Download PDF
ads:
Lilian Gomes Afonso
ESTRUTURA TEMPORAL E ESPACIAL DE COMUNIDADES DE
ANUROS EM RIACHOS DE MATA NA RPPN SERRA DO CARAÇA
(CATAS ALTAS, MINAS GERAIS)
Orientadora: Dra. Paula Cabral Eterovick
Dissertação apresentada ao Programa
de Pós-Graduação em Zoologia de
Vertebrados da Pontifícia Universidade
Católica de Minas Gerais como parte
dos requisitos necessários à obtenção
do título de mestre em Zoologia de
Vertebrados
Belo Horizonte
2005
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
2
ÍNDICE
Agradecimentos ……………………………………………………….......…… 4
Introdução geral ……………………………………………………….......…… 6
Bibliografia …………………………………………………………..…….10
Capítulo 1
– Spatial and temporal distribution of anuran amphibians in streams at
the RPPN Serra do Caraça, southeastern Brazil........................................................15
Resumo ……………………………………………….……………....16
Abstract ................................................................................................ 17
Introduction ...............................................................................................18
Study site ................................................................................................20
Methods ...............................................................................................22
Results ...............................................................................................24
Discussion ................................................................................................29
Acknowledgements ................................................................................................34
References ................................................................................................35
Capítulo 2
– Microhabitat choice and partitioning by anurans in forest streams in
southeastern Brazil ………………………………………………………….…....41
Resumo ...................................................................................................42
Abstract .................................................................................................43
Introduction .................................................................................................44
ads:
3
Study site ..................................................................................................45
Methods ...................................................................................................47
Results ....................................................................................................51
Discussion ...................................................................................................55
Acknowledgements ..................................................................................................59
References ..................................................................................................60
Appendix ...................................................................................................64
Conclusões gerais ...................................................................................................65
4
Agradecimentos
Um agradecimento especial aos meus adoráveis pais e ao meu irmão que sempre me
apoiaram em tudo que precisei e em tudo que quis fazer. Muito obrigada pelos momentos
de carinho e pela alegria com as minhas vitórias!!!
A minha orientadora Paula Cabral Eterovick pela dedicação, carinho, incentivo,
amizade e pelos momentos divertidos que passamos no campo. Obrigada de coração!!!
A inesquecível Luciana Barreto Nascimento por ter me ensinando tanto sobre os
“sapinhos” e pelo carinho com que sempre me tratou.
A Katia e Milena pela ótima companhia no campo e pelas constantes brincadeiras o
que tornou o trabalho muito mais divertido. Adorei conhecer vocês.
Aos amigos do Laboratório de Ecologia Evolutiva de Anfíbios e Répteis:
Arquimedes, Camilinha, Carlos, Izabela e Paulinho pela ajuda nos trabalhos de campo e
pela diversão garantida. Valeu!!!
Aos amigos que fiz no Setor de Herpetologia do Museu de Ciências Naturais da
PUC/MG: Emiliane (Mimi), Pedro, Filipe, Rafael (Piu-Piu), Bruno, Breno, Conrado,
Daniel, Mauro, Alexandre, Débora e Laura.
Ao pessoal da RPPN Serra do Cara que sempre nos receberam e trataram com
tanto carinho: Padre lio, as meninas da recepção, as cozinheiras pela maravilhosa
comida, a bióloga Consuelo Paganini por ter facilitado a realização do trabalho e em
especial ao Daniel pelas conversas nas noites mais frias tomando um chá e comendo
pipoca.
5
Ao Gustavo pelas constantes conversas e ajuda dedicada. Obrigada pela paciência,
pelo companheirismo e pelo incentivo de sempre o que contribuiu muito para o meu
crescimento profissional e pessoal. Muito obrigada!
Aos meus grandes amigos Tati, Marcílio, Luciana, Cassius e Fernanda por serem
pessoas tão especiais e verdadeiras.
Ao Rafael pelo incentivo e amizade.
Ao Joaquim (Quincas) pela confecção dos mapas.
Ao Fundo de Incentivo a Pesquisa (Fip) da Pontifícia Universidade Católica de
Minas Gerais pelo auxílio financeiro nos trabalhos de campo.
Ao Ibama pela licença concedida de nº 128/2004 para trabalhar na RPPN Serra do
Caraça.
6
Introdução geral
Comunidades são agrupamentos de espécies moldados por interações bióticas
(Pianka 1973) que coexistem no espo e no tempo (Begon et al. 1996). O principal
objetivo de estudos de ecologia de comunidades é identificar como os fatores abióticos e
bióticos determinam a distribuição e abundância das espécies (Norton 1991).
A coexistência de espécies em uma taxocenose é possibilitada, dentre outros fatores,
pela partição de recursos disponíveis no ambiente (Blair 1961, Duellman e Pyles 1983,
Aichinger 1987, Cardoso et al. 1989, Haddad e Sazima 1992, Pombal 1997, Eterovick e
Sazima 2000, Eterovick e Barros 2003), que é determinada tanto pelos fatores ecológicos
quanto históricos, uma vez que espécies relacionadas filogeneticamente costumam
apresentar os mesmos nichos ecológicos (Cadle e Greene 1993). Duellman (1989) sugere
ainda que para explicar o pado observado na partilha de recursos deve-se levar em
consideração, além desses fatores, a própria história do ambiente. A existência ou a
aparente falta de padrões na estrutura das comunidades podem refletir condições climáticas,
geológicas ou outras forças que atuaram no passado e que não agem mais nos dias atuais
(Ricklefs 1987).
A partilha de recursos pode ser influenciada pelas preferências das espécies (Wisheu
1998) em relação a alimentação, uso do espo e época de atividade (Pianka 1973), e
resulta de necessidades fisiológicas dos organismos e interações bióticas dentro do
ecossistema (Zweimüller 1995).
A segregação das espécies nas comunidades pode ocorrer em função da estrutura da
vegetação, da durabilidade dos riachos (temporários ou permanentes) e da movimentação
da água (lótico ou lêntico) (Bernarde e Anjos 1999), a escolha destes locais de reprodução
7
pelas espécies de anuros está relacionada com adaptações morfológicas, fisiológicas e
comportamentais (Crump 1971, Pough et al. 1977, Cardoso et al. 1989). Am dessas
diferenças no ambiente para reprodução (Rossa-Feres e Jim 1994), há diferenças nos sítios
(Duellman 1967, Cardoso et al. 1989), na temporada e no turno de vocalização (Cardoso e
Haddad 1992, Rossa-Feres e Jim 1994, Pombal 1997) que também podem determinar a
partilha de recursos. A variedade de modos reprodutivos tem implicações diretas na
diversidade de espécies ocupando uma determinada área e na utilização dos recursos
ambientais (Crump 1982). Diferenças na utilização desses recursos podem reduzir a
competição e permitir que uma maior variedade de espécies consiga coexistir (MacArthur
1972).
A coexistência entre as espécies é possível não só por elas apresentarem padrões
distintos quanto à ocupação ambiental, mas também porque demonstram distribuição
estacional diferenciada (Duellman 1978). Heatwole (1982) indica que, para anfíbios, o
padrão sazonal parece ser mais importante que o espacial no processo de isolamento
reprodutivo.
As variáveis ambientais precipitação, temperatura (Toft e Duellman 1979) e nível
dos corpos d’água influenciam o comportamento dos anuros (Heyer et al. 1994). A época
do ano e a duração do período de atividade das espécies são determinadas principalmente
pela temperatura nas regiões temperadas e pela precipitação nas regiões tropicais e sub-
tropicais (Duellman e Trueb 1994), mas deve-se considerar a partilha temporal como um
mecanismo secundário de isolamento reprodutivo porque, em geral, as espécies
neotropicais apresentam grande sobreposição na estação chuvosa e não hibridizam (Blair
1961), desta forma o espo acústico poderia ser o fator de maior importância como
determinante deste isolamento (Pombal 1997, Bernarde e Anjos 1999).
8
Diversos registros de declínios levaram à hipótese de que os anfíbios sofrem com
maior intensidade do que outros grupos de vertebrados os efeitos das mudanças ambientais
impostas pelos homens (Beebee 1996). Há possibilidade de que o desaparecimento de
populações de anuros reflita degradão do ambiente, e este fenômeno parece estar
ocorrendo em escala mundial (Vitt et al. 1990, Lips 1998, Houlanhan et al. 2000).
Entretanto faltam evidências sobre a verdadeira causa de muitos declínios, principalmente
pela falta de conhecimento sobre a ecologia das espécies, sobretudo na região tropical
(Beebee 1996).
A grande diversidade de ambientes existentes no estado de Minas Gerais, aliada a
um panorama neotropical, possibilitam a ocorrência de uma alta diversidade de anfíbios,
ultrapassando 200 espécies, o que representa cerca de 1/3 do total registrado para o país
(Costa et al. 1998, SBH 2005).
Estudos abordando partilha de recursos em comunidades de anuros na região
sudeste do Brasil incluem os trabalhos de Cardoso et al. (1989), Cardoso e Haddad (1992),
Nascimento et al. (1994), Rossa-Feres e Jim (1994), Pombal (1997), Feio et al. (1998),
Eterovick e Sazima (2000), Bertoluci e Rodrigues (2002a, 2002b), Eterovick e Barros
(2003). Heyer et al. (1988) indicam a necessidade de estudos sobre a anurofauna nesta
região não só pela diversidade de ecossistemas encontrados, mas também devido à
descaracterização ambiental que a região vem sofrendo, decorrente de eventos naturais ou
provocados pela ação humana. A elaboração de estratégias de conservação depende de uma
boa base teórica, ou as medidas tomadas podem ser ineficazes (Beebee 1996).
9
Este estudo foi realizado com o objetivo de verificar aspectos da estrutura espacial e
temporal em comunidades de anuros na RPPN Serra do Caraça (Catas Altas, MG). No
capítulo 1, a distribuição das espécies pelos riachos foi relacionada com o volume de cada
riacho e a distribuição temporal relacionada com fatores climáticos (temperatura e
pluviosidade). O capítulo 2 aborda o uso espacial com base na diversidade de
microambientes e seu uso pelos anuros.
10
Bibliografia
Aichinger, M. 1987. Annual activity patterns of anurans in a seasonal neotropical
environment. Oecologia 71:583-592.
Beebee, T. J. C. 1996. Ecology and conservation of amphibians. Chapman & Hall, London.
214pp.
Begon, M., J. L. Harper, and C. R. Townsend. 1996. Ecology: Individuals, Populations and
Communities. 3 ed. Blackwell Scient. Publ., Oxford. 1086pp.
Bernarde, P. A. and L. Anjos. 1999. Distribuição espacial e temporal da anurofauna no
Parque Estadual Mata dos Godoy, Londrina, Paraná, Brasil (Amphibia: Anura).
Comunicações do Museu de Ciências e Tecnologia da PUCRS 12:127-140.
Bertoluci, J. and M. T. Rodrigues. 2002a. Seasonal patterns of breeding activity of Atlantic
Rainforest anurans at Boracéia, Southeastern Brazil. Amphibia-Reptilia 23:161-167.
Bertoluci, J. and M. T. Rodrigues. 2002b. Utilização de habitats reprodutivos e micro-
habitats de vocalização em uma taxocenose de anuros (Amphibia) da Mata Atlântica
do sudeste do Brasil. Papéis Avulsos de Zoologia 42:287-297.
Blair, W. F. 1961. Calling spawning seasons in a mixed population of anurans. Ecology
42:99-110.
Cadle, J. E. and H. W. Greene. 1993. Phylogenetic patterns, biogeography and the
ecological structure of neotropical snake assemblages, pp.281-293. In: Ricklefs, R.E.
and Schluter, D. (eds). Historical and geographical determinats of community
diversity. University of Chicago Press, Chicago.
11
Cardoso, A. J., G. V. Andrade and C. F. B. Haddad. 1989. Distribuição espacial em
comunidades de anfíbios (Anura) no sudeste do Brasil. Revista Brasileira de Biologia
49:241-249.
Cardoso, A. J. and C. F. B. Haddad. 1992. Diversidade e turno de vocalizações de anuros
em comunidade neotropical. Acta Zoologica Lilloana 41:93-105.
Costa, C. M. R., G. Herrmann, C. S. Martins, L. V. Lins, and I. R. Lamas (org.). 1998.
Biodiversidade em Minas Gerais: um atlas para sua conservação. Fundação
Biodiversitas, Belo Horizonte, MG.
Crump, M. L. 1971. Quantitative analysis of the neotropical herpetofauna. Occasional
Papers of the Museum of Natural History 3:1-62.
Crump, M. L. 1982. Amphibian reproductive ecology on the community level, pp.21-36.
In: Scott, Jr., N. J. (ed.). Herpetological Communities. Wildlife Research Report 13,
Washington D. C.
Duellman, W. E. 1967. Courtship isolating mechanisms in Costa Rican hylid frogs.
Herpetologica 23:169-183.
Duellman, W. E. 1978. The biology of an equatorial herpetofauna in Amazon Ecuador.
Miscellaneous Publications of the Museum of Natural History, University of Kansas
65:1-352.
Duellman, W. E. and R. A. Pyles. 1983. Acoustic resource partitioning in anuran
communities. Copeia 1983:639-649.
Duellman, W. E. 1989. Tropical herpetofaunal communities: patterns of community
structure in neotropical rainforests. In M. L. Harmelin-Vivien and F. Bourliere (eds.),
Ecological Studies, vol. 69 – Vertebrates in complex tropical systems, pp. 61-88.
Springer-Verlag, New York.
12
Duellman, W. E. and L. Trueb. 1994. Biology of amphibians. Mcgraw-Hill, New york,
670pp.
Eterovick, P. C. and I. Sazima. 2000. Structure of an anuran community in a montane
meadow in southeastern Brazil: effects of seasonality, habitat and predation.
Amphibia-Reptilia 21:439-461.
Eterovick, P. C. and I. S. Barros. 2003. Niche occupancy in south-eastern Brazilian tadpole
communities in montane-meadow streams. Journal of Tropical Ecology 19:1-10.
Feio, R. N., U. M. L. Braga, H. Wiederhecker, and P. S. Santos. 1998. Anfíbios anuros do
Parque Estadual do Rio Doce (Minas Gerais). Universidade Federal de Viçosa,
Instituto Estadual de Florestas, Viçosa, MG.
Haddad, C. F. B. and I. Sazima. 1992. Anfíbios anuros da serra do Japí, pp.188-211. In:
Morellato, L. P. C. (org.). História natural da Serra do Japí: ecologia e preservação
de uma área florestal no Sudeste do Brasil. Editora da Unicamp/FAPESP, Campinas.
Heatwole, H. 1982. A review of structuring in herpetofaunal assemblages, pp.1-19. In:
Scoott Jr., N. J. (ed.). Herpetological communities, Washington, D. C., United Sates
Department of the Interior, Wildlife Research Report, 13. Washington D. C.
Heyer, W. R., A. S. Rand, C. A. G. Cruz, O. L. Peixoto and C. E. Nelson. 1988.
Decimations, extinctions, and colonizations of frogs populations in the southeast
Brazil and their evolutionary implications. Biotropica 20:230-235.
Heyer, W. R., M. A. Donnelly, R. W. Mcdiarmid, L. A. C. Hayek, and M. S. Foster. 1994.
Measuring and monitoring biological diversity. Standard methods for amphibians.
Smithsonian Institution Press. Washington and London.
Houlanhan, J. E., C. S. Findlay, B. R. Schmidt, A. H. Meyer and S. L. Kuzmin. 2000.
Quantitative evidence for global amphibian population declines. Nature 404:752-755.
13
Lips, K. P. 1998. Decline a mountain amphibian fauna. Conservation Biology 12:106-117.
Macarthur, R. H. 1972. Geographical Ecology: Patterns in the Distribution of Species.
New York: Harper and Row. 269pp.
Nascimento, L. B., A. C. L. Miranda and A. M. Balstaedt. 1994. Distribuição estacional e
ocupação ambiental dos anfíbios anuros da área de proteção da captação da Mutuca
(Nova Lima, MG). BIOS 2:5-12.
Norton, S. F. 1991. Habitat use and community structure in an assemblage of cottid fishes.
Ecology 72:2181-2192.
Pianka, E. R. 1973. The structure of lizard communities. Annual Review of Ecology and
Systematics 4:53-74.
Pombal Jr., J. P. 1997. Distribuição espacial e temporal de anuros (Amphibia) em uma poça
permanente na Serra de Paranapiacaba, sudeste do Brasil. Revista Brasileira de
Biologia 57:583-594.
Pough, F. H., M. M. Stewart and R. G. Thomas. 1977. Physiological basis of habitat
portioning in Jamaican Eleutherodactylus. Oecologia 27:285-293.
Ricklefs, R. E. 1987. Community diversity: relative roles of local and regional processes.
Science 235:167-171.
Rossa-Feres, D. C. and J. Jim. 1994. Distribuição sazonal em comunidades de anfíbios
anuros na região de Botucatu, São Paulo. Revista Brasileira de Biologia 54:323-334.
SBH. 2005. Lista de espécies de anfíbios do Brasil. Sociedade Brasileira de Herpetologia
(SBH). http://www.sbherpetologia.org.br/checklist/anfíbios.htm
Toft, C. A. and W. E. Duellman. 1979. Anurans of the lower Rio Lullapichis, Amazonian
Peru: a preliminary analysis of community structure. Herpetologica 35:71-77.
14
Vitt, L. J., J. P. Caldwell, H. M. Wilbur, and D. C. Smith. 1990. Amphibians as harbingers
of decay. BioScience 40:418-418.
Wisheu, I. C. 1998. How organisms partition habitats: different types of community
organization can produce identical patterns. Oikos 83:246-258.
Zweimüller, I. 1995. Microhabitat use by two small benthic stream fish in a 2
nd
order
stream. Hydrobiologia 303:125-137.
15
CAPÍTULO 1
Spatial and temporal distribution of anuran amphibians in streams
at the RPPN Serra do Caraça, southeastern Brazil
16
Resumo
A comunidade de anuros da RPPN Serra do Caraça, localizada no município de
Catas Altas (MG), foi estudada no período de agosto de 2003 a outubro de 2004 em oito
riachos permanentes de mata. Foram registradas 19 espécies de anuros pertencentes a
quatro famílias: Bufonidae (10.53%), Centrolenidae (5.26%), Hylidae (63.16%) e
Leptodactylidae (21.05%). Houve uma relação negativa significativa entre o número de
espécies presentes e o volume dos riachos. Não houve uma relação entre os fatores
abióticos (precipitação e temperatura) e a diversidade de espécies por mês e a diversidade
de espécies vocalizando, mas os anuros apresentaram diferenças quanto à distribuição
temporal. Das 19 espécies encontradas, 12 apresentaram atividade de vocalização e para 10
espécies foram encontrados indícios de atividade reprodutiva como fêmeas ovadas, pares
em amplexos, desovas, girinos e jovens recém metamorfoseados. O tamanho dos riachos
parece ser um importante fator determinando a riqueza de espécies de anuros local, a
relativa estabilidade climática dos riachos de mata favorecem as espécies de anuros com
período reprodutivo longo bem como o aumento do período reprodutivo de espécies mais
flexíveis.
Palavras chaves: Anfíbios anuros, distribuição temporal, fatores abióticos.
17
Abstract
Anuran communities were studied at eight permanent forest streams located in the
Reserva Particular do Patrimônio Natural (RPPN) Serra do Caraça, municipality of Catas
Altas, Minas Gerais state, southeastern Brazil, from August 2003 to October 2004. A total
of 19 anuran species was recorded in four families: Bufonidae (10.53%), Centrolenidae
(5.26%), Hylidae (63.16%), and Leptodactylidae (21.05%). Number of species present in
the streams was negatively related to stream volume. Rainfall and mean monthly
temperatures were not related to anuran species diversity or diversity of species with calling
males per month, though species differed in their temporal distributions. From the 19
species recorded, 12 exhibited calling activities during the study period and 10 were
assumed to have reproduced based on records of gravid females, amplexed pairs, egg
clutches, tadpoles, or post metamorphic froglets, considered as indicatives of reproduction.
Stream size seems to be an important factor determining local anuran species richness,
while the relatively stable climatic conditions of forested sites seems to favor anuran
species with long breeding periods as well as the increase of breeding periods of more
flexible species.
Key Words: Anura, temporal distribution, abiotic factors
18
Introduction
The co-existence among populations of different species at a given site is
possible due to specific behavior and interspecific interactions that influence social
organization, spatial and temporal distribution (MacNally, 1979), contributing to a higher
local species diversity. Competition, predation, and factors independent of biotic
interactions, such as specific requirements, were considered as the main forces shaping
anuran communities by Toft (1985).
The Theory of Island Biogeography predicts the number of species to increase with
area and decrease with isolation level of an island (MacArthur and Wilson, 1967), what
may happen, for instance, because larger areas may include a larger variety of habitat types
and resources (Williams, 1964). Zimmerman and Bierregaard (1986) found species-area
relationships to be of little importance in anuran communities at Central Amazon, the
availability of suitable reproductive sites being the most important factor determining most
species distribution. Considering size variation within a given type of reproductive site,
Heyer et al. (1975) hypothesized tadpole species richness to be higher at ponds of
intermediate size, due to a trade-off between pond permanency and predation pressures.
Environmental heterogeneity is important to determine the number of species that
can use a given habitat (Cardoso et al., 1989), so that higher species richness can be
expected in an area with more microhabitats and ecological niches (MacArthur, 1968). In
anurans, different reproductive modes may occur among sympatric species (Duellman,
1989) and aid to resource partitioning. Shared resources may include calling sites,
oviposition sites, acoustic space, annual and daily calling periods (Crump, 1971; Hödl,
1977; Cardoso and Haddad, 1992; Pombal, 1997). During the larval stage, anurans may
19
differ in habitats and microhabitats used food type and size, daily and annual activity
periods (Wild, 1996). The diversity of reproductive modes directly influences species
diversity and patterns of resource use (Crump, 1982). When partition of resources related to
reproduction fail or do not exist, species hybridization may take place (Haddad et al., 1990;
Haddad et al., 1994; Pombal, 1997).
In temperate regions, temperature is the main abiotic factor controlling anuran
reproductive activities, while rainfall assumes a greater importance in tropical regions
(Duellman and Trueb, 1994). Anuran communities occurring at sites with low annual
humidity variations include several species that reproduce continuously or sporadically
throughout the year (Crump, 1974; Duellman, 1978; Wiest, 1982). At seasonal neotropical
sites, the occurrence of two well defined seasons, a dry and a wet one, is expected to
promote some variation regarding anuran species temporal distribution.
Studies on anuran communities are scarce in Brazil once we consider the great
amphibian richness in the country (775 species; SBH, 2005) and are badly needed for
conservation purposes (Eterovick et al., 2005). Knowledge on abiotic factors that influence
the structure of anuran communities may be important to understand how species can keep
co-existing and how human influence may disturb their assemblages. Such knowledge is
badly needed once several amphibian populations are suspected to be declining in Brazil
(Eterovick et al., 2005), as well as many other countries (Lips, 1998; Lips et al., 2003;
2004; Young et al., 2001; 2004).
Attempting to improve the knowledge on neotropical amphibian community
organization, we aimed to (1) determine the species composition of anuran communities
occurring at eight streams at the RPPN Serra do Caraça, (2) test whether local species
richness is influenced by stream volume, (3) test whether abiotic factors such as rainfall and
20
temperature influence the temporal distribution of species activities, and (4) look for
patterns of seasonal variations in community composition.
Study site
The Reserva Particular do Patrimônio Natural (RPPN) Serra do Caraça is located in
the municipality of Catas Altas (20º 05’S, 43º 29’W), Minas Gerais state, southeastern
Brazil. The reserve includes 10187.89 ha in the southern portion of the Espinho mountain
range, between 850 and 2070 m above sea level (Fig. 1). The region is formed by the
orographic systems of Minas Gerais and Bahia states (Derby 1966), representing a contact
zone between the Cerrado and Atlantic Forest biomes in its southern portion and a
transition zone between both biomes in its northern portion (Giulietti and Pirani 1988,
Giulietti et al. 1997).
The region has two seasons, a dry from April to September and a wet, from October
to March (Fig. 2).
21
Figure 1. Location of the RPPN Serra do Caraça in Minas Gerais state,
southeastern Brazil.
Figure 2. Mean monthly rainfall (solid line), maximum and minimum temperatures
(dotted lines) at the RPPN Serra do Caraça, southeastern Brazil, from August 2003
to October 2004.
Para Belo Horizonte
Para BR-381
P ara A lvinóp olis
A lvinó po lis
R io Piracicaba
São Gonçalo do Rio Abaixo
O uro Preto
R io Acima
Itabirito
M a riana
R
i
o
C
o
n
c
e
i
ç
ã
o
R
i
o
M
a
q
u
i
n
é
P
I
R
A
C
I
C
A
B
A
R
I
O
M
G
-
4
3
6
B
R
-
2
6
2
M
G
-
3
2
6
M
G
-
1
2
9
20º00'
43 º30 '
43 º15 '
C aeté
Ba rã o de Cocais
Sa nta Bárbara
C ata s Altas
0 5 10km
0 150km
0
5
10
15
20
25
30
A
S
O
N
D
J
F
M
A
M
J
J
A
S
O
Month
Maximum and minimum temperature
C)
0
20
40
60
80
100
120
140
160
180
Rainfall (mm)
22
Methods
The inventory of anuran species in the studied streams was conducted through
monthly three-day samplings from August 2003 to October 2004. Anuran species were
searched for during the day (diurnal frogs and tadpoles) and at night (nocturnal species;
from sunset to about 11:00 pm). Eight permanent forest streams with varied widths and
water volumes were sampled (Fig. 3) throughout 150 m sections marked along their
courses.
Data on maximum and minimum temperatures were obtained from the
Meteorological Station of João Monlevade municipality (Minas Gerais state) located 47.5
km from the study site. Air and water temperatures and rainfall were measured in the field
with a thermometer (to the nearest 0.5ºC) and a rain gauge, respectively.
Adult anurans were located through visual search or auditory inspection for their
calls. Gravid females, amplexed pairs, egg clutches, tadpoles, and post metamorphic
froglets were considered as indicatives of the occurrence of reproduction at the site.
Species that could not be identified in the field had some individuals collected and
fixed following Heyer et al. (1994), for posterior identification. Specimens were deposited
in the herpetological collection of the Museu de Ciências Naturais of the Pontifícia
Universidade Católica de Minas Gerais.
23
Figure 3. Location of the eight sampled streams at the RPPN Serra do
Caraça (Catas Altas municipality, Minas Gerais state, southeastern Brazil).
To estimate monthly species diversity (H) we used Shannon's diversity index
(Pielou 1975):
H = - pi log
n
pi
where pi represents the proportion of individuals of species “i” recorded per month,
in relation to total number of individuals recorded in the month considered.
Stream volume was estimated multiplying the length of the sampled section (150 m)
by mean stream width and depth. Mean stream width was calculated based on ten
measurements (taken every 15 m in the sampled section) and mean stream depth was
24
calculated based on 75 measurements (taken every 2 m in the sampled section, at varied
distances from the right margin: 1/6, 1/3, 1/2, 2/3, and 5/6 stream width at the measured
point). The number of anuran species present and the number of species calling in each
stream were related to stream volume using adjustment curves (Zar 1999). Data normality
was tested for through residual analyses.
To evaluate the relationships among mean air and water temperatures, monthly
rainfall and species diversity per month, as well as diversity of species with calling males
per month, we used multiple linear regressions (Zar 1999). All the statistical tests were
conducted using the software BioEstat (BioEstat 2003).
Results
During the study period, we recorded 19 anuran species in the families Bufonidae
(10.53%), Centrolenidae (5.26%), Hylidae (63.16%), and Leptodactylidae (21.05%) at the
RPPN Serra do Caraça (Table 1). Species distribution was not uniform among streams,
Stream 5 (see Fig. 3) being the one with the greatest species richness (n = 9) and Stream 6
sheltering only Hylodes uai (Table 1).
Anuran species richness was negatively related to stream volume (R
2
= 0.760, F =
23.166, p < 0.004, Fig. 3A). Residuals of the relationship between species richness and
stream volume showed that data had normal distribution (p = 0.668). By the other side, the
residuals of the relationship between species with calling males and stream volume
indicated that data did not have normal distribution (p = 0.010), maybe due to the lower
sample size, so it was not possible to analyse these data. Therefore, a tendency of increase
25
in the number of species with calling males with the decrease of stream volume could be
noticed (Fig. 5), as it happened with total number of species.
Table 1. Distribution of 19 anuran species in eight forest streams (S1 - S8) and estimated volume of sampled
stream sections at the RPPN Serra do Caraça, southeastern Brazil.
Species
S1
S2
S3
S4
S5
S6
S7
S8
Bufonidae
Bufo pombali
Baldissera, Caramaschi & Haddad,
2004
X
X
Bufo rubescens
Lutz,1925
X
Centrolenidae
Hyalinobatrachium
cf.
eurygnathum
X
Hylidae
Hyla albopunctata
Spix, 1824
X
Hyla
sp.
(gr.
circumdata
)
X
X
X
Hyla faber
Wied-Neuwied, 1821
X
X
Hyla martinsi
Bokerman, 1964
X
X
X
X
X
X
Hyla minuta
Peters,1872
X
Hyla nanuzae
Bokermann & Sazima, 1973
X
X
X
X
Hyla polytaenia
Cope, 1868
X
Phyllomedusa burmeisteri
Boulenger, 1882
X
Scinax luizotavioi
(Caramaschi &
Kisteumacher, 1989)
X
X
X
X
X
Scinax machadoi
(Bokermann & Sazima, 1973)
X
X
X
X
Scinax
aff.
Perereca
X
X
Scinax
sp. (gr.
ruber
)
X
Leptodactylidae
Crossodactylus
sp.
X
X
X
X
Hylodes uai
Nascimento, Pombal & Haddad, 2001
X
X
X
X
X
X
Physalaemus
aff.
olfersii
X
Proceratophrys boiei
(Wied-Neuwied, 1824)
X
Species richness
8
8
5
8
9
1
5
3
Estimated volume of sampled section (m
3
)
47.08
17.27
118.44
19.37
72.18
235.63
104.02
283.66
Species diversity was not related to monthly rainfall or mean air and water
temperatures (R
2
= 0.077, F
3,11
= 1.3887, p = 0.298). Diversity of species with calling
males was not related to these climatic parameters either (R
2
= 0.1862, F
3,11
= 2.0679, p =
0.162).
26
Figure 4. Relationship between estimated volume of stream sampled
sections (m
3
) and anuran species richness at the RPPN Serra do Caraça,
southeastern Brazil.
Figure 5. Relationship between estimated volume of stream sampled
sections (m
3
) and number of anuran species with calling males at the
RPPN Serra do Caraça, southeastern Brazil.
27
From the 19 anuran species recorded at the studied streams, 12 were observed in
calling activities (Table 2). Some species showed prolonged calling periods, such as Hyla
minuta, H. nanuzae, Scinax luizotavioi and Crossodactylus sp.. For these species, calling
males were recorded year-round. Other species were opportunistic, being active in periods
with suitable climatic conditions throughout the year, such as Bufo pombali, Hyla faber, H.
martinsi, and H. polytaenia, which chose the hottest and wettest period; Hylodes uai, which
was active by the end of the rainy season and the onset of the dry season, and
Proceratophrys boiei, which called with the first rains of the year (Table 2). Data obtained
for Phyllomedusa burmeisteri and Hyalinobatrachium cf. eurygnathum were not enough to
determine specific activity periods due to small sample size.
Although emission of mating calls may be considered as an indicative of
reproduction by some authors, the occurrence of calling activities does not necessarily
mean that the species reproduced or will actually reproduce (Cardoso and Haddad, 1992).
Thus, we preferred to be conservative and not to consider calling males as an indicative of a
species reproduction. We then detected reproductive activities for 10 species: Bufo
pombali, Hyla sp. (gr. circumdata), H. faber, H. martinsi, H. nanuzae, Scinax machadoi,
Scinax sp. (gr. ruber), S. luizotavioi, Crossodactylus sp. and Hylodes uai (Table 2).
Inferences could not be made on the temporal distribution of reproductive activities
of Bufo pombali, Hyla sp. (gr. circumdata), H. faber, Scinax sp. (gr. ruber) and Hylodes uai
due to the small number of individuals recorded for these species.
28
Table 2. Activities and life stages recorded for the anuran species at the RPPN Serra do Caraça, southeastern
Brazil, from August 2003 to October 2004: (
) silent individuals; (M) calling males; (F) gravid females; (a)
amplexed pairs; (*) egg clutch;
(T) tadpoles, and (fr) post metamorphic froglet.
Species
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Bufo pombali
T
MT
M
M
B. rubescens
Hyalinobatrachium
cf. eurygnathum
M
M
M
Hyla albopunctata
Hyla sp. (gr.
circumdata)
F
F
Hyla faber
M
M
M
M
M
M
a
H. martinsi
T
T
MFT
MT
MT
MT
FT
T
T
T
T
T
T
T
T
H. minuta
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
H. nanuzae
M
M
Mfr
MF
fr
M
MF
MF
M
M
MF
MF
Mfr
H. polytaenia
M
M
M
Phyllomedusa
burmeisteri
M
M
Scinax aff.
perereca
S. machadoi
T
T
T
T
T
T
T
T
T
T
T
F
T
T
T
Scinax sp. (gr.
ruber)
F
S. luizotavioi
M
MF
M
M
M*
M
MF
*
MFfr
M
M
MF
MF
M
Crossodactylus sp.
MT
MT
MFT
MFT
fr
MFT
T
MFT
MFT
MFT
MFT
MFT
MFT
MFT
MFT
Hylodes uai
T
T
T
T
MT
M
M
T
Physallaemus aff.
olfersii
Proceratophrys
boiei
M
M
M
M
29
Discussion
Density of vegetation cover along stream margins constitute an important factor
influencing choice of reproductive sites by anurans (Werner and Glennemeier, 1999). The
greatest proportion of hylids recorded in the streams may be related to the highest diversity
of calling sites available for this group, since the presence of all vegetation strata provides
several microhabitats to be explored by these climbing treefrogs. The presence of adhesive
discs at hylid fingertips adapts species of this family to explore the vegetation vertically
(Cardoso et al., 1989), besides being able to explore also other microhabitats such as rocks
and leaf litter, as other frogs do.
The differential use of sampled streams by anuran species reflects selection of
breeding habitats, known to occur in this group (Collins and Wilbur, 1979; Gascon, 1991).
Stream 5 has a large backwater that function as a permanent pond and sheltered both
species typical of forest streams and species that reproduce in open habitats such as Hyla
minuta, Hyla polytaenia and Phyllomedusa burmeisteri (see Cardoso et al., 1989). The
remaining streams were relatively uniform throughout the sampled sections and bordered
by all vegetation strata, varying in size among them, though.
Variation of habitat types, interspecific interactions, disturbances, colonization
processes, local, regional and continental selection and evolution processes may all inspire
models proposed to understand stream communities (Ricklefs and Schluter, 1993). Larger
fragments are supposed to shelther greater habitat diversity and are, thus, expected to
shelther greater species diversity (Lack, 1976). Alternatively, larger fragments may suffer
less species extinctions and more colonization events, resulting in a higher species richness
(MacArthur and Wilson, 1967). In the studied streams, the negative relationship between
30
stream sampled section estimated volume and anuran species richness stresses the influence
of habitat variability on species distribution, since species seem to choose the most suitable
breeding habitats along a stream size gradient, most species preferring smaller streams. The
same pattern was recorded by Eterovick (2003) in streams at the Serra do Cipó, a site close
to the RPPN Serra do Caraça, in the southern portion of the Espinho mountain range.
Both works, though, point to the hypothesis that Island Biogeography Theory does not
apply to anuran species in streams.
Zimmerman and Simberloff (1996) stressed that the evolution of neotropical
anurans favored species that breed in lenthic water bodies, contrary to the pattern observed
at southeastern Asia, because ancestral lineages that evolved in these two continents had
adaptations to lenthic and lotic aquatic habitats, respectively. Parris and McCarthy (1999)
found anuran assemblages to be richer in larger streams in Australia. By the other side,
anuran species in the RPPN Serra do Caraça may prefer to breed in small sections of
streams, which are washed by strong currents just during the rainfall peaks, since these
species have few adaptations to live in strong currents during their larval stage, as it also
happens at the Serra do Cipó (Eterovick, 2003). We suppose that living downstream, in
larger sections with larger water volume, would imply in a greater demand on tadpoles for
adaptations to swim against the current, attach themselves to substrates and search for
shelters in shallow microhabitats. Alternatively, tadpoles lacking adaptations to life in
strong currents might have more opportunities to escape the occasional relatively strong
water flows that wash small streams, that is, stream sections closer to the source.
Anuran annual breeding period and duration of breeding activities are related to
seasonal climatic variations in temperature and rainfall (Toft and Duellman, 1979). Species
that occur in permanent shaded water bodies, with high humidity during most of the year,
31
usually show a long reproductive period (Rossa-Feres and Jim, 1994). The lack of
association between climatic variables (rainfall and temperature) and monthly anuran
species diversity and between climatic variables and diversity of species with calling males
may be due to local habitat conditions at the RPPN Serra do Caraça. The preserved forest
vegetation at stream margins and stream permanence may contribute to maintain air
humidity and temperature relatively stable and predictable for anuran species. Colwell
(1974) had already noticed forest habitats to be more stable and predictable than open
habitats.
Tadpoles of Scinax machadoi were recorded in all sampling months, indicating
continuous reproduction and/or long development. Nevertheless, the number of adult
individuals located was relatively low, maybe due to the species small size, cryptic
coloration, and low, irregular mating call (Bokermann and Sazima, 1973), making it
difficult to locate. In Stream 8, a single gravid female was recorded within the sampling
section, on July 2004. Besides Scinax machadoi, only tadpoles of Hyla martinsi and
Hylodes uai were recorded in this stream. There is a waterfall upstream next to the sampled
section, and it is possible that adults of these species reproduce upstream to this waterfall,
at smaller sections of the stream, and egg clutches and/or tadpoles are carried downstream
to the sampled section.
Crossodactylus sp. showed reproductive activities year-round, as reported for
Crossodactylus sp. at the Parque Estadual Mata dos Godoy (Paraná state, south Brazil;
Bernarde and Anjos, 1999) and Crossodactylus bokermanni at the Serra do Cipó (Minas
Gerais state, southeastern Brazil) (Eterovick and Sazima, 2004). As other species in the
subfamily Hylodinae (Leptodactylidae), the species of Crossodactylus occurring at the
RPPN Serra do Caraça is diurnal; males call close to or on the soil, at moist microhabitats
32
where they may reduce water loss (Cardoso and Martins, 1987; Cardoso and Haddad,
1992).
For the species that did not show strong indicatives of reproduction but mating
calls, it was not possible to describe a temporal distribution pattern for breeding activities,
because males' calling period may be longer than the actual specific breeding period
(Wiest, 1982; Donnelly and Guyer, 1994).
The species showing the greatest plasticity in stream occupancy were those
presenting the most indicatives of reproduction (gravid females, egg clutches, tadpoles, and
post metamorphic froglets), such as Hyla martinsi, H. nanuzae, Scinax luizotavioi, S.
machadoi, Crossodactylus sp., and Hylodes uai, which were observed almost year-round.
Hyla martinsi had abundance peaks at the hottest and most humid months, but its tadpoles
were recorded in all months, what may be due to continuous reproduction and/or long
tadpole development. Hyla nanuzae had a long breeding period with an activity peak during
the rainy season, its breeding period being longer than the one recorded at the Serra do
Cipó (Eterovick and Sazima, 2004), a more markedly seasonal and open habitat. Scinax
luizotavioi was recorded in almost all sampling months, with an activity peak during the
dry season. Differences in reproductive periods had already been interpreted as a potential
mechanism to avoid interspecific competition (Bertoluci and Rodrigues, 2002).
Nevertheless, climatic factors and physiological adaptations acquired during species
evolution may play a more important role in determining breeding periods of anurans, since
even populations of the same species may show variations in breeding pattern at different
sites, subject to different climatic conditions, as noticed here for Hyla nanuzae. Besides,
31.6% of the anuran species recorded in forest streams at the RPPN Serra do Caraça
showed indicatives of reproduction or reproductive activities year-round, contrasting with
33
only 11.6% (18.5% considering only species that reproduce in streams or associated to
them) of the anuran species of the Serra do Cipó, a less stable, open habitat (Eterovick,
2003; Eterovick and Sazima, 2004).
Species typical of forest habitats are probably more specialized and have
reproductive modes with more restrictive needs (see Duellman and Trueb, 1994) being
potentially more sensitive to habitat changes. The RPPN Serra do Caraça is located in the
domains of the Espinhaço mountain range, where many Brazilian endemic genera and local
endemic species occur (Costa et al., 1998). The Espinho is an important area for
amphibian conservation in the state of Minas Gerais and its surroundings are suffering
strong human impacts caused by mining activities and tourism. Once species spatial and
temporal distribution patterns are known, departures from these patterns may be considered
as indicatives of environmental disturbances, aiding to species conservation and
management.
34
Acknowledgments
We are grateful to Arquimedes D. M. Ferreira, Camila R. Rievers, Carlos Augusto
N. Ventura, Izabela M. Barata and Paulo Henrique C. de Souza for help during field work,
to Joaquim A. de Souza for making the maps, to Luciana B. Nascimento for help in species
identification, to Luciana B. Nascimento and Márcio Martins for suggestions in the
manuscript, to Consuelo Paganini for permit and logistics to work at the RPPN Serra do
Caraça, to the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis
(Ibama) for collecting permit (128/2004), and to the Fundo de Incentivo a Pesquisa (FIP) of
the Pontifícia Universidade Católica de Minas Gerais for financial support.
35
References
Bernarde, P. A., and L. Anjos. 1999. Distribuição espacial e temporal da anurofauna no
Parque Estadual Mata dos Godoy, Londrina, Paraná, Brasil (Amphibia: Anura).
Comunicações do Museu de Ciências e Tecnologia da PUCRS 12:127-140.
Bertoluci, J., and M. T. Rodrigues. 2002. Seasonal patterns of breeding activity of Atlantic
Rainforest anurans at Boracéia, Southeastern Brazil. Amphibia-Reptilia 23:161-167.
BioEstat. 2003. Versão 3.0. Sociedade Civil Mamirauá/ MCT CNPq.
Bokermann, W. C. A., and I. Sazima. 1973. Anfíbios da Serra do Cipó, Minas Gerais,
Brasil.1: Duas espécies novas de Hyla (Anura, Hylidae). Revista Brasileira de
Biologia 33:241-249.
Cardoso, A. J., and C. F. B. Haddad. 1992. Diversidade e turno de vocalizações de anuros
em comunidade neotropical. Acta Zoologica Lilloana 41:93-105.
Cardoso, A. J., and J. E. Martins. 1987. Diversidade de anuros durante o turno de
vocalização, em comunidades neotropicais. Papéis Avulsos de Zoologia 36:279-285.
Cardoso, A. J., G. V. Andrade, and C. F. B. Haddad. 1989. Distribuição espacial em
comunidades de anfíbios (Anura) no sudeste do Brasil. Revista Brasileira de Biologia
49:241-249.
Collins, J. P., and H. M. Wilbur. 1979. Breeding habitats and habitats of the amphibians of
the Edwin S. George Reserve, Michigan, with notes on the local distribution of fishes.
Occasional Papers of the Museum of Zoology University of Michigan 686:1-34.
Colwell, R. K. 1974. Predictability, constancy and contingency of periodic phenomena.
Ecology 55:1148-1153.
36
Costa, C. M. R., G. Herrmann, C. S. Martins, L. V. Lins, and I. R. Lamas (orgs.). 1998.
Biodiversidade em Minas Gerais: um Atlas para sua Conservação. Fundação
Biodiversitas, Belo Horizonte, MG, Brazil.
Crump, M. L. 1971. Quantitative analysis of the neotropical herpetofauna. Occasional
Papers of the Museum of Natural History 3:1-62.
Crump, M. L. 1974. Reproductive strategies in a tropical anuran community. Miscellaneous
Publications of the Museum of Natural History, University of Kansas 61:1-68.
Crump, M. L. 1982. Amphibian reproductive ecology on the community level. In N. J.
Scott Jr. (ed.), Herpetological Communities, pp.21-36, Wildlife Research Report 13,
Washington D. C.
Derby, O. A. 1966. The Serra of Espinho, Brazil. Journal of Geology 14:374-40.
Donnely, M. A., and C. Guyer. 1994. Patterns of reproduction and habitat use in an
assemblage of Neotropical hylid frogs. Oecologia 98:291-302.
Duellman, W. E. 1978. The biology of an equatorial herpetofauna in Amazon Ecuador.
Miscellaneous Publications of the Museum of Natural History, University of Kansas
65:1-352.
Duellman, W. E. 1989. Tropical herpetofaunal communities: patterns of community
structure in neotropical rainforests. In M. L. Harmelin-Vivien and F. Bourliere (eds.),
Ecological Studies, vol. 69 – Vertebrates in complex tropical systems, pp. 61-88.
Springer-Verlag, New York.
Duellman, W. E., and L. Trueb. 1994. Biology of amphibians. Mcgraw-Hill, New York.
Eterovick, P. C. 2003. Distribution of anuran species among montane streams in south-
eastern Brazil. Journal of Tropical Ecology 19:219-228.
37
Eterovick, P. C., A. C. O. Q. Carnaval, D. M. Borges-Nojosa, D. L. Silvano, M. V. Segalla,
and I. Sazima. 2005. Amphibian declines in Brazil: an overview. Biotropica 37:166-
179.
Eterovick, P. C., and I. Sazima. 2004. Anfíbios da Serra do Cipó – Amphibians from the
Serra do Cipó, Minas Gerais, Brasil. Ed. PUC Minas, Belo Horizonte, MG, Brazil.
Gascon, C. 1991. Population and community level analysis of species occurrences of
central Amazonian Rainforest tadpoles. Ecology 72:1731-1746.
Giulietti, A. M., and J. R. Pirani. 1988. Patterns of geographic distribution of some plant
species from the Espinho Range, Minas Gerais and Bahia. In P. E. Vanzolini and
W. R. Heyer (eds.), Proceedings of a workshop on Neotropical distribution patterns,
pp. 36-69. Academia Brasileira de Ciências, Rio de Janeiro, Brasil.
Giulietti, A. M., J. R. Pirani, and R. M. Harley. 1997. Espinho Range region, Eastern
Brazil. In S. D. Davis, V. H. Heywood, O. Herrera-MacBryde, J. Villa-Lobos and A.
C. Hamilton (eds.), Centres of plant diversity, a guide and strategy for their
conservation, v. 3, pp. 397-404. Information Press, Oxford, England.
Haddad, C. F. B., A. J. Cardoso, and L. M. Castanho. 1990. Hibridação natural entre Bufo
ictericus e Bufo crucifer (Amphibia: Anura). Revista Brasileira de Biologia 50:739-
744.
Haddad, C. F. B., J. P. Pombal Jr., and R. F. Batistic. 1994. Natural hybridization between
diploid and tetraploid species of leaf-frogs, genus Phyllomedusa (Amphibia). Journal
of Herpetology 28:425-430.
Heyer, W. R., M. A. Donnelly, R. W. McDiarmid, L. A. C. Hayek, and M. S. Foster. 1994.
Measuring and monitoring biological diversity. Standard methods for amphibians.
Smithsonian Institution Press, Washington and London.
38
Heyer, W. R., R. W. McDiarmid, and D. L. Weigmann. 1975. Tadpoles, predation and
pond habitats in the tropics. Biotropica 7:100-111.
Höld, W. 1977. Call differences and calling site segregation in anuran species from central
Amazonian floating meadows. Oecologia 28:251-263.
Lack, D. 1976. Island birds. Blackwell Science, Oxford.
Lips, K. R. 1998. Decline of a tropical montane amphibian fauna. Conservation Biology
12:106-117.
Lips, K. R., J. D. Reeve, and L. R. Witters. 2003. Ecological traits predicting amphibian
population declines in Central America. Conservation Biology 17:1078–1088.
Lips, K. R., J. R. Mendelson III, A. Muñoz-Alonso, L. Canseco-Márquez, and D. G.
Mulcahy. 2004. Amphibian population declines in montane southern Mexico:
resurveys of historical localities. Biological Conservation 119:555–564.
MacArthur, R. H., and E. O. Wilson. 1967. The theory of island biogeography. Princeton
University press, Princenton, New Jersey.
MacArthur, R. H. 1968. The theory of the niche. In R. C. Leotin (ed.), Population biology
and evolution, pp. 159-176. Syracuse University Press, New York.
MacNally, R. C. 1979. Social organization and interspecific interactions in two sympatric
species of Randinella (Anura). Oecologia 42:293-306.
Parris, K. M., and McCarthy, M. A. 1999. What influences the structure of frog
assemblages at forest streams? Australian Journal of Ecology 24:495-502.
Pielou, E. C. 1975. Ecological diversity. Wiley Interscience Publ., New York.
39
Pombal Jr., J. P. 1997. Distribuição espacial e temporal de anuros (Amphibia) em uma poça
permanente na Serra de Paranapiacaba, sudeste do Brasil. Revista Brasileira de
Biologia 57:583-594.
Ricklefs, R. E. E., and D. Schluter. 1993. Species diversity: regional and historical
influences. In R. E. Ricklefs and D. Schluter (eds.), Species diversity in ecology
communities Historical and geographical perspectives, pp. 350-363. University of
Chicago Press, Chicago.
Rossa-Feres, D. C., and J. Jim. 1994. Distribuição sazonal em comunidades de anfíbios
anuros na região de Botucatu, São Paulo. Revista Brasileira de Biologia 54:323-334.
SBH. 2005. Lista de espécies de anfíbios do Brasil. Sociedade Brasileira de Herpetologia
(SBH) (20 May 2005). Electronic database available at
<http://www.sbherpetologia.org.br/checklist/anfíbios.htm>.
Toft, C. A. 1985. Resource partioning in amphibians and reptiles. Copeia 1985:1-21.
Toft, C. A., and W. E. Duellman. 1979. Anurans of the lower Rio Lullapichis, Amazonian
Peru: a preliminary analysis of community structure. Herpetologica 35:71-77.
Werner, E. E., and K. S. Glennemeier. 1999. Influence of forest canopy cover on the
breeding pond distributions of several amphibian species. Copeia 1999:1-12.
Wiest Jr., J. A. 1982. Anuran succession at temporary ponds in a post oak-savanna region
of Texas. In N. J. Scott Jr. (ed.). Herpetological communities. Wildlife Research
Report 13, pp. 39-47. Washington, DC.
Wild, E. R. 1996. Natural history and resource use of four Amazonian tadpoles
assemblages. Publications of the Museum of Natural History, University of Kansas
176:1-59.
40
Williams, C. B. 1964. Patterns in the balance of nature. Academic Pres., New York.
Young, B., K. R. Lips, J. K. Reaser, R. Ibáñez, A. W. Salas, J. R. Cedeño, L. A. Coloma, S.
Ron, E. La Marca, J. R. Meyer, A. Muñoz, F. Bolaños, G. Chaves, and D. Romo.
2001. Population declines and priorities for amphibian conservation in Latin America.
Conservation Biology 15:1213–1223.
Young, B. E., S. N. Stuart, J. S. Chanson, N. A. Cox, and T. M. Boucher. 2004.
Disappearing jewels: the status of New World amphibians. NatureServe, Arlington.
Zar, J. H. 1999. Bioestatistical Analysis. 4ed. Prentice-Hall, Englewood Cliffs, NJ.
Zimmerman, B. L., and R. O. Bierregaard. 1986. Relevance of the equilibrium theory of
island biogeography and species-area relations to conservation with a case from
Amazonia. Journal of Biogeography 13:133-143.
Zimmerman, B. L., and D. Simberloff. 1996. An historical interpretation of habitat use by
frogs in a Central Amazonian Forest. Journal of Biogeography 23:27-46.
41
CAPÍTULO 2
Microhabitat choice and partitioning by anurans in forest streams
in southeastern Brazil
42
Resumo
A utilização do nicho espacial pelos anuros adultos foi estudada em oito riachos de
mata na RPPN Serra do Caraça localizada no município de Catas Altas (Minas Gerais). Os
microambientes avaliados foram classificados em 18 tipos baseados nos substratos, na
distância e na altura da água. Um total de 440 anuros de 19 espécies apresentaram grande
seletividade na utilização desses microambientes. Espécies com nichos mais amplos (mais
generalistas) não ocuparam um maior número de riachos do que as espécies mais
especialistas, nem os riachos com uma maior riqueza de espécies apresentaram espécies
com valores mais estreitos de nicho. As espécies apresentaram variados níveis de
sobreposição na utilização dos microambientes. O padrão de distribuição observado neste
estudo sugere que a competição não é um importante fator influenciando a estrutura
espacial das comunidades de anuros de riachos permanentes de mata.
Palavras-chaves: Anfíbios anuros, distribuição espacial, utilização de microambientes,
largura de nicho, plasticidade comportamental.
43
Abstract
The use of niche spatial dimension by anuran amphibians was studied in eight forest
streams in the RPPN Serra do Caraça, Catas Altas municipality, Minas Gerais state,
southeastern Brazil. Microhabitats were sampled and classified in 18 types based on
substrate and height above ground/water. A total of 440 individual anurans of 19 species
was recorded using these types of microhabitats. Anurans showed selectivity in
microhabitat use. Species with broader niches (generalists) did not occur in more streams
than species with narrower niches (specialists), and streams with higher species richness
did not shelter more specialists. Species showed variable levels of superposition in
microhabitat use. The distribution patterns observed in the studied anuran assemblages
suggest that competition is not an important factor influencing the spatial structure of these
assemblages in permanent forest streams.
Key words: Anuran amphibians, spatial distribution, microhabitat use, niche breadth,
behavioral plasticity
44
Introduction
Species co-existence in an assemblage is possible due to partition of available
resources (Blair 1961, Duellman and Pyles 1983, Aichinger 1987, Cardoso et al. 1989,
Haddad and Sazima 1992, Rossa-Feres and Jim 1994, Pombal 1997, Eterovick and Sazima
2000, Eterovick and Barros 2003), which are distributed in three main niche dimensions:
time, space, and food (Pianka 1973). The use of such resources is a compromise between
physiological needs of organisms and biotic interactions among them within the ecosystem
(Zweimüller 1995).
Differences in resource use may reduce competition and make the co-existence of a
higher number of species possible (MacArthur 1972). Competition intensity between
species may be related to the level of overlap in use of a critical resource (MacArthur and
Levins 1967). When use of a resource result in competition, species may diverge in order to
avoid it, reducing overlap in resource use (Schoener 1982). According to Pianka (1973), a
species niche is the set of resources it uses, and species under competition pressure are
expected to narrow their niches or tolerate greater niche overlap in richer assemblages.
In general, resource partitioning by amphibians is related to several specific needs
(Crump 1971) and differences in reproductive modes (Duellman 1989). The highest the
diversity of reproductive modes in an assemblage, the highest the number of species
expected to be able to co-exist, maybe due to a more efficient pattern of resource
partitioning (Crump 1982).
Habitat partitioning represents the occupancy of the spatial dimension of species
niches (Pianka 1973) and it may be the most important niche dimension to be partitioned by
adult anurans (Toft 1985). Variable and heterogeneous habitats favor an increase in species
45
richness, since a higher combination of microhabitat types and ecological niches is
available (MacArthur 1968). The choice of specific microhabitats within this habitat mosaic
is related to morphological, physiological and behavioral adaptations of species (Crump
1971, Pough et al. 1977, Cardoso et al. 1989). Species with broader niches are expected to
be more widespread may tolerate a larger variety of habitat conditions (Gaston et al. 1997,
Pyron 1999). Besides, species closely related phylogenetically tend to be associated to the
same or similar ecological niches, and in such instances historical factors are more
important than recent ecological ones in determining species distribution (Inger 1969).
Studies on microhabitat use by anurans are scarce (Eterovick and Fernandes 2001,
Eterovick and Barros 2003), nevertheless anuran reproductive sites may be studied as well
limited ecosystems where spatial niche can be characterized and quantified (Eterovick and
Barros 2003) making studies on spatial organization of anuran assemblages feasible.
Considering the diversity of microhabitats used by adult anurans as a measurement of their
niche breadth (Pianka 1973), we aimed to test whether (1) anurans select actively their
microhabitats, (2) species with broader niches (generalists) occur in a higher number of
streams, (3) species occurring in richer assemblages have narrower niches, and (4) species
partition microhabitats.
Study site
The Reserva Particular do Patrimônio Natural Serra do Caraça is located at Catas
Altas municipality (20º 05’S; 43º 29’W), Minas Gerais state, southeastern Brazil. The
reserve encompasses 10 187.89 ha in the southern portion of the Espinho mountain
range, from 850 to 2070 m above sea level (Fig. 1). The region is formed by the orographic
46
P ara Belo Horizonte
P ara BR-381
P ara Mariana
P ara Alvin ópolis
A lvinó po lis
R io Piracicaba
S ão Gonçalo do Rio Abaixo
O uro Preto
R io Acima
Itabirito
M ariana
R
i
o
C
o
n
c
e
i
ç
ã
o
R
i
o
M
a
q
u
i
n
é
P
I
R
A
C
I
C
A
B
A
R
I
O
M
G
-
4
3
6
B
R
-
2
6
2
M
G
-
3
2
6
M
G
-
1
2
9
20º00'
43º30'
43º15'
C aeté
Ba rã o de Cocais
Sa nta Bárbara
C ata s Altas
0 5 10km
0 150km
systems of Minas Gerais and Bahia states (Derby 1966), representing a contact zone
between the Cerrado and Atlantic Forest biomes in its southern portion and a transition
zone between both biomes in its northern portion (Giulietti and Pirani 1988, Giulietti
et al
.
1997).
The region has two seasons, a dry from April to September and a wet, from October
to March.
Figure 1. Location of the RPPN Serra do Caraça, Minas Gerais state,
southeastern Brazil.
47
Methods
The work was conducted during three-day monthly field trips from August 2003 to
October 2004, when eight permanent forest streams were regularly sampled (Fig. 2). Each
month, 150 m sections marked, one at each stream, were inspected in search for anurans
through visual and auditory searching procedures. For each individual located, we recorded
substrate used and height from the ground.
Specimens not identified in the field were preserved according to Heyer et al.
(1994) for posterior identification and then deposited in the herpetological collection of the
Museu de Ciências Naturais of the Pontifícia Universidade Católica de Minas Gerais.
Figure 2. Location of the eight sampled streams at the RPPN Serra do Caraça,
southeastern Brazil.
48
Microhabitat selection
Microhabitat availability was quantified using a new method proposed herein. Five
pictures of the marginal habitat were taken for each stream, within the marked 150 m
sampling section. The pictures were taken at 15, 45, 75, 105, and 135 m from the beginning
of the section. The margin (right or left) to be photographed was randomly assigned at the
first point, and then the margins were alternated at each following point. To standardize
picture size, a metric tape was extended at the photographed point and the width of each
picture corresponded to 3 m. The bottom of each picture was positioned where stream
water contacted stream margin at the middle point. All the pictures were taken with the
same camera and by the same person, without flash.
An uniform 15 x 21 line grid was superposed to each picture (Fig. 3) and
microhabitats occurring at line intersections were recorded at three height classes (0-70 cm,
>70-140 cm, and >140 cm). As the pictures were taken in a perpendicular position in
relation to the photographed area, height from the ground (measured to characterize
microhabitats used by recorded frogs) could be then assigned to the height classes used in
the pictures (Fig. 3). Microhabitats were classified into 18 types resulting from the
combination of the three height classes and seven substrate types: green leaves (including
ferns, bromeliads, grasses), brown leaves, branches (including roots, fallen branches,
lianas), rocks, leaf litter, bare soil (including sand, mud and river banks), and water (Table
1). Microhabitats of leaf litter above 140 cm and of water above 70 cm were not recorded
and were so eliminated from the analyses.
Absolute numbers recorded for availability and use of microhabitat types were
compared through Chi-square tests (Zar 1999), assuming that a random distribution of
49
anurans throughout the streams (no microhabitat selection) would result in proportional
values of use and availability. A significant difference between observed and expected
values would so indicate microhabitat selection by anurans at the studied streams.
>140 cm
> 70-140 cm
0-70cm
Figure 3.
Picture taken at the first point (15 m) of Stream 3, with the 15 x 21 line
grid superposed to quantify available microhabitats in three height classes at the
RPPN Serra do Caraça, southeastern Brazil. Each height class encompasses five
horizontal grid lines.
Niche breadth
Niche breadth was estimated for each anuran species using Simpson's diversity
formula (Pianka 1973):
D = 1 /
Pi
2
50
where Pi represents the proportion microhabitat "i" was used by the species
considered in relation to the total number of microhabitat use records for this species.
First, the diversity of microhabitats used by each species was estimated using data
from all streams where it occurred (A) and the diversity of available microhabitats was also
estimated for the same set of streams used by the species considered (S). Then, the diversity
of microhabitats used by each species was estimated separately for each stream where it
occurred (A'), and the diversity of available microhabitats was estimated for each stream
(S'). The A index was estimated for species with more than nine records (n = 7 species) and
the A' index was estimated for species with more than seven records (n = 6 species) in a
given stream.
A conservative estimate of niche breadth was given by A/S, since species occurring
in streams with greater microhabitat diversity could appear to have greater microhabitat use
diversity if they were randomly distributed in the habitat. So we tried to minimize the effect
of habitat heterogeneity on species niche breadths in order to compare them. We assumed
that higher A/S values would indicate species with greater plasticity in microhabitat use,
suggesting a generalist behavior, and we tested whether such species would occur in a
greater number of streams using linear regressions (Zar 1999). We considered the number
of streams where a species was recorded as the dependent variable and the species niche
breadth as the independent variable.
We also hypothesized that the number of species occupying a stream did would
influence on niche breadth of the species present, as assumed by Pianka (1973). We then
related niche breadth of species occurring in each stream (as the dependent variable) to
stream species richness (as the independent variable) using linear regressions (Zar 1999).
Statistical analyses were conducted in the software BioEstat (BioEstat 2003).
51
Niche overlap
To estimate niche overlap between anuran species regarding microhabitat use, we
used the formula proposed by Pianka (1973):
O
jk
= __ P
ij
P
ik
__
P
ij
2
P
ik
2
where P
ij
and P
ik
are the proportional uses of microhabitat "i" by species "j" and "k"
respectively. We used this index only for species occurring in the same stream.
Results
A total of 440 individual anurans from 19 species (Appendix 1) was observed using
16 out of the 18 recorded microhabitats. They used branches, bare soil and green leaves in
heights of 0-70 cm in proportions greater than expected (X
2
= 928.56, p < 0.001, Table 1).
None of the species used leaf litter or bare soil at heights of >70-140 cm (Table 1).
The high number of records obtained for Scinax luizotavioi, Hyla nanuzae and
Crossodactylus sp. made the conduction of specific analyses of microhabitat use possible,
and all these species showed microhabitat preferences. Scinax luizotavioi used
preferentially branches at heights of 0-70 cm (X
2
= 274.38, p< 0.001). Hyla nanuzae used
preferentially rocks at heights of 0-70cm (X
2
= 215.18, p< 0.001) and Crossodactylus sp.
used preferentially bare soil at heights of 0-70 cm (X
2
= 3418.7, p < 0.001).
52
Table 1. Microhabitats available in the eight studied streams and used by
19 anuran species at the RPPN Serra do Caraça, southeastern Brazil.
Microhabitats
Available
Used
Expected
Green leaves, 0-70 cm
1675
80
61.10
Green leaves, >70-140 cm
2102
14
76.7
Green leaves,
>
140 cm
1985
12
72.43
Brown leaves, 0-70 cm
332
7
12.10
Brown leaves, >70-140 cm
459
3
16.75
Brown leaves,
>
140 cm
332
1
12.10
Branch, 0-70 cm
1081
109
39.43
Branch, >70-140 cm
1325
26
48.35
Branch,
>
140 cm
1710
28
62.4
Rock, 0-70 cm
274
36
10
Rock, >70-140 cm
48
4
1.75
Rock,
>
140 cm
4
2
0.15
Leaf litter, 0-70 cm
82
28
3
Leaf litter, >70-140 cm
23
0
0.84
Bare soil, 0-70 cm
383
81
14
Bare soil, >70-140 cm
151
0
5.50
Bare soil,
>
140 cm
35
1
1.3
Water, 0-70 cm
57
8
2.1
Total
12058
440
440
Niche breadth
Species with broader niches (generalists), that is, those with higher A/S values, did
not occupy more streams than species with narrow niches (R
2
= -18.33%, p = 0.795, Table
2).
53
Table 2. Number of streams occupied and diversity of microhabitats used by seven anuran species
and diversity of available microhabitats in the set of streams used by them in the RPPN Serra do
Caraça, southeastern Brazil.
Species (n)
Number of
streams occupied
Diversity in
microhabitat use
(A)
Diversity of
available
microhabitats
(S)
A/S
Hyla
sp. (gr. c
ircumdata
)
(9)
3
3.24
8.45
0.38
Hyla martinsi
(19)
4
4.69
7.54
0.62
Hyla minuta
(13)
1
2.60
6.30
0.41
Hyla nanuzae
(104)
4
6.72
7.77
0.87
Hyla polytaenia
(12)
1
4.00
6.30
0.63
Scinax luizotavioi
(123)
5
2.99
7.62
0.40
Crossodactylus
sp.
(104)
3
2.62
7.89
0.33
The number of species occupying a stream did not influence on niche breadth of the
species present (A’/S’, Table 3) (R
2
= 4.95%, p = 0.237).
Table 3. Diversity of microhabitats used by six anuran species, diversity of microhabitat availability
in local streams and estimated niche breadth for species in particular streams (A'/S') at the RPPN
Serra do Caraça, southeastern Brazil. Streams are numbered like in Figure 2.
Species (number of
streams used)
Streams used
(number of
records)
Diversity in
microhabitat use (A’)
Diversity of
available
microhabitats
(S’)
A’/S’
Hyla martinsi
(4)
3 (8)
2.13
8.46
0.25
4 (7)
3.77
6.54
0.58
Hyla minuta
(1)
5 (13)
2.60
6.30
0.41
Hyla nanuzae
(4)
2 (12)
6.55
7.66
0.85
4 (32)
5.51
6.54
0.84
5 (55)
4.84
6.30
0.77
Hyla polytaenia
(1)
5 (12)
4.00
6.30
0.63
Scinax luizotavioi
(5)
2 (33)
3.96
7.66
0.52
4 (76)
2.63
6.54
0.36
5 (9)
2.45
6.30
0.39
Crossodactylus
sp. (3)
3 (78)
2.29
8.46
0.27
7 (43)
2.92
6.43
0.45
54
Niche overlap
Species had variable values of spatial niche overlap, and even species with great
superposition in microhabitat use could also superposition in their temporal distribution
(Afonso and Eterovick, unpubl. data).
Hyla nanuzae and S. luizotavioi (O
jk
= 0.668) co-occurred on August 2003, March, April,
September, and October 2004 in Stream 2.
Hyla nanuzae and S. luizotavioi (O
jk
= 0.635) co-occurred on August and September 2003,
from March to June and from August to September 2004 in Stream 4.
Hyla nanuzae and S. luizotavioi (O
jk
= 0.529) co-occurred on March, May, August and
September 2004 in Stream 5.
Hyla nanuzae and H. polytaenia (O
jk
= 0.373) co-occurred on August and October 2003 and
December and March 2004 in Stream 5.
Hyla nanuzae and H. minuta (O
jk
= 0.511) co-occurred on August and September 2003 and
on March, May, August and September 2004 in Stream 5.
Scinax luizotavioi and H. polytaenia (O
jk
= 0.754) co-occurred on March and September
2004 in Stream 5.
Scinax luizotavioi and H. minuta (O
jk
= 0.950) co-occurred on March, May, August and
September 2004 in Stream 5.
Hyla minuta and H. polytaenia (O
jk
= 0.682) co-occurred on August and October 2003 and
March and September 2004 in Stream 5.
55
Discussion
Environmental complexity, species niche breadth, niche overlap and behavioral
plasticity are all factors that may influence community structure (Inger and Colwell, 1977;
Cardoso et al., 1989). Environmental complexity is important to determine the number of
species that can exploit a given habitat (Cardoso et al., 1989). In forests, the complexity is
represented, in part, by the presence of all vegetation strata, creating a tridimensional space
with many microhabitat types. The use of all such space may favor the reduction of
competition among congeneric species (Meserve, 1977).
Spatial distribution is related to morphological (Cardoso et al., 1989), physiological
(Pough et al., 1977) and behavioral adaptations associated to anuran reproductive modes
(Crump, 1971). The anuran species occurring at the RPPN Serra do Caraça showed
selectivity in microhabitat use, branches at heights between 0 and 70 cm being the preferred
microhabitats. The high number of hylids present in the study site can help explain the
preference for microhabitats on the vegetation, as the presence of adhesive discs at hylid
fingertips turn species of this family able to explore the vegetation vertically (Cardoso et
al., 1989). Besides, these treefrogs can also use rocks and leaf litter as substrates as other
frogs do. This may contribute to a large niche breadth in species of this family. In fact, the
Leptodactylid Crossodactylus sp. had niches narrower than most Hylids studied (see Tables
2 and 3). Physiological differences in tolerance to water loss may also influence on
microhabitat choice (Pough et al., 1977). Species preference for microhabitats at heights
from 0 to 70 cm may be due to a higher humidity expected to occur close to the ground
(Cardoso and Martins, 1987; Cardoso and Haddad, 1992).
56
Scinax luizotavioi and Hyla nanuzae followed the pattern of spatial distribution
recorded for hylids at other sites (see Pombal, 1997; Eterovick and Sazima, 2004). These
species preferred to use branches and rocks respectively, both at heights from 0 to 70 cm.
Crossodactylus sp. preferred to use bare soil at heights of 0-70 cm. Since this species is
diurnal, the frogs call from the ground or close to it, at microhabitats that provide more
protection against water loss due to high humidity (Cardoso and Martins, 1987; Cardoso
and Haddad, 1992). As the remaining species recorded are nocturnal, Crossodactylus sp. is
not supposed to compete for space with them, so that the narrow niche recorded for this
species may be due to specific behavior and physiologic tolerances other than competitive
interactions with other anuran species.
According to Pianka (1973), species occurring in streams with higher species
richness would be expected to have narrower niches or greater niche overlap if subjected to
competition for the spatial niche dimension. Though, values of species niche breadths were
not related to species richness in streams at the RPPN Serra do Caraça. This may indicate
that the available niche space is not completely occupied, and competition is not strong
enough to influence community structure making species narrow their niches (Pianka,
1973). A similar pattern was recorded for tadpoles at montane meadow streams at Serra do
Cipó, southeastern Brazil (Eterovick and Barros, 2003).
The streams studied at Serra do Caraça are permanent and do not undergo abrupt
changes, being relatively stable if compared to temporary streams, as the ones studied by
Eterovick and Barros (2003) at Serra do Cipó. Habitat stability could provide suitable
conditions for species with narrow niches, and allow species to specialize in microhabitat
use (Donohue et al., 2001). Besides, forest habitats are considered more stable and
predictable than open habitats (sensu Colwell, 1974). Future studies addressing niche
57
breadth of anuran species in less stable and open habitats will be useful to assess the role of
environmental stability in shaping anuran assemblage structure.
Species pairs with higher values of niche overlap regarding microhabitat use may
show less overlap in other niche dimensions, such as food and time, in order to avoid
interspecific competition (Pianka, 1973). According to Toft (1985), the spatial niche
dimension is more important than food and time to be partitioned by anurans, since the
trophic niche is closely related to microhabitats used by the species (Inger and Colwell,
1977). At the study site, many species with spatial niche superposition also showed overlap
in period of occurrence, reinforcing the little importance of competition in structuring local
anuran assemblages.
Scinax luizotavioi and H. minuta were the species with the highest value of niche
overlap (O
jk
= 0.950). Although these species used the same microhabitats, they were
distributed throughout the stream in a way that S. luizotavioi was more frequent at stream
sections with more closed canopy and H. minuta was more frequent at open sections around
large backwaters. Scinax luizotavioi was also observed calling in a lake surrounded by
herbaceous and shrubby vegetation at Serra do Caraça by Caramaschi and Kisteumacher
(1989). Hyla minuta can also use puddles and swamps besides stream backwaters
(Eterovick and Sazima, 2004), occurring also in ponds at the RPPN Serra do Caraça (K.
Kopp and P. C. Eterovick, unpubl. data). In spite of being able to occupy different types of
water bodies, both Scinax luizotavioi and Hyla minuta had low values of niche breadth if
compared with other co-occurring hylids (see Tables 2 and 3). These species may occupy
habitats opportunistically but have an expected spatial distribution within them, regarding
microhabitats used. Microhabitat use may be more likely related to specific behavior than
to any kind of niche separation caused by competition, since there is a great availability of
58
the preferred microhabitats in the set of habitats used by the species. By the other side,
habitat occupancy may be related to differential migrating and colonization abilities of
species, so that species niches were not related to number of streams occupied.
The observed variable levels of niche overlap between species pairs indicate that
they differ in resource use although selective pressures may not be strong enough to lead to
a complete species differentiation in microhabitat use, as also noticed by Eterovick and
Barros (2003) for tadpole assemblages at Serra do Cipó, southeastern Brazil. Zimmerman
and Simberloff (1996) showed that anuran community structure, regarding habitat type
used for reproduction and development, is determined mainly by phylogenetic constraints
of species colonizing each site instead of environmental or competitive pressures. These
authors suggest that competition might assume a greater importance in a finer spatial scale,
but here we show that competition does not seem to have a great interference in
microhabitat use by adult anurans, at least in permanent streams.
The patterns of spatial distribution and microhabitat use of anuran assemblages in
the RPPN Serra do Cara indicate that competition may not have an important influence
on their structure. Species may show temporal and spatial overlap within a given habitat
(stream), or use the same microhabitats in a set of habitats (streams and ponds), even side
by side or scattered throughout the water body. Although species show patterns of
microhabitat preferences, microhabitats seem to be abundant enough to allow coexistence
without restrictions in specific preferences caused by competition. The role of habitat
stability in shaping species spatial niche is still little explored. Studies on anuran
assemblages from intermittent streams and sites with open vegetation, employing the new
method proposed here, will aid to the knowledge on how habitat stability and predictability
influence species niche breadth.
59
Acknowledgments
We are grateful to Arquimedes D. M. Ferreira, Camila R. Rievers, Carlos A. N.
Ventura, Fernanda C. Zaidan, Izabela M. Barata and Paulo Henrique C. de Souza for help
during field work, to Joaquim A. de Souza for making the maps, to Luciana B. Nascimento
for help during species identification, to Luciana B. Nascimento and Márcio Martins for
helpful suggestions in the manuscript, to Consuelo Paganini and the RPPN Serra do Caraça
staff for permits and logistics, to the Instituto Brasileiro do Meio Ambiente e dos Recursos
Naturais Renováveis (Ibama) for collecting permit (128/2004), and to the Programa de
Incentivo à Pesquisa (FIP) of the Universidade Católica de Minas Gerais for financial
support.
60
References
Aichinger, M. 1987. Annual activity patterns of anurans in a seasonal neotropical
environment. Oecologia 71:583-592.
Bioestat. 2003. Versão 3.0. Sociedade Civil Mamirauá/ MCT CNPq.
Blair, W. F. 1961. Calling spawning seasons in a mixed population of anurans. Ecology
42:99-110.
Caramaschi, U., and G. Kisteumacher. 1989. Duas novas espécies de Ololygon Fitzinger,
1843, do sudeste do Brasil (Amphibia, Anura, Hylidae). Boletim do Museu Nacional,
Rio de Janeiro 327:1-15.
Cardoso, A. J., G. V. Andrade, and C. F. B. Haddad. 1989. Distribuição espacial em
comunidades de anfíbios (Anura) no sudeste do Brasil. Revista Brasileira de Biologia
49:241-249.
Cardoso, A. J., and C. F. B. Haddad. 1992. Diversidade e turno de vocalizações de anuros
em comunidade neotropical. Acta Zoologica Lilloana 41:93-105.
Cardoso, A. J., and J. E. Martins. 1987. Diversidade de anuros durante o turno de
vocalização, em comunidades neotropicais. Papéis Avulsos de Zoologia 36:279-285.
Colwell, R. K. 1974. Predictability, constancy and contingency of periodic phenomena.
Ecology 55:1148-1153.
Colwell, R. K., and D. J. Futuyma. 1971. On the measurement of niche breadth and
overlap. Ecology 52:567-576.
Crump, M. L. 1971. Quantitative analysis of the neotropical herpetofauna. Occasional
Papers of the Museum of Natural History 3:1-62.
Crump, M. L. 1982. Amphibian reproductive ecology on the community level. In N. J.
61
Scott Jr. (ed.), Herpetological Communities, pp.21-36. Wildlife Research Report 13,
Washington D. C.
Derby, O. A. 1966. The Serra of Espinho, Brazil. Journal of Geology 14:374-40.
Donohue, K., E. H. Pyle, D. Messiqua, M. S. Heschel, and J. Schmitt. 2001. Adaptative
divergence in plasticity in natural populations of Impatiens capensis and its
consequences for performance in novel habitats. Evolution 55:692-702.
Duellman, W. E. 1989. Tropical herpetofaunal communities: patterns of community
structure in neotropical rainforests. In M. L. Harmelin-Vivien and F. Bourliere (eds.),
Ecological Studies, vol. 69 – Vertebrates in complex tropical systems, pp. 61-88.
Springer-Verlag, New York.
Duellman, W. E., and R. A. Pyles. 1983. Acoustic resource partitioning in anuran
communities. Copeia 1983:639-649.
Eterovick, P. C., and I. S. Barros. 2003. Niche occupancy in south-eastern Brazilian tadpole
communities in montane-meadow streams. Journal of Tropical Ecology 19:1-10.
Eterovick, P. C., and G. W. Fernandes. 2001. Tadpoles distribution within montane
meadow streams at the Serra do Cipó, southeastern Brazil: ecological or phylogenetic
constraints? Journal of Tropical Ecology 17:683-693.
Eterovick, P. C., and I. Sazima. 2004. Anfíbios da Serra do Cipó – Amphibians from the
Serra do Cipó, Minas Gerais, Brasil. Ed. PUC Minas, Belo Horizonte, MG.
Gaston, K. J., T. M. Blackburn, and J. H. Lawton. 1997. Interspecific abundance-range size
relationships: an appraisal of mechanisms. Journal of Animal Ecology 66:579-601.
Giulietti, A. M., and J. R. Pirani. 1988. Patterns of geographic distribution of some plant
species from the Espinho Range, Minas Gerais and Bahia. In P. E. Vanzolini and
W. R. Heyer (eds.), Proceedings of a workshop on Neotropical distribution patterns,
62
pp. 36-69. Academia Brasileira de Ciências, Rio de Janeiro, Brasil.
Giulietti, A. M., J. R. Pirani, and R. M. Harley. 1997. Espinho Range region, Eastern
Brazil. In S. D. Davis, V. H. Heywood, O. Herrera-MacBryde, J. Villa-Lobos and A.
C. Hamilton (eds.), Centres of plant diversity, a guide and strategy for their
conservation, v. 3, pp. 397-404. Information Press, Oxford, England.
Haddad, C. F. B., and I. Sazima. 1992. Anfíbios anuros da serra do Japí. In L. P. C.
Morellato (org.), História natural da Serra do Japí: ecologia e preservação de uma área
florestal no Sudeste do Brasil, pp. 188-211. Editora da Unicamp/FAPESP, Campinas,
SP.
Heyer, W. R., M. A. Donnelly, R. W. Mcdiarmid, L. A. C. Hayek, and M. S. Foster. 1994.
Measuring and monitoring biological diversity. Standard methods for amphibians.
Smithsonian Institution Press. Washington and London.
Inger, R. F. 1969. Organization of communities of frogs along small rain forest streams in
Sarawak. Journal of Animal Ecology 38:123-148.
Inger, R. F., and R. K. Colwell. 1977. Organization of contiguous communities of
amphibians and reptiles in Thailand. Ecological Monographs 47: 229-253.
MacArthur, R. H. 1968. The theory of the niche. In R. C. Leotin (ed.), Population biology
and evolution, pp. 159-176. Syracuse University Press, New York.
MacArthur, R. H. 1972. Geographical Ecology: Patterns in the Distribution of Species.
Harper and Row, New York.
MacArthur, R. H., and R. Levins. 1967. The limiting similarity, convergence and
divergence of coexisting species. American Naturalist 101:377-385.
Merseve, P. L. 1977. Three-dimensional home ranges of Cricetid rodents. Journal of
Mammalogy
58:549-558.
63
Pianka, E. R. 1973. The structure of lizard communities. Annual Review of Ecology and
Systematics 4:53-74.
Pombal Jr., J. P. 1997. Distribuição espacial e temporal de anuros (Amphibia) em uma poça
permanente na Serra de Paranapiacaba, sudeste do Brasil. Revista Brasileira de
Biologia 57:583-594.
Pough, F. H., M. M. Stewart, and R. G. Thomas. 1977. Physiological basis of habitat
partitioning in Jamaican Eleutherodactylus. Oecologia 27:285-293.
Pyron, M. 1999. Relationships between geographical range size, body size, local
abundance, and habitat breadth in North American suckers and sunfishes. Journal of
Biogeography 26:549-558.
Rossa-Feres, D. C., and J. Jim. 1994. Distribuição sazonal em comunidades de anfíbios
anuros na região de Botucatu, São Paulo. Revista Brasileira de Biologia 54:323-334.
Schoener, T. W. 1982. The controversy over interspecific competition. American Scientist
70:586-595.
Toft, C. A. 1985. Resource partioning in amphibians and reptiles. Copeia 1985:1-21.
Zar, J. H. 1999. Bioestatistical Analysis. 4
th
ed. Prentice-Hall International, Inc., New
Jersey.
Zimmermann, B. L., and D. Simberloff. 1996. An historical interpretation of habitat use by
frogs in a Central Amazonian Forest. Journal of Biogeography 23:27-46.
Zweimüller, I. 1995. Microhabitat use by two small benthic stream fish in a 2
nd
order
stream. Hydrobiologia 303:125-137.
64
Appendix 1
Anuran amphibians recorded at eight permanent streams in the RPPN Serra do Caraça,
southeastern Brazil, from August 2003 to October 2004.
BUFONIDAE
Bufo pombali Balsissera, Caramaschi & Haddad, 2004
Bufo rubescens Lutz, 1925
CENTROLENIDAE
Hyalinobatrachium cf. eurygnathum
HYLIDAE
Hyla sp. (gr. circumdata)
Hyla faber Wied-Neuwied, 1821
Hyla martinsi Bokermann, 1964
Hyla minuta Peters, 1872
Hyla nanuzae Bokermann & Sazima 1973
Hyla polytaenia Cope, 1868
Phyllomedusa burmeisteri Boulenger, 1882
Scinax aff. perereca
Scinax machadoi (Bokermann & Sazima, 1973)
Hyla albopunctata Spix, 1824
Scinax sp. (gr. ruber)
Scinax luizotavioi (Caramaschi & Kisteumacher, 1989)
LEPTODACTYLIDADE
Crossodactylus sp.
Hylodes uai Nascimento, Pombal & Haddad, 2001
Procerathophrys boiei (Wied-Neuwied, 1824)
Physallaemus aff. olfersii
65
Conclusões gerais
Foram registradas 19 espécies de anuros pertencentes a três famílias: Bufonidae
(10,53%), Hylidae (68,42%) e Leptodactylidae (21,05%) na RPPN Serra do Caraça
(Catas Altas, MG) no período de agosto de 2003 a outubro de 2004.
Houve uma relação significativa entre o número de espécies presentes e o volume
dos riachos, mostrando que os riachos com maior volume de água apresentam
menor número de espécies.
A diversidade de espécies e a diversidade de espécies vocalizando não foram
relacionadas com os fatores climáticos (precipitação e temperatura), mas as espécies
de anuros demonstraram preferência quanto à época de atividade.
Entre as 19 espécies registradas, 12 apresentaram atividade de vocalização e oito
apresentaram indícios de atividade reprodutiva. As espécies com maior plasticidade
na ocupação ambiental foram as que apresentaram mais indícios de reprodução.
Um total de 440 anuros apresentou grande seletividade na utilização de 18 tipos de
microambientes.
As espécies consideradas como sendo mais generalistas não ocuparam um maior
número de riachos, não sendo sua distribuição no ambiente relacionada à
plasticidade comportamental.
O número de espécies ocupando um riacho não influenciou a largura de nicho das
espécies presentes, o que poderia indicar que o nicho espacial não está sendo
totalmente ocupado e a competição provavelmente não está estruturando as
comunidades estudadas.
66
As espécies de anuros apresentaram valores intermediários de sobreposição de
nichos, mostrando a utilização diferencial dos recursos.
As espécies de anuros da RPPN Serra do Caraça apresentam baixa plasticidade
comportamental no uso de microambientes, provavelmente porque riachos
permanentes são mais estáveis e previsíveis se comparados a riachos temporários.
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo