina Interna (eds. Braunwald, E. et al.) 1495-1511
(McGraw Hill, Rio de Janeiro, 2002).
14. Guyton, A. C. & Hall, J. E. Fisiologia humana e mecanismos das doenças.
(Guanabara Koogan, Rio de Janeiro, 1998).
15. Schoen, F. J. & Cotran, R. S. in Patologia estrutural e funcional (eds. Cotran, R.
S., Kumar, V. & Collins, T.) 441 - 485 (Guanabara Koogan, Rio de Janeiro, 2000).
16. Arterial, S. B. d. H. 1-31 (Campos do Jordão, 2002).
17. Smulyan, H. & Safar, M. E. Systolic blood pressure revisited. Journal of the
American College of Cardiology 29, 1407-1413 (1997).
73
18. Pang, P. K. T., Benishin, C., Lewanczuk, R. & Shan, J. Problems in the use of
herbal and natural substances, with a specific example concerning the
cardiovascular system. Clinical and Experimental Pharmacology and Physiology
29, 731-734 (2002).
19. Mancia, G., Mangoni, A. A., Failla, M. & Rivolta, M. R. Guidelines for the treatment
of hypertension: a commentary. Current Therapeutic Research 57, 3-15 (1996).
20. Wright, J. M., Lee, C. H. & Chambers, G. K. Systematic review of antihypertensive
therapies: does the evidence assist in choosing a first-line drug? Canadian
Journal Association Journal 161, 25-32 (1999).
21. Schulz, V., Hansel, R. & Tyler, V. E. Fitoterapia Racional - Um guia de fitoterapia
para as ciências da saúde (Editora Manole, Barueri, 2002).
22. Rang, H. P., Dale, M. M., Ritter, J. M. & Moore, P. K. Farmacologia (Elsevier
Editora, Rio de Janeiro, 2003).
23. Deliorman, D. et al. Studies on the vascular effects of the fractions and phenolic
compounds isolated from Viscum album ssp. album. Journal of
Ethnopharmacology 72, 323-329 (2000).
24. Tenorio, F., del Valle, L., González, A. & Pastelin, G. Vasodilator activity of the
aqueous extract of Viscum album. Fitoterapia 76, 204-209 (2005).
25. Nash, H. & Brooker, R. Hypotensive alkaloids from Veratrum album protoveratrine
A, protoveratrine B and germitetrine B. Journal of the American Chemical Society
75, 1942-1948 (1953).
26. Ali, M., Thomson, M. & Afzal, M. Garlic and onions: their effect on eicosanoid
metabolism and its clinical relevance. Prostaglandins, Leukotrienes and Essential
Fatty Acids 62, 55-73 (2000).
27. Suetsuna, K. Isolation and characterization of angiotensin I-converting enzyme of
inhibitor dipeptides derived from Allium sativum L (garlic). Journal of Nutrition and
Biochemistry 9, 415-419 (1998).
28. Al-Qattan, K., Alnaqeeb, M. & Ali, M. The antihypertensive effect of garlic (Allium
sativum) in the rat two-kidney - one-clip Goldblatt model. Journal of
Ethnopharmacology 66, 217-222 (1999).
29. Ali, M., Al-Qattan, K., Al-Enezi, F., Khanafer, R. & Mustafa, T. Effect of allicin from
garlic powder on serum lipids and blood pressure in rats fed with a high
cholesterol diet. Prostaglandins, Leukotrienes and Essential Fatty Acids 62, 253-
259 (2000).
30. Pantoja, C., Martin, N., Norris, B. & Contreras, C. Purification and bioassays of a
diuretic and natriuretic fraction from garlic (Allium sativum). Journal of
Ethnopharmacology 70, 35-40 (2000).
74
31. Elkayam, A. et al. The effects of allicin and enalapril in fructose-induced
hyperinsulinemic hyperlipidemic hypertensive rats. American Journal of
Hypertension 14, 377-381 (2001).
32. Al-Qattan, K., Khan, I., Alnaqeeb, M. & Ali, M. Mechanism of garlic (Allium
sativum) induced reduction of hypertension in 2K-1C rats: a possible mediation of
Na/H exchanger isoform-1. Prostaglandins, Leukotrienes and Essential Fatty
Acids 69, 217-222 (2003).
33. Valli, G. & Giardina, E.-G. Benefits, adverse effects and drug interactions of herbal
therapies with cardiovascular effects. Journal of the American College of
Cardiology 39, 1083-1095 (2002).
34. Eddouks, M., Maghrani, M., Lemhadri, A., Ouahidi, M.-L. & Jouad, H.
Ethnopharcological survey of medicinal plants used for the treatment of diabetes
mellitus, hypertension and cardiac diseases in the south-east region of Morocco
(Tafilalet). Journal of Ethnopharmacology 82, 97-103 (2002).
35. Ziyyat, A. et al. Phytotherapy of hypertension and diabetes in oriental Morocco.
Journal of Ethnopharmacology 58, 45-54 (1997).
36. Faizi, S., Siddiqui, B. S., Saleem, R., Noor, F. & Husnain, S. Isolation and
structure elucidation of a novel glycoside niazidin from the pods of Moringa
oleifera. Journal of Natural Products 60, 1317-1321 (1997).
37. Leuck, M. & Kunz, H. Synthesis of active principles from the leaves of Moringa
oleifera using S-pent-4-enyl thioglycosides. Carbohydrate Research 312, 33-44
(1998).
38. Faizi, S. et al. Novel hypotensive agents, niazimin A, niazimin B, niazicin A and
niazicin B from Moringa oleifera: isolation of first naturally occurring carbamates.
Journal of the Chemical Society - Perkin Transactions 1, 3035-3040 (1994).
39. Faizi, S., Siddiqui, B. S., Saleem, R., Siddiqui, S. & Aftab, K. Isolation and
structure elucidation of new nitrile and mustard oil glycosides from Moringa
oleifera and their effect on blood pressure,. Journal of Natural Products 57, 1256-
1261 (1994).
40. Siddhuraju, P. & Becker, K. Antioxidant properties of various solvent extracts of
total phenolic constituents from three agroclimatic origins of drumstick tree
(Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry 51,
2144-2155 (2003).
41. Mehta, L. K., Balaraman, R., Amin, A. H., Bafna, P. A. & Gulati, O. D. Effect of
fruits of Moringa oleifera on the lipid profile of normal and hypercholesterolaemic
rabbits. Journal of Ethnopharmacology 86, 191-195 (2003).
42. Faizi, S. et al. Fully acetylated carbamate and hypotensive thiocarbamate
glycosides from Moringa oleifera. Phytochemistry 38, 957-963 (1995).
75
43. Faizi, S. et al. Isolation and structure elucidation of novel hypotensive agents,
niazinin A, niazinin B, niazimicin and niaziminin A + B from Moringa oleifera: the
first naturally occuring thiocarbamates. Journal of the Chemical Society - Perkin
Transactions 1, 3237-3241 (1992).
44. Smith, M. B. & March, J. March's advanced organic chemistry: reactions,
mechanisms and structure. (John Wiley & Sons, New York, 2001).
45. Vermes, B., Chari, V. M. & Wagner, H. Structure elucidation and synthesis of
flavonol acylglycosides. The synthesis of tiliroside. Helvetica Chimica Acta 64,
1964-1967 (1981).
46. Saleem, R. & Meinwald, J. Synthesis of novel hypotensive aromatic thiocarbamate
glycosides. Journal of the Chemical Society - Perkin Transactions 1, 391-394
(2000).
47. Warren, S. Designing Organic Syntheses (John Wiley & Sons, Chichester, 1978).
48. Curini, M., Epifano, F., Maltese, F. & Rosati, O. Carbamate synthesis from amines
and dimethyl carbonate under ytterbium triflate catalysis. Tetrahedron Letters 43,
4895-4897 (2002).
49. Knölker, H. J. & Braxmeier, T. Synthesis of carbamates by DMAP-catalysed
reactio of amines with di-tert-butyldicarbonate and alcohols. Tetrahedron Letters
37, 5861-5864 (1996).
50. Srivastava, R., Manju, M. D., Srinivas, D. & Ratnasamy, P. Phosgene-free
synthesis of carbamates over zeolite-based catalysts. Catalysis Letters 97, 41-47
(2004).
51. Yadav, J. S., Reddy, G. S., Reddy, M. M. & Meshram, H. M. Zinc promoted simple
and convenient synthesis of carbamates: an easy access for amino group
protection. Tetrahedron Letters 39, 3259-3262 (1998).
52. Mormeneo, D., Llebaria, A. & Delgado, A. A practical synthesis of carbamates
using an 'in-situ' generated polymer-supported chloroformate. Tetrahedron Letters
45, 6831-6834 (2004).
53. Vauthey, I., Valot, F., Gozzi, C., Fache, F. & Lemaire, M. An evironmentally
benign acess to carbamates and ureas. Tetrahedron Letters 41, 6347-6350
(2000).
54. McOmie, J. F. W., Watts, M. L. & West, D. E. Demethylation of aryl methyl ethers
by boron tribromide. Tetrahedron Letters 24, 2289-2292 (1968).
55. Press, J. B. Deethylation of aryl ethyl ethers by boron tribromide. Synthetic
Communications 9, 407-410 (1979).
56. Bhatt, M. V. & Kulkarni. Cleavage of ethers. Synthesis, 249-282 (1983).
76
57. Mohammadpoor-Baltork, I., Aliyan, H. & Khosropour, A. R. Bismuth(III) salts as
convenient and efficient catalysts for the selective acetylation and benzoylation of
alcohols and phenols. Tetrahedron 57, 5851-5854 (2001).
58. Silverstein, R. M. & Webster, F. X. Identificação Espectroscópica de Compostos
Orgânicos (Livros Técnicos e Científicos Editora, Rio de Janeiro, 2000).
59. Williams, D. H. & Fleming, I. Spectroscopic Methods in Organic Chemistry
(McGraw-Hill, Berkshire, 1995).
60. Caddick, S., McCarroll, A. J. & Sandham, D. A. A convenient and pratical method
for the selective benzoylation of primary hydroxyl groups using microwave
heating. Tetrahedron 57, 6305-6310 (2001).
61. Chen, F. E. et al. A novel and efficient method for the oxidative removal of O-
benzyl protective groups of carbohydrates by tetrabutylammonium
peroxydisulfate. Synlett 5, 627-628 (2000).
62. Polat, T. & Linhardt, R. J. Zinc triflate-benzoyl bromide: a verstile reagent for the
conversion of ether into benzoate protecting groups and ether glycosides into
glycosyl bromides. Carbohydrate Research 338, 447-449 (2003).
63. Bieg, T. & Szeja, W. Removal of O-benzyl protective groups by catalitic transfer
hydrogenation. Synthesis, 76-77 (1985).
64. McCloskey, C. M. Benzyl ethers of sugars. Advanced Carbohydrate Chemistry 12,
137-153 (1957).
65. Porwanski, S. et al. Regioselectivity in acid- or base-catalysed acetalation of
sucrose: selection of [OH-2, OH-3] or [OH-4, OH-6] diols. Topics in Catalysis 13,
335-338 (2000).
66. Araki, Y., Hijioka, Y., Ishido, Y. & Sato, T. Acetalation of some sugar derivates by
enol acetates with catalysis by boron trifluoride-red mercuric oxide. Carbohydrate
Research 64, 309-314 (1978).
67. Chittenden, G. J. F. Some aspects of the reaction of glycerol with 2,2-
dimethoxypropane. Carbohydrate Research 121, 316-323 (1983).
68. Moravcová, J., Capková, J. & Stanek, J. One-pot synthesis of 1,2-O-
isopropilidene-a-
D-xylofuranose. Carbohydrate Research 263, 61-66 (1994).
69. Cortes-Garcia, R., Hough, L. & Richardson, A. C. Acetalation of sucrose by acetal
exchange with concomitant fission of the glycosidic bond. Some new acetals of
D-
glucose and methyl-a-
D-fructofuranoside. Journal of the Chemical Society - Perkin
Transactions 1 1, 3176-3181 (1981).
70. Chittenden, G. J. F. Isopropylidenation of D-mannitol under neutral conditions.
Carbohydrate Research 87, 219-226 (1980).
77
71. Santos, C. A. M. in Departamento de Farmácia 76 (Universidade do Paraná,
Curitiba, 1998).
72. Evans, M. E. & Parrish, F. W. Monomolar acetalations of methyl a-D-mannosides -
Synthesis of methyl a-
D-talopyranoside. Carbohydrate Research 54, 105-114
(1977).
73. Piskorz, C. F., Abbas, S. A. & Matta, K. L. Synthetic mucin fragments: benzyl-2-
acetamido-6-O-(2-acetamido-2-deoxy-b-
D-glucopyranosyl)-2-deoxy-3-O-b-D-
galactopyranosyl-a-
D-galactopyranoside and benzyl-2-acetamido-6-O-(2-
acetamido-2-deoxy-b-
D-glucopyranosyl)-3-O-[6-O-(2-acetamido-2-deoxy-b-D-
glucopyranosyl)-b-
D-galactopyranosyl]-2-deoxy-a-D-galactopyranoside.
Carbohydrate Research 126, 115-124 (1984).
74. Chittenden, G. J. F. Some aspects of the isopropylidenation of D-glucitol inder
neutral conditions. Carbohydrate Research 108, 81-87 (1982).
75. Kuszmann, J. & Sohár, P. Acetalations of D-glucitol: 2,3:5,6-di-O-isopropilidene-D-
glucitol. Carbohydrate Research 74, 187-197 (1979).
76. Prata, C., Mora, N., Lacombe, J. M., Maurizis, J. C. & Pucci, B. Synthesis and
surface-active properties of glycosyl carbamates and thioureas. Carbohydrate
Research 321, 4-14 (1999).
77. Guthrie, R. D. & McCarthy, J. F. Acetolysis. Advanced Carbohydrate Chemistry
22, 11-23 (1967).
78. Allerton, R. & Fletcher Jr, H. The acetolysis of some carbohydrate benzyl ethers.
Journal of the American Chemical Society 76, 1757-1760 (1954).
79. Sakai, J. I., Takeda, T. & Ogihara, Y. Selective acetolysis of benzyl ethers of
methyl
D-glucopyranosides. Carbohydrate Research 95, 125-131 (1981).
80. Yang, G., Ding, X. & Kong, F. Selective 6-O-debenzylation of mono- and
dissacharide derivatives using ZnCl
2
-Ac
2
O-HOAc. Tetrahedron Letters 38, 6725-
6728 (1997).
81. Matta, K. L., Rana, S. S. & Abbas, S. A. Synthesis of 2-acetamido-2-deoxy-6-O-b-
D-galactopyranosyl-D-galactopyranose and o-nitrophenyl 2-acetamido-2-deoxy-6-
O-b-
D-galactopyranosyl-a-D-galactopiranoside. Carbohydrate Research 131, 265-
272 (1984).
82. Hartung, W. H. & Simonoff, R. Hydrogenolysis of benzyl groups attached to
oxygen, nitrogen, or sulfur. Organic Reactions 7, 263-273 (1953).
83. Hawker, S., Bhatti, M. A. & Griffin, K. G. The removal of protecting groups by
catalytic hydrogenation. Chimica Oggi 10, 49-51 (1992).
78
84. Van Duzee, E. M. & Adkins, H. Hydrogenation and hydrogenolysis of ethers.
Journal of the American Chemical Society 57, 147-151 (1935).
85. ElAmin, B., Anantharamaiah, G. M., Royer, G. P. & Means, G. E. Removal of
benzyl-type protecting groups from peptides by catalytic transfer hydrogenation
with formic acid. Journal of Organic Chemistry 44, 3442-3444 (1979).
86. Bieg, T. & Szeja, W. Regioselecyive hydrogenolysis of benzyl glycosides.
Carbohydrate Research 205, c10-c11 (1990).
87. Benedetti, M. O. V., Monteagudo, E. S. & Burton, G. Improved procedure for the
cleavage of alkyl and benzyl ethers with zinc iodide. Journal of Chemical
Research (Synopses), 248-249 (1990).
88. Ganem, B. & Small Jr, V. R. Ferric chloride in acetic anhydride. A mild and
versatile reagente for the cleavage of ethers. Journal of Organic Chemistry 39,
3728-3730 (1974).
89. Jursic, B. Cleavage of ethers with aqueous hydrochoric acid in presence of
surfactants. Journal of Chemical Research (Synopses), 284-285 (1989).
90. Mandal, A. K., Soni, N. R. & Ratnam, K. R. Boron trifluoride etherate/iodide ion as
a mild, convenient and regioselective ether cleaving reagent. Synthesis, 274-275
(1985).
91. Vankar, Y. D. & Rao, C. T. Selective cleavage of benzyl ethers using the boron
trifluoride-ether and sodium iodide reagent system. Journal of Chemical Research
(Synopses), 232-233 (1985).
92. Armarego, W. L. F. & Perrin, D. D. Purification of Laboratory Chemicals
(Butterworth-Heinemann, Oxford, 2000).
93. Rules of carbohydrate nomenclature. Journal of Organic Chemistry 28, 281-291
(1963).
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo